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Abstract

La pompe à carbone biologique comprend la production primaire de matière organique

dans la zone euphotique, son export vers les profondeurs et sa reminéralisation. Les

acteurs les plus fréquemment cités sont les diatomées en raison de leur contribution à

la production primaire et à l’export de carbone et les copépodes pour la production de

pelotes fécales. Cependant, la pompe biologique est le résultat d’interactions complexes

entre organismes plutôt que de leurs actions indépendantes. En outre, bien qu’il ait été

montré que la distribution de taille et la composition minérale du phytoplancton en sur-

face ont une influence significative sur l’intensité de l’export de carbone, on ne sait pas

si les données méta-omiques peuvent prédire efficacement les processus de la pompe à

carbone biologique. Dans cette thèse, je propose d’abord de revisiter l’étude de la pompe

à carbone biologique dans l’océan oligotrophe en définissant des états biogéochimiques

de l’océan sur la base de la contribution relative de la production primaire, de l’export

de carbone et de l’atténuation du flux dans les stations d’échantillonnage Tara Océans.

L’analyse des états en termes de composition et d’interactions microbiennes inférées à

partir de données de métabarcoding a révélé que les associations plutôt que la com-

position microbienne semblent caractériser les états de la pompe à carbone biologique.

Ensuite, en utilisant les données méta-omiques et environnementales des expéditions

Tara Oceans, je propose pour la première fois de prédire ces états biogéochimiques à par-

tir d’abondances biologiques dérivées d’ADN environnemental, dans l’objectif de fournir

une liste de biomarqueurs.

Mots-clés: pompe à carbone biologique, plancton, méta-omique, diatomées, réseaux

d’associations microbiennes, machine learning

The biological carbon pump encompasses a series of processes including the primary

production of organic matter in the surface ocean, its export to deeper waters and its

remineralization. The common highlighted actors are diatoms because of their contri-

bution to primary production and carbon export and copepods for their production of

fecal pellets. However, the biological pump is the result of complex interactions among

organisms rather than their independent actions. Besides, although size distribution and



mineral composition of phytoplankton in surface was shown to significantly influence the

strength of carbon export, it is unknown whether meta-omic data can efficiently predict

the processes of the biological carbon pump. In this thesis, I first propose to revisit the

study of the biological carbon pump in the oligotrophic ocean by defining biogeochemical

states of the ocean based on the relative contribution of primary production, carbon ex-

port and flux attenuation in Tara Oceans sampling stations. The analysis of the states

in terms of microbial composition and interactions inferred from metabarcoding data re-

vealed that variation in associations rather than lineages presence seems to drive the

states of the biological carbon pump. Then, by using meta-omics and environmental

parameters from the Tara Oceans expeditions, I propose the first study trying to predict

biogeochemical states from biological abundances derived from environmental DNA, with

the goal of providing a list of biomarkers.

Keywords: biological carbon pump, plankton, meta-omics, diatoms, microbial associa-

tion networks, machine learning
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Chapter 1

General introduction

1.1 The carbon cycle on Earth

1.1.1 The reservoirs of carbon

The carbon cycle corresponds to the fluxes and exchanges of carbon between the differents

spheres of the Earth: biosphere, lithosphere, hydrosphere and atmosphere (figure 1.1,

Ciais et al., 2013). Most of the carbon is contained in the lithosphere, in inorganic form

in limestone rock and in organic form in fossil fuels (∼15,000,000 Pg C, Siegenthaler and

Sarmiento, 1993; Sigman and Boyle, 2000; Ciais et al., 2013). The ocean contains around

38,000 Pg C, mainly in the deep ocean (Sigman and Boyle, 2000; Ciais et al., 2013). The

atmosphere contains relatively few carbon compared to the other reservoirs (around 830

inorganic Pg C, Ciais et al., 2013). Biosphere is made of organic carbon. It is estimated

that it contains 650 Pg C (Ciais et al., 2013; Houghton, 2014).

1.1.2 Exchanges of carbon between the reservoirs

On Earth, carbon is present in organic and inorganic form. Organic carbon is synthesized

by living organisms and composes the alive and dead biomass. It is associated to other

elements such as hydrogen, oxygen, nitrogen and phosphorus. On the contrary, inorganic

carbon comes from minerals or results from organic carbon recycling.

Carbon is exchanged from a reservoir to another by physico-chemical and biological pro-

cesses. The carbon cycle maintains an equilibrium between the reservoirs, allowing the

Earth’s temperature to remain stable. The exchanges of carbon occur on different time

scales, we refer to the "slow" and "fast" carbon cycles. The slow carbon cycle implies

geological processes that act on thousands to millions of years. This cycle starts by the

dissolution of atmospheric CO2 in the ocean, supplemented by the river supply of calcium

15



Chapter 1. General introduction

Figure 1.1 – Diagram of the Earth carbon cycle. Numbers represent reservoir mass, also called
"carbon stocks" in Pg C and annual carbon exchange fluxes (in Pg C yr–1). Black numbers and arrows
indicate reservoir mass and exchange fluxes estimated for the time prior to the Industrial Era, about
1750. Red numbers in the reservoirs denote cumulative changes of anthropogenic carbon over the
Industrial Period 1750–2011 (a positive cumulative change means that a reservoir has gained carbon
since 1750). Red arrows and numbers indicate annual "anthropogenic" fluxes averaged over the
2000–2009 time period (Ciais et al., 2013).

whose presence in rivers results from the weathering of terrestrial rocks by acid rain. In

the ocean, the calcium ions Ca
2+

react with carbonate ions CO3
2–

to form calcium car-

bonate CaCO3 that constitutes the calcareous sketeleton of numerous marine organisms

such as coccolithophores and foraminifera. After their death, these organisms sink to-

wards the deep ocean where a part of them will be stored as limestone rocks. In some

oxygen-lean environments, the accumulation of organic matter (mainly from plants) can

form hydrocarbons such as coal, oil and natural gas. The carbon trapped in sedimentaty

rocks is released in the atmosphere as CO2 through volcanic emissions.

The fast carbon cycle is the result of exchanges between the atmosphere, the ocean

and living organisms (time scales of days; 90 and 120 Pg C are exchanged each year

between the atmosphere and the surface ocean and between the atmosphere and land,

respectively, Houghton, 2014). The production of organic matter is at the basis of this
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1.2 The carbon pumps in the ocean

cycle. Phytoplankton and plants use the solar energy to fix CO2 and produce organic

matter and oxygen (details are given in section 1.3.1). This organic carbon then undergoes

a series of transformations in the food chain, releasing again carbon dioxide in the ocean

or the atmosphere.

1.2 The carbon pumps in the ocean

Dissolved CO2 exists in several forms in the ocean, constituting dissolved inorganic carbon

(DIC):

DIC = CO2 (dissolved) + H2CO3 + HCO3
− + CO3

2−
(1.1)

where H2CO3, HCO3
–

et CO3
2–

are carbonic acid, bicarbonate and carbonate ion, respec-

tively. In the literature, the terms "total dissolved inorganic carbon" (CT) and "total CO2"

(TCO2 or
∑

CO2) can be found to designate the DIC (Legendre et al., 2015). Less than 1%

of DIC is in the form of dissolved CO2, most is in the form of bicarbonate and carbonate

ions (Houghton, 2014).

The distribution of DIC in the ocean is characterized by a vertical concentration gradient:

deep waters are richer in DIC than surface waters (on average 2,284 µmol.kg−1
beyond

1,200 meters and 2,012 µmol.kg−1
in surface, figure 1.2). The process responsible for

this gradient is the carbon pump, defined by Volk and Hoffert in 1985 as "a process

that depletes the surface ocean of CO2 concentration relative to the deep-water CO2

concentration". They distinguish three components: the solubility pump, the carbonate

pump and the soft-tissue pump 1
. The carbon at the origin of these three pumps comes

from the atmosphere. Atmospheric CO2 dissolved in the surface waters reacts with water

to form bicarbonate (HCO3
–
), carbonate ions (CO3

2–
) and protons (H

+
):

CO2 + H2O←−→ HCO3
− + H+ ←−→ CO3

2− + 2 H+
(1.2)

It is the disequilibrium induced by the difference between the partial pressure of CO2 in

the atmosphere and the ocean that leads to a flow of carbon from the atmosphere to the

ocean. The higher is this difference, the more intense are the fluxes between the two

environments. This disequilibrium varies according to regions (figure 1.3) because the

1
The soft-tissue pump and the carbonate pump are the result of the action of the living organisms that

use the inorganic carbon to produce organic matter or calcium carbonate, that is why they are sometimes

referred to as the biological carbon pump. However, some authors use this expression to name only the

organic component of the carbon pump. In this manuscript, we will use the term biological carbon pump to

refer to the soft-tissue pump exclusively, consistent with the Glossary in IPCC (2013).
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Chapter 1. General introduction

partial pressure of CO2 depends on its concentration and solubility, and for gases like

CO2, solubility depends on temperature and pressure. Note that, as shown in equation

1.2, the dissolution of CO2 adds H
+

ions in sea water, which increases the ocean acidity.

Figure 1.2 – Mean vertical distribution of dissolved inorganic carbon (
∑

CO2) in the oceans. NA/SA:
North/South Atlantic, SO: Southern Ocean, NI/SI: North/South Indian Ocean, NP/SP: North/South
Pacific Ocean (Zeebe and Wolf-Gladrow, 2009).

Figure 1.3 – Map of the climatological carbon dioxide partial pressure difference ∆pCO2 across the
air-sea interface. Supersaturation is indicated by positive numbers (colors from light red to yellow)
and undersaturation by negative numbers (colors form dark to light blue) (Sarmiento and Gruber,
2006).
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1.2 The carbon pumps in the ocean

1.2.1 The solubility pump

The solubility pump is closely linked to the thermohaline circulation. It is driven by two

processes: the solubility of CO2 is negatively correlated to sea water temperature; and the

high density of cold surface waters at high latitudes leads to the formation of deep water.

As a result, CO2-rich surface waters carry dissolved CO2 in areas of deep convection,

such as the North Atlantic Nordic Seas and the Weddell Sea in the Southern Ocean. The

solubility pump can store carbon for centuries as deep water is exposed at the ocean

surface roughly every 1,000 years (DeVries and Primeau, 2011).

Figure 1.4 – The four carbon pumps in the ocean: the carbonate pump (in purple on the left),
i.e. precipitation of CaCO3 accompanied by the release of CO2 (3) and followed by the sink of
bio-mineral particles towards the depth where carbon is sequestered (4); the solubility pump (in
blue), i.e. dissolution of atmospheric CO2 in surface waters (1), followed by the deep mixing of the
CO2-rich water and sequestration (2); the biological carbon pump (in green), i.e. use of dissolved
CO2 by phytoplankton for the production of organic matter, its transformation by the food web (6)
and loss to the atmosphere (7), followed by the transfer of organic carbon in deep waters where it
is sequestered (8); and the microbial pump (in gray) that produces refractory dissolved organic
carbon (RDOC), thereby sequestering carbon (10). During its transfer to the deep, CO2 is released
in the water column by dissolution of part of the sinking CaCO3 (5) and remineralization of part the
sinking organic matter (9). The dissolved CO2 is released in the atmosphere on different time scales
depending on the depth (white numbers 1 to 3 on the right). (Legendre et al., 2015).

1.2.2 The biological pump

The biological pump corresponds to a series of biologically mediated processes allowing to

trap carbon on timescale it takes the ocean to bring deep water to the surface (i.e. between

500 and 1500 years depending on the ocean basin, DeVries and Primeau, 2011) or even

on geological time scales (i.e. up to millions of years) in some cases. These processes
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include the production of organic matter in the surface ocean, its export to the deep and

its transformation by the pelagic food web.

In surface waters, phytoplankton take up DIC and nutrients to produce organic matter

through photosynthesis (i.e. primary production). This newly produced organic matter

faces grazing by zooplankton and respiration by zooplankton and heterotrophic bacteria.

The organic matter that escaped remineralization is exported to deeper waters and poten-

tially to the sediments (figure 1.5). These three processes and their control factors are

detailed in section 1.3.

Figure 1.5 – Diagram of the biological carbon pump modified from Herndl and Reinthaler (2013).
Phytoplankton fix carbon dioxide in the euphotic zone using solar energy (primary production).
They are grazed on by herbivorous zooplankton, or consumed directly or indirectly by heterotrophic
microbes feeding on solubilized remains of phytoplankton. A part of the primary production is
exported out of the euphotic zone. The organic matter that escapes remineralization in the water
column is sequestered.

1.2.3 The carbonate pump

Some planktonic organisms bear calcareous skeletal structures consisting mainly of

CaCO3. They include photosynthetic cells (e.g. coccolithophores), protozoans (e.g. foraminifera)

and metazoans (e.g. pteropods). They contribute to the export of carbon in the form of

CaCO3, but the carbonate pump is also called carbonate counter-pump because car-

bonate precipitation decreases the alkalinity of sea water, which releases CO2 to the

surrounding waters and from there to the atmosphere (figure 1.4):
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Ca2
+ + 2 HCO3

− −−−→ CaCO3 + CO2 + H2O (1.3)

The release of CO2 in the atmosphere reduces DIC in surface waters. However, the disso-

lution of the sinking CaCO3 at depth releases HCO3
–
, which increases the DIC concen-

tration in deep waters. Together, these two effects contribute to the vertical concentration

gradient of DIC. Besides, as the skeleton of calcifying organisms makes them denser,

they sink relatively fast (Klaas and Archer, 2002), which increases their chances to be

preserved an buried in sediments.

1.2.4 The microbial pump

Phytoplankton is thought to be the main source of dissolved organic matter (DOM) in

the ocean, that contains about 660 Pg C in the form of DOM. Phytoplankton secrete

DOM, but it is also released by zooplankton grazing, viral lysis and solubilization of

particulate organic matter (POM) by heterotrophic bacteria (Arnosti, 2010; Buchan et al.,

2014; Mühlenbruch et al., 2018), thereby providing substrate to heterotrophic bacteria.

A small fraction of the DOM pool is not remineralized and is transformed into resistant

DOM that accumulates in the ocean as biologically refractory DOM and creates most of

the large reservoir of dissolved organic carbon (DOC) (more than 95% of the total DOC

in the ocean is refractory DOC, Jiao et al., 2010). It is the successive processing of DOC

by microorganisms that transforms reactive DOC in refractory DOC. Different fractions

of DOC co-occur in the ocean. They are defined based on their lifetime (time required to

decrease the concentration of the fraction to 1/e of its initial value where e is the Napierian

constant e ≈ 2.71828, so 1/e = 0.37): labile (LDOC; average lifetime: hours to days),

semi-labile (SLDOC; ca. 1.5 years), semi-refractory (SRDOC; ca. 20 years), refractory

(RDOC; ca. 16,000 years) and ultra-refractory (URDOC; 40,000 years) (Hansell, 2013;

Legendre et al., 2015). LDOC is readily available for microorganisms, while refractory

fractions of DOC are resistant to microbial decomposition and can be stored in the ocean

for up to thousand years. The suite of microbially mediated processes that leads to the

creation of refractory DOC has been called the "microbial carbon pump" (Jiao et al., 2010).

Whereas the solubility, carbonate and biological pumps rest upon the vertical transport of

carbon from the surface to the deep ocean, the microbial pump is based on the production

of RDOM at any depth of the water column.
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1.3 The processes of the biological carbon pump

1.3.1 Primary production

The first step of the biological carbon pump is the primary production. It corresponds to

the production of organic matter by terrestrial and aquatic autotrophic organisms. From

an ecological point of view, primary production is the accumulation of solar energy by

plants that is available for other trophic levels. This process depends on oxygenic photo-

synthesis that probably appeared more than 2.45 billion years ago (Buick, 2008). Photo-

synthetic organisms require CO2, water (H2O) and sunlight to produce organic molecules

and oxygen (as shown by the following simplified equation of the oxygenic photosynthesis)

as well as nutrients.

CO2 + H2O + light −−−→ CH2O + O2 (1.4)

From a biogeochemical perspective, primary production is a carbon flux from the atmo-

sphere to the biosphere. Gross primary production (GPP) is the total energy fixed by

photosynthetic organisms via photosynthesis, while net primary production (NPP) is GPP

minus phytoplankton respiration (R) necessary to the plant’s metabolism (Roxburgh et al.,

2005):

NPP = GPP − R (1.5)

Net primary production is expressed in units of carbon per unit area (or volume) per unit

time. Note that primary production can also be the result of other types of autotrophy

such as chemoautotrophy in which the source of energy is mineral instead of light.

1.3.1.1 Global primary production estimates

Global oceanic NPP is between 45 and 50 Pg C per year and mostly performed by phyto-

plankton (Antoine et al., 1996; Field et al., 1998). It corresponds to 45% of total primary

production on Earth, although phytoplankton biomass is ∼1 Pg C, which is only 0.2%

of the photosynthetically active carbon biomass of Earth (Field et al., 1998). This high

productivity relative to phytoplankton total biomass is explained by higher turnover rates

in the ocean than on land (Falkowski and Raven, 2007) and by a higher photosynthetic

biomass proportion in phytoplankton than in terrestrial plants that are mainly composed

of stems and roots, which respire and generally do not photosynthesize (Field et al., 1998).
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1.3.1.2 Patterns in time and space

Globally, primary production is highest in coastal upwelling regions (figure 1.6) where

mean primary production is around 2000 g C m-1 year-1, while it is about 440 g C m-1 year-1

in the open ocean. However, 80% of primary production occurs in the open ocean because

of its much larger surface (Chavez et al., 2010). Primary production is subject to strong

seasonal variations outside equatorial and tropical areas. Peaks of production (blooms)

occur in spring at temperate latitudes, due to higher light and nutrients availability (Field

et al., 1998; Uitz et al., 2010). Phytoplankton thrive and deplete nutrients in the euphotic

zone, which inhibits its growth. In some areas, a small bloom can occur when light levels

are still high enough and nutrients are injected from winter convection and overturning

(Koeve, 2001).

1.3.1.3 Contribution of different types of phytoplankton

Diatoms contribute to a significant proportion of the ocean’s primary production (Nelson

et al., 1995). Using time series data of surface chlorophyll from satellite observations

with SeaWiFS (Sea-viewing Wide Field-of-view Sensor), primary production of microphy-

toplankton was estimated to be 70% in coastal upwelling systems and 50% in temperate

and subpolar regions during the spring-summer season (Uitz et al., 2010). The rest of

primary production is due to smaller phytoplankton. Uitz et al. (2010) estimated the

contribution of nanophytoplankton (primarily including prymnesiophytes) and picophy-

toplankton (mainly cyanobacteria) to be 44% and 24%, respectively. Using quantitative

niche models, Flombaum et al. (2013) found consistent estimates: they predicted the

abundant cyanobacteria Procholorococcus and Synechococcus to be responsible for 8.5%

and 16.7% of ocean net primary production, respectively.

The spatial distribution of these different types of phytoplankton reflects variations in

physical properties, illumination, nutrient availability and grazers (De La Rocha and Pas-

sow, 2014). Diatoms require higher nutrient concentrations than coccolithophores (that

are part of nanophytoplankton). Thus, they thrive preferentially in eutrophic coastal and

subpolar areas (figure 1.6) while coccolithophores prefer more stratified conditions and

are more abundant in the oligotrophic open ocean (Quéré et al., 2005). Thanks to their

higher surface to volume ratio, picophytoplankton have an advantage over larger cells in

nutrient-limited conditions (Raven and Falkowski, 1999), which explains their abundance

in oligotrophic subtropical gyres where they play a substantial role in primary production

(Uitz et al., 2010).
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Figure 1.6 – Total and class-specific (micro-, nano- and picophytoplankton) primary production in the
ocean for the December-February period (1998-2007). Daily primary production is given in absolute
units (in grams of carbon per square meter per day) on the left panel and contribution (in percentage)
of the phytoplankton classes on the right panel (Uitz et al., 2010).

1.3.1.4 Methods of estimating primary production

Historically, ocean primary production has been estimated with 14 C-based field measure-

ments (Steemann Nielsen, 1952). Although the method helped oceanographers increasing

temporal and spatial variability of primary production, estimations were made on discrete

time points and do not cover the ocean’s surface (Chavez et al., 2010). Optical methods

have been developed to overcome this issue. These models include sea surface chlorophyll

and irradiance because of their correlation to primary productivity (Smith et al., 1982;

Eppley et al., 1985; Platt, 1986; Falkowski, 1981), such as the VGPM (Vertically Gen-

eralized Production Model) (Behrenfeld and Falkowski, 1997). It estimates net primary
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production from chlorophyll concentration, chlorophyll efficiency to fix carbon and the

amount of light received by the euphotic zone. The calculation of net primary production

can be summarized by this relationship:

NPP = chl · pbopt · day length · f (par) · zeu (1.6)

where NPP is the net primary production production (expressed in mg of carbon fixed per

day per unit volume), chl is the chlorophyll concentration, pbopt is the maximum daily

net primary production in a given water column (expressed in mg of carbon fixed per mg

of chlorophyll per hour), day length is the number of hours of day light, f(par) is the ratio

of realized water column integrated NPP to the maximum potential NPP if photosynthetic

rates were maintained at maximum levels throughout the water column (f(par) = 0.66125

* par / (par + 4.1) where par is the photosynthetically active radiation), and zeu is the

depth of the euphotic zone.

Remote estimations of primary productivity have been possible thanks to the use of ra-

diometers aboard satellites since the end of the 1970’s. The Moderate Resolution Imaging

Spectroradiometer (MODIS) is currently flying on NASA’s Terra and Aqua satellites. It

captures a wide range of wavelengths, allowing to provide measurements of the ocean’s

color that translates the concentration of organisms in the surface waters, including

chlorophyll-containing organisms which are of interest for the estimation of primary pro-

duction. Figure 1.6 gives an example of maps that can be achieved from satellite data.

1.3.2 Carbon export

Carbon export corresponds to the transport of photosynthetically-produced organic mat-

ter to the deep. This material is exported as particles as a result of gravity or by active

transport by zooplankton, or as dissolved organic carbon through vertical mixing or ad-

vection. The export flux (or export production) is defined as the quantity of carbon that

leaves the euphotic zone or the mixed layer depth (Passow and Carlson, 2012). Although

primary production sets the upper limit of export flux, most of it is recycled within the

euphotic zone and thus escapes export (Buesseler, 1998).

1.3.2.1 Spatial and temporal variability of carbon export

Between 5 and 25% of primary production is exported out of the euphotic zone (De La Rocha

and Passow, 2007). However, export intensity is highly variable depending on the regions.

Generally, primary production and export flux are tightly linked (Buesseler, 1998). This
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is particularly the case in coastal upwelling systems that support high primary produc-

tivity (figures 1.6 and 1.7). However, carbon export is not always proportional to the local

primary production levels (Buesseler, 1998; Buesseler and Boyd, 2009). Seasonality also

greatly influences carbon export efficiency. Following blooms of large cells such as di-

atoms, episodic export pulses of 50% or higher of primary production have been observed

(Buesseler, 1998).

Figure 1.7 – Global map of annual mean export production for the world oceans estimated from
the relation between total and export production of Eppley and Peterson (1979) and monthly mean
total production maps produced from Coastal Zone Color Scanner (satellite radiometer) chlorophyll
distributions according to the algorithm of Behrenfeld and Falkowski (1997) (Falkowski et al., 1998).

1.3.2.2 Composition of sinking particles

Marine snow

Our knowledge about the composition about sinking particles is mostly based upon the

analysis of the content of sediment traps (see next section for details about these in-

struments). Organic material preferentially sinks as large particles (known as "marine

snow") rather than individual cells. Marine snow is composed of aggregated phytodetri-

tus, appendicularian mucus feeding structures, fecal matter, prokaryotic cells and mis-

cellaneous detrital particles (Alldredge and Silver, 1988; Simon et al., 2002). They can

be responsible for a large part of the vertical flux. For example, Shanks (2002) estimated

the contribution of marine snow to be >90% of particle flux. The higher sinking velocities
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of marine snow compared to unaggregated material enhances export flux, despite their

elevated rates of decomposition.

Zooplankton

Although highly variable, contribution of zooplankton fecal pellets to carbon flux has

been shown to be substantial. The proportion of vertical flux due to fecal pellets ranges

from less than 1% to more than 90% and is dependant on phytoplankton and zooplank-

ton biomass and composition (e.g. Dubischar and Bathmann, 2002). Producers include

metazoans such as copepods, euphausiids, salps, appendicularians and tunicates, as

well as protistan microzooplankton (Turner, 2015). Zooplankton fecal pellets have long

been considered as major vectors of carbon to the deep sea, but their importance appear

to have been overestimated. Indeed, degradation by bacteria and coprophagy (ingestion),

coprorhexy (fragmentation) and coprochaly (dispersal of pellet content into the water af-

ter disruption of their peritrophic membranes) by copepods and protozoans participate to

the destruction of fecal pellets (Iversen and Poulsen, 2007), thus transforming large fast-

sinking particles into smaller suspended ones and retaining fecal material in the euphotic

zone (e.g. Poulsen and Kiørboe, 2006; Iversen and Poulsen, 2007). Sinking velocities of

fecal pellets amount in hundreds of meters per day (Turner, 2002). The sinking velocities

of fecal pellets and aggregates can be increased according to their phytoplankton con-

tent, which may contain biominerals such as opal and coccoliths (Armstrong et al., 2002;

Klaas and Archer, 2002). Zooplankton also actively contribute to the export flux to depth

through their diurnal vertical migrations
2

(see references in Turner, 2002 and Turner,

2015). Zooplankton feed in surface at night and respire and excrete dissolved and par-

ticulate material at depth during the day. It can represent between 10 and 50% of total

vertical flux (Bollens et al., 2011) and can even exceed the carbon flux due to fecal pellets

and other particles such as in the subarctic North Pacific during winter (Kobari et al.,

2013). In some environments, mucus feeding structures produced by appendicularians

and pteropods appear to significantly contribute to particle flux (Alldredge, 2005). These

sticky structures, used to collect food, are discarded by their owners once they become

clogged with material and continue to collect particles while sinking in the water column,

which increases their sinking velocities.

2
Zooplankton diurnal vertical migration are also referred to as the "mesopelagic-migrant pump" that is

part of additional export pathways that inject particles to depth termed "particle-injection pumps" (PIPs) and

that are not reviewed here. These multi-faceted pumps are physically and/or biologically mediated and are

three dimensional mechanisms that require specific investigation approaches (Boyd et al., 2019). Taking

them into account may partly explain the carbon budget deficits reported in the mesopelagic zone (Dall’Olmo

et al., 2016).
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Phytodetritus

Pulsed export of phytodetritus is an important component of export fluxes. They are

mostly seasonal as they occur following spring phytoplankton blooms in temperate wa-

ters, or austral summer blooms in the Southern Ocean. They are commonly composed

of diatoms, haptophytes such as coccolithophorids and Phaeocystis spp., and dinoflagel-

lates (Beaulieu, 2003). Intact phytoplankton cells have even been observed in the deep

dark ocean (Agusti et al., 2015). Sedimentation of phytodetritus is enhanced by aggrega-

tion that can result from biological and physical processes. Indeed, aggregation requires

the collision of particles and their subsequent attachment. The probability of collision of

particles depends on their concentration, density, size and shape, but also on shear and

differential settling (Simon et al., 2002), while the probability of attachment is enhanced

by the presence of transparent exopolymer particles (TEP), produced by phytoplankton

and bacteria or derived from dissolved precursors released by phytoplankton. TEP are

sticky gels that were found to form the matrices of marine aggregates, thus promoting sed-

imentation of particles (Passow, 2002). Bacteria are also known to produce TEP and may

stimulate TEP production by phytoplankton, which contributes to increase aggregation

(Passow et al., 2001).

1.3.2.3 Quantifying carbon export

Different methods have been used to estimate export flux in the water column. The oldest

method is based on the estimation of "new" production in the euphotic zone through the

measurement of nutrient uptakes using 15N-labeled compounds (Dugdale and Goering,

1967). Contrary to regenerated production which is supported by recycled nutrients in

the euphotic zone, new production is supported by nitrogen brought to the euphotic zone

through upwelling, river input, atmospheric deposition or N2-fixation. In the context of

this method, nitrogen is considered to limit phytoplankton growth and the quantity of

exported material is assumed to be equal to new production in the euphotic zone.

More direct measurements of particle flux include particle-reactive nuclides and sediment

traps. Particle-reactive nuclides are used as tracers of particle flux. This method is based

on the properties and half-lives of radioisotope pairs in the uranium decay series. The

238U-234Th pair has been extensively used to determine export fluxes (e.g. Buesseler

et al., 1992; Coale and Bruland, 1985). The parent nuclide 238U is soluble while the

daughter nuclide 234Th is particle-reactive and is thus rapidly scavenged by particulate

material. If none of the isotopes were physically removed, their activities would be in

secular equilibrium (i.e. identical). However, the scavenging of 324Th by particles followed
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by their vertical sinking results in a lower concentration of 234Th in surface waters. Fluxes

of 324Th can thus be inferred from its vertical distribution.

Sediment traps have been extensively deployed during the last 40 years to characterize

the nature and magnitude of sinking particles (Honjo et al., 2008). These funnel-shaped

instruments collect particles and trap them in small containers (figure 1.8) that are often

poisoned to avoid microbial decomposition. They can be ballasted and thus immobilized at

one location, or floating to drift with the currents. Time series can be obtained by installing

a rotating mechanism allowing to change the container collecting material at programmed

time intervals. There exist several issues that question the ability of sediment traps to

represent the actual flux of particles, such as advection that may bring particles that

do not come from above, swimmers that may also be retained in traps, remineralization

of trapped material and seasonal variations in export flux (Buesseler, 1991; Siegel and

Deuser, 1997). However, buoyant sediment traps, poisoned containers, and rotating

mechanisms all contribute to limit these known biases.

Figure 1.8 – Diagram of an automated time-series sediment trap, consisting of a broad funnel with
collecting containers at the bottom. A baffle (at top right) keeps out large objects that would clog the
funnel. The circular tray (at bottom right) holds collection vials. On a preprogrammed schedule (every
5 days to 1 month) the instrument seals one vial and rotates the next one into place. Scientist retrieve
the samples up to a year later to analyze the collected sediment (illustration by Jane Doucette, WHOI,
https://divediscover.whoi.edu).

From observations obtained with free-floating sediment traps deployed in the framework

of VERTEX (Vertical Transport and Exchanges) in the North Pacific, one of the earliest

international programs that explored the particulate organic matter fluxes, Martin et al.

(1987) fitted their observations to the following power law function:

F(z) = F100

( z

100

)−b
(1.7)
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where z is the depth, b is a dimensionless factor (estimating remineralization or export

efficiency), F100 is the particulate organic carbon flux at 100 m. The mean value of b

estimated from the flux values was 0.86 Martin et al. (1987). This value has long been

assumed to be uniform in space an time, although it is instead a spatially variable value

(Henson et al., 2012; Lutz et al., 2007; Guidi et al., 2015).

More recently, optical approaches were developed thanks to methodological advances:

satellite-based models (Siegel et al., 2014) and in-situ video systems such as the Under-

water Video Profiler (Picheral et al., 2010) that is described below.

Figure 1.9 – Illustration of the UVP (version 5) (A) alone and (B) mounted on a Niskin bottle rosette
frame. (C) Schematic diagram of the UVP light system where the illuminated volume of water is
colored in pink (Picheral et al., 2010).

The Underwater Video Profiler

The Underwater Video Profiler (UVP) is an optical instrument that records images of ocean

particles (figure 1.9). This instrument includes a camera that records the images in a

volume of water illuminated by diodes emitting a collimated red light.

The UVP converts the measured area of particles in equivalent spherical diameter ESD

to estimate particle size (Jennings et al., 1988). The area in pixels (Sp) of the objects

captured by the UVP is converted in area in mm2
(Sm ) with the following relationship:

Sm = ASBp (1.8)

where A and B are constants. These constants are estimated so that log-transformed

differences ∆S between Sp and Sm are minimized:

∆S =

n∑
i=1

[log(Sp,i − log(Sm,i)]2
(1.9)

Estimation of carbon flux from the particles’ size distribution
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Figure 1.10 – UVP images of zooplankton, such as appendicularians (App.), salps (Salp.) and
custraceans (Crust.) (Stemmann et al., 2008)

The particle size distribution (PSD) n(s) is calculated in terms of particle concentration

(∆C, number by volume unit) in a given size range:

n(s) = ∆C/∆s (1.10)

The PSD follows a decreasing power law from the micrometer to the millimeter scale

(McCave, 1984; Sheldon et al., 1972):

n(d) = ad−b (1.11)

where a and b are constants and d is the particles diameter (Sheldon et al., 1972; McCave,

1984; Jackson et al., 1997). The exponent b corresponds to the slope of particle size

distribution, which is often estimated from the equation ln(n(d)) = ln(a)−b ∗ ln(d), where

ln is natural logarithm. This slope b is often used as a descriptor of PSD (Guidi et al.,

2009).

The particles mass m(d) and their settling speed w(d) (calculated with the Stokes law)

are functions of d. Thus the total particles mass in the ∆d interval is n(d)m(d) ∆d and

the mass flux in this interval is n(d)m(d)w(d) ∆d (Guidi et al., 2008). The total carbon

flux of particles F is the the mass flux spectrum integrated over all particle sizes (Guidi

et al., 2008):

F (d) =

∫ dmax

dmin

n(d)m(d)w(d) ∆d (1.12)
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where dmin and dmax are the minimum and maximum particles size.

1.3.3 Flux attenuation

Flux attenuation refers to the decreasing of organic matter vertical flux throughout the

water column. Less than 50% of net primary production is exported below the euphotic

zone while a few percent (less than 3%, De La Rocha and Passow, 2007) is sequestered

(i.e. reaches deep waters, below 1000 m) (Andersson et al., 2004; Boyd and Trull, 2007;

Buesseler and Boyd, 2009; Lutz et al., 2002; Martin et al., 1987). Carbon flux decreases

exponentially with depth
3
, with the most important decrease occurring in the euphotic

zone (figure 1.11), implying that degradation processes are particularly active in the upper

few hundred meters (De La Rocha and Passow, 2007).

Figure 1.11 – Carbon fluxes as a function of depth, estimated from sediment traps and regionalized
estimates of export production. The figure is from De La Rocha and Passow (2014), who used data
from Lutz et al., 2002 (black points) and equations from Suess, 1980 (black dashed line), Martin
et al., 1987 (red dotted line), Lutz et al., 2002 (red dashed and dotted line) and Andersson et al.,
2004 (black solid line).

3
Flux attenuation is often estimated from particle flux profiles measured using surface and deeper sed-

iment traps and assumes that export from the surface does not significantly change in the time it takes

material to reach the deepest trap. However, the slow sinking rates of the sinking material may lead to

misleading flux profiles interpretations in regions with a strong seasonality in export, such as the temperate

and polar regions (Giering et al., 2017).
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1.3.3.1 Degradation of particulate organic matter

Our understanding of the processes determining the degradation of organic matter is

much less developed than our knowledge about primary production (Sarmiento and Gru-

ber, 2006). However, two planktonic groups are recognized to actively participate to the

degradation of particulate organic matter: heterotrophic bacteria and zooplankton. Bac-

teria solubilize particulate organic carbon (POC) to dissolved organic carbon and oxidize it

to CO2, thereby removing most of POC in the upper layers of the ocean, whereas zooplank-

ton contribute to flux attenuation by consuming organic matter, including fecal pellets

(see section 1.3.2.2), and fragmenting particles while swimming.

Bacterial transformation of organic matter

Until the 1970’s, importance of bacteria (and archaea) in the ocean carbon cycle was

largely ignored (Steele, 1974). Consumption of organic matter by bacteria was considered

as negligible. However, the discovery of the domination of bacteria en terms of abundance,

diversity and metabolic activity changed our vision of a trophic chain implying the transfer

of most of the primary production towards zooplankton and bigger animals (Azam, 1998;

Azam and Malfatti, 2007). Until half of the ocean primary production is processed by

bacteria through the "microbial loop" (Azam et al., 1983), making the flux of organic

matter towards bacteria a major biogeochemical process.

Remineralization of organic matter by bacteria is initiated by extracellular enzymes.

They hydrolyze POM to release lower molecular weight DOM (Arnosti, 2010), which pro-

vides substrates for bacterial growth in the surrounding water (bacteria are obligate os-

motrophs). A fraction of this matter is incorporated as biomass while the other is respired

(Arnosti, 2010). Because they are rich in resources, aggregates are considered "hotspots"

of microbial remineralization in the ocean (Azam, 1998). After their formation (e.g. during

bloom collapse), they are readily colonized by heterotrophic bacteria (Smith et al., 1992).

Bacterial concentration is higher in aggregates that in free fractions (Caron et al., 1986;

Turley and Mackie, 1994), as is their hydrolytic enzymatic activity (Simon et al., 2002;

Grossart et al., 2007; Ziervogel and Arnosti, 2008). The phytoplanktonic composition also

influences the molecular composition of organic matter (fatty acids, sugars, proteins, nu-

cleic acids) and thus the growth and metabolic activity of bacteria (Buchan et al., 2014).

Bacteria-mediated dissolution of silica from diatom frustules has also been reported,

which contributes to upper ocean silicon regeneration (Bidle and Azam, 1999). Bacterial

groups are known to be associated with aggregates, such as Flavobacteria, Gammapro-

teobacteria, Rhodobacteraceae and Altermonadaceae (Grossart and Ploug, 2001; Buchan

et al., 2014).
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Impact of zooplankton on flux attenuation

Zooplankton contribute to decreasing vertical particle flux by breaking up aggregates

into smaller particles. The shear stress induced by euphausiids swimming disaggregates

marine snow into smaller particles that have lower sinking velocities than the original

aggregates (Dilling and Alldredge, 2000; Goldthwait et al., 2004, 2005). Besides, disag-

gregation may release DOM that is carried along the interstices of sinking marine snow

and would have sunk with particles otherwise (Alldredge, 2000; Goldthwait et al., 2005).

The slower sinking rates resulting from fragmentation also increase their residence time

in surface waters and thus the likelihood of aggregate remineralization (Goldthwait et al.,

2005).

The relative contribution of bacteria and zooplankton to the respiration of net primary

production is currently poorly known (De La Rocha and Passow, 2007; Steinberg et al.,

2008). Estimations attribute to microzooplankton the respiration of 35 to 59% of primary

production (Calbet and Landry, 2004) and to mesozooplankton 17 to 32% (Hernández-

León and Ikeda, 2005), while other authors consider that the bulk of respiration in the

ocean is due to bacteria (Cho and Azam, 1988; Rivkin and Legendre, 2001). Yet others

suggest that particle flux attenuation in the upper mesopelagic is driven by zooplank-

ton fragmentation and solubilization rather than by microbial respiration (Belcher et al.,

2016). However, higher abundance of zooplankton in highly productive areas may in-

crease flux attenuation compared to lower productive areas that are rather dominated

by small cells and where flux attenuation is mostly caused by bacterial activity (Guidi

et al., 2015). In addition to heterotrophic bacteria and zooplankton, viral cell lysis may

be responsible for a significant part of flux attenuation (Proctor and Fuhrman, 1990;

Fuhrman, 1999; Rohwer et al., 2009; Lara et al., 2017) although their role is currently

poorly known due to a paucity of data (Lara et al., 2017).

1.3.3.2 Measurement of vertical flux attenuation

Vertical flux attenuation can be inferred from particle flux profiles that are estimated from

sediment traps and the thorium isotope technique (see section 1.3.2.3). Other methods

exist to measure oxygen consumption and thus remineralization rates.

The distribution of oxygen in the water can inform us about primary production and

remineralization. In the surface waters, oxygen concentrations are close to saturation,

whereas below the euphotic zone, oxygen is mainly supplied by advection and mixing,

and removal is due to remineralization. Taking into account these physical processes and

oxygen distribution, oxygen utilization rates and particulate organic material oxidation
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below the euphotic zone can be estimated. Basically, it means estimating the change in O2

since the last time the water mass was in contact with the atmosphere (which is equivalent

to the age of the water mass). Thus, oxygen utilization rates (OUR) can be obtained by

calculating the ratio between the apparent oxygen utilization (AOU, i.e. the difference

between the saturation oxygen concentration and the observed oxygen concentration)

and the age of the water mass (Jenkins, 1982). Estimates of oxygen consumption can

also be obtained from measurements (by Winkler titration) of bacterial respiration in dark

seawater incubations (Obernosterer et al., 2008).

In this thesis, flux attenuation was estimated with flux values calculated from the particle

size distribution (itself being derived from the UVP images, see section 3.2.3.2).

1.3.3.3 Global rates and regional and vertical variations of remineralization

Global annual estimates of marine respiration (including that of phytoplankton) are be-

tween 55 and 76 Pg C year-1 (del Giorgio and Duarte, 2002). Remineralization is known

to vary spatially in the oceans (Buesseler et al., 2007; Guidi et al., 2015), although rem-

ineralization rates has been thought to be uniform (Martin et al., 1987).

Using buoyant sediment traps, Buesseler et al. (2007) observed a high variability at two

contrasting sites in the Pacific Ocean. Transfer efficiency of sinking particulate organic

carbon between 150 and 500 m where of 20 and 50%. Going further, Guidi et al. (2015)

estimated remineralization in different biogeochemical provinces from data obtained with

the UVP, sediment traps and 238U/234Th disequilibrium. They found estimates that range

between -50% and +100% of the commonly used globally uniform remineralization value.

1.3.4 Sequestration

The sequestration flux has to be distinguished from the export flux. While export is the

flux that leaves the euphotic zone, sequestration refers to the flux that is removed from

the atmosphere for 100 years or more (Passow and Carlson, 2012). The sequestration

depth is often defined at the bottom of the mesopelagic zone (i.e. approximately 1000 m

depth) but, as it depends of the ventilation depth, Antia et al. (2001) proposed to use the

depth of winter mixing.

Annual POC sequestration is estimated at 0.86 Pg C yr-1 (Passow and Carlson, 2012).

Of this amount, only about 0.002-0.16 Pg C are preserved each year in the sediments,

which represents only 0.01-0.3% of the net primary productivity (Hedges and Keil, 1995).

More recently, Guidi et al. (2015) found a lower estimation of 0.33 Pg C yr -1 (which
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may be explained by the lowest depth considered for sequestration, i.e. 2000 m) and

mapped regional variations of sequestration flux. In fact, like primary production, export

and remineralization, and because it is dependant on these three processes (Passow and

Carlson, 2012), sequestration of organic carbon varies geographically (Hedges and Keil,

1995; Dunne et al., 2007). Notably, Dunne et al. (2007) suggested that continental shelves

may account for 48% of the global flux of organic carbon to the seafloor, although great

variations exist between estimations (see Hedges and Keil, 1995).

1.3.5 Summary of currently known factors influencing the efficiency the

biological carbon pump

As listed by Lemaitre (2017), control factors of the biological carbon pump are divided in

chemical, biological and physical parameters.

1.3.5.1 Chemical factors

Chemical factors include the macro- and micronutrients availability. The difference be-

tween these two types of nutrients lays in their concentration in seawater and organ-

isms, macronutrients being more concentrated than micronutrients (about 10
3

higher,

Sarmiento and Gruber, 2006). Phytoplankton require these elements to form organic car-

bon, however some of them are limiting in the ocean. Nitrogen, phosphorus and iron are

thought to be the main limiting nutrients. Much of the low-latitude oceans are depleted

in surface nitrogen and phosphorus (Moore et al., 2013). These areas are referred to

as low-nutrient low-chlorophyll (LNLC). On the contrary, regions such as the Southern

Ocean have relatively higher concentrations of nitrogen and phosphorus. However, pro-

ductivity is not as high as expected given these higher concentrations. These so-called

high-nutrients low-chlorophyll (HNLC) regions are mostly limited by iron (which is an

important component of electron transport proteins involved in photosynthesis and res-

piration), as shown by iron fertilization experiments in the Southern Ocean (Boyd et al.,

2000; Blain et al., 2007). Besides, silicic acid may be limiting for silicifying planktonic

organisms like diatoms, silicoflagellates and radiolarians, which use it in to build their

shell (Moore et al., 2013).

In addition to primary production, chemical elements impact the settling speed of par-

ticles. The biogenic and lithogenic mineral content of sinking particles has been shown

to increase their sinking velocity. For example, diatoms are considered effective organic

carbon exporters because their frustule acts as a ballast, and the calcium carbonate shell

of coccolithophorids also provides ballast for sinking of organic matter (Klaas and Archer,
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2002; Armstrong et al., 2002; Francois et al., 2002).

1.3.5.2 Biological controls

Much of the variation in the efficiency
4

is explained by biological processes (i.e. the

activities of phytoplankton, zooplankton and bacteria) (De La Rocha and Passow, 2007).

As suggested in sections 1.3.1.3 and 1.3.2.2, the composition of phytoplankton commu-

nities controls the intensity of primary production and particulate organic carbon flux.

More precisely, the size structure of these communities has a key role in regulating the

efficiency of the biological carbon pump (Boyd and Newton, 1999; Guidi et al., 2009). High

POC export has been related to the dominance of microphytoplankton (mostly diatoms)

relative to nano- and picophytoplankton (Guidi et al., 2009), which can also be explained

by their mineral content (see the previous section). However, nanoplanktonic diatoms

that are generally overlooked play a role in spring blooms and carbon export (Leblanc

et al., 2018).

Zooplankton can have positive and negative impact on particle flux. By feeding upon phy-

toplankton cells, they repackage organic matter into denser and faster sinking particles

(Turner, 2015). On the contrary, they may be responsible for a significant part of reminer-

alization through respiration and contribute to the fragmentation of organic aggregates

by swimming (Dilling and Alldredge, 2000; Goldthwait et al., 2004). Some zooplankton

also feed on fecal pellets, thereby reducing the downward flux of organic matter (Iversen

and Poulsen, 2007).

Together with zooplankton, bacteria remineralize most of particles in the water columnn.

Thus, their effect on the biological pump efficiency is mostly negative. However, they

also produce TEP that promote aggregation of particles and thereby enhance carbon flux

(Passow, 2002).

1.3.5.3 Influence of physical parameters

Physical dynamics influence both primary production and carbon transport to the deep.

