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This Chapter deals with Coulomb gases and one-dimensional electrostatics. Additionally, the Poisson-Boltzmann equation is introduced, which is the standard mean-field theory used to describe electrolytes and colloids. We consider a one-dimensional model allowing analytical derivation of the effective interactions between two charged colloids. We evaluate exactly the partition function for an electroneutral salt-free suspension with dielectric jumps at the colloids' position. We derive the equation of state that shows there is like-charge attraction, whether or not the counterions are confined between the colloids. The results are shown to recover the mean-field prediction in the weak coupling limit where electrostatic correlations vanish.
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General introduction

Visible matter, more often than not, has protons and electrons. Unsurprisingly, electrostatic interactions mediate important phenomena present across many fields such as biology, material science and condensed matter. Some examples include the formation of DNA condensates [START_REF] Bloomfield | DNA condensation[END_REF], cement physical-chemistry [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF] and the critical behavior of superfluid 4 He films [START_REF] Minnhagen | The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films[END_REF].

In soft matter, it is common to feature charged units ranging from electrons to macromolecules. Whereas nature usually favors the formation of neutral objects, in soft systems these entities often unbind. This may happen due to high temperatures, as for molten salts [START_REF]Theory of Simple Liquids[END_REF] (e.g. table salt, NaCl, dissociates at 1073 K into an electrolyte made of Na + and Cl -). Likewise, ionic compounds dissociate at contact with polar solvents (e.g water) [START_REF] Hansen | Effective interactions between electric double layers[END_REF][START_REF] Messina | Electrostatics in soft matter[END_REF]. In any case, what results is a many-body system made of charged constituents, and hence electrostatic Coulomb interactions ensue. Since Coulomb potentials are long-ranged, we see how many-body systems endowed with long-ranged interactions arise in the context of soft matter.

Electrostatic interactions are key to a wealth of phenomena in soft condensed matter including but certainly not limited to like-charge attraction, overcharging/charge inversion, self-assembly, electrophoresis, etc [START_REF] Holm | Electrostatic Effects in Soft Matter and Biophysics[END_REF][START_REF] Andelman | Introduction to electrostatics in soft and biological matter[END_REF][START_REF] Levin | Electrostatic correlations: from plasma to biology[END_REF][START_REF] Naji | Electrostatic interactions in strongly coupled soft matter[END_REF][START_REF] Boroudjerdi | Statics and dynamics of strongly charged soft matter[END_REF][START_REF] Ioannidou | The crucial effect of early-stage gelation on the mechanical properties of cement hydrates[END_REF]. Nonetheless, understanding many-body correlated interactions from a fundamental point of view is shielded by mathematical complexities. For example, consider one of the simplest possible settings: two similar charged plates interacting in the presence of neutralizing counter-ions. In the strong-coupling regime, namely for high counter-ion valency and/or large colloidal charge, these plates can attract each other, therefore providing an example of like-charge attraction. This apparently simple system features a phenomenon challenging our intuition of electrostatics. The plates which would otherwise repel in vacuum, attract under the mediation of strongly-correlated counterions [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Šamaj | Counterions at highly charged interfaces: From one plate to like-charge attraction[END_REF][START_REF] Šamaj | Strong-coupling theory of counterions between symmetrically charged walls: From crystal to fluid phases[END_REF]. This phenomenon cannot be described with the standard mean-field approaches [START_REF] Neu | Wall-mediated forces between like-charged bodies in an electrolyte[END_REF][START_REF] Trizac | Long-range electrostatic interactions between like-charged colloids: Steric and confinement effects[END_REF][START_REF] Sader | Long-range electrostatic attractions between identically charged particles in confined geometries and the Poisson-Boltzmann theory[END_REF] and it was initially confirmed computationally [START_REF] Allahyarov | Effect of geometrical confinement on the interaction between charged colloidal suspensions[END_REF][START_REF] Grønbech-Jensen | Interactions between charged spheres in divalent counterion solution[END_REF][START_REF] Ma | Effective attraction between likecharged colloids in a two-dimensional plasma[END_REF][START_REF] Guldbrand | Electrical double layer forces. A Monte Carlo study[END_REF][START_REF] Moreira | Simulations of counterions at charged plates[END_REF], then experimentally [START_REF] Kékicheff | Charge reversal seen in electrical double layer interaction of surfaces immersed in 2:1 calcium electrolyte[END_REF][START_REF] Crocker | When like charges attract: The effects of geometrical confinement on long-range colloidal interactions[END_REF][START_REF] Kepler | Attractive potential between confined colloids at low ionic strength[END_REF] and finally analytically [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Netz | Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions[END_REF]. However, the difficulty of studying generalizations of this basic case such as considering intermediate colloidal charges, including dielectric inhomogeneities and colloids with different geometries is why it remains a topic of interest, where analytical results are scarce.

Herein, we devote to study systems with electrostatic correlations in one and two dimensional models. Although low-dimensional systems might seem somewhat abstract, they describe a number of real physico-chemical objects such as stiff polymers [START_REF] Trizac | Bending stiff charged polymers: The electrostatic persistence length[END_REF], clay platelets [START_REF] Trizac | Effective interactions and phase behaviour for a model clay suspension in an electrolyte[END_REF][START_REF] Ebrahimi | Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets[END_REF], cement sheets [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF] and more. As an illustration, we mention the question of the origin of cement cohesion. In brief, cement, a key binding agent in concrete, is made of layers of Calcium-Silicate-Hydrates (C-H-S) that trap between them a solution made of water and ions [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF][START_REF] Goyal | The physics of cement cohesion[END_REF][START_REF] Palaia | Charged systems in, out of, and driven to equilibrium : from nanocapacitors to cement[END_REF]. While the physical chemistry of cement is complex [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF][START_REF] Goyal | The physics of cement cohesion[END_REF], a simple model for this system is provided by two symmetric uniformly charged plates with counterions between them, where these charges interact pairwise via the 3D Coulomb potential, 1/r. The fact that counterions are multivalent, and the plates highly charged, brings the cement system in the strong-coupling regime. As previously mentioned, this triggers like-charge attraction, that is at the origin of cement cohesion. In the strongcoupling regime, when the distance between plates is small enough, all counterions are approximately in the same plane parallel to the plates, so that the dominant force acting on them stems from the plates' potential. For like-charged plates, this force vanishes, which leads to a uniform density profile, from which the pressure can be readily computed. In this limit, the problem can be mapped to a one dimensional system [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Šamaj | Counterions at highly charged interfaces: From one plate to like-charge attraction[END_REF][START_REF] Moreira | Field-theoretic approaches to classical charged systems[END_REF][START_REF] Trizac | Like-charge attraction in a one-dimensional setting: the importance of being odd[END_REF].

The thesis is organized in three chapters. The first two study the properties of a colloid in one-dimension, in and out of equilibrium. Chapter 1 is devoted to the former case in the presence of dielectric inhomogeneity. The pressure and density are computed exactly, and a relation between them is established. Through the pressure which is nothing but the force in 1D, we find that the colloid may feature like-charge attraction. In Chapter 2, this system is studied out of equilibrium, within a homogeneous dielectric space. Exact and numeric results are used to investigate the relaxation process. These two chapters compare the results featured for a purely point-particle system to the mean-field treatment where counterions have a continuous charge distribution: the Poisson-Boltzmann and Poisson-Nernst-Planck equations for equilibrium and dynamics. Finally, in Chapter 3 we give the exact results for a charge-asymmetric two-dimensional two-component plasma. Two guest charges are introduced and the short-distance asymptotic for their effective potential is determined. This result allows us to determine the conditions for which there is attraction between two like-charges immersed in the plasma.

From this thesis were extracted three works, one for each Chapter which in order of appearance are [START_REF] Varela | One-dimensional colloidal model with dielectric inhomogeneity[END_REF][START_REF] Varela | Relaxation dynamics of two interacting electrical double-layers in a 1D Coulomb system[END_REF][START_REF] Varela | Like-charge attraction at short distances in a chargeasymmetric two-dimensional two-component plasma: exact results[END_REF]. We thank our collaborator Sergio Andraus, who is a coauthor in [START_REF] Varela | Relaxation dynamics of two interacting electrical double-layers in a 1D Coulomb system[END_REF]. We are also grateful for fruitful discussions with Alexei Chepelianskii, Ivan Palaia, Ladislav Šamaj.

Introduction

Electrostatic interactions between charged matter are ruled by Poisson's equation, which for a microscopic charge density ρ micro reads

∇ 2 φ micro = - s d ρ micro , (1.1)
where ∇ 2 is the Laplacian in d-dimensions, is the dielectric constant, s d is an arbitrary constant and φ micro is the electric potential. In particular, a localized unitary charge at r , with a distribution δ(r -r ) creates a potential v(r, r ) at r given by v(r, r ) =

s d Γ d 2 2π d ×                -|x -x |, 1D, -log |r -r | r 0 , 2D, 1 |r -r | , 3D, (1.2) 
where r ∈ R d , x is the position for the d = 1 case, and r 0 is an arbitrary length that fixes the zero-point of the potential, which is kept for dimensional reasons. In Gaussian units, which are used throughout the thesis, s d = 2π d 2 /Γ d 2 . These Coulomb potentials are featured in a variety of soft matter systems. We start by the familiar 1/r expression, which is present almost everywhere ranging from binding atoms to ionic interactions in electrolytes; namely where two point-like charges are involved. The 1D and 2D cases may be less familiar but they also manifest when solving 3D dimensional systems. The 1D case is the potential created by a plate, which is an object often used to describe capacitors, membranes and even the mesoscopic layers that make up concrete. The 2D potential emerges when dealing with long rod-like structures, with some notorious examples being DNA strands [START_REF] Bloomfield | DNA condensation[END_REF][START_REF] Levin | Strange electrostatics in physics, chemistry, and biology[END_REF] and charged stiff polymers [START_REF] Trizac | Bending stiff charged polymers: The electrostatic persistence length[END_REF]. Besides, we may also envision a gas made point-like particles bounded to R d and featuring interactions dictated by Poisson's equation. This is known as a Coulomb system.

In this thesis, we focus in one-and two-dimensional Coulomb systems. These systems are more amenable to analytical and numerical treatments than their 3D counterpart. For instance, whereas the stability against opposite-charge collapse in 3D electroneutral Coulomb gases needs to invoke quantum mechanics [START_REF] Dyson | Stability of matter. I[END_REF][START_REF] Lenard | Stability of matter. II[END_REF][START_REF] Lieb | The stability of matter[END_REF], for d ≤ 2 the classical electrostatic force may † suffice to ensure stability. In practice, collapse in 3D is prevented by introducing short-range potentials, which nevertheless are detrimental to analytical progress. Throughout this thesis, we exploit the simplifications brought forward by low-dimensional Coulomb gases to determine the thermodynamics of systems interacting through long-range forces.

Colloids

In this Chapter, we specialize in colloidal suspensions. The word colloid was coined by Thomas Graham in 1861 [START_REF] Graham | X. Liquid diffusion applied to analysis[END_REF]. In his experiments, pure water was separated by a thin paper membrane from a mixture made of water, sugar-cane and gumarabic. He observed that sugar-cane passed quickly through the paper membrane and then formed crystals when dried. On the contrary, gum-arabic slowly diffused and did not crystallize. Inspired by the Greek word 'kólla' (glue), the 'colloidal condition of matter' originally referred to substances that diffuse very slowly (gumarabic), as opposed to crystals (sugar-cane). However, later studies showed that monodisperse colloidal particles may form long-range ordered crystals, such as bentonite solutions [START_REF] Langmuir | The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates[END_REF], tabacco and tomato viruses [START_REF] Stanley | Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus[END_REF][START_REF] Stanley | Crystalline tobacco-mosaic virus protein[END_REF]. Therefore, the original definition of colloids is now obsolete, since they may in fact crystallize [START_REF] Pieranski | Colloidal crystals[END_REF]. Nowadays, a colloid suspension refers to systems where a class of large particles interact with a second smaller kind. Their key feature is the coexistence of microscopic and mesoscopic degrees of freedom. Alternatively, we may say that they consist of a continuous phase (dispersion medium) coexisting with a disperse phase [START_REF] Hunter | Foundations of colloid science[END_REF]. The phases may be solid, liquid or gaseous, provided that both are not gases. Table 1.1 features the different types of colloids with a few everyday examples. Besides, colloids are typically divided into two classes based on their affinity to the dispersion medium: lyophilic ('solvent-loving') and lyophobic ('solvent-hating'). Lyophilic colloids stripped of their dispersion medium may easily redisperse by simply adding back the dispersion medium, as opposed to lyophobic colloids that require an exter-nal energy input (e.g. vigorous agitation). Broadly speaking, there are a number of different behaviors based on this classification: reversible/irreversible, high/low hydration, less/more likely to flocculate (i.e. formation of particle clumps), etc. In Chapter 1 and 2, we study an idealized version of a lyophilic colloidal suspension. Tab. 1.1: Colloids classification matrix by dispersion medium (row) and dispersion phase (column). In red is the Colloid type for a given phase and medium, whereas in black are some common examples. Gas-gas colloids cannot exist since gases are mutually miscible. Taken from [START_REF] Trizac | Notes of the Barcelona summer school[END_REF].

Colloidal suspensions are often made of charged entities. Consider a typical case where colloids are in contact with polar solvents: the surface groups dissociate because they are well solvated in the bulk, since the permittivity of the solvant is large (in the case of water). As a result, there are charged particles of both small and large degrees of freedom, thus having electrostatic interactions that involve objects with different timescales. This entails a rich assortment of phenomenon and in particular, the formation of the so-called electric double-layer: a diffuse counterion distribution around the charged interface which extends a distance typically in the colloidal range, from molecular dimensions to the micrometer scale [START_REF] Levin | Electrostatic correlations: from plasma to biology[END_REF][START_REF] Hunter | Foundations of colloid science[END_REF]. Doublelayers were first introduced in 1897 by Helmholtz while investigating electrodes in electrolytes subject to an external potential [START_REF] Helmholtz | Studien über electrische grenzschichten[END_REF]. In this model, the counterions form a single layer close to the electrode. Then, Gouy [START_REF] Gouy | Sur la constitution de la charge électrique à la surface d'un électrolyte[END_REF] and Chapman [START_REF] Chapman | LI. a contribution to the theory of electrocapillarity[END_REF] introduced the concept of a diffuse layer, where the counterion typical position results from the competition between entropic and electrostatic effects. This model was further improved by Stern [START_REF] Stern | Zur theorie der elektrolytischen doppelschicht[END_REF], by assuming that the electrolyte system is made up of two parts: first comes a layer that is strongly bound to the electrode surface (practically immobile) and then follows the diffuse part, where counterions are loosely bound.

The study of electrical double-layers displays numerous approaches that quickly increase in difficulty as the model restrictions are relaxed and ingredients are added. The Gouy-Chapman model resorts to a mean-field treatment that assumes weak electrostatic interactions and considers the ionic fluid as a continuum, discarding discreteness effects. The latter shortcoming can be partly addressed including ionic size effects within a mean-field framework [START_REF] Bikerman | XXXIX. Structure and capacity of electrical double layer[END_REF][START_REF] Freise | Zur theorie der diffusen doppelschicht[END_REF][START_REF] Kralj-Iglic | A simple statistical mechanical approach to the free energy of the electric double layer including the excluded volume effect[END_REF][START_REF] Borukhov | Steric effects in electrolytes: A modified Poisson-Boltzmann equation[END_REF][START_REF] Kornyshev | Double-layer in ionic liquids: paradigm change?[END_REF] (see [START_REF] Frydel | A close look into the excluded volume effects within a double layer[END_REF] for a criticism on these 1.1 Introduction approaches, and [START_REF] Huang | Development of mean-field electrical double layer theory[END_REF] for a review on mean-field electric double-layers). Using meanfield models is convenient since they may yield analytic expressions. Interestingly, while mean-field techniques fail when the electrostatic coupling increases [START_REF] Naji | Electrostatic interactions in strongly coupled soft matter[END_REF][START_REF] Boroudjerdi | Statics and dynamics of strongly charged soft matter[END_REF][START_REF] Allahyarov | Effect of geometrical confinement on the interaction between charged colloidal suspensions[END_REF][START_REF] Guldbrand | Electrical double layer forces. A Monte Carlo study[END_REF][START_REF] Moreira | Simulations of counterions at charged plates[END_REF][START_REF] Moreira | Field-theoretic approaches to classical charged systems[END_REF], strongly-coupled systems lend themselves to analytical progress [START_REF] Šamaj | Counterions at highly charged interfaces: From one plate to like-charge attraction[END_REF][START_REF] Šamaj | Strong-coupling theory of counterions between symmetrically charged walls: From crystal to fluid phases[END_REF]. The remaining intermediate regime between weak and strong coupling is mostly accessible through numerics. So far, mostly equilibrium properties have been studied while results are scarce for time dependent phenomena. The physics of out-of-equilibrium electrical double-layers is primarily described via mean-field and numerical approaches [START_REF] Hunter | Foundations of colloid science[END_REF][START_REF] Golestanian | Dynamics of counterion condensation[END_REF][START_REF] Bazant | Diffuse-charge dynamics in electrochemical systems[END_REF][START_REF] Morrow | The time-dependent development of electric double-layers in saline solutions[END_REF][START_REF] Alexe-Ionescu | Transient effects in electrolytic cells submitted to an external electric field[END_REF][START_REF] Lim | Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer[END_REF][START_REF] Højgaard Olesen | Strongly nonlinear dynamics of electrolytes in large ac voltages[END_REF][START_REF] Janssen | Transient dynamics of electric double-layer capacitors: Exact expressions within the Debye-Falkenhagen approximation[END_REF][START_REF] Palaia | Electroosmosis as a probe for electrostatic correlations[END_REF][START_REF] Telles | Electroosmotic flow grows with electrostatic coupling in confining charged dielectric surfaces[END_REF], with few beyond mean-field contributions [START_REF] Palaia | Electroosmosis as a probe for electrostatic correlations[END_REF][START_REF] Bazant | Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions[END_REF][START_REF] Storey | Effects of electrostatic correlations on electrokinetic phenomena[END_REF].

Before delving into the equilibrium thermodynamics of one-dimensional colloids, we proceed to introduce some notions in 1D electrostatics and the standard meanfield treatment used for colloids and electrolytes (i.e. Poisson-Boltzmann theory). The out-of-equilibrium study of double-layers is discussed later, in Chapter 2.

Electrostatics in 1D

In one-dimensional electrostatics, the interaction between charges is mediated by the 1D Coulomb potential which is ruled by the 1D Poisson equation

d 2 φ micro dx 2 = - 2ρ micro (x) , (1.3) 
where is the permittivity of the media. It follows that the interaction energy of two point particles qe, q e at x, x is given by

V 1D (x, x ) = - qq e 2 |x -x |. (1.4)
This quantity is non-singular everywhere, unlike its higher dimension counterparts which are singular at the origin (Eq. (1.2)). Indeed in 1D two particles may overlap with a finite energy cost. We now proceed to examine the electric field created by the point-particle qe at x, which at x is given by dφ micro dx = qe sgn(x -x), (1.5) where sgn(x) is the sign function. This field has a constant magnitude everywhere (except for x = x ). Hence, this is a long-range interaction, a trait shared with its 2D and 3D counterparts. In the presence of multiple charges the field at a given point x is Q left-right / , where Q left-right is the net left charge (x < x ) minus the net right one (x > x ). As usual, the electric field relates to the force through F = eE. Note that since F must have force dimensions, then 1D charges actually have units of 3D linear charge densities. Also, the pressure and force are interchangeable since the former is defined as [force]/[length] d-1 , with d = 1 in 1D.

We are interested in discussing thermodynamics. Naturally, we introduce a length that balances thermal and electrostatic effects: the Bjerrum length B , the distance gained by performing k B T work onto two opposite e-charges:

e 2 B = k B T =⇒ B = k B T e 2 , ( 1.6) 
where k B is the Boltzmann constant and T is a temperature. Intuitively, this gives the typical distance between these two charges. However, this is true provided that they have enough space. In three dimensions, the Bjerrum length has an analogous definition:

(e 3D ) 2 3D B = k B T =⇒ 3D B = (e 3D ) 2 k B T , ( 1.7) 
where e 3D is the 'true' 3D charge. Whereas 3D B has the analogous interpretation of B in terms of typical ionic distance, it depends differently on all variables. To be precise, they have the inverse dependence in T , and their respective charges. The Bjerrum length is 3D B 0.7 nm at room temperature (T = 300 K) and in water ( w = 80), which are common experimental conditions in soft matter.

Mean-field: Poisson-Boltzmann equation

A standard approach to study electrolytes and colloids is the Poisson-Boltzmann (PB) theory [START_REF] Andelman | Introduction to electrostatics in soft and biological matter[END_REF][START_REF] Hunter | Foundations of colloid science[END_REF]. It provides a relatively simple framework to describe the thermodynamics of soft matter by modeling ions as a continuous charge distribution. Whereas its application is not ubiquitous, in the so-called weak-coupling regime (defined later), it has an excellent performance that becomes exact when electrostatic correlations vanish. We will devote this Section to introduce the Poisson-Boltzmann equation and the scope of its application. The motivation in doing so lies in an rare opportunity in statistical physics present in this Chapter: comparing the analytical solutions of the point-like particle model with its mean-field counterpart.

The Poisson-Boltzmann equation was originally introduced as an approximation, in the works of Gouy [START_REF] Gouy | Sur la constitution de la charge électrique à la surface d'un électrolyte[END_REF] and Chapman [START_REF] Chapman | LI. a contribution to the theory of electrocapillarity[END_REF]. We follow this same approach and later show that it is the saddle point approximation of a field theory. This latter formulation allows to show the PB treatment becomes exact when field fluctuations completely vanish, which formally defines the weak-coupling regime. We consider a system made of two essentially different constituents: N α ions of species α with charge q α e, where q α is the signed-valency and e the elementary charge. Then, there are the colloidal entities which could be macromolecules or plates. We are interested in describing the macroscopic quantities of this system, namely the charge density ρ(r) = ρ micro (r) and mean potential φ micro (r) , where the averages are made over 1. [START_REF] Bloomfield | DNA condensation[END_REF] Introduction a canonical ensemble. The Poisson-Boltzmann theory introduces the assumption that the ionic density ρ ions has the following Boltzmann weight distribution: ρ(r) = ρ col (r) + ρ ions (r) ≈ ρ col (r) + α q α n 0 α exp -q α eβφ PB (r) , (1.8) where β = 1/k B T , φ PB is the mean potential in the PB approximation, and ρ col includes all the colloidal particles. n 0 α is some normalization constant, which can have different interpretations depending on the potential reference for φ PB . We have already introduced Poisson's equation, which transposes to macroscopic quantities by taking averages on both sides of Eq. (1.1). Substituting the density approximation (Eq. (1.8)) onto it yields the following expression -∇ 2 φ PB (r) = s d ρ col (r) + s d e α q α n 0 α e -q α eβφ PB (r) .

(1.9)

This second order nonlinear elliptic partial differential equation is known as the Poisson-Boltzmann equation.

In general, Eq. (1.9) is by no means trivial to solve. However, there are some relevant cases where the analytic solution is known. In the 1910s, Gouy [START_REF] Gouy | Sur la constitution de la charge électrique à la surface d'un électrolyte[END_REF][START_REF] Gouy | Sur la fonction électrocapillaire[END_REF] and Chapman [START_REF] Chapman | LI. a contribution to the theory of electrocapillarity[END_REF] addressed the counterion profile that forms in the presence of a charged plate σ, also known as the electric double layer. The setting consisted of oppositely charge ions -qe distributed in the positive half plane x > 0 and the plate at x = 0. In this case, the Poisson-Boltzmann equation reads:

- d 2 φ PB dz 2 = - 4πqen 0 e qeβφ PB , (1.10) 
where φ PB (0 + ) = -2σ/ . Although this is a 3D problem, the system reduces to a 1D equation since it is translationally invariant in the y, z directions. The potential and density profile read

φ PB = - 2k B T qe ln(x + b 3D ) + φ 0 , (1.11a) n(x) = 1 2π 3D B (x + b 3D ) 2 , ( 1.11b) 
where b 3D = k B T /(2πqe 3D σ) = e 3D /(2πq 3D B |σ|) is the 3D Gouy-Chapman length. Note that exactly half of the distribution is within a distance b 3D of the plate. Figure 1.1 shows a sketch of the Poisson-Boltzmann treatment for three systems with different dimensions where the colloid is a point/line/plate with its respective charge Q/λ/σ, and the counterion distribution is represented by the blue filling. These three systems are described by Eq. (1.11b), by substituting the respective colloid charge Q/λ/σ. Indeed, the translational invariance in the directions parallel to the colloid make the 2D and 3D systems effectively one-dimensional. Contrarily, the corresponding discrete models do depend on the dimension. In red are the colloids (point/line/plate) and in blue the counterions which have a continuous charge distribution. At equilibrium, exactly half of the distribution lies within a Gouy-Chapman length from its colloid. Under the appropriate time and length rescaling, the equations in (PB) and out of equilibrium (Poisson-Nernst-Planck equation) are identical for these three systems. This is discussed in Chapter 2.

Besides being a characteristic length at PB level, the Gouy-Chapman length is the typical distance of the counterions to the plate in the opposite regime where electrostatics dominates over thermal interactions. This situation is illustrated in Fig. 1.2, where the counterions form a thin layer (quasi 2D) separated b 3D from the plate. In the counterion plane these counterions are known to form a hexagonal Wigner crystal [START_REF] Goldoni | Stability, dynamical properties, and melting of a classical bilayer Wigner crystal[END_REF][START_REF] Wigner | On the interaction of electrons in metals[END_REF] at zero temperature and remain close to this distribution for small temperatures. Another important analytic solution is available in the case of low electrostatic potential (|q α eβφ PB (r) | 1), where the exponential term in Eq. (1.9) may be linearized. This leads to the celebrated Debye-Hückel theory [START_REF] Hunter | Foundations of colloid science[END_REF]:

∇ 2 φ DH = λ -2
D φ DH , (1.12)
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where λ D = k B T /(s d e 2 α q 2 α n 0 α ) is the Debye length. Within this treatment, two charged ions have a exponentially screened potential with characteristic length λ D . Whereas Eq. (1.12) is more practical than the full non linear Poisson-Boltzmann equation, requiring small potentials is a major limitation to study interesting situations, as can be seen for system depicted by Eq. (1.11b) where the potential is unbounded at large distances.

Poisson-Boltzmann equation is a mean-field theory

The Poisson-Boltzmann equation resembles, and in fact, is a mean-field treatment, where particles interact with an average potential. To see this, we write the exact ionic density as follows

ρ ions (r) = e α q α n 0 α g col-α (r), (1.13) 
where n 0 α is the α-counterions' bulk density and g col-α is the colloid-ion correlation, which reads g col-α (r) = e -βU col-α (r) , (1.14) where U col-α (r) is the work need to bring the α-ion particle from infinity to r in the solution. The average is taken over the microscopic degrees of freedom and the colloidal distribution is kept fixed. If we write Eq. (1.13) in terms of U col-α (r) and then compare it with the PB approximation for the ionic density (Eq. (1.9)), it can be seen that the Poisson-Boltzmann theory is equivalent to the following approximation e -βU col-α (r) ≈ e -β U col-α (r) .

(1.15)

In doing this approximation, note that the correlations are neglected. Finally, we write the mean-field potential energy in terms of the Poisson-Boltzmann potential

U col-α (r) = q α eφ PB (r), (1.16) 
which leads to Eq. (1.9).

Coupling constant: when does mean-field apply?

The Poisson-Boltzmann theory becomes operational when electrostatic correlations are weak. We now specialize in two cases: symmetric salts (q + = q -) and counterion only (salt-free) systems. The validity of mean-field is quantified with the so-called coupling constant, which for 3D systems we denote Ξ 3D . This quantity compares the thermal energy k B T to the typical electrostatic interaction, which is nothing but the square power of the plasma parameter Γ plasma [START_REF] Gibbon | Introduction to plasma physics[END_REF] :

Ξ 3D = Γ plasma = q 2 e 2 3D /( d ions ) k B T = q 2 3D B d ions , (1.17) 10 
where q =|q| is the valency of the ions and d ions their typical separation. The weak-and strong-coupling regimes are defined by Ξ < 1 and Ξ > 1. A system treated within the Poisson-Boltzmann formalism is expected to yield a reasonable approximation to the corresponding microscopic model where all the statistical correlations are taken into account, in the weak-coupling regime [START_REF] Herrero | Poisson-Boltzmann formulary[END_REF].

Let us start by addressing the 1:1 electrolyte and a plate of charge σ. In the bulk, the typical ion-ion distance (d ions ) is determined by the density therein: n 0 ∼ d -3 ions . Hence Ξ bulk 3D = q 4 3D B 2 n 2/3 0 , which tells us that a mean-field treatment is justified for low valency and bulk density. Now consider what happens close a plate's surface: oppositely charged ions move close to screen it, leading to the formation of a counterion layer. Since the system is globally electroneutral, the counterions arrange to match the surface charge of the plate: σd 2 ions ∼ qe 3D . In this case the coupling parameter is Ξ 3D = ( 3D B ) 2 q 3 σ/e 3D ; there is weak-coupling at low valency and surface charge. For the salt-free counterpart the same plate screening argument holds, leading to the same coupling constant. In this case Ξ 3D may also be written as

q 2 3D
B /(2πb 3D ). Figure 1.3 shows the salt-free situation in the two opposite regimes. We now consider the 1D analog system. The colloid and counterion charges are Q and e. In one-dimension, we adopt a slightly different convention for the coupling constant Ξ. In this case, by definition it is identical to the plasma parameter:

d ions d ions b 3D b 3D A) B) Weak coupling Ξ > 1 Strong coupling Ξ < 1
Ξ = q 2 e 2 d ions / k B T = q 2 d ions B , ( 1.18) 
where Ξ < 1 and Ξ > 1 give the weak-and strong-coupling regimes. Note that these inequalities are preserved by any positive power of Ξ and thus are equally valid to asses the coupling regime of a given system. Therefore, even though the coupling parameters in 1D and 3D feature different powers of the plasma parameter, this has no physical implications. However, the previous definitions (Eqs. (1.17)
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and (1.18)) are more natural in the sense that they appear as the small parameter in the perturbative expansion around the mean-field solution [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF]. Following on the same lines for 3D, the 1:1 salt case in the bulk features

Ξ bulk = q 4 n 2 0 / B 2 ,
where now n 0 is the bulk density. However, close to the 'plate' or in the salt-free case, the interionic distance is not straightforward to compute. Indeed, without transversal degrees of freedom we cannot transpose the counterion-layer formation rationale. Instead, counterions organize in the line (i.e. double-layer) with a mean ion-ion typical length which does not follow from a simple argument. The coupling parameter was obtained in [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF] using a formal calculation where the grand partition function is mapped onto a field theory and Ξ emerges in the small-parameter expansion as

Ξ = q 2 b B , ( 1.19) 
where b = B /(q 2 N/2) is the Gouy-Chapman length in 1D and N is the number of counterions. The interpretation of b is similar to b 3D : most counterions are within a Gouy-Chapman length of the plate. Additionally, it gives the mean interionic separation. This follows from considering the double-layer length, which was computed exactly in [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. Its size is of order (kT /e 2 )(N -1)/(N + 1) for any plate separation L, and therefore N independent whenever N exceeds a few units. Then, the average length between counterions behaves like kT /(e 2 (N/2)), where N/2 is the counterions in each double-layer. This is exactly b. Table 1.2 summarizes the length scales and coupling parameter, in 1D and their 3D counterparts.

Quantity 1D 3D

Bjerrum length

B = k B T e 2 3D B = (e 3D ) 2 k B T Gouy-Chapman length b = k B T q 2 e 2 Q = B q 2 Q b 3D = k B T 2πqe 3D σ = e 3D 2πq 3D B |σ| Coupling constant Ξ = q 2 b B = 1 N Ξ 3D = q 2 3D B 2πb 3D = ( 3D B ) 2 q 3 (σ/e 3D )
Tab. 1.2: Table featuring the relevant quantities for a salt-free electroneutral colloidal system made of N counterions -qe and a colloidal charge Q = N qe, in 1D. The 3D counterpart has a colloid of surface charge σ and counterions -qe 3D . In both cases there is a uniform permittivity throughout space.

The Poisson-Boltzmann theory is not simply a good approximation; in some cases it becomes exact when the electrostatic correlations vanish. This has been proven for a few relevant systems [START_REF] Netz | Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions[END_REF][START_REF] Kennedy | Debye-Hückel theory for charge symmetric Coulomb systems[END_REF][START_REF] Kennedy | Mean field theory for Coulomb systems[END_REF][START_REF] Wang | On the theoretical description of weakly charged surfaces[END_REF]. One way to show this is by mapping the statistics of the Coulomb gas onto a field theory [START_REF] Netz | Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions[END_REF]. In the Section that follows, we introduce the transformation used to map Coulomb gases to field theories, and how this is connected to the Poisson-Boltzmann equation.

Field theory representation

The equilibrium thermodynamics of Coulomb gases can be mapped into a field theory. Indeed, the grand partition function can be written in terms of the generating functional of field theory. This representation has a twofold gain: it brings forward new physical interpretations and the artillery of methods developed to treat field theories. A number of works have used this to compute perturbative and exact results in soft matter [START_REF] Netz | Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions[END_REF][START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Edwards | Exact statistical mechanics of a one-dimensional system with Coulomb forces. II. The method of functional integration[END_REF]. In particular, it has been recognized that the saddle-point solution corresponds to the Poisson-Boltzmann approximation.

To obtain the connection between a Coulomb gas and its corresponding field theory, the so-called Hubbard-Stratonovich transformation [START_REF] Stratonovich | On a method of calculating quantum distribution functions[END_REF][START_REF] Hubbard | Calculation of partition functions[END_REF] is used. As an introduction, we begin by considering the following Gaussian integral

e 1 2 (b,A -1 b) = d m x e -1 2 (x,Ax)+(b,x) d m x e -1 2 (x,Ax) , (1.20)
where A is a m × m symmetric positive definite matrix, b, x ∈ R m and (b, x) is the scalar product. This relation is the inspiration for the Hubbard-Stratonovich transformation. To see this, consider a system where there are only electrostatic interactions. In that case the Hamiltonian may be written as a continuous analog of the lhs exponent in Eq. (1.20):

H -H self = 1 2 dr dr ρ micro (r)v(r, r )ρ micro (r ) = 1 2 (ρ micro , vρ micro ), (1.21) 
where v is the Green function of Poisson's equation. The self-interaction term H self is divergent; it will later be absorbed into the renormalized fugacity. In the Hubbard-Stratonovich transform the following terms are replaced by their continuous counterparts, such that b → iβρ micro and A -1 → β -1 v, and in doing so we get e -βH = e -βH self Dϕ e

β 2s d ϕ(r)∇ 2 ϕ(r) dr+iβ ρ micro (r)ϕ(r)dr Dϕ e β 2s d ϕ(r)∇ 2 ϕ(r) dr , ( 1.22) 
where the field ϕ(r) plays the role of x, the m-dimensional integral becomes a functional integral Dϕ, and the inverse Poisson operator is:

v -1 = - s d ∇ 2 δ(r). (1.23)
Equation (1.22) is known as the Hubbard-Stratonovich transformation.

We now specialize to a salt-free colloid immersed in a 1D space with homogeneous permittivity, which features the following microscopic charge distribution

ρ micro = - N k=1 qeδ(x -x k ) + Qδ(x),
(1.24)
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where q is the counterions' valency and Q > 0 the colloids' charge. The grand canonical partition Ξ g for this system is

Ξ g = ∞ N =0 1 N ! e -βH N k=1 dx k z(x k ), (1.25) 
where z(x) is the position dependent fugacity which allows to compute the density through the following relation

n = z Ξ g δΞ g δz(x) z(x)=z , ( 1.26) 
where δ/δz(x) is the functional derivative with respect to fugacity and it is evaluated at uniform fugacity z(x) = z. Similarly, higher order correlations may be computed, as will be seen in Chapter 3. By inserting the Hubbard-Stratonovich transformation (Eq. (1.22)) in Ξ g , we have that

Ξ g = Dϕ Z 0 e β 2s d ϕ∇ 2 ϕ dx+iβQϕ ∞ N =0 1 N ! e -iβ k qeδ(x-x k )ϕ dx N k=1 dx k z(x k )e -βH self N = Dϕ Z 0 e β 2s d ϕ∇ 2 ϕ dx+iβQϕ ∞ N =0 1 N ! e -iqeβϕ(x) z(x)e -βv(0) 2 dx N = Dϕ e -S[ϕ;z,Q] Dϕ e -S[ϕ;0,0] , (1.27) 
where Z 0 = Dϕ e -S[ϕ;0,0] and the self energy is

H self = N v(0)/2.
Between the second and third line we used the power series of the exponential function, which allows the write the integrand as the exponential of the action of the field theory S, which is given by

S[ϕ; z, Q] = dx β 4 ∂ x ϕ(x) 2 -z(x) e -qeβiϕ(x) -iβQδ(x)ϕ(x) , (1.28) 
where we have introduced the renormalized fugacity z(x) → z(x) exp(βv(0)/2). Equation (1.26) can be reformulated in terms of the field theory, which yields

n = z e -iqeβϕ S , (1.29) 
where (•) S is the average of the field with respect to the action S.

The functional integral in Eq. (1.27) cannot be computed exactly, but we can proceed using perturbative methods. To zeroth order this integral is given by saddle-point (SP) approximation, which is defined by where ϕ SP is the saddle-point approximation field which satisfies the following equation

δS[ϕ; q, Q] δϕ(x) ϕ=ϕ SP = 0, (1.30 
∂ 2 x {iϕ SP (x)} = Qδ(x) - 2qez e -qeβiϕ SP (x) , (1.31)
where z is the uniform fugacity and Qδ(x) is included as a boundary condition on it. With the following relation φ PB = -iϕ SP , it follows that Eq. (1.31) is the Poisson-Boltzmann equation. Note that by considering the grand partition ensemble, we have fixed Q whereas the number of counterions is variable. Hence, non-neutral configurations are considered. However, the stationary approximation corresponds to the neutral configuration, such that

qe dx n SP -Q = 0, (1.32) 
where n SP is given by Eq. (1.29), for ϕ = ϕ SP . The situation is different with salt, where there is an infinite number of neutral configurations.

Previous studies have shown that in 3D, Ξ g can be written as a loop expansion around the saddle point with small parameter Ξ [START_REF] Netz | Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions[END_REF]. Therefore, the Poisson-Boltzmann treatment becomes exact when Ξ → 0. This result has been proven by other means in 1D for the salt-free case [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF] and in 3D for a symmetric electrolyte [START_REF] Kennedy | Debye-Hückel theory for charge symmetric Coulomb systems[END_REF][START_REF] Kennedy | Mean field theory for Coulomb systems[END_REF]. However, there are some cases where Poisson-Boltzmann equation is not exact in the weak-coupling limit and furthermore it performs poorly. This is known for electrolytes with dielectric inhomogeneity [START_REF] Wang | On the theoretical description of weakly charged surfaces[END_REF]. This remark is given for completeness sake, but it is of no concern for this Chapter; we focus on a salt-free system.

One-dimensional colloid

Herein we consider a salt-free one-dimensional colloid with dielectric inhomogeneity. But first, let us briefly summarize some important results for the case where there is a homogeneous dielectric media with permittivity . Consider a system made of two charge-symmetric large particles Q > 0 at distance L, which will be referred to as colloids, and N oppositely-charged particles -2Q/N . As a whole this system is neutral. Since the colloids have macroscopic degrees of freedom, they are kept fixed while taking the Gibbs ensemble averages, which are taken over the configuration space of counterions. The equilibrium properties of this one-dimensional colloidal suspension were studied using a field representation [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF] and by direct calculation of the partition function [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF], in a more general context where the colloids may have charge asymmetry. We proceed to describe some of the most relevant results for the discussion in this Chapter, specialized to charge symmetric colloids.

The discreteness of the counterion distribution is a prominent feature that determines the behavior of thermodynamic quantities such as the pressure and density profile. Indeed, phenomena such as like-charge attraction may only manifest for an odd number of counterions. To see this, consider the case where the colloids 1.1 Introduction are far apart: the counterions, which are attracted to them, try to divide such that each colloid is screened by N/2 counterions. This partition is successfully carried out when N is even, as illustrated in Fig. 1.4. Consequently, two neutral objects are formed and recalling Section 1.1.2, we have that the 1D electrostatic force on a particle depends exclusively on right-left charge difference and hence each neutral block exerts zero force onto the other. If we additionally consider that thermal effects (e.g. counterion collisions with the colloids) will add a repulsive interaction, it can be seen that for large L and N even, there is an effective repulsion between the colloids.

+ + --- --- L Effective repulsion N 2 counterions N 2 counterions Neutral block Neutral block colloid colloid Q Q -2Q N -2Q N -2Q N -2Q N -2Q N -2Q N Fig. 1
.4: Sketch of the 1D colloidal suspension studied in [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF], an electroneutral system is made of two colloidal charges Q separated a distance L and N counterions in between them, each of charge -2Q/N . In this case N is even. For large L, the system decouples into two neutral blocks, each made of one colloid and N/2 counterions. Since this is a one-dimensional system, the net Coulomb force exerted by the particles of one neutral block onto a charge belonging to the other block is exactly zero.

On the contrary, when N is odd, the counterions cannot split in half. At large distances the complete screening of the colloids (e.g. neutral object formation) is frustrated, since only N -1 counterions may be divided among the colloids. The remaining particle, which is in middle and referred to as the misfit, is the source of charge imbalance. This is depicted in Fig. 1.5, where the misfit is closer to the left colloid and thus makes up a block with net charge -Q/N (over-screened), while the right colloid forms an object with charge +Q/N (under-screened). The situation is analogous when the misfit is closest to the right colloid. In this rudimentary picture, the left and right objects have an attractive force of magnitude -Q 2 /(N 2 ), which in fact turns out to be the leading term of the large-L expansion of the exact pressure.

