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1.1 Presentation of the PwC’s R&D project

Research and Development ("R&D") is a very important focus for the development
of PricewaterhouseCoopers Advisory. Indeed, the consulting activity requires a
constant level of excellence and needs to be constantly at the forefront of innovation.
For this reason, PricewaterhouseCoopers Advisory invests in a strong R&D policy
and conducts dozens of internal and clients R&D projects every year.

PricewaterhouseCoopers Advisory conducts research in various scientific and
technological fields. Thus, several R&D projects are conducted in major scien-
tific disciplines such as mathematics and financial statistics, Big Data, computer
security, etc.

In addition, PricewaterhouseCoopers Advisory has set up a department called
"Risk and Value Measurement Services" (or "RVMS"). It is a unique center of
expertise working with the "financial industry" (major players in the insurance and
banking sectors) to respond to their challenges in terms of risk and value.
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The "RVMS" cluster brings together nearly 70 modeling and risk experts (ac-
tuaries, quantitative engineers and data scientists). These experts master both the
quantitative techniques and the functional, operational and regulatory environment
in which these techniques are used (Solvency II, Basel III, IFRS evolution, etc.).
Trained in auditing methods, they also have significant experience in conducting
complex consulting missions.

This team, which relies on in-house technical studies, is organized to meet the
expectations of PricewaterhouseCoopers Advisory clients. It also uses Pricewater-
houseCoopers’ international network to be at the forefront of actuarial methods,
tools and quantitative finance.

The RVMS department supervise a CIFRE thesis in partnership with the Pierre
and Marie Curie University (Paris 6). This CIFRE thesis entitled "Application of
advanced statistical analysis for internal modeling in life insurance" aims to develop
innovative methods to effectively address the complex problem posed by the valu-
ation of life insurance commitments and the calculation of their prudential capital
cost, and is an integral part of the research project that will be described later in
this document.

1.2 Context of the study

The valuation of life insurance liabilities presents real complexity, since it is based in
particular on profit-sharing mechanisms which require the simultaneous modeling of
these liabilities with the asset items associated with them. This complexity is natu-
rally multiplied in the context of prudential capital calculations by internal models,
given that it is then a question of obtaining the distribution of these valuations at
one year, in accordance with article 121 of the Solvency 2 directive (please refer to
Problem 1 in Section 1.3 for more details). To reduce the degree of complexity of
this problem, various approximation, better known under the name of proxy models
or loss functions, are proposed in practice. We will detail later how these proxy
models are validated in practice and the efforts that remain to be made to improve
their reliability. In particular, we suggest justifying the choice of the method used
during the validation step of the loss functions. But first, how are life insurance
liabilities valued in practice?

In practice, life insurance liabilities are valued using the risk-neutral Monte-Carlo
method. This method consists of estimating the value of life insurance commitments
as the average of the discounted values at the risk-free rate of benefits paid to
policyholders for a set of financial trajectories called risk neutral scenarios. This
valuation method captures the optionality of life insurance liabilities and gives them
an economic value, also known as "market consistent". You might ask "Where
does the optionality of life insurance liabilities come from?"

Conventional life insurance contracts with a savings component usually offer
their holders a number of guarantees. Among the main guarantees are minimum
guaranteed rates, profit sharing and the right of redemption. Depending on the
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contracts, we can also find the cancellation option in annuity, the right to arbitrate
between support in EURO and support in Unit-Linked (UL), the UL floor guarantee
in the event of death, etc. These guarantees represent rights granted by life insurers
to their policyholders and can be considered as options in all respects similar to
those treated on the financial markets.

What is the typical calculation time for the economic value of a life
insurance liability? Depending on the size of the balance sheet, the complexity
of the optionality of life insurance contracts and the finesse of the cash-flow model
used, the “market-consistent” valuation of a life insurer’s commitments can range
from several minutes to several hours. The same is therefore true for the valuation
of its own funds.

The Solvency II directive offers life insurers the possibility of using a (partial)
internal model in order to assess the forecast probability density of the variation
in their own funds over one year (see article 121) and in particular its quantile at
99.5% called “Solvency Capital Requirement” (SCR). In practice, this quantile is
estimated by the Monte-Carlo method. This method consists of simulating several
tens of thousands of future economic and actuarial environments within one year,
revaluing the equity (and therefore the liabilities) of the life insurance company in
each of these new states of the world, and identify the annual change in equity
associated with the 99.5% percentile.

Given the time required to calculate the value of a life insurance company’s
own funds using a cash-flow model in a given economic and actuarial environment,
the abrupt calculation of the SCR by the Monte- Carlo is not possible in practice.
In order to solve this problem, life insurance undertakings have developed "proxy"
methods intended to reproduce the results of the cash flow model in a very short
time and in any economic and actuarial environment.

So what are the proxy methods that are used in practice? The economic
and actuarial environment of a life insurance company is in practice modeled by a
vector of risk factors. The cash-flow model is therefore a function in the mathemat-
ical sense of the term which associates a specific background value with a vector of
risk factors. This function will be referred to below as the “equity function”. Proxy
models are therefore ultimately approximations or estimators of the value of equity
function. The problem of approximating the value of equity function is a complex
problem. Its complexity is in practice all the greater as the dimension of the un-
derlying risk factor vector is large and the regularity of the equity function is low.
Given the inherent difficulty of this problem, no technical solution has yet emerged
as being the most appropriate, and a multitude of approaches coexist, each with its
own advantages and disadvantages. The best known and also the most frequently
used are the Curve-Fitting, Least Square Monte Carlo (LSMC) and Replicating
Portfolio methods (see Section 1.4 for more details).

How are these proxy models validated in practice? Is there a regulatory
requirement for error controlling. As stated in Article 229-(g) of the Delegated
Acts [93], deviations caused by the use of these proxy models must be measured
and controlled. The validation of these proxy models therefore essentially consists
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in developing robust procedures for measuring and controlling the error introduced
by the use of the proxy model.

In the first part of this thesis, we will introduce a novel proxy method, which
is highly practical, modular, smooth and naturally relates the approximation errors
to the Monte-Carlo statistical errors. Furthermore, our approach allows insurance
companies to naturally and transparently start reporting confidence levels on their
prudential reporting, which is not disclosed so far by insurance companies and would
be a relevant information within solvency disclosures for the industry.

In the second part of this thesis, we will deal with the quantile estimation prob-
lem when the tail distribution is heavy and covariate information is available. To
this end, we rely on extreme value statistics.

In extreme value statistics, estimation of the tail-index is of importance in nu-
merous applications since it measures the tail heaviness of a distribution. Examples
include heavy rainfalls, big financial losses, high medical costs, just to name a few.
When covariate information is available, we are mainly interested in describing the
tail heaviness of the conditional distribution of the dependent variable given the
explanatory variables and the tail-index will be thus taken as a function of this co-
variate information. In many practical applications, the explanatory variables can
contain hundreds of dimensions. Many recent algorithms use concepts of proximity
in order to estimate model parameters based on their relation to the rest of the
data. However, in high dimensional space, the data is often sparse and the notion
of proximity fails to retain its meaningfulness. Therefore, this implies deterioration
in estimation. The main purpose of this study is thus to overcome this challenge in
the context of the tail-index estimation given the explanatory variables.

1.3 Problems with calculating the distribution of basic
own funds over a one-year time horizon

Recall that the Solvency Capital Requirement (SCR) is defined as the economic cap-
ital to be held to ensure that ruin occurs over a one-year horizon with a probability
under 0.5%. Mathematically, the SCR is defined as follows:

P (BOFt=1 < 0 | BOFt=0 ≥ SCR) ≤ 0.5%

where P is the historical probability measure and BOF stands for the Basic Own
Funds defined as the difference between the Asset value within the economical bal-
ance sheet and the Best Estimate liabilities (BEL). Note that the determination of
the Basic Own Funds does not include the risk margin to avoid the problem of circu-
larity that the introduction of this notion induces. Given the implicit nature of the
definition given above, Bauer et al. [8] introduced a approximately equivalent notion
of the SCR. In their paper, they define the SCR as the 99.5%-quantile of the one
year loss function, evaluated at t = 0, which is of the form BOFt=0−P (0, 1)BOFt=1

with P (0, 1) the discount factor. Namely, we have

SCR = arg min
u

{
P (BOFt=0 − P (0, 1)BOFt=1 > u) ≤ 0.5%

}
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or equivalently
SCR = BOFt=0 − P (0, 1)q0.5% (BOFt=1) . (1.1)

If we denote by BOF1(X1, . . . , Xd) the random variable representative of the
economic capital at t = 1 of the life insurance company exposed to risk factors
(X1, . . . , Xd), then according to the equation (1.1), what we are looking for is to
seek the distribution of BOF1. However, the vast majority of life insurance liabili-
ties can not be valued directly via closed formulas. To circumvent this constraint,
risk-neutral simulations are carried out for each initial market condition consid-
ered, and an estimator of the value of the life insurance liabilities is then obtained.
This methodology, commonly called "nested simulations" method, leads to directly
calculating the empirical economic capital distribution (see Figure 1.1).

Figure 1.1: Illustration of the nested simulations method.

As a first step, a large number of real-world scenarios are generated. These
scenarios are generated in a manner consistent with the distribution of risk factors
to which the insurance company is exposed. These scenarios are usually called the
outer or primary scenarios. In practice, at least 10000 outer scenarios are needed
to ensure good stability of the empirical distribution, especially at its tail end.

For each of the outer scenarios considered, an estimate of the life insurance
company’s economic balance sheet is made through risk-neutral simulations (inner
or secondary scenarios). At least one thousand risk-neutral scenarios are necessary
to obtain a satisfactory estimate of the economic balance sheet. For particularly



6 Chapter 1. Introduction

extreme outer scenarios, the number of risk-neutral simulations to be carried out
can be even greater.

In theory, this methodology is the one that achieves the most accurate economic
own funds distribution. However, its implementation on a large scale still seems
impossible today. Here we try to decompose very briefly the cycle of calculation of
the economic own funds distribution.

• Outer scenarios generation: This step is by itself not particularly complex, as
we seek in the solvency 2 regulatory framework to measure the variation in
economic own funds for extreme quantiles, it is important to have sufficient
outer scenarios to ensure good stability of the empirical SCR estimate.

• Building economic balance sheets: As previously explained, it is necessary to
perform risk-neutral valuations for each outer scenarios. These valuation pro-
cesses require the dissemination of risk-neutral scenarios based on the achieve-
ment of real-world risk factors. Depending on the complexity of the models
used, this step may require many hours of calculation.

Today, the majority of ALM models used by insurance companies would be too slow
to calculate the economic own funds distribution using this methodology. Put, end-
to-end, this process does not seem possible nowadays. The constant improvement
of diffusion models, projection models and the progress of information technology
should enable us to improve these computing times in the future. But today we
are still too far from the target to implement this methodology within life insurance
companies.

In fact, we have only considered the production time so far, we must not neglect
the time required to analyze these results. As it stands, life insurers encounter a
production time problem which can be formulated as follows :

Problem 1: The calculation of the Basic own Funds in life insurance is made
particularly complex by many interactions between and liabilities, and is required a
large number of simulations to obtain a satisfactory result as a consequence of the law
of large numbers. The asset-liabilities interactions are related to the profit sharing
mechanisms which are derived from both business objectives (client retention) and
accounting rules. Profit sharing impacts then the liabilities through the changes in
future services and the impacts it may have on policyholder behavior. The time
necessary to compute a BOF corresponding to with-profit saving contracts can vary
between about 10 min and 1 h depending on the computing power available and the
complexity of the underlying cash-flows models. Assume that an insurer uses from
104 to 2 × 105 real world scenarios to derive the SCR and that the BOF is to be
computed in 10 min, this would amount to minimum 105 min, that is 70 days or 10

weeks of computation time. As a result, the nested simulation or brute-force approach
is unsuitable since it leads to significant computing times, while these processes must
be implemented in a very short amount of time for reporting purposes. According
to the Technical Practices Survey conducted by KPMG in 2015 [70], the majority of
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Figure 1.2: Expected production time for the Pillar 1 Balance sheet and the SCR
to meet the demanding timescales.

insurers expects that the reasonable amount of time their Pillar 1 Balance Sheet and
SCR take to produce for the annual processs is under 6 weeks (see Figure 1.2).

Therefore, life insurance companies have developed alternative methodologies
(proxy models) that significantly reduce the time required to produce an economic
own funds distribution. These methodologies consist in approximating the liabili-
ties behavior in stressed conditions using closed form formulas such as loss function
or financial instruments valuation formula. In general, these functions, which de-
pend upon a certain number of coefficients, are calibrated on a limited number of
simulations. Therefore, it is less expensive in computation time once calibrated.

The well-known and the most frequently used proxy approaches are the Curve-
Fitting, Least Square Monte-Carlo (LSMC ) and Replicating Portfolio methods. In
the following, we will analyze each method in greater detail.

1.4 Proxy models in life insurance

In this section, we will present three major linear regression methodologies that
are commonly used by insurers. These methodologies are very similar. It consists
of using outputs from the projection models used by life insurance companies to
derive functional forms that allow the rapid valuation of the life insurance company’s
economic balance sheet for any market condition. These methods differ mainly in
the type of information that is used at the output of the projection models and in
the functional forms used to establish the approximation.

A general description of these main approaches is summed up in Table 1.1:
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Polynomial functions

LSMC Curve fitting Replicating portfolios

Cover all risks +++ +++ +
Accuracy ++ ++ +
Objectivity ++ + +

In line with market practice + ++ ++
Implementation time and costs + ++ -
Less Business-as-usual effort +++ + +
required to perform runs

Table 1.1: Benchmark on the principle existing methods to calculate the SCR

1.4.1 Curve-Fitting

This methodology consists of constructing the best parametric form (linear combi-
nation of analytic functions of real world risk factors) from a limited number of real
world scenarios for which a very precise valuation was performed. This parametric
curve thus passes through the calibration points (equality between the value of the
parametric form and the value calculated within the projection model). To that
end each interpolation points must be estimated with an extremely high precision,
which demands many simulations to improve the convergence rate. Therefore, the
disadvantages of this approach are that the data points must be carefully selected
by expert judgements and the number of interpolation points is really limited by
simulation time for each point [66].

To ensure that the estimator well replicate the economic own funds function,
out of sample scenarios are used. The value of the parametric form is then com-
pared with the value calculated within the projection model for these out of sample
scenarios.

The criticisms relating to this methodology mainly concern its precision at the
tail end. It is indeed necessary to ensure that there are enough extreme scenarios at
the tail end to ensure that the effects of non-linearity at the level of the liabilities
in this area is correctly anticipated.

1.4.2 Least Square Monte-Carlo

The Least Square Monte-Carlo (LSMC) method was introduced by Longstaff and
Schwartz [78] in order to evaluate American Bermudan options. The difficulty of
valuing these options lies in the calculation of a retrograde algorithm based on the
evaluation at each iteration of a conditional expectation. To avoid the need for
nested simulations to calculate the conditional expectation at each date, Longstaff
and Schwartz use an approximation to calculate this conditional expectation.



1.4. Proxy models in life insurance 9

Figure 1.3: Illustration of the curve-fitting estimation method.

Bermudan options valuation

We place ourselves in a probability space (Ω,F ,P), over a period of time [0, T ], where
the sample space Ω is the set of possible realizations, F is the set of events containing
the information available at each date t, F = {Ft; t ∈ [0, T ]} with Fs ⊆ Ft for every
s ≤ t, P is the historical probability. It is assumed that there is no arbitrage
opportunity on the market, this implies that there is a risk-neutral probability Q
equivalent to P.

American options can be exercised on specific dates between 0 and T , where T is
the expiry date of the option, we denote these exercise dates 0 < t1 ≤ · · · ≤ tN = T

with tk = kT
N , ∆t = tk+1 − tk. The theoretical value of a Bermudan option under

risk-neutral probability is given by

V0 = sup
τ∈T

EQ [Zτe−rτ ]
where τ∗ is a stopping time taking the values in T = {t1, . . . , tN} and Zt is the
payoff at time t.

To solve this problem, a dynamic programming method is used. The algorithm
is written as follows:{

VtN = ZT
Vtk = max

(
Ztk ,EQ [e−r∆tVtk+1

| Ftk
])

We adopt the convention that there is no early exercise opportunity at time 0,
hence Z0 = 0. The terminal value ZT is known and the algorithm is reiterated
to determine V0. The delicate step of this algorithm is the computation of the
conditional expectation (called value function), Longstaff and Schwartz propose an
approximation for this conditional expectation based on the least squares method.
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We are interested here in derivative products whose payoffs are random variables
belonging to the L2 (Ω,F ,Q) space, which is a Hilbert space. We know that the
conditional expectation corresponds to the orthogonal projection on the Hilbert
space and is then the unique solution of the following minimization problem

EQ [X | F ] = arg min
Z∈L2(Ω,F ,Q)

EQ [(X − Z)2
]

(1.2)

The calculation of the value function is based on this characterization of the con-
ditional expectation. Let S be the underlying of the option, Ft is the filtration
generated by S, which is a Markov process. Assume that we know how to simulate
the trajectories of the underlying under Q, so we have at each moment tk the M
simulated values Smtk , m = 1, . . . ,M .

Denote EQ [e−r∆tVtk+1
| Ftk

]
= EQ [e−r∆tVtk+1

| Stk
]

= f(Stk). By considering
an orthonormal basis of our Hilbert space, the condition expectation can then be
approximated by a finite linear combination of this base that minimizes the criterion
of conditional expectation (1.2). Given the basic functions {pj}, ∀j = 1, . . . , L, we
then look for the coefficients α∗j,k, solution of the least-squares problem:

α∗j,k = arg min
αj,k

1

M

M∑
m=1

e−r∆tV m
tk+1
−

L∑
j=1

αj,kpj
(
Smtk
)2

By replacing the optimal coefficients in the linear combination of the basic functions,
we obtain an approximation of the value function for each trajectory m and at each
moment tk:

EQ [e−r∆tVtk+1
| Ftk

](m) ≈
L∑
j=1

α∗j,kpj
(
Smtk
)

The following proposition provides a necessary and sufficient condition for the
existence of an optimal stopping time and characterizes the smallest optimal stop-
ping time.

Proposition 1. There exists a stopping time τ∗ ∈ T such that EQ [Zτ∗e−rτ∗] =

supτ∈T EQ [Zτe
−rτ ] if and only if Q(τ0 <∞) = 1, where

τ0 = inf{t ∈ T | Vt = Zt}

The stopping time τ0 is then the smallest optimal stopping time.

This corresponds to the corollary 1.3.2 in [74]. By comparing the value of the
immediate exercise with the value function at each time step and for each trajectory,
we are able to choose the optimal moment to exercise the option. We can now
determine the option price by taking the average of the discounted cash flows on each
trajectories. Noting τ∗m the optimal stopping time corresponding to the trajectory
m, we have:

V̂0 =
1

M

M∑
m=1

e−rτ
∗
mV

(m)
τ∗m

.
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1.4.2.1 Application in Life Insurance

The application in Insurance of the LSMC method is based on the fact that the own
fund can be expressed as the expectation under the risk-neutral probability of the
discounted value of future profits conditional on the projection of the balance sheet
in the "real world" universe (see, for instance, [7, 67,68,105,109]).

Indeed, basic own funds (BOF) at t = 1 can be expressed as follows:

BOF1 = R1 + VIF1

= R1 + EQ

[
T∑
t=2

DF(1, t)Rt | F real world
1

]
where DF(1, u) corresponds to the discount factor at the instant 1 for the time
horizon u.

Figure 1.4: Illustration of the LSMC estimation method.

The LSMC method consists of expressing the unpredictability contained in the
economic capital in a limited number of risk factors and then approximating condi-
tional expectation by a linear combination of basic functions of these risk factors.
The LSMC method is a method of reducing the number of simulations by using a
large number of primary simulations and a few secondary simulations.

The goal is to apply the LSMC method to the calculation of conditional ex-
pectation: EQ

[∑T
t=1 DF(1, t)Rt | F real world

1

]
. For each primary simulation j, the

empirical net present value (NPV) of the basic own funds is defined as the average
of the sum of the discounted future results:

NPV(k)
1 =

1

N

N∑
n=1

T∑
t=1

DF(n)(1, t)R
(n)
t |kth primary scenario

Next, different stages are to be put in place:
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• Assume that each primary scenario can be synthesized at time t, using d risk
factors (x1, . . . , xd).

• Approximation of BOF1 by a finite linear combination of basic functions

{pj}j=1,...,L of these risk factors: B̂OF
(k)

1 =
∑J

j=1 βjpj

(
x

(k)
1 , . . . , x

(k)
d

)
.

• Calculation of the empirical NPV(k)
1 for each primary simulation k.

• Determination of optimal coefficients using the generalized least squares
method:

β̂ = arg min
β∈RJ

K∑
k=1

NPV(k)
1 −

J∑
j=1

βjpj

(
x

(k)
1 , . . . , x

(k)
d

)
• Calculation of B̂OF1 by replacing β by β̂.

The algorithm makes it possible to avoid the nested simulations since the conditional
expectation is directly calibrated on the empirical NPV of the basic own funds via
some secondary simulations.

1.4.3 Replicating Portfolios

A replicating portfolio of a set of liabilities is:

• a portfolio of standard financial instruments

• that has the same market consistent value as the liabilities, and

• that has similar market consistent value sensitivities to market risks drivers.

This proxy model builds a representation of the liabilities using vanilla financial
instruments. This is a reasonably quick solution, relying mainly on the ability
to represent exotic financial instruments (insurance) using only vanilla financial
instruments. This representation is built on the projection system results. It is then
combined with a line-by-line model of the assets to build a synthetic economic view
of the market consistent balance sheet. The full range of initial market conditions
can then be run in a very timely manner. This methodology has the advantage that
it gives an understandable structure of the liabilities, which itself can

• provide insight into the business and into the financial risks

• help design hedging strategies

• help focus the calibration of the ESG to the most relevant financial instruments

• enable to challenge the results of the projection system.
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If liabilities are independent from the backing assets and from the financial market,
the liabilities cash flows are certain and each cash-flow can be represented by a zero-
coupon bond of the same maturity and same amount. One scenario is sufficient
to project all liabilities cash-flows and to determine the equivalent zero coupon
bonds. However, the replicating portfolio can also be determined using the present
value of cash flows under different scenarios. Therefore, for Property and Casualty
(P&C) and life non-participating line of businesses, the cash flows can be perfectly
replicated whatever the market conditions are. As a result, the replicating portfolio
is as accurate as the projection system.

Even if liabilities do depend on the backing assets performance, for example
through a profit sharing mechanism, it is possible to represent the liabilities using
financial instruments. Let us consider as an example a traditional savings product
with a guaranteed rate, and a guaranteed surrender value. The detail of the surren-
der modelling will be presented later. Here we briefly summarize the behaviour of
the policyholders:

• If market rates increase above the policy guaranteed rate, the lapses will in-
crease the policyholders will take advantage of the guaranteed surrender value
(higher than the market value of the values) and re-invest at market rates; the
resulting liability cash-flows can be represented by payer swaptions;

• If market rates decrease below the policy guaranteed rate, the lapses will
decrease: the policyholders will take advantage of the guaranteed rate: the
resulting cash-flows can be represented by receiver swaptions.

Not all policyholders will act as described-but at a portfolio level, it is possible to
represent the liabilities as a combination of zero-coupon (base guarantee), receiver
swaptions (lower lapses with lower rates), and payer swaptions (higher lapses at
guaranteed value with higher rates). The strikes of the swaptions will depend on
the lapse function.

However, it should be noted that it is often difficult to match complex liabilities
well with replicating assets because the required instruments are not available in the
market (see, for instance, [15,69,82,114]).Replicating portfolios only cover financial
and credit (spread) risk and therefore polynomial loss functions are still needed for
all other risks.

1.4.3.1 Determination of a replicating portfolio

This step is meant to find a set of financial instruments which achieves the best
match of the market consistent values and sensitivities. In this section, we will
however get into the details of this process since it goes beyond the scope of our
objectives. In general, it will be an iterative process of:

1. Finding a candidate replicating portfolio,

2. Assessing its quality,
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3. Repeating until predefined quality criteria are met.

The very first step is to define a list of candidate financial instruments. Insurance
liability features will link to different types of financial instruments or to different
characteristics of the financial instruments. It is therefore important to understand
the features of the liability being replicated to retain relevant instruments. In most
cases, the instruments will be a combination of: zero-coupons of different maturities
representing the expected premiums to be received, claims to be paid, guarantees
provided; receiver and payer swaptions of different maturities, tenor and strikes,
representing the options given to policyholders; puts or calls on equities of diiferent
maturities and strikes representing the profit-sharing given to policyholders.

The second step consists in finding the weights of all candidate instruments that
will make the replicating portfolios closest to the liabilities. To this end we calculate
the present values (PV) of the liabilities cash-flows resulting from a set of scenarios
run through the projection system. We then define a distance on the present value
of cash-flows vector space, which enables a direct resolution of the minimization to
obtain the optimal weighting coefficients. Namely, denote by {ωk}Kk=1 the weighting
coefficients associate to K candidate instruments, we have

ω∗1, . . . , ω
∗
J = arg min

ω1,...,ωJ

N∑
n=1

[
T∑
t=1

(
K∑
k=1

ωkCF
(n)
RP,k(t)− CF(n)

L,k(t)

)
DF(n)(0, t)

]2

(1.3)

In simple cases, representations of liabilities can be built using those financial in-
struments leading to high quality results for the calculation of the SCR.

1.4.4 Acceleration algorithm

Devineau and Loisel [30] develop an acceleration algorithm for the Nested Simulation
method described previously. This algorithm aims to reduce the overall number of
primary simulations to be carried out. The key idea of this method is to select the
most adverse trajectories in terms of solvency according to the chosen risk factors
and to do the simulations only along these adverse trajectories. To sum up, the
acceleration algorithm is implemented in three key steps:

1. Extract the elementary risk factors that have the most impact on the items of
the balance sheet for each primary simulation.

2. Define a fixed threshold confidence region: only primary simulations for which
risk factors are outside the confidence region are performed.

3. Make iterations on the threshold of the region in order to integrate each step
a number of additional points.

The basic idea behind this method is similar to the one of Lan et al. [72], who
describe a screening procedure for expected shortfall based on nested simulations.
The main advantage of this method is that it considerably reduces the calculation
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times and the necessary resources. However, the speed of the algorithm rapidly
decreases when the number of risk factors increases. Hence, only the risks having
significant impacts on the portfolio are selected for the solvency assessment. This
technique focuses on estimating economic capital and it is hard to apply to the
portfolio risk management. Therefore, we observe that this method is rarely used
in practice.

1.5 Error quantification for internal modeling in life in-
surance

Problem 2: One may notice that none of these approaches was applied with proper
control of the error implied, which is not robust in an insurance setting. Let us
consider the curve fitting method for example. The error control formula is given
by1

|g(x)− ĝ(x)| ≤ 1

2
(xi − xi−1)2 . max

xi−1<x≤xi
|∂

2(g − ĝ)

∂x2
|.

In this formula, the risk measure depends on the second derivative of the target func-
tion which is in principle unknown. Therefore, a further estimation of this quantity
is required which results in addition fitting error at this stage. Furthermore, the
precision depends on the space between fitting points. This illustrates why the fitting
points must be carefully selected by expert judgments. It is questionable whether ap-
plying these above approaches without proper fitting error controls will be consistent
with Solvency 2 requirements for internal models. The current available information
on this regulation-article 229(g) of the Commission Delegated Acts [93] indicated
that using any approaches without including the estimation of the involved error
would not be compliant with Solvency 2 requirements.

For many practical applications of the loss function, one usually relies upon a
simpler notion of the SCR, which is approximately equivalent to (1.1). For this
purpose, we define the SCR at t = 0 as the 99.5%-quantile of the loss function (see
Chapter 3 for more details). This simplification will however generate a biased re-
sult with respect to the basic nested simulation estimator. Indeed, one of the most
fundamental issues in the SCR calculation is the interplay between approximation
error and estimation error. The basic nested simulation approach offers the most
advantage compared to other approaches as it requires minimal assumptions on the
structure of the risk model, which makes the approximation error small. However,
for a life insurance company providing a complex organizational structure and port-
folios where liabilities have options and guarantees, computational challenges make
this approach impossible to achieve. This alternative proxy modeling technique
may speed up the computation which usually leads to little estimation errors, but it

1This can be easily proven by setting δ(x) = g(x) − ĝ(x), we have δ(xi−1) = δ(xi) = 0.
Using Rolle theorem and noting M = maxxi−1<x≤xi

∣∣δ”(x)
∣∣, we get on the segment [xi−1, xi], the

inequality |δ′(x)| ≤ (xi − xi−1)M . The result is obtained by using integral of δ′ and triangular
inequality.
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will generate approximation errors as we impose additional assumptions. When the
number of risk drivers increases, these approximation errors may have a substantial
impact on the estimated capital requirement. We will keep for further research to
quantify the approximation errors in high dimensional settings. Finally, to ensure
that these approximation errors in low dimensional settings are relatively small and
acceptable, we prepare the box-whisker plot to see how good the approximation is.

1.6 Application of Extreme Value Theory to Solvency
Capital Requirement estimation

One of the difficulties of SCR estimation is that one must evaluate quantities that
depend on the tail of distribution, for which, almost by definition, one does not
have observations or at least one has only very few observations. Recall that the
simulation-based capital estimates are carried out as follows:

1. Generate real-world economic scenarios for all risk drivers affecting the balance
sheet over one year,

2. Revalue the balance sheet under each real-world scenario (by using, for exam-
ple, Monte Carlo (nested simulation), Replicating Portfolio, etc.),

3. Estimate the statistics of interest.

However, there exists many sources of uncertainty in this process. Namely, it de-
pends on the choice of economic scenario generator models and their calibration,
the liability model assumptions (e.g. dynamic lapse rules), as well as the choice of
scenarios sampled (i.e. choice of real world ESG random number seed). Usually, an
insurer will rely on expert judgement to define economic scenario generator models
and liability model assumptions. Therefore, the first two sources of uncertainty are
beyond the scope of our work and we are particularly interested in the last source of
uncertainty, which is simply a statistical uncertainty. We wonder if we can estimate
this statistical uncertainty. If so, how can we reduce the amount of statistical un-
certainty? In our work, we will address these questions using a statistical technique
known as Extreme Value Theory (EVT).

Recall that Extreme Value Theory tells us something about the shape of the
distribution in the tail. The standard approaches for describing the extreme events
of a stationary time series are the block maxima approach (which models the maxima
of a set of blocks dividing the series) and the Peak-over-Threshold (POT) approach
(which focuses on exceedances over a fixed high threshold). The POT method has
the advantage of being more flexible in modeling data, because more data points
are incorporated (see Chapter 4.1 for more details). Hence, the method we use in
our study is the POT method.

According to this method, the distribution of liability value beyond some thresh-
old is approximated as a Generalized Pareto distribution (GPD), which is parame-
terized by 2 parameters: scale σ and tail-index γ. Therefore, we can estimate the
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tail of the distribution by picking a threshold and fitting the 2 parameters of the
Generalized Pareto distribution to values in excess of the threshold.

In the context of financial and actuarial modeling, the observations very often
depend on the other parameters, such as business line, risk profile, seniority, etc.
However, all these studies assume that the tail-index is constant regardless of these
variables. Many recent studies, for example [23,117], emphasized that the tail-index
could be function of these explanatory variables. But none of the previously men-
tioned studies provide a way to estimate the tail-index parameter conditionally to
these variables. As far as we can tell, in the context of financial and actuarial mod-
eling, only three studies have been undertaken to provide methods to estimate the
tail-index parameter conditionally to covariates. Beirlant and Goegebeur [9] propose
a local polynomial estimator in the case of a one-dimensional covariate. When the
dimension of the covariate increases, this method becomes less effective since the
convergence rate of the estimator decreases rapidly. To improve the performance
of the estimator, a solution would be to increase the size of data, but this would
be problematic in practice since the database could not be easily enlarged. Then,
Chavez-Demoulin et al. [22] propose an additive structure with spline smoothing to
estimate the relationship between the GDP parameters and covariates. Recently,
Heuchenne et al. [52] approach suggests a semi-parametric methodology to estimate
the tail-index parameter of a GPD.

In practice, many financial and actuarial data modeling problem may depend
upon several explanatory variables, which might make direct tail-index parameter
estimation less accurate, or even impossible. However, it does not mean that all
of these explanatory variables have more or less the same impact on the result.
For example, Chernobai et al. [23] investigate the relation between frequency of
operational loss events and firm-specific variables (market value of equity, firm age,
cash holding ratio, etc.) as well as macroeconomic variables. They find a strong
dependence between frequency and firm specific variables, but only weaker results
with respect to the macroeconomic variables. This remark could also be true for the
capital requirement. Therefore, it exists therefore a real need for companies to map,
model and measure those risks to take proper hedging action. One technique to
reduce dimension is sparse group lasso, which was introduced by Simon et al. [100].
Motivated both by the advances about the work of Chavez-Demoulin et al. [22]
and the sparse group lasso method, we investigate a variable-selecting method to
estimate the tail-index parameter conditionally to covariates.

1.7 Contributions and structure of the thesis

1.7.1 Contribution to the company

For PwC, the interest of sponsoring this PhD study is undeniable. Indeed, this
project aims to perform a bibliographic research on recent scientific works concerning
the actuarial finance, to know and understand some techniques used by insurers. and
to be able to propose new commercial offers which can stand out competition. In
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this sense, I think that this last objective was correctly achieved to the extent that
my first research work that I have provided has made it possible to quantify and
control the errors in the actuarial calculation engines.

Following the work carried out with clients in the context of either auditor’s
mandates or consultancy assignments, I have also established a benchmark of market
practices concerning the implementation of Pillar I of the Solvency II Directive with
respect to the saving contracts in euros (see Figure 1.5 in French).

Besides, I developed and put in place (i) a cross-asset Economic Scenarios Gen-
erator and (ii) an actuarial ALM simulator in life insurance. The ESG enabbles
us to simulate future states of the global economy and financial markets. It uses
advanced modeling and estimation technology to produce empirically validated, re-
alistic economic scenarios which are used as inputs to the ALM simulator. These
numerical tools result in numerous important contract wins for PwC. In the future,
PwC would like to commercialize these numerical tools and present this work to
clients. An overall introduction of these tools are given in Appendix A and B.

1.7.2 Methodological contributions

The works presented in this thesis attempt to bring a set of contributions to the
performance of internal modeling in life insurance by applying advanced statistical
techniques, while being easily implementable and numerically stable. In each of the
simulation studies, We prove theoretical properties for the methods put in place,
and we also show that these are relevant in practice and at least match the existing
procedures. The results obtained allow us to consider different lines of research.

Error quantification for internal modeling in life insurance

In this work, I develop a new fitting methodology for estimating the SCR (Problem
1) and a formula for controlling the deviation of the target SCR from its estimate
(Problem 2). The new method operates in the following way.

We proposed to calculate the SCR as the 99.5%-quantile of the loss function (see
Section 3.3.2 for the definition of the loss function), i.e.

SCR = q99.5%(φ) (1.4)

The loss function φ(x1, . . . , xd) is then decomposed into the stand-alone loss func-
tions {φj(xj)}j=1,...,d and the excess loss function φ1d(x1, . . . , xd) as follows:

φ(x1, . . . , xd) =
d∑
j=1

φj(xj) + φ1d (x1, . . . , xd) . (1.5)

Next we apply the Bayesian penalized spline regression technique to estimate each
functional component. For later use, we denote by φ̂ the estimate of φ.

The SCR can be estimated by ŜCR = q̂99.5%

(
φ̂
)
its empirical 99.5th-percentile

derived from φ̂. In this stage, φ̂ ≡ φ̂(X) is a random variable with X = (X1, . . . , Xd)
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Figure 1.5: Benchmark Pillar 1 of Solvency II (Certain information are confidential,
and thus will not be mentioned in this table).
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the realistic random market state or the primary simulation state whose marginal
distribution is PX . Let fφ̂ denote the density function of φ̂(X).

To control the probability of deviation of the target SCR from its estimate, we
will need certain conditions to make the theory work. First of all, it is important to
clarify that as will be seen below, the resulting confidence band will not incorporate
the approximation error from the choice of the regression function.

Let us introduce some notation, definitions that will be used in the sequel. We
define the (L,Ω)-Lipschitz class of functions, denoted Σ(L,Ω), as the set of function
g : Ω→ R satisfy, for any x, x′ ∈ Rd, the inequality:

|g(x′)− g(x)| ≤ L‖x′ − x‖

with Ω ⊂ Rd and ‖x‖ , (x2
1 + · · · + x2

d)
1/2. Let r > 0. We define B(a, r) =

{x ∈ Rd | ‖a − x‖ ≤ r}. We denote by V̄φ = {x ∈ Rd | φ(x) = q99.5%(φ)} and
V̄φ̂ = {x ∈ Rd | φ̂(x) = q99.5%(φ̂)} the closed set of the 99.5th-percentile scenarios
for φ and φ̂ respectively.

Let Γ denote the available sampling budget used to calibrate φ̂. Based on the
work of Aerts et al. ( [2]), it is straightforward to deduce that for λφj (Γ) and λhJ (Γ)

tending to 0, the estimate φ̂ converges in mean square to φ as Γ→∞. Furthermore,
by Markov’s inequality, convergence in mean square of φ̂ leads to the convergence
in probability of φ̂(x) to φ(x) for every x ∈ Rd. This implies that for every x∗ ∈ V̄φ,
there exists a random sequence x∗(Γ) ∈ V̄φ̂ converges in probability to x∗.

Introduce now three assumptions on φ, φ̂ and x∗(Γ) that will be used in the last
step:

ASSUMPTION 1: Suppose that φ ∈ Σ(L,Ω) where L > 0 and Ω(⊃ V̄φ) is an
open subset of Rd.

