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Résumé

Le modèle standard de la cosmologie suppose que les inhomogénéités à petite échelle
n’affectent pas l’expansion des plus grandes échelles. Cependant, un tel phénomène,
appelé rétroaction, pourrait exister et être suffisamment important pour expliquer
l’énergie noire. Alors que la plupart des études sur la rétroaction se sont concentrées
sur sa relation avec la formation des structures, peu de choses ont été faites pour
comprendre sa dépendance à la topologie de notre Univers. Ma thèse de doctorat
vise à combler cette lacune en suivant deux stratégies.

Dans un premier temps, j’essaie de définir une extension non-euclidienne de la
théorie de Newton à partir de la relativité générale et de généraliser le théorème
de Buchert-Ehlers, qui stipule que la rétroaction est nulle en gravité newtonienne.
Comme première étape vers cette définition, je montre que la cosmologie newtoni-
enne peut être obtenue à partir de la théorie de Newton-Cartan. Dans ce cas,
l’expansion apparaît comme un champ fondamental de la théorie. Je propose en-
suite deux “théories newtoniennes non-euclidiennes” basées sur le formalisme de
Newton-Cartan. La première théorie comporte une rétroaction, tandis que l’autre
n’en a aucune. Enfin j’essaye de justifier l’une d’entre elles en utilisant la limite
galiléenne de la relativité générale. Je montre que pour permettre des géométries
non-euclidiennes à la limite, un terme supplémentaire lié à la courbure spatiale doit
être ajouté dans le tenseur énergie-impulsion d’un fluide géodésique. L’une des con-
séquences de cette modification est que le système d’équations à l’ordre dominant
n’est pas fermé, laissant ouverte la question de la “bonne” théorie newtonienne non-
euclidienne compatible avec la relativité générale.

Dans un deuxième temps, j’étudie la possibilité de faire des simulations cos-
mologiques relativistes dans des géométries non-euclidiennes. Les simulations rela-
tivistes commencent à être utilisées en tant que nouvelle méthodes indépendantes
pour quantifier la rétroaction. Cependant, jusqu’à maintenant elles ont toutes été
réalisées dans une géométrie euclidienne et reposent toutes sur le formalisme BSSN
pour résoudre l’équation d’Einstein. Je montre que ce schéma numérique pourrait
ne pas être adapté aux géométries non-euclidiennes et je suggère d’utiliser sa version
covariante.
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Abstract

The Standard Model of Cosmology assumes that the small scale inhomogeneities do
not affect the expansion of the largest scales. However, such a phenomenon, named
backreaction, could exist and be significant enough to explain the dark energy. While
most of the studies about the backreaction focused on its relation with structure
formation, little has been done to understand its dependence on the topology of our
Universe. My PhD thesis aims at filling this gap, following two strategies.

Firstly, I try to define a non-Euclidean extension of Newton’s theory from gen-
eral relativity and to generalise the Buchert-Ehlers theorem, which states that the
backreaction is zero in Newton’s theory. As a first step towards this definition I show
that the Newtonian cosmology can be derived from the Newton-Cartan theory. In
this case, the expansion arises as a fundamental field of the theory. I then propose
two ‘non-Euclidean Newtonian theories’ based on the Newton-Cartan formalism.
The first theory features a backreaction, while the other features none. Finally I try
to justify one of them using the Galilean limit of general relativity. I show that to
allow for non-Euclidean geometries in the limit, an additional term related to the
spatial curvature needs to be added to the energy-momentum tensor of a geodesic
fluid. One of the consequence of this modification is that the system of equations
at leading order is not closed, leaving open the question of the ‘right’ non-Euclidean
Newtonian theory compatible with general relativity.

Secondly, I study the possibility of making relativistic cosmological simulations
in non-Euclidean geometries. Relativistic simulations are starting to be used as new
independent methods to quantify the backreaction. However, until now they have
all been done in an Euclidean geometry, and have all relied on the BSSN formalism
to solve the Einstein equation. I show that this numerical scheme might not be
appropriate for non-Euclidean geometries and I suggest to use its covariant version.
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Notations

References

When available the bibliography style features three different links associated with
three different colors: links to the journal/editor website or to a numerical version
of the paper are in red, links to the ADS website are in blue and links to the arXiv
website are in green.

Acronyms

CDM Cold-Dark-Matter
CPAE Collected Papers of Albert Einstein (url)
CMB Cosmic Microwave Background
cst constant
ΛCDM Λ-Cold-Dark-Matter
lhs left hand-side
LTB Lemaître-Tolman-Bondi
NEN Non-Euclidean Newtonian
rhs right hand-side
SMC Standard Model of Cosmology

Results

The important passages of the thesis are highlighted in grey boxes.

Mathematical conventions

We denote a tensor of any type, except scalars, in bold (example: g). In the case
where the type is of importance, a tensor of type (n,m) will feature n over-bars and
m under-bars [example: g

¯̄
for a type (0, 2)-tensor].

We define the symmetric part T(ab), the antisymmetric part T[ab] and the sym-
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Notations 2

metric traceless part T〈ab〉 of a rank-2 tensor T as

T(ab) :=
1

2
(Tab + Tba) ; T[ab] :=

1

2
(Tab − Tba) ;

T〈ab〉 := T(ab) − T

D
gab,

where g is the metric of the manifold on which T is defined and D the dimension
of this manifold.

An antisymmetrisation over three indices is defined as

T[abc] :=
1

3

(
Ta[bc] + Tc[ab] + Tb[ca]

)
. (1)

An index which should not be included in a antisymmetrisation (over two or three
indices) or a symmetrisation is denoted between vertical bars. For instance, in the
case of two indices antisymmetrisation:

T[a|b|c] :=
1

2
(Tabc − Tcba) . (2)

The Lie derivative on a manifold M of a tensor T along a vector field Ā is denoted
LAT . The Lie derivative does not commute with the metric, so for instance, for a
rank-1 tensor B, g(LAB̄, ·) 6= LAB

¯
. We will then use LABa, respectively LABa, to

denote the coordinate components of LAB̄, respectively LAB
¯

.

Then for a vector A and a tensor T on a manifold M, we have

LAT a1...
b1... := Ac∇cT

a1...
b1...

(3)

+
∑

i

T a1...
...c

↑
i

...∇bi
Ac −

∑

j

T ...
j
↓
c...

b1...∇cA
aj ,

where ∇ is any connection on M. The c

↑
i

notation means that c is the ith index.

Finally, we denote indices running from 0 to 3 by Greek letters (α, β, γ, ...) and
indices running from 1 to 3 by Roman letters (a, b, c, ...).
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Variables
g Lorentzian metric (-+++)
∇ Spacetime connection (Lorentzian or Galilean)
Riem (Rσ

αβγ) Spacetime Riemann curvature tensor (Lorentzian or Galilean)
R Spacetime Ricci curvature tensor (Lorentzian or Galilean)
R Spacetime scalar curvature (Lorentzian or Galilean)
τ Time metric
h Spatial metric
D Spatial connection related to h
Riem (Rσ

αβγ) Spatial Riemann curvature tensor
R Spatial Ricci tensor
R Spatial scalar curvature
K Extrinsic curvature
Θ Expansion tensor
Ω Vorticity tensor



Foreword

I
n 1915, when Einstein finalised his theory of general relativity (Einstein 1915a,b,d
and summarised by Einstein, 1916), he published in the same time his paper on
the “explanation of the perihelion motion of Mercury from general relativity”

(Einstein, 1915c), thus providing a first evidence of the coherence of the theory on
solar system scales. However, it was crucial for him to determine whether or not the
theory leads to contradictions if applied on higher scales. For this purpose he devel-
oped the first relativistic cosmological model (Einstein, 1917): modern cosmology
was born.

At that time, for him, the Universe was necessarily static, i.e. not in expansion,
and due to his interpretation of Mach’s principle it was also closed. His model then
represented a static, closed Universe with an uniform distribution of matter. For
the solution to be non-null, he had to introduce an additional fundamental constant
to the field equations of general relativity: the cosmological constant. While he was
never convinced about this modification of the theory (see O’Raifeartaigh & Mitton,
2018, for a historical analysis of Einstein’s “biggest blunder”), it is only years later
he accepted to remove the constant. This followed from the theoretical work of
Friedmann (1922) and Lemaître (1927) and the observations of Hubble (1929) who
proved that the spiral nebulae (shown to be recessing by Slipher, 1917; Wirtz, 1918)
were in fact extragalactic objects moving away from the solar system, thus providing
a clear evidence for the expansion of the Universe. Neither the cosmological constant,
nor the closed nature of the Universe (needed for the static model of Einstein) was
anymore needed in the cosmological models.

The only energy sources of these models were radiation, ordinary matter and
dark matter which was later introduced to account for the observations of Zwicky
(1933) and Rubin et al. (1980). This additional type of matter is only subject to
the gravitational force, is decoupled from the other interactions and dominates in
proportions the baryonic matter. Until the 80s, the model which prevailed was
the Cold-Dark-Matter model (CDM model) describing an homogeneous expanding
Universe with these sources of energy and without cosmological constant. The model
was definitely adopted with the discovery of the Cosmic Microwave Background
by McKellar (1941); Penzias & Wilson (1965) which confirmed that the Universe
expanded from a very dense state.

4
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With the growing amount of observations, it appeared clear in the late 80s and
90s that the measured matter density implied an age of the Universe, predicted un-
der the hypothesis of the CDM model, which was too young compared to certain
astronomical objects (e.g. Efstathiou et al., 1990). In 1998, the observation of dis-
tant supernovae with the newcomer Hubble telescope (Perlmutter et al., 1999; Riess
et al., 1998) showed that the local scale factor of our Universe was accelerating,
which, under the hypothesis of a homogeneous model, corresponds to an accelera-
tion of the expansion of the Universe: something impossible with the CDM model.
Among the proposed solutions to solve this problem, were the introduction of a new
energy source named dark energy, acting against gravitational collapse, and which
appeared compatible with the reintroduction of a positive cosmological constant
(e.g. Efstathiou et al., 1990; Riess et al., 1998): this is the Λ-Cold-Dark-Matter
model (ΛCDM model).

One remarkable thing is that the energy budget associated to this constant is of
the same order as the one of the dark matter. Because the cosmological constant is
unconstrained by general relativity and that its energy density is constant over time
in the ΛCDM model, this requires fined-tuned initial conditions of the early Universe
to fit today’s expansion, which also seems to indicate that we live in a special epoch of
cosmic evolution. This is the so-called coincidence problem formulated by Steinhardt
(1997). To tackle this problem other models of dark energy have been proposed,
eventually addressing in the same time the problem of dark matter, and removing
the cosmological constant. This includes models with a fundamental quintessence
scalar field whose energy density ‘tracks’ the one of dark matter (e.g. Steinhardt
et al., 1999) so that they are comparable today; or alternative theories of gravity
modifying the Einstein equation (e.g. Popławski, 2006).

Another approach is to consider a more general class of cosmological solutions
of Einstein’s equation, especially solutions removing the hypothesis of homogeneity
generally kept in the previous models. General relativity is left untouched and no
new source of ‘dark’ energy is added. This approach accounts for the large inhomo-
geneities in the distribution of matter in the Universe. It was originally proposed
by Einstein (1931) to tackle a problem on the determination of the age of the Uni-
verse. But at that time, this was solved with a better measurement of the local
expansion rate, while still keeping the homogeneous Lemaître’s model. It is only
in the 80s, with Ellis (1984), that a renewed interest arrived for inhomogeneous
relativistic solutions for cosmology. This approach also has the advantage of solv-
ing another formulation of the coincidence problem (e.g. Buchert, 2008; Buchert &
Räsänen, 2012; Roukema et al., 2013): the fact that the apparent acceleration of the
expansion coincides with the formation of the large-scale structures of the Universe,
known as the cosmic web.

In the standard model of cosmology, expansion and structure formation are de-
coupled and the latter is studied as a perturbation around a homogeneous expand-
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ing background given by the ΛCDM model. This view is idealised and in reality a
‘backreaction’ of the structures on the expansion is a priori expected. The field of
inhomogeneous cosmology tries to quantify this coupling and to understand whether
or not it is sufficient to explain the apparent acceleration found by (Perlmutter et al.,
1999; Riess et al., 1998): this is the problem of backreaction in cosmology (see e.g.
Buchert, 2008). Inhomogeneous cosmology also aims at explaining current ‘tensions’
between the standard model and observations (see Buchert et al., 2016, for a review
on this topic), such as the tension on the local measurement of the expansion rate
(Riess, 2019; Heinesen & Buchert, 2020).

A popular approach to the backreaction problem is the Buchert formalism, based
on an averaging over ‘space’ of scalar quantities. Under this formalism the average
properties of the inhomogeneities become an effective energy source for the appar-
ent acceleration of the expansion. The Buchert formalism has the advantage of
being able to be used in the framework of general relativity (Buchert, 2000, 2001),
or Newtonian gravitation (Buchert & Ehlers, 1997). But while in general relativ-
ity, there is a priori no constraint on the backreaction, in Newtonian cosmology,
Buchert & Ehlers (1997) showed that it is exactly zero if expanding periodic bound-
ary conditions are chosen (that can be interpreted as a closed Universe in terms
of its topology): this is the Buchert-Ehlers theorem. Because such conditions are
necessary for analytical or numerical models, a first consequence of this theorem is
to imply that the study of backreaction needs to be done in general relativity (if
this theory is considered to be the genuine theory of gravitation). But it also shows
that the backreaction might be highly dependent on the topology of the Universe.
While the question of the dependence of the backreaction on the kinematical prop-
erties of the matter fluid has been widely studied (e.g. Wiegand & Buchert, 2010;
Buchert et al., 2013; Vigneron & Buchert, 2019), little has been made to study its
dependence on topology (see Brunswic & Buchert, 2020, for a recent study).

During my PhD thesis under the direction of Thomas Buchert, I have been
working within the field of inhomogeneous cosmology. My main focus has been the
study of the effect of the topology of the Universe on the backreaction. The main
strategy I have been following is to define a non-Euclidean extension of Newton’s
theory from general relativity. This follows from Kaiser’s interpretation (Kaiser,
2017; Buchert, 2018) of the Buchert-Ehlers theorem: an implication of the theorem
might be that a universe with a locally Newtonian dynamics should have negligible
backreaction. As the local dynamics of our Universe appears to be compatible
with Newtonian dynamics, this would imply that the backreaction of structures on
the expansion cannot explain dark energy. However this statement can be true
only if the Universe is locally and globally Newtonian, which corresponds to the
hypothesis needed to apply the Buchert-Ehlers theorem. By globally Newtonian,
we mean having a topology which is the one on which Newton’s theory is defined,
i.e. an Euclidean topology. But while we can consider the fluid dynamics to be
approximately Newtonian on domains small compared with the size of the Universe,
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i.e. locally, we cannot consider the topology to be approximately Euclidean. As
general relativity allows for non-Euclidean topologies, this global condition is then
a strict condition that has to be respected by the relativistic description of the
Universe, and not in a certain limit. From this, there are no reasons that we could
not consider an universe which is locally Newtonian, but with a non-Euclidean
topology. For such an universe, Newton’s theory could not be used to study the
global dynamics, i.e. the expansion; the Buchert-Ehlers theorem would not apply;
and backreaction might not be negligible anymore. This is the main idea I want
to develop in this thesis, and the first stage is the definition of a non-Euclidean
Newtonian theory. This approach lead to two papers (Vigneron, 2020, 2021).

Studying the backreaction can also be made with relativistic cosmological simu-
lations. Such simulations are starting to be used as new, independent cosmological
tests (e.g. Giblin et al., 2016; Macpherson et al., 2019). However, as for now, they
all rely on the assumption of an Euclidean topology: the 3-Torus. In the view of
understanding the behaviour of the backreaction under different topologies, it is
essential to be able to perform relativistic simulations on non-Euclidean topologies.
This is the study of my second project.

Outline of the thesis

This manuscript is divided into 6 chapters. Chapter 1 details the theoretical back-
ground of the thesis, and notably the 1+3/3+1 formalisms of general relativity along
with the averaging procedure for the backreaction. Chapters 2 to 4 constitute the
different stages in the development of a non-Euclidean Newtonian theory, aiming
at generalising the Buchert-Ehlers theorem. Chapter 2 is a proof that Newtonian
cosmology, on which the theorem is based, arise from the Newton-Cartan theory; in
chapter 3 I review the only existing non-Euclidean Newtonian theory, and proposes
two new ones based on the preceding chapter. Chapter 4 aims at developing a non-
Euclidean Newtonian limit from Einstein’s theory, using an existing Lorentzian to
Galilean structure limit. As a complementary approach to the issues of topology and
backreaction, chapter 5 discusses the recent relativistic cosmological simulations and
proposes a numerical scheme allowing for future non-Euclidean relativistic numeri-
cal simulations. Finally, chapter 6 concludes this thesis and details the perspectives
for future investigations.
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Chapter 1

Introduction

T
he mathematical formalisms used for the Buchert approach to the backreac-
tion problem are the 3+1 and 1+3 formalisms of general relativity. They
will also be used for the construction of a non-Euclidean Newtonian the-

ory. We will therefore firstly present them in section 1.1. Then the standard model
of cosmology will be introduced in section 1.2 and the Buchert’s approach in sec-
tion 1.3. We will also detail the Newtonian approach to cosmology in section 1.4.
This will be especially important to understand how and why we must generalise
the Buchert-Ehlers theorem.

1.1 The 3+1 and 1+3 formalisms of general rela-
tivity

1.1.1 The ingredients of general relativity

1.1.1.1 The Einstein equation

One of the main principle that drove Einstein to the construction of general relativity
from special relativity, is the equivalence principle.1 It demands that test observers
only subject to gravitation cannot perform any experiment that would allow them
to determine whether or not they are subject to gravitation. This principle implies,
under the framework of differential geometry used in special relativity, that any
free-falling particle follows the geodesics of the spacetime (see Weinberg, 1972, for
a derivation of the geodesic motion from the equivalence principle). In this view
the (flat) Minkowski spacetime of special relativity was not suited anymore as its
geodesics are straight lines, not influenced by the gravitational content. Then the
general theory of relativity that Einstein wanted required a curved spacetime the
curvature of which depends on the gravitational field, and therefore on the mass
content. With the knowledge of the relation between mass and energy obtained
in special relativity, Einstein went even further by demanding that the curvature

1See the Apollo 15 experiment for a beautiful illustration of this principle.
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should depend on the whole energy content of the spacetime. The theory of general
relativity he finally defined in 1915 describes the local coupling of the energy content
of the Universe with its spacetime geometrical (curvature) properties.

A physical system studied under this theory is associated to a 4-dimensional
(4D) differentiable manifold M, which is equipped with a Lorentzian metric g, i.e.
a symmetric (0,2)-tensor of rank 4 and signature (−,+,+,+), and a torsion-free
compatible connection ∇ (with coefficients denoted Γγαβ), called the Levi-Civita
connection. The geometrical properties of (M, g, ∇) are encoded in the Riemann
curvature tensor Riem of the connection ∇, defined as

Rµ
αβγA

α := (∇β∇γ − ∇γ∇β)Aµ, (1.1)

where Rµ
αβγ are the coordinate components of Riem and A is any vector on M.

From the Riemann tensor we also define the (symmetric) Ricci curvature tensor R,
with components Rαβ := Rµ

αµβ and the scalar curvature R := gµνRµν .

By analogy with the Maxwell energy-momentum tensor in classical electrody-
namics (see section 1.1.1.2), the energy-momentum tensor in general relativity is a
symmetric (2,0)-tensor, denoted T . As a second fundamental principle of general
relativity, the energy needs to be conserved, which implies that T is divergence free:

∇µT
µα = 0. (1.2)

Then, under the framework defined above, coupling the energy content with the
geometrical properties of spacetime means giving an equation linking the tensors T
and Riem, while ensuring the property (1.2). The ‘simplest’ equation, i.e. involving
only first order terms of the curvature tensors, is

R− 1

2
Rg + Λg = 8πGT , (1.3)

where G is the gravitational constant, and Λ is a constant called the cosmological
constant. We assumed the speed of light c to be c := 1. This equation was first
proposed by Einstein (1915); Hilbert (1915), and was later shown by Lovelock (1972)
to be the only possible equation relating a tensor featuring first order curvature terms
and the energy-momentum tensor, while conserving the latter.

1.1.1.2 Energy sources in general relativity

When solving the Einstein equation, one has to specify the sources that compose the
energy-momentum tensor. Most of the sources considered in cosmology are either
matter fluids, radiative fluids or scalar field fluids.
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1.1.1.2.a Matter fluids. Such fluids are composed of massive particles, which can
eventually interact via non-gravitational forces. The 4-velocity of a fluid element is
a time-like vector u and the energy-momentum tensor takes the form

Tαβ = ǫuαuβ + pbαβ + 2q(αuβ) + παβ, (1.4)

where ǫ is the energy density, p the pressure, q the heat flux and π the anisotropic
stress of the fluid as measured in its rest frames. b is the projector on the rest frames
of the fluid, with b := g + u ⊗ u. By definition, qµuµ = 0 and παβ = π(αβ) with
παµu

µ = 0 and πµ
µ = 0.

The variables p, q and π take into account eventual collisions and the non-
gravitational interactions. However, due to velocity dispersion of the fluid particles
inside a fluid element, a matter fluid composed of particles only subject to gravity
will not necessarily have p = 0, q = 0 and π = 0. The fluid 4-velocity can even be
non-geodesic, while the particles are. Therefore we distinguish two types of purely
gravitational matter fluid:

(i) the non-relativistic fluids, or dust fluids, where velocity dispersion inside a
fluid element is negligible. Their energy-momentum tensor is T (dust)

αβ = ǫuαuβ,
and the 4-velocity u is geodesic.

(ii) the ultra-relativistic fluids, where velocity dispersion inside a fluid element
approximates the speed of light. Their energy-momentum tensor is T (ultra)

αβ =
ǫuαuβ + ǫ

3
bαβ, and the 4-velocity u is not necessarily geodesic.

The process of averaging the 4-velocities of the particles inside a small space-
time volume, or fluid element, may be ill-defined (see the relativistic kinetic theory
in section 5.4 of Ellis et al., 2012, for a proposed framework). Numerical schemes
which mix a fluid description of matter with a particle description have been devel-
oped (Daverio et al., 2019; Barrera-Hinojosa & Li, 2020), but they are not based
on a well-defined mathematical framework. Furthermore, the velocity dispersion
depends on the precise scale of the fluid element, or mesoscopic scale, which, in a
cosmological context, is difficult to assess. That is why the relevance of the dust
energy-momentum tensor for a Universe only filled with gravitationally interacting
non-relativistic particles is still debated (see Wiltshire, 2011; Coley & Wiltshire,
2017, and references therein). A solution would be to solve the Einstein equation
in vacuum, assuming the matter is described by a distribution of infinitely small
and dense particles. This requires either black hole singularities for each particle
[see the method of geometrostatics in Lindquist & Wheeler (1957) and its applica-
tion to cosmology (e.g. Clifton, 2015)], or surgery on the manifold M to prevent
these singularities. However such methods are hardly tractable for a cosmological
model representative of our Universe. In this thesis, we will not be concerned with
such issues and we will only take either T (dust) or T (ultra) when considering a purely
gravitational matter fluid.
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1.1.1.2.b Radiative fluid. An electro-magnetic fluid, or radiative fluid, is a fluid
described by the electro-magnetic energy-momentum tensor:

T
(rad)
αβ =

1

µ0

(
FαµF

µ
β − 1

4
gαβFµνF

µν
)
, (1.5)

where F is the Maxwell electro-magnetic tensor.

In general no preferred time-like vector can be attributed to such a radiative
fluid. However it is still possible to decompose (1.5) with respect to a family of
observers described by a time-like vector field o as follows

T
(rad)
αβ = ǫ(rad) oαoβ + 2S(αoβ) + σαβ, (1.6)

where Sµoµ := 0, oµσµα := 0 and σµµ = −ǫ(rad). The variables ǫ(rad), S and σ are
respectively the energy density, the Poynting vector and the Maxwell stress tensor
of the electro-magnetic fluid as observed by the family of observers o.

1.1.1.2.c Scalar fields. In the standard model of cosmology, the description of
inflation, dark energy, or even dark matter is often made with scalar fields. They
are generally chosen to be minimally coupled with a potential V (Φ), the scalar field
being denoted Φ, and therefore are described by an energy-momentum tensor in the
form

T
(Φ)
αβ = ∇αΦ∇βΦ −

[
1

2
∇µΦ∇µΦ + V (Φ)

]
gαβ. (1.7)

Its conservation leads to the Klein-Gordon equation

∇µ∇µΦ − V ′(Φ) = 0. (1.8)

If ∇Φ is time-like, it can be considered as the (non-normalised) 4-velocity of the
scalar field.

1.1.2 The 3+1 formalism of general relativity

Under the theory of general relativity, a cosmological model is generally built using a
split of the spacetime manifold M into a family {Σt}t∈R of spatial 3-dimensional (3D)
hypersurfaces Σt which properties are parametrised by the time t. This is the 3+1
picture of general relativity. It is especially suited for a Newtonian interpretation of
the Einstein equation, where spatial properties are evolved with time. But while this
construction follows from the Newtonian idea of an absolute time and an absolute
space, it is still compatible with Einstein’s theory. The split is however not unique
and other such families can be defined in the same manifold M.

The 3+1 split can be performed on the Einstein equation itself, giving 3D-
equations parametrised by time, called the 3+1-Einstein equations. In the following
sections, we will present these equations, but also their construction as this will be
adapted for the Newton-Cartan theory in chapter 2.



1. Introduction 15

1.1.2.1 Foliation variables

The family {Σt}t∈R of hypersurfaces in M is called a foliation and can be uniquely
defined by the level surfaces of a smooth scalar field t̂ in M. In order to be able
to interpret {Σt}t∈R as a space-like hypersurface evolving with time, each Σt needs
to be a Cauchy surface: a space-like hypersurface which is intersected by all the
time-like or light-like curves in M only once. Having a Cauchy foliation in M is
allowed only if M is globally hyperbolic, which we will suppose from now.

The 3+1-Einstein equations are the projections of the Einstein equation onto and
normal to the foliation {Σt}t∈R. To be able to perform these projections one has to
define a normal unit vector field to the family of hypersurfaces. The gradient ∇t̂ of
the scalar field t̂ naturally defines a normal timelike vector field to the hypersurfaces.
In general this vector is not a unit vector. We then define the timelike unit vector
field to the hypersurfaces Σt as

n := −N∇t̂, (1.9)

where N :=
(
−∇µt̂∇µt̂

)−1/2
is called the lapse, is positive by convention, and is a

property of the foliation. The global minus sign in the definition of n is a convention
imposing this vector to be future oriented with respect to the time scalar field t̂.
The 3+1-Einstein equations we will get do not depend on this convention.

The projection operator onto the hypersurfaces is the tensor

h := g + n⊗ n. (1.10)

This tensor also corresponds to metric on Σt induced by g. A spatial tensor is
defined as having no normal part with respect to the hypersurfaces Σt. The spatial
covariant derivative D applied on a spatial tensor T is defined as

DµT
α1...

β1... := hσµ (hα1
µ1 ...) (hν1

β1 ...) ∇σT
µ1...

ν1.... (1.11)

We define two more spatial rank-2 tensors: the intrinsic Ricci curvature R of the
hypersurfaces Σt, defined like R but with respect to D instead of ∇; and the extrin-
sic curvature K of the hypersurfaces Σt embedded in M. The extrinsic curvature
makes the link between the geometrical properties of the hypersurfaces Σt and the
ones of M. We can write the components of K as

Kαβ = −hµαhνβ∇νnµ, (1.12)

or

Kαβ = − 1

2N
LNnhαβ. (1.13)

The negative sign is a convention. Because n is proportional to a gradient, K is a
symmetric tensor. Then the gradient of the normal vector can be decomposed as

∇αnβ = −Kβα − nα an β, (1.14)

where an is the 4-acceleration of the normal vector with an α := nµ∇µnα = Dα lnN .
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1.1.2.2 3+1 decomposition of the spacetime Ricci tensor

The Einstein equation (1.3) features the Ricci curvature tensor R. We then give in
the present section its decomposition onto and orthogonal to the foliation. R being
a symmetric tensor, we will have 10 projection equations. Details for the derivation
of these equations can be found in Gourgoulhon (2012).

The two times projection onto Σt gives the 3+1-Ricci2 equation

hµαh
ν
βRµν = − 1

N
LNnKαβ − 1

N
DαDβN + Rαβ +KKαβ − 2KαµK

µ
β, (1.15)

where K is the trace of K. Note that this equation features only spatial tensors
as the Lie derivatives of a spatial tensor along Nn (or along n) is a spatial tensor.
The spatial and orthogonal projection gives the 3+1-Codazzi equation

hµαn
νRµν = DαK −DµK

µ
α. (1.16)

The twice orthogonal projection gives the 3+1-Raychaudhuri equation

nµnνRµν =
1

N
LNnK −KµνK

µν +
1

N
DµD

µN. (1.17)

Combining the trace of the 3+1-Ricci equation (1.15) with the 3+1-Raychaudhuri
equation (1.17) we obtain the 3+1-Gauss equation

R + 2Rµνn
µnν = R +K2 −KµνK

µν . (1.18)

Note that 3+1-Gauss is redundant with the 3+1-Ricci and 3+1-Raychaudhuri equa-
tions together, it is however essential when solving the Cauchy problem in general
relativity.

1.1.2.3 The 3+1-Einstein equations

We consider now that (M, g, ∇) is solution of the Einstein equation (1.3). The
energy-momentum tensor T can be decomposed with respect to the foliation {Σt}t∈R,
i.e. with respect to the observer n, as

Tαβ = E nαnβ + Phαβ + 2Q(αnβ) + Παβ. (1.19)

The variables E, P , Q, Π are respectively the energy density, the pressure, the heat
flux, and the anisotropic stress of the energy content as measured by an observer
whose 4-velocity is n. We call such an observer an Eulerian observer. By definition
Qµn

µ = 0 and Παβ = Π(αβ) with Παµn
µ = 0 and Πµ

µ = 0.

2We name the equations with the suffix ‘3+1’ to distinguish them from their equivalent in the
1+3 formalism of general relativity presented in section 1.1.3.
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The 3+1-Einstein system of equations is obtained from equations (1.15)–(1.18)
when introducing the previous matter variables. Written as a Cauchy system it is
composed of 6 evolution equations, obtained from the 3+1-Ricci equation,

1

N
LNnKαβ = 4πG [− (E − P )hαβ − 2Παβ] − Λhαβ (1.20)

− 1

N
DαDβN + Rαβ +KKαβ − 2KαµK

µ
β,

and two constraint equations, the momentum constraint (1.21) (or 3+1-Codazzi
equation) and the Hamilton constraint (1.22) (or 3+1-Gauss equation):

−8πGQα = DαK −DµK
µ
α, (1.21)

16πGE + 2Λ = R +K2 −KµνK
µν . (1.22)

Like in the previous section, combining the 3+1-Ricci equation (1.20) and the Hamil-
ton constraint (1.22), we get the 3+1-Raychaudhuri equation

1

N
LNnK = − 4πG (E + 3P ) + Λ +KµνK

µν − 1

N
DµD

µN. (1.23)

While this last equation is not part of the Cauchy problem of the 3+1-Einstein
equations, we keep it as it will be useful later in this thesis.

1.1.2.4 The 3+1-conservation equations

Solving the set of equations (1.20)–(1.22) is sufficient to solve the Einstein equation.
It is however of physical relevance to give two additional equations, that is the 3+1-
energy conservation and the 3+1-momentum conservation, both coming from the
projections of the conservation equation ∇µT

µα = 0 with respect to {Σt}t∈R. The
3+1-energy conservation is

1

N
LNnE = K (E + P ) −DµQ

µ − 2QµDµ lnN +KµνΠ
µν , (1.24)

and the 3+1-momentum conservation is

1

N
LNnQ

α = − (E + P )Dα lnN −DαP +KQα + 2QµKα
µ

−DµΠµα − ΠµαDµ lnN. (1.25)

1.1.2.5 Matter fluid in 3+1

We assume the energy content is a matter fluid as described by the energy-momentum
tensor (1.4). For a general foliation, n 6= u and the fluid variables measured in its
rest frames (ǫ, p, q, π) are different from the ones measured by the Eulerian observer
(E, P , Q, Π). The nature of the matter fluid is however given by the variables mea-
sured in its rest frames. Therefore it is often useful to express the variables measured
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by n [defined in (1.19)] as function of the ones measured by u [defined in (1.4)].
For this we introduce the tilt velocity w of the fluid 4-velocity with respect to the
foliation as

w :=
1

γ
u− n, (1.26)

where γ := (1 − wµw
µ)−1/2 is the Lorentz factor. w is spatial by definition. We then

have the following relations:

E = γ2ǫ+
(
γ2 − 1

)
p+ 2γwµqµ + wµwνπµν , (1.27)

P =
(
γ2 − 1

)
ǫ+

(
γ2 + 2

)
p+ 2γwµqµ + wµwνπµν , (1.28)

Qα = γ2 (ǫ+ p)wα + γwµqµwα + γhµαqµ − hµαw
νπµν , (1.29)

Παβ = γ2ǫ wαwβ + p
(
hαβ + γ2wαwβ

)
+ 2γw(αhβ)

µqµ + hα
µhβ

νπµν − Phαβ, (1.30)

which, in the case of a dust fluid, become

E(dust) = γ2ǫ, (1.31)

P (dust) =
γ2 − 1

3
ǫ, (1.32)

Q(dust)
µ = γ2ǫ wµ, (1.33)

Π(dust)
µν = ǫ

(
γ2wµwν − γ2 − 1

3
hµν

)
. (1.34)

1.1.2.6 Foliation adapted coordinates

While the 3+1-Einstein equations (1.20)–(1.23) are spatial equations, they are still
defined on the 4-manifold M. Using specific coordinates, it is possible to write them
as equations defined on a 3-manifold Σ, thus completing the 3+1-picture. We detail
this final construction in the present section.

1.1.2.6.a Shift vector and classes of adapted coordinates. Until now we wrote the
3+1-Einstein equations for any coordinate system. We however often want to intro-
duce one, and especially one which is adapted to the foliation. In such a coordinate
system, the coordinate vector basis {∂α}α=0,1,2,3 features three spatial vectors: ∂1,
∂2 and ∂3. The 0-coordinate is chosen to correspond to the scalar field t̂. We then
write ∂t := ∂0 and call it the time vector. By definition, ∂t is not spatial.3

In general, ∂t 6= n, and we have ∂t
µnµ = −N . We then define the shift vector β

as

β := ∂t −Nn. (1.35)

3This does not imply that ∂t is timelike (see section 5.2 in Gourgoulhon, 2012).
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Figure 1.1: Scheme of the foliation related to n in M. The different slices are curved
in M due to the extrinsic curvature K. The time vector ∂n t|β

and shift vector β of
an adapted coordinate system are also represented.

By definition β is spatial. Reversing the definition (1.35): to a spatial vector β
corresponds a time vector

∂n t|β
:= Nn+ β. (1.36)

But instead of defining a single adapted coordinate system in M, the shift vector
defines a class of coordinate systems adapted to the foliation {Σt}t∈R in M. We
write this class X n

β . By definition, any coordinate system in X n
β can be obtained

from a coordinate system having β as shift vector with a time independent spatial
change of coordinates, i.e. (t → t, xa → yb(xa))a,b=1,2,3. This relation between the
shift vector and the choice of coordinates is especially important for the comparison
between Newton’s theory and general relativity which will be done in chapter 2.

The class with a zero shift, denoted X n
0 and its time vector ∂n t|0 , is said to be

comoving with respect to the Eulerian observer. We call these coordinates Eulerian
comoving coordinates. Then any shift β corresponds to the coordinate velocity
vector of the class X n

β with respect to these coordinates.

1.1.2.6.b Pull-back. Once we chose an adapted coordinate system {t, xa}a=1,2,3,
characterised by its shift β, it is possible to write the 3+1-Einstein equations (1.20)–



1. Introduction 20

(1.23) with indices running from 1 to 3. This comes from the fact that the 4D-
components Tα1...

β1... of any spatial tensor T are totally determined by the spatial
components T a1...

b1... and by the spatial components βa of the shift. Note that the
shift is only needed for covariant components.

For instance, in a class X n
β , the contravariant components of a vectorA are Aα =

(0, V a), and its covariant components are Vα = (βcVc, Va). The spatial covariant
components can be obtained from the contravariant ones by lowering with the spatial
components hab of the spatial metric, i.e. Va = V chac. The same can be done with
an order 2 tensor T :

Tαβ =

(
0 0
0 T ab

)
; Tαβ =

(
βcβdTcd βcTca
Tacβ

c Tab

)
. (1.37)

The operation Tαβ → Tab is called a pull-back. It links spatial tensors on M
to tensors on a single 3-manifold Σ. The components of the pulled-back tensor T
on Σ are Tab. As for each hypersurface Σt corresponds a pull-back to Σ, the global
pull-back from M to Σ is said to be parametrised by time. This implies that the
properties of the 3-manifold Σ and the tensors defined on it are parametrised by time.
This situation is similar to the classical formulation of Newton’s theory (presented
in section 1.4).

Applying the pull-back operation on the 3+1-Einstein equations (1.20)–(1.23)
allows us to have equations living on the 3-manifold Σ and parametrised by time.

1.1.2.6.c 3+1-Einstein equations on Σ. To write the 3+1-equations on Σ we
need to make to pull-back operation on each term of these equations. It is only
not trivial for the Lie derivative LNn present in the 3+1-Ricci (1.20) and 3+1-
Raychaudhuri (1.23) equations, as it still explicitly features a non-spatial tensor, i.e.
n. To remove this dependence, we use the definition of the shift (1.35) and the fact
that L ∂n

t|β
Tα1...

β1... = ∂n t|β
Tα1...

β1.... Then for a spatial (n,m)-tensor T , the spatial

components of LNnT are

(LNnT )a1...
b1...

= ∂n t|β
T a1...

b1... − LβT a1...
b1.... (1.38)

Remark. LβT a1...
b1... corresponds to the spatial components of the spatial projection of

LβTα1...
β1.... The latter is however not necessarily spatial (see appendix A.1).

Equations (1.37) and (1.38) allow us to write the 3+1-Einstein equations as
equations living on the 3-manifold Σ parametrised by the time t. Then the
3+1-Einstein equations become:

(i) the 3+1-Raychaudhuri evolution equation:

1

N

(
∂n t|β

− LβΣ
)
K = − 4πG (E + 3P ) + Λ +KcdK

cd − 1

N
DcD

cN, (1.39)
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(ii) the 3+1-Ricci evolution equation:

1

N

(
∂n t|β

− LβΣ
)
Kab = 4πG [− (E − P )hab − 2Πab] − Λhab − 1

N
DaDbN

+ Rab +KKab − 2KacK
c
b, (1.40)

(iii) the 3+1-Codazzi equation (or 3+1-momentum constraint):

−8πGQa = DaK −DcK
c
a. (1.41)

Equations (1.39) and (1.40) give the 3+1-Gauss equation (or 3+1-Hamilton
constraint)

16πGE + 2Λ = R +K2 −KcdK
cd. (1.42)

This system needs to be completed by the relation between the extrinsic curva-
ture and the spatial metric:

Kab = − 1

2N

(
∂n t|β

− LβΣ
)
hab. (1.43)

This concludes the construction of the 3+1-Einstein equations on a time-parametrised
3-manifold Σ from the Einstein equation.

1.1.2.7 Discussion

The Choquet-Bruhat & Geroch theorem (Choquet-Bruhat & Geroch, 1969) states
that from an initial condition, given as a Cauchy hypersurface, and solution of
the two constraint equations (1.41) and (1.42), the solution of the 3+1-Einstein
equations exists and is unique. This shows that the 3+1-formalism is a powerful
tool to solve the Einstein equation.

It allows for the description of a Lorentzian spacetime solution of the Einstein
equation into spatial properties evolving with time via the introduction of a spatial
foliation. But due to our incapacity of observing a spatial hypersurface, because of
the speed limit of information, the properties of such a foliation will never completely
correspond to our observations. This does not mean that the 3+1-formalism prevents
the prediction of observations as one can still reconstruct the light-cone of any event
from a solution of the 3+1-Einstein equations.

As the formalism allows for an interpretation of the Einstein equation, and its
solutions, close to the Newtonian picture of spacetime, it is still interesting to look
at the spatial properties given by the foliation {Σt}t∈R, even if these are not totally
representative of observations. The main problem arising when one follows this
line of interpretation is related to the arbitrariness of the choice of foliation: one
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could choose another Cauchy family in M, and have different spatial properties
from the same solution of the Einstein equation. The physical interpretation of the
solution is therefore dependent on the choice of foliation. From this point, one could
seek for a preferred foliation which would be the most representative of physical
observations (see Buchert et al., 2018, 2020, for a detailed study of the foliation
choice and especially its consequence for the backreaction in cosmology). A natural
choice would be to take the foliation related to the fluid 4-velocity itself: n = u,
as it would directly probe the physics of the fluid. This is however not possible in
general as a vector defines a foliation if and only if its vorticity (definition given
below in section 1.1.3.1) is zero: this is the Frobenius theorem.

