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Abstract

Generative Adversarial Networks (GANs) were proposed in 2014 as a new method efficiently
producing realistic images. Since their original formulation, GANs have triggered a surge of
empirical studies, and have been successfully applied to different domains of machine learning:
video, sound generation, and image editing. However, our theoretical understanding of GANs
remains limited. This thesis aims to reduce the gap between theory and practice by studying
several statistical properties of GANs. After reviewing the main applications of GANS in the
introduction, we introduce a mathematical formalism necessary for a better understanding of
GAN:Ss. This framework is then applied to the analysis of GANs defined by Goodfellow et al.
(2014) and Wasserstein GANs, a variant proposed by Arjovsky et al. (2017), well-known in the
scientific community for its strong empirical results. The rest of the thesis attempts to solve two
practical problems often encountered by researchers: the approximation of Lipschitz functions
with constrained neural networks and the learning of non-connected manifolds with GANSs.

Key-words: GANSs, generative models, adversarial training, deep learning theory, Wasser-
stein distance.

Résumé

Les Generative Adversarial Networks (GANs) ont été proposés en 2014 comme une nouvelle
méthode pour produire efficacement des images réalistes. Les premiers travaux ont été suivis
par de nombreuses études qui ont permis aux GANs de s’imposer dans des domaines variés
de I’apprentissage automatique tels que la génération de vidéos, de sons, ou encore 1’édition
d’images. Cependant, les résultats empiriques de la communauté scientifique devancent
largement leurs progres théoriques. La présente these se propose de réduire cet écart en étudiant
les propriétés statistiques des GANs. Apres avoir rappelé succinctement 1’état de 1’art dans

le chapitre introductif, le second chapitre présente un formalisme mathématique adapté a une
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meilleure compréhension des GANs. Ce support théorique est appliqué a I’analyse des GANs
définis par Goodfellow et al. (2014). Le troisieme chapitre se concentre sur les Wasserstein
GAN:s, variante proposée par Arjovsky et al. (2017), qui s’est imposée dans la communauté
scientifique grace a de tres bons résultats empiriques. La suite de la theése est plus appliquée
et apporte des €éléments de compréhension a deux problemes souvent associés aux GANS :
d’une part, I’approximation des fonctions Lipschitz avec des réseaux de neurones contraints et,
d’autre part, I’apprentissage de variétés non connexes avec les GANS.

Mots-clés: GANSs, modeles génératifs, entrainement antagoniste, théorie de 1’apprentis-
sage profond, distance de Wasserstein.
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Chapter 1

Introduction

Contents
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1.4 Deux problémes existants danslesGANs . . ... ............ 13
1.5 Organisation du manuscrit et présentation des contributions . . . . . . 18

1.1 Contexte général

De janvier 2018 a décembre 2020, notre travail de recherche a été mené grace a la collaboration
du Criteo AI Lab (CAIL) et du laboratoire LPSM de Sorbonne Université. Criteo est un
leader de la French Tech frangaise qui s’est imposé dans I’industrie du digital. Spécialisée
dans le ciblage publicitaire sur Internet, I’entreprise a pour coeur de métier I’analyse de tres
grandes bases de données. Chaque heure, Criteo suggere des dizaines de millions d’annonces
publicitaires pour des dizaines de millions d’utilisateurs différents. Il s’agit d’étre rapide,
précis et efficace. Soucieuse d’améliorer la qualité de ses modeles de recommandation, Criteo
développe une activité de recherche au sein de son Al Lab. Nous y étudions la recommandation,
mais aussi les bandits manchots et I’efficacité des différents systemes d’encheéres. De son coté,
le LPSM est un laboratoire réputé pour ses nombreux travaux dans le domaine des statistiques
paramétriques, celui de I’apprentissage statistique et des valeurs extrémes. Travailler pendant
trois années au sein de ces deux institutions a été, pour moi, une expérience passionnante.

La présente these porte sur 1’analyse théorique des Generative Adversarial Networks

(GANSs), un algorithme récent mais trés prometteur. Depuis sa publication en 2014, le modele
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proposé par Goodfellow et al. (2014) a été largement étudié, modifié et amélioré, comme
en témoignent les 25 000 citations sur Google scholar. Ian Goodfellow, son inventeur, est
désormais devenu un pilier du Machine Learning. Pour la seule année 2018, plus de 11 000
publications ont traité du sujet des GANSs, soit une trentaine quotidiennement. Le rapide succes
des GANs s’est opéré dans des domaines divers et variés. Ce prompt déploiement s’explique
par leur définition simple, leur utilisation ludique et leurs résultats saisissants.

En revanche, comme c’est souvent le cas dans le domaine de I’'intelligence artificielle,
les résultats empiriques de la communauté scientifique devancent largement leurs progres
théoriques. En effet, de nombreuses interrogations subsistent sur la compréhension théorique
et bien des sujets restent encore inexplorés. Etant donné les importantes applications des
GANSs dans des domaines tres visuels, la communauté scientifique a priorisé la performance
empirique au détriment de la connaissance théorique. Six ans apres la premicre publication
sur le sujet, il existe de nombreuses architectures différentes pour entrainer un GAN mais
aucune méthode d’évaluation fiable pour les comparer. Partant de cette observation, 1’objectif
de la these est donc de progresser vers une meilleure compréhension de cet algorithme et des
enjeux qu’il représente. Pour mener ce projet a bien, les recherches se sont portées sur deux
domaines distincts. Au LPSM, nous nous sommes concentrés sur une étude probabiliste et
statistique tournée vers 1’objectif d’élargir le formalisme mathématique des GANs. Au CAIL,
la conception plus appliquée de la recherche nous a mené a examiner des problemes concrets
propres a I’entrainement des GANSs. Cette double facette théorique et pratique a été a la fois
enrichissante et prolifique - le formalisme permettant de mieux appréhender les problemes.

1.2 Introduction du probleme

1.2.1 Du Deep Learning aux Generative Adversarial Networks

Le début des années 2010 a marqué un véritable tournant pour le développement de I’ apprentis-
sage automatique (Machine Learning). D’un c6té, les systemes d’information des entreprises se
sont améliorés, augmentant considérablement le nombre de données a disposition. D un autre
coté, la capacité de stockage et la puissance de calcul des ordinateurs a énormément progressé,
facilitant le traitement de ces données. Cette conjonction entre 1’augmentation de la quantité de
données disponible et I’amélioration de traitement de ces mémes données s’est traduite par une
progression considérable des algorithmes de Machine Learning. Tombé en désuétude pendant
plusieurs années, 1’apprentissage profond (Deep Learning) a refait son entrée sur le devant de
la scene. Dopés par ce surplus de données, les réseaux de neurones profonds se sont révélés

particulierement efficaces pour la résolution de problemes complexes, dépassant tous les autres
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algorithmes concurrents (modeles linéaires généralisés, foréts aléatoires, arbre de décision,
machines a vecteurs de supports, etc.).

Le Deep Learning s’est montré extrémement bénéfique dans le domaine de la classification
multi-classe qui s’attache a distinguer des objets appartenant a différentes catégories. De
nombreuses études empiriques ont montré 1’efficacité de ces réseaux de neurones notamment
sur des jeux de données complexes ol la dimension des objets est grande. Dans le domaine
de I’analyse d’images par exemple, (par example le jeu de données MNIST (LeCun et al.,
1998) ou ImageNet (Krizhevsky et al., 2012)), les meilleurs modeles sont exclusivement des
réseaux a convolution. La force de ces algorithmes est qu’il n’est maintenant plus nécessaire
de traiter préalablement les données et de sélectionner les variables (feature engineering)
puisque les modeles profonds fagonnent automatiquement leurs propres variables. De manicre
plus informelle, 1’abandon de la sélection manuelle des variables au profit de 1’utilisation des
modeles plus profonds est analysée avec humour par Frederick Jelinek : "Every time I fire a
linguist, my performance goes up".

En revanche, le développement de modeles génératifs a connu un progres plus tardif. Cela
est principalement di au fait que les méthodes d’entrailnement existantes telles que I’estimation
de densité n’étaient pas réalisables sur des données de grande dimension comme des images. Il
a fallu attendre 1I’année 2014 et le développement de I’entrailnement antagoniste proposé par
les Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) pour voir émerger des

réseaux de neurones capables de générer des images de haute qualité et extrémement réalistes.

1.2.2 Présentation succincte des GANs

Les GANs (Goodfellow et al., 2014) font partie de la famille des modeles génératifs. A partir
d’un ensemble de données, il s’agit d’étre capable de générer des objets similaires sans pour
autant qu’ils soient identiques a ceux déja existants. Dans le contexte de visages humains,
I’objectif des GANs est donc de générer des photos a la fois réalistes, uniques et diverses. Deux
exemples des résultats obtenus par Karras et al. (2019) sont exhibés dans la Figure 1.1. Nous
constatons que les résutats visuels sont impressionnants.

Les GANs se composent de deux fonctions paramétriques : le générateur et le discriminateur.
En pratique, les modeles utilisés sont des réseaux de neurones - qu’ils soient a propagation avant
(feed-forward), convolutionnels ou récurrents selon les applications. L’ objectif du générateur
est de créer les meilleures images possibles : prenant un bruit en entrée (Gaussien ou uniforme)
il le transforme dans I’espace des images. Pour étre correctement défini, le générateur nécessite
donc un espace latent sur lequel une distribution est définie : c’est la distribution latente. Le
discriminateur, quant a lui, apprend a distinguer les fausses images produites par le générateur

des vraies données disponibles dans le jeu d’entrainement. Méme si le discriminateur joue
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Fig. 1.1 Exemples de visages humains générés a partir de la structure proposée par Karras et al.
(2019). Source :thispersondoesexist.com.

un role de support, il n’en demeure pas moins essentiel car il transmet au générateur les
informations nécessaires et suffisantes pour qu’il s’améliore.

Du point de vue de I’optimisation, le générateur essaie de tromper le discriminateur tandis
que le discriminateur est entrainé de maniere supervisée : il prend en entrée des images vraies
et fausses et essaie de les classifier correctement. L’ensemble de cette structure est illustrée
dans la Figure 1.2.

Du point de vue probabiliste, le générateur transfere la distribution latente sur I’espace
d’arrivée et définit donc une mesure image. Le but des GANSs est alors d’approcher la dis-
tribution cible a 1’aide de cette mesure image. Quant au discriminateur, nous verrons plus
tard qu’en discriminant entre les images vraies et fausses, il définit également une distance
(ou divergence) entre les deux distributions de probabilité que sont la distribution cible et la
distribution générée.

En pratique, a la fois le générateur et le discriminateur sont paramétrés par des réseaux
de neurones. En fonction des domaines d’application et des taches a réaliser, de nombreuses
paramétrisations différentes ont été proposées pour I’entrainement. En ce qui concerne la
génération d’images, c’est I’architecture DCGAN (Radford et al., 2015) qui a été largement
répandue dans la communauté scientifique : cette derniere correspond en une simple série
de convolutions pour le générateur. Gulrajani et al. (2017) propose 1’utilisation de réseaux
résiduels (He et al., 2016) pour améliorer la qualité des images générées. D’un point de
vue purement qualitatif, c’est la structure proposée par Karras et al. (2019) qui a permis une
véritable amélioration. Au lieu d’apprendre directement la transformation, Karras et al. (2019)
proposent de rajouter un réseau de neurones a propagation avant (feedforward neural network)
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Training set V Discriminator

AN
7R / - .I @ — {Fa ke

Fake image

Generator

Fig. 1.2 Exemple d’architecture classique d’'un GAN entrainé sur le jeu de données de digits
MNIST. Source : Trending in Al capabilities.

afin d’intégrer une distribution latente plus complexe et mieux adaptée a la génération de
visages humains.

Du fait de I’opposition entre le générateur et le discriminateur, 1’entrainement des GANs est
complexe et peut aboutir a des solutions non optimales. Goodfellow et al. (2014) ont confirmé
que les gradients du discriminateur s’amenuisent lorsque celui-ci s’approche de 1’ optimalité.
La procédure par gradients alternés utilis€ée pour entrainer les GANs complique la détection de
convergence. Mertikopoulos et al. (2018) relevent en effet que des cycles peuvent se répéter
indéfiniment. Goodfellow et al. (2014) et Salimans et al. (2016) se sont rendus compte des
les premieres études empiriques que le générateur pouvait finir par concentrer toute sa masse
sur une portion minime de la distribution cible : c’est le phénomene de perte de modes (mode
collapse). Dans le cas ou la distribution cible est multimodale, cela signifie que le générateur
ignore certains de ces modes. Il finit donc par générer un petit ensemble d’images tres réalistes
mais peu diversifiées. Comme nous le verrons par la suite, une grande partie des chercheurs

tentent de comprendre et de minimiser ce phénomene.

1.2.3 Les divers domaines d’application des GANSs

Lefficacité des GANSs s’est d’abord révélée dans la génération d’images. Karras et al. (2018,
2019) ont perfectionné la génération de visages humains allant jusqu’a générer des images
1024x1024 pixels. Brock et al. (2019) ont étendu cette réussite au jeu de données complexe
ImageNet contenant plus de 1000 classes distinctes. Néanmoins, il est important de souligner
que les GANSs se sont révélés également efficaces pour toutes sortes de taches qui dépassent

largement le domaine de la génération d’images. Afin de mieux saisir I’engouement scientifique



6 Introduction

créé par les GANSs, la sous-section qui suit présente, succinctement et simplement, leurs

différents domaines d’application.

I’analyse d’images. La littérature portant sur I’analyse d’images a partir des GANSs est
extrémement variée. Shen et al. (2020) ont souligné comment les GANs pouvaient faciliter
I’édition d’images. En se déplacant selon certaines directions de I’espace latent, la Figure 1.3
illustre comment, partant d’un visage initial, il est possible de le vieillir, lui rajouter des lunettes
ou changer son genre. Yi et al. (2017) sont parvenus a modifier une image en lui donnant le
style d’un tableau ou d’une photo. Reed et al. (2016) ont appliqué les GANs a la génération
d’images a partir d’un texte descriptif. Enfin, Ledig et al. (2017) ont décrit comment restaurer

des images floutées en haute résolution avec une efficacité surpenante.

Gender Pose

Original

Fig. 1.3 Exemple d’éditions d’images en se déplacant simplement dans certaines directions de
I’espace latent. Source : Shen et al. (2020).

La génération de vidéos. Au dela de 1’analyse d’images, les GANs ont été utilisés avec
succes dans différents domaines de recherche. S’ appuyant sur les récents progres réalisés en
analyse vidéo et en particulier la convolution 3D (Ji et al., 2013), les GANs se sont révélés
particulierement efficaces dans la génération de vidéos (Vondrick et al., 2016; Saito et al., 2017;
Tulyakov et al., 2018) comme I'illustre la Figure 1.4.

Améliorer la robustesse des algorithmes de Deep Learning. En 2014, la communauté
scientifique s’est rendue compte que les modeles profonds pouvaient facilement €tre dupés.
S’ils sont performants dans le domaine de la classification supervisée, leurs prédictions peuvent
étre faussées par une perturbation aussi minime soit-elle (Goodfellow et al., 2015) : ce sont
des "attaques adverses". Un exemple frappant est celui proposé par Su et al. (2019) qui ont

réussi a tromper des réseaux de neurones en ne modifiant qu’un seul pixel. Une branche de
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Time

Fig. 1.4 Exemples de générations de vidéos a 1’aide des GANs. Source : Clark et al. (2019).

la recherche s’est alors concentrée a améliorer la robustesse des réseaux profonds face a ces
attaques adverses. Pour réaliser cette tache, les GANs se sont révélés tres utiles.

Tout d’abord, apres avoir entrainé un GAN sur un jeu de données d’entrainement, le généra-
teur peut maintenant étendre ce jeu d’entrainement, fournir un ensemble infini d’exemples sup-
plémentaires labélisés permettant d’améliorer la généralisation du modele. Ensuite, les GANs
peuvent étre spécifiquement utilisés pour permettre a des classifieurs extérieurs d’observer des
exemples complexes sur lequel le classifieur est indécis. Xiao et al. (2018) ont utilisé les GANs
pour générer directement les attaques adverses et faciliter I’amélioration du classifieur. Prenant
un angle d’attaque différent, Samangouei et al. (2018) ont adopté les GANs comme moyen de
défense : avant de faire une prévision avec le classifieur, chaque point de donnée corrompu
est projeté sur la variété apprise par le GAN. Quelques exemples pour les jeux de données
MNIST et Fashion-MNIST sont montrés dans la Figure 1.6a. Dans ce cas précis, le GAN peut
étre utilisé sur n’importe quel type de classifieurs et ce dernier n’a méme pas besoin d’étre
ré-entrainé. Enfin, dans le domaine de la classification multi-classe, les GANs permettent aussi
de générer des points dans les zones complexes ou la donnée est plus rare. La Figure 1.6b
illustre la faculté du GAN a produire des points au niveau de la frontiere entre deux classes.

Comme nous pouvons le constater la faculté générative des GANSs est tour a tour une finalité,
quand il s’agit de produire des images ou des vidéos, ou bien un moyen, quand il s’agit de

rendre plus robustes certains algorithmes.

Le langage. Le langage (ou NLP, Natural Language Processing) est I’un des domaines ou
I’utilisation des GANs n’est pas directe. En effet, dans leur formulation initale, I’entrainement
des GANs nécessite de pouvoir calculer les gradients de la sortie du générateur. Dans le
domaine discret, dont fait partie le traitement naturel du langage, cette derniére opération
n’est pas possible. En revanche, en apportant quelques modifications, il devient possible
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(a) Source : Su et al. (2019).

Fig. 1.5 Exemple d’attaque adverse perturbant considérablement la réponse du réseau de
neurones alors que seulement un pixel de I’'image d’entrée a été modifié.
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(a) Source : Samangouei et al. (2018). (b) Source : Sun et al.
(2019).

Fig. 1.6 Exemple d’utilisation des GANs dans le domaine de la robustesse des réseaux profonds.
A gauche, les images corrompues sont projetées sur la variété apprise par le GAN. A droite, le
GAN vient sampler au niveau de la frontiere entre les deux classes pour diminuer 1’indécision

du classifieur.
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de contourner ce probleme. Kusner and Herndndez-Lobato (2016) ont proposé d’utiliser un
algorithme d’échantillonage basé sur une distribution de Gumbel. Yu et al. (2017) et Che
et al. (2017) ont proposé une fonction de cofit inspirée de I’apprentissage par renforcement
(Reinforcement Learning). Ils suggerent d’utiliser le discriminateur comme un agent externe et

entraine le générateur via policy gradient (Sutton et al., 2000).

1.3 Tour d’horizon des GANs

1.3.1 Contexte mathématique

Précisons tout d’abord le contexte mathématique dans lequel se place les Generative Adversarial
Networks. Comme nous I’avons précisé précedemment, 1’objectif des GANs est de pouvoir
approcher avec un modele paramétrique, une distribution cible, inconnue. Pour le reste de
I’étude, cette derniere sera notée (.. Elle est définie sur un espace métrique R”, dont la
dimension peut-étre tres grande : ¢’est notamment le cas de la génération d’images en haute
résolution. L’espace de départ (espace latent) est également un espace métrique R¢ dont la
dimension est en pratique nettement plus petite que cele de I’espace d’arrivée. Cet espace
latent est muni d’une variable aléatoire latente Z de mesure y. Il s’agit le plus souvent d’une
gaussienne multivariée ou de la mesure uniforme sur [—1,1]¢.

Formellement, le générateur est paramétré par une classe de fonctions mesurables de

I’espace latent R? dans I’espace d’arrivée R”, on note
4 ={Gg:0€@}, ou OCRF

I’ensemble des parametres décrivant le modele. Chaque function Gg prend en entrée un vecteur
dans R? échantilloné par Z et renvoie une fausse observation Gg¢(Z) dont la loi est notée ig.
Par conséquent, la collection de mesures images &2 = {1y : 0 € O} est la classe naturelle des
distributions associée avec le générateur. Quant au discriminateur, il est décrit par une classe

de fonctions mesurables de RP dans R, notée
P={Dg:acA}, on ACRC

correspond a I’ensemble des parametres du discriminateur. L’ objectif des GANSs est de trouver
au sein de cette famille de distributions celle qui est la plus proche de la distribution cible pi,

selon le critere donné par le discriminateur.
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1.3.2 Les fonctions de cout

GANs originels. Dans leur définition initiale, Goodfellow et al. (2014) proposent les GANs
comme une maniere originale d’entrainer deux réseaux de maniere antagoniste: le générateur
cherche a tromper le discriminateur qui, quant a lui, cherche a classifier le vrai du faux.
Considérons une variable aléatoire ¥ a valeurs dans {0, 1} et notons X|Y = 1 la variable
aléatoire de distribution . et X|Y = 0 la variable aléatoire de distribution tg. Alors I’objectif
du discriminateur est le suivant :

Do (X)=P(Y = 1]X).

En choisissant le discriminateur comme une classe de fonctions mesurables, paramétriques a

valeurs dans [0, 1], les auteurs définissent 1’objectif plus général des GANs comme suit:

inf supElog(Dg(X]Y =1))+ Elog(l —Dy(X|Y =0)), (1.3.1)
0€O g

ol le symbole [ fait référence a I’espérance. Pour mieux comprendre cette fonction de cofit,

placons nous dans le contexte spécifique ou :

1. les distributions p, et (g sont absolument continues par rapport a la mesure de Lebesgue

u. Notons respectivement p, et pg leur densités par rapport a U.

2. ’ensemble des fonctions discriminatives correspond a la classe non paramétrique Z.

des fonctions mesurables de R? dans [0, 1].

Dans ce cas précis, nous pouvons montrer que le probleme des GANSs revient a résoudre

inf Drs (i, o), (1.3.2)

ou Djg correspond a la divergence de Jensen-Shannon définit comme suit :

2P« P« +Po ., Px+Po
Djs ,Ug) = / In du + / In du.
(Le; Ho) Px (p*+p9) H > ( 2p, ) H
Etant donné les propriétés d’approximation universelle des réseaux de neurones, nous com-
prenons bien le role joué par le discriminateur : ¢’est une approximation paramétrique de la
divergence de Jensen-Shannon.
En modifiant la fonction de discrimination utilisée dans (1.3.1), Nowozin et al. (2016) et

Mao et al. (2017) montrent que le probleme des GANs peut s’étendre a 1’ objectif suivant :

inf D 1.3.
Jnf Dyt te), (1.3.3)
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ol D¢(y, o) = [ Px (x)f(lf;—((xx)))du(x) correspond a la f-divergence entre L, et Lg.

Le défaut général des formulations impliquant des f-divergences est qu’elles nécessitent
de fortes hypotheses. En effet, la f-divergence Dy(l, lig) n’est définie que si 1’on suppose
la distribution 1y absolument continue par rapport a la distribution t,. En pratique, Arjovsky
and Bottou (2017, Theorem 2.2) a montré qu’il est fort probable qu’en grande dimension,
W, et g ne soit pas absolument continue par rapport a la méme mesure de base. Roth et al.
(2017) appellent ce phénomene une erreur de dimensionnalité (dimensionality mispecification):
la variété cible et la variété générée n’ont dans ce cas pas la méme dimension. Dans ce cas
précis, Arjovsky and Bottou (2017) ont montré que lorsque le discriminateur se rapproche
de I’optimalité, les gradients renvoyés au générateur sont soit nuls, soit instables; empéchant
I’apprentissage de la distribution cible et facilitant 1’apparition du phénomene de perte de

modes.

IPM GANs. Pour s’attaquer aux problemes présentés ci-dessus, il est possible d’utiliser une
différente famille de distances entre distributions de probabilité qui nécessite des hyptoheses
plus faibles : ce sont les Integral Probability Metric (IPM) (Miiller, 1997). Etant donné
une classe de fonctions mesurables .% définie de RP dans R, on définit I'IPM entre deux

distributions de probabilité u et v de RP, comme suit :

dz(u,v)=supE,f—Ef. (1.3.4)

fez
Pour étre définie, la distance d # (i, V) ne nécessite que des hypotheses de finitude des mo-
ments sur les distributions de probabilité u et v. Les IPMs vérifient la propriété de symétrie
dz(u,v)=dz(v,u) ainsi que I’inégalité triangulaire d # (1, v) < dz(u,n)+d#(n,v) (pour
toute distribution de probabilité n7). Elles sont fréquemment rencontrées en machine learning,

notamment la distance de 1-Wasserstein W qui, en utilisant sa forme duale, s’écrit comme une
IPM (Villani, 2008) :

W(u,v)= sup Eyf —Eyf =dLip, (4,V), (1.3.5)
f€Lip;
ou Lip; correspond a I’ensemble des fonctions 1-Lipschitz.
Pour corriger les défauts des f-GANSs, Arjovsky et al. (2017) définissent les Wasserstein
GANs comme une maniere de minimiser la distance de Wasserstein entre la distribution cible

U et la distribution modélisée tg. Le nouveau probleme des GANs devient :

inf di (L. tlo). 13.
dnf dvip, (K Ho) (1.3.6)



12 Introduction

En revanche, étant donné que la classe des fonctions 1-Lipschitz n’est pas paramétrable, les
auteurs approximent cette dernicre par un critique (ou discriminateur) paramétré par un réseau

de neurones. Le véritable objectif des WGANSs se formule comme suit :

inf Ey+Dg —IE;,Dg = inf d 1.3.7

Anf Sp FyurDg ~ By Do = inf 7 (Hss o), (1.3.7)

ol do (s, o) = sup Ey«Dg —Ey,Dg correspond a I'IPM générée par 2. Comme Iillustre
acA

la Figure 1.7, Arjovsky et al. (2017) montrent I’intérét de cette formulation en justifiant
qu’elle stabilise I’entrainement des GANs : les gradients du discriminateur ne s’annulent
pas. Au contraire, Gulrajani et al. (2017, Theorem 1) montrent que la norme du gradient du

discriminateur optimal est égale a 1 presque partout sur chaque ligne du transport optimal.

1.0

— Density of real
— Density of fake
—  GAN Discriminator | |

WGAN Critic

0.8

. N

—0.2} Vanishing gradients
in regular GAN

-8 -6 -4 -2 0 2 4 6 8

Fig. 1.7 Comparaison entre un discriminateur GAN optimal de classification et un discrimina-
teur (critique) optimal WGAN (en bleu). On observe, en effet, que les gradients du discrimina-
teur en rouge sont nuls presque partout contrairement au critique WGAN. Source : Arjovsky
et al. (2017).

Il est important de noter qu’en jouant sur différentes classes paramétriques de fonctions,
divers objectifs peuvent &tre proposés. Dans Li et al. (2015, 2017), le discriminateur &
approxime la boule unité dans un espace de Hilbert a noyau reproduisant (RKHS, Reproducing
Kernel Hilbert Space). Mroueh and Sercu (Fisher GANs, 2017) imposent des contraintes sur
le moment d’ordre 2 du discriminateur et proposent un objectif qui approxime la distance du
Khi-deux ), (Mroueh and Sercu, 2017, Theorem 2).

Les formulations proposées en (1.3.1) et (1.3.6) repose donc sur une minimisation de

distance (ou pseudo-distaces) paramétriques. Arora et al. (2017) parlent de distances neuronales
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(neural net distances). Liu et al. (2017) font référence a des divergences adverses. Cette
caractérisation des GANs comme minimisation de distances neuronales est a la base de notre

réflexion.

Régularisation d’un GAN. Dans le cadre des WGANS, pour contraindre le discriminateur a
une classe de fonctions 1-Lipschitz, Arjovsky et al. (2017) proposent de restreindre les poids
du discriminateur (weigth clipping). Néanmoins, il existe d’autres manieres plus efficaces pour
implémenter cette contrainte sur le gradient du discriminateur. Gulrajani et al. (2017) ajoutent

a la fonction de pertes, une pénalisation sur le gradient du discriminateur :

inf sup Ey<Dg —EyyDo +AEy (|[VaDa — 1])?, (1.3.8)

ot 1 est la distribution associée  la variable aléatoire X = eX + (1 — £)Gg(Z) (X ~ p, and
Z ~ 7). Miyato et al. (2018), quant a eux, normalisent la norme spectrale des matrices apprises
tandis que Anil et al. (2019) proposent de projeter chaque matrice de poids sur une boule
unité en utilisant 1’orthonormalisation de Bjorck (Bjorck and Bowie, 1971). Empiriquement,
la régularisation du discriminateur a permis une amélioration significative de I’entrainement
des GANSs. Roth et al. (2017) ont montré que régulariser le gradient du discriminateur pouvait
également améliorer les f-GANs. Kodali et al. (2017) ont, quant a eux, souligné le fait que
I’utilisation de cette régularisation permettait de diminuer le nombre des minimums locaux

associés a la perte de modes. La régularisation des GANSs est maintenant largement utilisée.

1.4 Deux problémes existants dans les GANs

1.4.1 DP’apprentissage de variétés non connexes

Comme vu précédemment, dans leur formulation standard, les GANs sont définis comme la
mesure image d’une distribution le plus souvent unimodale par un générateur continu. Il est
alors facile de montrer que, dans ce cas précis, la loi apprise g aura un support connexe dans
I’espace d’arrivée RP. Par conséquent, quand la distribution cible est complexe et a support
sur une variété non connexe, Khayatkhoei et al. (2018) ont montré que, dans ce cas, les GANs

péchent par le probleme suivant :

* soit le générateur concentre sa masse sur I’un des modes de la distribution cible et produit

des points hautement réalistes mais tres peu diversifiés : ¢’est le cas de la perte de modes.
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* soit le générateur essaie de couvrir le plus de modes possibles et met, de ce fait, de la
masse la ot la distribution cible n’en met pas (entre deux modes). Le générateur est, dans

ce cas précis, nécessairement amené a produire certains points de tres faible qualité.

Pour résoudre ce probleme, certaines recherches se sont concentrées sur le développement
d’architectures qui améliorent 1’apprentissage de lois au support non connexe. Cela sous-tend
la question suivante : comment faire en sorte que la distribution apprise puisse avoir un support

non connexe ?

Ensemble de GANs. Gurumurthy et al. (2017) transforment la distribution latente unimodale
en un mélange de gaussiennes, ce qui permet de plus facilement gérer le cas ou les données
d’apprentissage sont non connexes, diverses et limitées. Au lieu de sur-paramétrer la distribution
latente, Tolstikhin et al. (2017) proposent d’entrainer un mélange de générateurs suivant
la méthode d’Adaboost. Egalement, Khayatkhoei et al. (2018) entrainent une famille de
générateur mais, dans le but précis d’empécher la perte de modes. En maximisant 1’entropie
croisée, chacun des générateurs du mélange se spécialise dans 1’apprentissage de 1’un des
modes de la loi cible. Enfin, il faut bien entendu préciser que, si ces méthodes permettent
d’améliorer significativement 1’apprentissage de variétés non connexes, cela se fait avec un
colit computationnel considérablement augmenté. Pour éviter cela, une série de travaux de
recherches prend le parti, non pas de modifier la méthode d’entrainement des GANs, mais
plutot de sélectionner les points générés notamment a 1’aide de méthodes de Monte-Carlo
(Azadi et al., 2019; Turner et al., 2019).

GANSs conditionnels. Pour améliorer la génération d’images au sein de jeux de données
complexes avec un nombre important de classes différentes, plusieurs auteurs ont proposé
I’utilisation des GANs conditionnels (Mirza and Osindero, 2014). Dans ce cas précis, la
génération d’une image est conditionnée a la fois a un bruit gaussien et a une classe donnée,
comme le montre la Figure 1.8. Brock et al. (2019) appliquent cette méme méthode pour
générer des images de haute qualité sur le jeu de données de grande dimension qu’est ImageNet
(Krizhevsky et al., 2012). La génération conditionnée permet également de transformer la
distribution cible au support non connexe en une famille de lois plus simples, au support
connexe, et donc plus facilement approchable par un GAN. Pour réduire la perte de modes dans
ce schéma précis, Chongxuan et al. (2017) couplent un GAN conditionnel avec un troisieme

réseau qui apprend la distribution conditionnelle.
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Fig. 1.8 Architecture d’un GAN conditionnel Source : Mirza and Osindero (2014).

1.4.2 L’évaluation des GANSs : une question ouverte.

L’évaluation des GANS est toujours une question ouverte et complexe. La principale raison est
due au fait, qu’a ce jour, le but final des GANs n’a pas encore été clairement défini. Selon les
taches, les méthodes d’évaluation peuvent donc varier. Le lecteur intéressé pourra se référer a
I’étude menée par Borji (2019) qui présente une liste de 25 différentes méthodes d’évaluations
des GANs. L’auteur de I’étude souligne lui-méme qu’il n’y a a ce jour "pas de consensus
quant a la mesure qui capturerait le mieux les forces et les limites d’un GAN et qui devrait étre
utilisée pour une comparaison équitable des différents modeles".

Il est clair qu’en fonction des différents objectifs choisis et/ou des différentes paramétri-
sations du discriminateur, les optimums globaux vérifiant I’équation (1.3.7), ne seront pas
certainement pas identiques. La question de la comparaison des différents modeles génératifs
Ug obtenus se pose. Par souci d’équité, ces différents modeles ne peuvent étre comparés par
exemple ni sur la divergence de Jensen-Shanon ou la distance de Wassertein, ce qui favoriserait
respectivement les GANs standards (Goodfellow et al., 2014) ou les WGANSs (Arjovsky et al.,
2017). Lucic et al. (2018) ont mené une étude empirique importante comparant une grande
variété de GANs différents. Ils concluent que la comparaison des différents modeles obtenus
doit se faire sur un terrain neutre tel que I’Inception Score ou la distance de Fréchet (étudiés plus

bas). Ils montrent que la plupart des modeles peuvent obtenir des scores similaires apres avoir
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joué sur les hyper-parametres. De maniere similaire, 1’étude empirique menée par Mescheder
et al. (2018) montre qu’aucun objectif n’est stabilisé sensiblement plus 1’entrainement des
GAN:S.

La mesure d’évaluation ne doit pas reposer sur des densités de probabilité. L’un des
principaux problemes des mesures d’évaluation des GANs réside dans le fait qu’elles ne
peuvent pas reposer sur les densités de probabilité. Tout d’abord, la mesure cible est inconnue.
Ensuite, il est fort possible que les mesures L, et Ly ne soient pas absolument continue par
rapport a la mesure de Lebesgue. Pour résoudre ce probleme, certaines études proposent
I’utilisation d’un 3éme réseau qui agit comme un juge. Par exemple, Salimans et al. (2016);
Heusel et al. (2017) proposent d’utiliser InceptionNet (Szegedy et al., 2015) pour quantifier la
qualité des GANs. D’autres métriques reposent plus spécifiquement, sur des approximations en
échantillon fini qui permettent 1’ utilisation de méthodes non paramétriques telles que les plus
proches voisins (Devroye and Wise, 1980).

La mesure d’évaluation doit évaluer a la fois la qualité et diversité. Le second enjeu est
directement 1ié avec la finalit€ des GANs : doivent-ils €tre capables de générer des images
de qualité ou bien avoir la plus grande diversité possible ? Salimans et al. (2016) utilisent
I’Inception Score (IS) et un réseau préalablement entrainé pour mesurer la qualité des images
générées. Si I'IS évalue a la fois le réalisme et la diversité des points générés, il n’évalue
en revanche, pas correctement la diversité au sein d’'une méme classe. Sajjadi et al. (2018)
argumentent que pour quantifier proprement la qualité et la diversité des images générées,
une seule mesure ne suffit pas. Par conséquent, ils définissent la métrique Précision/Rappel.
Pour améliorer la robustesse de cette métrique, en particulier quand le générateur s’effondre,
Kynkéddnniemi et al. (2019) ont proposé la métrique Precision/Rappel améliorée (Improved PR)
basée sur une estimation non paramétrique du support. La précision évalue la proportion de la
loi ug qui appartient au support de la distribution cible. Réciproquement, le rappel s’intéresse
a la mesure de la distribution cible qui peut étre reconstruite par le générateur. La figure 1.9

illustre synthétiquement ces deux notions.

La mesure d’évaluation doit-elle étre une distance entre lois de probabilité ou entre var-
iétés topologiques ? 1l est clair que le choix d’une mesure d’évaluation est intimement 1ié
a I’objectif des GANs. De ce point de vue 13, I’objectif des GANSs est-il d’approcher la dis-
tribution cible ou seulement son support ? Succinctement, on distingue les distances entre
lois de probabilités (mesures probabilistes) de celles entre variétés topologiques (mesures

topologiques):
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Précision

Fig. 1.9 A gauche, la distribution cible u, et le modele ty. Au milieu, la mesure des points
surlignés en rouge correspond a la précision du modele. A droite, la mesure des points surlignés
en bleu correspond a son rappel. Source : Kynkéddnniemi et al. (2019).

* mesure probabiliste : Heusel et al. (2017) utilisent la distance de Fréchet. Ils esti-

ment deux gaussiennes multivariées a partir des données d’entrainement et des données
générées et comparent les moyennes et variances obtenues. Plus récemment, la distance
de Wasserstein et son approximation, la Earth Mover’s distance, basée sur des collections

de points échantillonés par [, et 1g a également été proposée.

mesure topologique : la métrique Précision/Rappel améliorée proposée par Kynkédin-
niemi et al. (2019) est, quant a elle, basée sur une estimation non paramétrique du support.
De méme, la distance de Hausdhorff (Xiang and Li, 2017) mesure 1’éloignement entre
deux sous-ensembles d’un espace métrique. De maniere similaire, Roth et al. (2017)
mesurent pour chaque point présent dans le jeu de données, la distance a la variété crée

par le générateur, c’est-a-dire que,

Vx € supp(i), inf [lx—y,
yEsupp(Ug)
ol ||.|| correspond a la norme euclidienne et supp(it) correspond au support d’une loi u
donnée. Enfin, Khrulkov and Oseledets (2018) définissent le score géométrique (geometry
score), et comparent les similitudes entre deux variétés topologiques en utilisant des

notions de topologie algébrique.

Evaluation de la généralisation d’un GAN. L’objectif des GANs est-il de générer des

exemples qui représentent fidelement le jeu de données ou, au contraire, doivent-ils étre

capables de générer des images qui n’ont jamais été observées pendant I’entrainement. Il est

en effet extrémement intéressant de se demander si les GANs apprennent la distribution cible

ou mémorisent simplement le jeu d’entrainement observé. Arora and Zhang (2017) proposent

d’utiliser le paradoxe des anniversaires pour évaluer le nombre d’images distinctes générer par
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les GANs et répondre a la question. De maniere plus générale, il n’existe encore a ce jour que
tres peu de travaux sur I’évaluation empirique des capacités de généralisation des GANs ? En
effet, la communauté ne fait pas nécessairement la différence entre les données d’entrainement
des données de test, signifiant que comprendre la généralisation des GANs n’est pas 1’'une
des priorités de la communauté. Enfin, il faut noter que cette question a tout de méme suscité
quelques recherches théoriques (Zhang et al., 2018; Qi, 2019).

1.5 Organisation du manuscrit et présentation des contri-

butions

Ce travail de these est structuré en cinq chapitres. Le Chapitre 2 vise a formaliser 1’entrainement
des GANSs et s’intéresse principalement aux propriétés statistiques des GANs définis par
Goodfellow et al. (2014). Ces travaux menés en collaboration avec Gérard Biau (LPSM),
Benoit Cadre (IRMAR, Université Rennes 2) et Maxime Sangnier (LPSM) ont été publiés
au journal Annals of Statistics. Le Chapitre 3 étend cette recherche aux Wasserstein GANs
(Arjovsky et al., 2017), réputés plus stables. Mené conjointement avec Gérard Biau et Maxime
Sangnier, ce travail a fait I’objet d’un article soumis pour publication. Le Chapitre 4 découle
de I'utilisation de réseaux de neurones paramétrés avec la fonction d’activation GroupSort
(Anil et al., 2019). 11 se propose d’étudier I’expressivité de ces réseaux et sera proposé a une
conférence. La suite de la these est axée autour d’un probleme plus appliqué. Le Chapitre 5
traite en effet de la difficulté d’apprendre une variété non connexe avec les GANs. C’est le sujet
de deux travaux de recherche menés conjointement avec Thibaut Issenhuth (Criteo) et Jérémie
Mary (Criteo), dont I’'un a été publié a ICML 2020 et le second est en cours de révision.

1.5.1 Chapitre 2 : Etude statistique des GANs

Ce chapitre propose une formalisation théorique des GANs et analyse certaines de leurs pro-
priétés mathématiques et statistiques. Nous commengons par rappeler que pour un générateur

G et un discriminateur D € &, les GANs optimisent le critere probabiliste suivant :
L(6,D) = / In(D) p.dp + / In(1 — D) pedu.
En particulier, les GANs cherchent a résoudre

inf sup L(6,D).
Anf, sup (6,D)
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Nous commencons par étudier le cas ou le discriminateur n’est pas restreint a un modele
paramétrique et oll Z = Z.. correspond 2 1’ensemble des fonctions mesurables de RP dans
[0, 1]. Dans ce contexte non paramétrique, nous établissons le lien entre I’entrainement adverse
des GANSs et la divergence de Jensen-Shannon. Le Théoréme 2.2.2 montre I’existence et

I’unicité de I’optimum des GANSs, c’est-a-dire que, sous certaines hypotheses,

{6*} = argmin sup L(0,D) = argmin Djs(p«, pe),
0cO DE. 60O
existe et est un singleton. Ici Djg correspond a la divergence de Jensen-Shannon. Nous nous
ramenons, par la suite, a un cas plus réaliste ou la classe de fonctions discriminatives est
paramétrée par un réseau de neurones. En utilisant la notation L(6,D) = L(6, ) dans le cas
paramétrique, 1’objectif des GANSs consiste alors a trouver le modele génératif suivant :

©® = argmin sup L(0,a) = argmin sup [ log(Dy)p«du +/log(1 —Dg)pedpL.
0cO acA 0cO ocA

En particulier, le Théoreme 2.3.1 montre, en supposant que le discriminateur optimal est

approché a € prés, que pour chaque 6 € 0, il existe une constante ¢ > 0 (indépendante de €)

telle que :
0 < Dys(ps; Pg) — Dis(ps, por) < c€”.