ASSUMPTION 2: For any x∗ ∈ V̄φ and r > 0, there exists two positive constants
ξ(r, d), γ(r, d) such that

P
(
‖x∗ − x∗(Γ)‖ > r

)
≤ ξ(r, d)Γ−γ(r,d)

for large enough Γ.
ASSUMPTION 3: For any choice of x∗ ∈ V̄φ and α ∈ (0, 1), there exists two

positive constants r(Γ) and ∆(α,Γ), with r(Γ)
Γ→∞−−−→ 0, such that

P
(
| φ̂(x)− φ(x) |> ∆(α,Γ)

)
≤ 1− (1− α)

d(d+3)
2 , ∀x ∈ B(x∗, r(Γ))

for large enough Γ.

• SCR estimation error control: In the following, we denote by N1 the number
of the primary simulations. Note that∣∣∣ŜCR− SCR∣∣∣ ≤ ∣∣∣q̂99.5%

(
φ̂
)
− q99.5%

(
φ̂
)∣∣∣+

∣∣∣q99.5%

(
φ̂
)
− q99.5% (φ)

∣∣∣ (1.6)

The first term on the right-hand side corresponds to the numerical error since
we appeal the empirical percentile to estimate the SCR and the second term
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represents the model error. Note that the numerical error depends not only on
the empirical assessment q̂99.5 but also on the fitting quality φ̂. To value this
numerical error, we apply the Theorem in Appendix D.8. Namely, we have

P

∣∣∣q̂99.5%

(
φ̂
)
− q99.5%

(
φ̂
)∣∣∣ > zα/2

0.07
√
N1fφ̂(q99.5%

(
φ̂
)

)

→ α (1.7)

as N1 →∞. In the previous expression, the distribution function fφ̂ and the

evaluated point q99.5%

(
φ̂
)
are however unknown and will be then replaced by

their estimators. Regarding the second term, by using Assumptions (1-3), we
obtain the asymptotic probability of deviation of q99.5%

(
φ̂
)

from q99.5% (φ)

having the form:

P
(∣∣∣q99.5%

(
φ̂
)
− q99.5% (φ)

∣∣∣ > ∆(α,Γ) + Lr∗
)
≤
[
1− (1− α)

d(d+3)
2

]
+ ξ(r∗, d)Γ−γ(r∗,d) (1.8)

where r∗ ≡ r(Γ). The derivation of this result can be found in Appendix D.6.
Combing the equations (1.7) and (1.8) leads to the control of the probability
of deviation of ŜCR from SCR.

The confidence interval ∆(α,Γ)+Lr∗ is however an issue as it involves the unknown
parameters ∆(α,Γ), L and r∗. In the following, we suggest a method to estimate
these parameters in practice.

In order to estimate the Lipschitz constant, we find the supremum of all slopes
|φ̂(x)−φ̂(x′)|/‖x−x‖ for distinct points x and x′ within the 99.5th-percentile region.
We call x̂∗ the empirical 99.5th-percentile scenario, i.e. φ̂(x̂∗) = q̂99.5%

(
φ̂
)
. The

parameter ∆(α,Γ) will be then replaced by ∆̃(α,Γ) =
∑d

j=1 ∆
(x̂∗)
j,α +

∑
J ∆̃

(x̂∗)
J,α . To

estimate the parameter r∗, we seek the maximum radius r̂∗ such that for every
x(ν) ∈ B(x̂∗, r̂∗), the confidence intervals

∑d
j=1 ∆

(ν)
j,α+

∑
J ∆̃

(ν)
J,α are close to ∆̃(α,Γ).

On the right-hand side of the inequality (1.8), as the true value of ξ(r∗, d) and
γ(r∗, d) are unknown, it is not possible to have a direct access to the upper bound
of the probability. In practice, a large number of Γ is necessary so that the term[
1− (1− α)d(d+3)/2

]
becomes preponderant compared to ξ(r∗, d)Γ−γ(r∗,d).

For many practical applications of the loss function, one usually relies upon a
simpler notion of the SCR, which is approximately equivalent to Eq. 1.1. This
simplification will however generate a biased result with respect to the basic nested
simulation estimator. Indeed, one of the most fundamental issues in the SCR cal-
culation is the interplay between approximation error and estimation error. The
basic nested simulation approach offers the most advantage compared to other ap-
proaches as it requires minimal assumptions on the structure of the risk model,
which makes the approximation error null. However, for a life insurance company
providing a complex organizational structure and portfolios where liabilities have
options and guarantees, computational challenges make this approach impossible to
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Figure 1.6: (a) Histogram of Own Funds distribution at t = 1. (b) Box-whisker plot
of the ŜCR estimated with 100 different samples of the same size.

achieve. This alternative proxy modeling technique may speed up the computation
which usually leads to little estimation errors, but it will generate approximation
errors as we impose additional assumptions. When the number of risk drivers in-
creases, these approximation errors may have a substantial impact on the estimated
capital requirement. We will keep for further research to quantify the approxima-
tion errors in high dimensional settings. Finally, to ensure that these approximation
errors in low dimensional settings are relatively small and acceptable, we prepare
the box-whisker plot and compare with the SCR estimated by the nested simulation
method to see how good the approximation is.

In Figure 1.6.a, we plot the economic Own Funds distribution at t = 1.
From this, we derive the empirical estimation of q̂0.5%(BOFt=1) = 54690.16 and
the empirical SCR estimated by the Nested Simulations method is thus equal to
ŜCRNS = 33743.83. In another simulation (see Figure 1.6.b) of 100 different sam-
ples of the same size from the same two distributions of the equity risk and the
interest rate level risk, we observe that the outcomes are skewed and the estimated
values of SCR distribute close to the "true" SCR. All the details as well as the
numerical studies can be found in Chapter 5.

Application of Extreme Value Theory to Solvency Capital Requirement
estimation

Inspired by the Peaks-over-threshold method, all observations that exceed a specified
high threshold un(x) are used to estimate γ∗(x) with x = (x(1), . . . , x(p)). According
to this approach the Generalized Parato Distribution (GPD) defined by

G(z; γ, σ) = 1−
(

1 + γ
z

σ

)− 1
γ
, ∀z ≥ 0, γ, σ > 0

is fitted to the exceedances over a specific thresholds. Let us call(
γ∗un(x)(x), σ∗un(x)(x)

)
the corresponding fitted GPD parameters. One usually en-

counters the curse of dimensionality problem, which leads to the rapid diminution
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in convergence rate, when the covariate is high dimensional. To overcome this dif-
ficulty, we assume that γ∗un(x)(x) and σ∗un(x)(x) are approximated by a generalized
additive model as follows

γp,∞(x) = exp

γ0 +

p∑
j=1

γj(x
(j))


σp,∞(x) = exp

σ0 +

p∑
j=1

σj(x
(j))


where each additive function γj(·), σj(·) belongs to the Sobolev space of continuously
differentiable functions. In order to ensure the identification we assume that for
every j = 1, . . . , p the additive functions γj , σj are centered, i.e.

n∑
i=1

γj

(
x

(j)
i

)
= 0,

n∑
i=1

σj

(
x

(j)
i

)
= 0. (1.9)

These statistical models are still nonparametric and the estimation therefore a prob-
lem of infinite dimension. We make it finite by expanding each additive functional
components in natural cubic spline (NCS) bases with a reasonable amount of knots
Kj for j = 1, ..., p. Thus, we parametrize

γj(·) =

Kj∑
k=2

θj,k

(
hj,k(·)−

1

n

n∑
i=1

hj,k

(
x

(j)
i

))
, σj(·) =

Kj∑
k=2

θ
′
j,k

(
hj,k(·)−

1

n

n∑
i=1

hj,k

(
x

(j)
i

))

where hj,k : R→ R+ is the natural cubic spline basis function constructed on the set
of the predefined interior knots {ξ(j)

1 , . . . , ξ
(j)
Kj
} satisfying ξ(j)

1 ≤ · · · ≤ ξ
(j)
Kj

. Clearly,
this parametrization of the functional components (γj(·), σj(·)) verifies the centering
conditions given in (1.9). To simplify our notation, let us define

h̃j,k(·) =

(
hj,k(·)−

1

n

n∑
i=1

hj,k

(
x

(j)
i

))
, ∀j = 1, . . . , p, ∀k = 1, . . . ,Kj .

In the following, we denote by β0 and θ0 the intercept term instead of γ0 and σ0

to synchronize the notation with the coefficients θj,k, θ
′
j,k as presented previously.

Finally, our statistical model is defined as

γ(x) = exp

θ0 +

p∑
j=1

Kj∑
k=2

θj,kh̃j,k

(
x(j)
)

σ(x) = exp

θ′0 +

p∑
j=1

Kj∑
k=2

θ
′
j,kh̃j,k

(
x(j)
)

To sum up, the following diagram sets out the whole approximation scheme:
Next, we denote by ϕ =

(
θ0,θ

T , θ
′
0,θ

′,T
)

the entire parameter vector where
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θ =
(
θT1 , . . . ,θ

T
p

)T , θ′ =
(
θ
′,T
1 , . . . ,θ

′,T
p

)T
with θj =

(
θj,2, . . . , θj,Kj

)T and

θ
′
j =

(
θ
′
j,2, . . . ,θ

′
j,Kj

)T
for every j = 1, . . . , p. Clearly, the parameter vector ϕ

can be structured into groups G0,G1, . . . ,Gp and G̃0, G̃1, . . . , G̃p. Each of the groups
is defined in the following way:

θ0 = ϕG0 , θj = ϕGj , θ
′
0 = ϕG̃0

, θ
′
j = ϕG̃j , ∀j = 1, . . . , p.

Under this notation, our models can be rewritten as

γ(x|ϕ) = exp

 p∑
j=0

ϕGj h̃Gj

(
x(j)
)

σ(x|ϕ) = exp

 p∑
j=0

ϕG̃j h̃G̃j

(
x(j)
)

with h̃G0(·) = h̃G̃0
(·) = 1.

For the purpose of variable selection and eliminating perturbative effects within
each group, we suggest to use the sparse group lasso technique to estimate
(γ(x|ϕ), σ(x|ϕ)). Namely, the regression model used to estimate (γ(x|ϕ), σ(x|ϕ))

is defined by

ϕ̂(un(·),λ,µ) = arg min
ϕ

{Pnl(ϕ|un(·)) + pen (ϕ|λ,µ)} . (1.10)

where

Pnl(ϕ|un(·)) = − 1

n

n∑
i=1

log g (yi − un(xi); γ(xi|ϕ), σ(xi|ϕ)) I(yi ≥ un(xi)).

with yi a realisation of Yi and the penalty

pen (ϕ|λ,µ) = λ1

p∑
j=1

√
Gj‖ϕGj‖2+λ2

p∑
j=1

‖ϕGj‖1+µ1

p∑
j=1

√
Gj‖ϕG̃j‖2+µ2

p∑
j=1

‖ϕG̃j‖1

with Gj ≡ |Gj | = |G̃j | the cardinality of the group Gj , as well as of the group G̃j ,
λ = (λ1, λ2)T ∈ R2

∗,+ and µ = (µ1, µ2)T ∈ R2
∗,+. The algorithm used to solve the

equation (1.10) is summarized in Algorithm 1.
A well-known drawback of l1-penalized estimators is the systematic shrinkage of

the large coefficients towards zero. This may give rise to a high bias in the resulting
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estimators and may affect the overall conclusion about the model. We then need to
refit the model without any penalties on the select support

SG = {(j, k)|ϕ̂Gj,k 6= 0}, SG̃ = {(j, k)|ϕ̂G̃j,k 6= 0}.

Finally, we perform a numerical study with different settings (i.e. p = 2, 10 and
n = 500, 5000) and compare the estimating performance of our methodology with
an existing method proposed by Beirlant and Goegebeur [9]. Usually in many high-
dimensional studies, the dimension of the data vectors p is comparable or may be
larger than the sample size n. Hence, it is obvious that our setting with p = 10

can not be considered as high dimensional covariate. However, we realized that it
becomes computationally expensive in terms of running time required to perform
estimation when the dimensionality increases. Therefore, in this thesis, we limit
ourselves to the case p = 10. Surprisingly, we note that the proposed methodology
slightly outperforms even with p = 10. And we hope in the near future that we can
reinforce our results with higher dimensionality.

1.7.3 Structure of the thesis

As can be seen, this thesis, which is constituted of two parts, is organized in seven
chapters:

- The first part deals with the error quantification problem for internal modeling
in life insurance. It consists of four different chapters. Chap. 2, 3 and 4 are introduc-
tory chapters. Chap. 2 and 3 present respectively our Economic Scenario Generator
(ESG) and Asset-Liability Management (ALM) cash-flows simulator, which are the
main tools used to value the economic balance sheet. Chap. 4 is a general pre-
sentation: the statistical framework and the nonparametric estimation methods are
introduced. All these chapters will provide us fundamental elements to achieve our
findings presented in Chap. 5.

- The second part deals with the application of Extreme Value Theory to Sol-
vency Capital Requirement estimation when the covariate information is available.
Especially, when the covariate are high dimensional, we face with the curse of dimen-
sionality problem resulting in a decrease in fastest achievable rates of convergence of
regression function estimators toward their target curve. This problem refers to the
phenomenon where the volume of covariate space increases so fast that the available
data become sparse. In order to obtain a statistically sound and reliable result,
the amount of data needed to support the result often grows exponentially with
the dimensionality, which is usually problematic in many practical applications. To
overcome this estimating problem, we propose a new methodology for effectiveness
evaluation, which is described in Chap 4.

Publication

Duong, Q.D., Application of Bayesian penalized spline regression for internal mod-
eling in life insurance. European Actuarial Journal 9, 67–107(2019).



28 Chapter 1. Introduction

Submitted paper

Duong, Q.D., Guilloux, A. and Lopez, O., Sparse group lasso additive modeling for
Pareto-type distributions. Submitted to Computational Statistics journal.



Chapter 2

Solvency II - Interpreting the key
principles of Pillar I

Contents
2.1 History of capital requirements in the European insurance

industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.1 Solvency I directive . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 From Solvency I to Solvency II . . . . . . . . . . . . . . . . . 30

2.2 Implementation of Solvency II . . . . . . . . . . . . . . . . . 31
2.3 Pillar I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 The quantitative requirements of Pillar 1 . . . . . . . . . . . 33
2.3.2 Standard Formula . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 Internal Model . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 History of capital requirements in the European in-
surance industry

2.1.1 Solvency I directive

The first European regulations on minimum capital to be held date back to the
1970s. In 1973 and 1979, two directives was published; one in the non-life insurance
sector1 and one in the life insurance sector2. These impose for the first time Euro-
pean insurers to build a layer of security in terms of own funds. In February 2002

the Solvency I directives were adopted. Recall that these directives had remained
broadly close to the first European regulations.

The model developed under Solvency I to assess the solvency capital requirement
is simple. According to Solvency I, the risk is either in provisions or in premiums.
The calculation of the capital required is a so-called "factor-based" approach, which
means that the required capital is calculated as a fraction of the elements considered

1First Council Directive 73/239/EEC of 24 July 1973 on the coordination of laws, regulations
and administrative provisions relating to the taking-up and pursuit of the business of direct insur-
ance other than life assurance

2First Council Directive 79/267/EEC of 5 March 1979 on the coordination of laws, regulations
and administrative provisions relating to the taking up and pursuit of the business of direct life
assurance
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as risky on the balance sheet (technical provisions) or on the profit and loss account
(premiums).

2.1.2 From Solvency I to Solvency II

Solvency I has the merit of being simple and can therefore be implemented at a
lower cost. In addition, the regulations allow a quick comparison of the results
obtained for different companies. The approach is nevertheless not adequate for
several reasons, which will be discussed later. It thus justified the initiation of the
new reform, called Solvency II project, hereinafter Solvency II for short.

Firstly, the level of technical provisions or the premium amounts are not in
themselves good indicators of risk, for several reasons:

1. The approach does not take into account the level of prudence of the insurer
in its provisioning. For example, a prudent insurer, better endowed with
technical provisions, must mobilize more capital than an insurer with less
provision. Such a system therefore penalizes prudential.

2. The approach highlighted in Solvency I is based only on the liabilities balance
sheet of insurance companies, while other risks should be considered, such
as asset risks, i.e. market and credit risks. In addition, the solvency capital
requirements do not take into account, for example, the investment structure
of the insurance company.

3. The risk reduction methods are also ignored: diversification between risks,
risk transfer, asset-liability management, risk hedging instruments. The use
of financial derivatives products, the use of reinsurance, the credit quality of
re-insurers, etc., should also influence the required solvency margin.

Secondly, the assets and liabilities are valued at historical cost (or book value).
However, this valuation method does not reflect the risks and the real value of the
assets and liabilities. Finally, the Solvency I regime can lead to systemic risks.
In fact, by way of illustration, a compulsory pricing framework for all insurance
companies exposes all these companies to the same risks of errors in tariffs. To
sum up, Solvency I does not adequately reflect the risk profile of each insurance
companies concerned. These weaknesses justified the need for a regulatory reform.

The lessons learned from the years 2002 and 2003, during which the financial
markets experienced a period of crisis, while at the same time putting the financial
health of some insurance companies at a disadvantage, led the regulators to take a
review of the risk valuation framework within the insurance industry. Since March
2003, the European Commission, in collaboration with the member states, had been
working on developing a single reference system aimed at better integrating risk into
the constraints imposed on insurers in order to ensure their ability to fulfill their
commitments. This is the Solvency II Project.
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2.2 Implementation of Solvency II

As one of the most crucial projects currently being carried out by the Commission
and the member states in the insurance sector, Solvency II consists in developing
a novel, better risk-adjusted system for assessing the overall solvency of insurance
companies. Namely, this system provides the supervisory authorities with appro-
priate quantitative and qualitative instruments for assessing the overall solvency of
insurance companies.

Solvency II has two main objectives. The first one is to create a single, compet-
itive and open market on a European scale. The second one is to further protect
insureds and counterparties. The first objective stems from the standardization of
prudential constraints within each European member country. Harmonization of
regulation removes the inequalities of regulatory benchmarks and allows the con-
struction of a single and free market. The second objective is supported by the idea
that an insurer must better manage, know and evaluate its risks.

It is based on a three pillar structure such as the Basel II project, Solvency
emploies a risk-based approach, which encourages insurers to better measure them.
This is a transition from an implicit vision of risk, that of Solvency I, to an explicit
vision that integrates all risk managements gains, thus remedying the limits of the
standard methods by which a flat-rate solvency margin is required and a restriction
on investment in the safe, liquid, diversified and profitable assets. Each of the three
pillars is synthesized in the following figure.

Figure 2.1: The structure of Solvency II

Solvency II aims at setting two requirements on the economic own funds or
economic capital, a desirable level and a minimum level of capital. The former one
must allow the company to operate with a very low probability of ruin by taking
into account all the risks to which the insurance company is exposed. While the
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latter one is an element of intervention of last resort, it is a minimum of capital
requirement.

In fact, the technical measures of Solvency II were developed in 2004 by EIOPA
in two phases. A first phase of reflection on the general principles and a second phase
of detailed development of the methods of taking into account the different risks. In
order to carry out this project, quantitative impact studies have been established
by EIOPA to assess the applicability, consistency, comparability and implications of
possible approaches for measuring the solvency of insurers. From this perspective,
quantitative impact studies allow quantitative and qualitative feedback which is
gathered from market participants to harmonize the management of insurance risks
at European level.

However, Solvency II also gives insurance companies the possibility of adopting
an partial or total internal model allowing an adequate modelling of the various risks
and having an economic balance sheet over one year horizon illustrating the level of
Solvency capital which is based on the notion of the distribution of own funds within
this horizon. In life insurance, commitments duration are however much longer than
one year. Moreover, if we take into account the assets-liabilities interaction as well as
the complexity of their dependencies resulting from the profit sharing mechanisms,
the interest rate guarantee, the possibility of early repayment and the buy-back
behavior of the policyholders, obtaining an economic capital distribution at one
year will be a delicate task.

In the following of this chapiter, we will present in more detail the quantitative
requirements of the directive, namely Pillar 1. The other two pillars will not be
detailed and we refer the reader to the European directive voted on 22 April 2009.

2.3 Pillar I

Pillar 1 of Solvency 2 characterizes the quantitative requirements of the Directive.
These quantitative requirements are more complex than those described by Solvency
1 since they are intended to reflect an assessment of capital requirements using an
economic approach.

As shown in Figure 2.2, the pillar sets out rules for the following six topics:

• Assets and Liabilities market consistent valuation.

• Investments.

• Technical Provision.

• Solvency Capital Requirement.

• Minimum Capital Requirement.

• Own Funds.

We briefly present the six topics mentioned above in order to understand the
demanding regulatory context in which the work presented in this document is.
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2.3.1 The quantitative requirements of Pillar 1

2.3.1.1 Assets and Liabilities market consistent valuation

Under Solvency I, liabilities are measured using conservative assumptions and assets
are valued at historical cost. For example, the price of a security held in the portfolio
will be recorded at its acquisition price. Thus, at each balance sheet date, the gross
book value of the security does not change. Under Solvency II, assets and liabilities
of insurance and reinsurance undertakings must be valued at their economic value,
known as fair value or market consistent value. As explained in Kemp [64], a market
consistent value of an asset or a liability, in case the liability is traded in a liquid
market, is simply its market price. In this case, the market consistent valuation for
a liability means that the stochastic liability cash-flows are perfectly replicated by a
portfolio of liquid and deeply traded financial instruments. In absence of arbitrage,
a market consistent value of a liability is thus defined as the expectation under the
risk neutral measure of future liability cash-flows discounted by the value of the
money market account conditional upon the economic and actuarial information
available at the valuation time. Furthermore, assume that the market is complete,
this market consistent value is unique thanks to the second fundamental theorem of
asset pricing (see, for example, [111]).

The definition of a complete market with non arbitrage opportunities and a risk-
neutral probability can be found in [111]. Here, we would like to make it clear the
following notations. A risk-less portfolio means a portfolio with totally predictable
payoff. For example, if we invest 1 euro in a risk-less bank account, then this 1 euro
capitalized in the bank becomes ert euros at time t where we call r the risk-free
rate of interest. Under the risk-neutral probability, the return on assets is equal to
the risk-free rate r. In the risk-neutral world, an investor will ignore the risk when
making decision to invest in something. This is completely different with respect to
a risk-averse investor who prefers lower returns with known risks rather than higher
returns with unknown risks. In other words, among various investments giving the
same return with different level of risks, this investor always prefers the alternative
with least interest. Therefore, the risk-neutral probability increases the objective
probability of adverse events for the investor to take into account his risk aversion.
From this point of view, the use of a risk-neutral valuation can be considered as
a prudent valuation. This evaluation makes it possible to construct an economic
balance sheet which will be presented in Chapter B.

2.3.1.2 Technical Provisions

Technical provisions break down into Best Estimate and Risk Margin:
The Best Estimate is defined as the probable present value of the future cash

flows without any margin of caution. In other words, the Best Estimate is the
discounted and probabilized sum of benefits and future costs backed by the insurer’s
commitments. It should be noted that Best Estimate must be based on credible
current information and realistic assumptions. Note that it must be calculated in
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run-off, i.e. new business is not considered in cash flows, only flows associated with
current contracts are taken into account.

There are different methods to evaluate the Best Estimate. In non-life asurrance,
the deterministic methods (Chain-Ladder, Borhuetter Ferguson method, ...) suffice
because the assets have no influence on the insurer’s liabilities and commitments.
Conversely, in life insurance, assets and liabilities interact continuously. For exam-
ple, the revaluation of policy liabilities (liabilities) will depend on the return rate on
the asset. Therefore, it is necessary to use an Asset Liability Management (ALM)
tool to capture all the interactions between assets and liabilities.

The Best Estimate varies according to the behavior of policyholders in the future
(redemptions, deaths), but also according to the actions that the management will
take (profit-sharing strategy, asset allocation, etc.). The modeling of the behavior
of the insured as well as the management rule is therefore an important stake for a
life insurer.

In this thesis, we will set up an ALM model to calculate the Best Estimate of
an abstract life insurance company. The ALM model projects the company’s activ-
ity over time through asset assumptions (economic scenarios, financial instrument
modelling, ...) and liabilities assumptions (death, redemptions, ...). The functioning
of the ALM model will be explained in the modeling part.

The Risk Margin is the additional amount required in relation to Best Estimate
so that the liabilities can be transferred to another insurer. In other words, when
an insurance company takes over the contracts of another company, it must raise
the necessary capital to meet the new commitments and requirements (SCR). The
risk margin is therefore interpreted as the capital cost of these assets.

2.3.1.3 Own Funds

In addition to the technical provisions which are calculated on the fair value prin-
ciple, the European Commission specifies that the Own Funds must be valued at
their economic value. Furthermore, the European Commission distinguishes the
Own Funds into Solvency Margin and Surplus. A solvency margin is constituted so
that the insurance company has a very low probability of going bankrupt within 1
year.

The capital requirement is set up at two levels:

• Minimum Capital Requirement (MCR): corresponds to the capital required to
cover a probability of ruin from 10% to 20%. If the own funds is lower than
this required level, the Prudential Supervisory Authority (ACP) intervenes
and can implement a restructuring plan or withdraw the company’s approval.

• Solvency Capital Requirement (SCR): corresponds to the capital required by
an insurer to absorb unforeseen losses (extremely worst case scenario out of
200) and gives insureds certainty that benefits will be paid with a probability
of 99.5% within 1 year. When the SCR is respected, the probability of ruin
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of the insurance company is 0.5%. To calculate it, there are two possibilities:
the standard model and an internal model.

The Directive considers the assumptions on which the SCR calculations must be
based. Its calculation is based on the assumption of continuity of operation of the
insurance company. In addition, the SCR must be calibrated in such a way that all
quantifiable risks to which the insurance or reinsurance undertaking are taken into
account. It is also specified that the SCR must cover at least the following risks:

• The subscription risk in non-life

• The subscription risk in life

• The risk of underwriting in health

• The market risk

• The credit risk: default of counterparties

• The operational risk (excluding reputation risks et strategic decision-making
risks)

• The risk of intangible assets

Solvency 2 requires that the SCR has to be calculated at least once a year and
notified to the supervisory authorities. However, the SCR must be continuously
monitored by the insurance and reinsurance companies. Therefore, if the company’s
risk profile differs significantly from the last assumptions underlying the calculation,
SCR must be re-evaluated without delay and its result must be notified to the
supervisory authorities.

The Directive proposes two methods for calculating SCR, the choice of which
is left to the company’s discretion: the standard formula or the internal model. If
the internal model is chosen by the company, a second calculation of the SCR by
the standard formula will nevertheless be obligatory for 2 years. In addition, the
internal model must be approved by the regulator.

2.3.2 Standard Formula

The standard formula is a simplified means proposed by the Solvency II Directive
for the evaluation of the SCR. The global required solvency capital is calculated
by aggregating specific risk-specific marginal SCRs. Thus, the standard formula is
broken down into several modules and sub-modules classified as one of the first six
risks mentioned above, to which are added the intangible risk, counterparty default
risk and an adjustment. The adjustment proposed by CEOIPS takes into account
the insurer’s ability to absorb future losses via profit-sharing mechanism with the
insured or via different taxes.
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Figure 2.2: Overall structure of the SCR according to the standard formula [33].

For each module, the technical specifications of the QIS 5 [90] propose a cal-
culation method which can be an analytical formula, a deterministic method or an
estimation by simulations. Note that in the last two approaches, the standard for-
mula need to use a cash-flow projection model. Thus, in the context of life insurance,
the calculation of a SCR by the standard formula requires an ALM model.

The overall SCR can be deduced in successive steps. Each of the SCRs must
first be computed for all submodules and then aggregated by correlation matrix to
determine a modular SCR. All the modular SCRs are then aggregated by correlation
matrix to form the Basic Solvency Capital Requirement or BSCR for short. Namely,
we have

BSCR =

√∑
i,j

Corr(i, j)× SCRi × SCRj + SCRintangible

Finally, the adjustment denoted by Adj aiming at including in the SCR calcula-
tion the capacity to absord losses from technical provisions and deferred taxes, and
operational SCR denoted by SCRop are calculated separately without aggregation.
Note that the value of the adjustment depends in particular on the profit-sharing
mechanisms.

The global SCR is given by:

SCR = BSCR + SCRop + Adj

For example, in the Standard Formula, the SCRequity is determined by variation
of Net Asset Values (NAV), floored at zero, as a result of the application of shocks.
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Here, the NAV is defined as the difference between the assets market value and
the Best Estimate. Note that the determination of the Net Asset Value does not
include the risk margin of the technical provisions in order to avoid the problem of
circularity that the introduction of this notion induces. Mathematically, we have
SCREquity = max (NAVBE −NAVshock; 0)

Schematically, the calculation of the marginal SCR by variation of NAV can be
presented in Figures (2.3) and (2.4).

Figure 2.3: A graphical illustration of the SCR calculation by ∆NAV approach

Figure 2.4: A graphical illustration of the SCR calculation by ∆NAV approach
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2.3.3 Internal Model

The internal model is a model specific to the insurance or reinsurance undertaking
subject to the approval of the supervisory authorities. It may be total or partial 3.
The definition of the internal model given by the CEA in Solvency II Glossary [104]
is as follows:

"Risk management system of an insurer for the analysis of the overall risk situ-
ation of the insurance undertaking, to quantify risks and/or to determine the capital
requirement on the basis of the company specific risk profile."

The idea underlying the internal model is to carry out a customized modeling of
the insurer’s portfolio. As a result, the SCR and MCR are based on the underlying
risks actually borne by the insurer and no longer on the standard basis of the
standard formula as described above.

The advantages of an internal model, based on its own economic assumptions,
are now widely shared within the insurance industry:

1. Organization interest: It helps an insurance company study and control its
underlying risks;

2. Operational interest: It improves the risk management of an insurance com-
pany;

3. Competitive interest: It plays like a communication tool intended for the
financial community and rating agencies.

3There are many risk factors which may affect an insurance firm’s economic balance sheet:
economic risks (interest rate risk, equity risk, credit risk, implied volatility, etc.) and non-economic
risks (lapse risk, mortality risk, etc.). A partial internal model is a specific model which only target
a limited number of risk factors
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In this chapter, we develop a new fitting methodology for estimating the SCR
(see Problem 1 in Chapter 1) and a formula for controlling the deviation of the
target SCR from its estimate (see Problem 2 in Chapter 1). The new method
operates in the following way. The loss function will be decomposed into standalone
loss functions and excess loss function. Then we apply the Bayesian penalized spline
regression technique to estimate each functional component. But let us first recall
some basic notions of nonparametric statistics and the reason why we come up with
additive models and Bayesian penalized spline regression for internal modeling.

The structure of this chapter is organized as follows: First, an overarching in-
troduction to nonparametric regression is give in Section 3. Then in Section 3.3,
we recall the loss function notion, which is largely used in life insurance internal
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models. We will also impose some assumptions about the functional form of the
excess loss function as well as the computation formula for SCR. In Section 3.4, we
describe our statistical model as well as the mathematical framework of the method.
In Section 3.5, we carry out the numerical study for illustration and elaborate the
consistency of the proposed method by comparing with the LSMC method.

Part I-Overarching introduction to nonparametric regres-
sion

A classical way to estimate a regression function is to assume that the structure of
the function is known, dependent on certain parameters, and is included in a finite-
dimensional function space. This is the parametric approach, in which the data are
used to estimate the unknown values of these parameters.

In the parametric context, estimators generally depend on few parameters, so
these models are well defined even for small samples. They are easily interpretable,
for example, in the linear case, the values of the coefficients indicate the influence of
the explanatory variable on the response variable, and their sign describes the nature
of this influence. However, a linear estimator will lead to a significant inaccuracy
regardless of the size of the sample whether the true function that generated the
data is not linear and can not be approached appropriately by linear functions.

The non-parametric approach does not however require a pre-determined struc-
ture of the regression function. The functional relationship between the explanatory
variables and the response variable is built from the data. This flexibility makes it
possible to capture the unusual or unexpected traits. However, the complexity of
the estimation problem arises another issue.

In this chapter, we will briefly present different well-known nonparametric re-
gression techniques in the scientific literature. This material is for the most part
borrowed from [48,97,112]. Some of the results mentioned here will be then applied
in Chapter 5.

3.1 Univariate nonparametric regression

There are several methods for obtaining a non-parametric estimator of the function
f satisfying:

Y = f(X) + ε (3.1)

where Y is a ramdom variable, X can be a deterministic or random variable, ε
is a random variable independent of the predictor variable X such that E(ε) = 0

and Var(ε) = σ2. Now, let {(Xi, Yi)}i=1,...,n be the identically and independently
distributed samples of (X,Y ) and {(xi, yi)}i=1,...,n be its realisations. The idea of
smoothing technique is to estimate f(xi) by a weighted average of {(yi)}i=1,...,n in
the neighborhood of xi, that is f̂(xi) =

∑n
k=1Wikyk, where f̂(xi) stands for the

estimation of f at xi. The weights Wik are high when | xi − xk | is small, or xk is
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close to xi. Otherwise, the former one approaches zero when | xi − xk | becomes
high. Among the smoothing methods, the linear smoothing technique is a particular
one. A method is called linear if the weights Wik depend only on {xi}i=1,...,n, but
not on {yi}i=1,...,k. Let denote f̂ = (f̂(x1), . . . , f̂(xn))T and y = (y1, . . . , yn)T .
From this, one has a linear relation between f̂ and y which is of the form f̂ = S.y
where S = {Sik}i,k=1,...,n is the smoothing matrix and is independent of y. In
the following of this section, we will recall the two conventional linear smoothing
methods: regression by kernel functions and by spline functions.

3.1.1 Kernel smoothing method

Kernel smoothing methods are intuitive and simple from the mathematical view-
point. These techniques use a set of local weights, defined by the kernel functions,
to construct the estimator in each value. In general, the kernel function K is a
continuous , bounded, non-negative and symmetric function such that:∫

supp(K)
K(x)dx = 1,

∫
supp(K)

x2K(x)dx < +∞

Here are some kernel functions which are widely used in practice:

• Gaussian: K(x) = 1√
2π

exp
(
−x2

2

)
• Epanechnikov: K(x) = 3

4

(
1− x2

)
I|x|≤1

• Quartic: K(x) = 15
16

(
1− x2

)2 I|x|≤1

• Cosine: K(x) = π
4 cos

(
π
2x
)
I|x|≤1

The kernel estimators we can tell are the Nadaraya-Watson estimator, the
Gassero-Müller estimator and local polynomial regression estimator. For the later
use, we denote Kh (x, x′) by 1

hK
(
x−x′
h

)
where the parameter h is called "band-

width". We will investigate the role of this parameter at the end of this section.

Nadaraya-Watson Estimator

The Nadaraya-Watson estimator is defined as:

f̂NW (x) =

∑n
i=1 yiKh(x, xi)∑n
i=1Kh(x, xi)

(3.2)

It is easily noted that the idea of the Nadaraya-Watson regression consists in parti-
tioning the set of values of X and then performing a weighted average of the values
of Y in each subinterval constructed as central neighborhoods at each point x. From
this, we can easily derive the smoothing matrix S whose elements are of the form
Sij =

Kh(xi,xj)∑n
k=1 Kh(xi,xk)

. This smoothing matrix has an eigenvalue 1 and an eigenvector
1n = (1, . . . , 1)T . Therefore, the Nadaraya-Watson estimator preserves the constant
functions since S1n = 1n.
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Local Polynomial Regression Estimator

Local polynomial regression estimator is a generalisation of the Nadaraya-Watson
estimator. Indeed, the Nadaraya-Watson estimator is the unique minimizer of the
following optimization problem:

f̂NW (x) = argmina∈R
n∑
i=1

(yi − a)2Kh (x, xi)

If f(x) is p-times differentiable in a neighborhood of x, then the Taylor developpe-
ment can be applied:

f(x′) ≈ f(x) + f ′(x)(x′ − x) + · · ·+ f (p)(x)

p!
(x′ − x)p

≈ β0 + β1(x′ − x) + · · ·+ βp(x
′ − x)p

where βk = f (k)(x)
k! .

From the previous remarks, we can therefore consider the local polynomial re-
gression problem in a neighborhood of x at follows. The regression function is
estimated at each point by locally adjusting a polynomial of degree p by weighted
least squares. The weighting at the point xi, i = 1, . . . , n is chosen as a function of
the amplitude of the kernel function centered at this point. The estimator of the
regression function at each point x is the local polynomial which minimizes.

n∑
i=1

(yi − β0 − β1(xi − x)− · · · − βp(xi − x)p)2Kh(xi, x) (3.3)

We denote W(x) = diag (Kh(x1, x), . . . ,Kh(xn, x)), β = (β0, . . . , βp)
T and

X =

1 (x1 − x) . . . (x1 − x)p

...
...

1 (xn − x) . . . (xn − x)p


The problem(3.3) can be then reformulate as

min
β

(y−Xβ)T W (y−Xβ) (3.4)

Therefore, the vector β̂ =
(
β̂0, . . . , β̂p

)T
minimizing the equation (3.4) is given by

β̂ =
(
XTWX

)−1 XTWy (3.5)

The explicit expression of the estimator f̂(x) is then given by

f̂(x) = eT1 β̂ = sT (x)y

where e1 = (1, 0, . . . , 0)T and sT (x) = eT1
(
XTWX

)−1 XTW.
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The general form of the smoothing matrix, for any p, is written as

S =

s
T (x1)
...

sT (xn)


In particular, for p = 0, we refind the Nadaraya-Watson smoothing matrix as defined
above.