Eddies, as well as upwellings and fronts, bring episodic pulses of new nutrients into the

euphotic zone or initiates stratification, increasing primary production (McGillicuddy and

Robinson, 1997; Bidigare et al., 2003; Mahadevan et al., 2012) and thus carbon export

efficiency. A large part of dissolved inorganic carbon is also exported through physical

4
Efficiency refers to the capacity of the biological pump to sequester as much carbon as it could be. Two

definitions of efficiency exist: it can be either the ratio between export flux and primary production or the

ratio between sequestration and export flux.
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mixing and diffusion (Burd et al., 2010). Flux attenuation is also affected by physical

controls. Remineralization rates are influenced by pressure: as pressure increases in the

ocean interior, less bacteria are observed on particles and a shift in microbial communities

is observed (Tamburini et al., 2009). Besides, remineralization has been shown to be

temperature dependant (White et al., 2012; Laufkötter et al., 2017).

1.4 Relationships between the biological carbon pump and the

Earth’s climate

1.4.1 The biological carbon pump in the past

Cyclic variations of climate and glaciations happened during the last two millions years.

The pace of glacial and interglacial periods successions is explained by changes of or-

bital parameters of the Earth (known as the "Milankovitch cycles"), with characteristic

frequencies of 100, 41 et 23 thousand years (Hays et al., 1976; Berger, 1988). Although

these orbital variations explain much of the glacial/interglacial oscillations, they do not

account for their amplitude and rapid transitions demonstrated by palaeoclimatic and

palaeoceanographic records. As a consequence, a positive feedback from the climate

system must amplify these cycles.

From the measurement of CO2 concentration in air bubbles trapped in ice cores (Pe-

tit et al., 1999), it was found that during interglacial periods, the atmospheric partial

pressure of CO2 was lower, near 280 parts per million by volume (p.p.m.v.), than dur-

ing peak glacial times when it lay between 180 and 200 p.p.m.v. (figure 1.12, Sigman

and Boyle, 2000). As CO2 is a greenhouse gas, changes in its concentration may play

a significant role in the energetics of glacial/interglacial oscillations. The identification

of the processes responsible for these variations motivated intensive research (reviewed

in Sigman and Boyle, 2000 and Turner, 2015). Among them, changes in efficiency of

the biological carbon and their impact on the CaCO3 cycle has retained the attention of

palaeoclimatologists and paleoceanographers.

The deep sea stores ten times more carbon than the terrestrial biosphere, soil, atmo-

spheric and warm upper ocean carbon reservoirs combined (figure 1.1). Because deep

water is exposed to the surface only roughly every 1,000 years, changes in concentration

of atmospheric CO2 driven by anything else than the ocean would be diluted into the large

reservoir of deep DIC, which would attenuate the sharp CO2 concentration changes over

glacial and interglacial times. From these considerations, Broecker (1982a,b) concluded

that changes in CO2 concentration must be due to oceanic processes.
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Figure 1.12 – History of atmospheric CO2 concentration during the last 420 thousand years, mea-
sured in the Vostok ice cores (Antarctica). δD is the ratio of deuterium to hydrogen in ice and gives a
proxy for air temperature over Antarctica. Global ice volume is based on benthic foraminiferal oxygen
isotope data from deep-sea sediment cores. It is plotted as relative sea level, so peak glacial times
appear as sea level minima. These results show that atmospheric CO2 was one of the earliest pa-
rameters to change at the end of glacial maxima, roughly in step with Southern Hemisphere warming
and preceding the decline in the Northern Hemisphere ice volume (Sigman and Boyle, 2000).

Several potential explanations have been proposed: changes in terrestrial carbon storage,

ocean temperature, ocean alkalinity and changes in the marine calcium carbonate budget

(Sigman and Boyle, 2000). However, none of these propositions seem to be sufficient to

explain the 80 to 100 p.p.m.v. difference in atmospheric CO2 concentration between

ice ages and interglacial periods. In 1982, Broecker hypothesized that a strengthened

biological pump during glacial times would be the main cause of the lower CO2 levels.

Changes in nitrate and phosphate concentrations would be at the origin of this increase.

Two mechanisms could enhance primary production and export flux to the deep ocean.

Nitrate and phosphate concentrations could have been increased in low- and mid-latitude

surface waters where the current low levels limit the fixation of dissolved inorganic carbon

for primary production of organic matter. Another mechanism, supported by Sigman and

Boyle (2000), involves a more complete consumption of nitrate and phosphate in high-

latitudes waters compared to the present.

A higher N2 fixation during glacial periods, due to an increased airborne iron supply

to the open ocean (Falkowski, 1997), and a decrease in water column denitrification

(Ganeshram et al., 1995) have been proposed as the causes of the increase of the oceanic

nitrate reservoir, which would have led to a greater export flux and potentially lower

CO2 levels during glacial periods. However, as phosphorus is considered to be a limiting
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nutrient on glacial/interglacial timescales, this hypothesis implies that marine organisms

must be able to deviate from the Redfield ratio (C:N:P = 106:16:1) to deal with the lack of

phosphorus compared to nitrogen.

In high-latitude oceans, the thermocline (that separates the upper mixed layer from the

deep waters below) is very shallow to non existent. The nutrient- and CO2-rich deep

waters brings nutrients and CO2 to the surface and return to the subsurface before all

nutrients are utilized by phytoplankton for production of organic matter. This incomplete

consumption of nutrients allows CO2 to be released in the atmosphere. Sigman and Boyle

(2000) hypothesized that changes in CO2 atmospheric levels during glacial times was the

result of an enhanced nutrient utilization in the Southern Ocean. This would be due to

an increase in carbon export (possibly to the input of iron from dust) and a decrease in

the exposure of deep waters at the surface (which would be the result of a northward

shift and decrease in strength of eastward winds). In their review of 2010, Sigman et al.

concluded that changes in efficiency of the biological carbon pump in the Southern Ocean

were an important factor of glacial/interglacial changes in atmospheric CO2.

Another explanation for a strengthened biological pump during ice ages involves diatoms.

These micro-algae, identified as key players of the biological pump, require silica for their

growth. Since the Southern Ocean is a hub for the global circulation, the dynamics of

silicic acid in the Southern Ocean can have important consequences in diatom dynamics

and thus on the biological pump and atmospheric CO2 levels (Dugdale and Wilkerson,

2001; Sarmiento et al., 2004; Benoiston et al., 2017). The potentially reduced Si:C uptake

ratio of siliceous producers during ice ages (Pichevin et al., 2009) under conditions of in-

creased iron availability from enhanced dust input, together with nutrient-rich upwelling

waters in the Southern Ocean (Sarmiento et al., 2004) may have supported diatom growth

and thus invigorated the biological pump.

1.4.2 The biological carbon pump in the Anthropocene

Since the beginning of the industrial era, humans disrupt the carbon cycle by burning

fossil fuels, manufacturing cement and changing land use (i.e. deforestation), which emit

CO2 in the atmosphere (figure 1.1, Ciais et al., 2013; Le Quere et al., 2009). The ocean

is the largest sink for anthropogenic CO2: between 20 and 40% of emitted CO2 has been

absorbed by the ocean during the last two centuries (Ciais et al., 2013; Khatiwala et al.,

2013; DeVries, 2014). As CO2 is a greenhouse gas, the remaining CO2 in the atmosphere

contributes to the global warming of the Earth. Besides, the dissolution of atmospheric

CO2 drives the ocean more acid (it creates H2CO3 that increases water’s acidity). How
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the biological pump will respond to these perturbations remains uncertain (Passow and

Carlson, 2012).

1.4.2.1 Global warming

Different scenarios were reviewed by Passow and Carlson (2012) and Turner (2015). One

possible consequence of ocean warming is an increased stratification of the ocean’s sur-

face layer. This may lead to a decreased input of nutrients from the deeper layers,

which would decrease primary production and carbon export, particularly in the trop-

ical and subtropical ocean (Bopp et al., 2001; Doney, 2006). This decrease in avail-

able nutrients could result in a shift in phytoplanktonic communities from diatoms to

coccolithophorids (Cermeño et al., 2008) or from diatoms to small microflagellates and

cyanobacteria (Falkowski and Oliver, 2007). Using niche models, Flombaum et al. (2013)

projected increases in cell numbers and in area of the cyanobacteria Prochlorococcus and

Synechococcus as a result of global warming by the end of the 21st century. Zooplank-

tonic communities could also be affected by the ocean warming: a shift from ecosystems

by large zooplankton towards communities dominated by microzooplankton may reduce

the export of particulate detrital food to depth (Smith et al., 2008). Warming could also

accelerate heterotrophic microbial decomposition, thus reducing carbon export efficiency

(Riebesell et al., 2009).

On the contrary, warming may also increase wind and/or storm frequency, which would

promote injection of nutrients from below and increase primary production (Peters, 2008).

Evidences of the ability of some diatoms to grow in stratified environments thanks to di-

verse strategies could also promote diatom blooms as observed in some environments

(Dore et al., 2008; Kemp and Villareal, 2013), which could enhance the biological pump.

In polar oceans, reductions in sea ice coverage may have implications on biological com-

munities and the biological pump. A decline in krill has been observed in the Southern

Ocean. They are replaced by salps that produce large and fast-sinking fecal pellets that

enhance export flux (Loeb et al., 1997). Enhanced formation of marine snow and other

organic aggregates may also be a result of warming. Both warming and acidification have

been found to increase TEP formation (Engel et al., 2004). As TEP favours aggregation of

particles, this could lead to faster sedimentation rates and greater export to depth (Egge

et al., 2009).
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1.4.2.2 Acidification

Contrary to enhanced TEP formation, a decrease in the ocean’s pH is expected to have a

positive feedback to global warming by reducing calcification of calcareous plankton, such

as coccolithophorids (e.g. Bach et al., 2012), thereby reducing the export flux. Ocean

acidification may also result in changes in the nitrogen cycle. They include increased

nitrogen fixation by cyanobacteria (Hutchins et al., 2009), greater denitrification rates

due to the expansion of suboxic habitats (Deutsch and Weber, 2012) and decreased

nitrification (Beman et al., 2011).

This review of possible outcomes of global warming and ocean acidification, although not

exhaustive, demonstrates that the responses of the biological carbon pump to climate

change are diverse and lean sometimes towards increased carbon flux, sometimes to-

wards decreased carbon flux. These contrasting results may be due to the fact that the

biological carbon pump is the result of multiple interacting parameters (e.g. tempera-

ture, nutrients availability, planktonic composition, and even pollution) that affect the

efficiency of carbon export, flux attenuation and sequestration, not to mention other an-

thropogenic perturbations such as pollution (e.g. Rochelle-Newall et al., 2008) that may

affect carbon fluxes.

1.5 Marine plankton

In sections 1.3 and 1.4, we reviewed the role of marine plankton in controlling the pro-

cesses of the biological carbon pump but their role is not limited to primary production,

remineralization and contribution to vertical carbon fluxes. Instead, they contribute to

most biogeochemical cycles (see section 1.5.2) and are at the basis of the oceanic trophic

chain. Most of them are invisible to the naked eye but they represent 95% of the to-

tal marine biomass. This highly diverse group of organisms is present in all aquatic

environments (e.g. marine, freshwater) and is of vital importance for these ecosystems.

1.5.1 Plankton diversity

The word "plankton" comes from the greek πλανκτός (planktós) meaning "to wander". It

designates organisms that are adrift on the currents. Plankton do not constitute a mono-

phyletic group (i.e. all planktonic lineages do not derive from the same direct common

ancestor). Plankton gather highly diverse organisms in terms of size (figure 1.13), mor-

phology, taxonomy, physiology and trophic strategies. They comprise viruses, bacteria,

archaea, protists (unicellular eukaryotes) and metazoa (i.e. multicellular eukaryotes, in-
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cluding eggs and larval stages). The size spectrum of these organisms ranges from the

tenth of a micrometer like viruses, to several meters, such as siphonophores and jelly-

fishes.

Figure 1.13 – Phytoplankton size’s diversity (Finkel et al., 2010).

Historically, plankton have been divided in phytoplankton and zooplankton. This par-

tition refers to distinct trophic strategies. Phytoplankton correspond to organisms that

are able to produce their own organic matter: they are photoautotrophic. In addition to

numerous unicellular eukaryotic lineages like diatoms, coccolithophorids and dinoflag-

ellates, phytoplankton also includes photosynthetic bacteria, such as cyanobacteria. All

these lineages combined are responsible for almost half of Earth’s primary production

(Falkowski et al., 1998). Zooplankton refers to heterotrophic organisms and are the main

consumers of phytoplankton. It includes members of metazoa but also protozoans. Some

of them spend their entire life in the water column (the holoplankton) while others are part

of plankton only as larvae (the meroplankton). The meroplankton leave its planktonic ex-

istence by growth or metamorphosis to belong to nekton or benthos. Finally, more and

more studies are showing since the last decades that the majority of planktonic eukary-

otic organisms are not strictly phototrophs or heterotrophs, but mixotrophs. Mixotrophy

is defined as the ability to combine the use of autotrophy and heterotrophy in a single

organism (Caron, 2016). This underestimated trophic strategy (Faure et al., 2019, see ap-

pendix A) exists in originally photosythetic organisms capable of phagotrophy (e.g. many

dinoflagellate lineages), but also in heterotrophic organisms that acquired the ability to

photosynthesize (through kleptoplasty or symbiosis with photosynthetic organisms).

1.5.2 Biogeochemical importance

As exemplified by the carbon cycle presented in section 1.1, elements cycles are the result

of continuous exchanges and interactions between biological and geological components.

Biological fluxes of elements essential to life (hydrogen, carbon, nitrogen, phosphorus,

oxygen and sulphur) are mainly catalyzed by microbes. For this reason, microbial life

is considered as the "engine that drives Earth’s biogeochemical cycles" (Falkowski et al.,

2008).
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Carbon forms the structure of all organic molecules on the planet, representing around

50% of dry biomass. The role of plankton in the carbon cycle is critical. Phytoplankton,

that lives in the euphotic zone of the ocean, use dissolved inorganic carbon to produce

organic matter through photosynthesis. Under favourable conditions (i.e. higher temper-

atures and day length, met in spring and summer), phytoplankton thrive and constitute

blooms as illustrated on figure 1.14. Oceanic photosynthesis produces half the oxygen we

breathe. Dissolved CO2 is also used by some micro-organisms to build their calcareous

shell, such as coccolithophorids. This newly produced biomass serves as the basis of

oceanic life as it is consumed by zooplankton and heterotrophic bacteria, thereby recy-

cling (i.e. remineralizing) essential nutrients (up to half of primary production is recycled

by bacteria through the microbial loop, Azam et al., 1983). The organic matter that es-

caped remineralization sinks to the depth and eventually reaches the ocean floor where

it can be stored on geological time scales (i.e. over millions of years). All these processes

are referred to as the biological carbon pump (see section 1.3).

Figure 1.14 – A phytoplankton bloom in the Barents Sea (marginal sea of the Arctic Ocean). This
satellite picture was taken on July 6, 2016 by the Moderate Resolution Imaging Spectroradiometer
(MODIS). The milky colour of this bloom suggests that it might be constituted of coccolithophores that
tend to thrive in the Barents Sea from July to September (NASA, 2016).

Another cycle in which microorganisms have important roles is the nitrogen cycle (figure

1.15). Together with phosphorus, nitrogen is an important constituent of biomass. Out-

side high-nutrient low-chlorophyll areas (HNLC, where chlorophyll a levels are lower than

expected given nitrate and phosphate concentrations), nitrogen is a limiting factor of pri-
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mary production. The largest pool of nitrogen is in the form of dinitrogen (N2). To be usable

by autotrophic plankton, N2 needs to be transformed into ammonium (NH4
+
) by N2-fixing

microorganisms (or diazotrophs), such as the filamentous cyanobacteria Trichodesmium

(Capone et al., 2005). However, most of the nitrogen required by phytoplankton is sup-

plied by the remineralization of organic matter by heterotrophic bacteria that releases

NH4
+
. This molecule can be directly assimilated but most of ammonium is thought to be

converted into nitrite (NO2
–
) and and then to nitrates (NO3

–
) through nitrification, each

step being performed by specialized groups of microorganisms. Among them, members

of Proteobacteria and archaea from the genus Thaumarchaeota were found to be major

players in oceanic ammonia oxidation (Francis et al., 2005). Finally, some microorgan-

isms can convert nitrite and nitrate back to N2 through denitrification. This process leads

to nitrogen loss and occurs in oxygen minimum zones (OMZ) that are predicted to expand

due to global warming (Stramma et al., 2008). In these regions, nitrogen loss can also

occur through anammox, which is the anaerobic oxidation of NH4
+

to N2 (Kuypers et al.,

2003).

Figure 1.15 – The nitrogen cycle in the ocean (Sarmiento and Gruber, 2006).

Two other cycles worth mentioning are those of phosphorus and iron. Microorganisms

actively participate to the phosphorus cycle. In some environments, phosphorus is a
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limiting nutrient for primary production. The main source of phosphorus in the ocean

is river runoff. Once dissolved in seawater, it is incorporated in organic material by

phytoplankton. Microorganisms are the main actors of the remineralization of organic

phosphorus compounds. Unlike phosphorus, the largest external source of iron for the

ocean is from aeolian dust deposition. This micronutrient is important in regulating ocean

primary productivity. In HNLC regions, iron is the limiting factor for primary production.

The role of iron is crucial for photosynthesis, respiration and nitrogen fixation as it acts

as a co-factor of many cellular enzymes.

1.6 The Tara Oceans expeditions

1.6.1 Objectives

Since the Challenger expedition (1872–1876) that laid the foundations of modern oceanog-

raphy and led to the description of planktonic forms by the German naturalist Ernst

Haeckel, many expeditions allowed scientists to decipher marine ecosystems. Recently,

the Global Ocean Survey (2003-2010) launched by Craig Venter aboard the Sorcerer II

showed that large environemental sampling coupled with new molecular technologies

could improve our knowledge on marine microbial diversity (Venter et al., 2004). Later,

the Malaspina expedition (2010-2011) explored microbial biodiversity in the deep ocean

(Duarte, 2015).

Inspired by the voyage of the Beagle described by Charles Darwin in 1839, the Tara

Oceans expeditions were initiated by Eric Karsenti, then director of the cellular biology and

biophysics department of the EMBL (European Molecular Biology Laboratory). The goal

of the project was to understand the spatio-temporal structure of planktonic ecosystems

and coral reefs on a global scale (Karsenti and Di Meo, 2012). Important efforts were also

made to raise awareness amongst general public, especially children, in all countries Tara

visited.

1.6.2 Sampling methods

The Tara Oceans circumglobal expedition (2009-2013) travelled across the oceans to

collect a wide variety of organisms spanning five orders of magnitude (from viruses to

metazoans) and measure associated environmental data (Karsenti et al., 2011). The

sampling route went through the Mediterranean and Red Seas, the Indian Ocean, South

Atlantic, Antarctic and Pacific, and came back through North Pacific and North Atlantic.

The last part of the voyage consisted in a circumnavigation of the Arctic ocean (figure
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1.16). In total, 210 stations were sampled in 20 biogeographic provinces, collecting

around 40,000 samples (Pesant et al., 2015).

Equator

NORTH
PACIFIC
OCEAN

Figure 1.16 – Sampling route and stations of the Tara Oceans Expeditions that crossed the oceans
between 2009 and 2013 (Pesant et al., 2015).

Plankton was collected from three depths. In the ocean’s surface (∼0-200 m), it was

collected between 3 and 7 meters below the surface (these samples were labelled "SUR"

or "SRF") and in the deep chlorophyll maximum ("DCM") which was determined with a

chlorophyll fluorometer. Depending on the stations, plankton was also sampled in the

mesopelagic zone (∼200-1000 m), labelled "MES"
5
. Various sampling methods were used

to capture the diversity of plankton, including Niskin bottles and plankton net tows (fig-

ure 1.17A and Pesant et al., 2015). Organisms were separated into 10 fractions, ranging

from <0.2 µm for viruses to 2,000 µm for large unicellular eukaryotes and metazoans.

Prokaryotes ((eu)bacteria and archaea), that are the subject of the research work pre-

sented in chapters 3 and 4, were collected in the 0.2-1.6 µm (up to station #52) and 0.2-3

µm (from station #56) size fractions (figure 1.17A and B) (Alberti et al., 2017).

1.6.3 Subsequent analyses and results

Following the sampling, high throughput quantitative imaging and sequencing were per-

formed. Imaging instruments included on-board and on-land FlowCams and ZooScans,

5
The research work presented in chapters 3 and 4 focused on SRF and DCM samples.
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Figure 1.17 – Philosophy of The Tara Oceans project (from sampling to analyses). (A) Methods for
sampling organisms by size classes and abundance. The blue background indicates the filtered
volume required to obtain sufficient organism numbers for analysis. (B) Methods for analyzing
samples. Data on the right are from Tara Oceans sampling stations. (C) Models that will benefit
from Tara Oceans data. High throughput genome sequencing and quantitative image analysis
provide evolution, metabolic, and interaction data to build community metabolome maps, taxa/gene
networks, and spatial ecosystem models (Karsenti et al., 2011).

flow cytometry, light sheet, confocal and electron microscopes (figure 1.17B). High through-

put sequencing was performed at the Genoscope (integrated in the French Alternative En-

ergies and Atomic Energy Commission). The sequencing strategy relied on metabarcoding,

metagenomic, single-cell genomic and metatranscriptomic approaches (figure 1.17B). De-

tailed sequencing methods are described in Alberti et al. (2017). Data derived from these
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analyses led to major publications (e.g. Sunagawa et al., 2015; Lima-Mendez et al., 2015;

Vargas et al., 2015; Brum et al., 2015; Guidi et al., 2016; Vincent et al., 2018) that

revealed the unexplored marine microbial diversity. All domains of life (viruses, prokary-

otes and eukaryotes) were investigated, giving insights into biodiversity, biogeographic

patterns and environmental drivers of planktonic communities. The complex ecological

interplay between microorganisms was also investigated through taxa network analysis

(figure 1.17C) that showed that associations within plankton are not randomly distributed

and abiotic factors are incomplete predictors of planktonic community structure (Lima-

Mendez et al., 2015).

1.7 Research questions and thesis outline

In this general introduction, we reviewed the role of plankton in biogeochemical cycles.

In particular, we highlighted their influence on the ocean biological carbon pump. For

millions of years, the biological carbon pump appears to have had a substantial effect

on the Earth’s climate. Today, the ocean buffers the CO2 anthropogenic emissions, a

process in which plankton is actively involved by sequestering a part of it in the deep

ocean. Decades of research on the biological pump pointed out major contributors to

this phenomena such as diatoms and copepods. However, processes of the biological

carbon pump are rather the result of intricate planktonic relationships, which are still

poorly understood. Besides, the rapidly changing ocean may strongly impact these re-

lationships and plankton biodiversity, abundance and biogeography. The application of

environmental omics to the study of these problems is currently expanding our knowledge

in these areas. Consequently, the following research questions have driven the analyses

presented in chapters 2, 3 and 4:

1. How can environmental omics (meta-omics) improve our knowledge on the ecological

and biogeochemical functions of marine microbes, particularly diatoms because of

their large contribution to primary production and carbon export?

2. How can primary production, carbon export and flux attenuation processes be in-

tegrated to revisit the study of the biological carbon pump?

3. Are these processes characterized by distinct microbial association networks?

4. Can the health state of the biological carbon pump be predicted by meta-omics?

Attempts to answer this questions are presented in the following chapters:
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Chapter 2 is a reprint of the review article "The evolution of diatoms and their biogeo-

chemical functions" published in Philosophical Transactions of the Royal Society B on

which I am co-first author. Diatoms are key players in primary production and export of

carbon and silica. This review highlighted the benefit of omics to study of the origin, evo-

lution and diversification of diatoms, but also to reveal their ecological and biogeochemical

functions.

Chapter 3 is composed of a presentation of microbial association networks and of a

draft manuscript that will be submitted to The ISME Journal. In this draft manuscript,

we continued the work of Guidi et al. (2016) by defining a new framework to study the

biological carbon pump, including the three processes inherent in this phenomenon:

primary production, carbon export and flux attenuation. Basically, we defined states

of the biological carbon pump, corresponding to situations where one of the processes

is dominant compared to the others. Beyond the simple compositional analysis of the

samples studied, interactions within prokaryotic plankton communities were explored

to test whether the states are characterized by differing microbial association networks.

Overall, results suggest that the states are defined by contrasting microbial associations

rather than microbial composition.

Chapter 4 presents an overview of machine learning techniques followed by a draft

manuscript in which we assessed whether environmental genomics can be used to predict

the state of the biological carbon pump and to highlight environmental biomarkers. We

tested this hypothesis with random forests using prokaryotic metabarcoding data. Glob-

ally, although the classification error rate of the samples included in the analysis is high,

we show that, on condition that improvements are added to our model, random forests

can be a useful tool to identify biomarkers of the state of the biological carbon pump.

Chapter 5 concludes with a discussion of the assumptions and shortcomings of the

methods used in this thesis (i.e. microbial networks inference and machine learning) and

lays out perspectives for the study of microbial interactions and their involvement in the

carbon cycle.

50



Chapter 2

Contribution of diatoms to the carbon cycle

This chapter is a reprint of a Philosophical Transactions of the Royal Society B article on

which I am co-first author.

This review, which was part of the themed issue "The peculiar carbon metabolism in di-

atoms", presented the evolution and contribution to biogeochemical cycles of a group of

eukaryotic microalgae, the diatoms. Indeed, diatoms are key players in primary produc-

tion and export of carbon and silica. They thrive in upwelling regions at high latitudes

and their silicified cell wall serves as a ballast that makes them important contributors

to export production. This review highlighted the benefit of genomics to the study of the

origin, evolution and diversification of diatoms, but also to reveal their ecological and

biogeochemical functions.

I was in charge of producing figure 1 on the major evolutionary and biogeochemical events

during the history of life on Earth and figure 2 on the biological carbon pump. I did the

bibliography research, extracted data, designed and produced the figures.

2.1 Article 1 (Benoiston et al. 2017): The evolution of diatoms

and their biogeochemical functions
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In contemporary oceans diatoms are an important group of eukaryotic

phytoplankton that typically dominate in upwelling regions and at high

latitudes. They also make significant contributions to sporadic blooms that

often occur in springtime. Recent surveys have revealed global information

about their abundance and diversity, as well as their contributions to biogeo-

chemical cycles, both as primary producers of organic material and as

conduits facilitating the export of carbon and silicon to the ocean interior.

Sequencing of diatom genomes is revealing the evolutionary underpinnings

of their ecological success by examination of their gene repertoires and the

mechanisms they use to adapt to environmental changes. The rise of the

diatoms over the last hundred million years is similarly being explored

through analysis of microfossils and biomarkers that can be traced through

geological time, as well as their contributions to seafloor sediments and fossil

fuel reserves. The current review aims to synthesize current information

about the evolution and biogeochemical functions of diatoms as they rose

to prominence in the global ocean.

This article is part of the themed issue ‘The peculiar carbon metabolism

in diatoms’.

1. Introduction
Microscopic photosynthetic plankton (phytoplankton) provide the organic

biomass on which almost all ocean life depends and fuel a range of essential bio-

geochemical processes, ranging from the generation of oxygen, the recycling of

elemental nutrients, and the removal of carbon dioxide from the atmosphere.

They are responsible for around 45% of global primary production and yet

represent only 1% of Earth’s photosynthetic biomass [1], due to their rapid pro-

liferation times and because all cells are photosynthetically active, unlike

multicellular plants. Our appreciation of the roles of these microscopic organisms

in the ocean has been transformed over the last decades by improved methods

to explore the chequered history of life on Earth and by new DNA sequencing

technologies. Scientists are using these resources to address the feedbacks

between plankton and the climate system, because planktonic organisms can

both influence climate and be affected by climate change [2]. As a major com-

ponent of plankton communities in today’s oceans diatoms are now key to

their functioning, yet they rose to prominence only quite recently. Through photo-

synthesis they provide large amounts of organic material that sustains marine

ecosystems as well as contributing to Earth’s carbon cycle, and play major roles

in the biogeochemical cycling of other nutrients such as nitrogen and silicon

[3–5]. Their evolution can be traced back to the origin of photosynthesis.

& 2017 The Author(s) Published by the Royal Society. All rights reserved.
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2. Photosynthesis as the engine of life
Oxygenic photosynthesis is arguably the most important pro-

cess in nature. It boosted the remarkable history of life on

Earth following its appearance at least 2.4 billion years ago

[6] (figure 1a). In spite of its early evolution it represents

the most complex energy transduction system known; its

water oxidizing machine has no analogues elsewhere and

its functioning is still poorly understood [16]. The oxidizing

or ‘splitting’ of water was made possible by the coupling of

two photosystems that enabled oxygenic photosynthetic bac-

teria to use light energy to generate oxygen from water and

reducing power in the form of NADPH. The oxygen gener-

ated from the process subsequently accumulated in the

atmosphere and is one of Earth’s distinguishing features,

because molecular oxygen is extremely rare in the Universe

[17]. The utilization of light energy to split water in oxygenic

photosynthesis also allows the fixation of CO2 into organic

matter that fuels the food chain.

Oxygenic photosynthesis first evolved in the cyanobac-

teria, which remain the only prokaryotes capable of

performing it. Oxygen initially began to accumulate only

slowly in the atmosphere because it was first consumed in

oxidation reactions with abundant compounds that con-

tained reduced forms of iron, sulfur, carbon, nitrogen, and

other abundant materials, and because it was consumed in

the biological process of respiration, which evolved after

photosynthesis [8].

Following the evolution of oxygenic cyanobacteria it took

around 2 billion years before complex multicellular animal

life evolved (figure 1a). During this time, eukaryotic organ-

isms appeared bearing the first mitochondria derived from

the endosymbiosis of a proteobacterium in an Archaean-like

cell, in which respiratory processes could occur [18]. Unam-

biguous fossils of eukaryotes have been found in shales as

old as 1.65–1.85 billion years [19]. Subsequently, chloroplasts

evolved following the invasion or engulfment of a cyanobac-

terium into the prototypic eukaryote. Photosynthetic

eukaryotes are considered to have evolved around 1.2 billion

years ago [12] although the forms that dominate today’s

ocean are predominantly derived from additional or ‘second-

ary’ endosymbiotic events in which eukaryotic green or red

algae were incorporated a second time into a eukaryotic cell

[20]. The timing of these events is not well resolved but it cer-

tainly happened prior to the appearance of multicellular

lifeforms during the Cambrian explosion and preceded a

major increase in atmospheric oxygen to levels similar to

those found today, from around 1–5% to about 20%

(figure 1a). The reason why the rise of photosynthetic eukar-

yotes stimulated such a dramatic increase in oxygen may be a

consequence of carbon export to the seafloor, because their

larger cells were more strongly ballasted and therefore more

likely to sink than cyanobacteria [2] (figure 2). The conse-

quent burial of carbon sequestered it away from the carbon

cycle and so it could not be remineralized back to CO2 by oxi-

dative respiration. Alternatively (or additionally),

photosynthetic activity may have increased significantly fol-

lowing the evolution of extensive planktonic ecosystems,

e.g. fuelled by increased nutrient availability during this

period. Regardless of the cause, atmospheric CO2 levels

dropped significantly during this period, which may have

contributed to one or more of the Snowball Earth events

that have been documented to have occurred [13]

(figure 1a,b), because CO2 is a powerful greenhouse gas. Fur-

thermore, the increase in molecular oxygen was probably

instrumental in permitting multicellular life to evolve

during more temperate periods because it allowed the devel-

opment of more complex organisms less constrained by

oxygen acquisition from a low oxygen environment.

Atmospheric oxygen concentrations have remained rela-

tively stable at around 20% since the early Cambrian

period. The emergence of land plants during the Devonian

around 400 million years ago (Ma) likely led however to a

further large increase in oxygen concomitant with CO2 draw-

down from the atmosphere (figure 1b) [23]. Although it did

not persist, the elevated oxygen concentrations may have

led to the evolution of giant insects and other large animals.

Atmospheric oxygen in today’s world, while being similar to

concentrations prior to the evolution of land plants, is now

likely to be maintained principally by terrestrial plants that

release oxygen directly to the atmosphere rather than by

photosynthetic plankton because the oxygen generated

within the water column is likely to be consumed by other

organisms rather than being outgassed [24,25]. The release

of biogenic oxygen from the ocean may nonetheless be sig-

nificant in some regions and is likely to be sensitive to

temperature changes [26].

The detailed analysis of the geological record left by dead

eukaryotic plankton sinking to the seafloor over the last hun-

dreds of millions of years, either based on biomarker

molecules or microfossils, has revealed their history during

major Earth transitions [27]. By likely underpinning the rise

of oxygen that led to the evolution of multicellular organ-

isms, they may have promoted the development of ever

more complex lifeforms, not only in the ocean, but also on

land as well. Besides the process of photosynthesis, the

later appearance of calcification and silicification in some

phytoplanktonic organisms (e.g. in coccolithophorids and

diatoms, respectively), in addition to more ancient organisms

such as foraminifers and radiolarians, permitted the precipi-

tation of hard materials to the ocean interior, as well as

organic carbon (figure 1a,b). A rich amount of data from

microfossils, biomarkers, and molecular clocks using con-

served marker genes indicate that these processes appeared

in photosynthetic organisms around 200 Ma and permitted

atmospheric CO2 to be further sequestered into the deep

ocean in the form of organic carbon and calcium carbonate,

which over time contributed to the formation of sedimentary

rocks such as limestones and cherts, as well as our oil and gas

reserves [12,28–30] (figures 1 and 2). This, together with

increased weathering and changes in ocean circulation, is

believed to have initiated a period of declining atmospheric

CO2 concentrations, contributing to the switch from a green-

house climate in the Mesozoic to an icehouse climate in the

Cenozoic [31]. The concomitant increase in atmospheric O2

(figure 1a,b) almost certainly contributed to the evolution of

large animals, including placental mammals that have very

high metabolic demands [29,32,33].

3. The rise of the diatoms
The composition of eukaryotic phytoplankton in the modern

ocean is dominated by diatoms, dinoflagellates and cocco-

lithophores [12]. Through photosynthesis and calcification

these organisms make a small but significant contribution
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(probably around 10%) to the regulation of the partial

pressure of carbon dioxide in the upper ocean [34,35]. The

other 90% of oceanic carbon is derived from the physico-

chemically regulated solubility of CO2, which generates

carbonate ions in the upper ocean [36]. The biological draw-

down of atmospheric CO2 through the activity of

photosynthetic organisms in the ocean is known as the

biological carbon pump which results in the generation of
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Figure 1. Major evolutionary and biogeochemical events during the history of life on Earth. (a) Trends since the evolution of oxygenic photosynthesis, (b) trends
during the last 800 million years, and (c) diatom diversity and abundance data with respect to Pangaea rifting during the last 260 million years. Atmospheric O2 was
modified from Holland [7] according to Lyons et al. [8]; it is compared to d13C of carbonates [9], fraction of buried organic carbon [9], atmospheric CO2 [10], diatom
diversity [11] and C28/C29 sterane ratios [12], which is a geochemical proxy for diatom abundance. Snowball Earth events are shown in light blue and were taken
from Hoffman and Kopp et al. [13,14]. Pangaea rifting is illustrated with maps taken from the PALEOMAP Project [15]. The grey ranges on the plots represent the
estimated span of the events cited in the text. Note that because the oldest direct measurements of atmospheric O2 come from Pleistocene ice cores, all the detail in
the Phanerozoic curve is based on models. Prior to that we have represented the views of Lyons et al. [8]: no stable O2 trends before the Great Oxidation Event,
some atmospheric O2 (1 – 5%) through most of the Proterozoic, and then a rise to more or less modern values from the Ediacaran to the Silurian. The case is strong
that pO2 during the Carboniferous was higher than today’s, but other details in the Phanerozoic curve are conjectural.
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organic matter that can be consumed by other organisms, as

well as calcium carbonate (figure 2). The biological carbon

pump exports approximately 5–12 PgC yr21 from the sur-

face to the mesopelagic layer, from which approximately

0.2 PgC yr21 is stored in sediment for millennia [34,35],

thus contributing to the vertical gradient of carbon in the

ocean. The process also results in biological feedback on

atmospheric CO2 and thus the Earth’s climate [37,38]. This

structuring of the carbon cycle in the ocean appears to

have been established as the three phytoplankton groups

rose to prominence in the Mesozoic Era, perhaps as a conse-

quence of the availability of ecological space populated

previously by taxa that did not survive the Permian–

Triassic mass extinction event, which was Earth’s most

severe extinction event (resulting in the loss of around

96% of all marine species) [39].
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Figure 2. The biological carbon pump in the ocean. (a) Inorganic atmospheric carbon (CO2) is transformed into organic carbon by phytoplankton in the euphotic
zone. This carbon is then grazed on by heterotrophic organisms. A fraction of it is exported out of the surface layer as particulate organic carbon (such as dead
organic material, faecal pellets produced by the zooplankton and aggregates of these materials) that sinks in the water column. Two other major processes help with
the transfer of carbon below the surface layer: physical mixing of dissolved organic material (DOM) and transport by zooplankton vertical migration. (b) Different
processes that can affect the decrease in the flux of particles in the ocean (adapted from [21]). The dimensions of the different areas represent the relative impor-
tance of phytoplankton fractions or rates of processes. The variation of the estimated flux with depth was modelled by fitting the Martin power relationship [22].
Carbon export is influenced by the phytoplankton composition in the euphotic zone: export is high when microphytoplankton (including diatoms) dominate the
plankton community in the euphotic zone, while low export values correspond to systems dominated by picophytoplankton. Ze ¼ depth of the euphotic zone. Note
that depth, organisms and particle sizes are not to scale.
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The fossil record left behind by the elaborate siliceous

shells of diatoms indicates that they remained minor com-

ponents in the ocean until the Cretaceous [31,40], when the

supercontinent Pangaea began to break apart into the conti-

nents we know today and the major ocean basins were

formed (figure 1c). As well as creating more space in

marine ecosystems, the rifting of Pangaea was accompanied

by the delivery of more nutrients to the oceans because it

was concomitant with continental elevation. The increase in

nutrients favoured the selection of large-celled phytoplank-

ton that lived along the continental margins such as

diatoms [31,41–43]. Following the mass extinction event at

the Cretaceous/Paleogene boundary (65 Ma), the diatoms

continued to expand and further populate the oceans.

In contrast to dinoflagellates and coccolithophores, diatom

diversity continued to increase through the Cenozoic; in par-

ticular two pulses of diversification occurred at the Eocene/

Oligocene boundary interval (33.9 Ma) and the middle to

late Miocene (5–20 Ma) [44] (figure 1c). Environmental

changes such as sea-level rise, silicate bioavailability, preda-

tion, ocean chemistry, increased latitudinal thermal

gradients and circulation all likely played a role in driving

such diversification [31,41,42]. As one case in point, corre-

lations between increased diatom abundance and carbon

export to the deep ocean with reductions in atmospheric

CO2 and reduced temperatures during the opening of the

Drake Passage between 19 and 49 Ma suggest that the result-

ing Antarctic Circumpolar Current may have generated a

highly favourable environment for diatom proliferation in

the Southern Ocean, that today is still characterized by

diatom-rich plankton communities [45,46].

Diatoms today are found throughout the world’s oceans,

wherever there is sufficient light and nutrients (figure 3).

They typically dominate well-mixed coastal and upwelling

regions, where the organic carbon they generate supports

productive fisheries such as in the Peruvian and Benguela

upwelling systems. They appear well adapted to surviving

long periods of nutrient and light limitation and often dom-

inate oceanic spring blooms because they can divide more

rapidly than other phytoplankton when conditions become

favourable for growth, at least as long as silicon is not limit-

ing [50]. They also dominate at high latitudes and in polar

environments, in particular along the sea-ice edge where

other photosynthetic organisms are rare, making the Arctic

and Southern Ocean ecosystems especially dependent on

them [3,4] (figure 3). Their importance for the biogeochemis-

try of these regions over geological time periods is evidenced

by the enormous deposits of siliceous mud and oozes more

than 1 km thick in places [47] (figure 3a). The rise of diatoms

in the last few millions of years is accompanied by the estab-

lishment of the main petroleum source rocks, derived from

carbon export. The often spatial coincidence of silica and

fossil fuels, together with the worldwide survey of bio-

markers (such as 24-norcholestane or C28-C29 steranes) in

sediments and source rocks, indicate a crucial role of diatoms

in the formation of today’s reserves [44]. Moreover, several

petroleum basins overlap with regions where diatoms

thrive, such as oceanic coastal environments and the Arctic

Ocean [51]. Although previous assessments suggest that pet-

roleum source rocks are relatively low in abundance in the

Southern Ocean [52], this region may hold significant

resources as well.

4. Diatom evolution through the lens of
genomics

While sedimentary rocks and the biomarkers within them

provide a coarse-grained record of the intertwined histories

of life, geology and climate, the evolutionary trajectories of

different organisms can best be found by finding remnants

of them in their genome sequences (for example, see [53]).

Already prior to the advent of genome sequencing, bio-

chemical and ultrastructural data had provided persuasive

evidence that diatoms were derived from a secondary endo-

symbiotic event involving a red alga that had occurred

sometime between 1200 and 700 Ma (figures 1a and 4) and

that was common to all stramenopiles, the phylum in

which diatoms sit, as well as the chromalveolate supergroup

of eukaryotes that includes dinoflagellates and coccolitho-

phores [55–57]. The diatom genome sequences analysed to

date do provide support for a red algal endosymbiont

[58,59], but the abundance of genes apparently derived

from a green algal source has led to the controversial hypoth-

esis that a green algal endosymbiont preceded the red alga

and that many of its genes were retained prior to the arrival

seafloor diatom ooze siliceous mud
mixed calcareous/siliceous ooze

Tara Oceans
10 20 30

10 20 30others
0 20 40

mmol C/m2
60 80100

(a) (b)

Figure 3. Extent of diatom-rich sediments compared with the distribution of modern diatoms in the ocean. Biosiliceous oozes are present in regions that, still today,
are largely dominated by diatoms, in particular the Southern Ocean. (a) Small dots represent seafloor sediment samples defined as containing predominantly diatom
ooze, siliceous mud, mixed calcareous/siliceous ooze, or others. Circles of varying size and blue colour correspond to diatom relative abundances determined by the
Tara Oceans survey (modified from Dutkiewicz et al. and Malviya et al. [47,48]). (b) Water column inventory of diatom biomass (mmol C/m2) from a biogeochemical/
ecosystem simulation (modified version of Dutkiewicz et al. [49]).
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of the red alga, whereas the red algal genes that were acquired

later were not [60,61] (figure 4). In such a scenario, diatoms

(and other photosynthetic chromalveolates) bear red algal-

derived chloroplasts driven to a significant extent by green

algal genes encoded in the nucleus, which may have provided

a selective advantage in ocean environments and thus underlie

why such organisms have come to dominate in the

ocean whereas photosynthetic organisms harbouring green

algal-derived plastids dominate terrestrial habitats [62,63].

An additional feature is the presence of several hundreds

of bacterial genes scattered throughout diatom genomes [59],

representing around 5% of total gene content. Many such

genes appear to have ancient origins because they are

shared among several diatoms, and encode functions essen-

tial for diatom biology [3]. Diatom-specific transposable

elements additionally appear to have been instrumental

in generating the rich diversity of species found today

[3,64] (figure 4).

The chimeric nature of diatom genomes has brought

together unique combinations of genes that collectively

encode non-canonical pathways of nutrient assimilation and

metabolite management, including for a urea cycle that is

integral to nitrogen metabolism [65], and a novel configur-

ation coupling photosynthesis and respiration between

diatom chloroplasts and mitochondria [66]. The combined

findings have profound and unanticipated implications for

our understanding of the role of diatoms in biogeochemical

cycles, and highlight the utility of genome sequences for

revealing an organisms’ metabolic potential. Diatom genomes

have furthermore been found to encode large numbers

of cyclins [67], key regulators of cell division, that may

underlie their impressive proliferative capacity during oceanic

blooms, as well as specialized stress-responsive light-harvesting

chlorophyll-binding proteins that may be of particular

importance for survival in polar-adapted diatoms [68,69].

The peculiarities of the diatom toolbox used to manage

silicon metabolism and to generate their silicified cell walls

are also being revealed (e.g. [70]), and it is emerging that

such processes are deeply integrated within diatom primary

metabolism, e.g. for the generation of frustule-localized

long chain polyamines as offshoots of the urea cycle

[65,71,72]. Notwithstanding, genomics has yet to reveal any-

thing about what ecological or physiological advantages are

associated with frustule biogenesis.

The extension of findings from genomics to natural

environments will likely reveal further innovations [73].

Evidence is already emerging that some diatoms may have

evolved permanent genome-level adaptations to certain con-

ditions (e.g. related to iron bioavailability [74]) whereas

others have retained the ability to acclimate to a wider

range of conditions through more flexible responses at the

transcriptional level [75]. The recent evaluation of the impor-

tance of epigenetic processes mediated at the level of DNA

methylation or chromatin structural changes [76,77] will

reveal whether diatoms have retained or acquired other

features from their ancestors that permit additional opportu-

nities for responding to a fluctuating environment over

shorter timescales than are operative over macroevolutionary

timescales [78].

5. Diatoms in the contemporary oceans
For decades, morphological studies have revealed diatoms to

be one of the most ecologically important groups of phyto-

plankton in the modern oceans and one of the largest

components of marine biomass [30,79,80]. More recent

environmental omics studies have confirmed this. In particu-

lar, in the metabarcoding survey based on the V9

hypervariable region of 18S rDNA performed as part of the

Tara Oceans global plankton sampling campaign, diatoms

are the most abundant group of obligate photosynthetic

eukaryotes and the fifth most abundant group of marine

eukaryotes [48,81]. Moreover, in some Antarctic stations

they represent more than 25% of the sequenced metabar-

codes. Metabarcoding studies have allowed a refinement of

the diversity estimation and the biogeographic distribution

of diatoms even at the genus and species level. Meanwhile,

metagenomics and metatranscriptomics data (unpublished

results from the Tara Oceans consortium) will deepen our

knowledge about the role of diatoms in the modern ocean.

autotrophic green
algal ancestor

(endosymbiont)
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(endosymbiont)
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Figure 4. Diatom evolution through the lens of genomics. Major events
during the evolution of diatoms from secondary endosymbionts are shown,
together with approximate dates. TE, transposable element. The estimated
time of separation between pennate and centric diatoms at around 70 million
years (70 Ma) is based on Chacón-Baca et al. [54]. Figure modified from
Bowler et al. [3].
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In terms of their biogeochemical roles, diatoms are believed

to be the principal contributors of primary production and

carbon export among all photosynthetic organisms in the

modern oceans, in particular because of their dominance in

highly productive regions [1,5]. Estimates based on time-

series of surface chlorophyll from the SeaWiFS Project indicate

that microphytoplankton (mostly diatoms) may contribute up

to 70% of the net primary production in coastal upwelling sys-

tems and 50% in temperate and sub-polar regions during the

spring-summer seasons [82]. Overall, diatoms are estimated

to contribute around 40% of the total primary production in

the oceans, and therefore around one fifth of all the photosyn-

thesis on Earth, similar to all terrestrial rainforests combined

[1]. Similarly, both carbon export and remineralisation vari-

ations at global scale seem to be partially explained by the

phytoplankton community where diatoms and their resting

spores may play critical roles [21,83,84]. Diatoms are also a

key component in the biogeochemical cycling of silicon

(reviewed extensively in [85]).

