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Introduction

Within the ongoing debate on the pros and cons of using nuclear technologies, a major
issue in this domain concerns the management of their sub-products and wastes that are
being or already have been produced. This is particularly challenging for the high-level
and long-lived intermediate-level radioactive waste, notably resulting from the production
of electricity, which can reach a lifetime of the order of hundreds of thousands of years.
Some technologies for their partial treatment are already known and new solutions are
under active development.

However, so far, no definitive solution has been able to neutralise the radioactivity
of these wastes. Currently, several projects seek to dispose of radioactive waste in a
facility located in "deep geological formations” that can assess some conditions: very
low permeability, low seismic activity and no important fault [70], [104]. The host
rock considered for such a disposal facility in France is a Callovo-Oxfordian (COx) age
rock, composed of about a half of clays, about a quarter of carbonates and another
quarter of quartz [37], [143]. This argillaceous formation has been strongly compacted
during its geological history. A significant threat to safety in such facilities is the large
production of dihydrogen, a gas mainly due to the anaerobic corrosion of metal elements
(waste containers, liners and supporting structures) and the water radiolysis. It highlights
the necessity to preserve the favourable containment properties of the host rock and
engineered seals for a very long time [88]. The first experimental results have shown that
the gas percolation through the water-saturated COx pore-space may trigger degradation
of its clay matrix [48], [106], [165]. Indeed, more detailed studies about the coupling
between gas invasion and the mechanical response of the clay matrix need to be carried
out. For the time being, the first theoretical/numerical models are based on the opening
of a network of predefined fractures simplified in terms of shape, size, density and
orientation (see [106], [144]). One of the difficulties related to the representation of
pore-scales phenomena in clay rock is the multi-modal pore size distribution with a
substantial amount of nano-metric pores invisible in the most up-to-date 3D imaging
techniques [154]. Thus, the pore-scale studies need to compensate for the absence of the
smallest pores and the lack of connectivity.
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This thesis aims at improving the understanding of such gas transfer phenomena
and its relation with the surrounding geological environment. In order to describe with
confidence the gas migration inside and around the disposal facility over a very long
time, it is crucial to use relevant transfer laws at the macroscopic scale (that would be at
the same time consistent with gas transfer mechanisms at the pore-scale). Many aspects
are present in a pore-scale gas migration problem. In this context, the deformation
mechanisms, including damage of the clay matrix, play an essential role in interaction
with the pore pressure. Indeed, a detailed study of the mechanical behaviour of the clay
matrix needs to take place. So far, in the available SPH model, a simple macroscopic
damage model, based on Rankine and Mohr-Coulomb criteria, has been applied to
simulate both phenomena mentioned above [126]. Nevertheless, further investigations in
terms of damage laws are necessary for effective implementation at the pore scale.

Although important progress achieved in the characterisation of this host rock
and the coupled phenomena expected to take place therein, the response of the clay
matrix is still the subject of many research. In particular, it is crucial to focus on the
degradation process (in terms of damage initiation and fracture propagation) that may
play an important role during the coupled phenomena. Fracture and damage constitute
historically two different fields of study in solid mechanics. Fracture mechanics1, as
introduced by Griffith [71] and enhanced by Irwin [78] and Rice [142] will not be
directly investigated here, but will be suitably addressed through localisation of damage.
Such approach originated from the seminal work of Francfort and Marigo [65] devoted
to a variational formulation of fracture mechanics. An approximation of this variational
approach has been proposed by Bourdin et al. [30] based on Ambrosio and Tortorelli
[1], [2]. Later, this approximation, known as phase-field approach, has been interpreted
as the variational formulation of a class of gradient damage models [105], [128] which
introduces a characteristic length in the description of the dissipation2. This allows
avoiding pathological mesh dependency, which occurs when local damage models are
considered. Recently, extensions to dynamic conditions have been proposed in literature
(see for instance [22], [28], [93]). Concerning non-local damage models, mention
has to be also made of integral methods in which the local damage variable (or its
conjugated force) is replaced by its non-local version (through a convolution procedure)
[18], [129].

In this context, this study seeks to propose an alternative approach to damage
and fracture phenomena based on non-local modelling of damage and to be able to de-
scribe the transition from damage to fracture nucleation and growth. The proposed model
will mainly maintain the local formulation of the damage model, while the non-local

1See for instance the textbook by Leblond [87].
2An alternative to this class of gradient damage model consists in introducing the characteristic length in a

gradient term occurring in the stored energy as proposed by Lorentz and Andrieux [101][102].
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regularisation will be made numerically through the Smoothed Particle Hydrodynamics
(SPH) framework. The later is a meshless method capable of providing non-local versions
to any variable, generating a non-local system. The thesis is organised as follows:

Chapter 1 will first present a literature review of the radioactive waste manage-
ment context, including the most recent studies about the safety issues related to the
long-term host rock evolution. The French project to dispose of radioactive waste will
be introduced, focusing on the clayey rock Callovo Oxfordian (COx) expected to host
this disposal facility. We will also recall the gas generation issue expected to take place
therein and the gas migration through saturated pore-space of the COx. Besides, a brief
overview of the numerical models most often used to simulate such coupled problems
will be presented. Moreover, we will provide the previous use of the SPH method for
multiphase-flow and pore-network computing. In a second part of the chapter, we will
present, for each phase identified in the coupled phenomenon, the continua governing
equations focusing on fluid phases and the elasticity of the clayey rock for which small
and a large deformations approaches will be considered.

Chapter 2 will treat first the mathematical approaches used in the SPH method.
Then, we will present an extended description of the numerical model and the main
algorithms that will be used therein. The time integration schemes and the numerical
improvements adopted to solve some SPH inconveniences will also be introduced. A
particular emphasis will be placed on the discrete governing equations and the constitutive
model of an elastic material through small and large deformation approaches. The last
part of the chapter will be devoted to validation tests of the improved numerical SPH
model. In particular, a vibration problem will be used to validate SPH as a local EDP
solver. Our results will be additionally compared to other SPH models available in the
literature.

In Chapter 3, we will explore the interpolated nature of SPH to represent higher-
order interaction effects (reputed as non-local effects) that can be achieved through
finite support domains of the SPH kernel function in elastic materials. In a 1D vibration
problem, the numerical results will be compared to analytical lattice discrete and continua
solutions: stress gradient and continualized models for different order approximations.
We will investigate the capability of our numerical method to capture non-local elastic
effects independently of the discretisation. Finally, we will investigate the SPH invariance
using finite or infinite domain kernel functions or using stress-based and strain-based
gradient formulations.

The capability of the SPH to solve coupled elasto-damage response accounting
for the non-local effects due to damage will be investigated in Chapter 4. This chapter
will start with a brief theoretical recall of the thermodynamics-based framework used
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to model the elasto-damage response, emphasising the dissipative aspects. Moreover,
particular attention will be placed on the unilateral effect of damage, allowing for the
treatment of asymmetric responses between tensile and compressive loadings (as often
observed for geomaterials). A 1D benchmark problem of a softening bar will be presented,
providing a first characterisation of non-local responses of a damaged material. In order
to investigate a 2D configuration, we will consider a simple structure consisting of a
square plate containing a rigid inclusion. Quasi-static and dynamic loading conditions
will be considered. For these cases, a full description of the transition from damage to
fracture will be presented. Asymmetric tensile-compressive responses in the presence of
non-local damage will also be discussed. Finally, an in-depth investigation of the role of
the numerical parameter (the support length of the SPH kernel function) as a potential
characteristic length of the material will also be presented.

In Chapter 5, we will propose a practical numerical application consisting of
simulating the drainage in clayey rock. The SPH form of the fluid governing equations will
be first recalled. Then, we will describe the numerical implementation used to reproduce
a multiphase flow at the pore-space of a clay matrix. In the following, different cases will
be considered: a purely elastic solid medium (in order to obtain the reference stress field)
and an elasto-damage solid under two different confining stresses. Particular attention
will be given to the damage nucleation and its transition to fracture occurrence and
growth. Lastly, a two isolated pores configuration will be investigated to verify if the
model can predict a percolation flow path through the numerical sample. In all clay
sample applications, we will provide various analyses of damage, stress and displacement
fields. The evolution of porosity, water and gas saturation in the clay sample will also be
analysed.
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1Geological disposal of
radioactive waste: managing
risks from nano to macroscale

Overview: The safety assessment of a deep geological disposal facility of
radioactive waste located in very low permeable clay is the global issue to which
this work aims to contribute. The first chapter of this thesis is organised in two main
parts: a literature review and a theoretical resume of the considered phenomena. In
section 1.1, we introduce a brief context of the radioactive waste management with
respect to its disposal in deep geological formations. In the following, the French
project to dispose of radioactive waste is recalled, focusing on the Callovo-Oxfordian
clayey rock expected to host the disposal facility. The coupled hydromechanical
properties of the host rock are of high interest here. Given a substantial amount
of gases generated within such disposal, a gas migration is expected to produce
a multiphase flow through the water-saturated pore-space of the COx (leading
to high mechanical loads on the porous matrix). In section 1.2, brief overview
of experimental, theoretical and numerical studies used most often to describe
phenomena related to drainage in COx samples is presented, focusing on previous
use of the SPH method for multiphase-flow and pore-network computing. The
section 1.3 presents the continua governing equations of fluid dynamics. Besides,
we focus on the elasticity of the clayey rock for which small and a large deformations
approaches are considered.

Studies in radioprotection and nuclear safety became increasingly important
for spreading nuclear technologies, in particular with respect to the management of
radioactive wastes. A general review of the different types of radioactive waste is
presented by Ewing et al. [61] where the classification of different types of waste is
explained taking into account their radioactivity level and lifetime (which may vary
by different countries). In France, radioactive waste is classified as either Very Low-
Level (VLLW), Low-Level (LLW) Intermediate-Level (ILW) or High-Level (HLW). For
wastes that contain radionuclides with a half-life of fewer than 100 days, it is said to be
"Very Short-Lived”. It is considered "Short-Lived” with a half-life of fewer than 31 years
and "Long-Lived” with a half-life of more than 31 years. Fig. 1.1 present the general
management strategy of the French government to dispose of radioactive waste (see [77]
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for more details) depending on its type.

Fig. 1.1.: Strategies of the French government for management of disposal of radioactive waste
(from [77], modified).

The continuous research for alternatives for managing long-lived intermediate-
level and high-level waste is at the forefront of research worldwide. In recent decades,
one of the main options attracting the most nuclear power countries is the concept of
deep geological disposal of radioactive waste. The present work aims at improving the
understanding of phenomenological issues related to the safety of such a facility.

1.1 Deep geological disposal of radioactive waste:
state of the art

Over more than sixty years, several concepts for the long term management
of long-lived intermediate-level and high-level radioactive waste have been proposed.
Nevertheless, the deep geological disposal is still today, the solution that presents an
important degree of safety thanks to the multi-barrier concept where a part of containment
strategy is based on the properties of a geological layer. Several studies suggest that
low-permeability clayey formation enhanced by appropriate human-made engineering
barriers (waste containers, liners, bentonite plugs and seals, ...) form a coherent multi-
layer barrier system, resulting in suitable concepts for safer disposal of radioactive waste.
Bernd Grambow [70] presents an analysis on the use of clay geological formations as a
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host-rock for the disposal of radioactive waste based on experiences acquired in three
different research sites: the Hades, Mol in Belgium (created in 1980); the Mont Terri
rock laboratory in Switzerland (since 1987); and the Centre of Meuse-Haute-Marne in
Bure, France (since 2004). He argues that theoretical and practical data suggest strong
retention properties in clayey rocks, low water permeability and a very high retention
rate for radionuclides under reducing geochemical conditions.

1.1.1 The French case: Cigéo project
In the early 90s, the French government has created the independent public

agency Andra (French National Radioactive Waste Management Agency), a WMO under
supervision of governmental control bodies. Andra is in charge of implementing solutions
for managing radioactive waste, notably the development the French project of deep
geological disposal for radioactive waste, called as Cigéo. In its present concept (see the
conceptual plan in Fig. 1.2 [10]), it is planned to dispose of about 10.000 m3 of HLW and
75.000 m3 of ILW-LL. The underground facility is expected to reach about 15 km2 at a
depth of 500 metres and to be operated for more than 100 years (in reversible operational
conditions) before being definitively closed.

Fig. 1.2.: Cigéo deep geological facility for disposal of radioactive waste (from [10], modified) at
the stage of the Safety Option Dossier, 2016.

In order to clarify the phenomenological evolution of Cigéo, the transitory
processes expected inside the facility and its geological environment have been classified
into six groups [9], [10], [104]:
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1. Temperature increase due to exothermic waste.

2. Desaturation and resaturation cycles of the host rock due to the excavation and
exploitation phases of the facility.

3. Mechanical evolution of the facility and the host rock related to the excavation,
operating and post-closure phases.

4. Chemical degradation of disposal components with and without pore-water contact.

5. Chemical degradation of EDZ in contact with disposal components.

6. Production of dihydrogen due to the corrosion of metallic elements of the disposal.

The present study focuses on the coupling between topics 3 and 6. The production
of dihydrogen results from the water’s hydrolysis but especially from the anaerobic
corrosion of metal elements placed in the disposal facility (waste containers, liners,
support structures, ...) [9]. In order to better understand these issues, the host rock
and its overall characteristics are presented in the following sections as well as the
hydromechanical phenomena that are expected to take place therein.

1.1.2 Callovo-Oxfordian host rock
The choice of a site for geological disposal is conditioned by the fulfilment of

several predefined criteria ensuring the necessary safety of such a facility. The Callovo-
Oxfordian formation is currently being studied for the Cigéo project (to be located at the
eastern side of the Paris basin, between the French departments of Meuse and Haute-
Marne). It originates from the Jurassic period (dated from more than 150 million years
ago). In the area chosen by Andra for the disposal siting, it presents an average thickness
of 150 meters and can be found at a depth of about 500m [9], [10]. Fig. 1.3 illustrates
the geological log of the studied site.

Regarding its sedimentary origin, the Callovo-Oxfordian is a deep indurated
clayey formation mainly made up of carbonates, clay minerals and tectosilicates [37].
This composition can vary according to the sub-layers but very little laterally. The mi-
crostructure of the COx is illustrated in Fig. 1.4 by a Scanning Electron Microscopy (SEM)
acquisition as well as a segmented version of each component present therein.
Carbonates (mainly calcite) vary between 22% and 37% of total volume and are respon-

sible for the chemical stability of the medium, due to its condition of being in constant
chemical equilibrium with carbon dioxide dissolved in water while regulating the pH
of the medium [37]. The clay minerals are between 20% and 50% of the total volume
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Fig. 1.3.: Geological log of the Cigéo site (from [7]).

and are mainly composed by aluminium and silica (but also K, O, Ca, Fe, Mg). Other
components may be present in the COx argillite, such as organic matter (2 to 3%) or pyrite
for instance. A clay matrix has the form of an assembly of platelets that have negative
surface charges and can retain some important radioelements present in radioactive waste
such as calcium, caesium, magnesium, sodium and strontium [37]. It is also between
these sheets where H2O molecules may be captured.

Tectosilicates, consisting mainly of feldspar and quartz, have a volume content
between 10% and 40% of the total volume and have good properties for heat conduction,
which is necessary for evacuating the heat emitted by the waste. Also, they provide
good mechanical strength (stiffness) to the COx and are inert to water [37]. Otherwise,
Montes et al. [118] and Bauer-Plaindoux et al. [14] observed experimentally that the
presence of these mineral particles (those larger than 50µm) could favour the material
cracking during drying, due to their non-deformable nature.
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Fig. 1.4.: SEM image of COx microstructure (a) and segmented image presenting each component
(b) (from [143], modified).

The current literature provides vast data describing the porous network of the
COx from Meuse/Haute-Marne, its intrinsic characteristics such as its porosity or its
transfer properties such as permeability [37] [8]. Mohajerani [109] shows that at least
three types of porosity can be described: physical porosity, transport-related porosity and
that associated with chemical interactions.

Following Andra in [7], the average porosity in COx argillite is of the order of
18%. Three classes of pores are present therein: macro-pores (ď > 100nm), mesopores
(4nm< ď < 100nm) and micro-pores (ď < 4nm). The materials having very few macro-
pores are said to be hygroscopic, they show significant capillary forces, which result
in difficult desaturation. Fig. 1.5 provides the pore size distribution obtained by a
mercury intrusion test supplemented with nitrogen adsorption. The porosity consists of
approximately 10% macro-pores, 86% mesopores and 4% micro-pores.

It is arranged in a network of mesopores and micropores (> 80 % of total pores),
allowing water to move in response to the pressure gradients enforced by the neighbouring
aquifer formations. On the other hand, these exchanges are limited by a very restrictive
permeability of the clay material [7], [10]. In its natural state, due to the depth of the
site (of about ∼ 500m), the host rock is water-saturated. However, following the Cigéo
concept [10], the saturated conditions will be modified during the operation phase, of
about 100 years, when the whole facility and a part of its surroundings will be partially
desaturated by ventilation. After this period, a process of resaturation is expected. The
estimated duration of the facility’s transitional period (about 100.000 years) shall depend
on various factors beyond the intrinsic properties of the host rock and especially on the
effect of gases, generated within the disposal (mainly dihydrogen from anoxic corrosion).
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Fig. 1.5.: Pore size distribution by a mercury intrusion test supplemented with nitrogen intrusion
test (from [8], modified).

In order to describe these effects, several coupled phenomena need to be taken into
account.

In particular, the hydromechanical coupling has a particular interest in our work.
Concerning the poroelastic properties of the COx, experimental evidences show that its
compressibility parameter increases with water saturation [21], [76]. This is explained
by the mineralogical analyses which show that illite-smectite inter-stratified are the most
abundant minerals. Smectite, in particular, has satisfying swelling and deformability
properties. Indeed, the presence of very thin smectite sheets, filling the voids between
the larger aggregates, ensures that the water content variation results in modifying the
thickness of the counter-ion hydration layers. It results that the clay matrix remains
saturated even during global drying-resaturation cycles. Moreover, in the long term, this
behaviour can ensure a degree of self-scaling of such a medium [64], [163]. Besides,
Zhang et al. [174] carried out experiments which highlight the influence of the saturation
degree on the mechanical properties of the COx argillite. They also presented the Young
modulus’ evolution, the maximum deformations and the maximum stresses for different
values of relative humidity.

The dihydrogen generation is expected to last for about 100.000 years with the
amounts produced depending on chemical conditions prevailing in different disposal
parts and on the disposal concept. Fig. 1.6 shows the dihydrogen gas production over
100.000 years (see more details in [8], [88]).
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Fig. 1.6.: Dihydrogen gas production over 100.000 years (from [8], modified).

1.2 Two-phase flow coupled with mechanical load
at pore scale: experimental and numerical
reviews

Many research (for instance Marschall et al. [106]), have considered the phe-
nomenological transport mechanisms in the low-permeability clayey formation (Opalynus
clay in this case). Small differences in transport and retention properties between this
rock and the Callovo-Oxfordian allow their phenomenological considerations to be almost
fully transferable. Following them, the transport of gas through a very low-permeability
clayey rock is controlled by its hydromechanical properties and state (i.e. water saturation,
pore-water pressure, stress state) as well as by the gas pressure, as resumed in Fig. 1.7.
It is noteworthy that Marschall et al. [106] introduced the idea that the transport phe-
nomenon can be governed by the expansion of the existing pore space, generating a new
flow domain and enhancing the apparent gas permeability of the host rock significantly.

Also, experimental evidence indicates that the gas percolation through satu-
rated COx may occur by preferential pathways (which are highly unstable and partially
reversible) accompanied by a local dilation of the pore space [48]. Thus, in a water-
saturated host rock, the classical visco-capillary flow (usually considered and well under-
stood) may not happen (Fig. 1.7). Many other works have presented various evidences of
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Fig. 1.7.: Gas transport processes in clayey rock: phenomenological description based on the
micro-structural concept, geomechanical regime and preferential pathways evolution
framework (from [106] and [48], modified).

the presence of dilatant pathways in pore-scale clay rocks [11], [13], [49], [50], [73],
[153], [165]. In Fig. 1.8, we see a real-time observation of this phenomenon acquired in
an experimental framework developed by Wiseall et al. [165]. Following these studies,
once the gas pressure increases, the dilation of the pore space is observed due to gas
invasion in water-saturated micro-pores, which cannot be avoided on the percolation
path.

The experimental studies conducted by Marschall et al. [106] indicated that
the pore-space dilatancy could govern the gas transport mechanism at elevated gas
pressures. Besides, they highlight that the gas transport accompanied by pore-water
displacement (immiscible flow) leads to a very low degree of desaturation. In the pore-
scale characterisation domain, Song et al. [154] have carried out several experimental
measures on Focused Ion Beam and Scanning Electron Microscopy imagery of the clayey
matrix identifying down to 17-22 nm pore size. However, its experimental results to
the Gas Breakthrough Pressure variable (1.45 − 5.3MPa) is much smaller than those
obtained on intact claystone using the Peak Pore Size given by MIP simulations (7 −
14MPa). The micro-cracks generation can explain such a gap in the medium during the
sample preparation. Furthermore, they conclude that the most probable gas pathways
are the micro-cracks, which the breakthrough occurs by capillary digitation and the
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Fig. 1.8.: Adapted from Wiseall et al. [165] images of the evolution of dilatant pathways, chrono-
logically, from a to d.

gas percolation does not progress homogeneously through the clayey domain. Their
conclusions are on the same way to the others presented here [29], [48], [88], [104],
[106].

Still another aspect of gas migration from radioactive waste disposal into an
argillaceous host rock was given by Lefort [88], who investigated the hyper-slow drainage
problem over thousands or even hundreds of thousands of years. [88] work postulates
that such drainage problem can be governed by the generalised two-phase flow model
of Darcy’s law. At this point, it is quite clear that the scale size of its research does
not take into account the interactions between the components at micro-scale. The
quantities obtained by [88] indicate that the hyper-slow drainage operates in the vicinity
of breakthrough pressure, despite the gas production rate, which is very low. His study
also characterises a critical sensitivity of the model parameters due to high wetting fluid
saturation which also influences the local deformation of the clayey matrix at the pore
network scale caused by the gas percolating flow.

Furthermore, Lefort [88] highlights that it is widely accepted that nanoporous
flow study can be done only through deformation effects of the microstructure. The
experimental studies conducted by Marschall et al. [106] indicate the same behaviour
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even on a macroscopic scale. However, the complete understanding of this coupled
phenomenon in pore-scale is only a prediction carried by the set of evidence brought by
several research studies so far. Lefort [88] complement that the fact that the fracturing
regime becomes more or less identical with the one called as reversible dilation, as
presented by Marschall et al. [106].

Considering the major issues to experimentally access and analyse the hydrome-
chanical behaviour of a clayey rock at pore-scale, different numerical models were
adopted to understand such coupled phenomena. For a multiphase flow occurring in
a porous medium domain, the Navier-Stokes governing equations can be discretized
and solved through diverse methods such as: Lattice Boltzmann [147], pore-network
[86], volume-of-fluid [62], [134], finite element-finite volume [172], level-set [130] or
phase-field [146].

Since the late 80s, numerical models have been used to simulate the hydrogen
gas percolation through an interconnected pore network. Neimark [121] introduced a
Multiscale Percolation System (MPS) model of a poly-dispersed structure with arbitrary
volumetric densities and fractal properties. This model was designed to model the
percolation-type transport of a fluid in a complex pore network taking into account
properties such as porosity, specific surfaces, pore size distribution and fractal sizing.

Boulin [29] modelled the percolation of hydrogen gas through an interconnected
pore network model. Indeed, its simulation parameters were obtained from mercury
porosimetry type tests and sorption isotherms, which ultimately resulted in the character-
isation of pore networks and its inter-connectivities. His research used the XDQ method
to model the phenomena of percolation of hydrogen gas in a network of pores saturated
with water, a phenomenon expected in deep disposal. XDQ is a tool created by Xu et al.
[166], [167] in order to take advantage of the experimental mercury intrusion data to
form a pore network with statistically equivalent transfer properties.

Carrillo et al. [38] recently introduced a hybrid micro-continuum approach
funded in volume average principles that can be used simultaneously at two scale sizes.
They treat macroscale by Darcy’s Law and microscale by Navier-Stokes’ equations. Zhao
et al. [175] presented an extensive comparison of pore-scale models (Lattice Boltzmann,
pore-network models, phase-field, volume-of-fluid, level-set and stochastic rotation dy-
namics) in order to predict the macroscopic features of unstable two-phase flows in
the presence of solid inclusions. They note that although no single model can fulfil all
conditions, pore-network models present the shorter computation times, and only 3D
particle-based can simulate wetting films. Mehmani and Tchelepi [108] developed a
pore-level multiscale method (PLMM) that successively improve the approximations of
Direct Numerical Simulation (DNS) of multiphase flow. Their method split the entire
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domain into sub-domains representing physical pores; in the following, they select the
domains containing multiphase flow to optimise the computing. The sub-domains can be
parallelised improving the computation efficiency.

Lefort [88] has attempted to explore the coupling between local mechanical flow
and deformation in order to investigate the impact of porous space dilation on the gas
invasion pattern and to better understand a possible dependence between breakthrough
pressure and deformation. For this, a consideration of micro-mechanical effects in a pore
network system consisting of solid particles linked by springs as presented in Fig. 1.9 (a)
is taken into account.

Fig. 1.9.: (a) Regular pore network system and (b) phase diagram of drainage of different
invasion patterns by pore network system results (from Holtzman and Juanes [75],
adapted).

The adoption of this method for the simulation of deformations in elastic media
dates from the 1990s [124] when solid fracturing has also been investigated [24].
More recently, the phenomenon of drainage coupled with solid deformations has been
discussed by Holtzman and Juanes [75], they proposed to characterise the drainage by a
network pore system through different conditions leading to different invasion patterns
(as illustrated in Fig. 1.9).

In order to numerically solve such coupled hydromechanical phenomena, this
work uses a simulation code based on the Smoothed Particles Hydrodynamics (SPH)
method that has been recently developed by IRSN (see [126] for more details). In the
SPH domain, Xu and Fish [168] introduced an up-scaling approach for multi-porosity
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media in a one-phase flow. They performed it in order to compute the local variables
and integrate them at coarser scales. In a recent study, Yang et al. [170] used a Pairwise
Force Smoothed Particle Hydrodynamics (PF-SPH) model to investigate the effect of
wettability, surface tension and flow rate in a disordered and irregular shaped porous
media. Sivanesapillai et al. [151] performed SPH simulations of multiphase flow in
porous network adopting a large set flow configurations. Using direct pore-scale models,
they tested immiscible fluids and partial wettability configurations for large density and
viscosity ratios. The continuum surface forces (CSF) provided the capillarity effects
for drainage and imbibition. The influence of these phenomena on the macrostructure
hydraulic properties was discussed.

In the same way, Kunz et al. [83] simulated, comparing with experimental data,
drainage phenomena in a micro-model in dynamic and quasi-static conditions. Moreover,
Tartakovsky et al. [157] have modelled multiphase flow, reactive transport porous media
and fractured channel at pore-scale. In recent years, we observe that SPH has known
essential improvements in the treatment of flow in porous media with diverse applications
to simple and complex phenomena. Nevertheless, most parts of these works focus their
investigations on the fluid phases and do not treat in details the response of the solid
matrix or inclusions.

Over the years, the effects of cracks in porous media were a source of several
studies. In a micromechanical approach of permeability-damage coupling, Dormieux and
Kondo [57] presented a study on the influence of the different parameters of a fractured
porous medium in the quantification of its equivalent properties from a self-consistent
scheme. Their results relate the dependence of the crack opening over the equivalent
macroscopic permeability. What is more, it highlights two origins of coupling between
mechanical loading and effective permeability, by presenting formulations that bind
Terzaghi’s effective stress to crack opening and crack propagation. In mesoscale analyses
of cracked porous volumes through a direct numerical approach (finite difference method),
Rastiello et al. [137] have demonstrated the influence on the growth of mass flow and
energy exchanges due to the density of a crack. For different macro and microporosity
configurations, orientation and crack aperture, the interaction between the crack and the
equivalent transfer properties showed nonlinear behaviours of some orders of magnitude
of increase according to the crack threshold.

Pazdniakou and Dymitrowska [126] work has crucial importance in the present
thesis. They seek at simulating drainage within a numerical reconstructed pore space of
COx. In their paper, a four-phase phenomenon was simulated by an SPH approach to re-
produce the drained pathways predicted in experimental studies discussed previously. All
the fluid formulations, fluid-fluid and fluid-solid interactions proposed therein are adopted
in this thesis. We present in the next sections several aspects of each model. Although
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an extensive range of studies on macro and mesoscale coupled transfer-mechanical phe-
nomena, a lack of studies that evaluates the damage and fracturing phenomena coupled
to a multiphase flow at the microscale is observed. In the next section, we present the
physical model representing such a coupled system on the pore-scale level.

1.3 Hydro-mechanical pore-scale model
This section aims at describing a physical model of the hydromechanical phenom-

ena. Such model will be based on a 3D reconstruction of a porous media from imaging
data like CT-scans, FIB-SEM, ... This is a very active research field with a significant
amount of work devoted to image analysis for the extraction of poral space [80] and
simulations of flow within such reconstructed structures [23], [68], [126]. Gastelum et al.
[68] have also performed SPH simulations of a volcanic core sample after reconstructing
a 3D porous space based on CT scan image data. According to the previous sections, most
of the pores in COx clay have diameter of a few nanometers, nevertheless, the methods
employed to obtain 3D samples are not yet capable to capture voxel smaller than about
10nm.

In this work, we will develop our model based on FIB imaging of a COx sample
of 6.545× 7.966× 1.03µm with a porosity of 3.07%± 0.39% and voxel size resolution of
8.49× 10.78× 10nm obtained from Song, Yang et al. [154]. Fig. 1.10a shows a 2D part of
this sample followed by a conceptual version highlighting the different phases therein in
Fig. 1.10b. This numerical sample was also used in [126].

Talking about the clay rocks (in the micro-scale), mineral inclusions, pores and
clay matrix are well-defined and form an inhomogeneous domain, which results in the
assumption of a homogeneous domain represented by a VER is only valid on a macroscopic
scale. Thus, regarding at micro-scale, we consider the clay as a continuous matrix phase
surrounding the pores and inclusions. Some studies showed that this medium exhibits
an elastic behaviour [7], [46]. Cariou et al. [36] noted that such material exhibits a
transversely isotropic mechanical property; however, for the sake of simplicity, the present
thesis treats it as an isotropic material. Mineral inclusions are considered rigid bodies due
to their low elastic properties (for instance, the Young modulus E ∼ 72GPa for quartz
and calcite). We devote the Appendix A to resume the governing equations that treat
rigid bodies.
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Fig. 1.10.: COx sample by FIB and physical model of the host rock.

1.3.1 Fluid phases
The scale of a domain of flow is a key variable to choose the right physical

phenomena and the most adapted equations. For instance, within a few nanometers,
intramolecular interactions must be taken into account, consequently, the most predictive
methods are stochastic and molecular dynamics. At larger scale (from tens of nanometer
to tens of micrometers), interactions between individual molecules can be neglected
and the equations of Navier-Stokes for continuous fluid can be used. Finally, on macro
scale, Darcy’s law, with its variants, is widely used to describe a homogeneous porous
media without distinction between solid and fluid parts. In this work, we are interested
in at the intermediate scale. Thus, following Navier-Stokes formulations in a Lagrangian
description, the conservation of mass is written as:

ρ̇ = −ρ∇ · v (1.1)

where ρ is the volumetric mass or density, the over-text (·) denotes a time derivative
operator D/Dt and v is the velocity. The momentum conservation equation in material
coordinates is the following:

ρv̇ = −∇p+∇ ·
[
µ(∇v + (∇v)T − 2

3(∇ · v)1)
]

+ ρg (1.2)

1.3 Hydro-mechanical pore-scale model 19



with p the pressure, µ the fluid dynamic viscosity and g the gravitational acceleration. For
an incompressible Newtonian fluid, the momentum equation can be simplified to:

ρv̇ = −∇p+ µ∇2v + ρg (1.3)

If the thermodynamics effects can be neglected, the ideal gas equation of state, which
relates pressure to density, can be written in the following form:

p = c2(ρ− ρ0) (1.4)

where c is the sound velocity in a fluid and the subscript 0 denotes some initial value
of ρ. In addition, seeking to describe the interface dynamic behaviour of a non-miscible
2-phase flow in porous media, Young-Laplace law states the pressure drop ∆p for a curved
interface between two fluids:

∆p = γ̌( 1
R1

+ 1
R2

) = γ̌∇ · ~n (1.5)

where R1 and R2 are the radii of curvature, γ̌ is the coefficient of surface tension and ~n is
the unit normal to the fluids interface. This phenomenon is due to the surface tension
generated by the difference between the fluid properties. In order to assure the continuity
of viscous stress tensor at the fluid-fluid interface, this work uses the Brackbill model [31]
for calculating surface forces in a continuum approach (see for instance [96], [119]). As
a first step to obtain the volumetric surface tension F̌ , the local interface curvature κ̌ is
defined as:

κ̌ = −∇ · ~n = n · ∇‖n‖
‖n‖2 − ∇ · n

‖n‖
(1.6)

where the unit normal ~n is expressed by the color function č(r), so that:

~n = ∇č(r)
‖∇č(r)‖ (1.7)

with

č(r) = ρl(r)− ρg(r)
ρl(r) + ρg(r)

(1.8)

with the subscripts l and g related, respectively, to liquid and gas phases. Hence, from
(Eqs. 1.5, 1.6 and 1.7) we obtain the volumetric surface tension force F̌ (r), such as:

F̌ (r) = 1
2 γ̌κ̌~n (1.9)

and by assigning a color function value to the solid phase, the contact angle θ can be
obtained as:

θ = arccos(č(r)) (1.10)
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Near the solid contact interface, these values are employed to compute the local unit
normal.

1.3.2 Elastic solid phase
In continuum mechanics, the initial (t = 0) and the current (t > 0) configurations

of a defined domain can be significantly different when the deformations and/or rotations
are not infinitesimally smaller than the dimension of that domain (Fig. 1.11 presents
a mixed deformation and rotation transformation). The finite strain theory is able to
describe such phenomenon [145]. Otherwise, when this transformation is small to keep
the constitutive properties of the material close enough to a constant value, the equations
that reproduce this phenomenon can be simplified, resulting in the infinitesimal strain
theory or small deformations theory. The present section recalls the elastic equations for
both approaches in addition to mass and energy conservation in Eulerian and Lagrangian
descriptions.