En revanche, il est clair qu’en pratique nous n’avons uniquement acces qu’a un jeu de données
de n échantillons Xi,...,X, indépendants et identiquement distribués selon p,. Le critere
empirique des GANSs devient,

. 1 & 1
L(6,D) = - Y InD(X;) + -
i=1

n
Y In(1 - DoGy(Z)),
i=1
ou In est le logarithme naturel et Zy, ... ,Z, sont des variables indépendantes et identiquement
distribuées de loi Z. Par conséquent, I’ensemble des parametres optimaux associés se définit
comme suit :
© = argmin sup L(6,a).

0cO acA
L’un des principaux résultats du chapitre (Théoréme 2.4.1) montre que, sous des hypotheses

similaires a celles du Théoreme 2.3.1, nous avons, pour tout Hco:

1
EDjs(p«,pg) — Dis(ps; po+) = O<82 + —>

n
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1.5.2 Chapitre 3 : Extension et développement pour le cas des WGANs

Plusieurs études empiriques (Gulrajani et al., 2017; Roth et al., 2017) ont validé les bénéfices
de I’approche cousine appelée Wasserstein GANs (WGANSs) proposée par Arjovsky et al.
(2017). Cette derniere apporte une stabilisation dans le processus d’entrainement. Il est donc
important d’approfondir notre compréhension de cette architecture. De manicre similaire, au
chapitre précédent, pour bien comprendre le fonctionnement de ces WGAN:Ss, il est nécessaire
de distinguer deux problemes.

Tout d’abord, dans le cas ou la classe de fonctions discriminatives & correspond a la classe
non paramétrique des fonctions 1-Lipschitz, 1’objectif des WGANSs revient a minimiser la
distance de Wasserstein entre la distribution cible p, et le modele 2. Plus formellement,
I’ objectif théorique des WGANS est le suivant :

inf W (L, — inf E.f—E , 1.5.1
Jnf W (L., ) = inf f21£531| wf = Byy f] (1.5.1)
o W correspond  la distance de 1-Wasserstein et Lip; = { f: E — R : | f(x) — f(y)| < [[x—y],
(x,y) € (RP)?}.

Ensuite, le second probléme, plus réaliste, vise a considérer une classe de fonctions discrim-

inatives paramétrique plus restreinte, 2 = {Dy, : @ € A}. Dans cette approche, le véritable
probleme des WGANSs s’€écrit :

inf E,. Do — Ey,Dayl. 1.5.2
52@;1;5” wDa —EygDal (1.5.2)

En ré-écrivant les deux objectifs des WGANs théoriques (T-WGANSs) et des WGANSs sous
forme d’Integral Probability Metric (Miiller, 1997), nous obtenons :

. . N . 0
T-WGAN:Ss: 9122 diip, (U, ug) et WGANS: 6116121“9 do(u™, Ug),

oul pour une classe de fonctions .%# donnée, I'IPM entre deux distributions p et v s’écrit
dz(u,v)=sup [Eyf—Eyf].
fe%
Comme pour le chapitre précédent, nous nous intéressons a 1’influence de I’échantillon
et considérons le cas ou nous n’avons acces qu’a un ensemble fini de points, représentés par

la mesure empirique ,. Finalement, cela nous permet d’identifier les trois ensembles de

parametres correspondants :

©* = argmin dip, (", ) & O =argmindy(u*,pg) & 6, =argmindg(liy, Uo).
6cO 6cO 6cO
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L’ objectif du présent chapitre est de parvenir a étudier ces trois ensembles et de pouvoir
comparer la performance des différents modeles génératifs obenus a partir de @*, O et 0,.
Pour avoir une meilleure compréhension de la performance finale des WGANS df i, (1*, “én)

ou 6, € 6,, nous proposons la décomposition suivante :

dLipl (,I.L*, nuén) < €estim 1 Eoptim + Eapprox; (1.5.3)

* Eapprox = 6irel(f9 dyip, (Ux, g) est liée a la capacité d’approximation du modele génératif et

la performance des paramétres 0* € @™

* Eoptim = SUp dLip, (s, Ug) — 6in;f9 dyip, (U« Ug) correspond a I’écart de performance entre
6c6 <
un parametre 6 € © et 0* € @*. L’analyse de cette erreur est menée dans la Section 3.3

et, en particulier, le Théoreme 3.3.1 montre que, sous certaines hypotheses, elle peut étre
arbitrairement petite;

* E.gim Mesure 1I’écart de performance lié a 1’obtention d’un parametre én € @n plutdt que
6 € O. Notons que le Théoréme 3.4.1 prouve que, sous certaines hypothéses, la somme
Eoptim T Eestim Peut €tre arbitrairement petite avec grande probabilité.

Des expériences sur données réelles et simulées viennent compléter les résultats théoriques.

1.5.3 Chapitre 4 : Etude des réseaux de neurones dits GroupSort et
application aux GANs

Les récentes publications sur les attaques adverses liées aux réseaux profonds (Goodfellow
et al., 2015) et le développement des WGANSs ont préconisé 1’utilisation de réseaux de neurones
avec des constantes de Lipschitz restreintes. Motivés par ces observations, Anil et al. (2019) ont
proposé I’utilisation de réseaux de neurones dits GroupSort avec des contraintes sur les poids.
Les auteurs de cette publications ont notamment prouver que les réseaux GroupSort pouvaient
approcher n’importe quelle fonction Lipschitz tout en garantissant le caractere Lipschitz de
I’estimateur. Dans ce chapitre, nous visons a mieux comprendre 1’intérét des réseaux GroupSort,
utilisés dont le chapitre précédent, et faisons un pas théorique vers une meilleure compréhension
de leur expressivité.

Les réseaux GroupSort se caractérisent par leur fonction d’activation GroupSort qui sépare
les entrées en groupes et les trie par ordre croissant. La fonction d’activation GroupSort avec

une taille de regroupement (grouping size) k > 2 est appliquée sur un vecteur xi, ..., Xg,. Tout
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d’abord, elle sépare le vecteur en n groupes G} = {x1,..., X },-..Gn = {Xpk—k—1,-- -, Xni }- Puis,

elle trie chaque groupe comme suit:

_ (01 G G G
O'k(xl, ooy Xy s Xpk—(k—1) 5+ - - ,xnk) = (x(k), e ,x(l)), cey (x(k"), ... ,x(1")>7
ol xg) , la notation des statistiques d’ordre, correspond au ieme plus petit él€ément du groupe
G. Tout comme les réseaux ReLLU, les réseaux GroupSort parametrent des fonctions linéaires
par morceaux. L’étude d’expressivité de ces réseaux commencent par analyser leur faculté a
représenter I’ensemble des fonctions linéaires continues par morceaux. Nous montrons, en par-

ticulier avec le Corollaire 4.3.1, que pour toute fonction Lipschitz f linéaires par morceaux sur

my sous-domaines convexes £1,...,£, ’ (my = k" avec n > 1), il existe un réseau GroupSort
2-1
avec une taille de regroupement k, une profondeur 2[log; (my)] + 1 et une taille au plus HZ’T

qui reproduit la fonction f.

La faculté de ces réseaux a reproduire les fonctions linéaires par morceaux nous permet
de passer au cas plus général de I’approximation des fonctions Lipschitz. Nous prouvons
que pour tout £ > 0, et toute fonction f Lipschitz définie sur [0,1]%, il existe un réseau de
neurones GroupSort D avec une taille de groupement [%ﬁ tel que || f — Dl|~ < €. De plus, la
profondeur de D est O(d?). Pour conclure, nous illustrons I’efficacité des réseaux GroupSort

par rapport a celles des réseaux ReLLU sur un ensemble d’expériences synthétiques.

1.5.4 Chapitre 5 : L’apprentissage de variétés non connexes avec les
GANs

Dans la formulation standard des GANSs, une distribution latente unimodale (unifome ou
gaussienne) est transformée par un générateur continu dans 1’espace des images. Par conséquent,
dans le cas ou la distribution cible a un support non connexe, aucune des distributions modélisées
W ne pourra parfaitement approcher u*. Dans ce chapitre, nous formalisons ce cadre précis et
établissons des résultats qui mesurent la quantité de données simulées se trouvant en dehors de
la variété cible.

Notre étude part du constat suivant établi dans un contexte simple : pour apprendre un
mélange de deux gaussiennes, les GANSs divisent 1’espace latent en deux zones, comme le
montre la ligne de séparation en rouge sur la figure 1.10a. Plus important encore, chaque
bruit gaussien a I'intérieur de cette zone rouge sur la figure 1.10a est ensuite envoyé€ dans
I’espace de sortie entre les deux modes (voir Figure 1.10b) de la loi cible. En utilisant des
résultats connus de I’inégalité gaussienne isopérimétrique, nous quantifions la quantité de

données en dehors de la variété cible. La métrique choisie pour définir si un échantillon
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(a) Heatmap de la norme du ja- (b) En vert : la distribution cible. Les
cobien du générateur. Les cer- points colorés correspondent aux échantil-
cles blancs correspondent aux lons générés par le générateur. Ils sont col-
quantiles de la distribution la- orés en fonctions de la norme du jacobien
tente .4 (0,1). de Gy. La méme heatmap que dans la fig-

ure (a) est utilisée.

Fig. 1.10 L’apprentissage d’une variété non connexe avec un GAN standard amene a
I’apparition d’une zone a forts gradients dans I’espace de départ ou chaque échantillon est
envoyé en dehors de la variété.

donné appartient a la variété cible est donc primordiale. Pour la présente étude, nous avons
choisi la métrique Précision/Rappel (PR) proposée par Sajjadi et al. (2018) et, en particulier, la
version améliorée (Improved PR) (Kynkédnniemi et al., 2019) construite sur une estimation
non paramétrique des supports. Comme précisé plus haut, la précision quantifie la part de la
fausse distribution qui peut étre générée par la distribution cbile i, tandis que le rappel mesure
la part de la vraie distribution qui peut €tre reconstruite par la distribution (g du modele. Plus
formellement, soient (Xi,...,X,) ~ uj (ensemble de données générées par le générateur) et
(1,...,Y,) ~ ug (ensemble de données échantillonées par la distribution cible). Pour chaque
X (ou respectivement chaque Y), on considere (X(l), . ,X(n_l)), I’arrangement des éléments

dans (Xp,...X,) \ X selon leur distance croissante a X (X(;) = argmin ||X; — X||). Pour
XiG(Xl ,...Xn)\X
chaque k € IN et chaque X, la précision o4 (X) du point X est définie par

Précision: o/ (X) =1 <= ¥ € (11,...,Y,), [|X = Y[ < |[¥y) = Y.
De maniére similaire, le rappel 8;'(Y) d’un point Y € (Y1,...,Y;) est défini par
Rappel: B{(Y) = 1 <= 3X € (Xi,....X,), IV — X < X, —X]|.

Apres cette analyse théorique, nous poursuivons notre étude en définissant une méthode
d’échantillonnage de rejet basée sur la norme du Jacobien du générateur. Nous montrons sa

capacité a enlever les points de données de mauvaise qualité et ceux, a la fois sur des jeux
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de données synthétiques (approximation de mélanges de gaussiennes), mais aussi sur de la

génération d’images en grande dimension.



Chapter 2

Some theoretical properties of GANS

Abstract

Generative Adversarial Networks (GANs) are a class of generative algorithms that have been shown to
produce state-of-the-art samples, especially in the domain of image creation. The fundamental principle
of GANSs is to approximate the unknown distribution of a given data set by optimizing an objective
function through an adversarial game between a family of generators and a family of discriminators. In
this paper, we offer a better theoretical understanding of GANs by analyzing some of their mathematical
and statistical properties. We study the deep connection between the adversarial principle underlying
GANSs and the Jensen-Shannon divergence, together with some optimality characteristics of the problem.
An analysis of the role of the discriminator family via approximation arguments is also provided.
In addition, taking a statistical point of view, we study the large sample properties of the estimated

distribution and prove in particular a central limit theorem. Some of our results are illustrated with

simulated examples.
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2.1 Introduction

The fields of machine learning and artificial intelligence have seen spectacular advances in
recent years, one of the most promising being perhaps the success of Generative Adversarial
Networks (GANs), introduced by Goodfellow et al. (2014). GANSs are a class of generative
algorithms implemented by a system of two neural networks contesting with each other in a
zero-sum game framework. This technique is now recognized as being capable of generating
photographs that look authentic to human observers (e.g., Salimans et al., 2016), and its
spectrum of applications is growing at a fast pace, with impressive results in the domains of
inpainting, speech, and 3D modeling, to name but a few. A survey of the most recent advances
is given by Goodfellow (2016).

The objective of GANS is to generate fake observations of a target distribution p, from
which only a true sample (e.g., real-life images represented using raw pixels) is available. It
should be pointed out at the outset that the data involved in the domain are usually so complex
that no exhaustive description of p, by a classical parametric model is appropriate, nor its
estimation by a traditional maximum likelihood approach. Similarly, the dimension of the
samples is often very large, and this effectively excludes a strategy based on nonparametric
density estimation techniques such as kernel or nearest neighbor smoothing, for example. In
order to generate according to p,, GANs proceed by an adversarial scheme involving two
components: a family of generators and a family of discriminators, which are both implemented
by neural networks. The generators admit low-dimensional random observations with a known
distribution (typically Gaussian or uniform) as input, and attempt to transform them into fake
data that can match the distribution p,; on the other hand, the discriminators aim to accurately
discriminate between the true observations from p, and those produced by the generators. The
generators and the discriminators are calibrated by optimizing an objective function in such a
way that the distribution of the generated sample is as indistinguishable as possible from that
of the original data. In pictorial terms, this process is often compared to a game of cops and
robbers, in which a team of counterfeiters illegally produces banknotes and tries to make them
undetectable in the eyes of a team of police officers, whose objective is of course the opposite.
The competition pushes both teams to improve their methods until counterfeit money becomes
indistinguishable (or not) from genuine currency.

From a mathematical point of view, here is how the generative process of GANs can be
represented. All the densities that we consider in the article are supposed to be dominated by a

fixed, known, measure u on E, where E is a Borel subset of R?. Depending on the practical
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context, this dominating measure may be the Lebesgue measure, the counting measure, or more
generally the Hausdorff measure on some submanifold of RY. We assume to have at hand an
1.i.d. sample Xi,...,X,, drawn according to some unknown density p, on E. These random
variables model the available data, such as images or video sequences; they typically take their
values in a high-dimensional space, so that the ambient dimension d must be thought of as
large. The generators as a whole have the form of a parametric family of functions from R to
E (usually, d’ < d), say 4 = {Gg }gc@, ® C RP. Each function Gy is intended to be applied
to a d’-dimensional random variable Z (sometimes called the noise—in most cases Gaussian
or uniform), so that there is a natural family of densities associated with the generators, say
P = {pe}oeco, where, by definition, Gg(Z) £ pedu. In this model, each density pg is a
potential candidate to represent p,. On the other hand, the discriminators are described by a
family of Borel functions from E to [0, 1], say &, where each D € & must be thought of as
the probability that an observation comes from p, (the higher D(x), the higher the probability
that x is drawn from p,). At some point, but not always, we will assume that & is in fact a
parametric class, of the form {Dy }4en, A C R, as is always the case in practice. In GANs
algorithms, both parametric models {Gg }gc@ and {Dg }qeca take the form of neural networks,
but this does not play a fundamental role in this paper. We will simply remember that the
dimensions p and g are potentially very large, which takes us away from a classical parametric
setting. We also insist on the fact that it is not assumed that p, belongs to .

Let Zy,...,Z, be an i.i.d. sample of random variables, all distributed as the noise Z. The
objective is to solve in O the problem

n n

inf sup [ED(Xi) xg(l _DoGe(Z)))], 2.1.1)

or, equivalently, to find 6 € O such that

sup L(6,D) < sup L(6,D), VO €O, (2.1.2)
De9 De9

where . .
. o 1 1
L(6,D) = =Y InD(X;)+ - Y In(1—DoGe(Z))
iz izl

(In is the natural logarithm). The zero-sum game (2.1.1) is the statistical translation of making
the distribution of Gg(Z;) (i.e., pg) as indistinguishable as possible from that of X; (i.e., py).
Here, distinguishability is understood as the capability to determine from which distribution
an observation x comes from. Mathematically, this is captured by the discrimination value
D(x), which represents the probability that x comes from p, rather than from pg. Therefore,
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for a given 0, the discriminator D is determined so as to be maximal on the X; and minimal on
the Gg(Z;). In the most favorable situation (that is, when the two samples are scattered by 7,
SUPpe g L(6,D) is zero, and the larger this quantity, the more distinguishable the two samples
are. Hence, in order to make the distribution pg as indistinguishable as possible from p,, Gg
has to be driven so as to minimize supp., L(6,D).

This adversarial problem is often illustrated by the struggle between a police team (the
discriminators), trying to distinguish true banknotes from false ones (respectively, the X; and
the Gg(Z;)), and a counterfeiters team, slaving to produce banknotes as credible as possible
and to mislead the police. Obviously, their objectives (represented by the quantity L(8,D))
are exactly opposite. All in all, we see that the criterion seeks to find the right balance
between the conflicting interests of the generators and the discriminators. The hope is that
the 6 achieving equilibrium will make it possible to generate observations Gy(Z1),...,Gy(Zy)
indistinguishable from reality, i.e., observations with a distribution close to the unknown p,.

The criterion L(0, D) involved in (2.1.2) is the criterion originally proposed in the adversar-
1al framework of Goodfellow et al. (2014). Since then, the success of GANs in applications has
led to a large volume of literature on variants, which all have many desirable properties but are
based on different optimization criteria—examples are MMD-GANSs (Li et al., 2017), f-GANs
(Nowozin et al., 2016), Wasserstein-GANs (Arjovsky et al., 2017), and an approach based on
scattering transforms (Angles and Mallat, 2018). All these variations and their innumerable
algorithmic versions constitute the galaxy of GANs. That being said, despite increasingly
spectacular applications, little is known about the mathematical and statistical forces behind
these algorithms (e.g., Arjovsky et al., 2017; Liu et al., 2017; Zhang et al., 2018), and, in fact,
nearly nothing about the primary adversarial problem (2.1.2). As acknowledged by Liu et al.
(2017), basic questions on how well GANs can approximate the target distribution p, remain
largely unanswered. In particular, the role and impact of the discriminators on the quality of the
approximation are still a mystery, and simple but fundamental questions regarding statistical
consistency and rates of convergence remain open.

In the present article, we propose to take a small step towards a better theoretical under-
standing of GANs by analyzing some of the mathematical and statistical properties of the
original adversarial problem (2.1.2). In Section 2.2, we study the deep connection between the
population version of (2.1.2) and the Jensen-Shannon divergence, together with some optimality
characteristics of the problem, often referred to in the literature but in fact poorly understood.
Section 2.3 is devoted to a better comprehension of the role of the discriminator family via
approximation arguments. Finally, taking a statistical point of view, we study in Section 2.4 the
large sample properties of the distribution p, and of 6, and prove in particular a central limit

theorem for this parameter. Section 2.5 summarizes the main results and discusses research
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directions for future work. For clarity, most technical proofs are gathered in Section 2.A. Some

of our results are illustrated with simulated examples.

2.2 Optimality properties

We start by studying some important properties of the adversarial principle, emphasizing the
role played by the Jensen-Shannon divergence. We recall that if P and Q are probability
measures on E, and P is absolutely continuous with respect to Q, then the Kullback-Leibler
divergence from Q to P is defined as Dk (P || Q) = [In g5 dp odP, where g5 dp ; o is the Radon-Nikodym
derivative of P with respect to Q. The Kullback Leibler dlvergence is always nonnegative, with
Dx1(P|| Q) zeroif and only if P= Q. If p = and q= Q exist (meaning that P and Q are
absolutely continuous with respect to u, w1th dens1tles p and q), then the Kullback-Leibler

divergence is given as
PP Q)= [ pinan,

and alternatively denoted by Dky.(p || ¢). We also recall that the Jensen-Shannon divergence
is a symmetrized version of the Kullback-Leibler divergence. It is defined for any probability
measures P and Q on E by

Djys(P,Q) = %DKL<P H P+Q> +§DKL<Q H P+Q>7

and satisfies 0 < Dys(P, Q) < In2. The square root of the Jensen-Shannon divergence is a metric
often referred to as Jensen-Shannon distance (Endres and Schindelin, 2003). When P and QO
have densities p and g with respect to 1, we use the notation Djs(p,g) in place of Dys(P, Q).

For a generator Gy and an arbitrary discriminator D € &, the criterion L(6,D) to be
optimized in (2.1.2) is but the empirical version of the probabilistic criterion

L(6,D)“ / In(D)podp + / In(1 — D) pedu.

We assume for the moment that the discriminator class & is not restricted and equals Z.., the
set of all Borel functions from E to [0, 1]. We note however that, for all 6 € 0,

0> sup L(6,D) > —ln2</p*du+/p9d,u> = —In4,
DE D
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so that infgc@ suppcg,_L(0,D) € [—1n4,0]. Thus,

inf sup L(0,D) = inf sup L(6,D).
60 peg., 9€0 peg..:L(6,D)>—oco

This identity points out the importance of discriminators such that L(6,D) > —oo, which we
call 8-admissible. In the sequel, in order to avoid unnecessary problems of integrability, we
only consider such discriminators, keeping in mind that the others have no interest.

Of course, working with Z., is somehow an idealized vision, since in practice the discrimi-
nators are always parameterized by some parameter @ € A, A C R?. Nevertheless, this point
of view is informative and, in fact, is at the core of the connection between our generative
problem and the Jensen-Shannon divergence. Indeed, taking the supremum of L(6,D) over
D, We have

sup L(6,D) = sup [ [In(D)p,+In(1—D)pg|du
DEDw DEDw

S/ sup [In(D)p,+In(1—D)pg|du
DeDw
=L(6,Dp),

where
o def Px

® petpe
(We use throughout the convention 0/0 = 0 and > x 0 = 0.) By observing that L(6,D}) =
2Djs(px, pg) — In4, we conclude that, for all 6 € O,

(2.2.1)

sup L(G,D) = L(Q,Dg) = 2Djs(p*,p9) —In4.
DEDw

In particular, Dj is 8-admissible. The fact that D} realizes the supremum of L(6,D) over
Y. and that this supremum is connected to the Jensen-Shannon divergence between p, and
Peo appears in the original article by Goodfellow et al. (2014). This remark has given rise to
many developments that interpret the adversarial problem (2.1.2) as the empirical version of
the minimization problem infg Dys(p«, pg) over ®. Accordingly, many GANs algorithms try
to learn the optimal function D}, using for example stochastic gradient descent techniques
and mini-batch approaches. However, it remains to prove that D} is unique as a maximizer
of L(6,D) over all D. The following theorem, which completes a result of (Goodfellow et al.,
2014), shows that this is the case in some situations.
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Theorem 2.2.1. Let 6 € ® and D € P, be such that L(6,D) = L(6,Dy). Then D = D} on
the complementary of the set {p, = pg = 0}. In particular, if W({px = pg =0}) =0, then
the function Dy, is the unique discriminator that achieves the supremum of the functional
D L(0,D) over P, ie.,

{Dp} =argmax L(6,D).
DEDes

Before proving the theorem, it is important to note that if we dot not assume that y({p, =
po =0}) =0, then we cannot conclude that D = D}y pi-almost everywhere. To see this, suppose

that pg = p,. Then, whatever D € Z., is, the discriminator D1y, -0y + D1y, —o) satisfies
L(6,Dy1{ 50y +D1ypg—01) = L(0,Dj).

This simple counterexample shows that uniqueness of the optimal discriminator does not hold

in general.

Proof. Let D € 2., be a discriminator such that L(6,D) = L(6,D}). In particular, L(6,D) >
—oo and D is O-admissible. Thus, letting A = {p, = pg =0} and f,, = p,In(a) + pgIn(l — @)
for o € [0, 1], we see that

/AC (fp = fpy)du = 0.

Since, on A€,

fDS sup fa:fD’é?
o€(0,1]

we have fp = fDE u-almost everywhere on A°. By uniqueness of the maximizer of o — f, on

A€, we conclude that D = D}y p-almost everywhere on A°. O

By definition of the optimal discriminator D}, we have

L(6,Dy) = sup L(0,D) =2Djs(px,pg) —In4, VO € 0O.
DEDw

Therefore, it makes sense to let the parameter 6* € @ be defined as
L(6%, g*) < L(G,D*Q), VO €0,

or, equivalently,
Dys(ps; o) < Dis(p«,pe), VO €O, (2.2.2)

The parameter 6* may be interpreted as the best parameter in ® for approaching the unknown

density p, in terms of Jensen-Shannon divergence, in a context where all possible discriminators
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are available. In other words, the generator Gy« is the ideal generator, and the density pg~ is
the one we would ideally like to use to generate fake samples. Of course, whenever p, € &
(i.e., the target density is in the model), then p, = pg+, Dys(p«, pe+) = 0, and D} = 1/2. This
is, however, a very special case, which is of no interest, since in the applications covered by
GAN:Ss, the data are usually so complex that the hypothesis p, € &2 does not hold.

In the general case, our next theorem provides sufficient conditions for the existence and
uniqueness of 8*. For P and Q probability measures on E, we let §(P,Q) = /Djs(P,Q), and
recall that § is a distance on the set of probability measures on E (Endres and Schindelin, 2003).
We let dp, = p.du and, for all 6 € @, dPy = pedu.

Theorem 2.2.2. Assume that the model &2 = {Py}gce@ is convex and compact for the metric §.
If px > 0 u-almost everywhere, then there exists a unique p € & such that

{p} =argmin Dys(p., p).
peEP

In particular, if the model &2 is identifiable, then

{6*} =argmin L(60,Djy)
0cO
or, equivalently,

{6*} =argmin Dys(py, pe).
)

We note that the identifiability assumption in the second statement of the theorem is hardly
satisfied in the high-dimensional context of (deep) neural networks. In this case, it is likely
that several parameters 6 yield the same function (generator), so that the parametric setting is
potentially misspecified. However, if we think in terms of distributions instead of parameters,

then the first part of Theorem 2.2.2 ensures existence and uniqueness of the optimum.

Proof. Assuming the first part of the theorem, the second one is obvious since L(0,Dj) =
Suppecg. L(0,D) = 2Dys(p4, pg) — In4. Therefore, it is enough to prove that there exists a
unique density p of & such that

{p} =argmin Dys(ps, p).
pEY

Existence. Since & is compact for 9, it is enough to show that the function

P - R+
P — Djs(p*,P)
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is continuous. But this is clear since, for all P;,P, € &2,

5(ps, P1) — 8(ps, P2)| < 8(P1, P,) by
the triangle inequality. Therefore, argmin,,¢c 5 Dis(p«, p) # 0.
Uniqueness. For a > 0, we consider the function F, defined by

2 2
Fa(x):aln< 4 >+xln< a >, x>0,
a-+x a-+t+x

with the convention 0In0 = 0. Clearly, F,/ (x) = )ﬁ which shows that Fj, 1s strictly convex

whenever a > 0. We now proceed to prove that L' (1) D & 3 p + Dys(p«, p) is strictly convex
as well. Let A € (0,1) and py,p2 € & with p; # pa, i.e., u({p1 # p2}) > 0. Then

Dis(pApr+(1=2)p2) = [ Fyp.(pr+(1=2)p2)du

= [ Fulpdut [ Fppi(1-A)p)da.
{p1=p2} {p1#p2}
By the strict convexity of F),, over {p, > 0}, we obtain

Djys(px,Ap1+(1—=24)p2)

</ F*pd—l—l/ F*pd+1—7t/ F,, (p2)du,
{p1=p2} p(pr)dp {p1#p2} p(pr)dp >{p1#pz} . (P2)dp

which implies
Dys(ps, Ap1+ (1 —A)p2) < ADys(p«,p1) + (1 —A)Dys(ps, p2)-

Consequently, the function L' (1) D &2 3 p + Dis(ps, p) is strictly convex, and its argmin
over the convex set & is either the empty set or a singleton. ]

Remark 2.2.1. There are simple conditions for the model &7 = {Pg}gce to be compact for

the metric O. It is for example enough to suppose that © is compact, & is convex, and
(i) Forall x € E, the function 0 — pg(x) is continuous on ©;
(ii) One has sup g g\ |PoInpe/| € L'(u).

Let us quickly check that under these conditions, &7 is compact for the metric 8. Since ©
is compact, by the sequential characterization of compact sets, it is enough to prove that if
© D (6,), converges to 0 € O, then Dys(pg, ps,) — 0. But,

2pe 2pg
Djs(pe, po, Z/[Pelﬂ <—) + pe,In (—">]dl~h
( ) Pe + Pe, Po + Do,
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By the convexity of &, using (i) and (ii), the Lebesgue dominated convergence theorem shows

that Dys(pe, pe,) — 0, whence the result.

Interpreting the adversarial problem in connection with the optimization program
infgce Dis(p«, pe) is a bit misleading, because this is based on the assumption that all possible
discriminators are available (and in particular the optimal discriminator D). In the end this
means assuming that we know the distribution p,, which is eventually not acceptable from
a statistical perspective. In practice, the class of discriminators is always restricted to be a
parametric family 2 = {Dgq }qen, A C R, and it is with this class that we have to work. From
our point of view, problem (2.1.2) is a likelihood-type problem involving two parametric fami-
lies ¢ and Z, which must be analyzed as such, just as we would do for a classical maximum
likelihood approach. In fact, it takes no more than a moment’s thought to realize that the key
lies in the approximation capabilities of the discriminator class & with respect to the functions

g, 0 € O. This is the issue that we discuss in the next section.

2.3 Approximation properties

In the remainder of the article, we assume that 0* exists, keeping in mind that Theorem 2.2.2
provides us with precise conditions guaranteeing its existence and its uniqueness. As pointed
out earlier, in practice only a parametric class Z = {Dg }qen, A C RY, is available, and it is
therefore logical to consider the parameter 8 € @ defined by

sup L(6,D) < sup L(0,D), V6 c0O.

De9 Dey
(We assume for now that 6 exists—sufficient conditions for this existence, relating to com-
pactness of ® and regularity of the model &2, will be given in the next section.) The density
pg is thus the best candidate to imitate pg+, given the parametric families of generators ¢ and
discriminators &. The natural question is then: is it possible to quantify the proximity between
pg and the ideal pg~ via the approximation properties of the class 27 In other words, if Z is
growing, is it true that pg approaches pg+, and in the affirmative, in which sense and at which
speed? Theorem 2.3.1 below provides a first answer to this important question, in terms of
excess of Jensen-Shannon error Dys(p«, pg) — Dis(px«, pe+). To state the result, we will need
an assumption.

Let || - ||2 be the L?>(u) norm. Our condition guarantees that the parametric class & is rich

enough to approach the discriminator Dg in the L? sense. In the remainder of the section, it is
assumed that D € L*(u).
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Assumption (H¢) There exist € > 0, m € (0,1/2),and D € 2 NL*(u) such that m < D <
1 —mand ||D—Djl[> <e.

We observe in passing that such a discriminator D is 0-admissible. We are now equipped
to state our approximation theorem. For ease of reading, its proof is postponed to Section 2.A.

Theorem 2.3.1. Assume that, for some M > 0, p,, < M and pg < M. Then, under Assumption
(Hg) with € < 1/(2M), there exists a positive constant ¢ (depending only upon m and M) such
that

0 < Dys(ps, pg) — Dis(ps, po+) < c€>. (2.3.1)

This theorem points out that if the class & is rich enough to approximate the discriminator
Dg in such a way that |D — Dg || < € for some small €, then working with a restricted class
of discriminators ¥ instead of the set of all discriminators Z.. has an impact that is not larger
than a O(&?) factor with respect to the excess of Jensen-Shannon error. It shows in particular

that the Jensen-Shannon divergence is a suitable criterion for the problem we are examining.

2.4 Statistical analysis

The data-dependent parameter 8, achieves the infimum of the adversarial problem (2.1.2).
Practically speaking, it is this parameter that will be used in the end for producing fake data,
via the associated generator G,. We first study in Subsection 2.4.1 the large sample properties
of the distribution py4 via the excess of Jensen-Shannon error Djs(p«, py) — Dys(p«, pe+), and
then state in Subsection 2.4.2 the almost sure convergence and asymptotic normality of the
parameter 0 as the sample size n tends to infinity. Throughout, the parameter sets @ and A are
assumed to be compact subsets of R” and RY, respectively. To simplify the analysis, we also

assume that (1(E) < oo. In this case, every discriminator is in L”(u) for all p > 1.

2.4.1 Asymptotic properties of GANs

As for now, we assume that we have at hand a parametric family of generators 4 = {Gg }gco,
©® C R”, and a parametric family of discriminators % = {Dg }qen, A C RY. We recall that the
collection of probability densities associated with ¢4 is & = {pg }9co, Where Gg(Z) £ podu
and Z is some low-dimensional noise random variable. In order to avoid any confusion, for
a given discriminator D = D, we use the notation L(8, &) (respectively, L(0, )) instead of
L(6,D) (respectively, L(6,D)) when useful. So,

» 1 ¢ 1<
L(G,OC) = Z ZlnDa(Xi) + ; Zln(l — Dy OG@(Z,‘)),
i=1 i=1
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and
1(6,0) = [ In(Da)pedu+ [ 1n(1 - Da)podp

We will need the following regularity assumptions:
Assumptions (Hc,)

(Hp) There exists k € (0,1/2) such that, for all o« € A, k < Dg < 1 — k. In addition, the
function (x, &) — Dg(x) is of class C!, with a uniformly bounded differential.

(Hg) For all z € RY, the function 6 — Gg(z) is of class C!, uniformly bounded, with a

uniformly bounded differential.

(H,) Forallx € E, the function 6 — pg(x) is of class C!, uniformly bounded, with a uniformly
bounded differential.

Note that under (Hp), all discriminators in {Dy}4eca are 0-admissible, whatever 6. All of
these requirements are classic regularity conditions for statistical models, which imply in
particular that the functions L(6, ) and (8, &) are continuous. Therefore, the compactness of
O guarantees that § and 0 exist. Conditions for the existence of 6* are given in Theorem 2.2.2.

We have known since Theorem 2.3.1 that if the available class of discriminators & ap-
proaches the optimal discriminator Dg by a distance not more than €, then Dys(ps,pg) —
Dys(px, pe+) = O(€?). Tt is therefore reasonable to expect that, asymptotically, the difference
Dys(p«, pg) — Dys(p«, pe+) will not be larger than a term proportional to €%, in some proba-
bilistic sense. This is precisely the result of Theorem 2.4.1 below. In fact, most articles to date
have focused on the development and analysis of optimization procedures (typically, stochastic-
gradient-type algorithms) to compute 6, without really questioning its convergence properties
as the data set grows. Although our statistical results are theoretical in nature, we believe that
they are complementary to the optimization literature, insofar as they offer guarantees on the
validity of the algorithms.

In addition to the regularity hypotheses, we will need the following requirement, which is a
stronger version of (Hg):

Assumption (H}) There exist € > 0 and m € (0,1/2) such that: for all 6 € O, there exists
D e P suchthatm <D <1—mand ||D—Djl|» <e.

We are ready to state our first statistical theorem.

Theorem 2.4.1. Assume that, for some M >0, p, <M and pg < M for all 0 € ©. Then, under
Assumptions (Hreg) and (Hy) with € < 1/(2M), one has

EDjs(ps, pg) — Dis(p«; po+) = O<82 + —>
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Remark 2.4.1. The constant hidden in the O term scales as p + q. Knowing that (deep) neural
networks, and thus GANs, are often used in the so-called overparameterized regime (i.e., when
the number of parameters exceeds the number of examples), this limits the impact of the result
in the neural network context, at least when p + q is large with respect to \/n. For instance,
successful applications of GANs on common datasets such as LSUN (\/n ~ 1740) and FACES
(v/n =~ 590) make use of more than 1500000 parameters (Radford et al., 2015).

Proof. Fix € € (0,1/(2M)) as in Assumption (H%), and choose D € Z suchthatm <D < 1—m
and ||D — Dy
of ), we conclude that there exists a constant ¢; > 0 such that

» < €. By repeating the arguments of the proof of Theorem 2.3.1 (with 0 instead

2D]3(p*,pé) < C182 —|—L(é,b) +1n4 < 0182 + sup L(é,a) +1n4.
acA

Therefore,

2Djs(ps, pg) < cie?+ sup  |L(6,0) —L(6,0)|+ sup L(B,0) +1n4
0cO,0cA acA

=cie24+ sup |L(6,0)—L(6, )|+ inf sup L(6,a)+In4

0€@,acA 0€0 gep
(by definition of é)
<c1€242 sup |L(6,a)—L(6,a)|+ inf sup L(6,c) +In4.
0cO,acA 0€0 gecp

So,

2Djs(ps,pg) < c1e? 42 sup IL(6,0) —L(6,a)| + inf sup L(6,D)+In4
0cO,acA 6€O pe g,

—c1e2+2 sup |L(B,a) —L(O,a)| +L(6%,Dj.) +1In4
60cO,aeA

(by definition of 6*)
:C182+2DJS(p*ap9*)+2 sup |i’(97a)_l‘(93a)|
60cO,0cA

Thus, letting ¢, = ¢1/2, we have

Dys(ps,pg) — Dis(pes po) < c2e*+ sup  |L(68,a) —L(0, ). (24.1)
60cO,0cA

Clearly, under Assumptions (Hp), (Hg), and (H,), (L(0,a) — L(6,@))gco aca is a separable
subgaussian process (e.g., van Handel, 2016, Chapter 5) for the distance d = S|| - || /+/n, where
|| - || is the standard Euclidean norm on R? x R and § > 0 depends only on the bounds in (Hp)
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and (Hg). Let N(® x A, || - ||, ) denote the u-covering number of ® x A for the distance || ||.
Then, by Dudley’s inequality (van Handel, 2016, Corollary 5.25),

E sup |L(6,0)—L(6,a)] < —/ VIO X A, |||, u))du (2.4.2)
0cO,aecA
Since ® and A are bounded, there exists r > 0 such that N(® x A, || -||,u) = 1 for u > r and

N(© x A,||-||,u) = o((@)””) for u < r

Combining this inequality with (2.4.1) and (2.4.2), we obtain

1
EDJS(p*’pé) —Dis(px;po+) <3 (82 + %),

for some positive constant c3 that scales as p 4+ ¢g. The conclusion follows by observing that, by
(2.2.2),

DJS(P*vP@*) S DJS(p*upé)'
[l

Theorem 2.4.1 is illustrated in Figure 2.1, which shows the approximate values of

—x/s
EDJS(PMP@)- We took p,(x) = (lie#

s = 0.33), and let ¢ and Z be two fully connected neural networks parameterized by weights

(centered logistic density with scale parameter

and offsets. The noise random variable Z follows a uniform distribution on [0, 1], and the
parameters of ¢ and & are chosen in a sufficiently large compact set. In order to illustrate the
impact of € in Theorem 2.4.1, we fixed the sample size to a large n = 100000 and varied the
number of layers of the discriminators from 2 to 5, keeping in mind that a larger number of
layers results in a smaller €. To diversify the setting, we also varied the number of layers of
the generators from 2 to 3. The expectation EDjs(p«, pg) was estimated by averaging over 30
repetitions (the number of runs has been reduced for time complexity limitations). Note that we
do not pay attention to the exact value of the constant term Dys(py, pg~), which is intractable
in our setting.

Figure 2.1 highlights that EDjs(px, py) approaches the constant value Djs(px, peo+) as
€ ] 0, i.e., as the discriminator depth increases, given that the contribution of 1/4/n is certainly
negligible for n = 100000. Figure 2.2 shows the target density p, vs. the histograms and kernel
estimates of 100000 data sampled from G4(Z), in the two cases: (discriminator depth = 2,
generator depth = 3) and (discriminator depth = 5, generator depth = 3). In accordance with the
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Fig. 2.1 Bar plots of the Jensen-Shannon divergence Djs(px, py) With respect to the number of
layers (depth) of both the discriminators and generators. The height of each rectangle estimates
EDss(p+, pg)-

decrease of IEDjs(p«, py), the estimation of the true distribution p, improves when € becomes
small.
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(a) Discriminator depth = 2, generator depth = 3.(b) Discriminator depth = 5, generator depth = 3.

