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CHAPTER 1 - INTRODUCTION 

Multiphase flow transportation in offshore pipelines is an important concern for the 

petroleum industry. The operational hazards involving oil and gas transportation in pipelines 

are studied in an engineering analysis process called flow assurance. The three main treats to 

flow assurance are wax, hydrates, and asphaltenes (Kaiser, 2020). Hydrate problems are 

common in deep-water production, and they are considered the biggest challenge in flow 

assurance nowadays (Cardoso et al., 2014). Gas hydrates are crystals composed by water and 

gas molecules, and they form in offshore scenarios of petroleum extraction due to the high 

pressures and low temperatures of these systems. 

Figure 1 shows that the petroleum (with water, sand, and other impurities) is at high 

pressure and high temperature when it is extracted from the wells, outside of the hydrate 

formation domain (point A). As it flows in the pipeline, its temperature gradually decreases, 

since the water from the sea cools the pipeline. At some point, with low enough temperature, 

the mixture enters the hydrate thermodynamic formation domain (point B), and after some time, 

hydrates may form (point C). Hydrate formation is characterized by an immediate temperature 

increase (it is an exothermal process) and an absolute pressure decrease (hydrates store gas 

molecules while the system seeks for a lower level of energy). As the mixture remains flowing, 

the pressure decreases, so it will be outside of hydrate formation zone (starting from point D) 

until it reaches the end of the pipeline (point E). 

 
Figure 1. (a) Gas hydrate formation in deep-sea oil and gas extraction in deep-sea, and (b) 

illustration of a pressure and temperature equilibrium diagram of hydrate formation. 

The formation of gas hydrates inside oil and gas pipelines is undesirable and represents 

an important technical issue for the industry because it may cause blockage of pipelines. 

Avoiding hydrate blockages is necessary for two reasons. The first reason is the security threat 

https://www.sciencedirect.com/science/article/pii/B9780128202883000020#!
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and technical difficulties involved in removing the plugs, which can cause accidents. The 

second reason concerns the financial losses in case the production is interrupted due to a hydrate 

blockage incident.  

There are two approaches to avoid hydrates blockage: hydrate avoidance and hydrate 

management. The first approach was the initial strategy adopted by the industry, where the 

pipelines will remain without hydrates during extraction. By its turn, the hydrate management 

approach allows operation with hydrates if the risk is acceptable. Due to the high costs of a 

completely hydrate avoidance, companies have been looking to migrate from hydrate avoidance 

to hydrate management. The concepts of hydrate management and hydrate avoidance are 

illustrated in Figure 2. 

 
Figure 2. Hydrate avoidance versus hydrate management. Modified from Kinnari et al. 

(2015). 

Currently in both strategies, chemical additives known as hydrate inhibitors are injected 

inside the pipelines to avoid plugs. There are three types of hydrate inhibitors: thermodynamic 

hydrate inhibitor (THI), kinetic inhibitor (KI) and anti-agglomerant or hydrate dispersant 

(AA). While the THIs are necessary in high doses (20-60 wt.% vs. water), the KIs and AAs can 

be effective at low doses (from 0.25 to 3 wt.% vs. water), and, because of that, they are frequent 

called low-dosage hydrate inhibitors (LDHIs). 

THIs are the most common additives used on field, and they reduce the temperature of 

hydrate formation, working as hydrate avoidance inhibitors. THIs are well understood and 

predictable, but they are becoming more and more expensive, once the volume of this type of 

additive is proportional to the water fraction of the condensate mixture. During oil and gas 

extraction, water is injected inside the reservoir to maintain its pressure. Therefore, the water 

fraction increases over the years, so it does the amount of THI. 



3 

 

An alternative is the use of LDHIs, which include KIs and AAs. KIs are used to delay 

the beginning of crystallization and can be used for some systems where the time inside the 

thermodynamic formation zone of hydrates is short. However, KIs are for several scenarios 

unpredictable and/or ineffective, mostly when pipelines are very long. The AAs are designed 

to maintain the system flowable with hydrates, by controlling the size of hydrate particles. The 

role of AAs is therefore not to avoid hydrate formation, but to prevent agglomeration and in 

certain cases deposition in such way that the system continues flowing even if there are hydrate 

particles in the pipeline. Therefore, AAs will change the dispersion and the particles size 

distribution. 

The use of AAs has been reported as effective for low water cut systems. However, for 

high water cuts, results are more variable from literature data using different pilot systems. The 

mechanisms of anti-agglomeration or dispersion of hydrates in flow lines when AAs are used 

are not well understood. The effect of AAs in flow lines are not well understood because hydrate 

formation and plugging mechanisms involve several complexes phenomena: crystallization, 

growth, agglomeration, breakage, deposition, settling, flow pattern, and others. Analyzing and 

quantifying these phenomena under flowing conditions represents a challenge, even at 

laboratory level. Part of these mechanisms occurs at microscopic scale (crystallization and 

growth), but the impact on the flow regime and the transportability of hydrates occurs when 

particles are at macroscopic scale (deposition, bedding, sloughing, viscosification, plugging). 

Overall, several mechanisms of hydrate formation are known, and in recent years, more 

insights have been proposed in the literature. However, a completely description of all 

mechanisms has not yet been achieved. A satisfactory explanation on how the slurry flow 

behaves over time and space is not yet available. Most of the academic research focuses on oil-

dominated systems, while industrial interest concerns water or gas-dominated systems. A better 

understanding on the suspension, the distribution of hydrate particles in the liquid phase, and 

how hydrate formation impacts water-oil flow pattern, is still needed. 

A high-pressure flow loop with temperature control is an apparatus used in laboratory 

to study hydrate formation under flow. Due to the size of this type of apparatus and the 

complexity of the phenomena, the analysis of results is a challenge, and it requires a 

combination of different instruments and a careful implementation of data processing and 

calculation methods. This is where this thesis situates. It uses a multidisciplinary approach, 

combining an experimental work and the development of a software for data treatment and 

calculation methods to study hydrate formation for applications in flow assurance. 
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1.1. Objectives 

The objective of this work is a flow loop (56 meters long, diameters of 15.7 mm and 

10.2 mm) experimental study of gas hydrate formation and transport in oil-water dispersions 

(30, 50 and 80% water cut) without and with LDHI-AA (doses of 1.50 wt.% vs. water at 50% 

water cut and 0.94 wt.% vs. water at 80% water cut), carrying out tests with saline water (30 

g/L of NaCl), Kerdane oil and natural gas. A new combination of different sensors has been 

used in the Archimedes flow loop apparatus installed at Mines Saint-Etienne to analyze the 

flow pattern and distribution of hydrates in the system, and a data processing application has 

been developed for data analysis and calculation procedures to extract information from the 

experiments. This work has three partial objectives: 

 To understand better the different steps of hydrate blockage formation, hydrates 

transportability and its impact on the multiphase flow conditions.  

 To test the effectiveness of a commercial LDHI-AA in avoiding plugs and 

understand how it changes the slurry flow and the transportability of the system for 

water continuous systems. 

 To evaluate the applicability of acoustic emission, permittivity measurements and 

high-speed imaging to detect and track hydrate particles and the flow pattern in flow 

loop experiments, namely the continuous phase, hydrates fraction and deposition. 

1.2. Motivation 

Nowadays, petroleum extraction is moving to deep-sea scenarios, increasing the 

technical complexity and costs of production. In deep sea, as the lengths of pipelines are 

becoming longer, the required thermodynamic conditions for hydrate formation are attained, 

which is a challenge for engineers on this field to assure that the pipelines remain flowable. The 

costs and environmental issues associated with the overuse of THIs that are injected for hydrate 

avoidance are relevant for the petroleum industry. 

Most of the work reported in the literature, including both experimental studies and 

mathematical models, concerns oil-dominated systems. Limited studies have attempt to explain 

mechanisms of hydrate blockage at high water cuts. For the industrial point of view, there is a 

growing interest in high water cuts, due to the increasing water fraction flowing in the pipelines 

as the wells become older. 

The implementation and improvement of the current hydrate blockage avoidance 

strategies requires a better comprehension on how flow pattern and hydrate plug formation are 
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connected, how hydrates are dispersed in the system, what is the maximum transportability of 

hydrates based on the flow conditions, how the apparent viscosity changes, how much additive 

must be injected, among several other analyses that could be proposed. For that, one path is the 

development of a database of hydrate formation experiments combining different instruments 

that can be used for modeling the different steps of hydrate formation and hydrate blockage, 

which is where the discussion of this thesis is limited. However, it creates a base for future 

advanced treatments that could be created as predictive tools in hydrate management, based on 

mathematical models, statistics, and machine learning (or other artificial intelligence) 

techniques. 

1.3. Organization of the thesis 

Chapter 2 contains the literature review. The focus is flow assurance and the 

mechanisms of hydrate formation in oil-water systems. It is also presented the basic notions of 

gas hydrates, liquid-liquid, solid-liquid flows, and some techniques for hydrate blockage 

prevention. The contributions of this work are discussed. 

Chapter 3 presents the materials and methods used in this work. It contains the 

description and schematics of the flow loop apparatus used in the experiments, the instruments, 

and the experimental protocol. It also presented the calculation methods for gas dissolution, oil 

density, and water conversion. 

Chapter 4 analyzes the liquid-liquid flow before hydrate formation. A combination of 

permittivity, water-cut and viscosity analysis is presented, compared to some images of the flow 

obtained with a camera. 

Chapter 5 presents the results of hydrate formation with and without a commercial AA. 

It discusses the mechanisms of hydrate formation and hydrate plug formation for both cases. 

Chapter 6 presents two simplified models to calculate the apparent flowing hydrate 

fraction based on density measurements and an additional treatment with absolute energy 

comparing it to the frictional pressure drop. 

Chapter 7 presents the relevant conclusions and ideas for future works. 

As supplementary material, there are six Appendices. Appendix A presents details of 

the Archimède Data Processing and Visualization Application, software that was developed to 

treat and visualize the data from the experiments using the Archimède flow loop. Appendix B 

contains a simplified PVT model from literature used in this work for the calculation 

methodologies. Appendix C has data of solubility experiments for some of the components of 

the natural gas in Kerdane oil. Appendix D contains the calculated Reynolds number and 
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apparent viscosity for the experiments. Appendix E contain additional results of experiments 

not presented or not discussed in the thesis. Finally, Appendix F contains the calculated water 

conversion and hydrate fraction for all the experiments. 

1.4. Highlights in French - Résume du Chapitre 1 en Français 

Le transport d’écoulement polyphasique dans les pipelines en l’eau profonde est une 

préoccupation importante pour l'industrie pétrolière et gazière. Les dangers opérationnels pour 

ce scénario sont étudiés dans un processus d'analyse technique appelé maintien de l'écoulement. 

Les problèmes d'hydrates sont courants dans la production en eau profonde, et ils sont 

considérés comme le plus grand défi de l'assurance de flux. Les hydrates de gaz sont des 

cristaux composés de molécules d'eau et de gaz, et ils se forment dans des scénarios d'extraction 

de pétrole en haute mer en raison des hautes pressions et des basses températures de ces 

systèmes. 

La formation d'hydrates de gaz à l'intérieur des oléoducs et des gazoducs n'est pas 

souhaitable et représente un problème technique important pour l'industrie, car elle peut 

provoquer le blocage des pipelines. Il existe deux approches pour éviter le blocage des hydrates 

: l'évitement des hydrates et la gestion des hydrates. Dans la première stratégie, les pipelines 

resteront sans hydrates pendant l'extraction. A son tour, l'approche de gestion des hydrates 

permet un fonctionnement avec des hydrates si le risque est acceptable. En raison des coûts 

élevés d'un évitement complet des hydrates, les entreprises ont cherché à passer de l'évitement 

des hydrates à la gestion des hydrates, avec l’utilisation des additives l'antiagglomérant ou 

dispersant d'hydrate (AA), que peuvent être efficaces à faibles doses (entre 0.5 et 3 poids% 

d’eau). Les AA sont conçus pour maintenir le système fluide avec les hydrates, en contrôlant la 

taille des particules d'hydrates. Le rôle des AA n'est donc pas d'éviter la formation d'hydrates, 

mais d'empêcher l'agglomération et dans certains cas le dépôt de telle sorte que le système 

continue de circuler même s'il y a des particules d'hydrate dans la canalisation. Les AA vont 

donc modifier l'émulsion et la distribution granulométrique. 

L'utilisation des AA a été signalée comme efficace pour les systèmes de coupure de bas 

niveau d'eau. Cependant, pour les systèmes de coupure d'eau haute, ils ne sont apparemment 

pas très efficaces. Les mécanismes d'anti-agglomération ou de dispersion d'hydrate dans les 

conduites d'écoulement lorsque les AA sont utilisés ne sont pas bien compris. Les AA ne sont 

pas bien compris car la formation d'hydrates et les mécanismes de colmatage impliquent 

plusieurs phénomènes complexes : cristallisation, croissance, agglomération, rupture, dépôt, 

décantation, modèle d'écoulement, etc. L'analyse de ces phénomènes dans des conditions 
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d'écoulement représente un défi, même au niveau du laboratoire. Une partie de ces mécanismes 

se produit à l'échelle microscopique (cristallisation et croissance), mais l'impact sur le régime 

d'écoulement et la transportabilité des hydrates se produit lorsque les particules sont à l'échelle 

macroscopique (dépôt, litière, mue, viscosification, colmatage). 

Une description complète de tous les mécanismes n'a pas encore été réalisée. Une 

description satisfaisante du comportement de l'écoulement de la suspension dans le temps et 

dans l'espace n'est pas encore disponible. La plupart des recherches universitaires se concentrent 

sur les systèmes dominés par le pétrole, tandis que l'intérêt industriel concerne les systèmes 

dominés par l'eau ou le gaz. Une meilleure compréhension de la suspension, de la distribution 

des particules d'hydrate dans la phase liquide et de l'impact de la formation d'hydrates sur le 

schéma d'écoulement eau-huile est encore nécessaire. 

Un flowloop haute pression avec contrôle de température est un appareil utilisé en 

laboratoire pour étudier la formation d'hydrates sous écoulement. En raison de la taille de ce 

type d'appareil et de la complexité des phénomènes, l'analyse des résultats est un défi, et elle 

nécessite une combinaison de différents instruments et une mise en œuvre minutieuse des 

méthodes de traitement et de calcul des données. C'est là que se situe cette thèse. Il utilise une 

approche multidisciplinaire, combinant un travail expérimental et le développement d'un 

logiciel de traitement des données et de méthodes de calcul pour étudier la formation d'hydrates 

pour des applications en assurance d'écoulement. 

L'objectif de ce travail est une étude expérimentale en boucle d'écoulement de la 

formation et du transport d'hydrates de gaz dans les émulsions huile-eau avec et sans 

antiagglomérant (doses 1,50 poids% eau pour 50% fraction d’eau, et 0,94 poids% eau pour 80% 

fraction d’eau), en réalisant des tests avec de l'eau, l’huile et du gaz naturel. Une nouvelle 

combinaison de différents capteurs a été utilisée dans l'appareil de boucle d'écoulement 

d'Archimède installé à Mines Saint-Etienne pour analyser le régime d'écoulement et la 

distribution des hydrates dans le système, et un logiciel de traitement des données a été 

développée pour analyser les données et mettre en œuvre des procédures de calcul. Ce travail a 

quatre objectifs partiels : 

 Mieux comprendre les différentes étapes de la formation du blocage des hydrates, la 

transportabilité des hydrates et son impact sur les conditions d'écoulement 

multiphasique. 

 Tester l'efficacité d'un LDHI-AA commercial pour éviter les bouchons et 

comprendre comment il modifie le débit de lisier et la transportabilité du système 

pour les systèmes à eau continue. 
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 Evaluation of the applicability of acoustic emission, permittivity measurements and 

high-speed imaging to detect and track hydrate particles and the flow pattern in flow 

loop experiments.   
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CHAPTER 2 - LITERATURE REVIEW 

This chapter gives a brief presentation about crystallization of gas hydrates and a review 

about mechanisms of hydrate plug formation in water-oil systems. The approaches to avoid 

hydrate blockage, some future perspectives and the contributions of this thesis are discussed. 

2.1. Gas hydrates 

As explained in Chapter 1, gas hydrates are crystalline compounds of water and gas. 

They are organized in spatial blocks called cages. A cage is formed by a polyhedron network 

of water molecules with a gas molecule trapped inside it. The gas molecule is called guest, 

while the water molecule is called host. Guest molecules can be methane, propane, butane, and 

some other types of light natural gases.  

There are three hydrates structures found in nature, as illustrated in Figure 3, called 

structure I (s-I), structure II (s-II) and structure H (s-H). As explained by Sloan et al. (2011), 

the structures differ from each other the way how the cages are formed, number of water 

molecules, size and how they are connected. There is one particular basic cage, the 512 (12 

pentagonal faces), which forms a building block for the three types of structures. There are no 

chemical bonds between hosts and guests molecules, but the presence of the guest keeps the 

cage stable.  

The basic cage 512 cannot be the unique in a building block structure, because strains 

would be too strong only with pentagonal faces. The bond strains can be relieved by the 

inclusion of hexagonal faces. For the structure s-I, the addition of two hexagonal faces form 

connecting 51262 cages, with both the 12 original pentagonal faces and 2 additional hexagonal, 

strain-relieving faces. For structure s-II, there are four additional hexagonal faces, forming the 

building block 51264. The structure s-H, by its turn, is more complex and formed by 435663 and 

51268 connecting cages. Hydrate formation can be described by the general equation: 

 𝐺 + 𝑁ℎ𝐻2𝑂 ⇌ 𝐺 · 𝑁ℎ𝐻2𝑂 ( 1 ) 

where 𝐺 is a light natural gas molecule and 𝑁ℎ is the hydration number, that is, the ratio between 

the number of water molecules and gas molecules consumed for hydrate formation. 
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Figure 3. The three repeating unit crystals structures and their consecutive cages. Adapted 

from Sloan et al. (2011). 

The type of structure formed depends on the size of the guest (gas) molecule. Only 

relatively small guests, no larger than 10 Å, can occupy water cavities.  Methane, ethane, and 

carbon dioxide are examples of light natural gas molecules that form s-I, having 4.2-6 Å 

diameters. Guest molecules with less than 4.2 Å, such as nitrogen and some others, form s-II.  

Larger guests (6-7 Å), such propane and iso-butane, also form s-II. Only structures I and II are 

found in oil and gas production. As explained by Ke et al. (2019), due to the high pressures in 

oil and gas pipelines, only one guest molecule is expected to occupy each cavity, despite some 

(rare) exceptions may eventually exist. A comparison between the three common hydrate 

structures is shown in Table 1.  
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Table 1. Characteristics of the common hydrate structures. Adapted from Sloan and Koh 

(2008) and Melchuna (2016). 

Hydrate structure s-I s-II s-H 

System Cubic Face-centered cubic Hexagonal 

Cage Small Large Small Large Small Medium Large 

Type of cages 512 51262 512 51264 512 435663 51268 

Water molecules 

per unity 
46 136 34 

Examples of gases 
Methane, Ethane, 

CO2 

Nitrogen, Propane, 

Butane, O2 

CH4+2.2-dimetybutane, 

Xe + Cycloheptane 

 

A combination of different gases, which is the common case for natural gas in oil and 

gas fields, may lead to a transition for one structure to another (s-I and s-II), the coexistence 

between the two, or an initial formation of s-I and gradual transition to s-II. For example, adding 

a small amount of propane to methane changes the hydrate structure from s-I to s-II (Ke et al., 

2019). The reason is that propane molecules are larger than methane molecules, and they can 

help stabilize the large cavity, 51264, of s-II hydrate structure. Then, it will be easier to have a 

structural stability for type s-II than s-I, which also leads to a decrease on the required driving 

force for hydrate formation. Experimental evidence also suggests that methane-propane 

mixtures may simultaneously have s-I and s-II structures (Menezes et al., 2019). Another 

example is methane-ethane mixtures, which may have s-II structure for low concentrations of 

ethane (Ballard and Sloan, 2000; Subramanian et al., 2000; Ke et al., 2019).  

Experimental evidence has also suggested that, if methane is the predominant 

component in a gas mixture, initial hydrate formation seems to have structure s-I, with only 

methane molecules being consumed to form the cages 512, and the other types of gas molecules 

being incorporated later, with hydrates gradually changing to structure s-II (Schicks and Luzi-

Helbing, 2013). As one can notice, cavity formation and gas occupancy during hydrate 

formation are not sufficiently known. Understanding the structures of the hydrates in oil and 

gas pipelines is important because it directly affects the equilibrium pressure and temperature 

for hydrate formation. 

Hydrate formation consists of two consecutive mechanisms: nucleation and growth of 

hydrate particles. They are followed by agglomeration, which may change the size of these 

particles. The next three subsections contain discussions about each one of these mechanisms. 
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2.1.1. Nucleation 

Hydrate nucleation is commonly explained in the literature by means of the Classical 

Nucleation Theory. In this sense, the nucleation process can be divided in primary nucleation 

and secondary nucleation, as summarized in Figure 4. Primary nucleation refers to a nucleation 

processes that occur in a previously crystal-free solution, while secondary nucleation is the 

generation of new crystals by crystals already present in the suspension (Nienow, 1992). 

Primary and secondary nucleation have in common the fact that a free-energy barrier must be 

passed in order to form clusters of a critical size, beyond which the new phase grows 

spontaneously. 

 
Figure 4. Various kinds of nucleation. Adapted from Nienow (1992). 

The primary nucleation can be further classified as homogeneous (perfect clean 

solution) or heterogeneous (presence of inert foreign particles). During the primary 

homogeneous nucleation, water molecules cluster around gas molecules to form crystal 

embryos. A sustainable growth of a hydrate from nuclei is possible only if the nuclei reaches a 

critical size, so it can overcome the free energy barrier required for growth. The process of 

reaching the critical or minimum size is considered a random process, based exclusively on 

local density fluctuations.  

The primary homogeneous nucleation has three stages, as illustrated in Figure 5. The 

first stage, represented in Figure 5(a), consists in a continuous reaction between ions or 

molecules, resulting the formation of clusters. For a new phase to appear, an interface must be 

formed, which occurs by small embryos in the new phase being formed within the bulk 

metastable phase. The spontaneous density or composition fluctuations may lead to a formation 

or a destruction of embryos. In the second stage, represented in Figure 5(b), aggregation forces, 

acting to form larger aggregates, influence the clusters stability. The creation of nuclei can be 

described by a successive addition of units A according to the formation scheme 𝐴𝑛 + 𝐴 =

𝐴𝑛+1. Finally, in the third stage, represented in Figure 5(c), clusters will grow until a critical 

size. 
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Figure 5. Clusters formation by the Classical Nucleation Theory. Adapted from Mersmann 

(2001). 

The reversible work necessary to form such a cluster is given by a balance of the volume 

free energy (∆𝐺𝑉) that is gained and the free-surface energy (∆𝐺𝑆) that is needed to build the 

new surface. The nucleus is thermodynamically stable when the total free energy (∆𝐺) does not 

change when elementary units are added or removed. The stability exists if the nucleus reach a 

critical size (𝑟𝑐), correspondent to a critical free energy (∆𝐺𝑐). Figure 6 shows a representation 

of the free energy as function of cluster size. Surface free energy, which is unfavorable to 

hydrate growth, is defined as positive, while the volume free energy, which is favorable to 

hydrate growth, is defined as negative. 

 
Figure 6. Free energy diagram showing free energy versus cluster size. 

The driving force for the formation of a new phase is the chemical potential difference 

between the old phase and the new one. For hydrate formation, it is the supersaturation of gas 

into the water phase. The supersaturation for hydrate formation can mathematically be 

expressed as (Kashchiev and Firoozabadi, 2002): 

 𝛥𝜇 = 𝜇𝐺 + 𝑁ℎ𝜇𝑊 − 𝜇𝐻 ( 2 ) 
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where 𝜇𝐺 and 𝜇𝑊 are the chemical potentials of gas and water molecules in the aqueous 

solution, and 𝜇𝐻 represents the chemical potential of a building unit (one gas molecule and 𝑁ℎ 

water molecules) in the hydrate crystal. 

 It is important to notice that, using the primary homogeneous nucleation to explain gas 

hydrate formation is a simplified approach. Indeed, perfectly clean solutions are hardly found 

in industrial applications, especially in the context petroleum exploration. Primary 

heterogeneous and secondary nucleation involve complex mechanisms not well understood. 

Further information about primary heterogeneous and secondary nucleation can be found in the 

specialized literature (Nienow, 1997; Mersmann, 2001; among others). 

2.1.2. Growth 

Hydrate growth refers to the growth of stable hydrate nuclei as solid hydrates (Bishnoi 

and Nararajan, 1996). It occurs right after hydrate nucleation, and it is the process which leads 

to the evolution of crystal form of defined size and shape (Vedantam and Ranade, 2013). The 

growth occurs layer-by-layer, molecules from the solute will bond in a place at the forming 

crystal surface with the maximum of neighborhood surface (most energetically favorable site). 

At microscopic level, hydrates level can be considered a combination of three factors (Sloan 

and Koh, 2008; Yin et al., 2018): (i) mass transfer of water and gas molecules to the growing 

surface, (ii) the intrinsic kinetics of hydrate growth at the hydrate surface, and (iii) transport of 

the heat released by hydrate formation. 

As explained by Mersmann (2001), in molecular terms, if the surface is rough and has 

many kink sites, the growth continues, as long the system continues inside the hydrate formation 

thermodynamic domain. Each growth unit reaching the surface in a supersaturated solution is 

integrated into the crystal lattice. However, if the crystal surface becomes smoother, on a 

molecular scale, growth becomes considerably more difficult, as energetically favorable sites 

are limited. 

2.1.3. Agglomeration and Deposition 

Agglomeration occurs when two particles collide and adhere each other due to the 

attractive forces between them, thus it directly affects the size of the dispersed particles. The 

larger the particles flowing in the pipeline, the higher is the risk of plugging. Settling of particles 

at the pipeline wall takes place when the flow velocity is not enough to carry the particles. 

Settling of particles may cause deposition or sloughing. When deposition occurs, the cross-
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sectional area reduces, affecting the flow rate and the pressure drop, which increases the risk of 

plugging. In this section, the mechanisms observed in gas hydrates agglomeration are analyzed 

and the forces involved are identified for different flow conditions. Discussion will be made 

regarding the use of AAs and how they affect the flow and the interaction between hydrate 

particles. 

The main forces involved during agglomeration are the Van der Waals, the capillary 

bridge, the solid bridge, the shear, the Brownian and the turbulent forces (Anklam et al., 2008; 

Wang et al., 2014; Brown et al., 2016). The liquid bridge and the shear forces are the most 

important agglomeration forces (Anklam et al., 2008; Wang et al., 2014). However, the 

turbulent force may be the dominant aggregation mechanism in flowing systems with a high 

enough Reynolds number and sufficient size of the particles (Brown et al., 2016). In addition, 

the gravitational force acting on the hydrate particles is commonly mentioned in the literature, 

which causes settling of particles in the pipe wall. 

2.1.3.1. Liquid-bridge force 

Figure 7 illustrates the liquid bridge between two particles in an oil continuous system, 

where 𝜃 is the contact angle between the particle and the water in the bridge, ℎ is the distance 

between the two particles, 𝑟1 is the curvature of the liquid-oil interface, and 𝑟2 is the smallest 

internal radius of the liquid bridge. 

 
Figure 7. Liquid bridge between two spherical particles. 

2.1.3.2. Dispersion forces 

The dispersion forces (London-van Der Waals) depend primarily on the particle size, 

the particle composition, the composition of the medium, and the distance between particles. 

The Van der Waals force between the particle 1 and the particle 2 (see Figure 7) is expressed 

as: 

Liquid bridge

1r

2r

h
Particle 2Particle 1

θ 
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 𝐹𝑣𝑤 =
𝐴

12ℎ2

𝑑1𝑑2

𝑑1 + 𝑑2
 ( 3 ) 

where 𝐴 is the Hamaker constant, while 𝑑1 and 𝑑2 are the particles diameter. 

2.1.3.3. Capillary forces 

Capillary forces are present when a liquid bridge connects two particles. This cohesive 

force depends on the particles size, the interfacial tension between the bridging liquid (water), 

and the liquid (oil or water) in which the particles are dispersed, the contact angle at the particle 

surface, the distance between particles, and the volume of bridging liquid. The capillary bridge 

force can be expressed as follows: 

 𝐹𝑐𝑎𝑝 = 𝜋𝑑𝜎𝑜−𝑤 𝑐𝑜𝑠 𝜃 ( 4 ) 

where 𝜎𝑜−𝑤 is the interface tension between oil and water. 

2.1.3.4. Shear forces 

The shear force is caused by the friction between the different phases, and it acts on the 

interfaces between the phases. The shear force is proportional to the velocity gradient around 

them, and it can be expressed as: 

 𝐹𝑠ℎ𝑒𝑎𝑟 =
3

2
𝜋𝜇0𝑑

2𝛾 ( 5 ) 

where 𝜇0 is the viscosity of the oil phase and 𝛾 is the shear rate. For Newtonian fluids in a 

circular pipe, it is given by: 

 𝛾 =
32𝑄

𝜋𝑑3
 ( 6 ) 

2.1.3.5. Brownian force 

This force is due to the stochastic motion, causing collision between particles (Brown, 

2016). It creates Brownian motion, whereby particles can encounter one another by random 

movements of each particle. However, the collision force between hydrate particles is 

attenuated by the liquid bridge. As explained by Crowe et al. (2012), when two spheres in a 

fluid are approaching one another, the fluid pressure between the spheres becomes larger to 

move the fluid outward and the resulting force acts to prevent contact. 
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2.1.3.6. Turbulent forces 

For flowing systems with a high enough Reynolds number, turbulent agglomeration is 

likely to be a dominant aggregation mechanism (Brown, 2016). As well known in the literature, 

the Reynolds number is the ratio between inertial and viscous forces observed on the flow. The 

turbulent flow has a chaotic motion that can increase the chance for collision, which is very 

difficult to model. It may increase the agglomeration due to the collisions between particles, 

and increase the breakage as well, due to the collisions to the wall. 

2.1.3.7. Electrostatic force 

The electrostatic force is due to the particle-particle and particle-wall friction and 

collision, which creates attraction on the agglomerate surface. However, as explained by Wang 

et al. (2014), the presence of water diminishes the electrostatic force rapidly. 