In reality, the misfit does not bind to either of the screened colloids; it moves freely between them. This happens because the particle resides in between two objects with the same charge, where the electric field vanishes. Therefore, it is equally probable to be found closer to either screened colloid: in this sense we say that the misfit is shared by them. The dynamics of the misfit between the screened colloids is studied in Chapter 2.5. With respect to the equilibrium properties, this fact is used to improve the approximation of the pressure, by adding a repulsive term due to the misfit particle [START_REF] Trizac | Like-charge attraction in a one-dimensional setting: the importance of being odd[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. This particle roughly behaves as an ideal particle in

16 Chapter 1 One-dimensional colloidal model with dielectric inhomogeneity + + --- --- - L Effective attraction N -1 2 counterions N -1 2 counterions charge -Q N charge + Q N colloid colloid Q Q -2Q N -2Q N -2Q N -2Q N -2Q N -2Q N -2Q
N Fig. 1.5: Same as in Fig. 1.4 but now N is odd. Unlike for the even case, when L is large the formation of two neutral blocks is frustrated by the fact that there is an odd number of counterions, since they cannot split in half. Then one colloid gets (N + 1)/2 counterions and the other (N -1)/2. Therefore, the two objects that form have a net charge of magnitude Q/N and consequently there is a non-vanishing electric interaction between them.

a box of length L -2 x N/2 ∞ , where x N/2 ∞ = L -x N/2 ∞
is the average span of each double-layer, when L → ∞. As previously mentioned, this quantity was computed in [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF], which is used to compute the pressure as follows

P c = - Q 2 N 2 + k B T L -2 B N -1 N +1 + O B L , (1.33) 
where the second term is the usual inverse 'volume' (length in 1D) for an ideal gas. This heuristic approach yields the correct expression to first order of inverse length, which is verified using the pressure's large-L expansion [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF].

The 1D colloid in a homogeneous dielectric presents the unusual opportunity to compare the exact results both for the discrete model and its corresponding mean-field treatment. In [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF] the system was analyzed using a field theory approach. The Poisson-Boltzmann theory was shown to be the saddle-point approximation of the resulting functional integral and then solved to obtained the following equation of state

eβL 2 √ P PB = arctan Q √ P PB , ( 1.34) 
where P PB is the pressure in the PB approximation and e is the counterion charge (q = 1). In this limit there is no like-charge attraction, as expected since the counterion distribution becomes continuous and the misfit contribution vanishes. The pressure fluctuations around the mean-field solution were also computed and shown to be linear in the coupling parameter Ξ, such that P -P PB ∼ -Ξ/L. Therefore, for this system the mean-field treatment is exact in the weak-coupling limit (Ξ → 0). Another study [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF] computed this limit using an explicit calculation in the isobaric ensemble where the system is at constant pressure and the intercolloid spacing fluctuates. Using the closed form for the average length in terms of the isobaric pressure (i.e. equation of state), it was shown that in the limit N → ∞ at fixed Q, it becomes the mean-field equation of state (Eq. (1.34)).

So far we discussed a salt-free one-dimensional colloid, where the colloids are impermeable to the counterions and the system is a homogeneous dielectric medium. The main features that distinguish this Chapter from those studies is that the colloids are now permeable to the counterions and the presence of a dielectric discontinuity. At each colloid's boundary there is a dielectric discontinuity, as seen in Fig. 1.6. By considering this piece-wise linear dielectric medium, the interaction potential changes. Two models are considered: the colloids' boundary are either impermeable to the counter-ions, or not. When they are permeable, the counter-ions not only populate the interstitial region between the colloids (0 ≤ x ≤ L in Fig. 1.6), but also the colloid's exterior (x ≤ 0 and x ≥ L), see e.g. [START_REF] Chepelianskii | On the effective charge of hydrophobic polyelectrolytes[END_REF][START_REF] Chepelianskii | Strong screening in the plum pudding model[END_REF][START_REF] Baulin | Self-assembly of spherical interpolyelectrolyte complexes from oppositely charged polymers[END_REF] for an analysis of this penetrable model.

+ + + + + - - - - - - x x 0 L x 1 x 2 x 3 x 1 1 2 a) b)
Fig. 1.6: Sketch of the colloidal suspension with 3 counter-ions (N = 3, shown by the filled disks). The dark rectangles at 0 and L represent the colloidal charges. The dielectric constant is 2 for 0 < x < L and 1 elsewhere. The impermeable case (panel a) forbids particles to cross the spatial regions delimited by the colloids' positions. For example, in sketch a) the positions x 1 , x 2 and x 3 of the left, center and right counterion are restricted to the intervals given by x 1 < 0, 0 < x 2 < L, and x 3 > L respectively. Instead, the permeability condition (panel b) refers to counter-ions with no restriction on the positions x 1 , x 2 and x 3 . In the canonical situation, the distance L between the two colloids is fixed while it does fluctuate under isobaric conditions.

The remainder of Chapter 1 is organized as follows. The "pressure", which in 1D is nothing but the force, is obtained in Section 1.2 for both canonical and isobaric ensembles (formally introduced later) to examine the possible occurrence of likecharge attraction. The density profile is then calculated and a contact condition is established for both impermeable and permeable colloids. In the former case, the effects of electrostatic images cancel out and we get the same result as for the homogeneous dielectric situation, while for the latter, the dielectric jump does modulate the counter-ion density and consequently the pressure. In Section 1.3, the one particle results are generalized for an arbitrary number N of interacting counterions. Finally, we compare in Section 1.4 our exact treatment to the mean-field prediction, which proves to be a fair approximation even for small N .
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Chapter 1 One-dimensional colloidal model with dielectric inhomogeneity

One counter-ion

In this Section, we present the results for a single counter-ion (N = 1) of charge e. Such a limiting case may seem distant from experimental reality discussed in the General introduction, where the colloidal charge largely exceeds the ionic one; it nevertheless offers a useful starting point. Two colloids, each with charge -e/2, are located at x = 0 and x = L. The dielectric medium is piece-wise constant with 2 for x ∈ [0, L] and 1 everywhere else (Fig. 1.6). We characterize the dielectric jump by the parameter ∆ = ( 2 -1 )/( 2 + 1 ). This quantity is bounded, with -1 ≤ ∆ ≤ 1. The two dielectric jumps create an infinite set of image charges, leading to an electric potential defined in equations (1.35)- (1.36). This Section first addresses the impermeable case, and then connects it to its permeable counterpart. In the former, the counter-ion is restricted to be in one of the three spatial regions delimited by the points where the dielectric medium is discontinuous. On the other hand, in the permeable situation, the counterion's position is unrestricted. In both cases, we obtain a contact-theorem-like relation, establishing a connection between the intercolloidal force, and some contact density.

Impermeable colloids

With an impenetrable wall at 0 and L, there are three possibilities to place the counter-ion: x < 0, 0 < x < L or x > L. Throughout this Chapter, we will call these the left, middle and right regions respectively. Due to the dielectric inhomogeneity, the electrostatic interaction is not given by Eq. (1.4). Instead we are required to solve Poisson's equation (Eq. (1.3)) with a piece-wise constant dielectric constant. First, we consider a counterion initially in the middle region. We may proceed by the method of images [START_REF] Jackson | Classical Electrodynamics[END_REF], in which the potential is obtained by adding image charges that replicate the discontinuity condition at the interface between different dielectric media (namely, x = 0 and x = L). Figure 1.7 has a sketch of the situation, where the counterion is the black particle at x and the image charges are in white. First, the image-particle i L 1 (charge e∆) is added at -x , which together with the counterion creates a potential that satisfies the discontinuity condition at x = 0. However, the discontinuity condition at L is not met, which call to add another image i R 1 (charge e∆). In doing so, we now fail to meet the discontinuity at x = 0, which requires to add yet another image, i L 2 (charge e∆ 2 ), which again frustrates the potential from satisfying the L = 0 discontinuity condition. This process goes on indefinitely and hence, we require to sum over an infinite number of image charges. We summarize 1.2 One counter-ion the results and give the detailed calculation in Appendix 1.A. The potential created at point x by a charge qe located at x is defined piece-wise as:

V (x, x < 0) =                    - e |x -x | 1 - 2eL∆ 2 (1 -∆) 2 , x < 0 - ex 2 + ex 1 - 2eL∆ 2 (1 -∆) 2 , 0 < x < L - ex 1 + ex 1 - 2eL∆ 2 2 (1 -∆) 2 , x > L, (1.35) 
and

V (x, 0 < x < L) =                    ex 1 - ex 2 - 2eL∆ 2 (1 -∆) 2 , x < 0 - e |x -x | 2 - 2eL∆ 2 (1 -∆) 2 , 0 < x < L - ex 1 + ex 2 - 2eL∆ 2 2 (1 -∆) 2 , x > L, (1.36)
where the missing case where x > L is computed by symmetry, using

V (x, x > L) = V (L -x, L -x ).
The information conveyed by these relations is that when a charge qe sits at x , the modulus of the electric field created at point x is always qe/ i if x is in the region with permittivity i , while the direction of the force changes depending if x is located on the right, or on the left of the source at x .

0 x L i L 1 i R 1 i L 2 i R 2 i L 1 i R 1 
Fig. 1.7: Sketch of the image charge construction to compute the potential V due to the dielectric discontinuities. The top sketch shows the initial system, with a counterion (disk) and the colloids (rectangles). In the middle sketch the first generation of images is added, where the super-indices L and R are for images generated by reflection upon the left (at x = 0) or right (at x = L) boundaries respectively. For the third row the second generation of images is added and this process goes on indefinitely. The sub-indices indicate the generation of the images, where the k + 1-th generation is created by its predecessor (k-th), except for the first generation which is created by the counterion.

With an impenetrable wall there are three possible configurations that depend on where the counterion is located. We can label each configuration by specifying the sub-indexes N and N r that indicate how many counter-ions are in the left and 20 Chapter 1 One-dimensional colloidal model with dielectric inhomogeneity right regions respectively. With this notation, the potential energy U 1 for a colloidal suspension with one counterion is:

U 1 = e 2 2 L 4 -LN r 1 + ∆ 1 -∆ + x(N r -N ) 1 + ∆ 1 -∆ , ( 1.37) 
where N α ∈ {0, 1} (α = , r). The previous expression is obtained by adding the microscopic potential interactions V (x, x ) among particles and the self interaction terms V (x, x)/2. The counter-ion density is proportional to the Boltzmann factor of U 1 and thus exponential. We proceed to treat this system in a canonical ensemble: the particles are at equilibrium with a thermal reservoir at temperature T , and the distance between the colloids L is fixed. The canonical partition functions Z N ,Nr (N, L, ∆) for each possible impermeable systems are:

Z 1,0 (1, L, ∆) = 0 -∞ d x e -βU 1 left region, (1.38a) Z 0,0 (1, L, ∆) = L 0 d x e -βU 1 middle region, (1.38b) Z 0,1 (1, L, ∆) = ∞ L d x e -βU 1 right region, (1.38c) 
where x = x/ B is rescaled by the Bjerrum length and U 1 is evaluated with the respective N , N r . These integrals yield the following result:

Z 1,0 (1, L, ∆) = 1 -∆ 1 + ∆ e -L/4 left region, (1.39a) 
Z 0,0 (1, L, ∆) = L e -L/4 middle region, (1.39b)

Z 0,1 (1, L, ∆) = 1 -∆ 1 + ∆ e -L/4
right region.

(1.39c)

These partition functions are proportional to their homogeneous expressions with ∆ = 0:

Z N ,Nr (1, L, ∆) = 1 2 N +Nr Z N ,Nr (1, L, 0), (1.40) 
where 1 / 2 = (1 -∆)/(1 + ∆). Equation (1.40) yields the same pressure as for a system with ∆ = 0 , which was shown in [START_REF] Varela | Configurational and energy landscape in one-dimensional Coulomb systems[END_REF] to follow the form of the contact condition [START_REF] Henderson | An exact formula for the contact value of the density profile of a system of charged hard spheres near a charged wall[END_REF][START_REF] Henderson | Some comments regarding the pressure tensor and contact theorem in a nonhomogeneous electrolyte[END_REF]: an exact result for impermeable charged bodies where a pressure is written as the sum of a contact density term, minus a term involving the square of some charge, which reads

P c = k B T n N ,Nr (0 + ) - e 2 2 1 2 -N 2 , ( 1.41) 
where e 1 2 -N is the net charge for x ≤ 0 and for x > 0 due to electroneutrality. In brief, the first term of the contact condition gives the thermal-driven repulsion whereas the second the attractive component due to electrostatics.

The equivalent expressions at contact with the right colloid follow from the replacements n(0 + ) → n(L -) and N → N r . In rescaled units and using the contact theorem with the exterior contact point 0 -where the pressure is zero, we have the following expressions n N ,Nr (0

+ ) = P c + (1/2 -N ) 2 , (1.42a) n N ,Nr (0 -) = 2 1 N 2 . (1.42b)
Here, P c = 2 P c /e 2 and n = n 2 /(e 2 β) are the rescaled canonical pressure and particle number density respectively. The discontinuity of the ionic density at x = 0 is a consequence of the impermeability of the three compartments. Equation (1.42b) is the contact theorem in the left region ( x ≤ 0): the particles therein extend over an infinite region, which leads to a vanishing pressure. Besides, the factor 2 / 1 stems from the dimensionless number density n = 2 n/βe 2 . The particular case where the counter-ion is between the colloids has been studied before and it will be shown to be equivalent to the permeable situation with ∆ = 1, where the ion cannot escape the central segment 0 < x < L, due to the strong image charge repulsion. Using Eq.(1.42a) and the expression for n(0 + ) which follows from Eqs. (1.37) and (1.39), we have that the pressure is

P c = - 1 4 , {N , N r } = {0, 1}, (1.43a 
)

P c = 1 L - 1 4 , N = N r = 0. (1.43b) 
Therefore, there is always like charge attraction when the counterion is in the exterior regions (Eq. (1.43a)), independently from L. When it is in the middle domain, there is attraction for L > 4. As alluded to in the introduction, the phenomenology obtained in 1D with N = 1 counterion is relevant for the prototypical 3D system of strongly charged plates neutralized by counterions: the small distance equation of state takes the very same form in both cases, as discussed in [START_REF] Trizac | Like-charge colloidal attraction[END_REF]. In the impermeable case, we conclude that the dielectric jump is invisible to the pressure, from a cancellation of the forces exerted by the (in 1D infinite range) image charges. This can be visualized in Fig. 1.7: each particle of the first generation pair (middle sketch) creates a field of equal magnitude and opposite direction in the middle region, thus canceling out. This happens with every generation of image charges. Then, each dielectric only affects the distribution of the particles that occupy it and the sole contribution to the colloid's pressure is exclusively through the total charge of the left and right regions.

Permeable colloids

We now allow the counter-ion of charge e to lie anywhere in the line, without positional restriction. Unlike with 3D Coulomb potential, there is no divergent term when the counter-ion overlaps with the colloidal (point) charge, due to the linear nature of the 1D Coulomb potential. This situation is equivalent to that in three dimensions, when a point ion approaches a uniformly charged plane. We move on to describe in detail the equation of state, the contact condition and the counter-ion's position fluctuations.

Equation of state

Getting physical intuition on the pressure's behavior requires an understanding of how the counter-ion number density n 1 is shaped by the dielectric jump. This connection is encoded in the contact theorem, but it can also be identified with the expression obtained through the direct calculation of the pressure, following from the free energy. In the present one particle problem, the ionic density is again given by the Boltzmann factor of the potential in Eq. (1.37)

n 1 ( x, L, ∆) = 1 L + 2 1-∆ 1+∆ ×          e x( 1+∆ 1-∆ ) , x < 0 1, 0 < x < L e ( L-x)( 1+∆ 1-∆ ) , x > L, (1.44)
where the continuity of the ionic density is enforced. We observe the appearance of a decay length (1 -∆)/(1 + ∆) = 1 / 2 at each side, quantifying the "leaking" of the ion outside the central region. Equation (1.44) shows that for negative dielectric jumps ( 1 > 2 ), attractive images drive the counter-ion to the exterior regions (left and right). In contrast, when ∆ > 0 the image charges repel the counter-ion thus increasing the middle region density (see Fig. 1.8a). This leads to an increase of pressure as a function of ∆.

For a system at constant length (canonical situation), the permeable and impermeable cases are related through their partition functions. The former is given by the sum of all the latter situations:

Z c (1, L, ∆) = Z 1,0 (1, L, ∆) + Z 0,0 (1, L, ∆) + Z 0,1 (1, L, ∆).
For N = 1, a direct computation is tractable and thus it can be checked by direct integration of the Boltzmann factor that Z c (1, L, ∆) is the sum of all possible Z N ,Nr (1, L, ∆):

Z c (1, L, ∆) = e -L/4 L + 2 1 -∆ 1 + ∆ . (1.45)
It follows that the canonical pressure P c = d ln Z c /d L can be written as the sum of an attractive and a repulsive term

P c = - 1 4 + 1 L + 2 1-∆ 1+∆ . (1.46)
The attractive term is the force between two opposite charges ±e/2 while the repulsive term is the pressure exerted by a free counter-ion confined in an effective ) counter-ion system with permeable colloids at a distance L = 1. The probability of finding the particle between the colloids is monotonically increasing with ∆. By virtue of the contact theorem, the repulsive contribution to the pressure increases, as so does the pressure itself, as seen in panel b. The limit ∆ = 1 is equivalent to the model studied in [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF] where two impermeable colloids interact with counter-ions sandwiched in between. (b) Equation of state for the canonical ( P c ) and isobaric ( P ) ensemble with a permeable colloids and N = 1 counter-ion. Except for ∆ = 1, the effective length L eff is non vanishing and thus keeps the canonical pressure bounded for any colloid distance, at variance with the average isobaric length L that vanishes as P → ∞. The extreme dielectric discontinuity with ∆ = 1 indeed makes ionic excursions in the outer right or left regions energetically too costly. There is the possibility of like-charge attraction (state points inside the gray shade) for any given dielectric jump ∆ since both P c and P tend to -1/4 at infinite colloid separation. The reason why

P c (∆ = 1) = P (∆ = -1) is explained in Appendix 1.B.
length L eff = L + 2 1 / 2 . The counterion density in the middle region is indeed uniform, for the reason that the electric field acting there does cancel by symmetry. The effective length is the sum of the colloids' distance and the decay length alluded to after Eq. (1.44). Since there is an L independent term in the effective length, the pressure remains finite even when the colloids collapse onto each other ( L → 0). The exception is for ∆ = 1, where the effective length vanishes since the model becomes effectively impermeable: the counterion cannot escape the middle region, which leads to a diverging entropic cost for L → 0 in the canonical fixed-L ensemble, and thus a diverging pressure. The confinement of the counterion at ∆ = 1 can be understood in terms of image charge interactions: for ∆ > 0 the dielectric jump determines the magnitude of the repulsive force exerted onto the counterion by the image charges, which at ∆ = 1 is maximal and strong enough to prevent the counterion from leaving the middle region. In this sense, the system becomes effectively impermeable due to the confinement effect of the image charges, and not because the colloids would preclude the ions to go through. Fig. 1.8b shows that a region of like-charge attraction always exists regardless of the dielectric jump. It is given by L > (2 + 6∆)/(1 + ∆). Remembering the definition of our rescaled lengths, L = Lβe 2 / 2 , this criterion is expected: it states that for a fixed length L, attraction is triggered by decreasing the temperature T ∝ β -1 : like-charge attraction indeed is a strong-coupling phenomenon, here a low-T feature.

The contact theorem is derived for an impermeable system but an equivalent relation can be found for permeable situations. By replacing the electric field by its statistical average, we get the contact condition:

P c = n(0) - 1 2 -N 2 , (1.47)
where the term in the average is the square of the total charge in the left region x ≤ 0, including thus the charge -e/2 at x = 0. The contact theorem yields Eq. (1.46) when the quantities n(0), N and N 2 are replaced by their explicit expressions, which will be computed in the next Section. Therefore, we can view the (positive) repulsive term in Eq. (1.47) as given by the contact number density which is monotonically increasing with ∆. As previously stated, the attractive term is constant and given by the force between the colloidal particles. This force follows from the term -(1/2 -N ) 2 , which yields -1/4 due to the special feature N = N 2 of the single counter-ion case (N is indeed either 0 or 1). Note that Eq. (1.47) when ∆ = 1 coincides with Eq. (1.42a) because these respective permeable and impermeable cases have the same density profile: ∆ = 1 precludes counterions excursions outside the central region.

We now turn to the equation of state for the isobaric ensemble. In this ensemble the number of particles, temperature and pressure are fixed. Unlike in the canonical case, the system's length is not fixed; it is allowed to fluctuate in order to preserve a constant pressure by exchanging length and work with the barostat (i.e. the piston). The isobaric partition function Z P associated to this ensembles is given by the Laplace transform of the canonical partition function:

Z P = R + e -LP Z c dL, (1. 48 
)
where P is the isobaric pressure. Then, instead of using the system's length for the equation of state we compute its average, which is given by L = -∂ ln Z P /∂ P and yields

L = 2 P + 1/4 - 4(1 -∆) 4(1 -∆) P + 3 + ∆ . (1.49)
The inversion of P as a function of L shows that the asymptotic value of the pressure at infinite colloid distance is -1/4, which is the same as the canonical ensemble limit.

Fluctuations

It was previously stated that the fluctuations are irrelevant to understand the pressure for N = 1 because all moments of the number of left (and right) counter-ions are the same N m = N for all orders m. However, for N > 1, they do play a key role and for the sake of completeness, we discuss fluctuations already for

1.2 One counter-ion N = 1.
The moments N m can be computed using the probability of each of the impermeable configurations: p N ,Nr = Z N ,Nr /Z. The average is then defined as (•) = N ,Nr (•)p N ,Nr . In the present case, N only features a contribution from Z 1,0 /Z:

N = N 2 = 1-∆ 1+∆ L + 2 1-∆ 1+∆ , (1.50) so that N 2 N 2 = 2 + 1 + ∆ 1 -∆ L. (1.51)
The fluctuations of N are monotonically increasing in L, with a range given by 2 ≤ N 2 / N 2 < ∞. For greater number of counter-ions, the behavior is also monotonically increasing, but unlike for N = 1, N 2 / N 2 is bounded from above.

We now turn our attention to the compressibility and its relation to the variance of the number of particles, σ 2 N . In a grand canonical situation, σ 2 N would be related to the compressibility χ T through

k B T χ T = L σ 2 N N 2 . (1.52)
We should not expect this fluctuation-response connection to hold in our canonical or isobaric cases, since we are not considering the thermodynamic limit where all ensembles become equivalent. Nevertheless, it is instructive to study the quantitative violation of this relation. First, we compute the variance of the number of inside counter-ions N in = N -N -N r :

σ 2 N in =   L L + 2 1-∆ 1+∆     2 1-∆ 1+∆ L + 2 1-∆ 1+∆   , ( 1.53) 
where we identify in the right hand side of the equation two factors: N in (left factor) and N out (where N out = N + N r ) in the right. We then get σ 2 N in = N in N out . Using the expression for N in follows that σ 2 N in / N in ρ in is the total exterior effective length:

L σ 2 N in N in 2 = 2 1 -∆ 1 + ∆ , ( 1.54) 
where we have used ρ in = N in /L. To see how this compares to the direct calculation of the compressibility, we proceed to compute χ -1 c = -L∂ P c /∂ L:

χ c = 4 L 1 -∆ 1 + ∆ 2 + 4 1 -∆ 1 + ∆ + L. (1.55)
We identify in the previous equation the compressibility of the impermeable configuration with N = N r = 0, L, which is dominant for large lengths. Quite expectedly, this very term is recovered with ∆ = 1. The computations for the isobaric ensemble are analog:

L σ 2 P N in N in 2 P = L 1 -∆ 1 + ∆ 2 P + 1 2 , (1.56)
where L is given by Eq. (1.49). The isobaric compressibility χ P = -L -1 ∂ L /∂ P is:

χ P = 1 P + 1 4 + 4(1 -∆) 4 P (1 -∆) + 3 + ∆ - 4(1 -∆) 4 P (1 -∆) + 5 + ∆ . (1.57)
Just as in the canonical ensemble, the term for the impermeable colloid with the counterion in the interstitial region appears explicitly, 1/( P + 1/4), and it dominates for P → -1/4. In order to compare with the canonical ensemble results, we express the isobaric pressure as a function of L and find that χ P vanishes as L → 0. This is at variance with the canonical expression, Eq. (1.55), which diverges as 1/ L, see Fig. 1.9. This is understood as follows. The isobaric length of the system requires an infinite pressure to vanish, and be fluctuation-less. The corresponding susceptibility, measured from the response of the mean length to an extra change of pressure, thus vanishes. On the other hand, at a fixed L close to 0, ∂ L/∂ P c approaches its minimum non-vanishing value due to the decay length term and thus L -1 ∂ L/∂ P c diverges. In other words, within the canonical description at short separations, the mean number of counterions in the interior regions is small, and does not resist compression. Hence, the large compressibility, signaled by the divergence of χ c . Besides, in the infinite length limit, both compressibilities show linear behavior: lim L →∞ χ P / L = (2 + ∆) /4 and lim L→∞ χ c / L = 1. This illustrates how ensembles drastically differ, when the thermodynamic limit is not being considered (note that L → ∞ does not correspond to the thermodynamic limit since N is here fixed to one). (broken lines, one for canonical, one for isobaric) is clearly violated in both ensembles. The behavior at zero length is radically different: χ c diverges while χ P vanishes. Both ensembles predict unbounded growth with differing rates as L → ∞.

N counter-ions

Let us now consider the case of N counter-ions of charge e in the same dielectric setting as considered so far, and colloids with charge -eN/2 each such that electroneutrality holds. We will compute the equation of state for any N and show, both from statistical and mechanical arguments, that a contact condition exists regardless of the permeability of the colloids. The electrostatic potential energy U N for a colloidal suspension with N counterions reads:

U N = e 2 L 2 N 2 4 -N N r - 2∆N 2 r 1 -∆ + e 2 N k=1 (1 -2k) x k 1 + e 2 N -Nr k=N +1 (2k -1 -N ) x k 2 + e 2 N k=N -Nr+1 (2N -2k + 1) x k 1 , (1.58) 
where the positions are labeled such that

x 1 < • • • < x < 0 < x +1 < • • • < x N -Nr < L < x N -Nr+1 < • • • < x N
and U N is computed using the same procedure as outlined for U 1 (see Eq. (1.37)). The first N and last N r positions are in the left and right regions respectively. From the previous equation the force felt by particle k is:

- ∂U N ∂x k =                    e 2 1 (2k -1) k ≤ N e 2 2 (N + 1 -2k) N < k ≤ N -N r e 2 1 (2k -2N -1) k > N -N r .
(

Just as in the case ∆ = 0 (see Section 1.1.2), the force felt by a counter-ion in 1D depends only on the difference between the total charge on its right and that on its left, with the difference that now the counterion's position dictates the dielectric constant to be used in the force: Q left-right e/ k (k = 1, 2).

Impermeable colloids

In this Section, we will derive results for an impermeable colloid with an arbitrary number of counter-ions, which as in the one counter-ion case will provide the building block of the partition function in the permeable case. The system consists of N counter-ions with a fixed number of particles in each of the three regions: N , N -N -N r and N r in the left, middle and right region respectively. With this convention, the partition function Z N ,Nr (N, ∆, L) is:

Z N ,Nr = D e -U N N k=1 d x k , ( 1.60) 
where

U N = U N β and D = {-∞ < x 1 < • • • < x < 0 < x +1 < • • • < x N -Nr < L < x N -Nr+1 < • • • < x N < ∞}.
The computation of the partition function can be 28

Chapter 1 One-dimensional colloidal model with dielectric inhomogeneity carried out following a similar procedure as in [START_REF] Varela | Configurational and energy landscape in one-dimensional Coulomb systems[END_REF], where Z N ,Nr is written as a product of three terms, one for each region:

Z N ,Nr = Z left N ,Nr Z middle N ,Nr Z right N ,Nr , (1.61) 
where

Z left N ,Nr = -∞< x 1 <•••<x <0 e -U left N N k=1 d x k , (1.62a) Z middle N ,Nr = e -L N 2 4 -N Nr- 2∆N 2 r 1-∆ 0<x +1 <•••<x N -Nr < L e -U middle N N -Nr k=N +1 d x k , (1.62b) Z right N ,Nr = L<x N -Nr +1 <•••< x N <∞ e -U right N N k=N -Nr+1 d x k , ( 1.62c) 
and

U left N = 2 1 N k=1 k 2 ( x k+1 -x k ),
x N +1 ≡ 0, (1.63a)

U middle N = - N -Nr k=N k(N -k)( x k+1 -x k ), x N ≡ x N -Nr ≡ 0, (1.63b) U right N = 2 1 N k=N -Nr+1 (N -k) 2 ( x k+1 -x k ), x N -Nr ≡ 0, (1.63c) 
where U α N = βU α N (α =∈ {left, middle, right}). The potentials are written in terms of the position difference of nearest neighbors to follow the analogous procedure used in [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF][START_REF] Prager | The one-dimensional plasma[END_REF][START_REF] Lenard | Exact statistical mechanics of a one-dimensional system with Coulomb forces[END_REF], where they recast the partition function as a convolution. For this purpose we introduce the auxiliary functions g k and f k :

g k (x) = e k 2 x H(-x),
(1.64a)

f k (x) = e k(N -k)x H(x), (1.64b) 
where H(x) is the Heaviside step function. In terms of these functions, the partition functions are

Z left N ,Nr = L N k=1 g k (-x 1 ) (0) = ( 1 / 2 ) N N ! 2 , (1.65a) Z middle N ,Nr = e -L N 2 4 -N Nr- 2∆N 2 r 1-∆ e -Nr(N -Nr) L N -Nr k=N f k ( L), (1.65b) Z right N ,Nr = e -( 2 / 1 )Nr 2 L L Nr k=1 g k (-y N ) (0) = ( 1 / 2 ) Nr N r ! 2 e -( 2 / 1 )Nr 2 L , (1.65c) 1.3 N counter-ions
where

y k = x k -L, n k=m g k = g m g m+1 • • • g n and L{f (x)}(0)
is the one-sided Laplace transform of f evaluated at 0. Then, the partition function is given by

Z N ,Nr (N, ∆, L) = 1 -∆ 1 + ∆ N +Nr e -N 2 L/4 N ! 2 N r ! 2 N -Nr k=N f k ( L) , (1.66)
where we identify the term in the right parenthesis as partition function for the uniform dielectric case (∆ = 0):

Z N ,Nr (N, ∆, L) = 1 -∆ 1 + ∆ N +Nr
Z N ,Nr (N, 0, L), (1.67) where Z N ,Nr (N, 0, L) was computed in [START_REF] Varela | Configurational and energy landscape in one-dimensional Coulomb systems[END_REF]. As stated in Section 1.2 and discussed in Appendix 1.D, there is a contact condition for the uniform dielectric case, that transposes here into n N ,Nr (0

+ ) = P c + (N/2 -N ) 2 , (1.68a) n N ,Nr (0 -) = 2 1 N 2 , (1.68b)
where the density profile is defined as follows

n N ,Nr ( x) = 1 Z N ,Nr (N, ∆, L) N k=1 D k e -U N ( x 1 ,..., x k = x,..., x N ) N j=1 j =k d x j (1.69)
where [START_REF] Varela | Configurational and energy landscape in one-dimensional Coulomb systems[END_REF]: 

D k = {-∞ < x 1 < • • • < x < 0 < x +1 < • • • < x N -Nr < L < x N -Nr+1 < • • • < x N < ∞ | x k = x}, which yields
n N ,Nr ( x < 0) = N ! 2 1 + ∆ 1 -∆ × N k=1 N j=k 2j(-1) 2N -k-j (j + k -1)! (k -1)! 2 (j + N )!(j -k)!(N -j)! e j 2 x( 1+∆ 1-∆ ) , (1.70) n N ,Nr (0 < x < L) = 1 + ∆ 1 -∆ N +1 1 Z N ,Nr (N, ∆, L) × N -Nr k=N +1 Z N ,N +1-k (N, ∆, x)Z k,Nr (N, ∆, L -x)[k!(N + 1 -k)!]
Z c (N, ∆, L) = -∞< x 1 <•••< x N <∞ e -U N N k=1 d x k . (1.72)
Just as in the one counter-ion case, Eq. (1.72) is the sum over all the possible configurations of N particles arranged in the three regions delimited by the colloid's positions:

Z c (N, ∆, L) = N N =0 N -N Nr=0 Z N ,Nr (N, ∆, L), ( 1.73 
)

Z P (N, ∆, P ) = N N =0 N -N Nr=0 Z P N ,Nr (N, ∆, P ), (1.74) 
where the lowercase partition functions have N counter-ions at x < 0 and N r at x > L. Since the impermeable isobaric partition functions Z P N ,Nr are the Laplace transform of Z N ,Nr , we may proceed using the convolution theorem:

Z P N ,Nr = 1 -∆ 1 + ∆ N +Nr 1 N ! 2 N r ! 2 N -Nr k=N 1 P + N 2 4 -k(N -k) (1.75)
After substituting this expression in Eq. (1.74) and doing some algebra, it allows to write the permeable partition function as follows:

Z P =    N 2 -1 n=0 n m=0 + N n= N 2 N -n m=0    2 (n!m!) 2 1-∆ 1+∆ n+m Γ(m -N 2 -i P )Γ(m -N 2 + i P ) 2 δmn [( N 2 -n) 2 + P ]Γ( N 2 -n -i P )Γ( N 2 -n + i P ) , ( 1.76) 
where Γ(x), x and x are the gamma, ceiling and floor functions respectively, and the first double sum has poles of order 2 while the second has simple poles. The canonical partition function is:

Z c (N, ∆, L) = δ N 2 N 2 N 2 -1 n=0 n m=0 c nm N 2 + N 2 -1 k=0 e -( N 2 -k) 2 L k n=0 n m=0 (a nmk L + b nmk ) + N 2 k=0 e -( N 2 -k) 2 L N -k n= N 2 k m=0 c nmk + N 2 -2 k=0 e -( N 2 -k) 2 L N 2 -1 n=k+1 k m=0 c nmk ,
(1.77)

1.3 N counter-ions
where the coefficients a ijk , b ijk and c ijk are found in Appendix 1.C. Note that the term with the factor δ N 2 N 2

vanishes for an odd number of counter-ions.

Equation of state

The pressure can be computed from the partition function or alternatively using the following contact relation (derived in Appendix 1.D):

P c = - N 2 4 + N 0 -∞ dx n(x) + 2∆ 1 + ∆ n(0). (1.78)
This expression can be cast in terms of averages taken over all impermeable configurations each with weight Z N ,Nr (N, ∆, L)/Z c (N, ∆, L):

P c (N, ∆, L) = - N 2 4 + N N + 2∆ 1 -∆ N 2 . (1.79)
This expression already gives information of the effect of the dielectric jump: the term N is monotonic in ∆, as already seen in the one counter-ion case, where ∆ > 0 creates like-charges images that increase the inter-colloid counter-ion density and hence decrease the exterior number of particles. We also know the sign of ∆ determines if the third term of the equation is attractive or repulsive. Nevertheless, to determine the pressure dependence on the dielectric jump, we need the relation between N and N 2 , since the term 2∆ N 2 /(1 -∆) is in fact monotonically increasing in ∆ due to the factor 2∆/(1 -∆). Then, there is a competition between the second and third terms of Eq. (1.79), which as we will later see are ruled by the latter and therefore the pressure is monotonically increasing in ∆.

The opposite behavior is seen with attractive image charges. The symmetry of the system allows to deduce limiting cases, as

P c (N, ∆, 0) = N 2 4 + 2∆ 1 -∆ N 2 L=0 , (1.80a) P c (N, ∆, L) ----→ L→∞    -1 4 N odd 0 N even , ( 1.80b) 
through simple arguments. At zero length, the average number of particles on each side is N/2 by symmetry, which in Eq. (1.79) shows that for small separations, the effect of the dielectric jump is exclusively due to the fluctuation of counter-ions number. The term N 2 L=0 is straightforward to compute using the impermeable partition functions which are given by Z

N ,Nr (N, ∆, 0) = [(1 -∆)/(1 + ∆)] N +Nr (N r !N !) -2 , which yields N 2 L=0 = N N =1 N -N Nr=0 1-∆ 1+∆ N +Nr N r ! -2 (N -1)! -2 N N =0 N -N Nr=0 1-∆ 1+∆ N +Nr N r ! -2 N ! -2
.

(1.81)
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In the opposite limit, L → ∞, the system tries to decouple into two neutral subsystems, analogously to the homogeneous dielectric case discussed in Section 1.1.5. This process happens successfully for N even, which leads to a vanishing attraction between the two neutral systems. This mechanism is frustrated when N is odd, where the counterion charge cannot be equally shared in two moieties. Then, the colloids are screened by N -1 counter-ions and together with the remaining particle (delocalized in the interstitial region), they form an effective system of charge -e/2 which was already shown to have like-charge attraction of (rescaled) magnitude -1/4 when L → ∞ [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. The reason is that at such distances, the pressure becomes purely electrostatic, and the effective colloid of charge -e/2 on the leftmost region, is attracted by the other rightmost effective colloid of charge -e/2, plus the delocalized ion of charge e. The net field on the leftmost colloid is thus attractive. These results are verified through the computation of the pressure from Eq. (1.77).

The isobaric pressure diverges as the colloids come close, which is expected to enforce zero length fluctuations. This marks a clear distinction between ensembles. In the opposite limit of infinite distance, the asymptotic behavior is the same as in the canonical ensemble:

P (N, ∆, L ) -----→ L →0 ∞, (1.82a 
)

P (N, ∆, L ) -----→ L →∞    -1 4 N odd 0 N even. (1.82b) 
Both the canonical and isobaric ensembles share a dichotomy of the pressure behavior, depending on the parity of N . In this sense, the qualitative behavior is summarized for both ensembles by the cases N = 1 (Fig. 1.8b) and N = 2 (Fig. 1.10). Take for example N = 3 (Fig. 1.10b): although the equation of state cannot be quantitatively described by the N = 1 case, the key features such as asymptotic values, presence of like-charge attraction and ∆ dependence are the same. The same is true for any even N and N = 2.

Counter-ion density

We have seen that there is an explicit connection between pressure, density and average number of particles in each region. In this Section, the counter-ion density profile is computed explicitly. Specifically, the density at the dielectric jump is found to be proportional to the average squared outside number of counter-ions. Besides, the aforementioned separation in effective objects at large separation has an explicit fingerprint on the density profile.

The density profile n( x, ∆, N, L) is defined piece-wise for computational convenience just as when N = 1: n(x < 0), n(0 < x < L) and n( x > L) for the left, middle and right regions respectively. By symmetry, x > L is computed using n( x) = n( L -x). The results are expressed in terms of the partition functions and 

c (∆ = 0) P c (∆ = -1) P (∆ = 1) P (∆ = 0) P (∆ = -1) (a) (b) N = 2 N = 3
Like-charge attraction Like-charge attraction (1.80a), (1.82a)). The possibility for like-charge attraction in a fixed length system exists for ∆ < -3/5 (plot inside gray shade) with a minimum value of P c = -1/3. Note that the only canonical pressure that diverges at L = 0 is that for ∆ = 1, as was the case for N = 1. (b) Same as panel a but with N = 3. Note the coincidental proximity of P c (∆ = 0) and P (∆ = -1). Yet, while P c (∆ = 0) has a finite value when L = 0, P (∆ = -1) diverges as L → 0.

density profiles obtained for the case with fixed number of counterions per region which can be found in [START_REF] Varela | Configurational and energy landscape in one-dimensional Coulomb systems[END_REF]:

n( x, N, ∆, L) = 1 Z(N, ∆, L) N N =0 N -N Nr=0 Z N ,Nr (N, ∆, L) n N ,Nr ( x, N, ∆, L), (1.83)
where n N ,Nr is the density profile for an impermeable colloid (Eq. (1.70) and (1.71)). The normalized density profile is defined as

ρ = n/N , such that R ρ( x, N, ∆, L) d x = 1. (1.84) 
Figure 1.11 features ρ, which behaves as already observed with N = 1: ∆, which is associated to the sign of the image charges, regulates the population of counterions in each region while the dimensionless length determines if the system has decoupled into two screened colloids depending on whether their double layers decouple or not, according to the parity of N . The situations with N = 1 and N = 2 turn out to be emblematic of the odd and even N cases, respectively (see Figs. 1.8a and 1.11).

From Eq. (1.68b) we know that n N ,Nr (0 -) = (1 + ∆)/(1 -∆)N 2 and thus n(0) is proportional to N 2 . Therefore, the pressure (Eq. (1.79)) can be cast either in . For all cases, the counter-ions are expelled to the exterior regions as the dielectric jump ∆ goes to -1, and conversely drawn inside in the opposite limit ∆ → 1.

For large separations, the even case (panel b) decouples with a nearly vanishing density at L/2. Instead, the odd case (panel d) shows an almost constant density in the middle region, which accounts for the counter-ion that is shared between the colloids: this causes colloids to attract each other.

terms of n(0) or N 2 . We can obtain compact results for the infinite length limit of those two moments. The following expressions are for N > 1:

lim L→∞ N =            p n=0 n m=0 m+n 2 a nmp p n=0 n m=0 a nmp N = 2p + 1 p n=0 n m=0 m+n 2 c nmp p n=0 n m=0 c nmp N = 2p, (1.85a) lim L→∞ N 2 =            p n=0 n m=0 m 2 +n 2 2 a nmp p n=0 n m=0 a nmp N = 2p + 1 p n=0 n m=0 m 2 +n 2 2 c nmp p n=0 n m=0 c nmp N = 2p.
(1.85b)

When ∆ = 0, the system tries to decouple into two symmetric neutral subsystems, succeeding when N is even and failing otherwise, with each screened colloid having half of its counterions on each side. This allows to have a very good estimate of the average number of left particles N ≈ N/2 /2 = p/2 when L → ∞ and 1.3 N counter-ions N = 2p + 1 or 2p for each parity case respectively. In the limiting cases ∆ = 1 we have N = 0 and in the opposite case ∆ = -1 we get N = p. These results are generalized in Table 1

.3. N lim L→∞ N lim L→∞ N 2 1 0 0 2 1 2 - ∆ 2 1 2 - ∆ 2 3 2 - 4 3 -∆ 2 - 4 3 -∆ 4 1 + 2∆ ∆ 2 -3 4(1 -∆) 3 -∆ 2 5 6(1 -∆) 5 -∆ 2 -2∆ 6(4 -3∆) 5 -∆ 2 -2∆ - 3 
6 3 2 - 2∆ 5 -3∆ 2 - ∆ 2 3 2 + 6(1 -∆) 5 -3∆ 2 - 3∆ 2 
Tab. 1.3: Asymptotic behavior of the mean outside particle number.

