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École Doctorale des Sciences Mathématiques de Paris Centre
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de recherche assez individuel, tout en pouvant toujours compter sur son soutien – et
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Résumé

Dans cette thèse, nous étudions trois cas de phénomènes de régularisation pour des
équations aux dérivées partielles stochastiques (EDPS). Dans un premier temps, nous
nous intéressons à des EDPS semi-linéaires à diffusion non bornée. En établissant
une généralisation de l’inégalité maximale pour des convolutions stochastiques grâce à
l’effet régularisant du semi-groupe sous-jacent, nous prouvons l’existence de solutions
fortes dans un régime sous-critique. Par ailleurs, en exploitant une approximation par
des solutions sous-critiques, nous démontrons dans le régime critique l’existence de so-
lutions martingales à l’aide de la méthode de compacité de Flandoli-Ga̧tarek.

Ensuite, nous établissons une loi des grands nombres pour des systèmes de partic-
ules en interaction sans hypothèse d’indépendance ou de moment sur les conditions
initiales. Dans ce but, nous déterminons une équation non fermée satisfaite au sens
faible par la mesure empirique associée, qui ne diffère de l’EDP de McKean-Vlasov
attendue à la limite que par un terme de bruit. Dans le traitement de ce dernier terme,
nous utilisons de façon complémentaire des bornes trajectorielles issues des chemins
rugueux et des arguments fondés sur le calcul d’Itô, qui permettent d’établir la loi des
grands nombres désirée.

Enfin, nous décrivons des phénomènes de régularisation qui apparaissent en moyennant
le long des trajectoires. En se fondant sur des estimations récentes de régularité spatio-
temporelle pour les temps locaux du mouvement brownien fractionnaire en une dimen-
sion, nous étudions les équations de transport moyennées grâce à leurs caractéristiques
régularisées associées. Un argument de point fixe sur les équations de transport nous
permet ensuite de nous intéresser à une équation de type Burgers moyennée le long des
chemins du mouvement brownien fractionnaire. A chaque étape, les arguments sont
conditionnels à ce que le paramètre de Hurst satisfasse certaines conditions explicites.
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Abstract

In this thesis, we study three instances of regularization phenomena for stochastic
(partial) differential equations (SPDEs). We first study semilinear SPDEs with un-
bounded diffusion terms: By deriving a generalization to the maximal inequality for
stochastic convolutions harnessing the regularizing effect of the appearing semigroup,
we are able to establish existence of strong solutions in the subcritical regime. We
moreover use the associated sequence of subcritical solutions to establish existence of
a martingale solution in the critical case via the Flandoli-Ga̧tarek compactness method.

Secondly, we establish a law of large numbers for interacting particle systems with-
out imposing independence or finite moment assumptions on the initial conditions:
Towards this end, we establish a non-closed equation satisfied by the associated em-
pirical measure in a mild sense that differs from the expect limiting McKean-Vlasov
PDE only by a certain noise term. In treating said noise term, we employ pathwise
rough path bounds and arguments based on Itô-calculus in a complementary fashion
that allow to establish the desired law of large numbers.

Finally we investigate regularization phenomena through averaging along curves. Based
on recent space-time regularity estimates for local times of fractional Brownian motion
in one dimension, we study averaged transport equations in passing by their associated
regularized characteristics. By employing a fixed point argument on the level of trans-
port equations, we are able to subsequently pass to a Burgers’ type equation averaged
along paths of fractional Brownian motion. The arguments at each step are conditional
on the Hurst parameter satisfying explicitly established conditions.

Keywords Chapter 2: semilinear Stochastic partial differential equations, stochastic
integration in Banach spaces, maximal inequality for stochastic convolutions, factor-
ization method, stochastic compactness method.

Keywords Chapter 3: Interacting particle system, McKean-Vlasov equation, Semi-
group approach, Rough paths, Self-normalized processes

Keywords Chapter 4: Averaging along irregular curves, non-linear Young integra-
tion, local times for fractional Brownian motion
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Notation

In the following, we list some notation frequently employed throughout this manuscript.

H,U Generic separable Hilbert spaces
X, Y Generic separable Banach spaces

L2(U,H) The space of Hilbert Schmidt operators from U to H
γ(U,X) The space of γ-radonifying operators from U to X
X ↪→ Y X embeds continuously into Y
X ↪→↪→ Y X embeds compactly into Y

TN The N -dimensional torus
Wα,p Sobolev–Slobodeckij space for α ∈ R+ and p ∈ [1,∞]
Hα,p Bessel potential space for α ∈ R and p ∈ [1,∞]
Bα
p,q inhomogeneous Besov space for α ∈ R and p, q ∈ [1,∞]

un ⇀ u weak convergence of (un)n to u in X

un
∗
⇀ u weak-*-convergence of (un)n to u in X
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Chapter 1

Introduction

The present thesis studies three particular instances of regularization phenomena for
stochastic differential equations (SDEs) and stochastic partial differential equations
(SPDEs). In the following introduction, we discuss the different approaches exploited
in this thesis to study such equations and what we understand by a regularization
phenomenom in each of the instances.

According to Zambotti, a stochastic partial differential equation is ”a PDE which
contains some stochastic process (or field) and cannot be defined with standard analytic
techniques” [Zam21, p.2]. As is classically known, already the study of stochastic
differential equations driven by Brownian motion W in Rd of the form

dXt = b(Xt)dt+ σ(Xt)dWt

are confronted with this challenge. This is due to the fact that almost every sample
path of Brownian motion does not enjoy sufficient regularity for the above problem to
be analytically well posed. Typically, for stochastic partial differential equations with
space-time noise, this problem becomes even more challenging as even less analytical
regularity of the noise is available. However, going beyond a purely analytical frame-
work, stochastic processes as Brownian motion or other forms of noises typically enjoy
some probabilistic structure that can be harnessed to study otherwise ill-posed prob-
lems. For SDEs driven by semi-martingale noises for example, this is achieved by the
classical Itô stochastic calculus [RY99], [Gal16] which also admits an infinite dimen-
sional generalization [DPZ14] [LR15] (and therefore also an approach to study SPDEs).
Such infinite dimensional generalizations typically come already at the price of some
imposed ”damping” or regularization1 by either imposing sufficient spatial coloring on
the noise or demanding integrands of stochastic integrals to be Hilbert-Schmidt- (and
not only bounded-) operator valued2. In the case of semilinear problems and their mild
formulation, further regularization due to the presence of a semigroup can be harnessed
to establish higher spatial regularity of solutions and balance out other appearing un-
bounded operators that would otherwise break up the Hilbert-Schmidt property of the

1Refer however to recent approaches to singular SPDEs briefly discussed in the end of Section 1.2
2For a more precise formulation of this instance we refer to Section 1.1
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2 Introduction

diffusion term. This idea is further explained and contextualized in Sections 1.1 and
1.2 of this Introduction and developed in Chapter 2.

Another approach that has enjoyed considerable attention in studying S(P)DEs for
a very general class of noises is given by the theory of rough paths (refer to [Lyo98],
[Gub04], [FH14] and Section 1.3 for a discussion of some main ideas). A main difference
between this approach and the Itô stochastic calculus is that the former achieves a
very clear ”factorization” into a probabilistic and an analytical step: In fixing the local
behaviour of stochastic integrals by the prescription of certain iterated integrals in
a first probabilistic step, a subsequent completely analytical theory for the study of
associated differential equations is provided by the theory of rough paths. While this
point of view comes with many advantages such as a pathwise construction of stochastic
integrals and associated almost sure bounds as well as several stability results typically
unavailable to Itô calculus, the fact that the second purely analytical step does not take
into account any further probabilistic structure renders certain estimates inaccessible
to this approach that are readily available via the classical Itô calculus. In Chapter 3,
we show how both perspectives and their respective merits can be employed in synergy
in order to study a law of large numbers for interacting particle systems under less
restrictive assumptions on the initial condition than usually demanded.

Finally we study regularization by noise phenomena for ODEs, transport equations
and Burgers’ equation along paths of fractional Brownian motion following recent ap-
proaches to these problems by [CG16], [Cat16], [GG20a] and in particular [HP21]. Sim-
ilar in spirit to the theory of rough paths, a main idea to the latter approach consists
in a certain probabilistic-analytic ”factorization”: While in a first step one re-examines
the local behavior of certain (Lebesgue) integrals via probabilistic tools (in particular
relying on novel regularity results for the local time associated with fractional Brown-
ian motion in [HP21]), a subsequent purely analytical theory for ODEs perturbed by
additive fractional Brownian motion can be developed based essentially on the Sewing
Lemma. In Chapter 4, we first extend this approach from [HP21] to non-autonomous
ODEs. Subsequently, we exploit the so obtained regularization by noise phenomenon
on the level of characteristics in order to study regularized transport equations with
non-differentiable initial conditions. Finally, in performing a fixed point argument on
the level of transport equations, we are able to study averaging effects along paths of
fractional Brownian motion for Burgers’ equation.

In the following sections, let us elaborate more closely the context of the results pre-
sented in later chapters.
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1.1 Semilinear non-singular SPDEs

As is true for the theory of PDEs, SPDEs come with a zoo of different possible ap-
proaches respectively adapted to different kinds of equations. One commonly studied
type of equations are semilinear parabolic SPDEs that are of the form

∂tu = ∆u+ f(u) + g(u)ξ u(0) = u0 (1.1.1)

where ξ is some random field or process. A standard approach to studying problems of
the above form consists in the so called mild formulation [DPZ14]. This approach views
(1.1.1) as a stochastic differential equation in an infinite dimensional Hilbert space3 H,
while extensively relying on semigroup theory: One calls an adapted process u = (ut)t
a mild solution to the problem (1.1.1) if

ut = Stu0 +

∫ t

0

St−sf(us)ds+

∫ t

0

St−sg(us)ξsds (1.1.2)

holds as an equality in H, where (St)t denotes the semigroup generated by the Lapla-
cian. The main challenge then becomes to make sense of the integral on the right hand
side: Since from a purely analytic perspective, the random field ξ only enjoys some
distributional regularity the integral is often ill defined due to the product term g(us)ξs.

In the particular case of ξ being the time derivative of a cylindrical Brownian motion
W taking values in a Hilbert space U , an abstract analogue of the classical stochastic
calculus in infinite dimensions is available requiring that g takes values in the space of
Hilbert-Schmidt operators L2(U,H) [DPZ14], [LR15]. A key tool in establishing the
fixed point argument for (1.1.2) is then the maximal inequality for stochastic convolu-
tions

E

[
sup
t 6 T

∥∥∥∥∫ t

0

St−sg(us)dWs

∥∥∥∥2

H

]
6 cE

[∫ T

0

‖g(us)‖2
L2(U,H) ds

]
. (1.1.3)

From the above and the triangle inequality for Bochner integrals, it can be easily seen
that if we can interpret the functions f, g as abstract Nemytskii operators f : H → H
and g : H → L2(U,H) that satisfy standard growth and Lipschitz assumptions, then
the above problem admits a unique solution thanks to a Banach fixed point argument
in an appropriate space.

Note that in the argument sketched above, one tacitly exploits that the semigroup
is a family of uniformly bounded operators on [0, T ] in order to treat the drift term.
However, in the case of an analytic semigroup generated by A, we can moreover harness
the regularizing effect of (St)t on H expressed quantitatively by∥∥AδSt∥∥L(H)

6 ct−δ (1.1.4)

for δ > 0 [Paz83]. This allows to study problems with unbouded drift such as

du = ∆udt+ (−∆)δf(u)dt+ g(u)dWt, u(0) = u0 (1.1.5)

3A common example is H = L2(Td)



4 Introduction

for δ ∈ [0, 1). Moreover, other types of unboundedness in the drift term such as
divergences can be treated by formulating the problem as

du = ∆udt+ (−∆)1/2(−∆)−1/2div(F (u))dt+ g(u)dWt, u(0) = u0, (1.1.6)

as was done in [Hof13]. There Hofmanová also shows that in the case of finite di-
mensional noise (i.e. U finite dimensional) the obtained mild solutions can in fact be
identified as a strong one: The solution u = (ut)t satisfies

ut = u0 +

∫ t

0

∆usds+

∫ t

0

divF (us)ds+

∫ t

0

g(us)dWs,

meaning in particular that u is two times continuously differentiable in space. This
is accomplished by establishing uniform bounds on the sequences of Picard iterations
(un)n in Sobolev spaces of sufficiently high enough order and exploiting the Sobolev
embedding theorem. Towards this end, she crucially exploits the Nemytskii operator
result

‖f(h)‖Wm,p 6 c(1 + ‖h‖Wm,p + ‖h‖mW 1,mp) (1.1.7)

for f ∈ Cm and h ∈ W 1,mp ∩Wm,p suggesting that for m > 1 (as required in order to
embed into C2), one has to leave the setting of stochastic integration in Hilbert spaces
and consider stochastic integration in 2-smooth Banach spaces [vNVW15].

1.2 Semilinear SPDEs with unbounded diffusion

Having in mind inequality (1.1.4) and the problem (1.1.5), it is natural to study the
generalization

du = (∆− 1)udt+ (−∆ + 1)δ0f(u)dt+ (−∆ + 1)δ1/2g(u)dWt, u(0) = u0 (1.2.1)

in its mild formulation

ut = Stu0 +

∫ t

0

(−∆ + 1)δ0St−sf(us)ds+

∫ t

0

(−∆ + 1)δ1/2St−sg(us)dWs (1.2.2)

for δ0, δ1 ∈ [0, 1). This problem is studied in chapter 2 based on [Bec20]. By considering
the linear case, it can be easily seen that indeed δ1 = 1 is critical by Itô’s isometry and
(1.1.4). The crucial step to study (1.2.2) then becomes a generalization to the max-
imal inequality (1.1.3) for stochastic convolutions. Once this have been established
in a sufficiently general setting, similar arguments as in [Hof13] may be employed to
establish existence strong solutions for finite dimensional driving noise W . Moreover,
the critical case δ1 ↗ 1 is studied using the Flandoli-Ga̧tarek compactness method,
whose main idea we sketch briefly.

For better readability, consider the problem

duδ = (∆− 1)uδdt+ µ(−∆ + 1)δ/2g(uδ)dWt, u(0) = u0 (1.2.3)
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for some µ > 0. Having established strong solutions in the case of finite dimensional
noise W , one can conclude by Itô’s formula an a priori energy estimate for the solution
uδ in L2(Ω × [0, T ],W 1,2) uniformly in δ ∈ [0, 1). However such an energy estimate is
not sufficient in order to pass to the limit, as the embedding

L2(Ω× [0, T ],W 1,2) ↪→ L2(Ω× [0, T ], L2)

is only continuous and not compact, thus impeaching the implementation of a tightness
argument for the laws of the familiy (uδ)δ∈[0,1). To address this problem in a different
context, Flandoli and Ga̧tarek remarked in [FG95] that for uδ being a strong solution
satisfying

uδt = u0 +

∫ t

0

∆uδsds+ µ

∫ t

0

(−∆)δg(uδs)dWs

one can establish improved time regularity on a fractional Sobolev-Slobodeckij scale at
the cost of some spatial regularity due to the regularizing effect of stochastic integration
in time. This permits to obtain a second bound of uδ in L2(Ω,W 1/2−ε([0, T ], H−1)) for
any ε > 0 uniformly in δ ∈ [0, 1). As the embedding

L2([0, T ],W 1,2) ∩W 1/2−ε([0, T ], H−1) ↪→↪→ L2(Ω× [0, T ], L2)

now is indeed compact, one can proceed with a classical tightness argument using the
Skorokhod representation theorem to deduce the existence of a martingale solution to
the critical equation

duδ = ∆uδdt+ µ(−∆)1/2g(uδ)dWt, u(0) = u0. (1.2.4)

We stress that the above considerations and the mild solution approach to SPDEs
approach heavily rely on Nemytskii operator results that are available only in the
finite dimensional noise setting. In particular, arguments of the above kind often break
down in dealing with space-time white noise ξ: Even for f = 0 and g(x) = Id, it
fails for H = L2(Td) in any dimension d, since g does not take values in L2(H,H).
To bypass this difficulty in dimension d = 1, one can again harnesses the regularizing
effect of the semigroup, ensuring for example that the stochastic convolution∫ t

0

St−sξsds

does indeed take values in L2(T1) and thus allowing to study more general nonlin-
earities f, g. Already in dimension d = 2 though, this approach breaks down due to
the singularity of the noise. While in the particular case of polynomial nonlinearities
and additive noise, the Da Prato Debussche trick based on renormalization techniques
can be employed [DPD03] in dimension d = 2, dimension d = 3 was only recently
addressed in the break through theories of regularity structures [Hai14] and paracon-
trolled distributions [GIP15]. A common central element in all these theories remains
the exploitation of the regularizing effect of convolving with the semigroup4.

4We remark however that extensions to problems that don’t fall into the class of semilinear SPDEs
have been addressed with the latter two approaches, see [GH19], [FG19] for quasilinear SPDEs for
example
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1.3 Elements of the theory of rough paths and com-

parison to the theory of stochastic calculus

As already mentioned in the previous section, a major component in treating stochastic
(partial) differential equations consists in the appearance of products that are a priori
ill defined from a purely pathwise point of view. Indeed, already for standard d-
dimensional Brownian motion W the expression∫ t

0

Ws(ω)⊗ dWs(ω) (1.3.1)

does not admit a canonical pathwise definition. As already mentioned in the previous
section, this obstacle is typically circumnavigated by replacing the pathwise perspective
by Itô-calculus based on martingale theory [RY99] (or refer to [DPZ14], [LR15] for the
infinite dimensional setting). In particular, controlled ordinary differential equations
of the form

dYt = f(Y )dWt Y0 = y0 ∈ Rd (1.3.2)

can be treated with this theory along with numerous extensions. Itô-calculus comes
however with certain theoretical and practical drawbacks, a major one being from an
analytical point of view that it is inherently an L2(Ω) theory and therefore pathwise
arguments are usually not available.

An alternative viewpoint on Itô and more general stochastic calculi was proposed by
Lyons in his theory of rough paths [Lyo98] and further developed by Gubinelli in
[Gub04], obtaining a clear separation between pathwise considerations and probabilis-
tic arguments. As a guiding question, one can ask under which condition on a generic
continuous paths X : [0, T ]→ Rd the expression∫ t

s

f(Xu)dXu (1.3.3)

is well defined for any smooth f : Rd → L(Rd,Rd). By using approximating Riemann-
Stiltjes sums ∑

[u,v]∈Pn
f(Xu)(Xv −Xu) (1.3.4)

for a sequence of partitions (Pn)n of [s, t], it was already observed in [You36] and
[Kon37] that for α-Hölder continuous paths X and α > 1/2, (1.3.3) can be defined
canonically by considering the limit as |Pn| → 0 in the above Riemann-Stiltjes sums.
A heuristic intuition why in this case the above Riemann-Stiltjes summands accurately
mimic the small scale behavior of (1.3.3) can be given by considering an order zero
Taylor expansion of the integrand: Since for u ∈ [s, t], we have

f(Xu) = f(Xs) +O(|t− s|α)
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one obtains heuristically∫ t

s

f(Xu)dXu = f(Xs)Xs,t +O(|t− s|2α),

and therefore

1

|t− s|

(∫ t

s

f(Xu)dXu − f(Xs)Xs,t

)
= O(|t− s|2α−1),

where we used the shorthand notation Xs,t = Xt − Xs. This suggests that indeed
for α > 1/2, the above Riemann-Stiltjes summands do accurately portray the small
scale behavior of (1.3.3). In particular, since sample paths of Brownian motion are
P-almost surely α-Hölder continuous for α < 1/2, the above reasoning fails and indeed
the sequence of Riemann-Stiltjes sums defined in (1.3.4) doesn’t converge almost surely
for Brownian motion5. Notice however that provided one was given an expression as
in (1.3.3) (thanks to Itô calculus for example in the case of sample paths of Brownian
motion), then the above heuristics can also be applied to an order one Taylor expansion,
i.e. for u ∈ [s, t], one would have f(Xu) = f(Xs) + Dxf(Xs)Xs,u + O(|t − s|2α) and
therefore

1

|t− s|

(∫ t

s

f(Xu)dXu − f(Xs)Xs,t −Dxf(Xs)Xs,t

)
= O(|t− s|3α−1),

where Xs,t =
∫ t
s
Xs,u ⊗ dXu is the iterated integral of the path X against itself. In the

case of X being a realization of d-dimensional Brownian motion W and its Itô iterated
integral WIto

s,t the above expansion suggest that the integral (1.3.3) understood in the
Itô sense should locally behave like

f(Ws)Ws,t +Dxf(Ws)WIto
s,t (1.3.5)

and that therefore it should be possible to define (1.3.3) as the almost sure limit of the
modified Riemann-Stiltjes sums∑

[u,v]∈Pn
f(Wu)Wu,v +Dxf(Wu)WIto

u,v. (1.3.6)

The fact that indeed the local approximations (1.3.5) can be ”sown together” to Rie-
mann sums (1.3.6) giving rise in the limit |Pn| → 0 to the integral (1.3.3) is ensured
by Gubinelli’s by now classical Sewing Lemma [Gub04].

By prescribing only the iterated integral (1.3.1) (by probabilistic tools for example), it
is thus possible to obtain a pathwise theory capable of defining expressions of the form
(1.3.3) in the Itô sense for Brownian motion. From this point of view, the construction
of the Itô integral (1.3.3) is therefore factorized in two steps: Associating to the path W

5They do however converge in L2(Ω) to the corresponding Itô integral.
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the couple WIto = (W,WIto) also called Itô lift over W and then establishing the con-
vergence of the Riemann sums (1.3.6) with purely analytical i.e. pathwise arguments.
A particular advantage of this approach yielding the same object (1.3.3) consists in the
pathwise a priori bound∣∣∣∣(∫ t

0

f(Wu)dWu

)
(ω)

∣∣∣∣ 6 C(ω) ‖f‖C2
b
T 1/2, (1.3.7)

available for any t ∈ [0, T ], T > 1 and almost every ω ∈ Ω, where C(ω) is a random
constant admitting arbitrarily high moments. In particular, this a priori bound allows
to interpret the mapping

Kt(ω) : f →
(∫ t

0

f(Wu)dWu

)
(ω)

as a bounded linear functional on C2
b and therefore K = (Kt)t as a stochastic process

taking values in the dual (C2
b )∗ such that

sup
t∈[0,T ]

‖Kt(ω)‖(C2
b )∗ = sup

t∈[0,T ]

sup
‖f‖

C2
b
6 1

∣∣∣∣(∫ t

0

f(Wu)dWu

)
(ω)

∣∣∣∣ 6 C(ω)T 1/2. (1.3.8)

As C(ω) is also of finite second moment, this implies moreover the bound

E

 sup
t∈[0,T ]

sup
‖f‖

C2
b
6 1

∣∣∣∣∫ t

0

f(Wu)dWu

∣∣∣∣2
 6 CT. (1.3.9)

Let us stress that the supremum over functions of norm one in C2
b is taken first in

the above inequality, i.e. inside the expectation and before taking the supremum
over time, making of (1.3.9) an inequality typically unavailable by standard stochastic
calculus arguments à la Burkholder-Davis-Gundy. Even more so, bounds as in (1.3.8)
are completely inaccessible by Itô calculus by the very fact that it is not a pathwise
theory.

1.4 Application of rough path theory and stochas-

tic calculus to laws of large number for inter-

acting particle systems

This alternative rough path perspective on Itô calculus and the available bounds of the
from of (1.3.8) that come with it are exploited in chapter 3 based on the work [BC20]
to study a law of large numbers for interacting particle systems. For Γ : Rd×Rd → Rd

bounded Lipschitz, let X = (Xj)j 6 n be the unique solution to the interacting particle
system

dXj
t =

1

n

n∑
i=1

Γ(X i
t , X

j
t )dt+ dBj

t

Xj
0 = xj0.

(1.4.1)
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By considering the associated empirical measure

νnt =
1

n

n∑
j=1

δXj
t

one can show classically that the sequence (νn)n converges to ν, solution to the asso-
ciated McKean-Vlasov PDE

∂tν =
1

2
∆ν + div(ν(Γ ∗ ν))

ν(0) = ν0

(1.4.2)

provided νn0 converges to ν0. This result is typically called a law of large numbers for
the sequence of empirical measures (νn)n. Notice however that such results typically
require either a bounded moment assumption [CG19], [Gä88] or independence on the
initial conditions (xj0)j 6 N [Szn91] [Tan84]. This contrasts the deterministic setting,
i.e. (1.4.1) without additive noise, where such assumptions aren’t required to establish
similar results [Dob79], [Neu84].

The main contribution established in chapter 3 consists in exploiting the above rough
path perspective in combination with fine estimates for self-normalized processes in
order to establish a law of large numbers for the interacting particle system (1.4.1)
without imposing bounded moment or independence assumptions on the initial condi-
tion.

Towards this end, we pass by an equation satisfied by νn in the mild sense, namely we
establish that for any testfunction h chosen in a space of sufficiently high regularity,
we have

〈νnt , h〉 = 〈νn0 , Sth〉+

∫ t

0

〈νns , (∇St−sh)(Γ ∗ νns )〉ds+ wnt (h), (1.4.3)

where

wnt (h) =
1

n

n∑
j=1

∫ t

0

[∇St−sh] (Xj
s ) · dBj

s . (1.4.4)

Comparing this equation with the one satisfied by the solution ν to the McKean-Vlasov
equation (1.4.2), that is

〈νt, h〉 = 〈ν0, Sth〉+

∫ t

0

〈νs, (∇St−sh)(Γ ∗ νs)〉ds, (1.4.5)

one observes that heuristically, a law of large numbers can be established by showing
that the noise term wn vanishes in the limit n → ∞. Towards this end, we establish
two distinct bounds on wn, allowing to render this heuristic rigorous: In a first step,
relying on rough path theory and estimates similar to (1.3.8), we establish the almost
sure uniform bound

sup
‖h‖Hm=1

|wnt (h)(ω)| 6 CT (ω)
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allowing to treat wn as a process taking values in H−m(Rd) for m > 3 + d/2. Notice
that as we exploit pathwise arguments at this stage, the information of independence of
the additive noises (Bj)j 6 n is lost and therefore sharper bounds in n are unavailable.
In passing by a Gronwall type argument in (1.4.3), this bound permits to establish a
uniform bound on the sequence of empirical measures in L∞([0, T ], H−m(Rd)) almost
surely and therefore to extract a weak-*-convergent subsequence. Provided with this
convergent subsequence, we establish a second bound

E

[
sup
t∈[0,T ]

|wnt (h)|2
]

6
C

n
‖h‖2

Hm

via maximal inequalities for self-normalized processes. This second bound on wn evalu-
ated on a fixed test function h ∈ Hm then allows to identify the limit to the convergent
subsequence as the unique solution to (1.4.2). In particular, note that while we exploit
a moment bound on the noise term wn, the a priori bound on the sequence of empir-
ical measures (νn)n is established uniformly on a set of full probability thanks to the
rough path perspective discussed above, which thus allows to avoid additional moment
assumptions on the initial condition ν0.

1.5 Local times and Nonlinear Young integration

vs. Lebesgue integration

As discussed in the previous section, the theory of rough paths allows for an alternative
point of view on Itô integration by first coming up with adequate local approximations
via prescribed iterated intergrals and second sewing together such local approximations
to modified Riemann sums whose convergence is assured by the Sewing Lemma. Note
however that the scope of the Sewing Lemma is much broader and not restricted to a
particular local approximation chosen - indeed, it formulates very general conditions
under which given local approximations can be sown together to a global object. An-
other instance where this Lemma is fruitfully employed in passing by different local
approximations is given by a particular approach to non-linear Young integration as
propoed in [HP21], which we discuss in the present section.

As a motivating example, consider the following problem

xt = x0 +

∫ t

0

b(xs)ds− wHt , (1.5.1)

where (wHt )t is some H-Hölder continuous path for H ∈ (0, 1). By the substitution
y = x+ w, the above can be reformulated as

yt = y0 +

∫ t

0

b(ys − ws)ds. (1.5.2)

Observe that for smooth functions b : Rd → Rd, y will be continuously differentiable
and therefore smoother than the perturbative path wH . Heuristically, the oscillations
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of wH therefore dominate the oscillations of y, meaning that one might expect an
averaging effect to be produced in the Lebesgue integral in (1.5.2) of b along wH . In
order to render this intuition rigorous, let us further assume that w admits a local
time L = (Lt(x))t∈[0,T ],x∈Rd , i.e. a measurable function such that the occupation times
formula ∫ t

0

f(ws)ds =

∫
Rd
Lt(x)f(x)dx (1.5.3)

holds for any positive measurable function f . We stress that the assumption of the
existence of a local time is far from trivial and has so far only been demonstrated
for realisations of certain stochastic processes. In particular, the problem of finding a
concrete deterministic path that admits a local time remains an open problem at the
moment of writing this manuscript (see however recent progress made in [IMPdRR21]
and [GG20a], [GG20b]).

Assuming the occupation times formula (1.5.3) holds, notice in particular that we
have for any x ∈ Rd∫ t

0

b(x− ws)ds =

∫
Rd
Lt(z)b(x− z)dz = b ∗ Lt(x). (1.5.4)

Note that since heuristically6 the regularity of the convolution b ∗ Lt is given by the
sum of the spatial regularities of b and Lt, the above convolution might still be a well
defined function in space even though b only enjoys distributional regularity, provided
the local time L is sufficiently regular.

This observation motivates a quantitative study of the space-time regularity of local
times associated with a given path. Since already the existence of local times asso-
ciated with a given deterministic path remains a challenging problem as mentioned
above, this study of space time regularity of local times is mainly done for certain
classes of stochastic processes, in particular locally non-deterministic processes. A par-
ticular case of a result by Harang and Perkowski establish for example the following
regularity estimate in [HP21]:

Theorem 1.5.1 (Harang, Perkowski 21). Let H ∈ [0, 1/d) and (wHt )t∈[0,T ] be fractional
Brownian motion of Hurst parameter H in d dimensions. Then almost every sample
path admits a local time L = (Lt(x))t > 0,x∈Rd and moreover for any λ < 1

2H
− d

2
and

γ ∈ [0, 1− (λ+ d
2
)H) we have

‖Lt(·)− Ls(·)‖Hλ 6 CT |t− s|γ.

for any t, s ∈ [0, T ].

Remark that in combination with Young’s inequality in Besov spaces, this regular-
ity estimate allows for a quantifiable regularization effect in (1.5.4): For example in

6A rigorous formulation to this statement is given by Young’s inequality in Besov spaces, refer to
Lemma 4.B.1
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dimension d = 1 and for b ∈ B−β∞,∞, the convolution b ∗ Lt will be in Bα
∞,∞ provided

α <
1

2H
−
(
β +

1

2

)
.

Notice in particular that the convolution b∗Lt might therefore be a continuous function
even if b only enjoys distributional regularity as long as H is chosen sufficiently small.

With this observation in mind, it is suggestive to approximate the Lebesgue integral
in (1.5.2) locally by∫ t

s

b(yu − wu)du '
∫ t

s

b(ys − wu)du = (b ∗ Ls,t)(ys) =: Ays,t, (1.5.5)

where we used the shorthand notation Ls,t(x) := Lt(x) − Ls(x). As with the local
approximation (1.3.5) in the context of rough path theory, one can now use the Sewing
Lemma in order to verify under which conditions on the nonlinearity b and the local
time L the above germ (1.5.5) can be sown together. Notice that in the case of averag-
ing along fractional Brownian motion, the above result by Harang and Perkowski also
provides us with regularity estimates in time for the the local time that are crucial in
the application of said Sewing Lemma.

Once the conditions of the Sewing Lemma are met for the germ Ays,t, one can show in
the case of smooth b that∫ t

0

b(ys − ws)ds := (ΞAy)s,t = lim
|Pn|↘0

∑
[u,v]∈Pn

Ayu,v = lim
|Pn|↘0

∑
[u,v]∈Pn

(b ∗ Lu,v)(yu),

where Ξ denotes the Sewing operator7 and P = (Pn)n any sequence of partitions of
[0, t] whose mesh size tends to zero. Comparing this definition of the above integral to
its classical in the setting of Riemann integration where∫ t

0

b(ys − ws)ds := lim
|Pn|↘0

∑
[u,v]∈Pn

By
u,v

for By
s,t = b(ys − ws)(t− s), note that while the Riemann summands By

s,t are linear in
the integrator in the sense that for any s ∈ [0, T ] fixed the mapping t ∈ [s, T ]→ By

s,t is
affine linear, the modified Riemann summands Ays,t lack this property. For this reason
the above approach to define Riemann integrals averaged along a path w can be seen
as a particular instance of the theory of non-linear integration or more precisely non-
linear Young integration, as no further correction terms need to be introduced in order
to assure an accurate local description of the integral by Riemann summands (as was
the case for stochastic integration in the rough path setting above).

7Refer to Lemma 4.A.1
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As on the level of local approximations we can exploit the regularizing effect due to
the local time as described above, it then becomes possible to study the generalization

yt = x0 + (ΞAy)t

to the problem (1.5.2) even for non-linearities b that enjoy less regularity than typi-
cally required in the study of (1.5.2). Moreover, even in cases where b is sufficiently
regular for (1.5.2) to be well posed this approach can be fruitful as it can be exploited
to establish higher spatial regularity of the associated flow.

In chapter 4 of this thesis based on a work in progress with Nicolas Perkowski, we
exploit the above approach due to [HP21] in order to study associated phenomena of
averaging along fractional Brownian motion wH for the transport equation

∂tu+ b̃∂xu = 0

u(0) = u0

(1.5.6)

and Burgers’ equation

∂tu+ ũ∂xu = 0

u(0) = u0,
(1.5.7)

where for a function f : [0, T ]×R→ R we denoted f̃(t, x) = f(t, x−wHt ). Recall that
solutions to (1.5.6) are closely linked to the associated characteristic equation given by

Xt = x+

∫
b̃(s,Xs)ds = x+

∫
b(s,Xs − wHs )ds. (1.5.8)

By interpreting the above as the non-linear Young integral problem

Xt = x+ (ΞAX)t (1.5.9)

where AXs,t = bs ∗ Ls,t(Xs) as discussed above, we are able to leverage the regulariza-
tion effect due to the local time of fractional Brownian motion in such a way as to
obtain existence of weak solutions to (1.5.6) for b ∈ C0,γ

t Cb
x ∩Cb

tC
γ
x and L1 initial data

provided the Hurst parameter H is chosen sufficiently small. We moreover show that
provided b ∈ C0,γ

t Cb
x∩Cb

tC
γ
x ∩L∞t L1

x, then so is the constructed solution. Furthermore,
we provide general a priori bounds to solutions to (1.5.6) and discuss uniqueness in the
case of differentiable initial conditions.

