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Thèse de doctorat de l’Institut Polytechnique de Paris
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Abstract

This work is dedicated to zero-order black-box optimization, where only
a sequence of function evaluations is available for the update of the opti-
mization algorithm. Evolutionary algorithms are commonly used to solve
this type of problems. Among them, evolution strategies like CMA-ES are
state-of-the-art optimization algorithms for zero-order black-box optimization
problems with a continuous search space. Particular aspects of the CMA-
ES are the recombination mechanism and the non-elitist selection scheme,
that are crucial to deal with local irregularities and multimodality. A multi-
objective CMA-ES (with recombination and non-elitist selection scheme) is
then particularly in demand for real world applications, to tackle multiobjec-
tive problems with local Pareto fronts.

We design that type of multiobjective optimizers. More specifically, a
new multiobjective indicator called Uncrowded Hypervolume Improvement
(UHVI) is created, along with a framework of multiobjective optimizers called
Sofomore. By instantiating Sofomore with CMA-ES, COMO-CMA-ES is ob-
tained. The COMO-CMA-ES algorithm is experimented on bi-objective func-
tions that we analyze in details in this thesis, that are the bi-objective convex
quadratic problems. Interestingly, linear convergence results are empirically
observed, which is the optimal linear behavior we can get since CMA-ES
converges linearly on strictly convex-quadratic functions. A Python pack-
age called pycomocma and a Matlab interface are developed in this work for
COMO-CMA-ES and the Sofomore framework.

On a theoretical perspective, we analyze global linear convergence of
evolution strategies with recombination that include well-known optimization
algorithms, on a wide class of functions that are the scaling-invariant func-
tions. Our main condition for convergence is that the expected logarithm
of the step-size must increase on nontrivial linear functions. We analyze
thoroughly the class of scaling-invariant functions and emphasize similar
properties that they share with the positively homogeneous functions.

Keywords— CMA-ES, COMO-CMA-ES, Sofomore, UHVI, HVI, hypervolume,
multiobjective optimization, Pareto front, Pareto set, optimization, scaling-invariant
functions, positively homogeneous functions, xNES, CSA-ES, drift conditions, Markov
chains, ergodicity, geometric ergodicity, Lyapunov function, selection function.



Résumé

Ce travail concerne les algorithmes d’optimisation de type black-box, où
seulement une suite des valeurs de la fonction à optimiser est disponible
pour mettre à jour l’instance de l’algorithme d’optimisation. Les algorithmes
évolutionnaires ont une bonne réputation pour la résolution de ce genre de
problèmes, notamment le CMA-ES. Des aspects particuliers du CMA-ES
sont le mécanisme de recombinaison et la sélection non-élitiste, qui sont
cruciaux pour l’optimisation des fonctions irrégulières et multimodales. Un
CMA-ES multiobjectif (avec recombinaison et sélection non-élitiste) est ainsi
en forte demande pour les applications du monde réel, notamment pour
résoudre les problèmes multiobjectifs avec des fronts de Pareto locaux.

Nous concevons ce type d’algorithmes. Plus spécifiquement, un nou-
vel indicateur multiobjectif appelé Uncrowded Hypervolume Improvement
(UHVI) est proposé, de même qu’un cadre d’algorithmes multiobjectifs ap-
pelé Sofomore. En instanciant Sofomore avec CMA-ES, nous obtenons
COMO-CMA-ES. Ce nouvel algorithme multiobjectif est testé sur les fonc-
tions bi-objectives quadratiques et convexes, que nous analysons en détail
dans cette thèse. Nous observons une convergence linéaire, ce qui est le
comportement optimal pour un CMA-ES multiobjectif puisque le CMA-ES
converge linéairement sur les fonctions quadratiques strictemement con-
vexes. Un package Python appelé pycomocma et une interface Matlab sont
développés pour COMO-CMA-ES et pour Sofomore.

D’un point de vue théorique, nous analysons la convergence linéaire
de stratégies d’évolution avec recombinaison contenant des algorithmes
d’optimisation très connus, sur une classe de fonctions large constituée des
fonctions scaling-invariant. Notre principale condition de convergence est
que l’espérance du logarithme du step-size doit croı̂tre sur les fonctions
linéaires non triviales, ce qui est optimal comme condition. Nous analysons
la classe de fonctions scaling-invariant et mettons l’accent sur les propriétés
qu’elle partage avec les fonctions homogènes.

Mots clés— CMA-ES, COMO-CMA-ES, Sofomore, UHVI, HVI, hypervolume,
optimisation multi-objective, front de Pareto, ensemble de Pareto, optimisation, opti-
misation mono-objective, fonctions scaling-invariant, fonction homogène, xNES, CSA-
ES, conditions de drift, chaı̂nes de Markov, ergodicité, ergodicité géometrique, fonc-
tion de Lyapunov, fonction de selection.
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vous et vos énergies positives, je ne serais sans doute pas là. Merci beaucoup et
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Multiobjective optimization consists in finding the optima of a vector-valued function
f ∶ x ∈ Rn ↦ (f1(x), . . . , fm(x)) ∈ Rm, where the considered partial order in Rm depends
on f and is called the weakly Pareto dominance relation. The set of non comparable
points in the search space with that Pareto relation is called the Pareto set and its
image by f is called the Pareto front. Typically it is not finite. With a fixed budget
of function evaluations or a fixed number of solutions on the objective space Rm or
on the search space Rn, a multiobjective optimizer aims to return solutions with a
certain quality. The indicators that measure the quality of the solutions and guide the
optimization are called quality indicators.

In a zero-order black-box scenario, only a sequence of function evaluations are
available to the optimizer. The information related to the gradients is usually not avail-
able. This situation is commonly found in industrial use cases, where a function value
is returned after executing a complex simulation code. This scenario is also called
derivative-free optimization (DFO).

The state-of-the-art algorithms to solve the multiobjective zero-order black-box
problems are multiobjective evolutionary algorithms, mainly thanks to their population-
based nature that allows the generation of a variety of Pareto optimal solutions in a
single run [49].

Evolution strategies are a class of randomized black-box optimization algorithms [90,
159, 160, 172, 173], well-known for tackling real world optimization problems that of-
ten come with difficulties such as non-linearity, non-convexity, non-separability, ill-
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conditioning and multimodality. For a continuous domain optimization problem, the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [88, 95] is among the
state-of-the-art zero-order black-box single-objective optimization algorithm. Based
on the comparisons of the function values observed, it learns second order informa-
tion [91]. Most of its internal parameters are already set within the algorithm design.
Its generic formulation, robustness and invariance properties [96] are among the rea-
sons why CMA-ES is used on a wide range of real-world applications, with little pa-
rameter tuning required [37,100,166].

1 Context of the thesis

This work is based on a project of the underground gas storage company Storengy.
Its operation is to store natural gas in an underground reservoir during summer when
there is a lot of gas available, and produce the gas during winter when there is a
large demand in cold period. Storengy needs to predict the reservoir behavior in
order to optimize the operation, therefore a numerical reservoir simulator is used for
this purpose. Many parameters of the simulator related to the reservoir porosity and
permeability have to be history matched on well measurements: daily water volume
produced, cumulative yearly water volume, bottom hole pressure for field wells and
water-gas interface position. Two or three objective functions are constructed based
on these measures. Optimizing them is much needed to calibrate the models in order
to obtain a good predictive model.

Typically, these objective functions are multimodal, non-convex and non-smooth,
and are in a zero-order black-box scenario due to their non-smoothness and the ex-
pensiveness of the function values. Storengy is therefore very interested in optimizers
that are suitable to handle these type of irregularities, especially in a multiobjective op-
timizer that can approximate the global Pareto front despite the multimodality of the
objective functions.

A trait that makes an evolution strategy more robust to local irregularities and mul-
timodality is the recombination mechanism. An evolution strategy with recombina-
tion samples λ candidate solutions—the offspring—based on the favorite solution and
other parameters, chooses the µ ≤ λ best among them—the parents—, and recom-
bines the parents to obtain the new favorite solution. Typically, µ ≥ 2 and λ ≈ 2µ.

This mechanism also makes the evolution strategy converge faster to the global
optimum [13]. In various experiments, evolution strategies with recombination con-
verge or diverge linearly, i.e. geometrically fast, on a wide class of functions [90].

An interesting class of functions where linear convergence or divergence (linear be-
havior) is often observed is the class of scaling-invariant functions. It contains norms,
convex-quadratic functions, nontrivial linear functions and more generally increas-
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ing transformations of positively homogeneous functions. Scaling-invariant functions
are defined as preserving the f-comparisons of points when the points are scaled
by the same positive scalar (with respect to a reference point). Various unanswered
questions arise related to the study of this class to see how wide it is, compared
to increasing transformations of positively homogeneous functions. We suspect that
understanding this class of functions is a necessary step towards proving linear con-
vergence or divergence of Evolution Strategies with recombination on it. Therefore
natural general questions are:

What are the interesting properties of scaling-invariant functions? Are they
connected to positively homogeneous functions?

(Chapter 3)

Linear convergence is the fastest possible convergence that we can obtain in evo-
lution strategies [114, 182]. It is often observed experimentally [23, 90, 96, 105, 162].
However it is usually difficult to prove. The mathematical work often consists in doing
drift analysis on Markov chains, or applying a Law of Large Numbers to an underlying
ergodic Markov chain. In the literature, linear behavior is theoretically obtained for
evolution strategies with one parent population size [2,3,19,24,48,106–108,110]. Yet
linear convergence analysis of evolution strategies with recombination mechanism is
inexistent. This brings the general and difficult following question.

Can we prove that evolution strategies with recombination converge or diverge
geometrically fast on scaling-invariant functions, under regularity assumptions?

(Chapter 4)

The above questions concern theoretical analysis on evolution strategies with re-
combination. The latter is crucial for various single-objective real-world problems that
are irregular and multimodal, like Storengy’s problems. We suspect that in a multiob-
jective scenario, the recombination mechanism along with non-elitism selection can
help deal with local Pareto sets.

Yet, we believe that an efficient multiobjective optimizer has to at least converge lin-
early on multiobjective strictly convex-quadratic problems (with a convergence notion
that will be defined later on). Therefore before designing a multiobjective optimizer
based on evolution strategies with recombination and non-elitism, we try to build sub-
classes of bi-objective convex quadratic problems that highlight different difficulties of
a problem, mainly curvature of the Pareto front, non-separability and ill-conditioning
of the objective functions. This leads us to the following question.

How to build subclasses of bi-objective convex-quadratic problems that have typical
difficulties ?

(Chapter 6)

The CMA-ES is one of the state-of-the-art evolution strategies with recombination.
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The idea of designing a multiobjective optimizer based on the CMA-ES emerged more
than fifteen years ago. Yet if we have several CMA-ES instances that constitute a
multiobjective optimizer, the total function evaluations per iteration is the number of
CMA-ES instances times the offspring population size λ. That typically large number
of evaluations per iteration makes it difficult to create an efficient multiobjective CMA-
ES version. In [104], Igel et al. design a CMA-ES version without the recombination
and non-elitist mechanism, replaced with the so-called (1 + 1)-selection mechanism
with 1/5-success rule or a (µ + λ)-selection scheme [121,159]. It is an elitist version of
CMA-ES with µ parents and λ offspring, where the next µ parents are the best among
the (µ + λ) parents and offspring. Based on this new version, Igel et al. design a
multiobjective CMA-ES optimizer called MO-CMA-ES [104,193].

Yet, the CMA-ES is less prone to getting stuck to sub-optimal local optima, com-
pared to its elitist variants [104]. Therefore the desire for industrials to have an effi-
cient multiobjective optimizer based on the CMA-ES, and the scientific interest to see
the benefits of recombination and non-elitism in multiobjective optimization, are still
present. This guides us to ask the following question.

Can we design a robust multiobjective algorithm based on the CMA-ES (non-elitist
with recombination), linearly convergent on multiobjective strictly convex-quadratic
problems? How does it perform compared to existing multiobjective algorithms?

(Chapters 7 and 8)

The pycma [89] package for the CMA-ES (with recombination) is actively main-
tained and is updated regularly. Therefore if a multiobjective optimizer is based on
the CMA-ES, it is crucial to make it as compatible as possible to the pycma package.
That way, an improvement on the single-objective algorithm will be easily transferred
to the multiobjective version.

In addition for industrial purpose with our partner Storengy, the designed multiob-
jective algorithm should be implemented in Matlab. It should also fulfil the standard
needs for industrial use cases, such as the possibility to parallelize the optimizer.
Therefore a natural question is:

How to efficiently implement the designed multiobjective algorithms both in Python
and in Matlab? Can the algorithm have a robust parallelized version?

(Chapter 9)

2 Contributions of the thesis

In this thesis, we study the above research questions. In that process, we address
them at some extent and develop various innovative results.
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We study for the first time the linear convergence analysis of evolution strate-
gies with recombination. The algorithms considered are step-size adaptive evolution
strategies, represented by a stochastic process {(Xk, σk) ;k ∈ N}, where Xk is the fa-
vorite solution and σk is the step-size at iteration k. We analyze linear behavior of
step-size adaptive evolution strategies with recombination on scaling-invariant func-
tions.

In multiobjective optimization, we develop a framework of multiobjective optimiza-
tion algorithms called Sofomore. We instantiate the framework with CMA-ES as
single-objective optimizers to obtain the newly COMO-CMA-ES, that converges geo-
metrically fast on strictly-convex quadratic functions. We carry out the implementation
of Sofomore and COMO-CMA-ES, both in Python and in Matlab. The code is compat-
ible with the pycma package and has various options needed for industrial purpose.

2.1 Global linear convergence of evolution strategies with
recombination on scaling-invariant functions

In Chapter 3, we thoroughly analyze scaling-invariant functions and present that under
specific conditions, they are composites of strictly monotonic functions with positively
homogeneous functions.

Specifically, we give necessary and sufficient conditions for a scaling-invariant
function to be a composite of a strictly monotonic function with a positively homo-
geneous function. We also present various properties satisfied by sublevel sets of
scaling-invariant functions. Surprisingly, we highlight that scaling-invariant functions
can have highly pathological behaviors, by showing real-valued scaling-invariant func-
tions that are not monotonic on any nontrivial interval. The results of Chapter 3 are
published in the Journal of Optimization Theory and Applications (JOTA) and are pre-
sented in [184]:
Cheikh Toure, Armand Gissler, Anne Auger and Nikolaus Hansen, Scaling-invariant
functions versus positively homogeneous functions, Journal of Optimization Theory
and Applications, 2021.

We present in Chapter 4 linear behaviors of a class of step-size adaptive evolution
strategies with recombination mechanism, on a wide class of functions that are the
scaling-invariant functions. Our framework includes two well-known step-size adapta-
tion mechanisms derived from the Exponential Natural Evolution Strategy (xNES) [70]
and the Cumulative Step-size Adaptation (CSA) without cumulation, where the CSA
with cumulation is the default step-size mechanism of CMA-ES [88].

We show that the logarithm of the distance of the incumbent to the optimum (or
to a reference point if the algorithm diverges) divided by the number of iterations
converges to a limit r. In addition the logarithm of the step-size divided by the number
of iterations converges to the same limit r. That limit is the rate of convergence or
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divergence. We also prove that the expected logarithm of the step-size change and
the expected log-progress both converge to the rate r.

The rate is expressed as an expectation under an unknown invariant probability
measure that comes from stability properties of a joint Markov chain defined on a
general state space. Therefore we also give a central limit theorem to approximate
that rate by Monte Carlo simulations.

Our main condition to obtain linear behavior is that on expectation, the logarithm of
the step-size must increase on nontrivial linear functions. This is the tightest condition
we can have, since it is equivalent to stating that the algorithm diverges geometrically
on nontrivial linear functions. Note also that this condition is new compared to former
conditions for linear convergence that we can find in the literature [3,19,24].

We also show how practical this condition is for concrete evolution strategies like
xNES [70] without covariance matrix adaptation or CSA-ES without cumulation [88],
by expressing it with respect to the parameters of the algorithms and to order statistics
of standard normal distributions.

The linear behaviors in Chapter 4 are obtained on a wide class of functions, that
are strictly increasing transformations of either C1 scaling-invariant functions with a
unique global argmin, or nontrivial linear functions.

All the results in Chapter 4 are submitted in the Journal of Global Optimization, by
the authors Cheikh Toure, Anne Auger and Nikolaus Hansen.

2.2 Multiobjective optimization: UHVI, Sofomore, COMO-
CMA-ES, Implementations

We develop in Chapter 7 a framework of multiobjective optimization algorithms called
Sofomore: Single-objective Optimization For Optimizing Multiobjective Optimization
pRoblEms. This framework allows to optimize a changing single-objective fitness by
various single-objective algorithms. An incumbent of a single-objective optimizer ap-
proximates an element of the Pareto set. The number of single-objective optimizers
is fixed and denoted by p. The goal of the multiobjective optimization that we consider
is then to maximize the so-called p-optimal distribution of the hypervolume indica-
tor [16,22].

In previous study such as SMS-EMOA [30] or MO-CMA-ES [104, 193], the per-
formance indicator used to guide the multiobjective optimization tends to steer dom-
inated solutions towards regions already occupied by a non-dominated solution. We
then introduce a new performance indicator called UHVI: Uncrowded Hypervolume
Improvement. It creates a search bias towards the uncovered domain of the Pareto
set.
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We instantiate the Sofomore framework with the single-objective optimizer CMA-
ES [88,95] to obtain the COMO-CMA-ES algorithm: Comma-Selection Multiobjective
CMA-ES. The comma-selection highlights the non-elitist mechanism inherent to the
standard CMA-ES, in contrary to the elitist (1+1)-CMA-ES version used in MO-CMA-
ES [104,193].

The content of Chapter 7 was presented in the GECCO 2019 Conference at Prague,
in the EURO 2019 Conference at Dublin and in the MACODA 2019 Workshop at Lei-
den. It is published in [185]:
Cheikh Toure, Nikolaus Hansen, Anne Auger and Dimo Brockhoff, Uncrowded hyper-
volume improvement: COMO-CMA-ES and the Sofomore framework, Proceedings of
the Genetic and Evolutionary Computation Conference, 2019, pp 638–646.

We believe that efficient multiobjective evolution strategies must converge (with a
convergence definition related to the Pareto front) linearly on multiobjective strictly
convex-quadratic functions, like the efficient single-objective evolution strategies do
for strictly convex-quadratic functions.

We thoroughly present in Chapter 6 the analysis of bi-objective strictly convex and
quadratic functions, and give various descriptions of the Pareto front and the Pareto
set for this class of problems.

We also construct subclasses of bi-objective convex-quadratic problems that aim
to test the behaviors of a multiobjective algorithm with respect to different features of
a problem. The theoretical analysis of Chapter 6 are published in [183]:
Cheikh Toure, Anne Auger, Dimo Brockhoff and Nikolaus Hansen, On Bi-Objective
convex-quadratic problems, International Conference on Evolutionary Multi-Criterion
Optimization, 2019, pp 3–14.

In Chapter 8, we benchmark the new multiobjective evolution strategy COMO-
CMA-ES in the COCO (COmparing Continuous Optimizers) platform. The latter al-
lows to compare different continuous black-box optimizers with respect to separability,
ill-conditioning, multimodality and the structure of a problem.