Fluctuations

We now proceed to examine the fluctuations of the left side number of particles, which are the same for the right side. These fluctuations are an increasing function of ∆ (except for L = 0 where ∆ is irrelevant). This can be seen in terms of the positive image charges that drive the counterions close to the colloid (see the particle densities in figures 1.8a and 1.11) which favors the "crossing" of counterions between interior and exterior regions. The fluctuations N 2 / N 2 follow from the previously defined moments for the number of left counter-ions, see Fig. 1.12.

From the limiting behavior found in equations (1.85), we can extract the asymptotic value for L → ∞ (except when N = 1 which has an oblique asymptote, see Eq. (1.51)). Notice that as the number of counter-ions increases, the characteristic separation length for which the fluctuations reach their terminal value approaches 0.

36

Chapter 1 One-dimensional colloidal model with dielectric inhomogeneity 0 7 14 1 

3 5 7 N 2 / N 2 N = 1 N = 2 N = 3 N = 4 0 7 14 1 2 3 4 0 7 14 1 2 L N 2 / N 2 0 7 14 1 1.5 2 L ∆ = 0.5 ∆ = 0 ∆ = -0.5 ∆ = -1 (a) (b) (c) (d)

When does mean-field apply?

We finally address the connection to mean-field results, where Poisson's equation is closed by the assumption that the ionic density is given by the Boltzmann distribution (Eq. (1.8)). As an introduction, let us first discuss the case L = 0 and ∆ = 0. Then, the general situation is addressed.

1.4.1 A simple case: L = 0 and ∆ = 0

Consider the case where L = 0 and ∆ = 0, as depicted in the left panel of Fig. 1.1. This mean-field problem then admits a simple exact solution, be it in or out of equilibrium (the latter discussed in Chapter 2), that allows to draw conclusions from analytic expressions and to assess how a discrete system approaches the mean-field regime. We will now treat the counterions as a continuous charge distribution rather than as a discrete set of point-particles. We consider a system made of two colloids at the origin, each of charge Qe, together with the counterion distribution. Since our system is symmetric with respect to the origin, we consider the system for x > 0 only.

Recall that although we have a 1D system, the corresponding Poisson-Boltzmann equation also describes higher dimensional counterparts (see Section 1.1.3). We may transpose Eq. (1.11b) by replacing the corresponding 1D quantities, which yields

n PB (x) = Q b(1 + x/b) 2 , (1.86)
where we remind that b = /βQe 2 is the Gouy-Chapman length in 1D.

In order to discuss the mean-field results, we rescale the position by the Gouy-Chapman length b: x = x/b and introduce the reduced density n = (b/Q)n. Figure 1.13 features the Poisson-Boltzmann density and three exact profiles for N = 1, 5 and 20, computed using Eq. (1.83). The plot shows that by increasing N , the discrete result approaches the Poisson-Boltzmann density. Beyond a few particles (e.g. 5), the effect of increasing N mostly affects the tail behavior. 

Mean-field for a colloid model with dielectric inhomogeneity

We now consider the mean-field treatment for the system with arbitrary colloid separation and dielectric jump. We expect this framework to become operational under conditions of weak electrostatic coupling: the colloid charge Q being fixed, this is achieved when e → 0, while of course keeping the electroneutrality constraint satisfied (N e = 2Q, meaning that N → ∞). The rescaled length used in previous sections, involving the charge e, becomes inadequate and has to be slightly modified.

Poisson-Boltzmann equation is solved piece-wise and the solutions are matched with the continuity of φ and the discontinuity of the electric field φ due to the fixed charges. The pressure P PB follows from the contact theorem, which, quite
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Chapter 1 One-dimensional colloidal model with dielectric inhomogeneity remarkably, also holds within mean-field. Introducing the rescaled pressure

P PB = P PB ( 1 + 2 )/(2Q 2 ), we get √ 1 -∆ sec   P PB L √ 1 + ∆   + √ 1 + ∆ tan   P PB L √ 1 + ∆   = 1 P PB (1.87)
where we have introduced the rescaled length L = Lβqe/( 1 + 2 ). The colloids charge Q is fixed and the counter-ions charge varies, for the exact calculation, as e = Q/2N . In the limit N → ∞, e → 0 while keeping eN = 2Q fixed, mean-field theory becomes exact. Note that with as few as 25 counter-ions, the Poisson-Boltzmann pressure yields good results (panels b-c), except for ∆ = -0.99 (panel a) where the coupling constant (1.91) is very large. The inset zooms the small L values for which PB is quantitatively and qualitatively off with respect to the exact calculation. As ∆ approaches -1, more counterions are required to be in the weak-coupling regime Ξ in 1. Note that like-charge attraction is completely lost in the Poisson-Boltzmann theory [START_REF] Neu | Wall-mediated forces between like-charged bodies in an electrolyte[END_REF].

For ∆ = 1, we recover the "impermeable" results with all counterions in the interstitial region, obtained in [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF] by taking the mean-field limit from an exact description, see also [START_REF] Kanduč | Weak-and strong-coupling electrostatic interactions between asymmetrically charged planar surfaces[END_REF]. Besides the pressure, it is interesting to see how the ionic density within the exact treatment compares with the mean-field limit. Introducing

n PB = n PB ( 1 + 2 )/Q 2 β
, the rescaled density profile is:

n PB ( x) = P PB ×        sec 2 (2 x -L) √ P PB √ 1+∆ , x ∈ [0, L] 2 x -L √ P PB √ 1-∆ + cos L √ P PB √ 1+∆ -2 , x ∈ [0, L]
(1.88)

1. [START_REF]Theory of Simple Liquids[END_REF] When does mean-field apply? The results for the pressures and the density profiles are shown in Figs. 1.14 and 1.15. They reveal that for as few as N = 4 counter-ions, the mean-field approach gives a good approximation to exact results, specially for non-negative dielectric jumps. To understand why this is happening, we examine the coupling constants, which follow from Eq. (1.18)

Ξ α = e 2 a α / α kT , α = in, out (1.89) 
where Ξ out and Ξ in are for the outside ( 1 , left and right regions) and inner sectors ( 2 , middle region) respectively. We take the typical ionic separation a α = kT α /(e 2 N α /2) as the average counterion separation in the region of interest. This length follows from the quotient of the double-layer length in each region and the corresponding number of counterions there. In Section 1.1.3 we discussed that the average length between counterions behaves like kT in /(e 2 (N/2)), where N/2 is the counterions in each double-layer, for an impermeable system. It can be checked that this result generalizes to a permeable system by replacing the corresponding number of counterions for the double-layer at each region N/2 → N α /2 and using the respective dielectric constant.
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The exact expressions of N out and N in are cumbersome, but we are only interested in their limiting behavior as ∆ → ±1, corresponding to 1 2 , or to the reverse. These limits lead to a depletion in a given region (a small N α ), which entails the failure of mean-field. We then proceed to estimating N α using the results reported in Section 1.3.2. We focus on large enough L. For N out we know that as ∆ → -1 it approaches N/2 and as ∆ → 1 it goes to zero as N out ∼ (1 -∆)/(1 + ∆) (this follows from Eq. (1.85) and N out = 2 N ). We can condense both behaviors using N out ∼ N (1 -∆)/2. In a similar fashion, N in ∼ N (1 + ∆)/2 and thus the coupling constants are defined as: The weak-coupling regime, defined by Ξ α 1 (α = in, out), is suitable for a mean-field description, when the discrete nature of counterions can be neglected; for ∆ = 0, we recover the results reported in [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. This regime is met when N increases beyond a few units, irrespective of temperature. The irrelevance of temperature is specific to one-dimensional systems. In dimensions 2 and 3, increasing T leads to a decrease of Ξ, bringing closer to the mean-field regime. We see in Figs. 1.14 and 1.15 that the Poisson-Boltzmann theory gives a good approximation of the exact system when N = 25. There is an exception when ∆ = -1 (Fig. 1.14) for which the mean-field pressure vanishes while its exact counterpart has negative values. This is expected due to the term 1/(1 + ∆) in the coupling parameter; as ∆ approaches -1, a greater number of counterions is required to be in the mean-field regime. The effect of ∆ in each regions is better seen in Fig. 1. [START_REF] Neu | Wall-mediated forces between like-charged bodies in an electrolyte[END_REF], where the local density profile n( x) with N = 25 is compared to the Poisson-Boltzmann solution n PB ( x). These deviations are seen to increase in each region according to the respective coupling constant. Note that Ξ α is inversely proportional to the number of counterions, which is the same behavior found for an impermeable colloid with all the counterions in the middle region [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF].

Ξ out = 4 N (1 -∆) , ( 1.90) 
Ξ in = 4 N (1 + ∆) . (1.91) -2 -1 0 1 2 3 4 0.9 1 1.1 Ξ in ∼ 0.08 Ξ in ∼ 0.16 Ξ in ∼ 1.6 Ξ out ∼ 1.6 Ξ out ∼ 0.16 Ξ out ∼ 0.

Conclusions

In this Chapter, we have obtained the exact solution for a schematic one-dimensional colloidal model with an arbitrary number of counter-ions and in the presence of dielectric discontinuities (see Fig. 1.6). The colloids are either impermeable or not to the counterions. We find that the pressure, which in 1D coincides with the force, can assume negative values (see Figs. 1.8b, 1.10); there is like-charge attraction in a given domain determined by the distance between colloidal particles, the dielectric jump and the number of counterions. Unlike for a uniform dielectric medium, the presence of a dielectric discontinuity enables the possibility for like-charge attraction in a permeable colloid for any N , regardless of its parity. Additionally, we find a contact theorem-like relationship that connects density to pressure. This allows to see how the image charges, induced by the dielectric discontinuity, shape the counterion density through attraction or repulsion and thus the interaction among colloids. Both the pressure (Fig. 1.14) and density profile (Fig. 1.15) are shown to converge towards the mean-field prediction: for a large number of counterions, the Poisson-Boltzmann equation is in excellent agreement with the exact theory. This is consistent with 1D strong coupling parameter found in previous works [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]: besides the total number of ions, the validity of mean-field here depends on the dielectric discontinuity, but not on temperature, at variance with two or three dimensional systems.
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Chapter 1 One-dimensional colloidal model with dielectric inhomogeneity Appendix In this appendix, we provide the expression of the 1D potential V (x, x ), created at x by a charge qe at x ; it is a solution of the Poisson Eq. (1.3). The particle is in a piece-wise linear dielectric medium defined by 1 and 2 for x ∈ [0, L] and x ∈ [0, L] respectively, as seen in Fig. 1.A.1. V can be computed using the method of images as follows.

1.A Potential from dielectric images -(2L -x ) -x 0 x L 2L -x x + 2L i L 2 i L 1 i R 1 i R 2
Consider a charge qe at 0 < x < L (Fig. 1.A.1). This charge creates a series of images i L k and i R k with respect to the left and right colloids. Their respective positions are x L k and x R k :

x

L 1 = -x , x R 1 = 2L -x x L 2 = -(2L -x ), x R 2 = 2L + x x L 3 = -(2L + x ), x R 3 = 4L -x x L 4 = -(4L -x ), x R 4 = 4L + x . . . . . . (1.92) Each image creates a potential V α k (x) = -qe∆ k |x -x α k |/ 2 (α = L, R) at x ∈ [0, L].
Therefore, the potential created by the image charges is:

∞ k=1 (V L k + V R k ) = - 2qeL 2 ∞ k=1 k∆ k (1.93a) = - 2qeL∆ 2 (1 -∆) 2 .
(1.93b)

Note that contrary to the 3D case, the contributions from the images partially cancel each other and only a term independent of the positions remains. Finally the potential for x, x ∈ [0, L] is:

V (x , x) = - qe 2 |x -x| + ∞ k=1 (V L k + V R k ) (1.94a) = - qe 2 |x -x| - 2qeL∆ 2 (1 -∆) 2
(1.94b) Now for x < 0, we use a solution to Poisson equation where the is no charge:

V (x < 0, x ) = ax + b. (1.95)
The constants a and b are found using the continuity of V and the displacement field at x = 0 . By enforcing these conditions on Eqs. (1.95) and (1.94b) it follows that:

1 a = qe (1.96) b = - qex 2 - 2qeL∆ 2 (1 -∆) 2 (1.97)
and therefore

V (x < 0, x ) = qex 1 - qex 2 - 2qeL∆ 2 (1 -∆) 2 .
(1.98)

The remaining x > L case is found using an analog procedure applied to the continuity at x = L. Finally, the situations with x < 0 and x > L can also be found using the symmetry of the potential:

V (0 < x < L, x < 0) = V (x < 0, 0 < x < L) (1.99a) = qex 1 - qex 2 - 2qeL∆ 2 (1 -∆) 2 (1.99b)
By solving again the Poisson equation (but now in a region with charge), we have:

V (x < 0, x < 0) = - qe|x -x| 1 + b 2 (1.100)
and b 2 follows from comparing (1.99b) and (1.100):

qex 1 + b 2 = qex 1 - 2qeL∆ 2 (1 -∆) 2 (1.101)
and finally:

V (x < 0, x < 0) = - qe|x -x| 1 - 2qeL∆ 2 (1 -∆) 2 .
(1.102)

The results are summarized in Eqs. (1.35) and (1.36).

An alternative derivation follows from integrating the transverse degrees of freedom of the equivalent 3D system (see [START_REF] Wang | Three-dimensional electric potential induced by a point singularity in a multilayered dielectric medium[END_REF] for a multilayered dielectric medium).
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1.B Overlapping equations of state

This appendix contains details on the mapping between the canonical ensemble with ∆ = 1 and the isobaric ensemble with ∆ = -1, when N = 1. Figure 1.10a illustrates this correspondence. We have shown in the main text that the equation of state reads, in both cases:

P c = P = 1 L - 1 4 , (1.103)
at the expense of a slight abuse of notation (replacing L by L in the isobaric case). When ∆ = 1, the counterion is confined between the colloids, unlike when ∆ = -1 where it is expelled from the middle region. The confined case can be understood intuitively: the repulsive term, 1/ L in (1.103), is the density of an ideal gas in a box of size L; the counterion indeed is in a zero-field region. The attractive term is the electric force exerted on the right colloid by the other colloid and the counterion.

On the other hand, the case ∆ = -1 features an empty middle region; the attractive image charges force the counterion to be either on the left or right region. By symmetry, the two possibilities have the same pressure contribution. To understand the isobaric result at ∆ = -1, we consider that the right colloid is now able to fluctuate in position, while the left one is fixed. An external operator exerts a force P onto the right colloid (with the convention that P > 0 when pushing the right colloid towards the left one). To compute the pressure, we can then use the contact theorem (1.110) at x = 0 (left colloid position). The attractive field term is -1/4 and the repulsive kinetic term is given by the right colloid's contact density. This density is exponential since the right colloid is subject to a constant force -1/4 -P . Therefore, the suitably normalized right colloid density profile reads:

n( x C R ) = P + 1 4 e -( P +1/4) x R (1.104)
where x C R ≥ 0 is the position of the right colloid and L its average position. The contact theorem then holds trivially:

P = n(0) - 1 4 (1.105)
and a by-product of the argument is that

x R = L = P + 1 4 -1
.

(1.106)

The isobaric equation of state (1.103) is thereby recovered. The similar form taken by the canonical pressure for (N = 1, ∆ = 1) and isobaric pressure for (N = 1, ∆ = -1) is therefore coincidental: the kinetic contributions to the pressure stem from different ionic and colloid profiles.

1.C Family of constants

The following coefficients hold for all N :

a nmk = 2 1-δnm 1-∆ 1+∆ m+n i N 2 -k -2δ N 2 N 2 (m!n!) 2 (m -k) n-m (k + m -N ) n-m × (2k -N ) 2 (k + n -N ) 2 N 2 -n (n -k) 2 k-n Γ N 2 -k 2 , (1.107) b nmk = 2a nmk N -2k H N -k-m -H k-m + H N -k-n -H k-n 2 +H N 2 -k-1 -H N 2 -k + δ kn H k-n - 1 -δ N 2 N 2 N 2 -k , ( 1.108 
)

c nmk = 2 1-δnm (m!n!) -2 (k + m -N ) -1 k-m 1-∆ 1+∆ m+n (2k -N + 1) N -k-n (m -k) k-m (N -k -n)! , (1.109)
where H n is the n-th harmonic number, (x

) n = Γ(x + n)/Γ(x) is the Pochhammer symbol and (x) 2 n = ((x) n ) 2 . The Kronecker delta δ N 2 N 2
is used for terms that appear exclusively when N is even.

1.D Contact theorem: two derivations

The structure of the partition function and the density profile is given by the sum of all possible values of (N , N r ), such that N +N r ≤ N , each with its respective weight given by Z N ,Nr (N, ∆, L)/Z(N, ∆, L). In a similar fashion as in sections 1.2.2 and 1.3.2, the contact condition for permeable colloids follows from the impermeable cases. From previous works (see [START_REF] Varela | Configurational and energy landscape in one-dimensional Coulomb systems[END_REF]), we already know the contact theorem for impermeable colloids:

P Nr,N = n(0 + ) -(N/2 -N ) 2 , ( 1.110) 
where P Nr,N is the canonical pressure for a system with N and N r counter-ions in the left and right regions respectively. In this section, the indexes regarding the type of ensemble are omitted since we will discuss exclusively the canonical functions. By averaging Eq. (1.110) over all possible configurations of N counterions with a fixed number of counterions in the left and right regions, we get a contact condition:

P = n(0) -(N/2 -N ) 2 , (1.111)
where we have used the fact that density is continuous for the permeable case and thus n(0 ± ) = n(0). This expression can be stated in terms of average number of counterions by using the contact theorem for the exterior region in the impermeable case n(0 -) = ( 2 / 1 )N 2 . Upon averaging we get

n(0) = 1 + ∆ 1 -∆ N 2 , (1.112)
where n(0 -) = n(0) was used again. The previous result allows to express the pressure obtained in Eq. (1.111) in terms of the moments of the total charge in the left region:

P = 1 + ∆ 1 -∆ N 2 - N 2 -N 2 , ( 1.113) 
which if expanded yields Eq. (1.79).

Let us now turn to a derivation of a contact relation from a mechanical approach. We start from the stress tensor component T xx which in 1D is given by [START_REF] Jackson | Classical Electrodynamics[END_REF]:

T xx = -kT n(x) + (x) 4 E 2 (x). (1.114)
We define the dimensionless stress tensor as T x x = T xx 2 /e 2 , which in turn will give us a dimensionless force (pressure in 1D) F = 2 F/e 2 :

T x x = -n( x) + ( x) 4 2 E 2 ( x), (1.115) 
where E = 2 E/e. The force on the colloid is given by F = T x x (0 + ) -T x x (0 -). Then we take the average which gives:

F = n(0 -) -n(0 + ) - 1 4 1 2 E 2 (0 -) -E 2 (0 + ) . (1.116)
The permeability condition yields n(0 -) = n(0 + ) , leaving only the electric contributions:

F = 1 4 E 2 (0 + ) - 1 -∆ 1 + ∆ E 2 (0 -) . (1.117)
The fields are E(0 -) = 2N (1 + ∆)/(1 -∆) and E(0 + ) = (2N -N ) which leads to:

F = - 1 + ∆ 1 -∆ N 2 + N 2 -N 2 , ( 1.118) 
and (1.113) is recovered, but for the sign convention (a positive pressure corresponds to a negative force acting on the leftmost charge). Note that ∆ = 0 yields a special case in which the second moment does not contribute to the pressure:

F (∆ = 0) = N 2 4 -N N . (1.119)
We conclude with a note on the similarity in terms of functional form of the contact relation presented here, with one of the few known formulas for a contact-like 1.D Contact theorem: two derivations relation in the presence of a dielectric discontinuity. Carnie and Chan ( [START_REF] Carnie | The statistical mechanics of the electrical double layer: Stress tensor and contact conditions[END_REF], Eq. 3.26) derived such an equation for an electrolyte with planar geometry. Unfortunately, these results are for a single impenetrable wall/colloid with a dielectric jump at the interface, for which a counter-ion solution yields a vanishing pressure. Remarkably, Eq. 3.26 has the same functional form as P Nr,N , predicted by Eq. (1.110). The difference lies in the density profile formed around the colloid or more precisely at contact, n(0 + ): for the single wall n(0 + ) = 2 E(0 + ) 2 /8πkT unlike the contact density discussed in section 1.3.1, which has a dependence on N , N r and L (explicit expressions found in [START_REF] Varela | Configurational and energy landscape in one-dimensional Coulomb systems[END_REF]). Besides, another difference between our results and those reported in [START_REF] Carnie | The statistical mechanics of the electrical double layer: Stress tensor and contact conditions[END_REF] is in the relevance of the parity of N (say in the impermeable situation, with all counterions in the middle region and L → ∞, that is the closest to the infinite length geometry worked out in [START_REF] Carnie | The statistical mechanics of the electrical double layer: Stress tensor and contact conditions[END_REF]): this is a peculiarity of the one-dimensional setting, where the colloids may attract with a finite force even when L → ∞.

Relaxation dynamics of two interacting electrical double-layers in a 1D Coulomb system 2

In this Chapter, we introduce out-of-equilibrium treatments: the Langevin, Fokker-Planck and Poisson-Nernst-Planck equations. We consider an out-of-equilibrium one-dimensional model for two electrical double-layers. With a combination of exact calculations and Brownian dynamics simulations, we compute the relaxation time (τ ) for an electroneutral salt-free suspension, made up of two fixed colloids, with N neutralizing mobile counterions. For N odd, the two double-layers never decouple, irrespective of their separation L; this is the regime of like-charge attraction, where τ exhibits a diffusive scaling in L 2 for large L. On the other hand, for even N , L no longer is the relevant length scale for setting the relaxation time; this role is played by the Bjerrum length. This leads to distinctly different dynamics: for N even, thermal effects are detrimental to relaxation, increasing τ , while they accelerate relaxation for N odd. Finally, we also show that the mean-field theory is recovered for large N and moreover, that it remains an operational treatment down to relatively small values of N (N > 3).
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Langevin dynamics

Langevin equations are widely used to describe the dynamics of out-of-equilibrium systems [START_REF] Risken | The Fokker-Planck Equation[END_REF]. They were introduced in the context of Brownian motion: a macroscopic particle interacting with the molecules of a fluid. If we were to use a microscopic treatment to describe this system, we would need to account for every molecule and thus solve ∼ 10 23 coupled equations of motion. In practice this task is impossible. Even if it were possible, it would be impractical for statistical calculations. In thermodynamics we are interested in averages (e.g. mean square displacement, pair-correlation functions, etc) rather than a particular trajectory for an specific set of initial conditions. One alternative to bypass dealing accounting for the fluid's discrete nature is the Langevin equation, which in 1D reads

ma = -mγv + g L ξ(t), (2.1)
where γ is the damping coefficient, ξ(t) is a random variable and g L is a constant to be determined. The macroscopic particle has mass m, acceleration a and velocity v. Since the microscopic interactions with the fluid happen at a faster timescale, they may be subsumed in two effective terms: the stochastic Langevin force g L ξ(t) and a deterministic drag (viscous friction) given by Stoke's law -mγv. The latter is a friction force which causes energy loss. On the other hand, the Langevin force may add or subtract energy. The rationale behind this is that molecules are frequently colliding with the macroscopic particle, with different relative velocities; this results either in energy gain or loss. Together, these two forces give the effective macroscopic contribution of the microscopic interactions.

The stochastic force is necessary to obtain the equipartition theorem. To see this, we solve Eq. (2.1) neglecting the Langevin force; this equation is expected to fail since it only contains a friction term, which can only lead to energy loss. It is straightforward to show that lim t→∞ v 2 (t) = 0, regardless of the initial condition. Therefore, the ensemble average of this quantity is also zero, which violates the equipartition theorem v 2 = k B T /m. We now show that ξ allows Eq. (2.1) to be compatible with this essential thermodynamic requirement. To do so, we compute v 2 (t) which requires the first two moments of ξ, that we define as follows

ξ(t) = 0 and ξ(t)ξ(t ) = 2δ(t -t ). (2.2) 
The average • is taken with respect to the distribution of realizations for the random force. The vanishing first moment reflects that the average velocity of the fluid is zero. The delta-correlated second moment may be understood in terms of time scale separation, as we present below. To determine the value of D we use the equipartition theorem. For this purpose we compute v(t), which is given by

v(t) = v 0 e -γt + g L m t 0 dt e -γ(t-t ) ξ(t ), (2.3) 
where v 0 is the initial velocity. Then, after a few steps it follows that

v(t 1 )v(t 2 ) = v 2 0 e -γ(t 1 +t 2 ) + g 2 L m 2 γ e -γ|t 1 -t 2 | -e -γ(t 1 +t 2 ) , ( 2.4) 
which leads to

lim t→∞ v 2 (t) = v 2 eq = g 2 L m 2 γ . (2.5)
By setting g L = √ mγk B T , we have that a system described by Eq. (2.1) satisfies the equipartition theorem. To compute higher order correlations (e.g. v(t 1 )v(t 2 ) . . . v n (t) ), we need to know higher order correlations of ξ(t). In the context of colloids, it is reasonable to assume ξ(t) has a Gaussian distribution with delta correlation. The rationale behind this is that in practice, Gaussianity may be assumed as long as there is time scale separation, since the central limit theorem applies and leads to Gaussian statistics, on the relevant time scale for the colloid. For the counterions this same argument may be used with caution, since they have a closer time scale to that of the solvent.

Langevin equations can be generalized. Indeed, this approach can be used in higher dimensions, with multiple interacting particles and in the presence of an external potential. The latter is straightforward to include: any external force F (x) is added to the rhs of Eq. (2.1), which yields

ma + mγv = mγk B T ξ(t) + F (x).
(2.6)

If inertial effects are small compared to the damping force, a reasonable approximation is to disregard ma. This leads to the so-called overdamped Langevin equation, which reads

mγ dx dt = mγk B T ξ(t) + F (x). (2.7)
Finally, we can model many (say N ) macroscopic particles by writing the corresponding Langevin equation for each particle

m k γ dx k dt = m k γk B T ξ k (t) + F k (x 1 , • • • , x N ), (2.8) 
where the index k runs from 1 to N and the random forces corresponding to different particles are uncorrelated:

ξ k (t)ξ k (t ) = 2δ k k δ(t -t).
The term F k may include external interactions and forces between the N particles. The advantage of this treatment is that a numerical implementation is straightforward. The discretization of Eq. (2.8) has the following expression

x (j+1) k = x (j) k + √ ∆t k B T m k γ ξ (j) k + ∆t m k γ F k (x (j) 1 , . . . , x (j) N ), (2.9) 
where ∆t is the time discretization, ξ k is a random Gaussian variable with zero mean, variance ξ

(j) k ξ (j ) k = 2δ k k δ j j and x (j)
k is the position of the k-th particle after j iterations (j = 0 is the initial condition). Equation (2.9) can be used to numerically compute statistical quantities such as the density profile and its moments.

Fokker-Planck equation

In the Langevin treatment, the position of a particle is a random variable. This is a consequence of adding a random force to the equation of motion. It can be shown [START_REF] Risken | The Fokker-Planck Equation[END_REF] that the position's distribution is governed by the Fokker-Planck equation. In the particular case of a single particle over-damped Langevin equation (Eq. (2.7)), the corresponding Fokker-Planck equation in 1D is also known as the Smoluchowski equation, which is

∂ t W (x, t) = L FP (x)W (x, t), (2.10) 2.1 Introduction
where W (x, t)dx gives the probability of finding the particle in the interval (x, x+dx) at a time t. The Fokker-Planck operator L FP is defined as follows

L FP (x)W (x, t) = µ ∂ x [W (x, t)∂ x V (x)] + D∂ 2 x W (x, t), ( 2.11) 
where µ = 1/(mγ) is the mobility, D the diffusion coefficient and V the potential energy associated to F = -∂ x V . These constants are related by the Einstein relation D = µk B T . Replacing this equation into Eq. (2.10), we may write the Fokker-Planck equation as a continuity equation

∂ t W (x, t) + ∂ x j(x, t) = 0, (2.12) 
where j(x, t) is the probability current given by

j(x, t) = -µW (x, t)∂ x V (x) -D∂ x W (x, t). (2.13)
At equilibrium the current vanishes j eq = 0 and consequently, the equilibrium probability W eq is given by:

W eq (x) = 1 Z eq e - V (x) k B T , (2.14)
where Z eq is a normalization constant.

In large number of cases, the Fokker-Planck equation is equivalent to a Schrödinger equation [START_REF] Risken | The Fokker-Planck Equation[END_REF]. The interest in this connection is twofold: first, the Schrödinger operator is hermitian unlike L FP ; secondly, we may draw inspiration from quantum mechanics to understand the physical system at hand. To show this connection consider the following transformation

ψ(x, t) = W (x, t) W eq (x) , ( 2.15) 
and then replace it in Eq. (2.10). In doing so, we get the following Schrödinger equation

i ∂ t Schrö ψ(x, t) = -L Schrö (x) ψ(x, t) = - 2 2m Schrö ∂ 2 x -V Schrö (x) ψ(x, t), (2.16)
where m Schrö = 2 /(2D), t Schrö = -i t, L Schrö is the Schrödinger operator with a potential V Schrö given by

V Schrö (x) = µ∂ 2 x V (x) 2 - [µ∂ x V (x)] 2 4D .
(2.17)
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Then, if ψ n are the eigenfunctions of the time-independent Schrödinger operator and ϕ n = ψ n e V /(2k B T ) of L FP , it follows that they share the same spectrum:

L Schrö (x) ψ n (x) = -λ n ψ n (x) and L FP (x) ϕ n (x) = -λ n ϕ n (x). (2.18)
Note that since L Schrö is self-adjoint, it has a real-valued spectrum (λ n ∈ R) and consequently, so does L FP . Additionally, eigenfunctions with different eigenvalues are orthogonal and if we normalize them we have the following orthonormal relation

R ψ n (x)ψ m (x) dx = R e V (x) k B T ϕ n (x)ϕ m (x) dx = δ nm . (2.19)
It can also be shown that the eigenvalues are positive. For this purpose, consider the following integral

R ψ n (x)L Schrö (x)ψ n (x) dx = -λ, (2.20) 
which may also be written using the identity

L Schrö = De V 2k B T ∂ x e -V k B T ∂ x e V 2k B T : R ψ n (x)L Schrö (x)ψ n (x) dx = - R ∂ x ψ n e V (x) 2k B T 2 D e - V (x) k B T dx < 0. (2.21)
By comparing the results in Eqs. (2.20)-(2.21) we see that λ > 0. Moreover, the spectral theorem guarantees the existence of a basis of eigenvectors and thus we have the following completeness relation

δ(x -x 0 ) = n ψ n (x)ψ n (x 0 ), (2.22) 
which may be written in terms of the eigenfunctions of L FP as follows

δ(x -x 0 ) = e V (x) 2k B T + V (x 0 ) 2k B T n ϕ n (x)ϕ n (x 0 ). (2.23)
Using the identity δ(x

-x 0 ) = e V (x 0 ) 2k B T - V (x) 2k B T δ(x -x 0 ), the completeness relation is written as δ(x -x 0 ) = e V (x 0 ) k B T n ϕ n (x)ϕ n (x 0 ). (2.24)
In the continuous case, the sum in Eq. (2.24) is replaced by an integral and the Kronecker delta in the orthonormal condition by a Dirac delta function.

With the completeness relation we proceed to solve Eq. (2.10) using an eigenfunction expansion. Since the dynamics are given by a Markov process, the time evolution for the probability density function starting at any given time t 0 to a later time t > t 0 can be determined with the transition probability p(x, t|x 0 , t 0 ), where p(x, t 0 |x 0 , t 0 ) = δ(x -x 0 ), without knowledge of the preceding time evolution. The formal solution to Eq. (2.10) is given by

W (x, t) = e L FP (x) (t-t 0 ) W (x, t 0 ), (2.25) 
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and consequently the propagator is given by

p(x, t|x 0 , t 0 ) = e L FP (x) (t-t 0 ) δ(x -x 0 ). (2.26)
Using the completeness relation, it is straightforward to write the propagator in terms of the eigenfunctions of the Fokker-Planck operator:

p(x, t|x 0 , t 0 ) = e V (x 0 ) k B T n e L FP (x) (t-t 0 ) ϕ n (x)ϕ n (x 0 ) = e V (x 0 ) k B T n ϕ n (x)ϕ n (x 0 )e -λn(t-t 0 ) , (2.27)
where the sum is replaced by an integral if the spectrum is continuous. With a spectrum having a discrete and continuous part, a sum and integral is present for each.

So far we have discussed what is known as a forward Fokker-Planck equation, where p(x, t|x 0 , t 0 ) is seen as a function of t and x that evolves from an initial condition t 0 and x 0 . Simply put, this gives the probability of finding the colloid at {x, t} given that it started in {x 0 , t 0 }. Interestingly, the evolution of the propagator features the eigenfunctions of the so-called backwards Fokker-Planck equation or adjoint problem, which describes the reverse situation where the final destination is fixed and we find the colloid's initial position distribution. Figure 2.1.1 illustrates the forward and backward pictures for the propagator evolution. The equation that rules the backward dynamics of the propagator is the following

∂ t 0 p(x, t|x 0 , t 0 ) = -L † FP (x 0 ) p(x, t|x 0 , t 0 ), (2.28) 
where the backward Fokker-Planck operator is given by

L † FP (x 0 )p(x, t|x 0 , t 0 ) = µ V (x 0 )∂ x 0 p(x, t|x 0 , t 0 ) + D∂ 2 x 0 p(x, t|x 0 , t 0 ). (2.29) 
The product e

V (x 0 ) k B T ϕ n (x 0 ) featured in Eq. (2.27
) is an eigenfunction of Eq. (2.28).

Mean-field dynamics: Poisson-Nernst-Planck equations

In Section 1.1.3 we introduced an equilibrium mean-field treatment where the counterions are modeled as continuous charge distribution. We now generalize to the dynamics. To do this, we start by considering the current density

J α = n α v s advection + n α v α -D α ∇n α electrochemical diffusion , (2.30)
where v s is the solvent velocity (advection velocity), v α the velocity of the ions of species α and D α their diffusion coefficient. Herein, we focus in the case where the solvent is not moving: v s = 0. The remaining term is due to electrochemical diffusion, where we identify the last term as the chemical induced migration known as Fick's law. In the overdamped regime, the velocity is determined by the local electric field: v α ≈ -q α eµ α ∇φ, where q α e and µ α = D α /(k B T ) are the electric charge and mobility of species α, and φ is the macroscopic electric potential. Finally, the current satisfies the continuity equation ∂ t n α + ∇ • J α = 0, which leads to the Nernst-Planck equation:

∂ t n α = q α eµ α ∇ • (n α ∇φ) + D α ∇ 2 n α . (2.31)
This equation coupled with the Poisson equation is known as the electrokinetic equations or Poisson-Nernst-Planck (PNP) framework, which at equilibrium recovers exactly the Poisson-Boltzmann equation.

Electrical double-layer

Herein are reported analytical and numerical results, for the relaxation time towards equilibrium of two one-dimensional interacting double-layers. The corresponding equilibrium properties have been discussed in Chapter 1, in the presence of dielectric inhomogeneity. We now specialize in the dynamics of an electroneutral system made of two symmetrically-placed permeable colloids at a distance L and N counterions, in a homogeneous dielectric media. The system is sketched in Fig. 2.1.2. Due to their larger mass, the colloids are assumed to exhibit a very large time scale for displacement compared to the counterions. Hence we consider them to be fixed and address the dynamics of the diffuse layer. The single counterion case (N = 1) allows an analytical solution for the particle density and relaxation time. This subsumes the essential features of the dynamics for any odd number of counterions. Indeed, the parity of N plays an important role, for both static and dynamics properties: if N is even, the large L regime features decoupled neutral entities, with N/2 counterions neutralizing each colloid. This is no longer possible for N odd, for which there is

2.1 Introduction
always a misfit (recall the definition used in Section 1.1.5) counterion [START_REF] Trizac | Like-charge attraction in a one-dimensional setting: the importance of being odd[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF], that plays an important role in what follows. The misfit behaviour is accurately described by the mean passage of a free diffusing particle in a reduced length approximately given by the colloid separation minus the space taken by the double-layers between the colloids. For even N , the two double-layers form and completely neutralize each colloid. The decoupling between the two moieties, made possible for even N , explains why the relaxation process becomes L-independent for large L, in contrast with the odd case.

+ --

--- - - - + -- --- - - - -L/2 L/2 x Fig. 2.1.2:
Sketch of an electroneutral system consisting of two interacting electric doublelayers, each made of a colloid (rectangle) and 4 counterions (circles). The distance between colloids is L. The interaction between particles is mediated by the 1D Coulomb potential, linear in separation. The dynamics of the counterions is considered and the colloids are treated as static since their time scale is assumed to be much larger than that of the counterions. All particles are point-like and they can "cross over" each other.

It is worth pointing out that similarly to the equilibrium case studied in Chapter 1, we expect one-dimensional dynamic approaches may be insightful for more realistic systems. As previously discussed, the N = 1 ion problem exhibits the same equation of state as its three dimensional counterpart made of two plates and a single counterion, in the strong coupling regime and at short interplate spacing. In order for the 1D dynamical model to capture the 3D plates' behavior when they are at short-distances, this separation should not be too small. Indeed, approximately for 1 nm the bulk water hydrodynamics (i.e. Stokes friction) used in our treatment is known to break down [START_REF] Bocquet | Nanofluidics, from bulk to interfaces[END_REF]. Below this threshold the time scale of water is not distinct enough from the colloidal particles to use the continuum framework of hydrodynamics, which in turn requires to deal with the solvent's discrete nature. A study with said treatment is beyond the scope of this work.

The remainder of Chapter 2 is structured as follows. The time evolution of the probability density for one counterion (N = 1) is computed analytically in Section 2.2, parameterized by the colloid distance L. The density displays an exponential decay towards equilibrium, which naturally introduces a relaxation time. Then, a scheme is introduced to determine this quantity, from a simulation based on the corresponding Langevin dynamics. The results are in good agreement with exact values. In Section 2.3, the numerical study of the relaxation time is generalized for the many-counterion case, N > 1. The role of the parity of N and the symmetry of the initial condition is discussed, with the former leading to two different behaviors for the relaxation time. In Section 2.4, we study the analytic mean-field treatment of a system at zero colloid separation. We find that this solution serves as a good approximation for the discrete charge system, for a large number of counterions as expected, but more surprisingly already for N as small as 3. Treating the counterions as discrete charges results in exponential relaxation dynamics. This is in contrast to mean-field theory, that features a slower, algebraic decay [START_REF] Hunter | Foundations of colloid science[END_REF]. We explain below how the two regimes are matched, and show explicitly how mean-field's accuracy improves, upon increasing the number of counter-ions N . Finally, we investigate numerically in Section 2.5 the first passage time of the middle/misfit counterion between the two double-layers when N is odd, to rationalize the behavior of the relaxation time. We conclude in Section 2.6.

One counterion (N = 1)

In this Section, we consider an electroneutral system made of a single counter-ion (N = 1), of charge e and two colloids, each with charge -e/2. The colloids have fixed positions: -L/2 and L/2. In a structureless uniform dielectric with permittivity , these charges interact via the 1D Coulomb potential energy V 1D (Eq. (1.4)). The counterion's position x is ruled by the over-damped Langevin equation (Eq. (2.6)):

mγ dx dt = - dΦ(x) dx + mγk B T ξ(t), (2.32) 
where T the temperature, m the counterion mass, and the electrostatic force acting on the counterion is associated to

Φ(x) = V 1D (x, L/2) + V 1D (x, -L/2
), the potential energy due to the colloids, which reads .33) where Φ = Φ/(k B T ) and x = x/l B . Associated to the diffusive dynamics we consider here, we can define a characteristic time scale τ B = l 2 B /D. In the following, it will prove useful to work with the rescaled time t = t/τ B ; the length and time scales are such that the diffusion coefficient is set to unity in the dimensionless units. Figure 2.2.1 features a sketch of Φ and its associated Schrödinger potential V Schrö , which is discussed later.

Φ( x, L) =    L/2 if | x| < L/2 | x| if | x| > L/2 . ( 2 
The dynamics of the counterion are a Markov process. As previously discussed in Section 2.1.2, the time evolution for the counterion density function starting at any given time t 0 can be determined with the transition probability p(x, t|x 0 , t 0 ). Furthermore, p is also the time evolution of an initially localized counterion distribution. In the following we will set t 0 = 0 and avoid writing it explicitly, p(x, t|x 0 ) ≡ p(x, t|x 0 , 0). Equation (2.32) has an associated Fokker-Planck equation that governs p:

∂p( x, t) ∂ t = ∂ ∂ x p( x, t) ∂ Φ( x, L) ∂ x + ∂ 2 p( x, t) ∂ x 2 .
(2.34) Note that when L = 0, Eq. (2.34) is formally the same Fokker-Planck equation that describes a Brownian motion with dry friction [START_REF] De Gennes | Brownian motion with dry friction[END_REF][START_REF] Touchette | Brownian motion with dry friction: Fokker-Planck approach[END_REF]. We review in Appendix 2.A the corresponding solution, which will be relevant in the following Sections as a limiting case. Equation (2.34) is a forward Fokker-Planck equation that features a piece-wise constant force. It is equipped with the boundary conditions p( x → ±∞, t| x 0 ) = 0. It can therefore be solved analytically using an eigenvalue expansion [START_REF] Risken | The Fokker-Planck Equation[END_REF]:

2.2 One counterion (N = 1) 57 x x V Schrö Φ 1 4 L 2 -L 2 L 2 -L 2 L 2
p( x, t| x 0 ) = p eq ( x) + α=o,e k u α k ( x)ν α k ( x 0 ) Z α k e -λ α k t + ∞ 1 4 dλ u α ( x, λ)ν α ( x 0 , λ) Z α (λ) e -λ t , (2.35) 
where u α k and u α are the eigenfunctions of the Fokker-Planck operator (rhs of Eq. (2.34)), ν α k and ν α are eigenfunctions of the adjoint problem (Eq. (2.29)), and Z α k and Z α the normalization constants. The equilibrium distribution p eq is given by:

p eq ( x) = e -Φ( x) Z eq = e -Φ( x)+ L/2 L + 2 . ( 2 

.36)

The superscript α in Eq. (2.35) indicates the parity of the eigenfunctions, which will be discussed in upcoming Sections. The explicit expression of the functions and their derivation can be found in Appendix 2.B. Note that Eq. (2.35) features two different types of terms, corresponding either to discrete eigenvalues (with subscript λ k ) or to a continuous spectrum (the integral terms, involving functions of λ). This aspect will play a key role in the subsequent treatment.