By exploiting slightly more regularisation, i.e. imposing H to be slightly smaller and
assuming the initial condition to be sufficiently small, we are able to perform a fixed
point argument on the level of the transport equation (1.5.6) in an appropriately chosen
space, establishing existence of solutions to (1.5.7).
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Chapter 2

Strong solutions to semilinear
SPDEs with unbounded diffusion

We prove a modification to the classical maximal inequality for stochastic convolutions
in 2-smooth Banach spaces using the factorization method. This permits to study
semilinear stochastic partial differential equations with unbounded diffusion operators
driven by cylindrical Brownian motion via the mild solution approach. In the case
of finite dimensional driving noise, provided sufficient regularity on the coefficients,
we establish existence and uniqueness of strong solutions. In the case of ”critical
unboundedness”, we show how to use the stochastic compactness method to obtain a
martingale solution.

This chapter is based on the work [Bec20].
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2.1 Introduction

We consider the problem

dut = (∆− 1)utdt+ (−∆ + 1)δ0F (ut)dt+ (−∆ + 1)δ1/2B(ut)dWt

u(0) = u0
(2.1.1)

for t ∈ [0, T ] where δ0, δ1 ∈ [0, 1), ∆ is the Laplacian with periodic boundary conditions
on the N -dimensional torus TNand W is cylindrical Brownian motion over a separable
Hilbert space U .

A canonical setting for the investigation of well-posedness to the above problem
would be assuming F : L2(TN) → L2(TN) and B : L2(TN) → L2(U,L2(TN)) to
be Lipschitz. Yet, due to the unbounded fractional Laplacian in the diffusion term
(−∆ + 1)δ1/2B(ut), one loses the Hilbert-Schmidt property and is thus unable to define
a stochastic integral with values in L2(TN), as typically required in the variational
approach to stochastic partial differential equations [KR81], [LR15], [Gyö98].

In keeping the above assumptions, an alternative approach consists in the mild
formulation to the problem given by

ut = Stu0 +

∫ t

0

St−s(−∆ + 1)δ0F (us)ds+

∫ t

0

St−s(−∆ + 1)δ1/2B(us)dWs,

where S denotes the semigroup generated by ∆− 1. Exploiting this formulation in the
particular case of a bounded diffusion, i.e. δ1 = 0, Hofmanová is able to apply a fixed
point theorem in L2(Ω × [0, T ], L2(TN))) [Hof13]. To this end, she crucially exploits
the fact that the fractional power of a generator A composed with its corresponding
semigroup (St)t > 0 yields a bounded operator, or more precisely∥∥(−A)δSt

∥∥ 6 Cδt
−δ,

provided the semigroup is analytic [Paz83]. Applying this bound in combination with
the triangle inequality on the drift term, she is able to close the argument in a classical
way. In particular, this encompasses the use of the maximal inequality for stochastic
convolutions, which in this context reads

E

[
sup
t 6 T

∥∥∥∥∫ t

0

St−sB(us)dWs

∥∥∥∥2

L2(TN )

]
6 CE

[∫ T

0

‖B(us)‖2
L2(U,L2(TN )) ds

]
.

Notice that in the present context of an unbounded diffusion coefficient, i.e. δ1 6= 0,
the above bound is not available since the diffusion term is no longer Hilbert-Schmidt,
therefore preventing an immediate generalization of [Hof13].

In this chapter, we show how to generalise the above maximal inequality in a weaker
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form to the present context of an unbounded diffusion coefficient, notably1

E

[
sup
t 6 T

∥∥∥∥∫ t

0

(−∆ + 1)δ1/2St−sB(us)dWs

∥∥∥∥p
Lp(TN )

]

6 CT p/2(1−δ1)E
[

sup
t 6 T
‖B(ut)‖pγ(U,Lp(TN ))

]
for p > 2/(1− δ1). The reasoning we follow exploits a combination of the above trade-
off between fractional powers of generators and their analytic semigroups as well as the
factorization method [DPKZ88], [DPZ14]. In particular, the new maximal inequality
derived permits to set up a fixed point argument in Lq(Ω, C([0, T ], Lp(TN))) for p > 2
and q sufficiently large, which establishes existence and uniqueness of mild solutions to
the equation in question.

In the particular case of finite dimensional noise, i.e. U being of finite dimension,
we show that the corresponding sequence of Picard iterations is uniformly bounded
in Sobolev spaces, provided sufficient regularity of F and B. By using the Sobolev
embedding theorem, this allows to identify the constructed mild solutions as strong
ones. In order to use the embedding theorem, we have be able to pass to Sobolev
spaces of high enough order. This necessitates to leave the Hilbert space framework
and consider the more general theory of stochastic integration in 2-smooth Banach
spaces, which is why our maximal inequality is stated in this more general setting. For
a concise introduction to this theory, we refer the reader to [Ond04] and [Brz95]. Let
us mention that in the case of finite dimensional noise an alternative approach using
rough path theory to define and control the stochastic convolution and subsequently
solve the associated semilinear problem was recently presented in [GHN19] building
upon earlier results in [GT10]. Note that the constraint δ0, δ1 ∈ [0, 1) ensures that the
problem (2.1.1) is subcritical in the terminology of [GHN19]2.

Finally, we discuss the limit case δ1 ↗ 1, to which the present maximal inequality
can not be applied. We show that provided B is sufficiently small, the corresponding
sequence of strong solutions can be used to establish existence of a martingale solution
of the corresponding limiting equation via the stochastic compactness method due to
[FG95].

2.2 Setting and main results

Throughout this chapter we fix a stochastic basis (Ω,F , (Ft)t > 0,P) with the filtration
satisfying the usual conditions. Let U be a separable Hilbert space and W a cylindrical
Brownian motion on U . In case U is of finite dimension, this means that for any

1Notice that the above inequality is expressed in the more general context of stochastic integration
in the Banach space Lp(TN ), necessitating to replace the usual Hilbert-Schmidt norm in L2(U,L2(TN ))
by the corresponding norm in the space of γ-radonifying operators γ(U,Lp(TN )) on the right hand
side of the inequality.

2Refer to the discussion following the ”Metatheorem” therein.
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orthonormal basis (ei)i 6 d of U , W admits the expansion

Wt =
d∑
i=1

eiβ
i
t ,

where (βi)i 6 d are independent standard Brownian motions. Let X be a 2-smooth
Banach space and denote by γ(U,X) the space of γ-radonifying operators from U to
X. Let TN denote the N -dimensional torus and Lp(TN), Wm,p(TN), Hα,p(TN) the
associated Lebesgue, respectively Sobolev, respectively Bessel potential spaces, which
we recall all fall into the class of 2-smooth Banach spaces for p > 2 [Ond04]. We fix
moreover a finite time horizon T ∈ R+.

For convenience we introduce for q > 2 and X a separable Banach space the space

Zq,X := Lq(Ω, C([0, T ], X)),

which endowed with its naturally inherited norm

‖u‖qZq,X := E
[

sup
t 6 T
‖ut‖qX

]
is itself a separable Banach space. Throughout the chapter C shall denote an unessen-
tial constant that may change from one line to the next. Dependencies of the constant
C on parameters are indicated by corresponding subscripts.

Theorem 2.2.1 (A maximal inequality). Let δ ∈ [0, 1) and T > 0. Let X be a 2-
smooth Banach space, A : D(A) ⊂ X → X be generator of an analytic contraction
semigroup of operators (St)t > 0. Let W be a cylindrical Wiener process on a separable
Hilbert space U . Suppose a measurable B : X → γ(U,X) satisfies for q > 2

1−δ

‖B(u)‖qγ(U,X) 6 C(1 + ‖u‖qX),

then for every progressively measurable u ∈ Zq,X the process

t→
∫ t

0

(−A)δ/2St−sB(us)dWs

admits a P-almost surely continuous modification and we have

E
[

sup
t 6 T

∥∥∥∥∫ t

0

(−A)δ/2St−sB(us)dWs

∥∥∥∥q
X

]
6 CT q/2(1−δ)E

[
sup
t 6 T
‖B(ut)‖qγ(U,X)

]
.

Remark 2.2.2 (Comparison to classical maximal inequality). Recall that the classical
maximal inequality for stochastic convolutions in 2-smooth Banach spaces reads for
q > 0

E
[

sup
t 6 T

∥∥∥∥∫ t

0

St−sB(us)dWs

∥∥∥∥q
X

]
6 CE

[(∫ T

0

‖B(us)‖2
γ(U,X) ds

)q/2]
,
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(see [Brz97], [vNZ11]) which is considerably sharper than the above inequality for the
case δ = 0. Yet, we remark that for the fixed point argument in Zq,X below, the
coarser inequality of Theorem 2.2.1 is sufficient. For sharper maximal inequalities in
the infinite time horizon case, we refer to [VW11] and [vNVW12]. We also refer to the
recent survey on maximal inequalities for stochastic convolutions in 2-smooth Banach
spaces [vNV20].

Remark 2.2.3 (The stochastic integral is well defined). Note first that due to the
assumption of A being the generator of an analytic semigroup on X, we have

||(−A)δSt||L(X) 6 Cδt
−δ.

Moreover, by the the ideal property of γ-radonifying operators in the space of boudned
operators and Itô’s isomorphism in 2-smooth Banach spaces we have for any t ∈ [0, T ]

E
[∥∥∥∥∫ t

0

(−A)δ/2St−sB(us)dWs

∥∥∥∥q
X

]
6 CE

[(∫ t

0

∥∥(−A)δ/2St−sB(us)
∥∥2

γ(U,X)
ds

)q/2]

6 CE

[(∫ t

0

∥∥(−A)δ/2St−s
∥∥2

L(X)
‖B(us)‖2

γ(U,X) ds

)q/2]

6 CE

[(∫ t

0

1

(t− s)δ
‖B(us)‖2

γ(U,X) ds

)q/2]

6 CE
[

sup
t 6 T
‖B(ut)‖qγ(U,X)

](∫ t

0

1

sδ
ds

)q/2
6 Ctq/2(1−δ)E

[
1 + sup

t 6 T
‖ut‖qX

]
6 CT q/2(1−δ)(1 + ‖u‖qZq,X )

hence, the stochastic integral in question is well defined provided u ∈ Zq,X .

Corollary 2.2.4 (Distributional regularity for δ > 1). Consider the case X = Lp(TN)
for p > 2 and A = ∆− 1. Note that due to(

D((−∆ + 1)α/2), ||(−∆ + 1)α/2 · ||Lp(TN )

)
'
(
Hα,p(TN), || · ||Hα,p(TN )

)
one obtains for α > (δ − 1)+ and q > 2/(1− (δ − α)), provided all other conditions of
Theorem 2.2.1 are met,

E

[
sup
t 6 T

∥∥∥∥∫ t

0

(−∆ + 1)δ/2St−sB(us)dWs

∥∥∥∥q
H−α,p(TN )

]

6 CE

[
sup
t 6 T

∥∥∥∥∫ t

0

(−∆ + 1)(δ−α)/2St−sB(us)dWs

∥∥∥∥q
Lp(TN )

]

6 CT q/2(1−(δ−α))E
[

sup
t 6 T
‖B(ut)‖qγ(U,Lp(T))

]
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where we exploited that for α > 0, one can pass the bounded operator (−∆ + 1)−α/2

into the stochastic integral. The above permits thus to conclude that for δ > 1 the
convolution process

t→
∫ t

0

(−∆ + 1)δ/2St−sB(us)dWs

takes values in H−α,p(TN) for all α > δ − 1, P-almost surely.

We now turn to the main theorem to be demonstrated in the following section.

Theorem 2.2.5 (Mild solutions in Zq,Wm,p(TN )). Let B1, . . . , Bd ∈ Cm(TN × R) and
F ∈ Cm(R) have bounded derivatives up to order m satisfying

d∑
i=1

|Bi(x, ξ)|2 6 C(1 + |ξ|2).

Then for δ0, δ1 ∈ [0, 1), q > 2/(1−δ1), p > 2 and u0 ∈ Lq(Ω,Wm,p(TN))∩Lmq(Ω,W 1,mp(TN))
such that u0 is F0-measurable, the equation

dut = (∆− 1)utdt+ (−∆ + 1)δ0F (ut)dt+ (−∆ + 1)δ1/2
d∑

k=1

Bi(ut)dβ
i
t

u(0) = u0

(2.2.1)

admits a unique mild solution u ∈ Zq,Wm,p(TN ) ∩ Zmq,W 1,mp(TN ) satisfying

||u||qZ
q,Wm,p(TN )

+ ||u||mqZ
mq,W1,mp(TN )

6 C
(

1 + E||u0||qWm,p(TN )
+ E||u0||mqW 1,mp(TN )

)
.

Remark 2.2.6 (Strong solutions). Note that by the Sobolev embedding theorem, the
above Theorem 2.2.5 implies that the constructed mild solutions lie in Zq,Cm−1,λ(TN ) for
λ ∈ (0, 1 − N/p). In particular, for m > 3, this permits to identify the mild solution
as a strong one.

Remark 2.2.7 (Other types of unboundedness). The statement of Theorem 2.2.5 can
be extended to equations of the form

dut = (∆− 1)utdt+ div(F (ut))dt+ (−∆ + 1)δ1/2
d∑
i=1

Bi(ut)dβ
i
t

for F ∈ Cm(R,RN) by interpreting them as

dut = (∆− 1)utdt+ (−∆ + 1)1/2
(
(−∆ + 1)−1/2div(F (ut))

)
dt

+ (−∆ + 1)δ1/2
d∑
i=1

Bi(ut)dβ
i
t
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and verifying that the associated Nemytskii operator

f : X → γ(U,X)

u→ (−∆ + 1)−1/2div(F (u))

satisfies the necessary conditions stated in Lemmas 2.3.6, 2.3.9 and 2.3.12. Heuristi-
cally, this is possible as the inverse root of the shifted Laplacian compensates for the
unboundedness of the divergence. For the precise statement refer to [Hof13, Theorem
2.1].

2.3 Proof of the main results

2.3.1 Proof of Theorem 2.2.1

For the proof of the maximal inequality, we use the factorization method due to
[DPKZ88]. Exploiting the identity∫ t

σ

(t− s)α−1(s− σ)−αds =
π

sinπα

which holds for any σ 6 t in [0, T ] and α ∈ (0, 1), we have due to Fubini’s theorem
(which we may apply due to Remark 2.2.3)∫ t

0

(−A)δ/2St−sB(us)dWs

=
sin πα

π

∫ t

0

(t− s)α−1(−A)δ/2St−s

(∫ s

0

(s− σ)−αSs−σB(uσ)dWσ

)
︸ ︷︷ ︸

=:(Y u)s

ds.

We proceed with the proof in two steps, made up of the following two Lemmata. Let
us recall that throughout this subsection, X denotes a generic 2-smooth Banach space
and A : D(A) ⊂ X → X is generator of an analytic semigroup of operators (St)t > 0.

Lemma 2.3.1. Let α ∈ (0, 1), δ ∈ [0, 1) and p > 1 such that

λ :=
p

p− 1
(1 + δ/2− α) < 1.

Then the family of operators (Gt)t defined via

Gt : Lp([0, T ], X) → X

f →
∫ t

0
(t− s)α−1(−A)δ/2St−sf(s)ds

is uniformly continuous in the sense that

sup
t 6 T
||Gtf ||X 6 C

(
1

1− λ

) p−1
p

T
p−1
p

(1−λ)||f ||Lp([0,T ],X).

Moreover, for every fixed f ∈ Lp([0, T ], X) the mapping t → Gtf is continuous as a
mapping from [0, T ] to X.
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Proof. Note again that one has

||(−A)δ/2St−s||L(X) 6 C(t− s)−δ/2

and therefore by the triangle inequality for Bochner integrals and Hölder’s inequality

||Gtf ||X 6 C

∫ t

0

(t− s)α−1−δ/2||f(s)||Xds

6 C

(∫ t

0

(t− s)−λds
) p−1

p

||f ||Lp([0,T ],X)

6 C

(
1

1− λ

) p−1
p

T (−λ+1) p−1
p ||f ||Lp([0,T ],X).

Towards continuity, suppose f ∈ C([0, T ], X), then

‖Gtf −Gsf‖X 6

∥∥∥∥∫ s

0

uα−1(−A)δ/2Su (f(t− u)− f(s− u)) du

∥∥∥∥
X

+

∥∥∥∥∫ t

s

u1−α(−A)δ/2Suf(t− u)du

∥∥∥∥
X

6 C

(∫ s

0

u−λdu

) p−1
p
(∫ s

0

‖f(t− u)− f(s− u)‖pX du
)1/p

+ C

(∫ t

s

u−λdu

) p−1
p

‖f‖Lp([0,T ],X) .

Due to the assumed continuity of f , the first expression in the above estimate vanishes
as t goes to s, which together with the continuity of the Lebesgue integral in the second
expression yields continuity of t→ Gtf for f ∈ C([0, T ], X). Together with the already
established uniform bound on the operator family, this permits to employ a density
argument, establishing continuity for f ∈ Lp([0, T ], X).

Lemma 2.3.2. Suppose that α ∈ (0, 1/2). Then the mapping

Y : Lp(Ω, C([0, T ], X)) → Lp(Ω, Lp([0, T ], X))
u → Y u

defined via

(Y u)s :=

∫ s

0

(s− σ)−αSs−σB(uσ)dWσ

satisfies

||Y u||pLp(Ω,Lp([0,T ],X)) 6 Cα,pT
p/2(1−2α)+1E

[
sup
s 6 T
||B(us)||pγ(U,X)

]
where

Cα,p = C

(
1

1− 2α

)p/2
1

p/2(1− 2α) + 1
.
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Proof. One has

||Y u||pLp(Ω,Lp([0,T ],X))

= E
[∫ T

0

∥∥∥∥∫ s

0

(s− σ)−αSs−σB(uσ)dWσ

∥∥∥∥p
X

ds

]
=

∫ T

0

E
[∥∥∥∥∫ s

0

(s− σ)−αSs−σB(uσ)dWσ

∥∥∥∥p
X

]
ds

6 C

∫ T

0

E

[(∫ s

0

(s− σ)−2α||B(uσ)||2γ(U,X)dσ

)p/2]
ds

6 CE
[

sup
σ 6 T

||B(uσ)||pγ(U,X)

] ∫ T

0

(

∫ s

0

(s− σ)−2αdσ)p/2ds

6 Cα,pT
p/2(1−2α)+1E

[
sup
σ 6 T

||B(uσ)||pγ(U,X)

]
where we crucially exploited Itô’s isomorphism for X a 2-smooth Banach space. This
inequality is also what one obtains from the classical maximal inequality for stochastic
convolutions in [vNZ11] by considering the trivial semigroup St = Id.

Remark 2.3.3. We wish to next combine the two previous Lemmata 2.3.1 and 2.3.2.
Note that to this end, we need to demand for δ ∈ [0, 1) that

λ :=
p

p− 1
(1 + δ/2− α) < 1

and α ∈ (0, 1/2). Remark that the least restrictive condition on λ is obtained by
choosing α as large as possible, i.e. setting for some ε > 0 small α := 1/2 − ε/2, we
obtain

p >
2

1− ε− δ
which, since ε > 0 can be chosen arbitrarily small, resorts to demanding

p >
2

1− δ
as required in the statement of Theorem 2.2.1.

Hence, assuming p > 2/(1 − δ), we may put together the two previous Lemmata
2.3.1 and 2.3.2 and we obtain

E
[

sup
t 6 T

∥∥∥∥∫ t

0

(−A)δ/2St−sB(us)dWs

∥∥∥∥p
X

]
6 CT (−λ+1)(p−1)E

[
||Y ||pLp([0,T ],X)

]
= CT p−1−p(1+δ/2−α)||Y ||pLp(Ω,Lp([0,T ],X)

6 Cα,p,δT
p/2(1−δ)E

[
sup
t 6 T
||B(ut)||pγ(U,X)

]
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where

Cα,p,δ = C

(
1

1− 2α

)p/2
1

p/2(1− 2α) + 1

(
1

1− λ

) p−1
p

completing the proof to Theorem 2.2.1.

Remark 2.3.4. We stress the fact that this proof using the factorization method can not
be used to recover the sharper classical maximal inequality in the case of a bounded diffu-
sion term, i.e. δ = 0. Indeed, the factorization method was originally used in [DPKZ88]
to prove existence of a continuous version of the stochastic convolution (among other
regularity results) and not to prove a maximal inequality. As will be seen in the proof
of Theorem 2.2.5 though, this coarser (yet in our context more general) inequality is
sufficient to implement a fixed point argument nonetheless.

2.3.2 Proof of Theorem 2.2.5

Having established the maximal inequality of Theorem 2.2.1, we can now generalize
the strategy employed by Hofmanová in [Hof13] in order to prove Theorem 2.2.5. This
strategy consists in showing that first there exists a unique mild solution to (2.1.1) in
Zq,Lp(TN ) via a Banach fixed point argument. Considering the corresponding sequence
of Picard iterations (un)n ⊂ Zq,Lp(TN ), one is able to show - thanks to the maximal
inequality of Theorem 2.2.1 - that the sequence (un)n is also uniformly bounded in
Zq,Wm,p(TN ) (provided the initial condition lies in this space), allowing to conclude
that the corresponding limit (in the topology of Zq,Lp(TN )), actually already lies in
Zq,Wm,p(TN ). By the Sobolev embedding theorem, this permits to conclude that the
unique mild solution is differentiable in space and hence a strong solution to (2.1.1).

For the sake of readability, we choose to split up the steps mentioned above into
two parts: In a first part (Lemmata denoted as abstract statements), we consider
the generic setting in which F and B are seen as operators with suitable properties.
In a second part, we recall for the convenience of the reader results of Hofmanová
in [Hof13] to justify why the given functions F and (Bi)i 6 d give rise to associated
Nemytskii operators with such properties (Lemmata denoted Nemytskii operator type
results).

Mild solutions in Zq,Lp(TN )

Lemma 2.3.5 (Abstract statement). For δ0, δ1 ∈ [0, 1), let q > 2
1−δ1 . Let X be a

2-smooth Banach space, let W be a cylindrical Brownian motion on a separable Hilbert
space U . Suppose that B : X → γ(U,X) and F : X → X are Lipschitz continuous.
Let A : D(A) ⊂ X → X be generator of an analytic contraction semigroup (St)t 6 T ⊂
L(X). Then for any T < ∞ and any F0-measurable u0 ∈ Lq(Ω, X) , the stochastic
partial differential equation

dut = Autdt+ (−A)δ0F (u)dt+ (−A)δ1/2B(ut)dWt

u(0) = u0

(2.3.1)
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admits a unique mild solution, meaning there exists a unique progressively measurable
process u ∈ Zq,X such that

ut = Stu0 +

∫ t

0

(−A)δ0St−sF (us)ds+

∫ t

0

(−A)δ1/2St−sB(us)dWs.

Moreover u satisfies
||u||qZq,X 6 E||u0||qX + CT .

Proof. One uses the classical Banach fixed point theorem, i.e. a contraction argument
in Zq,X for a sufficiently small time horizon. Consider the operator K : Zq,X → Zq,X ,
defined by

(Ku)t := Stu0 +

∫ t

0

(−A)δ0St−sF (us)ds+

∫ t

0

(−A)δ1/2St−sB(us)dWs.

Notice that the assumed Lipschitz continuity of B and F imply growth conditions of
the form

‖B(u)‖qγ(U,X) 6 C(1 + ‖u‖qX),

and
‖F (u)‖qX 6 C(1 + ‖u‖qX).

Concerning the term associated with the drift, one has therefore

E
[

sup
t 6 T

∥∥∥∥∫ t

0

(−A)δ0St−sF (us)ds

∥∥∥∥q] 6 CE
[(∫ t

0

1

(t− s)δ0
||F (us)||Xds

)q]
6 CT q(1−δ0)E

[
sup
t 6 T
||F (ut)||qX

]
6 CT q(1−δ0)(1 + ||u||qZq,X ),

as well as

E
[

sup
t 6 T

∥∥∥∥∫ t

0

(−A)δ0St−s(F (us)− F (vs))ds

∥∥∥∥q
X

]
6 CT q(1−δ0)E

[
sup
t 6 T
||F (ut)− F (vt)||qX

]
6 CT q(1−δ0)||u− v||qZq,X .

Concerning the term associated with the diffusion, note that because of the maximal
inequality of Theorem 2.2.1 one has

E
[

sup
t 6 T

∥∥∥∥∫ t

0

(−A)δ/2St−sB(us)dWs

∥∥∥∥q
X

]
6 CT q/2(1−δ)E

[
sup
t 6 T
‖B(ut)‖qX

]
6 CT q/2(1−δ)(1 + ||u||qZq,X ),
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as well as

E
[

sup
t 6 T
||
∫ t

0

(−∆)δ/2St−s(B(us)−B(vs))dWs||qX
]

6 CT q/2(1−δ)E
[
sup
t 6 t
||B(ut)−B(vt)||qγ(U,X)

]
6 CT q/2(1−δ)E

[
sup
t 6 T
||ut − vt||qX

]
=CT q/2(1−δ)||u− v||qZq,X ,

due to the assumed Lipschitz continuity of B. Overall, one concludes that

||K(u)||qZq,X 6 C
(
||u0||qZq + (T q(1−δ0) + T q/2(1−δ1))(1 + ||u||qZq,X )

)
(2.3.2)

meaning that K maps Zq,X into itself. Moreover, we have

||K(u)−K(v)||qZq,X 6 C
(
T q(1−δ0) + T q/2(1−δ1)

)
||u− v||qZq,X .

By choosing T sufficiently small, K is a contraction on Zq,X and hence admits a unique
fixed point that by definition coincides with a mild solution.

Continuity in time is a consequence of the existence of a continuous modification
of the stochastic convolution in Theorem 2.2.1 as well as the continuity of the Bochner
integral and of the semigroup. This permits to compute the unique solution to the
equation in question on [T, 2T ] with initial condition uT calculated previously, etc.,
thus recovering existence and uniqueness of mild solutions on arbitrary finite time
horizons.

Finally, the bound on solutions is derived from weak-*-lower semicontinuity of the
norm || · ||Zq,X , the strong convergence of Picard iterations and the above estimate
(2.3.2).

Lemma 2.3.6 (A Nemytskii operator type result for Lp(TN), [Hof13, Proposition
4.1]). Let U be a d-dimensional Hilbert space with orthonormal basis (ei)i 6 d. Let
B1, . . . , Bd ∈ C1(TN × R;R) have bounded derivative and satisfy the growth condition

d∑
i=1

|Bi(x, ξ)|2 6 C(1 + |ξ|2).

Then for p > 2 the associated Nemytskii operator

B : Lp(TN)→ γ(U,Lp(TN))

z →

(
u→

d∑
i=1

Bi(·, z(·))〈u, ei〉

)
is well defined and Lipschitz continuous. Suppose F ∈ C1(R) is of bounded derivative.
Then the associated Nemytskii operator

F : Lp(TN)→ Lp(TN)

u→ F (u)

is well defined and Lipschitz continuous.
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Corollary 2.3.7. Suppose the conditions of Theorem 2.2.5 are satisfied and p > 2.
Then there exists a unique mild solution u ∈ Zq,Lp(TN ) to the problem (2.2.1).

Mild solutions in Zq,W 1,p(TN )

Lemma 2.3.8 (Abstract statement). Suppose all conditions of Lemma 2.3.5 are met.

Let X̃ be another 2-smooth Banach space, continuously embedded into X, the embedding
operator being the identity and suppose u0 ∈ Lq(Ω, X̃). Suppose that B seen as an

operator B : X̃ → γ(U, X̃) is well defined and satisfies the growth condition

||B(u)||q
γ(U,X̃)

6 C(1 + ||u||q
X̃

).

Suppose that F seen as an operator F : X̃ → X̃ is well defined satisfying the growth
condition

||F (u)||q
X̃
6 C(1 + ||u||q

X̃
).

Suppose moreover that A|X̃ generates a strongly continuous contraction semigroup

(S̃t)t ⊂ L(X̃) such that St|X̃ = S̃t. Then the unique mild solution u ∈ Zq,X to (2.3.1)
is also the unique mild solution u ∈ Zq,X̃ to (2.3.1) satisfying

||u||qZ
q,X̃

6 C(1 + E||u0||qX̃).

Proof. Since the conditions of the previous theorem are met, there exists a unique
u ∈ Zq,X which is the strong limit of Picard iterations, given via the recursive formula
u0 = u0 and

unt = Stu0 +

∫ t

0

(−A)δ0St−sF (un−1
s )ds+

∫ t

0

(−A)−δ1/2St−sB(un−1
s )dWs︸ ︷︷ ︸

=:K(un−1)t

for n > 1. Note that due to the maximal inequality of Theorem 2.2.1 for the stochastic
integral and the triangle inequality for the Bochner integral, one obtains an estimate
similar to (2.3.2) but in the space Zq,X̃ namely

||K(un)||qZ
q,X̃

6
(
||u0||qZ

q,X̃
+ (T q(1−δ0) + T q/2(1−δ1))(1 + ||un−1

t ||qZ
qX̃

)
)

We conclude recursively that

||un||pZX 6 C(1 + ||u0||qZ
q,X̃

)
n−1∑
k=0

(CT q/2(1−δ1))k + (CT q(1−δ0))k.

For T sufficiently small the above geometric series converges and one obtains a uniform
bound on the sequence of Picard iterations (un)n in the the space Zq,X̃ . By Alaoglu’s
theorem, one can extract a weak-*-convergent subsequence with limit v ∈ ZX̃ . Since
ZX̃ ↪→ ZX , one also has

un
∗
⇀ v
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in ZX and by uniqueness of limits, v = u, meaning the limit of Picard iterations already
lies in ZX̃ . By Lemma 2.A.2, one can identify the stochastic integral in X with the

stochastic integral in X̃, meaning in the notation introduced in Lemma 2.A.2 below

ut = Stu0 +

∫ t

0

(−A)δ0St−sF (us)ds+

(
X

∫ t

0

)
(−A)−δ1/2St−sB(us)dWs

= S̃tu0 +

∫ t

0

S̃t−s(−A)δ0F (us)ds+

(
X̃

∫ t

0

)
(−A)−δ1/2S̃t−sB(us)dWs

which is the definition of u being a mild solution in Zq,X̃ . Uniqueness follows from the
embedding ZX̃ ↪→ ZX . Continuity follows from the continuous version of the modified
stochastic convolution thanks to Theorem 2.2.1. The estimate of the solutions follows
from the weak-*-lower semicontinuity of the norm and the uniform bound on Picard
iterations established.

Lemma 2.3.9. (A Nemytskii operator type result for W 1,p(TN), [Hof13, Proposition
4.2]) Let U be a d-dimensional Hilbert space with orthonormal basis (ei)i 6 d. Let
B1, . . . , Bd ∈ C1(TN × R) be differentiable and of bounded derivative. Let p > 2.
Then the associated Nemytskii operator

B : W 1,p(TN)→ γ(U,W 1,p(TN))

z →

(
u→

d∑
i=1

Bi(·, z(·))〈u, ei〉

)
is well defined and satisfies the linear growth condition

||B(z)||γ(U,W 1,p(TN )) 6 C(1 + ||z||W 1,p(TN )).

Suppose F ∈ C1(R) has bounded derivative, then the operator

W 1,p(TN)→ W 1,p(TN)

u→ F (u)

is well defined and satisfies

||F (u)||W 1,p(TN ) 6 C(1 + ||u||W 1,p(TN ))

Corollary 2.3.10. Suppose the conditions of Theorem 2.2.5 and p > 2. Then there
exists a unique mild solution u ∈ Zq,W 1,p(TN ) to the problem (2.2.1).

Mild solutions in Zq,Wm,p(TN )

Constructing mild solutions in Zq,W 1,p(TN ) essentially relied on the fact that Nemytskii
operators associated to the C1(TN × R) functions B1, . . . , Bd and the C1(R) function
F are of linear growth thanks to Lemma 2.A.1. This reasoning breaks down when
considering Sobolev spaces of higher order (as required in order to be able to implement
the Sobolev embedding theorem). Nontheless, one is able to recover (polynomial)
growth conditions in this setting, which will turn out to be sufficient to again control
Picard iterations in Zq,Wm,p(TN ).
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Lemma 2.3.11. (Abstract statement) Suppose all conditions of Lemma 2.3.5 are satis-
fied. Let X1, X2 be 2-smooth Banach spaces such that X1 ↪→ X the embedding operator
being the identity and suppose u0 ∈ Lq(Ω, X1) ∩ Lmq(Ω, X2) for some m > 1. Suppose
that B seen as an operator B : X1∩X2 → γ(U,Xi) is well defined for both i = 1, 2 and
satisfies the growth conditions

||B(u)||qγ(U,X1) 6 C(1 + ||u||qX1
+ ||u||mqX2

)

and
||B(u)||qγ(U,X2) 6 C(1 + ||u||qX2

)

for u ∈ X1 ∩X2. Suppose that F seen as an operator F : X1 ∩X2 → Xi is well defined
for both i = 1, 2 and satisfies the growth conditions

||F (u)||qX1
6 C(1 + ||u||qX1

+ ||u||mqX2
)

and
||F (u)||qX2

6 C(1 + ||u||qX2
)

for u ∈ X1 ∩X2. Suppose moreover that A|Xi generates a strongly continuous contrac-
tion semigroup (Sit)t ⊂ L(Xi) such that St|Xi = Sit for both i = 1, 2. Then the unique
mild solution u ∈ Zq,X of Lemma 2.3.5 lies in Zq,X1 ∩ Zmq,X2, and is a continuous in
time mild solution in Zq,X1.