Fig. 1.11.: General 3D rotation and deformation of a domain from an initial to a current state.

1.3.2.1 Large deformations in continuum mechanics
Let us first consider a domain with initial state Ω0 (particle initial position X)

and current state Ωt (current position x). In the Lagrangian description, the displacement
field at time t is defined as u(X, t) = x − X. The deformation gradient tensor F(X, t)
reads:

F = ∂x

∂X
= 1 +∇0u (1.11)
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Here, the subscript 0 denotes the reference configuration. The volumetric change between
an initial infinitesimal volume dΩ0 and the corresponding volume in the current state dΩt

is calculated using the Jacobian of F, such as:

dΩt = J dΩ0 = det
(
F
)
dΩ0 (1.12)

Thus, considering a 3D large deformations framework in Lagrangian description, we write
the Green-Lagrange strain tensor ε

GL
which is defined, respectively, as a function of the

deformation gradient or of the gradient of the displacement field, such as [145]:

ε
GL

(F) = 1
2(FT · F− 1)

ε
GL

(u) = 1
2
(
(∇u)T +∇u+ (∇u)T∇u

) (1.13)

(1.14)

Considering now motion in spatial coordinates, described by means of the Eulerian
velocity field v(x, t), one gets:

d = 1
2(∇vT +∇v) (1.15)

Note that the transpose of the gradient of the Eulerian velocity, l(x, t) = (∇v(x, t))T , is
such that:

l = Ḟ · F−1 (1.16)

Note also that the rate of the Green-Lagrange deformation tensor is related to the Eulerian
rate of deformation by:

ε̇
GL

= FT · d · F (1.17)

Let’s recall the mass conservation law:

ρ = J−1ρ0 (1.18)

where ρ is the material density in the current state. Besides, the mass conservation
equation in spatial coordinates is given by:

ρ̇+∇ · (ρv) = 0 (1.19)

1.3.2.2 Governing equations and Saint Venant-Kirchhoff
constitutive model

We remain in a Lagrangian description in order to resume an approach that
results in a simple way to obtain a linear law which relates the strain and the stress tensors

22 Chapter 1 Geological disposal of radioactive waste: managing risks from nano to macroscale



in large deformations. We introduce the initial configuration of the thermodynamics
potential (or strain energy density). For a material with elastic response without thermal
effects, we present such potential in the case of Saint Venant-Kirchhoff constitutive
model:

ρ0w = 1
2 ε

GL
: C0 : ε

GL
(1.20)

with (:) the double dot product. In next chapters the role of the tensor C will be discussed.
Here, the large deformations Saint Venant-Kirchhoff state law can be obtained by the
second Piola-Kirchhoff stress tensor S by means of the partial derivative of (Eq. 1.20)
with respect of its state variable ε

GL
.

S = ρ0
∂w

∂ε
GL

= C0 : ε
GL

(1.21)

In the following, the time derivative of the thermodynamics potential reads:

ρ0ẇ = ρ0
∂w

∂t
= ρ0

∂w

∂ε
GL

: ε̇
GL

(1.22)

In order to obtain the internal energy conservation, we can introduce (Eq. 1.21) into (Eq.
1.22) or obtain an alternative form in function of the first Piola-Kirchhoff stress tensor P
from the identity S = F−1 · P [45], such as:

ρ0ẇ = S : ε̇GL = P : Ḟ (1.23)

Moreover, the momentum conservation in a Lagrangian description is given through the
1st Piola-Kirchhoff stress tensor:

ρ0ü = −∇0 · P (1.24)

We resume the governing equations obtained in a Lagrangian description as:



ρ = J−1ρ0

ü = − 1
ρ0

(
∇0 · P

)
ẇ = 1

ρ0

(
P : Ḟ

)
(1.25)

(1.26)

(1.27)

This section showed the pertinence of the Piola-Kirchhoff stress tensors in such a large
deformation model. The linear constitutive model St. Venant-Kirchhoff (SVK) is easy to
compute and it leads to the resolution of the governing equations after the transformation
from S to P .
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1.3.2.3 Governing equations and linear elastic law
In the hypothesis of small perturbations, the second order term of the displace-

ment gradient (i.e. (∇u)T∇u) is significantly smaller compared to first order terms and
are neglected. The differences between material coordinates (i.e. Lagrangian description)
or spatial coordinates (i.e. Eulerian description) are close enough to be neglected (i.e.
detF ≈ 1), it results in the adoption of the spatial coordinates. We consider the mechani-
cal behaviour by neglecting the high order gradient terms in the Green-Lagrange strain
tensor (Eq. 1.14), which results in the strain tensor ε that is given as a function of the
displacement vector field u following spatial coordinates:

ε ' 1
2
(
(∇u)T +∇u

)
(1.28)

The rate of the deformation tensor ε̇ is revisited from (Eq. 1.15):

ε̇ = 1
2
(
(∇v)T +∇v

)
(1.29)

We resume now a small deformations counterpart of finite strain theory procedure where
the thermodynamics potential in current configuration reads:

ρw(ε) = 1
2 ε : C : ε (1.30)

Here, the state law can be obtained by means of the partial derivative of (Eq. 1.30), such
that:

σ = ρ
∂w

∂ε
= C : ε (1.31)

The time derivative of the thermodynamics potential is given by:

ρẇ = ρ
∂w

∂t
= ρ

∂w

∂ε
: ε̇ (1.32)

Thus, the internal energy conservation can be obtained also in a similar way and reads:

ρẇ = σ : ε̇ (1.33)

Finally, the governing equations accounting for infinitesimal deformation hypothesis can
be resumed as: 

ρ̇ = −∇ · (ρv)

ü = 1
ρ

(
∇ · σ

)
ẇ = 1

ρ

(
σ : ε̇

)
(1.34)

(1.35)

(1.36)
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1.3.3 Interface conditions
The boundary conditions imposed between different phases must assure the

correct behaviour at the interfaces. As a general rule, the velocity of the two different
phases at the contact point r will be supposed to be the same.

va(ri) = vb(ri) (1.37)

where the subscripts a and b designate different phases. Such condition provides both
no-slip boundary condition and non penetration of the phases, that must be reinforced by
the continuity of normal stresses at the interface solid-fluid.

σ
s
· ~ns = −σ

f
· ~nf (1.38)

where the subscripts s and f indicate solid and fluid phases, respectively. Therefore, the
continuity of normal stresses is also imposed between the solid rigid-elastic phases.

Concluding remarks
This chapter has provided a brief overall context of radioactive waste disposal in

a deep geological layer, focusing on the French project Cigéo. The transport phenomena
at the pore-scale of the clayey Callovo-Oxfordian formation was introduced as a major
aspect due mainly to a significant expected gas generation within such disposal facility
over hundreds of thousands years. This literature review has highlighted theoretical,
experimental and numerical research in the domain mainly in macro and mesoscale. A
lack of studies about the characterisation of the gas preferential pathway at pore-scale
was identified. To contribute to this point, we have presented a physical model treating a
few main phases present in this medium.
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2Numerical modelling: Smoothed
Particle Hydrodynamics

Overview: This chapter summarises the use of the Smoothed Particle Hydrody-
namics method to simulate the hydromechanical phenomena introduced previously.
We present the mathematical formulation of the numerical method (section 2.1),
followed by the time integration schemes (2.2) and the numerical improvements
adopted to solve some well-known SPH drawbacks (2.3). In the following, we focus
on the elastic body dynamics in small and large deformation approaches (2.4). Two
tests are performed: a validation of the SPH improvements (2.5) and a vibration
problem used to validate SPH as a local EDP solver (2.6).

This thesis uses a simulation code based on the Smoothed Particles Hydrody-
namics (SPH) method that has been recently developed by IRSN [126]. In a 3D porous
medium sample (Fig. 2.1), this code can solve in the same formalism the solid elastic
deformation (clayey matrix), the rigid bodies movement (carbonate or silicate inclusions),
the two-phase flow (water and hydrogen) taking into account the surface tension and
the capillary forces as well as interactions between all phases. SPH was firstly introduced
independently by Gingold and Monaghan [69] and Lucy [103] for treatment of astrophys-
ical problems. Nowadays, it is widely applied to simulate, with good accuracy, transient
dynamics with important deformation of studied domains. Many different applications
for fluid flow [35], [96], [97], [161] and multiphase flows [42], [112], [157] were made.
The implementations for applications in solid dynamics have been explored since the
1990s after the structural mechanics framework introduced by Libersky and Petscheck
[94], [95]. Applications in the field of heat transfer [41], [42], mass transport [84] and
reactive transport [157] have also been already published. The SPH method can be de-
scribed as a Lagrangian particle method that does not use a fixed mesh and where a local
behaviour results from an interpolation over all particles present in an elementary area.
The interpolation weights are calculated using a smoothing function (also called kernel
function), defined as non-zero in a zone of radius defined by the so-called smoothing
length κ̂h (Fig. 2.2 - a). Thus, a weighted sum of values of a variable at the neighbouring
points results in the approximation of this variable at a central point (Fig. 2.2 - b). The
mesh-free character of the SPH method can provide an important advantage in treating
pore-space dilation resulting from multiphase flow related to gas percolation. Moreover,
SPH structure can easily profit from CUDA technology for massively parallel computations
on GPU to improve its computational efficiency.
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Fig. 2.1.: Physical configuration and SPH numerical model

2.1 Mathematical formulation: smoothed
functions and derivatives

The SPH method is based on approximation of a given function f by means of a
continuous integral in the spirit of what is possible with the Dirac’s delta function δ.

f(r) =
∫

Ω
f(r′)δ(r − r′)dr′ (2.1)
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Fig. 2.2.: An conceptual example of 2D SPH ordered material points with the smoothing length
κ̂h around a central point (a) and the neighbour contribution weights following a
smoothing function W (b)

where r and r′ are the spatial coordinate vectors within the integral domain Ω. Dirac [56]
introduced the delta function in his quantum mechanics work considering the following
properties:

δ(r − r′) =

∞, r = r′

0, r 6= r′
(2.2a)

∫ ∞
−∞

δ(r)∂r = 1 (2.2b)

Because of the singular shape of δ, it cannot be used in discrete numerical models.
For such applications, this function should be replaced by an appropriate smoothing or
kernel function W (r − r′, h). Thus, the kernel approximation of f(r) reads:

〈f(r)〉 =
∫

Ω
f(r′)W (r − r′, h)dr′ + errsmoothing (2.3)

where the angle brackets 〈·〉 denote a kernel approximation, h is called a smoothing
scale (or smoothing length) that is related to the support-length of the function W by a
multiplier κ̂ and errsmoothing = O(h2) is the approximation error [97] generated by this
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convolution procedure. W function has unit of inverse of volume. Thus, the smoothed
form of function (2.3) can be defined as:

〈fS(r)〉 =
∫

Ω
f(r′)W (r − r′, h)dr′ (2.4)

For the sake of convenience, in later sections we omit the angle brackets 〈·〉 operator and
the subscript S and note the smoothed value of f(r) by:

f(r) .=
∫

Ω
f(r′)W (r − r′, h)dr′ (2.5)

To ensure the method consistency, kernel functions must fulfil several conditions. In
particular, it must converge to the Dirac function when h tends to zero:

lim
h→0

W (r − r′, h) = δ(r − r′) (2.6)

and be normalised: ∫
Ω
W (r − r′, h)dr′ = 1 (2.7)

Additionally, W must be positively defined and even in order to give the same weights
for all points located at the same distance. Usualy, functions with a compact support are
used, such that:

W (r − r′, h) = 0 when |r − r′| > κ̂h (2.8)

where κ̂ is a multiplier related to the smoothing function and κ̂h gives the support
length. Furthermore, the choice of W should allow the conservation of angular and linear
momentum, which is ensured by the following condition:

∫
Ω

(r − r′) W (r − r′, h)dr′ = 0 (2.9)

2.1.1 Types of smoothing functions
In order to achieve accuracy and numerical stability in different applications,

several smoothing functions are proposed following different needs. Two most frequent
smoothing functions are recalled here: the Gaussian function introduced by Gingold
[69] is an excellent option to obtain accuracy and stability, but has a high computation
cost given its infinite support form, which requires the adoption of periodic boundary
conditions.

W (q, h) =
(

1
h
√
π

)d̂
exp

[
−
(
q

h

)2
]

(2.10)
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where q = ‖r−r′‖ and d̂ represents the spatial dimension. For computational convenience,
smoothing functions are often represented by polynomial forms. Among the most common
formulations are the quadratic and cubic spline functions [97] which are frequently
employed in hydrodynamics (see more in [117]). The following cubic B-spline smoothing
function first introduced by Monaghan and Lattanzio [113] is used in most cases in the
present work.

W (q, h) = M

hd̂


2
3 − ( q

h
)2 + 1

2( q
h
)3 if 0 ≤ q < h

1
6(2− q

h
)3 if h ≤ q < 2h

0 if q ≥ 2h

(2.11)

where M is a factor equal to 1, 15/7π and 3/2π for 1D, 2D and 3D respectively. For
convenience, we will call this function just "spline function”. The size of the support
is λ = κ̂h = 2h for spline function and for Gaussian function, it is defined arbitrary as
λ = κ̂h = 2

√
2h (see [51], [162] for more details).

2.1.2 Kernel interpolation
In order to exemplify the theoretical base of the SPH method, a simple case of

spatial regression is presented in Fig 2.3. A data set composed of 200 points is randomly
generated following f(x) = tan(x) shape with a standard deviation of 1/4.

Fig. 2.3.: Randomly generated data following f(x) = tan(x) with a standard deviation of 1/4
and its linear and polynomial regressions.
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Here, R is the root-mean-square deviation of each regression form. Two well
known regression methods (linear and polynomial) are showed, but following the root-
mean-square deviation (R) they do not give an optimal fit on this data set. Another
method is the regression by a cubic spline kernel function (Eq. 2.11), where a support
domain (κ̂h) determines the size of the area of influence used to compute an average point
by a weighted sum. In this exercise, we adopt κ̂ = 1. Fig. 2.4 shows that such method
with a too small scale length (h = 0.05) leads to an over-fitted regression, represented by
an important variation of the fit derivative.

Fig. 2.4.: Randomly generated data following f(x) = tan(x) with a standard deviation of 1/4
and its cubic spline kernel regression with h = 0.05.

Otherwise, when we adopt an over sized kernel scale length (h = 2) in Fig. 2.5,
this regression tends to a linear regression. Thus, seeking to optimally fit (R ∼ 1.00) the
data set through the cubic spline kernel regression, we choose by calibration an "optimal"
value of h = 0.46. We present in Fig. 2.6 the set of linear, polynomial and the "optimal"
cubic spline kernel regressions. Although the regression by kernel interpolation has higher
computational cost, it presents an interesting property linking two different scales, which
is called a non-local effect. This capability of SPH has a key role in its use as a PDE
solver.
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Fig. 2.5.: Randomly generated data following f(x) = tan(x) with a standard deviation of 1/4
and its cubic spline kernel size of h = 2.

Fig. 2.6.: Randomly generated data following f(x) = tan(x) with a standard deviation of 1/4
and its linear and polynomial and optimal cubic spline kernel (h = 0.46) regressions.

2.1.3 Kernel derivatives continuous approximation
This subsection presents some different ways to construct derivatives in SPH

method. The approach to be adopted will depend on what is the most suitable for a
problem that we are seeking to solve.
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2.1.3.1 First derivatives approximation
The approximation of the gradient of a vector function can be obtained by

replacing f(r) by ∇f(r) in (Eq. 2.5):

∇f(r) =
∫

Ω
[∇f(r′)]W (r − r′, h)dr′ (2.12)

Consider f as a vector field and Φ as a scalar field, we apply the following gradient
product identity:

∇ (Φf) = Φ (∇f) + f ⊗∇ (Φ) (2.13)

with ⊗ the outer product between two vector fields. Hence, introducing (Eq. 2.13) into
(Eq. 2.12), where f = f(r′) and Φ = W (r − r′, h):

∇f(r) =
∫

Ω
∇ · [f(r′)W (r − r′, h)] dr′ −

∫
Ω
f(r′)⊗∇ [W (r − r′, h)] dr′ (2.14)

We apply the generalised Stokes theorem [39] in order to solve the first integral term in
the right-hand side of (Eq. 2.14). It relates the volume Ω integral to its surface a integral,
in a way that:

∫
Ω
∇ [f(r′)W (r − r′, h)] dr′ =

∫
∂Ω
f(r′)W (r − r′, h)da (2.15)

Considering the compact support condition presented in (Eq. 2.8), W is equal to zero
on the surface of the support and outside. Although Gaussian kernel function has no
compact support, W tends to zero when r − r′ tends to infinity and in SPH configuration
(Eq. 2.15) vanishes. As a result, the gradient approximation (Eq. 2.14) becomes:

∇f(r) = −
∫

Ω
f(r′)⊗∇W (r − r′, h)dr′ (2.16)

The previous procedure to obtain the SPH gradient is similar to the development proposed
by Liu and Liu [97] in order to obtain the approximation of the divergence of a vector
field. We recall it by introducing ∇ · f(r) into (Eq. 2.5):

∇ · f(r) =
∫

Ω
[∇ · f(r′)]W (r − r′, h)dr′ (2.17)

Consider the following identity of the divergence of the product of a vector field f and a
scalar field Φ:

∇ · (Φf) = Φ (∇ · f) + f · ∇ (Φ) (2.18)
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we use the Gauss theorem to obtain the divergence approximation:

∇ · f(r) = −
∫

Ω
f(r′) · ∇W (r − r′, h)dr′ (2.19)

Thus, based on these approximations of gradient and divergence, in the following sections
we present different ways to compute higher order derivatives.

2.1.3.2 Second order derivatives approximation
We obtain directly a second order derivative in SPH form by applying twice the

gradient procedure in (Eq. 2.5) as recalled in last subsection:

∂2f(r)
∂x2 =

∫
Ω
f(r′) · ∇2W (r − r′, h)dr′ (2.20)

where ∇2W (r − r′, h) is the Laplacian of the kernel function. This direct form presents
some drawbacks as stated by Monaghan et al. [117]: the Laplacien value depends on the
second derivative sign, which may generate non-physical phenomena such as heat transfer
from cold to hot domain. This form is also very sensitive to material point disorder.

Thus, we recall here the integral approximation of the second derivative by
using Taylor series expansion as proposed by [33], [34]. In a general divergence form
considering two vector fields Φ(r) and f(r):

∇ · (Φ(r)∇f(r)) +O(h2) =
∫

Ω
[Φ(r) + Φ(r′)][f(r)− f(r′)] ∇W (r − r′, h)

(r − r′) dr′ (2.21)

where the gradient of the kernel function will be rewritten as proposed by Monaghan et
al. [117]:

∇W (r − r′, h) = (r − r′) · F(|r − r′|) (2.22)

Thus, introducing (Eq. 2.22) into (Eq. 2.21) we obtain a new ∇W (r − r′, h) form:

∇ · (Φ(r)∇f(r)) =
∫

Ω
[Φ(r) + Φ(r′)][f(r)− f(r′)] F(|r − r′|) dr′ (2.23)

For a 1D configuration, if we consider a second derivative of a field vector f and
a constant field Φ = 1, (Eq. 2.23) becomes:

∂2f(r)
∂x2 =

∫
Ω

2[f(r)− f(r′)] F(|r − r′|) dr′ (2.24)
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Since F is a scalar function with F ≤ 0, it implies that if f(r) < f(r′), then ∂f(r)/∂r > 0
and inversely, if f(r) > f(r′) =⇒ ∂f(r)/∂r < 0 [117]. This construction corrects the
second derivative sign issue.

Bi-dimensional configuration:
By using the same procedure with two vector fields Φ(r) and f(r), Monaghan et

al. [117] obtained the following 2D second order derivative form:

∇ · (Φ(r)∇f(r)) +O(h2) = Jxx + Jyy (2.25)

where J are second derivative integrals and their subscripts denote spatial derivatives,
such that:

∂2J
∂α ∂γ

=
∫

Ω

∆α∆γ
(∆r)2 [Φ(r) + Φ(r′)][f(r)− f(r′)] F(|r − r′|) dr′ (2.26)

where ∆ indicates the distance between points following the spatial dimensions α and γ
and ∆r is the norm of the vector r. Expanding Φ(r) and f(r) to a second order Taylor
series, (Eq. 2.26) becomes:

Jxx = Φ
(3

4fxx + 1
4fyy

)
+ 3

4Φxfx + 1
4Φyfy (2.27a)

Jyy = Φ
(1

4fxx + 3
4fyy

)
+ 1

4Φxfx + 3
4Φyfy (2.27b)

Jxy = Jyx = 1
4 (2Φfxy + Φyfx + Φxfy) (2.27c)

By adopting a constant field Φ = 1 the second derivative of a field vector f in (Eq. 2.25)
simplifies to:

∂2f(r)
∂α∂γ

=
∫

Ω

[
4∆α∆γ

(∆r)2 − δ
αγ

]
[f(r)− f(r′)] F(|r − r′|) dr′ (2.28)

Three-dimensional configuration:
A similar procedure in 3D configuration requires adding a term Jzz into (Eq.

2.25) (see Espanol and Revenga [60] for more details). The second derivative integrals
Jαγ can be obtained from (Eq. 2.26). Hence, expanding Φ(r) and f(r) in the second
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order Taylor series, the second partial derivatives (Jxx, Jyy and Jzz) have similar forms
and all mixed derivatives (e.g. Jxy) have also similar expressions:

Jxx = Φ
(3

5fxx + 1
5fyy + 1

5fzz
)

+ 3
5Φxfx + 1

5Φyfy + 1
5Φzfz (2.29a)

Jxy = 2
5Φxfxy + 1

5Φxfy + 1
5Φyfx (2.29b)

In a 3D configuration the general form of second derivative (obtained with Φ = 1) is
given by:

∂2f(r)
∂α∂γ

=
∫

Ω

[
5∆α∆γ

(∆r)2 − δ
αγ

]
[f(r)− f(r′)] F(|r − r′|) dr′ (2.30)

2.1.4 SPH discrete approximation
We note that most of SPH literature adopts the nomenclature "particle" instead

of "material points" when talking about the spatial discretisation, which is evident given
the fact that the term "particle" is part of the name of this numerical method. Although
this nomenclature is more appropriate for fluid mechanics, where the Lagrangian unit of
small volume of fluids is represented by the evolution of a SPH "particle", the same is not
true in solid mechanics where SPH points are simply the initially selected locations within
a continuous medium. The notation of "material points" also stresses the mathematical
character of SPH method, which can be seen as a mere solver of any PDE where no
"particles" are meant to be present.

In the following, our numerical method seeks to discretise a continuum domain
by a set of material points that can be ordered (Fig. 2.2) or not (Fig. 2.7). The properties
of a given material point (subscript a) are computed by means of a weighted sum over
its neighbourhood points (denoted by the subscript b). The points do not have fixed or
determined shape, however they are associated with volumes that determined from the
density and mass of a point:

Va = ma

ρa
(2.31)

where V , m and ρ are, respectively, the volume, the mass and the density at the material
point a. Any continuous integral can be approximated by a summation from 1 to N̂ ,
where N̂ is the number of material points inside the domain determined by support length
of the kernel function W . The approximation at a material point of the f(r) function as
presented in (2.5) is thus given by:

f(ra) =
N̂∑
b=1

f(rb) W (ra − rb, h) Vb =
N̂∑
b=1

mb

ρb
f(rb) W (ra − rb, h) (2.32)
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Fig. 2.7.: 2D SPH disordered material points, the smoothing scale h and the neighbour contribu-
tion weight following a smoothing function W

The sum approximation of continuous integrals presented above generates an estimation
error errintegral = O(∆

h
), with ∆ the length scale characterising the average distance

between the particles [157]. For the sake of simplicity, the kernel function W will be
denoted as Wab for W (ra−rb, h). Since W is an even function, it is evident that Wab = Wba.
Thus, the SPH approximation of a function f now reads:

f(ra) =
N̂∑
b=1

mb

ρb
f(rb) Wab (2.33)

First derivative approximations
A similar procedure adopted to approximate a continuous f(r) function by its

discrete version f(ra) is used here to obtain the SPH form of the gradient of a function f
presented in (Eq. 2.16):

∇f(ra) = −
N̂∑
b=1

mb

ρb
f(rb)⊗∇bWab =

N̂∑
b=1

mb

ρb
f(rb)⊗∇aWab (2.34)
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Similarly, the SPH divergence operator of a function f reads:

∇ · f(ra) = −
N̂∑
b=1

mb

ρb
f(rb) · ∇bWab =

N̂∑
b=1

mb

ρb
f(rb) · ∇aWab (2.35)

The change of signs in (Eqs. 2.34 and 2.35) is explained since W is an even function
∇aWab = −∇bWab and ∇bWba = −∇aWba. In addition, the identity between ∇aWab and
Fab based in (Eq. 2.22) was detailed by Monaghan et al. [117] as follows:

∇aWab = (ra − rb)
rab

∂W (rab, h)
∂rab

= rab Fab (2.36)

with

rab = |ra − rb| (2.37)

and
F(rab) = 1

rab

∂W (rab, h)
∂rab

(2.38)

Monaghan et al. [117] recalled that the exact derivatives found by SPH does not vanish if
f is a constant function. In order to fix this issue and to increase the accuracy of gradient
calculations we can reuse (Eq. 2.13) in the following form:

∇f = 1
Φ [∇ (Φf)− f ⊗∇Φ] (2.39)

Using (Eq. 2.39), various gradient expressions can be proposed by introducing (Eq. 2.39)
into (Eq. 2.34) for different functions Φ (see [117], [157]), for instance:

∇f(ra) =
N̂∑
b=1

mb

ρb
[f(rb)− f(ra)]⊗∇aWab with Φ = 1 (2.40a)

∇f(ra) = 1
ρa

N̂∑
b=1

mb [f(rb)− f(ra)]⊗∇aWab with Φ = ρ (2.40b)

∇f(ra) = ρa
N̂∑
b=1

mb

[
f(rb)
ρ2
b

+ f(ra)
ρ2
a

]
⊗∇aWab with Φ = 1

ρ
(2.40c)

For the divergence operator, after (Eq. 2.18), we can similarly use:

∇ · f = 1
Φ [∇ · (Φf)− f · ∇Φ] (2.41)
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Several divergence operator forms are also found after introducing (Eq. 2.41) into (Eq.
2.35) for different values of Φ:

∇ · f(ra) =
N̂∑
b=1

mb

ρb
[f(rb)− f(ra)] · ∇aWab with Φ = 1 (2.42a)

∇ · f(ra) = 1
ρa

N̂∑
b=1

mb [f(rb)− f(ra)] · ∇aWab with Φ = ρ (2.42b)

∇ · f(ra) = ρa
N̂∑
b=1

mb

[
f(rb)
ρ2
b

+ f(ra)
ρ2
a

]
· ∇aWab with Φ = 1

ρ
(2.42c)

The forms in Eqs. 2.40c and 2.42c are called as symmetrical formulations [171].

Second derivative approximations
Since the first and second derivatives have similar continuous forms, their

approximations in a SPH discrete forms follow exactly the same procedure. The second
order derivative (Eq. 2.17) in discrete SPH form reads:

∇2f(ra) =
N̂∑
b=1

mb

ρb
f(rb) · ∇2

bWab (2.43)

Because of increased complexity, we present here the SPH forms based on the integral
approximation of the second derivative through Taylor series expansion. Consider two
functions f and Φ, the SPH expression for (Eq. 2.23) becomes:

∇ · (Φ(ra) ∇f(ra)) =
N̂∑
b=1

mb

ρb
[Φ(ra) + Φ(rb)] [f(ra)− f(rb)]Fab (2.44)

Such expression presents better accuracy under ideal conditions (e.g. ordered material
points, homogeneous properties and continuous fields). However, Cleary and Monaghan
[43] have noted that in case of discontinuity between Φ(ra) and Φ(rb) this expression
lead to inaccurate results. Thus, based on a finite difference analysis using a harmonic
mean, they proposed to replace the term [Φ(ra) + Φ(rb)] by 4 Φ(ra)Φ(rb)

(Φ(ra)+Φ(rb)) . It results in a
new form of (Eq. 2.44):

∇ · (Φ(ra) ∇f(ra)) =
N̂∑
b=1

mb

ρb

[
4 Φ(ra)Φ(rb)

(Φ(ra) + Φ(rb))

]
[f(ra)− f(rb)]Fab (2.45)

By adopting this formulation, [43] showed good accuracy for calculations for jumps in Φ
of a factor of 103. Parshikov and Medin [125] have also proposed another expression to
fix the discontinuities issues by multiplying the harmonic mean term in (Eq. 2.45) by a
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factor taking into account the average distance between material points. Following this
form, they showed good accuracy for jumps in Φ by a factor of 109.

Furthermore, in the special case of Φ = 1, we have the discrete general forms
for 1D (Eq. 2.24), 2D (Eq. 2.27) and 3D (Eq. 2.29) respectively:

(1D) =⇒ ∂2f(ra)
∂α2 =

N̂∑
b=1

mb

ρb
2 [f(ra)− f(rb)]Fab (2.46a)

(2D) =⇒ ∂2f(ra)
∂αγ

=
N̂∑
b=1

mb

ρb

[
4
rα,abrγ,ab

‖rab‖
2 − δ

αγ

]
[f(ra)− f(rb)]Fab (2.46b)

(3D) =⇒ ∂2f(ra)
∂αγ

=
N̂∑
b=1

mb

ρb

[
5
rα,abrγ,ab

‖rab‖
2 − δ

αγ

]
[f(ra)− f(rb)]Fab (2.46c)

recalling that α and γ are spatial dimensions and a and b are material point identifiers.

2.2 Time integration
In order to integrate the movement equations presented in Sec. 1.3, two explicit

time schema are introduced here.

2.2.1 Verlet integration scheme
This 2nd-order method presents good numerical stability as well as time re-

versibility.

rt+∆t
a = rta + vta ∆t+ ata

∆t2
2 (2.47a)

vt+∆t
a = vta +

(
ata + at+∆t

a

) ∆t
2 (2.47b)

2.2.2 Leapfrog integration scheme
Leapfrog is a 2nd-order approach, which presents more stability for constant

time-step. This method updates the positions and velocities at shifted time moments.
[157].

rt+∆t
a = rta + v

t+ ∆t
2

a ∆t (2.48a)

v
t+ ∆t

2
a = v

t−∆t
2

a + ata ∆t (2.48b)
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2.2.3 Maximal time-step: CFL stability conditions
The explicit time scheme are much simpler to implement and to parallelize.

However, their time step ∆t must respect the Courant-Friedrich-Levy (CFL) conditions in
order to ensure the numerical stability of the system (see [119] for more details).

∆t ≤



0.25 h

‖vmax‖

0.25
√

h

‖amax‖

(2.49)

We add that, for an elastic material, the following CFL condition is also re-
quested:

∆t ≤ h

√
ρe

λe + 2µe
(2.50)

where λ and µ are the Lamé coefficients and the subscript e relates to the elastic phase.

2.3 Improvements of numerical modelling
Despite its several advantages, SPH also presents a few well-known drawbacks:

non-physical noisy fluctuations, free boundary inconsistencies, tensile instability and
zero-energy modes. Thus, various research works have been carried out in order to treat
such issues. Namely, corrections of the kernel function and its derivatives are widely used
to improve the accuracy on material properties calculations at boundary material points
[117]. XSPH was introduced to improve the stability of simulations by correcting the
non-physical noisy fluctuations of velocities [100], [117]. In addition, some formulations
such as Total Lagrangian [132], [159], [160] allow to correct the tensile instability issues
[58], [67], [135]. The Moving Least Squares functions (MLS) [54], [55] can treat the
tensile instability as well as the zero-energy modes problems [67], [132]. Some of these
improvements are integrated into our code and will be presented in this chapter.

Sigalotti et al. [149] have recently discussed the consistency issues in SPH given
the particle disorder or if a boundary truncates the support domain. They observed that a
loss of SPH accuracy is mainly due to a loss of consistency, where the accuracy depends
only on the number of particles within the smoothing h-length and does not depend on the
smoothing length itself. The consistency may be enhanced by constructing a smoothing
function from Taylor series expansions of kernel function W and its derivatives. The
ensured order of consistency m leads to the m+ 1 order of accuracy. The first condition
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that ensure the 0th order consistency on a kernel function is its normalisation as showed
in continuous Eq. (2.51a) and discrete form Eq. (2.51b).

∫
W (|r − r′|, h)dr′ = 1 (2.51a)

N̂∑
b=1

mb

ρb
Wab = 1 (2.51b)

As showed in Fig. 2.8, this condition is not true for boundary particles, due to truncated
support domain, where no contributions come from the outside. Quinlan et al. [131]

Fig. 2.8.: SPH boundary particle particles for the one-dimensional case

developed a truncation error analysis to study the influence of the smoothing length h
and the ratio of particle spacing to the smoothing length ∆r

h
on consistency order. They

observed that the non-uniform distribution of particles increases the discretization error
in SPH. Liu and Liu [98] stated that the particle disorder issue can be treated by the use
of an even and non-negative smoothing function, which leads a 1st order consistency
and 2nd order accuracy. Furthermore, they showed that the 1st order consistency can be
ensured if the following condition is respected:

∫
(r − r′)W (|r − r′|, h)dr′ = 0 (2.52a)

N̂∑
b=1

mb

ρb
rabWab = 0 (2.52b)
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2.3.1 Mixed kernel function and gradient correction
In the cases where support domains are underpopulated or truncated, the 1st

order consistency can be guaranteed by assuring the conditions in (Eqs. 2.51 and 2.52).
This is what Liu et al. [99] followed by Bonet and Lok [25] have proposed by introducing
a corrected kernel form (here denoted by a over-text ∼) fulfilling the follow conditions:

N̂∑
b=1

mb

ρb
W̃ab = 1 (2.53a)

N̂∑
b=1

mb

ρb
rabW̃ab = 0 (2.53b)

Aiming to ensure the 1st order consistency, W̃ is redefined in the following general form
dependent on functions f(r) and Φ(r):

W̃ab = Wab f(ra)
[
1 + Φ(ra) · rab

]
(2.54)

Introducing the corrected kernel presented above into Eq. (2.53b) leads to:

N̂∑
b=1

mb

ρb
rabWab f(ra)

[
1 + Φ(ra) · rab

]
= 0 (2.55)

Φ(r) and f(r) are obtained, respectively, by rearranging Eq. (2.55) and replacing it into
Eq. (2.53a), such that:

Φ(ra) = −
 N̂∑
b=1

mb

ρb
rab ⊗ rabWab

−1
N̂∑
b=1

mb

ρb
rab Wab (2.56a)

f(ra) =
 N̂∑
b=1

mb

ρb
Wab

(
1 + Φ(ra) · rab

)−1

(2.56b)

This new interpolation function can ensure the angular momentum conservation since
respecting the follow condition:

N̂∑
b=1

mb

ρb
∇aWab ⊗ rba = 1 (2.57)

However, given the dependency of f and Φ on r, this form is computationally expensive
to calculate. Thus, a simpler formulation, so-called Shepard’s interpolation [25], that
considers Φ(r) = 0 is adopted as following:

W̃ab = Wab∑N̂
b=1

mb

ρb
Wab

(2.58)
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Although this correction can ensure a 0th order consistency without an expensive compu-
tations, it cannot ensure the angular momentum conservation. This issue will be treated
through a kernel gradient correction. Thus, seeking to restore the first order consistency
and to ensure the angular momentum conservation of the kernel derivatives, we recall
the correction procedure presented by Randles and Libersky [136], that uses a matrix
function of the gradient of the kernel function K(W ), applied to the original gradient,
such as:

∇̃aWab = K
a
∇aWab (2.59)

where the correction matrix K is computed as:

K(∇aWab)a =
 N̂∑
b=1

mb

ρb
∇aWab ⊗ rba

−1

(2.60)

This correction is then able to ensure the necessary condition presented in Eq. (2.57).
In order to correct drawbacks due to underpopulated or truncated support domains in
gradient calculations, two corrections to the kernel gradient are present in literature.
The gradient of the corrected kernel form calculated by applying the quotient rule to the
Shepard’s interpolation (Eq. 2.61a - as presented by Bonet and Lok [25]) and a corrected
gradient form based on the Shepard’s interpolation itself (Eq. 2.61b). Although the
last approach is not mathematically consistent, it is adopted in different studies (see for
instance [141]).