Despite these issues, it is still possible to perform a split of the Einstein equations
with respect to the fluid 4-velocity. This split, called the 1+3-split of general rela-
tivity, is however different from the 3+1-split. It allows to obtain similar equations,
called the 1+3-Einstein equations, which cannot be ‘spatialised’ with a pull-back
as in section 1.1.2.6. These equations does not suffer from an arbitrary choice of
foliation and are only functions of the fluid physical properties. In this sense they
are particularly suited for the study of a matter fluid in a cosmological context. We
present the 1+3-formalism in the next section.

1.1.3 The 1+3 formalism of general relativity

In this section we present the 1+3-formalism of general relativity. However, we will
not give its full derivation as in the previous section for 3+1. A detailed description
of this formalism can be found in (Ellis, 2009; Roy, 2014).

The 1+3-Einstein equations are obtained similarly as the 3+1-Einstein equations
by projecting the Einstein equation along and orthogonal to u. But instead of
the extrinsic curvature, the 1+3-Einstein equations involve the expansion and the
vorticity tensors of the fluid, known as the kinematical variables, and presented
below.

For this section only, we reintroduce the speed of light c, as it will be useful for
chapter 4.

1.1.3.1 Kinematical variables

The expansion tensor Θ and the vorticity tensor Ω of the fluid correspond respec-
tively to the symmetric and antisymmetric parts of the 4-velocity gradient ∇u

projected on the rest frames of the fluid:

Θαβ := bµ(αb
ν
β)∇µuν , (1.44)

Ωαβ := bµ[αb
ν
β]∇µuν . (1.45)
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The 4-velocity gradient can be decomposed as

∇αuβ = Θαβ + Ωαβ − uα au β

c2
. (1.46)

where au α := uµ∇µu
α is the 4-acceleration of the fluid. We also define the trace

θ := Θ µ
µ and the shear tensor σ: σαβ := Θαβ − θ

3
bαβ.

In the case of a flow orthogonal foliation, i.e. n = u, we have the following
relation between the extrinsic curvature and the expansion tensor, K = −Θ, and
the fluid is necessarily irrotational, with Ω = 0.

1.1.3.1.a Interpretation of Θ and Ω. To understand what is the physical interpre-
tation of these tensors, let us assume that the world lines related by u correspond to
galaxies. We consider one such galaxy denoted O, and its neighbour galaxies which
form a small volume δV around O on the rest frames of u. Then θ corresponds
to the rate of change (as function of the proper time of O) of the volume δV ; the
shear σ characterises the distortion (without change of volume or rotation) of δV ;
the vorticity Ω represents a pure rotation of the volume δV , without distortion or
expansion. This is schematised in figure 1.2. But while the shear preserves the
volume, it does not preserve the distances, and one direction might be expanding,
while another might be contracting. This is not the case for the vorticity tensor
which both preserve distances and volume. That is why the whole tensor Θ, and
not just its trace, is called the expansion tensor. See sections 4.5 and 4.6 of Ellis
et al. (2012) for more details on the interpretation of the kinematical quantities.

1.1.3.2 Rest frame spatial derivative and rest frame curvature

A tensor T is said to be a rest frame tensor if its projection along u is null. We
note the rest frame covariant derivative Du applied on a rest frame vector T as

Du µT
α1...

β1... := bσµ (bα1
µ1 ...) (bν1

β1 ...) ∇σT
µ1...

ν1.... (1.47)

While D in 3+1 is related to a metric on a spatial hypersurface, this is not the case
for Du , as the rest frames do not correspond in general to spatial hypersurfaces.
The main consequence is that Du features torsion:

Du [α Du β]φ =
1

c2
Ωαβ u

µ∇µφ 6= 0, (1.48)

for a scalar field φ. The torsion tensor Tu is given by

Tu γ
αβ = − 2

c2
Ωαβu

γ. (1.49)

The definition of the Riemann tensor Riem
u associated to Du , called the rest

frames Riemann tensor, with components denoted Ru γ
µαβ , is

Ru γ
µαβv

µ := ( Du α Du β − Du β Du α) vγ + bγν Tu µ
αβ ∇µv

ν , (1.50)
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Figure 1.2: Scheme of the deformation underwent by the small volume δV due to θ,
σ and Ω.

and the rest frames Ricci curvature tensor R
u is

Ru αβ := Ru µ
αµβ. (1.51)

The rest frames scalar curvature is denoted Ru := Ru µνg
µν . Because of the torsion,

the first and second Bianchi identities are only recovered if the fluid is irrotational.
Furthermore, the rest frames Ricci tensor is not symmetric anymore. These addi-
tional properties can be found in Roy (2014).

Remark. In chapter 4, we will see that in the Galilean limit the rest frames are hypersur-

faces; the torsion tensor vanishes; and the rest frames Riemann curvature tensor retrieves

all the symmetries of an usual Riemann tensor and can be related to a spatial metric.

1.1.3.3 The 1+3-Einstein equations

Projecting the Ricci tensor R along and orthogonal to u allows us to obtain the
1+3-Einstein equations:

The 1+3-Einstein equations:

(i) The 1+3-Raychaudhuri equation:

Luθ = −4πG
(
ǫ+

3p

c2

)
− ΘµνΘ

µν + ΩµνΩ
µν + Du µ au µ +

au µ au µ

c2
, (1.52)
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(ii) The 1+3-Ricci equation:

LuΘαβ = 4πG
[(
ǫ− p

c2

)
+ 2

παβ
c2

]
+ Λbαβ + Du (α au β) +

au (α au β)

c2

− c2 Ru (αβ) − θΘαβ − 2Θµ
(αΘβ)µ − 2Θµ

(αΩβ)µ, (1.53)

(iii) The 1+3-Codazzi equation (or 1+3-momentum constraint):

Du αθ − Du µ (Θαµ + Ωαµ) + 2
au µΩµα

c2
=

8πG

c2
qα. (1.54)

We can also project the first Bianchi identity for Riem, giving an evolution
equation and a constraint equation for the vorticity:

(iv) the 1+3-vorticity evolution equation:

LuΩαβ = Du [α au β], (1.55)

(v) the 1+3-vorticity constraint equation:

Du [γΩαβ] =
au [γΩαβ]

c2
. (1.56)

These last equations are geometrical constraints and does not require the Ein-
stein equation to be valid. Finally the conservation equation ∇µT

µ
α = 0 for the

fluid energy-momentum tensor gives:

(vi) 1+3-energy conservation:

Luǫ = −θ
(
ǫ+

p

c2

)
− ∇µq

µ − au µq
µ

c2
− Θµνπ

µν

c2
, (1.57)

(vii) the 1+3-momentum conservation:

bαµLuqµ = −
(
ǫ+

p

c2

)
au α − Du α(p) − θqα − 2qµ (Θµ

α + Ωµ
α) − bαµ∇νπ

νµ.

(1.58)

This system can be supplemented by the 1+3-Gauss equation (or 1+3-Hamilton
constraint), which is redundant with equations (1.52) and (1.53):

c2 Ru + θ2 − ΘµνΘ
µν + ΩµνΩ

µν = 16πGǫ+ 2Λ. (1.59)
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1.2 The standard model of cosmology

1.2.1 The cosmological principle

The standard model of cosmology (SMC) is based on the cosmological principle
which states that there exists a family of free-falling observers for which the Universe
looks the same in all directions. The main observation from which this principle
results is the Cosmic Microwave Background radiation (CMB). This is an isotropic
constant flux of radiation (presented in more details in section 1.2.3) the properties
of which, especially its spectrum, are isotropic. Assuming that we do not occupy a
privileged place in the Universe (this is the Copernican principle), we can therefore
suppose that we are part of a family of observers seeing the same isotropic radiation.
Consequently, any observation will be equivalent for all the members of this family,
implying that the Universe is homogeneous for these observers.

The apparent homogeneity is also an observed feature of our Universe. Using
catalogues of galaxies, it appears that from a scale between 70 Mpc/h and 150
Mpc/h4 (e.g. Gonçalves et al., 2018; Avila et al., 2018, and references therein)
the distribution of matter is statistically homogeneous. But this result may vary
as function of the set of data (galaxy catalogues, quasar catalogues, ...), and the
method used to derive it (see Heinesen, 2020, and references therein). Therefore,
the value of the homogeneity scale and even its existence are still under debate.

1.2.2 Homogeneous and isotropic solutions

1.2.2.1 The Friedmann equations

The cosmological principle is equivalent as saying that there exists a time-like vector
field n in the Universe manifold M, such that it is geodesic and vorticity-free.
Furthermore, the hypersurfaces of the space-like foliation orthogonal to n, along
with the energy-momentum variables defined on this foliation [see equation (1.19)]
have isotropic properties (see section 6.3 in Chruściel, 2019, for a mathematical
approach to the cosmological principle). We derive in this section solutions to the
Einstein equation that satisfy this cosmological principle.

The presence of the time-like vector n in M as described above implies the
following relations for the 3+1-variables related to it:

Q = 0 ; Π = 0, (1.60)

R =
R
3
h ; K =

K

3
h ; N = 1, (1.61)

and the remaining scalar quantities K, R, E and P all depend only on the time t̂.
This time is also the proper time of n and is called the cosmic time.

4The parameter h ∼ 70 is the dimensionless factor (H0/100) km/s/Mpc, where H0 is the local
measured expansion rate (presented in section 1.2.2).
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Following the interpretation made in section 1.1.3.1, the tensor −K corresponds
to the expansion tensor related to the observer n. Because we have K = K

3
h, the

expansion between two world lines of n is the same everywhere on the hypersurfaces
Σt and does not depend on the direction: expansion is homogeneous and isotropic.
Then we introduce the scale factor a(t), such that K = −3 ȧ

a
. It corresponds to the

spatial distance between two world lines of n as function of time, and from K is
defined up to a constant factor.

Using the relation (1.43) in the class of coordinates X n
0

, i.e. comoving with n,
we can show that the space-time line element takes the form

ds2 = −dt2 + a2(t) h̃ab(x
i)dxadxb, (1.62)

where the Ricci curvature tensor R̃ related to the metric h̃ is R̃ = R̃
3
h̃, with the

scalar curvature R̃ being a space-time constant. The line element (1.62) is called
the Friedmann-Lemaître-Roberston-Walker (FLRW) line element, or Friedmann-
Lemaître-Roberston-Walker metric for the related metric components. The scalar
curvature R(t) can therefore be written as:

R(t) =
Ri

a2(t)
, (1.63)

where Ri is the value of R(t) at an initial time ti, and where we choose a(ti) = 1.

Finally, the 3+1-Raychaudhuri equation (1.39) and the Hamilton constraint (1.42)
become respectively:

3
ä

a
= −4πG (E + 3P ) + Λ, (1.64)

3
(
ȧ

a

)
= 8πGE − Ri

2a2
+ Λ. (1.65)

These equations are called the Friedmann equations. We can complement them
by the conservation of the energy-momentum tensor with

Ė + 3
ȧ

a
(E + P ) = 0. (1.66)

The Friedmann equations are evolution equations for the scale factor a(t). They
relate the expansion, which can be totally determined by the expansion rate
H := ȧ

a
, as function of the energy content of the Universe (with E and P ) and

the geometrical content (with R).

1.2.2.2 Sources in the standard model

The only unknowns remaining in the Friedmann equations are the energy density
E and pressure P , especially their dependance on time. To determine them, we
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need to specify the sources in the energy-momentum tensor. In the SMC, several
sources are considered, which do not interact. The total energy-momentum tensor
can therefore be decomposed as

Tαβ =
∑

n∈{sources}

T
(n)
αβ , with ∇µT

(n),µα = 0 ∀n ∈ {sources}. (1.67)

This implies that each source comes with its energy density E(n) and pressure P (n),
which are conserved with Ė

(n)
+3 ȧ

a

(
E(n) + P (n)

)
= 0. Most of the sources considered

in the SMC can be described by a linear equation of state, P (n) = ω(n)E(n), with
ω(n) = cst. This implies that

E(n) = Ei
(n)a−3(1+ω(n)), (1.68)

where Ei
(n) is the value of E(n) at the initial time ti.

In the SMC, the following sources are considered

• ω(n) = 0: this corresponds to a dust fluid. In this case, the energy E(dust) ∝ a−3

corresponds to the rest mass density of the fluid, and the 4-velocity u of
the dust fluid coincides with the one of the fundamental observer, u = n.
This equation of state can be used to describe either the cold dark matter
(non-relativistic dark matter), or non-relativistic baryonic matter when non-
gravitational interactions can be neglected.

• ω(n) = 1
3
: this corresponds to a radiative fluid as described in section 1.1.1.2.

In this case E(rad) ∝ a−4 corresponds to the elecro-magnetic energy density as
observed by the fundamental observer n. Such an equation of state can also
describe a fluid of ultra-relativistic particles (ultra-relativistic with respect to
the fundamental observer), such as neutrinos.

The curvature and cosmological constant terms in the Friedmann equations can
be seen as coming from an effective fluid with energy density end pressure:

ER := − R
16πG

; PR :=
R/3
16πG

(ωR = −1/3), (1.69)

EΛ :=
Λ

8πG
; PΛ := − Λ

8πG
(ωΛ = −1). (1.70)

1.2.2.3 Dynamics of the expansion

We introduce the (dimensionless) cosmological parameters, or Ω-parameters, defined
as

Ω(n) :=
8πGE(n)

6H2
, (1.71)
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and similarly for the curvature and the cosmological constant. The Friedmann
equations (1.64) and (1.65) may be rewritten as

1 = Ω(dust) + Ω(rad) + ΩR + ΩΛ, (1.72)

q := − äa

ȧ2
=

1

2

(
Ω(dust) + Ω(rad) − ΩΛ

)
, (1.73)

where the parameter q quantifies the deceleration of the expansion. From the knowl-
edge of the cosmological parameters and the expansion rate H at a time t0, the
expansion rate at any time t can be known. The measured made by the Planck
collaboration (Planck Collaboration et al., 2020) lead the following values of the
cosmological parameters at the current cosmological epoch:

H0 = (67.4 ± 0.5) km/s/Mpc, (1.74)

Ω0
(dust) = 0.3111 ± 0.0056, (1.75)

Ω0
(rad) ∼ 10−5, (1.76)

Ω0
R = 0.001 ± 0.002, (1.77)

Ω0
Λ = 0.6889 ± 0.005. (1.78)

Then under the SMC, the Universe energy content is currently dominated by the
cosmological constant and the dust matter, which is decomposed into baryonic mat-
ter with Ω0

b ≃ 0.0490 and dark matter with Ω0
dm ≃ 0.261. The value of the curvature

term is compatible with a spatially flat Universe, which is generally assumed. As
the radiation, matter and Λ terms evolve respectively as a−4, a−3 and a constant,
and because today’s expansion rate is positive, we can infer from the Friedmann
equations that a(t) → 0 at a finite time in the past, implying a ‘Big Bang’. Three
different areas also appear: a radiation dominated area at early times, when the
scale factor can be approximated by a(t) ∝

√
t; a matter dominated area; and an

area in accelerated expansion dominated only by the cosmological constant. Assum-
ing the SMC model, our Universe is currently in transition between the matter and
the Λ areas.

1.2.2.4 Inflation area

In the model described above, the deceleration parameter is always positive, except
at late times. It can be shown that with a never negative q, for any observer there
will always be a part of the Universe which will never be causally related to this
observer, implying a ‘causal horizon’. At the time of emission of the CMB, the size
of this horizon was much smaller than the distance between the two ends of the last
scattering surface. And yet the observation of the CMB suggests that these two ends
should have been correlated at early times. This is known as the horizon problem. To
solve it, Guth (1981); Starobinsky (1982); Linde (1983) proposed that the radiative
area was preceded by an accelerating area, called inflation, where q < 0 such that
the observed Universe was entirely in causal contact at early times. However, there
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is no consensus on the mechanism behind this phase of acceleration, and several
models are competing. The need for inflation to solve the horizon problem can also
be questioned (e.g. Triay, 2003).

1.2.2.5 What means ‘dark energy’?

The reintroduction of the cosmological constant results from the measure of a nega-
tive q0 by Perlmutter et al. (1999); Riess et al. (1998), corresponding to an acceler-
ation of the scale factor. However, other proposals have been suggested to explain
this observation. Most of them consist of a ‘quintessence’ scalar field with energy-
momentum tensor as described in section 1.1.1.2. The origin of this scalar field can
be either phenomenological, or it can arise from quantum gravity theories. Some
studies also try to explain dark matter in the same time (Sahni & Wang, 2000;
Matos & Arturo Ureña-López, 2001). In any case, the SMC requires an additional
unknown energy source, fundamental with quintessence fields, or effective with Λ,
to explain q0 < 0, which is called the dark energy.

Remark. Perlmutter et al. (1999); Riess et al. (1998) observed an acceleration of the local

scale factor, i.e. along the light-cone. However, talking about an acceleration of the spatial

expansion, and even about dark energy, is model dependant. Therefore, in the remaining

of the thesis, when talking about an observed acceleration or about the dark energy, we

will refer to the acceleration of the local scale factor.

1.2.3 The Cosmic Microwave Background

The fact that a(t) → 0 at a finite time suggests that the Universe was initially very
dense and hot, with non-negligible interactions between matter and radiation. As the
Universe expanded, the density of photons and baryons became low enough so that
the formers did not scatter anymore with the latters and became free. After this
decoupling between mater and radiation, the Universe has remained transparent.
The remanent of the last scattered emission of photons, called the last scattering
surface, can be seen in microwave length. This is the Cosmic Microwave Background.

As shown in figure 1.3, this radiation is very homogeneous with a temperature
contrast of the order 10−5. Its analysis allows us to determine the value of the
cosmological parameters presented above. As the matter-dominated area begins
after the emission of the CMB, it can be used to construct initial conditions for
the formation of the matter structures. However such structures cannot be studied
within the class of FLRW solutions. This is usually done either using perturbative
approach around the FLRW geometry within the framework of general relativity, or
using Newton’s theory of gravitation (see section 1.2.5).
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Figure 1.3: Map of the temperature fluctuations around the mean temperature
(∼ 2.7 K) of the CMB and without the dipole moment. The areas encircled by
grey lines correspond to the removed contribution of the Milky way and the nearby
(dwarf) galaxies. Credits: ESA, Planck collaboration.

1.2.4 Cosmic topology

1.2.4.1 The Thurston geometries

The Thurston geometrisation conjecture (Thurston, 1982), proven by Perelman
(2002, 2003a,b), is a classification of the closed (i.e. compact with no boundary)
3-manifolds. It states that any closed 3-manifold can be decomposed into pieces that
each has one of the eight Thurston geometric structures: the spherical geometry, the
Euclidean geometry, the hyperbolic geometry, the geometry of S2 ×R, the geometry
of H2 × R, the geometry of S̃L(2,R), the Nil geometry, and the Sol geometry. The
precise mathematical definition of these structures can be found in Lachieze-Rey &
Luminet (1995).

Remark. The notion of geometry used in this classification is a bite more restrictive

than the notion of topology. We will however use both terms, as it is often the case in

cosmology.

1.2.4.2 Representations of a topology

A 3-manifold with a single Thurston geometry can be represented in three different
ways, which are summarised in figure 1.4 for the 2-torus:

• The 3-manifold can be embedded in Rn, with 3 + 1 < n 6 3 ∗ 2 + 1, but at the
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(a)

(b)

L
(c)

L

Figure 1.4: Scheme of the three ways of representing the flat 2-dimensional
torus T 2. (a) T 2 is embedded into E3 and possesses an extrinsic curvature.
(b) Fundamental domain of T 2. This is a square in which we identify the
opposite faces. T 2 is a multi-connected space since the closed loop L cannot
be contracted continuously into a point. (c) Tiling of the universal covering
space E2 by the fundamental domain (the square) using the holonomy group.
We clearly see in this representation that the loop L is an infinite line, but
closed in the fundamental domain. It cannot be contracted into a point.

cost of distortions, via an extrinsic curvature.

• The space can be defined by its fundamental domain 5 which is a polyhedron
for which we identify properly the faces together. For T2, the fundamental
domain is a square with opposite sides identified.

• The space can be represented as a tiling by the fundamental domain of a
simply connected space, which is then called the universal covering space M̃.
The tiling is realised with the holonomy group Γ. Thus a point at the center
of a fundamental domain will be at the center of all the fundamental domains
tiling the covering space. Taking the example of the Poincaré space (spherical
geometry): in this case we tile the 3-sphere S3 with 120 dodecahedrons for
which the opposite faces are identified with a rotation of π/10. Mathematically,
we define the topological 3-space M as M := M̃/Γ.

5The fundamental domain is not necessarily unique and can be position dependent.
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1.2.4.3 The spatial geometry of the SMC

Once we suppose global hyperbolicity, the question of the topology of M narrows
to the topology, or Thurston geometry, of the hypersurfaces of any spacelike Cauchy
foliation. The Einstein equation being a local equation, it does not give constraints
on this geometry. Therefore, such constraints can only come from the initial condi-
tions. In certain cases, there can also be a simple relation between the Ricci tensor
R of the hypersurfaces Σt and their geometry, which is the same for any of these
hypersurfaces. This is the case for the FLRW solutions, where the Ricci tensor
R = R

3
h allows only for three types of 3-spaces:

• R > 0: Σ has a spherical geometry. The spatial manifold is necessarily closed.

• R = 0: Σ is the Euclidean space E3, and if it is closed has an Euclidean
geometry,

• R < 0: Σ is the hyperbolic space H3, and if it is closed has an hyperbolic
geometry.

However, the FLRW metric does not constraint the precise topology within a
type, and it can be either simply connected or multi-connected, open or closed
(except for the spherical case). The expansion law is also independent of this precise
topology, which therefore, in a strictly homogeneous model, is degenerate.

1.2.4.4 Method of observation of the spatial geometry

Once we consider the inhomogeneities in the matter distribution of the Universe,
it is theoretically possible to determine the precise topology within a type. The
following methods exist:

• The cosmic crystallography (Lehoucq et al., 1996): this method is based on the
correlation in the distribution of galaxies. The topology is determined by the
spikes in the separation histogram of objects in catalogues of galaxies. Using
the third representation [panel (c) in figure 1.4], the spikes appear because of
the presence of image galaxies in the covering space.

• Circles in the CMB (e.g. Luminet & Roukema, 1999; Luminet et al., 2003):
this method is based on the correlation of temperature fluctuations in the
CMB. For a closed topology smaller than the size of the CMB, identical circles
could be found in the CMB map lying in different directions. The size and
place of these circles determine the precise topology. However, if the Universe
is closed but bigger than the size of the CMB, no circle is visible.

As for now, these methods only give a lower bound for the volume of the Universe,
of around 10 to 20 (Gpc/h)3 (Aurich et al., 2004; Aurich, 2008; Roukema et al.,
2014; Planck Collaboration et al., 2020).
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These two methods are all based on the correlation of the matter in a single
slice Σt. In this sense they can be called ‘static methods’. However, while in the
FLRW solution the precise topology does not play a role on the dynamics of the
Universe, it might be possible that once the inhomogeneities are considered, a
lift a degeneracy occurs. In this case, the dynamics of the structures or even
the expansion could be probes for the measurement of the topology. The non-
Euclidean Newtonian theory we want to develop in this thesis will be a tool to
understand the effects of specific topologies on the dynamics of the Universe.

1.2.5 Inhomogeneities under the standard model

The study of inhomogeneities in the Universe (CMB anisotropies and structure for-
mation) cannot be done under the FLRW solution of general relativity. In the SMC,
the CMB anisotropies are studied using perturbations of the metric around a FLRW
background (Bardeen, 1980). In this approach, the spatial metric is decomposed into
a scalar, a vector and a tensor part which can be measured using the CMB map.

Regarding the formation of the structures after the surface of last scattering, it is
often assumed that they can be described with Newtonian gravitation, due to their
low velocity dispersion. That is why most of the simulations of structure formation
are done using Newtonian cosmology (e.g. Alimi et al., 2012; Nelson et al., 2015),
which is presented in section 1.4. A downside of this approach is that it might miss
relativistic effects not related to spatial (dispersion) velocities, but to the spatial
curvature (Buchert & Carfora, 2008; Vigneron & Buchert, 2019; Roukema & Os-
trowski, 2019). Furthermore, as we shall see in section 1.4 and in chapter 2, the
(isotropic) expansion law in Newtonian cosmology is necessarily given by the Fried-
mann equations (this is the Buchert-Ehlers theorem, Buchert & Ehlers, 1997), and
this for any inhomogeneous solutions. This contrasts with the purely relativistic
case (presented in section 1.3), which features an additional effective source term in
the Friedmann equations, coming from the inhomogeneities: the global backreaction
term QΣ. This global effect is necessarily missing in the Newtonian simulations. Fi-
nally, the Newtonian approach imposes the simulated Universe to have an Euclidean
geometry, which is a restriction with respect to general relativity.

In section 1.3, we introduce a formalism which allows for the description of the
relativistic effects of inhomogeneities on the expansion. This formalism is based
on a scalar averaging of the Einstein equation and was first introduced by Buchert
(2000). In section 1.4 we present how cosmology is studied under Newton’s theory,
and we outline the strategy of the thesis in section 1.5.
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1.3 The backreaction of inhomogeneities

1.3.1 The backreaction problem in cosmology

The cosmological principle asserts that there exists a scale above which the Universe
can be considered as homogeneous and isotropic. The SMC then assumes that the
inhomogeneities under this scale do not affect the dynamics of domains of size bigger
than the homogeneity scale. This implies that the expansion of such domains is
given by the (homogeneous) FLRW solution of general relativity, and the Friedmann
expansion laws. That is why the dynamics of structure, under the SMC, is generally
solved as a deviation around a FLRW background expansion.

This assumption is not a consequence of the cosmological principle, and is an
additional hypothesis. In reality the inhomogeneities (with scale necessarily smaller
than the homogeneity scale) might affect the expansion at large scales. This effect
is called the backreaction. The main question surrounding this phenomenon is to
know whether or not it could be important enough to explain the recent acceleration
of the local scale factor, and if the dark energy could be entirely explained by the
inhomogeneities. This is the problem of backreaction in cosmology (see Buchert,
2008).

A way to tackle this problem is by averaging the 3+1-Einstein equations on
a spatial domain supposedly bigger than the homogeneity scale, and derive the
expansion law of this domain. This approach was followed by Buchert (2000) for
irrotational dust fluids, Buchert (2001) for irrotational perfect fluids, and by Buchert
et al. (2020) for general fluids. In the following sections we present the case of an
irrotational dust fluid.

1.3.2 Averaging procedure

As we seek for information on the average properties of the fluid, this requires the
use of equations featuring the kinematical variables related to this fluid. These
equations correspond to the 1+3-Einstein equations. We also want to perform an
average over a spatial domain, which requires the introduction of a foliation and the
use of the 3+1-Einstein equations. A way to deal with both of these systems is to
assume that the fluid is a Cauchy fluid, i.e. irrotational and such that the foliation
it defines is a Cauchy foliation. We will then perform the spatial average on this
foliation. We also take a dust fluid, which is generally assumed for the description of
the Universe after the surface of last scattering. Therefore, we have N = 1, n = u,
K = −Θ , Ω = 0, and ǫ = ρ the rest mass density.

Let us consider a compact domain D on the fluid orthogonal spatial hypersur-
faces, which is propagated between each slice along the fluid flow. It is defined as a
time independent domain in the comoving class of coordinates X u

0
, i.e. a Lagrangian

domain. This ensures that the total fluid rest mass in D is conserved through time.
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We define the spatial average on the domain D of a scalar field ψ as:

〈ψ〉D (t) :=
1

VD

∫

D
ψ
√

det(hab)d
3x, (1.79)

where VD(t) :=
∫

D

√
det(hab)d

3x is the volume of D. This definition ensures that for
a spatially constant scalar ψ(t), we have 〈ψ〉D = ψ.

The averaging procedure (1.79) is only well defined for scalar fields. For tensor
fields, it would require the comparison of the components of the tensor at different
points in Σt, which would depend on the coordinates, and therefore would not be
covariant. The problem of averaging procedures on tensors, see Zalaletdinov (1992)
for a proposed formalism, will not be addressed in this thesis.

1.3.3 Averaged expansion laws and the backreaction

1.3.3.1 Commutation rule

A key point in the emergence of backreaction is the non-commutativity of averaging
and dynamics (Ellis, 1984; Ellis & Buchert, 2005): the averaging operator 〈·〉D do
not commute with the Lagrangian evolution operator ∂u t|0

(this notation is defined
in section 1.1.2.6). The commutation rule is (Buchert & Ehlers, 1997; Buchert, 2000)

〈ψ〉·

D −
〈
ψ̇
〉

D
= 〈θψ〉D − 〈θ〉D 〈ψ〉D , (1.80)

where we denote ψ̇ := ∂u t|0
ψ. Applied for ψ = 1, the commutation rule leads to

〈θ〉D =
V̇D

VD
. (1.81)

Therefore 〈θ〉D corresponds to the expansion rate of the volume of the domain D.

1.3.3.2 Averaged expansion law

We introduce the dimensionless ‘effective’ scale factor

aD :=

(
VD

VD,i

)1/3

, (1.82)

with VD,i the (initial) reference volume.

The expansion laws for the effective scale factor are obtained by taking the aver-
age of the 1+3-Einstein equations. We are only able to perform this average on
the scalar equations of the 1+3-system (1.52)–(1.59), i.e. on the Raychaudhuri
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equation, the Gauss equation and the energy conservation. We obtain

3
äD

aD
= −4πGρ+ Λ + QD, (1.83)

3
(
ȧD

aD

)2

= 8πG 〈ρ〉D + Λ − 〈R〉D + QD

2
, (1.84)

〈ρ〉·

D = −3
ȧD

aD
〈ρ〉D , (1.85)

where we defined

QD :=
2

3

(〈
θ2
〉

D
− 〈θ〉2

D

)
−
〈
σcdσ

cd
〉

D
. (1.86)

The averaged conservation equation (1.85) leads to (VD 〈ρ〉D)· = 0 which corre-
sponds to the conservation of the total rest mass MD := VD 〈ρ〉D in D.

From equations (1.83)–(1.84), one can derive the integrability condition:

Q̇D + 6
ȧD

aD
QD + 〈R〉·

D + 2
ȧD

aD
〈R〉D = 0. (1.87)

1.3.4 Averaged equations VS Friedmann equations

We can see that the equations (1.83) and (1.84) are similar to the Friedmann equa-
tions (1.64) and (1.65). But important differences also appear:

• All the terms (except Λ) depend on the averaging region,

• The curvature term 〈R〉D

2
does not necessarily behave as ∝ a−2

D like in the

FLRW case. We introduce the curvature backreaction WD := 〈R〉D − 〈R〉D
i

a2
D(t)

which quantifies the deviation of the dynamics of the average curvature with
respect to the one of a FLRW solution.

• There is an additional term QD. It compares two positive contributions of the
inhomogeneities: the variance of the volume expansion

(
〈θ2〉D − 〈θ〉2

D

)
and

the shear expansion
〈
σabσ

ab
〉

D
. Furthermore it influences the dynamics of the

expansion. Therefore QD quantifies the backreaction of the inhomogeneities on
the volume expansion of the domain D. We call it, the kinematical backreaction
term.6

6The term ‘kinematical’ distinguishes with the ‘dynamical’ backreaction term, which is an
additional term present in the case of non-dust perfect fluids (Buchert, 2001).
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Following section 1.2.2.2, we introduce the effective backreaction energy density ǫD
eff

and pressure pD
eff as:

ǫD
eff := −QD + WD

16πG
; pD

eff := −QD − 1
3
WD

16πG
. (1.88)

Remark. Using the integrability condition (1.87), a vanishing QD is necessary and sufficient

to have a Friedmannian effective scale factor.

1.3.5 Backreaction, dark energy and dark matter

From the expansion law (1.83) we can see that the kinematical backreaction term
is an additional source for the acceleration. Therefore if QD > 0, the effect of the
backreaction on the expansion of D is an acceleration. In this sense it can mimic
the behaviour of the dark energy.

While the motivation for the introduction of the backreaction was the quantifi-
cation of the effects of the small scale inhomogeneities on the homogeneity scale,
the formalism described above and the related averaged expansion laws do not de-
pend on the existence of such a homogeneity scale. Therefore we are not obliged
to assume that (VD)1/3 is bigger than this homogeneity scale, and we can study the
backreaction of small scale inhomogeneities on intermediate scale inhomogeneities.
In such cases, if QD < 0 the kinematical backreaction can mimic dark matter as it
slows down the expansion of the domain (e.g. Buchert & Carfora, 2008; Wiegand &
Buchert, 2010; Vigneron & Buchert, 2019).

1.3.6 Caveats of this approach to the backreaction problem

One of the caveats of the above approach to the backreaction problem at large scales,
is the arbitrariness of the domain D. A natural way to deal with this problem is to
consider a spatially closed universe Σ and to take the domain D to be Σ. In this case,
the backreaction variables QΣ and WΣ quantify the effect of all the inhomogeneities
of this universe on its expansion. In this thesis, we will assume that our Universe
is closed, and will only study the backreaction on its whole volume. Note that this
might be a restriction to the study of the backreaction as the current acceleration
of the scale factor could be a local effect, only needing a backreaction on medium
scales.

Because the average procedure can only be done on the scalar equations, part of
the dynamics is lost in the average process. As a consequence, the equations (1.83)–
(1.85) are not closed: there are four variables (aD, 〈ρ〉D, QD, 〈R〉D) for three equa-
tions. Therefore closure conditions are generally assumed using cosmological mod-
els. Another way to deal with this problem would be to assume that our Universe
is well described by Newtonian gravitation, and study the backreaction under the
Newtonian cosmology. This is presented in the next section.
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1.4 Newtonian cosmology

Cosmology within Newton’s theory, and especially the description of expansion was
developed after general relativity by Heckmann & Schücking (1955, 1956). The
general expansion law was finally derived by Buchert & Ehlers (1997).

1.4.1 Kinematical variables in Newton

The classical Newton system of equations describes the time evolution of a fluid
characterised by a scalar field ρ, the fluid density, and a vector field v, the fluid
velocity. These two tensors are defined in a 3-dimensional manifold, denoted ΣN,
equipped with a flat Riemannian metric h7 and are parametrised by the time t.
The system of equations is composed of two evolution equations, one for the scalar
ρ and one for the vector v, and two constraint equations. Given a fixed coordinate
basis vector {ea}a=1,2,3 on ΣN, i.e. the vectors ea are not parametrised by time, the
evolution equations in the corresponding coordinate system {xa}a=1,2,3 are

(i) the mass conservation equation

(∂t + vcDc) ρ = −ρDcv
c, (1.89)

(ii) the Euler equation

(∂t + vcDc) v
a = ga + aa6=grav, (1.90)

where Da are the components of the Levi-Civita connection of h, and g is the
gravitational vector field constraint by the following equations:

(i) the Newton-Gauss equation

Dcg
c = −4πGρ+ Λ, (1.91)

(ii) the Newton-Faraday equation

D[agb] = 0. (1.92)

The vector a6=grav corresponds to the non-gravitational acceleration.

Due to the equivalence principle, the Euler equation (1.90) can be seen as a def-
inition of the gravitational vector field. Then apart from this equation, the Newton
system can be written independently of g. To do so, we introduce the expansion

7The only requirement on ΣN is to be Euclidean, but its topology is not necessarily R3.
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tensor Θ and the vorticity tensor Ω of the vector field v being respectively the
symmetric and the antisymmetric part of the velocity gradient Dv, with8

Θab := D(avb) ; Ωab := D[avb], (1.93)

and we note the trace Θc
c =: θ. The interpretation of these two tensors is the same

as for the ones introduced in general relativity (see section 1.1.3.1).

Rewriting equation (1.89), (1.91) and (1.92), we obtain the kinematical Newton
system:

(i) the mass conservation:

(∂t + Lv) ρ = −ρθ, (1.94)

(ii) the Raychaudhuri equation:

(∂t + Lv) θ = −4πGρ+ Λ − ΘcdΘ
cd + ΩcdΩ

cd +Dca
c
6=grav, (1.95)

(iii) the vorticity conservation:

(∂t + Lv) Ωab = D[a(a6=grav)b]. (1.96)

These equations need to be completed by the definition (1.93) of Θ and Ω. Then,
the system (1.93)–(1.96) is closed and equivalent to the system (1.89)–(1.92). The
gravitational vector field g is defined as

ga := (∂t + Lv) va + vc (Θc
a + Ωc

a) − (a6=grav)a. (1.97)

Introducing the Lie derivative in this last equation allows us to have the same
differential operator acting on ρ, Θab and Ωab. Furthermore, this formulation of g is
closer to the general one we will give in chapter 2.

Remark. While the expansion and vorticity tensors are explicitly covariant under any

change of coordinates, parametrised by time or not, the differential operator ∂t is not. In

appendix B we derive the form of the kinematical Newton system in any time-parametrised

frame, i.e. for any time-parametrised coordinate system. This generalised system features

a shift freedom similar to the 3+1-Einstein system.

1.4.2 Homogeneous deformation

For the above system to be well defined, closing conditions need to be added. There
are two possibilities:

8Here we adopt the sign convention Ωab := +D[avb]. This implies the relation: curl va = ǫacdΩcd

where ǫacd is the Levi-Civita tensor. The inverse relation is Ωab = 1
2ǫabccurl vc.
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(i) the system is isolated, and fall-off conditions are taken at infinity, i.e. ρ r→∞−−−→ 0
and v r→∞−−−→ 0. This situation is used for astrophysical flows.

(ii) the velocity v is decomposed into a homogeneous deformation velocity vH with
vaH := Hc

a(t)xc (in Cartesian coordinates) where Hc
a are only functions of t,

and a peculiar-velocity P : we have v = vH + P . The peculiar-velocity is
periodically defined on the absolute Euclidean space E3. This situation is used
in cosmology.

In the second choice, the periodicity of the peculiar-velocity corresponds to a cubic
domain, denoted T3, in the comoving coordinates {x̃a}a=1,2,3, which are defined as

x̃a := Ac
axc, (1.98)

with Ac
a(t) :=

∫ t
0 Hc

adt. These coordinates follow the flow of the velocity vH. The
domain T3 is distorted by the homogeneous deformation Ha

b in the absolute Eu-
clidean space E3:

• H := 1
3
Hc

c corresponds to the volume expansion of the domain T3,

• H〈ab〉 corresponds to an anisotropic expansion of T3 in E3,

• H[ab] corresponds to the rotation of T3 in the Euclidean space E3.

Because the absolute Euclidean space is periodically tiled with the domain T3, a
natural interpretation of the homogeneous deformation is to represent an effective
flat 3-torus which is expanding (covering space representation, see section 1.2.4.2
and figure 1.4), i.e. a closed Universe. That is why this approach is well suited for
cosmology. In this interpretation, once the homogeneous deformation is introduced,
the spatial velocity which describes the fluid is considered to be the peculiar-velocity
P . The evolution equations for this velocity are called the cosmological Newton
equations. We derive them in what follows.

1.4.3 The cosmological Newton equations

We can show the following relation between the time partial derives ∂t and ∂̃t := ∂t|x̃
(see section B.1.2 in appendix B for the derivation):

∂̃t = ∂t + LvH
. (1.99)

This relation is valid when applied to tensors of any types.

The expansion and vorticity tensor can be rewritten as:

Θab = H(ab) + ΘP
ab ; Ωab = H[ab] + ΩP

ab, (1.100)

where we introduced the expansion ΘP
ab := D(aPb) and vorticity ΩP

ab := D[aPb] of
the peculiar-velocity.
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The homogeneous deformation Ha
b being an additional unconstrained field in the

Newton system, we need evolution equations for its different parts (trace, symmetric
traceless part, antisymmetric part). As Ha

b is only a function of time (in Cartesian
coordinates), we can obtain these evolution equations by spatially averaging the
kinematical Newton system on the periodic domain. We use the same average
operator as for backreaction in general relativity [defined in equation (1.79)].

As the periodic boundary conditions defining T3 are expanding, the volume VT3

depends on time with the relation

1

3

∂̃tVT3

VT3

= H(t). (1.101)

The average of the Newton-Raychaudhuri equation (1.95) gives an evolution equa-
tion for H, i.e. an expansion law, while the average of the vorticity conserva-
tion (1.96) gives an evolution equation for H[ab].9 However, it is not possible to
obtain an evolution equation for the anisotropic expansion H〈ab〉, which remains
free.

The cosmological Newton equations are:

(i) the mass conservation:

(
∂̃t + LP

)
ρ = −3Hρ− θP ρ ; 〈ρ〉

T3 =
Mtot

VT3(t)
, (1.102)

where Mtot is the total mass in T3.

(ii) the cosmological Newton-Gauss equation:

Dc g
P c = −4πGρ̂− ̂H〈cd〉H〈cd〉 + ̂H[cd]H [cd], (1.103)

where ψ̂ := ψ − 〈ψ〉
T3

(iii) the cosmological Newton-Faraday equation:

D[a gP
b] = −∂̃tH[ab], (1.104)

where we introduced the peculiar (periodic) gravitational field as

gP a :=
(
∂̃t + P cDc

)
P a + 2P cHc

a − (a6=grav)a, (1.105)

9The average of the vorticity equation is performed in Cartesian coordinates.
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(iv) the expansion law:

3
[
∂̃tH +H2

]
= −4πG 〈ρ〉

T3 + Λ −
〈
H〈cd〉H

〈cd〉
〉
T3

+
〈
H[cd]H

[cd]
〉
T3
. (1.106)

To get this last equation we used the fact that divergences of functions of P
averaged over a periodic domain T3 are zero due to Stokes’s theorem.