Proof. Due to Lemma 2.3.5, there exists a unique continuous solution in Zq,X . Thanks
to the growth condition imposed, one can check that K maps the space Zq,X1 ∩Zmq,X2

onto itself, meaning the sequence of Picard iterations lies in Zq,X2 ∩ Zmq,X2 . Due to
the growth condition imposed on the Nemytskii operators, we obtain again a uniform
bound on this sequence of Picard iterations in both Zq,X1 and Zmq,X2 for T sufficiently
small. This means there exist a weak* convergent subsequence of Picard iterations
in Zq,X1 and a weak* convergent subsequence in Zmq,X2 . Due to the same reasoning
as in Lemma 2.3.8, both weak* limits need to coincide with the fixed point u ∈ Zq,X
obtained from the application of Lemma 2.3.5, i.e. the solution lies in Zq,X1 ∩ Zmq,X2 .
Exploiting Lemma 2.A.2 we deduce that u is a mild solution in Zq,X1 thanks to the
continuous embedding X1 ↪→ X. Continuity follows again from Theorem 2.2.1.

Lemma 2.3.12. (A Nemytskii operator type result for Wm,p(TN), [Hof13, Proposi-
tion 4.3]) Let U be a d-dimensional Hilbert space with orthonormal basis (ei)i 6 d. Let
B1, . . . , Bd ∈ Cm(TN×R) with bounded m-th derivative. Then the associated Nemytskii
operator

B : W 1,mp(TN) ∩Wm,p(TN)→ γ(U,Wm,p(TN))

z →

(
u→

d∑
i=1

Bi(·, z(·))〈u, ei〉

)
is well defined and satisfies the growth condition

||B(z)||γ(U,Wm,p(TN )) 6 C(1 + ||z||mW 1,mp(TN ) + ||z||Wm,p(TN ))
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for all p > 2. Suppose F ∈ Cm(R) is of bounded m-th derivative. Then the associated
Nemytskii operator

F : W 1,mp(TN) ∩Wm,p(TN)→ Wm,p(TN)

u→ F (u)

is well defined and satisfies the growth condition

||F (u)||Wm,p(TN ) 6 C
(

1 + ||u||Wm,p(TN ) + ||u||mW 1,mp(TN )

)
Remark 2.3.13. The preceding Lemma 2.3.11 whose proof is essentially based on
Lemma 2.A.1 conveys the reason why one has to leave the Hilbert space framework
of stochastic integration and rather work in the setting of stochastic integration with
values in 2-smooth Banach spaces: Since one needs to control norms in W 1,mp(TN) and
Wm,p(TN) one leaves the Hilbert space setting p = 2 as soon as one intends to consider
orders higher than m = 1. Note moreover that the preceding Lemma implies Lemma
2.3.9.

Combing the results of this subsection, we conclude that under the conditions of
Theorem 2.2.5 there exists a unique mild solution u ∈ Zq,Wm,p(TN )∩Zmq,W 1,mp(TN ) to the
problem (2.2.1). The bound stated in Theorem 2.2.5 follows again from weak-*-lower
semicontinuity of the norms. In particular, by the Sobolev embedding theorem, this
implies also that u is a strong solution for m > 3.

Remark 2.3.14. Note that while the abstract existence and uniqueness statements
of this section are formulated for general U-cylindrical Brownian motion, i.e. hold
in the infinite dimensional setting, Lemmas 2.3.6, 2.3.9, 2.3.12 concerning Nemytskii
operator results crucially rely on U being finite dimensional.

2.4 The critical equation δ1 = 1

We wish to study the critical problem3{
dut = (∆− 1)utdt+ µ(−∆ + 1)1/2

∑d
i=1Bi(ut)dβ

i
t

u(0) = u0

(2.4.1)

which we will also occasionally write more compactly as{
dut = (∆− 1)utdt+ µ(−∆ + 1)1/2B(ut)dWt

u(0) = u0.

Towards this end, we pass by the corresponding sequence of subcritical problems in
the following sense: For δ ∈ [0, 1), q > 2/(1− δ) and p > 2, let uδ be the unique mild
solution to {

duδt = (∆− 1)uδtdt+ µ(−∆ + 1)δ/2
∑d

i=1Bi(u
δ
t )dβ

i
t

uδ(0) = u0

3For easier reading, we suppress the additional nonlinear drift.
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in Zq,W 1,p(TN ) where µ ∈ R and B1, . . . , Bd ∈ C1(TN) have bounded derivative satisfying
the growth condition stated in Theorem 2.2.5. In particular (uδ)δ∈[0,1) ⊂ L2(Ω ×
[0, T ],W 1,2(TN)). We show that for µ sufficiently small, (uδ)δ∈[0,1) is uniformly bounded
in this space. Together with a second uniform bound in a space of higher time and
lower space regularity, this allows us to apply the stochastic compactness method due
to Flandoli and Ga̧tarek (refer to [FG95] for the original article and the lecture notes
[Hof16] for a pedagogical introduction). Upon the establishment of uniform bounds in
the aforementioned spaces, one is able to establish tightness of the laws of (uδ)δ∈[0,1),
which in combination with Prokhorov’s theorem and the Skorokhod representation
theorem permits to conclude the existence of a martingale solution in the following
sense.

Definition 2.4.1. We say the problem (2.4.1) admits a martingale solution if there
exists a filtered probability space (Ω′,F ′, (F ′t)t,P′), a d-dimensional (F ′t)t Brownian
motion W ′ and a progressively measurable process u : Ω′ × [0, T ] → L2(TN) such that
for some α > 0 we have P′-almost surely

u ∈ C([0, T ], H−α(TN)) ∩ L2([0, T ],W 1,2(TN))

as well as for any ϕ ∈ Hα(TN)

〈ut, ϕ〉 = 〈u0, ϕ〉+

∫ t

0

〈(∆− 1)us, ϕ〉ds+ µ

∫ t

0

〈(−∆ + 1)1/2B(us), ϕ〉dW ′
s.

2.4.1 A first a priori bound

Lemma 2.4.2. There exists µ0 ∈ R such that for all µ2 < µ2
0, the family (uδ)δ∈[0,1) is

uniformly bounded in L2(Ω× [0, T ],W 1,2(TN)) and in Lp(Ω× [0, T ], L2(TN)) for p > 2,
meaning

E
[∫ T

0

∥∥uδs∥∥2

W 1,2(TN )
ds

]
<∞

and

E
[∫ T

0

∥∥uδs∥∥pL2(TN )
ds

]
<∞

uniformly in δ ∈ [0, 1).

Proof. By Theorem 2.2.5, solutions uδ take values in Zq,W 1,2(TN ) for q > 2/(1− δ). We
apply Itô’s formula in the Hilbert space L2(TN) to the functional F (u) := ‖u‖pL2(Tn)

for p > 2. Note that

F ′(u) = p ‖u‖p−2
L2(TN )

, F ′′(u) = p(p− 1) ‖u‖p−2
L2(TN )

Id.

We therefore obtain

||uδt ||
p
L2(TN )

= ||u0||pL2(TN )
− p

∫ t

0

∥∥uδs∥∥p−2

L2(TN )

∫
TN

(|uδs|2 + |∇uδs|2)dxds+Mt

+ µ2p(p− 1)

2

d∑
i=1

∫ t

0

∥∥uδs∥∥p−2

L2(TN )

∫
TN
|(−∆ + 1)δ/2Bi(u

δ
s)|2dxds,

(2.4.2)
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where

Mt = µp
d∑
i=1

∫ t

0

∥∥uδs∥∥p−2

L2(TN )

∫
TN
uδs · (−∆ + 1)δ/2Bi(u

δ
s)dxdβ

i
s.

Note also that by∣∣∣∣∫
TN
uδs · (−∆ + 1)δ/2Bi(u

δ
s)dx

∣∣∣∣ 6 ∥∥uδs∥∥L2(TN )

∥∥B(uδ)
∥∥
H1(TN )

6 C
∥∥uδs∥∥L2(TN )

(1 +
∥∥uδs∥∥H1(TN )

)

and the fact that uδ ∈ Lq(Ω × [0, T ],W 1,2(TN)), we conclude that indeed M is a
martingale. Hence, taking expectations in (2.4.2), we obtain

E[||uδt ||
p
L2(TN )

] = E[||u0||pL2(TN )
]− pE

[∫ t

0

∥∥uδs∥∥p−2

L2(TN )

∫
TN

(|uδs|2 + |∇uδs|2)dxds

]
+ µ2p(p− 1)

2

d∑
i=1

E
[∫ t

0

∥∥uδs∥∥p−2

L2(TN )

∫
TN
|(−∆ + 1)δ/2Bi(u

δ
s)|2dxds

]
.

Observe that by a similar reasoning as above, we have∣∣∣∣∫
TN
|(−∆ + 1)δ/2Bi(u

δ
s)|2dx

∣∣∣∣ 6 Ci(1 +
∥∥uδs∥∥2

H1(TN )
)

and therefore

E[||uδt ||
p
L2(TN )

] 6 E[||u0||pL2(TN )
]− pE

[∫ t

0

∥∥uδs∥∥p−2

L2(TN )

∫
TN

(|uδs|2 + |∇uδs|2)dxds

]
+ Cµ2p(p− 1)

2
E
[∫ t

0

∥∥uδs∥∥p−2

L2(TN )

(
1 +

∫
TN
|(|uδs|2 + |∇uδs|2)dx

)
ds

]
6 E[||u0||pL2(TN )

]− pE
[∫ t

0

∥∥uδs∥∥p−2

L2(TN )

∫
TN

(|uδs|2 + |∇uδs|2)dxds

]
+ Cµ2p(p− 1)

2
E
[∫ t

0

∥∥uδs∥∥p−2

L2(TN )

∫
TN
|(|uδs|2 + |∇uδs|2)dxds

]
where we exploited the embedding Lp+ε(Ω× [0, T ]) ↪→ Lp+ε(Ω× [0, T ]) for any ε > 0.
Hence, we may conclude that indeed, for µ sufficiently small, we have

E[

∫ T

0

∥∥uδt∥∥pL2(TN )
dt] =

∫ T

0

E[||uδt ||
p
L2(TN )

]dt 6 TE[||u0||pL2(TN )
]

Moreover, in the case p = 2, we have

E[||uδt ||2L2(TN )] 6 E[||u0||2L2(TN )]− 2E
[∫ t

0

∥∥uδs∥∥2

W 1,2(TN )
ds

]
+ Cµ2E

[∫ t

0

∥∥uδs∥∥2

W 1,2(TN )
ds

]
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meaning that we also have for µ sufficiently small

E
[∫ T

0

∥∥uδs∥∥2

W 1,2(TN )
ds

]
6

1

2− Cµ2
E[||u0||2L2(TN )].

2.4.2 A second a priori bound

We begin by recalling the following Lemma due to [FG95].

Lemma 2.4.3 ([FG95, Lemma 2.1]). Let p > 2, α < 1/2. Let U,H be separable Hilbert
spaces and W a U-cylindrical Brownian motion. Then for any progressively measurable
process

f ∈ Lp(Ω× [0, T ], L2(U,H))

it holds that

I(f) :=

∫ (·)

0

fsdWs ∈ Lp(Ω,Wα,p([0, T ], H))

and there exists a constant C = C(α, p) > 0 independent of f such that

E
[
‖I(f)‖pWα,p([0,T ],H)

]
6 CE

[∫ T

0

‖fs‖pL2(U,H) ds

]
.

While we can not apply this Lemma in the above context for H = L2(TN) due to
the unbounded operator in front of the diffusion term, we can still obtain a bound in a
suitable Bessel potential space of distributions, which will turn out to be sufficient for
the stochastic compactness method.

Lemma 2.4.4. Let u ∈ Lp(Ω × [0, T ], L2(TN)) be a progressively measurable process.
Let α ∈ (0, 1/2) and p > 2. Then for B1, . . . , Bd ∈ C1(TN) having bounded derivatives,
we have that

I(u) :=

∫ (·)

0

(−∆ + 1)δ/2
d∑
i=1

Bi(us)dβ
i
s ∈ Lp(Ω,Wα,p([0, T ], H−1(TN)))

and moreover

E
[
‖I(u)‖2

Wα,p([0,T ],H−1(TN ))

]
6 C

(
1 + E

[∫ T

0

‖us‖pL2(TN )
ds

])

Proof. We consider as above for U = Rd the Nemytskii operator

B : L2(TN)→ L2(U,L2(TN))

z →

(
u→

d∑
i=1

Bi(z)〈u, ei〉

)
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that as we know from Lemma 2.3.6 is of linear growth. We then have by the above
Lemma 2.4.3 that

E
[
‖I(u)‖p

Wα,p([0,T ],H−1(TN ))

]
6 CE[

∫ T

0

∥∥(−∆ + 1)δ/2B(us)
∥∥p
L2(U,H−1(TN ))

ds]

6 CE[

∫ T

0

‖B(us)‖pL2(U,L2(TN ))
ds]

6 C

(
1 + E[

∫ T

0

‖us‖pL2(TN )
ds]

)
.

In combination with the first a priori bound of Lemma 2.4.2, this permits the
derivation of a second one.

Lemma 2.4.5. For p > 2 and α ∈ (0, 1/2) the family (uδ)δ∈[0,1) is uniformly bounded
in Lp(Ω,Wα,p([0, T ], H−1(TN))).

Proof. As uδ is strong solution to

uδt = u0 +

∫ t

0

(−∆ + 1)uδsds+ µ

∫ t

0

(−∆ + 1)δ/2
d∑
i=1

Bi(u
δ
s)dβ

i
s

we need to bound the two time dependent terms on the right hand side. It is immediate
that

E

∥∥∥∥∥
∫ (·)

0

(−∆ + 1)uδsds

∥∥∥∥∥
p

W 1,2([0,T ],H−1(TN ))

 6 CE
[∥∥uδ∥∥2

L2([0,T ],H1(TN ))

]
<∞.

Moreover, by Lemma 2.4.4

E

∥∥∥∥∥
∫ (·)

0

(−∆ + 1)δ/2
d∑
i=1

Bi(u
δ
s)dβ

i
s

∥∥∥∥∥
p

Wα,p([0,T ],H−1(TN )


6 C

(
1 + E[

∫ T

0

∥∥uδ∥∥p
L2(TN )

]

)
<∞.

By the embedding for Sobolev-Slobodeckij spaces W 1,2 ↪→ Wα,p which holds for any
α ∈ (0, 1/2) and p ∈ [1,∞), this shows overall that indeed,

E
[∥∥uδ∥∥p

Wα,p([0,T ],H−1(TN ))

]
<∞.
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2.4.3 Tightness

We next show that the laws of (uδ)δ are tight in L2([0, T ]×TN)∩C([0, T ], H−(1+ε)(TN))
for any ε > 0. In order to do so, we use the following result originally due to [Sim86],
which is central to the argument in [FG95].

Theorem 2.4.6. Let B0, B,B1 be Banach spaces satisfying the following embedding
property

B0 ↪→↪→ B ↪→ B1,

where by B0 ↪→↪→ B we understand that the embedding B0 ↪→ B is compact. Then for
p ∈ (1,∞) and α ∈ (0, 1), one has the following compact embedding

Lp([0, T ], B0) ∩Wα,p([0, T ], B1) ↪→↪→ Lp([0, T ], B).

Suppose moreover that
αp > 1,

then we also have the compact embedding

Wα,p([0, T ], B0) ↪→↪→ C([0, T ], B).

Lemma 2.4.7. The laws of (uδ)δ∈[0,1) are tight in L2([0, T ]×TN)∩C([0, T ], H−(1+ε)(TN))
for any ε > 0.

Proof. Note that with B0 = W 1,p(TN), B = L2(TN) and B1 = H−1(TN), we can apply
the previous Theorem 2.4.6 to conclude that we have the compact embedding

Y := L2([0, T ],W 1,2(TN)) ∩Wα,2([0, T ], H−1(TN)) ↪→↪→ L2([0, T ]× TN).

We conclude that for any R > 0, we set

BR := {u ∈ Y | ‖u‖L2([0,T ],W 1,2(TN )) + ‖u‖Wα,2([0,T ],H−1(TN )) 6 R}

is compact in L2([0, T ]× TN). Hence by Markov’s inequality and the a priori bounds
established in Lemmas 2.4.2 and 2.4.5 we obtain

P(uδ ∈ Bc
R) 6 P(

∥∥uδ∥∥
L2([0,T ],W 1,2(TN ))

> R/2)

+ P(
∥∥uδ∥∥

Wα,2([0,T ],H−1(TN ))
> R/2)

6
4

R2
E
[∥∥uδ∥∥2

L2([0,T ],W 1,2(TN ))
+
∥∥uδ∥∥2

Wα,2([0,T ],H−1(TN ))

]
6

4C

R2

from which we conclude that (uδ)δ∈[0,1) is tight in L2([0, T ]×TN). Moreover, notice that
due to the second compact embedding stated in the previous Theorem 2.4.6, we also
obtain similarly tightness in C([0, T ], H−(1+ε)(TN)) for any ε > 0 due to the established
a priori bound of Lemma 2.4.5.
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2.4.4 Prokhorov, Skorokhod and Martingale representation
theorem

Consider the sequence (uδ)δ∈[0,1)∩Q. By Prokhorov’s theorem, we can find a subse-
quence we shall also note (uδ)δ∈[0,1)∩Q whose laws converge weakly in L2([0, T ]×TN)∩
C([0, T ], H−(1+ε)(TN)). By Skorokhod’s representation theorem, we then find a stochas-

tic basis (Ω̃, F̃ , (F̃t)t, P̃) as well as random variables ũ, (ũδ)δ on this stochastic basis

taking values in L2([0, T ]× TN) ∩ C([0, T ], H−(1+ε)(TN)) such that P̃-almost surely

ũδ → ũ in L2([0, T ]× TN) ∩ C([0, T ], H−(1+ε)(TN)),

as δ → 1. Note moreover that

Ẽ
[∫ T

0

∥∥∥ũsδ∥∥∥2

W 1,2(TN )
ds

]
= E

[∫ T

0

∥∥uδs∥∥2

W 1,2(TN )
ds

]
<∞,

and thus in particular ũ ∈ L2(Ω× [0, T ],W 1,2(TN)) and ũδ ⇀ ũ in L2([0, T ],W 1,2(TN)),

P̃-almost surely and also in L2(Ω) due to Vitali’s convergence theorem. In particular,
by definition for any ϕ ∈ H1(TN) and t 6 T we have∫ t

0

〈(−∆ + 1)ũδs, ϕ〉L2(TN )ds→
∫ t

0

〈(−∆ + 1)ũs, ϕ〉L2(TN )ds (2.4.3)

in L2(Ω). Let us now define the sequence of L2(TN) valued (Ft)t-martingales (M δ)δ∈[0,1)∩Q
via

M δ
t : = (−∆ + 1)−(1+ε)/2

(
uδt − u0 −

∫ t

0

(∆− 1)uδsds

)
=

∫ t

0

µ(−∆ + 1)(δ−1−ε)/2B(uδs)dWs.

Since L(uδ) = L(ũδ), it is easy to see that

M̃ δ
t := (−∆ + 1)−(1+ε)/2

(
ũδt − u0 −

∫ t

0

(∆− 1)ũδsds

)
is a martingale with respect to the filtration (Gt)t, where Gt := σ({ũδs, s 6 t}), whose
quadratic variation is given by

〈M̃ δ〉t = µ2

∫ t

0

(
(−∆ + 1)(δ−1−ε)/2B(ũδs)

) (
(−∆ + 1)(δ−1−ε)/2B(ũδs)

)∗
ds.

Defining finally the process

M̃t := (−∆ + 1)−(1+ε)/2

(
ũt − u0 −

∫ t

0

(∆− 1)ũsds

)
,
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we need to show that it is a martingale with quadratic variation given by

〈M̃〉t = µ2

∫ t

0

(
(−∆ + 1)−(1+ε)/2B(ũs)

) (
(−∆ + 1)−(1+ε)/2B(ũs)

)∗
ds.

Indeed, we know that for any bounded continuous functional φ on L2([0, T ] × TN) ∩
C([0, T ], H−(1+ε)) and v, z ∈ H1+ε(TN) we have

E
[
〈M̃ δ

t − M̃ δ
s , v〉φ(ũδ|[0,s])

]
= 0

and due to (2.4.3), we can pass to the limit concluding that

E
[
〈M̃t − M̃s, v〉φ(ũ|[0,s])

]
= 0,

i.e. (M̃t)t is a martingale with respect to the filtration generated by the process (ũt)t.
Moreover, concerning its quadratic variation, note that

E
[(
〈M̃ δ

t , v〉〈M̃ δ
t , z〉 − 〈M̃ δ

s , v〉〈M̃ δ
s , z〉

)
φ(ũδ|[0,s])

]
=E
[(∫ t

s

d∑
i=1

〈(−∆ + 1)(δ−1−ε)/2Bi(ũ
δ
r), v〉〈(−∆ + 1)(δ−1−ε)/2Bi(ũ

δ
r), z〉dr

)
φ(ũδ|[0,s])

]
µ2.

Since the family of operators

u→ (−∆ + 1)(δ−1−ε)/2Bi(u)

for δ ∈ [0, 1) is uniformly continuous on L2(TN) and ũδ → ũ in L2([0, T ]×TN) P̃-almost
surely and in L2(Ω) due to Vitali’s convergence theorem, we can again pass to the limit
δ ↗ 1 obtaining

E
[(
〈M̃t, v〉〈M̃t, z〉 − 〈M̃s, v〉〈M̃s, z〉

)
φ(ũ|[0,s])

]
= E[µ2

(∫ t

s

d∑
i=1

〈(−∆ + 1)−ε/2Bi(ũr), v〉〈(−∆ + 1)−ε/2Bi(ũr), z〉dr

)
φ(ũ|[0,s])],

meaning that indeed

〈M̃〉t =

∫ t

0

(
(−∆ + 1)−(1+ε)/2B(ũs)

) (
(−∆ + 1)−(1+ε)/2B(ũs)

)∗
ds.

Similar to section 8.4 in [DPZ14], we can then use the martingale representa-
tion theorem 8.2 in [DPZ14] to conclude the existence of a filtered probability space
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(Ω′,F ′, (F ′t)t,P′), a d-dimensional (F ′t)t-Brownian motion W ′ and a predictable process
(u′t)t taking values in L2([0, T ]× TN) ∩ C([0, T ], H−(1+ε)(TN)) such that

(−∆ + 1)−(1+ε)/2u′t = (−∆ + 1)−(1+ε)/2u0

+ (−∆ + 1)−(1+ε)/2

∫ t

0

(∆− 1)u′sds

+ µ(−∆ + 1)−(1+ε)/2

∫ t

0

(−∆ + 1)1/2B(u′s)dW
′
s,

or in other words for any ϕ ∈ H1+ε(TN), we have

〈u′t, ϕ〉 = 〈u0, ϕ〉+

〈∫ t

0

(∆− 1)u′sds, ϕ

〉
+

〈∫ t

0

µ(−∆ + 1)1/2B(u′s)dW
′
s, ϕ

〉
,

meaning we have indeed a martingale solution.

Example 2.4.8. As an example one can consider the problem{
dut = (∆− 1)utdt+ µ

∑d
i=1 div(Bi(ut))dβ

i
t

u(0) = u0

(2.4.4)

for B1, . . . , Bd ∈ C1(R,RN) with bounded derivative which can be seen as{
dut = (∆− 1)utdt+ µ(−∆ + 1)1/2

∑d
i=1(−∆ + 1)−1/2div(Bi(ut))dβ

i
t

u(0) = u0.

Having in mind the abstract results in the proof of Theorem 2.2.5, one has to consider
the Nemytskii operators

B0 : Lp(TN)→ γ(U,Lp(TN))

z →

(
u→

d∑
i=1

(−∆ + 1)−1/2div(Bi(z))〈u, ei〉

)
and

B1 : W 1,p(TN)→ γ(U,W 1,p(TN))

z →

(
u→

d∑
i=1

(−∆ + 1)−1/2div(Bi(z))〈u, ei〉

)
.

After showing that B0 is Lipschitz and B1 admits a growth condition in the above
setting, one can for each δ < 1 construct a unique mild solution uδ ∈ Zq,W 1,p(TN ) to the
regularized problem{

duδt = (∆− 1)uδtdt+ µ(−∆ + 1)δ/2
∑d

i=1(−∆ + 1)−1/2divBi(u
δ
t )dW

i
t

uδ(0) = u0.

Provided µ is sufficiently small, one can exploit the reasoning of this section to deduce
the existence of a martingale solution to the problem (2.4.4).
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Remark 2.4.9. Existence of weak solutions in the linear setting of this example i.e.
(Bi)i 6 d linear is classical, see Example 7.22 in [DPZ14] or section three in [KR81].
In this light, the present subsection provides an alternative approximation scheme to
Yosida approximations used in [DPZ14] and Galerkin approximations employed in
[KR81], capable of treating non-linear diffusion coefficients in this setting.

2.A Appendix

Lemma 2.A.1. Let G ∈ Cm(TN × R) and F ∈ Cm(R) have bounded derivative and
such that F (0) = 0. Then for all p > 1 and h ∈ Wm,p(TN) ∩W 1,mp(TN) one has

||G(·, h(·))||Wm,p(TN ) 6 C(1 + ||h||mW 1,mp(TN ) + ||h||Wm,p(TN ))

and
||F (h)||Wm,p(TN ) 6 C(||h||mW 1,mp(TN ) + ||h||Wm,p(TN )).

(refer to [Hof13] and the references therein).

On stochastic integrals in different Banach spaces

Note that the stochastic integral in a Banach space X is defined as a certain limit in
the Bochner space L2(Ω;X), i.e. it depends in particular on the topology induced by
the norm on X. To underline this fact, introduce for ψ ∈ L2(Ω × [0, T ]; γ(U,X)) the
notation

(X

∫ T

0

)ψ(t)dWt ∈ L2(Ω;X)

Heuristically speaking, one should expect the stochastic integral not to change if one
looks at it in a ”larger” Banach space. A bit more formally, for X ↪→ Y , one would
expect

(X

∫ T

0

)ψ(t)dWt = (Y

∫ T

0

)ψ(t)dWt.

The following Lemma formalizes this consideration.

Lemma 2.A.2. (Banach space consistency of stochastic integration) Let X, Y be 2-
smooth Banach spaces such that X ↪→ Y , where the embedding operator is the iden-
tity operator. Suppose that ψ ∈ L2(Ω × [0, T ]; γ(U,X)). Then one has ψ ∈ L2(Ω ×
[0, T ]; γ(U, Y )) and thus the stochastic integral

(Y

∫ T

0

)ψ(t)dWt ∈ L2(Ω;Y )

is well defined. Moreover this Y -stochastic integral also lies in L2(Ω;X) and one has

(X

∫ T

0

)ψ(t)dWt = (Y

∫ T

0

)ψ(t)dWt in L2(Ω;X)
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Proof. Note that by the continuous embedding X ↪→ Y we have γ(U,X) ↪→ γ(U, Y )
and therefore also L2(Ω× [0, T ]; γ(U,X)) ↪→ L2(Ω× [0, T ]; γ(U, Y )), i.e. in particular
ψ ∈ L2(Ω× [0, T ]; γ(U, Y )).

For the second part of the Lemma, note that stochastic integrals are defined as L2

limits of stochastic integrals over approximating elementary processes. On the level of
elementary processes, the norms of X and Y do not come into play and the canon-
ical definitions of stochastic integrals with respect to elementary processes coincide
therefore in L2(Ω, X) and L2(Ω, Y ) as the spaces of reference in which the stochastic
integrals live.

Let (ψn)n be a sequence of elementary processes approximating ψ ∈ L2(Ω ×
[0, T ]; γ(U ;X)), i.e. one has

E
[∫ T

0

||ψ(t)− ψn(t)||2γ(U,X)ds

]
→ 0

Due to the demonstrated embedding result one also has (ψn)n ⊂ L2(Ω×[0, T ]; γ(U ;Y ))
and moreover, for the same reason

E
[∫ T

0

||ψ(t)− ψn(t)||2γ(U,Y )dt

]
6 CE

[∫ T

0

||ψ(t)− ψn(t)||2γ(U,X)dt

]
→ 0.

Hence, any sequence of elementary processes (ψn)n approximating ψ in the space
L2(Ω × [0, T ]; γ(U ;X)) also approximates ψ in L2(Ω × [0, T ]; γ(U ;Y )). Moreover, by
Itô’s inequality applied in the Banach space Y one has

E
[
||
∫ T

0

ψn(t)dWs −
∫ T

0

ψm(t)dWs||2Y
]
6 E

[∫ T

0

||ψn(t)− ψm(t)||2γ(U,Y )ds

]
→ 0

The sequence (∫ t

0

ψn(t)dWs

)
n > 1

is therefore Cauchy in L2(Ω, Y ). By definition, the stochastic integral IY := (Y
∫ T

0
)ψ(t)dWt

is the L2(Ω;Y ) limit of the above sequence. Note however that

E
[
||(X

∫ T

0

)ψ(t)dWs −
∫ T

0

ψn(t)dWs||2Y
]

6 E
[
||(X

∫ T

0

)ψ(t)dWs −
∫ T

0

ψn(t)dWs||2X
]
→ 0

since (ψn)n is a sequence of elementary processes used to define the stochastic integral
in the Banach space X. By the uniqueness of limits, one concludes therefore

(X

∫ T

0

)ψ(t)dWs = (Y

∫ T

0

)ψ(t)dWs.



Chapter 3

A Law of Large Numbers for
interacting diffusions via a mild
formulation

We consider a system of n weakly interacting particles driven by independent Brownian
motions. In many instances, it is well known that the empirical measure converges to
the solution of a partial differential equation, usually called McKean-Vlasov or Fokker-
Planck equation, as n tends to infinity. We propose a relatively new approach to show
this convergence by directly studying an equation that the empirical measure satisfies
for each fixed n. Under a suitable control on the noise term, which appears in said
equation due to the finiteness of the system, we are able to prove that the stochas-
tic perturbation goes to zero, showing that the limiting measure is a solution to the
classical McKean-Vlasov equation. In contrast with known results, we do not require
any independence or finite moment assumption on the initial condition, but only weak
convergence. The evolution of the empirical measure is studied in a suitable class of
Hilbert spaces where the noise term is controlled using two distinct but complementary
techniques: rough paths theory and maximal inequalities for self-normalized processes.

This chapter is based on the joint work [BC20] with Fabio Coppini.
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3.1 Introduction

The theory of weakly interacting particle systems has received great attention in the
last fifty years. On the one hand, its mathematical tractability has allowed to obtain
a deep understanding of the behavior of the empirical measure for such systems: law
of large numbers [Oel84, CDFM20], fluctuations and central limit theorems [Tan84,
FM97], large deviations [FK06, Gä88] and propagation of chaos properties [Szn91] are
by now established. On the other hand, the theory of weakly interacting particles
enters in several areas of applied mathematics such as mean-field games or finance
models [CDLL19], making it an area of active research.

Depending on the context of application, several results are available. The class of
mean-field systems under the name of weakly interacting particles is rather large and
models may substantially vary from one another depending on the regularity of the
coefficients or the noise. This richness in models is reflected in a variety of different
techniques implemented in their study (see e.g. [CDFM20, Oel84, Szn91] for three very
different approaches).

If one focuses on models where the interaction function is regular enough, e.g.
bounded and globally Lipschitz, one of the aspects that has not been completely inves-
tigated so far, concerns the initial condition. To the authors’ knowledge, most of known
results require a finite moment condition in order to prove tightness properties of the
general sequence (e.g. [Gä88]) or to apply a fixed-point argument in a suitable topolog-
ical space (e.g. [CDFM20]). The only exceptions are given by [Szn91, Tan84], although
they require independent and identically distributed (IID) initial conditions. We want
to point out that existence of a solution to the limiting system, a non-linear partial
differential equation (PDE) known as Fokker-Planck or McKean-Vlasov equation, does
not require any finite moment condition on the initial measure, see e.g. [Szn91, Theo-
rem 1.1]. Furthermore, whenever the particle system is deterministic, there is no need
to assume independence (or any finite moment) for this same convergence, see, e.g.,
[Dob79, Neu84].

We present a result in the spirit of a law of large numbers, without requiring any
assumption on the initial conditions but the convergence of the associated empirical
measure. Our main idea consists in exploiting a mild formulation associated to a
stochastic equation satisfied by the empirical measure for a fixed (finite!) population.
The main difficulty is giving a meaning to the noise term appearing in such formulation:
exploiting the regularizing properties of the semigroup generated by the Laplacian in
two different ways, using rough paths theory and maximal inequalities for self normal-
ized processes respectively, we are able to adequately control it. By taking the limit
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for the size of the population which tends to infinity, the stochastic term vanishes and
the limiting measure satisfies the well-known McKean-Vlasov equation.

Organization

The chapter is organized as follows. In the rest of this section we present the model,
known results and introduce the set-up in which the evolution of the empirical measure
is studied along with notation used.

In Section 2 we give the definition of our notion of solution as well as a corresponding
uniqueness statement. The law of large numbers, Theorem 3.2.3, is presented right
after; the section ends with a discussion, a comparison with the existing literature and
the strategy of the proof.

The noise perturbation mentioned in the introduction is tackled in Section 3 where
rough paths techniques and maximal inequalities for self-normalized processes are ex-
ploited. The proof of Theorem 3.2.3 is given at the end of this section.

Appendix A recalls general properties of analytic semigroups; Appendix B provides
an extension of Gubinelli’s theory of rough integration to our setting.

3.1.1 The model and known results

Consider
(
Ω,F , (Ft)t > 0 ,P

)
a filtered probability space, the filtration satisfying the

usual conditions. Fix d ∈ N, let (Bi)i∈N be a sequence of IID Rd-valued Brownian
motions adapted to the filtration (Ft)t > 0.

Fix n ∈ N and T > 0 a finite time horizon. Let Γ : Rd × Rd → Rd be a bounded
function that is Lipschitz in each argument uniformly in the second. Let (xi,n)1 6 i 6 n

be the unique strong solution1 to{
dxi,nt = 1

n

∑n
j=1 Γ(xi,nt , x

j,n
t )dt+ dBi

t,

xi,n0 = xi0,
(3.1.1)

for t ∈ [0, T ] and i = 1, . . . , n. The initial conditions are denoted by the sequence
(xi0)i∈N ⊂ Rd, whenever they are random they are taken independent of the Brownian
motions.