∇aW̃ab =
∇aWab

(∑N̂
b=1

mb

ρb
Wab

)
−
(∑N̂

b=1
mb

ρb
∇aWab

)
Wab(∑N̂

b=1
mb

ρb
Wab

)2 (2.61a)

∇a
˜̃
W ab = ∇aWab∑N̂

b=1
mb

ρb
∇aWab

(2.61b)

As showed in Eq. (2.60), the corrected matrix K depends on the kernel gradient function
∇W , thus, for each respective correction presented in (Eqs. 2.61) a new matrix correction
will be necessary.

K(∇aW̃ab)a =
 N̂∑
b=1

mb

ρb
∇aW̃ab ⊗ rba

−1

(2.62a)

K(∇a
˜̃
W ab)a =

 N̂∑
b=1

mb

ρb
∇a

˜̃
W ab ⊗ rba

−1

(2.62b)

From that, we find the following possible mixed kernel and gradient correction forms:

∇̃aWab = K(∇aWab)a ∇aWab (2.63a)
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∇̃aW̃ab = K(∇aW̃ab)a ∇aW̃ab (2.63b)

∇̃a
˜̃
W ab = K(∇a

˜̃
W ab)a ∇a

˜̃
W ab (2.63c)

Finally, by replacing W and ∇W by, respectively, its mixed kernel and gradient corrected
forms W̃ and ∇̃W̃ we can ensure the angular moment conservation and restore the 1st

order consistency. A validation test and additional discussions about this corrections are
performed at the end of this chapter.

2.3.2 Artificial viscosity
Neumann and Richtmyer [122] first introduced the artificial viscosity seeking

to stabilise numerical solutions by smoothing shock phenomena. It was introduced to
SPH by Monaghan and Gingold [114] to simulate discontinuities, shocks or stabilise SPH
algorithms numerically. After them, many researchers adopted the artificial viscosity to
treat fluid [44], [136] or elastic dynamics [141], [171]. Libersky et al. [95] stated that
the significant increase of oscillations in unstable conditions (for instance disordered
material points or shock phenomena) results from the omission of the dissipative terms in
governing equations. The artificial viscosity acts on the relative motion of material points
by adding a Πab term into the momentum equation interpolation between material points
a and b. We adopt here the version proposed by Monaghan [110], [115] that depends on
the divergence of vab:

Πab =


− ᾰcabν̆ab + β̆ν̆2

ab

ρab
if (vab · rab) < 0

0 if (vab · rab) ≥ 0
(2.64)

where ᾰ and β̆ are arbitrary constant parameters and the over-line on the sound speed c
and on the density ρ denote their arithmetic mean with respect to a and b. In addition ν̆ab
is defined such as:

ν̆ab = − h(vab · rab)
r2
ab + 0.01h2 (2.65)

with the denominator term 0.01 introduced to prevent singularities and h the smoothing
lenght of SPH kernels. Some desirable features can be noted about the viscosity: it is
Galilean invariant, it conserves linear and angular momenta and vanishes for rigid body
rotations [110]. We observe from (Eq. 2.64) that the artificial viscosity vanishes when
∇ · v is greater or equal to zero. Inversely, when two material points are moving towards
each other (∇ · v < 0) it produces a repulsive force that depends on two constants: ᾰ
which is linear with the velocity difference and dominant when it is small (this therm is
equivalent to a bulk viscosity [111]) and β̆ which is dominant when the velocity difference
is large (it is a Von Neumann-Richtmyer [122] like viscosity).
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2.3.3 XSPH velocities correction
The XSPH approach seeks to improve the numerical stability by correcting non-

physical noisy fluctuations [4], [85], [100], [117]. Such correction ensure that, when the
momenta are constant, the velocities in a close neighbourhood are not too distinct. Thus,
the method updates the calculated velocities by using a corrected velocity:

v̂a = va + ε̂
∑
b

mb
2(vb − va)
ρa + ρb

(2.66)

where ε̂ is an arbitrary constant parameter that may vary from 0 to 1 for different
applications.

2.3.4 SPH in GPU parallel computing
The increasing performance of GPUs has led to their increased usage for numeri-

cal modelling. Their performance is given mainly by the parallel nature of the graphical
processing units, which is well-suited for intensive methods like the Smoothed Particle
Hydrodynamics with almost local nature. The code used in this thesis is written in C++
to ease the separation the computing components and in CUDA for GPU parallelisation.

2.4 Elastic body dynamics
In this section, we present the SPH form of equations describing the solid phase.

We seek to evaluate the numerical stability of approaches based on finite and infinitesimal
formulations. In addition, the rigid body dynamics equations are recalled in Appendix
A.

2.4.1 SPH discrete governing equations and Saint
Venant-Kirchhoff constitutive model
As presented in Sec. 1.3.2.2, the deformation gradient F and its time derivative

Ḟ are key variables in our Saint Venant-Kirchhoff (SVK) constitutive model. Based on the
continuum (Eq. 1.11), their discrete SPH forms with mixed normalisation and correction
of kernels are given by:

F
a

=
 N̂∑
b=1

mb

ρb,0
(rb − ra)⊗ ∇̃a,0W̃ab,0

+ 1 (2.67)
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Ḟ
a

=
 N̂∑
b=1

mb

ρb,0
(vb − va)⊗ ∇̃a,0W̃ab,0

 (2.68)

In addition, aiming to obtain the SVK constitutive model, by simple matrix operations of
F
a

and Ḟ
a

we calculate the following intermediary variables:

l
a

= Ḟ
a
· F−1

a
(2.69)

d
a

= 1
2(lT

a
+ l

a
) (2.70)

We are also able to construct the Green-Lagrange deformation tensor as well as its
incremental form by:

ε
GLa

= 1
2(FT

a
· F

a
− 1) (2.71)

ε̇
GLa

= FT
a
· d

a
· F

a
(2.72)

The Saint Venant-Kirchhoff state law for a material point is then given by:

S
a

= ρ
∂ψ

∂ε
GL

= C0 : ε
GLa

(2.73)

In terms of local material properties (for an isotropic case), it reads:

S
a

= k trε
GLa

1︸ ︷︷ ︸
volumetric stress

+ 2µ εd
GLa︸ ︷︷ ︸

deviatoric stress

(2.74)

where k is the bulk modulus, µ the shear modulus and the superscript d relates to the
deviatoric part of the tensor εd

GLa
= ε

GLa
− 1

3 tr(ε
GL

)
a

1. We can obtain the discrete
momentum conservation equation by transforming the continuum (Eq. 1.26) in an
equivalent form of (Eq. 2.42a) with Φ = 1 and f = P :

üa = − 1
ma

N̂∑
b=1

ma

ρa,0

mb

ρb,0

(
P
b
− P

a

)
· ∇a,0Wab,0 (2.75)

We recall for a mixed corrected kernel and gradient obtained after (Eq. 2.63b) that
∇̃a,0W̃ab,0 6= −∇̃b,0W̃ba,0. This condition leads to the following interpolated form of the
momentum conservation equation adopted in our work:

üa = − 1
ma

N̂∑
b=1

ma

ρa,0

mb

ρb,0

(
P
b
∇̃b,0W̃ba,0 − P a

∇̃a,0W̃ab,0
)

(2.76)

In the same way, we obtain the discrete rate of the internal energy by introducing
(Eq. 2.68) into (Eq. 1.27). Thus, by applying the identity P : (vba ⊗ ∇̃a,0W̃ab,0) =
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vba · P ∇̃a,0W̃ab,0 (as shown in [27]), we obtain the interpolated form of the energy
conservation equation:

ẇa =
N̂∑
b=1

ma

ρa,0

mb

ρb,0
(vb − va) · P a

∇̃a,0W̃ab,0 (2.77)

The Jacobian J used in the mass conservation equation is written as:

Ja = det
(
F
a

)
(2.78)

It results in the SVK-SPH discrete form of the governing equations:



ρa = J−1ρa,0

üa = − 1
ma

N̂∑
b=1

ma

ρa,0

mb

ρb,0

(
P
b
∇̃b,0W̃ba,0 − P a

∇̃a,0W̃ab,0
)

ẇa =
N̂∑
b=1

ma

ρa,0

mb

ρb,0
(vb − va) · P a

∇̃a,0W̃ab,0

(2.79)

(2.80)

(2.81)

We highlight that in this section the only variables computed through a weighted average
are the deformation gradient and its time derivative. In addition, only a few matrix
operations are necessary to obtain the linear elastic part of the Saint Venant-Kirchhoff
constitutive model.

2.4.2 SPH discrete governing equations and linear elastic
law
A much simpler approach is used for infinitesimal strain theory, given the fact

that we can neglect the second order terms. Consider SPH form with mixed normalisation
and correction of kernels. The infinitesimal strain ε and the rate of the deformation tensor
ε̇ are given by:

ε
a

=
 N̂∑
b=1

mb

ρb
(rb − ra)⊗ ∇̃aW̃ab

 (2.82)

ε̇
a

=
 N̂∑
b=1

mb

ρb
(vb − va)⊗ ∇̃aW̃ab

 (2.83)

We write the infinitesimal state law such as:

σ
a

= C : ε
a

(1.31 Revisited)
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In local material properties (for an isotropic case), it reads:

σ
a

= k trε
a

1︸ ︷︷ ︸
volumetric stress

+ 2µ εd
a︸ ︷︷ ︸

deviatoric stress

(2.84)

Hence, by reproducing a similar procedure from the previous section, we obtain the
following discrete forms of the infinitesimal governing equations:

ρ̇a = −ρa
N̂∑
b=1

mb

ρb
(vb − va) · ∇̃aW̃ab

üa = − 1
ma

N̂∑
b=1

ma

ρa

mb

ρb

(
σ
b
∇̃bW̃ba − σa∇̃aW̃ab

)

wa =
N̂∑
b=1

ma

ρa

mb

ρb
(vb − va)σa∇̃aW̃ab

(2.85)

(2.86)

(2.87)

We note that following this approach, the only interpolated variables are ε and ε̇. The
advantage of this infinitesimal approach is a much lower computation cost than for the
large deformations model.

Displacement-based momentum equation
Here we present a second formulation for computing the momentum equation

in small deformation formulation. From (Eq. 1.35), we can rewrite a volumetric elastic
force density components ∇ · σ of an isotropic medium in terms of partial derivatives of
the local displacement field, such as:

(
∂2ux

∂t2

)
= 1

ρ

[(
4
3µ+ k

)
∂2ux

∂x2 + µ
(
∂2ux

∂y2 + ∂2ux

∂z2

)
+
(

1
3µ+ k

) (
∂2uy

∂x∂y
+ ∂2uz

∂x∂z

)](
∂2uy

∂t2

)
= 1

ρ

[(
4
3µ+ k

)
∂2uy

∂y2 + µ
(
∂2uy

∂x2 + ∂2uy

∂z2

)
+
(

1
3µ+ k

) (
∂2ux

∂x∂y
+ ∂2uz

∂y∂z

)](
∂2uz

∂t2

)
= 1

ρ

[(
4
3µ+ k

)
∂2uz

∂z2 + µ
(
∂2uz

∂x2 + ∂2uz

∂y2

)
+
(

1
3µ+ k

) (
∂2ux

∂x∂z
+ ∂2uy

∂y∂z

)] (2.88)

In the following, these continuous components can be converted into their discrete form
by following the steps presented in Sec. 2.1.4, starting by the second order spatial
derivatives ∂2ua

∂x2 and ∂2ua

∂x∂y
after (Eq. 2.46c):

(
∂2ux
∂x2

)
a

=
N̂∑
b=1

mb

ρb

[
5
rx,ab rx,ab

‖rab‖
2 − δxx

]
[ua − ub]Fab (2.89a)

(
∂2ux
∂x∂y

)
a

=
N̂∑
b=1

mb

ρb

[
5
rx,ab ry,ab

‖rab‖
2 − δxy

]
[ua − ub]Fab (2.89b)
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The other differential components can be obtained in a similar way. Thus, the components
of the acceleration ua in a discrete form are:

üx,a = − 1
ma

N̂∑
b=1

ma

ρa

mb

ρb

(4
3µ+ k

)(
5
r2
x,ab

‖rab‖
2 − 1

)
+ µ

(
5
r2
y,ab + r2

z,ab

‖rab‖
2 − 2

)

+
(1

3µ+ k
)5

rx,ab
(
ry,ab + rz,ab

)
‖rab‖

2

ux,ab Fab
(2.90a)

üy,a = − 1
ma

N̂∑
b=1

ma

ρa

mb

ρb

(4
3µ+ k

)(
5
r2
y,ab

‖rab‖
2 − 1

)
+ µ

(
5
r2
x,ab + r2

z,ab

‖rab‖
2 − 2

)

+
(1

3µ+ k
)5

ry,ab
(
rx,ab + rz,ab

)
‖rab‖

2

uy,ab Fab
(2.90b)

üz,a = − 1
ma

N̂∑
b=1

ma

ρa

mb

ρb

(4
3µ+ k

)(
5
r2
z,ab

‖rab‖
2 − 1

)
+ µ

(
5
r2
x,ab + r2

y,ab

‖rab‖
2 − 2

)

+
(1

3µ+ k
)5

rz,ab
(
rx,ab + ry,ab

)
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For the sake of clearness, in next parts of this study we note this formulation as f(u) or
"displacement-based” and the classical "stress-based” as f(σ).

2.4.3 SPH algorithm
We present in Fig. 2.9 the algorithm flow chart used to compute the response of

a solid material point taking into account the GPU parallelization. We exemplify here the
numerical implementation of an infinitesimal deformation approach.
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Fig. 2.9.: SPH computing flow chart for solid particles
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Fig. 2.9.: SPH computing flow chart for solid particles
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2.5 Validation and analysis: mixed kernel and
gradient correction

In this section, the most common features presented in the literature to correct
the SPH first-order variables will be tested and discussed to validate our algorithm and to
better understand how each addition can influence the solutions in one simple and one
more complex cases.

The validation test for mixed kernel and gradient correction proposed here was
based on Young [171]. We apply different velocity fields in a 1D rod Fig. 2.10. Here, the
size of the bar is L = 1m and it is discretised with N = 5 equally spaced material points
of δx = L

N
, starting and ending respectively at x = 50.1m and x = 50.9m. We recall that

the material points in SPH represent a center of a small zone. For the case N = 5, the
domain is divided in 5 equal parts and each material point is located at the centre of each
part. It explains why the distance between the first and the last material points is lower
than L.

Fig. 2.10.: 1D bar of length 1m discretized into N = 5 equally spaced of δx material points [171]

In this problem, the smoothing length h is equal to 2.8δx and κ̂ = 1, a velocity
field v(x) is applied in each material point in order to calculate SPH velocity divergence,
which can be obtained from (Eq. 2.35) or (Eq. 2.42a).

∇ · v =
N̂∑
b=1

mb

ρb
(vb) · ∇aWab (2.91a)

∇ · v =
N̂∑
b=1

mb

ρb
(vb − va) · ∇aWab (2.91b)

In conventional SPH, the kernel interpolation computing is strongly influenced by trun-
cated domains. In this section, we seek to validate our algorithm and to compare the
efficiency of non-symmetric and symmetric formulations. In addition, we compare the
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three different formulations of mixed kernel-and-gradient corrections presented in (Eqs.
2.63). We also explore various scenarios using the following constant, linear and a quartic
velocity fields:

v1(x) = 20 (2.92a)

v2(x) = 20x (2.92b)

v3(x) = −4x4 + 3x3 + 15x2 − x+ 15 (2.92c)

We investigate the influence of the particle density and their distribution along the
domain. Results for 2D and 3D configurations are also given in this validation section.
Based on the scheme proposed in Fig. 2.10, we reproduce with some adaptations the
problem [171] whith N = 5 and the velocities v2 or v3 are applied. Table 2.1 and Table
2.2 present the velocity divergence of the fourth material point following, respectively,
(Eq. 2.92b) and (Eq. 2.92c) and adopting the correction of the kernel gradient after (Eq.
2.63b).

Pairs i-j Vb(vb − va) · ∇̃aW̃ij Vb(vb) · ∇̃aW̃ij

4− 2 3.879 −5.333
4− 3 7.572 −28.395
4− 4 0.000 4.569
4− 5 8.549 49.159
∇ · v ∑

b = 20.0 ∑
b = 20.0

Analytical ∇ · v = 20.0 σ̌rel = 1.10−14%
Tab. 2.1.: Velocity divergence of the pair contributions for a linear velocity (Eq. 2.92b).

Pairs i-j Vb(vb − va) · ∇̃aW̃ij Vb(vb) · ∇̃aW̃ij

4− 2 −95159.963 2900053.551
4− 3 −186899.604 11507941.882
4− 4 0.000 −1485695.206
4− 5 −213580.328 −13417940.121
∇ · v ∑ = −495639.894 ∑ = −495639.894

Analytical ∇ · v = −496640.962 σ̌rel = 0.202%
Tab. 2.2.: Velocity divergence of the pair contributions for a quartic velocity (Eq. 2.92c).

where σ̌rel is relative error for each data point x compared to the analytical
solution, such that:

σ̌rel = 100× |xanalyt. − x|
|xanalyt.|

(2.93)

With Tables 2.1 and 2.2, we validate the implemented mixed correction algorithm for a
linear and a quartic velocity field (in order to account for a higher level of complexity).
Following Monaghan et al. [117], the adoption of the symmetric formulation can fix the
issue of not vanishing solution for constant fields. In the same way, Young [171] has
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recently proposed an analysis of pros a cons of symmetric and not-symmetric formulations.
The next section discusses this issue.

2.5.1 Computing SPH divergence with or without symmetry
terms and gradient corrections
In order to better understand the pros and cons of the use of a formulation with

or without symmetry terms, the bar configuration of N = 5 is studied again following
three velocities fields v1, v2 and v3 (Eqs. 2.92). The six formulations of kernel gradients
(Eqs. 2.61 and 2.63) are used here. First Fig. 2.11a shows as required that the SPH

(a) With symmetry terms (Eq. 2.91b). (b) Without symmetry terms (Eq. 2.91a).

Fig. 2.11.: Velocity divergence of a 5-points bar under a constant velocity field.

divergence vanishes when using a symmetrical formulation with a constant field. In this
case, no corrections at the boundary points are necessary, it can be explained by the fact
that the internal contributions within each pair are equal and opposite. On the other
side, for non-symmetrical formulations (Fig. 2.11b), among the forms of mixed kernel
and gradient corrections (Eqs. 2.62 and 2.63), only the versions derived from (Eq. 2.61a
and 2.63b) ensure values of null divergence of the velocity field. If the computation
cost must be taken into account, for a non-complex problem like this one, the choice
of a formulation without symmetry terms seems to be inefficient and all the correction
procedures can just be replaced by a formulation with symmetry terms.
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(a) With symmetry terms (Eq. 2.91b). (b) Without symmetry terms (Eq. 2.91a).

Fig. 2.12.: Velocity divergence of a 5-points bar under a linear velocity field.

In the next test a linear velocity field (Eq. 2.92b) is applied to all material points.
The expected constant value of the velocity divergence along the bar is no longer obtained
by the formulation with symmetry terms Fig. 2.12a. Only the use of the corrected gradient
forms from (Eqs. 2.63) is able to recover accurate solutions. Fig. 2.12b shows that the
mixed kernel and gradient corrections given by (Eqs. 2.61a and 2.63b) are the only ways
to ensure a constant velocity divergence.

Finally, we observe from Fig. 2.13a where the velocity field is given by a quartic
function (Eq. 2.92c), that symmetrical and non-symmetrical formulations present an
quite similar behaviour compared to the linear velocity field, with inverse sign and even
larger magnitude difference. This time, the mixed kernel and gradient corrections given
from Eq. (2.63c) are not as close to the analytical solution as before.

We see that the deviation of the formulation without symmetric terms in the
previous results is much more important that the one with symmetric terms, which
justifies the adoption of the symmetrical terms formulation in next sections. In addition,
in Fig. 2.15 only three formulations with symmetry terms of mixed correction of gradient
of kernel (Eqs. 2.63) are presented.

The maximal relative errors presented in Fig. 2.14 are close to 0.8% for all
mixed correction forms, which is low enough to ensure accurate solutions. We observe
from Fig. 2.15 that the mixed corrections given by (Eqs. 2.63) present similar results. In
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(a) With symmetry terms (Eq. 2.91b). (b) Without symmetry terms (Eq. 2.91a).

Fig. 2.13.: Velocity divergence of a 5-points bar under a quartic velocity field.

(a) With symmetry terms (Eqs. 2.91b and 2.93). (b) Without symmetry terms (Eqs. 2.91a and 2.93).

Fig. 2.14.: Relative error (Eq. 2.93) of velocity divergence of a 5-points bar under a quartic
velocity field.

addition, the mixed gradient and kernel correction (Eqs. 2.63b - as presented by gives
slightly better results for internal points and worse results for boundary points.
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(a) Velocity divergence (Eq. 2.91b). (b) Relative error (Eq. 2.93).

Fig. 2.15.: Velocity divergence computed by mixed correction kernel gradient of a 5-points bar
under a quartic velocity field.

2.5.2 Influence of particles density
In this section we analyse the influence of the density of discretisation points

along the bar. By keeping exactly the same configuration, we increase the quantity of
material points without changing the size of the bar or the smoothing length h.

We observe that the two configurations with 50 (Fig. 2.16a) and with 500 (Fig.
2.17a) points present a quite similar behaviour with the 5-points case. In all cases, the
relative error is smaller than 1.2%.

2.5.3 Influence of particles disorder
Finally, we test a disordered distribution of material points along the bar. We

maintain the same simulation conditions as before.

From Fig. 2.18, Fig. 2.19 and Fig. 2.20, the influence of the particle distribution
is the most important for the 5-points bar, but even in this case, the relative error is of
around 1%. Therefore, the higher the number of material points, the more the result is
independent of on the point disorder.
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(a) Velocity divergence (Eq. 2.91b). (b) Relative error (Eqs. 2.93) and (2.93).

Fig. 2.16.: Velocity divergence computed by mixed correction kernel gradient of a 50-points bar
under a quartic velocity field.

(a) Velocity divergence (Eq. 2.91b). (b) Relative error (Eq. 2.93).

Fig. 2.17.: Velocity divergence computed by mixed correction kernel gradient of a 500-points bar
under a quartic velocity field.
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(a) Velocity divergence (Eq. 2.91b). (b) Relative error (Eq. 2.93).

Fig. 2.18.: Velocity divergence computed by mixed correction kernel gradient of a 5 randomly
distributed particles bar under a quartic velocity field.

(a) Velocity divergence (Eq. 2.91b) (b) Relative error (Eq. 2.93)

Fig. 2.19.: Velocity divergence computed by mixed correction kernel gradient of a 50 randomly
distributed particles bar under a quartic velocity field
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(a) Velocity divergence (Eq. 2.91b) (b) Relative error (Eq. 2.93)

Fig. 2.20.: Velocity divergence computed by mixed correction kernel gradient of a 500 randomly
distributed particles bar under a quartic velocity field
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2.5.4 From 1D to 3D validation
Given the detailed discussion presented previously about the 1D configuration,

this section proposes to extend this analysis to 2D (Fig. 2.21a) and 3D (Fig. 2.21b) cases.
The new configurations take into account 5 particle per axis following linear (Eqs. 2.94)
or quartic (Eqs. 2.95) velocity fields:

v2D
2 (x, y) = 20x êx + 20y êy (2.94a)

v3D
2 (x, y, z) = 20x êx + 20y êy + 20z êz (2.94b)

v2D
3 (x, y) =(−4x4 + 3x3 + 15x2 − x+ 15) êx +

(−4y4 + 3y3 + 15y2 − y + 15) êy
(2.95a)

v3D
3 (x, y, z) =(−4x4 + 3x3 + 15x2 − x+ 15) êx +

(−4y4 + 3y3 + 15y2 − y + 15) êy +
(−4z4 + 3z3 + 15z2 − z + 15) êz

(2.95b)

(a) 2D (b) 3D

Fig. 2.21.: 2D and 3D particles distribution

Three formulations of mixed kernel-and-gradient corrections (Eqs. 2.63) are
tested. The calculation results are shown on graphs with all particles present in the system
following their x-coordinate.
We observe for the linear velocity field (2D - Fig. 2.22 and 3D - Fig. 2.23), that the

computed variables present an error of about ∼ 10−14. For quartic velocity fields (2D -
Fig. 2.24 and 3D - Fig. 2.25), the error is of about ∼ 1%, which is the same relative error
as in the 1D configuration. This validates our calculation method also in 2D and 3D.
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(a) 2D velocity divergence (Eq. 2.91b) (b) Relative error (Eq. 2.93)

Fig. 2.22.: 2D Velocity divergence computed by mixed correction kernel gradient of a 25 particles
discretized plan under a linear velocity field

(a) 3D velocity divergence (Eq. 2.91b) (b) Relative error (Eq. 2.93)

Fig. 2.23.: 3D Velocity divergence computed by mixed correction kernel gradient of a 125 particles
discretized volume under a linear velocity field
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(a) 2D velocity divergence (Eq. 2.91b) (b) Relative error (Eq. 2.93)

Fig. 2.24.: 2D Velocity divergence computed by mixed correction kernel gradient of a 25 particles
discretized plan under a quartic velocity field

(a) 3D velocity divergence (Eq. 2.91b) (b) Relative error (Eq. 2.93)

Fig. 2.25.: 3D Velocity divergence computed by mixed correction kernel gradient of a 125 particles
discretized volume under a quartic velocity field
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2.6 SPH as a local EDP solver for elastic media
This section discusses and validates the capability of the SPH solver to describe

the evolution of an elastic solid material. Different applications may require specific
corrections to simulate them regularly and stably for this kind of materials, and there
are no general optimal solutions. Here, we evaluate the most pertinent approaches and
improvements to treat elastic dynamics problems. To this purpose, we simulate a classical
validation case of a 1D bar with an initial constant velocity applied in its first quarter (as
presented in Fig. 2.26). This initial condition results in significant velocity jumps, which
also mean important gradient values along the bar. Besides, we work here with an SPH
code version based on the finite deformation approach (SVK-SPH - Eqs. 2.81) with some
additives like XSPH and artificial viscosity.

Fig. 2.26.: Clamped-free boundary conditions of a 40 material points bar for SPH validation as
EDP solver.

This test is often used as a test-case for tensile instability solutions, as introduced
for SPH by Dyka and Ingel [59]. Bonet and Kulasegaram [26] have used this test to
validate a hypoelastic large deformation SPH version, Their study adopted the mixed
normalisation and correction of the kernel function ∇̃W̃ . This formulation is quite close
to the one presented in this work since a mixed normalised and corrected version of the
SPH and Saint Venant-Kirchhoff SPH (SVK-SPH) approaches are used here.

Parameter Sign Value

Young modulus E 200 [GPa]
Linear mass density ρ 7833 [kg/m]
Bar length L 0.1333 [m]
Number of material points N 40 [−]
Time step ∆t 10−7 [s]
Initial velocity v0 −5 [m/s]

Tab. 2.3.: Input data for a 1D bar problem for SPH validation as a local EDP solver.
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The bar is discretised with 40 uniformly distributed material points, it is free at
the left-end and clamped at the right-end. Ghost particles algorithm is adopted at the
fixed-side in order to ensure the appropriate boundary conditions. Also, velocity v0 is
imposed as an initial condition in the left quarter of the bar. The input data with material
properties and simulation parameters are presented in Tab. 2.3.

In Fig. 2.27a the early time evolution of displacement of the first left-side
material point is presented. It compares our SVK-SPH to a SPH version enhanced with
stress points as proposed by Dyka and Ingel [59], a Finite Element Method and the
mixed and corrected Total Lagrangian (TLSPH) with ∇̃W̃ as proposed by Bonet and
Kulasegaram [26]. As expected, the two large deformation models present a quasi-similar
time evolution, with the exception of a shorter period of vibration for the SVK-SPH. Both
large deformation formulations present better stability than the stress points SPH. The
velocity of the first material point is presented in Fig. 2.27b. Similarly to the displacement
evolution, the mixed corrected large deformation formulations are more stable with small
differences of period and amplitude.

2.6.1 Stress and displacement-based momentum
equations for small deformations
In this part, we compare the displacement-based and the stress-based formu-

lations (in a small deformations description) of the momentum equation presented in
Sec. 2.4.2. This simple application is also used to validate the SPH approaches based on
small and large deformations (Sec. 2.4). Lastly, beyond the validation of our large de-
formation framework, this section shows also the results of the numerical improvements
presented in Sec. 2.3 such as XSPH and artificial viscosity. The displacement and velocity
evolution (Fig. 2.28) show that the f(σ) version present a less noisy maxima and minima
amplitudes. Nevertheless, both formulations are used for investigations of optimisation
approaches.
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(a) Displacement evolution of the last free material point.

(b) Velocity evolution of the last free material point.

Fig. 2.28.: Mixed normalised and corrected versions of the small deformations SPH models:
stress-based and displacement-based
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2.6.2 Small and large deformations
Dyka and Ingel [59] noted that due to the appearance of tensile instability,

this problem could not be solved by the classical version of SPH (small deformations).
We observe that this assumption is not valid for our version of mixed normalised and
corrected kernel SPH (Fig. 2.29a), despite its slightly more extended period oscillations.
From the velocity evolution shown in Fig. 2.29b, such instability becomes more critical in
large deformations SPH version. The displacement evolution of the 1st material point
shows little difference between SPH and SVK-SPH models, which does not seems to
invalidate these formulations.

2.6.3 XSPH and artificial viscosity
The previous results can be improved by correcting the velocity noise with XSPH

(which acts in all load conditions) and by adding the artificial viscosity acting in tensile
loading. Fig. 2.30 shows for an ε̂ = 0.5 in (Eq. 2.66) a slight reduction of oscillations
for both formulations. In addition, the artificial viscosity with parameters α̌ = 0.2 and
β̌ = 0.4 in (Eq. 2.64) results in a significant noise reduction for the same formulations.
Based on these results, the numerical improvements (artificial viscosity and XSPH) will

be incorporated in the SPH method to be used in the following chapters.

Concluding remarks
In this chapter, we have first summarised the mathematical approaches to

represent a physical domain by the discrete SPH method. The representation of the
function and its derivative operators were introduced in different dimensions. Various
drawbacks corrections for SPH were recalled. In particular, we implemented the so-called
corrected kernel and corrected gradient functions to account for existing domain limits
and alternative primary variable formulations. We also implemented a Total Lagrangian
version of SPH to solve a large deformations problem (through the Saint Venant-Kirchhoff
constitutive model). Moreover, we have proposed a set of validation tests and discussions
about the capability of our numerical EDP solver to describe the vibration of elastic
solid. The validation tests have presented satisfactory results for simple configuration and
boundary conditions compared to analytical and other existing numerical solutions.
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(a) Displacement evolution over time of the last free material point.

(b) Velocity evolution over time of the last free material point.

Fig. 2.27.: Comparison between Saint Venant-Kirchhoff SPH, FEM (for displacement only), Stress
points SPH [59] and Total Lagrangian SPH [26]. The SVK-SPH presented here adopts
the mixed normalisation and correction of the kernel functions and a stress-based
momentum equation discretisation.
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(a) Displacement evolution of the last free material point.

(b) Velocity evolution of the last free material point.

Fig. 2.29.: Mixed normalised and corrected version of the small (SPH) and large deformations
(SVK-SPH) approaches compared by their displacement and velocity evolution.
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(a) Displacement evolution over time of the last free material point.

(b) Velocity evolution over time of the last free material point.

Fig. 2.30.: Numerical improvements for mixed normalised and corrected versions of small defor-
mations SPH and large deformations SVK-SPH model: XSPH (ε = 0.5) and Artificial
viscosity (α̌ = 0.2 and β̌ = 0.4).
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3Non-local elasticity by SPH

Overview: This chapter consists in a submitted paper that explores the capabil-
ities of the SPH method to deal with non-local effects in elasticity. This is achieved
through finite support domains of the SPH kernel function independently of the
discretisation. In a 1D vibration problem, SPH results are compared to analytical
(discrete and continuous) solutions. Lastly, we investigate the SPH invariance using
finite or infinite domain kernel functions and using stress-based or strain-based
gradient formulations.
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ABSTRACT
The present study aims to assess the use of the Total Lagrangian Smoothed
Particles Hydrodynamics (SPH) method predicting non-local elastic effects
in finite deformations. For this aim, we first recall the discrete and continuum
analytical solutions of a 1D bar under longitudinal harmonic vibrations with
small scale effects. In the SPH approach, the constitutive laws do not present
any additional term, and the non-locality is introduced only through the kernel
convolution. Contrary to the classical use of the SPHmethod, the simulations
are conducted with a finite smoothing length, which may be related to the
characteristic size of the microstructure.