(v) the evolution equation of H[ab]:

∂tH[ab] +H[cb]Ha
c +H[ac]Hb

c = 0. (1.107)

1.4.3.1 Backreaction in Newtonian cosmology

The formalism developed in section 1.3 can also be used to describe the backreaction
in Newton’s theory. We end up with a similar kinematical backreaction, which
features an additional term related to the vorticity:

QD :=
2

3

(〈
θ2
〉

D
− 〈θ〉2

D

)
−
〈
σcdσ

cd
〉

D
+
〈
ΩcdΩ

cd
〉

D
. (1.108)

In the case of the Newtonian cosmology, and assuming we average over the periodic
domain T3, this expression becomes:

QT3 := −
〈
H〈cd〉H

〈cd〉
〉
T3

+
〈
H[cd]H

[cd]
〉
T3
, (1.109)

and the expansion law (1.106) can be rewritten as

3
[
∂̃tH +H2

]
= −4πG 〈ρ〉

T3 + Λ + QT3 . (1.110)

1.4.3.2 Interpretation

Equation (1.106) is similar to the Friedmann equation (1.64). However, it fea-
tures two additional terms:

〈
H〈cd〉H

〈cd〉
〉
T3

and
〈
H[cd]H

[cd]
〉
T3

. This means that
the anisotropic expansion and the global rotation corresponds to additional effective
source terms in the Friedmann equation. As both terms are positive, the anisotropic
expansion source creates a deceleration of the volume expansion, whereas the global
rotation source creates an acceleration. Furthermore, equation (1.104) shows that
the global rotation H[ab] also corresponds to a gravitomagnetic field for the pe-
culiar gravitational field gP . Gravitomagnetism is generally considered to be a
post-Newtonian effect, and in this sense it is generally assumed to be zero in the
cosmological Newton system.

Remark. In chapter 4 we will show that when the cosmological Newton system is derived

from general relativity, the global rotation is necessarily zero.

The system (1.102)–(1.107) is used in the Newtonian cosmological simulations.
Because the anisotropic expansion is unconstrained, and because there is no evidence
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for such feature in the expansion of our Universe, H〈cd〉 is assumed to be zero. In
this case the expansion law (1.106) is equivalent to the Friedmann equation. This
means that the expansion of the periodic domain T3 in Newton is equivalent to the
expansion of a homogeneous Universe in general relativity, whatever the distribution
of matter and peculiar-velocities in the domain T3. In other words, there is no
backreaction of the inhomogeneities on the (isotropic) expansion of the domain T3

(QT3 = 0). This result is called the Buchert-Ehlers theorem, and was first derived
by Buchert & Ehlers (1997).

1.4.4 Caveats of the Newtonian cosmology

The main consequence of the Buchert-Ehlers theorem is to imply that the study of
the backreaction of inhomogeneities on the expansion of a closed universe needs to
be made in general relativity: the backreaction is a relativistic effect.10

However, the Buchert-Ehlers theorem relies on the interpretation of the homoge-
neous deformation made in section 1.4.2, in particular on the fact that we considered
the universe represented by the cosmological Newton system to be an expanding 3-
torus. In reality the topology of the spatial manifold is still R3, and the torus is
only an interpretation of the periodic boundary conditions imposed on the peculiar-
velocity. This contrasts with general relativity, where we can assume the spatial
manifold to be a (closed) 3-torus which is expanding. In this sense, the physics
described by the cosmological Newton system might not necessarily be compatible
with general relativity.

Another caveat of the Buchert-Ehlers theorem and its interpretation is that it
imposes the geometry of the model universe to be Euclidean. As general relativity
allows for all the Thurston geometries, this is a clear restriction with respect to
this theory. This raises the following question: can we generalise the Buchert-
Ehlers theorem to non-Euclidean geometries ? Answering this question re-
quires a generalisation of Newton’s theory to non-Euclidean geometries. If this is
possible and that the backreaction is still zero in these geometries, this would def-
initely show that this effect is a purely relativistic effect. Otherwise, if there is a
non-zero backreaction in non-Euclidean geometries, this would show that the topol-
ogy plays a major role on the expansion of our Universe.

10Strictly speaking, only the backreaction on an entire closed universe is relativistic. As shown
in section 1.4.3.1 it is also possible to have a backreaction on smaller domains in Newton (Buchert
et al., 2000).
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1.5 Strategy of the thesis

Generalising the Buchert-Ehlers theorem to non-Euclidean geometries is the
main goal of this thesis. To do it I will pursue the following strategy:

(i) I will first show that the Newtonian cosmology and the interpretation in
terms of a spatially closed manifold is compatible with general relativity.
This is done in chapter 2 using the Newton-Cartan theory, as it can be
derived via a well defined geometrical limit of general relativity.

(ii) Generalising the Buchert-Ehlers theorem requires the definition of a non-
Euclidean Newtonian (NEN) theory. In chapter 3, I review the existing
approaches to such a theory, and I propose two new ones based on the
results of chapter 2. I also derive the generalised Buchert-Ehlers theorem
for each of these approaches.

(iii) The final stage aims at justifying one of my proposed NEN theories from
a limit of general relativity. This is done in chapter 4.

As a complementary approach to study of the relation between topology and
global backreaction, I will investigate in chapter 5 the possibility of doing rela-
tivistic numerical simulations in non-Euclidean geometries.
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Chapter 2

1+3-Newton-Cartan system and
Newton-Cartan cosmology

2.1 Why Newton-Cartan?

T
he Newton-Cartan theory is a formulation of Newton’s theory of gravitation
in a Galilean 4-manifold. The structure on this manifold, called a Galilean
structure, follows from Newton’s ideas of absolute time and absolute space.

Similarly to general relativity, the goal behind the Newton-Cartan formulation is to
describe the gravitational force with a spacetime connection. The physical equations
constraining this connection, called the Newton-Cartan equations, are equations
relating the Riemann tensor associated to this connection and the energy content.

This theory, originally introduced as a spacetime geometrisation of Newton’s
theory by Cartan (1923, 1924), has then been developed to study the Newtonian
limit (e.g. Künzle, 1976) and to define post-Newtonian approximations to general
relativity (e.g. Dautcourt, 1997; Tichy & Flanagan, 2011). Ehlers (1981); Ehlers
(2019) also proposed a unification of Newton-Cartan theory and general relativity,
within his frame theory.

The limit allowing to derive the Newton-Cartan theory from general relativity
is a well defined limit of a 1-parameter family of solutions to the Einstein equation.
The limit is also covariant, i.e. it is not performed in a specific coordinate system.
Therefore we can consider that the Newton-Cartan theory, firstly, is compatible with
general relativity, and secondly corresponds to the ‘true’ formulation of Newton’s
theory. This second statement will be strengthened by the results we will obtain at
the end of this chapter. In this sense Newton-Cartan provides the right framework
to study the compatibility of the Newtonian cosmology with general relativity. To
do it, we first perform a covariant 1+3-split of the Newton-Cartan equations with
respect to the fluid 4-velocity, similarly to the 1+3 and 3+1 split in general relativity
presented in sections 1.1.2 and 1.1.3. The resulting system of equations will be called
the 1+3-Newton-Cartan system. We will show that this system is equivalent to the

49
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cosmological Newton system of section 1.4.3. This will complete the work of Ruede
& Straumann (1997) who also studied the Newton-Cartan cosmology, but only for
homogeneous solutions.

In section 2.2 we recall the definition and properties of Galilean spacetimes.
Section 2.3 presents the construction of the 1+3-Newton-Cartan equations. We
solve the system of equations in section 2.4 and show that space expansion arises
as a fundamental field of the theory. In section 2.5, we define the gravitational
field and rewrite the 1+3-NC system so that it features the Cosmological Newton-
Gauss equation. Then we compare with the cosmological Newton equations (1.102)–
(1.107). Finally we define different observers in section 2.6. Note that the limit of
general relativity to Newton-Cartan will only be detailed (and needed) in chapter 4.

This chapter is based on my paper, Vigneron (2021).

2.2 Galilean spacetimes

2.2.1 Galilean structure

This section is largely inspired by the nice presentation of Galilean spacetimes by
Künzle (1972), which, to my opinion, should be considered as the reference paper
for the Newton-Cartan theory.

2.2.1.1 Definition

A Galilean spacetime is a 4-dimensional differentiable manifold M equipped with
a Galilean structure (τ

¯
, ¯̄
h,∇

¯
), where τ

¯
is an exact 1-form, ¯̄

h is a symmetric (2,0)-
tensor of rank 3, with hαµτµ = 0, and ∇

¯
is a connection compatible with τ

¯
and ¯̄

h,
called a Galilean connection:

∇ατβ = 0 ; ∇γh
αβ = 0. (2.1)

A vector ū is called a unit timelike vector if uµτµ = 1, and an (n,0)-tensor T is

called spatial if τµT ...
α
↓
µ... = 0 for all α ∈ J1, nK. The exact 1-form τ defines a foliation

{Σt}t∈R in M, where Σt are spatial hypersurfaces in M defined as the level surfaces
of the scalar field t, with τ = dt. In this chapter we will not use a Lorentzian
connection. So ∇ and Γγαβ will always refer to the Galilean connection and its
coefficients.

No spacetime metric, i.e. a symmetric (0,2)-tensor of rank 4, is part of the
Galilean structure. Furthermore it is not possible to define a spacetime metric
compatible with the connection (2.1) (see chapter 12 of Misner et al., 1973). Thus
raising and lowering indices is not possible a priori. Then, to avoid confusion when
defining new tensors for the first time, we will use the over and under bars notation
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introduced in the beginning of this thesis. Once they have been defined, we will
however return to the simpler bold notation.

The time metric τ and the space metric h define what we can call an absolute
(or preferred) time and an absolute (or preferred) space. This is the Newtonian
picture of spacetime.

Remark. The structure defined above is called ‘Galilean’ because the components of the

tensors τ and h are invariant under a local Galilean transformation. We can also show

that the set of local Galilean transformations is totally determined by a Galilean structure

(see Künzle, 1972). Therefore such structures are the most general structure which are

invariant under Galilean transformations.

2.2.1.2 Properties

From the knowledge of τ and h, the connection ∇ is not unique. Its coefficients
Γγαβ are defined up to a unit timelike vector B̄ and a two form κ

¯̄
as follows:

Γγαβ = ΓB γ
αβ + 2τ(ακβ)µh

µγ, (2.2)

where
ΓB γ
αβ := hγµ

(
∂(α bB β)µ − 1

2
∂µ bB αβ

)
+Bγ∂(ατβ), (2.3)

and where b
¯̄

B is the projector orthonormal to the vector B with

bB αµB
µ := 0 ; bB αµh

µβ := δα
β − ταB

β. (2.4)

We have the following properties

Bµ ∇B µB
α = 0 ; hµ[α ∇B µB

β] = 0, (2.5)

where ∇
¯

B is the connection associated with the coefficients ΓB γ
αβ.

The connection coefficients (2.2) naturally define a Riemann tensor Rσ
αβγ with

the usual formula
Rσ

αβγ := 2 ∂[βΓσγ]α + 2 Γσµ[βΓµγ]α. (2.6)

The Ricci and Bianchi identities are still satisfied for this Riemann tensor:

Rσ
[αβγ] = 0, (2.7)

∇[µR
σ

|α|βγ] = 0. (2.8)

The definition (2.1) leads to the following additional relations:

τµR
µ
αβγ = 0, (2.9)

hµ(αRβ)
µγσ = 0. (2.10)

The Ricci tensor Rαβ is defined as Rαβ := Rµ
αµβ.
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2.2.2 Coordinates in a Galilean spacetime

In this section, we define objects which will be used in the construction of the 1+3-
Newton-Cartan equations.

2.2.2.1 Adapted coordinate systems

A coordinate system {xα}α=0,1,2,3, which is associated with the coordinate basis
vectors {∂̄α}α=0,1,2,3, is said to be adapted to the foliation {Σt}t∈R if the three
vectors {∂̄a}a=1,2,3 are spatial and ∂̄0 is unit timelike.1 Such coordinates are not
unique and are determined up to the spatial vector freedom in the definition of the
unit timelike vector ∂0. In any adapted coordinate system

τα = δ0
α ; Tα1...αn = T a1...anδα1

a1
...δαn

an
, (2.11)

where T is a spatial tensor.

2.2.2.2 Pull-back

The relation (2.11) shows that any spatial tensor T is totally determined by its com-
ponents T a1...an in an adapted coordinate system. We can then consider that T a1...an

are the components of a tensor living in a Riemannian 3-manifold Σ whose metric
contravariant components are hab, thus defining a pull-back Tα1...αn → T a1...an .

As Σ is a Riemannian manifold, indices of tensor components on this manifold
can be raised and lowered with the metric h on Σ. Then, we define Ta1...an

as

Ta1...an
:= T c1...cnhc1a1 ... hcnan

, (2.12)

where hab is the inverse matrix of hab and corresponds to the covariant components
of the Riemannian metric on Σ.

2.2.2.3 Classes of adapted coordinates

Given a unit timelike vector u, one can characterise with respect to this vector any
adapted system {∂̄α}α=0,1,2,3 by introducing a vector β̄ as

β := ∂0 − u. (2.13)

The vector β is spatial and is called the shift vector of the system {∂̄α}α=0,1,2,3 with
respect to u. The shift vector defines a class of adapted coordinate systems, denoted
X u
β . This class is the set of all adapted coordinate systems whose shift vector with

respect to u is β. The systems inside a class are related by time-independent spatial
changes of coordinates.

1Actually ∂̄0 only needs not to be spatial, i.e. timelike in Newton-Cartan. But by convention
we take it to be unit timelike.
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2.2.2.4 Spatial covariant derivative

In an adapted coordinate system, the spatial projection Γγab of the connection coef-
ficients (2.2) are

Γγab = δγc h
cd
(
∂(ahb)d − 1

2
∂dhab

)
, (2.14)

for any unit timelike vector B chosen in the relation (2.2). This comes from the fact
that bB ab = hab for any unit timelike vector B. The coefficients (2.14) correspond
to the coefficients of the Levi-Civita connection D of the metric h on Σ. Then the
pull-back of hβγ∇γT

α1...αn on Σ with T a spatial tensor gives

hβγ∇γT
α1...αn → DbT a1...an , (2.15)

and the pull-back of the divergence ∇γT
α1...γ...αn gives

∇γT
α1...γ...αn → DcT

a1...c...an . (2.16)

2.3 The 1+3-Newton-Cartan equations

2.3.1 The Newton-Cartan equations

The Newton-Cartan (NC) equations are:

∇µT
µα = 0, (2.17)

Rαβ = τατβ (4πGτµτνT
µν − Λ) , (2.18)

hµ[αRβ]
(γσ)µ = 0, (2.19)

where Λ is the cosmological constant and ¯̄T is symmetric and corresponds to the
energy-momentum tensor of the matter.

Equation (2.17) is the energy and momentum conservation; equation (2.18) is
the equivalent to the Einstein equation and links the geometry of M to its energy
content; equation (2.19) is the Trautman-Künzle condition.

Remark. In all the literature, the condition (2.19) is called the Trautman condition, citing

Trautman (1963).2 However Trautman originally gave the condition hµ[αRβ]
γσµ = 0, i.e.

without the symmetrisation. This original condition is stronger than (2.19). In particular

it already implies the proportionality Rαβ ∝ τατβ, i.e. equation (2.18). Based on a

count of the remaining degrees of freedom in the Riemann tensor, Künzle (1972) proposed

instead the condition (2.19). It has the advantage of still implying the irrotationality of the

gravitational field and the closeness of κ, i.e. the original reasons for the introduction of

the condition by Trautman in 1963, but without the stronger proportionality implication.

That is why I propose to call this condition the Trautman-Künzle condition.

2Paper written in French and available on the website of the Bibliothèque Nationale de France
at the following web page: https://gallica.bnf.fr/ark:/12148/bpt6k4007z/f639.image.

https://gallica.bnf.fr/ark:/12148/bpt6k4007z/f639.image
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2.3.2 Matter fluid

For the remainder of this paper, we will only consider that the energy-momentum
tensor describes a matter fluid,3 the 4-velocity of which is a unit timelike vector ū
such that:

Tαβ := ρuαuβ + phαβ + 2q(αuβ) + παβ, (2.20)

where ρ is the mass density, p the pressure, q̄ the heat flux and ¯̄π the anisotropic
stress of the fluid. By definition qµτµ = 0, πµατµ = 0 and bu µνπ

µν = 0.

2.3.3 1+3 split in Newton-Cartan

The basics behind the 1+3 split of the NC equations is to decompose the Ricci
tensor along and normal to the fluid velocity u. This is similar to the 1+3-split in
general relativity (section 1.1.3), but also to the 3+1 split (section 1.1.2) as we will
be able to write the final equations on the 3-manifold Σ. To do so, we first introduce
the kinematical variables of the fluid in section 2.3.3.1 and then realise the split in
section 2.3.3.2.

2.3.3.1 The kinematical variables

Similar to general relativity, we introduce the expansion tensor ¯̄
Θ and the vorticity

tensor ¯̄
Ω of the fluid as the projection orthogonal to the fluid of the 4-velocity

gradient ∇
¯
ū:

Θαβ := Pu (β
ν h

α)µ∇µu
ν ; Ωαβ := Pu [β

ν h
α]µ∇µu

ν , (2.21)

with Pu β
α := bu µαh

βµ = δα
β − ταu

β. We denote θ := bu µνΘ
µν . We also introduce the

acceleration āu of the fluid 4-velocity u as

au α := uµ∇µu
α. (2.22)

The tensors au , Θ and Ω are all spatial. We have the following additional relation

Θαβ = −1

2
Luhαβ. (2.23)

Remark. Relation (2.23) was originally introduced by Toupin (1957) as the definition for

Θ. Note that the relation “ bu αγ bu βσΘγσ = 1
2Lu bu αβ” given by Künzle (1976) is incorrect.

3For an electromagnetic fluid in the NC theory, see Künzle (1976).
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2.3.3.2 1+3-Newton-Cartan equations

In this section we project the NC equations (2.17)–(2.19) with respect to τ , u, bu

and h. The conservation equation (2.17) projected along bu and τ gives

Luρ = −ρθ − ∇µq
µ, (2.24)

ρ au α = −hµα∇µP − ∇µπ
µα − [Luqα + qαθ + 2 bu µνq

µ (Θνα + Ωνα)] . (2.25)

The NC equation (2.18) projected respectively twice along u, along u and h, and
twice along h gives:

Luθ = −4πGρ+ Λ + ∇µ au µ − bu αµ bu βνΘ
αβΘµν + bu αµ bu βνΩ

αβΩµν , (2.26)

hµα∇µθ − ∇µ (Θαµ + Ωαµ) = 0, (2.27)

hµαhνβRµν = 0. (2.28)

In the Trautman-Künzle condition (2.19), the indices α and β are purely spatial.
Then only the indices γ and σ need to be projected along u and h. The condition
projected respectively twice along u, along u and h, and twice along h gives:

LuΩαβ = 4 bu µνΘ
µ[αΩβ]ν + hµ[α∇µ au β], (2.29)

hµ[α∇µΩβγ] = 0, (2.30)

hµγhνσhζ[αRβ]
(µν)ζ = 0. (2.31)

For the system to be closed, the relation (2.23) needs to be added.

2.3.4 The equations

The 1+3-NC equations (2.23)–(2.31) are all scalar or spatial equations on M. By
pulling them back they become 3D-equations living on a Riemannian 3-manifold Σ.
A pull-back is defined for each Σt, i.e. each time t. This implies that the geometrical
properties (Riemann tensor and metric) of the manifold Σ, as long as all the other
tensors defined on it, are parametrised by the time.

In section 2.2.2.4, we detailed the pull-back of the spatial derivative, but to
fully write the 1+3-NC equations as 3D-equations, there remains to pull-back the
operator Lu present in the evolution equations. This is done by introducing a class
X u
β of coordinates. Then Lu applied on a spatial tensor T becomes, under the

pull-back,
LuTα1...αn → (∂t − Lβ)T a1...an , (2.32)

where the Lie derivative LβT a1...an applied on the spatial components of a spatial
tensor corresponds to the Lie derivative on Σ. Then, the pull-back of the sys-
tem (2.23)–(2.31) on Σ gives:
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The 1+3-Newton-Cartan equations:

• Evolution equations:

(∂t − Lβ) ρ = −ρθ −Dcq
c, (2.33)

(∂t − Lβ)hab = 2 Θab, (2.34)

(∂t − Lβ) θ = −4πGρ+ Λ +Dc a
u c − ΘcdΘcd + ΩcdΩcd, (2.35)

(∂t − Lβ) Ωab = D[a au b], (2.36)

• Constraint equations:

Dc (Θac + Ωac) −Daθ = 0, (2.37)

D[aΩbc] = 0, (2.38)

Rab = 0, (2.39)

Rd[abc] = 0, (2.40)

where Riem and R are the Riemann and Ricci curvature tensors of the spatial
metric h, and with

ρ au a = −DaP −Dcπ
ca − [(∂t − Lβ) qa + qaθ + 2qc (Θca + Ωca)] . (2.41)

Equation (2.40) is the Bianchi identity for Riem, and thus is not a constraint.
The shift vector β is not physical and corresponds to a choice of coordinates (as in
3+1-Einstein). In the section 2.6 we will see what choice of β leads to a Galilean
coordinate system.

Remark. We show in Vigneron (2020), see appendix B, that even in the classical formu-

lation of Newton’s theory, the choice of time-parametrised coordinate systems is charac-

terised by a vector, similar to a shift vector.

2.3.5 Discussion

In the 1+3-NC system, the expansion and vorticity tensors are not defined as the
symmetric and antisymmetric gradient of a spatial vector. Instead, they are defined
via the constraints (2.37) and (2.38). This is a major difference with the classical
definition of Newton’s equations (see section 1.4.1). In section 2.4.1, we will see
what are the consequences for those two tensors.

The 1+3-NC system is nearly formally equivalent to the 1+3-Einstein system
of equations (section 1.1.3.3). This was also spotted by the seminal paper on the
comparison between Newton’s theory and general relativity (Ellis, 1967). However
in that paper, Θ and Ω were not defined via the constraints (2.37) and (2.38), but
directly as the gradients of a spatial vector.
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The main difference between the 1+3-NC and 1+3-Einstein systems is the miss-
ing of the 1+3-Ricci equation in the former. It is replaced by the flatness of space,
i.e. equation (2.39). Vigneron (2020) showed that this results from the fact that this
equation becomes a relation for the second order, in 1/c2, of the spatial curvature
in the Newtonian limit (appendix C).

The 1+3-NC system does not suffer from the lack of the Hamilton constraint of
general relativity. This is because this constraint is needed when only the 1+3-Ricci
equation is considered, without the Raychaudhuri equation. As the latter equation
is present, only the 1+3-Ricci equation is missing.

The term Dcq
c in equation (2.33) implies that the mass of a fluid element is

not conserved, but the total mass inside Σ is still conserved [see equation (2.60)].
Therefore this term should be zero if we want to recover the classical mass con-
servation equation. In this chapter we will keep it non-zero to keep the study of
the NC-equations the most general possible. However, we will drop it in the next
chapter. Also, in chapter 4, we will show that it still possible to consider a non-zero
heat-flux q while locally conserving the mass.

The 1+3-NC system does not feature a dependence on the choice of Galilean
connection. This is discussed in section 2.6.4.

2.4 Space expansion in Newton-Cartan

In order to derive the expansion law (in section 2.4.2), we first need solve the con-
straint equations (2.37) and (2.38) (in section 2.4.1).

2.4.1 Solving the constraint equations

Equation (2.38) implies that the 2-form Ω is closed, which translates into

Ωab = D[awb] + ωab, (2.42)

where ω is a harmonic 2-form on Σ, i.e. DcD
cωab = 0.

Because the metric h on the 3-manifold Σ is flat [with equation (2.39)], we can use
the decomposition theorem showed by Straumann (2008) to uniquely decompose the
expansion tensor into scalar, vector and tensor parts (hereafter SVT decomposition)
as

Θab = χhab +D(avb) + Ξab, (2.43)

with χ a scalar field and Ξ is a transverse-traceless (TT) tensor , i.e. Ξc
c := 0

and DcΞ
ca := 0. The theorem is valid for a Riemanian metric of constant scalar

curvature, with zero traceless Ricci curvature. Fall-off conditions at infinity or com-
pactness of Σ also have to be added.
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The link between the vectors in the expansion and vorticity tensors is made by
the momentum constraint (2.37), which becomes, with the decomposition (2.43),

2Daχ = Dc
(
D[cva] −D[cwa]

)
, (2.44)

using the fact that Dcωca = 0 for a harmonic 2-form. The right-hand side (hereafter
rhs) is divergence free, whereas the left-hand side (hereafter lhs) is vorticity free.
Then the Hodge decomposition implies that

Daχ = 0 ; Dc
(
D[cva] −D[cwa]

)
= 0. (2.45)

The first equation implies that χ is only a function of time. The second equation
implies that the 2-form (D[cva] − D[cwa]) is co-closed, but as it is also exact, it is
zero. We finally have

Θab = χ(t)hab +D(avb) + Ξab ; Ωab = D[avb] + ωab. (2.46)

We see that in general, the tensor Θ is not the gradient of a vector, but also
features non-zero scalar and tensor parts. The same applies for the vorticity tensor
which features a non-zero harmonic part ω. The physical role of these terms will be
discussed in the next section.

Remark. From the NC equations (2.17)–(2.19), there are no more constraints on the har-

monic 2-form ω. However, if one derives these equations from a limit of general relativity,

an additional constraint appears on the Galilean connection, which eventually implies

ω = 0. Then, the only physical choice on ω that is compatible with general relativity is

ω = 0. This is shown in chapter 4. As we did not consider the NC theory as a limit of

general relativity in the present chapter, we will keep ω 6= 0.

2.4.2 Space expansion in the Newton-Cartan theory

The expansion rate H(t) of Σ is defined as

H(t) :=
1

3

∂tVΣ

VΣ

=
1

3
〈θ〉Σ (t), (2.47)

where 〈•〉Σ := 1
VΣ

∫
Σ •
√

det(hab)d
3x is the spatial average over the whole manifold Σ

and VΣ :=
∫

Σ

√
det(hab)d

3x is the volume of Σ. Equation (2.46) implies

H(t) = χ(t), (2.48)

which means that χ corresponds to the expansion rate of Σ.

As we explained in the previous section, the scalar χ enters in the SVT decom-
position of the expansion tensor Θ. This tensor, along with the vorticity tensor,
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characterises the fluid. Then any part of the decomposition of Θ corresponds to
a physical fundamental field characterising the fluid. In particular, equation (2.48)
shows that the expansion, through χ, is a fundamental physical field of the 1+3-NC
system (2.33)–(2.41).

This system does not explicitly feature an evolution equation for the scalar χ.
Such an equation can be obtained by taking the spatial average of the Raychaudhuri
equation (2.35), which gives

3
[
Ḣ +H2

]
= − 4πG 〈ρ〉Σ + Λ −

〈
ΞcdΞ

cd
〉

Σ
+
〈
ωcdω

cd
〉

Σ
.

To get this equation we used the fact that divergences averaged over a closed domain
are zero due to Stokes’ theorem. This expansion law is equivalent to the one in
Newtonian cosmology [equation (1.106)]: we retrieved the Buchert-Ehlers theorem.

While we have an evolution equation for χ, this is not the case for the TT
tensor Ξ and the harmonic 2-form ω which are totally free, in their space and time
dependence. We call Ξ the transverse shear, and ω the Coriolis field. The reason
for this name will be given in section 2.6.3.

2.4.3 Spatial metric separability

The time dependence of the spatial metric is given by equation (2.34). Using the
class of coordinates X u

−v, the equation becomes

∂thab − 2H(t)hab = 2 Ξab, (2.49)

which, in the case Ξ = 0, leads to

hab(t, x
i) = a2(t)h̃ab(x

i), (2.50)

where h̃ is a flat metric.

Equation (2.50) shows that the metric components can be separated into space
and time dependence. This is a major property as it ensures that in the coordinates
X −v
u , we can solve the 1+3-NC system assuming a time-independent background

flat metric h̃, or comoving background metric.

In the case Ξ 6= 0, the equation (2.49) does not lead to the separation of the
metric components. Because Ξ is a symmetric traceless-transverse tensor, it cannot
be written as the symmetric gradient of a vector. This means that there is no coor-
dinate system in which equation (2.34) becomes ∂t|βhab + 2H(t)hab = 0. Therefore,
the space and time separation of h is only possible if Ξ = 0.
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2.5 Gravitational field and cosmological equations
in Newton-Cartan

2.5.1 The gravitational field

In the literature concerning the Newton-Cartan theory, the gravitational field is
often defined using the coefficients Γγαβ of the Galilean connection as (e.g. Ehlers,
1981; Ehlers, 2019; Dautcourt, 1990a)

“ga := Γa00”. (2.51)

This definition is however only valid in a specific adapted coordinate system (defined
by a time vector ∂t

g ) such that
∂t
g := B,

where B is the vector freedom in the definition of the Galilean connection of equa-
tion (2.2). The definition (2.51) implies that the gravitational field is the opposite
of the 4-acceleration of B, with Bµ∇µB

α = −gα, and that it is solution of the
cosmological Poisson equation (equation (16) in Dautcourt, 1990a).

In this chapter, we are interested in giving a purely coordinate independent
definition of g. We propose the following definition:

ga := (∂t − Lβ) va + 2vc (Θc
a + Ωc

a) − vcDcv
a − au a. (2.52)

In the following and in section 2.6.2 we will see that it is coherent with the standard
definition (2.51).

This definition could be used as a covariant definition of the gravitational field
in GR, as it uses the same kinematical variables Θ and Ω. However it requires
the knowledge of the vector v defined from Θ using the SVT decomposition. This
decomposition is a priori not possible in general in GR as the curvature orthog-
onal to the fluid is not necessarily zero. Thus it seems non-trivial to adapt the
definition (2.52) in this theory.

2.5.2 The cosmological equations

We can introduce the gravitational field (2.52) in the 1+3-NC system. The vortic-
ity equation (2.36) becomes the Newton-Faraday equation, and the Raychaudhuri
equation (2.35) becomes the Newton-Gauss equation when subtracting the expan-
sion law. Then the 1+3-NC system can be rewritten in a form equivalent to the
cosmological Newton system in section 1.4.3:
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The cosmological system in Newton-Cartan: The gravitational field is given by

ga = (∂t − Lβ) va + vcDcv
a + 2vc (Hδc

a + Ξc
a + ωc

a) − (a6=grav)a, (2.53)

Dcg
c = −4πGρ̂− Ξ̂cdΞcd + ω̂cdωcd, (2.54)

D[agb] = − (∂t − Lβ+v)ωab, (2.55)

where ψ̂ := ψ − 〈ψ〉Σ. These equations are completed by

Rab = 0, (2.56)

(∂t − Lβ)hab = 2
(
H(t)hab +D(avb) + Ξab

)
, (2.57)

(∂t − Lβ) ρ = −ρ (3H +Dcv
c) , (2.58)

and the averaged equations

3
(
Ḣ +H2

)
= −4πG 〈ρ〉Σ + Λ + QΣ, (2.59)

〈ρ〉Σ =
Mtot

VΣ(t)
, (2.60)

with
QΣ = −

〈
ΞcdΞ

cd
〉

Σ
+
〈
ωcdω

cd
〉

Σ
. (2.61)

We recall that Ξ is a traceless-transverse tensor and ω is a harmonic 2-form.

Remark. Equations (2.54) and (2.55) were also obtained from NC by Ehlers (1981); Ehlers

(2019); Dautcourt (1990b). But these studies neither assume expansion, nor transverse

shear and therefore do not have the term Ξ̂cdΞcd and the averages given by the operator

•̂ in the gravitational field source equation (2.54).

2.5.3 Newton-Cartan cosmology VS Classical Newtonian cos-
mology

The expansion and vorticity tensors in the classical theory with homogeneous de-
formation can be written as

Θab = H(t)hab +D(aPb) +H〈ab〉 ; Ωab = D[cPa] +H[ab].

These expressions are equivalent to those in NC [equation (2.46)], if we make the
following associations:

P → v ; H → χ ; H〈ab〉 → Ξab ; H[ab] → ωab.

As Hab is only a function of time in Cartesian coordinates, this implies: firstly, that
H〈ab〉 is divergence-free and falls into the class of TT-tensors, and secondly, that
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H[ab] is harmonic. This justifies the last two associations. Furthermore, because
the Newton-Gauss and Newton-Faraday equations are formally the same as in the
classical Newtonian cosmology [equations (2.54) and (2.55) in NC; equations (1.103)
and (1.104) in classical Newton], we can make the following association for the
gravitational field:

gP → g.

Then, with these associations, the equations governing P , Hab, and gP are exactly
the cosmological Newton-Cartan equations of section 2.5.2 in a closed space. This
shows that the solutions to the classical cosmological Newton system are equivalent
to the solutions of Newton-Cartan, and that the interpretation of the expanding
periodic boundary conditions in terms of an expanding closed space is correct.

2.5.4 Interpretation of Ξ

2.5.4.1 Anisotropic expansion

From the association H〈ab〉 → Ξab we can interpret the transverse shear Ξ as an
anisotropic expansion if its components are spatially constant in Cartesian coordi-
nates. This requires the following condition: DcΞab = 0. This is more restrictive
than the TT condition of Ξ (see the study of the TT tensors in flat spaces by Tafel,
2018), which allows for non-constant components in Cartesian coordinates. For in-
stance, we can assume that in the Galilean class of coordinates X u

−v (see section 2.6.2)
the metric can be written as

hab = diag
[
A2(t);B2(t);C2(t)

]
.

This metric represents an anisotropic expansion of Σ: the edges of the cubic domain
(of the 3-torus) have different lengths and expands differently. From this metric we
obtain

3H =
Ȧ

A
+
Ḃ

B
+
Ċ

C
,

Ξab = diag

[
Ȧ

A
−H;

Ḃ

B
−H;

Ċ

C
−H

]
.

But while H(t) has an evolution equation, the two degrees of freedom of Ξ are
unconstrained.

Remark. The condition DcΞab = 0 is equivalent to the one imposed on Hab in classical

Newtonian cosmology. However, we could also have defined the homogeneous deformation

to be only divergence free, and not gradient free. In this case the Newtonian cosmology is

equivalent to the NC cosmology.
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2.5.4.2 Gravitational waves from Ξ

As Ξ is a TT tensor corresponding to the time derivative of the spatial metric,
we could consider that it also encompasses gravitational waves phenomenon, which
are described by the same kind of tensors. This is not incompatible with Newton’s
theory as shown by Ehlers (1997). However, while general relativity provides an
evolution equation, in the form of a wave equation, for

∫
t Ξ, this is not the case a

priori in Newton-Cartan. Therefore we need to impose Ξ to represent a gravitational
wave, for instance by taking (in the class X u

−v)

Ξab ∝



a b 0
b −a 0
0 0 0


 sin [ω (t− z/c)] (2.62)

where a and b are constant amplitudes and ω is the pulsation frequency of the wave.
This ansatz represents a plane wave propagating in the z-direction.

From equation (2.54), we see that even in vacuum, i.e. ρ = 0, a gravitational

field is created by the gravitational wave due to the term Ξ̂cdΞcd:

Dcg
c = −Ξ̂cdΞcd. (2.63)

This term corresponds to an effective energy density of the wave, similar to the one
defined in general relativity.

Looking at the expansion law (2.59), the average energy density of the gravita-
tional waves has a deceleration effect on the spatial expansion. It might be inter-
esting to know how

〈
ΞcdΞ

cd
〉

Σ
scales as function of the scale factor a(t), to see if

additional expansion scenarios, with respect to FLRW solutions, are possible.

2.5.4.3 Dark matter?

Following what we just said concerning the effect of Ξ on the gravitational field and
the expansion, the transverse shear might play the role of dark matter:

•
〈
ΞcdΞ

cd
〉

Σ
acts as an additional effective mass in the expansion law,

• Ξ̂cdΞcd affects the gravitational field in the Newton-Gauss equation,

• a test particle undergoes an additional force due to the transverse shear (see
section 2.6.3) of the form ‘−2V c + Ξc

a’.

It remains to find if there exists a Ξ which reproduces the dark matter observations,
and if it can be justified other than empirically.
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2.6 Observers in the Newton-Cartan theory

2.6.1 General observers

An observer, or family of observers, in the NC theory is described by a unit timelike
vector o, as in general relativity. A choice of coordinates can be associated to a
choice of observer whose unit timelike vector is the time basis vector, i.e. o = ∂t. In
this sense, solving the NC equations (2.33)–(2.40) in such coordinates corresponds
to solving the dynamics of the fluid u with respect to the observer o.

For a general observer o 6= u, and we define the spatial vector V as

V := o− u+ v. (2.64)

We have V = β + v. The acceleration ao of this observer can then be written as

ao = −ga + (∂t − Lβ+v)V
a + V cDcV

a + 2V c (Θc
a + Ωc

a −Dcv
a) , (2.65)

which simplifies into

ao = −ga + ∂tV
a + V cDcV

a + 2V c (χδc
a + Ξc

a + ωc
a) . (2.66)

2.6.2 Galilean observers

When the observer is chosen such that V = 0, then

ao = −ga. (2.67)

This corresponds to an observer whose acceleration is the opposite of the gravita-
tional field created by the fluid u. Such an observer is called a Galilean observer. A
class of coordinates associated to a Galilean observer is called a Galilean class.

With the above definition, there seems to be a unique Galilean observer, i.e. the
observer o = u − v. However, this is true only if v is unique from the knowledge
of Θ. This is not the case as v is defined up to a spatial vector A whose spatial
gradient DaAb is zero. For a flat space, the solution to the equation DaAb = 0 is
a ‘constant’ spatial vector, i.e. corresponding to a global translation. Thus v is
defined up to a global translation, and therefore a Galilean observer is also defined
up to a global translation. This is an expected freedom of Galilean coordinates.

However once we choose the vector v this fixes the Galilean observer. We denote
this observer with the vector G, where G := u− v. Then the vector V = o−G of
a general observer o corresponds to its spatial velocity with respect to the Galilean
observer G. Therefore, the vector v = u−G is the spatial velocity of the fluid with
respect to the Galilean observer. General and Galilean observers are represented
with respect to the fluid in figure 2.1.
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ou G

β

VvΣt

Figure 2.1: Representation of the different vectors involved in the definition of the
fluid u, the Galilean observer G and a general observer o. These vectors are repre-
sented with respect to a slice Σt of the foliation {Σt}t∈R. In black are the vectors
defining the fluid; in green are the vectors defining a general observer. Note that
because there is no global metric in the structure of the embedding Galilean mani-
fold M, the orthogonality on the figure between the unit timelike vector u and the
slice Σt has no signification and is just a representation convention.

If the Galilean connection is chosen such that B := G, then in the coordinate
class X u

−v, i.e. ∂t := G, we retrieve the usual definition (2.51) present in Ehlers
(1981); Ehlers (2019); Dautcourt (1990a) for the gravitational field. Therefore, we
can consider that equation (2.67) is also a definition of the gravitational field in
Newton-Cartan. This definition only requires the SVT decomposition of Θ to be
valid, i.e. so that we can uniquely define Dv from Θ, and does not depend on the
NC equations. This will be especially important in the next chapter, when defining
non-Euclidean Newtonian theories.

2.6.3 Test observers

We define a test observer with unit timelike vector T as a geodesic observer, i.e.
aT = 0. The equation of motion of these observers with respect to the Galilean

observer, i.e. the evolution equation for V , is

∂tV
a + V cDcV

a = ga − 2V c (χδc
a + Ξc

a + ωc
a) . (2.68)

This corresponds to the second law of Newton with the velocity acceleration on the
lhs and three non-inertial terms on the rhs: −2χV a, −2V cΞc

a and −2V cωc
a. The

first one corresponds to an expansion force; the second one to an anisotropic force
resulting from the transverse shear; the third one is a Coriolis force created by the
field ω, hence the name ‘Coriolis field’.
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The term −2V cωc
a corresponds to the Coriolis force created by a global rotation

only if the Coriolis field components ωab are constants in Cartesian coordinates. As
ω is harmonic along with compactness or fall-off conditions at infinity, this is the
case. This confirms the result of Dautcourt (1990b). Note that Ehlers (1981); Ehlers
(2019) does not suppose closing conditions, but instead adds an additional constraint
to the NC system in order for ω to be a global rotation: the “law of existence of
absolute rotation” (equation (23) in Ehlers, 1981; Ehlers, 2019). However, this
equation does not have a relativistic equivalent, and therefore cannot be obtained
from a Newtonian limit.

We emphasise that while ω is called a Coriolis field, it differs from the Coriolis
field introduced in the classical formulation of Newton’s theory, as the force −2V cωc

a

cannot be removed by a change of coordinates. This is because ω is harmonique
and cannot be written as the anti-symmetric gradient of a spatial vector.

2.6.4 Choice of Galilean connection

Throughout this chapter we made no assumption on the choice of Galilean connec-
tion, i.e. choice of B and κ in equation (2.2). However once we wrote the 1+3-NC
equations and pulled them back on Σ, the Galilean connection disappears. Then the
intrinsic freedom on the definition of this connection disappears too. As in most of
the literature on NC, reasoning is often made with B and κ, we detail in the present
section the relation between these two tensors and the kinematical variables.