The main quantity of interest in system (3.1.1) is the empirical measure νn =
(νnt )t∈[0,T ], a random variable with values on the space of probability measures. It is
defined for t ∈ [0, T ] by

νnt :=
1

n

n∑
j=1

δxj,nt
. (3.1.2)

Observe that νn is apriori a probability measure on the continuous trajectories with
values in Rd, i.e. νn ∈ P(C([0, T ],Rd)), however in many instances we rather consider
its projection (νnt )t∈[0,T ] ∈ C([0, T ],P(Rd)) as continuous function over the probability

1For the classical existence and uniqueness result, refer to [Szn91, Chapter I, Theorem 1.1] for
example.
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measures on Rd. This last object does not carry the information of the time dependen-
cies between time marginals, but is in our case more suitable when studying (3.1.1) in
the limit for n which tends to infinity.

Known results

Fix an initial probability measure ν0 ∈ P(Rd). Whenever (xi0)i∈N are taken to be IID
random variables sampled from ν0, or ν0 has a finite moment and νn0 weakly converges
to it, it is well known (e.g. [Szn91, Theorem 1.4] and [CDFM20, Theorem 3.1]) that νn

converges (in a precise sense depending on the setting) to the solution of the following
PDE {

∂tνt = 1
2
∆νt − div[νt(Γ ∗ νt)],

ν t=0 = ν0,
(3.1.3)

for t ∈ [0, T ] and where ∗ denotes the integration with respect to the second argument,
i.e. for µ ∈ P(Rd)

(Γ ∗ µ)(x) =

∫
Rd

Γ(x, y)µ(dy), x ∈ Rd.

Equation (3.1.3) is usually called McKean-Vlasov or non-linear Fokker-Planck equation.

Remark 3.1.1. Observe that requiring IID initial conditions is not an innocent as-
sumption as they are, in particular, exchangeable, see [Szn91, §I.2] for more on this
perspective. From an applied viewpoint, independence is often a hypothesis that we do
not want to assume, see e.g. [DGL16, Example II].

A solution to (3.1.3) is linked to the following non-linear process:{
xt = x0 +

∫ t
0

∫
Rd Γ(xs, y) νs(dy)ds+Bt,

νt = Law (xt),
(3.1.4)

where B is a Brownian motion independent of (Bi)i∈N and x0. It is well-known that
ν = (νt)t∈[0,T ] is a solution to (3.1.3) if and only if the non-linear process (xt)t∈[0,T ] in
(3.1.4) exists and is such that Law (xt) = νt for every t ∈ [0, T ].

We have to following theorem.

Theorem 3.1.2 ([Szn91, Theorem 1.1]). Suppose Γ is bounded and Lipschitz and x0

is a random variable with law ν0 ∈ P(Rd). Then, system (3.1.4) has a unique solution
(xt)t∈[0,T ].

Moreover, if ν = (νt)t∈[0,T ] is the law of (xt)t∈[0,T ], then ν ∈ C([0, T ],P(Rd)) and it
solves the McKean-Vlasov equation (3.1.3) in the weak sense.
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3.1.2 Set-up and notations

Let Wm,p = Wm,p(Rd) be the standard Sobolev space with m ∈ N and p ∈ [1,∞).
Classical results as [AF03, Theorem 4.12] assure that

Wm,p
0 (Rd) = Wm,p(Rd) ⊂ Cb(Rd) whenever mp > d, (3.1.5)

where Cb(Rd) is the space of continuous bounded functions on Rd. The space Wm,p
0 (Rd)

is the closure of C∞0 (Rd), i.e., the space of smooth functions with compact support,
with respect to the norm

‖ϕ‖Wm,p :=

 ∑
0 6 |α| 6 m

∫
Rd
|∂αϕ(x)|p dx

p

, ϕ ∈ C∞0 (Rd),

where α = (α1, . . . , αd) with |α| = α1 + · · ·+ αd and ∂α = (∂x1)
α1 (∂x2)

α2 ...(∂xd)
αd .

Fix p = 2 and m > d/2, we consider the Hilbert space Hm := Wm,2(Rd), with
norm denoted by ‖·‖m and its dual space H−m := (Hm)∗ with the standard dual norm
defined by ‖µ‖−m := sup‖h‖m 6 1〈µ, h〉−m,m. The action of H−m on Hm is denoted by
〈·, ·〉−m,m. By duality, if follows from (3.1.5) that

P(Rd) ⊂ Cb(Rd)∗ ⊂ H−m.

We denote by (·, ·)m the scalar product in Hm and by 〈·, ·〉 the natural action of
a probability measure on test functions, i.e., for ν ∈ P(Rd) and a smooth function h,
we write 〈ν, h〉 =

∫
Rd h(x)ν(dx). We often abuse of notation denoting the density of a

probability measure by the probability measure itself.
Let ν ∈ P(Rd), and thus ν ∈ H−m, and let ν̃ ∈ Hm be its Riesz representative,

then we have for any h ∈ Hm

〈ν, h〉 = ν(h) = (ν̃, h)m = 〈ν, h〉−m,m

and therefore

|〈ν, h〉| 6 ‖ν‖−m ‖h‖m .

In particular

sup
‖h‖m 6 1

〈ν, h〉 = ‖ν‖−m .

If (µn)n∈N is a sequence of probability measures which weakly converges to some
µ ∈ P(Rd), we use the notation µn ⇀ µ. For weak convergence and weak-*-convergence
of a sequence (xn)n ⊂ X to some x ∈ X, X being a Banach space, we use the standard

notations xn ⇀ x and xn
∗
⇀ x respectively.

As introduced in [M8́2], we will use ‖·‖−m as distance between probability measures
and our results will be expressed with respect to this topology.

The various constants in the chapter will always be denoted by C or Cα to emphasize
the dependence on some parameter α. Their value may change from line to line.
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3.2 Main result

Before stating the main result, we give the definition of weak-mild solutions to (3.1.3)
in the Hilbert space Hm. We denote by S = (St)t∈[0,T ] the analytic semigroup generated
by the Laplacian operator ∆

2
on Hm. We refer to Appendix A for general properties of

S.

Definition 3.2.1 (m-weak-mild solutions to McKean-Vlasov PDEs). Let ν0 be an
element in H−m. We call ν ∈ L∞([0, T ], H−m) an m-weak-mild solution to the problem
(3.1.3), if for every h ∈ Hm and t ∈ [0, T ], it holds

〈νt, h〉−m,m = 〈ν0, Sth〉−m,m +

∫ t

0

〈νs, (∇St−sh)(Γ ∗ νs)〉−m,mds. (3.2.1)

If Γ is sufficiently regular, uniqueness can be readily established by using a classical
argument. This is illustrated in the next proposition.

Proposition 3.2.2 (Uniqueness). Suppose that Γ(·x, ·y) ∈ Hm
y W

m,∞
x , i.e.,

‖Γ(·x, ·y)‖Hm
y W

m,∞
x

= max
|β| 6 m

∥∥∥∥∥∥
∑
|α| 6 m

∫
Rd

(
∂βx∂

α
y Γ(x, y)

)2
dy

∥∥∥∥∥∥
L∞x

<∞. (3.2.2)

Then, m-weak mild solutions to (3.1.3) are unique.

Proof. Suppose ν, ρ ∈ L∞([0, T ], H−m) are two m-weak mild solutions. Then, taking
the difference between the two equations (3.2.1), one obtains that for every h ∈ Hm

〈νt − ρt, h〉−m,m =

∫ t

0

〈νs − ρs, (∇St−sh)(Γ ∗ νs)〉−m,mds

+

∫ t

0

〈ρs, (∇St−sh)(Γ ∗ (νs − ρs))〉−m,mds.

In particular,

‖νt − ρt‖−m 6
∫ t

0

‖νs − ρs‖−m sup
‖h‖m 6 1

‖(∇St−sh)(Γ ∗ νs)‖m ds

+

∫ t

0

‖ρs‖−m sup
‖h‖m 6 1

‖(∇St−sh)(Γ ∗ (νs − ρs))‖m ds.

Observe that, for µ ∈ H−m it holds that

‖(∇St−sh)(Γ ∗ µ)‖m 6 ‖∇St−sh‖m ‖Γ ∗ µ‖Wm,∞

6
C√
t− s

‖h‖m ‖µ‖−m ‖Γ(·x, ·y)‖Hm
y W

m,∞
x

,
(3.2.3)
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where we have used the properties of the semigroup (see Lemma 3.A.1). Using the con-
tinuous embedding of P(Rd) into H−m, we conclude that there exists a (new) constant
C > 0:

‖νt − ρt‖−m 6 C ‖Γ(·x, ·y)‖Hm
y W

m,∞
x

∫ t

0

1√
t− s

‖νs − ρs‖−m ds.

A Gronwall-like lemma yields the proof.

We are ready to state the main result.

Theorem 3.2.3. Assume m > d/2 + 3 and Γ(·x, ·y) ∈ Hm
y W

m,∞
x . If ν0 ∈ H−m, then

there exists ν ∈ L∞([0, T ], H−m), unique m-weak-mild solution to (3.2.1). Suppose that
the initial empirical measure associated to the particle system (3.1.1) is such that

νn0 ⇀ ν0 in H−m

in probability. Then, the empirical measure νn of (3.1.1) satisfies

νn
∗
⇀ ν in L∞([0, T ], H−m)

in probability.
Moreover, if ν0 ∈ P(Rd), then ν is the unique weak solution of the McKean-Vlasov

equation (3.1.3) and, in particular, ν ∈ C([0, T ],P(Rd)).

3.2.1 Discussion

Theorem 3.2.3 shows a law of large numbers in L∞([0, T ], H−m) by directly studying
the evolution of the empirical measure. Contrary to most of the existing proofs in the
literature, it does not establish any trajectorial estimates on system (3.1.1) and does
not invoke propagation of chaos techniques, as, e.g., in [MM13, Szn91]. This allows to
deal with very general initial data: the weak convergence of (νn0 )n∈N in H−m – which
is implied by the weak convergence in P(Rd) – suffices.

Working in H−m for m > d/2 assures a bound on ‖ν‖−m which is uniform in ν ∈
P(Rd) thanks to the continuous embedding of P(Rd) in H−m and the duality properties
of probability measures, see Lemma 3.A.3. By exploiting the equation satisfied by νn,
we are able to establish a compactness property for (νn)n∈N, usually hard to obtain
in P(Rd), and which represents our main tool for obtaining the existence both of the
limit solution and of a convergent subsequence.

Weak-mild solutions make sense for any m > d/2, yet we have to require the
stronger condition m > d/2 + 3 in order to give a pathwise meaning to the stochastic
term present in the dynamics. This implies that Γ is C3. In this last case, it is already
known that a weak solution to the McKean-Vlasov equation (3.1.3) exists for any initial
probability measure ν0. Since weak solutions are weak-mild solutions, as we will show
in the sequel, a byproduct of our main result is the uniqueness of (weak) solutions to
equation (3.1.3).
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The particle system (3.1.1) represents an interaction setting where no transport is
present in the dynamics. We have decided not to include other terms so as to keep
the underlying ideas and techniques as clear as possible. However, all our arguments
readily extend to the more general case of interacting particles given by

dxi,nt = F (xi,nt )dt+
1

n

n∑
j=1

Γ(xi,nt , x
j,n
t )dt+ dBi

t, (3.2.4)

provided that F ∈ Hm.

Finally, we point out that the need of rather high regularity in Γ (and F ) is an
intrinsic requirement of rough paths theory and not of the particular class of models
we are working with. In particular, proving Theorem 3.2.3 independently of rough
paths arguments would likely yield less restrictive regularity constraints on Γ. On the
other hand, rough paths theory allows to give a pathwise definition of the stochastic
partial differential equation satisfied by the empirical measure. Such viewpoint appears
to be new in the literature. Finally, we observe that the proposed strategy represents
an application of the algebraic integration with respect to semigroups, presented in
[GT10], that can be interesting on its own.

3.2.2 Comparison with the existing literature

Proving a law of large numbers by directly studying the empirical measure and not
the single trajectories is the classical approach in the deterministic setting [Neu84,
Dob79], i.e., when no Brownian motions are acting on system (3.1.1). In the case
of interacting diffusions, the idea of studying the equation satisfied by the empirical
measure for a fixed n, comes from the two articles [BGP14, LP17] and the recent
[Cop19], where a weak-mild formulation is derived and carefully studied. Contrary
to our case, in [BGP14, Cop19, LP17] the particles live in the one dimensional torus
which considerably simplifies the analysis; we refer to Remark 3.3.5.

A Hilbertian approach for particle systems has already been discussed in [FM97],
where it is used to study the fluctuations of the empirical measure around the McKean-
Vlasov limit. However, [FM97] does not make use of the theory of semigroups but
instead requires strong hypothesis on the initial conditions which have to be IID and
with finite (4d+ 1)-moment (see [FM97, §3]). The evolution of the empirical measure
(3.1.2) is then studied in weighted Hilbert spaces (or, more precisely, in spaces of
Bessel potentials) so as to fully exploit the properties of mass concentration given by
the condition on the moments. Observe that we are not able to present a fluctuation
result, given the lack of a suitable uniform estimate on the noise term.

Studying the action of an analytic semigroup in the evolution of an interacting par-
ticle system has been recently proposed in similar settings; we refer to [FLO19, FOS20]
and references therein. This method is referred to as the semigroup approach. We want
to stress that the cited works deal with smooth mollified empirical measures and work
in a weaker topology (with respect to the time variable) than the one expressed in
Theorem 3.2.3.
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The strategies developed in [MMW15, MM13, Kol11], and further applied in the
case of mean-field games in [CDLL19], study the evolution of the joint law of system
(3.1.1) and take a more abstract viewpoint. In particular, they study the system
dynamics at the level of the flows and not directly addressing the empirical measure.

Finally, observe that under a suitable change of the time-scale, the n-dependent
SPDE satisfied by the empirical measure (3.1.2) is the mild formulation of the Dean-
Kawasaki equation [KLvR20, Theorem 1] and [KLvR19].

3.2.3 Strategy of the proof

Using Itô’s formula, we derive an equation satisfied by νn for every fixed n ∈ N, which
turns out to be the McKean-Vlasov PDE perturbed by some noise wn, see Lemma
3.3.1. This equation makes sense in L∞([0, T ], H−m) and in this space we study the
convergence of (νn)n∈N.

The main challenge towards the proof of Theorem 3.2.3 is giving a meaning to
wn and suitably controlling it. In Lemma 3.3.2, we first give a pathwise definition of
this term through rough paths theory, referring to Appendix 3.B for a suitable theory
of rough integration in our setting. This in turn will allow to show that (νn)n∈N is
uniformly bounded in L∞([0, T ], H−m) and to extract a weak-* converging subsequence,
see Lemma 3.3.8.

To show that a converging subsequence satisfies the weak-mild formulation (3.2.1)
in the limit, as shown in Lemma 3.3.9, we need a further step: the pointwise estimate
of wn(h), for a fixed h ∈ Hm. Using a suitable decomposition of the semigroup and
a maximal inequality for self-normalized processes, we are able to prove that wn(h)
converges to zero in probability as n diverges, see Lemma 3.3.6. If on the one hand
the rough paths bound cannot take advantage of the statistical independence of the
Brownian motions and thus, cannot be improved in n; on the other hand the probability
estimate does not suffice to define wn as an element of L∞([0, T ], H−m). We refer to
Subsection 3.3.2 and Remark 3.3.7 for more on this aspect.

The uniqueness of weak-mild solution, Proposition 3.2.2, is the last ingredient to
obtain that any convergent subsequence of (νn)n∈N admits a further subsequence that
converges P-a.s. to the same ν satisfying equation (3.2.1). This is equivalent to the
weak-* convergence in probability to the weak-mild solution ν.

3.3 Proofs

We start by giving the n-dependent stochastic equation satisfied by the empirical mea-
sure for each n ∈ N. We then move to the control on the noise term and, finally, the
proof of Theorem 3.2.3.

3.3.1 A weak-mild formulation satisfied by the empirical mea-
sure

Recall that (St)t∈[0,T ] denotes the semigroup generated by ∆
2

on Hm.
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Lemma 3.3.1. Assume m > d/2 + 2. The empirical measure (3.1.2) associated to the
particle systems (3.1.1) satisfies for every h ∈ Hm and t ∈ [0, T ]

〈νnt , h〉−m,m = 〈νn0 , Sth〉−m,m +

∫ t

0

〈νns , (∇St−sh)(Γ ∗ νns )〉−m,mds+ wnt (h), (3.3.1)

where

wnt (h) =
1

n

n∑
j=1

∫ t

0

[∇St−sh] (xj,ns ) · dBj
s . (3.3.2)

Proof. Fix t ∈ [0, T ] and h ∈ Hm, by (3.1.5) h is C2(Rd). For s < t, applying Itô’s
formula onto the test function ϕ(x, s) = (St−sh)(x), we obtain

h(xi,nt ) =(Sth)(xi,n0 ) +
1

n

n∑
j=1

∫ t

0

(∇St−sh)(xi,ns )Γ(xi,ns , x
j,n
s )ds

+

∫ t

0

(∇St−sh)(xj,ns ) · dBj
s .

Summing over all particles and dividing by 1/n, the claim is proved modulo well-
posedness of the noise term wn which is presented in the following subsection.

3.3.2 Controlling the noise term

The aim of this subsection is to control the noise term wn appearing in the weak-mild
formulation (3.3.1) for the empirical measure. We start by giving a pathwise definition
of the integral (3.3.2), i.e. for any ω ∈ A ⊂ Ω where P(A) = 1 and any h ∈ Hm we
define

wnt (h)(ω) =

(
1

n

n∑
j=1

∫ t

0

[∇St−sh] (xj,ns ) · dBj
s

)
(ω),

which in turn allows to define wn as an element of L∞([0, T ], H−m), via an inequality
of the form

sup
‖h‖m=1

|wnt (h)(ω)| 6 CT (ω)

for ω ∈ A, see Lemma 3.3.2. For this purpose, we extend Gubinelli’s theory for rough
integration (see [Gub04] and [GT10, §3 and 4 ]) to our setting, see Appendix 3.B for
notations and precise results on this extension.

A probabilistic estimate is then given, exploiting the independence of the Brownian
motions; Lemma 3.3.6 shows that

E

[
sup
t∈[0,T ]

|wnt (h)|2
]

6
C

n
‖h‖2

m , h ∈ Hm.

This estimate will allow us to prove the convergence of (3.3.1) to (3.2.1) for every fixed
h ∈ Hm, see Lemma 3.3.9.
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Pathwise definition via rough paths theory for semigroup functionals

We start by observing that the noise term wnt (h) in (3.3.2) is neither a stochastic
convolution that could be treated using a maximal inequality in Hilbert spaces (e.g.
[DPZ14, §6.4] and [Bec20] in the context of an unbounded diffusion operator), nor a
classical controlled rough path integral (e.g. [FH14]) as the integrand depends on the
upper integration limit.

We combine the strategies in [GT10, Gub04] so to define wnt (h) in a pathwise sense.
Note that our setting is different from [GT10], where an infinite dimensional theory
à la Da Prato-Zabczyk is constructed, while we are interested in finite dimensional
stochastic integrals over functionals of such objects. Our construction is nonetheless
similar to [GT10]: we fix the Itô-rough path lift associated to Brownian motion and
extend the algebraic integration in [GT10] to our setting of semigroup functionals. This
extension is presented in detail in Appendix B, where the main ingredient, the Sewing
lemma, is proven. Before stating Lemma 3.3.2, we present in a heuristic fashion the
main ideas towards a rough path construction of (3.3.2). Let us remark in this context
that a more general theory of nonlinear Volterra equations with singular kernels as
recently put forward in [HT21] [HTW21] might alternatively be employed.

Note that it suffices to define integrals of the form∫ t

s

∇St−uf(xu) · dBu (3.3.3)

in a pathwise sense for a class of sufficiently regular functions f and where (xu)u is an
Rd-valued process controlled by the Brownian motion (Bu)u, such that

xt − xs = Bt −Bs +O(|t− s|), for s, t ∈ [0, T ], P-a.s.. (3.3.4)

Recall that in the classical setting of rough paths theory, one has for s 6 t∫ t

s

f(xu)dBu = f(xs)Bts + (Dxf)(xu)Bts +Rts

where we have used the notation Bts := Bt −Bs as well as

Bts :=

∫ t

s

Bus ⊗ dBu, t > s ∈ [0, T ].

In particular, Ats := f(xs)Bts + (Dxf)(xu)Bts is a germ and, thanks to (3.3.4), Rts =
o(|t− s|) is a remainder in the terminology of [Gub04]. In the same spirit of [Gub04],
we rewrite the left hand side of this expression as∫ t

s

f(xu)dBu = [δI]ts = It − Is

where

It =

∫ t

0

f(xu)dBu.
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We are thus left with
[δI]ts = Ats +Rts. (3.3.5)

Recall that Gubinelli’s Sewing Lemma formulates precise conditions under which a
given germ A gives rise to a unique remainder term Rts = o(|t − s|) and such that I
can be obtained as

It := lim
|P[0,t]|↓0

∑
[u,v]∈P[0,t]

Avu.

If one tries to follow a similar approach for the quantity of interest (3.3.3), a canonical
candidate for local approximations to (3.3.3) would be∫ t

s

(∇St−uf)(xu)dBu = (∇St−sf)(xs)Bts + (D∇St−sf)(xs)Bts +Rts.

However, notice that if we were to set

It(f) :=

∫ t

0

(∇St−uf)(xu)dBu

then, we would obtain

[δI(f)]ts = It(f)− Is(f)

=

∫ t

0

(∇St−uf)(xu)dBu +

∫ s

0

(∇Ss−u(St−s − Id)f)(xu)dBu −
∫ s

0

(∇St−uf)(xu)dBu

=

∫ t

s

(∇St−uf)(xu)dBu + Is((St−s − Id)f)

6=
∫ t

s

(∇St−uf)(xu)dBu,

in contrast to the above setting, meaning the standard approach of [Gub04] fails. If
one defines, following Gubinelli and Tindel [GT10, p.16], the operator φ via

[φI(f)]ts = Is((St−s − Id)f)

as well as the operator δ̂ via

[δ̂I(f)]ts = [δI(f)]ts − [φI(f)]ts,

the desired relationship is recovered, indeed

[δ̂I(f)]ts =

∫ t

s

(∇St−uf)(xu)dBu

= (∇St−sf)(xs)Bts + (D∇St−sf)(xs)Bts +Rts.

The idea is hence to change the cochain complex in [Gub04] and to consider a perturbed
version of it associated to the operator δ̂, this is done in Lemma 3.B.1. Lemma 3.B.2
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proves a Sewing Lemma in this modified setting, which in turn allows to construct the
above remainder Rts. The germ will therefore be

[Af ]ts = (∇St−sf)(xs)Bts + (D∇St−sf)(xs)Bts.

For 0 = t0 < · · · < tn+1 = t, note that due to

It(f) =

∫ t

0

(∇St−uf)(xu)dBu

=
n∑
k=0

∫ tk+1

tk

(∇St−uf)(xu)dBu

=
n∑
k=0

∫ tk+1

tk

(∇Stk+1−u(St−tk+1
f))(xu)dBu

=
n∑
k=0

[A(St−tk+1
f)]tk+1tk +

n∑
k=0

Rtk+1tk ,

the correct way of sewing together the germs is given by

It(f) = lim
n→∞

n∑
k=0

[A(St−tk+1
f)]tk+1tk ,

which is reflected in equation (3.B.3) in Corollary 3.B.3. In particular, note that this
Corollary comes with the stability estimate (3.B.2) which allows to eventually deduce
the first crucial estimate (3.3.6) on the noise term, as shown in the next Lemma.

Lemma 3.3.2. Suppose m > d/2 + 3. For every α ∈ (1/3, 1/2), there exists a positive
random constant C = Cα that is finite P-a.s.(and of finite moments for all orders) such
that P-a.s.

|wnt (h)| 6 Cα(1 + t)3α ‖h‖m (3.3.6)

for any t > 0 and h ∈ Hm.

Proof. We follow the notations of Appendix 3.B. Fix α ∈ (1/3, 1/2) and recall that
(B,B) is the Itô rough path lift, with

Bts :=

∫ t

s

Bus ⊗ dBu, s 6 t ∈ [0, T ],

where Bus := Bu − Bs. Note that the above stochastic integral is understood in the
Itô sense.

We use Lemma 3.B.3 to define the Itô integral (3.3.3). This in turn will imply the
well-posedness of wnt (h) with the choice f = h, x = xi,n and B = Bi for i = 1, . . . , n.
Indeed, xi,n is controlled by Bi, as

(xi,nt − xi,ns )− (Bi
t −Bi

s) =
1

n

n∑
j=1

∫ t

s

Γ(xi,nu , x
j,n
u )du = O(|t− s|) = o(|t− s|2α)
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since Γ is bounded. We therefore have

|wnt (h)| 6 1

n

n∑
i=1

∣∣∣∣∫ t

0

(∇St−sh)(xi,ns )dBi
s

∣∣∣∣ =:
1

n

n∑
i=1

pi,nt .

Hence bounding each pi,n individually as done below will allow us to conclude the claim
of the Lemma by the strong law of large numbers.

Define the operator A acting on f ∈ Hm into C(∆2,R) via

[Af ]ts := (∇St−sf)(xs) ·Bts + (Dx∇St−sf)(xs) · Bts,

where Dx denotes the Jacobian in Rd and · the scalar product between tensors of the
same dimension. In the sequel, we adopt the following shorter notation

[Af ]ts := ∇StsfsBts +Dx∇Stsfs Bts.

As in classical rough paths theory [Af ]ts is not a 1-increment (i.e. a difference as Bts)
but a continuous function of the two variables s and t. In particular A ∈ D2, i.e. A is
a linear operator from the Banach space Hm to C(∆2,R).

One can actually prove that A ∈ Dα
2 : for 0 6 s 6 t 6 T and f ∈ Hm

|[Af ]ts| 6 ‖∇Stsf‖∞ |Bts|+ ‖Dx∇Stsf‖∞ |Bts| 6 Cα ‖f‖m |t− s|
α ,

where Cα = Cα(ω) depends on the α-Hölder norm of B(ω) and B(ω) and we have used
the properties of S, see Lemma 3.A.2. Note in particular that Cα < ∞, P-a.s. and
that Cα has finite moments of all orders.

Recall the definition of δ̂ (Lemma 3.B.1), in order to apply Lemma 3.B.2 and
Corollary 3.B.3 we need to show that δ̂A ∈ D1+

3 . Let f ∈ Hm and s < u < t, one has

[δ̂Af ]tus = [δAf ]tus − [φAf ]tus = [Af ]ts − [Af ]tu − [Af ]us − [A(St· − Id)f ]us

= [Af ]ts − [Af ]tu − [ASt·f ]us.

Observe that thanks to the properties of the semigroup

[ASt·f ]us = ∇SusStufsBus +Dx∇SusStufs Bus = ∇StsfsBus +Dx∇Stsfs Bus.

In particular, using Chen’s relation

Bts = Bus + Btu +Btu ⊗Bus

we obtain

[δ̂Af ]tus = ∇StsfsBtu −∇StufuBtu +Dx∇Stsfs (Bts − Bus)−Dx∇Stufu Btu
= (∇Stsfs −∇Stufu)Btu +Dx(∇Stsfs −∇Stufu)Btu +DxStsfsBtu ⊗Bus.

We rewrite everything as the sum of four terms

[δ̂Af ]tus = ∇(Sts − Stu)fuBtu +Dx∇(Sts − Stu)fu Btu+
+(Dx∇Stsfs −Dx∇Stsfu)Btu + (∇Stsfs −∇Stsfu +Dx∇StsfsBus)Btu

= : A1 + A2 + A3 + A4.
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For A1 we obtain

|∇(Sts − Stu)fuBtu| 6 ‖∇(Sts − Stu)fu‖∞ |Btu| 6 Cα ‖f‖m |t− u|
α |u− s| ,

where Cα = Cα(ω) depends on the α-Hölder norm of B(ω) and we have used the
properties of S, see Lemma 3.A.2. Note in particular that Cα < ∞, P-a.s. and that
Cα has finite moments of all orders. Similarly, for A2 (with a different Cα)

|Dx∇(Sts − Stu)fu Btu| 6 Cα ‖f‖m |t− u|
2α |u− s|1/2 .

Observe now that, since f ∈ C3
b , the function Dx∇Stsf is Lipschitz uniformly in s and

t, from which we extract that

|(Dx∇Stsfs −Dx∇Stsfu)Btu| 6 Cα ‖f‖m |xs − xu| |t− u|
2α

6 Cα ‖f‖m |t− u|
2α |u− s|α .

Using (3.3.4), we recognize in A4 the Taylor expansion of ∇Stsf around xs, i.e.

|∇Stsfu −∇Stsfu −Dx∇StsfsBus|
6 |∇Stsfu −∇Stsfu −Dx∇Stsfs xus|+ c |Dx∇Stufs| |u− s|
6 c ‖f‖m |xus|

2 + c ‖f‖m |u− s| 6 c ‖f‖m |u− s|
2α .

We conclude that ∣∣A4
∣∣ 6 Cα ‖f‖m |t− u|

α |u− s|2α .

Putting the four estimates together, we have just shown δ̂A ∈ D1+
3 and, in partic-

ular, that ∥∥∥δ̂A∥∥∥
D3α

3

6 Cα

for some Cα which is finite P-a.s. and admits moments of all orders. As α > 1/3, by
Corollary 3.B.3, we know that there exists I ∈ D1 such that

[δ̂If ]ts = lim
|Pn[s,t]|→0

∑
[u,v]∈Pn[s,t]

[ASt·f ]vu

is well defined. For 0 6 s 6 t 6 T , se set∫ t

s

∇St−uf(xu) · dBu := [δ̂If ]ts.

Again Corollary 3.B.3 assures that there exists a (new) constant Cα, depending on the
norm of A in Dα

2 and the norm of δ̂A in D3α
3 , such that∣∣∣∣∫ t

0

∇St−uf(xu) · dBu

∣∣∣∣ 6 Cα ‖f‖m (1 + t)3α.

The proof is concluded.



56 LLN for interacting diffusions via a mild formulation

Controlling wnt (h) via a maximal inequality for self-normalized processes

The aim of this subsection is to give a probabilistic bound on

wnt (h) =
1

n

n∑
j=1

∫ t

0

[∇St−sh] (xj,ns )dBj
s

by exploiting the independence of the Brownian motions (we have removed the product
symbol · for the sake of notation).

Observe that if wnt (h) didn’t involve a convolution with the semigroup S, wnt (h)
would be a standard martingale and classical estimates like the Burkholder-Davis-
Gundy inequality could be used to establish the desired bound. While the convolution
with the semigroup S destroys the martingale property, wnt (h) is still closely related
to maximal inequalities for self-normalized martingales for which the following fine
estimate due to Graversen and Peskir [GP00] is available.

Lemma 3.3.3 ([GP00, Corollary 2.8] and [JZ20, Corollary 2.4]). Let (Mt)t∈[0,T ] be a
continuous local martingale. There exists a universal constant C such that

E

[
sup
t∈[0,τ ]

|Mt|2

1 + 〈M〉t

]
6 C E [ log(1 + log(1 + 〈M〉τ )) ]

for every stopping time τ 6 T .

Observe that this result is a consequence of more general bounds on self-normalized
processes of the form Xt = At/Bt (e.g. [dlPKL04]), where in this case At = Mt is a
martingale and B2

t − 1 = 〈M〉t its quadratic variation.
Let us illustrate in the following example how this interpretation can be used to

directly obtain a bound on

vt =
1

n

n∑
j=1

∫ t

0

e−a(t−s)dBj
s , a > 0,

which could be seen as a most simple toy model for wnt (h).

Example 3.3.4. Let (Bj)j 6 n be independent Brownian motions on a common filtered
probability space (Ω,F , (F)t)t,P). For a > 0, let (Xj)j 6 n be the following associated
familiy of Ornstein Uhlenbeck processes:

Xj
t :=

∫ t

0

e−a(t−s)dBj
s , t ∈ [0, T ]

and consider the quantity

vt :=
1

n

n∑
j=1

Xj
t .
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We remark that we may rewrite

n∑
j=1

Xj
t =

√
n

2a
e−at

(
n∑
j=1

√
2a

n

∫ t

0

easdBj
s

)
=:

√
n

2a
e−atMt.

Notice that M is a martingale of quadratic variation

〈M〉t = (e2at − 1)

and therefore, by Lemma 3.3.3, we conclude that

E

[
sup
t∈[0,T ]

|vt|2
]

=
1

2na
E

[
sup
t∈[0,T ]

|e−atMt|2
]

=
1

2na
E

[
sup
t∈[0,T ]

|Mt|2

1 + 〈M〉t

]
6 C

1

2na
log (1 + 2aT ).

Note that we crucially exploited the splitting e−a(t−s) = e−ateas, which is not avail-
able in the semigroup setting we are concerned with2. Intending to employ such a step
suggests to pass by a functional calculus for the semigroup, which we briefly discuss
next.

Recall that an analytic semigroup is a bounded linear operator that can be expressed
by means of a Dunford integral (e.g. [Hen81, Lun95] and Appendix 3.A). The integral
representation of S is given for every t ∈ [0, T ] by

St =
1

2πi

∫
γr,η

etλR(λ, ∆
2

)dλ, (3.3.7)

where R(λ, ∆
2

) = (λId− ∆
2

)−1 denotes the resolvent of ∆
2

and where, for r > 0 and η ∈
(π/2, π), γr,η is the curve {λ ∈ C : |arg λ| = η, |λ| > r} ∪ {λ ∈ C : |arg λ| 6 η, |λ| =
r}, oriented counterclockwise.