According to the equation (3.4), it is not difficult to note that the observations
close to x have more influence on the estimator at point x than those that are distant
from it. In fact, this relative influence is controlled by the bandwidth parameter
h. In case of small bandwidth, the local fit is strongly dependent on observations
close to x. This gives rise to a very fluctuating curve which tends to interpolate
the data. Otherwise, the weights given to near and distant observations tend to be
equal. This gives rise to a curve obtained by the usual global least square regression.
In other words, the choice of a small h corresponding to a large variance leads to
an undersmoothing. Alternatively, with a large h we cannot control the bias, which
leads to oversmoothing. Therefore, there exists an optimal value of h which balances
the trade-off bias and variance.

3.1.2 Spline regression

The idea of the spline regression consists in constructing smoothly joining polyno-
mials. The points of connection between the pieces of polynomials are called the
knots. To represent splines, for a fixed nondecreasing set of knots, {κj}j = 1, . . . ,K,
one has to determinate a basis. For example, the basis of truncated polynomial of
degree p evaluated at x is defined as

{bj(x)}K+p+1
j=1 = {1, x, . . . , xp, (x− κ1)p+, . . . , (x− κK)p+}

where (·)+ indicate the positive part function. From this, the representation of a
function f(x) within this basis is given by f(x) =

∑K+p+1
j=1 βjbj(x). The coefficients

βj are determined by minimizing the quadratic error term, i.e.

β̂ =
(
β̂1, . . . , β̂K+p+1

)
= arg min
β∈RK+p+1

‖B.β − y ‖2

where

B =

1 x1 . . . xp1 (x1 − κ1)p+ . . . (x1 − κK)p+
...

...
1 xn . . . xpn (xn − κ1)P+ . . . (xn − κK)p+


A particular case of the truncated polynomial spline is the natural cubic spline:
the piecewise polynomials of degree 3 which are constrained to have continuous
second order derivatives on the knots and are linear beyond the domain defined by
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these knots. The natural condition of linearity on the edges implies the following
expression of the natural basis of truncated polynomials for cubic splines

{bj(x)}Kj=1 = {1, x, d1(x)− dK(x), . . . , dK−2(x)− dK(x)}

where dk(x) =
(x−κk)3

+−(x−κK)3
+

κk−κK [50]. The proof of this result is quite simple. Let us
consider the truncated power series representation for cubic splines with K knots

g(x) =
3∑
j=0

βjx
j +

K∑
k=1

θk(x− κk)3
+ (3.6)

Using the natural boundary conditions for natural cubic splines leads to

β2 = β3 = 0,
K∑
k=1

θk =
K∑
k=1

κkθk = 0

or equivalently θK = −
∑K−1

k=1 θk and θK−1 = −
∑K−2

k=1
(κk−κK)

(κK−1−κK)θk. Substituting
these conditions into (3.6) implies our natural cubic splines basis.

The B-splines basis is however more suitable for calculations. This basis is
obtained by linear combinations of the truncated polynomials. Namely, let ξ =

{ξ0, . . . , ξN+1} be a sequence of non-decreasing real numbers such that

ξ0 ≤ · · · ≤ ξN+1

Define the augmented knot set

ξ−(m−1) = · · · = ξ0 ≤ · · · ≤ ξN+1 = · · · = ξN+m

where we have appended m − 1 times the lower and upper boundary knots ξ0 and
ξN+1. The B-splines basis is defined by

Bj,k(x) = (ξj+k − ξj)[ξj , . . . , ξj+k](· − x)k−1
+

for all x ∈ R, j = −(m − 1), . . . , N + m − k and k = 1, . . . ,m. In the previous
definition, we used the divided differences operator [t0, . . . , tn] which is defined by
recursion as follows

[t0]f = f(t0), [t0, . . . , tn]f =
[t1, . . . , tn]f − [t0, . . . , tn−1]f

(tn − t0)
.

Since a B-spline is a linear combination of truncated power functions, so is con-
tinuous from the right. Furthermore, we can recursively define a set of real-valued
functions Bj,k as follows:

Bj,1(x) = Iξj≤x<ξj+1

Bj,k(x) = ωj,k(x)Bj,k−1(x) + (1− ωj+1,k(x))Bj+1,k−1(x) for 1 < k ≤ m
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where ωj,k =
x−ξj

ξj+k−ξj . For the above computation we define 0/0 as 0. These two
definitions are equivalent. (see [18, 45]). Here are some of the properties: each B-
spline has support in a finite interval; the B-splines form a partition of unity, i.e.∑N+m−k

j=−3 Bj,k(x) = 1; each B-spline Bj,k(x) is a piecewise polynomial of order k−1.
These are local support functions, which implies that the corresponding matrices

are strip matrices. This base is constituted by K + 2 functions, the B-splines are
not natural splines, they have different restrictions on the edges.

3.2 Multivariate non-parametric regression

The multidimensional generalization of the problem (3.1) is as follows:

Y = f(X1, . . . , Xd) + ε (3.7)

with (X, Y ) = (X1, . . . , Xd, Y ) a random vector, ε a random variable independent
of X such that E(ε) = 0, Var(ε) = σ2.

The adjustment of Y to a d-dimensional surface can be done by generalizing the
kernel smoothing [47] as

KΛ(x,x′) =
1

det(Λ)
K
(
Λ−1(x− x′)

)
(3.8)

where x = (x1, . . . , xd)
T , x′ = (x′1, . . . , x

′
d)
T , and Λ is a positive definite, symmetric

matrix.
Many possibilities exist for defining the kernel K(·). For example, it can be

defined as the d-product of uni-dimensional kernel, i.e. K(t) =
∏d
j=1K(tj), or by

a single uni-dimensional kernel, i.e. K(t) = K(‖t‖), where the choice of the norm
determines the shape of the neighborhoods. Another possibility is to generalize
directly the uni-dimensional kernel functions.

The generalization of the Nadaraya-Watson (3.2) is thus

f̂NW (x) =

∑n
i=1 yiKΛ(x,xi)∑n
i=1KΛ(x,xi)

(3.9)

where xi = (xi1, . . . , xid)
T .

The generalization of the minimization problem (3.3), in the particular case of
linear local regression, is

n∑
i=1

(
yi − β0 − (x− xi)T .β1

)2KΛ(x,xi) (3.10)

where β1 is a d× 1 dimensional vector.
For cubic splines, one possibility is to generalize the penalization of the second

derivative to a plate-penalty [44], i.e.∫
· · ·
∫ { d∑

j=1

(
∂2f

∂x2
j

)2

+
∑
j,k

(
∂2f

∂xj∂xk

)2 } d∏
j=1

dxj . (3.11)
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3.2.1 Some problems in high dimensional analysis

In the multidimensional case, non-parametric regression presents several problems.
First, graphical representation is not possible for more than two explanatory vari-
ables, and interpretation becomes difficult.

Second, the local methods approach fails in high dimension. This is the so-called
problem of "curse of dimensionality" [12], which manifests itself in various ways. For
example, assume that the observations of the explanatory variables are uniformly
distributed in a d-dimensional unit cube (d = 2, d = 10). To recover a percentage
of the data p = 10%, the side length of a sub-cube should be p1/d. The length of
the side is 0.32, for d = 2, and 0.79, for d = 10. For high d, these neighborhoods
are no longer local (the length of the side is very close to unity, so the sub-cube is
very close to the global cube). As a result, when the dimension increases, either
larger neighborhoods must be taken, implying global averages and therefore large
bias, or the percentage of the data must be reduced which implies averaging over a
few observations and therefore large variances of the adjustment [50].

Third, in high dimension setting, most data sets are usually "embedded" on
smaller dimensional manifolds. If these manifolds are hyper-planes, we encounter
the collinearity problem of the explanatory variables. If these manifolds are regular,
we encounter a more general problem of concurvity [20,49].

3.2.2 Dimension Reduction Techniques

A solution to the high dimensional problems is to assume that the regression function
has a certain structure. These non-parametric techniques remain flexible tools. The
price to pay is the possible erroneous specification of the model.

The techniques based on dimension reduction principles are the additive models,
which assume that the regression function is a sum of mono-variate functions in each
of the variables, projection pursuit models, close to multilayer perception neural
networks, and regression trees.

Projection pursuit

The algorithm of projection pursuit is to build an additive regression model of the
form [38,65]:

Y =

K∑
k=1

fk(α
T
k .X) + ε (3.12)

where ε is a random variable such that E(ε) = 0, Var(ε) = σ2 and independent of
the explanatory variables.

The vector explanatory variables is projected on K directions {αk}k=1,...,K . The
regression surface is constructed by estimating one-dimensional regressions fk ap-
plied to projections. The directions {αk}k=1,...,K and the number of terms K are
chosen by model selection methods such as generalized cross validation.



3.2. Multivariate non-parametric regression 47

The advantage of this technique is that it allows easy processing of low density
data. The model is also little constraint. Nevertheless, for K > 1, this model
presents difficulties of interpretation: it is difficult to evaluate the contributions of
each variable. For K = 1, the model is known as single−index model.

Projection pursuit techniques are often compared to multilayer perception neural
networks. These two methods extract linear combinations of inputs, and then model
the output variable as a nonlinear function of these input variables. However, the
functions fk of the projection pursuit are different and non-parametric, whereas the
neural networks use a simpler activation function, normally the softmax (or logistic)
function. In the case of projection pursuit, the number of "layers" is set at two 1

and the number of functions K is also predefined, which is not the case for neural
networks.

Regression trees

Regression trees divide the space of the explanatory variables into a set of hyper-
cubes. A simple model (for example, a constant) is then fitted to each hyper-cube
as

f(x) =
K∑
k=1

ᾱkI{x∈Rk} (3.13)

withK the number of partitions of the space of the explanatory variables, Rk disjoint
regions, ᾱk the constant that models the response in the region. The algorithm
simultaneously decides the partition and the values of the parameters {ᾱk}k=1,...,K .

Regression trees have the advantage of conceptual simplicity and the ability to
interpret. Their limitations are instability and lack of continuity of the regression
surface.

3.2.3 Additive models

Additive models assume that the regression function can be written as a sum of
functions of the explanatory variables [48,107]:

Y = α0 +

d∑
j=1

fj(Xj) + ε (3.14)

where ε is independent of X = (X1, . . . , Xd), E(ε) = 0 and Var(ε) = σ2; α0 is a
constant, fj , j = 1, . . . , d are the univariate functions such that EXj [fj(X)] = 0.
This condition of identifiability implies that EX[Y ] = α0 [49].

Additive models can be introduced as a generalization of the linear regression
models. This is the basic tool for modeling the relationship between the continuous
response variable and the explanatory variables:

Y = α0 + α1X1 + · · ·+ αdXd + ε (3.15)
1More precisely, we have X −→ {αTk .X} −→ {fk(αTk .X)} −→ Y.
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where ε is independent of X, E(ε) = 0 and Var(ε) = σ2.
The assumption of linear dependence of EX[Y ] in each of the explanatory vari-

ables is a strong assumption. When this assumption is not verified, one way to
extend the linear model is the additive model. The non-parametric form of fj gives
more flexibility to the model, while the additive structure preserves the possibil-
ity of representing the effect of each variable. The model can be represented by
one-dimensional functions describing the roles of explanatory variables in response
modeling, which facilitates interpretation. However, the simplicity of the linear
model is lost. A new problem appears: the selection of smoothing parameters, rep-
resenting the complexity of each component of the model. Here we will list some
properties of the additive models.

Interpretability: The joint effect of the explanatory variables on the response
variable is expressed as a sum of the individual effects. These individual effects show
how the expectation of the response varies when one of the components varies while
the others are fixed to any values. Thus, the individual functions can be represented
separately in order to visualize the effect of each explanatory variable, making the
result intelligible. The possibility of representing the effects of the variables directly
at the same time gives indications on the importance of each of the variables.

Scourge of dimensionality: By restricting the nature of the dependencies,
the problems related to the high dimension are mitigated: the response is modeled
as the sum of uni-dimensional functions of the explanatory variables, instead of be-
ing modeled by multidimensional functions. Therefore, the number of observations
required increases linearly with d (and not exponentially).

Consider the estimation of the regression function (3.7). The optimal asymptotic
rate for the estimate of f is n−[m/(2m+d)], where m is an index of the regularity of
the function f is m − 1 times continuously differentiable and its m-th directional
derivatives exist) [106]. On the other hand, if f is additive, the optimal rate reaches
the uni-dimensional convergence rate n−[m/(2m+1)] [108]. In this sense, the additive
models are considered as dimension reduction techniques.

Invalid model: The model is poorly specified when the explanatory variables
interact. That is, the effect of the variations of an explanatory variable on the
response depends on the values adopted by the other explanatory variables.

Suppose the general multiple regression model (3.7), where the function f(·) is
a smooth function. Assuming that the observations {xij} are contained in a region
where the curvature of the function f is small, then the additivity (and linearity) can
be justified by a first-order Taylor expansion f(x) ≈ f(x′) +Df(x′)(x− x′), where
x′ is within the region defined by the observations and Df indicates the gradient of
f . If the curvature of f is high, the Taylor expansion requires, at least, quadratic
terms and cross terms in two variables. When only the former are needed, the model
is always additive, although it incorporates "nonlinear" terms.

Adaptability: The interest of additive models is their ability to model the
relationship between variables in an intuitive way, but also the possibility of adapting
the model to simpler or more complex situations. When components do not require
nonparametric modeling, they can be reduced to linear components. Also, when
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interactions exist between certain variables, quadratic (or higher order) terms can
be integrated into the model.

Part II-Application of Bayesian penalized spline regres-
sion for internal modeling

3.3 Notations and requirements for the fitting process

3.3.1 Risk factors

As will be seen later, we use the term "risk factors" to refer to the underlying
parameters that may impact the balance sheet. As discussed in Chapter 2 and in
Appendix B, we might notice that there are several risk factors, which may affect
an insurance firm’s economic balance sheet. These risks can generally be classified
into the following categories:

1. asset-related risks (interest rates, equity and property prices, credit spreads):
asset-liability impacts of variances in underlying parameters across all lines of
business;

2. insurance risks: claims (mortality/morbidity/longevity), discontinuances, ex-
penses, including effects of both actual experience over the period of assess-
ment as well as the impact of that experience on the closing liability assess-
ment;

3. counterparty risks: risk of default by key counterparties such as reinsurers;

4. operational risks.

There are some risks which could affect the company but have little impact on the
asset position (reputation risk is an example). There are some risks which not be
mitigated by holding capital against them (liquidity risk is an example). These
risks should be considered in the broader risk management framework but might
not feature in the calculation of Economic Capital.

The approach to quantifying risks will vary by risk type. This includes:

• factor-based methods, where a factor is applied to a driver to approximate the
impact of a risk;

• stress testing, where a specific shock is defined and the impact of that shock
on the balance sheet is determined;

• stochastic modelling, where a full distribution of shocks are modelled, produc-
ing a full distribution of own funds outcomes.

Like many other proxy models (e.g. Curve Fitting, LSMC), only stochastic risk
factors are taken into account in this methodology.
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3.3.2 Loss function

The loss function in life insurance is a function defined as the change in Basic Own
Funds due to the realization of different economic states of the world. Mathemat-
ically, let us denote by (RF1, . . . , RFd) a d-tuple standing for the underlying risk
factors and by (x1, . . . , xd) another d-tuple representing the shock applied at the
current state. The loss function is then defined as:

φ(x1, . . . , xd) = BOFt=0 (RF1, . . . , RFd)−BOFt=0+ (RF1(1 + x1), . . . , RFd(1 + xd))

(3.16)
In the Solvency II environment, the value of each balance sheet part corresponds to
the expected value of the discounted future cash-flows under a risk-neutral proba-
bility Q. Let

• DF(0, t) be the stochastic discount factor in terms of a risk free instantaneous
interest rate rs, i.e. DF(0, t) = e

∫ t
0 rsds;

• Rt be the company's profit in period t.

Under this notation, the Basic Own Funds at the initial date is calculated in the
following manner:

BOFt=0(RF1, . . . , RFd) = EQ

[
T∑
u=1

DF(0, u)Ru | (RF1, . . . , RFd)

]
From this we may rewrite the loss function (3.16) in terms of the conditional expected
value with respect to capital loss.

Namely, let

Y = BOFt=0(RF1, . . . , RFd)−
T∑
u=1

DF(0, u)Ru |(RF1(1+x1),...,RFd(1+xd))

be the potential capital loss which is a random variable whose conditional distri-
bution depends on the x1, . . . , xd. The loss function (3.16) can be equivalently
rewritten as:

φ(x1, . . . , xd) = EQ (Y | x1, . . . , xd) (3.17)

For latter use, let us define the standalone loss functions φj(xj) which is of the
form:

φj(xj) = EQ (Y | 0, . . . , xj , . . . , 0) (3.18)

and the excess loss function which is expressed as:

φ1d(x1, . . . , xd) = EQ (η | x1, . . . , xd) (3.19)

with η = Y −
∑d

j=1 φj(xj) the residual loss of capital. From this, it is easily seen
that the following relation holds:

φ(x1, . . . , xd) =
d∑
j=1

φj(xj) + φ1d (x1, . . . , xd) . (3.20)
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Figure 3.1: Here we illustrate the empirical SCR estimation with N1 outer simula-
tions.

Stand-alone loss functions are useful for risk monitoring, as they are used to analyze
the contribution of each risk factor to the capital requirements. In fact, to have
stand-alone loss functions allows to classify and quantify risk exposure to risk factors,
which corresponds to a useful tool for steering the activity. Thus, this specific
decomposition for stand-alone loss functions is fully aligned with market practice.
As a result, the standalone loss functions should be independently calibrated so as
not to modify the other estimators.

3.3.3 Approximation of a shock at t = 0+

As seen previously, the Nested Simulation approach requires the realization of the
real world scenarios between t = 0 and t = 1. In practice, one usually relies on a
different approach, which consists of performing the approximation of a shock at
t = 0+. Regarding the market risks, this means that the market value of financial
instruments are modified right after their initialization. This approximation is in
line with the standard formula approach, where the defined shocks are to be applied
instantaneously on the balance sheet. In the standard model, the SCR is evaluated
via the "square-root" formula based on a modular approach. In our setting (internal
model), the SCR is defined as the 99.5%-quantile of the loss function (see Section
3.3.2 for the definition of the loss function), i.e.

SCR = q99.5%(φ) (3.21)

As will be seen later, further analyses will be performed to highlight the reliability
of our assumption (3.21) and the resulting estimate. Namely, we carry out the
comparison between the SCR estimated by Nested Simulations approach and the
SCR estimated by our method.
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3.4 Methodology description

We assume that the functional components {φ1, . . . , φd, φ1d} are regular enough
and every standalone loss function can be thus approximated by polynomial spline
function (see Appendix D.7). To guarantee the granularity, we will estimate in-
dependently each standalone loss functions by applying the Bayesian penalized
spline regression (see Appendix D.3). Regarding the Excess Loss function, even
if φ1d(x1, . . . , xd) is not genuinely additive, an additive approximation to φ1d may
be sufficiently accurate as well as being readily interpretable. We define φ∗1d being
of the form:

φ∗1d (x1, . . . , xd) = h0 +

d∑
j=1

hj (xj) +
∑

1≤j<j′≤d
hjj′

(
xj × xj′

)
(3.22)

To ensure identifiability of each of the functional components, we include the
intercept h0 and the functions hj , hjj′ are chosen subject to the constraints
1
n

∑n
ν=1 hj(x

(ν)
j ) = 1

n

∑n
ν=1 hjj′(x

(ν)
j × x

(ν)
j′ ) = 0 where

(
x

(ν)
1 , . . . , x

(ν)
d

)
ν=1,...,n

are

the design points as will be seen later. Then φ∗1d is the best additive approximation
to φ1d in the sense of mean squared error. In the case that φ1d is additive, we then
have φ1d = φ∗1d. The Excess Loss function will be thus estimated via the additive
model (3.22). With a slight abuse of notation, we use the same symbol here as in
Equation (3.20), i.e.:

φ(x1, . . . , xd) =
d∑
j=1

φj(xj) + φ∗1d (x1, . . . , xd) .

Confidence intervals are of primary importance in many practical applications of
how accurate the estimate can predict. As remarked by Nychka [84], “one limitation
in applying spline methods in practice, however, is the difficulty in constructing
confidence intervals or specifying other measures of the estimate’s accuracy”. Wahba
[115] suggested a Bayesian approach to derive the point-wise asymptotic confidence
interval. Surprisingly, these Bayesian asymptotic confidence intervals work well
even when evaluated from the frequentist viewpoint. As it stands, we will use
this approach to derive the asymptotic confidence intervals for the standalone loss
functions estimation as well as the excess loss function estimation. However, we
would like to point out that the confidence bands do not incorporate approximation
errors from the choice of the regression function. This remark will be shown in the
derivation which can be found in Appendix D.4 and Appendix D.5.

The proposed methodology is summarized in five steps:

• Fitting points selection: The first step consists of generating the design points
{x(ν)

j }
ν=1,...,nj
j=1,...,d . Since the sample size is limited by calculation time, only signif-

icant and comparable point are mainly considered. In fact, we are ultimately
interested in calculating a percentile on the economic own funds distribution,
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it is consequently important to know with accuracy what will be the potential
loss with a security level of 99.5% rather than having a perfect estimation of
the loss function for every realistic scenario even though the final objective is
to get the most accurate possible fitting. Therefore, a sufficient number of “tail
scenarios” is required in order to estimate properly the economic own funds
tail distribution. To this end, we assume that the desired tail scenarios lie in
the tail of distribution of each underlying risk factor and this latter one defines
the 99.5th-percentile region. The determination of the 99.5th-percentile region
depends however upon the risk-factor considered. For example, we know that
the falling equity markets implies the negative impact on BOF, and thus in-
creases the loss capital. Therefore, the 99.5th-percentile for the Equity risk
is placed on the left tail of its distribution which is defined as the interval
between the 0.01th percentile and the 10th-percentile. Concerning the convex
(or U-shaped) loss functions, such as the Interest rate loss function, the tail
scenarios should be picked from both extremes of its distribution since it is not
clear ex ante of whether the highest or lowest values of interest rates would be
most problematic. All design points located outside of the 99.5th-percentile
region can be selected randomly and uniformly.

• Standalone loss functions estimation: Using the ALM model described in Sec-
tion 3.5.1.4, one values the empirical estimate of the standalone losses for each
selected design points {x(ν)

j }
ν=1,...,nj
j=1,...,d , that is φ̄j(x

(ν)
j ) = 1

N2

∑N2
k=1 Y

(k)

|x(ν)
j

with

N2 the number of inner scenarios and Y(k) the loss of capital associated to the
k-th inner scenario given the market stress condition x(ν)

j . Next one applies
the Bayesian penalized spline regression model to smooth the data by solving
the following optimization problem:

min
β∈Rpj+Kj+1

[ nj∑
ν=1

(
φ̄j

(
x

(ν)
j

)
−B

(
x

(ν)
j

)
βj

)2
+ λjβ

T
j Djβj

]
, ∀j = 1, . . . , d

(3.23)
where B(x) =

(
1, x, x2, . . . , xpj , (x− κ1)

pj
+ , . . . , (x− κKj )

pj
+

)T ∈ R1+pj+Kj is
the truncated pj-polynomial basis with Kj knots {κ1, . . . , κKj}, the symbol
(·)+ stands for the Heaviside step function and Dj is the block diagonal ma-
trix diag

(
01+pj ,1Kj

)
. (For the detailed description of the Bayesian penalized

spline regression, please refer to Appendix D). Let Bj be the nj×(1+pj+Kj)

matrix whose i’s row equals B
(
x

(i)
j

)T
and Φj =

(
φ̄j

(
x

(1)
j

)
, . . . , φ̄j

(
x

(nj)
j

))T
,

the estimate of βj is then given by:

β̂j =
(
BT
j Bj + λjDj

)−1
BT
j Φj (3.24)

for j = 1, . . . , d. From this it follows that Φ̂j =
(
φ̂j

(
x

(1)
j

)
, . . . , φ̂j

(
x

(nj)
j

))
=

Bj β̂j .
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The deviation of φ̂j
(
x

(ν)
j

)
from φ

(
x

(ν)
j

)
is characterized by the 1−α Bayesian

asymptotic confidence interval having the form:

P
(
|φ̂j
(
x

(ν)
j

)
− φ

(
x

(ν)
j

)
| ≤ ∆

(ν)
j,α

)
→ 1− α (3.25)

where ∆
(ν)
j,α = max

(∣∣∣∣∣zα/2
√(

Ê(Mj)− Ê(Bj)
2
)[

VΦ̂j

]
νν
± Ê (Bj)

√[
VΦ̂j

]
νν

∣∣∣∣∣
)
,

zα/2 is the critical point from a standard normal distribution and the explicit

form of Ê(Mj), Ê(Bj) and VΦ̂j
are given in Appendix D.4.

• Excess loss function estimation: Again we use the ALM model and the stan-
dalone loss functions estimators to value the empirical excess losses at each
design points x(ν)

1d =
(
x

(ν)
1 , . . . , x

(ν)
d

)
for ν = 1, . . . , n, that is

φ̄1d (xν1d) =
1

N2

N2∑
k′=1

Y(k′)

|x(ν)
1d

−
d∑
j=1

φ̂j

(
x

(ν)
j

)
wherein Y(k′)

|x(ν)
1d

is the capital loss associated to the k′-th inner scenario given

the market stress condition x
(ν)
1d . These are considered to be the responses

variables. To ensure that independence is not broken, scenarios used to derive
the excess loss function should be different from those used in the standalone
loss functions calibration. The algorithm to derive the functional components
hj , hjj′ estimators of excess loss function is analogue to that of the standalone
loss function. The computation is tedious and can be found in Appendix D.5,
so we will omit it here. For later use, we define the 1−α Bayesian asymptotic
confidence interval for ĥj , ĥjj′

∆̃
(ν)
J,α = max

(∣∣∣∣∣zα/2
√(

Ê (MJ)− Ê (BJ)
2
)[

VĥJ

]
νν
± Ê (BJ)

√[
VĥJ

]
νν

∣∣∣∣∣
)

(3.26)
where J can be j or jj′, zα/2 is the critical point from a standard normal

distribution and the explicit form of Ê(MJ), Ê(BJ) and VĥJ
are given in

Appendix D.5.

• Loss function estimation error control: We will now investigate the control of
the deviation of φ̂ from φ at an arbitrary design points x(ν) = (x

(ν)
1 , . . . , x

(ν)
d ).

Obviously, we have|φ̂(x(ν))− φ(x(ν))| >
d∑
j=1

∆
(ν)
j,α +

∑
J

∆̃
(ν)
J,α

 ⊂ d⋃
j=1

{
|φ̂j
(
x

(ν)
j

)
− φj

(
x

(ν)
j

)
| > ∆

(ν)
j,α

} ∪(⋃
J

{
|ĥJ
(
x

(ν)
J

)
− hj

(
x

(ν)
J

)
| > ∆̃

(ν)
J,α

})
(3.27)
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where we used the notation x(ν)
jj′ = x

(ν)
j × x

(ν)
j′ . From this it follows that the

probability of deviation of φ̂(x(ν)) from φ(x(ν)) is asymptotically bounded by

P

|φ̂(x(ν))− φ(x(ν))| >
d∑
j=1

∆
(ν)
j,α +

∑
J

∆̃
(ν)
J,α

 ≤ 1− (1− α)
d(d+3)

2 (3.28)

The derivation of this result can be found in Appendix D.6.

Motivated by this, we can estimate SCR by ŜCR = q̂99.5

(
φ̂
)

its empirical

99.5th-percentile derived from φ̂. In this stage, φ̂ ≡ φ̂(X) is a random variable with
X = (X1, . . . , Xd) the realistic random market state or the primary simulation state
whose marginal distribution is PX . Let fφ̂ denote the density function of φ̂(X).

To control the probability of deviation of the target SCR from its estimate, we
will need certain conditions to make the theory work. First of all, it is important to
clarify that as will be seen below, the resulting confidence band will not incorporate
the approximation error from the choice of the regression function.

Let us introduce some notation, definitions that will be used in the sequel. We
define the (L,Ω)-Lipschitz class of functions, denoted Σ(L,Ω), as the set of function
g : Ω→ R satisfy, for any x, x′ ∈ Rd, the inequality:

|g(x′)− g(x)| ≤ L‖x′ − x‖

with Ω ⊂ Rd and ‖x‖ , (x2
1 + · · · + x2

d)
1/2. Let r > 0. We define B(a, r) =

{x ∈ Rd | ‖a − x‖ ≤ r}. We denote by V̄φ = {x ∈ Rd | φ(x) = q99.5%(φ)} and
V̄φ̂ = {x ∈ Rd | φ̂(x) = q99.5%(φ̂)} the closed set of the 99.5th-percentile scenarios
for φ and φ̂ respectively.

Let Γ denote the available sampling budget used to calibrate φ̂. Based on the
work of Aerts et al. [2], it is straightforward to deduce that for λφj (Γ) and λhJ (Γ)

tending to 0, the estimate φ̂ converges in mean square to φ as Γ→∞. Furthermore,
by Markov’s inequality, convergence in mean square of φ̂ leads to the convergence
in probability of φ̂(x) to φ(x) for every x ∈ Rd. This implies that for every x∗ ∈ V̄φ,
there exists a random sequence x∗(Γ) ∈ V̄φ̂ converges in probability to x∗.

Introduce now three assumptions on φ, φ̂ and x∗(Γ) that will be used in the last
step:

ASSUMPTION 1: Suppose that φ ∈ Σ(L,Ω) where L > 0 and Ω(⊃ V̄φ) is an
open subset of Rd.

ASSUMPTION 2: For any x∗ ∈ V̄φ and r > 0, there exists two positive constants
ξ(r, d), γ(r, d) such that

P
(
‖x∗ − x∗(Γ)‖ > r

)
≤ ξ(r, d)Γ−γ(r,d)

for large enough Γ.
ASSUMPTION 3: For any choice of x∗ ∈ V̄φ and α ∈ (0, 1), there exists two

positive constants r(Γ) and ∆(α,Γ), with r(Γ)
Γ→∞−−−→ 0, such that

P
(
| φ̂(x)− φ(x) |> ∆(α,Γ)

)
≤ 1− (1− α)

d(d+3)
2 , ∀x ∈ B(x∗, r(Γ))
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for large enough Γ.

• SCR estimation error control: In the following, we denote by N1 the number
of the primary simulations. Note that∣∣∣ŜCR− SCR∣∣∣ ≤ ∣∣∣q̂99.5%

(
φ̂
)
− q99.5%

(
φ̂
)∣∣∣+∣∣∣q99.5%

(
φ̂
)
− q99.5% (φ)

∣∣∣ (3.29)

The first term on the right-hand side corresponds to the numerical error since
we appeal the empirical percentile to estimate the SCR and the second term
represents the model error. Note that the numerical error depends not only on
the empirical assessment q̂99.5% but also on the fitting quality φ̂. To value this
numerical error, we apply the Theorem in Appendix D.8. Namely, we have

P

∣∣∣q̂99.5%

(
φ̂
)
− q99.5%

(
φ̂
)∣∣∣ > zα/2

0.07
√
N1fφ̂(q99.5%

(
φ̂
)

)

→ α (3.30)

as N1 →∞. In the previous expression, the distribution function fφ̂ and the

evaluated point q99.5%

(
φ̂
)
are however unknown and will be then replaced by

their estimators. Regarding the second term, by using Assumptions (1-3), we
obtain the asymptotic probability of deviation of q99.5%

(
φ̂
)

from q99.5% (φ)

having the form:

P
(∣∣∣q99.5%

(
φ̂
)
− q99.5% (φ)

∣∣∣ > ∆(α,Γ) + Lr∗
)
≤
[
1− (1− α)

d(d+3)
2

]
+ ξ(r∗, d)Γ−γ(r∗,d) (3.31)

where r∗ ≡ r(Γ). The derivation of this result can be found in Appendix D.6.
Combing the equations (3.30) and (3.31) leads to the control of the probability
of deviation of ŜCR from SCR.

The confidence interval ∆(α,Γ)+Lr∗ is however an issue as it involves the unknown
parameters ∆(α,Γ), L and r∗. In the following, we suggest a method to estimate
these parameters in practice.

In order to estimate the Lipschitz constant, we find the supremum of all slopes
|φ̂(x)−φ̂(x′)|/‖x−x‖ for distinct points x and x′ within the 99.5th-percentile region.
We call x̂∗ the empirical 99.5th-percentile scenario, i.e. φ̂(x̂∗) = q̂99.5%

(
φ̂
)
. The

parameter ∆(α,Γ) will be then replaced by ∆̃(α,Γ) =
∑d

j=1 ∆
(x̂∗)
j,α +

∑
J ∆̃

(x̂∗)
J,α . To

estimate the parameter r∗, we seek the maximum radius r̂∗ such that for every
x(ν) ∈ B(x̂∗, r̂∗), the confidence intervals

∑d
j=1 ∆

(ν)
j,α+

∑
J ∆̃

(ν)
J,α are close to ∆̃(α,Γ).

On the right-hand side of the inequality (3.31), as the true value of ξ(r∗, d) and
γ(r∗, d) are unknown, it is not possible to have a direct access to the upper bound
of the probability. In practice, a large number of Γ is necessary so that the term[
1− (1− α)d(d+3)/2

]
becomes preponderant compared to ξ(r∗, d)Γ−γ(r∗,d).
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Figure 3.2: Initial Balance Sheet used to value the prudential balance sheet.

3.5 Numerical study

Being aware of the limitations of the ALM model considered in this paper, the area
of use of this cash-flow generator depending on only a few risk factors is sufficient
in the context of this study. That is to say, the study serves as illustration for our
proposed methodology. In practice, note that for many life insurance companies,
the number of risk factors is often very large, e.g., over 100. Therefore, the efficiency
as well as the performance of this approach compared with the existing approaches
remain unknown for practical problems and can be the subject of future research.

3.5.1 ALM modeling

In this section, we recall in a concise way the main lines of the operation of an actu-
arial cash flow simulator that is used today by life insurers to value their prudential
balance sheet. All the details of our ESG and ALM cash-flow simulator are given
in Chapters A and B.

3.5.1.1 Initial balance sheet

We model the prudential balance sheet of an insurance company that sells exclu-
sive savings contracts in euros. The initial balance sheet of the modeled insurance
company is defined as follows:

Assets backing mathematical reserves consist of cash, equities/real estate and
bonds, by convention, up to 5%, 15% and 80%, respectively. Assets backing liquidity
risk provision (PRE ), profit-sharing provision (PPE ), capitalization reserve and own
funds are not explicitly modeled and implicitly considered to be 100% of cash (see
Figure 3.2).

The cash-flow simulator considers the risk neutral evolution of financial risk fac-
tors on the balance sheet and these trajectories run for 50 years. At each time step,
the cash flows of assets and liabilities are calculated and the company’s manage-
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ment strategy is implemented (calculation of the profit-sharing rate, allocation of
provisions, distribution of dividends to shareholders, etc.).

3.5.1.2 Liabilities

Regarding the liabilities, the contracts in the liabilities are exclusively savings con-
tracts in euros with minimum guaranteed rates (MGR) and redemption rights. In
accordance with the Solvency II Directive, the valuation of the prudential balance
sheet is carried out in run-off on insurance liabilities, which means that no new
future production is considered and under the assumption of continuity of activities
on the assets side (maintenance of target allocation, management decisions, etc.).

Savings contracts generally allow policyholders to withdraw partially or totally
their savings. We can distinguish two types of redemptions in life insurance:

1. Conjunctural surrenders: these are the redemptions linked to the economic
situation and the performance of the insurer. They are usually estimated
from the difference between the rate served by the insurer and the rate served
by the competition.

2. Structural surrenders: these are the redemptions related to the characteristics
of the contract. For example, there is usually a wave of structural surrender
after the 8 year seniority. This phenomenon is explained by the taxation of
life insurance, which becomes more favorable when it comes to redemptions if
the contract has 8 year seniority.

The insurer makes its asset allocation according to the characteristics of its
liabilities (duration, MGR ...). If actual redemptions are greater than expected
redemptions, for the sake of liquidity, the insurer will be forced to sell assets that
have not matured, which may be a disadvantage if these assets are unrealized losses.
Similarly, the insurer has to pay a capital or an annuity in case of death of the insured
to the beneficiary designated by the contract. Therefore, the risk of a buyout and
mortality risk are two major risks for life insurers that results from a behavioral
change of insured persons. The modeling of these behaviors is therefore a crucial
issue for the asset-liability management of an insurance company.

Insured mortality is assumed to be deterministic and the death rate is given
by the death table "TH0002" for men and "TF0002" for women 2. With respect
to modeling the redemptions in our setting, the total redemption rate (TR) of the
model is calculated as the sum of the conjunctural surrender rate (CR), which is a
function of the spread between the rate expected by the insured and the last profit
sharing rate served by the insured, and the structural surrender rate (SR), which
is determined on the policyholder’s seniority according to a historically calibrated
redemption table.

2The TH-TF 0002 mortality table is built from the INSEE 2000 − 2002 table - re-
spectively for the male population and for the female population. These are the regula-
tory tables for life insurance contracts (other than life annuities) The table is available at
http://www.spac-actuaires.fr/jdd/public/documents/xls/TH-TF%2000-02.xls.
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3.5.1.3 Assets

The asset portfolio of the insurance company consists of the following asset classes:
cash, shares/real estate and bonds. Cash is remunerated at the risk-free rate. We
choose the Hull & White one factor model to model the dynamics of short-term
interest rates. Namely, under the risk neutral probability Q, the instantaneous
short-term interest rate rt is governed by the following dynamics:

drt = (θt − art)dt+ σdWt

where σ represents the instantaneous volatility of the short rate, a is the mean-
reverting speed and Wt the Brownian motion under the risk neutral probability
Q. The time dependent parameter θt is determined by σ, a and the initial yield
curve {R(0, T )}. As there is only one driving Brownian motion, all forward rates
are determined by the short rate. Since the dynamics of short rates depend on the
mean-reverting speed, the interest rate volatility and the initial yield curve, these
latter ones will thus completely determine the shape of the forward yield curves.
In this study, we fix a = 0.35, σ = 0.5% and take the risk-free interest rate term
structures published by EIOPA as only input of the Hull & White model. Readers
can refer to [36] for more details of this model.