Analytic dynamics

We investigate here the dynamics of the counterion density p( x, t), given that it starts with initial position x 0 . There are two different possibilities for this initial condition: in the interstitial region between the colloids (|

x 0 | ≤ L/2) or outside (| x 0 | > L/2).
Let us start with the counterion in the space between the two colloids. The initial dynamics is that of a particle in free diffusion, lasting approximately until the spread of the density (increasing in √ 2 t ) reaches the nearest colloid. This behavior can be seen directly in Fig. 2.2.2 where we observe that the density remains left-right symmetric with respect to the counterion's initial position and it starts to become skewed once the nearest colloid is "hit" (located at x = 5). This is corroborated in Fig. 2.2.3, which features the dynamics of the average position x (inset) and the position's variance σ 2

x : the former is constant, and the latter increases linearly with time until the density "hits" the colloid. On the other hand, when the counterion starts outside the interstitial region (| x 0 | > L/2) it initially experiences a constant drift towards the colloids. This causes the particle to move towards the colloids, with a mean position that travels at constant speed. This is seen in the inset of Fig. 2.2.3, where for small times the mean position is a linear function of time when x 0 > L. Besides, there is a constant diffusion which is manifested in a linear growth of the position variance (σ 2

x ∼ 2 t, see Fig. 2.2.3). The time during which the drift diffusion occurs lasts approximately until the mean position of the counterion and its nearest colloid are one standard deviation apart. Upon reaching the central region, it has to ultimately accommodate to the asymptotic steady state given by Eq. (2.36); hence the non-monotonic behavior of the position variance in Fig. 2.2.3. x ( t ) is linear in time σ 2 x ( t ) ≈ 2 t. For x 0 = 22 the variance is not monotonous, which happens because the initial position is large enough to allow the regime of linear expansion to overshoot the equilibrium variance.

We now turn to the asymptotic equilibrium distribution; there is a closed form for the counterion position's average and variance:

lim t→∞ x( t) = 0, (2.37) 
lim t→∞ σ 2 x ( t) = L 2 12 + L 3 + 4 3 + 4 3( L + 2) . ( 2.38) 
Averages are taken here with respect to the equilibrium distribution p eq (Eq. (2.36)).

Note that for large L, the dominant term is L 2 /12, which is the same result that follows for a Brownian particle inside a 1D box of length L.

Eigenvalues and relaxation time

Equation (2.35) shows that there is an exponential relaxation towards the equilibrium distribution p eq . Therefore, the relaxation time τ can be defined as the inverse of the decay rate associated to the dominant term in Eq. (2.35) for large times. To determine this rate, it is necessary to know the eigenvalue structure of the Fokker-Planck equation (Eq. (2.34)) and more precisely the spectral gap (first non-vanishing eigenvalue), which is the inverse of τ . In this section, we explore the L-dependence of the spectrum and consequently of τ .

The spectrum is made of two parts, one discrete and one continuous, which stem from enforcing vanishing boundary conditions at infinity to the eigenfunctions of the Fokker-Planck operator (more details are presented in Appendix 2.B). We may also understand the spectrum in terms of quantum mechanics using equiva-lent Schrödinger equation. For this purpose we write V Schrö , which follows from Eq. (2.17):

V Schrö ( x, L) = - 1 2 δ L 2 -x + δ L 2 + x + 1 4 H | x| - L 2 .
(2.39)

where H(x) is the Heaviside step function. Figure 2.2.1 shows V Schrö , which is a square well potential of depth 1/4 with attractive deltas at the colloid positions.

The discrete and continuous parts of the spectrum correspond to the bounded and unbounded states of a single non-relativistic particle in one dimension and in a potential V Schrö . The wave functions for the quantum mechanical problem are related to the eigenfunctions of the original problem u (see Appendix 2.B) through Eq. (2.15). Figure 2.2.4 features an example of the wave functions for bounded (panel a) and unbounded (panel b) states that arise in for the potential V Schrö . To gain further intuition of this quantum mechanics system, we draw inspiration from a different potential which has a close form to V Schrö : a double delta potential, which is V Schrö (Eq. (2.39)) without the Heaviside step function. In these two cases there is a ground state (λ 0 = 0 for V Schrö ) that always exists for any L ≥ 0. The first excited state (λ o 1 for V Schrö ) emerges after some threshold separation, which is L > π for V Schrö and L > 4 for the double delta potential. This threshold difference may be understood as V Schrö being more confining than the double delta, which is due to V Schrö having a greater penalty to be in the exterior (| x| > L/2) regions. As a result, V Schrö may trap a more energetic particle with a smaller size L. As L becomes larger, V Schrö can trap more energetic particles. However, as L increases the behavior of V Schrö also starts resemble its Heaviside term featured in Eq. (2.39): more energy levels are added just like a finite well would behave and in contrast to the double delta potential which always has only two, regardless of delta-delta separation ( L. Besides, there are unbounded states which may take any energy above the potential barrier (1/4) and their wave functions cannot be normalized.

We now discuss the spectrum from the analytic expressions derived in Appendix 2.B. The discrete set of eigenvalues {λ k } k ∈ [0, 1/4) is L-dependent, while the continuous spectrum is the interval [1/4, ∞). The set {λ k } k is made of all the solutions to the following equations subject to the restriction 0 ≤ λ k < 1/4:

1 -1 -4λ o k tan L λ o k /2 = 2 λ o k , (2.40) 1 -4λ e k -1 cot L λ e k /2 = 2 λ e k , ( 2.41) 
where Eq. (2.40) and (2.41) are for odd and even eigenfunctions respectively. Note that the discrete set is non-empty because λ 0 = 0 is always a solution to Eq. (2.41). From Eqs. (2.40)-(2.41), it follows that the number of odd (N λ o ) and even (N λ e ) discrete eigenvalues for a given length are:

N λ o = L -π 4π + 1, (2.42 
)

N λ e = L + π 4π + 1. (2.43) 
From N λ o and N λ e we see that discrete eigenvalues emerge as L increases: odd and even eigenvalues appear in an alternating sequence as a function of L with period 2π, such that the second eigenvalue λ 2 is odd and present for L > 3π, and so on, as sketched in Fig. 2.2.5. There is no degeneracy in the discrete spectrum; an eigenvalue cannot solve Eqs. (2.40) and (2.41) simultaneously. This allows a strict ordering: 

λ 0 < λ o 1 < λ e 1 < λ o 2 < • • • . 0 π 3π 5π 7π 
λ o k ∼ L 1 4π 2 L 2 k - 1 2 2 , 1 ≤ k ≤ N λ o , ( 2.44 
)

λ e k ∼ L 1 4π 2 L 2 k 2 , 0 ≤ k ≤ N λ e -1. (2.45) 
This implies that for large colloid separations the relaxation time is quadratic in L, regardless of x 0 . In other words, the large L limit yields, quite expectedly, the same spectrum as a free diffusion in a box of size L.

We conclude with the explicit expression for the relaxation time. For this purpose, we identify the dominant term of Eq. (2.35) at large times, which is associated to the minimum nonzero eigenvalue among the non-vanishing projection of the ionic density onto the eigenbasis. This means that, unlike the spectrum, the relaxation time does depend on the initial conditions. Indeed, there are two distinct behaviors depending on the symmetry of the initial condition: x 0 = 0 (symmetric) and x 0 = 0 (asymmetric). For the former, we have ν o k (0) = 0 and therefore only the even branches in Fig. 2.2.5 do matter in Eq. (2.35). Then, the relaxation time is given by 

τ =      max{4, 1 λ o 1 }, x 0 = 0, max{4, 1 λ e 1 }, x 0 = 0.
τ ∼ L 1    L 2 /π 2 , x 0 = 0, L 2 /(4π 2 ), x 0 = 0.
(2.47)

In both cases we have a L 2 asymptotic behavior, which as expected from the large L spectrum (Eqs. (2.44) and (2.45)), is the same behavior featured in a free diffusion in a box of size L.

Simulations

This section introduces a method to estimate the relaxation time using the counterion density. The scheme is tested on the exact density and on an approximation obtained from a computer simulation. Then, these results are compared to the theoretical spectral gap. In this way, the single counter-ion case, which provides us with reference analytic results, is used as a test bench for the method which is later employed for N > 1 counterions.

Relaxation time estimation scheme

First, the Kullback-Leibler Divergence (KLD) [START_REF] Kullback | On information and sufficiency[END_REF] is introduced, as it will be used in the relaxation time estimation scheme. Also known as relative entropy and widely used in information theory, this function is defined as:

D KL (ρ 1 ρ 2 ) = R dx ρ 1 (x) log ρ 1 (x) ρ 2 (x) , ( 2.48) 
where ρ 1 and ρ 2 are probability densities and D KL (ρ 1 ρ 2 ) is defined as the Kullback-Leibler divergence from ρ 2 to ρ 1 . The discrete definition of the KLD follows from replacing probability densities for probabilities, and performing a summation instead of integrating. The relative entropy is bounded from below D KL (ρ 1 ρ 2 ) ≥ 0, provided that ρ 1 and ρ 2 are both normalized and the equality satisfied when ρ 1 = ρ 2 . The Kullback-Leibler divergence is not a metric because it is neither symmetric nor does it obey the triangular inequality. Nonetheless, it is conveniently related to the relaxation time when used with the appropriate distributions: p( x, t| x 0 ) and p eq ( x).

For large times, the Kullback-Leibler divergence of the equilibrium distribution p eq to the instantaneous density p decreases exponentially to zero. To see this, consider the ionic density; from (2.35) it follows that

p( x, t| x 0 ) = p eq ( x) + δp( x, t, x 0 ), (2.49) 
where δp( x, t, x 0 )/p eq ( x)

1 at long times. Then, the Kullback-Leibler divergence from p eq to p has the following large time behavior:

D KL (p p eq ) ∼ ¨¨¨B 0 R δp d x + R (δp) 2 p eq d x + O (δp/p eq ) 3 = R (δp) 2 p eq d x + O (δp/p eq ) 3 ,
(2.50) where the integral of δp vanishes in view of Eq. (2.49) and the fact that both p and p eq are normalized. Likewise, the associated divergence with transposed arguments (D KL (p eq p)) exhibits the same asymptotic behavior as that given by Eq. (2.50). From Eq. (2.50) we observe that the KLD has an exponential decay constant 2/ τ , which is twice the value for the ionic density itself.

The term (δp) 2 induces two distinct behaviors for D KL (p p eq ) depending on the symmetry of the initial condition: x 0 = 0 (symmetric) or x 0 = 0 (asymmetric). In the former case, the projection of the ionic density onto odd eigenfuctions vanishes and therefore only the even branches of the spectrum in Fig. 2.2.5 do matter. We next describe the asymmetric case, which in Appendix 2.C is found to be:

D KL (p p eq ) ∼    t -s e -2 t/4 = t -s e -2 t/ τ , L < π e -2 t/λ o 1 = e -2 t/ τ , L > π, (2.51)
where 1/2 < s < 5/2. Although for very large times the algebraic term t -s is negligible, this is not the case for the times available in the simulations, which may cause a difficulty in extracting the decay rate. Take for example the case x 0 = L/4 (Fig. 2.2.6): notice the curve's concavity for L < π, which stems from the subleading term of order log t in the logarithm of the KLD. On the contrary, for L > π this term is always negligible. The symmetric case x 0 = 0 is similar to Eq. (2.51), provided the substitutions λ o 1 → λ e 1 and π → 3π are performed. The inset of Fig. 2.2.6 presents the method used for extracting the decay rate τ from the dynamical data. 

Numerical integration

We now proceed to introduce the simulation used to compute the numerical density profiles. We integrate the following stochastic Langevin equation

˙ x = F ( x, L) + ξ( t), (2.52) 
where

F ( L) = -∂ Φ/∂ x is the dimensionless force. Equation (2.52) is Eq. (2.32
) in rescaled units. The simulation consisted of 10 8 samples. Each temporal step was set to 4 × 10 -4 and a histogram was recorded every 200 time steps, using bins of size 0.2. These histograms give the numerical estimation of the ionic density, p( x, t).

Then, the discrete Kullback-Leibler divergence D KL (p( x, t) p eq ( x)) is calculated. The relaxation times follow from the long-time behavior of D KL , as explained above; the results are shown in Fig. 2.2.7, where the numerical scheme is seen to be in agreement with the analytical curve. Finally, note that the relaxation time τ sim extracted from the simulations for a symmetric initial condition exhibits a slight non-monotonous behavior in the vicinity of L = 9. This non-monotonicity appears to be an artifact of the numerical procedure used. We come back to this in section 2.3. x 0 = 0

x 0 = 0 L τ τ exact τ sim

Fig. 2.2.7:

Relaxation time for a system made of two colloidal particles at a distance L and one counterion (N = 1), from the exact calculation (solid) given by Eq. (2.46) and an estimation using a simulation (squares). Two cases for the localized initial distribution should be distinguished: asymmetric ( x 0 = 0) and symmetric ( x 0 = 0).

We conclude with some additional remarks on our numerical study. It is based on simulations of the Brownian dynamics that describe the time evolution of the system. For our purposes, the Euler-Maruyama method [START_REF] Maruyama | Continuous Markov processes and stochastic equations[END_REF] is both the simplest and most efficient technique to simulate the counterions' paths. The reason for this is that the coefficients of the white noise terms in the Langevin equations (defining the diffusion coefficients) are all constant in time and the electrostatic force is bounded; these are sufficient conditions for numerical convergence of weak order 1.0 † [START_REF] Milshtein | A method of second order accuracy integration of stochastic differential equations[END_REF]. Higher-order methods do not provide any computational advantages, as they usually rely on derivatives of the white noise term coefficients [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations[END_REF], so the only real improvement in this direction is the use of computation in parallel. As it is necessary to collect n samples to obtain results with a precision of order n -1/2 from simulations, we use parallel computations which allow to obtain results with high precision at a reasonable computation cost.

First passage time

At equilibrium, the counterion plays an important role in the pressure: the colloids share this particle, which for large enough L, induces them to attract each other [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. It is of interest to investigate how the counterion is shared, and how much time it spends in the vicinity of one colloid before reaching the other.

The first passage time t, with initial and final position on each colloid, is an appropriate quantity to measure the crossing time between colloids. Due to the symmetry of the system we can choose the particle starting on either side and ending in the opposite side. Taking the initial position of the counterion to be at the left colloid -L/2 and the final position at the right colloid L/2, the first passage time distribution w L ( t) follows from:

w L ( t) = - L/2 -∞ ∂ ∂ t P a x, t| -L/2 d x, ( 2.53) 
where P a ( x, t| x 0 ) is the probability density function of an initially localized counterion at x 0 with an absorbing wall at L/2 (see [START_REF] Risken | The Fokker-Planck Equation[END_REF]). Since P a follows from solving Eq. (2.34) with different boundary conditions than those for p (Eq. (2.35)), the Fokker-Planck operator for P a features a different spectrum. It has both a continuous and a discrete part, and their boundaries are: λ a ∈ (1/4, ∞) and 0 < λ a k < 1/4 respectively. The discrete part of the spectrum follows from solving

1 -1 -4λ a k = 2 λ a k cot λ a k L , ( 2.54) 
which has no solutions for L < π/2. Therefore, the spectrum is completely continuous when L < π/2, leaving aside the gapped steady-state eigenvalue λ = 0.

In a similar fashion as for P , we obtain the analytic solution for P a and consequently for the first passage time distribution w L ( t):

w L ( t) = ∞ 1/4 √ 4λ a -1 sin √ λ a L 2π √ λ a -π sin 2 √ λ a L e -λ a t dλ a + k 1 + 2 λ a k tan √ λ a k L 2 -1 -4λ a k 2(1 -4λ a k ) -1 2 + L csc 2 ( λ a k L) -cot( λ a k L)/ λ a k e -λ a k t (2.55)
where λ a k < 1/4 is a solution of Eq. (2.54). From the spectrum follows the asymptotic behavior which decays as e -t/4 for L < π/2 and as e -λ a 1 t for L > π/2 where λ a 1 is the smallest discrete eigenvalue.

The previous behavior bears a resemblance to the first passage time distribution of a free diffusing particle in a box of length L. This situation consists of a free Brownian motion X( t) with diffusion constant equal to one and started at the origin. We place a pair of fixed walls, a reflecting one at the origin and an absorbing one at a distance l > 0. Then, we define the transport time as the first hitting time of l, that is,

τ l = inf{ t > 0 : X( t) ≥ l}. (2.56)
We derive the distribution q l ( t) of τ l in appendix 2.D:

q l ( t) = ∞ n=0 (-1) n π(2n + 1) l 2 exp - π 2 (2n + 1) 2 4 l 2 t .
(2.57)

The confined Brownian particle exhibits a smaller average first passage time and variance than the one counter-ion colloid (see Fig. 2.2.8). This is expected since it

2.2 One counterion (N = 1)
does not have an infinite region available to wander off. In the following section the boxed particle model will allow us to understand the behavior of the crossing time of the M th particle when N = 2M -1 (the middle/misfit counter-ion), from one colloid double-layer to another. In this sense, the case N = 1 is different from all the odd N > 1 where the colloids have screening particles that prevent the middle counter-ion from scouting the exterior regions. In fact, we will see that the effective length l is smaller than L. First passage distribution for a single counter-ion traveling between the colloids (w L , solid) and a free diffusing particle in a box (q L , dashed) with a colloid/box length of L = 1.5 and 3. The former is seen to have a larger mean first passage time and variance: in that case the counter-ion has the possibility to make excursions with x < 0 outside the region delimited by the colloids unlike the box situation where it is limited to a finite space.

Relaxation time for multiple counterions

The model consider in Sections 2.3 and 2.5 was studied in collaboration with Sergio Andraus (The University of Tokyo, Japan), whom we thank for making some of the simulations and plots featured in this Chapter.

We move on to describe the relaxation time for the multiple counterion case, N > 1. Each counterion has fixed charge e, and the colloid charge -N e/2 ensures electroneutrality. An analytical or numerical solution of the Fokker-Planck equation is impractical since it involves a partial differential equation in N + 1 dimensions. Instead, we perform simulations of the corresponding Langevin equation to compute the time evolution of the density profile n( x, t; N ). To obtain the relaxation time, we analyze the evolution of the KLD between the density at time t and the equilibrium one by extending the scheme introduced in section 2.2.3. This is done by replacing the single particle counterion density with the normalized counterion density profile n/N . Besides from the time evolution, we require the equilibrium density profile n eq ( x; N ), which has the following analytical expression:

n eq ( x; N ) = n x + L 2 , N, ∆ = 0, L (2.58)
where n( x, ∆, L) is given by Eq.(1.83) and it is translated to coincide with the present situation x → x + L/2.

The time evolution of the density profile n( x, t; N ) is computed using a numerical simulation of the Langevin equation. The advantage of this scheme is that it is easily extended to an N counter-ion system. The system of Langevin equations to be simulated is

˙ x j = F j ( x 1 , . . . , x N ) + ξ j t , ( 2.59) 
where ξ i ( t )ξ j ( t) = 2δ ij δ( t-t ), ξ i ( t) = 0 and F j = F j kT /e 4 is the dimensionless Coulomb force on the particle at x j :

F j ( x 1 , . . . , x N ) = N i=1 i =j sgn( x j -x i ) - N 2 sgn x j + L 2 + sgn x j - L 2 , ( 2.60) 
where sgn(x) is the sign function. Eq. (2.59) with a force given by Eq. (2.60) is very close to a one-dimensional Brownian particle system with rank-dependent drifts [START_REF] Pal | One-dimensional Brownian particle systems with rankdependent drifts[END_REF], with the difference that the fixed colloids disable the rank-dependence because the drift of the counterion also depends on its position relative to the fixed points -L/2 and L/2. With these two ingredients, we can compute D KL (p( x, t; N ) p eq ( x; N )), where p( x, t; N ) = n( x, t; N )/N is the normalized density profile and p eq ( x; N ) the corresponding equilibrium state (Eq. (2.58)).

The simulations for the many counterions case use the same time and position discretization as for N = 1. The number of positions recorded per particle is of order 10 7 . For N = 1, a symmetric initial condition annihilates the projection of the ionic density onto the first non-zero eigenvalue (λ o 1 ), and therefore changes the relaxation time. In view of this phenomenon, we implement two initial conditions (IC) with different parity, as presented in Fig. 2

.3.1 and specified by

Symmetric IC = - L 2 , . . . , (2k -1 -N ) L 2(N -1) , . . . , L 2 1 ≤ k ≤ N, Asymmetric IC = 0, . . . , k -1 N -1 L 2 , . . . , L 2 1 ≤ k ≤ N.
(2.61) The dynamics in the many counterion case is determined by two parameters: colloid separation and number of counterions. However, there are a few general properties that we proceed to describe using a concrete example: N = 4 and L = 6 which is plotted in Fig. 2.3.2. As a consistency check, note that the simulation approaches the exact equilibrium result (solid line). From p eq ( x; N ) we know that the first moment vanishes at infinite times, which is readily seen from the Fig. 2.3.2
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Relaxation time for multiple counterions

at t ≈ 4. The position variance is seen to be monotonic as the density profile expands to its equilibrium state, just as for N = 1 with the counterion initially in the region between the colloids. Both the first moment and the variance decay exponentially to their respective terminal values. The following part of this Section moves on to describe this process. 

Odd number of counterions

Let us begin this part with the asymmetric IC case. Fig. 2.3.3 shows the time evolution of the KLD obtained from simulations with N = 15 counterions. In order to carry out the extrapolation scheme described in Sec. 2.2.3, we take the data points where the KLD lies between 10 -3 and 10 -4 . It is clear from Fig. 2.3.3 that the log KLDs for 1 ≤ L ≤ 4 are convex-up in this region, but no concavity is visible for L ≥ 6. In the following discussion, it will appear that the behavior for odd N > 1 can be mapped onto the N = 1 case; the middle particle indeed acts as for N = 1, but in a reduced length: the whole colloid-colloid length L is no longer accessible, given the presence of the ions localized in the vicinity of the colloids. An effective length, L minus the two double-layer sizes, turns out to make the above mapping operational, just as in the static case (see Section 1.1.5). We come back to this question in section 2.5. In the one-counterion case with asymmetric IC, the first nonzero discrete eigenvalue appears when L ≥ π according to Eq. (2.42); in the present situation with N > 1, taking into account the double-layer size of the ion clouds, we may surmise that this eigenvalue appears at a slightly larger L. Indeed, this is confirmed in Fig. from the continuum at L ≥ 3π, according to Eq. (2.43). If we take the double-layer size into account, we expect the separation of this eigenvalue to occur at around L = 10. The corresponding dynamics of the KLDs for N = 15 are very similar in shape to those shown in Fig. 2.3.3a, in that the log KLDs show a noticeable convex behavior in the range between 10 -3 and 10 -4 for small L. This convexity disappears for large L, a phenomenon that seems to occur at L > 10, and that is reflected in Fig. 2.3.3b. As expected from our considerations in the single counterion case, we observe that the characteristic time is compatible with τ 4 for L ≤ 6, and that it increases for L > 10.

While the diffusive behavior of the relaxation time for N odd is due to the misfit, one may wonder how fast all other ions do relax, and surmise that they presumably do so on a much smaller time scale than τ . We show now that this indeed is the case and examine the effect of the middle particle in the double-layer relaxation. To this end, we have considered the density of the counterions discarding the misfit, and investigated how it departs from its equilibrium distribution, through the corresponding KLD. In Fig. 2.3.4, the resulting dashed curve, for N = 15, does not exhibit a pure exponential behavior, but its slope yields a relaxation time close to 1.3, which is significantly smaller than the τ value, here close to 6.0, and given by the large time slope of the continuous N = 15 curve. For completeness, we also report a benchmark calculation for N = 14. There is then no misfit, but this calculation allows to estimate the effect of removing ions for the KLD considered. We note that the two curves for N = 14 quickly become parallel, and thus yield the same decay 2. [START_REF] Minnhagen | The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films[END_REF] Relaxation time for multiple counterions rate. This is at variance with the situation at N = 15. In the following section, the case where N is even is explored in detail. For N = 15, the simulation does not record the misfit's position (x 8 ). Likewise, for N = 14 the middle particles x 7 , x 8 are not recorded. The solid curves correspond to the case where the true counterion density profile is used.

Even number of counterions

We now consider an even number of counterions. For this case we do not posses any analytical results. However, we expect that for two counterions (N = 2) and L 1, there is correspondence to the system with a single counterion (N = 1) and zero colloid separation ( L = 0). The rationale behind this argument is that at large colloid separations, the N counterions split into two groups of N/2 particles which completely screen each colloid. In other words, two neutral subsystems are formed. Moreover, the screened colloids do not exert any force onto each other. Hence, there is an effective decoupling of the whole system into two non-interacting screened colloids, with N/2 counterions each. Consequently, we expect the case N = 1 and L = 0 to have the same relaxation towards equilibrium as N = 2 and large L. In Fig. 2.3.5, we see that both systems share the same KLD. Note that the mapping (N, L 1) → (N/2, L = 0) holds for any even N , as seen in Fig. 2.3.5 for a couple of cases (N = 2, 6, 8) with a symmetric initial condition. )) and N counterions do overlap. The agreement of each pair of curves shows that at large distances, a system with even N counterions effectively behaves as two decoupled neutral subsystems of N/2 counterions.

N = 1, L = 0 N = 2, L = 20 N = 3, L = 0 N = 6, L = 20 N = 4, L = 0 N = 8, L = 20
Figure 2.3.6 shows the simulation based estimation for the relaxation time as a function of L, for several even N . The results for N ≥ 2 give evidence that the relaxation time has constant value τ = 4 for any L. This is seen for both initial conditions (Eq. (2.61)) and suggests that τ is independent of both N and L. Additionally, physical arguments lead to the same conclusion in limiting cases, such as the aforementioned mapping (N, L 1) → (N/2, L = 0). In Figs. 2.3.3b and 2.3.6 we observe that for every N considered, the relaxation time is τ = 4 when the colloids are together ( L = 0). Therefore, it is plausible that when N is even and the colloids are sufficiently separated, the relaxation time is also 4. An argument to understand the L independence phenomenon goes as follows: for even N , the left and right moieties of the system, each being neutral, are decoupled. The only L dependence in the problem therefore arises through the initial condition, that does not affect the relaxation rate measured. Of course, initial conditions with counterions more distant from their native colloid will collectively take longer to relax than if all ions would start, say, from a typical equilibrium double-layer distance from the colloid. Yet, this difference will manifest itself in the short time evolution, and leave unaffected the large-time decay rate. Indeed, ions starting far away from their native colloid will undergo a ballistic motion on average. Such behavior occurs in a finite time, whereas the equilibration of the double-layer is an exponential decay. The N independence is traced to the double-layer's length, which is practically constant in N when expressed in units of l B , as done here [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. Then, for any number of counterions, the space to be probed is the same.

Our results are limited by the minimum value obtained for D KL , which is mainly determined by the binning of positions used to compute the histograms at each time. As t increases, so does the number of simulations needed. This especially affects the asymmetric initial condition that requires a larger t to be in the regime where log D KL is ruled by a linear term in time and with a subdominant (yet relevant) term log t. In that regime the method for determining the relaxation time is very effective, as previously seen in N odd and for the analytic solution when N = 1.

To summarize, two essentially different scenarios are identified depending on the parity of N . The odd N case has a qualitative behavior identical to the single counter-ion case. When L < L * (N ) then τ = 4, where L * (N ) ≥ π is some length dependent on N . For large L the relaxation time is quadratic on the distance: τ ∝ L 2 , showing typical diffusive behavior. On the other hand, when N is even, we gave evidence that the relaxation time is both N -and L-independent. In all cases, the relaxation dynamics follow the exponential decay outlined in Eq. (2.51), which is fundamentally different from the long-time behavior shown by similar systems with weak-coupling, that are amenable to a mean-field treatment. We now establish the connection between these two behaviors.

Mean-field dynamics

In this section, we consider the dynamics within a mean-field treatment. This approach is justified in the weak-coupling regime; in our case, this corresponds to taking the limit e → 0 and N → ∞ while keeping N e fixed (i.e. the colloids charge). This was shown analytically using different formulations in [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF], for an equilibrium system with counterions limited to remain in the inter-colloidal space. We generalize here to the dynamics.

To keep the discussion within reasonable bounds, we focus on the case L = 0. The mean-field problem then admits a simple exact solution, be it at equilibrium or out-of-equilibrium, that allows to draw conclusions from analytic expressions and to assess how a discrete system approaches the mean-field regime. We will now treat the counterions as a continuous charge distribution rather than a discrete set of point-particles. We consider a system made of two colloids at the origin, each of charge Qe, together with the counterion distribution. The top illustration in Fig. 1.1 envisions the mean-field system, were we take the distance between colloids to be zero. Although our discussion is centered on a 1D Coulomb gas, the mean-field results in this section also describe systems in 2D and 3D, as depicted in Fig. 1.1. Since our system is symmetric with respect to the origin, we restrict to x > 0. We now solve the dynamical generalization of the Poisson-Boltzmann equation, the Poisson-Nernst-Planck (PNP) equations [START_REF] Hunter | Foundations of colloid science[END_REF]:

-∂ 2 x φ PNP = -2 e n PNP / , ∂ t n PNP = D ∂ 2 x n PNP -eµ ∂ x (n PNP ∂ x φ PNP ) , (2.62) 
Again, we account for the colloidal particle by fixing the electric field at the origin for all times:

∂ x φ PNP (0 + , t) = -2Qe/ . (2.63)
We proceed to use the "hat" rescaling, which we recall from Chapter 1.4 is x = x/b and n = (b/Q)n for the position and ionic density. The remaining time and potential units are given by t = t/(b 2 /D) and φ PNP = eβφ PNP . In [START_REF] Golestanian | Dynamics of counterion condensation[END_REF] it was shown that integrating twice the second equality in Eq. (2.62) and assuming a symmetric initial condition, the electrokinetic equations become

∂ t φ PNP (∞, t) -∂ t φ PNP ( x, t) = ∂ 2 x φ PNP ( x, t) + [∂ x φ PNP ( x, t)] 2 2 (2.64)
In [START_REF] Golestanian | Dynamics of counterion condensation[END_REF] a Cole-Hopf transformation was used and it amounts to introducing W such that: We then substitute the Cole-Hopf transformation into Eq. (2.64), and it doing so it becomes

φ PNP ( x, t) -φ PNP (∞, t) = -2 ln W ( x,
∂ t W = ∂ 2 x W, (2.67) 
which is equipped with the following Robin boundary condition:

∂ x W (0 + , t) -W (0 + , t) = 0, (2.68) 
as follows from Eq. (2.63).

In order to find W , we can use the reflection method where we introduce a function W 0 , defined from a modification of the initial condition W ( x, 0). The idea is to restrict to x ≥ 0, and to continualize W to x < 0 in a convenient fashion. In order to satisfy the Robin boundary condition, the function W 0 is taken such that ∂ x W 0 ( x) -W 0 ( x) is an odd function, and consequently vanishes at the origin. We also require W 0 to coincide the initial condition for x > 0. The function that satisfies the previous requirements is given by:

W 0 ( x < 0) = W 0 (0)e x + e x | x| 0 e y W 0 (y) -W 0 (y) dy, ( 2.69) 
where W 0 ( x ≥ 0) = W (x, 0). Then, the solution to Eq. (2.67) reads We now focus on an initially localized density profile n PNP ( x, 0) = δ( x), which leads to the following W function:

W ( x, t) = R dy W 0 (y) × 1 √ 4π t exp - ( x -y) 2 4 
W ( x, t) = erf x 2 √ t -e t+ x erf 2 t + x 2 √ t + e t+ x .
(2.72)

The previous expression has to be handled with caution since in general spatial and time limits cannot be exchanged, see Eq. (2.66). We can then analyze the asymptotic time behavior of Eq. (2.72) by computing the large time expansion: The initial condition is n PNP ( x, 0) = δ( x). For t = 5, the dynamical PNP solution is close to its equilibrium counterpart. (b) Same plot in linear-log scale to emphasize the tails of the distributions, where lies the largest difference between PB and PNP at large times.

W ( x, t) ∼ t→∞ 1 + x √ π t + O t -3/2 . ( 2 
The mean-field density profile follows, as

n PNP ( x, t) = e -x 2 /4 t √ π t erf x 2 √ t + e t+ x erfc 2 t+ x 2 √ t - e t+ x erf x 2 √ t erfc 2 t+ x 2 √ t erf x 2 √ t + e t+ x erfc 2 t+ x 2 √ t 2 ,
(2.74) which admits the following expansion at large times

n PNP ∼ t→∞ 1 (1 + x) 2 1 + x 3 + 3 x 2 + 3 x + 3 6( x + 1) t + O 1 t 3/2 , ( 2.75) 
where the equilibrium distribution n PB ( x) is ultimately reached, as anticipated. The next leading order decays as inverse time, and reveals that the corrections to Poisson-Boltzmann are of order ∼ x 2 / t at large distances; this indicates that the tails take longer to converge towards equilibrium. Furthermore, it implies that it takes a time t ∼ x 2 for the distribution to reach equilibrium at distance x from the colloid. Fig. 2.4.1 shows how the PNP solution approaches the equilibrium distribution: starting by the region close to the colloid and then spreading outwards. Equation (2.74) also admits an expansion when x → ∞:

n PNP ∼ x→∞ e -x 2 /4 t √ π t 1 - 2 t x + O 1 x 2 , ( 2.76) 
which shows that for a finite time, the distribution has Gaussian tails. Then, the algebraic decay is featured exclusively at equilibrium.

We move on to compare the dynamics of the discrete counterion model and the PNP solution. In Fig. 2.4.2 the exact discrete results are plotted at different times. For as few as N = 3 counterions, the mean-field theory becomes operational, if we exclude the tail. Besides, the larger N , the closer to mean-field the tail behaves. Finally, we discuss the characteristic relaxation time. The absence of an exponential decay means, that the PNP dynamics is ruled by an infinite characteristic time. To see how this matches with the finite N exact results, we examine how the characteristic time τ behaves when N increases while keeping the colloid charge N e (2Q = N in the discrete case) fixed. For L = 0, we have found τ ∼ 4, for even and odd values of N . This means that τ ∼ N 2 . Therefore, in the mean-field limit N → ∞ and e → 0 with fixed N e, the characteristic time diverges, to yield the PNP result of a diverging scale. 

Misfit counterion transport time

We have seen that the relaxation dynamics depends on whether the number of ions is even or odd, with the slowest relaxation occurring in the odd case. In order to investigate this further, let us revisit the case where we have an odd number of counterions N = 2M -1 with M > 1, and focus on the misfit ion. If we label the ions from 1 to N according to their increasing position, the misfit ion is the middle one or M th ion. Due to the nature of 1D Coulomb interactions and the charge neutrality of the system, there is no net drift force acting on the M th ion whenever it lies between the two colloids. As a result, it undergoes free Brownian motion until it collides with either of its neighbors.

Transport time distribution

We consider the time and distance between collisions of the M th ion with its neighbors as follows. Suppose that the system is in equilibrium and that the misfit ion collides with, say, the (M -1)th ion (its left neighbor). We record the time and position of this collision and let the system evolve until the M th ion collides with its right neighbor (the (M + 1)th ion). We then calculate the time interval and distance between collisions. Finally, we record the position and time of this new collision and repeat the process for the next collision with the (M -1)th ion. In this manner, we record 10 6 samples of times and distances, obtaining the corresponding sample averages and standard deviations. Note that we do not record data from successive collisions with the same neighbor. For example, after recording a collision with the left neighbor, we do not record any new collisions with the left neighbor until a collision with the right neighbor has occurred. In doing so, we define the transport time distribution between double-layers.

With N = 25, the time between collisions is distributed as shown in Fig. 2.5.1. We observe that for L = 3 the collision times take mostly small values, while for L ≥ 7 the distributions show noticeably longer tails, indicating that the M th ion requires a much longer time to go from one of its neighbors to the other. Besides, it is seen in Fig. 2.5.1 that the short-time collision probability diminishes as L increases. This is due to the minimum distance the counterion needs to find another particle: at large L, all ions except the misfit are located in the vicinity of the colloids. The misfit thus needs to travel a distance of order L to collide with a new partner (see more details below). We then calculate the average transport time; the results, shown in Fig. 2.5.2a do exhibit the expected diffusive L 2 scaling for large L.

Effective model for the misfit's free space

We are interested in estimating the length of the available free space for the misfit. This is expected to be given by L minus two double-layer sizes (one on the right, another on the left hand side). While we do not have the explicit form of the collision time distribution as a function of L, we can resort to the boxed particle model introduced in Sec. 2.2.4. We then estimate the transport time as a function of the distance between walls l, namely τ l , as given in (2.56). We present a derivation of its distribution in Appendix 2.D. Using this object, we can investigate the effective size of the system between the ion clouds using the M th ion as a probe. We perform a parameter fit to find the value of l for which q l ( t), which is the transport distribution (Eq. (2.57)) for a Brownian particle in a 1D box of length l, reproduces the collision time distributions most closely, and we denote it by l eff . The result of the parameter fit is shown in Fig. 2.5.1; as expected, the fixed wall model time distribution seems to reproduce the transport time distribution more closely as L grows.

The first observation to be made about q l ( t) as expressed in Eq. (2.57) is that it obeys the scaling relation

q l ( t) = l -2 Q t l 2 , ( 2 
.77)
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where Q(t) is a scaling function. This means time scales like l 2 . Indeed,

∞ 0 t q l ( t) d t = l 2 2 .
(2.78)

For large enough L, this quadratic behavior is observed in Fig. 2.5.2a. For smaller values of L, the boxed particle model fails to describe the situation. The behavior of L -l eff as a function of L, resembles the one featured for l avg (Fig. 2.5.2(b)). After calculating the coefficient of determination R 2 of each fit, we find that its value is quite low (less than 0.5 in several cases) for L < 5, while it lies consistently between 0.75 and 1 and shows a monotonically increasing behavior when L ≥ 5, that is, the fits become more reliable as L grows. Moreover, with increasing L, L -l eff tends to a value that depends only on N , and as N grows this value converges to a limit close to 2; this limit is roughly twice the double-layer size, which in the non-permeable case is exactly 1 [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. To see this, we examined L -l eff as a function of N -1 . The L -l eff behaves as a linear function of N -1 as N → ∞, which allows to extrapolate the asymptotic behavior

lim N →∞ ( L -l eff ) = 2.46 ± 0.01.
(2.79)

Finally, let us analyze directly the distribution of distances traveled by the misfit ion between collisions. In Fig. 2.5.3, we show the results for a system of 25 counterions. When L = 3, a large fraction of the collisions occurs at very small distances (less than 0.5) which results in a peak at the origin. For L ≥ 7, the distribution has no such peak. We also observe that that as L increases, the distribution shifts to the right without significant changes in the shape. We define l avg as the average of the collision distance data, that is, the mean of the collision distance distributions depicted in Note the change in behavior from L = 3 to larger L: in the latter the double layers do not overlap and as a result ρ( l) is nearly vanishing for small l. This happens because the misfit has to travel from one double layer to the other. On the contrary, for L = 3 the misfit is likely to be close to its neighbors and therefore ρ( l) only vanishes for large enough l.

Fig. 2.5.3. Performing a similar analysis as for l eff yields similar asymptotic results for growing L, see Fig. 2.5.2b. By considering the difference L -l avg for L = 5 as a function of 1/N , we observe that l avg converges to a well-defined value, as N tends to infinity. Similar to the behavior of L -l eff , we see that L -l avg is a linear function of N -1 as N → ∞. From the fit we obtain

lim N →∞ [ L -l avg (N, L)] = 3.05 ± 0.01. (2.80)
As before, we expect this value to only vary slightly and converge as L → ∞ in the same way as L -l eff .

Misfit's role in the relaxation time

In view of the analysis in Sec. 2.2, we expect the characteristic time to be a quadratic function of L when the latter is sufficiently large. In addition, Eq. (2.42) indicates that the smallest discrete eigenvalue appears when L ≥ π for N = 1. In the present case, we may expect a similar behavior, whenever the free space available to the M th counterion exceeds π; this length can be estimated by l avg . As can be seen in Fig. 2.5.4, the behavior of τ in l 2 avg is well obeyed. More specifically, we get for asymmetric initial conditions

τ (N, L) = A + B l avg (N, L) 2 ,
(2.81)

with A = 1.47 ± 0.18, B = 0.107 ± 0.005, and L ≥ 7. Note that the coefficient B is very close to the value predicted by Eq. (2.44), which is 1/π 2 ≈ 0.101. The curves in Fig. 2.3.3b plotted as functions of l avg are also shown in Fig. 2.5.4, and we see that the characteristic time follows a single curve that does not depend on the number of counterions, provided it is odd. We observe that with the asymmetric initial conditions, for all curves, the characteristic time is close to 4 when l avg ≤ π -1, and that τ follows a quadratic growth when l avg ≥ π + 1.