Plugging (3.3.7) into the expression of wnt (h) yields

wnt (h) =
1

2πin

n∑
j=1

∫ t

0

∫
γr,η

e(t−s)λ [∇R(λ, ∆
2

)h
]

(xj,ns )dλdBj
s ,

splitting the complex integral into three real integrals parametrizing γr,η, and then
using stochastic Fubini, one is left with expressions similar to

1

2πin

n∑
j=1

∫ t

0

e(t−s)ρeiη [∇R(ρeiη, ∆
2

)h
]

(xj,ns )eiηdBj
s , ρ > r,

2Provided −A generates a semigroup S and admits some functional calculus, one has St = e−tA.
Yet, in this case ”esA” will be ill defined. Indeed, note that the semigroup property is not a group
property, as would be required in the above splitting.
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which remind us of 1-dimensional self-normalized martingale for every ρ, similar to the
process (vt)t considered in Example 3.3.4.

It remains to establish a suitable bound on the expression[
∇R(ρeiη, ∆

2
)h
]

(xj,ns )

and to ensure that this bound is integrable for ρ ∈ (r,∞), see Lemma 3.A.4.
Putting all the above considerations together with care, one obtains a maximal

inequality for wnt (h) that we present in Lemma 3.3.6.

Remark 3.3.5. A similar control has already been used in [Cop19, Lemma 3.3], see
also [BGP14, §3.1] and [LP17, §4] for an estimate using the Rodemich-Garsia-Rumsey
lemma. However, in all these cases the particles are living in the one dimensional
torus, making the (still highly technical) noise analysis considerably simpler due to the
decomposition in Fourier series.

Lemma 3.3.6. Assume m > d/2. There exists a constant C > 1, independent of n
and h ∈ Hm, such that for every h ∈ Hm

E

[
sup
t∈[0,T ]

|wnt (h)|2
]

6
C

n
‖h‖2

m . (3.3.8)

Proof. Let h ∈ Hm and γr,η be the curve in (3.3.7) with η ∈ (π/2, π) and r > 0. Since
the real values of η and r are not crucial for the proof, we may suppose r > 1. Using
the decomposition of S we obtain:

wnt (h) =
1

n

n∑
j=1

∫ t

0

[∇St−sh] (xj,ns )dBj
s

=
1

2πin

n∑
j=1

∫ t

0

[
∇
∫
γr,η

e(t−s)λR(λ, ∆
2

)hdλ

]
(xj,ns )dBj

s

=
1

2πin

n∑
j=1

∫ t

0

∫
γr,η

e(t−s)λ [∇R(λ, ∆
2

)h
]

(xj,ns )dλdBj
s

= Z1
t (h) + Z2

t (h) + Z3
t (h),

for

Z1
t (h) :=

1

2πin

n∑
j=1

∫ t

0

∫ ∞
r

e(t−s)ρeiη [∇R(ρeiη, ∆
2

)h
]

(xj,ns )eiηdρdBj
s ,

Z2
t (h) :=

1

2πin

n∑
j=1

∫ t

0

∫ η

−η
e(t−s)reiα [∇R(reiα, ∆

2
)h
]

(xj,ns )ireiαdαdBj
s ,

Z3
t (h) := − 1

2πin

n∑
j=1

∫ t

0

∫ ∞
r

e(t−s)ρe−iη [∇R(ρe−iη, ∆
2

)h
]

(xj,ns )e−iηdρdBj
s .

(3.3.9)
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where in the third step we have used that ∇ is a closed linear operator on D(∆
2

) and
may therefore be drawn into the above Dunford integral. Using the classical estimate
(a+ b+ c)2 6 3(a2 + b2 + c2), it follows that

|wnt (h)|2 6 3
[∣∣Z1

t (h)
∣∣2 +

∣∣Z2
t (h)

∣∣2 +
∣∣Z3

t (h)
∣∣2] .

We focus on Z1
t (h), but similar estimates for Z2

t (h) and Z2
t (h) follow in exactly the

same way.
Fix ε > 0 small, the stochastic Fubini theorem (e.g. [DPZ14, §4.5]) and Cauchy-

Schwartz inequality imply that

∣∣Z1
t (h)

∣∣2 =

∣∣∣∣∣
∫ ∞
r

[∫ t

0

ρ
1+ε
2

2πin

n∑
j=1

e(t−s)ρeiη [∇R(ρeiη, ∆
2

)h
]

(xj,ns )eiηdBj
s

]
dρ

ρ
1+ε
2

∣∣∣∣∣
2

6 C

∫ ∞
r

∣∣∣∣∣
∫ t

0

1

n

n∑
j=1

e(t−s)ρeiη [∇R(ρeiη, ∆
2

)h
]

(xj,ns )eiηdBj
s

∣∣∣∣∣
2

ρ1+εdρ

=
C

n2

∫ ∞
r

e−2tρ(− cos η)

∣∣∣∣∣∣∣∣∣∣
∫ t

0

n∑
j=1

e−sρe
iη [∇R(ρeiη, ∆

2
)h
]

(xj,ns )dBj
s︸ ︷︷ ︸

=:Mt

∣∣∣∣∣∣∣∣∣∣

2

ρ1+εdρ

where C = 1
4π2

∫∞
r

dρ
ρ1+ε

.

We introduce the continuous martingale Xε,ρ
· (h) defined for t > 0 by

Xε,ρ
t (h) := ρ1/2+ε

√
−2ρ cos η

‖h‖2
m n

Mt,

so to obtain ∣∣Z1
t (h)

∣∣2 6 C

−2n cos η
‖h‖2

m

∫ ∞
r

e2tρ cos η |Xε,ρ
t (h)|2 dρ

ρ1+ε

6
C

n
‖h‖2

m

∫ ∞
r

e2tρ cos η |Xε,ρ
t (h)|2 dρ

ρ1+ε
.

where we absorbed the factor (−2 cos η)−1 in the unessential constant C.

We compute the quadratic variation of Xε,ρ
t (h):

〈Xε,ρ(h)〉t = ρ1+2ε (−2ρ cos η)

‖h‖2
m n

n∑
j=1

∫ t

0

e−2sρ cos η
[
∇R(ρeiη, ∆

2
)h
]2

(xj,ns )ds.

Lemma 3.A.3 assures that for every ε such that 0 < 2ε < (m − d/2) ∧ 1, P(Rd) is



60 LLN for interacting diffusions via a mild formulation

continuously embedded in H−m+2ε, in particular∣∣∣ [∇R(ρeiη, ∆
2

)h
]
(xj,ns )

∣∣∣ =
∣∣∣〈δxj,ns , ∇R(ρeiη, ∆

2
)h〉−m,m

∣∣∣
=
∣∣∣〈δxj,ns ,∇R(ρeiη, ∆

2
)h〉−m+2ε,m−2ε

∣∣∣
6
∥∥∥δxj,ns ∥∥∥−m+2ε

∥∥∇R(ρeiη, ∆
2

)h
∥∥
m−2ε

6 C
‖h‖m
ρ1/2+ε

,

(3.3.10)

where we have exploited the properties of the resolvent operator R, see Lemma 3.A.4.

Thus, the quadratic variation of Xε,ρ
t (h) is bounded P-a.s. by

〈Xε,ρ(h)〉t 6 C(−2ρ cos η)

∫ t

0

e−2sρ cos ηds = C
(
e−2tρ cos η − 1

)
. (3.3.11)

Observe then

E

[
sup
t∈[0,T ]

∣∣Z1
t (h)

∣∣2] 6
C

n
‖h‖2

m

∫ ∞
r

E

[
sup
t∈[0,T ]

e2tρ cos η |Xε,ρ
t (h)|2

]
dρ

ρ1+ε

6
C

n
‖h‖2

m

∫ ∞
r

E

[
sup
t∈[0,T ]

|Xε,ρ
t (h)|2

1 + 〈Xε,ρ(h)〉t

(
sup
t∈[0,T ]

1 + 〈Xε,ρ(h)〉t
e−2tρ cos η

)]
dρ

ρ1+ε
.

The term supt∈[0,T ]
1+〈Xε,ρ(h)〉t
e−2tρ cos η is bounded using (3.3.11) by a constant, wherefore we

are left with

E

[
sup
t∈[0,T ]

∣∣Z1
t (h)

∣∣2] 6
C

n
‖h‖2

m

∫ ∞
r

E

[
sup
t∈[0,T ]

|Xε,ρ
t (h)|2

1 + 〈Xε,ρ(h)〉t

]
dρ

ρ1+ε
.

We now invoke Lemma 3.3.3, which in conjunction with (3.3.11) allows to deduce that

E

[
sup
t∈[0,T ]

|Xε,ρ
t (h)|2

1 + 〈Xε,ρ(h)〉t

]
6 C E [log (1 + log (1 + 〈Xε,ρ(h)〉T ))]

6 CE [log (1− 2Tρ cos η + log(C))]

where in the last inequality, we have bounded the constant C appearing in (3.3.11) by
max{1, C}. Further modifying C accordingly, we are thus left with

E

[
sup
t∈[0,T ]

∣∣Z1
t (h)

∣∣2] 6
C

n
‖h‖2

m

∫ ∞
r

log(1− 2Tρ cos η + log(C))
dρ

ρ1+ε
6
C

n
‖h‖2

m .

Concerning Z3
t (h), computations are the same if one replaces η by −η. Concerning

Z2
t (h), computations are easier since there is no a priori diverging integral to deal with

and we omit the proof. The overall bound on wnt (h) is thus obtained by summing the
three estimates and choosing the constant C accordingly.



Proofs 61

Remark 3.3.7. Note that Lemma 3.3.6 implies by Jensen’s inequality the following
bound

E

[
sup
t∈[0,T ]

|wnt (h)|

]
6

C√
n
‖h‖m ,

which is sharper in n with respect to (3.3.6), but in a weaker topology. One could ask
if it is possible to establish a similar O(1/

√
n) bound for

E

[
sup
t∈[0,T ]

‖wnt ‖−m

]
= E

[
sup
t∈[0,T ]

sup
‖h‖m 6 1

|wnt (h)|

]
.

Such a bound cannot be obtained by rough paths theory and a full probabilistic proof,
which takes the independence between the Brownian motions into account, is desirable.
To the authors’ knowledge, this has been established only in the case of interacting
oscillators; we refer to the noise term analysis in [BGP14, Cop19, LP17].

3.3.3 Proving Theorem 3.2.3

The proof of Theorem 3.2.3 consists in two steps: using the pathwise bound on wn,
Lemma 3.3.8 shows that we can extract from (νn)n∈N a weak-*-convergence subse-
quence; then, by exploiting the probabilistic bound on wnt (h) for a fixed h ∈ Hm, we
identify through Lemma 3.3.9 the limit with a solution to (3.2.1).

Extraction of a weak-*-convergent subsequence

The main result of this subsection is given by the next lemma.

Lemma 3.3.8. The sequence (νn)n∈N is uniformly bounded in L∞([0, T ], H−m) and
thus admits a subsequence that converges weak-* to some ν ∈ H−m, P-a.s..

Proof. It suffices to show that (νn)n∈N is uniformly bounded in L∞([0, T ], H−m) P-a.s.,
an application of Banach-Alaoglu yields the existence of a convergent subsequence.

Exploiting the mild formulation in Lemma 3.3.1 and the bound on wnt (h) in Lemma
3.3.2 for some α ∈ (1/3, 1/2), one obtains that

‖νnt ‖−m 6 ‖νn0 ‖−m +

∫ t

0

‖νns ‖−m sup
‖h‖m 6 1

‖(∇St−sh)(Γ ∗ νns )‖m ds+ ‖wnt ‖−m

6 ‖νn0 ‖−m +

∫ t

0

C√
t− s

‖νns ‖−m ds+ Cα(1 + t)3α,

where we have exploited the properties of the semigroup and the bound already used
in (3.2.3). A Gronwall-like argument implies the existence of a constant a independent
of n and T such that

sup
t∈[0,T ]

‖νnt ‖−m 6 2
(
‖νn0 ‖−m + Cα(1 + T )3α

)√
Tea

√
T .
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In particular, using Lemma 3.A.3, we conclude

sup
n∈N

sup
t∈[0,T ]

‖νnt ‖−m 6 Cα,T .

We move to the identification of the limit ν ∈ L∞([0, T ], H−m).

The limit coincides with an m-weak-mild solution

We prove that any possible limit of (νn)n∈N is a weak-mild solution (3.2.1). Given
the uniqueness of (3.2.1), this implies the weak-* convergence in L∞([0, T ], H−m) of
(νn)n∈N to the element ν given in Lemma 3.3.8.

Lemma 3.3.9. Let (νn)n∈N be converging weak-* to some ν̄ ∈ L∞([0, T ], H−m) P-a.s.
along a subsequence that we denote by (νnk)k∈N. Then ν̄ satisfies (3.2.1), i.e.

〈ν̄t, h〉−m,m = 〈ν̄0, Sth〉−m,m +

∫ t

0

〈ν̄s, (∇St−sh)(Γ ∗ ν̄s)〉−m,mds,

meaning ν̄ is an m-weak-mild solution to (3.1.3).

Proof. Recall that for every n, νn solves the mild formulation (3.3.1), i.e. for t ∈ [0, T ]

〈νnt , h〉−m,m = 〈νn0 , Sth〉−m,m +

∫ t

0

〈νns , (∇St−sh)(Γ ∗ νns )〉−m,mds+ wnt (h).

By hypothesis we have that for every t ∈ [0, T ] and h ∈ Hm

lim
k→∞
〈νnkt , h〉−m,m = 〈ν̄t, h〉−m,m, P-a.s..

In particular, this is true for (νnk0 )k since Sth ∈ Hm. Furthermore, Lemma 3.3.6 implies
that

lim
k→∞

wnkt (h) = 0, in P-probability

and thus in particular the convergence holds P-a.s. along a sub-subsequence (nkj)j.
Thus, it remains to show that P-a.s.

lim
j→∞

∫ t

0

〈ν
nkj
s , (∇St−sh)(Γ ∗ ν

nkj
s )〉−m,mds =

∫ t

0

〈ν̄s, (∇St−sh)(Γ ∗ ν̄s)〉−m,mds. (3.3.12)

For better readability and lighter notation, we will not distinguish between n and
nkj in the following, understanding that we continue to work on the sub-subsequence.
Consider then

〈ν̄ns , (∇St−sh)(Γ ∗ ν̄ns )〉−m,m − 〈ν̄s, (∇St−sh)(Γ ∗ ν̄s)〉−m,m
= 〈ν̄ns − ν̄s, (∇St−sh)(Γ ∗ ν̄s)〉−m,m + 〈ν̄ns , (∇St−sh)(Γ ∗ (ν̄ns − ν̄s))〉−m,m.
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Using again (3.2.3), it is easy to see that P-a.s.

1[0,t](s)(∇St−sh)(Γ ∗ νs) ∈ L1([0, T ], Hm)

wherefore it is indeed an element of the predual to L∞([0, T ], H−m) and thus by weak-*
convergence in this space, we have∫ T

0

〈νns − νs,1[0,t](s)(∇St−sh)(Γ ∗ νs)〉ds =

∫ t

0

〈νns − νs, (∇St−sh)(Γ ∗ νs)〉ds→ 0.

For the second term, note that

〈ν̄ns , (∇St−sh)(Γ ∗ (ν̄ns − ν̄s))〉−m,m
= 〈ν̄ns − ν̄s, 〈ν̄ns (dx), (∇St−sh)(x)(Γ(x, ·))〉−m,m〉−m,m

and that the function

y 7→ 〈ν̄ns (dx), (∇St−sh)(x)(Γ(x, y))〉−m,m =

=
1

n

n∑
j=1

(∇St−sh(xj,ns )) · (Γ(xj,ns , y))

is in Hm for every s ∈ [0, t], since Γ(x, ·) ∈ Hm for a.e. x ∈ Rd, recall (3.2.2). Namely,∥∥∥∥∥ 1

n

n∑
j=1

(∇St−sh(xj,ns )) · (Γ(xj,ns , ·))

∥∥∥∥∥
m

6 ‖∇St−sh‖∞ ‖Γ‖Hm
y L
∞
x

6 C
‖h‖m√
t− s

‖Γ‖Hm
y W

m,∞
x

.

We conclude that

1[0,t]〈ν̄ns (dx), (∇St−sh)(x)(Γ(x, ·))〉−m,m ∈ L1([0, T ], Hm)

and in particular∫ T

0

〈ν̄ns − ν̄s, 〈ν̄ns (dx),1[0,t](s) (∇St−sh)(x) · (Γ(x, ·))〉−m,m〉−m,mds→ 0.

This establishes (3.3.12).

Overall, we have thus shown that any subsequence of (νn)n converges along some
further subsequence P-a.s. weak-* in L∞([0, T ], H−m), the limit ν̄ satisfying for every
h ∈ Hm the equation

〈ν̄t, h〉−m,m = 〈ν̄0, Sth〉−m,m +

∫ t

0

〈ν̄s, (∇St−sh)(Γ ∗ ν̄s)〉−m,mds,

meaning that ν̄ is indeed an m-weak-mild solution.
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Proof of Theorem 3.2.3

Proof. In order to show that νn
∗
⇀ ν in L∞([0, T ], H−m) in probability, we show that

any subsequence (νnk)k admits a further subsequence that converges P-a.s. in weak-*
topology of L∞([0, T ], H−m) to ν.

Let (νnk)k be hence a subsequence. By assumption of the Theorem, Lemmas 3.3.6
and 3.3.8, we find a further subsequence (νnkj )j, along which

w
nkj
t (h)→ 0 ∀h ∈ Hm

〈ν
nkj
0 , h〉 → 〈ν0, h〉 ∀h ∈ Hm

νnkj
∗
⇀ ν̄ in L∞([0, T ], H−m)

(3.3.13)

P-a.s., where the limit ν̄ ∈ L∞([0, T ], H−m) may apriori depend on the subsequence
chosen. Notice however that due to Lemma 3.3.9, any such limit is a m-weak-mild
solution to (3.1.3). By the uniqueness result of Proposition 3.2.2, we conclude that the
limit ν̄ = ν must be the same for any subsequence chosen.

The first part of the Theorem is proved. Note that apriori, our limit ν is only a
distribution in H−m at each fixed timepoint.

Suppose ν0 ∈ P(Rd). In order to show that νt is actually a probability measure for
each t ∈ [0, T ], we observe that a weak solution µ ∈ C([0, T ],P(Rd)) to (3.1.3) (which
exists due to Theorem 3.1.2) is a weak-mild solution (3.2.1).

Indeed, let µ = (µt)t∈[0,T ] ∈ C([0, T ],P(Rd)) be a weak solution to (3.1.3). As done
in Lemma 3.3.1, one can show that for every f ∈ C∞0 and t ∈ [0, T ]

〈µt, f〉−m,m = 〈µ0, Stf〉−m,m +

∫ t

0

〈µs, (∇St−sf) · (Γ ∗ µs)〉−m,mds (3.3.14)

holds. Note that by standard approximation, (3.3.14) holds also for f ∈ Hm ⊂ C3
b ,

meaning that µ is indeed a weak-mild solution. By the uniqueness statement of Propo-
sition 3.2.2 we conclude µ = ν and thus in particular ν ∈ C([0, T ],P(Rd)). This
concludes the second part and thus the entire proof of the Theorem.

3.A Hilbert spaces and Semigroups

The Laplacian semigroup

The following definitions are taken from [Hen81, Lun95]. For the sake of notation, we
focus on ∆, the standard Laplacian on L2(Rd), instead of ∆

2
. We can consider the part

of ∆ on (the complexification e.g. [Lun95, Appendix A] of) Hm:

∆ : D(∆) ⊂ Hm −→ Hm.

It is not difficult to see that Hm+2 ⊂ D(∆), where the inclusion is dense, and that ∆
is a sectorial operator with spectrum given by (−∞, 0]. In particular, it generates an
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analytic strongly continuous semigroup denoted for all t > 0 by St; recall that S0 := Id
is the identity operator.

We represent S for t ∈ [0, T ] as the following Dunford integral

St =
1

2πi

∫
γr,η

etλR(λ,∆)dλ,

where R(λ,∆) = (λId−∆)−1 denotes the resolvent of ∆ and where, for r > 0 and η ∈
(π/2, π), γr,η is the curve {λ ∈ C : |arg λ| = η, |λ| > r} ∪ {λ ∈ C : |arg λ| 6 η, |λ| =
r}, oriented counterclockwise.

Observe that γr,η is contained in the resolvent set of ∆, i.e. γr,η ⊂ ρ(∆), and that,
for all regular values λ ∈ ρ(∆), R(λ,∆) is a bounded linear operator on Hm.

When computing the semigroup against a function h through (3.3.7), we use the
following decomposition into three real integrals:

Sth =
1

2πi

∫
γr,η

etλR(λ,∆)hdλ =
1

2πi

[∫ ∞
r

etρe
iη

R(ρeiη,∆)eiηdρ

+

∫ η

−η
etr(cosα+i sinα)R(reiα,∆)ireiαdα−

∫ ∞
r

etρe
−iη
R(ρe−iη,∆)e−iηdρ

]
.

(3.A.1)

The section ends with some estimates basic concerning the regularity of S.

Lemma 3.A.1. Let (St)t 6 T be the heat semigroup acting on Hm. Then for α > 0 and
t > 0 one has

‖(−∆)αSth‖m 6 C
1

tα
‖h‖m .

In particular, we also have

‖∇Sth‖m 6 C
1√
t
‖h‖m

Proof. Refer to [Paz83, Chapter II, Theorem 6.13] and the proof of [Hof13, Proposition
4.3] for example.

Lemma 3.A.2. Assume m > d/2 + 3. Let (St)t 6 T be the heat semigroup acting on
Hm. For f ∈ Hm, it holds that

‖∇(St − Id)f‖∞ 6
√
t
∥∥D2f

∥∥
∞ 6 C

√
t ‖f‖m ,

‖∇(St − Id)f‖∞ 6
1

2
t
∥∥D3f

∥∥
∞ 6

C

2
t ‖f‖m ,

where D2 is the Hessian and D3 the tensor with third-order derivatives. In particular

‖∇(St − Ss)f‖∞ 6
√
|t− s|

∥∥D2f
∥∥
∞ 6 C

√
|t− s| ‖f‖m ,

‖∇(St − Ss)f‖∞ 6
1

2
|t− s|

∥∥D3f
∥∥
∞ 6

C

2
|t− s| ‖f‖m .
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Proof. We calculate explicitly

|∇(St − Id)f(x)| =
∣∣∣∣∫

Rd

1

(2πt)d/2
e−
|y|2
2t (∇f(x− y)−∇f(x))dy

∣∣∣∣
=

∣∣∣∣∫
Rd

1

(2πt)d/2
e−
|y|2
2t

(
∇f(x− y)−∇f(x) + (−y)T (D∇f)(x)

)
dy

∣∣∣∣
6

1

2

∥∥D3f
∥∥
∞

∫
Rd

1

(2πt)d/2
e−
|y|2
2t |y|2dy

=
1

2

∥∥D3f
∥∥
∞ t

where we exploited the asymmetry of the first Taylor component. The first statement
follows from a similar consideration, considering an order one Taylor expansion of
∇f(x − y) around x instead of an order two Taylor expansion. The proof follows by
Sobolev’s embeddings.

The Hilbert space Hs

It is useful to give an explicit definition of Hm through the Fourier transform (e.g.
[AF03, 7.62]). Let s > 0, define (Hs, ‖·‖s) by

Hs =

{
u ∈ L2(Rd) :

∫
Rd

(1 + |ξ|2)s |F(u)(ξ)|2 dξ <∞
}
,

‖u‖2
s =

∫
Rd

(1 + |ξ|2)s |F(u)(ξ)|2 dξ.

(3.A.2)

Whenever s is an integer, it is well known that this definition coincides with the stan-
dard definition of the Sobolev space W s,2(Rd).

The next lemma extends the embedding (3.1.5) to Hs and its relationship with the
space of probability measures.

Lemma 3.A.3. For all s > d/2, one has the following continuous embedding

Hs ⊂ Cb(Rd). (3.A.3)

Moreover, there exists C > 0 (depending on s only) such that

sup
µ∈P(Rd)

‖µ‖−s 6 C. (3.A.4)

Proof. The continuous embedding (3.A.3) is a consequence of the embedding of Besov
spaces into the space of continuous bounded functions (e.g. [AF03, Theorem 7.34])
and the fact that they coincide with Hs for a particular choice of the indices.

Turning to (3.A.4), let µ ∈ P(Rd), then

‖µ‖−s = sup
h∈Hs

〈µ, h〉−s,s
‖h‖s

= sup
h∈Hs

〈µ, h〉
‖h‖s

6 sup
h∈Hs

‖h‖∞
‖h‖s

6 C,

where C is the norm of the identity operator between Hs and Cb(Rd).
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Fractional operators on Hs

We have the following lemma.

Lemma 3.A.4. Let λ = ρeiη ∈ ρ(∆) and suppose ρ > 1. There exists a positive
constant C = Cη such that for every ε ∈ (0, 1/2)∥∥∇R(ρeiη,∆)h

∥∥2

m−2ε
6 Cη

‖h‖2
m

ρ1+2ε
, h ∈ Hm. (3.A.5)

Proof. Exploiting the Fourier multipliers associated to ∇ and R, one obtains∥∥∇R(ρeiη,∆)h
∥∥2

m−2ε
=

∫
Rd

(1 + |ξ|2)m−2ε
∣∣F(∇R(ρeiη,∆)h)(ξ)

∣∣2 dξ

6
∫
Rd

(1 + |ξ|2)m−2ε |F(h)(ξ)|2
∣∣∣∣ ξ

ρeiη + |ξ|2

∣∣∣∣2 dξ

6
∫
Rd

(1 + |ξ|2)m |F(h)(ξ)|2 |ξ|2

|ρeiη + |ξ|2|2
1

(1 + |ξ|2)2ε
dξ.

Since we are assuming ρ > 1, we have that

|ξ|2

|ρeiη + |ξ|2|2
1

(1 + |ξ|2)2ε
6

(ρ+ |ξ|2)1−2ε

|ρeiη + |ξ|2|2
6 Cη

1

(ρ+ |ξ|2)1+2ε 6 Cη
1

ρ1+2ε
,

with Cη = (supx > 0(1 + x)/|eiη + x|)2 <∞ since η 6= π.

3.B Rough integration associated to semigroup func-

tionals

We mostly follow [GT10] and use very similar notations. Let k > 1 and ∆k be the
k-dimensional simplex given by

∆k = {t1, . . . , tk ∈ [0, T ] : T > t1 > t2 > . . . > tk > 0} .

Let Ck = C(∆k;R) and W a Banach space with a strongly continuous semigroup
(St)t∈[0,T ] acting on it. Define Dk as the space of linear operators from W to Ck.
Furthermore, let D∗ =

⋃
k > 1Dk and define the following operators on D∗:

δ : Dk → Dk+1, φ : Dk → Dk+1, k > 1.

For A ∈ Dk and f ∈ W , they are defined as

[δAf ]t1...tk+1
=

k+1∑
i=1

(−1)i+1 [Af ]t1...�ti...tk+1
,

[φAf ]t1...tk+1
= [A(St1t2 − Id)f ]t2...tk+1

,

where ��ti means that the argument ti is omitted and St1t2 stands for St1−t2 .
We are ready for the first lemma.
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Lemma 3.B.1. Let δ̂ := δ − φ. Then (D∗, δ̂) is an acyclic cochain complex. In
particular

Ker δ̂ Dk+1
= Im δ̂ Dk , for any k > 1.

Proof. The proof mimics [GT10, Proposition 3.1]. We only mention that for proving
Ker δ̂ Dk+1

⊂ Im δ̂ Dk , a possible choice for A ∈ Ker δ̂ Dk+1
is given by B ∈ Dk defined

as
[Bf ]t1...tk = (−1)k+1 [Af ]t1...tk0 , f ∈ W.

We now introduce some analytical assumptions on the previous function spaces.
We start with a Hölder-like norm on Ck for k = 2, 3. For µ > 0 and g ∈ C2, define

‖g‖µ := sup
t,s∈∆2

|gts|
|t− s|µ

,

and consequently

Cµ
2 :=

{
g ∈ C2 ; ‖g‖µ <∞

}
.

For γ, ρ > 0 and g ∈ C3, define

‖g‖γ,ρ := sup
t,u,s∈∆3

|gtus|
|t− u|µ |u− s|ρ

and

‖g‖µ := inf

{∑
i

‖gi‖ρi,µ−ρi ; g =
∑
i

gi , 0 < ρi < µ

}
,

where the infimum is taken on all sequences (gi) ⊂ C3 such that g =
∑

i gi and
ρi ∈ (0, µ). Again, ‖·‖µ defines a norm on C3 and we denote the induced subspace by

Cµ
3 :=

{
g ∈ C3 ; ‖g‖µ <∞

}
.

With these definitions in mind, let

Dµ
k := L(W,Cµ

k ), D1+
k :=

⋃
µ>1

Dµ
k , k = 2, 3.

The space L(W,Cµ
k ) is the space of linear bounded operators from W to Cµ

k equipped
with its corresponding operator norm, i.e.

‖A‖Dµk := sup
‖f‖W 6 1

‖Af‖µ , f ∈ Dµ
k .

The main tool for constructing the pathwise integral associated to semigroup func-
tionals is given by the next lemma and the following corollary. We use the notation
δ̂(Dk) := Im δ̂ Dk for k > 1.
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Lemma 3.B.2 (Sewing). There exists a unique linear operator

Λ : D1+
3 ∩ δ̂(D2)→ D1+

2

such that
δ̂Λ = Id D1+

3 ∩ δ̂(D2).

Moreover, if η > 1 then Λ is a continuous operator from Dη
3 ∩ δ̂(D2) to Dη

2 , i.e. there
exists a constant C = Cη > 0 such that

‖ΛA‖η 6 Cη ‖A‖η , A ∈ Dη
3 ∩ δ̂(D2). (3.B.1)

Proof. Concerning uniqueness, let Λ̃ be another map satisfying the conditions stated
in the Lemma. Then for A ∈ D1+

3 ∩ δ̂D2 we have

δ̂(Λ̃A− ΛA) = A− A = 0

hence Q := Λ̃A − ΛA ∈ Ker(δ̂) ∩ D2. By Lemma 3.B.1 there exists q ∈ D1 such
that Q = δ̂q. Note that for any partition Pn([s, t]) = (ti)0 6 i 6 n+1 of the interval
[s, t] ⊂ [0, T ] such that t0 = s and tn+1 = t, we have the following telescopic sum
expansion

n∑
i=0

[δ̂qStti+1
f ]ti+1ti =

n∑
i=0

[qStti+1
f ]ti+1

− [qStti+1
]ti − [qStti+1

(Sti+1ti − Id)f ]ti

=
n∑
i=0

[qStti+1
f ]ti+1

− [qSttif ]ti

= [qf ]t − [qStsf ]s

= [δ̂qf ]ts

for any f ∈ W . We conclude

[Qf ]ts = [δ̂qf ]ts =
n∑
i=0

[δ̂qStti+1
f ]ti+1ti =

n∑
i=0

[QStti+1
f ]ti+1ti .

Letting Pn([s, t]) be for example be the dyadic partition, one obtains for Q ∈ Dγ
2 , with

γ > 1, the estimate

|[QStti+1
f ]ti+1ti| 6 2−nγ

∥∥QStti+1
f
∥∥
γ
|t− s|γ 6 2−nγ ‖Q‖Dγ2 ‖f‖W |t− s|

γ

where we exploited that S is a contraction semigroup. Returning to the telescope sum,
we obtain

|[Qf ]ts| 6 2n(1−γ) ‖Q‖Dγ2 ‖f‖W |t− s|
γ.

By passing to the limit for n which tends to infinity, we conclude that for any f ∈ W
and any [s, t] ⊂ [0, T ]

[Qf ]ts = 0
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yielding Q = 0, i.e. ΛA = Λ̃A for any A ∈ D1+
3 ∩ δ̂(D2), concluding uniqueness.

Towards existence, let A ∈ D1+
3 ∩ δ̂(D2), i.e. there exist a B ∈ D2 and η > 1 such

that δ̂B = A ∈ Dη
3 . Let (rnk )0 6 k 6 2n be the dyadic partition of [s, t]. We set, following

[GT10]

Mn : D1+
3 ∩ δ̂(D2)→ D1+

2

δ̂B 7→Mnδ̂B

where

[(Mnδ̂B)f ]ts := [B(f)]ts −
2n−1∑
k=0

[B(Strnk+1
f)]rnk+1r

n
k
.

Note in particular that [Mnδ̂f ]ts = 0. We show that (Mnδ̂B)n is Cauchy in Dη
2 . Note

that

[(Mnδ̂B)f ]ts − [(Mn+1δ̂B)f ]ts =

=
2n−1∑
k=0

[B(Strn2k+2
f)]rn2k+2r

n
2k
− [B(Strn2k+2

f)]rn2k+2r
n
2k+1
− [B(Strn2k+1

f)]rn2k+1r
n
2k

=
2n−1∑
k=0

[δB(Strn2k+2
f)]rn2k+2r

n
2k+1r

n
2k
−

2n−1∑
k=0

[φB(Strn2k+2
f)]rn2k+2r

n
2k+1r

n
2k

=
2n−1∑
k=0

[δ̂B(Strn2k+2
f)]rn2k+2r

n
2k+1r

n
2k

6 (t− s)η
2n−1∑
k=0

∥∥∥δ̂B(Strn2k+2
f)
∥∥∥
η

2−nη

6 (t− s)η
∥∥∥δ̂B∥∥∥

Dη3

‖f‖W 2−n(η−1)

From which we deduce that (Mnδ̂B)n∈N is a Cauchy sequence in Dη
2 , indeed

∥∥∥Mnδ̂B −Mn+1δ̂B
∥∥∥
Dη2

6
∥∥∥δ̂B∥∥∥

Dη3

2−n(η−1).