We compare COMO-CMA-ES to well-known multiobjective optimizers NSGA-II [56]
and MO-CMA-ES [104,193]. Although COMO-CMA-ES is not designed to perform on
archive-based metric such as the one used by COCO, we observe good performances
of COMO-CMA-ES on COCO. That highlights the power of evolution strategies with
recombination like the underlying single-objective CMA-ES. It also underlines the use-
fulness of an uncrowded performance indicator like the UHVI that guarantees the
quality of sampled non-dominated offspring, when the mulitobjective optimizer’s in-
cumbents are close to the Pareto set. The results of Chapter 8 are published in [61]:
Paul Dufosse and Cheikh Toure, Benchmarking MO-CMA-ES and COMO-CMA-ES
on the Bi-objective bbob-biobj Testbed, Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2019, pp 1920–1927.

In Chapter 9, we present the Python package developed for this work, that is the
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pycomocma package available on this link: https://github.com/CMA-ES/pycomocma.
Similar to the CMA-ES python package pycma [89], it is implemented with the so-
called ask-and-tell paradigm. The latter allows to have access to the optimizer at
each iteration between the generation of new solutions with the ask method, and the
update of the optimization instance with the tell method.

This package implements the Sofomore framework, and gives the possibility to
derive the COMO-CMA-ES algorithm by instantiating the framework with CMA-ES
instances.

A Matlab interface of COMO-CMA-ES is also produced for our industrial partner
Storengy. This Matlab code works for Matlab 2014b versions or later, as it uses
the Matlab py command. The installation of the Python package pycomocma is also
necessary.

3 Overview of the chapters

Chapter 1: Continuous black-box optimization

In a zero-order black-box continuous optimization scenario, the goal is to minimize
a function f ∶ Rn → R where only the f -values, i.e. the f(x) for a sequence of can-
didate solutions x ∈ Rn, are available. This situation arises when only an oracle re-
turning f(x) for a given x is available. Therefore the optimization problem is usually
derivative-free as we have no information related to the gradient of f . Continuous op-
timization concerns the optimization problem where the search space is continuous.

We present deterministic continuous black-box optimization algorithms like the
Nelder-Mead method and some Trust-region methods. We also present randomized
algorithms more refined than Pure random search. Namely simulated annealing and
evolutionary algorithms. We then focus on evolution strategies, with a detailed pre-
sentation of Cumulative Step-size Adaptation Evolution Strategy (CSA-ES) and Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES). The Information-Geometric
Optimization viewpoint is finally given to embed CMA-ES in a broader class of opti-
mization algorithms.

Chapter 2: Convergence of evolution strategies

Analyzing an evolution strategy is important to assess its pertinence. Pure random
search converges, but with a speed of convergence so slow that this type of optimiza-
tion algorithm is typically not used in practice. We present in this chapter some no-
tions traditionally used to measure the speed of convergence of an evolution strategy.
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Namely the almost sure linear convergence or divergence, the expected log-progress,
the progress rate, the quality gain, the expected hitting time and the expected running
time.

We also present briefly some methods used to establish convergence results. Or-
dinary Differential Equations (ODE) are one of them, with the IGO flow that can be
seen as an ODE. We sketch how the law of large numbers is used via Markov chain
analysis to obtain almost sure linear convergence or linear convergence of the ex-
pected log-progress. A drift analysis technique to bound the expected hitting time is
also briefly presented.

Chapter 3: Scaling invariant functions versus Positively ho-
mogeneous functions

A function f ∶ Rn → R is scaling-invariant with respect to a reference point x⋆ ∈ Rn if
for all x, y ∈ Rn and ρ > 0:

f(x⋆ + x) ≤ f(x⋆ + y) ⇐⇒ f(x⋆ + ρx) ≤ f(x⋆ + ρy) .

Positively homogeneous functions are scaling-invariant functions. Recall that a func-
tion p ∶ Rn → R is positively homogenous with degree α > 0 if for all x ∈ Rn and
ρ > 0: p(ρ (x − x⋆)) = ραp(x − x⋆). Linear functions, norms, quadratic functions are
positively homogeneous. Composites of strictly monotonic functions with positively
homogeneous functions are scaling-invariant.

We show in this chapter the necessary and sufficient conditions for a scaling-
invariant function to be composite of a strictly monotonic function with a positively
homogeneous function. In particular, we show that continuous scaling-invariant func-
tions are composites of a homeomorphism with a continuous positively homogeneous
function.

We study sublevel sets of scaling-invariant functions generalizing well-known prop-
erties of positively homogeneous functions. In particular we show that under mild
conditions, a scaling-invariant function has a unique global argmin if and only if its
sublevel sets are compact sets.

The content of this chapter is published in the Journal of Optimization Theory and
Applications (JOTA). It is presented in [184]:
Cheikh Toure, Armand Gissler, Anne Auger and Nikolaus Hansen, Scaling-invariant
functions versus positively homogeneous functions, Journal of Optimization Theory
and Applications, 2021.
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Chapter 4: Global linear convergence of step-size adaptive
evolution strategies with recombination on scaling-invariant
functions

We analyze in this chapter the linear behavior of evolution strategies with recombina-
tion, where only the step-size and the incumbent are adapted. The covariance matrix
adaptation and other refined mechanisms are not considered, so that the covariance
matrix is always the square of the step-size times the identity matrix.

We present a generic step-size update defined such that the invariances to or-
der and angle preserving transformations are conserved, which are crucial for the
conception of evolution strategies [83, 167]. We show that both CSA-ES without cu-
mulation and xNES without covariance matrix adaptation are particular cases of our
framework.

We then prove linear divergence on strictly increasing transformations of linear
functions and linear behavior on strictly increasing transformations of C1 scaling-
invariant functions with a unique global argmin. These functions include non con-
vex functions and non quasiconvex functions. The main condition for these proofs is
equivalent to the geometric divergence of the step-size on nontrivial linear functions.

The method we use is based on a Markov chain technique for analyzing evolution
strategies. More specifically, we exploit the methodology established in [25] by proving
that the underlying normalized Markov chain is ergodic.

The main results of the chapter are linear convergence or linear divergence of the
step-size and the distance to the optimum (or to a reference point). The rate for linear
behavior depends on an unknown probability measure that comes from the underlying
Markov chain. A central limit theorem is then given to approximate that rate.

The content of this chapter is submitted in the Journal of Global Optimization by
Cheikh Toure, Anne Auger and Nikolaus Hansen.

Chapter 5: Background on multiobjective evolutionary algo-
rithms

We present in this chapter basic notions used to define the optimization of a vector-
valued function f ∶ x ∈ Rn z→ f(x) = (f1(x), . . . , fm(x)) ∈ Rm where m ≥ 2. Defining an
order in Rm that generalizes the standard ≤ order in R for single-objective optimization
is itself an important task. It is tackled by the notions of weakly Pareto dominance that
create a partial order in Rm. For a finite and nonempty set P , the subset of points that
are not Pareto dominated are the non-dominated points of P, and we say that they
have a Pareto rank of 1. Recursively, the set P is partitioned into a finite number of
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subsets P1, . . . , Pk where Pi has a Pareto rank i and is Pareto dominated by Pi−1. Any
two elements of a subset Pi are not Pareto comparable. This is a first step towards
sorting the set P .

To fully sort P , total orders in Rm compatible with the weakly Pareto dominance are
presented. The construction of these orders are typically based on quality indicators,
like the crowding distance and the hypervolume indicator. For a set of non Pareto
comparable points, the performance indicator is a real-valued function that assigns
to each point a real value, that is the sorting we use in this context. Hence given a
finite nonempty population P , it is first partitioned into P1, . . . , Pk where the points in
Pi have a Pareto rank i. Second, Pi is sorted with respect to a performance indicator,
independently of P ∖ Pi. Overall a point with smaller Pareto rank is always better.
Between two points with the same Pareto rank, a point with a larger performance
indicator value is always better. This scheme is the so-called two-way ranking [104].

The hypervolume contribution and the hypervolume improvement are performance
indicators of the hypervolume indicator. A specific aspect of the latter is its strictly
monotone property, i.e. its property to conserve the Pareto dominance relation. This
feature helps to transform the problem of finding p solutions on the Pareto set into a
single-objective problem in Rn×p that consists of maximizing the hypervolume (defined
on the search space) with respect to the multiobjective function to optimize [16,22].

We present well-known multiobjective evolutionary algorithms (the family of NSGA
algorithms [56,178], SMS-EMOA [30] and MO-CMA-ES [104,193]) and observe how
an underlying two-way ranking is inherent to the designs of these algorithms.

We finally emphasize some limitations regarding the use of some performance
indicators, namely the hypervolume contribution and the hypervolume improvement.

Chapter 6: Theoretical analysis of Pareto fronts and Pareto
sets of bi-objective convex-quadratic functions

In single-objective optimization, efficient evolution strategies converge linearly on strictly
convex-quadratic functions [90,105,162]. Multiobjective strictly convex-quadratic prob-
lems are vector-valued functions where each coordinate is a strictly convex-quadratic
function.

We believe that on these multiobjective problems, efficient multiobjective evolution
strategies should at least converge linearly to a subset of the Pareto set, with an ap-
propriate convergence definition. Therefore as a first step, we present in this chapter
theoretical results that thoroughly analyze the global optima for bi-objective strictly
convex and quadratic problems, i.e. the Pareto set and the Pareto front. In particular
if the two Hessians of the objective functions are proportional, the Pareto set is a line
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segment between the two optima and the Pareto front is the graph of a function similar
to x↦ (1 −√

x)2
on [0,1].

We derive various classes of convex-quadratic problems to test specific features
of multiobjective algorithms. Namely the sensitivity with respect to separability, ill-
conditioning, rotational invariance and Pareto set alignment with the coordinate axis.

The content of this chapter is presented in the EMO 2019 Conference at Michigan
and published in [183]:
Cheikh Toure, Anne Auger, Dimo Brockhoff and Nikolaus Hansen, On Bi-Objective
convex-quadratic problems, International Conference on Evolutionary Multi-Criterion
Optimization, 2019, pp 3–14.

Chapter 7: Uncrowded Hypervolume Improvement: COMO-
CMA-ES and the Sofomore framework

In state-of-the-art multiobjective evolutionary algorithms like SMS-EMOA [30] and
MO-CMA-ES [104, 193], a particular trait is the use of the hypervolume contribution
(or similarly the hypervolume improvement) as performance indicator. This helps to
obtain a total order for the sorting of a population at each iteration. Therefore for a
population P with non-dominated points P1, the two-way ranking with the hypervol-
ume contribution unflattens the fitness of the set of dominated points P ∖P1. However
by observing the level sets of this new fitness, the dominated points of P typically
steer towards regions already occupied by non-dominated points in P1. Therefore
this creates a crowdedness towards non-dominated points, and questions the quality
assessment of this two-way ranking scheme. A particular characteristic of this two-
way ranking is that the sorting of points within a non Pareto comparable subset Pi is
independent of P ∖ Pi.

We propose in this chapter a fitness that removes the crowdedness defect ob-
served in the two-way ranking scheme: it is called Uncrowded Hypervolume Improve-
ment (UHVI). For a multiobjective function f , the UHVI of a point with respect to a set
P is its hypervolume improvement to P minus the distance of its image by f to the
region dominating a so-called reference point and not dominated by any image by f
of P . The UHVI definition is compliant with the Pareto dominance relation. It is used
as a total order to sort any set P .

At each iteration during a multiobjective optimization, a single-objective fitness that
depends on the population (set) to rank is defined. This idea is formalized into the
Sofomore framework. It consists of using single-objective optimizers that are adapted
based on the changing fitness obtained with the UHVI, in order to solve the overall
multiobjective optimization problem that consists of finding the optimal distribution of
p points maximizing the hypervolume.
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COMO-CMA-ES is the multiobjective evolution strategy that we obtain by instan-
tiating the Sofomore framework with the CMA-ES with recombination [88, 95]. Em-
pirically, COMO-CMA-ES converges linearly towards the p-optimal distribution of the
hypervolume, on various bi-objective convex quadratic problems. Some interesting
features of the algorithm are also oberved, namely robustness to independently rotat-
ing randomly the Hessian matrices and bending the Pareto set.

COMO-CMA-ES is compared with MO-CMA-ES [104, 193], SMS-EMOA [30] and
NSGA-II [56] on different classes of bi-objective convex quadratic problems. Glob-
ally COMO-CMA-ES performs better on two different metrics: the convergence gap
that only depends on the incumbents of single-objective CMA-ES (the parents for
the other algorithms), and the archive gap that takes into account all non-dominated
solutions found so far by an algorithm. Although the evolution of COMO-CMA-ES
does not depend on the archive gap, its well performance on that metric with respect
to the other algorithms is explained by two different features. First the uncrowded
spaces between two incumbents are more explored so that we should expect to sam-
ple more non-dominated points. Last, the particular non-elitist aspect of the CMA-ES
with recombination [88,95] brings the large stationary variance typically observed with
non-elitist evolution strategies.

The content of this chapter is presented in the GECCO 2019 Conference at Prague,
in the EURO 2019 Conference at Dublin and in the MACODA 2019 Workshop at Lei-
den. It is published in [185]:
Cheikh Toure, Nikolaus Hansen, Anne Auger and Dimo Brockhoff, Uncrowded hyper-
volume improvement: COMO-CMA-ES and the Sofomore framework, Proceedings of
the Genetic and Evolutionary Computation Conference, 2019, pp 638–646.

Chapter 8: Comparing COMO-CMA-ES to well-known multi-
objective evolutionary algorithms

This chapter presents various benchmarks comparing three algorithms: NSGA-II [56],
MO-CMA-ES [104, 193] and COMO-CMA-ES [185] introduced in Chapter 7. The
benchmark is done with the COCO (COmparing Continuous Optimizers) platform [80]
based on archive performance, i.e. on all the points evaluated so far by the algorithm.
The benchmarking platform contains classes of separable, ill-conditioned, multimodal
and weak-structured problems. It allows to test the optimizers with respect to these
features of optimization problems.

The well-known NSGA-II algorithm is used as a baseline, and various population
sizes are considered for both MO-CMA-ES and COMO-CMA-ES algorithms. Although
COMO-CMA-ES is designed to find an optimal distribution of p points on a Pareto
set with respect to the hypervolume indicator, we observe in this chapter that it also
performs well on COCO.
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With these two CMA-ES multiobjective variants, we observe that the performance
depends strongly on the fixed population size. For small budgets, algorithms with
smaller population size perform better. For large budgets, the ones with larger popu-
lation size reach better target precisions.

The content of this chapter is presented in the GECCO 2019 Workshop at Prague.
It is published in [61]:
Paul Dufosse and Cheikh Toure, Benchmarking MO-CMA-ES and COMO-CMA-ES
on the Bi-objective bbob-biobj Testbed, Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2019, pp 1920–1927.

Chapter 9: Implementations

This chapter is devoted to the various implementations done during my PhD thesis.
They are all based on the ask-and-tell paradigm [51]. On an optimization algorithm,
this paradigm allows to separate the generation of candidate solutions and the update
of the optimizer’s state.

The Python implementation of COMO-CMA-ES [185] introduced in Chapter 7, is
presented. It is the pycomocma package, that uses CMA-ES as single optimizers [95].
Similar to the ask-and-tell implementation of CMA-ES, the ask method of pycomocma
generates candidate solutions for the multiobjective optimizer, and the tell method
updates its state. In between, the candidate solutions are evaluated on a changing
fitness given by the UHVI introduced in Chapter 7.

Finally, a Matlab implementation of COMO-CMA-ES [185] is presented. It is a Mat-
lab interface where essentially the pycomocma Python package is used within, with
continual conversion of data structures from Python to Matlab and vice versa. Due to
Storengy demand, the interface has the same calling sequence as the Matlab imple-
mentations of MO-CMA-ES and SMS-EMOA [41,186].
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L’optimisation multiobjective consiste à trouver les optima d’une fonction à valeurs
vectorielles f ∶ x ∈ Rn ↦ (f1(x), . . . , fm(x)) ∈ Rm, où la relation d’ordre partielle con-
sidéré dans Rm dépend de f et est appelée “weakly Pareto dominance”. L’ensemble
des points non comparables dans Rn avec cette relation de Pareto est appelé l’ensemble
de Pareto et son image par f est appelée le front de Pareto. Souvent cet ensemble
a un nombre infini d’éléments. Avec un budget fini d’évaluations de fonctions ou un
nombre fixé de solutions sur l’espace objectif Rm ou sur l’espace de recherche Rn,
un optimiseur multiobjectif vise à fournir des solutions d’une certaine qualité. Les in-
dicateurs qui mesurent la qualité des solutions et guident l’optimisation sont appelés
les indicateurs de qualité.

Dans un scénario de boı̂te noire d’ordre zéro, seule une séquence d’évaluations
de fonctions est disponible pour l’optimiseur. Les informations relatives aux gradi-
ents ne sont pas disponibles. Cette situation est courante dans les cas d’utilisation
industrielle, où une valeur de fonction est renvoyée après l’exécution d’un code de
simulation complexe.

Les algorithmes de pointe pour résoudre les problèmes multiobjectifs de boı̂te
noire d’ordre zéro sont les algorithmes évolutionnaires multiobjectifs, principalement
grâce à leur nature basée sur la population qui permet de générer diverses solutions
Pareto optimales en une seule exécution [49].

Les stratégies d’évolution sont une classe d’algorithmes d’optimisation aléatoire de
type boı̂te noire [90,159,160,172,173], bien connues pour s’attaquer aux problèmes
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d’optimisation du monde réel qui présentent souvent des difficultés telles que la
non-linéarité, la non-convexité, la non-séparabilité, le mauvais conditionnement et
la multimodalité. Pour un problème d’optimisation avec un domaine de définition
continu, le CMA-ES [88,95] fait partie des algorithmes d’optimisation mono-objective
de boı̂te noire d’ordre zéro les plus avancés. Sur la base des comparaisons des
valeurs de fonction observées, il apprend des informations de second ordre [91]. Une
grande partie de ses paramètres internes est déjà définie lors de la conception de
l’algorithme. Sa formulation générique, sa robustesse et ses propriétés d’invariance [96]
sont parmi les raisons pour lesquelles le CMA-ES est utilisé dans une large gamme
d’applications réelles, avec peu de réglages de paramètres nécessaires [37,100,166].

1 Contexte de la thèse

Ce travail est basé sur un projet de la société de stockage souterrain de gaz Storengy.
Son fonctionnement consiste à stocker du gaz naturel dans un réservoir souterrain
pendant l’été, lorsqu’il y a beaucoup de gaz disponibles (faible demande de gaz en
période chaude), et à fournir le gaz pendant l’hiver, avec la forte demande de gaz
en période froide. Storengy a besoin de prédire le comportement du réservoir afin
d’optimiser son fonctionnement : un simulateur numérique de réservoir est utilisé à
cette fin. De nombreux paramètres du simulateur liés à la porosité et à la perméabilité
du réservoir doivent être mis en correspondance avec les mesures des puits : volume
d’eau quotidien produit, volume d’eau annuel cumulé, pression de fond de puits pour
les puits de terrain et position de l’interface eau-gaz. Deux ou trois fonctions objec-
tives sont construites sur la base de ces mesures. Leur optimisation est primordiale
pour calibrer les modèles afin d’obtenir un bon modèle prédictif.

Généralement, ces fonctions objectives sont multimodales, non convexes et non
différentiables, et se trouvent dans un scénario de boı̂te noire d’ordre zéro en raison
de l’absence de gradient et du caractère coûteux des valeurs de la fonction. Storengy
est donc très intéressé par les optimiseurs qui peuvent traiter ce type d’irrégularités,
en particulier par un optimiseur multiobjectif qui peut approcher le front de Pareto
global malgré la multimodalité des fonctions objectives.