We perform the same analysis for the symmetric IC, reaching similar conclusions, see Fig. 2.5.4 † . Eq. (2.81) is still obeyed, with A = 0.89 ± 0.18 and B = 0.0252 ± 0.0012. Again, the coefficient B is consistent with the asymptotics given by Eq. (2.45), which indicate a value of 1/(4π 2 ) ≈ 0.0253. Assuming in addition that the single counterion situation subsumes the key effects, we expect from Eq. (2.43) an increasing behavior when l avg ≥ 3π; this is confirmed by the figure. Moreover, when l avg ≤ 3 the characteristic times seem to be independent of the number of ions, and very close to the completely-continuous spectrum value of 4 found for N = 1. The non-monotonicity of the characteristic time shown in Fig. 2.5.4 for asymmetric IC with 2 ≤ l avg ≤ 4, and for symmetric IC with 3 ≤ l avg ≤ 9 may be the consequence of the finite number of samples taken during our simulations as well as the finite simulation time. As seen in Fig. 2.2.7, the characteristic time estimated from simulations is quite close to the exact curves when N = 1, but it can be observed that τ is underestimated at small L; also, estimations made for N = 1 in a time interval and a noise level close to those used for N > 1 reveal a similarly nonmonotonic behavior in the intermediate L region, which we know is nonexistent in the exact N = 1 results. We conclude that these non-monotonicities are numerical artifacts, see also the end of Appendix 2.C.

Conclusion

In this Chapter, we have determined the relaxation time τ of an overdamped electroneutral two-colloid system as a function of the colloid separation L and the number of counterions N . The parity of N determines whether τ depends on the † Since Fig. 2.5.2 shows that L -lavg(N, L) is close to the limiting value at L = 9, we use lavg(N, L) ≈ lavg(N, 9) + L -9 for L > 9 distance between colloids. For N odd, we found a behavior that mirrors the single counterion case: τ ∝ L 2 /D, where D is the diffusion coefficient. From the Stokes-Einstein relation, D grows linearly with temperature (T ), so that here, τ decreases upon increasing T . On the other hand, for N even, τ ∝ l 2 B /D where l B is the Bjerrum length, which provides a measure of the extension of the equilibrium double-layer in 1D [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. Since l B ∝ T , we conclude that τ increases when increasing T : this is due to the enhancement of the double-layer size, under the influence of thermal agitation. The quasi-independence of double-layer size on N -ionic charges being fixed, and therefore at varying colloidal charge-is at the root of the rather striking independence of τ on the number of counterions, when this quantity is an even integer. The irrelevance of N , interestingly, is also observed for N odd, stemming from a distinct mechanism. There, what matters is the presence of a misfit counterion, that will be, by and large, the dynamical limiting factor. By symmetry, this central ion does not experience any force, while all other ions are subject to a non-vanishing electric field. For large L, this ion diffuses in a domain of size L; hence the scaling in L 2 /D for the characteristic time. Leaving aside the misfit ion, odd-N systems behave much like even ones, and equilibrate over a common time scale l 2 B /D. We showed that the analytical solution for the mean-field dynamics (namely, the Poisson-Nernst-Planck electrokinetic equations) provides a reasonable approximation for a system with as few as N = 3 counterions (see Fig. 2.4.2). We can surmise that the mean-field framework becomes exact in the limit N → ∞. While the exact equilibrium density profiles at finite-N feature an exponential tail at large distances, their mean-field expressions has longer range, with an algebraic decay. This translates into an infinite characteristic time for equilibration at mean-field level. We have shown that the finite-N finite-τ results did approach this limit as τ ∝ l 2 B /D ∝ e -2 where e is the charge of the counterions. Since the mean-field limit, for a colloidal object of charge Q, is met for N → ∞, electroneutrality Q = 2N e requires that e → 0. Thus, τ ∝ e -2 becomes infinite in the mean-field limit.

Conclusion

Appendix

2.A Dry friction in a wedge potential

This section deals with the limit L → 0, where the system is described by the same equation as that ruling the velocity distribution of Brownian motion with dry friction [START_REF] De Gennes | Brownian motion with dry friction[END_REF][START_REF] Touchette | Brownian motion with dry friction: Fokker-Planck approach[END_REF]. The latter describes a particle under the influence of a Langevin force ξ(t) with Gaussian distribution characterized by ξ(t) = 0 and ξ(t)ξ(0) = m 2 Γδ(t). There is also a dry friction force term of magnitude ∆ F . For our purpose, we only mention the results obtained in the "partly stuck" regime, in which the friction coefficient is small enough to avoid getting stuck but large enough to differ from free Brownian motion. The equation of motion in that case is given by:

m v + mγv = -∆ F sgn(v) + ξ(t). (2.82)
If the viscous damping is neglected (γ → 0), this equation becomes:

v = -∆ sgn(v) + 1 m ξ(t), ( 2.83) 
where ∆ = ∆ F /m and sgn(x) is the sign function. The previous equation has an associated Fokker-Planck formulation, which we write in terms of the dimensionless variables x = 2∆v/Γ and t = 2∆ 2 t/Γ: ∂p( x, t| x 0 , 0)

∂ t = ∂ ∂ x p( x, t| x 0 , 0)sgn( x) + ∂ 2 p( x, t| x 0 , 0) ∂ x 2 , ( 2.84) 
where p( x, t| x 0 , 0) is the propagator for the velocity distribution with initial dimensionless velocity x 0 at a time t 0 = 0. Note the analogy with Eq. (2.34) for L = 0. This Fokker-Planck equation has been solved using an eigenfunction expansion in [START_REF] Touchette | Brownian motion with dry friction: Fokker-Planck approach[END_REF], which is the same treatment we used for an arbitrary L. Simplifications ensue for L = 0 and a closed form expression is available:

p( x, t| x 0 , 0) = 1 2 √ π t e -t/4 e -(| x|-| x 0 |)/2 e -( x-x 0 ) 2 /4 t + e -| x| 4 1 + erf t -| x| -| x 0 | 2 t 1/2 ,
(2.85) where erf(x) is the error function. This density distribution explicitly shows the time scale τ = 2m 2 Γ/∆ 2 F (or τ = 4 in dimensionless units).

The constant drift diffusion described in previous sections is observed directly from the average position:

x( t) = sgn( x 0 ) | x 0 | -t 2 erfc t -| x 0 | 2 t 1/2 + e | x 0 | | x 0 | + t 2 erfc t + | x 0 | 2 t 1/2 ,
(2.86) where erfc(x) is the complementary error function. The previous expression can be shown to follow a ballistic behavior x(t) ≈ x 0 -t sgn( x 0 ) during the period t < x 0 (t < v 0 /∆). After this, the average velocity decays exponentially to 0.

2.B Fokker-Planck equation for N = 1

The eigenfunctions u of the Fokker-Planck operator follow from solving:

d 2 u( x, λ) d x 2 + d d x Φ ( x)u( x, λ) + λu( x, λ) = 0, (2.87) 
where the eigenvalue λ is real and positive. This result stems from the fact that the 1D Fokker-Planck equation can be transformed to a Schrödinger equation, which involves a Hermitian operator and therefore a real spectrum [START_REF] Risken | The Fokker-Planck Equation[END_REF]. Furthermore, the potential is confining enough to allow for a localized steady state.

The eigenproblem equation (Eq. (2.87)) is piece-wise in three regions: x < -L/2, -L/2 < x < L/2 and x > L/2. For that reason, Eq. (2.87) is solved for each region, with

u(( L/2) + , λ) = u(( L/2) -, λ), (2.88) u (( L/2) + , λ) + u(( L/2) + , λ) = u (( L/2) -, λ), (2.89)
where these equations express the continuity of the eigenfunction and of the probability current j( x, λ) = Φ ( x)u( x, λ) + u ( x, λ) at x = L/2, respectively. The interface conditions at -L/2 are analogous. Eqs. (2.88) and (2.89) only have non-trivial solutions for a discrete set of eigenvalues {λ k } k in the domain [0, 1/4). This set is L-dependent and non-empty since the equilibrium distribution, given by λ 0 = 0, is always present. On the other hand, the spectrum is continuous in [1/4, ∞), independent of L. We use the notation u λ k ( x) and u( x, λ) for the eigenfunctions of each case respectively. The eigenfunctions of the adjoint problem v( x, λ) follow from v( x, λ) = u( x, λ)e Φ( x) , where the discrete case is obtained by adding the correspond-

2.B Fokker-Planck equation for N = 1
ing subscripts. Due to the symmetry of Eq. (2.87), it is convenient to solve it using a linear combination of odd and even functions:

u o (| x| < L/2, λ) = A o sin( √ λ x) (2.90a) u o (| x| > L/2, λ) = e -| x| 2 [B o 1 sin( xβ λ ) + B o 2 sgn( x) cos( xβ λ )] (2.90b) u e (| x| < L/2, λ) = A e cos( √ λ x) (2.90c) u e (| x| > L/2, λ) = e -| x| 2 [B e 1 sgn( x) sin( xβ λ ) + B e 2 cos( xβ λ )], (2.90d) 
and for the discrete spectrum:

u o k (| x| < L/2) = C o sin( x λ o k ) (2.91a) u o k (| x| > L/2) = D o sgn( x)e -| x|(1+ √ 1-4λ o k )/2 (2.91b
)

u e λ e k (| x| < L/2) = C e cos( x λ e k ) (2.91c
) The normalization constants Z α (λ) and Z α k are defined by the relations:

u e k (| x| > L/2) = D e e -| x|(1+ √ 1-4λ e k )/2 , ( 2 
Z α (λ)δ(λ -λ )δ αα = R d x u α ( x, λ)ν α ( x, λ ) (2.92) Z α k δ λ α k λ α k = R d x u α k ( x)ν α k ( x), (2.93)
which yield the following expressions:

Z o (λ) = 2πβ λ (B o 1 2 + B o 2 2 ) (2.94a) Z e (λ) = 2πβ λ (B e 1 2 + B e 2 2 ) (2.94b) Z o k = C o2 L 2 - sin( λ o k L) 2 λ o k e L 2 + D o2 e -iβ λ o k L iβ λ o k (2.94c
)

Z e k = C e2 L 2 + sin( λ e k L) 2 λ e k e L 2 + D e2 e -iβ λ e k L iβ λ e k (2.94d) Z ∞ = ( L + 2)e -L/2 , (2.94e)
where iβ λ k = 1/4 -λ k , and Z ∞ is the partition function for the equilibrium distribution (λ 0 = 0), which is given by Eq. (2.36).

Finally, the following constants are determined by the vanishing boundary conditions at infinity and Eqs. (2.88)-(2.89). Additionally, for the discrete case, the determinant for the linear system that rules the family of constants must vanish (Eqs. (2.40)-(2.41))

B o 1 B o 2 = 2β λ + tan L 2 β λ 1 -2 √ λ cot L 2 √ λ 2β λ tan L 2 β λ + 2 √ λ cot L 2 √ λ -1 (2.95a) B e 1 B e 2 = 2β λ + tan L 2 β λ 2 √ λ tan L 2 √ λ + 1 2 √ λ tan L 2 √ λ -2β λ tan L 2 β λ + 1
(2.95b)

A o B o 2 = 2β λ e -L/4 csc L 2 √ λ sec L 2 β λ 2β λ tan L 2 β λ + 2 √ λ cot L 2 √ λ -1 (2.95c
)

A e B o 2 = 2β λ e -L/4 sec L 2 √ λ sec L 2 β λ 2 √ λ tan L 2 √ λ + 1 -2β λ tan L 2 β λ (2.95d) D o C o = e (2iβ λ o k +1) L/4 sin L λ o k /2 (2.95e
)

D e C e = e (2iβ λ e k +1) L/4 cos L λ e k /2 .
(2.95f)

2.C Asymptotic Kullback-Leibler divergence for N = 1

This appendix computes the asymptotic behavior of the Kullback-Leibler divergence (KLD) when N = 1 (Eq. (2.50)). For this purpose it will be useful to realize that δp is the sum of a term that comes from the continuous spectrum (ε λ ) and another from the discrete one ( α,k ε λ α k ):

δp( x, t, x 0 ) = ε λ + α,k ε λ α k , (2.96)
where ε λ and α,k ε λ α k are the terms of the ionic density (Eq. (2.35)) associated to the continuous (λ ≥ 1/4) and non-zero discrete (0 < λ α k < 1/4) parts of the spectrum respectively. The contribution of ε λ is always non-zero, while α,k ε λ α k can vanish completely depending on L and x 0 .

We start by analyzing the large time behavior of the KLD when the only contribution is due to the continuous spectrum term ε λ and therefore we have:

D KL (p||p eq ) ∼ R d x (ε λ ) 2 p eq = Z ∞ e L 2 2π I( x 0 , L, t), (2.97) 2.C Asymptotic Kullback-Leibler divergence for N = 1
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where I is the following integral:

I = ∞ 1 4 dλ 4 √ λ -2 sin √ λ L cos 2 √ λ x 0 e -2λ t (4λ -1) -1 2 √ λ 8λ + cos 2 √ λ L -1 . (2.98)
This term is obtained by exchanging the integration order of λ and x, and then calculating the spatial integral. After some algebra, the remaining expression is I, which unfortunately has no closed form. However, it is possible to find lower and upper bounds. Since I is an integral of a positive function, the integral of a function that bounds the integrand is a bound of I. Following this reasoning we find the following inequality

e -t 2 1 t 5 2 + O 1 t 7 2 ≤ √ 8I 3 √ π ≤ e -t 2 1 t 1 2 + O 1 t 3 2
.

(2.99)

This implies that the KLD is dominantly of the form exp(t/2) for asymptotically long times. This behavior is not a surprise, since I has an integrand dominated by exp(-2λ t) when t → ∞, which is maximum when λ takes its minimum value 1/4. The next order correction is a power function term t -s , where 1/2 ≤ s ≤ 5/2. For L = 0, the explicit calculation is possible, which yields s = 3/2. The subdominant term t -s is relevant in practice, due to the limited time domain accessible in the simulations.

We now focus on the situation where α,k ε λ α k is non-zero. Discrete branches, featuring smaller eigenvalues, do dominate at long times over their continuous counterpart. Which eigenvalue it is depends on L (as seen in Fig. 2.2.5) and also on the symmetry of the initial conditions. We summarize all the possible cases, including the previous continuous result, in the following relation:

D KL (ρ||p eq ) ∼                      Z ∞ [ν o 1 ( x 0 )] 2 Z o 1 e -2λ o 1 t , L > π, x 0 = 0 Z ∞ [ν e 1 ( x 0 )] 2 Z e 1 e -2λ e 1 t , L > 3π, x 0 = 0 3Z ∞ e L/2 4 √ 2π e -t/2 t -s , elsewhere.
(2.100)

We conclude this appendix with a note on the behavior of these asymptotic relations when used on time domains which do not take large enough values. In this situation it can happen that some subdominant terms are not negligible, as previously stated for the continuous spectrum term ε λ . It can also lead to problems in the scheme described in Sec. 2.2.3, for the cross-over regions where the dominant term in δp changes from ε λ to α,k ε λ α k .

2.D Derivation of the simplified transport time distribution

The distribution of τ l (Eq. (2.56)) can be derived following the ideas in [106, Ch. XII], and we summarize the method here. The probability density function p l (t, x) for the free Brownian motion we consider, obeys the Fokker-Planck equation

∂ t p l (t, x) = ∂ 2 x p l (t, x). (2.101)
The boundary conditions of the problem are that of a reflecting wall at the origin and an absorbing wall at x = l, but because Brownian motion has left-right symmetry, we can replace the reflecting wall by a second absorbing wall at x = -l. Then, we have

Initial condition: p l (0, x) = δ(x),
Boundary condition: p l (t, -l) = p l (t, l) = 0.

(2.102)

The total (integrated) probability is not conserved, and the rate at which it decreases due to adsorption gives the transport time distribution,

q l (t) = -∂ x p l (t, x) x=l x=-l . ( 2.103) 
To solve (2.101), we introduce the Laplace transforms

ϕ l (s, x) = ∞ 0 e -st p l (t, x) dt and φ l (s) = ∞ 0 e -st q l (t) dt, (2.104) 
where Re(s) > 0. Then, the transform of (2.103) reads

φ l (s) = -∂ x ϕ l (t, x) x=l x=-l . ( 2.105) 
Now, the transform of (2.101) becomes an ordinary differential equation, which is solved using (2.102) to obtain

ϕ l (s, x) = tanh( √ sl) cosh( √ sx) -| sinh( √ sx)| /[2 √ s], (2.106) 
and due to (2.105) we get

φ l (s) = 1/ cosh( √ sl). (2.107)
This transform is inverted using the Mittag-Leffler expansion of cosh,

φ l (s) = ∞ n=0 (-1) n 4π(2n + 1) (2n + 1) 2 π 2 + 4sl 2 , ( 2.108) 
and (2.57) follows from tables of Laplace transforms.

2.D Derivation of the simplified transport time distribution particles interact through the pair Coulomb potential v (Eq. (1.2)), which follows from solving Poisson's equation (Eq. (1.1)) in 2D, which we recall is:

v(r) = -ln(r/r 0 ), (3.1) 
where r ∈ R 2 and r = |r|.

The energy of the charge asymmetric 2D TCP, for a given set of N σ particles of species q σ is given by

H N 1 ,N 2 = i<j q σ i q σ j v(|r i -r j |), (3.2) 
where the particles are constrained to a domain Λ. Herein, we will consider the properties of the gas in the thermodynamic limit. First, the equation of state is obtained in the canonical ensemble where it is straightforward to compute. For this purpose we write the configuration integral

Q N 1 N 2 = Λ N N 1 j=1 d 2 u j N 2 j=1 d 2 v j e -βH N 1 ,N 2 = Λ N N 1 j=1 d 2 u j N 2 j=1 d 2 v j N 1 (i<j)=1 |u i -u j | q 2 1 β N 2 (i<j)=1 |v i -v j | q 2 2 β N 1 ,N 2 i,j=1 |u i -v j | q 1 q 2 β , (3.3) 
where there are N 1 cations and N 2 anions, such that N 1 q 1 + N 2 q 2 = 0; the Coulomb gas is electroneutral in the bulk. In this Chapter, β = e 2 /( k B T ) is the reduced dimensionless temperature, also known as the Coulomb coupling, where e is the elementary charge and is dielectric constant of the 2D space. This Coupling constant is nothing else than the 2D plasma parameter defined in Section 1.1.3. As discussed therein, for small couplings β → 0 (high temperature limit) the system admits a mean-field approach, namely the Debye-Hückel treatment [START_REF] Blum | Perfect screening for charged systems[END_REF]. Whereas the one-dimensional colloid studied in Chapter 1 featured a configuration integral that converged for any given coupling, for 2D systems this integral diverges when β|q 1 q 2 | ≥ 2. Indeed, for high couplings (i.e. small temperatures) thermal fluctuation cannot contain the electrostatic attraction, which leads to the collapse of oppositecharges. To study beyond the collapse threshold (|q 1 ||q 2 |β ≥ 2) a short-range potential (e.g. hard-core) must be included. Although this adds mathematical complexity to the model, it allows to study the regime featuring the Kosterlitz-Thouless (KT) phase transition [START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF]: at |q 1 ||q 2 |β KT = 4, the plasma changes from its conducting phase (β < β KT ) to an insulator (β > β KT ) phase. In this Chapter, we restrict to the so-called stability regime β|q 1 q 2 | < 2, which is more amenable to analytic progress.

Although the configuration integral in Eq. (3.3) is not trivial, it lends itself to compute the equation of state. We only need to know the 'volume' Λ dependence of the configuration integral, which can be separated with a rescaling. For this purpose, note that the thermodynamic limit Λ → ∞ does not depend on the shape of Λ and 3.1 Introduction therefore, we choose it to be a disk of radius R. Then we use the rescaling r = r/R in Eq. (3.3), and in doing so we get

Q N 1 N 2 = R 2N -(q 2 1 N 1 +q 2 2 N 2 )β/2 Q * N 1 N 2 ∝|Λ| N -(q 2 1 N 1 +q 2 2 N 2 )β/4 , (3.4) 
where N = N 1 + N 2 and Q * N 1 N 2 is the reduced configuration integral over a N 1 + N 2 unitary ball. Now, the equation of state follows from the thermodynamic relation

βP = ∂ ln Q N 1 N 2 /∂|Λ|, which yields βP = n 1 + q 1 q 2 4 β . ( 3.5) 
where n = N/|Λ| is the macroscopic density. This result shows that the system features a simple dependence on the density. This is true for any number of species (q 1 , q 2 , . . . ), so long as they are globally electroneutral (q

1 N 1 + q 2 N 2 + • • • = 0).
Indeed, the analog procedure used to derive Eq. (3.5), allows to generalize the equation of state for any multi-component plasma [START_REF] Salzberg | Equation of state for a two-dimensional electrolyte[END_REF]:

βP = n - β 4 σ n σ q 2 σ . ( 3.6) 
where n σ = N σ /|Λ|. Contrarily, temperature derivatives such as the specific heat and internal energy, and multi-body correlation functions are more involved.

In particular, let us discuss the two-body densities, which are the main topic of this Chapter. In the canonical ensemble they are defined as follows

n (2) σσ (r, r ) = n σ (r) n σ (r ) Q -n σ δ σσ δ(r -r ), (3.7) 
where n σ = Nσ k=1 δ(r k -r) is the microscopic density, and

• • • Q is the ensemble average is • • • Q = 1 Q N 1 N 2 N 1 j=1 d 2 u j N 2 j=1 d 2 v j e -βH N 1 ,N 2 (• • • ). (3.8) 
The integrals in Eq. (3.7) are by no means trivial. In [START_REF] Hansen | Two-body correlations and pair formation in the two-dimensional Coulomb gas[END_REF], the short-distance behavior of the pair distribution function g σσ = n

(2) σσ (r)/(n σ n σ ) was computed, from which result the following two-body densities

n (2) 11 (r) = (n 1 ) 2 g 11 (r) ∼ r→0    r β β < Q r 2k-β[1-k(4Q+1-k)/(2Q 2 )] 2Q 2 2Q-k+1 < β < 2Q 2 2Q-k n (2) 22 (r) = (n 2 ) 2 g 22 (r) ∼ r→0    r β/Q 2 β < 2 r 2-β(2Q-1)/Q 2 2 < β < 4 (3.9) 
where k ∈ {1, . . . , Q} is an integer. For small enough coupling and at short-distance, the two particles are correlated through their bare potential interaction (∼ r βqσq σ = exp[-q σ q σ βv(r)]), as one would naively think. However, for large couplings the behavior changes: two like-charges close together attract opposite-charges to lower the total charge. This formation of clusters with more than two particles enables interesting phenomena, such as like-charge attraction. In section 3.2.1 we give the exact behavior for Q = 2 as r → 0, and in doing so we recover the same r-dependence as featured in Eq. (3.9), for a grand canonical ensemble.

The two-component plasma and the complex Bullough-Dodd model

Henceforth, the thermodynamics of the charge-asymmetric 2D TCP are worked out in the grand canonical ensemble, for reasons that will become clear later. The grand partition function is written as follows

Ξ[z 1 , z 2 ] = ∞ N 2 =0 ∞ N 1 =0 1 N 1 !N 2 !   N 1 j=1 d 2 u j z 1 (u j )     N 2 j=1 d 2 v j z 2 (v j )   e -βH N 1 ,N 2 , (3.10)
where H N 1 ,N 2 is given by Eq. (3.2) and analogously to Section 1.1.4, the position dependent fugacities z σ (u) (σ = 1, 2) are introduced to compute multi-particle densities as follows

n σ = z σ Ξ δΞ δz σ (r) z 1 (r)=z 1 ,z 2 (r)=z 2 (3.11) n (2) 
σσ (r, r ) =

z σ z σ Ξ δ 2 Ξ δz σ (r)δz σ (r ) z 1 (r)=z 1 ,z 2 (r)=z 2 (r = r ) (3.12) 
where n σ = n σ Ξ is the macroscopic density of species σ, n

σσ (r, r ) is given by Eq. (3.7) with the substitution

• • • Q → • • • Ξ , δ/δz σ (r)
is the fugacity functional derivative, and the ensemble average

• • • Ξ is • • • Ξ = 1 Ξ ∞ N 2 =0 ∞ N 1 =0 1 N 1 !N 2 !   N 1 j=1 d 2 u j z 1 (u j )     N 2 j=1 d 2 v j z 2 (v j )   e -βH N 1 ,N 2 (• • • ). (3.13)
The statistics of the 2D TCP is equivalent to a 2D quantum field theory [START_REF] Minnhagen | The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films[END_REF]. Although this is true for any Q, two cases happen to be connected to field theories that have been studied extensively, meaning a gamut of results are readily available. Indeed for Q = 1 (symmetric) and Q = 2, the Coulomb gas is connected to the quantum sine-Gordon [START_REF] Minnhagen | The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films[END_REF][START_REF] Šamaj | Thermodynamic properties of the two-dimensional two-component plasma[END_REF] and complex Bullough-Dodd [START_REF] Šamaj | Exact solution of a charge-asymmetric two-dimensional Coulomb gas[END_REF] models. In the reminder of this Chapter we specialize on the charge-asymmetric case q 1 = 1 and q 2 = -1/2 (Q = 2). The known results for the complex Bullough-Dodd model are then used herein to obtain the short-distance expansion of the two-body densities. For this purpose, we summarize the main results known for this particular case and we refer the reader to [START_REF] Šamaj | Exact solution of a charge-asymmetric two-dimensional Coulomb gas[END_REF] for a complete discussion and derivation.
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Bullough-Dodd representation of the grand partition function

First, the grand partition function is mapped to a field theory using the same procedure introduced in Section 1.1.4. The Boltzmann factor in the right-hand side of Eq. (3.10) is re-expressed using the Hubbard-Stratonovich transformation and afterwards integrated by parts. The resulting expression is then used in Eq. (3.10) to cast the grand partition function as

Ξ = Dφ e -S[z 1 ,z 2 ] Dφ e -S[0,0] , (3.14) 
where φ(r) is a real scalar field, Dφ is the functional integration over this field and S is the action given by

S[z 1 , z 2 ] = d 2 r (∇φ) 2 16π -z 1 (r) e ibφ -z 2 (r) e -i(b/2)φ , ( 3.15) 
where b 2 = β/4 and β is the Coulombic coupling. Note that as in Section 1.1.4, it is necessary to work with the grand canonical ensemble. Whereas the Hubbard-Stratonovich transformation of Ξ becomes the average over an action, other ensembles (e.g. canonical) result in harder expressions to treat.

With the field representation the multi-particle densities are related to the field averages, and in particular for the one-and two-body densities we have

n σ = z σ e ibqσφ , ( 3.16 
)

n (2) σσ (|r -r |) = z σ z σ e ibqσφ(r) e ibq σ φ(r ) , (3.17) 
where • • • is the average with respect to S (Eq. (3.15)), such that

O = 1 Dφ e -S[z 1 ,z 2 ] Dφ e -S[z 1 ,z 2 ] O. (3.18) 
For Eq. (3.17) to be in correspondence with the charge-asymmetric +2/-1 2D TCP, the fugacities z σ (σ = 1, 2) have to be renormalized by the divergent self energy terms exp[βv(0)q 2 σ /2] and using the short-distance normalization e ibqσφ(r) e ibq σ φ(r ) ∼|r -r

| βqσq σ e i(qσ+q σ )bφ , |r -r | → 0, (3.19) 
where β is assumed to be small enough [START_REF] Šamaj | Exact solution of a charge-asymmetric two-dimensional Coulomb gas[END_REF]. The action S equipped with the short-distance normalization forms a conformal field theory known as the complex Bullough-Dodd model [START_REF] Fateev | Expectation values of local fields in the Bullough-Dodd model and integrable perturbed conformal field theories[END_REF], also known as the Zhiber-Mikhailov-Shabat model, which belongs to the affine Toda theories.

bare Coulomb interaction -Q 1 Q 2 ln r. Next, we have the two guest charges and we either add one cation or anion, for a total 3 particles and we continue increasing the number of plasma charges.

For the purpose of illustrating how the terms of the previous expansion behave, we compute one of the terms featuring the guest charges Q σ (σ = 1, 2), and a single plasma particle +1. We would like to know the effective potential between the charges Q 1 and Q 2 as a function of their separation r. The positions of Q 1 and Q 2 are fixed at the origin and r respectively, while the cation can be anywhere in the available space. The partition function for this system is

Z 1 [Q 1 , 0; Q 2 , r] = r βQ 1 Q 2 dr (r ) βQ 1 |r -r | βQ 2 , ( 3.23) 
where r is the cation's position. We can rescale r = r /r in Eq. (3.23), and in doing so we obtain

Z 1 = r β(Q 1 Q 2 +Q 1 +Q 2 )+2 d r ( r ) βQ 1 | r -1| βQ 2 , ( 3.24) 
where we have used the rotational symmetry to change the term r → 1 in the integral. With the previous change of variables we withdraw the r dependence out of integral and obtain the explicit functional form of the partition function in terms of the guest-charge separation. Note that the integral in Eq. (3.24) is convergent if βQ 1 > -2 (i.e. stability condition on Q 1 ) and

β(Q 1 + Q 2 ) < -2.
The threshold in the later condition will play an important role in the effective potential expansion: it marks a transition of the dominant term in the short-distance behavior.

For β(Q 1 + Q 2 ) > -2 this integral has an analytic continuation (discussed later) and the contribution associated to Eq. (3.24) recedes its dominant status.

Equation (3.22) is obtained by summing over terms which successively add plasma particles to the system they represent. In what follows we will find an explicit and formal expression for short-distance limit r → 0, which will later be used to identify the dominating interaction. For this purpose the effective potential is cast in terms of the field theory, which has the following equality that was derived in [START_REF] Šamaj | Anomalous effects of "guest" charges immersed in electrolyte: Exact 2D results[END_REF] e

-βG Q 1 Q 2 (r) = e ibQ 1 φ(0) e ibQ 2 φ(r) e ibQ 1 φ e ibQ 2 φ . ( 3.25) 
The expectation fields for the complex Bullough-Dodd model have been studied extensively and their analytic expression has been derived in [START_REF] Fateev | Expectation values of local fields in the Bullough-Dodd model and integrable perturbed conformal field theories[END_REF] e

iaφ =   z 2 Γ(1 + b 2 )Γ( 4-b 2 4 ) z 1 2 b 2 2 Γ(1 -b 2 )Γ( 4+b 2 4 )   2a 3b mΓ( 3+ξ 3 )Γ( 1+ξ 2 ) 4 1 3 √ 3Γ( 1 3 ) 2a 2 -ab × exp R + dt t sinh((2 -b 2 )t)csch(2t)Ψ(t, a) sinh(3(2 -b 2 )t) sinh(b 2 t) - 2a 2 e 2t , (3.26) 
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where

ξ = b 2 /(2 -b 2 ), (3.27) 
and

Ψ(t, a) = -sinh(2abt) sinh([4 -b 2 -2ab]t) -sinh([2 -2b 2 + 2ab]t) + sinh([2 -b 2 -2ab]t) -sinh([2 -b 2 + 2ab]t) -sinh([2 + b 2 -2ab]t) , (3.28) 
and m corresponds to the mass of the lightest particle featured in the complex Bullough-Dodd model: a 1-breather, which is given by

m = 2 √ 3 Γ( 1 3 ) Γ( 3-ξ 3 )Γ( 1+ξ 3 ) z 1 Γ(1 -b 2 ) Γ(b 2 )/π z 2 Γ( 4-b 2 4 ) Γ( b 2 4 )/2π (1+ξ)/3 . ( 3.29) 
We are interested in the effective potential between the guest charges when they are at short-range distances. For this purpose, we use the short-distance operatorproduct-expansion of e ibQ 1 φ(0) e ibQ 2 φ(r) , which has been computed in [START_REF] Baseilhac | Expectation values of descendent fields in the Bullough-Dodd model and related perturbed conformal field theories[END_REF]:

e ibQ 1 φ(0) e ibQ 2 φ(r) = ∞ n=0 C n,0 Q 1 Q 2 (r)e ib(Q 1 +Q 2 +n)φ + • • • + ∞ n=1 C n,0 Q 1 Q 2 (r)e ib(Q 1 +Q 2 -n/2)φ + • • • + ∞ n=1 D n,0 Q 1 Q 2 (r)e ib(Q 1 +Q 2 +n-1/2)φ + • • • . ( 3.30) 
The previous equation is the kind of expansion we were looking for, which is later shown to contain the terms that correspond to systems made of the two guest charges and a finite number of plasma particles. For this purpose we need the coefficients in Eq. (3.30), which were computed in [START_REF] Baseilhac | Expectation values of descendent fields in the Bullough-Dodd model and related perturbed conformal field theories[END_REF] C

n,0 Q 1 Q 2 (r) = z n 1 f n,0 Q 1 Q 2 (z 1 z 2 2 r 6-3b 2 )r 4Q 1 Q 2 b 2 +4nb 2 (Q 1 +Q 2 )+2n(1-b 2 )+2n 2 b 2 , C n,0 Q 1 Q 2 (r) = z n 2 f n,0 Q 1 Q 2 (z 1 z 2 2 r 6-3b 2 )r 4Q 1 Q 2 b 2 -2nb 2 (Q 1 +Q 2 )+2n(1-b 2 /4)+n 2 b 2 /2 , D n,0 Q 1 Q 2 (r) = z 2 z n 1 g n,0 Q 1 Q 2 (z 1 z 2 2 r 6-3b 2 )r 4Q 1 Q 2 b 2 +(4n-2)b 2 (Q 1 +Q 2 )+2n(1-2b 2 )+2+2n 2 b 2 . ( 3.31) 
For each function h ∈ {f, f , g} there exists a power series expansion:

h n,0 Q 1 Q 2 (t) = ∞ k=0 h n,0 k (Q 1 , Q 2 )t k . (3.32)
The leading terms of the previous expansion are

f n,0 0 (Q 1 , Q 2 ) = j n (Q 1 , Q 2 , 1) (for n = 0) f n,0 0 (Q 1 , Q 2 ) = j n (-Q 1 /2, -Q 2 /2, 1/4) g n,0 0 (Q 1 , Q 2 ) = F n,1 (Q 1 , Q 2 , 1), (3.33) 

Introduction

where

j n (a 1 , a 2 , ρ) = 1 n! n k=1 d 2 x k n k=1 |x k | a 1 β |1 -x k | a 2 β n k<p |x k -x p | ρβ , ( 3.34) 
and

F n,m (a 1 , a 2 , ρ) = 1 n!m! n k=1 d 2 x k m l=1 d 2 y l n k=1 |x k | a 1 β |1 -x k | a 2 β n k<p |x k -x p | ρβ × m l=1 |y l | -a 1 β/2 |1 -y l | -a 2 β/2 m l<q |y l -y q | ρβ/4 n,m k,l |x k -y l | -ρβ/2 . (3.35) Note that j n (Q 1 , Q 2 , 1
) is proportional to the configuration integral of a Coulomb gas, made of n cations (+1) and two fixed guest charges: Q 1 at the origin and Q 2 at 1. Likewise, the term j n (-Q 1 /2, -Q 2 /2, 1/4) is connected to an analogous system where cations are replaced by anions (-1/2). Finally, the function

F n,m (Q 1 , Q 2 , 1)
is related to a system with n cations, m anions and the two guest charges. Therefore, these configuration integrals correspond to a charge-asymmetric +2/-1 2D TCP with finite amount of plasma particles (i.e. canonical ensemble) and two guest charges. These cases are of special interest in the discussion to follow since they appear in the short-distance expansion, which allows to identify the respective term they appear with as the interaction associated to one of the previously discussed N body systems.

The integral j n (a 1 , a 2 , ρ) is known as the complex Selberg integral and Dotsenko-Fateev integral, and it was independently studied in [START_REF] Vl | Conformal algebra and multipoint correlation functions in 2D statistical models[END_REF][START_REF] Dotsenko | Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge C ≤ 1[END_REF] and [START_REF] Aomoto | On the complex Selberg integral[END_REF], with the following outcome:

j n (a 1 , a 2 , ρ) = π γ(ρβ/4) n n k=1 γ kρβ 4 n-1 k=0 γ 1 + β 4 [2a 1 + kρ] ×γ 1 + β 4 [2a 2 + kρ] γ -1 - β 4 [2a 1 + 2a 2 + (n -1 + k)ρ] (3.36) 
where γ(x) = Γ(x)/Γ(1 -x). Replacing Eq. (3.30) in Eq. (3.25) we obtain

e -βG Q 1 Q 2 (r) = e ib(Q 1 +Q 2 )φ e ibQ 1 φ e ibQ 2 φ r F bare 1 + O r min{6-3b 2 ,4} + ∞ n=1 e ib(Q 1 +Q 2 +n)φ e ibQ 1 φ e ibQ 2 φ z n 1 j n (Q 1 , Q 2 , 1) r F c n × 1 + O r 6-3b 2 + ∞ n=1 e ib(Q 1 +Q 2 -n 2 )φ e ibQ 1 φ e ibQ 2 φ z n 2 j n - Q 1 2 , - Q 2 2 , 1 4 r F a n 1 + O r 6-3b 2 + ∞ n=1 e ib[Q 1 +Q 2 +(n-1 2 )]φ e ibQ 1 φ e ibQ 2 φ z 2 z n 1 F n,1 (Q 1 , Q 2 , 1) r F a,c 1,n 1 + O r 6-3b 2 , ( 3.37) 
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where

F bare =βQ 1 Q 2 , F c n =βQ 1 Q 2 + βn(Q 1 + Q 2 ) + n 2 - β 2 + βn 2 2 , F a n =βQ 1 Q 2 - βn 2 (Q 1 + Q 2 ) + n 2 - β 8 + βn 2 8 , F a,c 1,n =βQ 1 Q 2 + β n - 1 2 (Q 1 + Q 2 ) + n(2 -β) + βn 2 2 + 2. (3.38) 
These exponents are defined for n ≥ 1, as seen in Eq. (3.37). Note that the smallest function in Eq. (3.38) is in the dominant term of Eq. (3.37), when r → 0.

Equation (3.37) has the following physically interpretation: the rhs is a sum over terms associated to systems with a finite number of charges, in resemblance with a grand partition function. The terms {r

F bare , j n r F c n , j n r F a n , F n,1 r F a,c 1 
,n } are configuration integrals of systems with a finite number of particles. Figure 3.1.3 depicts the systems associated to these configuration integrals. Note that, up to an additive constant, the free energy of these systems is -F log r, with the respective

F ∈ {F bare , F c n , F a n , F a,c 1,n }.
Then, these F-functions are closely related to free energies. Note that, up to an additive constant, the effective potential G Q 1 Q 2 behaves as one of the aforementioned free energies, in the limit r → 0. The following section describes the hierarchy of the F-functions, which allows to determine the dominant term featured in the effective potential expansion at short-distances.

+ - - + - + + - - - - - + - + Q 1 + Q 2 Q 1 Q 2 Q 1 + Q 2 Q 1 + Q 2 Q 1 Q 2 Q 1 + Q 2 Q 1 + Q 2 Q 1 Q 2 Q 1 + Q 2 Q 1 Q 2 F bare F c 1 F a 1 F a,c 1,1 F c 2 F a 2 F a,c 1,2 F c 3 F a 3 F a,c
1,3 Fig. 3.1.3: Sketches of the systems associated to the configuration integrals {r F bare , j n r F c n , j n r F a n , F n,1 r F a,c 1,n }, for n = 1, 2, 3. Each cell depicts a system which is identified by its respective F-function. The case F bare is for the bare guest charges. The remaining systems are made of the guest charges and they include the following plasma particles: F c n adds n cations; F a n adds n anions; F a,c 1,n adds a single anion and n cations.

Short and large distance asymptotic potential

In this section we compute the short-distance behavior for the effective potential. Then, we summon and briefly discuss the results found in [START_REF] Téllez | Short-distance expansion of correlation functions for chargesymmetric two-dimensional two-component plasma: exact results[END_REF], where the largedistance behavior for G Q 1 Q 2 was obtained analytically. This will allow to compare the two asymptotic results.

Short-distance asymptotic potential

The dominant term of the short-distance effective potential (Eq. (3.37)) has the power law with the minimum exponent. Therefore, to find this dominant interaction we determine which function in Eq. (3.38) yields the minimum value, for a given set of parameters: guest charges Q 1 , Q 2 and a coupling parameter β. One way to proceed is by comparing these functions in three possible cases, based on guestcharge signs: positive

(Q 1 , Q 2 > 0), negative (Q 1 , Q 2 < 0)
, and oppositely charged. This process is straightforward and it reveals that actually, the dominant term depends only on β(Q 1 + Q 2 ). We summarize the results in the following equation:

e -βG Q 1 Q 2 (r) ∼ r→0                      e ib(Q 1 +Q 2 -n/2)φ e ibQ 1 φ e ibQ 2 φ z n 2 r F a n j n - Q 1 2 , - Q 2 2 , 1 4 , 4 - β 2 < β(Q 1 + Q 2 - n 2 ) < 4, e ib(Q 1 +Q 2 )φ e ibQ 1 φ e ibQ 2 φ r F bare , -2 < β(Q 1 + Q 2 ) < 4, e ib(Q 1 +Q 2 +n)φ e ibQ 1 φ e ibQ 2 φ z n 1 r F c n j n (Q 1 , Q 2 , 1) , -2 < β(Q 1 + Q 2 + n) < -2 + β, (3.39) 
and at the crossover where

F α n-1 = F α n (for α = a,c), we have e -βG Q 1 Q 2 (r) ∼ r→0                          e ib(Q 1 +Q 2 -n/2)φ e ibQ 1 φ e ibQ 2 φ z n 2 r F a n j n-1 -Q 1 2 , -Q 2 2 , 1 4 2π ln 1 r , β(Q 1 + Q 2 ) = 4 + (n -1) β 2 , e ib(Q 1 +Q 2 +n)φ e ibQ 1 φ e ibQ 2 φ z n 1 r F c n j n-1 (Q 1 , Q 2 , 1) π 4 ln 1 r , β(Q 1 + Q 2 ) = -2 -(n -1)β, (3.40) 
where n ≥ 1 is an integer, we recall b 2 = β/4, and {F a n , F bare , F c n } is given by Eq. (3.38). This relation is valid provided that we are still in the region of stability of the system; -2 < βQ σ < 4 (σ = 1, 2) and β < 4. The intervals in Eq. (3.39) can be understood as follows: at short-distance, the guest-charges form a cluster with the minimum quantity of plasma particles necessary such that the net charge of the group satisfies the stability condition with both cations and anions. Namely, they form a cluster with minimum n c (n a ) cations (anions), such that -2

< β(Q 1 + Q 2 + n c -n a /2) < 4.
In practice, we see that n c or/and n a is zero. Appendix 3.A computes the crossover values where

F α n-1 = F α n (for α = a,c), namely when β(Q 1 + Q 2 ) = 4 + (n -1)β/2 and β(Q 1 + Q 2 ) = -2 -(n -1)
β respectively. Therein the terms n and n -1 have the same residue in absolute value but with opposite sign, consequently canceling out and resulting in a finite value which has the same small-r expansion with an additional logarithmic factor: r F α n ln r -1 (for α = a,c).