The numerical results obtained from the 1D bar simulations under differ-
ent boundary conditions demonstrate that the SPH method can capture the
non-local effects in dynamics independently of the discretization points den-
sity. In detail, it is shown that the numerical results have a good agreement
with available analytical solutions. Moreover, it is observed that SPH strain-
based and stress-based formulations lead to similar responses. Finally, we
provide a discussion about the finite and infinite support kernel functions.

Introduction
Low permeability argillite rocks are commonly studied as potential hosts for geological nuclear

waste disposals or CO2 storage. In nuclear waste disposals, gases (mainly dihydrogen) are expected
to be generated, namely by anoxic corrosion of differentmetallic components of waste packages and
disposal structures. The quantity of iron can be used to evaluate the amount of hydrogen released
through this process and shows that the gas-phase will probably be formed and could potentially
attain significant pressure during several tens or hundreds of thousands of years. Due to inherent
argillite properties (like very small pore sizes, high confining pressures, and swelling capabilities
related to significant clay fraction), the understanding of gas migration phenomena within them
requires to take into account hydro-mechanical coupling.

To this end, it is possible to work directly on the pore-scale level with models describing direct
displacement and deformation of different fluid and solid phases. Smoothed Particle Hydrody-
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namics (SPH) method allows to solve all kinds of partial differential equations within the same
formalism and was applied recently to get a model of drainage in initial water-saturated Callovo-
Oxfordian argillite (COx). This model considers a 2-phase flow within a realistic poral structure
together with an elasticity with damage for the solid part [47]. The poral space was extracted from
3D imaging by FIB/SEM of one COx sample [53]. However, in order to conduct 3D simulations,
and due to actual hardware limitations, only relatively small sub-samples can be used (size of about
1 �m3 in the case of [47]), which are much too small to account for a REV of the material. In this
situation, one of the obvious choices is to work with the biggest possible sub-samples and with
a limited numerical resolution with a significant resolution error, allowing rather for qualitative
than quantitative results. In the SPH method, the situation is somehow more complicated since it
has been shown previously that this method possesses a characteristic internal length is related to
non-local effects in damage localisation [57]. Thus, it becomes essential to check the possibility of
inducing the non-local effect in purely elastic models with limited resolution. This internal SPH
length becomes non-negligible for the system size, which could sum up the discretisation error and
destroy even the quantitative reliability of the simulations.

Non-local mechanical theories seek to represent how the large-scale properties and behaviour
of materials are affected by deformation heterogeneity at a lower scale [26]. In the 18th century,
Lagrange [35, 36] already investigated the presence of small-scale effects in an elastic material
using a concentratedmicrostructuremodel. In particular, his work linked the fields of latticemodels
and continuum mechanics and motivated the study of non-local elasticity. Since then numerous
contributions (see for instance, [34, 30, 25, 27]) proposed different mathematical models to account
for small-scale effect on the corresponding macro-scale properties.

In particular, this domain has known a vast increase of interest since the correspondence was
established between Lagrange lattice discrete model and continuum models introduced in the 60s
through the integral strain-based model [34, 50]. This approach considers the non-local behaviour
as a response computed from a non-local strain variable. However, it requires a more complex
mathematical resolution given its kernel-integral form. Some decades later, Eringen has developed
the non-local differential stress-based formulation (see, for instance, a compilation of his studies in
[29]), which usually results in less complex mathematical expressions due to its differential form.
In recent studies, Aydogdu [2, 3] and Challamel et al. [16, 11] have discussed the relations between
different formulations of non-local continuummechanics through a 1D longitudinal vibration prob-
lem. Their research focused on the influence of non-local variables present in continuum form on
macroscopic responses. [16] also presented the correspondence between Lagrange lattice discrete
model and the stress gradient-based non-local model [31].

In the domain of continuum non-local models, a wide discussion about the non-local charac-
teristic parameter (usually denoted by e0) can be found in the literature. In a configuration of directinteraction between two neighbour cells, Eringen [28] proposed an optimal value of e0 ≈ 0.386
through its continuum nonlocal theory based in the Born-Kármánmodel of lattice dynamics. Rose-
neau [51], following Collins [20], have introduced the continualization approach based on different
approximation operators which allow to achieve the equivalent non-local wave equation obtained
in the method of Eringen. Inspired by the continualization method, Challamel et al. [14, 17]
and Zhang et al. [66] presented in different studies the acquisition of such parameter as equal to
e0 =

√
1∕12 ≈ 0.218 from the microstructured buckling model. Other results presented by Chal-

lamel et al. [15, 12] are obtained by the calibration between discrete and continua models. Lazar et
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al. [37] have obtained the same values of e0 by using the nonlocal elasticity of bi-Helmholtz type.
In addition, different values of eO following multiple boundary conditions were presented byWang
et al. and [63]. Otherwise, some studies can be found based on different configurations taking
into account indirect neighbouring interaction such as n-neighbour lattice interactions [52, 17] or
higher-order finite difference formulation [13, 14].

Some studies have recently proposed analytical non-local solutions that can appropriately rep-
resent the response of an elastic bar under longitudinal vibrations (see for instance [2, 16]). In
addition, the effects of the initial displacement amplitudes under longitudinal-transverse vibrations
have been studied by several authors [21, 22, 59, 60]. It is worth noting that the order of magnitude
of the vibration displacement may lead to small or large deformations, which we will account for
in our investigations.

In this study, we present a new approach to deal with non-local effects by using a specific nu-
merical method: Smoothed Particle Hydrodynamics (SPH). The principles of this method were
introduced independently by Lucy [43] and Gingold and Monaghan [32] for treating astrophysi-
cal problems. Nowadays, it is widely applied to simulate, with good accuracy, transient dynamic
problems with important local deformations of studied domains. Initially SPH has been largely
employed in the fields of fluid dynamics [40, 41, 61, 10] including multiphase flows [45, 19]. Ap-
plications to solid mechanics have been explored since the 1990s after introducing the structural
mechanics framework by Libersky and Petscheck [38, 39]. Besides, applications in other domains
have also been made, for instance, in reactive transport [55] and heat transfer [18, 19].

The SPH is constructed as a Lagrangian points method that does not use a fixed grid and where
a convolution assesses the properties of a material point with a kernel function over its neighbour-
hood. There are no predefined points of inter-connectivity that facilitate the treatment of large
deformations. Also, the meshless character of the SPH allows an efficient implementation based
on CUDA technology for massively parallel computations on GPU. The present work uses an SPH-
based framework developed at the Institute for Radiological Protection and Nuclear Safety (IRSN).
Following Pazdniakou and Dymitrowska [47], such a method can manage multiphase fluid, rigid,
and solid elastic components within the same conceptual framework. We implement in this numer-
ical tool a mixed normalised-corrected form [9] of the SPH Total Lagrangian method [48].

It is worth noting that, inspired by the elasto-damage non-local analytical model proposed by
Bažant and Belytschko [7, 5, 6], previous research was performed using SPH to the same purpose
by Vignjevic et al. [56, 58, 57]. They have demonstrated the non-local character and the absence of
mesh dependency on elastic-damage phenomena using an SPH Total Lagrangian form and com-
paring it to FEM. However, we demonstrate in the present paper that the capability of the SPH
method to represent such scale effects is much larger.

The present work focuses on simulations of the non-local elastic response of a one dimension
bar under longitudinal harmonic vibrations. Some previous studies have applied the SPH method
to solve this problem (for instance, see [24, 49]), but only in its local version, where the SPH is
used as a mere solver of a given PDE. In this work, we apply the SPHmethod to discretize the same
PDE, without introducing any additional non-local term in constitutive law, like for instance, the
integral or gradient terms present in continuum non-local models [50, 27]. However, we allow �,
the size of the support domain of the kernel function, to become finite and investigate the relation
between this numerical parameter and the non-local response in the vibration frequency.

The paper is organised as follows: first, we recall a discrete and then a continuous analytical
RC Deptulski et al.: Preprint submitted to Elsevier Page 3 of 33



Modelling non-local elasticity in 1D vibrating rods using Smoothed Particle Hydrodynamics method

L

1 2 nn-1

a

(a) Clamped-clamped boundary conditions:
a = L∕(n + 1).

L

1 2 nn-1

a

(b) Clamped-free boundary conditions: a = L∕n.

Figure 1: Lattice spring system with concentrated masses.

model that can capture small-scale effects in such a vibration phenomenon. Secondly, the SPH
framework is briefly described with some highlights on its advantages and drawbacks. Then, nu-
merical SPH results are compared with the analytical non-local ones, including a discussion about
the energy conservation, different SPH kernel functions, and distinct formulae adopted to represent
momentum equation. Finally, conclusions and outlooks are presented.

1. Analytical models
This part is devoted to a brief presentation of analytical elasticity models in 1D vibration prob-

lems, focusing on a summary of the Lagrange lattice discrete and the continuum models as pre-
sented and discussed in recent works by Aydogdu [2, 3] and Challamel [16, 11]. These models will
be useful as a test basis for the evaluation of our numerical approach.
1.1. 1D lattice discrete model

Lagrange’s investigations of longitudinal vibrations on lattice and discrete spring studies intro-
duced the research of the small scale effect [35, 36]. Consider the equivalent model of concentrated
masses constituting a Born-Kármán lattice system of L total length. Clamped-clamped boundary
condition system composed of n point masses separated by the distance a = L∕(n + 1) (Fig. 1a).
Clamped-free configuration has n point masses and a = L∕n (Fig. 1b). Consider that all point
masses have the same mass m except the free end mass in Fig. 1b which is halved.

The 1D local constitutive law in terms of the axial forceN is introduced as:
N = EA)u

)x
(1)

where u is the local displacement along the x-axis, A is the transverse section surface and E is
elastic Young modulus. The momentum equation, in its continuum form, with respect to the local
displacement is given by:

�)
2u
)t2

= E )
2u
)x2

(2)

where � = m∕(A × a) is mass per unit of volume and t relates the time. Hence, in order to
represent (Eq. 2) in a discrete form, for the left-side, consider harmonic displacement of each
i-index mass ui(t) = uiej!t where j =

√
−1 and ! is the angular vibration frequency. For the
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right-side, consider the finite difference principle for lattice equations. It follows that:

un+1 +
(
a2

L2
�2 − 2

)
un + un−1 = 0 (3)

where the non-dimensional local frequency parameter �2 is defined as:
�2 = �

E
!2L2 (4)

The discrete displacement of a particle i can be written in the following trigonometric form:

ui = C1 cos(i �) + C2 sin(i �) with � = arccos (1 − a2

L2
�2

2
) (5)

with C1 and C2 are some constants.The procedure to obtain this solution and its validity con-
ditions are recalled in Appendix A. In addition, the kinetic energy T̂ and the internal or elastic
potential energy Ŵ can be described, respectively, by their continuous and discrete forms (as pre-
sented in [16]):

T̂ = ∫
L

0

�A
2

()u
)t

)2
dx =

n−1∑
i=1

1
2
�Aa

(
)ui
)t

)2

+ 1
4
�Aa

[(
)u0
)t

)2

+
(
)un
)t

)2
]

(6a)

Ŵ = ∫
L

0

EA
2

()u
)x

)2
dx =

n−1∑
i=0

1
2
EAa

(ui+1 − ui
a

)2 (6b)

Furthermore, analytical expressions relate the Lagrange frequency �2 to a
L
value for each of k-th

eigen mode of vibration. These expressions are recalled in details in Appendix A.
Furthermore, analytical expressions relate the Lagrange frequency �2 to a

L
value for each of

k-th eigenmode of vibration. These expressions are recalled in detail in Appendix A.
Clamped-clamped (CC) longitudinal vibration discrete model: for a discrete lattice chain clamped at
both ends u0 = un = 0 and the discrete frequency parameter �2DCC

which takes into account the
non-local effect is the following:

�2DCC
=
(
2L
a
sin

(k�
2
a
L

))2
(7)

Clamped-free (CF) longitudinal lattice: for clamped-free lattice configuration, one has the following
boundary conditions: u0 = 0 and the axial force Nn = 0. It leads to the analytical Lagrange-type
frequency �2DCF

(k, a∕L) for the k-th eigen mode:

�2DCF
=
(
2L
a
sin

(
(2k − 1)�

4
a
L

))2

(8)
Furthermore, for both boundary conditions, a∕L is equal to the inverse of the number of point
masses inside the domain. The asymptotic behaviour of (Eqs. 7 and 8) shows that the values of
the frequency parameter �2 tend to a local value (Eq. 4) when a∕L → 0, otherwise their values
decrease with the increase of a∕L in both cases. These analytical lattice solutions will be used for
comparison with our numerical non-local model.
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L

(a) Clamped-clamped boundary conditions.
L

(b) Clamped-free boundary conditions.
Figure 2: Continuum bar system.

1.2. 1D non-local continuum bar model
Here, the non-local elasticity through the differential stress-based formulation is recalled (as

presented by Eringen in [27]), in order to apply it to our problem of 1D a bar of length L and
cross-section A under longitudinal vibration (Fig. 2). The detailed procedures to obtain the results
described in this section are recalled in Appendix B.
1.2.1. Stress gradient non-local continuum bar model

The non-local wave equation can be written by introducing the non-local form of the axial force
N = Nnl − (e0a)2

)2

)x2
Nnl into the local governing equations (Eqs. 1 and 2), such as:

EA)
2u
)x2

− �A)
2u
)t2

+ �A(e0a)2
)4u
)t2)x2

= 0 (9)

where e0 is a dimensionless parameter that depends on the material properties and a is an internal
characteristic length which corresponds to the spring length in lattice model. We observe that when
e0a = 0, this model reduces to the local model (Eq. 2). Consider the longitudinal bar displacement
u(x, t) = U (x) sin(!t) (as in [2]), a new form of (Eq. 9) can be obtained as:

L2 )
2U
)x2

+ �2U = 0 (10)

where �2 = �2

1−
(
e0a
L

)2
�2
and �2 is the dimensionless frequency parameter presented in (Eq. 4). Hence,

this differential equation yields a solution of the following form:

U (x) = C1 cos(
�
L
x) + C2 sin(

�
L
x) (11)

Clamped-clamped (CC) longitudinal bar: Adopting the boundary conditions for a bar fixed at both
extremities (u(0, t) = u(L, t) = 0) into (Eq. 10 and 11) leads to the following non-local formulation
of the continuum �2 frequency parameter:

�2CCC =
(k�)2

1 + e20
(
a
L

)2
(k�)2

(12)

with the dimensionless factor a∕L representing the influence of the small scale on the macro-scale.
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Clamped-free (CF) longitudinal bar: Now, introducing clamped-free boundary conditions (u(0, t) =
0 andN(L, t) = 0) into (Eq. 10 and 11) results in a non-local form of the �2 frequency parameter
for a CF configuration:

�2CCF =

(
(2k − 1)�

2

)2

1 + e20
(
a
L

)2 (
(2k − 1)�

2

)2 (13)

1.2.2. Continualization model towards a high-order non-local parameter e0
We noticed in different analytical studies (see for instance [22, 16, 59, 11]) the adoption of

zeroth-order approximation of e0 in terms of a in the continuum governing equations. It may result
in a significant differences between the discrete model (Section 1.1) and the continuum model
(Section 1.2), these discrepancies are larger for non-local conditions (i.e. a ≫ 0). We discuss
here the importance of e0 in continuum non-local analytical solutions by adopting the second order
centred finite difference form (i.e. direct interaction between cells), where the interactions are
limited to the closest neighbour of each cell and the inherent scale effects are well reproduced by
differential operators. Hence, following Roseneau’s development [51], we revisit the right-hand
term of the 1D wave equation as presented in (Eq. 2) by introducing a new operator LD and its
expansion LA, such as:

)2u
)x2

≡ LDu (x, t) with LD ≈ LAD(2) (14)

where D traduces a differential operator and the superscript (.) its n-th order (e.g. D(2) = )∕)x2).
We note that the expansion order ofLA has a direct influence inLD. Hence, we consider the second-order central finite difference approximation obtained after the sum of the Taylor expansions of
u(x − a) and u(x + a) (considering a more important expansion order of LA though):
u(x + a) − 2u(x) + u(x − a)

a2
=
(
1 + 1

12
a2D(2) + 1

360
a4D(4) + 1

20160
a6D(6)

)
D(2)u(x) +  (

a8
)

(15a)

LA = 1 +
1
12
a2D(2) + 1

360
a4D(4) + 1

20160
a6D(6) (15b)

We recall that a is the distance between two discretized points, which corresponds to the spring
characteristic length in the discrete lattice model but in continuum models can be interpreted in
many different ways (for instance, we present in the next section another interpretation for such
quantity when the governing equations are discretized through kernel functions). In order to obtain
the non-local form of (Eq. 14), we invert LA using a Padé approximation [1,6] [54]:

L−1A = 1 − 1
12
a2D(2) + 1

240
a4D(4) − 1

6048
a6D(6) (16)
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Then, introducing sixth-order expansion (Eq. 16) into (Eq. 14) allows us to find the non-local
form of the wave equation (as presented in its 2nd order in Eq. 9):

)2u
)x2

− �
E

(
1 − 1

12
a2D(2) + 1

240
a4D(4) − 1

6048
a6D(6)

) )2u
)t2

= 0 (17)
We note that when the length-scale parameter a → 0, this model reduces to the local model

(Eq. 2). Hence, considering an 1D harmonic vibration, the analytical longitudinal displacement
field (Eq. 11) for different boundary conditions has the following forms:

Clamped-clamped (CC): u(x, t) = C2 sin
(
k� x
L

)
sin (!t) (18a)

Clamped-free (CF): u(x, t) = C2 sin
(
(2k − 1)�

2
x
L

)
sin (!t) (18b)

In addition, by introducing the respective temporal and spatial derivatives of (Eqs. 18) into
(Eq. 17), we obtain a dimensionless frequency parameter �2 determining numerically the values
of a high-order form of the non-local parameter e0.
Clamped-clamped (CC): For a clamped-clamped bar (u(0, t) = u(L, t) = 0), we get the same non-
local formulation of the non-local �2CCC as found in (Eq. 12), but here e0 has a high-order expansionin terms of a∕L:

e20CC =
1
12
+ (k�)

2

240

( a
L

)2
+ (k�)

4

6048

( a
L

)4
+  (

(a)6
) (19)

Clamped-free (CF): Introducing the clamped-free boundary conditions (u(0, t) = 0 and N(L, t) =
0) into (Eq. 17), results in the following CF non-local form of the �2CCF , with e0 depending on a∕Lrepresented here in a high-order form:

e20CF =
1
12
+ ((2k − 1)�)

2

960

( a
L

)2
+ (2k − 1)�

4

96768

( a
L

)4
+  (

(a)6
) (20)

It is worth noting that the high-order e0 values shown in (Eqs. 19 and 20) are exactly equal to thehigh-order values of e0 obtained by calibration between continuum and lattice discrete model after
Taylor series expansion at a∕L → 0 (this method was adopted by different authors [12, 63, 65]).
Some arguments are considered to justify the choice of a 0th order expansion of e0: the assump-
tion that the non-local effect is the influence of the infinitesimal value of a∕L on the macro-scale
properties of a material, which simplifies the solution of the mathematical expressions significantly
(see for instance [16, 59, 11]).

In the following, we propose the comparison of solutions with e0 at different orders, whichallows us to reach a larger validity domain (we adopt 0 < a∕L ≤ 1). Furthermore, it is worth
noting that all non-local constitutive laws might fulfil the translational invariance principle and
have normalised forms. Hence, we introduce the treatment of the investigated vibration problem
in the next section through our mesh free method to be compared with the analytical models of the
present section. Besides, we aim at verifying that the proposed model can well reproduce non-local
behaviour in small and large deformations.
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2. Non-local behaviour through SPH model
This section presents the elastic model, followed by the numerical framework adopted in this

paper. The mechanical approach adopted here constructs the governing equations by using both
initial and deformed configurations. In the literature, it is usually called SPH Total Lagrangian
method (see [48, 58, 49] for more details).
2.1. 1D large deformations elastic model

In order not to be limited by small vibration amplitudes, we adopt in this work a large deforma-
tions Lagrangian approach. For completeness, we recall here classical notations, governing equa-
tions as well as constitutive laws that are used. The deformation gradient F is expressed through
the displacement u = x −X at time t:

F = )x
)X

= 1 + )u
)X

(21)
Considering the 1D finite deformation theory in a Lagrangian description, we use the Green-

Lagrange strain �GL, which is defined as (see for instance [4]):

�GL = )u
)X

+ 1
2

( )u
)X

)2
(22)

The equation of conservation of mass uses the Jacobian J to assess the density � from the
reference configuration �0:

� = J−1�0 (23)
where J is usually defined as equal to F = )x∕)X for 1D configuration [8], and in 2D or 3D

J = det |F |. The momentum conservation in a Total Lagrangian configuration is given through
the 1st Piola-Kirchhoff stress P , such as:

)2u
)t2

= 1
�0
)P
)x

(24)

The conservation of internal energy e in absence of thermal effects reads [8]:

�0
)w
)t

= P )F
)t
= S )�

GL

)t
(25)

where the 2nd Piola-Kirchhoff stress S in 1D can be written as S = F −1P .
In the considered large deformations framework, differentmechanical approaches can be adopted.

In the present case, we adopt the 1D energy density function �0w defined by the Saint Venant-
Kirchhoff constitutive model:

�0w = 1
2
E

(
�GL

)2 (26)
which results in the 1D state law between �GL and S, where E stands for the Young modulus:

S = �0
)w
)�GL

= E�GL (27)
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Figure 3: One dimension SPH principle with weighted neighbours contribution following the smoothing
kernel function W

2.2. SPH numerical model
The principle of the SPH method is based on approximation of a point of coordinate r of a

function f by means of a convolution with a given smoothing function in analogy to the following
formula using Dirac’s delta function �.

f (r) = ∫ f (r′)�(r − r′)dr′ (28)

The value of f is replaced by an integration over a finite size neighbourhood with a kernel function
W such that:

⟨f (r)⟩ = ∫ f (r′)W (r − r′, ℎ)dr′ + errsmootℎing (29)

The angle brackets ⟨⋅⟩ denotes the SPH kernel approximation, ℎ is called the smoothing scale and is
related to the kernel function support length � and errsmootℎing is the approximation error. Usually,
functionW is chosen such that errsmootℎing = (ℎ2) (see [41]).

Thus, it is possible to define the smoothed form of f as (Eq. 29) is:

⟨fS(r)⟩ = ∫ f (r′)W (r − r′, ℎ)dr′ (30)

Its derivatives can be obtained in the simplest way from the divergence theorem and the integration
by parts ([41]):

⟨∇fS(r)⟩ = ∫ f (r′)∇W (r − r′, ℎ)dr′ (31)

2.2.1. Smoothing function
Several smoothing kernel functions are commonly used to achieve high accuracy and numerical

stability in different applications. In order to ensure the method consistency,W has to fulfil some
conditions (Eq. 32): it must converge to the Dirac function when ℎ tends to zero, it usually has
a finite support domain and must be normalised, even and positively defined. The fact that W
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has to be positively defined inside the support domain has a physical meaning when computing
properties by a weighted sum. Moreover, the functionW must satisfy (Eq. 32c) which correspond
to the conservation of angular and linear momentum.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
ℎ→0

W (q, ℎ) = �(q)

∫ W (q, ℎ)dr′ = 1

∫ (r − r′)W (r − r′, ℎ)dr′ = 0

(32a)
(32b)

(32c)

The following 1D gaussian function presented by Gingold [32] is a good choice to achieve
accuracy and stability, but has a high computation cost given its infinite support domain, which
implies the adoption of periodic boundary conditions.

W (q, ℎ) = 1
ℎ
√
�
exp

[
−
( q
ℎ

)2] (33)

For computational convenience, smoothing functions are often represented by truncated poly-
nomial forms. Among the most common formulations are quadratic and cubic spline functions [41]
which are frequently employed in hydrodynamics framework (see more in [44]). The following 1D
cubic spline smoothing function is used most of the time in the present work.

W (q, ℎ) = 1
ℎ

⎧⎪⎨⎪⎩

2
3
− ( q

ℎ
)2 + 1

2
( q
ℎ
)3 if 0 ≤ q < ℎ

1
6
(2 − q

ℎ
)3 if ℎ ≤ q < 2ℎ

0 if q ≥ 2ℎ
(34)

Following the characteristics of a kernel function, the relation between � and ℎ may vary (see
[23, 62] for more details). Here, � = 2

√
2ℎ for Gaussian function and � = 2ℎ for cubic spline

function.
2.2.2. Discrete form

Its discrete form can approximate the continuous integral presented in (Eq. 30), where the
value of f in discrete material point a is computed using a weighted sum over N̂ points b in its
neighbourhood (of radius �).

f (r)a =
N̂∑
b
fb Vb W (ra − rb, ℎ) if ||ra − rb|| < � (35)

The volume of each particle is defined by Va = ma∕�a. Furthermore, the sum approximation of
continuous integrals presented before generate an error estimated as errintegral = (Δ∕ℎ), with Δ
the length scale characterising the average distance between material points [55]. Fig. 3 presents
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the SPH concept of smoothing in one dimension. In addition, the deformation gradient F is the
only non-local variable in our system before computing the SVK state law (Eq. 27) which reads in
a SPH discrete form:

Fa =
⎡
⎢⎢⎣

N̂∑
b=1

mb
�b,0

(
rb − ra

)
∇̃a,0W̃ab,0

⎤
⎥⎥⎦
+ 1 (36)

In order to fix some drawbacks often present in elastic solid simulations through the original
form of SPH like particle disorder and tensile instability (see for instance [39, 1]), this study adopts
a Total Lagrangian form that states the initial state of the system as reference state (see [48, 58, 49]
for detailed discussion). Thus, the discrete SPH forms of governing equations (Eqs. 23-25) are
respectively:

�a = J−1�a,0 (37a)

)2ua
)t2

= − 1
ma

N̂∑
b=1

ma
�a,0

mb
�b,0

(
Pb∇̃b,0W̃ba,0 − Pa∇̃a,0W̃ab,0

)
(37b)

)wa

)t
=

N̂∑
b=1

ma
�a,0

mb
�b,0

(
vb − va

)
Pa∇̃a,0W̃ab,0 (37c)

The index a and b identify, respectively, each material point of the SPH system and its N̂ neigh-
bours, w is the internal energy as introduced in (Eq. 25). We note that )2ua

)t2
and )wa

)t
are also

computed through SPH interpolation. In addition, the sum of energies ETOT inside an isolated
SPH system is given by:

ETOT = E T̂ + EŴ (38)
where the total kinetic energy E T̂ and the total internal energy EŴ for a SPH system composed of
n material points are written as:

E T̂ =
n∑
a

1
2
mav

2
a (39a)

EŴ =
n∑
a

ma
�a
wa (39b)

Following Liu et al. [42] and Bonet and Lok [9], we use a new corrected form of the kernel
function (here denoted by the superscript ∼), and of the kernel gradient. These corrections insure
the conservation of the linear and angular moments. For time integration, we implement a Predict-
Evaluate-Correct Leap-Frog explicit scheme (as presented in [64]). The time step must respect the
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L

1 2 nn-1

(a) Clamped-clamped boundary conditions.
L

1 2 nn-1

(b) Clamped-free boundary conditions.
Figure 4: SPH bar system.

Parameter Sign Value

Young modulus E 200 [GPa]
Linear mass density � 7833 [kg∕m]
Bar length L 0.1333 [m]
Number of material points n 200 [−]
Time step Δt 10−8 [s]

Table 1
Input data for 1D bar SPH simulations

following Courant-Friedrich-Levy conditions to insure the numerical stability (see [46] for more
details).

Δt ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.25 ℎ
|vmax|

0.25
√

ℎ
|amax|

ℎ
√

�
E

(40)

Despite several advantages, the straightforward use of SPH for solid elastic simulations presents
some drawbacks. Thus, seeking to inhibit the tensile instability in our work, we use a Total La-
grangian formulation. In the following, we use analytical solutions and numerical models previ-
ously introduced to present the results of the 1D longitudinal vibration problem.

3. SPH simulations with �∕L→ 0
One more time, we consider a bar of length L and discretized by n SPH material points, as

presented in previous sections. Two types of boundary conditions are used: clamped at both ends
(as presented in Fig. 4a) and clamped-free (as presented in Fig. 4b). Adopting the same material
point discretisation over all simulations, this work investigates the influence of the ratio �∕L and
its relation with the previously used ratio of a∕L. Table 1 presents all parameters considered for
SPH simulations.

In this section we validate the Total Lagrangian SPHmethod, introduced in Sec. 2, with respect
to the discrete and continuum analytical solutions from Sec. 1. The cubic spline kernel (Eq. 34) is
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being used and all the simulations are conducted in the limit of �∕L→ 0. Where C2 = L∕2000 isa chosen small constant amplitude and ! is the angular frequency as defined in (Eq. 4). The initial
conditions are imposed via the velocity profiles corresponding to the time derivative of (Eqs. 18):

Clamped-clamped (CC): v(x, t) = C2 ! sin
(
k� x
L

)
cos (!t) (41a)

Clamped-free (CF): v(x, t) = C2 ! sin
(
(2k − 1)�

2
x
L

)
cos (!t) (41b)

For this simulation, the value of �∕L = 0.025 and the first mode k = 1 are used. The three
first periods of oscillation are shown in (Fig. 5) for CC and (Fig. 6) for CF. From the oscillation
period � obtained from local minima (Figs. 5a and 6a) we calculate ! = 2�∕� in (Eq. 4). We
plot the longitudinal displacement over time at different positions along the bar (CC - Fig. 5a and
CF - Fig. 6a), computed by means of the SPH method and compared to the analytical solutions
(Eqs. 18). Fig. 5b for CC and Fig. 6b for CF, present the velocity over time at the same positions
and compared with the analytical solutions (Eqs. 41). Finally, following (Eqs. 38 and 39) we
give the total energy evolution over time (CC - Fig. 5c and CF - Fig. 6c) as compared with the
analytical solutions (Eqs. 6). It can be seen that the total energy is conserved and we find a very
good agreement with the analytical solutions for all variables.

Figs. 5a-6c confirm that the SPH can reproduce with good accuracy the 1D longitudinal vibra-
tion phenomenon. The use of a small ratio �∕L results in a close agreement between the numerical
and the analytical solutions without non-local effects, showing that, in this limit, the SPH method
behaves as expected as a simple PDE solver. It is worth mentioning that the � values cannot be-
come smaller than the distance between the closest material points, which is a necessary condition
for the SPH to compute neighbour contributions during the smoothing procedure.

4. Non-local effects using SPH method
In this part, we assess the capability of the SPH method to introduce non-local behaviour when

adopting finite �∕L values. Also, some insight is given about the role of different variables and
conditions on the observed non-local behaviour.
4.1. Simulations with �∕L = O(1) towards non-local effects

The small scale effects in a longitudinal vibration problem are expected to change the macro-
scopic properties of the bar, resulting in a slower vibration and thus in a decrease of the dimension-
less frequency parameter �2. Hence, we reconsider a clamped-clamped configuration presented in
Fig. 4a, with a ratio �∕L = O(1) and for k = 1.

The displacement (Fig. 7a) and the velocity (Fig. 7b) evolution presents an increase of the
period � (thus the angular frequency ! decreases, as expected). The maximal amplitude of the
displacement increases compared to the local analytical case (�∕L → 0). This is due to the way
we impose the initial conditions, namely by predefining the velocity evolution, the same for all
values of �∕L. The amplitudes of displacement and velocity are proportional with the proportion-
ality constant equal to !. Thus, when the oscillation period changes, the displacement amplitude
changes as well. Therefore, these results also confirm the prediction of a change in the vibration
frequency (softening). What is more, Fig. 7c shows that the total energy of the system remains
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(a) Analytical local displacement (Eq. 18a) x SPH results for CC configuration.

(b) Analytical local velocity (Eq. 41a) x SPH results
for CC configuration.

(c) Analytical global kinetics and elastic energy
(Eqs. 6) x SPH results for CC configuration.

Figure 5: Displacement, velocity and energy evolution in SPH results with �∕L.
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(a) Analytical local displacement (Eqs. 18b) x SPH results for CF configuration.

(b) Analytical local velocity (Eq. 41b) x SPH results
for CF configuration.

(c) Analytical global kinetics and elastic energy
(Eqs. 6) x SPH results for CF configuration.

Figure 6: Displacement, velocity and energy evolution in SPH results with �∕L.
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(a) SPH longitudinal displacement results versus analytical solution (Eq. 18a).

(b) SPH longitudinal velocity results versus analyt-
ical solution (Eq. 41a).

(c) SPH kinetic and elastic energies for �∕L → 1
(Eqs. 6).

Figure 7: SPH method results for �∕L = O(1) in a clamped-clamped configuration for the first vibration
mode k = 1.

constant despite the use of a finite value of �∕L, which might have led to a significant numerical
dissipation.

In addition, we observe that the SPH approach allows us to explore non-local effects beyond
those studied by the Lagrange lattice spring system as summarised by Challamel et al. [16] (where
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the discrete variable n = L∕a ≤ 2). Here, �∕L is not only the inverse of n, but becomes a continu-
ous variable with the possibility to exceed 1∕2. This observation justifies the adoption of the ratio
�∕L as abscissas in the following subsections. Moreover, in the subsequent results and figures, the
subscript SPH will be used for all results obtained from the SPH method. For the analytical solu-
tions, the subscripts l,D and C denote, respectively, the local solution (e0a = 0) and the analyticaldiscrete and continuum non-local solutions (e0a > 0).
4.2. SPH simulations with finite and infinite support kernel functions

In the previous subsection, it has been shown that the SPH method can account for non-local
effects when used with finite �∕L values. Here, we perform multiple simulations to quantify the
non-local effects by the variation of the frequency parameter �2 as a function of �∕L. In this
context, we check the influence of the choice of the kernel functions (Gaussian kernel or cubic
spline kernel). Fig. 8 shows the variation of �2 with �∕L for k = 1 (a for clamped-clamped and b
for clamped-free boundary conditions).

These results prove that the numerical solution using cubic spline kernel (Eq. 34) presents a
very similar behaviour to that with the Gaussian kernel (Eq. 33), in spite of much smaller com-
puting cost due to its finite support. For both kernel functions, the increase of the parameter �∕L
leads to a significant decrease of �2 as compared to the local behaviour (constant value, dashed
line). Furthermore, we observe that the best agreement between the SPH results and the non-local
analytical solutions is obtained by taking a = � in (Eqs. 7, 8, 12 and 13). The dots represent the
discrete lattice solution which fits better with the SPH solution for larger �∕L values. The solid
lines represent the continuum analytical solution with a development of e20 parameter with respect
to �∕L to the order (�∕L)0 as showed in Eqs. 19 and 20 and adopted by Challamel et al. in
[16, 11]. In addition, we present also the continuum analytical solution (dash-dotted line) with e20of (�∕L)4 order following Eqs. 19 and 20.