Le mécanisme de recombinaison est une caractéristique qui rend une stratégie
d’évolution plus robuste aux irrégularités locales et à la multimodalité. Une stratégie
d’évolution avec recombinaison échantillonne λ solutions candidates–la progéniture–
en fonction de la solution favorite et d’autres paramètres, choisit les µ ≤ λ meilleures
parmi elles–les parents—, et recombine les parents pour obtenir la nouvelle solution
favorite. Typiquement, µ ≥ 2 et λ ≈ 2µ.

Ce mécanisme permet également à la stratégie d’évolution de converger plus
rapidement vers l’optimum global [13]. Dans diverses expériences, les stratégies
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d’évolution avec recombinaison convergent ou divergent linéairement, i.e. avec une
vitesse de convergence géométrique, sur une large classe de fonctions [90].

Une classe intéressante de fonctions où la convergence ou la divergence linéaire
(comportement linéaire) est souvent observée est la classe des fonctions scaling-
invariant. Elle contient les normes, les fonctions convexes-quadratiques, les fonctions
linéaires non triviales et plus généralement les transformations strictement crois-
santes de fonctions positivement homogènes. Les fonctions scaling-invariant sont
définies comme préservant les f -comparaisons de points lorsque les points sont mul-
tipliés par le même nombre strictement positif (par rapport à un point de référence).
Diverses questions se posent quant à l’étude de cette classe pour voir quelle est
son étendue, par rapport aux transformations strictement croissantes des fonctions
positivement homogènes. Nous pensons que la compréhension de cette classe de
fonctions est une étape nécessaire pour prouver la convergence ou la divergence
linéaire des stratégies d’évolution avec recombinaison sur cette classe. Les ques-
tions suivantes se posent naturellement :

Quelles sont les propriétés intéressantes des fonctions scaling-invariant ? Sont-elles
liées aux fonctions positivement homogènes ?

(Chapitre 3)

La convergence linéaire est la convergence la plus rapide que l’on puisse obtenir
dans les stratégies d’évolution [114, 182]. Elle est souvent observée de façon em-
pirique [23, 90, 96, 105, 162]. Cependant, il est généralement difficile de la prouver.
Le travail mathématique consiste souvent à analyser des conditions de drift sur des
chaı̂nes de Markov, ou à appliquer une loi des grands nombres à une chaı̂ne de
Markov ergodique sous-jacente. Dans la littérature, un comportement linéaire est
théoriquement obtenu pour les stratégies d’évolution avec une population constituée
d’un seul individu [2, 3, 19, 24, 48, 106–108, 110]. Mais, l’analyse de convergence
linéaire des stratégies d’évolution avec un mécanisme de recombinaison est inexis-
tante. Cela amène la question générale et difficile suivante.

Pouvons-nous prouver que les stratégies d’évolution avec recombinaison convergent
ou divergent de façon géométrique sur les fonctions scaling-invariant, sous des

hypothèses de régularité ?

(Chapitre 4)

Les questions ci-dessus concernent l’analyse théorique des stratégies d’évolution
avec recombinaison. Cette dernière est cruciale pour divers problèmes mono-objectifs
du monde réel qui sont irréguliers et multimodaux, comme les problèmes de Storengy.
Nous pensons que dans un scénario multi-objectif, le mécanisme de recombinaison
et la sélection non-élitiste peuvent aider à traiter les ensembles de Pareto locaux.

Pourtant, nous pensons qu’un optimiseur multiobjectif efficace doit au moins con-
verger linéairement sur les problèmes multiobjectifs constitués de fonctions stricte-
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ment convexes et quadratiques (avec une notion de convergence qui sera définie
plus tard). Par conséquent, avant de concevoir un optimiseur multiobjectif basé sur
des stratégies d’évolution avec des mécanismes de recombinaison et de non-élitisme,
nous essayons de construire des classes de problèmes bi-objectifs à base de fonc-
tions convexes et quadratiques, qui mettent en évidence différentes difficultés d’un
problème, principalement la courbure du front de Pareto, la non-séparabilité et le
mauvais conditionnement des fonctions objectives. Ceci nous amène à la question
suivante.

Comment construire des classes de problèmes bi-objectifs convexes-quadratiques
qui présentent des difficultés typiques ?

(Chapitre 6)

Le CMA-ES est l’une des stratégies d’évolution avec recombinaison les plus mod-
ernes. L’idée de concevoir un optimiseur multiobjectif basé sur le CMA-ES est ap-
parue il y a plus de quinze ans. Pourtant, si nous avons plusieurs instances CMA-ES
qui constituent un optimiseur multiobjectif, le nombre total d’évaluations de fonctions
par itération est égal au nombre d’instances CMA-ES multiplié par la taille de la pop-
ulation des enfants λ. Ce nombre généralement élevé d’évaluations par itération rend
difficile la création d’une version CMA-ES multiobjectif efficace. Dans [104], Igel et al.
conçoivent une version du CMA-ES sans mécanisme de recombinaison et de non-
élitisme, qu’ils ont remplacés par le mécanisme de sélection dit (1 + 1) avec règle
de succès 1/5 ou un schéma de sélection (µ + λ) [121, 159]. Il s’agit d’une version
élitiste de CMA-ES avec des parents µ et des enfants λ, où les prochains parents
µ sont les meilleurs parmi les parents et les enfants (µ + λ). Sur la base de cette
nouvelle version, Igel et al. conçoivent un optimiseur CMA-ES multiobjectif appelé
MO-CMA-ES [104,193].

Pourtant, le CMA-ES est moins enclin à rester coincé dans des optima locaux
sous-optimaux, comparé à ses variantes élitistes [104]. Par conséquent, le besoin
des industriels de disposer d’un optimiseur multiobjectif efficace basé sur le CMA-ES,
et l’intérêt scientifique de voir les avantages de la recombinaison et du non-élitisme
en optimisation multiobjective, sont toujours présents. Ceci nous guide à poser la
question suivante.

Peut-on concevoir un algorithme multiobjectif robuste basé sur le CMA-ES
(non-élitiste avec recombinaison), convergeant linéairement sur des problèmes

multiobjectifs strictement convexes-quadratiques ? Comment se comporte-t-il par
rapport aux algorithmes multiobjectifs existants ?

(Chapitres 7 et 8)

Le package pycma [89] pour le CMA-ES (avec recombinaison) est activement
maintenu et est mis à jour régulièrement. Par conséquent, si un optimiseur mul-
tiobjectif est basé sur le CMA-ES, il est crucial de le rendre aussi compatible que
possible avec le package pycma. De cette façon, une amélioration de l’algorithme
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mono-objectif sera facilement transférée à la version multiobjective.

En outre, à des fins industrielles avec notre partenaire Storengy, l’algorithme mul-
tiobjectif conçu doit être implémenté dans Matlab. Il devrait également répondre
aux besoins standards des cas d’utilisation industrielle, tels que la possibilité de par-
alléliser l’optimiseur. Une question naturelle se pose donc :

Comment implémenter efficacement les algorithmes multiobjectifs conçus à la fois
en Python et en Matlab ? L’algorithme peut-il avoir une version parallélisée robuste ?

(Chapitre 9)

2 Les contributions de la thèse

Dans cette thèse, nous étudions les questions de recherche posées ci-dessus. Nous
y répondons dans une certaine mesure et développons divers résultats innovants.

Nous étudions pour la première fois l’analyse de convergence linéaire de stratégies
d’évolution avec recombinaison. Les algorithmes considérés sont des stratégies
d’évolution représentées par un processus stochastique {(Xk, σk) ;k ∈ N}, où Xk est
la solution favorite et σk est le step-size à l’itération k. Nous analysons le comporte-
ment linéaire de ces stratégies d’évolution sur des fonctions scaling-invariant.

En optimisation multiobjective, nous concevons un cadre d’optimiseurs multiob-
jectifs appelé Sofomore. Nous instancions ce cadre avec CMA-ES comme opti-
miseurs mono-objectifs pour obtenir le nouvellement créé COMO-CMA-ES, qui con-
verge géométriquement vite sur des fonctions quadratiques strictement convexes.
Nous réalisons l’implémentation de Sofomore et de COMO-CMA-ES, en Python et
en Matlab. Le code est compatible avec le package pycma et dispose de diverses
options utiles pour un usage industriel.

2.1 Convergence linéaire des stratégies d’évolution avec
recombinaison sur des fonctions scaling-invariant

Dans le Chapitre 3, nous analysons en détail les fonctions scaling-invariant et présentons
que sous certaines conditions, elles sont des composées de fonctions strictement
monotones avec des fonctions positivement homogènes.

Plus précisément, nous donnons les conditions nécessaires et suffisantes pour
qu’une fonction scaling-invariant soit une composée de fonction strictement monotone
avec une fonction positivement homogène. Nous présentons également diverses pro-
priétés satisfaites par les sublevel sets des fonction scaling-invariant. De manière sur-
prenante, nous mettons en évidence que les fonctions scaling-invariant peuvent avoir
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des comportements hautement pathologiques, en montrant des fonctions scaling-
invariant à valeurs réelles qui ne sont monotones sur aucun intervalle non trivial. Les
résultats du chapitre 3 sont publiés dans le Journal of Optimization Theory and Appli-
cations (JOTA) et sont présentés dans [184]:
Cheikh Toure, Armand Gissler, Anne Auger and Nikolaus Hansen, Scaling-invariant
functions versus positively homogeneous functions, Journal of Optimization Theory
and Applications, 2021.

Nous présentons dans le Chapitre 4 les comportements linéaires d’une classe
de stratégies d’évolution avec mécanisme de recombinaison, sur une large classe de
fonctions qui sont les fonctions scaling-invariant. Notre analyse inclut deux mécanismes
d’adaptation de step-size bien connus, dérivés de l’Exponential Natural Evolution
Strategy (xNES) [70] et du Cumulative Step-size Adaptation (CSA) sans cumul, où
le CSA avec cumul est le mécanisme d’adaptation de step-size par défaut du CMA-
ES [88].

Nous montrons que le logarithme de la distance du candidat favori à l’optimum
(ou à un point de référence si l’algorithme diverge) divisé par le nombre d’itérations
converge vers une limite r. De plus, le logarithme du step-size divisé par le nombre
d’itérations converge vers la même limite r. Cette limite est le taux de convergence
ou de divergence. Nous prouvons également que l’espérance de la variation du loga-
rithme du step-size et l’espérance du log-progress convergent tous deux vers le taux
r.

Le taux est exprimé comme une espérance sous une mesure de probabilité in-
variante inconnue qui provient des propriétés de stabilité d’une chaı̂ne de Markov
conjointe définie sur un espace d’états abstrait. Par conséquent, nous donnons
également un théorème central limite pour estimer ce taux par des méthodes de
Monte-Carlo.

Notre principale condition pour obtenir un comportement linéaire est que le loga-
rithme du step-size doit croı̂tre strictement en espérance sur des fonctions linéaires
non triviales. Il s’agit de la condition la plus stricte que nous puissions avoir, car elle
équivaut à dire que l’algorithme diverge géométriquement sur les fonctions linéaires
non triviales. Notons également la nouveauté de cette condition par rapport aux
autres conditions de convergence linéaire que nous pouvons trouver dans la littérature [3,
19,24].

Nous montrons également que cette condition est pratique pour des stratégies
d’évolution concrètes comme xNES [70] sans adaptation de la matrice de covariance
ou CSA-ES sans cumul [88], en l’exprimant par rapport aux paramètres des algo-
rithmes et aux ordres statistiques de lois normales standards.

Les comportements linéaires du Chapitre 4 sont obtenus sur une large classe
de fonctions, qui sont des transformations strictement croissantes soit de fonctions
scaling-invariant C1 avec un argmin global unique, soit de fonctions linéaires non
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triviales.

Tous les résultats du chapitre 4 sont soumis sous forme d’un article dans le Jour-
nal of Global Optimization, par les auteurs Cheikh Toure, Anne Auger et Nikolaus
Hansen.

2.2 Optimisation multiobjective : UHVI, Sofomore, COMO-
CMA-ES, Implémentations

Nous développons dans le chapitre 7 un cadre d’algorithmes d’optimisation multiob-
jective appelé Sofomore. Ce cadre permet d’optimiser une fonction mono-objective
changeante par divers algorithmes mono-objectifs. Un candidat favori d’un opti-
miseur mono-objectif se rapproche d’un élément de l’ensemble de Pareto. Le nombre
d’optimiseurs mono-objectifs est fixé et noté p. Le but de l’optimisation multiobjec-
tive que nous considérons est alors de maximiser la distribution dite p-optimale de
l’indicateur d’hypervolume [16,22].

Dans les études précédentes telles que SMS-EMOA [30] ou MO-CMA-ES [104,
193], l’indicateur de performance utilisé pour guider l’optimisation multiobjective tend
à orienter les solutions dominées vers des régions déjà occupées par une solution
non dominée. Nous introduisons alors un nouvel indicateur de performance appelé
UHVI: Uncrowded Hypervolume Improvement. Il crée un biais de recherche vers le
domaine non couvert de l’ensemble de Pareto.

Nous instancions le cadre Sofomore avec l’optimiseur mono-objectif CMA-ES [88,
95] pour obtenir l’algorithme COMO-CMA-ES. Il est doté d’un mécanisme de sélection
non élitiste inhérent au CMA-ES, ce que n’a pas la version élitiste (1 + 1)-CMA-ES
utilisée dans MO-CMA-ES [104,193].

Le contenu du chapitre 7 a été présenté à la conférence GECCO 2019 à Prague,
à la conférence EURO 2019 à Dublin et au workshop MACODA 2019 à Leiden. Il est
publié dans [185]:
Cheikh Toure, Nikolaus Hansen, Anne Auger and Dimo Brockhoff, Uncrowded hyper-
volume improvement: COMO-CMA-ES and the Sofomore framework, Proceedings of
the Genetic and Evolutionary Computation Conference, 2019, pp 638–646.

Nous pensons que les stratégies d’évolution en optimisation multiobjective effi-
caces doivent converger (avec une définition de convergence liée au front de Pareto)
linéairement sur les problèmes multiobjectifs strictement convexes-quadratiques, comme
le font les stratégies d’évolution efficaces en optimisation mono-objective pour les
fonctions strictement convexes-quadratiques.

Nous présentons en détail dans le chapitre 6 l’analyse de problèmes bi-objectifs
strictement convexes et quadratiques, et donnons diverses descriptions du front de
Pareto et de l’ensemble de Pareto pour cette classe de problèmes.
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Nous construisons également des classes de problèmes bi-objectifs convexes-
quadratiques qui visent à tester les comportements d’un algorithme multiobjectif par
rapport à différentes difficultés. L’analyse théorique du chapitre 6 est publiée dans [183]:
Cheikh Toure, Anne Auger, Dimo Brockhoff et Nikolaus Hansen, On Bi-Objective
convex-quadratic problems, International Conference on Evolutionary Multi-Criterion
Optimization, 2019, pp 3–14.

Dans le chapitre 8, nous évaluons la nouvelle stratégie d’évolution multiobjec-
tive COMO-CMA-ES dans la plateforme COCO (COmparing Continuous Optimizers).
Cette dernière permet de comparer différents optimiseurs continus de type boı̂te noire
par rapport à la séparabilité, le mauvais conditionnement, la multimodalité et la struc-
ture d’un problème.

Nous comparons COMO-CMA-ES aux optimiseurs multiobjectifs bien connus NSGA-
II [56] et MO-CMA-ES [104, 193]. Bien que COMO-CMA-ES ne soit pas conçu
pour fonctionner sur une métrique basée sur l’archive (l’ensemble des points non-
dominés) telle que celle utilisée par COCO, nous observons de bonnes performances
de COMO-CMA-ES sur COCO. Cela souligne la puissance des stratégies d’évolution
avec recombinaison comme le CMA-ES (mono-objectif) sous-jacent. Cela souligne
également l’utilité d’un indicateur de performance qui oriente l’espace d’exploration
vers les régions non couvertes, comme le UHVI qui garantit la qualité des solutions
non-dominées qui sont générées, lorsque les solutions favorites de l’optimiseur multi-
objectif sont proches de l’ensemble de Pareto. Les résultats du chapitre 8 sont publiés
dans [61]:
Paul Dufosse and Cheikh Toure, Benchmarking MO-CMA-ES and COMO-CMA-ES
on the Bi-objective bbob-biobj Testbed, Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2019, pp 1920–1927.

Dans le chapitre 9, nous présentons le package Python développé pour ce tra-
vail, à savoir le package pycomocma disponible sur ce lien : https://github.com/CMA-
ES/pycomocma. Semblable au package python CMA-ES pycma [89], il est implémenté
avec le paradigme dit ”ask-and-tell”. Ce dernier permet d’avoir accès à l’optimiseur à
chaque itération entre la génération de nouvelles solutions avec la méthode ask, et la
mise à jour de l’instance d’optimisation avec la méthode tell.

Ce package implémente le framework Sofomore, et donne la possibilité de dériver
l’algorithme COMO-CMA-ES en instanciant le framework avec des instances CMA-
ES.

Une interface Matlab de COMO-CMA-ES est également produite pour notre parte-
naire industriel Storengy. Ce code Matlab fonctionne pour les versions Matlab 2014b
ou ultérieures, car il utilise la commande Matlab py. L’installation du package Python
pycomocma est également nécessaire.
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3 Vue globale des chapitres

Chapitre 1 : Optimisation de type boı̂te noire en milieu con-
tinu

Dans un scénario d’optimisation en milieu continu de type boı̂te noire d’ordre zéro,
l’objectif est de minimiser une fonction f ∶ Rn → R où seules les valeurs de f , c’est-
à-dire les f(x) pour une séquence de solutions candidates x ∈ Rn, sont disponibles.
Cette situation se présente lorsque seul un oracle retournant f(x) pour un x donné
est disponible. Par conséquent, le problème d’optimisation est généralement sans
dérivée, car nous n’avons aucune information relative au gradient de f . L’optimisation
continue concerne le problème d’optimisation où l’espace de recherche est continu.

Nous présentons des algorithmes déterministes d’optimisation continue de type
boı̂te noire comme la méthode de Nelder-Mead et certaines méthodes de Trust-
region. Nous présentons également des algorithmes aléatoires plus raffinés que la
recherche aléatoire pure. Il s’agit du recuit simulé et des algorithmes évolutionnaires.
Nous nous concentrons ensuite sur les stratégies d’évolution, avec une présentation
détaillée du Cumulative Step-size Adaptation Evolution Strategy (CSA-ES) et du Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES). Le point de vue de l’Information-
Geometric Optimization est enfin donné pour intégrer le CMA-ES dans une classe
plus large d’algorithmes d’optimisation.

Chapitre 2 : Convergence des stratégies d’évolution

L’analyse d’une stratégie d’évolution est importante pour évaluer sa pertinence. La
recherche aléatoire pure converge, mais avec une vitesse de convergence si lente
que ce type d’algorithme d’optimisation n’est généralement pas utilisé en pratique.
Nous présentons dans ce chapitre quelques notions traditionnellement utilisées pour
mesurer la vitesse de convergence d’une stratégie d’évolution. A savoir la con-
vergence ou divergence linéaire presque sûrement, l’espérance du log-progress, le
“progress rate”, le “quality gain”, l’espérance du “hitting time” et l’espérance du “run-
ning time”.

