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Chapter 0.

Introduction:

Since the pioneer experiments of Louis Pasteur and Robert Koch in the 19th century,
the idea that microbes are responsible for many human and animal diseases has been
largely popularized (Koch, 1876; Pasteur, 1880). In addition, the works of Anton de Bary
clarified the causal roles of microbes in major crop diseases (De Bary, 1853). A war against
infectious diseases caused by the plethora of animal- or plant-associated microbes there-
fore started (Duffy & Dowling, 1979). Human infectious diseases have been largely re-
duced thanks to the improvement of hygiene standards, the discovery of new antimicro-
bial compounds (Fleming, 1929), and the development of prophylactic and therapeutic
strategies (Pasteur, 1885a; D’Hérelle, 1917). Similarly, in agriculture, the use of synthetic
antimicrobial pesticides have significantly contributed to the regulation of plant diseases
(Howard, 1996). For more than a century, bacteria, fungi, and other types of microbes
associated with animals or plants have thus widely been considered pathogenic (Smith,
2012).

Nevertheless, in parallel with the experiments of Pasteur, Koch, and de Bary, microbes
were observed in abundance in healthy animals and plants: Ernst Hallier reported bac-
teria in the feces of healthy humans (Hallier, 1869) and Albert Bernhard Frank observed
filamentous fungi colonizing the roots of trees (Frank, 1885), suggesting that some mi-
crobes might not be harmful (Pasteur, 1885b). These observations under microscopes
indeed were rapidly reinforced by experiments showing that these microbes were ben-
eficial to their hosts: at the eve of the 19th century, Theodor Escherich showed the ben-
eficial role of bacteria in the digestion of food in children (Escherich, 1886) and Frank
demonstrated that root-associated fungi improved the growth of Pinus sylvestris (Frank,
1892). In 1905, Henry Tissier administered bacteria to humans and successfully cured
a gastrointestinal disease (Tissier, 1905), therefore being the first therapeutic-aware use
of probiotic bacteria. Probiotic bacteria were increasingly used in the following decades
through the consumption of fermented milk (Farré-Maduell & Casals-Pascual, 2019).

However, a conceptual shift occurred only at the end of the second part of the 20th
century thanks to the advances in molecular biology and DNA sequencing technics (Hea-
ther & Chain, 2016). These methods have offered a precise and large-scale characteriza-
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tion of the ‘invisible’ microbial communities hosted by healthy animals and plants. Com-
bined with experimental works, they have shed light on the diversity of these microbes
and improved our understanding of their functioning and their consequences on host
phenotypes. It is now widely recognized that these microbial communities are normal
constituents of healthy hosts, plants and animals, and are mostly beneficial to them (Mar-
gulis, 1970; Selosse et al., 2004; Berendsen et al., 2012; McFall-Ngai et al., 2013).

The accumulation of host-associated microbiota studies has helped to better under-
stand their functioning and ecology, and they now allow us to start answering questions
about their evolution. Hereafter, we introduce the ecology of host-associated microbiota
(section 1), discuss the potential mechanisms driving their evolution (section 2), and
present the available methodological tools to study them (section 3). We mainly focus
our work on two of the most studied host-microbiota interactions: the bacterial gut mi-
crobiota of animals and the root fungal microbiota of plants.
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1. The ecology of host-microbiota interactions

1.1. The ubiquity and diversity of host-associated microbiota

Most organisms interact with individuals from other species. This can happen through
brief interactions or through long-term and intimate associations, referred to as sym-
biosis (De Bary, 1879). These biotic interactions can be beneficial for both interacting
species (mutualism), harmful for both (competition), or beneficial for one and harmful
for the other (antagonism). Less frequently, the outcome of the interaction is almost neu-
tral for one species but beneficial (resp. harmful) for the other, and we referred to it
as commensalism (resp. amensalism). Though these main categories of biotic interac-
tions have been mainly proposed for interactions between macroorganisms (e.g. animals
and plants), they also apply for animal-microbe or plant-microbe interactions (Figure
0.1.1). However, rather than forming pairs of interacting species, a single plant or animal
macroorganism often hosts diverse microbial communities composed of a multitude of
microorganisms, referred to as the microbiota. The word ‘microbiome’ then refers to the
assemblage of microbes as well as their surrounding environmental conditions (Marchesi
& Ravel, 2015).

Effect on the 
symbiont

Effect on 
the host

+

+

-

-

Mutualism 

Antagonism
(e.g. predation) 

Antagonism
(e.g. parasitism) 

Competition
Neutralism 

Commensalism 

Amensalism 

Fig 1

Figure 0.1.1: Classification of the different natures of host-symbiont interspecific interactions
based on the (positive or negative) effects on the interactions on the host (x-axis) or the symbiont
(y-axis).

Animals and plants are indeed generally colonized by species-rich and complex mi-
crobiota. They tend to associate with various bacteria, archaea, viruses, fungi, and other
eukaryotic microbes. The composition of these ‘invisible’ communities has been char-
acterized thanks to microscopic observations and the development of molecular biol-
ogy. In particular, metabarcoding technics, which consist in amplifying and sequencing
a targeted marker gene of the microbial community, like the small subunit ribosomal ri-

10
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bonucleic acid (SSU rRNA) gene or the internal transcribed spacer (ITS), enable precise
identification of the microbes present in a given microbiota (see section 3.1).

1.1.1. The gut microbiota of animals

The animal kingdom (Metazoa) is composed of heterotrophic multicellular organ-
isms getting their energy and their organic matter from the consumption and transfor-
mation of preexisting organic matter. The Bilaterians, including most animal species (but
sponges and cnidarians), share a common body organization: they present a bilateral
symmetry, an anterior-posterior axis, and are traversed by a digestive tract (the gut) with
a separate mouth and anus, where food from the environment is digested and assimi-
lated by the organism. In addition, animal organisms are protected from the external
environment by tissues that form a continuous, mono- or pluricellular layer, like the skin
or the intestinal epithelium, and that prevents the entrance of most microbes into the
organism. Animal-associated microbes are thus mainly colonizing the surface of skin or
gut epithelium. Guts have therefore a dual function: they (i) digest and assimilate nutri-
ents from the food, and (ii) allow the development of microbes, while preventing their
entrance inside the organism.

Humans are colonized by as many bacteria as they have cells, and 99% of these bacte-
ria are present in the large intestine, or colon (Sender et al., 2016). Per gram of intestinal
content, there are on average 1012 bacterial cells that belong to 300 to 1,000 different
species (Guarner & Malagelada, 2003). The gut microbiota of humans, like most mam-
mal species, are dominated by mostly anaerobic bacteria from the phyla Firmicutes and
Bacteroidetes, and the phyla Actinobacteria, Proteobacteria, Verrucomicrobia, and Ten-
nericutes to a lesser extent (Guarner & Malagelada, 2003; Ley et al., 2008; Delsuc et al.,
2014; Nishida & Ochman, 2018; Figure 0.1.2). Most of these microbial lineages are spe-
cific to a mammalian order (Song et al., 2020) and are not found in other environments.
Nishida & Ochman (2018) found a positive association between microbial diversity and
mammalian gut capacity, as the larger ones represent a larger ecological niche. The com-
position of the mammalian microbiota significantly varies according to their diet, in par-
ticular between herbivorous, omnivorous, and carnivorous species (Muegge et al., 2011).
Microbiota of herbivorous mammals are in particular more diverse, with significant dif-
ferences between foregut fermenters (including ruminants) and hindgut fermenters (e.g.
rabbits or horses; Ley et al., 2008).

Comparative studies of thousands of human microbiota have clarified the environ-
mental factors influencing the composition of the gut microbiota: variations are mainly
associated with age (Yatsunenko et al., 2012), disease status (Guarner & Malagelada,
2003), geography (Suzuki & Worobey, 2014), and cultural traditions including diets (David
et al., 2014). In particular, Arumugam et al. (2011) proposed the existence of three differ-
ent types of human gut microbiota based on the relative abundances of the main phyla
influenced by long-term diet. The three enterotypes are respectively enriched in Bac-

11
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(A) Phylogenetic tree of host species, with branches coloured by class and node points coloured by 594 
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Fig 2

Figure 0.1.2: Example of the composition of the bacterial gut microbiota of different animal
species belonging to different classes (including mammals, birds, insects, and spiders). For each
host species, the bar plot indicates the relative proportion of main bacterial phyla present in gut
microbiota. The figure is derived from Harrison et al. (2020).

teroides (Bacteroidetes), Prevotella (Bacteroidetes), and Ruminococcus (Firmicutes); the for-
mer being associated with animal-based diet whereas the two latter with plant-based
diets. Although the presence of similar enterotypes has been observed in chimpanzees
(Moeller et al., 2012), the discrete delineation into enterotypes have been questioned, and
more recent studies rather suggest the existence of continuous variations rather than
clear types (Knights et al., 2014; Costea et al., 2017).
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In contrast, the microbiota of other vertebrates, such as fishes, reptiles, and birds, tend
to be mainly dominated by Proteobacteria (Hacquard et al., 2015; Hird et al., 2015; Song
et al., 2020; Figure 0.1.2). Similarly, because they have a microbiota relatively enriched
in Proteobacteria, bats are more similar to birds than to any non-flying mammals (Song
et al., 2020). Both bird- and bat-associated microbes also have a limited diversity, har-
bor little host specificity, and do not significantly vary according to host diet (Nishida &
Ochman, 2018; Song et al., 2020).

Similar bacterial phyla colonize the midgut of arthropods, including insects and spi-
ders, but their relative composition is much more heterogeneous (Colman et al., 2012; En-
gel & Moran, 2013; Yun et al., 2014; Sanders et al., 2014; Hu et al., 2019; Figure 0.1.2). The
small arthropods are generally colonized by far less bacterial taxa than vertebrate hosts
and arthropod-associated microbes present a large range of specificity: for instance, sym-
biotic bacteria associated with soil-feeding termites are extremely specific (Brune, 2014),
whereas bacteria found in some ant species seem to be very transient and non-specific
(Russell et al., 2017), and the caterpillar Manduca sexta even lacks a gut microbiota (Ham-
mer et al., 2017, 2019).

Besides bacteria, fungi and archaea are also abundant components of the animal gut
microbiota (Harrison et al., 2020; Youngblut et al., 2020). Animal gut microbiota seem to
be mainly composed of the fungal phyla Ascomycota and Basidiomycota, except for a
few exceptions, like some herbivorous mammals that are mainly colonized by the phy-
lum Neocallimastigomycota (Harrison et al., 2020). Concerning archaea, vertebrate gut
microbiota appear to be vastly dominated by the methanogenetic lineages from the phy-
lum Euryarchaeota (Youngblut et al., 2020). However, studies specifically characterizing
fungal and archaeal communities currently remain very scarce: for instance, >90% ar-
chaeal lineages are generally not detected by standard metabarcoding approaches tar-
geting the 16S SSU rRNA gene.

1.1.2. The root microbiota of plants

Conversely, land plants (Embryophyta) are autotrophic multicellular organisms: than-
ks to solar energy, they get their energy and convert inorganic matter (water and carbon
dioxide) into organic matter. This reaction (photosynthesis) mediated by chlorophyll
mostly occurs in their green leaves, whereas roots ensure the supply of water and mineral
nutrients (e.g. phosphate, nitrogen, or potassium). Contrary to animals, plants have cell
walls allowing intercellular spaces, and are therefore internally colonized by a plethora
of microbes including bacteria and filamentous fungi, in the tissues of their leaves, repro-
ductive tissues, and roots.

In particular, observations under microscope often report fungal colonizations. This
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includes fungi inducing particular structural changes in the roots of healthy plants, re-
ferred to as mycorrhiza (Smith & Read, 2008). Such mycorrhizas are present in more
than 90% of plant species (Brundrett & Tedersoo, 2018) and in almost all ecosystems, in-
cluding agrosystems (Read, 1991). Traditionally, mycorrhizas have been classified into 4
main categories based on their morphology and on the taxonomy of the plants and fungi
involved (Smith & Read, 2008; van der Heijden et al., 2015; Brundrett & Tedersoo, 2018).

First, arbuscular mycorrhiza is the most recurrent association between land plants
and fungi from the Glomeromycotina subphylum (Mucoromycota phylum; Davison et
al., 2015). Glomeromycotina (also called arbuscular mycorrhizal fungi) form microscopic
aseptate filaments that penetrate plant roots and cell walls to form arbuscular structures
that invaginate the plant cell membrane. Glomeromycotina are obligate symbionts that
cannot survive or be cultivated without plants (Bago & Bécard, 2002; Figure 0.1.3). They
reproduce by producing microscopic spores that are used to delineate species. However,
less than 400 Glomeromycotina species have been morphologically described (Stefani et
al., 2020), and most of the Glomeromycotina are rather identified using metabarcoding
technics: thanks to this, between 300 and 2,700 Glomeromycotina ‘species’ are estimated
(Öpik et al., 2014; van der Heijden et al., 2015; Stefani et al., 2020; but see section 3.1).
Given than Glomeromycotina associate with >72% of the >200,000 land plant species,
they are mostly highly generalists, associating with a large range of plant species. How-
ever, despite this low host specificity, plant-Glomeromycotina interactions overall reflect
non-random assemblages (Vandenkoornhuyse et al., 2003; Sepp et al., 2019; Kokkoris et
al., 2020). They have been documented in the roots of most plant lineages, including an-
giosperms, gymnosperms, ferns, lycopods, and in the thalli of liverworts; but they lack
in hornwort thalli and in the roots of some lineages of flowering plants where they are
often replaced by other fungi (e.g. the orchids - see below; Hoysted et al., 2018). In ad-
dition, they are particularly abundant in the tropics and in temperate grasslands (Read,
1991).

Second, ectomycorrhizas are found in ∼2% of the plant species (Brundrett & Teder-
soo, 2018). Ectomycorrhizal fungi form a mantel at the surface of the root and penetrate
between root cells, but without crossing the cell wall (Hartig net; Figure 0.1.3). These fun-
gal lineages mainly belong to Pezizomycetes (Ascomycota) and Agaricomycetes (Basid-
iomycota), which form macroscopic fruiting bodies, like the black truffle (Tuber melanospo-
rum) or the fly agaric (Amanita muscaria). Like arbuscular mycorrhizal fungi, many ec-
tomycorrhizal fungi are obligate symbionts (Miyauchi et al., 2020). Ectomycorrhizas are
particularly found in the roots of trees or shrubs under temperate latitudes (Read, 1991),
but new ectomycorrhizal plants and fungi are also being found in tropical regions (Roy
et al., 2009).

Lastly, orchid mycorrhizas and ericoid mycorrhizas have been described in plant
species from the families Orchidaceae and Ericaceae, respectively (Brundrett & Teder-
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fungal nutritional interactions. Here we provide an over-
view of the recent leaps in understanding of the interac-
tions between early land plants and symbiotic fungi in both
the Glomeromycotina and Mucoromycotina [2!,24], with
emphasis on the role, evolution and distribution of Mucor-
omycotina symbionts across the land plant tree of life.

Changing views on non-vascular plant
symbioses with fungi
The symbioses between non-vascular plants and Mucor-
omycotina fungi have, in the last few years, received
increasing attention. Unlike the strictly biotrophic and,
to our current knowledge, asexual Glomeromycotina, e.g.
the model mycorrhizal fungus Rhizophagus irregularis,
Mucoromycotina encompasses saprotrophic, biotrophic,
and putatively sexual lineages of fungi, including only
poorly studied genera like Endogone and Sphaerocreas [25].
Until recently, the biology of the Endogonales was largely
unknown [26!,27!]. In addition to endomycorrhizal asso-
ciations, some members of Endogone can form ectomycor-
rhizal associations with trees [28,29], characterised by a

root-covering mantle and intercellular penetration where
hyphae form a network between cortical cells known as a
Hartig net [7,30]. The remarkable versatility of these
ancient and diverse fungi may be attributed to life history
traits of the Endogonales, for example, facultative sapro-
trophy. However, more traits remain to be uncovered to
understand further the evolutionary and ecological sig-
nificance of these fungi.

The potential significance of Mucoromycotina fungi
in land plant evolution was first recognised when Endo-
gone-like fungi were found to associate with the likely
earliest-diverging extant land plant lineage, Haplomi-
triopsida liverworts ([26!] Figure 1). This discovery gen-
erated the alternative hypothesis that a relict association
with Mucoromycotina, apparently lost through land
plant evolution, might have played a significant part in
ancestral mycorrhizal-like symbioses [26!,31!]. This
hypothesis was further supported by fossil evidence fol-
lowing re-examination of the Early Devonian Rhynie
Chert plant Horneophyton lignieri [32]. In addition to
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phylogenetic positions and asterisks signify uncertain mycorrhizal status with only one report of mycorrhizal formation in each case [57,38].
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(f)

Figure 0.1.3: Proportion of the different types of mycorrhizas among land plants. (a) The pie
chart indicates the proportion of land plants having each type of mycorrhiza according to Brun-
drett & Tedersoo (2018). (b-e) Microscopic photos representing the morphological specificity of
each type of mycorrhiza: (b) arbuscular mycorrhiza (Larry Peterson): filamentous fungi penetrate
the root and form ‘intracellular’ arbuscular structures; (c) ectomycorrhizal fungi (Ellen Larsson):
ectomycorrhizal fungi forming a dense mantel around the root tip; (d) ericoid mycorrhiza (Jesse
Sadowsky): dark septate fungi colonize the root and form intracellular hyphal coils; and (e) or-
chid mycorrhiza (Nancy Collins Johnson): orchid mycorrhizal fungi similarly form hyphal coils
within plant cells. (f) Phylogenetic trees of the main clades of fungi (right) and land plants (top –
dashed lines indicate uncertain phylogenetic relationships) with indications concerning the my-
corrhizal status of each pair of clades. Question marks represent uncertain mycorrhizal status.
Figure modified from Hoysted et al. (2018).

soo, 2018). In both symbioses, fungi penetrate the plant cell walls, evaginate the cell
membranes and form large pelotons (coils). Orchid mycorrhizas involve different fungal
lineages from Basidiomycota, especially from the families Tulasnellaceae, Ceratobasidi-
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aceae, and Serendipitaceae (Dearnaley et al., 2012), whereas ericoid mycorrhizas involve
diverse Ascomycota and Basidiomycota lineages, including from the order Helotiales
and the family Serendipitaceae (Selosse et al., 2009; Toju et al., 2016). Contrary to other
mycorrhizal fungi, these lineages are often facultative symbionts, that can live without
plants thanks to saprophytic lifestyle (Dearnaley et al., 2012).

Besides these typical mycorrhizas, recent molecular advances in metabarcoding tech-
nics have enabled the characterizations of new undocumented associations: for instance,
Endogonales fungi from the Mucoromycotina subphylum (a sister clade of the Glom-
eromycotina) were recently found to colonize many plant species from angiosperms,
gymnosperms, lycopods, hornworts, and liverworts, and can even form arbuscular-like
mycorrhizal structures (Bidartondo et al., 2011; Desirò et al., 2013; Rimington et al., 2015).

Although most plants always host mycorrhizal fungi, 8% of the plant species do not
have mycorrhizas or present very limited rudimentary mycorrhizal fungal colonizations
and 7% of the plant species are only facultatively mycorrhizal (Cosme et al., 2018; Brun-
drett & Tedersoo, 2018). Non-mycorrhizal plants correspond in particular to parasitic or
carnivorous plants or plants that have proteoid roots (cluster roots; Brundrett & Teder-
soo, 2018). Compared to obligate mycorrhizal plants, facultative mycorrhizal plants tend
to present wider geographic ranges and broader ecological niches (Hempel et al., 2013),
and mycorrhizal colonization often depends on environmental conditions: for instance,
some plant species stop hosting mycorrhizal fungi when growing on soil with high phos-
phorus concentrations (Thomson et al., 1986; Mujica et al., 2020).

In addition, a plethora of fungi also colonizes plant roots less densely, without form-
ing any specialized morphological structures such as the mycorrhiza (Wilson, 1995).
These fungi, referred to as endophytes, colonize healthy plants without impacting or
damaging plant tissues (Selosse et al., 2018). Among them, many fungi, like Tuber or Se-
bacina, that form mycorrhizas in some plant species can colonize as endophytes the roots
of other surrounding plant species (Selosse et al., 2009; Schneider-Maunoury et al., 2020).
These endophytes also frequently colonize non-mycorrhizal plants (Almario et al., 2017).

Finally, plants also host a large diversity of bacteria in their tissues and in their sur-
rounding soil (the rhizosphere; Berendsen et al., 2012). Root-associated bacteria are par-
ticularly well studied in model organisms such as Arabidopsis thaliana and in crops that
do not present mycorrhizas (Hacquard et al., 2015). These bacterial microbiota are partic-
ularly enriched in Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes (Yeoh
et al., 2017; Vannier et al., 2018; Benucci et al., 2020). In addition, some plant lineages, like
the Fabaceae family, form root nodules that host bacteria, referred to as rhizobia (Young
& Haukka, 1996). However, plant-associated bacterial and archaeal communities remain
overall less frequently characterized than fungal ones. The same applies for viruses that
are abundant but rarely characterized in plant microbiomes (Roossinck, 2019).
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1.1.3. Comparisons between animal and plant microbiota

Contrary to animals that have internalized their gut microbiota in a more controlled
environment (in particular, anaerobic), for plants, the hyphae of mycorrhizal fungi freely
explore the surrounding soil. The same fungal individual can then form mycorrhizal as-
sociations with different plants: as a consequence, plants are usually interconnected by
mycorrhizal mycelial networks, referred to as ‘wood-wide-webs’ (Simard et al., 1997). A
mycorrhizal network therefore consists in fungus and plant individuals interacting with
multiple partners, whereas a gut microbiota system is one host individual with multiple
microbial partners.

Only a small fraction of the vast diversity of bacteria and fungi is regularly found
in animal and plant microbiota. For instance, less than 10 of the >90 bacterial phyla are
frequently present in the gut microbiota of healthy animals (Hug et al., 2016) and only
0.5 to 10% of the total number of fungal species are estimated to be mycorrhizal or endo-
phytic (Taylor et al., 2014), belonging to a few classes only (Hoysted et al., 2018). Host-
associated microbiota are therefore non-random assemblages of the microbes found in
the biosphere and are rather dominated numerically by a few microbial clades that can
colonize the host niche, which suggests the existence of widespread host filtering.

Host-associated microbiota therefore present very diverse compositions, with a mix
of resident microbes (forming durable symbiotic associations with their host) and more
transient ones. Usually, the microbiota of host individuals from the same species tend
to be more similar than the microbiota of other host species, and more similar than ex-
pected by chance, if microbiota were randomly assembled from microbes found in the
host’s environment. Although some hosts have developed a high specificity toward a
very limited number of microbes, most animals and plants host species-rich microbial
community: for a given host species, we can separate the core microbes (that are present
in all the microbiomes) or the flexible microbes (that are only present in a fraction of the
microbiomes; Shapira, 2016). Besides host identity, the composition of host-associated
microbiota depends on the availability of the microbes and may also be modulated by
environmental factors, a phenomenon referred to as ecological specificity (Molina et al.,
1992). Regarding the associated microbes, they can present a range of host specificity:
while some microbes can live freely in the host’s environment, other microbes are re-
stricted to the host niche. Among them, some microbes have been uniquely found asso-
ciated with a particular host (i.e. specialist microbes), whereas others can be associated
with multiple host lineages (i.e. generalist microbes). These multiple-partners interac-
tions involving a large number of host and microbe species are often represented using
bipartite networks (see section 3.3).
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1.2. The functions of host-microbiota interactions:

The ubiquity of host-associated microbiota has thus rapidly questioned the functions
that such interactions can have. Following by a few decades the works of Escherich
and Franck on the beneficial roles of gut bacteria and mycorrhizal fungi to humans and
plants respectively, many studies have investigated the functions of host-associated mi-
crobiota (Figure 0.1.4). These studies generally compare the fitness and phenotypes of
hosts colonized by normal microbiota with hosts whose microbiota have been experi-
mentally eliminated (Smith et al., 2007). Such germ-free hosts (also referred to as axenic)
are obtained by applying antimicrobial compounds or by growth in sterile environments.

1.2.1. The roles of microbiota in host nutrition, protection, and development

First, microbiota improve host growth thanks to their effects on its nutrition. For
instance, 80%-100% of the mineral resources needed by plants can come from their myc-
orrhizal fungi (Li et al., 1991). Indeed, mycorrhizal fungi form dense filamentous hyphal
networks in the soil where they efficiently gather water and mineral nutrients, includ-
ing poorly soluble ones like phosphorous, that they trade with their associated plants
through the mycorrhiza in exchange for organic matter produced by plant photosynthe-
sis (Smith & Read, 2008). In some cases, mycorrhizal fungi also deliver organic matter
to the plants: for instance, orchid seeds lack nutritional reserve and thus rely on their
mycorrhizal fungi to get organic matter (Merckx, 2013). In addition, given that a myc-
orrhizal fungus often interacts simultaneously with multiple plants, nutrients can thus
transit between plants: for instance, transfers of organic matter have frequently been ob-
served from mature plants to juvenile ones (Simard et al., 1997; Selosse et al., 2006).

In animals, and in mammals in particular, gut microbiota actively contribute to host
digestion. For instance, many animal lineages do not have the enzymes to digest the di-
etary fibers (polysaccharides) that particularly abound in plant-based diets: they there-
fore rely on a plethora of gut microbes, such as the genera Ruminococus or Prevotella, to
ferment fibers into short-chain fatty acids, which are then absorbed by the host (Moran et
al., 2019): for instance, more than 80% of the maintenance energy of ruminants is ensured
by these short-chain fatty acids produced by their microbial symbionts (Bergman 1990).
Conversely, animal-based diets tend to decrease the proportion of fibrolytic bacteria and
increase that of bile-tolerant bacteria, such as Bacteroides, useful for protein digestion
(Arumugam et al., 2011; David et al., 2014). The presence of different enterotypes accord-
ing to the herbivorous versus carnivorous diets in humans and mammals thus reflects
a trade-off between the gut bacteria responsible for carbohydrate and protein fermen-
tations (David et al., 2014). Gut bacteria are also assisted by fungi in the digestion of
carbohydrates, like the phylum Neocallimastigomycota that is abundant in mammalian
guts, especially herbivores (Akin & Borneman, 1990).

Besides helping the mineral assimilation or the digestion of organic matter, host-
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associated microbiota can also synthesize new compounds. In mammals, many essential
amino acids or vitamins are synthesized by gut microbes (Smith et al., 2007). In addition,
bacteria associated with some plant lineages, like Fabaceae, or some animals, like wood-
feeding termites, ensure the fixation of inorganic nitrogen and provide a reliable source
of organic matter containing nitrogen (e.g. amino acids; Kneip et al., 2007). Microbiota
can thus ensure a role of complementation of the diets, which is particularly useful when
the hosts rely on diets with unbalanced nutrient uptakes, especially in insects with highly
specialized trophic type (Engel & Moran, 2013).

Second, microbiota enhance the protection of their host from abiotic or biotic stresses
(Ubeda et al., 2017; Begum et al., 2019). Microbes can modulate the effect of the environ-
ment on the host: for instance, gut microbes can neutralize dietary toxins (Berasategui et
al., 2017; Moeller & Sanders, 2020) and mycorrhizal fungi can help the plants to tolerate
high calcium concentration in the soil (Lapeyrie, 1990). In addition, microbes can protect
their hosts from pathogens. First, by occupying the host niches, they limit the establish-
ment of invading pathogens (Bauer et al., 2018). Second, they can produce antimicrobial
compounds that prevent the growth of pathogens (Ubeda et al., 2017; Begum et al., 2019).

Third, host-associated microbiota play a role in the development of the hosts. Ani-
mals and plants ‘dwell in a microbial world’ (McFall-Ngai et al., 2013), and for the first
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Figure 0.1.4: Functions of host-microbiota interactions. Examples of the bacterial microbiota
of animal guts (a) and the fungal microbiota of plant roots (b). Both microbiota participate in
1) host nutrition (through nutritive exchanges or by helping food digestion, or by synthesizing
new molecules), 2) host protection (by competing with pathogens or by reducing abiotic stresses),
and 3) host development (by priming the maturation of the host immunity). Note that while gut
bacterial microbiota are internalized within the animal organism, mycorrhizal fungi are partially
(if not largely) external symbionts exploring the soil, and can interact with multiple plants, form-
ing common mycelial networks (wood-wide-webs), enabling resource movement between plants
and communication.
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stages of their lives, they are in contact with these microbes. The correct development and
maturation of the immune system of animals and plants therefore rely on microbes to be
initiated: axenic plants or animals usually badly performed against pathogens compared
with individuals that grew with a normal microbiota (McFall-Ngai, 2002; Conrath et al.,
2006; Smith et al., 2007). The adaptive immune systems of vertebrates are continuously
learning beneficial microbes from non-beneficial ones, that therefore maintain homeosta-
sis in the gut microbiota (Hooper et al., 2012). Besides immunity priming, the brain de-
velopment seems to be modulated by gut microbes, which can therefore influence animal
behavior (Heijtz et al., 2011) and shifts in microbiota composition can be used as cues for
phenotypic changes, like cold acclimation (Moeller & Sanders, 2020). The mycorrhizal
network connecting plants can also enable communication between plant individuals
through the emission of warning signals that stimulate plant response against herbivory
(Babikova et al., 2013).

1.2.2. The advantages of relying on microbes

Microbiota play thus essential passive or active roles in host functioning. By improv-
ing nutrition and protection, microbiota can thus enable colonization of new niches and
thus expand host ecological ranges (Moran et al., 2019; Suzuki & Ley, 2020). For instance,
Ericaceae plants are particularly successful in acidic and nutrient-poor soils thanks to
the buffering effect of their mycorrhizal fungi (Shaw et al., 1990). Similarly, the adapta-
tion of human populations to cold climates may be helped by the enrichment in their
gut microbiota of bacteria with efficient energy extraction favoring fat storage (Suzuki
& Worobey, 2014). Because microbes are rapidly evolving, especially thanks to frequent
horizontal gene transfers, host-associated microbes can provide to the host a very rapid
way of adaptation: for instance, Bacteroides in the gut microbiota of Japanese humans
have acquired enzymes that enable them to ferment algal fibers frequently consumed by
these individuals (Hehemann et al., 2010).

In addition, the fact that host-microbiota interactions can be facultative may be by
itself advantageous for the hosts. For instance, mycorrhizal fungi are beneficial for the
plants when the phosphorous concentration in the soil is low; but they are no longer
beneficial when phosphorous is abundantly available and many plants are thus not my-
corrhizal anymore in these conditions (Thomson et al., 1986). Similarly, the digestion of
lactose is often limited in human adults as they do not produce enough lactase: they thus
have to rely on gut microbes, like Bifidobacterium, to partially digest lactose. However,
some human populations have acquired a mutation that ensures higher lactase produc-
tion and therefore guarantees autonomous and efficient digestion of lactose (Ségurel &
Bon, 2017): in these individuals, the abundance of lactose-digesting bacteria is signifi-
cantly lower than in individuals that do not have this mutation (Suzuki & Ley, 2020).
Thus, host-microbiota interactions can be modulated according to the needs of the host,
which depends on both its genotype and its environment (Box 1).

20



Chapter 0

Because host-associated microbiomes often contain a plethora of microbial species,
competition between microbes is important in these niches (Box 1). However, the dif-
ferent microbes may also provide different benefits to their host, which ensures their
coexistence (Batstone et al., 2018). For instance, such a complementarity of the symbionts
in plant nutrition has been demonstrated for Mucoromycotina-Glomeromycotina dual
symbiosis with liverworts (Field et al., 2016) and the same applies among gut bacteria
associated with bees, which partition their niches by specializing on different pollen-
derived resources (Brochet et al., 2021).
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Figure 0.1.5: Host-microbiota systems form complex ecological communities: (a-b) Diagram
indicated the nature of each host-microbe interaction within the microbiota and its effect on the
host and the microbe. While these microbe-specific effects are difficult to experimentally quantify,
it is rather easy to measure the average effect of the whole microbiota on the host. Thus, large dots
indicate the average effect of the microbial symbionts on the host: it can be beneficial (green; a) or
non-beneficial (red; b). (c-d) Examples of variation of the average benefit of the microbiota for the
host as a function of time (c, e.g. the average effect varies according to the time of the year or over
evolutionary timescales) or as a function of environmental conditions (d; e.g. it varies according
to the available nutrient, like the available phosphorous in the soil [Pi] for mycorrhizas).
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Box 1: A true mutualism?

All the functions mediated by the microbiota illustrate that most host-microbe
interactions are largely beneficial to the hosts. But are all the microbes beneficial to
the host? And reciprocally, are hosts always beneficial to their microbes?
Because microbiota are composed of a multitude of microbe lineages, measuring
the effect of each microbe on the host (and vice versa) is challenging. However,
experimental works suggest that microbiota are constituted by microbes ranging
from beneficial to neutral and to non-beneficial (Johnson et al., 1997). Instead of
the effect of the individual microbes, it is the overall beneficial effect of the whole
microbiota on the host that matters, and that is generally positive (Figure 0.1.5a-b).
Concerning the effect of the host on the microbes, for mycorrhizal fungi, mineral
resources gathered by the fungi are generally traded against organic matter
produced by plant photosynthesis: plants generally spend more than 10% of their
organic matter into these symbiotic exchanges (Leake et al., 2004; van der Heijden
et al., 2015). In addition, by hosting fungi in their roots, plants provide shelter
to their mycorrhizal symbionts: for instance, arbuscular mycorrhizal fungi store
lipid reserves in vesicles inside the plant roots. Mycorrhizal symbioses are mainly
mutualistic as both partners generally benefit from the interactions (Figure 0.1.5a),
although plants can sometimes have uncooperative strategies (see section 2.4).
The same likely applies to gut microbes that are fed and protected by animals.
However, in some cases, like in the foregut of the ruminants, the host maintains
the fiber-fermenting microbes in the rumen, but once the fermentation is done, the
host directly digests the microbes: whether such “farming” is a true mutualistic
interaction can therefore be questioned (Mushegian & Ebert, 2016).
In addition, the benefits of an interaction are not static: for instance, according
to the timing (Figure 0.1.5c) or the environmental conditions (Figure 0.1.5d), the
overall benefit of the whole microbiota on the host can shift from positive to
negative. It can vary on short time-scales during the life of the individuals or also
over long time-scales (see section 2.2). In this case, it can exist a range of strategies
to avoid hosting costly symbionts (see section 2.4).

Besides host-microbe interactions, the different microbial lineages composing the
microbiota are also interacting with each other. They are in particular competing
for space and resources (Bauer et al., 2018) or can interact antagonistically (e.g.
predation), but facilitation or mutualistic interactions (e.g. syntrophy) can also
occur between specific strains (Morris et al., 2013).

Therefore, host-microbiota interactions form a complex set of interlinked interac-
tions involving multiple partners and can be strongly modulated by environmental
conditions. They are thus far less simple to study and characterize than classical
textbook examples of mutualism between a pair species (Selosse, 2000).
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1.3. The assembly of host-associated microbiota

Microbiota transplantation experiments from one host species to another in mammals
and arthropods often found that such interspecific transfers lead to a fitness decrease
for the receiving hosts (Chung et al., 2012; van Opstal & Bordenstein, 2019; Moeller et
al., 2019). This therefore highlights that some microbes might be specific to their host
species and that this specificity is important for the good functioning of the host or-
ganism (Moeller & Sanders, 2020). Therefore, at each host generation, some mecha-
nisms should exist to ensure that the microbiota assembly of the new generation includes
species-specific microbes. The assembly of a new microbiota depends on the heritability
of the microbes (Bright & Bulgheresi, 2010; Figure 0.1.6). On one hand, microbes could
be transmitted directly by the parents to the newborn or may colonize from conspecific
hosts. On the other hand, microbes can be directly acquired from the environment at
each generation, independently of the microbes colonizing the parents or other conspe-
cific hosts. Note that the terms “vertical” versus “horizontal transmissions” are gener-
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Figure 0.1.6: Illustration of the different modes of assembly of the host microbiota. Hosts
(brown rectangles) reproduce and the parental generation can directly transmit its microbial sym-
bionts to the next generation by transmission through the germline, at birth/germination, or
through parental care. Microbes can also be transmitted from other hosts that share the same
niche. Alternatively, after birth/germination, microbes can be acquired from the environment
among the pool of available microbes, including free-living ones. Note that transmission is par-
ticularly expected for host-restricted microbes, whereas free-living microbes in the environment
can easily be acquired. In any case, these microbes can durably colonize the microbiota niche
(resident microbes) or just be present in the short-term (transient microbes).
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ally used in the literature to refer to these two modes of assembly (Bright & Bulgheresi,
2010). In this manuscript, we rather use the terms “transmissions” versus “environment
acquisition” and restrict the use of “vertical” and “horizontal transmissions” to refer to
processes over long-time scale (see section 2.1).

1.3.1. Microbiota assembly in animals

Microbes heritability can be investigated thanks to experiments looking at microbiota
composition between generations. In mammals, newborns are sterile at birth but there
is plenty of evidence of parent-to-offspring transmission, in particular during the deliv-
ery (Dominguez-Bello et al., 2010). Following delivery in humans, breast milk enriched
in complex polysaccharides favors the establishment of Bifidobacterium symbionts in the
gut of the newborn. During the lifetime of an individual, microbes are also transmitted
between conspecifics sharing the same environment or through social contact (Moeller
et al., 2013). Besides transmitted microbes, the resident gut microbiota is also composed
of microbes acquired from the environment (David et al., 2014), and continuously faces
a plethora of transient microbes (Zhang et al., 2016). For instance, in mammals, many
bacteria found in predator guts are also found in their preys (Moeller et al., 2017), sug-
gesting that a lot of (possibly transient) microbes transit thought the trophic webs. How-
ever, recent experiments with different mouse lines (Mus musculus) sharing the same cage
demonstrated that new generations tend to conserve some ancestral bacterial symbionts
(Moeller et al., 2018), highlighting the primordial role of parent-to-offspring transmis-
sion. In particular, obligate anaerobes were more frequently transmitted than aerobic
microbes (Moeller et al., 2018), suggesting that microbial traits (in particular those re-
lated with host restrictiveness) and not only host traits contribute to parent-to-offspring
transmission. Whatever their origins, microbes that colonized the mammalian gut start
a complex cross-talk with their host that is essential to the homeostasis of the whole gut
microbiota and the host (Kelly et al., 2005).

Other vertebrates show less frequent cases of faithful parent-to-offspring transmis-
sion (Burns & Guillemin, 2017), probably because they generally present less parental
care than mammals. The same applies to invertebrates that have often even fewer so-
cial contacts. Nevertheless, some arthropods have developed alternative ways of di-
rect transmissions: contrary to vertebrates, arthropod newborns may not be sterile and
some symbionts can be directly transmitted with the maternal germline or symbiont-
containing secretions can be deposited onto the eggs (Bright & Bulgheresi, 2010; Engel
& Moran, 2013). These mechanisms are particularly frequent when gut microbes play
essential roles in insect nutrition. Conversely, when the evidence of host functions rely-
ing on microbes is scarce, it has been observed that microbes are rather acquired from
the environment (Hammer et al., 2017, 2019). For instance, the microbiota of Drosophila
melanogaster in wild populations is highly variable between individuals and mainly con-
stituted by microbes common in their environment (Blum et al., 2013). In addition, a
feeding experiment of a spider (Badumna longinqua) demonstrated that their gut micro-
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biota directly derived from that of their insect prey (Kennedy et al., 2020).

1.3.2. Microbiota assembly in plants

In plants, microbial heritability also range from generation-to-generation transmis-
sions to environmental acquisitions (Hacquard et al., 2015). Although plants mainly ac-
quire their microbiota from their environment at germination, plant spores and seeds are
not always sterile (Truyens et al., 2015) and frequent cases of parent-to-offspring trans-
missions have been described: some parental endophytes have been found to directly
colonize seeds (Shade et al., 2017) and spores of mycorrhizal fungi (which cannot col-
onize plant seeds) have been characterized in the fruit tissues surrounding the seeds,
guarantying the presence of the symbionts at germination (Séne et al., 2018). When
sterile, seedlings are quickly colonized after germination by mycorrhizal fungi from the
surrounding environment: if seedlings germinate close to their parents, they likely en-
counter the same symbionts (Vannier et al., 2018), whereas in the case of long-distance
dispersal, they might face different pools of symbionts. In both cases, the encounter of
microbial symbionts in the soil is often nonrandom (Shade et al., 2017). For instance,
mycorrhizal fungi are oriented toward the plant thanks to the emission by the plant of
substances in the soil, such as strigolactones (Bonfante & Genre, 2015), starting a cross-
talk between the interacting plant and fungus that is essential for the establishment of the
symbiosis (Gadkar et al., 2001). Microbiota assembly thus depends on the host species
and on the microbes available, but also on the order of arrival of the microbial species
(priority effect; Werner & Kiers, 2015; Leopold & Busby, 2020; Kohl, 2020).

Therefore, modes of microbiota assembly range from strict parent-to-offspring trans-
missions to random environmental acquisitions: most host microbiota assembly lies ac-
tually somewhere in the middle (Shapira, 2016). These modes of assembly can also have
a drastic impact on the host-associated microbial symbionts, depending on whether they
are host-restricted or whether they can live freely in the host’s environment (Moran et al.,
2019). In the latter case, microbial symbionts are not much affected by microbiota assem-
bly, whereas in the former case, they strongly rely on the host niches and thus depend on
mechanisms favoring microbiota conservatism: they benefit from faithful transmissions
from parent-to-offspring or through close contact between generations.

To conclude, host-associated microbes are ubiquitous in particular in animal guts and
plant roots. In addition, microbiota often participate in essential host functions. They can
provide novel ecological niches and confer to their host a rapid adaptability. It therefore
raises the question of the evolution of such host-microbiota interactions: How do host-
associated microbiota evolve? What is the impact of microbiota on the evolution of their
hosts? What guarantees the stability of such interactions over long time scales?
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2. The evolution of host-microbiota interactions

The Modern Synthesis of evolutionary biology, which unites the theories of Charles
Darwin and Gregor Mendel on natural selection and heredity respectively, recognizes the
role of four processes in the changes thought time (i.e. evolution) of populations (Huxley,
1942): mutation (e.g. the heritable changes of the genetic material that lead to phenotypic
variability), selection (e.g. the reproductive advantages of the organisms having some
particular phenotypic traits), drift (e.g. the random transmission of the genetic material
to the next generation), and dispersal (e.g. the mixing with organisms from different pop-
ulations). Therefore, through these processes, two evolving populations can accumulate
divergences (microevolution), such that two organisms from each of these populations
may become too different to efficiently reproduce, therefore forming two species (speci-
ation). If all the individuals of a species die, species can disappear (extinction), and over
long timescales (macroevolution), the balance between speciation and extinction (net di-
versification) determines the diversity of a clade of organisms. These mechanisms apply
as well to organisms in interactions: host organisms and their associated microbes are
(separately and/or jointly) experiencing mutation, selection, drift, and dispersal, alto-
gether shaping their evolutions.

Here, we will see that host-microbiota interactions are rather conserved over evolu-
tionary time scales and that this pattern can be due to diverse ecological and evolutionary
processes, including vertical transmissions or host-mediated environmental acquisitions
(section 2.1). Besides such conservatism, microbiota can also experience major shifts dur-
ing host evolution, which can be linked to the acquisition of new functions for the host
(section 2.2). Therefore, hosts and their associated microbes can reciprocally influence
their macro-evolutionary histories (section 2.3). Finally, we will see that the stability of
such mutualistic interactions can be challenged and that cheating strategies often emerge
(section 2.4).

2.1. The evolutionary conservatism of host-microbiota interactions

Studies that investigated the microbiota composition of a given clade of animals or
plants often reported that closely related hosts tend to have more similar microbiota com-
position than distantly related ones, suggesting that host-associated microbiota are rather
conserved over evolutionary timescales. Indeed, although diets and soil properties have
a major impact on gut and root microbiota respectively, the host evolutionary history of-
ten additionally contributes to microbiota composition (Wehner et al., 2014; Groussin et
al., 2017; Yeoh et al., 2017). Consequently, the microbiota differentiations between host
species (i.e. their dissimilarities in microbiota composition) often recapitulate the host
phylogeny. This pattern of phylogenetic signal in microbiota composition reflects rather
slow and continuous changes of the microbiota along the host phylogeny; it is referred
to as phylosymbiosis (Lim & Bordenstein, 2020 ; see section 3.3 for the different ways to
quantify it). Phylosymbiosis has been widely observed across animals and plants, like in
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the microbiota of mammal guts, including great apes (Ochman et al., 2010), arthropods
(Brucker & Bordenstein, 2013; Armstrong et al., 2020), and also in plant roots, including
in grasses (Bouffaud et al., 2014), willows (Tedersoo et al., 2013), orchids (Jacquemyn et
al., 2011), or lycopods (Benucci et al., 2020), as well as in their leaves (Donald et al., 2020).

However, phylosymbiosis is not a generality: for instance, no phylosymbiosis has
been reported in birds (Hird et al., 2015), bats (Song et al., 2020), or flowering plants (Er-
landson et al., 2018). The absence of phylosymbiosis is especially observed when host
microbiota are composed of transient microbes acquired from the environment. In ad-
dition, despite the presence of a phylosymbiosis at the host species level, intra-specific
host-microbiota differentiation can be rather scarce, as illustrated by the apes that tend
to present more similar microbiota when they share the same area, irrespectively of their
genealogical relationships (Degnan et al., 2012). As a matter of fact, phylosymbiosis is
only a pattern and not a process. To understand the origins of microbiota conservatism
and phylosymbiosis over long-time scales, we have to investigate how host-associated
microbiota are assembled and evolve over short-time scales.

2.1.1. Conservatism driven by microbial transmission

First, the transmission of microbes in a host lineage can explain phylosymbiosis. In-
deed, host-associated microbes are often transmitted from the parents to the offspring or
colonize from other conspecific hosts (see section 1.3). If these transmissions are stable
and faithful, host-microbe interactions are conserved in the host lineage over long-time
scales (we refer to this process as vertical transmission). At host speciation, transmitted
microbes are then isolated from each other in the two daughter host lineages: by accu-
mulated divergences in each host lineage, the phylogenetic tree of these transmitted mi-
crobes therefore tends to mirror that of their hosts (a pattern referred to as cophylogeny;
Figure 0.2.7). By default, we assume that transmitted microbes passively undergo host
speciations (phylogenetic tracking), although they might also actively promote host spe-
ciations in some rare cases (see section 2.3). Such cophylogenetic patterns have been
frequently observed in the intracellular endosymbionts of invertebrates, like the bacte-
ria Buchnera of aphids (Moran et al., 2008), or in the dominant gut bacteria in stinkbugs
(Hosokawa et al., 2006), both maternally inherited. In species-rich microbiota, such co-
phylogenetic patterns are more difficult to investigate because the classical metabarcod-
ing markers, like the 16S SSU rRNA gene, often do not have enough resolution to recon-
struct robust phylogenies of the transmitted microbes (see section 3.1), but several stud-
ies amplifying more resolutive markers or taking into account phylogenetic uncertainty
have demonstrated that transmitted bacteria are present in the gut microbiota of insects
(Kwong et al., 2017) and mammals (Groussin et al., 2017; Youngblut et al., 2019), including
great apes (Moeller et al., 2016). It also appeared that some of these vertically transmit-
ted microbes have punctually experienced horizontal transfers (host-switching) between
different host lineages, resulting in non-perfect congruency between the host and the mi-
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Figure 0.2.7: Different modes of inheritance of a given host-associated microbial lineage and
their consequences on the microbial phylogenies. On a phylogenetic tree of 3 host species (a),
we represent the different modes of microbial inheritance (b) and their resulting microbial phy-
logeny (c): extreme scenarios correspond to strict vertical transmission (i; perfect cophylogenetic
pattern) or environmental acquisition (vii; no cophylogenetic pattern expected). Under vertical
transmission, other punctual processes can result in a loss of perfect congruence between the host
and the microbial phylogenies: punctual events of horizontal transmissions (the horizontal trans-
fer from one donor host to a receiver host can result in microbial replacement in the receiver host
lineage (ii), or to a duplication of the microbial strains in the receiver host lineage (iii)), intra-
host duplication (iv), or microbial extinction (v). Additionally, the interaction could have been
acquired recently in only a sub-clade of hosts (vi; the microbe was therefore absent in the most
recent common ancestor of all hosts). Here, note that we do not call ‘cospeciation’ the fact that
the microbes split into two lineages at host speciation, because these resulting isolated microbial
populations can be differentiated without being necessarily “two species”.

crobes phylogenies (Moeller et al., 2016; see Figure 0.2.7 for a list of processes that can gen-
erate imperfect congruence between the host and microbe phylogenies). In great apes,
transmitted bacteria include the host-restricted Bacteroidaceae (Bacteroidetes) and Bifi-
dobacteriaceae (Actinobacteria), whereas the Lachnospiraceae (Firmicutes), which form
spores and can survive outside animal guts harbor no cophylogenetic patterns (Moeller
et al., 2016): this suggests that low dispersal ability and host-restrictiveness might be pre-
requisites for a microbe to be vertically transmitted over long-time scales. These prereq-
uisites could in particular explain why evidence of vertical transmission is rather scarce
in mycorrhizal fungi, contrary to non-soil dwelling fungal endophytes (Rodriguez et al.,
2009).

Although only a subset of the host-associated microbes is vertically transmitted, it
can be sufficient to generate phylosymbiosis (Nishida & Ochman, 2019). Importantly,
if vertical transmission often tends to generate cophylogeny, the opposite is not true:
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a cophylogenetic pattern is not by itself sufficient evidence for demonstrating vertical
transmission, as it can also emerge if both hosts and microbes have experienced con-
comitant speciation events (e.g. there are subject to the same vicariance events) or if the
microbes have recently colonized the host clades through horizontal transfers between
closely related hosts (host-shift speciations; de Vienne et al., 2013).

2.1.2. Conservatism driven by host filtering

Second, phylosymbiosis has also been observed in host-microbiota systems where
the evidence of vertical transmission is scarce and microbes are instead acquired from
the environment (Benucci et al., 2020): when microbiota are constituted by environmen-
tal acquisitions, host microbiomes can be seen as specific niches with particular envi-
ronmental conditions that microbes may colonize (Moran & Sloan, 2015; Kohl, 2020).
Because of its properties, a given host microbiome may not be suitable for all microbes:
a host filtering, where the host conditions act as ecological conditions, is operating dur-
ing microbiota assembly and selecting particular microbes. In animal guts, we can think
about the gut morphology or physiology (e.g. pH) or the expression of particular an-
timicrobial peptides (Franzenburg et al., 2013; Nishida & Ochman, 2018). Similarly, in
plant roots, root morphology and the emission of particular molecules in the soil (e.g.
salicylic acid) can impact microbiota composition (Lebeis et al., 2015). If these host traits
affecting microbiota assembly are relatively conserved and slowly evolving, we would
expect closely related host species to harbor similar traits, and therefore, they should host
similar microbial communities in their microbiomes (Moran & Sloan, 2015). Simulations
have recently demonstrated that such processes can produce phylosymbiosis (Mazel et
al., 2018). Importantly, the evolutionary changes in the host traits involved in microbiota
assembly can be completely neutral, and do not have to be under selection.

2.1.3. Conservatism driven by inhomogeneous microbial pools in host environments

Third, besides transmission and host filtering, phylosymbiosis can simply appear if
closely related host species tend to live in environments with similar pools of available
microbes. In particular, in animals, if gut microbes are mainly acquired through the food,
host species with similar diets have similar microbiota (Kohl, 2020). Similarly, spatial
distances and environmental conditions are major determinants of the plant-associated
arbuscular mycorrhizal fungal communities at the global scale (Davison et al., 2015): as
closely related plant species tend to occupy close geographic areas with similar envi-
ronments, this can simply contribute to the significant phylosymbiosis. Inhomogeneous
microbial pools rely either on the differential ecological filtering of microbes across en-
vironments or on the existence of dispersal limitations in microbes. The latter appears to
be particularly important in the mammalian microbiota as their similarity of composition
decreases with geographic distances (Moeller et al., 2017).

Importantly, these different processes are not exclusive, and in many hosts, several
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of these processes likely contributed to phylosymbiosis (Davison et al., 2015; Mazel et
al., 2018). Whether initial divergences can be primed by transmitted microbes, host fil-
tering, or inhomogeneous microbial pools, these divergences can later be exacerbated
by priority effects between microbial species (i.e. the first settled microbes influence the
establishment of others, e.g. through competition or facilitation) that can influence the
assembly of the host microbiota during the rest of the host life (Kohl, 2020).

2.2. Shifts in microbiota composition and the acquisition of new func-
tions

Although host-microbiota tend to be evolutionary conserved, major shifts in the mi-
crobiota composition have also occurred punctually during animal and plant evolutions
and were often concomitant with ecological innovations, i.e. significant changes in the
niches or environments of their hosts.

New transient microbes are continuously passing through the gut and the root mi-
crobiota, and resident symbiotic microbes also tend to largely vary among individuals of
a given host species, but nonetheless, the emergence of new host-microbe symbioses is
rather rare. During land plant evolutions, only a few shifts of the main mycorrhizal sym-
bionts occurred (Selosse & Le Tacon, 1998; Brundrett & Tedersoo, 2018), and were mostly
concomitant with drastic changes in plant niches (Martos et al., 2012; Werner et al., 2018).
Similarly, in mammals or arthropods, major shifts in microbiota composition tend to cor-
respond to changes in diets or niches (e.g. the transitions toward aquatic environments
in whales; Russell et al., 2009; Sanders et al., 2015; Groussin et al., 2017). In addition,
these shifts in microbiota composition are often non-random but rather convergent be-
tween host lineages that evolved to living in similar niches (Bittleston et al., 2016). For
instance, several plant lineages have convergently developed mycorrhizal interactions
with the same fungal lineages, like the Sebacinales or the Helotiales (Weiß et al., 2016;
Hoysted et al., 2018). Similarly, transitions from carnivory to herbivory in mammals tend
to be associated with an increase of the proportion of fibrolytic Firmicutes (Groussin et
al., 2017) and ant-eating lineages also convergently acquired similar gut microbes (Delsuc
et al., 2014), although host phylogenetic inertia is also frequent (Ley et al., 2008; Delsuc et
al., 2014). Indeed, in some cases, the gut morphology and physiology might have con-
strained the shifts in microbiota compositions (Nishida & Ochman, 2018), which suggests
that such shifts are primarily constrained by the abilities of the animals or plants to host
these new microbial communities.

Moreover, these new symbiotic microbes frequently appear to be beneficial for their
new hosts by bringing them new functions. We can distinguish three different origins for
these new microbial-mediated host functions according to the origin of the microbes (Fig-
ure 0.2.8): microbes can either (i) be horizontally transmitted from other host lineages, (ii)
be acquired from the new environment of the hosts, or (iii) already be present in the host
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environment. First, horizontal transmission of new symbionts may indeed directly pro-
vide the host with new functions, as illustrated by the dynamics of horizontal transfers
of bacterial endosymbionts in aphids that provide a range of new functions (Henry et al.,
2013). Second, if the animal or plant hosts change their environment, symbionts acquired
from the new environment may facilitate their establishment: for instance, some insects
rely on microbes from their new environment for metabolizing environmental toxins pre-
venting their establishment (Kikuchi et al., 2007). Third, the host and some microbes
already present in the host’s environment can evolve a new type of association. For
instance, the Sebacinales forming mycorrhizas with many plant species were originally
saprotrophs that evolved the abilities to associate with plants as endophytes before even-
tually developing truly functional mycorrhizas (the “waiting room hypothesis”; Selosse
et al., 2009, 2018). Whatever their origins, by bringing new functions, these microbial
symbionts can rapidly foster host adaptation, which can generate selective pressures for
the hosts to associate with these new microbes and promote the host dependence toward
them (see Box 2).

Fig 8

Host
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new type of 
interaction

(a) (b) (c)

Figure 0.2.8: Three different origins for new microbe-mediated host functions. Hosts (brown
rectangles) acquire a new function thanks to their association with a new microbial taxon (the
grey microbes). (a) The new microbial symbiont can be horizontally acquired from another host.
(b) The host can change its environment/niche and acquire new symbionts from their new envi-
ronment. (c) A new type of interaction can involve de novo if a host and an environmental microbe
are in close contact in the environment. Importantly, a host-associated microbe (e.g. the yellow
microbes) can also acquire new abilities (e.g. through horizontal gene transfer) without requiring
any taxonomical change (i.e. new microbes are not mandatory for new microbial-mediated host
functions).

However, systemically linking major shifts in host microbiota composition to the ac-
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quisition of new microbes or new functions is over-simplistic. First, major shifts in the
microbial relative abundances can also occur when host-microbe interactions are simply
lost: for instance, birds and bats seem to have convergently lost their associations with
Bacteroidetes but conserved their associations with Proteobacteria during the evolution
of flight (Song et al., 2020). Second, like most mutations in a genome are deleterious,
most random changes in a microbiota are likely not advantageous for the host (Suzuki
& Ley, 2020): many changes, including major ones, may thus not convey any changes
in their functional properties to the hosts, given that microbial functional properties are
highly redundant (Louca et al., 2016). Finally, the taxonomic composition of a microbial
community revealed using marker genes like the 16S SSU rRNA gene might not reflect
the functional properties of the microbes, given microbial genomes are very labile thanks
to frequent (non-homologous) horizontal gene transfers. The acquisition of new func-
tions could thus appear without any changes in the microbiota composition (Hehemann
et al., 2010). Therefore, we should rather track the presence of the microbial genes in-
volved in host functioning rather than looking at microbial taxonomy, as illustrated by
the legumes-associated rhizobia that present a large heterogeneity in terms of nitrogen-
fixing abilities (Young & Haukka, 1996).

Therefore, it appears that the acquisition of new microbial symbionts may greatly
help the hosts to expend their ecological niches (e.g. acquisition of new functions or
colonization of new niches or environments; Margulis & Fester, 1991; Moran et al., 2019).
Such associations can therefore significantly impact the evolutionary success of the hosts
over long-timescales.

Box 2: How did host-microbe dependences emerge?

Most animals and plants have developed dependences on their microbial sym-
bionts, and vice versa, for realizing essential functions (Chomicki et al., 2020a).
However, a dependence on microbes for insuring essential host functions can
represent a serious risk for the hosts, as they now depend on the presence of
these microbes and their ability to interact with them. To minimize the risk of
not recovering the specific microbes from the environment, some hosts have
evolved strategies to faithfully transmit their microbial symbionts to the next host
generation (see section 1.3). Alternatively, when the host functions do not need
specific microbes (like the priming of the host immune system), there is often little
risk of relying on the presence of microbes as they are everywhere, given that,
since their origins, animals and plants dwell in a microbial world (McFall-Ngai et
al., 2013).
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Box 2: How did host-microbe dependences emerge? (end)

Then, if the risk of not recovering the beneficial microbes is minor for the host,
is evolving a dependence always beneficial? Sometimes these dependences are
related to new functions that the host cannot realize alone, like new nutritive
strategies or detoxifying abilities. The symbiotic microbes therefore allow the
hosts to expend their ecological niches (Margulis & Fester, 1991; Moran et al., 2019).
However, in some cases, the benefits of such dependence are unclear: for instance,
mammals rely on microbes for priming the development of their immune systems
(see section 1.2), so if microbes are absent, they lack an efficient immune system
(Chung et al., 2012). Is it advantageous to have developed such a dependence
toward microbes while many organisms can prime their immune systems of their
own? If priming their own immune system requires costly mechanisms for the
hosts, it can be advantageous to rely instead on microbes: dependence can be
selected (Black Queen hypothesis; Morris et al., 2012). However, such dependence
can also appear without any selective pressures: neutral evolution toward in-
terdependence can emerge by random drift if two redundant mechanisms exist
(Selosse et al., 2014). The term “evolutionary addiction” has been proposed for
the emergence of such dependences (Moran, 2002). In other words, animals and
plants have frequently developed a dependence on their associated microbes for
realizing some functions without any apparent additional benefits (Moran et al.,
2019).

Reciprocally, such dependence has also emerged in microbes: if it exists many
pathways of vertical transmission (parental-to-offspring direct transmissions,
proximity between hosts, . . . ), microbes may no longer need a free-living stage
and a dependence toward the hosts can appear, like observed in mammal guts
where many transmitted bacteria are restricted to the gut niches (Moran et al.,
2019) or in mycorrhizal fungi that often became obligate plant symbionts (e.g.
Glomeromycotina or some Basidiomycota lineages; Miyauchi et al., 2020). In
the same way as their hosts, dependence can be particularly reinforced through
adaptive or neutral gene losses (i.e. Black Queen hypothesis versus evolutionary
addiction; Hosokawa et al., 2006).
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2.3. The macroevolutionary impact of host-microbiota interactions

Why some clades of species are more diverse than others is a central question in biol-
ogy. The Red Queen hypothesis proposes biotic interactions as a central force promoting
endless adaptive changes in interacting species that result in diversification (Van Valen,
1973). Indeed, selective pressures mediated by host-microbiota interactions are frequent.
For instance, gut microbes in Drosophila melanogaster can promote the adaptive genomic
changes in their host over very short time scales (Rudman et al., 2019) and reciprocally,
nitrogen-fixing rhizobia associating with legumes have been found to rapidly adapt to
their hosts to increase cooperation (Batstone et al., 2020). Hembry et al. (2014) distin-
guished two ways by which biotic interactions may increase species diversification: ei-
ther by directly spurring their speciation or by indirectly increasing their diversification.

2.3.1. Biotic interactions can directly promote speciation

First, biotic interactions can directly promote speciation, in particular host speciations
(Hembry et al., 2014). Also referred to as “speciation by symbiosis”, host-associated mi-
crobes can promote pre-mating isolations or post-mating isolations, and such isolations
between host populations would spur speciation (Brucker & Bordenstein, 2012). Par-
ticularly well documented in arthropods (Vavre & Kremer, 2014), pre-mating isolations
include evidence of isolations that are behavioral (Sharon et al., 2010; but see Leftwich et
al., 2017) or ecological (Hosokawa et al., 2007), while post-mating isolations often consist
in microbe-mediated incompatibilities (Duron et al., 2008). However, if such mechanisms
can easily spur population differentiation, especially in a geographic metapopulation
context (Thompson, 2005), there is currently only very little evidences that they can suc-
cessfully result in complete speciation, or directly increase the diversification of the clade
(Althoff et al., 2014; Hembry et al., 2014).

2.3.2. Biotic interactions can indirectly promote diversification

Second, biotic interactions can create an ecological opportunity for the interacting
clades of species that may promote the ecological and evolutionary success of one or
both of them (Hembry et al., 2014). Technically, biotic interactions may increase the net
diversification rates of the clades (i.e. increasing the speciation rates or decreasing the ex-
tinction rates; see section 3.4) without needing to actively promote the speciation. Many
animal or plant radiations have been only possible because of their symbioses with mi-
crobes that have offered them the ability to expand their niches or colonize new environ-
ments. For instance, the colonization of land by plants and their latter radiations would
have not been possible without their nutritive symbiosis with mycorrhizal fungi, includ-
ing the Glomeromycotina (Pirozynski & Malloch, 1975; Selosse & Le Tacon, 1998) or the
Mucoromycotina (Strullu-Derrien et al., 2018; Chang et al., 2019). Similarly, the ancestors
of all mammals were likely carnivorous, but nowadays, 80% of the extant mammals are
herbivorous despite the lack of enzymes degrading complex plant fibers in mammalian
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genomes (Flint et al., 2012): the radiation of herbivorous clades has thus only been pos-
sible thanks to fibrolytic microbial symbionts (Hacquard et al., 2015). In addition, the
numerous beneficial functions ensured by microbial symbionts might improve host sur-
vival and increase their population sizes, resulting in lower extinction rates (Chomicki
et al., 2019). Besides spurring the diversification of their associated animals and plants,
colonizing host microbiomes can also promote the radiation of the corresponding micro-
bial lineages. For instance, more than 80 fungal lineages (representing more than 40,000
extant fungal species) have evolved mycorrhizas (van der Heijden et al., 2015; Brundrett
& Tedersoo, 2018), suggesting that developing symbiosis with plants was a significant
evolutionary success for fungi (Wilson et al., 2017).

However, if host-microbe interactions are often thought to increase diversification,
such associations can also decrease it (Chomicki et al., 2019). For instance, if the hosts
depend on their microbes (or reciprocally) and if the interactions are difficult to establish
(e.g. because of the rarity of the partners), this can increase the risk of extinction of the
obligately dependent organisms (Kiers et al., 2010; Chomicki et al., 2020a).

Therefore, there is plenty of evidence that hosts and microbes have greatly influenced
their respective evolutions through their interactions in many ways. If this evolutionary
interplay between hosts and microbes is reciprocal and due to selective pressures, we
may refer to it as coevolution (Janzen, 1980; Box 3).

Box 3: Coevolution in host-microbiota interactions

In its strict definition, coevolution happens when reciprocal selective pressures in-
duce evolutionary changes in two interacting lineages (Janzen, 1980). Importantly,
although durable associations are often necessary for coevolution, the intimacy of
an interaction and its conservatism over long time-scales does not mean coevolu-
tion (Moran & Sloan, 2015): in that sense, coevolution is not a prerequisite nor a
consequence of patterns of phylosymbiosis or cophylogeny (Poisot, 2015).
Some examples of host-microbe pairwise coevolutions have been demonstrated,
especially in insect-endosymbiont interactions, but proofs of strict pairwise coevo-
lution are scarcer in species-rich microbiota (like in the animal guts) or in micro-
biota constituted of microbes mainly acquired from the environment (like in plant
roots). The detoxifying bacteria acquired from the host environment (see section
2.2) is a good example of microbes that promote host adaptation without requiring
any coevolutionary processes (Suzuki & Ley, 2020).
Instead, coevolution is more likely to be diffuse in such systems, i.e. the interacting
clades of hosts and microbes selectively influence each other as a group (Janzen,
1980), like in mycorrhizal symbioses (Brundrett, 2002) or in the mammalian guts
where milk oligosaccharide productions have coevolved with the digestive abili-
ties of several bifidobacteria (Asakuma et al., 2011).
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2.4. The stability of host-microbe mutualistic interactions

2.4.1. The breakdown of host-microbiota mutualism

Mutualistic host-microbiota interactions often come at a cost for one or both cooper-
ators (Douglas, 2008): for instance, plant hosts have to provide organic carbon to their
mycorrhizal partners in return for mineral matter. Such costs are not problematic if the
benefits are larger, which guarantees a positive net benefit for the interacting organisms.
However, such a balance between costs and benefits can vary (Figure 0.1.5).