The combination of genomics data collected during the

Tara Oceans expedition with ancillary environmental data

allows a new framework, summarized in figure 5, to pinpoint

the importance of individual planktonic groups in specific pro-

cesses, in a holistic context of the entire plankton communities

that they are part of. Such network-based methods have

already been used to disentangle the key players in euphotic

zone communities related to carbon export to deeper layers

in the oligotrophic ocean [83] (figure 5). Regression-based ana-

lyses on the entire eukaryotic metabarcoding dataset currently

available from Tara Oceans [81] reveal the dominant roles of

diatoms in contributing to net primary production and

carbon export, in particular in areas characterized by low temp-

eratures, high oxygen and nutrient concentrations (figure 6). It

should therefore be possible to test the robustness of these

results by bioinformatic analysis and to further disentangle

the roles of diatoms in marine ecosystems using more extended

datasets. Such studies could also be performed in the context

of different climate simulations to better understand how

diatoms affect the carbon cycle and climate regulation.

6. Perspectives
Incontrovertible evidence shows that the Earth’s climate has

begun to change markedly over the last decades as a
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consequence of CO2 released into the atmosphere from the

burning of fossil fuels. The overprint of human activities

on Earth’s biogeochemical cycles is evident from the

simple fact that we are currently burning the equivalent of

around 1 million years of buried carbon derived from

diatoms and other plankton each year [2]. While we can be

confident that the oceans will continue for some time to

be the major sink absorbing excess heat and CO2, and will

consequently warm, acidify, and deoxygenate in the coming

centuries [87,88], we have no consistent view about how the

life support system of the oceans, the plankton, will fare.

Regarding diatoms, we can expect shifts in several aspects

of diatom diversity and biogeography, which could not

only affect biogeochemical cycles but may also pose a chal-

lenge for the functioning of marine food webs, in which

diatoms are intensely grazed. Given the rise of diatoms to

global importance in marine ecosystems over the last tens of

millions of years it is crucial that future research addresses

their capabilities to adapt to changing environments,

both by investigation of the geological record and by the

exploration of diatom genomes.
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Figure 6. Diatoms and their role in the biological carbon pump as revealed by high-throughput DNA sequence-based datasets. Eukaryotic lineages associated to
environmental parameters assessed by standard methods for regression-based modelling (sPLS analysis). Correlations between lineages and environmental par-
ameters are depicted as a clustered heat map. This plot has been created using the Tara Oceans metabarcoding dataset ( providing an abundance matrix
based on 18s rDNA ribotypes (V9 region) from oligotrophic stations as well as a few Southern Ocean stations [48,81] and the associated environmental parameters
[86]. With respect to other eukaryotic lineages, diatoms (Bacillariophyta) show significant correlations with NPP and chlorophyll, and the highest positive correlation
to carbon flux (more than 0.46), supporting the hypothesis that diatoms play a major role in the biological carbon pump at a global scale.
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Chapter 3

Revisiting the study of the biological carbon

pump through the use of microbial association

networks

The goal of this chapter is to investigate with new eyes the biological carbon pump by

defining biogeochemical states from net primary production, carbon export and flux at-

tenuation estimates, and building microbial association networks for each of these states.

The chapter consists in a presentation of the usual steps to infer microbial networks

and the potentially relevant network properties for the analysis of microbial association

networks.

This introduction is followed by a draft manuscript of a work in collaboration with my

supervisors (Lucie Bittner and Lionel Guidi) and colleagues from the Laboratoire des Sci-

ences du Numérique de Nantes (LS2N), Damien Eveillard, Samuel Chaffron and Erwan

Delage. The study consisted in (1) delineating biogeochemical states of the biological car-

bon pump, (2) analyzing their taxonomic composition, (3) inferring microbial association

networks for these states and (4) comparing the networks properties. The main body of

the article is supplemented by additional figures and tables.

3.1 Introduction to microbial association networks

Biodiversity research often focused on species richness and neglected interactions or as-

sumed that they were homogeneously distributed (Bascompte, 2009). However, from the

macro to the microbial world, organisms are engaged in various types of relationships.

Therefore, it becomes necessary to take into account the patterns of interactions between

them rather than the list of species composing the community (Bascompte, 2009). As

63



Chapter 3. Revisiting the study of the biological carbon pump through the use of microbial association

networks

presented in chapter 1, microorganisms are of great importance for biogeochemical cycles

(Falkowski et al., 2008) which require the cooperation of billions of them, forming a highly

complicated and intricate system. Despite this importance, microorganisms and their in-

teractions have often been overlooked, mainly because of the difficulty to identify them

(between 85 and 99% of bacteria and archaea cannot be cultured in the lab, Vacher et al.,

2016). Microbial interactions have long been identified using co-culture experiments (e.g.

Long and Azam, 2001; Long et al., 2005, 2013; Sher et al., 2011; Biller et al., 2014), which

are time-consuming and tedious tasks. Moreover, they introduce biases inherent in labo-

ratory techniques (i.e. number of actors, representativeness of the natural environment),

making difficult the extrapolation of the results to natural conditions. For these reasons,

many scientists have chosen to use environmental DNA to identify microbial lineages and

their interactions (although other techniques may reveal in situ associations, e.g. Lepère

et al., 2016). The advent of high-throughput sequencing and associated bioinformatic

pipelines has revolutionized the identification of microbial communities in the last 10

years (e.g. Bik et al., 2012; Zinger et al., 2012), providing a comprehensive view of en-

vironmental communities. Using meta-omic data (any kind of sequences present in an

environment), it is now possible to infer co-occurrence networks using statistical tools

(Faust and Raes, 2012), allowing to detect in situ associations between micro-organisms

(e.g. Chaffron et al., 2010; Lima-Mendez et al., 2015). These newly produced networks

are mined to rediscover already known associations (which help to confirm the validity of

the approach), but are mainly composed of yet unknown relations.

While the study of microbial associations based on these networks is rapidly spreading

(Röttjers and Faust, 2018), few examples of studies linking biogeochemical cycles to micro-

bial association networks are available to date (e.g. Guidi et al., 2016; Mandakovic et al.,

2018) and they are only developing concerning the ocean carbon cycle and particularly

the biological carbon pump. In 2016, Guidi et al. used environmental and metagenomic

data gathered during the Tara Oceans expeditions to delineate specific plankton networks

(prokaryotic, eukaryotic and viral) correlated to carbon export in the oligotrophic ocean.

In particular, their analyses allowed them to identify unexpected strongly associated lin-

eages such as Radiolaria, alveolate parasites and the cyanobacteria Synechococcus and

its phages, suggesting that network approaches could effectively help improve our knowl-

edge on the carbon cycle through the use of microbial association networks. In this

chapter, we propose to improve these results by integrating the other components of the

biological carbon pump (i.e. net primary production and flux attenuation) and inferring

microbial association networks corresponding to biogeochemical states that we defined.

The results are presented in this chapter in the form of a draft manuscript preceded by
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an introduction to microbial association networks.

3.1.1 Application of graph theory to ecological networks

Graph theory appears to have its origin in the city of Königsberg, then the capital of

western Prussia. In 1736, the Swiss mathematician Leonard Euler gave the first repre-

sentation of a graph that modelled the islands and bridges of the city (Euler, 1736). Since

then, many disciplines, from technological sciences to sociology and biology, modelled

systems with networks.

The potential first graphical representation of an ecological network is attributed to

Lorenzo Camerano (Camerano, 1880). He represented a food web with groups of species

linked by feeding relations (figure 3.1; Cohen, 1994). Two central ideas emerge from

Camerano’s 1880 essay. First, the equilibrium in the species abundances is maintained

by feeding relations, and second, if a perturbation (i.e. a change in the abundance of

one of the components of the community) occurs in a natural community, it propagates

along the food chain. These ideas and the graphical representation of food webs was

visionary, but it probably stayed unnoticed for some time as it doesn’t resemble any

known representation from later zoologists (Egerton, 2007). After Camerano, many food

web diagrams were published (Pierce et al., 1912; Shelford, 1913; Petersen, 1915), until

Elton generalized these diagrams and coined the terms food chain and food cycle (Sum-

merhayes and Elton, 1923; Elton, 1927). Following Elton, numerous hypothetical and

empirical trophic networks were described. However, quantitative, comparative research

on potential generalities in the network structure appeared only in the 1970’s (Dunne,

2009).

3.1.1.1 From abundance data to microbial association networks

Another type of ecological network, that may be linked to inter-species trophic relations

(Morales-Castilla et al., 2015), is based on the species co-occurrence. The co-occurrence of

two species is their simultaneous presence at the same place. Whereas trophic networks

focus on trophic relations between species, co-occurrence networks aims at translating

a wider range of interactions. These interactions can be classified based on the positive,

negative or neutral outcome for the species involved (figure 3.2). Positive relationships for

both partners are known as mutualism. Examples from the microbial world include syn-

trophy (i.e. cross-feeding) where two species are dependant on the metabolites produced

by the other (Morris et al., 2013) and cooperation in bacterial biofilms (Nadell et al., 2009).

Commensalism occur when one partner benefits while the other is unaffected. In the mi-
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Figure 3.1 – First representation of a trophic network by Lorenzo Camerano, illustrating the "enemies
of phytophagous Coleoptera and the enemies of those enemies" (Camerano, 1880).

crobial world, commensalism occurs when a species produces metabolites that are used

by other species, with no gain for the first species (e.g. between denitrifiers and annamox

bacteria). When one of the partners benefit from the relationship while having a negative

effect on the other, we refer to prey-predator relationships and parasitism (the parasite

takes advantage of the host to shelter, reproduce or feed). Amensalism correspond to bi-

ological interactions that turns out to be negative for one of the partners, without benefit

for the other. Finally, competition results in a negative outcome for both species involved,

which exist in bacterial populations through the production of antibiotics (Nadell et al.,

2009).

Co-occurrence can be inferred from incidence (i.e. presence-absence patterns) or abun-

dance data. To overcome the limitations of culture-dependant methods, abundance and

incidence data of microbial communities are now typically derived from high-throughput

sequencing. The advent of these approaches revolutionized the taxonomic identification

of microbial communities and the characterization of their functions. The collection of

environmental samples and extraction of DNA or RNA is followed by amplification and

sequencing. Species are generally identified through the sequencing of DNA barcodes

(also called metabarcodes). These barcodes allow for the taxonomic characterization of

organisms based on short distinctive DNA sequences and are different depending on the
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Figure 3.2 – Classification of ecological pairwise interactions, based on the outcome for both species
involved. Interaction can result in positive (+), negative (-) or neutral (0) outcomes for the partners.
For example, commensalism result in a positive outcome for one of the species involved, while the
other doesn’t take any advantage from the interaction, but is not harmed (Faust and Raes, 2012).

taxonomic groups. The DNA coding for the 16S ribosomal RNA (rRNA) is regarded as

the "gold standard" for characterizing prokaryotic communities (Sun et al., 2013). One

or more of the 16S hypervariable regions (from V1 to V9) are sequenced. Other barcode

genes are available for eukaryotes. Tara Oceans eukaryotic organisms were identified

with the V9 region of the 18S rRNA coding gene (Vargas et al., 2015; Alberti et al., 2017),

whereas other environmental studies focuses on the V4 region (e.g. Stoeck et al., 2010;

Massana et al., 2015). However, barcodes adapted to specific eukaryotic groups are also

used (e.g. the internal transcribed spacer (ITS) region of the nuclear ribosomal repeat

unit for fungal species and a part of the cytochrome c oxidase 1 (CO1) mitochondrial gene

for animals).

After quality control steps to check potential errors from the sequencing process, and

sometimes after sequences corrections (e.g. denoising, chimera checking), metabarcodes

can be either directly studied with their corresponding abundance (e.g. Thompson et al.,

2017) or they can be clustered into operational taxonomic units (OTU). Metabarcodes are

often clustered when they are at least 97% similar (Westcott and Schloss, 2015), which

is totally debatable. Moreover, protocols, approaches and tools to cluster sequences into

OTUs are numerous (for a broader review and comparison of the approaches, see West-

cott and Schloss, 2015). Metabarcodes are compared to curated reference databases (e.g.

SILVA for prokaryotes, Quast et al., 2013; PR2 for microbial eukaryotes, Guillou et al.,

2013). Finally, the analysis of the metabarcodes classically leads to the building of an
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abundance matrix of the metabarcodes (or the OTUs) in the samples. Abundance tables

of metabarcodes or OTUs are used as input for network inference methods, based on the

idea that abundances are shaped by ecological interactions. This conception, although

debated, originates from Jared Diamond who suggested that competition among birds

of a same island resulted in mutual exclusion (Diamond, 1975). From this assumption,

positive relationships between two species are inferred when they co-occur and negative

relationships are deduced when they co-exclude each other. For instance, co-exclusions

may reflect competition or amensalism, whereas co-occurrence may be due to commen-

salism. Parasitism and predation can be more difficult to predict because the consumer

rely on its prey but can also make its population decrease. However, caution is required

because the co-occurrence of two species doesn’t necessarily imply that they interact.

The co-presence of two species in a same environment can be due to cross-feeding for

example. However, it can also result from shared environmental preferences (Chaffron

et al., 2010) or because of a third factor such as an unreported abiotic driver or a species

not accounted in the data set (Röttjers and Faust, 2018). Besides, unless the detected in-

teractions were previously described in the literature or further experimentally validated,

it is virtually impossible to confirm the underlying nature of the relationships behind

positive and negative associations.

The ecological networks resulting from network inference are referred to as microbial co-

occurrence networks (Kara et al., 2013), microbial association networks (Faust and Raes,

2012; Kurtz et al., 2015), microbial correlation networks (Duran-Pinedo et al., 2011;

Friedman and Alm, 2012), or networks of co-existing microbes (Chaffron et al., 2010).

3.1.1.2 Methods for inferring microbial associations

Microbial association networks can be inferred with a wide range of methods based on

metagenomic data. These methods rely on diverse metrics and models, the simplest

and fastest ones using pairwise dissimilarity measures and the more complex ones using

multiple regression and Gaussian graphical models (Layeghifard et al., 2017). Some are

more used than others because of their speed and ease of use (Layeghifard et al., 2017),

yet others, such as probabilistic graphical models (e.g. Kurtz et al., 2015), may show

higher accuracy.

Two groups of inference network methods can be distinguished: the ones based on sta-

tistical inference and the ones using probability theory. The first group gathers methods

based on dissimilarity, correlation and regression while the second includes more recently

developed methods which are known as probabilistic graphical models. Although little
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applied to microbial networks at present, logic-based machine learning algorithms may

also be used (Vacher et al., 2016).

Dissimilarity and correlation-based methods have been implemented in many tools such

as CoNet (Faust et al., 2012), SparCC (Friedman and Alm, 2012), WGCNA (Langfelder

and Horvath, 2008) and CCREPE (Schwager et al., 2019). The Bray-Curtis and Kullback

Leibler indices are often used to compute pairwise dissimilarity scores and their signifi-

cance is tested through a permutation test (Faust et al., 2012; Layeghifard et al., 2017).

Pairwise correlations between OTUs are computed with the Pearson’s product moment or

Spearman’s nonparametric rank correlation coefficients. Correlation-based methods are

popular and have been used to infer microbial associations in diverse environments, such

as human gut (e.g. Jackson et al., 2018), soil (e.g. Mandakovic et al., 2018) and ocean

(e.g. Lima-Mendez et al., 2015; Guidi et al., 2016). However, caution is needed when

using correlation: spurious correlations may occur among low-abundance OTUs when

data are sparse (i.e. significant correlations can be detected when computed on many

matching zeros, while the taxa involved may vary randomly below the detection limit) and

this type of metric is sensitive to compositionality (Layeghifard et al., 2017; Röttjers and

Faust, 2018). That’s why some precautions are needed when inferring microbial associa-

tion networks from 16S data, such as applying a prevalence filter to remove rare taxa and

revome outlier samples. Besides, correlation methods were shown to considerably vary

in sensitivity and precision, making comparisons between studies difficult (Weiss et al.,

2016).

Regression-based methods are an alternative to classical pairwise dissimilarity and cor-

relation metrics. Indeed, they allow to capture more complex forms of relationship in-

volving more than two partners by inferring the abundance of an OTU from the combined

abundances of other OTUs with multiple regression. However, the meaning of regression

results may be more difficult to interpret (Faust et al., 2012; Layeghifard et al., 2017)

and, like correlation and dissimilarity, detected associations don’t necessarily imply that

there exist an underlying biological explanation for this. The high number of available

predictors may also lead to overfitting, although sparse regression and cross-validation

may overcome this problem. A second approach may be used to capture complex interac-

tions: association rule mining (Agrawal et al., 1993). This approach consists in finding

significant rules from presence-absence data (e.g. "if species A and B are present, then

species C is absent"). Networks resulting from multiple regression or association rule

mining are directed hypergraphs (Faust and Raes, 2012).

Probabilistic graphical models represent dependencies between random variables. They

use graphs to measure joint probability distributions and represent sets of conditional
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dependance and independance (Layeghifard et al., 2017). SPIEC-EASI (SParse InversE

Covariance Estimation for Ecological Assoiation Inference) (Kurtz et al., 2015) is an ex-

ample of this type of methods. It builds microbial networks using either sparse inverse

covariance or neighborhood selection. It attempts to avoid the spurious associations re-

sulting from the application of correlation measures. In short, a link between two OTUs

is inferred if their abundances are not conditionnally independant and if there is a rela-

tionship between them that cannot be better explained by another link.

Logic-based machine learning algorithms may also be used to learn microbial asso-

ciation networks from OTU occurrence or abundance data combined with background

knowledge (e.g. about the species and their environment). They have been used success-

fully to infer trophic networks (Bohan et al., 2011; Tamaddoni-Nezhad et al., 2013) but

could be applied to build microbial association networks (Vacher et al., 2016).

3.1.2 Overview of graph theory and useful metrics for microbial association

networks analysis

The easiest way to represent microbial associations is in the form of a graph where nodes

are species and edges represent their interactions. Microbial association networks analy-

sis borrows many concepts and tools from graph theory to retrieve community properties

that are encoded in the network structure, such as keystone species and ecological niches.

To introduce the analyses presented in section 3.2, a brief overview of graph theory and

its contribution to microbial association networks is given here.

3.1.2.1 Definition of a graph

A graph is a structure that models the relationships between objects (called nodes or

vertices) connected by links (called edges). In mathematical language, a graph is denoted

as G = (V, E), where V is the set of vertices and E is the set of edges of the graph G.

The terms graph and network are often used interchangeably in the scientific literature.

However, subtle differences exist between them: while the term network refers to real

systems, graphs are the mathematical representation of networks (Barabási, 2016) (real

networks of different nature can have the same graph representation).

Graphs are divided in different classes, based on the properties of their edges: directed

or undirected, weighted or unweighted (figure 3.3A), signed or unsigned, cyclic or acyclic.

The edges of directed graphs are associated with a direction. For example, food webs are

directed graphs where edges point from predators to preys. On the contrary, protein-

protein interaction (PPI) networks describe physical interactions between proteins of an
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organism, thus they are modelled as undirected graphs (Mason and Verwoerd, 2006).

Weighted graphs have a weight assigned to their edges. Continuing with the example of

food webs, the weight of the relationship between two species could be the amount of

energy transferred from the prey to the predator. In unweighted graphs, all edges have

the same weight (in practice, it is set to 1). Edges of signed graphs can bear a positive

or negative sign. In social networks, positive edges would model the relationship between

friends while negative edges would represent the one between enemies. Finally, a graph

is cyclic if it contains a cycle, which is a path that has the same start and end node. In

organic chemistry, molecules like sugars and aromatic compounds can be represented as

cyclic graphs.

3.1.2.2 Interpretation of the structural properties of a graph

After a graph is obtained, many properties can be calculated, related to individual nodes

and edges (such as centrality measures, see the box below), but also to the whole graph

(such as the diameter). From these properties can be inferred characteristics of microbial

association networks but they should be interpreted with care because networks are

simplified representations of the system (Faust and Raes, 2012).

The node degree distribution is often calculated on microbial networks. It is the distri-

bution of the number of direct neighbours a node has in a network. It provides information

on the topology of the networks (i.e. the way in which the nodes and edges are arranged

within a network). For example, scale-free graphs (i.e. graphs that have a power-law

degree distribution) have many low degree nodes and few highly connected nodes (see fig-

ure 3.3B). Scale-free graphs are recognized to be typical of biological networks (Barabási

and Albert, 1999), however, some microbial networks have also been found to be random

graphs (e.g. Mandakovic et al., 2018). The degree distribution of random graphs follows a

binomial or a Poisson distribution, in which node degrees are clustered around the mean

degree (figure 3.3B). This type of graph is characterized by nodes randomly connected to

each other (Barabási, 2016).

The diameter is the distance between the two furthest nodes of a graph (i.e. the longest

shortest path). The diameter of biological and social networks is typically small in com-

parison to the networks’ size (i.e. its number of nodes). This property is often referred to

as the small world property. This measure gives information on how fast an information

can be transmitted in a network. Thus, a short diameter suggests that few intermediate

interactions are necessary to transfer information.
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Centrality measures and clustering coefficient

The calculation of centrality measures varies according to the types of networks cited in

the previous paragraph. For the sake of brevity, the following measures apply only to

unweighted and undirected networks. The degree centrality is a local centrality measure

while global centrality measures include the betweenness centrality and the closeness

centrality. The degree, betweenness centrality and clustering coefficient are illustrated

in figure 3.3C.

The degree centrality (DC) of a node is the number of its direct neighbours (i.e. the

number of edges a node has).

The betweenness centrality (BC) of a node k is the fraction of shortest paths
a

going

through a given node (Freeman, 1977):

BC(k) =
∑
i

∑
j

ρ(i, k, j)
ρ(i, j)

, i , j , k (3.1)

where ρ(i, k, j) is the number of shortest paths between nodes i and j that pass through

node k, and ρ(i, j) is the number of shortest paths between nodes i and j. Betweenness

centrality quantifies the influence of a node on the network.

The closeness centrality (CC) of a node k is the reciprocal of the sum of topological

distances from all other nodes in the network (Bavelas, 1950):

CC(k) =
1∑

j d(k, j)
(3.2)

where the distance d(k, j) from the node k to another node j is defined as the number of

links in the shortest path from one to the other. A node close to the other nodes of the

network can typically communicate rapidly with them.

The clustering coefficient of a node is the fraction of connections among all possible

connections between its direct neighbors (Watts and Strogatz, 1998). Thus, it measures

the degree to which nodes in a graph tend to cluster together.

a
A path is the distance between two nodes, measured as the number of edges that separates

them.

From the network topology can be delineated modules. Modules are densely clustered

subgraphs that can be detected manually or by using a dedicated algorithm (e.g. Clauset

et al., 2004). Modules have been interpreted as niches in some studies (e.g. Chaffron

et al., 2010).

Finally, highly central nodes according to different measures (see the box) have often
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Figure 3.3 – Overview of graph types and graph theory metrics. On all diagrams, nodes are repre-
sented as circles and edges as links between circles. (A) Classes of graphs, based on the properties
of their edges, (B) Two graph topologies that differ in their degree distribution and (C) Illustration of
centrality measures (degree and betweenness) and the clustering coefficient (Perez, 2015).

been considered as keystone species. The keystone species concept originates with

Paine (1969) who observed a reduction of species richness in a rocky shore community in

California after removal of the top predator (a starfish). Keystone species are commonly

defined as species "whose effect on its community or ecosystem is large, and dispropor-

tionately large relative to its abundance" (Power et al., 1996). The term refers to the

structure of an arch that would collapse if the keystone was removed. In macro-ecology,

predators are often considered keystone species because they control the population dy-

namics of their preys. For example in the microbial world, nitrogen-fixing bacteria make

nitrogen available to other plants and animals, thus playing a central role in the nitrogen

cycle (Robidart et al., 2014). Since this concept was introduced in microbial ecology,

the identification of keystone microbial species is a critical issue given the complexity of

microbial communities, their high diversity and the difficulty to cultivate most microbes

(Lupatini et al., 2014).
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3.1.3 Guidi et al. (2016): a first study of the carbon export through the

lens of meta-omic data

In their study published in 2016, Guidi et al. initiated research linking omic data and bio-

geochemical processes. The objective was to relate the planktonic community structure

to carbon export in the oligotrophic ocean. For this purpose, they applied a systems biol-

ogy approach known as weighted gene correlation network analysis (WGCNA, Langfelder

and Horvath, 2008) to detect significant associations between the Tara Oceans genomic

data and carbon export. This method delineates subnetworks of highly correlated OTUs

or genes and extract the ones that are associated to environmental variables. From these

subnetworks, they emphasized key nodes using partial least square regression (PLSr).

This network-based approach was applied to eukaryotic, prokaryotic and viral metabar-

coding and to prokaryotic metagenomic datasets. It revealed unexpected taxa such as Ra-

diolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages

most strongly associated with carbon export. The relative abundance of few bacterial and

viral genes was also showed to predict a significant fraction of the variability in carbon

export in the oligotrophic ocean.

In the following article, we propose to improve these results by integrating the other com-

ponents of the biological carbon pump (i.e. net primary production and flux attenuation)

and inferring microbial association networks corresponding to biogeochemical states of

the biological carbon pump.
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3.2.1 Abstract

The biological carbon pump consists in a series of processes that encompasses the pro-

duction of organic matter by phytoplankton, its transport to the deep and its degradation

and physical fragmentation by heterotrophic bacteria and zooplankton. While key players

have been identified, the microbial relationships driving the biological pump have been

poorly investigated. Here we propose to integrate the processes of the biological pump (i.e.

primary production, carbon export and flux attenuation) to define biogeochemical states

dominated by one of the processes. Microbial association networks were inferred from

prokaryotic association networks. Through the analysis of these networks, we show that

variation in microbial associations rather than lineages drive the states of the biological

carbon pump.

3.2.2 Introduction

The world ocean is characterized by a strong vertical gradient of concentration of dissolved

inorganic carbon (DIC). Concentrations of DIC are higher in the deep (below 1200 m)

than in surface waters (i.e. 2284 µmol.kg−1
and 2012 µmol.kg−1

, respectively, Volk and

Hoffert, 1985). This vertical gradient is maintained by the three ocean carbon pumps

defined by Volk and Hoffert (1985) in their seminal article, namely the solubility pump, the

carbonate pump and the biological pump. In the surface, dissolved inorganic materials

are converted to organic matter through photosynthesis (i.e. primary production process).

The bulk of this newly produced biomass is recycled in the surface waters by respiration

or heterotrophy (i.e. remineralisation process) while the organic material that escapes

recycling is transported by sinking to the deep waters (i.e. export process), or even to the

sediments, where it is sequestered.

Because of its capacity to trap atmospheric carbon (Falkowski et al., 1998; Boyd and

Trull, 2007; Buesseler and Boyd, 2009) and its impact on the Earth’s climate (Sigman and

Boyle, 2000), the biological carbon pump has been the subject of particular attention by

oceanographers for four decades. First sediment traps were deployed in the 1960s-1970s

(Wiebe et al., 1976; Berger and Soutar, 1967; Honjo, 1976; Soutar et al., 1977) and allow

to capture sinking particles. Installed at various depths (generally between the surface

and 3000 m, sometimes deeper, Honjo et al., 2008) they give access to particle fluxes in

surface and at depth. In particular, carbon export (i.e. the quantity or carbon that leaves

the euphotic zone) and flux attenuation along the water column can be calculated from

these fluxes.

Fluxes through the mesopelagic zone (from about 200 to 1000 m depth) are influenced

76



3.2 Article 2 (Benoiston et al., in prep.): The microbial drivers of the biological carbon pump

by planktonic organisms at the surface (Suess, 1980; Berger et al., 1989; Tréguer et al.,

2003; Guidi et al., 2009; Buesseler and Boyd, 2009). The common highlighted actors are

large phytoplankton (such as diatoms) (Allen et al., 2005; Agusti et al., 2015; Benoiston

et al., 2017) because of their significant contribution to primary production and carbon

export, and zooplankton by the production of fecal pellets (i.e copepods) (Turner, 2002,

2015) and mucus feeding structures (i.e appendicularians) (Alldredge, 2005). Phytoplank-

ton composition in surface notably influences the strength of carbon export (Boyd and

Newton, 1995; Boyd et al., 2008). In particular, Guidi et al. (2009) showed that carbon

export is linked to the size of sinking particles, the export flux being more efficient when

microphytoplankton (especially diatoms ballasted by their siliceous skeleton) dominates

the euphotic zone (i.e. the surface ocean water layer where light intensity is sufficient

for photosynthesis), compared to a community dominated by picophytoplankton (e.g.

Cyanobacteria).

Since already 30 years, the identification of micro-organisms and their diversity in the

environment is based on molecular data (e.g. Zinger et al., 2012). With the advent of the

high-throughput sequencing, microbial communities and their molecular functions are

revealed comprehensively in a multitude of ecosystems (e.g. Qin et al., 2010; Delmont

et al., 2011; Sunagawa et al., 2015; Vargas et al., 2015; Thompson et al., 2017; Carradec

et al., 2018). However, metabarcoding or metagenomic analyses focusing on free-living

and particle-attached micro-organisms collected in sediment traps are rare and restricted

to small or single geographical location to date (LeCleir et al., 2014; Fontanez et al., 2015).

In 2016, exploiting the meta-omic sets from the Tara Oceans expedition in light of their in

situ environmental data, Guidi et al. (2016) published the first microbiology-driven carbon

export study at the global scale. They highlighted molecular planktonic communities

significantly associated to carbon export, as well as their key lineages and functions,

which potential importance had not been revealed until then. These findings suggest that

the biological carbon pump is the result of complex interactions among organisms rather

than their independent actions, and that in general, meta-omics and statistical analyses

are offering new insights into the understanding of elements cycling.

In the present study, from the metagenomic and in situ environmental data from the Tara

Oceans expedition, we propose to revisit the study of carbon cycling in the oligotrophic

ocean at a global scale by integrating for the first time the three processes of the biological

carbon pump (i.e. primary production, export and flux attenuation, used as a proxy for

remineralization). At a first step, we defined biogeochemical states in our data set based on

the relative contribution of the following quantifiable parameters: net primary production

(NPP), carbon export (CE) and flux attenuation (FA). A state corresponds to samples in
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which one of these parameters is relatively high compared to the two other ones (e.g. the

NPP state corresponds to samples in which NPP is relatively high compared to CE and FA).

In a second step, each of these three biogeochemical states were analysed to determine

its underlying network organisation, both in terms of taxonomic composition and lineage

associations. In a third step, we compared these networks in order to highlight the

common and specific actors and associations between the three biogeochemical states.

Finally, we revealed that variation in associations rather than lineages presence seems to

drive the states of the biological carbon pump.

3.2.3 Materials and methods

3.2.3.1 Sample collection and taxonomic profiling

The Tara Oceans circumglobal expedition sampled plankton and collected environmental

data at 210 sites across all major oceanic provinces from 2009 to 2013 (Pesant et al.,

2015). Plankton was collected in the surface water layer, the deep chlorophyll maximum

and the mesoplagic zone. Metagenomic DNA from prokaryote-enriched size fraction fil-

ters (i.e. the 0.22-1.6 µm fraction up to station #52 and the 0.22-3 µm fraction from

station #56) was extracted as described in Logares et al. (2014) and sequenced on Il-

lumina sequencing machines. 16S fragments directly identified in Illumina-sequenced

metagenomes (16S mitags) were identified as described in Logares et al. (2014). 16S mitags

were mapped to 16S reference sequences from the SILVA database (Quast et al., 2013),

release 115: SSU Ref NR 99) with a threshold of 97% sequence identity using USEARCH

v.6.0.30759 (Edgar, 2010). OTUs abundances were calculated by counting the number of

16S mitags clustering into the same OTU. From the resulting abundance matrix published

by Sunagawa et al. (2015), we removed OTUs detected with sequence abundance < 2 to

reduce sequencing artefacts. Finally, we selected samples collected in the surface water

layer and the deep chlorophyll maximum. The final matrix included 26 281 OTUs and 104

samples and is publicly available on https://figshare.com/s/23798e4046a2c21a9103.

3.2.3.2 Environmental parameters calculation and definition of the biogeochemi-

cal states of the biological carbon pump

Primary production

Net primary production (NPP) was calculated from satellite measurements using the ver-

tically generalized production model (VGPM) (Behrenfeld and Falkowski, 1997) at the

sampling location, at a period of 8 days around the sampling date (Chaffron et al., 2014).
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Carbon export

The Underwater Video Profiler (UVP) (Picheral et al., 2010) was used to estimate particle

concentration and particle size distributions (PSDs). The PSD is often calculated in terms

of concentration ∆C (number of particles per unit volume) in a given size range ∆s: n(s) =

∆C/∆s. Although any measure of particle size can be used for s, the particle diameter

d was used for the measure of particle size. Assuming that the mass m(d) and sinking

speed w(d) are functions of d, then the total mass of particles in the size range ∆d is

n(d)m(d) ∆d and the mass flux in that interval is n(d)m(d)w(d) ∆d (Guidi et al., 2008).

The total carbon flux of particles F corresponds to the flux spectrum integrated over all

particle sizes:

F =

∫ dmax

dmin

n(d)m(d)w(d) ∆d (3.3)

where dmin and dmax are the minimum and maximum particle diameters, n(d) is the

particle size spectrum, m(d) is the mass (here carbon content) of a spherical particle and

w(d) the settling rate calculated using Stokes law. The combined mass and settling rates

of particles were described as power law functions of their diameter (of the form ydx )

fitted by comparing image-derived PSD with sediment traps estimate of mass flux (Guidi

et al., 2008). If both m(d) and w(d) are given by power relationships, then the resulting

combined quantity is wm = Adb. Hence, the particle carbon flux can be approximated

using equation (3.3) over a finite number of small logarithmic intervals of diameters d from

250 µm to 1.5 mm (particles <250 µm and >1.5 mm are not considered, as presented in

Guidi et al., 2008) (Guidi et al., 2009; Picheral et al., 2010) such that:

F =

x∑
i=1

niA
B
i ∆di (3.4)

where A=12.5 ± 3.40 and B=3.81 ± 0.70 corresponds to the best set of parameters that

minimized the log-transformed differences between particle flux in sediment traps and

PSDs from the UVP images (Guidi et al., 2008). Carbon export (CE) was measured at

150m to make sure that it was measured below the euphotic zone Ze and the maximum

mixed layer depth ZMLD (mean Ze in Tara Oceans stations = 64 m, SD = 38 m; mean ZMLD

in Tara Oceans stations = 48 m, SD = 44 m). Besides, measuring carbon export at this

depth was consistent with the average deployment depth of conventional sediment traps.

Flux attenuation

Carbon flux data, calculated for each Tara Oceans stations every 5 meters below the

surface, were smoothed (symmetrical moving average on 40 meters) to avoid transitory

fluctuations (R package stats, function filter). Flux attenuation (FA) was computed as
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follows:

FA =
Fmax (20..150)

F+300

(3.5)

where FA is the flux attenuation, Fmax (20..150) is the maximum flux value between 20

and 150 m and F+300 is the flux value 300 m below Fmax (20..150). The difference of 300

m was chosen because the majority of flux attenuation occurs above 300m depth below

the euphotic zone (Buesseler and Boyd, 2009).

Definition of the NPP, CE and FA states

To define biogeochemical states of the biological carbon pump, NPP, CE and FA measure-

ments were normalized as follows:

zi =
xi
xmax

(3.6)

where xi are the absolute values and xmax is the absolute maximum value of each mea-

surement, setting the maximum of each variable to 1. Once normalized, the percentage

of each variable was computed for each sample (i.e. for one sample, when NPP, CE and

FA measurements were all available, they were normalized in order to set the sum of the

three variables to 1). Absolute and normalized values of NPP, CE and FA estimations are

publicly available on https://figshare.com/s/f67bcb072aea125039d3. These steps allowed

us to classify the samples either in the NPP, CE or FA states (e.g. samples in which NPP

is relatively high compared to CE and FA were classified in the NPP state) and to create

the corresponding three OTUs abundance matrices.

3.2.3.3 Analysis of states differenciation based on environmental parameters and

community composition

A Mantel test was performed to compare Bray-Curtis environmental similarity (based

on the contribution of net primary production, carbon export and flux attenuation) and

geographic distances with the function mantel() of the R package vegan. Non-metric mul-

tidimensional scaling was performed on prokaryotic samples based on 16S mitag relative

abundances at different taxonomic levels with the function metaMDS() of the R package

vegan. To test whether there is a significant difference between the states on basis of

community composition, we computed analyses of similarity (ANOSIM) with the function

anosim() from the R package vegan.

3.2.3.4 Association networks inference

OTUs abundance matrices of each state were filtered following these two steps: (1)

OTUs that occurred in less than 70% of the samples of each subset were removed, and
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(2) only the 20% most variable OTUs were retained for network reconstruction (figure

3.9). These matrices are available on https://figshare.com/s/cf2ed998f7796daa368a, https:

//figshare.com/s/283f073035987abdd6d7 and https://figshare.com/s/a9d4d2f3be5cce4bbe20.

Each of the reduced OTUs abundance matrix was then analyzed with SPIEC-EASI (R

package developped by Kurtz et al., 2015) in order to build association networks (in

which a node corresponds to an OTU, and an edge corresponds to a positive or negative

association). SPIEC-EASI estimates ecological networks from meta-omic data using a

graphical model (neighborhood selection or sparse inverse covariance selection). In both

selection methods, the tuning parameter λ controls the sparsity of the final model. This

final model is selected by subsampling the original dataset and estimating the graph for

several λ values. For each graph, a stability metric is calculated and the λ value minimiz-

ing the graph variability is selected. Model selection is performed with the StARS method

(Stability Approach to Regularization Selection) (Liu et al., 2010).

SPIEC-EASI first applies the centered log-ratio transformation to the abundance matrix

to alleviate compositionality bias (Aitchison, 1981) and then builds the network. The

networks were inferred using the neighborhood selection (Meinshausen and Bühlmann,

2006). The SPIEC-EASI parameters that generate the sparser graphs were determined

through testing of multiple values for each parameter. Thus, the scaling factor that

determines the minimum sparsity (lambda.min.ratio) was set at 0.001 while the number

of tested lambda (nlambda) was determined as 20. The number of StARS subsamples

(rep.num) was set to 20.

3.2.3.5 Networks properties and metrics

We assessed the topological properties of the microbial association networks with the R

package igraph (Csardi and Nepusz, 2006). The following networks properties potentially

relevant for the analysis of microbial association networks were calculated (density, diam-

eter and average path length are calculated on the whole graph while centrality measures

and the clustering coefficient are calculated on nodes):

• density: a node can be connected to all other nodes of the network. Possible connec-

tions are therefore equal to n ∗ (n − 1)/2. The density of a network is the proportion

of actual connections among all possible connections.

• diameter: length of the longest among all shortest paths (i.e. path between two

nodes that has the fewest number of edges) between node pairs.

• average path length: average path length is calculated by finding the shortest path
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between all pairs of nodes, adding them up, and then dividing by the total number

of pairs.

• degree centrality (DC): number of edges linked to a node.

• betweenness centrality (BC): the betweenness of a node is equal to the fraction of

shortest paths between all other nodes that are passing through this node. A version

of the BC exists for edges: it is the fraction of shortest paths that go through this

edge.

• closeness centrality (CC): reciprocal of the sum of the length of the shortest paths

between the node and all other nodes in the graph.

• clustering coefficient: the clustering coefficient of a node is the fraction of connec-

tions among all possible connections between its neighbours.

The mean degree, betweenness, closeness and clustering coefficient was calculated from

all the nodes belonging to a network. The goodness of the fit of the node degree distribution

with the power law and Poisson distributions was calculated with a Kolmogorov-Smirnov

test (function fit_power_law() of the igraph package) and a chi-squared test, respectively.

For each network, keystone OTUs were defined as nodes displaying high degree, high

betweenness and high closeness. The top ten keystone OTUs were selected in each

network by computing the following centrality score:

CSi =
DCi

max(DC)
+

BCi
max(BC)

+
CCi

max(CC)

where CSi is the centrality score of node i, DC is the degree centrality, BC is the between-

ness centrality and CC is the closeness centrality.

3.2.4 Results

3.2.4.1 Spatial structure of the net primary production, carbon export and flux

attenuation states

The relative contribution of net primary production, carbon export and flux attenuation

to the biological carbon pump differs between samples. From these variations, we defined

the net primary production (NPP), the carbon export (CE) and the flux attenuation (FA)

biogeochemical states (a state corresponds to samples in which one of these parameters

is relatively high compared to the two other ones) (figure 3.4A). For each state, the domi-

nating process (NPP, CE or FA) represents from 40% to 100% of the relative contribution.
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NPP, CE and FA measurements were all available for only 61 out of 104 samples. The

resulting NPP subset involves 14 samples, the CE subset involves 32 samples and the FA

subset involves 18 samples, with overlaps between the subsets.
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Figure 3.4 – Contribution of net primary production (NPP), carbon export (CE) and flux attenuation (FA)
to the biological carbon pump in Tara Oceans samples. (A) Ternary plot of the relative contribution (in
%) of NPP, CE and FA in Tara Oceans samples and delimitation of the three biogeochemical states.
The arrows indicate how to read the values on the axes, the base referring to the axis and the head
to the direction of reading. The 14 samples corresponding to the NPP state are framed by a red
triangle, the 32 samples corresponding to the CE state are framed by a green triangle and the 18
samples corresponding to FA are framed by a blue triangle. Crosses correspond to mixed samples
(i.e. samples with equal relative contribution of two or three processes). (B) Map of Tara Oceans
samples, represented as in the ternary plot (A).

Samples related to each state were projected on a world map (figure 3.4B). No geographical

structure is observed on the basis of the contribution of NPP, CE and FA (Mantel test

Spearman’s r=0.036, p=0.144). However, some samples exhibit a strong contribution of

one of the three variables (NPP for stations 25, 66 and 68, CE for stations 140 and 141,

FA for station 52).

3.2.4.2 Taxonomical composition of the three states differs at the level of orders,

families and OTUs

We compared the taxonomical composition of each biogeochemical state, from the phylum

to the OTU level. At the phylum level, the three states show similar composition (Figure

3.5): a dominance of Alphaproteobacteria, Cyanobacteria and Betaproteobacteria. To

investigate the potential link between taxonomical composition and states, non-metric

multidimensional scaling (NMDS) and analysis of similarity (ANOSIM) were performed

(figures 3.10 and 3.11). A significant link (at the alpha = 0.05 level) was revealed at the

levels of orders (ANOSIM r=0.105, p=0.035), families (ANOSIM r=0.098, p=0.044) and

OTUs (ANOSIM r=0.109, p=0.034) (figure 3.11). A community structuring effect appears

within the FA samples, whereas the NPP and CE samples composition show an over-
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lap, especially at the level of OTUs. Besides, five lineages display significantly different

abundances at the alpha = 0.05 level: Bacteroidetes (Kruskal-Wallis test p=0.029), Gra-

cilibacteria (Kruskal-Wallis test p=0.011), Chlorobi (Kruskal-Wallis test p=0.013), Gem-

matimonadetes (Kruskal-Wallis test p=0.015) and Thaumarcheota (Kruskal-Wallis test

p=0.005).
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Figure 3.5 – Phylum-level (class-level for Proteobacteria) taxonomic composition of the states. Colored
bars under the barplots indicate the state each sample belongs to (red: NPP, green: CE, blue: FA).

3.2.4.3 Association networks differ in their properties

Before association networks building, OTUs were filtered for each state in order to focus

our study on the most prevalent and variable ones. Network metrics related to nodes

and edges of the three states association networks are reported in table 3.1. Node degree

distribution of networks did not fit the power law according to the Kolmogorov-Smirnov

test (p=0 for all degree distributions). The NPP and FA node degree distribution were found

to follow the Poisson distribution (Goodness-of-fit p=5.172e-4 for NPP and p=1.529e-5 for

FA) which is typical of random graphs (Erdös and Rényi, 1959), where each pair of nodes

have the same probability to be linked by an edge. The NPP network involves the highest

number of nodes and edges. Networks are mostly composed of positive edges (between

66% and 73%), the network having the fewest positive edges percentage (PEP) being the

FA network and the one having the highest PEP being the CE network (table 3.1).

The degree, betweenness, closeness and clustering coefficient distributions differ between

the states (supplementary figure 3.12 and table 3.3). More precisely, the degree, be-

tweenness and closeness are significantly different between the NPP and CE networks.

The FA and NPP networks differed significantly in terms of degree, betweenness, closeness

and clustering coefficient, while the closeness and clustering coefficient were significantly

different between the CE and FA networks.
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Table 3.1 – Networks characteristics and metrics. Standard deviations are given in brackets.

NPP state CE state FA state

number of samples 14 32 18

number of nodes 425 371 363

number of edges 1 991 1 570 1 581

number of positive

edges (%)
1 401 (70%) 1 149 (73%) 1 048 (66%)

number of negative

edges (%)
590 (30%) 421 (27%) 533 (34%)

network density 0.022 0.023 0.024

network diameter 6 6 6

average degree 9.369 (SD=2.442) 8.464 (2.578) 8.711 (2.198)

average clustering

coefficient
0.1263 (SD=0.0620) 0.131 (0.094) 0.1107 (0.0687)

average path length 3.24 3.29 3.18

average betweenness 474.86 (SD=308.607) 423.3 (276.270) 394.0 (218.2669)

average closeness
0.0007322

(SD=5.396e-5)
0.0008274 (6.535e-5) 0.0008795 (5.228e-5)

3.2.4.4 Specific vs core OTUs within the states

We compared the nodes metrics from the core and specific OTUs of each state. At the OTU

level, the highest proportion of OTUs (i.e. 37.5% or 216 OTUs) corresponds to core OTUs

(i.e. OTUs shared by the three states) (figure 3.6). The NPP state is showing the highest

proportion of specific OTUs (19.8% or 114 OTUs) whereas CE and FA showed only 8.5%

(49 OTUs) and 8% (46 OTUs) of specific OTUs. Significantly higher degree, betweenness

and closeness were observed for specific nodes of the NPP and the CE networks. On

the contrary, no difference in terms of centrality between core and specific nodes was

observed in the FA graph (table 3.2). Our results suggest that specific OTUs were often

located in more central positions than core OTUs within two (i.e. NPP and CE) out of the

three networks.