Nous présentons également brièvement quelques méthodes utilisées pour établir
les résultats de convergence. Les équations différentielles ordinaires (EDO) sont
l’une d’entre elles, avec le flux de l’Information-Geometric Optimization qui peut être
vu comme une EDO. Nous décrivons comment la loi des grands nombres est utilisée
via l’analyse de la chaı̂ne de Markov pour obtenir une convergence linéaire presque
sûrement ou une convergence linéaire de l’espérance du log-progress. Nous présentons
également brièvement une technique d’analyse de drift permettant d’obtenir des bornes
pour l’espérance du “hitting time”.

34



Chapitre 3 : Fonctions scaling-invariant versus fonctions
positivement homogènes

Une fonction f ∶ Rn → R est scaling-invariant par rapport à un point de référence
x⋆ ∈ Rn si pour tout x, y ∈ Rn et ρ > 0 :

f(x⋆ + x) ≤ f(x⋆ + y) ⇐⇒ f(x⋆ + ρx) ≤ f(x⋆ + ρy) .

Les fonctions positivement homogènes sont des fonctions scaling-invariant. Rap-
pelons qu’une fonction p ∶ Rn → R est positivement homogène avec un degré α > 0
si pour tout x ∈ Rn et ρ > 0 : p(ρ (x − x⋆)) = ραp(x − x⋆). Les fonctions linéaires, les
normes, les fonctions quadratiques sont positivement homogènes. Les composées
de fonctions strictement monotones avec des fonctions positivement homogènes sont
scaling-invariant.

Nous montrons dans ce chapitre les conditions nécessaires et suffisantes pour
qu’une fonction scaling-invariant soit la composée d’une fonction strictement mono-
tone avec une fonction positivement homogène. En particulier, nous montrons que
les fonctions continues scaling-invariant sont les composées d’un homéomorphisme
avec une fonction continue positivement homogène.

Nous étudions les sublevel sets des fonctions scaling-invariant en généralisant des
propriétés bien connues des fonctions positivement homogènes. Nous montrons no-
tamment que sous des conditions légères, une fonction scaling-invariant a un unique
argmin global si et seulement si ses sublevel sets sont des ensembles compacts.

Le contenu de ce chapitre est publié dans le Journal of Optimization Theory and
Applications (JOTA). Il est présenté dans [184]:
Cheikh Toure, Armand Gissler, Anne Auger and Nikolaus Hansen, Scaling-invariant
functions versus positively homogeneous functions, Journal of Optimization Theory
and Applications, 2021.

Chapitre 4 : Convergence linéaire de stratégies d’évolution
avec une adaptation de step-size et un mécanisme de re-
combinaison sur des fonctions scaling-invariant

Nous analysons dans ce chapitre le comportement linéaire des stratégies d’évolution
avec recombinaison, où seuls le step-size et la solution favorite sont adaptés. L’adaptation
de la matrice de covariance et d’autres mécanismes raffinés ne sont pas considérés,
de sorte que la matrice de covariance est toujours le carré du step-size multiplié par
la matrice identité.

Nous présentons une mise à jour générique du step-size définie de manière à
ce que les invariances aux transformations préservant l’ordre et l’angle soient con-

35



servées, ce qui est crucial pour la conception des stratégies d’évolution [83, 167].
Nous montrons que le CSA-ES sans cumul et le xNES sans adaptation de la matrice
de covariance sont des cas particuliers de notre cadre.

Nous prouvons ensuite la divergence linéaire sur des transformations strictement
croissantes de fonctions linéaires et le comportement linéaire sur des transforma-
tions strictement croissantes de fonctions scaling-invariant C1 avec un unique argmin
global. Ces fonctions incluent les fonctions non convexes et les fonctions non quasi-
convexes. La condition principale pour prouver nos résultas est équivalente à la di-
vergence géométrique du step-size sur les fonctions linéaires non triviales.

La méthode que nous utilisons est basée sur une technique de chaı̂ne de Markov
pour l’analyse de stratégies d’évolution. De façon plus spécifique, nous exploitons
la méthodologie établie dans [25] en prouvant que la chaı̂ne de Markov normalisée
sous-jacente est ergodique.

Les principaux résultats du chapitre sont la convergence linéaire ou la divergence
linéaire du step-size et de la distance à l’optimum (ou à un point de référence). Le
taux pour le comportement linéaire dépend d’une mesure de probabilité inconnue qui
provient de la chaı̂ne de Markov sous-jacente. Un théorème central limite est ensuite
donné pour approximer ce taux.

Le contenu de ce chapitre a été soumis dans le Journal of Global Optimization par
Cheikh Toure, Anne Auger et Nikolaus Hansen.

Chapitre 5 : Les algorithmes évolutionnaires multiobjectifs

Nous présentons dans ce chapitre les notions de base utilisées pour définir l’optimisation
d’une fonction à valeurs vectorielles f ∶ x ∈ Rn z→ f(x) = (f1(x), . . . , fm(x)) ∈ Rm où
m ≥ 2. Définir une relation d’ordre dans Rm qui généralise l’ordre standard ≤ dans R
(pour l’optimisation mono-objectif) est en soi une tâche importante. Elle est abordée
par les notions de dominance de Pareto faible qui créent un ordre partiel dans Rm.
Pour un ensemble fini et non vide P , le sous-ensemble des points qui ne sont pas
Pareto-dominés sont les points non dominés de P, et nous disons qu’ils ont un rang
de Pareto égal à 1. De manière récursive, l’ensemble P est partitionné en un nombre
fini de sous-ensembles P1, . . . , Pk où Pi a un rang de Pareto de i et est Pareto-dominé
par Pi−1. Deux éléments quelconques d’un sous-ensemble Pi ne sont pas compara-
bles au sens de Pareto. Ceci est un premier pas vers le classement des éléments de
P .

Pour trier complètement P , on présente des ordres totaux dans Rm compatibles
avec la dominance faible de Pareto. La construction de ces ordres est typiquement
basée sur des indicateurs de qualité, comme le crowding distance et l’indicateur
d’hypervolume. Pour un ensemble de points non comparables par Pareto, l’indicateur
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de performance est une fonction à valeurs réelles, c’est le tri que nous utilisons dans
ce contexte. Ainsi, étant donné une population finie non vide P , elle est d’abord
partitionnée en P1, . . . , Pk où les points dans Pi ont un rang de Pareto i. Ensuite,
Pi est trié par rapport à un indicateur de performance, indépendamment de P ∖ Pi.
Globalement, un point avec un rang de Pareto plus petit est toujours meilleur. Entre
deux points ayant le même rang de Pareto, un point ayant une plus grande valeur
d’indicateur de performance est toujours meilleur. Ce schéma est appelé le “two-way
ranking” [104].

La contribution à l’hypervolume et l’amélioration de l’hypervolume sont des indi-
cateurs de performance de l’indicateur d’hypervolume. Un aspect spécifique de ce
dernier est sa propriété de stricte monotonie, i.e. sa propriété de conserver la relation
de dominance de Pareto. Cette caractéristique permet de transformer le problème de
trouver p solutions sur l’ensemble de Pareto en un problème mono-objectif dans Rn×p

qui consiste à maximiser l’hypervolume (défini sur l’espace de recherche) par rapport
au problème multiobjectif à optimiser [16,22].

Nous présentons des algorithmes évolutionnaires multiobjectifs bien connus (la
famille d’algorithmes NSGA [56,178], SMS-EMOA [30] et MO-CMA-ES [104,193]) et
observons comment un “two-way ranking” sous-jacent est inhérent à la conception de
ces algorithmes.

Enfin, nous soulignons certaines limites concernant l’utilisation de certains indi-
cateurs de performance, à savoir la contribution à l’hypervolume et l’amélioration de
l’hypervolume.

Chapitre 6 : Analyse théorique des fronts et ensembles de
Pareto pour des problèmes bi-objectifs convexes-quadratiques

En optimisation mono-objective, les stratégies d’évolution efficaces convergent linéairement
sur des fonctions strictement convexes-quadratiques [90, 105, 162]. Les problèmes
multiobjectifs strictement convexes-quadratiques sont des fonctions à valeurs vecto-
rielles où chaque coordonnée est une fonction strictement convexe-quadratique.

Nous pensons que sur ces problèmes multiobjectifs, les stratégies d’évolution
multiobjectives efficaces devraient au moins converger linéairement vers un sous-
ensemble de l’ensemble de Pareto, avec une notion de convergence appropriée. Par
conséquent, dans un premier temps, nous présentons dans ce chapitre des résultats
théoriques qui analysent en détail les optima globaux pour les problèmes bi-objectifs
strictement convexes et quadratiques, c’est-à-dire l’ensemble de Pareto et le front de
Pareto. En particulier, si les deux matrices hessiennes des fonctions objectives sont
proportionnelles, l’ensemble de Pareto est un segment de droite entre les deux op-
tima et le front de Pareto est le graphe d’une fonction similaire à x ↦ (1 −√

x)2
sur

[0,1].
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Nous dérivons diverses classes de problèmes convexes-quadratiques pour tester
des caractéristiques spécifiques des algorithmes multiobjectifs. En particulier, la sen-
sibilité à la séparabilité, au mauvais conditionnement, à l’invariance rotationnelle et à
l’alignement de l’ensemble de Pareto avec l’axe des coordonnées.

Le contenu de ce chapitre est présenté à la conférence EMO 2019 au Michigan et
publié dans [183]:
Cheikh Toure, Anne Auger, Dimo Brockhoff et Nikolaus Hansen, On Bi-Objective
convex-quadratic problems, International Conference on Evolutionary Multi-Criterion
Optimization, 2019, pp 3–14.

Chapitre 7 : Uncrowded Hypervolume Improvement: COMO-
CMA-ES et le cadre Sofomore

Dans les algorithmes évolutionnaires multiobjectifs de pointe comme SMS-EMOA [30]
et MO-CMA-ES [104, 193], un trait particulier est l’utilisation de la contribution à
l’hypervolume (ou de manière similaire l’amélioration de l’hypervolume) comme in-
dicateur de performance. Cela permet d’obtenir un ordre total pour le tri d’une popu-
lation à chaque itération. Ainsi, pour une population P avec des points non dominés
P1, le “two-way ranking” avec la contribution de l’hypervolume permet d’obtenir une
fonction non constante pour évaluer l’ensemble des points dominés P ∖ P1. Cepen-
dant, en observant les lignes de niveaux de cette nouvelle fonction d’évaluation, les
points dominés de P se dirigent généralement vers des régions déjà occupées par
des points non dominés dans P1. Cela crée donc un encombrement vers les points
non dominés, et remet en question l’évaluation de la qualité du “two-way ranking”.
Une caractéristique particulière du “two-way ranking” est que le tri des points dans un
sous-ensemble non Pareto-comparable Pi est indépendant de P ∖ Pi.

Nous proposons dans ce chapitre une fonction d’évaluation qui supprime le défaut
d’encombrement observé dans le schéma du “two-way ranking” : elle est appelée Un-
crowded Hypervolume Improvement (UHVI). Pour un problème multiobjectif f , l’UHVI
d’un point par rapport à un ensemble P est son amélioration d’hypervolume par rap-
port à P , moins la distance de son image par f à la région dominant un point dit de
référence et non dominée par aucune image par f de P . La définition de l’UHVI est
conforme à la relation de dominance de Pareto. Elle est utilisée comme un ordre total
pour trier tout l’ensemble P .

A chaque itération au cours d’une optimisation multiobjective, une fonction à valeurs
réelles qui dépend de la population (ensemble) à classer est définie. Cette idée est
formalisée dans le cadre que l’on appelle Sofomore. Il consiste à utiliser des opti-
miseurs mono-objectifs qui sont adaptés selon la fonction mono-objective changeante
obtenue avec l’UHVI, afin de résoudre le problème global d’optimisation multi-objective
qui consiste à trouver la distribution optimale de points p maximisant l’hypervolume.
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COMO-CMA-ES est la stratégie d’évolution multiobjective que nous obtenons en
instanciant Sofomore avec le CMA-ES muni de la recombinaison [88, 95]. De façon
empirique, COMO-CMA-ES converge linéairement vers la distribution p-optimale de
l’hypervolume, sur divers problèmes quadratiques convexes bi-objectifs. Certaines
caractéristiques intéressantes de l’algorithme sont également observées, notamment
la robustesse par rapport à une transformation qui courbe l’ensemble de Pareto, et
celle par rapport à une rotation indépendante et aléatoire des matrices hessiennes.

COMO-CMA-ES est comparé à MO-CMA-ES [104,193], SMS-EMOA [30] et NSGA-
II [56] sur différentes classes de problèmes quadratiques convexes bi-objectifs. Glob-
alement, COMO-CMA-ES est plus performant sur deux mesures différentes : le “con-
vergence gap” qui ne dépend que des solutions favorites des CMA-ES mono-objectifs
(les parents pour les autres algorithmes), et l’“archive gap” qui prend en compte toutes
les solutions non dominées trouvées jusqu’à présent par un algorithme. Bien que
l’évolution de COMO-CMA-ES ne dépende pas de l’“archive gap”, sa bonne perfor-
mance sur cette métrique par rapport aux autres algorithmes s’explique par deux
caractéristiques différentes. Tout d’abord, les espaces non occupés entre deux so-
lutions favorites sont davantage explorés, de sorte que nous devrions nous attendre
à générer davantage de points non dominés. Enfin, l’aspect non élitiste particulier
du CMA-ES avec recombinaison [88,95] apporte la grande variance stationnaire typ-
iquement observée avec les stratégies d’évolution non élitistes.

Le contenu de ce chapitre est présenté à la conférence GECCO 2019 à Prague, à
la conférence EURO 2019 à Dublin et au workshop MACODA 2019 à Leiden. Il est
publié dans [185]:
Cheikh Toure, Nikolaus Hansen, Anne Auger and Dimo Brockhoff, Uncrowded hyper-
volume improvement: COMO-CMA-ES and the Sofomore framework, Proceedings of
the Genetic and Evolutionary Computation Conference, 2019, pp 638–646.

Chapitre 8 : Comparaison de COMO-CMA-ES avec des algo-
rithmes évolutionnaires multiobjectifs bien connus

Ce chapitre présente différents benchmarks comparant trois algorithmes : NSGA-
II [56], MO-CMA-ES [104,193] et COMO-CMA-ES [185] (introduit dans le chapitre 7).
Les benchmarks sont réalisés avec la plateforme COCO (COmparing Continuous
Optimizers) [80] sur la base des performances de l’archive, i.e. sur tous les points
évalués jusqu’à présent par l’algorithme. La plateforme de benchmarking contient
des classes de problèmes séparables, mal conditionnés, multimodaux et faiblement
structurés. Elle permet de tester les optimiseurs par rapport à ces caractéristiques
des problèmes d’optimisation.

L’algorithme populaire NSGA-II est utilisé comme référence, et différentes tailles
de population sont considérées pour les algorithmes MO-CMA-ES et COMO-CMA-
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ES. Bien que COMO-CMA-ES soit conçu pour trouver une distribution optimale de
p points sur un ensemble de Pareto par rapport à l’indicateur d’hypervolume, nous
observons dans ce chapitre qu’il est également performant sur COCO.

Avec ces deux variantes multiobjectives du CMA-ES, nous observons que les per-
formances dépendent fortement de la taille de la population fixée. Pour les petits
budgets, les algorithmes avec une taille de population plus petite sont plus perfor-
mants. Pour les budgets importants, les algorithmes avec une taille de population
plus grande atteignent de meilleures précisions pour les targets fixés.

Le contenu de ce chapitre est présenté dans le workshop GECCO 2019 à Prague.
Il est publié dans [61]:
Paul Dufosse et Cheikh Toure, Benchmarking MO-CMA-ES et COMO-CMA-ES on
the Bi-objective bbob-biobj Testbed, Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2019, pp 1920–1927.

Chapitre 9 : Implémentations

Ce chapitre est consacré aux différentes implémentations réalisées au cours de ma
thèse de doctorat. Elles sont toutes basées sur le paradigme ask-and-tell [51]. Sur un
algorithme d’optimisation, ce paradigme permet de séparer la génération de solutions
candidates et la mise à jour de l’état de l’optimiseur.

L’implémentation Python de COMO-CMA-ES [185] (introduite dans le chapitre 7)
est présentée. Il s’agit du package pycomocma, qui utilise les CMA-ES comme opti-
miseurs mono-objectifs [95]. D’une manière similaire à l’implémentation ask-and-tell
des CMA-ES, la méthode ask de pycomocma génère des solutions candidates pour
l’optimiseur multiobjectif, et la méthode tell met à jour son état. Entre-temps, les solu-
tions candidates sont évaluées sur une fonction mono-objective changeante donnée
par l’UHVI (introduit dans le chapitre 7).

Enfin, une implémentation Matlab de COMO-CMA-ES [185] est présentée. Il s’agit
d’une interface Matlab dans laquelle on utilise essentiellement le package Python
pycomocma, avec une conversion incessante des structures de données de Python à
Matlab, vice versa. En raison d’une demande de Storengy, l’interface a le même “call-
ing sequence” que les implémentations Matlab de MO-CMA-ES et de SMS-EMOA [41,
186].
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Chapter 1

Continuous black-box
optimization
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We present optimizers that are iterative algorithms with abstract states
{θk = (Xk, sk); k ∈ N}, where Xk ∈ Rn is the favorite solution (or incumbent)
and sk is an endogenous parameter, such that the update of the state θk is
either deterministic, or depends on points sampled from a probability distri-
bution Pθk . We denote by Θ the set of all states. Then {Pθ; θ ∈ Θ} is the
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family of probability distributions where the sampled points can be gener-
ated from.

In a black-box scenario, the function f ∶ X ⊂ Rn Ð→ R is unknown
and only the f -values of sampled points are available. It is also called a
Derivative-Free Optimization (DFO) or a zero-order optimization problem.

We present in this chapter some deterministic derivative-free optimiza-
tion algorithms such as Nelder-Mead methods and Trust region methods.
Later, we present different randomized continuous black-box optimization al-
gorithms such as Simulated Annealing and evolutionary algorithms. We give
a detailed presentation of evolution strategies, with an emphasis on CMA-
ES. Finally we introduce the Information-Geometric Optimization (IGO) frame-
work with the natural gradient ascent, the IGO algorithm and the IGO flow.
We also present how it embeds randomized continuous black-box optimiza-
tion algorithms like the Natural Evolution Strategy and CMA-ES.

1.1 Deterministic continuous black-box optimiza-
tion

Recently, there is a revival of interest related to derivative-free optimization with de-
terministic algorithms [53]. Those methods are widely known and often used to op-
timize functions without the information of the gradients. We give a brief view of
those optimization algorithms by presenting in particular the often used Nelder-Mead
method [146,197] and the family of Trust-region methods [52].

1.1.1 The Nelder-Mead method

The Nelder-Mead method [146,197] is a deterministic derivative-free optimization al-
gorithm. It is represented at iteration k by θk = (X1

k , . . . ,X
n+1
k ) that are the vertices of

a simplex, with X i
k ∈ Rn for i = 1, . . . , n + 1.

The initial simplex is important and must be carefully chosen based on the prob-
lem being optimized: a too small initial simplex can lead to a local search that traps
the algorithm away from the optimum. At iteration k, θk is sorted with respect to
the f -values. We obtain X1∶n+1

k , . . . ,Xn+1∶n+1
k such that f(X1∶n+1

k ) ≤ f(X2∶n+1
k ) ⋅ ⋅ ⋅ ≤

f(Xn+1∶n+1
k ).