It is noteworthy that the discrete solutions for �2 from (Eqs. 7 and 8) have a domain limited
such as �∕L ∈ ]0; 1∕2] (i.e. n ≥ 2). From these results of �2, we observe a rising difference
between the discrete and the 0tℎ order continua analytical solutions over the increase of �∕L. The
numerical SPH results show a good agreement with the discrete and the 4tℎ order continua ana-
lytical solutions. Also, we note that the analytical form with a higher-order of e0 presents a closerapproximation to the lattice discrete analytical solution and good agreement with our numerical
model when a∕L → 1.
4.3. Effects of initial amplitudes

In the previous subsection, we showed that thanks to the non-local nature of the SPH method,
the increase of the ratio �∕L leads to a decrease of the �2 frequency parameter. On the other hand,
Şimşek [21, 22] has stated that the increase of the initial displacement amplitude in a vibration
phenomenon of a bar raises the longitudinal stretching due to the large deflections, which implies
higher vibration frequencies. This phenomenon is called "spring hardening".

Seeking to investigate such adverse effect, we show in Fig. 9 SPH simulation results with differ-
ent initial velocity amplitudes C2 (present in Eqs. 41) for the following non-local parameter values
�∕L = 2.5%, 12.5%, 22.5% and 32.5%. In order to obtain stable solutions for all configurations,
we adopt here a higher number of material points n = 600. We observed that beyond C2∕� ≤ 0.5,
the SPH solutions become unstable.
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(a) Clamped-clamped configuration: Frequency parameter �2 found through
SPH versus discrete (Eq. 7) and continuum (Eq. 12) analytical solutions.

(b) Clamped-free configuration: Frequency parameter �2 found through SPH
versus discrete (Eq. 8) and continuum (Eq. 13) analytical solutions.

Figure 8: Study of the dimensionless frequency parameter �2SPH compared to analytical discrete and
continua solutions for two different kernel functions, k = 1.
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(a) Normalised frequency �2 for increasing velocity amplitude ratios C2∕� in
large deformations description.

(b) Normalised frequency �2 for different maximal values of small and large
deformations longitudinal strains.

Figure 9: Study of the dimensionless frequency parameter �2SPH for different initial velocity amplitudes
C2 and k = 1.

RC Deptulski et al.: Preprint submitted to Elsevier Page 20 of 33



Modelling non-local elasticity in 1D vibrating rods using Smoothed Particle Hydrodynamics method

Table 2
Analytical and numerical results for �∕L = 0.05 and �∕L = 0.5 in a clamped-clamped configuration

�∕L �2D �2C
[(�∕L)0] �2C

[(�∕L)4] �2SPH
k = 1 0.05 9.85 9.85 9.85 9.85

0.5 8.00 8.19 8.00 8.03

k = 2 0.05 39.15 39.16 39.15 39.16
0.5 16.00 21.66 16.54 17.04

k = 3 0.05 87.19 87.21 87.19 87.19
0.5 8.00 31.16 13.23 12.71

Table 3
Analytical and numerical results for �∕L = 0.05 and �∕L = 0.5 in a clamped-free configuration

�∕L �2D �2C
[(�∕L)0] �2C

[(�∕L)4] �2SPH
k = 1 0.05 2.47 2.47 2.47 2.47

0.5 2.34 2.35 2.34 2.34

k = 2 0.05 22.10 22.10 22.10 22.10
0.5 13.66 15.18 13.71 13.90

k = 3 0.05 60.90 60.90 60.90 60.98
0.5 13.66 26.99 15.89 16.35

Fig. 9a presents the normalised �2 over the dimensionless quantityC2∕� and shows, as expectedfrom the previous section, that for small initial amplitudes (C2∕�→ 0), the frequency �2 decreases
with the increase of the non-local parameter �∕L. However, increasing initial amplitudes raises
the values of �2 for all �∕L configurations, showing that the amplitude value has a preponderant
influence in these cases.

Besides, in Fig. 9b we present the dimensionless frequency over the maximal values of di dis-
placement umax, resulting in the infinitesimal strain "max for a small deformations theory and the
large deformations Green-Lagrange strain �GLmax obtained with our large deformations SPH method
by solving the Saint Venant-Kirchhoff constitutive model. The behaviour of both strain formu-
lations are qualitatively similar, and, as expected, the effect of large deformations becomes more
sensible with a higher ratio of �∕L. These tests confirm that our Total Lagrangian SPH approach
can represent strain ranges where large-deformation conditions are significant. Moreover, it can
also represent with good accuracy and stability both: softening and hardening phenomena, due,
respectively, to the non-local parameter and the increase of the initial velocity amplitude.
4.4. Frequency parameter �2 for different eigen modes

After demonstrating the capacity of the SPH method to introduce non-locality in small and
large deformation formulations, our goal is now to investigate further the role of eigen modes.
The higher value of k, the steeper are the gradients to be solved, so that the numerical method
may be inefficient or unstable. For that, we come back to the parameters presented in Table 1 and
consider again a constant small amplitude C2 = L∕2000. We obtain �2 parameter for the three first
vibration eigen modes through our numerical model and compare it to both discrete (Eqs. 7 and 8)
and continuum (Eqs. 12 and 13) analytical solutions.

Figs. 10 shows the �2 values in a clamped-clamped boundary condition. For the same boundary
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Figure 10: Clamped-clamped configuration: Normalised �2 obtained by SPH, discrete (Eq. 7) and
continuum (Eq. 12) analytical solutions by increasing the ratio �∕L for for k=1,2 and 3.

condition, Tab. 2 present the exact values found in two configurations: �∕L = 0.05 and �∕L = 0.5.
In addition, Figs. 11 and Tab. 3 presents the same information respectively in for the clamped-free
configuration.

For both boundary conditions, we obtain stable solutions of the SPH numerical results, and
both continua analytical solutions ((�∕L)0 and (�∕L)4) are quite close to the discrete analytical
solutions. As expected from the analytical models, the decrease of the non-local frequency with
�∕L ratios is dependent on the vibration eigenmode, being more important for larger k values.
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Figure 11: Clamped-free configuration: Normalised �2 obtained by SPH, discrete (Eq. 8) and continuum
(Eq. 13) analytical solutions by increasing the ratio �∕L for for k=1,2 and 3.

Also, for higher k the difference from this solution appears at lower values of �∕L. These results
also highlight the important relative discrepancies of the continuum analytical solutions compared
to the discrete analytical solutions for larger values of �∕L. These differences reach maximum
values for k = 3 at �∕L = 0.5. It shows that our SPH model can reach close results to the 4tℎ order
continuum model. It also can well represent such phenomena even in larger values of �∕L.
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4.5. Stress-based and strain-based non-local models
In this work, we observed that the non-local effect in the SPH numerical framework comes from

its smoothed character that can be applied to any local variable. Thus, based on the constitutive
law (Eq. 27), different discretizations of the momentum equation can be generate, for instance:
stress-based (Eq. 24) or strain-based (Eq. 42) forms. In this section, we investigate the individual
behaviour between these two formulations in the context of non-locality.

)v
)t
= E
�0
)(F�GL)
)x

(42)

Fig. 12 presents the frequency parameter �2 for clamped-clamped (Fig. 12a) and clamped-
free (Fig. 12b) configurations for two different momentum equation forms: stress-based and the
strain-based.

The excellent agreement of results from both SPH forms confirms the equivalence of these
models. Challamel has presented in [11] the equivalence between the displacement-based and the
strain-based non-local models. Here, our SPH tool shows that such equivalence is also verified for
the stress-based form. Challamel also argued that the incompatibility of the stress-based model
in a finite domain is due to the infinite nature of the Gaussian kernel, which does not allow a
normalisation in a truncated domain. However, it can be corrected by using periodic boundary
conditions. In this work, we adopted a finite support spline kernel and an infinite support Gaussian
kernel (with periodic boundary condition), demonstrating that the non-local nature of our numerical
SPH solution is inherent, independently of the variable-based or the finite or infinite kernel support
domains.
4.6. Higher-order non-local parameter e0

In this section we come back to the results presented in Sec. 4.2 and Sec. 4.4, but we modify
the presentation in order to extract the behaviour of e0 parameter itself. We show in Figs. 13 the
non-local parameter e0 (represented here by its inverse squared form - for sake of clearness) for
�∕L values for k = 1, 2 and 3. These values were obtained by introducing �2SPH values into �2Cfrom the continuum analytical model (Eqs. 12 and 13).

As expected, the non-local parameter found by SPH tends to the zero-th order error analytical
solution (Eqs. 19 and 20), represented by the dashed line, when �∕L→ 0. However, when �∕L >
0, the SPH results show that e0 is not constant with �∕L. Thus, we plot also the 2nd and the
4th order expansions of the analytical solution of e0 (Eqs. 19 and 20). The highest-order analyticalresults present good agreement with the SPHmodel and confirm the sensibility of e20 to �∕L values.

It can be noted some discrepancies around the small values of �∕L. In our code, the material
point density is inversely proportional to the �-support length. Hence, its reduction can generate
significant discretisation errors that can be corrected by a higher material point density, demanding
though more significant computing cost. Besides, we observe that the adoption of lower-order
expansion of e0 in continuum analytical solutions may become a significant error source.

Concluding remarks
In this paper, we study the numerical properties of the SPHmethod for non-local elasticity. The

physical laws adopted in our numerical model do not present any additional terms to account for
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(a) Clamped-clamped configuration: normalised �2 obtained by SPH.

the non-locality, and the scale effect is expected to be carried out by the kernel smoothing, which is
a fundamental ingredient of the SPH method. However, we do not use the SPH in its classical way
(as a mere solver of PDE), which has a proven convergence with the smoothing scale ℎ → 0, but
we explore its properties in a finite ℎ domain. The computations are performed in a 1D bar under
longitudinal harmonic vibrations using a mixed normalised-corrected form of the Total Lagrangian
SPH method.

Two analytical methods (a discrete lattice and a continuum non-local model) were recalled in
order to validate and discuss our numerical results. The obtained results show that the proposed
SPH approach can capture in clamped-clamped and clamped-free boundary conditions problems
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(b) Clamped-free configuration: normalised �2 obtained by SPH).
Figure 12: Strain and stress-based behaviour of the dimensionless frequency parameter �2SPH following
strain and stress-based momentum equations for the three first eigen modes.

the expected small-scale influence on vibration frequency with good accuracy and stability for soft-
ening effects. In addition, our solver can also capture the hardening effects after the increase of the
initial amplitude of vibration. Therefore, we have shown that finite and infinite kernel functions
with two distinct formulations for the momentum equation lead to the same conclusions. The in-
troduction of the Saint Venant-Kirchhoff constitutive model in the Total Lagrangian SPH approach
has also allowed us to represent strain ranges where large-deformation conditions appear. e0 ap-
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(a) Clamped-clamped configuration: SPH versus different
order error analytical continua solutions (Eq. 19)

(b) Clamped-free configuration: SPH versus different order
error analytical continua solutions (Eq. 20)

Figure 13: Sensibility analysis of the non local parameter e0 by increasing the ratio �∕L for k=1,2 and 3.
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proximations up to (�∕L)4 seems to be the best fit for the SPH results, both for this non-local
parameter and also for the frequency parameter �2.

In our paper, we demonstrated the capability of the SPH method to capture small scale effects
is much larger than the well-known damage localisation as shown in previous research [56, 58, 57].
Our methodological study can serve as a starting point to study non-local phenomena with the SPH
method without introducing any arbitrary terms into the underlying equations. To better understand
the importance of non-local behaviour through SPH, elastic models in higher dimensions deserve
to be further investigated. It will also be useful to better analyse the results of SPH models in more
complex and coupled applications, like the gas migration in deformable porous media, where the
non-locality may appear due to SPH nature and to discretisation limitations. The modeling of such
a complex phenomenon has been at the heart of this domain in the last decades, but it is still poorly
understood. Such analysis is a key application in the context of nuclear safety assessment and will
help better describe the response of clayey rocks (represented by elastic materials) coupled to a
multiphase flow.
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A. Appendix: Discrete lattice model elements
Based on Goldberg’s [33] solution for a finite difference value problem (also resumed in [13]),

we write the following auxiliary form of (Eq. 3) where ui = CΨi:

Ψ +
(
a2

L2
�2 − 2

)
+ 1
Ψ
= 0 (43)

We define � such as:

� = arccos (1 − a2

L2
�2

2
) (44)

The equation (43) admits two solutions:
Ψ1,2 = cos(�) ± j sin(�) (45)

with j =√
−1. Then, considering the Moivre’s theorem adapted to this problem:

[cos(�) + j sin(�)]i = cos(i �) + j sin(i �) (46)
We can write, with respect to its real part, the discrete displacement u from (Eq. 3) of a i-th particle
.

ui = C1 cos(i �) + C2 sin(i �) (5 revisited)
where C1 and C2 are arbitrary constants.
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Clamped-clamped boundary conditions: Adopting the boundary conditions clamped at both extrem-
ities:

u0 = un+1 = 0 (47)
C1 = 0 by applying the boundary conditions (Eq. 47) to (Eq. 5). Thus, noting that (n + 1) = L∕a,it leads to:

C2 sin(
L
a
�) = 0 ⟹ L

a
� = k� (48)

where k = 1, 2, 3... denotes the vibration eigen modes. Considering the trigonometric identity:
1 − cos

(
k� a
L

)
= 2 sin2

(k�
2
a
L

)
(49)

The introduction of (Eq. 48) into (Eq. 5) leads to a non-local form for the �2 frequency parameter:

�2CC =
(
2L
a
sin

(k�
2
a
L

))2
(7 revisited)

Clamped-free boundary conditions: Adopting the clamped-free boundary conditions configuration:

u0 = 0 (50a) Nn = 0 (50b)

whereNn is the axial force at the mass of the free end.
Applying the boundary conditions (Eq. 50) into (Eq. 5) we get C1 = 0. Considering n = L∕a,it results in:
C2 cos(

L
a
�) = 0 ⟹ L

a
� = (2k − 1)�

2
(51)

Considering again the same trigonometric identity:

1 − cos
(
(2k − 1)�

2
a
L

)
= 2 sin2

(
(2k − 1)�

4
a
L

)
(52)

and introducing (Eq. 51) into (Eq. 44) we obtain the non-local form for the �2 frequency parameter
for this case:

�2CF =
(
2L
a
sin

(
(2k − 1)�

4
a
L

))2

(8 revisited)

B. Appendix: Non-local stress gradient model elements
The non-local stress gradient model, as proposed by Eringen [27], relates the local and the

non-local force quantities:

N = Nnl − (e0a)2
)2Nnl

)x2
(53)
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where e0 is a dimensionless material parameter and a is an internal characteristic length. Thus,
combining the non-local relation (Eq. 53) and the non-local versions of (Eqs. 1 and 2) we obtain
a non-local form of the wave equation (as detailed by Aydogdu [2] and Challamel et al. [15]):

EA)
2u
)x2

− �A)
2u
)t2

+ �A(e0a)2
)4u
)t2)x2

= 0 (9 revisited)
We observe that when the non-local parameter e0a = 0 this model reduces to the local model (Eq.
2). Thus, considering the displacement of a bar in harmonic vibrations after separation of variables
(as proposed by [2]).

u(x, t) = U (x) sin(!t) (54)
A new form of (Eq. 9) in function ofU (x), after the introduction of the bar lengthL, is then defined
as:

(
1 − �

E
!2

(
e0a

)2)L2 )2U
)x2

+ �
E
!2L2U = 0 (55)

from what, we identify the dimensionless frequency parameter �2 = �
E
!2L2, such as:

L2 )
2U
)x2

+ �2

1 − e20
(
a
L

)2
�2
U = 0 (56)

Thus, introducing a new dimensionless parameter:

�2 = �2

1 − e20
(
a
L

)2
�2

(57)

It results in the following reduced form of the non-local wave equation:
L2 )

2U
)x2

+ �2U = 0 (10 revisited)
The second degree differential (Eq. 10) yields to a solution of form:

U (x) = C1 cos(
�
L
x) + C2 sin(

�
L
x) (11 revisited)

Clamped-clamped boundary conditions: Adopting the boundary conditions for a bar fixed at both
extremities:

u(0, t) = u(L, t) = 0 (58)
Applying the boundary conditions (Eq. 58) into (Eqs. 11 and 54), C2 sin(�) = 0 and C1 = 0. It
results in �CC = k�, where k = 1, 2, 3... denotes the vibration eigen modes. It leads to a non-local
formulation of the �2 frequency parameter:

�2CC =
(k�)2

1 + e20
(
a
L

)2
(k�)2

(12 revisited)
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Clamped-free boundary conditions: Now, considering a clamped-free boundary condition configu-
ration:

u(0, t) = 0 (59a) N(L, t) = 0 (59b)

After introducing (Eqs. 59) into (Eqs. 11 and 54), C2 cos(�) = 0 and C1 = 0. It yields that
�CF = (2k − 1)

�
2
, resulting in a non-local form of the �2 frequency parameter for a CF configura-

tion:

�2CF =

(
(2k − 1)�

2

)2

1 + e20
(
a
L

)2 (
(2k − 1)�

2

)2 (13 revisited)

CRediT authorship contribution statement
Rafael C. Deptulski: Data curation, Software, Writing - Original draft preparation. Mag-

dalenaDymitrowska: Data curation, Software. DjimédoKondo: Conceptualization of this study,
Methodology.

References
[1] Attaway, S., Heinstein, M., Mello, F., Swegle, J., 1993. Coupling of smooth particle hydrodynamics with PRONTO, Sandia National Labs.,

Albuquerque, NM (United States), New Orleans, LA.
[2] Aydogdu, M., 2009. Axial vibration of the nanorods with the nonlocal continuum rod model. Physica E: Low-dimensional Systems and

Nanostructures 41, 861 – 864. URL: http://www.sciencedirect.com/science/article/pii/S1386947709000137, doi:https:
//doi.org/10.1016/j.physe.2009.01.007.

[3] Aydogdu, M., 2012. Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elas-
ticity. Mechanics Research Communications 43, 34 – 40. URL: http://www.sciencedirect.com/science/article/pii/
S009364131200016X, doi:https://doi.org/10.1016/j.mechrescom.2012.02.001.

[4] Bathe, K.J., Bolourchi, S., 1979. Large displacement analysis of three-dimensional beam structures. International Journal for Nu-
merical Methods in Engineering 14, 961–986. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620140703,
doi:10.1002/nme.1620140703, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620140703.

[5] Bažant, Z.P., 1987. Why continuumdamage is nonlocal: justification by quasiperiodicmicrocrack array. Mechanics Research Communications
14, 407–419.

[6] Bažant, Z.P., 1991. Why continuum damage is nonlocal: Micromechanics arguments. Journal of Engineering Mechanics 117, 1070–1087.
[7] Bažant, Z.P., Belytschko, T.B., 1985. Wave propagation in a strain-softening bar: exact solution. Journal of Engineering Mechanics 111,

381–389.
[8] Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K., 2013. Nonlinear finite elements for continua and structures. John wiley & sons.
[9] Bonet, J., Lok, T.S., 1999. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer

Methods in Applied Mechanics and Engineering 180, 97 – 115. URL: http://www.sciencedirect.com/science/article/pii/
S0045782599000511, doi:https://doi.org/10.1016/S0045-7825(99)00051-1.

[10] Capone, T., Panizzo, A., Monaghan, J.J., 2010. Sph modelling of water waves generated by submarine landslides. Journal of Hy-
draulic Research 48, 80–84. URL: https://doi.org/10.1080/00221686.2010.9641248, doi:10.1080/00221686.2010.9641248,
arXiv:https://doi.org/10.1080/00221686.2010.9641248.

[11] Challamel, N., 2018. Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models. Comptes Ren-
dus Mécanique 346, 320 – 335. URL: http://www.sciencedirect.com/science/article/pii/S1631072117302504, doi:https:
//doi.org/10.1016/j.crme.2017.12.014.

[12] Challamel, N., Lerbet, J., Wang, C., Zhang, Z., 2014. Analytical length scale calibration of nonlocal continuum from a microstructured
buckling model. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 94,
402–413. URL: https://doi.org/10.1002/zamm.201200130, doi:10.1002/zamm.201200130. publisher: John Wiley & Sons, Ltd.

[13] Challamel, N., Picandet, V., Collet, B., Michelitsch, T., Elishakoff, I., Wang, C., 2015a. Revisiting finite difference and finite element
methods applied to structural mechanics within enriched continua. European Journal of Mechanics - A/Solids 53, 107–120. URL: http:
//www.sciencedirect.com/science/article/pii/S0997753815000236, doi:10.1016/j.euromechsol.2015.03.003.

RC Deptulski et al.: Preprint submitted to Elsevier Page 31 of 33



Modelling non-local elasticity in 1D vibrating rods using Smoothed Particle Hydrodynamics method

[14] Challamel, N., Picandet, V., Elishakoff, I., Wang, C.M., Collet, B., Michelitsch, T., 2015b. On nonlocal computation of eigen frequencies
of beams using finite difference and finite element methods. International Journal of Structural Stability and Dynamics 15, 1540008. ISBN:
0219-4554 Publisher: World Scientific.

[15] Challamel, N., Rakotomanana, L., Marrec], L.L., 2009. A dispersive wave equation using nonlocal elasticity. Comptes Rendus Mécanique
337, 591 – 595. URL: http://www.sciencedirect.com/science/article/pii/S1631072109001041, doi:https://doi.org/10.
1016/j.crme.2009.06.028.

[16] Challamel, N., Wang, C., Elishakoff, I., 2016. Nonlocal or gradient elasticity macroscopic models: A question of concentrated or distributed
microstructure. Mechanics Research Communications 71, 25 – 31. URL: http://www.sciencedirect.com/science/article/pii/
S0093641315001792, doi:https://doi.org/10.1016/j.mechrescom.2015.11.006.

[17] Challamel, N., Wang, C.M., Zhang, H., Kitipornchai, S., 2018. Exact and nonlocal solutions for vibration of axial lattice with direct and
indirect neighboring interactions. Journal of Engineering Mechanics 144, 04018025. ISBN: 0733-9399 Publisher: American Society of Civil
Engineers.

[18] Chaniotis, A., Poulikakos, D., Koumoutsakos, P., 2002. Remeshed Smoothed Particle Hydrodynamics for the Simulation of Viscous and Heat
Conducting Flows. Journal of Computational Physics doi:10.1006/jcph.2002.7152.

[19] Chen, Z., Zong, Z., Liu, M.B., Zou, L., Li, H.T., Shu, C., 2015. An SPH model for multiphase flows with complex interfaces and large density
differences. Journal of Computational Physics doi:10.1016/j.jcp.2014.11.037.

[20] Collins, M.A., 1981. A quasicontinuum approximation for solitons in an atomic chain. Chemical Physics Letters 77, 342
– 347. URL: http://www.sciencedirect.com/science/article/pii/0009261481801613, doi:https://doi.org/10.1016/
0009-2614(81)80161-3.

[21] Şimşek, M., 2014. Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory.
Composites Part B: Engineering 56, 621–628. URL: http://www.sciencedirect.com/science/article/pii/S1359836813005040,
doi:10.1016/j.compositesb.2013.08.082.

[22] Şimşek, M., 2016. Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian
approach. International Journal of Engineering Science 105, 12–27. URL: http://www.sciencedirect.com/science/article/pii/
S0020722516300520, doi:10.1016/j.ijengsci.2016.04.013.

[23] Dehnen, W., Aly, H., 2012. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Monthly
Notices of the Royal Astronomical Society 425, 1068–1082. URL: https://doi.org/10.1111/j.1365-2966.2012.21439.x, doi:10.
1111/j.1365-2966.2012.21439.x.

[24] Dyka, C.T., Randles, P.W., Ingel, R.P., 1997. Stress points for tension instability in SPH. International Journal for Numerical Methods in
Engineering doi:10.1002/(SICI)1097-0207(19970715)40:13<2325::AID-NME161>3.0.CO;2-8.

[25] Eringen, A., 1976. Continuum physics. volume 4-polar and nonlocal field theories. New York, Academic Press, Inc., 1976. 288 p .
[26] Eringen, A., Suhubi, E., 1964. Nonlinear theory of simple micro-elastic solids—i. International Journal of Engineering Science 2,

189 – 203. URL: http://www.sciencedirect.com/science/article/pii/0020722564900047, doi:https://doi.org/10.1016/
0020-7225(64)90004-7.

[27] Eringen, A.C., 1983. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of applied
physics 54, 4703–4710.

[28] Eringen, A.C., 1984. Theory of nonlocal elasticity and some applications. Technical Report. Princeton Univ NJ Dept of Civil Engineering.
[29] Eringen, A.C., 2002. Nonlocal continuum field theories. Springer Science & Business Media.
[30] Eringen, A.C., Edelen, D., 1972. On nonlocal elasticity. International Journal of Engineering Science 10, 233–248.
[31] Eringen, A.C., Kim, B.S., 1977. Relation between non-local elasticity and lattice dynamics .
[32] Gingold, R.A., Monaghan, J.J., 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of

the royal astronomical society 181, 375–389.
[33] Goldberg, S., 1958. Introduction to difference equations: with illustrative examples from economics, psychology, and sociology. Wiley. URL:

https://books.google.fr/books?id=0vY4zQEACAAJ.
[34] Kunin, I., 1966. Model of an elastic medium of simple structure with three-dimensional dispersion. Journal of Applied Mathematics

and Mechanics 30, 642–652. URL: http://www.sciencedirect.com/science/article/pii/0021892867901013, doi:10.1016/
0021-8928(67)90101-3.

[35] Lagrange, J.L., 1759. Recherches sur la nature et la propagation du son. Œuvres complètes ed., Gallica. URL: http://sites.mathdoc.
fr/cgi-bin/oeitem?id=OE_LAGRANGE__1_39_0.

[36] Lagrange, J.L., 1788. Méchanique Analitique. Desaint. URL: http://eudml.org/doc/204580.
[37] Lazar, M., Maugin, G.A., Aifantis, E.C., 2006. On a theory of nonlocal elasticity of bi-Helmholtz type and some applications.

International Journal of Solids and Structures 43, 1404–1421. URL: http://www.sciencedirect.com/science/article/pii/
S0020768305002209, doi:10.1016/j.ijsolstr.2005.04.027.

[38] Libersky, L.D., Petschek, A.G., 1991. Smooth particle hydrodynamics with strength of materials, in: Advances in the free-Lagrange method
including contributions on adaptive gridding and the smooth particle hydrodynamics method. Springer, pp. 248–257.

[39] Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A., 1993. High strain lagrangian hydrodynamics a three-dimensional
SPH code for dynamic material response. Journal of Computational Physics doi:10.1006/jcph.1993.1199.

[40] Liu, M.B., Liu, G.R., 2005. Meshfree particle simulation of micro channel flows with surface tension. Computational Mechanics doi:10.
1007/s00466-004-0620-y.

[41] Liu, M.B., Liu, G.R., 2010. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational
Methods in Engineering doi:10.1007/s11831-010-9040-7, arXiv:1007.3908.

[42] Liu, W.K., Jun, S., Li, S., Adee, J., Belytschko, T., 1995. Reproducing kernel particle methods for structural dynamics. International Journal
for Numerical Methods in Engineering doi:10.1002/nme.1620381005.

RC Deptulski et al.: Preprint submitted to Elsevier Page 32 of 33



Modelling non-local elasticity in 1D vibrating rods using Smoothed Particle Hydrodynamics method

[43] Lucy, L.B., 1977. A numerical approach to the testing of the fission hypothesis. 82, 1013–1024. doi:10.1086/112164.
[44] Monaghan, J.J., Huppert, H.E., Worster, M.G., 2005. Solidification using smoothed particle hydrodynamics. Journal of Computational Physics

doi:10.1016/j.jcp.2004.11.039, arXiv:0507472.
[45] Monaghan, J.J., Kocharyan, A., 1995. SPH simulation of multi-phase flow. Computer Physics Communications doi:10.1016/

0010-4655(94)00174-Z.
[46] Morris, J.P., 2000. Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids

doi:10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7.
[47] Pazdniakou, A., Dymitrowska, M., 2018. Migration of gas in water saturated clays by coupled hydraulic-mechanical model. Geofluids 2018.
[48] Rabczuk, T., Belytschko, T., Xiao, S., 2004. Stable particle methods based on Lagrangian kernels. Meshfree Methods: Recent Advances and

New Applications 193, 1035–1063. URL: http://www.sciencedirect.com/science/article/pii/S0045782504000088, doi:10.
1016/j.cma.2003.12.005.

[49] Reveles, J.R., 2007. Development of a total Lagrangian SPH code for the simulation of solids under dynamioc loading. Ph.D. thesis. Cranfield
University.

[50] Rogula, D., 1982. Nonlocal Theory of Material Media. Springer-Verlag Kg. URL: https://books.google.fr/books?id=
iaEeAQAAIAAJ.

[51] Rosenau, P., 1986. Dynamics of nonlinear mass-spring chains near the continuum limit. Physics Letters A 118, 222 – 227. URL: http://www.
sciencedirect.com/science/article/pii/0375960186901702, doi:https://doi.org/10.1016/0375-9601(86)90170-2.

[52] Rosenau, P., 1987. Dynamics of dense lattices. Physical Review B 36, 5868–5876. URL: https://link.aps.org/doi/10.1103/
PhysRevB.36.5868, doi:10.1103/PhysRevB.36.5868. publisher: American Physical Society.

[53] Song, Y., Davy, C., Troadec, D., Blanchenet, A.M., Skoczylas, F., Talandier, J., Robinet, J., 2015. Multi-scale pore structure of COx clay-
stone: Towards the prediction of fluid transport. Marine and Petroleum Geology 65, 63–82. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0264817215001245, doi:10.1016/j.marpetgeo.2015.04.004.

[54] Sutmann, G., 2007. Compact finite difference schemes of sixth order for the helmholtz equation. Journal of Computational and Applied
Mathematics 203, 15–31.

[55] Tartakovsky, A.M., Trask, N., Pan, K., Jones, B., Pan, W., Williams, J.R., 2016. Smoothed particle hydrodynamics and its applications for
multiphase flow and reactive transport in porous media. Computational Geosciences 20, 807–834. doi:10.1007/s10596-015-9468-9.

[56] Vignjevic, R., Campbell, J., Libersky, L., 2000. A treatment of zero-energy modes in the smoothed particle hydrodynamics method. Computer
Methods in Applied Mechanics and Engineering doi:10.1016/S0045-7825(99)00441-7.

[57] Vignjevic, R., Djordjevic, N., Gemkow, S., De Vuyst, T., Campbell, J., 2014. Sph as a nonlocal regularisationmethod: Solution for instabilities
due to strain-softening. Computer Methods in Applied Mechanics and Engineering 277, 281–304.

[58] Vignjevic, R., Reveles, J.R., Campbell, J., 2006. SPH in a total lagrangian formalism. CMES - Computer Modeling in Engineering and
Sciences doi:citeulike-article-id:1967892.

[59] Vila, J., Fernández-Sáez, J., Zaera, R., 2017. Nonlinear continuum models for the dynamic behavior of 1D microstructured solids.
International Journal of Solids and Structures 117, 111–122. URL: http://www.sciencedirect.com/science/article/pii/
S0020768317301348, doi:10.1016/j.ijsolstr.2017.03.033.

[60] Vila, J., Fernández-Sáez, J., Zaera, R., 2018. Reproducing the nonlinear dynamic behavior of a structured beam with a generalized con-
tinuum model. Journal of Sound and Vibration 420, 296–314. URL: http://www.sciencedirect.com/science/article/pii/
S0022460X18300488, doi:10.1016/j.jsv.2018.01.040.

[61] Violeau, D., Issa, R., 2007. Numerical modelling of complex turbulent free-surface flows with the SPH method: An overview. doi:10.1002/
fld.1292, arXiv:fld.1.

[62] Violeau, D., Leroy, A., 2014. On the maximum time step in weakly compressible SPH. Journal of Computational Physics 256, 388–415.
URL: http://www.sciencedirect.com/science/article/pii/S0021999113006050, doi:10.1016/j.jcp.2013.09.001.

[63] Wang, C.M., Zhang, H., Challamel, N., Duan, W.H., 2017. Eringen’s small length scale coefficient for vibration of axially loaded nonlocal
Euler beams with elastic end restraints. Journal of Modeling in Mechanics and Materials 1. Publisher: De Gruyter.

[64] Young, J.R., 2018. Modelling elastic dynamics and fracture with coupled mixed correction Eulerian Total Lagrangian SPH. Ph.D. thesis. The
University of Edinburgh.

[65] Zhang, H., Wang, C., Challamel, N., 2018. Modelling vibrating nano-strings by lattice, finite difference and Eringen’s nonlocal models.
Journal of Sound and Vibration 425, 41–52. URL: http://www.sciencedirect.com/science/article/pii/S0022460X18302207,
doi:10.1016/j.jsv.2018.04.001.

[66] Zhang, Z., Wang, C., Challamel, N., Elishakoff, I., 2014. Obtaining Eringens length scale coefficient for vibrating nonlocal beams via
continualization method. Journal of Sound and Vibration 333, 4977–4990. URL: http://www.sciencedirect.com/science/article/
pii/S0022460X1400371X, doi:10.1016/j.jsv.2014.05.002.

RC Deptulski et al.: Preprint submitted to Elsevier Page 33 of 33



Concluding remarks
In this chapter, we have studied a 1D vibration problem for different boundary

conditions (clamped-clamped and clamped-free). We have accurately accounted for
higher-order (non-local) effects in elasticity compared to analytical lattice discrete and
continuous solutions. It has been shown that the non-local effects are directly related to
the numerical support-length parameter (inherent to the SPH).
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4SPH modelling of local
elasto-damage

Overview: In this chapter, we aim to extend the capability of our SPH solver to
deal with non-local effects due to growing damage in elastic materials. In section
4.1, we established a local energetic-based formulation of the elastic damage
model. Unilateral effects in the presence of damage (observed in geomaterials)
are included in this formulation. In section 4.2, a 1D problem of a softening bar
is treated through the SPH method in order to provide a first characterization of
the non-local effects. In section 4.3, a 2D structure (a square plate with a rigid
inclusion) is investigated either in quasi-static or dynamics conditions. For these
cases, we examine the possibility to predict the transition from damage to fracture.
Asymmetric tensile-compressive responses are also discussed. Finally, the role of the
numerical parameter (the support length of the SPH kernel function) as a potential
characteristic length of the material is discussed.