Shares/real estate are modeled by a geometric Brownian movement with con-
stant dividend rate and log-normal volatility at 17.4%. The dividend or rent rate is
adjustable. Here, the dividend rate is set at 3%, the rental rate at 5%. The treasury
bond portfolio consists of government bonds whose probability of default is assumed
to be zero.

3.5.1.4 ALM Model

The ALM simulator projects the assets and liabilities of the insurer over time. This
makes it possible to determine at each time step the balance sheet and the value of
the flows distributed to the policyholders on the one hand and to the shareholders
on the other hand.

At each time step, along with the risk neutral trajectory, the ALM simulator
proceeds in 6 steps to forecasting the assets and liabilities by one year, calculating
the cash flows of liabilities and assets, updating the balance sheet and determining
the value of the outgoing flows:

1. Sale or purchase of assets to recover the target allocation at book value: 80%

bonds, 15% equities and 5% monetary.

2. Disseminate the stock market values over one year; calculate the dividend and
the bonds coupon received in respect of the year; construct the yield curve over
one year; actualize the bonds market values; calculate the carrying amortizing
amount of bonds over one year.

3. Determine death benefits and new premiums received during the past year
for each point model. The death rates correspond to those of the TF0002
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and TH0002 mortality tables. Benefits are assumed to be paid in the middle
of the year. They are revalued at the rate used for the past year for half
a year. Moreover, the structural and conjunctural surrenders are evaluated
during the year. Conjunctural surrender rates are valued as a function of the
spread between the rate used in the previous year and the 10-year rate.

4. Periodic premiums received are invested in assets. Then, assets are eventu-
ally sold to pay for benefits. After that, we recalculate the unrealized losses
associated with non-bond assets on which the PRE is acquired or taken over.

5. The minimum and maximum available resources are calculated. They can be
reached by playing on the achievement of the unrealized profits and losses,
and of the resumption of PPE. The expected wealth is determined according
to the performance of the financial markets. Finally, one determines the rate
used for each point model, considering the different MGRs.

6. The distinct items of the closing balance sheet for year N are calculated by
revalorizing the Mathematical Provisions at the rate used as determined in
the previous step and the various balance sheet items (basic own funds, capi-
talization reserve, PPE, PRE).

At the end of the trajectory, that is over 50 years, the assets are settled, the bal-
ance sheet is updated and the balances of mathematical provisions and PPE are
distributed to policyholders.

3.5.2 Analysis of the loss functions

In this section, we present the results carried out to demonstrate the performance of
the standalone as well as the excess loss functions fitting. As can be seen in Section
(3.5.1), interest rate risk exists for all assets and liabilities for which the net asset
value is sensitive to changes in the term structure of interest rates or interest rate
volatility. In the standard formula, the calculations of capital requirements in the
interest rate risk module are based on specified scenarios which are defined by a
downward and upward stress of the term structure of interest rates. Inspired by
this idea, we restrict ourselves solely to consider the risk related to the level of the
initial yield curve.

To build stress scenarios, we apply a principal component analysis (explaining
98% of the variability of the annual percentage interest rate change in each of the
maturities in the underlying datasets) of historical term structure data from the
years 2007− 2017. As a result, the yield curve can be approximated as

R(0, T ) ≈ αPC1(0, T ) + βPC2(0, T ) + γPC3(0, T )

where PC1, PC2, PC3 are the first three forward curve loadings or principal com-
ponent vectors (see Section 3.4.3 in [36] for more details). The PC1 represents the
situation that all forward rates in the yield curve move in the same direction. This



3.5. Numerical study 61

Figure 3.3: (a) Plot of the Clayton copula based on a sample size 10000 in two
dimensions with parameter θ = 4, (b) and (c) Plot of the Equity stress and Interest
Rate stress probability density functions.

corresponds to a general rise (or fall) of all of the forward rates in the yield curve.
In this study, we define the Interest Rate level risk as the shock on the coefficient
α as follows α → α + x2 (αM − αm) /7 with αM , αm the maximum and minimum
value of α observed during the period 2007− 2017.

In this study, we consider only two underlying risk factors which are equity risk
and Interest rates level risk. As explained in Section 3.3.3, this method of estimating
SCR requires the generation of stress realizations. The stresses are made at t = 0+

and there is thus no projection of risk factors in the Economic Scenarios Generator.
In order to keep the correlation between the risk factors, it is necessary to assume
a model of dependence between them. In our setting, we assume that the stresses
follow respectively the Gumbel distribution with the location µ1 = 0.01 and the scale
paramter β1 = 0.165 for the Equity risk, and µ2 = 1.82, β2 = 1.2 for the Interest
Rate risk. The model of dependence chosen for the realization of market stresses is
that of Clayton copula with θ = 4, exhibiting greater dependence in the extremely
negative market situation. For the Clayton copula, we draw variates (u1, u2) using
the conditional distribution approach. Namely, we draw two independent uniform

random variables (u1, v2) and set u2 =
[
u−θ1 (v

−θ/(1+θ)
2 − 1) + 1

]−1/θ
. The following

realization F−1
Gumbel(ui;µi, βi) |i=1,2 then corresponds to the realization of a random

variable having the corresponding Gumbel distribution.
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3.5.2.1 Standalone loss function fitting

For each variable considered, we take 25 points within the 99.5th-percentile region
and 25 points elsewhere. One possibility of selecting design points within the 99.5th-
percentile region is to choose only comparable points. For example, one usually
chooses predefined percentiles such as the 0.5th-percentile and/or the 2th-percentile.
The 0.5th-percentile is of a specific interest since it gives the required capital under
the assumption there is only one risk. In this paper, our choice of fitting points relies
on following approach: the fitting points inside and outside of the 99.5th-percentile
region are selected randomly and uniformly. Each response variables Y is empirically
evaluated byN2 = 40 inner scenarios. The most simple and straightforward "equally
spaced" knot placement method is used inside and outside of the 99.5th-percentile
zone. For the natural cubic spline space, the usual choice of the number of knots is
K = [n

1
5 ], where n is the number of observations. As a result of our hypothesis about

stress realizations and the interactions between them, the 99.5th-percentile region
for the Equity risk corresponds to the interval [−0.3,−0.12]. When running the
nested simulations (see Section 3.5.3), we realize that the tail scenarios correspond
to the lowest values for interest rates. Therefore, for the sake of simplicity, we only
pick the points from the extreme left and the 99.5th-percent region for interest rates
is associated to the interval [−0.49, 0.82].

In the rest of this section, in order to the determine the optimal λEq and λIR ridge
parameters, it is recommended to perform the 10-fold cross validation as described
in [40]3. Figure 3.5 illustrates our 10-fold cross-validation for λEq and λIR selection.
Finally, the estimated standard deviation σ̂Eq is found around 7.64× 10−2 and the
resulting optimal ridge parameter λ̂Eq is determined to be 3.32 (see Figure 3.5).
The fitting of Equity exposed loss function is presented in Figure 3.4.

Figure 3.6 presents the fitting of the Interest rate level exposed loss function.
Similarly, the estimated standard deviation σ̂IR is 8.02×10−2 and the optimal ridge
parameter λ̂IR turns out to be 7.39 (see Figure 3.5).

For comparison, we calculate the standalone loss functions with 10000 inner
simulations at fewer fitting points and apply the Natural Cubic Spline (NCS) inter-
polation method to reconstruct the curve (Curve Fitting). This latter one can be
then considered as the target function. On the other hand, we compare the fitting
quality of our method with the Least Squares Monte-Carlo (LSMC) fitting method
as described. The Hermite polynomials are chosen as regression basic functions.
Regarding the LSMC regression, it is critical to have a reliable data-dependent rule

3In k-fold cross-validation, we partition a dataset S into k equally sized non-overlapping subsets
Si. For each fold Si, a model is trained on S\Si and is then evaluated on Si. The cross-validation
estimator of the mean squared prediction error is defined as the average of the mean squared predic-
tion errors obtained on each fold. There is however overlap between the training sets for all k > 2

and the overlap is largest for leave-one-out cross validation. This means that the learned models
are correlated implying the increasing amount of variance in the mean squared prediction error
estimation. Furthermore, while two-fold cross validation does not have the problem of overlapping
training sets, it also has large variance since the training sets are only half the size of the original
sample. Therefore, a good compromise is usually 10-fold cross-validation (see, for instance, [13]).
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Figure 3.4: (a) Plot of the estimation of the "normalized" equity exposed loss
function φequity

BOF0
and its corresponding 95% Bayesian asymptotic confidence interval

within the 99.5th-percentile region. (b) Plot of the estimation of the "normalized"
equity exposed loss function and its corresponding 95% Bayesian asymptotic confi-
dence interval for the whole range of market stress in equity X1. (c) A comparison
between the Bayesian penalized spline regression, the LSMC fitting and the curve
fitting wherein each fitting point is evaluated by 10000 inner simulations.
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Figure 3.5: Ten-fold cross validation errors or mean squared prediction errors with
error bars across different values of log(λ) for: (5.a, 5.b) λIR in the Interest Rate
exposed loss function regression model and (5.c, 5.d) λEq in the Equity exposed loss
function regression model. The blue dashed lines show the resulting optimal ridge
parameters.
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Figure 3.6: (a) Plot of the estimation of the "normalized" interest rate level exposed
loss function φIR

BOF0
and its corresponding 95% Bayesian asymptotic confidence inter-

val within the 99.5th-percentile region. (b) Plot of the estimation of the "normal-
ized" interest rate level exposed loss function and its corresponding 95% Bayesian
asymptotic confidence interval for the whole range of market stress in Interest Rate
level x2. (c) A comparison between the penalized spline regression, the LSMC fit-
ting and the curve fitting wherein each fitting point is evaluated by 10000 inner
simulations.
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Figure 3.7: Cross validation approach to the selection of the degree of the fitting
polynomial selection: a) for the Equity exposed loss function, b) for the Interest
rate level exposed loss function.

for degree of the fitting polynomial selection. Once again we rely on the 10-fold
cross validation technique mentioned previously to select the optimal fitting degree
degoptimal, which corresponds to the best bias-variance tradeoff 4. A numerical study
is carried out and it is easily seen that the best-fitting degree of polynomial equals
3 for the Interest rate level exposed loss function and equals 2 for the equity loss
function (see Figure 3.7). Figures (3.4c) and (3.6c) show that our estimates are
consistent with the LSMC and NCS fitting results.

To conclude this section, an interpretation of the standalone loss functions is
given below. When the equities market performs well, BOF should be increased.
Conversely, a fall in prices may reduce the insurer’s own funds. Hence, the equity
loss function should be a decreasing function of stock prices. As interest rates rise,
the market value of the bond assets that make up the majority of the insurer’s
portfolio declines and therefore the BOF are expected to decline. However, an
exponential increase in BEL dominates that of assets and reduces BOF when the
interest rates fall. Hence, the interest-rate loss function should be a concave function
of the interest rate.

3.5.2.2 Excess loss function fitting

When dealing with single risk loss functions, the notion of 99.5th-percentile region
is straightforward. This is not the case for the excess loss function. The 99.5th-
percentile region in case of the excess loss function is the smallest hypercube con-
taining all the tail scenarios of each underlying risk factors. For example, in our
setting, the 99.5th-percentile region is the rectangular [−0.3,−0.12]× [−0.49, 0.82].
Below an illustration of the 99.5th-percentile region for d = 2 subject to a total
of 40 stress points randomly and uniformly selected (Figure 3.8). To better fit the
excess loss function outside of the zone, there are 60 additional stress points which

4In case of deg < degoptimal, one misses the pattern while trying to avoid fitting the noise which
leads to underfitting. On the contrary, if deg > degoptimal, one tries to fit the noise in addition to
the pattern which leads to overfitting.
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Figure 3.8: An example of the 99.5th-percentile region and the distribution of the
fitting points for d = 2.

are also randomly and uniformly selected.
Figure 3.9 displays the fitting of three smooth component functions h1(X1),

h2(X2) and h12(X1×X2) by using the third-degree P-splines. The fitting procedure
is completely analogous to that of the standalone loss functions. The three opti-
mal ridge parameters λh1 , λh2 and λh12 are found respectively equal to 2.33, 100.87

and 132.82. It is clear that the practical usefulness of this method depends on its
accuracy, which may be assessed via the length of a confidence interval. However,
as observed in Figure 3.9 (a) and (b), these confidence intervals are quite wide at
the extreme outcomes, which are most relevant. This is due to the boundary effect
where the estimator does not feel the boundary, and penalizes for the lack of data
beyond the boundary.

For comparison, we demonstrate the analysis for the proposed fitting method
and the LSMC method over 12 distinguish stress point within the 99.5th-percentile
region. To this end, we repeat the estimation process multiple times with different
random-states. Then we compute the mean squared errors between the estimat-
ing excess losses and its corresponding target values evaluated by performing the
Monte-Carlo simulation with 10000 inner scenarios. The same process is performed
with the LSMC method. Overall results (Table 3.1) shows that the LSMC estimat-
ing method achieve slightly better convergence rate and higher efficiency than the
proposed method. We suspect that the less efficient estimating performance of our
approach is due to the fact that parametric models usually provide nice convergence
rates of the estimators. However, the discrepancy is relative small ensuring good
behavior of the estimators, except for the points (−0.21,−0.46) and (−0.3,−0.1)

which are close to the 99.5th-percentile region and suffer thus drawback concerning
the boundary effect. The last column in Table (3.1) shows the empirical probability
that the estimating asymptotic confidence interval covers the target value. It is
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Figure 3.9: Three smooth functional components h1(X1), h2(X2) and h12(X1 ×
X2) obtained by fitting with the third-degree P-splines and its corresponding 95%

Bayesian asymptotic confidence intervals.

Figure 3.10: Left : Plot of the resulting "normalized" Excess Loss function fitted by
the Least Square Monte-Carlo method and Right : Plot of the resulting "normalized"
Excess Loss function fitted by the Bayesian penalized spline method.
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Table 3.1: Empirical mean squared errors (×10−5) of different estimators evaluated
by the proposed fitting method and the LSMC method. The last column shows
the empirical probability that the estimating asymptotic confidence interval covers
the target value. Here we denote by δφ̂ = φ̂Spline − φ̂MC the deviation from the
estimator φ̂Spline to the target value φ̂MC , m the number of repeated calibration
process with different random states. In our case, we choose m = 100.

(X1, X2) ÊLSMC ÊBayesian 1
m

∑m
i=1 I

(
| δφ̂(·) |≤ ∆

(·)
1 + ∆

(·)
2 + ∆

(·)
12

)
(-0.24,-0.11) 3.47 12.45 100%
(-0.26,-0.24) 4.44 17,11 100%
(-0.25,0.76) 3.88 13.38 100%
(-0.16,0.32) 2.83 5.23 100%
(-0.14,-0.2) 4.29 16.24 100%
(-0.2, 0.24) 2.81 9.28 100%
(-0.17, 0.8) 4.05 10.37 100%
(-0.12,0.54) 3.12 15.2 100%
(-0.3, -0.1) 3.62 23.54 100%
(-0.21,-0.46) 6.61 45.22 86.23%
(-0.22,0.28) 2.84 4.78 100%
(-0.29,0.37) 2.85 4.51 100%

easily noted that almost all the interior points are well estimated. However, there is
an unexpected situation for the point (−0.21,−0.46) exhibiting poor performance
since it is subject to boundary effect.

3.5.3 Nested Simulations

We are ultimately interested in calculating the SCR estimated by Nested Simulations
method. It is of great important to know with accuracy how well the proposed fitting
method works for estimating the capital requirement.

To that end, we need:

1. A set of real world economic scenarios consistent with the market stresses used
to estimate the loss function.

2. For each of these real world scenarios, a set of risk neutral scenarios are gen-
erated. The number of inner loops can vary from a scenario to another. Es-
pecially increasing the number of inner loop in the tail of the distribution
increases the accuracy of the estimators calculated.

3. The total number of outer scenarios is equal to 10000. These outer scenar-
ios are composed of: 7000 scenarios selected from the 40th-percentile to the
95th-percentile of each market stress, 3000 tail scenarios in order to estimate
properly q̂0.5%(BOFt=1) the 0.5%-quantile of BOFt=1.
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4. Considering the available budget of calculation time, the number of inner
simulation per outer simulation is fixed as followed to optimize the information:
20 for the scenarios 1 to 7000 and 60 for the tail scenarios.

In Figure (3.11.a), we plot the economic Own Funds distribution at t = 1.
From this, we derive the empirical estimation of q̂0.5%(BOFt=1) = 54690.16 and
the empirical SCR estimated by the Nested Simulations method is thus equal to
ŜCRNS = 33743.83. In another simulation (see Figure (3.11.b)) of 100 different
samples of the same size from the same two distributions of the equity risk and the
interest rate level risk, we observe that the outcomes are skewed and the estimated
values of SCR distribute close to the "true" SCR.

Figure 3.11: (a) Histogram of Own Funds distribution at t = 1. (b) Box-whisker
plot of the ŜCR estimated with 100 different samples of the same size.
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In extreme value statistics, estimation of the tail-index is of importance in nu-
merous applications since it measures the tail heaviness of a distribution. Examples
include heavy rainfalls, big financial losses, high medical costs, just to name a few.
When covariate information is available, we are mainly interested in describing the
tail heaviness of the conditional distribution of the dependent variable given the
explanatory variables and the tail-index will be thus taken as a function of this co-
variate information. In many practical applications, the explanatory variables can
contain hundreds of dimensions. Many recent methods use concepts of proximity
in order to estimate model parameters based on their relation to the rest of the
data. However, in high dimensional space, the data is often sparse and the notion
of proximity fails to retain its meaningfulness. Therefore, this implies deterioration
in estimation. Having this problematic, we aim to overcome this challenge in the
context of the tail-index estimation given the explanatory variables.
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This chapter consists of two parts: The first part presents an overarching intro-
duction of extreme values theory, which is served as base for our proposed method-
ology. Then the mechanism of this methodology will be detailed in the second part.

4.1 Part I - Overview of Extreme Values Theory

Nowadays, modeling extreme events (hurricane, earthquake, floods, financial crises,
oil shocks, etc.) is a particularly active research field. In recent years, there has been
a growing interest in the application of Extreme Values Theory (EVT) for modeling
such events.

Predict certain events or behaviors from the study of extreme values of a se-
quence, is therefore one of the main goals for those trying to apply EVT. This
theory emerged between 1920 and 1940, thanks to Frechet, Fisher and Tippett,
Gumbel and Gnedenko. When modeling the maximum of a set of random variables,
then, under certain conditions that we will specify later, its distribution can only
belong to one of the three following laws: Weibull (with bounded support), Gumbel
(with unbounded support and with fine tails) and Fréchet (with unbounded support
and thick tails). These three laws define a family of statistical distributions called
"generalized extreme value distribution", whose applications are innumerable and
very diverse. We will limit ourselves in this report to related insurance risks.

The extreme values theory makes it possible to evaluate the rare events and
the losses associated with their appearance. In other words, when a significant
loss occurs, this theory makes it possible to evaluate its magnitude. Moreover,
this theory plays a particularly important role since it is directly interested in the
tail of the distribution. In fact, only the extreme data are used to estimate the
parameters of the EVT models which ensures a better fit of the model to the tail
of the distribution and therefore a better estimate of the Value-at-Risk (VaR). VaR
is a concept commonly used to measure the market risk of a portfolio of financial
instruments. It corresponds to the amount of losses that should only be exceeded
with a given probability on a given time horizon.

In the following, the material is for the most part borrowed from [27]. Therefore,
proofs are most often not given and readers are rather referred to the above references
for detailed proofs.

4.1.1 Generalized extreme value distribution

The extreme values theory aims to study the law of the maximum of a sequence
of real random variables even if, and especially if, the law of the phenomenon is
unknown. Formally, let us consider (X1, . . . , Xn) a sequence of n independent and
identically distributed random variables of distribution function FX .

To study the behavior of extreme events, let us consider the random variable
Mn = max(X1, . . . , Xn). Since the random variables are independent and identically
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distributed, then the distribution function of Mn is given by:

FMn(x) = P (Mn ≤ x) = P (X1 ≤ x; . . . ;Xn ≤ x) =

n∏
i=1

P (Xi ≤ x) = FnX(x). (4.1)

Equation (4.1) is of very limited interest. Moreover, the law of a random variable
X is rarely known precisely and, even if the law of this random variable is known
exactly, the law of the maximum term is not always easily calculable. For these
reasons, it is interesting to consider the asymptotic behaviors of the appropriately
standardized maximum.

Definition: We say that two real random variables X and Y are of the same
type if there are two real constants a and b such that Y and aX + b follow the same
law of distribution.

In a similar way to the central limit theorem, can we find normalization constants
an > 0 and bn and a non-degenerate law H such that:

P
(
Mn − bn

an
≤ x

)
= FnX(anx+ b)→ H(x) (4.2)

as n→∞ ?
Fisher and Tippett [37] find a solution to this problem by means of a theorem

which bears their name and which is one of the foundations of the theory of extreme
values.

Theorem 1 (Fisher - Tippett Theorem). If there are two sequences of normalization
constants with (an) > 0 and (bn) ∈ R and a non degenerate law of distribution H

such that
lim
n→∞

FMn−bn
an

(x) = H(x),

then H(x) is one of these three limits:

• Gumbel distribution: G0(x) = exp(− exp(−x)), x ∈ R

• Fréchet distribution: Φα(x) = exp (−x−α) I(0,∞)(x)

• Gumbel distribution: Ψα(x) = I[0,∞)(x) + exp (−(−x)α) I(−∞,0)(x).

Although the behavior of these laws of distribution is completely different, they
can be combined in a single parametrization containing a single parameter that
controls the thickness of the tail of distribution, which is called the tail-index of
extreme values:

Hγ(x) =

exp
(
−(1 + γx)

− 1
γ

)
, if γ 6= 0; 1 + γx > 0

exp(− exp(−x)), if γ = 0

where H is a non-degenerate function. This law of distribution is called the gener-
alized extreme values distribution (GEV). By introducing the location parameters
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µ and the dispersion σ into the parameterization, we obtain the most general form
of the generalized extreme value distribution (GEV):

Hγ,µ,σ(x) = exp

(
−
(

1 + γ
x− µ
σ

)− 1
γ

)
, γ 6= 0, 1 + γ

x− µ
σ

> 0 (4.3)

where γ is the shape parameter.
The Fisher-Tippett Theorem provides the counterpart of the Central Limit The-

orem (CLT) in the case of extreme events. However, unlike the CLT, where the nor-
mal distribution is the only possible limiting distribution. In the case of extremes,
three types of limiting distribution are possible:

• Gumbel distribution: γ = 0,

• Fréchet distribution: γ > 0 corresponds to the Fréchet parameter α = 1
γ ,

• Weibull distribution: γ < 0 corresponds to the Weibull parameter α = − 1
γ .

The GEV-based approach has been criticized as the use of a single maxima
leads to a loss of information contained in the other large values of the sample. To
overcome this problem, the Peak-over-Threshold method (POT) was introduced in
Pickands [89].

4.1.2 Peak-over-threshold method

The Peak-Over-Threshold (POT) method is based on the behavior of observed values
beyond a given threshold. In other words, it consists in observing not the maximum
or the greatest values but all the values of the realizations which exceed a certain
high threshold. The basic idea of this approach is to choose a sufficiently high
threshold and study the excesses beyond this threshold.

We define a threshold u ∈ R, Nu = card{i : i = 1, . . . , n,Xi > u}, and Yj =

Xi−u > 0 for 0 ≤ j ≤ Nu where Nu is the number of exceedances over the threshold
u by the {Xi}i=1,...,n and {Yj}j=1,...,Nu are the corresponding excesses.

We seek from the distribution FX to define a conditional distribution Fu with
respect to the threshold u for the random variables exceeding this threshold. We
then define the conditional law of excess Fu by:

Fu(y) = P(X − u ≤ y |W > u) =
FX(y + u)− FX(u)

1− FX(u)

The Pickands-Balkema-de Haan theorem [6,89] below gives the form of the limiting
distribution for extreme values: under certain convergence conditions, the limiting
distribution is a generalized Pareto distribution that we note GPD.

Theorem 2 (Pickands-Balkema-de Haan theorem). A distribution function F be-
longs to the maximum domain of attraction of Hγ if and only if, there exists a
positive function σ(u) such that:

lim
u→xF

sup
0≤y≤xF−u

∣∣Fu(y)−Gγ,σ(u)(y)
∣∣ = 0 (4.4)
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where Fu is the conditional distribution function of the excesses for the threshold u,
xF is the end point of FX , xF = sup{x ∈ R : FX(x) < 1} and Gγ,σ(u)(y) is the
GPD given by:

Gγ,σ(u)(y) =

1−
(

1 + γ y
σ(u)

)− 1
γ
, if γ 6= 0

1− exp
(
− y
σ(u)

)
, if γ = 0

(4.5)

with y ≥ 0 for γ ≥ 0 and 0 ≤ y ≤ −σ(u)
γ for γ < 0.

This theorem shows the existence of a close relationship between the GPD and
the GEV (Generalized Extreme Value); Pickands [89] has shown that for any dis-
tribution FX , the GPD approximation defined above is verified only if there are
normalization constants and a non-degenerate law such as Eq. (4.2) is satisfied. In
this case, if H is written in the form of a GEV, then the tail index γ is the same as
that of the GPD.

Similarly, for the GPD, the case where γ > 0 corresponds to the distributions
with thick tails, for which 1 − G behaves like a power x−

1
γ for x large enough. If

γ = 0, we have 1− exp
(
− y
σ(u)

)
: it is an exponential law of parameter σ and finally

γ < 0, it is the type-II Pareto distribution with bounded support.
The GPD has the following properties:

E(Y ) =
σ

1− γ
, γ < 1 (4.6)

V (Y ) =
σ2

(1− γ)2(1− 2γ)
, γ <

1

2
. (4.7)

In practice, the choice of the threshold constitutes a difficulty. In fact, u must be
large enough for the GPD approximation to be valid, but not too high to keep
enough overruns to estimate model parameters. The threshold must be chosen so
as to make a traditional arbitration between the bias and the variance.

Generally, u is determined graphically by exploiting the linearity of the mean
excess function e(u) for the GPD [34]. The function of average excess is given by
the relation:

e(u) = E (X − u | X > u) =
σ + γu

1− γ
, γ < 0.

This technique provides valuable help. However, one should not expect from it the
good value of u. In practice, several values of u must be tested. This problem of
choice has aroused many works in the literature. Beirlant et al. [10] suggest choos-
ing the threshold u that minimizes the asymptotic mean squared error of the Hill
index estimator, while assuming that FX belongs to Fréchet’s maximum attraction
domain.

4.1.3 Example of limiting distributions

In this subsection, we propose three examples illustrating how the limit distributions
of the GEV and the GPD manifest themselves in practice, taking into account
different assumptions about the distribution FX .



76
Chapter 4. Sparse group lasso additive modeling for Pareto-type

distributions

Exponential distribution

For the exponential law of parameter λ = 1, the distribution function is FX(x) =

1− e−x for x ≥ 0. By posing bn = ln(n) and an = 1 then,

FnX(anx+ b) =

(
1− e−x

n

)n
→ exp

(
−e−x

)
= G0(x) (4.8)

as n→∞.
This shows that the normalized maximum (Mn − bn)/an of the exponential

distribution converges to Gumbel distribution. With regard to the POT method,
taking σu = 1, then, for all y > 0,

Fu(y) =
FX(y + u)− FX(u)

1− FX(u)

= 1− e−y.

Also, the limiting distribution is the GPD of parameter γ = 0 with σu = 1. Note
that in this case, the GPD is not simply the limiting distribution, but it is the exact
distribution for every u.

Pareto distribution

For the distribution function FX(x) = 1− cx−α, where c > 0 and α > 0. By posing
bn = 0 and an = (nc)1/α then we have for x > 0:

FnX(anx+ b) =

(
1− x−α

n

)n
→ exp

(
−x−α

)
= Φα(x) (4.9)

which is the Fréchet distribution. Pareto distribution belongs to Fréchet’s domains
of attraction.

Based on the POT method with the threshold u and considering σu = ub for
b > 0, then we have

Fu(y) =
FX(u+ uby)− FX(u)

1− FX(u)

= 1− (1 + by)−α

which is the GPD with γ = 1/α and b = γ.

Normal distribution

Let FX(x) = 1√
2π

∫ x
−∞ e

−t2/2dt be the normal cumulative distribution function. A
mathematical result says that 1 − F (x) ∼ 1

x
√

2πe−x2/2
in the neighborhood of +∞,

therefore:

lim
u→∞

1− FX (u+ z/u)

1− FX(u)
= lim

u→∞

[(
1 +

z

u2

)−1
exp

(
−1

2

(
u+

z

u

)2
+

1

2
u2

)]
= e−z

(4.10)
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If we assume at first that βu = 1
u , then

1− 1− FX(u+ z/u)

1− FX(u)
=
FX(u+ βuz)− FX(u)

1− FX(u)
→ 1− e−z, u→ +∞

and subsequently the limiting distribution of the excesses beyond a threshold u is
the exponential distribution.

In a second time if we consider bn, the solution of the equation FX(bn) = 1− 1
n ,

and an = 1
bn
, we obtain

n [1− FX(anx+ bn)] =
1− FX(anx+ bn)

1− FX(bn)
→ e−x.

And then

lim
n→∞

FnX(anx+ bn) = lim
n→∞

(
1 +

e−x

n

)n
→ exp

(
−e−x

)
= G0(x)

4.1.4 Statistical Estimation

Referring to the literature, various methods that have been proposed to estimate the
parameters of the GEV and GPD laws are noted, the maximum likelihood method
[103], the method of moments [24] the probability weighted moments method [4],
or Bayesian methods [79]. There are also nonparametric approaches for estimating
the tail index. The most used in practice are the Pickands estimator [89], the Hill
estimator [53] (for the case of Frechet type laws only) and the Dekkers-Einmahl De
Hann estimator [28]. The most popular method that under certain conditions is the
most effective is the maximum likelihood method.

In what follows, we will first present this last parametric estimation method for
the GPD. Subsequently, we will present the value-at-risk estimate using an approach
based on the Peak Over Thershold (POT) method. And finally, we will present
another non-parametric method, the McNeil and Frey [81] model that applies to
financial data. For a more complete description, see Embrechts et al. [34].

4.1.4.1 Estimation of GPD parameters by maximum likelihood

Consider again the GPD whose the density function is given by:

g(y) =
1

σ

(
1 + γ

y

σ

)− 1
γ
−1

(4.11)

for y ≥ 0 if γ > 0, and 0 ≤ y ≤ −σ
ξ if γ < 0.

The estimation of the GPD, by the method of maximum likelihood, relates to
the tail index γ as well as the scale parameter σ. The expression of the log-likelihood
is therefore

l(Y ; γ, σ) = −Nu ln (σ)−
(

1 +
1

γ

) Nu∑
i=1

ln
(

1 + γ
yi
σ

)
(4.12)
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for a sample of excesses Y = (y1, . . . , yNu). From this, by taking the derivatives with
respect to each parameter, we obtain the maximum likelihood estimator (MLE),
from θ̂ = (γ̂, σ̂).

For γ > −1
2 , Smith [101, 102], Hosking and Wallis [55] prove that the regular-

ity conditions of the likelihood function are fulfilled and the maximum likelihood
estimator results in an unbiased, asymptotically normal estimator.

4.1.4.2 Estimate of the Value-at-Risk or the extreme quantile

Recall that the distribution of excesses beyond sufficiently high threshold u is

Fu(y) = P (X − u ≤ y | X > u) =
F (u+ y)− F (u)

1− F (u)
=
F̄ (u)− F̄ (u+ y)

F̄ (u)
, y ≥ 0

(4.13)
where F̄ = 1− F . This can be rewritten as

Fu(y)F̄ (u) = F̄ (u)− F̄ (u+ y). (4.14)

This is equivalent to

F̄ (u+ y) = F̄ (u)− Fu(y)F̄ (u) = F̄ (u)F̄u(y). (4.15)

Thanks to the Pickands-Balkema-de Haan theorem, we have

F̄u(y) ≈
(

1 + γ
y

σ(u)

)− 1
γ

, y ≥ 0 (4.16)

as u→∞. This approximation makes it possible to propose an estimator for F̄u(y),
which is of the form

ˆ̄Fu(y) =

(
1 + γ̂

y

σ̂(u)

)− 1
γ̂

. (4.17)

A natural estimate of F̄ (u) is the empirical estimator

ˆ̄Fn(u) =
1

n

n∑
i=1

I{Xi>u} =
Nu

n
(4.18)

where Nu is the number of exceedances.
The estimator results from the tail F̄ (u+ y) = F̄ (x) (for) and therefore has the

form:
ˆ̄F (u+ y) = ˆ̄Fn(u) ˆ̄Fu(y) =

Nu

n

(
1 + γ̂

y

σ̂(u)

)− 1
γ̂

. (4.19)

By inverting this equation, we obtain the quantile estimator

x̂p = u+
σ̂

γ̂

[(
n

Nu
(1− p)

)−γ̂
− 1

]
(4.20)

for p > F (u). Finally, the Value-at-Risk (VaR) is nothing other than the extreme
quantile calculated from the asymptotic extreme distribution (Generalized Pareto
Distribution), obtained by modeling extreme losses (or profits) by the POT method.
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4.1.5 Characterisation of Maximum Domains of Attraction

Before jumping into the second part of this chapter, let us recall the characterisation
of maximum domains of attraction. However, we will mainly focus on the maximum
domain of attraction of Fréchet, or MDA(Fréchet), since we are only interested in
heavy-detailed distributions. For more information, readers can refer to [95].

The characterisation of maximum domains of attraction actually relies on the
theory of regular-varying functions [16]. A positive function U is regularly-varying
with index δ ∈ R at infinity if

lim
x→∞

U(λx)

U(x)
= λδ (4.21)

for all λ > 0. This property is denoted by U ∈ RVδ.
The following theorem (see Theorem 4 in [42]) tells us how the distribution

function F looks like if F belongs to MDA(Fréchet).

Theorem 3. F belongs to MDA(Fréchet) if and only if F̄ = 1 − F is regularly
varying with index −1/γ. The associated extreme-value index is γ. Moreover, a
possible choice for the normalizing sequences is an = F←(1− 1/n) and bn = 0.

Let us highlight that necessarily the endpoint of F is infinite. The distribution
F is called a Pareto-type distribution if F has the following form:

F̄ (y) = 1− F (y) = y
− 1
γL(y), y > 0 (4.22)

for some slowly varying function L : (0,∞)→ (0,∞) measurable so that

L(λy)

L(y)
→ 1 as y →∞, ∀λ > 0.

Interestingly, the theorem above shows that the all Pareto-type distributions belong
to MDA(Fréchet).

4.2 Part II - Sparse group lasso additive modeling for
conditional Pareto-type distributions

In the context of financial and actuarial modeling, the observations very often de-
pend on the other parameters, such as business line, risk profile, seniority, etc.
However, all these studies assume that the tail-index is constant regardless of these
variables. Many recent studies, for example [23,117], emphasized that the tail-index
could be function of these explanatory variables. But none of the previously men-
tioned studies provide a way to estimate the tail-index parameter conditionally to
these variables. As far as we can tell, in the context of financial and actuarial mod-
eling, only three studies have been undertaken to provide methods to estimate the
tail-index parameter conditionally to covariates. Beirlant and Goegebeur [9] propose
a local polynomial estimator in the case of a one-dimensional covariate. When the



80
Chapter 4. Sparse group lasso additive modeling for Pareto-type

distributions

dimension of the covariate increases, this method becomes less effective since the
convergence rate of the estimator decreases rapidly. To improve the performance
of the estimator, a solution would be to increase the size of data, but this would
be problematic in practice since the database could not be easily enlarged. Then,
Chavez-Demoulin et al. [22] propose an additive structure with spline smoothing to
estimate the relationship between the GDP parameters and covariates. Recently,
Heuchenne et al. [52] approach suggests a semi-parametric methodology to estimate
the tail-index parameter of a GPD.

In practice, many financial and actuarial data modeling problem may depend
upon several explanatory variables, which might make direct tail-index parameter
estimation less accurate, or even impossible. One technique to reduce dimension is
sparse group lasso, which was introduced by Simon et al. [100]. Motivated both by
the advances about the work of Chavez-Demoulin et al. [22] and the sparse group
lasso method, we investigate a variable-selecting method to estimate the tail-index
parameter conditionally to covariates.

Here is the section layout. We recall first some general results regarding the
Peaks-over-Threshold (POT) methodology given covariates, and present the gener-
alized additive model (GAM) in Section (4.2.1). In Section 4.2.1.4, we introduce
the sparse group lasso regression and propose a computational algorithm, which is
built upon a theoretical property of our statistical model. Finally, we conduct a
simulation study to assess the finite sample performance of the proposed method
in Section 4.2.2. At the end of this section, we carry out a comparative study with
the local polynomial estimation proposed by Beirlant and Goegebeur [9]. Some
concluding remarks are made in Section ??.

4.2.1 Methodology

4.2.1.1 Asymptotic conditional distribution in the POT technique

In this section, we will recall the POT method (see, for instance, [26, 75]) when
covariate information is available. Define a set of covariate X ⊂ Rp. In this paper,
we assume that the design points xi = (x

(1)
i , . . . , x

(p)
i ) ∈ X for i = 1, . . . , n are fixed.