Then we construct the centroid X0
k of the n smallest points with respect to their

f -values: X0
k =

1

n

n

∑
i=1

X i∶n+1
k .
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Based on the centroid, the reflected pointXr
k is defined as: Xr

k = X0
k+α (X0

k −Xn+1∶n+1
k )

with α > 0. In the case where f(X1∶n+1
k ) ≤ f(Xr

k) < f(Xn∶n+1
k ), i.e. when the reflected

point is better than the second worst point, then θk+1 = (X1∶n+1
k ,X2∶n+1

k , . . . ,Xn∶n+1
k ,Xr

k).

If instead Xr
k is the point with the smallest f -value, i.e. f(Xr

k) < f(X1∶n+1
k ), then an

expansion is set with the expanded point Xe
k defined as Xe

k = X0
k +γ (Xr

k −X0
k), where

γ > 1.

If the expanded point is strictly smaller than the reflected point, i.e. f(Xe
k) < f(Xr

k),
then θk+1 = (X1∶n+1

k ,X2∶n+1
k , . . . ,Xn∶n+1

k ,Xe
k). Otherwise we have f(Xe

k) ≥ f(Xr
k), and

we set θk+1 = (X1∶n+1
k ,X2∶n+1

k , . . . ,Xn∶n+1
k ,Xr

k). And overall the algorithm is updated in
the second case where f(Xr

k) < f(X1∶n+1
k ).

In the last case where f(Xr
k) ≥ f(Xn∶n+1

k ), the contraction step is triggered, with
the contracted point Xc

k defined as Xc
k = X0

k + ρ (Xn+1∶n+1
k −X0

k) with 0 < ρ < 0.5. If
the contracted point is strictly smaller than the worst point, i.e. f(Xc

k) < f(Xn+1∶n+1
k ),

then θk+1 = (X1∶n+1
k ,X2∶n+1

k , . . . ,Xn∶n+1
k ,Xc

k). Otherwise we reach the shrink step that
works by only keeping the best point: X1

k+1 = X1∶n+1
k , and replacing the other points as

X i
k+1 = X1

k + σ (X i
k −X1

k) for i = 2, . . . , n, and σ often equal to 1
2
.

Note that the Nelder-Mead algorithm is a heuristic search method that can fail to
converge, even for strictly convex functions [137]. An improved variant of the Nelder
Mead algorithm is given in [103].

1.1.2 Trust-region methods

Trust-region methods [52, 177] are important numerical optimization methods that
solve nonlinear programming problems. After choosing a favorite solution, a Trust-
region method defines a region around it, in which a surrogate model approximating
the objective function is built in order to find the next favorite solution within that re-
gion. Based on the quality of the model, the corresponding region can be expanded (if
the model is suitable) or contracted (otherwise). Usually quadratic functions are used
as models. For example in the Levenberg-Marquardt algorithm [142], the objective
function is approximated at each iteration by a quadratic surface which is right after
solved by a linear solver in order to update the favorite candidate.

The Powell methods [153–155, 157, 158], in particular the NEW Unconstraint Op-
timization Algorithm (NEWUOA) are state-of-the-art for the deterministic continuous
black-box optimization. For instance NEWUOA interpolates a quadratic model using
a specific number of points to interpolate a quadratic model [161].
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1.2 Overview of randomized continuous black-box
optimization

Randomized search algorithms are particularly interesting to solve difficult problems
and to avoid being trapped in local optima (with the inherent randomness). A natural
example is the Pure Random Search [202] where for all state θk, Pθk is the same
probability distribution equals to P . While this algorithm is simple and converge to the
global optimum if the support of P contains X , it is also inefficient [46]. Therefore we
present in the following more refined algorithms such as Simulated Annealing [35,57],
evolutionary algorithms like genetic algorithms and evolution strategies [45, 90, 174],
with an emphasis on a subclass of non-elitist evolution strategies [95].

1.2.1 Simulated annealing

The continuous optimization variant of the Simulated Annealing was introduced in [35,
57]. It can be defined with the following sequence {θk = (Xk, Tk);k ∈ N} whereXk ∈ Rn

represents the favorite solution and Tk > 0 is called a temperature and defined such
that lim

k→∞
Tk = 0.

At iteration k + 1, a candidate solution yk is generated from the probability dis-
tribution Pθk = PXk . The new favorite solution xk+1 is then chosen as follows. If
f(yk) < f(Xk) then Xk+1 = yk. Otherwise Xk+1 = yk with probability exp (−f(yk)−f(Xk)

Tk
).

This setting helps the optimizer not to be trapped in a local optimum, by allowing to
choose yk with a non-zero probability, even if f(yk) ≥ f(Xk).

In [135], it is shown that for a continuous function f ∶ X → R where X is compact,
convex and full dimensional and f has a unique global optimum over X , and for a
family of probability distribution {Px;x ∈ X} such that for all x ∈ X Px is absolutely
continuous with respect to the Lebesgue measure, modulo a lower bound condition
on the sequence (Tk log(k))k≥2, the Simulated Annealing algorithm is arbitrarily close
to the global optimum, asymptotically.

Note that the family of probability distributions of the Simulated Annealing algo-
rithm, that derives from the Metropolis-Hasting algorithm [98, 138], can be replaced
by newer type of distributions, namely those derived from Sequential Monte Carlo
Samplers [58]. The latter is a class of flexible and general methods allowing to sam-
ple from distributions and estimate their normalizing constants.
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1.2.2 Evolutionary algorithms

Evolutionary algorithms are inspired by biological evolution. Its iterative process is
driven by the application of mutation, recombination and selection in populations of
candidate solutions [26, 200]. A global scheme of an evolutionary algorithm is as fol-
lows. A population of µ parents is selected, with µ being a positive integer. Then the
µ parents create λ candidate solutions called offspring, where λ is a positive number.
The creation of an offspring is done through recombination techniques or mutation
techniques [26]. For the final step that is the selection, only µ points among the off-
spring or among the parents and the offspring are selected. If the selection is done
by using only the µ best points among the offspring, the evolutionary algorithm is
said to be non-elitist and the selection is said to be a “comma-selection” and denoted
(µ,λ)-selection. Otherwise if all the µ + λ points are used, then we say that the evo-
lutionary algorithm is elitist, and the selection is called a “plus-selection” and denoted
(µ + λ)-selection.

A popular subclass of evolutionary algorithms is the class of genetic algorithms [72,
101]. Its recombination method is called crossover. A genetic algorithm in a continu-
ous domain is introduced in [45].

1.2.3 Evolution strategies

Evolution strategies (ES) are a subclass of evolutionary algorithms, most commonly
used in randomized black-box optimization in continuous search spaces [90,159,160,
172,173]. They are particularly known for their robustness with respect to noisy prob-
lems such as several real-world continuous optimization problems [116].

We define by {θk = (Xk, sk);k ∈ N} the sequence of states of an evolution strat-
egy, where Xk is the favorite solution at iteration k and sk contains the control or
endogenous strategy parameters. Mostly, Pθk is distributed according to the multivari-
ate normal distribution N (Xk, Ck) where Ck is a matrix that solely depends on sk. As
in Section 1.2.2, a (µ,λ)-ES is a non-elitist ES and a (µ + λ)-ES is an elitist ES. The
recombination step plays a significant role in evolution strategies, and is therefore
handled carefully. We can highlight two important recombination methods, for both
“plus-selection” and “comma-selection”:

• Intermediate recombination: an average of ρ ≤ µ points out of µ parents are taken
to generate offspring. It is denoted by (µ/ρI , λ)-ES or (µ/ρI + λ)-ES.

• Weighted multi-recombination: it generalizes the intermediate recombination by
taking a weighted combination of ρ ≤ µ points out of µ parents to generate off-
spring. It is denoted by (µ/ρw, λ)-ES or (µ/ρw + λ)-ES, depending on the elitism
property of the ES.
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For the sphere function in large dimension, comma-selection evolution strategies
with optimal weighted multi-recombination [12] have nearly two times and a half faster
convergence rate than the considered fast (1 + 1)-ES [13].

In the context of real-parameter black-box optimization, the non-elitist CMA-ES is
less prone to getting stuck to sub-optimal local optima, compared to elitist variants of
the CMA-ES [104]. Therefore these qualities invite us to adopt the (µ/ρw, λ)-selection
evolution strategies.

1.2.4 Cumulative Step-size Adaptation Evolution Strategy
(CSA-ES)

The Cumulative step-size adaptation evolution strategy (CSA-ES) is a refined evolu-
tion strategy with weighted multi-recombination. The sequence of states of the algo-
rithm is represented by {(Xk, σk, pk);k ∈ N} where at iteration k, Xk ∈ Rn represents
the incumbent (the favorite solution), σk is a positive scalar representing the step-size
and pk is the cumulative path [95].

We fix (X0, σ0, p0) ∈ Rn × (0,∞) ×Rn and consider an independent and identically
distributed sequence of random input u = {uk = (u1

k, . . . , u
λ
k);k ≥ 1} where for all k,

uk = (u1
k, . . . , u

λ
k) is composed of λ independent random vectors following a standard

multivariate normal distribution N (0, In) on Rn. After obtaining (Xk, σk, pk) at iteration
k, the algorithm is updated by first sampling independently λ candidate solutions from
a multivariate normal distribution N (Xk, σ

2
kIn) with mean vector Xk and covariance

matrix σ2
kIn using the vector uk+1, i.e., for i = 1, . . . , λ,

X i
k+1 = Xk + σkuik+1 . (1.1)

Then the candidate solutions are evaluated on the objective function f to be minimized
and the solutions are ranked according to their f -values. We then extract the permu-
tation of the ranked candidate solutions, more precisely we denote (1 ∶λ, . . . , λ ∶λ) the
indices of the candidate solutions from the best to the worse, i.e. such that

f(X1∶λ
k+1) ≤ ⋅ ⋅ ⋅ ≤ f(Xλ∶λ

k+1) .

To break possible ties in case of solutions with two equal rankings, we set the con-
vention that if i < j and f(X i

k+1) = f(Xj
k+1) then i ∶ λ < j ∶ λ. Those indices are also

used for the vectors uik+1 in the following way:

X i∶λ
k+1 = Xk + σkui∶λk+1.

To update the mean vector Xk, we consider a weighted average of the µ ≤ λ best

solutions
µ

∑
i=1

wiX
i∶λ
k+1 where w1 ≥ w2 ⋅ ⋅ ⋅ ≥ wµ > 0 and ∑µ

i=1wi = 1. This latter quantity is

situated in the convex hull of the µ best points.

46



The next incumbent Xk+1 is constructed by combining Xk and
µ

∑
i=1

wiX
i∶λ
k+1 as

Xk+1 = (1 − cm
µ

∑
i=1

wi)Xk + cm
µ

∑
i=1

wiX
i∶λ
k+1 (1.2)

= Xk + cm
µ

∑
i=1

wi (X i∶λ
k+1 −Xk) = Xk + cmσk

µ

∑
i=1

wiu
i∶λ
k+1 (1.3)

where 0 < cm ≤ 1 is a learning rate.

Before adapting the step-size, the cumulative path is updated via the following
equation:

pk+1 = (1 − cσ)pk +
√
cσ(2 − cσ)cm

µ

∑
i=1

wi
∥w∥u

i∶λ
k+1, (1.4)

with 0 < cσ < 1. We say that 1/cσ is the life span of the information contained in pk,
since after 1/cσ generations pk is multiplied by the factor (1 − cσ)1/cσ that approaches
1
e
≈ 0.37 when cσ goes to 0. Usually the value of cσ is between 1/√n and 1/n. The

constant
√
cσ(2 − cσ) means that under random selection, if pk is distributed according

to the multivariate standard normal distribution, then pk+1 is also distributed according
to the multivariate standard normal distribution. That way the length of the cumulative
path ∥pk∥ can be compared to the length of ∥Nn∥, which is the expected length under
random selection.

With that observation, the step-size is updated as follows:

σk+1 = σk exp( cσ
dσ

( ∥pk+1∥
E∥Nn∥

− 1)) , (1.5)

where the damping parameter dσ ≥ 1 determines the possible change rate of the
step-size. If as in [14], the square length of the cumulative path ∥pk∥2 is compared to
the square length of ∥Nn∥2, which is equal to n in expectation, then the step-size is
updated as follows:

σk+1 = σk exp( cσ
2dσ

(∥pk+1∥2

n
− 1)) . (1.6)

Although the cumulative step-size adaptation (CSA) is regarded as the first choice
for step-size control in the (µ/µw, λ)-ES, it has some disadvantages [86]:

• In the case of very large noise levels, the target step-size becomes zero, while
the optimal step-size is still positive [31].

• For large population sizes (λ > 10n), the original parameter setting seemed not
to work properly [94]: the notion of tracking a long path history does not mate
well with a population size large compared to the search space dimension. Even
though there exists an improved setting that shortens the backward time horizon
for the cumulation and performs well also with large population sizes [93].
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• The expected value for the displacement of the population mean under random
selection is required. For this reason, the principle axes of the search distribution
are in demand, but they are more expensive to acquire than a simple matrix de-
composition. The latter is necessary to sample a multivariate normal distribution
with given covariance matrix.

For all these reasons, some alternatives are established in order to replace the
CSA, although they also have their share of disadvantages. One of them is the Two-
point step-size adaptation (TPA) that was introduced for backpropagation in [176] and
later applied in Evolutionary Gradient Search [168].

These step-size adaptation mechanisms learn first order information by estimat-
ing the gradient, which is enough to optimize for example convex quadratic functions
with a small condition number. But when the condition number becomes large, opti-
mization algorithms that learn second order information are necessary for an effective
approach of the optimum. One of the evolution strategy that learns second order in-
formation is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). It has a
finer control on the probability distribution Pθ.

1.3 Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES)

The CMA-ES is a randomized black-box optimizer and is introduced in [85, 93–95].
It is invariant against order-preserving transformations of the objective function value
and in particular against rotation and translation of the search space. A CMA-ES state
θk contains the favorite solution Xk, the step-size σk and also the so-called covariance
matrix Ck adapted such that Pθk is the probability distribution of N (Xk, σ

2
kCk).

1.3.1 The CMA-ES

The sequence of states of a (µ/µw, λ)-CMA-ES instance is {(Xk, σk, Ck, p
c
k, p

σ
k);k ∈ N}

where at iteration k, Xk ∈ Rn represents the incumbent (the mean, the favorite solu-
tion), σk is a positive scalar representing the step-size, Ck is the covariance matrix, pck
is the evolution path and pσk is the conjugate evolution path.

We fix (X0, σ0) ∈ Rn × (0,∞), C0 = In, pσ0 = 0 and we fix an independent and
identically distributed sequence of random input u = {uk = (u1

k, . . . , u
λ
k);k ≥ 1} where

for all k, uk = (u1
k, . . . , u

λ
k) is composed of λ independent random vectors following a

standard multivariate normal distribution N (0, In) on Rn. Given {(Xk, σk, Ck, p
c
k, p

σ
k),

we consider the following iterative update at iteration k + 1.
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First, we sample independently λ ∈ N candidate solutions from a multivariate nor-
mal distribution N (Xk, σ

2
kCk) with mean vector Xk and covariance matrix σ2

kCk using
the vector uk+1, i.e., for i = 1, . . . , λ,

X i
k+1 = Xk + σkC

1
2

k u
i
k+1 . (1.7)

Then as in Section 1.2.4, the candidate solutions are evaluated on f and ranked
with respect to their f -values, with (1 ∶λ, . . . , λ ∶λ) the indices of the candidate solutions
from the best to the worse, i.e. such that

f(X1∶λ
k+1) ≤ ⋅ ⋅ ⋅ ≤ f(Xλ∶λ

k+1) .

The same nomenclature for the vectors uik+1 is done, so that:

X i∶λ
k+1 = Xk + σkC

1
2

k u
i∶λ
k+1.

To update the mean vector Xk, we consider a weighted average of the µ ≤ λ best

solutions
µ

∑
i=1

wiX
i∶λ
k+1 where the positive (recombination) weights (wi)1≤i≤µ verify w1 ≥

w2 ≥ ⋅ ⋅ ⋅ ≥ wµ > 0. With only positive weights summing to one, this latter quantity is
situated in the convex hull of the µ best points.

The next incumbent Xk+1 is constructed by combining Xk and
µ

∑
i=1

wiX
i∶λ
k+1 as

Xk+1 = (1 − cm
µ

∑
i=1

wi)Xk + cm
µ

∑
i=1

wiX
i∶λ
k+1 (1.8)

= Xk + cm
µ

∑
i=1

wi (X i∶λ
k+1 −Xk) = Xk + cmσk

µ

∑
i=1

wiC
1
2

k u
i∶λ
k+1 (1.9)

where 0 < cm < 1 is a learning rate, usually set to 1. This update moves the new mean
vector towards the best solutions. Often in practice, cm is set to 1/∑µ

i=1wi such that
the new mean vector is then the weighted average of the µ best solutions.

The conjugate evolution path is updated as

pσk+1 = (1 − cσ)pσk + cm
√
cσ(2 − cσ)

µ

∑
i=1

wi
∥w∥u

i∶λ
k+1, (1.10)

with 0 < cσ < 1. We say that
1

cσ
is the backward time horizon of the conjugate evolution

path.

The step-size is meticulously updated as [82]:

σk+1 = σk exp( cσ
dσ

( ∥pσk+1∥
E∥Nn∥

− 1)) , (1.11)
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where the damping parameter dσ verifying dσ ≈ 1, scales the change magnitude of
logσk. In [14], ∥pσk+1∥2 and the comparison to its expectation n are used for the update
of the step-size:

σk+1 = σk exp( cσ
2dσ

(∥pσk+1∥2

n
− 1)) . (1.12)

The evolution path is updated as

pck+1 = (1 − cσ)pck + cm
√
cc(2 − cc)

µ

∑
i=1

wi
∥w∥C

1
2

k u
i∶λ
k+1, (1.13)

where 1
cc
≥ 1 is the backward time horizon of the evolution path. And the covariance

matrix is updated according to:

Ck+1 = (1 − c1 − cµ)Ck + c1p
c
k+1 [pck+1]

⊺ + cµ
µ

∑
i=1

wiu
i∶λ
k+1 [ui∶λk+1]

T
, (1.14)

where 0 < c1 < 1 and 0 < cµ < 1 − c1. The so-called rank-one update corresponds to
pck+1 [pck+1]

⊺, while ∑µ
i=1wiu

i∶λ
k+1 [ui∶λk+1]

T
corresponds to the rank-µ update.

To obtain C
1
2

k , the spectral decomposition is used with Ck = BkD
2
kB

⊺
k where Dk is

a diagonal matrix with positive eigenvalues and Bk is a rotation matrix. Therefore
C

1
2

k = BkDkB
⊺
k . The matrix B⊺

k rotates the space such that the columns of Bk, i.e. the
principal axes of the distribution N (0, Ck), rotate into the coordinate axes.

For a convex-quadratic function, Ck is similar in the ideal case to the inverse Hes-
sian matrix [87]. The (µ/µw, λ)-CMA-ES then learns second-order information, and is
therefore a stochastic counterpart of quasi-newton methods [82].

A variant with Two-Point Step-Size Adaptation, instead of Cumulative Step-size
Adaptation, is proposed in [86]. An adaptation variant with possible negative covari-
ance matrix is proposed in [115]. Note that there exist also large-scale variants of
CMA-ES [191].