Despite several research studies carried out recently, the hydromechanical be-
haviour of clayey rocks is not yet fully understood at the pore scale given the difficulty to
observe at lower-scale the initiation of macroscopic fractures and to regenerate conditions
existing in-situ. We previously mentioned and discussed that dilatant flows are still poorly
characterized both from experimental and theoretical perspectives due to their coupling
with damage. Experimental data reported in literature [140], [173] state that the clayey
matrix studied here has an elastic response for a deformation range up to an elastic
limit value. Beyond this threshold, an irreversible degradation phenomenon may take
place. Such a process can occur by widening the existing pore spaces resulting in new
micro-cracks, that can become preferential percolation pathways. In the field of clay
materials, such problem has been the source of few studies [63], [155].

Concerning the issues related to deep geological disposals, we can decouple, in
a first approach, damage and hydromechanics. The damage prediction and its transition
towards rupture phenomena constitute an essential subject in itself, even in an unsatu-
rated state. A widespread form of investigating this problem consists of implementing
regularised non-local damage models (non-local integral or differential formulations).

The fracture in its classical theory understanding, as introduced by Griffith [71]
and enhanced by Irwin [78] and Rice [142], will not be directly investigated here, but
will be suitably addressed through localisation of damage. Introduced by Lemaitre and
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Chaboche [89], the damage model adopted here (reputed as “local” method) is based in a
thermodynamics approach that can be built from two main ingredients: the choice of state
variables that construct a thermodynamics potential (giving its energetic evolution) and a
damage criterion that governs the degradation process. The numerical modelling of local
damage models also presents a few specific aspects. The zones strongly damaged can be
assimilated as fractures, but not presenting tough discontinuities of the displacement field.
Besides, the damage field tends to be localized in areas of infinitesimal size leading to
failure without energy dissipation [15], which can generate major issues in a mesh-based
method where the results may depend on the mesh resolution.

In order to overcome this pathological mesh dependence issue, non-local damage
models were proposed. In a first non-local method (called as "integral”)[18], [129] the
local damage variable (or its conjugated force) is replaced by its non-local version
(through a convolution procedure). Francfort and Marigo [65] proposed another solution
to the damage problem using a variational approach (reputed as “gradient”), where the
solution is based in a minimization of the functional energy function. An approximation
of this variational approach (called as "phase-field”) has been proposed by Bourdin et al.
[30] based on Ambrosio and Tortorelli [1], [2], in which the way to solve the localization
problem originated in local models is to "regularise" the functional to be minimized by
adding therein an additional term comprising the damage gradient and some material
constants (notably a characteristic length that is related to the width of the localization
zone). A few years later, this approximation has been interpreted as the variational
formulation of a class of gradient damage models [105], [128]. Also, Lorentz and
Andrieux [101][102] proposed another alternative to this class of gradient damage model
that introduces the characteristic length in a gradient term occurring in the stored energy.
Recently, phase-field applications in dynamic conditions are also found in literature [22],
[28], [93].

In this thesis, we propose a new form to treat the damage-fracturing problem
through our interpolated Smoothed Particle Hydrodynamics (SPH), a meshless method
capable of extending the non-local nature to any variable, generating a non-local system.
For the reasons just mentioned, an important challenge of this thesis is to investigate the
capability to predict rupture phenomena through the SPH method, while accounting for
non-local effects but without resorting to a non-local regularisation of the damage law.
In this context, a significant question we contribute to answering here is about the role
played for the h-length inherent to the SPH solver.

Prediction of damage occurrence and growth in solid elastic materials has
motivated various researches based on the stress-based criteria reputed in the continuum
damage mechanics [79], [81], [107], [123], [133] or on the energy-based methods
following a thermodynamics approach [90], [91]. The coupled Rankine - Mohr-Coulomb
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criteria allows to treat tensile, compressive and shear loads. Despite its various advantages,
this approach may be viewed as the first attempt of modelling. A more advanced strategy
consists of a thermodynamics-based formulation that will allow accounting for the very
dissipative nature of the damage. We also seek to compare the SPH model firstly adopted
in Pazdniakou and Dymitrowska [126] to the results obtained using the thermodynamics
approach adopted here. Moreover, for the sake of conciseness, we present here only the
small deformations formulations. However, given the similarities between both forms,
the large deformations formulations can be achieved through the following equations
replacing the small deformations tensors by the large deformations tensors in a similar
procedure as presented in Sections 2.4.1 and 2.4.2.

4.1 Thermodynamics-based formulation of
damage models

In this section, we aim at presenting the two necessary ingredients to construct
a thermodynamic-based damage model in the context of Generalized Standard Materials
(GSM) [72].

4.1.1 Free energy and dissipation potential
The choice of the state variables (ε,D) is the first required ingredient to consti-

tute the thermodynamics potential (or Helmholtz free energy) of an elasto-damageable
material, such as:

ρw(ε,D) = 1
2 ε : C(D) : ε (4.1)

where C(D) is the effective stiffness tensor. The state laws can be deduced from the
thermodynamics potential becoming the following conjugated reversible forces:

σrev = ρ
∂w

∂ε
= C(D) : ε (4.2a)

Yrev = ρ
∂w

∂D = 1
2 ε : C′(D) : ε (4.2b)

where the superscript rev relates a reversible state and ′ designates a material derivative.
The evolution law of the internal variable (damage variable D) is then a necessary step
within the construction of the damage model. It leads to the expression of the intrinsic
dissipation D as a consequence of the damage increasing.

D = (σ − σrev) : ε̇− YrevḊ (4.3)
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which can be written in function of the irreversible state variables (denoted by the irr
superscript), such that:

D = (σirr) : ε̇+ Y irrḊ (4.4)

It is evident that σirr = σ−σrev and Y irr = −Yrev. Considering a non-viscous behaviour, ε
is a non-dissipative variable and then σirr = 0. Thus, we are able to evaluate the evolution
of the damage variable, as follows:

D = Y irrḊ (4.5)

It results in the irreversible thermodynamic force associated to the damage variable D:

Y irr = −ρ∂w
∂D = −1

2 ε : C′(D) : ε (4.6)

It is noteworthy that the first derivatives of the stiffness tensor C(D) must present negative
values in order to represent a degradation on the material properties (i.e. C′(D) < 0).
Besides, the second derivatives must have positive values (i.e. C′′(D) > 0) in order
to ensure the stability of the model. On the same way, the positively of the intrinsic
dissipation seeks to guarantee the irreversibility of the damage, such as:

Y irrḊ ≥ 0⇒ Ḋ ≥ 0 (4.7)

4.1.2 Dissipation pseudo-potential and evolution laws
In order to obtain the second required ingredient in the GSM context, an au-

tomatic way to ensure the positively of D during degradation evolution is to obtain the
differential of Y with respect to the dissipation pseudo-potential:

ϕ(Ḋ) = YcḊ (4.8)

which is convex in Ḋ, has non-negative scalar values and minima Ḋ = 0
(
ϕ(0) = 0

)
. For

non-differential ϕ, the dissipative thermodynamic forces read:

Y ∈ ∂ϕ(Ḋ) (4.9)

in which, we adopt the notation Y = Y irr for the sake of simplicity. The dual potential
ϕ∗(Y ,D) is given by the Legendre-Fenchel transform of ϕ(Ḋ), such as:
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ϕ∗(Y ,D) = sup
Ḋ

(
YḊ− YcḊ

)

=

 0 if Y − Yc ≤ 0
+∞ if Y − Yc > 0

(4.10)

which is the indicator function of the ϕ = [0,Yc] domain. This process leads to a damage
criterion (also called as loading function) expressed as:

f(Y) = Y − Yc(D) ≤ 0 (4.11)

Following the particularity of different damage models, it can be necessary to introduce
the dependency on D into Yc in Eq. (4.11). Henceforth, from (Eq. 4.6) the loading
function can be written in tensorial notation as:

f(Y) = −1
2 ε : C′(D) : ε− Yc(D) ≤ 0 (4.12)

The damage evolution law is then given by:

Ḋ ∈ ∂ϕ∗(Y ,D) (4.13)

which, owing to (Eq. 4.10) reads:

Ḋ =



0 if f(Y) < 0︸ ︷︷ ︸
elastic regime

or f(Y) = 0 and ḟ(Y) < 0︸ ︷︷ ︸
elastic unloading

Λ ∂f(Y)
∂Y︸ ︷︷ ︸
=1

= Λ if f(Y) = 0 and ḟ(Y) = 0︸ ︷︷ ︸
damage loading

(4.14)

The different cases are illustrated in Fig. 4.1. In (Eq. 4.14), Λ is a positive damage scalar,
determined from the consistency condition ḟ(Y) = 0, which reads:

ḟ
(
Y(ε, Ḋ)

)
= ∂f

∂ε
: ε̇+ ∂f

∂D : Ḋ

= −C′(D) : ε : ε̇−
(1

2 ε : C′′(D) : ε + Y ′c(D)
)

Ḋ = 0
(4.15)

It follows that in damage loading regime (i.e. f(Y) = 0 and ḟ(Y) = 0):

Ḋ = Λ =
−C′(D) : ε : ε̇

1
2 ε : C′′(D) : ε + Y ′c(D)

(4.16)
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Fig. 4.1.: Strain-stress tensile constitutive law for elasto-damage material

4.1.3 Account of unilateral effects (microcracks closure)
In this part, we aim at describing the asymmetry of the tensile-compressive

behaviour observed for several materials, including geomaterials, by introducing the
so-called unilateral effect of damage on elastic properties. Fig. 4.2 illustrates such
phenomenon under tensile loading (when the damage is presented as open micro-voids),
followed by compression loading (for which micro-voids are closed).

Fig. 4.2.: Strain-stress unilateral effect behaviour
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For the derivation of elastic-damage models with unilateral effects which induce
different stiffnesses (i.e. C(D)t 6= C(D)c)1 in tensile and compressive regimes, we follow
studies by [5], [6], [82], [127]. The reader interested by the mathematical aspect of
this topic can refer to [47] in which the conditions of the continuity of the mechanical
response of multilinear materials are analysed. For isotropic models, it can be shown that
the achievement of the continuity of the mechanical response requires that the transition
between "tensile-compressive” regimes must be done at tr(ε) = 0.

Let us insist on the fact that despite the existence of the asymmetric behaviour,
we seek to ensure the continuity of the mechanical response in the model. Knowing that in
the isotropic case, the stiffness tensor C is decomposed in a spherical part and a deviatoric
one, the thermodynamic potential, accounting for the unilateral effects reads:

ρw
(
ε,D

)
=


1
2k(D)

(
tr(ε)

)2
+ µ(D) εd : εd if tr(ε) ≥ 0

1
2k0

(
tr(ε)

)2
+ µ(D) εd : εd if tr(ε) ≤ 0

(4.17)

where the superscript 0 relates an initial property. Note that at the tensile-compressive
transition, this potential is continuous and takes the value: µ(D) εd : εd. The resulting
state equations, previously presented in (4.2a) and (4.6), take then the form:

σ = ρ
∂w

∂ε
=

 k(D) tr(ε) 1 + 2µ(D) εd if tr(ε) ≥ 0
k0 tr(ε) 1 + 2µ(D) εd if tr(ε) ≤ 0

(4.18a)

Y = −ρ∂w
∂D =

−
1
2 k′(D)

(
tr(ε)

)2
− µ′(D) εd : εd if tr(ε) ≥ 0
−µ′(D) εd : εd if tr(ε) ≤ 0

(4.18b)

with σ = 2µ(D) εd and Yrev = −µ′(D) εd : εd at tr(ε) = 0. Furthermore, by introducing
(4.18b) into (4.11):

f(Y) =

−
1
2 k′(D)

(
tr(ε)

)2
− µ′(D) εd : εd − Yc(D) ≤ 0 if tr(ε) ≥ 0
−µ′(D) εd : εd − Yc(D) ≤ 0 if tr(ε) ≤ 0

(4.19)

with f(Y) = −µ′(D) εd : εd − Yc(D) ≤ 0 when tr(ε) = 0. Moreover, if being on damage
loading

(
i.e.f(Y) = 0 and ḟ(Y) = 0

)
:

Ḋ =



−k′(D) tr(ε) trε̇ − 2µ′(D) εd : ε̇d
1
2k
′′(D)

(
tr(ε)

)2
+ µ′′(D) εd : εd + Y ′c(D)

if tr(ε) ≥ 0

−2µ′(D) εd : ε̇d

µ′′(D) εd : εd + Y ′c(D) if tr(ε) ≤ 0
(4.20)

1The subscripts t and c relates, respectively, the tensile and compressive states.
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with Ḋ =
−2µ′(D) εd : ε̇d

µ′′(D) εd : εd + Y ′c(D) at the transition tr(ε) = 0.

4.1.4 Examples of degradation functions and of critical
energy release
Two classes of damage models are considered here, where the effective stiffness

tensor is assumed to be isotropic (i.e. C(D) = 3k(D) J + 2µ(D) K). We adopt formulations
based in the models proposed by Ponte-Castaneda and Willis (PCW) [40] and by Ambrosio-
Tortorelli (AT) [1], [2], [30], [105]. These models can represent different material
response following linear and quadratic evolution of the degradation process. Hence,
inspired in the PCW damage model [40], we consider here uniform degradation functions
of the shear and bulk modulus, such as:

k(D)
k0

= µ(D)
µ0

= 1− α̂D
1 + β̂D

(4.21)

with α̂ and β̂ constant parameters allowing to define the damage functions k(D) and µ(D).
Due to different values of the parameters of Eq. (4.21), it can be necessary to introduce
the dependency on D parameter into the critical damage energy release Yc. In addition,
the second damage model is based in the Ambrosio-Tortorelli (AT) model, where for our
cases, the degradation functions of the shear and bulk modulus read:

k(D)
k0

= µ(D)
µ0

= (1−D)2 (4.22)

The quadratic damage function fulfil the degradation condition of the negative first
derivative and the stability condition of positive second derivative.

Additionally, we may have a dependency on D into the critical damage energy
release Yc(D). Two well-known versions of the critical damage energy release, depending
or not on D, can be written as:

1st case: Yc = Y0
c (4.23a)

2nd case: Yc(D) = 2DY0
c (4.23b)

where Y0
c is an initial critical damage energy release. In the 1st case, an elastic regime will

take place before the damage initiation (this response relates more often the mechanical
response obtained for several geomaterials). Otherwise, the 2nd case does not present an
elastic range and the degradation process starts once the deformation is different of zero.
This formulation-type is widely found in literature (see for instance [6], [66]).
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4.1.5 SPH-based algorithm implementation of the damage
models
We illustrate here the numerical implementation used to compute the response

of an elasto-damageable material in our SPH code. Previously, we illustrated the complete
flowchart describing the SPH algorithm for the computing of a solid material response in
Fig. 2.9. In Fig. 4.3, we first highlight that the deformation tensor εt+∆t

a
is the primary

non-local variable in our computing.

C

Compute and update deformation tensor

εt+∆t
a

=
[∑N

b=1
mb

ρb
(ub − ua)⊗ ∇̃aW̃ab

]

Which material
response?

Which damage
criterion?

D E

Compute stress tensor
σt+∆t
a

from (Eq. 4.18a)

F

Elastic

Elasto-damageable

Stress-based Thermodynamics-based

Fig. 4.3.: SPH computing flow chart for solid material points constitutive model and material
response
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Compute Damage
thermodynamics-
based criterion

E

Input data
εt+∆t
a

, f(Y)ta, Dt
a,Yc(D), k0, µ0

Compute damage energy release Y t+∆t
a (Eq. 4.18b),

loading function f(Y)t+∆t
a (Eq. 4.19) and f(Y)∆t

a .

if f(Y)t+∆t
a > 0 an elastic correction is required

by setting f(Y)t+∆t
a = 0 and computing D∆t

a .

Damage criterion based
on f(Y)t+∆t

a

Elastic regime

Elastic unloading or
damage loading

Damage loading: compute increment of
damage variable D∆t

a from (Eq. 4.20)

Elastic
unloading
D∆t
a = 0

Compute and update damage variable
Dt+∆t
a = Dt

a + ∆t · D∆t
a

E

if f(Y)t+∆t
a = 0 and f(Y)∆t

a ≤ 0

if f(Y)t+∆t
a < 0

if f(Y)t+∆t
a = 0 and f(Y)∆t

a = 0

if f(Y)∆t
a < 0

Fig. 4.4.: SPH computing flow chart for thermodynamics-based damage model.
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In the following, our SPH code offers a damage criteria choice between a Rankine
and Mohr-Coulomb strain-based criterion (detailed in Pazdniakou and Dymitrowska [126]
but not used here) or a thermodynamics-based criterion. In Fig. 4.4, we illustrate the
algorithm flow chart used to numerically compute the thermodynamics-based damage
model described in Sec. 4.1.2.

Hence, to better understand the mechanical response of an elasto-damageable
material following the underling thermodynamics-based damage model, we present, in
the following, two numerical tests seeking to validate our damage model. We also aim to
analyze and discuss the capabilities of our SPH solver to reproduce non-local effects. We
first apply different models to the test case of a softening 1D bar under tensile loads. In
the following, we present a 2D fiber reinforced plate problem in which we explore the
nucleation and propagation crack phenomena under tensile and compressive loading.

It is noteworthy that SPH is a mesh-free method, however, for minimal values of
the numerical h-scale parameter, the interaction between material points can be limited
to their closest neighbours, recalling a response of a system with a meshed domain.
Such results were highlighted in Chap. 3. In the next applications, we will investigate
two capital ingredients in SPH: the h-scale parameter and the role of the material point
densities.

4.2 Application to 1D dynamic softening bar
We study here a model of a 1D bar loaded at both ends (see Fig. 4.5) through

our SPH solver.

Fig. 4.5.: Bar configuration and boundary conditions

where v being the displacement velocity and the boundary conditions read:

 at x = −L , u = −vt
at x = L , u = vt

(4.24)
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where u is the imposed displacement at the left and right end. Bažant and Belytschko
[19] were the first to propose an analytical solution to such problem taking into account
a softening behaviour of a material. According to them, such boundary condition is the
same as for a bar of length L fixed at x = 0. Their results shown the damage localisation
at the centre of the bar beyond the instant t > L

ce
where ce being the sound wave velocity

in this medium. Few years later, Bažant observed a mesh-dependence pathology when
treating damage variable by local methods (e.g. Finite Elements - FE). He postulated that
the continuous damage variable is not a local variable by bearing on different evidences,
for instance a softening response when changing the micro-structure scale (represented
by the mesh-density) [16], [17]. Such condition can generate local loss of ellipticity when
resolving the differential equations, causing an ill-posed mathematical problem.

Based on Bažant’s analytical solution and on the issue of mesh-dependence of
local methods, Vignjevic et al. [158] proposed to solve this softening bar problem by
using SPH. They compared FE and SPH solutions highlighting the absence of dependency
on the material point densities of the last one. Their results were obtained by using a
Total Lagrangian SPH formulation (see more in [141]). In a previous work [53], we
investigated the same problem using the standard SPH formulation (as presented by
Monaghan [116]).

We adopt here different SPH approaches (conventional SPH-based and Total
Lagrangian-based) in order to investigate the damage model described in Sec. 4.1. Table
4.1 resumes the simulation parameters adopted as proposed by Vignjevic et al. [158].

Parameter Sign Value

Bar half-length L 100 [mm]
Young modulus E 70.8 [GPa]
Volumetric mass density ρ 1550 [kg/m3]
Initial failure strain εt0 0.022 [−]
Critical failure strain εtu 0.060 [−]

Tab. 4.1.: Input data for dynamic simulation of a softening bar

In addition, we adopt a SPH artificial viscosity (Eq. 2.64) with parameters
ᾰ = 10 and β̆ = 1 in order to reduce the oscillations and enhance the stability of the
system. We will illustrate in the different numerical experiments presented in this chapter
the evolution of the total energy (i.e. the sum of the elastic or bulk energy, the dissipated
or surface energy and the kinetic energy). The presence of kinetic energy here is justified
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by our dynamic approach. The sum of the energies ETOT inside an isolated SPH system is
given by:

ETOT = EŴ + ED̂ + ET̂ (4.25)

where the global elastic energy is EŴ , the global dissipated energy is ED̂ and the global
kinetic energy is ET̂ , for a SPH system composed of n material points, are written as:

EŴ =
n∑
a

ma

ρa
wa (4.26a)

ED̂ =
n∑
a

ma

ρa
Y0
c ·Da (4.26b)

ET̂ =
n∑
a

1
2mav

2
a (4.26c)

The index a identifies each material point of the SPH system and w is the internal energy
as introduced in (Eq. 2.87).

4.2.1 Material point densities independence validation
We aim here, first, at validating the use of our Saint-Venant Kirchhoff model

through an SPH Total Lagrangian-based formulation taking into account the normalisation
of the kernel function and its corrected derivative form. This formulation is called here as
SVK SPH. For this simulation, 2h-size is equal to 5mm for three different material point
densities (101x5, 151x9 and 201x11). A displacement velocity of v = ±70 m/s is applied
at both sides in order to create the bi-tractioned condition. In this part, we adopt the
PCW-based damage function (Eq. 4.21) with parameters:


α̂ = 1
β̂ = εu

ε0
− 1

Yc = Y0
c

(4.27)

In Fig. 4.6 we present the damage and strain fields for the three proposed discretizations.
Although the three different material point densities, the damage zone at the centre of
each bar in Fig. 4.6a seems to present the same width. In addition, in the Green-Lagrange
strain profile (Fig. 4.6b) the coloured zones follow a similar behaviour. This similar
responses on the damage width zone validate the independence for different material
point densities, highlighting the inherent non-local nature of SPH. Our results using
the SVK-SPH model are close to those showed by Vignjevic et al. [158] using a Total
Lagrangian SPH. In a more detailed point of view, Fig. 4.7 shows some of the main
variables present in this system by a plot over the central line of the bar along their total
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(a) Damage D zone lengths for different material point discretizations.

(b) Green-Lagrange deformation εGL for different material point discretizations.

a,b watch

the video

Fig. 4.6.: 1D softening bar: damage and Strain. damage width zone independence for
different material point densities for 2h = 5mm at t = 3L

2ce
.

length. For the three different point discretization, the strain, stress and displacement
profiles are quite similar. A more important difference is observed for the peak values
at the centre of the bar. In addition, although different peak values, the width of the
damaged zone does not depend on the particle densities from the zoomed longitudinal
profile of the damage D (top-left side chart).

Another relevant result is the small damage peak values, instead of the 0 − 1
discontinuity obtained with local methods (see [158]). We note that the peak values
obtained in each configuration decreases with the increase of particle density and seems
to converge towards the densest configuration monotonously. However, when compared
to [158] damage profiles, the same solution is non-monotonous there. The small peak
values in this dynamic condition are conditioned to small traction loading. Finally, we
highlight the gain on stability by adopting the 201 material points discretization compared
to the less dense cases.
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watch

the video

Fig. 4.7.: Damage, stress, strain and displacement at t = 3L
2ce

. Validation of normalized-
corrected SVK SPH by using PCW-based damage function following three
density of longitudinal material points: 101, 151 and 201.

Therefore, we illustrate in Fig. 4.8 the evolution of elastic, kinetic, dissipated
and total energies for the range of the imposed displacement u ≤ 1.5mm. The x-axis is
represented by the absolute imposed displacement u at the bar end. Vignjevic et al. [158]
restricted the energies representation to the internal energies. Nevertheless, our choice to
represent the kinetic energy helps to better understand the total energy evolution (dotted
line). Although the total energy increases with a constant slope during all the simulation
time, the kinetic and the elastic energy present quasi-similar increasing evolution values
up to u ≤ 1mm. At u = 1mm, the displacement wave reaches the centre of the bar
generating the damaged zone observed in Fig. 4.6a (the small damage levels there agrees
with the small level of dissipated energy here). However, after u ≥ 1mm, the kinetic
energy inverse its increasing evolution and starts to decrease following an inverse slope,
while the elastic energy presents now around a double of its previous slope value. Such
combined evolution of elastic and kinetic energies results in a constant slope of the total
energy (given the quasi-negligible dissipated energy), which is coherent with a bar system
under constant loading. The three different discretizations present very close values of
energy evolution, that is why, for a matter of clarity, we show here only the results for the
201 longitudinal material points configuration.
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Fig. 4.8.: PCW-based damage model: evolution of elastic, kinetic, dissipated and total energies
for u ≤ 1.5mm.

While maintain the same material properties and bar discretization, we investi-
gate now this bi-tractioned problem under a greater displacement velocity of v = 72m/s.
Fig. 4.9 present the mechanical response of this material through the strain-stress curves
of the three different discretization (for the material point localised at the centre of the
bar). Such result confirms the absence of discretization dependence on the post-peak
evolution of the strain-stress curve.

Fig. 4.9.: Strain-stress curve of a elastic bar under a displacement velocity of v = 72m/s for the
thermodynamics-based damage model with PCW damage function for different particle
densities.
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4.2.2 Non-local characterisation by means of the numerical
parameter 2h-length
Another analysis proposed by Vignjevic et al. [158] concern the influence of

values of the numerical parameter 2h-length for the same bar configuration of 201
longitudinal material points. Their results related the increase of the width of the
damaged zone to the increase of the numerical parameter 2h. Here, we perform a
similar simulation using the SVK SPH approach with a more important material point
density of 301x17 points resulting in Fig. 4.10. Indeed, the zoom at the zone containing
damaged material points (Fig. 4.10a) and the damage profile presented in Fig. 4.10b
confirm that the width of the damaged zone follows closely the dimensions of 2h even in
conditions presenting a higher value of the non-local parameter (e.g. 2h=20mm). The
strain, stress and displacement profiles in Fig. 4.10b show that the adoption of different
magnitude orders of the support-length 2h have also a mechanical meaning linked to the
interpolation zone size. Which can lead to an increase of the oscillations along the bar.
Moreover, by comparing energy evolution between the greatest and the smallest values
of 2h (Fig. 4.11), the increasing of the parameter (2h = 20mm) leads to smaller kinetic
energy and greater elastic energy values while u ≤ 1mm. However, for u > 1mm, this
role is played by the 2h = 5mm configuration. We note also that besides these variations,
the total energies remains quasi-similar during all the simulation.

4.2.3 Comparison between different SPH formulations
In Chapter 2, we have introduced the mechanical approaches implemented and

used in this thesis. On a first level, we have the small and finite strain formulations,
which result, respectively, in conventional SPH and SVK-SPH. Besides, for each approach,
we can solve the momentum equations through the displacement-based form (u) or the
stress-based form (σ for small deformations and P for large deformations). We adopt
artificial viscosity (Eq. 2.64) for all cases, with ᾰ = 41 and β̆ = 1 for u-based formulations
and ᾰ = 10 and β̆ = 1 for stress-based formulations. These numerical solutions are
compared to the analytical solution proposed by Bažant and Belytschko [19].

Thus, for a bar configuration of 201 longitudinal material points, we aim here
to investigate the response of the system by means of different computing approaches
that can be adopted by our numerical model. Fig. 4.12 illustrates the longitudinal strain
profiles for 2h = 5mm at the moments t = L

2ce
and 3L

2ce
. Qualitatively, the maximum

strain presented in this simulation is of around 3% (which is a small strain value to be
considered necessary for the use of a large deformations approach). Nevertheless, the use
of finite strain formulations in SPH may play an important role of stability and drawback
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(a) Damage D zone lengths for increasing 2h values.

(b) Damage, strain, stress and displacement longitudinal profiles.

Fig. 4.10.: Width of the damaged zone, strain, stress and displacement profiles for 2h =
5mm, 10mm and 20mm at t = 3L

2ce
.

corrections (for instance, Reveles [141] showed that the Total Lagrangian can fix issues
like tensile instability). In addition, we propose here the use of a displacement-based
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Fig. 4.11.: Evolution of elastic, kinetic, dissipated and total energies for t < 3L
2ce

.

momentum equation in elastic dynamics through SPH, that seems to be more stable and
accurate in this problem when comparing to the analytical solutions.

Quantitatively, we see in Fig. 4.12a a more important oscillation presented by
the stress-based approaches at the bar bounds. It also highlights a higher velocity of the
displacement waves of the stress-based formulations. Besides, we observe in Fig. 4.12b
that the displacement-based SPH versions reach closer levels of strain compared to the
analytical solution (which are also followed by the other variables) and a much more
notably stability. Such stability is essential in complex and coupled systems, that is why
we adopt a displacement-based SPH formulation in the following of this thesis.

The present results for this 1D problem show the occurrence of damage growth
at low levels. We highlight that, even using a local damage formulation, the damage
localization can be done using SPH in diverse discretization densities with a remarkable
independence of the discretization. The material point density here seems to be more
related to the accuracy of the damage peak values, even in this case, at very low different
levels. We demonstrated that the width of the damaged localization zone is related to
the parameter 2h, which is purely numerical. After the present validation and analysis of
the potential of SPH method in such a simple case of study, we seek now to apply our
proposed numerical model into a multidimensional medium under whether tensile or
compressive loading.
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(a) Longitudinal strain profile at t = L
2ce

.

(b) Longitudinal strain profile at t = 3L
2ce

.

watch

the video

Fig. 4.12.: Comparison between different SPH formulations. Longitudinal strain profile
for 2h = 5mm at t = L

2ce
and 3L

2ce
.
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4.3 Application to 2D fiber reinforced plate

4.3.1 Introduction
Firstly introduced by Bourdin et al. [30], this model-problem is reputed in

literature as an example of initiation and propagation of complex damage and fracture.
Various authors have studied this problem by means of variational approaches, such as
gradient model, commonly called phase-field model [5], [6], [52], [66]. In such method,
a "phase-field” variable D and a regularisation internal length lc are introduced into a
energy functional E in a domain Ω [1], [2], [32], such as:

E(u,D) =
∫

Ω
(1−D)2ε : C0 : ε dΩ + Gc

cw

∫
Ω

(w(D)
lc

+ lc ∇D · ∇D
)
dΩ (4.28)

with u a time dependent boundary displacement, Gc a fracture toughness, cw a normal-
isation parameter and w(D) a continuous monotonic function. The quadratic damage
function as introduced in Sec. 4.1.4 is observed in (Eq. 4.28). This problem can be solved
by a minimisation procedure. In addition, the following classes of parameters can be
adopted (see for instance Tanné et al. [156]):

AT-1 type model: w(D) = D , cw = 8
3 (4.29a)

AT-2 type model: w(D) = D2 , cw = 2 (4.29b)

In this variational model, two essential ingredients are present: the damage variable can
be regularised by means of the internal characteristic length lc by assuring discretization
independence of the damage variable and the fracture yield is determined by Gc.

Unlike to the variational-based methods, SPH method is based in another ap-
proach computed over an interpolated mesh-free domain in dynamic conditions. In
our SPH formulations, the energy functional does not present the regularisation terms
presented at the right-hand-side of (Eq. 4.28). Neither internal length lc nor tenacity
Gc are present in our functional. We advocated in previous sections and validation tests
that our regularisation is inherently obtained by means of the interpolation nature of
SPH method and that the non-local effects therein can be governed by the numerical
parameter 2h-support length. Our goal here is to validate the SPH method as a non-local
mechanical solver and to discuss its advantages and limitations. For this purpose, we
highlight for the two previously cases of the Ambrosio-Tortorelli damage model their
respective critical damage energy releases (from 4.23), such that:

AT-1 type model: Yc = Y0
c (4.30a)
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AT-2 type model: Yc(D) = 2DY0
c (4.30b)

The form AT-2 type model (Eq. 4.30b) does not present an elastic range and plays a
comparison role with existing results [6], [66]. Otherwise, the form AT-1 type model
(Eq. 4.30a) present an elastic regime before the damage initiation, which is closer to a
mechanical response very often obtained for geomaterials. Also, we note that the change
of Yc(D) value introduced in (Eq. 4.23) must be taken into account in (Eq. 4.26b) for the
computing of dissipated energies.

Although we are able to use SPH to approximate a quasi-static condition by
reducing the displacement velocity loading, the internal equilibrium is rarely established
(given the acceleration that is commonly not negligible). The use of such an approach
for quasi-static conditions is still poorly discussed in the literature. This work aims to
highlight some key issues that link dynamic and quasi-static conditions. Fig. 4.13 presents
the framework used in this problem: a square plate reinforced in its center with a rigid
circular inclusion. The plate has side L and the inclusion has a diameter L/3. The

Fig. 4.13.: Set up and boundary conditions of 2D fiber reinforced plate (adapted after Bourdin et
al. [30]).

boundary conditions considered for this problem read:


u = 0 and D = 0 on Γ1

u · e2 = tu · e2 and σ · n · e1 = 0 on Γ2

σ · n = 0 on ∂Ω/(Γ1 ∪ Γ2)

(4.31)
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u is the imposed displacement at the top-bound. u · e2 is positive for tensile loading and
negative for compressive loading. n is the unity normal, D is the damage variable and
σ is the Cauchy stress tensor. The geometrical and material parameters adopted here
(Tab. 4.2) are based on those considered by Freddi and Royer-Carfagni [66]. A damage

Parameter Sign Value

Side length L 300 [mm]
Volumetric mass density ρ 1000 [mg/mm3]
Young modulus E 12000 [N/mm2]
Poisson coefficient ν 0.25 [−]
Initial critical energy release Y0

c 2.5× 10−3 [N/mm2]
Damage limit bound sl 0.99 [−]

Tab. 4.2.: Input data for dynamic simulation of the fiber reinforced plate.

domain such as 0 < D < sl seeking to prevent material disintegration is adopted. In this
section, we use an infinitesimal deformation and displacement-based approach through
our SPH method. In addition, a SPH artificial viscosity (Eq. 2.64) with parameters ᾰ = 41
and β̆ = 1 is used in order to improve the system stability. Also, considering the dynamic
nature of the SPH method, we account for the kinetic energy in our simulations.

4.3.2 Quasi-static response of fiber reinforced plate
Since our numerical approach presents dynamic terms, we adopt a system under

specific loading conditions to closely approximate a quasi-static state. It means that we
apply an infinitesimal velocity vy = ±10−7 · L mm/s at the plate top bound until reach
the final fixed displacement u = ±10−3 mm. We investigate the response of such a system
as predicted by the SPH method through the thermodynamics-based damage model with
unilateral effect as introduced in previous sections.