We have

Θαβ = hµ(α ∇B µu
β), (2.69)

Ωαβ = hµ[α ∇B µu
β] + hµακµνh

βν , (2.70)

au α = uµ ∇B µu
α + 2uµκµνh

αν . (2.71)

If we choose B = u, then using equation (2.5) we have

Θαβ = hµ(α ∇u µu
β), (2.72)

Ωαβ = hµακµνh
βν , (2.73)

au α = 2uµκµνh
αν . (2.74)

In this choice of connection, we see that the spatial projection of κ is the vorticity of
the fluid. Then this projection cannot be taken to zero as this would be a physical
restriction to the fluid.

Only if B 6= u, one is allowed to take hµακµνhβν = 0 without loss of generality.
But in any case, the tensors B and κ do not appear in the 1+3-NC equations
on Σ, and thus their choice, in addition to having no physical implications, is not
relevant to the solving of these equations. Only the choice of adapted coordinates
via β, defining the partial time derivative, i.e. the choice of observer, plays a role in
equations (2.33)–(2.41), or equivalently in the cosmological system (2.53)–(2.61).
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2.7 Conclusion

This chapter aimed at presenting the equations resulting from a covariant 1+3-split
of the Newton-Cartan equations, called the 1+3-Newton-Cartan equations [equa-
tions (2.33)–(2.41)], along with the cosmological system (2.53)–(2.61), featuring the
gravitational field. The main results are:

(i) The 1+3-Newton-Cartan equations have the same algebraic structure as the
1+3-Einstein evolution and constraint equations (apart for the 1+3-Ricci equa-
tion). In particular, as in the relativistic theory, a choice of adapted coordi-
nates in Newton-Cartan corresponds to a choice of shift vector.

(ii) We give a covariant definition of the gravitational field [equation (2.52) in
section 2.5.1],

(iii) We exactly retrieve the cosmological Newton system [equations (2.53)–(2.61)].

(iv) When solving the constraint equations, the space expansion arises as a fun-
damental physical field in the theory. It corresponds to the expansion of a
real closed manifold. This contrasts with the Newtonian cosmology where the
expansion is only a construction corresponding to the expansion of periodic
boundary conditions, and the manifold is still R3.

(v) We retrieve the Buchert-Ehlers theorem in the Newton-Cartan theory, with
the expansion law (2.59).

(vi) We saw that Ξ can describe gravitational waves with an effective energy den-

sity Ξ̂cdΞcd.

These results show that the Newtonian cosmology and especially its interpre-
tation in terms of a spatially closed manifold is compatible and equivalent to the
Newton-Cartan theory, itself compatible with general relativity. Thus, we can con-
sider that the 1+3-NC equations (or equivalently the cosmological equations) are
the ‘true’ 3D-formulation of Newton’s theory. Then from now, we will refer to the
Newton-Cartan cosmological system (2.53)–(2.61) when talking about Newtonian
cosmology.

An interesting feature of the Newton-Cartan cosmology, which requires to be
extensively studied, is the transverse shear Ξ, especially whether or not it can explain
the dark matter problem.

In the next chapter, we will tackle the second point of our strategy presented in
section 1.5: defining non-Euclidean-Newtonian theories.
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Chapter 3

On non-Euclidean Newtonian
theories and their global
backreaction

T
he non-Euclidean Newtonian theory required to generalise the Buchert-Ehlers
theorem needs to be derived from general relativity with a well defined limit:
a non-Euclidean Newtonian limit. Finding such a limit is not an easy task as

we will see in chapter 4. A preliminary approach to the definition of a NEN theory
is to stay under the framework of the Newton-Cartan theory and assume we change
the spatial curvature such that non-Euclidean geometries are allowed. While this
approach is not justified from general relativity a priori, it gives a first insight in to
what could be the right NEN theory.

In this chapter, we will first review the only approach of the literature aiming at
defining a NEN theory (Roukema & Różański, 2009; Barrow, 2020). Then we will
propose new ones based on Künzle (1976) and the 1+3-Newton-Cartan equations
developed in the previous chapter. The expansion law, and therefore, the generalised
Buchert-Ehlers theorem, will be derived in each case. The results are summarised
in table 3.1.

3.1 Introduction of a spatial Ricci curvature

As seen in chapter 2, the spatial geometry in Newton’s theory is Euclidean because
the spatial Ricci curvature R is zero. Such a curvature is not the only possible one
in Euclidean geometries, i.e. in an Euclidean 3-manifold it is possible to define a
metric whose Ricci curvature is non-zero. However, the null curvature is the one
which requires the less parameters to be determined, i.e. zero. As we want to
introduce a non-zero Ricci curvature for our NEN theories, to face the problem
of the choice of this curvature, we can assume that we take the one with the less
parameters to determine.

70
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In this thesis we will mostly be interested in either the spherical or hyperbolic
geometries. Therefore, following the restriction we made above for the curvature
choice, we assume that

R :=
R(t)

3
h. (3.1)

We can see with the above formula that there is only one unknown parameter: the
scalar curvature. It depends only on t as a consequence of the contracted Bianchi
identity.

The main reasons to consider either spherical or hyperbolic geometries are the
following:

• These are the ‘simplest’ geometries after the Euclidean geometry.

• They are the only geometries where the SVT decomposition of symmetric 2-
tensors has been proven to be unique (the derivation of the theorem requires an
isotropic Ricci curvature: Straumann, 2008). As seen in the previous chapter,
this decomposition is required to define a spatial velocity v from the expansion
tensor Θ. This will also be the case in this chapter.

Remark. The ‘most simple’ Ricci tensor for the other five Thurston geometries can be

found in section 5.1 of Lachieze-Rey & Luminet (1995). For these Ricci tensors, the SVT

decomposition cannot be used a priori. However, it might possible that a generalisation

exists, especially for the Ricci curvatures proposed in Lachieze-Rey & Luminet (1995).

3.2 Poisson equation approach

In the NEN theory defined in Roukema & Różański (2009) and Barrow (2020), the
Newton-Gauss equation, or equivalently the Poisson equation, is considered as a
fundamental feature of Newton’s theory. For this reason their approach is to keep
the algebraic structure of this equation while changing the metric such that it has
a non-zero Ricci curvature of the form (3.1). Therefore, they have:

Dcg
c = −4πGρ ; Rab =

R(t)

3
hab, (3.2)

where the spatial connection D is related to the metric with the above Ricci curva-
ture.

Remark. This approach is similar to the way quantum fields are treated in curved spaces:

the field equations are kept in their algebraic form, and the Minkowski metric is changed

for a ‘curved metric’, not influenced by the fields.
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3.2.1 The mass point gravitational field

The gravitational field created by one mass pointM is given by the spherical solution
of equation (3.2) with ρ = δΣ, where δΣ is the Dirac distribution of the manifold Σ.
The solution can be found when choosing hyperspherical coordinates, in which the
line element takes the form:

dl2 = R2
c

[
dξ2 + sinn2 (ξ)

(
dθ2 + sin2 θdϕ

)]
, (3.3)

where

sinn (ξ) :=





sinh (ξ) , if R < 0 (hyperbolic)

sin (ξ) , if R > 0 (spherical)
(3.4)

where ξ ∈ [0, π] if R > 0 and ξ ∈ R+ if R < 0, and Rc :=
√

6/|R| is the cur-
vature radius of the spherical or hyperbolic space. In these coordinates, r := Rc ξ
corresponds to the distance to the origin (0, 0, 0).

We suppose that the point mass is located at the origin. Then the gravitational
field ga =

(
gξ, 0, 0

)
it creates is

gξ =





A

R2
c sinh2 (ξ)

, if R < 0 (hyperbolic)

A

R2
c sin2 (ξ)

, if R > 0 (spherical)
(3.5)

with A a constant. To be compatible with the (Euclidean) Newton theory close to
the point mass, one must retrieve gξ(ξ ∼ 0) ≃ −GM/r2. Thus we need to take
A = −GM .

We see that in the case of a spherical geometry, the gravitational field diverges
at the point mass position (ξ = 0) as expected, but also at the pole opposed to this
position (ξ = π). The field around this pole is given by:

gξ(ξ ∼ π) = − GM

R2
c (π − ξ)2 + O(1). (3.6)

This field points in direction of the origin, i.e. outwards from the pole ξ = π, which
means that this pole corresponds to a white hole, i.e. a repulsive gravitational field.

Remark. Because there are two divergences at ξ = 0 and ξ = π, the equation we solved is

not the one with “ρ = δ(ξ)”, but with ρ = δ(ξ) − δ(ξ − π).

3.2.2 Caveats of the approach

The NEN theory defined above has two major caveats:
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• The Poisson equation (3.2) requires that the total mass must be zero in a
closed space. This can be derived when averaging the equation over the whole
space, and using Stoke’s theorem. This explains why the point mass solution
in spherical geometry (necessarily closed) has two diverging points: one cor-
responding to an attractive (positive) mass and one to a repulsive (negative)
mass, such that the sum if these two masses gives zero. This solution is not
physical as a spherical Universe described by this NEN theory would be full
of white holes.

• The proposed NEN theory cannot account for the spatial expansion, which, as
we saw in the previous chapter, should be a fundamental field present in the
equations.

As we saw in the previous chapter, the cosmological and 1+3-NC systems both
arise from a more fundamental formulation of the theory, where all the physics is
put into a spacetime connection. Then it might seem more natural to start from
this formulation to construct the NEN theory by a change of spatial curvature.
This approach also ensures that the Galilean invariance of spacetime, which could
be considered as a fundamental principle of Newton’s theory, is kept. This was
proposed by Künzle (1976). However, the expansion law, along with the full 3D-
system of equations, were not derived. This is done in the next sections.

3.3 The Newton-Cartan approach

3.3.1 A curvature in Newton-Cartan

As we saw in chapter 2, the NC equation (2.18) implies that the spatial Ricci cur-
vature is necessarily zero. To allow for R 6= 0, Künzle (1976) proposed1 to modify
the NC equation (2.18) by adding a ‘curvature term’:

Rαβ − R
3

bB αβ = τατβ (4πGτµτνT
µν − Λ) , (3.7)

where B is a unit timelike vector. When projected twice along hab, this equation
indeed leads to Rab = R

3
hab. This is the simplest modification of the NC equation

allowing for a non-zero spatial Ricci curvature. In chapter 4, we will try to justify
it from general relativity.

In the NC theory, any orthonormal projector bB αβ can play the role of a twice
covariant spatial metric. This is because in any adapted coordinate system we have
bB ab = hab, with hab the inverse matrix of hab. That is why the additional term in

equation (3.7) features bB αβ. As a consequence there is a freedom on the choice of
the vector B, i.e. on the choice of observer to which the curvature term is related.

1Künzle claims to give references for the modification (3.7), but these are unrelated to this
equation. We can therefore consider Künzle (1976) to be the first occurrence of this modification.
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We can choose B to be a ‘preferred’ unit timelike vector. Following the previous
chapter, two such vectors can be chosen:

• B = u: the curvature term is related to the fluid observer.

• B = G: the curvature term is related to the Galilean observer. Its definition
(G := u−v, see section 2.6.2) only requires that Θ has a SVT decomposition
(so that the spatial velocity v can be uniquely defined from Θ), which is the
case as the spatial Ricci curvature is of the form R = R

3
h.

In the following sections we will develop the NEN theory in both cases: we will
derive the 1+3-system (similarly as in chapter 2), and the cosmological system, i.e.
featuring the gravitational field and the expansion law. The backreaction will be
given, thus generalising the Buchert-Ehlers theorem in both cases.

3.3.2 NEN theory I: Fluid observer curvature term

In this section, we consider B := u.

3.3.2.1 The system of equations

The derivation of the 3D-system of equations is done by projecting the modified
NC equation with respect to u and h. We will not detail its full derivation, which
is similar to the one made in section 2.3.3. The main difference comes from the
projections of the additional curvature term in the NC equation. We have

R
3
bu µνh

aµhbν =
R
3
hab ;

R
3
bu µνu

µhaν = 0 ;
R
3
bu µνu

µuν = 0. (3.8)

Then the 3D-system of equations corresponds to: the following evolution equa-
tions

(∂t − Lβ) ρ = −ρθ −Dcq
c, (3.9)

(∂t − Lβ)hab = 2 Θab, (3.10)

(∂t − Lβ) θ = −4πGρ+ Λ +Dc a
u c − ΘcdΘcd + ΩcdΩcd, (3.11)

(∂t − Lβ) Ωab = D[a au b], (3.12)

and constraint equations

Dc (Θac + Ωac) −Daθ = 0, (3.13)

D[aΩbc] = 0, (3.14)

Rab =
R
3
hab, (3.15)

Rd[abc] = 0, (3.16)
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with

ρ au a = −DaP −Dcπ
ca − [(∂t − Lβ) qa + qaθ + 2qc (Θca + Ωca)] . (3.17)

We recall that au plays the role of a6=grav.

The only difference with the (Euclidean) 1+3-NC equations (2.33)–(2.41) is the
curvature equation (3.15).

3.3.2.2 Solving the constraint equations

While the constraint equations are algebraically the same as in the Euclidean case,
because the spatial curvature is not zero anymore, their solution is different. The
constraint (3.14) still implies that Ω can be written as

Ωab = D[awb] + ωab, (3.18)

with ω a harmonic 2-form. In the case of a spherical geometry, ω is necessarily zero.

The Ricci curvature (3.15) still allows us to use the Straumann theorem (Strau-
mann, 2008), implying that the SVT decomposition (2.43) for Θ is still valid. Then
the momentum constraint implies

Dc Ω∆
ca − 2Daχ− va

R
3

= 0, (3.19)

where Ω∆
ab := D[awb] − D[avb]. We introduce the Hodge decomposition on v:

v =: DΦv + curlA+ λ, where Φv andA are respectively the scalar potential and the
vector potential of v, and λ is a harmonic 1-form. As the term Daχ is vorticity-free
and the term Dc Ω∆

ca is divergence-free, we have

Daχ = Da

(R
6

Φv

)
, (3.20)

Dc Ω∆
ca =

R
3

(
ǫacdD

cAd + λa
)
. (3.21)

We see that, contrary to the Euclidean case, the first equation (3.20) does not imply
anymore that χ is only a function of time. Instead we have

χ(t, xi) = cst(t) +
R(t)

6
Φv(t, x

i). (3.22)

This can be interpreted as an inhomogeneous volume expansion. The second equa-
tion (3.21) shows that v 6= w in general. This is a radical difference with the
Euclidean case: the vectors inside the expansion and vorticity tensors are different.
We finally have

Θab = χ(t, xi)hab +D(avb) + Ξab ; Ωab = D[cva] + Ω∆
ab + ωab. (3.23)
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3.3.2.3 The cosmological system

The system of equations (3.9)–(3.17) of the present NEN theory can be rewritten to
feature the gravitational field and the analogue to the Newton-Gauss equation. The
gravitational field is still defined as the opposite to the 4-acceleration of the Galilean
observer and is given by the formula (2.52). Then, accounting for the expression
of Θ and Ω in equation (3.23), the cosmological system takes the form (defining
T := Ω

∆ + ω):

Non-Euclidean-Newtonian theory I: The gravitational field is given by

ga = (∂t − Lβ) va + vcDcv
a + 2vc (χδc

a + Ξc
a + Tca) − (a6=grav)a, (3.24)

Dcg
c = −4πGρ− ΞcdΞ

cd + TcdT cd − R
3
vcv

c (3.25)

− 3
[
(∂t − Lβ)χ+ χ2 − vcDcχ

]
,

D[agb] = − (∂t − Lβ+v) Tab, (3.26)

with

χ = cst(t) +
R(t)

6
Φv, (3.27)

DcTca =
R
3

(Va −DaΦv) . (3.28)

where Φv is the scalar potential of v, and T a closed 2-form. These equations
are completed by

Rab =
R(t)

3
hab, (3.29)

(∂t − Lβ)hab = 2
(
χhab +D(avb) + Ξab

)
, (3.30)

(∂t + Lβ) ρ = −ρ (3H +Dcv
c) , (3.31)

and the averaged equations

3
(
Ḣ +H2

)
= −4πG 〈ρ〉Σ + Λ + QΣ, (3.32)

〈ρ〉Σ =
Mtot

VΣ(t)
, (3.33)

with H(t) := 〈χ〉Σ and where

QΣ = −
〈
ΞcdΞ

cd
〉

Σ
+
〈
TcdT cd

〉
Σ

− R
3

〈vcvc〉Σ +
R
6

(〈
Φ2
v

〉
Σ

− 〈Φv〉2
Σ

)
. (3.34)
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3.3.2.4 Gravitomagnetism

In the above system we introduced the closed 2-form T := Ω
∆ + ω. This field

corresponds to a gravitomagnetic field which Newton-Faraday equation is equa-
tion (3.26) and which Newton-Ampère equation is equation (3.28). The later does
not feature any displacement current. The analogue to the current density is
Ja := R

3
(Va −DaΦv).

3.3.2.5 Expansion law or generalised Buchert-Ehlers theorem

The backreaction term (3.34) in the expansion law (3.32) features additional terms
with respect to the Euclidean case. These terms depend on the scalar curvature,
the velocity v, and the gravitomagnetic field T . This shows that the backreaction
depends on the type of geometry, via R, but also on the dynamical properties of the
fluid, via v and T . Especially the term ‘−R(t)

3
〈vcvc〉Σ’ shows that the total bulk

velocity of the fluid affects the backreaction.

We expect this bulk velocity to be more important in the late Universe when
structure formation increases. Then, the formula (3.34) suggests that the struc-
ture formation might play a major role on the global expansion of our Universe if
the geometry is non-Euclidean. It also shows that the Universe might have a local
Newtonian dynamics, but a global dynamics which differs from the one of an homo-
geneous Universe. However, quantifying the bulk velocity remains difficult because
it depends on the mesoscopic scale, which is not well defined in cosmology.

3.3.2.6 Space–time separation of the spatial metric?

Because χ depends on time and space, there does not exist a coordinate system in
which the spatial metric components take the form (2.50), even if Ξ = 0. Instead
we can only have the conformal form (which is valid in the Galilean coordinates:
β = −v):

hab(t, x
i) = ψ2(t, xi)h̃ab(x

i), (3.35)

where ∂tψ/ψ := χ. We can still define a background metric h̃ independent of time,
but its Ricci curvature tensor R̃ has a traceless part, and its scalar curvature R̃
is not constant anymore (see the conformal relation (7.42) in Gourgoulhon, 2012).
Such a feature makes the equation hardly tractable, which is something we don’t
expect for a (non-Euclidean) Newtonian theory.

The only way to have a complete separation is to suppose DΦv = 0. But in that
case the vector v, which is interpreted as the spatial velocity of the fluid, is purely
rotational. Therefore it is difficult to consider that the proposed NEN theory can
be called ‘Newtonian’.
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3.3.2.7 Advantages and caveats of the approach

The advantages are:

• The approach is based on the NC formulation and a minimal modification of
the NC equation.

• The additional curvature term in the NC equation is defined with respect to
the fluid 4-velocity.

The caveats are:

• There is a gravitomagnetic field which cannot be taken to be zero without loss
of generality on v.

• The vectors inside Θ and Ω are different.

• The spatial metric cannot be separated in space and time without loss of
generality on v. No ‘simple’ background metric can be defined, and the system
of equations is hardly tractable.

• There is no N-body description, because the Newton-Gauss equation (3.25)
is not linear and does not only feature the gravitational field, but also the
velocity.

3.3.3 NEN theory II: Galilean observer curvature term

In this section, we consider B := G.

3.3.3.1 The system of equations

The system of 3D-equations is obtained by projecting the modified NC equation
with respect to u and h. The main difference comes from the projections of the
additional curvature term in the NC equation. We have

R
3

bG µνh
aµhbν =

R
3
hab ;

R
3

bG µνu
µhaν =

R
3
va ;

R
3

bG µνu
µuν =

R
3
vµvν bG µν .

(3.36)
Then the 3D system of equations corresponds to: the following evolution equa-

tions

(∂t − Lβ) ρ = −ρθ −Dcq
c, (3.37)

(∂t − Lβ)hab = 2 Θab, (3.38)

(∂t − Lβ) θ = −4πGρ+ Λ +Dc a
u c − ΘcdΘcd + ΩcdΩcd −R

3
vcvc, (3.39)

(∂t − Lβ) Ωab = D[a au b], (3.40)
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and constraint equations

Dc (Θac + Ωac) −Daθ =
R
3
va, (3.41)

D[aΩbc] = 0, (3.42)

Rab =
R
3
hab, (3.43)

Rd[abc] = 0, (3.44)

with

ρ au a = −DaP −Dcπ
ca − [(∂t − Lβ) qa + qaθ + 2qc (Θca + Ωca)] . (3.45)

With respect to the first proposed NEN theory, this system of equations fea-
tures additional term sin the momentum constraint (3.41) and in the Raychaudhuri
equation (3.39). These terms will radically change the solutions to the constraint
equations and the expansion law, as presented in the following section.

3.3.3.2 Solving the constraint equations

Following the same logic than in section 3.3.2.2 for the first NEN theory, the mo-
mentum constraint implies

Daχ = 0, (3.46)

Dc Ω∆
ca = 0. (3.47)

This is equivalent to the Euclidean case in chapter 2. Therefore χ depends only on
t, and Ω

∆ = 0. We finally have

Θab = H(t)hab +D(avb) + Ξab ; Ωab = D[cva] + ωab, (3.48)

with H := 〈χ〉Σ = χ.

3.3.3.3 The cosmological system

The cosmological system is obtained when rewriting the system (3.9)–(3.17) as func-
tion of the gravitational field, and accounting for the expression of Θ and Ω in
equation (3.48):

Non-Euclidean-Newtonian theory II: The gravitational field is given by

ga = (∂t − Lβ) va + vcDcv
a + 2vc (Hδc

a + Ξc
a + ωc

a) − (a6=grav)a, (3.49)

Dcg
c = −4πGρ̂− Ξ̂cdΞcd + ω̂cdωcd, (3.50)

D[agb] = − (∂t − Lβ+v)ωab. (3.51)
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These equations are completed by

Rab =
R(t)

3
hab, (3.52)

(∂t − Lβ)hab = 2
(
H(t)hab +D(avb) + Ξab

)
, (3.53)

(∂t + Lβ) ρ = −ρ (3H +Dcv
c) , (3.54)

and the averaged equations

3
(
Ḣ +H2

)
= −4πG 〈ρ〉Σ + Λ −

〈
ΞcdΞ

cd
〉

Σ
+
〈
ωcdω

cd
〉

Σ
, (3.55)

〈ρ〉Σ =
Mtot

VΣ(t)
, (3.56)

where we recall that β corresponds to the choice of coordinates (see section 2.2.2.3),
Ξ is a traceless-transverse tensor and ω is a harmonic 2-form.

3.3.3.4 Expansion law or generalised Buchert-Ehlers theorem

The expansion law is the same as for the (Euclidean) Newton theory [equation (2.59)].
Therefore, the same conclusions apply: the expansion law for Ξ = 0 = ω is given
by the acceleration Friedmann equation (1.64), and this for any inhomogeneous so-
lutions. This means that there is no global backreaction of the inhomogeneities on
the isotropic expansion. If Ξ 6= 0 and ω 6= 0, the backreaction is

QΣ = −
〈
ΞcdΞ

cd
〉

Σ
+
〈
ωcdω

cd
〉

Σ
. (3.57)

The fields Ξ and ω are totally free, and especially they are decoupled from the fluid
spatial velocity v, so unless there is a hidden (from general relativity for instance)
condition relating these tensors to v, it is not clear to me if we can consider that
equation (3.57) corresponds to a physical backreaction. Still a discussion on the
role(s) of Ξ is made in section 2.5.4.

If this NEN theory is the right one, then an Euclidean, spherical or hyperbolic
universe, the dynamics of which is locally Newtonian, has no global backreaction.
For such a universe dark energy cannot be described by the global backreaction.

Remark. In equation (3.57), the backreaction QΣ is defined as the deviation with respect

to the Friedmann equation: i.e. QΣ := 3
(
Ḣ +H2

)
+ 4πG 〈ρ〉Σ − Λ. Because the Ray-

chaudhuri equation (3.39) features an additional term, it is not algebraically equivalent
to the Raychaudhuri equation (2.35) in (Euclidean) Newton’s theory, and thus the for-

mula (1.108) is not valid anymore. Instead the definition QΣ := 3
(
Ḣ +H2

)
+4πG 〈ρ〉Σ−Λ

leads to

QΣ :=
2

3

(〈
θ2
〉

Σ
− 〈θ〉2

Σ

)
−
〈
σcdσ

cd
〉

Σ
+
〈
ΩcdΩ

cd
〉

Σ
− R

3
〈vcvc〉Σ .
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3.3.3.5 Space–time separation of the spatial metric

Taking equation (3.53) in the class of coordinates where β = −v (Galilean coordi-
nates), the equation becomes

∂t|−v
hab − 2H(t)hab = 2 Ξab, (3.58)

which, in the case Ξ = 0, leads to

hab(t, x
i) = a2(t)h̃ab(x

i), (3.59)

where the Ricci curvature tensor R̃ related to the metric h̃ is R̃ =
Ri

3
h̃.

Equation (3.59) shows that the metric components can be separated into space
and time dependence, which was also the case in (Euclidean) Newton’s theory. This
is a major property as it ensures that in the coordinates β = −v, we can solve the
system (3.52)–(3.56) assuming a time-independent background metric h̃.

In the case Ξ 6= 0, the equation (3.58) does not lead to the separation of the
metric components. Because Ξ is a symmetric traceless-transverse tensor, it cannot
be written as the symmetric gradient of a vector. This means that there is no coor-
dinate system in which equation (3.53) becomes ∂t|βhab + 2H(t)hab = 0. Therefore,
the space and time separation of h is only possible if Ξ = 0.

3.3.3.6 N-body description

A major strength of Newton’s theory is the fact that its system of equations can
be written either as a partial differential system (fluid description), or as an ordi-
nary differential system (particle description). This results from the linearity of the
Newton-Gauss equation. In the present proposed NEN theory, the same applies:
the particle description is obtained when solving equation (3.50) for ρ = δΣ. Then
the second law of Newton is retrieved when introducing a particle position ya(t) and
writing va = ẏa: equation (3.49) becomes

ÿa + 2ẏa (Hδc
a + Ξc

a + ωc
a) = gatot + (a 6=grav)a, (3.60)

where gtot is the gravitational field created by the set of particles.

3.3.3.7 The mass point gravitational field

The N-body description requires the mass point solution of the cosmological Newton-
Gauss equation which corresponds to the solution of

Dcg
c = −4πG

[
δΣ − M

VΣ

]
, (3.61)
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where VΣ is the volume of the spatial manifold and M the mass of the Dirac field.
We assumed Ξ = 0 = ω. Choosing the hyperspherical coordinates (3.3), and the
particle placed at the origin, we obtain

gξ =





− GM

R2
c sin2 (ξ)

, if R < 0 (hyperbolic)

−GM

πR2
c

[
cot ξ +

π − ξ

sin2 ξ

]
, if R > 0 (spherical)

(3.62)

with Rc(t) = a(t)Rc,i.

In the case of a spherical geometry, the behaviour at the poles is

gξ(ξ ∼ 0) = −GM

R2
cξ

2
− GM

3R2
c

+ O(ξ), (3.63)

gξ(ξ ∼ π) = −2GM

3πR2
c

(π − ξ) + O
[
(π − ξ)3

]
. (3.64)

We see that the first caveat of the proposition of Roukema & Różański (2009) and
Barrow (2020) is solved, i.e. the field at the opposite pole ξ = π does not diverge
anymore. It is still a repulsive field, but which tends to zero when ξ → π. This is
physically coherent.

The second term in the rhs of equation (3.63) is an additional term with respect
to Newton’s gravitational law. It is called topological acceleration. Such a zeroth
order term is also present in the (Euclidean) Newton theory (but in a different form)
in the case Σ is a 3-torus (Roukema et al., 2007). Therefore it is not necessarily
linked to non-Euclidean geometries, but also to non-trivial topologies.

Remark. It is also possible to consider a mass point at the center of a spherical multi-

connected topology. This was done in Roukema & Różański (2009) for the topologies which

fundamental domains are platonic solids. The method is to consider that the 3-sphere is

tilted with the fundamental domain of the topology, i.e. the covering space representation

(see section 1.2.4.2 and figure 1.4). Then, as the Newton-Gauss equation is linear, the

gravitational field is given by the sum of the spherical mass point solution (3.62) over all

the tilling mass points. However, is one wants to use this method for closed hyperbolic

geometries, then the solution is not a sum of the first equation in (3.64), because M = 0

for this solution.

3.3.3.8 Advantages and caveats of the approach

The advantages are:

• The approach is based on the NC formulation and a minimal modification of
the NC equation.
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• As for the Euclidean case in section 2.4.3, equation (3.53) in Galilean coor-
dinates, along with Ξ = 0, leads to the space-time separation of the spatial
metric.

• N-body description is possible.

• There is no gravitomagnetic field if ω = 0, which is expected from general
relativity.

The caveats are:

• The additional curvature in the NC equation is not defined with respect to
the fluid 4-velocity: the starting point is less ‘natural’ (but the final form of
the cosmological system is more ‘natural’).

3.4 Lorentzian manifold from a solution of the
Newton’s equations

This section presents the results of the second part of my paper Vigneron (2020).
This study is slightly on the margin of the main research line of this thesis. It
was a first stage in the construction of the NEN theory. However, it was a dead-
end and failed at giving this theory. Furthermore, the study was done before the
development of the 1+3-NC equations, and therefore only considers the classical
Newton equations. While the results presented in this study are still correct, the
approach became obsolete compared to the one presented in chapters 2 and 3 which
uses the Newton-Cartan theory and Galilean spacetimes. For these reasons, in this
section, I will only summarise the methods and results of this study. The full paper
is put in appendices B and C.

3.4.1 The main results

In chapter 2 and in appendix B, we showed that Newton’s equations are (nearly)
algebraically equivalent with the 1+3-Einstein equations. Furthermore, the degrees
of freedom on the choice of spatial coordinates is also equivalent: it depends on
a vector, called the shift vector. Using these similarities between Newton’s theory
and general relativity, we show in section C.1 that we can construct a Lorentzian
manifold MN equipped with a Lorentzian structure (g, ∇) from a solution of the
classical Newton equations. This is performed with a push-forward of the 1+3-
Newton equations, which is the reverse of the construction of the 3+1-Einstein
equations presented in section 1.1.2. The Lorentzian metric g, obtained from a
spatial velocity v solution of the kinematical Newton system, is

gαβ =

(
−1 + vcv

c vb
va hab(x

i)

)
, (3.65)
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in Eulerian coordinates with hab a flat metric. Because this construction was done
before the 1+3-NC equations, it lacks the fundamental expansion field χ.

The goal of this construction was to be able to compare directly a Newtonian
solution to a GR solution. For both solutions to be said ‘equivalent’, the relativistic
solution needs to be given by the metric (3.65).2 In section C.1, we show that this
is the case only if the fluid is irrotational and has a vanishing rest frames Ricci
curvature.

As an example, we then show in section C.2.5 that the Schwarzschild geometry
corresponds to such a solution: the Schwarzschild metric written in Gullstrand-
Painlevé coordinates (MacLaurin, 2019), i.e. related a parabolic free-falling test
fluid/observer, is exactly of the form (3.65), with va =

(
±
√

2GM
r
, 0, 0

)
.

As a side result of the construction, a Newton-to-GR dictionary is also defined
in section C.2.4.

3.4.2 What was expected next

The next step was to use these results to find the NEN theory: I expected that, as for
the (Euclidean) Newton theory, there should exist solutions of GR which are exact
NEN solutions in the sense given above. The guess was to say that these solutions
would have a metric of the form (3.65), but with a positive/negative spatial scalar
curvature (for spherical or hyperbolic geometries).

We can however show that a metric of this form, solution of the Einstein equation,
and in spherical symmetry (LTB solutions), is necessarily homogeneous (Lasky et al.,
2007), i.e. v = 0. This means that with this guess, the spherical solutions of the
NEN theory would necessarily be homogeneous, i.e. with a zero spatial velocity,
which is obviously not expected.

Then I stopped searching the NEN theory in this direction, and focused on the
Newton-Cartan approach, which ultimately lead to the NEN limit presented in the
next chapter. This limit will be a powerful tool to study the link between Newton’s
theory and general relativity, and in fact my entire paper (Vigneron, 2020) could be
redone in an easier way and even be generalised using this tool.

3.5 Conclusion

In this chapter we presented two novel approaches to define a non-Euclidean New-
tonian theory, based on the simplest modification of the Newton-Cartan equation,
allowing for a non-zero Ricci curvature. We derived the expansion law in each case,

2The Newton-Cartan formalism provides a better definition of this equivalence. This will be
presented in chapter 4.
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thus generalising the Buchert-Ehlers theorem. In the first approach, a backreaction
appears which depends, in particular, on the averaged bulk velocity of the fluid (an
expected feature of backreaction), and also on the type of geometry. The second
approach has the same expansion law as in (Euclidean) Newton’s theory. We also
studied the possibility of doing N-body calculations in each case, along with the pos-
sibility of separating the spatial metric in space and time, i.e. having a background
description. These results are summarised in table 3.1.

None of the proposed theories is directly derived from general relativity. This
has to be done using a limit, which is presented in chapter 4.
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Chapter 4

Galilean limit of general relativity

T
he final step in the generalisation of the Buchert-Ehlers theorem is to develop
a non-Euclidean Newtonian limit of general relativity, aiming at recovering
one (or another) of the NEN theories proposed in chapter 3. The strategy I

followed was to adapt an existing limit to allow for non-Euclidean geometries: the
Galilean limit of general relativity (Künzle, 1976). I will first give the motivations
for this choice (section 4.1), then I will present the limit itself and its properties in
section 4.2. Section 4.3 presents the Euclidean case, i.e. the Newtonian limit, and
section 4.4 presents the non-Euclidean case.

4.1 Motivations

4.1.1 The classical Newtonian limit and its limitations

The Newtonian limit is generally defined as a weak field limit of general relativity,
where the Lorentzian metric g is a perturbation of the Minkowski metric η as gαβ =
ηαβ +fαβ where |fαβ| ≪ 1 and |∂γfαβ| ≪ 1. The Einstein equation is then linearised
at first order in fαβ and its derivatives. Details of how the Poisson equation is
recovered from this limit can be found, e.g., in chapter 4 of Chruściel (2019).

This approach to the Newtonian limit has many drawbacks. First it is not a well-
defined limit of a 1-parameter family of solutions of the Einstein equations. There
is only an implicit small parameter ǫ with respect to which the metric is expanded.
So it is difficult to assess which properties the relativistic solutions should have so
that they admit such a limit. The limit is also built such that the Poisson equation
is recovered. However, we saw in chapter 2 that the complete Newton theory should
feature the cosmological Poisson equation (2.54), and that the classical Poisson
equation (1.91) is only valid for isolated systems in R3. So the limit does not allow
us to recover the full Newton theory.

Because the perturbation is defined with respect to the Minkowski metric, the
limit is also necessarily Euclidean for the spatial sections. One way to allow for

87
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non-Euclidean sections would be to replace η by an FLRW metric. This is the
approach of the standard perturbation theory in cosmology (Bardeen, 1980). This
would imply by definition that the spatial expansion is necessarily given by the
Friedmann equations. This is obviously not appropriate as we want to derive the
expansion law rather than assuming it as a background. This means that we need
to perform a perturbation around a metric that we do not know a priori, which is
difficult to define.

4.1.2 The ‘right’ definition of a NEN theory

Another way to tackle the problem of a non-Euclidean Newtonian limit is to rede-
fine what we called a non-Euclidean Newtonian theory. In the previous chapters, we
defined such a theory as a theory whose equations should reduce to Newton’s equa-
tions on scales small with respect to the spatial curvature (curvature introduced to
allow for non-Euclidean geometries). This was indeed the case for the NEN theories
proposed in chapter 3. However this is not a precise mathematical definition because
it does not give any information on the theory before this small-curvature limit is
taken. Furthermore we saw in chapter 2 that Newton’s theory is best formulated,
and argued that it must be, in its geometrised form, i.e. the Newton-Cartan theory.
In particular, we saw that from this formulation, the expansion arises as an emerg-
ing field of the theory. Another fundamental aspect of this formulation is that the
Galilean invariance of spacetime is taken as a fundamental principle on which the
theory is based. We can therefore redefine a NEN theory as follows:

Definition. A non-Euclidean Newtonian theory is a Galilean theory whose
spatial sections have a non-Euclidean geometry.

where we define

Definition. A Galilean theory is a theory defined on a Galilean manifold. It is
given by an equation relating the Riemann tensor of the Galilean structure to the
energy content.

Remark. The Galilean invariance at the origin of the definition of Galilean structures is

defined as a local invariance between frames (see Künzle, 1972), whereas a global invariance

would necessarily require a flat Euclidean space. That is why Galilean manifolds can have

non-Euclidean spatial sections.

It comes from this definition that the NEN limit of general relativity can be

defined as a limit of structures: from a Lorentzian structure (M, g,
g

∇) solution
of the Einstein equation, to a Galilean structure (M, h, τ , ∇) with non-Euclidean
sections. More generally, we call Galilean limit of general relativity, such a limit of
structures, but without assumptions on the geometry of the spatial sections. Thus
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the Newtonian and the NEN limits are special cases of Galilean limits of general
relativity.

Remark. A priori, the Newtonian and NEN limits do not cover all the possible Galilean

limits, because one could conceive a Galilean limit which is Euclidean, but with non-zero

spatial Ricci curvature, hence being different from the Newtonian limit.

There remains to find a 1-parameter family of structures (g,
g

∇) solution of the
Einstein equation, which corresponds to a Galilean structure at leading order. Such
a family was constructed by Künzle (1976) and Dautcourt (1964)1 to derive the
(Euclidean) Newton-Cartan theory from general relativity. In this chapter we will
see to what extent it can be used for non-Euclidean geometries.

4.2 Galilean limit of Lorentzian structures

We present in this section the limit, and its properties, of a Lorentzian structure to
a Galilean structure. For now we will not assume that the Lorentzian structure is
solution of the Einstein equation. This will be done in sections 4.3 and 4.4.

4.2.1 The limit

Main hypothesis of the limit: We consider a 4-manifold M and a 1-parameter
family of smooth Lorentzian metrics {λg}λ>0 on M that depends smoothly on
λ, such that

λ
gαβ = hαβ + λ

1
gαβ + O(λ2), (4.1)

where ¯̄
h is a positive semi-definite tensor field of rank 3 on M, i.e. its signature

is (0,+,+,+).

From this hypothesis, it can be shown that the covariant components λ
gαβ of the

Lorentzian metric are decomposed with respect to λ as follows

λ
gαβ = − 1

λ
τατβ +

0
gαβ + O(λ), (4.2)

where the 1-form τ
¯

lies in the kernel of ¯̄
h, i.e. τµhµα = 0, and such that τµτν

1
gµν = −1.

The proof is given in section D.1 of appendix D.

By definition we have λ
gαµ

λ
gµβ = δαβ , which implies that hαµ 0

gµβ = δαβ − τβB
α,

where we denote Bα := −τµ 1
gµα. Then we can write 0

gαβ as

0
gαβ = bB αβ − 2φτατβ, (4.3)

1Künzle (1976) claimed that his limit was an improvement of the original limit proposed by
(Dautcourt, 1964). However, I was not able to get access to the latter paper, and therefore I cannot
present the original version of the limit.
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where φ is an arbitrary scalar and bB αβ is defined in equation (2.4) and corresponds

to the projector orthogonal to B̄ with respect to the metrics τ
¯

and ¯̄
h. Then,

computing the Levi-Civita connection of λ
g, we find

λ

Γγαβ =
1

λ
hγµ

(
τα∂[µτβ] + τβ∂[µτα]

)
+
(
φhγµ +

1
gγµ

) (
τα∂[µτβ] + τβ∂[µτα]

)

+ hγµ
(
∂(α bB β)µ − 1

2
∂µ bB αβ

)
+Bγ∂(ατβ) + τατβh

γµ∂µφ+ O(λ). (4.4)

If the 1-form τ
¯

is closed, which we will suppose from now, the connection
λ

Γγαβ has a
regular limit for λ → 0, which correspond to a Galilean connection compatible with
τ
¯

and ¯̄
h:

λ

Γγαβ =
0

Γγαβ + O(λ)

= ΓB γ
αβ + τατβh

γµ∂µφ+ O(λ). (4.5)

This Galilean connection is not general as the 2-form καβ [see equation (2.2)] nec-
essarily takes the form καβ = τ[α∂β]φ.

This shows that the Lorentzian structure (λ
g,

λ

Γγαβ) becomes at leading order the

Galilean structure (τ
¯

, ¯̄
h,

0

Γγαβ).

4.2.2 Some remarks

We defined a 1-parameter family of Lorentzian structures on a 4-manifold M which
becomes at leading order a Galilean structure on M. The only additional hypothesis
made after the definition of the family {(

λ
g,

λ

Γγαβ)}λ>0 is the closedness of the 1-form
τ
¯

.

This is a covariant limit, as it does not require to be done in a specific coordinate
system.

While the limit of the covariant components of the Lorentzian metric is not
regular, i.e. the leading order is a ‘-1’ order, the Lorentzian connection is regular
for λ → 0, which implies that the Riemann tensor

λ

Rσ
αβγ is also regular.