Let us consider (Yi,xTi )1≤i≤n where Yi is a random variable whose distribution
function is of the form F (y|xi) = P (Yi ≤ y|xi) of the type (4.22) with some L(y|xi).
Namely,

1− F (y|xi) = y−1/γ∗(xi)L(y|xi). (4.23)

Moreover, for some threshold function un(xi) > 0, we define the conditional distri-
bution of Yi − un(xi) given Yi > un(xi) as follows :

Fun(xi)(z|xi) = P (Yi − un(xi) ≤ z|Yi ≥ un(xi)) =
F (un(xi) + z|xi)− F (un(xi)|xi)

1− F (un(xi)|xi)
.

Gnedenko (see Theorem 4 in [42]) showed the equivalent between (4.23) and
F (·|xi) ∈ D(Hγ∗(xi)). Then, according to the Pickands theorem [89], we have,
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for ∀i ∈ {1, . . . , n},

lim
un(xi)→∞

sup
0≤z≤∞

|Fun(xi)(z|xi)−G (z; γ∗(xi), σ∗(xi))| = 0 (4.24)

where G(z; γ, σ) is the GPD. This means that, by taking un(xi) large enough, the
distribution of the excesses over un(xi) is sufficiently close to a GPD with the pa-
rameters γ∗(xi) and σ∗(xi). Hence, we approximate the condition distribution of
Yi−un(xi) given Yi > un(xi) by a GPD with the parameters γ∗(xi) and σ∗(xi) and
all observations that exceed a specified high threshold are used to estimate γ∗(xi).
However, since the conditional distribution of Yi − un(xi) given xi is not exactly a
GPD, this consideration will imply a misspecification error in the estimation, which
is more difficult to assess.

To be more precise, let us denote by g(z; γ, σ) the density function of G(z; γ, σ)

being of the form

g(z; γ, σ) =
1

σ

(
1 + γ

z

σ

)− 1
γ
−1
,

Let us define Mxi(γ, σ) = E(γ∗(xi),σ∗(xi)) [log g (Zi; γ, σ) |xi] the minus information
cross entropy [98] where Zi given xi exactly follows a GPD with the shape parameters
γ∗(xi) and σ∗(xi) and E(γ∗(xi),σ∗(xi)) denotes the expectation with respect to the
true parameters (γ∗(xi), σ∗(xi)). Clearly, we have

(γ∗(xi), σ∗(xi)) = arg max
(γ,σ)∈R∗+×R∗+

Mxi(γ, σ) for every i = 1, . . . , n (4.25)

as a result of the Kullback–Leibler divergence [71] between g(z; γ, σ) and
g(z; γ∗(xi), σ∗(xi)). Following the idea mentioned previously, we define
Mun(xi)(γ, σ) = E [log g(Yi − un(xi); γ, σ)|xi, Yi ≥ un(xi)] the expectation of the ap-
proximative log-likelihood log g(Yi − un(xi); γ, σ) given Yi > un(xi). Thanks to the
equations (4.24) and (4.25), one can see that

(
γ∗un(xi) (xi) , σ∗un(xi) (xi)

)
, which are

defined by(
γ∗un(xi) (xi) , σ∗un(xi) (xi)

)
= arg max

(γ,σ)∈R∗+×R∗+
Mun(xi)(γ, σ), for every i = 1, . . . , n

are the approximations of (γ∗(xi), σ∗(xi)) for every i = 1, . . . , n. In order to obtain
the consistency and asymptotic normality of

(
γ∗un(xi) (xi) , σ∗un(xi) (xi)

)
, we have to

impose a further condition on the behavior of the function L(y|xi) as follows.
Condition (S): For every i = 1, . . . , n, L(tz|xi)

L(z|xi) = 1 + φ(z|xi)c(xi)
∫ t

1 s
ρ(xi)−1ds+

o (φ(z|xi)) as z → ∞ for each t > 0, with φ(z|xi) > 0 and φ(z|xi) → 0 as z → ∞
and ρ(z|xi) ≤ 0.

The above condition corresponds to the condition C.6 in Beirlant and Goegebeur
[9]. Furthermore, this condition is equivalent to the second order condition (see
Definition 2.3.1 and Theorem 2.3.9 in [27]). Under the second order condition,
de Haan and Ferreira [27] showed that the asymptotic normality of the maximum
likelihood estimates holds for γ∗(xi) > −1

2 (please refer to Section 3.4 in [27] for
more details).
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With a slight abuse of notation, we will use (γ∗(x), σ∗(x)) to represent the
misspecified shape parameter (γ∗un(x)(x), σ∗un(x)(x)) for the rest of this paper.

4.2.1.2 Generalized Additive Model (GAM)

Recall that our main purpose is to describe the tail-heaviness of the conditional
distribution of the dependent variable Y given the predictor x ∈ Rp. As consequence,
the tail-index is taken as functions of the covariate x. As previously mentioned in
the introduction, Beirlant and Goegebeur [9] considered the POT approach and
proposed the technique of local polynomial estimation to fit the shape parameter
(γ∗(x), σ∗(x)) and their corresponding derivatives up to the degree of the chosen
polynomial. However, it is difficult to reproduce the forms of γ∗(x) and σ∗(x)

with high-dimensional covariates. This is the so-called "curse of dimensionality"
problem, which is due to the fact that data points are isolated in their immensity
and the notion of nearest points vanishes with such data. This thus implies the
rapid deterioration in convergence rate. On the other hand, the more regular γ∗(x)

and σ∗(x) are, the easier the regression functions are to estimate. The absence of
hypothesis on the form of the regression functions leads to a speed of convergence
depending on the number of explanatory variables. To overcome this difficulty, we
can make stronger assumptions about the form of γ∗(x) and σ∗(x), which brings us
back to the case of parametric models and methods. However, these models lack
flexibility for our problem.

Generalized additive models, introduced by Hastie and Tibshirani [49], can com-
promise the flexibility of non-parametric models and the non-dependence of the
speed of convergence of estimators with respect to the number of components of
parametric models. Since γ∗(x) and σ∗(x) are positive functions, we then introduce
our generalized additive model as follows:

γp,∞(x) = exp

γ0 +

p∑
j=1

γj(x
(j))

 (4.26)

σp,∞(x) = exp

σ0 +

p∑
j=1

σj(x
(j))

 (4.27)

where each additive function {γj(·), σj(·)}pj=1 belongs to the Sobolev space of con-
tinuously differentiable functions. In order to ensure the identification we assume
that for every j = 1, . . . , p the additive functions {γj , σj} are centered, i.e.

n∑
i=1

γj

(
x

(j)
i

)
= 0,

n∑
i=1

σj

(
x

(j)
i

)
= 0 (4.28)

Supposing that log γ∗(x) and log σ∗(x) are additive will introduce a bias in the
estimation, but this assumption is less restrictive than assuming a parametric form
on the regression functions, so the modelling error is lower (see, for example [107],
for more details about the additive approximation error).
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4.2.1.3 Natural cubic splines expansion

The model presented in (4.26) and (4.27) is still nonparametric and the estimation
is therefore a problem of infinite dimension. We make it finite by expanding each
additive functional components in natural cubic spline (NCS) bases with a reason-
able amount of knots Kj for j = 1, . . . , p. Indeed, as pointed in Section 4.3.2, for
any regular functions f , we can always find a best spline approximation f̈ of f to
minimize ‖f̈ − f‖∞. The error in approximating f by f̈ is usually small, thus in
practice we estimate f̃ instead of f . An usual choice would be to use Kj − 4 �

√
n

interior knots. For the sake of simplicity, we consider that every coupled-additive
function {(γj(·), σj(·))}pj=1 will be expanded in the same base. Thus, we parametrize

γj(·) =

Kj∑
k=2

θj,k

(
hj,k(·)−

1

n

n∑
i=1

hj,k

(
x

(j)
i

))
, σj(·) =

Kj∑
k=2

θ
′
j,k

(
hj,k(·)−

1

n

n∑
i=1

hj,k

(
x

(j)
i

))

where hj,k : R→ R+ is the natural cubic spline basis function constructed on the set
of the predefined interior knots {ξ(j)

1 , . . . , ξ
(j)
Kj
} satisfying ξ(j)

1 ≤ · · · ≤ ξ
(j)
Kj

. Namely,
these natural cubic spline basis functions are of the form

hj,1(x) = 1, hj,2(x) = x, hj,k+2(x) = dk(x)− dKj (x) ∀k = 1, . . . ,Kj − 2

with dk(x) =
(x−ξk)3

+−(x−ξKj )3
+

ξKj−ξk
. Clearly, this parametrization of the functional com-

ponents (γj(·), σj(·)) verifies the centering conditions given in (4.28). To simplify
our notation, let us define

h̃j,k(·) =

(
hj,k(·)−

1

n

n∑
i=1

hj,k

(
x

(j)
i

))
, ∀j = 1, . . . , p, ∀k = 1, . . . ,Kj .

In the following, we denote by β0 and θ0 the intercept term instead of γ0 and σ0

to synchronize the notation with the coefficients θj,k, θ
′
j,k as presented previously.

Finally, our statistical model is defined as

γ(x) = exp

θ0 +

p∑
j=1

Kj∑
k=2

θj,kh̃j,k

(
x(j)
) (4.29)

σ(x) = exp

θ′0 +

p∑
j=1

Kj∑
k=2

θ
′
j,kh̃j,k

(
x(j)
) (4.30)

To sum up, the following diagram sets out the whole approximation scheme:
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4.2.1.4 Sparse group lasso estimation

For notational simplicity, we denote by ϕ =
(
θ0,θ

T , θ
′
0,θ

′,T
)
the entire parameter

vector where θ =
(
θT1 , . . . ,θ

T
p

)T , θ′ =
(
θ
′,T
1 , . . . ,θ

′,T
p

)T
with θj =

(
θj,2, . . . , θj,Kj

)T
and θ′j =

(
θ
′
j,2, . . . ,θ

′
j,Kj

)T
for every j = 1, . . . , p. This high-dimensional parame-

ter vector carries a group structure where the parameter is partitioned into disjoint
pieces. This usually occurs when dealing with expansions in high-dimensional addi-
tive models as discussed in Section 4.2.1.2. The goal is high-dimensional estimation
in generalized additive models being sparse with respect to whole group. Clearly, the
parameter vector ϕ can be structured into groups G0,G1, . . . ,Gp and G̃0, G̃1, . . . , G̃p
which build a partition of the index set {1, . . . , 2 + 2

∑p
j=1(Kj − 1)}. That is,

p⋃
j=0

(Gj ∪ G̃j) = {1, . . . , 2 + 2

p∑
j=1

(Kj − 1)}

and the intersection of any distinct groups is an empty set. Each of the groups is
defined in the following way:

θ0 = ϕG0 , θj = ϕGj , θ
′
0 = ϕG̃0

, θ
′
j = ϕG̃j , ∀j = 1, . . . , p.

Under this notation, the equations (4.29) and (4.30) can be rewritten as

γ(x|ϕ) = exp

 p∑
j=0

ϕGj h̃Gj

(
x(j)
) (4.31)

σ(x|ϕ) = exp

 p∑
j=0

ϕG̃j h̃G̃j

(
x(j)
) (4.32)

with h̃G0(·) = h̃G̃0
(·) = 1.

Let yi ∈ R be a realisation of Yi. We define in the sequel the empirical loss
function as follows

Pnl(ϕ|un(·)) = − 1

n

n∑
i=1

log g (yi − un(xi); γ(xi|ϕ), σ(xi|ϕ)) I(yi ≥ un(xi)). (4.33)

By minimizing this empirical loss function, we could obtain an estimate of the model
parameters ϕ. However, there are two main reasons why a practitioner is often not
satisfied with this estimating approach. The first reason is prediction accuracy: the
estimators often have low bias but large variance, especially when p� n. Shrinking
some coefficients to 0 could improve the estimators quality. Indeed, we sacrifice
a little bias to reduce the variance of the estimators. This allows to balance the
bias-variance trade-off which may improve the overall prediction accuracy. The
second reason is related to the interpretation. We prefer to bring out a smaller
subset among a large number of predictors that exhibits the strongest effects. In
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other words, we would like to identify the principal explanatory variables having the
strongest impact on the determination of the tail index parameters. To this end,
Yuan and Lin [120] suggested the group lasso penalty for this problem. Moreover,
we would like not only sparsity of groups but also within each group. Indeed, there
are so many coefficients to calibrate in the model. By doing so it allows to omit
negligible coefficients and eliminate perturbative effects. Therefore, we combine
both the group lasso criterion and the l1 penalty proposed by Tibshirani [110].

Namely, for some constants λ1, λ2, µ1, µ2 > 0, defining

pen (ϕ|λ,µ) = λ1

p∑
j=1

√
Gj‖ϕGj‖2+λ2

p∑
j=1

‖ϕGj‖1+µ1

p∑
j=1

√
Gj‖ϕG̃j‖2+µ2

p∑
j=1

‖ϕG̃j‖1

(4.34)
where Gj ≡ |Gj | = |G̃j | denotes the cardinality of the group Gj , as well as of the
group G̃j , λ = (λ1, λ2)T and µ = (µ1, µ2)T .

The regression model that we consider to estimate (γ(x|ϕ), σ(x|ϕ)) is defined
by

ϕ̂(un(·),λ,µ) = arg min
ϕ

{Pnl(ϕ|un(·)) + pen (ϕ|λ,µ)} . (4.35)

Note that this latter one is not exactly the penalized log-likelihood estimation since
the true conditional distribution of Yi − un(xi) given Yi > un(xi) is not a GPD as
mentioned in Section 4.2.1.1.

4.2.1.5 Algorithm for the sparse group lasso

In this section, we will use ϕ̂ to designate the estimator ϕ̂(un(·),λ,µ) for nota-
tional simplicity. Furthermore, for the later use, we need to define the following
parameters: sj = ϕ̂Gj/‖ϕ̂Gj‖2 if ϕ̂Gj 6= 0 (i.e. not equal to the 0-vector) and sj is
a vector satisfying ‖sj‖2 ≤ 1 if ϕ̂Gj ≡ 0, and tj,k ∈ sign((ϕ̂Gj )k) if (ϕ̂Gj )k 6= 0 and
tj,k ∈ [−1, 1] otherwise. By interchanging Gj with G̃j , we obtain the similar defini-
tion for uj and vj,k. Besides, we denote by ϕ̂−Gj the ϕ̂-vector whose components
in Gj are set to zero, by ϕ̂Gj ,−k the ϕ̂-vector where only the kth component in the
group Gj is set to zero.

For later use, let us denote by Φ a nonempty subset of R2(1+
∑p
j=1(Kj−1)) con-

taining the optimal vector of model parameters ϕ̂(un(·),λ,µ). As a consequence
of the Karush-Kuhn-Tucker (KKT) conditions (see, for example, [14]), we have the
following result, which is an important characterization of the optimal solution ϕ̂
in (4.35).

Lemma 1. Assume that Pnl(ϕ) is locally convex1 on Φ. Then, the necessary and
sufficient conditions for ϕ̂ to be a solution of (4.35) are

∂Pnl(ϕ̂)

∂ϕG0

= 0 (4.36)

1Regarding the definition of a locally convex function and its related details, readers can refer
to, for example, [76].
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∂Pnl(ϕ̂)

∂ϕG̃0

= 0 (4.37)

[
∇Pnl(ϕ̂)Gj

]
k

+ λ1

√
Gj(sj)k + λ2tj,k = 0 (4.38)[

∇Pnl(ϕ̂)G̃j

]
k

+ µ1

√
Gj(uj)k + µ2vj,k = 0 (4.39)

for every j = 1, . . . , p and k = 2, . . . ,Kj where ∇Pnl(ϕ̂)Gj (respectively for
∇Pnl(ϕ̂)G̃j ) denotes the gradient vector of Pnl(ϕ) with respect to ϕGj (respectively
for ϕG̃j ) at ϕ̂, and sj ,uj , tj,k, vj,k are defined above.

The proof of this lemma will be given in Appendix 4.3.1. These first deriva-
tive tests (4.36 - 4.39) can give insight into the sparsity of groups and within
each group. Indeed, the necessary and sufficient condition for ϕ̂Gj ≡ 0 is that
the equation

[
∇Pnl(ϕ̂−Gj )Gj

]
k

+ λ1

√
Gj(sj)k + λ2tj,k = 0 has a solution with

‖sj‖2 ≤ 1 and tj,k ∈ [−1, 1] for every k ∈ Gj . To this end, we define J(tj ; ϕ̂−Gj ) =

1
λ2

1Gj

∑
k∈Gj

([
∇Pnl(ϕ̂−Gj )Gj

]
k

+ λ2tj,k

)2
= ‖sj‖22. Let us denote by t̂j the mini-

mizer of J(tj , ϕ̂−Gj ). If J(t̂j , ϕ̂−Gj ) ≤ 1, then ϕ̂Gj ≡ 0. Otherwise, ϕ̂Gj is not
identically equal to the 0-vector. Moreover, it is easily seen that the minimizer is of
the form:

t̂j,k =

−
[
∇Pnl(ϕ̂−Gj )Gj

]
k

λ2
, if |

[
∇Pnl(ϕ̂−Gj )Gj

]
k

λ2
| ≤ 1

−sign
([
∇Pnl(ϕ̂−Gj )Gj

]
k

)
, otherwise

(4.40)

With a little bit of algebra, we can show that J(t̂j , ϕ̂−Gj ) ≤ 1 is equivalent to

‖S
(
∇Pnl(ϕ̂−Gj )Gj , λ2

)
‖2 ≤ λ1

√
Gj

with S(·) the coordinate-wise soft thresholding operator:

(S (z, λ))i = sign(zi) (|zi| − λ)+ , z ∈ RGj , λ ∈ R+.

If ϕ̂Gj 6= 0, we apply the coordinate descent algorithm to find its element
(
ϕ̂Gj

)
k
.

The logic of the coordinate descent procedure is as follows: if
(
ϕ̂Gj

)
k
6= 0, then the

equation
[
∇Pnl(ϕ̂)Gj

]
k

+ λ1

√
Gj
(
ϕ̂Gj

)
k
/‖ϕ̂Gj‖ + λ2sign(

(
ϕ̂Gj

)
k
) = 0 must have

a solution. This latter one leads to the inequality |
(
∇Pnl(ϕ̂)Gj

)
k
| > λ2. This

follows easily by examining the case where
(
ϕ̂Gj

)
k
is strictly positive and negative.

Therefore, check if |
(
∇Pnl(ϕ̂Gj ,−k)Gj

)
k
| ≤ λ2 and if so set

(
ϕ̂Gj

)
k

= 0. Otherwise,
we minimize the equation (4.35) over (ϕGj )k by a one-dimensional optimization to
get

(
ϕ̂Gj

)
k
.

It is natural to think of a generalized gradient descent method to get the opti-
mal solution. This consideration thus leads to the computation presented in 4.3.3.
According to this algorithm, the optimal solution can be found by cycling through
the groups G0 → G1 → · · · → G̃p → G0. Within each iterative steps, we optimize the
objective function (4.35) by solving the equations (4.36 - 4.39) with respect to the
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current group Gj (or G̃j) while keeping all except for the group fixed. This is called
the block coordinate descend algorithm, as proposed by Friedman et al. [39].

As presented earlier, we considered the coordinate descent procedure to fit the
model within group. As pointed out by Simon et al. [100], this algorithm provides
a poor performance in terms of timing and accuracy2. To overcome this drawback,
they propose a block-wise descent algorithm which makes stride in performance.
Inspired by this idea, we extend the fitting algorithm to our statistical model. Since
our penalty (4.34) is separable between groups, we will only focus on an arbitrary
one, saying Gj and the algorithm will be applied on the same principal for the others.
Therefore, we consider the other group coefficients as fixed and ignore the penalties
corresponding to these groups. With a slight abuse of notation, we denote in the
following our loss function Pnl(ϕGj ) taking ϕGj as parameter to minimize over.

We start with the majorization minimization scheme. This means that we ma-
jorize the empirical loss function and then minimize the upper bound, together with
the penalty. Namely, the empirical loss function is majorized by

Pnl
(
ϕGj

)
≤ Pnl

(
ϕ0
Gj

)
+
(
ϕGj −ϕ0

Gj

)T
.∇Pnl

(
ϕ0
Gj

)
+

1

2t
‖ϕGj −ϕ0

Gj‖
2
2

where ϕ0
Gj is a vector parameter to be determined at a later point and t is sufficiently

small so that the quadratic term dominates the Hessian of the loss function for
every ϕGj ∈ Φj with Φj the set of vectors parameter containing the target vector of
coefficients.

We will omit the demonstration since it is given in [100]. Finally, we get that if
‖S
(
ϕ0
Gj − t∇Pnl(ϕ

0
Gj ), tλ2

)
‖2 ≤ tλ1

√
Gj , then ϕ̂Gj ≡ 0. Otherwise,

ϕ̂Gj = F(ϕ0
Gj , t) =

1−
tλ1

√
Gj

‖S
(
ϕ0
Gj − t∇Pnl(ϕ

0
Gj ), tλ2

)
‖2


+

S
(
ϕ0
Gj − t∇Pnl(ϕ

0
Gj ), tλ2

)

To get the optimal solution, we cyclically iterate the procedure through the blocks.

At each iterative step, we update
(
ϕ0
Gj

)(m)
= ϕ̂

(m−1)
Gj . By introducing a momentum

term in the gradient updates, Nesterov [83] showed that this modification can have
a huge improvement in terms of convergence rate. As also suggested by Simon et
al. [100], we present here Algorithm 1 for the blockwise descent fitting method.

4.2.1.6 Refitting step

A well-known drawback of l1-penalized estimators is the systematic shrinkage of the
large coefficients towards zero. This may give rise to a high bias in the resulting
estimators and may affect the overall conclusion about the model (see, for example,

2For the reason mentioned above, we will no longer discuss the performance of the Block Co-
ordinate descent algorithm (or the accelerated generalized gradient descent algorithm) in the rest
of this paper. However, interested readers can can refer to Appendix 4.3.3 where the pseudo-code
version of this algorithm is provided, in order to facilitate its implementation
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Algorithm 1 Block-wise Descent Algorithm
1: Set up with the initial parameter vector ϕ̂(0) and the loop index m = 0.
2: Increase m by one: m ← m + 1 and cycle the optimization procedure through

the groups:
(2.1) Set ϕ̂(m) = ϕ̂(m−1).
(2.2) Regarding j = 0, if ∇Pnl(ϕ̂(m)

−G0
)G0 = 0: set ϕ̂(m)

G0
= 0, and for j =

1, . . . , p, if ‖S
(
∇Pnl(ϕ̂(m)

−Gj )Gj , λ2

)
‖2 ≤ λ1

√
Gj : set ϕ̂(m)

Gj = 0. Otherwise, set

counter l = 1, step size t = 1 and ϕ̂(m,l)
Gj = µ

(m,l)
Gj = ϕ̂

(m)
Gj and repeat the

following until convergence:
(2.2.1) Update gradient g = ∇Pnl

(
ϕ̂

(m,l)
Gj

)
.

(2.2.2) Estimate optimal step size by iterating t← 0.8 ∗ t until

Pnl
(
F(ϕ̂

(m,l)
Gj , t)

)
≤ Pnl

(
ϕ̂

(m,l)
Gj

)
+
(

∆
(m,l)
t

)T
.g +

1

2t
‖∆(m,l)

t ‖22

with ∆
(m,l)
t = F(ϕ̂

(m,l)
Gj , t)− ϕ̂(m,l)

Gj .

(2.2.3) Update µ(m,l)
Gj by µ(m,l+1)

Gj ← F(ϕ̂
(m,l)
Gj , t).

(2.2.4) Update ϕ̂(m,l) by

ϕ̂(m,l+1) ← µ
(m,l)
Gj +

l

l + 3

(
µ

(m,l+1)
Gj − µ(m,l)

Gj

)
.

(2.2.5) Increase l by one: l← l + 1.
(2.3) Repeat the procedure for the groups G̃j for j = 0, . . . , p.

3: Repeat the entire step (2) until convergence.
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[11]). A simple remedy is to treat sparse group lasso as a variable selection tool and
to perform a refitting step on the select support. Namely, let us define the active
set by

SG = {(j, k)|ϕ̂Gj,k 6= 0}, SG̃ = {(j, k)|ϕ̂G̃j,k 6= 0}

Next, we define

γ′(x|ϕ) = exp

 ∑
(j,k)∈SG

ϕGj,k h̃Gj,k

(
x(j)
) (4.41)

σ′(x|ϕ) = exp

 ∑
(j,k)∈SG̃

ϕG̃j,k h̃G̃j,k

(
x(j)
) (4.42)

Our refitted estimator is thus the only minimizer of the following equation

ˆ̂ϕ = arg min
ϕ

Pnl
′(ϕ|un(·)) (4.43)

where

Pnl
′(ϕ|un(·)) = − 1

n

n∑
i=1

log g
(
yi − un(xi); γ′(xi|ϕ), σ′(xi|ϕ)

)
I{yi ≥ un(xi)}.

4.2.2 Simulation Study

How well does the sparse group lasso procedure described above estimate the tail-
index function γ∗(x)? To answer this question, we conduct a small simulation
study of the block-wise descent estimator where {yi}ni=1 are generated from the
Burr(η, τ(x), ξ) distribution [21] for which the distribution function is given by

FBurr(y) = 1−
(

η

η + yτ(x)

)ξ
. (4.44)

Let us recall the Hall class of Pareto-type distributions [46] which is of the form

1− F (y) = ay
− 1
γ∗ (x)

[
1 + by−θ(x) + o

(
y−θ(x)

)]
.

Note that this class of distribution satisfies the condition 1 with c(x) = −θ(x)b,
ρ(x) = −θ(x) and φ(z|x) = z−θ(x). It is easily seen that the Burr(η, τ(x), ξ) distri-
bution belongs to the Hall class of Pareto-type distribution with γ∗(x) = 1/(ξτ(x)),
a = ηξ, b = −ηξ and θ(x) = τ(x) since its survival function can be written as

1− FBurr(y) = y−ξτ(x)ηξ
(

1− ξηy−τ(x) + o(y−τ(x))
)

as y → ∞. Therefore, the condition (S) is satisfied with c(x) = ηξτ(x), ρ(x) =

−τ(x) and φ(z|x) = z−τ(x).
In this simulation study, we consider two sample sizes n = 500, 5000 and two p

values p = 2 and 10. Usually in many high-dimensional studies, the dimension of
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the data vectors p is comparable or may be larger than the sample size n. Hence, it
is obvious that our setting with p = 10 can not be considered as high dimensional
covariate. However, we realized that it becomes computationally expensive in terms
of running time required to perform estimation when the dimensionality increases.
Therefore, in this paper, we limit ourselves to the case p = 10. Surprisingly, we note
that the proposed methodology slightly outperforms the local polynomial maximum
likelihood regression proposed by Beirland and Goegebeur [9] even with p = 10.

The data are generated from the Burr(η, τ(x), ξ) distribution with ξ = η = 1

and
τ(x) =

20

3
[
(x(1))2 − (x(2))2 + 4

]
where x =

(
x(1), x(2)

)T for p = 2 and x =
(
x(1), x(2), . . . , x(10)

)T for p = 10. Clearly,
there are only two active variables for both cases. From this, it follows that the tail-
index function γ∗(x) is then given by

γ∗(x) =
1

ξτ(x)
= 0.15

[
(x(1))2 − (x(2))2 + 4

]
. (4.45)

Each explanatory variable x(j), j = 1, . . . , 10 takes value from the 10-equally spaced
samples in the closed interval [0, 1]. For each simulated dataset, we apply the pro-
posed methods to estimate γ∗(x).

A hurdle in the Peaks-over-threshold approach for analyzing extreme values is
the selection of the threshold. The misdetermination of the threshold value will
have a non negligible impact on the performance of the estimator. Indeed, threshold
selection constitutes a trade-off situation between bias and variance. If we set the
threshold value too low, the GPD approximation is not suitable which implies a large
bias. On the other hand, if we set the threshold value too high, a small number
of observations is used which leads to an increasing variance in the estimated GPD
parameters. In the previous section, one considers that threshold un(x) depends on
both the covariates x and the sample size n, with un(x)→∞ as n→∞. However,
this ideal threshold selection framework will be addressed in this section since it goes
beyond the scope of our paper. Hence, we assume that the threshold is constant in
terms of the explanatory variables x, but still depends the sample size.

Instead of the regularization parameters (λ1, λ2, µ1, µ2) as in (4.34), we consider
a modification which allows for more efficient computation. Namely, we take λ1 =

(1 − α1)λ, λ2 = α1λ, µ1 = (1 − α2)µ and µ2 = α2µ where α1, α2 ∈ [0, 1] are the
mixing parameters − a convex combination of the lasso and group lasso penalties.
In practice, cross-validation or generalized cross-validation has been widely used to
search for the optimal tuning parameters λ, µ, α1, α2 and the threshold u in order to
maximize its performance. However, since there are too many tuning parameters,
this calibration process could be a computational burden and hardly be useful for
many practical applications. Therefore, we consider the reduction of the "degrees
of freedom" by taking α1 = α2 = α. Furthermore, since we expect strong group-
wise sparsity, we would thus use α = 0.05. This condition clearly does not give
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practitioners correct guidance to find the optimal regularization parameters since
different problems will possibly be better fitted by different values of α and there is
no reason for α1, α2 to be the same.

We also perform a series of simulations to compare our method with that of
Beirlant and Goegebeur [9]. Their approach is based on the technique of local poly-
nomial maximum likelihood estimation. Namely, in order to give more importance
to the log-likelihood function contributions of observations close to x, a weighting
function governed by a kernel function K is introduced. Given K and a bandwidth
parameter h, we denote Kh(x) = (1/h).K(‖x‖/h). Much of our attention will be
devoted to the local linear estimation of the functions ln γ∗(x) and lnσ∗(x), which
is a different approach with respect to the one proposed by Beirlant and Goegebeur,
since we know that the tail index γ∗(x) and the scale parameter σ∗(x) must be pos-
itive. Secondly, this parameterization allows avoiding the constrained optimization
in the presence of constraints on those variables. For x sufficiently close to xi, we
may write

ln γ∗(xi) ≈ ln γ∗(x) +

p∑
j=1

∂

∂x(j)
ln γ∗(x).(x

(j)
i − x

(j)) = β1.∆xi

and

lnσ∗(xi) ≈ lnσ∗(x) +

p∑
j=1

∂

∂x(j)
lnσ∗(x).(x

(j)
i − x

(j)) = β2.∆xi

where ∆xi = (1, x
(1)
i −x(1), . . . , x

(p)
i −x(p))T , β1 = (ln γ∗(x), ∂ ln γ∗(x)

∂x(1) , . . . , ∂ ln γ∗(x)

∂x(p) )T

and β2 = (lnσ∗(x), ∂ lnσ∗(x)

∂x(1) , . . . , ∂ lnσ∗(x)

∂x(p) )T .
We can therefore define the local linear log-likelihood estimator (β1,β2) as the

maximizer of the weighted log-likelihood being of the form:

Ln(β1,β2;x) =
1

n

n∑
i=1

log g

yi − u, exp

β10 +

p∑
j=1

β1j .(x
(j)
i − x

(j))

,
exp

β20 +

p∑
j=1

β2j .(x
(j)
i − x

(j))

Kh(xi − x)I(yi ≥ u)

(4.46)

where β1 = (β10, β11, . . . , β1p)
T , β2 = (β20, β21, . . . , β2p)

T and g(y; γ, σ) is the GPD
density function. Denote (β̂1, β̂2) = arg maxβ1,β2

Ln(β1,β2;x). From this, one
obtains the local linear log-likelihood estimator of γ∗(x) (resp. σ∗(x)) as γ̂(x) =

exp (β̂10) (resp. σ̂(x) = exp (β̂20)).
In this paper, the data-driven cross-validated negative log-likelihood scheme is

applied as a performance metric to select the optimal hyper-parameters. The se-
lection process is done via grid search, which is simply an exhaustive searching
through a manually specified subset of the hyper-parameter space of a learning
algorithm. Regarding the sparse group lasso approach, we define a finite set of
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"reasonable" values for u, λ and µ as follows u ∈ {0.0, 0.1, . . . , 3.9, 4.0}, λ, µ ∈
{10−2.0, 10−2.1, . . . , 10−3.3, 10−3.4}. Similarly, we set u ∈ {0.0, 0.1, . . . , 3.9, 4.0} and
h ∈ {101, 101.05, . . . , 102} for the local polynomial approach.

On each knot, we compute the 5-fold cross validation error which is defined as
follows:
For the sparse group lasso approach:

CVSGL(λ, µ;u) =
1

5

5∑
k=1

CV [k](λ, µ;u) (4.47)

For the local polynomial approach:

CVLP(h;u) =
1

5

5∑
k=1

CV [k](h;u) (4.48)

where CV [k](λ, µ;u) as well as CV [k](h;u) is the cross-validation er-
ror in predicting the kth part (testing set), which is given by
−

∑
i∈testing

set

log g
(
yi − u; γ̂[−k](xi), σ̂[−k](xi)

)
I(yi ≥ u) with g(y; γ, σ) the GPD

density function, γ̂[−k], σ̂[−k] calibrated on the training set.
The use of (4.47) is illustrated in Figure 4.1 for n = 5000 and p = 10 where we

denote by CVoptimal(u) = minλ,µCV (λ, µ;u) the optimal cross validation metrics
given the threshold u.

Figure 4.1: (left) CVoptimal(u) = minλ,µCV (λ, µ;u) versus the threshold u; (right)
Contour plot of 5-fold CV error as a function of λ and µ at u = 1 and α = 0.05 for
n = 5000 and p = 10.

Regarding the sparse group lasso estimation, we are also interested in how well
we can estimate the non-zero patterns of the κj ’s with others observations. To this
end, we repeat such a procedure a total of 100 times with 100 independent samples
of size n = 5000 for p = 10. In theory, we have to re-evaluate the optimal hyper-
parameters u, λ and µ for each scenario since all these parameters depend upon the
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number of exceedances over threshold. However, in practice, this latter step requires
multiple iterative calculations which could be a computational burden. Therefore,
for sake of simplicity, we assume that the optimal hyper-parameters remain constant
with respect to different scenario. However, we would like to note that in some
trials we were unable to make the sparse-group lasso regression select the right zero
coefficients. This is due to the misspecified optimal hyper-parameters and the ideal
threshold value with respect to the given sample, and due to the grouping effects.
Overall we found that the sparse-group lasso reaches about 62% prediction accuracy,
which is the proportion of correct nonzero functional components identifications over
the initial total number of samples, i.e. 100.

Once the optimal hyper-parameters for the sparse group lasso estimation and the
local polynomial estimation have been calibrated, our final step consists in check-
ing how well these estimations perform. For this purpose, we compute the Mean
Integrated Squared Error (MISE) which is defined as

MISE =

∫
[0,1]p

MSE(x)dx (4.49)

where we denote by MSE(x) = empirical mean of
{∣∣γ̂ (x; {xi}ni=1, {y

(k)
i }ni=1

)
−

γ∗(x)
∣∣2 : 1 ≤ k ≤ 100

}
the (empirical) mean squared error at point x ∈ [0, 1]p. As

a reminder, the mean squared error allows us, in a single measurement, to capture
the ideas of bias and variance in our models, as well as showing that there is some
uncertainty in our models that we cannot get rid. Therefore, the mean squared
error is arguably the most important criterion used to evaluate the performance of
an estimator at a particular point and the Mean Integrated Squared Error is thus
considered as global metric for the performance of an estimation method. To value
the equation (4.49) is a difficult operation, we will thus replace it by its roughly
approximated version being of the form

M̃ISE = ∆px
5∑

m1=1

5∑
m2=1

∑
m3∈{1,2}

· · ·
∑

mp∈{1,2}

MSE(x(1)
m1
, . . . , x(p)

mp) (4.50)

where x(j)
mj takes values in {0, 0.25, 0.5, 0.75, 1} for j = 1, 2 and {0.25, 0.75} for

j = 3, . . . , p, ∆px = (0.25)2.(0.5)p−2. As can be seen, the discretization is more
granular with respect to the first two explanatory variables in (4.50) since these are
two active variables in our model (4.45). Our key findings are reported in Table 1.

Surprisingly, we find that the thresholds u for different settings, obtained by
using the cross-validation optimization method (4.47, 4.48) are more or less the same
levels whether the local polynomial approach or the sparse group lasso approach.
As observed from our numerical studies, the time required to calculate the cross-
validation metrics in the sparse group lasso approach is much more longer than that
in the local polynomial approach. This result tells us that the optimal threshold
obtained from the criterion (4.48) could be directly applied in the sparse group lasso
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estimation, or at least as an indicator to check or to reinforce the reliability of the
optimal threshold obtained from the criterion (4.47).

Table 1 shows that the local polynomial estimation has a better fit for low di-
mensional data (p = 2). The explanation of these results is twofold. First, the
local polynomial estimation for low dimensional data is less subject to the curse of
dimensionality (reference). Second, except for the GDP approximation (4.24), there
is no any other approximation error that could occur. This is however not the case
for the sparse group lasso estimation where we consider the natural cubic spline
approximation (4.29, 4.30) even though these approximation errors could be small.
This thus results in a better performance of the local polynomial estimation for low
dimensional data. By contrast, the sparse group lasso estimation globally gives a
better result for high dimensional data (p = 10). Clearly, in this case, the local poly-
nomial estimation is affected by the curse of dimensionality, caused by the sparsity
of data in a high dimensional space, resulting in a decrease in fastest achievable rate
of convergence. As a result, this leads to a bad performance for the local polynomial
estimators. The natural cubic spline assumption and the sparse group lasso algo-
rithm could prevent those estimators suffering from the curse of dimensionality by
partially or totally eliminating the non-active explanatory variables. As mentioned
in Section (4.2.1.6), imposing a penalty term based on the l1-norm will generate a
high bias in our estimators. This latter one implies an increase in estimation errors.
Therefore, we need to re-calibrate the coefficients on the active set. Besides, if we
focus on the last column in Table 1, we will observe that the M̃ISE for p = 10 is
slightly greater than the M̃ISE for p = 2 whether n = 500 or 5000. As explained
above, these prediction inaccuracies come from the fact that the sparse group lasso
method is somehow not able to identify all the non-active coefficients. Consequently,
this drawback will create a small fluctuation in our estimators.