First, the benefit-cost ratio of an interaction depends on the environmental conditions
or the niche occupied by the host (Figure 0.1.5d). For instance, under high phosphorous
concentration in the soil, mycorrhizal fungi are often no longer beneficial for the plants
(Thomson et al., 1986). In such conditions, the hosts can be under selective pressure to
get rid of their useless microbial symbionts. When environmental conditions strongly
impact the benefit-cost ratio of the interaction, it likely favors the strategy of facultative
symbioses: for instance, 7% of the extant plant species only interact with mycorrhizal
fungi when needed, and alternatively abandon the mycorrhizal mutualism (Smith &
Read, 2008; Brundrett & Tedersoo, 2018). Definitive mutualism breakdowns have also
repeatedly occurred during land plant evolution when plant lineages have evolved al-
ternative nutritive strategies, like carnivory or cluster roots, and mycorrhizal symbionts
were therefore no longer needed (Werner et al., 2018).

Second, the benefit-cost ratio can be modified by the interacting partners themselves
(Figure 0.1.5c). Indeed, some hosts or microbes frequently evolved adaptive uncooper-
ative strategies for retrieving higher benefits from the interaction at the expense of their
partners (Sachs et al., 2004; Douglas, 2008). Such strategies, referred to as cheating, are
parasitism evolved in the framework of a mutualism and can emerge for individuals
within a species, or for a whole species in multiple-partners interactions. For instance,
several plant lineages have evolved a cheating strategy toward their associated mycor-
rhizal fungi in terms of carbon supply: these lineages, referred to as mycoheterotrophic
plants, such as some gentians or orchids, stopped providing organic carbon to their fun-
gal partners and instead rely on them for both mineral and organic matter (Merckx, 2013;
Figure 0.2.9). While many achlorophyllous lineages are full mycoheterotrophs, others
have conserved their abilities to perform photosynthesis and only partially rely on their
fungi for organic matter (mixotrophy or partial mycoheterotrophy) or only for one part
of their development (initial mycoheterotrophy; see Box 4 and Figure 0.2.9; Selosse &
Roy, 2009; Jacquemyn & Merckx, 2019). Similarly, some arbuscular mycorrhizal fungi
have evolved antagonistic strategies as they reduce the fitness of their plant hosts (John-
son et al., 1997; Selosse et al., 2006). However, mycorrhizal plants and fungi provide a
range of functions to their partners, from nutrition to protection, which can depend on
environmental conditions, such that assessing the limits between a “mutualistic” and a
“cheating” strategy can be difficult (Frederickson, 2017); indeed, even if one considers
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the effect on fitness as an inclusive estimator, it remains difficult to assess especially for
the microbial partners. For instance, in terms of carbon, mycoheterotrophic plants are
clearly cheaters that are costly for their mycorrhizal partners; however, it is still debated
whether or not the net benefit of the interactions is negative for fungi as mycoheterotro-
phic plants might be beneficial in other ways (e.g. vitamin synthesis; Merckx, 2013). Gut
microbiota are also subject to cheating strategies: for instance, gut-associated Bacteroides
or Escherichia coli, which are beneficial symbionts under many conditions, can eventually
turn into opportunistic pathogens (Leung et al., 2018), suggesting that cheating is latent
in most host-microbiota interactions. ՊՍ�Պ |�ՊƕJournal of EcologyJACQUEMYN Et Al.
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Figure 0.2.9: Multiple emergences of mycoheterotrophic cheating in land plants. (a) Phyloge-
netic tree of the land plants indicated the lineages having evolved mycoheterotrophic strategies
(Figure from Jacquemyn & Merckx (2019)). Colors indicate full mycoheterotrophs, partial myco-
heterotrophs, and initial mycoheterotrophs. Note that most cheating plants associate with Glom-
eromycotina symbionts, but others, like orchids, associate with different mycorrhizal lineages (e.g.
Sebacinales or Russulales). (b-c) Photos of two full mycoheterotrophic plants: Voyria caerulea (b,
eudicot, photo by Sébastien Sant) and Afrothismia winkleri (c, monocot, photo by Vincent Merckx).
(c-d) Photos of the two life stages of Lycopodium clavatum, an initial mycoheterotrophic species:
achlorophyllous gametophyte (d, photo by Curtis Clark under CC BY-SA 3.0) and autotrophic
sporophyte (e, photo by Benoît Perez-Lamarque, Box 4).
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Box 4: Initial mycoheterotrophy

Several lineages among ferns (Ophioglossaceae and Psilotaceae) and lycopods (Ly-
copodiaceae) and orchids have developed initially mycoheterotrophic strategies
(Merckx, 2013).
Ferns and lycopods are characterized by a strict alternation of generations between
haploid gametophytes and diploid sporophytes. While sporophytes are photo-
synthetic organisms mostly hosting arbuscular mycorrhizal fungi in their ‘roots’
(Lehnert et al., 2017), gametophytes can be underground and achlorophyllous, and
rely upon mycorrhizal fungi for their mineral and organic nutrition (Boullard,
1979). At first sight, these gametophytes are likely parasitic toward their mycor-
rhizal fungi. However, contrary to full mycoheterotrophic species that cheat during
their entire development, adult sporophytes can repay the carbon invested by their
mycorrhizal partners during their gametophytic stage. Therefore, rather than rep-
resenting a parasitic cost to their associated fungi, they would be mutualistic over
their entire development by differing in time their reward toward fungi: a model
referred to as “take now, pay later” (Field et al., 2015). Moreover, recent work has
demonstrated that gametophytes and sporophytes likely shared the same fungi
(Winther & Friedman, 2008), and suggested that the carbon could be directly trans-
ferred from the autotrophic sporophytes to the mycoheterotrophic gametophytes
(a ‘parental nurture’) thanks to a shared ‘wood-wide-web’ (Leake et al., 2008).
Similarly, orchids are mycoheterotrophic at germination since their seeds lack nu-
tritional reserve. Then, most species turn to be full autotrophs or partial mycohe-
terotrophs as adults (Merckx, 2013).

2.4.2. Constraints upon cheating strategies

The origination and persistence of cheating among host-microbe mutualistic interac-
tions could compromise their evolutionary stability (Ferriere et al., 2002). However, it
exists several mechanisms prevent or limit cheating emergence among mutualisms (Fos-
ter & Wenseleers, 2006). First, partner-fidelity feedback can prevent the emergence of
cheating (Sachs et al., 2004). Indeed, if host-microbe interactions are stable over-time,
benefits provided by one species to its partner would inevitably feedback to it (Weyl et
al., 2010). In other words, under partner-fidelity feedbacks, both fitnesses are aligned,
and there is no advantage to harm its partner (Sachs et al., 2004; Selosse & Rousset,
2011). Partner-fidelity feedbacks are trivial in vertically transmitted symbioses and in
obligate symbioses where there is no alternative choice among the partners, resulting
in a durable and exclusive association. Second, partner selection can limit the interac-
tions with cheaters. Indeed, hosts or symbionts can favor and invest more in the in-
teractions with most cooperative partners through conditional investment (Roberts &
Sherratt, 1998), stop interacting with the cheaters (Pellmyr & Huth, 1994), or even sanc-
tion them (Kiers et al., 2003). Such mechanisms therefore counterselect the propensity
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of cheating (Noë & Hammerstein, 1994). Partner selection is particularly important in
multiple-partners interactions with partners acquired from the environment (Sachs et al.,
2004). There is evidence that both partner-fidelity feedbacks and partner selections sta-
bilize the host-microbiota interactions: for instance, root-associated symbionts can align
their fitness with that of their plants over a few generations (Batstone et al., 2020) and
both plants and mycorrhizal fungi can avoid cheaters and actively select their partners
by conditional investments (Kiers et al., 2011) or by controlling the rhizosphere composi-
tion (Lebeis et al., 2015). In gut microbiota, there is also some proofs of partner selection
from the hosts: for instance, by secreting different antimicrobial peptides, the host can
have control over its symbiotic microbes (Foster et al., 2017).

In addition, the recurrent compartmentalization of the microbial symbionts within
their host also enables better control over the interaction (Chomicki et al., 2020b). Fine-
scale compartmentalization allows to specifically operate fine-scale partner selection, like
demonstrated in the root mycorrhiza where both plants and mycorrhizal fungi actively
control the outcome of the interaction (Kiers et al., 2011) or in the gut microbiota where
microbes tend to be contained in microenvironments with conditions controlled by the
host (pH, nutrients, antimicrobial secretions, etc.; Foster et al., 2017; Chomicki et al.,
2020b). In addition, strict compartmentalization of the microbial symbionts is also a way
to isolate symbionts and control their reproduction (Chomicki et al., 2020b).

Importantly, partner fidelity feedbacks can also directly promote mutualism by rapidly
selecting for transitions from antagonism to mutualism. Such alignments of the host and
microbe fitnesses have been demonstrated in parasitic endosymbiotic bacteria that be-
came mutualistic symbionts of Drosophila over a few decades (Weeks et al., 2007). Simi-
larly, in mammal guts, some mucin-consuming bacteria (e.g. Akkermansia) likely derived
from opportunistic saprotrophs (Moran et al., 2019), but their presences are now inversely
correlated with obesity in humans (Everard et al., 2013) suggesting that these microbes
now play essential roles for their hosts (but see Box 2 on evolutionary addiction).

There is an accumulation of evidence that biological interactions can be seen using a
‘market framework’ (Selosse & Rousset, 2011; Werner et al., 2014). In such biological mar-
ketplaces, multiple-partners mutualistic interactions are maintained stable because there
is limited advantages to cheat (partner fidelity feedbacks) and because emerging cheaters
are rapidly identified and avoided (partner selection, which is continuously evolving). In
addition, market theory (together with greater ecological adaptability) predicts that spe-
cialization may not be particularly advantageous in such systems, which can explain why
multiple-partner interactions are maintained in animal and plant microbiota (Werner et
al., 2014).
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3. Analytical tools to study the evolution of host-microbiota
interactions

3.1. Characterizing host-associated microbiota

For more than a century, microscopic observations and in vitro isolation have been the
only way to characterize host-associated microbes. However, such taxonomic character-
izations of bacteria and fungi were somewhat limited. Bacteria were classified based on
their shapes or the properties of their cell wall (Gram-positive or Gram-negative) and
their metabolism in vitro, while microscopic mycorrhizal fungi were classified according
to their cellular organization (septate or aseptate hyphae) and the structure they form
within plant roots (arbuscules, vesicles, coils, mantels. . . ). However, such morpholog-
ical traits remained very limited to delineate and identify microbial species. In-depth
characterization of the microbial communities associated with animals and plants have
made substantial progress thanks to advances in molecular biology and DNA sequenc-
ing (Hugenholtz, 2002; Heather & Chain, 2016). However, microscopic observations still
allow quick and reliable reports of actual host-microbes interactions, like mycorrhizal
structures. In addition, combined with recent advances in molecular biology, such as flu-
orescent in situ hybridization (FISH), microscopic observations allow us to specifically
and precisely visualize host-associated microbes, like the hyphae of some specific fungi
in unexpected plant species (Schneider-Maunoury et al., 2020).

3.1.1. From microbiota samples to microbial DNA sequences

Following the discovery of the structure of deoxyribose-nucleic acids (DNA) in 1953,
several technics to ‘read’ the DNA sequences have been developed (Heather & Chain,
2016) and can be used to characterize the composition of a microbial community. The
idea is to sequence a given core gene, called barcode, that is present in all the microbes,
but with a polymorphic DNA sequence, as this DNA region has accumulated mutations
during the evolution of these different microbial lineages. Then, by looking at the dif-
ferent DNA barcoding sequences and comparing them to databases of known microbes,
we can deduce what are the microbial ‘species’ present in a given sample: this is called
metabarcoding. Several DNA regions can be selected as a barcode, especially among the
ribosomal ribonucleic acid (rRNA) operon, as the small subunit (16S rRNA gene) for bac-
teria and the internal transcribed spacer (ITS) for fungi (Figure 0.3.10).

Metabarcoding requires several steps (Figure 0.3.11): Given the total extracted DNA
of a microbial community, the first step is to specifically amplify the barcoding sequences
thanks to polymerase chain reactions (PCR). The exact targeted barcode region depends
on a match with the primer pair that is used during the PCR and determines the extrem-
ities of the amplified region (called amplicon). Second, we have to ‘read’ the barcoding
sequences (amplicon sequencing). One of the first sequencing technologies was Sanger
sequencing that allows the ‘reading’ of a DNA fragment of one thousand base pairs at
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Figure 0.3.10: The ribosomal RNA operon contains traditional barcoding regions for microbes
Panels (a) and (b) represent the organization of the rDNA operon in eukaryotes and prokaryotes
respectively. The ribosomal DNA operon is composed of a small subunit (SSU - the 16S rRNA
gene for prokaryotes and the 18S rRNA gene for eukaryotes) and a large subunit, which is split in
two parts in eukaryotes. Panel (c) indicates the 9 variable regions of the SSU gene that alternate
with conserved regions. Primer pairs used for metabarcoding generally match with conserved
regions at the extremities of one or two variables regions that are thus amplified (e.g. the V6
region for prokaryotes).

most. However, Sanger sequencing can only read one unique DNA sequence per sam-
ple: therefore, diverse microbial communities cannot be sequenced at once. One solution
is to isolate the different microbes before sequencing them, either by separately cultur-
ing them (but in that case only culturable microbes are characterized) or by cloning PCR
products (e.g. Martos et al 2012). Since the beginning of the 21st century, the development
of high-throughput sequencing technologies, like pyrosequencing or sequencing by syn-
thesis based on fluorescence (Heather & Chain, 2016), allows in-depth characterizations
of the different microbes present in a sample, without cultivation or cloning anymore.
However, such methods, like the Illumina MiSeq technology, can only amplify barcodes
shorter than 500 bp.
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Figure 0.3.11: The different steps of metabarcoding to characterize the composition of a host-
associated microbiota. The plant- or animal-associated microbiota have first to be isolated and
DNA extraction has to be performed. Next, a PCR has to be performed to specifically amplify the
chosen barcode using a specific primer pair and the resulting amplicons can then be sequenced
(e.g. using the Illumina MiSeq technology). A specific tag is generally inserted into the primers
of each sample to be able to recover from which sample each amplicon comes from. Finally, a
bioinformatic pipeline is used to process the amplicon reads and cluster them (OTUs).

3.1.2. From DNA sequences to ‘microbial species’

An Illumina run generally generates up to 25 million amplicon reads and bioinfor-
matic pipelines need to be used to convert these sequencing data into information about
the microbial species present and their abundances (Figure 0.3.11). In short, after filtering
the amplicon reads based on their quality to remove PCR and sequencing errors, reads
with similar sequences are merged together as they likely come from the same microbial
species: the resulting clusters are called operational taxonomic units (OTUs; see Box 5).
It exists several OTU clustering methods (Figure 0.3.12): a classical one is to choose a
global similarity threshold (e.g. 97%) and cluster together all the reads with a sequence
similarly larger than 97%. Intra-OTU nucleotide variation is thus assumed to be mainly
due to intra-specific variations (microbial differentiation), intra-genomic variations (e.g.
the rRNA operon is often contained in several copies per genome), or PCR/sequenc-
ing errors to a lesser extent. Alternatively, methods like Swarm cluster reads based on
the abundances and local thresholds of similarity (Mahé et al., 2014), whereas amplicon
sequence variant (ASV) clustering keeps all the unique sequences after stringent qual-
ity filtering (Callahan et al., 2017). Besides these phenomenological OTU clustering, one
can also consider phylogenetic-based clustering (Box 5 and Figure 0.3.12). Whatever the
clustering method used, one sequence is selected to represent each OTU and a taxonomic
assignation is performed thanks to global databases censusing all known microbes. For
each sample, we can therefore obtain the list of the OTUs that it contained, their read
counts (used as a proxy for their abundances in the sample), and their taxonomy (alto-
gether contained into an OTU table).
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Box 5: What is a microbial species?

What is a species has been intensively debated for more than a century by
biologists and a strong controversy arose because of a mix between the con-
cept of species (what is a species?) and the methods to delineate species (how
to put a boundary between species?). De Queiroz (2007) proposed a unified
species concept as “separately evolving metapopulation lineages”. Reproduc-
tive isolation, morphological or ecological dissimilarities, or monophyly are
thus only “lines of evidence” (referred to as operational criteria) that can be used
to evaluate species delineation and propose species hypotheses (De Queiroz, 2007).

The operational criteria are limited for delineating microbial species. Indeed, as
they are mainly asexual organisms (e.g. bacteria or Glomeromycotina), the cri-
terium of reproductive isolation (Mayr, 1942) is difficult to apply, and because their
morphological variation is often reduced, one cannot reliably use phenotyping to
delineate species (Giraud et al., 2008). Thus, microbial species delineation often
only relies on DNA sequences from metabarcoding datasets and can be classified
in two methods: the phenomenological and the phylogenetic approaches.
First, the phenomenological approaches rely only on current phenotypes (i.e. the
variation in the DNA barcoding sequence) to cluster the individuals into species
hypotheses (referred to as operational taxonomic units, OTUs). This includes
clustering at a given global threshold (e.g. 97% or 99%), a popular approach, or
clustering into amplicon sequence variants (ASV). While using a global threshold
is arbitrary (and therefore results in arbitrary species hypotheses), ASV might
result in over-splitting where single variants likely represent intra-species differ-
entiation rather than different species. Finally, approaches using local thresholds
based on abundance profiles (e.g. Swarm) have the advantages to be less arbitrary
and could thus propose more realistic species hypotheses (Mahé et al., 2014).
Second, the phylogenetic approaches rely on the phylogenetic reconstruction
of the evolutionary relationships between all individuals (all unique sequence
reads) to propose species hypotheses. One of these approaches, the Generalized
Mixed Yule Coalescent (GMYC) model assumes that species diversifications
and intra-specific differentiations leave different signals in the time-calibrated
phylogenetic tree of all individuals (Pons et al., 2006). Looking at the waiting times
between splits in the tree, the GMYC estimates the time t that separates species
diversification (birth-death process – before t) and intraspecific differentiation
(coalescent process – after t). Therefore, the species hypotheses proposed by the
GMYC model do not include any arbitrary threshold. However, it requires a
robust time-calibrated phylogenetic tree, which can be difficult or computationally
intensive to get. Similarly, the Glomeromycotina are delimited into virtual taxa
(VT) based on a phylogenetic approach (Öpik et al., 2010): a phylogenetic tree of all
the 18S SSU rRNA sequences of Glomeromycotina is built and sequences (called
virtual taxa) are clustered into OTUs based on a criterium of monophyly and a
minimal similarity of 97%.
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Figure 0.3.12: Clustering the metabarcoding sequences into operational taxonomic units
(OTUs). Each colored dot represents a unique barcode sequence. The color of the dot indicates
to what microbial species it belongs and its size represents the sequence abundance. Dots that
are close to each other indicate that the two corresponding sequences are similar. (a) Original se-
quences present in the sampled microbial communities. Each dot corresponds to a true biological
sequence. (b) After PCR amplification and sequencing, most of the original sequences are still
present, but their relative abundances have mostly changed, because of primer biases or noise.
However, some of the original sequences have not been amplified (e.g. the grey species) and new
sequences (dots surrounding by a black circle) have appeared because of PCR and sequencing
errors (although they can be numerous, their total abundance generally remains relatively low).
All these sequences can be clustered into operational taxonomic units (OTUs) using phenomeno-
logical (c-d) or phylogenetic approaches (e). OTU clustering can be performed based on sequence
similarity (c), or based on the unique variants (amplicon sequence variants – ASV) after stringent
quality filtering to remove most of the errors (d). Alternatively, a phylogenetic tree of all the
sequences can be reconstructed (after removing the likely errors) and a phylogenetically-based
clustering can be performed, e.g. using the Generalized Mixed Yule Coalescent model (GMYC).
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Box 5: What is a microbial species? (end)

Importantly, if the DNA barcode is evolving too slowly compared to the specia-
tion dynamics of the microbes (i.e. that the barcoding sequences are accumulating
substitution at a slower pace than the speciation rate), closely related species might
have the same DNA barcoding sequence. In this case, the DNA barcode is im-
proper to delineate species, which highlights the importance of barcode choice to
investigate microbial evolution. However, it exists technics to investigate whether
a given species delineation is adequate or not: for instance, when using the GMYC
model, we can evaluate the support of the threshold model (i.e. including intraspe-
cific differentiation) compared to a null model in which all the tips of the tree are
assumed to be different species (i.e. no intraspecific differentiation).

3.1.3. The limits of metabarcoding

However, metabarcoding has several pitfalls. First, we can only obtain information on
the relative abundance of the microbes colonizing a host. Ideally, host-associated micro-
biota should also be studied in complementary ways, with microscopic observations or
using quantitative real-time PCRs to obtain information on the absolute microbial abun-
dances (Hammer et al., 2019). Second, the characterization of the community composi-
tion is often biased by the primers used: a primer pair can preferentially amplify some
clades of microbes and completely miss other groups due to mismatch in the priming
sequences, resulting in an incomplete identification (Mao et al., 2012). Third, the ampli-
fication of a short DNA region gives little information on the functional abilities of the
microbial community (Louca et al., 2016), especially in prokaryotes. To get a better insight
into the functional abilities, metagenomics or metatranscriptomics (i.e. direct sequencing
of all the DNA or RNA of the whole microbial community) can be used. Fourth, hav-
ing a short DNA region (<500 bp) that is slowly evolving (to be sufficiently conserved in
all bacteria or fungi) is often limited to robustly investigate the evolutionary history of
the different microbes (see Box 5). The recent development of new sequencing technolo-
gies, like Nanopore, that sequence longer DNA fragments up to several thousand of base
pairs will likely improve our ability to reconstruct the evolution of these host-associated
microbiota.

Metabarcoding characterization of the host-associated microbiota can be performed
for multiple host species in a given clade of animals or plants (Figure 0.3.13) and several
analyses can be performed to investigate the evolution of these host-microbiota inter-
actions. First, one can be interested in looking at the evolution of individual microbial
lineages (OTU per OTU; Figure 0.3.13a): cophylogenetic analyses can be used in this case
(see section 3.2). Second, one can be interested in studying the evolution of the micro-
biota as a whole (Figure 0.3.13b) thanks to network analyses (see section 3.3). A network
approach can for instance enable to investigate patterns of phylogenetic signals in species
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interactions (phylosymbiosis; see section 3.3) or patterns and drivers of species diversi-
fication (see section 3.4). The next sections present the available tools for studying these
different aspects of host-microbiota evolutions.
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Figure 0.3.13: Investigating the evolution of host-microbiota interactions. The evolution of mi-
crobiota associated with a given clade of animal or plant hosts can be analyzed by looking inde-
pendently at the different OTUs shared across host species using cophylogenetic approaches (a)
or at the microbiota as a whole using a bipartite network approach (b). Importantly, we represent
here three “microbial trees” that are fundamentally different: (i) for a given OTU (e.g. OTU1), one
can get the representative sequence of the OTU in each host species and reconstruct the tree of the
sequences belonging to OTU1 (this tree, therefore, represents ‘intra-specific’ differentiation within
the OTU), (ii) the tree of all the OTUs (a ‘species-level’ phylogenetic tree with one representative
sequence per OTU), and (iii) the ‘microbiota dendrogram’, that is obtained by performing a hier-
archical clustering of the host-associated microbiota based on their dissimilarity of composition
(this dendrogram is generally used to quantify phylosymbiosis).

3.2. Detecting microbial transmissions over macro-evolutionary time
scales

An important aspect when studying host-microbe evolutions is to determine whe-
ther the associated microbes are transmitted over long-time scales or not (see section
2.1; Figure 0.3.13a). Cophylogenetic methods were originally developed to compare the
evolutionary histories of both hosts and symbionts, with the underlying idea that vertical
transmissions along host lineages lead to concomitant divergences, and thus congruent
phylogenies with similar topologies and divergence times (de Vienne et al., 2013), while
processes such as microbial horizontal transmissions (host-switches), extinctions, or du-

46



Chapter 0

plications disrupt this congruence (Figure 0.2.7). These cophylogenetic approaches are
particularly well-adapted to infer the mode of inheritance of the symbionts when two
robust phylogenetic trees of the hosts and the symbionts are available (see Box 6). How-
ever, when studying host-microbiota interactions, obtaining robust phylogenetic trees of
the microbial symbionts is often challenging: the DNA sequences from barcodes, like
the bacterial 16S rRNA gene, are generally too short and conserved to allow a robust
reconstruction of the microbial phylogenetic trees when transmitted microbes diverged
for less than a few million years. Indeed, the 16S rRNA gene for instance is expected to
accumulate 1% of nucleotide divergence per 50 million years (Ochman et al., 1999).

Existing cophylogenetic methods can be roughly classified into two categories (de Vi-
enne et al., 2013): the global-fit methods (that test whether there is an overall significant
congruence between the host and the symbiont evolutionary histories) and the event-
based methods (that fit evolutionary events to reconciliate the host and the symbiont
phylogenies). The significance of the cophylogenetic congruence (correlative methods)
or the reconciliated scenario (event-based methods) is then generally evaluated by com-
paring it to null expectations obtained by randomizing the host-symbiont associations.
Here, we mainly present the methods that consider uncertainty in symbiont phyloge-
nies and that are thus well-adapted for investigating the transmission of host-associated
microbes.

3.2.1. Global-fit methods

First, global-fit methods can be separated between topology- and distance-based meth-
ods (de Vienne et al., 2013). While the topology-based methods require to have a robust
phylogenetic tree for the symbionts, distance-based methods are more flexible. For in-
stance, Mantel tests, which were originally developed to test if there is a correlation be-
tween two dissimilarities matrices (Mantel, 1967), have been applied to test the correla-
tion between host and microbial genetic or patristic distances. Given two dissimilarity
matrices, their elements are first standardized (by subtracting their mean and dividing
them by their standard deviation) and the Mantel statistics (R) corresponds to the mean
of the products of the corresponding elements in the two matrices (Pearson correlation).
Alternatively, if the correlation is not suspected to be linear, the dissimilarities can be first
transformed into ranks (Spearman correlation). The null hypothesis states that the two
dissimilarity matrices are not expected to be correlated: the significance of the observed
correlation (R) is therefore tested using randomizations that permute the rows and the
corresponding columns of one of the matrices. However, Mantel tests can only be used
if there are one-to-one host-symbiont associations, although a more recent extension al-
lows considering multiple microbes per host (Hommola et al., 2009).
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Box 6: Reconstructing phylogenetic trees using DNA sequences

Molecular phylogenetics deal with the reconstruction of phylogenetic trees using
DNA sequences (Felsenstein, 2004). In short, to reconstruct the phylogenetic
tree of different organisms, their corresponding DNA sequences have first to
be aligned, such that each nucleotide site in the alignment corresponds to a
homology. Second, one has to assume a model of DNA evolution and reconstruct
the phylogenetic relationships between the species that best fit this model given
the aligned sequences. Besides parsimony and distance-based methods that enable
quick phylogenetic reconstruction, probabilistic methods have been developed
and are mainly used to get more robust phylogenetic trees (Felsenstein, 2004). In
short, assuming a probabilistic model of DNA substitutions occurring along the
branches of the tree, Felsenstein pruning algorithm allows to easily compute the
likelihood of a tree given the observed nucleotide alignment at present (Felsen-
stein, 1981). Phylogenetic algorithms are then designed to explore the tree space
and output the most likely phylogenetic tree (maximum likelihood estimation)
or an a posteriori distribution of likely phylogenetic trees (Bayesian inference).
Importantly, probabilistic methods infer both the tree topology and the branch
lengths. By default, the branch length unit is in a number of substitutions per
nucleotide site. Time-calibrated trees (or ultrametric trees) can be obtained by
converting the number of substitutions into a relative time given by a molecular
clock. In addition, an extragroup of sequences is often used to root the tree, i.e. to
determine the most recent common ancestor of the organisms of interests.
Finally, fossils can be used to calibrate the trees in an absolute time or to constraint
the monophyly or the age of certain clades during the phylogenetic reconstruction.
However, fossils are generally not abundant for bacteria or fungi, and often
difficult to robustly identify based on their morphology.

Reconstructing the species evolutionary history with a single gene can be prob-
lematic. Indeed, species trees and gene trees can be incongruent because of gene
evolutionary events (e.g. horizontal gene transfers, gene duplications, or losses)
or incomplete lineage sorting, resulting in different topologies (Szöllősi et al.,
2015). In addition, a gene contains only a limited number of segregating sites,
meaning that they contain a limited amount of information to reconstruct the tree:
identical likelihoods can be obtained for different tree topologies if the number of
segregating sites is too low, resulting in large uncertainty in the reconstructed tree.
This is particularly problematic if one wants to reconstruct the recent evolution of
a slowly evolving barcode gene like the SSU rRNA gene.
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Next, like Mantel tests, the ParaFit test has also been developed to test whether closely
related symbiont species tend to interact with closely related host species, but while in-
corporating the possibility of multiple symbionts per host (Legendre et al., 2002). It first
transforms the host and symbiont phylogenetic distance matrices using principal coor-
dinates analyses to obtain the matrices H and S respectively (where each row of a matrix
corresponds to the principal coordinate decomposition of a given species), and then com-
putes the matrix D as the matrix product S′MH, where M is the matrix of interactions
(with hosts on columns and symbionts on rows) and S′ denotes the transpose of S. The
ParaFit statistics is then the trace of D′D and its significance is calculated by randomly
permuting the values within each row of M. Contrarily to Mantel tests, ParaFit is not
symmetrical: the null hypothesis states that each symbiont species interacts with any
host species independently from the host evolutionary history (Legendre & Legendre,
2012).

Finally, a procrustean approach to cophylogeny (PACo) has been proposed (Balbuena
et al., 2013) to test the dependence of the symbiont phylogeny on the host phylogeny.
Like ParaFit, PACo first transforms the host and symbiont phylogenetic distance ma-
trices using principal coordinates analyses to obtain the matrices H and S respectively.
Second, given M, the symbiont matrix S is rotated and scaled using a Procrustes analysis
to fit the host matrix H (i.e. to minimize the squared differences of the superimposition).
The null hypothesis states that the host phylogeny does not predict the parasite ordina-
tion and null expectations are obtained by permuting the columns of M (Balbuena et al.,
2013). Like ParaFit, PACo also allows multiple symbionts per host and vice versa. Built
upon these global-fit methods, Random TaPas (Balbuena et al., 2020) has been recently
developed to additionally identify the individual host-symbiont interactions, the species
tips, and the nodes that mostly contribute to the overall congruence.

Importantly, all these global-fit methods do not account for phylogenetic non-inde-
pendence (de Vienne et al., 2013), as closely related pairs of species have the same weight
as distantly related ones. MRCALink has been developed to tackle this problem (Schardl
et al., 2008), however, it requires binary ultrametric trees, which limits its uses for inves-
tigating microbial transmissions based on metabarcoding datasets.

These correlative methods have been used several times for investigating microbial
transmission in host clades having their microbiota characterized with metabarcoding
datasets (e.g. Youngblut et al., 2019; Amato et al., 2019). However, we currently lack a
comparative analysis of the relative strengths and weaknesses of these different global-fit
methods when applied on host-microbe datasets with very little resolution in the micro-
bial tree.
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3.2.2. Event-based methods

Second, many event-based methods have been developed to infer the evolutionary
events (e.g. horizontal transmissions, duplications, or extinctions) that can explain the
loss of congruency between the host and symbiont phylogenies (de Vienne et al., 2013).
These methods differ according to the types of evolutionary events they consider, their
ability to consider multiple associations per species, and their inference technics (par-
simony, cost-based methods, Bayesian inference. . . ). Many of these approaches, like
TREEMAP (Pagel, 1994) require robust phylogenies, but a few of them also consider
phylogenetic uncertainty. For instance, Huelsenbeck et al. (2000) developed a Bayesian
approach that jointly reconstructs the phylogenetic trees of the hosts and symbionts while
simultaneously fitting host-switching events. In addition, methods originally developed
to reconciliate gene trees and species trees can also be used in the context of symbiotic
transmissions (Bailly-Bechet et al., 2017). For instance, the amalgamated likelihood esti-
mation (ALE) approach models lateral gene transfers, gene duplication, and gene losses
that can happen during the species evolution (Szöllősi et al., 2013a,b). By extension, ALE
can be used to model microbial horizontal transmissions, duplications, or extinctions
on the host phylogeny (Bailly-Bechet et al., 2017). In short, ALE takes as input a ro-
bust phylogenetic tree of the hosts and a distribution of microbial phylogenies (obtained
using Bayesian phylogenetic reconstruction) and estimates by maximum likelihood (or
using Bayesian inference) the rates of horizontal transmissions, duplications, and ex-
tinctions. ALE then generates reconciled scenarios of host-microbe evolutions, and for
each scenario, outputs the number of co-divergences, horizontal transmissions, duplica-
tions, and extinctions. In a recent application investigating transmitted microbes in the
mammalian gut microbiota, Groussin et al. (2017) considered that a microbe has been
vertically transmitted if the difference between the estimated number of co-divergences
and the estimated number of horizontal transmissions is positive and larger than the dif-
ferences obtained with ALE when randomizing host-microbe associations. ALE does not
consider branch lengths (it only accounts for tree topologies), and it has not been tested
when the number of segregating sites in the microbial sequences is very low (i.e. when
there is a lot of phylogenetic uncertainty in the microbial trees).

Therefore, a range of methods to look at symbiont transmissions in a host clade is
already used to investigate microbial transmissions among host-associated microbiota.
While event-based methods offer a complete understanding of the host-microbe evolu-
tionary histories, global-fit approaches indicate only whether there is a significant con-
gruence and therefore do not provide mechanistic details about the evolution of host-
microbe interactions. Moreover, it is unclear how these methods deal with the low num-
ber of segregating sites in the microbial barcoding sequences (i.e. limited amount of
information on the microbial evolutionary history).
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3.3. Representing and analyzing host-microbe interactions using bi-
partite networks

Host-microbiota interactions are often multiple-partner interactions: host species reg-
ularly interact with a large number of microbes, and the microbial ‘species’ (OTUs) can be
shared between host species (generalist microbes) or only present in a few hosts (special-
ist ones). These interactions can be represented using a bipartite network, where hosts
and microbes are nodes and interactions are links between nodes. A bipartite network
can be simply visualized using a matrix, with host species on columns and microbial
OTUs on rows (Figure 0.3.14). Binary (or unweighted) networks only carry the informa-
tion of the presence (1) or absence (0) on an interaction, whereas quantified (or weighted)
networks inform each link with the abundance of the corresponding host-microbe inter-
action (e.g. the number or the proportion of reads of a given OTU in a host species).
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(b) Nested structure (c) Modular structure

Fig 13

Figure 0.3.14: Examples of network representations of host-microbiota interactions. (a) Interac-
tion network between orchids (in green) and mycorrhizal fungi (in brown) with associated phy-
logenetic trees. The bipartite interaction network is represented by a matrix with orchids species
on columns and fungal species on rows and which elements indicate the frequency of the interac-
tion using shades of grey from white (no interaction) to dark grey (many interactions). Panels (b)
and (c) illustrate examples of perfectly nested (b) and modular (c) networks, represented either
as a matrix (top) or as a graph with species being the nodes and interactions the links between
nodes (bottom; Figures modified from Fontaine et al. (2011)). For each species in the network,
its degree corresponds to its number of partners, and species with a high (resp. low) degree are
generalist (resp. specialist): nested networks are characterized by asymmetrical specializations,
whereas modular networks present reciprocal specializations. The connectance of the networks,
defined as the ratio between the number of observed interactions and the total number of possible
interactions, is higher in the nested network (0.5) than in the modular one (0.33).

Importantly, converting host-microbiota interactions into a species-level bipartite net-
work is an overall simplification as we merge altogether interactions with different phys-
iological and ecological importance, but this reductionist approach has allowed us to
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better understand the patterns and processes behind multiple-partners interactions (Jor-
dano, 2010; Guimarães, 2020). Epistemologically, it is an important step toward con-
sidering the interactions rather than the individuals and species. In addition, bipartite
networks can be used at different temporal (punctual or not) and spatial scales, from
the scale of a community in a given plot (local scale) to the regional (ecosystem scale) or
the global scale. According to its scales, an interaction network does not convey the same
type of information. The absence of interactions between two species can be due either to
a lack of detection (metabarcoding technics can miss some OTUs in some samples) or the
fact that both species are actually never interacting because of constraints, e.g. temporal
or spatial mismatches, physiological or morphological incompatibilities, or evolutionary
inertia (Bascompte & Jordano, 2013).

3.3.1. Analyzing the structure of interaction networks

Well before being applied to host-microbiota interactions, bipartite networks have
been mostly developed to study interspecific interactions between macroorganisms, such
as plant-pollinator interactions, seed dispersals, herbivory, or host-parasite interactions
(Bascompte & Jordano, 2013). It rapidly appeared that the structures of these empirical
networks could be roughly divided into two categories of networks: the nested networks
(where specialist species tend to interact with generalist partners, and generalist species
form a core on interactions; Bascompte et al., 2003) and the modular networks (where
several subsets of species, called modules, tend to preferentially interact with each other
rather than with species from other modules; Olesen et al., 2007). In terms of specializa-
tion, asymmetrical specialization (resp. reciprocal specialization) is frequent in nested
(resp. modular) networks.

One way to compute the nestedness of a network is to use the Nestedness metric
based on Overlap and Decreasing Fill (NODF; Almeida-Neto et al., 2008) and modularity
can be obtained using one of the many available algorithms to maximize the modular
structure of a network (Beckett, 2016). The obtained values for nestedness and modu-
larity are generally difficult to compare in an absolute way, thus to determine whether a
network is significantly nested or modular, one has to compare these values to null expec-
tations (null models) obtained by randomizing the interactions in the network (Gotelli,
2000). Null models are often chosen to test whether a particular process of interest can
generate similar structures (e.g. if interactions are shuffled based on species abundances,
does it generate networks as nested as the original one?). Besides global metrics, such as
connectance, nestedness, and modularity, simple patterns of interactions between 2 to 6
species (referred to as bipartite motifs) offer also more insights into the direct and indirect
interactions between species (Simmons et al., 2019). Indeed, these “building blocks” of
the network can be used either (i) to study the position of a given species in the interac-
tion network or (ii) to compute the frequencies of the different motifs and thus compare
networks (Simmons et al., 2019).
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By comparing mutualistic and antagonistic networks, it appeared that overall, mu-
tualistic networks tend to be nested whereas antagonistic networks are rather modular
(Thébault & Fontaine, 2010). Such a dichotomy is rather widespread in empirical net-
works, although the intimacy of the interactions or the proportion of realized links in the
networks (connectance) can complicate the picture (Fortuna et al., 2010; Fontaine et al.,
2011). In addition, it has been shown that a pollination network dominated by cheating
insects was modular, while a similar network dominated by mutualistic pollinators was
nested (Genini et al., 2010), suggesting that the emergence of cheaters might disturb the
nested structure of mutualistic networks. Structural analyses of host-microbiota interac-
tions have also been performed, in particular in mycorrhizal networks. It has been found
that networks between plants and arbuscular mycorrhizal fungi (Glomeromycotina) are
rather nested (Montesinos-Navarro et al., 2012; Sepp et al., 2019), but can also contain a
certain level of modularity (Chagnon et al., 2012). Network structures seem more variable
in other mycorrhizal systems like the ectomycorrhiza or the orchid mycorrhiza, ranging
between strong nestedness and clear modularity (Jacquemyn et al., 2011; Martos et al.,
2012; Toju et al., 2014; Põlme et al., 2018). Importantly, network structure is influenced by
the scale of the studied community: networks at the local-scale, regional-scale, or global
scale, or network focusing only on a subset of interactions in a community will likely
have different structures.

Several ecological and evolutionary processes have been proposed to explain the dif-
ferences in structural patterns between mutualistic and antagonistic networks (Fontaine
et al., 2011). For instance, one explanation relates to community stability (Thébault &
Fontaine, 2010): in mutualistic communities, nested structures may minimize the com-
petition between species and facilitate the integration of new species, while in antago-
nisms, interspecific competitions may limit the sharing of partners. Another explanation
states that nested patterns in mutualistic networks may be due to convergence and com-
plementarity of traits between interacting species (Thébault & Fontaine, 2008; Maliet et
al., 2020), whereas strong selective pressures and coevolutionary arms race in antago-
nisms (or in mutualism with high intimacy) may lead to network compartmentaliza-
tion by reciprocal adaptation of the partners (Thompson, 2005; Guimarães et al., 2007).
However, it remains difficult to directly link structural patterns in interaction networks
to clear processes explaining their assembly or their evolution, especially in the case of
host-microbiota networks (Chagnon, 2016).

3.3.2. Investigating how evolution has influenced interaction networks

A bipartite network can also be informed with the host and symbiont phylogenetic
trees to investigate the evolution of host-microbiota interactions. This can be done by
looking at how current patterns of interactions can be explained by the host and sym-
biont evolutionary histories.

First, one can use correlative approaches, like Mantel tests (see section 3.2), to mea-
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sure the phylogenetic signal in the interactions, i.e. do closely related host species tend to
interact with similar microbial symbionts (phylosymbiosis) and vice versa? Mantel tests
can be computed between one phylogenetic distance matrix (e.g. for the hosts) and a ma-
trix comparing the dissimilarity of the sets of microbial partners interacting with pairs
of host species. Such dissimilarities generally correspond to beta diversity metrics, like
Jaccard or UniFrac distances; the former being based on only the sharing of partners be-
tween species, while the later also considers the phylogenetic distances between partners
(Lozupone & Knight, 2005). Phylogenetic signals in host-microbiota interactions are fre-
quently measured using Mantel tests (Jacquemyn et al., 2011; Groussin et al., 2017; Song
et al., 2020; Armstrong et al., 2020) and they directly allow to test for phylosymbiosis. An
alternative method to measure phylosymbiosis is to perform a hierarchical clustering of
the microbiota composition (based on their beta diversities) to obtain a dendrogram, and
then to assess whether this dendrogram recapitulating microbiota differentiation tends
to (qualitatively or quantitatively - using the Robinson-Foulds metric or the matching
cluster metric) mirror the host phylogeny (Lim & Bordenstein, 2020).

Second, a few model-based approaches of network evolution have been developed
by assuming that species interactions are influenced by species traits. For instance, the
phylogenetic bipartite linear model (PBLM; Ives & Godfray, 2006) assumes that host-
symbiont interactions are mediated by a host trait and a symbiont trait evolving accord-
ing to an Ornstein-Uhlenbeck process of trait evolution and that the probability of inter-
action between a host and a symbiont is proportional to the product of their trait values.
By fitting this model to an empirical network (with both the host and microbe phyloge-
nies), one can get a measure of phylogenetic signal indicating the extent to which host-
microbe interactions are conserved (Jacquemyn et al., 2011; Martos et al., 2012). Several
extensions of this model have been proposed (Rafferty & Ives, 2013; Hadfield et al., 2014),
but we currently lack a comparative analysis of their advantages and weaknesses.

Third, besides measures of phylogenetic signals, one can be interested in how host-
microbe interactions are acquired or lost. For instance, a few approaches have investi-
gated how the modes of symbiont diversification (e.g. radiation after host switches) can
affect extant patterns of network structure and interaction specificity (Braga et al., 2018;
Jousselin & Elias, 2019). More recently, a model aiming at reconstructing the ancestral
host repertoire of the symbionts has been developed (Braga et al., 2020) and it represents
the first step to infer ancestral host-microbiota networks.

3.4. Quantifying the effect of biotic interactions on species diversifica-
tion

Quantifying the effect of the associated microbes on host diversification (and vice
versa) can be done using models of species diversification. Usually, species diversification
is modeled using birth-death processes (Nee, 2006; Figure 0.3.15). We first present the
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birth-death models, then examine how they can be used to test the effect of biotic interac-
tions, and finally discuss the challenges when applying such models to host-microbiota
datasets.

3.4.1. Birth-death models of species diversification

Under a homogenous constant-rate birth-death model, a lineage is assumed to have
a constant probability to speciate and a constant probability to go extinct, with λ and µ

being the per-lineage speciation and extinction rates respectively. Given a reconstructed
time-calibrated phylogenetic tree of the extant species, one can fit this model and esti-
mate (by maximum likelihood or using Bayesian inference) the parameters λ and µ (Nee,
2006). Intuitively, these parameters are estimated by using the information contained in
the lineages-through-time (LTT) plot representing the logarithm of the number of lin-
eages in the reconstructed tree as a function of time. Under a homogenous constant-rate
birth-death model, the slope of the LTT close to the present equals the speciation rate (λ),
whereas in the past, it equals the net diversification rate (λ− µ) (Figure 0.3.15). However,
a reconstructed tree often does not include all the existing species of a clade, as only a
fraction of them (ρ) has been sampled, but the three parameters λ, µ, and ρ are uniden-
tifiable (i.e. several combinations of parameter values have the same likelihood). Thus,
one has to first estimate ρ (using different approaches) to infer λ and µ (Morlon et al.,
2010).

The assumption of constant rates can then be relaxed and one can assume that both
speciation and extinction rates are piece-wise constant (Stadler, 2011) or vary as a con-
tinuous function of time, λ(t) and µ(t) (Morlon et al., 2011). For instance, λ(t) can be a
linear or an exponential function of time (which can successfully model the slowdown
of diversification rates frequently observed close to the present (Moen & Morlon, 2014)).
Alternatively, we can assume that speciation and extinction rates are functions of an en-
vironmental variable that varies through time (e.g. global temperature; Condamine et al.,
2013) or depend on the species diversity of the clade (Rabosky & Lovette, 2008). How-
ever, under a homogenous time-varying birth-death model and in the absence of any
hypothesis on the functional form of λ(t) and µ(t), one wishes to estimate two variables
λ(t) and µ(t) from the LTT plot that is a single function of time, which is therefore not
asymptotically identifiable (Lambert & Stadler, 2013, Louca & Pennell, 2020). In other
words, there is not enough information in a reconstructed phylogenetic tree of the extant
species to recover the rates λ(t) and µ(t) without further hypotheses on the functional
form of λ(t) and µ(t). Thus, rather than estimating the ‘true’ λ(t) and µ(t), one can
only test whether there is or not some support for a given scenario of diversification,
represented by hypotheses on λ(t) and µ(t) (e.g. is there support for a diversification
slowdown represented by an exponential decline? is their support for a linear associa-
tion between past temperature and the diversification rates of the clade?; Morlon, 2014).
The support of the different models can then be compared using model selection (e.g.
based on corrected Akaike Information Criterion (AICc)) in a hypothesis-driven frame-
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work (Morlon et al., 2020). More recently, it has been proposed to rather estimate “pulled
rates” of speciation and diversification, which are identifiable from the reconstructed
phylogenies of extant species (Louca & Pennell, 2020), but are more difficult to interpret.

Besides homogenous birth-death models, one can consider models of diversification
where there are potential shifts in the rates of diversification occurring at some speci-
ation events (Morlon et al., 2011; Rabosky, 2014), or models where shifts occur at each
speciation event (Maliet et al., 2019). The latter model, ClaDS, assumes that each lineage
has its own speciation rate, that the parental speciation rates are transmitted at speci-
ation events to the two daughter lineages with a small stochastic variation (σ) around
the parental speciation rates multiplied by a general trend (α). In addition, the model
ClaDS2 assumes that the turnover (ε), the ratio between extinction and speciation rates,
is constant. Importantly, contrary to the homogenous birth-death models under which
all tree topologies are equally likely (and therefore only the waiting times between spe-
ciation events in the reconstructed tree, i.e. the LTT plot, are informative), models with
heterogenous rates across lineages predict different tree topologies, and therefore tree
topology is useful for distinguishing different models.

Finally, there is a range of models (referred to as State Speciation Extinction, SSE mod-
els) that specifically test the effect of particular traits on species diversification. For in-
stance, the binary-state speciation and extinction (BiSSE) model assumes that speciation
and extinction rates depend on the state of a given trait of the lineages that can be in two
states (0 and 1) (Maddison et al., 2007). Trait states are supposed to evolve according to
a continuous-time Markov process, and transition rates and state-specific diversification
rates can be jointly estimated. Extensions include testing for the effect of multiple dis-
crete traits, continuous traits, or geographical distributions, while adding hidden states
to avoid biased model selections (Caetano et al., 2018).

3.4.2. Investigating the effect of biotic interactions on species diversification

One can envisage several ways to test for the effect of biotic interactions on species
diversification. For instance, let’s assume that one wants to test fungal lineages that
evolved mycorrhizal symbiosis with plants diversified faster or slower than the lineages
that remained saprotrophs. First, one can consider separately the mycorrhizal fungal
clades or the saprotrophs clades and fit homogenous constant rates birth-death model
to see if mycorrhizal fungal clades have significantly higher diversification rates than
saprotroph ones. In addition, one can fit environment-dependent birth-death models to
test whether past land plant diversity could have influenced the tempo of diversification
of mycorrhizal fungi, whereas saprotroph fungi could have experienced other drivers.
Second, one can consider all the fungi together, estimate their lineage-specific speciation
rates (using ClaDS), and test whether mycorrhizal fungal species have higher speciation
rates (at present) than non-mycorrhizal ones. Alternatively, one can use SSE models, to
directly test whether diversification rates are actually different according to these traits
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Figure 0.3.15: Modeling diversification rates using time-calibrated reconstructed phylogenies
of extant species. (a) Phylogenetic tree simulated under a homogenous birth-death model with
constant rates (speciation rate λ = 0.02 and extinction rate µ = 0.008). (b) Phylogenetic tree
of only extant species (lineages that did not leave any extant descendants are absent from this
phylogeny). (c) Phylogenetic tree of only sampled extant species (80% of the extant species are
sampled here); this phylogeny corresponds to the reconstructed phylogenetic tree obtained from
the sampled species at present. (d) Lineage-through-time (LTT) plot of the complete reconstructed
phylogeny (b): under a homogenous birth-death model, the slope of the LTT equals the speciation
rate close to the present and the net diversification rate far in the past. (e) Constant rates used
to simulate the phylogenetic tree in (a). (f) Example of homogenous time-varying rates that can
be fitted to the reconstructed phylogenetic trees. Here, for illustration, λ(t) is assumed to be
an exponential function of the average global temperature and µ(t) an exponential function of
time. (g) Example of lineage-specific speciation rates as assumed by the model ClaDS (Maliet
et al., 2019). The colors of the tree branches indicate the speciation rates. Simulations and plots
have been performed in R (R Core Team, 2020) using the packages phytools (Revell, 2012) and
RPANDA (Morlon et al., 2016).
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(mycorrhizal or saprotroph).

3.4.3. Challenges when applying birth-death models to microbial clades

If applying birth-death models to animals or plants can be ‘relatively’ straightfor-
ward, using them on microbes to investigate their diversification history is generally
more challenging, especially if these microbes have been characterized using metabar-
coding technics. Indeed, birth-death models require correct species delineations, robust
phylogenetic trees, and good estimations of the sampling fraction. First, species delin-
eation in many microbial groups is often done using operational taxonomic units (OTUs)
without convincingly showing that these units correspond to ‘biologically-relevant species’
(see Box 5). Over-splitting the species would result in an artefactual increase of the spe-
ciation rates toward the present, whereas over-merging them would produce an arte-
factual slowdown (Moen & Morlon, 2014). Given that estimates of diversification rates
strongly rely on species delineation, one should test several species delineations (e.g.
with different similarity thresholds in the OTU delineations). Second, phylogenetic trees
reconstructed using a single DNA region that is slowly evolving (e.g. the SSU rRNA
gene) generate a lot of phylogenetic uncertainty, and conversely, a fast evolving region
like the ITS generate sequence homoplasy. Running the diversification models on several
of the alternative evolutionary histories is therefore essential to consider this uncertainty
(Lewitus et al., 2018). Finally, the total diversity of the group should be known, which
is generally not the case in microbial clades. This total diversity can either be estimated
using various methods (like rarefactions or model-based methods; Quince et al., 2008)
or diversification models can be replicated for a range of sampling fractions (Morlon et
al., 2012). Therefore, applying diversification models on microbial clades is possible but
requires additional validations to guarantee the robustness of the results.
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4. Goals of the PhD

A plethora of recent studies have characterized the compositions and the functions
of microbiota across various clades of host plants and animals. Enough data have thus
been collected across a broad range of different systems to investigate the question of
the dynamics and conservatism of the host-microbiota association over evolutionary
timescales. The overall goal of my PhD is to advance our understanding of how mi-
crobiota evolve with their host species. The data we have in hands or have generated
comprise robust phylogenetic trees of the animal or plant host species for which the as-
sociated microbiota have been characterized using metabarcoding technics targeting the
microbial SSU rRNA gene or the ITS region. For each host, its associated microbiota is
described as a list of DNA sequences clustered into operational taxonomic units (OTU;
Figure 0.3.13). We developed new quantitative tools, collected data, and performed a
series of analyses, all directed to the common overarching goal of better characterizing
the evolution of host-microbiota interactions. We considered both microbiota-animal and
microbiota-plant systems, with a specific focus on mycorrhizal interactions.

In Chapter I, we focused on quantifying the prevalence of vertically transmitted mi-
crobes among the microbiota of a clade of host (Figure 0.3.13a). We developed HOME, a
quantitative approach for inferring the modes of microbial inheritance as host clades di-
versify. Given a host phylogeny and the microbiota of present-day species, our approach
uses nucleotidic variability within OTUs to detect the OTUs that are vertically trans-
mitted. We applied this model to two systems, the gut microbiota of primates (Article 1)
and a clade of Hawaiian spiders (Article 2), in order to evaluate the prevalence of vertical
transmissions in microbiota evolution across the animal kingdom. Finally, we compared
the performances of HOME to other available approaches (Article 3).

In Chapter II, we examined the interplay between the evolutionary histories of host
and host-associated microbial clades (Figure 0.3.13b). We focus on two specific ques-
tions: “To what extent does evolutionary history influence which microbial species inter-
act with which host species?” and “How does the evolutionary history of hosts influence
the diversification of host-associated microbial clades?”. The first question leads us to
compare different methods for estimating phylogenetic signals in host-microbiota inter-
action networks, i.e. whether closely related species share similar sets of partners, with an
application on plant-mycorrhizal interactions (Article 4). We explore the second question
by studying the diversification of the arbuscular mycorrhizal fungi (Glomeromycotina)
in the past 500 million years and evaluating how land plants might have affected the
diversification of these obligate mycorrhizal symbionts. (Article 5).

In Chapter III, we focused on the evolution of cheating in host-microbiota mutual-
ism, by taking the mycorrhizal symbioses as a case study. We first explored the con-
straints upon the evolutionary emergence of cheating in plants (mycoheterotrophy) by
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analyzing patterns of plant-mycorrhizal fungus interactions at the global scale (Article
6). Then, we investigated whether similar constraints were found in local mycorrhizal
networks including initially mycoheterotrophic plants (Lycopodiaceae) that we sampled
in La Réunion island (Article 7).

We finally discuss how such computational tools, in combination with metabarcoding
sequencing data, allow studying how microbiota evolve with their hosts. We consider in
particular the challenges and promises of this comparative approach to apprehend host-
microbiota evolution.
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Characterizing the inheritance of
microbial units on a host phylogeny:

Whether microbial symbionts are transmitted during host evolution is a central ques-
tion as it has important consequences on both hosts and microbes, as vertical transmis-
sion can guarantee a stable association, allow the evolution of dependences, and limit the
propensity to cheat. In this chapter, we focused on the detection of vertically transmit-
ted microbes among the microbiota of a clade of hosts (Figure 0.3.13a). We developed a
probabilistic model (HOME) to independently infer via maximum likelihood the evolu-
tionary history of each microbial OTU constituting the microbiota. In short, given a host
phylogeny and the microbiota of present-day species, our approach uses nucleotidic vari-
ability within OTUs to detect which OTUs are vertically transmitted. The model takes
as inputs the host phylogeny and, for each OTU, a nucleotidic alignment constituted by
the associated sequence from each host. We considered a model where the sequences (i)
evolve by substitution along the branches of the host phylogeny, (ii) are vertically trans-
mitted during host speciation events, and (iii) experience a certain number of horizontal
switches between host lineages. We computed the likelihood associated with the nucleo-
tidic alignment under the model of vertical transmission with a given number of host
switches, estimated the number of host-switches, and evaluated the model support in
comparison with scenarios of environmental acquisition or strict vertical transmission. In
Article 1, we tested the performances of the approach using simulations. We first applied
HOME to the great apes microbiota (Ochman et al., 2010) and found that some bacterial
taxa, representing >5%, have been transmitted during great apes evolution. While a few
cases of bacterial transmissions in great apes have already been demonstrated recently
by amplifying lineage-specific bacterial genes (Moeller et al., 2016), our approach allows
scanning the whole microbiota without formulating any a priori on the transmitted mi-
crobes.

Second, in Article 2, we applied HOME on the bacterial microbiota of Ariamnes spi-
ders that recently diversified along the Hawaiian archipelago and demonstrated that de-
spite a significant pattern of phylosymbiosis, there is a few shreds of evidence of bacterial
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transmissions in these spider microbiota. To evaluate the robustness of our findings, we
further tested the performance of HOME when the number of segregated sites is very low
(i.e. when host lineages diverged very recently) and when preferential host switches oc-
curred (between closely related host lineages or between host lineages sharing the same
geographic areas).

Finally, in Article 3, we compared HOME to other available approaches. Using simu-
lations, we investigated the performances of event-based approaches (ALE and HOME)
and global-fit approaches (ParaFit and PACo). We found that HOME has low statistical
power compared to the other approaches, but it has the advantage of presenting a very
type-I error rate (i.e. low number of false-positives). We applied these approaches to the
bacterial gut microbiota of 18 worldwide primate species and found that a significant
signal of vertical transmission in up to 10% of the gut bacteria, irrespectively of the geo-
graphic distribution of the species.

Contents of Chapter I
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Chapitre I : Caractériser la transmission microbienne sur une phylogénie d’hôtes

Déterminer si des symbiontes microbiens sont transmis durant l’évolution de leurs hôtes est une
question centrale sachant les conséquences de la transmission pour les hôtes et les microbes.
En effet, la transmission verticale garantit une stabilité de l’association, permet l’évolution de
dépendances et limite la tentation de tricher. Dans ce chapitre, nous nous sommes intéressés à la
détection de microbes transmis verticalement au sein des microbiotes d’un clade d’hôtes (Figure
0.3.13a). Nous avons développé un modèle probabiliste (HOME) afin d’inférer, par maximum
de vraisemblance, l’histoire évolutive de chaque OTU microbien constituant le microbiote.
Brièvement, sachant une phylogénie d’hôtes et les microbiotes des espèces hôtes au présent,
notre approche utilise la variabilité nucléotidique au sein des OTUs pour détecter ceux qui sont
transmis verticalement. Le modèle prend en entrées la phylogénie des hôtes et pour chaque OTU
considéré indépendamment, un alignement nucléotidique constitué par les séquences d’ADN
associées à chaque espèce d’hôtes. Nous avons considéré un modèle où les séquences d’ADN
microbiens (i) évoluent par substitution le long des branches de la phylogénie des hôtes, (ii) sont
transmises verticalement au moment des évènements de spéciations des hôtes et (iii) peuvent
subir un certain nombre de transferts horizontaux entre lignées d’hôtes. Nous avons calculé la
vraisemblance du modèle, correspondant à la probabilité d’observer l’alignement nucléotidique
sous le modèle de transmission verticale avec un certain nombre de transferts. Nous pouvons ainsi
estimer le nombre de transferts et évaluer le support du modèle en comparaison avec un scénario
d’acquisitions environnementales ou de stricte transmission verticale. Dans l’Article 1, nous avons
testé les performances de notre approche à l’aide de simulations. Nous avons appliqué HOME
sur le microbiote intestinal des grands singes (Ochman et al., 2010) et trouvé que certaines espèces
bactériennes, représentant plus de 8% de leur microbiote, ont été transmises durant l’évolution des
grands singes. Alors que certaines transmissions bactériennes ont déjà été récemment démontrées,
grâce à l’amplification de gènes bactériens spécifiques à certains groupes (Moeller et al., 2016),
notre approche permet de scanner le microbiote entier sans besoin de formuler des hypothèses a
priori sur les microbes transmis.

Deuxièmement, dans l’Article 2, nous avons appliqué HOME sur les données de microbiotes
bactériens d’araignées Ariamnes qui se sont récemment diversifiées le long de l’archipel Hawaïen.
Malgré un patron significatif de phylosymbiose, nous n’avons pas (ou peu) trouvé de transmissions
verticales dans ces microbiotes d’araignées. Afin d’évaluer la robustesse de nos résultats, nous
avons exploré plus en détail les performances de HOME lorsque le nombre de sites qui ségrégent
est très bas (i.e. lorsque les hôtes ont divergé très récemment) et lorsque des transferts horizontaux
préférentiels ont lieu (entre des lignées d’hôtes phylogénétiquement proches ou entre des lignées
d’hôtes qui partagent la même aire géographique).

Enfin, dans l’Article 3, nous avons comparé HOME aux autres approches disponibles. Grâce à des
simulations, nous avons étudié les performances d’approches réconciliant des évènements (ALE
et HOME) et d’approches mesurant uniquement un signal global (ParaFit et PACo). Nous avons
trouvé que HOME a un plus faible pouvoir statistique comparé aux autres approches, mais qu’il a
l’avantage de présenter un taux d’erreur de type-I très faible (i.e. un faible nombre de faux posi-
tifs). Nous avons appliqué ces approches sur les microbiotes intestinaux bactériens de 18 espèces
de primates et trouvé un signal significatif de transmission verticale concernant jusqu’à 10% des
bactéries, indépendamment de la distribution géographique des espèces de primates.
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Article 1: Characterizing symbiont inheritance during
host-microbiota evolution: application to the great apes gut

microbiota:
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Abstract

Microbiota play a central role in the functioning of multicellular life, yet under-
standing their inheritance during host evolutionary history remains an important
challenge. Symbiotic microorganisms are either acquired from the environment
during the life of the host (i.e. environmental acquisition), transmitted across gen-
erations with a faithful association with their hosts (i.e. strict vertical transmission),
or transmitted with occasional host-switches (i.e. vertical transmission with hori-
zontal switches). These different modes of inheritance affect microbes’ diversifica-
tion, which at the two extremes can be independent from that of their associated
host or follow host diversification. The few existing quantitative tools for investi-
gating the inheritance of symbiotic organisms rely on cophylogenetic approaches,
which require knowledge of both host and symbiont phylogenies, and are therefore
often not well adapted to DNA metabarcoding microbial data.
Here, we develop a model-based framework for identifying vertically transmitted
microbial taxa. We consider a model for the evolution of microbial sequences
on a fixed host phylogeny that includes vertical transmission and horizontal
host-switches. This model allows estimating the number of host-switches and
testing for strict vertical transmission and independent evolution. We test our ap-
proach using simulations. Finally, we illustrate our framework on gut microbiota
high-throughput sequencing data of the family Hominidae and identify several
microbial taxonomic units, including fibrolytic bacteria involved in carbohydrate
digestion, that tend to be vertically transmitted.

Keywords: symbiont transmission, microbiota, molecular evolution, likelihood-
based framework, holobiont, great apes.

Author contributions: BPL and HM designed research, BPL performed research, BPL
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Introduction:

Microbiota – host-associated microbial communities – play a major role in the func-
tioning of multicellular organisms (Hacquard et al., 2015). For example, the gut micro-
biota plays a significant nutritional role for animals by synthesizing essential nutrients
and by helping digestion and detoxification (McFall-Ngai et al., 2013). It is also involved
in a broad range of other mutualistic functions important for host protection, develop-
ment, behavior, and reproduction (Zilber-Rosenberg & Rosenberg, 2008). Other less-
studied microbiota, such as those found on animal skins or plant roots also play major
ecological roles (Philippot et al., 2013).

Host-microbiota associations have evolved for thousand million years with three ma-
jor modes of inheritance across phylogenetic host lineages: (i) strict vertical transmission
within a host lineage (Rosenberg & Zilber-Rosenberg, 2016), which can happen either
by transmission from mother to child (e.g. directly through ovaries during reproduc-
tion or at birth), or by social contact while sharing life with related individuals (Bright &
Bulgheresi, 2010), (ii) vertical transmission with occasional horizontal switches between
host lineages (Henry et al., 2013), which can for example happen through direct inter-
actions, via vectors or via shared habitats (Engel & Moran, 2013), and (iii) environmen-
tal acquisition, with microbes coming from the environment independently from other
related hosts (Bright & Bulgheresi, 2010). The vertical transmission of a given micro-
bial lineage within host lineages can lead to cophylogenetic patterns, with the microbial
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phylogeny mirroring the host phylogeny (e.g. Helicobacter pylori in humans; Linz et al.
(2007)). Horizontal switches and environmental acquisitions can play key roles in adap-
tation, for example by allowing host lineages to adapt to new feeding regimes (Muegge et
al., 2011; McKenney et al., 2018). They will tend to erase cophylogenetic patterns linked
to vertical transmission. The relative importance of each of the three modes of inheri-
tance depends on the type of host and the type of microbes. For example, vertical trans-
mission is thought to be far more preponderant in the ’core’ microbial species, which
are shared across hosts regardless of environmental conditions, than in the ’flexible’ mi-
crobial species, facultative and dependent on internal and external conditions (Shapira,
2016).

Quantifying the relative importance of different modes of inheritance during host-
microbiota coevolution remains a major challenge. Patterns of ’phylosymbiosis’, i.e. a
pattern of concordance between a given host phylogeny and the dendrogram reflect-
ing the similarity of microbial communities across these hosts, is frequently observed
(Bordenstein & Theis, 2015), for example for great apes gut microbiota (Ochman et al.,
2010). Although these phylosymbiotic patterns may suggest that some microbial species
within the microbiota are vertically transmitted, such community-wide comparisons of
microbiota across hosts do not allow identifying which microbial species are vertically
transmitted, nor quantifying the relative importance of the different modes of inheri-
tance across distinct microbial species. More recently, approaches have been developed
to apply cophylogenetic concepts to microbial taxa (Groussin et al., 2017; Bailly-Bechet et
al., 2017). Cophylogenetic methods were originally developed to study the coevolution
between hosts and their symbionts, with the underlying idea that close and long-term
associations lead to congruent phylogenies with similar topologies and divergence times
(Page & Charleston, 1998; de Vienne et al., 2013), while processes such as host-switches
disrupt this congruence. Cophylogenetic tools either quantify the congruence between
symbiont and host trees using distance-based methods – e.g. ParaFit (Legendre et al.,
2002), generalizations of the Mantel test (Hommola et al., 2009), or PACo (Balbuena et al.,
2013) – or try to find the most parsimonious sets of events (e.g. host-switches) that allow
reconciling both trees (e.g. TreeMap or Jane; Conow et al. (2010)). In the context of micro-
biota, Groussin et al. (2017) and Bailly-Bechet et al. (2017) have used the ALE program
(Szöllősi et al., 2013b,a), which was initially designed to solve the gene tree - species tree
reconciliation problem. Importantly, these event-based methods require first a recon-
struction of the microbial tree for each individual microbial taxa. However, microbiota
data are typically generated using Next Generation Sequencing (NGS) metabarcoding
techniques, providing short DNA reads of a targeted slow-evolving universal gene (e.g.
the 16S rRNA gene). Such data often contain limited nucleotide variability within each
microbial taxa, which can be problematic for reconstructing their tree.