This numerical experiment was already presented in analogous conditions but
with different material parameters by Amor et al. [6], Bourdin et al. [30], and Del Piero
et al. [52]. Here we adopt the simulation parameters from Freddi and Royer-Carfagni
[66] that are more reliable to a real case as they stated. We also adopt for this set of
simulations for the elastic-damageable plate a discretization of 300x300 material points
regularly distributed over the domain, excluding the rigid inclusion. It results in 82476
total points regularly distributed by 1mm of distance. Furthermore, we recall that the
interpolated nature of the present system induces a high-order interaction between the
material points controlled not by their direct neighbours (as in meshed systems) but by
the size of the support domain (2h).
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4.3.2.1 Tensile loading

AT-2 type model:
We start presenting two simulations following the support length 2h = 5mm for

Fig. 4.14 and 2h = 2.5mm for Fig. 4.15.

(a) Fracture pattern evolution over different imposed displacements u [µm].

(b) Elastic, dissipated, kinetic and total energies evo-
lution.

(c) Zoom in material points scale: width of the
damaged zone.

(a) watch

the video

Fig. 4.14.: Tensile quasi-static (AT-2): evolution of damage variable and energies in a
plate with rigid inclusion with 2h = 5mm.
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Fig. 4.14a presents the damage field evolution following subsequent imposed
displacements u. No additional regularisation is introduced into the SPH formulation.
We observe the damage growth that starts over the top bound of the inclusion and a
crack path that propagates towards the left and right sides of the plate. The fracture
pattern is close to those presented by Freddi and Royer-Carfagni [66] using the variational
damage model (Eq. 4.28). Differently from Bourdin et al. [30] and Amor et al. [6] we
observe here a symmetry between the left and right-hand-side pattern during the rupture
propagation. Hence, after reducing the support length to 2h = 2.5mm, Fig. 4.15a present
a very similar crack pattern evolution but a width of the damaged zone of around a half
of the one shown in Fig. 4.14a. This seems to attest that h plays a role similar to that of
the internal length used in variational models.

Fig. 4.14b (for 2h = 5mm) and Fig. 4.15b (for 2h = 2.5mm) present the
evolution of the total, elastic, dissipated and kinetic energies. The occurrence of non-
negligible kinetic energies at the exact moment of the rupture initiation is remarkable.
Here, this energy has initially the same magnitude order as the elastic energy and decays
after a few oscillations. We see a latent oscillation present in the elastic energy that
seems to represent the inverse behaviour of the kinetic energy evolution. If the kinetic
energy were neglected, such oscillation jumps would be present in the total energy (as
shown in Freddi and Royer-Carfagni [66]). Besides, although a qualitatively similar
evolution of energies, the differences between elastic and dissipated energy levels and
the instant of rupture compared to [66] results can be attributed to the difference of
the approaches and damage parameters here adopted (in particular the length-scale
h). Moreover, although both configurations present a similar behaviour of the elastic
energies for both configurations, the configuration with larger 2h parameter present a
more important level of the dissipated energy (which is also related to the projected
damaged surface).

It is noteworthy the role played by the numerical parameter 2h in the system,
which is illustrated in Fig. 4.14c for 2h = 5mm and Fig. 4.15c for 2h = 2.5mm. A close
proportionality between the support length 2h and the width of the damaged zone is
observed. This connection has been already noted in a 1D problem (Sec. 4.2) but not yet
presented in a multidimensional problem.

In order to better describe the evolution of such degradation phenomenon Fig.
4.16 details the y-displacement [µm] and the maximum principal stress [N/mm2] in the
plate configuration presented in Fig. 4.14. At u = 17.4µm a tensile stress field has maxima
values on the top of the rigid inclusion (which represents the fracture initiation). The
vertical displacement has a smooth distribution around the top half part of the inclusion
towards the top bound of the plate. In the bottom side of the plate, we see a zone under
compression bellow the inclusion, but in a smaller order value than the tensile stress.
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(a) Fracture pattern evolution over different imposed displacements u [µm].

(b) Elastic, dissipated, kinetic and total energies evo-
lution.

(c) Zoom in material points scale: width of the
damaged zone.

Fig. 4.15.: Tensile quasi-static (AT-2): evolution of damage variable and energies in a plate with
rigid inclusion with 2h = 2.5mm.

In an intermediate evolution instant (u = 18µm), we observe a strong discontinuity
in the y-displacement following both frontiers of the damaged pattern. The maximum
principal stress profile shows that, at this moment, the crack tips concentrate the most
important tensile stresses in a normal direction to the damage pattern (clarifying the
fracture propagation process). The zone at the bottom side of the inclusion and the zones
below and above the fracture pattern present now a stronger compressive stress. Finally,
at u = 19.8µm, when the fracture propagation reaches the left and right side boundaries,
we observe that the plate seems to be split into two parts by the fractured path, presenting
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(a) y-displacement field evolution over different imposed displacements u [µm].

(b) Maximum principal stress field evolution over different imposed displacements u [µm].

(a) watch

the video

(b) watch

the video

Fig. 4.16.: Tensile quasi-static (AT-2): evolution of the y-displacement
and of the maximum principal stress in three key stages:
damage growth, half-fractured and completely fractured
with 2h = 5mm.

a quasi-constant and positive value of the y-displacement in the top side and a lower or
equal to zero value in the bottom side.

AT-1 type model:
We maintain here the exact conditions and numerical parameters adopted in AT-2

type model by following the support length 2h = 5mm. Fig. 4.17a presents the damage
field evolution for the reinforced fiber plate under a tensile loading. The AT-1 type model
has brutal damage and fracturing growth: a range of 1.2µm of imposed displacement
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is necessary from the first damage apparition to the complete fractured sample. The
crack pattern presents a similar shape that the one found in the AT-2 type model and
the other literature references. We also observe here a symmetry between the left and
right-hand-side of the crack pattern. Fig. 4.17b present the evolution of the total, elastic,

(a) Fracture pattern evolution over different imposed displacements u [µm].

(b) Elastic, dissipated, kinetic and total energies evo-
lution.

(a) watch

the video

Fig. 4.17.: Tensile quasi-static (AT-1): evolution of damage variable and energies in a
plate with rigid inclusion with 2h = 5mm.

dissipated and kinetic energies. Repeating the phenomenon observed in AT-2 type model,
the apparition of a non-negligible kinetic energy at the exact moment of the rupture

138 Chapter 4 SPH modelling of local elasto-damage

https://youtu.be/gkTdD4rNzCw


initiation is observed here. The level of dissipated energy is here around 5N.mm, which
is expected considering that such energy is related to the projected damaged surface in
the sample. Here, both kinetic and dissipated energies present a brutal increase with a
close initial slope.

4.3.2.2 Compressive loading
Reversing the loading, we obtain in Fig. 4.18 the damage field evolution after

decreasing imposed displacements. The unilateral damage model predicts asymmet-
ric response and is expected to treat the damage evolution differently in tensile and
compressive load conditions.

AT-2 type model:
According to Fig. 4.18a, at u = 24.0µm, the elastic solution that was, so far,

similar to the tensile load case is followed by a different crack initiation on the top
diagonal inclusion boundaries. At 26.2µm of applied displacement, the cracking pattern
evolved to two crack branches, that surround the inclusion by forming different top and
bottom angles, propagating towards the top bound in a straight and vertical shape. At
the final imposed displacement u = 27.8µm, the crack branch reaches the bottom bound
through a shape that seems slightly inclined to the right-hand-side of the plate.

Fig. 4.18b presents level of overall energies greater than those observed in
the tensile case. An important rise of the kinetic energy is also noted during fracture
propagation. Fig. 4.18c shows a zoom of the damage pattern at the final imposed
displacement u = 27.8µm, confirming that the width of the damaged zone also follows
the same magnitude order of 2h = 5mm under compressive loading.

Considering the compressive loading treated here, the unilateral degradation
process is better explained in Fig. 4.19 through the horizontal displacement field [µm]
(Fig. 4.19a) and the minimum principal stress component [N/mm2] (Fig. 4.19b). At
the displacement u = 24µm, the heterogeneity imposed by the circular inclusion seems
to lead to an anti-symmetric division of the x-displacement split in 4 zones coupled to
a strong compressive stress field with minima values on the top of the rigid inclusion
(which represents the fracture initiation by compression), while below the inclusion, a
zone under tensile stress starts growing. At u = 25.5µm of applied displacement, we
observe two new tensile fractures being formed toward the top and the bottom bounds in
contrast with the first compressive fracture. The third principal stress field shows that,
the crack tips concentrate the most important tensile stresses in a normal direction to
the damage pattern. This crack evolution is in agreement with the x-displacement field
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(a) Fracture pattern evolution over different imposed displacements u [µm].

(b) Elastic, dissipated, kinetic and total en-
ergies evolution.

(c) Zoom in material points scale: width
of the damaged zone.

(a) watch

the video

Fig. 4.18.: Compressive quasi-static (AT-2): evolution of damage, minimum principal
stress and energies in a plate with rigid inclusion with 2h = 5mm.

that presents a jump behaviour on the fracture lips creating two zones of more important
x-displacment levels at the left and right sides of the inclusion. Lastly, at u = 27.8µm, we
observe a suddenly reduction on the stress levels. On the same way, the x-displacement
field shows a brutal discontinuity between both sample sides.

AT-1 type model:
The Ambrosio-Tortorelli-based model with critical damage release constant and

not dependent on D creates the condition to the damage growth and the crack initiate
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(a) x-displacement field evolution over different imposed displacements u [µm].

(b) Minimum principal stress field evolution over different imposed displacements u [µm].

(a) watch

the video

(b) watch

the video

Fig. 4.19.: Compressive quasi-static (AT-2): evolution of the x-
displacement and of the minimum principal stress in three
key stages: damage growth, half-fractured and completely
fractured with 2h = 5mm.

in a close time interval. This condition is capital to describe the onset of fracturing. In
Fig. 4.20a, we observe now that the minimum necessary of imposed displacement to
fracture appearance is 45µm (almost twice larger that in AT-2 type model). The final crack
pattern present the same shape than AT-2 type model, with much less diffuse damage
around the sample. The crack pattern after a brutal fracturing have a quite symmetric
evolution. Fig. 4.20b shows that the adoption of different Yc laws does not change the
dissipated energy description. We note from Fig. 4.18b and Fig. 4.20b that for imposed
displacements of about ∼ 24µm both models present close elastic energy levels of about
∼ 6N.mm. However, at this displacement, AT2 model (Fig. 4.18b) starts fracturing, while
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(a) Fracture pattern evolution over different imposed displacements u [µm].

(b) Elastic, dissipated, kinetic and total energies evo-
lution.

(a) watch

the video

Fig. 4.20.: Compressive quasi-static (AT-1): evolution of damage, minimum principal
stress and energies in a plate with rigid inclusion with 2h = 5mm.

AT-1 type model (Fig. 4.20b) lasts under elastic regime until an imposed displacement
of about ∼ 44µm (which results in a much more important elastic energy level for AT-1
type model). The kinetic energy here seems to be in agreement with the AT-2 type model,
remaining in a close evolution behaviour and maximum peak.

142 Chapter 4 SPH modelling of local elasto-damage

https://youtu.be/LaTWFhUgO-4


4.3.2.3 Analysis of SPH discretization independence and
limit values for SPH support-length

Non-local damage models are reputed to overcome the mesh dependence in
meshed domains. For this purpose, a common strategy adopted in such problem is to add
a non-local term in the energy state function (see Lorentz and Andrieux [101] or Marigo
et al. [105] for instance). Alternatively, SPH solves the non-locality problem through its
interpolated nature and does not need any additional term in their equations to take into
account such phenomenon.

In this section, we aim to investigate SPH spatial discretization independence
and, for very small and very large values of 2h, the capability of our method to localize
damage even in extreme configurations. Using the same simulation parameters from Sec.
4.3.2.1 and adopting the AT-2 type model, we illustrate in Fig. 4.21 a zoomed part at the
top bound of the rigid inclusion for four different material point discretizations (a), (b),
(c) and (d) for respectively 200, 300, 400 and 500 material points by side of each plate.
In all figures, we note the same width of the damaged zone directly related to 2h = 5mm
and a similar shape independent of the discretization.

Fig. 4.21.: SPH discretization independence analysis: zoomed area of the top bound of the
inclusion showing the discretization independence of the width of the damaged zone
for 2h = 5mm. Material point discretizations by side of the plate: (a)200, (b)300,
(c)400 and (d)500 material points.
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In addition, Fig. 4.22 confirms also for the energies quantities the independence
of the results on the discretization. We observe a convergence of energy values for
discretizations greater or equal to 300 material points by each side of the plate.

Fig. 4.22.: SPH discretization independence analysis: elastic, dissipated, kinetic and total energies
for 2h = 5mm.

Moreover, we propose another analysis to represent the asymptotic behaviour
for minimal and finite values of the numerical parameter 2h. We noted previously that
our quasi-static condition is an approximation of the naturally dynamic SPH solver by
reducing in some magnitude orders the kinetic phenomena present therein. Nevertheless,
we do not avoid kinetic responses given to a brutal phenomenon, and we showed in
previous results that these kinetic responses could be non-negligible in the fracturing
regime. In Fig. 4.23, we present two simulations with 2h = 1.25mm (Fig. 4.23a) and
2h = 20mm (Fig. 4.23b) and the same previous material properties.

Comparing kinetic energy values from Fig. 4.23c, we observe a rise of kinetic
energy with the reduction of the damage width zone (related to 2h). Again, it is notable
that the SPH explicitly captures such dynamic phenomena2 even in a quasi-static condi-
tions by the crack branching presented in Fig. 4.23a. This multiple crack branching is
also manifested by the higher level of dissipated energy in Fig. 4.23c. Otherwise, Fig.

2Several discussions about crack branching in dynamic conditions can be found in literature (see for
instance [20], [28], [93], [152]). In the next section we seek to contribute to this debate investigating
such feature through explicit dynamic conditions.
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(a) Final fracture pattern for 2h = 1.25mm at u =
45.6µm.

(b) Final fracture pattern for 2h = 20mm at u =
78.0µm.

(c) Elastic, dissipated, kinetic and total energies for
2h = 1.25mm.

(d) Elastic, dissipated, kinetic and total energies for
2h = 20mm.

Fig. 4.23.: Non-local analysis in quasi-static conditions: final fracture pattern and energies
evolution for imposed tensile loading with 2h = 1.25mm and 2h = 20mm.

4.23d shows that for a large value of 2h, a higher level of dissipated energy and a very
low level of kinetic energy.
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4.3.3 Dynamic response of fiber reinforced plate
We adopt now a system under dynamic conditions. We apply a velocity vy =

±10−6 · L mm/s at the top bound until reaching the final fixed displacement u =
±10−3 mm. We focus here on investigating the response of such a system by using
the SPH method through the energy-based damage model with unilateral effects. We
simulate the plate with rigid inclusion under tensile and compressive loads in order to
highlight the dynamic response of the system. As before, an infinitesimal strain hypothesis
is adopted. A first study of crack propagation in solids under dynamic conditions can be
found in [139]. In the following, analytical, experimental, and numerical models [138],
[152], [164] were investigated.

4.3.3.1 Tensile loading
We perform here simulations under tensile dynamic conditions with the same

material properties and numerical parameters as in quasi-static (QS) conditions (except
for the imposed displacement u).

AT-2 type model:
Fig. 4.24a presents the damage field evolution for the plate with an embedded

rigid inclusion (for 2h = 5mm). As a general observation, a quite similar process of
damage growth and propagation is observed as in QS conditions: the damage starts
over the top bound of the inclusion and reaches the left and right sides of the plate
symmetrically. Notwithstanding, two major differences are observed: the range of
imposed displacement between the initiation and the complete damage propagation that
was u < 3µm in QS is now u > 10µm; the damage pattern, this time, surrounds more
the circular inclusion and then evolves to the lateral bounds in a more straight shape.
Such pattern is closer to those obtained in the refereed studies by Amor et al. [6] and
Freddi and Royer-Carfagni [66] under QS conditions. When the numerical parameter is
changed to 2h = 2.5mm, a width of the damaged zone of around 2.5mm and a similar
crack pattern evolution (but surrounding even more the rigid inclusion) is observed. The
propagation towards the lateral boundaries is no more straight and present henceforth
crack branching initiations.

Fig. 4.24b presents the evolution of the total, elastic, dissipated and kinetic
energies. The non-negligible kinetic energies present in a post-fracturing instant in
QS conditions are normally present now during all the simulation time. Although the
dissipated and elastic energies evolved less brutally than from QS conditions, the energetic
response of the structure present values of the same order concerning their peak values.
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(a) Fracture pattern evolution over different imposed displacements u [µm].

(b) Elastic, dissipated, kinetic and total energies evo-
lution.

(c) Zoom in material points scale: width of the
damaged zone.

(a) watch

the video

Fig. 4.24.: Tensile dynamic (AT-2): evolution of damage variable and energies in a
plate with rigid inclusion with 2h = 5mm.

Considering very similar final damage patterns and energy peaks, it appears that the
dynamic conditions play a role especially related to the velocity of evolution of the
whole phenomena. We also observe that, also in dynamic conditions, the increase of the
dissipated energy values are directly related to the increase of the support-length 2h.
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(a) Fracture pattern evolution over different imposed displacements u [µm].

(b) Elastic, dissipated, kinetic and total energies evo-
lution.

(c) Zoom in material points scale: width of the
damaged zone.

Fig. 4.25.: Tensile dynamic (AT-2): evolution of damage variable and energies in a plate with
rigid inclusion with 2h = 2.5mm.

Moreover, it is worth noting the effect of the numerical parameter 2h in the
damage characterisation does not change when we switch from quasi-static to dynamic
conditions. Fig. 4.24c for 2h = 5mm and Fig. 4.25c for 2h = 2.5mm confirm a strong
relation between the support length 2h and the width of the damaged zone at the end of
the crack propagation. A discretization independence of SPH under dynamic conditions
is also noted.

Fig. 4.26 present, respectively, the displacement [µm] and the maximum prin-
cipal stress [N/mm2] in the plate configuration presented in Fig. 4.24a. We see here a
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(a) y-displacement field over different imposed displacements u [µm].

(b) Maximum principal stress field over different imposed displacements u [µm].

(a) watch

the video

(b) watch

the video

Fig. 4.26.: Tensile dynamic (AT-2): evolution of the y displacement
[µm] and of the maximum principal stress [N/mm2] in three
key stages: damage growth, half-fractured and completely
fractured with 2h = 5mm.

smoother gradient of the fields around the plate, the greatest principal stresses presented
in Fig. 4.26b and the y-displacement field (Fig. 4.26a) present a similar behaviour
that was presented in quasi-static conditions for the two first instants. However, the
dynamic behaviour post-failure is much softer at the final time step. We highlight here, as
consequence of the dynamic condition, a smoothed variation of these fields all over the
plate.
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AT-1 type model:
The damage pattern of predicted by AT-1 type model in dynamic conditions

(Fig. 4.27a) surrounds less the inclusion than the AT-2 type model. We emphasize
the common instant of damage and fracture initiation that requires a higher level of
imposed displacement. The energies evolution (Fig. 4.27b) shows a quasi-similar level
of dissipated energy when compared to AT-2 type model, but a much more important
level of elastic energy, given by the higher displacement before the first damage occurs.
Considering that a more brutal crack phenomenon is observed, the kinetic energy is here
more pronounced than in AT-2 type model.

4.3.3.2 Compressive loading
In this section, we consider compressive loading by changing the sense of the

imposed displacements. In this context, the extended version of the model will be
helpful.

AT-2 type model:
Indeed, the unilateral aspect plays here the same role than in QS conditions, the

damage and crack evolution under tensile and compressive conditions being affected.
Again, an important difference between the values imposed displacement at the initiation,
and the final damage state (> 30µm) is noted. In quasi-static conditions, this range is
lower than 4µm. However, we observe from Fig. 4.28a a similar damage pattern and
overall behaviour this time when compared to the QS conditions. Although Fig. 4.28b
presents here a smoother energy evolution when compared to QS conditions, it remains
at the same energy level values. Finally, Fig. 4.28c confirms again that the whidth of
the damaged zone follows the same magnitude order of 2h = 5mm independently of the
load conditions. The x-displacements and the minimum principal stresses presented in
Fig. 4.29 also present a similar behaviour that was presented in QS conditions. In the
same way from the simulation with tensile loading, we observe also a less brutal variation
of such fields around the inclusion, which highlights the less established nature of the
dynamic condition (in the sense of quasi-static evolving happens slowly enough for the
system to remain in internal equilibrium).

AT-1 type model:
Damage evolution as predicted in AT-1 type model, under compressive loading,

shows in Fig. 4.30 a similar fracture nucleation than other conditions and models in Fig.
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(a) Fracture pattern evolution over different imposed displacements u [µm].

(b) Elastic, dissipated, kinetic and total energies evo-
lution.

(a) watch

the video

Fig. 4.27.: Tensile dynamic (AT-1): evolution of damage variable and energies in a
plate with rigid inclusion with 2h = 5mm.

4.30a at an imposed displacement of 51µm. However, a first crack branching at 58.5µm
towards the top bound and a second crack branching at 75µm towards the bottom bound
are predicted. Although we observed such branching phenomena for 2h smaller value
in Fig. 4.25 or much smaller value in Fig. 4.23a (both in tensile loads), the brutal crack
propagation predicted by the AT-1 type model is capable to reproduce crack branching also
in compressive load conditions. In addition to the crack branching feature, an asymmetric
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(a) Fracture pattern evolution over different imposed displacements u [µm].

(b) Elastic, dissipated, kinetic and total en-
ergies evolution.

(c) Zoom in material points scale: width
of the damaged zone.

(a) watch

the video

Fig. 4.28.: Compressive dynamic (AT-2): evolution of damage variable, minimum
principal stress and energies in a plate with rigid inclusion with 2h = 5mm.

evolution in the bottom side has been noted. Close crack patterns can also be found in
Freddi and Royer-Carfagni [66] despite the use of the AT-2 type model there. Fig. 4.27b
show a close dissipated energy level when compared to AT-2 type model. We note that at
75µm the crack propagation did not reach the bottom boundary. This does not allow us
to compare the peaks of dissipated and kinetic energies.
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(a) x-displacement field evolution over different imposed displacements u [µm].

(b) Minimum principal stress field evolution over different imposed displacements u [µm].

(a) watch

the video

(b) watch

the video

Fig. 4.29.: Compressive dynamic (AT-2): evolution of the x-
displacement and of the maximum principal stress in three
key stages: damage growth, half-fractured and completely
fractured with 2h = 5mm.

4.3.3.3 Analysis of limit values for SPH support-length
Repeating the procedure of presenting the responses for very small and finite

values of the numerical parameter 2h, we use here dynamics conditions by adopting the
AT-2 type model. This time, the imposed displacements reach a value of 120µm. We
seek in this section to investigate through asymptotic values of 2h the capability of our
SPH solver localise damage even in extreme configurations. Fig. 4.31 illustrates two
simulations corresponding to 2h = 1.25mm (Fig. 4.31a) and 2h = 20mm (Fig. 4.31b).
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(a) Fracture pattern evolution over different imposed displacements u [µm].

(b) Elastic, dissipated, kinetic and total energies evo-
lution.

(a) watch

the video

Fig. 4.30.: Compressive dynamic (AT-1): evolution of damage variable and energies in
a plate with rigid inclusion with 2h = 5mm.

The kinetic energy values from Fig. 4.31c present higher levels than the elastic
and dissipated energies which can be related to the crack branching and propagation,
particularly in dynamic conditions (as illustrated in Fig. 4.31a). On the other side,
adopting a very large non-local parameter 2h = 20mm leads to a very important decreas-
ing of the kinetic energy values. Besides, the dissipated energy presents a more brutal
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(a) Final fracture pattern for 2h = 1.25mm at u =
120.0µm.

(b) Final fracture pattern for 2h = 20mm at u =
120.0µm.

(c) Elastic, dissipated, kinetic and total energies for
2h = 1.25mm.

(d) Elastic, dissipated, kinetic and total energies for
2h = 20mm.

Fig. 4.31.: Non-local analysis in dynamic conditions: final fracture pattern (at imposed displace-
ment of 120µm) and energies evolution for imposed tensile loading with 2h = 1.25mm
and 2h = 20mm.

increasing and a very high peak value (related to the width of the damaged zone and the
support-domain 2h).
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For the sake of conciseness, we present in Appendix B supplementary validations
of Ponte-Castaneda and Willis based damage model (as recalled in Sec. 4.1.4) in a
analogous procedure described in this section. Such validations will be helpful to the clay
matrix applications presented in next chapter.

Concluding remarks
In this chapter, we have proposed and implemented, through an SPH framework,

a local elastic damage model. In this approach, the non-local regularisation has been
performed numerically. It became then possible to treat damage growth, its localization
and transition to fracture nucleation and propagation. Two test cases were studied: a
1D vibration bar and a 2D square plate with a rigid inclusion. In both cases, the damage
localization was obtained, and it was observed that the width of the damaged zone is
related to the numerical parameter support-length (2h). In the 2D test case, both for
tensile and compressive conditions, the fracture nucleation and propagation which follow
the damage localization was accompanied by a non-negligible increase of kinetic energy.
Note also that during the fracture propagation, a discontinuity in the displacement fields
was observed. As a consequence of the unilateral effects, asymmetric structural responses
were observed and proved to be in agreement with existing results. With the SPH method,
we have naturally performed simulations under dynamic conditions in which complex
fracture patterns with crack branching have been obtained.

Since the numerical parameter 2h (the support length of the SPH kernel function)
plays the role of a characteristic length of the material, an interesting question concerns
its determination from mechanical data. More precisely, it will be helpful to perform
an in-depth investigation of the link between this characteristic length 2h, the fracture
toughness Gc and the critical damage energy release rate Yc.
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5Simulations of drainage coupled
with damage in a sample of clay
rock

Overview: This chapter gathers the progress acquired in the description of an
elasto-damageable material from Chapters 3 and 4 in order to simulate a drainage
within a clay rock pore-space. In section 5.1, the discrete SPH forms of the fluid
dynamics equations are recalled. The description of the numerical sample of a clay
matrix is provided in section 5.2. In the following, we present a set of drainage
simulations. In section 5.3, we describe the clay matrix as a purely elastic solid
medium in order to obtain the reference stress field. In section 5.4, we consider an
elasto-damage response to investigate damage growth and fracture propagation
under two different confining stresses. Lastly, in section 5.5, a two isolated pores
configuration is studied to verify if the model can generate a percolating flow path.

We perform here simulations of drainage coupled with damage in a sample of
clay rock (Fig. 5.1). In addition to the elasto-damage formulations presented in previous
chapters, SPH forms of the governing equations used to model the behaviour of fluids,
and their interactions are resumed in the next section. For the sake of conciseness, we
devote the Appendix A to resume the governing equations of rigid bodies.

We resume here the SPH based governing equations of the fluid phases rep-
resenting the pore-water and hydrogen as adopted in Pazdniakou and Dymitrowska
[126].

5.1 SPH fluid phases: pore-water and hydrogen
The continuity equation (1.1) may be discretized into two different versions

using the spatial derivatives in the form (2.42):

ρ̇a = ρa
∑
b

mb

ρb
(va − vb) · ∇aWab (5.1a)

ρ̇a =
∑
b

mb(va − vb) · ∇aWab (5.1b)

157



Fig. 5.1.: Physical configuration and SPH numerical model with elasto-damage coupling

It is clear that in a multiphase flow case, the first one provides a better accuracy (even
though in all cases the error is of h2 order). Therefore, by using (2.40) we can discretize
the momentum conservation equation (1.3) where the pressure gradient term ∇p can be
represented, amongst others, by the following formulations:

∇pa =
∑
b

mb

ρb
(pa + pb)∇aWab (5.2a)

∇pa = ρa
N∑
b=1

mb

(
pb
ρ2
b

+ pa
ρ2
a

)
∇aWab (5.2b)

According to Monaghan [117], (5.2b) provides a more stable system with respect to
particles disorder, although both formulations have the same accuracy. Furthermore, the
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viscous dissipation term present in (1.3) can be discretized by using (2.43) or (2.46),
where the last one provides better numerical stability and accuracy.

µ∇2va = 2µ
N∑
b=1

mb

ρb
vab Fab (5.3)

At the two-fluid interface, we can express the viscous dissipation term based on the
arithmetic mean; the harmonic mean can be introduced if we need a better precision:

µ∇2va =
N∑
b=1

4µaµb
µa + µb

mb

ρb
vab Fab (5.4)

Finally, the complete discretization of momentum conservation equation (1.3) can be
described as:

ü
a

=−
N∑
b=1

(
pb
ρ2
b

+ pa
ρ2
a

)
mb∇aWab

+
N∑
b=1

4µaµb
µa + µb

mb

ρbρa
vab Fab + g + F̌ s

ρa

(5.5)

where F̌ s is the surface tension force, that was introduced in section 1.3.1. Its value can
be calculated by the introduction of the color function (as shown in Eq. 1.8). Thus, the
liquid and gas particles will have their color values of čl = 1 and čg = −1, respectively.
The SPH discretized expression of the color function can be written as:

ča =
N∑
b=1

mb

ρb
čbWab (5.6)

where, the unit normal ~n is calculated as:

~na =
∑
b

mb

ρb
(čb − ča)∇aWab (5.7)

and the discretization of the interface local curvature κ̌ (1.6) is written as:

κ̌a = 1
‖~na‖2

∑
b

mb

ρb
(~nb‖~na‖ − ~na‖~nb‖) · ∇aWab (5.8)

There are several ways to describe the boundary conditions present between
different phases in the SPH approach. Combined elastic and fluid models are presented
in [4], [12], [120]. The fluid-rigid solid couple can be found in [3], [148]. As a general
rule, the velocity of the two different phases at their contact point is supposed to be the
same (no-slip condition for viscous fluids), and solid-fluid interface condition is used as
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presented by [12] where all types of interacting particles have extended the summation
in momentum conservation equations.

5.2 Numerical sample and parameters for
drainage simulations

Due to the mezzoscopic pore-scale adopted here, the elastic phase voxels are
larger than the Representative Elementary Volume (REV) of the clayey matrix. This
assumption allows us to consider it as a homogeneous phase and to disregard all under-
size structures visible or not at this scale. Such condition leads to a qualitative analysis of
our coupled problem, and it contributes to a better understanding of mechanisms acting
at this small scale. In this thesis, we will not attempt the upscaling to the macro scale,
even though this is the ultimate aim of this approach.

Our simulation domain is a part of the Callovo-Oxfordian sample EST27405-1
(see in [154]) measuring 5.64 × 7.96 × 1.03µm3 with a porosity of 0.0307 ± 0.0039. As
discussed in Sec. 1.3, for this material the most significant part of poral space possesses a
few nanometer sizes, which is not large enough to be observed by FIB imaging with a
resolution of about 10nm. Therefore, at this scale, only a part of the total porosity is visible
with many connections missing, which leads to the observation of mainly disconnected
pores. The reconstruction of the percolating poral network from [126] shows several
disjoint pores that connect opposite sides of the sample (Fig. 5.2). This set of percolating

Fig. 5.2.: A total set of percolating pores in a Callovo-Oxfordian clay sample after [126].

pores is converted in a numerical sample of resolution 8.49 × 10.78 × 10nm3 per voxel
resulting in a 3D sample of 771 × 739 × 103 voxels. This configuration presents more
than 58 million of voxels and is much too big for the actual memory limitations. Thus, to
reduce the size and the simulation time, a coarsening of the original sample is adopted
reducing the sample to 1/8 of the original volume (i.e. 385× 369× 51 voxels). Besides,

160 Chapter 5 Simulations of drainage coupled with damage in a sample of clay rock



the phase identification is set to segment only two different phases: solids and pores. It
means that, in this approach, the clay matrix and the rigid inclusions are considered parts
of one REV.

In Pazdniakou and Dymitrowska [126], the authors have simulated different
sample boundary conditions, such as constant or free volume, confining stress or non-
confining stress applied. Considering the in-situ conditions for Callovo-Oxfordian resumed
in Chap. 1, we select the most appropriate configuration with imposed constant confining
stress.

To further reduce memory usage and calculation time we limit our study domain
to a sub-sample of Fig. 5.2 with one percolating pore (the blue one at the bottom-right
corner) with its surrounding disconnected pores. This sub-sample has a new dimension of
50h× 50h× 50h that is now related to the SPH h-scale length being taken here h = 20nm.
Of course, as stated in Pazdniakou and Dymitrowska [126], such sample is not a REV,
and thus the drainage simulation results for it or for any other sub-sample can not be
generalised to bigger scales because of different shapes of pores. The 3D configuration
of the studied sample is presented in Fig. 5.3a. The clayey matrix is assimilated to an
elastic material (blue material points). The pore space is initially water-saturated (yellow
colour) and, on the top and bottom sides, two gas reservoirs (green colour) containing
enough particles to fill the entire pore space are disposed. In order to apply the confining
stress and allow the volume changes, the sample is placed between fixed solid walls
(black colour) except for the z-top and z-bottom borders. These borders are composed of
rigid plates. A yz-cut at x = 27h and a xy-cut at z = 45h are respectively illustrated in
Fig. 5.3b and Fig. 5.3c. A set of different pores types is visible here: around the principal
percolating pore, several medium and small-sized isolated pores are present. Finally, by
applying a fixed pressure drop between both gas reservoirs, we create multiphase flow
conditions.

Silva et al. [150] studied in a numerical framework the influence of the con-
finement stress on the capillary pressure during immiscible multiphase flow in a rough
fracture. They highlighted that the power spectral density of the capillary pressure could
be adopted to qualitatively characterise the heterogeneity of a fracture. The simulations
conducted in Pazdniakou and Dymitrowska [126], though very preliminary, were able to
reproduce the expected effect of the confining stresses. They showed that the increase of
confining stress leads to an increase of percolation time and a decrease of the gas satura-
tion in the same simulation. With lower confining stresses, the pore-space is allowed to
dilate more, which increases percolating gas flow. In our model, such pore-space dilation
can be reversible (with purely elastic response) or irreversible (with the elasto-damage
model). The influence of the confining stress on drainage will be discussed in more details
in the next sections.
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(a) 3D numerical sub-sample

(b) yz cross-section at x = 27h (c) xy cross-section at z = 45h

Fig. 5.3.: 3D and orthogonal cuts of the numerical sub-sample containing elastic, water and
hydrogen phases.

First of all, we reproduce results from [126] to further validate our code and
provide a fully appropriate reference case. We use the same sub-sample from [126]. The
elasto-damage behaviour of the clayey matrix is defined by a mixed Rankine (tensile) and
Mohr-Coulomb (compression and shear) damage criteria a reversible damage (which is
not the case for the present study). All the physical and numerical parameters are taken
from [126] and will be recalled and discussed later in this chapter. We present the sample
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cross-sections at t = 4s after the onset of drainage for damage (Fig. 5.4a: blue for sound
and pink for completely damaged material points) and first principal stress (Fig. 5.4b:
blue for compression and red for traction loads). We observe a damage apparition around
tips of the pore-space. This observation corresponds well to the experimental evidences
of damage initiation (see for instance Wiseall et al. [165]). However, the damaged zone
is too diffuse and not adapted to capture a localised crack propagation.