NPP CE

FA

114 (19.8%) 49 (8.5%)

50 (8.7%)

216 (37.5%)

56 (9.7%)45 (7.8%)

46 (8%)

Figure 3.6 – Venn diagram showing overlapping and specific nodes (OTUs) of the NPP, CE and FA
networks.
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Table 3.2 – Results of Wilcoxon-Mann-Whitney U one-sided tests comparing core and specific nodes
(OTUs) attributes. Significant results mean that the metric is higher for specific nodes.

NPP CE FA
Nodes

attributes
U p-value U p-value U p-value

degree 10 902 0.04245* 4 098 0.006519** 5 616.5 0.9196

between-

ness
10 576 0.01761* 4 336 0.02427* 5 113 0.6224

closeness 9 609 5.205e-4*** 4 059 0.00547** 4 574.5 0.1998

*** p<0.001, ** p<0.01, * p<0.05

3.2.4.5 Associations between and within the states

The specific and shared edges (OTU-OTU associations) within the three networks were

listed. While more than a third of OTUs are common to all networks (figure 3.6), only

very few edges (1.8%) are shared by the three networks (figure 3.7). This is also true

when taking into account positive and negative edges separately. However, we observe

that the networks share more positive (2.7%) than negative edges (0.2%). Interestingly,

the networks that shared the most edges are the CE and the FA networks. The network

that has the most specific edges is the NPP one. These tendencies are also observed for

positive and negative edges separately.

NPP CE

FA

all edges

1690 (36.8%) 1197 (26.1%)

125 (2.7%)

84 (1.8%)

164 (3.6%)92 (2%)

1241 (27%)

NPP CE

FA

positive edges

1120 (36.2%) 806 (26.1%)

116 (3.8%)

82 (2.7%)

145 (4.7%)83 (2.7%)

738 (23.9%)

NPP CE

FA

negative edges

572 (49.4%) 256 (22.1%)

9 (0.8%)

2 (0.2%)

19 (1.6%)7 (0.6%)

293 (25.3%)

Figure 3.7 – Venn diagrams considering all, only positive and only negative edges of the NPP, CE
and FA networks.

The positive edge percentage (PEP) between specific OTUs only, between core OTUs only

and between core and specific OTUs (i.e. edges involving a core OTU on one side and a

specific OTU on the other side) was computed. The PEP among specific OTUs is similar to

the global PEP: it ranges from 71% to 75% but is higher among core OTUs (between 76%

and 85% depending on the network, supplementary table 3.4). On the contrary, the PEP

between core and specific edges is much lower as it lies between 50% and 57%, suggesting

that OTUs preferentially connect to OTUs of the same "core nature". We further tested

this hypothesis by measuring the assortativity coefficient of the networks as defined in
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Newman (2003): it measures the preference for a network’s nodes to attach to others

that are from the same category (here core or specific). We computed the assortativity

coefficient on edges involving core and specific nodes only. We observed that the three

networks are assortatively mixed with respect to the core or specific nature of the nodes

(when calculated on all edges: NPP network r=0.2, CE network r=0.25, FA network r=0.1;

when calculated on positive edges only: NPP r=0.21, CE r=0.23, FA r=0.12), meaning

that specific nodes preferentially connect to specific nodes and that core nodes are more

likely to connect to core nodes, although this tendency seems to be less strong for the FA

network.

3.2.4.6 Keystone OTUs and associations

Degree, betwenness, closeness and clustering coefficient were computed for all nodes.

We first determined relationships between these four measures of centrality. Degree,

betweenness and closeness appeared to be strongly and positively correlated, while they

were negatively correlated to clustering coefficient (figure 3.13).

Hence, we defined keystone OTUs as having high degree, high betweenness and high

closeness, thus they are the most connected nodes and play the role of bridges along

the shortest path between many other nodes. Their high closeness entails that they are

also close to all other nodes of the network. Among the top 10 keystone OTUs of the NPP

network, the highest centrality score was assigned to Synechococcus, followed by a Marine

Group II archaea, an undetermined cyanobacteria, and Prochlorococcus (table 3.5). Other

keystone OTUs of this network include Marinicella, Magnetospira and representatives of

the SAR11 and SAR86 clades. The top keystone OTUs of the CE network belong to the

Marinicella genus and a Marine Group II archaea (same OTU as in the NPP network) (table

3.6). Among the eight following most central OTUs, three fall within the SAR86 clade, two

within the SAR11 clade, one belong to the SAR324 clade, one to the NS9 marine group

of Flavobacteria and an uncultured Rhodobacteraceae. As for the NPP network, the top

one keystone OTUs of the FA nodes was assigned to Synechococcus (table 3.7). Another

OTU taxonomically assigned to the Synechococcus genus is also present among the top

ten keystone species of this network. Other keystone OTUs include representatives of the

SAR11 and SAR86 clades, as well as an OTU belonging to the Rickettsiales order.

To assess the importance of edges in the networks, we calculated the edge betweenness.

Like node betweenness, edge betweenness is the fraction of shortest paths going through

a given edge. Consequently, we defined keystone associations as the top 10 edges having

a high betweenness centrality (supplementary tables 3.8, 3.9 and 3.10). A low propor-
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tion of edges display a high betweenness in the networks while a high proportion of

edges have a low betweenness in the three networks (figure 3.8). Most keystone edges

involve OTUs assigned to the SAR11 clade. Other common partners include Synechococ-

cus, Prochlorococcus and SAR86. Keystone edges involve OTUs defined as keystones

such as OTUs taxonomically assigned to SAR86 (ref. EF572127.1.1520) and Marine

Group II (ref. DQ156348.18592.20063) in the NPP network (supplementary tables 3.5

and 3.8) and OTUs assigned to Synechococcus (ref. AF098371.1.1444) and SAR86 (refs.

EU802400.1.1495 and FJ45180.1.1374) in the FA network (supplementary tables 3.7 and

3.10). Interestingly, the most central OTU of the FA network (assigned to Synechococcus)

is involved in three out of the top 10 keystone associations of the same network.
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Figure 3.8 – Histogram of edge betweenness in the NPP, CE and FA networks (from left to right).

3.2.5 Discussion

3.2.5.1 A first attempt to empirically define states of the biological carbon pump

In this work, we revisited the study of the biological carbon pump by considering it as

a system that can be dominated either by net primary production, carbon export or flux

attenuation. We defined biogeochemical states from the relative contribution of each pro-

cess in samples of the Tara Oceans expedition. Hence, with this methodology the states

and the classification of the corresponding samples depend on the input data set. Other

NPP, CE or FA estimations may fall outside the framework presented here, so to improve,

confirm or refute our current results, more data would be needed to better represent

the variability of the processes studied. For instance, adding in situ measurements and

meta-omic samples from polar regions or from coastal upwelling regions could help to take

into account a higher variability of NPP. However, as defining the states required mea-

sures from the three interest variables in a sufficient number of sampling stations, the
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Tara Oceans data set satisfied this need, owing to the extensive suite of marine plankton

collection and associated environmental data sampled in contrasting ecosystems (Pesant

et al., 2015; Alberti et al., 2017). The original methodology developed in this manuscript is

however directly transposable to any other or improved data sets. A further development

of our study could be the implementation of our methodology to the understanding of the

biological pump processes throughout the water column and notably in the mesopelagic

areas (Duarte, 2015; Boeuf et al., 2019), and/or to marine ecosystem sampled regularly

in order to investigate potential seasonal effect (e.g. Boeuf et al., 2019; Faust et al., 2015;

Ai et al., 2019; Cram et al., 2014) or even punctual events such as blooms (Caputi et al.,

2019).

3.2.5.2 Highlight of communities involved in each state of the biological carbon

pump

The comparison of the taxonomic composition from the NPP, CE and FA state revealed

variation at the levels orders, families and OTUs. To go beyond this basic community

composition comparison, we inferred association networks for each of the state. Following

a similar development to the one from Guidi et al. (2016), we revealed, for each state of the

biological carbon pump, the corresponding prokaryotic community and its associations.

The inference of microbial co-occurrence networks from meta-omic data became more

and more widespread recently (e.g. Chaffron et al., 2010; Steele et al., 2011; Lima-

Mendez et al., 2015; Mandakovic et al., 2018), allowing to infer widely distributed in

situ relationships among micro-organisms. Whereas microbial association networks are

often reported to follow a power-law distribution (meaning that they are scale-free) (e.g.

Chaffron et al., 2010; Zhou et al., 2010; Steele et al., 2011; Ma et al., 2016), none of

the networks inferred in this study were found to display this distribution. The degree

distribution of the NPP and FA networks follows the Poisson distribution, which is typical

of random networks (Barabási, 2016) and has previously been observed in microbial

networks (e.g. Mandakovic et al., 2018).

Networks were inferred with SPIEC-EASI (Kurtz et al., 2015). This method relies on the

inference of graphical models using the concept of conditional independence. It avoids

wiring indirectly connected OTUs and thus produces sparse networks (compared to other

inference methods like SparCC, Friedman and Alm, 2012, and CCREPE, Schwager et al.,

2019). As a consequence, SPIEC-EASI has a high precision (percentage of predicted edges

that are true positives), meaning that most predicted edges are true positives (Kurtz et al.,

2015; Röttjers and Faust, 2018). Although the precision of SPIEC-EASI declines as the

number of samples is reduced and that its sensibility (percentage of edges from the real
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network that are predicted) is low (meaning that an important proportion of interactions

existing in the real network are not predicted by the method, Röttjers and Faust, 2018),

this method was shown to outperform classical correlation-based methods in terms of

precision and capacity to remove indirect edges.

Considering that the samples we used to reconstruct networks are from different environ-

ments, associations predicted by network methods may reflect the influence of habitat

filtering (Chaffron et al., 2010). To mitigate this effect, we applied a prevalence filter to

remove taxa with low prevalence (as recommended in Berry and Widder, 2014; Weiss

et al., 2016 and Röttjers and Faust, 2018). Consequently, only OTUs occurring in many

samples were used to reconstruct networks and potentially important OTUs, for exam-

ple highly specialized species that may have a low abundance, were not included in the

networks.

3.2.5.3 Communities shared more than one third of common actors but differ on

their associations

Although general characteristics of the three inferred networks are similar, centrality

metrics vary between the states. For example, the NPP network displays higher node

degree and betweenness compared to the CE and FA networks.

More than a third of the OTUs are shared between the three networks (37.5%), whereas

very few associations are preserved (1.8%). Interestingly, the CE and FA networks have

the highest number of common associations compared to the NPP network. Thus, the

NPP network showed relatively more singularities compared to the CE and FA networks,

but this trend has to be interpreted with caution as this network involves more nodes.

A large number of OTUs correspond to the same taxonomy, including Synechococcus,

Prochlorococcus, SAR11 and SAR86. For instance, Synechococcus corresponds to 36

OTUs, and their repartition in the states is not homogeneous: 2 OTUs are specific to

NPP, 10 OTUs are specific to CE, 6 OTUs are specific to FA, whereas 6 OTUs are core.

These variations may reflect the involvement of distinct ecotypes (Vergin et al., 2013;

Farrant et al., 2016) and definitely point out the need to investigate relationships between

prokaryotic lineages via more resolutive genomic markers, in order to highlight precisely

their different ecological associations (Sher et al., 2011).

Nowadays, network inference studies generate thousands of hypothetical associations,

but only few of these interactions are validated, either by microscopy (Lima-Mendez et al.,

2015; Mordret et al., 2016; Vincent et al., 2018) or by comparison with literature-curated

gold standard databases (Poelen et al., 2014; Li et al., 2016; Vincent and Bowler, 2019).
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Pairwise culture of bacterial strains highlighted positive (Sher et al., 2011; Biller et al.,

2014) and antagonistic interactions among marine pelagic bacteria (Grossart et al., 2004;

Long and Azam, 2001). We recovered a positive association observed in the lab between

the genera Prochlorococcus and Alteromonas (Sher et al., 2011; Biller et al., 2014). In the

lab, Prochlorococcus was found to support the growth of heterotrophic marine bacteria

such as Alteromonas through the release of vesicles that was the only carbon source (Biller

et al., 2014). This association is present only in the NPP network that include three edges

involving Prochlorococcus on one side and Alteromonas on the other side. This association

gives an example of the transport of carbon fixed by photoautotrophs into the microbial

food web. Although the experimental validation of microbial interactions is necessary,

this is a long a tedious task. As the integration of external data provides additional

support for hypotheses based on microbial networks, the recurrent observations of the

same association through distinct in silico studies might also be a path to consider for

network validation.

Among the keystone OTUs was highlighted the cyanobacteria Synechococcus in the NPP

and FA networks. This result confirms once again and via a distinct inference network

method (compared to Guidi et al., 2016), the importance of Synechococcus in the biological

carbon pump (Morán et al., 2004). SAR11 was also detected among highly central OTUs

in all networks. This group is highly widespread and abundant (approximately 25%

of all plankton, Giovannoni, 2017). The central position of SAR11 and SAR86 in all

networks may be explained by their essential function of oxydizing carbon and nutrients in

oligotrophic conditions (Giovannoni, 2017; Dupont et al., 2012). In addition to eubacteria,

poorly known yet highly abundant Euryarchaeota from the Marine Group II (Zhang et al.,

2015) display central positions in the NPP and CE networks. Like SAR11 and SAR86,

they are potentially important players in the global carbon cycle because of their unique

patterns of organic carbon degradation (Zhang et al., 2015).

3.2.6 Conclusion and perspectives

To our knowledge, this study constitutes the first attempt to define biogeochemical states

of the biological carbon pump by integrating its three components (primary production,

carbon export and flux attenuation) based on in situ measurements. The building and

comparison from association networks of each state revealed the variability of the bacte-

rioplanktonic communities involved. However, the associations rather than the lineages

seem to distinguish the states. Besides, hub OTUs and associations that we considered

as keystones of microbial communities were highlighted. The consistence of these hy-

potheses will have to be confirmed in the future by the study of additional data sampled
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at a broader geographic scale and at a thinner and more regular time. Finally, a global

comprehension of the carbon cycle in the ocean will also imply the study of the entire

planktonic community, from viruses to metazoans. Our study constitutes a new and nec-

essary step towards linking genes to ecosystems, and towards the use of "ecogenomics

sensors" (sensu Ottesen, 2016) to monitor the health of the carbon cycle at a global scale.

92



3.2 Article 2 (Benoiston et al., in prep.): The microbial drivers of the biological carbon pump

3.2.7 Supplementary information

Figure 3.9 – Filtering of OTUs before association network building. On the biplots, each point
represents an OTU. They are plotted according to their abundance and the number of samples
in which they appear. OTUs kept for association networks building are displayed in turquoise.
Discarded OTUs are displayed in red. The points’ size translates their abundance’s variance. OTUs
were filtered (1) on their prevalence (at least 70%) and (2) on the variance of their abundance (20%
most variant OTUs).
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Figure 3.10 – Non-metric multidimensional scaling performed on prokaryotic samples based on 16S

mi tag relative abundances at different taxonomic levels. Colors refer to the relative contribution
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the state each sample belong to (circles for NPP, triangles for CE, squares for FA and crosses for
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94



3.2 Article 2 (Benoiston et al., in prep.): The microbial drivers of the biological carbon pump

Between NPP carbon export flux attenuation

0
5

0
0

1
0

0
0

1
5

0
0

D
is

s
im

ila
ri

ty
 r

a
n

k
s

R = 0.105 , P = 0.0352 *

Between NPP carbon export flux attenuation

0
5

0
0

1
0

0
0

1
5

0
0

D
is

s
im

ila
ri

ty
 r

a
n

k
s

R = 0.034 , P = 0.2482

Between NPP carbon export flux attenuation

0
5

0
0

1
0

0
0

1
5

0
0

ANOSIM / otu

D
is

s
im

ila
ri

ty
 r

a
n

k
s

R = 0.109 , P = 0.0336 *

Between NPP carbon export flux attenuation

0
5

0
0

1
0

0
0

1
5

0
0

ANOSIM / family

D
is

s
im

ila
ri

ty
 r

a
n

k
s

R = 0.098 , P = 0.0439 *

Between NPP carbon export flux attenuation

0
5

0
0

1
0

0
0

1
5

0
0

D
is

s
im

ila
ri

ty
 r

a
n

k
s

R = 0.093 , P = 0.0563

Between NPP carbon export flux attenuation

0
5

0
0

1
0

0
0

1
5

0
0

D
is

s
im

ila
ri

ty
 r

a
n

k
s

Phylum Class

Family

OTU

Order

Genus

R = 0.088 , P = 0.0657

Figure 3.11 – Analysis of Similarity (ANOSIM) comparing the three states, based on 16S mi tag
abundances. Analysis has been performed at different taxonomic levels (from the phylum to the
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Figure 3.12 – Violin plots of degree, betweenness, closeness and clustering coefficient, showing
differences between the networks.

Table 3.3 – Results of Kruskal-Wallis followed by a pairwise Wilcoxon rank sum test comparing
nodes attributes between networks. P-values were adjusted with the Benjamini and Hochberg
method (Benjamini and Hochberg, 1995).

Kruskal-Wallis tests Pairwise Wilcoxon rank sum tests

χ2
p-value

NPP vs. CE

p-value
CE vs. FA p-value

FA vs. NPP

p-value

degree 28.38 6.876e-7*** 1.5e-6*** 0.12046 0.00028***

betweenness 9.7104 7.788e-3** 0.0431* 0.5087 0.0079*

closeness 621.95 <2.2e-16*** <2.2e-16*** <2.2e-16*** <2.2e-16***

clustering

coefficient
17.763 1.389e-4*** 0.740019 0.00186** 0.00016***

*** p<0.001, ** p<0.01, * p<0.05
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Figure 3.13 – Scatterplot matrices of centrality metrics measured on the three networks (transitivity
= clustering coefficient).
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Table 3.4 – Positive edge percentage (PEP) according to the core or specific "nature" of the nodes

edges group number percentage

NPP 1401 70
all CE 1149 73

FA 1048 66
NPP 150 75

spe—spe CE 41 71
FA 24 73
NPP 484 85

core—core CE 493 85
FA 447 76
NPP 251 57

core—spe CE 92 50
FA 102 50
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Chapter 4

Random forest-based estimates of the biological

pump processes from meta-omics

The goal of this chapter is to test if statistical learning methods are possible tools to predict

from meta-omics the states of the biological carbon pump, and to highlight environmental

biomarkers.

The chapter starts with an overview of statistical learning describing the basic terminology

and concepts, mainly based on the books An Introduction to Statistical Learning by James

et al. (2013) and Introduction au Machine Learning by Azencott (2018).

The chapter continues with a draft manuscript of the work I initiated with Damien Eveil-

lard, Associate Professor at the Laboratoire des Sciences du Numérique de Nantes (LS2N),

France. This work has been led in collaboration with Marie Soret, a Master 2 student

from Sorbonne Université, Paris (Master "Image et Son pour les systèmes intelligents"),

that Lucie Bittner and I supervised for a 6 months internship from April to September

2018. We introduced Marie to high-throughput sequencing, marine metagenomics and

to the problematic of the biological carbon pump. She brought her expertise in machine

learning and in MATLAB coding. I defined the different steps of the study: (1) tests with

different machine learning algorithms, (2) choice of the best algorithm, (3) run and opti-

misation. Marie Soret implemented these steps and I complemented her analyses during

these past months. I conclude the chapter with a discussion on our current results, on

pitfalls and perspectives, including potential improvements for futures studies.
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Chapter 4. Random forest-based estimates of the biological pump processes from meta-omics

4.1 Introduction to machine learning techniques

Machine learning refers to the ability, for a computer program, to learn without being

programmed. Basically, it consists in searching for a predictive function based on data.

The data used by the algorithms to learn are of two types: the input data (that consists

in a data matrix of samples, also called observations or examples
1

for which predictors,

also called features, attributes or simply variables
2
, are available), which are used to

predict, and the output data (i.e. the labels), which are the variables we want to predict

(figure 4.2a). Machine learning is used in a wide range of subjects, for example to set up

anti-spam filters, to recommend books, movies or other products adapted to our tastes,

to identify faces on pictures and to diagnose diseases. Machine learning problems are

divided into two different categories: the supervised and unsupervised learning (figure

4.1). In the case of supervised learning, the value of the variable to predict is known. The

goal of supervised learning is to make predictions from a labeled set of observations, in

order to predict the label of upcoming unlabeled observations. The labels can be classes or

real numbers. In the first case, the problem consists in classifying the observations while

in the second case, it is a regression problem. From a usually large number of predictors,

the training consists in identifying the ones that explain the best the labels of the training

observations. The model trained on a subset of possible situations is then used to make

predictions on upcoming observations. In the case of unsupervised learning, data are not

labeled. The problem is not to predict but rather to better understand the data by finding

underlying structures in the data or extracting groups of observations displaying common

characteristics. When labeling the whole training set requires too much time and efforts,

a third intermediate category can be used: the semi-supervised machine learning, which

learns from a partially labeled training set.

Observations ML algorithm

Labels

Predictive
model

Observations ML algorithm
Improved

observations

Supervised learning Unsupervised learning

Figure 4.1 – Conceptual diagram of supervised and unsupervised machine learning algorithms,
modified from Azencott (2018).

As suggested in the previous paragraph, in the case of supervised machine learning the

data set is divided into two subsets: the training set and the test set (figure 4.2b). The

1
In this chapter, we will prefer the term "observation" to "sample" and "example" but all terms are syn-

onyms.

2
Similarly, we will prefer the term "predictor".
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4.1 Introduction to machine learning techniques

training set is used to train the machine learning model. The objective of the training

step is to search for a model whose predictions are as close as possible to the true labels.

In other words, it means minimizing the prediction error on the training set (i.e. the

empirical error). However, minimizing the empirical error does not ensure that the error

will be minimized on all possible data (i.e. the generalization error). Indeed, in some cases,

the model may be overfitted and the error on upcoming observations not used for training

will be underestimated. Yet, the interest of a supervised machine learning algorithm is to

perform well on unknown observations. To evaluate a model, it is thus essential to use

labeled observations that were not used to train it. The simplest way to achieve this goal

is to keep a part of the observations to evaluate the model: this is the test set.
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Figure 4.2 – Organisation of data in a supervised learning problem. The data consist in a matrix of
observations and predictors and a label vector (a). It is divided in a training set, that is used in the
training step and a test set, that is used to evaluate the performances of the model (b). To choose
between several models, a validation test is created in order to keep test observations on which the
generalization error can be calculated once the model has been chosen (c).

To evaluate the predictive performances of a supervised model, different criteria can be

used depending on whether the situation is a classification or a regression problem. In

the case of a classification problem, the prediction error is assessed by calculating the

classification error rate (i.e. the percentage of misclassified test observations), which is

the complementary to 1 of the accuracy (i.e. the percentage of correctly classified test

observations). However, not all errors are equal. Let’s take the example of a disease di-

agnosis: a false positive, that may be disconfirmed by further analysis, is preferable to a

false negative, where the disease is not detected and won’t be treated. Consequently, the

performances of a classification model are often summarized in a confusion matrix (figure

4.3) from which numerous evaluation criteria may be derived, such as the precision (pro-

portion of correct positive predictions among all positive predictions, i.e. TP/(TP+FP)), the

sensitivity (the proportion of correctly identified positive predictions, i.e. TP/(TP+FN)) and
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the specificity (the proportion of correctly identified negative predictions, i.e. TN/(FP+TN)).

Actual class

0 1

0

1

Predicted
class

true negatives (TN) false negatives (FN)

false positives (FP) true positives (TP)

Figure 4.3 – Example of a confusion matrix for binary classification. Here the classes are 0 and 1.
If we take the example of disease diagnosis, 0 may be the healthy patients while 1 may be the ill
patients. True positives (TN) are correctly classified positive observations; false positives (FP) are
negative observations misclassified as positive; false negative (FN) are positive observations incor-
rectly classified as negative and true negatives (TN) are correctly classified positive observations.

In regression problems, it is delicate to say whether a prediction is correct or not because

of numerical imprecision. Therefore, we prefer to quantify the performance of a model as a

function of the distances between the true and predicted values. The most commonly used

measure is the mean squared error (MSE), which is the sum of the squared differences

between the true (yi ) and predicted (ŷi ) values, divided by the number of test observations

(n) used to compute the error:

MSE =
1

n

n∑
i=1

(yi − ŷi)2
(4.1)

Other criteria may be used, such as the root mean squared error (RMSE) which allows for

measuring the error in the same units of the predicted variable.

In the case where one would like to choose between a set of models, the initial data matrix

may be divided in a third set of observations: the validation set (figure 4.2c). Of course,

we could calculate the error on the test set and then choose the one that has the smallest

error. However, the test set would no longer represent an independent set on which we

could assess the generalization error. Therefore, the solution is to split the initial data

set in three parts: the training set on which the different algorithms are trained, the

validation set on which the models are evaluated to select the best one and the test set

on which we evaluate the generalization error. To ensure the representativeness of the

training and validation sets, several procedures have been conceived. Classically, we use

the cross-validation that consists in dividing the data set several times and compute the

mean of the obtained results. There exist several procedures of cross-validation. The

leave-one-out cross validation (LOOCV) uses single observations for the validation set

and the remaining observations make up the training set. The k-fold cross-validation

(k-fold CV) is an alternative to LOOCV, described in section 4.2.3.2. The evaluation of a

model can also be achieved with a bootstrap, a procedure that creates a given number of
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sets, obtained by resampling data with replacement. The model is trained on each of the

bootstrapped sets and is evaluated on the remaining observations.

Predictive machine learning techniques encompass a number of methods. The simplest

and oldest ones are the linear and logistic regressions, which is based on the method of

least squares (i.e. the minimization of the squared differences between the actual and

predicted values). In the same period was developed the linear discriminant analysis by

Fisher (1936). By the end of the 1970’s, non-linear methods (i.e. methods that are able

to predict non-linear relationships between predictors and response variables), that had

not been addressed yet due to computational limitations, began to be developed, such

as regression and classification trees, which led to the development of random forests

that will presented in section 4.2.3.3. Another type of algorithm has been at the origin

of the numerous recent successes of artificial intelligence: the artificial neural networks,

initially created to model the information processing by biological neuronal networks.

This PhD manuscript will not describe all these methods in detail, but will rather briefly

present the ones that have been used for the following research article of section 4.2, with

a special emphasize on random forests.
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4.2.1 Abstract

Global change reshapes biodiversity and ecosystems services. Their variations are often

evaluated by using biomonitoring indicators (biotic and abiotic). New generation sequenc-

ing techniques now provide relative abundance of microbial lineages and functions from

environmental samples. Machine learning could be used to identify sets of environmental

sequences as bioindicators. By using meta-omics and environmental parameters from

the Tara Oceans expeditions, we propose the first study trying to predict biogeochem-

ical states from biological abundances derived from environmental DNA. A prokaryotic

metabarcoding data set was analyzed with random forests (RF), a machine learning tech-

nique that has proven his efficiency in research and engineering. The relevance of the

predictions are discussed, and a list of bioindicators / predictors (here Operational Tax-

onomic Units) is proposed.

4.2.2 Introduction

In the context of a rapidly changing ocean, it becomes urgent to increase our capacities

of observation and prediction (Claustre et al., 2009; Gruber et al., 2010; Sauzède et al.,

2017). It is necessary to predict future changes in the carbon cycle, particularly in the

biological carbon pump (Siegel et al., 2016), whose modifications due to global warming

and ocean acidification are uncertain (Passow and Carlson, 2012). Marine plankton play

an essential role in the biological carbon pump which contributes to the ocean’s capacity

to buffer anthropogenic carbon dioxide emissions (Ciais et al., 2013; Khatiwala et al.,

2013; DeVries, 2014), and changes in their biodiversity, abundance and biogeography

may strongly impact oceanic ecosystems. Therefore, monitoring planktonic populations

is of foremost importance to predict future changes occurring in the ocean. Current

biogeochemical models often include plankton as large "boxes" (e.g. NPZ (nutrient, phyto-

plankton, zooplankton) models, Franks, 2002), although improvements have been made

by including, for example, plankton functional types (Quéré et al., 2005). Beyond the

hypothetical inclusion of a more realistic view of planktonic diversity in these models,

a better understanding of the link between plankton and biogeochemistry requires to

identify bioindicators of the health status of the ocean.

Among the available techniques to identify these bioindicators are machine learning tech-

niques, also called statistical learning (James et al., 2013). Since the last decade, they

are increasingly applied in many science fields. For example in ecology, random forests

algorithms have been used to predict land cover from satellite data (e.g. Immitzer et al.,

2012; Rodriguez-Galiano et al., 2012). In oceanography, estimates of water-column nu-
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trient concentrations and carbonate system parameters were predicted from a set of in

situ measurements (e.g. temperature, salinity, hydrostatic pressure, salinity, latitude

and longitude) and remote sensing imagery using neural networks (Sauzède et al., 2017;

Friedrich and Oschlies, 2009). Machine learning techniques have also found various

applications in genomics (e.g. to recognize specific DNA regions, to assign functional

annotations to genes or to understand the mechanisms underlying gene expression, Lib-

brecht and Noble, 2015). In medicine, the identification of genomic biomarkers from

machine learning techniques is growing, especially in the context of precision medicine

(Ziegler et al., 2012), enabling diagnosis, prognosis, and selection of targeted therapies.

Recently, machine learning was applied on environmental DNA barcoding for biomon-

itoring purposes (Cordier et al., 2017, 2018) and notably to define biomarkers tracing

the origin of ballast water (Gerhard and Gunsch, 2019). To overcome the limitations of

morphology-based assessment of biodiversity, Cordier et al. (2017, 2018) demonstrated

that supervised machine learning could be used to predict accurate biotic indices (i.e.

continuous biological metrics that classify an environment from "poor" to "high" ecologi-

cal quality, based on taxonomic richness, composition, abundance, and functions) with

the advantage of pointing out a top list of sequences, which can be taxonomically as-

signed or not. All these studies show that machine learning offers promising techniques

to investigate genomic, transcriptomic and metabarcoding data.

Benoiston et al. (in prep.) defined three biogeochemical states of the biological carbon

pump from estimations of net primary production (NPP), carbon export (CE) and flux at-

tenuation (FA). They demonstrated that microbial association networks corresponding to

each of these states had specific interactions and specific keystone Operational Taxonomic

Units (OTUs) (i.e. that are highly central in microbial association networks). However,

it is unknown whether microbial abundances estimated by metabarcoding (here OTUs)

can be good predictors of these biogeochemical states. The goal of the present study is

to use supervised machine learning techniques in order: (1) to predict the state of the

biological carbon pump from environmental DNA, and (2) to identify biological predictors

(here OTUs) that could be used as biomarkers for future biomonitoring of the health state

of the pump (Bohan et al., 2017; Cordier et al., 2019). We address these questions by

training predictive models upon prokaryotic abundances estimated in the Tara Oceans

samples and by measuring their performances.
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4.2.3 Materials and methods

4.2.3.1 Data set building

Omics and environmental parameters data were retrieved from the Tara Oceans expedi-

tion (Pesant et al., 2015; Karsenti et al., 2011; Alberti et al., 2017).

For 104 stations and two depths (surface water layer (SUR) and deep chlorophyll maxi-

mum (DCM)), we focused on the prokaryote-enriched size fraction filters (i.e. the 0.22-1.6

µm fraction up to station #52 and the 0.22-3 µm fraction from station #56, Sunagawa

et al., 2015). In the Illumina-sequenced metagenomes, 16S ribosomal RNA gene frag-

ments were directly identified (so called 16S mitags, Logares et al., 2014) and mapped to

operational taxonomic units (OTUs) based on clustering of reference sequences from the

SILVA database (Quast et al., 2013) at 97% sequence identity. 16S mitags counts were nor-

malized by the total sum for each sample. The resulting abundance matrix of the OTUs (26

281 OTUs) in the 104 samples (a sample corresponds to a community sampled at a station

and a given depth) can be downloaded at https://figshare.com/s/23798e4046a2c21a9103.

From the analysis of Tara Oceans environmental data, Benoiston et al. (in prep.) defined

three biogeochemical states of the biological carbon pump. The Tara Oceans samples

were classified in the net primary production (NPP), in the carbon export (CE) or in the

flux attenuation state (FA) (https://figshare.com/s/f67bcb072aea125039d3; e.g. samples in

which NPP absolute values is relatively high compared to CE and FA were classified in the

NPP state). The NPP, CE and FA classes involves 14, 32 and 18 samples, respectively. We

removed the samples for which the classes were overlapping (see figure 3.4 of Benoiston

et al., in prep.), thus our final set for this prediction study involves 12 NPP, 15 CE and

29 FA samples.

4.2.3.2 Tests and algorithms comparison

Comparing the performances of different machine learning methods

The performances of six supervised machine learning algorithms were tested in order to

choose the best method as the one to predict the states of the biological carbon pump. The

tested algorithms are single decision trees (ftree), pattern recognition network (fpat), dis-

criminant analysis (fdiscr), discriminant analysis ensemble (fdens), random forests (fbag)

and forests trained on RUSBoost algorithm (frus). Here the input data of the algorithms

is the OTUs abundance matrix, in which the samples correspond to the observations and

the OTUs to the predictors. The goal is to assign the observations to the correct class

(NPP, CE or FA). It is a classification problem.
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Principle of the six machine learning methods tested

A decision tree consists of nodes and branches. At each internal node (including the

first one, that is the root node), the observations are segmented in two subsets according

to a splitting rule until they reach a terminal node (or leaf ) where the decision to assign

the observation to a class is made (see figure 4.4). MATLAB function: fitctree

Linear discriminant analysis (LDA) is a method used to find linear combinations of

predictors (here OTUs) that allow to separates observations in classes. LDA models the

distribution of the predictors separately in each of the classes and then uses Bayes’

theorem to estimate the probability of an observation to belong to a given class, knowing

the distribution of the predictors. MATLAB function: fitcdiscr and fitcensemble for

ensembles of LDA

Pattern recognition networks are feedforward artificial neural networks. These net-

works are based on multiple layers (i.e. input, hidden and output layers) composed

of neurons that are basically transfer functions. The neurons of one layer are inter-

connected with the neurons of the subsequent layer. The weights of the connections

are adjusted by minimizing a cost function during the training phase through back-

propagation. MATLAB function: pattnet

Random UnderSampling Boosting (RUSBoost) is a tree-based method (Seiffert et al.,

2008) that works in a similar way to bagging (see section 4.2.3.3) as it uses trees as

building blocks to predict output variables. It is especially effective at classifying im-

balanced data. Indeed, as its name implies, classes with more observations are under

sampled: to grow each tree of the ensemble, N (the number of observations in the class

with the fewest observations) observations of every class are used. MATLAB function:

fitcensemble, method: RUSBoost

Random forests (RF) is a tree-based method, which is detailed in section 4.2.3.3. MAT-

LAB function: fitcensemble, method: bag.

For each of the six supervised methods, the set of observations was randomly divided in

three subsets: a training set used to fit the model (training step), a validation set used to

estimate the actual performances of the models and a test set. As our data set is limited to

relatively few samples (59 samples), we used the k-fold cross validation (k-fold CV). k-fold

CV consists in dividing the data set into k subsets, or folds, of approximately equal size.

One of the k folds is used as a validation set and the k-1 others constitute the training

set. The error rate is calculated on the observations of the validation set. The algorithm is

ran k times, each time a different fold is used as the validation set. The process results in

k estimates of the validation error rate that are averaged to obtain the k-fold CV estimate

(James et al., 2013). For each of the six algorithms, the prior distribution of the classes
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was set to be uniform to overcome the issues due to the statistical over-representation of

the CE class.

4.2.3.3 Random forest development

Principle of random forests

Random forests (RF) are a tree-based method that can be applied to both classification

and regression problems (Breiman, 2001). RF are ensembles of decision trees. A decision

tree consists of nodes (a node corresponds to a subset of observations or to a unique

observation) and branches (a branch corresponds to a classification decision) (figure 4.4).

The RF algorithm performs in two steps: training (using a training set) and prediction

(using a validation or test data set).

First, the training step consists in creating N decision trees (formed by nodes and

branches). At each node (white nodes in figure 4.4), the observations (here the Tara

Oceans samples) are segmented according to a splitting rule until they reach a terminal

node (a leaf corresponding to a green/red/blue node in figure 4.4) where is made the

decision to assign the observation(s) to a class (here NPP, CE or FA). Only a random set of

predictors (here the OTUs) is available at each split and the predictor that discriminates

the best the classes is chosen. Usually, RF use the Gini Index as a measure of best split

criterion (Breiman et al., 1984). The best predictor is chosen by minimizing the hetero-

geneity of the child nodes that result from the test (because we want the observations

belonging to distinct classes to be at best discriminated by the test). Each tree is built in-

dependently on a random bootstrapped training subset of observations with replacement:

this technique is called bootstrap aggregating or bagging. In our study, for each of the N

trees, 2/3 of the observations were randomly sampled to build the training subset.

Second, the RF algorithm performs the prediction step. The observations not included

in the training set are called out-of-bag (OOB) observations. OOB observations are used to

evaluate the performance of the RF: each of the OOB observations is run on the decision

trees (built during the training step) for which it is OOB, and thus classified according

to the training structure (path of grey nodes leading to a colored leaf in figure 4.4). As

a result, for each observation X, which could have appeared several times in the OOB

observations (but not necessarily in all OOB subsets), a majority vote is applied in order

to assign it to a final class (e.g. an observation X might be classified once in the NPP class,

0 time in the CE class and 10 times in the FA class so as a result with a majority vote,

it will be classified in the FA class). The proportion of misclassifications among the total

number of OOB observations (the OOB predictions are compared to their true classes)
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random training subset 1 random training subset 2 random training subset N

tree 1 tree 2 tree n

Step 1: training

tree 1 tree 2 tree n

...

...

Step 2: prediction

OOB observation X OOB observation X OOB observation X

majority vote

final class

Figure 4.4 – Conceptual diagram of the random forest algorithm. N trees are grown from N random
bootstrapped subsets of observations (samples) (step 1: training). At each split, a random subset
of predictors (OTUs) is selected and the predictor that discriminate the classes the best is chosen.
Each of the remaining observations that were not used to fit a given tree (i.e. the out-of-bag OOB
observations) are one after the other used for prediction (step 2). For an observation X, for each of
the trees in which this sample was OOB at step 1, a class is assigned following the decision trees.
Finally, the majority vote is used to infer a final class to the observation. White nodes correspond to
subsets of observations, green/red/blue leaves correspond to a final class, gray nodes correspond
to the decision paths followed by an OOB sample leading to its classification during step 2.

gives an estimate of the prediction error rate of the model. In return, the accuracy of

the model (percentage of well classified observations) can be calculated from the OOB

observations.

Optimization of random forests

Two parameters were set to improve the RF prediction: the number of trees in each

forest (ntree) and the number of predictors to try at each split (mtry). Besides, to avoid the

problem arising from the over-representation of the CE class over the NPP and FA classes,

we enforced the prior probability of each class to represent a uniform distribution.

Predictors importance measure

RF allows to measure the importance of the predictors for the classification process. This
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feature is particularly interesting if the number of predictors is very high. In this way,

it is possible to assess how each predictor influences the model and a selection of the

most interesting predictors according to the model is possible. The Gini Index and the

OOB error rate were used to assess the importance of predictors. The measure of the

importance of a given predictor is computed by permuting it while leaving all the others

unchanged, and measuring the variation in the OOB error rate or the Gini Index that

occurred.

The comparison of the different statistical learning algorithms tested was performed with

MATLAB while the final predictions with the RF were done with the R package randomForest

(R version 3.5.2, randomForest version 4.6-14).

4.2.4 Results

4.2.4.1 Tests to select a machine learning algorithm

Six supervised machine learning algorithms were tested on our data set for a classification

purpose. For each algorithm, the accuracy (percentage of well classified observations from

the validation set) was computed for 10 runs (i.e. 10 models were built for each algorithm).

The accuracy of the models is available on figure 4.5, showing that, on average, RF gave

the best recognition rate.

Figure 4.5 – Predictive performances (accuracy) of the six machine learning algorithms tested for the
prediction of the biological carbon pump states (classes). Here the comparison of the distributions
(summarized by boxplots) of the accuracy showed, on average, a better performance with RF. bag:
random forest, dens: discriminant analysis ensemble, discr: discriminant analysis, pat: pattern
recognition network, rus: forest train on RUSBoost algorithm, tree: single decision tree.
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4.2.4.2 Effect of the number of trees and the number of tested predictors at each

split on the model’s accuracy

To assess the optimal number of trees in the forest (ntree) and the number of tested

predictors at each split (mtry), RF were created with variable number of trees, ranging

from 1 to 2,000 and variable number of predictors. As suggested by Breiman (2001),

we tried the default value of mtry implemented in the function randomForest() from the

randomForest R package (i.e. 4), half of the default and twice the default. We also tested

higher values as it may give better performance in the case of having a large number of

predictors but expecting only very few to be "important" (Liaw and Wiener, 2001). To sum

up, the values 2, 4, 8, 16, 32, 64 and 128 were tested for mtry. As a result, 14,000 different

RF prediction models were tested for the classification. Figure 4.6 shows the OOB error

rate as a function of ntree. The OOB error rate is very high for very low values of ntree,

and as ntree increases until around 100, the OOB error rate sharply drops, regardless the

value of mtry. The OOB error rate then continues to be highly variable until it becomes

more stable from approximately 1,600 trees. The common strategy to select ntree is to

take the value from which the OOB error rate stabilizes (e.g. Immitzer et al., 2012). For

this reason, we set ntree to 1,600. The tested values of mtry yield variable classification

errors, especially before reaching the stabilization point. From this point, the OOB error

rate converges around 48% for all the values of mtry. Thus, the value of mtry was observed

to have little effect on the OOB error rate. However, running the RF with a number of

tested predictors at each split equal to 128 seemed to give slightly lower and more stable

OOB error rates. This value was therefore used to train the final model.

4.2.4.3 Predictive performances of RF for the prediction of the states of biological

carbon pump

We evaluated the performances of the RF to predict the state of the biological carbon pump

(i.e. the classes) by running the RF 10 times. With the parameters used for the analysis

(i.e. ntree = 1,600 and mtry = 128), the median of the OOB error rate is 44.64%, meaning

that only 55.36% of the observations were correctly classified. The confusion matrix

(figure 4.7) and the class error show that, beyond this global predictive performance, the

observations belonging to the CE class are better classified than the others. 75.86% of

the CE observations are well classified while only 46.67% of the FA observations and

16.67% of the NPP observations are correctly classified. As we tuned the distribution of

the classes to be uniform, other factors must come into play to give these imbalanced class

errors. To disentangle the confusion between the classes, we performed the classification
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Figure 4.6 – Effect of the number of trees (ntree) and random split predictors (mtry) on the out-of-bag
(OOB) error rate with RF.

on pairs of classes (i.e. the input data included observations of only two classes out

of three). Lower OOB rates are observed when running pairwise classifications. When

selecting observations belonging to the CE and NPP classes only, the OOB rate drops to

36.59%. It is even smaller when considering the FA and CE classes (22.73%) and the FA

and NPP classes (18.52%). The differences between the observed OOB rates indicate that

the NPP and CE classes appear to be more often confused than the NPP and FA classes on

one hand and the FA and CE classes on the other hand. Indeed, most NPP observations

(91.67%) are classified as CE observations. However, fewer CE observations (13.79%) are

classified as NPP observations (figure 4.8). A high proportion of FA observations (53.33%)

are also mistaken for CE observations.

4.2.4.4 Best predictors identification

The importance of the predictors for classifying samples in the NPP, CE or FA class was

assessed with the mean decrease in accuracy and the mean decrease in node heterogene-

ity measured with the Gini Index. Figure 4.9 shows the contribution of each variable to

the classification model generated using the prokaryotic OTU relative abundances. The

top 30 best predictors according to the mean decrease in accuracy (values ranging from

1.47e-03 to 4.22e-03) share 16 OTUs with the top 30 best predictors according to the
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Figure 4.7 – Confusion matrix comparing the RF predictions to the true classes of the OOB obser-
vations. Elements on the diagonal of the matrix represent out-of-bag observations whose class
was correctly predicted, while off-diagonal elements represent observations that were misclassified.
Squares are colored in blue when numbers are high and white when numbers are low. A good
classifier is expected to to give a confusion matrix with a blue diagonal (from the left bottom to the
right top) and white off-diagonal elements.
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Figure 4.8 – Confusion matrices comparing the RF predictions to the true classes of the OOB obser-
vations for pairs of classes (from left to right: CE vs NPP, FA vs NPP and CE vs FA).

mean decrease in the Gini Index (values ranging from 0.135 to 0.066). The most im-

portant OTU according to both measures is an Actinobacteria belonging to the family

OCS155 Marine Group. Regarding the mean decrease in accuracy, the following OTUs

with a high contribution to the RF model are another Actinobacteria of the family OCS155

Marine Group (order Acidimicrobiales) and a Proteobacteria of the family S25-593 (order

Ricksettiales). According to the mean decrease in the Gini Index, the two Actinobacteria

belonging to the family OCS155 Marine Group detected as the most important by the first

measure is also important for prediction.

Overall, almost all of the top 30 predictors according to the mean decrease in accuracy
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are bacteria, with 53% belonging to the Proteobacteria phylum, followed by Actinobacteria

(13%) and Cyanobacteria (13%). According to the mean decrease in Gini Index, 50% of

them are Proteobacteria, 13% are Actinobacteria, 10% are Cyanobacteria and 7% are

Chloroflexi. Few of them are annotated to the genus level. However, we can note the

presence of the Cyanobacteria Procholoroccus, the Alphaproteobacteria Tateyamaria, the

Gammaproteobacteria Alteromonas and the Flavobacteria Mangrovimonas.
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Figure 4.9 – Contribution of the 30 most important OTUs in terms of mean decrease in accuracy
and Gini Index. The finest taxonomic annotation is given for each OTU and colors correspond to
their phylum, as indicated in the legend. Common OTUs between the top 30 most important OTUs
according to both measures are highlighted with an asterisk.