Under the framework of this limit, the manifold M is the same, only the structure
changes with the parameter λ. This contrasts with perturbation approaches where a
1-parameter family of 4-manifolds {

λ

M}λ>0 is also defined (e.g. Bardeen, 1980; Ellis
& Bruni, 1989; Green & Wald, 2012).

As the computation of spacetime distances is made using the metric(s) of the
structure, this means that, if the Lorentzian structure is well approximated by its
leading order, physical measures of distances in M can be made using a Galilean
structure, i.e. by assuming a prefered space and time.
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A condition for the existence of this limit given a 4-manifold M is that there
must exist a time and space orientable Lorentzian structure in this manifold, or in
other words M must be orientable and non-compact [see section 3 of Künzle (1972)
and Künzle (1976)].

At leading order the contravariant and covariant components of the Lorentzian
metric are not each others inverse anymore.

4.2.3 Interpretation of λ

The Minkowski metric, in coordinates where x0 has the dimension of a time, can
be written as ηαβ = diag(−c2, 1, 1, 1), where c is the speed of light. Its inverse is
ηαβ = diag(−c−2, 1, 1, 1). Then assuming c → ∞ these two matrices become

ηαβ
c→∞∼ diag(−c2, 0, 0, 0),

ηαβ
c→∞∼ diag(0, 1, 1, 1).

These leading orders for c → ∞ have the same form as the leading order of λ
g

for λ → 0: in coordinates adapted to the foliation given by τ
¯

, i.e. τα = δ0
α and

hαβ = hab, we have 0
gαβ = hab and

−1
g = diag(−1/λ, 0, 0, 0). This shows that the limit

λ → 0 can be seen as a limit c → ∞ where λ = c−2.

Remark. The leading order of ηαβ can be seen as a qualitative justification of the initial

hypothesis we made for the Galilean limit.

Another way to interpret λ is to say that the speed of light related to a Lorentzian
metric λ

g of the family {λg}λ>0 depends on λ and is given by

cλ = λ−1/2. (4.6)

This means that the family {λg}λ>0 of Lorentzian metrics defines a family of light-
cones at each events of M. The light-cone related to a metric

λ1
g will be more open

than the one related to a metric
λ2
g if λ1 < λ2. This is represented in figure 4.1.

If one wants to set the speed of light to be 1, which corresponds to choosing a
coordinate system such that x0 = ct, this is only possible for one Lorentzian metric
λ
g. For all the other metrics, the speed of light in this coordinate system will differ
from 1. This property is really important as it tells us that when we will consider
equations which should feature the speed of light, we cannot take c = 1, and are
obliged to take c = λ−1/2. This will be the case for the norm of timelike vectors and
for the Einstein equation.

Remark. As the light-cones represent the causality of the spacetime structure, the param-

eter λ was also called causality constant by Ehlers (1981); Ehlers (2019).
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Figure 4.1: Scheme of three light-cones of the family {λg}λ>0 of Lorentzian metrics at
an event X in M. The smaller λ is, the more open the light-cone is: λ1 < λ2 < λ3.
The slice corresponds to the only hypersurface member of the foliation defined by
τ
¯

and passing through X. We see that the limit of the family of light-cones is
this hypersurface. The red vector represents the 4-velocity of the event X and is
proportional to τ . The green vector is an example of a τ -timelike vector which is

g-timelike for the Lorentzian metric
λ1
g , but g-spacelike for

λ2
g and

λ3
g .

4.2.4 Limit of timelike and lightlike vectors

Because the notion of timelike vectors is defined in both structures, but is not
equivalent, to distinguish between the two, we will call g-timelike vectors the ones
related to the Lorentzian structure, and τ -timelike vectors the ones related to the
Galilean structure. This notation will also be applied for the other common notions.

Let us consider a g-timelike vector ū which is ‘unit’ for every member of the
family {λg}λ>0, i.e. uµuν λ

gµν = −1/λ. If we assume that this vector does not depend
on λ, then for a sufficiently small λ we have (uµτµ)2 = 1. As ū is any unit g-timelike

vector, this cannot be possible. So, ū needs to depend on λ. We write it
λ

ū (more
precisely we define a family { λ

ū}λ>0 of vectors). Because it is unit for all λ
g then we

have
λ
uα =

0
uα + λ

1
uα + O(λ),
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with 0
uµτµ = 1, and 1

uµτµ = 1
2

0
uµ

0
uν

0
gµν . Concerning the covariant components of λ

u,
we have:

λ
uα :=

λ
uµ

λ
gµα = − 1

λ
τα +

0
uα + O(λ2),

where 0
uα =

0
uµ

0
gµα − 1

2

0
uµ

0
uν

0
gµντα. Note that 0

uα 6= 0
uµ

λ
gµα.

This result means that a unit g-timelike vector for all members of {λg}λ>0 cor-
responds to a unit τ -timelike vector at the limit λ → 0. However, the reverse is
not possible: a τ -timelike vector can never correspond to a g-timelike vector for all
λ. This can easily be seen using figure 4.1: for a given λ-independent vector, there
always exists a λ0 such that, for all λ > λ0, the vector lies outside of the lightcone
given by λ

g.

Let us consider the case of lightlike vectors. We define a family vector
λ

ū such
that λ

uµ
λ
uµ

λ
gµν = 0 for all λ. Then if we assume that

λ

ū can be decomposed into
Laurent series of λ, then each term in this series would be zero. This means that
we cannot define the limit of a lightlike vector. In other words, a Galilean structure
has no equivalent of the lightlike vectors of Lorentzian structures.

Remark. A possibility would be to consider non-integer powers of λ.

4.2.5 Limit of the Riemann tensor

The family {λg}λ>0 defines a family of Riemann tensors {
λ

Riem}λ>0 on M. Using
the expression of the Riemann tensor in terms of the coefficients of the connection,

λ

Rσ
γαβ = 2∂[α

λ

Γσβ]γ + 2
λ

Γσµ[α

λ

Γµβ]γ, (4.7)

we easily see that the development of
λ

Riem takes the form

λ

Rσ
γαβ =

0

Rσ
γαβ + O(λ),

where
0

Rσ
γαβ is the Riemann tensor associated to the Galilean connection coefficients

0

Γγαβ. It comes from this that the leading order of the Ricci tensor coefficients
λ

Rαβ

correspond to the Ricci tensor of the Galilean connection:

λ

Rαβ =
0

Rαβ + O(λ).

We recall that the Riemann and Ricci tensors of Galilean connections are only
defined by the connection commutation (1.1) as, respectively, a (1,3)-tensor and
a (0,2)-tensor. This is because Galilean structures do not feature non-degenerate
metrics to raise and lower indices. For instance we have

λ

Rσγ
αβ :=

λ

Rσ
µαβ

λ
gµγ =

0

Rσ
µαβh

µγ + O(λ).
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The limit of the spacetime scalar curvature is

λ

R :=
λ

Rµν
λ
gµν = Rh + λ

(
1
gµν

0

Rµν + hµν
1

Rµν

)
+ O(λ2),

where Rh and Rh αβ are respectively the spatial scalar curvature and the spatial
Ricci tensor of the τ -foliation induced by the Galilean structure, i.e. related to the
spatial metric ¯̄

h. The limit of the Einstein tensor is

λ

Gαβ =
1

λ

[
Rh
2
τατβ

]
+

0

Rαβ − 1

2

[
Rh 1
gαβ −

(
1
gµν

0

Rµν + hµν
1

Rµν

)
τατβ

]
+ O(λ2),

(4.8)
λ

Gα
β = hαµ

0

Rµβ − Rh
2
δαβ + O(λ), (4.9)

λ

Gαβ = Rh αβ − Rh
2
hαβ + O(λ), (4.10)

where
1

Rαβ depends on the first order of the Lorentzian connection (not specified
here).

Because the contracted Bianchi identity features raised Riemann tensor indices,
it is not defined for Galilean structures. Its limit is

λ

∇µ

λ

Gµ
β = hµν

0

∇µ

0

Rνα −
0

∇α
Rh
2

+ O(λ) = 0. (4.11)

The same applies for the interchange symmetry relation, which follows from the first
Bianchi identity,

λ

Rα β
γ σ =

λ

Rβ α
σ γ :

hµα
0

Rα
γµσ − hµβ

0

Rβ
σµγ + O(λ) = 0. (4.12)

The leading order of this equation is equivalent to the Trautman-Künzle condi-
tion (2.19). Therefore this condition, which was initially added to Newton-Cartan
to obtain the conservation of vorticity and close the system of equations (see the
remark in section 2.3.1), naturally follows from the Galilean limit of Lorentzian
structures. As in the relativistic case, it is a purely geometrical condition as it does
not require the Einstein equation.

Remark. The condition under this form is also used by Ehlers in his frame theory. But it

is miswritten in the original paper Ehlers (1981); Ehlers (2019) [see equation (7)], while it

is under the right form in Ehlers (1997).

Apart for the leading orders of the Bianchi identities, no other constraint on the
Galilean structure appears. In particular, from this limit alone, the spatial Ricci
curvature Rh αβ is totally free. Contraints on this tensor can only appear once we
assume the Lorentzian structures to be solutions of the Einstein equation.
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4.3 The (Euclidean) Newtonian limit

4.3.1 Limit of the energy-momentum tensor

The (Euclidean) Newtonian limit is obtained when we consider the Lorentzian struc-
tures to be solutions of the Einstein equation and that the energy-momentum (2,0)-
tensor is regular for λ → 0. In the present chapter, we will assume this tensor to be
related to a matter fluid as described by equation (1.4) in section 1.1.1.2. We then
have

λ

Tαβ =
λ
ǫ

λ
uα

λ
uβ + 2

λ
q(α λ
uβ) +

λ
p

λ

bu αβ +
λ
παβ, (4.13)

where the expansion of
λ

bu αβ in terms of λ can be found in section D.2 of appendix D.
Because the g-timelike vector λ

u ‘moves’ with λ, its rest frames also depend on λ,
i.e. its orthogonal projector depends on λ. Therefore, any tensor which is defined
as being orthogonal to λ

u will also ‘move’ with λ. That is why the heat flux and the
anisotropic pressure depend on λ.

As λ
qα, λ

παβ and
λ

bu αβ are regular, then λ
qα :=

λ
qµ

λ

bu µα and λ
παβ :=

λ
πµν

λ

bu µα

λ

bu νβ are
also regular for λ → 0. We have

λ

Tαβ =
0
ǫ

0
uα

0
uβ + 2

0
q(α 0
uβ) +

0
p

0

bu αβ +
0
παβ + O(λ), (4.14)

λ

Tαβ =
1

λ

[
− 0
ǫ

0
uατβ − 0

qατβ
]

+ O(λ), (4.15)

λ

Tαβ =
1

λ2

[
0
ǫτατβ

]
+

1

λ

[
1
ǫτατβ − 0

ǫτ(α
0
uβ) − 2

0
q(ατβ)

]
+ O(1), (4.16)

λ

T :=
λ

T µν
λ
gµν =

1

λ

[
0
ǫ
]

+
[

1
ǫ+ 3

0
p
]

+ O(λ), (4.17)

with 0
qµτµ = 0 and 0

πµατµ = 0. The variable 0
ǫ corresponds to the rest mass density ρ

of the fluid, and 1
ǫ to an internal energy density. Therefore if we consider only a dust

fluid, the energy density λ
ǫ is only a zero order term. The other orders depend on

the type of fluid. For a perfect fluid, we expect
n+1
ǫ = 0 and n

p = 0 for all n > 1, so
that the additional source of energy is only internal.

4.3.2 Limit of the Einstein equation

The Einstein equation (1.3) features two constants: the cosmological constant Λ and
the gravitational constant G. From the Einstein equation alone these constants do
not have, a priori, a preferred dimension. For instance, if we consider Λ to have the
dimension of a curvature, then we will have the term Λ

λ
gαβ in the Einstein equation.

Instead, if we consider that it has the dimension of a time−2, then we will have
λΛ

λ
gαβ. However, only the second choice leads to the Newton-Cartan equations at

the limit. Concerning the gravitational constant in front of the energy-momentum
tensor, it must appear as 8πGλ2 to lead to the right limit. Therefore we consider
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that the Lorentzian metrics { λ
g}λ>0 are solutions of the following Einstein equations:

λ

Gαβ + λΛ
λ
gαβ = 8πGλ2

λ

Tαβ, (4.18)

or equivalently in the form

λ

Rαβ = 8πGλ2
(

λ

Tαβ − 1

2

λ

T
λ
gαβ

)
+ λΛ

λ
gαβ. (4.19)

Using the contravariant form of equation (4.18) along with equation (4.9) we
immediately see that the regular hypothesis of the energy-momentum tensor (4.13)
implies that the spatial Ricci curvature Rh αβ of the Galilean structure is necessarily
zero. While this is expected for a (Euclidean) Newtonian limit, this is a problem if
we want a non-Euclidean spatial geometry. In section 4.4 we will see what are the
solutions to tackle this problem.

Using the Einstein equation in the form (4.19) we obtain

0

Rαβ = (4πGρ− Λ) τατβ, (4.20)

which corresponds to the Newton-Cartan equation (2.18). The other two equa-
tions (2.17) and (2.19) correspond respectively to the contracted Bianchi iden-
tity (4.11) and the first Bianchi identity (4.12). In particular, the former written in
terms of fluid variables and projected along τα leads to the conservation of the mass
density (2.24):

0

∇µ

(
0
ǫ

0
uµ
)

= −
0

∇µ
0
qµ. (4.21)

Then as discussed in section 2.3.5, we must take 0
qα = 0 so that the mass of a fluid

element is conserved.

The conservation of the internal energy 1
ǫ is obtained by taking the next order of

the conservation of the energy-momentum tensor. It features the first order of the
connection

1

Γγαβ which, in this equation, can be expressed as function of 0
uα and 0

gαβ
which are known. We do not present the calculation in the present study.

This concludes the derivation of the Newton-Cartan equations from the Einstein
equation using the Galilean limit of Lorentzian structures.

4.3.3 Constraint on the Coriolis field

Contrary to the general Galilean structure considered in chapter 2, the one obtained
from general relativity is constrained: equation (4.5) implies that the vorticity tensor
Ωαβ of the fluid 4-velocity 0

uα, defined as

Ωαβ = hµ[α
0

∇µ
0
uβ], (4.22)
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reduces to
Ωαβ = hµ[α ∇B µ

(
0
u−B

)β]
. (4.23)

As 0
uα−Bα is spatial, then Ωab = D[a

(
0
u−B

)b]
, which means that Ωab is exact. This

shows that the harmonic 2-form ω, called Coriolis field in chapter 2, is necessarily
zero when the Newton-Cartan equations are derived as a limit of general relativity.

4.3.4 Preferred foliation?

One criticism we can make about the Galilean limit is that it seems to imply a
preferred foliation in the manifold M, the τ -foliation, on which the limit must be
taken. This would mean that only a certain class of solutions to the Einstein equation
would be suited for a Newtonian limit. However, this interpretation of the limit is
a priori wrong. To understand why, one can take the example of the Schwarzschild
metric in two coordinate systems adapted to two different foliations:

(i) the Schwarzschild coordinates (corresponding to an accelerated observer at
fixed distance from the singularity):

gαβ = diag

[
−
(

1

λ
− 2GM

r

)−1

;
(

1 − λ
2GM

r

)
;

1

r2
;

1

r2 sin2 θ

]
, (4.24)

gαβ = diag

[
−
(

1

λ
− 2GM

r

)
;
(

1 − λ
2GM

r

)−1

; r2; r2 sin2 θ

]
. (4.25)

(ii) the Gullstrand-Painlevé coordinates (corresponding to a geodesic observer in
parabolic radial free-fall):

λ
gαβ =




−λ ±λ
√

2GM
r

0 0

±λ
√

2GM
r

1 − λ2GM
r

0 0

0 0 1
r2 0

0 0 0 1
r2 sin2 θ



, (4.26)

λ
gαβ =




(
1
λ

− 2GM
r

)
±
√

2GM
r

0 0

±
√

2GM
r

1 0 0

0 0 r2 0
0 0 0 r2 sin2 θ



. (4.27)

In both cases the coefficients λ
gαβ reduce to diag

[
0; 1; 1

r2 ; 1
r2 sin2 θ

]
at leading order,

and λ
gαβ to diag

[
− 1
λ
; 0; 0; 0

]
, which both correspond to the leading orders of the

Galilean limit. The time and space metric are however related to a different foliation.

This shows that the Galilean limit of the Schwarzschild metric can be performed
in at least two different foliations, i.e. there is no preferred foliation in which we
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need to perform this limit. So in the end, the only requirement to be able to perform
the Newtonian limit from a solution of the Einstein equation is on the manifold M:
its topology needs to be Σ × R where Σ has an Euclidean geometry.

4.4 The non-Euclidean Newtonian limit

It is always assumed that Einstein’s theory must contain Newton’s theory in some
limit, and this because the later works quite well in several situations. That is how,
using the Newtonian limit, we can derive the constant 8πG

c4 in front of the energy-
momentum tensor in the Einstein equation, and the form T = ρu ⊗ u for a dust
fluid. However the situations in which Newton’s theory was tested to be valid does
not rule out Galilean theories (for instance, the second NEN theory of chapter 2)
with spatial curvature small in front of the size of the domain of test. In this sense,
general relativity should also contain any Galilean theory in some limit. But as
shown above, once we suppose that

λ

Tαβ is regular for λ → 0, the spatiale curvature
of the Galilean limit is necessarily zero. In particular this is also true if we assume a
dust fluid, where the energy-momentum tensor reduces to

λ

Tαβ = ρ
0
uα

0
uβ + O(λ). So

it seems that the only way to obtain a non-flat and non-Euclidean Galilean theory
at the limit is to add non-regular terms in the energy-momentum tensor. We follow
this possibility in the following section.

4.4.1 Non-regular energy-momentum tensor

We assume that the fluid variables λ
ǫ, λ
qα, λ

p, λ
παβ are not regular for λ → 0. Using the

Einstein equation in the form (4.18) and relations (4.8) and (4.9) we obtain that

λ
ǫ =

1

λ

[
Rh

2 ∗ 8πG

]
+

0
ǫ+ O(λ), (4.28)

λ
p =

1

λ2

[
− Rh

6 ∗ 8πG

]
+

1

λ

−1
p+

0
p+ O(λ), (4.29)

λ
παβ =

1

λ2

[
Rh 〈αβ〉

8πG

]
+

1

λ

−1
παβ +

0
παβ + O(λ). (4.30)

The Einstein equation does not allow us to specify
−1
p and

−1
παβ in terms of the two

leading orders of the Lorentzian metric.

Using the conservation of the energy-momentum tensor
λ

∇µ

λ

T µα = 0 projected
along λ

uα, we obtain that the leading order of the heat flux needs to be a -1 order:

λ
qα =

1

λ

−1
qα +

0
qα + O(λ), (4.31)

with
−1
qµτµ = 0 and that

0
uµ

0

∇µ
−1
ǫ+

0

∇µ
0
uµ
(

−1
ǫ+

−2
p
)

+
0

∇µ
−1
qµ +

0

∇µ
0
uν

−2
πµν = 0, (4.32)
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which can also be written as

0
uµ

0

∇µ Rh +
Rh
3

0

∇µ
0
uµ + 16πG

0

∇µ
−1
qµ + 2

0

∇µ
0
uν Rh 〈µν〉 = 0. (4.33)

As for
−1
p and

−1
παβ, the leading order

−1
qα cannot be specified in terms of the two leading

orders of the Lorentzian metric.

4.4.1.1 Limit of the 1+3-Einstein equations

It is also possible to retrieve the above Laurent expansion series of the fluid variables
from the 1+3-Einstein equations (section 1.1.3.3). For this we need the leading order

of the expansion tensor
λ

Θ and vorticity tensors of
λ

Ω of the fluid 4-velocity λ
u. Using

appendix D.2, we obtain
λ

Θαβ = Θαβ + O(λ), (4.34)
λ

Ωαβ = Ωαβ + O(λ), (4.35)

where Θαβ and Ωαβ correspond to the expansion and vorticity tensors of the vector
0
uα as defined by the Galilean structure [see equation (2.21)].

Concerning the rest frame connection
λ

D
λ
u

α defined in equation (1.47), it reduces
to the spatial connection Dα related to hαβ:

λ

D
λ
u

α = Dα + O(λ). (4.36)

In particular the torsion of the rest frame connection, defined in equation (1.49), is
a first order term, and thus vanishes at leading order.

The rest frame Ricci curvature, defined in equation (1.50), reduces to the spatial
Ricci curvature related to hαβ:

λ

R
λ
u αβ = Rh αβ + O(λ). (4.37)

In particular,
λ

Rλ
u αβ is symmetric at leading order.

Then the lhs of the 1+3-Gauss equation (1.59), features a -1 order (the curvature
term) implying that the rhs, which corresponds to the energy density λ

ǫ, needs to
feature a -1 order of the form (4.28). The developments (4.29) of λ

p and (4.30) of
λ
παβ are obtained similarly using the 1+3-Ricci equation (1.53).

For λ
qα, the development (4.31) is obtained when considering the 1+3-momentum

constraint (1.54) which is at leading order:

Dαθ −Dµ (Θαµ + Ωαµ) = 8πG
−1
qα.

From this equation, and the knowledge we gained in chapter 2 and 3 on the role of
the momentum constraint on the space-time separation of the spatial metric, we see
that we necessarily need

−1
qα 6= 0 for this separation to be possible. The momentum

constraint needs to be of the form (3.41).
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4.4.1.2 The 1+3-Galilean system

From the Laurent expansion series of the fluid variables, the Einstein equa-
tion (4.19) becomes at leading order

0

Rαβ − Rh µν b
0
u
µα b

0
u
νβ = 8πG

[
1

2

(
0
ǫ+ 3

−1
p
)
τατβ − 2

−1
qµ b

0
u
µ(ατβ)

]
− Λτατβ. (4.38)

The projection along and orthogonal to 0
u if this equation, along with the Bianchi

identities, gives the 1+3-Galilean system

(∂t − Lβ) Rh = − Rh
3
θ −Dc

−1
qc − Θcd Rh 〈cd〉, (4.39)

(∂t − Lβ)hab = −2Θab, (4.40)

(∂t − Lβ) θ = −4πG
(

0
ǫ+ 3

−1
p
)

+ Λ +Dc a
u c − ΘcdΘcd + ΩcdΩcd, (4.41)

(∂t − Lβ) Ωab = D[a au b], (4.42)

with the constraint equations

Dc (Θac + Ωac) −Daθ = 8πG
−1
qa, (4.43)

D[aΩbc] = 0, (4.44)

Rh ab = Rh ab, (4.45)

Rh d[abc] = 0. (4.46)

We see that the NEN theory depends on the unknown fluid variables
−1
p,

−1
qa

and
−1
πab. This means that without additional hypothesis on these variables, the

system is not closed.

As a natural hypothesis we can assume that the spatial Ricci curvature is purely
scalar, implying the τ -sections to have either spherical or hyperbolic geometries. In
this case

−2
παβ = 0, then

−1
παβ is spatial and we have an additional equation linking

−1
qα,

−1
p and

−1
παβ:

(∂t − Lβ)
−1
qa + θ

−1
qa + 2

−1
qcΘc

a + hcaDc
−1
p+Dc

−1
πca = 0. (4.47)

It comes from the conservation of the energy-momentum tensor. To obtain it, we
used that fact that

−2
p depends only on t implying the term

1

bu αµ∂µ
−2
p, which should be

present in the above equation, to vanish.

4.4.1.3 Interpretation of the non-regular energy-momentum tensor

We saw that all the fluid variables need to have negative leading orders, related to
the spatial curvature, so that a non-Euclidian limit is possible. This means, that
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even for a dust fluid, or geodesic fluid, the energy momentum tensor needs to be of
the form

λ

Tαβ = ρ
λ
uα

λ
uβ +

λ

TR αβ, (4.48)

where the leading orders of the decomposition of
λ

TR αβ with respect to λ
uα are equa-

tions (4.28)-(4.30).

Interpretation of the additional curvature term: We can interpret the additional

term
λ

TR αβ as a term we missed when extrapolating the energy-momentum
tensor of a dust fluid from Newton’s theory, because we only had the knowledge
of an Euclidean Newtonian theory.

For this interpretation to be valid, the fluid described by (4.48) needs to be
geodesic, i.e. a dust fluid. This geodesic nature of λ

uα needs to be implied by the
conservation of

λ

Tαβ:
λ

∇µ

λ

T µα = 0 −→ λ
uµ

λ

∇µ
λ
uα = 0. (4.49)

In this sense we can see (4.48) as a generalisation of the energy-momentum tensor

for a geodesic fluid: generalisation in the sense that
λ

Tαβ = ρ
λ
uα

λ
uβ is not the unique

energy-momentum tensor implying that the fluid is geodesic.

Remark. As an additional requirement, we can also suppose that
λ

TR αβ is decoupled from

ρ
λ
uα

λ
uβ so that both terms as subject to the contracted Bianchi identity independently.

This is less general, but would imply, in addition to the geodesic equation for u, the

conservation of the density ρ.

4.4.1.4 The main issue

While the above interpretation justifies the additional term, it does not provide a
way to determine it. So we need to guess what is the full order form of

λ

TR αβ.
This is where the main issue in obtaining the NEN theory arises: there is a priori

not a unique possibility for
λ

TR αβ which both leads to the right leading orders and
preserves the geodesic nature of the fluid. Then there is not a unique choice for

−1
p,

−1
qa

and
−1
πab, which means that closing the 1+3-system of section (4.4.1.2), i.e. obtaining

the NEN theory, is not unique.

As for now, I have tried a lot of guesses for the term
λ

TR αβ to see if there is a
‘more natural one’, but without success...

4.4.2 Specific choices of the non-regular terms

Both NEN theories proposed in chapter 3 can be retrieved by specific choices of the
non-regular terms:
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• the NEN theory I is retrieved with

−2
παβ = 0 ;

−2
p = − Rh (t)

6 ∗ 8πG
;

−1
qα = 0 ;

0
ǫ+ 3

−1
p = ρ, (4.50)

• the NEN theory II is retrieved with

−2
παβ = 0 ;

−2
p = − Rh (t)

6 ∗ 8πG
;

−1
qα = − Rh

3 ∗ 8πG
vα ;

0
ǫ+ 3

−1
p = ρ+

2

3

Rh
8πG

vcvc,

(4.51)

with va the vector in the SVT decomposition of Θab.

In both cases, it is not clear to me how the conservation of ρ can be retrieved. It
corresponds to the second leading order of the 1+3-conservation equation (1.57) and

requires the knowledge of
1

Γγαβ and 0
qα.

While we still do not know what is the right choice for these non-regular terms,
requiring the space–time separability of the spatial metric seems to be physically
relevant. This is done by assuming

−1
qα = − Rh

3∗8πG
va. Without further hypothesis on

the other non-regular terms, the expansion law of Σ is in this case

3
(
Ḣ +H2

)
= −4πG

(〈
0
ǫ
〉

Σ
+ 3

〈
−1
p
〉

Σ

)
+ Λ +

R
3

〈vcvc〉Σ . (4.52)

But as we do not know a priori what is the expression of 0
ǫ and

−1
p as function of ρ, va

and Rh , we cannot know the deviation of this expansion law with the FLRW one,
and we cannot answer the main question of this thesis.

4.5 Backreaction from post-Newtonian terms

We focused until now on the leading order of the Einstein equation. Deriving the
next order might be interesting for the study of the global backreaction, and this even
in the Newtonian case with

λ

Tαβ = ρ
λ
uα

λ
uβ. Indeed, we can consider that the global

backreaction in Newton is the zeroth order of the full relativistic backreaction. Then
accounting for

1

Γγαβ and 1
uα, we can derive

1

Θαβ and
1

Ωαβ. The first order backreaction
1

QΣ is

1

QΣ =
4

3

(〈
0

θ
1

θ
〉

Σ
−
〈

0

θ
〉

Σ

〈
1

θ
〉

Σ

)
−
〈

0
σcd

1
σcd +

1
σcd

0
σcd
〉

Σ
+
〈

0

Ωcd

1

Ωcd +
1

Ωcd

0

Ωcd
〉

Σ
.

(4.53)

This backreaction depends on
1

Γγαβ which requires the knowledge of 2
gαβ and 1

gαβ.
These are post-Newtonian corrections to the Lorentzian metric and come with their
own equations (see Dautcourt, 1997; Tichy & Flanagan, 2011).
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4.6 Conclusion

This chapter aimed at studying the possibility of obtaining Galilean theories with
non-zero spatial Ricci curvature from the Einstein equation. The main results are
the following:

(i) The Galilean limit allows, as expected, to recover the Newton-Cartan equa-
tions.

(ii) In order to have non-zero spatial Ricci curvature at the limit, the energy-
momentum (2,0)-tensor must be non-regular for λ → 0.

(iii) We interpreted the non-regular orders as coming from an additional term TR αβ

in the energy-momentum tensor of a dust fluid. This interpretation is valid if
the conservation of Tαβ = ρuαuβ + TR αβ implies the geodesic equation for uα.

(iv) The NEN theory depends on the second leading order of this term, which is
not known.

What is the full order form of TR αβ remains an open question, as well as what is
the ‘right’ NEN theory compatible with general relativity. A lot of questions remain
to be solved to arrive at that goal:

• Did we use the most general way to make a Galilean limit of a Lorentzian
structure?

• Is there a way to justify the non-regular terms other than with the Galilean
limit?

• A priori the limit allows for an Euclidean Galilean limit with non-zero spatial
curvature. Is this case physical?

While the goal of this chapter was to derive the global backreaction at leading
order in non-Euclidean geometries, the tools we developed can be used to compute
the first order global backreaction in the Euclidean case (section 4.5). This is left
for a future study.
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Chapter 5

Towards non-Euclidean relativistic
simulations

I
n numerical cosmology, two kinds of simulations are usually conducted, using
either Newtonian gravity or general relativity. The former is the most common
kind of simulations. They are usually used to create mock catalogues for dif-

ferent observables, such as weak lensing signals, X-ray luminosity or statistics on
galaxy clusters (see e.g. Springel et al., 2006; Angulo et al., 2012). As all these
simulations use the Newtonian cosmology with an isotropic expansion, the Buchert-
Ehlers theorem prevents them to study the global backreaction of structures on the
expansion. That is why, in the past decade, the field of numerical cosmology has
seen the growth of non-perturbative general relativistic simulations. Various meth-
ods have been used, from approximate or non general schemes to exact schemes
using an exact resolution of the Einstein equation. But while most of them aim at
probing the backreaction effect, the issue of topology is generally not studied, and
the flat 3-torus topology is generally assumed.

The only non-Euclidean cosmological simulations known to me lie in the field of
lattice cosmological models. These are solutions of the vacuum Einstein equation
which can be interpreted as representing the evolution of black holes in S3. As
we will see, they are hardly representative of our Universe. Still this method is
conceptually interesting and will be presented in section 5.1. We will then focus on
relativistic numerical cosmology with fluid models. Section 5.2 presents the current
status of such numerical studies. We will see that they allow for a first quantification
of the backreaction in a relatively realistic model universe. However, the numerical
formalism used in these simulations, the BSSN formalism, is not adapted for non-
Euclidian geometries. In section 5.3, after introducing this formalism, we will see
how it can be adapted to allow for non-Euclidian geometries.

This chapter does not aim at providing a full numerical simulation; it is rather
a feasibility study.
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5.1 Lattice cosmology

The exact relativistic approach for describing a lattice of black holes in S3 has
been extensively studied the past decade (e.g. Clifton et al., 2012; Bentivegna &
Korzyński, 2013; Clifton et al., 2013; Clifton, 2014; Korzyński, 2014; Bentivegna,
2014; Clifton, 2015; Durk & Clifton, 2017; Bentivegna et al., 2018). It is based on
the initial work of Misner (1963) who studied exact solutions of the 3+1-constraint
equations in vacuum, i.e. in terms of initial conditions of the Cauchy problem,
representing a lattice of black holes with asymptotically flat space at infinity. The
formalism used is called geometrostatics. If applied to cosmology, it allows for the
definition of exact inhomogeneous initial conditions, which can be evolved subse-
quently. I introduce the geometrostatics in section 5.1.1 and describe how it can be
applied to cosmology in section 5.1.2. Finally, in section 5.1.3, I present an overview
of the literature on lattice cosmological models.

5.1.1 Principle of geometrostatics

The geometrostatics is a method to find more easily initial conditions fulfilling the
3+1-constraint equations [equations (1.41) and (1.42)]. It is generally used in vac-
uum and is based on the Lichnerowicz-York equations, which are obtained from the
Gauss-Codazzi constraints with a conformal transformation of the spatial metric:

hab =: ψ4h̃ab, (5.1)

where h̃ is called the conformal metric and ψ is a never vanishing scalar field called
the conformal factor. We also define the conformal traceless extrinsic curvature

Ãab := ψ2K〈ab〉,

and its contravariant components, which are raised with the conformal metric

Ãab := Ãcdh̃
cah̃db = ψ−10K〈ab〉.

Then introducing the conformal traceless extrinsic curvature and the conformal met-
ric in the 3+1-constraints, we obtain:

The Lichnerowicz-York equations (in vacuum):

∆̃ψ − R̃
8
ψ − K2

12
ψ5 +

1

8
ÃcdÃ

cdψ−7 = 0, (5.2)

D̃cÃ
ca − 2

3
ψ6γ̃ca∇̃cK = 0, (5.3)

where ∆̃, R̃ and D̃i are respectively the Laplace-Beltrami operator, the scalar
curvature and the covariant derivative associated with h̃ab.

The goal of making the conformal transformation (5.1) is to transform the
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Hamilton constraint into a constraint on a single scalar which is the conformal
factor. Hence, it is possible to set the conformal metric and then solve equa-
tion (5.2) for ψ. In this way, if the initial condition we want is a conformal
equivalent of a given metric γ̃ij, the Lichnerowicz-York equations give a ‘simple’
way to find the full physical metric h. To simplify the system even more, it is
also generally assumed that the initial condition is time-symmetric, i.e. Kab = 0,
which leads to the linear equation

∆̃ψ − R̃
8
ψ = 0. (5.4)

Misner (1963) made a first application of equation (5.4) in the case of a confor-
mally flat manifold, i.e. h̃ab = diag[1, 1, 1], which implies R̃ab = 0. He wanted to find
an initial condition with a lattice of black holes in an asymptotically flat manifold.
Since this equation is linear in ψ, the solution for a lattice of black holes is the sum
of the solution for one black hole, i.e. a sum of spherically symmetric solutions. It
takes the form

ψ (x) =
N∑

n=1

Mn

d[x, xn]
,

where N is the number of black holes, Mn are their mass, xn is the position of the
nth black hole and d [x, xn] is the distance (computed with the conformal metric)
between the nth black hole and the point of coordinates x.

This is the strength of the lattice method: we just have to solve a linear equation,
and since it is exact, the non-linearity of the Einstein equation is conserved.

Remark. While the resolution of equation (5.4) was done with the conformal metric, the
physical metric is still h := ψ4h̃. Then the physical distances need to be computed using
the following line element:

dl2 =

(
N∑

n=1

Mn

d [x, xn]

)4 {
dx2 + dy2 + dz2

}
.

5.1.2 Application to cosmology

5.1.2.1 Lattice for conformally spherical spaces

Initially the lattice method was developed for asymptotically flat spaces with a
compact distribution of matter, i.e. a finite number of black holes in R3. If one
wants to apply this method to cosmology, a first solution is to consider an infinite
regular distribution corresponding to the images in R3 of one black hole in T3 (the
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covering space representation, see section 1.2.4.2):

ψ (x) =
∑

xn∈cell(T3)

M

d[x, xn]
,

where the sum is over the images of the black hole in R3. However, the spatial
average, with respect to h̃, over T3 of the Laplacian in equation (5.4) implies that
M must be zero. Or in other words, the above sum diverges, unless M = 0. This re-
sults from the fact that there exists non time-symmetric hypersurfaces, i.e. Kab = 0,
for spacetimes with closed Euclidean spatial sections (see Bentivegna et al., 2018).
A similar problem arises if we consider a conformally hyperbolic geometry and im-
pose R̃ab = R̃

3
h̃ab, with R̃ < 0. A solution would be to drop the time-symmetry

hypothesis, but the Lichnerowicz-York equations could not be solved analytically
anymore.

As shown in Bentivegna et al. (2018), the application of the lattice method to
cosmology can only be done in conformally spherical spaces, i.e. where R̃ab = R̃

3
h̃ab

with R̃ > 0. In this case, the conformal factor can be written as

ψ (x) =
N∑

n=1

mn

Rc sin d[x,xn]
2

, (5.5)

where Rc :=
√

6/R is the curvature radius and the physical spatial line element is

d2l =
1

R2
c




N∑

n=1

mn

2 sin d[x,xn]
2




4 {
d2χ+ sin2 χ

(
d2θ + sin2 θ d2ϕ

)}
. (5.6)

A representation of such an initial condition is given in figure 5.1 in the case of 8
black holes regularly placed on the 3-sphere.

5.1.2.2 Interpretation

While we assumed the conformal metric to be spherical, with R̃ab = R̃
3
h̃ab, this does

not mean that the topology of the initial condition is S3. Actually, the physical
spatial metric h, related to the line element (5.6), implies that the volume of each
singularity is infinite and that the spatial Ricci curvature Rab tends to zero. There-
fore, each singularity corresponds to an asymptotically infinite flat space. This is
represented in figure 5.1 for the top singularity.

To be able to interpret this initial condition as a lattice of black holes in S3, and
hence as a cosmological model, each singularity must have horizons which causally
separate the spatial slice so that the domain delimited by the set of horizons is
compact and non-null. The location of these horizons corresponds to the marginally
outer trapped surfaces which technical details can be found in Gibbons (1972). We
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Figure 5.1: Representation of a lattice of 8 black holes in S3 (from Clifton, 2015).
It shows a 2D slice of the initial condition, passing by 6 black holes and embedded
in R3. The infinite asymptotic flat space of the top singularity is represented. The
black areas correspond to the horizons of each singularity.

can show that the non-null and compactness condition is fulfilled once we have more
than 3 singularities.1 In figure 5.1, the horizons are represented by the black thick
circles. They delimit a compact space.

Remark. To my knowledge, the marginally outer trapped surface gives the exact position

of the horizon for static spacetimes. Therefore, it remains well suited for an estimation

of this position on a time-symmetric initial slice, i.e. Kab = 0. However, it is not clear

to me at which point this estimation remains correct during the evolution of this slice.

As the interpretation of the model, in terms of black holes in S3, is based on the domain

delimited by the set of horizons, this questions the validity of this interpretation during

the evolution.

5.1.2.3 Multi-connected spherical topologies

Once we make the above interpretation, the effective topology the initial condition
represents can be any multi-connected spherical topology, and not necessarily S3.
For this, the black holes need to be regularly placed in S3 so that their position
correspond to the multiple images of the desired topology in the covering space S3.

1For two singularities, the two horizons coincide (see figure 1 in Clifton, 2014), and the topol-
ogy corresponds to a wormhole between two asymptotically flat spaces. Actually this solution
corresponds to the spatial sections of the Schwarzschild spacetime in isotropic coordinates.
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For instance, if we consider one black hole in the center of the spherical torus, i.e.
the spherical space which fundamental domain is a cube, then the images in S3 of
this black hole are at the positions

{
(0, 0, 0), (π, 0, 0),

(
π
2
, 0, 0

)
,
(
π
2
, π, 0

)
,
(
π
2
, π

2
, 0
)
,(

π
2
, π

2
, π
)
,
(
π
2
, π

2
, π

2

)
,
(
π
2
, π

2
, 3π

2

)}
, in hyperspherical coordinates (see section 3.2.1).

The cases in which fundamental domain is one of the other platonic solids are given
by Clifton et al. (2012).

5.1.2.4 Evolution of the initial condition

Once the initial condition is set, it remains to evolve it through time with the 3+1-
Ricci equation (1.40). This can only be done numerically. As will be presented
in section 5.2 and 5.3 of this chapter, there exists no implemented algorithm that
allows to simulate non-Euclidean spaces. However, the geometry of the above initial
conditions is not spherical because the other side of each singularity is an infinite
flat space. Therefore it is possible, by a change of coordinates, to ‘open-up’ one
singularity so that the spatial metric becomes conformally flat and the slice repre-
sents N − 1 blackholes in R3. From this new coordinate system it is then possible
to perform the evolution of the initial condition using existing codes (the details of
this method can be found in Korzyński, 2014).

To conclude on the method of geometrostatics, we saw that it allows to build
cosmological models which can be evolved with existing codes, but which can repre-
sent (effective) spherical geometries. In this sense it might be a powerful tool for the
study of the influence of topology on the global backreaction. In the next section,
we review the literature on this topic.

Remark. For a while I tried to find the NEN theory using the lattice cosmology method.

The main reason for which it failed is that this method does not provide the g00 components

of the spacetime metric, which should lead to the gravitational potential in the classical

Newtonian limit.

5.1.3 Overview of the literature on lattice cosmologies

The following studies solved the 3+1-Einstein equations with the initial conditions
presented above. The evolution was done with the BSSN formalism, which will be
presented in section 5.3.2. Though there is no fluid in the lattice cosmology approach
because the Einstein equation is solved in vacuum, it is still possible to define an
effective density arising from the black holes masses and compare the expansion
of the 3-sphere with the one predicted for a homogeneous universe. Bentivegna &
Korzyński (2013) performed the simulation for a lattice of 8 black holes regularly
placed on the sphere. Clifton et al. (2013) tested all other possible regular lattices
of black holes on S3, i.e. 5, 8, 16, 24, 120 and 600. These setups are equivalent to
solving the dynamics of one black hole in the respective topology, i.e. in the spherical
spaces which fundamental domains are a tetrahedron, a cube, an octahedron or a
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dodecahedron (see Cavicchioli et al., 2009, 2010, for the classification of all compact
topologies from Platonic solids).