(a) Damage field: xy cross-section at z = 45h
(b) Maximum principal stress field: xy-cut at

z = 45h

Fig. 5.4.: Damage (a) and maximum principal stress field (b) in COx sample during drainage
with Rankine and Mohr-Coulomb damage model at t = 4s.

In the rest of this chapter, we will treat the clay matrix response by adopting a
thermodynamics-based damage model with unilateral-effects (as presented in Chap. 4)
in order to improve the damage localisation and to better represent the propagation of
fractures. Hence, inspired in Ponte-Castaneda and Willis based damage model (PCW)
[40], we consider here uniform degradation functions of the shear and bulk modulus,
such as:

k(D)
k0

= µ(D)
µ0

= 1− α̂D
1 + β̂D

(4.21 revisited)

with α̂ and β̂ constant parameters allowing to define the damage functions k(D) and
µ(D), such as:  α̂ = 1

β̂ = εu

ε0
− 1

(5.9)

in which the critical damage energy release (after Eq. 4.22) reads:

Yc = Y0
c (5.10)
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For the sake of conciseness, we present in Appendix B the complementary validations of
PCW damage model in order to use such model to predict damage and rupture occurrence
in the present clay matrix application.

Let’s now present the physical and numerical parameters used for our drainage
simulations. In Tab. 5.1 we recall the COx clay properties as proposed by [126] after
[7], [8]. However, the adoption of the strict real values from Tab. 5.1 would induce a

Parameter Symbol Value Unity

Young modulus E 3 GPa
Poisson ratio ν 0.1 −
Tensile strength ft 4 MPa
Uniaxial compressive strength fc 20 MPa
Strain at elastic limit εt0 0.0013 −
Ultimate tensile strain εtu 0.0026 −
Compressive strain at elastic limit εc0 0.015 −
Internal friction angle φ 25 ◦

Tab. 5.1.: Expected COx properties after [126].

calculation cost not yet available in our existing calculation means, especially due to the
explicit time integration schema presented in Sec. 2.2.3 that imposes the CFL condition
that would limit the time step to about 10−12s (which is highly prohibitive). We will base
our modelling on the fact that the behaviour of the multiphase flow in porous media
can be described by some dimensionless numbers (see for instance [92]). That is why
we will adapt the simulation parameters in such a way to both respect the physical flow
regimes defined by the dimensionless numbers [74] and to easy the simulations. For the
sake of completeness, we recall bellow these dimensionless number for original physical
parameters and those retained for simulations. These simulation dimensionless numbers
were obtained with the following fluid-gas parameters (Tab. 5.2), that we retain for the
present simulations. The Bond number (Bo) measures the importance of interfacial forces

Parameter Symbol Value Unity

Liquid dynamic viscosity µl 10−7 Pa · s
Gas dynamic viscosity µg 10−9 Pa · s
Mean gas velocity vg 5 · 10−5 m/s
Surface tension coefficient γ̌ 4 · 10−10 N/m
Average pore size L ∼ 1 · 10−6 m

Tab. 5.2.: Simulation input parameters for fluids adopted in this work following [126].

with respect to external forces (like gravity); it also describes the shape of bubbles:

Bo = (ρl − ρg) · g · L2

γ̌
(5.11a)
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Boexp = 4.7 · 10−6 � 1 (5.11b)

Bosim = 0� 1 (5.11c)

where the subscripts l and g relate, respectively, to liquid and gas phases, ρ is the density,
g is the gravitational acceleration and L is a characteristic length which is usually the
pore size. The capillary number (Ca) represents the ratio between the viscous drag forces
and the surface tension forces at a liquid-gas interface:

Ca = µg · vg
γ̌

(5.12a)

Caphy = 7.2 · 10−10 � 1 (5.12b)

Casim ≈ 1.25 · 10−4 � 1 (5.12c)

with µ the dynamic viscosity and γ̌ the coefficient of surface tension. The mobility M is
the ratio of the viscous forces of the invading liquid (gas) with respect to the receding
one (liquid) [74]:

M = µg
µl

(5.13a)

Mphy = 1 · 10−2 � 1 (5.13b)

Msim = 1 · 10−2 � 1 (5.13c)

Finally, the Reynolds number is the ratio of inertial forces to viscous forces:

Re = ρg · vg · L
µg

(5.14a)

Rephy = 4 · 10−5 � 1 (5.14b)

Resim ≈ 5 · 10−1 (5.14c)

where v is the characteristic velocity. According to [126], the changes in magnitude
orders between the physical and the simulation values of Bo and Re do not change the
flow regime. Henceforth, with respect to the boundary conditions in Fig. 5.3, the complete
sub-sample has dimensions of 54h × 54h × 70h; the top and bottom gas reservoirs are
connected by periodic boundary conditions along the z-axis and have height of Hr = 10h
each. The percolation phenomenon is created due to a pressure gradient imposed between
these gas reservoirs by means of a body force Fz applied to every gas material point in
reservoirs( z < 10h or z > 60h). The sound velocities in both fluids are taken equal to
cs = 0.5m/s. Indeed, this quantity must be small enough not to decrease too much the
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maximal time steps, leading to long simulation times. In the same time, cs is must be
high enough to prevent important density variations.

After parameterize fluid phases, we need to do the same for solid-phase in
connection with mechanical loads applied to the system. The gas entry pressure expected
for COx found in the literature is about 10MPa and the vertical confinement is of about
12MPa [169]. Here, we consider a slightly higher gas pressure of ∆Pg = 15MPa in
order to expose the COx sample to a load for which fracturing would be possible. This
choice is also interesting to accelerate drainage and therefore reduce the simulation
time. In the same way, we propose a scaling factor of 2 × 10−8 between physical and
simulation parameters by maintaining a constant ratio between the gas pressure ∆Pg
and the clay matrix elastic response (represented by Young modulus E). These rescaled
properties are presented in Tab. 5.3. The different confining stresses σconf simulated are
also rescaled in the same way. In addition, the simulation time and the sample dimensions
are scaled by 10−4. For all drainage simulations, we use Cuda GPU parallelisation in
order to reduce computing time substantively. In the next sections, we present drainage

Parameter Physical Simulation Unity

E 3× 109 60 Pa
ft 4× 106 8× 10−2 Pa
fc 20× 106 4× 10−1 Pa
∆Pg 15× 106 3× 10−1 Pa

Tab. 5.3.: Physical and simulation mechanical parameters for drainage simulations.

simulations results with all the improvements introduced in previous chapters for elastic
and elasto-damage materials through a displacement-based infinitesimal version of our
non-local SPH solver. We seek to better describe the three fundamental phenomena for
the multiphase flow coupled to solid damaged at a pore scale. First, a non-damageable
version of the present sub-sample (Fig. 5.3) is used in order to discuss the elastic responses
in terms of stress localisation that are a necessary step towards the second part: the
damage characterisation and the transition between damage and fracturing.

5.3 Drainage with purely elastic clay matrix
In this section, we present drainage simulations with an exclusively elastic

response of the clayey matrix. For these simulations, a gas pressure drop of ∆Pg = 15MPa

is applied between the two gas reservoirs and a confining stress σconf = 8MPa is applied
to the lateral sides of the sample. Pazdniakou and Dymitrowska [126] observed in their
work that the adoption of the elastic response of the solid material (instead of a rigid
one) leads to a faster percolation, in relation with the expected pore-space dilation. Such
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a dilation can also be measured by the porosity evolution or, in a less evident manner,
by the gas saturation inside the pore-space. The pressurised gas phase pushes the liquid
phase towards the bottom of the sample until a complete percolation (when the top and
the bottom reservoirs have a continuum gas-phase connection through the pore-space).
Fig. 5.5 present a 3D view of the water-saturated pore space being percolated by the gas
phase at three different moments. The water (yellow) and the clay matrix (blue) have
reduced colour opacities in order to highlight the evolution of the gas phase.

(a) 3D sample at t=4s (b) 3D sample at t=40s (c) 3D sample at t=76s

watch

the video

Fig. 5.5.: Elastic matrix: drainage under σconf = 8MPa. 3D view of solid and fluid
phases.

In this drainage phenomenon through a purely elastic clayey matrix, we note
that the main pore has a complex morphology with different section diameters. Between
the first (Fig. 5.5a) and the last (Fig. 5.5c) percolation instants the gas phase fills the
pore space as represented by increasing gas saturation and consequently decreasing water
saturation in Fig. 5.6b with a quasi-linear slope until the percolation at respectively, 0.43
and 0.67. From this point, the gas-water saturation evolves with the same increasing-
decreasing behaviour but with much less important slopes. The porosity (Fig. 5.6a)
instantly jumps from the initial value of 0.128 at the beginning of drainage to 0.131.
This rapid jump is followed by a slow reduction all over the drainage lasting beyond
the percolation moment. This observation is to be compared with experiments from
Wiseall et al. [165], where authors concluded that pathways begin to close once the gas
breakthrough occurs.
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(a) Porosity evolution. (b) Water and gas saturation evolution.

Fig. 5.6.: Elastic matrix: Porosity and saturation evolution during drainage under σconf = 8MPa.

In agreement with the porosity evolution, we observe a quick installation of
the maximum principal stress field (Fig. 5.7a, Fig. 5.7b and Fig. 5.7c) that evolves
only slightly during drainage. High values of tensile stress are located at the pore tips
corresponding to a traction zone. Beside that, the rest of the solid material does not
present important stresses. In the same way, we observe only a slow evolution of the
x-displacement field, that is illustrated in Fig. 5.7d, Fig. 5.7e and Fig. 5.7f. A quite similar
distribution is found during all drainage with a maxima and minima values at the lateral
borders of the main pore well illustrating the pore-space dilation.

It will be important for the next section and should be retained from Fig. 5.6 and
Fig. 5.7 that the maximal and minimal loads in this framework happen at the beginning
of the drainage when the gas invasion onsets. In the following sections, the elasto-damage
response for the clay matrix will be investigated in order to describe how the damage and
fracturing can be initiated and developed by the model itself (as shown in Sec. 4.3).

5.4 Drainage with elasto-damage clay matrix
In this section, drainage simulations are performed by setting an elasto-damageable

response of the clayey matrix. We keep the same elastic/damage properties for the clay
matrix for all simulations here and the applied pressure drop of ∆Pg = 15MPa . The only
parameter that will be varied is the confining stress σconf , which is expected to impact the
sample behaviour significantly. Thus the simulations at two different confining stresses
will verify if our model can represent such physical dependency.
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(a) Maximum principal stress field
at t=4s

(b) Maximum principal stress field
at t=40s

(c) Maximum principal stress field
at t=76s

(d) Maximum principal stress field
at t=4s

(e) Maximum principal stress field
at t=40s

(f) Maximum principal stress field
at t=76s

(a-c) watch

the video

(d-f) watch

the video

Fig. 5.7.: Elastic matrix: drainage under σconf = 8MPa. Maximum
principal stress (a, b and c) and x-displacement fields (d, e
and f) on a xy cross-section at z = 45h.

5.4.1 Confining stress of σconf=8 MPa
In this configuration, a confining stress of 8MPa is applied to the lateral borders

of the numerical sample. Fig. 5.8 shows a 3D drainage evolution of the water-saturated
pore space being invaded by the gas at three subsequent times. The overall picture turns
out to be qualitatively similar to the purely elastic case presented in Fig. 5.5.

However, we observe several quantitative differences between the two cases
when we compare the evolution of porosity in Fig. 5.9a and of water and gas saturation
in Fig. 5.9b. Despite similar percolation times, the gas saturation reaches here 0.47 at that
moment, which means an increase of 5% compared to the purely elastic matrix. However,
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(a) 3D sample at t=4s (b) 3D sample at t=40s (c) 3D sample at t=76s

watch

the video

Fig. 5.8.: Drainage under σconf = 8MPa in elasto-damage clay matrix. 3D view of
solid and fluid phases.

the porosity evolution in Fig. 5.9a presents a maximal value of 0.128, which is less than
the value obtained in the purely elastic matrix case. The percolation moment is visible on
the porosity curve with a negative jump, which was not the case before.

(a) Porosity evolution. (b) Water and gas saturation evolution.

Fig. 5.9.: Elasto-damage matrix: porosity and saturation for drainage under σconf=8 MPa.

In the clay matrix elasto-damage stress and damage fields from Fig. 5.10, we
see for the first time the initiation of the damage in Fig. 5.10a at the pore-space tips (as
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expected from the results of purely elastic matrix). At the following times, we observe
that the evolving drainage leads to the propagation of localised damage zones parallel to
the principal pore axis, which may be considered precursors of crack initiation. The first
principal stress fields presented in Fig. 5.10d - Fig. 5.10f illustrate a low level of stresses
everywhere except for the pore-space tips zones, where the damage is localised. But even
in these zones, the maximal values of stress are much lower than in the purely elastic
case.

(a) Damage field at t=4s (b) Damage field at t=40s (c) Damage field at t=76s

(d) Maximum principal stress field
at t=4s

(e) Maximum principal stress field
at t=40s

(f) Maximum principal stress field
at t=76s

(a-c) watch

the video

(d-f) watch

the video

Fig. 5.10.: Drainage under σconf = 8MPa. Damage (a, b and c) and
maximum principal stress fields (d, e, and f) on xy cross-
section at z = 45h.

5.4.2 Confining stress of σconf=6 MPa
We reduce now the confining stress applied to lateral sides of the sample from

σconf=8 MPa to σconf=6 MPa while maintaining all the other parameters identical to
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the previous simulation. The overall drainage evolution presented in a 3D view in Fig.
5.11 shows that a lower confining stress leads to an entirely different flow behaviour
with more dilation of pore-space and creation of new pathways. Also, we observe that
the percolation time is here about 4 times shorter than in previous configurations with
σconf=8 MPa.

(a) 3D sample at t=2s (b) 3D sample at t=8s (c) 3D sample at t=18s

(d) Damage field at t=2s (e) Damage field at t=8s (f) Damage field at t=18s

(a-c) watch

the video

(d-f) watch

the video

Fig. 5.11.: Drainage with σconf = 6MPa. 3D view of solid and fluid
phases at three different times (a, b and c) as well as damage
field (d, e and f) on xy cross-section at z = 45h.

In Fig. 5.11d we observe that the load caused by the gas invasion is strong
enough to create two main damage localisation zones towards the sample boundary on
the top-right side and towards an isolated pore on the bottom-left side. At the next time
instant (Fig. 5.11e), we see that a few water material points start to propagate through
damaged zones at both sides. This can be interpreted as the creation of new pores or
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cracks within the damaged zones, which was not observed in our previous simulations.
Finally, at percolation time Fig. 5.11f, the main pore is completely connected by a new
pore-space to the isolated pore. There is also a new gas flow path taking place in the new
pore-space. However, due to the limited size of our numerical sample, we observe many
interactions with sample boundaries, which must be considered numerical artefacts.

(a) Porosity evolution. (b) Water and gas saturation evolution.

Fig. 5.12.: Elasto-damage matrix: Porosity and saturation for drainage under σconf = 6MPa.

The most spectacular quantitative difference concerning the case of σconf =8MPa
is related to the porosity evolution presented in Fig. 5.12a. A constant increase of the
porosity is observed from the initial value (12.8%) until the maximum porosity value
(16.5%) when the gas reaches the bottom gas reservoir. This result is, of course, related
to the creation of new pore-space with large fracturing phenomena. This also results in a
much faster percolation time. Finally, the gas saturation increases quicker and reaches
the end of the simulation almost 60% (see Fig. 5.12b).

The fracturing phenomena are also well visible in the first principal stress and
displacement fields, as presented in Fig. 5.13. The stress field shows similar maximal
values as in the elasto-damage case with σconf = 8MPa. It should be noted that the
average stress values are particularly lower after the cracks occurrence (see in Fig. 5.13c
when the sample appears to be split into two parts). Similarly, the x-displacement field in
Fig. 5.13f contains two zones with values of opposite signs, confirming the apparent loss
of interaction between these two parts of the sample.
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(a) Maximum principal stress field
at t=2s

(b) Maximum principal stress field
at t=8s

(c) Maximum principal stress field
at t=18s

(d) Displacement field at t=2s (e) Displacement field at t=8s (f) Displacement field at t=18s

(a-c) watch

the video

(d-f) watch

the video

Fig. 5.13.: Drainage at σconf = 6MPa. Maximum principal stress (a,
b and c) and x-displacement fields (d, e and f) on xy cross-
section at z = 45h.

5.5 Drainage of a sample with disconnected
pores

In this last section, we study a manually modified sample with two disconnected
pores. Indeed, since our model has proved to be able to create new pore-space, the
question we want to answer now is the possibility to generate a percolating path in
initially non-percolating samples. We remain here the exact properties, parameters and
confining stress adopted in the previous section 5.4.2. Such a numerical sample was
created to maintain the pore-space morphology (by reflecting and flipping the bottom
part of the pore space presented in previous sections).
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(a) 3D sample at t=1s (b) 3D sample at t=20s (c) 3D sample at t=50s

(d) Damage field at t=1s (e) Damage field at t=20s (f) Damage field at t=50s

(g) Damage field at t=1s (h) Damage field at t=20s (i) Damage field at t=50s

(a-c) watch

the video

(g-i) watch

the video

Fig. 5.14.: Fracturing between isolated pores under σconf = 6MPa. 3D
view of fluid phases (a, b and c). Solid and fluid phases and
damage field through xy cross-section at z = 45h (d, e and
f) and xz cross-section at y = 17h (g, h and i).
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In Fig. 5.14 we see at the sub-sample centre, the two-pore tips turned to different
sides of the sample in order to avoid an easily predictable pathway. The elastic phase
in this 3D view is transparent to highlight the geometry of pores and the evolution of
the water-gas phases. For the first presented time t = 1s, we can look at the evolution
of drainage in the 3D view (Fig. 5.14a), on a xy-cut at z = 45h (Fig. 5.14d) and on
a 30◦ inclined xz-cut at y = 17h. The initial load caused by the gas invasion is high
enough to rapidly damage and propagate cracks that reach the lateral sides around the
upper pore. Another important crack is observed in a diagonal direction following the
upper pore-space tip. At time t = 20s, the 3D view (Fig. 5.14b) does not show yet an
important gas intrusion. However, the horizontal and diagonal cross-sections highlight
small intrusions of the water phase through the damaged (and fractured) paths. Finally, at
t = 50s, a vertical fracture (possibly related the ordered material points) is created linking
directly the so far isolated pore-spaces. Thus, in this new configuration, we observe that
a new percolating pore is generated. In this different sample morphology, the porosity

(a) Porosity evolution. (b) Water and gas saturation evolution.

Fig. 5.15.: Fracturing between isolated pores: porosity and saturation for drainage under σconf =
6MPa.

evolution in Fig. 5.15a is almost constant until the fracturing event, from this point a
significant increase of porosity can be observed. The gas saturation in Fig. 5.15b presents
a slight increase until 40s of simulation, and since the new preferential pathway is created,
a substantial increase is observed reaching more than 50% at the end of the simulation.

176 Chapter 5 Simulations of drainage coupled with damage in a sample of clay rock



Concluding remarks
Through an application to drainage a COx sample, our SPH method has shown

its capabilities to simulate two-phase flow within an elasto-damage solid matrix. The
numerical tool has provided very stable results in various conditions. In the case of
an elastic matrix, we have observed pore-space dilation during gas percolation. Also,
two different confining stress were imposed on the same numerical sample with elasto-
damage response. We have shown that the confining stress can affect the onset of
fracturing with new pore space creation. Additionally, for reduced confining stress, it was
possible to connect initially isolated pores and to generate new percolating pathways in a
non-percolating numerical sample.
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Conclusion and Outlooks

The safety assessment of radioactive waste disposal facility installed in very low permeable
clay rocks is one of the major issues to which this work aims to contribute. We focused
here on studying the mechanical response of the host rock in a coupled hydromechanical
phenomena related to the gas migration at pore-scale. The literature review highlighted
a lack of studies about the transfer characterisation and the preferential pathway phe-
nomenon at the pore-scale of the COx clay. To contribute to this point, we presented a
physical model including main phases present in the host rock to represent the prefer-
ential pathway phenomenon modelled in this work by a multiphase flow coupled to the
damage of the clay matrix.

To detail the numerical procedures used here, we summarised the Smoothed Par-
ticle Hydrodynamics method accompanied by various improvements needed to overcome
SPH drawbacks showed up while resolving the solid mechanics equations. In particular,
we implemented the so-called corrected kernel and corrected gradient functions to ac-
count for existing domain limits and alternative primary variable formulations. We also
implemented a Total Lagrangian version of SPH to solve a large deformations problem
(through the Saint Venant-Kirchhoff constitutive model). Moreover, we performed vali-
dation tests on purely elastic cases for which the support length of the kernel function
was set to minimal values compatible with material points density. This led to exact EDP
solutions, presenting satisfactory results compared to analytical solutions.

An investigation of an elastic material response for finite values of the kernel
support length was also performed. This allowed characterising higher-order effects
(also called non-local effects). We have accurately accounted for higher-order effects in
elasticity through a 1D problem of vibrating bar treated with an SPH model compared
to analytical lattice discrete and continua solutions: stress gradient and continualized
models. Clamped-clamped and clamped-free boundary conditions were considered. The
non-local effects appear to be directly related to parameter 2h, which is purely numerical
(and inherent to the SPH).

179



We also proposed a non-local SPH-based approach to compute damage and
fracture. In this context, the proposed model maintained the local formulation of the
damage model, while the non-local regularisation has been performed numerically. Two
test cases were simulated in 1D and 2D configurations. Small and large deformation
approaches were considered. In both test cases, it has been shown that the damage
localisation is achieved and the width of the localised damage zone is independent of the
discretisation. This width is related to the support-length 2h, which confirms that this
numerical parameter plays a physical role and may be adjusted to the considered material
properties. In quasi-static simulations, it was observed that the fracture propagation,
which follows the damage localisation, was accompanied by an increase of kinetic energy.
Asymmetric responses related to the unilateral effects of damage was also demonstrated,
and the predictions compared well to existing results. It is noticeable that the displacement
fields presented a discontinuity during the fracture propagation. Finally, by taking
advantage of the SPH method, we were able to perform several simulations in dynamic
conditions naturally. We observed in these conditions more complex fracture patterns in
which crack branching occurred.

All the improvements introduced into our SPH model were considered to sim-
ulate drainage phenomena within a realistic porous material with an elasto-damage
solid phase. These phenomena were translated by a multiphase flow coupled to the
mechanical response of a clayey rock at the pore scale. We observed that the drainage led
to the pore-space dilation during gas percolation. Also, two different confining stresses
were imposed on the same clay matrix sample. We showed that the confining stress can
affect the onset of fracturing with new pore space creation. We demonstrated that it
was possible to connect initially isolated pores for reduced confining stress and generate
new percolating pathways in an initially non-percolating sample. With the results and
discussions presented in this thesis, we have demonstrated new possibilities opened using
the SPH method for studying coupled phenomena arising in mechanics, hydromechanics
and geomaterials fields. At this step, several important outlooks for future works can be
identified:

• The use of SPH method is an exciting option for studying the damage localisation in
various configurations and dimensions. Also, most non-local problems are solved
in quasi-static conditions, while SPH can easily access the solutions in dynamic
conditions. In particular, the study of damage and fracture in geomaterials will
deserve attention. The calibration of the damage model parameters for the studied
material will be done by comparing model predictions with experimental data.
The clay matrix model considered here as an elasto-damageable material must
account for its rigid mineral inclusions. The developed code can easily handle such
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a configuration. Moreover, accounting for the plastic deformation of the clay matrix
could be interesting.

• Concerning the preferential pathway phenomenon in a clayey pore-space, several
steps must be taken to move from the actual state of a “toy model” to a predictive
tool:

- To take into account porewater filling all invisible pores - introducing porome-
chanics for the solid matrix.

- To be able to treat larger numerical samples, more representative of the real
material, coming closer to a REV of argillite – optimisation of code, for example by
introducing variable h approach (equivalent to refining procedure), also modifica-
tion of GPU parallelisation in order to be able to make simulations on more than
one GPU card.

• Another possible application to coupled problems could be simulating desiccation
cracks in porous materials. All necessary ingredients are already present in the code,
including the diffusion equation for water vapour. The only algorithmic challenge
would be to manage fluxes and mass conservation at the interfaces between liquid
and gas phases.
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AAppendix: Rigid bodies (mineral
inclusions)

A.1 Continua equations
Given its inhomogeneous nature state, argilaceous rocks present several rigid

inclusions at the micro-scale. The interface zones between these elements and the clayey
matrix are understood as possible sites for emergence of damage or cracks and such
problem is source of further research in this work. In this study, the mineral inclusions
(carbonates or silicates) can be treated as rigid bodies. The Newton-Euler equations can
fully represent the rigid body dynamics, where the position of the centre of mass can be
found as:

rCM = 1
mB

∫
ρ(r)rd3r (A.1)

where the subscript CM represent the center of mass, B the rigid body material property
and m the mass of the body. The tensor of the moment of inertia I

B
is given by:

I
B

=
∫
ρ(r)

[
(r − rCM)21− (r − rCM)(r − rCM)T

]
d3r (A.2)

The total torque TB acting on the body can be expressed as

TB =
∫

(r − rCM)× F̂ d3r (A.3)

where F̂ is the external force density. It results in the translation update of the rigid body,
described as:

v̇CM = F̂B

mB

(A.4a)

ṙCM = vCM (A.4b)

and the time increment of the angular velocity ω̇ and of the angle between the body axes
and the reference axes φ̇ read:

ω̇B = I−1
B

(
TB − ωB × IBωB

)
(A.5a)

φ̇
B

= ωB (A.5b)
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In addition, the interface conditions between a rigid body and an elastic phase is given
by:

σ
B
· ~nB = −σ

e
· ~ne (A.6)

where the subscripts B and e mean, respectively, rigid body and elastic solid phase. Hence,
for the sake of simplicity, the friction force between solid phases is neglected, although
such phenomenon is an interesting outlook for further studies.

A.2 Discrete equations
By definition the mechanical properties of any part of a rigid body are constant,

thus it is possible to describe such bodies by taking into account only the boundary
particles which may experience forces from external particles from other phases. This
way of doing may also help to decrease the computation time.

Thus, the discrete SPH forms of equations from Sec. A.1 for a rigid body
represented by a set of N points of mass ms are the following starting with the position
of the of the centre of mass:

rCM = 1
MB

N∑
i=1

msra (A.7)

The SPH tensor of the momentum of inertia I
B

is given by:

I
B

=
N∑
i=1

ms

[
(ra − rCM)2I − (ra − rCM)(ra − rCM)T

]
(A.8)

The total torque TB acting on the body can be expressed as:

TB =
N∑
i=1

(ra − rCM)× (msaa) (A.9)

where aa is the acceleration of the point due to external forces. Moreover, the total
external force FB acting on the rigid body is given by:

FB =
N∑
i=1

msaa (A.10)

Furthermore, the Newton-Euler equations introduced in (A.4) can be integrated using
the Leapfrog algorithm as shown in [3]. In this case, given the centre of mass, its linear
aCM and angular αB accelerations at time t are written as:

atCM = F t
B

MB

(A.11a)
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αtB = I t−1
B

(
T tB − ω

t−∆t/2
B × I t

B
ω
t−∆t/2
B

)
(A.11b)

Thus, its linear vCM and angular ωB velocities are updated as:

v
t+∆t/2
CM = v

t−∆t/2
CM + atCM∆t (A.12a)

ω
t+∆t/2
B = ω

t−∆t/2
B + αtB∆t (A.12b)

Finally, its new centre of mass position is given by:

rt+∆t
CM = rtCM + v

t+∆t/2
CM ∆t (A.13)

Therefore, one can obtain the new velocities and positions of the rigid body particles as:

vt+∆t/2
a = v

t+∆t/2
CM + ω

t+∆t/2
B × (rta − rtCM) (A.14a)

rt+∆t
a = rt+∆t

CM + rt+∆t/2
B

· (rta − rtCM) (A.14b)

where r
B

is the rotation matrix tensor, which can be computed as:

rt+∆t/2
B

= r
x
(ωt+∆t/2

B,x ∆t)r
y
(ωt+∆t/2

B,y ∆t)r
z
(ωt+∆t/2

B,z ∆t) (A.15)

where r
x,y,z

(θ) are the tensors which yield the rotation around the principal axis coordi-
nates:

r
x
(θ) =


1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 (A.16a)

r
y
(θ) =


cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

 (A.16b)

r
z
(θ) =


cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (A.16c)

A.3 Interface conditions
The speed of sound in a rigid solid phase reads:

cs =

√√√√ ks
ρ0,solid

(A.17)
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where ks is the solid bulk modulus. Thus, we can obtain the pressure in a solid by
introducing cs into (Eq. 1.4). The fact that the bulk modulus in a rigid solid material is
around one magnitude order greater than the bulk modulus in an elastic material ensures
the no-slip and non-penetration boundary condition at their interfaces.

Furthermore, the interface interaction forces between different solid phases are
based on the Lennard-Jones potential as proposed in [116] or alternatively on repulsive
forces as introduced by [3], [117]; and the resulting pairwise interparticle force can be
constructed in the following way:

F a = − mb

ma +mb

B(ra)na (A.18)

where F a is the resultant force, B is a symmetric function that defines the interaction
strength based on physical model as described before and na is the local boundary
normal.
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BAppendix: Complements of
simulation results with
PCW-based elastic-damage
model

This appendix deploys a few tests using the Ponte-Castaneda and Willis damage model
(PCW) [40]. The main purpose of this section is to present a validation of the PCW-based
model in a multidimensional problem under tensile and compressive loading. This results
will be useful for using this damage model to treat the elastic-damage response to be
investigated using the COx clay matrix in Chap. 5. Thus, we summarize here the results
of the problem of the square plate with a rigid inclusion (first presented in Chap. 4
through the Ambrosio-Tortorelli damage models). We recall that due to different values
of the parameters of Eq. (4.21), it can be necessary to introduce the dependency on
D parameter into the critical damage energy release Ycrit Our damage function will be
constructed through (Eq. 4.21) with the following parameters:


α̂ = 1
β̂ = εu

ε0
− 1

Yc = Y0
c

(B.1)

We adopt here the same ratio εu/ε0 = 2 found in Tab. 5.1 for COx properties. For the
sake of conciseness, we will focus the analysis in this appendix in the central aspects that
differs from those that was already discussed in chapter 4. Although this PCW damage
model has Yc constant (the same for AT-2 model), it follows a linear damage function
(differently of the quadratic damage function present in AT models).

B.1 Quasi-static conditions
We perform here two simulations adopting the same parameters used in Section

4.3. The evolution of the fracture propagation after an imposed displacement of 60µm are
given in Fig. B.1a (for 2h = 5mm) and in Fig. B.1b (for 2h = 2.5mm). We observe that
the fracture patterns recall the shape of those obtained with AT-models, with a symmetry
between the left and the right-hand-side patterns.
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(a) Fracture pattern evolution over different imposed displacements u [µm] with 2h = 5mm.

(b) Fracture pattern evolution over different imposed displacements u [µm] with 2h = 2.5mm.

(c) Elastic, dissipated, kinetic and total en-
ergies evolution for 2h = 5mm.

(d) Elastic, dissipated, kinetic and total en-
ergies evolution for 2h = 2.5mm.

Fig. B.1.: Tensile quasi-static (PCW): evolution of the damage variable and energies in a plate
with a rigid inclusion with 2h = 5mm and 2h = 2.5mm.

Fig. B.1c and Fig. B.1d highlight, in a similar manner from the AT validations
in Sec. 4.3, that an important kinetic energy rises at the exact moment of the rupture
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initiation, this energy has a lower order of magnitude this time. The configuration with
larger 2h presents a more important level of dissipated energy.

Reversing the load, Fig. B.2a (PCW-1) and Fig. B.2a (PCW-2) show the fracture
propagation after a negative imposed displacement at the top border. We adopt the
support-length 2h = 5mm. This time, we observe a brutal crack propagating towards the
top side of the plate and around the inclusion, but not reaching, this time the bottom
bound at the final moment. Fig. B.2b presents the evolution of the total, elastic, dissipated

(a) Fracture pattern evolution over different imposed displacements u [µm] with 2h = 5mm.

(b) Damage model 2: Elastic, dissipated, kinetic
and total energies for 2h = 5mm.

Fig. B.2.: Compressive quasi-static (PCW): evolution of the damage variable and energies in a
plate with a rigid inclusion with 2h = 5mm.

and kinetic energies. The post-fracturing evolution of elastic and dissipated energies
seems to be achieved in two consecutive steps. Although a non-negligible kinetic energy,
it does not reach higher levels.
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B.2 Dynamic conditions
In a system under dynamic conditions, we reproduce here the same simulations

presented in Sec. 4.3 using a PCW damage model. The evolution of the fracture
propagation after tensile loading is given in Fig. B.3a for 2h = 5mm. In general, the
results here are quite similar to those observed in QS conditions, with an exception for
the pattern shape, that follows the same behaviour that the AT-2 model that surrounds
more the rigid inclusion.

(a) Fracture pattern evolution over different imposed displacements u [µm] with 2h = 5mm.

(b) Elastic, dissipated, kinetic and total energies evo-
lution with 2h = 5mm.

Fig. B.3.: Tensile dynamic (PCW): evolution of the damage variable and energies in a plate with
a rigid inclusion with 2h = 5mm.
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Reversing the load in dynamic conditions, the fracture pattern illustrated in Fig.
B.4a shows a double diagonal pattern towards the top bound of the matrix. This fracture
pattern can also be observed in Amor et al. [6] or it is even more explicit in [66].

(a) Fracture pattern evolution over different imposed displacements u [µm] with 2h = 5mm.

(b) Elastic, dissipated, kinetic and total energies
evolution with 2h = 5mm.

Fig. B.4.: Compressive dynamic (PCW): evolution of the damage variable and energies in a plate
with a rigid inclusion with 2h = 5mm.

Finally, a smoother energy evolution when compared to QS conditions is ob-
served in Fig. B.4b remaining at the same energy level values. The present validations do
not aim to perform an in-depth investigation of he PCW-based damage models, but to
verify good stability and damage responses of the material in quasi-static and dynamic
conditions. It allow us to use the damage model in the practical application in Chap. 5.
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