2.1.3.8. Solid bridge force 

A solid bridge may be created when water is in contact with hydrate agglomerates, 

forming more hydrates. Currently, a calculation for the solid bridge force is not known, and 

further studies are necessary to allow a comparison between this force to the other ones. 

2.1.3.9. Particles size distribution 

The hydrate agglomeration is a complex phenomenon that depends not only on the 

forces involved on particle-particle interaction, but it depends on the type of dispersion as well. 

It depends on the size distribution and the number of particles per unit of volume, which is 

related to the total amount of hydrates in volume. 

Assuming a flow with spherical particles with diameter 𝑑 equally spaced of a distance 

𝑙 (see Figure 8), the ratio 𝑙 𝑑⁄  can be calculated from the percentage of hydrates in volume, 𝛼𝐻. 

The following equation is obtained: 

 
𝑙

𝑑
= (

𝜋

6𝛼𝐻
)
1/3

 ( 7 ) 
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Figure 8. Inter-particle spacing. Adapted from Crowe et al. (2012). 

Indeed, the particles will not have the same size or be equally spaced. There is a range 

of particles size with a distribution, that can be represented by a probability density function. 

2.2. Basic notions of liquid-liquid flows 

The flow of two immiscible liquids is easily encountered in nature and industrial 

processes. The petroleum industry often has systems with water and oil. For two-phase liquid-

liquid flowing systems, there are different flow regimes reported in the literature. Brauner 

(2002) presented a few of these flow patterns observed in horizontal pipes, some of them are 

illustrated in Figure 9. The flow pattern depends on the liquids flow rates, tube diameter, wall-

wetting properties of the liquids and surface tension forces. Due to the low discrepancies 

between the densities of the two liquids, the gravitational force does not play an important role 

for liquid-liquid flow patterns, except for the stratified regime (which is not possible in vertical 

or inclined upward flows). Several works have presented experimental results concerning the 

different flow patterns and the transitions between them (Tan et al., 2018), while mathematical 

models for the transition between different regimes are also available (Brauner and Maron, 

1992; Brauner and Maron, 1993; Brauner, 2001, 2002; Ulmann et al., 2003). For gas hydrates 

formation, the importance of understanding the flow pattern is due to the fact that hydrates tend 

to nucleate at water-oil interfaces. 
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Figure 9. Some liquid-liquid (water-oil) flow patterns observed in horizontal flows of 

immiscible liquids: (a) stratified, (b) stratified with mixing at the interface, (c) layers of 

dispersion with w/o above o/w, (d) stratified with o/w above free water, (e) stratified with free 

oil above w/o, (f) o/w dispersion, (g) stratified with w/o dispersion above free water, (h) 

stratified with free oil above o/w dispersion, and (i) w/o dispersion. 

Dispersion is defined as a heterogeneous system containing two immiscible liquids, 

where one of the phases is present in the form of droplets, the dispersed phase, and the other 

phase, which is in permanent contact with the pipe wall and surrounding the droplets, is called 

continuous phase. On this study, one of the phases is water and the other one is oil. Water 

continuous dispersions are called oil-in-water (o/w), while oil continuous dispersions are called 

water-in-oil (w/o). The dispersed phase often flows at different velocity from the continuous 

phase. The slippage can be negligible for fine o/w or w/o dispersions (Brauner, 2002), but it 

can be significant for relatively large droplets. 

Special attention is given in the literature to well mixed (or uniform mixtures) of water 

and oil, also called emulsions. Emulsions normally present an average droplet size above 1 µm, 

but, as explained by Sjoblom (2006), there are the nano-emulsions (droplets diameters inferior 

to 10-1 µm) and the mini-emulsions (droplets diameters between 10-1 µm and 1 µm). Emulsions 

often involve the presence of surfactants that inhibit the coalescence of the dispersed droplets. 

Another important parameter in emulsions and dispersions is the apparent viscosity. The 

apparent viscosity is dependent of several factors: volume fraction of the dispersed phase, 

viscosity of the continuous phase, shear rate (if non-Newtonian), temperature, average droplet 

size and size distribution, viscosity of the dispersed phase, nature and concentration of 

emulsifying agents, presence of solids in addition to dispersed liquid phase (Johnsen and 
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Rønningsen, 2003). Several correlations have been proposed in the literature (Richardson, 

1933; Rønningsen, H.P., 1995; Pau, 2000; among many others). 

The most well-known correlation for apparent viscosity, the Einstein’s equation, is 

given by (Schramm, 2005): 

 η = η𝐶(1 + 2.5𝛼𝐷) ( 8 ) 

where η𝐶  is the continuous phase viscosity and 𝛼𝐷 is the fraction of the dispersed phase. The 

correlation is valid for 𝛼𝐷 < 0.02 or for 0.05 < 𝛼𝐷 < 0.1, for Newtonian fluids. 

 Another well-known equation is given by the Mills model, valid for 𝛼𝐷 < 0.62: 

 η = η𝐶 [
1 − 𝛼𝐷

(1 −
𝛼𝐷

𝛼𝑚𝑎𝑥
)
2] ( 9 ) 

where 𝛼𝑚𝑎𝑥 is the maximum compact fraction. Through an empirical approach, Pal and Rhodes 

(1985) correlated viscosity data of both Newtonian and non-Newtonian crude oil emulsions. 

The correlation is given by: 

 η = η𝐶 [1 +

𝛼𝐷
𝛼∗⁄

1.1884 −
𝛼𝐷

𝛼∗⁄
]

2.5

 ( 10 ) 

where 𝛼∗ is the dispersed phase volume fraction from which the relative viscosity (η/η𝐶) 

becomes 100. 

Considering all the mentioned works about apparent viscosity for emulsions and 

dispersions, two relevant conclusions follow: 

 The apparent viscosity is strongly affected by the viscosity of the continuous phase, 

but it increases with increasing fraction of the dispersed phase. 

 As the dispersion becomes thinner (small droplets), the viscosity increases, because 

there is more contact between the phases and collisions to the wall, which increases 

the friction. 

Phase inversion is another important concept for oil-water dispersions. It corresponds 

to the transitional boundary between o/w and w/o. Phase inversion is associated to a sudden 

change on the rheological properties of the flow, causing abrupt changes on the pressure drop. 

When hydrates are forming in oil-in-water systems, the water cut is continuously being reduced, 

which may cause a phase inversion to water-in-oil. The phase inversion process can be 

classified into two types: a sudden inversion, which occurs at a specific dispersed phase volume 

fraction, or a transitional phase inversion occurring in a water content range (Tan et al., 2020). 
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2.3. Basic notions of solid-liquid flows 

Solid-liquid flows consist of flows in which solid particles are carried by the liquid 

(Crowe et al., 2012). It is referred as slurry flow, and it can be found in several industrial 

applications. Especially in oil and gas pipelines with hydrate formation, the multiphase flowing 

systems contain hydrate particles dispersed in the liquid phases. 

As explained by Crowe et al. (2012), slurries are classified as homogeneous, 

heterogeneous, moving bed or stationary bed. Homogeneous slurries consist of small particles 

which are kept in suspension by the turbulence of the carrier fluid, while heterogeneous slurries 

are composed of coarse particles which tend to settle on the bottom of the pipe. The moving 

bed regime occurs when the particles settle on the pipe but continue moving along. Finally, the 

stationary bed occurs when particles fill the duct, and no further motion is possible. 

Important definitions that help characterizing the slurry flow are dilute flow and dense 

flow, as presented by Crowe et al. (2012), represented in Figure 10. In a dilute dispersed phase 

flow, the particle motion is caused by the liquid forces, drag and lift. In a dense flow, particle 

motion is caused by collisions and/or continuous contact between the solid particles. 

 
Figure 10. Flow regimes for dilute and dense flows. Adapted from Crowe et al. (2012). 

Crowe et al. (2012) proposed a qualitative estimate of the flow regime, solute or dense. 

For that, the author defined the average time between particle-particle collisions, 𝜏𝐶, and the 

momentum response time, 𝜏𝑉. The momentum response time concerns the time required for a 

particle to respond to a change in velocity, and it can be calculated by the equation: 

 𝜏𝑉 =
𝜌𝑠𝑑

2

18η𝐶
 ( 11 ) 

Then, Crowe et al. (2012) considered the flow to be dilute if: 
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𝜏𝑉

𝜏𝐶
< 1 ( 12 ) 

because the particles have sufficient time to respond to the local fluid dynamic forces before 

the next collision. But the flow is said dense if: 

 
𝜏𝑉

𝜏𝐶
> 1 ( 13 ) 

because the particle has no time to accelerate due to the fluid forces. It is possible to estimate 

the time between collisions, in a very simplified way, by considering a group of particles with 

a uniform diameter 𝑑, as represented in Figure 11. Assuming that one particle has a velocity 𝑣𝑟 

relative to the other particles, in a time 𝛿𝑡, the particle will intercept all the particles in the tube 

with radius 2𝑑 and length 𝑉𝑟𝛿𝑡, the number of particles in this tube is: 

 𝛿𝑁𝑝 = 𝑛𝑝𝜋𝑑2𝑉𝑟𝛿𝑡 ( 14 ) 

where 𝑛𝑝 is the number density of particles. The collision frequency is: 

 𝑓𝑐 = 𝑛𝑝𝜋𝑑2𝑉𝑟 ( 15 ) 

and the time between collisions is: 

 𝜏𝑐 =
1

𝑓𝑐
=

1

𝑛𝑝𝜋𝑑2𝑉𝑟
 ( 16 ) 

 
Figure 11. Particle-particle collisions. Adapted from Crowe et al. (2012). 

Despite the model presented by Crowe et al. (2012) is simplified and cannot be used at 

this moment for a quantitative analysis, it is observed in Figure 12 that, fixing a particle 

diameter, the transition from dilute to dense becomes easier (at a lower hydrates fraction or 

water conversion) as the velocity increases. 
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Figure 12. Ranges for dilute and dense dispersion for methane spherical hydrates in water 

with fluctuation velocities magnitude of 0.25 m/s and 1.0 m/s. 

2.4. Gas hydrate formation and plugging in oil-water systems 

Gas hydrate formation in petroleum pipelines involves a number of phenomena, such as 

agglomeration, film growth/deposition, local viscosification, bedding, sloughing and jamming. 

The manifestation of these mechanisms (and intensity) depends on several variables, such as 

water-cut, supply of gas, flow rate, pipeline geometry (diameter, inclination, length, and 

roughness), pressure and temperature distributions along the pipeline, fluid properties, among 

others. There are several studies in the literature concerning the conceptual mechanisms of 

plugging formation at different conditions. This work focuses on oil-water systems.  

It is well known that hydrate formation consumes water and gas and, therefore, the 

crystallization is likely to begin at water-oil interfaces. There are two approaches to explain 

how hydrates form and grow on a droplet surface, the shell approach and the sponge approach. 

According to the shell approach (Sloan et al., 2011), when crystallization begins on a 

droplet surface, it forms a hydrate shell that may trap the dispersed phase (whether oil or water), 

as illustrated in Figure 13. It is important to remark that, due to the consumption of gas and 

water to form hydrates, there is an inward growth for water-in-oil dispersions and an outward 

growth for oil-in-water dispersions.  

High water-cut systems are not well studied in the literature as low water cut systems. 

For emulsified systems with oil and water, some authors propose that there is w/o and o/w 

simultaneously. Hydrate plugging mechanisms at high water cuts are supposedly similar as 
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those presented for oil continuous systems, with hydrates forming at oil-water interfaces, as 

illustrated in Figure 13(b). In the presence of free gas, there is also crystallization on water-gas 

interfaces. 

 
Figure 13. Illustration of the “shell approach” for hydrate formation around (a) a water droplet 

and (b) an oil droplet. 

Alternatively, there is the sponge approach, shown in Figure 14, where gas hydrates are 

assumed to be porous crystals, as proposed by Bassani et al. (2019). Hydrates have affinity with 

the water phase, and growth occurs mostly in the water trapped inside the capillaries.  

 
Figure 14. Illustration of the “sponge approach”, showing that for oil and water continuous, 

water trap only water, which can cause phase separation or total phase inversion. Adapted 

from Bassani et al. (2019). 

The hydrate plugging mechanisms presented in the literature for water-oil systems 

contain, in general, the five steps represented in the diagram of Figure 15. The first step is the 

formation of a dispersion or partial-dispersion. The second step is the beginning of hydrate 

formation around droplets. The next two steps, agglomeration and deposition, may occur 

simultaneously, and they occurs due to capillary attractive forces between the particles. The 

final step is plugging formation that may occurs depending on the quantity of hydrates and on 

the particle size distribution. The differences between o/w and w/o will be discussed in the next 

two sections. 
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Figure 15. Summary of the mechanisms of hydrate formation for water-oil systems described 

in the literature. 

2.4.1. Oil-dominated systems 

For oil-dominated systems, the literature often divides the hydrate plugging mechanisms 

in steps: emulsification/liquid-liquid dispersion, hydrate nucleation and growth, agglomeration 

and plugging. Turner (2005) proposed that hydrates form rapidly on the water droplet surfaces 

as soon as the flowing mixture enters a region in which pressure and temperature allow hydrate 

formation. Since hydrates can be wet or have free water within them, the particles attract each 

other by capillary forces. Agglomeration may cause the plugging of the pipeline. Regarding the 

morphology of the particles, Sloan et al. (2011) proposed that the hydrate shell around a water 

droplet, as illustrated in Figure 13(a), can continue grow in a way that the entire droplet can be 

converted into hydrate. For the sponge approach proposed by Bassani et al. (2020), the 

attraction between the particles are also due to capillary forces, with the water phase forming a 

bridge between particles, causing agglomeration or deposition in the pipe wall. 

 
Figure 16. Low water cut dispersions. Adapted from Sloan et al. (2011) and Turner (2005).  

Melchuna et al. (2016) presented results from flow loop tests for several water-cuts. For 

oil-dominated systems, an inward growth was proposed, with some water droplets being 

completely converted into hydrates. Experiments at low water-cuts were identified as the most 

critical for hydrate plug formation. 



26 

 

 
Figure 17. Topological model proposed by Melchuna et al. (2016) for oil-water dispersion 

before and after hydrate formation. 

While most works propose mechanisms for emulsified systems, Akhfash et al. (2016) 

presented results of hydrate formation in partially dispersed water-oil systems using an 

autoclave apparatus. The authors observed that hydrate formation disrupts the stratified water-

oil interfaces, following a rapid hydrate growth. 

 
Figure 18. Conceptual mechanism for hydrate plug formation in partially-dispersing oil-water 

systems proposed by Akhfash et al. (2016). 

Another work was presented by Ding et al. (2019) with w/o emulsions, and it aimed to 

investigate the effect of hydrate agglomeration and deposition on slurry flow viscosity 

following the five steps presented in Figure 19. After hydrate formation, a sharp increase on 

apparent viscosity and immediate pressure loss is observed, due the formation of large hydrate-

water structures. However, the system experiences later a decrease on the viscosity and on 

pressure drop because large agglomerates tear up due to the shear; hydrates have a stable 

growth. The pressure drop may eventually increase in case there is deposition. 
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Figure 19. Steps of the evolution of viscosity and pressure drop in a slurry flow in o/w 

emulsions proposed by Ding et al. (2019). 

2.4.2. Water-dominated systems 

As the wells fields become mature, the water-cut increases due to the injection of water 

to maintain the system pressurized and exploitable. Sloan et al. (2011) initially proposed that 

water is not totally entrained in the oil phase, and a separate water phase may exist, 

accompanied by some oil droplets dispersed in the water phase. Hydrates will form on water-

oil interfaces. Agglomeration between hydrates can occur, causing a viscosification, which may 

eventually lead to hydrate plug formation. In recent years, some experimental tests have been 

reported, bringing more insights for high water-cuts systems. 

Melchuna et al. (2016) proposed mechanisms for two scenarios where water is the 

continuous phase. First, for very high water cuts, shown in Figure 20(a), oil droplets are well-

distributed in the water phase. Hydrate grow outward from oil droplet surfaces. Hydrates can 

detach from the droplets and flow in the water continuous phase. The second case is for 

intermediate water cuts, shown in Figure 20(b), where large packages of oil (free oil phase) can 

be present, with a higher formation kinetic of hydrates. 
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Figure 20. Topological model proposed by Melchuna et al. (2016) for oil-water emulsion 

before and after hydrate formation. 

An experimental work with water and methane as the gas hydrate former, without oil, 

was conducted for Joshi et al. (2013). The flow loop tests have shown that, during hydrate 

formation, there were three distinct regimes of suspensions in the system. These regimes were 

identified due to a change in viscosity. First, for relatively low fractions of hydrates, the 

suspension of hydrates in the water phase is homogeneous, which did not cause much change 

on the apparent viscosity. However, after a “critical” hydrate fraction, the apparent viscosity 

starts increasing, presenting what the authors called a heterogeneous behavior, without bedding. 

Finally, as the amount of hydrates increases, it was observed another change on the apparent 

viscosity, characterized by an increase on the oscillation along time, with bedding formation. 

 
Figure 21. Conceptual model of hydrate plug formation mechanism in 100 % water cut 

systems according to Joshi et al. (2013). 

2.5. Hydrate plugging avoidance strategies 

There are several techniques used to avoid hydrate blockage in pipelines. In general, 

they can be classified in thermal, chemical or process methods. Thermal methods include 
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insulation of the pipeline and electrical heating, among others, to maintain the fluid warm. 

Thermal methods are economically unfavorable, especially for long pipelines. Chemical 

methods involve the use of hydrate inhibitors (THIs, KHI and AAs) and salt. Finally, there are 

the process solutions, which involve techniques of gas dehydration and water cut reduction. In 

this section, it is discussed some results concerning the use of hydrate inhibitors and process 

techniques to avoid or manage hydrates. 

2.5.1. Hydrate avoidance using THIs 

THIs are used to change the equilibrium pressure and temperature of gas hydrate 

formation, to prevent the mixture flowing in the pipe to enter the region where hydrates are 

stable. Common THIs are methanol, ethylene glycol and ethanol. Several laboratory tests to 

study pressure and temperature conditions for hydrate formation have been done. Because of 

the relatively large amount of data available, the use of THIs is predictable and well understood. 

The disadvantage of THIs is that they are expensive and environmental unfriendly, due to their 

toxicity (especially methanol and ethylene glycol) and large amounts required for hydrate 

inhibition (between 20 and 60% vs water fraction). 

2.5.2. Hydrate management using KHIs and AAs 

Low dosage hydrate inhibitors have gained especial attention due to their potential in 

reducing the costs of hydrate inhibition. There are demonstrations that they can be effective at 

fractions from 0.25 to 3% wt. vs water. They include KHIs and AAs. These additives have 

different functions. While KHIs are leading to delay or block hydrate formation, AAs are 

leading to limit the size of hydrate particles and prevent plugging. The disadvantage of LDHIs 

is that they are still not completely understood, leading to limited operating conditions, meaning 

that they are for some scenarios unpredictable or apparently not very effective from some 

literature data. 

KHIs are polymers with low molecular weight that appear to delay or block hydrate 

growth for a given time, with effectiveness limited to low or mild subcooling (up to 14 °C from 

some literature data, but it depends on the pressure, temperature, gas composition, KHI dose 

and time inside the hydrate domain). Recent works have shown the unpredictability of KIs, with 

experimental evidence that some additives delay hydrate formation, but hydrate growth is 

catastrophic and hydrate dissociation takes longer (Shariphi et al., 2014). If the flowing system 
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remains for a longer period in the non-protected hydrate formation zone, hydrates will form and 

grow anyway. It limits the applicability of KHIs to non-harsh conditions.  

AAs has been the focus of relatively recent work for hydrate management and they are 

gaining especial attention from the industry. This type of additive was initially defined as an 

agent that prevents agglomeration of hydrate particles. However, considering several works 

reported in the literature, it appears that it is still not clear how AAs work. Different AAs may 

have different ways of act. Therefore, an alternative definition of AA could be an agent that 

prevents plugging by producing a flow with dispersed fine hydrate particles. Several works in 

the literature have reported a good effectiveness of AAs for several scenarios, except, in some 

cases, at high water cuts.  

Melchuna et al (2016) performed tests with very low doses of a commercial AA (0.005 

and 0.01% wt.) in tests with water and oil with methane and reported that the experiments still 

plug at high water-cuts. Sun and Firoozabadi (2013) presented results of rocking cell tests with 

a surfactant and claimed success in avoiding plugging at high water-cuts with 0.2 wt.% of their 

additive. The limitation of their results is that the tests were conducted in a way that the 

maximum hydrate fraction was kept at under 24%. Some works have attempted to study if the 

addition of salt improves the effectiveness of AAs, and found promising results for high-water 

cuts (Dong et al., 2017). 

2.5.3. Process Methods for Hydrate Management 

This group of methods consist in limiting the contact between water and gas, which, in 

theory, could limit the amount of hydrates in the system. Straume et al. (2019) presented a few 

process methods from literature known as cold flow hydrate management strategies. The 

definition presented for cold flow is the transport of hydrate particles without unconverted 

water. The idea is that if the hydrate particles are “dry”, they do not agglomerate. 

One method was patented by the research institute SINTEF (Lund et al., 2004). It 

consists in seeding hydrate crystals to initiate a controlled growth of hydrate particle in the bulk. 

It is expected that all the hydrate formation occurs due to the growth of injected particles 

without forming new particles in the system. By mixing gas, water with hydrates in the oil 

continuous phase, hydrate particles absorb water. Tests in real field are still necessary to 

validate this method. 

The institute SINTEF has also proposed a gas dehydration process to limit hydrate 

formation (Lund et al., 2011). It consists in: (i) separation of phases (water, oil and natural gas) 

while they are still warm; (ii) cool the gas phase after the separation in order to form hydrates 
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(water that is initially vapor is then consumed for hydrate formation); and (iii) separation of gas 

and hydrates phases, with the hydrates being reinjected into a region with warm fluid (before 

the separation described in (i)). This method has never been tested in laboratory or field. 

Another method, named “Hydraflow”, was patented by the Centre for Gas Hydrate 

Research at Heriot-Watt University (Tohidi, 2006). It consists in converting all the gas into 

hydrates, which can be done in a loop where hydrates are constantly separated from the liquid 

phases (oil, water and AAs) and transported to a production facility, while the liquid phases are 

recycled in order to increase the transportability of the system (Azarinezhad et al., 2008). 

These process techniques could substantially reduce the costs of hydrate plugging 

avoidance. However, besides the very few tests reported, these methods lack of validation and 

they are apparently not in use by the industry, where they are considered unrealistic. The unclear 

effectiveness of these methods and the intrusive (and probably costly) modifications that would 

be required in the production facilities are the reasons for not testing and implementing them 

on field. 

2.6. Numerical predictive tools for hydrate plugging risk 

Taking into account all the findings and data from experimental tests with hydrate 

formation, one important question that arises is how to use this knowledge in real field 

management and dimensioning. Predicting the plugging mechanisms, plugging risk, which 

additive or how much of it to be used for each specific scenario in petroleum extraction seems 

to be a difficult task. It is uncertain how to extrapolate the results from laboratory tests to field. 

One approach is the development of mathematical models, this one already being explored for 

more than three decades. Another approach that has the potential to be used in the near future 

is machine learning. In both solutions, the coupling between the different domains 

(crystallization, multiphase flow and data science) is essential to be modeled together and not 

apart like in the past. 

2.6.1. Mathematical Models 

The development of mathematical models is one approach to predict hydrate formation 

and plugging under flowing conditions. Hydrate formation and multiphase flow are commonly 

studied separately. There are models for hydrate formation (Chen and Guo, 1998; Ballard and 

Sloan, 2004; Bouillot and Herri, 2016; Mohebbi et al., 2017; among others), several models for 

hydrate growth (Englezos et al., 1987; Skovborg and Rasmussen, 1994; Herri et al., 1999; 
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Talatori et al., 2012; Turner et al. 2009; Shi et al., 2011; among others) and hydrate 

agglomeration (Pauchard et al., 2007; Colombel et al., 2009; among others). Recent works have 

attempt to couple multiphase flow with hydrate formation. For example, models for slurry 

viscosification in oil-water systems (Fidel-Dufour et al., 2005; Moradpour et al., 2011; among 

others), and hydrate formation and growth under slug flow (“pseudo” w/o liquid and methane 

free gas) with hydrate growth (Bassani et al., 2017; Bassani et al., 2018; Bassani et al., 2020). 

The growth and agglomeration models currently available are limited to water-in-oil emulsions, 

while nowadays petroleum exploration experiences higher and higher water-cuts.  

The high complexities of all the mechanisms involved in hydrate formation and 

plugging in pipelines represent a challenge for researchers, who have to impose several limiting 

simplification hypotheses to their models. Due to these important simplifications, there are 

uncertainties concerning potential application on field. These models also depend on 

experimental data for closure relationships, which adds, once more, questions about the 

uncertainty on how to extrapolate the fitted correlations from data obtained in specific designed 

experiments to other conditions. However, the development of these models in recent years has 

brought important advancements in our understanding about the mechanisms of hydrate 

formation in pipelines and in the mathematical description of these mechanisms, which creates 

perspectives for the future on the evolution of predictive physical-based simulators that could 

be used by engineers on field. 

2.6.2. Machine Learning 

Another predictive tool that has some potential to be used in hydrate management is 

machine learning. As explained by Simeone (2018), machine learning consists in the collection 

of large data sets to train general-purpose learning machines. Machine learning requires the 

following inputs: an objective, a model to be trained, an optimization technique, and a data set 

used for the training algorithms. Oil and gas companies have access to massive amount of data 

(Perrons and Jensen, 2015), and machine learning is already gaining some space on this sector, 

with special attention to production, anomaly detection and price prediction (Hanga and 

Kovalchuk, 2019). 

So far, very limited studies have been reported in the literature evaluating plugging risk 

in flowing systems with hydrates using machine learning. Qin et al. (2019) used data from 

several laboratory tests and from field, showing the potential of this technique for development 

of hydrate risk predictive tools. Despite its possible application in hydrate management, it is 

very important to notice that machine learning does not take into account the physics of the 
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problem, it is based on data. Therefore, the implementation of this technique requires a careful 

definition of the four inputs used in machine learning. A good collaboration between data 

scientists and domain experts is also a requirement for implementation on field (Hajizadeh, 

2019). Nevertheless, due to the lack of a completely understanding about all the mechanisms 

involved in hydrate plug formation and an advanced mathematical description of the 

phenomena, combined to an increasing amount of data from laboratory and field tests, machine 

learning may gain more and more the attention of hydrate specialists and flow assurance 

engineers in the coming years.  

2.7. The contributions of this work 

From the literature, the mechanisms involved in plug formation in water dominated 

systems are not well understood. With AAs, hydrate formation is accepted, but risk of plugging 

must be limited, which is apparently not easy to achieve at high water-cuts. The mechanisms 

involved in plug formation under flow require a better understanding of the flow regime. With 

the experiments performed in this work, new insights for the description of the different steps 

from the onset of hydrate formation until blockage will be given. A connection between 

multiphase flow and hydrate formation is expected from this work, describing some of the 

mechanisms of hydrate plug formation because of the flow regime and how the solid phase 

interacts with the liquid phases. For tests with AA, the observed results may enable industrials 

to consider its use in harsh conditions, and, in this sense, numerical tools may help to dimension 

and manage AA injection in pipelines.  

Extracting meaningful information from experiments with large data sets is also a 

challenge. Therefore, the other important contribution of this work is the development of a 

methodology for data processing to isolate the different mechanisms involved in the 

experiments of hydrate formation. Concerning the new instruments installed in the Archimedes 

flow loop, this work shows the application of permittivity, acoustic energy measurements and 

high-speed imaging for laboratory tests of this kind. 

The modelling, the data sets and the calculation methodologies obtained from this work 

can serve as a base for the future preparation of advanced treatments combining mathematical 

models, statistics, and machine learning techniques. A multidisciplinary approach involving 

experiments, mathematics and modern data processing techniques could lead to the 

development of predictive tools that provide quantitative results for industrials, in pipelines 

dimensioning and management, supporting them with the difficult decisions that they face on 

this sector. 
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2.8. Summary of the Chapter 

In this chapter, it was presented the basic definition of gas hydrates, the different types 

of cages, and how crystallization occurs. It was presented a basic review on liquid-liquid and 

solid-liquid flows. Then it was discussed hydrate formation under flow, with some of the recent 

research from literature being discussed. The focus was on liquid dominated systems (gas 

dominated systems are outside of the scope of this thesis). Then, additional strategies other than 

the use of chemicals, which are called process methods, were discussed. The use of 

mathematical models and a possible application of machine learning techniques in data from 

tests with hydrate formation were briefly discussed. 

2.9. Highlights in French - Résume du Chapitre 2 en Français 

Dans ce chapitre, il a été présenté la définition de base des hydrates de gaz, les différents 

types de cages et comment se produit la cristallisation. Il existe trois structures hydratées 

trouvées dans la nature : structure I, structure II et structure H. Les structures diffèrent les unes 

des autres par la manière dont les cages sont formées, le nombre de molécules d'eau, la taille et 

la manière dont elles sont connectées. La compréhension des structures des hydrates dans les 

oléoducs et les gazoducs est importante car elle affecte directement la pression et la température 

d'équilibre pour la formation d'hydrates. 

Il a été présenté un examen de base sur les écoulement liquide-liquide et solide-liquide. 

Le régime d'écoulement dépend des débits de liquides, du diamètre du tube, des propriétés de 

mouillage des parois des liquides et des forces de tension superficielle. L’écoulement avec des 

solides disperses dans le liquide (slurries) sont classées comme homogène, hétérogène, lit 

mobile et lit stationnaire. Les slurries homogènes sont constituées de petites particules qui sont 

maintenues en suspension par la turbulence du fluide porteur, tandis que les boues hétérogènes 

sont composées de particules grossières qui ont tendance à se déposer sur le fond du tuyau. Le 

régime du lit mobile se produit lorsque les particules se déposent sur le tuyau, mais continuent 

à se déplacer. Enfin, le lit stationnaire se produit lorsque des particules remplissent le conduit 

et qu'aucun mouvement supplémentaire n'est possible. Les définitions importantes qui aident à 

caractériser l'écoulement de lisier sont l'écoulement dilué et l'écoulement dense. Dans un 

écoulement en phase dispersée diluée, le mouvement des particules est causé par les forces du 

liquide, la traînée et la portance. Dans un écoulement dense, le mouvement des particules est 

provoqué par des collisions et / ou un contact continu entre les particules solides. 
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Ensuite, il a été discuté de la formation d'hydrates sous écoulement, certaines des 

recherches récentes issues de la littérature étant discutées. La formation d'hydrates de gaz dans 

les pipelines de pétrole implique un certain nombre de phénomènes, tels que l'agglomération, 

la croissance / dépôt de film, la viscosification locale, la litière, la mue et le coincement. La 

manifestation de ces mécanismes (et intensité) pour chaque scénario dépend de plusieurs 

variables, telles que la coupure d'eau, l'approvisionnement en gaz, le débit, la géométrie du 

pipeline (diamètre, inclinaison, longueur, rugosité), les distributions de pression et de 

température le long du pipeline, le fluide propriétés, et quelques autres. Il existe plusieurs études 

dans la littérature concernant les mécanismes conceptuels de la formation de bouchage dans 

différentes conditions. Ce travail se concentre sur les systèmes huile-eau (les systèmes dominés 

par le gaz sortent du cadre de cette thèse). 