Let Λδ̂B ∈ Dη
2 be its limit. By a telescope argument

∥∥∥Mnδ̂B
∥∥∥
Dη2

=

∥∥∥∥∥
n−1∑
k=0

Mkδ̂B −Mk+1δ̂B

∥∥∥∥∥
Dη2

6
n−1∑
k=0

2−k(η−1)
∥∥∥δ̂B∥∥∥

Dη3

6 Cη

∥∥∥δ̂B∥∥∥
Dη3

from which we obtain (3.B.1) using to weak-*-lower semicontinuity of the norm. One
can prove that the limit does not depend on the particular sequence, see [GT10, Propo-
sition 2.3].
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Finally, let u = 2m for some m ∈ 0, . . . , n and note that

[(δ̂Mnδ̂B)f ]tus = [(Mnδ̂B)f ]ts − [(Mnδ̂B)f ]tu − [(Mnδ̂B)f ]us − [(Mnδ̂B(Stu − Id))f ]us

= [Bf ]ts − [Bf ]tu − [BStuf ]us +
2n−1∑
k=0

[B(Strnk+1
f)]rnk+1r

n
k

−
2n−1∑
k=2m

[B(Strnk+1
f)]rnk+1r

n
k
−

2m−1∑
k=0

[B(Surnk+1
Stuf)]rnk+1r

n
k

= [Bf ]ts − [Bf ]tu − [BStuf ]us

= [δ̂Bf ]sut

from which we recover, in the limit n→∞, that δ̂Λ = Id D1+
3 ∩ δ̂(D2).

Corollary 3.B.3. Suppose that A ∈ D2 is such that δ̂A ∈ D1+
3 . Then there exists

I ∈ D1 such that

δ̂I =
(

Id− Λδ̂
)
A,

i.e. for every f ∈ W and (t, s) ∈ ∆2,
[
δ̂If
]
ts

= [Af ]ts −
[
Λδ̂Af

]
ts

. In particular, if

A ∈ Dµ
2 with µ > 0 and δ̂A ∈ Dη

3 with η > 1, then for every f ∈ W∣∣∣[δ̂If ]ts

∣∣∣ 6 (
‖A‖Dµ2 (t− s)µ +

∥∥∥δ̂A∥∥∥
Dη3

(t− s)η
)
‖f‖W . (3.B.2)

Finally [
δ̂If
]
ts

= lim
|P[s,t]|↓0

∑
[v,u]∈P[s,t]

[AStuf ]uv , (3.B.3)

where the limit is over any partition of [s, t] whose mesh tends to zero.

Proof. The proof is an easy application of the Sewing Lemma and the properties of
(D∗, δ̂). Indeed, observe that δ̂(Af − Λδ̂Af) = 0 for any f ∈ W , which means that
A− Λδ̂A ∈ Ker δ̂ D2 , and thus there exists I ∈ D1 such that δ̂I = A− Λδ̂A.

The estimate (3.B.2) follows from (3.B.1). Concerning (3.B.3), observe that for a
partition |P [s, t]|, using the properties of δ̂, one obtains∑

[v,u]∈P[s,t]

[AStuf ]uv =
∑

[v,u]∈P[s,t]

[
δ̂IStuf

]
uv

+
[
Λδ̂AStuf

]
uv

=

=
[
δ̂If
]
ts

+
∑

[v,u]∈P[s,t]

[
Λδ̂AStuf

]
uv
.

By taking the limit for the mesh which tends to zero and using the fact that Λδ̂A ∈ D1+
2 ,

the last sum converges to zero.
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Chapter 4

Averaging along irregular curves
for Burgers’ equation

We study a regularization by noise phenomena for a modified Burgers’ equation through
fractional Brownian motion of Hurst parameter H. Our analysis builds upon a recent
approach discussed in [HP21] to study regularization by noise for ODEs that relies
on quantifying the space-time regularities of local times associated with locally non-
deterministic processes. We establish existence of weak solutions to such equations,
provided the initial condition is chosen sufficiently small depending on the time horizon.

This chapter is based on a joint work in progress with Nicolas Perkowski.
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4.1 Introduction

In this chapter we consider the problem

∂tf + f̃∂xf = 0

f(0) = f0,
(4.1.1)

where for a function g, we employed the notation g̃(t, x) = g(t, x − wHt ) and where
wH : [0, T ]→ R is a fractional Brownian motion of Hurst parameter H. We show that
one can establish existence of solutions to the above equation provided H is chosen
sufficiently small and f0 ∈ C0,γ ∩W 1,1 is chosen sufficiently small depending on the
time horizon.

We will do so by employing a fixed point argument on the level of corresponding
transport equations

∂tf + b̃∂xf = 0

f(0) = f0.
(4.1.2)

Recall that (4.1.2) is intimately related to its associated characteristic equation

Xt = x+

∫ t

0

b̃(s,Xs)ds = x+

∫ t

0

b(s,Xs − wHs )ds. (4.1.3)

Heuristically, as for bounded continuous functions b : [0, T ]× R→ R, X can easily be
seen to be Lipschitz, the oscillations of sample paths of fractional Brownian motion
dominate the oscillations of X. This suggests to expect an averaging effect in the
Lebesgue integral of the above expression (4.1.3). In the case of the related problem

Yt = x+

∫ t

0

b(s, Ys)ds− wHt , (4.1.4)

obtained through the substitution Y = X − wH and H = 1/2 such studies of regu-
larization by noise go back to the pioneering works of [Zvo74] and [Ver81] (see also
the more recent work [KR04]). Regularisation by noise for the transport equation was
famously studied in the case of Brownian motion by [FGP09]. For a comprehensive
study of regularization by noise phenomena for ODEs and PDEs in the case of Brow-
nian motion, we refer the to St. Flour lecture notes [Fla11]. In the case of H 6= 1/2
(4.1.4) was studied in [NO02], [BNP19] and very recently in [NS21] for the case of two
fractional Brownian motions.

All of the above can be seen as mainly probabilistic approaches relying extensively
on Girsanov transforms or Malliavin calculus. An alternative approach to regular-
ization by noise for fractional Brownian motion (and even for more generic random
perturbations) that has enjoyed considerable interest since the past year goes back
to the works [CG16] and [Cat16] for ODEs and the transport equation respectively.
Similar in spirit to rough path theory this approach ”factorizes” the problem into an
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initial probabilistic step and subsequent purely analytical considerations. The central
object of study linking these steps is the averaging operator T−w

H
b associated with the

averaging of the non-linearity b along the path −wH , defined by

(T−w
H

t b)(x) :=

∫ t

0

b(s, x− wHs )ds. (4.1.5)

In a first probabilistic step to this approach, one establishes space-time regularity es-
timates for T−w

H

t b as a function of the regularity of b. Exploiting the so obtained
regularity estimates, one proceeds with a so called non-linear Young construction of
Lebesgue integrals. This approach to regularisation by noise for ODEs is then capable
of consistently solving (4.1.4) even in the case of nonlinearities that only enjoy distri-
butional regularity.

Recently, the above approach to ODEs and transport equations has been revisited
and extended in [GG20a], [GG20b] and moreover has been also applied to interacting
particle systems [HM20], distribution dependent SDEs [GHM21b], [GHM21a] and the
multiplicative stochastic heat equation [CH21].

A variation to this approach was recently proposed in [HP21] and will be the main
subject of investigation in the following. Let us sketch some main ideas of this ap-
proach before proceeding to the outline of the chapter.

4.1.1 Non-linear Young theory

In the following, let us sketch the main idea to non-linear Young integration in the spirit
of [HP21]. Suppose that a path w : [0, T ]→ Rd admits a local time L : [0, T ]× Rd →
Rd, then by the occupation times formula we have for any bounded and measurable
b : Rd → Rd and x ∈ Rd∫ t

0

b(x− wu)du =

∫
R
b(x− a)Lt(a)da = (b ∗ Lt)(x).

Notice in particular that due to Young’s convolutional inequality in Lemma 4.B.1, the
right hand side of this equality will be a well defined function in x ∈ Rd for certain
distributions b, provided the local time L enjoys sufficient regularity. In the case of
w being a fractional Brownian motion, we have the following quantitative result in
[HP21] for almost every realization of the local time.

Lemma 4.1.1 ([HP21, Theorem 17] ). Let w be a d-dimensional fractional Brownian
motion of Hurst parameter H < 1/d on [0, T ]. Then there exists a null set N such
that for all ω ∈ N c, the path w(ω) has a local time L(ω) and for λ < 1

2H
− d

2
and

γ ∈ [0, 1− (λ+ d
2
)H) we have

‖Ls,t(ω)‖Hλ 6 CT (ω)|t− s|γ. (4.1.6)

for any s, t ∈ [0, T ], where Ls,t = Lt − Ls.
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Remark 4.1.2 (Dependency on the time horizon). Remark that in the above Lemma,
one fixes a fractional Brownian motion on a given time horizon, wherefore the ran-
dom constant CT (ω) appearing in (4.1.6) also depends on T . However, note that by
monotonicity, we have for any fixed T ∗ and any T < T ∗ that

sup
s<t∈[0,T ]

‖Ls,t‖
|t− s|γ

6 sup
s<t∈[0,T ∗]

‖Ls,t‖
|t− s|γ

6 CT ∗(ω)

meaning we may choose the random constant CT (ω) in (4.1.6) uniformly for any
T 6 T ∗.

Remark 4.1.3 (Altering integrability). Taking the above result as starting point, ob-
serve that we can obtain similar estimates on ‖Ls,t‖Bαp,q for p > 2 via Besov space

embeddings as in 4.B.4. Moreover, note that by monotonicity, the support of Lt(ω)
is contained in the compact support of LT (ω) for any t ∈ [0, T ]. Denoting KT ∗ =
supp(LT ∗(ω)), we therefore have by the embedding in Besov spaces of compactly sup-
ported functions Bα

p+r,q(K) ↪→ Bα
p,q(K) for α ∈ R, p, q ∈ [1,∞] and r > 0 that for any

s, t ∈ [0, T ] and T < T ∗

‖Ls,t‖Bαp,q = ‖Ls,t‖Bαp,q(K) 6 cKT∗ ‖Ls,t‖Bαp+r,q(K) = cKT∗ ‖Ls,t‖Bαp+r,q .

In particular, we have for example

‖Ls,t‖W 1,1 6 CT ∗ ‖Ls,t‖H1 .

Once existence and quantitative estimates on the local time associated with w are
established, problems of the form

Xt = x+

∫ t

s

b(Xu − wu)du

allow for the following observation: Note that by the occupation times formula, we
have in the case of continuous functions b and for |t− s| � 1 the local approximation∫ t

s

b(Xu−wu)du '
∫ t

s

b(Xs−wu)du =

∫
Rd
b(Xs− y)Ls,t(y)dy = (b ∗Ls,t)(Xs) =: AXs,t.

Seen from the point of view of Young integration, it then becomes natural to propose
the following definition replacing the above Lebesgue integral:∫ t

s

b(Xu − wu)du := (ΞAX)s,t,

where Ξ denotes Gubinelli’s sewing operator (see [Gub04] or [FH14]). While it can be
easily checked that in the case of continuous and bounded functions b the proposed
definition coincides with the classical Lebesgue integral, the definition as a Sewing
provides a canonical extension to functions potentially enjoying only distributional
regularity by harnessing the averaging effects of the perturbing path w. With this
definition at hand, Harang and Perkowski then proceed to study problems of the form

Xs,t = (ΞAX)s,t, X0 = x.

and their associated flow.
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4.1.2 Organization

In the following section, we extend the results of [HP21] to non-autonomous problems
and add results derived in [GG20a] in the slightly different setting of averaging op-
erators. In particular this allows to establish invertibility and differentiability of the
associated flow as well as comparison principles and a priori bounds even in the case
of non-differentiable functions b. This is possible as the regularizing effect of the lo-
cal time L carries over from local approximations to the sewing. In Section 4.3 this
differentiability of the flow and its inverse allows us to study associated transport equa-
tions and establish well-posedness in the classical sense provided differentiable initial
conditions. For the case of less regular initial data, we moreover establish existence
and provide a priori bounds for solutions to the transport equation that might be of
independent interest. Finally, in Section 4.4, we show how by employing a fixed point
argument on the level of transport equations, we are able to address (4.1.1).

4.1.3 Notation

Let us fix some notation to be employed throughout the remaining chapter. Through-
out the remainder of this chapter, we shall fix a T ∗ > 0 and consider all appearing
problems on time intervals [0, T ] for T < T ∗. For a Banach space X and a given time
interval [0, T ], we shall denote

‖f‖CγTX := sup
s<t∈[0,T ]

‖ft − fs‖X
|t− s|γ

, ‖f‖C0,γ
T X := sup

t∈[0,T ]

‖ft‖X + ‖f‖CγTX .

We denote by C0
x = C0(R) the space of bounded uniformly continuous functions on R,

Cb
x the space ob bounded continuous functions on R and by Cα

x = Cα(R) the space of
globally Hölder-continuous functions on R. Hs,p

x and Bs
p,q denote Bessel potential spaces

respectively non-homogeneous Besov space on R. We use the convention Hs
x = Hs,2

x .
Moreover, for γ ∈ (1/2, 1) we define

Zγ
T := C0,γ

T Cb
x ∩ Cb

TC
γ
x ∩ L∞T L1

x.

4.2 ODEs and a priori bounds

Let us begin by considering a smooth and bounded function b : [0, T ] × R → R and
the associated problem

Xt = x+

∫ t

0

b(s,Xs − ws)ds

As b is assumed to be smooth, we know that there exists a unique Lipschitz contin-
uous solution X. Notice that for the integral on the right hand side, we then have
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heuristically ∫ t

0

b(s,Xs − ws)ds = lim
|P|→0

∑
[u,v]∈P

b(u,Xu − wu)(u− v)

= lim
|P|→0

∑
[u,v]∈P

∫ v

u

b(u,Xu − ws)ds

= lim
|P|→0

∑
[u,v]∈P

bu ∗ Lu,v(Xu).

We next show that the right hand side can indeed be interpreted as the sewing of the
germ AXs,t := bs ∗ Ls,t(Xs), provided some further conditions are imposed on b that
however do not require Lipschitz continuity.

Lemma 4.2.1 (Identification of Riemann integral with Sewings). Let γ ∈ (1/2, 1) and
H ∈ (0, 1/3). Suppose that b ∈ Cγ

TC
b
x. Let L be the local time of fractional Brownian

wH motion with Hurst parameter H in one dimension and X : [0, T ] → R such that
‖X‖CγT <∞. Then the germ

(AX)s,t := (bs ∗ Ls,t)(Xs)

admits a Sewing. Assume moreover that for some ε > 0 we have b ∈ Cb
tC

ε
x. Then the

germ

(TX)s,t = T−w
H

s,t (Xs) :=

∫ t

s

b(r,Xs − wHr )dr

admits a sewing and moreover, we have∫ t

0

b(s,Xs − wHs )ds = (ΞAX)0,t = (ΞTX)0,t.

Proof. Remark first that by Lemma 4.1.1 and H < 1/3 we have that L ∈ C1/2
t H1

x. By
Remark 4.1.3 we therefore have

|(δAX)s,u,t| = |bs ∗ Lu,t(Xs)− bu ∗ Lu,t(Xu)|
= |bs,u ∗ Lu,t(Xs) + bu ∗ Lu,t(Xs)− bu ∗ Lu,t(Xu)|
6 ‖bs,u ∗ Lu,t‖∞ + ‖bu ∗ Lu,t‖C1

b
|Xu −Xs|

6 CT ∗ ‖b‖Cγt L∞x ‖L‖C1/2
t L2 |u− s|γ|t− u|1/2

+ CT ∗ ‖b‖L∞t,x ‖L‖C1/2
t H1

x
|t− u|1/2 ‖X‖Cγ |u− s|

γ

= O(|t− s|1/2+γ),

where we used that due to the continuity of the translation map in L1 and Young’s
inequality, x → (bu ∗ ∂xLu,t)(x) is indeed continuous. Hence AX does indeed admit a
Sewing and we have

|AXs,t − (ΞAX)s,t| = O(|t− s|1/2+γ).
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Moreover for b ∈ Cb
TC

ε
x and for any s ∈ [0, T ], it can be easily seen that the germ

Bs
u,v = b(s,Xs − wHu )(v − u) admits a Sewing for which we have by definition

(ΞBs)s,t =

∫ t

s

b(s,Xs − wHr )dr = (bs ∗ Ls,t)(Xs) = AXs,t.

Similarly, it can be easliy checked that also the germ Cu,v = b(u,Xu − wHu )(v − u)
admits a Sewing for which we have by definition

(ΞC)u,v =

∫ v

u

b(r,Xr − wHr )dr.

Remark in particular that Bs
s,t = Cs,t. We therefore conclude that∣∣∣∣∫ t

s

b(r,Xr − wHr )dr − (ΞAX)s,t

∣∣∣∣
6 |(ΞC)s,t − Cs,t|+ |Bs

s,t − (ΞBs)s,t|+ |AXs,t − (ΞAX)s,t|
= O(|t− s|1+εH).

Hence the function

t→
∫ t

0

b(r,Xr − wHr )dr − (ΞAX)t

is constant and since it starts in zero. We have therefore established∫ t

0

b(r,Xr − wHr )dr = (ΞAX)t.

Concerning the second germ, note that

|(δTX)s,u,t| =
∣∣∣∣∫ t

u

b(r,Xu − wHr )− b(r,Xs − wHr )dr

∣∣∣∣
6 ‖b‖CbtCεx |t− u||Xu −Xs|ε

6 ‖b‖CbtCεx ‖X‖Cγ |t− s|
1+εγ.

Hence it admits a Sewing and we have

|(TX)s,t − (ΞTX)s,t| = O(|t− s|1+εγ).

Moreover, it can be easily seen that the germ B̃s
u,v := b(u,Xs − wHu )(v − u) admits a

Sewing for which we have by definition

(ΞB̃s)s,t =

∫ t

s

b(r,Xs − wHr )dr = (TX)s,t.

Similarly to above, we therefore conclude that since Cs,t = B̃s
s,t, we have∣∣∣∣∫ t

s

b(r,Xr − wHr )dr − (ΞTX)s,t

∣∣∣∣
6 |(ΞC)s,t − Cs,t|+ |B̃s

s,t − (ΞB̃s)s,t|+ |TXs,t − (ΞTX)s,t|
= O(|t− s|1+εH),

which completes the proof.
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Remark 4.2.2. Notice that in locally approximating the object∫ t

s

b(r,Xr − wHr )dr

the averaging operator approach only replaces Xr by Xs, while the approach due to
[HP21] in the non-autonomous setting requires to replace both Xr by Xs and b(r, ·)
by b(s, ·). On the level of Sewings, this is the reason why results in [GG20a] don’t
require additional Hölder regularity in time, while in our setting, we will always require
b ∈ C0,γ

t Cb
x. Notice also, that in the autonomous setting, this issue doesn’t arise and

the approaches can thus be seen as equivalent in spirit.

Lemma 4.2.3 (ODEs and priori bounds I). Let T ∗ > T > 0. Assume b ∈ C0,γ
t Cb

x for
γ ∈ (1/2, 1) and H < 1/5 ∧ 2(1− γ). Then for AXs,t := bs ∗ Ls,t(Xs) the problem

Xs,t = (ΞAX)s,t, X0 = x ∈ R, (4.2.1)

where Ξ : Cγ,2γ
2 → Cγ denotes the sewing operator (see Lemma 4.A.1) admits a unique

solution X ∈ Cγ on [0, T ]. Moreover if in addition ‖b‖C0,γ
t Cbx

6 1, we have the a priori
bounds

‖X‖Cγ 6 CT ∗ ,

and
sup
t 6 T
|Xt| 6 |x|+ T γCT ∗ ,

for some constant CT ∗. Finally, assuming in addition that b ∈ Cb
tC

γ
x , then X is the

unique solution in Cγ to

Xt = x+

∫ t

0

b(s,Xs − wHs )ds.

Proof. The proof is very similar to the one establishing existence and uniqueness to
Young differential equations. Being able to leverage the regularity of the local time,
we can in fact set up a fixed point argument in Cγ (i.e. not in Cγ−ε for some small
ε > 0 as usually done, refer to [FH14, Chapter 8.3] for example).

Let us define B = {Y ∈ Cγ : Y0 = x, ‖Y ‖Cγ 6 1}. Equipped with the metric
(X, Y ) → ‖X − Y ‖Cγ , B is a complete metric space. We show that the mapping
M : B → B defined by

M : X → x+ (ΞAX)0,(·)

is well defined and a contraction provided T is chosen sufficiently small. Remark
first that by Lemma 4.1.1 and H < 1/3 we have that L ∈ C

1/2+ε
t H1

x. Similarly, by
H < 2(1− γ), we have and L ∈ Cγ+ε

t L2 for some ε > 0. By Remark 4.1.3 we therefore
have

|AXs,t| 6 ‖bs ∗ Ls,t‖∞
6 ‖b‖L∞t,x ‖L‖Cγ+εt L1

x
T ε|t− s|γ

6 CT ∗T
ε ‖b‖L∞t,x ‖L‖Cγ+εt L2

x
|t− s|γ

6 CT ∗T
ε ‖b‖L∞t,x |t− s|

γ,
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as well as

|(δAX)s,u,t| = |bs ∗ Lu,t(Xs)− bu ∗ Lu,t(Xu)|
6 |bs,u ∗ Lu,t(Xs)|+ |bu ∗ Lu,t(Xs)− bu ∗ Lu,t(Xu)|
6 ‖bs,u ∗ Lu,t‖∞ + ‖bu ∗ Lu,t‖C1

b
|Xu −Xs|

6 CT ∗T
ε ‖b‖Cγt L∞x ‖L‖C1/2+ε

t L2 |u− s|γ|t− u|1/2

+ CT ∗T
ε ‖b‖L∞t,x ‖L‖C1/2+ε

t H1
x
|t− u|1/2 ‖X‖Cγ |u− s|

γ

6 CT ∗T
ε(‖b‖L∞t,x (1 + ‖X‖Cγ ) + ‖b‖Cγt L∞x )|t− s|1/2+γ,

where we used that due to the continuity of the translation map in L1 and Young’s
inequality, x→ (bu ∗ ∂xLu,t)(x) is indeed continuous. We therefore conclude that∥∥ΞAX

∥∥
γ
6
∥∥AX∥∥

γ
+
∥∥A− ΞAX

∥∥
γ

6 CT ∗T
ε(‖b‖L∞t,x (1 + ‖X‖Cγ ) + ‖b‖Cγt L∞x )

(4.2.2)

and thus for T sufficiently small depending on CT ∗ and b and ‖X‖Cγ 6 1 we have

‖M(X)‖Cγ =
∥∥ΞAX

∥∥
Cγ

6 1

This shows that the mapping M leaves B invariant. Moreover, let X1, X2 ∈ B, then
by the linearity of the Sewing operator we have

(M(X1)−M(X2))s,t = (Ξ(AX
1 − AX2

))s,t.

Note that we have

(AX
1 − AX2

)s,t = bs ∗ Ls,t(X1
s )− bs ∗ Ls,t(X2

s )

6 CT ∗ ‖b‖L∞t,x ‖L‖Cγt H1
x
T γ
∥∥X1 −X2

∥∥
Cγ
|t− s|γ

6 CT ∗T
γ ‖b‖L∞t,x

∥∥X1 −X2
∥∥
Cγ
|t− s|γ.

Since we also have H < 1/5, by Lemma 4.1.1 we have L ∈ C1/2+ε
t H2

x. Moreover, by
the division property (see Lemma 4.A.2) we also have

|(δAX1 − AX2

)s,u,t| 6 (|bs,u) ∗ Lu,t(X1
s )− (bs,u) ∗ Lu,t(X2

s )|
+ |bu ∗ Lu,t(X1

s )− bu ∗ Lu,t(X1
u)− bu ∗ Lu,t(X2

s ) + bu ∗ Lu,t(X2
u)|

6 CT ∗ ‖b‖Cγt L∞x |u− s|
γ ‖L‖

C
1/2
t H1

x
|t− u|1/2

∥∥X1 −X2
∥∥
Cγ
T γ

+ CT ∗ ‖b‖L∞t,x ‖L‖C1/2+εH2
x
T ε|t− u|1/2

∥∥X1 −X2
∥∥
Cγ
|u− s|γ

6 CT ∗T
γ ‖b‖Cγt L∞x

∥∥X1 −X2
∥∥
Cγ
|t− s|1/2+γ

+ CT ∗T
ε ‖b‖L∞t,x

∥∥X1 −X2
∥∥
Cγ
|t− s|1/2+γ.
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We therefore conclude again that∥∥M(X1)−M(X2)
∥∥
Cγ

6
∥∥∥AX1 − AX2

∥∥∥
Cγ

+
∥∥∥AX1 − AX2 − Ξ(AX

1 − AX2

)
∥∥∥
Cγ

6 CT ∗T
ε
(
T γ−ε ‖b‖L∞t,x + T γ−ε ‖b‖Cγt L∞x ‖b‖L∞t,x

)∥∥X1 −X2
∥∥
Cγ
,

yielding that M is indeed a contraction, provided T is chosen sufficiently small. As
this choice can be done independent of the initial condition, by iteration we obtain a
unique solution X to (4.2.1) on any time interval [0, T ] for T < T ∗. Moreover, provided
‖b‖C0,γ

t Cbx
6 1, we can now go back to (4.2.2) and observe that for this unique solution

X to (4.2.1) we moreover have in the notation of Lemma 4.A.3 and h < T

‖X‖γ,h =
∥∥ΞAX

∥∥
γ,h

6 CT ∗h
ε(1 + ‖X‖γ,h)

Hence, choosing h = (2CT ∗)
−1/ε, we infer that

‖X‖γ,h 6 1

and thus by Lemma 4.A.3, we obtain for a new constant depending only on T ∗ and
still denoted CT ∗ that

‖X‖Cγ 6 CT ∗

Finally, the last claim of the statement is a direct consequence of Lemma 4.2.1.

Remark 4.2.4. Let us point out that at first sight, the condition H < 1/5 ∧ 2(1− γ)
might seem counter-intuitive, as it becomes more restrictive for γ close to one, i.e.
very regular b. However, this restriction appears as the Lemma establishes not only
existence of a unique solution X to (4.2.1) but also states that said solution lies in Cγ.
Indeed, since the germ

AXs,t = bs ∗ Ls,t(Xs)

inherits the Hölder regularity of the local time, demanding the solution to lie in Cγ

requires more and more restrictive conditions on H. For b ∈ Cb
tC

γ
x however we can

by Lemma 4.2.1 identify the Sewings in question again as Lebesgue integrals, allowing
to recover Lipschitz continuity in time and therefore to drop the condition H < 2(1 −
γ) (refer also to Lemma 4.2.8). This possibility will however be neither available in
considering the derivative of the associated flow later on, nor in the following Lemma.

We next establish the following comparison principle

Lemma 4.2.5 (Comparison). Let T ∗ > T > 0. Let γ ∈ (1/2, 1), α > 1 and

H <
1

2α + 3
∧ 2(1− γ)

2α + 1
.

For i ∈ {1, 2} and bi ∈ C0,γ
t Cb

x ∩ Cb
tC

γ
x such that ‖bi‖C0,γ

t Cbx
6 1, let X i = X i(x) be the

unique solution to the problem

X i
t = x+

∫ t

0

bi(s,X i
s − wHs )ds
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on [0, T ] or by Lemma 4.2.1 equivalently

X i
s,t = (ΞAi)s,t, X0 = x,

where
Ais,t = bis ∗ Ls,t(X i

s).

We then have∥∥X1 −X2
∥∥
Cγt L

∞
x

6 CT ∗
(∥∥b1

0 − b2
0

∥∥
B−α∞,∞

+
∥∥b1 − b2

∥∥
Cγt B

−α
∞,∞

)
.

Proof. Remark first that since bi is Hölder continuous in space uniformly in time, it
is in particular uniformly continuous in space, uniformly in time. Hence bi ∈ Cγ

t C
0

and therefore by the Besov space embedding C0 ↪→ B0
∞,∞ ↪→ B−α∞,∞ we have indeed

bi ∈ Cγ
t B
−α
∞,∞.

Note that by H < 2(1− γ)/(2α+ 1), we have L ∈ Cγ
t H

α+ε and by H < 1/(2α+ 3) we
have L ∈ C1/2+εHα+1+ε for some ε > 0 . We consider the sewing of the germ

As,t : = |b1
s ∗ Ls,t(X1

s )− b2
s ∗ Ls,t(X2

s )|
6 |(b1

s − b2
s) ∗ Ls,t(X1

s )|+ |b2
s ∗ Ls,t(X1

s )− b2
s ∗ Ls,t(X2

s )|
6
∥∥(b1

s − b2
s) ∗ Ls,t

∥∥
∞ +

∥∥b2
s ∗ ∂xLs,t

∥∥
∞ |X

1
s −X2

s |
6
∥∥(b1

s − b2
s) ∗ Ls,t

∥∥
B0
∞,1

+
∥∥b2

s ∗ ∂xLs,t
∥∥
∞ |X

1
s −X2

s |

6 CT ∗
∥∥b1

s − b2
s

∥∥
B−α∞,∞

‖Ls,t‖Bα1,1 +
∥∥b2

s

∥∥
L∞
‖Ls,t‖W 1,1 |X1

s −X2
s |

6 CT ∗
(∥∥b1

0 − b2
0

∥∥
B−α∞,∞

+
∥∥b1 − b2

∥∥
Cγt B

−α
∞,∞

T γ
)
‖L‖CγHα+ε |t− s|γ

+ CT ∗T
γ ‖L‖CγH1 |t− s|γ

∥∥X1 −X2
∥∥
Cγt L

∞
x

6 CT ∗
(∥∥b1

0 − b2
0

∥∥
B−α∞,∞

+
∥∥b1 − b2

∥∥
Cγt B

−α
∞,∞

T γ
)
|t− s|γ

+ CT ∗T
γ
∥∥X1 −X2

∥∥
Cγt L

∞
x
|t− s|γ,

for which we also have by division property (see Lemma 4.A.2)

(δA)s,u,t

=|(b1
s − b1

u) ∗ Lu,t(X1
s )− (b1

s − b1
u) ∗ Lu,t(X2

s )|
+ |(b1

s,u − b2
s,u) ∗ Lu,t(X2

s )|
+ |(b1

u − b2
u) ∗ Lu,t(X1

s )− (b1
u − b2

u) ∗ Lu,t(X1
u)|

+ |b2
u ∗ Lu,t(X1

s )− b2
u ∗ Lu,t(X1

u)− b2
u ∗ Lu,t(X2

s ) + b2
u ∗ Lu,t(X2

u)|
6 CT ∗T

ε
∥∥b1
∥∥
CγL∞

|u− s|γ ‖L‖
C

1/2+ε
t H1 |t− u|1/2

∥∥X1 −X2
∥∥
Cγ
T γ

+ CT ∗T
ε
∥∥b1 − b2

∥∥
CγB−α∞,∞

|u− s|γ ‖L‖C1/2+εHα+ε |t− u|1/2

+ CT ∗T
ε(
∥∥b1

0 − b2
0

∥∥
B−α∞,∞

+ T γ
∥∥b1 − b2

∥∥
Cγt B

−α
∞,∞

) ‖L‖C1/2+εHα+1+ε |t− u|1/2
∥∥X1

∥∥
Cγ
|u− s|γ

+ CT ∗T
ε
∥∥b2
∥∥
L∞t,x
‖L‖C1/2+εH2

x
|t− u|1/2

∥∥X1 −X2
∥∥
Cγ
|u− s|γ.
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The conclusion now follows as in the proof of Lemma 4.2.3.

After establishing well posedness above via the Sewing Lemma, let us reference
[GG20a] adapted to our setting to establish existence of a differentiable flow for b ∈ Zγ

T .
This adaption is possible in the setting we are concerned with thanks to Lemma 4.2.1.

Lemma 4.2.6 (Differentiable flow, [GG20a, Theorems 16, 17]). Let b ∈ L∞t,x and
γ > 1/2. Assume that for the averaging operator

Ts,t(·) =

∫ t

s

b(r, · − wHr )dr

we have

sup
t6=s

∥∥∥T (·)
s,t

∥∥∥
C

3/2
x

|t− s|γ
<∞

Then for (TX)s,t = Ts,t(Xs), the problem

Xs,t = (ΞTX)s,t, X0 = x

admits a flow of diffeomorphisms Φ : ∆2
T × R → R belonging to Cγ

t C
1
loc. Denoting

Φt(x) = Φ(0, t, x), it satisfies for a constant C = C(γ, T, ‖b‖L∞t,x ∨
∥∥A(·)

∥∥
Cγt C

3/2
x

)

|Φt(x)− Φt(y)| 6 C(1 + T γ)|x− y|

and the same inequality holds for it’s spatial inverse ψt(·) = (Φt(·))−1. Moreover, we
have

DxΦs,t(x) = (ΞB̃(DxΦ,Φ))s,t, DxΦ0(x) = 1

where
B̃

(DxΦ,Φ)
s,t = ((∂xT )Φ(x))s,t(DxΦs)(x).

Moreover, we have for another constant c = c(γ, T, ‖b‖L∞t,x ∨
∥∥A(·)

∥∥
Cγt C

3/2
x

) the bound

|DxΦt(x)| 6 c,

and similarly for the derivative of the inverse flow.

In the following, let us adapt the above to our context working with convolutions
with the local time rather than averaging operators. For ‖b‖ZγT 6 1 we moreover

establish a priori bounds uniform in space that depend only on T ∗.

Lemma 4.2.7 (A priori bounds II). Let T ∗ > T > 0. Suppose γ > 1/2 and H <
2(1 − γ)/3 and b ∈ Zγ

T such that ‖b‖ZγT 6 1. Then Lemma 4.2.6 applies. Assume in

addition H < 1/5. Then we have in the notation of Lemma 4.2.6:

Φt(x) = x+ (ΞTΦ)0,t = x+ (ΞAΦ)0,t (4.2.3)
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for t ∈ [0, T ] where (AX)s,t = bs ∗ Ls,t(Xs). Moreover, we have

|Φt(x)− Φt(y)| 6 CT∗t
γ|x− y|

and
|Φt(x)− Φs(x)− bs ∗ Ls,t(Φ(s(x))| 6 CT ∗|t− s|γ+1/2 (4.2.4)

uniformy in x ∈ R for (s, t) ∈ ∆2([0, T ]) and some ε > 0. Moreover, for DxΦt :=
DxΦ(0, t, x) we have for

Bs,t = (bs ∗ ∂xLs,t)(Φs(x))DxΦs(x)

that
DxΦt(x) = 1 + (ΞB)0,t = 1 + (ΞB̃)s,t, (4.2.5)

and
|(DxΦ(x))s,t −B(x)s,t| 6 CT ∗|t− s|γ+1/2 (4.2.6)

uniformly in x ∈ R for (s, t) ∈ ∆2([0, T ]) and some ε > 0. Moreover, we have the a
priori bounds

‖DxΦ‖Cγt L∞x 6 CT ∗

and
|DxΦt(x)| 6 1 + T γCT ∗ .

for t ∈ [0, T ], x ∈ R. Moreover similar bounds hold for the inverse flow and its deriva-
tive.