4.2.5 Discussion

In this study, we presented the first evaluation of the performance of machine learning

for the classification of ocean samples differentiated on biogeochemical features, based on

the analysis of prokaryotic metabarcoding data. The results show that RF outperform five

alternative approaches such as single decision trees or discriminant analysis. RF have

many advantages over other statistical learning algorithms: it (1) can be used efficiently in

large databases that have many more predictors than observations, (2) does not overfit, (3)

is robust to noise (i.e. performs well even when most predictors are noise), (4) generates

an internal estimate to monitor error (i.e. the OOB error rate), (5) can extract important
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predictors acting in the classification, and (6) few parameters are necessary to tune to

achieve good performance (i.e. the number of trees in the forest and the number of input

variables tried at each split).

Two parameters were tuned to optimize the performance of RF: the number of trees (ntree)

in the forest and the number of tried predictors at each split (mtry). As ntree increases,

the OOB error rate decreases, which is in accordance with the general trend observed

with many data sets (Breiman, 2001). Besides, our results show that the value of mtry

has little effect on the OOB error rate, which is consistent with the results of Breiman

(2001).

Although RF showed better performances compared to other machine learning algorithms,

the error rate obtained when classifying observations in the three classes NPP, CE and

FA is relatively high (almost half of the observations are misclassified, i.e. 44.64%) com-

pared, for example, to the study of Gerhard and Gunsch (2019), who used environmental

DNA to predict the origin of water samples (i.e. ocean, harbor or ballast) and obtained

an OOB error rate of 11.94%. Whereas the distribution of the classes was set to be uni-

form, it appears that an important proportion of observations belonging to the NPP and

FA classes are mistaken for the CE class which was initially representing almost half of

the observations. In future studies, other parameters could be tuned in order improve

the performance of the model. For example, stratified sampling could be a good solution

to prevent misclassification due to unbalanced classes. Stratified sampling consists in

dividing observations into homogeneous groups before sampling, and sampling an equal

number (or another proportion if desired) of representatives of each group to grow each

tree. A consequence of stratified sampling is that the most prevalent class is undersam-

pled, but increases the influence of the rare classes. Indeed, as RF uses majority vote to

classify observations, unless the rarest classes are easily distinguishable from the most

prevalent one, they are unlikely to "win" when running the prediction.

The two classes that appear to be the most confused are the NPP and the CE classes.

Beyond the problem of class imbalance, the confusion between the two classes may be

due to the fact that net primary production and carbon export are correlated measures

(Pearson’s R = 0.53, p = 1.93e-07 in our data set). Thus, samples in the NPP class may

display high values of carbon export and, likewise, samples in the CE class may display

high values of net primary production. As a result, the distinction between these two

classes may be unclear. On the contrary, the pairwise classification of NPP and the FA

samples appears to give the best OOB error rate, which may be explained by the weaker

relationship between the two measures (Pearson’s R = -0.16, p = 0.222 in our data set).

118



4.2 Article 3 (Benoiston et al., in prep.): Machine learning and meta-omics: are we ready to predict

ecosystem processes from omics?

We identified the best predictors for classifying the samples into the three biological car-

bon pump’s classes by calculating the mean decrease in accuracy and the mean decrease

in the Gini Index. These two measures are often used to select important predictors and

possibly to rerun the RF only with these best predictors (selected after a first application

of RF). Most OTUs identified in the top 30 predictors belong to the Proteobacteria, Acti-

nobacteria and Cyanobacteria phyla. According to both measures, the OTU that leads

to the highest mean decrease is an OTU belonging to the OCS155 Marine Group (phy-

lum Actinobacteria). This group, discovered in the Oregon coastal waters (Rappé et al.,

2000) has been found at various places in the ocean but its function and its ecological

role is still unknown (Liu et al., 2015a). This bacterial group is not observed among the

top 10 keystone OTUs of Benoiston et al. (in prep.). However, an OTU assigned to the

family Rhodobacteraceae and identified as an important predictor according to the mean

decrease in accuracy (25th most important OTU on figure 4.9) is also amon the top 10

keystone OTUs of the CE microbial association network of Benoiston et al. (in prep.).

The decrease of the mean decrease accuracy or Gini Index for the best predictors is rather

smooth. As a result, no OTU seems to clearly distinguish from the others. Besides,

the mean decrease in accuracy and in the Gini Index is very low for all OTUs. The one

identified as the best predictor by both measures leads to a mean decrease in accuracy of

less than 0.0014 and a mean decrease in the Gini Index of less than 0.13, which is very

low compared to other results obtained with RF on metagenomic data (e.g. Dinsdale et al.,

2013). These low values could be explained by the fact that the relative abundances of

many OTUs are probably highly correlated. Indeed, RF selects at each split the predictor

that discriminates the best the classes. When a data set has correlated predictors, any of

them can be selected as they all lead to similar Gini Indices. Although random selection

of predictors at each split may reduce this effect, if many predictors are correlated, the

importance of a given OTU may appear to be smaller if many others remove the same

amount of node heterogeneity. In our case, selecting uncorrelated predictors may allow

to better disentangle good predictors and reduce the complexity of the model. This could

be done by computing correlation between relative abundances of OTUs and extracting

groups of highly correlated OTUs. This type of analysis is implemented in the method

WGCNA (Langfelder and Horvath, 2008), which delineates clusters of highly correlated

genes or OTUs and computes a sort of principal component (called "module eigen value")

for each cluster. These eigen values could be used as predictors in the RF model and

overcome the problems arising from many correlated predictors. Another solution could

be to randomly select one OTU among each of these clusters.
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4.2.6 Conclusion

This assessment of the use of random forests from metabarcoding data shows that

prokaryotic OTUs relative abundances may not be highly efficient to predict biogeochem-

ical states of the biological carbon pump as we defined them. However, we suggest to

perform further analyses to confirm our findings such as tuning other parameters of the

RF method and pre-selecting uncorrelated predictors. As the three environmental mea-

sures (net primary production, carbon export and flux attenuation) used to define the

states seem to be more or less strongly correlated, it would also be interesting to apply RF

in the case of regression to predict absolute values of the environmental measures. If bet-

ter performances could be obtained, important predictors could be tested as biomarkers

of the processes of the biological carbon pump, and possibly integrated in biogeochemical

models to improve predictions.
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Chapter 5

Discussion and perspectives

5.1 Summary of the main results

The general objective of this work was to improve our understanding of the biological

carbon pump through the use of environmental omic data in the oligotrophic ocean.

More precisely, we were interested in how microbial association networks and machine

learning techniques could give insights into this process.

Chapter 2 presented a literature review on the evolution of diatoms and their biogeo-

chemical functions. In this review, we highlighted that they are an important group of

eukaryotic plankton that contributes to about 20% of total primary production on

Earth and significantly contribute to the export of carbon and silicon to the deep

ocean, therefore being highly important in the ocean carbon cycle. Moreover, these mi-

croalgae may have been active in controlling past climate changes since their diversifica-

tion and proliferation in the Southern Ocean since the Cretaceaous. In the last part of

this chapter, we focused on the benefit of omics for the study of the evolutionary history

of diatoms and their metabolism.

In chapter 3, biogeochemical states of the biological carbon pump were defined to

integrate its three components: primary production, carbon export and flux attenua-

tion. To our knowledge, this is the first time biogeochemical states are defined in this

way. This allowed us to classify samples of the Tara Oceans expedition according to these

states that correspond to situations where one of the processes is dominating compared

to the others. The metabarcoding data associated to these samples give access to the bac-

terioplankton communities that show variability according to the states. In particular,

significant differences were highlighted at the levels of prokaryotic OTUs, families

and orders. However, the most significant differences appear to come from the properties

of microbial association networks that were inferred for each state based on microbial
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abundances. Indeed, the networks display significantly different centrality metrics,

such as the degree, betweenness and closeness centrality, and clustering coefficient. Be-

sides, we highlighted hub OTUs and associations that we considered as keystones of

microbial communities. The highly connected and central OTUs are different in the

three networks, except for one of them (an OTU taxonomically assigned to the archaeal

clade Marine Group II). Despite these differences, many keystone OTUs have the same

taxonomical assignation, potentially indicating that they represent ecotypes of the same

species.

Finally, chapter 4 focused on testing whether the biogeochemical states of the biological

carbon pump could be predicted from the relative abundances of prokaryotic plankton

estimated with metabarcoding techniques. After having tested several algorithms, the

random forests appeared to be the most efficient one for this purpose. However, the

assessment of random forests showed that prokaryotic OTUs relative abundances may

not be highly efficient to predict biogeochemical states of the biological carbon pump as

we defined them. Actually, the main issue we detected is that the primary production

and the carbon export classes are often confused by the random forests model we

built. This may be explained by the fact that these two processes are tightly linked

in many oceanic regions, therefore preventing from effectively distinguish them, and by

the prevalence of the carbon export class. Potential biomarkers were also highlighted,

based on their importance for predicting the states. Most of them belonged to the phyla

Proteobacteria, Actinobacteria and Cyanobacteria. However, these predictors considered

independently had a weak impact on the predictive power of the model, probably because

of the correlation of their relative abundances. Despite these results, we provide in the

discussion several avenues that could improve the current model. These include

tuning other parameters of the RF method to decrease the influence of the most prevalent

class and pre-selecting uncorrelated predictors.

5.2 Limits of microbial association networks inference

During this thesis, I used networks inference methods to deduce microbial associations

from metabarcoding data. These methods have been more and more applied the last

decade and gave insights into previously unknown microbial interactions and community

organization (Röttjers and Faust, 2018) in various environments (e.g. ocean, soil, gut).

Microbial networks are valuable tools to visualize microbial interactions and may repre-

sent emergent properties of microbial communities (i.e. properties that arise from the

connective structure of communities that would not be observed in individual microbes,
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Aderem, 2005). The structure of microbial networks may translate habitat preferences

(Chaffron et al., 2010) and distinguish hub species, potentially relevant for the stability of

the networks (Berry and Widder, 2014). However, in general, interpreting these networks

is not straightforward (Vacher et al., 2016; Röttjers and Faust, 2018).

5.2.1 Biases related to high-throughput sequencing data

When inferring networks from high-throughput sequencing data, limitations arising from

16S marker genes may be problematic. These include: low resolution, varying sequencing

depth, primer bias, 16S copy number and sparsity (Hong et al., 2009; Louca et al., 2018;

Röttjers and Faust, 2018).

Species or strains may be distinguishable with difficulty from marker 16S sequences. De-

pending on the taxonomic groups considered, the sequence similarity threshold allowing

to discriminate them may vary: in some cases, close bacterial species have near iden-

tical 16S gene sequences (e.g. Liu et al., 2015b) while in others, the high intraspecies

variability of 16S genes overestimates biodiversity (Sun et al., 2013). Then, microbial

abundances are often rarefied (i.e. normalized to the same total sum per sample) because

of varying sequencing depth according to samples. Consequently, microbial associations

are inferred from relative abundances (i.e. compositional data) which are not indepen-

dent (changes in the relative abundance of one taxon will necessarily influence the relative

abundance of the others). This step may lead to spurious associations depending on the

inference method chosen (Gloor et al., 2017). Some of them, such as SparCC (Friedman

and Alm, 2012) and SPIEC-EASI (Kurtz et al., 2015), use special data transformations

that make them are robust to compositionality. Polymerase chain reaction primers bias

may also lead to underestimate microbial richness by missing a high number of taxa

(Hong et al., 2009) that are consequently not taken into account when inferring microbial

associations. Counts of 16S gene sequences are used to estimate bacterial and archaeal

taxa abundances in environmental samples. Yet, taxa have varying 16S gene copy num-

ber in their genome. As a consequence, taxa with more copies will appear more abundant

(Louca et al., 2018). Finally, microbiome data are often sparse (i.e. contain many zeros)

because large number of low-abundant taxa are detected in few samples and it is difficult

to assess whether this reflects true absences of if taxa are not detected due to sampling

or sequencing limitations. In conclusion, future research should continue to improve the

qualitative and quantitative reliability of high-throughput data (Vacher et al., 2016).
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5.2.2 Limits of inference methods

The most popular methods for inferring microbial networks are based on correlation mea-

sures (e.g. Friedman and Alm, 2012; Faust et al., 2012; Schwager et al., 2019). Although

it is a useful measure identify apparent interdependencies among many variables, correla-

tion may lead to spurious results regarding microbial associations inference. Correlation

may pose problem when applied on sparse matrices because correlation on many zeros

may be highly significant, although this issue may be tackled by applying a prevalence

filter that removes rare taxa (Berry and Widder, 2014; Röttjers and Faust, 2018). Corre-

lated but indirectly connected taxa may be inferred by these methods (e.g. if taxon A and

B are linked by cross-feeding relationships, and that a third taxon C is directly associated

to taxon B, then it will be indirectly associated to taxon A). However, in the resulting

association network, these associations, represented by edges, won’t be distinguishable.

Inferred edges may also be caused by species not accounted in the 16S data set or when

two taxa are both affected by a same environmental factor. However, inference methods

such as SPIEC-EASI (Kurtz et al., 2015) and FlashWeave (Tackmann et al., 2018) were

developed to attempt to address this last issue by utilizing the concept of conditional in-

dependence, thus reducing the number of uninformative spurious indirect relationships

inferred from the data.

Another important aspect of network inference methods to point out is that they are

not based on prior knowledge about how microbes interact in reality. Actually, as ex-

plained in chapter 3, most methods infer positive associations when taxa co-occur and

infer negative associations when they exclude each other. Yet the fact remains that we do

not know how most microbes interact and how it can be translated in their abundance

patterns. As a consequence, the predictive performances of network inference methods

to retrieve associations are tested on simulated data and then compute sets of measures

such as sensitivity, precision and AUC (Area Under The Curve) of ROC (Receiver Operating

Characteristics) curves (e.g. Kurtz et al., 2015). Simulated data depend on assumptions

about microbial populations dynamics. For example, Berry and Widder (2014) simulated

microbial communities with generalized Lotka-Volterra dynamics but this model may

not reflect the true dynamics of microbes. However, no large-scale experimentally vali-

dated microbial ecological network exists, thus it is the only current means to assess the

performance of these methods to recover microbial interactions. Experimentally tested

interactions in microcosms exist but they are difficult and time-consuming (Vandermeer

(1969) and Friedman et al. (2017) are notable exceptions). Thus, the current challenge in

the field of microbial network inference is to build a well-resolved empirical network as a
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reference (Vacher et al., 2016).

5.2.3 Interpreting network properties from a biological point of view

Thanks to the inference of microbial networks, emergent properties may be detected in

microbial communities. However, it is unclear whether the abstract concepts borrowed

from graph theory translates experimental observations.

Defining keystone taxa is often an issue when analyzing association networks. Because

hub nodes (i.e. nodes that have the highest degree) are connected to a high number of

other nodes, they are often considered as potential keystone taxa. Indeed, highly con-

nected nodes of a network have been hypothesized to be important for the survival and

stability of an ecosystem: contrary to the removal of random species, the disappearance

of well-connected species may lead to a rapid collapse of the entire network (Paine, 1969;

Bascompte, 2009). Other types of centrality such as betweenness are used as a proxy for

node importance. Betweenness centrality of a node is the fraction of shortest paths from

all nodes to all other nodes that pass through the node (Freeman, 1977). Thus, a node

with a high betweenness centrality is potentially an intermediary between a high number

of nodes couples. Defining the importance of a node on its betwenness assumes that

species interact with each other via the shortest path. However, as the way microbes in-

teract is generally unknown, it is difficult to prefer a metric over another to define keystone

species and hub species they may not share the same biological implications as keystones

(Röttjers and Faust, 2018). Berry and Widder (2014) tested this hypothesis by simulating

multi-species microbial communities and inferring co-occurrence networks from simu-

lated abundances, which showed that some nodes topological features (particularly high

degree, closeness and clustering coefficient) could be used as predictors to correctly clas-

sify nodes as keystones. Although this type of study is a first step towards a standardized

method to identify keystones in microbial networks, it is unknown whether the findings

of Berry and Widder (2014) apply to real-world data sets. Yet, further research is needed

in that field to allow for results comparison because measures to identify keystones are

still highly inconsistent across studies.

Other association patterns may be informative as well. For example, motifs (e.g. triad

motifs are the association of three nodes) may translate special patterns of communication

between microbes (e.g. to coordinate their behaviour) or constitute biomarkers (Ma and

Ye, 2017). Clustering coefficient and modularity (that quantifies the extent to which a

network can be broken up into smaller components) may indicate degradation pathways,

habitat filtering or cross-feeding (Chaffron et al., 2010; Röttjers and Faust, 2018). Finally,
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the node degree distribution has often be used as a proxy for network robustness (that

quantifies the resistance of a network to random or targeted node removal). In biological

networks whose distribution follows a power law, the few hub nodes are not sensitive to

random node removal but are sensitive to node removal targeting hub nodes. However,

node removal may not reflect the way microbial communities respond to perturbations.

Besides, this property is difficult to assess in networks that are not inferred from time

series.

In conclusion, inferred microbial association networks have to be interpreted with care

considering all these facts and, most important, a series of recommendations, such as

those proposed by Berry and Widder (2014) and Röttjers and Faust (2018) (i.e. filtering

out infrequent taxa, sequence communities with highly uneven composition more deeply,

include as many samples as possible, use absolute abundance or data transformations

that are robust to compositionality, use sequencing data at the highest resolution possi-

ble) should be applied as frequently as possible.

Efforts for the publication of interaction databases based on exhaustive literature surveys

(e.g. Thompson et al., 2012; Poelen et al., 2014; Gao et al., 2017; Bjorbækmo et al., 2019;

Vincent and Bowler, 2019) should be more than ever strongly encouraged. Besides, as

mentioned by Carr et al. (2019), bioinformatically inferred associations are extremely

useful for reducing the number of potential hypotheses that might be tested, but will

never preclude the necessity for experimental validation.

5.3 Topological graph alignment of association networks

When comparing microbial association networks, global measures such as mean cen-

trality measures, diameter and average path length are often calculated. In the article

presented in section 3.2, we compared microbial networks based on these measures, as

well as hub OTUs considered as keystones. However, although they can give insights on

the network global characteristics, other methods allow to examine changes in network

structure and allow for visual representation and interactive examination of important

network attributes. These methods are referred to as network alignment methods. Ini-

tially developed to compare protein-protein interaction networks, network alignment may

reveal valuable information, such as evolutionary conserved pathways (Kelley et al., 2003;

Kuchaiev et al., 2010) and protein complexes or functional orthologs (Bandyopadhyay

et al., 2006). This type of analysis have been successfully applied for the first time to mi-

crobial association networks by (Mandakovic et al., 2018) to examine changes in network

structure, providing a comprehensive way to understand topological shifts among mem-
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bers from two networks. Thus, network alignment could complement classical network

comparison.

Network alignment consists in finding a node-to-node mapping (also called an alignment)

between two networks. The objectives of network alignment algorithms are to (i) maximize

the number of mapped proteins (nodes) that are evolutionarily or functionally related and

(ii) maximize the number of common interactions (edges) between the networks (Malod-

Dognin and Pržulj, 2015). Because the problem of network alignment is NP-complete,

no efficient algorithm is known for solving it (Kuchaiev et al., 2010) and several network

alignment heuristics (i.e. approximate aligners) have been proposed (Malod-Dognin and

Pržulj, 2015). There exist local and global network aligners. Local network aligners

align sub-networks called motifs that share similarities. Since these highly conserved

motifs can overlap, local aligners typically result in one-to-many or many-to-many node

mappings between the two input networks. On the other hand, global aligners aims to

find the best overall alignment, resulting in one-to-one node mappings.

Figure 5.1 – Comparison of local and global network alignments. (a) Local network alignment
specifying two different alignments of highly conserved sub-networks, each node of the first graph
having ambiguous mappings under the different alignments. (b) Global alignment showing the best
overall alignment, at the expense of local conserved regions (Meng et al., 2016).

As an example, we applied the global alignment tool L-GRAAL (Lagrangian GRAphlet-

based network ALigner, Malod-Dognin and Pržulj, 2015) to the networks build and pre-

sented in section 3.2. This method aligns networks by taking into account both sequence

similarity between nodes (i.e. similarity between reference sequences of the OTUs) and

network topology. The balance between sequence and topology similarities is set by a

parameter alpha that varies from 0 (topological information only) to 1 (sequence infor-

mation only). The alignments were performed with values of alpha varying from 0 to 1

using a step size of 0.1. For each value of alpha, two measures of topological similarity

were computed: the edge correctness and (EC) and symmetric sub-structure (S3). Given

two aligned networks G and H, the EC is the percentage of edges from G that align to

edges from H (Kuchaiev et al., 2010), while the S3 takes into account the unique edges in

the composite graph created by the overlap in the two networks (Saraph and Milenković,

2014). Alignments were visualized in the form of hive plots with the tool HiveAlign (Man-

dakovic et al., 2018, https://gitlab.univ-nantes.fr/erwan.delage/HiveAlign).
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Gemmatimonadetes
Deferribacteres
Chloroflexi
Bacteroidetes
Proteobacteria
Verrucomicrobia
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Thaumarchaeota
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CE network NPP network

alignment

(a) Complete alignment

(b) Focus on the top keystone OTU of the NPP network

Figure 5.2 – Network alignment between the CE (carbon export) and NPP (net primary production)
networks inferred in chapter 3. The best consensus between topological, sequence similarity, EC
and S3 was found for alpha = 0.6. On the axes are represented the nodes (nodes of the CE network
on the left axes and nodes of the NPP network on the the right axes). Their color correspond to their
phylum while their size translate their betweenness centrality. On each axis, the two sets of nodes
correspond to common and specific nodes to each network. The order of each set of nodes translates
their cluster coefficient.

The alignment is given in figure 5.2. The edge correctness of this alignment indicate that

28.98 % of the edges from the CE network are aligned to the edges of the NPP network,

which informs on the global similarity of the network. The visual representation gives

additional insights according to the tuned parameters (e.g. size of the nodes, order on the

axis). Besides, interactive representations allow to focus on specific nodes, such as on

figure 5.2b where the top keystone OTU of the NPP network (taxonomically assigned to

Synechococcus) is highlighted, showing that it aligns to no other node of the CE network.

It suggests that its position in the NPP network is unique, and that this feature could be

considered as a characteristic of the microbial association network of the NPP state.
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5.4 Limits of the use of machine learning for biological prob-

lems

Machine learning techniques are more and more popular for predicting and classifying

biological data (Webb, 2018). In particular, it can mine interesting information from omic

data. They can identify biomarkers for different purposes such as disease diagnosis or

biomonitoring (Ziegler et al., 2012; Cordier et al., 2019), thus enabling decision making

(e.g. provide adequate treatments to patients, take action so as to improve environmental

health). However, several issues may limit their use for biological research.

The first one is known as the "Black Box" issue. Indeed, although machine learning

trained models can be highly effective at predicting, they are often highly complex and

the way the algorithms build the models is seen as being opaque. Yet, complex decision-

making requires to improve human interpretability of the models (Miotto et al., 2017;

Cordier et al., 2019). Algorithms such as random forests can help to provide more in-

terpretable models by identifying variables that matter the most important for prediction

(see chapter 4), which can be used by biologists to establish biomarkers.

Then, the models produced by machine learning algorithms are primarily dependent on

the data we feed them. In particular, the limiting factor is the quantity of available data.

Machine-learning algorithms require large quantities of data to learn. This may be a

problem when collecting data is expensive or requires many efforts and is highly time-

consuming, which is often the case in natural sciences. Besides, the models may be

skewed if the training data do not account for the potential natural variability of the data.

Thus, efforts should be continued to increase the sampling to develop larger databases in

diverse ecosystems.

5.5 Perspectives for the study of microbial interactions and

their involvement in the ocean carbon cycle

Several questions could not be addressed in the framework of this thesis but could be the

subject of future research:

In chapter 3, we inferred association networks from archaeal and bacterial abundances.

Thus, we didn’t take into account their interactions with eukaryotes and viruses. Yet

cross-domain interactions are numerous in the ocean. For example, many interactions

between diatoms and bacteria have been reported (Amin et al., 2012), ranging from syn-

ergistic (e.g. production of vitamins required by diatoms and utilization of the diatoms
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extracellular products by bacteria, Amin et al., 2012) to parasitic interactions (e.g. pro-

duction of algicidal compounds by bacteria, Furusawa et al., 2003; Mayali and Azam,

2004). Protists are also important grazers of bacteria such as Synechococcus (Apple et al.,

2011) and bacteria face viral lysis (Proctor and Fuhrman, 1990; Fuhrman, 1999; Rohwer

et al., 2009). As a consequence, it seems necessary to take all these interactions into

account. Most reconstructed microbial association networks include only bacteria but

some authors have performed cross-domain networks, thereby recovering known sym-

biosis in the ocean between diatoms and Flavobacteria, and between dinoflagellates and

members of Rhodobacterales (Lima-Mendez et al., 2015), and showing that fungi stabilize

connectivity in the lung and skin microbial ecosystems (Tipton et al., 2018). Producing

cross-domain analysis of the communities associated with the states of the biological

carbon pump could reveal important associations because its functioning is highly de-

pendent on cross-domain interactions (i.e. grazing, microbial decomposition, viral lysis,

e.g. Grossart et al., 2005, 2006, 2007).

Our study of prokaryotic interactions focused on small size fractions (i.e. 0.22-1.6 µm

and 0.22-3 µm) in which free prokaryotes are usually found. Thus, the samples didn’t en-

compass bacteria associated to larger eukaryotes and aggregate-attached bacteria.

Yet, microorganisms interact at the nanometre to millimetre scale (Azam and Malfatti,

2007) and eukaryotic phytoplankton such as diatoms have associated to them bacteria in

their phycosphere (i.e. microscale region surrounding a phytoplankton cell that is rich in

extracellular products) (Amin et al., 2012; Seymour et al., 2017). The analysis of fecal pel-

lets may also provide insights into the feeding interactions between zooplankton, protists

and bacteria. Besides, aggregates are "hotspots" of remineralization (Azam, 1998), which

may reduce aggregates sinking rates, and display phylogenetically distinct assemblages

from free prokaryotic populations (DeLong et al., 1993).

Although most of the flux attenuation occurs in the euphotic zone, remineralization in

the mesopelagic zone is not anecdotal (90% of the annual quantity of exported carbon

is respired back to CO2, Robinson et al., 2010) and may be equal or exceed particu-

late organic carbon export (Lemaitre et al., 2018), thus affecting carbon sequestration

by the biological carbon pump. However, our knowledge of the ecology of the "twilight

zone" is lower in relation to the euphotic zone (Robinson et al., 2010) and would require

investigation.

In this thesis, we focused on samples collected in temperate to tropical oceans. The polar

oceans were thus excluded from the analysis, but these areas have unique characteristics

that influence the magnitude, nature and timing of primary production and vertical POC

fluxes. In the Arctic Ocean, sea ice cover attenuates solar irradiance, disturbs the mixing
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of nutrients by winds, and induces stratification in the upper water, thereby influencing

the primary production rates by phytoplankton (mostly diatoms). The extreme seasonality

(including photoperiod and ice conditions) controls the spring bloom dynamics which

determines POC export (Sakshaug, 2004; Carmack et al., 2006; Tremblay et al., 2018).

Besides, sympagic species (i.e. associated with sea ice) form mats under sea ice. The

release of this biomass during ice melt induces a rapid export of POC and provides food

to pelagic and benthic communities (Forest et al., 2007). Variability in ice edge position

relative to the coast may also influence carbon flux on arctic shelves by controlling the

spatial co-occurence of primary production and grazers (Loeng et al., 2005). Besides, the

data collected Tara Polar Circle expedition showed that viral, eukaryotic microbes and

prokaryotic communities strongly differ from those of the temperate and tropical oceans

(Gregory et al., 2019 and unpublished data) These unique features strongly suggest that

microbial associations and potential biomarkers of the biological carbon pump are highly

different in polar oceans compared to the rest of the ocean.

A criticism that can be made to the Tara Oceans expedition is its "snapshot" sampling

strategy: ocean samples were collected at single time point and in sparse stations relative

to the global ocean, which is inherent in global ocean studies (Karsenti et al., 2011).

Time series microbial data would allow to complement the spatial coverage of the Tara

Oceans sampling (Cram et al., 2014; Fuhrman et al., 2015; Faust et al., 2015; Ai et al.,

2019). Indeed, it would include seasonal and interannual variation of the biological

carbon pump processes that may be significant (Lohrenz et al., 1992; Karl et al., 1996).

For example, monitoring a phytoplankton bloom phenomenon with environmental DNA

sequencing and associated biogeochemical variables may be considered (Martin et al.,

2011).

Further investigations of prokaryotic functions should be made to better understand

their ecological role and molecular underpinnings in the biological carbon pump (Worden

et al., 2015). In their 2016 study, Guidi et al. identified (from metagenomic data) sets

of prokaryotic genes significantly correlated to carbon export in the oligotrophic ocean.

These sets included a significant proportion of transmembrane sugar transporters and

functions specific to the Synechococcus accessory photosynthetic apparatus or involved

in carbohydrate breakdown, highlighting the potential roles of bacteria in primary pro-

duction and the formation and degradation of marine aggregates. In addition, the appli-

cation of metagenomics and metaproteomics in more geographically localized areas gave

insights into the successive decomposition of algal-derived organic matter by bacteria

(Teeling et al., 2012; Georges et al., 2014).

Finally, progress in the subjects cited above would allow for a better monitoring of the
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ocean carbon cycle. By using machine learning approaches on omic data, new po-

tential biomarkers of ecosystems health may progressively be discovered (e.g. Cordier

et al., 2018). Some authors are already dreaming of "next-generation biomonitoring" (Bo-

han et al., 2017) by using "ecogenomic sensors" that would detect molecular markers

indicative of the state of the ocean ecosystems (Scholin, 2009; Armbrust, 2014). Such

instruments (free-drifting in situ robotic samplers) have already been used to sample

plankton for further transcriptional analysis (Ottesen et al., 2013, 2014; Robidart et al.,

2012, 2014), showing differences between the field and the laboratory. Microbial asso-

ciation network reconstruction would also benefit from these autonomous samplers by

allowing a high spatial and temporal resolution (Bohan et al., 2017 and figure 5.3). As

ecological networks structure determines ecosystem functioning, modifications would in-

dicate response to climate change and other anthropogenic environmental perturbations.

Networks would therefore constitute an adequate tool for observing and predicting the

effects of environmental change.

Figure 5.3 – Next-generation biomonitoring using automated sensors. The workflow includes (A)
the design of automated sensors for sampling and sequencing, (B) the deployment of the sensors
from which the sequence data are uploaded and ecological networks are reconstructed, and (C) the
analysis of the networks (Bohan et al., 2017).
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Glossary

alveolate group of unicellular eukaryotes, characterized by flattened vesicles packed

into a continuous layer supporting the membrane. This group gathers ciliates,

dinoflagellates and apicomplexa. 64, 74

appendicularian free-swimming solitary tunicate that is characterized by neoteny and

thus resembles the larvae of most tunicates, having a trunk and a tail. Its size is

generally less that 1 cm in body length, excluding the tail. Appendicularians are

filter-feeders like most tunicates. 26, 27, 31, 77

atmosphere gaseous layer wrapping the Earth, mainly composed of nitrogen, oxygen,

argon and carbon dioxide. 15–17, 19–22, 35, 40

autotrophic an autotrophic organism produces organic matter by reducing inorganic

matter. It generally uses carbon (in the form of carbon dioxide), nitrogen (in the

form of nitrates or dinitrogen), water and mineral nutrients. The source of energy

for reducing inorganic matter comes from the light (photoautotrophy) or chemical

reactions (chemoautotrophy). 22, 45

benthos aquatic organisms living near or on the seafloor or the bottom of lakes and

rivers. 43

biosphere dynamic system shaped by all ecosystems, i.e. all living beings and their

environment. 15, 22, 38

bloom an algae bloom is a rapid increase of the population of algae that takes place under

certain environmental conditions (e.g. increased temperature and light, nutrient

enrichment). 7, 23, 26, 28, 33, 41, 44, 89, 131

coccolithophore single-celled marine algae that possess and external skeleton made of

plates of calcium carbonate (coccoliths) which may have complex shapes. Coccol-

ithophores belong to the class Prymnesiophyceae. 16, 20, 23, 44, 165, 168

coccolithophorid synonym of coccolithophore. 28, 36, 41–44
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copepod group of small tear-drop shaped crustaceans whose size typically varies from 1

to 2 mm and that possess an exoskeleton, two pairs of large antennae and a single

median compound eye at the center of their head. 27, 49, 77, 168

diatom unicellular algae that possess a silica cell wall (the frustule) made of two valves.

Diatoms display various forms and can form colonies. 23, 26, 28, 33, 36, 37, 40,

41, 43, 49–51, 77, 121, 129–131

dinoflagellate unicellular eukaryote characterized by unique flagellar insertion and fea-

tures of their nucleus. This group is recognized to include many mixotrophic

species. 28, 43, 130, 165

dissolved organic matter dissolved organic matter is defined as the component of or-

ganic matter that passes through a filter of a given pore size, commonly 0.45 µm

(although other pore size may be used, typically between 0.22 and 0.7 µm). It is gen-

erally non sinking and is transported by ocean circulation and mixing. Besides, the

pool size of dissolved inorganic matter is far larger than particulate organic matter:

it is nearly equal to total organic matter (Sarmiento and Gruber, 2006). 21, 167

euphausiid shrimp-like crustaceans that have an exoskeleton and stalked, compound

eyes. All members of the order Euphausiacea are commonly referred to as eu-

phausiids. 27, 34, 168

euphotic zone the euphotic zone, also called photic, sunlight or sunlit zone, is the up-

permost layer of water in the ocean where light intensity is of at least 1%. Its depth

is generally located between 100 and 200 m. 20, 23, 25, 27, 28, 32, 34, 35, 37, 44,

76, 77, 79, 80, 130

foraminifera protozoa characterized by an external perforated shell (test) that comprises

one or multiple chambers. From the foramens of the test go out pseudopodes

(projections of the cell membrane) that allow foraminifera to catch food and move.

16, 20

heterotrophic an heterotrophic organism cannot produce its own food, needing instead

to feed on pre-existing organic matter. 20, 21, 33, 34, 41, 43–45, 91

hydrosphere all areas of a planet where water is present in liquid (e.g. ocean, rivers,

lakes, ground water), solid (e.g. sea ice, glaciers) and gaseous form (water vapor).

15

kleptoplasty sequestration of algae chloroplasts by host organisms. 43
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lithosphere outermost shell of a terrestrial-type planet, characterized by its rigid me-

chanical properties; it includes the crust and the uppermost mantle. 15

mesopelagic zone zone that extends from approximately 200 to 1000 m below the ocean

surface, where light penetrates but is insufficient for photosynthesis. 35, 47, 76,

130

meta-omics refers to molecular techniques that aim at characterizing, quantifying and

analyzing large quantities of biological molecules (DNA, RNA, proteins) from en-

vironmental samples. It includes metabarcoding (described in section 3.1.1.1),

metagenomics (that consist in studying DNA), metatranscriptomics (that consist in

studying translated genes, i.e. RNA) and metaproteomics (that consist in studying

proteins). 49, 77, 101, 107

microorganism living organism invisible to the naked eye, that can only be observed by

means of a microscope and may be single-celled or live in colonies. 21, 44–46, 49,

64, 130

microphytoplankton fraction of phytoplankton whose size is between 20 and 200 µm.

23, 37, 77

nanophytoplankton small phytoplankton whose size is between 2 and 20 µm. 23

nekton refers to all organisms that have the ability to swim and move against the currents

(such as fishes, cephalopods and marine mammals). 43

particulate organic matter it is the component of organic matter that is isolated by

filtration (see the definition of dissolved organic matter) and for which transport by

sinking is important (Sarmiento and Gruber, 2006). 21, 29, 33

pelagic relative to the open sea. 20, 91, 131

phage virus infecting and replicating within bacteria and archaea. 64, 74

phytoplankton planktonic organisms that are able to produce their own organic matter

by performing photosynthesis (they are photoautotrophic). 7, 17, 19–24, 27, 28,

35–37, 40, 43–46, 77, 107, 130, 131

picophytoplankton phytoplankton whose size is between 0.2 and 2 µm. 7, 23, 24, 37,

77

protist unicellular eukaryote. 27, 42, 130
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protozoa single-celled heterotrophic eukaryote that feeds on other microorganisms, or

organic tissues and debris. 20, 27, 43, 166

prymnesiophyte abundant nanoplanktonic group of phytoplankton (class Prymnesio-

phyceae, division Haptophyta) in many oceanic regions that includes coccolithophores.

23

pteropod free-swimming pelagic opistobranch gastropod whose foot has two large fins

and actively swims. 20, 27

Radiolaria unicellular heterotrophic eukaryotes possessing intricate mineral skeletons

usually made of silica and needle-like pseudopods. 64, 74, 168

salp planktonic tunicates that can form long and stringy colonies. 27, 31, 41

thermohaline circulation oceanic circulation induced by differences in density of sea-

water that arise from differences in temperature and salinity of water masses. 19

tunicate subphylum that is part of the Chordates and includes animals possessing a

dorsal nerve chord and a notochord. 27, 165, 168

zooplankton heterotrophic plankton that are usually microscopic (e.g. Radiolaria) but

can be larger (e.g. copepods, euphausiids), measuring up to meters such as some

jellyfishes. 7, 20, 21, 25, 27, 31, 33, 34, 37, 41, 43, 44, 77, 107, 130
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Appendix A

Article 4 / Co-authored manuscript 1: Faure et

al. 2019

The goal of this article was to better understand the environmental diversity of marine

mixotrophic protists from metabarcoding and environmental data of the Tara Oceans

expedition. This study confirmed previous findings showing that mixotrophic protists are

ubiquitous in the global ocean while detecting them in biogeographical provinces where

no morphological identification had been recorded before. These findings have potentially

important implications for future estimations of carbon export in biogeochemical models,

as mixotrophic protists are estimated to be responsible of up to 30% of the global carbon

export.

For this co-authored manuscript, I was in charge of building the contextual dataset using

the environmental variables available in the PANGAEA repository form the Tara Oceans

expeditions. The original environmental variables were divided in eight files and were re-

lated to carbonate chemistry, pigment concentrations, nutrients, sensor data, mesoscale

features, water column features, methodological context and sequencing methodology. To

keep only one version of each variable that was calculated twice or more using different

tools, units and/or formulas, I selected 83 out of the 235 variables available on PAN-

GAEA. As several values were available for a same station and a same depth, I calculated

the median of the samples belonging to the same station and depth was calculated to

get a unique value for every station/depth. Besides, I calculated carbon export values
1

and added diversity data (Sunagawa et al. 2015, supplementary table W8 available on

http://ocean-microbiome.embl.de/companion.html), validated iron data calculated using

the Darwin model and CDOM data from Arctic samples calculated by Atsushi Matsuoka.

1
Carbon export was calculated from flux profiles as the mean flux between 130m and 170m in a radius of

1km around the sampling location and 24h around the sampling date.
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Abstract
Mixotrophy, or the ability to acquire carbon from both auto- and heterotrophy, is a widespread ecological trait in marine
protists. Using a metabarcoding dataset of marine plankton from the global ocean, 318,054 mixotrophic metabarcodes
represented by 89,951,866 sequences and belonging to 133 taxonomic lineages were identified and classified into four
mixotrophic functional types: constitutive mixotrophs (CM), generalist non-constitutive mixotrophs (GNCM), endo-symbiotic
specialist non-constitutive mixotrophs (eSNCM), and plastidic specialist non-constitutive mixotrophs (pSNCM). Mixotrophy
appeared ubiquitous, and the distributions of the four mixotypes were analyzed to identify the abiotic factors shaping their
biogeographies. Kleptoplastidic mixotrophs (GNCM and pSNCM) were detected in new zones compared to previous
morphological studies. Constitutive and non-constitutive mixotrophs had similar ranges of distributions. Most lineages were
evenly found in the samples, yet some of them displayed strongly contrasted distributions, both across and within mixotypes.
Particularly divergent biogeographies were found within endo-symbiotic mixotrophs, depending on the ability to form colonies
or the mode of symbiosis. We showed how metabarcoding can be used in a complementary way with previous morphological
observations to study the biogeography of mixotrophic protists and to identify key drivers of their biogeography.

Introduction

Marine unicellular eukaryotes, or protists, have a tre-
mendous range of life styles, sizes and forms [1], showing a

taxonomic and functional diversity that remains hard to
define [2, 3]. This variety of organisms is having an impact
on major biogeochemical cycles such as carbon, oxygen,
nitrogen, sulfur, silica, or iron, while being at the base of
marine trophic networks [4–8]. Hence, they are key actors
of the global functioning of the ocean.

Historically, marine protists have been classified into two
groups depending on their trophic strategy: the photo-
synthetic plankton (phytoplankton) and the heterotrophic
plankton (zooplankton). It is now clear that mixotrophy, i.e.,
the ability to combine autotrophy and heterotrophy, has
been largely underestimated and is commonly found in
planktonic protists [6, 9–13]. Instead of a dichotomy
between two trophic types, their trophic regime should be
regarded as a continuum between full phototrophy and full
heterotrophy, with species from many planktonic lineages
lying between these two extremes [10]. Mitra et al. [11]
have proposed a classification of marine mixotrophic pro-
tists into four functional groups, or mixotypes. The con-
stitutive mixotrophs, or CM, are photosynthetic organisms
that are capable of phagotrophy, also called “phytoplankton
that eat” [11]. They include most mixotrophic nano-
flagellates (e.g., Prymnesium parvum, Karlodinium
micrum). On the opposite, the non-constitutive mixotrophs,
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or “photosynthetic zooplankton”, are heterotrophic organ-
isms that have developed the ability to acquire energy
through photosynthesis [9]. This ability can be acquired in
three different ways: the generalist non-constitutive mixo-
trophs (GNCM) steal the chloroplasts of their prey, such as
most plastid-retaining oligotrich ciliates (e.g., Laboea
strobila), the plastidic specialist non-constitutive mixo-
trophs (pSNCM) steal the chloroplasts of a specific type of
prey (e.g., Mesodinium rubrum or Dinophysis spp.), and
finally the endo-symbiotic specialist non-constitutive mix-
otrophs (eSNCM) are bearing photosynthetically active
endo-symbionts (most mixotrophic Rhizaria from Collo-
daria, Acantharea, Polycystinea, and Foraminifera, as well
as dinoflagellates like Noctiluca scintillans).

As drivers of biogeochemical cycles in the global ocean,
and particularly of the biological carbon pump [5, 14, 15],
marine protists are a key part of ocean biogeochemical
models [7, 16–18]. However, physiological details of mix-
otrophic energy acquisition strategies have only been stu-
died in a restricted number of lineages [9, 19, 20]. They
appear to be quite complex and greatly differ across mix-
otypes, which makes mixotrophy hard to include in a simple
model structure [21–25]. Hence at this time, mixotrophy is
not included in most biogeochemical models, neglecting the
amount of carbon fixed by non-constitutive mixotrophs
through photosynthesis, and missing the population
dynamics of photosynthetically active constitutive mixo-
trophs that can still grow under nutrient limitation [23, 26].
This is most probably skewing climatic models predictions
[11, 26], as well as our ability to understand and prevent
future effects of global change.

A better understanding of the environmental diversity of
marine mixotrophic protists, as well as a description of the
abiotic factors driving their biogeography at global scale are
still needed, in particular to integrate them in biogeo-
chemical models. Leles et al. [27] attempted to tackle this
problem by reviewing about 110,000 morphological iden-
tification records of a set of more than 60 mixotrophic
protists species in the ocean, taken from the Ocean Bio-
geographic Information System (OBIS) database. They
found distinctive patterns in the biogeography of the three
different non-constitutive mixotypes (GNCM, pSNCM, and
eSNCM), highlighting the need to better understand such
diverging distributions [27]. Environmental molecular bio-
diversity surveys through metabarcoding have been widely
used in the past fifteen years to decipher planktonic taxo-
nomic diversity [2, 28–30]. Here, we exploited the global
Tara Oceans datasets [31–33], and identified 133 mixo-
trophic lineages, that we classified into the four mixotypes
defined by Mitra et al. [11]. This first ever set of mixo-
trophic metabarcodes allowed us to investigate the global
biogeography of both constitutive and non-constitutive
mixotrophs, in relation with in-situ abiotic measurements.

We tested (i) if new information on marine mixotrophic
protists distribution can be gained in comparison with pre-
vious morphological identifications [27]; (ii) if the con-
stitutive mixotrophs, which are not addressed in Leles et al.
[27], and the non-constitutive mixotrophs diverge in terms
of biogeography; (iii) if the study of diversity and abun-
dance of environmental metabarcodes could lead to the
definition of key environmental factors shaping mixotrophic
communities.

Materials and methods

Samples collection and dataset creation

Metabarcoding datasets from the worldwide Tara Oceans
sampling campaigns that took place between 2009 and 2013
[31, 33] (data published in open access at the European
Nucleotide Archive under project accession number
PRJEB6610) were investigated. We analyzed 659 samples
from 122 distinct stations, and for each sample, the V9-18S
ribosomal DNA region was sequenced through Illumina
HiSeq [32]. Assembled and filtered V9 metabarcodes (cf.
details in de Vargas et al. [2]) were assigned to the lowest
taxonomic rank possible via the Protist Ribosomal Reference
(PR2) database [34]. To limit false positives, we chose to only
analyze the metabarcodes (i.e., unique versions of
V9 sequences) for which the assignment to a reference
sequence had been achieved with a similarity of 95% or
higher. This represents 65% of the total dataset in terms of
metabarcodes and 84% in terms of total sequences. Our
dataset involved 1,492,912,215 sequences, distributed into
4,099,567 metabarcodes assigned to 5071 different taxonomic
assignations, going from species to kingdom level precision.