Il est bien connu que la formation d'hydrates consomme de l'eau et du gaz et, par 

conséquent, la cristallisation est susceptible de commencer sur les interfaces eau-huile. Il existe 

deux approches pour expliquer la formation et la croissance de l'hydrate sur une surface de 

gouttelettes, l'approche de la coquille et l'approche de l'éponge. Ensuite, des stratégies 

supplémentaires autres que l'utilisation de produits chimiques, appelées méthodes de traitement, 

ont été discutées. L'utilisation de modèles mathématiques et une application possible de 

techniques d'apprentissage automatique dans les données d'essais avec formation d'hydrates ont 

été brièvement discutées.   
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CHAPTER 3 – METHODOLOGY FOR HYDRATE FORMATION EXPERIMENTS IN A FLOW LOOP 

APPARATUS 

In this chapter, the experimental methodology used in this work is described. The 

experimental apparatus, the installed instruments and the experimental protocol are presented. 

The models used in this work to calculate the dissolution of gas (and oil density) and hydrate 

fraction are presented. 

3.1. Archimedes flow loop 

The tests were carried out in the Archimedes flow loop, illustrated in Figure 22. It is 

installed at the SPIN Centre at École des Mines de Saint-Étienne. The apparatus has a pipeline 

of approximately 56 meters, divided into three section. It contains a vertical downward section 

of approximately 9.5 meters, a slightly downward section (inclination of approximately -3.6°) 

of approximately 36 meters and a vertical upward section of approximately 10.5 meters. The 

vertical sections have a pipe diameter of 15.7 mm, while the slightly inclined section has a pipe 

diameter of 10.2 mm. The slightly inclined section will often be referred on this thesis as 

“horizontal section”, because there is a negligible gravitation effect (approximately 90 cm is 

the difference between the highest and lowest point). 

The apparatus has a total of ten temperature probes (one measures the room 

temperature), two absolute pressures probes (one for the separator and another one for the gas 

injection system), four differential pressure drop probes, a gas compensation system and a 

Coriolis that measures density and flow rate. 

The system has also a FBRM installed in the downward section and a PVM in the 

horizontal section. These two instruments give information of the flow at microscopic scale. In 

addition, the flow loop has been upgraded (after the theses of Melchuna (2016) and Pham 

(2018)) with the installation of six acoustic emission sensors, a permittivity probe and a high-

speed camera. These three instruments give information at macroscale. 
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Figure 22. Schematic illustration of the Archimedes flow loop at Mines Saint-Etienne. 

3.1.1. Separator 

The separator is illustrated in Figure 23. It was designed to allow contact between the 

liquid mixture and the gas. The pressurization of the flow loop is done by injecting gas in the 

separator. Even though the mixture flowing in the pipeline is composed mostly by water and 

oil, there are gas bubbles that are entrained in the flow. The flow enters the separator by means 

of the internal pipe on the left side of the separator. Once the liquid reaches the top part of this 

internal (vertical) pipe, the liquid will fall in the direction of the bottom of the separator, using 

a channel between the internal and external pipes on the left side of the separator. The shock 

between the falling liquid with the stagnant liquid will cause the entrainment of gas bubbles in 

the flow. 
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Figure 23. Illustration of the separator of the Archimedes flow loop and its dimensions. 

3.1.2. Moineau pump 

The flow loop has a Moineau pump type MR 6120 S, provided by PCM® pumps. It is 

a progressive pump, consisting of a helical rotor that generates an axial displacement without 

breaking the hydrate particles. The pump provides a flowrate in a range 100 – 520 L/h. The 

working pressure is 0 – 20 °C, maximum pressure of 105 bars, and maximum differential 

pressure of 10 bar. It is installed at the bottom of the Archimedes flow loop (see Figure 22). 

3.1.3. Flowmeter and Densimeter 

A flowmeter with densimeter is installed in the downward section of the apparatus. It is 

based on the Coriolis principle, and, because of that, this instrument is referred in this thesis as 
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Coriolis. It is provided by Micro Motion® (model F025S). The uncertainty is ±0.2% for liquid 

flow rate, ±0.5% for gas flow rate, while uncertainty in density measurement for liquid is ±2.0 

kg/m3 (Micro Motion, 2004). 

3.1.4. Pressure Drop Probes 

The flow loop is equipped with four differential pressure drop probes. They are sensor-

transmitter piezo-resistive, provided by Keller®. Those pressure drops are: ∆𝑝1 (differential 

pressure in the downward section), ∆𝑝ℎ (differential pressure in the horizontal/slightly inclined 

section), ∆𝑝2 (differential pressure in the upward section), and ∆𝑝4 (separator). See Figure 22 

for a visualization on where these pressure drops are measured. 

Table 2. Characteristics of the pressure drop probes. 

Probe Range Uncertainty Minimum span 

∆𝑝1 0 – 20 bar ±(120 Pa + 2.5⨯10-4 p) 0.001 bar 

∆𝑝ℎ 0 – 10 bar ±(120 Pa + 2.5⨯10-4 p) 0.001 bar 

∆𝑝2 0 – 20 bar ±(120 Pa + 2.5⨯10-4 p) 0.001 bar 

∆𝑝4 0 – 622 mbar ±(10 Pa + 2.5⨯10-4 p) 1 mbar 

 

The differential pressure in each section is a combination of gravitational and frictional 

effects. The differential pressure in the downward section, ∆𝑝1, has a positive contribution of 

the gravity force and a negative contribution of the friction to the wall. It means that an increase 

on the apparent viscosity (presence of hydrates) causes a decrease on this pressure drop, which 

can be represented by the following equation: 

 ∆𝑝1 ≈ 𝜌𝑔𝐿1 −
2𝐿1

𝐷1
𝑓1𝜌𝑈1

2 ( 17 ) 

where 𝐿1 is the equivalent length, 𝐷1 is the pipe diameter, 𝑓1 is the friction factor, and 𝑈1 is the 

liquid average velocity in the downward section. The “approximately” is used in the equation 

because the flow loop apparatus may have some obstacles or changes in the geometry that may 

affect the pressure drop measurement, and deposition or settling of particles. The differential 

pressure in the horizontal/slightly inclined section, ∆𝑝ℎ, can be expressed by the following 

equation: 

 ∆𝑝ℎ ≈
2𝐿ℎ

𝐷ℎ
𝑓ℎ𝜌𝑈ℎ

2 ( 18 ) 
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where 𝐿ℎ is the equivalent length, 𝐷ℎ is the pipe diameter, 𝑓ℎ is the friction factor, and 𝑈ℎ is the 

liquid average velocity in the horizontal section. The differential pressure in the upward section 

has positive contribution of the gravity force and friction, and it can mathematically be 

expressed by: 

 ∆𝑝2 ≈ 𝜌𝑔𝐿2 +
2𝐿2

𝐷2
𝑓2𝜌𝑈2

2 ( 19 ) 

where 𝐿2 is the equivalent length, 𝐷2 is the pipe diameter, 𝑓2 is the friction factor, and 𝑈2 is the 

liquid average velocity in the upward section. Finally, the pressure drop in the separator has 

basically the contribution of the gravity, and can be used to estimate the liquid level in the 

separator: 

 ∆𝑝4 ≈ 𝜌𝑔𝐿4 ( 20 ) 

where 𝐿4 is the liquid column measured by the probe. It is important to notice that the probe 

measures the liquid column starting from a point that is approximately 37 cm above the bottom 

of the separator, meaning that the actual liquid column in the separator is 37 cm longer than 𝐿4. 

3.1.5. Gas injection system 

The gas used in all the tests is a natural gas whose composition and corresponding 

hydrate curve in given in Appendix B. The working pressure (75 bars) and working temperature 

(4 °C) correspond to a subcooling of 10.3 °C (the conditions and the protocol for the 

experiments are detailed in section 3.2, page 48). 

An automatic gas compensation system is installed in the apparatus to maintain the 

absolute pressure constant. During the experiments, the pressure can change due to a variation 

in the temperature, dissolution of gas into the liquid phases, or hydrate formation. The injection 

of gas is done through a line that connects the bottle of gas to the flow loop apparatus. The gas 

is injected in the upper right side of the separator (see Figure 23). The pressure controller 

installed was provided by Brooks® Instrument (model 5866). The system can inject gas in a 

range 0 – 20 ln/min (normal liters per minute), with a minimum span of 0.01 ln/min. It has an 

accuracy of ±1.00% and a repeatability of ±0.1% (Brooks, 2008). 

3.1.6. Focused Beam Reflectance Measurement system 

The Focused Beam Reflectance Measurement (FBRM) is an in-situ particle analyzer for 

real-time (on-line) monitoring the particle size in the process, by measuring the chord length 

distribution (CLD) of the droplets or formed particles, shall they exist in the system. A FBRM 
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probe is used in the Archimedes flow loop to monitor the crystallization process, for a range 1-

1000 µm. The FBRM, illustrated in Figure 24, is provided by Mettler-Toledo Lasentec® 

(Mettler-Toledo Lasentec, 2001). It consists in an infrared laser with wavelength of 785 nm, 

which is transmitted through an optical fiber to the probe tip and emitted from a rotating optical 

lens into emulsion or suspension. The emitted laser is reflected when it encounters the particle 

surface. The chord length determination is obtained by the product of the reflectance time 

(measured by the probe) and the laser scan speed (which is 2 m/s). The FBRM measures chord 

lengths instead of particles sizes. An important limitation of this instrument is its range, not 

being able to measure chord lengths above 1000 µm. 

 
Figure 24. FBRM probe description. Adapted from Melchuna (2016). 

An example of measurement of CLD over time for an experiment with hydrate 

formation in shown in Figure 25. The number of chord counts is measured in an interval of 5.0 

seconds, which is then converted to counts per second. 
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Figure 25. Chord length distribution along time for an experiment at 30% water cut, 200 L/h, 

without AA (#11). 

3.1.7. Particle Vision Microscope system 

The Particle Vision Microscope probe (PVM) is an in-situ particle analyzer that 

provides real-time, in-process images of particle and droplet systems. It is provided by Mettler-

Toledo Lasentec® (Mettler-Toledo Lasentec, 2011). Six independent lasers illuminate a fixed 

area in front of the probe face, as illustrated in Figure 26. Digital images have size of 1075 × 

825 µm, recorded each 5.0 s. 

 
Figure 26. PVM instrument. Adapted from Mettler Toledo Lasentec (2011). 

The PVM probe allows observing the beginning of crystallization, as it can be seen in 

Figure 27. Oil or water droplets present a well-rounded shape with clear surface on which it is 

possible to see the six laser beams reflections. During hydrate formation, the texture of droplets 

surface changes and their shapes become irregular (this was previously explained by Melchuna, 

2016), as shown in Figure 27(a). It is possible to obtain the grayscale of the images, which gives 

0 for a complete black image or 255 for a complete white image, as shown in Figure 27(b). 
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Figure 27. PVM data for an experiment at 50% water cut, 200 L/h, without AA, showing (a) 

some images before and after hydrate formation, and (b) the grayscale of the images. 

3.1.8. Acoustic emission testing 

Acoustic emission (AE) is the appearance of transient acoustic waves due to a change 

in the system that is being analyzed. For the experiments carried out in the Archimedes flow 

loop, it measures the noises produced by the flow inside the pipe (Cameirao et al; 2018). The 

appearance of hydrates is expected to produce more noise, due to the collision of particles. 

Some changes in the viscosity, which are related to the friction of the mixture with the pipe 

wall may also be detected. Each sensor is fixed outside of the pipe, meaning it is non-intrusive, 

as illustrated in Figure 28. For the system currently installed in the Archimedes flow loop 

apparatus, two types of data are obtained: time driven data (TDD) and hit driven data (HDD). 

For TDD, the parameters are registered every specific step of time (here, 0.5 s). For HDD, the 

registration of the parameters occurs when the amplitude reaches a minimum defined by the 

user. The acoustic waves captured by a sensor can be converted into absolute energy, amplitude, 

counts and many other parameters. For this work, it is analyzed only the absolute energy, using 

TDD. Others parameters using the TDD and HDD methods are available and might be used in 

future works.  
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Figure 28. Acoustic emission sensor installed in the Archimedes flow loop. 

The position where the acoustic emission sensors are installed in the system are 

indicated in blue or red, Figure 22. For some experiments, four sensor were used (1A, 2B, 3C 

and 4A), and for others, six sensor were used (1B, 2A, 3C, 4C, 5A and 6B), with the installation 

of two addition sensor at the inlet and at the outlet of the separator. The experiments from #11 

to #20 were conducted with fours sensors, while the experiments from #21 to #34 were 

conducted with six sensors. 

The numbers indicate the position in the system (starting from the point where the flow 

exits the separator and goes to the loop, until the point where the flow finishes the loop and 

enters the separator), while the letters represent the nominal frequency of acoustic wave that, 

among all the frequencies captured by the sensors, represents the highest values in a 

distribution.  

The acoustic emission system installed in the Archimedes apparatus is provided by 

Mistras®. The sensor defined here as type A has a nominal frequency of 150 kHz, the sensor B 

has nominal frequency of 300 kHz, and the sensor type C has a nominal frequency of 350 kHz.  

3.1.9. Permittivity probe 

Permittivity is the electric polarization of a material when it is subjected to an electrical 

field. Conductivity is its capacity to transport ions, or to conduct electricity. Each medium has 

a permittivity and a conductivity when an electric field is applied. Since each fluid (water and 

Kerdane) has a specific conductivity and dielectric, measuring these properties of the mixture 

in a flow loop has the potential to help identifying the continuous phase and the flow regime.  

A permittivity probe has been installed in the Archimedes flow loop, in the horizontal 

section of the pipe. The device was provided by Norce®. As explained by Haukalid (2014), an 

open-ended coaxial probe, illustrated in Figure 29, consists basically of a coaxial transmission 

line that is cut off at one end. A signal transmitted to the probe is almost totally reflected at the 
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probe end, because of a severe impedance mismatch. The amplitude and phase of the reflected 

signal are dependent on the dielectric properties of the constituents in front of the probe, making 

the probe suitable for permittivity measurements. The probe is sensitive to permittivity changes 

in a small and roughly hemispherical-shaped volume in front of the probe (yellow volume in 

Figure 29). 

 
Figure 29. Sketch of an open-ended coaxial probe mounted in a pipe wall. Modified from 

Haukalid and Folgerø (2016). 

The probe measures the permittivity for frequencies from 106 to 6×109 Hz. For practical 

purposes, in this thesis only data starting from 107 Hz will be analyzed, as indicated in Figure 

30. The data shown refers to the calibration that was performed using the Archimedes apparatus, 

with saline water (30 g/L of NaCl added to deionized water) and Kerdane. 

 
Figure 30. Dielectric of saline water (30 g/L of NaCl) and Kerdane at 4°C, obtained with the 

permittivity probe provided by Norce and installed in the Archimedes flow loop. 

3.1.10. High speed camera 

A monochromatic camera with an acquisition system for high-speed direct-to-disk 

recording was installed in the Archimedes flow loop. The system is shown in Figure 31. It is 

possible to record at 1 Gb/s of data, with a maximum resolution of 2560 x 2048 pixels. Because 

the recording is saved directly in a computer with a solid disk memory, the capacity of the 

recording for each experiment is limited to the computer storage capacity (currently 2 Tb). The 

maximum recording is 211 fps at maximum resolution. The camera was tested for some of the 
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experiments carried out for this thesis (tests at 50 and 80% water-cut, without LDHI-AA). At 

30% water-cut, tests without hydrate formation were carried out. For the experiments presented 

in the work, acquisitions from 2 to 100 fps have been tested. 

A visualization transparent window with size 52 x 11.5 mm is used for the visualization. 

Behind the window, there is a led that provides a constant luminosity to visualize the flow. 

 
Figure 31. Camera installed in front of a visualization window in the Archimedes flow loop. 

Hydrate particles are solid crystalline structures. Once they form, they can block the 

light from the LED crossing the visualization window and being captured by the lens of the 

camera (see the arrangement of the LED and the camera in Figure 31). With hydrates, it can be 

difficult to visualize the flow through the window. An increase of the contrast is a possible 

treatment with the image that can be used the better visualize the flow. A code in Python has 

been developed to increase the contrast of the images. An example of application of this 

procedure is shown in Figure 32. 



48 

 

 
Figure 32. Comparison between (a) an original image from the camera with (b) the same 

image with an increased contrast.  

3.2. Experimental conditions and protocol 

The experiments were conducted at 4 °C and 75 bars (absolute pressure), using oil 

Kerdane, saline water (concentration of 30 g/L) and natural gas1, which corresponds to a 

subcooling of 10.3 °C. The volume of the liquid (oil and water) injected is 10.0 liters at room 

pressure and temperature. The tests with LDHI-AA were conducted with only one type of 

additive2, using 75 g of mass for all the experiments (which represents 1.50 wt.% vs water for 

a test at 50% water cut, and 0.94 wt.% vs water for the tests at 80% water cut). A series of 23 

experiments were conducted at 30, 50 and 80% water cuts, with and without AA. Those 

experiments are listed in Table 3. 

                                                 
1 The composition of the natural gas is shown in Table 6 (page 171). 
2 The name of the manufacturer and composition of the additive are not informed due to confidentiality. 
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Table 3. List of hydrate formation experiments conducted in the Archimedes flow loop for 

this thesis. 

Experiment 
Water 

cut 

Flow 

rate 

AA fraction 

(wt.% vs water) 

Water 

conversion 
Plug 

Time with 

hydrates 

#11 

30% 

200 L/h 
- 18.70% Yes 13.4 min 

#12 - 11.14% Yes 6.1 min 

#14 
400 L/h 

- 13.21% Yes 3.2 min 

#15 - 9.65% Yes 3.8 min 

#16 

50% 

200 L/h 

- 3.73% Yes 6.6 min 

#17 - 2.25% Yes 3.9 min 

#18 - 2.91% Yes 4.7 min 

#19 - 4.58% Yes 5.8 min 

#27 1.5 wt.% 44.03% No 322.7 min 

#28 1.5 wt.% 45.45% No 287.1 min 

#24 

400 L/h 

- 10.61% Yes 7.3 min 

#25 - 18.46% Yes 13.7 min 

#26 - 14.57% Yes 9.3 min 

#29 1.5 wt.% 67.50% No 321.2 min 

#30 1.5 wt.% 67.31% No 307.0 min 

#20 

80% 

200 L/h 

- 7.83% Yes 92.1 min 

#21 - 10.27% Yes 120.1 min 

#31 0.9375 wt.% 38.91% No 309.2 min 

#32 0.9375 wt.% 35.89% No 303.3 min 

#22 

400 L/h 

- 11.70% Yes 26.9 min 

#23 - 16.29% Yes 37.3 min 

#33 0.9375 wt.% 55.16% No 359.3 min 

#34 0.9375 wt.% 56.69% Yes 244.4 min 

 

The protocol, illustrated in Figure 33, has the following steps: 

i. Controlling the temperature until 8°C at 100 L/h. 

ii. Setting the flow rate to the desirable value (200 or 400 L/h). 

iii. Pressurizing slowly until 8 bars using the gas compensation system. 

iv. Reducing the temperature until 4°C. 

v. Pressurizing rapidly (manual) until 75 bars with natural gas. 
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vi. Turning on the gas compensation system and setting it to 75 bars. 

 

 
Figure 33. Experimental protocol. 

3.3. Data processing 

The experiments performed for this thesis involved several measurements, as discussed 

in the previous sections. There is the main acquisition system, the FBRM, the PVM, the acoustic 

emission, the permittivity measurements and the high-speed camera. The acquisition station of 

each instrument is individual (separate computer). Table 4 shows the instruments installed in 

the apparatus and their outputs. 

Table 4. List of instruments installed in the Archimedes flow loop, with the type of data, 

acquisition, and type of file. 

Instrument Data 
Step of time for 

acquisition 
Type of file 

Main acquisition 

system 

p(×2), T(×10), Q, ρ, 

QG, ∆p(×4) 
1.0 s csv 

FBRM 

CLD for 1-1000 µm, 

divided in 90 

intervals (log90 

scale) 

5.0 s xlsx 

PVM Images 5.0 s bmp 

Acoustic Emission 

TDD (absolute 

energy and ASL) 

and HDT (18 

parameters) for each 

sensor 

0.5 s txt 

Permittivity 
Permittivity and 

conductivity 
3-8 sec txt 

Camera Images Up to 211 fps binary 

 



51 

 

Once the experiment is over, the data from all the instruments are collected, and then 

processed using a software for data treatment that was specifically designed for the Archimedes 

flow loop. The software was written in Python, and it was developed during this thesis. The 

main acquisition system is taken as a reference, and the initial time (𝑡 = 0) is the instant when 

the flow loop starts to be pressurized to 75 bars. The time sets from the other instruments are 

then calculated relatively to this instant of time that the system was pressurized. A screenshot 

of the main screen of the software with some plots is shown in Figure 34. A detailed 

presentation of the software is given in Appendix A. 

In addition to the measurements, several models and calculations have been proposed 

and integrated to the software for data treatment. It is possible to obtain the hydrates fraction, 

the water conversion and the gas dissolution, as it is presented in section 3.4. In addition, it is 

possible to calculate the Reynolds number, the apparent viscosity and the water cut (before 

hydrate formation), as it is be presented in Chapter 4. Finally, with the density measured from 

the Coriolis and the water conversion, it is possible to estimate the apparent hydrate fraction 

flowing in the system, as presented in Chapter 6. 

 
Figure 34. Archimedes Data Visualization developed to treat the data from the experiments. 

3.4. Gas dissolution and hydrate volume calculation 

The natural gas is consumed due to the dissolution into the liquid phases and due to 

hydrate formation, as illustrated in Figure 35. An important information to be evaluated in the 

experiments is the amount (or the fraction) of hydrates in the system. The calculation of the 

hydrates volume is based on the consumption of gas to form hydrates. The experiments 



52 

 

performed for this thesis are at constant pressure. Due to gas dissolution and hydrate formation, 

gas must be constantly injected to maintain the pressure. 

 
Figure 35. Consumption of gas during the experiment. 

 It is assumed in this thesis that, before hydrate formation, the natural gas is dissolved in 

the oil phase. A balance between the amount of gas injected (by the gas compensation system) 

and the volume of free gas (pressure and temperature dependent) is taken into account to obtain 

the dissolution of gas. Gas dissolution in the oil phase changes the density of the oil. It was 

observed in experiments of solubility for some of the component of the natural gas into the 

Kerdane) using a batch reactor. These results briefly explained in Appendix C.  

After the onset of hydrate formation, it is assumed that the amount of gas dissolved in 

the oil phase remains constant. Then, a balance between the injected gas and the volume of free 

gas allows calculating how much hydrates formed. 

The calculation procedures for gas dissolution and hydrate formation are presented in 

the next two subsections. 

3.4.1. Calculation procedure to obtain the amount of gas dissolved in the oil phase and the oil 

density 

When gas dissolves in the liquid phase, the pressure reduces if the system is at constant 

volume. Furthermore, the liquid phase suffers a volume expansion and a reduction on its 

density. In this work, the experiments were carried out with a mixture of natural gases. It is 

assumed that only three of the gas components are dissolved in the oil phase. These gases 

components are methane, ethane, and carbon dioxide, which represent 98.4% of the gas molar 

fraction (see Appendix B for the natural gas composition). The reason for this assumption is 

that only data for these three types of gas are available for solubility in Kerdane. Correlations 

for the solubility of methane, ethane and carbon dioxide in Kerdane and correlations for the oil 
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density (saturation point), as function of pressure, temperature, and as function of pressure and 

temperature are presented in Appendix C.  

At the initial state, when the absolute pressure is 8 bars, just before the manual 

pressurization to 75 bars (see the experimental protocol represented in Figure 33), the amount 

of dissolved and free gas must be calculated. For that, it is assumed that the oil is saturated with 

the gas components. The fraction of each component is defined as: 

 𝑓𝑖 =
𝑛𝑑,𝑖 + 𝑛𝑓,𝑖

∑(𝑛𝑑,𝑖 + 𝑛𝑓,𝑖)
 ( 21 ) 

where 𝑛𝑑,𝑖 is the number of moles of a gas component 𝑖 that are dissolved in the oil phase, while 

𝑛𝑓,𝑖 is the number of moles of free gas. The fraction 𝑓 is the nominal composition (in molar 

fraction) of the natural gas used in the experiments, and it is given in Table 6 (page 171). The 

fraction of gas in terms of dissolution is defined as: 

 𝑓𝑑,𝑖 =
𝑛𝑑,𝑖

∑𝑛𝑑,𝑖
 ( 22 ) 

while the fraction of each component present as free gas is defined as: 

 𝑓𝑓,𝑖 =
𝑛𝑓,𝑖

∑𝑛𝑓,𝑖
 ( 23 ) 

Finding the solution for the equilibrium in the saturation point requires three inputs: the 

natural gas composition (𝑓), the average temperature and the absolute pressure. The solution 

𝑛𝑑(0) = (𝑛𝑑,1; … ; 𝑛𝑑,7) and 𝑛𝑓(0) = (𝑛𝑓,1; … ; 𝑛𝑓,7) is obtained by simultaneously solving 

equation (18), equation (82) (which gives the partial pressure that is used to calculate the 

concentration), and equation (86).  