Fig. 2.2 True density p,, histograms, and kernel estimates (continuous line) of 100000 data
sampled from G4(Z). Also shown is the final discriminator Dy

Some comments on the optimization scheme. Numerical optimization is quite a tough
point for GANSs, partly due to nonconvex-concavity of the saddle point problem described
in equation (2.1.2) and the nondifferentiability of the objective function. This motivates a
very active line of research (e.g., Goodfellow et al., 2014; Nowozin et al., 2016; Arjovsky

et al., 2017), which aims at transforming the objective into a more convenient function and
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devising efficient algorithms. In the present paper, since we are interested in original GANSs,
the algorithmic approach described by Goodfellow et al. (2014) is adopted, and numerical
optimization is performed thanks to the machine learning framework TensorFlow, working
with gradient descent based on automatic differentiation. As proposed by Goodfellow et al.
(2014), the objective function 8 — sup, 4 L(6,a) is not directly minimized. We used instead
an alternated procedure, which consists in iterating (a few hundred times in our examples) the
following two steps:

(i) For a fixed value of 6 and from a given value of o, perform 10 ascent steps on L(6), -);

(ii) For a fixed value of a and from a given value of 0, perform 1 descent step on 6 —
—Y" In(Dg 0 Gy(Z;)) (instead of 0 — Y*_ In(1 — Dy 0 Go(Z;))).

This alternated procedure is motivated by two reasons. First, for a given 6, approximating
SUPgen L(6,a) is computationally prohibitive and may result in overfitting the finite training
sample (Goodfellow et al., 2014). This can be explained by the shape of the function 8 —
SUPgen L(6,a), which may be almost piecewise constant, resulting in a zero gradient almost
everywhere (or at best very low; see Arjovsky et al., 2017). Next, empirically, — In(Dy 0 Gg(Z;))
provides bigger gradients than In(1 — Dy 0 G¢(Z;)), resulting in a more powerful algorithm
than the original version, while leading to the same minimizers.

In all our experiments, the learning rates needed in gradient steps were fixed and tuned
by hand, in order to prevent divergence. In addition, since our main objective is to focus
on illustrating the statistical properties of GANSs rather than delving into optimization issues,
we decided to perform mini-batch gradient updates instead of stochastic ones (that is, new
observations of X and Z are not sampled at each step of the procedure). This is different of
what is done in the original algorithm of Goodfellow et al. (2014).

All in all, we realize that our numerical approach—although widely adopted by the machine
learning community—may fail to locate the desired estimator 8 (i.e., the exact minimizer in 6
of supyeq L(6,a)) in more complex contexts than those presented in the present paper. It is
nevertheless sufficient for our objective, which is limited to illustrating the theoretical results

with a few simple examples.

2.4.2 Asymptotic properties of 0

Theorem 2.4.1 states a result relative to the excess of Jensen-Shannon error Djs(px, pg) —
Djs(p«, pe+). We now examine the convergence properties of the parameter 0 itself as the
sample size n grows. We would typically like to find reasonable conditions ensuring that 8 — 6
almost surely as n — oo. To reach this goal, we first need to strengthen a bit the Assumptions
(Hreg), as follows:
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Assumptions (H}.,)

reg

(H},) There exists k € (0,1/2) such that, for all @ € A, k < Dy < 1 — k. In addition, the
function (x, &) — Dy (x) is of class C2, with differentials of order 1 and 2 uniformly
bounded.

(Hj;) Forallz e RY', the function 6 — Gy (z) is of class C?, uniformly bounded, with differen-

tials of order 1 and 2 uniformly bounded.

(H,) Forallx € E, the function 8 > pg(x) is of class C 2, uniformly bounded, with differentials

of order 1 and 2 uniformly bounded.

It is easy to verify that under these assumptions the partial functions 6 —» I:(G, o) (respectively,
6 L(6,a))and o +— L(0, ) (respectively, a — L(8, a)) are of class C2. Throughout, we let
0 =(61,...,60,), a=(ay,...,0q,), and denote by a%i and a%j the partial derivative operations
with respect to 6; and ¢;. The next lemma will be of constant utility. In order not to burden the

text, its proof is given in Section 2.A.

Lemma 2.4.1. Under Assumptions (Hy,), ¥(a,b,c,d) € {0, 1,2}* such that a+b < 2 and
c+d <2, one has

aa+b+c+d R aa+b+c+d
L(e’a)__a 900 acaad
8706/ dogday,

sup L(6,0)| — 0 almost surely,

0co.ac |06/ d0%dafda

forall (i, j) € {1,...,p}* and (¢,m) € {1,...,q}*

We recall that 6 € O is such that

sup L(0,a) < sup L(0,a), VO €O,
ocA ocA

and insist that 6 exists under (Hyeg) by continuity of the function 6 + supyc, L(6, o). Simi-

larly, there exists & € A such that

L(6,a) >L(6,0), YacA.

=]l

The following assumption ensures that 6 and & are uniquely defined, which is of course a key
hypothesis for our estimation objective. Throughout, the notation S° (respectively, dS) stands
for the interior (respectively, the boundary) of the set S.

Assumption (H;) The pair (6, &) is unique and belongs to @° x A°.
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Finally, in addition to é, we let & € A be such that

~

L(6,6)>L(0,), VacA.

Theorem 2.4.2. Under Assumptions (H].,) and (H), one has

reg

0 — 0 almost surely and @& — & almost surely.
Proof. We write

| sup L(6,0) — sup L(0, 00)]
aEA acA

< |sup L(6, ) — sup L(6, )|+ | inf sup L(6,a) — inf sup L(6, )]
acA acA 0€0 geA 0€0 geA

<2 sup |L(6,a)—L(6,a)|.
0cO,aeA

Thus, by Lemma 2.4.1, sup,cx L(é, Q) — supgea L(0, ) almost surely. In the lines that
follow, we make more transparent the dependence of 6 in the sample size n and set 6, = 6.
Since 6, € ® and O is compact, we can extract from any subsequence of ( én)n a subsequence
(énk)k such that énk — z € O (with n = ni(®), i.e., it is almost surely defined). By continuity
of the function 6 — supyc 4 L(8, ), we deduce that supye 4 L(6y,, @) — supgeq L(z, @), and
S0 SUpgep L(z, @) = supyep L(O, &). Since 0 is unique by (H; ), we have z = 6. In conclusion,
we can extract from each subsequence of (@n) . a subsequence that converges towards 0: this
shows that 6, — 6 almost surely.

Finally, we have

< |L(8, &)~ L(6, )|+ |L(6, &) — £(8,&)| + |L(8,&) — L(8, )|
= |L(6,8&) —L(,&)|+|L(6,&) —L(6,&)| +| inf sup L(6, ) — inf sup L(6, )|
€0 geA 0€0 gen
< sup |L(B,a) —L(8,a)|+2 sup |L(6,)—L(6,ax)|.
acA CISON 1SN

Using Assumptions (Hp) and (H,,), and the fact that 6 — 6 almost surely, we see that the
first term above tends to zero. The second one vanishes asymptotically by Lemma 2.4.1, and
we conclude that L(8, &) — L(0, &) almost surely. Since & € A and A is compact, we may
argue as in the first part of the proof and deduce from the uniqueness of & that & — @ almost
surely. ]
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To illustrate the result of Theorem 2.4.2, we undertook a series of small numerical experi-
ments with three choices for the triplet (true p, + generator model &2 = {pg}gce + discrimina-
tor family & = {Dy } e ), Which we respectively call the Laplace-Gaussian, Claw-Gaussian,
and Exponential-Uniform model. They are summarized in Table 2.1. We are aware that more
elaborate models (involving, for example, neural networks) can be designed and implemented.
However, our objective is not to conduct a series of extensive simulations, but simply to illus-
trate our theoretical results with a few graphs to get some better intuition and provide a sanity
check. We stress in particular that these experiments are in one dimension and are therefore

very limited compared to the way GANSs algorithms are typically used in practice.

Model Px P = {PO}GE@ 9 ={Dg}uecn
|x] _xt
Laplace-Gaussian L% 92 1
P 2b \/ﬁe L e 2y

a
b=15 0O= [101103] A=0x0

Claw-Gaussian Pelaw (X) e 292

\/EG 1_‘_%8%(“1_27“0_2)
0=[10"110] A=0x06
Exponential-Uniform  Ae ** él[ 6](x) " 21 o

A=1 0=[07310] A=0x06

Table 2.1 Triplets used in the numerical experiments.

Figure 2.3 shows the densities p,. We recall that the claw density on [0,) takes the form

1 1
Pclaw = §<p(0, 1)+ E(<p(—1,0.1) +¢(—0.5,0.1) + ¢(0,0.1) + ¢(0.5,0.1) + ¢(1,0.1)),

where @ (U, o) is a Gaussian density with mean y and standard deviation o (this density is
borrowed from Devroye, 1997).

In the Laplace-Gaussian and Claw-Gaussian examples, the densities pg are centered
Gaussian, parameterized by their standard deviation parameter 0. The random variable Z is
uniform [0, 1] and the natural family of generators associated with the model &2 = {pg }gco is
¢ ={Gg}9co, Where each Gy is the generalized inverse of the cumulative distribution function
of pg (because Gg(Z) Z pedyt). The rationale behind our choice for the discriminators is based
on the form of the optimal discriminator D}, described in (2.2.1): starting from

Px
Pxtpo’

Dy = 0co,
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—e— laplace
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0.6
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Fig. 2.3 Probability density functions p, used in the numerical experiments.

we logically consider the following ratio

Dy= Lo o= (0, 0) EA=0x0.

P+ Pay
Figure 2.4 (Laplace-Gaussian), Figure 2.5 (Claw-Gaussian), and Figure 2.6 (Exponential-
Uniform) show the boxplots of the differences 6 — 6 over 200 repetitions, for a sample size
n varying from 10 to 10000. In these experiments, the parameter 0 is obtained by averaging
the 6 for the largest sample size n. In accordance with Theorem 2.4.2, the size of the boxplots
shrinks around 0 when n increases, thus showing that the estimated parameter 6 is getting
closer and closer to 8. Before analyzing at which rate this convergence occurs, we may have a
look at Figure 2.7, which plots the estimated density p4 (for n = 10000) vs. the true density
Px. It also shows the discriminator Dg, together with the initial density pg, . and the initial
discriminator Dy, . fed into the optimization algorithm. We note that in the three models, Dy,
is almost identically 1/2, meaning that it is impossible to discriminate between the original
observations and those generated by pg.

In line with the above, our next step is to state a central limit theorem for 6. Although simple
to understand, this result requires additional assumptions and some technical prerequisites. One
first needs to ensure that the function (6, a) — L(0, &) is regular enough in a neighborhood
of (8,&). This is captured by the following set of assumptions, which require in particular
the uniqueness of the maximizer of the function & — L(0, ) for a  around 8. For a
function F : ® — R (respectively, G : @ x A — R), we let HF (0) (respectively, HG(6, )
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Fig. 2.4 Boxplots of 6 — 6 for different sample sizes (Laplace-Gaussian model, 200 repeti-
tions).
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Fig. 2.5 Boxplots of 6 — @ for different sample sizes (Claw-Gaussian model, 200 repetitions).
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Fig. 2.6 Boxplots of § — 6 for different sample sizes (Exponential-Uniform model, 200
repetitions).
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Fig. 2.7 True density p,, estimated density pg, and discriminator Dy for n = 10000 (from
left to right: Laplace-Gaussian, Claw-Gaussian, and Exponential-Uniform model). Also
shown are the initial density pg, . and the initial discriminator Dy, , fed into the optimization
algorithm.
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and H,G(6,a)) be the Hessian matrix of the function 6 — F(60) (respectively, 6 — G(0, )
and o — G(6,)) computed at 0 (respectively, at 6 and o).
Assumptions (H,)

(Hy) There exists a neighborhood U of 6 and a function & : U — A such that

argmax L(0,0) ={(0)}, VO €eU.

acA

(Hy) The Hessian matrix HV () is invertible, where V(0) = L(0, a(8)).
(Hy) The Hessian matrix H,L(0, &) is invertible.

We stress that under Assumption (Hy), there is for each 6 € U a unique a(6) € A such

that L(6,a(0)) = supyea L(6, ). We also note that ¢¢(6) = & under (H;). We still need
some notation before we state the central limit theorem. For a function f(6,), V| f(6,x)
(respectively, V,f(60,a)) means the gradient of the function 8 — f(6,a) (respectively, the
function @ — f(6,a)) computed at 0 (respectively, at ¢). For a function g(¢), J(g); is the

Jacobian matrix of g computed at . Observe that by the envelope theorem,
HV(0)=H\L(6,&)+J(VIL(D,"))al (),
where, by the chain rule,
J(a)g = —HaL(0,&) ' J(VLL(-, &))5.

Therefore, in Assumption(Hy ), the Hessian matrix HV () can be computed with the sole
knowledge of L. Finally, we let

£1(6,@) =InDq(X1) +In(1 — Dy 0 Go(Z1)),

and denote by — the convergence in distribution.

Theorem 2.4.3. Under Assumptions (Hye,), (H1), and (Hioc), one has

where Z is a Gaussian random variable with mean O and covariance matrix

V= Var[—HV(0)'Vi£1(6,&)+HV(8) 'J(VIL(D,-))aHhL(0,8) ' V2£1(8,&)].
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The expression of the covariance is relatively complex and, unfortunately, cannot be
simplified, even for a dimension of the parameter equal to 1. We note however that if Y is a
random vector of R” whose components are bounded in absolute value by some 6 > 0, then
the Euclidean norm of the covariance matrix of Y is bounded by 4p82. But each component of
the random vector of R” involved in the covariance matrix V is bounded in absolute value by
Cpq?, for some positive constant C resulting from Assumption (Hr’eg) We conclude that the
Euclidean norm of V is bounded by 4C%p3¢*. Thus, our statistical approach reveals that in the
overparameterized regime (i.e, when p and ¢ are very large compared to n), the estimator 8 has
a large dispersion around 8, which may affects the performance of the algorithm.

Nevertheless, the take-home message of Theorem 2.4.3 is that the estimator 6 is asymp-
totically normal, with a convergence rate of /n. This is illustrated in Figures 2.8, 2.9, and
2.10, which respectively show the histograms and kernel estimates of the distribution of
/(6 — ) for the Laplace-Gaussian, the Claw-Gaussian, and the Exponential-Uniform
model in function of the sample size n (200 repetitions).

Proof. By technical Lemma 2.A.1, we can find under Assumptions (Hy,,) and (H;) an open
set V. C U C O° containing 0 such that, for all 6 € V, a(0) € A°. In the sequel, to lighten
the notation, we assume without loss of generality that V = U. Thus, for all 8 € U, we
have a(0) € A° and L(6,0t(0)) = supge, L(0, @) (with @(0) = & by (H;)). Accordingly,
VLL(0,x(0)) =0,Y0 € U. Also, since H,L(8, &) is invertible by (Hy) and since the function
(6,a) — H>L(6,a) is continuous, there exists an open set U’ C U such that H,L(0, ) is
invertible as soon as (0, ) € (U’, o (U’)). Without loss of generality, we assume that U’ = U.
Thus, by the chain rule, the function « is of class C? in a neighborhood U’ C U of 8, say

U’ = U, with Jacobian matrix given by
J(a)o = —H,L(0,0(0)) ' J(V2L(-,(0))),, VO EU.

We note that H,L(0,a(0)) ! is of format g x g and J(V,L(-, ot(0)))g of format g x p.
Now, for each 8 € U, we let &(0) be such that L(0,6(8)) = supye4 L(6, ). Clearly,

IL(6,6(6)) —L(6,(6))| < |L(6,6(0)) —L(8,6(0))| +|L(6,6(8)) — L(8, x(6))|
< sup |L(6,0) —L(6, )|+ | sup L(6, ) — sup L(6, )|

acEA aEA aEA

< 2sup |£(6, ) —L(6,a)|.
acEA

Therefore, by Lemma 2.4.1, supg; |L(0,6(0)) —L(0,®(0))| — 0 almost surely. The event
on which this convergence holds does not depend upon 6 € U, and, arguing as in the proof of
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Fig. 2.8 Histograms and kernel estimates (continuous line) of the distribution of \/ﬁ(é — ) for
different sample sizes n (Laplace-Gaussian model, 200 repetitions).

Theorem 2.4.2, we deduce that under (H;), P(&(0) - a(0)vV0 € U) = 1. Since a(0) € A°
for all 6 € U, we also have P(&(60) € A°VO € U) — 1 as n — . Thus, in the sequel, it will
be assumed without loss of generality that, for all 6 € U, &(0) € A°.

Still by Lemma 2.4.1, supgcp gea |HL(0,a) — HoL(6, o) || — 0 almost surely. Since
H,L(0, ) is invertible on U x o(U), we have

P(H,L(6, ) invertible V(6,00) € U x a(U)) — 1.

Thus, we may and will assume that H,L(0, &) is invertible for all (8, ) € U x a(U).
Next, since &(6) € A° for all @ € U, one has V,L(8,6(0)) = 0. Therefore, by the chain
rule, & is of class C2 on U, with Jacobian matrix

J(6)g = —H,L(6,0(0)) ' J(VoL(-,&(0))),, VO€U.

9’
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Sample size: 10 Sample size: 50 Sample size: 100 Sample size: 200
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Fig. 2.9 Histograms and kernel estimates (continuous line) of the distribution of \/ﬁ(é — ) for
different sample sizes n (Claw-Gaussian model, 200 repetitions).

Let V(0) = 1(6,0(0)) = supycp L(6, ). By the envelope theorem, V is of class C2,
VV(0) =ViL(6,0(0)), and HV(0) = H|L(6,0(60)) +J(V1L(6,))5(6)/ (0t)g. Recall that
6 — 6 almost surely by Theorem 2.4.2, so that we may assume that fco° by (H}). Moreover,
we can also assume that § +7(6 — 8) € U, Vr € [0, 1]. Thus, by a Taylor series expansion with
integral remainder, we have

A

0=VV(0)=VV(6)+ /01 HV(0+1(6—6))dt(6—0). (2.4.3)
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Sample size: 10 Sample size: 50 Sample size: 100 Sample size: 200
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Fig. 2.10 Histograms and kernel estimates (continuous line) of the distribution of \/n(6 — )
for different sample sizes n (Exponential-Uniform model, 200 repetitions).

Since &(8) € A° and L(8,&(0)) = supyep L(0, ), one has V2L(8,&(6)) = 0. Thus,

0="V1L(6,0(6))

By Lemma 2.4.1, since &(8) — «(8) almost surely, we have

1
i / HoL (8, (8) +1(6(8) — a(8)))dt — H,L(B, @) almost surely.
0
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Because H>L(0, &) is invertible, P([; invertible) — 1 as n — oo. Therefore, we may assume,

without loss of generality, that [} is invertible. Hence,

N A, =

0(0) —a(f) = —I,'V,L(6,a(0)). (2.4.4)

Furthermore,

where

By Lemma 2.4.1, [, — J(VL(9, '))a(é) almost surely. Combining (2.4.3) and (2.4.4), we
obtain

A, =

0=V1L(8,a(8)) — bl 'V,L(6, 0(8)) + 5(

D>

_é)’
where |
f3d:°f/ HV (0 +41(6—6))dr.
0

By technical Lemma 2.A.2, we have [3 — HV (0) almost surely. So, by (Hy), it can be assumed
that I3 is invertible. Consequently,

6—0= —f;lvlﬁ(é,a(é)) +i;1f2i;1v21:(é,a(é)),
or, equivalently, since a(8) = @,
0-0=-0L'VL(6,0)+ 1 LI 'V.L(6,@).
Using Lemma 2.4.1, we conclude that \/n(6 — 0) has the same limit distribution as
Sy = —/nHV(0)" 'V 1(6,d) ++nHV(0) '\ J(V1L(8,-)aHoL(6, &) 'V2L(0,&).

Let
6,-(9,05):lnDa(X,-)—Hn(l—DaoGg(Z,-)), 1<i<n.

With this notation, we have

So=—- f (—HV<9>‘1V1€i<é,a) +HV(é>‘IJ<V1L<é7~>>aHzL<é,@>‘1V2€i<9’5‘>)‘
\/ﬁizl
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One has VV(0) = 0, since V(0) = infgceV(0) and 6 € ©°.  Therefore, under
(Hfeg). EV1£i(6,0) = ViE((0,&) = VIL(6,&) = VV(8) = 0. Similarly, EV2/;(6,&) =
Vo E4i(0,00) = VoL(6,a) =0, since L(0, &) = sup,c L(0, &) and & € A°. Using the central
limit theorem, we conclude that

Vn(6-6)%z,

where Z is a Gaussian random variable with mean 0 and covariance matrix

V= Var[—HV(0)'Vi£1(6,&)+HV(8) 'J(VIL(D,-))aHLL(0,8) ' V2£1(6,&)].

2.5 Conclusion and perspectives

In this paper, we have presented a theoretical study of the original Generative Adversarial
Networks (GAN) algorithm, which consists in building a generative model of an unknown
distribution from samples from that distribution. The key idea of the procedure is to simul-
taneously train the generative model (the generators) and an adversary (the discriminators)
that tries to distinguish between real and generated samples. We made a small step towards a
better understanding of this generative process by analyzing some optimality properties of the
problem in terms of Jensen-Shannon divergence in Section 2.2, and explored the role of the
discriminator family via approximation arguments in Section 2.3. Finally, taking a statistical
view, we studied in Section 2.4 some large sample properties (convergence and asymptotic
normality) of the parameter describing the empirically selected generator. Some numerical
experiments were conducted to illustrate the results.

The point of view embraced in the article is statistical, in that it takes into account the
variability of the data and its impact on the quality of the estimators. This point of view is
different from the classical approach encountered in the literature on GANs, which mainly
focuses on the effective computation of the parameters using optimization procedures. In this
sense, our results must be thought of as a complementary insight. We realize however that
the simplified context in which we have placed ourselves, as well as some of the assumptions
we have made, are quite far from the typical situations in which GANs algorithms are used.
Thus, our work should be seen as a first step towards a more realistic understanding of GANs,
and certainly not as a definitive explanation for their excellent practical performance. We give

below three avenues of theoretical research that we believe should be explored as a priority.

1. One of the basic assumptions is that the family of densities { pg } gc@ (associated with the

generators {Gg }gc@) and the unknown density p, are dominated by the same measure
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u on the same subset E of R?. In a way, this means that we already have some kind of
information on the support of p,, which will typically be a manifold in R? of dimension
smaller than d’ (the dimension of Z). Therefore, the random variable Z, the dimension d’
of the so-called latent space R, and the parametric model {Gg }gc@ should be carefully
tuned in order to match this constraint. From a practical perspective, the original article of
Goodfellow et al. (2014) suggests using for Z a uniform or Gaussian distribution of small
dimension, without further investigation. Mirza and Osindero (2014) and Radford et al.
(2015), who have surprisingly good practical results with a deep convolutional generator,
both use a 100-dimensional uniform distribution to represent respectively 28 x 28 and
64 x 64 pixel images. Many papers have been focusing on either decomposing the latent
space R4 to force specified portions of this space to correspond to different variations
(as, e.g., in Donahue et al., 2018) or inverting the generators (e.g., Lipton and Tripathi,
2017; Srivastava et al., 2017; Bojanowski et al., 2018). However, to the best of our
knowledge, there is to date no theoretical result tackling the impact of d’ and Z on the
performance of GANSs, and it is our belief that a thorough mathematical investigation
of this issue is needed for a better understanding of the generating process. Similarly,
whenever the {Gg }gce are neural networks, the link between the networks (number of
layers, dimensionality of ®, etc.) and the target p, (support, dominating measure, etc.)

is also a fundamental question, which should be addressed at a theoretical level.

. Assumptions (Hg) and (H}) highlight the essential role played by the discriminators

to approximate the optimal functions Dj. We believe that this point is critical for the
theoretical analysis of GANs, and that it should be further developed in the context of
neural networks, with a potentially large number of hidden layers.

. Theorem 2.4.2 (convergence of the estimated parameter) and Theorem 2.4.3 (asymptotic

normality) hold under the assumption that the model is identifiable (uniqueness of 6 and
@). This identifiability assumption is hardly satisfied in the high-dimensional context of
(deep) neural networks, where the function to be optimized displays a very wild landscape,
without immediate convexity or concavity. Thus, to take one more step towards a more
realistic model, it would be interesting to shift the parametric point of view and move

towards results concerning the convergence of distributions not parameters.
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Appendix 2.A Technical results

2.A.1 Proof of Theorem 2.3.1

Lete € (0,1/(2M)), m € (0,1/2), and D € & be such thatm <D < 1—mand |[D—Djl|, <e.
Observe that

L(8.D) = [ n(D)p.du+ [ In(1 ~D)pgd

D 1-D
6 76

We first derive a lower bound on the quantity

e D
df/ln p*d/.L—l—/ln D*>p du

= fin We ot fin(U=DLPE0),

Letdp, = p,du, dPy = pgdu,

(1—D)(p«+ps)
J(1=D)(ps+pg)du

D(p.+ pp)

dx =
I D(ps+pg)du

du, and dx' =

Observe, since m < D < 1—m, that p, < K and Py < k’. With this notation, we have

I'=—Dx1(p« || ) = Dx(Pg || ') +1n [/D(P*+Pé)dﬂ(2_/D(P*+Pé)d“)}~ (2.A2)

Since
/D(p* + pg)du = /(D—D?;)(pmtpé)du +1,

the Cauchy-Schwartz inequality leads to

| [ Dlp. + pg)an — 1| < 1D~ Dj allp. + g2

<2MEe, (2.A.3)
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because both p, and pg are bounded by M. Thus,

/D Px+pg)du (2 /D p*+p9)du)} > In(1 —4M?€?)
AM?€?

> (2.A.4)

using the inequality In(1 —x) > —x/(1 —x) for x € [0, 1). Moreover, recalling that the Kullback-
Leibler divergence is smaller than the chi-square divergence, and letting F = F /([ Fdu) for
F e L'(u), we have

Dxr(p« || k) < / (ﬁ - 1>2D(P*+Pé)dﬂ-
«tPa

Hence, letting J = [ D(p, + pg)du, we see that

Dy (p« || ¥)

< %/<P*/D(p*+1ﬂé)du—D(P*eré))zmd“

:~l’/<p*/(D_D3)(p*+Pé)dN+(DE—D)(p*+pé)>2D( :

——du.
P*+pé) #

Since € < 1/(2M), inequality (2.A.3) gives 1/J < ¢ for some constant ¢; > 0. By Cauchy-
Schwarz and (a+b)? < 2(a® + b?), we obtain

Dk (px || %)
X ) pPx+p
§2C1</(/(D—Dg)(l9*+l99)d“) +pe d‘”/ D)’ ed“>
X px+p
<2 (|0 D; lp.+ il | 5o u+/ Dy an).

Therefore, since p, <M, psg <M, and D > m,

aM?  2M
D (pe |l 1) < 261 (F— + =2 ) e,
m m

One proves with similar arguments that

aM?>  2M
DKL(PQ || K') < 2C1 <—+—) 2.
m m
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Combining these two inequalities with (2.A.2) and (2.A.4), we see that [ > —cye? for some
constant ¢ > 0 that depends only upon M and m. Getting back to identity (2.A.1), we conclude
that

2Dys(ps, pg) < c2€* +L(6,D) +In4.

But

L(6,D) < sup L(6,D) < sup L(6*,D)
Dey De9

(by definition of 0)

< sup L(6*,D)
DeDw

= L(G*,Dg*) = ZDJS (p*,pg*) —In4.
Thus,
2Dss(px; pg) < 262 +2Dss(ps, po).-

This shows the right-hand side of inequality (2.3.1). To prove the left-hand side, just note that
by inequality (2.2.2),
Dys(p«, pe+) < Dis(p«, Pg)-

2.A.2 Proof of Lemma 2.4.1

To simplify the notation, we set

aa+b+c+d
A= :
26{967dafdog

Using McDiarmid’s inequality (McDiarmid, 1989), we see that there exists a constant ¢ > 0
such that, for all € > 0,

P

Therefore, by the Borel-Cantelli lemma,

sup |AL(6,a)— AL(8,0)—E  sup |Az(e,a)—AL(9,a)|]28)gze—cnez,
0cO,0cA 0cO,acA

sup |AL(O,a) —AL(8,a)|—E sup |AL(6,a)—AL(6,)| — 0 almost surely.
CISIONVASI,N 0cO,0cA
(2.A5)

It is also easy to verify that under Assumptions (H.,), the process (AL(6,a) —

reg
AL(B,0))pco,aca is subgaussian. Thus, as in the proof of Theorem 2.4.1, we obtain via
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Dudley’s inequality that

N 1
E sup |AL(6,0)—AL(8,0)]=0(—), (2.A.6)
96@,56A| ( ) ( ) (\/ﬁ>

since EAL(6, o) = AL(8, «). The result follows by combining (2.A.5) and (2.A.6).

2.A.3 Some technical lemmas

Lemma 2.A.1. Under Assumptions (Hy,) and (Hy), there exists an open set V. C ©° containing
0 such that, for all © € V, argmax ., L(6, ) NA° # 0.

Proof. Assume that the statement is not true. Then there exists a sequence (6y); C © such that
6, — 0 and, for all k, o € dA, where oy, € argmaxg 4 L(6, o). Thus, since A is compact,
even if this means extracting a subsequence, one has a; — z € dA as k — oo. By the continuity
of L, L(0,04) — L(8,z). But

IL(6,00) —L(6,&)| < |L(6,04) — L(6, o) | +|L(6k, 0) — L(6, )]

< sup |L(0,a) — L(6, )| + | sup L(6, ) — sup L(6, @)
aEA aEA acA

<2sup |L(0,a) — L(6, )|,
oEA

which tends to zero as k — oo by (Hp,) and (H,,). Therefore, L(0,z) = L(6,&) and, in turn,
z=a by (H;). Since z € dA and & € A°, this is a contradiction. [

Lemma 2.A.2. Under Assumptions (HL,), (Hy), and (Hi), one has Iy — HV (8) almost

reg/>

surely.

Proof. We have
. T L L . X
13:/0 HV(9+t(6—9))dt:/0 (HiL(8,0(6)) + I (V1L (81, )) 4, (8) )b
where we set §, = § 4+1(6 — 6). Note that 6, € U for all € [0, 1]. By Lemma 2.4.1,
sup ||H\L(6,,a(6)) — HIL(6,,&(8,))]]

t€[0,1]

< sup ||H{L(6,0) —HL(8,c)|| — 0 almost surely.
0cO,acA
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Also, by Theorem 2.4.2, for all ¢ € [0, 1], 0, — 6 almost surely. Besides,

(6)) —L(6r,(6))| +|L(6,, &(6)) — L(6,x(8)))]
< sup |L(6,a) —L(6;, )| +2 sup |L(6,a)—L(6,0)|.
acA 0cO,acA
Thus, via (Hye,), (H), and Lemma 2.4.1, we conclude that almost surely, for all ¢ € [0, 1],
&(6;) — a(6) = @. Accordingly, almost surely, for all # € [0, 1], HL(6;,(8,)) — H|L(0, &).
Since HL(6,a) is bounded under (Hp) and (H,,), the Lebesgue dominated convergence
theorem leads to

l _
/ H{L(6;,6(6,))dt — H\L(6,&) almost surely. (2.A.7)
0
Furthermore,

J(&)o = —HoL(6,0(0)) ' T (VoL (-, &(0))),. V(6,a) €U xa(l),
where U is the open set defined in the proof of Theorem 2.4.3. By the cofactor method,

H>L(6, )~ ! takes the form

é(0,a)

HyL(6,0)7 ! = . :
2L(6, @) det(H,L(0,a))

where ¢(0, «) is the matrix of cofactors associated with H,L (8, a). Thus, each component
of —H,L(0,a)"'J(V,L(-,))g is a quotient of a multilinear form of the partial derivatives
of L evaluated at (8, a) divided by det(H,L(0,)), which is itself a multilinear form in the

ag,-?aj (6, ). Hence, by Lemma 2.4.1, we have

sup  |[HoL(6,0) \I(Val(-,a))g — HoL(8, ) ' J(V1L(-, @))g|| — O almost surely.
ocU,aco(U)

So, for all n large enough,

SEJP] 17(&) g, + HaL(;,0(6,)) T (VaL(-, &(6))))
t€|0,1

< sup ||H2i‘(97a)_1‘](v2i‘('7a))9_HZL(eaa)_lJ(VZL('aa))GH
ocU,oca(U)

6

— 0 almost surely.



60 Some theoretical properties of GANs

We know that almost surely, for all 7 € [0, 1], &(6;) — @. Thus, since the function U x a(U) >
(0,a) — HyL(8,0) " 'J(V1L(-,@))g is continuous, we have almost surely, for all ¢ € [0, 1],

A LA

HyL(6,,(6,)) "I (VaL(-,(6))) g — HL(6,8) T (V2L (-, ))g.

A

Therefore, almost surely, for all 7 € [0,1], J(&)g — J(0t)g. Similarly, almost surely, for all
t€[0,1], J(V{L(6,, '))d(éz) — J(V1L(8,-))a. All involved quantities are uniformly bounded
in ¢, and so, by the Lebesgue dominated convergence theorem, we conclude that

/01 J(VL(6;, ‘))a(é,)f(&)é,df —J(V1L(6,-))aJ (@) almost surely. (2.A.8)
Consequently, by combining (2.A.7) and (2.A.8),
L — HIL(8,&)+J(V1L(8,-))al(t)g = HV(H) almost surely,
as desired. []
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Chapter 3

Some theoretical properties of
Wasserstein GANs

Abstract

Generative Adversarial Networks (GANs) have been successful in producing outstanding results in
areas as diverse as image, video, and text generation. Building on these successes, a large number of
empirical studies have validated the benefits of the cousin approach called Wasserstein GANs (WGANSs),
which brings stabilization in the training process. In the present paper, we add a new stone to the edifice
by proposing some theoretical advances in the properties of WGANSs. First, we properly define the
architecture of WGANS in the context of integral probability metrics parameterized by neural networks
and highlight some of their basic mathematical features. We stress in particular interesting optimization
properties arising from the use of a parametric 1-Lipschitz discriminator. Then, in a statistically-driven
approach, we study the convergence of empirical WGANS as the sample size tends to infinity, and clarify

the adversarial effects of the generator and the discriminator by underlining some trade-off properties.

These features are finally illustrated with experiments using both synthetic and real-world datasets.
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3.1 Introduction

Generative Adversarial Networks (GANs) is a generative framework proposed by Goodfellow
et al. (2014), in which two models (a generator and a discriminator) act as adversaries in a
zero-sum game. Leveraging the recent advances in deep learning, and specifically convolutional
neural networks (LeCun et al., 1998), a large number of empirical studies have shown the
impressive possibilities of GANs in the field of image generation (Radford et al., 2015; Ledig
et al., 2017; Karras et al., 2018; Brock et al., 2019). Lately, Karras et al. (2019) proposed an
architecture able to generate hyper-realistic fake human faces that cannot be differentiated from
real ones (see the website thispersondoesnotexist.com). The recent surge of interest in the
domain also led to breakthroughs in video (Acharya et al., 2018), music (Mogren, 2016), and
text generation (Yu et al., 2017; Fedus et al., 2018), among many other potential applications.

The aim of GANSs is to generate data that look “similar” to samples collected from some
unknown probability measure [, defined on a Borel subset E of RP. In the targeted applications
of GANS, E is typically a submanifold (possibly hard to describe) of a high-dimensional R?,
which therefore prohibits the use of classical density estimation techniques. GANs approach
the problem by making two models compete: the generator, which tries to imitate p, using the
collected data, vs. the discriminator, which learns to distinguish the outputs of the generator
from the samples, thereby forcing the generator to improve its strategy.

Formally, the generator has the form of a parameterized class of Borel functions from R¢
to E, say 4 = {Gg : 0 € O}, where O C RP is the set of parameters describing the model.
Each function Gy takes as input a d-dimensional random variable Z—it is typically uniform or
Gaussian, with d usually small—and outputs the “fake” observation Gg(Z) with distribution
Ug. Thus, the collection of probability measures &2 = {lg : 0 € O} is the natural class of
distributions associated with the generator, and the objective of GANS is to find inside this class
the distribution that generates the most realistic samples, closest to the ones collected from the
unknown L,. On the other hand, the discriminator is described by a family of Borel functions
from E to [0,1], say Z = {Dy : @ € A}, A C R?, where each D, must be thought of as the
probability that an observation comes from g, (the higher D(x), the higher the probability that
x is drawn from ).

In the original formulation of Goodfellow et al. (2014), GANs make ¢ and ¥ fight each
other through the following objective:

inf sup |Elog(Dy (X)) + Elog(1—Dg(Ge(2)))], (3.1.1)
0€0 gcA
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where X is a random variable with distribution u* and the symbol IE denotes expectation. Since
one does not have access to the true distribution, p, is replaced in practice with the empiri-
cal measure u, based on independent and identically distributed (i.i.d.) samples Xi,..., X,
distributed as X, and the practical objective becomes

n
inf sup [ Y log(Dy (X)) + Elog(1 ~ Da(Go(2)))]. (3.1.2)
0€O gea Lln /=

In the literature on GANSs, both ¢4 and & take the form of neural networks (either feed-forward
or convolutional, when dealing with image-related applications). This is also the case in
the present paper, in which the generator and the discriminator will be parameterized by
feed-forward neural networks with, respectively, rectifier (Glorot et al., 2011) and GroupSort
(Chernodub and Nowicki, 2016) activation functions. We also note that from an optimization
standpoint, the minimax optimum in (3.1.2) is found by using stochastic gradient descent
alternatively on the generator’s and the discriminator’s parameters.

In the initial version (3.1.1), GANs were shown to reduce, under appropriate conditions,
the Jensen-Shanon divergence between the true distribution and the class of parameterized
distributions (Goodfellow et al., 2014). This characteristic was further explored by Biau et al.
(2020), who stressed some theoretical guarantees regarding the approximation and statistical
properties of problems (3.1.1) and (3.1.2). However, many empirical studies (e.g., Metz et al.,
2016; Salimans et al., 2016) have described cases where the optimal generative distribution
computed by solving (3.1.2) collapses to a few modes of the distribution u,. This phenomenon
is known under the term of mode collapse and has been theoretically explained by Arjovsky
et al. (2017). As a striking result, in cases where both p, and ug lie on disjoint supports, these
authors proved the existence of a perfect discriminator with null gradient on both supports,
which consequently does not convey meaningful information to the generator.

To cancel this drawback and stabilize training, Arjovsky et al. (2017) proposed a modifica-
tion of criterion (3.1.1), with a framework called Wasserstein GANs (WGANSs). In a nutshell,
the objective of WGAN:S is to find, inside the class of parameterized distributions &7, the one
that is the closest to the true u, with respect to the Wasserstein distance (Villani, 2008). In its
dual form, the Wasserstein distance can be considered as an integral probability metric (IPM,
Miiller, 1997) defined on the set of 1-Lipschitz functions. Therefore, the proposal of Arjovsky
et al. (2017) is to replace the 1-Lipschitz functions with a discriminator parameterized by neural
networks. To practically enforce this discriminator to be a subset of 1-Lipschitz functions, the
authors use a weight clipping technique on the set of parameters. A decisive step has been taken
by Gulrajani et al. (2017), who stressed the empirical advantage of the WGANSs architecture by
replacing the weight clipping with a gradient penalty. Since then, WGANSs have been largely
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recognized and studied by the Machine Learning community (e.g., Roth et al., 2017; Petzka
et al., 2018; Wei et al., 2018; Karras et al., 2019).

A natural question regards the theoretical ability of WGANS to learn p*, considering that
one only has access to the parametric models of generative distributions and discriminative
functions. Previous works in this direction are those of Liang (2018) and Zhang et al. (2018),
who explore generalization properties of WGANSs. In the present paper, we make one step
further in the analysis of mathematical forces driving WGANSs and contribute to the literature
in the following ways:

(i) We properly define the architecture of WGANSs parameterized by neural networks. Then,
we highlight some properties of the IPM induced by the discriminator, and finally stress

some basic mathematical features of the WGANSs framework (Section 3.2).

(ii) We emphasize the impact of operating with a parametric discriminator contained in
the set of 1-Lipschitz functions. We introduce in particular the notion of monotonous
equivalence and discuss its meaning in the mechanism of WGANs. We also highlight the

essential role played by piecewise linear functions (Section 3.3).

(iii) In a statistically-driven approach, we derive convergence rates for the IPM induced by
the discriminator, between the target distribution u* and the distribution output by the
WGANS based on i.i.d. samples (Section 3.4).

(iv) Building upon the above, we clarify the adversarial effects of the generator and the
discriminator by underlining some trade-off properties. These features are illustrated with
experiments using both synthetic and real-world datasets (Section 3.5).

For the sake of clarity, proofs of the most technical results are gathered in the Appendix.

3.2 Wasserstein GANs

The present section is devoted to the presentation of the WGANs framework. After having
given a first set of definitions and results, we stress the essential role played by IPMs and study
some optimality properties of WGAN:Ss.

3.2.1 Notation and definitions

Throughout the paper, E is a Borel subset of RP, equipped with the Euclidean norm || -

, on

which u, (the target probability measure) and the ug’s (the candidate probability measures)
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are defined. Depending on the practical context, E can be equal to R, but it can also be a
submanifold of it. We emphasize that there is no compactness assumption on E.

For K C E, we let C(K) (respectively, C,(K)) be the set of continuous (respectively,
continuous bounded) functions from K to R. We denote by Lip, the set of 1-Lipschitz real-

valued functions on E, i.e.,

Lip; = {f:E = R:[f(x) = fO)| < [lx=], (x,y) € E*}.