Here, we develop a probabilistic model of host-symbiont evolution, which aims at
studying modes of inheritance in the microbiota without building first microbial phy-
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logenies. The main idea is to use the host phylogenetic tree to inform the microbial
trees, which reduces the problem of low phylogenetic resolution of metabarcoding mi-
crobial markers. Huelsenbeck et al. (2000) developed a model of cospeciation and host-
switches similar to ours, focused on host-parasite associations. However, the authors
developed an inference framework reconstructing host and parasite phylogenetic trees
jointly, which is not well adapted to the case when the host phylogenetic tree is robust
and the symbionts are represented by a sequence alignment with limited phylogenetic
information. Here, we fix the host phylogeny and follow the evolution of individual mi-
crobial taxa on the host tree. We compute likelihoods associated with microbial sequence
alignments under a model including vertical inheritance and host-switches. We find es-
timates of the number of host-switches and develop tests for evaluating model support
in comparison with scenarios of independent evolution and strict vertical transmission.
We test our approach using simulations and apply it to gut microbiota high-throughput
sequencing data of the family Hominidae.

Methods:

HOME: A general framework for studying Host-Microbiota Evolution:

From metabarcoding microbiota data to separate alignments:

Given a host species tree and metabarcoding microbiota data sampled from each host
species (e.g. sequences from the 16S rRNA gene, ITS, or any other DNA metabarcod-
ing marker), our framework begins by clustering sequences into Operational Taxonomic
Units (OTUs) using bioinformatics pipelines. Each OTU is made of distinct microbial
populations, each corresponding to a specific host species (Figure I.1.1a). We assume
as a starting point that there is no within-host genetic variability (we discuss later how
we relaxed this assumption), such that each microbial population is represented by a
unique sequence. In our analysis of these data, for each OTU and each host, we use the
most abundant microbial sequence as the representative sequence. The data we consider
thus consists in a series of microbial alignments A, each corresponding to a sequence
alignment for a specific OTU; a given alignment is composed of N-nucleotidic sites long
sequences (with potential gaps considered as missing data), each corresponding to a spe-
cific host. In each alignment, we distinguish the segregating sites (i.e. those that vary in
at least one sequence) to those that do not vary across sequences. Some microbial OTUs
may not be represented in all host species (i.e. there might be missing sequences in the
alignment), which can either be true absences (i.e. the corresponding host species do not
host the OTU), or a lack of detection (i.e. the OTU is present but has not been sampled
in these host species). Because we cannot distinguish these two possibilities, we simply
treat missing sequences as missing data; we do not explicitly model the extinction of
symbiotic populations in certain host species, nor the microbial sampling process. We
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apply our model separately to each alignment.

Modeling the evolution of an OTU on a host phylogeny:

We consider the evolution of a given microbial OTU on a host phylogeny T (Figure
I.1.1); T is assumed to be a known, ultrametric, rooted and binary n-tips tree. The model
is defined as follows:

(i) Vertical transmission: From an ancestral microbial population at the root of the
host phylogeny represented by a N-nucleotidic sites long sequence with Nν ’vari-
able’ sites (i.e. those that can experience substitutions), substitutions occur along
host branches. Following classical models of molecular evolution (Strimmer & von
Haeseler, 2009), we assume that each variable site evolves independently from the
others according to a substitution model with a rate µ that is supposed to be the
same for all variable sites and constant along the evolutionary branches (strict-clock
model). The substitution model is represented by a continuous-time reversible
Markov process, characterized by an invariant measure π (i.e. the vector of base
frequencies at equilibrium) and an instantaneous transition rate matrix Q between
different states (Strimmer & von Haeseler, 2009). At a host speciation event, the
two daughter host lineages inherit the microbial sequence from the ancestral host,
after which microbial populations on distinct host lineages evolve independently.

(ii) Host-switches: A discrete number (ξ) of host-switches happens during the evolu-
tion of the OTU on the host tree. The switches occur from a ’donor’ branch, with
a probability proportional to its branch length, and at a time uniformly distributed
on the branch, to a ’receiving’ branch, with equiprobability among the co-existing
branches (we do not consider the phylogenetic proximity from the donor branch).
When a host-switch happens, for convenience we assume that the microbial se-
quence from the donor host replaces that of the receiving host and the microbial
sequence from the donor host remains unchanged.

Each series of host-switches on T defines a tree of microbial populations TB that sum-
marizes which populations descended from which ones and when their divergences oc-
curred (Figure I.1.1). In the absence of host-switches (ξ = 0), TB and T are identical.
When host-switches occur, they break the congruence between TB and T (e.g. Figure
I.1.1c). Hence, the model can be decomposed in two steps: first, host-switches generate
TB from T; second, a sequence (representing a microbial population) evolves on TB with
a constant substitution rate.

Likelihood computation and inference:

We develop a likelihood-based framework in order to fit the above model to data
comprising a given (fixed) tree T of hosts and an alignment As of microbial sequences
characterizing populations of a given microbial OTU for these hosts (here the alignment
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Figure I.1.1: Illustration of the various steps for assessing microbial modes of inheritance in
host-microbiota evolution from metabarcoding data. (a) The first step consists in clustering
the microbial sequences into OTUs and building for each OTU the corresponding alignment of
segregating sites (As). (b, c) The second step consists in fitting different models of inheritance to
each microbial alignment. We compute the probability of the microbial alignment on hypothetical
microbial trees. Under a model with strict vertical transmission (ξ=0, b), the microbial is the
same as the host tree; under a model with vertical transmission and host-switches (ξ > 0, c),
microbial trees are simulated from the host tree with various numbers of switches ξ. We find the
substitution rate µ̂ and the number of switches ξ̂ that maximize the probability of the alignment.

As is reduced to the segregating sites). This will allow estimating the number of switches
ξ̂ on the host tree. The probability of the alignment assuming that the substitution rate is
µ and that there are ξ switches is given by:

L(As|µ, ξ) =
∫

TB

L(As|µ, TB)dTB

where L(As|µ, TB) is the probability of the alignment assuming that the substitution rate
is µ and the (dated) microbial tree is TB, and the integral is taken over the space of dated
trees obtained with ξ switches on T. In practice, we compute this integral using Monte
Carlo simulations: we simulate a large number (S) of dated microbial trees obtained with
ξ switches on T (see next section), compute for each TB the probability of the alignment
assuming that the substitution rate is µ, and sum these probabilities:

L(As|µ, ξ) =
1
S ∑

TB

L(As|µ, TB)dTB

This approximate expression converges to the exact integral form when S is large.

We compute the probability L(As|µ, TB) of the sequence alignment As on a given
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dated microbial tree TB using the Felsenstein pruning algorithm (Felsenstein, 1981). We
take into account the possibility of gaps in the microbial alignment, considering them as
’missing values’ by pruning off the tips of the tree with a gap (Truszkowski & Goldman,
2016). First, we choose the model of DNA substitution between the K80, F81, and HKY
matrices from the alignment reduced to segregating site (As) using the function modelTest
(R-package phangorn) and based on a BIC selection criterion: this function estimates Q
and π directly from As, where Q, the reversible transition rate matrix, depends on the
invariant measure π. We also obtain estimates of the transition/transversion rate ratio κ

(K80 and HKY) and of the base frequencies at equilibrium π (F81 and HKY) from these
models. Second, we compute the probability of the alignment at each nucleotidic site ν

using the pruning algorithm. For a given segregating site among As, let P(t) be the vector
of probabilities of states A, C, G, and T at time t. P(t) is given by P(t) = M(t) ∗ P(0)
where P(0) = (1A,1C,1G,1T) with 1A equals 1 if A is the initial nucleotide is and 0
otherwise, and M(t) = etµQ. Let Pν(s) be the probability of the alignment corresponding
to the clade descending from node s in the phylogeny for site ν. We have:

Pν(leaf) = (1A,1C,1G,1T) and Pν(s) = (M(t1)Pv(s1)).(M(t2)Pν(s2))

Where s1 and s2 are the two nodes descending from s and t1 and t2 are their respective
times of divergence (t1 and t2 are fixed, given by the branch lengths of the simulated
dated tree TB ). We iterate this pruning calculation from the leaves to the root of the tree,
and obtain the probability of the alignment at site ν:

Lν = πPν(root)

Because we consider only segregating sites, we condition this probability on the oc-
currence of at least one substitution. The probability of a substitution happening on a tree
TB of total branch length B is given by (1− e−µB). Finally, the probability of the align-
ment As is obtained by multiplying the probabilities corresponding to each site. Hence
the probability of the variable alignment As is given by:

L(As|µ, TB) = (1− e−µB)−Ns
Ns

∏
ν=1

Lν

where Ns is the number of segregating sites.

In practice, we used S = 104 and plotted the resulting value of L(As|µ, ξ) with an
increasing number of trees TB to ensure that S was large enough to obtain a reliable ap-
proximation of the likelihood. For each ξ, we find µ that maximizes L(As|µ, ξ). Finally,
we repeat these analyses for a range of realistic ξ values (typically ξ = [0, 1, 2, ..., 2n]) and
deduce the couple of parameters ξ̂ and µ̂ that maximizes the probability of the align-
ment. Likelihood landscapes typically have a well-defined peak (Supplementary Figure
1), suggesting that ξ and µ are identifiable. We also show later that we can properly es-
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timate them under a wide set of scenarios. Low ξ̂ values are indicative of OTUs that are
transmitted mostly vertically, while high ξ̂ values are indicative of those that perform
frequent host-switches.

Simulations of host-switches: from T to TB:

By simulating ξ switches on T, we obtain a (dated) bacterial TB characterized by its
topology and its branch lengths. Each switch is characterized by its ’donor’ branch, by
its position on the branch, and by its ’receiving’ branch. The donor branch is chosen with
a probability proportional to its branch length, the time of the switch is drawn uniformly
on the branch, and the receiving branch is chosen with equiprobability among the lin-
eages alive at time t. A switch replaces the existing microbial sequence in the receiving
host, and creates a new branching event in the microbial tree TB. Four types of switches
can occur and each of them results in different rules to obtain TB from T (Figure I.1.2):

(i) the switch occurs just after the root on the host tree, before any other speciation
event: TB is obtained from T by re-dating the root of the tree to the time of the host-
switch. This switch does not change the topology of the tree (i.e. it only affects the
branch lengths).

(ii) the switch occurs from an internal branch to a branch directly related to the root,
i.e. one of the sequences originating at the root no longer has descendants in the
current sequences: TB is obtained from T by re-rooting the tree to the most recent
common ancestor to all the current microbial sequences. This switch changes both
the topology of the tree and the branch lengths.

(iii) the switch occurs between 2 sister lineages: TB is obtained from T by re-dating
the divergence between the two sister lineages to the time of the host-switch. This
switch only affects the branch lengths of the tree.

(iv) the switch occurs between 2 distantly related lineages and the receiving branch is
not related to the root: TB is obtained from T by an internal reorganization of the
tree. This switch changes both the topology of the tree and the branch lengths.

Technically, in order to reduce computation time, we simulated a ’bank of trees’ with
ξ switches on the host tree and use these same trees in our different analyses.

Model selection:

In addition to the general model fitting procedure described above, we designed two
model selection procedures: the first aims at testing whether the presence of horizon-
tal switches is statistically supported (versus a simpler model with only strict vertical
transmission); the second aims at testing support for a model with a limited number of
host-switches versus environmental acquisition (OTUs that are environmentally acquired
will provide high µ̂ and ξ̂ estimates and could thus be interpreted as vertical transmission
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A Host tree T and host-switch  

(I) (II) (III) (IV) 

B Consequence of the host-switch on microbial lineages 

C Resulting microbial tree TB

(a)

(b)

(c)

Figure I.1.2: Host-switch simulations. (a) Four types of host-switch can occur on the host tree
T (b-c) these host switches generate distinct microbial trees TB. Orange arrows represent host-
switches. Orange crosses represent the extinction of the microbial lineage on the receiving branch.

with frequent horizontal switches and high substitution rates instead of environmental
acquisition).
In order to test support for a scenario with horizontal host-switches versus strict verti-
cal transmission, we compute L0 = L(As|µ̂, T), the likelihood corresponding to the best
scenario of evolution of the microbial sequences directly on the host tree (i.e. no switch)
and compare it to the likelihood L1 = L(As|µ̂, ξ̂) corresponding to the best scenario with
horizontal switches, using a likelihood ratio test.
In order to test support for a scenario of vertical transmission with horizontal host-
switches versus environmental acquisition, we test its support when compared to a sce-
nario where microbial populations are acquired at random by host species (thereafter
referred to as a scenario of ’independent evolution’): we randomize R times the host-
microbe association and run our model on each of these randomized data. Next, we
analyze the rank of ξ̂ and µ̂ estimated from the original alignment in the distribution of
ξR and µR estimated from the randomized alignments. Ideally, we would perform a large
number of randomizations (e.g. R > 100) and directly compute p-values from the ranks
of ξ̂ and µ̂. However, for computational reasons we used only R = 10 randomized align-
ments and chose to reject the hypothesis of independent evolution if ξ̂ < ξR and µ̂ < µR

for all R. Conversely, if the estimated number of switches ξ or the substitution rate µ are
ranked within the distribution of ξR and µR, we consider that a scenario of independent
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evolution cannot be rejected. There are thus two (indistinguishable) scenarios that will
produce microbial alignments that won’t reject our test of independent evolution: envi-
ronmental acquisition and vertical transmission with highly frequent host-switches.

Detecting transmitted OTUs:

Based on the analyses above and our definition of modes of inheritance, we sort the
OTUs into two different categories: the transmitted OTUs (those that reject the hypoth-
esis of independent evolution, either because they are strictly vertically transmitted, or
because they are vertically transmitted with a few host-switches), and the independent
OTUs (those that do not reject the hypothesis of independent evolution, either because
they are environmentally acquired, or because they experienced enough host switches
to be indistinguishable from a scenario of environmental acquisition). In practice, there
is no universal similarity threshold that will provide the ’right’ biological unit delin-
eation across all microbial groups (Sanders et al., 2014; Supplementary Figure 2). ’Over-
splitting’ a biological unit using a similarity threshold that is too high for that biologi-
cal unit will reduce statistical signal (each sub-unit will be represented in fewer hosts)
and will miss host-switches between sub-units (given that sub-units will be analyzed
independently). ’Over-merging’ OTUs using a similarity threshold that is too low will
tend to blur a signal of transmission, and will over-estimate substitution rates, because
alignments will mix sequences from distinct biological units. By using several clustering
thresholds, we can hope to find one that properly delimitates biological units. Given that
vertical transmission tends to be erased by improper delimitation, if it is detected for at
least one threshold, then it suggests that it is the ’right’ threshold and that vertical trans-
mission does indeed occur.

Implementation:

All the scripts of our model are written in R (R Core Team 2018), using the packages
ape, phangorn, and phytools for the manipulations of phylogenetic trees (Paradis et al.,
2004; Schliep, 2011; Revell, 2012) and are available on GitHub (https://github.com/
BPerezLamarque/HOME/). Some internal functions computing the likelihood are coded in
C++. We also used the packages parallel, expm, ggplot2, reshape2, Rcpp and R2HTML
for the technical aspects of the scripts. All outputs of our model (e.g. parameter estima-
tion and model selection) are concatenated in a user-friendly HTML file with different
formats (e.g. tables, values, pdf plots and diagrams). The computational time depends
both on the number of host (n) and on the number of trees (S) used in the likelihood
inference; examples of computation time are provided in Supplementary Figure 3.

Testing our approach with simulations:

We performed a series of simulations to test the ability of our approach to recover
simulated parameter values and evolutionary scenarios. We calibrated our choices of
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tree size, alignment size and parameter values so as to obtain simulated data comparable
to those of the great ape-microbiota data (Supplementary Figure 9 and Supplementary
Table 2). We considered 3 independent host trees of size n = 20 (T1, T2, and T3) simulated
under a Yule model (no extinction) using the function pbtree from phytools. We scaled
these trees to a total branch length of 1. On each of these host trees, we considered a
scenario of strict vertical transmission (ξ=0), scenarios of vertical transmission with host-
switches ξ ∈ [1, 2, 3, 5, 7, 10], and a scenario of environmental acquisition; each of these
scenarios were obtained by simulating the corresponding microbial trees TB. For the sce-
nario of strict vertical transmission, TB = T. For scenarios of host-switches, 15 TB per ξ

value were derived from T. For the scenario of environmental acquisition, 20 TB with n
tips were simulated under a Yule model independently from T, using the same procedure
as above. Finally, we simulated on each TB the evolution of microbial sequences of a total
length N = 300 using our own codes, with a probability 0.1 for each site to be variable.
We simulated the K80 stochastic nucleotide substitution process with a ratio of transi-
tion/transversion rate κ = 0.66 and three different values of substitution rate (µ = 0.5, 1,
or 1.5). The realized proportion of segregating sites was quite variable and comparable
to empirical alignments (Supplementary Figure 9). We simulated 20 alignments A per
substitution rate on T for the scenario of strict vertical transmission (180 alignments in
total), and 1 alignment per TB per substitution rate for the scenarios of host-switch (135
alignments per ξ value) and environmental acquisition (180 alignments). Thereafter we
call ’ξ-switches alignment’ an alignment simulated with ξ switches on T and ’indepen-
dent alignment’ an alignment simulated under the environmental acquisition scenario
(i.e. independently from T).

We applied our inference approach to each simulated couple of T and A and com-
pared the estimated parameters (ξ̂, µ̂, and κ̂) to the simulated values. We used mixed
linear models with the host tree (T1, T2, and T3) as a random effect (R-package nlme).
We tested homoscedasticity and normality of the model residuals and considered a p-
value of 0.05 as significant. We also evaluated the type-I and type-II errors associated
with our tests of strict vertical transmission and independent evolution.

Empirical application: great apes microbiota:

We illustrate our approach using data from Ochman et al. (2010); this paper is one
of the first paper looking at phylosymbiotic patterns in great apes, and the associated
data has been used in other papers aiming at studying transmission (Sanders et al., 2014).
The dataset consists of fecal samples collected from 26 wild-living hominids, including
eastern and western African gorillas (2 individuals of G. gorilla and 2 individuals of G.
beringei), bonobos (6 individuals of P. paniscus), and three subspecies of chimpanzees (5
individuals of P. t. schweinfurthii, 7 individuals of P. t. troglodytes and 2 individuals of P.
t. ellioti), as well as two humans from Africa and America (H. sapiens).

Ochman et al. (2010) extracted DNA from the fecal samples, PCR-amplified the DNA
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for the 16S rRNA V6 gene region using universal primers, and finally sequenced the PCR
products using 454 (Life Sciences/Roche). They obtained 1,292,542 reads after sequence
quality trimming and barcodes removal. Gut microbiota are now sequenced with more
coverage than what was possible at the time of the Ochman paper, yet these data rep-
resent a good application of our approach. We obtained the reads from Dryad (http:
//datadryad.org/resource/doi:10.5061/dryad.023s6). We used python scripts from
the Brazilian Microbiome Project (BMP, available on http://www.brmicrobiome.org/;
Pylro et al., 2014) which combines scripts from QIIME 1.8.0 (Caporaso et al., 2010) and
USEARCH 7 (Edgar, 2013) as well as our own bash codes. We merged raw reads from all
the hosts and processed them step by step:

(i) Dereplication: we discarded all the singletons and sorted the sequences by abun-
dance using USEARCH commands derep_ f ulllength and sortbysize.

(ii) Chimera filtering and OTU clustering: we removed chimeras and clustered se-
quences into OTUs using the cluster_otus command of the UPARSE pipeline (Edgar,
2013). We chose a 1.0, 3.0, or 5.0 OTU radius (the maximum difference between
pairs of OTU member sequences), which corresponds to a minimum identity of 99,
97, and 95%. We performed an additional chimera filtering step using uchime_re f
with the RDP database as a reference (http://drive5.com/uchime/rdp_gold.fa).
We obtained 1,074 OTUs at 95%, 1,793 at 97%, and 4,935 at 99% (Supplementary
Table 1).

(iii) Taxonomic assignation: we assigned taxonomy using a representative sequence for
each OTU generated (with cluster_otus), using assign_taxonomy.py from QIIME
and the latest version of the Greengenes database (http://greengenes.secondgenome.
com), or using BLAST when Greengenes did not assign taxonomy with enough res-
olution.

(iv) Mapping reads to OTUs and OTU table construction: we used the usearch_global
command to map all the reads from the different samples to these taxonomy-assigned
OTUs. Then we used make_otu_table.py and BMP scripts to build the OTU table (a
list of all the OTUs with their abundance by host individual).

(v) Core-OTUs selection: we selected the ’core’ OTUs as the ones that occurred in at
least 75% of the host individuals, using the compute_core_microbiome.py script from
QIIME. This resulted in 134 core OTUs at 95%, 120 at 97%, and 71 at 99% (there are
more OTUs at 99% than at 97% and 95%, but a much smaller proportion that are
core OTUs, Supplementary Table 1).

(vi) Making intra-OTU alignments: discarding the few OTUs that had unvaried align-
ments, we obtained 130 core OTUs at 95%, 110 core OTUs at 97%, and 66 core
OTUs at 99% similarity thresholds (Supplementary Table 1). Microbial genetic
variability within each OTU and within each host individual (hereafter referred

75

http://datadryad.org/resource/doi:10.5061/dryad.023s6
http://datadryad.org/resource/doi:10.5061/dryad.023s6
http://www.brmicrobiome.org/
http://drive5.com/uchime/rdp_gold.fa
http://greengenes.secondgenome.com
http://greengenes.secondgenome.com


Chapter I

to as ’intra-individual variability’) was quite high, sometimes higher than inter-
individual variability (Supplementary Figure 10a-c), suggesting that it was due to
PCR and sequencing artefacts rather than true variability. Therefore, we built the
bacterial alignment for a given OTU by selecting for each host individual the most
abundant sequence among all the reads mapped to that OTU. This sequence is less
likely to be subject to PCR/sequencing errors.

Finally, we applied HOME to each core OTU separately, and to the tree of the 26
host individuals, constructed with mitochondrial markers provided in the supplemen-
tary data of the article, scaled to a total branch length of 1. We used this individual-level
tree instead of the species- or sub-species level tree in order to increase tree size (there are
only 7 subspecies in our great apes tree); this approach also provides a way to account for
microbial genetic variability within host subspecies (hereafter referred to as ’intraspecific
variability’). We arbitrarily resolved intra subspecies polytomies by assigning quasi-null
branch lengths (10−4) to the corresponding branches. We classified the OTUs into ’trans-
mitted’ and ’independent’ OTUs; among the transmitted OTUs, we distinguished those
where the transmission is strictly vertical, and for the others we recorded the estimated
number of host switches. In order to get an idea of the proportion of the microbiota that
is transmitted we also recorded the number of reads corresponding to the transmitted
OTUs.

Accounting for intra-host genetic variability:

Our treatment of the great ape data illustrates an approach to account for intra-host
microbial genetic variability: instead of running HOME on a species-level host tree (with
a single representative microbial sequence per host species), it can be run on an individual-
level host tree, with arbitrarily small intra-specific branch-lengths. Because this usage of
HOME is slightly different from the case envisioned in our description of the approach,
we tested its behavior. We simulated the evolution of microbial alignments on the great
apes sub-species tree with a range of intraspecific variability similar to the range ob-
served in the great apes alignments. For each OTU alignment, we defined intraspecific
variability (V) as the mean nucleotidic diversity within host subspecies (computed using
Nei’s estimator; Ferretti et al. (2012)) divided by the total nucleotidic diversity computed
on the entire alignment. We simulated a total of 180 alignments according to 3 scenarios:
strict vertical transmission (ξ = 0), transmission with 5 host-switches (ξ = 5), and envi-
ronmental acquisition. For every scenario, we simulated intraspecific variability by ex-
tending the stochastic process generating nucleotidic substitution on every sequence for
a time range that allowed to obtain levels of intraspecific variability that corresponded
to the empirical level of intraspecific variability (Supplementary Figure 10d-i). We ran
HOME on each of these simulated alignments and evaluated its performance, in terms
of parameter estimation and model selection, when there was no intraspecific variabil-
ity (V=0), low and intermediate intraspecific variability (0<V<0.5), and high intraspecific
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variability (V>0.5).

Results:

Performance of HOME:

Likelihood landscapes typically display a single peak, illustrating that ξ and µ are
in general identifiable (Supplementary Figure 1). Rarefactions curves also indicate that
using S = 104 trees to compute the likelihood provides a good approximation (Supple-
mentary Figure 4). Testing the performance of HOME using intensive simulations, we
find a reasonable ability to recover simulated parameter values (Figure I.1.3). Estimates
of the number of switches ξ̂ are highly correlated with simulated ξ values, although the
approach tends to overestimate the true number of switches when there are very few
(less than 2) and to underestimate this number when there are many (Figure I.1.3A). The
linear regression confirms these results ξ̂ = 2.15 (Fdl=606=1015, p-value<0.0001) + ξ×0.58
(Fdl=606=141, p-value<0.0001). The ability to recover the true number of switches does not
depend on the simulated substitution rate (Fdl=606=0.26, p-value=0.61; Supplementary
Figure 5). The substitution rate is rather well estimated (Figure I.1.3b), although it tends
to be slightly overestimated when the simulated number of switches exceeds 3 (slope
0.04; Fdl=606=45.9, p-value<0.0001; Figure I.1.3b). The simulated transition/ transversion
rate ratio κ is well estimated (median ± s.d. = 0.68 ± 0.17), although it is slightly under-
estimated when the substitution rate is high (slope of -0.015; Fdl=606=12, p-value=0.0007).
For alignments simulated independently from the host tree, the approach estimates a
high number of switches (median ± s.d. = 16 ± 6.2, Figure I.1.3a), and highly overesti-
mates the substitution rate (Figure I.1.3b). The type of host tree (T1, T2 or T3) has little
impact on the estimation of ξ (it explains less than 3% of the total variance, Supplemen-
tary Figure 5), µ (around 10%, Supplementary Figure 6) and κ (less than 0.01%).

Our model selection procedure has very low type-I error rates, and type-II error rates
that depend on the situation (Figure I.1.4): the hypothesis of strict vertical transmission
was nearly never rejected when transmission was indeed strictly vertical (1/180, type-I
error rate = 0.0056%) and always rejected under environmental acquisition (Figure I.1.4a);
conversely, the hypothesis of independent evolution was almost always rejected when
transmission was strictly vertical (1/180) and almost never rejected under environmen-
tal acquisition (3/180, type-I error rate = 0.017%, Figure I.1.4b). While the type-I error
rates of the two tests are low, their power to detect a scenario of strict vertical transmis-
sion with host-switches is variable. In the case of the test of strict vertical transmission,
the power ranges from 95% for ξ=10 to 45% when ξ=1 (Figure I.1.4a). In the case of the
test of independent evolution, the power ranges from 100% for ξ=1 to 60% for ξ=10, and
it would decrease further with more switches (Figure I.1.4b). In both cases, the power
increases when the substitution rate µ is larger (Supplementary Figure 7).
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Figure I.1.3: Parameter estimation. Estimated versus simulated number of switches ξ (a) and
substitution rate µ (b) under various evolutionary scenarios (strict vertical transmission, vertical
transmission with a given number of switches, and independent evolution, referred in the figure
as “indep”). Simulated values are represented by blue ticks in (a) and dashed lines in (b). Boxplots
present the median surrounded by the first and third quartile, and whiskers extended to the
extreme values but no further than 1.5 of the inter-quartile range.

When HOME is applied to an individual-level host tree in order to account for in-
traspecific microbial genetic variability, type-I error rates associated to the test of inde-
pendent evolution remain very low regardless of the magnitude of the variability (Sup-
plementary Figure 8). The confidence in the estimation of the parameters (ξ and µ) re-
mains good for low values of intraspecific variability (V<0.5), but decreases with increas-
ing variability (V>0.5). The type-I error rate associated to the test of strict vertical trans-
mission increases with increasing variability, and the power of the two tests decreases
with increasing variability.

Modes of inheritance in the great apes microbiota:

Applying HOME to great apes gut microbiota data, we found that among the core
OTUs with at least one segregating site, approximately 1 in 10 OTUs is transmitted
(i.e. rejects the test of independent evolution, Figure I.1.5a); more specifically, the ra-
tios of transmitted OTUs (and strictly vertically transmitted OTUs) were the follow-
ing: 12(8)/130 at 95%, 12(10)/110 at 97%, and 4(4)/66 at 99%. In terms of relative
abundance, 108,206 raw sequences in a total of 1,292,542 (8.4%) belonged to transmitted
OTUs (Supplementary Table 3). Almost half of the sequences from transmitted OTUs
(49,508) were from an Acinetobacter bacterium (family Moraxellaceae; phylum Proteobac-
teria); another important pool of these sequences was from the family Prevotellaceae
(28,843 reads; phylum Bacteroidetes). In total, 12 bacterial families (in 27) contained
OTUs that were transmitted, including Veillonellaceae, Lachnospiraceae, Ruminococ-
caceae , and Paraprevotellaceae (Figure I.1.5b, Supplementary Table 4). Some of these
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Figure I.1.4: Model selection. Percentage of simulated alignments for which the null hypothesis
of strict vertical transmission (a) or independent evolution (b) is rejected under various evolution-
ary scenarios (strict vertical transmission, vertical transmission with a given number of switches,
and independent evolution, referred in the figure as “indep”).

families (e.g. Desulfurococcaceae, Pelobacteraceae, Rhodocyclaceae, and Eubacteriaceae)
were entirely made of a transmitted OTU, while others also had many OTUs and/or se-
quences that were independent (e.g. Ruminococcaceae, Lachnospiraceae, and Coriobac-
teriaceae). Transmitted OTUs were in general not more abundant in a particular group of
host species, except for the Prevotellaceae, that were overall more abundant in bonobos
and chimpanzees than in gorillas and humans (Figure I.1.5b).

The sequence length, the proportion of segregating sites, and the intra-individual
variability of the OTUs inferred as transmitted were similar to those of other OTUs (Sup-
plementary Figure 9 and Supplementary Table 2), suggesting that HOME is not biased
towards detecting vertical transmission in OTUs with specific characteristics. However,
the intra-specific variability of OTUs inferred as transmitted tend to be smaller than
that of other OTUs (Supplementary Table 5), which is consistent with our simulation
results showing that the power to detect vertical transmission decreases with increasing
intraspecific variability.
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Figure I.1.5: Transmitted OTUs in the great ape microbiota. (a) Percentage of OTUs rejecting
the hypothesis of independent evolution at the three clustering thresholds (b) Phylogenetic tree
of great apes and their associated transmitted OTUs (black: 95% similarity threshold, grey: 97%,
white: 99%). The percentage indicated in parenthesis for each family is the estimated percentage
of transmitted raw reads in the family. The color of the heat map represents for OTU each host
the percentage of raw reads of the OTU in the entire microbiota of the host. A white square means
that the OTU is not found in the host.
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Discussion:

We developed HOME, a likelihood-based approach for studying the inheritance of
microbiota during the evolution of their hosts from metabarcoding data. We showed
using simulations that even relatively short DNA reads can help identify modes of in-
heritance, without the need to build a microbial phylogenetic tree. Applying HOME to
great apes microbiota data, we identified a set of transmitted gut bacteria that account
on average for 8.4% of the total reads of the gut microbiota.

Our combination of model fitting and hypothesis testing helps identify modes of in-
heritance. We see the estimate of the number of switches as a good indicator of modes of
inheritance (from strict vertical transmission for low ξ values to transmission with high
rates of horizontal switches or environmental acquisition for high ξ values) rather than
as an accurate estimation of past host-switches. We have indeed shown that ξ tends to be
underestimated when quite many switches are simulated on a fixed host tree. In nature
this underestimation may be even more pronounced, as our model ignores host-switches
that happened in lineages not represented in the phylogeny, as a result of either extinc-
tion or undersampling (Szöllősi et al., 2013b). In line with these results, we find that the
hypothesis of strict vertical transmission is often not rejected when there are in fact host-
switches. On the other hand, we can also estimate a positive ξ from data simulated under
strict vertical transmission; however, in this case, a model with host-switches will in gen-
eral not be selected when compared to a model of strict vertical transmission. Hence,
if the hypothesis of strict vertical transmission is rejected, one can conclude with con-
fidence that host-switches occurred (or that the microbial unit was environmentally ac-
quired). Similarly, the hypothesis of independent evolution is often not rejected when the
transmission is actually vertical with rather frequent host-switches, and rarely rejected
in scenarios of environmental acquisition, such that when it is rejected, one can conclude
with confidence that the microbial unit is transmitted. Said differently, our approach is
conservative in its identification of transmitted OTUs; and when an OTU is identified as
being transmitted, our approach is conservative in its identification of switches.

We assessed the performance of HOME in a limited set of conditions (e.g. host tree
size, sequence length, substitution rates) calibrated on the great apes microbiota data. We
can expect that the power of the model will increase with host tree size and the number
of segregating sites in the microbial alignment. As the latter is a combination of sequence
length, substitution rate, and hosts divergence times, there is no universal guidelines on
the applicability of the model to a particular marker, sequencing technology, and host
clade age. Rather, the marker and sequencing technologies must be adapted to the study
system. For example, the 200-300 bp-long 16S rRNA V6 gene region sequenced with 454
sequencing used on great apes in our empirical application was enough to identify some
transmitted microbial OTUs, but it probably missed others that had too low substitu-
tion rates to leave a detectable signal. Similarly, it might have a low resolution to detect
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variability between host species that diverged more recently than the great apes. In such
cases, using longer sequences and/or markers that evolve more quickly can be necessary.
Finally, we can expect that PCR and sequencing errors will blur the signal and reduce the
power to detect transmitted OTUs, although this should be limited by selecting the most
abundant sequence representative of each OTU for each host.

HOME is currently best suited to the study of microbiota transmission in recent, well-
sampled host clades in which no or few extinctions occurred, since it does not account
for unsampled host lineages, nor for host extinctions. For example, HOME would be
well adapted to the study of microbiota transmission in some vertebrates and inverte-
brate clades, for which microbiota sequencing data are already available (e.g. Amato et
al., 2019; Brooks et al., 2016; Ren et al., 2016). Ignoring extinction is reasonable at the small
evolutionary scales of such groups or the great apes (Ochman et al., 2010), but it would
not be at larger evolutionary timescales such as across invertebrate or vertebrate species;
in this case accounting for host switches from now-extinct lineages is necessary (Szöl-
lősi et al., 2013b). Another reason why HOME is currently better adapted to studying
recent rather than ancient host clades is that it does not account for extinction of sym-
biont lineages, and therefore can only model the inheritance of OTUs shared across most
species (i.e. core OTUs); the more divergent the host species, the less core OTUs there
will be. Further developments of the model that would allow extending its relevance to
a broader range of data include accounting for extinction and incomplete sampling in the
host clade, as well as incorporating symbiont extinctions.

When it occurs, the support for vertical transmission of a given microbial unit arises
from a phylogenetic signal in microbial sequences (i.e. a congruence between the phy-
logenetic similarity of host species and the molecular similarity of the microbes they
host). However, such congruence can also arise from processes not accounted for in our
model, such as geographic or environmental effects; for example, if there is a phyloge-
netic/molecular signal in the geographic or habitat distribution of hosts/microbes, or if
the host environment creates microbial selective filters, this could result in a phylogenetic
signal in microbial sequences that could be misleadingly interpreted as vertical transmis-
sion. We have not evaluated the robustness of our approach to such effects. Future devel-
opments could involve reconstructing ancestral areas/habitats or host environments on
the host phylogeny in order to distinguish a phylogenetic signal truly driven by vertical
transmission versus other effects.

In the construction of the model, we have made the important assumption that there
is no microbial genetic variability within host species, such that each microbial OTU is
represented by at most one sequence in each host. This is quite unlikely in natural micro-
bial populations where multiple microbial strains can colonize a host species (Ellegaard
& Engel, 2016). In our empirical application, we tackled this limitation by representing
each host species by several individuals, using approximately zero-length branches to
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split conspecifics in the host phylogeny. Although our simulations show that the sta-
tistical power of our tests decreases strongly when intraspecific variability is high, they
also show that the hypothesis of environmental acquisition is rarely rejected when the
acquisition is indeed environmental. Hence, HOME is unlikely to misleadingly identify
transmitted OTUs, especially in the presence of intraspecific variability. Another (more
satisfying) approach would be to directly account for intraspecific variability in microbial
sequences in the likelihood computation; this could for example be done by representing
the data by – at each tip of the host phylogeny and for each nucleotidic site – a vector
of probabilities of states A, C, G, and T representing the intra-host relative abundance of
the four bases at the given nucleotidic position. In this case, we would directly use the
variation given at the level of amplicon sequence variants (ASVs; Callahan et al., 2016).
Alternatively, further developments of HOME incorporating horizontal host-switches
without replacement (i.e. the persistence of both ancestral and newly-acquired symbionts
in a lineage), as well as dynamics of duplication and recolonization, would allow better
accounting for intra-host genetic variability. In addition, rather than considering each
OTU as a separately evolving unit, it would be interesting to account for interactions
between these units, that can for example lead to competitive exclusion (Koeppel & Wu,
2014) or interdependency (e.g. adaptive gene loss; Morris et al. (2012)), and are crucial
aspects of microbial community assembly.

In the great apes gut microbiota, we found that the major part of the microbiota
(91.6%) is constituted of bacteria which acquisition scenario is not distinguishable from
one that is independent from the great apes phylogeny (Moeller et al., 2013; Amato et
al., 2019). Still, we identified OTUs representing 8.4% of the total number of reads that
are transmitted across generations during millions of years of evolution. Given the low
phylogenetic signal in the geographic distribution of the hosts (see Ochman et al., 2010),
these OTUs are likely truly transmitted vertically. And given that HOME is conservative
in its identification of transmitted OTUs, 8.4% is a lower bound estimate of the relative
abundance of the microbiota that is vertically transmitted. Thus, our results suggest that
the phylosymbiosis pattern observed by Ochman et al. (2010) is partially driven by ver-
tically transmitted bacteria, as suggested by Sanders et al. (2014). Our approach offers
the advantage of investigating the whole microbiota without an a priori on which fami-
lies might be transmitted; it identified 12 microbial families with transmitted OTUs. This
complements approaches that focus on few candidate families (e.g. Moeller et al., 2016).
Indeed, Moeller et al. (2016) used 3 specific primer pairs to focus on 3 bacterial families
(Bacteroidaceae, Bifidobacteriaceae, and Lachnospiracea) and showed that phylogenies
representing the Bifidobacteriaceae and Bacteroidaceae were congruent with the apes
phylogeny, suggesting that co-diversification occurred in these two families. Unfortu-
nately, neither Bifidobacteriaceae nor Bacteroidaceae were represented in the core OTUs
in Ochman et al.’s data, even with a 95% similarity threshold: those bacteria were either
not sampled, badly processed during DNA extraction and PCR, poorly taxonomically an-
notated, or too divergent to be merged into a single core OTU defined at 95%. Conversely,
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while Moeller et al. (2016) did not find any signal of co-phylogeny in the Lachnospiraceae
family, we found 3 transmitted OTUs belonging to this family. The authors investigated
the phylogenetic relationships between all the amplified strains of Lachnospiraceae and
whether they match the phylogenetic tree of great apes. This illustrates the utility of
our approach, which investigates transmission modes of separate OTUs within bacterial
families, rather than considering in a single evolutionary framework all the sequences
from the same family.

Among the families in which we found transmitted OTUs, some are well known for
having mutualistic properties. For example, the Lachnospiraceae, Paraprevotellaceae,
and Rhodocyclales families are involved in breaking down complex carbohydrates in
the gut; they have even evolved fibrolytic specialization in gut communities (Biddle et al.,
2013). These vertically transmitted fibrolytic bacteria, which have been co-diversifying
for millions of years with the great apes, would thus constitute for the great apes a
conserved reservoir of gut symbionts able to digest carbohydrates, and might have fa-
cilitated frequent and rapid dietary shifts during the evolutionary history of hominids
(Head et al., 2011; Muegge et al., 2011; Hardy et al., 2015). However, why these particu-
lar bacteria are faithfully vertically transmitted while other digesting gut bacteria seem
largely environmentally acquired (or vertically transmitted with frequent host-switches)
remains unclear.

DNA metabarcoding data for microbiota is being collected across multiple hosts at
an unprecedented scale. Our approach allows identifying, among numerous microbial
units, those that are vertically transmitted and potentially coevolving with their hosts.
The current implementation of our model is entirely adapted to applications to other
datasets using different sequencing techniques, clustering methods, and de-noising al-
gorithms. Being able to identify vertically transmitted microbial units is an important
step towards a better understanding of the role of microbial communities on the long-
term evolution of their hosts.
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Abstract

The degree of similarity between the microbiota of host species often mirrors the
phylogenetic proximity of the hosts. This pattern, referred to as phylosymbiosis,
is widespread in animal and plant kingdoms. While phylosymbiosis was initially
interpreted as the signal of symbiotic transmission and coevolution between
microbes and their hosts, it is now recognized that similar patterns can emerge
even if the microbes are environmentally acquired. Distinguishing between
these two scenarios, however, remains challenging. We recently developed
HOME (HOst-Microbiota Evolution), a cophylogenetic model designed to detect
transmitted microbes and host-switches from amplicon sequencing data. Here,
we apply HOME to the microbiota of Hawaiian spiders of the genus Ariamnes,
which experienced a recent radiation on the archipelago. We demonstrate that
although Hawaiian Ariamnes spiders display a significant phylosymbiosis, there
is little evidence of microbial vertical transmission. Next, we perform simulations
to validate the absence of transmitted microbes in Ariamnes spiders. We show
that this is not due to a lack of detection power because of the low number of
segregating sites nor an effect of phylogenetically-driven or geographically-driven
host-switches. Ariamnes spiders and their associated microbes therefore provide
an example of a pattern of phylosymbiosis likely emerging from processes other
than vertical transmission.

Keywords: microbiota, phylosymbiosis, vertical transmission, host-filtering,
Hawaiian arthropods.
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Introduction:

Most multicellular organisms such as plants and animals host complex microbial
communities, referred to as microbiota, which provide important functions to their hosts
(Selosse et al., 2004; McFall-Ngai et al., 2013). Although these microbial communities can
fluctuate over short time scales and according to external variables such as animal diet
or soil composition (Parfrey & Knight, 2012; Tkacz et al., 2015; Kennedy et al., 2020), mi-
crobiota of host individuals from the same species often tend to be more similar than
microbiota from different host species (Hacquard et al., 2015). Over long-time scales, the
extent to which these microbiota, and the functions they provide to their hosts, are con-
served will depend on the relative tendency of microbes to colonize host individuals at
each generation (Nyholm & McFall-Ngai, 2004), which is influenced by their modes of
inheritance. At the two extremes, microbes can be either transmitted from generation to
generation (vertical transmission, e.g. directly through the maternal germline or by social
contacts with host relatives; Moran et al., 2008; Funkhouser & Bordenstein, 2013), or ac-
quired from the environment during the lifetime of each host individual independently
of the previous host generation (environmental acquisition; Bright & Bulgheresi, 2010;
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Funkhouser & Bordenstein, 2013). In the latter case, the maintenance of the microbes
from host generation to host generation depends on their presence in the host environ-
ment and their availability to colonize the host niche, which can be seen as an ecological
filter (Moran & Sloan, 2015).

Microbiota of closely related host species are often more similar than those of dis-
tantly related species, such that host dendrograms constructed from the similarities of
whole microbiota communities tend to mirror the host phylogeny (Brooks et al., 2016;
Lim & Bordenstein, 2020). This pattern, referred to as phylosymbiosis, has for example
been documented for the gut microbiota of primates (Ochman et al., 2010; Amato et al.,
2019) and arthropods (Armstrong et al., 2020), or in the roots of plants (Yeoh et al., 2017).
However, how and why this pattern emerges has been intensively debated (Moran &
Sloan, 2015; Kohl, 2020). In particular, phylosymbiosis is expected to emerge if some spe-
cific microbial lineages are vertically transmitted during host evolution (Ochman et al.,
2010; Sanders et al., 2014; Moeller et al., 2016, 2018). In this case, these vertically transmit-
ted microbial lineages follow host diversification, resulting in co-phylogenetic patterns
between host species and each transmitted microbial lineage (Moeller et al., 2016). Alter-
natively, phylosymbiosis can emerge in the absence of vertical transmission, for instance,
if the community assembly of microbes acquired from the environment is dominated by
mechanisms of ecological filtering by the hosts, and if the host traits involved in this filter-
ing are phylogenetically conserved (Moran & Sloan, 2015; Mazel et al., 2018). In the latter
case, no specific congruence between the host phylogeny and the individual microbial
phylogenies is expected (Moran & Sloan, 2015). Some correlative approaches are avail-
able to investigate whether phylosymbiosis is supported by recent or ancient microbial
divergences, such as the beta diversity sensitivity analysis (Sanders et al., 2014; Amato
et al., 2019), however they cannot directly assess whether a pattern of phylosymbiosis is
linked to the vertical transmission of individual microbial lineages or to alternative pro-
cesses such as ecological host-filtering.

An alternative approach to inferring if and which microbial lineages are transmitted
among members of whole microbial communities would be to use cophylogenetic meth-
ods, which quantify the congruence between trees (de Vienne et al., 2013; Kohl, 2020),
however this is challenging for several reasons. First, transmitted microbes can experi-
ence not only vertical transmissions, but also events of horizontal switching between host
lineages, which result in a loss of phylogenetic congruence between host and microbial
lineages (Charleston & Perkins, 2006). Horizontal switches between particular host lin-
eages are also expected to be more likely, for instance between closely related host species
(that likely represent similar niches for the microbes), or between host species sharing the
same geographic area (Charleston & Robertson, 2002). Such preferential host-switches
can strongly influence the observed cophylogenetic patterns (de Vienne et al., 2007). Sec-
ond, because of the short length of the amplicons used to characterize microbiota in high
throughput sequencing studies (e.g. the 16S rRNA gene; Taberlet et al., 2012), the micro-
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bial DNA sequences available have accumulated only a few mutations since their host
diverged, providing limited information on the evolutionary history of the transmitted
microbes (Ochman et al., 1999). The difficulty in reconstructing a robust phylogeny for
each microbial lineage is one of the most problematic challenges, especially as phylosym-
biosis is often observed in recent host radiations, whereas it is “erased” by various factors
such as diet shifts over longer timescale (Groussin et al., 2017; Baldo et al., 2017). To ad-
dress these challenges, we recently developed a likelihood-based model, called HOME
(HOst-Microbiota Evolution; Article 1), designed to infer modes of microbial inheritance
in the presence of host-switches without reconstructing the phylogenetic tree of the mi-
crobial lineages. Instead, HOME directly models the evolution of the microbial DNA
sequences on the host phylogeny, with potential host-switches, and tests whether this
model of host-dependent evolution is supported in comparison with scenarios where
microbial sequences evolve independently.

Here, we investigated the modes of inheritance of the bacterial microbiota of a lin-
eage of Hawaiian spiders Ariamnes that exhibit a significant pattern of phylosymbiosis
(Armstrong et al., 2020) to examine whether this empirical pattern of phylosymbiosis (at
the whole microbiota community level) is at least partially explained by transmitted mi-
crobes (at the level of individual microbial lineages). The Hawaiian Ariamnes spiders
are non-model organisms and whether or not their microbes are transmitted is unknow.
They are predators of other spiders (Kennedy et al., 2018) and are mostly restricted to the
wet forest habitats (Gillespie et al., 2018). Their radiation into 15 species within the last
2 million years across the Hawaiian archipelago shows a classic pattern of colonization
from older to younger islands, which results in strong geographical clustering (Gillespie
& Rivera, 2007; Gillespie et al., 2018). Because these species are highly specialized (similar
habitat and very narrow and conserved diet relative to other spiders) and closely related
within an island, we would expect their important niche conservatism to favor micro-
bial transmission and that their geographical clustering would influence the host-switch
dynamics. We applied HOME and, contrary to these expectations, we did not find any
transmitted microbial symbiont, suggesting that Ariamnes’ microbes are not transmitted
over long timescales. To confirm this finding, we performed further validations of the
method to show that (i) HOME performs well to infer the modes of inheritance of micro-
bial lineages even with few informative segregating sites in the DNA sequences and that
(ii) preferential host-switches are unlikely to bias our conclusions.

Methods:

Study system: microbiota of Hawaiian spiders:

Hawaiian Ariamnes spiders had been sampled under the leaves in understory vege-
tation in 8 sites with similar abiotic conditions (temperature and precipitation) to con-
trol for environmental variables and to guarantee that all individuals had similar micro-

91



Chapter I

niches (Armstrong et al., 2020). We selected the individuals for which both genome-wide
sequencing of the host and 16S rRNA metabarcoding of their associated microbiota have
been performed: We obtained 63 “gold ecomorph” individuals (Gillespie et al., 2018)
from one species on Molokai (A. n. sp.), one on West Maui (A. melekalikimaka), and one on
Hawaii Island (A. waikula).

We used a robust phylogenetic tree of the 63 individuals reconstructed using genomic
ddRAD markers and 16S rRNA metabarcoding data characterizing their microbiota from
(Armstrong et al., 2020). In short, the calibrated host phylogenetic tree was obtained us-
ing the Stacks pipelines (Catchen et al., 2013), IQ-TREE (Nguyen et al., 2015) with 100
bootstraps, and r8s (Sanderson, 2002) (see Supplementary Methods 1 and Armstrong et
al. (2020) for details). Spider-associated bacterial communities were studied using short
DNA metabarcoding sequences from the 16S rRNA gene. Microbiota DNA extractions
were performed using the Gentra Puregene Tissue Kit (Qiagen, Hilden, Germany) on the
spiders’ abdomens, which contain the gut as well as other organs such as the gonads
(Kennedy et al., 2020). Bacterial 16S rRNA genes were targeted using a primer pair am-
plifying approximately 310 base pairs (bp) of the V1-V3 variable regions (Gibson et al.,
2014). The amplicon library was sequenced using Illumina MiSeq technology generating
2×300 bp paired reads. Negative controls (extraction blanks and no template controls)
were carefully performed.

The corresponding microbiota raw data (obtained from Armstrong et al., 2020) en-
compassed 4,932,236 microbial reads, that were assembled, demultiplexed, and quality
checked using VSEARCH v2 (Rognes et al., 2016). We clustered reads according to their
sequence similarities into Operational Taxonomic Units (OTU) using two different algo-
rithms. We first used the Swarm v2 (Mahé et al., 2015), using the fastidious option, that
groups reads into OTUs without specifying a global similarity threshold, and thus can
accurately identify clustered structure at a finer scale. We performed a second clustering
using a classical OTU clustering at 97% similarity using VSEARCH. We assigned a tax-
onomy to each OTU using the SILVA database (Quast et al., 2013), filtered-out chimera,
and built an OTU table indicating for each OTU its abundances in the different spiders’
microbiota. Finally, non-bacterial OTUs and contaminant OTUs present in high abun-
dances in the negative controls were filtered out of the OTU table: We obtained a total
of 413 Swarm OTUs and 414 97% OTUs, which respectively correspond to a total of
1,297,307 and 1,178,325 reads.

Assessing phylosymbiosis:

Following Brooks et al. (2016) and Lim & Bordenstein (2020), we assessed phylosym-
biosis by (i) performing a Mantel test between the host phylogenetic distances and the
microbiota beta diversities and (ii) evaluating using matching cluster analyses (Bog-
danowicz & Giaro, 2013) the topological congruence between the Ariamnes phylogenetic
tree and the microbiota dendrogram reconstructed using a hierarchical clustering from
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the beta diversities (Supplementary Methods 2). Weighted or unweighted beta diversi-
ties were computed using OTU tables rarefied at 5,000 reads per sample.

Inferring transmitted symbionts:

The inheritance modes among the microbial OTUs were inferred independently for
each OTU using HOME (Article 1). Each OTU was characterized by a nucleotide align-
ment made of the microbial sequences obtained across the different host lineages, with
at most one single representative DNA sequence per host individual. In short, HOME
uses the intra-OTU variation (segregating sites) contained in the nucleotide alignment to
test whether each microbial OTU has likely evolved on the host phylogeny by vertical
transmission or alternatively has been acquired from the environment. It assumes that
for a given OTU, microbial populations, represented by a DNA sequence in each host
lineage, (i) are vertically transmitted along branches on the host phylogeny, (ii) can expe-
rience DNA substitutions with a constant rate µ, which generate segregating sites in the
OTU alignment, (iii) are inherited at host splitting events by the two daughter host lin-
eages, and (iv) can experience a certain number of host-switches ξ, where one microbial
sequence from a donor host branch is horizontally transmitted at a given time to another
receiving branch where it replaces the previous sequence. By default, host-switches are
assumed to be uniformly distributed on the host branches. For each OTU independently,
HOME uses a combination of likelihood-based and simulation-based approaches to esti-
mate ξ and µ, and to test whether a scenario of transmission is more likely than a scenario
of host-independent evolution where the links between microbial sequences and host lin-
eages are randomized (see Article 1 for more details).

To run HOME, we selected the OTUs shared by at least five individual spiders, as
HOME cannot perform well with lower occurrence. In addition, based on the content
of negative PCR controls and on previous estimates (Minich et al., 2019), we assumed
that if an OTU occurs with less than 5 reads in a spider, it is likely the result of cross-
contaminations during the library preparation, and consider the OTU as absent in this
spider’s microbiota. For a given OTU, we selected one representative sequence per host
spider by taking the most abundant read confidently assigned to this OTU present in
the spider microbiota. Neglecting the microbial intra-individual variation is equivalent
to considering that host individuals are colonized by only one unique microbial strain
per OTU, and that the intra-individual variability observed in the data is caused by PCR
and sequencing errors. To relax this hypothesis, we repeated the analyses by instead
picking, when available, the second most abundant read as the representative sequence
of one OTU in one host spider, although these sequences were likely artifacts (Schloss
et al., 2011). We then assembled the sequence alignment for each OTU and ran HOME
separately. As HOME does not model microbial extinction, in the case of incomplete rep-
resentation of an OTU (either because the OTU is truly absent or undetected), we pruned
out of the phylogenetic tree the host spiders where the OTU was absent (Article 1).
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Finally, to confirm that these few OTUs shared by multiple host individuals con-
tributed for the pattern of phylosymbiosis at the whole community level (encompass-
ing all “shared” and “unshared” OTUs), we randomized the “unshared” OTUs among
Ariamnes samples while keeping the “shared” OTUs untouched (and vice versa) and we
re-assessed phylosymbiosis using Mantel tests.

Simulating the performance of HOME under low intra-OTU variation and preferen-
tial host-switches :

To confirm that HOME would detect transmitted OTUs in Ariamnes microbiota de-
spite the recent host divergences and the likely occurrence of preferential host-switches,
we tested the performance of HOME using simulations by (i) checking the statistical
power of HOME when there are only a few segregating sites in the microbial OTU align-
ments and (ii) testing the effect of phylogenetically-driven and geographically-driven
host-switches.

First, we simulated, on the Ariamnes host tree, microbial phylogenies of OTUs evolv-
ing under vertical transmissions with 0, 5, 15, 25, or 35 host-switch(es), or OTU phylo-
genies that evolved independently from the host phylogeny. For each scenario, we sim-
ulated 15 independent OTUs. Given the phylogenetic tree of each OTU, we simulated
the corresponding evolution of a nucleotide alignment of 300 bp, with a probability 0.1
for each site to be variable under a stochastic K80 (Kimura, 1980) nucleotide substitution
process (with a ratio of transition/transversion rate κ = 0.66) and we tested the effect of
very low relative substitution rate (µ = 0.1), compared to intermediate values (µ = 1.5).
We then ran HOME on each alignment independently. Furthermore, as some OTUs oc-
curred in only a few host individuals (either because they were absent or undetected), we
tested the effect of low OTU occurrence on the statistical power of HOME by simulating
the alignment corresponding to each OTU on a host phylogeny randomly pruned to 5 or
20 tips.

Next, we simulated vertically transmitted microbial symbionts which experience events
of host-switches driven by host relatedness (de Vienne et al., 2007). We considered that
the probability that there is a host-switch between times t and t + dt depends on the
phylogenetic relatedness between pairs of host lineages among the N(t) other coexisting
hosts at this time such that:

P(host switch at time t) ∼ 1
N(t)− 1 ∑

i∈[1,N(t)]
∑

j∈[1,N(t)];j 6=i
e−hdi,j(t)

where di,j(t) represents the phylogenetic distance, measured as branch length, be-
tween the coexisting hosts i and j at time t, and h is a parameter tuning the effect of
host-phylogenetic relatedness (if h = 0, there is no effect of host relatedness, and the
higher h is, the more likely host-switches occur between closely related hosts). If a host-
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switch occurs at time t, a pair (i,j) of host lineages involved in the host-switch is chosen
proportionally to e−hdi,j(t) (if h > 0, pairs of hosts that are phylogenetically distant - large
di,j(t) - are unlikely to be chosen). For h = 0 (uniform distribution of host-switches), the
probability of a switch is proportional to the number of host lineages at time t and pairs
of hosts involved in the switch are chosen uniformly. We performed the same simula-
tions as detailed above (no host-switch) using 4 h values: h ∈ (0, 1, 10, 100).
Similarly, we simulated vertically transmitted microbial symbionts which experience
events of host-switches that are more likely between hosts sharing the same geographi-
cal area (i.e. same sampling site). We assumed that hosts occupy a unique discrete area,
which can change through time. We first reconstructed the ancestral biogeography of the
host phylogeny using stochastic mapping (make.simmap function, phytools R-package;
Revell, 2012) considering that migrations between areas are punctuated events occurring
with different estimated probabilities, represented by a symmetrical matrix of transition
Q. We considered g, the probability for a host-switch to occur between hosts from dif-
ferent areas divided by the probability for a host-switch to occur between hosts of the
same area: if g = 1, host-switches between hosts from different areas are as likely as
host-switches within the same area, whereas g = 0 corresponds to a scenario where
host-switches only occur between hosts sharing the same area. We considered that the
probability that a host-switch occurs at time t depends on the total number of hosts shar-
ing the same area at time t and the number of hosts alone on their own area at time t
multiplied by g, such that:

P(host switch at time t) ∼ ∑
A∈areas,NA(t)>1

NA(t) + ∑
A∈areas,NA(t)=1

gNA(t)

with NA(t) being the number of hosts in area A at time t.
If a host-switch occurs at time t, pairs of hosts are then chosen with a relative weight of 1
if they are in the same area, or g if not. These simulations could be further improved by
considering geographic distances between the different areas. We performed the same
simulations as detailed above using 4 g values: g ∈ (1, 0.5, 0.25, 0). For each simulated
OTU, we used a different stochastic mapping of the ancestral biogeography to consider
the uncertainty in the reconstruction.

In addition to these tests, we investigated the ability of HOME to detect preferential
host-switches on the Ariamnes tree (Supplementary Methods 3).

Results:

Phylosymbiosis and inheritance of the microbiota of Hawaiian spiders:

As previously shown in Armstrong et al. (2020), the evolutionary history of the 63
sampled Ariamnes spiders reconstructing using ddRAD markers presented a significant
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clustering by geographic areas as indicated by the ancestral state (Figure I.2.1a). Look-
ing at their associated microbiota as a whole using 16S rRNA amplicon sequencing, we
found significantly congruent topologies between the host spider phylogeny and their
microbiota dendrogram reconstructed from the weighted or unweighted beta diversities
(Figures I.2.1b & Supplementary Figure 1). Phylosymbiosis was also confirmed by Man-
tel tests indicating a significant correlation between the host patristic distances and the
microbiota dissimilarities when using weighted beta diversity indices (Supplementary
Figure 1). Conversely, Mantel tests were no longer significant when using unweighted
indices, suggesting that shifts in the presence/absence of abundant OTUs participated to
phylosymbiosis.
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Figure I.2.1: Phylosymbiosis in the microbiota of Hawaiian spiders. (a) Phylogenetic tree of
the host Ariamnes spiders obtained using ddRAD markers. Branches are colored according to the
geographic area occupied by the spiders as inferred using a Bayesian ancestral state reconstruc-
tion. Interspecific nodes are supported at 100%, whereas most intraspecific nodes have bootstrap
supports greater than 70%. (b) Microbiota dendrogram obtained from the Bray-Curtis dissimi-
larities as a measure of beta diversities comparing the Swarm composition between spiders’ mi-
crobiota (similar patterns are obtained with 97% OTUs - not shown). Tips are colored according
to the geographic area of the host spiders, and internal branches are colored accordingly if all
their descendant tips come from the same area. Colored links represent the interaction between
spiders and its microbiota. The Mantel test between the host phylogenetic distances and the mi-
crobiota Bray-Curtis dissimilarities indicated a significant correlation. (c) Map of the Hawaiian
archipelago where the Ariamnes spiders were sampled.

96



Chapter I

Next, we used HOME to infer the inheritance modes for each of the 96 Swarm OTUs
and 103 97% OTUs that were shared by at least 5 spider individuals. When selecting the
most abundant sequence per host individual, only 51 Swarm OTUs (resp. 66 97% OTUs)
had at least one segregating site, while we had 81 Swarm OTUs (resp. 90 97% OTUs)
when selecting the second most abundant sequence. These “shared” OTUs presented a
relatively low number of segregating sites (Supplementary Figure 2) and occurred in 5
to 55 host individuals (Supplementary Figure 3), but they represented 88% (Swarm) and
89% (97% OTU) of the total bacterial reads. When applying HOME, no OTU rejected the
null hypothesis of host-independent evolution (Figure I.2.2), except 2 Swarm OTUs out
of 132, but this ratio falls into the global type-I error of HOME (Article 1; Supplemen-
tary Figure 4b). In addition, we confirmed that these small fraction of “shared” OTUs
used to run HOME (only ∼25% of the OTUs occurred across multiple host individu-
als) were mainly responsible for the global pattern of phylosymbiosis: we still found a
significant phylosymbiosis when randomizing the “unshared” OTUs while keeping the
“shared” OTUs untouched, but conversely, the Mantel correlations were no longer sig-
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Figure I.2.2: HOME results on OTU alignments from the Ariamnes microbiota. (a) Estimated
substitution rate as a function of the estimated number of switches for the different OTUs. Each
dot corresponds to an empirical OTU and is colored according to the type of OTU (Swarm or
97% OTUs) and the representative sequence (the most or the second most abundant sequence
per sample). (b) Percentage of OTU rejecting the null hypothesis of independent host-microbial
evolution. Columns (i) and (iii) correspond to Swarm OTUs, whereas (ii) and (iv) are 97% OTUs.
Representative OTU sequences in columns (i) and (ii) are obtained by taking the most abundant
sequence per sample, whereas in (iii) and (iv) they correspond to the second most abundant
sequences per sample. The two OTUs that rejected the null hypothesis of independent evolutions
(columns (i) and (iii)) belong to the genera Bacillus and Erythrobacter respectively, occurred in 12
and 51 host individuals respectively, have 1 and 13 segregating sites respectively, and have an
estimated number of host-switches equaled to 12 and 21 respectively (very high compared to the
number of hosts where they occurred): they are likely false-positives. They are highlighted by
two surrounding orange circles on panel (a).
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nificant when randomizing the “shared” OTUs and keeping untouched the “unshared”
ones (Supplementary Table 1).

Testing the performance of HOME with simulations:

To test the effect of low substitution rates (µ) on the performance of HOME, we simu-
lated OTU alignments with very low numbers of segregating sites (µ=0.1; Supplementary
Figures 5) similar to those of the empirical OTU alignments (Supplementary Figure 2).
Compared to more variable alignments (µ=1.5; Supplementary Figure 5), we found as ex-
pected that the ability to recover simulated parameters (i.e. the number of host-switches
(ξ) and the substitution rate (µ)) decreases when the simulated substitution rate is low
(Supplementary Figures 6 & 7). The approach tends to underestimate the inferred num-
ber of host-switches when there are many (F1,68=11.7, p=0.001; Supplementary Figure 8a),
however we still found a positive correlation between the number of simulated (ξ) and
estimated host-switches (ξ̂). Similarly, HOME correctly estimates the simulated low sub-
stitution rate, but tends to overestimate it when ξ is large (t69=3.0, p=0.004; Supplemen-
tary Figure 8c). ξ̂ and µ̂ values estimated from OTU alignments simulated independently
from the host phylogeny were significantly higher than those estimated from transmitted
OTUs (Supplementary Figure 8), and the null hypothesis of host-independent evolution
was never rejected for these alignments (Figure I.2.3 and Supplementary Figure 8d). Con-
versely, the null hypothesis of host-independent evolution was on average rejected for
50% of the OTU alignments transmitted with no or few (less than 15) host-switches (in-
termediate statistical power; Supplementary Figure 8d); this statistical power decreased
with the number of simulated host-switches (Supplementary Figure 8d). These results
also depend on the number of hosts in which the OTU is found, and the statistical power
decreased at 40% for OTUs occurring in only 20 hosts and below 10% for OTUs occur-
ring in only 5 hosts (Supplementary Figure 9). Given the statistical power of HOME in
this system (50% when the number of segregating sites is low and the number of hosts in
which the OTU is found is high), we can conclude with high confidence that, if any, there
are at most 4 core OTUs that are transmitted (Supplementary Figure 4a) and no more
than 6 OTUs occurring in only 20 hosts that are transmitted. Therefore, most bacterial
OTUs from the Ariamnes microbiota are likely independently evolving from their host
spiders.

Similarly, when testing whether preferential host-switches could affect the perfor-
mances of HOME, we found a good ability to recover simulated parameter values (Sup-
plementary Figure 6 & 7), especially when the simulated substitution rate was high
(µ=1.5). Both types of preferential host-switches (phylogenetic relatedness or geographic
dependencies) affected the estimation of the parameters in the same way: the estimated
number of switches (ξ̂) and the estimated substitution rates (µ̂) tend to decrease when the
effect of preferential host-switches is higher (Supplementary Figure 6 & 7). Transmitted
OTUs simulated under preferential host-switches tend to be inferred as strictly vertically
transmitted OTUs (i.e. they tend to have estimated parameters similar to those of OTUs
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Figure I.2.3: Evaluating the effect of substitution rates and preferential host-switches on the
rejection of the null hypothesis of host-independent evolution. Percentage of simulated OTU
alignments that reject the null hypothesis of independent host-microbial evolution, according to
the different evolutionary scenario simulated on the 63 tips Ariamnes tree: strict vertical transmis-
sion (ξ=0), vertical transmission with ξ host-switches (ξ>0), or independent evolution (referred to
as “indep”). Four cases are tested: high substitution rate (a & c) relative to low substitution rate (b
& d), and the possibility of host-phylogenetic preferences in the simulated switches (a & b) or ge-
ographic preferences (c & d). Simulated values h=0 and g=1 correspond to uniformly distributed
host-switches, whereas h>0 and g<1 indicate a certain degree of preferential host-switches.

simulated under strict transmission: small ξ̂ and µ̂). Similarly, the statistical power of the
test of host-independent evolution significantly increased with preferential host-switches
(Figure I.2.3), whatever the type of preferential host-switches or the simulated substitu-
tion rate: simulated transmitted OTUs that experienced preferential host-switches were
more frequently inferred as transmitted OTUs than OTUs that experienced uniformly
distributed host-switches (Figure I.2.3). Thus, preferential host-switches is very unlikely
to negatively affect the ability of HOME to detect transmitted OTUs.
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Discussion:

We used HOME, a cophylogenetic model-based approach well-adapted to deal with
microbiota datasets, to assess whether phylosymbiosis can emerge without vertical mi-
crobial transmission in an empirical system. Indeed, we found that the significant phy-
losymbiosis pattern of recently-diverging spiders across the Hawaiian archipelago is
likely not explained by vertically transmitted microbes. This result is not due to the
low number of segregating sites nor to preferential host-switches.