Defining a set of mixotrophic organisms

Among these 5071 taxonomic assignations, we searched for
mixotrophic protist lineages, taking into account the four
mixotypes described by Mitra et al. [11]: constitutive mix-
otrophs (CM), generalist non-constitutive mixotrophs
(GNCM), endo-symbiotic specialist non-constitutive mixo-
trophs (eSNCM), and plastidic specialist non-constitutive
mixotrophs (pSNCM). We used the table S2 from Leles
et al. [27], which is referencing 71 species or genera
belonging to three non-constitutive mixotypes (GNCM,
pSNCM, and eSNCM), as well as multiple other sources
coming from the recent literature on mixotrophy [6, 9–12,
35–47], and inputs from mixotrophic protists’ taxonomy
specialists (cf. Acknowledgments section). Within the 5071
taxonomic assignations of variable precisions, we identified
5 GNCM, 9 pSNCM, 77 eSNCM, and 42 CM lineages
(detailed list available publicly under the https://doi.org/10.
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6084/m9.figshare.6715754, and all metabarcodes were
tagged with their mixotypes in the PR2 database). Among
these 133 taxonomic assignations that we will call “linea-
ges”, 92 were defined at the species level, 119 at the genus
level, and the last 14 at higher taxonomic levels where
mixotrophy is always present (mostly eSNCM groups like
Collodaria). In the Chrysophyceae family, metabarcodes
assigned to clades B2, E, G, H, and I were included even
though we couldn’t find a general proof that all species
included in these clades have mixotrophic capabilities.
However, if we exclude the photolithophic Synurophyceae
and genera like Paraphysomonas and Spumella, which we
did, a vast majority of Chrysophyceae are considered
mixotrophic [10]. The final dataset included 318 054
metabarcodes assigned to the 133 mixotrophic lineages
selected, as well as their sequence abundance in 659 sam-
ples (table available publicly under the https://doi.org/10.
6084/m9.figshare.6715754).

Environmental dataset

We built a corresponding contextual dataset using the
environmental variables available in the PANGAEA repo-
sitory from the Tara Oceans expeditions [33, 48]. The set of
235 environmental variables was reduced to 57 due to
several selection steps (Data available publicly under the
https://doi.org/10.6084/m9.figshare.6715754; see the details
of variable selection in section 1 of Supp. Mat.).

Distribution and diversity of mixotrophic protists

For each mixotype, the number of metabarcodes, the total
sequence abundance and the mean sequence abundance by
metabarcode was computed (Table 1). Also, we measured
each metabarcode’s station occupancy, i.e., the number of
stations in which it was found, and station evenness, i.e., the
homogeneity of its distribution among the stations in which

it was detected (Fig. 2). Diversity of mixotrophic protists
was investigated through mixotype-specific metabarcode
richness per station (Table 1). As the number of samples
taken per station can impact the abundance and diversity of
detected metabarcodes, richness was computed only at
stations for which the maximum number of eight samples
were available (40 stations over 122).

Global biogeography of mixotrophic protists

Two statistical analyses were performed to investigate
mixotrophic protists biogeography. One at the metabarcode
level, and one at the lineage level, i.e., merging the
sequence abundance of metabarcodes sharing the same
taxonomical assignation. The metabarcodes abundance
table was composed of 318,054 rows/metabarcodes, and
659 columns/samples, whereas the lineage abundance table
was composed of 133 rows/lineages and 659 columns/
samples (both datasets are available publicly under the
https://doi.org/10.6084/m9.figshare.6715754). The two
analyses led to very similar conclusions, but the biogeo-
graphy of lineages appeared easier to visually represent and
interpret than the one of metabarcodes. Hence, we only
present here the results of the lineage-based analysis (See
section 3 of Sup. Mat. for metabarcode-level analysis results
and discussion).

Our statistical model was designed to identify lineages
(or metabarcodes) with contrasted biogeographies, and
relate their presence to the environmental context. We
normalized the sequence counts from the lineage abundance
matrix using a Hellinger transformation [49]. We used the
environmental dataset and the mixotrophic lineages’ abun-
dance matrix as explanatory and response matrices,
respectively, to conduct a redundancy analysis (RDA) [49].
For that, we made a species pre-selection using Escoufier’s
vectors [50], which allowed to keep only the 62 most sig-
nificant mixotrophic lineages. This method selects lineages

Table 1 Detailed number of
lineages found for each
mixotype, as well as the number
of metabarcodes, the
corresponding total sequence
counts over all stations, the
mean sequence abundance by
metabarcode, and mean
metabarcode richness

Mixotypes CM eSNCM pSNCM GNCM

Number of lineages used in this study 42 77 9 5

Number of V9 metabarcodes 26,015 288,536 2143 1360

Total sequence abundance 3,581,751 86,098,397 208.096 63.622

Mean sequence counts per metabarcode 137.7 298.4 97.1 46.8

Mean metabarcode richness per stationa (std dev) 2162 (1115) 18502 (9238) 67 (102) 84 (111)

Number of absences/station 0/122 0/122 5/122 3/122

The richness was computed as the number of different metabarcodes present at each station. It was calculated
for each mixotype and means are indicated in the fifth column. Absences correspond to the number of
stations in which no sequences were detected for the corresponding mixotype

CM constitutive mixotrophs, GNCM generalist non-constitutive mixotrophs, eSNCM endo-symbiotic
specialist non-constitutive mixotrophs, pSNCM plastidic specialist non-constitutive mixotrophs
aThe mean indicated here was calculated using only stations having the maximum number of samples (see
main text)
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according to a principal component analysis (PCA), sorting
them based on their correlation to the principal axes. We
then used a maximum model (Y~X) and a null model (Y~1)
to conduct a two directional stepwise model selection based
on the Akaike information criterion (AIC) [51]. The
resulting model contained 28 environmental response vari-
ables. More details about statistical analyses are available in
section 2 and 3 of the Supplementary Materials. analyses
and graphs were realized with the R software version
3.4.3 [52]. All scripts are available on GitHub platform
(https://github.com/upmcgenomics/MixoBioGeo).

Results

Global distribution and diversity of marine
mixotrophic protists

Mixotrophic protists metabarcodes were detected in all the
659 samples with a total sequence abundance of
89,951,866, representing 12.56% of the total sequence
abundance in the 659 samples studied. They represented a

mean of 12.64% of the total sequence abundance per
sample, with a maximum of 96.96% and a minimum of
0.01%. To avoid any potential overestimation of mixo-
trophic lineages presence in the following results, we
marked all records of less than a hundred sequences as
questionable. We found both eSNCM and CM in each of
the 122 stations studied (Table 1 and Fig. 1). In only two
occasions the number of sequences belonging to CM was
questionable, at stations for which only one sample was
sequenced. GNCM were found absent in only two stations
and their presence was questionable in 39 stations (Fig. 1).
pSNCM were absent at five stations (three in the Indian
Ocean, and two in the Pacific Ocean) and detected with
questionable presence in 54 additional stations, which were
mostly located in the central Pacific and the Indian Ocean
(Fig. 1). We found significant amounts of sequences cor-
responding to GNCM in the Central Pacific, Southern
subtropical Atlantic, and Indian Ocean. The presence of
GNCM in these areas has not yet been recorded through
morphological identifications during field expeditions [27].
Also, we detected more than 100 sequences of pSNCM
metabarcodes at 11 stations belonging to biogeographical

Fig. 1 Global distribution of mixotypes from metabarcoding data.
Maps showing for each station the proportion of sequences (in %)
belonging to each mixotype over the total number of mixotrophic
sequences. Stations in which no sequence was found were marked as
absent, ones with less than 100 sequences marked as questionable.

Each Longhurst biogeographical provinces [53] is colored in the
background if more than 100 sequences are detected in at least one of
its stations. A coloured version of this figure can be down-
loaded at https://doi.org/10.6084/m9.figshare.6715754
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provinces in which no morphological identifications had
been published [27, 53], mostly in offshore areas of the
Atlantic and Pacific Ocean (Fig. 1).

The mean evenness of mixotrophic metabarcodes across
stations was of 0.87, and 82.3% of the metabarcodes had a
station evenness above 0.5 (Fig. 2). Station occupancy
varied a lot depending on the metabarcodes, with a high
density of rare metabarcodes leading to a mean of
5.14 stations over a maximum of 122, and a standard
deviation of 7.7. However, three eSNCM metabarcodes
were found in all the 122 stations, and three CM meta-
barcodes were detected in 121 stations. The maximum
occupancy for a GNCM metabarcode was of 111 stations,
while 92 stations was the maximum for a pSNCM meta-
barcode. CM and GNCM metabarcodes showed a strong
tendency towards high evenness values (Fig. 2, means of
0.90 and 0.95, respectively), even for the most sequence
abundant metabarcodes. Many eSNCM metabarcodes had
high evenness values, but below average values were
detected for the most abundant ones (Fig. 2, global mean of
0.87). pSNCM metabarcodes had a similar mean of

evenness values (0.87), but a different distribution com-
pared to other mixotypes (Fig. 2). Among the 50 most
abundant metabarcodes, 43 corresponded to Collodaria
lineages, 47 were eSNCM and 3 were CM, all three
assigned to Gonyaulax polygramma. GNCM and pSNCM
metabarcodes had homogeneously low sequence abun-
dances (Fig. 2 and Table 1).

Main factors affecting the biogeography of
mixotrophic protists

The redundancy analysis helped to investigate further the
environmental variables responsible for the mixotrophic
protists’ biogeography. The 62 lineages selected with the
Escoufier’s vector method corresponded to 20 CM, 34
eSNCM, 3 GNCM, and 5 pSNCM. Even after selection, a
significant part of the lineages did not show any response to
environmental data in their distribution (Fig. 3, e.g., 19 of
the 62 lineages were found between −0.01 and 0.01 on both
RDA1 and RDA2). The adjusted R-squared of the RDA
was of 34.89% (41.43% unadjusted), with 24.01% of

Fig. 2 Sequence abundance, occupancy, and spatial evenness of each
mixotrophic metabarcode across sampled stations. Each metabarcode
is plotted as a bubble, with its station occupancy, i.e., the number of
stations in which it was found, and its station evenness, i.e., the

homogeneity of its distribution among the stations in which it was
detected, as coordinates. Violin plots were drawn for each mixotype on
both the x and y axes. The size of each bubble is scaled to the sequence
abundance found globally for the corresponding metabarcode
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variance explained on the two first axes (Fig. 3). The first
RDA axis (14.96%) marks an opposition between samples
from oligotrophic waters with low productivity (RDA1 > 0)
and samples from eutrophic and productive water masses
(RDA1 < 0). This axis is negatively correlated to chlor-
ophyll concentration, particles density, ammonium con-
centration, absorption coefficient of colored dissolved
organic matter (acCDOM), duration of daylight, silica,
CO3, oxygen, and PO4 concentration, as well as longitude.
It is positively correlated to bathymetry, deep euphotic
zone, deep oxygen maximum, deep mixed layer, as well as
to the distance to coast. The second RDA axis (9.05%) is
opposing offshore and subpolar samples (RDA2 > 0) to
coastal and subtropical ones (RDA2 < 0). The axis is posi-
tively correlated to the depth of the mixed layer, the dis-
tance to coast, the bathymetry, high maximum Lyapunov
exponents as well as high concentrations of PO4, oxygen,

CO3 and silica. It is negatively correlated to temperature,
salinity, and photosynthetically active radiations (PAR).

Among the 20 CM lineages, seven clearly emerged from
the redundancy analysis (Fig. 3) and showed distinct bio-
geographies related to environmental variables. Gonyaulax
polygramma, Alexandrium tamarense, and Fragilidium
mexicanum, three Dinophyceae belonging to the Gonyau-
lacales order, were mainly found in oligotrophic waters with
a deep euphotic zone, warm temperature, high salinity, and
PAR (RDA1 > 0, RDA2 < 0). The four other CMs (invol-
ving all the Chrysophyceae included in the analysis as well
as one Dinophyceae from the Kareniaceae family, Karlo-
dinium micrum) were found mostly in productive water
masses (RDA1 < 0).

eSNCMs can be divided in three groups in the RDA
space. The first group (RDA1 < 0) corresponds to eSNCM
species dominating rich and productive environments. It

Fig. 3 Impact of environmental variables on the distribution of marine
mixotrophs. Triplot of the redundancy analysis (RDA) computed on
the 62 Escoufier-selected lineages, after model selection. The adjusted
R-squared of the analysis is of 34.89% (41.43% unadjusted). Each
gray dot corresponds to a sample, i.e., one filter at one depth at one
station. The blue dashed arrows correspond to the quantitative envir-
onmental variables. Abbreviations: MLD mixed layer depth, O2MaxD
O2 maximum depth, EuphzoneD euphotic zone depth, PAR photo-
synthetically active radiations, Calcite Sat. St. Calcite Saturation State,

c_660 optical beam attenuation coefficient at 660 nm, c_part beam
attenuation coefficient of particles, acCDOM absorption coefficient of
colored dissolved organic matter. Plain arrows correspond to mixo-
trophic lineages, colors indicating mixotypes. For more readability, we
do not represent all qualitative variables included in the model. That is
why only the filter centroids are appearing, even though the sampling
depth, season, season moment, i.e., early, middle or late, and bio-
geographical province were used in the RDA calculation
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includes mainly Acantharia and Spumellaria species. The
second group (RDA1 > 0) dominates oligotrophic environ-
ments, and includes multiple Collodaria as well as one
Dinophyceae genus (Ornithocercus). Within this group,
Ornithocercus spp. is found mainly in coastal subtropical
environments (RDA2 < 0), as opposed to Sphaerozoum
punctatum that is found mainly in offshore subpolar regions
(RDA2 > 0). Siphonosphaera cyathina lies between these
two trends as it is found only in oligotrophic samples, but
isnot influenced by temperature or bathymetry (Figs. 3 and
4). The third group corresponds to the eSNCM lineages that
can be interpreted as distributed homogeneously in regards
of the environmental data we are using (e.g., lineages with
the shortest arrows in Fig. 3). These notably include the 12
Foraminifera lineages present in the RDA. Looking at filters
centroids in the RDA space (Fig. 3), we can suppose that

eSNCM lineages dominating eutrophic systems (RDA1 < 0)
are smaller in size than those dominating oligotrophic ones
(RDA1 > 0).

Out of the five pSNCM included in the RDA, only
Mesodinium rubrum, the most abundant one, is distinctively
represented in the RDA space. This suggests that the other
pSNCM have homogeneous distributions in response to our
environmental variables. Mesodinium rubrum dominates
eutrophic environments, independently from the bathymetry
or the temperature (RDA1 < 0, RDA2 ≈ 0). We find a
similar pattern for GNCM, with only Pseudotontonia sim-
plicidens well represented in the RDA space out of the
three species included in the analysis. Like M. rubrum,
Pseudotontonia simplicidens is the most abundant species
in its group and it is mainly found in eutrophic waters
(RDA1 < 0).

Fig. 4 Contrasted global distributions of metabarcodes corresponding
to two eSNCM lineages. Maps of Hellinger-transformed sequence
count abundances for metabarcodes assigned to the Collodaria
Siphonosphaera cyathina a and the Acantharia Acanthrometridae
F3 spp. b These two lineages are opposed on the first RDA axis (Fig. 3

and S1). Size and color both illustrate abundance for better readability.
Ellipses were drawn to highlight high abundance zones, and reveal the
differences in lineages distribution. A coloured version of this figure
can be downloaded at https://doi.org/10.6084/m9.figshare.6715754
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Discussion

Mixotrophy occurs everywhere in the global ocean

Our metabarcoding survey confirms that marine mixo-
trophic protists are ubiquitous in the global ocean [27],
possibly extending the known range of distribution of two
mixotypes (Figs. 1 and 2). Mixotrophic organisms repre-
sented more than 12% of the sequences in the complete
Tara Oceans metabarcoding dataset, showing that they
should not be understated. We found contrasted biogeo-
graphies among metabarcodes and their corresponding
lineages, both within and across mixotypes (Figs. 2–4 and
S1, Sup. Mat. section 3). We found constitutive mixotrophs
(CM) and endo-symbiotic specialist non-constitutive mix-
otrophs (eSNCM) metabarcodes at all the 122 stations
included in this global study (Table 1 and Fig. 2), verifying
that these two mixotypes are the most abundant in the ocean
[27, 47, 54, 55]. This dominance of eSNCM and CM in our
data is also linked to the relatively high number of meta-
barcodes available for these two mixotypes in databases.
Using 1360 generalist non-constitutive mixotrophs
(GNCM) metabarcodes corresponding to only five lineages,
we detected them in ten biogeographical provinces [53]
where no morphological identification had been recorded
before [27]. GNCM metabarcodes had consistently high
evenness values, and some had station occupancy records
comparable to the most abundant eSNCM and CM meta-
barcodes (Fig. 2). These results support the hypothesis of a
globally ubiquitous distribution of GNCM. Plastidic spe-
cialist non-constitutive mixotrophs (pSNCM) were found in
five provinces in which no record existed so far from
morphological identification field studies [27]. However,
these observations were often in a questionable range in
terms of sequence abundance (Fig. 1), and the overall dis-
tribution of pSNCM in our data appears as very concordant
with morphological observations [27]. pSNCM meta-
barcodes had dominantly low station evenness values,
which again supports the conclusions of Leles et al. [27]
that identified pSNCM as highly seasonal and spatially
restricted in their distribution.

While building our set of mixotrophic lineages, some
widespread and potentially mixotrophic genera did not
appear, such as Ceratium spp., Tontonia spp., Amphisolenia
spp., Triposolenia spp., or Citharistes spp., mainly because
of a poor representation in the PR2 database. Also, we
decided to only consider metabarcodes with more than 95%
similarity to a reference sequence. This threshold could be
too selective for some species and not enough for some
others, as single similarity threshold are hardly efficient
when studying whole eukaryotic populations [56, 57]. For
example, some species appeared with low sequence abun-
dance in the data even though they couldnot have been

sampled, such as three lacustrine species, e.g., Poter-
iospumella lacustris. Considering these biases and the
sometimes relatively low sequence counts (marked as
questionable in Fig. 1), some of the new GNCM and
pSNCM records we observed should be considered with
care, as they could be over-estimated or even sometimes
artefactual. However, the low number of lineages found for
these two mixotypes in PR2 and in our dataset are leading
us to think that we were unable to capture the whole GNCM
and pSNCM communities. This supposes a global under-
estimation of GNCM and pSNCM abundances in our
results.

Tara Oceans metabarcoding dataset is built on snapshot
samples taken irregularly during a 3-year cruise, hence
allowing no proper seasonal variations investigations.
However, morphological identifications of mixotrophic
protists revealed seasonal variations in their abundance,
with Mesodinium biomass blooming in spring in coastal
seas for example [27]. As metabarcoding datasets have been
successfully applied on time series to detect species suc-
cessions across gradients of time and space [58–60], it
would be interesting to similarly investigate seasonal trends
in mixotrophic communities. Our set of mixotrophic linea-
ges and metabarcodes being publicly available, our method
will be applicable to any other metabarcoding dataset,
including time series. It will also be open to inputs and
updates from the global scientific community.

The contrasted biogeographies of marine mixotypes

Constitutive mixotrophs

Constitutive mixotrophs (CM) have very diverse feeding
behaviors, with some species requiring phototrophy to
grow, others phagotrophy, and some being obligate mix-
otrophs [9]. They were described in all waters of the
global ocean [61–65]. We found them distributed in a
range of conditions almost as wide as non-constitutive
mixotrophs (Figs. 1 and 3). Among highly abundant
lineages, most were dominantly found in eutrophic and
shallow habitats. However, a few dinoflagellates were
found to be highly dominant in oligotrophic, subtropical
waters, showing how wide of a range of conditions con-
stitutive mixotrophs can grow in (Fig. 3). This illustrates
how mixotrophy can allow organisms to dominate eco-
systems even when environmental conditions are poorly
adapted to purely phototrophic or heterotrophic organ-
isms. When taken explicitly into account in biogeochem-
ical models, marine mixotrophs increase carbon export
by up to 30% [22]. Hence, their global ubiquity supposes
that the carbon export of the biological carbon pump
could be underestimated in both oligotrophic and
eutrophic areas [26].
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Plastidic specialist and generalist non-constitutive
mixotrophs (pSNCM and GNCM)

Like Leles et al. [27], we found pSNCM and GNCM to
have quite similar biogeographies (Fig. 3, section 3 of Sup.
Mat.). Sequence abundance of most of the metabarcodes for
these two mixotypes was homogeneously low (Table 1), but
the two most abundant species, Mesodinium rubrum
(pSNCM) and Pseudotontonia simplicidens (GNCM), were
found mostly in coastal and eutrophic waters, consistently
with Leles et al.'s [27] morphological observations (Fig. 3,
section 3 of Sup. Mat.). No species-level barcode is avail-
able in the PR2 database for the Tontonia genus, and only
one can be found for Pseudotontonia and Laboea genera,
even though morphological records of these GNCM are
numerous [27]. Experiments using meso- and microcosms
combined with individual counts and morphological iden-
tification have found that GNCM ciliates can represent up to
half of the individuals in ciliate communities of the photic
zone [11, 66, 67]. A proportion we would have trouble to
reach with the five lineages we were able to consider,
knowing that there are 8686 different ciliate lineages
available in PR2. This highlights the urgent need for sup-
plementing 18S reference databases for mixotrophic
ciliates.

Endo-symbiotic specialist non-constitutive mixotrophs
(eSNCM)

Endo-symbiotic specialist non-constitutive mixotrophs
(eSNCM) is by far the most widespread and abundant non-
constitutive mixotype in the global ocean (Figs. 1 and 2)
[27, 47, 54]. Their biogeography stands out, with a lot of
highly abundant ubiquitous lineages, and some other spe-
cialized towards certain types of ecosystems (Fig. 3). They
represent 95.7% of the sequence counts in our study and
correspond to 90.7% of the metabarcodes (Table 1), which
highlights their abundance and diversity. The very high
number of rDNA copies present in Rhizaria orders such as
Collodaria [47] might lead the eSNCM to appear more
abundant in metabarcoding datasets than they ecologically
are. However, in oligotrophic open oceans the Rhizaria
biomass is estimated to be equivalent to that of all other
mesozooplankton [68], and positively correlated to the
carbon export [15], showing how ecologically important
they can be.

Investigating the divergent biogeographies of Collodaria
and Acantharia

Collodaria are living either as solitary large cells or as
colonies [47], which explains why they are predominantly
found in macro-sized (180–2000 μm) filter samples (Fig. 3).

All described Collodaria species so far harbor photo-
synthetic endo-symbionts, mostly identified as the dino-
flagellate species Brandtodinium nutricula [47, 69]. These
dinoflagellates are able to get in and out of their symbiotic
state, which implies a light and/or reversible effect of the
Collodarian host on its symbiont metabolism [69]. Based on
the same metabarcoding dataset, Collodaria were described
as particularly abundant and diverse in the oligotrophic
open ocean [47]. In our results, Collodaria dominate oli-
gotrophic, relatively deep waters (Figs. 3 and 4a). These
Collodaria appear opposed to another set of Rhizaria
(Acantharia and Spumellaria) linked to eutrophic and
shallow waters (Figs. 3 and 4b, section 3 of Sup. Mat.).
Acantharia are found ubiquitously in the global ocean, but
display particularly high sequence abundances in some
specific regions [54]. Mixotrophic Acantharia live in sym-
biosis with the cosmopolitan haptophyte Phaeocystis, which
is highly abundant and ecologically active in its free-living
phase [54]. Unlike the one of Collodaria, this symbiosis is
irreversible: an algal symbiont can not go back to its free-
living phase [54]. Our results suppose that these specific
symbiotic modes could enable Acantharia and Collodaria to
dominate different ecosystems (Figs. 3 and 4). Moreover,
living in colonies as Collodaria could help to dominate
oligotrophic systems, e.g., by accumulating more food and
nutrients through their gelatinous extra-cellular matrix [47].
Experiments and modeling studies should help to investi-
gate the contribution of this assumption, comparing food
acquisition capacity and growth rates of free individuals
versus in colony.

Towards an integration of mixotrophic diversity into
marine ecosystem models

The future of marine communities’ modeling lies in the
integration of omics datasets into modeling frameworks [18,
70–73]. The use of metabolic networks and gene-centric
methods has already shown very promising results in
modeling prokaryotic ecological dynamics [18, 73]. How-
ever, eukaryotic metabolic complexity makes these methods
hard to apply on protists for now, and we still lack a uni-
versal theoretical framework on how to integrate such
methods into concrete modeling [70]. Mixotrophic protists
are physiologically complex, and their feeding behavior can
vary drastically on short time scales [9]. It will then take a
few more years of comparative genomics and tran-
scriptomics studies before being able to model their phy-
siology with purely gene-based approaches. Still,
mechanistic models of mixotrophy exist and are quite
complex [21, 23], even if the one from Ghyoot et al. [23]
could be implemented in a global biogeochemical model
[74]. Most models make the choice to represent either one
or two (NCM and CM) types of organisms able to play the
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role of all mixotypes depending on parameterization.
However, no global agreement has been reached on to what
extent the different mixotypes should be modeled. This is
mainly due to a lack of quantitative and comparative data on
the global impact of grazing and carbon fixation by the
different mixotypes [75]. With our study, we show how
meta-omics data can be used to identify groups of organ-
isms distributed differently in response to the environment.
It also allows the identification of ecological traits and
environmental factors potentially responsible for these
divergences. This information can be used to identify key
species or lineages, and design controlled experiments with
variations of targeted environmental factors to produce the
quantitative data needed by modelers. Considering our
results, we propose that host-symbiont dynamics of eSNCM
should be investigated as a trait playing a potential role on
Rhizaria ability to thrive in oligotrophic conditions. Parti-
cularly, the mechanisms behind holobiont formation and its
potential reversibility could play major roles on eSNCM
carbon fixation in various nutrient conditions. Future
experiments comparing responses of Collodaria and Acan-
tharia holobionts to different stresses in terms of grazing
and carbon fixation could lead to a better understanding of
the physiological differences between their two modes of
symbiosis. Also, our results suggest that the metabolic
flexibility of CM should allow this mixotype to grow in
almost any conditions, with individual species probably
spanning continuously between complete autotrophy and
complete heterotrophy. The risk is then to create a “perfect
beast” mixotroph dominating all systems [21]. To avoid
that, we need more comparative data on grazing and carbon
fixation of obligate phototrophs versus obligate hetero-
trophs in response to nutrient depletion and environmental
fluctuation. Here again, meta-omics data could help to
identify candidates for efficient experiment designs. Finally,
the small number of lineages of GNCM and pSNCM in our
study makes it hard to come up with strongly supported
conclusions on whether they should be differentiated in
models or not. They seem to share similar biogeographies
using snapshot data (Fig. 3, section 3 of Sup. Mat.), but
considering that they have different abilities for conserving
stolen chloroplasts over time, it might not be the case when
looking at a time series analysis [20, 76, 77].

Our study uses meta-omics data to investigate the global
distribution and biogeography of mixotrophic protists in the
ocean. Our results, currently based on metabarcoding data,
complement morphological records and will be com-
plemented in the near future by metagenomics and meta-
transcriptomics studies. The latter will allow to distinguish
the protists with mixotrophic capabilities from the ones with
ongoing mixotrophic activity. This could lead to quantita-
tive estimations of mixotrophic rates in environmental
samples, allowing a sharpened study of mixotrophic protists

ecology in the global ocean. It could also lead to a meta-
bolic description of complex processes like kleptoplasty and
endo-symbiosis, hence facilitating the modeling of mixo-
trophic behaviors and its incorporation in ocean biogeo-
chemical models.
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Appendix B

Article 5 / Co-authored manuscript 2: Caputi

et al. 2019

This article presents a network analysis (with the same methodology used by Guidi et al.

(2016), i.e. Weighted Gene Correlation Network Analysis) linking metagenomic and meta-

transcriptomic data to biogeochemical variables in the Tara Oceans sampling stations in

order to assess how iron availability shapes plankton communities and how they respond

to it. Among other results, Caputi et al. (2019) showed that iron availability is nega-

tively correlated with the expression of marker genes for iron limitation and that plankton

response to iron availability is coordinated at subcommunity level. As iron is a limiting

micronutrient for primary production, especially for diatoms, knowledge derived from this

analysis would improve our understanding of the response of planktonic communities to

iron availability variations and the consequences on primary production.

For this article, I was in charge of the generation of eukaryotic metabarcode abundances

for different size fractions (i.e. 0.8-5 µm, 5-20 µm, 20-180 µm and 180-2000 µm) from a

global abundance matrix gathering all eukaryotic size fractions.
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Abstract Predicting responses of plankton to variations in essential nutrients is hampered by limited in
situ measurements, a poor understanding of community composition, and the lack of reference gene
catalogs for key taxa. Iron is a key driver of plankton dynamics and, therefore, of global biogeochemical
cycles and climate. To assess the impact of iron availability on plankton communities, we explored the
comprehensive bio‐oceanographic and bio‐omics data sets from Tara Oceans in the context of the iron
products from two state‐of‐the‐art global scale biogeochemical models. We obtained novel information
about adaptation and acclimation toward iron in a range of phytoplankton, including picocyanobacteria and
diatoms, and identified whole subcommunities covarying with iron. Many of the observed global patterns
were recapitulated in the Marquesas archipelago, where frequent plankton blooms are believed to be caused
by natural iron fertilization, although they are not captured in large‐scale biogeochemical models. This work
provides a proof of concept that integrative analyses, spanning from genes to ecosystems and viruses to
zooplankton, can disentangle the complexity of plankton communities and can lead to more accurate
formulations of resource bioavailability in biogeochemical models, thus improving our understanding of
plankton resilience in a changing environment.

Plain Language Summary Marine phytoplankton require iron for their growth and
proliferation. According to John Martin's iron hypothesis, fertilizing the ocean with iron could
dramatically increase photosynthetic activity, thus representing a biological means to counteract global
warming. However, while there is a constantly growing knowledge of how iron is distributed in the ocean
and about its role in cellular processes in marine photosynthetic groups such as diatoms and cyanobacteria,
less is known about how iron availability shapes plankton communities and how they respond to it. In the
present work, we exploited recently published Tara Oceans data sets to address these questions. We first
defined specific subcommunities of co‐occurring organisms that co‐vary with iron availability in the oceans.
We then identified specific patterns of adaptation and acclimation to iron in different groups of
phytoplankton. Finally, we validated our global results at local scale, specifically in the Marquesas
archipelago, where recurrent phytoplankton blooms are believed to be a result of iron fertilization. By
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integrating global data with a localized response, we provide a framework for understanding the resilience of
plankton ecosystems in a changing environment.

1. Introduction

Marine plankton play critical roles in pelagic oceanic ecosystems. Their photosynthetic component (phyto-
plankton, consisting of eukaryotic phytoplankton and cyanobacteria) accounts for approximately half of
Earth's net primary production, fueling marine food webs, and sequestration of organic carbon to the ocean
interior. Phytoplankton stocks depend on the availability of primary resources such as nutrients that are
characteristically limiting in the oligotrophic ocean. For example, high‐nutrient low‐chlorophyll (HNLC)
regions are often lacking the key micronutrient iron and increased bioavailability of iron will typically trig-
ger a phytoplankton bloom (Boyd et al., 2007). Notwithstanding, the community response and its impact on
food web structure and biogeochemical cycles are seldom predictable. The composition of blooms when lim-
iting nutrients are supplied as sudden pulses with respect to the pre‐existing community has been only
poorly explored and is even more elusive when comparing to situations when nutrients are in quasi‐steady
state. Characterizing these responses is crucial to anticipate future changes in the ocean yet is challenged by
community complexity and processes that span from genes to ecosystems. Dissecting these processes would
also enhance the robustness of existing biogeochemical models and improve their predictive power (Stec
et al., 2017).

In this report we explore the responsiveness of plankton communities to iron and assess the representation
of iron bioavailability in biogeochemical models. Using global comprehensive metagenomics and metatran-
scriptomics data from Tara Oceans (Alberti et al., 2017; Bork et al., 2015; Carradec et al., 2018; Guidi et al.,
2016), we examine abundance and expression profiles of iron‐responsive genes in diatoms and other phyto-
plankton, together with clade composition in picocyanobacteria and the occurrence of iron‐binding sites in
bacteriophage structural proteins. These profiles are compared in the global ocean with the iron products
from two state‐of‐the‐art biogeochemical models. We further identify coherent subcommunities of taxa cov-
arying with iron in the open ocean that we denote iron‐associated assemblages (IAAs). Overall, our findings
are congruent with the outputs from the models and reveal a range of adaptive and acclimatory strategies to
cope with iron availability within plankton communities. As a further proof of concept, we track community
composition and gene expression changes within localized blooms downstream of the Marquesas archipe-
lago in the equatorial Pacific Ocean, where previous observations have suggested them to be triggered by
iron (Martinez & Maamaatuaiahutapu, 2004), even though the biogeochemical models currently lack the
resolution to detect the phenomenon. Our results indicate that iron does indeed drive the increased produc-
tivity in this area, suggesting that a pulse of the resource can elicit a response mimicking global steady
state patterns.

2. Materials and Methods
2.1. Iron Concentration Estimates

Due to the sparse availability of direct observations of iron in the surface ocean, iron concentrations were
derived from two independent global ocean simulations. The first is the ECCO2‐DARWIN ocean model con-
figured with 18‐km horizontal resolution and a biogeochemical simulation that resolves the cycles of nitro-
gen, phosphorus, iron, and silicon (Menemenlis et al., 2008). The simulation resolves 78 virtual
phytoplankton phenotypes. The biogeochemical parameterizations, including iron, are detailed in Follows
et al. (2007). In brief, iron is consumed by primary producers and exported from the surface in dissolved
and particulate organic form. Remineralization fuels a pool of total dissolved iron, which is partitioned
between free iron and complexed iron, with a fixed concentration and conditional stability of organic ligand.
Scavenging is assumed to affect only free iron, but all dissolved forms are bioavailable. Atmospheric deposi-
tion of iron was imposed using monthly fluxes from the model of Mahowald et al. (2005).

PISCES (Aumont et al., 2015) is a more complex global ocean biogeochemical model than ECCO2‐
DARWIN, representing two phytoplankton groups, two zooplankton grazers, two particulate size classes,
dissolved inorganic carbon, dissolved organic carbon, oxygen, and alkalinity, as well as nitrate, phosphate,
silicic acid, ammonium, and iron as limiting nutrients. In brief, PISCES accounts for iron inputs from
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dust, sediments, rivers, sea ice, and continental margins, and flexible Michaelis‐Menten‐based phytoplank-
ton uptake kinetics result in dynamically varying iron stoichiometry and drives variable recycling by zoo-
plankton and bacterial activity. Iron loss accounts for scavenging onto sinking particles as a function of a
prognostic iron ligand model, dissolved iron levels, and the concentration of particles. Iron loss from colloi-
dal coagulation is also included and accounts for both turbulent and Brownian interactions of colloids. The
PISCES iron cycle we use is denoted as “PISCES2” (Tagliabue et al., 2016) performed at the upper end of a
recent intercomparison of 13 global ocean models that included iron.

2.2. In Situ Data

To generate a limited data set of observed dissolved iron concentrations for this analysis, we used a dissolved
iron database updated from Tagliabue et al. (2012). For this we searched for the nearest available observation
at the same depth as the Tara Oceans sampling and collected data that were within a horizontal radius of 2°
from the sampling coordinates.

2.3. Marquesas Archipelago Sampling

Four stations within the Marquesas archipelago were sampled during the TaraOceans expedition in August
2011 (Bork et al., 2015) using protocols described in Pesant et al. (2015): They were denoted TARA_122,
TARA_123, TARA_124, and TARA_125. The sample details and physicochemical parameters recorded dur-
ing the cruise are available at PANGAEA (http://www. pangaea.de), and nucleotide data are accessible at
the ENA archive (http://www.ebi.ac.uk/ena/) (see further details below).

The study was initiated by releasing a glider that characterized the water column until the end of the experi-
ment. First, the mapping of the water column structure via real‐time analysis of glider data was conducted.
After this initial step, the continuous inspection of near real‐time satellite color chlorophyll images and alti-
metric data revealed a highly turbulent environment, with a mixed layer up to 100‐m deep and strong lateral
shearing, especially downstream of the islands, which generated an area of recirculation in the wake of the
main island (Nuku Hiva). A series of four sampling stations was then planned and executed by performing
the full set of measurements and sampling using the Tara Oceans holistic protocol (Pesant et al., 2015).
Station TARA_122 sampled the HNLC prebloom waters upstream of the islands and thus served as a refer-
ence station for the others. This station was located 27‐km upstream of the island of Nuku Hiva.

2.4. Oceanographic Observations

The Biogeochemical Argo float deployed in the framework of the Marquesas study (WMO 6900985) was a
PROVBIO‐1 free‐drifter profiler (Xing et al., 2012). It was based on the “PROVOR‐CTS3” model, equipped
with a standard CTD sensor (to retrieve temperature and salinity parameters) together with bio‐optical sen-
sors for the estimation of chlorophyll‐a concentrations, colored dissolved organic matter, and backscatter at
700 nm. It was also equipped with a radiometric sensor to estimate spectral downward irradiance at three
wavelengths (412, 490, and 555 nm) and with a beam transmissometer. The data processing is discussed
in Xing et al. (2012). The profiling float was programmed to adopt a modified standard Argo strategy
(Freeland & Cummins, 2005). After deployment, it navigated at 700‐m depth, to a daily maximum of
1,000 m, and then surfaced a first time, generally early in the morning. It then submerged again to a depth
up to 400 m, to again reach the surface approximately at noon. A third profile to 400 m, followed by a sub-
sequent resurfacing, was performed at the end of the day. During all the ascending phases, a complete profile
of all the available parameters was collected. At surface, the obtained data were transmitted to land through
a satellite connection and the profiler descended again to 1,000 m to start another cycle. The Biogeochemical
Argo was deployed on‐site at Station TARA_123 on 2 August 2011. It performed 55 profiles in theMarquesas
region, before moving westward in early October (then outside the study area), and then southward. It defi-
nitively ceased to function in December 2012, approximately 400 km south of the Marquesas islands and
after collecting more than 150 profiles.

An autonomous glider was also deployed in the study area. A complete description of glider technology and
functioning is available in Testor et al. (2010). This glider was able to reach 1,000‐m depths. It was equipped
with temperature and salinity sensors, an optode for oxygen concentration measurements, two Wetlab eco-
pucks with two fluorometers for chlorophyll and colored dissolved organic matter concentrations, and three
backscatterometers to estimate backscatter coefficients at three wavelengths (532, 700, and 880 nm). The gli-
der was deployed on 16 July 2011 (approximately 1 month before TARA arrived in the Marquesas
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archipelago), close to the position of Station TARA_122. It was recovered on 5 August 2011 by TARA
because a malfunction in the tail rudder had been detected. It performed approximately 250 profiles, with
35 dives at 1,000‐m depths and 90 dives at 500‐m depths.

Analysis of trace metals was performed exclusively at the Marquesas Islands sampling stations (Stations
TARA_122‐TARA_125) following the methods reported in Scelfo (1997). Dissolved iron was not measured
due to lack of technical resources.

2.5. Network Analysis and Correlations With Iron

A co‐occurrence network analysis similar to that reported in Guidi et al. (2016) was performed to delineate
feature subnetworks of prokaryotic and eukaryotic lineages, as well as viral populations, based on their rela-
tive abundance. All procedures were applied on 103 sampling sites (Guidi et al., 2016) after excluding out-
liers (Stations TARA_82, TARA_84 and TARA_85) on Hellinger‐transformed log‐scaled abundances.
Computations were carried out using the R package WGCNA (Langfelder & Horvath, 2007). After building
a co‐occurrence weighted graph, a hierarchical clustering was performed. This resulted in the definition of
several subnetworks or modules, each represented by its first principal component, called module eigen
value. Associations between the calculated subnetworks and a given trait were measured by the pairwise
Pearson correlation coefficients, as well as with corresponding p values corrected for multiple testing using
the Benjamini and Hochberg false discovery rate (FDR) procedure, between the considered environmental
trait and their respective principal components. The results are reported in the first 10 columns of the heat-
map in Figure S1a in the supporting information. The subnetworks that showed the highest correlation
scores are of interest to emphasize a putative community associated with a given environmental trait. In
addition to the multiple environmental parameters previously reported (Guidi et al., 2016), we simulated
iron bioavailability in Tara Oceans stations based on the two different models of iron concentration in the
global oceans: the ECCO2‐DARWIN model (Menemenlis et al., 2008) and the PISCES2 model (Aumont
et al., 2015). Both models performed well in the recent global iron model intercomparison project
(Tagliabue et al., 2016), and so we conducted an assessment of model outputs at TaraOceans sampling loca-
tions using compilations of iron observations (Tagliabue et al., 2016) augmented by those from the
GEOTRACES program (Mawji et al., 2014). ECCO2‐DARWIN‐derived estimates (57 stations at surface)
and PISCES2 model (83 stations at surface, 44 of which also at maximum chlorophyll depth) can be found in
Table S1a. For further details on the models and for a comparison of the two, see the supporting information.
We then identified eukaryotic, prokaryotic, and viral subnetworks that correlated most strongly with iron
bioavailability, denoted IAAs. Four IAAs consisting of eukaryotic metabarcodes (de Vargas et al., 2015) were
significantly associated with iron. Similarly, four viral IAAs could be identified by analysis of viral commu-
nities. Based on taxonomy, no prokaryotic IAAs with significance could be identified; however, when con-
sidering prokaryotic genes (as described in Guidi et al., 2016), five subnetworks of prokaryotic genes could
be identified.

In addition to the network analyses, we examined whether the identified subnetworks can be used as predic-
tors of iron bioavailability. Following the protocol described in Guidi et al. (2016), we used partial least
square regression, which is a dimensionality‐reduction method that aims to determine predictor combina-
tions with maximum covariance with the response variable. The predictors were ranked according to their
value importance in projection (VIP) using the R package pls (Mevik & Wehrens, 2007). For each eukaryotic
IAA, their relative contribution to each sample was estimated by computing the first eigen value.

2.6. Taxonomy Determinations

Taxonomic studies were performed using various methods (photosynthetic pigments, flow cytometry, and
optical microscopy for phytoplankton and zooplankton as detailed in Villar et al. (2015); phytoplankton
counts using unfiltered bottles or nets as described in Malviya et al. (2016) and Villar et al. (2015); and meso-
zooplankton samples collected by vertical tows with aWP2 net (200‐μmmesh aperture) from 100‐mdepth to
the surface during the day, followed by fixation in buffered formaldehyde (2–4% final concentration), and
later analyzed in the laboratory). Data from an Underwater Vision Profiler (UVP) were used to determine
particle concentrations and size distributions >100 μm, (Campbell et al., 1994). To have an estimate of bio-
mass variations in the different compartments at the Marquesas Islands, we applied empirical formulas to
transform Chlorophyll‐a (phytoplankton) or body measurements (zooplankton) to biomass. To this
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purpose, we used the ratio of phytoplankton biomass to Chlorophyll‐a (Phyto C: Chl a) in the euphotic zone
as previously estimated in an area with similar biogeochemical features (Campbell et al., 1994—See Table
S1b). Of note, our aim was not to determine absolute biomass but to estimate variations in biomass between
the Marquesas Islands stations. To estimate the total phytoplankton biomass, Chl a concentration from
HPLC data was thus used. The relative contribution of microplankton, nanoplankton, and picoplankton
to the [Chla]tot was estimated according to Uitz et al. (2006). The biomass of large zooplankton was esti-
mated using previously published conversion factors from body length to carbon content (C:L) in selected
zooplankton lineages. Individual body measures were estimated from literature considering similar commu-
nity composition, with the exception of the Copepoda prosome length, which was herein measured. Zooscan
(Bongo net, >300 μm) derived abundance data (ind ×m−3) were used to evaluate the total biomass along the
water column.

2.7. Genomic Analyses

Eukaryotes larger than 5 μm were collected directly from the ocean using nets with different mesh sizes
while smaller organisms and viruses were sampled by peristaltic pump followed by on‐deck filtration.
Several filtration steps were performed usingmembranes with different pore sizes to obtain size‐fractionated
samples corresponding to viruses (<0.1 and 0.1–0.2 μm), prokaryotes (0.2–3 μm), and eukaryotes (0.8–5,
5–20, 20–180, and 180–2,000 μm). In this study, we only used samples collected from the surface water
layer. Details about genomics methods are available in Carradec et al. (2018) and in the following
publications: virus metagenomes (Roux et al., 2016); prokaryote metagenomes (Sunagawa et al., 2015);
eukaryote metabarcoding (de Vargas et al., 2015); and eukaryote metagenomes and metatranscriptomes
(Alberti et al., 2017; Carradec et al., 2018). The abundance of individual genes was assessed by normaliza-
tion to the total number of sequences within the same organismal group (Carradec et al., 2018).
Cyanobacterial clade absolute cell abundance was assessed using the petB marker gene, as described in
Farrant et al. (2016), in combination with flow cytometry counts using the method published by
Vandeputte et al. (2017).

Metatranscriptomic and metagenomic unigenes were functionally annotated using PFAM (Finn et al., 2016)
as the reference database and search tool (Katoh & Standley, 2013). To detect the presence of genes encoding
silicon transporters, ferritin, proteorhodopsin, FBAI, and FBAII among the unigene collection, the profile
hiddenMarkov models of the PFAMs PF03842, PF0210, PF01036, PF00274, and PF01116, respectively, were
used, with HMMer v3.2.1 with gathering threshold option (http://hmmer.org/). It is important to note that
flavodoxin (PF00253, PF12641, and PF12724), ferredoxin (PF00111), and cytochrome c6 (PF13442) PFAM
families do not discriminate those sequences involved in photosynthetic metabolism from other homologous
sequences. The photosynthetic isoforms for flavodoxin, ferredoxin, and cytochrome c6 were therefore deter-
mined by phylogeny, as described below.

To discriminate the photosynthetic isoforms from other homologous sequences, we started with the
results from HMMer and then built libraries composed of well‐known reference sequences (manually
and experimentally curated) from both photosynthetic and nonphotosynthetic pathways. To enrich our
libraries, we used the reference sequences to find similar sequences by using BLAST search tool
(“tBLASTn” program with an e−5e value threshold) against phyloDB reference database (Dupont et al.,
2015). Next, we used MAFFT version 7 using the G‐INS‐I strategy (Katoh & Standley, 2013). The corre-
sponding phylogenetic reference trees were generated with PhyML 3.0 (Guindon et al., 2010) using the
LG substitution model with four categories of rate variation. The starting tree was a BIONJ tree, and
the type of tree improvement was subtree pruning and regrafting. Branch support was calculated using
the approximate likelihood ratio test with a Shimodaira‐Hasegawa‐like procedure. We then manually
identified the branches containing the photosynthetic versions and those with nonphotosynthetic pro-
teins. We ensured that the approximate likelihood ratio test values of the photosynthetic and nonphoto-
synthetic branches were higher than 0.7 by retaining only the most conserved matches in our trees.
Finally, we realigned and labeled the unigenes against the reference trees depending on the placement
of each translated unigene on them.