1.3.2 An elitist variant of the CMA-ES: (1 + λ)-CMA-ES

In [104, 193], Igel et al. introduce an elitist variant of the CMA-ES for the purpose of
designing an effective multiobjective evolution strategy. With this variant, the parent
population size and the offspring population size can be chosen as small as one. We
present in Section 5.2.3 the corresponding multiobjective algorithm that derives from
it, that is the MO-CMA-ES.

The elitist (1 + λ)-CMA-ES is constructed by using the (1 + λ)-selection method of
evolution strategies [32, 159, 172], and adding a covariance matrix adaptation. Each
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individual is a 5-tuple a = [x, p̄succ, σ, pc, C] respectively representing the candidate
solution x ∈ Rn, an averaged success rate p̄succ ∈ [0,1], the global step-size σ ∈ R+, an
evolution path pc ∈ Rn and the covariance matrix C ∈ Rn×n.

Additionally, default parameters are set for the selection (λ = 1), the step-size con-

trol (d = 1 + n

2λ
, ptargetsucc = 1

5 +
√
λ/2

, cp =
λptargetsucc

2 + λptargetsucc

) and the covariance matrix adap-

tation (cc =
2

n + 2
, ccov =

2

n2 + 6
, pthresh = 0.44). The step-size, the evolution path and

the covariance matrix are updated according to Algorithm 1 and 2.

Algorithm 1 updateStepSize(a = [x, p̄succ, σ, pc, C] , psucc)
1: p̄succ ←Ð (1 − cp)p̄succ + cppsucc
2: σ ←Ð σ exp(1

d

p̄succ − p̄targetsucc

1 − p̄targetsucc

)

Algorithm 2 updateCovariance(a = [x, p̄succ, σ, pc, C] , xstep ∈ Rn)
1: if p̄succ < pthresh then
2: pc ←Ð (1 − cc)pc +

√
cc(2 − cc)xstep

3: C ←Ð (1 − ccov)C + ccov pcpTc
4: else
5: pc ←Ð (1 − cp)pc
6: C ←Ð (1 − ccov)C + ccov (pcpTc + cc(2 − cc)C)
7: end if

Then an iteration of the (1 + λ)-CMA-ES can be divided in three phases. First, λ
new candidate solutions are sampled. Second, the step-size is updated with a suc-

cess rate psucc =
λsucc
λ

where λsucc represents the number of new candidate solutions
with smaller f -values than the parent. And finally if the chosen solution is different
from the parent solution, the covariance matrix is adapted accordingly. Algorithm 3
presents these three parts in details.
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Algorithm 3 (1 + λ)-CMA-ES

1: Given: g = 0, initialize a
(0)
parent

2: while not stopping criterion do
3: a

(g+1)
parent ←Ð a

(g)
parent

4: for k = 1, . . . , λ do
5: x

g+1
k ∼ N (x(g)parent, σ(g)

2

C(g))
6: end for

7: updateStepSize
⎛
⎝
a
(g+1)
parent,

λ
(g+1)
succ

λ

⎞
⎠

8: if f (x(g+1)
1∶λ ) ≤ f (x(g)parent) then

9: x
(g+1)
parent ←Ð x

(g+1)
1∶λ

10: updateCovariance
⎛
⎝
a
(g+1)
parent,

x
(g+1)
parent − x

(g)
parent

σ
(g)
parent

⎞
⎠

11: end if

12: g ←Ð g + 1

13: end while

1.3.3 The Information-Geometric Optimization viewpoint

The CMA-ES (with the same learning rate for the mean and the covariance matrix)
belongs to another class of optimizers, called Information-geometric optimization al-
gorithms [7, 70]. Instead of observing the search space Rn where the optimum be-
longs to, the viewpoint of the information-geometric optimization is to find at iteration
k, the optimal state θk containing the favorite candidate solution Xk [149]. Therefore
the search space of the optimization is Θ and the objective function to optimize is
define as

J̃(θ) = ∫ f(x)Pθ(dx). (1.15)

The optimum of J̃ is such that Pθ is concentrated to the global optimum of f . Usu-
ally, a finer and more complex objective function on Θ, invariant by strictly increasing
transformation, is considered. It is defined for each state θk at iteration k as follows

Jθk(θ) = ∫ W f
θk
(x)Pθ(dx), (1.16)

where W f
θk
∶ Rn → R is defined based on a non-increasing function w ∶ [0,1] → R

as follows. If Px′∼Pθk (f(x
′) = f(x)) = 0, then W f

θk
(x) = w (Px′∼Pθk (f(x

′) ≤ f(x))).
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Otherwise W f
θk
(x) = 1

Px′∼Pθk (f(x
′) = f(x)) ∫

Px′∼Pθk
(f(x′)≤f(x))

Px′∼Pθk
(f(x′)<f(x))

w(q)dq.

This objective function W f
θk

is preferred to f : its definition is invariant under strictly
increasing transformations of f . Also in the case where Pθ is concentrated on the
global minimum of f , then Jθk(θ) is maximal. Therefore the problem is now to maxi-
mize Jθk at iteration k.

To do so, the notion of natural gradient ascent is used, where the gradient ascent
operates in the space Θ [20,149].

It is a gradient with respect to the Fisher metric and defined as

∇̃θ = I−1 ∂

∂θ
, (1.17)

where I represents the Fisher matrix [11,149], defined as:

Iij(θ) = ∫
∂ logPθ(x)

∂θi

∂ logPθ(x)
∂θj

Pθ(dx) (1.18)

= −∫
∂2 logPθ(x)
∂θi∂θj

Pθ(dx). (1.19)

Maximizing Jθk with a natural gradient ascent is iteratively done as follows.

θk+δk = θk + δk ∇̃Jθk(θ)∣
θ=θk

, (1.20)

where δk is a time increment or step-size of the natural gradient ascent.

We also have that

∇̃θJθk(θ)∣
θ=θk

= ∫ W f
θk
(x)

∇̃θPθ(x)∣
θ=θk

Pθk(x)
Pθk(x) (1.21)

= ∫ W f
θk
(x)∇̃θ logPθ(x)∣

θ=θk
Pθk(x)dx (1.22)

= I−1(θk)∫ W f
θk
(x)∂ logPθ(x)

∂θ
∣
θ=θk

Pθk(x)dx. (1.23)

Therefore the expression of the next state θk+1 is as follows

θk+δk = θk + δk I−1(θk)∫ W f
θk
(x)∂ logPθ(x)

∂θ
∣
θ=θk

Pθk(dx). (1.24)
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Now if we do a Monte-Carlo approximation of the integrand in (1.24) by generating
λ candidate solutions x1

k, . . . , x
λ
k from the probability distribution Pθk , assuming that

they have different f -values, we have that

w (Px′∼Pθk (f(x
′) < f(xik))) ≈ w (

rk(xik) + 1
2

λ
) ,

where rk(xik) is the cardinal of {j∣f(xj) < f(xi)}. By injecting this approximation
in (1.24), we obtain the so-called Information-Geometric Optimization (IGO) algorithm
iterated as:

θk+δk = θk + δk I−1(θk)
1

λ

λ

∑
i=1

w (
rk(xik) + 1

2

λ
) ∂ logPθ(x)

∂θ
∣
θ=θk

. (1.25)

Another way to retrieve the IGO algorithm update is by setting

wi =
w ((i − 1/2)/λ)

λ
(1.26)

and denoting xi∶λk the th candidate solution with respect to their f -values (still assuming
that the f -values are different): f(x1∶λ

k ) < ⋅ ⋅ ⋅ < f(xλ∶λk ). The IGO algorithm update
in (1.25) then becomes

θk+δk = θk + δk I−1(θk)
λ

∑
i=1

wi
∂ logPθ(xi∶λk )

∂θ
∣
θ=θk

. (1.27)

We fall back to the CMA-ES context that we reparametrize as θk = (xk, Ck) where
the candidate solution xk is the mean and Ck is the covariance matrix and Pθk the
probability distribution of the multivariate normal distribution N (xk, Ck). For all x ∈
Rn and θ ∈ Θ, logPθ(x) = −k

2
log(2π) − 1

2
log det(Ck) − 1

2
log ((x − xk)⊺C−1

k (x − xk)).
Applying (1.27) to this family of probability distribution implies that

xk+δk = xk + δk
λ

∑
i=1

wi (xi∶λk − xk) , (1.28)

Ck+δk = Ck + δk
λ

∑
i=1

wi ((xi∶λk − xk)(xi∶λk − xk)⊺ −Ck) . (1.29)

These equations define a variant of the CMA-ES where the learning rate for the mean
and the covariance matrix are the same.

In [9], Akimoto et al. show that they can obtain under some types of parameteri-
zation of multivariate normal distribution the natural gradient of the expected fitness
without the need for inversion of the Fisher information matrix.

An exponential parametrization of the covariance matrix allows to retrieve the so-
called Exponential Natural Evolution Strategy, from the IGO algorithm [70].
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Although the IGO framework gives a generalized view of evolution strategies and
has a theoretical justification [10], it does not answer to the questions related to
the convergence of its algorithms. However, there exists a continuous-time variant
of (1.24) called IGO flow [149] that allows to state some convergence results. It is
defined for all t ≥ 0 as

dθt
dt

= I−1(θt)∫ W f
θt
(x)∂ logPθ(x)

∂θ
∣
θ=θt

Pθt(dx). (1.30)

Hence in [4], convergence results are derived based on an ODE method with the
underlying IGO flow, applied to the IGO algorithm for a multivariate standard normal
distribution with covariance matrices equal to {σkIn;k ≥ 0}.
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Chapter 2

Convergence of evolution
strategies

Contents
2.1 Convergence and divergence speeds . . . . . . . . . . . . 57

2.1.1 Linear behaviors . . . . . . . . . . . . . . . . . . . . . . . . 57

2.1.2 Expected progress and expected stopping times . . . . . 58

2.2 Theoretical analysis of evolution strategies . . . . . . . 59

2.2.1 Ordinary differential equation methods . . . . . . . . . . 60

2.2.2 Law of large numbers applied to ergodic Markov chains 60

2.2.3 Bounds on the expected hitting time via drift analysis . 61

The goal of a continuous optimization algorithm is essentially to get
quickly as close as possible to the eventual global optimum. Typically, the
optimum is not exactly reached, and therefore some methods are estab-
lished to measure the performance of the algorithm, based on its behavior
with respect to the global optimum.

For a sequence of states {θk;k ≥ 0} with favorite solutions {Xk;k ≥ 0}
and step-sizes {σk;k ≥ 0}, it is important to measure the behavior of σk and
∥Xk−x⋆∥ where x⋆ is the global optimum, with respect to the number of itera-
tions k. In a black-box scenario, it is also interesting to quantify the evolution
of σk and ∥Xk − x⋆∥ with respect to the number of function evaluations.

In the following, we present some notions that measure the convergence
speed of an optimization algorithm. We also highlight some methods used to
analyze the convergence of evolution strategies, that are based on Markov
chain theory and drift analysis.
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2.1 Convergence and divergence speeds

We remind in the following different notions that measure the speed of convergence
of the optimization algorithm. Namely convergence rate, divergence rate, expected
log-progress, progress rate, quality gain, expected hitting time and expected running
time.

2.1.1 Linear behaviors

If {θk;k ≥ 0} represents the states of a deterministic algorithm whose favorite solutions
are {Xk;k ≥ 0}, we say that Xk converges linearly or geometrically towards x⋆ at rate
r > 0 if

lim
k→∞

log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥

= − r. (2.1)

Typically, linear convergence is defined as lim
k→∞

∥Xk+1 − x⋆∥
∥Xk − x⋆∥

= c with 0 < c < 1, which is

equivalent to (2.1).

With the Cesàro lemma, (2.1) implies that

lim
k→∞

1

k
log ∥Xk+1 − x⋆∥ = − r. (2.2)

With (2.2), we observe that asymptotically, the logarithm of the distance between the
favorite solution at iteration k and the optimum decreases linearly in k like − rk.

In the case where r < 0 in (2.1), we say that Xk diverges linearly or geometrically
when k goes towards ∞. For r =∞ in (2.1), Xk is said to converge superlinearly to x⋆

when k tends towards ∞. In that case for q ∈ (1,∞), we say that Xk converges with
order q to x⋆ at rate r > 0 if

lim
k→∞

log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥q

= − r . (2.3)

In the case where q is equal to 2, we particularly say that the convergence is quadratic.

Finally if r = 0 in (2.1), Xk converges sublinearly when k goes to ∞.

If {θk;k ≥ 0} represents the states of a stochastic algorithm whose favorite solu-
tions are random vectors {Xk;k ≥ 0}, we similarly say that Xk converges linearly or

geometrically towards x⋆ at rate r > 0 if lim
k→∞

1

k
log

∥Xk − x⋆∥
∥X0 − x⋆∥

= − r almost surely. In the

same way, Xk diverges linearly or geometrically if lim
k→∞

1

k
log

∥Xk − x⋆∥
∥X0 − x⋆∥

= r > 0 almost

surely.
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It is also useful to analyze the behavior of other elements of a state θk. For example
in evolution strategies like the CSA-ES algorithm in Section 1.2.4, the evolution of the
step-size σk of θk is also analyzed. We say that σk converges linearly or geometrically

towards 0 at rate r > 0 if lim
k→∞

1

k
log

σk
σ0

= − r almost surely. In the same way, σk diverges

linearly or geometrically if lim
k→∞

1

k
log

σk
σ0

= r > 0 almost surely.

2.1.2 Expected progress and expected stopping times

The expected log-progress is investigated for linear behaviors of evolution strate-
gies [25]. For a step-size evolution strategy {θk = (Xk, σk) ;k ∈ N} with initial condition
(X0, σ0) = (x, σ), we have a linear behavior of the expected log-progress of the favorite

solution if lim
k→∞

Ex−x⋆
σ

[log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥

] = r where r ∈ R. The expected log-progress of

the step-size converges or diverges linearly if lim
k→∞

Ex−x⋆
σ

[log
σk+1

σk
] = r ∈ R.

Typically in evolution strategies, the explicit formula of the convergence or diver-
gence rate is difficult to obtain. The expected amount of the optimization algorithm in
one iteration is often considered. The progress rate is a common measure for such
progress in term of the search space, and the quality gain is also used and expressed
in term of function values.

The progress rate is introduced in [90, 159]. It measures the reduction of the dis-
tance to the optimum in one iteration of the optimization algorithm. The normalized
progress rate is defined as the expected relative reduction of ∥xk −x⋆∥ where x⋆ is the
optimum. It is explicitely defined as

ϕ⋆k = nE [∥Xk − x⋆∥ − ∥Xk+1 − x⋆∥
∥Xk − x⋆∥

∣θk] = n (1 −E [∥Xk+1 − x⋆∥
∥Xk − x⋆∥

∣θk]) . (2.4)

The quality gain is a measure similar to the progress rate, expressed in term of
function values [6]. It is defined as the expected relative decrease of the function
value. For a step-size evolution strategy {θk = (Xk, σk) ;k ∈ N}, if x⋆ is a global mini-
mum of a function f ∶ Rn → R, x ∈ Rn not a global minimum and σ > 0 as

Φ(x, σ) =
E [f(Xk) − f(Xk+1) ∣Xk = x, σk = σ]

f(x) − f(x⋆) . (2.5)

Another way to analyze the convergence speed of an optimization algorithm is by
analyzing specific stopping times, that are the expected hitting time and the expected
running time.
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For a stochastic process {Xk ∈ Rn;k ≥ 0}, the first hitting time of the ball B(x⋆, ε)
where x ∈ Rn and ε > 0 is the stopping time τε = inf {k ∈ N;Xk ∈ B(x⋆, ε)}. The ex-
pected hitting time is defined as the expectation of the first hitting time, i.e. as E [τε].
The expected hitting time E [τε] is related to the notion of linear convergence at rate r
if −E [τε] / log(ε) ≃ 1/r when ε→ 0 [6].

The runtime is similar to the hitting time, expressed in term of function values [46].
For a function f ∶ Rn → R with global optimum x⋆, the running time to a precision
ε > 0 is defined as ηε = inf {k ∈ N; ∣f(Xk) − f(x⋆)∣ < ε}. The expected running time is
therefore defined as E [ηε].

Note that evolution strategies are typically invariant to strictly increasing transfor-
mations of the optimized function f . However this notion of running time does not
reflect that invariance property. For a strictly increasing function g, the smallest itera-
tion k0 such that ∣f(Xk0) − f(x⋆)∣ ≤ ε is typically not equal to the smallest iteration k0

such that ∣g(f(Xk0)) − g(f(x⋆))∣ ≤ ε. For this reason, the spatial suboptimality func-
tion is introduced in [3, 69]. For a function f ∶ Rn → R measurable with respect to the
Borel σ-algebra of Rn, the spatial suboptimality function fµLeb is defined for x ∈ Rn as

fµLeb(x) = n
√
µLeb (f−1 ((−∞, f(x)])) = n

√
µLeb (L≤f,x) .

For a measurable function f and a strictly increasing function g ∶ Imf → R, f and
g ○ f have the same spatial suboptimality function equals to fµLeb , so that the running
time in terms of f or g ○ f are the same. This conserves the invariance under order-
preserving transformations inherent to the design of evolution strategies [83,167].

2.2 Theoretical analysis of evolution strategies

Analyzing evolution strategies is important to state whether or not a designed one
is relevant. Especially knowing the convergence mode allows to separate practical
algorithms from others.

For example with Pure random search, the slow expected hitting time E [τε] has an
order of 1/εn. Similarly, elitist evolution strategies with a step-size effectively bounded
from above and below (also non-elitist evolution strategies when in addition the search
space is bounded) converge with an expected hitting time E [τε] of the order of 1/εn,
under mild conditions on the objective function [18, 165]. An optimization algorithm
with such slow speed of convergence is therefore not practically relevant.

In the contrary, comparison-based optimization algorithms with a bounded number
of comparisons between function values have an expected hitting time E [τε] lower
bounded by a constant times −n log(ε) when ε→ 0 [68,182]. Therefore it is interesting
to find an algorithm reaching this lower bound, on a wide class of functions.
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We present in the following different techniques often used to analyze the conver-
gence of evolution strategies.

2.2.1 Ordinary differential equation methods

Ordinary Differential Equation (ODE) methods are commonly used to investigate the
convergence of stochastic optimization algorithms [27,28,36,131,134]. ODE methods
are applied on optimization algorithms whose state θk ∈ Θ at iteration k verifies

θk+1 = θk + αkFk+1 (2.6)

where αk > 0 and Fk+1 is a random state in Θ such that E [Fk+1∣θk] = E [Fk+1∣Fk],
which is the conditional expectation given the natural filtration {Fk;k ≥ 0} associated
to {θk;k ≥ 0}. The positive value αk represents a step-size that can be seen as a
learning rate.

The ODE method makes the link between the stochastic optimization algorithm
in (2.6) and the solutions of the corresponding ODE

dθ

dt
= F (θ), θ(0) = θ0

where F is a suitable function on Θ verifying F (θk) = E [Fk+1∣θk].

An ODE method to prove the geometric convergence of adaptive stochastic algo-
rithms is introduced in [5]. The latter method tackles stochastic algorithms that come
from optimization methods solving deterministic optimization problems. In particu-
lar some derivative-free optimization algorithms induced by stochastic approximation
algorithms with a constant step-size.

This framework of ODE methods is also applied to the IGO flow introduced in
Section 1.3.3. In [4], the IGO flow for multivariate standard normal distributions with
covariance matrices {σkIn;k ≥ 0} converges locally on twice differentiable functions
to critical points of the objective function, under mild conditions.