So far we compare the (rougly approximated) mean integrated squared error
calculated by the local polynomial approach to that calculated by the sparse group
lasso approach with different settings. In the following we carry out the out-of-
sample test to elaborate the efficiency and forecasting capability of our estimators
at different points with the same settings. As it involves only two active explanatory
variables (x(1), x(2)) constituting a two dimensional plane [0, 1] × [0, 1], This plane
is divided into four quadrants. The first quadrant is the upper left-hand corner
of the plane [0, 0.5] × [0.5, 1]. The second quadrant is the upper right-hand corner
[0.5, 1]× [0.5, 1]. The third quadrant is the lower left-hand corner [0, 0.5]× [0, 0.5].
Finally, the fourth quadrant is the lower right-hand corner [0.5, 1]× [0, 0.5]. At each
quadrant, we take unintentionally a testing point as shown in Table 2. For p = 10,
we will concatenate the active part (x(1), x(2)) and the inactive part x−(1,2) ∈ R8.
Let us define u+ = (0.15, 0.25, 0.35, . . . , 0.85)T and u− = (0.85, 0.75, 0.65, . . . , 0.15).
The inactive part x−(1,2) will take value in either u+ or u−. Finally we come up
with 4 testing points as shown in Table 2 for p = 10. In this study, we will focus
on the coverage probability and the average of confidence intervals at these testing
points. Recall that the coverage probability is the proportion of the time that the
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confidence interval contains the true value. To this end, we proceed the simulation
as follows:

1. Reuse the samples of size n = 100, which are generated in the M̃ISE calcu-
lation, i.e.

{
{y(k)
i }ni=1 : 1 ≤ k ≤ 100

}
.

2. Compute the 95% confidence interval (CI) for each sample by applying the
boostrap sampling with replacement method from nboot = 500 boostrapped
data sets (see, for example, [29]).

3. Compute the proportion of samples for which the true tail index γ∗(x) is
contained in the confidence interval. That proportion is an estimate for the
empirical coverage probability for the CI.

4. Compute the average of confidence intervals CI.

Why is this necessary? Isn’t the coverage probability always 95%? The answer
is negative since the estimators

{
γ̂(x; {xi)}ni=1, {y

(k)
i }ni=1) : 1 ≤ k ≤ 100

}
are not

normally distributed and the sample sizes are not large enough that we can invoke
the Central Limit Theorem. Finally, our key findings are reported in Table 2.

N = 500, p = 2

Local Polynominal Sparse Group Lasso

Coverage Probability CI Coverage Probability CI

(0.12, 0.86) 35% 0.2306 44% 0.361

(0.76, 0.21) 53% 0.4082 90% 0.5612

(0.22, 0.01) 46% 0.5097 64% 0.6843

(0.92, 0.96) 10% 0.3673 58% 0.597

N = 500, p = 10

Local Polynominal Sparse Group Lasso

Coverage Probability CI Coverage Probability CI

(0.12, 0.86, u+) 0% 0.049 44% 0.3924

(0.76, 0.21, u+) 0% 0.049 4% 0.361

(0.22, 0.01, u−) 1% 0.1009 0% 0.025

(0.92, 0.96, u−) 0% 0.025 19% 0.3619
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N = 5000, p = 2

Local Polynominal Sparse Group Lasso

Coverage Probability CI Coverage Probability CI

(0.12, 0.86) 67% 0.1941 85% 0.2591

(0.76, 0.21) 75% 0.1939 80% 0.3086

(0.22, 0.01) 77% 0.2575 81% 0.3681

(0.92, 0.96) 74% 0.2593 71% 0.3547

N = 5000, p = 10

Local Polynominal Sparse Group Lasso

Coverage Probability CI Coverage Probability CI

(0.12, 0.86, u+) 53% 0.2157 81% 0.2361

(0.76, 0.21, u+) 68% 0.2926 78% 0.3152

(0.22, 0.01, u−) 70% 0.3016 80% 0.3710

(0.92, 0.96, u−) 67% 0.2925 71% 0.3589

Table 4.2: Comparison of the coverage probability and the average of confidence
intervals CI for the local polynomial estimators and the sparse group lasso estimators
with different settings. For p = 10, we denote by u+ = (0.15, 0.25, 0.35, . . . , 0.85)T

and u− = (0.85, 0.75, 0.65, . . . , 0.15) the inactive covariates in our setting.

First, for a high-dimensional setting p = 10 and for a small sample size N = 500,
we find that the local polynomial estimators have a poor performance; This is due
to the curse of dimensionality as mentioned previously. Regarding the sparse group
lasso estimators, their not-so-accurate performance can be explained as follows: a
small sample budget does not allow to accurately identify the non-zero patterns and
generates an important estimation error while doing the refitting.

Second, according to the simulation results, we notice that the expected confi-
dence intervals estimated by the sparse group lasso approach is always wider than
that estimated by the local polynomial approach. It is clear that the width of a
confidence interval is related to its coverage probability. This is to say that wider
confidence intervals have higher coverage probabilities, and narrower confidence in-
tervals have lower coverage probabilities. This explains why the local polynomial
estimator has a lower coverage probability than the sparse group lasso estimator.
In other words, the sparse group lasso estimator is more conservative.

Third, in case of p = 10, when we increase the sample budget to N = 5000, it
can be seen that the sparse group lasso estimators outperform the local polynomial
estimators, which coincides with the previous results that the MISE of the sparse
group lasso estimator may have a faster rate of convergence. Indeed, the expected
length of confidence interval CI of the sparse group lasso estimator is close to that
of the local polynomial estimator, but the sparse group lasso estimator has a higher
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coverage probability.

4.3 Appendix

4.3.1 Proof of Lemma 1

The conditions (4.36) and (4.37) are trivial. To prove (4.38) and (4.39), we first recall
the definition of the subgradient and subdifferential of a locally convex function on Ω,
f : Ω→ R, at x ∈ Ω where Ω is a nonempty subset of Rm. A vector d ∈ Rm is called
a subgradient of f at point x if f(y) ≥ f(x)+(y−x)T .d for all y ∈ Ω. The collection
of all subgradients of f at x is called the subdifferential of f at x, denoted by ∂f(x).
Then, a neccesary and sufficient conditions for x to be a minimum of f is that
0 ∈ ∂f(x). For any further information about the subgradient and subdifferential
as well as the optimality theorem, the interested readers can refers to [14]. Let us
return to our proof. We can easily verify (the same arguments for the groups G̃j)
that

∂‖ϕGj‖2 = {e ∈ RGj ; e =
ϕGj
‖ϕGj‖2

if ϕGj 6= 0 and ‖e‖2 ≤ 1 if ϕGj ≡ 0}.

And the subdifferential set for |(ϕGj )k| obviously equals

∂|(ϕGj )k| = {t ∈ R; t = sign((ϕGj )k) and |t| ≤ 1 if (ϕGj )k = 0}

Due to local convexity and differentiability of Pnl(ϕ), we obtain finally the condi-
tions (4.38) and (4.39).

4.3.2 Best approximation by splines

Let us first introduce two functional spaces.

Definition 1 (Polynomial Spline Space Φa,b
s ). Letting ξl for l ∈ {1, . . . ,K} be K-

interior knots satisfying the condition a = ξ0 ≤ ξ1 ≤ · · · ≤ ξK+1 = b. We define Φa,b
s

the space of functions whose element is a polynomial of at most degree p on each of
the intervals [ξl, ξl+1) for l = 0, 1, . . . ,K and is p− 1 continuously differentiable on
[a, b] if p ≥ 1.

Definition 2 (Empirically Centered Polynomial Spline Space Φ̄a,b
s ). Given the de-

sign points (x1, . . . , xn) ∈ [a, b]n, a polynomial spline space is centered if for every
g ∈ Φa,b

s the following identity holds:

1

n

n∑
i=1

g(xi) = 0.

We denote by Φ̄a,b
s the empirically centered polynomial spline space.
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According to de Boor (p. 149 in [18]), for every f(x) ∈ Cp+1([a, b]), there exists a
constant c > 0 and a spline function ḟ ∈ Φ̄a,b

s , such that ‖f− ḟ‖∞ ≤ c‖f (p+1)‖∞δp+1

with δ = max1≤l≤K(ξl+1 − ξl).
Given the design points (x1, . . . , xn) ∈ [a, b]n, we assume furthermore that

1

n

n∑
i=1

f(xi) = 0.

By defining f̈(x) = ḟ(x) − 1
n

∑n
i=1 ḟ(xi) ∈ Φ̄a,b

s , it is straightforward to show that
there exists a positive constant c′ such that ‖f − f̈‖∞ ≤ c′‖f (p+1)‖∞δp+1.

4.3.3 Block Coordinate Descent Algorithm

Algorithm 2
1: Set up with the initial parameter vector ϕ̂(0) and the loop index m = 0.
2: Increase m by one: m ← m + 1 and cycle the optimization procedure through

the groups:
(2.1) Set ϕ̂(m) = ϕ̂(m−1).
(2.2) Regarding j = 0, if ∇Pnl(ϕ̂(m)

−G0
)G0 = 0: set ϕ̂(m)

G0
and for j = 1, . . . , p,

if ‖S
(
∇Pnl(ϕ̂(m)

−Gj )Gj , λ2

)
‖2 ≤ λ1

√
Gj : update ϕ̂(m)

Gj = 0. Otherwise, cycle
the optimization procedure with respect to each coordinate within the group
fixed. That is, if |

(
∇Pnl(ϕ̂(m)

(Gj ,−k))Gj

)
k
| ≤ λ2: update (ϕ̂

(m)
Gj )k = 0. Otherwise,

minimize the objective function over (ϕGj )k by a one-dimensional optimization.
Cyclically iterate this coordinate-wise optimization process until convergence.

(2.3) Repeat the procedure for the groups G̃j for j = 0, . . . , p.
3: Repeat the entire step (2) until convergence.





Chapter 5

Conclusion

The objective of this thesis is twofold. Firstly, we aim to define the SCR estimation
error related to the use a proxy in the context of the Solvency II regime, to establish
the various causes of this error and to propose a methodology allowing it to be
quantified in order to assess and control it.

Namely, we suggest to decompose the loss function into marginal and residual
loss functions and apply the Bayesian penalized spline smoothing analysis on each
functional components and showed how to control its errors. We also carried out
several numerical tests on a simplified life insurance ALM simulator aiming to put
into practice this methodology of quantification of the model error and the result is
considered satisfactory. But, how well does this method perform with respect to the
others in low and high dimensions (number of underlying risk-factors)? The optimal
rate of convergence is typically of the form Γ−2r where r = p/(2p+ d), Γ being the
available sampling budget, p being a measure of the assumed smoothness of the loss
function, d being the dimension of underlying risk-factors. The rate of convergence
becomes slower when d increases. This is caused by the sparsity of data in high-
dimensional spaces, resulting in a decrease in fastest achievable rates of convergence
of regression function. This phenomenon is called the "curse of dimensionality". In
the context of portfolio risk measurement, Hong et al. [54] in particular show the
same issue of non-parametric approaches in high dimensional settings.

Pelsser and Schweizer [88] discussed the pros and cons of the LSMC and Repli-
cating Portfolios methods in insurance liability modeling. As pointed out by the
authors, both methods also suffer the curse of dimensionality problem as a result of
using a multivariate basis constructed as the tensor product of the univariate bases.
Alternative basis constructions must be considered to overcome this drawback. To
the best of our knowledge, it is still a major challenge for the LSMC method to
choose a functional form, which correctly approximate the conditional expected
value. In practice, the conditional expected value of the cash flows can be calcu-
lated analytically in portfolio replication and closed form solutions can be obtained
by combining the standard financial instruments that provides the same structure of
cash-flows. However, finding a portfolio that replicates the strong path-dependent
payoff functions is a more difficult problem.

Stone [107] revealed multiple advantages of the additive models. One of the
interesting points is that we can achieve asymptotically the univariate-like optimal
rate of convergence. This latter one leads us to consider the two-factor additive
model (3.22) for the estimation of the excess loss function. However, this approach
contains an approximation error, which cannot be eliminated and is probably non-
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negligible. As we have seen in the derivation of the confidence interval, the error
control is limited to the estimation error, but not to the approximation error. Within
our application, we only consider two risk drivers: equity risk and interest rate risk,
and the approximation error is thus relatively small compared to the estimation
error. If one keeps all risk drivers of an insurance group, number of dimensions
becomes incredibly large. With more risk drivers, it is not sure that the approxima-
tion (3.22) is still relevant. We will keep this for further research. There are several
possibilities for further improving the procedure’s efficiency in practice. Hong et
al. [54] propose a decomposition technique for portfolio risk measurement, through
which the loss of a portfolio is a linear combination of losses depending on only a
small number of common risk factors. Another possibility is to use the variance
reduction techniques into the simulation to improve the rate of convergence and to
get a better performance.

Secondly, we would like to propose a methodology to estimate the tail-index of
a heavy-tailed distribution when covariate information is available. In general, the
goodness of a regression model is determined based on three fundamental aspects:
high flexibility, less curse of dimensionality and strong interpretability. A model is
flexible if it could provide accurate fits in a wide range of applications. Curse of
dimensionality refers to various phenomena that the variance in estimation increases
rapidly with increasing dimensionality. A model is interpretable if it could reveal
the underlying structure of the problem that we want to solve. These are the criteria
we can look at to give us a sense of what will be a reasonable approach to start with
the tail-index estimation problem. Based on our simulation study, we can see that
the proposed methodology has all of these properties.

We have seen that both the Local Polynomial maximum likelihood modelling
and the Sparse Group Lasso modelling provide a correct estimate of the tail-index
of a heavy-tailed distribution when covariate information is available. Another re-
mark that we would like to point out is that both methods are relatively simple
to use and to programme. According to the results of our numerical study, we no-
tice that the Sparse Group Lasso approach allow for a more stable estimation of
the tail-index parameter. This phenomenon can be interpreted as a result of the
additive assumptions (4.26, 4.27). Indeed, Stone [107] showed that, under some
mild auxiliary conditions, the additive regression can achieve the same optimal rate
of convergence as that in a unidimensional setting. However, it happens that the
Sparse Groupe Lasso estimation suffers a practical issue compared to the Local Poly-
nomial maximum likelihood estimation. Indeed, this additive regression technique
may speed up the computation which usually leads to little estimation errors, but
it will generate a non-negligible approximation error as we impose an additional
assumption. The quantification of this approximation error is however out of the
scope of the current paper.

Nevertheless, there is a major gap between the computation and theoretical
analysis due to the non-convex behavior of the negative log-likelihood objective
function. This drawback will in some situations lead to the inconsistent results. We
do not provide an answer to this issue in this paper and will keep this for further
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research.
Concerning the interpretability of two methods, it is clear that the Sparse Group

Lasso modelling becomes predominant in selecting the most relevant predictors con-
tributing to the tail-heaviness of a distribution. However, there is still room for
improvement regarding the proposed methodology. First, we will work toward the
theoretical validation of this method by showing that the resulting estimate has
oracle properties. Second, we will enrich our simulation part with other higher di-
mensional datasets where the dimensionality is comparable or even larger than the
sample size.





Appendix A

Economic Scenarios Modeling

In this chapter, we discuss the modeling of the financial assets evolution, via our
Economic Scenario Generator (ESG), that intervene in our Asset-Liability Manage-
ment (ALM) model which will be presented in Chapter B.

Recall that an economic scenario generator (ESG) is a computer-based model
of an economic environment that is used to produce simulations of joint behavior
of financial market values and economic variables. Two common applications are
driving the increased utilization of ESGs:

1. Market-consistent (risk-neutral) valuation work for pricing complex financial
derivatives and insurance contracts with embedded options. These applica-
tions are mostly concerned with mathematical relationship within and among
financial instruments are less concerned with forward-looking expectations of
economic variables.

2. Risk management work for calculating business risk, regulatory capital and
rating agency requirements. These applications apply real-world models that
are concerned with forward-looking potential paths of economic variables and
their potential influence on capital and solvency.

In our setting, our ESG is a support that allows us to simulate evolution of:

• Interest-Rate curves

• Discount factors

• Equity index

• Credit risk.

These economic variables and their interrelationships are modeled through a cor-
related Brownian motions generated by a correlated random vectors generator to
maintain model integrity.

As mentioned previously, the simulations generated by our ESG have to verify
the two following properties:

1. They must be market-consistent, that is to reflect the economic conditions of
the valuation moment

2. They must be risk-neutral. The expected return is equal to the risk-free rate
for every asset class.
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Here, a question arises: "Which model will be used to model the curve of short
rates ?". Two approaches are possible: equilibrium models and no-arbitrage models.
The major difference between these two approaches is that the no-arbitrage models
consider the observed yield curve as inputs while this is not the case for the equi-
librium models. The observed yield curve used as input for the model is the yield
curve provided by EIOPA. We decide to use the Hull and White one-factor (HW)
model to model the short-rate curve. Regarding the equity index and credit risk, we
use respectively the Black-Scholes (BS) model and the Jarrow, Lando and Turnbull
(JLT) model. Each section will be organized as follows: Theoretical framework,
model calibration and test on market consistency.

But first, let us introduce the correlated random vectors generator.

A.1 Correlated random vectors generator

Recall that a vector X = (X1, . . . , Xd) is Gaussian if any linear combination of its
components

∑d
i=1 aiXi has the Gaussian law. A Gaussian vector X is characterized

by its mean m and its covariance matrix V. We denote X ∼ N (m,V).
In general, a Gaussian vector is simulated by the affine transformation of inde-

pendent reduced Gaussian random variables, i.e. ∼ N (0, Id).

Proposition 2. Let d and d0 be two non-zero integers, X ∼ N (0, Id), m ∈ Rd and
L be a matrix of dimension d× d0. Then we have

m + LX ∼ N (m,LLT )

i.e. m + LX is a Gaussian vector of mean m and covariance matrix V = LLT

Conversely, a symmetric positive covariance matrix V of size d can always de-
compose in a non-unique way being of the form V = LLT , thanks to the spectral
theorem [51]. Therefore this latter one allows us to simulate any Gaussian vector
by being reduced to the previous case.

Theorem 4 (Spectral Theorem). Suppose A a Hermitian matrix. Then

• The eigenvalues of A are real.

• There is an orthogonal basis of eigenvectors for A; in particular, A is diago-
nalizable over C (and even over R if B has real entries).

To compute L, we can use the Cholesky decomposition method, providing a
lower triangular matrix L, which when applied to a vector of uncorrelated samples,
u, produces the covariance vector of the system.

Cholesky decomposition assumes that the matrix being decomposed is Hermitian
and positive-definitive. Since we are only interested in real-valued matrices, we can
replace the property of Hermitian with that of symmetric (i.e. the matrix equals its
own transpose).
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In order to solve for the lower triangular matrix, we will make use of the
Cholesky-Banachiewicz algorithm. First, we calculate the values for L on the main
diagonal. Subsequently, we calculate the off-diagonals for the elements below the
diagonal:

lkk =

√√√√vkk −
k−1∑
j=1

l2kj

lik =
1

lkk

vik − k−1∑
j=1

lijlkj

 , i > k

In a general sense, Monte Carlo methods involve the use of sampling from dis-
tribution(s) during the calculation of numerical approximations, most commonly to
evaluate high-dimensional integrations. Although most schemes use random sam-
pling, Monte Carlo does not necessarily imply the use of random numbers. In some
situations there are better ways, most notably via the use of low-discrepancy num-
bers. There are many formal definitions of what "random" means. In a simplistic
sense, we can say that in a sequence of truly random numbers each variate has no
correlation with any other, on any scale.

In reality, a deterministic method must be used to generate variates, and by its
vary nature this can never actually be random. Hence, we should really be using
the term pseudo-random to describe computer generated numbers that resemble
random numbers.

Discrepancy refers to the clustering of values that occurs when a sequence of
samples are drawn from the uniform interval for the 1-dimensional case, the unit
square for the 2-dimensional case, and the unit hypercube in higher dimensions. It
is a measure of how inhomogeneously (non-uniformly) the values fit into the hy-
percube. Low-discrepancy numbers are deterministic sequences drawn to minimise
their discrepancy - or equivalently, maximise their uniformity.

Formally, for a set S of N points in the d-dimensional hypercube [0, 1]d we can
define the discrepancy of S as :

DN (S) = sup
Ω∈[0,1]d

∣∣∣∣Card(Ω;S)

N
− v(Ω)

∣∣∣∣
where v(Ω) is the volume of a sub-region Ω of the unit hypercube, Card(Ω;S) is the
number of points in S that fall into Ω. In a general sense, more uniformly distributed
sets of points have lower discrepancy than less uniformly distributed sets of points.

Sobol numbers are low-discrepancy, quasi-random numbers. They are highly
uniform, much more so than standard uniform distribution generators as illustrated
by the diagrams below 1: Expectations obtained from Monte Carlo schemes using

1NumPy is a library for the Python programming language, adding support for large, multi-
dimensional arrays and matrices, along with a large collection of high-level mathematical func-
tions to operate on these arrays. For any further information about this package, please refer to
https://www.numpy.org/
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Figure A.1: Sampling the fitting space: Sobol pseudo-random numbers vs Numpy
pseudo-random numbers.

ideal random numbers are expected to converge asymptotically as a function of the
number of trials as 1√

N
. In contrast, low-discrepancy numbers should converge as

ln(N)d

N where d is the dimensionality of the problem. In low dimensions, we ex-
pect low-discrepancy numbers to converge substantially faster than pseudo-random
numbers. This increased convergence speed allows us to achieve a greater accuracy
with the same number of simulations, or equivalently the same accuracy with fewer
simulations and reduced computational expense.

For a futher evaluation of low-discrepancy numbers and their use within stochas-
tic scenario generation, please refer to [92].

A.2 Hull White Model

John Hull and Alan White introduced the one-factor Hull-White interest rate model
in 1990 (see, e.g. [56–60]). The model is no-arbitrage yield curve model, meaning
that it can reproduce exactly the initial yield curve implied by bond prices. The
model assumes that the short rate rt is governed by the following dynamics:

drt = (θt − art)dt+ σndW
n
t (A.1)

where σ represents the instantaneous volatility of the short rate, and a is the mean-
reverting speed. The time dependent parameter θt is determined by σ, a and the
initial yield curve.

Namely, let us denote by f(0, t) the instantaneous forward rate given by

f(0, t) = −∂ lnP (0, t)

∂t
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with P (0, t) the price of the zero coupon bond paying 1 at time T , the factor θt is
given by

θt =
df(0, t)

dt
+ af(0, t) +

σ2
n

2a

(
1− e−2at

)
.

The parameter θt is in fact derived from the no arbitrage condition of the model on
the price of the discount factors.

Namely, one can work out the expression of the parameter θt so that we have
the following relationship:

P (0, T ) = E
(
e−

∫ T
0 rsds

)
Since the process

∫ T
t rsds is Gaussian, we have

P (0, T ) = exp

(
−E

[∫ T

t
rsds | Ft

]
+

1

2
Var

[∫ T

t
rsds | Ft

])
= A(t, T )e−B(t,T )

where
B(t, T ) =

1

a

(
1− e−2a(T−t)

)
and

A(t, T ) =
P (0, T )

P (0, t)
exp

(
B(t, T )f(0, t)− σ2

4a

(
1− e−2at

)
B2(t, T )

)
For a full derivation of the parameter θt, please refer to Appendix C.

The Hull-White model is used widely in derivative pricing as well as in risk
management. Hull and White published a series of papers that discuss the procedure
to construct a Hull-White interest rate tree as well as applications of the model.

One main advantage of the Hull-White model is its tractability. More specifically,
given the initial yield curve and the model parameters, analytic formula is available
for the distribution of short term and long term interest rates at a future time. In
addition, vanilla bonds and European options can also be valued analytically.

The tractability of the Hull-White model makes it convenient to calibrate the
parameters using bond or options prices. This is the primary reason we use the
model in this study. Meanwhile, it is also important to understand that the one-
factor Hull-White model has certain limitations. For instance, the Hull-White model
assumes that the short rate is normally distributed. As a consequence, both the spot
and forward interest rates can be negative, which is usually considered unrealistic.
Another drawback of the one-factor Hull-White model is that, as there is only one
driving Brownian motion, all forward rates are determined by the short rate. As a
consequence, the shape of the yield curve is completely determined by the short rate.
Therefore, the model is not flexible enough to account for twists in the yield curve.
However, various other models can resolve one or both issues. Here, we provide a
few examples of these models and explain the reason why these models are not used
in our study. A comprehensive review of these models is beyond the scope of this
study and can be found in Andersen and Piterbarg [3] or Brigo and Mercurio [19].
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The Black-Derman-Toy model and Black-Karasinski model assume that the
short rate follows log-normal distribution and is always non-negative. However,
log-normal short rate models typically don’t have analytic bond pricing formula
and numerical technique is required to calibrate the model to the initial yield curve.
The lack of flexibility associated with one-factor models is a major concern when
pricing exotic options. As pointed out in Andersen and Piterbarg, "... as a general
rule, all derivatives that have payouts exhibiting significant convexity to non-parallel
moves of the forward curve must not be priced in a one-factor model." Jagannathan,
Kaplin and Sun [62] pointed out that pricing error can be relatively large even for
multi-factor models such as the three-factor CIR model. On the other hand, one-
factor models remain popular for other purposes, such as risk management. Since
our study does not focus on pricing exotic derivatives, the one-factor Hull-White
model is considered sufficiently flexible, especially when the parameters are allowed
to be time variant.

Model calibration

As we have already pointed out, the model’s diffusion depends on two different
parameters: the volatility and the mean reversion. Calibrating the model finding
values for these two parameters, consistent with some market prices. These market
prices should obviously be actively traded options, i.e. financial instruments used
by the trader to effectively hedge his portfolio. Caps and swaptions are the two
main markets in the interest rate derivatives world. However, in our setting, we
limit ourselves to the model calibration based on the cap pricing.

A.2.1 Cap pricing

In the Hull and White framework, the price of the European call priced at t, of
maturity T , with strike K and written of a zero-coupon bond of maturity S is:

ZBC(t, T, S,K) = P (t, S)Φ(h)−KP (t, T )Φ(h− σ̃)

where Φ(·) is the standard normal cumulative function, and

σ̃ = σ

√
1− e−2a(T−t)

2a
B(T, S)

h =
1

σ̃
ln

(
P (t, S)

P (t, T )

)
+
σ̃

2
.

The price of the put contract having a similar formula, which is

ZBP(t, T, S,K) = KP (t, T )Φ(σ̃ − h)− P (t, S)Φ(−h).

We get now the price of the cap with settlement dates t0 ≡ T, t1, . . . , tn ≡ S, with
strike K and of nominal N :

Cap(t, T, S,K) = N

n∑
i=1

(1 +Kτi)ZBP
(
t, ti−1, ti,

1

1 +Kτi

)
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where we denote by τi the fraction of year between two settlement date ti−1 and ti.
We carry out the calibration of the Hull and White model from ATM2 Euribor

6 month Caps for the maturaties T = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20}. Regarding
the market data, we retrieve on Bloomberg:

1. the prices of ATM caps at the valuation date 29/12/2017 3,

2. the ATM strike Katm at the same date 4.

Let us denote by CapMkt the market price observed on Bloomberg and by
CapMdl its corresponding theoretical price. To calibrate the parameters a and σn,
we have to solve the following optimization problem:

â, σ̂n = arg min
a,σn

∑
Ti∈T

(
CapMkt(Ti,Katm)−CapMdl(0, 0, Ti,Katm; a, σn)

)2
(A.2)

We realize this minimization problem in two steps:

1. First, one fix a and solves the optimization problem (A.2) only on σn by using
the gradient descent method developed on Python.

2. We again carry out this optimization problem for each value of a within a
predefined interval in a way to find the couple (â, σ̂n) minimizing the mean-
square error (A.2).

Here is the result of our calibration.

Maturity Market Price Model Price Abs. Error (%)

3Y 0.0046 0.008882 0.428234
4Y 0.0093 0.014044 0.474377
5Y 0.0151 0.020086 0.498567
6Y 0.0219 0.026825 0.492522
7Y 0.0296 0.034158 0.455831
8Y 0.0380 0.041948 0.394783
9Y 0.0469 0.050244 0.334361
10Y 0.0562 0.058975 0.277498
12Y 0.0753 0.077757 0.245738
15Y 0.1040 0.104103 0.010276
20Y 0.1480 0.140244 0.775627

Table A.1: Overall difference between the market price and the model price.
2ATM stands for At-The-Money
3Bloomberg ticker: EUCPAM** where ** is replaced by the maturity
4Bloomberg ticker: EUCPST** where ** is replaced by the maturity
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Figure A.2: Calibration results given the optimal model parameters â and σ̂n.

A.3 Black Scholes Model

The standard Black-Scholes formula [17] has been obtained under the assumptions
that the stock price St follows a lognormal diffusion with constant volatility σS :

dSt
St

= rdt+ σSdW
S
t , S0 = F, (A.3)

where r is the risk-free interest rate. The results established in the Black Scholes
model still hold under more general hypothese, namely when the volatility is a
time-dependent determistic function σS(t):

dSt
St

= (rt − qt)dt+ σS(t)dWS
t , S0 = F, (A.4)

where rt and qt are also time-dependent functions, being the risk-free interest rate
and the dividend rate of St, respectively.

To get a simple and general picture of the Black Scholes model, we list here its
advantages and limitations.

Advantages: Closed form formula can be obtained to price Calls, Puts and many
other European contracts. As a result, computations are instantaneous.

Limitations: The Black-Scholes hypothesis of a constant volatility is unrealistic
under real market conditions. Recall that using market option prices, we can in-
vert Black Scholes formula to compute the implied volatility. For different option
strikes K and maturities T , we get different volatilities, therefore the Black-Scholes
hypothesis of constant volatility does not hold. Moreover, empirical evidence of
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the markets shows that the implied volatility is shaped like a smile or a skew. An
example of the implied volatility surface is given in Figure (A.3).

Figure A.3: Implied volatility surface for the index Eurostoxx 50 extracted from
Bloomberg as of date of calibration 29/12/2017

To respect the market-consistent and risk-free properties, and to simplify our
simulation, the return rate rt follows the Hull-White model (A.1) and the volatility
σS and the dividend rate q are supposed to be constant, i.e.

dSt
St

= (rt − q)dt+ σSdW
S
t , S0 ≡ F (A.5)

Model calibration

The only parameter to calibrate in is the volatility σS . To this end, we appeal the
following result to obtain the closed formula for the vanilla European Call option.



114 Appendix A. Economic Scenarios Modeling

Proposition 3. Assume that the stock price St follows the Black-Scholes model
(A.5) with the return rate rt following the Hull-White model (A.1) and that the
correlation between two Brownian motions dWn

t and dWS
t is ρ. Then we have

Call(T,K) = EQ
(
e−

∫ T
0 rsds(ST −K)+

)
= FΦ(d1)−KP (0, T )Φ(d2)

where d1 = 1
σ̈
√
T

[
lnF/(P (0, T )K) + 1

2 σ̈
2T
]
and d2 = d1 − σ̈2

√
T with

σ̈2 = σ2
S +

2ρσnσS
aT

[
T − 1

a

(
1− e−aT

)]
+

σ2
n

a2T

[
T − 1

2a
e−2aT +

2

a
e−aT − 3

2a

]
Proof. First we rewrite the equations (A.1) and (A.5) differently as follows:

drt = (θt − art)dt+ σndW
1
t

dSt = St

(
rtdt+ σS(ρdW 1

t +
√

1− ρdW 2
t )
)

where {W 1
t , t ≥ 0} and {W 2

t , t ≥ 0} are two independent standard Brownian mo-
tions.

Following the results obtained in the Hull White model, the zero-coupon bond
price is given by

P (t, T ) = EQ
(
e−

∫ T
t rsds | Ft

)
= exp

(
−B(0, T )rt −

∫ T

t
θ(s)B(s, T )ds+

1

2

∫ T

t
σ2

0B(s, T )2ds

)
Then we have

d lnP (t, T ) =

(
rt −

1

2
σ2
nB(t, T )2

)
dt− σnB(t, T )dW 1

t

or
dP (t, T ) = P (t, T )(rtdt− σ0B(t, T )dWt).

Let us denote by QT the T -forward measure with the corresponding numeraire
P (t, T ) defined by

dQT

dQ
|t =

P (t, T )

P (0, T )
e−

∫ t
0 rsds

= exp

(
−1

2

∫ t

0
σ2
nB(s, T )2ds−

∫ t

0
σnB(s, T )dW 1

s

)
.

By the Girsanov theorem [41], under QT , the process {(Ŵ 1
t , Ŵ

2
t ), t ≥ 0} where

Ŵ 1
t = W 1

t +

∫ t

0
σnB(t, T )ds

Ŵ 2
t = W 2

t
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are two standard Brownian motions. Clearly, under QT ,

dP (t, T ) = P (t, T )
[
(rt + σ2

nB(t, T )2)dt− σnB(t, T )dŴ 1
t

]
dSt = St

[
(rt − ρσnσSB(t, T )) dt+ σS

(
ρdŴ 1

t +
√

1− ρ2dŴ 2
t

)]
and Su/P (u, T ) is a martingale. Therefore, the forward price has the form

F (t, T ) = EQT [ST | Ft] =
St

P (t, T )

and

dF (t, T ) =
dSt

P (t, T )
− St
P 2(t, T )

dP (t, T )− d〈St, P (t, T )〉
P 2(t, T )

+
St

P 3(t, T )
d〈P (t, T ), P (t, T )〉

= F (t, T )
[
(ρσS + σnB(t, T ))dŴ 1

t + σS
√

1− ρ2dŴ 2
t

]
Define σ̈ an effective volatility being of the form:

T σ̈2 =

∫ T

0

[
(ρσS + σnB(t, T ))2 + σ2

S(1− ρ2)
]
ds

= σ2
ST +

2ρσSσn
a

[
T − 1

a
(1− e−aT )

]
+
σ2
n

a2

[
T − 1

2a
e−2aT +

2

a
e−aT − 3

2a

]

Then

F (T, T ) = F (0, T ) exp

(
−1

2
σ̈2T + σ̈

√
Tξ

)

where ξ is a standard normal random variable. Consequently, we have

EQ
(
e−

∫ T
0 rsds(ST −K)+

)
= EQ

(
e−

∫ T
0 rsds(F (T, T )−K)+

)
= EQT

(
e−

∫ T
0 rsds(F (T, T )−K)+

dQ
dQT

|T
)

= P (0, T )EQT ((F (T, T )−K)+)

= FΦ(d1)−KP (0, T )Φ(d2)
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Figure A.4: Calibration results given the optimal model parameter σ̂S = 8.03%

Maturity Market Price Model Price Abs. Error (%)

1M 0.0117 0.0091 0.2615
3M 0.0240 0.0156 0.8421
6M 0.0261 0.0219 0.4173
9M 0.0357 0.0266 0.9011
1Y 0.0430 0.0304 1.2399
18M 0.0471 0.0375 0.9587
2Y 0.0583 0.0436 1.4720
3Y 0.0697 0.0554 1.4331
4Y 0.0782 0.0671 1.1035
5Y 0.0858 0.0792 0.6563
7Y 0.0984 0.1054 0.7026
10Y 0.1122 0.1509 3.8706

Table A.2: Overall difference between the market price and the model price.
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A.4 Jarrow, Lando and Turnbull Model

The stochastic credit development allows the ALM model to reach more accuracy
in bond simulated cash-flows. Bonds are rated by credit agency. This rating evolves
over time and leads many changes for the bond such as the market value and the
credit spread.

The ratings of the bond are given by credit agency with a transition matrix which
contains the probabilities to jump from one state to another. These probabilities
are computed as the historical average of such migrations. However the market
anticipates different migration probabilities. They are the risk neutral migration
probabilities and are those used in the model to simulate the bond rating dynamics.

The bonds projection in stochastic model introduces the following components:

1. Bond’s rating at time t: ηt

2. Recovery rate δ: The same recovery rate is used for all the bonds. At maturity,
the cash flow is 1 if the bond has not defaulted and δ otherwise.

The risky zero-coupon bond price P ηt(t, T ) can be expressed thanks to the risk-free
zero-coupon price P (t, T ), the recovery rate and the risk neutral default probability
Q
(
τηtD > T

)
and assumption that risk free rate {rs}t≤s≤T and rating process are

independent as

P ηt(t, T ) = EQ
[
exp

(
−
∫ T

t
rsds

)(
I(τηtD > T ) + δI(τηtD ≤ T )

)]
= P (t, T )

(
δ + (1− δ)Q

(
τηtD > T

))
where Q is the risk neutral probability measure and τηtD is the stopping time whether
an event of default occurs.

The historical transition matrices are average of past migrations. Risk neutral
transition matrices are expectations of future migrations. In t = 0 a time-dependant
factor-the risk premium-is computed to transform the historical transition process
in risk-neutral one. This factor is then used to simulate the dynamics of the risk-
neutral transition matrix over time in each scenario.