The notation P(E) stands for the collection of Borel probability measures on E, and P (E) for

the subset of probability measures with finite first moment, i.e.,

PI(E) = {p e P(E): /E o — x]| 1 (dx) < oo,

where xg € E is arbitrary (this set does not depend on the choice of the point xp). Until the end,
it is assumed that y, € P;(E). It is also assumed throughout that the random variable Z € R is
a sub-Gaussian random vector (Jin et al., 2019), i.e., Z is integrable and there exists ¥ > 0 such
that

2
Vv e RY, Ee'(“—E2) < eyzHZH ,

where - denotes the dot product in R and || - || the Euclidean norm. The sub-Gaussian property
is a constraint on the tail of the probability distribution. As an example, Gaussian random
variables on the real line are sub-Gaussian and so are bounded random vectors. We note that
Z has finite moments of all nonnegative orders (Jin et al., 2019, Lemma 2). Assuming that Z
is sub-Gaussian is a mild requirement since, in practice, its distribution is most of the time
uniform or Gaussian.

As highlighted earlier, both the generator and the discriminator are assumed to be parame-

terized by feed-forward neural networks, that is,
G ={Gy:0c0O} and P ={Dg:acA}
with ® C R”, A C RZ, and, for all z € R,

Go(z)= Uy o( Upy --0( Uy 6(Uiz+ by )+ by )4 by 1 )+ by, (3.2.1)

Dxup_y Up—1XUp—2 Uz Xup up xd upx1 up x 1 up,1x1 Dx1

forallx € E,

Dy(x) = Vy o Vi1 o 6( Vo 6(Vix+c1 )+ ¢ )+-+ Cq,1)+ cqg, (3.2.2)

IXvg_1  Vg-1XVvg2 vaxve o vixD o ovixl o owpxl vg-1xl  1x1
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where p,q > 2 and the characters below the matrices indicate their dimensions (lines X columns).
Some comments on the notation are in order. Networks in ¢ and 2 have, respectively, (p — 1)
and (¢ — 1) hidden layers. Hidden layers from depth 1 to (p — 1) (for the generator) and
from depth 1 to (¢ — 1) (for the discriminator) are assumed to be of respective even widths u;,
i=1,....,p—1l,andv;,i=1,...,g— 1. The matrices U; (respectively, V;) are the matrices of
weights between layer i and layer (i + 1) of the generator (respectively, the discriminator), and
the b;’s (respectively, the c;’s) are the corresponding offset vectors (in column format). We let
o(x) = max(x,0) be the rectifier activation function (applied componentwise) and

G (x1,X2,- -y Xon—1,%2) = (max(xy,xp), min(xy,x2), ..., max(xp,—1,%2,), min(x2,—1,x2,))

be the GroupSort activation function with a grouping size equal to 2 (applied on pairs of
components, which makes sense in (3.2.2) since the widths of the hidden layers are assumed to
be even). GroupSort has been introduced in Chernodub and Nowicki (2016) as a 1-Lipschitz
activation function that preserves the gradient norm of the input. This activation can recover the
rectifier, in the sense that 6 (x,0) = (o(x),—o(—x)), but the converse is not true. The presence
of GroupSort is critical to guarantee approximation properties of Lipschitz neural networks
(Anil et al., 2019), as we will see later.

Therefore, denoting by .#; ) the space of matrices with j rows and k columns, we
have U; € '//(ul,d)’ Vi e %(VI,D)’ by € ///(ul,l)’ c € //(vl.,l)’ U, € //(D7up71), V, € //(17\,(]71),
by € M(p,), c¢q € A1 1)- All the other matrices U;, i =2,...,p—1,and V;, i=2,...,9—1,
belong to .#(,, . ,yand 4, ), andvectors b;,i=2,...,p—1l,and¢;,i=2,...,q—1, belong
to My, 1y and A, 1). So, altogether, the vectors 6 = (Uy,...,Up,b1,...,b)) (respectively,
the vectors oo = (V,...,Vy,c1,...,cq)) represent the parameter space © of the generator &
(respectively, the parameter space A of the discriminator &). We stress the fact that the outputs
of networks in Z are not restricted to [0, 1] anymore, as is the case for the original GANs of
Goodfellow et al. (2014). We also recall the notation &2 = {9 : 8 € @}, where, for each 6,
g is the probability distribution of Gg(Z). Since Z has finite first moment and each Gy is
piecewise linear, it is easy to see that &2 C P (E).

Throughout the manuscript, the notation || - || (respectively, || - ||) means the Euclidean

(respectively, the supremum) norm on R¥, with no reference to k as the context is clear. For

W = (wi,;) a matrix in .4, 1,), we let [|W|[2 = supj—; [Wx]| be the 2-norm of W. Similarly,
the co-norm of W is ||W || = SUP||y.=1 [Wx||oo = max;—; g 21;2:1 lwi j|. We will also use the
(2,00)-norm of W, i.e., [W|[2.e = sup—; [Wx[|. We shall constantly need the following

assumption:
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Assumption 1. Forall 6 = (Uy,...,U,,by,...,b,) €O,
max(||Uil2, [bill2:i=1,...,p) <Ki,
where K| > 0 is a constant. Besides, for all o = (Vi,...,V,,c1,...,¢q4) €A,

4]

200 < 1, max(||Valeo, - - -, [|Vglleo) < 1, and max(||cil|eo :i=1,...,q) < Ka,

where Ky > 0 is a constant.

This compactness requirement is classical when parameterizing WGANS (e.g., Arjovsky
etal., 2017; Zhang et al., 2018; Anil et al., 2019). In practice, one can satisfy Assumption 1 by
clipping the parameters of neural networks as proposed by Arjovsky et al. (2017). An alternative
approach to enforce & C Lip, consists in penalizing the gradient of the discriminative functions,
as proposed by Gulrajani et al. (2017), Kodali et al. (2017), Wei et al. (2018), and Zhou et al.
(2019). This solution was empirically found to be more stable. The usefulness of Assumption 1

is captured by the following lem.

Lemma 3.2.1. Assume that Assumption 1 is satisfied. Then, for each 0 € ©, the function Gg is
Kf—Lipschitz on R4. In addition, 2 C Lip;.

Recall (e.g., Dudley, 2004) that a sequence of probability measures (t;) on E is said to
converge weakly to a probability measure i on E if, for all ¢ € C,(E),

/wduk%/wdu.
E k—o JE

In addition, the sequence of probability measures (L) in P(E) is said to converge weakly
in Py (E) to a probability measure u in P (E) if (i) (i) converges weakly to u and if (if)
JE llx0 — x|| e (dx) — [5 [|xo — x||it(dx), where x € E is arbitrary (Villani, 2008, Definition
6.7). The next proposition offers a characterization of our collection of generative distributions
Z in terms of compactness with respect to the weak topology in Py (E). This result is interesting
as it gives some insight into the class of probability measures generated by neural networks.

Proposition 3.2.1. Assume that Assumption 1 is satisfied. Then the function ® > 0 — Ug is
continuous with respect to the weak topology in P (E), and the set of generative distributions

P is compact with respect to the weak topology in P|(E).
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3.2.2 The WGANSs and T-WGANSs problems

We are now in a position to formally define the WGANSs problem. The Wasserstein distance (of

order 1) between two probability measures y and v in Py (E) is defined by

Wilwv)= inf [ e ya(ady),
mell(u,v) JEXE

where IT(u, V) denotes the collection of all joint probability measures on E x E with marginals

u and v (e.g., Villani, 2008). It is a finite quantity. In the present article, we will use the

dual representation of W (i, V), which comes from the duality theorem of Kantorovich and

Rubinstein (1958):

Wi(u,v) = sup [Eyf—Eyf],
fé€Lipy

where, for a probability measure 7, E; f = [ fd7 (note that for f € Lip, and 7 € P;(E), the
function f is Lebesgue integrable with respect to 7).
In this context, it is natural to define the theoretical-WGANs (T-WGANSs) problem as

minimizing over ® the Wasserstein distance between u* and the ug’s, i.e.,

inf W, — inf E, f—E, fl. 323
Jnf 1 (s Ho) 52@f§ﬁ§)1| wS —Epgf] (3.2.3)

In practice, however, one does not have access to the class of 1-Lipschitz functions, which
cannot be parameterized. Therefore, following Arjovsky et al. (2017), the class Lip, is restricted
to the smaller but parametric set of discriminators 2 = {Dy, : o € A} (it is a subset of Lip, by
Lemma 3.2.1), and this defines the actual WGANs problem:

inf E, Dy —E, Dyl 3.2.4
elg@;ggl wDa —Ey,Da| (3.2.4)

Problem (3.2.4) is the Wasserstein counterpart of problem (3.1.1). Provided Assumption 1 is
satisfied, 2 C Lip,, and the IPM (Miiller, 1997) dy is defined for (i, v) € P{(E)? by

do(u,v) = sup |Eyf —Eyf. (3.2.5)
few

With this notation, dyjp, = W) and problems (3.2.3) and (3.2.4) can be rewritten as the mini-
mization over @ of, respectively, dpip, (L, Hg) and dg (L, Hg ). So,

T-WGANS: inf dpip (Ui, o) and WGANSs: inf dg (L, to).
0cO 0cO
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Similar objectives have been proposed in the literature, in particular neural net distances (Arora
et al., 2017) and adversarial divergences (Liu et al., 2017). These two general approaches
include f-GANs (Goodfellow et al., 2014; Nowozin et al., 2016), but also WGANSs (Arjovsky
et al., 2017), MMD-GAN:Ss (Li et al., 2017), and energy-based GANs (Zhao et al., 2016). Using
the terminology of Arora et al. (2017), d4 is called a neural IPM. If the theoretical properties
of the Wasserstein distance dy i, have been largely studied (e.g., Villani, 2008), the story is
different for neural IPMs. This is why our next subsection is devoted to the properties of d.

3.2.3 Some properties of the neural IPM

The study of the neural IPM d g is essential to assess the driving forces of WGANS architectures.
Let us first recall that a mapping ¢ : P (E) x P{(E) — [0,0) is a metric if it satisfies the following

three requirements:
(i) ¢(u,v) =0 <= u = v (discriminative property)

(i) €(,v) = €(v, ) (symmetry)
(iii) L(u,v) <Ll(u,m)+£4(m,Vv) (triangle inequality).

If (i) is replaced by the weaker requirement ¢(u, u) = 0 for all u € P;(E), then one speaks of
a pseudometric. Furthermore, the (pseudo)metric ¢ is said to metrize weak convergence
in P;(E) (Villani, 2008) if, for all sequences () in Pi(E) and all u in P;(E), one has
o(u, ) — 0 < py converges weakly to u in P (E) as k — eo. According to Villani (2008,
Theorem 6.8), dip, is a metric that metrizes weak convergence in Py (E).

As far as dg is concerned, it is clearly a pseudometric on Pj(E) as soon as Assumption
1 is satisfied. Moreover, an elementary application of Dudley (2004, Lemma 9.3.2) shows
that if span(2) (with span(2) = {p+ X", %:Di: % € R,D; € Z,n € IN}) is dense in C,(E),
then dy is a metric on P;(E), which, in addition, metrizes weak convergence. As in Zhang
et al. (2018), Dudley’s result can be exploited in the case where the space E is compact to
prove that, whenever & is of the form (3.2.2), d4 is a metric metrizing weak convergence.
However, establishing the discriminative property of the pseudometric d¢ turns out to be more
challenging without an assumption of compactness on E, as is the case in the present study.

Our result is encapsulated in the following proposition.

Proposition 3.2.2. Assume that Assumption 1 is satisfied. Then there exists a discriminator of
the form (3.2.2) (i.e., a depth q and widths vy, ...,v,_1) such that dg is a metric on & U {1}
In addition, d4 metrizes weak convergence in & U { L, }.
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Standard universal approximation theorems (Cybenko, 1989; Hornik et al., 1989; Hornik,
1991) state the density of neural networks in the family of continuous functions defined on
compact sets but do not guarantee that the approximator respects a Lipschitz constraint. The
proof of Proposition 3.2.2 uses the fact that, under Assumption 1, neural networks of the form
(3.2.2) are dense in the space of Lipschitz continuous functions on compact sets, as revealed by
Anil et al. (2019).

We deduce from Proposition 3.2.2 that, under Assumption 1, provided enough capacity, the
pseudometric dg can be topologically equivalent to dy,, on & U{l}, i.e., the convergent
sequences in (& U {l,},dg) are the same as the convergent sequences in (& U { L}, dLip,)
with the same limit—see O’Searcoid (2006, Corollary 13.1.3). We are now ready to discuss
some optimality properties of the T-WGANs and WGANSs problems, i.e., conditions under
which the infimum in 6 € @ and the supremum in ¢ € A are reached.

3.2.4 Optimality properties

Recall that for T-WGANSs, we minimize over ® the distance

dLipl (.U*a!le) = Ssup |El~i*f_E,lLef’7
S€Lip;

whereas for WGANSs, we use

oc

A first natural question is to know whether for a fixed generator parameter 6 € @, there exists
a 1-Lipschitz function (respectively, a discriminative function) that achieves the supremum
in dpip, (U™, o) (respectively, in dg (U™, g)) over all f € Lip; (respectively, all o € A). For
T-WGAN:Ss, Villani (2008, Theorem 5.9) guarantees that the maximum exists, i.e.,

{f € Llpl : ‘Eﬂ*f_ E,Llef’ = dLipl (,Ll*,‘u9>} 7£ a. (326)
For WGANSs, we have the following:
Lemma 3.2.2. Assume that Assumption 1 is satisfied. Then, for all 6 € O,
{acA:[E,Do—EyDa| =dg(l o)} # 2.

Thus, provided Assumption 1 is verified, the supremum in @ in the neural IPM d is always
reached. A similar result is proved by Biau et al. (2020) in the case of standard GAN:Ss.
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We now turn to analyzing the existence of the infimum in 6 in the minimization over @ of
diip, (U*, g) and do (1™, lg). Since the optimization scheme is performed over the parameter
set O, it is worth considering the following two functions:

Euip, : ©® = R and £y =R
6 — duip, (Hx, Ho) 6 — do (1, to)-

Theorem 3.2.1. Assume that Assumption 1 is satisfied. Then éLipl and Eg are Lipschitz
continuous on ©, and the Lipschitz constant of Eg is independent of 9.

Theorem 3.2.1 extends Arjovsky et al. (2017, Theorem 1), which states that d is locally
Lipschitz continuous under the additional assumption that E is compact. In contrast, there
is no compactness hypothesis in Theorem 3.2.1 and the Lipschitz property is global. The
lipschitzness of the function £ is an interesting property of WGANS, in line with many recent
empirical works that have shown that gradient-based regularization techniques are efficient for
stabilizing the training of GANs and preventing mode collapse (Kodali et al., 2017; Roth et al.,
2017; Miyato et al., 2018; Petzka et al., 2018).

In the sequel, we let @* and O be the sets of optimal parameters, defined by

O©* = argmin dip, (U, o) and O = argmin dg (L, o).
0co 6cO

An immediate but useful corollary of Theorem 3.2.1 is as follows:
Corollary 3.2.1. Assume that Assumption 1 is satisfied. Then ®* and © are non empty.

Thus, any 8* € @* (respectively, any 6 € ©) is an optimal parameter for the T-WGANs
(respectively, the WGANSs) problem. Note however that, without further restrictive assumptions
on the models, we cannot ensure that @* or @ are reduced to singletons.

3.3 Optimization properties

We are interested in this section in the error made when minimizing over ® the pseudo-
metric do(U*, o) (WGANS problem) instead of dyip, (1*, o) (T-WGANS problem). This

optimization error is represented by the difference

Eoptim = SUP dLip] (m,ué) — inf dLipl (Ms o).
6c6 60cO
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It is worth pointing out that we take the supremum over all 8 € © since there is no guarantee that
two distinct elements 6; and 8, of O lead to the same distances diip, (M, uél) and dip, (M, ,u(;z).
The quantity €ypim captures the largest discrepancy between the scores achieved by distributions
solving the WGANSs problem and the scores of distributions solving the T-WGANs problem.
We emphasize that the scores are quantified by the Wasserstein distance dpjp,, which is the
natural metric associated with the problem. We note in particular that €pim > 0. A natural

question is whether we can upper bound the difference and obtain some control of €pim.

3.3.1 Approximating dy;p, with dy

As a warm-up, we observe that in the simple but unrealistic case where u* € &, provided
Assumption 1 is satisfied and the neural IPM dg is a metric on & (see Proposition 3.2.2), then
O* =0 and Eptim = 0. However, in the high-dimensional context of WGANS, the parametric
class of distributions 7 is likely to be “far” from the true distribution p*. This phenomenon
is thoroughly discussed in Arjovsky and Bottou (2017, Lemma 2 and Lemma 3) and is often
referred to as dimensional misspecification (Roth et al., 2017).

From now on, we place ourselves in the general setting where we have no information on
whether the true distribution belongs to &7, and start with the following simple observation.
Assume that Assumption 1 is satisfied. Then, clearly, since & C Lip,,

inf < inf diip, (e o). 3.1
91161@619(#*,#9) elrel@dLlpl(.u* o) (3.3.1)

Inequality (3.3.1) is useful to upper bound &ypiim. Indeed,

0 < €optim = Sup dLip, (Ux, 1) — inf diip, (Us, Uo)
0cod 0e®

< sup dujip, (W, Hg) — Inf dg (s, lo)
= sup [dip, (M, Ug) — do (i, Ug)]
0cO
(since inf do (L, Ug) = do (s, pg) for all 6 € O)
S

where, by definition,

T (Lipy, 7) = sup [dLip, (Hes o) — d 7 (Hes Ho)] (3.3.3)
S
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is the maximum difference in distances on the set of candidate probability distributions in
. Note, since @ is compact (by Assumption 1) and &, and & are Lipschitz continuous
(by Theorem 3.2.1), that T4 (Lip,, %) < oo. Thus, the loss in performance when comparing
T-WGANs and WGANS can be upper-bounded by the maximum difference over & between
the Wasserstein distance and d¢.

Observe that when the class of discriminative functions is increased (say 2 C 2') while
keeping the generator fixed, then the bound (3.3.3) gets reduced since dg (U, ) < dgr (U, ).
Similarly, when increasing the class of generative distributions (say &2 C &?’) with a fixed
discriminator, then the bound gets bigger, i.e., To»(Lip;, Z) < T (Lip;, Z). It is important to
note that the conditions 2 C 2’ and/or & C &' are easily satisfied for classes of functions
parameterized with neural networks using either rectifier or GroupSort activation functions,
just by increasing the width and/or the depth of the networks.

Our next theorem states that, as long as the distributions of &7 are generated by neural

networks with bounded parameters (Assumption 1), then one can control 7% (Lip,, 7).

Theorem 3.3.1. Assume that Assumption 1 is satisfied. Then, for all € > 0, there exists a
discriminator 9 of the form (3.2.2) such that

0< Eoptim < T:@(Liplw@) < CE,

where ¢ > 0 is a constant independent from €.

Theorem 3.3.1 is important because it shows that for any collection of generative distribu-
tions & and any approximation threshold &, one can find a discriminator such that the loss in
performance &qpim is (at most) of the order of €. In other words, there exists & of the form
(3.2.2) such that T (Lip,,2) is arbitrarily small. We note however that Theorem 3.3.1 is
an existence theorem that does not give any particular information on the depth and/or the
width of the neural networks in . The key argument to prove Theorem 3.3.1 is Anil et al.
(2019, Theorem 3), which states that the set of Lipschitz neural networks are dense in the set of

Lipschitz continuous functions on a compact space.

3.3.2 Equivalence properties

The quantity T (Lip;, 2) is of limited practical interest, as it involves a supremum over all
0 € ©. Moreover, another caveat is that the definition of €y assumes that one has access
to @. Therefor, our next goal is to enrich Theorem 3.3.1 by taking into account the fact that

numerical procedures do not reach 6 € © but rather an €-approximation of it.
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One way to approach the problem is to look for another form of equivalence between djp,
and dg. As one is optimizing dg instead of dyp, , we would ideally like that the two IPMs
behave “similarly”, in the sense that minimizing d4 leads to a solution that is still close to
the true distribution with respect to dpip, . Assuming that Assumption 1 is satisfied, we let, for
any L € P|(E) and € > 0, .#;(,€) be the set of e-solutions to the optimization problem of
interest, that is the subset of ® defined by

AMy(u,8) = {6 € O : £, pp) — inf ((,pp) < £},

with £ = dp;,, or { =dg.

Definition 3.3.1. Let € > 0. We say that dyp, can be g-substituted by dg if there exists 6 > 0
such that

Mg, My, ) C ///dupl (Hes €).

In addition, if drip, can be €-substituted by do for all € > 0, we say that dyip, can be fully
substituted by dg.

The rationale behind this definition is that by minimizing the neural IPM dg close to
optimality, one can be guaranteed to be also close to optimality with respect to the Wasserstein
distance dyip, . In the sequel, given a metric d, the notation d(x, F') denotes the distance of x to
the set F, that is, d(x,F) = infycp d(x, f).

Proposition 3.3.1. Assume that Assumption 1 is satisfied. Then, for all € > 0, there exists
8 > 0 such that, for all 6 € M, (1, 8), one has d(6,0) < e.

Corollary 3.3.1. Assume that Assumption 1 is satisfied and that ©* = ©. Then dyip, can be
fully substituted by d .

Proof. Let € > 0. By Theorem 3.2.1, we know that the function ® > 6 — dpjp, (L, Uo)
is Lipschitz continuous. Thus, there exists 7 > 0 such that, for all (8,6’) € ®? satisfying
|6 — 6|| <7, one has |dpip, (Hs, o) — dLip, (ks He')| < €. Besides, using Proposition 3.3.1,
there exists 8 > 0 such that, for all 6 € .#,,, (1., 8), one has d(6,0) < 1.

Now, let 8 € 4, (L, 8). Since d(8,0) < 1 and @ = O, we have d(6,0*) < 1. Conse-
quently, [dLip, (Hx, Ho) —infoco dLip, (s, Ho)| < € and so, 6 € Ay, (1, €). O

Corollary 3.3.1 is interesting insofar as when both d¢ and dy;,, have the same minimizers
over O, then minimizing one close to optimality is the same as minimizing the other. The
requirement ®* = @ can be relaxed by leveraging what has been studied in the previous

subsection about T (Lip;, Z2).
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Lemma 3.3.1. Assume that Assumption 1 is satisfied, and let € > 0. If T (Lip;, 2) < &, then
diip, can be (&€ + 3)-substituted by dg for all & > 0.

Proof. Let e >0, 6>0,and 6 € //d@(u*ﬁ), i.e., d@(,u*,ug) — 6ll’lg d@(,u*,[.tg) < 6. We
€

have

diip, (Hs, Ug) — eifelg diip, (M, Ho) < diip, (s, Ho) — eifel(f) do (U, Uo)
(by inequality (3.3.1))

< dLipl (.u'*a.u9> —d@(ﬂ*,#e) +6
<Tx(Lip;,2)+6 < e+0.

]

Lemma 3.3.1 stresses the importance of T4 (Lip,, %) in the performance of WGANS.
Indeed, the smaller T (Lip,, Z), the closer we will be to optimality after training. Moving
on, to derive sufficient conditions under which dy;p, can be substituted by d we introduce the
following definition:

Definition 3.3.2. We say that dyip, is monotonously equivalent to dg on & if there exists a
continuously differentiable, strictly increasing function f : R* — R™ and (a,b) € (R%.)? such
that

Vu e P, af(dg(t ) < dvip, (e, 1) < bf(do (o, 1))

Here, it is assumed implicitly that & C Lip,. At the end of the subsection, we stress, empit-
ically, that Definition 3.3.2 is easy to check for simple classes of generators. A consequence of
this definition is encapsulated in the following lem.

Lemma 3.3.2. Assume that Assumption 1 is satisfied, and that dy i, and dg are monotonously
equivalent on & with a = b (that is, drip, = fodgy). Then @* = O and dvLip, can be fully
substituted by d .

To complete Lemma 3.3.2, we now tackle the case a < b.

Proposition 3.3.2. Assume that Assumption 1 is satisfied, and that dy;p, and dg are mono-
tonously equivalent on &. Then, for any 6 € (0,1), dip, can be €-substituted by dg with

e = (b—a)f(jnf do(1.,H)) +O(5)

Proposition 3.3.2 states that we can reach €-minimizers of di;, by solving the WGANs
problem up to a precision sufficiently small, for all € larger than a bias induced by the model

& and by the discrepancy between dyjp, and dg.
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In order to validate Definition 3.3.2, we slightly depart from the WGANS setting and run a
series of small experiments in the simplified setting where both u* and u € & are bivariate
mixtures of independent Gaussian distributions with K components (K = 1, 2, 3, 25). We
consider two classes of discriminators {7, : ¢ = 2,6} of the form (3.2.2), with growing depth
q (the width of the hidden layers is kept constant equal to 20). Our goal is to exemplify the
relationship between the distances dpip, and dg, by looking whether dfjp, is monotonously
equivalent to dg, .

First, for each K, we randomly draw 40 different pairs of distributions (L., 1) among the set
of mixtures of bivariate Gaussian densities with K components. Then, for each of these pairs,
we compute an approximation of dp;, by averaging the Wasserstein distance between finite
samples of size 4096 over 20 runs. This operation is performed using the Python package by
Flamary and Courty (2017). For each pair of distributions, we also calculate the corresponding
IPMs dg, (s, pt). We finally compare dy;p, and dg,_ by approximating their relationship with a
parabolic fit. Results are presented in Figure 3.1, which depicts in particular the best parabolic
fit, and shows the corresponding Least Relative Error (LRE) together with the width (b — a)
from Definition 3.3.2. In order to enforce the discriminator to verify Assumption 1, we use the
orthonormalization of Bjorck and Bowie (1971), as done for example in Anil et al. (2019).

Interestingly, we see that when the class of discriminative functions gets larger (i.e., when
g increases), then both metrics start to behave similarly (i.e., the range (b — a) gets thinner),
independently of K (Figure 3.1a to Figure 3.1f). This tends to confirm that dyp can be
considered as monotonously equivalent to dg, for ¢ large enough. On the other hand, for a
fixed depth ¢, when allowing for more complex distributions, the width (b — a) increases. This
is particularly clear in Figure 3.1g and Figure 3.1h, which show the fits obtained when merging
all pairs for K = 1,4,9,25 (for both u, and &?).

These figures illustrate the fact that, for a fixed discriminator, the monotonous equivalence
between dip, and dy seems to be a more demanding assumption when the class of generative

distributions becomes too large.

3.3.3 Motivating the use of deep GroupSort neural networks

The objective of this subsection is to provide some justification for the use of deep GroupSort
neural networks in the field of WGANSs. This short discussion is motivated by the observation
of Anil et al. (2019, Theorem 1), who stress that norm-constrained ReLU neural networks are
not well-suited for learning non-linear 1-Lipschitz functions.

The next lemma shows that networks of the form (3.2.2), which use GroupSort activations,
can recover any 1-Lipschitz function belonging to the class AFF of real-valued affine functions
onE.
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(2)dg, vs. diip, g =2, K = 1,4,9,25.(h) dyy, vs. diip,, g =5, K = 1,4,9,25.

Fig. 3.1 Scatter plots of 40 pairs of distances simultaneously measured with dyip, and d,, for
g=72,5and K = 1,4,9,25. The red curve is the optimal parabolic fitting and LRE refers to the
Least Relative Error. The red zone is the envelope obtained by stretching the optimal curve
from b to a.
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Lemma 3.3.3. Let f : E — R be in AFFNLip,. Then there exists a neural network of the form
(3.2.2) verifying Assumption 1, with g = 2 and vi =2, that can represent f.

Motivated by Lemma 3.3.3, we show that, in some specific cases, the Wasserstein distance
dyip, can be approached by only considering affine functions, thus motivating the use of neural
networks of the form (3.2.2). Recall that the support S, of a probability measure y is the
smallest subset of y-measure 1.

Lemma 3.3.4. Let 1 and v be two probability measures in Pi(E). Assume that S, and

Sy are one-dimensional disjoint intervals included in the same line. Then dyip, (1,V) =

dAFFALip, (K, V).

Lemma 3.3.4 is interesting insofar as it describes a specific case where the discriminator can
be restricted to affine functions while keeping the identity d;,, = d%. We consider in the next
lemma a slightly more involved setting, where the two distributions ( and v are multivariate

Gaussian with the same covariance matrix.

Lemma 3.3.5. Let (my,my) € (RP)?, and let £ € A (p,p) be a positive semi-definite matrix.
Assume that [ is Gaussian A (my,X) and that v is Gaussian AN (my,X). Then dpip (1L,V) =

dAFFLip, (K V).

Yet, assuming multivariate Gaussian distributions might be too restrictive. Therefore, we
now assume that both distributions lay on disjoint compact supports sufficiently distant from
one another. Recall that for a set S C E, the diameter of § is diam(S) = sup, ;)cs2 [|x— [, and
that the distance between two sets S and T is defined by d(S,T) = inf(, ycg. 7 [[x —y]|.

Proposition 3.3.3. Let € > 0, and let u and v be two probability measures in P|(E) with

compact convex supports Sy, and Sy. Assume that max(diam(Sy),diam(Sy)) < €d(Sy,Sv).
Then

darrnLip, (1, V) < dvLip, (1, V) < (142€)darrnLip, (4, V).

Observe that in the case where neither ( nor v are Dirac measures, then the assumption
of the lemma imposes that S, NSy = 0. In the context of WGANS, it is highly likely that
the generator badly approximates the true distribution p, at the beginning of training. The
setting of Proposition 3.3.3 is thus interesting insofar as u, and the generative distribution
will most certainly verify the assumption on the diameters at this point in the learning process.
However, in the common case where the true distribution lays on disconnected manifolds, the
assumptions of the proposition are not valid anymore, and it would therefore be interesting to

show a similar result using the broader set of piecewise linear functions on E.
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As an empirical illustration, consider the synthetic setting where one tries to approximate a
bivariate mixture of independent Gaussian distributions with respectively 4 (Figure 3.2a) and
9 (Figure 3.2c) modes. As expected, the optimal discriminator takes the form of a piecewise
linear function, as illustrated by Figure 3.2b and Figure 3.2d, which display heatmaps of the
discriminator’s output. Interestingly, we see that the number of linear regions increases with
the number K of components of .

0°4% *% ®o ces ocaMe
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(a) True distribution u, (mixture of K =4 (b) Heatmap of the discriminator’s output
bivariate Gaussian densities, green circles) on a mixture of K = 4 bivariate Gaussian
and 2000 data points sampled from the gen- densities.
erator lg (blue dots).
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(c) True distribution p, (mixture of K =9 (d) Heatmap of the discriminator’s output
bivariate Gaussian densities, green circles) on a mixture of K =9 bivariate Gaussian

and 2000 data points sampled from the gen- densities.
erator Uz (blue dots).

Fig. 3.2 Tllustration of the usefulness of GroupSort neural networks when dealing with the
learning of mixtures of Gaussian distributions. In both cases, we have p = g = 3.

These empirical results stress that when t, gets more complex, if the discriminator ought
to correctly approximate the Wasserstein distance, then it should parameterize piecewise linear
functions with growing numbers of regions. While we enlighten properties of Groupsort
networks, many recent theoretical works have been studying the number of regions of deep
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ReL.U neural networks (Pascanu et al., 2013; Montufar et al., 2014; Arora et al., 2018; Serra
et al., 2018). In particular, Montufar et al. (2014, Theorem 5) states that the number of linear
regions of deep models grows exponentially with the depth and polynomially with the width.
This, along with our observations, is an interesting avenue to choose the architecture of the
discriminator.

3.4 Asymptotic properties

In practice, one never has access to the distribution ., but rather to a finite collection of
1.1.d. observations X1, ..., X, distributed according to . Thus, for the remainder of the article,
we let u, be the empirical measure based on Xi,...,X,, that is, for any Borel subset A of E,
Un(A) = %Z?:l 1 x,ca. With this notation, the empirical counterpart of the WGANSs problem
is naturally defined as minimizing over ® the quantity do (U, lg). Equivalently, we seek to

solve the following optimization problem:

1 n
Anf do (Hn: o) = inf sup [;Z —EDq¢(Go(2)))|- (3.4.1)

Assuming that Assumption 1 is satisfied, we have, as in Corollary 3.2.1, that the infimum in

(3.4.1) is reached. We therefore consider the set of empirical optimal parameters

O, = argmin do(n, Lo ),
6cO

and let én be a specific element of @n (note that the choice of én has no impact on the value of
the minimum). We note that @, (respectively, 6,,) is the empirical counterpart of @ (respectively,
0). Section 3.3 was mainly devoted to the analysis of the difference Eoptim- In this section, we
are willing to take into account the effect of having finite samples. Thus, in line with the above,
we are now interested in the generalization properties of WGANs and look for upper-bounds
on the quantity

0 < duip, (M, 5,) = inf diip, (1. Ho). (3.4.2)

Arora et al. (2017, Theorem 3.1) states an asymptotic result showing that when provided
enough samples, the neural IPM d4 generalizes well, in the sense that for any pair (u,v) €
Pi(E)?, the difference |dy(u, V) —dy(Un, V)| can be arbitrarily small with high probability.
However, this result does not give any information on the quantity of interest dy ip, (4x, ,uén) —

infgce dLip, (s, 1g). Closer to our current work, Zhang et al. (2018) provide bounds for
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do (Il ) —infgeo do(lh, Ho), starting from the observation that

0 < dg(pe tg,) — inf dg (i, o) < 2dg (K, Hhn)- (3.4.3)

In the present article, we develop a complementary point of view and measure the generalization
properties of WGANS on the basis of the Wasserstein distance dpjp, , as in equation (3.4.2).
Our approach is motivated by the fact that the neural IPM d is only used for easing the
optimization process and, accordingly, that the performance should be assessed on the basis of
the distance djp, , not dg.

Note that 6,,, which minimizes do(Un, Ug) over ®, may not be unique. Besides, there is no
guarantee that two distinct elements 6, | and 6,, > of @n lead to the same distance dpip, (U, He, | )
and dp, (s, [.Lgn“z) (again, 0, is computed with dg, not with dp, ). Therefore, in order to
upper-bound the érror in (3.4.2), we let, for each 6,, € @n,

0, € argmin ||6, — 0.
6c6

The rationale behind the definition of 6, is that we expect it to behave “similarly” to 6,.

Following our objective, the error can be decomposed as follows:

0 < duip, (s, Hg,) — Jnf diip, (Les o)

< sup duip, (1, Mo, ) — inf dLip, (kL o)

0,€0,

= sup [dLip, (L, g, ) — dvip, (W, Mg, ) +dLip, (M, g, )] — eifel(f) diip, (Us, Ue)
0,€0,

< sup [dLipl (I«‘«*al«le,,) - dLipl (.u*nuén)] + ?uP dLip1 ([.L*,[.Lé) - Glnf dLipl (.U*a.ue)
911€@n 6cO® €O

= Eestim T Eoptim s (3.4.4)

where we set €esim = SUPg g, [dLip, (L, Mg, ) — dLip, (Hx, /.L(;n)]. Notice that this supremum can
be positive or negative. However, it can be shown to converge to 0 almost surely when n — co.

Lemma 3.4.1. Assume that Assumption 1 is satisfied. Then li_r>n Eestim = 0 almost surely.
n—soo
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Going further with the analysis of (3.4.2), the sum €estim + Eoptim 18 bounded as follows:

Eestim T+ Eoptim < SuE [dLipl (‘LL*, .u@,,) - dLip] (‘LL*, .uénﬂ +T1% (LiP1 ’ @>
0,€0,

(by inequality (3.3.2))
< sup [dLip, (M, g, ) — eirelg do(th, Mo)] + T (Lipy, 2).

0,€0,
Hence,
Eestim T Eoptim
< sup [duip, (Hes Ha,) — dop (s lg,) +d o (1hs, Ho,) — Jnf dg (P, lig)] + T (Lipy, )

6,€0),

< sup [diip, (I Ho,) — d7 (K, Mo, )] +2d 5 (W, ) + T (Lipy, 2)
6,€0,

(upon noting that inequality (3.4.3) is also valid for any 6, € 6,)
< 2T»(Lipy, 2) +2d g (s, tn).- (3.4.5)

The above bound is a function of both the generator and the discriminator. The term
T»(Lip;, ?) is increasing when the capacity of the generator is increasing. The discrimi-
nator, however, plays a more ambivalent role, as already pointed out by Zhang et al. (2018).
On the one hand, if the discriminator’s capacity decreases, the gap between dy and djp, gets
bigger and T (Lip,, Z) increases. On the other hand, discriminators with bigger capacities
ought to increase the contribution d¢ (L, it,). In order to bound d4 (U, i, ), Proposition 3.4.1
below extends Zhang et al. (2018, Theorem 3.1), in the sense that it does not require the set of
discriminative functions nor the space E to be bounded. Recall that, for y > 0, p, is said to be
Y sub-Gaussian (Jin et al., 2019) if

weRY, Ee"T-ET) <o 1|

where T is a random vector with probability distribution pt* and - denotes the dot product in
RP.

Proposition 3.4.1. Assume that Assumption 1 is satisfied, let n € (0,1), and let 9 be a
discriminator of the form (3.2.2).
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(i) If Wi has compact support with diameter B, then there exists a constant ¢; > 0 such that,
with probability at least 1 — 1,

c1 log(1/n)
< —+By =L
do (U, tUn) < 7 B o

(ii) More generally, if W, is 'y sub-Gaussian, then there exists a constant ¢, > 0 such that,
with probability at least 1 — 1,

&) log(1/n)
<= V —
d@(u*,un)\\/ﬁ%y eD p

The result of Proposition 3.4.1 has to be compared with convergence rates of the Wasserstein
distance. According to Fournier and Guillin (2015, Theorem 1), when the dimension D of E is
such that D > 2, if u, has a second-order moment, then there exists a constant ¢ such that

C
0 < Edvip, (Hes n) < D

Thus, when the space E is of high dimension (e.g., in image generation tasks), under the
conditions of Proposition 3.4.1, the pseudometric d4 provides much faster rates of convergence
for the empirical measure. However, one has to keep in mind that both constants c¢; and ¢,
grow in 0(gQ*?(D'* +¢q)).

Our Theorem 3.3.1 states the existence of a discriminator such that €y can be arbitrarily
small. It is therefore reasonable, in view of inequality (3.4.5), to expect that the sum Eegim +
Eoptim can also be arbitrarily small, at least in an asymptotic sense. This is encapsulated in
Theorem 3.4.1 below.

Theorem 3.4.1. Assume that Assumption 1 is satisfied, and let n € (0,1).

(i) If W has compact support with diameter B, then, for all € > 0, there exists a discriminator
2 of the form (3.2.2) and a constant ¢1 > 0 (function of €) such that, with probability at
least 1 —n,

2c log(1
0 < Ecstim + Eoptim < 26+ —= +2B log(1/m)

Vn 2n
(ii) More generally, if W, is v sub-Gaussian, then, for all € > 0, there exists a discriminator
9 of the form (3.2.2) and a constant ¢y > 0 (function of €) such that, with probability at
least 1 —n,

2 log(1
0 < Eestim + Eoptim <2e+ % + 16yveD w

Vn
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Theorem 3.4.1 states that, asymptotically, the optimal parameters in O, behave properly. A
caveat is that the definition of &y, uses @,, However, in practice, one never has access to én,
but rather to an approximation of this quantity obtained by gradient descent algorithms. Thus,
in line with Definition 3.3.1, we introduce the concept of empirical substitution:

Definition 3.4.1. Let € > 0 and n € (0,1). We say that dy;p, can be empirically €-substituted
by d if there exists & > 0 such that, for all n large enough, with probability at least 1 — 1,

M, (Pn;6) S My, (o, €)- (3.4.6)

The rationale behind this definition is that if (3.4.6) is satisfied, then by minimizing the
IPM dg4 close to optimality in (3.4.1), one can be guaranteed to be also close to optimality in
(3.2.3) with high probability. We stress that Definition 3.4.1 is the empirical counterpart of
Definition 3.3.1.

Proposition 3.4.2. Assume that Assumption 1 is satisfied and that [, is sub-Gaussian. Let
€>0. If Ty (Lipy, Z) < &, then dvip, can be empirically (€ + 0)-substituted by dg for all
0 > 0.

This proposition is the empirical counterpart of Lemma 3.3.1. It underlines the fact that by
minimizing the pseudometric d4 between the empirical measure L, and the set of generative
distributions & close to optimality, one can control the loss in performance under the metric
dLipl-

Let us finally mention that it is also possible to provide asymptotic results on the sequences

of parameters (én) keeping in mind that 6, and O are not necessarily reduced to singletons.

Lemma 3.4.2. Assume that Assumption 1 is satisfied. Let (én) be a sequence of optimal

parameters that converges almost surely to z € ©. Then z € O almost surely.