While HMMer has the highest sensitivity among the classical domain detection approaches, not all the refer-
ences collected by PFAM are sufficiently rich with HMMer to maintain the same detection (Bernardes et al.,
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2016). To deal with the poor representation of ISIP genes in the PFAM database and to improve their
detection, we adopted a simplified version of the approach presented in Bernardes et al. (2015) to build
our own pHMM to detect the different conserved regions represented by ISIP1, ISIP2a, and ISIP3 amino
acid sequences. For this, we collected all the sequences in the reference literature (Allen et al., 2008;
Chappell et al., 2015; Lommer et al., 2010; Morrissey et al., 2015), all 35 sequences belonging to PFAM
PF07692 and the 56 most conserved sequences from PF03713 (all the seeds).

2.8. Data and Code Availability

Sequencing data are archived at ENA under the accession number PRJEB4352 for the metagenomics data
and PRJEB6609 for the metatranscriptomics data (Carradec et al., 2018). Environmental data are available
at PANGAEA. The gene catalog, unigene functional and taxonomic annotations, and unigene abundances
and expression levels are accessible at http://www.genoscope.cns.fr/tara/. Computer codes are available
upon request to the corresponding authors.

2.8.1. Accession Numbers of Metagenomics and Metatranscriptomics Data
2.8.1.1. Sample
ERS492651, ERS492651, ERS492650, ERS492669, ERS492669, ERS492662, ERS492662, ERS492658,
ERS492658, ERS492650, ERS492740, ERS492742, ERS492742, ERS492751, ERS492751, ERS492763,
ERS492763, ERS492757, ERS492740, ERS492757, ERS492825, ERS492825, ERS492824, ERS492824,
ERS492829, ERS492852, ERS492852, ERS492846, ERS492846, ERS492829, ERS492897, ERS492897,
ERS492895, ERS492895, ERS492912, ERS492912, ERS492909, ERS492909, ERS492904, ERS492904.

2.8.1.2. Experiment
ERX948080, ERX948010, ERX1782415, ERX1782384, ERX1782327, ERX1796912, ERX1796638,
ERX1796690, ERX1796805, ERX1782126, ERX1782109, ERX1782245, ERX1796854, ERX1796544,
ERX1782292, ERX1782172, ERX1782221, ERX1796700, ERX1796855, ERX1782301, ERX1782464,
ERX1782128, ERX1789668, ERX1789366, ERX948029, ERX948074, ERX1796627, ERX1796773,
ERX1789369, ERX1789449, ERX1796931, ERX1796605, ERX1789426, ERX1789575, ERX1789524,
ERX1796866, ERX1796524, ERX1789649, ERX1789612, ERX1789647, ERX1796596, ERX1796836,
ERX1789655, ERX1789574, ERX1789407, ERX1782118, ERX1782283, ERX947973, ERX948088,
ERX1789391, ERX1789539, ERX1789587, ERX1796687, ERX1796586, ERX1796703, ERX1789662,
ERX1789616, ERX1789589, ERX1796662, ERX1796518, ERX1796678, ERX1796698, ERX1782217,
ERX1782352, ERX1796645, ERX1796858, ERX1796924, ERX1789675, ERX1789597, ERX1789700,
ERX1789362, ERX1782350, ERX1782418, ERX947994, ERX948064, ERX1789361, ERX1789368,
ERX1789532, ERX1796658, ERX1796818, ERX1796632, ERX1789638, ERX1789548, ERX1789579,
ERX1796921, ERX1796732, ERX1796741, ERX1789714, ERX1789489, ERX1789628, ERX1796689,
ERX1796850, ERX1796523, ERX1782181, ERX1782370, ERX1796607, ERX1796738, ERX1796714,
ERX1789437, ERX1789516, ERX1789417.

2.8.1.3. Run
ERR868475, ERR868513, ERR1712182, ERR1712118, ERR1711869, ERR1726556, ERR1726667,
ERR1726938, ERR1726688, ERR1712207, ERR1711933, ERR1711897, ERR1726927, ERR1726932,
ERR1712069, ERR1712197, ERR1711986, ERR1726883, ERR1726891, ERR1712219, ERR1711929,
ERR1711951, ERR1719463, ERR1719159, ERR868466, ERR868469, ERR1726762, ERR1726913,
ERR1719393, ERR1719310, ERR1726961, ERR1726522, ERR1719437, ERR1719413, ERR1719343,
ERR1726622, ERR1726721, ERR1719297, ERR1719410, ERR1719307, ERR1726770, ERR1726561,
ERR1719256, ERR1719298, ERR1719217, ERR1711914, ERR1711917, ERR868363, ERR868489,
ERR1719301, ERR1719160, ERR1719214, ERR1726564, ERR1726725, ERR1726569, ERR1719448,
ERR1719389, ERR1719194, ERR1726571, ERR1726533, ERR1726892, ERR1726601, ERR1711949,
ERR1712155, ERR1726608, ERR1726657, ERR1726763, ERR1719391, ERR1719175, ERR1719381,
ERR1719365, ERR1711882, ERR1711999, ERR868382, ERR868352, ERR1719395, ERR1719316,
ERR1719207, ERR1726643, ERR1726714, ERR1726846, ERR1719404, ERR1719213, ERR1719459,
ERR1726822, ERR1726912, ERR1726691, ERR1719356, ERR1719145, ERR1719293, ERR1726695,
ERR1726666, ERR1726903, ERR1712102, ERR1711923, ERR1726745, ERR1726946, ERR1726765,
ERR1719295, ERR1719249, ERR1719385.

10.1029/2018GB006022Global Biogeochemical Cycles

CAPUTI ET AL. 7



3. Results
3.1. Modeled Iron Distributions Are Highly Correlated With the Expression of Marker Genes for
Iron Limitation

Iron is a complex contamination‐prone micronutrient whose bioavailability is difficult to assess in the ocean
(Tagliabue et al., 2017). Rather than using single discrete measurements, we linked observed differences in
plankton communities at sites sampled during the TaraOceans expedition (Bork et al., 2015) with the range
of iron conditions typical of each location. Specifically, we extracted annual mean iron concentrations and
their variability from two state‐of‐the‐art ocean models (ECCO2‐DARWIN [Menemenlis et al., 2008] and
PISCES2 [Aumont et al., 2015]) and analyzed their correspondence with the best available estimates based
upon in situ data (a compilation of iron observations [Tagliabue et al., 2012] merged with GEOTRACES data
[Mawji et al., 2014; Tagliabue et al., 2012] in a manner similar to previous studies [Toulza et al., 2012];
Figure 1).

To assess the reliability of the modeled iron distributions, we correlated the expression of diatom ISIP genes
in metatranscriptomics data sets with the annual means of iron concentrations estimated by the DARWIN
model, and with annual and monthly means by the PISCES2 model (Carradec et al., 2018; Table S1a and
supporting information S1). These genes have been found in multiple previous studies to be inversely corre-
lated with iron availability (Allen et al., 2008; Chappell et al., 2015; Graff van Creveld et al., 2016; Marchetti
et al., 2017; Morrissey et al., 2015). Figure 1 presents a comparison between the estimates of dissolved iron
concentrations derived from the annual mean iron field from PISCES2 and ECCO2‐DARWIN (Table S1a),
with the Tara Oceans stations superimposed and best available estimates based upon in situ

Figure 1. Comparison of ECCO2‐DARWIN and PISCES2 iron estimates with observed data and expression of diatom ISIP genes at Tara Oceans stations. Maps
of (a) annual average iron concentrations from the ECCO2‐DARWINmodel (57 stations at surface), (b) from the PISCES2model (83 stations at surface, 44 of which
also at deep chlorophyll maximum depth), and (c) from the observed data where it was available at less than 2° radius distance from locations of the Tara
Oceans sampling sites (20 stations at surface, 16 of which also at deep chlorophyll maximum depth). Each circle corresponds to a sampling site, where the upper
semicircle is filled according to the surface iron concentration while the lower semicircle is filled according to the deep chlorophyll maximum depth where
available. Color scale indicates dissolved iron concentrations expressed in nM. (d) Biogeographical pattern of diatom ISIP gene expression. The circle colors
represent iron concentration estimates at each Tara Oceans sampling site according to PISCES2 model (Table S1a). The abundance of ISIP transcripts was
normalized by the total abundance of all diatom unigenes at each station, and the corresponding values are represented by the circle area. Boxes indicate the
Marquesas Islands sampling area.
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measurements (Figure 1). In spite of the evident scarcity of actual iron concentration data (which illustrates
the need to use models for estimating iron in the current exercise; Figure 1), both models and ISIP mRNA
levels describe very satisfactorily the global‐scale gradients, with the highest concentrations of iron observed
in the Mediterranean and Arabian Seas (both highly impacted by desert dust deposition) and the lowest in
the tropical Pacific and Southern Oceans. This demonstrates that the geographical coverage of the Tara
Oceans expedition is well suited to studies of the role of iron on euphotic planktonic ecosystems. The avail-
able data (Figure 1; Table S1a) further indicates that the gradients of iron appear to be better captured by
PISCES2, a more complex and recent model (Aumont et al., 2015). This is for instance the case for the
North Atlantic Ocean and the Mediterranean Sea, where longitudinal gradients are stronger in PISCES2
and are consistent with ISIP gene levels, while ECCO2‐DARWIN seems to overestimate iron in the
Eastern Atlantic Ocean and underestimate it in the Mediterranean Sea. The opposite is true in the South
Atlantic Ocean, where ISIP mRNA levels show a clear increase correlated with iron stress between South
America and Africa (Figure 1). Overall, in the Atlantic ECCO2‐DARWIN has higher concentrations, and
thus, a clearer large‐scale Atlantic‐Pacific gradient is observed.

The Pacific and Southern Oceans (subpolar and polar stations TARA 81–85) are both characterized by low
levels of iron, as mentioned above. Notably, PISCES2 has a rather flat distribution in the Pacific Ocean, with
very low values, while the other model shows a relatively higher level of iron at the core of the subtropical
gyres, that is, close to the Hawaii Islands (Stations TARA_131 and TARA_132) and offshore from South
America (TARA_98 and close‐by stations) that seems to be in agreement with ISIP mRNA levels (at least
for the Hawaiian sample—Figure 1). These are very oligotrophic oceanic regions, where nitrate is also a
strongly limiting nutrient. Again, the ISIP expression pattern in Figure 1 is closer to the PISCES2 model,
in that it shows a clear reduction of the stress resulting from iron deprivation within these gyres. Finally,
while a significant increase in iron at the Equator may be expected as a consequence of the upwelling in this
region, both the models and the ISIP levels (at Station TARA_128) suggest that this area is rather character-
ized by low values of iron. Overall, our analysis indicates that both models correlated very well with Tara
Oceans transcriptomic data, with no relevant differences amongmonthly and yearly values, but with annual
means from the ECCO2‐DARWIN estimates showing the best reliability (Table S1c). This analysis also indi-
cates that metatranscriptomics is now mature enough to provide an independent, biologically based valida-
tion of ecosystem models.

3.2. Plankton Response to Iron Availability Is Coordinated at Subcommunity Level

The higher level organization of plankton communities, and its possible relationship with the roles of indi-
vidual constituents, has been highlighted previously in an analysis of the potential links between commu-
nity structure and carbon export using data from Tara Oceans (Guidi et al., 2016). We here used this
approach to explore plankton ecosystem responses to iron bioavailability using an end‐to‐end approach from
genes to communities and from viruses to metazoa to reveal community responses at global scale (see
section 2). Known as weighted gene correlation network analysis (WGCNA; see section 2 for further descrip-
tion; Guidi et al., 2016; Langfelder & Horvath, 2007), this approach deciphers subcommunities (modules) of
organisms within a global co‐occurrence network, and because of the high levels of covariation of individual
taxa, it is possible to deduce putative ecological interactions. As proxies for organism abundance we used the
relative abundances of eukaryotic lineages (defined as operational taxonomic units; OTUs) derived from
18S‐V9 rDNA metabarcoding data (de Vargas et al., 2015). WGCNA generated a total of 31 modules. Each
module groups a subset of eukaryotic taxa found in TaraOceans samples whose pairwise relative abundance
was highly correlated over all the sampling sites; that is, they have a high probability of co‐occurrence and to
change their abundance in a coordinated way. Because they react in phase, we can infer that within each
subcommunity these organisms have a higher probability of interaction among themselves than with the
organisms in other modules.

We found four eukaryotic subnetworks significantly associated with the ECCO2‐DARWIN‐derived and/or
with the PISCES2‐derived estimates of iron concentrations in the global ocean (Figures 2a, S1a, and S1b;
Table S1d). The Black and Turquoise modules were associated with high significance to the iron concentra-
tions generated by both models whereas the DarkRed and Yellow modules were better associated with
ECCO2‐DARWIN and PISCES2, respectively, Black (DARWIN: R = 0.37, P = 6 × 10−4; PISCES2:
R = 0.38, P = 3 × 10−4), Turquoise (DARWIN: R = 0.46, P = 1 × 10−5; PISCES2: R = 0.42, P = 9 × 10−5),
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DarkRed (DARWIN: R=−0.43, P= 5 × 10−5; PISCES2: R= 0.19, P= 0.08), and Yellow (DARWIN: R= 0.19,
P = 0.09; PISCES2: R = 0.56, P = 5 × 10−8), and contained between 31 and 591 different OTUs (Tables S1d
and S1e). These subnetworks were denoted IAAs. For each IAA subnetwork, WGCNA computes a single
representative as a combination of lineages. Such a score, denoted as “module eigengene” score (hereafter
termed an eigenlineage score), represents the first eigenvector of the assemblage (Langfelder & Horvath,
2007). Projections of samples on such an eigenvector show the relative importance of samples to the
global variance of each IAA. Together with their contribution, in terms of OTU abundance to the total
eukaryotic abundance in each station (Table S1f), they provide clues to interpret the link between
modules and iron availability. The mismatch in some regions between the two models (see above) is
likely the reason why the significance of association of the Yellow module with ECCO2‐DARWIN, whose
variance and representativeness is particularly significant in the South Adriatic and is minimally present
in the Peruvian upwelling area, is much less than that with PISCES2. By contrast, the DarkRed module,
which appears to be the best indicator module for the Marquesas area (Figure 2b, upper panel) and is
highly relevant in the Peruvian upwelling region, displays a much less significant association and an
opposite variation with PISCES2 iron versus ECCO2‐DARWIN iron. The IAAs show slightly different,
often antagonistic, variance contributions at global scale (Figure 2b, upper panel), with each of them
being particularly responsive, in terms of variance, in specific sites, for example, the Yellow module in the
Eastern Mediterranean Sea.

Figure 2. Planktonic iron‐associated assemblages (IAAs) in the global ocean and in the Marquesas Islands stations. (a) Description of eukaryotic modules
associated with iron. Relative abundances and co‐occurrences of eukaryotic lineages were used to decipher modules. Four modules can predict iron with high
accuracy: Black, DarkRed, Turquoise, and Yellow. For each IAA, lineages are associated to their score of centrality (x‐axis), to their correlation with iron
concentrations (y‐axis), and their VIP score (circle area). Representative lineages within each module are emphasized by circles and named (C = Copepoda;
B = Bacillariophyta; R = Rhizaria). (b) Upper panel: contribution of Tara Oceans stations to the global variance of IAAs of eukaryotic lineages. For each IAA, we
represent the projection of stations on the first principal component (upper panel). Lower panel: projection of the relative contribution of the Tara Oceans
stations to the global variance of iron‐associated prokaryotic gene assemblages, as revealed by WGCNA. For each prokaryotic gene module associated with iron
(from top to bottom: Grey60, Plum1, Red, SkyBlue, and SaddleBrown), we represent the projection of stations on the first principal component, proportional to
triangle sizes for each module. The behavior of each IAA in the Marquesas archipelago stations is shown in the inset.
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We examined the lineage composition of each IAA and the relevance of each taxon within them by deter-
mining the relative abundance of each lineage with respect to iron concentration estimates and their central-
ity within the module (see section 2). The results are reported in Tables S1d and S1e. The IAAs displayed
significant differences in terms of numbers of lineages and compositions, with the Turquoise module being
the largest and dominated by consumers, predominantly metazoans, and the DarkRed module being the
smallest. The Black module displayed the highest proportion of autotrophs, while the DarkRed IAA dis-
played the highest proportion of diatoms (Bacillariophyta; 57% of all autotrophic protists).

To reduce complexity further, we screened the networks in terms of the VIP score of each node (i.e., the
OTUs displaying the highest statistical weight in differentiating sites because of iron availability; section 2;
Table S1d; Figures 2a and S1c). Species with high VIP scores can be predicted to be particularly important
in reflecting the adjustments of each module via their specific interactions with other members of their
subcommunity. Although interpreting why high VIP taxa are related to iron bioavailability is often
severely restricted by our knowledge of plankton functional ecology and interorganism interactions, in
other cases the role of VIP taxa within the modules is clearer. As an example, identification of an IAA
in which several diatoms have the highest VIPs (DarkRed module, eight subnetwork members, −0.337
correlation with iron), commonly found in the most severely iron‐limited regions of the world's ocean
and often the most responsive groups in mesoscale iron fertilization experiments (Boyd et al., 2007;
Marchetti et al., 2006), suggests a strong physiological plasticity of these groups (Greene et al., 1991;
Lommer et al., 2012). The fact that Pseudo‐nitzschia is among the highest scoring VIP genera in the
DarkRed module further suggests that this genus tracks regions with low iron bioavailability, being able
to profit from it when it becomes available. Other examples concern metazoans: copepods from the genus
Temora (high subnetwork centrality and strong correlation with iron) are known to be iron‐limited (Chen
et al., 2011), and the two cnidarian lineages—the class Hydrozoa and the genus Pelagia (both of which
display relatively strong subnetwork centrality and strong correlations with iron)—suggest strong
predator‐prey links.

Considering the ECCO2‐DARWIN‐derived VIP scores, lineages with the highest scores (>1) could predict as
much as 61.9%, 52.6%, 49.1%, and 38.1% (in the Turquoise, Black, DarkRed, and Yellow IAAs, respectively;
leave‐one‐out cross‐validated) of the variability of iron in the oligotrophic ocean. When the PISCES2‐derived
VIP scores are taken into account, the predictive potential of the IAAs is even higher: 73.2% (Turquoise),
61.9% (Yellow), 59.0% (Black), and 54.4% (DarkRed). More importantly, the VIP scores obtained with the
two models for each OTU showed an extremely good covariance (Figure S1d). This confirms the biological
coherence and stability of the modules and their components to iron availability despite the occasional mis-
match in the predictions of the two models.

Of the photosynthetic groups, autotrophic dinoflagellate taxa were particularly relevant in the Turquoise
and Black modules, diatoms were relevant in the DarkRed module, and haptophytes were significantly pre-
sent in the Yellow module. Metazoans were particularly important in the Black and the Turquoise modules,
and marine stramenoplies/marine alveolata groups of phagotrophic and parasitic heterotrophs were rele-
vant in the Black (marine alveolata), Turquoise, and Yellow modules (marine stramenoplies; Figures 2a
and S1c; Tables S1d and S1e). This hints at particularly intricate, and still elusive, interactions among organ-
isms that ultimately lead to the observed collective responses.

To further interpret the patterns observed for the IAAs, we chose two additional modules, denoted
DarkGrey and Red, because of the different correlations of diatoms within these modules to iron con-
centrations with respect to the DarkRed module (Figures S1a and S1c). By examining the abundance
of the components of each module at different sampling sites (Table S1f), the results suggest that the
Turquoise module groups lineages relevant in all of the main oceanic biogeographic regions with the
exception of the Mediterranean basin, and with a prominent weight in the Southern Ocean. By contrast,
the Black and Yellow modules are of particular importance in the Mediterranean Sea, while other IAAs
have minor contributions. The DarkRed module is generally poorly represented; however, in the South
Pacific and in particular around the Marquesas Islands, its relevance is high (Figure 2b, upper panel;
Table S1f).

Based on all of the above information, we then sketched the ecological profiles of the seven modules, sum-
marized below:
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Black IAA: Ubiquitous, but with low abundance except in the Mediterranean basin, and composed prin-
cipally of heterotrophic organisms (protists and metazoans; Tables S1e S1f). Dinophytes are the autotrophic
component of this module while diatoms are poorly represented. Around the Marquesas Islands, its weight
is constantly low. Lineages are positively correlated or loosely anticorrelated with iron (Figures 2a and 2b;
Table S1d). This module has an intermediate level of internal connectivity and suggests top heavy (pyrami-
dal) trophic interactions. The assemblage resembles a typical pattern in a postbloom phase, with biomass
accumulated in the metazoan compartment. No significant differences are seen when the ECCO2‐
DARWIN‐derived and PISCES2‐derived VIPs are compared since the module is not relevant in areas where
the two models disagree. This pattern is consistent with the differences detected at molecular level.

DarkRed IAA: The module is not particularly significant at global scale in terms of abundance (Figure 2b,
upper panel; Table S1e). It contains a small number of lineages with a high relative weight of diatoms and
few metazoans but no copepods, with carbon recycling mostly in the protistan compartment. This module
is particularly intriguing because, with very few exceptions, all the lineages including diatoms are negatively
correlated with iron (Figure S1c). It is particularly responsive in the Marquesas area but is also present in
offshore South American upwelling areas. The internal connectivity is of an intermediate level
(Table S1d). These features hint at an assemblage in the subtropical ocean driven by the activity of diatoms
thriving in regions of low iron availability (while exploiting a higher than average silicon availability), thus
showing an inversion of the pattern compared to high iron regions (Figure 2b, upper panel). Significantly, its
abundance drops at Station TARA_123 in the Marquesas archipelago (see below).

Turquoise IAA: Ubiquitous, with a general high weight in terms of abundance, and very abundant in the
Southern Ocean (in particular in stations TARA_85–88; Table S1f). The module includes relatively few dia-
toms, but many dinoflagellates (both autotrophic and heterotrophic species; Tables S1d and S1e). Copepods
are themost numerous components and show the highest VIP scores. Of note, this module includes the crus-
tacean order Euphausiacea (krill), which specifically emerges as having high VIP scores only when the
PISCES2‐derived iron estimates are used. Both internal connectivity and number of lineages are high
(Table S1d). The module as a whole responds in the Marquesas area, especially at TARA_123 (Figure 2b,
upper panel; Table S1f).

Yellow IAA: This module is particularly important in South Adriatic and Eastern Mediterranean, as well
as in the tropical North Atlantic (Figure 2b, upper panel; Table S1f). It includes relatively fewmetazoans and
diatoms but a notable abundance of haptophytes and heterotrophic protists (Tables S1d and S1e). It displays
a weak response in the Marquesas area (TARA_125; Figure 2b, upper panel) and seems to be less dependent
on iron availability as compared to the other modules.

DarkGrey: Not an IAA and has a low weight in general, with a slight positive correlation to iron and only
low internal connectivity. Diatoms in this module are very relevant (Tables S1d and S1e). It contains a high
fraction of metazoans with fewer heterotrophic protists. This module displays a typical bottom heavy (pyr-
amidal) structure with diatoms reacting positively to iron availability.

Red module: Not an IAA, but this module displays a similar response to iron than the DarkGrey module,
with the main differences being that it contains fewmetazoans and the protist compartment is dominated by
Dinophyceae. Diatoms are also dominant as autotrophic protists. It is the module that correlates the most
with chlorophyll and primary productivity (Figure S1a) and seems to be associated with highly productive
areas. It is thus not very relevant globally, with the exception of the South Atlantic Ocean, where it domi-
nates the Benguela upwelling (Station TARA_67), a very rich region that is not iron limited. It is apparently
driven by bottom‐up flexible responses to iron availability, most probably by macronutrient availability
(Tables S1d and S1e). It displays variable correlations of its members to iron and has also a bottom heavy
pyramidal trophic structure.

Overall, our analysis strongly suggests that different subassemblages of co‐occurring lineages can be pin-
pointed within communities that respond differently to resource limitation, mostly without marked geogra-
phical preferences albeit with high plasticity to iron availability. Particularly remarkable is the contrasting
role shown by diatoms, with different lineages covering the full range of correlations with iron
(Figure S1c), possibly linked to their different strategies for responding to the lack of a crucial resource. In
some cases their communities share a similar response while in others the structure of the assemblage is
modified. The further observation that co‐occurrence of IAAs can show biogeographical patterns
(Figure 2b, upper panel) that are not clearly emphasized by analysis of single eukaryotic groups
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(Figure S1c) is suggestive of a compartmentalization of communities in subcommunities or modules. Our
analysis also infers that it is the module as a whole that responds to perturbation, reinforcing the need to
dissect plankton responses to iron bioavailability at community scale, while investigating the
physiological responses of key species.

In addition to eukaryotes, WGCNA analysis was also performed on prokaryotic communities, as well as on
prokaryotic genes from the Ocean Microbial Reference Gene Catalog (Alberti et al., 2017; Sunagawa et al.,
2015). Using relative abundances of prokaryotic 16S rDNA miTags, no subnetwork could be associated sig-
nificantly with iron (maximum r = 0.19, P < 10−2). However, following the same procedure but using the
relative abundances of prokaryotic genes rather than taxa, five subnetworks were significantly associated
with iron (ECCO2‐DARWIN iron data; Figure 2b, lower panel; Table S1g; P < 10−5): Grey60 (r = 0.38,
P = 6. 10−5), Plum1 (r = 0.54, P = 3.10−9), Red (r = −0.42, P = 10−5), SkyBlue (r = −0.44, P = 2.10−6),
and SaddleBrown (r = −0.47, P = 6.10−7). VIPs obtained from each of the two models displayed high corre-
lations (Grey60 = 0.99, Plum1 = 0.94, Red = 0.99, SkyBlue = 0.96, SaddleBrown = 0.98). The VIP genes of
the SaddleBrown subnetwork represent 25% (N = 41) of the total number of genes, and several genes that
could be functionally identified encode proteins associated with iron transport, saccharopine dehydrogen-
ase, aminopeptidase N, and ABC‐type transporters (Table S1g). The Plum1 subnetwork is a small subnet-
work of around 100 genes that is solely associated with iron concentration variability, and 30% of its VIP
genes encode principally specialized functions defined as noncore functions in a previous study of the
Tara Oceans Global Ocean Microbiome (Sunagawa et al., 2015; Table S1g). Not surprisingly, 75% of the
genes within this subnetwork encode proteins with unknown functions, although some known functions
are linked to iron, such as ferredoxin and regulation of citrate/malate metabolism. The contribution to the
global variance by stations located within the Red Sea (Stations TARA_31–34) is particularly high
(Figure 2b, lower panel). The Red subnetwork is very large, composed of 3,059 genes. However, only 9%

Figure 3. Correlation analysis between absolute cell abundance of marine picocyanobacterial clades and iron concentration estimates from PISCES2 model in
surface waters. Only statistically significant correlations are displayed (p value < 0.05). Spearman correlation coefficients and p values are indicated. The cell
abundance for each cyanobacterial clade was assessed combining petB marker gene counts with flow cytometry determinations using the method published by
Vandeputte et al. (2017).
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represent high scoring VIPs, among which functions related to iron are evident (e.g., ABC‐type Fe3+

siderophore transport system, putative heme iron utilization protein, metalloendopeptidase—Table S1g).
Finally, the SkyBlue subnetwork is a small subnetwork (172 genes) containing 33% of VIPs whose
functions are generally unknown (Table S1g). The global variance of this gene subnetwork can be
correlated principally with several oligotrophic regions of the Pacific Ocean (e.g., Stations TARA_93, 100,
112, and 128).

In summary, association of prokaryotes with iron is detectable at the functional level (gene abundance) but
not at the taxonomic level, which would suggest a low level of specialization, at least with the resolution
allowed by the 16S marker. To further analyze this aspect, we focused on Prochlorococcus and
Synechococcus, the two most abundant and widespread bacteriophytoplankton in the global ocean, and
for which a higher‐resolution genetic marker is available. Combining the information from the taxonomic
marker petB, which encodes cytochrome b6 (Farrant et al., 2016), with flow cytometry cell counts, we esti-
mated the absolute cell abundance of the picocyanobacterial clades and found that many of them have a
strong correlation with predicted iron levels from PISCES2 (Figure 3) and ECCO2‐DARWIN models (not
shown). Prochlorococcus HLIII and IV ecotypes showed the highest anticorrelation with iron, in agreement
with previous descriptions that they are the dominant populations in HNLC areas (Rusch et al., 2010; West
et al., 2011). Prochlorococcus LLI, a minor component in surface waters, also showed anticorrelation with
iron. In the case of Synechococcus, the strongest positive correlation was found for clade III, whereas a
weaker pattern is displayed by clade II. On the contrary, CRD1 showed the highest negative correlation with
iron, consistent with it being reported as the major Synechococcus clade in HNLC regions (Farrant et al.,
2016; Sohm et al., 2016). In addition, clade EnvB also displayed a negative correlation with estimated
iron concentrations.

These results demonstrate that iron affects picocyanobacterial community composition and raise the ques-
tion of whether the lack of correlation with taxonomic networks depends on a poor taxonomic resolution or
to being more pronounced for autotrophs with respect to heterotrophs.

Finally, we used relative abundance of viral populations (Brum et al., 2015) to applyWGCNA and tentatively
explore whether the viral module subnetworks display any kind of association to the same suite of environ-
mental factors used above for prokaryotes and eukaryotes (data not shown). In spite of the fact that we found
four viral IAAs significantly associated with iron using the ECCO2‐DARWIN iron estimates (data not

Figure 4. Tara Oceans metagenome survey in surface waters for oceanic phages containing putative iron‐containing structural proteins. (a) Representation of
protein domain architecture of viral tail proteins with putative iron‐binding HxH motifs, the HMM logos for the HxH motifs identified in the corresponding Tara
Oceans viral unigenes, and the biogeographical distribution of the corresponding viral contigs. In the map, the circle colors represent iron concentration
estimates at each sampling site according to PISCES2 biogeochemical model (Table S1a), and the circle areas represent the cumulated normalized coverage of the
viral contigs of interest. (b) Equivalent analysis for viral spike proteins with putative iron‐binding HxHmotifs. (c) Equivalent analysis for viral tail tip proteins with
CX8–13CX22–23CX6C motif involved in 4Fe‐4S cluster binding.
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shown), our current knowledge of marine viruses is not advanced enough to discuss our results in the view of
the impact on viruses of global iron biogeochemistry. This lack of knowledge is aggravated by the fact that
the vast majority of viruses in the IAAs have unknown host ranges.

Viruses are thought to impact oceanic iron during host lysis; however, there is a current discussion about
their potential role in complexing iron (Bonnain et al., 2016). To explore this latter point, we surveyed the
Tara Oceans metagenomes for genes encoding viral structural proteins with putative iron‐binding sites.
Specifically, we searched for paired histidine residues (H × H motifs) in tail proteins (Bartual et al., 2010)
and baseplate assembly proteins (Browning et al., 2012) because this motif has been experimentally impli-
cated in the octahedral coordination of iron. We also analyzed the presence of four conserved cysteine resi-
dues involved in the coordination of a 4Fe‐4S cluster in tail tip proteins (Tam et al., 2013). Remarkably, these
potential iron‐binding motifs are present in 87% unigenes encoding viral tail proteins, 47% of baseplate
assembly proteins, and 12% in those coding for tip proteins (Figures 4a–4c). The corresponding viral contigs
are distributed ubiquitously and with high abundance (Figures 4a–4c), suggesting that a significant fraction
of colloidal iron may be associated with viruses in the ocean, a factor that is not currently considered in the
modeling of ocean biogeochemistry. The question is then how substantial this contribution could be.
Bonnain et al. (2016) made a broad estimation based on the number of iron ions experimentally determined
in tails of nonmarine phages, and the amount of tailed viruses typically found inmarine surface waters. They
thereby suggested that between 6% and 70% of the colloidal iron fraction from surface waters could be bound
to tail fibers of phages. In this context, the recent “Ferrojan Horse Hypothesis” posits that iron ions present
in phage tails enable phages to exploit their bacterial host's iron‐uptake mechanism, where the apparent gift
of iron leads to cell lysis (Bonnain et al., 2016). Although our analysis does not allow to confirm this hypoth-
esis, it provides a useful context to explore it further.

3.3. Functional Responses Are Mediated Either by Changes in Gene Copy Number or by
Expression Regulation

Given the clear patterns in the community responses to iron availability, we next wondered whichmolecular
patterns were associated with them. We first examined the prevalence of the diatom ISIP genes in more
detail using both metagenomics and metatranscriptomics data to detect changes in gene abundance and
expression, respectively. We found that both the abundance and expression of this gene family displayed a
strong negative correlation with iron (Figure 5a). Figure 5a shows a strong hyperbolic profile of ISIP gene
abundance and mRNA levels with respect to iron concentrations (nonlinear regression fitness of 97.01
and 98.14, respectively; Table S1c). Furthermore, density clustering algorithms detected two types of
responses—stations in which ISIP was only increased in metagenomics data (denoted group 0) and others
in which both metagenomic and metatranscriptomic data showed increases in ISIP levels (denoted group 1;
Figure 5a). The former likely correspond to locales where ISIP copy numbers vary in diatom genomes as a
function of iron, implying that the diatoms at these stations display permanent genetic adaptations to the
ambient iron concentrations, whereas the latter display transcriptional variation, indicative of more flexible
short‐term acclimatory rather than permanent adaptive evolutionary processes. Taxonomic analyses
revealed that diatoms from the Thalassiosira genus were typical of group 0, whereas Pseudo‐nitzschia was
found largely in Group 1 (Figure 5b). Representatives from both these genera are well known to respond
to fluctuations in iron (Cohen et al., 2017; see supporting information S1 ‐ Claustre et al., 2008), so these
different iron‐response strategies may underlie why they are present in different IAAs; Thalassiosira is
present in the Black and Turquoise IAAs whereas Pseudo‐nitzschia is only present in the DarkRed module,
where it is negatively correlated to iron (Figure 2a; Table S1d).

It is interesting to note that sampling sites can be grouped in a similar way according to either their picocya-
nobacterial community or diatom ISIP patterns in relation to iron levels (Figure 6). HLIV and HLIII codo-
minate the Prochlorococcus community in group 1 stations, and these sites are also characterized by the
presence of LLI, as well as the Synechococcus clades CRD1 and EnvB. Based on picocyanobacteria commu-
nity composition, these stations tend to cluster together in a group of low‐iron stations from Indian and
Pacific Oceans (TARA_52, 100, 102, 110, 111, 122, 124, 125, 128, and 137). On the contrary, group 0 ISIP
stations were dominated by either Prochlorococcus HLI or HLII and by Synechococcus clades II or III.
Among these stations, those from the high‐iron Mediterranean Sea (TARA_7, 9, 18, 23, 25, and 30) clustered
together based on picocyanobacteria community composition (Figure 6).
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Figure 5. Abundance and expression of diatom ISIP genes with respect to iron concentration estimates. (a) 2‐D scatter plots correspond to the correlation between
gene abundance and iron (left), gene expression and iron (middle), and abundance and expression of ISIP genes (right). Pearson correlation coefficients (pcc)
and p values are indicated in blue. Iron concentrations were estimated using PISCES2 model (Table S1a). In all cases, the abundance and expression of ISIP genes
were normalized by the total diatom unigene abundance and expression, respectively, and were then scaled to the unit interval. The 3‐D plot shown below is
derived from the three 2‐D scatter plots, with the color gradient representing the third dimension. The data were clustered using density clustering algorithms,
resulting in a group of Tara Oceans sampling sites in which ISIP was only increased in metagenomics data (denoted Group 0 stations [40 stations; circles]) and
others in which both metagenomic and metatranscriptomic data showed increases in ISIP levels (denoted group 1 stations; 21 stations; triangles). The values
corresponding to TaraOceans stations in theMarquesas archipelago are labeled (122–125). TaraOceans sampling sites are colored according to the ocean region in
the 3‐D plot: NPO = North Pacific Ocean; SO = Southern Ocean; SPO = South Pacific Ocean; NAO = North Atlantic Ocean; SAO = South Atlantic Ocean;
MS =Mediterranean Sea; IO = Indian Ocean. (b) Relative abundance (left) and expression (right) of ISIP genes assigned at different levels of resolution in a diatom
phylogenetic tree. The color code corresponds to the two clusters of stations defined in panel a based on ISIP patterns (red for group 0 with variations only at
metagenome levels; blue for group 1 with variations in both metagenome and metatranscriptome levels).
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Figure 6. Comparison of iron‐driven changes in diatom ISIP gene abundance and expression and in the picocyanobacterial community from surface waters.
Histograms of cell abundance of Synechococcus and Prochlororococcus clades at each Tara Oceans station are displayed, with stations sorted by hierarchical
clustering of a Bray‐Curtis distance matrix. The left panels indicate iron concentration estimates from PISCES2 model, and metagenome and metatranscriptome
levels of diatom ISIP genes, including the resulting cluster type (circles and triangles as described in Figure 5).
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Besides diatoms, we carried out a detailed analysis of ISIP distributions among other phytoplankton taxa.
We found that in chlorophytes Fea1‐domain‐encoding genes (related to ISPI2a; Marchetti et al., 2017) vary
in copy number as a function of predicted iron levels and that ISIP expression also varies in haptophytes and
pelagophytes (Figure S2). Dinoflagellates display the lowest correlations of ISIP gene abundance and expres-
sion with respect to iron. This may indicate that dinoflagellates respond differently to iron concentrations or
with different genes.

A similar analysis was performed to examine the abundance and expression of type I (metal‐free) and type II
(containing iron or other divalent cations) FBAs (Allen et al., 2012). We found that the FBAII gene showed a
clear up‐regulation at high‐iron stations in all groups, while diatoms showed a concomitant reduction in
FBAI gene abundance and mRNA levels, pelagophytes and dinoflagellates displayed decreased gene abun-
dance, and haptophytes displayed a response at the mRNA level (Figure S2). The chlorophytes displayed
no consistent trends.

Ferritin is another important protein of iron metabolism that was relatively recently identified in diatoms
(Marchetti et al., 2009) and in other phytoplankton functional groups (Botebol et al., 2015). Although it
appears to be involved in long‐term iron storage in Pseudo‐nitzschia (Marchetti et al., 2009), other studies
have suggested that its principal role could be in cellular iron buffering and temporal storage over shorter
timescales such as during diurnal cycles (Botebol et al., 2015; Cohen et al., 2018; Pfaffen et al., 2015). Our
analysis revealed no clear pattern in ferritin gene abundance or expression and estimated iron levels
(Figure S2), suggesting that iron storage may not be the main function of ferritin in most eukaryotic marine
phytoplankton. The exceptions are haptophytes, in which an iron‐driven increase in copy number is
observed (Figure S2), and the diatom genus Pseudo‐nitzschia, in which the biogeographical patterns of fer-
ritin gene abundance and expression suggest a positive correlation with iron (Figure S3).

We additionally examined the levels of genes encoding proteorhodopsin, a light‐driven proton pump for the
generation of ATP that has been proposed to supplement ATP generation from photosynthesis in iron‐
limiting conditions, when photosynthetic electron transport is suboptimal (Marchetti et al., 2015).
According to our results, abundance of the gene is negatively correlated with iron in pelagophytes and dino-
flagellates (as well as in diatoms, albeit without statistical support), and mRNA levels are negatively corre-
lated with iron availability in pelagophytes and haptophytes (Figures S2).

We also examined the interaction between iron and other nutrients in diatoms. Particularly, we focused on
silicate metabolism because iron bioavailability has been found to play a role in silicon utilization in these
organisms (Durkin et al., 2012, 2016; Mock et al., 2008). The analysis of the different clades of Si transporter
(SIT) multigene family support the strong interaction between iron and silicate in diatoms and suggest that
the diversification of SITs has led to specialized adaptations to deal with it (see supporting information S1
and Table S1h).

Collectively, our results indicate that individual genes implicated in iron metabolism in specific organismal
groups do not provide an unequivocal evaluation of iron availability in the environment and are thus of only
limited use as sentinel genes of iron bioavailability. Instead, the integration of all these iron‐driven patterns,
spanning from genes to ecosystems, is a promising strategy for designing omics‐enabled tools that can
improve the representation of key nutrients in biogeochemical models. In this sense, the covariation of pico-
cyanobacterial communities with the transcriptional regulation and altered copy numbers of diatom ISIP
genes can potentially be exploited to predict actual iron bioavailability in the ecosystem (Figure 6). A recent
report on the phytoplankton transcriptional response to upwelling (Lampe et al., 2018) highlighted that
diatoms express genes involved in nitrogen assimilation, probably to overcome possible autotrophic
competitors, thus suggesting that different transcriptional sets of genes may be expressed under different
bloom‐triggering conditions.

3.4. Plankton Respond to a Resource Burst in the Marquesas Archipelago by Reorganization
of IAAs

The global analyses of IAAs and iron responsive genes in the context of the ranges of geographic iron avail-
ability provide a first‐order approximation of plankton community structure organization and responses for
large‐scale, iron‐linked biogeochemical regions. In other words, they possibly reflect the integrated, albeit
diversified, response to average conditions and in a stationary or quasi‐stationary phase. They further
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Figure 7. The Marquesas study site, showing sampling sites, surface chlorophyll concentrations, and the local dynamics of the four eukaryotic IAAs. (a) Map of
surface chlorophyll in the Marquesas area. Drifter and Provbio trajectories are indicated as well as the Tara Oceans sampling stations, with a zoom on stations
TARA_123 and TARA_124. For further details see main text and supporting information S2. (b) Analysis of the dynamics of the four IAAs at the Marquesas
archipelago stations in relation to their eigenlineage values (upper), richness (middle), and relative abundance (lower). All modules show negative eigenlineage
values, with the exception of the DarkRed IAA. The DarkRed module positive eigenlineage scores significantly decrease within the bloom stations. The mean IAA
relative abundance calculated over the global Tara Oceans data set was subtracted from IAA relative abundance calculated at the Marquesas Islands. The
increase in DarkRed relative abundance in station TARA_124 was due to a single Prasinophyceae OTU. The mean IAA richness calculated over the global Tara
Oceans data set was subtracted from IAA richness calculated at the Marquesas Islands. Data indicates that the DarkRed IAA retains ~60% of its OTUs in low iron
conditions, a percentage that decreases in the bloom stations. (c) Relative abundance changes at the Marquesas Islands stations for IAA photosynthetic lineages
with high iron correlation. The graph shows the list of IAA autotroph lineages with the highest statistically significant correlations against PISCES2 iron estimates
(p < 0.05) at a global scale, with the corresponding Pearson correlation coefficient, and their relative abundance at the Marquesas Islands sampling sites.
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provide support for the iron products of the two biogeochemical models. We reasoned that they might also
be able to indicate increases in iron in regions where biogeochemical models do not have sufficient resolu-
tion and to highlight mechanisms in action when the resource is provided in bursts that drive the commu-
nity out of a previous steady state, for example, leading to blooms. One such case is the Marquesas
archipelago in the subtropical Pacific Ocean, where previous studies (Martinez & Maamaatuaiahutapu,
2004) have highlighted a dynamic natural perturbation resulting in perennial plankton blooms that are visi-
ble from space. Although iron concentrations have not been measured extensively in the region, these and
similar blooms (Gong et al., 2016) are triggered by different processes due to the presence of the islands (ver-
tical mixing, horizontal stirring, local precipitation, and runoff), which are typically coupled to iron injection
(Martinez & Maamaatuaiahutapu, 2004), a phenomenon that has been termed Island Mass Effect (Gove
et al., 2016). We therefore focused on this region to examine the relationship between the global patterns
in plankton subcommunities and iron‐responsive gene abundance/expression in a more localized dynamic
setting (supporting information S2–S4).

Satellite chlorophyll estimates showed that in the days preceding the visit of the Tara Oceans expedition to
the archipelago in August 2011, the area was characterized by intense variability. Our analyses also revealed
a highly turbulent environment, with mixing up to 100‐m depth and strong lateral shearing downstream of
the islands, which generated an area of recirculation in the wake of the main island and the formation of
small eddies where the blooms were occurring (Figures 7a and S4a). Station TARA_122 sampled the
HNLC prebloom waters upstream of the islands (Figure 7a). Waters of Station TARA_122 were character-
ized by low chlorophyll concentrations in the water column ([Chl‐a]int: 16.6 mg/m2) but high concentrations
of nutrients (NO2−: 0.12 mmol/m3, PO4: 0.57 mmol/m3, NO2NO3: 5.5 mmol/m3, Si: 2. 2 mmol/m3; Figure
S4b and Table S2a), characteristic of an HNLC region (Quéguiner, 2013; Smetacek & Naqvi, 2008). Of note,
the low concentration of silicates in this stationmay have acted as a limiting factor for the growth of diatoms.
Station TARA_123 is coastal, 8‐km downstream of NukuHiva island and with a seabed depth of 1,903 m and
higher chlorophyll levels ([Chl‐a]int 33.6 mg/m2), indicative of a bloom. Nutrients were as elevated as in the
prebloom HNLC area, and with a particular increase of NO2− around 150‐m depth (1.47 mmol/m3). Station
TARA_124 is away from the coast, 43 km from Nuku Hiva, in even deeper water (2,414‐m bottom depth),
and in an eddy also characterized by high chlorophyll content with respect to Station TARA_122 ([Chl‐a]
int 28.5 mg/m2). The chlorophyll patch was possibly seeded near the islands and transported by currents
far from the coast but sustained by the eddy dynamics and its interaction with underlying water. Station
TARA_125 is located 300‐km downstream of the islands. The chlorophyll patch was still clearly evident
([Chl‐a]int 27.6 mg/m2). Of note, the large NO2− reservoir at the base of the mixed layer (120–180 m;
Figure S4b) may indicate significant biological activity, although our data are not sufficient to discriminate,
which is the relative contribution of phytoplankton, zooplankton, and bacterioplankton to establish the
nitrite reservoirs.

The concentration of measured biologically relevant metals was generally reduced in Stations TARA_123 to
TARA_125 with respect to HNLC station TARA_122 (Table S2b). The reduction of dissolved ions was parti-
cularly significant in the case of cobalt, nickel, copper, and cadmium, whichmay be considered as a potential
clue for an increased uptake of biologically available trace metals in the leeward stations, although other
mechanisms cannot be ruled out. Since these metals were not limiting in the HNLC conditions, it is possible
that the removal of iron limitation affected the biological pathways related to metal ion uptake in general.
For more information on the oceanographic context of the Marquesas Island at the time of sampling, see
supporting information S2 (Blain et al., 2008; Dolan et al., 2007; Gómez et al., 2007; Guidi et al., 2008;
Legeckis et al., 2004; Masquelier & Vaulot, 2007; Ras et al., 2008; Signorini et al., 1999; Stemmann
et al., 2008).