The central variable of the model is the bond rating. His evolution is described
as a Markov chain. The spreads are computed from this dynamic. A process that
follows a Markov chain over a set of state is a process that jumps from one state
to another over time. For example, we can have a set of two states A and B. The
process ηt following the Markov chain will value A or B and changes over time.
If the changes occur at discrete time, the Markov chain is named discrete Markov
chain. We can then define the probabilities to jump from one state to another. With
our example, at the time t of jump, the process have a probability pt(A → B) to
jump from the state A to the state B between the time t and t + 1, pt(A → A) to
jump from the state A to the state A (to stay in the same state), pt(B → A) to
jump from B to A and pt(B → B) to jump from B to B. At time t the process ηt is
only in one state so there are only two possibilities, but at time t+1 it is not known
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in which state the process will be at time t and then it is necessary to define the
four probabilities. It is convenient to present these probabilities under matrix form.

Pt,t+1 =

[
pt(A→ A) pt(A→ B)

pt(B → A) pt(B → B)

]
The rows represent the start state which is the state wherein the process is at

time t. The columns represent the final state which is the state where the process
jumps and then the state of the process at time t + 1. Then on the call which is
on the row A and the column B we consequently have the probability to jump from
the state A to the state B.

As we can see the probabilities of transition have an index for the time, the
transition matrix is then time dependant. In this case the process is named in-
homogeneous Markov chain. This is an usual feature. For example the one year
transition matrix given by credit rating agency changes every year which means
that the historical rating process is an inhomogeneous Markov chain.

We can also define the transition matrix over two time periods Pt,t+2. The
important property of Markov chain is then

Pt,t+2 = Pt,t+1Pt+1,t+2

If the transition matrix is not time dependant, the process follows an homogeneous
Markov chain. The transition matrix can then be indexed only with number of time
period over which the transition matrix runs. This is possible thanks to the previous
property.

Because of the homogeneity, we have

Pt,t+1 = P1

And then
Pt,t+2 = Pt,t+1Pt+1,t+2 = P 2

1 = P2

Until now the Markov chain is discrete. The jumps occur only at some points of
time. We now introduce continuous Markov chain where the jumps can occur at
any time. To define the transition matrix over an infinitesimal length of time dt, we
introduce the generator Λt of the Markov chain. The generator is a matrix such as

Pt,t+dt = I + Λtdt

Mathematical properties allow us to write

Pt,t+T = exp

(∫ t+T

t
Λsds

)
As in the discrete time case, we can have homogeneous continuous Markov chain.
The generator is then no more time dependant and the transition matrix over a time
period of length T is given by

PT = Pt,t+T = P T1 , ∀t > 0.

We see clearly the link between discrete and continuous model. Thanks to all these
definitions, we can now describe the rating process modelling.
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A.4.1 Transition process

Credit rating agencies compute transition matrices. These matrices are the average
over historical data of the transition that happened. Then we named these matrices
historical transition matrices.

There is another probability of default that allows computing the market price
of risky bonds. This probability is named risk free probability. The pricing formula
will be developed in the next section. We are now interested in how compute this
risk free default probability. Under the no-arbitrage condition, there exists a unique
risk free probability which is equivalent to the historical probability. Moreover, we
also assume that the risk free rate and the rating process are independent. These
assumptions are analysed in Jarrow et al. [63]. Under this probability, the risk free
bonds and risky bonds discounted prices are martingales.

We make assumption that under the historical probability the rating process
follows a homogeneous Markov chain. This is not true since the one year historical
transition matrices provide by credit rating agencies change each year. But this sim-
plification is required for the sake of computability and the changes in the transition
matrices are little.

Always for the sake of computability we will work with the continuous frame-
work. The one year historical transition matrix can be written:

P historical1 = exp
(

Λhistorical
)

We could compute the risk free transition matrix with a time dependant matrix
of risk premium Πt. The relation between historical process and risk free process
would be

Λriskfreet = ΠtΛ
historical

With no particular assumption, the risk free Markov chain is then inhomogeneous.
The risk premium as a matrix is not bearable from a computability point of view.
This is due to the lack of data and the impossibility to ensure that the risk free gen-
erator remains a generator matrix over time. The trade-off between computability
and flexibility is then to use a time dependant scalar risk premium. This is discussed
in Lando (2004) [73] (see Chapter 6). Then we have

Λriskfreet = πtΛ
historical

Since the risk premium has to be positive, it is convenient to use a CIR (Cox,
Ingersoll and Ross) process to model this factor.

dπt = α(µ− πt)dt+ σπ
√
πtdW

π
t .

The risk neutral transition matrix over the time interval [t, t+ ∆t] is

Pt,t+∆t = e
∫ t+∆t
t Λriskfrees ds = eΛhistorical

∫ t+∆t
t πsds.

This matrix is stochastic since the risk premium is. To compute this matrix, we
have to know the risk premium path over the time interval [t, t + ∆t]. Thus this
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matrix is named conditional transition matrix. Note that it is still a Markov chain
transition matrix. The problem is that at time t we do not know the future path of
the risk premium. So we define the unconditional transition matrix as:

P πtt,T = EQ [Pt,T | πt]

The unconditional transition matrix is only the expectation of the conditional tran-
sition matrix. This expression allows us to understand that the risk free transition
matrix at time t depends only on the risk premium at time t, the time length over
which the matrix runs and the parameters of the risk premium. And among these
parameters solely the risk premium at t stochastic.

In practice the risk neutral transition matrix can be obtained by a closed formula.
The transition matrix can be diagonalized. For the proof we can see Israel et al.
[61]. This diagonalization exists and is unique. We also make the assumption that
the diagonalization basis is not time dependant. This assumption is empirically
approved in Arvanatis et al. [5]. We then write

Λhistorical = Σ Diag(d1, . . . , dK)Σ−1

With {di}Ki=1 the eigenvalues and Σ the matrix of eigenvectors. Then

Pt,t+∆t = eΣ Diag(d1,...,dK)Σ−1
∫ t+∆t
t πsds

= Σ Diag
(
ed1

∫ t+∆t
t πsds, . . . , edK

∫ t+∆t
t πsds

)
Σ−1

The unconditional transition matrix is then given by

P πtt,t+∆t = Σ Diag
(
EQ
[
ed1

∫ t+∆t
t πsds | πt

]
, . . . ,EQ

[
edK

∫ t+∆t
t πsds | πt

])
Σ−1

Each terms of the diagonal matrix can be computed as

EQ
[
edi

∫ t+∆t
t πsds | πt

]
= eAi(∆t)−πtBi(∆t)

with

Ai(∆t) =
2αµ

σ2
ln

(
2vie

1/2(α+vi)∆t

(αi + vi)(evi∆t − 1) + 2vi

)

Bi(∆t) = − 2di(e
vi∆t − 1)

(α+ vi)(evi∆t − 1) + 2vi

vi =
√
α2 − 2diσ2

The previous equations give a close formula to compute unconditional transition
matrix as long as the risk premium is known. The default probabilities are then
easy to deduce. Namely, we have

Q
(
τηtD > T

)
= 1−

K−1∑
j

σηt,jEQ
[
edj

∫ T
t πsds | πt

]
(σ−1)j,K (A.6)

where:
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• K the index of the default rating in the transition matrix,

• σηt,j the value of Σ on the row ηt and column j,

• (σ−1)j,K the value of Σ−1 on the row j and the column K.

A.4.2 Spread

In this section, we express the risky bond price using the rating process and then
define the spread for a rating and a maturity at any time.

We consider a risky zero-coupon bond of maturity T and rated ηt at time t. We
define the recovery rate δ as the proportion of the nominal that the owner of the
risky zero-coupon bond earns at maturity if default occurs. Then at maturity, the
cash flow is 1 if the bond has not defaulted and δ otherwise.

Since the price of a bond is the present value of expected future cash flow and
using DF(t, T ) = exp

(
−
∫ T
t rsds

)
the deflator from maturity to time t, we can

express the price P ηt(t, T ) of the bond previously defined as

P ηt(t, T ) = EQ [DF(t, T )
(
1− (1− δ)I(τηtD ≤ T )

)]
In case of default, the bond becomes a risk free bond with the same maturity but
with a nominal reduced by the loss rate which is (1− δ).

We assume independence between the risk free rate and the rating process. Then
we can write

P ηt(t, T ) = P (t, T )
(
1− (1− δ)Q(τηtD ≤ T )

)
where Q(τηtD ≤ T ) is derived from Equation A.6.

We define the spread sηtt,T between t and T for the rating ηt at t as follows:

exp
(
−sηtt,T (T − t)

)
= 1− (1− δ)Q(τηtD ≤ T )

or equivalently

sηtt,T = − 1

T − t
ln
(
1− (1− δ)Q(τηtD ≤ T )

)
(A.7)

This expression allows us to understand that the spread is stochastic thanks to the
risk premium at time t.

A.4.3 Model Calibration

A.4.3.1 Moody’s historical transition matrix

The first step consists in recovering the historical transition matrix P historicalt,T : for
example, we retrieve the one from Moody’s over the period 1983-2013. The latter
one is deduced directly from the market data

However, in the process of estimating credit spreads and default probabilities,
it is not this transition matrix that is directly used, but rather its generator. The
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AAA AA A BBB BB B CCC D

AAA 96,79% 3,30% 0,04% 0,10% 0,00% 0,00% 0,00% 0,00%
AA 3,86% 92,76% 1,69% 0,89% 0,13% 0,00% 0,00% 0,00%
A 0,00% 4,52% 90,51% 3,49% 1,40% 0,08% 0,00% 0,00%

BBB 0,00% 0,00% 6,11% 89,10% 4,13% 0,61% 0,05% 0,00%
BB 0,00% 0,00% 0,00% 8,59% 84,93% 5,31% 0,34% 0,67%
B 0,00% 0,00% 0,00% 0,00% 5,64% 87,89% 2,74% 3,24%

CCC 0,00% 0,00% 0,00% 0,00% 0,00% 13,33% 48,33% 38,33%
D 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Table A.3: Moody’s historical transition matrix from 1983 to 2013

second step is therefore the generator estimates associated with the historical transi-
tion matrix provided by Moody’s. Recall that the equation connecting the historical
transition matrix to its generator is given by

P historicalt,T = e(T−t)Λ =
∞∑
n=0

((T − t)Λ)n

n!

A problem arises: what are the conditions of existence and/or uniqueness to find
such a matrix Λ?

We will join here the works of Israel, Rosenthal and Wei [61] which allowed in
particular to identify the conditions under which a real generator exists, and how to
choose the right generator, that will be compatible with the behavior of the credit
ratings. They state in particular a theorem allowing, under the sufficient condition
that the diagonal terms of the matrix P historicalt,T are strictly greater than 0.5, to
express Λ according to the matrix P historicalt,T − I:

Λ =

∞∑
k=1

(−1)k+1 (P − I)k

k

where P stands for the historical transition matrix P historicalt,T for the sake of sim-
plicity.

However, this condition does not guarantee the non-negativity of terms located
off the diagonal of Λ, preventing it from being a true generator of P . As these terms
are generally very small, it is customary to correct the problem:

• by replacing them with 0,

• then adding their initial value to the corresponding diagonal element to pre-
serve the property that the sum of a line must be zero.

This new matrix will therefore have many positive non-diagonal elements and sum-
ming lines at 0, guaranteeing the good properties of the generator. This is what we
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will choose to do, thus obtaining the next generator Λ as follows:

Λ = 10−2



−3, 336 3, 199 0, 011 0, 095 0 0 0 0

4, 079 −7, 836 1, 814 0, 932 0, 115 0 0 0

0 4, 937 −10, 254 3, 8 1, 502 0, 034 0 0

0, 005 0 6, 826 −12, 106 4, 683 0, 544 0, 053 0

0 0, 011 0 9, 912 −17, 108 6, 106 0, 375 0, 551

0 0 0, 015 0 6, 564 −13, 777 4, 139 2, 532

0 0 0 0, 05 0 20, 244 −73, 957 53, 72

0 0 0 0 0 0 0 0


A.4.3.2 Recovery rate

Moody’s annually publishes a default risk study, called "Moody’s annual default
study". It includes the history of recovery rates, classified according to the seniority
of the debt (from the most secure to the least secure):

1. Senior secured

2. Senior unsecured

3. Senior Subordinated

4. Subordinated

5. Junior Subordinated

For our model, we particularly note a recovery rate of δ = 35%.

A.4.3.3 Merril Lynch spreads

We recover on Bloomberg the historical data of spreads on the Merrill Lynch bond
indices, in the valuation date 31/12/2017.

AAA AA A BBB

1 0,0016 0,0036 0,0044 0,0068
3 0,0017 0,0046 0,0054 0,0088
5 0,0023 0,0044 0,0067 0,0113
7 0,0026 0,0067 0,0083 0,013
10 0,0069 0,0097 0,0109 0,0177

Table A.4: Spreads on Merrill Lynch bond indices as of 31/12/2017

A.4.3.4 Calibration of the risk premium on spreads

Let us consider the historical spreads presented in section (A.4.3.3). These spreads
therefore represent our market spreads as of date of calibration t = 0, which will be
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noted smktk,T where k tracks all the K ratings of maturities T ∈ {T1, . . . , Tm}. The
theoretical forward spread is given by the equation (A.7).

In our setting, we choose to fix values of the parameters α, µ, σπ according to
values provided by Moody’s analytics in a technical note published in 2003, where
they have already performed a historical calibration of the CIR process π(t). The
study then suggests considering the following parameters:

Parameter Historical Calibration

α 0,1
σπ 0,75
µ 3

Table A.5: Historical calibration of the CIR process π(t) provided by Moody’s

The last parameter to be calibrated is therefore the initial risk premium, which
we will choose as the solution of the optimization problem

π∗(0) = arg min
π(0)

∑
k∈{1,...,K}

∑
T∈{T1,...,Tm}

[
smktk,T − smodelk,T (π(0))

]
Thanks to the Python function scipy.optimize.minimize5, we obtain π∗(0) = 3.3615

and the following spread curves:

Figure A.5: Credit spread curves for the rating AAA and AA

5For the documentation of this Python function, please refer to
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html



Appendix B

Asset-Liability Management

B.1 Introduction

The insurer’s job is to provide financial protection to people who want to transfer
some of their risks for a premium. Its role is to better manage the risks received to
be able to honor its commitments at any time. For this, it has two levers: technical
lever that is on the liabilities side and financial lever that is on the assets side, but
cannot be separated from liabilities. To this end, the insurer need a Asset-Liability
Management (ALM) simulator. This tool simulates the economic and accounting
behavior of a "Euro Funds" type life insurance fund. The model takes into account
for each fund (liability scenario) various assumptions on the evolution of markets
(asset scenario) and a number of management rules:

1. Liability scenario: can be stochastic or deterministic. If it is deterministic, it
still has correlations with the asset, such as profit-sharing, dynamical redemp-
tion. In addition, the model make it possible to treat different tranches of
liabilities within the same fund. These slices are called model points. Segmen-
tation is done following factors that may influence the fund’s behavior (Age,
gender, TMG1 type contract, behavior of the insured, etc.) and thus increases
the accuracy of modeling. Each model point is managed individually by the
model although the allocation assets and financial products are pooled.

2. Asset scenario: can be also deterministic or stochastic. These scenarios return
market performance for a number of asset classes (bonds, equities, etc). All
these scenarios are provided by the ESG presented in Chapter A.

3. Management rules: These are all the rules for managing the fund. These rules
are various type (accounting, economic, contractual, etc).

In our setting, we limit ourselves to the deterministic liability scenario, but the
stochastic asset scenarios. The simulations are carried out over a period of 502 years
by annual time step. In practice, the projection horizon should cover the entire life
of all incoming cash flows that are required to fulfill contractual commitments. In
our case, the determination of the projection horizon should match the farthest
expected lapse of the contract of the portfolio (i.e. run-off mode).

1Guaranteed minimum rate
2The projection horizon is modifiable in our modeling tool.
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In this chapter we will present the implementation of our ALM model. It’s a
Python-coded tool that can estimate the Best Estimate Liabilities of a life insurance
company marketing euro savings products using a stochastic approach. Our ALM
model was built based on our benchmark of market practices concerning the imple-
mentation of Pillar I of the Solvency II Directive as introduced in Section 1.7.1. As
it concerns the privileged and confidential documents, we will not cite any relative
references in this report. Regarding other materials such as mathematical provision,
capitalization reserve, etc., readers can refer to the "Code des Assurances" 3

We will detail in a first time the operation of the tool, the different models
implemented and the simplifications made. Then we will present and analyze the
results obtained.

B.2 Saving contract

Saving is simply a matter of placing money that becomes unavailable for immediate
payments and current consumption. The investment can be made on products
offered by financial institutions or insurers. Their return varies depending on the
type of investment, the lock-up period and the rate of pay set by the contract.

Savings product are the answer to different needs:

1. save without a specific goal or just as a precaution

2. finance the short and the medium term

3. value or grow a capital

4. provide additional income for retirement

In order for everyone to find the product in line with their needs, there is a very
diversified range of products. We will focus only on saving contracts in the life
insurance business. In particular, we will study its characteristics and the accounting
mechanisms involved.

The life insurance savings contract looks like a financial investment and is close
to a capitalization contract. But it is still a contract of insurance, which is not a
fixed-term product and is intended to cover you until you pass away. Life insurance
is based on the lifetime capitalization technique. This means that during the term
of the contract, the subscriber does not receive any income, apart from the possible
payment of interest and profit sharing. The premiums paid by insureds are thus im-
mediately reinvested and incorporated into savings, thus becoming interest-bearing.
However this is not a purely financial investment since it involves both a lifetime
parameter (the mortality rate) and a financial parameter (the profit-sharing rate).
Indeed, the benefits are conditioned by the occurrence of certain events such as the
death of the insured during the term of the contract or by the redemption of the
contract. It is therefore necessary for the modeling of a contract to have available

3Available at https://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006073984
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mortality tables indicating the number of living at each age of human life, and also
the laws of redemptions depending on the type of contract. In the following, we will
briefly present the different types of life insurance saving contract.

Secure Funds in Euros

These are contracts with minimal risk as they are mostly invested in bonds. They
therefore have a yield directly linked to bond rates and are therefore not very sen-
sitive to the vagaries of the stock market. They also have a double guarantee: 1) a
guaranteed minimum return and 2) a "ratchet effect" that allows the subscriber to
keep definitively the annual interest credited on the contract.

Unit-linked life insurance contract

Unit-linked contracts are contracts that do not refer to a currency but to units of
account, i.e. shares , securities or real estate. These contracts provide diversified
investment in the financial and real estate markets. They are chosen by long-term
investors who are willing to accept the risks inherent in financial market fluctuations
to obtain a higher expectation of earnings than a conventional bond-type contract
like the secure funds in euros.

Multi-vehicle life insurance contract

In this type of contract, investments are made in several supports or funds (in euros
and / or in unit-linked contracts). Depending on the contract, the distribution of
the investment is free, imposed or pre-established. These contracts benefit from
more than one possibility of arbitrage between the support in unit-linked and the
supports in euros (the arbitrage is an operation which consists of modifying the
distribution of the capital between the various supports of the contract).

It is thus possible to divide its investments between more or less risky support.
Several risky profiles are often proposed: prudential, dynamic, balanced. The sub-
scriber then entrusts the financial experts to manage its payments according to the
chosen profile.

B.2.1 Characteristics of a saving contract

The subscriber pays premiums which are capitalized at the guaranteed minimum
rate to constitute the guaranteed capital. It also revalued taking into account profit-
sharing. It should be noted that in case of death before term, the capital is paid to
the beneficiary designated in the contract.

Premiums

Premiums can be made in different forms:
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1. Scheduled periodic contracts: a payment schedule (monthly, quarterly, annual)
is set up with most of the time the possibility of making additional payments;
this is a payment option and not a firm commitment since the insured can
stop payments at any time.

2. Flexible payment contracts: there is no payment schedule but the insured is
often subject to a minimum amount of contributions.

3. Single payment contracts: the payment takes place at the time of subscription.

The insurer cannot demand the payment of premiums. Non-payment from the
insured entails either the reduction of the contract (continuation of the contract, but
reduction of the amount of the guaranteed benefits), or the outright cancellation of
the contract.

Expenses

They can be very different from one company to another. It exists in particular
(this is a non-exhaustive list):

1. Acquisition fees: this may be a percentage taken from payments or a lump-sum
per policy.

2. Administration fees.

3. Management fees related to the investment of the fund: they are deducted from
the savings (i.e. on the policy liabilities), during the annual capitalization, on
the interest generated by the fund.

4. Commission fees related to distribution networks.

5. Arbitrage fees (in case of multi-support contract): they are calculated on the
sums transferred in the event of a change of support.

Redemption option or policy loan (advance) during the contract

In case of need of money before the end of the contract, it is possible to request a
partial or total surrender (i.e. repurchase agreement) insofar as the contract has a
cash value. However, there may be considerable penalties (expressed as percentages
of the mathematical provision) depending on the residual life of the contract. This
indemnity intended for the insurer cannot, however, exceed 5% of the mathematical
provision and becomes nil after a period of ten years from the effective date of the
contract.

Partial Surrender : corresponds to the payment by the insurer of a part of the
mathematical provision.

Total Surrender : terminates the contract and allows the insured to recover the
value of his fund before the end of the contract.
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Advance: allows the insured to obtain a sum of money without reducing the
savings. The insurer agrees to advance funds in the form of a loan that will have
to be repaid by the insured. The amount that can be borrowed is capped at 1%

of the mathematical provision. The advance is granted at an interest rate and for
a variable amount depending on the contract. It should be noted that an advance
cannot be granted on a periodic premium contract.

B.2.2 Accounting in insurance companies-Basic concepts

In the following, we will discuss some accounting elements that relate to life in-
surance and that will be useful for understanding management decisions and asset-
liability management.

Mathematical provision (PM)

Insurance companies have to set up sufficient technical provisions for the full set-
tlement of their commitments in relation to policyholders or beneficiaries of the
contracts. The mathematical provision consists of the funds that life insurance
companies set aside to meet the commitments they made to their policyholders. It
is defined as the difference between the commitment of the insurer and that of the
insured. In other words, it represents the net insurer’s liability for policyholders’
liabilities.

Profit-sharing reserve (PPE)

The profit-sharing reserve is defined as the amount of profit sharing attributed to
policyholders which is not repaid immediately. In accordance with the Insurance
Code, all amounts allocated to the profit-sharing reserve must be returned to the
insured within 8 years. The temporal distribution of this provision is thus left to
the discretion of the insurers, which allows them to smooth the profit-sharing rate
served to policyholders or to attract new customers by proposing a revaluation rate
higher than the average during the first years of the contract thanks to an attractive
profit-sharing rate.

Capitalization reserve (RC)

The capitalization reserve is a reserve fueled by the capital gains realized on bond
sales and taken over symmetrically only in the event of realized capital losses on this
type of asset. This makes it possible to smooth the results corresponding to the gains
or losses realized on bonds sold before their term, in case of movements of interest
rates. Thus, insurance companies are not encouraged, in case of falling interest
rates, to sell their bonds with high coupons and to generate one-off profits while
buying other, less performing bonds at a later date. This special reserve, considered
as a provision in relation to the hedging requirements of the commitments, forms
part of the solvency margin.
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Liquidity risk provision (PRE)

This is a regulated technical provision in insurance, which arises when the non-
amortizable investments are in a total net unrealized loss position. As will be
presented below in Section B.3.1, the only non-amortizable investment in our assets
is the equity portfolio. This provision therefore corresponds to that for risk on the
equity portfolio and will be calculated as follows:

PREt = min

(
PREt−1 +

1

3
MVLequity

t ;MVLequity
t

)
. (B.1)

From this it is easily seen that a payment or a drawn-down is made on the liquidity
risk provision according to its value last year and the unrealized capital losses on
the equity portfolio. Namely, we have

∆PRE =

{
< 0, if PREt−1 > MVLequity

t

≥ 0, if PREt−1 ≤ MVLequity
t

As will be seen later, we assume that the recovery or the provisioning of the liquidity
risk provision is made before the decision on profit-sharing rate. This will thus
impact the financial incomes as well as the profit-sharing which will be distributed
to the insureds.

B.3 General presentation of the ALM simulator

Our ALM modeling tool makes it possible to summarize the annual cash flows such
as premiums, claims, changes in provisions, financial income, management expenses,
etc. and calculate the margins and then record them in the income statement and
balance sheet. In addition, the balance sheet shows the stocks of provisions as well
as the market and book values of the assets that are backed by the liabilities at each
time step.

The simulation technique chosen in our tool is the Monte-Carlo method based
on the law of large numbers. This involves performing a large number of scenarios
independently, in order to obtain an approximation close to the true Best Estimate.
The tool takes as input N neutral risk economic scenarios generated by our ESG. For
each scenario, the tool projects the assets and liabilities of the insurance company
over 50 years, while performing the Asset/Liability interactions according to a pre-
defined algorithm. The Best Estimate Liabilities (BE) is thus calculated according
to the following formula:

BE = EQ

[
50∑
t=1

DF(0, t)CF(t)

]
≈ 1

N

N∑
i=1

50∑
t=1

DF(i)(0, t)CF(i)(t) (B.2)

where:

1. DF(i)(0, t) is the discount factor in scenario i,
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2. CF(i)(t) is the liability cash flow at time t in scenario i.

3. N is the number of simulations.

In our model, we do not simulate the expenses and the taxes. Therefore, the scope
of the liability cash flows only recovers: the claims (redemptions and death benefits)
Clt and the premiums Pt. Namely we have

CF(t) = Clt − Pt.

In order to facilitate the change of the model assumptions, the different elements of
the balance sheet are developed in different classes. Their interactions are shown in
Figure B.3.

B.3.1 Description of the Asset

In order not to burden the modeling, we simplified the modeling of the asset with
the following assumptions:

1. The insurance undertaking’s asset portfolio consists solely of the following
asset classes:

• Cash remunerated at risk free rate,

• Equities

• Fixed-rate government and corporate bonds

2. The financial market where our assets are located is supposed to be perfectly
liquid. In addition, the assets are infinitely divisible and can be purchased without
transaction costs. In other words, we can sell or buy assets at any time in the
quantities desired.

3. The assets allocation is defined at the beginning of the projection and the
insurance company keeps the same allocation of the portfolio throughout the pro-
jection. Thus, at the end of each year, the portfolio allocation in terms of market
value is identical to the initial one. Finally, the asset portfolio is allocated as follows:

• 10% cash,

• 20% equities,

• 70% bonds.

B.3.1.1 Bonds valuation

Recall the equation (A.7), defining the forward spreads directly according to the
default probability. In particular, we will generate the actuarial spreads for each
rating, defined as

Sηt(t, T ) = P (t, T )−
1

T−t
(
es
ηt
t,T − 1

)
(B.3)
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Figure B.1: ALM modeling structure
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Figure B.2: Credit spread curves

In particular, these credit spreads make it possible to value risk bonds by adjust-
ing the value of the deflators. More precisely, the deflator DFηt(t, T ) for the rating
ηt adjusted for the corresponding credit spread Sηt(t, T ), is therefore expressed as:

DFηt(t, T ) =
1

(1 +R(t, T ) + Sηt(t, T ))T−t
. (B.4)

We can also draw the curves of the deflators, from zero coupon rates of different
maturities R(0, T ) and spread values Sη0(0, T ). These deflators will be particularly
useful for carrying out the martingale test in the following part.

The market value in t = 0 of an obligation for the rating class η, maturity T ,
coupon {ct}t=1,...,T and nominal 1 is none other than

V η(0, T ) = DFη(0, T ) +

T∑
t=1

DFη(0, t)ct (B.5)

We choose, for the sake of simplicity, to simulate ratings migrations and defaults
proportionally to the simulated transition matrices at each time step. This allows us
in particular to rewrite V η(0, T ) according to the recovery rate δ and the elements
of the transition matrix such as

V η(0, T ) = DFη(0, T )fT +
T∑
t=1

DFη(0, t)
[
δfdt−1,t + ctft

]
(B.6)

where ft represents the proportion of the obligation that is not in default in t, and
fdt−1,t is the proportion of the obligation that was not in default in t− 1 but that is
in t.

Finally, let us also remind that, theoretically, the price of this obligation is
expressed as a function of the recovery rate δ and the probability of default as
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Figure B.3: Adjusted deflator curves

follows:

vη(0, T ) = P (0, T ) (1− qη,K(0, T ))

+
T∑
t=1

P (0, t) (ct[1− qη,K(0, t)] + δ[qη,K(0, t)− qη,K(0, t− 1)])

where qη,K(0, u) is the probability of default given the initial rating η which is of
the form (see Section (A.4.1) for more detail):

qη,K(0, u) =
K−1∑
j

ση,j (Aj(u)− π0Bj(u)) (σ−1)jK .

Martingale test The last step in implementing a neutral risk model is to check
the quality of the simulation and the parameters. For this, we carry out a martingale
test, aiming to test if the price of the assets is equal to their discounted future flows
simulated under the risk-neutral probability. This approach makes it possible to
check the concept of market consistency, that is to say the property ensuring that
the discounted prices are indeed martingales.

Note that for i ∈ [1, N ] with N the number of simulated trajectories, the present
value of the bonds price is

V η
i (0, T ) = Dη

i (0, T ) +
T∑
t=1

Dη
i (0, t)ci,t
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where Dη
i (0, T ) and ci,t respectively correspond to the deflator between t = 0 and T

for scenario i, and the simulated cash flow at time t for scenario i. The law of large
numbers allows us in particular to affirm that

1

N

N∑
i=1

V η
i (0, T )

N→∞−−−−→ EQ [V η
1 (0, T )]

or equivalently

V̂ η(0, T ) =
1

N

N∑
i=1

V η
i (0, T )

N→∞−−−−→ vη(0, T ).

Thus, we try to verify that we have, for each T maturity, the convergence of the
empirical average of the discounted cash flows towards the price of the corresponding
maturity bonds. On the other hand, the central limit theorem states that

√
N
(
V̂ η(0, T )− vη(0, T )

)
N→∞−−−−→ N

(
0, σ2

η,T

)
where σ2

η,T is the variance of V η
1 (0, T ). So we can easily build the associated confi-

dence intervals.

Figure B.4: Martingale test on a 10 year maturity AAA-rated bond

B.3.2 Description of the Liability

This subsection concerns the liabilities modeling. We begin by exposing the sim-
plifying assumptions on the liabilities modeling. In order to determine the Best
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Estimate, no new policy is underwritten during the projection. It is said that the
insurance company operates in mode run-off. Therefore, only future premiums for
current policies should be taken into account. Finally, we consider that the insurance
company does not use reinsurance to give up part of its risk.

To model the liabilities evolution, the following assumptions are applied:

• The mortality rates are assumed to be deterministic depending on the age of
the insured.

• Deaths and redemptions occur mid-year.

• The insurance policies are grouped into homogeneous groups (Model Points)
according to discriminating criteria as will be seen later.

• At the end of 50 years, the activity of the company comes to the end, that is
to say that all remaining policyholders will buy their contract and the math-
ematical provision of the insurer will become null.

Model Point

Our liability portfolio is entirely fictitious. It was built from ten saving products
close to those that could be found in the liabilities of a life insurer today.

Figure B.5: Summary of our liability portfolio

To further simplify our model points, the following characteristics, apart from the
age, subscription date and initial number of contract, necessary for the projection
of the liabilities are identical. Therefore, for each model point, we have:

• Opening mathematical provision: 100.000 euros,

• There are two types of annual guaranteed minimum rate: one for TMGA: 2%

and another for TMGX 0.1%,

• Periodic premium: 300 euros,

• Structural Lapse rate: 1%,

• Rate sensibility, margin rate will be detailed in the following.
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Lapse or surrender

In our setting we only consider the partial surrender. The amount of redemptions is
modeled as a ratio, called the lapse rate, of the mathematical provision per model
point. There are two main types of surrender to be distinguished according to the
elements that trigger them:

Structural surrenders: They are often linked to tax benefits because the capital
gains made in life insurance are subject to income tax with a declining scale. Indeed,
we often see a redemptions peak at 8 years of seniority. Structural surrenders can
also come from an imminent need for liquidity. Policyholders buy back their capital
to finance their personal projects or to cover an unforeseen risk, even if the buyout
is not favorable to them in terms of profitability. An example of the experimented
structural lapse rate for the saving contracts is presented in Figure B.6. For the
sake of simplicity, the structural lapse rate (RS) is supposed to be constant and
deterministic for every model points in our model.

Figure B.6: Here we plot an example of the experimented structural lapse rate

Cyclical surrenders: They are closely linked to market conditions and also de-
pend on the macroeconomic context, the legislation or the reputation of the insur-
ance company. Cyclical surrender modeling is a problem for insurance companies.
They cannot establish a historical calibration as they do for structural surrender.
To overcome this obstacle, we build a cyclical buyback law based on the spread
between the profit-sharing rate and the rate expected by the insured. Namely, the
curve is the "average" between the upper and lower cyclical buyback laws proposed
by ACPR (French Prudential Supervision and Resolution Authority) [1].
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It is considered that the cyclical behavior of the insured is triggered by the
finding of a difference between the profit-sharing rate and the rate expected by the
insured or target rate for short.

The cyclical behavior and its intensity are triggered by thresholds and are based
in particular on three reference rates: the target rate, the floor rate (plafond min)
and the ceiling rate (plafond max), as shown in Figure B.7.

Figure B.7: Cyclical lapse rate curve

To be more precise, the cyclical lapse rate (RC) for the model point j at a given
point in time t is defined as

RCj,t =



RCmax if ∆j,t < α

RCmax
∆j,t−β
α−β if α ≤ ∆j,t < β

0 if β ≤ ∆j,t < γ

RCmin
∆j,t−γ
δ−γ if γ ≤ ∆j,t < δ

RCmin if ∆j,t ≥ δ

where ∆j,t is the spread between the profit sharing rate (PSR) and the target rate
(TR),i.e. ∆j,t = PSRj,t−1 − TRj,t and the parameters α, β, γ, δ are given by
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Parameter Plafond min Plafond max ALM

α -6% -4% -5%
β -2% 0% -1%
γ 1% 1% 1%
δ 2% 4% 3%

RCmin -6% -4% -5%
RCmax 20% 40% 30%

This redemption law is divided into three zones reflecting three behaviors of
policyholders according to the difference between the profit-sharing rate and the
expected rate:

• Unfavorable situation: the profit-sharing rate is below the target rate, i.e.
∆ < 0, which is below the insured’s expectations. Positive cyclical surrenders
are triggered.

• Favorable situation: the profit-sharing rate is included in the [TR+β,TR+γ]

interval, which is close to the rate expected by the insured. Cyclical surrenders
are void.

• Very favorable situation: The profit-sharing rate is beyond the target rate, i.e.
∆ > 0, which is beyond the expectations of the insured. Cyclical surrenders
are negative and offset all or part of the structural buybacks.

Finally, the lapse rate (LR) is calculated as the sum of the structural lapse rate
and the cyclical lapse rate as follows:

LRj,t = min (1,max (0, RS +RCj,t)) (B.7)

B.3.3 Chronology of the Asset-Liability interactions

In the framework of the calculation of the BEL, the ALM model makes it possible to
project over a given time horizon the assets and the liabilities of the balance sheet.
It allows to determine at each time step the balance sheet and the value of the cash
flows distributed to the policyholders on the one hand and to the shareholders on
the other hand.

During each projection period, the following operations are performed:

• Liability cash flows: The insurer collects the premiums and pays the benefits
relating to the contracts taken out by the insureds. In practice, the liabilities
cash flows are collected and paid throughout the year. In order to facilitate
the calculation of cash flows, we assume that the liabilities cash flows occur
mid-period within the stochastic projection model. The modeling of liability
flows within the stochastic projection model is presented in Section (B.3.2).

• Financial production: The insurer receives the returns from the assets held in
the portfolio.
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The interactions between assets and liabilities occur at the end of each period over
the duration of the stochastic projection. These interactions are as follows:

• Purchase and sale of assets: Invest the premiums collected during the period
(purchase of assets); finance the claims paid during the period (sale of assets).

• Profit-sharing strategy : profit-sharing rates are calculated for contracts eli-
gible for profit-sharing which takes into account regulatory and contractual
constraints. The profit-sharing strategy is described in Section B.3.4.

• Calculation of liabilities at the end of the period : the contracts are revalued
via the corresponding profit-sharing rates calculated previously. The explicit
calculation of the liabilities at the end of the period is presented in Section [?].

Note that at the end of the projection (after the profit-sharing strategy), the
residual general reserves deemed to belong to the insurer are included in the
profit, those deemed to belong to the insured are included in the BEL.

• Assets reallocation: In accordance with the target asset allocation, the insurer
will buy or sell assets to meet the predefined target asset allocation at the end
of the period.

The modeled general reserves (capitalization reserve (RC), provision for risk on
the equity portfolios (PRE) and profit-sharing provision (PPE)) are recalculated
following the purchases and sales of assets.

The following illustration (Fig. B.8) shows the chronology of operations per-
formed during a projection period.

Figure B.8: Chronology of the Asset-Liability interactions

B.3.4 Profit-sharing strategy

The profit-sharing strategy is a central element of the ALM model. On the one hand,
it plays a role of leverage in the business development of the insurance company,
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because it has an impact on the satisfaction level of policyholders, and on the other
hand, it is subject to regulatory constraints aimed at protecting the interest of the
insured.

In the following, we will give the details of this profit-sharing strategy.

Calculation of Profit-sharing rate

The insurer must at least serve the guaranteed minimum rate (TMG) as defined in
the contract with its insureds. This amount can only be financed by the financial
results of the company. In case of insufficient incomes, the insurer will draw on its
own funds and will realize a loss.

In any case, the insurer cannot use the PPE from previous years to serve the
TMG. But once the wealth acquired in this year makes it possible to serve the
TMG, the insurer has the right to take over the PPE to provide policyholders a
better revaluation rate. More specifically, the insurer will serve the insureds a so-
called net desired rate (NDR), which is defined by

NDRj,t = max (TRj,t − RSj ;TMGj) (B.8)

where RSj is the rate sensibility for the model point j mentioned in Section B.3.2.
But what is exactly the meaning of the rate sensibility? In fact, the target rate
corresponds to the desired rate on products subject to strong commercial pressure
(flagship products). On less exposed (non-flagship) contracts, the policyholder will
be less sensitive and the expected rate may be reduced by a spread. This latter is
set according to the policyholder’s sensitivity to its profit-sharing rate. This is why
the spread is called the rate sensitivity. For the flagship products, this spread is set
to 0.