Proof. Let the sequence (én) converge almost surely to some z € ®. By Theorem 3.2.1, the

function ® > 0 — dg (U, Lg) is continuous, and therefore, almost surely, lim dg (L, Uy ) =
n—oo n

d (U, 1;). Using inequality (3.4.3), we see that, almost surely,

0 < dg(pas pz) = inf doy (i, o) = lim do (e, g, ) — inf dg (1, o)

< liminf 2dg (s, ty).-
n—oo

Using Dudley (2004, Theorem 11.4.1) and the strong law of large numbers, we have that the
sequence of empirical measures (i,) almost surely converges weakly to t, in P (E). Besides,
since dg metrizes weak convergence in P;(E) (by Proposition 3.2.2), we conclude that z € ©
almost surely. [
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3.5 Understanding the performance of WGANSs

In order to better understand the overall performance of the WGANS architecture, it is instructive
to decompose the final loss dfip, (i, ’LLén) asin (3.4.4):

dLipl (‘Ll*, .uén) < Eestim T goptim + Gnelg dLip1 (.u*7 “9)

= Eestim T Eoptim + Eapprox (3.5.1)

where

(i) €estim Matches up with the use of a data-dependent optimal parameter 0,., based on the

training set Xy, ..., X, drawn from LL,;

(if) €opiim corresponds to the loss in performance when using d as training loss instead of
dyip, (this term has been thoroughly studied in Section 3.3);

(iif) and €pprox stresses the capacity of the parametric family of generative distributions & to

approach the unknown distribution p,.

Close to our work are the articles by Liang (2018), Singh et al. (2018), and Uppal et al.
(2019), who study statistical properties of GANs. Liang (2018) and Singh et al. (2018) exhibit
rates of convergence under an IPM-based loss for estimating densities that live in Sobolev
spaces, while Uppal et al. (2019) explore the case of Besov spaces. Remarkably, Liang
(2018) discusses bounds for the Kullback-Leibler divergence, the Hellinger divergence, and the
Wasserstein distance between (1, and Mg - These bounds are based on a different decomposition
of the loss and offer a complementary point of view. We emphasize that, in the present article,
no density assumption is made neither on the class of generative distributions & nor on the

target distribution L.

3.5.1 Synthetic experiments

Our goal in this subsection is to illustrate (3.5.1) by running a set of experiments on synthetic
datasets. The true probability measure L, is assumed to be a mixture of bivariate Gaussian
distributions with either 1, 4, or 9 components. This simple setting allows us to control
the complexity of ., and, in turn, to better assess the impact of both the generator’s and
discriminator’s capacities. We use growing classes of generators of the form (3.2.1), namely
{9, p=2,3,5,7}, and growing classes of discriminators of the form (3.2.2), namely {2, :
q =2,3,5,7}. For both the generator and the discriminator, the width of the hidden layers is
kept constant equal to 20.
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Two metrics are computed to evaluate the behavior of the different generative models. First,
we use the Wasserstein distance between the true distribution (either u, or its empirical version
U,) and the generative distribution (either pg or Ky )- This distance is calculated by using the
Python package by Flamary and Courty (2017), via finite samples of size 4096 (average over 20
runs). Second, we use the recall metric (the higher, the better), proposed by Kynkiinniemi et al.
(2019). Roughly, this metric measures “how much” of the true distribution (either t, or u,) can
be reconstructed by the generative distribution (either pg or My )- At the implementation level,
this score is based on k-nearest neighbor nonparametric density estimation. It is computed via
finite samples of size 4096 (average over 20 runs).

Our experiments were run in two different settings:

Asymptotic setting: in this first experiment, we assume that (, is known from the experi-
menter (so, there is no dataset). At the end of the optimization scheme, we end up with one
0 € O. Thus, in this context, the performance of WGANS is captured by

sup dip, (K, Ug) = Eoptim + Eapprox-

0coO
For a fixed discriminator, when increasing the generator’s depth p, we expect Epprox to decrease.
Conversely, as discussed in Subsection 3.3.1, we anticipate an augmentation of €ypim, since the
discriminator must now differentiate between larger classes of generative distributions. In this
case, it is thus difficult to predict how supg.g drip, (Ux, g) behaves when p increases. On the
contrary, in accordance with the results of Section 3.3, for a fixed p we expect the performance
to increase with a growing ¢ since, with larger discriminators, the pseudometric d4 is more
likely to behave similarly to the Wasserstein distance dpjp, -

These intuitions are validated by Figure 3.3 and Figure 3.4 (the bluer, the better). The first
one shows an approximation of supgg dLip, (L, g) computed over 5 different seeds as a
function of p and g. The second one depicts the average recall of the estimator 1z with respect
to Uy, as a function of p and ¢, again computed over 5 different seeds. In both figures, we
observe that for a fixed p, incrementing ¢ leads to better results. On the opposite, for a fixed
discriminator’s depth ¢, increasing the depth p of the generator seems to deteriorate both scores

(Wasserstein distance and recall). This consequently suggests that the term &y dominates

Eapprox-
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(a) supgeo diip, (M Hg), K =1. (b) supgeg diip, (K, Hg), K =9. (¢) supgeg diip, (M, Mg), K =25.
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Fig. 3.3 Influence of the generator’s depth p and the discriminator’s depth g on the maximal

Wasserstein distance supg.g dLip, (L, Hg)-
"
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p=5| 0.822 = 0.888

p=3 p=3

q=2 q=3 q=5 q=7 q=2 q=3 q=5 q=7 q=2 q=3 q=5 q=7

(a) Av. recall of ug w.r.t. u,, K = (b) Av. recall of ug w.r.t. it,, K = (c) Av. recall of ug w.rt. i, K =
1. 9. 25.

Fig. 3.4 Influence of the generator’s depth p and the discriminator’s depth ¢ on the average
recall of the estimators {1z w.r.t. [L,.

Finite-sample setting: in this second experiment, we consider the more realistic situation
where we have at hand finite samples X, ..., X, drawn from u, (n = 5000).

Recalling that sup 0,0, dvip, (Mis Ho,) < Eestim + Eoptim T+ Eapprox» We plot in Figure 3.5 the
maximal Wasserstein distance Supy 6, diip, (U, Ug,), and in Figure 3.6 the average recall of
the estimators g, with respect to [, as a function of p and g. Anticipating the behavior of
SUPg <6, dyip, (U« Ug,) When increasing the depth g is now more involved. Indeed, according
to inequality (3.4.5), which bounds &eim + €optim a larger & will make T (Lip, Z) smaller
but will, on the opposite, increase d (L, ,). Figure 3.5 clearly shows that, for a fixed p, the
maximal Wasserstein distance seems to be improved when ¢ increases. This suggests that the
term T (Lip,, Z) dominates d (L, U,). Similarly to the asymptotic setting, we also make the
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observation that bigger p require a higher depth g since larger class of generative distributions

are more complex to discriminate.

6.364 5.274

0.11 0.104 0.089

(2) supg g, dLip, (Hx, Mo, ), K=1. (b) sup, g duip, (s, He,), K = (c)supg . dLip, (L Mo, ), K=9.
4,

Fig. 3.5 Influence of the generator’s depth p and the discriminator’s depth g on the maximal
Wasserstein distance supg ¢ dLip, (Hx, Hg, ), With n = 5000.

0.721 0.847 p=71 0.392 0.359

q=2 q=3 q=5 q=7

q=2 q=3 q=5 q=7

(a) Av. recall of py w.rt. i, K= (b) Av.recall of py w.rt. t,, K= (c) Av. recall of g w.rt. i, K =
1. 0. 25.

Fig. 3.6 Influence of the generator’s depth p and the discriminator’s depth ¢ on the average
recall of the estimators Ug, w.r.t. i, with n = 5000.

We end this subsection by pointing out a recurring observation across different experiments.
In Figure 3.4 and Figure 3.6, we notice, as already stressed, that the average recall of the
estimators is prone to decrease when the generator’s depth p increases. On the opposite,
the average recall increases when the discriminator’s depth g increases. This is interesting
because the recall metric is a good proxy for a stabilized training, insofar as a high recall
means the absence of mode collapse. This is also confirmed in Figure 3.7, which compares two
densities: in Figure 3.7a, the discriminator has a small capacity (¢ = 3) and the generator a large

capacity (p = 7), whereas in Figure 3.7b, the discriminator has a large capacity (g = 7) and
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the generator a small capacity (p = 3). We observe that the first WGAN architecture behaves
poorly compared to the second one. We therefore conclude that larger discriminators seem
to bring some stability in the training of WGANS both in the asymptotic and finite sample

regimes.

@ é e ST ':?v'--r.w o ;i
o . =
4t < . :{

- ° } LI f

[x) . -4

® ’; )\, ., .t ..}’., ) .-.ms.?

(@) p="7and g = 3. b)yp=3andg=7.

Fig. 3.7 True distribution , (mixture of K = 9 bivariate Gaussian densities, green circles) and
2000 data points sampled from the generator 5 (blue dots).

3.5.2 Real-world experiments

In this subsection, we further illustrate the impact of the generator’s and the discriminator’s
capacities on two high-dimensional datasets, namely MNIST (LeCun et al., 1998) and Fashion-
MNIST (Xiao et al., 2017). MNIST contains images in R?8*2® with 10 classes representing the
digits. Fashion-MNIST is a 10-class dataset of images in R?$*?3_ with slightly more complex
shapes than MNIST. Both datasets have a training set of 60,000 examples.

To measure the performance of WGANs when dealing with high-dimensional applications
such as image generation, Brock et al. (2019) have advocated that embedding images into a
feature space with a pre-trained convolutional classifier provides more meaningful information.
Therefore, in order to assess the quality of the generator 11, , we sample images both from the
empirical measure U, and from the distribution Mg, - Then, instead of computing the Wasserstein
(or recall) distance directly between these two samples, we use as a substitute their embeddings
output by an external classifier and compute the Wasserstein (or recall) between the two new
collections. Such a transformation is also done, for example, in Kynkédinniemi et al. (2019).
Practically speaking, for any pair of images (a, b), this operation amounts to using the Euclidean
distance ||@(a) — ¢ (b)|| in the Wasserstein and recall criteria, where ¢ is a pre-softmax layer of
a supervised classifier, trained specifically on the datasets MNIST and Fashion-MNIST.

For these two datasets, as usual, we use generators of the form (3.2.1) and discriminators

of the form (3.2.2), and plot the performance of i, as a function of both p and g. The results
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of Figure 3.8 confirm the fact that the worst results are achieved for generators with a large
depth p combined with discriminators with a small depth g. They also corroborate the previous

observations that larger discriminators are preferred.

85.056 137.325

84.449

82.25 p=71 139.762  139.86

77.84 82.021

p=51{ 137.39 138.441

132.245
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p=21 137.099 139.123 139.534
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(a) supg g, dyip, (Un, He,), MNIST (b) SuPe,,e@ndLipl(“m Ug,), FMNIST
dataset. dataset.

Fig. 3.8 Influence of the generator’s depth p and the discriminator’s depth g on the maximal
Wasserstein distance supg ¢ dLip, (Un, H,) for the MNIST and F-MNIST datasets.
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Appendix 3.A Technical results

3.A.1 Proof of Lemma 3.2.1

Recall that the notation || - || (respectively, || -||~) means the Euclidean (respectively, the
supremum) norm, with no specific mention of the underlying space on which it acts. For
(z,7) € (R?)2, we have

1/1(z) = i)l < [[U1z+ b1 — Ur2' — by ||
(since o is 1-Lipschitz)
= |U1(z—2)|
<|Ui2 [z =7
<Kilz—72||

(by Assumption 1).

Go(2) — Go(7)| <
K?V||z—7||. We conclude that, for each 8 € O, the function Gg is K/ -Lipschitz on R,

Let us now prove that ¥ C Lip,. Fix Do € &, a0 € A. According to (3.2.2), we have, for
x € E, Dq(x) = fgo---0 fi(x), where fi(t) = 6(Vit +¢;) fori=1,...,q—1 (& is applied on
pairs of components), and f, () = V,t + c4.

Repeating this for i = 2,...,p, we thus have, for all (z,7/) € (R%)?,

Consequently, for (x,y) € E2,

/1) = fi)leo < [IVix = Viy|leo
(since & is 1-Lipschitz)

= [IVi(x=y)lleo
< Vill2eo [lx =
< e =il

(by Assumption 1).
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Thus,

120 fi(x) = f20 i) [l < [[VaSfi(x) = Vafi(y) |
(since & is 1-Lipschitz)
< Valloo [1f1(x) = f1(¥)lles
<) = fi)e
(by Assumption 1)

< e =yl

Repeating this, we conclude that, for each & € A and all (x,y) € E?, Dy (x) —Dg(y)| < [[x—|,
which is the desired result.

3.A.2 Proof of Proposition 3.2.1

We first prove that the function ® > 8 — g is continuous with respect to the weak topology
in P (E). Let Gg and Gy be two elements of ¢, with (8,0’) € @2. Using (3.2.1), we write
Go(z) = fpo---o fi(z) (respectively, Gg/(z) = f, 0~ 0 f](z)), where f;(x) = max(Uix +b;,0)
(respectively, f/(x) = max(U/x+b},0)) fori=1,...,p—1, and f,(x) = Upx+ b, (respectively,
[p(x) =Upx+b,).

Clearly, for z € R4,

|Uiz+by — Uiz — by ||

If1(z) = fi@)II <
< (@ = Uzl + 1oy = B |
<
<

10y = Ul llzll + [161 = B
(llzll+1)116 — 6"
Similarly, for any i € {2,..., p} and any x € R",
I1fix) = fi )l < (llell + 1) 16 — 6.
Observe that

1Go(2) = Ger(2) |
=|lfpo---ofix) = fro---o filD)l
<fpo-ofi@)=fpo-ofao i@+ +fpofpro-ofild) = fro---0 il
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As in the proof of Lemma 3.2.1, one shows that for any i € {1,..., p}, the function f,o0---o f;

is K {’ _iH—Lipschitz with respect to the Euclidean norm. Therefore,

1Go(z) — Gor(2)|
<K AR =A@+ + K fpo fyr0-0£(2) = fro--0 A
<Kl + )16 =0+ + (I £y 00 i@ +1)][6 — ]
<K+ 010 =0+ + (K] 2l + £y 00 f1(0) | + 1) — 6]

Using the architecture of neural networks in (3.2.1), a quick check shows that, for each
ie{l,...,p}

Hfz" Ofl Z,

We are led to
1Go(z) — Gor ()] = (1|2l +£2)]16 — 6", (3.A.1)

where
l

p—1
€1szf_l and 0, = ZKP (i+1) Z ZK{
i=0

Denoting by v the probability distribution of the sub-Gaussian random variable Z, we note that
Jra(C1]|z]| +£2)v(dz) < eo. Now, let (6) be a sequence in © converging to 6 € @ with respect
to the Euclidean norm. Clearly, for a given z € R¢, by continuity of the function 8  Gg(z),
we have gg?ong (z) = Gg(z) and, for any ¢ € C,(E), I}ii?o¢(G9k(z)) = @(Gg(z)). Thus, by the

dominated convergence theorem,

ggéwm%w%ﬁgRﬂmamwwzéﬁ«mmwwzémwwgim
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This shows that the sequence (g, ) converges weakly to tg. Besides, for an arbitrary xo in E,

we have
timsup [ o —x|tg, (d)
k—oo JE
=limsup | |jxo— Gg,(2)|v(dz)
k—yoo R4
<limsup | ([[Ge,(2) — Go(2)]| +[|Go(2) —xo|) v(dz)
k—yoo R4
<timsup [ (012l + )16~ 01V(dz) + [ 1Go(2) ~xollv(dz)
k—>c0 R4 R4
(by inequality (3.A.1)).
Consequently,

imsup [ xo — x{g, (@) < [ 1Goz) ~x0llv(dz) = [ [lxo~x]uo(c)

k—oo

One proves with similar arguments that

timint [ v x|, (00) > [ o] o ().
k—e JE E

Therefore, putting all the pieces together, we conclude that

tim [ 0 x| g, (@) = [ o ] o ().
—JE E

This, together with (3.A.2), shows that the sequence ([, ) converges weakly to g in Py (E),
and, in turn, that the function ® > 6 — U is continuous with respect to the weak topology in
Py (E), as desired.

The second assertion of the proposition follows upon noting that &7 is the image of the
compact set @ by a continuous function.

3.A.3 Proof of Proposition 3.2.2

To show the first statement, we are to exhibit a specific discriminator, say Znmax, such that, for
all (u,v) € (2 U{})?, the identity dg,_, (1, v) =0 implies u = v.

Let € > 0. According to Proposition 3.2.1, under Assumption 1, & is a compact subset
of P;(E) with respect to the weak topology in P;(E). Let xo € E be arbitrary. For any u € &
there exists a compact K, C E such that [ K l|xo — x|/ (dx) < €/4. Also, for any such K, the
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function P (E) > p +— || K ||xo — x||p(dx) is continuous. Therefore, there exists an open set
Uy C Pi(E) containing u such that, for any p € Uy, fKE |lxo — x||p (dx) < /2.

The collection of open sets {U, : u € &} forms an open cover of &, from which we can
extract, by compactness, a finite subcover Uy, ,...,Uy,. Letting K1 = U, K};;, we deduce that,
forallpe 2, | K ||xo — x||p(dx) < €/2. We conclude that there exists a compact K C E and
xo € K such that, for any u € 22U {u,},

[ gllvo—la(@n) <e/2.

By Arzela-Ascoli theorem, it is easy to see that Lip; (K), the set of 1-Lipschitz real-valued
functions on K, is compact with respect to the uniform norm || - || on K. Let {fi,..., f s}
denote an e-covering of Lip,(K). According to Anil et al. (2019, Theorem 3), for each
k=1,..., 4% there exists under Assumption 1 a discriminator Z; of the form (3.2.2) such that

inf || f; — glkll <&
8EDk

Since the discriminative classes of functions use GroupSort activations, one can find a neural net-
work of the form (3.2.2) satisfying Assumption 1, say Zmax, such that, for all k € {1,..., 4%},

Dk C Dmax- Consequently, for any f € Lip, (K), letting ko € argmin || f — f¢|
ke{l,...,. e}

0, We have

inf ||f —glklle < [|f = fipllo+ inf || fx, — g1kl < 2€.
8E€ P max ge@max

Now, let (1, V) € (ZU{p.})? be such that dg,_ (i, v) =0, i.e., SUP re gy 1 EnS —Evf|=0.
Let f* be a function in Lip, such that £, f* — Ey f* = dLip, (4, V) (such a function exists
according to (3.2.6)) and, without loss of generality, such that f*(xg) = 0. Clearly,

diip, (1, V) = Epf* —Ey f*
< ‘/Kf*du—/Kf*dV)Jr]/KEf*du— an*dV\
g‘/Kf*d,u—/Kf*dv)—i-e.

Letting g« € Zmax be such that

17—l < _in (7~ )il te < 3¢,

max
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we are thus led to

dup (V) <| [ (7 =g)au— [ (5" =gr)av+ [ gpau— [ gpav|+e.

Observe, since xg € K, that g s+«(xo)| < 3¢ and that, for any x € E, |gs+(x)| < ||xo — x|| + 3€.
Exploiting £, g+ — By g~ = 0, we obtain

diip, (1, V) <78+‘/chf*dli—/KBgf*dV‘

<Te+ [l —xlu(@) + [ llvo —xlv(dn) + e
KC KC

< 14e.

Since € is arbitrary and djp, is a metric on P (E), we conclude that u = v, as desired.

To complete the proof, it remains to show that dy_  metrizes weak convergence in & U
{1 }. To this aim, we let (1) be a sequence in & U {1, } and u be a probability measure in
P U{}.

If (ux) converges weakly to  in P(E), then dyip, (1, i) — 0 (Villani, 2008, Theorem
6.8), and, accordingly, dg,__ (1, 1) — 0.

Suppose, on the other hand, that dg,_ (1, tx) — 0, and fix € > 0. There exists M > 0 such
that, forall k > M, dg_ (U, ) < €. Using a similar reasoning as in the first part of the proof,
it is easy to see that for any k > M, we have dp;p, (1, tx) < 15€. Since the Wasserstein distance
metrizes weak convergence in P (E) and € is arbitrary, we conclude that (1) converges weakly
to i in P (E).

3.A.4 Proof of Lemma 3.2.2

Using a similar reasoning as in the proof of Proposition 3.2.1, one easily checks that for all
(a,0') € A% and all x € E,

g—1
Da(x) ~ Dor(x)] < Q" (gllxl| + K2 ¥ i+ )l — o
i=1

(q—1K>

q
<0 (glx|+ = +q)la— o],
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where g refers to the depth of the discriminator. Thus, since & C Lip; (by Lemma 3.2.1), we
have, for all @ € A, all x € E, and any arbitrary xg € E,

Do ()] < [Do(x) = Da(x0)| + [Der(x0)]

(- 1K,

q
< o — x|+ 0 (gllxoll + == +q) |

(upon noting that Dy(xg) = 0)

(g—1)K>

< Il — x|+ @' (gllxo | + FI=2 4 9) Q' max (Ko, ),

where Q is the dimension of A. Thus, since u* and the tg’s belong to Py (E) (by Lemma 3.2.1),
we deduce that all Dy, € & are dominated by a function independent of & and integrable with
respect to i, and pg. In addition, for all x € E, the function o — D¢ (x) is continuous on A.
Therefore, by the dominated convergence theorem, the function A 5 o — |Ey Dy —E;, Dy |

is continuous. The conclusion follows from the compactness of the set A (Assumption 1).

3.A.5 Proof of Theorem 3.2.1
Let (6,60’) € ®2, and let }; be the joint distribution of the pair (Gg(Z),Gg/(Z)). We have
|ELip, (8) — &ELip, (8")] = |dLip, (L, M) — dLip, (K, Ler)]

< dvip, (Mo Her)

= inf x—y||y(dx,dy),
YEII (g, 1gr) EZH I )

where IT(ug, lg) denotes the collection of all joint probability measures on E x E with
marginals g and pg:. Thus,

i, (0) = G1ip, (1] < [ =l 7(cx )

— [ 1Go() - Gor@lIv(d2)
R
(where Vv is the distribution of Z)
< HG—G’H/ (1|2l + ) v(dz)
Rd

(by inequality (3.A.1)).
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This shows that the function 6 > @ > &;;p,, (0) is L-Lipschitz, with L = [p4(¢1]|z| +£2)v(dz).

For the second statement of the theorem, just note that

0(8) — &5 (8")] = |do (s o) — d oy (1, )|
< dg(Ue, Ler)
<duip, (Mo, He')
(since ¥ C Lip,)
<L|6-0|.

3.A.6 Proof of Theorem 3.3.1

The proof is divided into two parts. First, we show that under Assumption 1, for all € > 0 and
0 € O, there exists a discriminator & (function of € and 6) of the form (3.2.2) such that

dLip1<.u**a.u9) _d@(ﬂ*,#e) < 10e.

Let f* be a function in Lip; such that £, f* —IE, f* = dLip, (U, le) (such a function exists
according to (3.2.6)). We may write

dvip, (te; Ho) — dop (s o) = By f* = By f — sup By, f —Epy f]
JE€2

= Ep f* = Epo S — sup (B, f—Epy f)

feo
:fig; (B f" = Bpg f* = Ep f + Eyy f)
= inf (B.(f" = f) = Bup (/"= )
<fig; (B f* = fI+Epe 7= f1)- (3.A.3)

Next, for any f € & and any compact K C E,

Euplf" = fl=Eplf = flg +Ep [/ = g
<N =k lloo + B [/ e + By, [ L ge-

For the rest of the proof, we will assume, without loss of generality, that *(0) = 0 and thus
| f*(x)| < |x|. Therefore, there exists a compact set K such that 0 € K and

max (Ep, |f*[1ge, Byl f*1ge) <e.
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Besides, according to Anil et al. (2019, Theorem 3), under Assumption 1, for any compact
K, we can find a discriminator of the form (3.2.2) such that infc g || (f* — f)1k||~ < €. So,
choose f € Z such that ||(f* — f)1k||- < 2€. For such a choice of f, we have, for any x € E,
|f ()| < |f(x) = £(0)] + | £(0)] < |x|+2€, and thus, recalling that f*(0) = 0,

max (Ep, [ e, Eylf1xc) < 3.

Consequently,

Eu |f* = FI< (" = )kl +4e.

Similarly,

B |17 = FI <N = )kl +4e.

Plugging the two inequalities above in (3.A.3), we obtain
duip, (Ks: Ho) = do (s Ho) < 21nf | (f" = f)lkll+ 8e.
We conclude that, for this choice of Z (function of € and 6),

dLip, (M, Mo) — d (i, Hg) < 10€, (3.A.4)

as desired.
For the second part of the proof, we fix € > 0 and let, for each 8 € ® and each discriminator
of the form (3.2.2),

A

£2(0) = duip, (Lx, Ho) — do (U, tp).-

Arguing as in the proof of Theorem 3.2.1, we see that 89(9) is 2L-Lipschitz in 6, where
L= [gra(¢1]|z]| +¢2)v(dz) and v is the probability distribution of Z.

Now, let {0,...,0 4.} be an e-covering of the compact set O, i.e., for each 6 € O, there
exists k € {1,...,.4¢} such that ||6 — 6;|| < €. According to (3.A.4), for each such k, there
exists a discriminator Z such that é@k (k) < 6¢. Since the discriminative classes of functions
use GroupSort activation functions, one can find a neural network of the form (3.2.2) satisfying
Assumption 1, say Zax, such that, for all k € {1,..., 4%}, Dk C Pmax- Clearly, é_@max(e) is
2L-Lipschitz, and, for all k € {1,..., 4¢}, é_@max(ek) < 6¢. Hence, for all 6 € O, letting

ke argmin ||0 — 6||,
ke{l,.... A}
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we have
E T (0) < |60 (0) — €2 (00) | + €2 () < (2LA4-6)e.

Therefore,

T,@(Lipb@max) = Sug |:dL1P1 (.u'*a.ue) - d@max (AU’*MU“G)] = ;ug é@max(e) < (2L+6)8'
S S

We have just proved that, for all € > 0, there exists a discriminator Zp,x of the form (3.2.2)
and a positive constant ¢ (independent of €) such that

Tt@ (Lipl, gmax) < C8.
This is the desired result.

3.A.7 Proof of Proposition 3.3.1

Let us assume that the statement is not true. If so, there exists € > 0 such that, for all § > 0,
there exists 0 € .#,, (L, 8) satisfying d(6,0) > &. Consider 8, = 1/n, and choose a sequence
of parameters (6,) such that

I _
0, € .M, (u,*, Z> and  d(6,,0) > .

Since @ is compact by Assumption 1, we can find a subsequence (6, ) that converges to some
O.cc € O. Thus, for all n > 1, we have

1
d < inf d ) -,
7 (K, oy, ) < Inf dg (1, o) +
and, by continuity of the function ® > 0 — d4 (L, 1g) (Theorem 3.2.1),
d9 (e, Oacc) < inf do(py, lg).
0cO

We conclude that 6, belongs to @. This contradicts the fact that d(8acc, @) > €.
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3.A.8 Proof of Lemma 3.3.2

Since a = b, according to Definition 3.3.2, there exists a continuously differentiable, strictly
increasing function f : R™ — R™ such that, for all u € 22,

dLip, (s, 1) = f(do (s, 1))

For (6,0’) € ®? we have, as f is strictly increasing,

dg (i, o) < dg(Us, o) <= f(dg (U tg)) < fdg(Us, tgr)).

Therefore,

dg (e, o) < dg(Us, o) <= diip, (Hx, Ho) < diip, (s, Ugr)-

This proves the first statement of the lemma.
Let us now show that dp;p, can be fully substituted by dy. Let € > 0. Then, for 6 >0
(function of &, to be chosen later) and 6 € .#,,, (., ), we have

dip, (Hs, Ho) — Inf duip, (1, Ho) = f(do (s o)) — inf f(do (1, Hp))

= f(do (U 1o)) —f(eigg do (U, Ho))

< sup |f(do(te o)) — f(inf do (i, te))]-
0c.y,, (11..5) 0co

According to Theorem 3.2.1, there exists a nonnegative constant ¢ such that for any 0 €
O, dg (s, tg) < c. Therefore, using the definition of .4, (i, ) and the fact that f is

continuously differentiable, we are led to

df(x) ‘
ox

duip, (tx: o) = inf duip, (fr, o) < & Zlg)p}
x€(0,c

The conclusion follows by choosing & such that 6 sup |%] <E.
x€[0,c]

3.A.9 Proof of Proposition 3.3.2

Let 6 € (0,1) and 6 € .#;,,(Us,0), ie., dy(l, lg) —infoco dg (s, Ug) < 6. As dLip, is
monotonously equivalent to d¢, there exists a continuously differentiable, strictly increasing
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function f: R™ — R* and (a,b) € (R?%)? such that

Vue P, af(dg(t, 1)) < dLip, (e, 1) < bf(dg (L, 1L)).

So,
diip, (Hx, He) < ”f(eié% do(Us, o) + )
<bf(inf dg(p, Lg)) +O(3).
0O

Also,

) ‘ < . '

dnf duip, (tx, o) = af (Inf do (i, Ho))
Therefore,

diip, (s, Ho) — eigg diip, (s, o) < (b— a)f(eigg dg (s, g)) +O(6).

3.A.10 Proof of Lemma 3.3.3

Let f: R — R be in AFFNLip,. It is of the form f(x) = x-u+ b, where u = (uy,...,up),
b € R, and |[u|| < 1. Our objective is to prove that there exists a discriminator of the form
(3.2.2) with ¢ = 2 and v{ = 2 that contains the function f. To see this, define V| € %(270) and
the offset vector ¢; € 45 ) as

0

ul CEEEY MD
Vi= and ¢ =
ul PRy uD

0
Letting V2 € 4y 2), c2 € Ay 1) be
vo=[1 0], e=|p|.
we readily obtain Vo6 (Vix+c1) +c2 = f(x). Besides, it is easy to verify that ||V} ]2 < 1.

3.A.11 Proof of Lemma 3.3.4

Let p and v be two probability measures in P;(E) with supports Sy, and Sy satisfying the

conditions of the lemma. Let 7 be an optimal coupling between u and v, and let (X,Y) be a
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random pair with distribution 7 such that
duip, (11.V) = E[X Y]

Clearly, any function fy € Lip; satisfying fo(X) — fo(Y) = || X —Y|| almost surely will be such
that

diip, (11, V) = |Ey fo—Ey fol.

The proof will be achieved if we show that such a function f exists and that it may be
chosen linear. Since Sy, and Sy are disjoint and convex, we can find a unit vector u of RP
included in the line containing both S, and Sy such that (xo —yo) - u > 0, where (xo,y0) is
an arbitrary pair of S, x Sy. Letting fo(x) =x-u (x € E), we have, for all (x,y) € Sy x Sy,
fo(x)— fo(y) = (x—y)-u=|[x—yl|. Since fy is a linear and 1-Lipschitz function on E, this

concludes the proof.

3.A.12 Proof of Lemma 3.3.5

For any pair of probability measures (¢, V) on E with finite moment of order 2, we let Wo(u, v)
be the Wasserstein distance of order 2 between u and v. Recall (Villani, 2008, Definition 6.1)
that

1% inf 2n(dr,dy))
)= (nt [ eylPaana)

where IT(u, V) denotes the collection of all joint probability measures on E x E with marginals

u and v. By Jensen’s inequality,

diip, (1, V) = Wi (1, v) < Wa(p,v).

Let £ € ./ p p) be a positive semi-definite matrix, and let 4 be Gaussian ./4” (m1,X) and v be
Gaussian .4/ (my, X). Denoting by (X,Y) a random pair with marginal distributions y and v
such that

E[[X =Yl =W (u,v),

we have

lm1 —ma|| = [EX =Y)| <E[X Y[ =W (1,v) <Wa(u,v) = [mi —ma,
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where the last equality follows from Givens and Shortt (1984, Proposition 7). Thus,
diip, (U, V) = ||my —my||. The proof will be finished if we show that

darFnLip, (1, V) 2 [[m1 —mg]|.

(m—my)

To see this, consider the linear and 1-Lipschitz function f : E 3 x +— x - Ty =ma] (with the
convention 0 x e = (), and note that
darFriLip, (1, V) ’/ —mz)ﬂ(dx>—/y'wv(dy)‘
1
. Hm1 mzH E" |lmy—my
(m1 —my)
dx—/x—m—l—m " — dx‘
| o @)= f s m ) =t
= [[m1 —m||.

3.A.13 Proof of Proposition 3.3.3

Let € > 0, and let  and v be two probability measures in P; (E) with compact supports S, and
Sy such that max(diam(Sy ),diam(Sy)) < €d(Sy,Sv). Throughout the proof, it is assumed that
d(Sy,Sy) > 0, otherwise the result is immediate. Let 7 be an optimal coupling between u and
v, and let (X,Y) be a random pair with distribution 7 such that

duip,(11.v) = B[[X ~ ]|

Any function fp € Lip; satisfying ||X —Y|| < (1 +2¢)(fo(X) — fo(Y)) almost surely will be
such that

diip, (11, V) < (14+28)|Ey fo— By fol.

Thus, the proof will be completed if we show that such a function fj exists and that it may be
chosen affine.

Since Sy, and Sy are compact, there exists (x*,y*) € Sy, x Sy such that ||x* —y*|| = d(Sy,Sy).
By the hyperplane separation theorem, there exists a hyperplane .7# orthogonal to the unit
—= such that d(x*, ) = d(y*, ) = ki . "I, For any x € E, we denote by

p.w(x) the projection of x onto 7. We thus have d(x,%”) = |[x — pr(x)|, and )%y* =

* *

por(535) = pw(x*) = pyr(y*). In addition, by convexity of S, and Sy, for any x € Sy,

1x = P ()| = [|lx* = pw(x*)||. Similarly, for any y € Sy. [ly = pr (V)| = [y = P (7).
Let the affine function fj be defined for any x € E by

vector u = 71—
IIx

Jox) = (x=por(x) -u
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Observe that fy(x) = fo(x+ ’%) Clearly, for any (x,y) € E?, one has

*+ *
o) = o)l = [folr—y+ =),
* * * *
:|((x—y+x ery )—p%(x—y+x il )).ul
* * * *
<=y + 5 = pr -3+ 50|
x*_J’_y* x*+y*
<p—y+=——-=—==
* *

(since i ;y € )
= [x—yll-

Thus, fo belongs to Lip;. Besides, for any (x,y) € S, x Sy, we have

1x =l < llx = pore ()| + 1P (x) = poe )| + | P (v) = ¥l
< (= por () - u= 0= par)) -t [ () = 2|+ o) - 252

=(x—pr(x) u—y—pr®) utlprx)—pre)|+prQ)—pr)l.
Thus,

X =yl < (x = por (%) -u— (y = pr(¥)) - u+2max(diam(Sy ), diam(Sy ) )
<

fo(x) = fo(y) +2€d(Sy,Sv)
= fo(x) = fo(y) +2&(fo(x*) — fo(»"))
= fo(x) = fo(y) +2€(fo(x) — fo(x) + fo(x) — fo(y) + fo(y) — fo ("))

< (1+2€)(fo(x) = fo(v))
(using the fact that fo(x*) — fo(x) < 0and fo(y*) — fo(y) = 0).

Since fp € Lip;, we conclude that, for any (x,y) € Sy x Sy,

[fo() = fo) < [lx =yl < (1+2€)(fo(x) = fo(y))-

3.A.14 Proof of Lemma 3.4.1

Using Dudley (2004, Theorem 11.4.1) and the strong law of large numbers, the sequence
of empirical measures (L,) almost surely converges weakly in P;(E) to u,. Thus, we have
1i_r>n dyip, (Ux, 1) = 0 almost surely, and so 1i_r>n dg (U, Uy) = 0 almost surely. Hence, recalling
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inequality (3.4.3), we conclude that

sup do (W, o) — Gig(g dg (U, L) — 0 almost surely. (3.A.5)
0,€0,

Now, fix € > 0 and recall that, by our Theorem 3.2.1, the function @ > 6 — dp, (U, Ug) is
L-Lipschitz, for some L > 0. According to (3.A.5) and Proposition 3.3.1, almost surely, there
exists an integer N > 0 such that, for all n > N, for all 6, € ,, the companion 6, € O is
such that |8, — 6,|| < £. We conclude by observing that |€egim| < SUPg o, |dLip, (Hx, He,) —
dvip, (e, g, )| S LX £

3.A.15 Proof of Proposition 3.4.1

Let u, be the empirical measure based on # i.i.d. samples X, ..., X, distributed according to
W.. Recall (equation (3.2.5)) that

d(Ue; ) = sup |Ey, Do —Ey,Dg| = sup |Ey Do — = ZDa

acA acA n:=

Let g be the real-valued function defined on E” by

g(x1,...,x,) = sup EMDa——ZDa Xi)
oEA

Observe that, for (x1,...,x,) € E" and (x},...,x},) € E",

1 n

‘g(.XI,-..,Xn)_g<x/1,---, Sup ZDOC Xi __Z

aEA n=

1

< —sup Z‘Da xi) = Da(x;)]

nae/\, 1

< ;Z e — x4 (3.A.6)
i=1

We start by examining statement (i), where (., has compact support with diameter B. In this

case, letting X/ be an independent copy of X;, we have, almost surely,

‘g(X];-..,Xn)_g(Xl,...,Xi/,...,Xn)| < —.
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An application of McDiarmid’s inequality (McDiarmid, 1989) shows that for any 7 € (0, 1),
with probability at least 1 — 1,

log(1
bt 1) < By (1) + By ELT). (A7)

Next, for each o € A, let Y, denote the random variable defined by
1 n
i=1

Using a similar reasoning as in the proof of Proposition 3.2.1, one shows that for any (o, ) €
A? and any x € E,

(= 1K,

Da(x) = Dar()| < 0" (gl + T4 + g~

where we recall that g is the depth of the discriminator. Since t, has compact support,

_ [ o2 a(g— 1K, -
£= [ 0" (gl + T2 + () <o

Observe that 1
Yo —Yo| < —lloc— || [§(n)],
where . ( )
q(q—1)K>
&= Y 0P (t+allXil| + 75" +q).
i=1
Thus, using Vershynin (2018, Proposition 2.5.2), there exists a positive constant ¢ =

0(qQ"/*(D'/? + ¢)) such that, for all A € R,

1 21 272
EetYa—Ya) ¢ Retalla—all 18l  pe*ylla—a/|PA%

We conclude that the process (Y ) is sub-Gaussian (van Handel, 2016, Definition 5.20) for the
distance d(a,a’) = C”a—\/}la”. Therefore, using van Handel (2016, Corollary 5.25), we have

12¢
Vn

<

1 n oo
Edy (1 ) = Esup [Ep. Do~ Y Da(X)| < =5 [ V/log # (AT o)
i=1

acA
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where A (A, ]| -||,u) is the u-covering number of A for the norm || - ||. Since A is bounded,
there exists r > 0 such that A" (A,||-||,u) = 1 for u > rQ1/2 and

1/2\ @
JV(A,|]-|\,M)§(FQM ) for u < rQ'/2.

Thus,
1
Edg (s, ) < %

for some positive constant ¢; = O(¢Q>/?(D'/? + g)). Combining this inequality with (3.A.7)
shows the first statement of the lemma.

We now turn to the more general situation (statement (ii)) where pu* is y sub-Gaussian.
According to inequality (3.A.6), the function g is %—Lipschitz with respect to the 1-norm on E”.

Therefore, by combining Kontorovich (2014, Theorem 1) and Vershynin (2018, Proposition
2.5.2), we have that for any ) € (0, 1), with probability at least 1 — 1,

log(1
do (W tn) < Bdoy(ths, i) +8Yv/eD w (3.A.8)

As in the first part of the proof, we let
1 n
Yo =By, Do — - Y Du (X)),
i=1

and recall that for any (&, ') € A% and any x € E,

(= 1K,

Da(x) = Do ()] < "2 (gl + 2 ——+q)la—o|.

Since p, is sub-Gaussian, we have (see, e.g., Jin et al., 2019, Lemma 1),

_ [ o2 a(g— 1K, -
t= [ Q"2 (ghel+ T2 + () <o

Thus,
1
Yo —Yor| < ljor = o/ || [E(n)],

where
(g— 1)K

& =Y 0" (¢+qlxil+ IS5 4 ).
i=1
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According to Jin et al. (2019, Lemma 1), the real-valued random variable &, is sub-Gaussian.
We obtain that, for some positive constant ¢; = 0(gQ>/%(D'/? + q)),

)

E n <_7
do (M, n) U

and the conclusion follows by combining this inequality with (3.A.8).

3.A.16 Proof of Theorem 3.4.1

Let € >0and n € (0,1). According to Theorem 3.3.1, there exists a discriminator Z of the

form (3.2.2) (i.e., a collection of neural networks) such that

We only prove statement (i) since both proofs are similar. In this case, according to Proposition
3.4.1, there exists a constant ¢; > 0 such that, with probability at least 1 — 1,

¢ log(1/n)
; V<L gy /28D

Therefore, using inequality (3.4.5), we have, with probability at least 1 — 7,

2¢ log(1

3.A.17 Proof of Proposition 3.4.2

Observe that, for 0 € O,

0 < dg(p, o) — inf do (i, o)
cO
=dg (e, Ho) —dg(Un, lo) +d o (Hn, Lo) — eigg dg(Un, Ue)
inf do(Un, L) — inf do (U,
+ dnf dg (1n, o) — Inf dg (1, o)
< dg (s, Un) +do(n, Ho) — eirelg do(Un, Ue) +do (L, Un)

= 2d9<nu“*uun) +d9(ﬂn7#6) - Gnelg) d@(“nal%)y
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where we used respectively the triangle inequality and
| inf dg(kn, o) — Inf dg (e, Ho)| < sup [do (s, to) — do(Hn, Ho)| < do (s thn).-
6cO 6cO 0cO

Thus, assuming that T (Lip;, Z) < €, we have

0< dLipl (nu“*v.u9> - Onelg) dLipl (.u'*v.u'G)
<diip, (Ux, Ho) — dg (U, Uo) +d g (Us, Ho) — Jnf do (s, o)
STy (Lipy, ) +dg (i o) — inf do (1, Ho)

< €+2dg (i, tn) +do(Un, o) — Inf do(Un, e)- (3.A.9)
Let 6 >0and 6 € .#,,,(l4n,6/2), that is,
€O

For € (0, 1), we know from the second statement of Proposition 3.4.1 that there exists N € IN*
such that, for all n > N, 2dg (., U,) < 6/2 with probability at least 1 — 1. Therefore, we
conclude from (3.A.9) that for n > N, with probability at least 1 — 1),

duip, (tx: o) — inf diip, (k. ptp) < €+8.