2.2.2 Law of large numbers applied to ergodic Markov chains

Markov chain theory is used to study almost sure linear convergence and linear con-
vergence of the expected log-progress of evolution strategies [19, 24, 25, 116, 117,
117]. The main idea is introduced in [33] for the analysis of a self-adaptation evolution
strategy on the sphere function. It goes as follows, for a step-size adaptive evolution
strategy {(Xk, σk) ;k ∈ N}.
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Assume that f is a function with global argmin x⋆ and {Zk = (Xk −x⋆)/σk ;k ∈ N} is
a homogenous Markov chain. Then we have the equation

log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥

= log
∥Zk+1∥
∥Zk∥

+ log (σk+1

σk
) .

If we take the expectation under Z0 = z, then

Ez [log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥

] = Ez [log
∥Zk+1∥
∥Zk∥

] +Ez [log
σk+1

σk
] .

Therefore if {Zk ;k ∈ N} is an ergodic homogeneous Markov chain with invariant prob-
ability π such that z ↦ log ∥z∥ is π-integrable, then Ez [log ∥Zk+1∥

∥Zk∥ ] converges to 0 when

k goes to ∞, so that Ez [log ∥Xk+1−x⋆∥
∥Xk−x⋆∥ ] and Ez [log σk+1

σk
] have the same limit if they

converge. Further considerations on the algorithm and the function imply such con-
vergence.

Similarly,

1

k
log

∥Xk − x⋆∥
∥X0 − x⋆∥

= 1

k

k−1

∑
t=0

log
∥Xt+1 − x⋆∥
∥Xt − x⋆∥

= 1

k

k−1

∑
t=0

log
∥Zt+1∥
∥Zt∥

+ 1

k

k−1

∑
t=0

log (σt+1

σt
) .

The latter equation suggests that if we can apply a Law of Large Numbers to the

chain {Zk ;k ∈ N} then the term
1

k

k−1

∑
t=0

log
∥Zt+1∥
∥Zt∥

converges to 0, so that the step-size

and the favorite solution have the same rate, if they converge or diverge.

This methodology is used in [19] and generalized in [25] for scaling-invariant func-
tions. We use it in Chapter 4 to show global linear convergence of a subclass of
step-size adaptive evolution strategies, on a subclass of scaling-invariant functions.

2.2.3 Bounds on the expected hitting time via drift analysis

Drift analysis on a stochastic process {Xk;k ∈ N} adapted to a natural filtration
{Fk;k ∈ N} consists in analyzing properties of the corresponding drift defined as
E [V (Xk+1)∣Fk]−V (Xk) where V is a real-valued function that is typically called a Lya-
punov drift function. To imply bounds on the expected hitting time, the main idea relies
on finding a Lyapunov function with lower and upper bounded expected drift [77].

Based on this idea, in [3, 143, 144] a potential function is constructed so that the
upper bound of the expected hitting time of the (1 + 1)-ES with 1/5-success rule and
a covariance matrix has the order of n (b − log(ε)) with b ∈ R when ε → 0. In addition,
this analysis is valid on a wide class of functions containing some smooth positively
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homogeneous functions with a unique optimum and some smooth strongly convex
functions.

The link to drift analysis is also unveiled for the results in [106–111]. The ex-
pected hitting time E(τε) of step-size adaptive (1 + λ) or (1, λ)-ES is lower bounded
by −bnλ log(λ) log(ε) when ε → 0 where b > 0 is a constant [109,111]. Linear bounds
of the expected hitting time for a variant of the (1 + 1)-ES with 1/5-success rule are
established in [106–108,110] for the sphere and certain convex-quadratic problems.
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Note: the content of this chapter is published in the Journal of Optimization Theory
and Applications (JOTA), and presented in [184]:
Cheikh Toure, Armand Gissler, Anne Auger and Nikolaus Hansen, Scaling-invariant
functions versus positively homogeneous functions, Journal of Optimization Theory
and Applications, 2021.

Scaling-invariant functions preserve the order of points when the points
are scaled by the same positive scalar (usually with respect to a unique
reference point). Composites of strictly monotonic functions with positively
homogeneous functions are scaling-invariant with respect to zero. We prove
in this paper that also the reverse is true for large classes of scaling-invariant
functions. Specifically, we give necessary and sufficient conditions for scaling-
invariant functions to be composites of a strictly monotonic function with a
positively homogeneous function. We also study sublevel sets of scaling-
invariant functions generalizing well-known properties of positively homoge-
neous functions.

3.1 Introduction

A function f ∶ Rn → R is scaling-invariant (SI) with respect to a reference point x⋆ ∈ Rn

if for all x, y ∈ Rn and ρ > 0:

f(x⋆ + x) ≤ f(x⋆ + y) ⇐⇒ f(x⋆ + ρx) ≤ f(x⋆ + ρy) , (3.1)

that is, the f -order of any two points is invariant under a multiplicative change of their
distance to the reference point—the order only depends on their direction and their
relative distance to the reference. Scaling-invariant functions appear naturally when
studying the convergence of comparison-based optimization algorithms where the
update of the state of the algorithm is using f only through comparisons of candidate
solutions [25, 68]. A famous example of a comparison-based optimization algorithm
is the Nelder-Mead method [146].

A function p ∶ Rn → R is positively homogeneous (PH) with degree α > 0 (PHα) if for
all x ∈ Rn and ρ > 0:

p(ρx) = ραp(x) . (3.2)

Positively homogeneous functions are scaling-invariant with respect to x⋆ = 0. We
also consider that x ↦ p(x − x⋆) is positively homogeneous w.r.t. x⋆ when p is pos-
itively homogeneous. Linear functions, norms, and convex quadratic functions are
positively homogeneous. We can define PH functions piecewise on cones or half-
lines, because a function is PHα if and only if (3.2) is satisfied within each cone or
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half-line (which is not the case with SI functions where x and y in (3.1) can belong
to different cones). For example, the function p ∶ Rn → R defined as p(x) = x1 if
x1x2 > 0 and p(x) = 0 otherwise, is PH1. Positively homogeneous functions and in
particular increasing positively homogenous functions are well-studied in the context
of Monotonic Analysis [62,163,164] or nonsmooth analysis and nonsmooth optimiza-
tion [74]. Specifically, non-linear programming problems where the objective function
and constraints are positively homogeneous are analyzed in [132] whereas saddle
representations of continuous positively homogeneous functions by linear functions
are established in [75]. The (left) composition of a PH function with a strictly mono-
tonic function is SI while this composite function is in general not PH. One of the
questions we investigate in this paper is to which extent SI functions and compos-
ites of PH functions with strictly monotonic functions are the same. We prove that a
continuous SI function is always the composite of a strictly monotonic function with a
PH function. We give necessary and sufficient conditions for an SI function to be the
composite of a strictly monotonic function with a PH function in the general case.

Only level sets or sublevel sets matter to determine the difficulty of an SI problem
optimized with a comparison-based algorithm. We investigate different properties of
level sets thereby generalizing properties that are known for PH functions, including a
formulation of the Euler homogenous function theorem that holds for PH functions.

Notation

We denote R+ the interval [0,+∞), R− = (−∞,0], Z the set of all integers, Z+ the set
of all non-negative integers and Q the set of rational numbers. The Euclidean norm is
denoted by ∥.∥. For x ∈ Rn and ρ > 0, we denote by B (x, ρ) = {y ∈ Rn; ∥x − y∥ < ρ} the
open ball centered at x and of radius ρ, B (x, ρ) its closure and S (x, ρ) its boundary.
When they are centered at 0, we denote Bρ = B (0, ρ), Bρ = B (0, ρ) and Sρ = S (0, ρ).
We refer to a proper interval containing more than a single element as nontrivial in-
terval. For a nontrivial interval I ⊂ R and a function ϕ ∶ I → R, we use the terminol-
ogy of strictly increasing (respectively strictly decreasing) if for all a, b ∈ I with a < b,
ϕ(a) < ϕ(b) (respectively ϕ(a) > ϕ(b)). For a real number ρ and a subset A ⊂ Rn, we
define ρA = {ρx; x ∈ A}. For a function f , we denote by Im(f ) the image of f .

3.2 Preliminaries

Given a function f ∶ Rn → R and x ∈ Rn, we denote the level set going through x as
Lf,x = {y ∈ Rn, f(y) = f(x)} and the sublevel set as L≤f,x = {y ∈ Rn, f(y) ≤ f(x)}.

If f is SI with respect to x⋆, then the function x ↦ f(x + x⋆) − f(x⋆) is scaling
invariant with respect to 0. Hence, if a function f is SI, we assume in the following
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Figure 3.1: Level sets of SI functions with respect to the red star x⋆. The four
functions are strictly increasing transformations of x ↦ p(x − x⋆) where p is a
PH function. From left to right: p(x) = ∥x∥; p(x) = x⊺Ax for A symmetric positive

and definite; p(x) = (∑i

√
∣xi∣)

2
the 1

2-norm; a randomly generated SI function
from a “smoothly” randomly perturbed sphere function. The two first functions
from the left have convex sublevel sets, contrary to the last two.

that f is SI with respect to the reference point 0 and that f(0) = 0, without loss of
generality.

We can immediately imply from (3.1) that if x and y belong to the same level set,
then ρx and ρy belong to the same level set. Hence the level set of x and ρx are
scaled from one another, i.e. Lf,ρx = ρLf,x.

Similarly, since for any x, y ∈ Rn and ρ > 0, f(y
ρ
) ≤ f(x) if and only if f(y) ≤ f(ρx),

L≤f,ρx = ρL≤f,x , and Lf,ρx = ρLf,x . (3.3)

These properties are visualized in Figure 4.1.

Given an SI function f , we define surjective restrictions of f to half-lines along a
vector x ∈ Rn as

fx ∶ t ∈ [0,∞)↦ f(tx) . (3.4)

It is immediate to see that the fx are also SI1. However, f may not be SI even when all
fx are2.

Scaling invariant functions have at most one isolated local optimum [25] where an
isolated local optimum, say, an isolated argmin, x, for a function g ∶ Rn → R is defined
in that there exists ε > 0 such that for all y ∈ B (x, ε) ∖ {x} , g(y) > g(x). This result is
reminded in the following proposition.

1 This directly follows because for s, t ∈ R+ and ρ > 0, fx(t) ≤ fx(s) ⇐⇒ f(tx) ≤ f(sx) ⇐⇒
f(ρtx) ≤ f(ρsx) ⇐⇒ fx(ρt) ≤ fx(ρs) .

2 For example, define f ∶ R → R as t ↦ t on R+ and t ↦ t2 on R−. Then f1(t) = t and
f−1(t) = t2, for t ∈ R+, are both SI and even PH with degree 1 and 2, respectively. But f is not
SI, and hence also not PH, because f(1

2) =
1
2 > 1

4 = f(−1
2) but f(4 × 1

2) = 2 < 4 = f(4 × (−1
2)).
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Proposition 1 (see [25, Proposition 3.2]). Let f be an SI function. Then f can admit
an isolated local optimum only in f(0) = 0 and this local optimum is also the global
optimum. In addition, the functions fx cannot admit a local plateau, i.e., a ball where
the function is locally constant, unless the function is equal to 0 everywhere.

We characterize in the following the functions fx of an SI function f under different
conditions.
Proposition 2. If f is a continuous SI function on Rn, then for all x ∈ Rn, fx is either
constant equal to 0 or strictly monotonic.

More specifically, if ϕ ∶ R+ → R is a 1-dimensional continuous SI function, then ϕ is
either constant equal to 0 or strictly monotonic.

Proof. Assume that ϕ is not strictly monotonic on [0,∞). Then ϕ is not strictly mono-
tonic on (0,∞). Since continuous injective functions are strictly monotonic, ϕ is not
injective on (0,∞). Therefore there exists 0 < s < t such that ϕ(s) = ϕ(t). By scaling-
invariance, it follows that ϕ( s

t
) = ϕ(1). It follows iteratively that for all integer k > 0,

ϕ (( s
t
)k) = ϕ(1). Taking the limit for k → ∞, we obtain that ϕ(0) = ϕ(1). Thereby

by scaling-invariance again, it follows for all ρ > 0 that ϕ(0) = ϕ(ρ). Hence we have
shown that if ϕ is not strictly monotonic, it is a constant function.

Now if f is a continuous SI function on Rn and x ∈ Rn, then fx is also scaling
invariant and continuous. Then it follows that fx is either constant or strictly mono-
tonic.

We deduce from Proposition 2 the next corollary.
Corollary 1. Let f be a continuous SI function. If f has a local optimum at x, then for
all t ≥ 0, f(tx) = f(0). In particular, if f has a global argmin (resp. argmax), then 0 is
a global argmin (resp. argmax).

Proof. Assume that there exists a local optimum at x. Then fx has a local optimum at
1. Therefore fx is not strictly monotonic, and thanks to Proposition 2, fx is necessarily
a constant function. In other words, f(tx) = f(0) for all t ≥ 0.

We derive another proposition with the same conclusions as Proposition 2 but
under a different assumption. We start by showing the following lemma.
Lemma 1. Let ϕ ∶ R+ → R be an SI function continuous at 0 and strictly monotonic on
a nontrivial interval I ⊂ R+, then ϕ is strictly monotonic.

Proof. Assume without loss of generality that ϕ is strictly increasing on I and that
I = (a, b) with 0 < a < b, up to replacing I with a subset of I. Denote ρ = b

a
. Then

{[ρk, ρk+1]}
k∈Z covers (0,∞). To prove that ϕ is strictly increasing on (0,∞), it is

enough to prove that ϕ is strictly increasing on [ρk, ρk+1] for all integer k.
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Let k be an integer and (x, y) two real numbers such that ρk ≤ x < y ≤ ρk+1. Then
a ≤ ax

ρk
< ay
ρk

≤ aρ = b. Therefore ϕ(ax
ρk

) < ϕ(ay
ρk

). And by scaling-invariance, ϕ(x) < ϕ(y).

With the continuity at 0, it follows that ϕ is strictly increasing on R+.

We derive from Lemma 1 the following proposition.
Proposition 3. Let f be an SI function continuous at 0. Assume that each fx is on
some nontrivial interval either strictly monotonic or constant. Then for all x ∈ Rn, fx is
either constant equal to 0 or strictly monotonic.

Note that the continuity of the function fx alone does not suffice to conclude that fx
is either constant or strictly monotonic on some nontrivial interval. Indeed there exist
1-D continuous functions (even differentiable functions) that are not monotonic on any
nontrivial interval [43,59,97].

For the sake of completeness, we construct SI functions in R+ that are not mono-
tonic on any nontrivial interval. The construction of such functions is based on the
nonlinear solutions of the Cauchy functional equation: for all x, y ∈ R, g(x + y) =
g(x) + g(y), called Hamel functions [130]. A Hamel function f also satisfies f(q1x +
q2y) = q1f(x) + q2f(y) for all real numbers x, y and rational numbers q1, q2 [1, Chap-
ter 2]. Since g is nonlinear, there exist real numbers x and y such that the vectors
{(x, g(x)), (y, g(y))} form a basis of R2 over the field R. Then the graph of g, which is a
vector subspace of R2 over the field Q, contains {q1 ⋅ (x, g(x)) + q2 ⋅ (y, g(y)); (q1, q2) ∈ Q2}
which is dense in R2. Therefore a 1-D Hamel function is highly pathological, since its
graph is dense in R2.
Lemma 2. There exist SI functions on R+ that are neither monotonic nor continuous
on any nontrivial interval.

Proof. We start by choosing a nonlinear solution of the Cauchy’s functional equation
denoted by g ∶ R → R, knowing that there are uncountably many ways to pick such
a g [130]. Then for all real numbers a and b, g(a + b) = g(a) + g(b). And since g is
not linear, we also know that g is neither continuous nor monotonic on any nontrivial
interval [130]. Let us define f = exp ○g ○ log on (0,∞) and f(0) = 0. Then f(x) > 0
for all x > 0 and f is still not monotonic on any nontrivial interval. We also have for
all ρ > 0 and x > 0, f(ρx) = exp (g(log(x) + log(ρ))) = exp(g(log(x))) exp(g(log(ρ))) =
f(x)f(ρ). This last result gives the scaling-invariance property.

Based on Lemma 2, we derive the next proposition.
Proposition 4. There exist SI functions f on Rn such that for all non-zero x, fx is
neither monotonic nor continuous on any nontrivial interval.

Proof. Based on Lemma 2, there exists ϕ ∶ R+ → R SI on R+ which is neither mono-
tonic nor continuous on any nontrivial interval. We construct f as follows. For all
x ∈ Rn, f(x) = ϕ(∥x∥). Then f is SI because for x, y ∈ Rn and for ρ > 0, f(x) ≤
f(y) ⇐⇒ ϕ(∥x∥) ≤ ϕ(∥y∥) ⇐⇒ ϕ(ρ∥x∥) ≤ ϕ(ρ∥y∥) ⇐⇒ f(ρx) ≤ f(ρy). In addition
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for a non-zero x and t ≥ 0, fx(t) = f(tx) = ϕ(t∥x∥) and then fx is neither monotonic
nor continuous on any nontrivial interval.

Now assume that f is a continuous scaling invariant function and we can write f =
ϕ○g where ϕ is a continuous bijection and g is a positively homogeneous function. As
a direct consequence of the bijection theorem given in Appendix 1.1, ϕ−1 is continuous
if ϕ is a continuous bijection defined on an interval. Therefore g = ϕ−1 ○ f is also
continuous. This result is stated in the following corollary.
Corollary 2. Let f be a continuous SI function, ϕ a continuous bijection defined on
an interval in R and p a positively homogeneous function such that f = ϕ ○ p. Then p
is also continuous.

3.3 Scaling-invariant Functions as Composite of
Strictly Monotonic Functions with Positively
Homogeneous Functions

As underlined in the introduction, compositions of strictly monotonic functions with
positively homogeneous functions are scaling-invariant (SI) functions. We investigate
in this section under which conditions the converse is true, that is, when SI functions
are compositions of strictly monotonic functions with PH functions. Section 3.3.1
shows that continuity is a sufficient condition, whereas Section 3.3.2 gives some nec-
essary and sufficient condition on f to be decomposable in this way.

3.3.1 Continuous SI Functions

We prove in this section a main result of the paper: any continuous SI function f can
be written as f = ϕ ○ p where p is PH1 and ϕ is a homeomorphism (and in particular
strictly monotonically increasing and continuous). The proof relies on the following
proposition where we do not assume yet that f is continuous but only the restrictions
of f to the half-lines originating in 0, the fx functions.
Proposition 5. Let f be an SI function such that for any x ∈ Rn, fx as defined in (3.4)
is continuous and strictly monotonic or constant. Then for all α > 0, there exist a PHα

function p and a strictly increasing, continuous bijection (thus a homeomorphism) ϕ
such that f = ϕ ○ p. For a non-zero f and α > 0, the choice of (ϕ, p) is unique up to a
left composition of p with a piece-wise linear function.

(i) In addition, if all non-constant fx have the same monotonicity for all x ∈ Rn, then
for any x0 ∈ Rn such that f(x0) ≠ 0, the homeomorphism ϕ corresponding to a
PH1 function can be chosen as fx0 and is at least as smooth as f .
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(ii) Otherwise, there exist x1, x−1 ∈ Rn such that fx1 is strictly increasing and fx−1 is
strictly decreasing. And for any such x1 and x−1 we can choose as homeomor-
phism ϕ corresponding to a PH1 function the function fx1 on R+ and t↦ fx−1(−t)
on R−.