Once the initial state at 𝑡 = 0 is known, the next step consists in obtaining the states 

during the pressurization. This pressurization is fast, it takes around 15 seconds (between 10 

and 20 seconds), and it is not possible to know how much gas is being injected. It is assumed 

that all the gas being injected is pressurizing the system (without any dissolution of gas). This 

assumption is necessary; otherwise, the solution would be underdetermined. If all the gas being 

injected is added as free gas, the number of moles of dissolved gas for all components (𝑛𝑑) 

remain constant. The solution 𝑛𝑓(𝑡) = (𝑛𝑑,1; … ; 𝑛𝑑,7) that is obtained for each step of time is 

obtained solving the equation (21), equation (88), and considering that the increase on the 

number of moles of free gas injected in the system obeys the nominal composition of the natural 

gas: 
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 𝑓𝑖 =
𝑛𝑓,𝑖(𝑡) − 𝑛𝑓,𝑖(0)

∑(𝑛𝑓,𝑖(𝑡) − 𝑛𝑓,𝑖(0))
 ( 24 ) 

Once the system is pressurized and the gas compensation system is turned on, the 

dissolution of gas begins. The system of equation proposed contains four equations, based on 

mass conservation, constant volume of the system, gas density based on real gas model, and oil 

density as function of the amount of gas dissolved. The mass conservation is given by: 

  𝑚𝐺𝑓
0

+ 𝑚𝐺

𝑖𝑛𝑗,𝑡𝑑
+ 𝑚𝐺𝑑

0
+ 𝑚𝑂 + 𝑚𝑊 = 𝑚

𝐺𝑓

𝑡𝑑
+ 𝑚𝐺𝑑

𝑡𝑑
+ 𝑚𝑂 + 𝑚𝑊 ( 25 ) 

where 𝑚𝐺𝑓 is the mass of free gas in the system, 𝑚𝐺
𝑖𝑛𝑗,𝑡𝑑  is the accumulated mass of gas injected 

by the gas compensation system after the pressurization, 𝑚𝐺𝑑 is the mass of dissolved gas, 𝑚𝑂 

is the mass of injected oil (without dissolved gas), 𝑚𝑊 is the mass of injected water. One should 

notice that the left side of equation (25) is the initial state (𝑡𝑑 = 0), while the right side 

represents the state in any further step of time (𝑡𝑑 > 0). The total volume of the flow loop is 

constant, so, the following equation can be written: 

 𝑉𝐺
0 + 𝑉𝑂

0 + 𝑉𝑊 = 𝑉𝐺
𝑡𝑑 + 𝑉𝑂

𝑡𝑑 + 𝑉𝑊 ( 26 ) 

where 𝑉 is the volume. The gas density is the relation between mass and volume, and, for the 

gas phase, it can be calculated using the SRK model (see Appendix B), which depends on the 

pressure and average temperature: 

 𝜌𝐺(𝑝𝑡𝑑 , 𝑇𝑡𝑑) =
𝑚𝐺

𝑡𝑑

𝑉𝐺
𝑡𝑑

 ( 27 ) 

The mass of oil is constant. However, due to the dissolution of gas, the mass, density 

and volume of the oil with dissolved gas changes. The total mass of oil is the mass of oil initially 

injected plus the total mass of dissolved gas. It can be mathematically expressed as: 

 𝜌𝑂
𝑡𝑑𝑉𝑂

𝑡𝑑 = 𝑚𝑂 + 𝑚𝐺𝑑
𝑡𝑑  ( 28 ) 

Substituting the equations (27) and (28) into the equation (25), it is obtained: 

  𝑚𝐺𝑓
0

+ 𝑚𝐺

𝑖𝑛𝑗,𝑡𝑑
+ 𝑚𝐺𝑑

0
+ 𝑚𝑂 = 𝜌

𝐺

𝑡𝑑𝑉𝐺

𝑡𝑑
+ 𝜌

𝑂

𝑡𝑑𝑉𝑂

𝑡𝑑
 ( 29 ) 

From equations (26) and (29), the following system of equations is derived: 
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 [𝜌𝐺
𝑡𝑑 𝜌𝑂

𝑡𝑑

1 1
] [

𝑉𝐺
𝑡𝑑

𝑉𝑂
𝑡𝑑

] = [
𝑚𝐺

0 + 𝑚𝐺
𝑖𝑛𝑗

+ 𝑚𝐺𝑑
0 + 𝑚𝑂

𝑉𝐺
0 + 𝑉𝑂

0
] ( 30 ) 

The system of equation (30) requires an implicit solution, because the coefficient 𝜌𝐺
𝑡𝑑  is 

dependent on the solution at the same step of time (𝑡𝑑). It is proposed for this work that the 

density of the oil phase changes according to the following equation: 

 
𝜌(𝑡𝑑) − 𝜌𝑠𝑎𝑡(𝑇, 𝑛𝑓 , 𝑛𝑑 , 𝑓)

𝜌𝑠𝑎𝑡(𝑇, 𝑛𝑓 , 𝑛𝑑 , 𝑓)
=

𝐶(𝑡𝑑, 𝑓𝑓) − 𝐶𝑠𝑎𝑡(𝑇, 𝑛𝑓 , 𝑛𝑑 , 𝑓)

𝐶𝑠𝑎𝑡(𝑇, 𝑛𝑓 , 𝑛𝑑 , 𝑓)
 ( 31 ) 

where 𝐶 is the concentration of gas at the saturation point, and 𝜌𝑠𝑎𝑡 is the oil density at the 

saturation point. The equations for density and gas concentration (dissolved gas) in the 

saturation point were obtained for each gas separately (Appendix C). For a composition of 

natural gas, it is proposed in this work that the total expansion of the oil phase is the sum of the 

relative expansions caused by each gas, based on partial pressure and temperature. This 

assumption can mathematically be expressed by: 

 
∆𝑉𝑂

𝑉𝑂
= ∑(

∆𝑉𝑂

𝑉𝑂
)
𝑖

 ( 32 ) 

where each subscript 𝑖 represents a gas type. In order to calculate the relative expansion on the 

oil caused by each gas component, (
∆𝑉𝑂

𝑉𝑂
⁄ )

𝑖
, it is necessary to obtain the relation between 

density and oil volume. The first step comes from the equation for oil density: 

 𝜌𝑂
𝑠𝑎𝑡𝑉𝑂

𝑠𝑎𝑡 = 𝑚𝑂(1 + 𝑀𝑖𝐶𝑠𝑎𝑡) ( 33 ) 

Then the difference between the final and initial oil volumes is given by: 

 𝑉𝑂
𝑠𝑎𝑡 − 𝑉𝑂

0 =
𝑚𝑂(1 + 𝑀𝑖𝐶𝑠𝑎𝑡)

𝜌𝑂
𝑠𝑎𝑡 − 𝑉𝑂

0 ( 34 ) 

And finally, dividing both sides of equation (34) by 𝑉𝑂
0, it is obtained: 

 (
∆𝑉𝑂

𝑉𝑂
)
𝑖

=
𝜌𝑂

0

𝜌𝑂
𝑠𝑎𝑡 (1 + 𝑀𝑖𝐶𝑠𝑎𝑡) − 1 ( 35 ) 

The equation (35) is the relative expansion of oil for each gas. The total expansion of 

the oil phase is given by: 
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∆𝑉𝑂

𝑉𝑂
= ∑[

𝜌𝑂
0

𝜌𝑂,𝑖
𝑠𝑎𝑡 𝑀𝑖𝐶𝑠𝑎𝑡,𝑖 +

𝜌𝑂
0 − 𝜌𝑂,𝑖

𝑠𝑎𝑡

𝜌𝑂,𝑖
𝑠𝑎𝑡 ]

𝑖

 ( 36 ) 

The density of the saturated oil is then given by: 

 
𝜌𝑂

𝑠𝑎𝑡 = 𝜌𝑂
0

(1 + ∑ 𝑀𝑖𝐶𝑠𝑎𝑡,𝑖𝑖 )

(1 + ∑ [
𝜌𝑂

0

𝜌𝑂,𝑖
𝑠𝑎𝑡 𝑀𝑖𝐶𝑠𝑎𝑡,𝑖 +

𝜌𝑂
0 − 𝜌𝑂,𝑖

𝑠𝑎𝑡

𝜌𝑂,𝑖
𝑠𝑎𝑡 ]𝑖 )

 
( 37 ) 

At this point, is possible to calculate the total mass of dissolved gas, which is given by: 

 𝜌𝑂
𝑡𝑑𝑉𝑂

𝑡𝑑 − 𝑚𝑂 = ∑ 𝑛𝑑,𝑖
𝑡𝑑 𝑀𝑖  ( 38 ) 

where all the terms of the left side of the equation (38) are known, but the terms on the right 

side must yet be calculated.  

In this work, it is assumed that, at each step of time, the relative change of gas 

concentration for each gas type is proportional to the ratio between the solubility of the gas and 

the sum of all solubilities. This assumption can be expressed by: 

 
𝐶𝑖

𝑡𝑑 − 𝐶𝑖
0

𝐶𝑖
𝑠𝑎𝑡 − 𝐶𝑖

0 ∝
𝐶𝑖

𝑠𝑎𝑡

∑𝐶𝑖
𝑠𝑎𝑡  ( 39 ) 

It is also assumed that the relative change on concentration is proportional to the molar 

fraction of the gas. It can be expressed by: 

 
𝐶𝑖

𝑡𝑑 − 𝐶𝑖
0

𝐶𝑖
𝑠𝑎𝑡 − 𝐶𝑖

0 ∝ 𝑓𝑖  ( 40 ) 

Combining equations (36) and (37), it is obtained: 

 𝑛𝑖
𝑡𝑑 − 𝑛𝑖

0 = 𝑘𝑓𝑖𝐶𝑖
𝑠𝑎𝑡(𝑚𝑂𝐶𝑖

𝑠𝑎𝑡 − 𝑛𝑖
0)  ( 41 ) 

The right side of equation (41) is then defined as: 

 𝑘𝑖 = 𝑘𝑓𝑖𝐶𝑖
𝑠𝑎𝑡(𝑚𝑂𝐶𝑖

𝑠𝑎𝑡 − 𝑛𝑖
0) ( 42 ) 

where the constant 𝑘 is the same for all gas components. Using the equation (38) with the 

definition of 𝑘𝑖 given by the equation (42), and writing the number of moles for each gas 

component as a function of the number of moles of one of the gas components (here, 𝑖 = 1 it 

was chosen as a reference), it is obtained: 
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 𝑛𝑑,𝑖
𝑡𝑑 = 𝑛𝑑,𝑖

𝑡𝑑−1
+ (𝑛𝑑,1

𝑡𝑑 − 𝑛𝑑,1
𝑡𝑑−1

)
𝑘𝑖

𝑘1
 ( 43 ) 

 Substituting the equation (43) into equation (38), it is obtained: 

𝜌𝑂
𝑡𝑑𝑉𝑂

𝑡𝑑 − 𝑚𝑂 = ∑[𝑛𝑑,𝑖
𝑡𝑑−1

+
𝑘𝑖

𝑘1
(𝑛𝑑,1

𝑡𝑑 − 𝑛𝑑,1
𝑡𝑑−1

)]𝑀𝑖 ( 44 ) 

 One can notice that all the terms into equation (44) are known, except 𝑛𝑑,1
𝑡𝑑 , which can 

therefore be calculated by: 

𝑛𝑑,1
𝑡𝑑 =

𝜌𝑂
𝑡𝑑𝑉𝑂

𝑡𝑑 − 𝑚𝑂 − ∑ [𝑛𝑑,𝑖
𝑡𝑑−1

−
𝑘𝑖

𝑘1
𝑛𝑑,1

𝑡𝑑−1
]𝑀𝑖

∑
𝑘𝑖

𝑘1
𝑛𝑑,1

𝑡𝑑 𝑀𝑖

 ( 45 ) 

Once the term 𝑛𝑑,1
𝑡𝑑  is calculated from equation (45), all the other values 𝑛𝑑,𝑖

𝑡𝑑  can be 

updated using the equation (42). The number of moles of each gas component that are present 

as free gas must be updates by means of a balance of gas moles: 

𝑛𝑓,𝑖
𝑡𝑑 = 𝑛𝑓,𝑖

𝑡𝑑−1
+ (𝑛𝑓,𝑖

𝑡𝑑−1
− 𝑛𝑓,𝑖

𝑡𝑑) + �̇�𝑖𝑛𝑗,𝑖
𝑡𝑑  ( 46 ) 

 where �̇�𝑖𝑛𝑗,𝑖
𝑡𝑑  is the number of moles of a gas component that was injected by the gas 

compensation system during the step of time 𝑡𝑑. Finally, the fraction of the free gas present 

must also be updated: 

𝑓𝑓,𝑖(𝑡𝑑) =
𝑛𝑓,𝑖

𝑡𝑑

∑𝑛𝑓,𝑖
𝑡𝑑

 ( 47 ) 

Table 5 shows a summary of the model for gas dissolution presented in this subsection. 



58 

 

Table 5. Summary of the model to obtain the dissolution of gas in the oil phase. 

 

 

 

Step 1: Obtaining the initial state 

Objective: obtain the fractions of each gas component, free and dissolved, just before the 

pressurization to 75 bars, correspondent to the instant 𝑡 = 0. 
 Simultaneous solution of equations (21), (85) and (88).  

 It gives 𝑛𝑑(0) and 𝑛𝑓(0). 

Step 2: Obtaining the states during the manual pressurization to 75 bars 

Objective: obtain the fractions of each gas component, free and dissolved, during all the 

instants while the system is being manually pressurized (which may take between 10 and 20 

seconds), from 𝑡 > 0 until 𝑡𝑑 = 0. Since it is not possible to know the amount of gas being 

injected, dissolution of gas is neglected (all the gas injected is assumed to be pressuring the 

system). 

 Simultaneous solution of equations (21), (24) and (88).  

 It gives 𝑛𝑑(𝑡) and 𝑛𝑓(𝑡). 

Step 3: Obtaining the states after the pressurization 

Objective: obtain the fractions of dissolved and free gas from 𝑡𝑑 = 0 until the onset of hydrate 

formation (at 𝑡𝐻 = 0). Once hydrate formation begins, it is assumed that there is no more gas 

dissolution. 

 Simultaneous solution of equations (28), (30) and (31) for each step of time 𝑡𝑑 > 0 

until he onset of hydrate formation. 

 Update the number of moles 𝑛𝑑,1
𝑡𝑑  using equation (45). 

 Update each 𝑛𝑑,𝑖
𝑡𝑑  (𝑖 > 1) using equation (43). 

 Update each 𝑛𝑓,𝑖
𝑡𝑑  using equation (46). 

An example of the application of the model presented on this section is shown in Figure 

36. 
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Figure 36. Gas dissolution calculation using the model proposed on this section, for the 

experiment #34 (80% water cut, 400 L/h, with AA at 0.94 %wt. vs water).  

3.4.2. Calculation procedure for the amount of hydrate formation in the system 

Calculating the total fraction of hydrates in the system, or the water conversion, is an 

important information. It can be calculated from pressure, temperature, injected gas, mass 

balance, volume conservation, density and hydration number. The following hypotheses are 

proposed for the model: 

 The mass of dissolved gas in the oil phase is constant after the onset of hydrate 

formation; 

 The fraction of each gas component being consumed for hydrate formation is 

proportional to the molar fraction of the free gas; 
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 The density of hydrate is constant and it is equal to 910 g/L (density of methane 

hydrates); 

 The hydration number is constant and equal to 6.0. 

The mass balance, considering the free gas, the free water and the hydrate phases, is 

given by the following equation:  

 𝑚𝐺
0 + 𝑚𝐺

𝑖𝑛𝑗,𝑡𝐻 + 𝑚𝑊
0 = 𝑚𝐺

𝑡𝐻 + 𝑚𝑊
𝑡𝐻+𝑚𝐻

𝑡𝐻 ( 48 ) 

where 𝑡𝐻 indicates the time since the onset of hydrate formation, and the superscript 0 

corresponds to the instant of onset of hydrate formation (𝑡𝐻 = 0). The term 𝑚𝑔
𝑖𝑛𝑗,𝑡𝐻  is the mass 

of gas injected since the onset of hydrate formation.  

The volume of the flow loop is constant, and therefore, the following equation can be 

written: 

 𝑉𝐺
0 + 𝑉𝑊

0 = 𝑉𝐺
𝑡𝐻 + 𝑉𝑊

𝑡𝐻 + 𝑉𝐻
𝑡𝐻  ( 49 ) 

where, once again, the superscript 0 corresponds to the exactly time of the onset of hydrate 

formation. One should notice that the oil phase and the dissolved gas were not taken into 

account in the equations (48) and (49), because the amount of dissolved gas is assumed to be 

constant after the onset of hydrate formation. The gas density, which can be calculated from the 

pressure, temperature and composition of the gas (see Appendix C for a complete description 

of the model implemented on this work to calculate the density of real gas), is given by the 

equation: 

 𝜌𝐺
𝑡𝐻(𝑝, 𝑇) =

𝑚𝐺
𝑡𝐻

𝑉𝐺
𝑡𝐻

 ( 50 ) 

The hydrate density is assumed to be constant and equal to 910 g/L (methane hydrates), 

and it is the ratio between mass and volume: 

 𝜌𝐻 =
𝑚𝐻

𝑡𝐻

𝑉𝐻
𝑡𝐻

 ( 51 ) 

The water density is also constant (1023.8 g/L for saline water with 30g/L of NaCl): 

 𝜌𝑊 =
𝑚𝑊

𝑡𝐻

𝑉𝑊
𝑡𝐻

 ( 52 ) 

Finally, the hydration number is assumed to be 6.0, and it is the ratio between the 

number of water molecules and gas molecules consumed for hydrate formation: 
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 Nh =
nW

crys

nG
crys =

(mW
0 − mW

𝑡𝐻 )
MW

⁄

(mG
0 + mG

inj
− mG

𝑡𝐻)
MG

⁄

 ( 53 ) 

Substituting the equations (50)-(53) into equation (48), it is obtained: 

 

[
 
 
 
 𝜌𝑊 𝜌𝑔

𝑡𝐻 𝜌ℎ

1 1 1

𝜌𝑊

𝑀𝑊
−

𝑁ℎ𝜌𝐺
𝑡𝐻

𝑀𝐺
0

]
 
 
 
 

[

𝑉𝑊
𝑡𝐻

𝑉𝐺
𝑡𝐻

𝑉𝐻
𝑡𝐻

] = [

𝑚𝐺
0 + mG

inj,t𝐻 + 𝑚𝑊
0

VG
0 + VW

0

𝑉𝑂
0

] ( 54 ) 

For simplification, it is assumed that the amount of dissolved gas into the oil phase is 

constant after the onset of hydrate formation. Then, any variation in pressure or gas injection is 

due to the consumption of gas for hydrate formation. Concerning the number of moles of a gas 

component 𝑖 for hydrate formation in an instant 𝑡 > 𝑡𝐻 (accumulated), defined as 𝑛𝑐,𝑖
𝑡ℎ , a 

simplified approach is used: it is assumed that the number of gas moles for each gas that is 

consumed for hydrate formation is proportional to the fraction of free gas: 

 𝑛𝑐,𝑖
𝑡𝐻 − 𝑛𝑐,𝑖

𝑡𝐻−1
∝ 𝑓𝑓,𝑖 ( 55 ) 

Taking 𝑖 = 1 as a reference, it can be deduced from equation (55) that: 

 𝑛𝑐,𝑖
𝑡𝑑 − 𝑛𝑐,𝑖

𝑡𝑑−1
=

𝑓𝑓,𝑖

𝑓𝑓,1
(𝑛𝑐,1

𝑡𝐻 − 𝑛𝑐,1
𝑡𝐻−1

) ( 56 ) 

A simple moles balance for the gas, which consists is balancing the initial amount of 

gas and the injected gas with a final state consisting in free gas and gas consumed for hydrate 

formation, leads to the following expression: 

 
𝑚𝐺

0 − 𝑚𝐺
t𝐻 + mG

inj,t𝐻

∑𝑓𝑓,𝑖
= ∑𝑛𝑐,𝑖

𝑡𝐻𝑀𝐺,𝑖 + ∑𝑛𝑐,𝑖
𝑡𝐻−1

𝑀𝐺,𝑖 ( 57 ) 

 Finally, isolating the term 𝑛𝑐,1
𝑡ℎ  from the equation (57), it is obtained: 

 𝑛𝑐,1
𝑡𝐻 = 𝑛𝑐,1

𝑡𝐻−1
+

𝑚𝐺
0 − 𝑚𝐺

t𝐻 + mG
inj,t𝐻 − ∑𝑛𝑐,𝑖

𝑡𝐻−1
𝑀𝐺,𝑖

∑𝑓𝑓,𝑖𝑀𝐺,𝑖
 ( 58 ) 

Once 𝑛𝑐,1
𝑡𝐻  is known, all the terms 𝑛𝑐,𝑖(𝑖>1)

𝑡𝐻  can be calculated using the equation (56). An 

example of application of this model for the experiments presented in this thesis is shown in 

Figure 37. 
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Figure 37. Hydrate fraction calculation using the model proposed on this section, for the 

experiment #34 (80% water cut, 400 L/h, with AA at 0.94 %wt. vs water). 

3.5. Summary of the chapter 

On this Chapter, it was presented the materials and methods used on this thesis. The 

experimental apparatus (Archimedes flow loop) was described. It is installed at Mines de Saint-

Etienne, and it is used for tests with hydrate formation using oil, water and gas at high pressures 

(up to 75 bars) and low temperatures (4°C is the working temperature). Each one of the 

instruments used in the experiments was described as well, including the classical 

measurements (pressures, pressure drops, temperatures, density, flow rate and gas injection), 

the FBRM, the PVM, the permittivity probe, the acoustic emission and the high-speed camera. 

The experimental protocol was described in detail, which includes the emulsification outside 
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of the hydrate domain (control of temperature at low pressure) and flow inside the hydrate 

domain (manual pressurization and use of the gas compensation system). The models to 

calculate gas dissolution and water conversion (or hydrate fraction) were presented. The 

principle of data treatment used to analyze the results was briefly explained as well. 

3.6. Highlights in French - Résume du Chapitre 3 en Français 

L’objective de ce chapitre est de présenter la méthodologie pour les expériences de 

cristallisation, les modèles mathématiques pour calculer la dissolution de gaz et la conversion 

d’eau, et le principe de traitement de donnés.  

Le dispositif expérimental est nommé « boucle Archimède », installé au SPIN Centre à 

l’Ecole des Mines de Saint-Etienne. Le système est utilisé pour des essais de formation 

d'hydrates de gaz utilisant de l’huile Kerdane, de l'eau salée (avec 30 g de NaCl per litre d’eau) 

et du gaz naturel à hautes pressions (jusqu'à 75 bars) et basses températures (4 °C est la 

température de fonctionnement). Un pompe moineau donne la puissance pour l’écoulement 

jusqu’à 520 L/h. Pour les essais de cette thèse, les débits de 200 ou 400 L/h ont été utilisés. Un 

séparateur est installé en haut de l'appareil et permet le contact entre le liquide et le gaz naturel. 

La pressurisation du système est possible avec l’injection de gaz naturel dans le séparateur, 

manuellement ou en utilisant un système d’injection automatique de gaz que mesure aussi le 

débit de gaz injecté. La boucle est équipée avec un Coriolis pour mesurer le débit et la densité, 

dix capteurs de température, quatre capteurs de perte de charge, et deux capteurs de pression. 

Le système de mesures classiques enregistre les données touts les 1 seconde. 

En plus des mesures classiques, la boucle Archimède est équipée avec un FBRM, un 

PVM, une sonde de permittivité, six capteurs d'émission acoustique et une caméra de haute 

vitesse. Le FBRM donne la distribution de longueur de corde dans une gamme entre 1 et 1000 

micromètres toutes les 5 secondes. Le PVM prendre des photos (1075 x 825 micromètres) 

toutes les 5 secondes aussi. La sonde de permissivité donne le diélectrique et la conductivité 

toutes les 2-7 secondes. L’émission acoustique donne plusieurs donnes, et c’est l’énergie 

absolue (mesure toutes les 0.5 second) qu’est utilisé dans cette thèse.  

Le protocole expérimental a été présenté en détail, qui comprend l'émulsification hors 

du domaine des hydrates (contrôle de la température à basse pression) et le débit à l'intérieur du 

domaine des hydrates (pressurisation manuelle et utilisation du système de compensation des 

gaz).  

Des modèles mathématiques ont été développés pour calculer la dissolution des gaz et 

la conversion de l'eau (ou fraction d'hydrates) à partir des mesures de pression, température et 



64 

 

d’injection de gaz naturel. Les modèles prennent en compte la conservation de la masse dans 

un système à volume constant et des équations de gaz real. 

Finalement, le principe du traitement des données utilisé pour analyser les résultats a été 

brièvement expliqué. Un logiciel en Python a été développé pour la synchronisation de toutes 

les données. Une explication complète de tous les outils de ce logiciel sont disponibles dans 

l’Appendix A.  
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CHAPTER 4 – ANALYSIS OF THE OIL-WATER FLOW REGIME BEFORE HYDRATE 

CRYSTALLIZATION FROM PERMITTIVITY AND DENSITY MEASUREMENTS AND APPARENT 

VISCOSITY CALCULATION 

The objective on this chapter is to discuss about the flow pattern before hydrate 

formation. An analysis combining dielectric measurement, apparent viscosity (obtained from 

the pressure drop in the horizontal section), and instant water cut (calculated using the density 

measured in the Coriolis) is presented. 

4.1. Detection of the continuous phase and characterization of the flow regime using 

permittivity measurements 

The definition of dielectric used in this work is the relative permittivity at 108 Hz, as 

explained in subsection 3.1.9. However, a range of frequencies from 107 to 6×109 Hz is 

available. For experiments without AA, Figure 38 shows the relative permittivity for all 

frequencies during the dispersion of oil and water before hydrate formation at low, intermediate 

and high water-cut. This gives the ranges where the relative permittivity at all frequencies is 

located most of the time. Comparing the experiments at 200 and 400 L/h, one can notice that 

the ranges of values for the permittivity (at all frequencies) reduce when the flow rate increases. 

This can be explained by the size of the droplets because an increased flow rate reduces the 

sizes of the droplets.  

At 30% water cut and 200 L/h (Figure 38(a)), the permittivity presents values that are 

intermediate between the permittivity of Kerdane and saline water, but closer to the water 

permittivity than to the oil permittivity. Since it is unlikely that water is the continuous phase 

for 30% water-cut, the presence of large water droplets may be affecting the measurements (see 

image of the flow pattern in Figure 44(a)). At 400 L/h (see Figure 38(b)), the relative 

permittivity seems to converge in the direction of the oil permittivity. At 50% water cut, the 

permittivity is a lot closer to the water permittivity when the flow rate is 200 L/h (Figure 38(c)), 

with all the measurements being detected in the upper half close to the saline water permittivity. 

At 50% water-cut and 400 L/h (Figure 38(d)), the permittivity also concentrates in the upper 

half of the graph, an indication that water is the continuous phase, but in a reduced range, 

because the higher shear causes better homogenization of the droplets (see Figure 44(d)). At 

80% water cut, the system is homogeneous, with the permittivity bordering the permittivity of 

water at 200 L/h (Figure 38(e)) and slightly moving down in the graph as the system is even 

more dispersed at 400 L/h (Figure 38(f)). 
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On this first analysis, the relative permittivity at all frequencies were monitored. The 

conclusion is that there are similarities between the tests at 50 and 80% water cut, with the 

values of permittivity closer to the salted water permittivity than to the oil permittivity, which 

suggests that those are water continuous systems, while the tests at 30% water cut seem to be 

in oil continuous systems. The range of the values of permittivity are dependent on the flow 

rate, depending on the shear forces that will control the size of the droplets and the particles 

size distribution. 

 
Figure 38. Permittivity at all frequencies added over the time before hydrate formation, for 

experiments without AA. 

For the experiments with AA, the graphs are shown in Figure 39. The tests at 50% water-

cut, whether at 200 or 400 L/h (Figure 39a-b) give a thin range of values for permittivity, which 

are intermediate between the salted water and oil permittivity. At 80% water-cut, the thin range 
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is also observed, with values closer to the permittivity of salted water. These results indicate 

that the additive causes a formation of fine dispersions. The permittivity at frequencies lesser 

than 108 Hz are large and following the water permittivity for the four cases analyzed, which 

suggests that salted water is the continuous phase for the tests with AA. 

 
Figure 39. Permittivity at all frequencies added over the time before hydrate formation, for the 

experiments with AA (doses: 1.50 %wt. vs water at 50% water cut, and 0.94 %wt. vs water at 

80% water cut). 

For the tests at 50% water-cut with AA, the confirmation that they are water-continuous 

is possible by looking to the permittivity data after the onset of hydrate formation, as shown in 

Figure 40. For both experiments, the relative permittivity converges to values near the oil after 

the onset of hydrate formation, indicating an inversion of phase. At 200 L/h, the inversion of 

phase, when it occurred, was instantly, switching from the intermediate values between salted 

water and oil directly to values near the dielectric of oil. At 400 L/h, the inversion of phase 

presented some intermediate steps, with a small gradual reduction, and then an immediate 

change to oil continuous. 
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Figure 40. Permittivity at all frequencies after the onset of hydrate formation, for the tests at 

50% water-cut, with LDHI-AA (dose 1.5 %wt. vs water). 

The analysis presented in this section gives important indications on how to obtain the 

continuous phase using the relative permittivity. The next section presents additional methods 

using the permittivity with the density measured by the Coriolis and the apparent viscosity 

obtained from the horizontal pressure drop that can be used to detect the continuous phase and 

characterize the flow regime. 

4.2. Detecting the continuous phase with dielectric, density and viscosity 

In the previous section, it was shown that the continuous phase can be deduced from the 

permittivity measurements. From the measurements there are homogeneous and heterogeneous 

dispersions. The definition of homogeneous dispersions presented in the literature is a flow with 

a constant distribution of droplets characterized by a constant pressure drop (Pham et al., 2020). 

For the permittivity measurements obtained in this work, the response is a thin range of 

dielectric values. In this section, a method is proposed to find a correspondence between the 

dielectric (relative permittivity at 108 Hz) and the instant flowing water cut, that will be called 

apparent water cut. It is calculated using the density measured by the Coriolis. In fact, it has 

been observed in the experiments that the flow is often not completely dispersed, especially for 

experiments at 200 L/h without LDHI-AA. The non-homogenous distribution of droplets (of 

the dispersed phase) is the reason for these variations. Therefore, the water cut distribution 

along space is not constant, corresponding to a non-homogeneous dispersion. In the second part 

of this section, the apparent viscosity is calculated over time and correlated to the water-cut. 

4.2.1. Methodology to relate dielectric and water cut 

The density measured by the Coriolis has the contributions of the oil and the water 

phases. The amount of free gas flowing in the system is relatively low, and therefore, it will be 
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neglected. The density, as function of the water and oil densities, can be expressed by the 

following equation: 

 ρ = ρWαW + ρO(1 − αW) ( 59 ) 

Rearranging the equation (59), the water cut can be calculated using the following 

equation: 

 αW =
ρ − ρ

O

ρ
W

− ρ
O

 
( 60 ) 

The water density is assumed to be constant over time, but the oil density must be 

corrected beforehand using the methodology proposed in subsection 3.4.1 to take into account 

the amount of dissolved gas. The apparent water cut over time is calculated before hydrate 

formation, that is, from the instant of pressurization to 75 bars until the instant of the onset of 

hydrate crystallization. Once this calculation is done, the apparent water cut is compared the 

dielectric. For that, it is necessary a synchronization in time and space between the data from 

the two instruments, because the Coriolis and the permittivity probes are installed in different 

positions in the flowloop (see Figure 22). The volume between the instruments and the flow 

rate are used to obtain the time it takes for the mixture to flow from one instrument to another.  

Once the data form the two instruments are synchronized, the method to find a 

correspondence between dielectric and water cut, represented in Figure 41, consists in 

identifying, at each 30 seconds, the maximum, the minimum, and the average values of 

dielectric and water cut. The next step consists in linking the minimum water cut to the 

minimum dielectric obtained in that 30 seconds interval, and then linking the average and 

maximum values. The interval of 30 seconds was chosen to have a minimum of five 

measurements for the dielectric, and at the same time, detect the variations in the signals over 

time (these variations may not be detected for longer intervals of measurement). 
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Figure 41. Schematic of the method to link apparent water cut and dielectric. 

Figure 42 shows an example after using the proposed method for an experiment at 50% 

water cut, 200 L/h, without AA. While the water cut ranges between 30% and 70%, the 

dielectric ranges between 40 and 87. Figure 42(a) shows the water cut over time, while Figure 

42(b) shows the water cut for the selected point (average, maximum and minimum). The same 

procedure is used to the dielectric measurements, where the continuous measurements are 

shown in Figure 42(c) and the selected points in Figure 42(d). The dielectric of the oil is around 

2.7 and dielectric of the water is around 87.9 (at 4°C), as presented in the subsection 3.1.9. One 

should notice that, for the selected point in Figure 42(b) and Figure 42(d), the green points 

correspond to the minimum, the blue points correspond to the average, and the red points 

correspond to the maximum values in a 30 seconds interval.  
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Figure 42. Selecting the minimum, maximum and average values for dielectric and water cut 

for an experiment at 50% water cut, 200 L/h, without LDHI-AA (#19). 

Figure 43 shows the correspondence between dielectric and water cut. Indeed, it seem 

to exist a linear relationship between dielectric and water cut for the experiment analyzed.  
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Figure 43. Correspondence between dielectric and water cut for an experiment at 50% water 

cut, 200 L/h, without LDHI-AA. 

Figure 44 shows some images obtained with high-speed imaging and the relation 

between dielectric and water cut for experiments at 30, 50 and 80% water cut, 200 L/h, without 

AA. The first thing that can be observed, especially for the experiments at 30 and 50% water 

cut, is that there is a large range of variation of apparent water cut. At 30% water cut, the water 

cut distributed along space may vary from 16 to 58% (Figure 44(a)). At 50% water cut, it ranges 

from 22% to 81% (Figure 44(b)). By its turn, the experiment at 80% water cut show a low 

variation, ranging from 69 to 88% (Figure 44(c)). In that sense, at 30 and 50% water cuts, the 

dispersions appear to be a lot more heterogeneous than for the dispersion at 80% water cut.  