Chapter 4

Approximating Lipschitz continuous
functions with GroupSort neural
networks

Abstract

Recent advances in adversarial attacks and Wasserstein GANs have advocated for use of neural networks

with restricted Lipschitz constants. Motivated by these observations, we study the recently introduced
GroupSort neural networks, with constraints on the weights, and make a theoretical step towards a
better understanding of their expressive power. We show in particular how these networks can represent
any Lipschitz continuous piecewise linear functions. We also prove that they are well-suited for
approximating Lipschitz continuous functions and exhibit upper bounds on both the depth and size.
To conclude, the efficiency of GroupSort networks compared with more standard ReLLU networks is

illustrated in a set of synthetic experiments.
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4.1 Introduction

In the past few years, developments in deep learning have highlighted the benefits of operating
neural networks with restricted Lipschitz constants. An important illustration is provided by
robust machine learning, where networks with large Lipschitz constants are prone to be more
sensitive to adversarial attacks, in the sense that small perturbations of the inputs can lead to
significant misclassification errors (e.g., Goodfellow et al., 2015). In order to circumvent these
limitations, Gao et al. (2017), Esfahani and Kuhn (2018), and Blanchet et al. (2019) studied
a new regularization scheme based on penalizing the gradients of the networks. Constrained
neural networks also play a key role in the different but not less important domain of Wasserstein
GANSs (Arjovsky et al., 2017), which take advantage of the dual form of the 1-Wasserstein
distance expressed as a supremum over the set of 1-Lipschitz functions (Villani, 2008). This
formulation has been shown to bring training stability and is empirically efficient (Gulrajani
et al., 2017). In this context, many different ways have been explored to restrict the Lipschitz
constants of the discriminator. One possibility is to clip their weights, as advocated by Arjovsky
et al. (2017). Other solutions involve enforcing a gradient penalty (Gulrajani et al., 2017) or
penalizing norms of the matrices of the weights (Miyato et al., 2018).

However, all of these operations are delicate and may significantly affect the expressive
power of the neural networks. For example, Huster et al. (2018) show that ReLU neural
networks with constraints on the weights cannot represent even the simplest functions, such as
the absolute value. In fact, little is known regarding the expressive power of such restricted
networks, since most studies interested in the expressiveness of neural networks (e.g., Hornik
et al., 1989; Cybenko, 1989; Raghu et al., 2017) do not take into account eventual constraints
on their architectures. As far as we know, the most recent attempt to tackle this issue is by
Anil et al. (2019). These authors exhibit a family of neural networks, with constraints on the
weights, which is dense in the set of Lipschitz continuous functions on a compact set. To show
this result, Anil et al. (2019) make critical use of GroupSort activations.

Motivated by the above, our objective in the present article is to make a step towards a
better mathematical understanding of the approximation properties of Lipschitz feedforward

neural networks using GroupSort activations. Our contributions are threefold:

(i) We show that GroupSort neural networks, with constraints on the weights, can represent
any Lipschitz continuous piecewise linear function and exhibit upper bounds on both
their depth and size. We make a connection with the literature on the depth and size of
ReL.U networks (in particular Arora et al., 2018; He et al., 2018).

(ii) Building on the work of Anil et al. (2019), we offer upper bounds on the depth and

size of GroupSort neural networks that approximate 1-Lipschitz continuous functions on
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compact sets. We also show that increasing the grouping size may significantly improve

the expressivity of GroupSort networks.

(iii) We empirically compare the performances of GroupSort and ReLU networks in the

context of function regression estimation and Wasserstein distance approximation.

The mathematical framework together with the necessary notation is provided in Section
4.2. Section 4.3 is devoted to the problem of representing Lipschitz continuous functions
with GroupSort networks of grouping size 2. The extension to any arbitrary grouping size is
discussed in Section 4.4 and numerical illustrations are given in Section 4.5. For the sake of

clarity, all proofs are gathered in the Appendix.

4.2 Mathematical context

We introduce in this section the mathematical context of the article and describe more specifi-
cally the GroupSort neural networks, which, as we will see, play a key role in representing and
approximating Lipschitz continuous functions.

Throughout the paper, the ambient space R is assumed to be equipped with the Euclidean
norm || - ||. For E a subset of R¢, we denote by Lip; (E) the set of 1-Lipschitz real-valued
functions on E, i.e.,

Lip)(E) = {f:E = R:|f(x)— fO)| < |x—yl, (x,y) € E*}

Let k > 2 be an integer. We let 7 = {Dy ¢ : 0t € A} be the class of functions from Réto R

parameterized by feedforward neural networks of the form

Dk’a(x): Vy Gk( Vi1 -"Gk( %) Gk( Vi x4+ ¢ )
Ixvy_q Vg 1XVg2 V2 X1 vixD vixl1
+ 2 )+ cq-1 )+ cq, 4.2.1)
vaxly o ix1 o 1xd

where g > 2 and the characters below the matrices indicate their dimensions (lines x columns).
For g = 1, we simply let Dy o (x) = Vix+ ¢ be a simple linear regression in R without hidden
layers. Thus, a network in Z has (¢ — 1) hidden layers, and hidden layers from depth 1 to
(g —1) are assumed to be of respective widths v;, i = 1,...,q— 1, divisible by k. Such a network
is said to be of depth g and of size V| +---+ v, 1. The matrices V; are the matrices of weights
between layer i and layer (i + 1) and the ¢;’s are the corresponding offset vectors (in column
format). So, altogether, the vectors & = (Vi,...,V,,c1,...,¢q4) represent the parameter space A
of the functions in Z.
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Fig. 4.1 GroupSort activation with a grouping size 5. Source: Anil et al. (2019).

With respect to the activation functions oy, we propose to use the GroupSort activation,
which separates the pre-activations into groups and then sorts each group into ascending
order. First, the GroupSort function splits the input into n different groups of k elements each:
Gy ={x1,...,xk},---Gn = {Xpk—k—1,-- -, Xn ;- Then, it orders each group by decreasing order
as follows:

Ok(X1y ey Xk s Xk (k1) + - + 1 Xnk) = (x(Gk'),..‘,xg')),...,(xG" G”).
where xg), corresponding to the ordering statistics, is the smallest element of the group G.

This activation is applied on groups of kK components, which makes sense in (4.2.1) since
the widths of the hidden layers are assumed to be divisible by k. GroupSort has been introduced
in Anil et al. (2019) as a 1-Lipschitz activation function that preserves the gradient norm of
the input. An example with a grouping size k = 5 is given in Figure 4.1. With a slight abuse
of vocabulary, we call a neural network of the form (4.2.1) a GroupSort neural network. We
note that the GroupSort activation can recover the standard rectifier function. For example,
0>(x,0) = (ReLU(x), —ReLU(—x)), but the converse is not true.

Throughout the manuscript, the notation || - || (respectively, || - ||) means the Euclidean
(respectively, the supremum) norm on R”, with no reference to p as the context is clear.
For W = (w; j) a matrix of size p; x p2, we let [|W||2 = supy,_; [|Wx|| be the 2-norm of W.
Similarly, the co-norm of W is [|W .o = supy_—; [[Wx|le = max;=1,_.p, Z?il lwi j|. We will
also use the (2,00)-norm of W, i.e., [W||2.e = supy—; ||[Wx[|w. The following ass plays a
central role in our approach:

Assumption 2. Forall o = (V1,...,V,,c1,...,¢4) € A,

Villzeo < 1, max([[Vales, s [Vylleo) <

Y

1
and max(||cil|w:i=1,...,q9) < K3,

where K> > 0 is a constant.
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This type of compactness requirement has already been suggested in the statistical and
machine learning community (e.g., Arjovsky et al., 2017; Anil et al., 2019; Biau et al., 2020).
In the setting of this article, its usefulness is captured in the following simple but essential

lemma:
Lemma 4.2.1. Assume that Assumption 2 is satisfied. Then, for any k > 2, 9 C Lip;(R9).

Combining Lemma 4.2.1 with Arzela-Ascoli theorem, it is easy to see that, under Assump-
tion 2, the class Z restricted to any compact K C R? is compact in the set of continuous
functions on K with respect to the uniform norm. From this point of view, Assumption 2 is
therefore somewhat restrictive. On the other hand, it is essential in order to guarantee that all
neural networks in & are indeed 1-Lipschitz. Practically speaking, various approaches have
been explored in the literature to enforce this 1-Lipschitz constraint. Gulrajani et al. (2017),
Kodali et al. (2017), Wei et al. (2018), and Zhou et al. (2019) proposed a gradient penalty term,
Miyato et al. (2018) applied spectral normalization, while Anil et al. (2019) have shown the
empirical efficiency of the orthonormalization of Bjorck and Bowie (1971).

Importantly, Anil et al. (2019, Theorem 3) states that, under Assumption 2, GroupSort
neural networks are universal Lipschitz approximators on compact sets. More precisely, for
any Lipschitz continuous function f defined on a compact, one can find a neural network of
the form (4.2.1) verifying Assumption 2 and arbitrarily close to f with respect to the uniform
norm. Our objective in the present article is to explore the properties of these networks. We

start in the next section by examining the case of piecewise linear functions.

4.3 Learning functions with a grouping size 2

For this section, we only consider GroupSort neural networks with a grouping size 2 and aim at
studying their expressivity. The capacity of GroupSort networks to approximate continuous
functions is studied via the representation of piecewise linear functions. For feedforward ReLU
networks, their ability to represent such functions has been largely studied. In particular, Arora
et al. (2018, Theorem 2.1) reveals that any piecewise linear function from RY — R can be
represented by a ReLU network of depth at most [log,(d + 1)] (the symbol |-] stands for the
ceiling function), whereas He et al. (2018) specify an upper bound on their size. In the present
section, we extend these results and first tackle the problem of representing piecewise linear

functions with constrained GroupSort networks. Then we move to the non-linear case.

4.3.1 Representation of piecewise linear functions

Let us start gently by fixing the vocabulary.



116 Approximating Lipschitz continuous functions with GroupSort neural networks
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Fig. 4.2 A 4-piecewise linear function on the real line and the associated partitions 2 =
{Q1,...,Q4} and Q = {Qy,...,Q7}. The partition € is finer than Q.

Definition 4.3.1. A continuous function f : RY — R is said to be (continuous) m f-pliecewise
linear (my > 2) if there exist a partition £ = {Ql7~~7-me} of RY into polytopes and a
collection {y,. ..Uy, of affine functions such that, for all x € Q;, i =1,...,my, f(x) = {i(x).

At this stage no further assumption is made on the sets €2y, .., £2,, ., which are just assumed
to be polytopes in R?. An example of piecewise linear function on the real line with m r=4is
depicted in Figure 4.2. As this figure suggests, the ambient space R? can be further covered by
a second partition Q = {f)l yee ,QMf} of My polytopes (My > 1), in such a way that the sign
of the differences ¢; — ¢, (i, j) € {1,... ,mf}z, does not change on the subsets Q... 7QMf. It
is easy to see that the partition € is finer than Q since, for each i € {1,...,My} there exists
j€{l,...,ms} such that &; C Q;. This implies in particular that M; > mj.

The usefulness of the partition Q is demonstrated by He et al. (2018, Theorem 5.1), which

states that any m ¢-piecewise linear function f can be written as

f= max min/;, 4.3.1)

1 gkng €Sy
where each Sy is a non-empty subset of {1,...,ms}. This characterization of the function f is
interesting, since it shows that any m ¢-piecewise linear function can be computed using only a
finite number of max and min operations. As identity (4.3.1) is essential for our approach, this

justifies spending some time examining it.

Lemma 4.3.1. Let f: RY = R be an myg-piecewise linear function. Then my < My <
2
min(2"7/2, (m/v/2)*).
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Lemma 4.3.1 is an improvement of He et al. (2018, Lemma 5.1), which shows that My <m!.

Our proof method exploits the inequality My < C, /24> Where C,, 4 denotes the number

flmp=1)
of arrangements of n hyperplanes in a space of dimension d (Devroye et al., 1996, Chapter 5).
Another application of (4.3.1) is encapsulated in Proposition 4.3.1 below, which will be useful

for later analysis, in combining maxima and minima in neural networks of the form (4.2.1).

Proposition 4.3.1. Let fi,..., fu: RY = R be a collection of functions (m > 2), each repre-
sented by a neural network of the form (4.2.1), with common depth q and sizes s;, i = 1,...,m.
In the specific case where m = 2" for some n > 1, there exist neural networks of the form
(4.2.1) (with grouping size 2) with depth q+10g,(m) and size at most s| + - - - + sy, +m— 1 that
represent the functions f = max(fi,...,fm) and g = min(fi,..., fin)-
If m is arbitrary, then there exist neural networks of the form (4.2.1) with depth q +
[log,(m)| and size at most sy + - - - + sy, + 2m — 1 that represent the functions f and g.

Interestingly, Arora et al. (2018, Lemma D.3), which is the analog of Proposition 4.3.1
asserts that the size with ReLU activations is at most s1 + - - - + s, + 8m — 4. For the specific
computation of maxima/minima of functions, it should be stressed that GroupSort activations
slightly reduces the size of the networks. By combining Lemma 4.3.1, Proposition 4.3.1, and
identity (4.3.1), we are led to the following theorem, which reveals the ability of GroupSort

networks for representing 1-Lipschitz piecewise linear functions.

Theorem 4.3.1. Let f € Lip,(RY) that is also m r-piecewise linear. Then there exists a neural
network of the form (4.2.1) verifying Assumption 2 that represents f. Besides, its depth is
[log, (My)] + [logy(ms)] + 1 and its size is at most 3mgMy+ My — 1.

This result should be compared with state-of-the-art results known for ReLLU neural net-
works. In particular, Arora et al. (2018, Theorem 2.1) reveals that any m ¢-piecewise linear
function f can be represented by a ReLU network with depth at most [log,(d + 1)]. The upper
bound of Theorem 4.3.1 can be larger since it involves both M and m. On the other hand, the
upper bound O(m¢My) on the size significantly improves on He et al. (2018, Theorem 5.2),
which is at least O(d2™7Mr). This improvement in terms of size can be roughly explained by the
depth/size trade-off results known in deep learning theory. As a matter of fact, many theoretical
research papers have underlined the benefits of depth relatively to width for parameterizing
complex functions (as, for example, in Telgarsky, 2015, 2016). For a fixed number of neurons,
when comparing two neural networks, the deepest is the most expressive one (Lu et al., 2017).

It turns out that Theorem 4.3.1 can be significantly refined when the partition €2 satis-
fies some geometrical properties. Our next proposition examines the case where the sets
Q,...,8y, are convex.
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Corollary 4.3.1. Let f € Lip,(R?) that is also m r-piecewise linear with convex subdomains
Q1,...,8y,. Then there exists a neural network of the form (4.2.1) verifying Assumption 2
that represents f. Besides, its depth is 2[log,(ms)| + 1 and its size is at most 3m§c +mp—1.

Corollary 4.3.1 offers a significant improvement over Theorem 4.3.1, since in general

My > my. We note in passing that the result of this proposition is dimension-free.

4.3.2 GroupSort neural networks on the real line

Piecewise linear functions defined on R deserve a special treatment, since in this case, any

connected subset is convex.

Proposition 4.3.2. Let f € Lip; (R) that is also m-piecewise linear. Then there exists a neural
network of the form (4.2.1) verifying Assumption 2 that represents f. Besides, its depth is
2[log,(my)| + 1 and its size is at most 3m§- +mp—1.

In the specific case where f is convex (or concave), then there exists a neural network of
the form (4.2.1) verifying Assumption 2 that represents f. Its depth is [log,(ms)] + 1 and its
size is at most 3my — 1.

When f is convex (or concave) and my = 2" for some n > 1, then there exists a neural
network of the form (4.2.1) verifying Assumption 2 that represents f. Its depth is log,(my) + 1
and its size is at most 2my — 1.

This proposition is the counterpart of Arora et al. (2018, Theorem 2.2), which states that
any m-piecewise linear function from IR — IR can be represented by a 2-layer ReLU neural
network with a size at least my — 1 . He et al. (2018, Theorem 5.2) shows that the upper-bound
on the size of ReLU networks is 0(2m2+2(m_1)). Thus, for the representation of piecewise
linear functions on the real line, GroupSort networks require larger depths but smaller sizes.
Besides, bear in mind that the obtained ReLLU neural networks do not necessarily verify a
requirement similar to the one of Assumption 2.

Regarding the number of linear regions of GroupSort networks on the real line, we have the

following result:

Lemma 4.3.2. Any neural network of the form (4.2.1) on the real line, with depth q and widths
V1,..., V41, parameterizes a piecewise linear function with at most 2972 % (v /24 1) x vy X

-+ X Vg1 linear subdomains.

We deduce from this lemma that for a neural network of the form (4.2.1) with depth g > 2
and constant width v, the maximum number of linear regions is O(2¢73v4¢~1). Similarly to
ReLU networks (Montufar et al., 2014; Arora et al., 2018), the maximum number of linear
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regions for GroupSort networks with grouping size 2 is also likely to grow polynomially in v
and exponentially in q.

Our next corollary now illustrates the trade-off between depth and width for GroupSort
neural networks.

Corollary 4.3.2. Let f € Lip;(R) be an my-piecewise linear function. Then, any neural
network of the form (4.2.1) verifying Assumption 2 and representing f with a depth q, has a
size s at least 3(q — l)m}/(q_l).

The lower bound highlighted in Corollary 4.3.2 is dependent on the depth ¢ of the neural

network. By looking at the minimum of the function, we get that any neural network repre-

senting f has a size s > em(sz) . Thus, merging this result with Proposition 4.3.2, we have that

for any m¢-piecewise linear function from R — R, there exists a GroupSort network verifying
Assumption 2 with a size s satisfying

eln(mf)
2

<s<3m?c—mf—3.

We realize that this inequality is large but, up to our knowledge, this is first of this type for

GroupSort neural networks.

4.3.3 Approximating Lipschitz continuous functions on compact sets

Following our plan, we tackle in this subsection the task of approximating Lipschitz continuous
functions on compact sets using GroupSort neural networks. The space of continuous functions

on [0,1]¢ is equipped with the uniform norm
If —glle = max |f(x)—g(x)].
x€[0,1}4

The main result of the section, and actually of the article, is that GroupSort neural networks are

well suited for approximating functions in Lip, ([0, 1]¢).

Theorem 4.3.2. Let € > 0 and d > 2, f € Lip,([0,1]¢). Then there exists a neural network
D of the form (4.2.1) verifying Assumption 2 such that ||f — D|| < €. The depth of D is
O(d? logz(%‘?)) and its size is 0((%‘?)‘12).

To the best of our knowledge, Theorem 4.3.2 is the first one that provides an upper bound
on the depth and size of neural networks, with constraints on the weights, that approximate

Lipschitz continuous functions.
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As for the representation of piecewise linear functions, one can, for the sake of completeness,
compare this bound with those previously found in the literature of ReLU neural networks.
Yarotsky (2017) establishes the density of ReLU networks in Sobolev spaces, using a different
technique of proof. In particular, Theorem 1 of this paper states that for any f € Lip, ([0, 1]¢)
continuously differentiable, there exists a ReLU neural network approximating f with precision
g, with depth at most ¢(In(1/€) + 1) and size at most ce~¢(In(1/€) + 1) (with a constant
¢ function of d). Comparing this result with our Theorem 4.3.2, we see that, with respect
to &, both depths are similar but ReLU networks are smaller in size. However, one has to
keep in mind that both lines of proof largely differ. Besides, our formulation ensures that the
approximator is also a 1-Lipschitz function, a feature that cannot be guaranteed under the
formulation of Yarotsky (2017).

It turns out however that our framework provides smaller neural networks as soon as d = 1.

Proposition 4.3.3. Let € > 0 and f € Lip,([0,1]). Then there exists a neural network D of the
form (4.2.1) verifying Assumption 2 such that || f —D|| < €. The depth of D is 2[log,(1/¢€)]+1
and its size is O((1)?).

Besides, if f is assumed to be convex or concave, then the depth of D is [log,(1/€)]+1
and its size is O(é)

4.4 Impact of the grouping size

The previous section paved the way for a better understanding of GroupSort neural networks
and their ability to approximate Lipschitz continuous functions. As mentioned in Section 4.2,
one can play with the grouping size k of the neural network when defining its architecture.
However, it is not clear how changing this parameter might influence the expressivity of the
network. The present section aims at bringing some understanding. Following a similar
reasoning as in Section 4.3, we start by analyzing how GroupSort networks with an arbitrary

grouping size k > 2 can represent any piecewise linear functions:

Proposition 4.4.1 (Extension of Proposition 4.3.1). Let f1,..., fi: R? — R be a collection
of functions (m = 2), each represented by a neural network of the form (4.2.1), with common
depth q and sizes s;, i =1,...,m.

In the specific case where m = k"* for some n > 1, there exist neural networks of the form
(4.2.1) (with grouping size k) with depth q +log;(m) and size at most sy + -+ -+ sy + ’,’:T_ll —1
that represent the functions f = max(fi,..., fm) and g = min(f1,..., fm)-

Similarly to Section 4.3, this leads to the following corollary:
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Methods | UpDepth | UpSize |DownSize | Reference
Representing m = k"-PWL functions in R? with a constant width v

ReLU Mogy(d+1)]+1| 0(d2™) O(m) | Heetal. (2018)
GroupSort GS = k [2log(m)] +1 m27_11 Eiﬁﬁﬁﬁ'é’; present article
Approximating 1-Lipschitz continuous functions in [0, 1]

ReLU o(In(1)) o(™Le) \ Yarotsky (2017)
GroupSort GS = [%l o(d?) ((z‘f)d2 D) \ present article
Approximating 1-Lipschitz continuous functions in [0, 1]

ReLU (PWL representation) 2 0(21/€%+2/¢) \ He et al. (2018)
ReLU (different approach) O(In( é ) o( % ) \ Yarotsky (2017)
Adaptative ReLU 6 O(W) \ Yarotsky (2017)
GroupSort GS = [%] 3 0(%) \ present article

Table 4.1 Summary of the results shown in the present paper together with results previously
found for ReLLU networks. “Up Depth” refers to upper bounds on the depths, “Up Size” to
upper bounds on the sizes, and “Down Size” to lower bounds on the sizes. The symbol “\”
means that no result is known (up to our knowledge).

Corollary 4.4.1 (Extension of Corollary 4.3.1). Let f € Lip, (RY) that is also m f-piecewise
linear with convex subdomains 1,...,Q, y such that my = k" for some n > 1. Then there
exists a neural network of the form (4.2.1) verifying Assumptlon 2 that represents f. Besides,

mi—1
its depth is 2[log, (my)| + 1 and its size is at most f -

Proposition 4.4.1 and Corollary 4.4.1 exhibit the nice properties of using larger grouping
sizes. Indeed, for a given g > 1, there exists a neural network with depth 2¢ 4 1 and grouping
size k representing a function with k7 pieces. Consequently, the use of larger grouping sizes
helps have more expressive neural networks. The efficiency of larger grouping sizes may also

be explained by the following result for GroupSort networks on the real line:

Lemma 4.4.1 (Extension of Lemma 4.3.2). Any neural network of the form (4.2.1) on the real
line, with depth g, widths Vi, ...,V,_1, and grouping size k, parameterizes a piecewise linear

function with at most k9~2 x (M +1) X Vo X --- X V41 linear subdomains.

Thus, the number of linear regions of a GroupSort network is likely to increase polynomially
with the grouping size, which highlights the benefits of using larger groups. Similarly to Section
4.3, when moving to the approximation of Lipschitz continuous functions on [0, 1]¢, we are

lead to the following theorem:

Theorem 4.4.1 (Extension Theorem 4.3.2). Let € >0, d > 2, and f € Lip,([0,1]%). Then there
exists a neural network D of the form (4.2.1) verifying Assumption 2 with grouping size (%‘ﬁ

such that || f — D||e < €. The depth of D is O(d?) and its size is 0((2\f)"72 h.
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Using a grouping size proportional to 1/€, we thus have a bound on the depth that is

independent from the error rate. The uni-dimensional case leads to a different result:

Proposition 4.4.2 (Extension of Proposition 4.3.3). Let € > 0 and f € Lip, ([0, 1]). Then there

exists a neural network D of the form (4.2.1) verifying Assumption 2 (with grouping size k)

such that || f — D|| < €. The depth of D is 2ﬂogk(%)] + 1 and its size is at most 0(#)
In particular, if k is chosen to be equal to (5 then the depth of D is 3 and its size is O(

)

When approximating real-valued functions, the use of larger grouping sizes can significantly

™ |—

decrease the required size since it goes from O(1/€?) in Proposition 4.3.3 to O(1/¢) in
Proposition 4.4.2. When f is assumed to be convex or concave, the depth of the network D can
further be reduced to 2.

Using a different approach for approximating Lipschitz continuous functions in [0, 1],
Yarotsky (2017, Theorem 1) shows that ReLU networks with a depth of O(In(1/€)) is needed
together with a size O(%) to approximate with an error rate €. To sum-up, when compared
with ReLU networks, GroupSort neural networks with well-chosen grouping size can be
significantly more expressive.

Table 4.1 summarizes the results shown in the present paper together with results previ-
ously found for ReLU networks. Bear in mind that GroupSort neural networks also have the

supplementary condition that any parameterized function verifies the 1-Lipschitz continuity.

4.5 Experiments

Anil et al. (2019) have already compared the performances of GroupSort neural networks with
their ReLLU counterparts, both with constraints on the weights. In particular, they showed
that ReLU neural networks are more sensitive to adversarial attacks while stressing the fact
that if their weights are limited, then these networks lose their expressive power. Building on
these observations, we further illustrate the good behavior of GroupSort neural networks in
the context of estimating a Lipschitz continuous regression function and in approximating the

Wasserstein distance (via its dual form) between pairs of distributions.

Impact of the depth. We start with the problem of learning a function f in the model
Y = f(X), where X follows a uniform distribution on [—8,8] and f is 32-piecewise linear. To
this aim, we use neural networks of the form (4.2.1) with respective depth ¢ = 2, 8, 14, 20,
and a constant width v = 50. Since we are only interested in the approximation properties of
the networks, we assume to have at hand an infinite number of pairs (X;, f(X;)) and train the

models by minimizing the mean squared error. We give in the Appendix, the full details of our
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Fig. 4.3 Reconstruction of a 32-piecewise linear function on [—8, 8] with a GroupSort neural
network of the form (4.2.1) with depth ¢ = 2, 8, 14, 20, and a constant width v = 50 (the
thickness of the line represents a 95%-confidence interval).

experimental setting. The quality of the estimation is evaluated using the uniform norm between
the target function f and the output network. In order to enforce Assumption 2, GroupSort
neural networks are constrained using the orthonormalization of Bjorck and Bowie (1971). The
results are presented in Figure 4.3. Note that throughout this section, confidence intervals are
computed over 20 runs. In line with Theorem 4.3.1, which states that f is representable by a
neural network of the form (4.2.1) with size at most 3 x 322432 — 1 = 3104, we clearly observe
that, as the depth of the networks increases, the uniform norm decreases and the Lipschitz
constant of the network converges to 1. The reconstruction of this piecewise linear function is
even almost perfect for the depth g = 20, i.e., with a network of size only 20 x 60 = 1200, a
value significantly smaller than the upper bound of the theorem.

We also illustrate the behavior of GroupSort neural networks in the context of WGANSs

(Arjovsky et al., 2017). We run a series of small experiments in the simplified setting where we
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try to approximate the 1-Wasserstein distance between two bivariate mixtures of independent
Gaussian distributions with 4 components. We consider networks of the form (4.2.1) with
grouping size 2, a depth ¢ =2 and g = 5, and a constant width v = 20. For a pair of distri-
butions (i, V), our goal is to exemplify the relationship between the 1-Wasserstein distance
SUP feLip, (R2) (Ey —Ey) (approximated with the Python package by Flamary and Courty, 2017)
and the neural distance sup fe %(E“ — Ey) (Arora et al., 2017) computed over the class of
functions %,. To this aim, we randomly draw 40 different pairs of distributions. Then, for each
of these pairs, we compute an approximation of the 1-Wasserstein distance and calculate the
corresponding neural distance. Figure 4.4 depicts the best parabolic fit between 1-Wasserstein
and neural distances, and shows the corresponding Least Relative Error (LRE) together with
the width of the envelope. The take-home message of this figure is that both the LRE and the
width are significantly smaller for deeper GroupSort neural networks.

v Envelope's width: 0.17 l o Envelope's width: 0.13 L
< 10 LRE = 1.54 < 10 LRE = 1.01
-+ -+
5] n
© ©
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Fig. 4.4 Scatter plots of 40 pairs of Wasserstein and neural distances computed with GroupSort
neural networks, for ¢ = 2,5. The underlying distributions are bivariate Gaussians. The red
curve is the optimal parabolic fitting and LRE refers to the Least Relative Error. The red zone
is the envelope obtained by stretching the optimal curve.

Impact of the grouping size. To highlight the benefits of using larger grouping sizes, we
show the impact of increasing the grouping size from 2 in Figure 4.5a to 5 in Figure 4.5b
for the representation of a 20-piecewise linear function. This is corroborated by Figure 4.5c,
which illustrates that the uniform norm with a 64-piecewise linear function decreases when the
grouping size increases. As already underlined in Lemma 4.4.1, this may be explained by the
fact that the number of linear regions significantly grows with the grouping size—see Figure
4.5d.
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Fig. 4.5 Reconstruction of a 20-piecewise linear function on [—5,5] (top line) and a 64-
piecewise linear function (bottom line) with GroupSort neural networks of the form (4.2.1)
with depth ¢ = 4 and varying grouping sizes k = 2,4,6, 8, 10.

Comparison with ReLLU neural networks. Next, in a second series of experiments, we
compare the performances of GroupSort networks against two baselines: ReLLU neural networks
without constraints on the weights (dense in the set of continuous functions on a compact
set; see Yarotsky, 2017), and ReLLU neural networks with orthonormalization of Bjorck and
Bowie (1971). The architecture of the ReLU neural networks in terms of depth and width is the
same as for GroupSort networks: ¢ =2, 4, 6 ,8, and w = 20. The task is now to approximate
the 1-Lipschitz continuous function f(x) = (1/15)sin(15x) on [0, 1] in the models Y = f(X)
(noiseless case) and Y = f(X) + € (noisy case), where X is uniformly distributed on [0, 1] and
€ follows a Gaussian distribution with standard deviation 0.05. In both cases, we assume to
have at hand a finite sample of size n = 100 and fit the models by minimizing the mean squared

CITOr.
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Fig. 4.6 (Top line) Estimating the function f(x) = (1/15)sin(15x) on [0,1] in the model
Y = f(X), with a dataset of size n = 100. (Bottom line) Estimating the function f(x) =
(1/15)sin(15x) on [0,1] in the model ¥ = f(X) + €, with a dataset of size n = 100 (the
thickness of the line represents a 95%-confidence interval).
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Both results (noiseless case and noisy case) are presented in Figure 4.6. We observe that in
the noiseless setting Figure 4.6a, 4.6b, and 4.6¢, ReLU neural networks without normalization
have a slightly better performance with respect to the uniform norm with, however, a Lipschitz
constant larger than 1. On the other hand, in the noisy case, ReLU neural networks without
constraints have a tendency to overfitting (a high Lipschitz constant close to 2.7), leading
to a deteriorated performance, contrary to GroupSort neural networks. Furthermore, in both
cases (noiseless and noisy), ReLU with constraints are found to perform worse (due to a
Lipschitz constant much smaller than 1) than their GroupSort counterparts in terms of prediction.
Interestingly, we see in the two examples shown in Figure 4.6e and Figure 4.6f, that the number
of linear regions for GroupSort neural networks is smaller than for ReLU networks.

Finally, we quickly show in Appendix a comparison between GroupSort and ReLU networks
when approximating Wasserstein distances. The take home message is that, on this specific
task, GroupSort networks perform better.

4.6 Conclusion

The results presented in this article show the advantage of using GroupSort neural networks over
standard ReLU networks. On the one hand, ReLU neural networks without any constraints are
sensitive to adversarial attacks (as they may have a large Lipschitz constant) and, on the other
hand, lose expressive power when enforcing limits on their weights. On the opposite, GroupSort
neural networks with constrained weights are proved to be both robust and expressive, and are
therefore an interesting alternative. Moreover, by allowing larger grouping sizes for GroupSort
networks, one can further increase their expressivity. These properties open new perspectives

for broader use of GroupSort networks.

Appendix 4.A Technical results

4.A.1 Proof of Lemma 4.2.1

We prove the result for %,. The result for & holds following a similar argument.
Fix D o € 25, o € A. According to (4.2.1), we have, for x € R4, D; o(x) = fyo---o fi(x),
where fi(t) = o»(Vit +¢;) fori=1,...,qg— 1 (03 is applied on pairs of components), and
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f4(t) =Vt +c,. Therefore, for (x,y) € (RY)?,

/1) = A1) [leo < V1X = V1Y ][0
(since 07 is 1-Lipschitz)
= [Vi(x=y)lle
< Vil [Ix =yl
< e =il
(by Assumption 2).

Thus,

[f20f1(x) = f20 fi(¥)l|ee < [[Vafi(x) = Vafi(¥)]]ee
(since 0> is 1-Lipschitz)
<Valleo 1f1(x) = f1(9) [les
< fi(x) = fi(9)[]eo
(by Assumption 2)
< [lx =yl

Repeating this, we conclude that, for each & € A and all (x,y) € (RY)?, |Dp,¢(x) — D2.6(y)| <
lx—y

, which is the desired result.

4.A.2 Proof of Lemma 4.3.1

Recall that my > 2. Throughout the proof, we let - refer to the dot product in RY. Let
(i,j) € {1,...,ms}?, i # j. There exist (a;,b;) € R? x R and (a;,b;) € R? x R such that
li=a;i-x+b;and {; = aj-x+b;. Therefore,

Ki(x)—fj(x) <0 <= x-(ai—aj) <bj—b,-.

So, there exist two subdomains €, and £, separated by an affine hyperplane, in which ¢; — ¢ |
does not change sign. By repeating this operation for the m (my — 1)/2 different pairs (¢;,¢;),
we get that the number My of subdomains on which any pair ¢; — £; does not change sign is
smaller than the maximal number of arrangements of m (my — 1) /2 hyperplanes.

Denoting by C, 4 the maximal number of arrangements of n hyperplanes in R4, we know
that when d > n then C,, 4 = 2", whereas if n > d the upper bound C,, 4 < (1 + n)d becomes
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preferable (Devroye et al., 1996, Chapter 30). Thus, we have

my < My < min (Zm%/z, (mf/\/i)zd).

4.A.3 Proof of Proposition 4.3.1

We prove the first part of the proposition by using an induction on n. The case where n = 1
and thus m = 2! is clear since the function f = max(f}, f») can be represented by a neural
network of the form (4.2.1) with depth ¢+ 1 and size s; + s, + 1. Now, let m = 2" with
n > 1. We have that m/2 = 2"~!. By the induction hypothesis, g; = max(fj,... ;. Jm2) and
g> = max(f,, J2415 s fm) can be represented by neural networks of the form (4.2.1) with
depths g+ n — 1, and sizes at most 5| + - - - +sm/2+m/2— land s, 0401+ +sm+m/2—1,
respectively. Consequently, the function G(x) = (g;(x),g2(x)) can be implemented by a neural
network of the form (4.2.1) with depth g +n — 1 and size s; + --- + s, +m — 2. Finally, by
concatenating a one neuron layer, we have that the function f = max(gj, g>) can be represented
by a neural network of the form (4.2.1) with depth g +n = g +1log,(m) and size at most
s1+--+ s, +m—1.

Now, let us prove the case where m is arbitrary. Let fi,..., f,, : R? = R be a collection
of functions (m > 2), each represented by a neural network of the form (4.2.1) with depth
q and size s;, i = 1,...,m. We prove below by an induction on »n that there exists a neural
network of the form (4.2.1) with depth g + [log,(m)], a final layer of width v,_; =2, and a
size at most 51 + - - - + s, 4 2/1°20M] 1 that represents the functions f = max(f,..., fi,) and
g =min(fy,..., fn) (the symbol [-] stands for the ceiling function and the symbol |- | stands
for the integer function).

The base case m = 2 is clear using the GroupSort activation and v; = 2. For m > 2, let
n > 2 be such that 2"~! <m < 2", Let g1 = max(fi,..., fy1) and go = max(fon-141,---fm)-
From the first part of the proof, we know that g; can be represented by a neural network of
the form (4.2.1) with depth q; = g+ [log, m| = g+n— 1 and size s; + -+ +spu1 +2"1 — 1.
Also, by the induction hypothesis, g, can be represented by a neural network of the form (4.2.1)
with depth ¢» = g+ [log, (m —2"~1)] and size at most syn—1_ ¢ + -+ 8m + 2flogy(m=2""D1 _ 1,

Therefore, by padding identity matrices with two neurons (recall that v, | = 2) on layers from
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g+ [log,(m—2""1)] to g+n— 1, we have:

» k=[log (m—2""")]~1 k=n—2
202 (=21 _ 1 4 2(n—2 — [log,(m—2""1)]) = Y 2k 4 Y 2!
k=0 k=[log, (m—2"—1)]
k=n—2
< ) =21
k=0

Thus, g, can be represented by a neural network of the form (4.2.1) with depth g, = g+ |log, m|
and size at most syn-1,1 + -+ s, +2""' — 1. Now, the bivariate function G(x) = (g1(x),g2(x))
can be implemented by a neural network of the form (4.2.1) with depth g + |log,(m)| and size
s such that

S<siH A2 =) =51+ Fsp+2"—2.

By concatenating a one neuron layer, we have that the function f = max(g;,g») can be
represented by a neural network of the form (4.2.1) with depth g+ [log,(m)] and size at most
S1+- 4 smt2"—1=s5 4 +5m+2/°" _ 1 The conclusion follows using the inequality
2Mlogaml < oy,

4.A.4 Proof of Theorem 4.3.1

Let f € Lip, (RY) that is also mg-piecewise linear. We know that each linear function can
be represented by a 1-neuron neural network verifying Assumption 2 (no need for hidden
layers). Combining (4.3.1) with Proposition 4.3.1, for each k € {1,...,M/} there exists a
neural network of the form (4.2.1), verifying Assumption 2 and representing the function
min;eg, ¢;, with depth equal to [log,(my)] + 1 (since |Sx| < my) and size at most 3my — 1.

Using again Proposition 4.3.1, we conclude that there exists a neural network of the form
(4.2.1), verifying Assumption 2 and representing f, with depth[log,(My)] + [log,(ms)] +1
and size at most 3myMy + My — 1.

4.A.5 Proof of Corollary 4.3.1
According to He et al. (2018, Theorem A.1), the function f can be written as

f = max min/;,
1<k<mf [ISAY
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where |Si| < my. Using the same technique of proof as for Theorem 4.3.1, we find that there
exists a neural network of the form (4.2.1), verifying Assumption 2 and representing f, with

depth equal to 2[log, (ms)| + 1 and size at most 3m} +myp—1.

4.A.6 Proof of Proposition 4.3.2

Let f € Lip;(R) that is also m-piecewise linear. The proof of the first statement is an
immediate consequence of Corollary 4.3.1 since connected subsets of R are also convex.

As for the second claim of the proposition, considering the case where f is convex, we
know from He et al. (2018, Theorem A.1) that f can be written as

= max /.

f 1<k<)r(nf £
Each function ¢, k = 1,...,my, can be represented by a 1-neuron neural network verifying
Assumption 2. Hence, by Proposition 4.3.1, there exists a neural network of the form (4.2.1),
verifying Assumption 2 and representing f, with depth [log,(m )] + 1 and size at most 3m — 1.

The last claim of the proposition for m = 2" is clear using Proposition 4.3.1.

4.A.7 Proof of Lemma 4.3.2

The result is proved by induction on ¢g. To begin with, in the case ¢ = 2 we have a neural
network with one hidden layer. When applying the GroupSort function with a grouping size
2, every activation node is defined as the max or min between two different linear functions.
The maximum number of breakpoints is equal to the maximum number of intersections, that is
v1 /2. Thus, there is at most v; /2 + 1 pieces.