Both Bentivegna & Korzyński (2013) and Clifton et al. (2013) found little dis-
crepancies with respect to the spherical FLRW evolution for any number of black
holes they tested, implying a negligible backreaction. However their very symmetric
and simple setup makes difficult the interpretation of these results as representative
of the Universe. But still, these studies paved the way for the first exact numeri-
cal quantification of the backreaction in non-Euclidean geometries. A more realistic
test would be to conduct the same simulations but with a randomly placed increased
number of black holes. This would allow to probe the influence of virialisation on
the expansion. To my knowledge, it is not possible to perform the full evolution
with such number of black holes in a reasonable time. However, it is still possible to
analyse the properties of the initial slice with this increased number of black holes,
as done by Durk & Clifton (2017). It is also possible to study the continuum limit
when this number tends to infinity (Korzyński, 2014).

This limitation in the use of the lattice cosmology to model the Universe implies
that reproducing the formation of large scale structures and their influence on the
global expansion requires a fluid approach.

5.2 Relativistic numerical cosmology with fluid
models

In this section we present an overview of the literature on the relativistic numerical
cosmology using exact fluid schemes. We will focus on the studies which aimed at
probing the global backreaction.

5.2.1 Exact fluid schemes

A growing number of papers using an exact relativistic fluid scheme for cosmological
simulations have been released the past decade (e.g. Bentivegna, 2014; Torres et al.,
2014; Rekier et al., 2015; Bentivegna & Bruni, 2016; Giblin et al., 2016a; Mertens
et al., 2016; Giblin et al., 2016b; Macpherson et al., 2017, 2018, 2019). Most of
them do not assume any specific local symmetry during the evolution.2 However,
they all conduct their simulation in a cubic box with periodic boundary conditions,
thus implicitly assuming the topology of a 3-torus for their spatial sections. The
main reason for this choice of topology is because it is possible to define a spatial
reference metric of the form hab = δab, which is needed for the numerical scheme

2Only Torres et al. (2014) and Rekier et al. (2015) assume spherical symmetry, which reproduces
the Lemaître-Tolman-Bondi class of solutions (Lemaître, 1933; Tolman, 1934; Bondi, 1947). But
these do not seek to probe the backreaction, especially Torres et al. (2014) who focuses on the
influence of exotic matter on structure formation.
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they use (see section 5.3.3). The main difference between these simulations resides
in the power spectrum they take for their initial conditions.

Bentivegna (2014) focuses on solving the Einstein constraints, i.e. the Hamilton
and the momentum constraints, in compact periodic spaces allowing to properly set
the initial conditions. This study is then used in Bentivegna & Bruni (2016) to
evolve a dust fluid using the BSSN formalism. The initial density fluctuation is a
1st order harmonic, with initial density contrast of δρi = 10−2. The time span of the
simulation corresponds to a relative increase in the scale factor of 100, compared
to the usually estimated ∼1000 relative increase between the CMB time and the
current epoch. They found negligible backreaction with an evolution of QD ∝ 1

a
,

consistent with the expected first order behaviour (e.g. Buchert et al., 2000; Kolb
et al., 2005). While there is no specific symmetry in their setup, the simple harmonic
they took for the initial condition is not realistic.

Giblin et al. (2016a); Mertens et al. (2016) are the first exact relativistic simula-
tions reproducing structure formation.3 They have a richer initial power spectrum
than Bentivegna & Bruni (2016) but it is still not fully realistic since they cut it at
high frequencies (kmax ∼ 40 Mpc−1) preventing the smaller structures to form before
current epoch. Moreover the density contrast they take is smaller than the expected
one using the Planck data and the simulation is only run between redshifts z = 2
and z = 0. While the expansion of their spatial sections are close to the FLRW solu-
tion, they cannot probe the backreaction of the small scale structures because their
power spectrum is cut at high frequencies, and their resolution is limited (∆x ∼ 16
Mpc).

Because all observations are made in the past light-cone of the Earth, there
could be an acceleration of the redshift growth (as observed by Riess et al., 1998;
Perlmutter et al., 1999) without an acceleration of the spatial expansion. Therefore
it is also important to analyse the deviation properties of the light-cone around the
expectation of the Standard Model of Cosmology. A first study is made in Giblin
et al. (2016b), who found little deviations. They use the simulations of Giblin et al.
(2016a) and Mertens et al. (2016), and thus have the same limitations in terms of
accuracy and realism.

Giblin et al. (2017) developed a scheme aiming at improving this accuracy and
the efficiency of simulations using the BSSN formalism for cosmological setups. They
use a reference analytical solution to define the numerical variables as deviations (not
necessarily small) from this solution. However the introduction of a homogeneous
reference solution could imply a gauge (or foliation) dependence (see Bardeen, 1980;
Ellis & Bruni, 1989).

In a series of papers, Macpherson et al. (2017), Macpherson et al. (2018) and
Macpherson et al. (2019) performed the most realistic cosmological relativistic sim-

3The code used in this series of papers is not currently publicly available.
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ulations to date. As with the previous studies they use the BSSN formalism for
the evolution of the spatial variables. Their time span is from the CMB time to
the current epoch, and they have a resolution of ∼4 Mpc in a 3-torus of 1 Gpc
edges (compared to the 2 Gpc edges and ∼16 Mpc resolution of Giblin et al., 2016a;
Mertens et al., 2016). The power spectrum is the full power spectrum of the CMB
up to the spatial precision of their grid code. They found little global backreaction,
with ΩD

Q ∼ ΩD
R ∼ −10−8. While this is the first realistic numerical evaluation of the

backreaction on large scales, we cannot assert that they closed the problem. Indeed,
there is place for improvement in many aspects of their simulations and analysis:

(i) Their time step is at constant conformal time, meaning that the late universe
(when backreaction is expected to be the highest) is not well resolved in time.

(ii) They have a violation of the Hamilton constraint several orders bigger than
the measured backreaction.

(iii) As their fluid is rotational, they cannot use the formalism of Buchert (2000,
2001) to calculate the backreaction. They used the formalism of Larena (2009)
which is based on an average of the extrinsic curvature of the chosen foliation
(necessarily different from the fluid orthogonal rest frames). This formalism
is highly dependent on the foliation, and a better choice would have been the
one proposed by Buchert et al. (2020), which is based on an average of the
fluid variables, as the original papers (Buchert, 2000, 2001).

5.2.2 Relativistic fluid/N-body schemes

The previous simulations were all dust: the pressure related to the velocity dispersion
inside a fluid element is neglected. But while the energy density associated with
this pressure is small in front of the mass density, the velocity dispersion, via shell-
crossing, still plays a major role on the stabilisation of structures in the late Universe.
In this sense, the pure dust simulation might not capture all the physics of structure
formation, and especially the backreaction. That is why schemes mixing a fluid and
an N-body approach in general relativity have been developed (Adamek et al., 2016;
Daverio et al., 2019; Barrera-Hinojosa & Li, 2020). However, the numerical schemes
used in these studies are not exact, and generally assume small perturbations of the
spatial metric.

An exact way to deal with N-bodies in general relativity is to consider black
holes and the lattice cosmological models of section 5.1. However, it is only possible
to simulate a small number of black holes which is far less than the 106 −109 needed
number to fully account for structure formation (Barrera-Hinojosa & Li, 2020).
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5.2.3 The issue of topology

In general relativity, any type of geometry can be considered. For now only the
3-torus has been investigated, mainly for simplicity reasons and because the goal of
these studies was not to probe the effect of topology. However, a similar theorem
as the Buchert-Ehlers theorem could exist in general relativity. Though it would
not imply a strictly zero global backreaction in closed spaces, it could prevent it
to grow significantly. Since I was not able to define a non-Euclidean Newtonian
theory, it is not possible to have an insight on a possible extension of this theorem
in non-Euclidean spaces. This justifies the need for probing the effect of cosmic
topology on the global backreaction using relativistic cosmological simulations with
fluid matter models.

The studies presented in section 5.2.1 all use the BSSN formalism. However, in
its original form introduced by Shibata & Nakamura (1995); Baumgarte & Shapiro
(1999), it is best suited for Euclidean geometries. We will see in section 5.3.4 how
it can be adapted to allow for other types of geometries.

5.3 Probing the effect of topology with the BSSN
formalism

The field of numerical relativity was born in the 60s with the first proposed numer-
ical scheme to solve the Einstein equations (Hahn & Lindquist, 1964). From then
various schemes have been proposed, solving either approximately or exactly these
equations. We will only focus on exact schemes.

5.3.1 Numerical schemes in general relativity

Most of the numerical scheme in general relativity are based on the 3+1 formal-
ism in which the 4D space-time is decomposed into space-like hypersurfaces which
are evolved with time. However, using the 3+1-equations (or ADM equations) in
the form presented in section 1.1.2.6.c [equations (1.40)-(1.43)] as a free evolution
scheme, i.e. by solving the constraints only initially, has proven to be numerically
unstable, leading the constraint violating modes. That is why other formalisms
have been developed, generally based on the ADM equations, but which introduce
additional evolution variables in order to stabilise the numerical resolution. We can
quote the constrained scheme of Bonazzola et al. (2004). Among the free-schemes,
the most popular are the Bona-Masso formalism (Bona et al., 1995), the NOR
formalism (Nagy et al., 2004) , and the BSSN formalism (Nakamura et al., 1987;
Shibata & Nakamura, 1995; Baumgarte & Shapiro, 1999). The latter has proven to
be really stable for a wide range of physical problems. It is used by the recent rela-
tivistic cosmological simulations of Bentivegna & Bruni (2016); Giblin et al. (2016a);
Macpherson et al. (2019), and is the one we will be concerned with in this chapter.
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Apart for the recent cosmological applications, these numerical schemes have
until now only been tested for isolated systems, i.e. with asymptotic flatness on
the spatial hypersurfaces. Thus most of the stability studies concerning either the
specific scheme used or the foliation choice (also called slicing condition) concern
those kinds of systems. Removing the asymptotic flatness condition and changing
the topology could affect the reasons why the code is stable. Thus it is important
to study whether or not the usual numerical schemes and the standard foliation
choices are suited for any topology. We discuss this issue for the BSSN formalism
in section 5.3.4.

5.3.2 The BSSN formalism

5.3.2.1 The BSSN equations

The BSSN formalism is based on the 3+1-Einstein equations but uses a different set
of variables. As for the lattice cosmology, it introduces a conformal decomposition
of the spatial metric:

hab = ψ4h̃ab, (5.7)

along with the conformal traceless extrinsic curvature Ãij:

Ãij := ψ−4K〈ab〉. (5.8)

However, a condition is imposed on the conformal factor

ψ := det (hab)
1/12 , (5.9)

which leads to the following constraint on the conformal metric: det
(
h̃ij
)

= 1. As

we will see in section 5.3.3, the condition (5.9) implies that the new variables h̃ij
and ψ are not tensors but tensor densities.

The heart of the BSSN formalism is the introduction of the conformal connection
functions

Γ̃a := h̃cdΓ̃acd = −∂ch̃ca, (5.10)

with
Γ̃acd :=

1

2
h̃ak

(
∂ch̃dk + ∂dh̃ck − ∂kh̃cd

)
.

Standard slicing conditions are usually based on this variable.

Then the set of independent variables used in the BSSN formalism is

ψ ; h̃ij ; K ; Ãij ; Γ̃i ; N ; βi.

The set evolution and constraint equations of these variables is obtained when in-
serting them in the 3+1-Einstein equations.
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The BSSN equations:
Evolution equations:

∂0ψ = −ψ

6

(
NK − ∂kβ

k
)
, (5.11)

∂0h̃ij − 2h̃k(i∂j)β
k = −2NÃij − 2

3
h̃ij∂kβ

k, (5.12)

∂0K = −ψ−4h̃kl
(
D̃k∂lN + 2 ∂k lnψ ∂lN

)

+N

[
4π (E + 3P ) + ÃklÃ

kl +
1

3
K2
]
, (5.13)

∂0Ãij − 2Ãk(i∂j)β
k = ψ−4

[
−D̃i∂jN + 4 ∂(i lnψ ∂j)N +N

(
R̃ij + R̃ψij − 8πΠij

)]

+NKÃij − 2Nh̃klÃikÃlj − 2

3
Ãij∂kβ

k (5.14)

− h̃ij
3
ψ−4

[
−h̃kl

(
D̃k∂lN + 4 ∂k lnψ ∂lN

)

+N
(
R̃+ R̃ψ − 24πψ4P

)]
,

∂0Γ̃i + Γ̃k∂kβ
i = 2N

(
6Ãik∂k lnψ + ÃklΓ̃ikl − 2

3
h̃ik∂kK − 8πψ4pi

)
(5.15)

+ h̃kl∂k∂lβ
i +

1

3
h̃il∂l∂kβ

k − 2Ãik∂kN +
2

3
Γ̃i∂kβ

k,

with the constraint equations

ψ−4
(
R̃+ R̃ψ

)
+

2

3
K2 − ÃijÃ

ij = 16πE, (5.16)

∂kÃ
ik + ÃklΓ̃ikl + 6Ãik∂k lnψ − 2

3
h̃ik∂kK = 8πψ4Qi, (5.17)

where ∂0 := ∂t − βk∂k. D̃i, R̃ij and R̃ are respectively the covariant derivative and
the Ricci tensor and scalar of the conformal metric. We also have

R̃ψij := −2
(
∂i∂j lnψ − Γ̃kij∂k lnψ

)
− 2h̃ij h̃

kl
(
∂k∂l lnψ − Γ̃nkl∂n lnψ

)

+ 4 ∂i lnψ ∂j lnψ − 4h̃ij h̃
kl∂k lnψ ∂l lnψ , (5.18)

R̃ψ := h̃klR̃ψkl = −8 h̃kl
(
∂k∂l lnψ − Γ̃nkl∂n lnψ + ∂k lnψ ∂l lnψ

)
. (5.19)

The conformal Ricci tensor and scalar are

R̃ij = −1

2
h̃kl∂k∂lh̃ij + h̃k(i∂j)Γ̃

k + Qij

(
h̃, ∂h̃

)
, (5.20)

R̃ = ∂kΓ̃
k +

1

2
h̃kl∂kh̃

ij∂lh̃ij + h̃ijQij

(
h̃, ∂h̃

)
, (5.21)

with

Qij

(
h̃, ∂h̃

)
= −∂kh̃l(i∂j)h̃kl +

1

2
Γ̃k∂kh̃ij − Γ̃kilΓ̃

l
jk. (5.22)
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5.3.2.2 Stability of the BSSN formalism

When deriving the evolution equation for Γ̃i, the ‘divergence’ of ∂kÃik appears, i.e.
D̃i∂kÃ

ik. The standard BSSN equations use the momentum constraint to remove
this divergence. This is a key point for the stability of this numerical scheme.
Alcubierre et al. (2000) showed that this is likely due to the constraint violating
modes which are damped if we perform this analytical trick. Removing the Ricci
scalar in the evolution of K is also essential for the system of equations to be strongly
hyperbolic. In other words, the scheme is more stable if, instead of the trace of the
3+1-Ricci equation, the 3+1-Raychaudhuri equation is used to evolve K.

The introduction of the Γ̃i functions allows to write a wave equation for the con-
formal spatial metric (see section 11.4.3 in Gourgoulhon, 2012). The time derivative
of equation (5.12) along with equation (5.14) lead to

[
(∂t − Lβ)2 − N2

ψ4
h̃kl∂k∂l

]
h̃ij = F

(
h̃ij, ∂h̃ij, ψ,K, Ãij

)
+ 2

N2

ψ4
h̃k(i∂j)Γ̃

k, (5.23)

where F is a function which does not depend on second derivatives of h̃ij. The left
hand-side of this equation is a wave operator in the limit where h̃ij is a perturbation
around the Euclidean metric in Cartesian coordinates. The right hand-side can be
interpreted has a source term of the wave equation as it features no second spatial
derivatives of h̃ij.

Obtaining this wave equation for the conformal metric is a key point which
participates to the numerical stability of the BSSN formalism (Gourgoulhon, 2012).
This has been made possible with the introduction of Γ̃i as a new independent
variable by Shibata & Nakamura (1995); Baumgarte & Shapiro (1999).

Remark. It is also possible to define Γ̃i without introducing the conformal transformation.

This is the NOR formalism of Nagy et al. (2004).

5.3.3 Coordinate system in the BSSN formalism

As quoted previously, ψ, h̃ij, Ãij and Γ̃i are tensor densities because of the con-
straint (5.9). A tensor density of weight w, denoted Tw µ1...

ν1...
, is an object which,

under a coordinate transformation, transforms as

(wT ′)
µ1...

ν1...
=
(

0T ′
)µ1...

ν1...
Jw, (5.24)

where J is the determinant of the Jacobian of the coordinate transformation and
0T ′ is the tensor in the new coordinate system if it had a weight of zero.

Remark. Due to this difference of transformation with standard tensors, the covariant and

Lie derivatives have extra terms depending on the weight w of the tensor density they are

applied on (see appendix A.2). Thus care must be taken when writing the BSSN equations
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with the covariant and Lie derivative notations as quoted in Baumgarte & Shapiro (1999)

and Alcubierre et al. (2003). In section 5.3.2.1, all the equations are written in a way that

avoids this confusion, i.e. the only times covariant derivatives appear, they are applied on

true tensors.

So because most of the variables are tensor densities, the BSSN equations are
not covariant. This in itself is not necessarily a major problem as these equations
are still general and can be used in any coordinate system. But in practice, some
limitations appear:

• Dealing with tensor densities makes it difficult to compare evolutions done
with the same slicing conditions but different spatial coordinate systems.

• In cosmology, the initial condition for the spatial metric is usually set as a con-
formal perturbation around a flat metric (e.g. Giblin et al., 2016a; Macpherson
et al., 2019), i.e. with h̃ab = δab for Cartesian coordinates. This is compatible
with the condition det

(
h̃ij
)

= 1 imposed in section 5.3.2.1. However, if one
wants to use non-Cartesian coordinates, or even a non flat conformal metric,
it appears difficult to keep this condition (see Alcubierre & Mendez, 2011).

• A third drawback linked to the non-covariance of the BSSN equations concerns
the numerical stability of the scheme. The stability analysis of Alcubierre et al.
(2000) relies on a perturbation of the spatial metric around a flat metric in
Cartesian coordinates. Such a perturbation requires the spatial sections to
have an Euclidean geometry, so that it is possible to define a flat metric. But
in the case we want to impose a non-Euclidean spatial geometry, it is not sure
at which point the stability of the BSSN equations is kept. Furthermore, we
saw in section 5.3.2.2 that part of the stability is also due to the presence of
equation (5.23) which becomes a wave equation for the conformal metric if
h̃ab is a perturbation around a flat metric in Cartesian coordinates (otherwise
there is not anymore a Laplace-Beltrami operator in the lhs). Then, again,
assuming a non-Euclidean spatial geometry might lead to a loss of stability.

To get rid of these problems, Brown (2009) proposed a covariant formulation of
the BSSN formalism. It does not deal anymore with tensor densities, the condition
det

(
h̃ij
)

= 1 is not present and the wave equation can be obtained in any consid-
ered geometry. As a side effect, Alcubierre & Mendez (2011) showed that using this
covariant formulation also allows them to get rid of most of the coordinate singular-
ities and poles of this coordinate system. These artificial singularities could indeed
be difficult to treat numerically. In the next section we detail the equations of the
covariant BSSN formalism.
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5.3.4 The covariant BSSN formalism

5.3.4.1 The reference metric

The key difference with the standard BSSN formalism is the introduction of a ref-
erence metric, denoted ĥ. At first, the only requirement on this metric is to be
compatible with the spatial geometry of the numerical setup.

Remark. In the literature on the covariant BSSN formalism, ĥ is called the background

metric (e.g. Brown, 2009; Alcubierre & Mendez, 2011; Gourgoulhon, 2012). But because

this name already has a definition in cosmology, which generally implies perturbations

around ĥ (which is not the case here), I prefer the name ‘reference metric’.

Then the condition (5.9) is replaced by

ψ :=

(
h

ĥ

)1/12

, (5.25)

where we denote h := dethab and ĥ := det ĥab. This relation implies h̃ := det h̃ab = ĥ.
The gamma functions are also redefined to be

Γ̃a := D̂kh̃
ki, (5.26)

where D̂ is the connection associated with the reference metric ĥ. With these new
definitions, the variables ψ, h̃ab, Ãab, and Γ̃a are now true tensors, and not tensor
densities anymore.

Then the set of independent variables used in the covariant BSSN formalism is

ψ ; h̃ij ; K ; Ãij ; Γ̃i ; N ; βi ; ĥij.

There is one additional variable which is the reference metric. The standard formal-
ism correspond to ĥab = δab.

Without additional hypothesis, the variables ĥa, βa and N have no evolution
equations. As already stated, such an equation for the last two variables is called a
slicing condition and corresponds to a choice of foliation. However, with the intro-
duction of the reference metric we need an additional evolution equation compared
with the standard BSSN formalism.

5.3.4.2 Equations without condition choice

We write in this section the 3+1-Einstein equations with the previous variables,
without specifying an evolution equation for ĥab:
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Evolution equations:

(∂t − Lβ)ψ = −ψ

6

[
NK +

1

2
(∂t − Lβ) ln ĥ

]
,

(∂t − Lβ) h̃ij = −2NÃij +
1

3
h̃ij (∂t − Lβ) ln ĥ,

(∂t − Lβ)K = −ψ−4h̃kl
(
D̃k∂lN + 2∂k lnψ ∂lN

)
+N

[
4π (S + ρ) + ÃijÃ

ij +
K2

3

]
,

(∂t − Lβ) Ãij = ψ−4
[
−D̃i∂jN + 4 ∂(i lnψ∂j)N +N

(
R̃ij + R̃ψ

ij − 8πSij
)]

− h̃ij
3
ψ−4

[
h̃kl

(
−D̃k∂lN + 4 ∂k lnψ ∂lN

)
+N

(
R̃ + R̃ψ − 8πψ4S

)]

+NKÃij − 2Nh̃klÃikÃlj +
1

3
Ãij (∂t − Lβ) ln ĥ,

(∂t − Lβ) Γ̃i = 2N
(

6Ãik∂k lnψ + Ãkl∆i
kl − 2

3
h̃ki∂kK − 8πψ4pi

)
+ h̃klD̂kD̂lβ

i

+ h̃ilD̂lD̂kβ
k − 2Ãik∂kN + βnh̃klR̂i

knl − h̃kl∂tΓ̂
i
kl

+
1

3
h̃ikD̂k

[
(∂t − Lβ) ln ĥ

]
− 1

3
Γ̃i (∂t − Lβ) ln ĥ.

Constraint equations:

ψ−4
(
R̃ + R̃ψ

)
+

2

3
K2 − ÃijÃ

ij = 16πρ,

D̂kÃ
ik + Ãkl∆i

kl + 6Ãik∂k lnψ − 2

3
h̃ik∂kK = 8πψ4pi,

with

∆i
kl := Γ̃ikl − Γ̂ikl,

R̃ψ
ij := −2D̃i∂j lnψ − 2h̃ijh̃

klD̃k∂l lnψ + 4∂i lnψ ∂j lnψ − 4h̃ijh̃
kl∂k lnψ ∂l lnψ,

R̃ψ := h̃klR̃ψ
kl = −8 h̃kl

(
∂k∂l lnψ − Γ̃nkl∂n lnψ + ∂k lnψ ∂l lnψ

)
.

Conformal Ricci and scalar curvature:

R̃ij = −1

2
h̃klD̂kD̂lh̃ij + h̃k(iD̂j)Γ̃

k + Qij

(
h̃, D̂h̃

)
+ h̃n(ih̃

klR̂n
kj)l,

R̃ = D̂kΓ̃
k +

1

2
h̃klD̂kh̃

ijD̂lh̃ij + h̃ijQij

(
h̃, D̂h̃

)
+ h̃nkR̂nk,

with
Qij

(
h̃, D̂h̃

)
= −D̂kh̃l(iD̂j)h̃

kl +
1

2
Γ̃kD̂kh̃ij − ∆k

il∆
l
kj.

The coloured terms are additional terms compared with the standard BSSN formal-
ism: the blue terms are related to the reference determinant, the green terms to
the time derivative of the reference connection coefficients and the red terms to the
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Riemann curvature of the reference metric. In addition to these additional terms,
the partial derivatives of the standard formulation are replaced by the reference
covariant derivative.

Remark. Brown (2009) defines a reference connection Γ̂cab without the introduction of

a reference metric. This is possible as ĥab only appears in the above system with its

determinant ĥ, which can be replaced by h̃ (this slightly differs from our approach which

corresponds to the one proposed by Gourgoulhon, 2012). He imposes that this reference

connection is independent of time. Hence he only has the additional blue and red terms.

5.3.4.3 Equations with condition choice

For the sake of generality we wrote the covariant BSSN equations without giving
an evolution equation for the reference metric. However, in practice the reference
metric is always assumed to be independent of time (e.g. Bonazzola et al., 2004;
Alcubierre & Mendez, 2011; Gourgoulhon, 2012), i.e. ∂tĥij = 0, essentially because
there is no numerical reasons to take a more complex evolution equation. With
this choice the reference metric coefficients are constant along the flow lines of the
time basis vector, and we have ∂tΓ̂ikl = 0 and ∂t ln ĥ = 0. Then the 3+1-Einstein
equations written in terms of ψ, h̃ij, K, Ãij, Γ̃i, N , βi and ĥij become:
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Covariant BSSN formalism with “∂tĥij = 0”: Evolution equations:

(∂t − Lβ)ψ = −ψ

6

(
NK − D̃kβ

k−1

2
Lβ ln ĥ

)
, (5.27)

(∂t − Lβ) h̃ij = −2NÃij − 2

3
h̃ijD̃kβ

k−1

3
h̃ijLβ ln ĥ, (5.28)

(∂t − Lβ)K = −ψ−4h̃kl
(
D̃k∂lN + 2∂k lnψ ∂lN

)

+N

[
4π (E + 3P ) + ÃijÃ

ij +
K2

3

]
, (5.29)

(∂t − Lβ) Ãij = ψ−4
[
−D̃i∂jN + 4 ∂(i lnψ∂j)N +N

(
R̃ij + R̃ψij − 8πΠij

)]

− h̃ij
3ψ4

[
h̃kl

(
−D̃k∂lN + 4 ∂k lnψ ∂lN

)
+N

(
R̃+ R̃ψ − 24πψ4P

)]

+NKÃij − 2Nh̃klÃikÃlj − 2

3
ÃijD̃kβ

k−1

3
ÃijLβ ln ĥ, (5.30)

(∂t − Lβ) Γ̃i = 2N

(
6Ãik∂k lnψ + Ãkl∆i

kl − 2

3
h̃ki∂kK − 8πψ4pi

)
+ h̃klD̂kD̂lβ

i

+
1

3
h̃ilD̂lD̂kβ

k − 2Ãik∂kN +
2

3
Γ̃iD̂kβ

k + βnh̃klR̂iknl

+
1

3

(
Γ̃i − h̃ik∂k

)
Lβ ln ĥ. (5.31)

Constraint equations:

ψ−4
(
R̃+ R̃ψ

)
+

2

3
K2 − ÃijÃ

ij = 16πE, (5.32)

D̂kÃ
ik + Ãkl∆i

kl + 6Ãik∂k lnψ − 2

3
h̃ik∂kK = 8πψ4Qi, (5.33)

with

∆i
kl := Γ̃ikl − Γ̂ikl, (5.34)

R̃ψij := −2D̃i∂j lnψ − 2h̃ij h̃
klD̃k∂l lnψ + 4∂i lnψ ∂j lnψ − 4h̃ij h̃

kl∂k lnψ ∂l lnψ,

(5.35)

R̃ψ := h̃klR̃ψkl = −8 h̃kl
(
∂k∂l lnψ − Γ̃nkl∂n lnψ + ∂k lnψ ∂l lnψ

)
. (5.36)

Conformal Ricci and scalar curvature:

R̃ij = −1

2
h̃klD̂kD̂lh̃ij + h̃k(iD̂j)Γ̃

k + Qij

(
h̃, D̂h̃

)
+ h̃n(ih̃

klR̂nkj)l, (5.37)

R̃ = D̂kΓ̃
k +

1

2
h̃klD̂kh̃

ijD̂lh̃ij + h̃ijQij

(
h̃, D̂h̃

)
+ h̃nkR̂nk, (5.38)

with

Qij

(
h̃, D̂h̃

)
= −D̂kh̃l(iD̂j)h̃

kl +
1

2
Γ̃kD̂kh̃ij − ∆k

il∆
l
kj . (5.39)
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This system of equations ensures to keep the numerical stability of the BSSN
scheme, along with allowing for non-Euclidean spatial geometries. In particular,
one reason for which we introduced the reference metric was to recover the wave
equation (5.23) in non-Euclidean geometries. In the case of the covariant BSSN
formalism, this equation becomes
[
(∂t − Lβ)2 − N2

ψ4
h̃klD̂kD̂l

]
h̃ij = F

(
h̃ij, D̂h̃ij, ψ,K, Ãij

)
+ 2

N2

ψ4
h̃k(iD̂j)Γ̃

k, (5.40)

where the lhs indeed corresponds to a wave operator if we assume that h̃ab is a
perturbation around ĥab.

5.3.5 Slicing conditions

In the 3+1-Einstein equations, the lapse and the shift are non-dynamical variables
as they do not have an evolution equation. Imposing such an equation for N and β
is called a slicing condition and corresponds to choosing a foliation and an adapted
coordinate system in the spacetime manifold. Many different conditions can be
chosen depending on what we want to simulate and the degree of accuracy we need
to keep during the numerical evolution (see chapter 10 of Gourgoulhon, 2012). The
situations in which the different slicing conditions have been studied are generally
black holes or Euclidean cosmological simulations. But none of them are in non-
Euclidean spaces. Therefore it is important to assess whether or not we need to
adapt the usual slicing conditions as function of the topology. Such a study is
beyond the scope of this thesis.

5.4 Which topology to choose?

Two factors drive the choice of topology for the first non-Euclidean cosmological
simulation:

(i) The practical factor: the topology should be implementable on existing soft-
wares (which aim at numerically solving the Einstein equation) without major
modifications of the code. Ideally, the main modification should only concern
the evolution equations, without changing the type of coordinate system and
the shape of the domain of simulation, which is generally cubic.

(ii) The physical factor: as a first requirement, the space needs to be orientable. A
reason for this is that in a non-orientable space in which cosmic neutrinos could
have travelled at least once the whole Universe, we could observe both helicities
for these particles, which is not the case for now.4 Furthermore, for simplicity,
and because there are no observational reasons for another choice, we focus on

4This argument only work if the size of the Universe is smaller than the CMB.
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globally isotropic topologies, i.e. topologies for which each axis of symmetry is
equivalent. This concerns all the topologies in which the fundamental domain
is a Platonic solid, which is only possible for either spherical, Euclidean or
hyperbolic geometries (Cavicchioli et al., 2009, 2010). Ideally, the volume of
the simulated universe should be compatible with actual constraints giving a
lower bound of around 10 to 20 (Gpc/h)3 (see section 1.2.4.4). But in practice,
we will only be able to simulate up to a 1 Gpc3 size universe in a reasonable
time (Giblin et al., 2016a; Macpherson et al., 2018).

Remark. Because the size of the simulation can only be around 1 Gpc3, the scalar curvature

is expected to be much higher than the one of our Universe. If the backreaction effect is

amplified by this curvature, as is the case for the first NEN theory in chapter 3, I expect

this phenomenon to be overestimated by this simulation. This should not be a major

problem: firstly it would allow for a more robust detection of the curvature dependence

of the backreaction, and secondly, by applying a scaling law, we could estimate the value

of the backreaction in a non-Euclidean universe compatible with observations, i.e. with a

smaller scalar curvature.

We could think about the 3-sphere to be the first non-Euclidean geometry that
should be tested, essentially because it is the only simply-connected closed topology,
and hence could be called the ‘simplest’ closed topology. However the main drawback
of this choice is that there exists no non-singular coordinate system on this manifold.
Therefore the necessary coordinate singularities require regularisations which need
to be studied and developed specifically for the chosen coordinate system (as done
for spherical coordinates by Alcubierre & Mendez, 2011). Instead I propose the
spherical torus,5 i.e. the well known quaternionic space S3/〈222〉 (the manifold M3 in
Cavicchioli et al., 2009, Freudet, 2020). The reasons for this choice are the following:

• For the same volume (or size), the scalar curvature is smaller smaller than
that of S3. In this sense for a 1 Gpc3 size spherical torus, the corresponding
scalar curvature is closer to the restrictions given by the Planck data (Planck
Collaboration et al., 2020) than the curvature of a 1 Gpc3 3-sphere.

• There exists a non-degenerate coordinate system defined everywhere on the
manifold.

• The fundamental domain is a cube. This implies that there exists a coordinate
system (as for now I have not found it) for which the interval of definition of the
coordinates is a cube (in R3), i.e. the interval of definition of one coordinate is
independent of the other coordinates. This makes the adaptation of existing
codes (like Einstein ToolKit) simpler, as the already implemented domain is
generally a cube.

• All the axes of symmetry of the spherical torus are equivalent. This is not
the case of the lens space L(8, 3) (the manifold M2 in Cavicchioli et al., 2009),

5I am not sure at which point ‘spherical torus’ is a used name for this 3-manifold in mathematics.

https://einsteintoolkit.org
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which is also a spherical 3-manifold for which one of the choices of fundamental
domain is a cube, but whose face associations are different and not equivalent.

A hyperbolic geometry could not fulfil the third point because there exists no hyper-
bolic 3-manifold for which the fundamental domain is a cube (see Cavicchioli et al.,
2009, 2010, for a classification of hyperbolic 3-manifolds for which the fundamental
domain is a platonic solid).

5.5 Conclusion

The goal of this chapter was to present an overview of the literature concerning
relativistic cosmological simulations, along with an analysis on how to perform such
simulations in non-Euclidean geometries. We saw that while there is an increas-
ing precision of exact relativistic cosmological simulations (Mertens et al., 2016;
Macpherson et al., 2018, being the most realistic simulations to date) allowing them
to give a first numerical value of the backreaction, they are still limited for two main
reasons:

• The matter model is a dust fluid. Hence, they cannot account for the shell-
crossing and the virialisation, i.e. the stabilisation of the structures.

• The geometry is always Euclidean, with the 3-torus.

The first point is important as an expected behaviour of the backreaction is
to be dominant during virialisation of the structures. A solution to account for
shell-crossing is to perform simulations mixing a fluid and an N-body approach as
proposed by Adamek et al. (2016); Daverio et al. (2019); Barrera-Hinojosa & Li
(2020). However, the numerical schemes used in these studies are not exact, and
generally assume small perturbations of the spatial metric.

The second point is also a major issue because the global backreaction might
be highly dependent on the topology, as explained throughout this thesis. We first
saw how it is possible to perform numerical simulations of spherical topologies using
geometrostatics: this is the method of lattice cosmology. However, it is limited as
it cannot describe small structures, and the topology is only ‘effectively’ spherical.
Secondly we analysed why the most widely used (in cosmology) relativistic fluid
scheme, called BSSN formalism, can only simulate Euclidean geometries. To remedy
this problem, we showed that the covariant BSSN formalism (introduced by Brown,
2009) is the solution, and we provided the system of equations [equations (5.27)–
(5.39)].

Finally we argued that the spherical torus, i.e. the topological space S3/〈222〉,
should be the simplest spherical geometry for a first exact non-Euclidean relativistic
cosmological simulation.
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Chapter 6

Conclusion and perspectives

I
n this PhD thesis I developed tools aiming at studying the effects of topology in
inhomogeneous cosmology. More particularly, I have put a strong emphasis on
the construction of a non-Euclidean Newtonian theory in order to generalise the

Buchert-Ehlers theorem. In what follows I present a summary of the main results
and the perspectives for future works.

In chapter 1, I presented the context of this thesis. We saw that the current
Standard Model of Cosmology suffers from a major hypothesis: the global expansion
of our Universe is supposed to be not affected by its small scale inhomogeneities.
This neglected phenomenon, called backreaction, could actually play a major role in
cosmology (Buchert, 2008), and possibly explain the dark energy problem and the
discrepancy in the measure of the Hubble constant (Riess, 2019). While most of the
studies concerning the backreaction focused on its relation with structure formation,
little has been made to understand its dependence on the topology of our Universe.
To tackle this problem I followed two different strategies:

(i) developing a non-Euclidean Newtonian theory from general relativity (chap-
ters 2 to 4). While such a theory would still allow for the encoding of the
non-linearities and all the global conditions (i.e. topology) of general relativ-
ity, it would also be simpler to use.

(ii) proposing a numerical relativistic scheme allowing for the simulation of non-
Euclidean universes (chapter 5).

At the end of chapter 1 we saw that the Newtonian cosmology lacks a clear justifi-
cation from general relativity. Especially, the way it deals with the spatial expansion
relies on the interpretation of expanding periodic boundary conditions as a represen-
tation of a closed Euclidean space. Then justifying the Newtonian cosmology from
general relativity was an important step in the definition of a non-Euclidean New-
tonian theory. This was the work presented in chapter 2. I used the Newton-Cartan
theory which can be derived with a well-defined covariant limit of general relativity.
I performed a 1+3 split of the Newton-Cartan equations, which resulted in a system
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of equations similar to the 1+3-Einstein system: the 1+3-Newton-Cartan system
[equation (2.33)–(2.41)]. When introducing the gravitational field to this system, I
retrieved the Newtonian cosmological equations [equation (2.53)–(2.61)]. However,
a major difference of the Newton-Cartan approach is the expansion which arises as
a fundamental emerging field of the theory. The equations also feature an additional
unconstrained transverse shear, which can model an anisotropic expansion. We re-
trieve the Buchert-Ehlers theorem, stating in particular that in Newton’s theory the
isotropic expansion of a closed universe is given by the Friedmann equations for any
inhomogeneous solution.

In chapter 3, I used the tools developed for what precedes to define two non-
Euclidean Newtonian theories. They are based on a suggestion of Künzle (1976) to
allow for a non-zero spatial curvature with a minimal modification of the Newton-
Cartan equations. If this modification is made with respect to the fluid observer,
this leads to the non-Euclidean Newtonian theory of section 3.3.2. It features a non-
zero global backreaction which depends on the spatial geometry, through the spatial
curvature, and on the average bulk velocity of the fluid, an expected behaviour of
the backreaction. The main drawback of this approach is the fact that the spatial
vectors in the vorticity and expansion tensors are different, making difficult the
interpretation of the theory. To my opinion, this disqualifies this proposal to be
physically relevant. The second non-Euclidean Newtonian theory does not suffer
from this problem. In this case the modification of the Newton-Cartan equation is
made with respect to the Galilean observer (section 3.3.3). The cosmological system
of this theory [equations (3.49)–(3.56)] is algebraically equivalent to the cosmological
Newton equations, but with a non-zero spatial scalar curvature. Hence the Buchert-
Ehlers theorem also applies and no backreaction appears if the expansion is isotropic.
This approach also improves the one of Roukema & Różański (2009); Barrow (2020)
as the gravitational field at the opposite pole of a mass point in S3 is not divergent
anymore [equation (3.64)].

Chapter 4 is the final stage in the construction of a non-Euclidean Newtonian
theory. I try to derive it using the Galilean limit of general relativity (Künzle, 1976)
which is a limit of structures, from a Lorentzian to a Galilean structure. We saw
that to obtain a non-zero spatial Ricci curvature at the limit, allowing for non-
Euclidean spatial geometries, an additional source term needs to be added in the
energy-momentum tensor. I interpreted it as a generalisation of this tensor for a
geodesic, or dust, fluid. While the Galilean limit provides the leading orders of the
additional term, its full order form is unknown and needs to be extrapolated. We
then saw that the non-Euclidean Newtonian theory depends on this extrapolation,
and therefore is unknown as for now.

In chapter 5, I studied the possibility of performing numerical relativistic sim-
ulations of non-Euclidean geometries in cosmology. We saw that the method of
lattice cosmology allows for such simulations (Clifton, 2015), but at the cost of a
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low resolution of the structures as they are modelled with black holes which can be
evolved only in few number. Then I presented the most popular relativistic scheme,
the BSSN formalism, which is used in the recent cosmological simulations of Giblin
et al. (2016); Macpherson et al. (2018). In its original form, this formalism is not
suited for non-Euclidean geometries. I showed that the covariant BSSN formalism
of Brown (2009), the equations of which are presented in section 5.3.4.3, is the right
choice to simulate such geometries. Finally I argued that the spherical torus should
be the best choice for a first exact non-Euclidean relativistic cosmological simulation.

While we tackled successfully most of the issues we raised in the beginning of
this thesis (justifying the Newtonian cosmology, proposing non-Euclidean Newto-
nian theories, finding a non-Euclidean Newtonian limit, finding a non-Euclidean
relativistic numerical scheme), other questions appeared which I intend to study:

• What can model the transverse shear? In addition to gravitational waves, I
suggested that the dark matter might be included in Ξ. To understand if this
is possible, a first investigation is to try to reproduce existing models of dark
matter.