Yet in Figure 44, while the dielectric values for 30% water cut range from low values 

(near the oil dielectric) to high values (near the salted water dielectric), the dielectric for the 

experiments at 50 and 80% water cut appear to range in the upper half part of the graph, closer 

to the salted water dielectric. This enable to conclude that oil is the continuous phase for 30% 

water-cut, while water is the continuous phase for 50 and 80% water cut. In the images, droplets 

with size up to 4 mm are dispersed in the continuous phase at 30% water-cut and 200 L/h 

(Figure 44(a)). Due to the high brightness of the droplets, it appears again that the droplets are 

of water, which are flowing in the oil continuous phase. At 50% water cut, one can notice that 

droplets are larger than at 30% water cut (Figure 44(c)). A partial stratification of the water 

phase appears in the window, with droplets flowing preferably in the upper part, due to gravity. 

It confirms that the droplets are of oil, due to the difference in density (oil is lighter than water). 

Finally, at 80% water cut, it is clear that there is a fine dispersion of oil droplets in the water 

continuous phase, with most of the droplets at the top of the pipe when flowing in front of the 

window (installed in the horizontal part). 



73 

 

 
Figure 44. Analyses of the flow patterns comparing the correspondence between dielectric 

and water cut with the images obtained with high-speed imaging. 
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The tests with AA limit the visualization using the PVM and the camera, because it 

causes a completely dispersion between the two phases, which induces a high dispersion of the 

light, as shown in Figure 45. 

 
Figure 45. Images from the PVM and from the window for an experiment with AA, at 50% 

water-cut and 200 L/h. 

A correspondence between dielectric and water-cut for all the experiments (listed in 

Table 3) is shown in Figure 46. The experiments ware separated in four groups, depending on 

the flow rate (200 or 400 L/h) and the use or not of LDHI-AA. For the tests without LDHI-AA, 

shown in Figure 46(a)-(b), despite the large variation of the values (from the minimum to the 

maximum) of water-cut and dielectric, it appear that there is a curve that relates them. As 

expected, when the dielectric increases, the water cut also increases. The shape of the curve is 

not exactly linear, and it seems that there is a slightly difference between the curves for 200 and 

400 L/h. In fact, the dielectric measured is not the dielectric of the mixture in the entire cross-

section where the probe is installed, but rather the dielectric of the mixture that touches or passes 

near the sensor. Therefore, the size of the droplets and how they are distributed in the cross-

section may affect the measurements, and that is why the results in Figure 46 were split in four 

groups, depending on the flow rate and the use of LDHI-AA. 

For the tests with LDHI-AA, shown in Figure 46(c)-(d), the repeatability of the tests can 

be noticed. At 200 L/h, the dispersion is homogeneous, because there is not difference between 

the minimum and maximum points of water-cut and dielectric. The tests at 400 L/h with LDHI-

AA are also completely dispersed, but the presence of gas bubbles may affect the calculated 

water cut and cause the difference between the maximum and minimum points. Since the use 

of LDHI-AA completely disperse the system, the amount of free gas (flowing as dispersed 

bubbles) can be estimated taking into account the density measured. Each experiment with 

LDHI-AA was repeated once, and the fractions of free gas ware estimated to be around 2.60% 

and 2.98% for the tests at 50% water-cut and 400 L/h  (against 0.54% and 0% at 200 L/h). For 
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80% water-cut, it was estimated around 4.59% and 4.82% for the tests at 400 L/h (against 0.67% 

and 0.95% for 200 L/h). 

 
Figure 46. Correspondence between dielectric and water-cut. 

4.2.2. Methodology to relate viscosity and water-cut 

The viscosity of the flowing mixture is another indicator of the flow regime and the 

homogeneous or heterogeneous behavior of the dispersion. The apparent viscosity for a two-

phase oil-water flow is greater than the water or the oil phase viscosities. There are some models 

for apparent viscosity in the literature, indicating that the apparent viscosity is not equal to the 

viscosity of the continuous phase, rather increasing as the fraction of the dispersed phase 

increases. The apparent viscosity can be calculated as a function of the frictional pressure drop: 

 
∆ph

Lh
=

2

D
fρUh

2 
( 61 ) 

where the Fanning friction factor is a function of the Reynolds number: 
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 f = C ∙ Re−n = C (
ρUD

η
)

−n

 
( 62 ) 

The coefficients 𝐶 and 𝑛 in are dependent of the laminar-turbulent transition. It is 

assumed 𝐶 = 16 and 𝑛 = 1 if 𝑅𝑒 ≤ 2300 (laminar), or 𝐶 = 0.079 and 𝑛 = −0.25 if 𝑅𝑒 >

2300 (turbulent). Finally, from equation (62), the apparent viscosity can be calculated as: 

 
η = ρUhD(

C

f
)
−n

 
( 63 ) 

The method to relate the apparent water-cut and the apparent viscosity, before hydrate 

formation, consists in synchronizing the pressure drop in the horizontal section and the water-

cut calculated from the density. However, the horizontal pressure drop is a measurement that 

depends on two points. Therefore, the apparent water-cut for this case must be the average water 

fraction present in the horizontal part, between the two exactly positions where the pressure 

drop is measured. In order to obtain this average water fraction, it is necessary to record the 

water cut over time, during the interval that it takes for the flow to pass the horizontal section. 

Then, these values are used to calculate the average water-cut. 

Figure 47 shows an example of the calculation procedures to obtain the Reynolds 

number, the apparent viscosity and the relation between viscosity and water cut and dielectric 

and water cut, for an experiment at 30% water cut, at 200 L/h, without LDHI-AA. The Reynolds 

number is lower than 2300 all the time, as shown in Figure 47(a), which indicates a laminar 

flow. Laminar flow appears to be the general case for all the experiments of this work (see 

Appendix C). The viscosities of water and Kerdane indicated in the graphs were obtained with 

the Archimedes flowloop. When hydrates from, after around 17 minutes, the Reynolds number 

reduces even more, due to the increasing viscosity forces. 
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Figure 47. Experiment #11 (30% water cut, 200 L/h, without AA). 

As discussed in section 2.2, the apparent viscosity of the flow is highly dependent on 

the viscosity of the continuous phase, and it increases as the fraction of the dispersed phase 

increases. Then, the apparent viscosity as function of water cut can be used to deduce the 

continuous phase. 

Figure 48 shows the relation between apparent viscosity and water cut for the tests 

without LDHI-AA. One can see that, at 30% water-cut and 200 L/h, the viscosity increases as 

the water cut increases (Figure 48(a)). This observation is more obvious for the test at 400 L/h, 

where there is a clear linear relation between water cut and viscosity (Figure 48(b)). On the 

other hand, the tests at 50% water cut have an opposite behavior. The viscosity reduces as the 

water cut increases (see (Figure 48(c)-(d)), which indicates that oil is the dispersed phase. At 

any water cut, the apparent viscosity increases if the flow rate increases, because the shear 

creates more interfaces. 
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Figure 48. Relation between apparent viscosity and water cut for experiments without AA. 

4.3. Flow regimes as function of water-cut, flow rate, and use of additive 

Based on the previous discussions, the depictions of the identified flow regimes are 

illustrated in Figure 49. The tests at 30 and 50% water-cut without AA are not well dispersed, 

with large droplets (a few milliliters of size) of the dispersed phase. The experiments at 80% 

water-cut are, overall, well mixed. As the flow rate increases, the dispersion becomes finer for 
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any water-cut. It was observed that tests with AA are completely well dispersed, being no 

possible to distinguish droplets from the dispersed phase. 

 
Figure 49. Depiction of the flow regimes identified in the experiments, before hydrate 

formation. 

4.4. Summary of the Chapter 

In this chapter, the oil – water dispersion before hydrate formation was analyzed. The 

objective was to use dielectric measurements, apparent water cut and apparent viscosity to 

detect the continuous phase and understand better the flow regime. It was observed that 

experiments at 200 L/h (30 and 50% water-cut) are heterogeneous, or not completely dispersed, 

with large droplets. As a response, the water-cut, dielectric and viscosity present a large range 
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of oscillations. From the dielectric measurement, it is was possible to identify the continuous 

phase, noticing that the values remain rather in the upper (for water continuous) or lower (for 

oil continuous) half of the range of the possible dielectric measurements. For tests at 400 L/h, 

it was easier to detect the continuous phase, not only with the dielectric measurements, but also 

with the apparent viscosity, because the dispersion is composed of small droplets. This is in 

agreement with the literature the observation that the viscosity increases when the fraction of 

the dispersed phase increases. The understanding achieved in this Chapter for the dispersed 

systems before hydrate formation will help understanding how is the dispersion behaves after 

hydrate formation, as it will be discussed in the Chapter 5. 

4.5. Highlights in French - Résume du Chapitre 4 en Français 

Dans ce chapitre, l'émulsion huile-eau avant la formation d'hydrates a été analysée. 

L'objectif était d'utiliser des mesures diélectriques, de densité et de viscosité apparente pour 

détecter la phase continue et mieux comprendre le régime/géométrie d'écoulement. Des 

méthodes pour synchroniser le diélectrique, la fraction d’eau local (à partir de la densité du 

Coriolis) et la viscosité apparent (a partir de la perte de charge horizontal) ont été présenté. 

Il a été observé que les régimes à 200 L/h (30 et 50% de water cut) sont hétérogènes, ou 

pas complètement dispersés. En réponse, la fraction d’eau local, le diélectrique et la viscosité 

présentent une large gamme d'oscillations. A partir de las mesures du diélectrique, il a été 

possible d'identifier la phase continue. Quand les valeurs restent plutôt dans la moitié 

supérieure, l’eau est la phase continue. Ou, quand les valeurs restent plutôt dans la moitié 

inferieur, l’huile est la phase continue. 

Pour les tests à 400 L/h, il était plus facile de détecter la phase continue, non seulement 

à partir des mesures diélectriques, mais aussi du calcul de la viscosité apparente, car la 

dispersion est fine. Comme prévu dans la littérature, l’augmentation de la fraction de phase 

dispersée augmente la viscosité apparente. Avec les calculs de viscosité apparent, il a été 

observé que, à 50% water cut, la viscosité augmente avec la fraction d’eau (donc l’eau est la 

phase dispersé). A 80% water cut, la viscosité réduisent avec le water cut (donc l’huile est la 

phase dispersé).  

La compréhension obtenue dans ce chapitre pour le système dispersé avant la formation 

d'hydrates aidera à comprendre comment la dispersion se comporte après la formation 

d'hydrates, comme cela sera discuté dans le Chapitre 5. 
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CHAPTER 5 – HYDRATE FORMATION AND PLUGGING MECHANISMS FOR OIL AND WATER 

DOMINATED SYSTEMS 

This chapter presents the results and discuss the mechanisms of hydrate formation and 

plugging. While the Chapter 4 was focused in the analysis of the data of the experiments before 

hydrate formation, this chapter will resume and analyze the data after the onset of hydrate 

formation. The objective is to discuss how hydrates are formed and in which manner they affect 

the flow pattern, in order to propose new insights into the mechanisms of hydrate plug formation 

and prevention. In the first section of this chapter are presented the results for the experiments 

without LDHI-AA, while in the second section are presented the results with LDHI-AA. 

5.1. Hydrate formation for oil-water system without AA 

In this section, it is presented and discussed the results for the experiments without 

LDHI-AA. The first three subsections show the results at low (30%), intermediate (50%) and 

high (80%) water-cut. The last subsection proposes the hydrate plugging formation mechanisms 

for oil and water continuous systems from the results of the experiments without LDHI-AA.  

5.1.1. Experiments at 30% water-cut 

Hydrate formation is an exothermal process that causes an increase on the temperature 

of the surrounds where they are forming. Therefore, in the experiments, hydrate formation can 

often be detected by an increase of the temperature. There are nine temperature probes 

distributed in the flowloop apparatus, so if the volume of hydrates formed is enough to increase 

the temperature, it is possible to detect when and where hydrates are initially formed. However, 

since the heat generated by crystallization warms the fluid around it, it is not possible to track 

where hydrate particles are located only from the temperature measurements. The acoustic 

emission probes were installed with the objective to track the particles in time and space by 

capturing the absolute energy. 

For the first experiment analyzed, at 200 L/h (#113), Figure 50(a) shows that, around 

16.8 minutes, the temperature measured by the probe T8, which is installed right after the pump, 

increases.  Less than a minute later, around 17.6 minutes, Figure 50(b) shows that the AE sensor 

1A has a sudden increase on the absolute energy, and then one by one of the sensors used in 

that experiment also react, in sequence, with an increase of absolute energy. Finally, the last 

                                                 
3 The list of experiments is shown in Table 3 (page 49). 
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temperature probe to detect an increase of the temperature is the sensor T7, around 18.5 minutes, 

as shown in Figure 50(c). The probe T7 is installed just before the pump. 

 
Figure 50. Detecting the onset of hydrate formation with temperature and absolute energy 

measurements for a test at 30% water cut, 200 L/h, without AA (#11). 

The data shown in Figure 50 indicates that the onset of hydrate formation occurred 

between the temperature probes T7 and T8, where the pump is located. Indeed, for most of the 

experiments, this is the location where hydrates form. Hydrate formation may have started after 

the pump4, because this is the point with the highest absolute pressure in the apparatus. Another 

                                                 
4 Another location where hydrates may form is the downward section, because there is gas being dissolved in the 

liquid phase after the separator. 



83 

 

possible explanation is that the energy provided may facilitate the free energy fluctuations that 

cause clusters to reach a critical size. The data shown in Figure 50 also shows that the absolute 

energy increases once hydrates start passing in front of the acoustic emission sensors. The 

measured absolute energy increases up to three orders of magnitude when hydrates are formed. 

Figure 51 shows the data of PVM, FBRM and absolute energy when hydrates are 

initially detected. The data is synchronized in such way that the time that it takes for the flow 

to move between the instruments is taken into account. As indicated in the x-axes, the 

instrument used as reference is the Coriolis. The first PVM image to show hydrates is the image 

3 (see Figure 51(a)). These particles seem to be flowing dispersed in the liquid phase (dark 

background), while images 4-8 indicate that there are relatively large porous agglomerates 

passing in front of the PVM. Since the images 5-7 are very similar, there was deposition on the 

instrument. The passage of the first particles (image 3) was not detected by the FBRM (Figure 

51(b)), but it could be detected with the absolute energies (Figure 51(c)), which have a first 

peak when the particles seen in image 3 pass near the sensors. 

The second peak observed on the absolute energy coincides with the arrival of the large 

amount of hydrates seen in the PVM (images 4-8). It is likely that there was also deposition on 

the FBRM instrument, since the number of counts remains approximately constant after the 

detection of hydrates (between 19.5 and 20.5 minutes), and it slightly decreases beyond 20.5 

minutes. 

The results indicate that immediately after hydrate formation, the phases started 

separating. There are regions with hydrates (peaks in absolute energy) and regions with mostly 

liquid (absolute energy with the same values as before hydrate formation). One reason for this 

phase separation is the tendency of hydrates to flow with the water phase (as it will be explained 

later, deduced from the Figure 53). Another reason is the drift velocity between hydrate particles 

and liquid (the hydrates are slower than the liquid phase). Moreover, another reason can be the 

loss of kinetic energy of particles due to collision to the walls, or collision between particles; 

the loss is intensified due to the capillary forces, which slow the particles during collisions and 

cause temporary accumulation, this mechanism is called sloughing. A combination of these 

three mechanisms are likely to be the reasons for the separation of phases identified after 

hydrate formation, which forms a heterogeneous suspension, where some regions have more 

hydrates and other regions have liquid single-phase flow. 
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Figure 51. Onset of hydrate formation for the experiment at 30% water cut, 200 L/h, without 

AA (#11), comparing (a) the PVM images, (b) chord counts and PVM-brightness, and (c) 

absolutes energies. 

Figure 52 shows the results (absolute energy, temperature, pressure drop and flow rate), 

for the experiment at 200 L/h (#11), from the onset of hydrate formation until the end of the 

experiment, when the system is plugged. Again, the data from the different instruments are 

synchronized in time, with the Coriolis as a reference, as indicated in the x-axis. One can notice 

that all the measurements, around 17.5 minutes, present an immediately change, due to the onset 

of hydrate formation. The absolutes energies (Figure 52(a)) from all the sensors, as discussed 
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previously, increase up to three orders of magnitude after the onset of hydrate formation, and 

remain at high values for almost three minutes, which is approximately the time it takes for a 

turn around the loop at 200 L/h. However, the absolute energies from all sensors start presenting 

a heterogeneous behavior after the first turn (near the instant 20.5 minutes), between high values 

(which increase over time) and low values corresponding to the same level as before hydrate 

formation. This means that hydrates are not homogeneously distributed in the continuous phase 

and that there are certain volumes of the fluids with hydrates (peaks in absolute energies) and 

others without (or a low amount of dispersed) hydrates (low levels of absolute energies), due to 

the separation of phases, as previously discussed. This separation of phases seems to intensify 

during hydrates crystallization and flow with values of absolute energy increasing during short 

times intervals. 

The pressure drops are shown in Figure 52(c). The horizontal pressure drop (∆𝑝ℎ) 

increases nearly five times when hydrates form, staying at such level during the first turn around 

the loop (the first three minutes) after hydrate formation. At the same time, there is an oscillation 

of the flow rate (Figure 52(d)). After the first three minutes since the onset of hydrate formation, 

there is a reduction on the horizontal pressure drop, while all the pressure drops and flow rate 

start to present a heterogeneous behavior, the same observed for the absolute energy. The 

pressure drops are sensitive to the friction to the wall (except the static differential pressure in 

the separator (∆𝑝4)), as discussed in subsection 3.1.4, and so to the viscosity5. In fact, the 

apparent viscosity increases after hydrate formation (Figure 47, pg. 77), presenting the 

maximum values during the first three minutes since the onset of hydrate formation. An 

explanation for the reduction of apparent viscosity after a few minutes is that the first hydrate 

particles are relatively large and contain liquid inside (with hydrates trapping water), and at the 

same time there is a continuous disruption of hydrates from the surfaces of the water droplets 

where these hydrates initially formed. After a continuous breakage and disruption during the 

growth period, hydrates will reduce in size (average size of hydrate particles), explaining why 

there is a reduction of the apparent viscosity. In addition, hydrates may be accumulating 

(settling and/or depositing) in some parts of the loop, which could be another reason for the 

reduction of the apparent viscosity of the flowing mixture (the pressure drop will reduce in 

regions where the hydrates are not accumulating).  

Concerning the exactly location (and reason) of plugging, these informations are given 

by the pressure drops in the downward pipe (∆𝑝1), upward pipe (∆𝑝2) and liquid level in the 

                                                 
5 Calculation of apparent viscosity is presented in Appendix D. 
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separator (∆𝑝4). When the pressure drop in the downward pipe (green line in Figure 52(c)) 

decreases after hydrate formation, it means that there is an increase of apparent viscosity or 

accumulation of hydrates that competes with the differential static pressure (see equation (17), 

subsection 3.1.4). The pressure drop in the upward flow (red line in Figure 52(c)) increases, but 

not as much as observed for the horizontal pressure drop. It is the pressure drop in the separator 

that gives the information about where the plug occurred. The static pressure ∆𝑝4 (cyan line in 

Figure 52(c)) reduces when hydrates are passing in the separator, which means that hydrates 

temporarily block the flow in the bottom horizontal pipe of the separator (see Figure 23). Over 

the time, the value for this differential pressure reduces more and more when hydrates are 

passing in the separator and reaches zero just before the flow rate indicates the value zero. In 

order to protect the pump and for safety concerns, the experiment is shut down when the flow 

rate indicates zero and the pressure drop ∆𝑝1 or ∆𝑝4 also shows zero, and it is considered that 

the system “plugged”. 

Figure 53 shows a comparison between dielectric, density, and absolute energy (sensor 

1A) for the experiment at 200 L/h (#11). The comparison between dielectric and density, in 

Figure 53(a), shows that the two curves have peaks in the same regions, indicating that regions 

of the flow with more water are the regions with the peaks in dielectric and density, while low 

levels of dielectric and density correspond to the regions of the flow with more oil. From Figure 

53(b), it is possible to see that the peaks in absolute energy, which indicates the regions with 

hydrates, correspond to the regions with more water from the dielectric values. Therefore, a few 

minutes after the onset of hydrate formation, hydrates are flowing mostly with the water phase, 

while there are regions with oil flowing as single-phase almost free of hydrates and water. The 

region with oil is apparently a single phase because the density is constant and near 800 kg/m3, 

which is close to the expected Kerdane oil density at those conditions of pressure and 

temperature with dissolved natural gas. A separation of phases has been previously observed 

by Palermo and Sinquin (1997), with the water with hydrates immediately separating from the 

oil. 

The grayscale of the PVM images increase after hydrate formation, as indicated in 

Figure 53(c), with most images showing hydrates in the system. Finally, the chord counts shown 

in Figure 53(d) indicate that is class between 100-1000 µm (red line) which changes more due 

to the passage of hydrates. When hydrates are passing near the sensor, particles may attach to 

the sensor, which is “cleaned” when oil is passing near it. The main cause of the plug was 

therefore heterogeneous dispersion of hydrates in the liquid, with regions at higher hydrate 

fractions then others. 
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Figure 52. Experiment at 30% water-cut, 200 L/h, without AA (#11), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) flow rate. 
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Figure 53. Experiment at 30% water-cut, 200 L/h, without AA (#11), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and PVM 

images grayscale and (d) dielectric and chord counts. 

Figure 54 shows the results for an experiment at 400 L/h (#15). At a higher flow rate, 

the increase of absolute energy, temperature and horizontal pressure drop is higher than at 200 

L/h, meaning that hydrates form faster at 400 L/h. In fact, comparing two tests at 30% water-

cut, one at 200 L/h (#11) and the other at 400 L/h (#15), the water conversion was 3.4% for the 

test at 200 L/h and 8.2% for the test at 400 L/h three minutes after the onset of hydrate 

formation. The onset of hydrate formation occurred between the downward and the horizontal 

section, because they were detected by the AE probes and the horizontal pressure drop and no 

increase of temperatures in the sensor T9 (installed after the separator) or T8 (installed after the 

pump) was detected. 
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Figure 54. Experiment at 30% water-cut, 400 L/h, without AA (#15), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) flow rate. 

Figure 55 shows the comparison between dielectric, density, absolute energy, PVM 

images grayscale and chord counts, for the test at 400 L/h (#15). There is not much change on 

the dielectric measurements, except during a short period, around 16 minutes. It means that the 

phase in contact with the wall is the oil phase, and that hydrates might be better dispersed than 

at 200 L/h. In fact, the dielectric slightly increased after the onset of hydrate formation, and 

remained approximately constant most of the time. This indicates that there was some 

deposition in the horizontal section, which is in agreement with the horizontal pressure drop 

(∆𝑝ℎ), that also slightly increases after the onset of hydrate formation and then remained 

constant most of the time (see yellow line in Figure 54(c)). Hydrate blockage occurred due to 

accumulation of hydrates in the separator and in the downward section of the pipe, as indicated 
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by the pressure drops ∆𝑝1 and ∆𝑝4 (also shown in Figure 54(c)). The plug occurred around 17.5 

minutes, with an amount of 3.62% of hydrates fraction. However, due to the separation of 

phases, the apparent hydrate fraction in the region where the blockage occurred is estimated to 

be near 8.8%, as obtained from the methodology presented in Chapter 6 (see Figure 85, page 

135). Besides that, hydrates are porous and trap liquid (water, for this experiment). Which 

means that the volume of the mixture containing hydrates and water can be a lot more than 

8.8%. The main cause of plug in this experiment was deposition. 

 
Figure 55. Experiment at 30% water-cut, 400 L/h, without AA (#15), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and 

grayscale of PVM images, and (d) dielectric and chord counts. 

As conclusions, for the tests at 30% water-cut without additive: 
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 The initial w/o dispersion completely disrupts into hydrates flowing preferred with the 

water phase while oil flows without hydrates; 

 At 200 L/h the main cause of the plugs was the accumulation of hydrates in parts of the 

liquid volume, while at 400 L/h there was a combination between deposition and 

accumulation of hydrates in parts of the liquid volume; 

 After hydrate formation, the oil phase apparently flows as a single phase; 

 The higher the flow rate, the higher the hydrate formation rate, due to the increased 

contact between water and gas; 

 Due to the accumulation of hydrates in some volumes of the fluid (caused by the 

separation of phases) the local hydrate fraction can be higher than the calculated hydrate 

fraction; 

 The porosity of hydrates is another mechanism that may be causing plugging even at 

relatively low water conversions, since the apparent volume of hydrates might be higher 

than the calculated values (Bassani et al., 2019). 

5.1.2. Experiments at 50% water-cut 

For an experiment at 200 L/h (#19), a comparison between the PVM images, chord 

length counts and absolute energies is shown in Figure 56. When the first hydrates are 

visualized by the PVM (image 3 in Figure 56(a)) and pass near the AE sensors, there is a first 

peak on the absolute energies (Figure 56(c)). The absolute energies from all sensors decrease a 

few seconds after the first hydrates have passed, and then for a few seconds present levels of 

energies which are similar to the ones before hydrate formation. After that, once more, the 

absolute energies increase, indicating that again hydrates are passing in front of the AE sensors. 

Between 19.6 and 22.1 minutes, the absolute energies remain oscillating at levels between 10 

and 102 times larger than before hydrate formation, indicating a constant passage of hydrates in 

a heterogeneous suspension. Beyond 22.1 minutes, after a turn around the loop, a separation of 

phases is observed in the acoustic emission, with “peaks” (regions with hydrates) and “valleys” 

(regions without hydrates, or with a fine dispersion of hydrates). 
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Figure 56. Detection of hydrate formation by comparing the (a) PVM images, (b) chord 

length separated by groups with PVM images grayscale , and (c) absolute energies, for an 

experiment at 50% water-cut, 200 L/h, without AA (#19). 

For the tests at 50% water-cut without additive, the camera was used. A comparison 

between the absolute energy from the AE sensor 3C (which is installed near the window) and 

some images for the test at 200 L/h (#19) is presented in Figure 57. The images are shown with 

an increased contrast. Before of hydrate formation (image 1), relatively large oil droplets (larger 

than 1 mm) are dispersed in the water phase. The droplets are concentrated in the top part of 

the pipe, which, once more, indicates that the droplets are of oil (oil is lighter than water, so due 
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to the gravity, it flows in the upper part of the pipe, when passing in the horizontal section). 

Once hydrates form, they also flow in the upper part (hydrates are lither than the water).  

 
Figure 57. Comparison between the images from the camera and the absolute energy 

measured near the window for the test at 50% water-cut, 200 L/h, without AA (#19). 

Hydrates apparently do not form around all the oil droplets immediately. Indeed, it 

seems that while hydrates form around some of the oil droplets, they break and disrupt from the 

droplets surfaces, forming particles that are smaller than the droplets. Comparing the images 2-

4 (with hydrates) with the image 1 (before hydrate formation), the hydrates particles are larger 
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than the oil droplets. Images after the ones shown in Figure 57 are too dark, due to a deposition 

of hydrates in the surface of the window. 

Yet for the test at 200 L/h (#19), a comparison between absolute energies, temperatures, 

pressure drops and flow rate is shown in Figure 58. Right after the onset of hydrate formation 

(around 19.5 minutes), there is an increase of the temperatures (Figure 58(b)), and an increase 

of the horizontal pressure drop (yellow line in Figure 58(c)). However, it seems that it is after 

the second turn around the loop that hydrates grow more, which results in another increase of 

the temperature around 22 minutes that is higher than the first one. Figure 58(c) shows that the 

horizontal pressure drop also increased around 22 minutes, while the pressure drops in the 

downward section and separator decreased, indicating an accumulation or deposition of 

hydrates on those sections. 

Overall, it is possible to see that the hydrates are distributed everywhere in the flow, 

with some separation of phases starting around 22 minutes, when the absolute energy has, for 

a few seconds, values similar to the ones before hydrate formation. However, this distribution 

is not homogeneous, as one can see with the data for horizontal pressure drop. In some parts of 

the fluid, the apparent viscosity is higher, and these specific parts where the apparent hydrate 

fraction is higher can block the pipe. The calculated hydrate fraction at the end of this 

experiment, just before plug, was 2.88%. The maximum local hydrate fraction was estimated 

to be 2.7% (see Figure 86, pg. 136). There are two reasons why the systems plugs with such 

low hydrate fraction. The first one is the porosity of the particles, which can entrap liquid. The 

images obtained with the cameras become completely dark after the onset of hydrate formation, 

blocking the passage of light from one side to another, which would not be possible with only 

2.88% of hydrates fraction without taking into account the porosity of the hydrates. Another 

reason is due to a local accumulation of hydrates somewhere in the system, especially in regions 

with a change in the geometry (separator) or in the downward section. 

The comparison between dielectric, density, absolute energy, PVM images grayscale 

and chord counts, for the experiment at 200 L/h (#19), is shown in Figure 59. There is an 

immediate reduction of dielectric once hydrates form, indicating that the first hydrates to form, 

shown in Figure 57, are being carried by the oil phase. The highest values of dielectric are 

coincident with the highest values of density, while the dielectric reduces for a few seconds 

between 22 and 23 minutes when there is only liquid flowing (low values of absolute energy).  
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Figure 58. Experiment at 50% water-cut, 200 L/h, without AA (#19), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) flow rate. 

As conclusion, a few minutes after hydrate formation, hydrates are flowing with the 

water phase. Therefore, even if the continuous phase is water, with hydrates forming on oil 

droplets, the flow regime is completely disrupted once hydrate form. Hydrate seem to have 

more affinity with the water phase, and because of that, hydrates will flow preferably with the 

water phase. 
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Figure 59. Experiment at 50% water-cut, 200 L/h, without AA (#19), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and 

grayscale of PVM images, and (d) dielectric and chord counts. 

For an experiment at 400 L/h (#24), Figure 60 shows a few images once the first 

hydrates are detected compared to the absolute energy near the sensor. The droplets are well 

dispersed due to the shear, so the hydrate particles, once they form, they are apparently better 

dispersed than for the test at 200 L/h previously discussed. It is possible to see that also there is 

the formation of an intermittent regime. The regions with the highest values in absolute energy 

are dark and seems to carry more hydrates (image 3) than regions with low values of absolute 

energy, which are lighter and have no much hydrates flowing6 (image 4). 

                                                 
6 Part of the particles seem in image 4 are not flowing but attached to the window. 
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Figure 60. Comparison between the images from the camera and the absolute energy 

measured near the window for the test at 50% water-cut, 400 L/h, without AA (#24). 