Now, let us assume that the property is true for a given g > 3. Consider a neural network
with depth ¢ and widths vy,...,V,_;. Observe that the input to any node in the last layer is
the output of a R — R GroupSort neural network with depth (¢ — 1) and widths vy,..., v, 5.
Using the induction hypothesis, the input to this node is a function from R — R with at
most 2973 x (v;/2+1) x -+ X V,_, pieces. Thus, after applying the GroupSort function
with a grouping size 2, each node output is a function with at most 2 x (2973 x (v{ /24 1) x
Va X -+ X V,_5). With the final layer, we take an affine combination of v,_; functions, each
with at most 2972 x (v/2+1) x v X -+ X V,_» pieces. In all, we therefore get at most
2972 % (v1/2+1) X V3 X -+ X V,_1 pieces. The induction step is completed.
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4.A.8 Proof of Corollary 4.3.2

Let f be an m-piecewise linear function. For a neural network of depth g and widths vy,...,V,

representing f, we have, by Lemma 4.3.2,
297 (Vi 24 1) X X Vg =y

By the inequality of arithmetic and geometric means, minimizing the size s = v;/2+--- 4+ Vv,
subject to this constraint, means setting v;/2+ 1 = v, = --- = v;. This implies that s >
1 1/(¢g—1)
2 (g—1)m f .

4.A.9 Proof of Theorem 4.3.2

The proof follows the one from Cooper (1995, Theorem 3). Tesselate [0, 1]d by cubes of side
s = €/(2v/d) and denote by n = ([1/s])? the number of cubes in the tesselation. Choose
n data points, one in each different cube. Then any Delaunay sphere will have a radius
R < &/2My. Now, construct f by linearly interpolating between values of f over the Delaunay
simplices. According to Seidel (1995), the number m s of subdomains is O(nd/ 2) and each of
them is convex. Besides, by Cooper (1995, Lemma 2), f guarantees an approximation error
If = flle <&

Using Corollary 4.3.1, we know that there exists a neural network of the form (4.2.1)
verifying Assumption 2 and representing f. Besides, its depth is 2[log,(ms)] + 1 and its

size is at most 3m} +my — 1. Consequently, we have that the depth of the neural network is
2Mlog,(ms)] + 1= 0(d? logz(%‘?)) and the size at most O(m?) = O((%‘?)dz).

4.A.10 Proof of Proposition 4.3.3

Let f € Lip, ([0, 1]) and f,, be the piecewise linear interpolation of f with the following 2" + 1
breakpoints: k/2™, k=0,...,2™. We know that the function f,, approximates f with an error
&n < 27™. In particular, for any m > log,(1/€), we have g, < €. Besides, for any m, f, is a
1-Lipschitz function defined on [0, 1], piecewise linear on 2" subdomains. Thus, according to
Proposition 4.3.2, there exists a neural network of the form (4.2.1), verifying Assumption 2 and
representing f,,, with depth 2m -+ 1 and size at most 3 x 22" 2™ — 1. Taking m = [log,(1/€)]
shows the desired result.

Let € > 0, let f be a convex (or concave) function in Lip;([0,1]), and let f,, be the
piecewise linear interpolation of f with the following 2 + 1 breakpoints: k/2™, k=0,...,2™.
The function f;, approximates f with an error g, = 27". In particular, for any m > log,(1/¢),

we have g, < €. Besides, for any m, f,, is a 2"'-piecewise linear convex function defined on
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[0, 1]. Hence, by Proposition 4.3.2, there exists a neural network of the form (4.2.1), verifying
Assumption 2 and representing f,,, with depth m + 1 and size at most 2 x 2" — 1. Taking
m = [log,(1/€)] leads to the desired result.

4.A.11 Proof of Proposition 4.4.1

We prove the result by using an induction on n. The case where n = 1 and thus m = k' is
true since the function f = max(fj,...,fi) can be represented by a neural network of the
form (4.2.1) with grouping size k, depth g+ 1, and size s; +--- + s + 1. Now, let m = k"
with n > 1. We have that |m/k| = [m/k] = m/k=k""!. Let g| = max(fi,. .-, fn/k) &2 =
max(fn k15 s fomfk)s -+ » 8 = MaAX(f((k—1)m/k)+1:---»fm). By the induction hypothesis,
g1,---,8k can all be represented by neural networks of the form (4.2.1) with grouping size
k, width depths equal to g +n — 1 and sizes at most 1 + - -+ + 5, /x + %, s S(k=Dm k1 T
R ) k’%l—l’ respectively.

Consequently, the function G(x) = (g1(x),...,gx(x)) can be implemented by a neural
network of the form (4.2.1) with grouping size k, depth ¢ +n — 1, and size at most s| +
-+ s, +m—2. Finally, by concatenating a one neuron layer, we see that the function
f = max(gy,...,gk) can be represented by a neural network of the form (4.2.1) with depth
qg+n=qg+log,(m) and size at most

K1 k" —1

- m
1 >+1251+"'+Sm+ 1 :Sl+"“|‘sm+k_—1-

s1+---+sm+k<

4.A.12 Proof of Corollary 4.4.1

According to He et al. (2018, Theorem A.1), the function f can be written as

f= max min /¢,
lgkgmf €Sy
where |S;| < m rand my = k" for some n > 1. From Proposition 4.4.1, there exists a neural

network verifying Assumption 2 with grouping size k representing mgn ¢; with depth log (m)+1
1€5

and size at most n,ifoll
Using again Proposition 4.4.1, we find that there exists a neural network, verifying Assump-
tion 2, with grouping size k, representing f with depth 2log; (ms) 4 1 and size at most
mg— 1 mg— 1 m?f —1
" < k—1 ) * -

k—1 k—1"~
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4.A.13 Proof of Lemma 4.4.1

The result is proved by induction on g. To begin with, in the case ¢ = 2 we have a neural
network with one hidden layer. When applying the GroupSort function with a grouping size k,
the maximum number of breakpoints is equal to the maximum number of intersections of linear

functions. In each group of k functions, there are at most @ intersections. Thus, there are

(k RN ‘,’(‘ = M breakpoints, that is (k=Dv )

at most L 41 pieces.

Now, let us assume that the property is true for a g1ven q = 3. Consider a neural network
with depth g and widths vy,...,V, 1. Observe that the input to any node in the last layer is
the output of a R — R GroupSort neural network with depth (¢ — 1) and widths vy,...,v, 5.
Using the induction hypothesis, the input to this node is a function from R — R with at most
k973 x ((k Dvi g 1) x -+ x v, pieces. Thus, after applying the GroupSort function with
a grouping size k, each node output is a function with at most k x (k973 x (m +1) x
Vy X -+ X V4_2). With the final layer, we take an affine combination of v,,_; functions, each
with at most k92 x ((k v o 1) X Vo x -+ X V,_5 pieces. In all, we therefore get at most

k972 x (M +1) X v x --- x v, pieces. The induction step is completed.

4.A.14 Proof of Theorem 4.4.1

The proof of Theorem 4.4.1 is straightforward and follows the one of Theorem 4.3.2 combined

with the result obtained in Corollary 4.4.1.

4.A.15 Proof of Proposition 4.4.2

Let f € Lip, ([0, 1]) and f;, be the piecewise linear interpolation of f with the following k" + 1
breakpointS' i/k", k=0,...,k". We know that the function f,, approximates f with an error

< k7. In particular, for any n > log,(1/€), we have g, < €. Besides, for any n, fi» is a
1-L1psch1tz function defined on [0, 1], piecewise linear on k" subdomains. Thus, according
to Corollary 4.4.1, there exists a neural network of the form (4.2.1), verifying Assumption
2 and representing f», with grouping size k, depth 2n + 1, and size at most k

n = [log;(1/€)] shows the desired result.

. Taking

Appendix 4.B Complementary experiments

4.B.1 Extended comparison between GroupSort and ReLU networks

We provide in this section further results and details on the experiments ran in Section 4.5.
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4.B.1.1 Task 1: Approximating functions

Piecewise linear functions.

We complete the experiments of Section 4.5 by estimating the

6-piecewise linear function f in the model Y = f(X) (noiseless case, see Figure 4.7 and Figure
4.8) and in the model Y = f(X) + € (noisy case, see Figure 4.9 and Figure 4.10). Recall that in
both cases, X follows a uniform distribution on [—1.5,1.5] and the sample size is n = 100.
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Fig. 4.7 Estimating the 6-piecewise linear function in the model Y = f(X), with a dataset of
size n = 100 (the thickness of the line represents a 95%-confidence interval).
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Fig. 4.8 Reconstructing the 6-piecewise linear function in the model Y = f(X), with a dataset
of size n = 100.

0.256

€ 0.207

no

£ 0.157

Unifor

0.108

0.058

RelU

a 6
Network depth

bjorckReLU

bjorckGroupSort

4.089

3.144

2.200

111

1.256

0.312

2

RelU

4
Discriminator depth

bjorckReLU

6

bjorckGroupSort

167.5

-
N
N
IS

IS
N
-

N
o

RelU

Num linear regions
©
~
o

a 6
Network depth

bjorckReLU bjorckGroupSort

Fig. 4.9 Estimating the 6-piecewise linear function in the model Y = f(X) + €, with a dataset
of size n = 100 (the thickness of the line represents a 95%-confidence interval).
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Fig. 4.10 Reconstructing the 6-piecewise linear function in the model ¥ = f(X) + €, with a
dataset of size n = 100.

The sinus function. We provide in this subsection additional details for the learning of the
sinus function f(x) = (1/15)sin(15x) defined on [0, 1] (see Section 4.5). Figure 4.11 is the

case without noise while Figure 4.12 is the case with noise.
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Fig. 4.11 Reconstructing the function f(x) = (1/15)sin(15x) in the model Y = f(X), with a
dataset of size n = 100.
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Fig. 4.12 Reconstructing the function f(x) = (1/15)sin(15x) in the model Y = f(X) + €, with
a dataset of size n = 100.
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4.B.1.2 Task 2: Calculating Wasserstein distances
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Fig. 4.13 Scatter plots of 40 pairs of Wasserstein and neural distances, for ¢ = 2. The underlying
distributions are bivariate Gaussian distributions with 4 components. The red curve is the
optimal parabolic fitting and LRE refers to the Least Relative Error. The red zone is the
envelope obtained by stretching the optimal curve.

4.B.2 Impact of the grouping size
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Fig. 4.14 Reconstruction of a 20-piecewise linear function with varying grouping sizes (k =
2,5,10).
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Fig. 4.15 Reconstruction of a 40-piecewise linear function with varying grouping sizes (k =
2,5,10).

4.B.3 Architecture for both GroupSort and ReL.U networks

Operation Feature Maps Activation

D(x)

Fully connected - g layers width w {GroupSort, ReLU}
Width w {50}

Depth ¢ {2,4,6,8}

Batch size 256

Learning rate 0.0025

Optimizer Adam: ; =0.5 B,=0.5

Table 4.2 Hyperparameters used for the training of all neural networks



Chapter 5

Learning disconnected manifolds: a no
GAN’s land

Abstract

Typical architectures of Generative Adversarial Networks make use of a unimodal latent/input dis-

tribution transformed by a continuous generator. Consequently, the modeled distribution always has
connected support which is cumbersome when learning a disconnected set of manifolds. We formalize
this problem by establishing a "no free lunch" theorem for the disconnected manifold learning stating an
upper-bound on the precision of the targeted distribution. This is done by building on the necessary exis-
tence of a low-quality region where the generator continuously samples data between two disconnected
modes. Finally, we derive a rejection sampling method based on the norm of generator’s Jacobian and

show its efficiency on several generators including BigGAN.
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5.1 Introduction

GANs Goodfellow et al. (2014) provide a very effective tool for the unsupervised learning of
complex probability distributions. For example, Karras et al. (2019) generate very realistic
human faces while Yu et al. (2017) match state-of-the-art text corpora generation. Despite
some early theoretical results on the stability of GANs Arjovsky and Bottou (2017) and on their
approximation and asymptotic properties Biau et al. (2020), their training remains challenging.
More specifically, GANs raise a mystery formalized by Khayatkhoei et al. (2018): how can
they fit disconnected manifolds when they are trained to continuously transform a unimodal
latent distribution? While this question remains widely open, we will show that studying it
can lead to some improvements in the sampling quality of GANs. Indeed, training a GAN
with the objective of continuously transforming samples from an unimodal distribution into
a disconnected requires balancing between two caveats. On one hand, the generator could
just ignore all modes but one, producing a very limited variety of high quality samples: this is
an extreme case of the well known mode collapse Arjovsky and Bottou (2017). On the other
hand, the generator could cover the different modes of the target distribution and necessarily
generates samples out of the real data manifold as previously explained by Khayatkhoei et al.
(2018).

As brought to the fore by Roth et al. (2017), there is a density mis-specification between
the true distribution and the model distribution. Indeed, one cannot find parameters such that
the model density function is arbitrarily close to the true distribution. To solve this issue,
many empirical works have proposed to over-parameterize the generative distributions, as for
instance, using a mixture of generators to better fit the different target modes. Tolstikhin et al.
(2017) rely on boosting while Khayatkhoei et al. (2018) force each generator to target different
sub-manifolds thanks to a criterion based on mutual information. Another direction is to add
complexity in the latent space using a mixture of Gaussian distributions Gurumurthy et al.
(2017).

To better visualize this phenomenon, we consider a simple 2D motivational example where
the real data lies on two disconnected manifolds. Empirically, when learning the distribution,
GANSs split the Gaussian latent space into two modes, as highlighted by the separation line
in red in Figure 5.1a. More importantly, each sample drawn inside this red area in Figure
5.1a is then mapped in the output space in between the two modes (see Figure 5.1b). For
the quantitative evaluation of the presence of out-of-manifold samples, a natural metric is the

Precision-Recall (PR) proposed by Sajjadi et al. (2018) and its improved version (Improved
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(a) Heatmap of the generator’s Jaco-  (b) Green: target distribution. Coloured dots:
bian norm. White circles: quantiles of ~ generated samples colored w.r.t. the Jacobian
the latent distribution .47 (0,1). Norm using same heatmap than (a).

Fig. 5.1 Learning disconnected manifolds leads to the apparition of an area with high gradients
and data sampled in between modes.

PR) (Kynkéédnniemi et al., 2019). A first contribution of this paper is to formally link them.
Then, taking advantage of these metrics, we lower bound the measure of this out-of-manifold
region and formalize the impossibility of learning disconnected manifolds with standard GANSs.
We also extend this observation to the multi-class generation case and show that the volume of
off-manifold areas increases with the number of covered manifolds. In the limit, this increase
drives the precision to zero.

To solve this issue and increase the precision of GANs, we argue that it is possible to remove
out-of-manifold samples using a truncation method. Building on the work of Arvanitidis et al.
(2017) who define a Riemaniann metric that significantly improves clustering in the latent
space, our truncation method is based on information conveyed by the Jacobian’s norm of the
generator. We empirically show that this rejection sampling scheme enables us to better fit
disconnected manifolds without over-parametrizing neither the generative class of functions
nor the latent distribution. Finally, in a very large high dimensional setting, we discuss the
advantages of our rejection method and compare it to the truncation trick introduced by Brock
et al. (2019).

In a nutshell, our contributions are the following:

* We discuss evaluation of GANs and formally link the PR measure Sajjadi et al. (2018)
and its Improved PR version Kynkéddnniemi et al. (2019).

* We upper bound the precision of GANs with Gaussian latent distribution and formalize

an impossibility result for disconnected manifolds learning.

» Using toy datasets, we illustrate the behavior of GANs when learning disconnected

manifolds and derive a new truncation method based on the Jacobian’s Frobenius norm
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of the generator. We confirm its empirical performance on state-of-the-art models and

datasets.

5.2 Related work

Fighting mode collapse. Goodfellow et al. (2014) were the first to raise the problem of mode
collapse in the learning of disconnected manifolds with GANs. They observed that when
the generator is trained too long without updating the discriminator, the output distribution
collapses to a few modes reducing the diversity of the samples. To tackle this issue, Salimans
etal. (2016); Lin et al. (2018) suggested feeding several samples to the discriminator. Srivastava
et al. (2017) proposed the use of a reconstructor network, mapping the data to the latent space
to increase diversity.

In a different direction, Arjovsky and Bottou (2017) showed that training GANs using
the original formulation Goodfellow et al. (2014) leads to instability or vanishing gradients.
To solve this issue, they proposed a Wasserstein GAN architecture Arjovsky et al. (2017)
where they restrict the class of discriminative functions to 1-Lipschitz functions using weight
clipping. Pointing to issues with this clipping, Gulrajani et al. (2017); Miyato et al. (2018)
proposed relaxed ways to enforce the Lipschitzness of the discriminator, either by using a
gradient penalty or a spectral normalization. Albeit not exactly approximating the Wasserstein’s
distance (Petzka et al., 2018), both implementations lead to good empirical results, significantly
reducing mode collapse. Building on all of these works, we will further assume that generators
are now able to cover most of the modes of the target distribution, leaving us the problem of

out-of-manifold samples (a.k.a. low-quality pictures).

Generation of disconnected manifolds. When learning complex manifolds in high dimen-
sional spaces using deep generative models, Fefferman et al. (2016) highlighted the importance
of understanding the underlying geometry. More precisely, the learning of disconnected man-
ifold requires the introduction of disconnectedness in the model. Gurumurthy et al. (2017)
used a multi-modal entry distribution, making the latent space disconnected, and showed better
coverage when data is limited and diverse. Alternatively, Khayatkhoei et al. (2018) studied the
learning of a mixture of generators. Using a mutual information term, they encourage each
generator to focus on a different submanifold so that the mixture covers the whole support.
This idea of using an ensemble of generators is also present in the work of Tolstikhin et al.
(2017) and Zhong et al. (2019), though they were primarily interested in the reduction of mode
collapse.
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In this paper, we propose a truncation method to separate the latent space into several
disjoint areas. It is a way to learn disconnected manifolds without relying on the previously
introduced over-parameterization techniques. As our proposal can be applied without retraining
the whole architecture, we can use it successfully on very larges nets. Close to this idea, Azadi
et al. (2019) introduced a rejection strategy based on the output of the discriminator. However,
this rejection sampling scheme requires the discriminator to be trained with a classification loss

while our proposition can be applied to any generative models.

Evaluating GANs. The evaluation of generative models is an active area of research. Some
of the proposed metrics only measure the quality of the generated samples such as the Inception
score Salimans et al. (2016) while others define distances between probability distributions.
This is the case of the Frechet Inception distance Heusel et al. (2017), the Wasserstein distance
Arjovsky et al. (2017) or kernel-based metrics Gretton et al. (2012). The other main caveat
for evaluating GANSs lies in the fact that one does not have access to the true density nor the
model density, prohibiting the use of any density based metrics. To solve this issue, the use
of a third network that acts as an objective referee is common. For instance, the Inception
score uses outputs from InceptionNet while the Fréchet Inception Distance compares statistics
of InceptionNet activations. Since our work focuses on out-of-manifold samples, a natural
measure is the PR measure (Sajjadi et al., 2018) and its Improved PR version (Kynkddnniemi
et al., 2019), extensively discussed in the next section.

In the following, alongside precise definitions, we exhibit an upper bound on the precision

of GANs with high recall (i.e. no mode collapse) and present a new truncation method.

5.3 Our approach

We start with a formal description of the framework of GANs and the relevant metrics. We
later show a "no free lunch" theorem proving the necessary existence of an area in the latent
space that generates out-of-manifold samples. We name this region the no GAN’s land since
any data point sampled from this area will be in the frontier in between two different modes.
We claim that dealing with it requires special care. Finally, we propose a rejection sampling

procedure to avoid points out of the true manifold.

5.3.1 Notations

In the original setting of Generative Adversarial Networks (GANSs), one tries to generate

data that are “similar” to samples collected from some unknown probability measure .. To
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do so, we use a parametric family of generative distribution where each distribution is the
push-forward measure of a latent distribution Z and a continuous function modeled by a neural

network.
Assumption 3 (Z Gaussian). The latent distribution Z is a standard multivariate Gaussian.

Note that for any distribution i, S, refers to its support. Assumption 3 is common for
GANSs as in many practical applications, the random variable Z defined on a low dimensional
space R is either a multivariate Gaussian. Practicioners also studied distribution or uniform
distribution defined on a compact.

The measure (L, is defined on a subset E of R” (potentially a highly dimensional space),
equipped with the norm || - ||. The generator has the form of a parameterized class of functions
from R¢ (a space with a much lower dimension) to E, say 4 = {Gg : 6 € @}, where ® C R”
is the set of parameters describing the model. Each function Gg thus takes input from a
d-dimensional random variable Z (Z is associated with probability distribution ) and outputs
“fake” observations with distribution pg. Thus, the class of probability measures & = { g :
0 € O} is the natural class of distributions associated with the generator, and the objective of
GAN:Ss is to find inside this class of candidates the one that generates the most realistic samples,

closest to the ones collected from the unknown distribution LL,.

Assumption 4. Let L > 0. The generator Gg takes the form of a neural network whose Lipchitz
constant is smaller than L, i.e. for all (z,7'), we have ||G¢(Z') — Gg(2)|| < L||z— 7|

This is a reasonable assumption, since Virmaux and Scaman (2018) present an algorithm
that upper-bounds the Lipschitz constant of deep neural networks. Initially, 1-Lipschitzness
was enforced only for the discriminator by clipping the weigths Arjovsky et al. (2017), adding
a gradient penalty Gulrajani et al. (2017); Roth et al. (2017); Petzka et al. (2018), or penalizing
the spectral norms Miyato et al. (2018). Nowadays, state-of-the-art architectures for large scale
generators such as SAGAN Zhang et al. (2019) and BigGAN Brock et al. (2019) also make use
of spectral normalization for the generator.

5.3.2 Evaluating GANs with Precision and Recall

When learning disconnected manifolds, Srivastava et al. (2017) proved the need of measuring
simultaneously the quality of the samples generated and the mode collapse. Sajjadi et al. (2018)
proposed the use of a PR metric to measure the quality of GANs. The key intuition is that
precision should quantify how much of the fake distribution can be generated by the true
distribution while recall measures how much of the true distribution can be re-constructed by

the model distribution. More formally, it is defined as follows:
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Definition 5.3.1. Sajjadi et al. (2018) Let X, Y be two random variables. For a, € (0,1], X is
said to have an attainable precision o at recall B w.r.t. Y if there exists probability distributions

W, Vx, Vy such that
Y=Bu+(1-B)vy and X=opu+(1—a)vy.

The component vy denotes the part of ¥ that is “missed” by X, whereas, vy denotes the
"noise" part of X. We denote @& (respectively ) the maximum attainable precision (respectively
recall). Th. 1 of Sajjadi et al. (2018) states:

X(Sy)=a and Y(Sx)=p.

Improved PR metric. Kynkédnniemi et al. (2019) highlighted an important drawback of the
PR metric proposed by Sajjadi et al. (2018): it cannot correctly interpret situations when a large
numbers of samples are packed together. To better understand this situation, consider a case
where the generator slightly collapses on a specific data point, i.e. there exists x € E, g (x) > 0.
We show in Appendix 5.A.1 that if u, is a non-atomic probability measure and ug is highly
precise (i.e. & = 1), then the recall B must be 0.

To solve these issues, Kynkéddnniemi et al. (2019) proposed an Improved Precision-Recall
(Improved PR) metric built on a nonparametric estimation of support of densities.

Definition 5.3.2. Kynkddnniemi et al. (2019) Let X,Y be two random variables and Dy, Dy
two finite sample datasets such that Dx ~ X" and Dy ~ Y". For any x € Dy (respectively for
anyy € Dy), we consider (x(1y,...,X(,_1)), the re-ordening of elements in Dx \ x given their
euclidean distance with x. For any k € IN and x € Dy, the precision o} (x) of point x is defined
as:

o (x) =1 < Jy € Dy, [lx—y| < [y —yll-

Similarly, the recall B! (y) of any given'y € Dy is:
B (y) =1 <= 3x € Dx, |ly —x| < |lx@) — -

Improved precision (respectively recall) are defined as the average over Dy (respectively Dy)
as follows:
1
of =~ ) ofx)  Br=-) Bl
n x;€Dx n yi€Dy
A first contribution is to formalize the link between PR and Improved PR with the following
theorem:
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Theorem 5.3.1. Let X,Y two random variables with probability distributions L and V. Assume
that both U and v are associated with uniformly continuous probability density functions
fu and fy. Besides, there exists constants ay > 0,ap > 0 such that for all x € E we have
ay < fu,(x) < ay and ay < fu, (x) < aa for some ¢ > 0. Also, (k,n) are such that —~—~ — 4o

log(n)
and % — 0. Then,
oy — O in probability and B} — B in probability.

This theorem, whose proof is delayed to Appendix 5.A.2, underlines the nature of the
Improved PR metric: the metric compares the supports of the modeled probability distribution
Ug and of the true distribution t,. This means that Improved PR is a tuple made of both
maximum attainable precision @& and recall B (e.g. Theorem 1 of Sajjadi et al. (2018)). As
Improved PR is shown to have a better performance evaluating GANs sample quality, we use

this metric for both the following theoretical results and experiments.

5.3.3 Learning disconnected manifolds

In this section, we aim to stress the difficulties of learning disconnected manifolds with standard

GANS architectures. To begin with, we recall the following lemma.

Lemma 5.3.1. Assume that Assumptions 3 and 4 are satisfied. Then, for any 6 € ©, the support

Spg is connected.

There is consequently a discrepancy between the connectedness of S, and the disconnect-
edness of S, . In the case where the manifold lays on two disconnected components, our next

theorem exhibit a no free lunch theorem:

Theorem 5.3.2. ("No free lunch" theorem) Assume that Assumptions 3 and 4 are satisfied.

Assume also that true distribution W, lays on two equally measured disconnected manifolds

distant from a distance D > 0. Then, any estimator g that samples equally in both modes
,qu(Q)Z

must have a precision O such that & + %ﬂe . < 1, where @ is the c.d.f. of a standard

normal distribution.
Besides, if o > 3/4, & S 1— \/%W(%) where W is the Lambert W function.

The proof of this theorem is delayed to Appendix 5.A.3. It is mainly based on the Gaussian
isoperimetric inequality Borell (1975); Sudakov and Tsirelson (1978) that states that among all
sets of given Gaussian measure in any finite dimensional Euclidean space, half-spaces have the

minimal Gaussian boundary measure. If in Fig. 5.1, the generator has thus learned the optimal
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separation, it is yet not known, to the limit of our knowledge, how to enforce such geometrical
properties in the latent space.

In real world applications, when the number of distinct sub-manifolds increases, we expect
the volume of these boundaries to increase with respect to the number of different classes
covered by the modeled distribution ug. Going in this direction, we better formalize this
situation, and show an extended "no free lunch theorem" by expliciting an upper-bound of the

precision & in this broader framework.

Assumption 5. The true distribution [, lays on M equally-measured disconnected components

at least distant from some constant D > 0.

This is likely to be true for datasets made of symbol designed to be highly distinguishable
(e.g. digits in the MNIST dataset). In very high dimension, this assumption also holds for
complex classes of objects appearing in many different contexts (e.g. the bubble class in
ImageNet, see Appendix).

To better apprehend the next theorem, note A,, the pre-image in the latent space of mode m
and A’ its r-enlargement: A’ := {z € R? | dist(z,Am) < r},r > 0.

Theorem 5.3.3. (Generalized "no free lunch" theorem) Assume that Assumptions 3, 4, and 5
are satisfied, and that the pre-image enlargements AS, with € = %, form a partition of the
latent space with equally measured elements.
. . n .. - 2 _1g2
Then, any estimator g with recall B > AL,I must have a precision & at most lir—zxe e

where x = &~ 1(1 — BLM) and D is the c.d.f. of a standard normal distribution.

Theorem 5.3.3, whose proof is delayed to Appendix 5.A.4, states a lower-bound the

—E&X

measure of samples mapped out of the true manifold. We expect our bound to be loose since no
theoretical results are known, to the best of our knowledge, on the geometry of the separation
that minimizes the boundary between different classes (when M > 3). Finding this optimal cut
would be an extension of the honeycomb theorem Hales (2001). In Appendix 5.A.4.2 we give
a more technical statement of Theorem 5.3.3 without assuming equality of measure of the sets
AL

The idea of the proof is to consider the border of an individual cell with the rest of the
partition. It is clear that at least half of the frontier will be inside this specific cell. Then, to
get to the final result, we sum the measures of the frontiers contained inside all of the different
cells. Remark that our analysis is fine enough to keep a dependency in M which translates
into a maximum precision that goes to zero when M goes to the infinity and all the modes are

covered. More precisely, in this scenario where all pre-images have equal measures in the latent
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Fig. 5.2 Illustration of Theorem 5.3.3. If the number of classes M — oo or the distance D — oo,
then the precision & — 0. We provide in appendix heatmaps for more values of M.
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space, one can derive the following bound, when the recall 8 is kept fixed and M increases:

< e HE VIR yhere ¢ = Z (5.3.1)
For a fixed generator, this equation illustrates that the precision & decreases when either the
distance D (equivalently 8) or the number of classes M increases. For a given €, & converges
to 0 with a speed O( TITE fe) To better illustrate this asymptotic result, we provide results
from a 2D synthetic setting. In this toy dataset, we control both the number M of disconnected
manifolds and the distance D. Figure 5.2 clearly corroborates (5.3.1) as we can easily get the

maximum precision close to 0 (M = 25, D = 27).

5.3.4 Jacobian-based truncation (JBT) method

The analysis of the deformation of the latent space offers a grasp on the behavior of GANs. For
instance, Arvanitidis et al. (2017) propose a distance accounting for the distortions made by
the generator. For any pair of points (z1,22) ~ Z2, the distance is defined as the length of the
geodesic d(z1,22) = [jp11 VG, (%)% ||dt where 7y is the geodesic parameterized by 7 € [0, 1] and
JG, (z) denotes the Jacobian matrix of the generator at point z. Authors have shown that the use
of this distance in the latent space improves clustering and interpretability. We make a similar
observation that the generator’s Jacobian Frobenius norm provides meaningful information.

Indeed, the frontiers highlighted in Figures 5.2a, 5.2b, and 5.2¢ correspond to areas of low
precision mapped out of the true manifold: this is the no GAN’s land. We argue that when
learning disconnected manifolds, the generator tries to minimize the number of samples that do
not belong to the support of the true distribution and that this can only be done by making paths
steeper in the no GAN’s land. Consequently, data points Gg(z) with high Jacobian Frobenius
norm (JFN) are more likely to be outside the true manifold. To improve the precision of
generative models, we thus define a new truncation method by removing points with highest
JEN.

However, note that computing the generators’s JFN is expensive to compute for neural

networks, since being defined as follows,
dGy(z)
o, = 5§ (2%
i=1j=1 Zj

it requires a number of backward passes equal to the output dimension. To make our truncation

method tractable, we use a stochastic approximation of the Jacobian Frobenius norm based on



150 Learning disconnected manifolds: a no GAN’s land

the following result from Rifai et al. (2011):

1 ¥
2 5 . 2
Me, ()1* = lim 3 —511Ge(z+ &) — Go(2)II%,

c—0 i

where & ~~ .4 (0,621 and I is the identity matrix of dimension d. The variance & of the noise
and the number of samples are used as hyper-parameters. In practice, o in [le—4; 1e—2] and
N = 10 give consistent results.

Based on the preceding analysis, we propose a new Jacobian-based truncation (JBT)
method that rejects a certain ratio of the generated points with highest JEN. This truncation
ratio is considered as an hyper-parameter for the model. We show in our experiments that our
JBT can be used to to detect samples outside the real data manifold and that it consequently

improves the precision of the generated distribution as measured by the Improved PR metric.

5.4 Experiments

In the following, we show that our truncation method, JBT, can significantly improve the
performances of generative models on several models, metrics and datasets. Furthermore,
we compare JBT with over-parametrization techniques specifically designed for disconnected
manifold learning. We show that our truncation method reaches or surpasses their performance,
while it has the benefit of not modifying the training process of GANSs nor using a mixture
of generators, which is computationally expensive. Finally, we confirm the efficiency of our
method by applying it on top of BigGAN Brock et al. (2019).

Except for BigGAN, for all our experiments, we use Wasserstein GAN with gradient penalty
Gulrajani et al. (2017), called WGAN for conciseness. We give in Appendix 5.C the full details
of our experimental setting. The use of WGAN is motivated by the fact that it was shown
to stabilize the training and significantly reduce mode collapse Arjovsky and Bottou (2017).
However, we want to emphasise that our method can be plugged on top of any generative model

fitting disconnected components.

5.4.1 Evaluation metrics

To measure performances of GANs when dealing with low dimensional applications - as with
synthetic datasets - we equip our space with the standard Euclidean distance. However, for high
dimensional applications such as image generation, Brock et al. (2019); Kynkééinniemi et al.
(2019) have shown that embedding images into a feature space with a pre-trained convolutional

classifier provides more semantic information. In this setting, we consequently use the euclidean
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distance between the images’ embeddings from a classifier. For a pair of images (a,b), we
define the distance d(a,b) as d(a,b) = ||¢(a) — ¢ (b)||2 where ¢ is a pre-softmax layer of a
supervised classifier, trained specifically on each dataset. Doing so, they will more easily
separate images sampled from the true distribution tt, from the ones sampled by the distribution
He-

We compare performances using Improved PR Kynkéénniemi et al. (2019). We also report
the Marginal Precision which is the precision of newly added samples when increasing the
ratio of kept samples. Besides, for completeness, we report FID Heusel et al. (2017) and recall
precise definitions in Appendix 5.B.2. Note that FID was not computed with InceptionNet, but

a classifier pre-trained on each dataset.

5.4.2 Synthetic dataset

We first consider the true distribution to be a 2D Gaussian mixture of 9 components. Both the
generator and the discriminator are modeled with feed-forward neural networks.
Interestingly, the generator tries to minimize the sampling of off-manifolds data during
training until its JEN gets saturated (see Appendix 5.B.3). One way to reduce the number of
off-manifold samples is to use JBT. Indeed, off-manifold data points progressively disappear
when being more and more selective, as illustrated in Figure 5.3c. We quantitatively confirm
that our truncation method (JBT) improves the precision. On Fig. 5.3d, we observe that keeping
the 70% of lowest JFEN samples leads to an almost perfect precision of the support of the

generated distribution. Thus, off-manifold samples are in the 30% samples with highest JEN.

5.4.3 Image datasets

We further study JBT on three different datasets: MNIST LeCun et al. (1998), FashionMNIST
Xiao et al. (2017) and CIFAR10 Krizhevsky et al. (2009). Following Khayatkhoei et al. (2018)
implementation, we use a standard CNN architecture for MNIST and FashionMNIST while
training a ResNet-based model for CIFAR10 (Gulrajani et al., 2017).

Figure 5.4 highlights that JBT also works on high dimensional datasets as the marginal
precision plummets for high truncation ratios. Furthermore, when looking at samples ranked by
increasing order of their JEN, we notice that samples with highest JEN are standing in-between
manifolds. For example, those are ambiguous digits resembling both a "0" and a "6" or shoes
with unrealistic shapes.

To further assess the efficiency of our truncation method, we also compare its performances
with two state-of-the-art over-parameterization techniques that were designed for disconnected

manifold learning. First, Gurumurthy et al. (2017) propose DeliGAN, a reparametrization trick
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Fig. 5.3 Mixture of 9 Gaussians in green, generated points in blue. Our truncation method
(JBT) removes least precise data points as marginal precision plummets.

to transform the unimodal Gaussian latent distribution into a mixture. The different mixture
components are later learnt by gradient descent. For fairness, the re-parametrization trick is used
on top of WGAN. Second, Khayatkhoei et al. (2018) define DMLGAN, a mixture of generators
to better learn disconnected manifolds. In this architecture, each generator is encouraged to
target a different submanifold by enforcing high mutual information between generated samples
and generator’s ids. Keep in mind that for DeliGAN (respectively DMLGAN), the optimal
number of components (respectively generators) is not known and is a hyper-parameter of the
model that has to be cross-validated.

The results of the comparison are presented in Table 5.1. In both datasets, JBT 80 %
outperforms DeliGAN and DMLGAN in terms of precision while keeping a reasonnable recall.
This confirms our claim that over-parameterization techniques are unnecessary. As noticed
by Kynkéédnniemi et al. (2019), we also observe that FID does not correlate properly with the
Improved PR metric. Based on the Frechet distance, only a distance between multivariate
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(a) MNIST dataset.
Fig. 5.4 For high levels of kept samples, the marginal precision plummets of newly added
samples, underlining the efficiency of our truncation method (JBT). Reported confidence
intervals are 97% confidence intervals. On the second row, generated samples ordered by their
JEN (left to right, top to bottom). In the last row, the data points generated are blurrier and
outside the true manifold.

MNIST Prec. Rec. FID
WGAN 91.2+03 | 93.7+05 | 24.3+03
WGAN JBT 90% | 92.5+0.5 | 92.9+03 | 26.9+0.5
WGAN JBT 80% | 93.3+0.3 | 91.8+0.4 | 33.1+0.3
W-Deligan 89.0+0.6 | 93.6+0.3 | 31.7+05
DMLGAN 93.4+0.2 | 92.3+02 | 16.8+04
F-MNIST

WGAN 86.3+0.4 | 88.2+0.2 | 259.7+3.5
WGAN JBT 90% | 88.6+0.6 | 86.6+0.5 | 257.4+3.0
WGAN JBT 80% | 89.8+0.4 | 84.9+0.5 | 396.2+6.4
W-Deligan 88.5+0.3 | 85.3+0.6 | 310.9+3.1
DMLGAN 87.4+03 | 88.1+04 | 253.0+2.8

Table 5.1 JBT x% means we keep the x% samples with lowest Jacobian norm. Our truncation
method (JBT) matches over-parameterization techniques. + is 97% confidence interval.
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(a) House finch. (b) Parachute. (c) Bubble.
Fig. 5.5 On the first row, per-class precision-recall curves comparing Brock et al. (2019)’s
truncation trick and our truncation method (JBT), on three ImageNet classes generated by
BigGAN. We show better results on complex and disconnected classes (e.g. bubble). Reported
confidence intervals are 97% confidence intervals. On the second row, generated samples
ordered by their JEN (left to right, top to bottom). We observe a concentration of off-manifold
samples for images on the bottom row, confirming the soundness of JBT.

Gaussians, we argue that FID is not suited for disconnected manifold learning as it approximates

distributions with unimodal ones and looses many information.

5.4.4 Spurious samples rejections on BigGAN

Thanks to the simplicity of JBT, we can also apply it on top of any trained generative model.
In this subsection, we use JBT to improve the precision of a pre-trained BigGAN model
Brock et al. (2019), which generates class-conditionned ImageNet Krizhevsky et al. (2012)
samples. The class-conditioning lowers the problem of off-manifold samples, since it reduces
the disconnectedness in the output distribution. However, we argue that the issue can still exist
on high-dimensional natural images, in particular complex classes can still be multi-modal
(e.g. the bubble class). The bottom row in Figure 5.5 shows a random set of 128 images for
three different classes ranked by their JEN in ascending order (left to right, top to bottom). We
observe a clear concentration of spurious samples on the bottom row images.

To better assess the Jacobian based truncation method, we compare it with the truncation
trick from Brock et al. (2019). This truncation trick aims to reduce the variance of the latent

space distribution using truncated Gaussians. While easy and effective, this truncation has
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some issues: it requires to complexify the loss to enforce orthogonality in weight matrices of
the network. Moreover, as explained by Brock et al. (2019) "only 16% of models are amenable
to truncation, compared to 60% when trained with Orthogonal Regularization". For fairness
of comparison, the pre-trained network we use is optimized for their truncation method. On
the opposite, JBT is simpler to apply since 100% of the tested models were amenable to the
proposed truncation.

Results of this comparison are shown in the upper row of Figure 5.5. Our method can
outperform their truncation trick on difficult classes with high intra-class variation, e.g. bubble
and house finch. This confirms our claim that JBT can detect outliers within a class. However,
one can note that their trick is particularly well suited for simpler unimodal classes, e.g.

parachute and reaches high precision levels.

5.5 Conclusion and future work

In this paper, we provide insights on the learning of disconnected manifolds with GANs. Our
analysis shows the existence of an off-manifold area with low precision. We empirically show
on several datasets and models that we can detect these areas and remove samples located in
between two modes thanks to a newly proposed truncation method.

Similarly to what has been proposed in this chapter, we want to briefly stress another
possible solution that aims at improving the quality of trained generators. Note that this is also
part of an ongoing work.

There is an already existing research that post-processes GANs’ samples heavily relying on
a variety of Monte-Carlo algorithms: Azadi et al. (2019) use the Rejection Sampling algorithm,
Turner et al. (2019) the Metropolis-Hastings method, and Grover et al. (2019) the Sampling
importance re-sampling method. These methods aim at sampling from a target distribution,
while having only access to samples generated from a proposal distribution. This idea was
successfully applied to GANs, using the previously learned generative distribution g as a
proposal distribution. However, one of the main drawback is that Monte-Carlo algorithms
only guarantee to sample from the target distribution under strong assumptions. First, we need
access to the density ratios between the proposal and target distributions or equivalently to a
perfect discriminator (Azadi et al., 2019). Second, the support of the proposal distribution must
fully cover the one of the target distribution, which means no mode collapse. This is known to
be very demanding in high dimension since the intersection of supports between the proposal
and target distribution is likely to be negligible (Arjovsky and Bottou, 2017, Lemma 3). In
this setting, an optimal discriminator would give null acceptance probabilities for almost any

generated points, leading to a lower performance.
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To tackle the aforementioned issue, we propose a novel method aiming at reducing the
Wasserstein distance between the previously trained generative model and the target distribution.
This is done via the adversarial training of a third network that learns importance weights in
the latent space. The goal is to learn the redistribution of mass of the modeled distribution
that best fits the target distribution. More formally, we propose to over parameterize the class
of generative distributions and define a parametric class Q = {wgy,¢ € @} of importance
weighters. Each function w¢ learns importance weights in the latent space and is consequently
defined from R? to R*. For any given importance weighter wg, we impose the constraint
By, we = 1 and define ug’ the new weighted probability distribution defined as follows:

for all x € R, dug (x) = we(x)dug (x).
Denoting by Lip, the set of 1-Lipschitz real-valued functions on R?, i.e.,

Lip; = {1 B” = R: |f(x) = f()] < [x =y, (v.y) € (B)*},
the objective is to find the optimal importance weighter wg such that:

arg min W(/,L*,ug’) =argmin sup EyD—E oD
ped weEQ DELip, 6

=argmin sup £y D—E; weD.
weEQ DELip,

To better understand our approach, we first consider a simple 2D motivational example where
the real data lies on four disconnected manifolds. To approximate this, the generator splits
the latent space into four distinct areas and maps data points located in the frontiers, areas in
orange in Figure 5.6b, out of the true manifold (see Figure 5.6a). Our method consequently
aims at learning latent importance weights that can identify these frontiers and simply avoid
them. This is highlighted in Figure 5.6d where the importance weighter has identified these
four frontiers. When sampling from the new latent distribution, we can now perfectly fit the
mixture of four gaussians (see Figure 5.6¢).