• Is the additional energy-momentum curvature term imposed by the Galilean
limit physical? We could search for a justification of this term through a vari-
ational principle. In this view, maximally coupled scalar fields (see Madsen,
1988) appear as an interesting approach.

• What is the first order, i.e. first post-Newtonian correction, of the backreac-
tion? Computing it would provide an estimation of the relativistic contribution
to the backreaction using Newtonian calculations.

The question of the ‘right’ non-Euclidean Newtonian theory remains also open, as
well as the generalisation of the Buchert-Ehlers theorem. To my opinion, the second
proposed theory in chapter 3 should be this ‘right’ one due to its simplicity in terms
of modifications of the Newton-Cartan equations and of its cosmological equations.
In this sense the extrapolation of the additional term in the energy-momentum
tensor should be made so that we retrieve this theory. Then, performing N-body
simulations with this theory would provide a first insight into the effects of topology
on structure formation in cosmology.

Concerning my study on non-Euclidean relativistic schemes, the logical next step
is to implement the covariant BSSN formalism. This could be done using softwares
such as Einstein ToolKit. The final step would be to compare non-Euclidean sim-
ulations made using this scheme with the ones of Giblin et al. (2016); Macpherson
et al. (2018).

https://einsteintoolkit.org
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Appendix A

Formulas

A.1 Lie derivative in 3+1

We consider a foliation {Σt}t∈R in a Lorentzian manifold (M, g, ∇). Let A and
T be a spatial vector and a spatial tensor with respect to this foliation. Then the
Lie derivative of T along A is not necessarily spatial. It is spatial if T has only
contravariant indices. In general we have the relation

LATα1...
β1... = (hα1

µ1 ...) (hν1
β1 ...) LAT µ1...

ν1... − 2
∑

i

nβi
Tα1...

...ν
↑
i

...nµ∇(µAν). (A.1)

Under the formalism of the 3+1-Einstein equations in section 1.1.2, given a class of
adapted coordinates X n

β , this means that LβKαβ is not a spatial tensor in general.
This implies that β∂tKαβ are not the spacetime components of a spatial tensor
(contrary to what is stated in section 5.3.1 of Gourgoulhon, 2012). However because
the Lie derivative LNn = β∂t − Lβ applied on a spatial tensor is spatial, then
β∂tKαβ − LβKαβ remains spatial, and the pull-back β∂tKαβ − LβKαβ → β∂tKab −
LβKab is correct.

The normal part of the partial time derivative β∂tKγα is

nγ β∂tKγα = 4Kα
µnν∇(µβν). (A.2)

A.2 Tensor densities

We consider a tensor density Tw µ1...
ν1...

of weight w. The covariant derivative on this
tensor is defined as

∇α Tw µ1...
ν1...

:= ∇0
α Tw µ1...

ν1...
− w Tw µ1...

ν1...
Γµµα, (A.3)

where ∇0
α refers to the usual covariant derivative on a tensor of weight 0. The Lie

derivative of Tw µ1...
ν1...

along a vector u is defined as

Lu Tw µ1...
ν1...

:= L0
u Tw µ1...

ν1...
+ w Tw µ1...

ν1...
∇µu

µ, (A.4)

where L0
u refers to the usual Lie derivative on a tensor of weight 0.
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Appendix B

Shift freedom in the classical
formulation of Newton’s theory

As shown in chapter 2, the degrees of freedom associated with the choice of coordi-
nates in the Newton-Cartan theory corresponds to a vector, called the shift vector.
The work presented in this appendix is a first derivation of this shift freedom but in
case of the classical formulation of Newton’s theory. It was done before obtaining
this result in Newton-Cartan and appears in the first part of my paper Vigneron
(2020).

B.1 General form of the Newton system

B.1.1 In fixed coordinates

We only consider dust fluids, implying the pressure and the non-ideal fluid terms to
be zero.

The Newton system of equations describes the time evolution of a fluid charac-
terised by a scalar field ρ, the fluid density, and a vector field v, the fluid velocity.
These two tensors are defined in a 3-dimensional flat manifold denoted ΣN and are
parametrised by the time t. They are thus function of t and the position on ΣN. The
metric on ΣN is denoted h. The system of equations is composed of two evolution
equations, one for the scalar ρ and one for the vector v, and two constraint equa-
tions. Given a fixed coordinate basis vector {ei}i=1,2,3 on ΣN, i.e. the vectors ei are
not parametrised by time, the evolution equations in the corresponding coordinate
system {xi}i=1,2,3 are

• the mass conservation equation
(
∂t|x + vkDk

)
ρ = −ρDkv

k, (B.1)
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• the Euler equation
(
∂t|x + vkDk

)
vi = gi, (B.2)

where Di are the components of the Levi-Civita connection on ΣN in the coordinates
xi and g is the gravitational vector field constraint by the following equations:

• the Newton-Gauss equation

Dkg
k = −4πGρ+ Λ, (B.3)

• the Newton-Faraday equation

D[igj] = 0. (B.4)

with Λ the cosmological constant.

Due to the equivalence principle, the Euler equation (B.2) can be seen as a def-
inition of the gravitational vector field. Then apart from this equation, the Newton
system can be written independently of g. To do so, we introduce the expansion
tensor Θ and the vorticity tensor Ω of the vector field v being respectively the
symmetric and the antisymmetric part of the velocity gradient Dv, with

Θij := D(ivj) ; Ωij := D[ivj], (B.5)

and we note the trace Θk
k =: θ. The indices are lowered and raised by the metric

h. We can then rewrite equations (B.1), (B.3) and (B.4) respectively as
(
∂t|x + Lv

)
ρ = −ρθ, (B.6)

(
∂t|x + Lv

)
θ = −4πGρ+ Λ − ΘijΘ

ij + ΩijΩ
ij, (B.7)

(
∂t|x + Lv

)
Ωij = 0. (B.8)

The gravitational vector field g is defined as

gi :=
(
∂t|x + Lv

)
vi + vk

(
Θk

i + Ωk
i
)
. (B.9)

Introducing the Lie derivative in this last equation allows us to have the same
differential operator acting on ρ, Θij and Ωij.

The system (B.5)-(B.8) is closed and equivalent to the system (B.1)-(B.4).

While the expansion and vorticity tensors are explicitly covariant under any
change of coordinates, parametrised by time or not, the differential operator ∂t|x
is not. In the next section we will see how it changes as function of the time
parametrisation of the coordinate transformation. This will allow us to write the
Newton system for any time parametrised coordinate system.
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B.1.2 In general parametrised coordinates – v description

We consider a coordinate vector basis {ẽa}a=1,2,3 on ΣN. If the vectors ẽa are
parametrised by time, the coordinate system they define is called a parametrised co-
ordinate system. We consider such a coordinate system on ΣN and note it {x̃a}a=1,2,3.
For this section, any component of a tensor in the fixed coordinates xi will use the
Roman letters i, j, k, l, etc (example: Tij) and the same applies for the partial deriva-
tives with ∂t := ∂t|x and ∂i := ∂xi ; any component of a tensor in the parametrised
coordinates x̃a will be denoted with a tilde and will use the Roman letters a, b, c,
d, etc (example: T̃ab) and the same applies for the partial derivatives with ∂̃t := ∂t|

x̃

and ∂̃a := ∂x̃a .

To be able to write the Newton equations in the x̃a coordinates from the equations
in the xi coordinates, we need to consider the coordinate transformation between
xi and x̃a. This allows us to write x̃a as functions of xi and t, and inversely xi

as functions of x̃a and t. The Jacobian matrix J ia of this transformation, and its
inverse Jia, are then

J ia := ∂̃ax
i ; Ji

a := ∂ix̃
a.

Because the change of coordinates xi → x̃a depends on time, in general the Jacobian
will also depend explicitly on time.

The components T̃ ab... cd... of any tensor T in ΣN are related to the components
T ij...kl... of that same tensor by

T̃ ab... cd... :=
(
Ji
aJj

b ...
)
T ij...kl...

(
JkcJ

l
d ...

)
.

We consider now a tensor W whose components in the {ei}i=1,2,3 basis are
W ij...

kl... := ∂tT
ij...

kl... with T a parametrised tensor. As mentioned in the previ-
ous section, because the derivative ∂t is not explicitly covariant under the change of
coordinates xi → x̃a(t, xi), the relation W̃ ab...

cd... = ∂̃tT̃
ab...

cd... does not hold
in general. It only holds if the x̃a coordinates do not depend on time. Instead we
have the relation

(
Ji
aJj

b ...
)
∂t
(
T ij...kl...

) (
JkcJ

l
d ...

)
= (B.10)

∂̃tT̃
ab...

cd... − LU T̃ ab...cd... ,

where U is the coordinate velocity vector of the x̃a coordinates with respect to the
xi coordinates and is defined such as

U i := ∂̃tx
i, (B.11)

which implies Ũa = −∂tx̃a using (B.10).

Proof. For simplicity we show the proof for a rank-1 tensor; it can easily be
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generalised for any tensor. Making use of ∂t = ∂̃t − ∂̃tx
k∂k, we have

J ia∂tTi = J ia
(
∂̃tTi − ∂̃tx

k∂kTi
)

= ∂̃tT̃a − Ti∂̃tJ
i
a − J iaU

k∂kTi

= ∂̃tT̃a − J ia
(
Tk ∂iU

k + Uk∂kTi
)

= ∂̃tT̃a − J ia (LUT
¯

)i

= ∂̃tT̃a − LU T̃a. �

We can then write the system (B.6)-(B.9) in the coordinates x̃a. This gives the
generalised Newton equations for the fluid velocity vector v in a time parametrised
coordinate system:
(
∂̃t + Lv−U

)
ρ = −ρθ, (B.12)

(
∂̃t + Lv−U

)
θ = −4πGρ+ Λ − Θ̃cdΘ̃

cd + Ω̃cdΩ̃
cd, (B.13)

(
∂̃t + Lv−U

)
Ω̃cd = 0, (B.14)

and the definition of the gravitational field

g̃a :=
(
∂̃t + Lv−U

)
ṽa + ṽc

(
Θ̃c

a
+ Ω̃c

a)
. (B.15)

These equations, while written for any parametrised coordinate system, still
require reference coordinates, i.e. the fixed coordinates xi, to be able to define the
tensor U . This is discussed in section B.1.4.

The system (B.12)-(B.15) depends on the vectors U and v. The latter can be
called the velocity of the fluid with respect to the fixed coordinates. However when
taking a non-zero coordinate velocity U , it might be useful to work with the velocity
vector V of the fluid with respect to the parametrised coordinates defined as

V := v −U . (B.16)

In the next section we develop the Newton equations as functions of U and V .

B.1.3 In general parametrised coordinates – V description

We introduce the expansion tensors Θ
V and Θ

U , and the vorticity tensors Ω
V and

Ω
U of the vectors V and U as

Θ̃V ab := D̃(aṼb) ; Θ̃U ab := D̃(aŨb) ;

Ω̃V ab := D̃[aṼb] ; Ω̃U ab := D̃[aŨb],

and their trace θV := Θ̃V c
c and θU := Θ̃U c

c .
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We can then write the system (B.12)-(B.15) as function of V and U . This gives
the generalised Newton equations for the fluid coordinates velocity vector V in a
time parametrised coordinate system:

(
∂̃t + LV

)
ρ = −ρ

(
θV + θU

)
, (B.17)

(
∂̃t + LV

) (
θV + θU

)
= −4πGρ+ Λ (B.18)

−
(

Θ̃V cd + Θ̃U cd

) (
Θ̃V cd + Θ̃U cd

)

+
(

Ω̃V cd + Ω̃U cd

) (
Ω̃V cd + Ω̃U cd

)
,

(
∂̃t + LV

) (
Ω̃V cd + Ω̃U cd

)
= 0, (B.19)

and the definition of the gravitational field

g̃a :=
(
∂̃t + LV

) (
Ṽ a + Ũa

)
(B.20)

+
(
Ṽ c + Ũ c

) (
Θ̃V a
c + Θ̃U a

c + Ω̃V a
c + Ω̃U a

c

)
.

B.1.4 Class of coordinates

We define the following mathematical object:

Definition. Given a coordinate system {ya}a=1,2,3, parametrised or not, we define the
class of y coordinates, denoted Xy, as the ensemble of coordinate systems which
can be obtained from the system {ya}a=1,2,3 with a time-independent coordinate
transformation.

The equations developed in sections B.1.1, B.1.2 and B.1.3 were defined, directly
or indirectly, with respect to a chosen fixed coordinate system {xi}i=1,2,3 on ΣN.
They however do not depend on this system as all these equations are invariant
under a time-independent change of coordinates. Instead, any system of coordinates
in the class of fixed coordinates can be chosen. The same applies for the definition
of the vector U , and so of the vector V .

Proof. We consider two fixed coordinate systems {xi}i=1,2,3 and {yI}I=1,2,3 and
a parametrised coordinate system {x̃a}a=1,2,3. The components of a tensor in the
yI coordinates will be denoted with capital Roman letters I, J , ... Let U be the
coordinate velocity vector of the coordinates x̃a with respect to the coordinates xi.
Then

U i := ∂̃tx
i

= ∂̃tx
i(yI)

= ∂ty
K ∂yKxi.

∂yKxi is the Jacobian of the coordinate transformation between xi and yK . Then
U I := ∂̃ty

I . This means that the definition of U is unchanged if the fixed system of
reference is {yI}I=1,2,3. �
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The choice of parametrised coordinates x̃a then defines uniquely the vector
U . The opposite is wrong: defining a vector field U on ΣN does not determine
uniquely a parametrised system {x̃a}a=1,2,3. Instead U uniquely defines a class of
parametrised coordinate systems which we can write XU . Then U is the coor-
dinate velocity of any system in XU with respect to any system in X0, where X0 is
the class of fixed coordinates.

The Newton system (B.12)-(B.15), or equivalently the system (B.17)-(B.20),
then corresponds to the original Newton system (B.6)-(B.9) written in any class of
coordinates. It is the most general writing of the original equations (B.6)-(B.9),
assuming the time parameter is unchanged.

But while the original set of equations required the definition of only one vector
field, the fluid velocity vector v, the general equations of section B.1.2 require the
definition of a second vector field, the coordinate velocity vector U of the chosen
class of coordinates to work in. If one chooses the point of view of section B.1.3, the
pair of vectors (v,U ) is replaced by the pair (V ,U ). However only v is physical as
it is the fluid velocity vector and does not depend on a chosen class of coordinates:
taking v = 0 changes the generality of the equations as it implies ∂tρ = 0, while U
or V can be taken to 0 without loss of generality.

A non-trivial choice of U can however be of physical interest depending on
the physical system studied. In the next section we present specific examples of
parametrised coordinates.

B.2 Specific choices of coordinates

In this section we will always use the Newton equations in the same class of co-
ordinates as the vector U we will choose. We can then omit the tilde notation.
The partial time derivative will also always be partial time derivative at fixed XU

coordinates, we will note it ∂t|U .1

B.2.1 Galilean coordinates

Galilean coordinates are the classes of coordinates for which ∂t|UU
a = 0 and ∇U =

0, i.e. the coordinates XU are uniformly moving with respect to the class of fixed
coordinates. If one chooses the fluid description in terms of (v,U ), then the corre-
sponding Newton system (B.12)-(B.15) is not equivalent for all Galilean coordinates
due to the terms U cDc. The Galilean invariance only appears in the (V ,U ) descrip-
tion of the fluid as the corresponding equations (B.17)-(B.20) are formally equivalent
for all Galilean coordinates.

1To avoid possible confusions, we precise that this notation does not imply ∂
t|U
Ua = 0.
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This shows that the description in terms of the fluid coordinate velocity is more
appropriate when U is non-zero as it will encode the non-inertial effect due to U .
Indeed, we can rewrite the Euler equation (B.20) to feature the non-inertial terms
acting on V

(
∂t|U + V cDc

)
V a = ga −

(
∂t|U + U cDc

)
Ua (B.21)

− 2V c
(
θU a
c + Ω̃U a

c

)
.

We see that the acceleration of V , on the left-hand side of the equation, is affected
by the gravitational field and the non-inertial terms, depending on U . We however
recall that these effects are only gauge effects as the true dynamics of the fluid is
given by v.

B.2.2 Globally translating and rotating coordinates

In classical mechanics, the most general coordinates are usually globally rotating and
translating with respect to X0. In this case they are called frames. They correspond
to all the classes of coordinates where U can be decomposed as

U = U tr +U rot, (B.22)

where DU tr = 0, Θ
U

rot = 0 and ǫacdDbD
cUd

rot = 0 where ǫ is the Levi-Civita tensor.

The condition DU tr = 0 ensures that U tr is a global translation of the XU

coordinates with respect to the Galilean classes of coordinates; Θ
U

rot = 0 ensures
that U rot is only rotational. The rotation vector of the frame is ωa := ǫacdD

cUd
rot.

Then ǫbcdDaD
cUd

rot = Daωb = 0 ensures that this rotation is also global.

In these conditions, the Euler equation (B.21) becomes
(
∂t|U + V cDc

)
V a = ga − ∂t|UU

a
tr − ∂t|UU

a
rot (B.23)

− (U c
tr + U c

rot) Ωc
a − 2V c UΩc

a
.

The term ∂t|UU
a
tr + ∂t|UU

a
rot + (U c

tr + U c
rot) Ωc

a is the centrifugal acceleration, and
2V c UΩc

a is the Coriolis acceleration. We retrieve the usual Euler equation in a
non-inertial frame where the vorticity of U corresponds to the global rotation of
that frame with respect to a Galilean frame. There is however no contribution of
the expansion tensor of U in that case, as it is zero. In the next section we will
show to what corresponds a non-zero Θ

U .

B.2.3 Homogeneous deformation

The expansion tensor of the coordinate velocity vector U can be linked to the time
variations of the metric in the XU coordinates. We have the following relation:

1

2
∂t|U hab = ΘU ab. (B.24)
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Proof. For this proof only we reintroduce the tilde and untilde notations of sec-
tion B.1.2 concerning parametrised and fixed coordinates. Using property (B.10),
we have

J iaJ
j
b∂t|0hij =

(
∂t|U − LU

)
h̃ab,

= ∂t|U h̃ab − 2D̃(aŨb).

∂t|0 is the time derivative with respect to the fixed coordinate class. Because xi are
fixed coordinates, ∂t|0hij = 0. Then ∂t|U h̃ab − 2D̃(aŨb) = 0. �

Remark. In a frame coordinate system, i.e. globally translating and rotating, the metric

is static as U
Θ = 0.

Relation (B.24) implies that with a change of coordinates from fixed coordinates,
we can simulate space expansion. This expansion is always a gradient expansion, i.e.
1
2
∂t|U hab is the gradient of a vector. Taking Θ

U such thatD Θ
U = 0 implies that the

expansion is global: this is called a homogeneous deformation. Furthermore, when
it is isotropic, the coordinate velocity vector corresponds to the position vector, i.e.
in Cartesian coordinates Ua ∝ xa. In this case this is called a Hubble flow. However
one has to remember that the physical vector is v. Therefore the expansion due to

Θ
U is strictly speaking a fluid expansion and not a space expansion.

The main consequence of the gradient expansion is that no global expansion is
possible if the 3D-manifold ΣN has a compact topology.2 Indeed in such a topology
xa cannot be the components of a tensor as they do not respect the global symmetry
of a compact space. So strictly speaking, Newtonian cosmological simulations, said
to be realised in a 3-torus with global isotropic expansion, are actually simulating
an infinite 3D-manifold. The 3-torus symmetry is only set on V and not U , thus
the physical vector v lies in an infinite 3D-manifold.

B.2.4 Lagrangian coordinates

We saw that the physical dynamical properties of the fluid are encoded in v. By
working in parametrised coordinates, we split these properties into U and V . Then,
taking V = 0 implies that the coordinate velocity U is the velocity of the fluid v.
Coordinates such as V = 0 are called Lagrangian coordinates as they follow the fluid
flows given by v. In Lagrangian coordinates, part of the fluid dynamics, the pure
expansion θ and the shear σab := Θ〈ab〉 of v, is put into the time variation of the
metric. The other part, the vorticity of v, does not affect the metric.

2The only possible compact oriented topology is the flat 3-torus T3 up to a finite covering.
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B.3 Similarities with the 3+1 and 1+3 formalisms
of general relativity

In section B.1, we derived the Newton system of equations in an arbitrary class
of coordinates. We saw that the freedom associated with a choice of class is a
vector U . Furthermore the difference between two partial time derivatives is a Lie
derivative. These two properties resemble the properties of the shift freedom in the
3+1 formalism of general relativity (see section 1.1.2). We could add that Newton’s
equations live on a time-parametrised 3D-manifold3 which is the same situation as
for the 3+1-Einstein equations.

This shows that apart from the known formal equivalence between the Newto-
nian system (B.6)-(B.8) and the 1+3-Einstein equations explained in Ellis (2009),
Newton’s theory also features similarities with the 3+1 construction of the Einstein
equation.
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Appendix C

Newton’s equations on a
Lorentzian manifold

This appendix is the second part of my paper Vigneron (2020), the first part be-
ing in appendix B. For this reason some notations are only common to those two
appendices, and not introduced in the main body of the thesis. The is especially
the case for the denomination ‘1+3-Newton equations’, which refer to another set
of equations than the 1+3-NC equations of chapter 2.

C.1 Construction of the 4D-Newton equations

In section 1.1.2 we detailed the construction of the 3+1-Einstein equations on a time
parametrised 3D-manifold Σ. In the present section we will reverse this construction
for the case of the Newton equations: from the parametrised manifold ΣN, we will
define a spacetime manifold MN and write the Newton equations on this manifold.

C.1.1 Push-forward of the Newton equations

In order to write the Newton equations as equations living in a 4D-manifold MN, we
reverse the pull-back operation of section 1.1.2.6. The operation ΣN → MN is called
a push-forward of ΣN in MN. While the pull-back in general relativity defined the
parametrised manifold Σ, the push-forward here will define the spacetime manifold
MN.

The push-forward is parametrised by t. It hence defines a set {ΣN
t }t∈R of hy-

persurfaces embedded in MN. At this stage, for a general push-forward, these
hypersurfaces can intersect. We however impose that the family {ΣN

t }t∈R defines a
foliation in MN. We note n and N the normal vector and the lapse of this foliation.

In the 3+1-Einstein equations (1.40) and (1.39) on Σ, the partial time derivative
∂n t|β

carries the information on the shift of the adapted coordinates in which the pull-
back was made. This is not the case for the classical 3D-Newton equations (1.93)-
(1.96) as no pull-back is at their origin. This means that the derivative ∂t|0 in the

144
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Newton equations does not necessarily correspond to the derivative ∂n t|0
in MN.

Instead in a general push-forward of the Newton equations, ∂t|0 becomes ∂n t|B
,

where B is a spatial vector relative to the foliation {ΣN
t }t∈R.

So a class XU in ΣN corresponds to an adapted class X n
B+U in MN. This is

schematised in Fig. C.1 where we represent a slice ΣN
t and the vectors n, B and v.

We also represent in blue the shift β and the time vector ∂β t of a general adapted
class X n

β as well as the vectors U and V defined in section B.1.2 with respect to
this class.

Nn

vB

V

Uβ

∂n
t|β

Σ
N
t

Figure C.1: Representation of a slice ΣN
t of the foliation {ΣN

t }t∈R. We show the
vectors defining the 4D-manifold MN (in black); the Newtonian fluid velocity (in
red); the vectors relative to a general adapted class X n

β (in blue).

The only constraint on the foliation {ΣN
t }t∈R, and so on MN, is to be spatially

flat and to have an adapted coordinate system in which the spatial components of
the spatial metric do not depend on time. This coordinate system is X n

B . There are
however no constraints on N or B from the Newton equations.

In the coordinates X n
B , the spacetime metric is

gαβ =

(
±N 2 + BcBc Bb

Ba hab(x
c)

)
, (C.1)

where hab(xc) are the spatial components of the flat spatial metric in the chosen
adapted coordinates. The ± sign depends on the choice of signature for the metric:
+ for (+ + ++) signature and − for (− + ++) signature. This is discussed in sec-
tion C.1.3. As MN is determined by the metric (C.1), then the choice of N and B

determines this manifold.
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Remark. The push-forward ∂t|0 → L ∂n
t|B

is only possible if the derivative is applied

on a contravariant tensor as L ∂n
t|B

applied on a covariant tensor is not spatial (see ap-

pendix A.1). This is also true for LvΣN → LvMN
, where LvΣN

and LvMN
are respectively

the Lie derivative in ΣN and in MN. Therefore, the push-forward of the Newton-vorticity

equation (1.96) has to be done when written in the contravariant form.

C.1.2 4D-Newton equations

The push-forward on MN of the 3D-Newton equations (1.93)-(1.97) gives the 4D-
Newton equations

LNn+B+v ρ = −ρθ, (C.2)

LNn+B+v θ = −4πGρ+ Λ − ΘµνΘ
µν + ωµνω

µν , (C.3)

LNn+B+v ω
αβ = −4ωµ[αΘβ]

µ, (C.4)

with the definition of the gravitational field

gα := LNn+B+vv
α + vµ (Θµ

α + ωµ
α) , (C.5)

where Θαβ and ωαβ are defined as

Θαβ := D(αvβ) ; ωαβ := D[αvβ]. (C.6)

The constraints on the foliation are that the Ricci tensor of the hypersurfaces ΣN
t is

zero for all t and that their extrinsic curvature is

Kαβ := ND(αBβ). (C.7)

This amounts to saying that the spatial components of the spatial metric in the
coordinates X n

B do not depend on time. We call such a foliation, a Newtonian
foliation.

The system (C.2)-(C.6) is equivalent to the original system (1.93)-(1.97), i.e.
both systems can be derived from the other. The solutions for v in the 4D-system
are then the same as for the original system. Furthermore, it is still possible to write
the 4D Newton-Raychaudhuri equation (C.3) like the Newton-Gauss equation (1.91).
This means that we have the relation Dµg

µ = −4πGρ+ Λ and this for any choice of
N and B. The same applies for the 4D Newton-vorticity equation (C.4) which can
be written as D[αgβ] = 0.

As said before, the only constraint at that point on MN is to have a Newtonian
foliation. So in the general case where N and B are not chosen, MN is not influ-
enced by the dynamics of v. However, choices on N and B can be made such that
the properties of this manifold will depend on v. Such a choice is the subject of
section C.2. Also in section C.1.5 we discuss a choice where MN is a homogeneous
expanding background manifold.

Remark. Making the push-forward from the Newton equations in XU [equations (B.12)-

(B.15)] is equivalent as from the same equations in X0, which is done in this section. The

equations from XU are obtained from (C.2)-(C.5) by changing B into B +U .
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C.1.3 Signature of MN

While constructing MN with its metric given by (C.1), we made no assumptions on
its signature. The push-forward manoeuvre made in section C.1.1 is independent
of this signature. So the metric of MN can be either of Lorentzian (− + ++), or
Euclidean (+ + ++) signature. It is an additional freedom to N and B of the
4D-Newton equations. We will however take only Lorentzian manifolds. The only
argument to take such manifolds is to enable us to directly compare MN with
solutions of the Einstein equations.

The Lorentzian choice might seem in contradiction with the Galilean invari-
ance of Newton’s theory. This is only the case if we ask the connection related to
the metric (C.1), defined on the spacetime manifold MN, to have this invariance.
This property is however not imposed by the axioms of the classical formulation of
Newton’s theory on a 3D-manifold, i.e. the one presented in section ??. In this
formulation, no spacetime manifold is defined. That is why, when constructing MN

from the classical formulation, some freedom appears on the properties of this man-
ifold. This view is different from the Newton-Cartan theory, where the structure
on the manifold, defined by two degenerate metrics and a compatible connection, is
imposed to be invariant under Galilean transformations. This structure is called a
Galilei structure, and the related manifold, a Galilei manifold (see Künzle, 1976).

The Lorentzian choice might also seem in contradiction with the fact that there
is no speed limit in Newton’s theory, something linked to the notion of causality.
We clarify why there is no such contradiction hereafter.

The causality is the relationship between causes and effects of an event, or ob-
server. Thus this notion depends on the definition of observers. In general relativity,
the manifold of work is a 4D-manifold, on which an observer is defined by a 4-vector
such that the spatial velocity of an event he measures in his rest frames cannot be
greater than c. This implies that the spacetime manifold is a Lorentzian manifold
and that the 4-vector of this observer is a unit, timelike vector.

In the classical formulation of Newton’s theory, an observer is described by a
velocity vector field p in the Euclidean 3-space not limited by the speed of light.
If we push-forward this observer in MN, it is still defined by p which is spatial.
Then an observer in the 4D-formulation of Newton’s theory is not described by a
unit 4-velocity vector, but by a spatial vector field, not limited by c. On the one
hand, contrary to general relativity, this definition of an observer does not require
MN to be Lorentzian; reversely, choosing MN to be Lorentzian does not impose
constraints on the definition of an observer in 4D-Newton. On the other hand, this
Newtonian definition of an observer, and therefore of causality, naturally allows for
the measure of superluminous velocities on the foliation {ΣN

t }t∈R by any observers
as their spatial velocities can themselves be arbitrarily large.

In the next subsection we will see that it is possible to physically define a 4-
velocity vector uN for the Newtonian fluid. We will however necessarily have an
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additional constraint if we want this vector to be a unit vector [see equation (C.10)].

Remark. The push-forward used to construct MN is taken from the 3+1-formalism of GR;

it thus automatically defines a spacetime metric, implying MN to be (pseudo)-Riemannian.

It might however be allowed to use a push-forward which does not necessarily lead to such

a manifold. Recovering the Newton-Cartan theory using the method of section C.1 should

in this case be possible.

C.1.4 Newtonian 4-velocity

The equations of section C.1.2 describe the evolution of a Newtonian fluid in MN.
This fluid is defined by the spatial vector v. We would like to define a vector uN

which we can call the 4-velocity of the Newtonian fluid. The definition of this vector
is not constrained by the 4D-equations, so it remains a choice.

The choice we make is physically motivated by the definition of the Lagrangian
coordinates (see section B.2.4). In general relativity, Lagrangian coordinates are
defined to be comoving with the fluid 4-velocity, i.e. ∂t ∝ u. For a foliation defined
by the normal vector n and the lapse N , and a tilt velocity vector w of the fluid
with respect to that foliation, the Lagrangian coordinates correspond to the adapted
class X n

Nw.
In the classical Newton theory, these coordinates correspond to the class Xv on

ΣN. Its equivalent on the foliation {ΣN
t }t∈R is the adapted class X n

B+v (see sec-
tion C.1.1). Then we demand that the tilt velocity vector of uN with respect to the
foliation defined by n and N be 1

N
(B + v).

However there remains a freedom on the choice of the normal part of uN with
respect to {ΣN

t }t∈R. Two natural choices are possible:

• The Newton-Cartan choice: this 4D theory features a 1-form ψ1 which defines
an absolute time and a foliation. An observer in this theory, described by a
vector u, is defined with respect to this absolute time. The vector u has then
the following property ψµu

µ = 1. The analogue to this definition in our case
would be to impose nµ uN µ = −1. This leads to a first definition of uN :

uN :=
1

N (Nn+ B + v) , (C.8)

• The relativistic choice: in GR, an observer is described by a unit vector u,
with uµuµ = −1. In our case, this translates into uN

µ uN µ = −1. This leads to
a second natural definition of uN :

uN :=
γ

N (Nn+ B + v) , (C.9)

1Using the notation of Künzle Künzle (1976).
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with γ :=
[
1 − 1

N 2 (Bµ + vµ) (Bµ + vµ)
]−1/2

. The downside of this definition is
that it adds the following constraint to the 4D-Newton equations (C.2)-(C.6):

(Bµ + vµ) (Bµ + vµ) < N 2. (C.10)

This is indeed a constraint, as if we take N = 1 and B = 0, equation (C.10)
imposes vµvµ < 1. Such a constraint is not implied by the first definition (C.8).

We take the first definition (C.8), as it remains general with respect to the 4D-
Newton equations. This 4-velocity is illustrated in Fig. C.2, along with n, B and
v.

With this choice, we can interpret the 4-velocity uN as follows: uN corresponds
to the covered distance ∆xµ in spacetime per unit of proper time τn , where τn refers
to the proper time of n. This vector n and its induced foliation then define a fun-
damental time (as in the NC theory) with respect to which Newtonian 4-velocities
are defined. The situation is different in general relativity, where the 4-velocity of a
fluid element is defined as the covered distance ∆xµ in spacetime per unit of fluid
element proper time τu .

Remark. With what precedes, we can complete the definition of a Newtonian observer in

the 4D-Newton theory, as being described by a vector m such that mµnµ = −1. This is

the equivalent definition of an observer in the NC theory. The observer given by uN is

then the fluid itself.

Remark. For both definitions, v corresponds to the coordinate velocity of the fluid 4-

velocity uN with respect to the coordinates Xn
B (see Fig. C.2). The tilt velocity is however

still not the physical vector. The latter remains v as taking v = 0 still implies a constraint

on ρ with the 4D equation (C.2). This is not the case if we take 1
N (B + v) = 0.

C.1.5 Background homogeneous expanding spacetime

In this section, we present a first choice for the manifold MN.
Taking N := 1 and Kαβ = D(αBβ) := −Hαβ, with DµHαβ := 0, implies that

MN is a homogeneous globally expanding spacetime. This expansion is anisotropic,
unless Hαβ ∝ hαβ which corresponds to the Einstein-de Sitter spacetime.

The tilt velocity of uN is then w = B+v. The expansion tensor can be rewritten
Θαβ := Hαβ + D(αwβ). Then, in Eulerian comoving coordinates, the 4D-Newton
equations for the vector w become the usual Newton equations with a homogeneous
deformation (equations for V introduced in section B.1.3 with the homogeneous
deformation of section B.2.3).

We still have the same results concerning expansion in a compact topology. If
we impose the hypersurfaces ΣN

t to have a compact topology, then Hαβ, being a
constant gradient, has to be zero. It is still not possible to have an expanding
compact topology in Newton, even when using the 4D-Newton formalism. This was
expected as the two formulations are equivalent. In order to do it, the trick is to
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N uNNn

∂
n

t|B

Nw v

B
Σt

Figure C.2: Representation of the chosen Newtonian 4-velocity vector uN with re-
spect to the foliation {ΣN

t }t∈R. Using the analogue between Lagrangian coordinates
in Newton and in GR, we imposed the tilt velocity of uN to be ω := 1

N
(B + v).

The normal part is chosen to be n, which is the equivalent to what is taken in the
Newton-Cartan theory for the 4-velocity of an observer.

consider periodic boundaries only on the vector w as explained in section B.2.3. In
this case the topology of the hypersurfaces ΣN

t is still R3 as B is not periodically
defined.

The choice of 4D-manifold MN of this section is independent of the fluid kine-
matical quantities. It is then only a background manifold. We therefore cannot
draw any dictionary between the Newtonian fluid quantities and the relativistic
fluid quantities defined via the Einstein equation for the 4D-manifold. In the next
section, MN will depend on the Newtonian fluid enabling, the definition of a dictio-
nary in section C.2.4.

Remark. The choice we make here cannot strictly be called a foliation choice as this would

imply that another choice would describe the same equations but in another foliation, the

4D-manifold being unchanged. This is not true as, in general, another choice for N and

B changes MNew.
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C.2 1+3-Newton equations

C.2.1 The choice

A natural choice coming from the definition of the Newtonian 4-velocity (C.8) is to
take N and B such that the foliation is orthogonal to uN , implying uN = n. This
is done by taking B = −v. The lapse N remains unknown. In analogy with GR,
as we deal with a dust fluid, we choose the 4-acceleration of uN to be zero, which
is imposed by N = 1. We expect this choice to be different in the case of non-dust
fluids (this is discussed in section C.3.3).

Remark. Interestingly, with the above choice, the two definitions (C.8) and (C.9) are

equivalent.

Under the present choice the 4D-Newton equations become

L uN ρ = −ρθ, (C.11)

L uN θ = −4πGρ+ Λ − ΘµνΘ
µν + ωµνω

µν , (C.12)

L uN ωαβ = 0, (C.13)

with the definition of the gravitational field

gα := L uN vα + vµ (Θµ
α + ωµ

α) , (C.14)

where

Θαβ := D(αvβ) ; ωαβ := D[αvβ], (C.15)

= ∇(α uN
β), (C.16)

and with uN µ∇µ uN α = 0 and ∇[α uN
β] = 0, so that uN defines a foliation. Note

that the covariant form of the vorticity equation is now possible as only the normal
vector remains in the Lie derivative.

The gravitational field definition (C.5) can be rewritten as

gα := uN µ∇µv
α. (C.17)

The RHS is spatial as uN has no 4-acceleration. We see that the gravitational field
corresponds to the 4-acceleration, with respect to the observer uN , of the Newtonian
fluid velocity v.

The properties of the foliation {ΣN
t }t∈R are now linked to those of the fluid with

the relation Kαβ = −Θαβ. Then the 4D-Newton equations (C.11)-(C.13) closely re-
semble the 1+3-Einstein equations (1.52)-(1.57) for a dust fluid: on a formal aspect
and on the fact that they are expressed in the rest frames of the fluid. We call them
the 1+3-Newton equations.
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The main difference between the 1+3-Newton and the 1+3-Einstein equations
remains in the definition of the vorticity. In the Einstein equations, it is defined
as the antisymmetric rest frame projection of the gradient ∇u [definition (1.45)].
However in Newton, the antisymmetric part of ∇ uN is zero as uN defines a foliation.
Instead the vorticity is defined as the antisymmetric part of a spatial vector gradient
[second equation in (C.15)], the symmetric part of that gradient being the expansion
tensor [first equation in (C.15)]. This is the reason why we will define the Newto-
nian limit (see section C.2.3) and the Newton-GR dictionary (see section C.2.4) for
irrotational flows.

With the choice made in the present section, the spacetime metric of the manifold
MN in the adapted coordinates X n

−v is

gαβ =

(
−1 + vcv

c vb
va hab(x

c)

)
. (C.18)

where hab(xc) are the spatial components of the flat spatial metric in the fixed co-
ordinates used to derive the solution for v.

Remark. As said previously, the norm of the Newtonian spatial velocity v is not bounded

by c. Where v is superluminal, the time vector ∂n t|−v
is spacelike and the points in MN

where vµv
µ = c2 correspond to coordinate singularities of the class Xn

B . As we will see in

section C.2.5, this is not necessarily unphysical.

C.2.2 3+1-Newton equations

Once we have chosen N and B, the manifold MN is set. The choice made in
section C.2.1, leading to equations (C.11)-(C.14), is such that these equations are
written with respect to the foliation orthogonal to the Newtonian fluid 4-velocity
uN we defined. This is why they are called 1+3-Newton equations. We can however

change this foliation.
We define a timelike unit vector fieldm on MN, defining a foliation {ΣN,m

t }t∈R of
lapse M in MN. We can then decompose uN , Θ and ω with respect to {ΣN,m

t }t∈R.
The same can be done for the 1+3-Newton equations. Equations (C.11) and (C.12)
are scalar equations and do not need to be projected, contrary to equations (C.13)
and (C.14). As for the Lie derivative L uN , it becomes Lγm+γw with the usual
decomposition of uN with respect to m defined in (1.26).

Then writing the 1+3-Newton equations in terms of the variables uN , Θ and ω
projected with respect to {ΣNew,m

t }t∈R gives the 3+1-Newton equations. We do not
give these equations here but discuss in section C.3.2.1 a possible use of them in
relation with dictionary defined in section C.2.4.
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C.2.3 1+3-Newton from GR

The choice of N and B leading to the 1+3-Newton equations implies that the
properties of the Lorentzian manifold MN depend on the dynamics of the Newtonian
velocity v. We however do not know at which point MN with the metric (C.18) is
a solution of the Einstein equations for the same fluid as the one in 1+3-Newton,
i.e. a dust fluid. In this section we will recover the 1+3-Newton equations from GR,
enabling us to answer this question in section C.2.4.

C.2.3.1 Expansion tensor decomposition

We want to recover the 1+3-Newton equations from general relativity, thus defining
a Newtonian limit. Our approach will need the definition of a flow orthogonal
foliation. However, as explained in section C.2.1, the difference in the definition
of vorticity between Newton and GR implies that such a foliation cannot be built
in the latter theory as opposed to the former. So we expect that recovering the
1+3-Newton equations from the 1+3-Einstein equations will be more complicated
for vortical flows.

We then only take irrotational fluids in both theories. Note that a solution to
allow for vorticity, but still dealing with foliations, is to make the limit between the
3+1-Newton equations (presented in C.2.2) and the 3+1-Einstein equations. This
will not be studied in this appendix but it is discussed in section C.3.2.1.

We consider the 3+1-Einstein equations (1.20), (1.21) and (1.23) in the orthog-
onal foliation of an irrotational dust fluid of 4-velocity u (they are equivalent to
the 1+3-Einstein equations for irrotational flows). The Hamilton constraint (1.22)
is redundant with the other equations and not needed for the discussion. For this
section only we use spatial indices and reintroduce the light speed c.

In a cosmological setup, we suppose that we can decompose the expansion tensor
into scalar, vector and tensor parts as in standard perturbation theory2:

Θab = χhab +D(avb) + Ξab (C.19)

with Ξ c
c = 0 and DcΞ

c
a = 0. hab is the spatial metric of the orthogonal foliation.