Inferring transmitted symbionts:

Simulations with very low substitution rates showed that the statistical behavior of
HOME remains acceptable when there are very few segregating sites in the microbial
alignment: although the power to reject the null hypothesis of host-independent evo-
lution is reduced, the type-I error rate remains very low (i.e. symbionts that evolved
independently from the host phylogeny are rarely inferred as transmitted). This indi-
cates that HOME can be applied to molecular microbial markers that evolve slowly (e.g.
16S rRNA gene) and when host divergences are recent, such as among the species of
Ariamnes spiders included here that diverged only <2 million years ago (Gillespie et al.,
2018). The ability to study the mode of inheritance in microbiota over short time-scales
is one of the main advantages of HOME compared to other models, such as Jane (Conow
et al., 2010) or ALE (Szöllősi et al., 2013), that need reconstructed microbial trees.

The presence of preferential host-switches does not reduce the statistical power of
HOME; on the contrary microbial alignments simulated under preferential host-switches
are more likely to be inferred as strictly vertically transmitted symbionts. This result is
not surprising as, if host-switches preferentially occurred between host lineages that are
phylogenetically related, the microbial phylogeny tends to be more congruent with the
host phylogeny than if host-switches occurred uniformly. Similarly, as phylogenetically
related host lineages also tend here to occupy the same geographic area, we could ex-
pect the microbial phylogenies resulting from geographic-dependent host-switches to
be more similar to the host phylogeny, than if host-switches occurred uniformly. Thus,
in our simulated scenarios, preferential host-switches strengthen the host phylogenetic
signal within the microbial alignment and increase the ability of HOME to detect trans-
mitted OTUs.

Our test of the ability of HOME to detect preferential host-switches if they had oc-
curred on the Ariamnes phylogeny showed that such detection is difficult, and that both
phylogenetically- or geographically-driven host-switches leave similar signals in the mi-
crobial alignments and are therefore undifferentiable (Supplementary Results). This does
not imply that preferential host-switches cannot be inferred from any host phylogeny, as
the Ariamnes phylogeny has a strong geographic structure that renders this inference
particularly challenging. Simulations on other hosts phylogenies are required to provide

100



Chapter I

definitive conclusions on these possibilities, as such detection would be informative on
the host-switching processes (de Vienne et al., 2013).

Absence of transmitted microbes in Ariamnes spiders:

The microbiota of the Ariamnes spiders showed a low proportion of core OTUs, which
suggests that the bacterial turnover within spider microbiota is quite large. By apply-
ing HOME, we showed that these bacterial OTUs did not reject the null hypothesis of
host-independent evolution. Given the statistical power of HOME when the number of
segregating sites is low, we can conclude that there are likely less than five transmitted
core OTUs in this system. The two Bacillus and Erythrobacter OTUs that rejected the null
hypothesis of independent evolutions with HOME have high estimated number of host-
switches, which resulted in incongruent cophylogenetic patterns, meaning that they are
likely false-positives (Figure I.2.2). Instead, most bacteria are probably acquired in the
environment at each generation by spider individuals. Although the ability of HOME to
infer transmitted OTUs occurring in only few hosts is limited, the fact that these OTUs
are absent in most of the host individuals suggests that these OTUs are facultative sym-
bionts with a low specificity toward spiders, rather than specific vertically transmitted
symbionts. The spider microbiota assembly is thus likely not determined by the verti-
cal inheritance of microbial lineages in this system. Such results were partially expected
given that spider microbiota can show a very high heterogeneity, and that feeding exper-
iments have recently demonstrated the lability of the microbiota composition according
to the spider’s diet (Kennedy et al., 2020). This corroborates the fact that the degree of
conservatism and the functional relevance of the microbiota are highly variable across
the animal kingdom, especially within arthropods in which the microbiota composition
ranges from mainly transient microbes acquired from the environment (Hammer et al.,
2017, 2019) to striking examples of vertically transmitted microbes (Moran et al., 2008).

One could argue that not detecting (many) transmitted bacterial OTUs in this study
comes from the fact that the 16S rRNA marker evolves too slowly to have accumulated
any segregating sites in the nucleotide alignment of transmitted OTUs. Therefore, nu-
cleotide alignments without segregating sites could correspond to transmitted OTUs.
However, the nucleotide substitution rate of the 16S rRNA gene is estimated to be 1%
per 50 million years in bacteria (Ochman et al., 1999). Given that the sum of the branch
lengths of the phylogenetic tree of the Ariamnes spiders represents a total of 13 million
years of nucleotide evolution, we expect on average at least one segregating site per 300
bp alignments of transmitted bacteria. Given that substitution rates of symbiotic bacteria
are higher because of their small population size compared to free-living bacteria (Moran
et al., 1993, 2008), this would confer even more variability within the OTU alignments of
transmitted bacteria. Therefore, it is unlikely that there are transmitted microbes among
Ariamnes microbiota but that they do not have segregating sites. Using metabarcoding
markers that evolve faster would help to confirm the absence of transmitted microbes
among of Ariamnes spider microbiota.
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Other drivers of phylosymbiosis:

Our study highlights an empirical system in which phylosymbiosis is likely explained
by processes other than vertical transmission (Kohl, 2020). First, phylosymbiosis can
emerge through the existence of a simple ecological-filtering during host colonization,
as has been hypothesized before (Moran & Sloan, 2015) and demonstrated using simula-
tions (Mazel et al., 2018). Indeed, if the microbiota is entirely acquired from the environ-
ment and if its assembly is influenced by host traits (e.g. gut pH, diet. . . ) that are phylo-
genetically conserved, then the microbiota will be more similar between closely-related
than distantly-related species. Such mechanisms could be acting in the microbiota assem-
bly of Ariamnes spiders and be responsible for the observed pattern of phylosymbiosis,
but experimental works would be required to test whether differences in their micro-
biota could be linked to phylogenetically conserved host-filtering mechanisms. Second,
a heterogeneous geographic structure in the environmental pools of available microbes
can impact microbiota assembly and generate phylosymbiotic patterns if phylogeneti-
cally related host lineages tend to occupy similar geographic areas (Kohl, 2020). In Ari-
amnes spiders for example, each island is characterized by one dominant endosymbiont
(Armstrong et al., 2020): these intracellular bacteria, that generally colonize most spider
tissues including the midgut (Sheffer et al., 2019), are typical symbionts of arthropods.
Here, these phylogenetically-conserved shifts in the presence/absence of abundant en-
dosymbionts likely generate most of the phylosymbiosis in the Ariamnes system (Arm-
strong et al., 2020), and might explain might why its significance decreased when not
considering OTU abundances (Supplementary Figure 1). Interestingly, these bacterial
endosymbionts are well-known to be transmitted from generation to generation through
direct transfer in the maternal germline (Moran et al., 2008), but our analyses suggest
that they are not vertically transmitted over long timescales. Instead, this suggests that
the temporal turnover of the endosymbionts is relatively high compared to the timescale
of host diversification and that their epidemic spread is influenced by island structure.
Altogether, this suggests that macro-organism diversification and microbiota evolution
can happen at two decoupled timescales, even in the presence of phylosymbiosis.

Our results in Ariamnes spiders do not imply that phylosymbiosis in other host-micro-
biota systems is not (at least partly) explained by vertical transmission. For instance,
bacterial vertical transmission occurs in the gut microbiota of mammals (Sanders et al.,
2014; Groussin et al., 2017; Youngblut et al., 2019; Article 1), where it generates stronger
phylosymbiosis than host-filtering alone (Mazel et al., 2018). Importantly, phylosymbio-
sis indicates a degree of host-phylogenetic conservatism in the many processes involved
in microbiota assembly during host evolution (Song et al., 2020), but does not by itself in-
form on the nature of these processes. Model-based approaches such as HOME can pro-
vide a more precise characterization of these non-exclusive processes, and more work
in this direction is needed to improve our understanding of microbiota assembly and
evolution.
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Abstract

Long-term transmissions of gut bacteria are thought to be frequent and function-
ally important in mammals. Several approaches have been proposed to detect,
among species-rich microbiota, the bacteria that have been vertically transmitted
during the host clade radiation. Applied to mammal microbiota, these methods
have sometimes led to quite conflicting results, and it remains unclear how these
different approaches cope with the slow evolution of the genes used to characterize
bacterial microbiota, like the 16S rRNA gene. Here, we use simulations to test
the statistical performances of two widely-used global-fit approaches (ParaFit and
PACo) and two event-based approaches (ALE and HOME). We find that these
approaches have different advantages and weaknesses according to the amount of
variation in the bacterial DNA sequences and may therefore be complementary.
We apply them to the gut microbiota of primates and find that at most 10% of their
bacteria are transmitted. We also provide recommendations for future studies
looking at vertical transmission among host-associated microbiota.
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Introduction:

Most mammals strongly rely on their associated microbial communities, called mi-
crobiota, for various functions like their nutrition, protection, or development (Selosse
et al., 2004; McFall-Ngai et al., 2013; Hacquard et al., 2015). To ensure that new mammal
hosts are colonized by beneficial microbes, animals have evolved a range of strategies to
efficiently transmit their microbes at each generation, including direct transmissions at
birth, during parental care, or through social contact (Moran et al., 2019). If these trans-
missions are stable and faithful, host-microbe interactions are conserved in the host lin-
eage over long-time scales and we refer to this process as vertical transmission (Groussin
et al., 2017). At host speciation, we expect transmitted microbes to be inherited by the
two daughter host species and to separately evolve in each host lineage, resulting in a
pattern of cophylogeny where the phylogeny of the transmitted microbe mirrors that of
the host (de Vienne et al., 2013). Conversely, if a microbe is acquired from the environ-
mental pool of microbes at each host generation, we do not expect any cophylogenetic
patterns between the microbe and the host.

Proofs of long-term vertical transmissions among the bacterial gut microbiota of mam-
mals are numerous (Sanders et al., 2014; Moeller et al., 2016; Groussin et al., 2017; Gaulke
et al., 2018; Youngblut et al., 2019; Article 1). They mainly come from DNA metabarcoding
datasets, where the whole bacterial communities are characterized using the 16S rRNA
gene, a short and slowly evolving region (Ochman et al., 2010). Usually, one clustered
the 16S rRNA sequences into operational taxonomic units (OTUs) based on sequence
similarity and inferred which bacterial OTUs present a cophylogenetic pattern with the
host, suggesting that they may be vertically transmitted. However, what is the exact
proportion of transmitted bacteria remains unclear. For instance, Groussin et al. (2017)
estimated that more than 50% of the bacterial OTUs have been vertically transmitted
in mammals, but Gaulke et al. (2018) only found 14% of transmitted bacterial clades.
Similarly, we only estimated that ∼8% of the gut bacteria were transmitted in the gut
microbiota of great apes (Article 1). These discrepancies likely come from the fact that
different quantitative approaches have been used and we do not have a clear idea of the
advantages and disadvantages of each approach to detect vertical transmission when
applied to metabarcoding datasets. Indeed, transmitted bacteria characterized with 16S
rRNA metabarcoding only accumulate very few substitutions in their DNA sequences
since they co-diverged with their mammal hosts. Therefore, the low amount of infor-
mation within the 16S rRNA sequences prevents us to robustly reconstruct the bacterial
phylogeny. How phylogenetic uncertainty in bacterial evolution affects the results of the
different approaches to detect transmitted bacteria remains unknown yet.

Roughly, these approaches can be divided into two categories (de Vienne et al., 2013).
First, the global-fit approaches measure a global congruence between the host and bac-
teria evolutionary histories. For instance, ParaFit (Legendre et al., 2002) and PACo (Bal-
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buena et al., 2013) are two widely used approaches based on the fourth-corner statistic or
Procrustes superimposition respectively. They do not need to reconstruct the OTU tree
as they can be directly applied to the bacterial genetic distances, and they also accept
multiple OTU strains per extant host. However, they only provide a measure of cophy-
logenetic pattern and do not inform on the processes at play.
Second, event-based approaches directly model the events of cospeciation, like host-
switches, losses, or duplications, to reconciliate the host and OTU phylogenies, while
taking into account the uncertainly in the OTU evolution. For instance, the ALE ap-
proach (Szöllősi et al., 2013a) uses a posterior distribution of OTU phylogenetic trees to
fit reconciliation events. It simultaneously considers that host-switches likely come from
unsampled or extinct host lineages and that the OTU could have been absent in ancestors
of all host and only secondarily acquired (Szöllősi et al., 2013b). Recently, the HOME ap-
proach (Article 1) has been developed with the goal of inferring transmitted OTUs even
when they only have accumulated few substitutions in their 16S rRNA gene sequences
(i.e. when the host clade has recently diverged). Compared to ALE, HOME is a much
more simplistic model, that only considers cospeciations and host-switches events and
only allows one OTU strain per extant host. However, HOME does not need a phylo-
genetic reconstruction of the OTU tree but instead directly models the bacterial DNA
substitution process on the host phylogeny (considering eventual host-switches).
Both global-fit and event-based approaches rely on randomizations for generating null
expectations under independent host-OTU evolutions (e.g. when microbes are acquired
from the environment): one can reject or not the null hypothesis of independent evolu-
tions by comparing the estimated scenario to null expectations, and therefore, conclude
whether an OTU is vertically transmitted.

Here, we performed simulations of bacterial evolutions on the primate phylogeny to
investigate the statistical performances of different approaches to detect vertically trans-
mitted bacteria in metabarcoding datasets. We simulated the evolution of the 16S rRNA
gene sequences of vertically transmitted bacteria and independently evolving bacteria
and measured the statistical power (the proportion of transmitted bacteria inferred as
being transmitted) and the type-I error rate (the proportion of independently evolving
bacteria inferred as being transmitted; i.e. false-positives) of ParaFit, PACO, ALE, and
HOME. Finally, we applied these different methods to the gut bacterial microbiota of
primates (Amato et al., 2019), discussed the pros and the cons of each approach, and
proposed future developments.

Methods:

Primate phylogeny:

Given that our final goal was to apply approaches to detect vertical transmission in
the gut microbiota of primates from Amato et al. (2019), we performed all the simulations
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on the primate phylogeny. We obtained the primate phylogenetic tree of Dos Reis et al.
(2018), which corresponds to a nearly complete phylogenetic tree of extant primates (367
species) reconstructed using phylogenomic data and fossil calibrations. The crown age
of primates was estimated at ∼74 million years (Myr).

Simulations:

We simulated different scenarios of host-microbiota evolution on the complete pri-
mate phylogenetic tree: (i) strict vertical transmissions where each microbial OTU evolves
on the host phylogeny, (ii) vertical transmissions with a given number of horizontal host-
switches (5, 10, 15, or 20), or (iii) environmental acquisition, where the microbes evolved
on an independent phylogeny and are randomly acquired by the extant host species
(Figure I.3.1). We first considered that each host species was only associated with a single
OTU strain. For each scenario, we simulated DNA evolution of the 16S rRNA gene on the
OTU phylogeny: DNA substitutions were assumed to follow a K80 model (Kimura, 1980)
with different substitution rates (µ): 1.5 (many substitutions), 1, 0.5, 0.1, and 0.05 (very
few substitutions). These substitution rates are relative rates that were chosen in order
to obtain numbers of segregating sites and haplotypes in the simulated OTU alignment
that are consistent with the empirical OTU alignments (see Results). For each OTU, we
thus obtained a DNA alignment by taking the OTU sequence in each extant host species.
These simulations were performed using the function sim_microbiota in the R-package
HOME (Article 1; R Core Team, 2020). In particular, we considered that host-switches
can happen uniformly on the host phylogeny from a donor branch to a receiving branch
where it replaces the previous OTU strain. Once simulating the OTU alignments on the
complete primate phylogeny, we only retained the OTU sequences present in the 18 pri-
mate species sampled in Amato et al. (2019), in order to insert our simulations in a context
of under-sampling (that is very frequent when studying host-associated microbiota in a
given host clade). We referred to these OTU alignments as the simulations with host-
switches.

Second, we considered that OTUs can be lost during primate evolution or not de-
tected in the extant host-associated microbiota using metabarcoding technics, such that
we only randomly sampled the OTU sequences in 10 extant host species among each
OTU alignment. We referred to these OTU alignments as the simulations with host-
switches and losses.

Third, we considered that intra-host OTU duplications can happen stochastically on
the host phylogeny (Figure I.3.1), such that multiple OTU strains can persist in a host
lineage. We simulated duplications using a continuous-time Markov process, i.e. dupli-
cations can happen any time on the host branches, with a rate κ = 2. Similarly, we simul-
taneously simulated host-switches with the same scenarios as above. We obtained OTU
alignments by selecting the OTU haplotypes present in each of the 18 primate species,
i.e. we only retained the duplicated OTU strains that have experienced at least one sub-
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(a) Host phylogeny

(b) Different microbial inheritance

(c) Resulting OTU phylogeny
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Figure I.3.1: Different modes of inheritance of a given host-associated operational taxonomic
unit (OTU) and their consequences on the microbial phylogenies. On a phylogenetic tree of 4
host species (a), we represented the different modes of inheritance for a given OTU (b) and the
resulting phylogeny (c): extreme scenarios correspond to strict vertical transmission (i; perfect
cophylogenetic pattern) or environmental acquisition (v; no cophylogenetic pattern expected).
Under vertical transmission, other punctual processes can result in a loss of perfect congruence
between the host and the OTU phylogenies: punctual events of horizontal transmissions (ii; the
horizontal transfer from one donor host to a receiver host with OTU replacement), microbial loss
(iii) or intra-host duplication (iv). We also represented a sampling process where only some extant
host species are sampled to study their microbiota.
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stitution since their duplication. We referred to these OTU alignments as the simulations
with host-switches and duplications.

Fourth, we also simulated losses and/or non-detection in the simulations with host-
switches and duplications, by randomly keeping only 10 extant host species. We thus
obtained simulations with host-switches, losses, and duplications.

For each simulated scenario and combination of parameters, we performed 50 simu-
lations, except for µ = 0.05, where we performed 100 simulations given that many of the
resulting OTU alignments contained no segregating sites. We therefore obtained a total
of 7,200 simulated OTU alignments.

Inferring vertically transmitted symbionts:

We considered four different approaches for detecting vertical transmission: two
global-fit approaches, ParaFit and PACo, and two event-based approaches, ALE and
HOME. Other approaches exist for detecting vertical transmission, like the global-fit ap-
proaches proposed by Hommola et al. (2009) that is a generalization of the Mantel tests,
but we chose to only focused on the four approaches that we considered as frequently
used (Groussin et al., 2017; Gaulke et al., 2018; Youngblut et al., 2019; Article 1).

ParaFit and PACo were run between the host phylogenetic distances (directly ob-
tained from the primate phylogeny) and the microbial genetic distances, obtained by
computing pairwise distances from the DNA sequences (assuming a K80 model of sub-
stitution). We amended the functions para f it and PACo from the R-packages ape (Par-
adis et al., 2004) and paco (Hutchinson et al., 2017) respectively, to handle computations of
the tests when the number of OTU haplotypes was low. ParaFit and PACo statistics were
both computed using a Cailliez correction for negative eigenvalues. To evaluate the sig-
nificance of the statistic of each test, we compared its value to a null distribution under a
hypothesis of independent host-OTU evolution. To do so, we performed 10,000 random-
izations by permuting for each host species its associated OTU haplotype(s); in other
words, these randomizations kept the same number of OTU haplotype per host species,
but permuted their identity (Legendre et al., 2002; Balbuena et al., 2013). To avoid issues
during the randomizations of the host-OTU associations, we only ran ParaFit and PACo
for the OTU alignments containing at least 3 haplotypes.

To run ALE, one needs first to generate a posterior distribution of OTU phylogenetic
trees using Bayesian phylogenetic inference. Following Groussin et al. (2017), we re-
constructed phylogenetic trees for each OTU alignment using PhyloBayes (Lartillot &
Philippe, 2004) with a GTR model and a discrete gamma distribution with four cate-
gories. PhyloBayes was run for 4,000 generations, sampling at every generation after
an initial burn-in of 1,000 generations. With the host phylogeny and the distribution
of OTU trees as inputs, ALE was run using the ALEml program available at https:
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//github.com/ssolo/ALE: it estimated by maximum likelihood the rates of host-switch,
duplication, and loss, and generated a set of 100 host-OTU reconciliations, which gave
the average numbers of cospeciations, host-switches, duplications, and losses. To evalu-
ate the significance of these estimated reconciliations, we shuffled the primate species in
the phylogenetic tree and re-ran ALE to obtain a distribution of the numbers of reconcilia-
tion events under a null hypothesis of independent host-OTU evolution. We considered
that an OTU was vertically transmitted if the estimated number of cospeciations was
higher than 95% of the null expectations and if the estimated number of host-switches
was lower than 95% of the null expectations (Dorrell et al., 2021). We performed 100
randomizations per OTU, except when simulating intra-host duplications, we only per-
formed 50 randomizations because of the long computation time of ALE.

Finally, HOME was run using the function HOME_model in the R-package HOME
(Article 1). For each OTU alignment, HOME outputs the maximum-likelihood estimates
of the number of host-switches and the substitution rate. Likelihood computations were
performed using Monte Carlo simulations with 5,000 trees and the tested numbers of
host-switches were picked in a grid from 1 to 35. As for ALE, we assessed the signif-
icance of these estimations by performing 100 randomizations shuffling the host-OTU
associations. We considered that an OTU was vertically transmitted if both the estimated
substitution rate and the observed number of host-switches were lower than 95% of the
null expectations. Because HOME does not tolerate multiple OTU strains per host tip at
present, when simulations included duplications, we randomly picked one single haplo-
type per host species.

ALE and HOME were only run for OTU alignments presenting at least one segregat-
ing site. Because ALE inferences were too long when the numbers of segregating sites
in the OTU alignments were low (see Results), we did not use ALE for OTU alignments
simulated with µ = 0.05. Conversely, because HOME inferences were too long when the
numbers of segregating sites in the OTU alignments were high, we did not use HOME
for OTU alignments simulated with µ > 0.5 and duplications.

We computed the statistical power as the percentage of simulated transmitted OTUs
(strictly vertically transmitted or transmitted with host-switches) that were inferred as
being transmitted. Conversely, the type-I error rate was the ratio of OTUs simulated
as independently evolving that were inferred as being transmitted. Note that we did
not include in these computations the simulated OTUs for which we could not apply the
approaches (i.e. OTUs with no segregating site for event-based approaches or OTUs with
less than 3 haplotypes for global-fit ones).

Empirical application:

We downloaded the dataset from Amato et al. (2019) characterizing the gut bacterial
microbiota of 153 primates belonging to 18 species using the V4 region of the 16S rRNA
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gene available in https://www.ebi.ac.uk/ena/data/view/PRJEB22679. The demulti-
plexed Illumina reads were processed using a pipeline based on VSEARCH (Rognes et
al., 2016) available in https://github.com/BPerezLamarque/HOME/. In short, after qual-
ity filtering, the reads were clustered into OTUs using either Swarm clustering (Mahé
et al., 2015) or classical OTU clustering methods with 95% or 97% similarity thresholds.
Chimeras were filtered out de novo and taxonomy was assigned to each OTU using the
Silva database (Quast et al., 2013). We only kept non-chimeric bacterial OTUs longer
than 150 base pairs and represented by at least 5 reads in at least 2 samples. Finally,
we assumed that if an OTU had less than 5 reads in a sample, it was likely a cross-
contamination and set its abundance to 0.

We only tested the support for vertical transmission for OTUs being present in at least
10 species. We merged all the primate samples from the same species together and for
each OTU and we built the OTU alignment by picking the most abundant sequence as-
signed to this OTU within each host species. In other words, we considered that there is
only one OTU strain per host species. OTU sequences were aligned using MAFFT (Ka-
toh & Standley, 2013). We looked at the number of segregating sites and haplotypes in
the resulting OTU alignments and we applied ParaFit, PACo, ALE, and HOME to detect
vertically transmitted OTUs.

Next, we relaxed the hypothesis of a single OTU strain per host species, by consider-
ing the possibility of intra-host duplications: we picked up to 3 OTU haplotypes per host
species by selecting the 3 most abundant ones when available. Given that HOME cannot
tolerate multiple OTU sequences per host, we only ran ParaFit, PACo, and ALE.

Finally, we performed model validation. Amato et al. (2019) highlighted that a co-
phylogenetic pattern in primate microbiota could arise because of the geographic split of
the primates between the Old World (Africa and Asia) and the New World (Americas).
Thus, rather than being due to vertical transmission, cophylogenetic patterns would be
explained by the heterogeneous environmental pools of microbes combined with the fact
that closely related primate species tend to be present in the same area. Therefore, for the
OTUs that presented a significant cophylogenetic pattern according to the different ap-
proaches, we randomized the primate-OTU associations within the Old World and New
World respectively, and re-run the approaches: if a significant cophylogenetic pattern
is still found, it means that we cannot reject the hypothesis of heterogeneous pools of
microbes between the Old World and the New World, whereas if no significant cophy-
logenetic pattern is recovered anymore when randomizing, we can conclude that the
cophylogenetic pattern is likely linked to vertical transmissions.

114

https://www.ebi.ac.uk/ena/data/view/PRJEB22679
https://github.com/BPerezLamarque/HOME/


Chapter I

Results:

Simulations with host-switches and losses:

The OTU alignments simulated with only host-switches contained a mean number of
segregating sites >20 when the simulated substitution rate (µ) equaled 1.5 and <5 when
µ = 0.05 (with many OTU alignments presenting no segregating sites; Supplementary
Figure 1). Similarly, the number of haplotypes went from >15 when µ = 1.5 (almost one
OTU haplotype for each host species) to <5 when µ = 0.05, meaning that our simulations
comprised a large range of variation within the OTU alignments.

Global-fit approaches (ParaFit and PACo) presented a very high statistical power (≥
98%) when µ ≥ 0.5, which decreased at ∼70% when µ = 0.05 (Figure I.3.2). However,
they displayed a rather elevated type-I error rate when µ = 0.05 (type-I error rate ∼10%
for both ParaFit and PACo). We also noticed that PACo tends to have a type-I error rate
>5% even when µ was high (Figure I.3.2b).

Similarly, ALE had a very high power (>95%) and a low type-I error (<5%) when
µ ≥ 0.5 (Figure I.3.3a). In terms of the estimated numbers of events, it correctly inferred
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Figure I.3.2: Statistical performances of the global-fit approaches, ParaFit (a) and PACo (b).
Numbers of simulated OTUs rejecting the null hypothesis of independent evolution (rejected
in red, not rejected in green, and not computed in grey) represented as a function of the simu-
lated scenario: either strict vertical transmission (0 host-switch), vertical transmission with host-
switches (5, 10, 15, or 20 switches), or independently evolving (“indep.”). Scenarios showing the
statistical power of the approach are highlighted in yellow, whereas the ones indicating the type-
I error rate are in purple: these performances are indicated as percentages at the bottom of the
panels. Each panel corresponds to the different simulated substitution rates (µ).
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only cospeciation events when simulating strict vertical transmissions and host-switches
when simulated (Figure I.3.3b). Conversely, when independent evolution was simulated,
the estimated number of cospeciation events was lower and the number of host switches
importantly increased (Figure I.3.3b). Thus, when µ ≥ 0.5, ALE had similar statistical
performances as global-fit approaches, but also correctly inferred reconciliation events,
meaning that ALE is better to reconstruct the evolutionary history of the host-associated
microbial OTUs. However, when the number of segregating sites decreased (µ = 0.1),
the power of ALE was only <50% and the type-I error increased to 6%. In addition, ALE
tends to overfit reconciliation events: it estimated many losses and hosts-switches that
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Figure I.3.3: Statistical performances of the event-based approach ALE. (a) Numbers of simu-
lated OTUs rejecting the null hypothesis of independent evolution (rejected in red, not rejected
in green, and not computed in grey) represented as a function of the simulated scenario: either
strict vertical transmission (0 host-switch), vertical transmission with host-switches (5, 10, 15, or
20 switches), or independently evolving (“indep.”). Scenarios showing the statistical power of
the approach are highlighted in yellow, whereas the ones indicating the type-I error rate are in
purple: these performances are indicated as percentages at the bottom of the panels. Each panel
corresponds to the different simulated substitution rates (µ), except µ = 0.05, which was too
long to be computed. (b) Estimated parameters (numbers of duplications, losses, cospeciations,
or host-switches) as a function of the simulated substitution rates (µ = 1.5 or µ = 0.1) and the
simulated scenario: either strict vertical transmission (0 host-switch), vertical transmission with
15 host-switches, or independently evolving (“indep.”). Dark grey lines represent OTUs that are
inferred to be transmitted, whereas light grey lines represent OTUs acquired from the environ-
ment.

116



Chapter I

were not simulated (Figure I.3.3b). Given that the inferred reconciliation events were
untrusty and that the statistical performances of ALE decreased, global-fit approaches
are better than ALE when the number of segregating sites is low in the OTU alignments.

Finally, HOME also performed well when µ was high (Figure I.3.4a), but its statistical
power tends to importantly decrease with µ: when µ = 0.1, the power of HOME was
∼40% and only 23% for µ = 0.05 (which was ∼15% lower than global-fit approaches
when comparing the absolute number of OTUs inferred as transmitted; Figure I.3.2).
However, compared with other approaches, HOME kept a type-I error rate very low
(< 5%) in all conditions, especially when µ was low (0% of type-I error; Figure I.3.4a).
In terms of infer parameters, HOME correctly estimated the substitution rate as well as
the number of host-switches (Figure I.3.4b), although it tends to be noisier when µ was
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Figure I.3.4: Statistical performances of the event-based approach HOME. (a) Number of sim-
ulated OTUs rejecting the null hypothesis of independent evolution (rejected in red, not rejected
in green, and not computed in grey) represented as a function of the simulated scenario: either
strict vertical transmission (0 host-switch), vertical transmission with host-switches (5, 10, 15, or
20 switches), or independently evolving (“indep.”). Scenarios showing the statistical power of
the approach are highlighted in yellow, whereas the ones indicating the type-I error rate are in
purple: these performances are indicated as percentages at the bottom of the panels. Each panel
corresponds to the different simulated substitution rates (µ). (b) Estimated parameters (number
of host-switches and substitution rates) as a function of the simulated substitution rates (µ = 1.5
or µ = 0.1) and the simulated scenario: either strict vertical transmission (0 host-switch), vertical
transmission with 15 host-switches, or independently evolving (“indep.”). Dark grey lines repre-
sent OTUs that are inferred to be transmitted, whereas light grey lines represent OTUs acquired
from the environment.
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low. When independent evolution was simulated, both the estimated substitution rate
and the number of host-switches increased (Figure I.3.4b).

In terms of computation time, global-fit approaches were the fastest (especially Para-
Fit) and their computation time only slightly increased with the simulated substitution
rate (i.e. more information within the alignment; Supplementary Figure 2). Conversely,
both event-based approaches were much slower: Like global-fit approaches, the compu-
tation time of HOME increased with µ (from only a few minutes when the number of
segregating sites was very low, to several days when there were many of them), whereas
the computation time of ALE had an opposite trend. Indeed, when reconciliating the
host and OTU trees, ALE considers the phylogenetic uncertainty in the OTU trees. When
there were many segregating sites in the OTU alignments, the phylogenetic uncertainty
was rather low and ALE was rather fast to run, but when the segregating sites were
scarce, the phylogenetic uncertainty was important and therefore, ALE could take sev-
eral days to run for a single OTU. Thus, to save time and energy, we avoided running
ALE when the simulated substitution rates were µ < 0.05 and HOME when µ ≥ 1.

When simulating losses (or non-detection within hosts), the statistical power of all the
approaches decreased (Supplementary Figures 3-5), especially for HOME (∼10% when
µ = 0.05). In addition, the type-I error rate also strongly increased (> 10%) for global-fit
and ALE when µ were low, but it remained very low for HOME (0% when µ = 0.05).

Simulations with host-switches, losses, and duplication:

When simulating duplications (and host-switches), we globally increased the number
of segregating sites and haplotypes in the simulated OTU alignments (Supplementary
Figure 6).
Simulating duplications and allowing multiple strains per host species did not impact
the statistical power of global-fit approaches that remained very high (>60% for all µ;
Supplementary Figure 7). However, the type-I error rate importantly increased, and it
even reached 20% for PACo when µ = 1.
Conversely, ALE handled very well duplications and conserved a high power (>95%)
and a low type-I error (5-10%; Supplementary Figure 8). However, the computation time
of the approach importantly increased, which complicated the use of the method when
the number of segregating sites in the OTU alignment was low.
Finally, HOME, which cannot consider multiple OTU strains per extant host, was not
that affected by the sampling at random of a single OTU strain per host: it kept an inter-
mediate power and had still no type-I errors (Supplementary Figure 9).

When also simulating losses (or non-detection within hosts), we observed similar
trends with an overall decrease of the power for all the approaches (Supplementary Fig-
ures 10-11-12). In addition, we noticed that the type-I error rate of ALE increased >5%.
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Empirical application:

A total of 149 95% OTUS, 86 97% OTUs, and 47 Swarm OTUs were tested for ver-
tical transmission. They were on average present in 12 host species and had a number
of segregating sites and haplotypes similar to those of the OTUs simulated with substi-
tution rates from µ = 0.05 to µ = 0.5 (Supplementary Figures 1 and 13). The majority
of these OTUs were inferred as being vertically transmitted when using global-fit ap-
proaches or ALE (Figure I.3.5a). Conversely, according to HOME, only 20% of the tested
OTUs were transmitted. More than 60% of the OTUs found as being transmitted were
simultaneously found as being transmitted by at least three approaches (Figure I.3.5b):
these different approaches tend to agree on a core of transmitted OTUs (Figure I.3.5b),
but many OTUs were also inferred as being transmitted with only one approach.
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Figure I.3.5: Vertical transmission in primate gut microbiota . (a) Number of OTUs from the
gut microbiota of primates rejecting (in red) or not (in green) the null hypothesis of independent
evolutions according to the different approaches tested: ParaFit, PACo, ALE, or HOME. In other
words, OTUs colored in red represent transmitted OTUs. At the top of each bar, we indicated the
percentage of reads corresponding to these transmitted OTUs in the whole primate gut micro-
biota. OTUs were either clustered as 95%, 97%, or as Swarm OTUs. (b) Venn diagrams indicating
the OTUs that are simultaneously found as transmitted based on the different approaches.
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In terms of estimated reconciliation events, ALE inferred many host-switches and
losses in transmitted OTUs, whereas as expected, non-transmitted ones presented a lot of
host-switches compared to cospeciations (Supplementary Figure 14). Similarly, HOME
tends to infer lower substitution rates (estimated µ < 5) and lower numbers of host-
switches (<10) in transmitted OTUs than in non-transmitted ones (Supplementary Figure
15).

When looking at the numbers of segregating sites and haplotypes of the OTUs be-
ing inferred as transmitted according to the different approaches, we observed two op-
posite trends (Supplementary Figure 13): global-fit approaches and ALE tend to infer
more frequently transmitted OTUs when the numbers of segregating sites and haplo-
types were low in the alignments, whereas HOME tends to instead infer less transmitted
OTUs when OTUs contained less nucleotide variation. Given that (i) the statistical power
of all these approaches decreases when there is less nucleotide variation (Figures I.3.2-4)
and more losses (Supplementary Figures 3-5), and that (ii) the type-I error rate of global-
fit approaches and ALE also increases in these conditions, we suggested that many of the
OTUs inferred as being transmitted by global-fit approaches and ALE were likely to be
false positives.

Similarly, when selecting several strains per OTUs and applying global-fit approaches
and ALE, more than 75% of OTUs are inferred as being vertically transmitted (Supple-
mentary Figure 15). Similarly, given that our simulations suggested that the type-I error
rate of these approaches (especially PACo; Supplementary Figures 7-12) increases when
considering duplications, we suggested that many of these OTUs might correspond to
false positives.

The model validations to assess the role of the split between Old and New Worlds in
the cophylogenetic signals showed contrasting results (Figure I.3.6). Indeed, with Para-
Fit, PACo, and ALE, we still recovered a cophylogenetic signal in most of the OTUs when
randomizing the primate-OTU associations within the Old and New Worlds, suggesting
that we cannot exclude that the signal in these OTUs came from heterogeneous environ-
mental pools of bacteria rather than vertical transmission. Conversely, most of the OTUs
inferred with HOME did not reject the null hypothesis of independent evolution when
randomizing based on the geography, suggesting that these OTUs are likely to have been
transmitted.

According to the global-fit approaches or ALE, transmitted OTUs correspond to 2%
(based on Swarm OTUs) to 14% (based on 95% OTUs) of the total number of reads of the
primate gut microbiota (Figure I.3.5). Conversely, based on HOME, they only represent
less than 7% of the microbiota. When removing the OTUs that are likely exhibiting a
signal of geographic isolation (New versus Old Worlds), all the approaches estimated
that at most 5% of the reads of the primate gut microbiota were vertically transmitted
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Figure I.3.6: Model validation: Geography can explain a large number of the cophylogenetic
patterns. (a) Phylogenetic tree of the 18 primates with branches colored according to the New
or Old Worlds. (b) For each OTU being vertically transmitted according to ParaFit, PACo, ALE,
or HOME, we re-ran the inference after randomizing the primate-OTU associations within the
Old and New Worlds respectively. In other words, if a cophylogenetic pattern is still significant
for some OTUs, it means that the original cophylogenetic pattern was mainly driven by a split
between the Old and New Worlds and that we cannot exclude that geography alone (i.e. hetero-
geneous environment pools of bacteria) explains alone the patterns of cophylogeny, rather than
vertical transmission. Conversely, if the null hypothesis is rejected when randomizations are per-
formed, it means that the cophylogenetic signal is likely generated by vertical transmissions. The
panels indicate the number of OTUs from the gut microbiota of primates rejecting (in red) or not
(in green) the null hypothesis according to the different approaches tested: ParaFit, PACo, ALE,
or HOME. In other words, OTUs colored in red represent transmitted OTUs. At the top of each
bar, we indicated the percentage of reads corresponding to these transmitted OTUs in the whole
primate gut microbiota. OTUs were either clustered as 95%, 97%, or as Swarm OTUs.

(Figure I.3.6). In terms of taxonomy, the transmitted bacteria mostly belonged to the class
Clostridia (phylum Firmicutes), especially the orders Lachnospirales and Oscillospirales,
and to the class Bacilli (phylum Firmicutes) to a lesser extent.
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Discussion:

In this study, we used simulations to compare the statistical performances of differ-
ent global-fit and event-based approaches to detect vertical transmission among DNA
metabarcoding datasets. We found that the different approaches we tested are rather
complementary and we applied them to identify the transmitted bacterial OTUs (opera-
tional taxonomic units) in primate guts.

The pros and the cons of the quantitative approaches to detect vertical transmission:

When there is little information in the OTU sequences across the host clade (only
a few segregating sites), global fit-methods have high statistical power, but an elevated
type-I error rate. Given that PACo tends to always have a higher type-I error than ParaFit
and takes more time to run (although it remains faster than event-based approaches), we
recommend using ParaFit to detect vertically transmitted OTUs. In terms of event-based
approaches, ALE is very slow to run when the number of segregating sites in the OTU
alignments was low (<10) because there was too much uncertainty in the reconstructed
OTU trees. Given that ALE also tends to overfit reconciliation events in these conditions,
we do not recommend using it when the amount of variation in the OTU sequences is too
low. Indeed, when there is so little information, ALE might be a too complex model to
fit. Finally, HOME performs correctly in terms of type-I errors, but has limited power. In
other words, HOME is very unlikely to infer false positives, but likely misses many trans-
mitted OTUs. Thus, when there is little variation within the OTUs, we recommend to use
ParaFit (high power, many false positives) in combination with HOME (low power, al-
most no false positives) to detect vertical transmission.

Conversely, when the OTU sequences have accumulated more divergences (>10 seg-
regating sites), ALE performs better than all the other approaches, as it has high power,
a low type-I error rate, and accurately fit reconciliation events (host-switches, duplica-
tions, and losses) between the hosts and the OTU phylogenies. To evaluate the signifi-
cance of the reconciliated scenarios, we recommend separately comparing the numbers
of cospeciations and host-switches against the null expectations, rather than looking at
the differences between the numbers of cospeciations and host-switches (like in Groussin
et al., 2017), as the latter strategy seems to decrease the statistical power of the approach
(Figure I.3.3). Therefore, when there is a lot of variation within the OTUs, we recommend
to ALE to detect vertical transmission.

When simulating intra-host duplications and considering multiple OTU strains in
the extant host species, it did not particularly increase the power of the approaches, but
strongly increased the type-I error rates in many cases, especially for PACo. Therefore, if
one is not so sure that the multiple OTU strains present in an extant host are biological
units (and not resulting from PCR and sequencing errors), we suggest only picking the
most abundant one for testing support of vertical transmissions.
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Randomizations and model validation:

Global-fit approaches and event-based approaches are based on two different ran-
domization technics: Global-fit approaches randomize which OTU(s) is/are present wi-
thin each host species, whereas ALE and HOME shuffled the host species names. Thus,
in event-based approaches, the structure of the interactions is conserved, and only the
phylogenetic relationships of the hosts are randomized, while in global-fit approaches,
all the interactions are randomized and only the number of OTU strains per host species
is conserved, which is overall less conservative. This may explain why the type-I error
rates of global-fit approaches tend be more important than event-based ones and using
a more conservative randomization strategy might decrease the tendency of detecting
false positives. Alternatively, one can opt for correcting for multiple testing when ap-
plying these approaches to empirical data; we did not choose this option here because
according to the conditions, the type-I error rate of the approaches can be very low (<1%)
such that multiple testing is unlikely to generate a large number of false positives, but
would probably strongly decrease the statistical power of the approaches.

All the approaches we tested actually only assess a cophylogenetic pattern between
the host and the OTU phylogenies. Such a pattern can be due to multiple processes (de
Vienne et al., 2013) and vertical transmission is only one of them. Here, we secondar-
ily investigated the effect of heterogeneous pools of microbes in the host’s environments
due to geographical isolation (between the New World and Old Worlds) on patterns of
cophylogeny. We excluded or not this process by randomizing the OTU-host associations
within the main geographic area in the empirical application: if a cophylogenetic pattern
was no longer significant when such randomization was performed, we concluded that
vertical transmission likely explained the cophylogeny. An alternative way would be to
use post-processing of the inferences to test, for instance, whether the host-switches in-
ferred by ALE and HOME tend to be more frequent between host lineages present on
the same continents (Article 2). We found that HOME was less sensitive to pick OTUs
that present a strong geographical signal than global-fit approaches or ALE. This might
be due to the fact that HOME directly models DNA substitutions on the host phylogeny
and might thus be less prone to detect a cophylogenetic signal when there is actually
only a phylogenetic signal in the environmental pools of the available OTU haplotypes;
in other words, if OTU haplotypes differ between the New and Old Worlds, they are
likely not particularly well modelled by a substitution process on the host tree. Ideally,
we should complexify our simulations of host-OTU independent evolution and perform
simulations to test how the different approaches cope with heterogeneous pools of en-
vironmental microbes (and phylogenetic signals in the host geographic distributions).
Such model validations would help to more robustly link cophylogenetic patterns to the
generating processes.
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Bacterial transmissions in the primate gut microbiota:

We observed quantitative differences according to the different OTU clustering we
performed. In particular, core OTUs (the OTUs present in at least 10 host species) were
quite rare when using Swarm clustering, maybe because this clustering method is too
stringent and tend to over-split into separated OTUs the vertically transmitted bacteria
that have accumulated too many divergences (Article 1). Consequently, we detected in
proportion less transmitted bacteria using Swarm clustering. One way to avoid an arbi-
trary clustering method would be to use phylogenetic based-approaches, like the clade-
based taxonomic units (ClaaTU; Gaulke et al., 2018).

Ideally, to assess whether cophylogenetic patterns were generated by vertical trans-
mission, one has also to test whether the divergence times for the hosts and the OTU are
matching (de Vienne et al., 2013). Though we could not robustly reconstruct the OTU
phylogenetic tree here, we can at least look at the number of segregating sites: the bac-
terial OTUs from the primate gut presented mostly between 2 and 15 segregating sites
across the primate clade. Given that on average the 16S rRNA gene diverges by 1% ev-
ery 50 million years (Myr) (Ochman et al., 1999), and that the primates are >65 Myr old,
the observed number of segregating sites in the OTU alignments are compatible with
a process of vertical transmissions when the number of segregating site is low. When
it exceeds 10 (especially for 95% OTUs), it might either correspond to conglomerates of
several transmitted ones (Article 1) or to fast-evolving bacteria, as it can be the case for
some transmitted bacteria with small population sizes (Moran et al., 1993).

When removing the OTUs that are exhibiting a signal of geographic isolation, we es-
timated that <5% of the reads of the primate gut microbiota were vertically transmitted.
Given that the statistical power of our approaches can be low (<50% in some conditions),
we may conclude that at most 10% of the bacterial gut microbiota of primates have been
vertically transmitted. This estimate is likely more realistic than larger ones (e.g. from
Groussin et al., 2017) given that mammal gut microbiota can be composed of a large pro-
portion of transient food-derived and/or environment-specific microbes that are unlikely
to be faithfully transmitted over more than 50 Myr (Nishida & Ochman, 2019; Amato et
al., 2019). Among the transmitted bacteria, we found a large proportion of the order
Clostridia (phylum Firmicutes), as previously found in previous analyses (Groussin et
al., 2017; Gaulke et al., 2018; Article 1).

Conclusion:

Looking at vertically transmitted OTUs using metabarcoding datasets is challeng-
ing because of the low amount of information contained in metabarcoding genes. The
different approaches to do so have complementary advantages and weaknesses. When
having limited amount of variations in the OTU alignments, we recommend combining
HOME, which has very infrequent type-I errors but limited power, with ParaFit, which
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has higher power but many type-I errors. The ‘right’ number of transmitted OTUs is
likely between the estimates of the two approaches. We also recommend performing
further model validations (e.g. randomizing the associations within the main geographic
area) to check whether the detected cophylogenetic patterns may have been generated by
other processes than vertical transmissions. Applied to the gut microbiota of primates,
we confirmed that vertically transmitted bacteria are frequent (up to 10%). Future works
should particularly focus on the roles on these bacteria in primate microbiota.
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Chapter II.

Measuring the interplay between
host-microbiota evolutions:

Host-microbiota interactions are essential for most animal and plant functioning.
These interactions resulted from billions of years of evolution and such interplay between
host and microbes have likely drastically shaped the evolutionary histories of both clades
of hosts and microbes. In this chapter, we examined the interplay between the evolution-
ary histories of host and host-associated microbial clades (Figure 0.3.13b). We focus on
two specific questions: “To what extent does evolutionary history influence which micro-
bial species interact with which host species?” and “How does the evolutionary history
of hosts influence the diversification of host-associated microbial clades?”.

The first question leads us to compare different existing methods for estimating phy-
logenetic signals in host-microbiota interaction networks, i.e. tools to measure whe-
ther closely related species share similar sets of partners (Article 4). Thanks to simu-
lations generated using a recently-developed individual-based model of network evolu-
tion (Maliet et al., 2020), we compared the performances of two widely-used approaches:
the Mantel tests (Mantel, 1967) and the Phylogenetic Bipartite Linear Model (PBLM; Ives
& Godfray, 2006). We found that the PBLM has a high tendency at detecting phylogenetic
signals when it should not (false-positives) and should therefore not be used to estimate
phylogenetic signals in species interactions. Conversely, Mantel tests performed rather
well and we proposed a robust way to investigate clade-specific phylogenetic signals. We
provided general guidelines for measuring phylogenetic signals in interaction networks
that we applied to a mycorrhizal network from La Réunion island (Martos et al., 2012).

We explored the second question by studying the diversification of the arbuscular
mycorrhizal fungi (Glomeromycotina) in the past 500 million years and evaluating how
land plants might have affected the diversification of their obligate mycorrhizal sym-
bionts (Article 5). To do so, we used the MaarjAM database (Öpik et al., 2010) that gath-
ered worldwide plant-Glomeromycotina interactions with fungal characterization based
on the 18S SSU rRNA gene. We reconstructed the phylogenetic trees of the Glomeromy-
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cotina, estimated their global diversity, and applied a range of diversification models.
Given that inferring the past diversification of microbial clades can be challenging, we
performed a range of model validations to take into account the various sources of un-
certainty (in species delineations, phylogenetic reconstructions, and global diversity esti-
mations). We found that overall Glomeromycotina have low diversification rates. After a
diversification peak around 150 Myr ago, they experienced an important diversification
slowdown toward the present. Such a slowdown could be at least in part related to a
shrinking of their mycorrhizal niches, due to the recent acquisition of alternative nutri-
tive strategies in many plant lineages.

Contents of Chapter II
Article 4: Do closely related species interact with similar partners? Testing

for phylogenetic signal in ecological networks . . . . . . . . . . . . . . 132

Article 5: Global drivers of obligate mycorrhizal symbionts diversification 155

130



Chapter II

Chapitre II : Mesurer les liens entre les histoires évolutives des hôtes et de leurs
microbiotes

Les interactions hôtes-microbiotes sont essentielles pour le fonctionnement de la plupart des
animaux et végétaux. Ces interactions résultent de milliards d’années d’évolution et les effets des
hôtes sur leurs microbes et vice versa ont vraisemblablement façonné leurs histoires évolutives de
manière drastique. Dans ce chapitre, nous avons examiné les liens entre les histoires évolutives des
hôtes et de leurs microbes associés (Figure 0.3.13b). Nous nous sommes intéressés à deux questions
en particulier : « Dans quelle mesure les patrons d’interactions hôtes-microbiotes sont influencés
par leurs histoires évolutives ? » et « comment l’histoire évolutive des hôtes influence-t-elle la
diversification de leurs microbes associés ? »

La première question nous a amené à comparer différentes méthodes pour estimer le signal
phylogénétique dans les réseaux d’interactions hôtes-microbiotes, c’est-à-dire les différents outils à
disposition pour mesurer si des espèces proches ont tendance à partager des partenaires similaires
(Article 4). Grâce à des simulations générées via un modèle individu-centré d’évolution de réseaux
(Maliet et al., 2020), nous avons comparé les performances de deux approches fréquemment util-
isées : les tests de Mantel (Mantel, 1967) et le modèle linéaire phylogénétique bipartite (PBLM ; Ives
& Godfray, 2006). Nous avons trouvé que le PBLM a une tendance importante à détecter du signal
lorsque qu’il n’y en a pas (faux positifs) et ne devrait donc pas être utilisé pour estimer le signal
phylogénétique dans les interactions entre espèces. À l’inverse, les tests de Mantel fonctionnent
plutôt bien, et nous avons proposé une façon robuste d’analyser le signal phylogénétique dans
certains sous-clades spécifiques uniquement. Nous avons de plus énoncé des recommandations
générales pour mesurer le signal phylogénétique dans des réseaux d’interactions, que nous avons
appliquées à un réseau mycorhizien de l’île de la Réunion (Martos et al., 2012).

Nous avons exploré la seconde question en étudiant la diversification des champignons endomy-
corhiziens à arbuscules (Glomeromycotina) au cours des 500 derniers millions d’années et évalué
comment les plantes terrestres auraient influencé la diversification de leur symbiontes mycorhiziens
obligatoires (Article 5). Pour se faire, nous avons utilisé la base de données MaarjAM (Öpik et al.,
2010) qui rassemble des interactions plantes-Glomeromycotina à l’échelle mondiale et caractérise
les champignons via leur gène de l’ARN ribosomal 18S. Nous avons reconstruit l’arbre phylogéné-
tique des Glomeromycotina, estimé leur diversité globale et appliqué une série de modèles de di-
versification. Sachant qu’inférer la diversification d’un clade microbien à l’aide d’un seul gène peut
être difficile, nous avons réalisé une série de validations de modèles afin de prendre en compte les
diverses sources d’incertitudes (dans la délimitation d’espèces, les reconstructions phylogénétiques
et l’estimation de la diversité globale) ainsi que des simulations. Nous avons trouvé que les Glom-
eromycotina ont en moyenne des taux de diversification particulièrement bas. Après avoir connu
un pic dans leur diversification il y a environ 150 millions d’années, ils ont récemment subi un
fort ralentissement. Un tel ralentissement de leur diversification pourrait être en partie lié à la ré-
duction globale de leurs niches mycorhizennes, due aux récentes acquisitions d’autres alternatives
nutritives par de nombreuses lignées de plantes.
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Abstract

Whether interactions between species are conserved on evolutionary time scales is
a central question in ecology and evolution. This question has spurred the devel-
opment of both correlative and model-based approaches for testing phylogenetic
signal in interspecific interactions: do closely related species interact with similar
sets of partners? Here we test the performances of some of these approaches using
simulations. We find that one of the most widely used model-based approach
often detects phylogenetic signal when it should not. Conversely, simple Mantel
tests investigating the correlation between phylogenetic distances and dissimi-
larities in sets of interacting partners have low type-I error rates and satisfactory
statistical power, especially when using weighted interactions and phylogenetic
dissimilarity metrics; however, they often artifactually detect anti-phylogenetic
signals. Partial Mantel tests, which are used to partial out the phylogenetic
signal linked to similarity in numbers of partners, actually fail at correcting for
the confounding effect of the numbers of partners. We instead propose the use
of sequential Mantel tests. We also explore the ability of simple Mantel tests to
analyze clade-specific phylogenetic signal. We provide general guidelines and an
illustration on an orchid-fungus mycorrhizal network.

Keywords: ecological networks, phylogenetic constraint, species interactions, spe-
cialization, mycorrhiza.
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Introduction:

Species in ecological communities engage in diverse types of interspecific interac-
tions, such as pollination, mycorrhizal symbiosis, predatory, or parasitism (Bascompte et
al., 2003; Fontaine et al., 2011; Bascompte & Jordano, 2013; Chagnon, 2016). Understand-
ing the processes that shape interaction networks, including the role of evolutionary his-
tory, is a major focus of ecology and evolution (Rezende et al., 2007; Vázquez et al., 2009;
Thébault & Fontaine, 2010; Krasnov et al., 2012; Elias et al., 2013; Rohr & Bascompte, 2014;
Fontaine & Thébault, 2015). One way to assess the role of evolutionary history in shap-
ing contemporary interactions is to test for phylogenetic signal in species interactions, i.e.
whether closely related species interact with similar sets of partners (Peralta, 2016).

Testing for phylogenetic signal in a unidimensional trait (i.e. whether a trait is phylo-
genetically conserved) for a given species group is mainstream (Felsenstein, 1985; Blom-
berg et al., 2003; Münkemüller et al., 2012). One approach (the ‘correlative’ approach) is
to perform a Mantel test between species phylogenetic and trait distances (Mantel, 1967);
another approach (the ‘model-based’ approach) relies on trait evolution models such as
Pagel’s λ (Pagel, 1999) or Blomberg’s κ (Blomberg et al., 2003). The model-based ap-
proach has a higher ability to detect an existing phylogenetic signal (power) and a lower
propensity to infer a phylogenetic signal when it should not (type-I error) (Harmon &
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Glor, 2010). The correlative approach should therefore only be used when the model-
based approach is not applicable, for example if the ‘trait’ data is expressed in terms of
pairwise distances (Harmon & Glor, 2010).

Testing for phylogenetic signal in species interactions falls in the category of cases
where the ‘trait’ data is expressed in terms of pairwise distances, here the between-
species dissimilarity in interaction partners. Simple Mantel tests have therefore been
widely used in this context (e.g. Rezende et al., 2007; Elias et al., 2013; Fontaine & Thébault,
2015). Partial Mantel tests have also been used to test whether the phylogenetic signal is
really in the identity of the interacting partners and not in the degree of generalism, as
similarity in the number of partners can increase the value of similarity metrics (Rezende
et al., 2007; Jacquemyn et al., 2011; Aizen et al., 2016). Conversely, another very widely
used approach is the Phylogenetic Bipartite Linear Model (PBLM) to investigate the phy-
logenetic signal in interaction networks (Ives & Godfray, 2006). This approach has been
used to test for phylogenetic signal in species interactions in a variety of empirical net-
works, including host-parasite, plant-fungus, and pollination networks (Martos et al.,
2012; Martín González et al., 2015; Xing et al., 2020).

Here, we consider weighted and unweighted bipartite interaction networks repre-
sented by a matrix of interaction between species from two guilds A and B (Figure II.4.1).
We aim to evaluate the statistical performances of the correlative (simple or partial) Man-
tel tests and of the model-based PBLM (Box 1) and use simulations to perform a compar-
ative analysis of the different approaches. Our results lead us to propose an alternative
approach for measuring phylogenetic signal in the identity of the interacting partners.
We also investigate the ability of Mantel tests to detect the presence of clade-specific
phylogenetic signal. Finally, we provide general guidelines and apply them to a mycor-
rhizal network between orchids and their fungal partners from La Réunion island.
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Box 1: Methods for measuring phylogenetic signal in species interactions

Mantel tests (Mantel, 1967) were introduced to examine the correlation between
two dissimilarity matrices. They have been used to measure the phylogenetic sig-
nal in species interactions by computing the correlation between the matrix of phy-
logenetic distances (for species pairs from guild A for example, Figure II.4.1) and
the matrix of ‘ecological dissimilarities’ between the sets of interacting partners (i.e.
species from guild B interacting with species pairs from guild A). The correlation
(R) with -1<R<1 is often evaluated using Pearson correlation, that is the mean of
the products of the corresponding elements in the two standardized dissimilarity
matrices. Alternatively, R can be evaluated using Spearman correlation (computed
from dissimilarities transformed into ranks), or Kendall correlation (computed by
counting the pairs of observations that have the same rank). The parametric Pear-
son correlation is statistically more powerful, but makes stronger hypotheses (it
assumes a linear relationship) than the non-parametric Spearman and Kendall cor-
relations (which assume only a monotonic relationship). A positive (resp. nega-
tive) correlation indicates a phylogenetic (resp. anti-phylogenetic) signal in species
interactions. Its significance is evaluated using randomizations by repeatedly per-
muting one of the original dissimilarity matrices: one-tailed p-values are obtained
by comparing the rank of the original correlation R to the randomized correla-
tions. Ecological dissimilarities of interacting partners between two species from
guild A can be measured with various indices. Two classical indices are the Jaccard
distance, defined as the number of their unshared partners from guild B divided
by their total number of partners, and the UniFrac distance, which incorporates
phylogenetic relatedness between partners, computed as the fraction of unshared
branch length in the phylogenetic tree of their partners from guild B. Both indices
also have a weighted version that accounts for interaction strength. Partial Mantel
tests examine the correlation between two dissimilarities matrices while account-
ing for a third dissimilarity matrix (Smouse et al., 1986). When testing for phyloge-
netic signal in bipartite interaction networks, these tests are useful for controlling
the phylogenetic signal in degree of generalism; indeed similarity in the number of
partners can decrease the value of ecological dissimilarity metrics independently
of the identity of the partners, such that a phylogenetic signal in the degree of
generalism can generate a phylogenetic signal in species interactions that is not
linked to an evolutionary conservatism of interacting partners. Partial Mantel tests
therefore investigate the correlation between phylogenetic and ecological dissim-
ilarities while controlling for the absolute difference in degrees between species
pairs (Rezende et al., 2007).
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Box 1 (end)

The Phylogenetic bipartite linear model (PBLM; Ives & Godfray 2006) assumes that
interaction strengths between species from guilds A and B are determined by (un-
observed) traits that evolve on the two phylogenies each following a simplified
Ornstein-Uhlenbeck process parametrized by dA and dB (Blomberg et al., 2003). The
strength of interaction between two species is assumed to be given by the product
of their two traits. Under these assumptions, dA and dB can be estimated from
the two phylogenies and the matrix of interaction strengths using generalized least
squares (Ives & Godfray 2006). dA and dB are then interpreted as a measure of
phylogenetic signal in species interactions. If d = 1, the traits evolved as Brown-
ian motions, if d=0, there is no effect of the phylogenies (similar than evolving on
star phylogenies), whereas 0 < d < 1 would represent stabilizing selection and
d > 1 disruptive selection. Ives & Godfray (2006) proposed two approaches to
assess the significance of the signal. The simplest consists in comparing the mean
square errors (MSE) of the generalized least squares regression to the same MSE
obtained using star phylogenies (MSEstar). MSE<MSEstar is interpreted as a sig-
nificant phylogenetic signal in species interactions. The second approach uses a
bootstraping strategy to build 95% confidence intervals around the estimated dA

and dB values: the null hypothesis (absence of phylogenetic signal in guild A, resp.
B) is rejected if the confidence interval around dA (resp. dB) does not include 0.
While designed primarily for applications to bipartite networks characterized by
matrices of interaction strengths (e.g. net attack rate of a parasitoid on its hosts),
PBLM has been applied to weighted networks characterized by matrices of inter-
action abundance (i.e. the number of times the interaction has been observed) and
unweighted (binary) networks, using 1 for the interaction strength when species
interact and 0 otherwise (Ives & Godfray, 2006; Vázquez et al., 2009; Jacquemyn et
al., 2011; Martos et al., 2012; Xing et al., 2020).

Methods:

Simulating interaction networks with or without phylogenetic signal in species inter-
actions:

We used a recently-developed model, BipartiteEvol, to generate interaction networks
with or without phylogenetic signal (Maliet et al., 2020). This approach, available in the
R-package RPANDA (Morlon et al., 2016; R Core Team, 2020) is an individual-based eco-
evolutionary model of two guilds interacting in a mutualistic, antagonistic, or neutral
way. Each individual from guild A (resp. B) is characterized by a multidimensional
continuous trait and interacts with one individual from guild B (resp. A). The effect of
this interaction on the fitness of each individual from guilds A or B is determined by
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Figure II.4.1: Illustration of the data used to test for phylogenetic signal in species interac-
tions. Toy example of an interaction network between orchids (in green) and mycorrhizal fungi
(in brown) with associated phylogenetic trees. The bipartite interaction network between two
guilds A (here the orchids) and B (the fungi) is represented by a matrix which elements indicate
either whether or not species interact (i.e. 1 if they do and 0 otherwise, ‘unweighted’ or ‘binary’
network) or the frequency of the interaction (‘weighted’ network; for example here we indicated
the number of times a given pairwise interaction has been observed using shades of grey from
white (no interaction) to dark grey (many interactions)). Each guild is also characterized by a
rooted phylogenetic tree, used to compute phylogenetic distances between pairs of species.

the distance in trait space of the two interacting individuals, according to a classical trait
matching expression parametrized by two parameters αA and αB (Supplementary Meth-
ods 1, Maliet et al. 2020). These parameters determine the nature and specificity of the
interaction: positive αA and αB correspond to mutualistic interactions, negative αA and
positive αB to antagonistic interactions (with guild A representing hosts or preys and
guild B parasites or predators), high |α| values to scenarios with strong fitness effects
(i.e. highly specialized interactions), and |α| values close to 0 to more neutral scenarios.
At each time step, one individual from guild A is killed at random and replaced by an-
other individual from guild A proportionally to its fitness given its interaction with the
individual from guild B. The new individual has a probability µ to mutate, in which case
its new trait is drawn independently in each dimension in a normal distribution centered
on the parent trait (and a variance of 1). This death/birth/mutation process is replicated
for guild B, and these two processes are repeated for a large number of time steps. Here,
we amended the species delineation of the original BipartiteEvol model (Maliet et al.,
2020) and considered that each combination of traits forms a new species. Under this
process, closely related species tend to interact with similar sets of partners (i.e. there is
a phylogenetic signal in species interactions) if (and only if): (i) closely related species
have similar traits (i.e. there is a phylogenetic signal in species traits) and (ii) these traits
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determine who interacts with whom, i.e. α 6= 0. Similarly, an anti-phylogenetic signal in
species interactions (i.e. the tendency for closely related species to associate with dissim-
ilar partners) is expected if there is anti-phylogenetic signal in species traits and α 6= 0.

We simulated a total of 2,400 interaction networks with individuals characterized by
a six-dimensional trait. In order to obtain networks covering a wide range of sizes, we
considered a total number of 500, 1,000, 2,000, 3,000, 4,000, or 5,000 pairs of interacting
individuals per simulated network. For each total number of interactions, we simulated
the evolution of 100 neutral networks (αA = 0 ; αB = 0), 120 mutualistic networks ((i)
αA = 1; αB = 1; (ii) αA = 0.1; αB = 0.1; (iii) αA = 0.01; αB = 0.01; (iv) αA = 1;
αB = 0.1; (v) αA = 1; αB = 0.01; and (vi) αA = 0.1; αB = 0.01) and 180 antagonistic
networks ((i) αA = −1; αB = 1; (ii) αA = −0.1; αB = 0.1; (iii) αA = −0.01; αB = 0.01; (iv)
αA = −1; αB = 0.1; (v) αA = −1; αB = 0.01; (vi) αA = −0.1; αB = 1; (vii) αA = −0.1;
αB = 0.01; (viii) αA = −0.01; αB = 1; (ix) αA = −0.01; αB = 0.1). We used a mutation
rate µ = 0.01 and followed the evolution of the interacting individuals during 506 death
events. At the end, we extracted for each guild a species tree from its genealogy by ran-
domly selecting one individual per species (Supplementary Figure 1) and reconstructed
the corresponding weighted interaction network by counting the number of occurrences
of each interspecific interaction.

We separated the 2, 400 simulated networks between those for which we should ex-
pect a phylogenetic signal in species interactions and those for which we should not. We
did not expect phylogenetic signal in species interactions in neutral networks and in non-
neutral networks with no phylogenetic signal in species traits. Conversely, we expected
phylogenetic signal in non-neutral networks with phylogenetic signal in species traits.
For simplicity and consistency with the rest of the paper, we tested for phylogenetic sig-
nal in species traits using Mantel tests (Pearson correlation) between phylogenetic dis-
tance matrices and trait distance matrices computed as the Euclidian distances between
trait values for each species pair.

Computing phylogenetic signals in species interactions:

Mantel tests: We evaluated the phylogenetic signal in species interactions in guilds
A and B separately using simple Mantel tests between phylogenetic and ecological dis-
tances. Ecological distances were measured both without accounting for evolutionary
relatedness of the interacting partners, using (weighted or unweighted) Jaccard, and
accounting for relatedness using (weighted or unweighted) UniFrac distances (Box 1;
Chen et al., 2012). We used the Pearson, Spearman, and Kendall correlations by extend-
ing the existing mantel function in the R-package ecodist (Goslee & Urban, 2007); we
evaluated the significance of the correlation using 10, 000 permutations, except for the
computationally intensive Kendall correlation for which we used 100 permutations. For
each network, we defined the “upper p-value” as the percentage of randomized correla-
tions above the original value (p<0.05 is interpreted as a significant phylogenetic signal),
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and the “lower p-value” as the percentage of randomized correlations below the original
value (p<0.05 is interpreted as a significant anti-phylogenetic signal).