A comparison between the absolute energies from all sensors, temperatures (T8 and T9), 

pressure drops and flow rate for the experiment at 400 L/h (#24) is shown in Figure 61. It is 

worthy noticing that, for the absolute energy, there is a change on the intermittence between the 

volumes with hydrates and the volumes without hydrates. As the time passes, the region without 

hydrates expands because the absolute energies remain at the same level than before hydrate 

formation for longer and longer time at each turn around the loop). Since hydrate are forming 
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all the time, the conclusion is again that hydrates tend to agglomerate together over time. There 

is a continuous increase of the temperatures after the onset of hydrate formation (Figure 61(b)). 

Hydrate formation provokes a large increase on the frictional pressure drops as seen in Figure 

61(c). The horizontal pressure drops increases when the volume of the flow with hydrates 

passes in that section, while the pressure drops in the separator and in the downward section 

reduces. Once hydrates block the cross section in the bottom horizontal section of the separator, 

free gas from the right vertical pipe of the separator (see Figure 23) may be sucking by the flow, 

which causes an oscillation on the flow rate (Figure 61(d)). 

 
Figure 61. Experiment at 50% water-cut, 400 L/h, without AA (#24), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) flow rate. 
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Figure 62 shows the comparison between dielectric, density, absolute energy, PVM 

images grayscale. Once more, hydrates seem to be flowing mostly with the water phase, 

because the highest values of dielectric are coincident with the highest values of density and 

absolute energy. 

 
Figure 62. Experiment at 50% water-cut, 400 L/h, without AA (#24), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and 

grayscale of PVM images, and (d) dielectric and chord counts. 

 As conclusions from the test at 50% water-cut, without AA: 

 The initial o/w dispersions is completely disrupted after hydrate formation, because the 

hydrates initially formed on oil droplets surfaces have more affinity to the water phase, 

and therefore, they are detached and carried by the water phase; 

 Separation of phases seems to cause local increases on viscosity; 
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 The main cause of plug was due to a blockage of hydrates in specific parts of the loop 

(downward section and separator); 

 The tests at 50% water-cut were the most critical, causing strong oscillations on the 

frictional pressure drop and on the flow rate immediately after hydrate formation. 

5.1.3. Experiments at 80% water cut 

The data from the first 20 minutes of an experiment at 80% water, 200 L/h, without AA 

(#20), is shown in Figure 63. The first hydrates can be seen in the image 2, in the PVM-images 

shown in Figure 63(a). Once hydrates form, the absolute energy (Figure 63(c)) increases 

gradually, contrary to the tests at 30% and 50% water-cut previously presented (that had an 

immediately large increase of two or three orders of magnitude). The absolute energies from all 

the sensors present oscillations from around 3 minutes, which is the onset of hydrate formation, 

until around 11 minutes. This interval coincides with a fine particle dispersion seen in the PVM-

images 2-4. In addition, between 3 and 11 minutes, there was no detectable increase on the 

temperature (Figure 63(d)). A change of the dispersion occurs near 11 minutes where larger 

hydrate particles can be seen with the PVM. The oscillations on the absolute energy reduce, 

and there is an increase on temperature. For this experiment, the initial hydrate formation, which 

occurred at microscopic level, was not detectable by an increase of the temperature, but it was 

observable from the PVM images and from the absolute energy. Hydrate growth was gradual, 

with hydrates forming until reaching a certain size. During this gradual growth, it is possible 

that there were some hydrates detaching from the droplets, as it can be seen in some of the 

images from the PVM. 
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Figure 63. Detection of hydrate formation by comparing the (a) PVM images, (b) chord 

length separated by groups with PVM images grayscale , and (c) absolute energies, for an 

experiment at 80% water-cut, 200 L/h, without AA (#20). 
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Figure 64 shows some images from the camera compared to the absolute energy 

captured from the AE sensor installed near the visualization window. Based on both 

information, it is possible to separate in three the different steps the beginning of hydrate 

formation and growth. Once hydrates start forming, they form on oil surfaces. One can notice 

that because the droplets become darker once hydrate start forming (image 2, Figure 64(a)) 

compared to the image of the flow before hydrate formation (image 1). This beginning of 

hydrate formation causes a slightly increase on the absolute energy (before the instant 6.5 

minutes, Figure 64(b)). As the flow continues circulating around the loop, small hydrate 

particles break and detach from the oil surfaces. One can notice that because the image 3 

becomes darker, even in regions where it is not possible to see particles with a defined shape 

(bottom of the image). During this step observed in image 3, the absolute energy increases once 

again, and it starts oscillating more than during the previous step, which again indicates the 

continuous hydrate formation and breakage of particles. The last image (image 4, Figure 64(b)), 

shows the flow regime once the oscillations of absolute energy are over. The flow becomes 

more stable, with relatively large particles (several millimeters, that can be seen in the image) 

dispersed in the liquid. 

For the experiment at 200 L/h (#20), it is shown in Figure 65 that the time with hydrates 

until the plug was much longer for this experiment than for the others (at 30 or 50% water-cut). 

After the intial hydrate formation, hydrates start arranging themselves in an intermittent 

behaviour that is periodic in time and space. The results of absolute energy (Figure 65(a)) show 

that hydrates are dispersed everywhere in the flow, because the absolute energy always stay 

higher than the levels before hydrate formation. However, the “valleys”, or the regions of low 

absolute energies, seem to present lower and lower absolute energies over time. It indicates that 

hydrates are slower moving to the regions with more hydrates, so the regime is becoming more 

heterogeneous. The pressure drops (Figure 65(c)) indicate that there is an increase on the 

frictional pressure drops over time, due to the accumulation of hydrates. The peaks of absolute 

energy are coincident with the peaks of the horizontal pressure drop. Hydrate blockage occurred 

after 92 minutes from the onset of hydrates crystalization, when the flow rate indicates zero at 

the same time that differential pressure in the separator also indicates zero. 
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Figure 64. Comparison between the images from the camera and the absolute energy 

measured near the window for the test at 80% water-cut, 200 L/h, without AA (#20). 
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Figure 65. Experiment at 80% water-cut, 200 L/h, without AA (#20), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops, and (d) flow rate. 

Figure 66 shows a comparison between dielectric, density, absolute energy, grayscale 

of PVM images and chord counts. Figure 66(a)-(b) shows that regions with more hydrates are 

located in regions with more oil, because the highest values of absolute energy are coincident 

with low values of density and dielectric. It means that most of the hydrate particles are flowing 

with the oil droplets, and therefore, hydrate are trapping the oil dropltes after the crystallization 

around their surfaces. Figure 66(c) indicated that, until approximatelly 75 minutes, the brightest 

images from the PVM (images with more hydrates) are located in times between regions 

without and with hydrates. Therefore, the front part contains more hydrates, that are followed 

by a finer dispersion. After 75 minutes, the peaks in brigthness move back, to the times between 

the region with and without hydrates. The chord counts, shown in Figure 66(d), also show that 
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more particles are being detected in the regions with more oil. The peaks before the instant 75 

minutes are nearer the point where the dielectric is reducing, and, after the instant 75 minutes, 

the peak is nearer the time where the dielectric is increasing; the same change was observed 

with the PVM images. 

 
Figure 66. Experiment at 80% water-cut, 200 L/h, without AA (#20), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and 

grayscale of PVM images, and (d) dielectric and chord counts. 

In order to better understand the impact of this intermittent behavior and why the regions 

with the highest chord counts and brightest images seems to be moving, it is shown in Figure 

67 a zoom at two different moments plotted in Figure 66. It is shown a plot between 21.3 and 

24.3 minutes, and between 85.0 and 88.0 minutes (near the end of the experiment). There is a 

pattern that repeats at each turn of the dispersion around the flow loop. There are two regions 
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on this pattern: a front, which carries the largest hydrate particles in the system, and the back 

region, with dispersed hydrates that flow with the continuous phase.  

Figure 68 shows some images during these two intervals, with visual confirmation of 

the intermittent behaviour captured by the signals. The images on the left are taken during the 

passage of large agglomerates, while images on the right are taken during the passage of 

dispersed hydrates with the continuous phase. 

 
Figure 67. Two short intervals for the experiment at 80% water cut, 200 L/h, without AA 

(#20), showing the initial and finals distribution of particles in the system. 
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Figure 68. Images from the camera for the experiment at 80% water cut, 200 L/h, without AA 

(#20), showing that parts of the flow contain hydrates all the time (images on the left), while 

others have a reduction on the number of particles over time (images on the right). 

Figure 69 shows the results for an experiment at 400 L/h (#23). Overall, the results are 

similar with the tests at 200 L/h, but the plugging was much earlier. The induction time was 

less than 2 minutes. Once hydrates formed, the absolute energy increased a bit, and remained 

oscillating during 1.5 minutes, which is the time for a lap around the loop (see Figure 69(b)). 

Then, after the 1.5 minutes, the absolute energy increased rapidly. It is possible to see with the 

dielectric that it decreases slowly over time, due to the consumption of water, but it remains as 

water continuous. In Figure 69(b), it is possible to see that hydrates are dispersed everywhere 

in the flow, because the absolute energy remains at values that are at least 100 times higher than 

before the onset of hydrate formation. But the dispersion is not homogeneous, and the hydrates 

are flowing preferably in regions with more oil (peaks of absolute energies coincide with the 

lowest values of dielectric). Again, with a higher shear, the rate of hydrate formation is also 

higher, as observed for tests at 30 and 50% water-cut. For the two tests at 200 L/h, water 

conversion was 7.8% in 92.2 minutes and 10.3% in 126.6 minutes. For the two tests at 400 L/h,   
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Figure 69. Experiment at 80% water-cut, 400 L/h, without AA (#23), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and 

grayscale of PVM images, and (d) dielectric and chord counts. 

As conclusions, for the tests at 80% water-cut: 

 Hydrate formation and plugging can be divided in three main steps: crystallization on 

oil droplet surfaces, growth with breakage and disruption, formation of an intermittent 

regime due to multiphase flow effects. 

 The first two steps are relatively fast compared to the last one. 

 The accumulation of hydrates in parts of the liquid volume was the cause of the 

plugging. 

 Hydrate formation and growth is gradual, but it increases with higher shears. 
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 As the flow rate increases, the hydrate formation rate also increases, and the system 

becomes more critical for hydrate blockage formation. 

5.1.4. Plug formation mechanisms for oil and water continuous systems without AA 

It has been observed to low water-cuts systems which are oil continuous systems that, 

after hydrate formation, the oil phase separates from a mixture containing water and hydrates. 

The proposed mechanism for low water-cuts systems is represented in Figure 70. The water 

droplets are dispersed in the oil continuous phase before hydrate formation. Hydrates initially 

form on droplet surfaces, as illustrated in Figure 70(a). Parts of the hydrates will detach from 

the surfaces (the first particles detected), while the largest particles will decelerate, and will 

agglomerate, deposit or accumulate in the loop, as represented in Figure 70(b). A separation of 

phases will occur rapidly, between the oil continuous phase containing large agglomerates and 

regions with hydrates with a large amount of water. This wetted region is likely to be porous, 

with water phase being entrapped in the particles and agglomerates.  
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Figure 70. Depiction of hydrate blockage formation mechanisms for oil continuous phase. 

At intermediate water cuts, the proposed mechanism is illustrated in Figure 71. It was 

observed that the water is the continuous phase before hydrate formation (Figure 71(a)). Once 

hydrates form, they apparently detach from the interface, and the disruptions cause coalescences 

between the oil droplets (Figure 71(b)). As hydrate grow, the oil phase separates from the region 

containing water with hydrates (Figure 71(c)). The region with hydrates may eventually cause 

a plug. 
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Figure 71. Depiction of hydrate blockage formation mechanisms for experiments with an 

intermediate water cut. 

At high water-cuts, hydrates form initially on oil droplet surfaces, as represented in 

Figure 72(a). Some hydrates may detach from the surfaces, but, overall, hydrates trap part of 

the oil phase, as represented in Figure 72(b). Hydrates flow dispersed in the water continuous 

phase. However, over time, particles will accumulate behind the region where the first hydrates 

formed. This is likely due to the difference in velocities between particles and agglomerates 

with different sizes, and due to the drift velocity between the solid particles and the liquid, as 

indicated in Figure 72(c). 
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Figure 72. Depiction of hydrate blockage formation mechanisms for high water cuts. 

5.2. Hydrate formation for oil-water systems with AA 

This section presents the results for the experiments with AA. The tests were conducted 

at 50 and 80% water-cut, at 200 and 400 L/h. Each experimental condition was tested twice, 

which add up eight experiments. The four tests at 50% water cut were conducted with an AA 

dose of 1.5 %wt. vs water, and none of them plugged. The four tests at 80% water cut were 

conducted with 0.94 %wt. vs water of AA, and only one of them plugged, at 400 L/h. All the 

experiments were carried out during working hours, which limited the time inside the hydrate 

formation domain to approximately 6 hours. The tests that did no plug until the end of the 

working day were shut down. 
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5.2.1. Experiments at 50% water-cut 

Figure 73 shows the results for an experiment at 200 L/h (#27). Hydrate formation could 

not be detected by the absolute energy from the AE sensors, as shown in Figure 73(a). There 

were no important changes on the absolute energies during hydrate formation, and the gradual 

increases or decreases (depending of the sensor’s type) on the absolute energies are due to the 

dissolution of gas into the oil phase. Hydrate formation was detected by an increase of the 

temperature, as shown in Figure 73(b), with an induction time of approximately 35 minutes. 

There were two noticeable moments detected with the temperature probes: an increase of the 

temperatures during the onset of hydrate formation (at 35 minutes), and a sudden increase of 

the temperatures around 160 minutes, indicating that, for some reason, more hydrates started 

forming around that time. One can notice that the horizontal pressure drop (yellow line in Figure 

73(c)) did not change immediately after hydrate formation, maintaining constant values until 

around 160 minutes (or 125 minutes after the onset of hydrate formation). The only pressure 

drop that significantly changed was the differential pressure drop in the separator, ∆𝑝4, that 

increases because the liquid level in the separator increases. This is because the hydrate phase 

has a lower density than the water phase, then there is an expansion of the mixture containing 

liquid and hydrates as water is consumed for hydrate formation. Around the instant 160 minutes, 

there was a change on the flow regime, characterized by an instant increase on the horizontal 

pressure drop. This increase of the horizontal pressure drop at 160 minutes is coincident with 

the sudden increase of the temperatures. At the same time of these changes on pressures drops 

and temperatures, a slightly decrease of the flow rate occurs at 160 minutes, as shown in Figure 

73(d). 

The important change of the flow regime that occurred around 160 minutes for the 

experiment at 200 L/h (#27) can be better understood with the data shown in Figure 74, which 

shows the dielectric, density, PVM-images grayscale and chord counts. Around the instant 160 

minutes, the dielectric changes from an intermediate value between the oil and water dielectrics 

to values that are closer to the oil dielectric. This is an indication that the continuous phase 

changed from water to oil. The transition observed in the flow pattern occurred with the 

hydrates fraction around 11.8% (which corresponds to 17.9% of water conversion). The 

grayscale of the PVM-images (Figure 74 (c)) and chord counts (Figure 74(d)) also show some 

change around 160 minutes. The PVM images become brighter, which is also a result of the 

inversion of phase from water to oil. In addition, the number of chord counts changes, with a 

reduction for chords between 1-100 µm, and an increase of counts for the group 100-1000 µm. 



114 

 

This adjustment in the number of chord counts is due to a change on the droplets size 

distribution.  

Yet for the horizontal pressure drop for the test #27, shown in Figure 73(c), the fact that 

it remains approximately constant during oil-in-water emulsion and then continuously increases 

during water-in-oil emulsion indicates that hydrates are dispersed in the oil phase. The hydrates 

are dispersed inside the oil droplets before the instant 160 minutes and they do not increase the 

shear of the flow with the wall. However, once the hydrates are dispersed in the oil continuous 

phase, after the instant 160 minutes, they will be colliding directly to the wall and create more 

shear, which increases the apparent viscosity and, therefore, it increases the horizontal pressure 

drop. The hydrates are not detected by the FBRM, which responds for this experiment only to 

the change of the flow regime from o/w to w/o, but not to hydrate formation. The reason why 

hydrates are not detected by the FBRM for this case is that the particles are in a scale lesser 

than 1 micrometer, the minimum chord length detected by the instrument. 
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Figure 73. Experiments at 50% water cut, 200 L/h, with AA at 1.5 wt.% vs water (#27), 

showing (a) absolute energies, (b) temperatures, (c) pressure drops, and (d) flow rate. 
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Figure 74. Experiments at 50% water cut, 200 L/h, with AA at 1.5 wt.% vs water (#27), 

showing a comparison between dielectric constant and (a) density, (b) absolute energy, (c) 

grayscale of PVM-images, and (d) chord counts. 

For a test at 400 L/h (#29), the absolute energy, the temperatures, the pressure drops and 

the flow rate are shown in Figure 75. The onset of hydrate formation was around 38 minutes, 

when an increase of the temperature was detected (Figure 75(b)). It has also been observed an 

inversion of phase, from water to oil. After the inversion to oil continuous phase, the horizontal 

pressure drop (yellow line in Figure 75(c)) gradually increased, the same as observed at 200 

L/h. The horizontal pressure drop continued increasing until it reached a maximum value 

around 260 minutes, and then it started decreasing for a short time until it finally stabilizes. The 

reason why the horizontal pressure drop would decrease a bit after reaching the maximum is 

that there was settling or accumulation of hydrates somewhere else in the loop, so the amount 
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of flowing hydrates at the horizontal section would reduce. The pressure drop at the downward 

section (green line in Figure 75(c)) decreases continuously between 260 minutes and 300 

minutes, indicating a possible settling of particles at the downward section. The absolute energy 

(Figure 75(a)) gradually increases (and oscillates in a high range) between 260 minutes and 300 

minutes, and then continues oscillating without increasing more after 300 minutes. It indicates 

that the collision of particles increases, and that the system may be heterogeneous and dense 

(dense dispersion of solid particles in the liquid phase), where part of the motion of the particles 

might be collision-dominated rather than due to the liquid forces (see Figure 10, page 21). 
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Figure 75. Experiments at 50% water cut, 400 L/h, with AA at 1.5 wt.% vs water (#29), 

showing (a) absolute energies, (b) temperatures, (c) pressure drops, and (d) flow rate. 

Figure 76 shows that the dielectric instantly decreases around 110 minutes, when there 

was the inversion of phase. Around 260 minutes, there was an increase on the absolute energy, 

dielectric and chord counts, especially for the group 100-1000 µm. As explained before, the 

reason for that is that the dispersion experiences a transition to dense. Part of the particles 

transportation is dominated by contact with other particles, which may explain why there is 

some deposition or settling of particles in specific parts of the system. This behavior has been 

explained in the hydrate’s literature as a change to a heterogeneous flow with a moving bed 

after the formation of a “critical” amount of hydrates (Joshi et al., 2013). The formation of a 

moving bed would increase the number of collisions between the particles, and that is why the 

absolute energy increases. 
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Figure 76. Experiments at 50% water cut, 400 L/h, with 1.5 wt.% vs water (#29), showing a 

comparison between dielectric constant and (a) density, (b) absolute energy, (c) grayscale of 

PVM-images, and (d) chord counts. 

5.2.2. Experiments at 80% water-cut 

Figure 77 shows the results for an experiment at 200 L/h (#31). Hydrate formation was 

detected by an increase of the temperature around 55 minutes, as shown in Figure 77(b), and 

changes on the pressure drops, as shown in Figure 77(c). The static differential pressure in the 

separator (∆𝑝4) rapidly increases after the onset of hydrate formation. After that, this differential 

pressure gradually increases until the end of the experiment (hydrate formation increases the 

volume of liquid with hydrates in the apparatus, which increases the level of liquid in the 

separator). The other pressure drops (∆𝑝1, ∆𝑝2, and ∆𝑝ℎ) remain approximately constant or 

without a significant change that would endanger and plug the system, even after several hours 
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of experiment. The hydrate fraction at the end of the test was 36.49%, with 38.91% of water 

conversion. Despite there were no significant changes in the apparent viscosity during the 

experiment, some oscillations were detected in the system around 180 minutes (or 

approximately 125 minutes after the onset of hydrate formation). The AE sensors detect 

increases on the absolute energies (see Figure 77(a)), while the flow rate started oscillating 

around the same time (see Figure 77(d)). It indicates an increase on the number of collisions, 

which induces fluctuations on the flow rate. The cause of these oscillations is the formation of 

a heterogeneous system, which may be due to the high fraction of dispersed phase, where the 

dispersed phase is the oil with hydrates. This transition from homogeneous to heterogeneous 

regime occurred when the hydrate fraction was around 14% (64% of water and 22% of oil). 

Figure 78 shows the comparison between the dielectric with density, absolute energy 

(sensor 2A), grayscale of PVM images and chord counts. The dielectric increases as hydrates 

form, meaning that the amount of oil detected by the permittivity probe reduces over time. This 

can be explained by the continuous formation of hydrates at the oil surfaces. Figure 78(a) shows 

that the density starts oscillating between 920 kg/m3 (a bit more than the hydrate density) and 

1010 kg/m3 (a bit less than the saline water density). This indicated that the system contain 

regions with more and more free water (higher density) and regions containing more oil with 

hydrates (lower density). It means that the flow is becoming heterogeneous, despite it did not 

affect the apparent viscosity, Figure 78(b) shows that the oscillation of absolute energy 2A 

increases as the flow apparently becomes dense, which also caused a change on the chord counts 

of the group 100-1000 µm, detected by the FBRM (Figure 78(d)).  
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Figure 77. Experiments at 80% water cut, 200 L/h, with AA at 0.94 wt.% vs water (#31), 

showing (a) absolute energies, (b) temperatures, (c) pressure drops, and (d) flow rate. 
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Figure 78. Experiments at 80% water cut, 200 L/h, with AA at 0.94 wt.% vs water (#31), 

showing a comparison between dielectric constant and (a) density, (b) absolute energy, (c) 

grayscale of PVM-images, and (d) chord counts. 

Figure 79 shows absolute energies, temperatures, pressure drops and flow rate for a test 

at 80% water-cut and 400 L/h (#33). The onset of hydrate formation was around at 13 minutes, 

detected by an increase of the temperatures. The pressure drops did not change much during 

the first 130 minutes with hydrates (or until the instant 150 minutes), as shown in Figure 79(c), 

but it was noticed an important change after this time. The absolute energies (Figure 79(a)) and 

the pressure drops started gradually increasing, indicating an increase on the apparent viscosity 

and the number of collisions. The horizontal pressure drop continuously increased between 150 

and 220 minutes, while the pressure drops in the downward section (∆𝑝1) and (∆𝑝2) diminished. 

Around 220 minutes, hydrate formation rate decreased, probably due to a limitation of contact 
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between gas and water. In fact, as hydrates form, the volume of liquid in the separator increases, 

so the amount of gas entrained will reduce (entrainment caused the shock between the falling 

liquid and the stagnant liquid on the left right part of the separator). 

 
Figure 79. Experiments at 80% water cut, 400 L/h, with AA at 0.94 wt.% vs water (#33), 

showing (a) absolute energies, (b) temperatures, (c) pressure drops, and (d) flow rate. 

Yet for the experiment at 400 L/h (#33), it is possible to see that the dielectric increased 

after the onset of hydrate formation, until it reached values near the salted water dielectric. It 

was the same as observed for the test at 200 L/h. The explanation for that is that hydrates form 

at the surfaces of the oil droplets, changing their properties. Once the hydrate formation rate 

diminished, around 150 minutes, the dielectric started detecting the oil phase again, because 
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there is a continuous oscillation between the water dielectric and the dielectric that was 

observed before hydrate formation. 

 
Figure 80. Experiments at 80% water cut, 400 L/h, with AA at 0.94 wt.% vs water (#33), 

showing a comparison between dielectric constant and (a) density, (b) absolute energy, (c) 

grayscale of PVM-images, and (d) chord counts. 

5.2.3. Mechanisms of hydrate formation observed in the tests with AA 

The experiments with AA performed for this thesis were identified as being water 

continuous phase before hydrate formation, as discussed in Chapter 4. For the tests at 50% 

water-cut, it was observed an inversion of the continuous phase, with the systems suddenly 

changing to oil continuous after an amount of water is converted to hydrates. The tests at 80% 

water-cut remained water continuous all the time. Another mechanism observed was a change 
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to what can be called dense flow, when the liquid can no longer transport all the particles. 

Bedding will form if the flow is dense. 

Figure 81 shows the mechanisms of hydrate formation for tests at 50% water-cut, with 

AA. The use of AA causes the formation of a very fine dispersion. The hydrate particles are 

expected to initially form on oil droplet surfaces, as illustrated in Figure 81(a). The hydrates 

will immediately detach and disperse into the oil droplets, allowing a continuous hydrate 

formation, as illustrated in Figure 81(b). At some point, due to a reduction of the water-cut, the 

system will instantly reverses to oil continuous phase, as represented in Figure 81(c). As soon 

as the system becomes oil continuous, more hydrates will form, due to an increase of the 

interfacial area between oil and water. The collision of particles is significant at the end, along 

with an increase on the apparent viscosity. A moving bed may occur after a certain amount of 

hydrates is formed. Despite the formation of a dense flow, the presence of large amount of oil 

limits the hydrate fraction and, therefore, there is no indication that a plug can occur. 



126 

 

 
Figure 81. Depiction of the mechanisms of hydrate formation for the experiments at 50% 

water-cut with AA. 

Figure 82 shows the mechanisms of hydrate formation observed for the experiments at 

80% water-cut with additive. Hydrates initially form on oil droplet surfaces, as shown in Figure 

82(a). As hydrates continue forming, part of them may detach, but they are entrapped by the oil 

phase (Figure 82(b)). At some point, the system changes to a dense flow, as illustrated in Figure 

82(c), where the water cannot transport all the particles. Part of the transport of these hydrates 

occurs then due to contact with other particles, rather than fluid forces. If the hydrate fraction 

is too high, the system may eventually plug. 
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Figure 82. Depiction of the mechanisms of hydrate formation for the experiments at 80% 

water-cut with AA. 

5.3. Transportability of hydrates at different conditions 

It was observed in the experiments that the time scale for hydrate plugging was affected 

by the water-cut and flow rate. Figure 83 shows for all the experiments what is the water 

conversion and the time with hydrates. The time with hydrates for the experiments that plugged 

is the time from the onset of hydrate formation until the instant of plug. For the experiments 

that did not plug, time with hydrates is the time from the onset of hydrate formation until the 

experiment is shut down due to the limitation of working hours. 

Overall, all the tests with AA had much more water conversion and were flowable much 

longer than the tests without AA. While the tests with AA had between 40 and 70% of water 

conversion in 6 hours, the tests without AA had conversions up to 20%, remaining flowable for 

a maximum of 1.5 hour. All the tests at 400 L/h had a higher hydrate formation rate than at 200 

L/h (if the other conditions were the same). 
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Among the tests without AA, the most critical cases were at 30 and 50% water cuts, 

while the tests at 30% water cut / 400 L/h  and tests at 50% water-cut / 200 L/h were the most 

critical cases. For these two, there was a combination of significant deposition and 

accumulation of hydrates in parts of the liquid volume. At 50% water cut and 200 L/h, the tests 

plugged even with a low conversion of hydrates. It probably occurred due to the sufficient 

supply of water and gas (dissolved in the oil phase) in contact, and due to the presence of large 

droplets (that originated large hydrate particles). The tests at 80% water-cut were more 

flowable, because the water phase seems to transport better the hydrates. However, as the time 

passes, the accumulation of hydrates in part of the liquid causes a local viscosification that leads 

to hydrate blockage. 

 

Figure 83. Water conversion as function of water-cut, flow rate and use of additive for all the 

23 experiments performed for this thesis. 

One of the eight tests with LDHI-AA plugged, with a dose of 0.94 %wt. vs water, at 

80% water-cut, 400 L/h. It shows that, despite the use of AA that increases the transportability 

of hydrates, apparently there is a maximum limitation for the transportability of solid particles 

by the liquid phase. 

5.4. Summary of the Chapter 

In this Chapter, the results of the experiments were presented, focusing on the 

mechanisms of hydrates formation. The tests without AA were initially discussed, showing 
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three different scenarios: at low, intermediate and high water-cut. All the tests without AA 

plugged, where the tests at 30 and 50% water-cuts were the most critical. Hydrate formation 

completely changes the flow regime, partially separating the oil phase from a mixture 

containing water with hydrates. At 80% water cut, water is the continuous phase, and oil 

droplets may be entrapped by the hydrates. A local accumulation of hydrates causes a 

viscosification, and it eventually causes plugging. 

The use of AA causes a complete dispersion of the liquid-liquid dispersion, allowing a 

high water conversion without causing a plug. The tests at high water-cut are water continuous, 

and hydrates trap part of the oil phase (with or without AA). The use of AA also forms a fine 

hydrates suspension, but the viscosification occurs once the high fraction of hydrates causes a 

dense flow and possibly a moving bed. The plug may still occur at high water-cut, despite the 

transportability of the system increases. 

A combination of measurements allowed monitoring the different steps, from the onset 

of hydrate formation, until the formation of the plug. With four to six acoustic emission probes 

distributed along the loop, it was possible to track hydrate particles. With the permittivity probe 

(and density), it was possible to identify the regions with more water or more oil. By identifying 

the regions that were carrying the hydrates and the regions that had more water or oil, it was 

possible to deduce the morphology of the particles, which was confirmed from the images from 

in the camera (for the tests which the camera was used). 

5.5. Highlights in French - Résume du Chapitre 5 en Français 

Dans ce chapitre, les résultats des expériences ont été présentés, en se concentrant sur 

les mécanismes de formation des hydrates et leur transportabilité. Les tests sans 

antiagglomérant ont été initialement discutés, montrant trois scénarios différents : à basse, 

moyenne, et haut water cut. Tous les tests sans AA formée de bouchage ; les tests à 30 et 50% 

de water cut ont été les plus critiques. 

Les essais à bas water cut (30%) sont en phase continue huile, tandis que les essais à 

water cut intermédiaire (50%) sont apparemment continus l’eau. La formation d'hydrates 

modifie complètement le régime d'écoulement, séparant partiellement la phase huile d'un 

mélange contenant de l'eau et des hydrates. À 80% de water cut, l'eau est la phase continue et 

des gouttelettes d'huile peuvent être étrapées par les hydrates. Une accumulation locale 

d'hydrates provoque une viscosification, et éventuellement un colmatage. 