Note that if we take Q as cation or anion, then exp(-βG QQ ) has the same r dependence as the two body density. Then, it can be seen that Eq. (3.9) and Eq. (3.39) have the same position dependence. The behavior of Eq. (3.9) holds for an arbitrary integer asymmetry (|q 1 /q 2 | ∈ N). It has an identical interpretation to the present case: the effective interaction of two charges in the plasma is given by a cluster made of the two particles plus a few plasma charges (or none at all). Then, we surmise that at short distances, for both arbitrary guest-charges and chargeasymmetry of the plasma, they form the minimal cluster with a net charge that is stable against collapse with both cation and anions. Then, the effective potential has the same r-dependence as the cluster.

At short distances, the effective potential has the following functional form

βG Q 1 Q 2 ∼ -G eff ln r, ( 3.41) 
where G eff will be referred to as the interaction strength, which from Eq. (3.39) is given by

G eff (Q 1 , Q 2 ; β) =          F a n , 4 + (n-1)β 2 < β(Q 1 + Q 2 ) < 4 + nβ 2 , F bare , -2 < β(Q 1 + Q 2 ) < 4, F c n , -2 -nβ < β(Q 1 + Q 2 ) < -2 -(n -1)β (3.42) 
where F a n , F bare and F c n are given by Eq. (3.38). The interaction strength between the two guest charges has a central role in the discussion that follows: its sign determines whether the guest charges attract or repel. Hence, two like-charges attract when they feature a negative interaction strength. It features the entire stability regime, which is surrounded by the collapse zone. Within each panel the ruling coefficient is, from left to right, F c n , F bare and F a n . The subdivisions of the rectangles show the value of n for the respective coefficient, which ranges from 0 to ∞. We will see that the most interesting case is for F c 1 , where there is like-charge attraction. The region where F bare is dominant, given by the interval -2

< β(Q 1 + Q 2 ) < 4, has a bare-charge interaction βG Q 1 Q 2 ∼ -Q 1 Q 2 ln r.
This regime contains all the oppositely charged guest-charge cases without collapse and hence, they always have an attractive interaction, as expected. Note that for plasma charges, the short-distance bare-charge interaction strength is consistent with the short-distance normalization Eq. (3.19), where the connection between exp(-βG qq ) and e ibqφ(r) e ibq φ(r ) is given by Eq. (3.25). [START_REF]Theory of Simple Liquids[END_REF], the coefficients F a 1 or F b 1 enter into the play. Notice that this regime corresponds to a situation of instability if both guest charges are seen as a single charge

When β(Q 1 + Q 2 ) ∈ [-2,
Q 1 + Q 2 . If β(Q 1 + Q 2 ) < -2, a single charge Q 1 + Q 2 will
collapse with an ion of charge +1 of the plasma. This indicates the need to consider configurations with the two guest charges Q 1 , Q 2 and an ion +1 of the plasma, and 3.2 Short and large distance asymptotic potential then the dominant term of G Q 1 Q 2 (r) will be given by -F c 1 ln r which corresponds to this configuration. Similarly, if β(Q 1 + Q 2 ) > 4, a single charge Q 1 + Q 2 will collapse with an ion of charge -1/2 of the plasma. The relevant configuration here is the two guest charges Q 1 , Q 2 and an ion -1/2 of the plasma, leading to . . . ). The natural number n is given for each sector. The plot shows that the functional form landscape of the interaction strength is determined by sum of charge of the two guest particles Q 1 + Q 2 , together with the Coulomb coupling (inverse dimensionless temperature) β. However, we stress that F c n , F bare and F a n are functions of Q 1 , Q 2 and β, not simply of (Q 1 + Q 2 ) and β. LCA ZONE is the region where there can be like-charge attraction: -4β(Q 1 + Q 2 ) < -2 and β > 2. The entire stability regime is present: 0 < β < 4 and -4 < β(Q 1 + Q 2 ) < 8. Note there are vertical dots at the bottom of the left and right panels, which indicate there is an infinity of sectors.

G Q 1 Q 2 (r) ∼ -F a 1 ln r.
β (Q 1 + Q 2 ) β F c n F bare

Large-distance asymptotic potential

In previous studies, the large-distance (r → ∞) expansion for the effective potential (Eq. (3.25)) has been derived. Using the form-factors of the exponential fields in the complex Bullough-Dodd model [START_REF] Šamaj | Exact solution of a charge-asymmetric two-dimensional Coulomb gas[END_REF][START_REF] Smirnov | Form Factors in Completely Integrable Models of Quantum Field Theory[END_REF][START_REF] Acerbi | Form factors of exponential operators and exact wave function renormalization constant in the Bullough-Dodd model[END_REF][START_REF] Brazhnikov | Angular quantization and form factors in massive integrable models[END_REF], the two point correlation function e ibQ 1 φ(0) e ibQ 2 φ(r) can be written as follows e ibQ 1 φ(0) e ibQ 2 φ(r) = e ibQ 1 φ(0) e ibQ 2 φ(r)

+ ∞ N =1 1 ,••• , N R N F Q 1 ( θ, )F Q 2 ( θ, ) (2π) N N ! N i=1 dθ i e -r m i cosh θ i (3.43)
where θ = (θ 1 , . . . , θ N ) and = ( 1 , . . . , N ). This is a series over the quantum states of the complex Bullough-Dodd, where F Qσ (σ = 1, 2) are the form-factors of the exponential fields with N states and spectrum 1 , . . . , N [START_REF] Smirnov | Exact S-matrices for φ 1,2 -perturbated minimal models of conformal field theory[END_REF]. Each i has associated a rapidity θ i and mass m i .

At large distances, Eq. (3.43) is ruled by the lightest mass m (Eq. (3.29)), which we recall corresponds to a 1-breather. This allows to compute the large-distance effective potential, which in [START_REF] Téllez | Charge inversion of colloids in an exactly solvable model[END_REF] was found to be

βG Q 1 Q 2 ∼ r→∞ G ∞ eff K 0 (mr), (3.44) 
where K 0 (x) is the modified Bessel function of order zero and G ∞ eff is the interaction strength at large distances given by [START_REF] Téllez | Charge inversion of colloids in an exactly solvable model[END_REF]. Note that Eq. (3.44) naturally defines a screening length given by m -1 . It bears some resemblance to the linear Debye-Hückel theory and in fact, for small couplings β 1 it recovers the Poisson-Boltzmann theory [START_REF] Tracy | On exact solutions to the cylindrical Poisson-Boltzmann equation with applications to polyelectrolytes[END_REF][START_REF] Trizac | Onsager-Manning-Oosawa condensation phenomenon and the effect of salt[END_REF]. This can be readily seen for the mass, which is related to the Debye length λ D through [START_REF] Šamaj | Exact solution of a charge-asymmetric two-dimensional Coulomb gas[END_REF] 

G ∞ eff = 8 √ 3 
m = λ -1 D 2 √ 3 πξ sin πξ 3 sin π(1 + ξ) 3 ∼ β 1 λ -1 D . (3.47)
We observe that the large-distance behavior is governed by many-body interactions which manifest through the 1-breather quantum state. Unlike for short-distances, the large-distance behavior cannot be determined through simple arguments involving a finite number of particles.

At large distances, G ∞ eff plays an analogous role as G eff : two charges attract when G ∞ eff is negative and repel when positive. However, one should keep in mind that it only makes sense to compare the signs G eff and G ∞ eff , not the magnitude. Indeed, their magnitudes are only relevant when used in the complete expression for G Q 1 Q 2 . It was found in [START_REF] Téllez | Charge inversion of colloids in an exactly solvable model[END_REF] that only negative charges can attract each other and furthermore, that the regime where this happens is

β Q 1,2 < β -4, β -4 < β Q 2,1 < 0, β > 2.
(3.48) It was also found in [START_REF] Téllez | Charge inversion of colloids in an exactly solvable model[END_REF] that two oppositely charged particles can repel, provided that Q 1,2 > 0 and Q 2,1 < β -4 < 0.

Like-charge attraction

In this section we give the regime where there is like-charge attraction between two guest charges immersed in the charge-asymmetric 2D TCP, at short distances. Namely, we give the region where G eff is negative for like-charges. We begin with the analysis F a n and F c n : we determine if and when they are negative. Then, we consider two particular cases of interest: an interaction where at least one of the particles belongs to the plasma and next, between two identical guest charges Q 1 = Q 2 . We conclude with the conditions for like-charge attraction between two arbitrary guest charges, provided that they are within the stability regime. Throughout this section short-and long-distance behaviors are compared.

Particular cases Interactions involving plasma charges

There are two possibilities which involve at least one plasma particle: cation-Q 1 and anion-Q 1 , where -2 < βQ 1 < 4 is a guest charge. Before addressing a general Q 1 , we consider two particular cases of interest: cation-cation and anion-anion interactions (i.e Q 1 is also a plasma particle). We begin by discussing the cationcation case, where the interaction strength takes the form of F bare and F a n . The former is a bare-charge interaction, as seen in Eq. (3.38). Therefore, when G eff = F bare there cannot be like-charge attraction. Besides, we have that F a n is always positive. To see this, we write F a n as

F a n = β 8 (n -1)(n -8) + 2n. (3.49)
Notice that the only way F a n may be negative is for the first rhs term to be negative, which happens for 1 < n < 8. However, for these n we also have that F a n is positive. To see this, note that F a n is: monotonically decreasing function of β, positive-valued for β = 0 and β = 4. Hence, it is positive for 0 ≤ β ≤ 4. Repulsive interaction ensues and consequently, cations can never attract each other.

Next, we consider the anion-anion interaction. The fact that both charges are negative entails that G eff is either F bare or F c n , as seen in Eq. (3.42). We disregard the bare-charge interaction due to the aforementioned reasons and proceed to examine F c n . It is straightforward to see that F c 1 becomes negative at high Coulombic couplings, namely β > 8/3. Hence, two anions indeed attract provided they are at small enough temperatures (large β). Figure 3.3.1 shows the cation-cation and anion-anion interaction strength as a function of the Coulomb coupling, at both short and large distances. Note that the large-distance interaction strength is always positive for the known † Coulomb couplings, at variance with the short-distance case.

1 2 8 3 3 4 -1 0 1 2 Like-charge attraction r → ∞ r → 0 β G eff (Q,Q; β) or G ∞ eff (Q,Q; β)
anion-anion cation-cation Fig. 3.3.1: Short (solid) and large (dashed) distance interaction strength between two like-charged plasma particles: Q = 1 cations (red) and Q = -1/2 anions (blue). The anions feature like-charge attraction (curve within shaded region) for β > 8/3. The largedistance interaction strength is extracted from [START_REF] Téllez | Charge inversion of colloids in an exactly solvable model[END_REF], where the results are valid for β < 8/3.

We move on to examine the interaction of a guest-charge, which without loss of generality we call Q 1 , with either a cation (Q 2 = 1) or anion (Q 2 = -1/2). The former is governed by F bare and F a n , which as for the cation-cation case are non-negative. Hence, a cation in the charge-asymmetric 2D TCP will always repel like charges. Contrarily, an anion can indeed attract a like-charge. This follows from the term F c 1 , which is negative in the regime defined by the following inequalities:

-2 < βQ 1 < β -4 and 2 < β < 4, (3.50) 
where β < 4 and -2 < βQ 1 come from the stability condition. The remaining inequalities ensure that G eff < 0. Figure 3.3.2 features the interaction strength for the cation-Q 1 and anion-Q 1 cases, at both short and large distances. The anion case exhibits the same attraction/repulsion regions for both distance asymptotics, whereas for the cation there is a major difference: at large distances the cation can repel with an opposite-charge, at variance with short distances. Note that in Fig. 3.3.2, the interaction strength G ∞ eff is normalized. This allows to evidence the sign changes of G eff and G ∞ eff in the same figure. Recall that these quantities stem from different functional expressions and therefore cannot be compared by their magnitudes, as previously discussed.

Identical guest charges

We next search for like-charge attraction between two identical guest charges:

Q = Q 1 = Q 2 .
When the interaction strength is F bare there cannot be like-charge attraction, since this term corresponds to a bare-charge interaction. Then, the only possibility is that F c n and/or F a n are negative, in the respective intervals where they are dominant (see Eq. (3.42)). It turns out that F a n is always positive. Hence, two identical positively charged particles can never attract. However, F c n does become negative in the following interval -2 < βQ < β -2 -β and 2 < β < 4, (3.51)

3.3 Like-charge attraction -2 -1 0 1 2 3 4 -2 -1 0 1 2 LCA OCR Q 1 β G eff or G ∞ eff Q 2 = -1 2 , r→0 Q 2 = 1, r→0 Q 2 = -1 2 , r→∞ Q 2 = 1, r→∞
Fig. 3.3.2: Short (solid) and large (dashed) distance interaction strength between a guestcharge Q 1 and a plasma particle, cation (red) and anion (blue), for a Coulombic coupling (inverse dimensionless temperature) β = 2.5. In the figure, LCA and OCR stand for likecharge attraction and opposite-charge repulsion respectively. There is like-charge attraction between Q 1 and the anion when βQ 1 < -1.5, for both short (Eq. (3.50)) and large distances (Eq. (3.48)). Contrarily, there is only opposite-charge repulsion at large distances, for the case of a cation interacting with Q 1 . Note that this figure includes the complete stability interval for Q 1 : -2 < βQ 1 < 4. The large-distance interaction strength is extracted from [START_REF] Téllez | Charge inversion of colloids in an exactly solvable model[END_REF], and it is normalized so to accommodate G eff and G ∞ eff in the same plot . The normalization is such that max{

| G ∞ eff (Q 1 , Q 2 ; β) | } = max{ | G eff (Q 1 , Q 2 ; β) | }.
This allows to compare the sign of these quantities, which has the same meaning in both asymptotic cases at variance with the magnitudes.

where the lower and upper bounds of βQ and β respectively are the stability requirements. Therefore two identical negative charges attract, provided that Eq. (3.51) is satisfied. The interaction strength is featured in Fig. 3.3.3, for a few Coulomb coupling numbers. For small β < 2 we see that G eff > 0, whereas for large values it becomes negative and therefore there is like-charge attraction. In contrast, at large distances this can never happen: from Eq. (3.45) we know that the interaction strength is positive since it goes like

G ∞ eff (Q, Q; β) ∼ (Q eff (Q)) 2 , where Q eff (Q) is some real-valued function of Q. -2 -1 0 1 2 3 4 -1 0 1 2 3 4
Like-charge attraction

β = 0.1 β = 0.6 β = 2 β→4 βQ G eff (Q,Q; β)

Fig. 3.3.3:

Short-distance interaction strength G eff (Eq. (3.42)) between two identical guest charges Q 1 = Q 2 = Q, as a function of βQ. For large enough Coulomb couplings (β > 2), there may be like-charge attraction (curve within the shaded region), as seen here for β → 4.

Arbitrary guest charges

Q 1 and Q 2
This section proceeds to determine the conditions (i.e. charge and temperature regime) for like-charge attraction between two guest particles Q σ (σ = 1, 2), at short distances. We find that negative like-charges can attract each other whereas positive ones cannot. Let us begin by considering the latter. For two positive charges the interaction strength is ruled by either F bare or F a n . When F bare dominates, the barecharge interaction cannot lead to like-charge attraction and Appendix 3.B shows that neither does F a n . Hence, positive charges in the charge-asymmetric 2D TCP cannot attract at short distances.

We move on to consider two negative charges Q σ < 0 (σ = 1, 2). When F bare dominates, the bare-charge interaction cannot lead to like-charge attraction and therefore we examine

F c n in the interval -4 < β(Q 1 + Q 2 ) < -2 (see Fig. 3.2.1). Appendix 3.B shows that F c
n is positive for n > 1. However, n = 1 is special since F c 1 is negative if the following inequality is satisfied:

F c 1 = βQ 1 Q 2 -β(|Q 1 |+|Q 2 |) + 2 < 0. (3.52)
It can readily be seen that this inequality can only be satisfied if |Q 1 | < 1 and |Q 2 | < 1 simultaneously. We now examine the dependence on the Coulomb coupling, for which we solve for β:

β > 2 |Q 1 |+|Q 2 | -Q 1 Q 2 , ( 3.53) 
Note that the threshold for like-charge attraction to manifest is β > 2. To summarize, the like-charge attraction regime is defined by the following inequalities:

2 -β|Q 2,1 | 1-|Q 2,1 | < β|Q 1,2 | < β and 2 < β < 4. (3.54)
This regime is contained within the region where F c 1 is the interaction strength (Eq. (3.42)). eff feature like-charge attraction are considerably different. Whereas two identical charges that are close together can attract (see Fig. 3.3.3 or 3.3.4a), they will always repel at large separations (Q 1 = Q 2 is empty in Fig. 3.3.4b). We had already witnessed this feature during the discussion of interactions among like-charged plasma particles. Indeed we see that for a given Coulomb coupling, the like-charge regime for short distances does not contain its large-distance counterpart, and conversely. One characteristic they do share is the Coulomb coupling threshold for this phenomena: β > 2. Besides finding the presence of like-charge attraction at short distances, we also showed that oppositely charged particles have a bare-charge 3.3 Like-charge attraction interaction. Consequently, they will always attract at variance to the large-distance interactions. Below the dashed line G eff = F c n and above (within the plot domain) G eff = F bare , for any Coulomb coupling within the stability regime (0 < β < 4). Note that the stability regime requires βQ 1,2 > -2. The limit β → 4 refers to the asymptotic region as the Coulomb coupling approaches the collapse threshold, 4. (b) Large-distance (r → ∞) like-charge attraction regimes for β → 8/3 (thick stripes) and β = 2.1 (orange filling). The threshold when like-charge attraction can occur is β > 2. The large-distance behavior was obtained in [START_REF] Téllez | Charge inversion of colloids in an exactly solvable model[END_REF] and the case β → 8/3 refers to the asymptotic region at that Coulomb coupling number since the results found therein are valid for β < 8/3.

Even though our results deal with a point-like system, we expect the same behavior for the case where particles are hard-disks of radius r hd > 0, in the limit of small yet non-vanishing r hd , provided that β < 4. The rationale behind this is that steric effects become negligible when r hd is much smaller than the separation between the guest-charges (r). If additionally we consider a small r, then, the short-distance behavior is given by Eq. (3.39), in the stability regime. Beyond the stability threshold for the point-particle model, it is known that the equivalent hard-disk model does not collapse at β = 4 and in fact, there is only the Kosterlitz-Thouless phase transition [START_REF] Levin | Coulombic criticality in general dimensions[END_REF][START_REF] Fisher | The story of Coulombic criticality[END_REF] at β KT = 8. However, we cannot anticipate that Eq. (3.25) describes the behavior of a hard-disk system with a negligible radius. Previous studies for the charge-symmetric 2D TCP have shown that incorrect predictions follow from a direct application of the results obtained via the field theory representation, beyond the stability regime [START_REF] Téllez | Guest charges in an electrolyte: Renormalized charge, long-and short-distance behavior of the electric potential and density profiles[END_REF][START_REF] Šamaj | Renormalization of a hard-core guest charge immersed in a two-dimensional electrolyte[END_REF]. For this reason, further studies remain to be done to determine the short-distance behavior for 4 ≤ β < 8, with small r hd .

So far, we have not discussed the mid-range distance behavior for the 2D TCP. Although we do not have results for that case, we can surmise what happens based on the limiting cases. For some guest charges and Coulombic coupling, there is like-charge attraction at both r → 0 and r → ∞. Then, this hints to the possibility that there is also attraction at mid-range distances, as opposed to having an effective force that changes sign twice.

We conclude with a remark on the effective interactions for the charge-symmetric 2D TCP, which is known for short [START_REF] Téllez | Short-distance expansion of correlation functions for chargesymmetric two-dimensional two-component plasma: exact results[END_REF] and large distances [START_REF] Šamaj | Anomalous effects of "guest" charges immersed in electrolyte: Exact 2D results[END_REF]. In this system, the effective interaction between like-charges is always repulsive. Besides, oppositely charged particles always attract. Then, for the symmetric 2D TCP the common knowledge that like-charges repel and unlike-charges attract is true, whereas in its asymmetric counterpart this intuitive behavior can completely break down.

Conclusions

In this Chapter, we find that there can be like-charge attraction at short distances in the charge-asymmetric +2/-1 two-dimensional two-component plasma. More precisely, it happens between negative charges (see Figs. 3.3.1-3.3.3) for large enough Coulomb coupling (i.e. small temperatures). Furthermore, we determine the charge and Coulomb coupling domain where this phenomenon takes place (see Fig. 3.3.4a). Like-charge attraction is traced to a 3-body interaction, where a negative charge pairs with a plasma cation (+1) to attract the other negative charge. These results are compared to the large distances behavior, which also features likecharge attraction (see Fig. 3.3.2). However, the large-distance interaction can lead to opposite-charges to repel, a possibility that is absent at short distances. The shortdistance results are in contrast to the symmetric two-dimensional two-component plasma, where like-charge attraction cannot happen at short-distances [START_REF] Téllez | Short-distance expansion of correlation functions for chargesymmetric two-dimensional two-component plasma: exact results[END_REF]. where

I a 1 ( ) = 1 0 dt t sinh((2 -b 2 )t)csch(2t)Ψ(t, 1 b -b) sinh(3(2 -b 2 )t) sinh(b 2 t) -2 1 b -b 2 e -2t , (3.57a) 
I a 2 ( ) = ∞ 1 dt t sinh((2 -b 2 )t)csch(2t)Ψ(t, 1 b -b) sinh(3(2 -b 2 )t) sinh(b 2 t) -e -4b 2 t -2 1 b -b 2 e -2t ,
(3.57b)

I 3 ( ) = ∞ 1 dt t e -4b 2 t = Γ(0, 4b 2 ) = →0 -ln(4b 2 ) -C + 4b 2 + O( 2 ), (3.57c 
)

I 4 = R + dt t sinh((2 -b 2 )t)csch(2t)Ψ(t, 1 b -b 2 ) sinh(3(2 -b 2 )t) sinh(b 2 t) -2 1 b - b 2 2 e -2t . (3.57d)
Using the following integral representations

C = 1 0 dt t (1 -e -t ) - ∞ 1 dt t e -t , (3.58 
)

ln 2 = R + dt t (e -t -e -2t ), (3.59) 
we have that

I a 1 (0) + I a 2 (0) -I 4 -C + ln 2 -b 2 /2 = R + dt t sinh((2 -b 2 )t)csch(2t)[Ψ(t, 1 b ) -Ψ(t, 1 b -b 2 )] sinh(3(2 -b 2 )t) sinh(b 2 t) -1 - b 2 2 e -2t -1 .
(3.60)

Then, the factor 1/γ(b 2 /4) in Eq. (3.56) can be written as

ln 1 γ(b 2 /4) = R + dt t 1 - b 2 2 e -t + sinh (b 2 -2)t sinh 2t , ( 3.61) 
where we used the following identify:

ln Γ(x) = R + dt t e -t (x -1) + e -(x-1)t -1 1 -e -1 . (3.62)
Finally, gathering all the result we have that Eq. (3.56) is

lim →0 e i( 1 b -b)φ e i( 1 b -b 2 )φ = πz 2 b 2 1 + (I a 1 (0) + I a 2 (0) + 4b 2 ) + O( 2 ) (3.63)
where

I k ( ) = ∂I k ( )/∂ (k = 1, 2). Then r F a n-1 z n-1 2 e ib(Q 1 +Q 2 -n-1 2 ))φ j n-1 -Q 1 2 , -Q 2 2 , 1 4 + r F a n z n 2 e ib(Q 1 +Q 2 -n 2 )φ j n -Q 1 2 , -Q 2 2 , 1 4 
= →0 πz n 2 b 2 e ib(Q 1 +Q 2 -n 2 )φ j n-1 -Q 1 2 , -Q 2 2 , 1 4 r F a n × -2b 2 ln r + I a 1 (0) + I a 2 (0) + 4b 2 + O ( ) , (3.64) 
where

(Q 1 + Q 2 )b 2 → 1 + (n-1)b 2 2 -b 2 .
Likewise, the result for the negative cases where

(Q 1 + Q 2 )b 2 → -1 2 + (n -1)b 2 + b 2
follows along the same lines, yielding:

r F c n-1 z n-1 1 e ib(Q 1 +Q 2 +n-1))φ j n-1 (Q 1 , Q 2 , 1) + r F c n z n 1 e ib(Q 1 +Q 2 +n)φ j n (Q 1 , Q 2 , 1) = →0 πz n 1 4b 2 e ib(Q 1 +Q 2 +n)φ j n-1 (Q 1 , Q 2 , 1)r F c n -b 2 ln r + I c 1 (0) + I c 2 (0) + 4b 2 + O ( ) , (3.65) 
3.A Effective potential expansion at crossover values where

I c 1 ( ) = 1 0 dt t sinh((2 -b 2 )t)csch(2t)Ψ(t, -1 2b + b) sinh(3(2 -b 2 )t) sinh(b 2 t) -2 - 1 2b + b 2 e -2t ,
(3.66a)

I c 2 ( ) = ∞ 1 dt t sinh((2 -b 2 )t)csch(2t)Ψ(t, -1 2b + b) sinh(3(2 -b 2 )t) sinh(b 2 t) -e -4b 2 t -2 - 1 2b + b 2 e -2t .
(3.66b)

3.B Analysis of F a n and F c n

This appendix shows that F c n and F a n are positive for n > 1 and n ≥ 1 respectively, in the intervals where they are associated with the interaction strength (Eq. (3.42)). We begin by considering F c n , which is G eff in the region that satisfies the following inequality:

-2 -nβ < β(Q 1 + Q 2 ) < -2 -(n -1)β.
The former can be done by showing that F c n is positive in a bigger simpler square region:

R c Q 1 Q 2 = [-2/β, 0] × [-2/β, 0]
. This set contains all the possible negative-charge values that satisfy the stability condition. We proceed to show that min (

F c n ) is positive in R c Q 1 Q 2 ,

and consequently so does

F c n . Since F c n does not have critical points in R c Q 1 Q 2 , the minimum lies in boundary of R c Q 1 Q 2 .
Furthermore, F c n is monotonic in each side of the square boundary and hence the minimum must be on one of the following vertex points:

F c n (Q 1 = 0, Q 2 = 0) = n 2 - β 2 + βn 2 2 , F c n Q 1 = 0, Q 2 = - 2 β = βn(n -1) 2 , F c n Q 1 = Q 2 = - 2 β = 4 β -n 2 + β 2 + βn 2 2 , ( 3.67) 
where the missing vertex follows the symmetry

F c n (Q 1 , Q 2 ) = F c n (Q 2 , Q 1 )
. It is straightforward to show that for any n > 1 and 0 < β < 4, these vertices are positive and hence, so does

F c n in R c Q 1 Q 2 , for 0 < β < 4. The procedure to show F a n > 0 for n ≥ 1 is analogous, using R c Q 1 Q 2 → R a Q 1 Q 2 = [0, 4/β] × [0, 4/β]. 112 
Chapter 3 Like-charge attraction at short distances in a charge-asymmetric two-dimensional two-component plasma: exact results

General conclusion

This thesis reports on thermodynamics of Coulomb systems using the exact electrostatic interaction, in and out of equilibrium. For the former, we highlight exact results for a phenomenon that challenges our intuition of electrostatics: like-charge attraction. The possibility for two large like-charges (e.g. colloids, macromolecules, plates) to attract via the mediation of small ions and a solvent is not simply a theoretical curiosity; it is of great interest for a wealth of systems such as DNA condensates [START_REF] Bloomfield | DNA condensation[END_REF][START_REF] Levin | Strange electrostatics in physics, chemistry, and biology[END_REF], charged stiff polymers [START_REF] Trizac | Bending stiff charged polymers: The electrostatic persistence length[END_REF], cement [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF][START_REF] Ioannidou | The crucial effect of early-stage gelation on the mechanical properties of cement hydrates[END_REF][START_REF] Goyal | The physics of cement cohesion[END_REF] and more. Our contribution is two-fold. First, in the 2D system we identify a three-body interaction mediating like-charge attraction, at short-distances. This mechanism spans across dimensions, since it had already been reported in other Coulomb systems: for colloids in 1D and 3D. Secondly, in the 1D colloid we determine the effects of dielectric inhomogeneity, which may magnify, decrease or even prevent like-charge attraction. This elusive ingredient is challenging to account since the electrostatic potential that follows features an infinity of image charges. Yet, it is crucial to model real colloids which have dielectric constants that are typically 20 times greater than the solvent in which they are found. Finally, we also characterized the relaxation towards equilibrium, for a related double-layer system with uniform permittivity. Although our results are in low-dimensions, they capture qualitative traits which are pivotal to propose operational models and/or approximations to 'real' 3D systems.

Treatments for many-body systems with electrostatic interactions are most often accessible for a particular coupling regime; our results span across regimes. Herein we show explicitly that the mean-field theory is recovered for a large number of particles, in and out of equilibrium for a uniform permittivity. Strikingly, this theory remains operational even for a small number of particles. Upon adding dielectric inhomogeneity, we find the criteria changes; the validity of mean-field becomes dependent on the dielectric 'jump', as expected. Whereas this may lead to an increase or decrease of the particles needed to have negligible electrostatic correlations, it remains true that in the limit of infinite counterion and fixed colloidal charge, the mean-field theory becomes exact.

In more detail, Chapter 1 derives the analytical effective interaction between two colloids, in a one-dimensional model with dielectric jumps at the colloids' position. We evaluate exactly the partition function in two scenarios: keeping the colloids at a fixed distance (canonical) and allowing their position to fluctuate at constant pressure (isobaric). In the former case we derive the density profile and pressure, which are shown to follow a contact-like relation. The equation of state for the canonical and isobaric ensembles show there is like-charge attraction, whether or not the counterions are confined between the colloids. In contrast to the homogeneous dielectric case, there is the possibility for the colloids to attract despite the number of counter-ions (N ) being even. The results are compared to the mean-field prediction, showing they become exact in the limit N → ∞.

In Chapter 2, we consider an out-of-equilibrium one-dimensional model for two electrical double-layers. It is the dynamical analog of the system studied in Chapter 1, with a homogeneous dielectric. We report the relaxation time (τ ), using both exact calculations and Brownian Dynamics simulations, for an overdamped electroneutral salt-free suspension: two fixed colloids with N neutralizing mobile counterions. The dichotomy induced by the parity of N at equilibrium is transposed to the dynamics: an odd number of counterions frustrates the decoupling into two double-layers, irrespective of their separation L. Within this regime, where there is like-charge attraction at equilibrium, τ exhibits a diffusive scaling in L 2 for large L. Oppositely, for even N , L no longer is the relevant length scale for setting the relaxation time; this role is played by the Bjerrum length. This leads to distinctly different dynamics: for N even, thermal effects are detrimental to relaxation, increasing τ , while they accelerate equilibration for N odd. Finally, we show that similarly to the equilibrium case in Chapter 1, the mean-field theory is also recovered in the dynamical case, for large N . Moreover, it remains an operational treatment down to relatively small number of counterions (N > 3).

In Chapter 3, we revisit like-charge attraction in a two-dimensional system. We determine exactly the short-distance effective potential between two "guest" charges immersed in a 2D two-component charge-asymmetric plasma, made of positively (q 1 = +1) and negatively (q 2 = -1/2) charged point particles. The result is valid when the Coulombic coupling (dimensionless inverse temperature) is β < 4, which is the stability regime where thermal fluctuations are enough to prevent the collapse of opposite-charges interacting via the 2D Coulomb potential. At high Coulombic coupling β > 2, this model features like-charge attraction. This phenomenon is the product of a three particle interaction, where two like-charges draw a third oppositecharge to lower their total charge. Indeed, this three-body interaction begins to operate when the combined charge of a pair surpasses the stability condition. Besides, we find opposite-charges cannot repel at short-distances, at variance with large-distance interactions.

Summary in French

La matière visible, le plus souvent, comporte des protons et des électrons. Il n'est donc pas surprenant que les interactions électrostatiques soient à l'origine de phénomènes importants présents dans de nombreux domaines tels que la biologie, la science des matériaux et la matière condensée. Citons par exemple la formation de condensats d'ADN [START_REF] Bloomfield | DNA condensation[END_REF], la physico-chimie du ciment [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF] et le comportement critique des films superfluides de 4 He [START_REF] Minnhagen | The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films[END_REF].

Si la Nature favorise généralement la formation d'objets neutres, ceux-ci ont tendance à se charger lorsque mis en solution dans les situations rencontrées en matière molle ; c'est pourquoi il est courant de rencontrer des charge allant des ions aux macromolécules. Cet effet de dislocation des systèmes neutres peut se produire en raison de températures élevées, comme pour les sels fondus [START_REF]Theory of Simple Liquids[END_REF] ; par exemple, le sel de table, NaCl, se dissocie à 1073 K en un électrolyte composé de Na + et de Cl -. De même, les composés ioniques se dissocient au contact de solvants polaires (par exemple l'eau) [START_REF] Hansen | Effective interactions between electric double layers[END_REF][START_REF] Messina | Electrostatics in soft matter[END_REF]. Dans tous les cas, le résultat est un système à plusieurs corps composé de constituants chargés, ce qui entraîne des interactions électrostatiques de Coulomb. Comme les potentiels de Coulomb ont une longue portée, nous voyons comment les systèmes à plusieurs corps dotés d'interactions à longue portée peuvent apparaître dans le contexte de la matière molle.

Les interactions électrostatiques sont la clé d'une multitude de phénomènes dans la matière condensée molle, y compris, mais sans s'y limiter, l'attraction de charges similaires, la surcharge/inversion de charge, l'auto-assemblage, l'électrophorèse, etc [START_REF] Holm | Electrostatic Effects in Soft Matter and Biophysics[END_REF][START_REF] Andelman | Introduction to electrostatics in soft and biological matter[END_REF][START_REF] Levin | Electrostatic correlations: from plasma to biology[END_REF][START_REF] Naji | Electrostatic interactions in strongly coupled soft matter[END_REF][START_REF] Boroudjerdi | Statics and dynamics of strongly charged soft matter[END_REF][START_REF] Ioannidou | The crucial effect of early-stage gelation on the mechanical properties of cement hydrates[END_REF]. Néanmoins, la compréhension d'un point de vue fondamental des interactions corrélées à plusieurs corps est rendue ardue par la complexité mathématique qui s'ensuit. Par exemple, considérons l'une des situations les plus simples possibles : deux plaques chargées similaires interagissant en présence de contreions neutralisants. Dans le régime de couplage fort, c'est-à-dire pour une valence élevée de contre-ions et/ou une charge colloïdale importante, ces plaques peuvent s'attirer l'une l'autre, ce qui constitue un exemple d'attraction de charges similaires. Ce système en apparence simple présente un phénomène qui remet en question notre intuition de l'électrostatique. Les plaques, qui autrement se repousseraient dans le vide, s'attirent sous la médiation de contre-ions fortement corrélés [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Šamaj | Counterions at highly charged interfaces: From one plate to like-charge attraction[END_REF][START_REF] Šamaj | Strong-coupling theory of counterions between symmetrically charged walls: From crystal to fluid phases[END_REF]. Ce phénomène ne peut pas être décrit avec les approches standard de champ moyen [START_REF] Neu | Wall-mediated forces between like-charged bodies in an electrolyte[END_REF][START_REF] Trizac | Long-range electrostatic interactions between like-charged colloids: Steric and confinement effects[END_REF][START_REF] Sader | Long-range electrostatic attractions between identically charged particles in confined geometries and the Poisson-Boltzmann theory[END_REF] et il a été initialement confirmé par calcul numérique [START_REF] Allahyarov | Effect of geometrical confinement on the interaction between charged colloidal suspensions[END_REF][START_REF] Grønbech-Jensen | Interactions between charged spheres in divalent counterion solution[END_REF][START_REF] Ma | Effective attraction between likecharged colloids in a two-dimensional plasma[END_REF][START_REF] Guldbrand | Electrical double layer forces. A Monte Carlo study[END_REF][START_REF] Moreira | Simulations of counterions at charged plates[END_REF], puis expérimentalement [START_REF] Kékicheff | Charge reversal seen in electrical double layer interaction of surfaces immersed in 2:1 calcium electrolyte[END_REF][START_REF] Crocker | When like charges attract: The effects of geometrical confinement on long-range colloidal interactions[END_REF][START_REF] Kepler | Attractive potential between confined colloids at low ionic strength[END_REF] et enfin analytiquement [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Netz | Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions[END_REF]. Cependant, de par sa difficulté, l'étude des généralisations de ce cas de base, comme la prise en compte de charges colloïdales intermédiaires, y compris les inhomogénéités diélectriques et les colloïdes de géométries différentes, en fait un sujet d'intérêt où les résultats analytiques sont rares.

Nous nous consacrons ici à l'étude des systèmes avec des corrélations électrostatiques dans des modèles unidimensionnels et bidimensionnels. Bien que les systèmes de basse dimension puissent sembler quelque peu abstraits, ils décrivent un certain nombre d'objets physico-chimiques réels tels que les polymères rigides [START_REF] Trizac | Bending stiff charged polymers: The electrostatic persistence length[END_REF], les plaquettes d'argile [START_REF] Trizac | Effective interactions and phase behaviour for a model clay suspension in an electrolyte[END_REF][START_REF] Ebrahimi | Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets[END_REF], les feuilles de ciment [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF] et plus encore. A titre d'illustration, nous évoquons la question de l'origine de la cohésion du ciment. En bref, le ciment, un agent liant clé du béton, est constitué de couches de Calcium-Silicate-Hydrates (C-H-S) qui piègent une solution composée d'eau et d'ions [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF][START_REF] Goyal | The physics of cement cohesion[END_REF][START_REF] Palaia | Charged systems in, out of, and driven to equilibrium : from nanocapacitors to cement[END_REF]. Bien que la physico-chimie du ciment soit complexe [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF][START_REF] Goyal | The physics of cement cohesion[END_REF], un modèle simple pour ce système est composé par deux plaques symétriques uniformément uniformément chargées avec, entre elles, des contre-ions où ces charges interagissent par paire via un potentiel de Coulomb en 3D, 1/r. Le fait que les contreions soient multivalents, et les plaques fortement chargées, fait passer le système de cimentation dans le régime de couplage fort. Comme mentionné précédemment, cela déclenche l'attraction de charges similaires, qui est à l'origine de la cohésion du ciment. Dans le régime de couplage fort, lorsque la distance entre les plaques est suffisamment petite, tous les contre-ions sont approximativement dans le même plan, parallèle aux plaques, de sorte que la force dominante agissant sur eux provient du potentiel des plaques. Pour des plaques de même charge, cette force disparaît, ce qui conduit à un profil de densité uniforme, à partir duquel la pression peut être facilement calculée. Dans cette limite, le problème peut être ramené à un système unidimensionnel [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Šamaj | Counterions at highly charged interfaces: From one plate to like-charge attraction[END_REF][START_REF] Moreira | Field-theoretic approaches to classical charged systems[END_REF][START_REF] Trizac | Like-charge attraction in a one-dimensional setting: the importance of being odd[END_REF].

La thèse est organisée en trois chapitres. Les deux premiers considèrent une suspension colloïdale unidimensionnelle composée de deux particules colloïdales et de N contre-ions, étudiée à l'équilibre et hors équilibre. Le Chapitre 1 est consacré au premier cas en présence d'une inhomogénéité diélectrique. La pression et la densité sont calculées exactement, et une relation entre elles est établie. Grâce à la pression, qui n'est rien d'autre que la force en 1D, nous constatons que la suspension colloïdale peut présenter un phénomène d'attraction de charges similaires. Dans le Chapitre 2, ce système est étudié hors équilibre, dans un espace diélectrique homogène. Des résultats exacts et numériques sont utilisés pour étudier le processus de relaxation. Ces deux chapitres comparent les résultats obtenus pour un système purement ponctuel au traitement de champ moyen lorsque les contre-ions ont une distribution de charge continue : les équations de Poisson-Boltzmann et de Poisson-Nernst-Planck pour l'équilibre et la dynamique. Enfin, dans le Chapitre 3, nous donnons les résultats exacts pour un plasma bidimensionnel à deux composants comportant une asymétrie de charge. Deux charges invitées sont introduites et nous calculons le comportement asymptotique à courte distance du potentiel effectif. Ce résultat nous permet de déterminer les conditions pour lesquelles il existe une attraction entre deux charges similaires immergées dans le plasma.

Plus en détail, le Chapitre 1 introduit l'équation de Poisson-Boltzmann, le formalisme de champ moyen que nous utilisons pour traiter les suspensions colloïdales à température constante et sans effets taille finie des particules. La validité de ce traitement est discutée en introduisant les régimes de couplage faible et fort, qui, pour un système donné, sont déterminés par la constante de couplage électrostatique Ξ. La Section 1.1.4 montre la procédure utilisée pour transposer la thermodynamique d'un gaz de Coulomb à une théorie des champs, qui consiste à utiliser la transformation de Hubbard-Stratonovich pour reformuler la fonction de grande partition en termes d'une action liée à la théorie des champs. Dans cette nouvelle représentation, la théorie du champ moyen correspond à l'approximation du point de selle de la théorie des champs. La Section 1.1.5 rappelle quelques résultats pertinents pour une suspension colloïdale électroneutre composée de N contre-ions entre deux colloïdes [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. Ce système présente une attraction de charges similaires à grande distance seulement lorsque N est impair, ce qui est lié à l'impossibilité pour le système de se découpler en deux colloïdes neutres écrantés. Au contraire, lorsque N est pair, les colloïdes sont écrantés, ce qui conduit à une interaction toujours répulsive. Nous comparons ensuite ces résultats au modèle avec inhomogénéité diélectrique.