PBLM: To estimate phylogenetic signal based on PBLM, we modified the function
pblm from the R-package picante (Kembel et al., 2010) to more efficiently perform matrix
inversions and handle large interaction networks. We followed Ives & Godfray (2006)
(Box 1) by considering that the phylogenetic signal is significant when the mean square
error (MSE) of the model is smaller than that obtained using star phylogenies (MSEs-
tar), i.e. MSE<MSEstar; we also used a more stringent criterion by considering that
the signal is significant when the MSE is at least 5% lower than MSEstar, i.e. (MSEstar-
MSE)/MSEstar>5%. Finally, for the smallest networks (500 pairs of interacting individu-
als), we applied the bootstrapping method of Ives & Godfray (2006) (Box 1). We did not
perform these analyses on larger networks because of their computational cost.

Confounding effect of the phylogenetic signal in degrees of generalism:

To test the performances of the partial Mantel test at measuring phylogenetic signal
in species interactions while controlling for signal in degrees of generalism (Box 1), we
first performed partial Mantel tests between phylogenetic and ecological distances, while
controlling for the absolute differences in degrees, on the networks simulated with Bipar-
titeEvol. There is no reason to produce a phylogenetic signal in degrees of generalism in
the BipartiteEvol simulations, and we verified this by performing Mantel tests between
phylogenetic distances and degree differences. These analyses were performed to assess
whether partial Mantel test loose power compared to simple Mantel tests. If they do not
suffer power loss, partial Mantel tests applied to BipartiteEvol simulations should be sig-
nificant when simple Mantel tests are significant.

Second, we tested whether partial Mantel tests successfully correct for phylogenetic
signal in degrees of generalism using networks simulated under a process that generate
phylogenetic conservatism in the number, but not the identity, of interacting partners.
If partial Mantel tests successfully correct for phylogenetic signal in degrees of general-
ism, they should not be significant when applied to such networks. We thus simulated
networks with only phylogenetic conservatism in the number of interacting partners in
guild A: We first simulated phylogenetic trees for guilds A and B using the pbtree func-
tion (R-package phytools; Revell, 2012) with a number of species uniformly sampled
between 40 and 150 species by guild. Second, we simulated the degree of generalism of
the species from guild A on the phylogenetic tree using an Ornstein-Uhlenbeck process
with an attraction toward 0, a variance of 0.1 (noise of the Brownian motion), and a selec-
tion strength (aA) ranging from 5 (strong stabilizing effect, weak phylogenetic signal) to 0
(Brownian motion, strong phylogenetic signal). We computed the number of partners per
species by calibrating the simulated degree values between 1 and the number of species
in guild B and taking the integer part. For each aA value (5, 1, 0.5, 0.05, or 0), we per-
formed 100 simulations using the function mvSIM (R-package mvMORPH; Clavel et al.,
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2015). Third, for each species in A, we attributed the corresponding number of interact-
ing partners in B at random to obtain binary networks. We checked that our simulations
indeed generated a signal in degrees of generalism by performing simple Mantel tests
between phylogenetic and degree difference distances. Finally, we performed on each
simulated network a partial Mantel test between phylogenetic and ecological distances
while controlling for the degree difference distances.

Given the poor performances of partial Mantel tests (see Results), we tested whether
using sequential Mantel tests would provide a good alternative: based on simple Mantel
tests, we consider that there is a phylogenetic signal in the identity of the partners if
there is a phylogenetic signal in species interactions and there is no phylogenetic signal in
degrees of generalism. We applied this successive testing to all our simulated networks.

Testing the robustness of our results to phylogenetic uncertainty, sampling asymme-
try, and network heterogeneity:

The BipartiteEvol simulation framework lacks at reproducing some challenging as-
pects encountered in the empirical networks, such as the phylogenetic uncertainty, sam-
pling asymmetry, and network heterogeneity. We thus performed additional analyses to
investigate the effect of these aspects on the measure of phylogenetic signal.

First, we tested the effect of phylogenetic uncertainty in the partners’ tree on the mea-
sure of phylogenetic signals when evolutionary relatedness is accounted for (i.e. using
UniFrac distances). To add some variability in the phylogenetic tree of guild B (resp. A)
used to compute the UniFrac distances between species pairs from guild A (resp. B), we
first simulated, on the original partners tree, the evolution of a short DNA sequence and
then reconstructed the tree from the simulated DNA alignment using neighbor-joining
(nj function, R-package APE; Paradis et al., 2004). Given that shorter fragments should re-
sult in noisier phylogenies, we used the function simulate_alignment (R-package HOME;
Article 1) to simulate sequences of length (N) 75, 150, 300, 600, or 1,200 base pairs, with
30% of variable sites, and a substitution rate of 1.5. For each of the 2,400 simulations
and each N, we obtained a “noisy” tree of guild B (resp. A) for computing the UniFrac
distances and the phylogenetic signal in guild A (resp. B), while keeping the original
phylogenetic tree of guild A (resp. B).

Second, we tested the influence of sampling asymmetry on measures of phylogenetic
signal. Empirical networks are often an incomplete representation of the actual interac-
tions between two guilds because they are under-sampled, and frequently, in an asym-
metrical way: for instance, by sampling targeted species from guild A, observed net-
works are constituted by a few species from guild A which have the complete set of their
partners and by often more species from guild B which have an incomplete set of their
partners (as they likely interact with unsampled species from guild A). We tested the in-
fluence of such sampling asymmetry by selecting only 10% of the most abundant species
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from guild A in the simulated network (while retaining at least 10 species) and similarly
computed the phylogenetic signals in these asymmetrical subsampled networks.

Third, both Mantel tests and PBLM neglect the heterogeneity within networks. In-
deed, a non-significant phylogenetic signal at the level of the entire network can poten-
tially hide a sub-clade presenting significant phylogenetic signal. Alternatively, a phy-
logenetic signal in the entire network may be driven by only two subclades of guilds A
and B. To explore the potential heterogeneity of the phylogenetic signal within one guild,
one possibility is to apply Mantel tests to the sub-network formed by a given sub-clade
(e.g. Song et al., 2020). In order to test this approach, for each node of the tree of guild A
having at least 10 descendants, we estimated the clade-specific phylogenetic signal using
a Mantel test investigating whether closely related species from this sub-clade of A tend
to interact with similar partners (and vice versa for guild B). Using UniFrac distances, we
performed the Mantel tests with 100,000 permutations, and introduced a Bonferroni cor-
rection for multiple testing to keep a global alpha-risk of 5%. To test the power of such an
approach for detecting signal in subclades, we generated synthetic networks with known
subclade signal by artificially combining networks simulated under neutrality with net-
works simulated with the set of mutualistic parameters (v) (see Results), such that it
creates a separate module. We grafted each “mutualistic” phylogenetic tree from guilds
A and B within a “neutral” phylogenetic tree by randomly selecting a branch, such that
it creates a separate module with strong phylogenetic signal. Such simulations could
correspond to the evolution of a different niche, e.g. terrestrial versus epiphytic plants
associating with different mycorrhizal fungi (Martos et al., 2012). We then performed
our clade-specific analysis of phylogenetic signal and investigated whether we recover
significant phylogenetic signals at the nodes where mutualism originated.

General guidelines and illustration with application on the orchid-fungus mycorrhizal
network from La Réunion:

We used our results and other empirical considerations to provide general guidelines
for researchers interested in detecting phylogenetic signal in interaction networks. We
illustrated these guidelines by applying them in a network between orchids and myc-
orrhizal fungi from La Réunion island (Martos et al., 2012). This network encompasses
70 orchid species (either terrestrial or epiphytic species) and 93 associated fungal species
(defined according to 97% sequence similarity; see Martos et al. (2012) for details). We
gathered the maximum-likelihood plant and fungal phylogenies on TreeBASE (Study
Accession no. S12721), calibrated the orchid phylogeny using a relaxed clock with the R
function chronos (Paradis, 2013), and obtained a species-level phylogeny of the orchids
by arbitrarily adding 10 million-years-old polytomies in unresolved genera.
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Results:

Expected phylogenetic signals in species interactions in BipartiteEvol networks:

The networks simulated using BipartiteEvol gave realistic ranges of sizes for guilds
A and B (from less than 50 to more than 250 species; Supplementary Figure 2) and con-
nectance values (i.e. ratios of realized interactions, between 5 and 20%; Supplementary
Figure 3).

We found a significant phylogenetic signal in species traits for most antagonistic and
neutral simulations (Supplementary Figure 4). In contrast, for many mutualistic sets of
parameters, closely related species often did not tend to have similar traits, except when
αB = 0.01 (i.e. mutualistic sets (iii), (v) and (vi); Supplementary Figure 4). Conversely,
when αB were higher (i.e. mutualistic sets (i), (ii) and (iv)), we suspect stabilizing se-
lection to occur and erase the phylogenetic signal in the traits (Maliet et al., 2020): as a
consequence, we expected no phylogenetic signal in species interactions for these sim-
ulations. In addition, we found an anti-phylogenetic signal in species traits in less than
1% of the simulations (Supplementary Figure 4): these networks were removed when
evaluating the performance of the different approaches, we therefore do not expect anti-
phylogenetic signal in species interactions for the remaining networks.

Computing phylogenetic signals in species interaction:

Using Mantel tests, as expected, we did not find significant phylogenetic signal in
species interactions for most neutral networks or for networks with no signal in species
traits (Figure II.4.2, Supplementary Figures 5-6-7): type-I error rate was below 5%, cor-
responding to the alpha-risk of the permutation test (Supplementary Table 1), with one
notable exception for small networks when using the weighted Jaccard ecological dis-
tances and the Pearson correlation (∼8% type-I error). Conversely, many mutualistic
or antagonistic networks where we expected phylogenetic signal in species interactions
(i.e. non-neutral networks with signal in species traits) presented no significant signals
(Figure II.4.2, Supplementary Figures 5-6-7), in particular those simulated with param-
eters αA and αB close to 0 (e.g. antagonism (vii)), which tend toward a neutral effect of
the traits. In mutualism, phylogenetic signals in species interactions were only present
when there was a large asymmetry in the effects of trait matching on the finesses of the
species from guilds A or B (case (v) αA = 1; αB = 0.01), i.e. when only one guild was
specialized. Conversely, in antagonism, phylogenetic signals were mainly found when
trait matching had a strong impact on the fitness of guild B (the parasites/predators -
αB ≥ 0.1), mainly because species from guild B obligately interact with species from
guild A, whereas species from guild A have a fitness of 1 when there is a mismatch (Sup-
plementary Methods 1). Additionally, when the phylogenetic signal was significant in
one guild, it was generally also significant in the other, although in antagonism, it was
usually higher in guild A compared to guild B (Supplementary Figures 5-6-7).
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Figure II.4.2: Statistical performances of the simple Mantel tests and the Phylogenetic bipartite
linear model (PBLM; Ives & Godfray, 2006) evaluated using BipartiteEvol simulations (Maliet
et al., 2020). For each panel, the simulations are divided between networks where phylogenetic
signal in species interactions is expected (i.e. networks (i) simulated with an effect of the traits on
individual fitness - antagonistic and mutualistic simulations - and (ii) presenting traits that are
phylogenetically conserved - see Supplementary Figure 2) and networks where phylogenetic sig-
nal in species interactions is not expected: i.e. neutral simulations (α = 0) or simulated networks
where we observed no phylogenetic signal in the traits). a-d: Phylogenetic signals in species in-
teractions estimated using simple Mantel tests with Pearson correlation (R) in the guilds A (a, c)
and B (b, d). The different panels correspond to the 2 tested ecological distances: weighted Jac-
card (a, b) or generalized UniFrac (c, d) distances. One-tailed Mantel tests between phylogenetic
distances and ecological distances were performed using 10, 000 permutations. In each panel, the
bars indicate the percentage of simulated networks that present a significant positive correlation
(in green; upper p-value>0.05), a significant negative correlation (in red; lower p-value>0.05), or
no significant correlation (in yellow; both p-values>0.05). e: Phylogenetic signals estimated using
PBLM. The bar indicates the percentage of simulated networks that present no significant (in yel-
low; MSE≥MSEstar) or a significant (green; MSE<MSEstar) phylogenetic signals. Phylogenetic
signals are shaded from light green to dark green according to the strength of the signal (e.g. in
dark green if dA > 0.15 or dB > 0.15). PBLM were run on the weighted networks. In each panel,
the first bar indicates the statistical power of the test, whereas the second and third bar indicate
the type-I error rate of the test.
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The statistical power of Mantel tests measuring phylogenetic signal in species inter-
actions (significant positive correlation) seems to be modulated by many factors, includ-
ing the network size, as phylogenetic signals were less often significant but generally
stronger in smaller networks (Supplementary Figures 5-6-7). Moreover, the Mantel tests
based on Pearson correlations had higher power than Spearman and Kendall correla-
tions (Supplementary Figures 5-6-7) and the generalized UniFrac distances outperform
the other ecological distances (Supplementary Figures 5-6-7; Supplementary Table 2). Fi-
nally, we surprisingly detected significant anti-phylogenetic signals in >10% of simulated
networks, in particular in the small ones (Figure II.4.2, Supplementary Figures 5-6-7).

When using mean square errors (MSE) to evaluated the significance of PBLM, we
found a significant phylogenetic signal in most of the simulated networks including
when we did not expect any (Figure II.4.2e). The propensity of PBLM to detect phy-
logenetic signal decreased in large unweighted networks, but the type-I errors remained
>30%, including when using a more stringent significance cutoff (Supplementary Figures
8 & 9). Similar results were obtained when bootstrapping to evaluate the significance of
the phylogenetic signals (Supplementary Figure 10).

Testing the confounding effect of phylogenetic signal in degrees of generalism:

As expected, tests of phylogenetic signals in degrees of generalism were non-significant
in the large majority of the BipartiteEvol networks, especially the larger ones (Supple-
mentary Figure 11), even if we observed a correlation between ecological distances and
degree difference distances (Supplementary Figure 12). When testing for phylogenetic
signal in species interactions, partial Mantel tests had similar type-I error and power
compared to simple Mantel tests (Supplementary Figure 5-13; Supplementary Table 2).
Finally, performing sequential Mantel tests barely decreased the statistical power by <2%
(Supplementary Table 2).

Networks simulated with phylogenetic conservatism in the number, but not the iden-
tity, of partners covered a realistic range of sizes and connectance values (Supplementary
Figure 14). As expected, Mantel tests revealed significant phylogenetic signal in degrees
of generalism in many of these networks (>60%), with an increasing percentage of sig-
nificant tests with decreasing aA (i.e. increasing simulated conservatism in the degrees
of generalism; Supplementary Figure 15). We found a correlation between degree dif-
ferences and ecological distances in most of these simulated networks (Supplementary
Figure 16) and as a result of this confounding effect, when testing for phylogenetic signal
in species interactions, simple Mantel tests were frequently significant (type-I error>30%;
Supplementary Figure 17; Supplementary Table 3). Partial Mantel tests controlling for
degree differences slightly decreased the proportion of false-positives, but it remained
high (type-I error>25%; Supplementary Figure 18). In addition, partial Mantel tests de-
tected a spurious significant anti-phylogenetic signal in species interactions in >15% of
the networks (Supplementary Figure 18). Conversely, only a few networks with a signif-
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icant simple Mantel test in species interactions did not have a significant simple Mantel
test in degrees of generalism, such that sequential Mantel tests had only a type-I error
rate ∼7% (Supplementary Table 3).

Testing the robustness of our results to phylogenetic uncertainty, sampling asymme-
try, and network heterogeneity:

First, when testing for phylogenetic uncertainty, as expected, the statistical power of
the Mantel tests using UniFrac distances decreased when the length of the simulated
DNA sequences decreased (i.e. when phylogenetic uncertainty increased; Supplemen-
tary Figure 19). However, even when the simulated DNA sequences were the shortest
(N=75 base pairs), resulting in very noisy reconstructed partners’ tree (Supplementary
Figure 20), the statistical power of the Mantel tests using UniFrac distances was still
larger than when using Jaccard distances (Supplementary Figure 19).

Second, when considering sampling asymmetry, the obtained asymmetrical networks
had also realistic (but higher) connectances (Supplementary Figures 21 & 22) and we
found very similar trends when measuring phylogenetic signal (Supplementary Figures
23 & 24): PBLM spuriously detect phylogenetic signal when it should not, and Mantel
tests had decent statistical performances, especially when using generalized UniFrac dis-
tances. In addition, the correlations of the Mantel tests in guild A were generally higher
when significant (Supplementary Figure 23).

Third, when measuring clade-specific phylogenetic signals by performing separate
Mantel tests while correcting for multiple testing, we recovered significant phylogenetic
signals in 82% of the nodes where mutualism originated (Supplementary Figure 25).

General guidelines and illustration with application on the orchid-fungus mycorrhizal
network from La Réunion:

Box 2 and Figure II.4.3 provide general guidelines based on our results and empirical
considerations to measure phylogenetic signal in interaction networks, that we applied
on the orchid-fungus mycorrhizal network from La Réunion. First (step 1), we computed
the phylogenetic signals in species interactions for fungi and orchids using Mantel tests
and found a significant but low phylogenetic signal (R<0.10) in orchid interactions with
Jaccard distances as ecological distances, but its significance disappeared with UniFrac
distances (Supplementary Table 4). Similarly, marginally not-significant and low phy-
logenetic signals were detected for mycorrhizal fungi (R<0.04; Supplementary Table 4).
Next (step 2), we found no phylogenetic signal in degrees of generalism (one-tailed sim-
ple Mantel test: p-value>0.05).
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Box 2: Recommended guidelines to accurately measure the phylogenetic signal in
species interactions within bipartite ecological networks.

This guideline is composed of two fixed steps and following by two optional ones.
It considered that a bipartite interaction network (with or without abundances)
and at least the phylogenetic tree of guild A are available.

Step 1: The first step corresponds to testing the phylogenetic signal in species
interactions of guild A (i.e. whether closely related species from guild A tend
to interact with similar partners from guild B) using one-tailed simple Mantel
test. This step requires to pick an ecological distance (UniFrac distances are
recommended compared to Jaccard distances) and a type of correlation (Pearson
correlation by default).

Step 2: Next, to assess whether a phylogenetic signal in species interactions really
comes from the species identity, the second step consists in testing whether there
is phylogenetic signal in degrees of generalism of guild A (i.e. whether closely
related species from guild A tend to interact with the same number of partners
from guild B) using a one-tailed simple Mantel test.

Option 1: Then, the first option proposes to test for the presence of clade-specific
phylogenetic signal in some sub-clades of guild A using simple Mantel tests while
correcting for multiple testing (e.g. Bonferroni correction).

Option 2: Finally, a last step can be to validate the robustness of the findings by
looking at how the conclusions might be affected by phylogenetic uncertainty (e.g.
using a Bayesian posterior of tree, by investigating the influence of polytomy, . . . )
or sampling bias. For the latter point, for instance, the overrepresentation of some
sub-clades can cause a spurious phylogenetic signal only in this clade whereas
signals in other under-sampled clades are non-significant: therefore, such a bias
can be verified by subsampling all clades to the same degree.
Then, all these steps can be replicated for testing for phylogenetic signal in species
interaction in guild B.

When investigating clade-specific phylogenetic signal in the orchid phylogeny (op-
tion 1), we found a significant phylogenetic signal in Angraecinae, a sub-tribe composed
of epiphytic species (R=0.37; Bonferroni-corrected p-value=0.016; Figure II.4.4), suggest-
ing that closely related Angraecinae tend to interact with more similar mycorrhizal fungi.

In addition, to check the robustness of the significant phylogenetic signal detected in
Angraecinae (option 2), we (i) replaced the well-resolved Angraecum clade by a polytomy
and (ii) subsampled down to 10 species of Angraecinae (instead of 34) and still recovered
significant signal in species interactions in both cases (Supplementary Figure 26).
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Step 2: test the phylogenetic signal in the 
degree of generalism (simple Mantel test)

phylosignal_network(network, tree_A, 
method = "degree", correlation = "Pearson")

Step 1: test the phylogenetic signal in the
species interactions (simple Mantel test)

(i) choice of ecological distances (Jaccard, UniFrac…) 
(ii) with or without interaction abundances

phylosignal_network(network, tree_A, tree_B, 
method = "GUniFrac", correlation = "Pearson")

Phylogenetic signal in guild A:

(repeat for guild B)

Option 1: investigate clade-specific phylo-
genetic signals (simple Mantel tests 

with Bonferroni correction)

phylosignal_sub_network(network, tree_A, tree_B, 
method = "GUniFrac", correlation = "Pearson")

Option 2: test the robustness of the findings to 
phylogenetic uncertainty and/or sampling bias

0.0 0.2 0.4 0.6 0.8 1.0

0.
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Figure II.4.3: Illustration of the recommended guidelines for accurately measuring the phylo-
genetic signal in species interactions within bipartite ecological networks (Box 2). At the top,
a toy example of an interaction network between orchids (in green) and mycorrhizal fungi (in
brown) is informed with the phylogenetic trees of each guild. For each step of the guidelines (Box
2), an example of the corresponding function available in the R-package RPANDA is indicated in
grey. Note that the phylogenetic tree does not need to be binary, rooted, or ultrametric.
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Figure II.4.4: Empirical application on an orchid-fungus interaction network from La Réunion
island (Martos et al., 2012): the clade-specific analyses of phylogenetic signal in species inter-
actions revealed a significant phylogenetic signal in the epiphytic subtribe Angraecinae. The
orchid phylogeny (Martos et al., 2012) is represented with its nodes colored according to the re-
sults of the Mantel test performed on the corresponding sub-network: in blue if non-significant,
in grey when the node has less than 10 descendent species (the Mantel test was not performed),
and in red when the phylogenetic signal is significant. Each one-tailed simple Mantel test was
performed using the Pearson correlation and 100,000 permutations and its significance was eval-
uated while correcting for multiple testing (Bonferroni correction). For each species, its habitat
(terrestrial or epiphytic) is indicated at the tips of the tree and the main orchid clades are high-
lighted in colors. Only the genera are indicated at the tips of the tree (see Supplementary Figure
26 for the species list).
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Discussion:

Here, we used simulations to perform a comparative analysis of Mantel tests and the
Phylogenetic bipartite linear model (PBLM; Ives & Godfray 2006) used for measuring the
phylogenetic signals in species interactions. Our results highlighted the weaknesses of
partial Mantel tests and PBLM. Conversely, we argue that simple Mantel tests present
rather good statistical performances.

Simple Mantel tests appeared to accurately measure phylogenetic signals in species
interactions, with a decent type-I error rate and a moderate statistical power. Although
correlations between phylogenetic and ecological distances are not particularly expected
to be linear, Pearson correlations performed better than Spearman and Kendall correla-
tions which only test for monotonic correlation (Box 1), but probably loose information.
Among ecological distances, considering interaction abundances and phylogenetic relat-
edness of the partners using generalized UniFrac distances significantly improved the
detection of phylogenetic signal, even when the reconstructed partners trees were not
robust. In addition, given that species delineations may be somewhat arbitrary, espe-
cially in microbial interactors, and that Jaccard distances are directly sensitive to species
delineation (Sanders et al., 2014), we advocate for using generalized UniFrac distances.
However, if one suspects recent speciations of the partners to be the main differences
in the community composition, one should better use Jaccard distances, as UniFrac dis-
tances put more weight on differences in long branches instead of recent splits (Sanders
et al., 2014). In addition, given that we expected anti-phylogenetic signal in species in-
teractions only in less than 1% of the BipartiteEvol simulations, we highlighted the high
proportion of false-positives (5-10%) when testing for anti-phylogenetic signals in em-
pirical networks using Mantel tests and encourage interpreting them cautiously. Finally,
although our simulations accounting for network heterogeneity were limited and would
require further testing, we found that using simple Mantel tests to investigate clade-
specific phylogenetic signals perform rather well and that a Bonferroni correction for
multiple testing was not too stringent. Such approach can therefore be valuable for mea-
suring local phylogenetic signal in large “meta-networks” which likely presents high
heterogeneity, e.g. when measuring host-microbiota phylosymbiosis (Song et al., 2020).

At best, we only retrieved significant phylogenetic signals in species interactions in
40% of the BipartiteEvol networks where signal was expected (Supplementary Table 2).
The power was particularly low when the effect of traits on species fitness is low (low α

values), meaning that when phylogenetically-conserved trait matching only slightly im-
pacts the finesses of the interacting species, current interactions do not retain any signal
of past interactions. We also confirmed the propensity of phylogenetic signal in antag-
onisms compared to mutualisms (Rohr & Bascompte, 2014; Nuismer & Harmon, 2015),
which tend to be driven by the specialization of the predators/parasites on phylogenet-
ically related preys/hosts (Fontaine & Thébault, 2015). However, we acknowledge that
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these simulations are limited by many aspects, including the facts that they considered
a concomitant single origin of both interacting lineages that then evolve sympatrically,
and neglected the heterogeneity within each guild; this might impact the generality of
our findings towards all interaction networks. Nevertheless, our results seem robust to
different sampling strategies such as the asymmetrical sampling of the guilds, which is
particularly frequent when studying microbial symbiosis (Jacquemyn et al., 2011; Martos
et al., 2012; Song et al., 2020). The generality of correlative approaches such as the Mantel
tests that do not rely on strong hypotheses likely makes them robust to various network
structures and sampling strategies.

Although partial Mantel tests are frequently used when investigating phylogenetic
signal in species interactions while controlling for degrees of generalism, our simulations
demonstrated that their type-I error rate was very high (they detected significant signals
in species interactions when we only simulated signals in degrees of generalism) and
that their statistical power was moderate (similar to the power of a regular Mantel test).
Thus, partial Mantel tests fail at discerning whether phylogeny strictly affects the identity
of partners, independently of the total number of partners associated with each species
(Rezende et al., 2007). This corroborates the poor statistical performances of partial Man-
tel tests frequently observed in other contexts (Harmon & Glor, 2010; Guillot & Rousset,
2013). To reliably assess whether the phylogenetic signal is only in the identity of species
interactions and not in degrees of generalism, we rather suggest to perform sequential
simple Mantel tests testing first for phylogenetic signal in species interactions, and if sig-
nificant, testing for phylogenetic signal in degrees of generalism. Such an approach has
a low type-I error rate and a very limited power decrease. However, sequential simple
Mantel tests do not allow testing if there is still a signal in species identity when there is
a signal in degrees of generalism. This could be tested separately by selecting only sets
of species having similar degrees (e.g. specialist species) and applying a simple Mantel
tests measuring their phylogenetic signal in species interactions.

The Phylogenetic bipartite linear model (PBLM) unreliably assessed the phylogenetic
signal in species interactions in networks simulated using BipartiteEvol. As explained in
Box 1, PBLM assumes that the interaction strength between the two species is determined
by the product of two unobserved traits evolving on the phylogenies of species from
guilds A and B respectively, according to two independent OU processes with the selec-
tion strengths dA and dB: PBLM tests the significance of dA and dB, which measure the
phylogenetic signal of the unobserved traits. A species with a high trait value will have
high interaction strengths with many partner species (generalist), while a species with a
low trait value will have low interaction strengths with most partner species, except with
the few species with high trait values (specialist). Therefore, instead of measuring phylo-
genetic signal in species interactions, we argue that dA and dB measure the phylogenetic
signals in degrees of generalism. However, the strong hypotheses made by PBLM to
explain how the degrees of generalism evolve and how interactions assemble might pre-
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vent its validity in a general context (model misspecification). Therefore, PBLM should
not be used as a routine for measuring phylogenetic signals in empirical networks. As a
future direction, the validity of PBLM should be investigated when using specific mea-
sures of interaction strengths (e.g. parasitic attack rates) or when using other strategies
to evaluate the model significance, given that bootstrapping for instance seems incorrect
when interaction networks have low connectances (Ives & Godfray, 2006). It exists other
model-based approaches (Rafferty & Ives, 2013; Hadfield et al., 2014) that are extensions
of PBLM and propose to infer more parameters describing the phylogenetic structure of
interactions networks, while also offering the possibility to control for heterogeneity in
sampling effort and spatial variations (Hadfield et al., 2014). Although the ability of such
approaches to correctly infer phylogenetic signal should also be tested with simulations,
their very computationally intensive inference prohibited their incorporation in our com-
parative analyses. Given that phylogenetic signals only measure general patterns (Losos,
2008), the advances of such integrative model-based approaches should pave the way
toward a better understanding of the ecological or evolutionary processes playing a role
in the assembly of interaction networks (Harmon et al., 2019). In the meantime, phy-
logenetic signals measured using Mantel tests represent a quite reliable and very rapid
analysis that can easily help to understand the importance of evolutionary processes in
structuring empirical networks.

In the mycorrhizal network from La Réunion, we found non-significant or weak
phylogenetic signals in species interactions at the level of the entire orchid-fungus net-
work, suggesting these interactions are generally poorly conserved over long evolution-
ary timescales. Conversely, clade-specific Mantel tests detected a significant phyloge-
netic signal in the Angraecinae epiphytic clade. This signal is likely produced by the
different orchids genera in Angraecinae associating with specific fungal clades (Martos
et al., 2012). Thus, our results corroborate a trend toward mycorrhizal specialization in
epiphytic orchids compared with terrestrial species (Xing et al., 2019), as the epiphytic
habitats might require particular adaptations and stronger dependences toward specific
mycorrhizal fungi.

Interaction networks are increasingly being analyzed to unravel the evolutionary
processes shaping their structure and to predict their stability in the context of global
changes. Currently-used tools for measuring phylogenetic signals are clearly mislead-
ing. We provide an alternative approach based on sequential Mantel tests, and by em-
phasizing the limits of current model-based approaches, we hope to stimulate new de-
velopments in model-based tests of phylogenetic signal.
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Abstract

Arbuscular mycorrhizal fungi (AMF) are widespread microscopic fungi that
provide mineral nutrients to most land plants by forming one of the oldest
terrestrial symbioses. They have sometimes been referred to as an “evolutionary
cul-de-sac” for their limited species diversity and their ecological niches restricted
to plant-symbiotic life style. Here we use the largest global database of AMF to
analyze their diversification dynamics in the past 500 million years (Myr) based
on the small subunit (SSU) rRNA gene. We find that overall AMF have low
diversification rates. After a diversification peak between 200 and 100 Myr ago,
they experienced an important diversification slowdown toward the present. Such
a slowdown could be at least partially related to a shrinking of their mycorrhizal
niches and to their limited ability to colonize new (non-mycorrhizal) niches.
Given that estimating the diversification history of a microbial clade using a
single slowly-evolving marker gene can be problematic, we performed a range of
sensitivity to assess the robustness of our results. Our results identify patterns and
drivers of diversification in a group of obligate symbionts of major ecological and
evolutionary importance.

Keywords: microbial diversification, arbuscular mycorrhiza, obligate symbiosis,
ecological niche, fungi.
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Introduction:

Arbuscular mycorrhizal fungi (AMF - subphylum Glomeromycotina) are obligate
symbionts that have been referred to as an “evolutionary cul-de-sac, albeit an enor-
mously successful one” (Malloch, 1987; Morton, 1990). This alludes to their ecological
success despite limited morphological and species diversities: they associate with the
roots of >80% of land plants, where they provide mineral resources in exchange for pho-
tosynthates (Smith & Read, 2008). Present in most terrestrial ecosystems, AMF play key
roles in plant protection, nutrient cycling, and ecosystem functions (van der Heijden et
al., 2015). Fossil evidence and molecular phylogenies suggest that AMF contributed to
the emergence of land plants (Selosse & Le Tacon, 1998; Field et al., 2015; Strullu-Derrien
et al., 2018; Feijen et al., 2018) and coevolved with them for more than 400 million years
(Myr) (Simon et al., 1993; Lutzoni et al., 2018; Strullu-Derrien et al., 2018).

Despite the ecological ubiquity and evolutionary importance of AMF, large-scale pat-
terns of their evolutionary history are poorly known. Studies on the diversification of
AMF have been hampered by the difficulty of delineating species, quantifying global
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scale species richness, and building a robust phylogenetic tree for this group. Indeed,
AMF are microscopic soil- and root-dwelling fungi that are poorly differentiated mor-
phologically and difficult to cultivate. Although their classical taxonomy is mostly based
on the characters of spores and root colonization (Smith & Read, 2008; Stürmer, 2012),
AMF species delineation has greatly benefited from molecular data (Krüger et al., 2012).
Experts have defined “virtual taxa” (VT) based on a minimal 97% similarity of a region
of the 18S small subunit (SSU) rRNA gene and monophyly criteria (Öpik et al., 2010,
2014). As for many other pragmatic species delineations, VT have rarely been tested for
their biological relevance (Powell et al., 2011), and a consensual system of AMF classifi-
cation is still lacking (Bruns et al., 2018). AMF are also poorly known genetically: the full
SSU rRNA gene sequence is known in few species (Rimington et al., 2018), other gene
sequences in even fewer (James et al., 2006; Lutzoni et al., 2018), and complete genomes
in very few (Venice et al., 2020).

The drivers of AMF diversification are unknown. A previous dated phylogenetic tree
of VT found that many speciations occurred after the last major continental reconfigu-
ration around 100 Myr ago (Davison et al., 2015), suggesting that AMF diversification is
not linked to vicariant speciation during this geological event. Still, geographical specia-
tion could play an important role in AMF diversification, as these organisms have spores
that disperse efficiently (Egan et al., 2014; Bueno & Moora, 2019; Correia et al., 2019),
which could result in frequent founder-event speciation (Templeton, 2008). Other abiotic
factors include habitat: tropical grasslands have, for example, been suggested as diver-
sification hotspots for AMF (Pärtel et al., 2017). Besides abiotic factors, AMF are obligate
symbionts and, although relatively generalist (Sanders, 2003; van der Heijden et al., 2015;
Article 6), their evolutionary history could be largely influenced by a diffuse coevolution
with their host plants (Zanne et al., 2014; Lutzoni et al., 2018; Sauquet & Magallón, 2018).
Over the last 400 Myr, land plants have experienced massive extinctions and radiations
(Cleal & Cascales-Miñana, 2014; Zanne et al., 2014), adaptations to various ecosystems
(Bredenkamp et al., 2002; Brundrett & Tedersoo, 2018), and associations with different
soil microorganisms (Werner et al., 2014, 2018). All these factors could have influenced
diversification dynamics in AMF.

Here, we reconstruct several thoroughly sampled phylogenetic trees of AMF, consid-
ering several criteria of species delineations and uncertainty in phylogenetic reconstruc-
tions. We combine this phylogenetic data with paleoenvironmental data and data of
current AMF geographic distributions, ecological traits, interaction with host plants, and
genetic diversity to investigate the global patterns and drivers of AMF diversification in
the last 500 Myr.
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Methods:

Virtual taxa phylogenetic reconstruction:

We downloaded the AMF SSU rRNA gene sequences from MaarjAM, the largest
global database of AMF gene sequences (Öpik et al., 2010). We reconstructed several
Bayesian phylogenetic trees of the 384 VT from the corresponding representative se-
quences available in the MaarjAM database (Öpik et al., 2010) updated in June 2019
(Supplementary Methods 1). We used the full length (1,700 base pairs) SSU rRNA gene
sequences from (Rimington et al., 2018) to better align the VT sequences using MAFFT
(Katoh & Standley, 2013). We selected the 520 base pair central variable region of the VT
aligned sequences and performed a Bayesian phylogenetic reconstruction using BEAST2
(Bouckaert et al., 2014). We obtained a consensus VT tree and selected 12 trees equally
spaced in 4 independent Bayesian chains to account for phylogenetic uncertainty in the
subsequent diversification analyses, hereafter referred to as the VT replicate trees. We
set the crown root age at 505 Myr (Davison et al., 2015), which is coherent with fossil
data and previous dated molecular phylogenies (Lutzoni et al., 2018; Strullu-Derrien et
al., 2018).

Delineation into Evolutionary Units (EUs):

We considered several ways to delineate AMF species based on the SSU rRNA gene.
In addition to the VT species proxy, we delineated AMF de novo into evolutionary units
(EUs) using 5 different thresholds of sequence similarity ranging from 97 to 99% and a
monophyly criterion. We gathered 36,411 AMF sequences of the SSU rRNA gene from
MaarjAM, mainly amplified by the primer pair NS31–AML2 (variable region) (Simon
et al., 1992; Lee et al., 2008) (dataset 1, Supplementary Table 1), corresponding to 27,728
haplotypes. We first built a phylogenetic tree of these haplotypes and then applied to this
tree our own algorithm (R-package RPANDA; Morlon et al., 2016; R Core Team, 2020) that
traverses the tree from the root to the tips, at every node computes the average similarity
of all sequences descending from the node, and collapses the sequences into a single EU if
their sequence dissimilarity is lower than a given threshold (Supplementary Methods 2).
Finally, we performed Bayesian phylogenetic reconstructions of the EUs using BEAST2
(Supplementary Methods 1).

Coalescent-based species delineation analyses:

Finally, we considered the Generalized Mixed Yule Coalescent method (GMYC) (Pons
et al., 2006; Fujisawa & Barraclough, 2013), a species delineation approach that does not
require specifying an arbitrary similarity threshold. GMYC estimates the time t in a re-
constructed calibrated tree that separates species diversification (Yule process – before
t) and intraspecific differentiation (coalescent process – after t). GMYC is too computa-
tionally intensive to apply on the 36,411 SSU sequences; we used it here on three smaller
clades to investigate the ability of the SSU gene to delineate AMF species despite its
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slow evolution (Bruns et al., 2018), and as a way to evaluate the biological relevance
of the VT and various EUs delineations. We selected the following AMF clades: the
family Claroideoglomeraceae; the order Diversisporales; and an early-diverging clade
composed of the orders Archaeosporales and Paraglomerales. For each clade, we recon-
structed Bayesian phylogenetic trees of haplotypes (Supplementary Methods 1). We then
ran GMYC analyses (splits R-package; Ezard et al., 2009) on each of these trees and eval-
uated the support of the GMYC model compared to a null model in which all tips are
assumed to be different species, using a likelihood ratio test (LRT). If the LRT supports
the GMYC model, different SSU haplotypes belong to the same AMF species, i.e. the SSU
rRNA gene has time to accumulate substitutions between AMF speciation events.

Total diversity estimates:

We evaluated how thoroughly sampled our species-level AMF phylogenetic trees are
by estimating the total number of VT and EUs using rarefaction curves and the Bayesian
Diversity Estimation Software (BDES; Quince et al., 2008) (Supplementary Methods 3).

Diversification analyses:

We estimated lineage-specific diversification rates using ClaDS, a Bayesian diversifi-
cation model that accounts for rate heterogeneity by modeling small rate shifts at specia-
tion events (Maliet et al., 2019). At each speciation event, the descending lineages inherit
new speciation rates sampled from a log-normal distribution with an expected value
log[α × λ] (where λ represents the parental speciation rate and α is a trend parameter)
and a standard deviation σ. We considered the model with constant turnover ε (i.e. con-
stant ratio between extinction and speciation rates; ClaDS2) and ran a newly-developed
ClaDS algorithm based on data augmentation techniques which enables us to estimate
mean rates through time (Maliet & Morlon, 2020). We ran ClaDS with 3 independent
chains, checked their convergence using a Gelman-Rubin diagnostic criterion (Gelman
& Rubin, 1992), and recorded lineage-specific speciation rates. We also recorded the esti-
mated hyperparameters (α, σ, ε) and the value m = α× exp(σ2/2), which indicates the
general trend of the rate through time (Maliet et al., 2019).

In addition, we applied TreePar (Stadler, 2011), another diversification approach that
does not consider rate variation across lineages, but models temporal shifts in diversifica-
tion rates affecting all lineages simultaneously. We searched for up to ten shifts in diversi-
fication rates at every 2-million-year interval in each phylogenetic tree. We estimated the
number of temporal shifts in AMF diversification rates using maximum likelihood infer-
ences and likelihood ratio tests. We also used CoMET, its equivalent piecewise-constant
model in a Bayesian framework (TESS R-package; Höhna et al., 2016; May et al., 2016).
We chose the Bayesian priors according to maximum likelihood estimates from TreePar,
disallowed mass extinction events, and ran the MCMC chains until convergence (mini-
mum effective sample sizes of 500).
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We also fitted a series of time-dependent and environment-dependent birth-death di-
versification models using RPANDA (Condamine et al., 2013; Morlon et al., 2016) to con-
firm the observed temporal trends and test the influence of temperature, pCO2, and land
plant fossil diversity on AMF diversification. For the time-dependent models, we con-
sidered models with constant or exponential variation of speciation rates through time
and null or constant extinction rates ( f it_bd function). As extinction is notoriously hard
to estimate from reconstructed phylogenies (Rabosky, 2016), we tested the robustness of
the inferred temporal trend in speciation when fixing arbitrarily high levels of extinction
(Supplementary Methods 4). For the environment-dependent models, we considered an
exponential dependency of the speciation rates with the environmental variable (env),
i.e. speciation rate=b*exp(a*env), where a and b are two parameters estimated by maxi-
mum likelihood ( f it_env function). Best-fit models were selected based on the corrected
Akaike information criterion (AICc), considering that a difference of 2 in AICc indicates
that the model with the lowest AICc is better.

The influence of temperature was tested on the complete AMF phylogenetic trees, us-
ing estimates of past global temperature (Royer et al., 2004). As these temporal analyses
can be sensitive to the root age calibration, we replicated them using the youngest (437
Myr) and oldest (530 Myr) crown age estimates from (Lutzoni et al., 2018). We also carried
a series of simulation analyses to test the robustness of our temperature-dependent re-
sults (Supplementary Methods 5). The influence of pCO2 (Foster et al., 2017) and of land
plant fossil diversity was tested starting from 400 Myr ago, as these environmental data
are not available for more ancient times. For these analyses we sliced the phylogenies
at 400 and 200 Myr ago, and applied the diversification models to the sliced sub-trees
larger than 50 tips. Estimates of land plant diversity were obtained using all available
Embryophyta fossils from the Paleobiology database (https://paleobiodb.org) and us-
ing the shareholder quorum subsampling method (Supplementary Methods 6; Alroy,
2010).

Finally, because our results can be sensitive to incorrect species delineations toward
the present (Moen & Morlon, 2014), we replicated the RPANDA analyses by excluding
the last 50 Myr, following Lewitus et al. (2018).

All diversification analyses were performed for each delineation on the consensus
and on the 12 replicate trees to account for phylogenetic uncertainty (we even used 100
replicate trees when the 12 trees gave different results). We considered missing species
by imputing sampling fractions, computed as the number of observed VT or EUs divided
by the corresponding BDES estimates of global AMF diversity (Supplementary Table 2).
We also replicated all diversification analyses using lower sampling fractions down to
50%.
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Testing for potential drivers of AMF diversification:

To further investigate the potential factors driving AMF diversification, we assessed
the relationship between lineage-specific estimates of present-day speciation rates and
characteristics of each AMF taxonomic unit, i.e. VT or EUs.

First, we characterized AMF relative niche width using a set of 10 abiotic and biotic
variables recorded in MaarjAM database for each AMF unit. In short, among a curated
dataset containing AMF sequences occurring only in natural ecosystems (dataset 2; Sup-
plementary Table 3; Article 6), for each AMF unit, we reported the number of continents,
ecosystems, climatic zones, biogeographic realms, habitats, and biomes where it was
sampled, as well as its number of plant partners, their phylogenetic diversity, and its
centrality in the plant-fungus bipartite network, and performed a principal component
analysis (PCA; Supplementary Methods 7). For AMF units represented by at least 10
sequences, we tested whether these PCA coordinates reflecting AMF niche widths were
correlated with the present-day speciation rates using both linear mixed-models (not ac-
counting for phylogeny) or MCMCglmm models (Hadfield, 2010). For MCMCglmm, we
assumed a Gaussian residual distribution, included the fungal phylogenetic tree as a ran-
dom effect, and ran the MCMC chains for 1,300,000 iterations with a burn-in of 300,000
and a thinning interval of 500.

Next, we tested the relationship between speciation rates and geographic characteris-
tics of AMF units. To test the effect of latitude, we associated each AMF unit with its set of
latitudes and used similar MCMCglmm with an additional random effect corresponding
to the AMF unit. To account for inhomogeneous sampling along the latitudinal gradient,
we re-ran the model on jackknifed datasets (we re-sampled 1,000 interactions per slice of
latitude of twenty degrees). Similarly, we tested the effect of climatic zone and habitat on
the speciation rates.

Finally, to test the effect of dispersal capacity, we assessed the relationship between
spore size and speciation rate for the few (n=32) VT that contain sequences of morpho-
logically characterized AMF isolates (Davison et al., 2018). We gathered measures of their
average spore length (Davison et al., 2018) and tested their relationship with speciation
rate by using a phylogenetic generalized least square regression (PGLS).

Estimating genetic diversity:

As a first attempt at connecting AMF macroevolutionary diversification to microevo-
lutionary processes, we measured intraspecific genetic diversities across AMF units. For
each AMF unit containing at least 10 sequences, we computed genetic diversity using
Tajima’s estimator (Tajima, 1983; θπ; Supplementary Methods 8). Using similar statistical
tests as above, we investigated the correlation of AMF genetic diversity with speciation
rate, niche width, geographic characteristics, and spore size. We tested the robustness
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of the results to the minimal number of sequences per AMF unit (10, 15, or 20) used to
compute genetic diversity and to perform the PCA.

These statistical models were replicated on the different phylogenetic trees (consensus
or replicates) for each delineation and we reported p-values (P) corresponding to two-
sided tests.

Assessing the robustness of our findings:

Investigating the diversification history of a clade of species that diverged more than
500 Myr ago using a single slowly evolving gene to delineate species and reconstruct the
phylogenetic tree is challenging and can lead to bias (Moen & Morlon, 2014). Therefore,
we assessed the robustness of our finding by (i) using simulations to show that diver-
sification inferences can be performed in this context and (ii) by investigating whether
similar trends were observed when using another AMF gene.

First, we simulated the diversification of clades of species in the last 505 Myr, accord-
ing to three scenarios: (i) constant speciation rate and no extinction, (ii) constant specia-
tion and extinction rates, and (iii) declining speciation rate and constant extinction (Sup-
plementary Figure 1a). On the obtained trees, we used the function simulate_alignment
(R-package HOME; Article 1) to simulate the evolution of short 520 bp DNA sequences
with a substitution rate of 0.001 event per Myr and only 25% of variable sites, which
mimicked the AMF SSU rRNA alignment. Next, we applied the same pipelines as above
to reconstruct the phylogenetic tree of the simulated clades and infer their diversification
trend through time.

Second, we replicated our analyses using the large subunit (LSU) rRNA gene. We
downloaded the Glomeromycotina LSU database of Delavaux et al. (2020) as well as
the LSU sequences available in MaarjAM. We obtained a total 2,044 sequences that we
aligned using MAFFT and TrimAl. We retained the 1,760 unique haplotypes and recon-
structed the phylogenetic tree of the LSU sequences using BEAST2 (same pipeline as
above) and used the resulting calibrated tree to delineate Glomeromycotina LSU units
with the GMYC model. Finally, we reconstructed the species-level phylogeny (still using
BEAST2) and performed the diversification analyses (ClaDS and RPANDA) with a range
of sampling fraction down to 50%.
Besides the SSU and the LSU rRNA genes, in fungi, the usual barcode is the ITS region,
although the ITS data on AMF are currently less common (Lekberg et al., 2018). How-
ever, we confirmed using the dataset of Lekberg et al. (2018) that the ITS sequences are
very difficult to align, making them unsuitable for reconstructing a robust phylogeny for
diversification analyses (Supplementary Figure 2).
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Results:

AMF species delineations & phylogenetic reconstructions:

The EU97.5 and EU98 delineations (obtained using a threshold of 97.5% and 98%
respectively) provided a number of AMF units (340 and 641) comparable to the 384 cur-
rently recognized VT, while the EU97 delineation had much less (182). Conversely, the
EU98.5 and EU99 delineations yielded a much larger number of AMF units (1,190 and
2,647) that was consistent with the number obtained using GMYC analyses (Supplemen-
tary Tables 4, 5, & 6). This supports the idea that some VT might lump together several
cryptic species (Bruns et al., 2018; Supplementary Note 1), and that a 98.5 or 99% sim-
ilarity threshold is more relevant for AMF species delineation. In addition, the GMYC
analyses indicated that the level of genetic variation within the SSU marker is overall suf-
ficient to separate AMF species-like units among SSU haplotypes (GMYC LRT: P<0.05;
Supplementary Figure 3); on average, for one AMF unit delineated using GMYC, there
are 10 SSU haplotypes with a mean intraspecific sequence similarity of 99% (Supple-
mentary Table 6 & Supplementary Figure 3). Rarefaction curves as well as Bayesian and
Chao2 estimates of diversity suggested that more than 90% of the total AMF diversity
is represented in our dataset regardless of the delineation threshold (Figure II.5.1, Sup-
plementary Tables 2, 6, & 7), which is consistent with the proportion of new AMF units
detected in recent studies (Sepp et al., 2019).
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Figure II.5.1: Molecular-based species delineations of arbuscular mycorrhizal fungi (AMF)
give consistent results and indicate a nearly complete sampling. We compared the virtual taxa
(VT) delineation from (Öpik et al., 2010) with newly-developed automatic delineations into evo-
lutionary units (EUs) based on an average threshold of similarity and a criterion of monophyly.
(a) The proportion of AMF units (VT or EUs) in each AMF family reveals constant proportions
across delineations, although Glomeraceae tend to be relatively less abundant compared with
the other AMF family in the VT delineation. The main AMF orders are indicated on the right
of the charts: Paraglomerales + Archaeosporales, Diversisporales, and Glomerales (Glomeraceae
+ Claroideoglomeraceae). (b) Rarefaction curves indicating the number of AMF units as a func-
tion of the percentage of sampled AMF accession revealed that the AMF sampling in MaarjAM is
close to saturation for all delineations (VT or EUs). Rarefactions were performed 100 times every
5 percent and the median of the 100 replicates is represented here.
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The reconstructed Bayesian phylogenetic trees based on VT and EU delineations did
not yield high support for the nodes separating the main AMF orders; yet, they had sim-
ilar topologies and branching times of the internal nodes overall (Figure II.5.2, Supple-
mentary Figure 4). As expected, finer delineations resulted in an increase in the number
of nodes close to the present (Supplementary Figure 5). However, we observed a slow-
down in the accumulation of new lineages close to the present in all lineage through time
plots (LTTs), including those with the finest delineations (EU98.5 and EU99; Supplemen-
tary Figure 6).

Temporal diversification dynamics:

AMF speciation rates ranged from 0.005 to 0.03 events per lineage per Myr (Figure
II.5.2; Supplementary Figure 7), and varied both within and among AMF orders, with
Glomerales and Diversisporales having the highest present-day speciation rates (Sup-
plementary Figure 8). As expected we observed higher present-day speciation rates for
finer delineations, but at the level of the individuals we found a significant correlation
of the speciation rates according to the different delineations (Supplementary Figure 9).
Whatever the delineations, AMF experienced their most rapid diversification between
200 and 100 Myr ago according to estimates of diversification rates through time obtained
with ClaDS (Figure II.5.2; Supplementary Figure 10), and 150-50 Myr ago according to
diversification models with piecewise constant rates (TreePar and CoMET, Figure II.5.2;
Supplementary Figures 11 & 12).

The fast diversification of AMF between 200 and 100 Myr ago was followed by a slow-
down in the recent past (Figure II.5.2; Supplementary Figure 10), as suggested by the
plateauing of the LTTs. A global decrease of the speciation rates through time was inde-
pendently supported by ClaDS, TreePar, and CoMET analyses, as well as time-dependent
models in RPANDA (Morlon et al., 2011; Supplementary Figures 11, 12, 13 & 14). This
slowdown was robust to all species delineations, the branching process prior (Supple-
mentary Table 8), phylogenetic uncertainty, and sampling fractions down to 50%, except
in ClaDS analyses where the trend disappeared in some EU99 trees and for sampling
fractions lower than 70% (Supplementary Figures 15, 16 & 17). Finally, we still observed
a significant decrease of the rates through time when not considering the last 50 Myr
(Supplementary Figure 18).

We did not find a strong signal of extinction in our analyses: the turnover rate esti-
mated from ClaDS was generally close to zero (Supplementary Figure 13b), and models
including extinctions were never selected in RPANDA (Supplementary Figure 14). Sim-
ilarly, the extinction rates estimated in piecewise-constant models were not significantly
different from 0 (Supplementary Figure 19). Forcing the extinction rate to positive values
did not modify the general trend of speciation rate slowdown (Supplementary Figures
20 & 21).
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Figure II.5.2: The diversification dynamic of arbuscular mycorrhizal fungi (AMF) varies sig-
nificantly through time and between lineages. (a-b) AMF consensus phylogenetic trees corre-
sponding to the VT (a) and EU99 (b) species delineations. Branches are colored according to the
lineage-specific speciation rates estimated by ClaDS using the BDES estimated sampling fraction:
lineages with low and high speciation rates are represented in blue and red, respectively. The
main AMF clades are indicated with the following letters: P = Paraglomerales + Archaeospo-
rales, D = Diversisporales, C = Claroideoglomeraceae, and G = Glomeraceae.
(c-d) Mean speciation rates through time estimated by ClaDS, for the VT (c) and EU99 (d) delin-
eations and using the BDES estimated sampling fraction. The mean speciation rate corresponds
to the maximum a posteriori (MAP) of the mean speciation rate across all fungal lineages back in
time (including extinct and unsampled lineages). Orange and grey lines represent the indepen-
dent replicate trees and the consensus tree, respectively: because the 12 replicate trees showed
different trends, we replicated ClaDS inferences using 100 replicate trees. Unlike most replicate
trees, the EU99 consensus tree tends to present a limited diversification slowdown, which rein-
forces the idea that consensus trees can be a misleading representation (Janzen & Etienne, 2017).
(e-f): Net diversification rates (speciation rates minus extinction rates) through time estimated by
TreePar, for the VT (c) and EU99 (d) delineations and using the BDES estimated sampling frac-
tion. Orange and grey lines represent the 12 independent replicate trees and the consensus tree,
respectively.

AMF diversification drivers:

When fitting environment-dependent models of diversification, we found high sup-
port for temperature-dependent models compared to time-dependent models for all AMF
delineations, sampling fractions, and crown ages (Figure II.5.3; Supplementary Figures
22, 23, 24, 25, & 26), with the exception of some EU99 trees with a 50% sampling frac-
tion (Supplementary Figure 26). This signal of temperature dependency was not due
to a temporal trend (Supplementary Figures 27 & 28) nor to an artefact caused by rate
heterogeneities (Supplementary Figure 29). Evidence for temperature dependency, how-
ever, decreased in some clades closer to the present, as small trees tend to be best fit by
constant or time-depend models (Supplementary Figure 30). We detected a significant
positive dependency of the diversification rates on CO2 concentrations in some sub-trees,
but rarely found a significant effect of plant fossil diversity (Supplementary Figure 30).
Finally, this signal of temperature dependency was also observed in most of the trees
when excluding the past 50 Myr (Supplementary Figure 18), suggesting that this signal
is not artifactually driven the recent past.

The PCA of AMF niche width characteristics had a first principal component (PC1)
that indicated the propensity of each AMF unit (VT or EUs) to be vastly distributed
among continents, ecosystems and/or associated with many plant species and lineages,
whereas the second principal component (PC2) indicated the propensity of a given AMF
unit to associate with few plant species on many continents (Supplementary Figures 31,
32, & 33). Hence, PC1 reflects AMF niche width, whereas PC2 discriminates the width
of the abiotic relatively to the biotic niche (Figure II.5.4a-b). We found a positive corre-
lation between PC1 and lineage-specific speciation rates in the majority of the VT and
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Figure II.5.3: Temperature-dependent diversification models reveal that global temperature
positively associates with the speciation rates of arbuscular mycorrhizal fungi (AMF) in the
last 500 million years. (a) Average global temperature in the last 500 million years (Myr) relative
to the average temperature of the period 1960-1990. The smoothed orange line represents cubic
splines with 33 degrees of freedom used to fit temperature-dependent models of AMF diversifi-
cation with RPANDA. This default smoothing was estimated using the R function smooth.spline.
(b) AICc difference between the best-supported time-dependent model and the temperature-
dependent model in RPANDA, for the VT (left) and EU99 (right) delineations, using the BDES
estimated sampling fraction. An AICc difference greater than 2 indicates that there is significant
support for the temperature-dependent model. (c) Parameter estimations of the temperature-
dependent models (speciation rate∼ exp(parameter * temperature) ). A positive parameter value
indicates a positive effect of temperature on speciation rates. For both delineations, the box-
plots represent the results obtained for the consensus tree and the 12 independent replicate trees.
Boxplots indicate the median surrounded by the first and third quartiles, and whiskers extend
to the extreme values but no further than 1.5 of the inter-quartile range. The horizontal dotted
lines highlighted the values estimated for the consensus trees. Compared to the replicate trees,
the consensus trees tend to present extreme values (stronger support for temperature-dependent
model), which reinforces the idea that consensus trees can be a misleading representation (Janzen
& Etienne, 2017).

EU99 trees (Figure II.5.4c-d; Supplementary Figure 34a). However, these results were no
longer significant when controlling for phylogenetic non-independence between AMF
units (Supplementary Figure 34b), likely because a single Glomeraceae clade, including
the abundant and widespread morphospecies Rhizophagus irregularis and R. clarus, had
both the highest speciation rates and the largest niche widths among AMF (Supplemen-
tary Figure 35).
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Chapter II

Figure II.5.4: Abiotic and biotic drivers of the species diversification and differentiation of
arbuscular mycorrhizal fungi (AMF). (a-b) Projection of 10 abiotic and biotic variables on the
two principal coordinates according to the VT (a) or EU99 (b) delineations. Principal coordinate
analysis (PCA) was performed for the AMF units represented by at least 10 sequences. Colors
represent the contribution of the variable to the principal coordinates. The percentage for each
principal coordinate (PC) indicates its amount of explained variance. Tested variables were: the
numbers of continents on which the AMF unit occurs (nb_continent), of realms (nb_realm), of
ecosystems (nb_ecosystems), of habitats (nb_habitats), of biomes (nb_biomes), and climatic zones
(nb_climatic) (Öpik et al., 2010), as well as information about the associated plant species of each
unit, such as the number of plant partners (nb_plants), the phylogenetic diversity of these plants
(PD), and the betweenness and closeness measurement of each fungal unit in the plant-fungus
interaction network (see Methods). (c-d) Speciation rates as a function of the PC1 coordinates for
each VT (c) or EU99 (d) unit. Only the AMF consensus tree is represented here (other replicate
trees are presented in Supplementary Figure 34). (e-h) Genetic diversity (Tajima’s θπ estimator)
as a function of the PC1 (e-f) or PC2 (g-h) coordinates for each VT (e-g) or EU99 (f-h) unit. Only
the AMF consensus tree is represented here (other replicate trees are presented in Supplementary
Figure 34). The grey lines indicate the statistically significant linear regression between the two
variables inferred using MCMCglmm.

Although the current AMF diversity is higher in the tropics (Supplementary Figure
36), we found no effect of latitude on speciation rates, regardless of the AMF delineation
or the minimum number of sequences per AMF unit (MCMCglmm: P>0.05), and no ef-
fect of habitat or climatic zone either (Supplementary Figure 37). Similarly, we recovered
no significant correlation between spore size and speciation rate (Supplementary Figure
38), nor between spore size and level of endemism (Supplementary Figure 39).

Finally, Tajima’s estimator of AMF genetic diversity was significantly and positively
correlated with niche width (PC1) for all AMF delineations and minimal number of se-
quences per AMF unit considered, and in particular with abiotic aspects of the niche
(PC2) in many cases (Figure II.5.4e-h; Supplementary Figure 34). Genetic diversity was
not correlated with speciation rate (Supplementary Figure 34), latitude, habitat, climatic
zone (MCMCglmm: P>0.05), or spore size (PGLS: P>0.05).

Assessing the robustness of our findings:

When simulating the evolution of a short DNA gene and using it to infer its diver-
sification, we were overall able to recover the simulated scenarios (Supplementary Fig-
ure 40): for clades simulated with constant speciation and explication rates, we mostly
inferred the correct simulated constant rates, whereas when simulating declining speci-
ation rates, we either estimated constant rates (for small clades) or decreasing speciation
rates (Supplementary Figure 40). Despite the fact that we simulated slowly evolving
DNA sequences and that many extant species had identical haplotypes (Supplementary
Figure 1b), we did not observe an artefactual diversification slowdown in the recent past
(Supplementary Figure 40). Using RPANDA, we mainly found a support for constant
speciation rates with no extinction and did not tend to select temperature-dependent
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models (Supplementary Figure 41).

Finally, when replicating our analyses on the LSU rRNA gene, we delineated 181
GMYC units. We also reported a period of high speciation rates between 200 and 100
Myr ago that was followed by a diversification slowdown toward the present, for all
sampling fraction down to 50% (Supplementary Figure 42). For a sampling fraction of
50% or below, we nevertheless observed a plateau of the speciation rates in the last 50
Myr (Supplementary Figure 42). Using RPANDA, we also found a strong and significant
signal of temperature dependency (Supplementary Figure 43), meaning that both SSU
and LSU rRNA genes lead to the same conclusions.

Discussion:

AMF species delineations, diversity, and phylogeny:

Species delineations are difficult to apply in AMF, which are poorly differentiated
morphologically and mainly characterized by environmental sequences (Bruns et al.,
2018). In addition, their reproduction mode is not well known and they have unique
nuclear dynamics in their spores and hyphae (Kokkoris et al., 2020). Our GMYC analyses
suggest that biologically relevant AMF species-like units correspond to SSU rRNA hap-
lotypes with a sequence similarity between 98.5 and 99%. With this criterion of species
delineation, we estimate that there are between 1,300 and 2,900 AMF ‘species’. These es-
timates are largely above the number of currently described morphospecies or VT (Sup-
plementary Note 1) but remain low in comparison with other fungal groups, like the
Agaricomycetes that include taxa forming ectomycorrhiza (Varga et al., 2019).

Species delineations and phylogenies constructed from a single gene and short se-
quences are limited, but in the current state of data acquisition, relatively short metabar-
coding sequences provide for most microbial groups, including AMF, the only current
possibility to analyze their diversification dynamics (Davison et al., 2015; Lewitus et al.,
2018; Louca et al., 2018). Here, our phylogenies did not resolve the branching of the
AMF orders, with node supports similar to those of previous studies (Krüger et al., 2012;
Davison et al., 2015; Rimington et al., 2018; Supplementary Note 2), confirming that addi-
tional genomic evidence is required to reach consensus. We considered this uncertainty
in the phylogenetic reconstruction by repeating our analyses on a set of trees spanning
the likely tree space. We hope that our study based on the SSU (or LSU) rRNA region
alone will foster efforts to obtain more genetic data, including additional genomic infor-
mation, with the aim of reconstructing better supported, comprehensive phylogenies.

AMF diversify slowly:

We found speciation rates for AMF an order of magnitude lower than rates typically
found for macro-eukaryotes (Maliet et al., 2019; Upham et al., 2019), like plants (Zanne
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et al., 2014), or Agaricomycetes (Varga et al., 2019). Low speciation rates in AMF may
be linked to their particular reproduction (Yildirir et al., 2020), to their occasional long-
distance dispersal that homogenizes populations globally over evolutionary timescales
(Savary et al., 2018), or to the fact that they are generalist obligate symbionts (Morlon et
al., 2012). Regardless of the proximal cause, and contrary to Agaricomycetes for exam-
ple, which present a large diversity of species, morphologies, and ecologies, the niche
space exploited by AMF is limited to plant roots and the surrounding soil because of
their obligate dependence on plants for more than 400 Myr (Tisserant et al., 2013; Rich et
al., 2017). Thus, although AMF species delineation based on the SSU rRNA gene can be a
poor predictor of their functional diversity, our analyses based on this gene has revealed
that AMF, despite their ubiquity, have poorly diversified in the last 500 Myr compared
with other groups.

We found little evidence for species extinction in AMF, including at mass extinction
events. Although AMF are relatively widespread and generalists, and low extinction
rates have been predicted before based on their ecology (Morton, 1990), these low ex-
tinction rate estimates could also come from the difficulty of estimating extinction from
molecular phylogenies (Rabosky, 2016), one of the limitations of phylogeny-based diver-
sification analyses (Supplementary Note 3).

AMF diversification through time:

The observed peak of AMF diversification detected between 200 and 100 Myr (or 150-
50 Myr depending on the models) was mainly linked to the fast diversification of the
largest family Glomeraceae. This peak was concomitant with the radiation of flowering
plants (Sauquet & Magallón, 2018), but also with a major continental reconfiguration,
including the breakdown of Pangea and the formation of climatically contrasted land-
masses (Davison et al., 2015). This period was also characterized by a warm climate
potentially favorable to AMF diversification, such that disentangling the impact of these
various factors on AMF diversification is not straightforward. Interestingly, a peak of
diversification at this period was also found in the Agaricomycetes forming ectomycor-
rhiza (Varga et al., 2019).

This peak of diversification has been followed by a slowdown. Signals of diversifi-
cation slowdowns sometimes result from methodological artifacts, including incorrect
species delineation, biased phylogenetic reconstruction, and under-sampling (Moen &
Morlon, 2014). We carefully considered uncertainty in species delineation, phylogenetic
reconstruction, and under-sampling down to 50%. In addition, our GMYC analyses con-
firmed that the SSU rRNA gene evolves fast enough to delineate AMF species-like units;
although some cryptic AMF species can have the same SSU sequence (Krüger et al., 2012),
our analyses support the overall existence of several SSU haplotypes per AMF unit. We
found that the observed diversification slowdown was robust to all these potential ar-
tifacts, amplified under scenarios of high extinction, and also present when using the
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LSU rRNA gene. In addition, we showed using simulations that the fact we were using
a single slowly-evolving DNA gene is unlikely to artefactually generate such a strong
slowdown. Slowdowns in diversification rates close to the present have often been inter-
preted as a progressive reduction of the number of available niches as species diversify
and accumulate (Rabosky, 2009; Moen & Morlon, 2014). In AMF, this potential effect
of niche saturation could be exacerbated by a reduction of their niches linked to both
repetitive breakdowns of their symbiosis with plants and climatic changes. Indeed, since
the Cretaceous, many plant lineages evolved alternative root symbioses or became non-
symbiotic (Selosse & Le Tacon, 1998; Maherali et al., 2016; Werner et al., 2018; Brundrett &
Tedersoo, 2018): approximately 20% of extant plants do not interact with AMF anymore
(van der Heijden et al., 2015). Additionally, the cooling of the Earth during the Ceno-
zoic reduced the surface of tropical regions (Ziegler et al., 2003; Meseguer & Condamine,
2020), which tend to be a reservoir of ecological niches for AMF (Read, 1991; Davison et
al., 2015; Brundrett & Tedersoo, 2018).