L'utilisation d'AA provoque une dispersion complète de l'émulsion liquide-liquide, 

permettant une conversion d'eau plus élevée et sans provoquer de bouchon. Les tests à haute 
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water cut sont en phase continue eau où les piègent une partie de la phase huile (avec ou sans 

AA). L'utilisation d'AA forme une dispersion liquide-liquide avec des goutes très fines, et la 

viscosification se produit une fois que la fraction d'hydrates est élevée. Le bouchon peut 

toujours se produire à fort water cut, malgré l'augmentation de la transportabilité du système. 

Une combinaison de mesures a permis de suivre les différentes étapes, depuis le début 

de la formation d'hydrates, jusqu'au bouchon. Avec quatre à six sondes d'émission acoustique 

réparties le long de la boucle, il était possible de suivre les particules d'hydrate. Avec la sonde 

de permittivité (et de densité), il était possible d'identifier les régions avec plus d'eau ou plus 

d'huile. En identifiant les régions qui transportaient les hydrates et les régions qui avaient plus 

d'eau ou d'huile, il a été possible de déduire la morphologie des particules, qui a été confirmée 

avec les images de la caméra (pour les tests où la caméra a été utilisée). 
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CHAPTER 6 - ADDITIONAL TREATMENTS USING THE PRESSURE DROP, DENSITY AND 

ABSOLUTE ENERGY 

 This Chapter presents some preliminary results on two additional treatments using the 

data from the experiments. In the first section of this Chapter, it is presented two models to 

calculate the apparent hydrate fraction from density measurements and water conversion 

calculation. In the second section, a comparison between absolute energy and frictional pressure 

drop is proposed. 

6.1. Apparent hydrate fraction and the transportability of the system  

In Chapter 5, it was identified for some of the experiments a separation of phases for the 

tests without LDHI-AA. For 30 and 50% water cut, the hydrates have the tendency to flow 

mostly with the water phase, and the oil flowing as single-phase. At 80% water cut, the hydrates 

seem to be forming around the oil droplets and trapping part of them.  

Due to this heterogeneity of the systems without AA, the question that arises is if it is 

possible to calculate the amount of hydrates flowing in each volume of fluid of the system. In 

this section, two simplified models to calculate the apparent hydrate fraction over time are 

proposed. They are based on the density measured by the Coriolis and one the water conversion 

(which is calculated from gas injection, pressure and temperature, as explained in subsection 

3.4.2). The first model assumes that hydrates flow with the water phase, while the second model 

assumes that they flow with the oil phase. Preliminary results are presented. In addition, the 

apparent hydrate fraction is compared to the absolute energy.  

6.1.1. Apparent hydrate fraction – model I: hydrates flowing with the water phase 

The density measured in an instant of time has the contribution of the oil, the water, and 

the hydrate phase. For this model, it is assumed that the ratio between the hydrate and water 

fraction is constant over space, which means that they are only time dependent, and based on 

the water conversion that must be calculated beforehand using the methodology presented in 

subsection 3.4.2. The mixture between hydrates and the water phase is considered a pseudo 

single-phase mixture, with density ρm and fraction αm (in volume). The density (measured) is 

expressed as follows: 

 ρ = ρm(tH)αm(tH) + ρO(1 − αm(tH)) ( 64 ) 
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As a remind from Chapter 37, tH is the time since the onset of hydrate formation. The 

mixture density has the contributions of the hydrate and the water phases: 

 ρ
m
(th) =

mW(tH) + mH(tH)

VW(tH) + VH(tH)
 ( 65 ) 

The total water conversion in the system, kW, is defined as: 

 kW(tH) =
mW(0) − mW(tH)

mW(0)
 ( 66 ) 

Based on the definition of hydration number, the mass of hydrates (mH) is a function of 

the mass of converted water: 

 mH(tH) = (mW(0) − mW(tH)) (1 +
MG

NhMW

) ( 67 ) 

Combining the equation (66) and (67), the hydrate mass is re-written as: 

 mH(tH) = kW(tH)mW(0) (1 +
MG

NhMW

) ( 68 ) 

Substituting the equation (68) into equation (65), it is obtained: 

 
ρ

m
=

mW(0)(1 − kW) + kWmW(0) (1 +
MG

NhMW
)

mW(0)(1 − kW)
ρ

W

+
kWmW(0) (1 +

MG

NhMW
)

ρ
H

 
( 69 ) 

which leads to: 

 ρ
m

= ρ
W

(1 − kW) + kW (1 +
MG

NhMW
)

1 − kW +
ρ

W
kW

ρ
H

(1 +
MG

NhMW
)

 ( 70 ) 

One can notice in equation (70) that the mixture density is a function of water conversion 

(𝑘𝑊) and molar mass (𝑀𝐺). These values are known beforehand based on the methodology 

explained in Chapter 3. From equation (64), the mixture fraction is calculated as: 

 αm =
ρ − ρ

O

ρ
m

− ρ
O

 
( 71 ) 

Once the mixture fraction is known, the flowing hydrate and water fractions can be 

determined. The mixture density can be expressed as: 

                                                 
7 The definitions of some variables used in this Chapter were previously defined in Chapter 3. 
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 ρ
m

= ρ
H
β

H
+ ρ

W
(1 − β

H
) ( 72 ) 

The term βH is defined here as the fraction of hydrates relative to the water-hydrate 

mixture, and it can be determined from equation (72). Finally, the flowing hydrate and water 

fractions can be calculated as: 

 αH = β
H
αm ( 73 ) 

 αW = (1 − β
H
)αm ( 74 ) 

where αH is the apparent hydrate fraction, and αW is the apparent water fraction. 

Figure 84 shows the application of the model for a test at 30% water cut, 200 L/h, 

without LDHI-AA (#11). The hydrate fraction and apparent hydrate fraction are shown in 

Figure 84(a), while the absolute energy from the sensor 1A is shown in Figure 84(b). The peaks 

observed in the apparent hydrate fraction are coincident with the peaks observed on the absolute 

energy. Despite the final hydrate fraction is nearly 7%, the apparent hydrate fraction might 

range between 0 and approximately 18%. It is also important to notice that, due to the porosity, 

water may be trapped inside the particles and, therefore, the actual fraction of these hydrate 

particles can be even higher than the calculated apparent hydrate fraction. 



134 

 

 
Figure 84. Apparent hydrate fraction and absolute energy for a test at 30% water-cut, 200 L/h, 

without LDHI-AA (#11). 

Figure 85 shows the results for an experiment at 30% water-cut, 400 L/h, without LDHI-

AA (#15). For this test, the hydrates detected in the Coriolis until 15.1 minutes are detected by 

the AE sensor 1A. Beyond the instant 15.1 minutes, hydrates detected in the Coriolis were not 

passing in the position where the sensor 1A is installed (except a peak around the instant 16 

minutes), which indicates deposition between the two instruments. In fact, as discussed in 

Figure 54, the pressure drops indicate that hydrates might be depositing in the downward pipe, 

and this is why hydrates that pass in the downward part might not reach the horizontal part of 

the loop. 
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Figure 85. Apparent hydrate fraction and absolute energy for a test at 30% water-cut, 400 L/h, 

without LDHI-AA (#15). 

Figure 86 shows the results for an experiment at 50% water-cut, 200 L/h, without LDHI-

AA (#19). It shows again that higher values of absolute energy coincide with the peaks in 

calculated hydrate fraction. After 5.8 minutes since the onset of hydrate formation, the system 

plugs with a hydrate fraction of 2.9%.  

Figure 87 shows the results for a test at 50% water cut, 400 L/h, without LDHI-AA 

(#24). The calculated hydrate fraction is 6.65%, but due to the heterogeneous suspension of 

hydrates and their accumulation in some parts of the liquid, the apparent hydrate fraction varies 

between 0 and 11.3%.  
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Figure 86. Apparent hydrate fraction and absolute energy for a test at 50% water-cut, 200 L/h, 

without LDHI-AA (#19). 

 
Figure 87. Apparent hydrate fraction and absolute energy for a test at 50% water-cut, 400 L/h, 

without LDHI-AA (#24). 

For a test a 80% water-cut, 200 L/h, without AA (#20), shown in Figure 88, the 

comparison between apparent hydrate fraction and absolute energy gives divergent results, with 

peaks in absolute energy coincident with low hydrates fractions. The model proposed does not 
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fit well for a system at a high water cut, where the hydrates form on oil droplet surfaces, trapping 

part of the oil phase. For this case, a different model must be proposed, taking into account that 

hydrates may flow with the oil phase. The model is presented in the next section. 

 
Figure 88. Apparent hydrate fraction and absolute energy for a test at 80% water-cut, 200 L/h, 

without LDHI-AA (#20). 

6.1.2. Apparent hydrate fraction – model II: hydrates flowing with the oil phase 

The model introduced in the subsection 6.1.1 does not fit well the experiments at 80% 

water-cut without AA. The reason is that the ratio between converted and unconverted water is 

not constant over the liquid volume when hydrates are forming on oil droplets. Therefore, an 

alternative model is proposed. For this modified model, it is assumed that hydrates form around 

oil droplets. 

The density has the contribution of the water phase and the oil-hydrates mixture, relation 

that can be expressed by: 

 ρ = ρm(tH)αm(tH) + ρW(1 − αm(tH)) ( 75 ) 

The density mixture is then defined as: 

 ρ
m
(tH) =

mO + mH(tH)

VO + VH(tH)
 ( 76 ) 
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It is assumed that the ratio between hydrate and oil fraction is constant over space (time 

dependent). This ratio is defined as: 

 𝜅 =
𝑉𝐻

𝑉𝑂

 ( 77 ) 

The variable 𝜅 depends on the fraction of converted water, kw. This relation is given by: 

 𝜅(tH) =
kW(tH)mW(0)

𝜌𝐻𝑉𝑂
(1 +

MG

NhMW

) ( 78 ) 

The mixture density defined in the equation (76) can be expressed as function of the 

variable 𝜅 : 

 ρ
m
(tH) =

ρ
O

+ 𝜅ρ
H

1 + 𝜅
 ( 79 ) 

Once the mixture density is known, the mixture fraction can be calculated using the 

following expression, derived from equation (75): 

 αm =
ρ

W
− ρ

ρ
W

− ρ
m

 
( 80 ) 

The mixture density has the contributions of hydrate and oil phases. It can alternatively 

be expressed as: 

 ρ
m

= ρ
H
β

H
+ ρ

O
(1 − β

H
) ( 81 ) 

The term βH is the fraction of hydrates relative to the oil-hydrate mixture, and it can 

therefore be determined from equation (81). Finally, the flowing hydrate and oil fractions can 

be calculated as: 

 αH = β
H
αm ( 82 ) 

 αO = (1 − β
H
)αm ( 83 ) 

Figure 89 shows a 10 minutes interval for a test at 80% water-cut, 200 L/h, without AA 

(#20). The regions with high hydrate fractions are coincident with the peaks on absolute energy. 

Figure 90 shows the same experiment, from the beginning until plug formation. The system 

flows well until around 90 minutes, with a variation in hydrate fraction between 2.3% and 

13.3%. Suddenly, near the end of the experiment, some peaks with a hydrate fraction of more 

than 20% appears, and then the blockage occurs. 
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Figure 89. Apparent hydrate fraction and absolute energy for a test at 80% water-cut, 200 L/h, 

without LDHI-AA (#20). 

 
Figure 90. Apparent hydrate fraction and absolute energy for a test at 80% water-cut, 200 L/h, 

without LDHI-AA (#20). 

Figure 91 shows the results for an experiment at 80% water cut, 400 L/h, without AA 

(#23). The peaks in absolute energy are coincident with regions with high hydrate fraction. 

However, Figure 91(a) shows that the apparent hydrate fraction is higher than the actual hydrate 
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fraction flowing in the system. There are a few reasons that could be causing this unexpected 

result. The first one might be some liquid accumulation somewhere in the flowloop apparatus. 

For example, in the separator (see Figure 23), the liquid level on the left vertical pipe can 

increase, which may cause some liquid to be static. It is also possible that part of the hydrates 

formed around gas droplets, are present in a higher quantity than at 200 L/h. The presence of 

the gas phase is not taken into account in the model. The third possible reason is that due to the 

higher shear than at 200 L/h, hydrates break more and disperse in the water phase. It means that 

the current model that assumes the hydrates flow with the oil phase does not fit well the with 

conditions for this experiment. 

 
Figure 91. Apparent hydrate fraction and absolute energy for a test at 80% water-cut, 400 L/h, 

without LDHI-AA (#23). 

6.1.3. Conclusions from this section 

Two simplified models were proposed to calculate the apparent hydrate fraction in the 

system. The first one applies to suspensions where hydrates flow with the water phase, 

assuming the ratio between hydrate and water constant over space. The second model assumes 

that the ratio between hydrate and oil is constant.  

These simplifications impose important limitations, because it is not possible to know 

exactly the ratio between two phases, especially when hydrates entrap oil and part of the 

particles break from the droplets and disperse in the water phase. Future studies could lead to 
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an improved calculation procedure for hydrate fraction considering all the conditions observed 

in the experiments, with part of the hydrates dispersed in the water continuous phase.  

6.2. Additional treatment using AE: a comparison to the frictional pressure drop 

 It was observed in the experiments that the frictional pressure drops and the absolute 

energy increase once hydrates form. A question that arises is the possibility to relate absolute 

energy and the friction to the wall, or if a combination between the two data sets may help 

understanding the different steps of hydrate formation and flow. In this section, the comparison 

between absolute energy and the frictional pressure drop is presented. 

In order to compare the horizontal pressure drop with the absolute energy, it is necessary 

to obtain the total absolute energy in the region where the probe measures the differential 

pressure. A parameter of interest is defined here as the average absolute energy in the horizontal 

section relative to a sensor 𝑠, �̅�𝑠,ℎ. This energy is calculated in the same region where the 

horizontal pressure drop (∆𝑝ℎ) is calculated. It is assumed that the absolute energy observed in 

a time 𝑡 in a sensor 𝑠 was the same energy in 𝑡 − ∆𝑡 in a position of the loop that is 𝑄 × ∆𝑡 

(volume) behind the sensor 𝑠 or the same energy in 𝑡 + ∆𝑡 in a point that is 𝑄 × ∆𝑡 after the 

sensor 𝑠. The average horizontal absolute energy is then defined as: 

 �̅�𝑠,ℎ(𝑡) =
∑ 𝐸𝑎𝑏𝑠,𝑠(𝑡)

𝑡+∆𝑡1
t−∆𝑡2

∆𝑡1 + ∆𝑡2
 

( 84 ) 

where ∆𝑡1 is the number of steps of time it takes for the flow to move from the beginning of the 

measurement ∆𝑝ℎ to the probe 𝑠, and ∆𝑡2 is the steps of time it takes for the flow to move from 

the probe 𝑠 to the end of the measurement ∆𝑝ℎ. 

 The comparison between �̅�𝑠,ℎ and ∆𝑝ℎ is for an experiment at 30% water-cut, without 

AA, at 200 L/h (#11) and 400 L/h (#15) is shown in Figure 92. A good agreement between the 

shape of the curves for the two parameters can be observed for the test at 200 L/h (Figure 92(a)). 

It means that there are not important accumulations/deposition in the section of the 

measurement, which plugs due to formation of agglomerates or large local hydrate fraction that 

may plug the system. The test at 400 L/h (Figure 92(b)) also shows a similar behavior between 

the two parameters analyzed. It is important to notice that, for both cases, the average absolute 

energy increases relatively to the pressure drop, implying that the friction of the flow to the wall 

decreases after a few minutes of hydrate formation, but the noise produced increases. This 

means that hydrates are being dispersed in the system from the breakage of particles. 
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Figure 92. Comparison between the average absolute energy to the horizontal pressure drop 

for the experiments at 30% water-cut, without AA, at 200 and 400 L/h (#11 and #15). 

Figure 93 shows the results for experiments at 50% water-cut, without AA (#19 and 

#24). A similar behavior was observed for the test at 400 L/h, with peaks in average absolute 

energy coinciding with the peaks in pressure drop. 
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Figure 93. Comparison between the average absolute energy to the horizontal pressure drop 

for the experiments at 50% water-cut, without AA, at 200 and 400 L/h (#19 and #24). 

Figure 94 shows the results for tests at 80% water-cut, without AA. A good agreement 

was found for the comparison between the horizontal pressure drop and the average absolute 

energy. In fact, the systems at high water cut are more flowable, because the water phase seems 

to have a higher affinity and transport better the hydrate particles than the oil phase. Because 

of that, not much deposition was detected in the horizontal section, and most of the increase on 

friction and apparent viscosity is due to a viscosification of the flow rather than due to a local 

deposition or accumulation of hydrates. 
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Figure 94. Comparison between the average absolute energy to the horizontal pressure drop 

for the experiments at 80% water-cut, without AA, at 200 and 400 L/h (#20 and #23). 

The procedure proposed in this section can also be applied to systems with LDHI-AA. 

Figure 95 shows the results for tests at 50% water-cut, with AA. Once the inversion of phase 

occurred, from water to oil continuous phase, the pressure drop and the absolute energy 

increased. It was observed in Figure 95(b) that the absolute energy increases until 205 minutes, 

and then suffers a sudden decrease, with is not followed by the pressure drop, that continuous 

to increase. The reduction in the number of collisions is due to the formation of a moving bed. 

Since the suspension of hydrate become dense, around 250 minutes the absolute energy 

increases again, because part of the transport of the particles is due to particle-particle collisions 

rather than due to the liquid forces (drag and lift). Once this dense flow forms, the pressure drop 

in the horizontal section starts slowly decreasing, indicating that less hydrates are flowing in 

that section, and that part of the hydrates may be forming a static bed somewhere in the loop. 
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Figure 95. Comparison between the average absolute energy to the horizontal pressure drop 

for the experiments at 50% water-cut, with AA at 0.9375%wt. vs water, at 200 and 400 L/h 

(#27 and #29). 

6.2.1. Conclusions from this section 

It was presented in this section a comparison between the accumulated absolute energy 

in the horizontal section and the horizontal pressure drop. The reason for that is that particles 

also collide to the wall during flow, so friction and absolute energy are expected to follow the 

same behavior. This approach allows quickly identifying systems that present deposition, 

accumulation, or stationary bed, and could be used in laboratory or field test to monitor in real 

time significant changes on the flow that may endanger the operation. 

6.3. Summary of the Chapter 6 

This Chapter presented some additional treatments that can be applied to the data 

obtained in the experiments. Due to the separation of phases and local increase on hydrate 

fraction, models were proposed to estimate the apparent hydrate fraction using the density 

measured from the Coriolis. The models are preliminary, and they limit to applications where 

hydrates are flowing completely with the water phase or entrapping all the oil. Future 

improvements in these models may allow a more precise calculation of the apparent hydrate 
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fraction, which is an important information, and may help future developments of correlations 

for the apparent viscosity as function of apparent hydrates fraction.  

An additional treatment with acoustic emission was also proposed, defining an average 

absolute energy in the same region where a frictional pressure drop is measured. This allow 

identifying the nature of the plug (local increase of hydrate fraction) or deposition/accumulation 

of hydrates. 

6.4. Highlights in French – Résume du Chapitre 6 en Français 

Ce chapitre présente quelques traitements supplémentaires qui peuvent être appliqués 

aux données obtenues dans les expériences. En raison de la séparation des phases et de 

l'augmentation locale de la fraction d'hydrates, des modèles ont été proposés pour estimer la 

fraction d'hydrates apparente en utilisant la masse volumique mesurée par le Coriolis et la 

conversion de l'eau. Le premier modèle suppose que les hydrates s'écoulent avec la phase 

aqueuse, tandis que le second modèle suppose qu'ils s'écoulent avec la phase huileuse. Les 

résultats préliminaires sont présentés. La fraction d'hydrates apparente est comparée à l'énergie 

absolue. Les modèles sont préliminaires et se limitent aux applications où les hydrates 

s'écoulent complètement avec la phase l’eau ou emprisonnent l'huile. Des améliorations futures 

de ces modèles peuvent permettre un calcul plus précis de la fraction d'hydrates apparente, qui 

est une information importante, et peuvent aider aux développements futurs des corrélations de 

la viscosité apparente en fonction de la fraction d'hydrates. 

Un traitement supplémentaire avec émission acoustique a également été proposé, 

définissant une énergie absolue moyenne dans la même région où une perte de charge par 

frottement est mesurée. Cela permet d'identifier la nature du bouchon (augmentation locale de 

la fraction d'hydrates) ou le dépôt / accumulation d'hydrates.   
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CHAPTER 7 - CONCLUSIONS 

This work aimed to understand gas hydrate formation from Kerdane-salted water (30 

g/L water) systems and the transportability of the suspension of hydrates in systems without 

and with LDHI-AA (0.94 to 1.5 wt.%/water) in the Archimède flow loop with new instruments: 

permittivity, high-speed camera, and acoustic emission.  

In this sense, a new software was developed to synchronize and treat the data obtained 

from the flow loop experiments. A total of 29 probes were used in the experiments and several 

methodologies were proposed in order to take qualitative but also quantitative conclusions 

about the formation of plugs and the efficiency of the tested AA. 

Some new calculations, methodologies and treatments were developed in this work, 

namely to decrypt the emission acoustic, the images and the permittivity data combined with 

the classical instruments. The focus was to be able to follow the hydrates during their 

displacement in the pipeline, their accumulation, their deposition, agglomeration and plug and 

the impact of these on the flow pattern during time and space in the pipeline.  It includes two 

simplified models to calculate the apparent hydrate fraction during flow and a procedure to 

combine pressure drop and absolute energy to determine deposition. The models to calculate 

the water conversion and the gas dissolution for tests with natural gas are also presented. 

The permittivity measurements enabled to monitor the phase (oil or water) which 

transports the hydrates and the one that is entrapped. The use of acoustic energy enabled to 

track the particles in the system and follow the suspension of hydrates over time and space, to 

better define the different steps of the mechanisms of hydrates plug formation. The analysis 

proposed in this work is mostly qualitative with some preliminary models in order to have some 

quantitative calculations.  

The accumulation of hydrates in the flow and the deposition in the pipeline are two 

precursors of plugging. They can be deduced from the acoustic emission and the pressure drop, 

which can contribute to an estimation of the amount of settled and deposited particles and 

deduce the risk of plugging.  

In chapter 4 it was possible to identify the continuous phase as oil for tests at 30% water-

cut and water for tests at 50% and 80% water-cut. The flow rate affects the size of the droplets: 

the higher the shear forces, more small droplets are in the dispersion, which increases the 

apparent viscosity. 

In chapter 5, hydrate formation and plugging mechanisms were analyzed and proposed. 

Experiments without AA were carried out at 30, 50 and 80% water-cuts. Despite the time scale 
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difference, all these experiments “plugged”, and therefore, were identified as critical for hydrate 

blockage risk.  

The proposed mechanism of hydrate formation and blockage presents a separation of 

phases, forming an intermittent regime with the water phase carrying most of the hydrates that 

accumulate, while the oil phase flows as single phase. A few reasons for that are the tendency 

of hydrate to flow with the water phase, and the difference in velocities between hydrates and 

the liquid phase, will cause an accumulation of hydrates, which facilitates local viscosification, 

agglomeration and deposition. The experiments at 80% water-cut show that hydrates will form 

around oil droplets and trapping part of the oil. The particles are relatively small, and the 

transportability of hydrates are higher than for the experiments at lower water-cuts because the 

water phase seems to have a higher affinity and better transport the hydrate particles. However, 

a plug was formed because of a local viscosification from particles with different sizes and 

different flow velocities that finally flow together. 

Experiments with a commercial LDHI-AA were carried out at 50 and 80% water-cuts. 

The systems before crystallization were completely emulsified and water continuous. At 50% 

water-cut, there was an inversion of phase during hydrates formation due to the water 

consumption. While water is the continuous phase, the transportability of the system is not 

affected, because there is an approximately constant horizontal pressure drop. Once the oil 

becomes the continuous phase, there is an immediate increase on the viscosity, which reduces 

the transportability of the system. As hydrate formation continues, the horizontal pressure drop 

increases linearly and the dispersion becomes dense, with part of the hydrates being settled in 

the pipe. There was no plug formation after several hours of experiment. At 80% water-cut, 

there was no inversion of phase, but the hydrate formation rate was higher than at 50%-water-

cut. Due to the large formation of hydrates, the dispersion of hydrates became dense, until the 

remaining liquid could not transport anymore all the solid particles. The formation continues as 

long as there is contact between water and gas, but when the fraction of solid is too high, the 

motion of hydrates becomes what is called in the solid-liquid literature contact-dominated, and 

the system may eventually plug.  

Despite the use of AA was successful in avoiding agglomeration or deposition (or any 

attachment due to the capillary forces) and form a fine dispersion, there is a critical hydrates 

fraction that can be transported by the liquid where the liquid forces are insufficient to induce 

the motion of the hydrate particles and settling occurs.   
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7.1. Perspectives and Future Works 

An important question that arises from this work is how much hydrates (fraction) can 

safely be transported. Two important parameters are the apparent viscosity and the particles 

size. It was observed that the viscosity before hydrate formation is dependent on the water-cut 

and flow rate and the presence of AA. After hydrate formation, it is also affected by the amount 

of hydrates flowing in the system. The apparent volume of hydrates can also be much larger, 

since the particles trap the liquid phases and it is difficult to know how much liquid in entrapped 

in the hydrates.  

In this sense, a better understanding on how the apparent viscosity is affected by the 

water-cut and the particles size are necessary, and by the hydrates fraction and apparent 

hydrates fraction. The following works are proposed: 

(1) Fit the data obtained from experiments on liquid-liquid dispersions with literature models 

for viscosity as function of the dispersed phase  

(2) Estimate the flowing water-cut after hydrate formation from permittivity and water 

conversion and calculate the amount of liquid trapped inside the hydrate particles.  

(3) Estimate deposition from a balance between the hydrate fraction and the apparent flowing 

hydrate fraction. A simplified model and preliminary results for calculating the apparent 

hydrate fraction is presented in Chapter 6. 

(4) Viscosity model from literature as function of each phase fraction, hydrate fraction and the 

particle size distribution  

(5) Acquire some fundamental knowledge from model particles in order to understand the 

distribution of particles in the flow and it impact on viscosity 

The use of a commercial LDHI-AA changed the dispersion and formed a fine dispersion. 

However, it is unclear how this AA acts at microscopic level, and how it avoids agglomeration 

and some physical-chemical data about the AA (viscosity, superficial tensions, effect on the 

properties of the water) could be important to understand their impact. More experiments at 

controlled gas input can also improve this knowledge. 

Furthermore, to complete the model developed in this some more experiments ca be 

done:  

(6) Study the formation of hydrates with bubbles (varying the liquid volume of the flow loop 

or using the gas lift) 
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(7) Improve the natural gas solubility model with data to other components like propane, 

nitrogen, isobutane, and normal butane (data for methane, propane and carbon-dioxide are 

already available and presented in the Appendix B). 

(8) Deeper explore the data from the acoustic emission system like frequency, counts, 

amplitude, and many others 

(9) Improve the permittivity data treatment by including the effect of hydrates in the 

measurements   

(10) Use machine learning to identify which parameters mostly affect the risk of plugging 

and develop a model from to estimate the transportability of the system as function of the 

input data  

7.2. Highlights in French - Résume du Chapitre 7 en Français 

Cette thèse présent un travail expérimental visant à étudier la formation d'hydrates de 

gaz dans les systèmes kerdane-eau salé à haute pression et basse température dans la boucle de 

circulation Archimède. L'application de ce travail est dans le maintien de l’écoulement 

pétrolier, pour les applications de prévention de la formation de bouchons d'hydrate dans 

l'exploitation pétrolière en eaux profondes. Actuellement, l'industrie utilise des additifs anti 

agglomérant chimiques pour éviter le blocage des conduites. Il y a un intérêt particulier pour 

les antiagglomérants, qui pourraient être efficaces à des fractions relativement faibles et réduire 

la quantité d'additif utilisé (ce qui peut réduire les dépenses en additif pour la prévention du 

bouchage des conduites et être moins agressif pour l'environnement). La littérature a identifié 

les systèmes à haut water-cut comme problématiques, les antiagglomérants étant signalés 

comme non efficaces pour les systèmes avec plus d'eau. Il y a un manque de compréhension 

sur les raisons pour lesquelles les antiagglomérants ne sont apparemment pas efficaces. 

L'influence de la formation d'hydrates sur l'écoulement polyphasique est mal connue. Cette 

lacune a été le principal objet d'étude de ce travail.  

Pour améliorer les résultats obtenus par la boucle Archimède une sonde de permittivité 

et des capteurs d'émission acoustique ont été installés. Une meilleure compréhension de la façon 

de surveiller la phase continue et de la phase (huile ou eau) transportée ou emprisonnée par les 

hydrates est possible grâce aux mesures de permittivité. L'utilisation de l'énergie acoustique 

pour mesurer l'énergie absolue permet de suivre les particules dans le système, et, savoir 

comment la dispersion des hydrates se comporte dans le temps, permettant une meilleure 

confiance dans la définition des différentes étapes des mécanismes de formation des bouchons 

d'hydrates. 
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Dans la seconde partie, la formation d'hydrates et les mécanismes de colmatage ont été 

analysés. Des essais sans AA ont été réalisés à 30, 50 et 80% de water-cut. Malgré la différence 

d'échelle de temps, toutes ces expériences ont bouché la conduite et par conséquent, ont été 

identifiées comme critiques. Il a été observé que la formation d'hydrates provoque un 

changement complet du régime d'écoulement pour les essais à 30% (huile continue) et 50% 

(eau continue) water-cut. La formation d’un régime intermittent entre la phase aqueuse portant 

la plupart des hydrates, et la phase huile s’écoulant seule a été observé. Quelques raisons à cela 

sont la tendance de l'hydrate à s’écouler avec la phase aqueuse. La différence de vitesses entre 

les hydrates et la phase liquide, provoque une accumulation d'hydrates qui facilite la 

viscosification, l'agglomération et le dépôt. Les expériences à 80% water-cut étaient un peu 

différentes des autres. Les hydrates semblent se former autour des gouttelettes d'huile en 

emprisonnant une partie. Les particules sont de taille relativement petite et la transportabilité 

des hydrates est plus élevée que pour les expériences avec des coupes d'eau plus faibles. Outre 

la taille des particules, la phase aqueuse semble avoir une affinité plus élevée avec les particules 

d'hydrate et donc mieux la transporter. Cependant, il y a eu la formation de bouchons, car les 

particules de tailles différentes s'écoulent à vitesses différentes finissant par le cumuler et créer 

une viscosification locale du liquide. 