The irreducibility of this decomposition is discussed in section C.5.1.
We take v to be irrotational, i.e. D[avb] = 0. This is a choice motivated by

the 1+3-Newton equations in which D[avb] plays the role of the vorticity. In sec-
tion C.3.2.2 we discuss what D[avb] should be in the case of rotational fluids.

Remark. The scalar-vector-tensor decomposition we made is fully covariant (it does not

depend on an adapted class of coordinates). It is also independent of a choice of foliation

as the spatial projection used is defined with respect to the fluid. This is not the case for

the decomposition of the spatial metric in standard perturbation theory.

2In standard perturbation theory this is done for the spatial metric.
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The parameter χ is interpreted as the scalar expansion, D(avb) as the gradient
expansion and Ξ as the gravitational wave term. Ξ is only a shear term as its trace
is zero. While the trace of the gradient expansion is on average zero for a compact
space, the scalar expansion is not. Then global expansion in a compact space is
driven by χ. Both χ and Ξ are not present in Newton, where only D(avb) is. This is
coherent with the fact that there are no gravitational waves nor global expansion in
a compact space for this theory. In this view, we can then interpret Dv to be the
Newtonian fluid expansion and χ to be the space expansion.

C.2.3.2 The limit

The first approximation we make is to neglect the space expansion and the gravi-
tational wave term compared to the Newtonian fluid expansion (this is discussed in
section C.5):

Θab ≃ Davb. (C.20)

This implies that in the adapted class X u
−v

∂u t|−v
hab ≪ Davb,

and thus

∂u t|−v
(Davb) ≃ Da

(
∂u t|−v

vb
)
. (C.21)

In this commutation relation we neglected the time variation of the spatial metric.
We define the beta-factor βv := |v|/c and the following length scales:

• the typical length scale Lv,l of the spatial variation of the vector v, i.e. 1
c
Davb =

1
c
Θab ∼ βv/Lv,l,

• the typical length scale Lv,t of the time variation of the vector v, i.e. 1
c2 ∂u t|−v

va ∼
βv/Lv,t,

• the Schwarzschild density length scale Lǫ :=
(
Gǫ
c4

)(−1/2)
,

• the typical local curvature radius LR of the spatial Ricci tensor, i.e. Rab ∼
1/L2

R.

By defining the Newtonian gravitational field as ga := ( ∂u t|−v
+vcDc)v

a [justified by
the 1+3-Newton equation (C.17)], we can say that in a Newtonian regime, ∂u t|−v

va

will be of the same order as vcDcv
a which implies

Lv,l/Lv,t ∼ βv.
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Assuming that 1
c
DaDbvc ∼ βv/L

2
v,l and using the 3+1-Raychaudhuri equation (1.39)

with the commutation relation (C.21) we have

(
Lv,l
Lǫ

)2

∼ β2
v .

This relation along with the 3+1-Ricci equation (1.40) leads to

(
Lv,l
LR

)2

∼ β2
v . (C.22)

For the usual condition βv ≪ 1 on the Newtonian velocity v, relation (C.22) shows
that the spatial variations of the Newtonian velocity are small in front of the typical
length scale given by the spatial curvature. This shows that the curvature is of
second order in βv.

We can then consider that, at leading order, the spatial curvature does not affect
the dynamics of v, i.e. Dv ∼ D̂v, where D̂ is the connection of a flat metric ĥ (a
more quantitative justification of this approximation is given in section C.5). Then,
at leading order, the 3+1-Ricci equation is not an evolution equation anymore but
becomes a relation giving the spatial curvature orthogonal to the fluid as function
of the kinematical quantities of that fluid. In this view, we then have Rab = R

(2)
ab ,

where R(2)
ab is of second order in βv with

R
(2)
ab =

−1

c2

[(
∂u t|−v

+ LvΣ
)

Θab (C.23)

+
(

4πGǫ

c2
+ Λ

)
ĥab + θΘab − 2ΘacΘ

c
b

]
,

with Θ = D̂v.
As for the momentum constraint (1.41), it becomes D̂[aD̂b]vc = 0 at leading order

in βv. This is consistent with a zero curvature at first order. Thus equation (1.41)
is not a constraint anymore.

We give an additional relation for the Weyl tensor in this limit (see Maartens
& Bassett, 1998, for the expression of the Weyl tensor in terms of the kinematical
quantities Θ and ω) . Its electric part Eab is

Eab = −D〈agb〉. (C.24)

This relation is true to any order in βv once assumption (C.20) is made. The mag-
netic part Hab is zero. Note that if D[avb] 6= 0, this is not true anymore. This is
discussed in section C.3.2.2.

Remark. Using the decomposition of the expansion tensor (C.19), we can see that the

solutions of the Einstein equations which do not feature the Newtonian fluid expansion

term will not have a Newtonian limit. In particular, this is the case for purely gravitational

waves solutions.
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C.2.3.3 Recovering the 1+3-Newton equations

The limit introduced in the previous section implies that at leading order in βv the
Ricci equation is a relation for the spatial curvature and not an evolution equation
anymore. This spatial curvature orthogonal to the fluid 4-velocity is of second order
in βv. The expansion tensor is a gradient, Θab = D(avb). The momentum constraint
is then trivial at leading order. The only 3+1-Einstein equations remaining to deter-
mine the evolution of Θab are the 3+1-Raychaudhuri equation (1.23) and the 3+1-
energy conservation (1.24), which are respectively equivalent to equations (C.12)
and (C.11) of the 1+3-Newton system. The Newton-vorticity equation (C.13) is
trivially recovered as the limit is done for irrotational flows.

With the Newtonian limit defined in the previous subsection, we recovered the
1+3-Newton equations in the irrotational case. This formulation of Newton’s equa-
tions is then supported. In the next section we will use the Newtonian limit of the
present section to define a Newton-GR dictionary.

C.2.4 Newton-GR dictionary

In the previous section we showed that we can recover the 1+3-Newton equations for
irrotational fluids from GR with a limit at leading order in βv. The limit also defines
a spacetime manifold Mlim solution of the Einstein equations at leading order. This
manifold however differs from the manifold MN given by the metric (C.18). Indeed,
MN has strictly flat spatial sections orthogonal to the fluid, whereas the curvature
of the same sections in Mlim is non-zero and of second order. This implies that MN

with the metric (C.18) is not solution of the Einstein equations at leading order.
The dictionary will therefore be given by Mlim and not MN. For the remainder of
this appendix Mlim will then be denoted M(dic).

We define the following Newton-GR dictionary for irrotational dust fluids: given
a solution of the Newton equations for v, the relativistic quantities, denoted with
the upper-script (dic), are determined by the following relations:

ǫ(dic) = ρ, (C.25)

Θ
(dic)
ab = D̂avb, (C.26)

R
(dic)
ab = −D̂agb − D̂cv

cD̂avb + D̂avcD̂
cvb

+ (4πGρ+ Λ) ĥab, (C.27)

where the RHS are the Newtonian quantities. Θ
(dic) is the expansion tensor of the

relativistic fluid, R(dic) is the spatial curvature orthogonal to the relativistic fluid,
D̂ is a flat connection, g is the Newtonian gravitational field constrained by the
Newton-Gauss equation (1.91) and the Newton-Faraday equation (1.92).

Remark. As we only give the Ricci tensor R
(dic)
ab , the spatial metric orthogonal to the fluid

4-velocity cannot be explicitly constructed. However, raising or lowering the dictionary

quantities at leading order only requires the flat spatial metric ĥab.
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Studying the light ray trajectories with a Newtonian solution using our dictio-
nary requires the 3+1 light-geodesic equation of the manifold M(dic). This equation
can be found in Vincent et al. (2012).

In section C.2.5 we will take the example of an exact solution of the Newton
equations to test the dictionary.

As the 1+3-Newton equations were recovered from GR only for irrotational fluids,
we were only able to draw a dictionary for these kinds of fluids. In section C.3.2 we
discuss the possibility of a dictionary with vorticity.

C.2.5 Schwarzschild geometry

C.2.5.1 Point mass Newtonian solution

In this section we study an exact vorticity-free solution of the 1+3-Newton equations.
We begin with a 3D-Newtonian calculation. We consider a point mass of mass M

creating a gravitational field ga = (−GM/r2, 0, 0) in spherical coordinates (r, θ, ϕ).
We then solve the Euler equation (1.90) for a stationary, irrotational fluid of test
observers of velocity v. We have

Da (vcv
c) = 2ga,

va = DaΨ,

with Ψ a scalar field depending only on the radial coordinates. The general solution
is

va =


±

√

2E +
2GM

r
, 0, 0


 , (C.28)

where E is a constant corresponding to the energy of the fluid particles. This solu-
tion corresponds to a radially ingoing or outgoing free-falling fluid of test observers.
If E < 0, the solution is valid in the region r < −2GM

E
and corresponds to fluid

particles with bounded orbits, i.e. elliptic orbits. If E = 0, the orbits are parabolic
and for E > 0 they are hyperbolic. Note that all the particles have the same type
of orbit as E is a constant of space.

Remark. In the case of the 1+3-Newton equations, this solution implies the following

spacetime line element for MN in the adapted class X uN

−v (we recall that X uN

−v corresponds
to the class X0):

ds2 =

(
−1 + 2E +

2GM

r

)
dt2 ∓ 2

√

2E +
2GM

r
dtdr

+ dr2 + r2dΩ2, (C.29)

with dΩ2 := dθ2 + sin2 θdϕ2.
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C.2.5.2 Relativistic quantities from the Newtonian solution

Using the dictionary (C.25)-(C.27), we can derive the relativistic quantities corre-
sponding to the Newtonian solution (C.28). We obtain

ǫ(dic) = 0, (C.30)

Θ
(dic)
ab = diag

(
−GM

r2vr
, r vr, r vr sin2 θ

)
, (C.31)

R
(dic)
ab = −2E diag

(
0, 1, sin2 θ

)
, (C.32)

with vr := ±
√

2E + 2GM
r

.

C.2.5.3 Radially free-falling test fluids in GR

We want to know if the manifold defined by equations (C.30)-(C.32) is solution of
the Einstein equations at leading order in βv and if it describes the same physical
system as the Newtonian solution, i.e. a radially free-falling test fluid on a mass
point.

The solution for this physical system in GR is given by the Schwarzschild mani-
fold and the adapted coordinates corresponding to a free-falling observer are the gen-
eralised Gullstrand-Painlevé coordinates (see MacLaurin, 2019)3). The Schwarzschild
line element in these coordinates is

ds2 =
−1 + 2GM

r

2E + 1
dt2 ∓ 2

√
2E + 2GM

r

2E + 1
dtdr

+
1

2E + 1
dr2 + r2dΩ2. (C.33)

where E can be interpreted as the Newtonian energy of the fluid particles. For
E = 0, the observer associated with the generalised Gullstrand-Painlevé coordinates
is a parabolic radially free-falling test fluid. For E < 0 and E > 0 the free-fall is
respectively elliptic and hyperbolic.

We note with the upper-script (GP) the relativistic quantities corresponding to
an observer associated with the generalised Gullstrand-Painlevé coordinates. These
quantities are

ǫ(GP) = 0, (C.34)

Θ
(GP)
ab = diag

(
− GM

r2vr (2E + 1)
, r vr, r vr sin2 θ

)
, (C.35)

R
(GP)
ab = −2E diag

(
0, 1, sin2 θ

)
, (C.36)

with vr := ±
√

2E + 2GM
r

.

3MacLaurin (2019) uses the Killing energy e := −nµ
ff ξµ where nff is the 4-velocity of the free

falling observer and ξ is a static Killing vector. The energy definition we use is linked to e with
the relation E = e2 − 1.
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C.2.5.4 Comparison

In the present section, we compare the relativistic quantities (C.30)-(C.32) obtained
from the Newton-GR dictionary with the ones of the Schwarzschild metric (C.34)-
(C.36). For simplicity, we will not consider the case E < 0. Then E corresponds to
the Newtonian energy of the test particles at infinity.

The energy densities ǫ(dic) and ǫ(GP) are the same. This was expected as the
Newtonian and the GR solutions are both vacuum solutions. The covariant com-
ponents of the spatial curvatures are also the same, with R

(dic)
ab = R

(GP)
ab . The co-

variant components of the expansion tensors differ only for the component rr, with
Θ(dic)
rr = (2E + 1)Θ(GP)

rr .
The limit under which the dictionary is defined implies |v| ≪ c for all r. Taking

r → ∞, this implies E ≪ 1 which in turn implies that the comparison should be done
in the region r ≫ GM . Then at leading order in E and GM

r
, the dictionary quantities

are the same as those of Gullstrand-Painlevé. This supports our dictionary.

C.2.5.5 The parabolic free-fall: E = 0

In the case E = 0, the dictionary quantities are exactly equal to the general
Gullstrand-Painlevé ones. Furthermore the metric (C.29) of the manifold MN,
constructed from the Newtonian solution (C.28), is exactly the Schwarzschild met-
ric in generalised Gullstrand-Painlevé coordinates, which implies that MN is the
Schwarzschild manifold. This result is true without any approximation. Then the
4D construction of Newton’s equations we introduced in this appendix, and in par-
ticular the case of the 1+3-Newton equations, allows us to recover exactly a physical
solution of the Einstein equations. This further supports the choice uN = n made
in section C.2.1.

Note that it was already known that the velocity as a function of the point mass
distance of a parabolic radially free-falling observer was the same in Newton and
in GR. What we showed is that this solution allows us to recover from Newton the
full spacetime metric of Schwarzschild. This was possible because the foliation of
the generalised Gullstrand-Painlevé coordinates with E = 0 has flat spatial sections,
which is required by the 1+3-Newton equations.

We see from this solution that even if the Newtonian velocity v can, at certain
points of MN, be comparable to the speed of light, and even exceed it, it is still
physical. We know that because it is the Schwarzschild spacetime. This means that
solutions of the Newton equations are not necessarily unphysical for vµvµ ∼ c2. We
however expect this statement to be true in few cases only.

Remark. Strangely, this exact correspondence between a Newtonian solution and a GR

one arises for a Newtonian fluid whose energy is zero for any fluid particles. This leads to

the following question: is there a link, in general, between the energy of a Newtonian fluid

and the validity of the related Newtonian solution with respect to GR? If this is the case,
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this would be true only for one gravitational potential energy convention. For an isolated

system like a mass point, we saw that it works if the gravitational potential is taken to be

zero at infinity. What convention should be taken in the case of a compact spacelike T3

remains to be determined.

C.3 Discussions

C.3.1 Remarks on the Newtonian limit

The Newtonian limit of general relativity and the corresponding dictionaries (e.g.
Green & Wald, 2012) are usually done with respect to an accelerated observer. We
note its 4-velocity n. The foliation corresponding to this observer has then a lapse
N , the spatial gradient of which is the acceleration of the observer. Hence in the
adapted coordinates X n

0 , the component g00 of the spacetime metric is N2. The
acceleration of the observer is considered in these limits to be the gravitational field
of Newton theory. Using an α := Dα lnN , this is why, at leading order, the lapse,
and therefore the component g00, gives the Newtonian gravitational potential. In
this leading order approximation, the accelerated observer is considered to be only
slightly tilted with respect to the fluid.

The Newtonian limit we defined in section C.2.3 is however made in the rest
frames of the fluid, which is not accelerated, being a dust fluid. The Newtonian
gravitational field then cannot be the lapse, which is fixed to 1. In place, this field
is defined as the acceleration of the spatial vector present in the decomposition of
the expansion tensor [see equation (C.17)].

However, the interpretation of g00 as the gravitational potential, in coordinates
adapted to the fluid rest frames, still holds in the case of stationary irrotational
fluids. In these cases,

gα = Dα

(
1

2
vµv

µ
)
.

In the coordinates X uN

−v , we have g00 = −1 + vµv
µ which implies

gα =
1

2
Dα (g00 + 1) , (C.37)

and g00 can be interpreted as the gravitational potential.
Note that this interpretation is not valid in the case of the Lagrangian coordinates

X uN

0 where g00 = 1 as all the dynamics of the fluid is put in the time variations of
the spatial metric. Furthermore, in the case of non-stationary fluids, the term g00 is
not the gravitational potential anymore, as (C.37) does not hold.
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C.3.2 Dictionary with vorticity

In section C.2.4 we drew our Newton-GR dictionary in the case of irrotational fluids.
The reason for this was that, in general relativity, no orthogonal foliation can be
defined for a rotational fluid. But as we made the dictionary in the rest frames of
the fluid, we needed such a foliation.

We will not detail the construction of a dictionary with vorticity in this article.
We however present two possibilities that should allow for it.

C.3.2.1 Tilted dictionary

The first, and most promising possibility, is to make the dictionary in a tilted fo-
liation with respect to the fluid. In general relativity, the 3+1-Einstein equations
provide the tilted description of a fluid and allow for vortical flows. In our formula-
tion of Newton’s theory, the equations where the fluid is tilted are the 3+1-Newton
equations presented in section C.2.2. They are derived from the 1+3-Newton equa-
tions by making a change of foliation uN → m.

One strength of a tilted dictionary would be to show that Newton’s theory can
be obtained from any foliation.4 But as the choice of this foliation is not necessarily
physically motivated (see also Buchert et al., 2020, for a discussion of this topic),
we would prefer making the dictionary with respect to the fluid rest frames. We
discuss this in the next subsection.

C.3.2.2 Orthogonal dictionary

Constructing a dictionary in the rest frames of the fluid might be more complicated
as no foliation can be defined in general relativity, contrary to the Newtonian case.

It is however possible to define a rest frame Riemann tensor Riem
u and a rest

frame covariant derivative Du (see Roy, 2014). They do not have the same properties
as the ones defined on hypersurfaces. The first Bianchi identity for Riem

u will
feature the vorticity of the fluid and Du will have torsion. The latter is however
of second order in βv. We then hope that at leading order the rest frames can be
approximated to be a family of hypersurfaces.

It remains to be shown that the projection along u of the Lie brackets of rest
frame vectors is also of second order.5 This would indicate that we could maybe
define a coordinate basis on the rest frames at leading order.

Remark. In this dictionary, the gradient in the decomposition (C.19) of the expansion

tensor would feature a non-zero antisymmetric part which would be the vorticity tensor.

Subsequently, the magnetic part of the Weyl tensor would not be zero anymore.

4 In standard perturbation theory, this means that any gauge choice would be suited for a
Newton-GR dictionary.

5As there is no foliation, there is no coordinate basis in the rest frames of the fluid. This implies
that the Lie brackets of any vectors in these rest frames feature a non-zero part along u.
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C.3.2.3 Is it really possible?

It is known that Newton’s theory features gravitational phenomena which are not
described by GR. Assuming that the latter is the genuine theory of gravitation,
these phenomena are not physical. We mentioned in the introduction the case of a
shear-free dust fluid which can both rotate and expand in Newton, but cannot in
GR. This implies that no limit exists which allows us to recover the full Newtonian
theory from GR.

To our knowledge, there exists no example of a phenomenon like the one just
mentioned, i.e. present in Newton but not in GR, for a vorticity-free fluid. If this is
indeed the case, this might imply that the impossibility at fully recovering Newton
from GR, is due to the vorticity. Then constructing a dictionary with vorticity, as we
presented in the previous subsections, would need require additional approximation
than just |v| ≪ c.

C.3.3 1+3-Newton for non-dust fluids

We assumed until now the Newtonian fluid to be a dust fluid. This was done to
simplify the interpretations made while constructing the 1+3-Newton equations and
the related dictionary. We briefly study the case of a non-dust fluid in this section.

Such a fluid is influenced by additional forces, other than the gravitational force,
described by a vector field F . These forces can be either internal, linked to the fluid
properties (density, pressure, viscosity, ...), or external. The changes in the Newton
system for a non-dust fluid is given by the second law of Newton. This is translated
by the addition of F in the Euler equation (1.90):

(
∂t|x + vkDk

)
vi = gi + F i/ρ, (C.38)

with g still solution of the Newton-Gauss (1.91) and Newton-Faraday (1.92) con-
straints.

In the Newton system (1.93)-(1.96) written in terms of kinematical quantities
of the fluid, the change is made by adding the divergence of F in the Newton-
Raychaudhuri equation (1.95) and the vorticity of F in the Newton-vorticity equa-
tion (1.96). These additional terms are then present in the 4D-Newton equations.

The 1+3-Newton equations should not however be obtained with the choice
N = 1 and B = −v but rather with

B = −v ; D ln N = F . (C.39)

This choice would not change the Newton-GR dictionary much. Essentially the
interpretation of the Ricci equation to be a relation for the spatial curvature tensor
would remain valid.
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C.3.4 Cosmological models from 1+3-Newton

In the introduction of Vigneron (2020) we motivated the construction of the 1+3-
Newton system as a way to better understand why Newton’s theory, compared to
GR, is lacking the phenomenon of backreaction (in a compact space). Ultimately
this would be used to define simple models suited for the study of backreaction
and global topology in cosmology. This section aims at presenting how we could
define such models from the 1+3-Newton formulation and GR. However, we leave
the precise construction of these models for another paper.

In section C.3.4.1, we present an extension of our dictionary to allow for global
expansion of a compact space, but still without backreaction. The next two sub-
sections focus on possible strategies enabling the construction of the cosmological
models.

C.3.4.1 1+3-Newton equations and dictionary for a globally expanding
compact space

In sections B.2.3 and C.1.5 we showed that no global expansion is possible in a
compact space in Newton’s theory. A solution to allow for expansion was to decom-
pose the fluid velocity v into a homogeneous deformation vector U and a peculiar
velocity V , the latter having periodic boundary conditions. As explained in sec-
tion B.2.3, this is an effective picture of the expansion in a compact space, as ΣN

(or equivalently the hypersurfaces ΣN
t for the 4D formulation) is still R3.

Having ΣN compact with a global expansion is possible with a modification of
the Newton equations based on the effective picture of section B.2.3 and the decom-
position introduced in section C.2.3.1. We will focus on a modification allowing for
isotropic global expansion.

The modification is to replace the definition (C.15) for the expansion tensor by

Θαβ := Hhαβ +D(αvβ). (C.40)

where H is a homogeneous Hubble expansion rate (i.e. DαH = 0), while still using
the 1+3-Newton equations (C.11)-(C.14). H an additional fundamental variable in
the theory. These equations, along with the definition (C.40), are equivalent to the
Hubble flow equations of section B.2.3 but allow ΣN

t to be compact. Note that the
evolution equation for H, being a spatial constant, is given by the spatial average
of the Raychaudhuri equation over the whole manifold ΣN.6 This average equation
then depends on the boundary conditions at infinity if ΣN = R3 or on the topology
if ΣN is compact.

We can then redefine the dictionary of section C.2.4 to feature the global expan-
sion. We then have a Newton-GR dictionary for irrotational dust fluids and globally

6In the case ΣN = R3, the spatial average requires boundary conditions at infinity to be defined.
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expanding compact spaces:

ǫ(dic) = ρ, (C.41)

Θ
(dic)
ab = Θab, (C.42)

R
(dic)
ab = −D̂agb − θΘab + ΘacΘ

c
b + (4πGρ+ Λ) ĥab, (C.43)

The RHS side are the Newtonian quantities with Θab := Hhab+D̂avb and D̂[avb] = 0.

The modification (C.40) can be justified by the limit introduced in section C.2.3.2
and section C.5. When neglecting the space expansion term in section C.5.2.1, a
freedom remained on χ from equation (C.46) as a spatial constant freedom. This
constant is H. We took it to zero in section C.5.2.1 in order to recover the 1+3-
Newton equation as defined in section C.2.1.

As we included global expansion, the dictionary (C.40)-(C.43) can be used to
compare Newtonian and relativistic cosmological simulations. It is however still a
bit limited as it requires irrotational fluids.

The modified 1+3-Newton equations of this section, and the related dictionary
still do not feature backreaction in a compact space (the theorem of Buchert &
Ehlers still holds). Furthermore, the spatial sections being flat, we are not able to
study structure formation in spherical or hyperbolic spaces, and the only oriented
compact topology available is T3, up to a finite covering. In the next two subsections
we will discuss possible GR based modifications of the 1+3-Newton equations which
would allow these studies.

C.3.4.2 Models for the study of the backreaction

The Newton theory for fluid dynamics is a scalar-vector theory, i.e. the dynamical
variables are a scalar and a vector. The scalar is the rotational free part of v and
the vector is the divergence free part of v. The scalar part is evolved with the Ray-
chaudhuri equation (C.12) and the vector part with the vorticity equation (C.13).

General relativity is a scalar-vector-tensor theory, i.e. there are dynamical vari-
ables, called tensorial variables, which cannot be written as function of a scalar or a
vector. This is the case of the gravitational wave term in the decomposition (C.19).

What we mean by defining a GR based model from Newton’s equations is to
keep the scalar-vector theory of Newton but with additional non-tensorial variables,
terms and/or equations motivated by GR. Keeping a scalar-vector theory ensures a
relative simplicity compared to tensor theories like GR. Such a model would enable
the study of relativistic effects not present in Newton’s theory using the simple tools
of this theory.

In particular, we would like to focus on models implementing the backreaction
which is a missing phenomenon of Newton’s theory (for compact spaces). A possible
model to study backreaction while allowing for non-linear structure formation would
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be to consider χ 6= 0 in the decomposition (C.19) along with Dαχ 6= 0. As in
section C.3.4.1, the expansion tensor features an additional term. But we consider
here that χ is not a constant of space. The space expansion is thus local and
global. For this model to be well defined one has to derive an evolution/constraint
equation for the fundamental field χ from GR. This equation will feature v. Thus
the Newtonian fluid dynamics will affect the space expansion. In this sense this
model could be useful to probe the backreaction effect.

C.3.4.3 For non-flat topologies

In section C.5, we assumed the spatial metric to be conformally flat to justify our
Newton-GR dictionary. Relaxing this hypothesis and supposing hab to be conformal
to a constant curvature metric might be a way to define a Newtonian-like theory on
a non-flat space.

Such a theory was heuristically defined in Roukema & Różański (2009) to probe
the topological acceleration in different spherical topologies. There were however
different possibilities in this heuristic definition which were not relativistically mo-
tivated.

Adapting the limit leading to the 1+3-Newton formalism from GR (by chang-
ing the flat conformal hypothesis) could provide a non-flat Newtonian like theory
coherent with general relativity. Along with the additional term χ in the expansion
tensor, this theory if well defined, will be a tool to probe the effect of topology on
the backreaction.

As an example, we give a possible model, but we do not try to justify it from
GR. We consider, similarly to Roukema & Różański (2009), that the Newton equa-
tions (1.93)-(1.97) are also valid if ΣN is a constant curvature space,7 i.e. its Ricci
tensor is Rab = R

3
hab, where R is the scalar curvature. Then if we calculate the

backreaction QΣN , on the whole manifold ΣN, defined by Buchert & Ehlers (1997)
as

QΣN :=
〈
θ2 − Θcdθ

cd + ωcdω
cd
〉

ΣN
− 2

3
〈θ〉2

ΣN , (C.44)

it is not zero for a compact space (as for the flat case) anymore. Instead, we have
the relation

QΣN =
R

3
〈vcvc〉ΣN (C.45)

where the brackets 〈·〉ΣN correspond to the spatial average over the compact space
ΣN. This relation implies a dependence of the backreaction on the type of the global
topology (spherical, flat or hyperbolic) via R

3
, as well as on the Newtonian dynamics

of the fluid via 〈vcvc〉ΣN .

7In Roukema & Różański (2009), the heuristic assumption regarding the curvature of ΣN is
made on the system (1.89)-(1.92) which is not equivalent to doing it from the system (1.93)-(1.97).
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This model is however only heuristically defined, and thus we cannot be sure
that the result (C.45) is physically relevant. The 1+3-Newton formulation and the
Newtonian limit we introduced might help justify, or disprove, this calculation.

C.3.5 Comparison with the Newton-Cartan theory

In the present section we explain the differences between our 4D formulation of
Newton’s equations and the Newton-Cartan theory.

The main difference is that we were able to define a non-degenerate metric on the
spacetime manifold MN of our formulation, implying this manifold to be (pseudo)-
Riemannian, whereas this is not case in NC.

In addition to this point, the 1+3-Newton formulation does not feature an ab-
solute time or foliation. We are free to change the foliation in which we are writing
the equations. This leads to the 3+1-Newton equations (see section C.2.2). At most
we can say that the formulation implies, like in GR, a preferred foliation: the one
defined with respect to the fluid 4-velocity. The situation is different in NC where
an absolute time is defined, linked to an absolute foliation.

Finally the 1+3-Newton system of equations (C.11)-(C.15) is equivalent to the
classical Newton system (1.93)-(1.97). The ensemble of solutions is then the same
for both formulations. This is not the case in NC, where the theory is slightly more
general than the classical formulation of Newton’s theory Ehlers (see 1997).

C.4 Conclusion

The aim of this appendix was to introduce a new formulation of Newton’s equations
on a 4-dimensional Lorentzian manifold.

To get to this formulation, we started from the classical Newton equations (1.89)-
(1.92) written in a Galilean frame on a 3-dimensional manifold ΣN. We generalised
these equations by writing them for any time-parametrised coordinate system [equa-
tions (B.12)-(B.15)]. We showed that the freedom on the choice of this coordinate
system corresponds to a vector U , defining what we called a class of coordinates
XU . This vector in general is not uniform, implying that its gradient is not zero.
The symmetric part of the latter corresponds to the time variation of components
of the metric [equation (B.24)], the antisymmetric part, if chosen to be a constant
of space, corresponds to a global rotation of the coordinates XU with respect to a
Galilean frame.

The freedom on U and the role it plays in the Newton equations (B.12)-(B.15)
makes it very similar to the shift vector in the 3+1-formalism of general relativ-
ity. This allowed us to write the Newton equations as living in a 4-dimensional
manifold MN. This was done using a push-forward on MN of the classical Newton
equations (1.89)-(1.92) (see section C.1.1). The way the push-forward is done was
inspired by the 3+1-Einstein equations. It was however not unique, which therefore
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implies that some freedom remains on the properties of MN. Regarding the sig-
nature freedom, we chose this manifold to be Lorentzian and argued that this was
not in contradiction with Newton’s theory (section C.1.3). The remaining freedom
(present as a lapse and a shift freedom) was chosen so that the foliation in which the
equations are written corresponds to the rest frames of the Newtonian 4-velocity uN

we defined in equation (C.8). This led to the 1+3-Newton equations (C.11)-(C.15).
This set of equations is equivalent to the classical Newton equations, i.e. both can
be derived from the other. This implies that the solutions described by the 1+3-
Newton equations for the spatial fluid velocity v are the same as the solutions of
the classical Newton equations.

We then showed in section C.2.2 that these equations, in the case of irrotational
flows, can be recovered from general relativity in a limit |v| ≪ c. This limit was per-
formed with respect to a non-accelerating observer, the fluid itself. The Newtonian
gravitational field g then does not correspond to the 4-acceleration of a relativistic
observer. Instead, it is defined as the acceleration, with respect to the fluid, of the
spatial velocity v [see equation (C.17)]. The limit also showed what happens to the
3+1-Ricci equation of general relativity. This equation, not needed for a vector the-
ory like Newton, is shown to be a relation for the second order rest frames curvature
in the limit we introduced.

A first consequence of this limit is that the classical interpretation of the compo-
nent g00 of the spacetime metric as the gravitational potential still holds for coordi-
nates adapted to a non-accelerating observer (section C.3.1). This is however true
only for stationary and irrotational fluids.

Another consequence of the limit is to define a dictionary (for irrotational flows)
between the Newtonian fluid variables and general relativity (section C.2.4). The
spacetime manifold, denoted M(dic), given by this dictionary as function of the
Newtonian variables is solution of the Einstein equations at leading order in |v|/c.
In general M(dic) 6= MN, implying that MN is not solution of the Einstein equations
at leading order. The difference between these two manifolds, M(dic) defined with
the dictionary, and MN defined with the 1+3-Newton equations, resides in the
curvature of the fluid rest frames. It is exactly zero for MN, which is not the case
for M(dic) where the curvature is of second order in |v|/c.

The dictionary was then tested for spherically symmetric vacuum solutions of
Newton’s and Einstein’s theories of gravitation. For Newton this corresponded to
a radially free-falling test fluid, and for general relativity to an observer associated
with the generalised Gullstrand-Painlevé coordinates of the Schwarzschild spacetime.
We showed that the dictionary allows us to recover the relativistic solution in the
Newtonian limit. But in the specific case of a parabolic free-falling Newtonian fluid,
the translation to general relativity is exact. This means that the Schwarzschild
spacetime manifold is an exact solution, in terms of the manifold MN, of the 1+3-
Newton equations. This supports our formulation.

The 1+3 formulation of Newton’s equations might be seen as a new approach to
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evaluate the link between Newton’s theory and general relativity. What is essentially
new compared to other approaches (e.g. Green & Wald, 2012) is that the comparison
is done in the rest frames of the fluid, thus a non-accelerating observer. Furthermore
we were able to construct a Lorentzian manifold on which the Newton equations are
defined, contrasting with the Galilei manifold of the Newton-Cartan theory.

When developing this formulation we had in mind a future use for the study
of the backreaction problem in cosmology and the effect of global topology. We
think that the formulation might enable us to identify what is missing in Newton’s
theory for this study (due to the Buchert-Ehlers theorem, the backreaction is exactly
zero for compact spaces in this theory). The final objective is then to use the
1+3-Newton equations and the scalar-vector-tensor decomposition of the expansion
tensor in general relativity to define relatively simple models aimed at probing the
backreaction and the effect of global topology. We give an example of what could
be such a model in section C.3.4.3.

Two things remain to be done before reaching this objective. The first one is to
further test the dictionary for non-vacuum, non-stationary and non-isolated solu-
tions. This can be done by comparing spherically symmetric solutions of Newton’s
equations with the Lemaitre-Tolman-Bondi class of solutions in general relativity.
The second one is to upgrade the dictionary for vortical flows. We discussed this
possibility in section C.3.2.

C.5 Details on the approximations for the Newton-
GR dictionary

We detail in this section arguments for the approximations made in section C.2.3.1
regarding the decomposition of the expansion tensor and the covariant spatial deriva-
tive.

C.5.1 Decomposition theorem?

Equation (C.19) is a decomposition only if each term in the RHS of this equation
can be uniquely defined from Θab. Straumann (2008) showed that the decompo-
sition (C.19) for rank-2 tensors is always possible in compact8 constant curvature
spaces (constant scalar curvature and zero trace-less curvature). To our knowledge,
no similar theorem exists for any curvature, which implies that the decomposition
might be ill-defined in a general space. We however expect it to be reasonably valid
for generally curved spaces in the context of cosmology. However the case of vortical
flows remains problematic as no hypersurface orthogonal to the fluid 4-velocity can
be defined.

8For non-compact spaces, fall-off conditions have to be used.
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C.5.2 Approximation on the decomposition

The only approximation which did not rely on βv ≪ 1 regards equation (C.20)
where we neglected the space expansion and the gravitational wave term. We will see
in this section at which conditions it is consistent with a leading order approximation
in βv.

C.5.2.1 Neglecting the space expansion

Let us consider the momentum constraint (1.41) with the decomposition (C.19). It
becomes

Daχ = vcRac, (C.46)

using D[avb] = 0, and the traceless and divergence free properties of the gravitational
wave term.

We introduce the typical length scale Lχ of the space expansion. The RHS of
equation (C.46) is of order β3

v/L
2
v,l. So unless Lv,l/Lχ ≫ 1, which we assume is not

the case for a cosmological setup, χ/c is at least of order β2
v/Lv,l. Then neglecting

the space expansion is coherent with a leading order approximation in βv.

Remark. Actually this only shows that the space expansion term is a spatial constant

at leading order. To recover the 1+3-Newton equation we take this constant to zero.

However, letting it unspecified might be more interesting as it allows for expansion in a

compact space (see section C.3.4.1).

C.5.2.2 Neglecting the gravitational wave term

Let us consider that Ξ = 0 and χ 6= 0, so that Θ = χh+Dv. Then in the adapted
coordinates X u

−v

∂u t|−v
hab = 2χhab.

The solution to this differential equation can be written as

hab = ψ2ĥab, (C.47)

where ĥab is called the background metric with ∂u t|−v
ĥab = 0 and χ = ∂u t|−v

lnψ.
Note that this solution, while derived from a specific coordinate system, is however
covariantly defined.

We introduce the covariant derivative D̂ of ĥ. The conformal relation (C.47)
implies (see chapter 7 of Gourgoulhon, 2012, for details on this calculation9)

Rab = R̂ab − D̂aD̂b lnψ − ĥabD̂cD̂
c lnψ (C.48)

+ D̂a lnψD̂b lnψ − ĥabD̂c lnψD̂c lnψ,

9 In Gourgoulhon (2012), the conformal relation is hab = ψ4ĥab instead of our hab = ψ2ĥab.
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where R̂ is the Ricci tensor relative to the metric ĥ, with ∂u t|−v
R̂ab = 0.

In general there does not exist a scalar ψ and a time independent spatial metric
ĥab such that any Ricci tensor Rab can be written as in equation (C.48). This equa-
tions is then a restriction for the form of Rab due to the initial assumption Ξ = 0.
Consequently we expect the assumption Θab ≃ Davb made in section C.2.3.1 to not
be valid if, at leading order in βv, the spatial Ricci tensor R is not of the form of
equation (C.48). This can be seen as a test for the dictionary.

C.5.3 Flat covariant derivative approximation

We assume in this section that the spatial metric can be written as in equation (C.47),
thus dropping the gravitational wave term. The Ricci tensor have the form (C.48).
This form suggests two typical curvature radius associated with Rab: one for R̂ab and
one for the spatial variation of lnψ. We suppose the conformal metric ĥab to be flat,
so that R̂ = 0 and R has only one typical radius as assumed in section C.2.3.1.10

The relation Rab ∼ 1/L2
R implies that D lnψ ∼ 1/LR.

The covariant derivative D can be written as function of ψ and the covariant
derivative D̂ of ĥab (see chapter 7 of Gourgoulhon, 2012, for details on this calcu-
lation9):

Davb = D̂avb + habv
cD̂c lnψ − 2 v(aD̂b) lnψ. (C.49)

Using equation (C.22), the second and third terms of the RHS of the decomposi-
tion (C.49) are of the order β2

v . So to first and leading order in βv, we haveDv = D̂v

which is what we assumed in the Newtonian limit of section C.2.3.2.
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Appendix D

Proofs and formulas for the
Galilean limit

D.1 Covariant components of the Lorentzian met-
ric

The covariant components of the Lorentzian metric can be decomposed into Laurent
series of λ as

λ
gαβ = λn0

n0
gαβ + λn0+1 n0+1

gαβ + O(λn0+2),

with n0 ∈ Z. By definition λ
gαµ

λ
gµβ = δαβ which implies that

δαβ = λn0
n0
gβµh

µα + λn0+1
[

n0
gβµ

1
gαµ +

n0+1

gβµh
αµ
]

+ O(λn0+2). (D.1)

As δαβ is a zero order, we have n0 6 0.

If n0 = 0, then
n0
gβµh

µα = δαβ , which is not possible since hαβ is of rank 3. Then
n0 < 0, and

n0
gβµh

µα = 0. This implies that there exists a 1-from τ
¯

∈ Ker(hαβ) such
that

n0
gαβ = Aτατβ, (D.2)

where A 6= 0 is an arbitrary scalar.

If n0 6 −2, equations (D.1) and (D.2) imply that 1
gµντµτν = 0. This is not com-

patible with the signature of λ
g, which requires 1

gµντµτν < 0 for any τα ∈ Ker(hαβ).

Proof. The signature of hαβ is (0+++), and the one of λ
gαβ is (-+++). This implies

that for sufficiently small positive λs, λ
gµντµτν < 0 for all τα ∈ Ker(hαβ), which

traduces into 1
gµντµτν < 0. �

Remark. In might also be possible to assume
1
gµντµτν = 0 and

2
gµντµτν < 0, and still be

compatible with the signature of the Lorentzian metric. This was proposed by Dautcourt

172



D. Proofs and formulas for the Galilean limit 173

(1997), who argued that this choice leads to ‘non-Newtonian shadow fields’ when the

limit of the Einstein equation is taken. However the argument behind this statement

was unclear. So this point is a weakness in the proof of equation (4.2) from the initial

hypothesis (4.1).

Finally we necessarily have n0 = −1, and Aτβτβ
1
gαµ +

0
gβµh

αµ = δαβ . This last
equation multiplied by τα leads to Aτµτν

1
gµν = 1. As τµτν

1
gµν < 0, then A < 0.

Therefore we can rescale τα such that

−1
gαβ = −τατβ, (D.3)

with τµτν
1
gµν = −1. This concludes the proof of equation (4.2).

D.2 Formulas

The projector orthogonal to a g-timelike vector λ
u is defined as

λ

bu αβ :=
λ
gαβ + λ

λ
uα

λ
uβ. (D.4)

Its limit is
λ

bu αβ = bB αβ + τατβ
0
uµ

0
uν bB µν − τ(α

0
uµ bB β)µ + O(λ), (D.5)

λ

bu α
β = δαβ − 0

uατβ + λ
[

0
uα

0
uβ − 1

uατβ
]

+ O(λ2), (D.6)
λ

bu αβ = hαβ + λ
[

0
uα

0
uβ +

1
gαβ

]
+ O(λ2). (D.7)

Equation (D.5) can also be written as

λ

bu αβ = b
0
u
αβ + O(λ), (D.8)

where b
0
u
αβ is the Galilean projector orthogonal to 0

uα [defined by equation (2.4)].
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