Le restant du Chapitre 1 donne des résultats exacts pour un modèle colloïdal unidimensionnel schématique avec un nombre arbitraire de contre-ions et en présence de discontinuités diélectriques. La Fig. 3.2.1 montre une esquisse du système dans les deux scénarios considérés : soit les colloïdes sont imperméables, soit ils sont perméables aux contre-ions. Nous constatons que la pression, qui en 1D coïncide avec la force, peut prendre des valeurs négatives (voir les figures 1.8b, 1.10) ; il existe donc une attraction de charges similaires dans un domaine donné déterminé par la distance entre les particules colloïdales, le saut diélectrique et le nombre de contre-ions. Contrairement à ce qu'il se passe lorsque le milieu diélectrique est uniforme, la présence d'une discontinuité diélectrique rend possible l'attraction de charges similaires dans un colloïde perméable pour tout N , quelle que soit sa parité. De plus, nous trouvons une relation semblable au théorème de contact qui relie la densité à la pression. Cela permet de voir comment des images de charges, induites par la discontinuité diélectrique, façonnent la densité des contre-ions par attraction ou répulsion et donc l'interaction entre les colloïdes. À la fois la pression (Fig. 1.14) et le profil de densité (Fig. 1.15) convergent vers la prédiction du champ moyen : pour un grand nombre de contre-ions, l'équation de Poisson-Boltzmann est en excellent accord avec la théorie exacte. Ceci est cohérent avec des travaux précédents [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF] où un fort paramètre de couplage à été trouvé : outre le nombre total d'ions, la validité du champ moyen dépend ici de la discontinuité diélectrique, mais pas de la température, ce qui diffère des systèmes à deux ou trois dimensions.

Dans le Chapitre 2, nous considérons un modèle unidimensionnel hors équilibre pour deux doubles couches électriques. Nous commençons par une introduction aux trois différents modèles dynamiques utilisés : les équations de Langevin, Fokker- Planck et Poisson-Nernst-Planck. La Section 2.1.1 introduit l'équation de Langevin dans laquelle les interactions microscopiques entre le fluide et les particules, qui se produisent à une échelle de temps plus rapide, sont intégrées via deux termes effectifs : la force stochastique de Langevin et une résistance déterministe (friction visqueuse) donnée par la loi de Stokes. Ceci conduit à une équation du mouvement stochastique pour les positions des particules. La Section 2.1.2 rappelle l'équation équivalente de Fokker-Planck qui permet de déterminer la distribution en position. En particulier, cette section permet de présenter comment reformuler le problème en termes d'une équation de Schrödinger ainsi que l'approche de la solution par expansion de la fonction propre. La Section 2.1.3 présente les équations électrocinétiques de Poisson-Nernst-Planck, qui correspondent à une théorie dynamique du champ moyen suramorti.

General conclusion + + + + + - - - - - - x x 0 L x 1 x 2 x 3 x 1 
Le système étudié dans le Chapitre 2 est l'analogue dynamique du système étudié au Chapitre 1, dans un diélectrique homogène. Plus précisément, le temps de relaxation τ est déterminé pour un système électroniquement neutre, suramorti, à deux colloïdes, en fonction de la longueur de séparation des colloïdes L et du nombre de contre-ions N (voir Fig. 3.2.2). La Section 2.2 commence par considérer le cas d'un seul contre-ion N = 1, où l'équation de Fokker-Planck est résolue analytiquement. Le temps de relaxation découle de l'analyse du spectre de l'opérateur de Fokker-Planck, qui possède des parties continues et discrètes. La Section 2.2.2 donne une interprétation des parties discrète et continues du spectre comme étant les états bornés et non bornés d'une seule particule non relativiste en 1D en utilisant la formulation équivalente de Schrödinger. La Section 2.2.3 présente la simulation numérique ainsi que le modèle utilisé pour calculer le temps de relaxation pour N = 1, où les résultats numériques et exacts peuvent être comparés.

Dans la Section 2.3, nous étudions le temps de relaxation pour le cas de multiples contre-ions, N > 1. La parité de N détermine si τ dépend de la distance entre les colloïdes. Pour N impair, nous avons trouvé un comportement qui reflète le cas du contre-ion unique : τ ∝ L 2 /D, où D est le coefficient de diffusion. D'après la relation de Stokes-Einstein, D croît linéairement avec la température T , de sorte qu'ici, τ diminue lorsque T augmente. D'autre part, pour N pair, τ ∝ l 2 B /D où l B est la longueur de Bjerrum, qui fournit une mesure de l'extension de la double couche d'équilibre double couche d'équilibre en 1D [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. Puisque l B ∝ T , nous concluons que τ augmente lorsque T augmente : ceci est dû à l'augmentation de la taille de la double couche sous l'influence de l'agitation thermique. La quasi-indépendance de la taille de la double couche vis-à-vis de N , les charges ioniques étant fixes et donc la charge colloïdale variable, est à l'origine de l'indépendance assez frappante de τ vis-à-vis du nombre de contre-ions, lorsque cette N est pair. La non-pertinence de N , de manière intéressante, est également observée pour N impair, provenant d'un mécanisme distinct. Dans ce cas, ce qui importe est la présence d'un contre-ion mal adapté, qui sera, dans l'ensemble, le facteur dynamique limitant. Par symétrie, cet ion central ne subit aucune force, alors que tous les autres ions sont soumis à un champ électrique rémanent. Pour L grand, cet ion diffuse dans un domaine de taille L ; d'où l'échelle en L 2 /D du temps caractéristique. En laissant de côté l'ion inadapté, les systèmes impairs-N se comportent comme les systèmes pairs, et s'équilibrent sur une échelle de temps commune l 2 B /D. Nous montrons que la solution analytique de la dynamique du champ moyen (à savoir les équations électrocinétiques de Poisson-Nernst-Planck) fournit une approximation raisonnable pour un système comportant au moins N = 3 contre-ions (voir Fig. 2.4.2). Nous supposons que le cadre du champ moyen devient exact dans la limite N → ∞. Alors que les profils de densité d'équilibre exacts à fini-N présentent une queue exponentielle à grande distance, leurs expressions de champ moyen ont une portée plus longue, avec une décroissance algébrique. Cela se traduit par un temps caractéristique infini pour l'équilibrage au niveau du champ moyen.

+ -- --- - - - + -- --- - - - -L/2 L/

General conclusion

avec une quantité finie de particules de plasma (i.e. ensemble canonique) et deux charges invitées, de la même manière que pour une grande fonction de partition. L'ensemble des termes dominant (c'est-à-dire l'interaction effective à N corps à courte distance) dépend du couplage coulombien et de la charge invitée combinée (voir Fig 3 .2.1). La Section 3.3 constate qu'il peut y avoir une attraction de charges similaires à courte distance dans le plasma bidimensionnel à deux composants de charge asymétrique +2/-1. Plus précisément, cela se produit pour des charges négatives (voir les figures 3.3.1-3.3.3) et lorsque le couplage coulombien est suffisamment grand (c'est-à-dire pour des faibles températures). De plus, nous déterminons le domaine de charge et de couplage où ce phénomène a lieu (voir Fig. 3.3.4a). Dans ce cadre, l'attraction de charges similaires est attribuée à une interaction à 3 corps, où une paire formée d'une charge négative et d'un cation plasmique de charge (+1) attire l'autre charge négative. Ces résultats sont comparés au comportement à grande distance, qui présente également une attraction de charge similaire (voir Fig. 3.3.2). Cependant, l'interaction à grande distance peut entraîner la répulsion de charges opposées, une possibilité qui n'existe pas à courte distance. Les résultats à courte distance sont en contraste avec le plasma bidimensionnel symétrique à deux composants, où l'attraction de charges similaires ne peut pas se produire à courte distance [START_REF] Téllez | Short-distance expansion of correlation functions for chargesymmetric two-dimensional two-component plasma: exact results[END_REF].

binding agent in concrete, is made of layers of Calcium-Silicate-Hydrates (C-H-S) that trap a solution made of water and ions [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF][START_REF] Goyal | The physics of cement cohesion[END_REF][START_REF] Palaia | Charged systems in, out of, and driven to equilibrium : from nanocapacitors to cement[END_REF]. While the physical chemistry of cement is complex [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF][START_REF] Goyal | The physics of cement cohesion[END_REF], a simple model for this system is provided by two symmetric uniformly charged plates with counterions between them, where these charges interact pairwise via the 3D Coulomb potential, 1/r. The fact that counterions are multivalent, and the plates highly charged, brings the cement system in the strong-coupling regime. As previously mentioned, this triggers likecharge attraction, that is at the origin of cement cohesion. In the strong-coupling regime, when the distance between plates is small enough, all counterions are approximately in the same plane parallel to the plates, so that the dominant force acting on them stems from the plates' potential. For like-charged plates, this force vanishes, which leads to a uniform density profile, from which the pressure can be readily computed. In this limit, the problem can be mapped to a one dimensional system [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Šamaj | Counterions at highly charged interfaces: From one plate to like-charge attraction[END_REF][START_REF] Moreira | Field-theoretic approaches to classical charged systems[END_REF][START_REF] Trizac | Like-charge attraction in a one-dimensional setting: the importance of being odd[END_REF].

The thesis is organized in three chapters. The first two consider a one-dimensional colloidal suspension made of two colloidal particles and N counterions, studied in and out of equilibrium. Chapter 1 is devoted to the former case in the presence of dielectric inhomogeneity. The pressure and density are computed exactly, and a relation between them is established. Through the pressure which is nothing but the force in 1D, we find that the colloidal suspension may feature like-charge attraction. In Chapter 2, this system is studied out of equilibrium, within a homogeneous dielectric space. Exact and numeric results are used to investigate the relaxation process. These two chapters compare the results featured for a purely point-particle system to the mean-field treatment where counterions have a continuous charge distribution: the Poisson-Boltzmann and Poisson-Nernst-Planck equations for equilibrium and dynamics. Finally, in Chapter 3 we give the exact results for a charge-asymmetric two-dimensional two-component plasma. Two guest charges are introduced and the short-distance asymptotic for their effective potential is determined. This result allows us to determine the conditions for which there is attraction between two like-charges immersed in the plasma.

In more detail, Chapter 1 introduces the Poisson-Boltzmann equation, the meanfield theory used to treat colloidal suspensions at constant temperature and without finite-size effects. The validity of this treatment is discussed by introducing the weak-and strong-coupling regimes, which for a given system are determined by the electrostatic coupling constant Ξ. Section 1.1.4 shows the procedure used to map the thermodynamics of a Coulomb gas to a field theory, which consists of using the Hubbard-Stratonovich transformation to recast the grand partition function in terms of the action of a field theory. In this new representation, the mean-field theory corresponds to the saddle-point approximation of the field theory. Section 1.1.5 recalls some relevant results for a electroneutral colloidal suspension made of N counterions in-between two colloids [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. This system features likecharge attraction at large distances and only when N is odd, which is related to the General conclusion 123 impossibility of the system to decouple into two neutral screened colloids. Contrarily, when N is even the colloids are screened leading to a repulsive interaction always. We later compare these results to the model with dielectric inhomogeneity.

What remains of Chapter 1 gives exact results for a schematic one-dimensional colloidal model with an arbitrary number of counter-ions and in the presence of dielectric discontinuities. Figure 3.2.4 shows a sketch of the system in the two scenarios considered: the colloids are either impermeable or not to the counterions. We find that the pressure, which in 1D coincides with the force, can assume negative values (see Figs. 1.8b, 1.10); there is like-charge attraction in a given domain determined by the distance between colloidal particles, the dielectric jump and the number of counterions. Unlike for a uniform dielectric medium, the presence of a dielectric discontinuity enables the possibility for like-charge attraction in a permeable colloid for any N , regardless of its parity. Additionally, we find a contact theorem-like relationship that connects density to pressure. This allows to see how the image charges, induced by the dielectric discontinuity, shape the counterion density through attraction or repulsion and thus the interaction among colloids. Both the pressure (Fig. 1.14) and density profile (Fig. 1.15) are shown to converge towards the mean-field prediction: for a large number of counterions, the Poisson-Boltzmann equation is in excellent agreement with the exact theory. This is consistent with 1D strong coupling parameter found in previous works [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]: besides the total number of ions, the validity of mean-field here depends on the dielectric discontinuity, but not on temperature, at variance with two or three dimensional systems. The dark rectangles at 0 and L represent the colloidal charges. The dielectric constant is 2 for 0 < x < L and 1 elsewhere. The impermeable case (panel a) forbids particles to cross the spatial regions delimited by the colloids' positions. For example, in sketch a) the positions x 1 , x 2 and x 3 of the left, center and right counterion are restricted to the intervals given by x 1 < 0, 0 < x 2 < L, and x 3 > L respectively. Instead, the permeability condition (panel b) refers to counter-ions with no restriction on the positions x 1 , x 2 and x 3 . In the canonical situation, the distance L between the two colloids is fixed while it does fluctuate under isobaric conditions.

+ + + + + - - - - - - x x 0 L x 1 x 2 x 3 x
In Chapter 2, we consider an out-of-equilibrium one-dimensional model for two electrical double-layers. We begin with an introduction to the three different dynamical models used: the Langevin, Fokker-Planck and Poisson-Nernst-Planck equations. Section 2.1.1 introduces the Langevin equation where the microscopic interactions between fluid and the particles, which happen at a faster timescale, are subsumed in two effective terms: the stochastic Langevin force and a deterministic drag (viscous friction) given by Stokes' law. This leads to a stochastic equation of motion for the particles' positions. Section 2.1.2 recalls the equivalently Fokker-Planck equation that solves for the positions' distribution. In particular the eigenfunction expansion solution approach and also how to reformulate the problem in terms of a Schrödinger equation. Section 2.1.3 introduces the Poisson-Nernst-Planck electrokinetic equations, which corresponds to a overdamped dynamical mean-field theory.

The system studied in Chapter 2 is the dynamical analog of the system studied in Chapter 1, in a homogeneous dielectric. More precisely, the relaxation time τ is determined for an overdamped electroneutral two-colloid system as a function of the colloid separation L and the number of counterions N (see Fig. 3.2.5). Section 2.2 begins by considering the single counterion case N = 1, where the Fokker-Planck equation is solved analytically. The relaxation time follows from analysing the Fokker-Planck operator spectrum, which has continuous and discrete parts. Section 2.2.2 gives an interpretation for the discrete and continuous parts of the spectrum as the bounded and unbounded states of a single non-relativistic particle in one dimension using the equivalent Schrödinger formulation. Section 2.2.3 introduces the numerical simulation and the scheme used to compute the relaxation time for N = 1, where numeric and exact results can be compared.

In Section 2.3, we study the relaxation time for the multiple counterion case, N > 1. The parity of N determines whether τ depends on the distance between colloids. For N odd, we found a behavior that mirrors the single counterion case: τ ∝ L 2 /D, where D is the diffusion coefficient. From the Stokes-Einstein relation, D grows linearly with temperature (T ), so that here, τ decreases upon increasing T . On the other hand, for N even, τ ∝ l 2 B /D where l B is the Bjerrum length, which provides a measure of the extension of the equilibrium double-layer in 1D [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. Since l B ∝ T , we conclude that τ increases when increasing T : this is due to the enhancement of the double-layer size, under the influence of thermal agitation. The quasi-independence of double-layer size on N -ionic charges being fixed, and therefore at varying colloidal charge-is at the root of the rather striking independence of τ on the number of counterions, when this quantity is an even integer. The irrelevance of N , interestingly, is also observed for N odd, stemming from a distinct mechanism. There, what matters is the presence of a misfit counterion, that will be, by and large, the dynamical limiting factor. By symmetry, this central ion does not experience any force, while all other ions are subject to a non-vanishing electric field. For large L, this ion diffuses in a domain of size L; hence the scaling in L 2 /D

General conclusion

Aquí, nos dedicamos a estudiar sistemas con correlaciones electrostáticas en modelos unidimensionales y bidimensionales. Aunque los sistemas de baja dimensión pueden parecer algo abstractos, describen una serie de objetos fisicoquímicos reales como polímeros rígidos [START_REF] Trizac | Bending stiff charged polymers: The electrostatic persistence length[END_REF], plaquetas de arcilla [START_REF] Trizac | Effective interactions and phase behaviour for a model clay suspension in an electrolyte[END_REF][START_REF] Ebrahimi | Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets[END_REF], láminas de cemento [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF] y más. A modo de ilustración, mencionamos como se origina la cohesión del cemento. En resumen, el cemento, un agente aglutinante clave en el hormigón, está hecho de capas de silicato cálcico hidratado (C-H-S) que atrapan una solución hecha de agua e iones [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF][START_REF] Goyal | The physics of cement cohesion[END_REF][START_REF] Palaia | Charged systems in, out of, and driven to equilibrium : from nanocapacitors to cement[END_REF]. Si bien la fisicoquímica del cemento es compleja [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF][START_REF] Goyal | The physics of cement cohesion[END_REF], un modelo simple para este sistema es proporcionado por dos placas simétricas uniformemente cargadas con contraiones entre ellas, donde estas cargas interactúan por pares a través del potencial 3D de Coulomb, 1/r. El hecho de que los contraiones sean multivalentes y las placas estén muy cargadas, implica que el sistema del cemento esta en el régimen de acoplamiento fuerte. Como se mencionó anteriormente, esto desencadena la atracción de cargas similares, que está en el origen de la cohesión del cemento. En el régimen de acoplamiento fuerte, cuando la distancia entre placas es lo suficientemente pequeña, todos los contraiones están aproximadamente en el mismo plano paralelo a las placas, de modo que la fuerza dominante que actúa sobre ellos proviene del potencial de las placas. Para placas con cargas similares, esta fuerza se desvanece, lo que conduce a una uniformidad perfil de densidad, a partir del cual se puede calcular fácilmente la presión. En este límite, el problema se puede asignar a un sistema unidimensional [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Šamaj | Counterions at highly charged interfaces: From one plate to like-charge attraction[END_REF][START_REF] Moreira | Field-theoretic approaches to classical charged systems[END_REF][START_REF] Trizac | Like-charge attraction in a one-dimensional setting: the importance of being odd[END_REF].

La tesis está organizada en tres capítulos. Los dos primeros consideran una suspensión coloidal unidimensional hecha de dos partículas coloidales y N contraiones, estudiados en y fuera de equilibrio termodinámico. El Capítulo 1 está dedicado al primer caso en presencia de inhomogeneidad dieléctrica. La presión y la densidad se calculan exactamente y se establece una relación entre ellas. A través de la presión que no es más que la fuerza en 1D, encontramos que la suspensión coloidal puede presentar atracción de carga similar. En el Capítulo 2, este sistema se estudia fuera de equilibrio, en un espacio dieléctrico homogéneo. Se utilizan resultados exactos y numéricos para investigar el proceso de relajación. Estos dos capítulos comparan los resultados presentados para un sistema puramente de partículas puntuales con el tratamiento de campo medio donde los contraiones tienen una distribución de carga continua: las ecuaciones de Poisson-Boltzmann y Poisson-Nernst-Planck para equilibrio y dinámica. Finalmente, en el Capítulo 3 damos los resultados exactos para un plasma bidimensional de dos componentes con carga asimétrica † . Se introducen dos cargas de huésped y se determina el comportamiento de corta distancia para su potencial efectivo. Este resultado nos permite determinar las condiciones para las que existe atracción entre dos cargas similares sumergidas en el plasma.

Con más detalle, el Capítulo 1 presenta la ecuación de Poisson-Boltzmann, la teoría del campo medio utilizada para tratar suspensiones coloidales a temperatura † Para una introducción en español a sistemas de Coulomb bidimensionales exactamente solubles referirse a [START_REF] Téllez | Modelos exactamente solubles en mecánica estadística de sistemas de coulomb[END_REF].
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constante y sin efectos de tamaño finito. La validez de este tratamiento se discute introduciendo el regímenes de acoplamiento débil y fuerte, que para un sistema dado están determinados por la constante de acoplamiento electrostático Ξ. La Sección 1.1.4 muestra el procedimiento utilizado para mapear la termodinámica de un gas de Coulomb a una teoría de campo, que consiste en usar la transformación de Hubbard-Stratonovich para reformular la función de gran partición en términos de la acción de una teoría de campo. En esta nueva representación, la teoría del campo medio corresponde a la aproximación del punto de silla de la teoría del campo. La Sección 1.1.5 recuerda algunos resultados relevantes para una suspensión coloidal neutra hecha de N contraiones entre dos coloides [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. Este sistema presenta una atracción de carga similar a grandes distancias y solo cuando N es impar, lo que está relacionado con la imposibilidad del sistema de desacoplarse en dos coloides apantallados neutrales. Por el contrario, cuando N es par, los coloides apantallados, lo que conduce a una interacción repulsiva. Posteriormente comparamos estos resultados con el modelo con inhomogeneidad dieléctrica.

Lo que queda del Capítulo 1 da resultados exactos para un modelo coloidal unidimensional esquemático con un número arbitrario de contraiones y en presencia de discontinuidades dieléctricas. La Figura 3.2.7 muestra un esquema del sistema en los dos escenarios considerados: los coloides son impermeables o no a los contraiones. Encontramos que la presión, que en 1D coincide con la fuerza, puede asumir valores negativos (ver Figs. 1.8b,1.10); hay atracción de carga similar en un dominio determinado por la distancia entre las partículas coloidales, el salto dieléctrico y el número de contraiones. A diferencia del caso para un medio dieléctrico uniforme, la presencia de una discontinuidad dieléctrica permite la posibilidad de atracción de cargas similares en un coloide permeable por cualquier N , independientemente de su paridad. Además, encontramos una relación similar a un teorema de contacto que conecta la densidad con la presión. Esto permite ver cómo las cargas de la imagen, inducidas por la discontinuidad dieléctrica, configuran la densidad de contraiones a través de la atracción o repulsión y, por lo tanto, la interacción entre coloides. Se muestra que tanto la presión (ver Fig. 1.14) como el perfil de densidad (ver Fig. 1.15) convergen hacia la predicción del campo medio: para un gran número de contraiones, la ecuación de Poisson-Boltzmann está en excelente acuerdo con la teoría exacta. Esto es consistente con el parámetro de acoplamiento fuerte 1D encontrado en trabajos anteriores [START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]: además del número total de iones, la validez del campo medio aquí depende de la discontinuidad dieléctrica, pero no de la temperatura, en contraste con sistemas bidimensionales y tridimensionales.

En el Capítulo 2, consideramos un modelo unidimensional fuera de equilibrio para dos capas dobles eléctricas. Comenzamos con una introducción a los tres modelos dinámicos diferentes utilizados: las ecuaciones de Langevin, Fokker-Planck y Poisson-Nernst-Planck. La Sección 2.1.1 presenta la ecuación de Langevin donde las interacciones microscópicas entre el fluido y las partículas, que ocurren en una escala de tiempo más rápida, se subsumen en dos términos efectivos: la fuerza La constante dieléctrica es 2 para 0 < x < L y 1 en otros lugares. El caso impermeable (panel a) prohíbe que las partículas atraviesen las regiones espaciales delimitadas por las posiciones de los coloides. Por ejemplo, en el dibujo a) las posiciones x 1 , x 2 y x 3 del contraión izquierdo, central y derecho están restringidas a los intervalos dados por x 1 < 0, 0 < x 2 < L y x 3 > L respectivamente. En cambio, la condición de permeabilidad (panel b) se refiere a contraiones sin restricción en las posiciones x 1 , x 2 y x 3 . En la situación canónica, la distancia L entre los dos coloides es fija, mientras que fluctúa para condiciones isobáricas. contraión único: τ ∝ L 2 /D, donde D es el coeficiente de difusión. De la relación de Stokes-Einstein, D crece linealmente con la temperatura (T ), de modo que aquí, τ disminuye cuando aumenta T . Por otro lado, para N par, τ ∝ l 2 B /D donde l B es la longitud de Bjerrum, que proporciona una medida de la extensión del equilibrio de la doble capa en 1D [START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF]. Como l B ∝ T , concluimos que τ aumenta al aumentar T : esto se debe al aumento del tamaño de la doble capa, bajo la influencia de la agitación térmica. La cuasi-independencia del tamaño de la capa doble en N -las cargas iónicas son fijas y, por lo tanto, con cargas coloidales variables -está en la raíz de la independencia bastante sorprendente de τ en el número de contraiones, cuando esta la cantidad es un número entero par. Curiosamente, la irrelevancia de N también se observa en el caso de N impar, que se deriva de un mecanismo distinto. Allí, lo que importa es la presencia de un contraión marginado (el contraion en el centro), que será, en general, el factor limitante dinámico. Por simetría, este ion central no experimenta ninguna fuerza, mientras que todos los demás iones están sujetos a un campo eléctrico que no desaparece. Para L grandes, este ion se difunde en un dominio de tamaño L; de ahí la escala en L 2 /D para el tiempo característico. Dejando de lado el desajuste, los sistemas impares N se comportan de manera muy parecida a los pares y se equilibran en una escala de tiempo común l 2 B /D.

+ --------+ ---------L/2 L/2 x Fig. 3.2.8: Bosquejo de un sistema electroneutral que consta de dos capas dobles eléctricas que interactúan, cada una hecha de un coloide (rectángulo) y contraiones de 4 (círculos). La distancia entre coloides es L. La interacción entre partículas está mediada por el potencial de Coulomb 1D, de separación lineal. Se considera la dinámica de los contraiones y los coloides se tratan como estáticos, ya que se supone que su escala de tiempo es mucho mayor que la de los contraiones. Todas las partículas son puntuales y pueden " cruzarse " entre sí.

Mostramos que la solución analítica para la dinámica de campo medio (es decir, las ecuaciones electrocinéticas de Poisson-Nernst-Planck) proporciona una aproximación razonable para un sistema con tan solo N = 3 contraiones (ver Fig. 2.4.2). Conjeturamos que el marco de campo medio se vuelve exacto en el límite de N → ∞. Mientras que los perfiles de densidad de equilibrio exactos con N finito presentan una cola exponencial a grandes distancias, sus expresiones de campo medio tienen un rango más largo, con un decaimiento algebraico. Esto se traduce en un tiempo característico infinito para el equilibrio a nivel de campo medio. Luego mostramos que los resultados para N -y τ -finitos se acercan a este límite como τ ∝ l 2 B /D ∝ e -2 donde e es el cargo de los contraiones. Dado que el límite de campo medio, para un objeto coloidal de carga Q, se alcanza para N → ∞, la neutralidad Q = 2N e requiere que e → 0. Por tanto, τ ∝ e -2 se vuelve infinito en el límite del campo medio.

Más precisamente, ocurre entre cargas negativas (ver Figs. 3.3.1-3.3.3) para un acoplamiento Coulombico suficientemente grande (es decir, temperaturas pequeñas). Además, determinamos la carga y el dominio de acoplamiento de Coulomb donde tiene lugar este fenómeno (ver Fig. 3.3.4a). La atracción de carga similar se remonta a una interacción de 3 cuerpos, donde una carga negativa se empareja con un catión de plasma (+1) para atraer la otra carga negativa. Estos resultados se comparan con el comportamiento a grandes distancias, que también presenta atracción de cargas similares (ver Fig. 3.3.2). Sin embargo, la interacción a gran distancia puede llevar a que las cargas opuestas se repelan, una posibilidad que está ausente a distancias cortas. Los resultados a corta distancia contrastan con el plasma simétrico bidimensional de dos componentes, donde la atracción de cargas similares no puede ocurrir en distancias cortas [START_REF] Téllez | Short-distance expansion of correlation functions for chargesymmetric two-dimensional two-component plasma: exact results[END_REF]. Au chapitre 3, nous déterminons exactement le potentiel effectif à courte distance entre deux charges test différentes immergées dans un plasma à deux dimensions, composé de particules ponctuelles positivement (q 1 = +1) et négativement (q 2 = -1/2) chargées. Le résultat est valable dans le régime sans effondrement, où le couplage coulombien (température inverse sans dimension) β < 4. À un couplage coulombien élevé β > 2, ce modèle présente une attraction de même charge. Enfin, nous montrons que les charges opposées ne peuvent pas se repousser à courte distance.

Title: Coulomb systems in one and two dimensions: exact results Keywords: soft matter, colloids, electrostatic coupling, plasma Abstract: Soft matter often features charged units. These charges interact through Coulomb forces, the treatment of which is difficult due to their long-range nature. This thesis gives results for three manybody systems where every long-range interaction is included, without approximations. In Chapter 1, we report exact results for a onedimensional electroneutral salt-free suspension made of two fixed colloids and N neutralizing mobile counterions, with dielectric jumps at the colloids' position. This includes the partition function, density profile and pressure. Moreover, the known relation between the contact density and pressure when counterions are confined between the colloids is generalized to the permeable situation. We find that for any N counterions system there may be like-charge attraction, unlike when the dielectric is homogeneous in which case N must be even. In the limit N → ∞ at fixed colloid's charge, the mean-field (i.e. Poisson-Boltzmann equation) prediction is recovered. In Chapter 2, we consider the previous system out of equilibrium within a homogeneous dielectric space, as a model for the dynamics of two electrical doublelayers. Using a combination of exact calculations where possible and Brownian dynamics simulations, we compute the relaxation time towards equilibrium (τ ). The parity of N is determinant for the relaxation dynamics: when odd, the two double-layers never decouple, irrespective of their separation L; this is the regime of like-charge attraction, where τ exhibits a diffusive scaling in L 2 for large L. Contrarily, for even N , the relevant length scale is the Bjerrum length instead of L. This leads to distinctly different dynamics: for N even, thermal effects are detrimental to relaxation, increasing τ , while they accelerate relaxation for N odd. We also show the dynamical mean-field theory (i.e. Poisson-Nernst-Planck equation) is recovered for large N , remaining operational down to a few counterions (N > 3). In Chapter 3, we determine exactly the short-distance effective potential between two "guest" charges immersed in a two-dimensional two-component chargeasymmetric plasma composed of positively (q 1 = +1) and negatively (q 2 = -1/2) charged point particles. The result is valid in the collapse-free regime, where the Coulombic coupling (dimensionless inverse temperature) β < 4. At high Coulombic coupling β > 2, this model features like-charge attraction. Finally, we show opposite-charges cannot repel at short-distances.

Título: Sistemas de Coulomb en una y dos dimensiones: resultados exactos Palabras clave: materia blanda, coloides, acoplamiento electrostático, plasma Resumen: La materia blanda a menudo presenta unidades cargadas. Estas cargas interactúan a través de las fuerzas de Coulomb, cuyo tratamiento es difícil debido a su naturaleza de largo alcance. Esta tesis da resultados para tres sistemas de muchos cuerpos donde se incluye cada interacción de largo alcance, sin aproximaciones. En el Capítulo 1, presentamos los resultados exactos para una suspensión unidimensional electroneutra sin sal hecha de dos coloides fijos y N contraiones móviles neutralizantes, con saltos dieléctricos en la posición de los coloides. Esto incluye la función de partición, el perfil de densidad y la presión. Además, la relación conocida entre la densidad de contacto y la presión cuando los contraiones están confinados entre los coloides se generaliza al eliminar esta restricción. Encontramos que para cualquier sistema de N contraiones puede haber atracción entre cargas similares, a diferencia de cuando el dieléctrico es homogéneo donde N debe ser par. En el límite N → ∞ y fijando la carga del coloide, se recupera la predicción del campo medio (es decir, la ecuación de Poisson-Boltzmann). En el Capítulo 2, consideramos el sistema anterior fuera de equilibrio dentro de un espacio dieléctrico homogéneo, como modelo para la dinámica de dos doble capas eléctricas. Utilizando cálculos exactos donde es posible y simulaciones de dinámica browniana, calculamos el tiempo de relajación hacia el equilibrio (τ ). La paridad de N es determinante para la dinámica de relajación: cuando son impares, las dos doble capas nunca se desacoplan, independientemente de su separación L; este es el régimen de atracción de cargas similares, donde τ exhibe una escala difusiva en L 2 para grandes L. Por el contrario, para N par, la escala de longitud relevante es la longitud de Bjerrum en lugar de L. Esto conduce a dinámicas claramente diferentes: para N par, los efectos térmicos son perjudiciales para la relajación, aumentando τ , mientras que aceleran la relajación para N impar. También mostramos que la teoría dinámica del campo medio (es decir, la ecuación de Poisson-Nernst-Planck) se recupera para N grande, permaneciendo operativa incluso para cuando son pocos contraiones (N > 3). En el Capítulo 3, determinamos exactamente el potencial efectivo a corta distancia entre dos cargas "huésped" sumergidas en un plasma bidimensional de carga asimétrica de dos componentes compuesto de partículas puntales cargas positivas (q 1 = +1) y negativas (q 2 = -1/2). El resultado es válido en el régimen libre de colapso, donde el acoplamiento Coulombico (temperatura inversa adimensional) β < 4. Para β > 2, este modelo presenta atracción entre cargas similares. Finalmente, mostramos que las cargas opuestas no pueden repelerse a distancias cortas.
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 8111 Fig.1.1: Sketch for three mean-field systems described by the same equation: a point charge in 1D (left), a uniformly charged line in 2D (middle) and a uniformly charged plate in 3D (right). In red are the colloids (point/line/plate) and in blue the counterions which have a continuous charge distribution. At equilibrium, exactly half of the distribution lies within a Gouy-Chapman length from its colloid. Under the appropriate time and length rescaling, the equations in (PB) and out of equilibrium (Poisson-Nernst-Planck equation) are identical for these three systems. This is discussed in Chapter 2.
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 12 Fig. 1.2: (Left) Sketch of a one charge plate σ with counterions qe, in the strong coupling regime. The typical plate-ion separation is the 3D Gouy-Chapman length b 3D whereas among counterions it is d ions . (Right) Front view of the counterions. At zero temperature, where b 3D = 0, the particles form a hexagonal lattice with constant d ions . In the two sketches the situation shown is for large but finite coupling constant, where the counterions are near the plate and close to the hexagonal lattice formation. The situation depicted here is the strong-coupling counterpart of the (weakly-coupled) 3D case in Fig. 1.1.
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 13 Fig. 1.3: Side view sketch of a 3D electroneutral system made of a charged plate and ions of opposite-charge in the weak (A) and strong (B) coupling regimes. The typical ion-ion distance is d ions whereas the Gouy-Chapman length b 3D is the typical plate-ion separation. When weakly coupled (i.e. Ξ < 1), electrostatic correlations are negligible and the counterion have a fluid behavior as opposed to the strong couplings where they crystallize (recall Fig. 1.2).
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 18 Fig.1.8: (a) Number density for a one (N = 1) counter-ion system with permeable colloids at a distance L = 1. The probability of finding the particle between the colloids is monotonically increasing with ∆. By virtue of the contact theorem, the repulsive contribution to the pressure increases, as so does the pressure itself, as seen in panel b. The limit ∆ = 1 is equivalent to the model studied in[START_REF] Dean | One-dimensional counterion gas between charged surfaces: Exact results compared with weak-and strongcoupling analyses[END_REF][START_REF] Téllez | Screening like charges in one-dimensional Coulomb systems: Exact results[END_REF] where two impermeable colloids interact with counter-ions sandwiched in between. (b) Equation of state for the canonical ( P c ) and isobaric ( P ) ensemble with a permeable colloids and N = 1 counter-ion. Except for ∆ = 1, the effective length L eff is non vanishing and thus keeps the canonical pressure bounded for any colloid distance, at variance with the average isobaric length L that vanishes as P → ∞. The extreme dielectric discontinuity with ∆ = 1 indeed makes ionic excursions in the outer right or left regions energetically too costly. There is the possibility of like-charge attraction (state points inside the gray shade) for any given dielectric jump ∆ since both P c and P tend to -1/4 at infinite colloid separation. The reason why P c (∆ = 1) = P (∆ = -1) is explained in Appendix 1.B.
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 19 Fig.1.9: Canonical and isobaric compressibilities as a function of L and L respectively, at ∆ = 0. The fluctuationresponse connection given by Eq. (1.52) (broken lines, one for canonical, one for isobaric) is clearly violated in both ensembles. The behavior at zero length is radically different: χ c diverges while χ P vanishes. Both ensembles predict unbounded growth with differing rates as L → ∞.
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 110 Fig. 1.10: (a) Equation of state for the canonical (symbols) and isobaric (lines) ensemble with permeable colloids and N = 2 counter-ions. The pressure vanishes asymptotically for large distances (see Eqs. (1.80b),(1.82b)), while the zero length pressure depends on the ensemble and dielectric jump (see Eqs.(1.80a), (1.82a)). The possibility for like-charge attraction in a fixed length system exists for ∆ < -3/5 (plot inside gray shade) with a minimum value of P c = -1/3. Note that the only canonical pressure that diverges at L = 0 is that for ∆ = 1, as was the case for N = 1. (b) Same as panel a but with N = 3. Note the coincidental proximity of P c (∆ = 0) and P (∆ = -1). Yet, while P c (∆ = 0) has a finite value when L = 0, P (∆ = -1) diverges as L → 0.
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 111 Fig.1.11: Normalized counterion density (Eq. (1.84)) for permeable colloids at distances L = 1 (left column) and 10 (right column), with N = 2 counterions (top row) or 3 counterions (bottom row). For all cases, the counter-ions are expelled to the exterior regions as the dielectric jump ∆ goes to -1, and conversely drawn inside in the opposite limit ∆ → 1. For large separations, the even case (panel b) decouples with a nearly vanishing density at L/2. Instead, the odd case (panel d) shows an almost constant density in the middle region, which accounts for the counter-ion that is shared between the colloids: this causes colloids to attract each other.
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 112 Fig. 1.12: Fluctuations for N ≤ 4 counter-ions and different dielectric jumps: (a) ∆ = 0.5, (b) ∆ = 0, (c) ∆ = -0.5 and (d) ∆ = -1. For N > 1, the fluctuations saturate for a large enough L.
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 113 Fig. 1.13: (a) Density profile n ∞ ( x) (Eq. (1.83)) with L = 0 for N = 1, 5, 20. The solid line is for the Poisson-Boltzmann solution n PB . Note that for as few as N = 5 counterions, the mean-field theory (i.e. n PB ) is a good approximation, except in the tail. (b) Shows the same plot in logarithmic scale to emphasize the tails: increasing N (while keeping N e fixed) augments the region of overlap between the discrete and mean-field models. Note the convergence towards PB as Ξ = 2/N goes to 0.
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 114 Fig. 1.14: Comparison of the Poisson-Boltzmann P PB and exact pressures for N = 4 and 25.The colloids charge Q is fixed and the counter-ions charge varies, for the exact calculation, as e = Q/2N . In the limit N → ∞, e → 0 while keeping eN = 2Q fixed, mean-field theory becomes exact. Note that with as few as 25 counter-ions, the Poisson-Boltzmann pressure yields good results (panels b-c), except for ∆ = -0.99 (panel a) where the coupling constant (1.91) is very large. The inset zooms the small L values for which PB is quantitatively and qualitatively off with respect to the exact calculation. As ∆ approaches -1, more counterions are required to be in the weak-coupling regime Ξ in 1. Note that like-charge attraction is completely lost in the Poisson-Boltzmann theory[START_REF] Neu | Wall-mediated forces between like-charged bodies in an electrolyte[END_REF].
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 115 Fig. 1.15: Density profile for N = 1, 4, 25 and L = 1: comparison of the exact results with the Poisson-Boltzmann approximation, n PB . For N = 25 counterions, the mean-field theory yields a fair approximation. The panels show a range of dielectric jumps: (a) ∆ = 1, (b) ∆ = 0, (c) ∆ = -0.5 and (d) ∆ = -0.99.
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 116 Fig. 1.16: Density profile n for N = 25 and L = 2 normalized by Poisson-Boltzmann solution n P B .The colloids positions are marked by the two vertical dotted lines delimiting the "in" region, and the horizontal dashed line marks the mean-field behavior. Such a plot is more appropriate than Fig.1.15 to appreciate the mean-field departure from the exact solution, depending on the region (in or out). Note that as ∆ decreases and approaches -1, the quotient n/ n P B departs further and further from unity in the inner region: the Poisson-Boltzmann solution is then less and less accurate, as embodied in the value of Ξ in (see Eq. (1.91)). (b) Same as (a), focusing onto the right side of the exterior region. Note that as ∆ increases and approaches 1, mean-field departs further and further from the exact density, as embodied in Eq. (1.90).

Fig. 1 .A. 1 :

 11 Fig. 1.A.1: Sketch of the image charge construction to compute the potential V due to the dielectric discontinuities. The super-indices L and R are for images generated by reflection upon the left (at x = 0) or right (at x = L) boundaries respectively. The sub-index indicates the generation of the image, where 1 is created by the central counter-ion itself, and the following generations are created by the images of the images etc., in an iterative manner.
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 211 Fig. 2.1.1: Sketch of trajectories associated to the propagator of a forward (panel a) and backward (panel b) Fokker-Planck equation with zero force F = 0 (Brownian motion).
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 221 Fig. 2.2.1: Sketch of the wedge-like shaped 1D Coulomb potential Φ (Eq. (2.33)) created by two identical colloids each at x = ± L/2 (left) and its corresponding Schrödinger potential V Schrö (right). The vertical arrows featured in the Schrödinger potential represent Dirac delta functions.
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 222 Fig. 2.2.2:Time evolution of the density p( x, t) for a single counterion (N = 1), with colloid separation L = 10 and localized initial distribution centered at x 0 (red arrows): (a) x 0 = 2, and (b) x 0 = 20. The equilibrium state ( t → ∞) is given by the dashed lines. In panel (b), the cusp formed at x = 5 for t = 20 is understood in terms of the wedge potential (see Fig.2.2.1): to the right of the colloid there is a constant force causing a greater probability flow than from the left side where the counterion undergoes free diffusion.
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 2223 Fig. 2.2.3: (a) Average position x( t ) of a single counterion N = 1 with a localized initial condition x 0 = 0, 2, 22 and colloid separation L = 10. For large times the average position decays exponentially towards 0, except for the case x 0 = 0 where it identically vanishes. (b) Position variance σ 2x ( t ) for each corresponding initial condition. Note that for short times σ 2x ( t ) is linear in time σ 2 x ( t ) ≈ 2 t. For x 0 = 22 the variance is not monotonous, which happens because the initial position is large enough to allow the regime of linear expansion to overshoot the equilibrium variance.
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 2224 Fig. 2.2.4: Wave functions for a potential V Schrö with L = 14: (a) the 3 bounded states and (b) an unbounded state with energy λ = 0.5. The ground state (λ 0 ) has zero energy and the wave function is constant in the region x ∈ [-L/2, L/2]. The zero energy is enabled by the Dirac delta potentials. Without them, a state with vanishing energy entails having zero kinetic energy, which violates the uncertainty principle since the particle cannot be completely localized.