For the latter use, we define the gross desired rate (GDR) and the gross TMG
(GTMG) for the model point j as

GDRj,t = NDRj,t + MRj (B.9)

and
GTMGj = TMGj + MRj (B.10)

where MRj is the margin rate mentioned in Section (B.3.2).
Now the question is what profit-sharing rate the insurer will be able to serve.

To this end we define at first different notions of wealth.
First, we define the targets that the insurer seeks to achieve: the "TMG wealth"

and the "desired wealth". They are obtained with a capitalization of the mathe-
matical provisions with respectively the TMG and the net desired rate. Namely, we
have

WealthTMG
j,t = PMj,t−1(1 + GTMGj) + (Pj,t − Clj,t)

√
1 + GTMGj

− (PMj,t−1 + Pj,t − Clj,t)
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and

Wealthdesired
j,t = PMj,t−1(1 + GDRj) + (Pj,t − Clj,t)

√
1 + GDRj

− (PMj,t−1 + Pj,t − Clj,t)

By definition (B.8), it is clear that Wealthdesired
j,t ≥WealthTMG

j,t . Then we define the
total TMG wealth and the total desired wealth as:

WealthTMG
t =

∑
j∈

Model Points

WealthTMG
j,t

and
Wealthdesired

t =
∑
j∈

Model Points

Wealthdesired
j,t

Once the targets were identified, we seek to achieve them by using the available
wealth. This latter one is complemented by the achievement of unrealized gains
(PVL) or unrealized losses (MVL). We can therefore define three levels of wealth
that the insurer can achieve through the realization of unrealized gains and losses
(PMVL): minumum wealth, maximum wealth and available wealth. However, in the
case of the realization of MVL, it is necessary to take into account the partial (or
total) compensation of the MVL realized by the release of the capitalization reserve,
as illustrated in Figure B.9.

Figure B.9: Graphical illustration of the available wealth, minimum wealth and
maximum wealth.

In the following, we list the representative cases of how we calculate the profit-
sharing rate.
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Case 1 : WealthTMG
t ≥Wealthmax

t :
In this case the insurer has to first draw on its own funds a certain amount in

order to serve the TMG and then use the PPE to reach a) the desired rate or b) the
corresponding maximum profit-sharing rate that we can serve (see Figure B.10).

Figure B.10: Case 1: WealthTMG
t ≥Wealthmax

t

Case 2 : Wealthavailable
t ≤ WealthTMG

t ≤ Wealthmax
t and Wealthdesired

t ≤
Wealthmax

t + PPEt−1:
The insurer must first realize a portion of unrealized gains to serve the TMG

before the resumption of the PPE to serve the desired rate. (see Figure B.11). More
precisely, the unrealized gains needed to be realized is given by

PVREquity = min{max(WealthTMG
t −Wealthavailable

t ;

Wealthdesired
t −Wealthavailable

t − PPEt−1);

PVLEquity}.

Case 3 : Wealthmin
t ≤ WealthTMG

t ≤ Wealthavailable
t and Wealthdesired

t ≤
Wealthavailable

t + PPEt−1:
The insurer is able to serve the TMG and the desired rate with the available

wealth. Moreover, we can realize in this case a portion of unrealized loss (see Figure
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Figure B.11: Case 2: Wealthavailable
t ≤WealthTMG

t ≤Wealthmax
t andWealthdesired

t ≤
Wealthmax

t + PPEt−1

B.12). In the same way as previously, the realized loss is determined by comparing
different levels of wealth

MVR = min{Wealthavailable
t −WealthTMG

t ;

Wealthavailable
t + PPEt−1 −Wealthdesired

t ;

MVLrealizable}.

Figure B.12: Case 3: Wealthmin
t ≤WealthTMG

t ≤Wealthavailable
t and Wealthdesired

t ≤
Wealthavailable

t + PPEt−1

.

Case 4 : WealthTMG
t ≤Wealthmax

t and Wealthmax
t + PPEt−1 <Wealthdesired

t :
The insurer can not serve the desired rate despite the realization of all its un-

realized gains. We will therefore serve a profit-sharing rate corresponding to its
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maximum level of wealth (see Figure B.13).

Figure B.13: Case 4: WealthTMG
t ≤ Wealthmax

t and Wealthmax
t + PPEt−1 <

Wealthdesired
t

.

Case 5 : Wealthdesired
t ≤Wealthmin

t :
In the best case, the insurer can not only serve the desired rate but only make

a profit (see Figure B.14).

Figure B.14: Case 5: Wealthdesired
t ≤Wealthmin

t

.

In regulation, insurance companies must redistribute at least 85% of the financial
products (if any) to the insureds. It is therefore necessary to verify at the end of
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the wealth distribution process that this regulatory condition is well verified. In
practice, we will cap the margin to be distributed to shareholders at 15% of all
financial income by putting the surplus in the PPE.

B.3.5 End-of-period liabilities modeling

Own funds

In practice, during the projection of the activity of the insurance companies, the
profits are never redistributed to the shareholders. Therefore, we assume that the
final own funds BOFt, in our model, becomes the previous own funds BOFt−1 to
which all the results Rt are added. This assumption then makes it possible to
calculate the own funds at the end of each year as follows

BOFt = BOFt−1 + Rt.

B.4 ALM modeling consistency - Leakage test

In order to verify that the ALM model is consistent and correctly implemented,
we verify that there is no value leakage during projections. This test is called the
leakage test. It consists of comparing the market value of liabilities with the market
value of assets at t = 0. Namely, we have to ensure that the following equation
holds BELt=0 + VIFt=0 = Assetst=0, where VIFt=0 stands for the value-of-in-force
business at t = 0. Recall that the value-of-in-force business (VIF) is a concept used
within insurance that essentially refers to the future profits expected to emerge from
a particular life insurance portfolio. Mathematically, it is defined as

VIFt=0 = EQ

[
T∑
t=1

DF (0, t) (Φt + Pt − Clt −∆PMt −∆PPEt −∆RCt −∆PREt)

]
where

• Clt the policyholder claims occured over the period of t to t+ 1,

• Pt the periodic primes paid by the policyholders over the period of t to t+ 1,

• Φt the financial result between the time t and t+ 1.

To better understand the leakage test, a derivation of the previous equa-
tion in case of a deterministic projection is given in the following. By
definition, we have BELt=0 =

∑T
t=1 P (0, t) (Clt − Pt) and VIFt=0 =∑T

t=1 P (0, t) (Φt + Pt − Clt −∆PMt −∆PPEt −∆RCt −∆PREt). Therefore,

BELt=0 + VIFt=0 =

T∑
t=1

P (0, t) (Φt −∆PMt −∆PPEt −∆RCt −∆PREt) .

For later use, let us denote by
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• Casht the cash return on capital deposited on saving account,

• Divt the dividend paid to shareholders,

• Cpnt the coupon collected on the investment bonds,

• Amortizationt the carrying value of a bond portfolio,

• PMVRbondst ,PMVReqt the realized capital gains and losses arising from finan-
cial operations on bonds and equities respectively.

The financial result Φt includes the dividend Divt, the cash return Casht, the coupon
Cpnt, the carrying value Amortizationt and the realized capital gains and losses
PMVRt, i.e.

Φt = Divt + Casht + Cpnt + Amortizationt + PMVRbondst + PMVReqt .

We denote by MVt+ ,MVt− the market values of a financial product at the beginning
and at the end of the year t, and by α, β the allocations (in percentage) of equities
and bonds. It is not difficult to note that

Divt = qMVeq
(t−1)−

Casht = R(t− 1, t) [(1− α− β)PMt−1 + PPEt−1 + RCt−1 + PREt−1]

PMVReqt = α (PMt − PMt−1) +
(
MVeq

t+
−MVeq

t−

)
= α (PMt − PMt−1) + (1 +R(t− 1, t)− q)MVeq

(t−1)− −MVeq
t−

Amortizationt + PMVRbondst = β (PMt − PMt−1) +
(
MVbondst+ −MVbondst−

)
and

MVbondst− = P (t− 1, t)
(
MVbonds(t+1)+ + Cpnt+1

)
=
P (0, t+ 1)

P (0, t)

(
MVbonds(t+1)+ + Cpnt+1

)
Combining all these equations together, we get finally

P (0, t)(Φt −∆PMt −∆PPEt −∆RCt −∆PREt)

= P (0, t− 1)[MVeq
(t−1)− + MVbonds(t−1)− + (1− α− β)PMt−1

+ PREt−1 + RCt−1 + PPEt−1]− P (0, t)[MVeq
t− + MVbondst−

+ (1− α− β)PMt + PREt + RCt + PPEt] (B.11)

Since we liquidate all the liabilities at the end of projection, we have to add
P (0, T )[MVeq

T− +MVbondsT− + (1−α− β)PMT +PRET +RCT +PPET ] on the right-
hand side of the equation (B.11) at t = T . With a little bit of algebra, it is easy to
show that

BELt=0 + VIFt=0 = MVeq0 + MVbonds0 + (1− α− β)PM0 + PRE0 + RC0 + PPE0

= Assett=0.
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Figure B.15: Comparison of the market value of assets and the market value of
liabilities at t = 0 given the deterministic scenario.

By freezing all the volatility terms to be zero (deterministic scenario), we find
that there is no leakage in our ALM model (see Fig B.15). We also perform the
leakage test for the probabilistic simulations. In this case, we will observe the leaks
in our simulations mainly explained by the finite numbers of simulations. To this
end, we define the leakage ratio as

Lε =
|BELt=0 + VIFt=0 −Assett=0|

Assett=0

We iterate the simulation with 100 different random seeds. For each simulation, we
compute the BEL and the VIF using Monte-Carlo method with NMC number of
simulations. Then we compute the mean squared error defined by

MSE =
1

100

100∑
j=1

(
L(j)
ε

)2

where the index j stands for the jth random state. Finally, we obtain the following
results

NMC MSE(×10−4)

103 83.2

104 11.5

105 0.98
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In the above table we can see that the leaks are significantly reduced as the
number of simulations increases.
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Demonstration of the θt equation

The Hull White model reproduces exactly the zero-coupon rate curve, if

θt =
d

dt
f(0, t) + a.f(0, t) +

σ2

2a

(
1− e−2at

)
(C.1)

Proof. We assume that the zero-coupon price at maturity T is written as a function
of t and the short rate rt. So we have P (t, T ) = h(t, rt). Let’s apply the formula of
Itô to h(t, rt), in order to find a partial differential equation verified by h:

dP (t, T ) =

(
dh

dt
+
dh

drt
(θt − art) +

1

2

d2h

dr2
t

σ2

)
dt+

dh

drt
σdWt

However, under the neutral risk probability, dP (t, rt) = rtP (t, rt)dt since the zero-
coupon bond is considered as the risk-free asset. By uniqueness, we obtain the
following partial differential equation

dh

dt
+
dh

drt
(θt − art) +

1

2

d2h

dr2
t

σ2 = rtP (t, rt) (C.2)

In addition, f(T, rT ) = P (T, T ) = 1 by definition of a zero-coupon bond.
We then seek to find a solution of the equation (C.2) of form: f(t, rt) = P (t, T ) =

A(t, T )e−B(t,T )rt . By differentiating P in terms of t and rt, and by simplifying by
e−B(t,T )rt : {

dA(t,T )
dt − θtA(t, T )B(t, T ) + 1

2σ
2A(t, T )B2(t, T ) = 0

1 + dB(t,T )
dt − aB(t, T ) = 0

with A(T, T ) = 1 and B(T, T ) = 0.
We then obtain

B(t, T ) =
1

a

(
1− e−a(T−t)

)
and

lnA(t, T ) = −
∫ T

t
θuB(u, T )du− σ2

2a
(B(t, T )− (T − t))− σ2

4a
B2(t, T )

With the expression of A and B, we have the zero coupon price expression in the
Hull & White model, we can infer an expression of today’s instantaneous forward
rates for all maturities T

f(0, T ) =

∫ T

0
θu
dB(u, T )

dT
du+

dB(0, T )

dT
r0 −

σ2

2a
B(0, T )

(
1− dB(0, T )

dT

)
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Let us differentiate the above equation by T , we have

df(0, T )

dT
= θT − af(0, T )− σ2

2a

(
1− e−2aT

)
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Bayesian P-spline regression and
Bayesian asymptotic confidence

interval

In this section, a brief description of smoothing and penalized splines (or P-splines)
will be presented. Some interesting additional information about smoothing splines
and P-splines can be found for example in the work of Reinsch [94], Duchon [31],
Green and Silverman [43], Hastie and Tibshirani [49], Eubank [35], Eilers and Marx
[32] and Ruppert and Carroll [96].

Consider the regression model Yi = m(Xi) + εi, i = 1, . . . , n where εi are the
independent random variables with mean 0 and variance σ2. We assume that the
design points Xi ∈ [a, b] with a, b < ∞. As pointed out in Appendix (D.7), for
any regular functions m(x), we can always find a best spline approximation m̃(x) of
m(x) to minimize ‖m− m̃‖∞. The error in approximating m(x) by m̃(x) is usually
negligible compared to the estimator error, thus in practice we estimate m̃(x) instead
of m(x). In the following, we denote by B(x) = {B1(x), . . . , BN (x)}T ∈ RN , N ≤ n
a spline basis.

D.1 Smoothing Splines

The key idea of this regression method is to approximate the target function m(x)

by a natural cubic spline m̃(x) with knots at the distinct Xi values. The basis
functions for natural cubic splines are

{1, x, d1(x)− dn−1(x), . . . , dn−2(x)− dn−1(x)}

where dk(x) =
(x−Xk)3

+−(x−Xn)3
+

Xn−Xk for k = 1, . . . , n− 1.
A smoothing spline estimator arises as the minimizer of the penalized sum of

squares,
n∑
i=1

(Yi − m̃(Xi))
2 + λ

∫ b

a

(
m̃”(x)

)2
dx (D.1)

for λ > 0.
The integral term in the previous expression is a roughness penalty with the

smoothing parameter λ. We write the vector m̃ = (m̃(X1), . . . , m̃(Xn))T ∈ Rn.
The theorem 2.1 in Green and Silverman [43] shows that there exists a n × n
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dimensional matrix K of rank n − 2 such that the penalty term
∫ b
a

(
m̃”(x)

)2
dx

can be written as m̃TKm̃. The smoothing spline estimate at the design points
m̂ = (m̂(X1), . . . , m̂(Xn))T ∈ Rn is thus explicitly given by m̂ = (I + λK)−1 Y

where Y = (Y1, . . . , Yn)T ∈ Rn. This regression method is however less practical
when the number of design points n becomes large since it uses n knots.

D.2 Regression Penalized Splines or P-Splines

The idea of penalized spline smoothing with basic functions can track back to
O’Sullivan [87], see also Eilers and Marx [32] and Ruppert and Carroll [96] for
additional information. Two common basis used in practical, up to our knowledges,
are the B-spline basis (Eilers and Marx [32], De Boor [25]) and the truncated power
basis (Ruppert and Carroll [96]). The B-spline basis is preferable for computation
because of its better numerical properties. For formulation and theoretical study
the truncated power basis is preponderant because of its simplicity.

The penalized spline model specifies that the estimate m̃(x) is expressed as
B(x)Tβ for some N -dimensional space. Hence, the estimation of m̃(x) is equivalent
to that of β. Let D be a fixed, symmetric, positive semidefinite N × N matrix,
which is equivalent to the matrix K in the smoothing spline model. The penalized
spline estimator β̂ arises as the minimizer of

n∑
i=1

(Yi −B(Xi)β)2 + λβTDβ (D.2)

Define B the n × N matrix whose i-th row equals B(Xi)
T . The penalized spline

estimator is thus written as β̂ = (BTB + λD)−1BTY . From this, we obtain:

E
(
β̂
)

=
(
BTB + λD

)−1
BTBβ (D.3)

and the covariance of the estimate

Vβ̂ = σ2
(
BTB + λD

)−1
BTB

(
BTB + λD

)−1 (D.4)

It follows that β̂ ∼ N
(
E
(
β̂
)
,Vβ̂

)
. It is clear that E

(
β̂
)
6= β except for β = 0

which leads to the difficulty in using this result for calculating confidence intervals.
In this paper, we choose the truncated p-polynomial basis as mentioned previ-

ously, i.e. B(x) =
(
1, x, x2, . . . , xp, (x− κ1)p+, . . . , (x− κK)p+

)T for p ≥ 1 and D

is the diagonal matrix diag(0p+1,1K), indicating that only the spline coefficients
are penalized. One can easily verify that

∫ b
a

[
m̃(p+1)(x)

]2
dx = (p!)2

∑K
j=1 β

2
j+p by

using the fact that the derivative of an indicator function is a Dirac delta function.
Therefore, the equation (D.2) can be rewritten as

n∑
i=1

(Yi − m̃(x))2 + λ′
∫ b

a

[
m̃(p+1)(x)

]2
dx (D.5)

which is a generalization of equation (D.1).
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D.3 Bayesian Analysis for Penalized Splines Regression

The Bayesian analysis for penalized spline regression is an alternative approach to
calculate the confidence intervals. The initial works for this approach is mainly
due to Wahba [115] and Silverman [99]. The main idea behind this method is to
partition the coefficient vector β into the coefficients of the monomial basis func-
tions of the truncated power functions by letting β = (βT1 , β

2
2)T where β1 ∈ R1+p

has an improper uniform prior density and β2 ∈ RK has a proper prior equal to
(λ/σ2)K/2 exp

(
−(λ/2σ2)βT2 β2

)
.

Following the idea of Wood (section 4.8.1 in [119]), we obtain the Bayesian
posterior covariance matrix for the parameter β:

Vβ =
(
BTB + λD

)−1
σ2 (D.6)

and its corresponding posterior distribution:

β|Y ∼ N
(
β̂,Vβ

)
(D.7)

where β̂ = (BTB + λD)−1BTY . The penalized least squares estimator is the
mean of the posterior distribution of β. This posterior on β induces a posterior
on m̃(·) and then the posterior distribution of m̃ = (m̃(X1), . . . , m̃(Xn))T , i.e.
m̃|Y ∼ N (AY, σ2A) with A = B(BTB + λD)−1BT .

D.4 Bayesian Asymptotic Confidence Interval

Nychka [84] showed that if m(x) is estimated using a cubic smoothing spline for
which the smoothing parameter is sufficiently reliably estimated that the bias in the
estimates is a modest fraction of the mean squared error for m(x), then the average
coverage probability (ACP)

ACP =
1

n

n∑
i=1

P (m(Xi) ∈ BIα(Xi))

is very close to the nominal level 1 − α, where BIα(x) indicates the (1 − α)100%

Bayesian interval for m(x) and α the significance level. This is due to the fact that
the average posterior variance for the spline is similar to a consistent estimate of
the average squared error and that the average squared bias is relatively small with
respect to the total average squared error.

Marra and Wood [80] modified Nychka’s [84] approach to obtain the confidence
interval for Generalized Additive Model (GAM ), which is also applicable in the
Bayesian penalized spline models. Here we will sketch the main steps to obtain
confidence interval of variable width.

Given some constants Ci, which will be defined later, the primary purpose is to
find a constant A, such that

ACP =
1

n

n∑
i=1

P
(
|m̂(Xi)− m̃(Xi)| ≤ zα/2A/

√
Ci

)
= 1− α (D.8)
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where zα/2 is the α/2 critical point from a standard normal distribution.
Letting m̂ = (m̂(X1), . . . , m̂(Xn))T = Bβ̂ and m̃ = (m̃(X1), . . . , m̃(Xn))T =

Bβ. We write the covariance of m̂ as Vm̂ = BVβ̂B
T and the same as that

of m̃, i.e. Vm̃ = BVβB
T . Define b ≡ (b(X1), . . . , b(Xn))T = E(m̂) − m̃ and

v ≡ (v(X1), . . . , v(Xn))T = m̂ − E(m̂). We have v ∼ N (0,Vm̂) following from
multivariate normality of m̂. Equivalently, the equation (D.8) can be written as:

ACP = P
(
|b(XI) + v(XI)| ≤ zα/2A/

√
CI

)
= P

(
|B + V| ≤ zα/2A

)
= 1− α (D.9)

where I is a random variable uniformly distributed on {1, 2, . . . , n}, B and V are
respectively the random scaled bias and random scaled variance defined as follows:

B =
√
CIb(XI) and V =

√
CIv(XI).

This means that we need to know the distribution of B + V in order to find the
constant A.

Clearly, by definition, we have E(B) = cTB (Fβ − β), E(V) = 0 and var(V) =

tr(CVm̂)/n where c =
(√
C1, . . . ,

√
Cn
)T , F = (BTB + λB)−1BTB and C is the

diagonal matrix diag (C1, . . . , Cn). Since v ∼ N (0,Vm̂), V is a mixture of normals.
However, if we choose C−1

i = [Vm̂]ii, the random scaled variance V then has a
normal distribution. Since its distribution no longer depends on i, it implies the
independence of B and V.

We call M the scaled average mean squared error which is given by:

M =
1

n

n∑
i=1

Ci (m̂(Xi)− m̃(Xi))
2 . (D.10)

The mean squared error E (M) can be then determined as follows:

E(M) =
1

n
Tr
(
BTC2BVβ̂

)
+

1

n
‖CB (F− I)β‖2. (D.11)

By construction, we have E(B + V) = E(B) and var(B + V) = E(M) − E(B)2.
Nychka’s [84] simulation results showed that B+V will be approximately normally
distributed, provided that B is small relative to V, i.e.

B + V ∼ N
(
E(B),E(M)− E(B)2

)
The expectations E(B) and E(M) can be estimated by substituting β by β̂ which
yields

Ê(B) = cTB(Fβ̂ − β̂)/n

and

Ê (M) =
1

n
Tr
(
BTC2BVβ̂

)
+

1

n
‖CB (F− I) β̂‖2

= 1 +
1

n
‖CB (F− I) β̂‖2 (D.12)
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Therefore, we have the approximate result

B + V ∼ N
(
Ê(B), Ê(M)− Ê(B)

2
)

under the assumption that B is small relative to V, i.e. b2 � v2.

As the definition (D.9), it follows that A =

√
Ê(M)− Ê(B)

2
and then we obtain

m̂(Xi)− Ê(B)
√

[Vm̂]ii ± zα/2

√(
Ê(M)− Ê(B)

2
)

[Vm̂]ii (D.13)

as the definition of 1− α Bayesian asymptotic confidence intervals at the point Xi.
Finally, we use the estimator σ̂2 = ‖Y−Bβ̂‖2

n−Tr(F) to estimate σ2.

D.5 Additive model and Asymptotic confidence interval
for each functional components

In this section, the additive model will be briefly presented. In this model the
relation between the response Yi, i ∈ {1, . . . , n} and the d-explanatory variables
X1i, X2i, . . . , Xdi is expressed through arbitrary univariate functions fj as follows:

Yi = β0 +

d∑
j=1

fj (Xji) + εi (D.14)

where the errors εi are independent and identically distributed with mean zero
and the variance σ2. Several estimation strategies have been developed to fit such
a model, e.g. backfitting algorithm (Hastie and Tibshirani [49]) as well as its
asymptotic statistical properties (Opsomer and Ruppert [85], Opsomer [86] and
Wand [116]), and a marginal integration approach (Linton and Nielsen [77]). Due
to the computational expediency, the penalized splines regression to ordinary ad-
ditive models (Hastie and Tibshirani [49]) have been widely used in practice. As
consequent, we will apply this approach to estimate the excess loss function.

Like the univariate case, each of the functional components fj is modeled
as BTβj a degree pj penalized spline estimator with smoothing parameters λj
and Bj a n × (pj + Kj) matrix whose i-th row is (Xji, X

2
ji, . . . , X

pj
ji , (Xji −

κj1)
pj
+ , . . . , (Xji − κjKj )

pj
+ ). However, for the identifiability reasons, we replace

fj(·) by fj(·) − 1/n
∑n

i=1 fj(Xji) which leads to the condition on fj(·) of the form∑n
i=1 fj(Xji) = 0. Therefore, the estimate of β0 is β̂0 = Ȳ ≡ 1

n

∑n
i=1 Yi which is

independent of Xji’s and the matrix Bj is adjusted to B∗j = 1
n(I − 1.1T )Bj where

I is the identity matrix and 1 is a n× 1 column of ones. This adjustment is called
the “centering effect”. Letting Y ∗ = (Y1 − β̂0, . . . , Yn − β̂0)T , B̈ = [B∗1, . . . ,B

∗
d]

and Dλ = blockdiag1≤j≤d(λjDj) with λj > 0. We then have the estimate of
βT = (βT1 , . . . , β

T
d ) is given by

β̂ =
(
B̈T B̈ + Dλ

)−1
B̈Y ∗ ∈ R

∑d
j=1(pj+Kj+1) (D.15)
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From this we derive the estimate of βj , β̂j = Pj β̂ where Pj =

[0, . . . ,1(pj+Kj+1), . . . , 0] ∈ R(pj+Kj+1)×
∑
k(pk+Kk+1).

Regarding the Bayesian asymptotic confidence interval for each of the functional
components, the derivation is analogue as for the univariate case. Namely, assume
that β0 has an improper uniform prior distribution and the prior for βj is given by
(λj/σ

2)Kj/2 exp
(
−(λj/2σ

2)βTj βj

)
for j = 1, . . . , d. By using Bayes rule, it has been

shown ( [119]) that
β|Y ∼ N

(
β̂,Vβ

)
where Vβ = (B̈T B̈ + Dλ)−1σ2. Thanks to the equation (D.15), it is then routine to
show that Vβ̂ = (B̈T B̈ + Dλ)−1B̈T B̈(B̈T B̈ + Dλ)−1σ2. It follows immediately that
the variance of f̂j is Vf̂j

= (B∗jPj)Vβ̂(B∗jPj)
T . The 1 − α Bayesian asymptotic

confidence interval computation for f̂j(Xji) is similar to that can be found in (D.4).
Routine manipulation then results in

f̂j (Xji)− Ê(Bj)

√[
Vf̂j

]
ii
± zα/2

√(
Ê(Mj)− Ê(Bj)

2
)[

Vf̂j

]
ii

(D.16)

as the definition of 1−α Bayesian asymptotic confidence interval for f̂j(Xji). Here,
we denoted Ê(Bj) = 1

nc
TB∗jPj

(
F̈β̂ − β̂

)
with c =

(
[Vf̂j

]
−1/2
11 , . . . , [Vf̂j

]
−1/2
nn

)
and F̈ = (B̈T B̈ + Dλ)−1B̈T B̈, Ê(Mj) = 1 + 1

n‖CjB
∗
jPj(F̈β̂ − β̂)‖ with Cj =

diag([Vf̂j
]−1
11 , . . . , [Vf̂j

]−1
nn). Readers can refer to [80] for more details.

D.6 Upper bound of the probabilities of deviation

1. Let us denote Sj = {|φ̂j
(
x

(ν)
j

)
− φj

(
x

(ν)
j

)
| > ∆

(ν)
j,α} and S̃j = {|ĥJ

(
x

(ν)
J

)
−

hJ

(
x

(ν)
J

)
| > ∆̃

(ν)
J,α}. Since {Sj} and {S̃J} are mutually independent, it implies that

(by De Morgan’s law)

P

⋃
j

Sj

⋃(⋃
J

S̃J

) = 1− P

⋂
j

Scj

⋂(⋂
J

S̃cJ

)
= 1−

∏
j

P(Scj )

×(∏
J

P(S̃cj )

)

which asymptotically tends to 1− (1−α)d(d+3)/2 as Γ→∞. With this the equation
(3.28) is then a straightforward consequence of the relation

P

|φ̂(x(ν))− φ(x(ν))| >
d∑
j=1

∆
(ν)
j,α +

∑
J

∆̃
(ν)
J,α

 ≤ P

⋃
j

Sj

⋃(⋃
J

S̃J

)
thanks to the equation (3.27).
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2. For a given value of Γ, we call r∗ ≡ r(Γ) the positive constant mentioned in
Assumption (3). Furthermore, we assume that B(x∗, r∗) ⊂ Ω for large enough Γ.

For notional simplicity, let us denote δφ(x, y) = |φ̂(y)− φ(x)|. We have

P
(
δφ(x∗, x∗(Γ)) > ∆(α,Γ) + Lr∗

)
= P

(
δφ(x∗, x∗(Γ)) > ∆(α,Γ) + Lr∗ | x∗(Γ) ∈ B(x∗, r∗)

)
P
(
x∗(Γ) ∈ B(x∗, r∗)

)
+ P

(
|φ̂(x∗(Γ))− φ(x∗)| > ∆(α,Γ) + Lr∗ | x∗(Γ) /∈ B(x∗, r∗)

)
P
(
x∗(Γ) /∈ B(x∗, r∗)

)
≤ P

(
δφ(x∗(Γ), x

∗
(Γ)) > ∆(α,L) | x∗(Γ) ∈ B(x∗, r∗)

)
+ ξ(r∗, d)Γ−γ(r∗,d)

since |φ̂(x∗(Γ))− φ(x∗)| ≤ |φ̂(x∗(Γ))− φ(x∗(Γ))|+ |φ(x∗(Γ))− φ(x∗)| and

P
(
|φ(x∗(Γ))− φ(x∗)| > Lr∗ | x∗(Γ) ∈ B(x∗, r∗)

)
= 0

thanks to Assumption (1).
Finally, by applying Assumption (3), we obtain

P
(
δφ(x∗, x∗(Γ)) > ∆(α,Γ) + Lr∗

)
≤
[
1− (1− α)d(d+3)/2

]
+ ξ(r∗, d)Γ−γ(r∗,d).

D.7 Best approximation by splines

Let us first introduce two functional spaces.

Definition 3 (Polynomial Spline Space Φa,b
s ). Letting κl for l ∈ {1, . . . ,K} be K-

interior knots satisfying the condition a = κ0 ≤ κ1 ≤ · · · ≤ κK ≤ κK+1 = b. We
define Φa,b

s the space of functions whose element is a polynomial of at most degree
p on each of the intervals [κl, κl+1) for l = 0, 1, . . . ,K and is p − 1 continuously
differentiable on [a, b] if p ≥ 1.

Definition 4 (Empirically Centered Polynomial Spline Space Φ
a,b
s ). Given the de-

sign points (x1, . . . , xn) ∈ [a, b]n, a polynomial spline space is centered if for every
g ∈ Φa,b

s the following identity holds:

1

n

n∑
i=1

g(xi) = 0.

We denote by Φ
a,b
s the Empirically centered polynomial spline space.

According to de Boor (p.149 in [25]), for every φ(x) ∈ Cp+1([a, b]), there exists
a constant c > 0 and a spline function φ∗(x) ∈ Φa,b

s , such that ‖φ − φ∗‖∞ ≤
c‖φ(p+1)‖∞δp+1 with δ = max1≤l≤K(κl+1 − κl).

Given the design points (x1, . . . , xn) ∈ [a, b]n, we assume furthermore that

1

n

n∑
i=1

φ(xi) = 0

.
By defining φ∗∗(x) = φ∗(x)− 1

n

∑n
i=1 φ

∗(xi) ∈ Φ
a,b
s , it is straightforward to show

that there exists a positive constant c′ such that ‖φ− φ∗∗‖∞ ≤ c′‖φ(p+1)‖∞δp+1.
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D.8 Asymptotic distribution of empirical quantiles

Theorem 5. Let X1, . . . , Xn be n-real valued observations with unknown distribu-
tion function F , p be a real number defined in the interval [0, 1], xp = xp(F ) be the
pth-percentile of F and Fn(x) be the empirical distribution function.

If we suppose that F is continuous and differentiable at xp of derivation f(xp),
then

√
n (xp(n)− xp)→ N

(
0,
p(1− p)
f2(xp)

)
(D.17)

as n→∞.

This is a well-known result for the asymptotic convergence of empirical quantiles.
We will thus omit the proof here. For any further and detailed information, the
interested reader can refer to [113] (see Section 3.9.21)
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Résumé: Les accords de Bale et les directives européennes associées ont con-
duit à conditionner les capitaux prudentiels des banques à leur profil de risque
plutôt qu’à leur taille ou chiffre d’affaires. La directive Solvabilité 2 (ci-après la "di-
rective") répète ce processus pour les assureurs et réassureurs européens. Elle con-
stitue un changement total de paradigme pour la majorité des assureurs européens.
Elle définit les grands principes réglementaires visant à encadrer leur activité et en
particulier à déterminer le montant des capitaux prudentiels associés aux risques
inhérents à leur activité.

Conformément à la directive, le capital prudentiel correspond en principe pour
un assureur au quantile à 99.5% de la variation de ses fonds propres sur l’année à
venir. Une telle mesure de risque prospective requiert pour un assureur la capacité
d’adresser deux problèmes : un problème de valorisation et un problème de simula-
tion. En pratique, le quantile à 99.5% de la variation de ses fonds propres est estimé
par méthode de Monte-Carlo. Il est particulièrement sensible à la loi jointe à un
an retenue pour le vecteur de facteurs de risque x. Son évaluation par méthode de
Monte-Carlo nécessiterait idéalement de simuler m réalisations du facteur de risque
x à un an et d’évaluer les valeurs des fonds propres associées. Compte tenu du temps
de calcul important nécessaire à l’évaluation numérique, cette approche s’avère en
pratique inadaptée. De manière à contourner ce problème, les opérationnels ont
mis au point de nombreuses méthodes d’approximation ou « proxys » qui permet-
tent d’en approximer la valeur de manière instantanée. Aujourd’hui, ces méthodes
sont rarement accompagnées de contrôles d’erreur qui permettraient d’en mesurer la
qualité. Plus précisément, les méthodes actuellement utilisées par les opérationnels
ne permettent pas de contrôler naturellement l’erreur d’approximation engendrée
par l’utilisation du modèle proxy en lieu. Les contrôles d’erreur proposés sont donc
toujours empiriques et trop approximatifs.

Afin de résoudre cette problématique, nous proposons, dans une première partie
de cette thèse, une nouvelle méthode de construction du proxy à la fois économe
en ressources informatiques et offrant un contrôle d’erreur rigoureux. La deux-
ième partie de cette thèse a pour l’objectif d’appliquer la théorie de la valeur ex-
trême à l’estimation du capital prudentiel lorsque l’information sur la covariable
est disponible. En particulier, lorsque la covariable est de grande dimension, nous
sommes confrontés au problème de la "curse of dimensionality", qui se traduit par
une diminution des taux de convergence les plus rapides possibles des estimateurs
de la fonction de régression vers leur courbe cible. Ce problème fait référence au
phénomène où le volume de la covariable augmente si rapidement que les données
disponibles deviennent rares. Pour obtenir un résultat statistiquement fiable, la
quantité de données nécessaire à l’appui du résultat augmente souvent de manière
exponentielle avec la dimensionnalité, ce qui est généralement problématique dans
de nombreuses applications pratiques. Pour surmonter ce problème d’estimation,
nous proposons une nouvelle méthodologie d’évaluation efficace en combinant le
modèle additif généralisé et la méthode de sparse group lasso.

Mots-clé: Solvabilité 2, Assurance Vie, regression bayésienne par splines pénal-
isées, sparse group lasso, modèle additif généralisé.
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Discipline: Mathématiques
Abstract: The Basel agreements and the associated European directives have

made banking prudential capital contingent on their risk profile rather than on their
size or turnover. The Solvency 2 Directive (hereinafter the "Directive") repeats this
process for European insurers and reinsurers. It constitutes a total paradigm shift for
the majority of European insurers. It defines the main regulatory principles aimed
at regulating their activity and in particular determining the amount of prudential
capital associated with the risks inherent to their activity.

In accordance with the directive, the prudential capital corresponds in principle
to an insurer with a 99.5% percentile of the change in its basic own funds over the
coming year. Such a prospective risk measure requires for an insurer the ability to
address two problems: a valuation problem and a simulation problem. In practice,
the 99.5% percentile of the change in basic own funds is estimated using the Monte
Carlo method. It is particularly sensitive to the one-year law retained for the risk
factors vector. Its Monte Carlo valuation would ideally require the simulation of one-
year risk factor vector x and the valuation of the associated equity values. Given
the significant calculation time required for numerical evaluation, this approach is in
practice unsuitable. In order to circumvent this problem, the insurers have developed
many approximate methods or "proxies" which make it possible to approximate the
basic own funds value instantaneously. Today, these methods are rarely accompanied
by error controls that would measure the simulation quality. More precisely, the
methods currently used by the insurers do not make it possible to control naturally
the approximation error generated by the use of the proxy model instead. The
proposed error checks are therefore always empirical and too approximate.

In order to solve this problematic, we propose, in a first part of this thesis,
a new method of constructing the proxy that is both resource-efficient and offers
rigorous error control. The second part of this thesis aims at applying the extreme
value theory to the prudential capital estimate when information on the covariate is
available. In particular, when the covariate is high dimensional, we are confronted
with the problem of the curse of dimensionality, which translates into a decrease
in the fastest possible convergence rates of estimators of the regression function to
their target curve. This problem refers to the phenomenon where the volume of
the covariate increases so rapidly that available data become sparse. To obtain a
statistically reliable result, the amount of data needed to support the result often
increases exponentially with dimensionality, which is generally problematic in many
practical applications. To overcome this estimation problem, we propose a new
efficient evaluation methodology by combining the generalized additive model and
the sparse group lasso method.

Key Words: Solvency 2, Life Insurance, Bayesian penalized spline regression,
sparse group lasso, generalized additive model.
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