At the four Marquesas sampling sites the IAAs displayed dynamic patterns (Figures 7b and 7c; Table S1f;
supporting information S3). The low‐iron adapted DarkRed IAA showed a progressive decrease in its promi-
nence leeward of the islands, consistent with its negative correlations to iron at global level, while the
Turquoise IAA showed increases in abundance. The Turquoise IAA is the only module containing auto-
trophs both positively and negatively correlated with iron, and while the latter were prominent at Station
TARA_122 the former were prevalent at stations TARA_123–125 (Figure 7c). The observed changes in
IAA prevalence in the Marquesas stations therefore supports a role for iron in the modulation of plankton
communities in the region. Prokaryote IAAs, although not taxonomy based, are dynamically responsive at
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the Marquesas Islands (Figure 2b, lower panel). Two types of response can be detected: (a) The prokaryote
IAAs Grey60 and Plum1 show a shift from negative to positive eigenlineage scores from TARA_122 to
TARA_123, and (b) the SaddleBrown, Red, and SkyBlue IAAs show eigenvalue peaks in Station TARA_123.

The dynamics of the DarkRed subnetwork at the Marquesas Islands may be used to examine our previous
claim that it is the module as a whole that responds to perturbation. This is a low‐iron‐associated module,
in which the autotrophic species are the most relevant and typically show negative correlations to iron at
the global level, in contrast to most of the autotrophs in the other modules (Figure 7c). Indeed, only a few
of the species associated to this subnetwork are present in high‐iron conditions. In the context of the
Marquesas Islands, most of the DarkRed‐assigned OTUs were detected in the oligotrophic Station
TARA_122 but not at Station TARA_123, where iron was not expected to be a limiting factor. Both richness
and the relative abundance of the subnetwork decreased at Station TARA_123. We thus observe that an iron‐
responsive subnetwork changes its richness and abundance in a manner consistent with iron availability,
rearranging the connectivity between its nodes. Additional details about the dynamics of IAAs in the
Marquesas archipelago can be found in supporting information S3.

Figure 8. Variations in plankton community composition at Marquesas sampling sites. (a) Relative contribution of differ-
ent autotrophic lineages to the total chlorophyll concentration in the euphotic zone (0–120 m), derived from photosyn-
thetic pigment analysis and expressed as percent of the total measured chlorophyll. (b) Depth‐integrated biomass
(mg·C·m−2) of autotrophs and mesozooplankton (>300 μm) in the euphotic zone (0–120 m). (c) Relative abundance of
Prochlorococcus and Synechococcus picocyanobacteria expressed as percent of the total Prochlorococcus plus Synechococcus
abundance estimated from flow cytometry data. Genetic markers (petB) showed exactly the same trends (supporting
information S3). (d) Relative abundance (%) of ribotypes (18S‐V9 tags) assigned to autotrophic eukaryote lineages at the
surface (5‐mdepth). Abundances were computed for the two size fractions containing themajority of autotrophic lineages,
namely, 0.8‐ to 5‐μm and 5‐ to 20‐μm size fractions. (e) Relative abundance (%) of ribotypes (18S‐V9 tags) assigned to
metazoan lineages at the surface (5‐m depth). Abundances were computed for the two size fractions containing the
majority of metazoans, namely, the 20‐ to 180‐μm and 180‐ to 2,000‐μm size fractions. (f) Richness and diversity (expo-
nential Shannon index) of eukaryotic autotrophs in two different size fractions estimated from the metabarcode data.
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Further analysis of the plankton communities at the Marquesas stations showed that the biomass of pri-
mary producers was around 50% higher at the leeward stations (Stations TARA_123, 124 and 125) than at
HNLC Station TARA_122, with increases in diatoms, haptophytes, pelagophytes, and Synechococcus
(Figures 8a–8d; supporting information S3, Alexander et al., 2015). The higher productivity likely fueled
increases in zooplankton standing stock at these three stations, in particular copepods, chaetognaths, and
appendicularians (Figures 8b and 8e).

Eukaryotic phytoplankton diversity increased at TARA_123 (Figure 8f; supporting information S3, Martin et
al., 2013), likely favored by the intense physical dynamics (Barton et al., 2010; Biard et al., 2016). At these
stations the increased number of diatoms was due principally to Thalassiosira andMinutocellus (supporting
information S3). Increases in haptophyte and pelagophyte abundance were due to Phaeocystis and
Pelagomonas, respectively. By contrast, the community at Station TARA_122 was more characteristic of
an extremely oligotrophic environment, with an abundance of Rhizaria (Biard et al., 2016), Planktoniella
diatoms (Malviya et al., 2016), Chrysochromulina haptophytes (Stibor & Sommer, 2003), and Pelagococcus
pelagophytes (Guillou et al., 1999), as well as Prochlorococcus (Rusch et al., 2010).

Analysis of picocyanobacteria also revealed alterations consistent with increased iron bioavailability in the
wake of the islands with respect to TARA_122 (Figure 6). For example, we observed an almost complete shift
of Synechococcus community composition from clade CRD1 at TARA_122 to clade II at TARA_123 and
TARA_124, while absolute abundances of Prochlorococcus HLIII and IV, previously shown to dominate in
iron‐depleted waters (Rusch et al., 2010; West et al., 2011), were significantly reduced (Figure 6; supporting
information S3 and S4, Grob et al., 2007).

Using transcriptomes from MMETSP together with metatranscriptomes from Tara Oceans (Alberti et al.,
2017; Carradec et al., 2018; Louca et al., 2016; Sunagawa et al., 2015), we could further compare the

Figure 9. Variations in gene abundance and expression in cyanobacteria and diatoms at Marquesas sampling sites. (a, b) Differential expression patterns of iron‐
related genes from cyanobacteria Prochlorococcus (a) and Synechococcus (b) at stations TARA_122–125. Transcription values were normalized over genomic
occurrence and are expressed relative to the levels observed at station TARA_122 (index 100). The flavodoxin/ferredoxin ratio is also plotted (PetF/IsiB). (c) Relative
abundances and mRNA levels of diatom genes potentially responsive to iron in metagenome and metatranscriptome data sets from stations TARA_122 and 123.
Values were normalized by total abundance or expression of all unigenes assigned to the corresponding taxonomic group (Pseudo‐nitzschia and Thalassiosira).
For clarity we focused only on changes in 5‐ to 20‐μm size fractions. Colors indicate the contribution of each station to the total levels. (d) Relative ratios
between pairs of genes whose presence in the genome or transcriptional activity has been reported previously to be potentially responsive to iron bioavailability. For
clarity, ferritin levels have been multiplied by a factor of 10 to be comparable with ISIP levels, and only 5‐ to 20‐μm size fractions from stations TARA_122
and 123 are compared.
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qualitative shifts in genotypes highlighted above with changes in transcriptional outputs in cyanobacteria
(Figures 9a and 9b), eukaryotic phytoplankton (Figures 9c, 9d, and S5), metazoans (Figure S6 and support-
ing information S4), and more specifically in diatoms (Figures 9c, 9d, and S7). Importantly, ISIP levels were
decreased in the leeward stations (Figures 5a, 9c, and 9d), and study of gene switches proposed to be respon-
sive to ambient iron concentrations such as ferredoxin/flavodoxin, plastocyanin/cytochrome c6, and
FBAI/FBAII (Allen et al., 2012; Mackey et al., 2015; Marchetti et al., 2012; Peers & Price, 2006; Pierella
Karlusich et al., 2015; Thompson et al., 2011) revealed patterns generally consistent with increased bioavail-
ability at Stations TARA_123–125 with respect to HNLC Station TARA_122 both in Synechococcus
(Figures 9a and 9b) and in the major groups of eukaryotic phytoplankton (Figures 9c, 9d, S5, and S7). The
abundance of proteorhodopsin and ferritin genes and mRNA in diatoms were generally also consistent with
this hypothesis, with decreases in proteorhodopsin transcripts and increases in ferritin in Station TARA_123
with respect to Station TARA_122 (Figures 9c, 9d, and S7d). These patterns of known iron‐responsive genes
provide strong support that iron bioavailability is an important driver of the phytoplankton blooms in the
Marquesas Islands (supporting information S4, Groussman et al., 2015; Kazamia, et al., 2018; Lane &
Morel, 2000; McQuaid et al., 2018; Whitney et al., 2011).

Furthermore, and consistently with the global analyses, Thalassiosira and Pseudo‐nitzschia appear to
employ different mechanisms to respond to iron in the Marquesas stations. Specifically, small ferritin‐
containing Thalassiosira cells expressing cytochrome c6 genes increase in abundance at Station
TARA_123, replacing larger Thalassiosirales genetically adapted to low iron at Station TARA_122 by their
almost exclusive expression of plastocyanin with respect to cytochrome c6 (Figures 9c, 9d, and S7; supporting
information S4). On the other hand, Pseudo‐nitzschia cells with flavodoxin and plastocyanin genes are
enriched in TARA_122 in comparison with TARA_123. For these two diatom genera, the investigation of
the local response around the Marquesas Islands therefore corroborates their behavior within IAAs at the
global level, and their compartmentalization into different groups based on ISIP gene abundance and
expression (Figure 5) supports the hypothesis that they have evolved fundamentally different mechanisms
to respond to iron resource availability.

The outcome of the taxon‐specific responses summarized above and discussed more comprehensively in
supporting information S4, (Arienzo et al., 2014; Berline et al., 2011; Gorsky et al., 1999; Probert et al.,
2014; Yuasa et al., 2016) is shifts in abundance and occurrence of taxa within IAAs that change the overall
structure of the food web. Our observations also reveal novel information about the genetic strategies and
specialized mechanisms employed by each taxon to cope with iron availability (supporting information
S4, Bundy & Kille, 2014; De Vos et al., 1992) and illustrate that these responses may ensure resilience of each
IAA in a subset of conditions within a highly variable environment. Collectively, our results therefore
demonstrate that the delineation of co‐responsive subcommunities at global scale can provide a valuable
framework for identifying key lineages whose adaptive capacities can be compared and contrasted in specific
dynamic contexts. Finally, our in‐depth analysis of community structure and gene expression around the
Marquesas Islands illustrates how biological data can be used to inform biogeochemical models, because
neither of the models used here was able to project increased iron availability in the wake of the islands.
Furthermore, while the four Marquesas stations were used in the global analysis that defined the IAAs, they
did not contribute to the correlation of IAAs because of the lack of resolution of the models in this area. The
module responses in the Marquesas are therefore not biased but are remarkably indicative of a change in
iron bioavailability in the lee of the islands.

4. Discussion

In this study we have shown how the turnover of organisms coping with ocean variability involves a combi-
nation of ontogenetic responses driven essentially by modulation of gene expression patterns, that is, accli-
mation, together with phylogenetic responses driven by changes in plankton community structure as well as
different genotypes adapted to local conditions by altered copy numbers of iron responsive genes. Different
organismal groups appear to use different strategies, meaning that they will not all respond over the same
evolutionary timescales. The island mass effect in the wake of the Marquesas Islands leads to the selection
of preferred genotypes at the community level and triggers acclimatory responses to fine‐tune metabolic
functioning via transcriptional responses. These local observations of the most affected organisms are
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consistent with IAAs identified in the global ocean, suggesting that large‐scale equilibria are in fact dynamic
and responsive to smaller scale perturbations.

Previous studies at global scale of the effects of iron on marine plankton were focused on a specific subset of
bacterial genes involved in iron metabolism using metagenomics samples from North West Atlantic,
Equatorial Pacific, and Indian Oceans (Toulza et al., 2012). Our current study extends this analysis because
of its broader geographical coverage and the vastly expanded sequencing data set, which has permitted us to
explore both community‐level and gene‐level responses throughout the entire plankton community, from
viruses to zooplankton. Our work thus provides an extensive global scale analysis of the different levels at
which plankton biodiversity may be impacted by iron availability, although it should not be assumed that
all the responses we highlighted depend solely on iron because one single resource is very unlikely to drive
the physiological and structural dynamics of a community. Nonetheless, our extensive statistical analyses
suggest that the responses we define do certainly involve iron bioavailability and that the responses occur
at molecular, physiological, and compositional levels. Of note is the evidence of modularity in the commu-
nity structure with modules of co‐occurring taxa being sensitive to the resource yet displaying often contrast-
ing strategies. This extends the results obtained by Guidi et al. (2016) who focused on a specific process,
indicating that modularity is a general feature of plankton communities, whichmight be related to their con-
tinuous turnover. To the extent allowed by available gene catalogs and taxonomic resolution, we were able to
link the subcommunity responses to the molecular toolkits of the organisms, but in many cases we empha-
size that the response is not unequivocal but rather maps to a suite of strategies that had already been
recorded previously in localized or laboratory experiments.

The complexity of the plankton ecosystem that emerges from the analysis of each IAA and their VIPs, whose
dynamics have a certain degree of freedom with respect to the response of the others, indicates that there is
some flexibility between the composition of primary producers and their consumers, even though the former
are the organismsmost directly impacted by nutrient availability. In particular, heterotrophic grazers appear
to be central for responses to such bottom‐up processes as nutrient acquisition. We interpret the VIP values
versus correlation to iron and community centrality as follows: that communities are assemblages of several
organisms with multiple interactions among them that cannot be reduced to just a handful of opportunistic
autotrophic species able to benefit from nutrient injection and that supply organic carbon to higher trophic
levels. Rather, organisms respond to resource availability according to their functional traits but also mod-
ulate interactions within their communities, thus affecting their structure. These changes will nonetheless
depend on the resident community, immigration from beyond, and changes in the ambient conditions.
Some organisms may thrive in different contexts and therefore not be strongly dependent on iron, but rather
be good exploiters of primary production stimulated by increased nutrient bioavailability; most of the VIPs
are indeed consumers. Furthermore, the relatively low subnetwork centrality of these consumers may sug-
gest that they co‐occur with only a subcomponent of the other species. Finally, the nature of the modules
composed of parasitic and mixotrophic organisms further suggests that recycling of matter, for example,
through remineralization, parasitism, and pathogenesis, are additional strategies within plankton commu-
nities to overcome resource limitation. Such strategies would be expected to confer further flexibility and
lead to an improved capacity to respond to sporadic bursts of favorable conditions.

Taxonomy‐based network analysis for the prokaryotes did not reveal significant associations with iron bioa-
vailability, whereas their gene subnetworks did. In accordance with a recent study based largely on Tara
Oceans data (Louca et al., 2016), this result advocates for the use of prokaryotic functional signals rather
than standard taxonomic criteria to study functional responses of prokaryotes in the global ocean, at least
at the level of current taxonomic resolution. In fact, picocyanobacteria displayed a remarkable strain‐
dependent sensitivity to iron availability. The observations further indicate the need for a better assignation
of functional taxonomy, and more studies to better characterize prokaryotic genes of relevance for interpret-
ing the mechanistic changes in prokaryotes following perturbations in iron bioavailability. Furthermore,
while standard steady state analyses of ocean systems do not consider biological responses to perturbation
per se, our approach of identifying steady state global IAA subnetworks and then investigating their
responses to local, short‐term perturbation represents a promising new approach.

Comparison of the local response to an inferred iron injection in the Marquesas archipelago with the global
patterns indicates that the community response to iron availability cannot be characterized by an even
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increase in biomass among existing components but involves a change in their relative weights reflecting
their different adaptive solutions and the concurrent reorganization of the subcommunities. In other words,
our results infer that the rate of supply of a resource is a factor that modulates the response of organisms and
their communities.

Our analysis is based on iron distribution derived from two advanced biogeochemical models rather than
from discrete measurements. This is because we considered them to be more representative than the instan-
taneous in situ measurements whose coverage is also scarce and could not be improved by our expedition,
since TARA was not equipped to accurately perform iron concentration assessments. While this may be
viewed as a limitation of our work, we provide evidence from independent data of the reliability of these esti-
mates, thus providing a valuable demonstration of the utility of omics data as a tool to validate (and conse-
quently improve) current models of earth system dynamics. The good correspondence between the
molecular response and the model simulations demonstrates that metatranscriptomics is now mature
enough to provide an independent, biologically based validation of ecosystem models especially when the
data are scarce or hard to obtain in a reliable way. The quality and number of iron measurements are con-
tinuously improving, but metatranscriptomics may anticipate and suggest the presence of biogeochemical
constraints that are still undetectable with analytical methods. In addition, it could significantly integrate
the formulation of processes in current ecological models because, on the long term, it can complement
the missing information about organism interactions (see above) that cannot be derived from the availability
of resources (e.g., Stec et al., 2017).

In conclusion, our study reinforces the results obtained in smaller‐scale studies and significantly expands the
suite of indicators that can be monitored to detect responses to changes in environmental conditions, from
target genes to higher levels of biological organization. Our work paves the way to a suite of possible devel-
opments in experimental design and in model formulations that prompt for the improvement of statistical
tools to better characterize responses at system level. Numerical simulations of ocean processes aimed at
capturing the fluxes of key elements are currently based on just a handful of plankton functional types
(Le Quere et al., 2005) or functional genes (Coles et al., 2017). Our results highlight the need to incorporate
the response of entire plankton assemblages to more accurately determine responses at different levels, such
as gene expression, gene copy numbers, or community composition. To determine the relevance of such pro-
cesses, omics should become a routine component of ocean observation, and we further demonstrate here
that it can contribute to assessing the validity of ecosystem models by complementing biogeochemical mea-
surements in the field and adding critical information about the actual bioavailability of nutrients, which is
currently difficult to measure. Finally, the IAAs and other modules described herein provide a framework
that is independent of taxonomic or functional groupings to tackle the complexity of natural communities,
thus assisting our capacity to predict the responses and resilience of planktonic ecosystems to natural and
human‐induced perturbations.
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Article 6 / Co-authored manuscript 3: Chust et

al. 2017

This article is a mini-review discussing future challenges for plankton diversity and

macroecology research: (1) What can we learn about plankton communities from the

new wealth of high-throughput “omics” data? (2) What is the link between plankton di-

versity and ecosystem function? (3) How can species distribution models be adapted to

represent plankton biogeography? (4) How will plankton biogeography be altered due to

anthropogenic climate change? and (5) Can a new unifying theory of macroecology be

developed based on plankton ecology studies?

I contributed to this review as part of a workshop during my Master 2 (PlankDiv, organized

by Dr Sakina Dorothée Ayata in Villefranche-sur-mer, http://plankdiv.obs-vlfr.fr/). For

this co-authored manuscript, I took part in the group discussions during the workshop,

and I helped to review the manuscript.

215

http://plankdiv.obs-vlfr.fr/


MINI REVIEW
published: 10 March 2017

doi: 10.3389/fmars.2017.00068

Frontiers in Marine Science | www.frontiersin.org 1 March 2017 | Volume 4 | Article 68

Edited by:

Cosimo Solidoro,

National Institute of Oceanography

and Experimental Geophysics, Italy

Reviewed by:

Jan Marcin Weslawski,

Institute of Oceanology (PAN), Poland

Jose M. Riascos,

Universidad del Valle, Colombia

Maurizio Ribera D’Alcala’,

Stazione Zoologica Anton Dohrn, Italy

*Correspondence:

Guillem Chust

gchust@azti.es

Specialty section:

This article was submitted to

Marine Ecosystem Ecology,

a section of the journal

Frontiers in Marine Science

Received: 30 September 2016

Accepted: 24 February 2017

Published: 10 March 2017

Citation:

Chust G, Vogt M, Benedetti F,

Nakov T, Villéger S, Aubert A,

Vallina SM, Righetti D, Not F, Biard T,

Bittner L, Benoiston A-S, Guidi L,

Villarino E, Gaborit C, Cornils A,

Buttay L, Irisson J-O, Chiarello M,

Vallim AL, Blanco-Bercial L, Basconi L

and Ayata S-D (2017) Mare

Incognitum: A Glimpse into Future

Plankton Diversity and Ecology

Research. Front. Mar. Sci. 4:68.

doi: 10.3389/fmars.2017.00068

Mare Incognitum: A Glimpse into
Future Plankton Diversity and
Ecology Research

Guillem Chust 1*, Meike Vogt 2, Fabio Benedetti 3, Teofil Nakov 4, Sébastien Villéger 5,

Anaïs Aubert 3, 6, Sergio M. Vallina 7, Damiano Righetti 2, Fabrice Not 8, Tristan Biard 3, 8,

Lucie Bittner 9, Anne-Sophie Benoiston 9, Lionel Guidi 3, Ernesto Villarino 1,

Charlie Gaborit 7, Astrid Cornils 10, Lucie Buttay 11, Jean-Olivier Irisson 3,

Marlène Chiarello 5, Alessandra L. Vallim 12, 13, Leocadio Blanco-Bercial 14, Laura Basconi 15

and Sakina-Dorothée Ayata 3

1Marine Research Division, AZTI, Sukarrieta, Spain, 2 Environmental Physics Group, Institute for Biogeochemistry and

Pollutant Dynamics, ETH Zurich, Zurich, Switzerland, 3 Laboratoire d’Océanographie de Villefranche, Centre National de la

Recherche Scientifique, Sorbonne Universités, UPMC Université Paris 06, Villefranche-sur-Mer, France, 4Department of

Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, USA, 5 Laboratoire Biodiversité Marine

et ses Usages (MARBEC), UMR 9190 Centre National de la Recherche Scientifique-IRD-UM-IFREMER, Université de

Montpellier, Montpellier, France, 6 Service des Stations Marines du Muséum National d’Histoire Naturelle, CRESCO, Dinard,

France, 7 Institute of Marine Sciences (CSIC), Barcelona, Spain, 8 Laboratoire Adaptation et Diversité en Milieu Marin

UMR7144, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Sorbonne Universités, UPMC

Université Paris 06, Roscoff, France, 9Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Evolution

Paris Seine, Sorbonne Universités, UPMC Université Paris 06, Paris, France, 10 Polar Biological Oceanography, Alfred

Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, 11Centro Oceanográfico de Gijón, Instituto

Español de Oceanografía, Gijón, Spain, 12 Instituto de Biociências, Universidade Estadual Júlio de Mesquita Filho, São

Vicente, Brazil, 13 Laboratório de Evolução e Diversidade Aquática, Universidade Estadual Júlio de Mesquita Filho, Assis,

Brazil, 14 Bermuda Institute of Ocean Sciences, St. George’s, Bermuda, 15Universita’ del Salento, CONISMA, Lecce, Italy

With global climate change altering marine ecosystems, research on plankton ecology is

likely to navigate uncharted seas. Yet, a staggering wealth of new plankton observations,

integrated with recent advances in marine ecosystem modeling, may shed light on

marine ecosystem structure and functioning. A EuroMarine foresight workshop on the

“Impact of climate change on the distribution of plankton functional and phylogenetic

diversity” (PlankDiv) identified five grand challenges for future plankton diversity and

macroecology research: (1) What can we learn about plankton communities from the

new wealth of high-throughput “omics” data? (2) What is the link between plankton

diversity and ecosystem function? (3) How can species distribution models be adapted

to represent plankton biogeography? (4) How will plankton biogeography be altered due

to anthropogenic climate change? and (5) Can a new unifying theory of macroecology

be developed based on plankton ecology studies? In this review, we discuss potential

future avenues to address these questions, and challenges that need to be tackled along

the way.
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INTRODUCTION

Marine ecosystems are altered by anthropogenic climate change
and ocean acidification at an unprecedented rate (Waters et al.,
2016). In recent years, observational studies have documented
shifts in plankton biogeography and community structure in
several ocean basins associated to sea warming, with changes that
rank among the fastest and largest documented (Beaugrand et al.,
2002; Poloczanska et al., 2013; Rivero-Calle et al., 2015). How
changes in plankton distribution, phenology, and biomass may
impact fisheries and other ecosystem services is poorly quantified
(Cheung et al., 2013), with large uncertainties in themagnitude of
potential cascading effects caused by trophic mismatch (Edwards
and Richardson, 2004), trophic amplification (Chust et al.,
2014a), and on global biogeochemical cycles (Doney et al., 2012).
In consequence, current management policies suffer from a lack
of understanding of marine systems (Borja et al., 2010), and
biases arise in the perception of potential ocean calamities in the
absence of robust evidence (Duarte et al., 2015).

While recent oceanographic efforts such as Tara Oceans
(Pesant et al., 2015) and Malaspina (Duarte, 2015) expeditions
have generated a staggering wealth of novel observational data
on plankton distribution and diversity (Figure 1), these same
data have revealed the extent of our ignorance of marine
ecosystem structure and function. A large fraction of plankton
diversity recorded in recent surveys cannot be assigned to known
taxonomic groups (de Vargas et al., 2015), highlighting how
profoundly our knowledge of the planktonic world is biased
toward the taxa sampled or cultured. Not only the identity of
major players, but also the drivers of community structure and
interactions between organisms remain a “mare incognitum.” In
the surface ocean, plankton composed of prokaryotes (viruses,
bacteria, and archaea) and eukaryotes (protists and metazoans;
Figure 1) have been shown to form complex interaction networks
driven by multiple biotic and abiotic factors (Lima-Mendez et al.,
2015), and despite their key role as resource for higher trophic
levels, mesopelagic plankton communities are some of the least
studied on Earth (St. John et al., 2016).

Despite these gaps in our understanding, the existing
data reveal the importance of community composition for
marine ecosystem function. For instance, an investigation
of planktonic communities at the global scale using high-
throughput metagenomic sampling techniques has recently
linked carbon export patterns to specific plankton interaction
networks (Guidi et al., 2016), suggesting that the who’s
who in the plankton world is of paramount importance
for the carbon cycle. Integrated with revised estimates in
species abundance and biomass (Buitenhuis et al., 2013), and
combined with advances in statistical (Robinson et al., 2011)
and mechanistic modeling techniques (Follows et al., 2007),
novel high-throughput metagenomic data may allow us to relate
biogeographic patterns of plankton distribution and diversity to
further ecosystem processes.

Marine plankton ecology research is thus at a crossroads:
At a time where marine ecosystems reveal their nature for the
first time, these transient ecosystems have already adapted to
environmental changes and are continuing to do so (Waters et al.,

2016), with unknown consequences for ecosystem function, and
ecosystem service provision. In this context, a close collaboration
between researchers belonging to various fields of plankton
ecology appears timely to identify the most pressing questions,
and to accelerate progress in our understanding of marine
ecosystem structure and function. Recently, a EuroMarine
foresight workshop on the “Impact of climate change on the
distribution of plankton functional and phylogenetic diversity”
(PlankDiv), held in March 2016 in Villefranche-sur-Mer, France,
gathered experts in climate change ecology, species distribution
modeling, plankton biology, as well as genomics and evolution.
They identified five fundamental questions in future plankton
diversity and macroecology research: (1) What can we learn
about plankton communities from the new wealth of high-
throughput “omics” data? (2) What is the link between
plankton diversity and ecosystem function? (3) How can
species distribution models be adapted to represent plankton
biogeography? (4) How will plankton biogeography be altered
due to anthropogenic climate change? and (5) Can a new unifying
theory of macroecology be developed based on plankton ecology
studies? These questions, along with their associated challenges,
are the subject of this review.

THE NEW WEALTH OF PLANKTON DATA

Several recent circumpolar missions have ushered in a new era
of plankton biogeography research at the planetary scale. This
recent explosion of biological data is perhaps best exemplified
by the output of the Tara Oceans expedition (Karsenti et al.,
2011). While still only offering a temporal snapshot of marine
communities, the 7.2 Terabites of metagenomic data gathered
are a 1,000 times that generated by the previous largest
marine data project, the Sorcerer II Global Ocean Sampling
(Rusch et al., 2007). High-throughput omics data offer great
potential to reveal the global structure of transient marine
planktonic ecosystems, since genetic methods compare favorably
to traditional observational methods such as microscopy or
flow cytometry in terms of the time expenditure, expert
knowledge required to identify organisms, and the cost of
equipment and analysis. The growing spatial coverage of data
enables researchers to estimate global-scale taxonomic diversity
of unicellular eukaryotes (de Vargas et al., 2015), to identify
the main environmental drivers of community structure in
marine prokaryotes (Sunagawa et al., 2015), and to delve into
the complexity of biotic interactions between plankton species
spanning multiple domains of life, as well as their link to
global biogeochemical cycling (Lima-Mendez et al., 2015; Guidi
et al., 2016). Complementary to a “bulk” screening of marine
biodiversity, single-cell genomics approaches allow matching of
phenotype and genotype, and have been used to investigate the
phylogenetic affinities of microbial dark matter (i.e., currently
unculturable microbial organisms; Rinke et al., 2013; Hug
et al., 2016) and to uncover niche partitioning within globally
distributed lineages of marine microbes (Kashtan et al., 2014).
In combination, bulk and targeted approaches could unravel
the taxonomic composition of planktonic organisms, as well as
aspects of their ecological function (Thrash et al., 2014; Louca
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FIGURE 1 | The staggering wealth of plankton species. Diverse assemblages consist of uni- and multicellular organisms with different sizes, morphologies,

feeding strategies, ecological functions, life cycle characteristics, and environmental sensitivities. Courtesy of Christian Sardet, from “Plankton—Wonders of the

Drifting World” Univ Chicago Press 2015.

et al., 2016) and genome evolution to new environments (Mock
et al., 2017).

Both approaches are challenged by the lack of high quality
reference databases (Sunagawa et al., 2015). This highlights
the need for comprehensive reference databases to guide the
validation and integration of the streams of new data, and their
comparison with taxonomic information (e.g., Buitenhuis et al.,
2013). In addition, genomic sampling often results in temporal
snapshots of one particular aspect of biodiversity [e.g., ribosomal-
RNA based Operational Taxonomic Unit (OTU) richness].
Applying this approach to marine plankton communities at
similarly broad geographic scales is difficult and expensive, but
necessary to improve the assessments of the temporal variability
of plankton diversity (Lewandowska et al., 2014). Currently,
high-resolution time-series datasets are often restricted to easily-
accessible, mostly coastal locations, making extrapolation to
the expanses of the open ocean difficult. Therefore, the use of
these data for ecological purposes may not be straightforward,
especially when trying to estimate abundances of planktonic
organisms from metabarcoding (e.g., Decelle et al., 2014).

While the genomic quantification of species composition has
become more and more common (Bik et al., 2012; Bik, 2014),
and harbors potential for marine ecosystem monitoring in times
of rapid environmental and ecosystem change, the link between
the identity and the functional role of species remains obscure.
Genomic approaches can provide thousands of OTUs, whose
metabolic state, morphology, and environmental tolerances are

largely unknown. Supplementary measurements of functional
traits in laboratory experiments and the quantification of spatio-
temporal variability across populations is severely limited by
our success in culturing the large diversity of plankton in vitro.
Estimates that <30% of plankton are cultivable highlight the
daunting task of obtaining such data across the heterogeneous
plankton lineages and put alternatives, such as single-cell
screens, metatranscriptomic approaches, or in silico method
developments, to the forefront for the characterization of at least
some aspects of plankton diversity.

ASSESSING FUNCTIONAL AND
PHYLOGENETIC FACETS OF PLANKTON
BIODIVERSITY

Traditional approaches have determined marine biodiversity
using species occurrence or abundance information at the
regional to global scale (e.g., Tittensor et al., 2010). However,
there is a growing consensus about the need to assess other facets
of biodiversity such as functional diversity, which accounts for
biological traits, and phylogenetic diversity to link environmental
changes, ecosystem composition and ecosystem function (Naeem
et al., 2012; Mouillot et al., 2013). These two promising concepts
developed for macro-organisms should be increasingly used
within the marine and climate change contexts to further
improve our understanding of the link between plankton
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diversity, ecosystem productivity, or additional functions related
to global biogeochemical cycles.

Functional diversity uses a set of complementary indices
(Mouillot et al., 2013) combining measures of species abundance
with selected physiological and ecological traits suggested to
reflect the fitness of an organism, and which may influence
ecosystem function (Violle et al., 2007). Since certain traits may
occur across species pertaining to different taxa, estimates of
functional diversity allow for the comparison of assemblages
with little (no) taxonomic or phylogenetic overlap, but with
similar responses to their environment. This metric can account
for the intraspecific variability of ecological strategies (e.g., the
trophic status of mixotrophic species), and it can include a
diverse range of trait variables (e.g., size, feeding strategy, nutrient
uptake kinetics). Although much progress has been made in
understanding which characteristics of plankton determine their
growth, reproduction, and survival (Litchman and Klausmeier,
2008; Litchman et al., 2013; Benedetti et al., 2016), information
on traits is restricted to a few well-studied species (Barton et al.,
2013). Consequently, trait choice often depends on subjective
criteria such as the availability of data (Petchey and Gaston,
2006), therefore open access trait databases should be developed
for marine species (Costello et al., 2015). In addition, it is
challenging to measure multiple functional traits of thousands
of species. Although omics data could allow identifying traits
at the community level (Louca et al., 2016), more research is
still needed to assign functional traits to sequences, especially for
eukaryotic plankton. Despite these methodological issues, trait-
based approach of marine communities opens new opportunities
for a better understanding of ecosystem functioning and for
the development of ecological indicators (Beauchard et al.,
2017).

An alternative approach relies on the interspecific
phylogenetic differences as a proxy for the overall diversity
of a system, assuming that biological characteristics linked
to individual fitness and ecological roles show phylogenetic
conservatism, i.e., that communities consisting of species with
a lower degree of relatedness differ more in their respective
trait values, and are thus more diverse (Mouquet et al., 2012).
Phylogenetic diversity indices (Tucker et al., 2016) measure
the breadth and distribution of evolutionary history present
in an assemblage (Mouquet et al., 2012; Cadotte et al., 2013),
using DNA sequences to assess the phylogenetic distances
between species, by aligning sequences to a reference tree,
or by de-novo building of phylogenetic trees (Hinchliff et al.,
2015).

With the advent of metagenomic data, these promising
approaches need to be further explored in terms of their
applicability to and relevance for the description of marine
ecosystem function. However, the use of phylogenetic diversity
critically depends on methodological advances: a substantial
fraction of high-throughput sequences obtained by second
generation sequencing for microbial communities may still
lack sufficient phylogenetic information to provide a reliable
phylogenetic placement. In the near future, the popularization
of third generation sequencing (e.g., PacBio, Nanopore), which
sequences single molecules of DNA in real time, may circumvent

this problem, and will provide full opportunities to use
phylogenetic diversity estimates to study present and future
ecosystem function.

SPECIES DISTRIBUTION
MODELING—RUNNING BEFORE WE CAN
WALK?

Species Distribution Models (SDMs) are statistical tools that
model a species realized niche, i.e., the environmental conditions
under which the species can maintain a viable population
(Hutchinson, 1957), by relating their occurrence or abundance
to environmental conditions (Guisan and Zimmermann, 2000).
Several key ecological attributes make planktonic species
particularly well-suited for SDMs (Robinson et al., 2011): (i)
their distribution reflects their environmental preferences, since
plankton are short-lived organisms, with population dynamics
tightly connected to climate (Sunday et al., 2012); (ii) plankton
are less commercially exploited than other marine species, and
thus, their spatial patterns are less biased by captures as in
the case of many fish and shellfish species. These attributes
make them a key group for monitoring the impacts of climate
change on biodiversity and ecosystem functioning (Richardson,
2008). So far, SDMs have seldom been applied to study plankton
biogeography, with only a handful of studies on phytoplankton
(Irwin et al., 2012; Pinkernell and Beszteri, 2014; Brun et al., 2015;
Rivero-Calle et al., 2015; Barton et al., 2016) and some more on
zooplankton (e.g., Reygondeau and Beaugrand, 2011; Chust et al.,
2014b; Villarino et al., 2015; Brun et al., 2016; Benedetti et al.,
in press). This is due not only to the limited data availability
for model development, but also due to several unaddressed
methodological issues.

In plankton, a major problem with SDMs is the scarcity
of occurrence data, which can lead to an incomplete niche
description and/or biased models. A major challenge is
therefore to discern biological distribution patterns from patterns
of sampling effort, especially in traditional taxonomy-based
plankton data sets where reliable absences data are usually
unavailable and large regions, such as the South Pacific, are
chronically undersampled. Using one of the most extensive
plankton data sets to date, the North Atlantic Continuous
Plankton Recorder data, Brun et al. (2016) found that a suite
of commonly used SDMs are unable to predict and hindcast
the distribution of zooplankton and phytoplankton example-
species on the decadal scale. One way to improve SDMs is
either through careful methodological adjustments, such as a
targeted selection of the background (Phillips et al., 2009), the
reduction of environmental predictors, and model complexity
(Merow et al., 2014). Another approach could be to merge
existing data archives and to combine genomic data with
traditional approaches in order to reduce the sampling bias.
However, since SDMs apply at the species level, this will require
specific identifications, either from microscopy, imaging, or
sequencing, which would necessitate to keep taxonomic expertise
in our laboratories and, in parallel, to develop specific tools for
automatic identification.
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In their basic form and most common use, classical SDMs do
not account generally for three major ecological processes that
may be crucial for plankton distribution: (i) the role of dispersal
and its limitation, (ii) biotic interactions, and (iii) intraspecific
variability, which we discuss below. The relative importance of
these processes in shaping planktonic species’ ranges is still being
under debate (Cermeño and Falkowski, 2009; Chust et al., 2013).

Plankton dispersal is controlled by ocean currents and can
impact diversity and community structure (Lévy et al., 2014).
Although barriers to dispersal are fewer in the marine realm
compared to the terrestrial one (Steele, 1991), coupling ocean
connectivity patterns (Treml et al., 2008; Foltête et al., 2012)
with niche models is likely important. Source-sink dynamics may
arise frequently because of the advection of water masses (e.g.,
Beaugrand et al., 2007; Villar et al., 2015) that can introduce
species to unsuitable regions (Pulliam, 2000), potentially biasing
SDMs. Future developments for plankton could ensue from
graph-based techniques (Dale and Fortin, 2010) and from SDMs
coupling with simple dispersal models (Foltête et al., 2012; Zurell
et al., 2016).

Furthermore, the need to account for biotic interactions when
predicting species distributions has been advocated (Boulangeat
et al., 2012; Wisz et al., 2013). Recently, the exploration
of the plankton “interactome” (Lima-Mendez et al., 2015)
allowed to describe how biotic interactions occur across trophic
levels and relate to environmental conditions and ecosystem
functioning, with many new symbiotic interactions identified
(Guidi et al., 2016). When prior knowledge is too limited,
food-web models could be inferred from simple size-based,
or multi-traits assumptions (Albouy et al., 2014), or based on
ecosystem models (e.g., Follows et al., 2007; Le Quéré et al.,
2016) in combination with satellite estimates of (phyto)plankton
community composition (e.g., Hirata et al., 2011).

Finally, SDMs do not consider intraspecific variability, thus
assuming that genetic adaptation is negligible. However, many
planktonic species exhibit local adaptation (Peijnenburg and
Goetze, 2013; Sjöqvist et al., 2015) or consist of several ecotypes
with different environmental preferences, and phenotypic
plasticity, dispersal, and evolutionary changes could mitigate
climate change impacts as they could help species to adapt to
changing conditions (O’Connor et al., 2012). One possibility to
account for both local adaptation and phenotypic plasticity is
to include a population-dependent component in mixed effect
models (e.g., Valladares et al., 2014). Furthermore, the joint use
of genomic and taxonomic informationmay help to constrain the
differences between subpopulations or ecotypes of a species, and
to identify so-called cryptic species.

ADRIFT IN AN OCEAN OF CHANGE

In contrast to works on higher trophic levels (e.g., Cheung
et al., 2009), the investigation of the response of plankton
to future climate changes has mostly focused more on bulk
variables (e.g., biomass, production), with large uncertainties
associated with the simulated response of primary and secondary
production (e.g., Bopp et al., 2013; Laufkötter et al., 2015). Yet,

observational evidence of changes in planktonic ecosystems has
been accumulating over the past decades, with ongoing efforts
to attribute these changes to specific environmental drivers (e.g.,
Beaugrand et al., 2008; Rivero-Calle et al., 2015).

SDMs have been used to support observations of poleward
plankton distribution range shifts in response to global warming
in the North Atlantic (Beaugrand et al., 2002; Richardson, 2008),
as well as changes in the relative abundance of certain groups
(Rivero-Calle et al., 2015). However, range shifts and in particular
phenological changes can vary according to region and species,
leading to unexpected emergent patterns (Richardson et al.,
2012; Poloczanska et al., 2013; Burrows et al., 2014; Barton
et al., 2015). In fact, multiple non-exclusive and interlinked
adaptation strategies at the organismal level may all operate
in concert, or, alternatively, the selection of one strategy may
reduce the necessity to employ another. For example, shifts in
spatial distribution may preclude the necessity for phenological
adjustments in a given species attempting to maintain its thermal
niche. Other adaptation strategies involve species plasticity
and genetic modification in order to face changing conditions
(Lavergne et al., 2010; Dam, 2013), which have been documented
for spatially isolated zooplankton (Peijnenburg et al., 2006; Yebra
et al., 2011), but could not be confirmed for other species (Provan
et al., 2009). Another alternative adaptation strategy is the change
in depth-distribution, i.e., the migration to deeper waters in
search for cooler temperatures carried out by fishes (Perry et al.,
2005).

Given the multitude of adaptation options, future projections
of ecosystem change are prone to large uncertainties. Moreover,
disentangling the effects of anthropogenic climate change
on plankton distribution and phenology shifts from other
drivers (e.g., climate variability, population dynamics) is equally
challenging (Chust et al., 2014b). In particular, the combination
of controlling factors, together with systematic biases in sampling
effort can lead to biases in estimated trends. The decomposition
of factors using different SDMs can detect the so-called “niche
tracking,” which is the shift of a species distribution to follow
the displacement of their habitat, e.g., poleward shifts (Monahan
and Tingley, 2012; Bruge et al., 2016). At the community
level, thermal biases between the average thermal affinity of
assemblages and local temperature (Stuart-Smith et al., 2015)
have to be considered to improve our understanding of the
sensitivity of plankton reorganization with warming.

TOWARD A UNIFIED THEORY OF
MACROECOLOGY

Predicting how species will respond to global environmental
change requires an understanding of the processes generating
their current large-scale spatio-temporal patterns of diversity
and distribution, which is the essence of macroecology.
One such predominant pattern on Earth is the decline in
biodiversity of terrestrial and marine macroorganisms from
tropical to polar areas (e.g., Tittensor et al., 2010). Hypotheses
explaining this pattern often call upon evolutionary history
(Mittelbach et al., 2007), diversity-area relations (Rosenzweig,
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1995), temperature effects (Allen et al., 2002), or climatic
stability (Fraser and Currie, 1996). Although these premises often
find empirical support, their testing in the open oceans has
been limited. Whereas, zooplankton likely reflect the general
latitudinal trend (Beaugrand et al., 2013), bacterioplankton
may form seasonal diversity peaks at high (Ladau et al.,
2013) and mid (Sunagawa et al., 2015) latitudes, and for
phytoplankton the validity of the global pattern itself and the
processes that may explain it are still ambiguous (Rodríguez-
Ramos et al., 2015; O’Brien et al., 2016). To alleviate data
scarcity, which may have contributed to uncertainty, we suggest
the implementation of SDMs as strategic tools to integrate
novel with traditional data and to depict aspects of global
diversity variation across major taxa and spatio-temporal
scales.

The validity of the concept of SDM in plankton and its
specific adaptation warrant further testing of the processes
that determine plankton distribution, abundance, community
assembly, and the maintenance of diversity at local to
global scales. More than a decade after the appearance of
the unified neutral theory of biodiversity (Hubbell, 2001),
there is still an active debate on the relative contribution
of demographic stochasticity, dispersal, and niche processes
on plankton communities (Pueyo, 2006a,b; Cermeño and
Falkowski, 2009; Chust et al., 2013), which promoted the
revisiting of the “Paradox of the Plankton” (Hutchinson,
1961). Recent studies have tried to reconcile neutral and
niche theories (Adler et al., 2007) and suggest that neutral
combined with metabolic theory can explain macroecological
patterns (Tittensor and Worm, 2016). Furthermore, neutral
processes might similarly shape both population genetics
and community patterns in plankton (Chust et al., 2016).
The combination of data from time-series, global in situ
observations and experiments on marine plankton provides a
unique opportunity to characterize the niches of species (Brun
et al., 2015) and to explore the relations between ecological
niche characteristics (e.g., niche dissimilarity) and local species
richness.

Thus, important open questions include: Is plankton
community assembly mainly driven by niche assembly or neutral
processes? Does this depend on the spatio-temporal scale of
observation? Which method(s) can be used to disentangle the
dominating process in community assembly and ecosystem
structure? What will be the effect of the removal of geographical
barriers that have long separated the Earth’s biogeographical
provinces on marine plankton diversity (“homogocene,”
Rosenzweig, 2001)? How does the evolution of microorganism
dependency based on gene loss shape the structure and
dynamics of communities (Mas et al., 2016)? Due to their
fast duplication rates and rapid response to environmental
conditions, planktonic communities assemble, dismantle, and
re-assemble constantly in natural environments, thus tracking
environmental disturbances. Therefore, they are optimally suited
to test classical ecological theories established for terrestrial

ecosystems, and to answer questions related to diversity-stability
relationships, the area-diversity hypothesis, or food web
interactions.

CONCLUSION

Plankton ecology research stands at a crossroads. The staggering
increase in the wealth of plankton observation data coincides
with a time of significant advances in marine ecosystem
modeling, which allow, for the first time, the testing of
important theories of macroecology in the marine realm. These
achievements offer great promise to shed light on marine
ecosystem functioning and ecosystem service provision within
the context of global climate change. To unlock their potential,
we identified a strong need for concomitant developments in
the field of bioinformatics and biostatistics, ecological niche
modeling, and genetic reference database assembly, thus allowing
for a successful integration of these novel with traditional
observations, including taxonomic expertise. Paired with the
rigorous verification of new and existing macro-ecological
theories in the marine realm, and the testing and application of
novel biodiversity metrics that better link ecosystem composition
to ecosystem function and ecosystem service provision, these
theoretical and empirical advances may allow for the urgently
needed quantification of potential impacts of climate change on
marine ecosystems and feedbacks to higher trophic levels. Due
to the complexity of the task, and the scarcity of observational
evidence of these transient ecosystems, we conclude that inter-
disciplinary, collaborative efforts between experts focussing on
different aspects of plankton ecology will be critical in mediating
this process.
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