Proof. Note that we may apply Lemma 4.2.6 under the stated condition on H thanks
to Lemma 4.A.4 (choosing s = 0, ρ = 3/2+δ for some small δ > 0, p, q arbitrarily large
and exploiting the corresponding Besov space embeddings in Lemma 4.B.4). Note that
equations (4.2.3) and (4.2.5) are an immediate consequence of the previous Lemma
4.2.6 and Lemma 4.2.1 (respectively a slight variation of the latter one). Note that

L ∈ Cγ
t H

1 ∩ C1/2+ε
t H2 for some ε > 0. Let us note Φt(x) := Φ(0, t, x), then we have

Φt(x)− Φt(y) = x− y + (ΞA)0,t

where As,t = (bs ∗ Ls(Φs(x))− bs ∗ Ls(Φs(y)) and therefore

As,t = (bs ∗ Ls(Φs(x))− bs ∗ Ls(Φs(y))

6 ‖bs ∗ Ls,t‖C1 |Φs(x)− Φs(y)|
6 CT ∗ ‖L‖Cγt H1

x
|t− s|γ(|x− y|+ T γ ‖Φ(x)− Φ(y)‖Cγ )

Moreover, we have by the division property Lemma 4.A.2

(δA)s,u,t 6 |bs,u ∗ Lu,t(Φs(x))− bs,u ∗ Lu,t(Φs(y))|
+ |bu ∗ Lu,t(Φs(x))− bu ∗ Lu,t(Φu(x))− bu ∗ Lu,t(Φs(y)) + bu ∗ Lu,t(Φu(y))|
6 CT ∗T

ε|u− s|γ ‖L‖
C

1/2+ε
t H1

x
|t− u|1/2(|x− y|+ T γ ‖Φ(x)− Φ(y)‖Cγ )

+ CT ∗ ‖Lu,t‖H2 (|x− y|+ ‖Φ(x)− Φ(y)‖Cγ )|u− s|
γ

6 CT ∗T
ε(|x− y|+ T γ ‖Φ(x)− Φ(y)‖Cγ )|t− s|

γ+1/2

+ CT ∗T
ε(|x− y|+ ‖Φ(x)− Φ(y)‖Cγ )|t− s|

γ+1/2



86 Averaging along irregular curves for Burgers’ equation

and therefore for T sufficiently small, we have indeed

‖Φ(x)− Φ(y)‖Cγ 6 CT ∗|x− y|

where as in Lemma 4.2.3, we can pass to global bounds for any T < T ∗ via Lemma
4.A.3. Concerning the bound on the derivative of the flow, we proceed similarly. Note
that DΦ0(x) = 1 and thus

|Bs,t| = |bs ∗ ∂xLs,t(Φs(x))DxΦs(x)|
6 ‖bs ∗ ∂xLs,t‖∞ (1 + T γ ‖DxΦ‖Cγ )
6 CT ∗T

ε ‖L‖Cγ+εt H1
x
|t− s|γ(1 + T γ ‖DxΦ‖Cγ )

6 CT ∗T
ε(1 + T γ ‖DxΦ‖Cγ )|t− s|

γ

Moreover, we have

|(δB)s,u,t| 6 |bs,u ∗ ∂xLu,t(Φs)DxΦs|
+ |bu ∗ ∂xLu,t(Φs)DxΦs − bu ∗ ∂xLu,t(Φu)DΦs|
+ |bu ∗ ∂xLu,t(Φu)(DxΦu −DxΦs)|
6 CT ∗T

ε ‖L‖
C

1/2+ε
t H1

x
(1 + T γ ‖DxΦ‖Cγ )|t− s|

γ+1/2

+ CT ∗T
ε ‖L‖

C
1/2+ε
t H2

x
‖Φ‖Cγ (1 + T γ ‖DxΦ‖Cγ )|t− s|

γ+1/2

+ CT ∗T
ε ‖L‖

C
1/2+ε
t H1

x
T γ ‖DxΦ‖Cγ |t− s|

γ+1/2

and thus, as before for T sufficiently small, we do indeed recover the desired a priori
bound on ‖DΦ‖Cγ . Since moreover,

|DΦt(x)| 6 1 + T γ ‖DΦ‖Cγ

this also establishes the uniform bound on the derivative of the flow Φ. Finally, the
expansion (4.2.4) is a direct consequence of Lemma 4.2.1 and the expansion (4.2.6)
follows from the uniform bound on δB above and the Sewing Lemma.

Remark 4.2.8 (Higher time regularity). Note that in our setting where we assume b
to be bounded continuous, we also have from classical considerations and Lemma 4.2.1
that

|Φt(x)− Φs(x)| =
∣∣∣∣∫ t

s

b(u,Φu(x)− wu)du
∣∣∣∣ 6 ‖b‖∞ |t− s|

Moreover, by differentiating the relation ψt(Φt(x)) = x in time, we have

|ψt(x)− ψs(x)| =
∣∣∣∣∫ t

s

Dxψu(x)b(u, x− wu)du
∣∣∣∣ 6 ‖Dψ‖∞ ‖b‖∞ |t− s|
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4.3 The transport equation

Definition 4.3.1. Let b ∈ Ct,x, H < 1/3. A function f ∈ L∞t L1
x is called solution to

the problem

∂tf + b̃∂xf = 0

f(0) = f0 ∈ L1,

where b̃(t, x) = b(t, x− wHt ), if any s 6 t ∈ [0, T ] and any ϕ ∈ C2
b

〈ft − fs, ϕ〉 − 〈fsbs ∗ ∂xLs,t, ϕ〉 − 〈fsbs ∗ Ls,t, ∂xϕ〉 = O(|t− s|1+ε),

for some ε > 0. Note in particular that H < 1/3 implies that bs ∗ ∂xLs,t is bounded
continuous in space, uniformly in time and therefore the left hand side is meaningful.

Remark 4.3.2. Note that for f, b ∈ Zγ
T with γ > 1/2, the germ As,t = 〈fsbs ∗∂xLs,t, ϕ〉

admits a sewing. Moreover, note that for s ∈ [0, T ] the product fs∂xb̃s is well defined
as an element in Bγ−1

∞,∞ (refer to Lemmata 4.B.2 and 4.B.3) and the function s →
〈fs∂xb̃s, ϕ〉 is continuous, meaning that similar to Lemma 4.2.1 one has

(ΞA)s,t =

∫ t

s

〈fr∂xb̃r, ϕ〉dr.

Similarly, we can identify the sewing of the term Bs,t = 〈fsbs ∗ Ls,t, ∂xϕ〉 as

(ΞB)s,t =

∫ t

s

〈frb̃r, ∂xϕ〉dr.

Hence, by applying the sewing operator Ξ to the equality

〈ft − fs, ϕ〉 − 〈fsbs ∗ ∂xLs,t, ϕ〉 − 〈fsbs ∗ Ls,t, ∂xϕ〉 = O(|t− s|1+ε)

satisfied by our solution in terms of Definition 4.3.1, we obtain

〈ft − f0, ϕ〉 =

∫ t

0

〈fs∂xb̃s, ϕ〉+ 〈fsb̃s, ∂xϕ〉ds.

Therefore, the solution to be constructed in Lemma 4.3.3 will actually be a weak solution
in the classical PDE sense. Similarly for γ > 1/2 and b ∈ Zγ

T any weak solution f
in the above PDE sense such that f ∈ Zγ

T is also a solution in the sense of Definition
4.3.1 thanks to an adaption of Lemma 4.2.1.

4.3.1 Existence

With the above at hand, we are ready to establish existence of solutions to the above
transport equation under less restrictive conditions on the initial condition.
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Lemma 4.3.3. Let f0 ∈ L1
x, γ > 1/2 and H < 1/5 ∧ 2(1 − γ)/3. let b ∈ Zγ

T . Let
ψ : ∆T × R→ R be the inverse flow associated to the problem

Xs,t = (ΞAX)s,t X0 = x

where (AX)s,t = bs ∗ Ls,t(Xs). Then f(t, x) := f0(ψ(0, t, x)) is a solution to

∂tf + b̃∂xf = 0

f(0) = f0

in the sense of Definition 4.3.1.

Proof. Note that by change of variables and a Taylor expansion in ϕ we have for some
point p(s, t, x) between Φt(x) and Φs(x)

〈ft, ϕ〉 =

∫
R
f0(ψt(x))ϕ(x)dx

=

∫
R
f0(x)ϕ(Φt(x))DxΦt(x)dx

=

∫
R
f0(x)ϕ(Φs(x))DxΦt(x)dx+

∫
R
f0(x)(∂xϕ)(Φs(x))(Φt(x)− Φs(x))DxΦt(x)dx

+

∫
R
f0(x)

1

2
(∂2
xϕ)(p(s, t, x))|Φt(x)− Φs(x)|2DxΦt(x)dx.

Note that by the a priori bounds in Lemmata 4.2.3 and 4.2.7, we have that∣∣∣∣∫
R
f0(x)

1

2
(∂2
xϕ)(p(s, t, x))|Φt(x)− Φs(x)|2DxΦt(x)dx

∣∣∣∣
6 ‖f0‖L1 ‖ϕ‖C2

b
‖Φ‖2

Cγt L
∞
x
|t− s|2γ ‖DxΦ‖L∞t,x = O(|t− s|2γ)

Note moreover that by Lemma 4.2.7

|DxΦt(x)−DxΦs(x)− (bs ∗ ∂xLs,t)(Φs(x))DxΦs(x)| = O(|t− s|γ+1/2)

and
|Φt(x)− Φs(x)− (bs ∗ Ls,t)(Φs(x))| = O(|t− s|γ+1/2)

uniformly in x ∈ R. Hence, we obtain

〈ft − fs, ϕ〉 − 〈(bs ∗ ∂xLs,t)fs, ϕ〉 − 〈(bs ∗ Ls,t)fs, ∂xϕ〉

=

∫
R
f0(x)ϕ(Φs(x)) (DxΦt(x)−DxΦs(x)) dx

+

∫
R
f0(x)(∂xϕ)(Φs(x))(Φt(x)− Φs(x))DxΦt(x)dx

− 〈(bs ∗ ∂xLs,t)fs, ϕ〉 − 〈(bs ∗ Ls,t)fs, ∂xϕ〉

=

∫
R
f0(x)ϕ(Φs(x)) (DxΦt(x)−DxΦs(x)− (∂xb ∗ Ls,t)(Φs(x))DxΦs(x)) dx

+

∫
R
f0(x)(∂xϕ)(Φs(x))(Φt(x)− Φs(x)− (b ∗ Ls,t)(Φs(x)))DxΦt(x)dx

= O(|t− s|γ+1/2),

where again we exploited f0 ∈ L1
x, ϕ ∈ C2

b and DxΦ ∈ L∞t,x.



The transport equation 89

4.3.2 Conservation of regularity

We next show that in our framework, the solution f described above preserves the
regularity of b, i.e. if b ∈ Zγ

T , then f ∈ Zγ
T .

Lemma 4.3.4 (Conservation of regularity). Let T ∗ > T > 0 Let γ > 1/2 and H <
1/5 ∧ 2(1− γ)/3. Assume b ∈ Zγ

T with ‖b‖ZγT 6 1. Let ψ : ∆2([0, T ])× R→ R be the

inverse flow associated with the problem

Xs,t = (ΞAX)s,t, X0 = x,

where AXs,t = bs ∗ Ls,t(Xs). Let f0 ∈ Cγ ∩ L1 ∩ L∞. Then for f(t, x) := f0(ψ(0, t, x)),
we have

‖f‖ZγT 6 (1 + CT ∗T
γ)(‖f0‖Cγ + ‖f0‖L1 + ‖f0‖L∞).

Proof. Note by Lemma 4.2.7, we have

|ψt(x)− ψt(y)| 6 CT∗T
γ|x− y|

and therefore in particular

|f(t, x)− f(t, y)| 6 ‖f0‖Cγ |ψt(x)− ψt(y)|γ 6 ‖f0‖Cγ CT ∗T
γ|x− y|γ

which shows that f ∈ C0
t C

γ
x . Moreover, we have by Remark 4.2.8

|ψt(x)− ψs(x)| 6 |t− s| ‖Dxψ‖∞ ‖b‖∞ 6 (1 + CT ∗T
γ)|t− s|

Combined with

|f(t, x)− f(s, x)| 6 ‖f0‖Cγ |ψt(x)− ψs(x)|γ

we see that f ∈ Cγ
t L
∞
x . Next, we have∫

R
|f(t, x)|dx =

∫
R
|f0(ψt(x))|dx =

∫
R
|f0(x)|DxΦt(x)dx 6 (1 + CT ∗T

γ) ‖f0‖L1
x

and therefore f ∈ L∞t L1
x. Finally, it is immediate that ‖f‖L∞t,x 6 ‖f0‖L∞ .

4.3.3 Uniqueness

In the following subsection, we establish uniqueness of solutions to the transport equa-
tion for b ∈ Zγ

T under the additional assumption of f0 ∈ C1. Let us first remark that
in this setting, the solution f constructed in Lemma 4.3.3 is actually continuously
differentiable in both time and space and therefore a strong solution. Indeed, we have

∂tf(t, x) = (∂xf0)(ψ(0, t, x))
d

dt
ψ(0, t, x) = (∂xf0)(ψ(0, t, x))Dxψ(0, t, x)b(t, x− wt)

and

∂xf(t, x) = (∂xf0)(ψ(0, t, x))
d

dt
ψ(0, t, x) = Dxψ(0, t, x).
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Lemma 4.3.5. Let b ∈ Zγ
T and f0 ∈ C1. Then the function f = f0(ψ(0, t, x)) given in

Lemma 4.3.3 is the unique classical solutions to the transport equation

∂tf + b̃∂xf = 0

f(0) = f0 ∈ C1 ∩ L1 ∩ L∞.

Proof. The proof we give for the sake of completeness is classical, refer to Proposition
1 of Section 5.1 in [GG20a] for example. Let u be a classical solution to the transport
equation and Φ the flow associated to the problem

Xs,t = (ΞA)s,t, X0 = x (4.3.1)

where As,t = bs ∗ Ls,t(Xs). Notice that under our regularity assumption on b (4.3.1) is
equivalent to

Xt = x+

∫ t

0

b(s,Xs − wHs )ds

We therefore have that

d

dt
u(t,Φ(0, t, x)) = ∂tu(t,Φ(0, t, x)) + (∂xu)(t,Φ(0, t, x))b(t,Φ(0, t, x)− wHt )

=
(
∂tu+ b̃∂xu

)
(t,Φ(0, t, x)) = 0

meaning that u is constant along the characteristics implying uniqueness.

4.3.4 Conservation of regularity in the regular case

Let us finally show that for b ∈ Z1 := C1
t C

0
x ∩ C0

t C
1
x ∩ L∞t L1

x and f0 ∈ C1 ∩ L1 the
solution f to the corresponding transport equation constructed in Lemma 4.3.3 also
lies in Z1.

Lemma 4.3.6 (Conservation of regularity II). Let b ∈ Z1 with ‖b‖Z1 6 1. Let ψ :
∆2 × R→ R be the inverse flow associated with the problem

Xs,t = (ΞAX)s,t X0 = x

where AXs,t = bs ∗ Ls,t(Xs). Let f0 ∈ C1 ∩ L1∩. Then for f(t, x) := f0(ψ(0, t, x)), we
have

‖f‖Z1 6 (1 + CT ∗T
γ)(‖f0‖C1 + ‖f0‖L1 + ‖f0‖L∞).

Proof. Remark that

d

dx
f(t, x) = (

d

dx
f0)(ψ(0, t, x))Dxψ(0, t, x) 6 ‖f0‖C1 (1 + CT ∗T

γ))

as well as

d

dt
f(t, x) = (

d

dx
f0)(ψ(0, t, x))Dxψ(0, t, x)b(t, x− wHt ) 6 ‖f0‖C1 (1 + CT ∗T

γ)).

Finally, the last bound in L∞t L
1
x is the same as in Lemma 4.3.4.
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4.3.5 A priori bounds for solutions to the transport equation

In the following section, we establish some a priori bounds for solutions to the transport
equation without assuming differentiable initial conditions. While these estimates do
not allow to deduce uniqueness they do appear interesting in their own right. Towards
this end, let us establish the following Lemma based on a DiPerna-Lions commutator
argument. Note that in the following, we will not as usual require ∂xb ∈ L∞, as we
may harness again the regularity of the appearing local time.

Lemma 4.3.7. For γ > 1/2, H < 1/5 ∧ (1 − γ)/3 and b ∈ Zγ
T such that ‖b‖ZγT 6 1,

suppose there exists a solution f ∈ Zγ
T with ‖f‖ZγT 6 1 to the problem

∂tf + b̃∂xf = 0

f(0) = f0 ∈ Cγ ∩ L1 ∩ L∞

where b̃(t, x) = b(t, x− wHt ). Then we have

‖ft‖2
L2 − ‖fs‖2

L2 = (ΞA)s,t (4.3.2)

where

As,t :=

∫
R
(bs ∗ ∂xLs,t)(x)(f 2

s )(x)dx

Proof. The proof follows the classical strategy of [DL89] based on a commutator ar-
gument. Crucially, we replace Lebesgue integration in time by corresponding sewings
capable of leveraging the smoothness of the local time L associated with the regular-
izing path wH . Once this regularization is exploited, we show that we can pass to the
limit in the mollification, letting the intermediately appearing commutator disappear
again.

Let (ρε)ε be a sequence of positive mollifiers with ρ supported in B1 such that ‖ρ‖L1 = 1.
For a distribution φ we will use the abbreviation φε := ρε ∗ φ. Suppose f ∈ Zγ

T is a
solution to the transport equation

∂tf + b̃∂xf = 0 (4.3.3)

with b̃(x, t) = b(x − wt, t) such that b ∈ Zγ
T . Note that under this assumption, in

particular the product

b̃∂xf

is well defined for any t ∈ [0, T ] (refer to Lemmata 4.B.2 and 4.B.3). As in DiPerna-
Lions we then mollify equation (4.3.3), obtaining

∂tf
ε + b̃∂f ε = −Rε(f, b̃) (4.3.4)
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where

Rε(f, b̃)(x) = (̃b∂xf)ε − b̃∂x(f ε)

=

∫
R
b̃(y)(∂yf)(y)ρε(x− y)dy − b̃(x)

∫
R
f(y)∂xρ

ε(x− y)dy

= −
∫
R
∂y (̃b(y)ρε(x− y))f(y)dy − b̃(x)

∫
R
f(y)∂xρ

ε(x− y)dy

= −
∫
R
(∂y b̃)(y)ρε(x− y)f(y)dy

+

∫
R
b̃(y)(∂xρ

ε)(x− y)f(y)− b̃(x)

∫
R
f(y)∂xρ

ε(x− y)dy

=

∫
R
f(y)

(
b̃(x)− b̃(y)

)
∂xρ

ε(x− y)dy − (f∂xb̃)
ε(x)

=

∫
B1

f(x− εz)
b̃(x− εz)− b̃(x)

ε
(∂xρ)(z)dz − (f∂xb̃)

ε(x).

Notice we used integration by parts above, which poses no problem though as ρε is of
compact support. Multiplying both sides of (4.3.4) by f ε, we obtain

∂t(f
ε)2 + b̃∂(f ε)2 = −2Rε(f, b̃)f ε

integrating in space and time we obtain

‖f εt ‖
2
L2 − ‖f εs‖

2
L2 +

∫ t

s

∫
R
b̃∂x(f

ε)2dudx = −2

∫ t

s

∫
R
Rε(f, b̃)f εdudx (4.3.5)

Now let us define the germ

Aεs,t :=

∫
R
(bs ∗ ∂xLs,t)(x)(f εs)

2(x)dx.

Provided the Sewing Lemma can be applied, we have by integration by parts, a Fubini
for the Sewing map [Gal21, Lemma A.1] and a classical Fubini

(ΞAε)s,t =

(
Ξ

∫
R
(bs ∗ ∂xLs,t)(x)(f εs)

2(x)dx

)
s,t

= −
(

Ξ

∫
R
(bs ∗ Ls,t)(x)∂x(f

ε
s)

2(x)dx

)
s,t

= −
∫
R

(
Ξ(bs ∗ Ls,t)(x)∂x(f

ε
s)

2(x)
)
s,t
dx

= −
∫
R

∫ t

s

b̃u(x)∂x(f
ε
u)

2(x)dudx

= −
∫ t

s

∫
R
b̃u(x)∂x(f

ε
u)

2(x)dxdu.
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Note that the integration by parts is justified, since for almost any s 6 t ∈ [0, T ]
lim|x|→∞ bs∗Ls,t(x) = lim|x|→∞(f εs)

2(x) = 0, which is due to the fact that b, f ∈ L∞L1
x∩

C0
t C

γ
x and hence in particular for almost any t ∈ [0, T ] the functions bs ∗Ls,t(·), (f ε)2

s(·)
are uniformly continuous and integrable. We are therefore left with

‖f εt ‖
2
L2 − ‖f εs‖

2
L2 − (ΞAε)s,t = −2

∫
R

∫ t

s

Rε(f, b̃)f εdudx

By a similar reasoning, provided the Sewing Lemma can be applied, one can show that
the right hand side can be given by the sewing of the germ

Bε
s,t =

∫
R
f εs(x)

∫
B1

fs(x− εz)
(bs ∗ Ls,t)(x− εz)− (bs ∗ Ls,t)(x)

ε
(∂xρ)(z)dzdx

−
∫
R
(fsbs ∗ ∂xLs,t)ε(x)f εs(x)dx

=: B̃ε,1
s,t − B̃ε,2

s,t

Meaning we are left with the equation

‖f εt ‖
2
L2 − ‖f εs‖

2
L2 = (ΞAε)s,t − 2(ΞBε)s,t. (4.3.6)

Let us verify that indeed, Aε and Bε admit a sewing to establish the above equality,
for which we need to check the condition of the Sewing Lemma 4.A.1. Note that

(δAε)s,u,t =

∫
R

(
(f εs)

2(x)(bs,u ∗ ∂xLu,t)(x)− ((f εs)
2 − (f εu)

2)(x)(bu ∗ ∂xLu,t)(x)
)
dx.

Since H < (1− γ)/3, we have L ∈ Cγ/2+1/2
T H1

x and hence by Lp space interpolation

|(δAε)s,u,t|
6 ‖f εs‖

2
L2 ‖bs,u ∗ ∂xLu,t‖∞ +

∥∥(f εs)
2 − (f εu)

2
∥∥
L1 ‖bs ∗ ∂xLu,t‖∞

6 CT ∗ ‖f εs‖
2
L2 ‖b‖Cγt L∞x |u− s|

γ ‖L‖
C

1/2
t H1 |t− u|1/2

+ 2 sup
r∈[s,t]

‖f εr‖L2 ‖f εs − f εu‖L2 ‖bs ∗ ∂xLu,t‖∞

6 CT ∗ ‖f εs‖
2
L2 |t− s|γ+1/2 + CT ∗ sup

r∈[s,t]

‖f εr‖L2 ‖f εs − f εu‖
1/2

L1 ‖f εs − f εu‖
1/2
L∞ ‖Lu,t‖H1

6 CT ∗ ‖f εs‖
2
L2 |t− s|γ+1/2

+ CT ∗ sup
r∈[s,t]

‖f εr‖L2 ‖f‖1/2

L∞t L
1
x
‖f‖1/2

Cγt L
∞
x
|u− s|γ/2 ‖L‖

C
γ/2+1/2
t H1

x
|t− u|γ/2+1/2

6 CT ∗( sup
r∈[s,t]

‖f εr‖
2
L2 + sup

r∈[s,t]

‖f εs‖L2)|t− s|γ+1/2,

which yields the desired error bound. Now we need to bound (δBε)s,u,t for which we
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consider the two relevant expressions B̃ε,1
s,t and B̃ε,2

s,t separately. First we have

|δ(B̃ε,2)s,u,t|

6
∫
R
|((fs∂xbs ∗ Ls,t)ε(x)f εs)dx|

6
∫
R
|(ρε ∗ ((fs,u)bs ∗ ∂xLu,t))(x)f εs(x)|dx

+

∫
R
|(ρε ∗ (fubs,u ∗ ∂xLu,t))(x)f εs(x)|dx

+

∫
R
|(ρε ∗ (fubu ∗ ∂xLu,t))(x)(f εs(x)− f εu(x))|dx

6 ‖(fs,u)bs ∗ ∂xLu,t‖L2 ‖f εs‖L2

+ ‖(fu)bs,u ∗ ∂xLu,t‖L2 ‖f εs‖L2 + ‖(fu)bu ∗ ∂xLu,t‖L2 ‖f εs − f εu‖L2

6 ‖fs − fu‖1/2

L1 ‖fs − fu‖1/2
L∞ ‖bs ∗ ∂xLu,t‖∞ ‖f

ε
s‖L2

+ ‖fu‖L2 ‖bs,u ∗ ∂xLu,t‖∞ ‖f
ε
s‖L2 + ‖fu‖L2 ‖bu ∗ ∂xLu,t‖∞ ‖f

ε
s − f εu‖

1/2

L1 ‖f εs − f εu‖
1/2
L∞

6 CT ∗|u− s|γ/2 ‖L‖Cγ/2+1/2
t H1

x
|t− u|γ/2+1/2 ‖f εs‖L2

+ CT ∗|u− s|γ ‖L‖C1/2
t H1

x
|t− u|γ+1/2 sup

r∈[s,t]

‖f εr‖
2
L2

+ CT ∗|u− s|γ/2 ‖L‖Cγ/2+1/2
t H1

x
|t− u|γ/2+1/2

6 CT ∗

(
sup
r∈[s,t]

‖f εr‖L2 (1 + sup
r∈[s,t]

‖f εr‖L2)

)
|t− s|γ+1/2,

where we used again Fubini and the Fatou property. Secondly we have similarly∣∣∣(δB̃ε,1)s,u,t

∣∣∣
6

∣∣∣∣∫
R
(f εs(x)− f εu(x))

∫
B1

fs(x− εz)
(bs ∗ Lu,t)(x− εz)− (bs ∗ Lu,t)(x)

εz
z(∂xρ)(z)dzdx

∣∣∣∣
+

∣∣∣∣∫
R
f εu(x)

∫
B1

(fs(x− εz)− fu(x− εz))
(bs ∗ Lu,t)(x− εz)− (bs ∗ Lu,t)(x)

εz
z(∂xρ)(z)dzdx

∣∣∣∣
+

∣∣∣∣∫
R
f εu(x)

∫
B1

fu(x− εz)
(bs,u ∗ Lu,t)(x− εz)− (bs,u ∗ Lu,t)(x)

εz
z(∂xρ)(z)dzdx

∣∣∣∣
6 ‖f εs − f εu‖

1/2

L1 ‖f εs − f εu‖
1/2
L∞ ‖fs‖L2 ‖bs ∗ ∂xLu,t‖∞

+ ‖f εu‖L2 ‖fu − fs‖L2 ‖bs ∗ ∂xLu,t‖∞
+ ‖f εu‖L2 ‖fu‖L2 ‖bs,u ∗ ∂xLu,t‖∞
6 CT ∗ sup

r∈[s,t]

‖f εr‖L2 |u− s|γ/2 ‖L‖C1+ε−γ/2
t H1 |t− u|1+ε−γ/2

+ CT ∗ sup
r∈[s,t]

‖f εr‖L2 |u− s|γ/2 ‖L‖Cγ/2+1/2
t H1 |t− u|γ/2+1/2

+ CT ∗ sup
r∈[s,t]

‖f εr‖
2
L2 |u− s|γ ‖L‖Cγ/2+1/2

t H1 |t− u|γ/2+1/2.
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This shows that indeed, the germ Bε
s,t admits a sewing as well, meaning we did establish

that (4.3.5) is equivalent to (4.3.6) thanks to a version of Lemma 4.2.1. We next show
that in the limit ε→ 0, we obtain the claimed equation

‖ft‖2
L2 − ‖fs‖2 = (ΞA)s,t (4.3.7)

where

As,t :=

∫
R
(bs ∗ ∂xLs,t)(x)(fs)

2(x)dx.

Towards this end, we show that

lim
ε→0

sup
s<t

(Ξ(Aε − A))s,t
|t− s|γ

= 0, lim
ε→0

sup
s<t

(ΞBε − 0)s,t
|t− s|γ

= 0.

Note that towards this end that by Sewing Lemma, this can be shown by establishing

lim
ε→0

sup
s<t

(Aε − A)s,t
|t− s|γ

= 0, lim
ε→0

sup
s<u<t

(δ(Aε − A))s,u,t
|t− s|η

= 0

as well as

lim
ε→0

sup
s<t

(Bε)s,t
|t− s|γ

= 0, lim
ε→0

sup
s<u<t

(δBε)s,u,t
|t− s|η

= 0

for some η > 1. Towards this end, we exploit that in our setting,

lim
ε→0

sup
s∈[0,T ]

‖f εs − fs‖Lp = 0

for p ∈ [1,∞). This follows essentially from the fact that f ∈ C0
t C

γ
x and a proof is

given in the Appendix in Lemma 4.A.5.

Concerning the first germ Aε, we have

Aεs,t − As,t =

∫
R
(bs ∗ ∂xLs,t)(x)((f εs)

2 − (fs)
2)(x)dx

6 ‖bs ∗ ∂xLs,t‖∞
∥∥(f εs)

2 − (fs)
2
∥∥

1

6 CT ∗ ‖b‖L∞t,x ‖L‖Cγt H1
x
‖f εs + fs‖L2 ‖f εs − fs‖L2 |t− s|γ

6 CT ∗ sup
r∈[s,t]

‖f εr‖L2 sup
s∈[0,T ]

‖f εs − fs‖L2 |t− s|γ,
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from which we conclude that indeed ‖Aε − A‖Cγ → 0. Moreover, we have

(δAε)s,u,t − (δA)s,u,t

= −
∫
R

(
(f εs)

2(x)(bs,u ∗ ∂xLu,t)(x)− ((f εs)
2 − (f εu)

2)(x)(bu ∗ ∂xLu,t)(x)
)
dx

+

∫
R

(
(fs)

2(x)(bs,u ∗ ∂xLu,t)(x)− ((fs)
2 − (fu)

2)(x)(bu ∗ ∂xLu,t)(x)
)
dx

=

∫
R
(bs,u ∗ ∂xLu,t)(x)((f εs)

2 − (fs)
2)(x)dx

+

∫
R
((f εs)

2 − (fs)
2 − (f εu)

2 + (fu)
2)(x)(bu ∗ ∂xLu,t)(x)dx

6 CT ∗ ‖L‖C1/2
t H1

x
sup
r∈[s,t]

‖f εr‖L2 sup
s∈[0,T ]

‖f εs − fs‖L2 |u− s|γ|t− u|1/2

+

∫
R
[(f εs + f εu)(f

ε
u,s − fu,s)](x)(bu ∗ ∂xLu,t)(x)dx

+

∫
R
[(fs − fu)(f εu + f εs − fs − fu)](x)(bu ∗ ∂xLu,t)(x)dx

6 CT ∗ sup
r∈[s,t]

‖f εr‖L2 sup
s∈[0,T ]

‖f εs − fs‖L2 |t− s|γ+1/2

+ CT ∗ sup
r∈[s,t]

‖f εr‖L2

∥∥f εu,s − fu,s∥∥1/2

L1

∥∥f εu,s − fu,s∥∥1/2

L∞
‖L‖

C
γ/2+1/2
t H1

x
|t− u|γ/2+1/2

+ CT ∗ sup
r∈[s,t]

‖f εr − fr‖L2 ‖fs − fu‖1/2

L1 ‖fs − fu‖1/2
L∞ ‖L‖Cγ/2+1/2

t H1
x
|t− u|γ/2+1/2

6 CT ∗ sup
s∈[0,T ]

‖f εs − fs‖L2 |t− s|γ+1/2

+ CT ∗ sup
r∈[s,t]

‖f εr‖L2 sup
r∈[s,t]

‖f εr − fr‖
1/2

L1 ‖f‖1/2

Cγt L
∞
x
|u− s|γ/2|t− u|γ/2+1/2

+ CT ∗ sup
r∈[s,t]

‖f εr − fr‖L2 ‖f‖1/2

L∞t L
1
x
‖f‖1/2

Cγt L
∞
x
|u− s|γ/2|t− u|γ/2+1/2,

from which we conclude that indeed

sup
s<t

|(δAε)s,u,t − (δA)s,u,t|
|t− s|γ+1/2

→ 0.

We proceed with the second germ Bε. Let us first remark that we may rewrite this
germ as

Bε
s,t =

∫
R
f εs(x)

∫
B1

fs(x− εz)
(bs ∗ Ls,t)(x− εz)− (bs ∗ Ls,t)(x)

ε
(∂xρ)(z)dzdx

−
∫
R
f εs(x)

∫
B1

fs(x− εz)(bs ∗ ∂xLs,t)(x− εz)ρ(z)dzdx.

Employing the Taylor expansion

(bs ∗ Ls,t)(x) = (bs ∗ Ls,t)(x− εz) + (εz)(bs ∗ ∂xLs,t)(x− εz) +
1

2
(εz)2(bs ∗ ∂2

xLs,t)(ζx,z,ε)
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with Lagrange remainder for some ζx,z,ε we may further rewrite Bε as

Bε
s,t = −

∫
R
f εs(x)

∫
B1

fs(x− εz)(bs ∗ ∂xLs,t)(x− εz)z(∂xρ)(z)dzdx

−
∫
R
f εs(x)

∫
B1

fs(x− εz)(bs ∗ ∂xLs,t)(x− εz)ρ(z)dzdx−Rε
s,t

= −(B1,ε
s,t +B2,ε

s,t +Rε
s,t)

where

Rε
s,t = ε

∫
R
f εs(x)

∫
B1

f(x− εz)(bs ∗ ∂2
xLs,t)(ζx,z)z

2(∂xρ)(z)dzdx

We now show first that Bε converges to

−
∫
R
fs(x)

∫
B1

fs(x)(bs ∗ ∂xLs,t)(x)z(∂xρ)(z)dzdx

−
∫
R
fs(x)

∫
B1

fs(x)(bs ∗ ∂xLs,t)(x)ρ(z)dzdx

= −(B1
s,t +B2

s,t)

= 0.