The difficulty of reconstructing past symbiotic associations prevents direct testing of
the hypothesis that the emergence of new root symbioses in plants led to a diversification
slowdown in AMF. However, we tested the hypothesis that global temperature changes
affected diversification rates and found a strong relationship. Such associations between
temperature and diversification rates have been observed before in eukaryotes and have
several potential causes (Condamine et al., 2019). Two prevailing hypotheses are the evo-
lutionary speed hypothesis, stipulating that high temperatures entail higher mutation
rates and faster speciation (Rohde, 1992), and the productivity hypothesis, stating that
resources and associated ecological niches are more numerous in warm and productive
environments, especially when the tropics are large (Clarke & Gaston, 2006). The latter
hypothesis is particularly relevant for AMF, which have many host plant niches in the
tropics and potentially less in temperate regions (Toussaint et al., 2020), where a higher
proportion of plants are non-mycorrhizal (Bueno et al., 2017) or ectomycorrhizal (Brun-
drett & Tedersoo, 2018; Varga et al., 2019). Hence, the observed effect of past global
temperatures could reflect the shrinkage of tropical areas and the associated decrease of
the relative proportion of arbuscular mycorrhizal plants.

A few AMF clades displayed a significant support for diversification models with a
positive dependency on CO2 concentrations, which reinforces the idea that for the cor-
responding AMF benefits retrieved from plants could have been amplified by high CO2

concentrations and fostered diversification (Humphreys et al., 2010; Field et al., 2016).
Conversely, we found a limited effect of land plant fossil diversity, which indicates that
variations in the tempo of AMF diversification did not systematically follow those of land
plants. Still, the possible concordance of the peak of AMF diversification with the radia-
tion of the Angiosperms is noteworthy, in particular in Glomeraceae that frequently in-
teract with present-day Angiosperms (Rimington et al., 2018). The co-diversification with
the plants might have been an important driver from the emergence of land plants until
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the Mesozoic (Morton, 1990; Lutzoni et al., 2018), but less so thereafter, when AMF di-
versification declined while some flowering plants radiated, including AMF-free groups
such as the species-rich Orchidaceae, blurring co-diversification patterns (Supplemen-
tary Figure 44; Cleal & Cascales-Miñana, 2014; Ramírez-Barahona et al., 2020).

AMF recent diversification:

Looking at the correlates of AMF present-day diversification rates, we found no effect
of habitat or climatic zone, even though AMF are more frequent and diverse in the trop-
ics (Davison et al., 2015; Pärtel et al., 2017; Toussaint et al., 2020) and their speciation rates
are positively correlated with global temperature. Further work, including a more thor-
ough sampling of the distribution of AMF species across latitudes and habitats, would
be required to confirm these patterns and to distinguish whether speciation events are
indeed no more frequent in the tropics or, if they are, whether long-distance dispersal
redistributes the new lineages at different latitudes over evolutionary time scales (Pärtel
et al., 2017). Similarly, although the temporal changes in the availability of AMF niches
likely influenced the diversification of the group, we found little support for AMF species
with larger niche width having higher lineage-specific speciation rates. We also note that
there are important aspects of the niche that we do not (and yet cannot) account for
in our characterization of AMF niche width: it is thought that some AMF species may
mainly provide mineral nutrients extracted from the soil, whereas others may be more
specialized in protecting plants from biotic or abiotic stresses (Chagnon et al., 2013) and
such (inter- or intra-specific) functional variations may have evolutionary significance.
Finally, although spore size is often inversely related to dispersal capacity (Nathan et al.,
2008), which can either promote diversification by favoring founder speciation events,
or limit diversification by increasing gene flow, we found no significant correlation be-
tween spore size and diversification rates, which may be explained either by a weak or
absent effect or by the low number of species for which this data is available. In addition,
the absence of correlation between spore size and level of endemism suggests that even
AMF with large spores experience long-distance dispersal (Davison et al., 2018; Kivlin,
2020). Thus, if large spores might limit dispersal at smaller (e.g. intra-continental) scales
in AMF (Bueno & Moora, 2019; Chaudhary et al., 2020), this does not seem to affect di-
versification.

In AMF, intraspecific variability is an important source of functional diversity (Munkvold
et al., 2004; Savary et al., 2018) and their genetic diversity may indicate the intraspecific
variability on which selection can act, potentially leading to species diversification. Here,
geographically widespread AMF species appear to be more genetically diverse, as pre-
viously suggested by population genomics (Savary et al., 2018), but do not necessarily
speciate faster. Along with a decoupling between genetic diversity and lineage-specific
speciation rate, this suggests that the accumulation of genetic diversity among distant
subpopulations is not enough to spur AMF speciation.
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Conclusion:

Our findings that AMF have low speciation rates, likely constrained by the availabil-
ity of suitable niches, reinforce the vision of AMF as an “evolutionary cul-de-sac” (Mal-
loch, 1987). We interpret the significant diversification slowdown toward the present
as the conjunction of the emergence of plant lineages not associated with AMF and the
reduction of tropical areas induced by climate cooling, in the context of obligate depen-
dence of AMF on plants. Diversification slowdowns have often been interpreted as the
signal of adaptive radiations (Harmon et al., 2003; Moen & Morlon, 2014), that is clades
that experienced a rapid accumulation of morphological, ecological, and species diver-
sity (Simpson, 1953). Conversely, AMF provide here a striking example of a clade with
slow morphological, ecological, and species diversification that features a pattern of di-
versification slowdown, likely reflecting the reduction of the global availability of their
mycorrhizal niches.
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Chapter III.

Analyzing the evolution of cheating in
host-microbiota mutualisms:

Cheating can represent a threat to the stability of species-rich host-microbiota mu-
tualism, which must therefore rely on mechanisms to constrain and limit cheaters. In
this chapter, we investigated the evolution of cheating in the mycorrhizal symbioses. We
focused on mycoheterotrophy, i.e. the achlorophyllous plants that rely on their mycor-
rhizal fungi to get both their mineral and organic matter. In Article 6, we first explored
the constraints upon the evolutionary emergence of mycoheterotrophic cheating in the
arbuscular mycorrhizal symbiosis at the global scale. We combined network and phylo-
genetic analyses and developed a framework to investigate the presence of constraints
upon cheating. Using the MaarjAM database, we studied a global interaction network
(>25,000 interactions) between land plants and arbuscular mycorrhizal fungi informed
with the phylogenies of both plants and fungi. Unlike mutualistic autotrophic plants,
cheating plants appeared narrowly specialized towards some closely-related specialist
fungi. Thus, cheaters tend to be specifically isolated into modules and the different my-
coheterotrophic lineages convergently interact with ‘cheating-susceptible’ fungal part-
ners. These results raised new hypotheses about the mechanisms (e.g. sanctions and/or
habitat filtering) that actually constraint the interaction of mycoheterotrophic plants and
their associated fungi with the rest of the autotrophic plants. In addition, we found
a strict reciprocal specialization in the initially mycoheterotrophic lycopods (Lycopodi-
aceae), which could suggest that parental nurture is happening between green sporo-
phytes and achlorophyllous gametophytes.

Then, we investigated whether similar patterns were found in local mycorrhizal net-
works including initially mycoheterotrophic plants (Lycopodiaceae) that we sampled in
La Réunion island (Article 7). We sampled mycorrhizal networks across three communi-
ties in La Réunion and investigate the fungal sharing between the different co-occurring
plants. We characterized root-associated fungal communities using two pairs of primers
amplifying the 18S SSU rRNA gene and the ITS2 respectively. We found that there is a
lot of fungal sharing between plant lineages, including between lycopods and other plant
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lineages (e.g. ferns or flowering plants). Although adult lycopods are well connected to
their surrounding plants by mycorrhizal fungi (i.e. no reciprocal specialization), we also
found lycopod-restricted fungi, which might ensure parental nurture between gameto-
phytes and sporophytes. Even if the initial focus of the project was the lycopods, the
following Article 7 is exploring a more general question not directly related to the emer-
gence of cheaters. Indeed, we investigated fungal sharing between the different distantly
related plant lineages (and not only between lycopods and other groups) and looked at
the structures of the resulting plant-fungus networks for the main fungal lineages (Glom-
eromycotina, Mucoromycotina, Sebacinales, Helotiales, and Cantharellales). We found
striking differences between the different fungal lineages in terms of specialization with
plants and network structures, which highlights the ecological and evolutionary distinc-
tiveness of these different mycorrhizal fungal lineages.

Contents of Chapter III
Article 6: Cheating in arbuscular mycorrhizal mutualism: a network and
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Article 7: Fungal sharing, specialization, and structural distinctiveness in
the plant root microbiomes of distantly related plant lineages . . . . . 209
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Chapitre III : Analyser l’évolution de la tricherie dans les mutualismes hôtes-
microbiotes

La tricherie peut représenter une menace envers la stabilité des mutualismes hôtes-microbiotes
riches en espèces, qui doivent donc reposer sur des mécanismes afin de contraindre et limiter
les tricheurs. Dans ce chapitre, nous avons étudié l’évolution de la tricherie au sein des sym-
bioses mycorhizennes. Nous nous sommes intéressés à la mycohétérotrophie, i.e. aux plantes
non-chlorophylliennes qui reposent sur les champignons mycorhiziens pour obtenir à la fois leur
matière minérale et organique. Dans l’Article 6, nous avons tout d’abord exploré les contraintes
limitant l’émergence de tricheurs mycohétérotrophes dans la symbiose mycorhizenne arbusculaire.
Nous avons combiné des analyses de réseaux et des analyses phylogénétiques pour déterminer
la présence de contraintes envers la tricherie. Grâce à la base de données MaarjAM, nous avons
étudié un réseau d’interactions à l’échelle mondiale, contenant plus de 25 000 interactions, entre
plantes terrestres et champignons endomycorhiziens à arbuscules. Contrairement aux plantes
autotrophes mutualistes, les plantes mycohétérotrophes tricheuses apparaissent étroitement
spécialisées envers des champignons phylogénétiquement proches et eux-mêmes spécialistes.
Ainsi, les tricheurs tendent à être spécifiquement isolés au sein de modules et les différentes lignées
de mycohétérotrophes interagissent de façon convergente avec les mêmes partenaires fongiques «
susceptible à la tricherie ». Ces résultats amènent à de nouvelles hypothèses quant aux mécanismes
(sanction et/ou filtre d’habitat) qui limitent les interactions entre les tricheurs et leurs partenaires
et le reste des plantes autotrophes. De plus, nous avons trouvé une spécialisation réciproque
stricte chez certaines espèces initialement mycohétérotrophes de lycopodes (Lycopodiaceae), ce
qui pourrait suggérer que des échanges nutritionnels auraient lieu entre les sporophytes adultes
autotrophes et les gamétophytes mycohétérotrophes.

Pour finir, nous avons examiné si des patrons similaires étaient présents dans des réseaux my-
corhiziens à l’échelle locale qui incluent des plantes initialement mycohétérotrophes (Lycopodi-
aceae) que nous avons échantillonnés sur l’île de la Réunion (Article 7). Nous avons étudié
les réseaux mycorhiziens dans trois communautés de la Réunion et examiné le partage de
champignons entre les différentes plantes qui co-occurrent. Nous avons caractérisé les commu-
nautés fongiques associées aux racines des plantes grâce à deux paires d’amorces amplifiant re-
spectivement le gène de l’ARNr 18S et la région ITS2. Nous avons trouvé beaucoup de partage
de champignons entre lignées de plantes, y compris entre les lycopodes et les plantes à fleurs ou
fougères. Bien que les lycopodes adultes soient vraisemblablement connectés aux plantes voisines
par des champignons mycorhiziens (i.e. pas de spécialisation réciproque), nous avons aussi trouvé
des champignons spécifiques aux lycopodes, lesquels pourraient éventuellement mettre directe-
ment en réseau les sporophytes adultes autotrophes et les gamétophytes mycohétérotrophes. Même
si la question des lycopodes est centrale à notre projet, l’Article 7 suivant est présenté de manière
à aborder une question plus générale, qui n’est pas directement liée à la question des tricheurs. En
effet, nous avons étudié le partage fongique entre différentes lignées de plantes phylogénétique-
ment éloignées et regardé les structures des réseaux plantes-champignons qui en résultent, pour
les principales lignées de champignons présents (Glomeromycotina, Mucoromycotina, Sebacinales,
Helotiales, et Cantharellales). Nous avons trouvé des disparités marquantes entre les différentes
lignées fongiques en termes de spécialisations de leurs interactions avec les plantes et de struc-
ture des réseaux, ce qui souligne les spécificités écologiques et évolutives de ces différentes lignées
mycorhizennes.

183



Chapter III

Article 6: Cheating in arbuscular mycorrhizal mutualism: a
network and phylogenetic analysis of mycoheterotrophy
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Abstract

While mutualistic interactions are widespread and essential in ecosystem func-
tioning, the emergence of uncooperative cheaters threatens their stability, unless
there are some physiological or ecological mechanisms limiting interactions with
cheaters.
In this framework, we investigated the patterns of specialization and phylogenetic
distribution of mycoheterotrophic cheaters versus non-cheating autotrophic plants
and their respective fungi in a global arbuscular mycorrhizal network with >25,000
interactions.
We show that mycoheterotrophy repeatedly evolved among vascular plants, sug-
gesting low phylogenetic constraints for plants. However, mycoheterotrophic
plants are significantly more specialized than autotrophic plants, and they tend
to be associated with specialized and closely related fungi. These results raise new
hypotheses about the mechanisms (e.g. sanctions, or habitat filtering) that actually
limit the interaction of mycoheterotrophic plants and their associated fungi with
the rest of the autotrophic plants.
Beyond mycorrhizal symbiosis, this unprecedented comparison of mycoheterotro-
phic versus autotrophic plants provides a network and phylogenetic framework to
assess the presence of constraints upon cheating emergences in mutualisms.

Keywords: arbuscular mycorrhiza, mutualism, cheating, mycoheterotrophy, eco-
logical networks, reciprocal specialization, phylogenetic constraint.
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Introduction:

Mutualistic interactions are ubiquitous in nature and largely help to generate and
maintain biodiversity (Bronstein, 2015). Since benefits in mutualism often come at a cost
for cooperators (Douglas, 2008), some species, referred to as cheaters, have evolved an
adaptive uncooperative strategy by retrieving benefits from an interaction without pay-
ing the associated cost (Sachs et al., 2010). Although cheating compromises the evolu-
tionary stability of mutualistic interactions (Ferriere et al., 2002), its evolutionary origin
and persistence until present (hereafter referred to as cheating emergence) is often lim-
ited by factors securing the persistence of mutualism (Bronstein et al., 2003; Frederickson,
2013; Jones et al., 2015). For instance, species often favor the most cooperative partners
(e.g. conditional investment; Roberts & Sherratt, 1998), stop interactions with cheaters
(Pellmyr & Huth, 1994), or even sanction them (Kiers et al. 2003). Cheating emergence
can thus be constrained through physiological or biochemical mechanisms of the inter-
action and its regulation. In addition, cheating can be restricted to particular habitats or
to partners with specific niches. Therefore, cheaters might be constrained to specialize
on susceptible partners and/or particular habitats. Moreover, these different constraints
(hereafter referred to as functional constraints) can be evolutionarily conserved or not
(Gómez et al. 2010). If they are conserved, there will be phylogenetic constraints on
the emergence of cheaters, as some species will have evolutionarily conserved traits that
make them more or less likely to cheat or to be cheated upon (Lallemand et al., 2016).
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The framework of bipartite interaction networks, combined with the phylogeny of
partners, is useful for analyzing the patterns susceptible to arise from constraints limit-
ing the emergence of cheaters in mutualisms (Figure III.6.1). Analyses of bipartite net-
works have been extensively used to showcase the properties of mutualistic interactions
(Bascompte et al., 2003; Rezende et al., 2007; Martos et al., 2012), such as their level of spe-
cialization (number of partners), nestedness (do specialists establish asymmetric special-
ization with partners that are themselves generalists?), and modularity (existence of dis-
tinct sub-networks; Bascompte & Jordano 2014). These studies, most of them describing
species interactions at a local scale, have shown that mutualistic networks are generally
nested with specialists establishing asymmetric specialization with more generalist part-
ners, unlike antagonistic networks, which tend to be modular, with partners establishing
reciprocal specialization (Thebault & Fontaine, 2010). However, few analyses of bipartite
networks have focused on the specialization of cheaters and how they influence nested-
ness and modularity (Fontaine et al., 2011). By assembling networks at a regional scale,
Joffard et al. (2018) showed that specialization of orchids toward pollinators was higher
in deceptive cheaters (both sexual and food deceits) than in cooperative nectar-producing
species, and Genini et al. (2010) showed that a network dominated by cooperative polli-
nators was nested, whereas another network dominated by nectar thieving insects was
more modular. If cheaters specialize and form modules, this would suggest the presence
of functional constraints limiting the set of species that they can exploit (Figure III.6.1b-v).
Additionally, if cheaters emerged only once in a phylogeny (versus repeatedly), and/or
if ‘cheating-susceptible’ partners are phylogenetically related (Merckx et al., 2012), this
would suggest that cheating involves some rare evolutionary innovations (Pellmyr et al,.
1996) and/or that cheating susceptibility is limited to few clades, meaning that cheating
is phylogenetically constrained (Figure III.6.1a-i).

Here we study cheating emergences in arbuscular mycorrhizal mutualism between
plant roots and soil Glomeromycotina fungi (Selosse & Rousset, 2011; Jacquemyn &
Merckx, 2019). This symbiosis is at least 407 Myr-old (Strullu-Derrien et al., 2018) and
concerns ca. 80% of extant land plants and several hundred fungal taxa (Davison et al.,
2015; van der Heijden et al., 2015). Arbuscular mycorrhizal fungi colonize plant roots
and provide host plants with water and mineral nutrients, in return for organic car-
bon compounds (Rich et al., 2017). Although obligate for both partners, this symbiosis
is generally diffuse and not very specific (van der Heijden et al., 2015), since multiple
fungi colonize most plants, while fungi are usually shared among surrounding plant
species (Verbruggen et al. 2012). Thus, fungi interconnect plant individuals of differ-
ent species and allow resource movement between plants (Selosse et al., 2006; Merckx,
2013). This allowed the emergence of achlorophyllous cheating plants, called mycohe-
terotrophs, which obtain carbon from their mycorrhizal fungi that are themselves fed
by surrounding autotrophic plants (Merckx, 2013) - these plants are thus permanent
cheaters, whatever the conditions or partners. Some of these plant species are entirely
mycoheterotrophic over their lifecycle, while others are mycoheterotrophic only at early
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stages before turning autotrophic (initially mycoheterotrophic), therefore shifting from
being cheaters to becoming potentially cooperative partners (Merckx, 2013). Unlike other
systems where cheaters are costly (they receive the benefits without paying the cost of
the interaction) mostly for direct partners (e.g. in plant pollination), mycoheterotrophs
are costly for both their direct fungal partners and the interconnected autotrophic plants,
whose photosynthesis supplies the carbon (it represents a projected cost, transmitted
through the network). Although uncooperative strategies between autotrophic plants
and arbuscular mycorrhizal fungi may exist under certain conditions (Klironomos, 2003;
Jacquemyn & Merckx, 2019; but discussed in Frederickson, 2017), autotrophs can supply
photosynthetic carbon and are mostly cooperative, while mycoheterotrophs never sup-
ply photosynthetic carbon and are therefore necessarily uncooperative.

We evaluate the presence of functional constraints upon cheating by measuring spe-
cialization, nestedness and modularity in a composite plant-mycorrhizal fungal interac-
tion network built from associations between species at multiple sites across the entire
globe (Öpik et al., 2010). Mycoheterotrophic plants are thought to be specialists interact-
ing with few fungal species (Leake, 1994; Merckx, 2013), but whether or not these plant
species are unusually specialized compared to autotrophic plants is still debated (Merckx
et al., 2012). Mycoheterotrophs could specialize on few fungal species if some functional
constraints limit the set of fungi or habitats they can exploit, and if they have evolved
particular strategies to obtain nutrients from their specific fungal partners (Blüthgen et
al., 2007). In terms of nestedness and modularity, arbuscular mycorrhizal networks are
generally nested (Chagnon et al., 2012; Sepp et al., 2019); this pattern of asymmetrical
specialization is generally thought to confer greater stability in relation to disturbance
and resistance to species extinction (Thébault & Fontaine, 2010). How mycoheterotro-
phic plants affect nestedness has yet to be investigated. On the one hand, in the ab-
sence of functional constraints upon cheating, we would expect that mycoheterotrophs
interact with generalist fungi to increase their indirect access to carbon via surround-
ing autotrophic plants, therefore increasing nestedness (Figure III.6.1b–v,viii). On the
other hand, if autotrophic plants are able to avoid costly interactions with fungi associ-
ated with mycoheterotrophs (physiological constraints), or if mycoheterotrophs are only
tolerated in particular habitats (ecological constraints), we expect a reciprocal specializa-
tion between mycoheterotrophs and their fungi and thus an increase of modularity and
a decrease of nestedness (Figure III.6.1b–v,vii). Establishment of an extreme reciprocal
specialization between entirely mycoheterotrophs and fungi exclusively associated with
such plants seems unlikely though, since an autotrophic carbon source is required.

With regards to phylogenetic constraints on mycoheterotrophy, we already know that
mycoheterotrophic strategies evolved multiple times (Merckx, 2013), generating mono-
phyletic groups of mycoheterotrophic plants, which suggests weak phylogenetic con-
straints on the emergence of mycoheterotrophy in plants. However, the fungi interacting
with independent mycoheterotrophic lineages might be phylogenetically closely related

187



Chapter III

(Merckx et al., 2012), which would indicate phylogenetic constraints on fungi (Figure
III.6.1a–iii). The presence of such phylogenetic constraints has yet to be confirmed in
a large phylogenetic context including the fungi of autotrophic plants. Moreover, if as
we expect, only a set of phylogenetically close fungi interact with all mycoheterotrophic
plant lineages, an important follow-up question is whether these fungi were acquired in-
dependently by autotrophic ancestors, or whether they were acquired by symbiont shift
from other mycoheterotrophic plants.

Methods:

MaarjAM database and interaction matrix:

The MaarjAM database is a web-based database (http://maarjam.botany.ut.ee; ac-
cessed in June 2019 after a very recent update) of publicly available sequences of Glom-
eromycotina fungi, with information on the host plants, geographical location and biomes
for the recorded interactions (Öpik et al., 2010). We used an approach with a compiled
network, where all locally described physical mycelial interactions between species are
merged and studied at larger scales (as in Joffard et al., 2018). Although such a compiled
network can be sensitive to several biases (see Discussion), it offers unique opportuni-
ties to study the emergence of mycoheterotrophy in a large evolutionary and ecological
perspective (e.g. Werner et al., 2018). Among the 41,989 interactions between plants and
Glomeromycotina, we filtered out the data from MaarjAM for the fungi to satisfy the
following criteria (Supplementary Table S1a): (i) amplification of the 18S rRNA gene, (ii)
fungus identified from plant roots (i.e. excluding soil samples), (iii) interaction in a nat-
ural ecosystem (i.e. excluding anthropogenic or highly disturbed ecosystems), (iv) host
plant identified at the species level, and (v) a virtual taxon (VT) assignation available in
MaarjAM. The VTs are a classification (=species proxy) of arbuscular mycorrhizal fungi
designed by applying a ≥97% sequence similarity threshold to the 18S rRNA gene se-
quences, and by running phylogenetic analysis to ensure VT monophyly (Öpik et al.,
2013, 2014). In the following, we assumed that we have a full representation of all fungal
partners associated with each plant species in the dataset. The filtered dataset yielded
a binary interaction matrix of 490 plant species (hereafter ‘plants’), 351 VTs (hereafter
‘fungi’), and 26,350 interactions (Figure III.6.2), resulting from the compilation of 112
publications from worldwide ecosystems (Supplementary Figure 1; Supplementary Ta-
ble 1b). In order to estimate the sampling fraction of Glomeromycotina fungi in our
dataset, we plotted rarefaction curves of the number of fungal species as a function of the
sampling fraction (for the observed number of interactions or for the number of sampled
plant species) and we estimated the total number of species using the specpool function
(‘vegan’ R-package, based on Chao index; Oksanen et al., 2019). We separately performed
rarefaction analyses for mycoheterotrophic species only. Moreover, in order to check the
robustness of our results, we repeated all the analyses on a subsampled version of the
MaarjAM database accessed in October 2017 (Supplementary Figure 2).
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Figure III.6.1: Conceptual framework used in this study to evaluate the constraints upon
the emergence of mycoheterotrophic cheater plants in arbuscular mycorrhizal symbiosis. (a)
Strong phylogenetic constraints (PC) should affect the phylogenetic distributions of mycohete-
rotrophic cheater plants and/or their fungal partners; whereas (b) functional constraints (FC;
e.g. physiological or ecological constraints) should affect the network structure i.e. level of spe-
cialization of mycoheterotrophic cheater plants and/or their partners. Therefore, by investigat-
ing specialization and phylogenetic clustering of mycoheterotrophic cheaters and of their fungal
partners, we evaluated functional and phylogenetic constraints. This can be done by using and
interpreting bipartite network tools (a – e.g. computation of nestedness, measures of partner
degree, and partner specialization) or phylogenetic tools (b – e.g. measure of phylogenetic dis-
persion), respectively. Interpreting the observed patterns of phylogenetic clustering and network
structure directly indicates the strength of the constraints. For instance, strong phylogenetic clus-
tering of the cheaters and their partners (i-iii) suggests that the emergence of cheaters and their
susceptible partners is rare and limited, whereas low phylogenetic clustering (ii-iv) suggests that
cheating evolved multiple times. Regarding functional constraints, generalist cheaters (vi) might
indicate that their partners do not have any mechanisms preventing uncooperative interactions
(low constraints). Conversely, specialist cheaters (v) might indicate that cheaters cannot inter-
act with most partners (high constraints). Moreover, if the partners of cheaters are generalists
(viii - low constraints), asymmetrical specialization ensures that cheaters are well connected in
the interaction network (high nestedness), whereas if they are specialists (vii - high constraints),
reciprocal specialization on both sides drives the isolation of mycoheterotrophic plants into mod-
ules, thus decreasing nestedness. Mutualistic species are represented in green and their partners
are in orange, whereas cheaters and their partners are represented in red. Mutualistic interac-
tions are thus represented in green, whereas antagonistic interactions (cheating) are in red. The
patterns and interpretations from the present study on mycoheterotrophic cheaters are shown in
the orange frames.
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Phylogenetic reconstructions:

We aligned consensus sequences of the 351 fungi with MUSCLE (Edgar, 2004) and ran
a Bayesian analysis using BEAST2 to reconstruct the fungal phylogeny (Bouckaert et al.
2014, Supplementary Methods S1). We obtained the phylogenetic relationships between
the 490 host plants by pruning the time-calibrated supertree from Zanne et al. (2013)
using Phylomatic (http://phylodiversity.net/phylomatic/). We also used the Open
Tree of Life website (http://opentreeoflife.org) and the ‘rotl’ R-package (Michonneau
et al. 2016; R Core Team, 2019) for grafting of 41 plant taxa missing from the pruned
supertree (as polytomies at the lowest taxonomy level possible; Supplementary Methods
S1). We set tree root calibrations at 505 million years (Myr) for the fungi (Davison et al.,
2015) and 440 Myr for the plants (Zanne et al., 2014).

Nature of the interaction:

We assigned to each plant its ‘nature of the interaction’ with fungi according to its
carbon nutrition mode according to an on-line database (http://mhp.myspecies.info/
category/myco-heterotrophic-plants/) and individual publications (Boullard, 1979;
Winther & Friedman, 2008; Field et al. 2015): autotroph (n=434, 88.6%), entirely myco-
heterotroph (n=41, 8.4%), or initially mycoheterotroph (n=15, 3.1%). We assigned each
fungus to three categories: ‘associated with autotrophs’ if the fungus interacts with au-
totrophic plants only (n=280, 79.8%), ‘associated with entirely mycoheterotrophs’ if the
fungus interacts with at least one entirely mycoheterotroph (n=54, 15.4%), ‘associated
with initially mycoheterotrophs’ if the fungus interacts with at least one initially myco-
heterotroph (n=23, 6.6%), or ‘associated with mycoheterotrophs’ if the fungus interacts
with at least one entirely or initially mycoheterotroph (n=71, 20.2%; Supplementary Ta-
ble 2). Only five fungi are associated with both entirely and initially mycoheterotrophic
plants. Our dataset included mycoheterotrophs from 18 publications. While only 41
entirely mycoheterotrophic species were included out of 267 described species (Jacque-
myn & Merckx, 2019), all known entirely mycoheterotrophic families were represented
by at least one plant species, except the families Aneuraceae (liverwort, one mycohete-
rotrophic species), Iridaceae (monocotyledons, three species), and Podocarpaceae (gym-
nosperm, one controversial species). Similarly, our dataset missed only a few initially
mycoheterotrophic families, such as Schizaeaceae (Boullard, 1979).

Network nestedness, modularity, and specialization of cheaters:

In order to assess the functional constraints upon cheating, we tested the effect of my-
coheterotrophy on network structure (Figure III.6.1b). First, we measured nestedness in:
(i) the overall network (490 plants, 351 fungi, and 26,350 interactions), (ii) the network re-
stricted to autotrophic plants (434, 344, and 26,087) and (iii) the network restricted to en-
tirely and initially mycoheterotrophic plants (56, 71, and 263), using the function NODF2
in the R-package bipartite (Dormann et al. 2008). We tested the significance of NODF val-
ues (nestedness metric based on overlap and decreasing fill; Supplementary Methods S2
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- List of abbreviations) by using two types of null models (N=100 for each type): the first
model (r2dtable from the stats R-package - null model 3) maintains the marginal sums of
the network (the sums of each row and each column), whereas the less stringent second
model (vaznull from the bipartite R-package - null model 2) produces slightly differ-
ent marginal sums (interactions are randomized with species marginal sums as weights,
and each species must have at least one interaction), while maintaining the connectance
(proportion of observed interactions). We calculated the Z-score, which is the difference
between the observed value and the mean of the of null-models values divided by their
standard deviation (Z-scores greater than 1.96 validate a significant nestedness with an
alpha-risk of 5%). Positive z-scored NODF values indicate nested networks.

Second, to further evaluate the specialization of mycoheterotrophic plants, we com-
puted several network indices for each plant. The degree (k) is the number of partners
with which a given plant or fungus interacts in the bipartite network. The degree is high
(vice versa low) when the species is generalist (vice versa specialist). The partner special-
ization (Psp) is the mean degree (k) averaged for all the fungal partners for a given plant
species (Taudiere et al., 2015): a high (vice versa low) Psp characterizes a species interact-
ing mainly with generalist (vice versa specialist) partners. Simultaneously low k and Psp
values feature a reciprocal specialization (Figure III.6.1b-v,vii). We tested whether k and
Psp were statistically different among autotrophic, entirely mycoheterotrophic and ini-
tially mycoheterotrophic plants using non-parametric Kruskal-Wallis tests and pairwise
Mann-Whitney U tests. To assess the significance of k and Psp values, we built null-
model networks (N=1,000) using the function permat f ull in the vegan R-package (null
model 1), keeping the connectance constant but allowing different marginal sums. Then,
in order to detect specialization at the clade scale toward partners, for any given clade
of every node in the plant or fungus phylogenies, we calculated the partner fidelity (Fx)
as the ratio of partners exclusively interacting with this particular clade divided by the
total number of partners interacting with it. We consider the clade as ‘faithful’ and the
corresponding set of partners as ‘clade-specific’ when Fx>0.5 (i.e., more than 50% exclu-
sive partners). We used analysis of covariance (ANCOVA) to test the effect of the nature
of the interaction on partner fidelity Fx accounting for clade size, which corrects the bias
of having high partner fidelity Fx in older clades including many plants. To confirm that
the patterns of specialization at the global scale held at a more local scale, we reproduced
the analyses of specialization (k and Psp) in two continental networks in South Amer-
ica and Africa, which represented a high number of interactions and mycoheterotrophic
species.

Third, we investigated signatures of reciprocal specialization in the overall network
structure. We used the DIRTLPAwb+ algorithm (Beckett, 2016) to infer modules and
assess their significance (a module is significant if it encompasses a subset of species in-
teracting more with each other than with the rest of the species) and used the function
components of the R-package igraph (Csardi & Nepusz, 2006) to detect cases of extreme
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reciprocal specializations leading to independent modules (two species belong to two
distinct independent modules if there is no path in the network going from one to the
other, i.e. an independent module is the smallest subset of species exclusively interacting
with each other).

We replicated these statistical tests without the initially mycoheterotrophic Lycopodi-
aceae forming different network patterns (see Results).

Phylogenetic distribution of cheating:

In order to assess phylogenetic constraints, we explored the phylogenetic distribu-
tion of mycoheterotrophic plants and their associated fungi (Figure III.6.1a). First, we
investigated the phylogenetic distribution of mycoheterotrophy, i.e. if mycoheterotro-
phic plants and their fungal partners were more or less phylogenetically related than
expected by chance (patterns of clustering versus overdispersion). We computed the net
relatedness index (NRI) and the nearest taxon index (NTI) using the PICANTE R-package
(Kembel et al., 2010). NRI quantifies the phylogenetic structure of a species set based on
the mean pairwise distances, whereas NTI quantifies the terminal structure of the species
set by computing the mean phylogenetic distance to the nearest taxon of every species
(Gotelli & Rohde, 2002). To standardize the indices, we generated 999 null models with
the option ‘taxa.labels’ (shuffles the taxa labels). Significant positive (resp. negative)
NRI and NTI values indicate phylogenetic clustering (resp. overdispersion). We com-
puted these indices (i) on the plant phylogeny to evaluate the phylogenetic structure of
entirely mycoheterotrophic and initially mycoheterotrophic plant distribution, and (ii)
on the fungal phylogeny to investigate if fungi associated with mycoheterotrophs were
phylogenetically structured (we successively tested the distribution of the fungi associ-
ated with mycoheterotrophs, entirely mycoheterotrophs, or initially mycoheterotrophs,
and then of the fungi associated with each specific mycoheterotrophic family). Similarly,
for each plant, we computed the partners’ mean phylogenetic pairwise distance (MPD),
that is the average phylogenetic distance across pairs of fungal partners (Kembel et al.,
2010): a low value of MPD indicates that the set of partners is constituted of closely re-
lated species. The effect of mycoheterotrophy on MPD values and its significance were
evaluated as for k and Psp values above.

Second, in order to assess whether fungal partners of a given mycoheterotrophic fam-
ily were derived from fungal partners of autotrophic ancestors or were secondarily ac-
quired from other mycoheterotrophic lineages, we compared in an evolutionary frame-
work the sets of fungi associated with plants with different natures of the interaction. To
do so, we computed the unweighted UniFrac distance (Lozupone & Knight, 2005) be-
tween sets of fungi interacting with each pair of plants in the network. For each of the
seven mycoheterotrophic families, we compared the UniFrac distances across (i) every
pair of plant species of this family, (ii) every pair comprising one plant of this family and
one plant of the most closely related autotrophic family (see Table III.6.2), (iii) every pair
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composed of one plant of this family and one plant belonging to other mycoheterotro-
phic families, and (iv) every pair comprising one plant of this family and one more dis-
tant autotrophic plant (i.e. all autotrophic plants except those of the most closely related
autotrophic family). This analysis was not performed on mycoheterotrophic Petrosavi-
aceae, which were represented by only one species and were too divergent to define a
reliable autotrophic sister clade.

We tested differences between groups of distances using Mann-Whitney U tests. We
also performed a principal coordinates analysis (PCoA) from all the UniFrac dissimilari-
ties of sets of fungal partners, and tested the effect of the nature of the interaction on the
two principal coordinates, using Kruskal-Wallis tests. Finally, to examine the extent to
which the nature of the interaction affects fungal partners, we used permutational anal-
ysis of variance (PERMANOVA, adonis function in the vegan R-package), with 10,000
permutations.

Results:

Completeness of the dataset:

We estimated a total number of 373±9 fungal species (Chao index), which indicated
that the 351 fungi in the dataset included most of the arbuscular mycorrhizal fungal di-
versity (94%± 2%; Supplementary Figure 3). Concerning mycoheterotrophic species, we
estimated a total of 117± 19 fungi associated with all mycoheterotrophs, 110± 27 fungi
associated with entirely mycoheterotrophs, and 54 ± 24 fungi associated with initially
mycoheterotrophs. Our dataset thus encompassed sampling fractions of 60%± 10% for
fungi associated with mycoheterotrophs, 49%± 10% for fungi associated with entirely
mycoheterotrophs, and 40%± 28% for fungi associated with initially mycoheterotrophs.
Although our dataset did not include all the fungi associated with mycoheterotrophic
species, the following results were not sensitive to the sampling fractions of mycohetero-
trophs and their fungal partners (Supplementary Figure 2).

Network nestedness, modularity, and specialization of mycoheterotrophs:

The overall network had a significant positive nestedness value (Z-score=9.2, P=1.10−20,
Supplementary Table 3). Nestedness increased when only autotrophic plants were con-
sidered (Z-score=16.6, P=8.10−62), whereas it was not significant in the network of only
mycoheterotrophs (Z-score=1.44, P=0.075): mycoheterotrophic plants reduced nested-
ness, signifying that they displayed higher reciprocal specializations. Reciprocal spe-
cializations were confirmed by the analyses of modularity, which found no significant
large modules (i.e. the inferred large modules presented more inter-modules than intra-
module interactions), suggesting that the overall structure was not modular, but detected
few significant small independent modules (Supplementary Table 4). In addition to
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the number of fungal species as a function of the sampling frac-
tion (for the observed number of interactions or for the number
of sampled plant species) and we estimated the total number of
species using the ‘specpool’ function (in R/VEGAN, based on Chao
index; Oksanen et al., 2016). We separately performed rarefac-
tion analyses for mycoheterotrophic species only. Moreover, in
order to check the robustness of our results, we repeated all the
analyses on a subsampled version of the MaarjAM database
accessed in October 2017 (Fig. S2).

Phylogenetic reconstructions

We aligned consensus sequences of the 351 fungi with MUSCLE

(Edgar, 2004) and ran a Bayesian analysis using BEAST2 to recon-
struct the fungal phylogeny (Bouckaert et al., 2014, Methods
S1). We obtained the phylogenetic relationships between the 490
host plants by pruning the time-calibrated supertree from Zanne
et al. (2014) using PHYLOMATIC (http://phylodiversity.net/phylo
matic/). We also used the Open Tree of Life website (http://open
treeoflife.org) and the R/ROTL package (Michonneau et al., 2016;
R Core Team, 2017) for grafting of 41 plant taxa missing from
the pruned supertree (as polytomies at the lowest taxonomy level
possible; Methods S1). We set tree root calibrations at 505Myr

ago (Ma) for the fungi (Davison et al., 2015) and 440Ma for the
plants (Zanne et al., 2014).

Nature of the interaction

We assigned to each plant its ‘nature of the interaction’ with fungi
according to its carbon (C) nutrition mode thanks to an online
database (http://mhp.myspecies.info/) and individual publications
(Boullard, 1979; Winther & Friedman, 2008; Field et al., 2015):
autotrophic (n = 434, 88.6%), entirely mycoheterotrophic (n = 41,
8.4%), or initially mycoheterotrophic (n = 15, 3.1%). We assigned
each fungus to three categories: ‘associated with autotrophs’ if the
fungus interacts with autotrophic plants only (n = 280, 79.8%), ‘as-
sociated with entirely mycoheterotrophs’ if the fungus interacts
with at least one entirely mycoheterotrophic plant (n = 54, 15.4%),
‘associated with initially mycoheterotrophs’ if the fungus interacts
with at least one initially mycoheterotrophic plant (n = 23, 6.6%),
or ‘associated with mycoheterotroph’ if the fungus interacts with at
least one entirely or initially mycoheterotrophic plants (n = 71,
20.2%; Table S2). Only five fungi are associated with both entirely
and initially mycoheterotrophic plants. Our dataset included
mycoheterotrophs from 18 publications. Although only 41 entirely
mycoheterotrophic species were included out of 267 described
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Fig. 2 Phylogenetic distribution of mycoheterotrophy in global arbuscular mycorrhizal mutualism. (Categories are defined according to the plant carbon
nutrition modes: AT, autotrophic; EMH, entirely mycoheterotrophic throughout the life cycle of the individual plant; and IMH, initially mycoheterotrophic
in the life cycle.) Phylogenetic trees of 390 plants (left side) and 351 fungi (right side) forming 26 350 interactions (links) in the MaarjAM database. Links
are colored according to the autotrophic (green), entirely mycoheterotrophic (red) or initially mycoheterotrophic (orange) nature of the plant. Major plant
and fungal clades are named. Mycoheterotrophy encompasses 41 entirely mycoheterotrophic species in six monophyletic families (Burmanniaceae (25
spp.), Gentianaceae (six spp.), Triuridaceae (four spp.), Polygalaceae (four spp.), Corsiaceae (one sp.), and Petrosaviaceae (one sp.)), and 15 initially
mycoheterotrophic species in three families (Ophioglossaceae (ferns; five spp.), Psilotaceae (ferns; two spp.), and Lycopodiaceae (clubmoss; eight spp.)).
Scales of the phylogenetic trees are in Myr.
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Figure III.6.2: Phylogenetic distribution of mycoheterotrophy in global arbuscular mycorrhizal
mutualism. (Categories are defined according to the plant carbon nutrition modes, i.e. AT: au-
totrophic; EMH: entirely mycoheterotrophic throughout the life cycle of the individual plant; and
IMH: initially mycoheterotrophic in the life cycle). Phylogenetic trees of 390 plants (left side)
and 351 fungi (right side) forming 26,350 interactions (links) in the MaarjAM database. Links
are colored according to the autotrophic (green), entirely mycoheterotrophic (red), or initially
mycoheterotrophic (orange) nature of the plant. Major plant and fungal clades are named. My-
coheterotrophy encompasses 41 entirely mycoheterotrophic species in 6 monophyletic families
[Burmanniaceae (25 spp.), Gentianaceae (6 spp.), Triuridaceae (4 spp.), Polygalaceae (4 spp.), Cor-
siaceae (1 sp.), and Petrosaviaceae (1 sp.)], and 15 initially mycoheterotrophic species in 3 fami-
lies [Ophioglossaceae (ferns; 5 spp.), Psilotaceae (ferns; 2 spp.), and Lycopodiaceae (clubmoss; 8
spp.)]. Scales of the phylogenetic trees are in million years (Myr).
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a main module encompassing most species (481 out of 490 plants and 346 out of 351
fungi), we found three small independent modules: (i) 6 initially mycoheterotrophic Ly-
copodiaceae plants and three exclusive fungi (Glomus VT127, VT158, VT394); (ii) two
autotrophic plants from salt marshes (Salicornia europaea and Limonium vulgare) with one
Glomus (VT296); and (iii) the entirely mycoheterotrophic Kupea martinetugei with a unique
Glomus (VT204).

From the degrees (k), we found that entirely and initially mycoheterotrophic plants
were significantly more specialized than autotrophic plants and interacted with on aver-
age more than five times fewer fungi (Kruskal-Wallis H=87.2; P=1.2.10−19; Figure III.6.3a;
Table III.6.1). Partner specializations (Psp) indicated that mycoheterotrophs interacted
with more specialized fungi (fungi associated with mycoheterotrophs interact on aver-
age with two times fewer plants; Kruskal-Wallis H=47.2; P=5.6.10−11; Figure III.6.3a). We
found similar evidence for mycoheterotrophic reciprocal specializations by reanalyzing
the network excluding the family Lycopodiaceae (Table III.6.1; significance assessments
using null models are shown in Supplementary Table 5). This pattern of reciprocal spe-
cialization of mycoheterotrophic plants and their associated fungi held at a smaller ge-
ographical scale in the African and South American networks (Supplementary Figure 4;
Supplementary Table 6; yet the difference was not significant for Psp in the South Amer-
ican network, probably due to the small number of species and the low power of the
statistical tests).
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Index Kruskal-Wallis test Whitney U tests 
AT vs. EMH AT vs. IMH IMH vs. EMH 

Plant degree (k) 1.2e-19  
(1.4e-17) 5.3e-16 4.2e-7 0.97 

Fungal partner specialization (Psp) 5.6e-11  
(1.3e-8) 1.1e-4  4.5e-9 0.054 

Mean phylogenetic pairwise 
distance of fungal partners (MPD) 

1.2e-4  
(2.0e-3) 8.0e-4 6.8e-3 0.11 

Table III.6.1: Effect of the nature of the interaction (i.e. plant carbon nutrition modes) on in-
dices of network structure and phylogenetic distributions. (Categories are defined according
to the plant carbon nutrition modes, i.e. AT: autotrophic; EMH: entirely mycoheterotrophic over
development; and IMH: initially mycoheterotrophic in development). The second column corre-
sponds to P-values of Kruskal-Wallis tests for the overall network with or without (in brackets)
the Lycopodiaceae. The last three columns correspond to P-values of Whitney U tests (pairwise
tests) for the overall network including the Lycopodiaceae. P-values lower than 5% (significance
level) are shown in bold.

The partner fidelity index (Fx) showed that very few plant and fungi clades interacted
with ‘clade-specific’ partners (i.e. Fx>0.5), and most fungi were shared between different
plant clades (Figure III.6.3c). Among exceptions, however, the clade of initially mycohe-
terotrophic Lycopodiaceae was characterized by a high partner fidelity index (Fx>0.8),
reflecting a strong association with a clade of three Lycopodiaceae-associated fungi (Sup-

195



Chapter III

plementary Figure 5). Thus, not only did these 6 Lycopodiaceae species and their fun-
gal partners form an independent module, but the Lycopodiaceae-associated fungi also
formed a monophyletic clade within Glomeromycotina. The estimated clade age was 250
Myr for the Lycopodiaceae and 49 Myr for the Lycopodiaceae-associated fungi (Figure
III.6.3d), which diverged 78 Myr ago from the other Glomus fungi.

Phylogenetic distribution of cheating :

The partners’ mean phylogenetic pairwise distance (MPD) indicated that fungi as-
sociated with entirely or initially mycoheterotrophs (or even with all mycoheterotrophs)
were phylogenetically more closely related than fungi associated with autotrophs (Kruskal-
Wallis H=18.0; P=1.2.10−4; Table III.6.1; Figure III.6.3b). NRI and NTI values (Supple-
mentary Table 7) also confirmed significant clustering on the fungal phylogeny on fungi
associated with mycoheterotrophs, entirely mycoheterotrophs, or initially mycohetero-
trophs; this clustering held at the family level for fungi associated with each of four
main mycoheterotrophic families (namely Burmanniaceae, Triuridaceae, Polygalaceae,
and Ophioglossaceae). In terms of the plants, only the entirely mycoheterotrophs were
significantly clustered, mainly because they all were angiosperms and mostly mono-
cotyledons, but this did not apply to mycoheterotrophs in general, nor to initially myco-
heterotrophs (Supplementary Table 7). These phylogenetic clusters were visually notice-
able on fungal and plant phylogenetic trees (Supplementary Figures 6 & 7). This suggests
that although mycoheterotrophy evolved several times independently in plants, myco-
heterotrophic plants interact mainly with closely related fungi (see also Figure III.6.2).

Looking specifically at the fungi shared among mycoheterotrophic plants highlighted
differences between entirely and initially mycoheterotrophs (Table III.6.2). While the
initially mycoheterotrophic Lycopodiaceae family formed an independent module with
three specific Glomus VTs, another initially mycoheterotrophic family Ophioglossaceae
also had 2 exclusive fungi (Glomus VT134 and VT173) among a total of 15 fungi. When
comparing the fungi shared between mycoheterotrophic families (Table III.6.2), mainly
two closely related families, Burmanniaceae and Triuridaceae, tended to share some
fungi with other mycoheterotrophic families.

The decomposition of UniFrac dissimilarities between sets of fungal partners using a
PCoA, showed a clear pattern of clustering of mycoheterotrophic species, indicating that
the set of fungal partners associated with mycoheterotrophs were more similar than ex-
pected by chance (P<1.10−16 for PCoA1; P=9.10−3 for PCoA2; Figure III.6.4a). Similarly,
the PERMANOVA analysis indicated that the nature of the interaction (initially mycohe-
terotrophic, entirely mycoheterotrophic, or autotrophic) predicted 6.5% of the variance
(P=0.0001). By comparing the UniFrac dissimilarities between sets of fungal partners ac-
cording to the nature of the interaction and plant family relatedness, we observed that
all mycoheterotrophic families had fungal partners more similar to each other than those
of other autotrophic families (Figure III.6.4b; Supplementary Table 8). Some families
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Figure III.6.3: Effect of the nature of the interaction on specialization (k and Psp), the partner’s
mean phylogenetic distance (MPD), and partner fidelity (Fx - Supplementary Methods S2 - List
of abbreviations): (Categories are defined according to the plant carbon nutrition modes, i.e. AT:
autotrophic; EMH: entirely mycoheterotrophic over development; and IMH: initially mycohete-
rotrophic in development). (a): Plant degree (k) against fungal partner specialization (Psp) (i.e.
the average degree of fungal partners); dots in the bottom left corner indicate reciprocal special-
ization. For each axis, boxplots represent the one-dimensional projection of k and Psp. (b): Mean
phylogenetic pairwise distance (MPD) of the sets of fungal partners. Boxplots present the median
surrounded by the first and third quartiles, and whiskers extend to the extreme values but no
further than 1.5 of the inter-quartile range. (c): Fidelity (Fx) toward fungal partners in relation to
the age of the plant clade. Clades are defined according to their main carbon nutrition mode of
their plants (over 50%). The yellow dots departing from other mycoheterotrophic clades (high Fx
values) correspond to clades of Lycopodiaceae. (d): Independent network between the clubmoss
family Lycopodiaceae (rows) and their three arbuscular mycorrhizal fungi (columns), with their
respective phylogenetic relationships.
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EMH 

Burmanniaceae Dioscoreaceae 
(110 Myr) 25 38  0% 13% 3% 8% 16% 2% 16%  0% 16 0 

Corsiaceae 
Melanthiaceae 

Liliaceae 
Smilacaceae 

(129 Myr) 

1 1 0  0% 0% 0% 0% 0% 0%  0% 0 0 

Gentianaceae Apocynaceae 
(52 Myr) 6 8 5 0  0% 9%  8% 0% 0% 0% 6 0 

Petrosaviaceae  
 1 2 1 0 0  0%  5% 0% 0% 0% 1 0 

Polygalaceae Polygalaceae 
(60 Myr) 4 4 3 0 1 0  10% 0% 0% 0% 3 1 

Triuridaceae Dioscoreaceae 
(131 Myr) 4 19 8 0 2 1 2  8% 3% 0% 11 1 

IMH 

Lycopodiaceae Selaginellaceae 
(303 Myr) 8 7 1 0 0 0 0 2  10% 0% 3 3 

Ophioglossaceae 
Aspleniaceae 

Dryopteridaceae 
Gleicheniaceae 

Lygodiaceae 
Osmundaceae 

Pteridaceae 
(330 Myr) 

5 15 3 0 0 0 0 1 0  6% 
 

4 
 

2 

Psilotaceae 2 2 0 0 0 0 0 0 0 1 
 

1 0 

Table III.6.2: Fungal sharing between nine entirely (EMH) or initially (IMH) mycoheterotro-
phic plant families. Number (lower part of the matrix) and percentage (upper part) of fungi
shared between family pairs. The last two columns represent (i) the total number of fungi shared
with other entirely or initially mycoheterotrophic families, and (ii) the number of fungi exclusive
to this family (i.e. not shared with any other mycoheterotrophic or autotrophic family). The sec-
ond column indicates the most closely related autotrophic sister clade of each family; it can be
one family, a higher clade, the family itself if autotrophic species were compiled in the MaarjAM
database (e.g. Polygalaceae), or none in the case of Petrosaviaceae (which forms a too divergent
distinct branch). Boxes are shaded according to the number of shared fungi (white: no shared
fungus, black: many shared fungi).
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(Burmanniaceae, Polygalaceae, Triuridaceae, Lycopodiaceae, and Ophioglossaceae) had
fungal partners significantly more similar to partners interacting with their closest au-
totrophic relatives (P>0.05) than to partners interacting with other autotrophic families
(P<10−16). This suggests phylogenetic conservatism of fungal partners during the evolu-
tion of mycoheterotrophic nutrition in these families. For other mycoheterotrophic fami-
lies (Corsiaceae, Gentianaceae, and Psilotaceae), fungal partners were significantly more
similar to partners interacting with other mycoheterotrophic families than to partners
interacting with their closest autotrophic relatives, the latter being as distant as other au-
totrophic families (Supplementary Table 8). This points to a shift to new fungal partners
correlated with the evolution of mycoheterotrophic nutrition in these three families.

Figure III.6.4: Dissimilarities between sets of fungal partners associated according to the na-
ture of the interaction. (a): Principal coordinates analysis (PCoA) from UniFrac dissimilarities
of sets of fungal partners. Every dot corresponds to a plant species and is colored according to
its autotrophic (green), entirely mycoheterotrophic (red), or initially mycoheterotrophic (orange)
nature. Only the first two principal axes explaining, respectively, 15.6% and 3.8% of the variation
were kept. (b): Dissimilarities between sets of fungal partners associated with different mycohe-
terotrophic plant families. For each mycoheterotrophic family, UniFrac dissimilarities of sets of
fungal partners are calculated between one particular mycoheterotrophic species belonging to the
focal mycoheterotrophic family and another plant species (from the same family, from the clos-
est related autotrophic family, from other mycoheterotrophic families, or from other autotrophic
plant families). All the groups cannot be calculated for every mycoheterotrophic family, due to
the low number of species within families Corsiaceae and Psilotaceae. Lowercase letters above
each panel represent significant differences between categories (Mann-Whitney U tests). Box-
plots present the median surrounded by the first and third quartiles, and whiskers extend to the
extreme values but no further than 1.5 of the inter-quartile range.
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Discussion:

By combining network and phylogenetic analyses, we assessed constraints upon the
emergence of mycoheterotrophic cheating in arbuscular mycorrhizal mutualism. Al-
though the network was nested, we found evidence for reciprocal specialization in the
case of mycoheterotrophic plants (specialists) and their fungal partners (also specialists).
We even observed unexpected, extreme reciprocal specialization for some initially myco-
heterotrophic lineages associating with fungi exclusively interacting with these plant lin-
eages. Finally, we found that independently emerged mycoheterotrophic plant lineages
share many closely related fungi, and that in some of these lineages fungal partners were
likely acquired from autotrophic ancestors, while in others they were likely acquired by
symbiont shift, suggesting different evolutionary pathways leading to mycoheterotro-
phy.

Cheaters are isolated by reciprocal specialization:

We confirmed that mycoheterotrophic plants are more specialized toward few myc-
orrhizal fungal partners than autotrophic plants (Merckx et al., 2012) and showed for the
first time that their fungal partners are overall more specialized than fungi associated
with autotrophic plants. This reciprocal specialization is not strict (with the exception
of Lycopodiaceae, see below), since mycoheterotrophs and their fungal partners need
some connection to autotrophic plants, yet sufficient to lower nestedness in the arbus-
cular mycorrhizal network. The observed trend toward reciprocal specialization and
reduced nestedness suggests that mycoheterotrophic cheating is an unstable ecological
and evolutionary strategy, which could explain the relatively recent origin of mycohete-
rotrophic clades (Figure III.6.2). Indeed, reciprocal specialization confers high extinction
risks for both interacting partners, which is one of the main hypotheses explaining why
mutualistic networks tend to be nested, with asymmetrical specialization (i.e. specialists
interact with generalist partners; Thébault & Fontaine, 2010). Whatever its origin, the
reciprocal specialization of cheaters and their partners has also been suggested in other
mutualisms (Genini et al., 2010). A parasitic nature of entirely mycoheterotrophic plants
has often been mooted (Bidartondo, 2005; Merckx, 2013), albeit without direct support,
in the absence of data on fitness of fungal partners and autotrophic plants providing car-
bon to mycoheterotrophs (van der Heijden et al., 2015). Our analysis a posteriori supports
the view of entirely mycoheterotrophic plants as parasitic cheaters. However, we cannot
exclude the possibility that mycoheterotrophs might provide some advantages to their
mycorrhizal fungi (e.g. shelter or vitamins; Brundrett, 2002; Selosse & Rousset, 2011),
making them useful partners for some specific fungal species, despite their carbon cost.
Further empirical evidence is needed to clarify this.

There are several not mutually exclusive explanations for this reciprocal mycohetero-
trophic specialization. First, physiological constraints may act if conditional investment
and partner choice occur in the mycorrhizal symbiosis (Kiers et al., 2011), meaning that
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each partner would preferentially interact with the most mutualistic of the many part-
ners they encounter in soil. Mycoheterotrophic cheaters might have been able to suc-
cessfully avoid these constraints by specifically targeting a few specific fungi susceptible
to mycoheterotrophy, with which they now interact in specialized parasitism (Selosse &
Rousset, 2011). Regarding the fungi, we can speculate that ‘cheated’ fungi that provide
mycoheterotrophs with carbon entail a greater carbon cost for autotrophic plants than
other fungi, and that autotrophic plants therefore tend to avoid interactions with these
fungi. This would result in a trend to reciprocal specialization, and the partial isolation of
mycoheterotrophic cheaters and their fungal partners from the mutualistic network. Sec-
ond, the pattern of reciprocal specialization could result from physiological traits of the
fungal species, as yet unknown to us, which make them more likely to be avoided by au-
totrophic plants and to associate with mycoheterotrophic plants. Third, such a pattern of
reciprocal specializations could also come from ecological constraints limiting the niches
and habitats of mycoheterotrophic plants. Indeed, mycoheterotrophic plants often tend
to occur specifically in patches of low soil fertility (Gomes et al., 2019). It is important
to acknowledge that although the global pattern of reciprocal specialization observed in
the present work is likely to be linked to cheating, it might also be influenced by the spe-
cific local environmental conditions where cheating is promoted. For instance, because
mycoheterotrophs primarily persist in these low fertility habitats where access to essen-
tial mineral nutrients for autotrophic plants is limiting, we can speculate that it might
still be advantageous for autotrophic plants to interact with poorly cooperative fungal
partners associated with mycoheterotrophs, which provide less mineral nutrient in rela-
tion to their carbon cost. Additionally, low nutrient availability in the environments of
mycoheterotrophs might also limit the available pool of mycorrhizal fungi: the relative
specialization of mycoheterotrophic plants could be the consequence of low availability
of fungal partners in these specific habitats. Yet, there is ample evidence that mycohete-
rotrophic species are specialized on one or few fungi in various environments from all
over the world, where several to many suitable fungi should also be available. For in-
stance, in a similar symbiosis, mycoheterotrophic orchids specialize on few saprotrophic
fungi in tropical forests where many saprotrophic fungi occur (Martos et al., 2009).

An in-depth sampling of mycorrhizal networks (particularly weighted networks) in
various local communities containing mycoheterotrophs would be required to test whe-
ther reciprocal specialization occurs at the local scale and will shed more light on the
mechanisms regulating the interaction. Indeed, we observed a trend to reciprocal spe-
cialization in a large-scale interaction network compiled from mycorrhizal interactions
described in different ecosystems around the world, not in locally described physical
mycelial networks. This allowed us to analyze a global ecological pattern, represent-
ing the complete evolutionary history of the partners, and is justified by the very low
endemism of arbuscular mycorrhizal fungi and thus the absence of strong geographic
structure (Davison et al., 2015; Savary et al., 2018). It is noteworthy that similar patterns
of specialization were found in the African and South American networks (Supplemen-
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tary Figure 4). On the other hand, a species may appear to be relatively more specialized
in a global network than it actually is in local communities.

Our rarefaction analyses indicated that including more mycoheterotrophic species in
this dataset should reveal more fungal species associated with mycoheterotrophs. Yet,
given that our dataset covers almost all mycoheterotrophic families and that our results
are robust to the sampling fraction of mycoheterotrophs and their associated fungi (Sup-
plementary Figure 2), we expect the unsampled fungi associated with unsampled my-
coheterotrophs to be phylogenetically related and specialists to the same degree as the
sampled fungi associated with sampled mycoheterotrophs. A low sampling fraction of
fungi associated with mycoheterotrophic plants is even expected given the trend of re-
ciprocal specialization: as mycoheterotrophic species tend to be specialists interacting
with specialist fungi, we would need to sample most of the mycoheterotrophic species to
obtain most of their specialist associated fungi.

In this study, we used a simple dichotomy of plants considered either as mutualis-
tic autotrophs or as (either entirely or initially) mycoheterotrophic cheaters. However,
mycoheterotrophy is not the only uncooperative strategy in this symbiosis: mycorrhizal
interactions rather represent a continuum between mutualism and parasitism, both in
terms of plants (Jacquemyn & Merckx, 2019) and fungi (Johnson et al., 1997; Klironomos,
2003). Physiological constraints are thus thought to constitutively maintain the stability
of the mycorrhizal symbiosis (Kiers et al., 2003, 2011) against many forms of cheating,
including the specific case of mycoheterotrophy. Moreover, we did not consider context
dependency, which has a non-negligible impact on the functioning of mycorrhizal inter-
actions (Chaudhary et al., 2016). Although the mutualism-parasitism continuum or the
context dependency could have hidden the observed patterns, the fact that we observed
significant differences in the specialization between autotrophic and mycoheterotrophic
plants and high similarities between sets of fungal partners associated with different my-
coheterotrophic plant lineages suggests that the observed patterns are likely robust to our
simplifications.

Independent emergences of entirely mycoheterotrophic cheating converge on closely
related susceptible fungi :

Mycoheterotrophic cheating emerged multiple times in different clades of the phy-
logeny of vascular land plants, indicating weak phylogenetic constraints. This likely
results from the low specificity in arbuscular mycorrhizal symbiosis, which allows con-
vergent interactions (Bittleston et al., 2016) in different plant clades. Such convergences
would have happened during the evolution of mycoheterotrophic plants with similar
fungi susceptible to cheating. Thus, physiological or ecological constraints leading to
reciprocal specialization appear to be the main barrier to the emergence of cheating in
arbuscular mycorrhizal mutualism.
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There are, however, phylogenetic constraints on the fungal side. We found few fun-
gal clades that interacted with independent mycoheterotrophic plant lineages, and these
clades were phylogenetically related, as already reported by Merckx et al. (2012); accord-
ingly, fungal partners associated with mycoheterotrophs seem to be less phylogenetically
diverse than those associated with autotrophic plants. The physiological traits that un-
derlie variation in susceptibility of fungi to mycoheterotrophy remain unclear (Chagnon
et al. 2013; van der Heijden & Scheublin 2007) and obtaining more information on fungal
functional traits would greatly improve our understanding of mycoheterotrophic sys-
tems, the habitat distribution of mycoheterotrophs and their associated fungi, and what
make fungi susceptible to mycoheterotrophy or not. Studying the functional traits of
susceptible fungi, which are exceptions to the widespread avoidance of non-cooperative
partners (Selosse & Rousset, 2011), will be particularly useful for understanding how
fungi avoid cheating.

The acquisition of susceptible fungi depends on the mycoheterotrophic plant lin-
eage. In some mycoheterotrophic lineages, such as Burmanniaceae, fungal partners were
closely related to the fungal partners of autotrophic relatives, suggesting that the fungi
associated with mycoheterotrophs are derived from the fungal partners of cooperative
autotrophic ancestors. In other mycoheterotrophic lineages, such as Gentianaceae or
Corsiaceae, fungal partners were more closely related to fungal partners of other my-
coheterotrophic lineages than to autotrophic relatives, suggesting that the fungi asso-
ciated with mycoheterotrophs were acquired secondarily rather than derived from the
partners of autotrophic ancestors. A few mycoheterotrophic plant lineages lacked clos-
est autotrophic relatives in our analysis (e.g. mycoheterotrophic Gentianaceae should
be compared to autotrophic Gentianaceae, not represented in the MaarjAM database),
which may bias our analyses towards supporting secondary transfer from other mycohe-
terotrophic plants rather than acquisition from autotrophic ancestors. Still, similar fungi
were found in mycoheterotrophic Burmanniaceae and their closest autotrophic relative
after a 110-Myr-old divergence, while mycoheterotrophic Gentianaceae and their closest
autotrophic relative have distinct fungal partners after a divergence of only 52 Myr.

Interestingly, all entirely mycoheterotrophic families are evolutionarily relatively re-
cent: the oldest monocotyledonous entirely mycoheterotrophic families, such as Burman-
niaceae and Triuridaceae, are only 110-130 Myr old, and the dicotyledonous entirely my-
coheterotrophic families Gentianaceae and Polygalaceae are even more recent (around
50-60 Myr; Figure III.6.2). The oldest mycoheterotrophic families show conservatism for
fungal partners, while the most recently evolved ones display secondary acquisition. We
can speculate that mycoheterotrophy initially emerged in the monocotyledons thanks to
suitable cheating-susceptible fungal partners; more recently evolved entirely mycohete-
rotrophic lineages (especially in dicotyledons) then convergently reutilized these fungal
partners. Complementary analyses including more sampling of the mycoheterotrophic
families and their closest autotrophic relatives would be needed to test this speculation.
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Independent networks and parental nurture in initially mycoheterotrophs:

Our results serendipitously revealed that two initially mycoheterotrophic families,
Ophioglossaceae and Lycopodiaceae, seem to have exclusive mycorrhizal associations,
as they interacted with fungi that did not interact with any other plant family. In these
families, the fungi are present during both mycoheterotrophic underground spore ger-
mination and in the roots of adult autotrophic individuals (Winther & Friedman, 2007,
2008). Autotrophic adults likely act as the carbon source (Field et al., 2015), part of which
is dedicated to the offspring. This further supports the hypothesis by Leake et al. (2008)
proposing parental nurture where germinating spores would be indirectly nourished by
surrounding conspecific sporophytes. Parental nurture is not universal to all initially
mycoheterotrophic families though; in the initially mycoheterotrophic Psilotaceae, for
example, fungal partners are shared with surrounding autotrophic plants (Winther &
Friedman, 2009). In initially mycoheterotrophic independent networks, the overall out-
come for the fungus over the plant lifespan may actually be positive: fungi invest in
mycoheterotrophic germinations that represent future carbon sources (Field et al., 2015).
In other words, initially mycoheterotrophic plants do not cheat their exclusive fungi, but
postpone the reward. We note, however, that the existence of independent networks for
these families should be confirmed in studies of local communities.

We found an extreme reciprocal specialization between Lycopodiaceae and a single
Glomus clade. More studies are required to confirm that this pattern does not result from
undersampling of the fungi interacting with these Lycopodiaceae species. Unlike other
early-diverging plant clades that tend to interact with early-diverging fungal clades, the
Lycopodiaceae (250-Myr-old) associate with a 49-Myr-old clade that diverged 78 Myr
ago from all other Glomus (Rimington et al., 2018). Thus, this highly specific interaction
results from a secondary acquisition: some species of Lycopodiaceae may have initially
developed mycoheterotrophic interactions with a wider set of fungi, and later evolved
into a specific mutualistic parental nurture with their exclusive fungi, raising the possi-
bility of co-evolution between both clades.