Consequently, future would thorougly compare the proposed method with a large set of
previous approaches such as Azadi et al. (2019), Grover et al. (2019) and Tanaka (2019). These

experiments should be ran on a variety of datasets and distributions.
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(a) WGAN: real samples in green and
fake ones in blue.

(c) WGAN with latent rejection sampling:

real samples in green and fake ones in
blue.

(b) Latent space: heatmap of the distance
between a generated sample and its near-
est real sample.

(d) Latent space: heatmap of the learned
importance weights. The blue frontiers
have zero weights.

Fig. 5.6 Learning disconnected manifolds leads to the apparition of an area in the latent space
generating points outside the target manifold. With the use of the importance weighter, one can
avoid this specific area and better fit the target distribution.
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Appendix 5.A Technical results

5.A.1 Highlighting drawbacks of the Precision/Recall metric

Lemma 5.A.1. Assume that the modeled distribution g slightly collapses on a specific data
point, i.e. there exists x € E,ug(x) > 0. Assume also that W, is a continuous probability

measure and that Uy has a recall B = 1. Then the precision must be such that o = 0.
Proof. Using Definition 5.3.1, we have that there exists u such that
He=opu+(1—ca)v,, and pg=p.

Thus, 0 = . (x) > ap(x) = ape(x). Which implies that a = 0. O

5.A.2 Proof of Theorem 5.3.1

The proof of Theorem 5.3.1 relies on theoretical results from non-parametric estimation of the
supports of probability distribution studied by Devroye and Wise (1980).
For the following proofs, we will require the following notation: let ¢ be a strictly

monotonous function be such that lim 2% =0 and lim 2% = c. We note B(x,r) CE, the
Nn—roo n Nn—roo log(n)

open ball centered in x and of radius r. For a given probability distribution i, S, refers to its

support. We recall that for any x in a dataset D, x;) denotes its k nearest neighbor in D. Finally,

for a given probability distribution t and a dataset D sampled from ", we note Ry, and

Rmax the following:
Ruin = Bélg\\x —X(pm)ll; Rmax = r)?eaExHx — X(p(n - (5.A.1)

In the following lemma, we show asymptotic behaviours for both Ryi, and Ryax.

Lemma 5.A.2. Let u be a probability distribution associated with a uniformly continuous
probability density function f,,. Assume that there exists constants a; > 0,a > 0 such that for
all x € E, we have ay < fy(x) < a. Then,

d
min — 0 A.s.

Ryin — 0a.s. and R
n—soo n—soo

Ryax — O a.s.  and Rﬁm — o0 a.5s.
n—oo n—soo

d. — oo as. as the rest follows.
n—soo

The result is based on a nearest neighbor result from Biau and Devroye (2015). Considering

Proof. We will only prove that Rpax —— Oas.andand R
n—yoo

the @(n) nearest neighbor density estimate Vg ™) based on a finite sample dataset D,, Theorem
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4.2 states that if f}, is uniformly continuous then:

sup [ A2 (x) = fu(®)]| — 0.

xekE

where f; () (x) = m with V; being the volume of the unit ball in R¢.

Let € > 0 such that € < a; /2. There exists N € IN such that for all n > N, we have, almost
surely, for all x € E:

nVallx —xq ||d
Consequently, for all n > N, for all x € E almost surely:
Q(n) \ld
I =gl < (- )
an(al 8)

Thus, supHx Xomll =0 as..
x€E

Also, almost surely

d ¢ (n)
nllx —xpm | > Vilar+€)

Thus, mf [ = Xp@mll =0 as.

]

Lemma 5.A.3. Let 1,V be two probability distributions associated with uniformly continuous
probability density functions f;, and fy. Assume that there exists constants a; > 0,a; > 0 such
that for all x € E, we have a1 < fu(x) < ap and a1 < fy < ay. Also, let Dy, Dy be datasets
sampled from v", u". If W is an estimator for v, then

(i) for all x € Dy, 0y, (%) a Lgupp(v)(x) in proba.

(ii) for all y € Dy, ﬁg(n)( y) =  Lgupp(u )(x) in proba.

Proof. We will only show the result for (i), since a similar proof holds for (ii).
Thus, we want to show that

forallx € Dy, o, (x) = Lgypp(v) () a.s.
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First, let’s assume that x ¢ Sy. Biau and Devroye (2015, Lemma 2.2) have shown that

lim [|x(g(ny) — || = inf{[|x—y[| |y € Sy} as.

n—yoo

As Sy is a closed set - e.g. (Kallenberg, 2006) - we have

nh_r>n [x = x(pmpll >0 as.

and

forallyEDv,hm [y =Y@mpll =0 as.

Thus, lgn oc(’;(n) (x)=0 as..
n—roo
Now, let’s assume that x € Sy. Using Definition 5.3.2, the precision of a given data point x

can be rewritten as follows:
Q) (X) =1 <= Jy € Dy,x € By, [y = y(p(m)l)
Using notation from (5.A.1), we note

Ruin = min|[y = y(gp() ||, Rmax = max|ly =y (gl

It is clear that :

U B )’7 min g U max (5.A2)
YDy €D,
where S}, = Uycp, BO» [y = Y(pm) [1))-

Besides, combining Lemma 5 .A.2 with Devroye and Wise (1980, Theorem 1), we have
that:

v(SyA U B(y,Rmin)) —>0 in proba.
y€Dy

v(SyA | B(y, max))—>0 in proba.
n—
y€Dy

where A here refers to the symmetric difference.
Thus, using (5.A.2), it is now clear that, tt(SyASY,) — 0 in probability. Finally, given x € S,
we have u(x € ) = v(oc(’;(n) (x) =1) — 1 in probability. O
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We can now finish the proof for Theorem 5.3.1. Recall that & = ,LL(SV) and similarly,

Proof. We have that

n ~ 1 n
gy =8 =5 X ) = [ Lucs, (@)

xiEDIJ
Then,
o] \
’O‘q)(n)_o“ - Z (%(n)(xz)—]lx,-esv)
X,‘EDﬂ
1
(0 X Lyes, — [ Tues, (@)
nx,EDp E
= |Exi’\’,un(a(};(n) (xi) - ]lx,ESv) (5A3)
+ (BEy,1s, —Euls,)| (5.A.4)

where U, is the empirical distribution of u. As u, converges weakly to u almost surely (e.g.
Dudley (2004, Theorem 11.4.1)) and since 1 ,cg, is bounded, we can bound (5.A.4) as follows:

Jim - By, Licsupp(u) — ExopLeesupp(u) =0 2. 8.

n

Now, to bound (5.A.3), we use the fact that for any x € Dy, the random variable o o(n) (x)
converges to 1,cg, in probability (Lemma 5.A.3) and that for all x € Dy, both 05(’; (n) (x) < 1and
1,cs, < 1. Consequently, using results from the weak law for triangular arrays, we have that
. 1 n .

lim . Z (0t (xi) — Lxes,) =0 in proba.

n—so0
x€Dy

Finally,
|0t ) — O] = 0 in proba.,
which proves the result. The same proof works for lim ' = B. [

k—ro0

5.A.3 Proof of Theorem 5.3.2

This proof is based on the Gaussian isoperimetric inequality historically shown by Borell
(1975); Sudakov and Tsirelson (1978).
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Proof. Let u, be a distribution defined on E laying on two disconnected manifolds M and
M, such that u, (M) = w.(M,) = % and d(M;,M,) = D. Note that for any subsets A C E and

BCE,dA,B):= inf [|x—y|.
CEd(AB)= inf vy

Let Ggl (M) (respectively G;l (M) be the subset in R? be the pre-images of M; (respec-
tively M»).
Consequently, we have for all k € [1,n]

Y(Gy' (M) = we(M) = Y(Gy' (M2)) >

(Y]

We consider (G, ' (M;))€ (respectively (G, (M>))) the € enlargement of G, ' (M) (re-
spectively Ggl (M) where € = %. We know that (Ge_l(Ml))8 ﬂ(Gg1 (M3))E = 0.
Thus, we have that:

7((Gy' (M1))%) +7((Gy' (M))¥) < 1

Besides, by denoting & the function defined for any € R by &(¢) = [ %d& we have

Y((Gy' (M1))°) +7((Gy (42))%) > 20(07 () +e)
(using Theorem 1.3 from Ledoux (1996))

2¢€ e—(I)*l(%)z/Z
V2m

a
(since ! <5) + & < 0 and @ convex on | — o, 0])

> o+

Thus, we have that

28 _q)fl(g)Z/z
o+ e 2 <1
V2
Thus, by noting
g —o7l(3?
o =sup{a €[0,1] | a+ e 2 <1},

V271

we have our result.
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For o > 3/4. By noting oo = 1 — x, we have

Thus, 1 —

:>x>\/>W

where W is the product log function. Thus, ot < 1 — \/%W(sz). L]

As an example, in the case where € = 1, we have that W(1) ~ 0.5671, x > 0.4525 and
o < 0.5475.

5.A.4 Proof of Theorem 5.3.3
5.A.4.1 Equitable setting

This result is a consequence of Theorem 5.A.1 that we will assume true in this section.

We consider that the unknown true distribution u, lays on M disjoint manifolds of equal
measure. As specified in Section 5.3, the latent distribution Y is a multivariate Gaussian defined
on R?. For each k € [1,M], we consider in the latent space, the pre-images Ay.

It is clear that Ay,...,Ay are pairwise disjoint Borel subsets of RY. We denote M, the
number of classes covered by the estimator g, such that for all i € [1,M], we have y(A;) > 0.
We know that M > MB > 1.

For each i € [1,M], we denote A%, the e-enlargement of A;. For any pair (i, ) it is clear that
A? ﬂA8 0 where € = 2L (D being the minimum distance between two sub-manifolds and L
being the Lipschitz constant of the generator).

As assumed, we know that A?,i € [1,M] partition the latent space in equal measure, conse-
quently, we assume that

Y vAH) =1 and y(A)=...=yAy)=1/M (5.A.5)
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Thus, we have that

Using Theorem 5.A.1, we have

1 2
YA (AT, AD) 2 1 — 5 HE

Thus, & <

where y = ¢! <l — maxcpy }/(A,f)) = @‘1(%) and @(1) = [, %d&

Knowing that M > BM we have that

1
M

X

o (1 _
pM

. . 2 . .
We conclude by saying that the function x — I)t—zxe_gx is decreasing for x > 0. Thus,

142 12

A< ——5—e e ™ (5.A.6)
y

— _ 42 2
herey = @71 (1 ) and @(0) = [ S804y
For further analysis, when M — oo, refer to subsection 5.A.5 and note using the result in

(5.A.14) that one obtains the desired upper-bound on &
a Mzoo 67%82678\/210g(1\7[)

5.A.4.2 More general setting

As done previously, we denote M, the number of classes covered by the estimator (g, such
that for all i € [1,M], we have y(A;) > 0. We still assume that M > 1. However, we now relax
the previous assumption made in (5.A.5) and assume the milder assumption that there exists

Wi, ...,wy € [0,1]M such that for all m € [1,M], Y(A) = wy, ¥,nwm < 1 and n[lax} Wy =
ic[l.M

whax 1,
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. C
Consider, AC = (Uf‘iv‘\f) and denote w¢ = ¥(A%) < 1 — &. Consequently, we have

n

Y v(Af) +7(a%) = 1
i=1
M

HATE(AS,... A5 AD) + ) y(Af) = 1 — y(AC)
=1

a=1-—wb—y(A (AL, A5, AD))

In this setting, it is clear that A,... A M,AB is a a partition of R under the measure 7.

Using, result from Theorem 5.A.1, we have

1 2
VATE(AT, . A5 AD) 21— i

x2

. | o C . ma _ ot exp(—*/2)
where x = @ (1 max (w"”,w ")) and ®(r) = [° Nor: ds.
Finally, we have that
1 2
R L (5.A.7)
x

In the case where }/(AB) = 0, we find a result similar to (5.A.6).

5.A.5 Lower-bounding boundaries of partitions in a Gaussian space

Notations and preliminaries Given £ > 0 and a subset A of euclidean space RY = (R? || - —-
1), let A€ := {z € R? | dist(z,A) < &} be its e-enlargement, where dist(z,A) := infcp |2 — 2|
is the distance of the point z € RY from A. Let ¥ be the standard Gaussian distribution in R?
and let Aq,...,Ax be K > 2 pairwise disjoint Borel subsets of R? whose union has unit (i.e
full) Gaussian measure Zle wy = 1, where wy := Y(A). Such a collection {Aj,...,Ax} will
be called an (wy, ..., wk)-partition of standard d-dimensional Gaussian space (R¢, 7).

For each k € [K]|, define the compliment A_j := Uy_4Ay, and let d~%A; 1= {z € A |
dist(z,A_x) < €} be the inner e-boundary of Ay, i.e the points of A; which are within distance
€ of some other Ay. For every (k,k’) € [K]]> with k' # k, it is an easy exercise to show that

0 €A NI Ay =0 (5.A.8)
a_gAk NA_; =0
Aik =0 AL UA_;
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Now, let A7¢(Ay,...,Ag) = UkK:1 d~¢A; be the union of all the inner €-boundaries. This is
A~%(Ay,...,Ak) the set of points of UK Ay which are on the boundary between some two
distinct Ay and Ay. We want to find a lower bound in the measure (A" ¢(Ay,...,Ak)).

Theorem 5.A.1. Given K > 4 and wy,...,wg € (0,1/4] such that ZkK:1 wi = 1, we have the
bound:

: _ 14+x% 12 _
f y(A8(Ay,...,Ag))>1— 7€ pEX
where the infinimum is taken over all (wy,...,wy)-partitions of standard Gaussian space
(RY,y), and x := d~! (1 — maXgeum] wg).
Proof. By (5.A.8), we have the formula
K
YATE(AL,..,Ak)) = ) ¥(0~°Ar) (5.A.9)
k=1
K
=) 1A% —v(A) (5.A.10)
k=1

Let w_g:=7Y(A_x) =1—wy, and assume w_j > 3/4,i.e w < 1/4, for all k € [K].
For example, this condition holds in the equitable scenario where wy = 1/K for all k.
Now, by standard Gaussian Isoperimetric Inequality (see Boucheron et al. (2013) for

example), one has

P
=Pd(D (1 —wyp)+e). (5.A.11)
Using the bound =5 ¢ (x) <1—®(x) < )l—cq)(x) Vx > 0 where ¢ is the density of the standard
Gaussian law. We can further find that

14+ @1 (1 —wy)?
¢(¢*1(1—wk)+e)21—wk+ (1= wi)

(D71<1 —Wk)2
e—%eze—ecb*l(l—wk)
1 2
> 1w e b s (5.A.12)
X
2

(since the function x — e % is decreasing for x > 0)

x2
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where x := mingcry (1 —wy) = P71 (1 — maxye gy wi) > &~'(3/4) > 0.67. Combining
(5.A.9), (5.A.11), and (5.A.12) yields the following

K 2
1
’)/(Ai‘S(A], ,AK)) Z Z (I—Wk +2x e 182 —€&x
k=1
—(1=wy)))
_ f 1_ 1+2xze_182 —ex) 4y
k=1 X
1 1+Xze,182 ex
x2 ’

Asymptotic analysis In the limit, it is easy to check that in the case where max; ¢ g wx — 0,

. . 2 . .
we have that x — oo, In this setting, we thus have I;LZX — 1 and can now derive the following
bound: 0

‘ B max Wi— 1.2

inf YA E(A,... Ag)) LT € eex,

Aq,... A
Equitable scenario In the equitable scenario where w; = 1/K for all k, we have

2
B 14+x g2

e —E&X

inf YA €(Aq,...,Ax)) > 1
Al,l.l.l.,AKY( (A1,...,Ak)) 2

where x = @~ !(1 — 1/K). When K > 8 we have:

&1 (1-1/K) > \/210g (M> (5.A.13)

where ¢(K) = 1/2log(v/2nK).

Consequently, we have when K — oo, the following behavior:

K—oo 1

VA (AL, Ag)) < 1—e 28 ¢ eV 2I0eK) (5.A.14)

O

Proof of the inequality (5.A.13). Set p := 1/K. First, for any x > 0, we have the following

upper:
—x2/2

[ [ 1 <)
/ e 2y = / Yo 2gy < 1 / ye 2y = ¢

X X y X Jx X
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For a lower bound:

(o] ) ooy ) e—X2/2 [} )
/ e’ /zdy:/ Lo 2y = —/ e’ dy
X x Yy X x ¥

and
—x%/2

oo 1 oo
/ e 2y = / ey < ©
x Y x Yy

and combining these gives

13

Thus
L(l_%> —x2/2<1_q5(x)§ 1 le—x2/27
2T\ X X 2T X
from where
l 1 1 _@71(1_}7)2/2
— e 5.A.15
Fm(«bl(l—p) ¢1<1—p>3) OAL)
1 1 _(I)fl 1— 2
<p< e (1=p)7/2 5.A.16
<p< A d (1 p) ( )

Using (5.A.16), when @~! (1 —p) > 1 (thatis p < 0.15 or equivalently K > 8), we have the

following upper bound ®~'(1 — p) < ¢(p) where g(p) := /2log(v/27/p). Then, injecting
g(p) in (5.A.15):

1 1 1 —¢71(1—p)2/2
— e < p.
V21 <q(p) CI(P)3) =7

Now when ¢(p) > 1 you have:

@ (1-p)22 £V 27mpq(p)?

q(p)*—1

and

1y o q(p)*—1
e ”)Z\/zlg(mpq(pﬁ)'

There is one additional requirement on p which is simply that the argument of the log should
be > lie. qg(p)> —1>+2xpq(p)?, which is true as soon as K > 8. ]
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Appendix 5.B Complementary experiments

5.B.1 Visualization of Theorem 5.3.3

To further understand and illustrate Theorem 5.3.3, we propose in Figure 5.7, an interesting vi-
sualization where we plot the manifold learned by a WGANSs architecture and its corresponding
latent space configuration. As expected, we observe that when the number of distinct modes
increase, the number of data generated out of the manifolds increase too.

(a) WGAN 4 classes: (b) Green blobs: true densities.
visualisation of ||Jg(2)||F. Dots: generated points.
® ©® ©®
O @ ©
P @ @
(c) WGAN 9 classes: (d) Green blobs: true densities.
visualisation of ||Jg(z2)||F. Dots: generated points.

(e) WGAN 3 classes: (f) Green blobs: true densities.
visualisation of ||Jg(z)||F. Dots: generated points.

Fig. 5.7 Learning disconnected manifolds: visualization of the gradient of the generator (JFN)
in the latent space and densities in the output space.
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5.B.2 Definition of the different metrics used

In the sequel, we present the different metrics used in Section 5.4 of the paper to assess

performances of GANs. We have:

* Improved Precision/Recall (PR) metric Kynkddnniemi et al. (2019): it has been presented
in Definition 5.3.2. Intuitively, Based on a k-NN estimation of the manifold of real (resp.
generated) data, it assesses whether generated (resp. real) points belong in the real (resp.
generated) data manifold or not. The proportion of generated (resp. real) points that are
in the real (resp. generated) data manifold is the precision (resp. recall).

* the Hausdorff distance: it is defined by
Haus(A, B) = max {maxmin |a —b||, maxmin ||a — b| }
acA beB bEB acA

Such a distance is useful to evaluate the closeness of two different supports from a metric
space, but is sensitive to outliers because of the max operation. It has been recently used
for theoretical purposes by Pandeva and Schubert (2019).

* the Frechet Inception distance: first proposed by Dowson and Landau (1982), the Frechet
distance was applied in the setting of GANs by Heusel et al. (2017). This distance
between mutlivariate Gaussians compares statistic of generated samples to real samples
as follows

FID = || v, — Vg2 + Tr(Es + Zo +2(£.59)?)

where X, = A (v4,X,) and Xg = 4 (vg, Xg) are the activations of a pre-softmax layer.
However, when dealing with disconnected manifolds, we argue that this distance is not
well suited as it approximates the distributions with unimodal one, thus loosing many

information.

The choice of such metrics is motivated by the fact that metrics measuring the performances of
GANSs should not rely on relative densities but should rather be point sets based metrics.

5.B.3 Saturation of a MLP neural network

In Section 5.4.2, we claim that the generator reduces the sampling of off-manifold data points
up to a saturation point. Figure 5.8 below provides a visualization of this phenomenon. In this
synthetic case, we learn a 9-component mixture of Gaussians using simple GANs architecture

(both the generator and the discriminator are MLP with two hidden layers). The minimal
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distance between two modes is set to 9. We clearly see in Figure 5.8d that the precision

saturates around 80%.

——— - > -, %]
a2 ® B <« < 3
s & 'Y & = 2
(a) Data points sampled after 5,000 steps (b) Data points sampled after 50,000
of training. steps of training.
0.8
0.7
0.5
s & il -Hr‘ 0.4
0.3
) . —— Precision
X . ; i 20 40 60 80 100
< 3 X k steps
(c) Data points sampled after 100,000 (d) Evolution of the precision & dur-
steps of training. ing training.

Fig. 5.8 Learning 9 disconnected manifolds with a standard GANSs architecture.

5.B.4 More results and visualizations on MNIST/F-MNIST/CIFAR10

Additionally to those in Section 5.4.3, we provide in Figure 5.9 and Table 5.2 supplementary
results for MNIST, F-MNIST and CIFAR-10 datasets.
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Fig. 5.9 Visualization of our truncation method (JBT) on three real-world datasets: MNIST,
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(a) MNIST: examples of data points
selected by our JBT with a trunca-
tion ratio of 90% (we thus removed
the 10% highest gradients).

(c) F-MNIST: examples of data
points selected by our JBT with a
truncation ratio of 90% (we thus re-
moved the 10% highest gradients)..
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(b) MNIST: examples of data points
removed by our JBT with a trunca-
tion ratio of 90% (these are the 10%
highest gradients data points).

(d) F-MNIST: examples of data
points removed by our JBT with
a truncation ratio of 90% (these
are the 10% highest gradients data
points).

(e) CIFAR-10: examples of data
points selected by our JBT with a
truncation ratio of 90% (we thus re-
moved the 10% highest gradients).

F-MNIST and CIFAR-10.

(f) MNIST: examples of data points
removed by our JBT with a trunca-
tion ratio of 90% (these are the 10%
highest gradients data points).
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Fig. 5.10 For high levels of kept samples, the marginal precision plummets of newly added
samples, underlining the efficiency of our truncation method (JBT). Reported confidence
intervals are 97% confidence intervals. On the second row, generated samples ordered by their
JEN (left to right, top to bottom). In the last row, the data points generated are blurrier and

outside the true manifold.

MNIST Prec. Rec. F1 Haus. FID EMD
WGAN 91.2+0.3 937405 |924+04 | 497+0.2 | 243403 | 21.54+0.1
WGAN 90% JFN | 92.540.5{9294+03 | 927+04 | 481+£0.2 | 269+0.5 | 21.3+0.2
WGAN 80% JFN | 93.34+03 | 91.8+04 | 926+04 | 50.6+£04 | 33.1£03 | 21.4+04
W-Deligan 89.0+£0.6 | 93.6+0.3 | 91.24+0.5| 50.7+0.3 | 31.74+0.5 | 22.440.1
DMLGAN 934+0.2]9234+02{928+0.2| 482+03 | 16.8+04 | 20.7+0.1
Fashion-MNIST

WGAN 86.3+04 | 88.2+0.2 | 87.24+0.3 | 140.6+0.7 | 259.7+3.5 | 61.9+0.3
WGAN 90% JFN | 88.64+0.6 | 86.6+0.5 | 87.6 0.5 | 138.7+0.9 | 2574+3.0 | 61.3+0.6
WGAN 80% JFN | 89.84+-04 | 84.9+0.5 | 87.3+04 | 146.3+1.1 | 396.2+6.4 | 63.31+0.7
W-Deligan 88.5+0.3 | 853+0.6 | 86.94+0.4 | 141.74+1.1 | 310.9+3.1 | 60.9+-0.4
DMLGAN 874+0.3 | 88.1+04 |87.7+04 | 141.94+1.2 | 253.0+-2.8 | 60.9+-0.4
CIFAR10

WGAN 74.3+0.5]703+04|723+05|334.7+3.5|634.8+4.6 | 151.24+0.2
WGAN 90% JFN | 76.0+0.7 | 69.4+0.5 | 72.5+0.6 | 318.1+3.7 | 631.3+4.5 | 150.74+0.2
WGAN 80% JFN | 76.94+0.5 | 68.6+0.5 | 725+0.5 | 323.5+4.0 | 725.0+3.5 | 150.14+-0.3
W-Deligan 71.5+0.7 | 69.84+0.7 | 70.6+0.7 | 328.7+2.1 | 727.84+3.9 | 154.0+0.3
DMLGAN 74.14£0.5 | 65.7+0.6 | 69.7+0.6 | 328.6+2.7 | 967.2+4.1 | 152.04+0.4

Table 5.2 Scores on MNIST and Fashion-MNIST. JEN stands for Jacobian Frobenius norm. =+
is 97% confidence interval.
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5.B.5 More results on BigGAN and ImageNet

In Figure 5.11, we show images from the Bubble class of ImageNet. It supports our claim of
manifold disconectedness, even within a class, and outlines the importance of studying the
learning of disconnected manifolds in generative models. Then, in Figure 5.12 and Figure
5.13, we give more exemples from BigGAN 128x128 class-conditionned generator. We plot in
the same format than in 5.4.4. Specifically, for different classes, we plot 128 images ranked
by JEN. Here again, we see a concentration of off-manifold samples on the last row, proving
the efficiency of our method. Example of classes responding particularly well to our ranking
are House Finch ¢, Monnarch Butterfly e or Wood rabbit c. For each class, we also show an
histogram of JFN based on 1024 samples. It shows that the JEN is a good indicator of the
complexity of the class. For example, classes such as Cornet (see Figure 5.13¢) or Football

helmet (see Figure 5.13a) are very diverse and disconnected, resulting in high JFNs.

Fig. 5.11 Images from the Bubble class of ImageNet showing that the class is complex and
slightly multimodal.
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(a) ’Black swan’ class.

JRaE ke
(e) "Monarch butterfly’ class.

P =N
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Jacobian Frobenius Norm

(b) ’Black swan’ class histogram.

0 25 50 75 100 125
Jacobian Frobenius Norm

(d) "House finch’ class histogram.
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Jacobian Frobenius Norm

(f) ’Monarch butterfly’ class histogram.

Fig. 5.12 Images
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(a) *Football helmet’ class. (b) "Football helmet’ class histogram.
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Jacobian Frobenius Norm

(d) *wood rabbit’ class histogram.
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(e) ’Cornet’ class. (f) ’Cornet’ class histogram.

Fig. 5.13 Images
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Appendix 5.C Supplementary details

We now provide the different network’s architecture used and their corresponding hyperparam-

eters.

Table 5.3 Models for Synthetic datasets

Operation Feature Maps Activation
G(z): z~ A(0,1) 2

Fully Connected - layerl 20 ReLLU
Fully Connected - layer2 20 RelLU
D(x)

Fully Connected - layerl 20 ReLLU
Fully Connected - layer2 20 ReLU
Batch size 32

Leaky ReL.U slope 0.2

Gradient Penalty weight 10

Learning Rate 0.0002

Optimizer

Adam: ;=05 B, =0.5

For DeliGan, we use the same architecture and simply add 50 Gaussians for the

reparametrization trick. For DMLGAN, we re-use the architecture of the authors.
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Table 5.4 WGAN for MNIST/Fashion MNIST

Operation Kernel Strides Feature Maps Activation
G(z): z~N(0,1d) 100

Fully Connected 7xTx128
Convolution 3x3 Ix1 7 x7x64 LReLU
Convolution 3x3 I x1 7x7x64 LReLU
Nearest Up Sample 14x 14 x 64
Convolution 3x3 1x1 14 x 14 x32 LRelLU
Convolution 3x3 Ix1 14 x 14x32 LReLU
Nearest Up Sample 14 x 14 x 64
Convolution 3x3 Ix1 28 x28 x 16 LReLU
Convolution 5x5 1x1 28 x28 x 1 Tanh
D(x) 28 x 28 x 1
Convolution 4x4  2x2 14 x 14 x32 LReLU
Convolution 3x3 I x1 14 x 14 x32 LReLU
Convolution 4 x4 2x2 7x7x64 LReLU
Convolution 3x3 1x1 7x7x64 LReLLU
Fully Connected 1 -

Batch size 256

Leaky ReL.U slope 0.2

Gradient Penalty weight 10

Learning Rate 0.0002

Optimizer Adam f$;:05 B,:0.5

Table 5.5 DMLGAN for MNIST/Fashion MNIST

Operation Kernel Strides  Feature Maps BN Activation
G(z): z~N(0,1d) 100

Fully Connected 7TxTx128 -

Convolution 3x3 Ix1 7x7x64 - Leaky ReLU
Convolution 3x3 Ix1 7x7x64 - Leaky ReLU
Nearest Up Sample 14x14x64 -

Convolution 3x3 I1x1 14x14%x32 - Leaky ReLU
Convolution 3x3  Ixl1 14x14x32 - Leaky ReLU
Nearest Up Sample 14x14x64 -

Convolution 3x3  Ixl 28 x28x16 - Leaky ReLU
Convolution 5x5 Ix1 28 x 28 x 1 - Tanh
Encoder Q(x), Discriminator D(x) 28 x28 x 1

Convolution 4x4  2x2 14x14%x32 - Leaky ReLU
Convolution 3x3 1x1 14 x 14 x 32 Leaky ReLU
Convolution 4x4  2x2 7x7x64 - Leaky ReLU
Convolution 3x3 1x1 7x7x64 - Leaky ReLU
D Fully Connected 1 - -

Q Convolution 3x3 7x7x64 Y  Leaky ReLU
Q Convolution 3x3 7x7x64 Y  Leaky ReLU
Q Fully Connected ng =10 - Softmax
Batch size 256

Leaky ReLU slope 0.2

Gradient Penalty weight 10

Learning Rate 0.0002

Optimizer Adam f; =05 B, =05
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Table 5.6 WGAN for CIFARI10, from Gulrajani et al. (2017)

Operation Kernel Strides  Feature Maps BN  Activation
G(z): z~N(0,1d) 128

Fully Connected 4x4x128 -

ResBlock Bx3]x2 1x1 4x4x128 Y RelLU
Nearest Up Sample 8 x 8x 128 -

ResBlock [Bx3]x2 1x1 8 x8x 128 Y RelLU
Nearest Up Sample 16 x 16 x 128 -

ResBlock [Bx3]x2 1x1 16 x16x128 'Y  ReLU
Nearest Up Sample 32x32x128 -
Convolution 3x3 1x1 32x32x3 - Tanh
Discriminator D(x) 32x32x%3

ResBlock Bx3]x2 1x1 32x32x128 - ReLU
AvgPool 2x2 1x1 16 x 16 x 128 -

ResBlock [Bx3]x2 1x1 16x16x128 - ReLU
AvgPool 2x2 Ix1 8 x8x 128 -

ResBlock [Bx3]x2 1x1 8 x 8x 128 - ReLU
ResBlock Bx3]x2 1x1 8 x8x 128 - ReLU
Mean pooling (spatial-wise) - - 128 -

Fully Connected 1 - -
Batch size 64

Gradient Penalty weight 10

Learning Rate 0.0002

Optimizer Adam Bi=0. B=09

Discriminator steps 5

Table 5.7 DMLGAN for CIFAR10, from Gulrajani et al. (2017)

Operation Kernel Strides  Feature Maps BN  Activation
G(z): z~N(0,1d) 128

Fully Connected 4x4x128 -

ResBlock Bx3]x2 1xl 4x4x128 Y RelLU
Nearest Up Sample 8x 8x128 -

ResBlock Bx3Ix2 1x1 8 x8x128 Y ReLU
Nearest Up Sample 16 x16x 128 -

ResBlock Bx3]x2 1x1 16 x16x128 'Y  ReLU
Nearest Up Sample 32x32x128 -
Convolution 3x3 I1x1 32x32x3 - Tanh
Encoder Q(x), Discriminator D(x) 32x32x%x3

ResBlock [3x3]x2 1xl1 32x32x128 - ReLU
AvgPool 2x2 Ix1 16 x 16 x 128 -

ResBlock [3x3]x2 1xl1 16 x 16 x 128 - ReLU
AvgPool 2x2 1x1 8x 8x128 -

ResBlock Bx3]x2 1xl 8 x 8x128 - ReLU
D ResBlock Bx3]x2 1x1 8 x8x128 - ReLU
D Mean pooling (spatial-wise) 2x2 1x1 128 -

D Fully Connected 1 - -

Q ResBlock Bx3]x2 1x1 8 x8x128 - ReLU
Q Mean pooling (spatial-wise) 2x2 1x1 128 -

Q Fully Connected ng =10 - Softmax
Batch size 64

Gradient Penalty weight 10

Learning Rate 0.0002

Optimizer Adam pi=0. B=09

Discriminator steps 5







Conclusion

5.4 Conclusion on the present thesis

The present thesis is intended to develop methodological tools to study Generative Adversarial
Networks and provide some theoretical results on GANs. More informally, it is an attempt at

narrowing the gap between theory and practice.

5.4.1 Statistical study

Chapter 2 and Chapter 3 analyze properties of respectively GANs (Goodfellow et al., 2014)
and Wasserstein GANSs (Arjovsky et al., 2017).

To understand these two frameworks, one has to distinguish the theoretical non-parametric
objectives from the practical ones involving parametric classes of discriminative functions.
More formally, when allowing discriminative functions to be any measurable functions from
RP — [0, 1] (in GANs) or any 1-Lipschitz functions R”? — R (WGANs) we have the following
set of optimal parameters:

In Chapter 2, O* = {9 € @,Djs(‘u*,‘ue) = Blgg Djs([.L*,[.Lg)}.
In Chapter 3, 0 = {0 € O, W (U, Ug) = eilelg W (L, i)}

where W is the Wasserstein distance and djg is the Jensen-Shanon divergence. In Chapter 2,
Theorem 2.2.2 shows the existence and the uniqueness of the solution. However, the practitioner
has to rely on a parametric discriminator Z. The main consequence of optimizing using this

neural net distance is that one can only expect to find the following set of parameters:

In Chapter 2, © = {6 € ©,Dg (1, o) = inf D (i, o) }-

In Chapter 3, O = {9 S @,d@(h,ﬂg) = Onel(g d_@(,u*,‘ug)}.
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where Dy = sup E, log(Dg) + Ey, log(1 —Dg) and dg = sup Ey Dy — Ey,Dg.
oed oel
Both chapters study these approximation properties. Ideally, one would like ® C ®* such

that any parameter obtained by the practitioner is also an optimal parameter. However, this
condition is highly demanding and depends on ®, A, and the global shape of the chosen loss
function. Alternatively, one would like to exhibit specific parameterization under which any
parameter 6 € © has a performance €-away to the optimal performance of a parameter 8* € @*
(¢ being arbitrary). Respectively, Theorem 2.3.1 and Theorem 3.3.1 show that for any given
generative parameterization @, there exists a discriminative parameterization A such that this
condition is verified for respectively the GANs and WGANs framework.

Interestingly, apprehending the relationship between @ and ®* could be made possible
via a better understanding of the behavior of the neural net distances D4 and d4. Chapter 3
attempted to study the question and proposed the monotonous equivalence as a way to link the
Wasserstein distance d;,, with the neural net distance d¢. It is clear that many trade-offs are
at play when training GANSs: the more generative capacity the model has, the more demanding
the monotonous equivalence is; conversely, the more discriminative capacity the model has, the
more realistic the monotonous equivalence is.

As recalled in both Chapter 2 and Chapter 3, one only has access to the empirical measure
U, of the target distribution u,. Therefore, due to this estimation error, one ends up with the

following parameters:

In Chapter 2, @ = {6 € @,Dy(l,, o) = ehel(fa Dg(Un, o)}

In Chapter 3, © = {6 € ©,dg (i, to) = inf di(ttn, o)}

Interestingly, Theorem 2.4.1 and Theorem 3.4.1 prove that both formulations are consistent.

However, many questions remain unanswered:

* Finite-sample analysis of €qgim: in Theorem 3.4.1, we were able to find convergence
rates for €ptim + Eestim- Lemma 3.4.1 has shown that limy, e €estim = 0, but it would
be interesting to find a finite sample upper-bound for €.y, ? This would also enable us
to better understand the impact of the capacity of the discriminator Dy on this quantity

€estim and thus correctly parameterize it.

* Bounding &;pprox + Eoptim 1 Eestim?  this specific analysis is missing in the present thesis.
A first theoretical step was made by Uppal et al. (2019) who exhibited convergence
rates. However, their study specifically studied the case where both u, and ug are
absolutely continuous with respect to the Lebesgue measure and their density lie in the

same Besov ball. In high dimension, such study would not hold since it is highly likely



5.5 Broader perspectives on GANs 183

that none of these probability distributions would have densities (Fefferman et al., 2016).
Similarly, Schreuder et al. (2020) also bring an interesting contribution in the case where
the target distribution can be written as the push-forward between a multivariate uniform
distribution and a smooth generator.

5.4.2 Post-processing trained generative networks

Another line of research present in this thesis has to do with the learning of disconnected
manifolds with standard Generative Adversarial Networks. Using results from the Gaussian
Isoperimetric inequality, Theorem 5.3.2 and Theorem 5.3.3 give lower bounds on the portion
of generated samples that are mapped out of the target manifold. To solve this issue, previous
works recommended to over-parameterize the model using either latent mixtures of Gaussians
(Gurumurthy et al., 2017) or an ensemble set of generators (Tolstikhin et al., 2017; Khayatkhoei
et al., 2018). In Chapter 5, we exhibited a simple heuristic, based on the generator’s Jacobian
norm, that efficiently remove off-manifold data points. Finally, another line of work relies on
on the use of Monte-Carlo methods to post-process pre-trained generators (Azadi et al., 2019;
Grover et al., 2019; Turner et al., 2019).

Interestingly, what we have observed so far is that these methods are very efficient when
it comes to removing items that are located in between two modes of the target manifold.
However, to detect blurry items within a class (or respectively when there is only one distinct
class), all these methods seem to behave poorly. One of the possible hypothesis is that these
two tasks might have to be tackled separately. Indeed, a single discriminator network may not
be able to efficiently detect simultaneously fake items both within a given class and in-between
two different classes.

5.5 Broader perspectives on GANs

Recent studies have been efficient at opening a series of broad questions on GANSs. To close
the present thesis, we propose a small discussion on three of the main challenges ahead for a
better understanding of GANSs:

* Innovation in GANSs: there might be in GANs a discrepancy between expectations of
the generative model and the chosen objective function. Since the model is trained to
minimize the Wasserstein distance to the empirical distribution, it is a legitimate question
to determine and understand how are generated samples linked to the training dataset.
For example, could we identify what is new when generating the face of a person that

does not exist (see, thispersondoesnotexist.com)?
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* Generalization in GANs: theoretical research aim at understanding the ability of

GANs at approximating the target distribution from finite samples. In order to improve
our understanding of GANs and efficiently compare different formulations, it would be
beneficial to have a clear evaluation protocol, measuring both the quality and diversity
of the generated images. The Improved Precision/Recall metric (Kynkéddnniemi et al.,
2019) is a first step. However, the downside is that when evaluating empirically GAN:Ss, it
is still not a common practice in the community to consistently have a train/test split.

Trade-off properties in GANs: when it comes to training GANS, it is well-known that
a tricky competition is at play between the generator and the discriminator. On the one
hand, a close-to-optimality discriminator can lead to vanishing gradients (Arjovsky and
Bottou, 2017) and on the other, if the discriminator does not have enough capacity, it
could be easily "fooled" and one could have d (L., lg) = 0 even though both probability
distributions are significantly different. Similarly, Section 3.5 highlighted that increasing
the capacity of the generator alone does not necessarily lead to an improved performance,
mostly because it also makes the task harder for the discriminator. Interestingly, Liang
(2018) also hypothesized diagrams on how the discriminator and the generator should
be simultaneously parameterized. To enable further improvements, future research will

have to thoroughly study the intricacies at play between both networks’ capacity.
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