Notice that

B2,ε
s,t −B2

s,t

=

∫
R
f εs(x)

∫
B1

fs(x− εz)(bs ∗ ∂xLs,t)(x− εz)ρ(z)dzdx

−
∫
R
fs(x)

∫
B1

fs(x)(bs ∗ ∂xLs,t)(x)ρ(z)dzdx

=

∫
R
(f εs − fs)(x)

∫
B1

fs(x− εz)(bs ∗ ∂xLs,t)(x− εz)ρ(z)dzdx

+

∫
R
fs(x)

∫
B1

(fs(x− εz)− fs(x))(bs ∗ ∂xLs,t)(x− εz)ρ(z)dzdx

+

∫
R
fs(x)

∫
B1

fs(x)((bs ∗ ∂xLs,t)(x− εz)− (bs ∗ ∂xLs,t)(x))ρ(z)dzdx

6 CT ∗ sup
r∈[s,t]

‖f εr − fr‖L1 ‖f‖L∞t,x ‖b‖L∞t,x ‖L‖Cγt H1
x
|t− s|γ

+ εγCT ∗ ‖f‖L∞t L1
x
‖f‖C0

t C
γ
x

(∫
B1

|z|γρ(z)dz

)
‖b‖L∞t,x ‖L‖Cγt H1

x
|t− s|γ

+ εCT ∗ ‖f‖L∞t L1
x
‖f‖L∞t,x

(∫
B1

|z|ρ(z)dz

)
‖b‖L∞t,x ‖L‖Cγt H2

x
|t− s|γ.

Similar estimates hold for B1,ε − B1
s,t. Moreover, it is easy to see that ‖Rε‖Cγ → 0.

This allows to conclude that indeed

lim
ε→0

sup
s<t

|Bε
s,t|

|t− s|γ
= 0
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Finally, we also need to check (δBε)s,u,t. We have δBε = −δB1,ε − δB2,1 + δRε. We
show again that for

B2
s,t =

∫
R
fs(x)

∫
B1

fs(x)(bs ∗ ∂xLs,t)(x)ρ(z)dzdx

we have

sup
s<u<t

(δB2,ε −B2)s,u,t
|t− s|η

→ 0

Towards this end, note that

(δB2,ε)s,u,t =

∫
R
(f εs(x)− f εu(x))

∫
B1

fs(x− εz)(bs ∗ ∂xLu,t)(x− εz)ρ(z)dzdx

+

∫
R
f εu(x)

∫
B1

(fs(x− εz)− fu(x− εz))(bs ∗ ∂xLu,t)(x− εz)ρ(z)dzdx

+

∫
R
f εu(x)

∫
B1

fu(x− εz)(bs,u ∗ ∂xLu,t)(x− εz)ρ(z)dzdx

= Iεs,u,t + IIεs,u,t + IIIεs,u,t

and

(δB2)s,u,t =

∫
R
(fs(x)− fu(x))

∫
B1

fs(x)(bs ∗ ∂xLu,t)(xz)ρ(z)dzdx

+

∫
R
fu(x)

∫
B1

(fs(x)− fu(x))(bs ∗ ∂xLu,t)(x)ρ(z)dzdx

+

∫
R
fu(x)

∫
B1

fu(x)(bs,u ∗ ∂xLu,t)(x)ρ(z)dzdx

= Is,u,t + IIs,u,t + IIIs,u,t

We shall consider the differences Iε − I, IIε − II and IIIε − III separately. We have
that

IIIεs,u,t − IIIs,u,t

=

∫
R
(f εu − fu)(x)

∫
B1

fu(x− εz)(bs,u ∗ ∂xLu,t)(x− εz)ρ(z)dzdx

+

∫
R
fu(x)

∫
B1

(fu(x− εz)− fu(x))(bs,u ∗ ∂xLu,t)(x− εz)ρ(z)dzdx

+

∫
R
fu(x)

∫
B1

fu(x) ((bs,u ∗ ∂xLu,t)(x− εz)− (bs,u ∗ ∂xLu,t)(x)) ρ(z)dzdx

6 CT ∗ sup
s∈[0,T ]

‖f εs − fs‖L1 ‖f‖L∞t,x ‖b‖Cγt L∞x ‖L‖C1/2
t H1

x
|t− s|γ+1/2

+ εγCT ∗ ‖f‖L∞t L1
x
‖f‖C0

t C
γ
x

(∫
B1

|z|γρ(z)dz

)
‖b‖Cγt L∞x ‖L‖C1/2

t H1
x
|t− s|γ+1/2

+ εCT ∗ ‖f‖L∞t L1
x
‖f‖L∞t,x

(∫
B1

|z|ρ(z)dz

)
‖b‖Cγt L∞x ‖L‖C1/2

t H2
x
|t− s|γ+1/2
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and therefore IIIε − III → 0. Moreover, we have

IIεs,u,t − IIs,u,t

=

∫
R
(f εu − fu)(x)

∫
B1

(fs(x− εz)− fu(x− εz))(bs ∗ ∂xLu,t)(x− εz)ρ(z)dzdx

+

∫
R
fu(x)

∫
B1

(fu,s(x− εz)− fu,s(x))(bs ∗ ∂xLu,t)(x− εz)ρ(z)dzdx

+

∫
R
fu(x)

∫
B1

fu,s(x) ((bs ∗ ∂xLu,t)(x− εz)− (bs ∗ ∂xLu,t)(x)) ρ(z)dzdx

6 CT ∗ sup
r∈[0,T ]

‖f εr − fr‖L1 ‖f‖Cγt L∞x |u− s|
γ ‖b‖L∞t,x ‖L‖C1/2

t H1
x
|t− u|1/2

+ sup
r∈[0,T ]

‖fr‖L2

(∫
B1

‖fu,s(· − εz)− fu,s(·)‖L2 ρ(z)dz

)
‖bs ∗ ∂xLu,t‖L∞

+ εCT ∗ ‖f‖L∞t L1
x
‖f‖Cγt L∞x |u− s|

γ ‖b‖L∞t,x ‖L‖C1/2
t H2

x
|t− u|1/2

(∫
B1

|z|ρ(z)dz

)
6 CT ∗ sup

r∈[0,T ]

‖f εr − fr‖L1 |t− s|γ+1/2

+ sup
r∈[0,T ]

‖fr‖L2

√
2

(
sup
z∈B1

sup
r∈[0,T ]

‖fr(· − εz)− fr(·)‖1/2

L1

)
√

2 ‖fu,s‖1/2
L∞ ‖bs ∗ ∂xLu,t‖L∞

+ εCT ∗|t− s|γ+1/2

6 CT ∗ sup
r∈[0,T ]

‖f εr − fr‖L1 |t− s|γ+1/2

+ CT ∗

(
sup
z∈B1

sup
r∈[0,T ]

‖fr(· − εz)− fr(·)‖1/2

L1

)
‖f‖Cγt L∞x ‖L‖Cγ/2+1/2

t H1
x
|t− s|γ+1/2

+ εCT ∗|t− s|γ+1/2,

which vanishes in the limit due to the continuity of the translation operator in L1. .
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Finally, we have

Iεs,u,t − Is,u,t

=

∫
R
(f εu,s − fu,s)(x)

∫
B1

fs(x− εz)(bs ∗ ∂xLu,t)(x− εz)ρ(z)dz

+

∫
R
fu,s(x)

∫
B1

(fs(x− εz)− fs(x))(bs ∗ ∂xLu,t)(x− εz)ρ(z)dz

+

∫
R
fu,s(x)

∫
B1

fs(x) ((bs ∗ ∂xLu,t)(x− εz)− (bs ∗ ∂xLu,t)(x)) ρ(z)dz

6
∥∥f εu,s − fu,s∥∥L2 ‖f‖L∞t L2

x
‖bs ∗ ∂xLu,t‖L∞

+ ‖fs,u‖L∞ sup
z∈B1

sup
r∈[0,T ]

‖fr(· − εz)− fr(·)‖L1 ‖bs ∗ ∂xLu,t‖L∞

+ ε ‖fu,s‖L∞ ‖f‖L∞t L1
x
‖b‖L∞t,x ‖L‖C1/2

t H2
x

(∫
B1

|z|ρ(z)

)
|t− u|1/2

6 CT ∗ ‖f ε − f‖1/2

L∞t L
1 ‖f‖1/2

Cγt L
∞ |u− s|γ/2 ‖f‖L∞t L2

x
‖b‖L∞t,x ‖L‖Cγ/2+1/2

t H1
x
|t− u|γ/2+1/2

+ CT ∗ ‖f‖Cγt L∞ |u− s|
γ sup
z∈B1

sup
r∈[0,T ]

‖fr(· − εz)− fr(·)‖L1 ‖b‖L∞t,x ‖L‖C1/2
t H1

x
|t− u|1/2

+ εCT ∗ ‖f‖Cγt L∞ |u− s|
γ ‖f‖L∞t L1

x
‖b‖L∞t,x ‖L‖C1/2

t H2
x

(∫
B1

|z|ρ(z)

)
|t− u|1/2,

which again vanishes due to the continuity of the translation operator in L1. In total,
we have shown that

sup
s<u<t

(δ(B2,ε −B2))s,u,t
|t− s|γ+1/2

→ 0.

By simply replacing ρ by z(∂xρ)(z) in the above calculations, one obtains

sup
s<u<t

(δ(B1,ε −B1))s,u,t
|t− s|γ+1/2

→ 0

Moreover, it is again easily seen that

sup
s<u<t

(δRε)s,u,t
|t− s|γ+1/2

→ 0

As B1
s,t +B2

s,t = (δ(B1 +B2))s,u,t = 0, this mean that overall we can conclude

lim
ε→0

sup
s<u<t

|δBε
s,u,t|

|t− s|γ+1/2
= 0

Overall, recalling sups∈[0,T ] ‖f εs‖
2
L2 → sups∈[0,T ] ‖f εs‖

2
L2 this completes the proof.

Remark 4.3.8. Let us remark that equalities similar to (4.3.2) in the Lp setting for
p ∈ (1,∞) can be readily obtained by similar arguments as presented above.
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Lemma 4.3.9. Assume the conditions of Lemma 4.3.7. Assume in addition that for
a given solution f to the transport equation, we have∫

R
|f 2
t − f 2

s |(x)dx 6 c sup
r∈[0,t]

‖fr‖2
L2 |t− s|γ (4.3.8)

Then we also have the a priori bound

sup
t∈[0,T ]

‖ft‖2
L2 6 CT,L ‖f0‖2

L2 .

Proof. Notice that thanks to our additional assumption we may establish a more refined
a priori bound on the sewing (ΞA)s,t, notably we for

As,t =

∫
R
(bs ∗ ∂xLs,t)(x)(fs)

2(x)dx

that

|As,t| 6 CT ∗ sup
r∈[s,t]

‖fr‖2
L2 ‖b‖L∞t,x ‖L‖Cγt H1

x
|t− s|γ

and in particular

(δA)s,u,t =

∫
R

(
(fs)

2(x)(bs,u ∗ ∂xLu,t)(x)− ((fs)
2 − (fu)

2)(x)(bu ∗ ∂xLu,t)(x)
)
dx

6 CT ∗ sup
r∈[s,t]

‖fr‖2
L2 ‖b‖Cγt L∞x ‖L‖C1/2

t H1
x
|t− s|γ+1/2

+ CT ∗ sup
r∈[0,t]

‖fr‖2
L2 |t− s|γ ‖b‖L∞t,x ‖L‖C1/2

t H1
x
|t− s|1/2

These bounds then yield the following bound for the Sewing

|(ΞA)0,t| 6 CT ∗T
γ sup
r∈[0,t]

‖fr‖2
L2 .

Going back to (4.3.2), this finally yields

‖ft‖2
L2 6 ‖f0‖2

L2 + CT ∗T
γ sup
r∈[0,t]

‖fr‖2
L2

and therefore for T chosen sufficiently small (independent of the initial condition), we
obtain the claim

sup
t∈[0,T ]

‖ft‖2
L2 6 CT ∗ ‖f0‖2

L2 .

Remark 4.3.10. Notice that the additional nonlinear condition (4.3.8) we had to im-
pose in the previous Lemma doesn’t allow us to establish uniqueness to solutions of
the transport equation, as it is not clear why the difference of two solutions should
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still satisfy (4.3.8). Alternatively, by only exploiting an interpolation argument and the
assumption that f ∈ Zγ

T , one can observe that∥∥f 2
s − f 2

u

∥∥
L1 6 2 ‖f‖L∞t L2

x
‖fs − fu‖L2

6 2
√

2 sup
r∈[0,T ]

‖fr‖L2
x
‖f‖1/2

L1
tL
∞
x
‖f‖Cγt L∞ |u− s|

γ.

In this case however, note however that the bound is no longer quadratic in supr∈[0,T ] ‖fr‖L2,
meaning that we only have

|(ΞA)0,t| 6 cT,L( sup
r∈[0,T ]

‖fr‖2
L2 + sup

r∈[0,T ]

‖fr‖L2)

which does not allow us to obtain a bound as in the previous Lemma. Essentially,
exploiting some Hölder regularity in time of the expression f 2

s −f 2
u in this setting (which

is necessary in order to establish the Sewing), one automatically looses the quadratic
bound in supr∈[0,T ] ‖fr‖L2 unless imposing the additional nonlinear constraint (4.3.8).

4.4 Averaged Burgers’ equation

From previous sections, we see that under the conditions of Lemma 4.3.3 and for
f0 ∈ Cγ ∩ L1 ∩ L∞ we can define the mapping

K : Zγ
T → Zγ

T

b→ f

associating a given function b to the solution solution of the regularized transport
equation

∂tf + b̃∂xf = 0

f(0) = f0,

given in Lemma 4.3.3. Moreover, it is easy to see that for f0 ∈ C1∩L1∩L∞ sufficiently
small, the sequence of iterations in the map K, i.e. the sequence (fn)n := (K(n)(f0))n
stays uniformly bounded in Zγ

T . This is a direct consequence of the conservation of
regularity in Lemma 4.3.4. We next show convergence of the sequence (fn)n in a space
of distributions, whose limit we can identify as an element Zγ

T thanks to the a priori
bounds established.

Lemma 4.4.1 (Contraction). Let γ > 1/2 and H < 1/7 ∧ 2(1 − γ)/5. Let f0 ∈
C0,γ ∩ W 1,1 and b1, b2 ∈ Zγ

T be some functions such that ‖b1‖ZγT ∧ ‖b
2‖ZγT 6 1 and

b1(0, ·) = b2(0, ·). For b̃i(t, x) = bi(t, x − wHt ), let f i be the solutions to the problem
problem

∂tf
i + b̃i∂xf

i = 0

f i(0) = f0

(4.4.1)

given in Lemma 4.3.3. Then we have for some ε > 0 and CT ∗∥∥f 1 − f 2
∥∥
Cγt B

−(2+ε)
∞,∞

6 CT ∗ ‖f0‖W 1,1

∥∥b1 − b2
∥∥
Cγt B

−(2+ε)
∞,∞

.
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Proof. Let f i = f0(ψit(x)) be the solution to 4.4.1 where ψi is the inverse flow generated
by solutions associated with the problem

X i
s,t = (ΞAi,X

i

)s,t, X i
0 = x

where (Ai,X
i
)s,t = bis ∗ Ls,t(X i

s). For ϕ ∈ S and let ϕ̄(x) :=
∫ x
−∞ ϕ(y)dy be a primitive.

Then for any ε > 0 we have the continuous embeddings B2+ε
1,1 ↪→ C1

b and B2+ε
1,1 ↪→ L1

and hence

|〈f 1
s,t − f 2

s,t, ϕ〉|

=

∣∣∣∣∫
R

(
ϕ(X1

t )DxX
1
t − ϕ(X1

s )DxX
1
s − ϕ(X2

t )DxX
2
t + ϕ(X2

s )DxX
2
s

)
f0(x)dx

∣∣∣∣
= |
∫
R
f0Dx

(
ϕ̄(X1

t )− ϕ̄(X1
s )− ϕ̄(X2

t ) + ϕ̄(X2
s )
)
dx|

= | −
∫
R
Dxf0

(
ϕ̄(X1

t )− ϕ̄(X1
s )− ϕ̄(X2

t ) + ϕ̄(X2
s )
)
dx|

6 ‖f0‖W 1,1 (‖ϕ̄‖C2
b
)
∥∥X1

s,t −X2
s,t

∥∥
C0

6 ‖f0‖W 1,1 (‖ϕ‖C1
b
) + ‖ϕ‖L1)

∥∥X1
s,t −X2

s,t

∥∥
C0

6 C ‖f0‖W 1,1 ‖ϕ‖B2+ε
1,1

∥∥X1
s,t −X2

s,t

∥∥
C0

where we used again the division property (Lemma 4.A.2), uniformly in space. Choos-
ing ε > 0 sufficiently small, we can now use the comparison principle of Lemma 4.2.5
for α = 2 + ε thanks to our assumption on H. We thus obtain∥∥X1

s,t −X2
s,t

∥∥
C0 6 CT ∗

∥∥b1 − b2
∥∥
Cγt B

−(2+ε)
∞,∞

|t− s|γ,

where we used that by assumption (b1 − b2)(0, ·) = 0. We therefore obtain indeed∥∥f 1 − f 2
∥∥
Cγt B

−(2+ε)
∞,∞

6 CT ∗ ‖f0‖W 1,1

∥∥b1 − b2
∥∥
Cγt B

−(2+ε)
∞,∞

.

The above permits us to conclude:

Corollary 4.4.2. For γ > 1/2, let H < 1/7 ∧ 2(1 − γ)/5. Let [0, T ] be an arbitrary
fixed time horizon. Let f0 ∈ C0,γ ∩W 1,1 such that ‖f0‖C0,γ + ‖f0‖W 1,1 6 1. Then there
exists a constant CT ∗ such that for any f̄0 = 1

(CT∗∨1)(1+T γ)
f0, the problem

∂tf + f̃∂xf = 0

f(0) = f̄0

where f̃(t, x) = f(t, x − wHt ) admits solution f ∈ Zγ
T in the sense of Definition 4.3.1

such that ‖f‖ZγT 6 1. By Remark 4.3.2, f is also a weak solution.
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Proof. Let B = {g ∈ Zγ
T | g0 = f0, ‖g‖ZγT 6 1}. Equipped with the metric (f, g) →

‖f − g‖
Cγt B

−(2+ε)
∞,∞

this makes B a complete metric space. We show that the mapping

K : Zγ
T → Zγ

T associating to a function b the unique solution to

∂tf + b̃∂xf = 0

f(0) = f0

(4.4.2)

admits a unique fixed point in B. Note that by Lemma 4.3.4 we have

‖Kf‖ZγT 6 (1 + CT ∗T
γ)(‖f0‖Cγ + ‖f0‖L1 + ‖f0‖L∞)

Hence we choosing as initial fondition f̄0, we see that ‖Kb‖ZγT 6 1. Together with the

contraction property of Lemma 4.4.1, this permits to conclude that K admits a unique
fixed point f in B. The fact that the fixed point lies in Zγ

T then allows to conclude that
we have found a solution to (4.4.2) in the sense of Definition 4.3.1, which by Remark
4.3.2 is equivalent to a weak solution.

Remark 4.4.3. Let us compare the above result to the formation of shocks in the
classical setting. Recall that shocks for Burgers’ equation

∂tf + f∂xf = 0, f(0) = f0

appear the first time that two characteristics cross. Let x1 be the characteristic start-
ing in x1 ∈ R and x2 be the characteristic starting in x2 ∈ R. Note that since the
characteristics are explicitly given by

xi(t) = xi + f0(xi)t

we obtain for the shock time ts of the two characteristics x1, x2 that

ts = − x1 − x2

f0(x1)− f0(x2)
,

provided this quantity is positive. The time Ts up to which no shocks appear is hence
given by

Ts = inf
x1 6=x2

(
− x1 − x2

f0(x1)− f0(x2)

)
=

1

supx1 6=x2
−(f0(x1)−f0(x2))

x1−x2

.

Note that for f(x) = −|x|γ with γ ∈ (1/2, 1), we have Ts = 0, i.e. shocks are produced
instantly. This is not the case in our regularized setting. (note that in order to apply our
result, we also have to cut off f smoothly at some point to ensure the other conditions
besides Hölder regularity are met).

In the case of more regular initial conditions, i.e. f0 ∈ C1∩W 1,1, we may analogously
conclude thanks to Lemma 4.3.6

Corollary 4.4.4. For γ > 1/2, let H < 1/7 ∧ 2(1 − γ)/5. Let [0, T ] be an arbitrary
fixed time horizon. Let f0 ∈ C1 ∩W 1,1 such that ‖f0‖C1 + ‖f0‖W 1,1 6 1. Then there
exists a constant CT ∗ such that for any f̄0 = 1

1+CT∗T γ
f0, the problem

∂tf + f̃∂xf = 0

f(0) = f̄0

where f̃(t, x) = f(t, x− wHt ) admits a unique strong solution on [0, T ]× R.
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4.5 Perspectives

A first immediate question that raises itself in the light of the above Corollaries 4.4.2
and 4.4.4 would be: Can the appearing constant CT ∗ be replaced by some function
of k(T )? More precisely, is it true that we have the results stated above for initial
conditions f̄0 of the form

f̄0 = C(ω)
1

k(T )
f0. (4.5.1)

Let us recall that in our considerations, there were essentially two instances that ne-
cessitated the employment of the auxiliary time horizon and thus the constant CT ∗ :

On the one hand, the passing from L1 to L2 integrability by Remark 4.1.3 - often
done in the above proofs in order exploit Theorem 4.1.1 - comes at the price of a con-
stant depending on the support of the local time L. Oberve that or fractional Brownian
motion wH of Hurst parameter H by [KMRS15, Proposition 3.1], there exists a non
negative random variable ξ such that for any ε > 0 and T > 1

sup
t∈[0,T ]

|wHt (ω)| < ξ(ω)TH+ε

Hence, for the associated local time L we also have for all t ∈ [0, T ]

supp(Lt) ⊂ [−ξ(ω)TH+ε, ξ(ω)TH+ε].

which could therefore be used to replace the appearance of CT ∗ in the L2 ↪→ L1

embedding by

‖Ls,t(ω)‖L1 6
(
2ξ(ω)TH+ε

)1/2 ‖Ls,t‖L2 .

Alternatively, for b ∈ Zγ
T , one could also employ interpolation again through

‖bs ∗ Ls,t‖∞ 6 ‖bs‖L2 ‖Ls,t‖L2

6 ‖b‖1/2

L∞t L
1
x
‖b‖1/2

L∞t,x
‖Ls,t‖L2 ,

by which one does no longer require the embedding L2 ↪→ L1 that was a first source
for the appearance of CT ∗ .

The second instance where a constant CT ∗ needs to be employed can be found in
equation (4.1.6) of Lemma 4.1.1: As the proof of equation (4.1.6) is obtained by em-
ploying Kolmogorov’s continuity criterion yielding only local Hölder continuity, the
constant CT (ω) appearing on the righthand side of (4.1.6) does indeed depend on T .
Not exploiting the auxilliary time T ∗ would therefore require to establish bounds on
this constant of the form

CT (ω) 6 h(T )ζ

for some non-negative random variable ζ. Provided this could be achieved (one ap-
proach could be revisiting the Kolmogorov continuity theorem) one could in principle
re-asses the above calculations and eventually derive Corollaries 4.4.2 and 4.4.4 for
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initial conditions normalized as in (4.5.1).

This would also shed some more light on the scaling relation between the initial con-
dition and the time interval on which solutions exist. Let us explicit this point: In
the setting of the classical Burgers’ equation (refer to Remark 4.4.3) and in the case of
a continuously differentiable initial condition, there will be no shocks produced up to
time

Ts =
−1

infx∈R f ′0(x)
.

In particular, scaling f̃0 = f0/λ, we have T̃s = λTs. Hence, if f0 has gives rise to a solu-
tion without shocks on [0, Ts], then f − 0 · Ts/T gives rise to a solution without shocks
on [0, T ]. Hence, in the notation of these perspectives section, we hwould ave k(T ) = T .
In our regularized setting, we expect k(T ) to be some power of T depending on H and
γ. Unfortunately, we can not yet explicit k(T ), as there is information hidden in the
auxiliary CT ∗ that appears due to the due reasons discussed in the perspectives section.

Finally, it would be of interest if one can establish uniqueness of weak solutions to
the transport equation provided the initial condition f0 is only in C0,γ and not differ-
entiable.

4.A Some useful Lemmata

We recall the Sewing Lemma due to [Gub04] (see also [FH14, Lemma 4.2]). Let E be
a Banach space, [0, T ] a given interval. Let ∆n denote the n-th simplex of [0, T ], i.e.
∆n : {(t1, . . . , tn)|0 6 t1 . . . 6 tn 6 T}. For a function A : ∆2 → E define the mapping
δA : ∆3 → E via

(δA)s,u,t := As,t − As,u − Au,t

Provided At,t = 0 we say that for α, β > 0 we have A ∈ Cα,β
2 (E) if ‖A‖α,β <∞ where

‖A‖α := sup
(s,t)∈∆2

‖As,t‖E
|t− s|α

, ‖δA‖β := sup
(s,u,t)∈∆3

‖(δA)s,u,t‖E
|t− s|β

‖A‖α,β := ‖A‖α+‖δA‖β

For a function f : [0, T ]→ E, we note fs,t := ft − f2

Moreover, if for any sequence (Pn([s, t]))n whose mesh size goes to zero, the quantity

lim
n→∞

∑
[u,v]∈Pn([s,t])

Au,v

converges to the same limit, we note

(ΞA)s,t := lim
n→∞

∑
[u,v]∈Pn([s,t])

Au,v.
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Lemma 4.A.1 (Sewing). Let 0 < α 6 1 < β. Then for any A ∈ Cα,β
2 (E), (ΞA) is

well defined. Moreover, denoting (ΞA)t := (ΞA)0,t, we have (ΞA) ∈ Cα([0, T ], E) and
(ΞA)0 = 0 and for some constant c > 0 depending only on β we have

‖(ΞA)t − (ΞA)s − As,t‖E 6 c ‖δA‖β |t− s|
β.

Let us also recall the following result from for the convenience of the reader

Lemma 4.A.2 (Division property, [FH14, Lemma 8.2]). Let f ∈ C2
b (Rd,Rd), α ∈

(0, 1), K ∈ [1,∞) and T 6 1. Then there exists a constant Cα,K such that for any
X, Y ∈ Cα([0, T ]) with ‖X‖Cγ ∧ ‖Y ‖Cγ 6 K we have

‖f(X)− f(Y )‖Cγ 6 Cα,K ‖f‖C2
b

(|X0 − Y0|+ ‖X − Y ‖Cγ ) .

The following Lemma allows to recover Hölder bounds on the full intervall [0, T ]
from Hölder bounds on intervals of size h:

Lemma 4.A.3 ([FH14, Exercise 4.24]). Fix α ∈ (0, 1], h > 0 and M > 0. Let V be a
Banach space and Z : [0, T ]→ V a path such that

‖Z‖γ,h := sup
0 6 s<t 6 T
t−s<h

‖Zs,t‖V
|t− s|γ

6M.

Then we have
‖Z‖Cγt V 6M(1 ∨ 2h−(1−α)).

The following is a marginal straightforward generalization to Theorem 4 in [GG20a].

Lemma 4.A.4 (Regularity of averaging operators, [GG20a, Theorem 4]). Let wH be
fractional Brownian motion of Hurst parameter H. For p, q ∈ [2,∞) let b ∈ LqtH

s,p

and s ∈ R. Then for any ρ and γ > 1/2 satisfying

ρH +
1

q
< 1− γ

the averaging operator

Tt(x) =

∫ t

0

b(r, x− wHr )dr

satisfies T ∈ Cγ
t H

s+ρ,p
x .

Lemma 4.A.5. Let f ∈ Zγ
T with ‖f‖ZγT 6 1 and ρ be a positive mollifier supported in

B1(0) such that ‖ρ‖L1 = 1. Then we have for p ∈ [1,∞)

lim
ε→0

sup
s∈[0,T ]

‖f εs − fs‖Lp = 0
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Proof. Let q be the Hölder conjugate to p. Note that∫
R
|f εs(x)− fs(x)|pdx =

∫
R

∣∣∣∣∫
R
(fs(x− y)− fs(x))ρε(y)dy

∣∣∣∣p dx
6
∫
R

∫
R
|fs(x− y)− fs(x)|p|ρε(y)|dy

(∫
R
|φ(z)|dz

)p/q
dx

6
∫
R
|ρε(y)|

(∫
R
|fs(x− y)− fs(x)|pdx

)
dy

Let η > 0. As f ∈ L∞t L1
x ∩ L∞t L∞x , we have by interpolation f ∈ L∞t Lpx. In particular,

we find an Nη such that

2p
∫
R

1[−Nη ,Nη ]c(x) sup
s∈[0,T ]

|fs(x)|pdx < η

We therefore have for any r > 0∫
R
|ρε(y)|

(∫
R
|fs(x− y)− fs(x)|pdx

)
dy

=

∫
[−r,r]c

|ρε(y)|
(∫

R
|fs(x− y)− fs(x)|pdx

)
dy

+

∫
[−r,r]
|ρε(y)|

(∫
R

1[−Nη ,Nη ](x)|fs(x− y)− fs(x)|pdx
)
dy

+

∫
[−r,r]
|ρε(y)|

(∫
R

1[−Nη ,Nη ]c(x)|fs(x− y)− fs(x)|pdx
)
dy.

Note that for any r > 0, there exists an ε′ > 0 such that for any ε ∈ (0, ε′) we have∫
[−r,r]c

|ρε(y)|dy < η2−p

Choosing r = (η/(2Nη))
1/(pγ), we have therefore due to f ∈ C0

t C
γ
x :∫

R
|ρε(y)|

(∫
R
|fs(x− y)− fs(x)|pdx

)
dy

6 2p sup
s∈[0,T ]

‖fs‖pLp η2−p

+

∫
[−r,r]
|ρε(y)|2Nη|ypγ|dy

+

∫
[−r,r]
|ρε(y)|dy2p

∫
R

1[−Nη ,Nη ]c(x) sup
s∈[0,T ]

|fs(x)|pdx

6 3η
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4.B Some basic facts on Besov spaces

For the reader’s convenience, let us state some basic results from the theory of (non-
homegeneous ) Besov spaces. A good overview to this topic can be found in [vZ20].

Lemma 4.B.1 (Young’s inequality, [KS21, Theorem 2.2]). Let s, u ∈ R, p, p1, p2 ∈
[1,∞] and q, q1, q2 ∈ (0,∞] such that

1

q
6

1

q1

+
1

q2

1 +
1

p
=

1

p1

+
1

p2

Suppose that f ∈ Bs
p1,q1

and g ∈ Bu
p2,q2

, then f ∗ g ∈ Bs+u
p,q and there exists a constant

C independent of f, g such that

‖f ∗ g‖Bs+up,q
6 C ‖f‖Bsp1,q1 ‖g‖Bup2,q2

Lemma 4.B.2 (Derivative consistency [vZ20, Lemma 16.1]). Let s ∈ R, p, q ∈ [1,∞].
Then there exist a constant such that for all u ∈ S ′ we have

‖∂xu‖Bs−1
p,q

6 C ‖u‖Bsp,q .

Lemma 4.B.3 (Multiplication, [vZ20, Theorem 19.7], [Mar18, Corollary 2.1.35]). Let
α, β ∈ R\{0} such that α + β > 0 and α 6 β. Let δ > 0. Then there exists a C > 0
such that for any p, p1, p2 ∈ [1,∞] and q, q1, q2 ∈ [1,∞] such that

1

p
=

1

p1

+
1

p2

6 1,
1

q
= 1 ∧ 1

q1

+
1

q2

we have for all u, v ∈ S ′

‖u · v‖Bα−δp,q
6 C ‖u‖Bαp,q ‖v‖Bβp,q

Lemma 4.B.4 (Besov space embeddings [BCD11, Proposition 2.71],[Tri83, p.89]). Let
1 6 p1 6 p2 6 ∞ and 1 6 q1 6 q2 6 ∞. Then for Besov spaces over Rd, we have the
continuous embedding

Bs
p1,q1

↪→ Bs−d(1/p1−1/p2)
p2,q2

Moreover, if C0 denotes the space of bounded uniformly continuous functions, we have
the continuous embeddings

B0
∞,1 ↪→ C0 ↪→ B0

∞,∞.

Moreover, we have by [Tri83, p.131] that for s ∈ R and 1 < p0 < p1 < ∞ such that
s0 − d/p0 = s1 − d/p1, there holds

Hs0,p0 ↪→ Bs1
p1,p0

.

Moreover, we have for s ∈ R, p, q ∈ [1,∞] and any η > 0 that

Bs
p,q ↪→ Bs

p,q+η Bs+η
p,∞ ↪→ Bs

p,1.

and finally Bs
2,2 = Hs for any s ∈ R.
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Lemma 4.B.5 (Duality for Besov space, [BCD11, Proposition 2.76]). Let φ ∈ S be a
Schwartz function. Then for any p, q ∈ [1,∞], s ∈ R and u ∈ Bs

p,q the mapping

S → R
φ→ 〈u, φ〉

extends to a linear functional on B−sp′,q′, where p′, q′ are the Hölder conjugates of p, q

respectively. Moreover, if u ∈ S ′, we have for Q−sp′,q′ being the space of φ ∈ S such that
‖φ‖Bs′

p′,q′
6 1 that

‖u‖Bsp,q 6 C sup
φ∈Q−s

p′,q′

〈u, φ〉.
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[KS21] F. Kühn and R. Schilling. Convolution inequalities for Besov and
Triebel–Lizorkin spaces, and applications to convolution semigroups.
arXiv:2101.03886, 2021.
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