Conclusion:

Our analysis of mycoheterotrophy in arbuscular mycorrhizal symbiosis illustrates
a globally mutualistic system where cheaters tend to be limited by reciprocal special-
ization. Such reciprocal specialization between mycoheterotrophic cheaters and their
‘cheating-susceptible’ partners, potentially due to partner choice, sanctions, and/or habi-
tat restrictions, reduces nestedness in the network. Phylogenetic constraints occur on
the fungal but not the plant side, as independently emerged mycoheterotrophic families
convergently interact with closely related fungi. In addition, our results challenge the
general cheater status of mycoheterotrophy, highlighting a dichotomy between true my-
coheterotrophic cheaters and possibly cooperative, initially mycoheterotrophic systems
with parental nurture. Beyond mycorrhizal symbiosis, we invite the use of our combina-
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tion of network and phylogenetic approaches to evaluate the nature of constraints upon
cheating in other multiple-partner mutualisms (e.g. pollination or seed dispersal).
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Abstract

Plant root microbiomes, and in particular the mycorrhizal and endophytic fungi
they contain, play fundamental roles in plant nutrition and protection. The
multiple fungal lineages involved in these symbiotic interactions are often shared
between surrounding plant species, which form dense and complex networks of
interactions in local communities. These plant-fungal networks are particularly
important in the functioning of the entire community as they often allow resource
movements and inter-plant communications. However, to what extent these fungi
are shared versus specialized when the community includes very distantly related
plant lineages remains unclear. Here, we used high-throughput sequencing of the
18S rRNA and ITS genes to identify the fungi colonizing plant roots. We therefore
investigated the structure of the network of plant-fungus interactions in three
local communities, including flowing plants, ferns, and clubmosses, in contrasted
habitats across la Réunion island.
We found that the root endophytic microbiomes were dominated by five main
mycorrhizal fungal lineages: Glomeromycotina, Mucoromycotina (Endogonales),
Helotiales, Sebacinales, and Cantharellales. We noticed significant differences in
the endophytic microbiota compositions across the three sampled communities,
especially concerning the presence of Mucoromycotina, which appeared to be
very environment dependent. In each local community, though the endophytic
microbiota significantly cluster across plant taxonomic groups, we observed a lot
of fungal sharing between surrounding plants, including between phylogeneti-
cally distant plants (e.g. clubmosses and flowering plants). We also showed that
the level of specialization varies according to the fungal lineages, irrespectively of
the environmental conditions: Plant-Glomeromycotina associations appeared to
be the most recurrent but the least specialized interactions, resulting in networks
with a nested structure, whereas Mucoromycotina and Cantharellales were more
specialized and more sporadic in their interactions with plants, resulting in less
connected and more modular networks, and Helotiales and Sebacinales present
intermediate levels of specializations.
Our study looking exhaustively at endophytic interactions within local commu-
nities revealed the distinctiveness between the different plant-fungus symbioses,
probably underpinned by their singular ecologies and evolutionary histories. It
also showed that microbial sharing is widespread in local communities, even
among distantly related plants, which questions the role these fungi can play
in the communities and highlights the importance of considering networks of
interactions rather than isolated macroorganisms and their associated microbes.

Keywords: plant microbiota, mycorrhiza, endophyte, ecological networks, special-
izations, mycoheterotrophy, .

210



Chapter III

Introduction:

Plant root microbiomes play fundamental roles in the functioning of plants: they con-
tribute to their nutrition, improve their protection, and foster their development (Selosse
et al., 2004; Berendsen et al., 2012; Philippot et al., 2013; van der Heijden et al., 2015). In
particular, mycorrhizal fungi colonizing the roots of most plant species on Earth supply
the plants with mineral matter gathered in the soil in exchange for plant-assimilated car-
bon (Smith & Read, 2008; Brundrett & Tedersoo, 2018). These fungi have also been a
major driver of the emergence of land plants and their latter evolution in the past 400
million years (Selosse & Le Tacon, 1998; Field et al., 2015; Strullu-Derrien et al., 2018).
During that time, several types of mycorrhizas evolved, which imply various fungal lin-
eages (van der Heijden et al., 2015), including the Glomeromycotina subphylum forming
the widespread and ancestral arbuscular mycorrhiza, the Endogonales order (from the
Mucoromycotina subphylum), and more recently several lineages among the Basidiomy-
cota division (e.g. the orders Sebacinales, Cantharellales. . . ) or the Ascomycota division
(e.g. the orders Helotiales, Pezizales,. . . ) forming the ectomycorrhizas, the ericoid or the
orchid mycorrhizas (Brundrett & Tedersoo, 2018). While some fungal lineages became
obligate plant-associated symbionts, like the Glomeromycotina, other mycorrhizal lin-
eages, like the Mucoromycotina, the Sebacinales, or the Cantharellales, present a more
diverse panel of ecologies, from saprophytes to obligate symbionts (Weiß et al., 2016;
Miyauchi et al., 2020).

These main categories of mycorrhizas had been proposed more than a century ago
thanks to pioneer microscopic observations (Frank, 1885; Smith & Read, 2008). However,
they have been recently challenged by the advances of DNA sequencing technology that
has revealed “out-of-the-textbooks” interactions (Hoysted et al., 2018) and question the
niches truly occupied by some fungi (Selosse et al., 2018). Indeed, many fungi often col-
onize plant tissues in an endophytic niche, without forming a true (visible) mycorrhizal
association; thus, it seems to exist an endophytic continuum between fully functional
mycorrhizal interactions and saprophytic colonizations. For instance, herbaceous plants
that typically associate with Glomeromycotina fungi had been found to be also colonized
by “ectomycorrhizal” fungal lineages (Schneider-Maunoury et al., 2020); and similarly,
Mucoromycota fungi had been detected in epiphytic orchids (Novotná et al., 2018). In
other words, in local communities, the mycorrhizal fungi of some plants are frequently
present as endophytes in the roots of neighboring plants (Selosse et al., 2009). However,
without proper experimental evidence (Hoysted et al., 2020), such colonizations by my-
corrhizal fungal lineages say nothing about the actual functionality of these interactions
yet (are there any nutritional exchanges?), and we therefore simply refer to them as en-
dophytic interactions.

In a local community, there is often no one-to-one interactions between a plant indi-
vidual and its mycorrhizal fungus, but rather a complex and dense network linking dif-
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ferent plant taxa and fungal lineages (Simard et al., 1997; Verbruggen et al., 2012). These
multiple-partner plant-fungus networks, that result from partner selection on both sides
(Kiers et al., 2011; Werner & Kiers, 2015), allow the movement of carbohydrates between
plants (Simard et al., 1997) or even interindividual communication (Babikova et al., 2013),
which can be essential for the good functioning of the ecological communities. However,
whether plant lineages that diverged hundreds of million years ago are homogenously
sharing similar fungi or whether plant-associated fungi tend to segregate because of dif-
ferent nutrition strategies and/or evolutionary constraints has often been debated (Rim-
ington et al., 2018), but rarely investigated in the local communities, as many studies only
sampled communities enriched in flowering plants (Sepp et al., 2019), with few to no rep-
resenting taxa of the “early-diverging” plant lineages, such as the bryophytes, lycopods,
or ferns.

From the studied communities including mainly flowering plants, plant-fungus in-
teractions appeared to be non-random (Vandenkoornhuyse et al., 2003; Sepp et al., 2019).
Their specificity ranges from moderately specific interactions resulting in a lot of fungal
sharing between plant species (Toju et al., 2015; Sepp et al., 2019) to very specific interac-
tions (Toju et al., 2016; Article 6). Patterns of plant-fungus interactions are often studied
by using bipartite networks, and the structure of these resulting networks has been found
to be nested (i.e. specialists interact with generalists and generalists form a core of inter-
actions, (Jacquemyn et al., 2011; Montesinos-Navarro et al., 2012; Sepp et al., 2019)) and/or
modular (i.e. some subsets of species tend to form separated compartments, (Chagnon
et al., 2012; Martos et al., 2012; Jacquemyn et al., 2015)). Nestedness is a typical structure
harbored by mutualistic networks (Bascompte et al., 2003), providing greater stability
(Thébault & Fontaine, 2010), while modularity observed in plant-fungus networks might
instead be mediated by plant and fungal traits (Bahram et al., 2014; Chagnon et al., 2015).
In addition, these plant-fungus interactions can be evolutionary conserved, and mycor-
rhizal networks then often exhibit significant phylogenetic signals, with distantly related
species interacting with less similar partners than closely related ones (Jacquemyn et al.,
2011; Martos et al., 2012; Tedersoo et al., 2013; Montesinos-Navarro et al., 2015). Further-
more, the structural properties of these flowering plant-fungus networks seem to signif-
icantly vary according to the fungal lineages and the environmental conditions (van der
Heijden et al., 2015; Põlme et al., 2018; Rimington et al., 2019).

In contrast, little is known about the mycorrhizal symbioses of early-diverging plants
(Rimington et al., 2018). Among these lineages, the Lycopodiaceae (or clubmosses), a vas-
cular plant family that emerged more than 250 million years ago, have evolved particular
mycorrhizal interactions specific to their alternation of generations: the diploid sporo-
phyte is autotrophic, whereas the haploid gametophyte is usually achlorophyllous and
underground (Boullard, 1979). Achlorophyllous gametophytes therefore rely on their as-
sociated mycorrhizal fungi for both their organic and mineral nutrition (Boullard, 1979;
Winther & Friedman, 2008), a strategy referred to as mycoheterotrophy (Merckx, 2013).
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Lycopods were mainly thought to interact with Glomeromycotina fungi (Schmid & Ober-
winkler, 1993), but recent studies demonstrated that some species likely also associates
with Mucoromycotina and Basidiomycota (Horn et al., 2013; Rimington et al., 2015). In
a recent meta-analysis of plant-Glomeromycotina interactions at a global scale (Article
6), some lycopod species appeared to specifically interact with a distinct clade of Glom-
eromycotina, forming a separate module of interaction, which is very unusual in the ar-
buscular mycorrhizal symbiosis and could be due to parental nurture (Leake et al., 2008).
However, whether this strong specialization in lycopod-fungus interactions also exists in
the local communities remains yet unknown.

Here, we studied the plant-fungus associations in three local communities with con-
trasted environmental conditions across La Réunion island. We investigated (i) what
are the endophytic fungi colonizing the phylogenetically distant plant taxa in these con-
trasted habitats and (ii) how these fungi are shared between surrounding plants in each
local community. We sampled roots of the main plant species in communities including
bryophytes, lycopods, ferns, and flowering plants, and characterized their fungal part-
ners by using metabarcoding technics targeting the 18S rRNA and ITS fungal marker
genes. We reconstructed the endophytic networks of interactions between plants and
fungi at the local scale, analyzed the structure of the interaction networks, and evaluated
the degree of specialization of these plant-fungus interactions. We expected to find di-
verse fungal colonizations across the different plant taxa and predicted to see less fungal
sharing between the phylogenetically distant plant lineages, resulting in lineage-specific
fungus, phylogenetic signals in plant-fungus interactions, and potentially modular net-
work structures.

Methods:

Study sites and sampling:

The study was conducted in La Réunion island in July 2019. In order to maximize the
phylogenetic distances between the vascular plant species co-occurring in a sampling
site, we chose three plant communities containing lycopod sporophytes (clubmosses),
ferns and/or bryophytes, and flowering plants across contrasted habitats (Strasberg et al.,
2005): Grand brûlé (young lava flows close to the ocean with abundant non-indigenous
plant species, S21°16’39”, E55°47’29”), Plaine-des-Palmistes (Pandanus wet thicket on old
lava flows in the central valley, S21°07’08”, E55°38’36”, altitude 900 meters), and Dimitile
(leeward rainforest on old lava flows of the crests of Cilaos circus, S21°16’39”, E55°47’29”,
altitude 2,000 meters). These three communities thus represent diverse habitats with
contrasted environmental conditions, especially in terms of altitude, disturbance, and
humidity (Figure III.7.1).
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Figure III.7.1: The three sampled communities correspond to habitats with contrasted envi-
ronment conditions. A map of La Réunion island indicating the three sampled communities in
this study. The sampling sites were characterized by different vegetations and abiotic conditions
with different altitudes, level of disturbance, humidity, and soil conditions: (right) Grand brûlé
(young lava flows close to the ocean on the wet East coast, (middle) Plaine-des-Palmistes (Pan-
danus wet thicket on old lava flows in the central valley, altitude 900 meters), and (left) Dimitile
(leeward rainforest on old lava flows in the dry crests of Cilaos circus on the West side domi-
nated by ericoid vegetation, altitude 2,000 meters). In each sampled community, three replicates
distant from 50 meters to 500 meters were sampled. The photos illustrate the overall vegetations
in each sampled community and the gradients at the bottom resume the main variations in the
environments.

In each community, we sampled 3 replicates distant from 50 meters to 500 meters; as
lycopods tend to have patchy distributions in the communities, we specifically targeted
zones where they were present. For each replicate, we harvested the roots of up to 3
individuals for each plant species in a radius of 1.5 meters. When possible, the whole root
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systems were carefully removed from the soil, cleaned with water, and dried in silica gel.
In Dimitile, some plant species (Erica reunionensis, Phylica nitida, and Stoebe passerinoides
in particular) were too large to dig up the whole root systems: several soil cores were
then collected and up to 23 individual roots per replicate were amassed without a direct
species identification on the field (they were identified using DNA sequencing - see next
section). Among the sampled plant species, we classified them as indigenous, exotic, or
invasive species based on the Mascarine Cadetiana database (https://mascarine.cbnm.
org).

Molecular analyses:

Dried roots were crushed using autoclaved tungsten beads in the TissueLyser II (Qi-
agen) and approximately 30 mg of root powder were kept for the downstream analyses.
Plant and fungal DNA were extracted using the Genomic DNA Plant kit (NucleoSpin
96 Plant II, Macherey-Nagel) and following the manufacturer’s instructions. Negative
controls were carefully added during DNA extraction.

In order to better characterize the various fungi susceptible to colonize these differ-
ent plant species, we amplified two nuclear regions of the rDNA operon, the 18S rDNA
gene and the ITS2 region, using two sets of tagged primers: the AMADf-AMDGr pair
(Berruti et al., 2017) for 18S rRNA and the ITS86F-ITS4 pair (White et al., 1990; Turenne et
al., 1999) for ITS2, that respectively amplify a fragment of 380 and 280 base pairs on aver-
age. The former marker gene rather detects Mucoromycta (including Glomeromycotina
and Mucoromycotina), whereas the latter marker is more specific to Ascomycota and Ba-
sidiomycota. PCRs were performed using the AmpliTaq Gold™ 360 kit (Thermo Fisher
Scientific) following the manufacturer’s instructions and ran for a total of 35 cycles. Each
sample was characterized by a unique combination of tagged primers (following Taberlet
et al., 2018; Petrolli et al., 2021), and some combinations of primer pairs were left empty
to evaluate the amount of tagged primer jumping between samples. In addition, nega-
tive PCR controls were also conducted (i) to identify the eventual external contaminants
and (ii) to evaluate the baseline cross-contamination between samples during the library
preparation. For each sample, the PCR step was replicated at least 2 times to ensure bet-
ter characterization of the fungal microbiota.

For both libraries (constituted of either the 18S rRNA or the ITS amplicons), PCR
products were purified using magnetic bead-based clean-up (NucleoMag™ NGS Clean-
up and Size Select, Macherey-Nagel), quantified using Qubit (Qubit dsDNA High Sensi-
tivity Assay Kit, Invitrogen), and 3 ng of DNA amplicons per sample and all the negative
controls were sequenced using Illumina 2x250 bp MiSeq technology (v3 chemistry, Fas-
teris, Geneva).
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Bioinformatics:

We obtained a total of 26,914,809 reads for 18S rRNA and 25,250,698 reads for ITS that
were processed using a pipeline based on VSEARCH (Rognes et al., 2016) available on
GitHub (https://github.com/BPerezLamarque/HOME/). In short, pair reads were assem-
bled, quality checked (removing reads that had on average more than 2 errors), demul-
tiplexed (using cutadapt; Martin, 2011), and clustered into operational taxonomic units
(OTUs) using two different methods. We first used Swarm v2 (Mahé et al., 2015) with
the fastidious option, a clustering approach that does not rely on a global threshold of
similarity but instead uses local thresholds and amplicon abundances. Secondly, we per-
formed a classical 97% OTU clustering using VSEARCH. We removed the chimera in
both sets of OTUs using uchime_denovo in VSEARCH and assigned taxonomy to each
OTU using usearch_global (BLAST algorithm). For the latter step, we used the Silva
database r138 (Quast et al., 2013) for the taxonomic assignations of the 18S rRNA OTUs
and the UNITE database v8.2 (Nilsson et al., 2019) for those of the ITS OTUs. Because
the Silva database contains only a few Agaricomycetes sequences, we also assigned tax-
onomy at the order level to these Agaricomycetes 18S rRNA OTUs using the Fungal 18S
RefSeq Targeted Loci Project (NCBI BioProject - PRJNA39195). We finally built an OTU
table for each marker and removed OTUs present in less than 10 reads. Given that both
Swarm and 97% OTU clustering gave qualitatively similar results, only the results ob-
tained with Swarm OTUs are presented in the main text (those of 97% OTUs are in Sup-
plementary information). Glomeromycotina characterized using the 18S rRNA marker
are often assigned to a virtual taxa (VT) based on the MaarjAM database (Öpik et al.,
2010), however, the AMADf-AMDGr primer pair used in this study led to 18S rRNA
amplicons that only partially overlap with virtual taxa and prevented us to do the assig-
nations (Davison et al., 2015).

The decontam pipeline in R (R Core Team, 2020) was applied to filter out the con-
taminants of our OTU tables, using the read abundances within the negative controls
as well as the abundance profile of each OTU (Davis et al., 2018). We evaluated the
amount of primer jumping and cross-contaminations thanks to our range of negative
controls (Supplementary Figure 1). We also verified that samples that were physically
close in a plate (the organization of the plates was kept identical from the DNA extrac-
tion to the final pooling) did not tend to present a composition more similar because of
cross-contaminations. To do so, the similarities of the composition were evaluated using
Bray-Curtis dissimilarities computed using the vegdist function of the vegan R-package
(Oksanen et al., 2016) and were correlated with the Euclidian physical distances in each
PCR plates using Mantel tests (p-value>0.05 indicated non-significant correlations). Fi-
nally, the 18S rRNA and ITS OTUs assigned to plant species were used to identify the
roots directly collected in the soil in Dimitile. We only kept the fungal OTUs for the fol-
lowing analyses.

In order to identify endophytic fungi, we used FUNGuild (Nguyen et al., 2016), a
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program that automatically assigns the possible niches of a fungal OTU based on its tax-
onomic assignation. Thanks to the output of FUNGuild and manual filtering, we only
retained the mycorrhizal OTUs and the endophytic OTUs that were likely mycorrhizal
(i.e. the fungi that are mycorrhizal in some plant lineages and only endophytic in oth-
ers). Note that an important proportion of these selected OTUs were potential sapro-
trophs or commensal endophytes. Thus, for simplicity, we thereafter simply referred to
all these OTUs as “endophytic OTUs”. Samples having less than 20 endophytic reads
were discarded. We used bar plots to represent the relative abundances of each endo-
phytic fungi in the different root samples. Next, we reconstructed the phylogenetic tree
of all the endophytic OTUs: we aligned the OTU sequences using MAFFT (Katoh & Stan-
dley, 2013), trimmed them with trimAl (Capella-Gutierrez et al., 2009), selected the best
substitution model using ModelFinder (Kalyaanamoorthy et al., 2017), and reconstructed
the maximum-likelihood tree using IQ-TREE (Nguyen et al., 2015) with 1,000 SH-aLRT
and ultrafast bootstraps.

Measuring the influence of the sampling on plant-fungus interactions:

We first performed rarefaction analyses to see how the fungal diversity with each
plant species increases as a function of the number of sampled plant individuals.

Second, we investigated whether we could merge the three sampling replicates wi-
thin each community. To do so, we first compared the alpha diversity of the samples
within each sampling replicate using the total OTU richness, Shannon index, or Faith’s
phylogenetic diversity. Second, we performed principal coordinate analyses (PCoA) and
permutational analyses of variance (PERMANOVA; adonis function from the R-package
vegan; Oksanen et al., 2016) to investigate whether samples from the same species but
different replicates tend to host similar endophytic fungi.

Third, to investigate the effect of the sampled community on the endophytic com-
positions, we used a PERMANOVA based on Bray-Curtis dissimilarities to test whether
endophytic compositions were significantly different across the three sampled commu-
nity when comparing (i) all the plant species or (ii) only the plant species simultane-
ously present in several sampled communities. We also visualized the similarities of the
endophytic microbiota between pairs of samples by performing hierarchical clustering:
We built the dendrogram between samples using neighbor joining (nj function in the
R-package ape; Paradis et al., 2004) based on the endophytic beta diversities.

Measuring the influence of the main plant taxonomic groups on plant-fungus interac-
tions:

In each sampled community, we examined whether root samples belonging to the
same plant taxonomic group (bryophytes, lycopods, ferns, monocots (excluding orchids),
dicots (excluding ericaceous species), orchids, or ericaceous species) were colonized by
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similar fungal OTUs, using both PERMANOVA and hierarchical clustering. Based on
the endophytic composition of the different plant species (see Results), we also specifi-
cally replicated our PERMANOVA analyses on the 5 most abundant endophytic fungal
groups: the Glomeromycotina phylum, the Endogonales order (hereafter referred to as
Mucoromycotina), the Sebacinales order, the Helotiales order, and the Cantharellales or-
der. The two former groups were characterized using the 18S rRNA marker, whereas the
three latter groups were characterized using the ITS marker.
All the diversity analyses were replicated by using generalized UniFrac distances, a
phylogenetically-informed diversity index computed using the R-package GUniFrac (Chen
et al., 2012). Given that this did not qualitatively changed our results, we only reported
the results obtained with Bray-Curtis dissimilarities in the main text.

Finally, in each sampled community and for each fungal group, we evaluated whe-
ther closely related plant species tend to interact with similar fungi by measuring the
phylogenetic signals in species interactions. To do so, we first reconstructed the phy-
logenetic trees of the plant species: the plant mega-phylogeny from (Zanne et al., 2014)
was pruned using Phylomatic (http://phylodiversity.net/phylomatic/) to obtain the
phylogenetic tree of the plant species sampled in our three sampled communities. Plant
taxa that were not identified at the species levels were added as polytomies at the origin
of the clade. Next, to measure phylogenetic signals, following Article 4, we used Man-
tel tests to assess the Pearson correlation between plant phylogenetic distances and the
weighted UniFrac distances measuring the dissimilarity of their sets of fungal partners.
The significance of the correlation was evaluated using 10,000 permutations.

Reconstructing endophytic networks:

To reconstruct plant-fungus interaction networks, we needed first to decide what can
be considered as ‘a likely interaction’ between a plant and an endophytic fungus. Fol-
lowing Toju et al. (2014), given that we had a heterogenous number of endophytic reads
per sample and in order to avoid counting spurious interactions in samples with high
coverage, we converted the read abundances into relative abundances and only consid-
ered that there was an interaction between a plant and a fungal OTU if the OTU was
represented by at least 1% of the total endophytic reads of the root sample. In addition,
based on our estimates of cross contaminations (Supplementary Figure 1), we considered
that having less than 5 reads of an OTU within a sample was likely not a colonization but
rather came from contamination. Preliminary analyses (not shown) using other cutoffs
(e.g. 10 reads and 0.1%) did not qualitatively affect our results. Importantly, we chose
to treat the problem of heterogenous numbers of reads using relative abundances over
rarefactions, as recent studies showed that rarefactions can be misleading (McMurdie &
Holmes, 2014) and that using relative abundances is less biased (McKnight et al., 2019).

In each sampled community, we reconstructed the plant-fungus network for the 5
main endophytic fungal lineages (Glomeromycotina, Mucoromycotina, Sebacinales, Helo-
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tiales, or Cantharellales) and considered 3 types of species-level networks: binary net-
works that do not consider interaction strengths and two types of weighted networks
that differently account for interaction strengths. First, binary networks correspond to
presence/absence (1/0) networks that indicate whether an interaction between one plant
species and one fungal OTU has been found in at least one sample. Second, we consid-
ered abundance networks that are based on OTU read abundances within root samples:
for a given plant-OTU interaction, we reported its relative abundance as the number
of reads belonging to this OTU per thousand of endophytic reads colonizing the corre-
sponding plant species (note that relative abundances were computed by sample before
merging the sample per species, such that each sample has the same contribution to the
species total abundances). However, relative read abundances are subject to PCR am-
plification biases or variations in the rDNA copy number and can therefore be a bad
proxy for the true fungal abundances colonizing the roots (Toju et al., 2014). Thus, we
considered a third type of network, the incidence networks, that reports weighted in-
teractions without directly using read abundances: for each plant-fungus interaction, it
indicates the number of root samples in which the interaction had been found. To check
that abundance and incidence networks gave similarly quantify plant-fungus interaction
strengths, we measured the relationship between both using linear models.

Analyzing the structure of endophytic networks:

We investigated the overall structure of the endophytic network according to the fun-
gal group and the sampled community. We first computed the connectance of each
network (the percentage of realized interactions) and the checkerboard score (Cscore)
that measures the mean partner avoidance of pairs of species in a binary network, i.e. a
high Cscore indicates that plant species tend to avoid interacting with the same fungal
OTUs. Then, we investigated whether plant-fungus networks were significantly nested,
by computing the NODF2 index for binary networks and the weighted NODF index for
weighted networks (nested function in the bipartite R-package; Dormann et al., 2008).
Finally, we performed modularity analyses using Newman’s algorithm for binary net-
works and Beckett’s algorithm for weighted networks (computeModules function in the
bipartite R-package). Modularity algorithms search for the most modular structure in
the network and output the modularity value (M), which corresponds to the number of
interactions within modules divided by the total number of interactions (within and be-
tween modules).

The significance of these structural properties was evaluated using two null models.
A null model relies on a randomization strategy of the original network that excludes a
particular process of interest and thus provides null interaction networks generated in
the absence of this process (Gotelli, 2000). The first null model, generated using the qua-
siswap algorithm (implemented in the permut function of R-package vegan; Oksanen et
al., 2016) keeps constant the connectance and the marginal sums (i.e. the total number of
interactions per plant species or fungal OTUs). Thus, the quasiswap null model investi-
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gates whether the structural properties of the network are conserved when plant-fungus
interactions are randomly attributed based on the total availabilities of each interactor,
with the additional constraint of keeping a similar connectance. The second null model
shuffles the sample names and therefore randomly attributes the fungi associated with
each root sample to a plant species. Thus, the shuffle-sample null model tests whether
the emerging patterns in the species-level network comes from plant species properties
and not sample properties (Toju et al., 2014). 10,000 null models were computed using
either the quasiswap or the shuffle-sample algorithms from our different original net-
works (the binary networks, the abundance networks, and the incidence networks).
By computing each index (e.g. nestedness, modularity. . . ) for each null model and com-
paring their values to the ones of the original networks (Manly, 2018), we get p-values
indicating whether the observed networks have significant structural properties. For in-
stance, for the nestedness, if p-value≤2.5% (2.5% of the null models have a higher or
equal NODF value than the original one), the network is significantly nested; alterna-
tively, if p-value≥97.5%, it is significantly anti-nested.
Both null models were used to investigate the significance of the NODF values, checker-
board scores, and modularity values. In addition, we used the shuffle-sample null mod-
els to evaluate the significance of the connectance.

Evaluating the specialization of plant-fungus interactions:

Next, we evaluated the specialization of plant-fungus interactions in each endophytic
network. In the following, we only used the abundance network as a proxy for weighted
interactions: indeed, the incidence networks contained generally too little weighted in-
formation (only up to few samples per species) to represent a useful measure of weighted
interactions in the following index of specializations.

We started by measuring the specialization of each plant species toward its fungal
partners in each sampled community and for each fungal group. We first computed the
normalized degree of each plant species, as the number of associated fungal partners di-
vided by the total number of available partners (ND function in the bipartite R-package):
this indicates whether a species tends to be specialist (degree close to 0) or generalist
(degree close to 1). Second, we computed d’ which measures the plant preferences for
fungal partners (dfun function in the bipartite R-package; Blüthgen et al., 2006): a d’ value
close to 0 indicates that the plant species interacts with the most abundant fungal part-
ners available with little specificity, whereas a d’ value close to 1 indicates that the plant
species specifically interacts with partners irrespectively of the abundance of other fungi.
From the d’ values, we computed H2’, which is a network-level measure of specializa-
tion (Blüthgen et al., 2006).

For each network, the significance of the indices of specialization was evaluated by
generating, from the original abundance network, 10,000 null models using the Pate-
field algorithm (Patefield, 1981; Blüthgen et al., 2006; Dormann, 2011) implemented in
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the r2table function: this null model algorithm keeps constant the marginal sums of the
original network, and therefore allow us to test whether the observed patterns of spe-
cialization are similar when interactions are only constrained by species abundances; we
then referred to them as the marginal null models. In addition, we also used the shuffle-
sample null models (see the previous section).

Next, we performed motif analyses to check for differences in the patterns of interac-
tions at the species-level: for each endophytic network, we computed the frequencies of
the motifs containing between 2 and 5 species using the mcount function from the BMO-
TIF R-package (Simmons et al., 2019) and compared motif frequencies in the different
networks using PCoA. Finally, we particularly focused on the Lycopodiaceae species in
each sampled community and compared their motif frequencies with those of the sur-
rounding plant species to investigate whether they tend to be more associated with Ly-
copodiaceae.

Results:

Identifying endophytic interactions:

A total of 233 root samples successfully amplified fungi with an average coverage
of 60,537 fungal reads per sample (±29,044) for ITS and 19,414 fungal reads per sample
(±14,974) for 18S (after removal of the contaminants and plant reads; Supplementary
Table 1). These reads respectively were clustered into 5,236 Swarm OTUs for ITS and
4,371 Swarms OTUs for 18S. When filtering the endophytic OTUs susceptible to be myc-
orrhizal with FUNGuild, we obtained 622 OTUs for ITS and 1,177 OTUs for 18S, with a
coverage larger than 1,000 reads in most root samples (Supplementary Figure 2).

The two markers characterized different aspects of these ‘endophytic’ fungal micro-
biota (Figure III.7.2; Supplementary Figure 3). Indeed, the 18S rRNA marker success-
fully detected colonization by Glomeromycotina and Mucoromycotina (Endogonales)
fungi but failed at precisely characterizing Basidiomycota (they were at best identified at
the order levels) and Helotiales (Ascomycota) were not detected at all with this marker.
Conversely, the ITS marker failed at detecting Mucoromycotina fungi (they were only
detected when their abundances were very high in the root samples according to the 18S
rRNA marker), but successfully amplified and identified Basidiomycota and Ascomy-
cota, including the abundant Sebacinales, Helotiales, Cantharellales, and Agaricales or-
ders. Colonization status by Glomeromycotina (presence or absence of at least one Glom-
eromycotina OTU in a sample) was generally very consistent across samples of the same
plant species (Supplementary Table 2). To a lesser extent, the colonization status by Se-
bacinales and Helotiales was also quite regular (e.g. for Lycopodiella cernua), but the col-
onization seemed more facultative for other plant species (e.g. for Dicranopteris linearis;
Supplementary Table 2). Conversely, Mucoromycotina and Cantharellales colonizations
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Figure III.7.2: Endophytic compositions vary according to the plant species and the habitats.
For each plant species, the different root samples were merged and the relative abundances of
the endophytic fungi are indicated according to the 18S rRNA (left) or ITS (right) markers. Plant
species are separated according to the sampled community (Grand brûlé, Plaine-des-Palmistes,
or Dimitile) covering contrasted habitats. For each species, the number of individual root systems
sampled is indicated in brackets. In each sampled community, a phylogenetic tree of the plants is
represented on the left, with branch colors indicating the main taxonomic groups we considered
in our study. The bar plots represent in colors the class and the order of each endophytic fungus.
Rare taxa (representing less than 0.5% of the data are represented in dark grey). Asterisks indi-
cates the exotic species. Only results for the Swarm OTUs are represented (but 97% OTUs gave
very similar results).
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were recurrent in only a few plant species like Lycopodiella caroliniana or Tylostigma sp., but
were very sporadic in others (Supplementary Table 2). We noticed that both measures of
interaction strength, using relative read abundance or interaction incidence, were signif-
icantly correlated (Supplementary Figure 4), suggesting that abundant interactions also
tend to correspond to frequent ones.

We found that the root samples were very heterogeneous in term of alpha diversity,
with some samples being very diverse, and other not (Supplementary Figure 5). The total
numbers of endophytic OTUs in each sampled community varied between 48 and 92
(Supplementary Table 3): we noticed that the fungal diversity tend to be lower in Plaine-
des-Palmistes, but it was not significantly different. In addition, rarefaction analyses
indicated that the number of sampled individuals per species was not sufficient to get
the entire diversity of fungi associated with most plant species, especially because of the
important variability in composition between samples (Supplementary Figures 3 & 6).

The sampled communities influence patterns of endophytic interactions:

We found an important effect of the sampled communities on the endophytic mi-
crobiota compositions, revealed by the hierarchical clustering and the PCoA of all the
samples, that both showed a clear clustering of the samples across the three sampled
communities (Figure III.7.3; Supplementary Figure 9a-b; PERMANOVA: p-value<0.05).
These shifts where also found when comparing the endophytic compositions of the plant
species that were simultaneously sampled in different communities (Supplementary Fig-
ure 9c-d), suggesting that this different across sampled communities were not due to dif-
ferences in plant species present, but likely to the different environmental conditions. For
instance, Mucoromycotina were much more abundant in Plaine-des-Palmistes and rarer
in other sampled communities (Figure III.7.2). When comparing the endophytic fungi
present in the root samples of Lycopodiella cernua present in both Grand brûlé and Plaine-
des-Palmistes, we found a significant shift in their composition, with enrichment in both
Mucoromycotina (and Helotiales) in Plaine-des-Palmistes (Supplementary Figure 8).

Moreover, very local effects seemed also important in the assembly of the endophytic
interactions as we also found an effect of the sampling replicates per community: sam-
ples from the same replicate tend to cluster together (Supplementary Figure 7b; PER-
MANOVA: p-value<0.05), which can slightly erase the signal of the plant taxonomic
groups (Supplementary Figure 7a). However, given that this clustering per sampling
replicate was moderate (especially when using UniFrac distances), we still merged the
different replicate to performed the following analyses at the community level.
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Figure III.7.3: Both the habitat and the plant taxonomic group influence the endophytic com-
munities, despite a large heterogeneity due to fungal sharing across plant species. Dendrogram
representations of the different endophytic communities across all the sampled communities (top
row) or within each sampled community (bottom rows; Grand brûlé, Plaine-des-Palmistes, or
Dimitile) based on the 18S rRNA (left) or ITS (right) markers. For each community, we computed
the dissimilarity between pairs of samples (using Bray-Curtis distances) and reconstructed the
dendrogram using neighbor joining: two plant root samples that are close in the dendrogram
tend to have similar endophytic compositions. Branches are colored according to the sampled
community (top row) or to the plant taxonomic group (bottom rows). Dendrograms were built
using Swarm OTUs (but 97% OTUs gave very similar results). For each dendrogram, we also
indicated the results of the PERMANOVA (R2 and p-value based on 10,000 permutations) testing
the effect of the sampled community (top row) or the plant taxonomic groups (bottom rows) on
the endophytic Bray-Curtis beta diversity between root samples.

Plant taxonomic groups influence patterns of endophytic interactions:

Looking into details at the endophytic composition of the root samples (Figure III.7.2;
Supplementary Figure 3), we found clear shifts in the endophytic associations accord-
ing to the plant taxonomic groups. Interestingly, while ferns were mainly colonized
by Glomeromycotina, Helotiales, and Sebacinales but not with Mucoromycotina, Mu-
coromycotina were regularly found across many plant species of others groups, includ-
ing the two other early diverging lineages bryophytes and lycopods. In addition, ly-
copods were also frequently colonized by Sebacinales, Glomeromycotina, Helotiales,
and even some Cantharellales (a few Lycopodiella caroliniana were abundantly colonized
by a Ceratobasidium; Supplementary Figure 3). We noticed, that when Mucoromycotina
were present in lycopods, Glomeromycotina were also generally present, resulting in fre-
quent Mucoromycotina-Glomeromycotina dual symbioses (Hoysted et al., 2018). Most
samples from dicots and monocots were mainly associated with Glomeromycotina, and
then with Helotiales, Sebacinales, and Cantharellales to a lesser extent. Besides their
typical Helotiales partners, ericaceous species were also colonized in a significant pro-
portion by Sebacinales, Glomeromycotina, and Cantharellales. Orchids were associated
with Cantharellales and Sebacinales, but we also found some unexpected colonization
by Mucoromycotina and Glomeromycotina. Such changes in the endophytic associa-
tions according to the plant taxonomic groups were confirmed using PERMANOVA (p-
value<0.05; Figure 3; Supplementary Table 4) and visually detectable when using hierar-
chical clustering (Figure III.7.3) or PCoA (Supplementary Figure 7a) that both showed a
trend of a clustering per plant taxonomic groups.

When studying separately each type of endophytic interaction, we also found that
plant species from the same plant taxonomic group tend to interact with similar fungal
OTUs (PERMANOVA; Supplementary Table 4), except for Cantharellales (as most of the
OTUs are rather plant species-specific rather than shared at the plant taxonomic group
level; see next section). The percentage of explained variance by plant taxonomic group
tended to be lower for plant-Glomeromycotina interactions (R<0.15), than for other fun-
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gal groups, probably because many Glomeromycotina OTUs were found across numer-
ous samples irrespectively of their plant group (Supplementary Table 4).

Finally, within each sampled community, the presence of phylogenetic signals in
plant-fungus interactions was scarce (Mantel tests: p-values>0.05; Supplementary Ta-
ble 5). Indeed, closely related plants did not appear to significantly interact with similar
Glomeromycotina, Mucoromycotina, Sebacinales, or Cantharellales OTUs. Conversely,
closely-related plant species tend to associate with similar Helotiales OTUs and with a
similar number of Sebacinales and Helotiales OTUs. This suggests that the changes in
the plant-associated endophytic composition are better explained by the discrete shifts
of the main plant taxonomic group, than by a continuous function of evolutionary time
(as measured by Mantel tests).

Structure of the endophytic networks:

The reconstructed species-level networks for the five main endophytic fungal groups
(Glomeromycotina, Mucoromycotina, Sebacinales, Helotiales, or Cantharellales) resulted
in networks of different sizes, reflecting their variability in terms of interactions with
plants (Figure III.7.4; Supplementary Figure 10). Plant-Glomeromycotina networks visu-
ally presented species-rich, well-connected, typical nested structures with a core of abun-
dant generalists surrounding by rare specialists, whereas plant-Mucoromycotina and
plant-Cantharellales networks appeared to be species-poor, less connected, and much
more modular, and plant-Sebacinales and plant-Helotiales networks had intermediate
topologies (Figure III.7.4). When looking at the position of the different plant species in
the networks, we noticed that plants from the same taxonomic group tend to be closer
(Figure III.7.4), as previously indicated by the hierarchical clustering and PERMANOVA
(Figure III.7.3; Supplementary Table 4). However, this clustering was limited and ly-
copods, ferns, and bryophytes appeared to be generally well connected by shared fungi
to flowering plants (monocots and dicots; Figure III.7.4; Supplementary Figure 10). Con-
versely, orchids and ericaceous species tend to often form different modules, separated
from other species forming the interaction core (see for instance the plant-Sebacinales
network in Grand brûlé or the plant-Mucoromycotina network in Plaine-des-Palmistes).
Details about the fungal genera involved in these particular interactions can be seen in
Supplementary Figure 11: We noticed that Glomeromycotina OTUs were mainly com-
posed of Glomeraceae (especially the widespread Glomus and Rhizophagus genera) and
that Mucoromycotina were mainly represented by Endogone. In contrast, Sebacinales
were represented by both Sebacina (Sebacinaceae) and Serendipita (Serendipitaceae), and
many plants simultaneously interacted with both fungal genera (Supplementary Figure
11). Similarly, Helotiales and Cantharellales OTUs corresponded to several fungal fami-
lies, but many of them appeared to be specifically restricted to certain plant species only
(Supplementary Figure 11). Lastly, when looking at the exotic and invasive plants, we
noticed that these species were relatively well integrated into the endophytic networks
(a lot of fungal sharing), even if many of them were also associated with specific fungi,
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therefore tending to be on the edges of the network representations (Supplementary Fig-
ure 12).
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Figure III.7.4: The different fungal lineages influence more the plant-fungus network struc-
tures than the sampled communities, despite large habitat variations. Network representation
at the species-level of the different endophytic networks (Glomeromycotina, Mucoromycotina,
Sebacinales, Helotiales, or Cantharellales) in each sampled community (Grand brûlé, Plaine-des-
Palmistes, or Dimitile). Colored round nodes represent plant species (colors indicate the main
plant taxonomic groups) and grey squared nodes correspond to fungal OTUs. Grey links repre-
sent plant-fungus interactions and their widths are proportional to interaction abundances. Fun-
gal lineages (on rows) are ordered according to their network structures: networks that tend to
be nested are on the top, whereas network that tend to be modular are on the bottom (based on
Supplementary Tables 7-9). The sampled communities are on columns and we indicated the en-
vironmental gradients on the top. For each network, the total number of normalized reads (N)
and the connectance (C) is indicated. Networks were visualized using the igraph R-package for
the Swarm OTUs (but 97% OTUs gave very similar results). Details about the fungal taxonomy
can be seen in Supplementary Figure 11.

When quantitatively investigating the network structures, we found that the endo-
phytic networks presented an important range of connectance from 0.14 to 0.34, and tend
to be less connected than the shuffle-sample null models (Figure III.7.4, Supplementary
Table 6). This means that plant-fungus interactions are more alike between samples from
the same plant species than between samples from different species. In terms of nested-
ness, compared to the quasiswap null models, and when considering weighted interac-
tions, we found that large networks, like plant-Glomeromycotina and plant-Helotiales
networks, tend to be significantly nested (Supplementary Table 7a). Conversely, smaller
networks, plant-Sebacinales, plant-Cantharellales, and plant-Mucoromycotina networks
were mostly non-significantly nested. When considering shuffle-sample null models,
all networks were non-significantly nested, except for plant-Glomeromycotina incidence
networks (Supplementary Table 7b). We also found similar trends when comparing the
Cscore of the networks to null models (Supplementary Table 8): nested/anti-checkerboard
structures (i.e. a strong asymmetrical specialization with an important overlap in shared
partners) were only significant in large networks and when considering interactions
strengths. Finally, we found contrasted evidence for modular structures in the endo-
phytic networks: most of the networks were not significantly modular, and those that
were significantly modular (in particular plant-Mucoromycotina, plant-Cantharellales,
and plant-Helotiales networks) presented M values (the proportion of within-modules
interactions) below 0.50 (Supplementary Table 9), suggesting that these inferred mod-
ules explained less than 50% of the endophytic interactions. However, many of these
non-significances might arise from the fact that the network sizes are relatively small
and might reduce the power of the comparisons to null models.

Specialization of endophytic interactions:

H2’ values were lower in plant-Glomeromycotina networks than in the other en-
dophytic networks (Figure III.7.5a; Supplementary Figure 13), suggesting that plant-
Glomeromycotina interactions tend to be less specialized than other endophytic interac-
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Figure III.7.5: Fungal sharing in the plant-fungus networks varies across the different fungal
lineages. (a) Interaction specializations (H2’) are lower in plant-Glomeromycotina networks than
in other plant-fungus networks For each endophytic network (Glomeromycotina, Mucoromy-
cotina, Sebacinales, Helotiales, or Cantharellales) in each sampled community (Grand brûlé (A),
Plaine-des-Palmistes (B), or Dimitile (C)), a colored dot indicates the network-level interaction
specialization (H2’) obtained with Swarm OTUs. The significance of the H2’ values was eval-
uated using null models maintaining marginal sums or shuffle-sample null models: all the H2’
values were significant for the marginal sums null models, and asterisks indicate when the H2’
values are significant based on the shuffle-sample null models (see Supplementary Figure 13 for
details). (b) Motif frequencies significantly differ between the endophytic networks Principal co-
ordinate analyses (PCoA) of the bipartite motif frequencies (from 2 to 5 species per motif) of each
endophytic network (Glomeromycotina, Mucoromycotina, Sebacinales, Helotiales, or Cantharel-
lales) in each sampled community (Grand brûlé (A), Plaine-des-Palmistes (B), or Dimitile (C)).
The colored triangle areas represent the proximity within the sampled communities for the dif-
ferent groups of fungi. Motif analyses were performed on the unweighted networks of Swarm
OTUs.

tions. While plant-Mucoromycotina and plant-Cantharellales interactions appeared to be
highly specialized (high H2’ values), plant-Sebacinales and plant-Helotiales interactions
presented an intermediate level of specialization (Figure III.7.5a). Looking at the spe-
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cialization of the individual plant species, both normalized degree and d’ indicated that
most plant species were more specialized toward their endophytic fungi than expected
if the interactions were randomly distributed based on species abundances (marginal
null models; Supplementary Figure 14). However, these specialization values were gen-
erally no longer significant when compared with those of the shuffle-sample null mod-
els: many plant-fungus specializations therefore appeared to be driven by sample effects
rather than species effects.

When comparing the motifs frequencies of the different endophytic networks using
PCoA, we found that each type of endophytic network tends to cluster together (espe-
cially when using unweighted motifs; Figure III.7.5b; Supplementary Figure 15), sug-
gesting that each of them had a particular motif signature. When looking at which
motifs were differentially abundant (Supplementary Figure 16), we found that motifs
where plants occupy a generalist position (e.g. motifs 8, 11, or 12) tended to be more
abundant in plant-Glomeromycotina networks, but more networks would be needed
to properly test this. To ensure that the low level of specialization observed in plant-
Glomeromycotina interactions did not arise from the use of the 18S rRNA marker, we
reproduced the analyses using the more variable ITS marker instead and still reported
the same patterns of low specialization (Supplementary Figure 17). Similarly, replicating
the plant-Sebacinales network analyses with 18S rRNA marker still showed that plant-
Sebacinales interactions are on average more specialized than plant-Glomeromycotina
ones (Supplementary Figure 18).

Finally, we investigated the motif frequencies of the Lycopodiaceae species and found
that their motif frequencies were very variable according to the species and the sampled
community (Supplementary Figure 19). Compared with the surrounding plant species,
Lycopodiella cernua in Grand brûlé, Lycopodiella caroliniana in Plaine-des-Palmistes, or Ly-
copodium clavatum in Dimitile tend to be relatively more associated with Glomeromy-
cotina partners that are well connected to other plant species in the networks (e.g. posi-
tions 19, 26, or 32). In contrast, for the other endophytic fungi, the Lycopodiaceae species
tend to more frequently interact with specific fungi that are not connected with any other
plant species in the network (e.g. positions 17, 20, 23, or 33).

Discussion:

In this study, we exhaustively characterized the plant-associated endophytic fungi
within three contrasted local communities including distantly related plant species. We
found that these plant communities across la Réunion island were mainly colonized by
5 main fungal lineages. Contrary to our expectations, we noticed a lot of fungal sharing
between plant lineages that diverge >350 million years ago. When looking into detail at
the different fungal lineages, we found striking differences in terms of specialization and

230



Chapter III

network structure (i.e. in the way the fungi connect the plant species), suggesting that
they all establish singular interactions between the plant species. Interestingly, while the
compositions of the endophytic microbiota vary according to the sampled communities,
the plant-fungus network structures appeared to be resilient to the environmental varia-
tions.

Characterizing the composition of the root-associated fungal microbiomes:

First of all, we noticed that the ITS region (amplified with the ITS1-f and ITS4 primers)
and the 18S rRNA gene (amplified with the AMAD-f and AMDG-r primers) primers)
characterized different aspects of the root-associated fungal microbiota: While the 18S
rDNA offers better visualization of all the fungal orders, the ITS enables better identi-
fication of the Dikarya (Figure III.7.2). These results therefore encourage systematically
characterize the composition of plant-associated fungal microbiota by targeting both sets
of regions. In particular, we noticed that Mucoromycotina (Endogonales) were almost
always missed when using the common ITS1-f and ITS4 primer pairs, whereas they ap-
pear to be frequent endophytes and major mycorrhizal symbionts (Rimington et al., 2015;
Hoysted et al., 2018). In addition, we did not detect any Tulasnellaceae in our study, while
it is suspected to be a widespread saprotrophic group in the rhizosphere of plants includ-
ing orchids, but is generally not successfully amplified when using regular ITS2 primers
(Martos et al., 2012; Vogt-Schilb et al., 2020; Petrolli et al., 2021). Thus, even with our dual
marker strategy, we might still miss some root-associated fungal lineages.

We retrieved in our analyses the main types of mycorrhiza, which tend to be con-
served across the main plant taxonomic groups. As expected, Glomeromycotina abun-
dantly colonized most plant lineages, including bryophytes, lycopods, ferns, and many
flowering plants (Brundrett & Tedersoo, 2018). Similarly, we observed that Mucoromy-
cotina were frequently associated with a range of plants (Hoysted et al., 2018), with the
exceptions of ferns, as previously suggested by Rimington et al. (2015). We also con-
firmed that Sebacinales are major fungal endophytes (Weiß et al., 2016), in particular fre-
quently colonizing lycopods (Horn et al., 2013). Similarly, Helotiales and Cantharellales
were also retrieved as endophytes of many plant species. More surprisingly, we also de-
tected abundant Mucoromycotina colonizations in orchids: Such associations had been
previously detected in epiphytic orchids (Novotná et al., 2018) and further works using
the 18S rRNA marker should be pursued to investigate whether orchid-Mucoromycotina
associations are indeed frequent.

Most plant individuals were generally colonized by several endophytic fungi suscep-
tible to be mycorrhizal. For instance, we noticed that dual colonizations by Mucoromy-
cotina and Glomeromycotina were particularly frequent, especially in lycopods. Exper-
iments have demonstrated that such dual symbioses can both be functional and have
complementary roles (Field et al., 2016). Unfortunately, here, the molecular detection of a
fungus in a plant root says nothing about the nature of the interaction (Toju et al., 2016): it
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can either correspond to a functioning mycorrhiza, to an opportunistic endophyte, or to
a sporulating fungus that is transiently colonizing the root (Brundrett & Tedersoo, 2018).
Testing which endophytic colonizations correspond to mycorrhizal ones, and whether
colonizations by multiple fungal lineages are all functional and complementary would
require further experimental works.

We also found a strong effect of the sampled communities on the endophytic mi-
crobiota compositions (Figure III.7.3). This suggests that environmental conditions, like
altitude, disturbance, and humidity, influence the fungal distributions and the endo-
phytic microbiota. Here, we cannot unravel the different effects of the environmental
variables: Sampling more communities extensively covering the environment gradients
would be necessary to do so. Among the strong community effects, we found that Mu-
coromycotina fungi were relatively abundant in the wet thickets (Plaine-des-Palmistes)
and mostly absent in other sampled communities. Consequently, the endophytic compo-
sitions of Lycopodiella cernua present a clear shift according to its environment: while they
mainly associate with Glomeromycotina and Sebacinales in Grand brûlé, Mucoromy-
cotina represent up to 90% of the endophytic reads in Plaine-des-Palmistes. Further sam-
pling should investigate whether Mucoromycotina only dominate the root endophytic
microbiota in wet habitats.

When looking at the fungal composition of the root samples from the same species,
we noticed an important heterogeneity. Although fungal microbiota from the same plant
species were on average more alike than between two plant species, the endophytic com-
positions could vary drastically, as suggested by the rarefaction plots showing that even
>10 samples were often not sufficient to get the whole diversity of the fungal associ-
ated with a plant species. As a consequence, we found that a large part of the plant-
fungus specificity arose from single samples rather than properties of the plant species:
more samples should be included to robustly infer which fungi are specific to each plant
species. Besides the variability between samples, we also found that fungal microbiota
indeed varied significantly across sampling replicates from the same community, sug-
gesting that there are very local effects in the assembly of root-associated fungal micro-
biomes (Dumbrell et al., 2010; Kokkoris et al., 2020). Altogether, the effect of both the
sampled community and the replicates on the endophytic microbiota compositions re-
flects the importance of ecological specificity in plant-fungus interactions (Molina et al.,
1992).

Fungal sharing versus specialization of the main fungal lineages:

In local communities, although we detected significant differences in the fungal mi-
crobiota compositions of the main plant taxonomic groups, we also observed a large
amount of fungal sharing between co-occurring plant species, including between phy-
logenetically distant plants (Figure III.7.3). Thus, we found little evidence for the state-
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ment “ancient plants with ancient fungi”, resulting from the observation of frequent in-
teractions between liverworts and early-diverging Glomeromycotina lineages (Riming-
ton et al., 2018). Fungal sharing was particularly important for Glomeromycotina that
present very little specialization, as already often detected in local communities of flow-
ering plants (van der Heijden et al., 2015; Sepp et al., 2019). Conversely, the other fungal
lineages, especially the Mucoromycotina and Cantharellales, were more specialized and
more sporadic in their interactions with plants. Sebacinales and Helotiales presented
intermediate levels of specialization, confirming that they are widespread endophytes
(Weiß et al., 2016). Such differences in specialization might reflect the different evolution-
ary origins of these plant-associated fungi. Indeed, Glomeromycotina are thought to be
an ancestral plant symbiont that obligately associate with them (Pirozynski & Malloch,
1975; Selosse & Le Tacon, 1998): although some plants have lost their dependence on
Glomeromycotina through time (Werner et al., 2018), they often retain the ability to occa-
sionally host sparse Glomeromycotina fungi (Cosme et al., 2018; Brundrett & Tedersoo,
2018), which could explain why Glomeromycotina tend to colonize many plant species
with very low specificity. Conversely, Sebacinales, Helotiales, and Cantharellales have
more recently acquired their ability to interact with plants and many of these lineages
are still saprotrophs (Miyauchi et al., 2020). Thus, plant colonization can be more faculta-
tive for them and often require a minimal plant-fungus specificity to be established (van
der Heijden et al., 2015), which could explain the higher specialization we observed for
these lineages (Figure III.7.5). However, we also found that plant-Mucoromycotina in-
teractions were quite specialized, facultative, and variable according to the environment,
which seems contradictory with the fact that Mucoromycotina are being increasingly
recognized as likely ancestral plant symbionts (Hoysted et al., 2018; Feijen et al., 2018). If
Mucoromycotina were indeed a major ancestral plant symbiont, why they are nowadays
facultative symbionts limited to particular environmental conditions remains unclear.

These different levels of specialization of the main fungal lineages resulted in differ-
ent network structures (Figure III.7.4). In particular, plant-Glomeromycotina networks
tend to exhibit significant nestedness, confirming a pattern frequently observed in lo-
cal communities of flowering plants (Montesinos-Navarro et al., 2012; Chagnon et al.,
2012; Sepp et al., 2019). In addition, our null models demonstrated that the nestedness in
plant-Glomeromycotina networks cannot be explained by abundance-driven interactions
only (Chagnon, 2016). Conversely, other plant-fungus networks, in particular those com-
posed of Mucoromycotina or Cantharellales, tend to present less connected, un-nested,
and even modular structures, reflecting the higher specificity of these plant-fungus in-
teractions. Our results thus support the tendency toward un-nested structures of non-
Glomeromycotina networks, as previously observed in local communities of flowering
plants (Bahram et al., 2014; Põlme et al., 2018) or in a liverwort-Mucoromycotina network
at the global scale (Rimington et al., 2019). Although we cannot exclude that we missed
a part of their diversity (e.g. the Tulasnellaceae), the fact that the Cantharellales tend to
form modular networks with plants might be due to the existence of a large diversity of
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ecologies with plants in this group, from mutualism to antagonism (e.g. the pathogens
Rhizoctonia), which might create modularity in the network (Fontaine et al., 2011). By
separately looking at the main endophytic fungal lineages, our approach thus better cap-
tured their singularities, which can be missed when merging and studying all fungal
groups in the same framework (Toju et al., 2016). Improvement of our characterization of
the individual fungal ecological niches would allow us to investigate even more specif-
ically the patterns of interactions at a finer taxonomic scale (e.g. at the genus level for
lineages like the Cantharellales that comprises a large ranges of ecologies).

Interestingly, despite the contrasted environmental conditions of our sampled com-
munities, we found overall consistent structural patterns for each plant-fungus network
across habitats (Figure III.7.4): this suggests that even if the environmental conditions
impact the relative abundances of the endophytes (Figure III.7.2), they do not strongly
influence the network structures, which would instead result from intrinsic properties of
the fungal lineages. This result contrasts with a recent metanalysis of plant-fungus in-
teractions that found that the mean annual precipitation had more influence on the level
of nestedness of plant-fungus interaction networks than the fungal lineages involved
(Põlme et al., 2018). Such results could be explained by the fact that Põlme et al., (2018)
considered a large heterogeneity of types of networks (individual-based networks or net-
works looking specifically at a certain plant clade only – e.g. only the orchid-fungus
networks), whereas we only compared species-based networks at the level of a local
community. In addition, we found that the exotic and invasive plant species were rel-
atively well connected to the other plant species in the disturbed habitat (Grand brûlé),
although they also tend to interact with many specific fungi, which is probably due to the
fact that they belong to different plant taxonomic groups (e.g. orchids) (Bunn et al., 2015).
Sampling more communities along the environment gradients in La Réunion would be
necessary to robustly evaluate whether environment conditions affect or not the struc-
tures of these plant-fungus interaction networks.

Contrary to what was suggested by a recent metanalysis of plant-Glomeromycotina
interactions at a global scale (Article 6), we found that adult lycopod sporophytes were
well connected to other plant species by fungal sharing. However, compared to other
plant species, we also noticed the propensity of Lycopodiaceae species to interact with
lycopod-specific fungal OTUs (especially from Mucoromycotina and Sebacinales; Fig-
ure III.7.4 and Supplementary Figure 19). Next works should particularly focus on the
achlorophyllous gametophytes of lycopods to investigate what are the fungi providing
them nutrients. In our study, we only found one gametophyte of Lycopodiella cernua
close to Plaine-des-Palmistes, and this gametophyte was abundantly and specifically col-
onized by Mucoromycotina. If a more thorough sampling confirms that lycopod-specific
fungi link both mycoheterotrophic gametophytes and green adult sporophytes, it would
suggest that the organic matter could transit from the sporophytes to the gametophytes
and that would strongly reinforce the hypothesis of parental nurture (Leake et al., 2008),
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even though adult sporophytes are also sharing fungi with other plant species.

Conclusion:

Therefore, by exhaustively characterizing plant-fungus interactions in local commu-
nities, our study demonstrated the distinctiveness in terms of specialization and network
structure of the main endophytic fungal lineages, probably underpinned by the singu-
lar ecologies of these plant-fungus symbioses. In addition, it also showed that microbial
sharing is widespread in local communities, even among distantly related plants. This
calls for future works in order to characterize the functions of the endophytic microbiota
in plant roots, several studies already suggesting that they can be involved in a plethora
of functions, from plant nutrition to protection (Newsham, 2011; Almario et al., 2017).
It therefore highlights the importance of systematically considering networks of inter-
actions (the “network-biont”) rather than isolated macroorganisms and their associated
microbes (the “holobiont”).

References:

Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M. 2017. Root-
associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phos-
phorus nutrition. Proceedings of the National Academy of Sciences of the United States of Amer-
ica 114: E9403–E9412.

Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson
D. 2013. Underground signals carried through common mycelial networks warn neighbouring
plants of aphid attack (N van Dam, Ed.). Ecology Letters 16: 835–843.

Bahram M, Harend H, Tedersoo L. 2014. Network perspectives of ectomycorrhizal associa-
tions. Fungal Ecology 7: 70–77.

Bascompte J, Jordano P, Melián CJ, Olesen JM. 2003. The nested assembly of plant-animal
mutualistic networks. Proceedings of the National Academy of Sciences of the United States of
America 100: 9383–9387.

Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant
health. Trends in Plant Science 17: 478–486.

Berruti A, Desirò A, Visentin S, Zecca O, Bonfante P. 2017. ITS fungal barcoding primers versus
18S AMF-specific primers reveal similar AMF-based diversity patterns in roots and soils of three
mountain vineyards. Environmental Microbiology Reports 9: 658–667.

Blüthgen NN, Menzel F, Blüthgen NN. 2006. Measuring specialization in species interaction
networks. BMC Ecology 6.

Boullard B. 1979. Considérations sur la symbiose fongique chez les Ptéridophytes. Syllogeus
19 : 1-58.

Brundrett MC, Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and global
host plant diversity. New Phytologist 220: 1108–1115.

Bunn RA, Ramsey PW, Lekberg Y. 2015. Do native and invasive plants differ in their interac-
tions with arbuscular mycorrhizal fungi? A meta-analysis (M van der Heijden, Ed.). Journal of
Ecology 103: 1547–1556.

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated align-
ment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973.

235



Chapter III

Chagnon PL. 2016. Seeing networks for what they are in mycorrhizal ecology. Fungal Ecology
24: 148–154.

Chagnon PL, Bradley RL, Klironomos JN. 2012. Using ecological network theory to evaluate
the causes and consequences of arbuscular mycorrhizal community structure. New Phytologist
194: 307–312.

Chagnon PL, Bradley RL, Klironomos JN. 2015. Trait-based partner selection drives mycor-
rhizal network assembly. Oikos 124: 1609–1616.

Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, Collman RG, Bushman FD, Li
H. 2012. Associating microbiome composition with environmental covariates using generalized
UniFrac distances. Bioinformatics 28: 2106–2113.

Cosme M, Fernández I, van der Heijden MGA, Pieterse CMJ. 2018. Non-mycorrhizal plants:
The exceptions that prove the rule. Trends in Plant Science 23: 577–587.

Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identi-
fication and removal of contaminant sequences in marker-gene and metagenomics data. Micro-
biome 6: 226.

Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu
I, Jairus T, et al. 2015. Global assessment of arbuscular mycorrhizal fungus diversity reveals very
low endemism. Science 349: 970–973.

Dormann CF. 2011. How to be a specialist? Quantifying specialisation in pollination net-
works. Network Biology 1: 1–20.

Dormann CF, Gruber B, Fründ J. 2008. Introducing the bipartite package: analysing ecological
networks. R News 8: 8–11.

Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. 2010. Relative roles of niche and
neutral processes in structuring a soil microbial community. ISME Journal 4: 337–345.

Feijen FA, Vos RA, Nuytinck J, Merckx VSFT. 2018. Evolutionary dynamics of mycorrhizal
symbiosis in land plant diversification. Scientific Reports 8: 10698.

Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI. 2015. Symbiotic options for
the conquest of land. Trends in Ecology & Evolution 30: 477–486.

Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG,
Leake JR, Pressel S. 2016. Functional analysis of liverworts in dual symbiosis with Glomeromy-
cota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME Journal 10:
1514–1526.

Fontaine C, Guimarães PR, Kéfi S, Loeuille N, Memmott J, van der Putten WH, van Veen
FJF, Thébault E. 2011. The ecological and evolutionary implications of merging different types of
networks. Ecology Letters 14: 1170–1181.

Frank B. 1885. Ueber die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch
unterirdische Pilze. Berichte der Deutschen Botanischen Gesellschaft 3: 128–145.

Gotelli NJ. 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. 2015. Mycorrhizal ecology and

evolution: the past, the present, and the future. New Phytologist 205: 1406–1423.
Horn K, Franke T, Unterseher M, Schnittler M, Beenken L. 2013. Morphological and molec-

ular analyses of fungal endophytes of achlorophyllous gametophytes of Diphasiastrum alpinum
(Lycopodiaceae). American Journal of Botany 100: 2158–2174.

Hoysted GA, Bidartondo MI, Duckett JG, Pressel S, Field KJ. 2020. Phenology and function in
lycopod–Mucoromycotina symbiosis. New Phytologist: 0–2.

Hoysted GA, Kowal J, Jacob A, Rimington WR, Duckett JG, Pressel S, Orchard S, Ryan MH,
Field KJ, Bidartondo MI. 2018. A mycorrhizal revolution. Current Opinion in Plant Biology 44:
1–6.

Jacquemyn H, Brys R, Waud M, Busschaert P, Lievens B. 2015. Mycorrhizal networks and
coexistence in species-rich orchid communities. New Phytologist 206: 1127–1134.

Jacquemyn H, Merckx VSFT, Brys R, Tyteca D, Cammue BPAA, Honnay O, Lievens B. 2011.
Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in

236



Chapter III

the genus Orchis (Orchidaceae). New Phytologist 192: 518–528.
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder:

fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589.
Katoh K, Standley DM. 2013. MAFFT Multiple sequence alignment software version 7: Im-

provements in performance and usability. Molecular Biology and Evolution 30: 772–780.
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowal-

chuk GA, Hart MM, Bago A, et al. 2011. Reciprocal rewards stabilize cooperation in the mycor-
rhizal symbiosis. Science 333: 880–882.

Kokkoris V, Lekberg Y, Antunes PM, Fahey C, Fordyce JA, Kivlin SN, Hart MM. 2020. Code-
pendency between plant and arbuscular mycorrhizal fungal communities: what is the evidence?
New Phytologist 228: 828–838.

Leake JR, Cameron DD, Beerling DJ. 2008. Fungal fidelity in the myco-heterotroph-to-autotroph
life cycle of Lycopodiaceae: A case of parental nurture? New Phytologist 177: 572–576.

Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. 2015. Swarmv2: Highly-scalable and
high-resolution amplicon clustering. PeerJ 2015: 1–12.

Manly BFJ. 2018. Randomization, bootstrap and Monte Carlo methods in biology. Chapman
and Hall/CRC.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing
reads. EMBnet.journal 17: 10.

Martos F, Munoz FF, Pailler T, Kottke I, Gonneau C, Selosse MA. 2012. The role of epi-
phytism in architecture and evolutionary constraint within mycorrhizal networks of tropical or-
chids. Molecular Ecology 21: 5098–5109.

McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. 2019. Meth-
ods for normalizing microbiome data: An ecological perspective (S Jarman, Ed.). Methods in
Ecology and Evolution 10: 389–400.

McMurdie PJ, Holmes S. 2014. Waste not, want not: Why rarefying microbiome data is inad-
missible (AC McHardy, Ed.). PLoS Computational Biology 10: e1003531.

Merckx VSFT. 2013. Mycoheterotrophy: An Introduction. In: Merckx VSFT, ed. Myco-
heterotrophy. New York, NY: Springer New York, 1–17.

Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-García M, Morin E, Andreopoulos B,
Barry KW, Bonito G, et al. 2020. Large-scale genome sequencing of mycorrhizal fungi provides
insights into the early evolution of symbiotic traits. Nature Communications 11: 1–17.