Les expériences avec un AA commercial ont été réalisées à 50 et 80% de water-cut. 

Dans les deux cas, l'eau était la phase continue et une dispersion complète du système liquide-

liquide a été obtenu. À 50% de water-cut, il y a eu une inversion de phase, en raison de la 

consommation d'eau. Alors que l'eau est la phase continue, la transportabilité du système n'est 

pas affectée par la formation d'hydrates, avec une viscosité apparente approximativement 

constante. Lorsque l'huile est la phase continue, il y a une augmentation immédiate de la 

viscosité, ce qui réduit la transportabilité du système. Au fur et à mesure que la formation 

d'hydrates se poursuit, la viscosité apparente augmente linéairement puis la dispersion devient 

dense, et une partie des hydrates subit une sédimentation. Il n’y a pas eu de formation de 

bouchon après plusieurs heures d'expérience. À 80% de coupure d'eau, il n'y a pas eu d'inversion 

de phase, mais le taux de formation d'hydrates est plus élevé qu'à 50% de water-cut. En raison 

de la grande quantité d'hydrates, la dispersion d'hydrates devient dense, car le liquide restant ne 

peut pas transporter toutes les particules solides. Lorsque la fraction de solide est trop élevée, 

le mouvement des hydrates devient ce que l'on appelle dans la littérature solide-liquide dominé 

par le contact  et le système peux éventuellement se boucher. Bien que l'utilisation de 

l’antiagglomérant ait réussi à éviter l'agglomération ou le dépôt chimique (ou toute fixation due 
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aux forces capillaires) et à former une fine dispersion sèche, il semble qu'il existe une limitante 

maximale de fraction d'hydrates pouvant être transportée par le liquide. 

7.2.1. Perspectives et travaux futurs 

Une question importante qui découle de ce travail est de savoir quelle quantité d'hydrates 

(fraction) peut être transportée en toute sécurité en fonction des paramètres intrants. Deux 

paramètres importants sont la viscosité apparente et la taille des particules. Il a été observé que 

la viscosité avant formation d'hydrates dépend du water-cut et du débit et de la présence d'AA. 

Après la formation d'hydrates, il est également affecté par la quantité d'hydrates s'écoulant dans 

le système. Le volume apparent d'hydrates peut également être beaucoup plus important, car 

les particules piègent les phases liquides et il est difficile de savoir combien de liquide est piégé 

dans la phase hydrates. 

Dans ce sens, il est nécessaire de mieux comprendre comment la viscosité apparente est 

affectée par le water-cut et la taille des particules, ainsi que par la fraction d'hydrates et la 

fraction d'hydrates apparents. Les travaux suivants sont proposés : 

(1) ajuster les données issues des expériences sur les dispersions liquide-liquide avec les 

modèles de la littérature pour la viscosité en fonction de la phase dispersée 

(2) après la formation d'hydrate, estimer la coupe d'eau qui s'écoule à partir de la 

permittivité et de la conversion de l'eau et calculer la quantité de liquide piégé à l'intérieur des 

particules d'hydrate. 

(3) estimer le dépôt à partir d'un équilibre entre la fraction d’hydrates et la fraction 

d’hydrates apparente en circulation. Un modèle simplifié et des résultats préliminaires pour le 

calcul de la fraction d’hydrates apparente sont dans le Chapitre 6. 

(4) utiliser un modèle de viscosité de la littérature en fonction de chaque fraction de 

phase, de la fraction d'hydrate et de la distribution granulométrique 

(5) acquérir des connaissances fondamentales à partir de particules modèles afin de 

comprendre la distribution des particules dans l'écoulement et son impact sur la viscosité 

 

L'utilisation d'un LDHI-AA commercial a changé la dispersion et a formé une dispersion 

fine. Cependant, on ne sait pas comment cet AA agit au niveau microscopique, et comment il 

évite l'agglomération et certaines données physico-chimiques sur l'AA (viscosité, tensions 

superficielles, effet sur les propriétés de l'eau) pourraient être importantes pour comprendre leur 

impact. Davantage d'expériences avec un apport de gaz contrôlé peuvent également améliorer 

ces connaissances. 
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En outre, pour compléter le modèle développé dans ce travail, d'autres expériences 

peuvent être faites : 

(6) étudier la formation d'hydrates avec des bulles (en faisant varier le volume de liquide 

de la boucle d'écoulement ou en utilisant le gas -lift) 

(7) améliorer le modèle de solubilité du gaz naturel avec des données expérimentales 

sur la solubilité d'autres composants comme le propane, l'azote, l'isobutane et le butane normal 

(les données pour le méthane, le propane et le dioxyde de carbone sont déjà disponibles et 

présentées à l'annexe D). 

(8) Explorez plus en profondeur les données du système d'émission acoustique telles 

que la fréquence, le nombre, l'amplitude et bien d'autres 

(9) Améliorer le traitement des données de permittivité en incluant l'effet des hydrates 

dans les mesures 

(10) Utiliser l'apprentissage automatique pour identifier les paramètres qui affectent le 

plus le risque de bouchage et développer un modèle d’estimation de la transportabilité du 

système en fonction des données d'entrée  
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APPENDIX A – ARCHIMEDE DATA PROCESSING AND VISUALIZATION SOFTWARE 

An application software for data treatment and data visualization was developed for the 

synchronization of the data from all the instruments installed in the Archimedes flow loop, the 

apparatus used in the experiments of this work. A screenshot of the user’s interface with some 

plots can be seen in Figure 96. The objective of this Appendix is to give a brief presentation 

about the software, how it is programmed, how it is organized, and what tools are currently 

implemented. 

 
Figure 96. Screenshot of the Archimede Data Processing and Visualization App with some 

plots. 

A.1. Programing language and organization of the software 

The software was coded in Python 3 (see information in Python, 2020). The Archimede 

Data Processing and Visualization App was coded using resources of Tkinder, Matplotlib, 

Numpy, Csv, Pandas, among other libraries. This programming language was chosen for this 

work because of the following advantages: it is open source and free; it hosts thousands of third-

party modules, which allows a fast implementation of many utilities; and it has a simple 

installation procedure, so it would be easy to extend the use of the software in other computers 

and pilot systems. Furthermore, Python is known as an extremely powerful language for Data 

Science and Artificial Intelligence, and it is currently being used by major companies from 

these sectors around the world. Taking into account that one of the perspectives for the 
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continuation of this work is the use of machine learning techniques and the development of 

predictive tools for hydrate management, the choice for Python is once more justified.  

The software can be divided in four parts: Graphical interface, Management, Data 

Processing, and Data Manipulation. In the Graphical Interface, it is programmed the friendly 

interface that the user sees and interacts with, which includes all the windows and buttons. The 

Management is where the data circulates; here, commands are given for the operations, which 

include opening the files where the data is stored, sending the data for processing, and plotting 

the graphs. The Data Processing is where the raw data is received, synchronized in time, and 

stored in a way that will allow fast reading and visualization. The Data Manipulation is where 

all the math and scientific operations occur: the data (not yet meaningful data) is received and 

then transformed in data sets (converted in actual values); here, it is also where the calculations 

procedures and solution of equations take place. A representation on how the software works 

is shown in Figure 97. 

 
Figure 97. Organization of the Archimède Data Processing and Visualization Software. 

A.2. Data processing 

There are six instruments currently installed in the Archimède flow loop: the main 

acquisition system, the FBRM, the acoustic emission sensor, the permittivity probe, the PVM, 

and the camera. The data treatment involves the two steps represented in Figure 97: 

1. Processing: this must be done only once after each experiment and consists in collecting 

the data from the different computers and synchronizing them in time with the software 

for data treatment. The data sets are converted to csv files and the images are stored in 

bpm (PVM) or tif (camera) files. This step is necessary to reduce the computer 

processing time during the data visualization and data analysis. 
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2. Visualization: once the data is synchronized, it can rapidly be accessed and converted 

in meaningful data using the data manipulation and visualization tools of the software. 

In this section, a description on how the data from each one of these instruments are 

treated in explained. 

A.3. Main classical acquisition system data 

The main acquisition system stores the data from 19 probes, which are: 10 temperature 

probes, 4 pressure drop probes, 2 pressure probes, density, flow rate and gas injection. The data 

from an experiment is stored in a single csv file, where measurements are recorded at each 1.0 

second (minimum time step possible). Then, all the data sets can be plotted using the software 

for data treatment, as shown in Figure 98.  

 
Figure 98. Data stored in a csv file from the main acquisition system. 

From temperature, pressure and gas injection is possible to calculate the amount o gas 

dissolved into the oil phase and the oil density, according to the model presented in Section 

3.4.1. From the same data, one can obtain the water conversion, based on the model presented 

in Section 3.4.2. From the horizontal pressure drop and flow rate, it is possible to obtain the 

apparent viscosity and Reynolds number, as presented in Section 4.2.2. 
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A.4. FBRM data 

The data from the FBRM instrument is stored in a single csv file, containing the chord 

counts in a range 1-1000 micrometers divided in 90 intervals spaced in a log90-scale. The CLD 

is recorded each 5.0 seconds. The software allows visualization in 2 or 3 dimensions, as shown 

in Figure 99. 

 
Figure 99. Storage and visualization of the FBRM data. 

A.5. Acoustic emission data 

The acoustic data is stored in txt files, containing the measurements of absolute energy 

each 0.5 second. The number of files depends on the time of experiment. For the processing, it 

requires that these files are read one by one and transferred to a single csv file, where the time 

of each measurement is calculated relatively to the reference time (pressurization). A screenshot 

with the data of absolute energy from 4 AE sensors used in an experiment is shown in Figure 

100. 
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Figure 100. Storage and visualization of the absolute energy data. 

A.6. Permittivity data 

The treatment of the data from the permittivity probe requires a complex processing 

after the end of the experiment before being treated. The data is stored in txt files in a way that 

each file stores only one measurement, showing the permittivity and conductivity for 201 

frequencies. Therefore, it is necessary to open all the files, get the exact time that it was 

recorded, calculate it relatively to the time of pressurization, and then get the permittivity and 

conductivity at 108 [Hz] from all the files saved in a single csv (see an example in Figure 101). 

In addition, it is also recorded how many times a specific range of frequency recorded a 

permittivity; this is recorded in two separate csv files, for the data before and after hydrate 

formation. 
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Figure 101. Storage and visualization of the permittivity data. 

A.7. PVM data 

The PVM images are stored in bmp files. For the pre-processing, the images are open 

and the time they were recorded are registered with the calculated brightness in a csv file. An 

example of the generated csv file after the processing is shown in Figure 102. The name of the 

file is registered in the third column, so it allows a fast opening of the file during the data 

visualization step. 

 
Figure 102. Storage and visualization of the PVM data. 

A.8. High speed camera data 

The recording of the images with the camera is a challenge in terms of storage and 

processing because of the required large memory. The images are recorded in binary files. The 

number of binary files depends on the number of images (duration of the experiment and frames 
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per second). The processing consists in opening one by one of the binary files and registering 

the exact time each one of them was recorded. 

 
Figure 103. Storage and visualization of the images from the camera. 

A.9. Perspectives 

Experiments with large data sets are becoming common in industry and academy. Tools 

to extract information from these data are in high demand, and the software presented in this 

Appendix was an important tool for the analysis of results for this thesis. Despite the current 

version of this software is already running many utilities, much work is still possible, which 

includes, but is not limited to: 

 The development of utilities that allow comparing data from different 

experiments 

 The development of an interface that allows displaying the data as function of 

space (and not only time) 

 The implementation of tools that will allow quantifying deposition 

 The improvement of the automatization of the software, creating more options 

for displaying images with multiple plots, especially when comparing data from 

different instruments 

 The implementation of algorithms that allow converting the CLD (from the 

FBRM) to particle size distribution 

 The use of machine learning techniques to analyze the results, as a complement 

to the current analyzes based on the physics of the problem 

 The extension of the use of this software in other pilots designed for applications 

in hydrate management  
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APPENDIX B – SOAVE-REDLICH-KWONG REAL GAS MODEL 

The objective of this Appendix is to present the real gas model from literature that is 

used in this work. An application for the natural gas composition used in the experiments is 

shown, comparing with results from a commercial software. 

B.1. Soave-Redlich-Kwong equation 

The Soave-Redlich-Kwong (SRK) equation of state is used for calculating the number 

of mols for each gas component. It is expressed in terms of pressure (𝑝), temperature (𝑇) and 

molar volume (𝑉𝑚). The SRK model can be written as follows: 

 𝑝 =
𝑅𝑇

𝑉𝑚 − 𝑏
−

𝑎

𝑉𝑚(𝑉𝑚 + 𝑏)
 ( 85 ) 

where 𝑅 is the gas constant (𝑅 = 8.3145 J/mol·K). The values of 𝑎 and 𝑏 are calculated as 

functions of the critical temperature (𝑇𝑐), the critical pressure (𝑝𝑐), and the Pitzer’s acentric 

factor (𝜔): 

 𝑎 = 0.427480234
(𝑅𝑇𝑐)

2

𝑝𝑐
[1 + (0.480 + 1.574𝜔 − 0.176𝜔2) (1 − √

𝑇

𝑇𝑐
)]

2

 ( 86 ) 

 𝑏 = 0.08664035
𝑅𝑇𝑐

𝑝𝑐
 ( 87 ) 

For a mixture of gases, the SRK model is written as follows: 

 𝑝 =
𝑅𝑇

𝑉𝑚 − 𝑏𝑚
−

𝑎𝑚

𝑉𝑚(𝑉𝑚 + 𝑏𝑚)
 ( 88 ) 

The modified parameters 𝑎𝑚 and 𝑏𝑚 are calculated as: 

 𝑎𝑚 = ∑∑𝑓𝑓,𝑖𝑓𝑓,𝑗

𝑗𝑖

√𝑎𝑖𝑎𝑗(1 − 𝑘𝑖𝑗) ( 89 ) 

 𝑏𝑚 = ∑𝑓𝑓,𝑖

𝑖

𝑏𝑖 ( 90 ) 

B.2. Application of the model for the experimental conditions of this work 

Table 6 shows the molar fraction (f), molar mass (MG), critical temperature, critical 

pressure, and Pitzer’s acentric factor for each gas component present in the natural gas used in 

the experiments of this work. 
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Table 6. Properties of each gas component present in the natural gas. 

Gas type 𝑓 [%] 𝑀𝐺  [g/mol] 𝑇𝑐 [K] 𝑝𝑐 [bar] 𝜔 [-] 

Methane 91.7 16.04 190.56 45.99 0.01155 

Ethane 5.9 30.07 305.32 48.72 0.09949 

Propane 0.6 44.10 369.83 42.48 0.15229 

Carbon dioxide 0.8 44.01 304.21 73.82 0.22362 

Nitrogen 0.8 28.01 126.20 34.00 0.03772 

i-Butane 0.1 58.12 408.14 36.48 0.18077 

n-Butane 0.1 58.12 425.15 37.99 0.2013 

 

Figure 104 shows the equilibrium for hydrate formation using the natural gas (with the 

composition shown in Table 6) and saline water with 30 g of NaCl per liter of water. Since the 

experiments of this work as carried out at 75 bars and 4°C, the subcooling is 10.37 °C. 

 
Figure 104. Hydrate formation curve for the natural gas composition used in the tests and 

saline water (30 g/L of NaCl). Obtained from HWPVT (Heriot-Watt University Hydrate and 

Phase Equilibria Software). 

Figure 105 show the density comparison between the SRK equation of state against data 

from the literature. The values for gas methane were evaluated at 1, 10, 20, 40, 60 and 80 bars. 

For the other gas components, they were evaluated at 1, 3, 5, 10, 15 and 20 bars. 
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Figure 105. Comparison of data for some gas components for SRK model against data from 

the literature. 

 
Figure 106. Comparison of data for natural gas for SRK model against data from the 

literature.  
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APPENDIX C - CORRELATIONS OF GAS SOLUBILITY AND DENSITY OF KERDANE OIL 

SATURATED WITH METHANE, ETHANE AND CARBON DIOXIDE GAS 

The gas used in the experiments is a composition of natural gases. During pressurization, 

part of the gas dissolves in the liquid phases. Since solubility in oil is normally much higher 

than in water, knowing the solubility each gas component into the Kerdane is a required 

information. Experiments were conducted at Ecole des Mines de Saint-Etienne to obtain the 

solubility of methane, ethane and carbon dioxide in Kerdane, and how the dissolution affects 

the oil density (Straume, 2019). The correlations obtained for gas solubility and Kerdane 

density are presented in this Appendix. The correlations are used for the calculation procedure 

of gas solubility and Kerdane density, presented in subsection 3.4.1. 

C.1. Results from tests with methane in Kerdane 

The correlations for solubility and density of methane in Kerdane, valid for 0-80 bars 

and 4-20°C, are: 

 

𝐶 = (−0.00000002088802 ∙ 𝑇2 +  0.000002648858 ∙ 𝑇 −  0.00004479552)

∙ 𝑝2 + (0.000001227564 ∙ 𝑇2  −  0.0002785752 ∙ 𝑇 

+  0.0325703) ∙ 𝑝 + 0.0000050759 ∙ 𝑇 −  0.00033501 

( 91 ) 

where C is concentration in mol methane/kg filled Kerdane, T is temperature in °C, and p is 

pressure in bar. 

𝜌 = (−0.0000051603 ∙ 𝑇2 +  0.0016213 ∙ 𝑇 −  0.59938) ∙ 𝑝 −  0.60709 ∙ 𝑇

+  819.48 
( 92 ) 

where ρ is density in kg/m3 Kerdane saturated with methane, T is temperature in °C, and p is 

pressure in bar. 

C.2. Results from tests with ethane in Kerdane 

The correlations for solubility and density of ethane in Kerdane, valid for 3-4 bars and 

4-20°C, are: 

 𝐶 = (0.000054836 ∙ 𝑇2  −  0.0051435 ∙ 𝑇 +  0.23957) ∙ 𝑝 ( 93 ) 

where C is concentration in mol ethane/kg filled Kerdane, T is temperature in °C, and p is 

pressure in bar. 
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 𝜌 = ( 0.030072 ∙ 𝑇 −  5.4114) ∙ 𝑝 −  0.60709 ∙ 𝑇 +  819.48 ( 94 ) 

where ρ is density in kg/m3 Kerdane saturated with ethane, T is temperature in °C, and p is 

pressure in bar. 

C.3. Results from tests with carbon dioxide in Kerdane 

The correlations for solubility and density of ethane in Kerdane, obtained for a pressure 

of 2 bars (and assuming that solubility is 0 mol/kg at 0 bar) and 4-20°C, are: 

 

 𝐶 = (−0.00092385 ∙ 𝑇 +  0.08027) ∙ 𝑝 ( 95 ) 

where C is concentration in mol carbon dioxide/kg filled Kerdane, T is temperature in °C, and 

p is pressure in bar. 

 𝜌 = ( −0.023466 ∙ 𝑇 −  1.8923) ∙ 𝑝 −  0.60709 ∙ 𝑇 +  819.48 ( 96 ) 

where ρ is density in kg/m3 Kerdane saturated with carbon dioxide, T is temperature in °C, and 

p is pressure in bar. 

C.4. Summary of this Appendix 

 Correlations for gas concentration and Kerdane density have presented 

 Experimental data and correlations from this study can be used for calculations of gas 

concentration in the oil phase and hydrate quantity in flow loop experiments with 

Kerdane as oil phase. 
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APPENDIX D – REYNOLDS AND APPARENT VISCOSITY 

This Appendix presents the calculated Reynolds number and viscosity for the 

experiments analyzed in Chapter 4 to characterize the flow regime before hydrate formation. 

An important information for these results is that the flow regime is mostly laminar, for all the 

experiments. As the flow rate increases, the increase on the viscosity forces balances the 

increase on inertial forces, and therefore, the regime is still laminar. 

 
Figure 107. Reynolds number and apparent viscosity for an experiment at 30% water-cut, 400 

L/h, without AA (#15). 
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Figure 108. Reynolds number and apparent viscosity for an experiment at 50% water-cut, 200 

L/h, without AA (#19). 

 
Figure 109. Reynolds number and apparent viscosity for an experiment at 50% water-cut, 400 

L/h, without AA (#24). 
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Figure 110. Reynolds number and apparent viscosity for an experiment at 80% water-cut, 200 

L/h, without AA (#20). 

 
Figure 111. Reynolds number and apparent viscosity for an experiment at 80% water-cut, 200 

L/h, without AA (#23). 
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APPENDIX E - ADDITIONAL HYDRATE FORMATION EXPERIMENTS 

This appendix presents the results for the experiments not shown in the Chapters 4-6, 

dedicated to the results. The tests for any of the conditions were repeated at least once to verify 

the repeatability of the experiments, hereby presented. 
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Figure 112. Experiment at 30% water-cut, 200 L/h, without AA (#12), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) flow rate. 
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Figure 113. Experiment at 30% water-cut, 200 L/h, without AA (#12), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and PVM 

images grayscale and (d) dielectric and chord counts. 
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Figure 114. Experiment at 30% water-cut, 400 L/h, without AA (#14), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) flow rate. 
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Figure 115. Experiment at 30% water-cut, 400 L/h, without AA (#14), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and PVM 

images grayscale and (d) dielectric and chord counts. 
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Figure 116. Experiment at 50% water-cut, 200 L/h, without AA (#16), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) flow rate. 
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Figure 117. Experiment at 50% water-cut, 200 L/h, without AA (#16), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and PVM 

images grayscale and (d) dielectric and chord counts. 
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Figure 118. Experiment at 50% water-cut, 400 L/h, without AA (#25), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) flow rate. 
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Figure 119. Experiment at 50% water-cut, 400 L/h, without AA (#25), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and PVM 

images grayscale and (d) dielectric and chord counts. 
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Figure 120. Experiment at 80% water-cut, 200 L/h, without AA (#21), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) flow rate. 
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Figure 121. Experiment at 80% water-cut, 200 L/h, without AA (#21), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and PVM 

images grayscale and (d) dielectric and chord counts. 



189 

 

 
Figure 122. Experiment at 80% water-cut, 400 L/h, without AA (#22), showing the: (a) 

absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) flow rate. 
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Figure 123. Experiment at 80% water-cut, 400 L/h, without AA (#22), showing a comparison 

between: (a) dielectric and density, (b) dielectric and absolute energy, (c) dielectric and PVM 

images grayscale and (d) dielectric and chord counts. 
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Figure 124. Experiment at 50% water-cut, 200 L/h, with AA at 1.5 %wt. vs water (#28), 

showing the: (a) absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) 

flow rate. 
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Figure 125 Experiment at 50% water-cut, 200 L/h, with AA at 1.5 %wt. vs water (#28), 

showing a comparison between: (a) dielectric and density, (b) dielectric and absolute energy, 

(c) dielectric and PVM images grayscale and (d) dielectric and chord counts. 
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Figure 126. Experiment at 50% water-cut, 400 L/h, with AA at 1.5 %wt. vs water (#30), 

showing the: (a) absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) 

flow rate. 
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Figure 127. Experiment at 50% water-cut, 400 L/h, with AA at 1. 5 %wt. vs water (#30), 

showing a comparison between: (a) dielectric and density, (b) dielectric and absolute energy, 

(c) dielectric and PVM images grayscale and (d) dielectric and chord counts. 
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Figure 128. Experiment at 80% water-cut, 200 L/h, with AA at 0.94 %wt. vs water (#32), 

showing the: (a) absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) 

flow rate. 
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Figure 129. Experiment at 80% water-cut, 200 L/h, with AA at 0.94 %wt. vs water (#32), 

showing a comparison between: (a) dielectric and density, (b) dielectric and absolute energy, 

(c) dielectric and PVM images grayscale and (d) dielectric and chord counts. 
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Figure 130. Experiment at 80% water-cut, 400 L/h, with AA at 0.94 %wt. vs water (#34), 

showing the: (a) absolute energies, (b) temperatures (T8 and T9), (c) pressure drops and (d) 

flow rate. 



198 

Figure 131. Experiment at 80% water-cut, 400 L/h, with AA at 0.94 %wt. vs water (#34), 

showing a comparison between: (a) dielectric and density, (b) dielectric and absolute energy, 

(c) dielectric and PVM images grayscale and (d) dielectric and chord counts.
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APPENDIX F - GAS DISSOLUTION, HYDRATE FRACTION AND APPARENT HYDRATE FRACTION 

FOR ALL THE TESTS 

In this Appendix, the calculate gas dissolution, oil density, water cut, water conversion, 

hydrate fraction and local hydrate fraction is shown for all the experiments with natural gas 

performed for this thesis. 
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Figure 132. Calculated gas dissolution and hydrate fraction for the test #11 (30% water cut, 

200 L/h, without AA). 
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Figure 133. Calculated gas dissolution and hydrate fraction for the test #12 (30% water cut, 

200 L/h, without AA). 
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Figure 134. Calculated gas dissolution and hydrate fraction for the test #14 (30% water cut, 

400 L/h, without AA). 
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Figure 135. Calculated gas dissolution and hydrate fraction for the test #15 (30% water cut, 

400 L/h, without AA). 
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Figure 136. Calculated gas dissolution and hydrate fraction for the test #16 (50% water cut, 

500 L/h, without AA). 
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Figure 137. Calculated gas dissolution and hydrate fraction for the test #17 (50% water cut, 

200 L/h, without AA). 
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Figure 138. Calculated gas dissolution and hydrate fraction for the test #18 (50% water cut, 

200 L/h, without AA). 
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Figure 139. Calculated gas dissolution and hydrate fraction for the test #19 (50% water cut, 

200 L/h, without AA). 
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Figure 140. Calculated gas dissolution and hydrate fraction for the test #20 (80% water cut, 

200 L/h, without AA). 
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Figure 141. Calculated gas dissolution and hydrate fraction for the test #22 (80% water cut, 

400 L/h, without AA). 
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Figure 142. Calculated gas dissolution and hydrate fraction for the test #23 (80% water cut, 

400 L/h, without AA). 
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Figure 143. Calculated gas dissolution and hydrate fraction for the test #24 (50% water cut, 

400 L/h, without AA). 
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Figure 144. Calculated gas dissolution and hydrate fraction for the test #25 (50% water cut, 

400 L/h, without AA). 
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Figure 145. Calculated gas dissolution and hydrate fraction for the test #26 (50% water cut, 

400 L/h, without AA). 
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Figure 146. Calculated gas dissolution and hydrate fraction for the test #27 (50% water cut, 

400 L/h, with 1.5 wt.%/water AA). 
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Figure 147. Calculated gas dissolution and hydrate fraction for the test #28 (50% water cut, 

400 L/h, with 1.5 wt.%/water AA). 
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Figure 148. Calculated gas dissolution and hydrate fraction for the test #29 (50% water cut, 

400 L/h, with 1.5 wt.%/water AA). 
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Figure 149. Calculated gas dissolution and hydrate fraction for the test #30 (50% water cut, 

400 L/h, with 1.5 wt.%/water AA). 
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Figure 150. Calculated gas dissolution and hydrate fraction for the test #31 (80% water cut, 

200 L/h, with 0.94 wt.%/water AA). 
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Figure 151. Calculated gas dissolution and hydrate fraction for the test #32 (80% water cut, 

200 L/h, with 0.94 wt.%/water AA). 
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Figure 152. Calculated gas dissolution and hydrate fraction for the test #33 (80% water cut, 

400 L/h, with 0.94 wt.%/water AA). 
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Figure 153. Calculated gas dissolution and hydrate fraction for the test #34 (80% water cut, 

400 L/h, with 0.94 wt.%/water AA). 
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at intermediate and high water cuts. This study is to understand the action of a Low Dosage 

Hydrate Inhibitor Anti-Agglomerant (LDHI-AA) to limit agglomeration and deposition, and to 

prevent the formation of plugs in the pipeline. In this work, experiments were conducted using 

the Archimède flow loop (56 m of length and diameters of 10.2 and 15.7 mm) to study natural 

gas hydrate formation in Kerdane-salted water (30 g/L of NaCl) dispersions without and with 

LDHI-AA (0.94 and 1.50 wt.%/water) to monitor the flow conditions and track hydrate particles 

in time and space. New insights for the mechanisms of hydrate formation and blockage for the 

conditions tested are presented. They were deduced from three new measurements: a 

permittivity probe, acoustic emission probes, a high-speed camera. In this sense, a new software 

was developed to treat and synchronize the data obtained from the total 29 probes and 

instruments present in the flow loop. Some quantitative models were developed to deduce the 

continuous phase from permittivity and quantify the apparent instantaneous hydrate fraction in 

the flow from the density. Furthermore, the acoustic emission enabled to detect the 

accumulation of hydrates in parts of the flow and the deposition in the pipeline. Further works 

will enable to quantify these two mechanisms responsible for plugging. 
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Résumé : 

Les hydrates de gaz peuvent provoquer le blocage des pipelines en exploitation pétrolière en 

eaux profondes, en particulier à fort et intermédiaire water-cut. Cette étude vise à comprendre 

le comportement des additifs Low Dosage Hydrate Inhibitors Anti-Agglomerant (LDHI-AA) 

pour éviter l'agglomération et la formation de bouchons dans la conduite. Les expériences de 

formation d'hydrates de gaz et de transport de la dispersion ont été réalisées dans la boucle 

Archimède (56 m de longueur et diamètres de 10,2 et 15,7 mm) dans des dispersions de kerdane 

et d'eau salée (30 g/L de NaCl) sans et avec LDHI-AA (0,94 % et 1,50% poids / eau) de façon 

à suivre les conditions d'écoulement et les particules d'hydrate dans le temps et dans l'espace. 

Un modèle de comportement a été développé à partir de trois nouvelles mesures : une sonde de 

permittivité, des sondes d'émission acoustique, une caméra à grande vitesse. Dans ce sens, un 

nouveau logiciel a été développé pour traiter et synchroniser les données obtenues à partir des 

29 sondes et instruments présents dans la boucle. Deux modèles quantitatifs ont été développés 

pour déduire la phase continue à partir de la permittivité et quantifier la fraction d'hydrates 

instantanée apparente dans l'écoulement à partir de la densité. De plus, l'émission acoustique a 

permis de détecter l'accumulation d'hydrates dans certaines parties de l'écoulement et le dépôt 

dans la conduite. D'autres travaux permettront de quantifier ces deux mécanismes responsables 

du blocage de la conduite. 