Fig. 2 . 2 . 5 : 62 Chapter 2

 225622 Fig. 2.2.5: Spectrum of the Fokker-Planck operator as a function of the system size L. The continuous spectrum's range is 1/4 < λ < ∞, regardless of L.On the other hand, the number of discrete eigenvalues increases with L in a sequence that alternates odd (λ o k ) and even eigenvalues (λ e k ). The equilibrium eigenvalue λ 0 = 0 is always present.

( 2 . 46 )

 246 From Eqs. (2.44) and (2.45) the large-L asymptotic reads:
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 226 Fig. 2.2.6:(a) Kullback-Leibler divergence for one counterion N = 1 with various colloid separations L = 0, 2, 3, 4 and initial counterion position x 0 = L/4. Note that for L < π, the log KLD is still convex-up for D KL > 10 -4 due to the subdominant power law t -s in Eq. (2.51). Contrarily, for L > π the curvature vanishes quickly since the subdominant term decreases exponentially. (b) Sketch of the scheme to estimate the relaxation time τ for a given L. Each same color set of points is the numerical derivative of the logarithm of D KL (p( x, t| x 0 ) p eq ( x)) as a function of the inverse time. The dashed lines are the corresponding minimum square regressions, used to extrapolate the behavior of the dots to 1/ t = 0. According to Eq. (2.51), this yields twice the decay rate, 2/ τ .

  Fig. 2.2.8:First passage distribution for a single counter-ion traveling between the colloids (w L , solid) and a free diffusing particle in a box (q L , dashed) with a col-

Fig. 2 . 3 . 1 :

 231 Fig. 2.3.1: Sketch of initial conditions (Eq. (2.61) used for the colloid simulation (here N = 3): (a) Symmetric IC and (b) Asymmetric IC.
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 232 Fig. 2.3.2: Time evolution of the normalized density profile p( x, t; N ) for N = 4 counterions and colloids at distance L = 6. The red arrows represent the localized initial conditions: (a) symmetric and (b) asymmetric. The solid line is the exact equilibrium distribution. Note that for t ≈ 4 the density has almost reached its steady state.
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 23702233 Fig. 2.3.3: (a) Numerical Kullback-Leibler divergence for N = 15 in the asymmetric IC case. Note the strong positive concavity for L = 4 in the vertical range between 10 -3 and 10 -4 . (b) Numerical estimation of the relaxation time τ as a function of L for N = 5, 9, 15 with asymmetric (AIC) and symmetric (SIC) initial conditions (Eq. (2.61)). The straight lines are guides to the eye. Note the overall resemblance with the case N = 1 (Fig. (2.2.7)): a constant region at short colloid separations is followed by a quadratic increase of τ ∼ L 2 at large L. The error bars denote one standard deviation, obtained from the spread in the linear fits outlined in Sec. 2.2.3 performed over a moving window of 30 consecutive data points.

15 Fig. 2 . 3 . 4 :

 15234 Fig. 2.3.4:Kullback-Leibler divergence of a modified ionic density (dashed) at a given time and its equilibrium distribution, for L = 9. For N = 15, the simulation does not record the misfit's position (x 8 ). Likewise, for N = 14 the middle particles x 7 , x 8 are not recorded. The solid curves correspond to the case where the true counterion density profile is used.
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 235 Fig. 2.3.5: Kullback-Leibler divergence for one counter-ion (analytic) and for N = 2, 3, 4, 8 counter-ions (numerical). Solid lines have L = 0 and marks L = 20(large colloid separation). Data for N/2 and N counterions do overlap. The agreement of each pair of curves shows that at large distances, a system with even N counterions effectively behaves as two decoupled neutral subsystems of N/2 counterions.
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 236 Fig. 2.3.6: Relaxation time τ estimation for N = 2, 4, 8 counterions as a function of colloid distance L for two initial conditions (Eq. (2.61)): (a) symmetric and (b) asymmetric. The straight lines are guides to the eye.
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 241 Fig. 2.4.1: (a) Ionic density at times t = 0.1, 0.6, 5 for the Poisson-Nernst-Planck (PNP) mean-field dynamics (markers) and the equilibrium Poisson-Boltzmann (PB) solution (solid).The initial condition is n PNP ( x, 0) = δ( x). For t = 5, the dynamical PNP solution is close to its equilibrium counterpart. (b) Same plot in linear-log scale to emphasize the tails of the distributions, where lies the largest difference between PB and PNP at large times.
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 242 Fig. 2.4.2:Ionic density at time (a) t = 1.5 and (b) t = 5, for the Poisson-Nernst-Planck (PNP) mean-field dynamics (dashed) and the discrete N counterion simulation with N = 1, 3, 6 (markers). The initial condition for the different cases consists of all the particles localized at x = 0. The equilibrium Poisson-Boltzmann (PB) mean-field solution n PB (solid) is given for reference. The insets show the ionic density in logarithmic scale to magnify the behavior on the tails, where the discrete case departs from the PNP solution.

  Figure 2.4.3 illustrates how an observable, the Kullback-Leibler divergence, approaches the mean-field as N increases while keeping N e fixed.
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 243 Fig. 2.4.3: (a) Kullback-Leibler divergence for N = 1, 5, 20 (marks) and for the Poisson-Nernst-Planck (PNP) mean-field dynamical solution (dashdotted); (b) same figure in logarithmic scale. The Kullback-Leibler divergence is taken between the dynamical distribution and its corresponding equilibrium state. Note how this observable converges to the PNP curve as the number of counterions increases.

L = 3 ;Fig. 2 . 5 . 1 :

 3251 Fig. 2.5.1: Transport time distribution for the misfit ion (solid lines) and fitted fixed wall model time distribution q l eff ( t) (dashed lines), for N = 25.
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 252 Fig. 2.5.2: (a) Average transport time as a function of L 2 . The lines are guides to the eye. (b) Difference L -l avg for N = 5, 9 and 15. The lines are guides to the eye and the horizontal dashed lines show the asymptotic value as L → ∞. The equivalent plot for L -l eff (not shown) yields a similar behavior: a bounded monotonic increase to a slightly different terminal value, yet reaching it nearly for the same L.
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 802253 Fig.2.5.3: Distribution of distances traveled by the misfit ion between the doublelayers, for N = 25 and various L. Note the change in behavior from L = 3 to larger L: in the latter the double layers do not overlap and as a result ρ( l) is nearly vanishing for small l. This happens because the misfit has to travel from one double layer to the other. On the contrary, for L = 3 the misfit is likely to be close to its neighbors and therefore ρ( l) only vanishes for large enough l.
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 254 Fig. 2.5.4: (a) Characteristic time for the asymmetric (AIC) and symmetric (SIC) initial conditions as a function of l avg . The straight lines are guides to the eye, and the error bars denote one standard deviation. (b) Characteristic time as a function of l 2 avg ; the dashed lines correspond to linear fits.

  .91d) where β λ = λ -1/4. The continuous eigenvalues are λ > 1/4 and the discrete ones are 0 ≤ λ α k < 1/4. The superscripts "o" and "e" give the parity of the eigenfunctions. The constants are found at the end of this appendix. The eigenvalue λ α k belongs either to an odd (α = o) or even (α = e) eigenfunction, and it is a solution to Eq. (2.40) (if odd) or Eq. (2.41) (if even) in the domain [0, 1/4). These equations result from imposing a vanishing determinant of the linear system made by Eqs. (2.88)-(2.89) for the eigenfunctions (Eqs. (2.91a)-(2.91d)). This ensures a non-trivial solution for the discrete family of constants (C e , C o , D e and D o ).

Figure 3 .

 3 Figure 3.2.1 shows the function landscape F for the interaction strength G eff .It features the entire stability regime, which is surrounded by the collapse zone. Within each panel the ruling coefficient is, from left to right, F c n , F bare and F a n . The subdivisions of the rectangles show the value of n for the respective coefficient, which ranges from 0 to ∞. We will see that the most interesting case is for F c 1 , where there is like-charge attraction. The region where F bare is dominant, given by the interval -2< β(Q 1 + Q 2 ) < 4, has a bare-charge interaction βG Q 1 Q 2 ∼ -Q 1 Q 2 ln r.This regime contains all the oppositely charged guest-charge cases without collapse and hence, they always have an attractive interaction, as expected. Note that for plasma charges, the short-distance bare-charge interaction strength is consistent with the short-distance normalization Eq.(3.19), where the connection between exp(-βG qq ) and e ibqφ(r) e ibq φ(r ) is given by Eq.(3.25).

F a n Fig. 3 . 2 . 1 :

 n321 Fig. 3.2.1:Landscape of the interaction strength, which is the dominant power law coefficient in the exact short-distance expansion of the effective potential (Eq.(3.37)) between two guest charges (Q 1 and Q 2 ) immersed in a two-dimensional two-component plasma. The interaction strength (Eq. (3.42)) has three main expressions which correspond to each panel, which from left to right are: F c n , F bare and F a n (Eq. (3.31)). The natural number n is given for each sector. The plot shows that the functional form landscape of the interaction strength is determined by sum of charge of the two guest particles Q 1 + Q 2 , together with the Coulomb coupling (inverse dimensionless temperature) β. However, we stress that F c n , F bare and F a n are functions of Q 1 , Q 2 and β, not simply of (Q 1 + Q 2 ) and β. LCA ZONE is the region where there can be like-charge attraction: -4β(Q 1 + Q 2 ) < -2 and β > 2. The entire stability regime is present: 0 < β < 4 and -4 < β(Q 1 + Q 2 ) < 8. Note there are vertical dots at the bottom of the left and right panels, which indicate there is an infinity of sectors.
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 334 Figure 3.3.4 shows the regions where like charges attract, for a given Coulomb coupling at (a) short distances (Eq. (3.54)) and (b) large distances (Eq. (3.48)). By comparing the two panels in Fig. 3.3.4, we can see the regimes where G eff and G ∞eff feature like-charge attraction are considerably different. Whereas two identical charges that are close together can attract (see Fig.3.3.3 or 3.3.4a), they will always repel at large separations (Q 1 = Q 2 is empty in Fig.3.3.4b). We had already witnessed this feature during the discussion of interactions among like-charged plasma particles. Indeed we see that for a given Coulomb coupling, the like-charge regime for short distances does not contain its large-distance counterpart, and conversely. One characteristic they do share is the Coulomb coupling threshold for this phenomena: β > 2. Besides finding the presence of like-charge attraction at short distances, we also showed that oppositely charged particles have a bare-charge
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 334 Fig. 3.3.4: (a) Short-distance (r → 0) like-charge attraction regimes for β → 4 (stripes) and β = 2.1 (orange filling). The threshold when like-charge attraction can occur is β > 2.Below the dashed line G eff = F c n and above (within the plot domain) G eff = F bare , for any Coulomb coupling within the stability regime (0 < β < 4). Note that the stability regime requires βQ 1,2 > -2. The limit β → 4 refers to the asymptotic region as the Coulomb coupling approaches the collapse threshold, 4. (b) Large-distance (r → ∞) like-charge attraction regimes for β → 8/3 (thick stripes) and β = 2.1 (orange filling). The threshold when like-charge attraction can occur is β > 2. The large-distance behavior was obtained in[START_REF] Téllez | Charge inversion of colloids in an exactly solvable model[END_REF] and the case β → 8/3 refers to the asymptotic region at that Coulomb coupling number since the results found therein are valid for β < 8/3.
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 321 Fig. 3.2.1: Représentation de la suspension colloïdale avec 3 contre-ions (N = 3, représentés par les cercles remplis). Les rectangles sombres à 0 et L représentent les charges colloïdales. La constante diélectrique vaut 2 pour 0 < x < L et 1 ailleurs. Le cas imperméable (croquis a) interdit aux particules de traverser les régions spatiales délimitées par les positions des colloïdes. Par exemple, dans le croquis a), les positions x 1 , x 2 et x 3 du contre-ion gauche, central et droit sont restreintes aux intervalles donnés par x 1 < 0, 0 < x 2 < L, et x 3 > L respectivement. Au contraire, la condition de perméabilité (panneau b) se réfère à des contre-ions sans restriction sur les positions x 1 , x 2 et x 3 . Dans la situation canonique, la distance L entre les deux colloïdes est fixe alors qu'elle fluctue dans des conditions isobares.
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 324 Fig. 3.2.4: Sketch of the colloidal suspension with 3 counter-ions (N = 3, shown by the filled disks).The dark rectangles at 0 and L represent the colloidal charges. The dielectric constant is 2 for 0 < x < L and 1 elsewhere. The impermeable case (panel a) forbids particles to cross the spatial regions delimited by the colloids' positions. For example, in sketch a) the positions x 1 , x 2 and x 3 of the left, center and right counterion are restricted to the intervals given by x 1 < 0, 0 < x 2 < L, and x 3 > L respectively. Instead, the permeability condition (panel b) refers to counter-ions with no restriction on the positions x 1 , x 2 and x 3 . In the canonical situation, the distance L between the two colloids is fixed while it does fluctuate under isobaric conditions.
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 327 Fig. 3.2.7:Bosquejo de la suspensión coloidal con 3 contraiones (N = 3, mostrado por los discos llenos). Los rectángulos oscuros en x = 0 y x = L representan las cargas coloidales. La constante dieléctrica es 2 para 0 < x < L y 1 en otros lugares. El caso impermeable (panel a) prohíbe que las partículas atraviesen las regiones espaciales delimitadas por las posiciones de los coloides. Por ejemplo, en el dibujo a) las posiciones x 1 , x 2 y x 3 del contraión izquierdo, central y derecho están restringidas a los intervalos dados por x 1 < 0, 0 < x 2 < L y x 3 > L respectivamente. En cambio, la condición de permeabilidad (panel b) se refiere a contraiones sin restricción en las posiciones x 1 , x 2 y x 3 . En la situación canónica, la distancia L entre los dos coloides es fija, mientras que fluctúa para condiciones isobáricas.

Titre:

  Systèmes coulombiens en une et deux dimensions : résultats exacts Mots clés: matière molle, colloïde, couplage électrostatique, plasma Résumé: La matière molle met souvent en jeu des unités chargées. Ces charges interagissent par l'intermédiaire des forces de Coulomb. Dans de tels cas, il est souvent nécessaire de traiter toutes les interactions en raison de leur longue portée. Cette thèse présente des résultats pour trois systèmes à plusieurs corps ; toutes les interactions à longue portée sont incluses, sans approximations. Dans le chapitre 1, nous rapportons des résultats exacts pour une suspension colloïdale, unidimensionnelle électriquement neutre et sans sel, constituée de deux colloïdes fixes ainsi que de N contre-ions mobiles neutralisants, avec des sauts diélectriques à la position des colloïdes. Cela inclut la fonction de partition, le profil de densité et la pression. De plus, la relation connue entre la densité de contact et la pression lorsque les contre-ions sont confinés entre les colloïdes est généralisée en levant cette restriction. Nous constatons que pour tout système de N contre-ions, il peut y avoir une attraction de même charge, contrairement au diélectrique homogène où N doit être pair pour ce faire. Dans la limite N → ∞ à charge de colloïde fixe, la prédiction du champ moyen (c'est-à-dire l'équation de Poisson-Boltzmann) est retrouvée. Dans le chapitre 2, nous considérons le système précédent hors d'équilibre au sein d'un espace diélectrique homogène, comme modèle de la dynamique de deux double-couches électriques. En utilisant des calculs exacts, lorsque cela est possible, et des simulations de dynamique brownienne, nous calculons le temps de relaxation vers l'équilibre (τ ). La parité de N est déterminante pour la dynamique de relaxation : lorsque N est impair, les deux double-couches ne se découplent jamais, quelle que soit leur séparation L ; c'est le régime d'attraction de même charge, où τ se comporte de façon diffusive, variant comme L 2 pour les grands L. Au contraire, pour N pair, l'échelle de longueur pertinente est la longueur de Bjerrum au lieu de L. Cela conduit à des dynamiques nettement différentes : pour N pair, les effets thermiques sont préjudiciables à la relaxation, augmentant τ , tandis qu'ils accélèrent la relaxation pour N impair. Nous montrons également que la théorie du champ moyen dynamique (c'est-à-dire l'équation de Poisson-Nernst-Planck) est valide pour N grand, restant opérationnelle jusqu'à quelques contre-ions (N > 3).

1.2 One counter-ion

  

  As a result, φ PNP (∞, t) is divergent for t → ∞. This nevertheless does not lead to any physical difficulty nor any illposedness in (2.65): an additive x-independent term in the potential φ PNP does not change the charge density. What we may gather from the above remark is that lim

	t),	(2.65)
	which brings interesting simplifications, see below. Note that up to a constant, we
	have φ	

PNP ( x, t → ∞) = φ PB ( x) = 2 ln(1 + x). x→∞ W ( x, t) = 1 while lim t→∞ W ( x, t) = 0.

(2.66)

2 x Fig. 3.2.2: Représentation

  La dynamique des contre-ions est considérée tandis que les colloïdes sont traités comme statiques puisque leur échelle de temps est supposée être beaucoup plus grande que celle des contre-ions. Toutes les particules sont ponctuelles et peuvent se "croiser" les unes les autres.

d'un système électroniquement neutre constitué de deux doubles couches électriques en interaction, chacune constituée d'un colloïde (rectangle) et de 4 contre-ions (cercles). Les deux colloïdes sont séparés d'une distance L. L'interaction entre les particules est régie par le potentiel de Coulomb à 1D, linéaire en L.

† In two-dimensional systems there is a regime where this is false, which is discussed in Chapter 3.4Chapter 1 One-dimensional colloidal model with dielectric inhomogeneity

Chapter 1 One-dimensional colloidal model with dielectric inhomogeneity

1.1 Introduction

Chapter 1 One-dimensional colloidal model with dielectric inhomogeneity

1.2 One counter-ion

1.[START_REF]Theory of Simple Liquids[END_REF] When does mean-field apply?

1.B Overlapping equations of state

Chapter 2 Relaxation dynamics of two interacting electrical double-layers in a 1D Coulomb system

2.2 One counterion(N = 1)

† For every polynomial function g of the final counterion positions, and every small time step ∆t, there exists a positive constant C such that | g exact -g num| ≤ C ∆t1.0 

2.3 Relaxation time for multiple counterions

2.4 Mean-field dynamics

2.5 Misfit counterion transport time

Chapter 3 Like-charge attraction at short distances in a charge-asymmetric two-dimensional two-component plasma: exact results

3.2 Short and large distance asymptotic potential

† The large-distance behavior for large Coulombic couplings (β ≥ 8/3) has not been computed, to the authors knowledge.

Chapter 3 Like-charge attraction at short distances in a charge-asymmetric two-dimensional two-component plasma: exact results

General conclusion

La materia visible, la mayoría de las veces, tiene protones y electrones. Como era de esperar, las interacciones electrostáticas median fenómenos importantes presentes en muchos campos como la biología, la ciencia de los materiales y la materia condensada. Algunos ejemplos incluyen la formación de condensados de ADN[START_REF] Bloomfield | DNA condensation[END_REF], la fisicoquímica del cemento[START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF] y el comportamiento crítico de películas superfluidas de[START_REF]Theory of Simple Liquids[END_REF] He[START_REF] Minnhagen | The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films[END_REF].En materia blanda, es común tratar unidades cargadas que van desde iones pequeños hasta macromoléculas. Mientras que la naturaleza generalmente favorece la formación de objetos neutrales, en los sistemas blandos estas entidades a menudo se disocian. Esto puede suceder debido a las altas temperaturas, como ocurre con las sales fundidas[START_REF]Theory of Simple Liquids[END_REF] (por ejemplo, la sal de mesa, NaCl, se disocia a 1073 K en un electrolito compuesto de Na + y Cl -). Asimismo, los compuestos iónicos se disocian al entrar en contacto con disolventes polares (por ejemplo, agua)[START_REF] Hansen | Effective interactions between electric double layers[END_REF][START_REF] Messina | Electrostatics in soft matter[END_REF]. En cualquier caso, el resultado es un sistema de muchos cuerpos cargados cuya interacción electrostática es mediada por un potencial de Coulomb. Dado que dichos potenciales son de largo alcance, vemos cómo surgen en el contexto de la materia blanda los sistemas de muchos cuerpos dotados de interacciones de largo alcance.Las interacciones electrostáticas son clave para una gran cantidad de fenómenos en la materia condensada blanda que incluyen, entre otros, la atracción de cargas similares, sobrecarga/inversión de carga, autoensamblaje, electroforesis, etc.[START_REF] Holm | Electrostatic Effects in Soft Matter and Biophysics[END_REF][START_REF] Andelman | Introduction to electrostatics in soft and biological matter[END_REF][START_REF] Levin | Electrostatic correlations: from plasma to biology[END_REF][START_REF] Naji | Electrostatic interactions in strongly coupled soft matter[END_REF][START_REF] Boroudjerdi | Statics and dynamics of strongly charged soft matter[END_REF][START_REF] Ioannidou | The crucial effect of early-stage gelation on the mechanical properties of cement hydrates[END_REF]. No obstante, la comprensión de las interacciones correlacionadas entre muchos cuerpos desde un punto de vista fundamental se dificulta por la complejidad matemática. Por ejemplo, considere una de las configuraciones posibles más simples: dos placas cargadas similares que interactúan en presencia de contraiones neutralizantes. En el régimen de acoplamiento fuerte, es decir, para una alta valencia de contraiones y/o una gran carga coloidal, estas placas pueden atraerse entre sí, proporcionando por tanto un ejemplo de atracción de carga similar. Este sistema aparentemente simple presenta un fenómeno que desafía nuestra intuición de la electrostática. Las placas que de otro modo se repelerían en el vacío, se atraen bajo la mediación de contraiones fuertemente correlacionados[START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Šamaj | Counterions at highly charged interfaces: From one plate to like-charge attraction[END_REF][START_REF] Šamaj | Strong-coupling theory of counterions between symmetrically charged walls: From crystal to fluid phases[END_REF]. Este fenómeno no se puede describir con los enfoques estándar de campo medio[START_REF] Neu | Wall-mediated forces between like-charged bodies in an electrolyte[END_REF][START_REF] Trizac | Long-range electrostatic interactions between like-charged colloids: Steric and confinement effects[END_REF][START_REF] Sader | Long-range electrostatic attractions between identically charged particles in confined geometries and the Poisson-Boltzmann theory[END_REF] e inicialmente se confirmó computacionalmente[START_REF] Allahyarov | Effect of geometrical confinement on the interaction between charged colloidal suspensions[END_REF][START_REF] Grønbech-Jensen | Interactions between charged spheres in divalent counterion solution[END_REF][START_REF] Ma | Effective attraction between likecharged colloids in a two-dimensional plasma[END_REF][START_REF] Guldbrand | Electrical double layer forces. A Monte Carlo study[END_REF][START_REF] Moreira | Simulations of counterions at charged plates[END_REF], luego experimentalmente[START_REF] Kékicheff | Charge reversal seen in electrical double layer interaction of surfaces immersed in 2:1 calcium electrolyte[END_REF][START_REF] Crocker | When like charges attract: The effects of geometrical confinement on long-range colloidal interactions[END_REF][START_REF] Kepler | Attractive potential between confined colloids at low ionic strength[END_REF] y finalmente analíticamente[START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Netz | Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions[END_REF]. Sin embargo, la dificultad de estudiar generalizaciones de este caso básico como considerar cargas coloidales intermedias, incluir inhomogeneidades dieléctricas y coloides con diferentes geometrías es por lo que sigue siendo un tema de interés, donde los resultados analíticos son escasos.

estocástica de Langevin y una resistencia determinista (fricción viscosa) dada por la ley de Stokes. Esto conduce a una ecuación de movimiento estocástica para las posiciones de las partículas. La Sección 2.1.2 recuerda la ecuación equivalente de Fokker-Planck que resuelve la distribución de las posiciones. En particular, el enfoque de solución de expansión de función propia y también cómo reformular el problema en términos de una ecuación de Schrödinger. La Sección 2.1.3 presenta las ecuaciones electrocinéticas de Poisson-Nernst-Planck, que corresponden a una teoría de campo medio dinámica sobreamortiguada.El sistema estudiado en el Capítulo 2 es el análogo dinámico del sistema estudiado en el Capítulo 1, en un dieléctrico homogéneo. Más precisamente, el tiempo de relajación τ se determina para un sistema con dos coloides, globalmente neutral y sobreamortiguado en función de la separación coloidal L y el número de contraiones N (ver Fig.3.2.8). La Sección 2.2 comienza considerando el caso para un solo contraión N = 1, donde la ecuación de Fokker-Planck se resuelve analíticamente. El tiempo de relajación se obtiene al analizar el espectro del operador de Fokker-Planck, que tiene partes continuas y discretas. La Sección 2.2.2 da una interpretación para las partes discretas y continuas del espectro como los estados acotados y no acotados de una sola partícula no relativista en una dimensión usando la formulación de Schrödinger equivalente. La Sección 2.2.3 presenta la simulación numérica y el esquema utilizado para calcular el tiempo de relajación para N = 1 (luego utilizado para N > 1), donde se pueden comparar los resultados numéricos y exactos.En la Sección 2.3, estudiamos el tiempo de relajación para el caso de contraiones múltiples, N > 1. La paridad de N determina si τ depende de la distancia entre coloides. Por N impar, encontramos un comportamiento que refleja el caso del General conclusion
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Like-charge attraction at short distances in a charge-asymmetric two-dimensional two-component plasma: exact results

3

In this Chapter we introduce the two-dimensional two-component plasma (TCP). We specialize in the case made of positively (q 1 = +1) and negatively (q 2 = -1/2) charged point particles. We discuss the correspondence with a field theory: the complex Bullough-Dodd model. The short-distance effective potential between two "guest" charges immersed in the (+2/-1) 2D TCP is formulated in terms of the field theory and determined exactly using a short-distance operator-product-expansion. This effective potential determines whether the two guest charges attract or repel. This allows to establish the regime for which there is like-charge attraction. The charges of the cations (red,"+") and anions (blue,"-") are fixed to q 1 > 0 and q 2 < 0. The plasma occupies all R 2 . The new results reported in this Chapter specialize to the case q 1 = 1 and q 2 = -1/2.

Introduction

Consider the charge-asymmetric two-dimensional two-component plasma which consists of point-like cations and anions with charges q 1 = +1 and q 2 = -1/Q (Q ∈ Z + ), as depicted by Fig. 3.1.1. We begin by discussing some properties for the arbitrary charge-asymmetry and specialize to Q = 2 in Section 3.1.2. These 

The interaction potential between two external charges and the operator-product-expansion

Consider two external point charges immersed in the plasma (see Fig. 3.1.2): Q 1 at the origin and Q 2 at r. To avoid the collapse of the guest charges with oppositely charged particles from the plasma, we suppose that -2 < βQ σ < 4 (σ = 1, 2). We are interested in the effective potential between the guest 1,2-charges

where µ ex Q is the excess chemical potential which is defined as the work required to move a charge Q from infinity into the bulk of the plasma. Similarly, µ ex Q 1 Q 2 is defined as the work done to bring two guest charges Q 1 and Q 2 from infinity into the bulk of the gas at a distance r apart. In [START_REF] Šamaj | Anomalous effects of "guest" charges immersed in electrolyte: Exact 2D results[END_REF] the following expressions for the excess potentials where derived:

where Ξ[Q] is the grand partition function of the plasma in the presence of a guestcharge Q, and Ξ[Q 1 , 0; Q 2 , r] of a charge Q 1 at the origin and Q 2 at r. We remind that Ξ is the grand partition function of the plasma without external charges (Eq. (3.10)). Then, inserting the previous results into the effective potential (Eq. (3.20)), it was found in [START_REF] Šamaj | Anomalous effects of "guest" charges immersed in electrolyte: Exact 2D results[END_REF] the following expression for

Note that the position functional dependence of the effective potential is solely given by Ξ[Q 1 , 0; Q 2 , r]. This grand partition function can be expanded as the sum of terms that correspond to canonical systems where there are two guest charges and a finite number of plasma particles. For concreteness sake we list the first terms that appear in terms of total number of particles. The first term consists of two guest charges and zero plasma particles. This contributes to G Q 1 Q 2 (r) with a Appendix 3.A Effective potential expansion at crossover values First, we find the relation between j n and j n-1 which is given by

where C 0.577 is the Euler-Mascheroni constant. Now, following the analogous procedure used in the Appendix of [START_REF] Šamaj | Anomalous effects of "guest" charges immersed in electrolyte: Exact 2D results[END_REF][START_REF] Téllez | Guest charges in an electrolyte: Renormalized charge, long-and short-distance behavior of the electric potential and density profiles[END_REF] we analyze the quotient e

Nous montrons ensuite que les résultats à N et τ finis, s'approchent de cette limite comme τ ∝ l 2 B /D ∝ e -2 où e est la charge des contre-ions. Puisque la limite du champ moyen, pour un objet colloïdal de charge Q, est satisfaite pour N → ∞, l'électroneutralité Q = 2N e exige que e → 0. Ainsi, τ ∝ e -2 devient infini dans la limite du champ moyen.

Dans le Chapitre 3, nous revisitons l'attraction de charges similaires mais dans un système bidimensionnel. La Fig. 3.2.3 présente une représentation graphique du système considéré, dans lequel nous déterminons exactement le potentiel effectif à courte distance entre deux charges "invitées" immergées dans un plasma bidimensionnel à deux composants présentant une asymétrie de charge, constitué de particules ponctuelles chargées positivement (+1) et négativement (-1/2). Ce Chapitre commence par une brève introduction aux plasmas 2D multi-composants puis se restreint au cas des plasmas à deux composants avec asymétrie de charge +2/ -1. Nous considérons les couplages coulombiens β < 4 (la temperature inverse est prise comme adimensionnelle), ce qui correspond au régime de stabilité où les fluctuations thermiques sont suffisantes pour assurer la stabilité du plasma. Ce cas particulier peut être mis en correspondance avec le modèle de Bullough-Dodd [START_REF] Šamaj | Exact solution of a charge-asymmetric two-dimensional Coulomb gas[END_REF], en suivant la procédure introduite dans le Chapitre 1 pour reformuler les gaz de Coulomb en termes d'opérateurs de la théorie des champs. La Section 3.1.3 introduit le potentiel d'interaction entre les deux charges invitées et son expression correspondante via le formalisme de la théorie des champs. Dans cette dernière, la dépendance en position est donnée par une fonction de corrélation à deux points des champs primaires du modèle de Bullough-Dodd. Comme nous sommes intéressés par l'analyse de cette quantité à courte distance, nous utilisons l'expansion de l'opérateur produit dans cette limite [START_REF] Baseilhac | Expectation values of descendent fields in the Bullough-Dodd model and related perturbed conformal field theories[END_REF]. L'expression résultante est interprétée comme une somme où chacun des termes est associé à un système

Summary in English

Visible matter, more often than not, has protons and electrons. Unsurprisingly, electrostatic interactions mediate important phenomena present across many fields such as biology, material science and condensed matter. Some examples include the formation of DNA condensates [START_REF] Bloomfield | DNA condensation[END_REF], cement physical-chemistry [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF] and the critical behavior of superfluid 4 He films [START_REF] Minnhagen | The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films[END_REF].

In soft matter, it is common to feature charged units ranging from small ions to macromolecules. Whereas nature usually favors the formation of neutral objects, in soft systems these entities often unbind. This may happen due to high temperatures, as for molten salts [START_REF]Theory of Simple Liquids[END_REF] (e.g. table salt, NaCl, dissociates at 1073 K into an electrolyte made of Na + and Cl -). Likewise, ionic compounds dissociate at contact with polar solvents (e.g water) [START_REF] Hansen | Effective interactions between electric double layers[END_REF][START_REF] Messina | Electrostatics in soft matter[END_REF]. In any case, what results is a many-body system made of charged constituents, and hence electrostatic Coulomb interactions ensue. Since Coulomb potentials are long-ranged, we see how many-body systems endowed with long-ranged interactions arise in the context of soft matter.

Electrostatic interactions are key to a wealth of phenomena in soft condensed matter including but certainly not limited to like-charge attraction, overcharging/charge inversion, self-assembly, electrophoresis, etc [START_REF] Holm | Electrostatic Effects in Soft Matter and Biophysics[END_REF][START_REF] Andelman | Introduction to electrostatics in soft and biological matter[END_REF][START_REF] Levin | Electrostatic correlations: from plasma to biology[END_REF][START_REF] Naji | Electrostatic interactions in strongly coupled soft matter[END_REF][START_REF] Boroudjerdi | Statics and dynamics of strongly charged soft matter[END_REF][START_REF] Ioannidou | The crucial effect of early-stage gelation on the mechanical properties of cement hydrates[END_REF]. Nonetheless, understanding many-body correlated interactions from a fundamental point of view is shielded by mathematical complexities. For example, consider one of the simplest possible settings: two similar charged plates interacting in the presence of neutralizing counter-ions. In the strong-coupling regime, namely for high counter-ion valency and/or large colloidal charge, these plates can attract each other, therefore providing an example of like-charge attraction. This apparently simple system features a phenomenon challenging our intuition of electrostatics. The plates which would otherwise repel in vacuum, attract under the mediation of strongly-correlated counterions [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Šamaj | Counterions at highly charged interfaces: From one plate to like-charge attraction[END_REF][START_REF] Šamaj | Strong-coupling theory of counterions between symmetrically charged walls: From crystal to fluid phases[END_REF]. This phenomenon cannot be described with the standard mean-field approaches [START_REF] Neu | Wall-mediated forces between like-charged bodies in an electrolyte[END_REF][START_REF] Trizac | Long-range electrostatic interactions between like-charged colloids: Steric and confinement effects[END_REF][START_REF] Sader | Long-range electrostatic attractions between identically charged particles in confined geometries and the Poisson-Boltzmann theory[END_REF] and it was initially confirmed computationally [START_REF] Allahyarov | Effect of geometrical confinement on the interaction between charged colloidal suspensions[END_REF][START_REF] Grønbech-Jensen | Interactions between charged spheres in divalent counterion solution[END_REF][START_REF] Ma | Effective attraction between likecharged colloids in a two-dimensional plasma[END_REF][START_REF] Guldbrand | Electrical double layer forces. A Monte Carlo study[END_REF][START_REF] Moreira | Simulations of counterions at charged plates[END_REF], then experimentally [START_REF] Kékicheff | Charge reversal seen in electrical double layer interaction of surfaces immersed in 2:1 calcium electrolyte[END_REF][START_REF] Crocker | When like charges attract: The effects of geometrical confinement on long-range colloidal interactions[END_REF][START_REF] Kepler | Attractive potential between confined colloids at low ionic strength[END_REF] and finally analytically [START_REF] Netz | Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory[END_REF][START_REF] Netz | Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions[END_REF]. However, the difficulty of studying generalizations of this basic case such as considering intermediate colloidal charges, including dielectric inhomogeneities and colloids with different geometries is why it remains a topic of interest, where analytical results are scarce.

Herein, we devote to study systems with electrostatic correlations in one-and two-dimensional models. Although low-dimensional systems might seem somewhat abstract, they describe a number of real physico-chemical objects such as stiff polymers [START_REF] Trizac | Bending stiff charged polymers: The electrostatic persistence length[END_REF], clay platelets [START_REF] Trizac | Effective interactions and phase behaviour for a model clay suspension in an electrolyte[END_REF][START_REF] Ebrahimi | Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets[END_REF], cement sheets [START_REF] Pellenq | Why does concrete set?: The nature of cohesion forces in hardened cement-based materials[END_REF] and more. As an illustration, we mention the question of the origin of cement cohesion. In brief, cement, a key for the characteristic time. Leaving aside the misfit ion, odd-N systems behave much like even ones, and equilibrate over a common time scale l 2 B /D.

Fig. 3.2.5: Sketch of an electroneutral system consisting of two interacting electric doublelayers, each made of a colloid (rectangle) and 4 counterions (circles). The distance between colloids is L. The interaction between particles is mediated by the 1D Coulomb potential, linear in separation. The dynamics of the counterions is considered and the colloids are treated as static since their time scale is assumed to be much larger than that of the counterions. All particles are point-like and they can "cross over" each other.

We show that the analytical solution for the mean-field dynamics (namely, the Poisson-Nernst-Planck electrokinetic equations) provides a reasonable approximation for a system with as few as N = 3 counterions (see Fig. 2.4.2). We surmise that the mean-field framework becomes exact in the limit N → ∞. While the exact equilibrium density profiles at finite-N feature an exponential tail at large distances, their mean-field expressions has longer range, with an algebraic decay. This translates into an infinite characteristic time for equilibration at mean-field level. We then show that the finite-N finite-τ results approach this limit as τ ∝ l 2 B /D ∝ e -2 where e is the charge of the counterions. Since the mean-field limit, for a colloidal object of charge Q, is met for N → ∞, electroneutrality Q = 2N e requires that e → 0. Thus, τ ∝ e -2 becomes infinite in the mean-field limit.

In Chapter 3, we revisit like-charge attraction but in a two-dimensional system. Figure 3.2.6 shows a sketch of the system considered, in which we determine exactly the short-distance effective potential between two "guest" charges immersed in a 2D two-component charge-asymmetric plasma, made of positively (+1) and negatively (-1/2) charged point particles. This Chapter begins with a brief introduction to 2D multi-component plasmas and then specializes to the two-component case with charge asymmetry +2/ -1. We consider Coulombic couplings (dimensionless inverse temperature) β < 4, which is the so-called stability regime where thermal fluctuations are enough to prevent the collapse of opposite-charges interacting via the 2D Coulomb potential. This particular case can be mapped to the Bullough-Dodd model [START_REF] Šamaj | Exact solution of a charge-asymmetric two-dimensional Coulomb gas[END_REF], following the procedure introduced in Chapter 1 to reformulate Coulomb gases in terms of field theories. Section 3.1.3 introduces the interaction potential between the two guest charges and its corresponding expression in terms of the field theory. In the later, the position dependence is given by a two-point correlation function of the primary fields of the Bullough-Dodd model. Since we are interested in the analysis of this quantity at short distances, we invoke the operator product expansion [START_REF] Baseilhac | Expectation values of descendent fields in the Bullough-Dodd model and related perturbed conformal field theories[END_REF]. The resulting expression is interpreted as a sum over terms associated to systems with finite Section 3.3 finds that there can be like-charge attraction at short distances in the charge-asymmetric +2/-1 two-dimensional two-component plasma. More precisely, it happens between negative charges (see Figs. 3.3.1-3.3.3) for large enough Coulomb coupling (i.e. small temperatures). Furthermore, we determine the charge and Coulomb coupling domain where this phenomenon takes place (see Fig. 3.3.4a). Like-charge attraction is traced to a 3-body interaction, where a negative charge pairs with a plasma cation (+1) to attract the other negative charge. These results are compared to the large distances behavior, which also features likecharge attraction (see Fig. 3.3.2). However, the large-distance interaction can lead to opposite-charges to repel, a possibility that is absent at short distances. The shortdistance results are in contrast to the symmetric two-dimensional two-component plasma, where like-charge attraction cannot happen at short-distances [START_REF] Téllez | Short-distance expansion of correlation functions for chargesymmetric two-dimensional two-component plasma: exact results[END_REF].

General conclusion

En el Capítulo 3, revisamos la atracción de cargas similares pero en un sistema bidimensional. La Fig. 3.2.9 muestra un esquema del sistema considerado, en el que se determina exactamente el potencial efectivo de corta distancia entre dos cargas " huésped " sumergidas en un plasma bidimensional de carga asimétrica de dos componentes, hecho de partículas puntuales cargadas positivamente (+1) y negativamente (-1/2). Este Capítulo comienza con una breve introducción a los plasmas multicomponente 2D y luego se especializa en el caso de dos componentes con asimetría de carga +2/ -1. Consideramos acoplamientos Coulombicos (temperatura inversa adimensional) β < 4, que es el llamado régimen de estabilidad en el que las fluctuaciones térmicas son suficientes para evitar el colapso de cargas opuestas que interactúan a través del potencial de Coulomb 2D. Este caso particular se puede mapear en el modelo Bullough-Dodd [START_REF] Šamaj | Exact solution of a charge-asymmetric two-dimensional Coulomb gas[END_REF], siguiendo el procedimiento introducido en el Capítulo 1 para reformular los gases de Coulomb en términos de teorías de campo. -+ -Fig. 3.2.9: Bosquejo del plasma bidimensional de dos componentes asimétrico de carga con dos cargos de invitado: Q 1 y Q 2 . Las cargas de los cationes (rojo) y aniones (azul) se fijan en +1 y -1/2, mientras que Q σ (σ = 1, 2) se estudian para todos posibles valores en el régimen de estabilidad. El plasma ocupa todo el espacio R 2 . La Sección 3.1.3 introduce el potencial de interacción entre las dos cargas huésped y su expresión correspondiente en términos de la teoría de campo. En el último, la dependencia de la posición viene dada por una función de correlación de dos puntos de los campos primarios del modelo Bullough-Dodd. Dado que estamos interesados en el análisis de esta cantidad a distancias cortas, invocamos el "operator product expansion" [START_REF] Baseilhac | Expectation values of descendent fields in the Bullough-Dodd model and related perturbed conformal field theories[END_REF]. La expresión resultante se interpreta como una suma de términos asociados a sistemas con una cantidad finita de partículas de plasma (es decir, un conjunto canónico) y las dos cargas huésped, en semejanza con una función de partición gran canónica. El término dominante (es decir, la interacción efectiva N -cuerpos a distancias cortas) depende del acoplamiento Coulombico y la carga neta de las partículas huésped (ver Fig. 3.2.1). La Sección 3.3 encuentra que puede haber atracción de carga similar a distancias cortas en el plasma de dos componentes bidimensional de carga asimétrica +2/-1.

General conclusion