Molina R, Massicotte H, Trappe JM. 1992. Specificity phenomena in mycorrhizal symbioses:
community-ecological consequences and practical implications. In: Allen, Routledge, eds. Myc-
orrhizal functioning, an integrative plant-fungal process. New York: Chapman and Hall, 357-423.

Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M. 2012. The net-
work structure of plant-arbuscular mycorrhizal fungi. New Phytologist 194: 536–547.

Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M. 2015. Evidence
for phylogenetic correlation of plant-AMF assemblages? Annals of Botany 115: 171–177.

Newsham KK. 2011. A meta-analysis of plant responses to dark septate root endophytes.
New Phytologist 190: 783–793.

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective
stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and
Evolution 32: 268–274.

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016.
FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild.
Fungal Ecology 20: 241–248.

Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P,
Picard K, Glöckner FO, Tedersoo L, et al. 2019. The UNITE database for molecular identification
of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 47:
D259–D264.

237



Chapter III

Novotná A, Benítez Á, Herrera P, Cruz D, Filipczyková E, Suárez JP. 2018. High diversity of
root-associated fungi isolated from three epiphytic orchids in southern Ecuador. Mycoscience 59:
24–32.

Oksanen J, Kindt R, Pierre L, O’Hara B, Simpson GL, Solymos P, Stevens MH. HH, Wagner H,
Blanchet FG, Kindt R, et al. 2016. vegan: Community Ecology Package, R-package version 2.4-0.
R-package version 2.2-1.

Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M. 2010.
The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular
mycorrhizal fungi (Glomeromycota). New Phytologist 188: 223–241.

Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of phylogenetics and evolution in R
language. Bioinformatics 20: 289–290.

Patefield WM. 1981. An efficient method of generating random R × C tables with given row
and column totals. Applied Statistics 30: 91.

Perez-Lamarque B, Selosse MA, Öpik M, Morlon H, Martos F. 2020. Cheating in arbuscular
mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy. New Phytol-
ogist 226: 1822–1835.

Petrolli R, Vieira CA, Jakalski M, Bocayuva MF, Valle C, Cruz ED V, Selosse MA, Martos F,
Kasuya MCM. 2021. A fine-scale spatial analysis of fungal communities on tropical tree bark
shows the epiphytic rhizosphere in orchids. New Phytologist (under review).

Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. 2013. Going back to the roots:
The microbial ecology of the rhizosphere. Nature Reviews Microbiology 11: 789–799.

Pirozynski KA, Malloch DW. 1975. The origin of land plants: A matter of mycotrophism.
BioSystems 6: 153–164.

Põlme S, Bahram M, Jacquemyn H, Kennedy P, Kohout P, Moora M, Oja J, Öpik M, Pecoraro
L, Tedersoo L. 2018. Host preference and network properties in biotrophic plant–fungal associa-
tions. New Phytologist 217: 1230–1239.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The
SILVA ribosomal RNA gene database project: Improved data processing and web-based tools.
Nucleic Acids Research 41: D590–D596.

R Core Team. 2020. R: A language and environment for statistical computing.
Rimington WR, Pressel S, Duckett JG, Bidartondo MI. 2015. Fungal associations of basal vas-

cular plants: reopening a closed book? New Phytologist 205: 1394–1398.
Rimington WR, Pressel S, Duckett JG, Field KJ, Bidartondo MI. 2019. Evolution and networks

in ancient and widespread symbioses between Mucoromycotina and liverworts. Mycorrhiza 29:
551–565.

Rimington WR, Pressel S, Duckett JG, Field KJ, Read DJ, Bidartondo MI. 2018. Ancient plants
with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Pro-
ceedings of the Royal Society B: Biological Sciences 285: 20181600.

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: A versatile open source
tool for metagenomics. PeerJ 2016: e2584.

Schmid E, Oberwinkler F. 1993. Mycorrhiza-like interaction between the achlorophyllous ga-
metophyte of Lycopodium clavatum L. and its fungal endophyte studied by light and electron mi-
croscopy. New Phytologist 124: 69–81.

Schneider-Maunoury L, Deveau A, Moreno M, Todesco F, Belmondo S, Murat C, Courty PE,
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Chapter IV.

Discussion:

During my PhD, I have used a range of approaches to better understand the evo-
lution of host-microbiota interactions. My works have included the development of a
new model (Article 1) and the comparisons of the statistical performances of different
approaches to study microbial inheritances (Article 3) or phylogenetic signals in species
interactions (Article 4). I have applied these tools to various empirical datasets, rang-
ing from the gut microbiota of primates (Articles 1 and 3) or spiders (Article 2), to the
root-associated mycorrhizal microbiota (Articles 4, 5, 6, and 7). I have also worked on
the application of models of species diversification to microbial groups (Article 5). All
my works included phylogenetic-based approaches and most of them used the frame-
work of bipartite networks (Articles 4, 5, 6, and 7). The microbiota datasets we used
were mostly coming from metabarcoding experiments amplifying the SSU rRNA genes
(for prokaryotes in Articles 1, 2, and 3, or fungi in Articles 5, 6, and 7) or the fungal ITS
region (Articles 4 and 7). Finally, I have also performed fieldwork and molecular work
to characterize mycorrhizal networks (Article 7). All these projects have been performed
under the supervision of my PhD advisors and in collaboration with researchers at IBENS
and ISYEB, as well as external collaborators who in particular gave us access to empirical
datasets, including Maarja Öpik (Tartu University, Estonia), Henrik Krehenwinkel (Trier
University, Germany), and Rosemary Gillespie (UC Berkeley, USA).

In this Discussion, we will first present a synthesis of the main findings of my PhD
and the future works that could be carried related to them (section 1). Next, in a perspec-
tive part, we will more generally discuss the current limits and the future improvements
of the metabarcoding datasets (section 2.1) and the quantitative approaches (section 2.2)
for investigating the evolution of host-microbiota interactions. Then, we will synthe-
size different theories of host-microbiota evolutions and their support, complemented
by some of our findings (section 2.3). Finally, we will conclude by discussing how our
recent changes of lifestyle have impacted worldwide host-associated microbiota (section
2.4).
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1. Synthesis

In Chapter I, we have developed a model, HOME, for detecting transmitted microbial
symbionts during the host clade diversification using DNA metabarcoding datasets. Us-
ing simulations, we found that our approach has an intermediate statistical power and
very low type-I error. In other words, our approach can miss some of the transmitted
microbes, but it is unlikely to infer many transmitted microbes that are actually acquired
from the environment. Thus, HOME has the advantages (i) of not making any a priori
on the microbial groups that could be transmitted (unlike Moeller et al., 2016) and (ii) of
working even when the divergence of the host clade is very recent (unlike Groussin et al.,
2017) and when using short DNA sequences that are slowly evolving. Indeed, compared
with global-fit approaches like ParaFit (Legendre et al., 2002) or PACo (Balbuena et al.,
2013), we found that HOME has fewer false-positives but lower power, especially when
the number of segregating sites is low (i.e. when there is a low amount of information
in the metabarcoding sequences). In addition, HOME is faster than the event-based ap-
proach ALE (Szöllősi et al., 2013) in these conditions. Therefore, we recommend jointly
use HOME with global-fit approaches like ParaFit: HOME will give a list of microbes
that are very likely to be transmitted and ParaFit will add to this list some microbes
that could be transmitted (but also many false positives). When applied to empirical
datasets, we found contrasting results across the different animal groups we considered:
while several bacterial lineages have been transmitted in the gut microbiota of primates
(representing up to 10% of the total gut bacteria), this is likely not the case in the micro-
biota of spiders that showed very little evidence of transmission. Our results confirm
that microbial transmission is frequent in mammal gut microbiota, as highlighted by
previous experimental works (Moeller et al., 2018) or co-phylogenetic analyses (Sanders
et al., 2014; Moeller et al., 2016; Groussin et al., 2017). Conversely, in arthropods, we
know that microbial transmissions are very heterogeneous, with some host clades hav-
ing mechanisms ensuring faithful transmissions (Engel & Moran, 2013), whereas others
have microbes largely acquired from their environment (Kennedy et al., 2020); the Hawai-
ian Ariamnes spiders seem to belong to this latter category. Interestingly, it means that the
patterns of phylosymbiosis observed in both primates and spiders datasets are at least
in part generated by different processes: vertical transmissions likely participate to the
phylosymbiosis in primates, whereas in spiders, the heterogeneous pools of microbes (in
particular the endosymbionts) likely mainly explain the phylosymbiosis, as closely re-
lated hosts are in contact with similar environmental pools of microbes. Therefore, our
results illustrate the heterogeneity of microbiota evolution across animals and similar
analyses should be pursued in other host clades to identify the “hotspots” of microbial
transmissions among animals and plants.

In Chapter II, we have investigated the interplay between the evolutionary histories
of hosts and their associated microbes. In Article 4, we have compared different meth-
ods for measuring phylogenetic signals in species interactions (i.e. whether closely re-
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lated species tend to interact with similar partners) and have found that two widely
used approaches, the phylogenetic bipartite linear model (PBLM; Ives & Godfray, 2006)
and partial Mantel tests (e.g. Rezende et al., 2007) are generally inaccurate for measuring
phylogenetic signals. Conversely, despite intermediate statistical power, simple Mantel
tests are likely the most accurate and fastest method available for measuring phyloge-
netic signals in species interactions. In addition, we have considered the adjustments
of the Mantel tests for investigating phylogenetic signals in host-microbiota networks,
by proposing a robust way to test for clade-specific phylogenetic signals and by test-
ing that phylogenetic uncertainty is unlikely to strongly bias the results. We provided
clear guidelines for future empirical applications and illustrated them on an orchid my-
corrhizal network from La Réunion: we confirmed with our approaches that there is
a significant phylogenetic signal in only a clade of epiphytic orchids, the Angraecinae,
suggesting that host lineages colonizing a new habitat (here, epiphytism) might be con-
strained to specialize toward specific partners. Second, in Article 5, we investigated how
land plants might have affected the diversification of the obligate mycorrhizal symbionts
(Glomeromycotina). We found that this clade of fungi has relatively low diversification
rates compared with other groups and that after a peak of diversification approximately
150 million years (Myr) ago, they experienced a strong decline in the rates of diversifica-
tion. We suggested that this diversification slowdown might be related to the breakdown
by many plant lineages of their symbiosis with Glomeromycotina. Indeed, plants have
recently evolved alternative symbiotic strategies or have stopped relying on symbionts
for their nutrition (Werner et al., 2018). In the past 100 Myr, the proportion of plant clades
relying on AMF decreased by ∼40% (Feijen et al., 2018). In combination with abiotic
events (like the Cenozoic climatic cooldown), it likely explains why Glomeromycotina
diversification has slowed down. Because such a pattern can also result from various
methodological artifacts (Moen & Morlon, 2014) linked to the use of SSU rRNA metabar-
coding datasets to investigate the diversification of a microbial clade, we have performed
a large range of sensitivity analyses to ensure the robustness of our results, including test-
ing several species delineations, sampling fractions, and phylogenetic reconstructions, as
well as simulations. We thus have provided an example of a framework to study the di-
versification of a microbial group while robustly controlling for potential biases. Overall,
our results highlight the roles of the evolutionary histories of both hosts and microbes in
the current patterns of diversity and species interactions.

Lastly, in Chapter III, we have focused on the evolution of cheating (mycoheterotro-
phy) in the arbuscular mycorrhizal symbiosis. We first performed a global analysis
on plant-Glomeromycotina interactions and found that mycoheterotrophic plants tend
to be specialized toward specialist and closely-related mycorrhizal fungi. This pattern
of reciprocal specialization contrasts with the patterns of asymmetrical specializations,
widespread in mutualistic mycorrhizal interactions. Our analyses therefore suggest that
cheaters and their partners are isolated in the global network, probably because of con-
straints limiting their emergence, either physiological constraints (e.g. partner choice or
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sanctions) or habitat constraints. Importantly, our results say something about whether
or not mycoheterotrophic plants are also isolated in local communities where they live.
Mycoheterotrophic plants are mostly recovered in understory habitats where carbon is
not the limiting resource (Merckx, 2013; Gomes et al., 2019a) and a recent study did not
report any pattern of reciprocal specialization in these communities (Gomes et al., 2019b).
We can speculate that mycoheterotrophs could have emerged in such habitats only be-
cause they represent a negligible cost in terms of carbon for their fungal partners and
the surrounding mycorrhizal plants (Kiers & van der Heijden, 2006). In other words,
we suggest that the strong constraints limiting the emergence of mycoheterotrophy in
the mycorrhizal mutualism could be relaxed when carbon is not the limiting resource.
In addition, our analyses suggest that mycoheterotrophy can evolve through a progres-
sive loss of the mycorrhizal partners associated with the autotrophic ancestors, which
has been recently confirmed in the Burmannia clade (Zhao et al., 2021). Finally, we found
that a clade of initially mycoheterotrophic plants, the lycopods, were specifically associ-
ating with a clade of Glomus, which tends to support the hypothesis of parental nurture
through the sharing of specific fungi between green sporophytes and achlorophyllous
gametophytes. In other words, lycopods would not be true cheaters per se, as the my-
coheterotrophic gametophytes would be nurtured by the sporophytes thanks to shared
fungi (Field et al., 2015). In Article 7, we investigated whether such patterns of speci-
ficity in lycopods were recovered in local communities that we sampled in La Réunion
island. We found that, although lycopods-specific fungi exist, a lot of fungi are shared
between lycopods and other plants. A specific and in-depth sampling of the sporophytes
and gametophytes of lycopods in some local communities would help to better char-
acterize whether private networks supporting parental nurture actually exist between
sporophytes and gametophytes, or alternatively, if the patterns of strong specificity we
observed in Article 6 resulted from an under-sampling bias. Altogether, these works sup-
port the idea that cheating is importantly constrained in the host-microbiota mutualisms;
further works targeting specifically the cheaters and their partners in local communities
will likely provide more information on the processes that allow cheaters to emerge in
some communities.
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2. Perspectives

2.1. The limits of metabarcoding to characterize microbiota evolution

In this section, we discuss the limits of DNA metabarcoding, the imminent improve-
ment that meta-omics approaches will bring, and how complexifying our vision of host-
associated microbiota would be needed to better understand their evolution.

Characterizing microbial communities using DNA metabarcoding has, by itself, plenty
of limits, that can impact our ability to infer the evolution of host-microbiota interactions.
First, when doing metabarcoding, one has to choose a barcoding region to amplify and
a corresponding set of primers. This step already has important consequences on the
characterization of microbiota composition (Bukin et al., 2019): for instance, in Article
7, we found that the 18S rRNA gene or the ITS region often reported drastically differ-
ent root-associated fungal communities, and it seems that even using a combination of
two primer pairs is not enough to recover all the fungal symbionts (e.g. the Tulasnel-
laceae). Some microbial clades are thus likely excluded in all the following analyses; the
same likely applies for archaea in primate guts that are almost absent in the datasets we
used (Articles 1 and 3). Second, performing DNA metabarcoding of the ribosomal RNA
operon, which is present in several copies in microbial genomes, can generate within mi-
crobial species variations of the barcoding genes. Consequently, when looking at nucleo-
tidic substitutions within the barcoding sequences to reconstruct their evolution, one can
track within microbial genomes divergences rather than divergences between microbial
lineages (Pérez-Cobas et al., 2020). We tackled this issue by selecting only the most abun-
dant sequence per species/individuals (Articles 1-3) or by merging similar reads into
OTUs (Articles 4-7), but more sophisticated approaches could be considered in the future
(Pérez-Cobas et al., 2020). Third, metabarcoding markers, like the SSU rRNA genes, are
slowly evolving genes: they accumulated only few substitutions in the recent past (1% on
average per 50 million years for the 16S rRNA gene of bacteria), such that they generally
cannot be used to robustly reconstruct recent microbial evolutions. If the metabarcoding
genes have accumulated no substitution since the host diverged, that will totally prevent
us from reconstructing their evolutionary history (Article 2). In addition, if the substi-
tution rate of the metabarcoding gene is lower than the speciation rate, species would
accumulate at a higher speed than mutations, such that the gene will be improper for
(i) delineating species and (ii) reconstructing robust phylogenetic trees (Article 5). These
are serious issues that can strongly impact our abilities to study microbial evolution and
bias our conclusions. Here, we have dealt with them by specifically developing a model
to infer transmitted bacteria when the number of segregating sites is very low (Article 1)
and by performing a range of sensitivity analyses when studying the diversification of a
microbial group (Article 5). In the future, to avoid such issues, one could instead target
metabarcoding genes that are more rapidly evolving or use sequencing technologies that
enable to amplify longer reads, like Nanopore or PacBio sequencing, that can sequence
the whole rRNA operon (Kolaříková et al., 2021).
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Metabarcoding datasets enable us to have a list of some of the microbial taxa present
in a sample, but it can be challenging to get insights into the metabolic abilities and the
functions of the microbial communities. One can extrapolate the microbial functions
and niches based on their taxonomy using available databases; for instance, FUNGuild
(Nguyen et al., 2016) has allowed us to identify the fungal OTUs likely to be mycorrhizal
(Article 7). However, such databases are particularly limited, especially when work-
ing with microbes of non-model host organisms. A more reliable approach is to use
metagenomic or metatranscriptomic technics that enable a better characterization of the
genes present or expressed respectively. First, such technics allow a better understand-
ing of the microbiota functioning as a whole (Muegge et al., 2011; Simon et al., 2019)
and could be used to improve our understanding of their evolution. Second, if metage-
nomic datasets can be assembled into metagenome-assembled genomes (MAGs), that
could (i) provide more information for reconstructing their evolutionary history and (ii)
give more insights into the functional niches of the different microbes present (Brochet
et al., 2021). Indeed, MAGs would enable more precise species delineations, not (arbi-
trarily) relying on only genetic divergences (Sukumaran & Knowles, 2017), and using
multiple genes would greatly improve phylogenetic reconstructions. In addition, having
MAGs would also provide a better understanding of what each microbial symbiont is
doing: for instance, we suspect that arbuscular mycorrhizal fungi have different bene-
fits for plants; some are efficiently providing nutrients to the plants, whereas others are
better at modulating biotic or abiotic stresses (Chagnon et al., 2013). Having such infor-
mation in our hands would enable us to test how variations in traits (e.g. linked to host
restrictiveness or host functioning) can affect the diversification of these microbial sym-
bionts (Article 5). Similarly, having MAGs would allow us to investigate if certain gene
acquisitions in microbial genomes (e.g. lateral gene transfer) have impacted the evolution
of the corresponding symbiotic microbes (Hehemann et al., 2010). Finally, MAGs would
provide better insight into the genes that are involved in host-microbes interactions and
communications and might be essential for the emergence and the functioning of sym-
biotic interactions (Delaux et al., 2013; van der Heijden et al., 2015). While the current
sequencing coverage and assembly programs enable to characterize only the most abun-
dant microbes, imminent breakthroughs in the field may rapidly generalize the use of
MAGs for answering questions of host-microbiota evolutions.

Finally, in my PhD, we considered a rather static view of host-associated microbiota,
as a list of microbes present in a plant or an animal. A better way to describe host-
associated microbiota to study their evolution would be to consider (i) microbiota as
dynamic ecosystems and (ii) the heterogeneity of interactors it contains. First, perform-
ing a temporal and spatial sampling of the host-associated microbiota would enable us
to have a better understanding of the complex dynamics and variability of the host-
microbiota interactions and the factors that can influence them (Koskella et al., 2017).
Second, we mostly neglected all the microbe-microbe relationships (e.g. mutualism, fa-
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cilitation, competition, predation. . . ) occurring within a microbiota. Unfortunately, such
interactions remain poorly characterized, while they are likely a fundamental part of
microbiota functioning and influence the patterns of evolution (Foster et al., 2017). In
some extreme cases, there are nested interactions within microbiota: for instance, Glom-
eromycotina and Mucoromycotina fungi are often associated with endosymbiotic bacte-
ria (called mycoplasma-related endobacteria) that seem to play important roles in their
functioning (Bonfante & Anca, 2009), like Burkholderia in Gigaspora margarita that sup-
ply nitrogen. Similarly, the phages associated with gut bacteria play major roles in the
equilibrium of the bacterial communities and have likely co-evolved with them over
long timescales (Gogarten et al., 2021). Using co-occurrence networks could be a way,
from metabarcoding datasets, to infer positive or negative microbe-microbe interactions
(Faust & Raes, 2012). Altogether a better understanding of the host-associated microbiota
would allow us to formulate clearer testable hypotheses on the drivers of host-microbiota
evolutions.

2.2. Toward a better modeling of host-microbiota evolution

Empirical applications of quantitative approaches of host-microbiota evolutions (e.g.
models of microbial inheritances, methods for measuring phylogenetic signals in species
interactions, models of microbial diversification) are all directly impacted by the limits
inherent to the microbial metabarcoding datasets (see the previous section). The per-
formance of these approaches (in terms of both statistical power and type-I error rate)
would be greatly improved by increasing the lengths of the DNA barcodes and/or tar-
geting other genes. However, these quantitative approaches also suffer from intrinsic
limits that will require further attention and development.

Measuring phylogenetic signals in host-microbiota evolutions, with Mantel tests for
instance, can be fast and useful as a first way of determining whether closely related
species tend to interact with similar partners (phylosymbiosis; Article 4). However, it
remains an overall measure of a general tendency and says nothing about the processes
of microbiota evolution. Similarly, the structure of bipartite interaction networks is often
studied using nestedness or modularity, but these patterns can be generated by various
ecological or evolutionary processes (Fontaine et al., 2011) and whether they have pre-
dictive power is debated (Box 1). Future efforts should be done to better apprehend the
evolution of the interactions with process-driven models, that either consider microbial
units separately (e.g. models of transmission) or all together (e.g. models of network evo-
lutions).
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Box 1: Do mutualistic versus antagonistic networks have different structures?

In Articles 6 and 7, we assumed that mutualistic networks were rather nested,
whereas antagonistic ones were modular. Such expectations are mainly derived
from plant-animal networks (Thébault & Fontaine, 2010), and the generality of
such a dichotomy has recently been challenged (Michalska-Smith & Allesina,
2019). Analyses performed by Benoît Pichon and Rémy Le Goff (ENS students)
have investigated whether we can indeed infer the antagonistic or mutualistic
nature of species interactions from network structure. Using large databases of
interaction networks covering a range of empirical systems (mainly plant-animal
networks, but also host-microbiota ones) and machine learning classifiers, we
found that although mutualistic networks are significantly more nested than
antagonistic ones, looking at only nestedness and modularity is not enough to
discriminate mutualistic and antagonistic networks (Figure IV.2.1a).
However, when considering motif frequencies (i.e. small-scale patterns of interac-
tions within the networks), we succeed to classify with 80% of accuracy a network
as mutualistic or antagonistic based on only its structure (Figure IV.2.1b and see
Article 8 in Appendix). Our classification method linking network structures
to natures of interactions could be used in the future to propose whether some
indirectly observed interaction networks described using metabarcoding technics
consist in mutualistic or antagonistic interactions. For instance, this could be
particularly useful for plant endophytes with unclear ecologies.
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Figure IV.2.1: Classifying mutualistic versus antagonistic networks based on their struc-
ture: (a) Projection of the empirical networks on the two principal components (PC1 and
PC2) obtained using principal coordinate analysis (PCA) on global metrics (i.e. nestedness,
modularity, connectance, and network size). Antagonistic (in yellow) and mutualistic net-
works (in green) are mixed on the projection, meaning that they cannot be separated based
on a nested/modular dichotomy. (b) Conversely, when using motif frequencies, the nature
of interactions (antagonistic versus mutualistic) of the empirical networks can be predicted
using artificial neural networks. For each type of network ecology, we indicated the num-
ber of networks and whether they are predicted to be mutualistic (resp. antagonistic) with
high/low confidence (“conf.”). These analyses were performed by Benoît Pichon (see Ar-
ticle 8).
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Many models for detecting transmitted microbes have already been developed, but
two main points require further attention. First, event-based approaches, like ALE and
HOME, rely on strong hypotheses of host-microbe evolutions to propose an evolutionary
history for potentially transmitted microbes. HOME models only the process of nucleo-
tidic substitution and horizontal host-switching, and neglects other important processes,
like duplications. Conversely, ALE considers more processes (host switches, duplica-
tions, losses), but does not directly model DNA sequence evolutions, such that applying
ALE when the number of segregating sites in the alignment is low can be tricky (Ar-
ticle 3). ALE is therefore very efficient at inferring vertical transmission when using
long and variable DNA sequences (Dorrell et al., 2021), but can be limited when us-
ing DNA metabarcodes that are slowly evolving. Further model developments could
also include other processes like incomplete lineage sorting or hybridization (Boussau
& Scornavacca, 2020) that can be particularly relevant for modeling the transmission of
host-associated microbial communities. Second, both global-fit and event-based meth-
ods are actually measuring a pattern of cophylogeny. However, a cophylogenetic pattern
between a microbial symbiont and its hosts may not be directly linked with strict ver-
tical transmissions (de Vienne et al., 2013). For instance, preferential host switching can
generate congruent phylogenies (host-shift speciations; de Vienne et al., 2007) and het-
erogeneous pools of microbes can also create a pattern of cophylogeny if closely related
hosts are in contact with similar pools of microbes (Amato et al., 2019). To exclude these
processes, model validations must be carried: one may test for preferential host switch-
ing (i.e. whether host switches are indeed inferred to be more likely between closely
related host species; Article 2) or may randomize the observations within geographic
pools (which should break the cophylogenetic patterns if due to vertical transmissions;
Article 3). In addition, one should verify that the ages of the host and microbial clades
are matching (de Vienne et al., 2013). Dating the age of a microbial clade can be particu-
larly challenging as robust phylogenetic trees and absolute calibration points are rarely
available, but one can at least check that the numbers of segregating sites in the microbial
alignments across the host clade are coherent with the expected substitution rate of the
considered metabarcoding genes. Therefore, inferring the evolutionary history of host-
associated microbes is currently achievable when applying event-based approaches and
model validations to exclude confounding processes.

Compared with models of transmissions, models of network evolution would repre-
sent a more integrative framework to consider the evolution of host-microbiota interac-
tions.
First, one can model the evolution of the presence/absence of interactions. Such models
would require hypotheses on how interactions evolve: for instance, we can assume that
interactions with microbes (resp. host) are overall conserved in a host (resp. microbe)
lineage and that interactions can randomly be acquired or lost through time (anagenetic
changes). At speciation events, we can consider two scenarios: either the interactions
are conserved by the two daughter lineages or they are split (cladogenetic changes). A
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recent model developed by Braga et al. (2020) proposed an approach for reconstructing
ancestral host-symbiont interactions: in short, they considered that the host repertoire of
a symbiont (i.e. the sets of hosts a symbiont can interact with) might stochastically change
by acquiring or losing hosts over time (anagenetic changes). Using Bayesian inference,
they can reconstruct the ancestral host repertoire of the symbiont clade. Although this
approach does not consider host speciation (‘host units’ are considered to be high taxo-
nomic levels, e.g. classes or families, such that the MRCA of the symbionts is younger
than the most recent host speciation), it represents an interesting approach for recon-
structing ancestral clade-based networks (Guimarães, 2020). Note also that symbionts
and hosts can be reverted in the model to reconstruct the ancestral microbial repertoire
of a host clade. Future developments of the models could include biogeography (such
that a host and its symbiont must be in sympatry to interact) and allow interactions be-
tween symbionts (e.g. competition) (Braga et al., 2020).
Second, one can model the evolution of microbial abundances in the host-associated mi-
crobiota. For instance, we have started to develop such a model of the evolution of the
abundances of a set of microbial units (OTUs) on a host phylogeny. We assume that p
OTUs are present in the microbiota of n host species (for which a robust phylogeny is
available) and that the divergences between these microbial OTUs are anterior to the
MRCA of all the host species (i.e. there is no microbial divergence more recent than the
root of the host phylogeny). To fulfill this hypothesis, the OTU delineation can corre-
spond to broad delineations (e.g. 90% OTUs) or to high-level taxonomic delineations (e.g.
bacterial phylum). Then, we assume that, from ancestral microbial abundances at the
MRCA of the host clades (X0), the OTU absolute abundances evolve on the host phy-
logeny according to a multivariate Brownian motion model, i.e. that the evolutions of
the OTU abundances are functions of their own variance and their covariance with other
OTUs. In other words, we account for the effect of possible negative or positive interac-
tions between microbes (depicted by a variance-covariance matrix R). Under this multi-
variate Brownian motion model, the joint distribution of all microbial abundances across
all host species follows a multivariate normal distribution and we can compute the like-
lihood, i.e. the probability of observing the OTU absolute abundances at present given
the parameters of the models, X0 and R. One can relatively easily estimate the parameter
values X0 and R that maximize this likelihood (Clavel et al., 2015). However, with the
current metabarcoding technics characterizing microbiota compositions, we do not have
access to absolute microbial abundances, but only to relative microbial abundances in
each extant host species (i.e. technically, we only have information about p− 1 relative
abundances). In terms of likelihood, this strongly complicates its computation: one has to
integrate the likelihood over all the possible values of absolute abundances (formula not
shown), which becomes too numerically intensive. To tackle this issue, we are currently
developing an alternative inference method based on artificial neural networks. In short,
the idea is to simulate on a given host phylogeny many microbiota evolutions according
to our model (with known X0 and R) and to train the artificial neural networks to link
relative microbial abundances at present (our input data) to the generating parameters
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X0 and R (the parameters we want to estimate). Some preliminary analyses conducted
by Loréna Duret (ENS L3 student) are rather encouraging (see Figure IV.2.2). After val-
idating our method using simulations, we would like to apply our approach to the gut
microbiota of mammals or birds, which would allow us to estimate their ancestral micro-
biota composition and infer what are the microbial units evolving in a correlated way.
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Figure IV.2.2: Modeling the evolution of the relative abundances of a set of microbial units
on a host phylogeny. a-b: The model assumes that microbial absolute abundances evolve on
a host phylogeny from initial abundances at the MRCA of the hosts (X0). Microbial abundances
evolve according to a multivariate Brownian motion described by the covariance matrix R (some
microbial units are positively correlated (green) while others are negatively correlated (red)). We
assume that we only have access to the relative microbial abundances of the extant host species.
c-d: Example of an inference using artificial neural networks (Keras library in Python): 10,000
simulations were realized with p = 5 OTUs and n = 100 host species and the neural network
was trained using 80% of them. Next, we tested the performance of the trained neural network by
testing it on 20% of the remaining simulations: the ancestral abundances (X0) are well recovered
by our approach (c) as well as positive and negative covariances (R) between microbial units (d).
These analyses were performed by Loréna Duret.

Altogether, models of network evolutions would also allow us to more efficiently
link (sym)biotic interactions with species diversification. Indeed, when trying to link
the diversification of Glomeromycotina with land plants (Article 5), we only had lim-
ited options: we looked whether temporal trends of Glomeromycotina matches with
plant diversity both qualitatively (by comparing the trends) or quantitatively, by fitting
environment-dependent birth-death models (with the fossil land plant diversity) or by
correlating present-day speciation rates with current patterns of interactions with plants.
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However, if one can reconstruct past host-microbe interactions, one will be able to di-
rectly test for a plethora of more precise hypotheses by designing trait-dependent di-
versification models inspired from the state-dependent speciation and extinction (SSE)
models: Are generalist fungi experiencing more speciation than specialist ones? Have
particular associations with plants (e.g. Angiosperms) driven the diversification of Glom-
eromycotina? Do microbial symbionts mediating cytoplasmic incompatibilities (e.g. Wol-
bachia) spur the speciation of their associated hosts?

However, one has to keep in mind that inferring past evolutionary histories from
only present-day observations can be challenging. Many different processes can leave
the same pattern at present, and some past events can leave no trace at all in the extant
data. Therefore, models may fail at reconstructing past evolutionary histories. These
concerns are well-known for ancestral trait reconstructions (Harmon, 2017) and species
diversification models (Lambert & Stadler, 2013; Louca & Pennell, 2020), but likely also
apply to models of microbial transmissions, where many reconciliated scenarios might
have equal likelihoods (asymptotic unidentifiability; Solís-Lemus et al., 2016). In addi-
tion, complexifying models (i.e. adding more parameters to estimate) when the amount
of information is limited (like in DNA metabarcodes) creates practical identifiability is-
sues (i.e. not enough information for correctly estimating the parameters). Therefore,
complexifying the models of host-microbiota evolutions should advance in pair with our
ability to generate adequate data for applying these models. Finally, a last important step
in modeling is to perform model validations, to ensure that the proposed model correctly
predict most of the aspects of the biological systems. Further works should be pursued
in this direction to more systematically assess the robustness of the conclusions extracted
from models fit to empirical systems.

2.3. What theory for the evolution of host-microbiota interactions?

In this section, we will present several theoretical models that have been proposed
for the evolution of host-microbiota interactions and discuss their support, in the light of
some of the findings of my PhD.

2.3.1. The hologenome theory of evolution

Microbial communities form intimate units with their animal and plant hosts. The
most striking examples are the intimate relationships between eukaryotes and their or-
ganelles, like the mitochondria or the chloroplasts, that derived from a symbiosis be-
tween eukaryotic ancestors and their endosymbiotic bacteria ensuring respiration or
photosynthesis respectively (Margulis, 1970). Given that extant animals and plants also
intimately associate with a plethora of microbial symbionts, the term holobiont has been
proposed to describe the units formed by a host and its microbial symbionts (Margulis
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& Fester, 1991); and a hologenome designates the genetic material of both the hosts and
its microbes. There is plenty of evidence that the animal or plant organism cannot func-
tion ‘on its own’, but instead, that the resulting holobiont forms a unit with emerging
properties (see Introduction; Bordenstein & Theis, 2015). In addition, both changes in the
host genomes (e.g. mutation) or in the microbial genomes (e.g. horizontal acquisition of
new genes) play fundamental roles in the holobiont adaptation, with the rapid genomic
changes of the microbial symbionts allowing the holobiont to rapidly adapt to changing
environments (Rosenberg & Zilber-Rosenberg, 2018; Simon et al., 2019). Therefore, given
that microbial symbionts can be transmitted from host generations to host generations,
the hologenome theory of evolution has stated that the holobiont may be seen as a unit
of selection (Zilber-Rosenberg & Rosenberg, 2008). In other words, if holobionts form
stable interactions that convergently and positively contribute to the holobiont fitness,
they can form selectable units.

They are some evidence of selection at the level of the holobiont, in particular in some
insect-bacteria systems or plant-endophytes systems (Clay et al., 1993; Moran et al., 2019).
In such systems, microbial symbionts are faithfully transmitted across generations and
the fitnesses of both parties are aligned, such that both the host and its microbes are un-
der selective pressure to increase the reproductive success of the holobiont as a whole
(Moran & Sloan, 2015). However, in many systems, evidence for holobiont-level selec-
tion is rather scarce (Moran & Sloan, 2015; Douglas & Werren, 2016). Therefore, three
main criticisms have emerged against the generality of the hologenome theory of evolu-
tion because (i) holobionts are frequently not transmissible units, (ii) selective pressures
are often not convergent in the different parties of the holobiont, and (iii) the holobiont
may not be the right scale to study host-microbe interactions.

First, to be efficient, holobiont-level selection needs the holobiont to be conserved.
Indeed, if host-microbe interactions are not durable over long-time scales, the selection
pressures on the hosts and the microbes would likely be decoupled (Article 2). The large
heterogeneity of the microbiota composition within host species and its important tem-
poral variability suggest that at best, only a small part of the microbial symbionts are
conserved over long time scales. In primates, our analyses (Articles 1 and 3) suggest that
at best 10% of the bacterial gut symbionts are transmitted. Despite mixed transmission
routes at the level of the whole microbiota, the ‘restricted holobiont’ formed by the hosts
and its transmitted microbes might still act as a unit of selection. However, even if mi-
crobes are faithfully transmitted, another important factor is the ratio between generation
times: the host generation time has to be sufficiently short regarding the microbial evolu-
tionary timescales for selection at the holobiont level to occur (van Vliet & Doebeli, 2019).

Second, holobiont-level selection is particularly difficult to assess, given that measur-
ing the selective pressures upon the host-associated microbes can indeed be particularly
challenging (Mushegian & Ebert, 2016), such that the recurrence of holobiont-level selec-
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tion in itself is questioned. Indeed, the fact that microbes can confer selective advantages
to their hosts does not mean that the selection of the microbial traits acts as the level of
the holobiont. For instance, detoxifying bacteria are often acquired by animal hosts to
detoxify their diet, but the bacterial detoxifying traits are selected because of the toxin in
the environment, and not because of the advantages it confers to the holobiont (Suzuki &
Ley, 2020). In other words, some microbes can increase the host/holobiont fitness with-
out being directly selected to do so. In addition, even when microbes are transmitted
and their fitnesses aligned with that of their hosts, conflicts are rampant and cheating
strategies often emerge (Moran & Sloan, 2015; see next section).

Third, are holobionts always forming biologically-relevant units? As stated by Zilber-
Rosenberg & Rosenberg (2008), the holobiont fits within the framework of the ‘superor-
ganism’. In some cases, like animals with stable gut microbiota, or isolated plants, the
resulting holobiont can indeed be a ‘distinct biological entity, which forms of itself a
complete whole’ (Theis et al., 2016). However, such a framework does not apply when
considering animals that host transient (but functionally active) microbes or plants that
are interlinked through shared mycorrhizal fungi (‘wood-wide-webs’; Article 7) or by
physical contacts (Vannier et al., 2018). The extreme case corresponds to mycohetero-
trophic plants which rely both directly on their fungal partners and indirectly on the
surrounding autotrophic plants for carbon supply: What are the frontiers of the holo-
biont in such cases? By trying to propose a framework of ‘superorganism’, the concept
of holobionts might actually mask the idea that what really matter in host-microbiota
systems are the interactions by themselves. Indeed, we might rather stop considering in-
dividuals on their own, but instead, consider the (macro or micro)organisms jointly with
their plethora of biotic interactions that define their functioning and their evolution.

2.3.2. Host-microbiota interactions, a reciprocal exploitation?

The idea of having a holobiont-level selection contrasts with the individual-centered
or gene-centered views of evolution (Dawkins, 1976). Indeed, it is rather frequently ar-
gued that each interactor will often be under selective pressure to increase its own fit-
ness irrespectively of the fitness of its partner (Figure IV.2.3a), in a selfish way (Sachs
et al., 2004; Queller & Strassmann, 2018). Even in the most faithfully transmitted and
intimate partnerships, like the eukaryotic mitochondria, cytonuclear conflicts regularly
arise when the eukaryotic nuclear genome and the mitochondrial genome are under op-
posite selective pressures (Saumitou-Laprade et al., 1994). In this mindset of conflicts,
some authors have then argued that host-microbe interactions should be seen as recip-
rocal exploitations (Law & Dieckmann, 1998): many animal-microbes or plant-microbes
interactions are indeed consumer interactions where each species exploit a resource pro-
duced by its partner (Antonovics et al., 2015). In addition, there are plenty of examples
of selfish strategies, where hosts exploit their microbial symbionts only when needed
(e.g. facultative mycorrhizal plants) or farm/enslave their microbes (e.g. gut bacteria of
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ruminants, rhizobia), sometimes resulting in a ‘symbiotic prison’ for the microbes (Kiers
& West, 2016). Finally, frequent cheating strategies emerge among host-microbe inter-
actions, when one of the partners retrieves a higher benefit from the interaction at the
expense of the other (Article 6).

Such host-microbe exploitative interactions are also thought to be more likely to emerge
than immediate mutualisms (Sørensen et al., 2019), such that most apparent mutualisms
that we observe today would have arisen as exploitive parasitisms that later evolved as
more mutualistic interactions thanks to trade-offs. For instance, host exploitation can
easily start as the host capture and exploit a beneficial microbe. Then, as microbes con-
sequently build up defenses to limit the negative effects of host exploitation, the costs
of these defenses might become too important in the free-living state. Consequently,
these microbes would have higher fitness when associating with hosts than when free-
living, resulting in an apparent mutualism (Sørensen et al., 2019). Similarly, mutualism
can also evolve from microbial parasitism: Sachs et al. (2011) found that >75% of the
host-associated bacterial symbionts are derived from parasitic ancestors. In such cases,
faithful transmissions or absence of host choice would align the fitnesses of the host and
its microbe, resulting in a transition from parasitism to mutualism (Figure IV.2.3e). In
both scenarios, the host or the microbe may evolve additional dependences on their
partners for other functions (evolutionary addiction), reinforcing the exploitative inter-
actions, that will appear, over time, as a mutualistic symbiosis (Selosse et al., 2014; Moran
et al., 2019).

Then, once mutualism is established, in a second time, mechanisms generally evolve
to guarantee its stability (Sachs et al., 2004; Sørensen et al., 2019). Most animal-microbes
or plant-microbes interactions are indeed not naïve mutualisms, and all interactors have
generally developed strong controls to prevent cheating, such that the mutualistic inter-
actions are often limited to a small range of physiological conditions where hosts and
microbes tolerate each other (Figure IV.2.3b; Article 6). One could argue that in many in-
teractions there is no apparent cost, and that no mechanisms preventing cheaters would
need to be selected. However, as long as there is an intimate and durable interaction,
parasitism is rampant. In host-associated microbiota, there are many examples of in-
timate microbes becoming parasites. For instance, several saprotrophic fungal lineages
like the Rhizoctonia (Cantharellales) became plant pathogens (Veldre et al., 2013), and sim-
ilarly, gut commensal bacteria, like Escherichia coli, often horizontally acquire genes that
turn them into pathogens (Wirth et al., 2006). One could thus propose a ‘Murphy’s law
of symbiosis’, a rather pessimistic view of host-microbe interactions: “as long as two
organisms are intimately and durably associated, anything that can go wrong will go
wrong”. Though exaggerated, this might explain why mechanisms preventing cheaters
are widespread in most organisms (Sachs et al., 2004).

In such an exploitative framework, and despite strong controls between partners,
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Figure IV.2.3: Host-microbe interactions, a reciprocal exploitation? (a) In a general case, se-
lection is expected to act at the level of the individual, such that each partner (the host or the
symbiont) is expected to be under selective pressure to increase its own fitness (red arrows). (b)
If the hosts and their microbial symbionts have mechanisms preventing cheating (e.g. sanctions
represented by hatched areas), the host-microbe interactions are limited to a small range of phys-
iological conditions where hosts and microbes tolerate each other. These ranges of conditions
can also vary according to the biotic and abiotic conditions (Frederickson, 2017). (c) If the host
can evolve strategies to counteract the symbiont sanctions, host cheating can emerge (the host
cheater increases its fitness while decreasing the fitness of its symbiont). (d) Under particular
conditions, the cost of the host cheater for the symbiont might be low or negligible, such that
“low cost” cheaters can more easily emerge and be tolerated. For instance, mycoheterotrophic
cheating in plants only evolves in understory vegetations, when access to the light is low and
carbon is likely not the limiting factor for the large surrounding autotrophic trees and their asso-
ciated fungi (Gomes et al., 2019a; Article 6). (e) In some conditions, e.g. if symbionts are faithfully
transmitted, the fitnesses of both the host and the symbiont are aligned (partner-fidelity feed-
backs) and increased mutualism is selected.

cheaters often manage to emerge among host-microbiota interactions (Figure IV.2.3c; Ar-
ticle 6). Are they nevertheless ecological and evolutionary successes? In the arbuscular
mycorrhizal symbioses, mycoheterotrophic plants appear to be isolated from the global
core of interactions (Article 6) and we noticed that most mycoheterotrophic lineages are
relatively young and species-poor. One hypothesis is that cheating can evolve frequently
in mutualisms but that they are evolutionarily unstable (Douglas, 2008); in other words,
cheating would be an evolutionary dead-end. One way to test this hypothesis would
be to measure whether mycoheterotrophic cheating lineages have lower diversification
rates than lineages that have remained mutualistic autotrophs. We have started investi-
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gating this in Neottieae, an orchid clade that contains autotrophic, mixotrophic (partially
mycoheterotrophic), and mycoheterotrophic species. Preliminary analyses tend to find
lower diversification rates in mycoheterotrophic clades, suggesting that cheating in this
mutualism would be an evolutionary dead-end (Figure IV.2.4).
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Figure IV.2.4: Mycoheterotrophy in Neottieae orchids might be an evolutionary dead-end. (a)
Photos of a mycoheterotrophic (Neottia nidus-avis; Bernd Haynold) and mixotrophic (Cephalan-
thera longifolia; Benoît Perez-Lamarque) species. (b) Ancestral state reconstruction of the orchid
nutrition using BayesTrait (Meade & Pagel, 2007). We found that ancestral Neottieae were au-
totrophic species that repeatedly evolved mixotrophy and mycoheterotrophy in a unidirectional
way. Given the rates of transition, mixotrophy appears to be an unstable state in Neottieae, that
rapidly shifts toward mycoheterotrophy. (c) Present-day diversification rates of the Neottieae
estimated using ClaDS (Maliet et al., 2019) are indicated as a function of the orchid nutrition: ex-
tant mixotrophic and mycoheterotrophic species appear to have lower diversification rates than
autotrophic ones.

Therefore, host-microbiota interaction can be seen in the framework of reciprocal ex-
ploitation. Nevertheless, resulting mutualisms are not on the verge of breakdown yet
(Frederickson, 2017), thanks to efficient and widespread constraints (Article 6). Conse-
quently, mutualistic interactions are likely more evolutionary stable than parasitic ones,
which may explain why cophylogenetic patterns in mutualisms are more frequent than
in parasitisms (de Vienne et al., 2013).

2.3.3. The host-associated microbiota, an ecosystem on a leash

A lot of emphases have been put on the functions ensured by the microbiota for the
hosts (see section 1.2 in Introduction), because historically, host-associated microbiota
have been mainly studied for the functions they provide to the hosts. However, for un-
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derstanding the ecology and evolution of host-microbe interactions, host-associated mi-
crobiota has to be studied as an integrated biological system rather than through the lens
of the host benefits only. Indeed, host-associated microbiota are often complex and per-
manently changing ecosystems modulated by their host. Therefore, it has been argued
that one should use the tools and theories developed from community ecology to study
the assembly, diversity, and stability of host-associated microbiota (Douglas & Werren,
2016; Koskella et al., 2017). Compared with classical ecosystems, host microbiomes have
a lifetime that can be relatively short and experience control from the host. Such ecosys-
tems encapsulate at the same time microbe-microbe interactions, host-to-microbe interac-
tions, and microbe-to-host interactions (Foster et al., 2017). While the latter are generally
well-studied, the two former are often overlooked. In terms of evolution, in species-rich
microbiota like in the animal guts, microbes are under selective pressure to compete with
other microbes within the microbiome, while “hosts evolve to keep the ecosystem on a
leash” (Foster et al., 2017). In other words, microbes are often not directly under pressure
for benefiting their host, but rather for persisting within them, whereas hosts are under
strong selective pressure for having efficient control mechanisms over their microbiota
to ensure an overall beneficial outcome (Foster et al., 2017; Moeller & Sanders, 2020).

Host controls act at three different levels: (i) by controlling microbiota immigration,
(ii) by compartmentalizing microbes, and (iii) by monitoring them (Foster et al., 2017).
Controlling microbiota immigration includes the mechanisms favoring faithful transmis-
sions or filtering of the environmental microbes, compartmentalization ensures a more
specific screening of the microbes (e.g. in the gut diverticula or at the level of the my-
corrhizal structure; Chomicki et al., 2020), and monitoring includes all the mechanisms
(see section 2.4 in Introduction) rewarding microbial traits beneficial for the hosts (the
“carrot”) and punishing non-beneficial ones (the “stick”) (Shapira, 2016). Many of these
mechanisms are precisely controlled by specific host genes, as illustrated by the shifts in
gut microbiota compositions associated with particular human mutations (Goodrich et
al., 2016). They are likely to be phylogenetically conserved and consequently can result
in a pattern of phylogenetic signal in microbiota compositions (phylosymbiosis; Article
4). Although many of these host controls are expected to be under selection, some traits,
e.g. the ones responsible for the filtering of some microbes during microbiota assembly
(pH, antimicrobial secretions, ...), might be evolving neutrally.

Modeling host-associated microbiota as “an ecosystem on the leash” can successively
describe many aspects of the animal gut microbiota or the plant root microbiota, includ-
ing the holobiont-level selection in some contexts (see section 2.3.1) and the propensity
of exploitation among these interactions (see section 2.3.2). In the cases of mycorrhizal
fungi linking several plants, it can be generalized in a model of an “ecosystem on leashes”
where the microbes can simultaneously be controlled by several hosts, resulting in an
evolving network of interactions (but see Box 2; Figure IV.2.5). Alternative models of
host-microbiota systems include models of host controls only, where microbes are iso-
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Figure IV.2.5: Different models of host-associated microbiota. (a) Open ecosystem model,
where the host microbiome can be colonized by microbes without particular controls from the
host. (b) Host control model, where the host tends to compartmentalize its symbionts and exerts
strong controls upon them. (c) Symbiont control model, where a symbiont manipulates its host.
(d) Ecosystem on a leash model: the hosts exerts controls upon its symbiotic microbes (e.g. by
rewarding beneficial microbes and punishing cheaters), while microbes are mainly competing for
surviving in the microbiome. Although often poorly characterized, such microbe-microbe inter-
actions likely shape the composition and the functioning of the microbiota (Douglas & Werren,
2016). Future works will likely unravel the roles of functional redundancy and character displace-
ment in these communities (Louca et al., 2016; Foster et al., 2017; Brochet et al., 2021). (e) Model of
an ecosystem on “leashes” with symbiont controls. Symbionts can simultaneously interact with
several hosts, conferring them more leverage in their interactions with the hosts (i.e. symbiont
controls). This figure is adapted from Foster et al. (2017).
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lated from each other and specifically modulated by the host (e.g. the rhizobium in the
root nodules of Fabaceae – an extreme case of host exploitation), models of symbiont
controls (where a (parasitic or cheating) microbe manipulate the host for its own bene-
fits, e.g. Wolbachia and other endosymbionts manipulating arthropods), or a model of an
open ecosystem, where the host microbiome can be colonized by microbes without any
control from the host (e.g. the gut microbiota of the arthropods mainly derived from their
diet).

Box 2: Some limits when comparing animal and plant microbiota:

The works of my PhD mainly looked at the bacterial microbiota of animal guts and
the root mycorrhizal communities of plants. Both systems were simultaneously
considered in this Discussion, despite the existence of fundamental differences be-
tween them that prevent blind comparisons.
First, mycorrhizal fungi have generation times much longer than bacterial genera-
tion times, such that the evolutionary timescales of the mycorrhizal fungi and their
plant hosts (especially the annual ones) are not as decoupled as the evolutionary
timescales of the gut bacteria and their animal hosts.
Second, gut microbiota of animals are internalized within host organisms, whereas
root microbiota are more exposed to the environments, as most of the mycor-
rhizal fungal organisms are freely exploring the surrounding soils. Therefore, we
expect plant microbial symbionts to be less frequently specialized towards their
hosts than the animal gut symbionts that are more likely to adapt to the specific
gut microbiome conditions. Indeed, while microbes associated with mammals are
mainly order-specific (Song et al., 2020), we found a lot of microbial sharing be-
tween plant species that diverged >300 million years ago (Article 7). In addition,
root-associated fungal communities appeared to be much more dependent on the
abiotic environmental conditions (Article 7) than the animal communities that are
generally quite resilient (Amato et al., 2019). Thus, because of their internalization
and the resulting host-restrictiveness of many of their associated bacteria (espe-
cially in mammals), animal gut microbiota are well modeled as “an ecosystem on
a leash” where host controls (e.g. transmission mechanisms and monitoring) im-
portantly shape microbiota composition and evolution (Figure IV.2.5). Conversely,
plant roots do not offer a well-defined, separated ecosystem for their associated
microbes, but rather offer an interface where a multitude of interactions with my-
corrhizal fungi can take place in a compartmentalized way (there is generally a
specific interaction structure, the mycorrhiza, between one plant and one fungus).
Consequently, both host and symbiont can choose and monitor the interaction, i.e.
mycorrhizal fungi have more leverage than gut bacteria over their hosts. Thus, the
plant-mycorrhizal networks are rather well modeled as “an ecosystem on leashes”
with important symbiont controls (Figure IV.2.5).
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To conclude, this integrative framework will be particularly valuable in the future to
explore remaining questions about host-microbiota evolution (Figure IV.2.6), like:

(i) What are the host traits affecting microbiota compositions? Are they actively select-
ing the microbes (host monitoring) or indirectly affecting the microbial colonization
(e.g. the traits responsible for host filtering in the microbiome)? Are they under se-
lection?

(ii) How frequently do microbes ‘choose’ their hosts versus passively colonize the mi-
crobiome niches? To what extent limitations in microbial dispersion affect host-
associated microbiota assembly?

(iii) Are vertically transmitted microbes more likely to be host-restricted? What are the
drivers of horizontal transmissions (host-switches)?

(iv) What is the relative importance of the different processes generating phylosymbio-
sis in host-associated microbiota across animal and plant kingdoms?

(v) Are microbe-microbe competitions negatively affecting the microbial-mediated host
functions (because microbes are primarily under selection to survive and not to
benefit their host) or positively affecting them (e.g. because of character displace-
ment resulting in complementary functions)?

(vi) How frequent are the evolution of new dependences toward microbial partners and
vice versa? And what are the drivers of such dependences (niche expansion, Black
Queen hypothesis, or evolutionary addiction)? Do they affect their diversifications
in a predictable way?

(vii) Can host-associated microbes directly spur host differentiation and speciation? Do
they coevolve?

(viii) Are alternative models (open ecosystems or models of host or symbiont control, in-
cluding those resulting from cheating emergences) less stable over long timescales?
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Figure IV.2.6: An integrative framework to study the evolution of host-microbiota interac-
tions. Host organisms (brown rectangles) present a microbiome niche (more or less compart-
mentalized and with particular host-mediated conditions, e.g. pH or antimicrobial secretions,
represented by a gradient of colors). These microbiomes can be colonized by some microbes,
either transmitted from other hosts (e.g. parents and conspecifics) or acquired from their envi-
ronment, while other microbes do not colonize it (because of host filtering or microbial ‘choice’).
Plenty of microbe-microbe interactions shape the functioning of the whole microbial community
(blue arrow), which participates in the host functioning (green arrow). These microbes and their
resulting effects are (more or less specifically) controlled by the hosts (host monitoring, which
prevents cheating), and reciprocally, microbes can also sometimes have leverage over their host
by modulating their effect (bidirectional controls). Over long timescales, microbiota compositions
might be affected by changes in host traits (host filtering), microbial vertical and horizontal trans-
missions, or changes in the environmental pools of available microbes (represented here by two
landmasses, ‘environment 1’ and ‘environment 2’), which can generate a pattern of phylosymbio-
sis. Dependence on both sides can also evolve (e.g. because of the emergence of new functions, or
through evolutionary addiction). Host-microbe interactions can also impact their diversifications
(e.g. microbes can eventually spur the host speciation - ’speciation by symbiosis’ - or increase host
diversification by expanding their niches, and vice versa).
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2.4. The Anthropocene: a major crisis for host-associated microbiota?

As we have discussed, host-associated microbiota play fundamental roles in the func-
tioning of most animals and plants and such host-microbe interactions result from bil-
lions of years of evolution. Since their emergence, multicellular organisms dwell in a
microbial world that deeply shapes their ecology and their evolution. There is a range of
host-microbe interactions, from labile and opportunistic ones, to durable and mutualistic
associations that have coevolved for millions of years. However, in the last century, for
the first time, human populations have gained the ability to extract themselves or any
other animal or plant organisms from their microbial worlds. In extreme cases, animals
and plants can be grown in axenic conditions, but a simple use of antibiotic or antifungal
compounds to cure host diseases is generally enough for generating large and durable
perturbations of the host-associated microbiota. Consequently, over a few decades, hu-
mans have lost a non-negligible part of their microbial symbionts: compared with other
great apes, humans have a lower microbial diversity in their gut (Moeller et al., 2014;
Gaulke et al., 2018), which is significantly associated with the recent changes of lifestyle,
the westernization (Yatsunenko et al., 2012; Nishida & Ochman, 2019). Similar trends are
also often found in captive animals (McKenzie et al., 2017). In crops, the intensive use
of fertilizers has led to a reduced dependency of the plants toward mycorrhizal fungi
(Plenchette et al., 2005), and in anthropogenic ecosystems in general, we observe that
plants that are still associated with mycorrhizal fungi tend to present less microbial di-
versity (Figure IV.2.7).
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Figure IV.2.7: Decline in the arbuscular mycorrhizal fungal diversity in plants from anthro-
pogenic ecosystems. We investigated in the MaarjAM database (Öpik et al., 2010) the fungal
diversity associated with different plant species (total number of arbuscular mycorrhizal fungal
‘species-like’ units – virtual taxa) found in anthropogenic versus natural ecosystems. (a) Arbuscu-
lar mycorrhizal fungal (AMF) units are significantly less abundant in plant species from anthro-
pogenic ecosystems. (b) By looking at the plant species present in both anthropogenic and natural
ecosystems, we also found an important decline in their AMF diversity (positive differences).
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Unfortunately, in humans, eradicating pathogenic microbes has also led to strong
impacts on the beneficial ones. Perturbations of the gut microbiota, called dysbiosis,
due to westernization, often result in chronic inflammatory diseases (e.g. allergy or in-
flammatory bowel diseases), which have exponentially increased in developed countries
over the last decades (Kaplan & Ng, 2017). The hygiene hypothesis has been proposed
to describe this idea that a lack of microbial exposure can lead to an incorrect devel-
opment of the human organism and subsequent new diseases (Rook et al., 2013). One
way to deal with this arising issue is to look at the microbes that are associated with
chronic inflammatory diseases when absent in human guts, in order to develop thera-
peutic strategies (prebiotics or probiotics) that promote their presence in the gut micro-
biota. Dozens of bacterial strains are identified as beneficial gut bacteria with potential
therapeutic uses. In collaboration with Claire Cherbuy and Cassandre Bedu-Ferrari from
the Institut Micalis (INRAE), we have looked at the evolution of some of these beneficial
bacterial species in primates and found that some of them, like Roseburia intestinalis, have
likely been vertically transmitted during primate evolution (Figure IV.2.8). Therefore, the
chronic inflammatory diseases diagnosed in westernized humans result at least partially
from the breakdown of their million years of evolution with beneficial gut bacteria (Rook
et al., 2013).

To conclude, improving our understanding of the functioning and evolution of host-
associated microbiota will give us the opportunity to prevent or limit the deleterious
impacts of modern lifestyles on plant-associated or animal-associated microbiota, as well
as improve our ability to ‘engineer’ these microbial communities to remediate them.
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Figure IV.2.8: Roseburia intestinalis, a transmitted bacterium that is frequently negatively cor-
related with westernized human pathologies:. We investigated whether important human gut
bacteria were transmitted in primate guts using the data from Amato et al. (2019) and HOME
(Article 1). Then, we examined the prevalence and abundance of these bacteria in human gut
microbiota, using the data from the American Gut Project (McDonald et al., 2018) in the GMrepo
database (Wu et al., 2020), as a function of human pathologies. Some of the transmitted bacte-
ria, like Roseburia intestinalis, are significantly associated with dysbiosis and human pathologies.
Indeed, Roseburia intestinalis tends to be less prevalent in individuals presenting inflammatory
bowel diseases or syndromes than in healthy humans (a). In addition (b), when present, Rose-
buria intestinalis tend to be significantly less abundant in individuals presenting some pathogenies
(colored in dark greys) than in healthy individuals (in yellow).
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Appendix

The Article 8 entitled "Inferring the nature of interspecific interactions based on the structure of
ecological networks" is available through the link https://bit.ly/3tyf7U9 or by scanning:

and its associated supplementary data are available through the link https://bit.ly/
3tn9dVJ or by scanning:
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RÉSUMÉ 
De nombreuses études récentes ont permis de caractériser la composition des communautés microbiennes, appelées 

microbiotes, hébergées par plantes et animaux. Le but de ma thèse est de faire avancer notre compréhension de l’évolution 
des microbiotes associés aux espèces hôtes animales ou végétales, en utilisant comme données les arbres phylogénétiques 
des hôtes et des séquences d’ADN microbien de metabarcoding caractérisant leurs microbiotes. Pour cela, nous avons 
développé de nouvelles méthodes quantitatives, collecté des données ainsi que réalisé une série d’analyses. Nous avons 
considéré à la fois les microbes des animaux et des plantes, et tout particulièrement les interactions mycorhizennes. Dans le 
chapitre I, nous nous sommes intéressés à l’évolution du microbiote au cours de la diversification d’un clade d’hôtes. Nous 
avons développé une approche quantitative afin d’inférer les microbes transmis. À partir de la phylogénie des hôtes et de 
séquences d’ADN de leurs microbiotes, regroupées en unité taxonomique opérationnelle (OTU), notre approche utilise la 
variation nucléotidique au sein des OTUs pour détecter ceux qui sont transmis lors de la diversification des hôtes. Appliquée 
aux microbiotes de primates et araignées, nous avons trouvé que >5% des bactéries intestinales des primates étaient 
transmises verticalement, tandis qu’il n’y a vraisemblablement pas de transmission chez les araignées, confirmant 
l’hétérogénéité de l’évolution des interactions hôtes-microbes chez les animaux. Enfin, nous avons comparé les performances 
de notre modèle à celles d’autres approches existantes et montré que notre modèle est moins enclin aux faux-positifs lorsque 
la variation nucléotidique intra-OTU est faible. Dans le chapitre II, nous avons examiné les liens entre les histoires évolutives 
des hôtes et de leurs microbes associés. Nous avons plus particulièrement cherché à répondre à deux questions : « Dans 
quelle mesure les patrons d’interactions hôtes-microbiotes sont influencés par leurs histoires évolutives ? » et « comment 
l’histoire évolutive des hôtes influence-t-elle la diversification de leurs microbes associés ? ». La première question nous a 
amené à comparer les méthodes disponibles pour estimer le signal phylogénétique dans les réseaux d’interactions, afin de 
déterminer par exemple si des espèces de plantes proches ont tendance à interagir avec les mêmes champignons 
mycorhiziens. Nous avons trouvé qu’une approche fréquemment utilisée génère beaucoup de faux-positifs et qu’à l’inverse, 
les tests de Mantel donnent des résultats assez satisfaisants. Nous avons enfin exploré la seconde question en évaluant 
comment les plantes ont pu affecter la diversification des champignons endomycorhiziens (Glomeromycotina). Nos analyses 
suggèrent que ces symbiontes obligatoires ont récemment subit un ralentissement de leur diversification, qui peut être lié à 
l’évolution, chez de nombreuses plantes, de stratégies alternatives à l’endomycorhize. Dans le chapitre III, nous nous sommes 
focalisés sur l’évolution de la tricherie dans le mutualisme hôte-microbiote, et plus particulièrement dans la symbiose 
mycorhizienne. Nous avons exploré les contraintes limitant l’émergence de la tricherie chez les plantes (mycohétérotrophie) 
en analysant les patrons d’interactions endomycorhizennes à l’échelle mondiale. Nous avons ensuite étudié si des contraintes 
similaires s’appliquaient dans les communautés locales où vivent des plantes initialement mycohétérotrophes (les lycopodes), 
échantillonnées sur l’île de la Réunion. Nous en avons déduit qu’il existe généralement de fortes contraintes limitant la tricherie 
dans cette symbiose, mais que ces contraintes peuvent être relâchées au sein des communautés où la tricherie a lieu. Ainsi, 
ma thèse illustre que l’utilisation de méthodes quantitatives combinées à des données de metabarcoding, malgré leurs limites 
respectives, permet de mieux caractériser l’évolution des interactions hôtes-microbiotes.  
 MOTS CLÉS : microbiotes, symbiose, cophylogénie, coévolution, diversification, réseau mycorhizien 

SUMMARY 
A plethora of recent studies have characterized the composition and functional role of microbial communities hosted 

by animals and plants, called microbiota. The overall goal of my PhD is to advance our understanding of how microbiota evolve 
with their host species, using data comprised of the phylogenetic relationships between host species and metabarcoding 
microbial sequences characterizing their microbial communities. We developed new quantitative tools, collected data, and 
performed a series of analyses, all directed to this common overarching goal. We considered both microbiota-animal and 
microbiota-plant systems, with a specific focus on mycorrhizal interactions. In Chapter I, we study the evolution of the microbiota 
during the diversification of host clades. We develop a quantitative approach for inferring the modes of microbial inheritance 
as host clades diversify. Given a host phylogeny and the microbiota of present-day species, each characterized by a list of 
short DNA sequences clustered into operational taxonomic units (OTUs), our approach uses nucleotide variability within OTUs 
to detect OTUs that are vertically transmitted. We apply this approach to two distinct systems, the gut microbiota of primates 
and a clade of Hawaiian spiders. We find that >5% of bacteria in primate guts are vertically transmitted, whereas there is no 
evidence of vertical transmission in spiders, confirming that host-microbiota evolutionary dynamics are highly heterogeneous 
across the animal kingdom. Finally, we compare the performances of our model to other available approaches and find that it 
is less prone to false-positives when the nucleotide variability within OTUs is low. In Chapter II, we examine the interplay 
between the evolutionary history of host and host-associated microbial clades. We focus on two specific questions: “To what 
extent does evolutionary history influence which microbial species interact with which host species?” and “How does the 
evolutionary history of hosts influence the diversification of host-associated microbial clades?”. The first question leads us to 
compare different methods for estimating phylogenetic signals in host-microbiota interactions, i.e. whether closely related 
species share similar sets of partners, with an application on plant-mycorrhizal interactions. We find that one of the most widely 
used approaches often detects phylogenetic signals when it should not and that Mantel tests perform best. We explore the 
second question by studying the diversification of the arbuscular mycorrhizal fungi (Glomeromycotina) in the past 500 million 
years and evaluating how land plants might have affected the diversification of these obligate mycorrhizal symbionts. Our 
analyses support that these fungi have experienced a recent diversification slowdown that might be linked to the shrinkage of 
their mycorrhizal niches as plant lineages evolve alternative symbiotic strategies. In Chapter III, we focus on the evolution of 
cheating in host-microbiota mutualisms, by taking the mycorrhizal symbiosis as a case study. We explore constraints on the 
evolutionary emergence of cheating in plants (mycoheterotrophy) by analyzing the patterns of plant-mycorrhizal fungus 
interactions at the global scale. Next, we investigate whether similar constraints are found in local mycorrhizal networks 
including initially mycoheterotrophic plants (Lycopodiaceae) that we have sampled in La Réunion island. We conclude that 
there are overall strong constraints limiting the emergence of cheaters in the mycorrhizal symbiosis, but these constraints might 
be relaxed in the local communities where cheating occurs. Overall, my thesis illustrates how new or recent computational 
tools, in combination with metabarcoding sequencing data, allow studying how microbiota evolve with their hosts. We discuss 
the challenges and promise of this comparative approach to host-microbiota evolution.      

KEYWORDS : host-associated microbiota, symbiosis, co-phylogeny, co-evolution,  
diversification, mycorrhizal network 
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