Proof. Let f be an SI function such that for any x ∈ Rn, fx is either a constant or a
strictly monotonic continuous function.

In the case where all the fx are constant for all x ∈ Rn, then f = 0 and therefore we
can take pα = 0 as a candidate for a continuous PHα and ϕα ∶ t ↦ t as the candidate
for the corresponding homeomorphism.

From now on, at least one of the {fx}x∈Rn is non-constant. We now split the proof
in two parts, the case where all the non-constant fx have the same monotonicity and
the case where there exist x1, x−1 ∈ Rn such that fx1 is strictly increasing and fx−1 is
strictly decreasing.

Part 1. Assume here that all the non-constant fx have the same monotonicity for
all x ∈ Rn. And up to a transformation x ↦ −f(x), we can assume without loss of
generality that they are increasing. Therefore 0 is a global argmin and since we have
assumed f(0) = 0 ∶ f(x) ≥ 0 for all x ∈ Rn. Then there exists x0 ∈ Rn such that
f(x0) > 0.

For any x ∈ Lf,x0 = {y ∈ Rn, f(y) = f(x0)}, and any λ > 0 different than 1, λx ∉ Lf,x0 .
Indeed, as x ∈ Lf,x0 , we know from Proposition 2 that fx is strictly increasing on R+,
since fx cannot be constant equal to 0.

Moreover, for all x ∈ Rn such that f(x) ≠ 0, there exists λ > 0 such that λx ∈ Lf,x0 .
Indeed, if f(x) < f(x0), the intermediate value theorem applied to the continuous
function fx0 shows that there exists 0 < t < 1 such that f(tx0) = fx0(t) = f(x), and
then f(1

t
x) = f(x0). And by interchanging x and x0, the same argument holds if

f(x) > f(x0).

The two last paragraphs ensure that for all x such that f(x) ≠ 0, there exists a
unique positive number λx such that λxx ∈ Lf,x0 . Let us define the function p for all
x ∈ Rn as follows: if f(x) ≠ 0 then p(x) = 1

λx
, otherwise p(x) = 0. We prove in the

following that p is PH1.

Let x ∈ Rn and ρ > 0. If f(x) = 0 (hence f(ρx) = 0), then p(ρx) = 0 = ρp(x).
Otherwise f(x) > 0 (hence f(ρx) > 0), and p(ρx) = ρ

λx
since λx

ρ
is the (unique) positive

number such that λx
ρ
ρx = λxx ∈ Lf,x0 . And thereby p(ρx) = ρp(x).

We prove that f = fx0 ○ p, where fx0 is a continuous strictly increasing function
and p is PH1. Let x ∈ Rn. If f(x) = 0, then p(x) = 0, and then f(x) = 0 = f(0) =
fx0(0) = (fx0 ○ p) (x). Otherwise, we have by construction that x

p(x) ∈ Lf,x0 . Therefore
f( x

p(x)) = f(x0) and then f(x) = f(p(x)x0) = fx0(p(x)). By Theorem 14, ϕ = fx0 is a

70



homeomorphism. Let α > 0, define ϕ̃ = t ↦ ϕ(t1/α) and p̃ = pα. Then p̃ is PHα, ϕ̃ is a
homeomorphism and f = ϕ̃ ○ p̃.

Assume that we have two couples of solutions (ϕ, p) and (ϕ̄, p̄) such that f = ϕ○p =
ϕ̄ ○ p̄ where ϕ, ϕ̄ are homeomorphisms and p, p̄ are PHα. For all t > 0 and x ∈ Rn, we
have for instance p(tx) = tαp(x). Therefore Im(p) = R+. Denote ψ = ϕ̄−1 ○ ϕ. For all
λ > 0 and x ∈ Rn, ψ(λαp(x)) = ψ(p(λx)) = p̄(λx) = λαψ(p(x)). Hence ψ is PH1 on R+.
For all t > 0, ψ(t) = tψ(1). Therefore ψ is linear.

Part 2. Assume now that there exist x1, x−1 ∈ Rn such that fx1 is strictly increasing
and fx−1 is strictly decreasing. Then f(x1) > 0 and f(x−1) < 0. Then thanks to the
intermediate value theorem, if f(x) > 0, there exists a unique positive number λx such
that λxx ∈ Lf,x1 , and if f(x) < 0, there exists a unique positive number λx such that
λxx ∈ Lf,x−1 . We define now p for all x ∈ Rn as follows: if f(x) = 0 then p(x) = 0,
if f(x) > 0 then p(x) = 1

λx
, and finally if f(x) < 0 then p(x) = − 1

λx
. Let us show

that p is PH1. Indeed for any ρ > 0 and x ∈ Rn, if f(x) = 0 (hence f(ρx) = 0), then
p(ρx) = 0 = ρp(x). If f(x) > 0 (hence f(ρx) > 0), and p(ρx) = ρ

λx
= ρp(x) since λx

ρ
is the

(unique) positive number such that λx
ρ
ρx = λxx ∈ Lf,x1 . And finally if f(x) < 0 (hence

f(ρx) < 0), then p(ρx) = − ρ
λx

= ρp(x) since λx
ρ

is the (unique) positive number such
that λx

ρ
ρx = λxx ∈ Lf,x−1 . Hence p is PH1.

We define now the function ϕ ∶ R → R such that if t ≥ 0, ϕ(t) = fx1(t) and if t ≤ 0,
ϕ(t) = fx−1(−t). Then, ϕ is well defined (fx1(0) = 0 = fx−1(0)), continuous and strictly
increasing.

Let x ∈ Rn. If f(x) = 0, then p(x) = 0, and then f(x) = 0 = (ϕ ○ p) (x). If f(x) > 0,
ϕ(p(x)) = fx1(p(x)) = f(p(x)x1) = f(x) since x

p(x) ∈ Lf,x1 . And finally if f(x) < 0,

ϕ(p(x)) = fx−1(−p(x)) = f(−p(x)x−1) = f(x) since − x
p(x) = λxx ∈ Lf,x−1 . Thereby,

f = ϕ ○ p. Theorem 14 ensures that ϕ is a homeomorphism. By defining for all
α > 0, ϕ̃(t) = ϕ(t1/α) if t ≥ 0, ϕ̃(t) = ϕ(−(−t)1/α) if t < 0, p̃(x) = p(x)α if p(x) ≥ 0 and
p̃(x) = −(−p(x))α if p(x) < 0, it follows that f = ϕ̃ ○ p̃.

Assume here again that we have two couples of solutions (ϕ, p) and (ϕ̄, p̄) such
that f = ϕ ○ p = ϕ̄ ○ p̄ where ϕ, ϕ̄ are homeomorphisms and p, p̄ are PHα. For all t > 0
and x ∈ Rn, we have p(tx) = tαp(x). Therefore Im(p) = R since p(x1) and p(x2)
have opposite signs. Denote ψ = ϕ̄−1 ○ ϕ. For all λ > 0 and x ∈ Rn, ψ(λαp(x)) =
ψ(p(λx)) = p̄(λx) = λαψ(p(x)). Hence ψ is PH1 on R. For all t > 0, ψ(t) = tψ(1) and
ψ(−t) = tψ(−1) Therefore depending on the values of ψ(1) and ψ(−1), ψ is either
linear or piece-wise linear.

We now use the previous proposition to prove that a continuous SI function is a
homeomorphic transformation of a continuous PH1 function. The proof relies on the
result that for a continuous SI function, the fx are either constant or strictly monotonic
and continuous (see Proposition 2). We distinguish the case where f has a global
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optimum as in Proposition 5 (i) and the case where f does not have a global optimum
as in Proposition 5 (ii). Overall the following result holds.
Theorem 1. Let f be a continuous SI function. Then for all α > 0, there exists a
continuous PHα function p and a strictly increasing and continuous bijection (thus a
homeomorphism) ϕ such that f = ϕ ○ p.

For a non-zero f and α > 0, the choice of (ϕ, p) is unique up to a left composition
of p with a piece-wise linear function. If f admits a global optimum, then 0 is also a
global optimum. For any x0 ∈ Rn such that f(x0) ≠ 0, in the case where p is a PH1

function, the homeomorphism ϕ can be chosen as fx0 and is at least as smooth as f .

If f does not admit a global optimum, then there exist x1, x−1 ∈ Rn such that f(x1) >
0 and f(x−1) < 0. For any such x1 and x−1, in the case where p is a PH1 function,
the homeomorphism ϕ can be chosen as the function equal to fx1 on R+ and equal to
t↦ fx−1(−t) on R−.

Proof. Let f be a continuous SI function. Thanks to Proposition 2, for all x ∈ Rn, fx is
either constant equal to 0 or strictly monotonic.

Part 1. Assume that f has a global optimum. Corollary 1 shows that 0 is also a
global optimum. Then we can apply Proposition 5 in the case where the non-constant
fx have the same monotonicity. Let x0 ∈ Rn such that f(x0) ≠ 0 and define ϕ = fx0 .
Then f = ϕ ○ p and ϕ is a homeomorphism. That settles the continuity of the PH1

function ϕ−1 ○ f thanks to Corollary 2.

Part 2. Assume in this part that f has no global optimum. Since 0 is not a global
optimum, we can find x1 and x−1 such that f(x1) > 0 and f(x−1) < 0. Therefore
fx1 is strictly increasing and fx−1 is strictly decreasing. We apply Proposition 5 in
the case where the non-constant fx do not have the same monotonicity. If ϕ is the
function equal to fx1 on R+ and to t ↦ fx−1(−t) on R−, then f = ϕ ○ p where ϕ is
a homeomorphism. That settles the continuity of the PH1 function ϕ−1 ○ f thanks to
Corollary 2. For all α > 0, the unique construction of (ϕ, p) up to a piece-wise linear
function in both parts is a consequence of Proposition 5.

3.3.2 Sufficient and Necessary Condition to be the Com-
posite of a PH Function

We have seen in the previous section that a continuous SI function can be written
as ϕ ○ p with ϕ strictly monotonic and p PH. Relaxing continuity, we prove in the next
theorem some necessary and sufficient condition under which an SI function is the
composite of a PH function with a strictly monotonic function.
Theorem 2. Let f be an SI function. There exist a PH1 function p and a strictly
increasing function ϕ such that f = ϕ ○ p if and only if for all x ∈ Rn, the function fx
is either constant or strictly monotonic and the strictly increasing fx share the same
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image (i.e., if λ ∈ R is reached for one of these functions, then it is reached for all of
them) and the strictly decreasing ones too.

For a non-zero f , up to a left composition of p with a piece-wise linear function, the
choice of (ϕ, p) is unique.

Proof. We prove first the forward implication. Suppose there is a PH1 function p and a
strictly monotonic function ϕ such that f = ϕ ○ p. Consider x ∈ Rn. Either p(x) = 0 and
then for any t ⩾ 0 we have that p(tx) = 0, so that fx(t) = f(tx) = ϕ(p(tx)) = ϕ(0) and
fx is constant on R+, or p(x) ≠ 0, and then t ∈ R+ ↦ p(tx) = tp(x) is strictly monotonic,
and fx(t) = ϕ(p(tx)) is strictly monotonic too on R+. Moreover, consider x1 ≠ x2 such
that fx1 and fx2 are increasing. Then p(x1) and p(x2) are of the same sign, so there
is some t∗ > 0 such that p(x1) = t∗p(x2) = p(t∗x2), so the functions t ↦ f(tx1) and
t ↦ f(tt∗x2) are equal, so the functions fx1 and fx2 take the same values. The same
applies on the strictly decreasing functions.

We now prove the backward implication. Suppose that the functions fx are either
constant or strictly monotonic and the increasing ones share the same values and the
decreasing ones too.

If all the fx are constant, then for all x ∈ Rn, f(x) = f(0) = 0 and it is enough to
write f = ϕ ○ p with p = t ↦ t on R+ and p = 0. We assume from now on that at least
one fx is not constant.

Consider that all the non-constant fx have the same monotonicity. Let us choose
x0 such that f(x0) ≠ 0. Then for all x ≠ 0, fx and fx0 have the same monotonicity.
Since they have the same image and are injective, there exists a unique λx > 0 such
that λxx ∈ Lf,x0 . We then define p and ϕ as in the Part 1 of Theorem 1 to ensure that
f = ϕ ○ p where p is PH1 and ϕ is strictly monotonic.

Consider finally that all the non-constant fx do not have the same monotonicity.
Then there exist x1 and x−1 such that f(x1) > 0 and f(x−1) < 0. Then, thanks to the
assumption that all increasing fx share the same values and the strictly decreasing
fx too, if f(x) > 0, then there exists a unique positive number λx such that λxx ∈
Lf,x1 = {y ∈ Rn, f(y) = f(x1)} , and if f(x) < 0, then there exists a unique (thanks to
the assumption of strict monotonicity for the non-constant fx) positive number λx such
that λxx ∈ Lf,x−1 . Therefore, we can define p as in Theorem 1. As before, p is PH1.
Define also the function ϕ ∶ R → R as in Theorem 1. It is still increasing, but not
necessarily continuous. Then, as in Theorem 1, f = ϕ ○ p.

The proof of the unicity of (ϕ, p) up to a piece-wise real linear function is similar to
the proof in Proposition 5.

Complementing Theorem 2, we construct an example of an SI function that can
not be decomposed as f = ϕ ○ p, because the strictly increasing fx do not share the
same image. Define f such that for all x ∈ Rn, f(x) = tanh(x1) if the first coordinate
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x1 ≥ 0 and f(x) = 1 + exp(−x1) otherwise. Then f is SI and if x1 ≠ 0, fx is strictly
increasing. However for all x such that x1 > 0 then Im(fx) = [0,1) and otherwise for x
such that x1 ≤ 0, Im(fx) = {0} ∪ (2,∞).

3.4 Level Sets of SI Functions

Scaling-invariant functions appear naturally when studying the convergence of comparison-
based optimization algorithms [25]. In this specific context, the difficulty of a problem
is entirely determined by its level sets whose properties are studied in this section.

3.4.1 Identical Sublevel Sets

Level sets and sublevel sets of a function f remain unchanged if we compose the
function with a strictly increasing function ϕ since

f(x) ≤ f(y) ⇐⇒ ϕ(f(x)) ≤ ϕ(f(y)) . (3.5)

We prove in the next theorem that two arbitrary functions f and p have the same
level sets if and only if f = ϕ ○ p where ϕ is strictly increasing.
Theorem 3. Two functions f and p have the same sublevel sets if and only if there
exists a strictly increasing function ϕ such that f = ϕ ○ p.

Proof. If f = ϕ ○ p with ϕ strictly increasing, since sublevel sets are invariant by ϕ, f
and p have the same sublevel sets. Now assume that f and p have the same sublevel
sets. Then for all x ∈ Rn, there exists T (x) ∈ Rn such that L≤f,x = L≤p,T (x). In other words
for all y ∈ Rn, f(y) ≤ f(x) ⇐⇒ p(y) ≤ p(T (x)). We define the function

φ ∶ { Im(f) Ð→ Im(p)
f(x) z→ p (T (x)) .

The function φ is well-defined because for x, y ∈ Rn such that f(x) = f(y), L≤f,x = L≤f,y.
And since L≤f,x = L≤p,T (x) and L≤f,y = L≤p,T (y), then L≤

p,T (x) = L
≤
p,T (y), and then p (T (x)) =

p (T (y)). Therefore φ(f(x)) = φ(f(y)). By construction we have that φ ○ f = p ○ T .

Let us show that p○T = p. We have L≤p○T,x = L≤f,x = L≤p,T (x). Then x ∈ L≤
p,T (x) and then

p(x) ≤ p(T (x)). Therefore p ≤ p ○ T . In addition for all y ∈ Rn, there exists x such that
L≤p,y = L≤f,x = L≤p,T (x) = L

≤
p○T,x. Then y ∈ L≤p○T,x, which induces that p(T (y)) ≤ p(T (x)).

Plus, L≤p,y = L≤
p,T (x), therefore p(T (x)) = p(y). Thereby p(T (y)) ≤ p(y), and then

p ○ T ≤ p. Finally p ○ T = p. Hence φ ○ f = p.
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Let us prove now that φ is strictly increasing. Consider x, y ∈ Rn such that f(x) <
f(y). Then L≤f,x ⊂ L≤f,y with a strict inclusion, which means that L≤

p,T (x) ⊂ L
≤
p,T (y) with

a strict inclusion. Thereby p (T (x)) < p (T (y)) , i.e. φ(f(x)) < φ(f(y)). Hence φ is
strictly increasing. And up to restricting φ to its image, we can assume without loss
of generality that φ is a strictly increasing bijection. We finally denote ϕ = φ−1 and it
follows that f = ϕ ○ p.

Theorem 3 and Theorem 2 give both equivalence conditions for an SI function f to
be equal to ϕ○p where ϕ is strictly increasing and p is positively homogeneous3. One
condition is that there exists a PH function with the same sublevel sets as f , while the
other condition is that the fx are either constant or strictly monotonic, and the strictly
increasing and decreasing ones have the same image, respectively.

3.4.2 Compactness of the Sublevel Sets

Compactness of sublevel sets is relevant for analyzing step-size adaptive randomized
search algorithms [24,143]. We investigate here how compactness properties shown
for positively homogeneous functions extend to scaling-invariant functions. For an SI
function f , we have L≤f,tx = tL≤f,x. When ψ ∶ y z→ ty is a homeomorphism, we have
that ψ(L≤f,x) equals tL≤f,x and is compact if and only if L≤f,x is compact. Therefore, for
all t > 0:

L≤f,tx is compact if and only if L≤f,x is compact. (3.6)

Furthermore, if p is a lower semi-continuous positively homogeneous function such
that p(x) > 0 for all nonzero x then the sublevel sets of p are compact [24, Lemma
2.7]. We recall it with all the details in the following proposition:
Proposition 6 ([24, Lemma 2.7]). Let p be a positively homogeneous function with
degree α > 0 and p(x) > 0 for all x ≠ 0 (or equivalently 0 is the unique global argmin of
p) and p(x) finite for every x ∈ Rn. Then for every x ∈ Rn, the following holds:

(i) lim
t→0

p(tx) = 0 and for all x ≠ 0 the function px ∶ [0,∞) ∋ t z→ p(tx) ∈ R+ is
continuous, strictly increasing and converges to ∞ when t goes to ∞.

(ii) If p is lower semi-continuous, the sublevel set L≤p,x is compact.

We prove a similar theorem for lower semi-continuous SI functions f with continu-
ous fx functions, showing in particular that the unicity of the global argmin is equiva-
lent to the above items. Note that we need to assume the continuity of the functions
fx, while this property is unconditionally satisfied for positively homogeneous func-
tions where px(t) = tαpx(1) for all x ∈ Rn and for all t > 0.

3Note that in Theorem 2, we can assume without loss of generality that ϕ is always strictly
increasing by replacing if needed ϕ by t→ ϕ(−t) and p by −p.
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Theorem 4. Let f be SI. Then the conditions

• f(x) > 0 for all x /= 0 and

• 0 is the unique global argmin

are equivalent. Let f be additionally lower semi-continuous and for all x ∈ Rn, fx is
continuous on a neighborhood of 0. Then the following are equivalent:

(i) 0 is the unique global argmin.

(ii) for any x ∈ Rn/ {0}, the function fx is strictly increasing.

(iii) The sublevel sets L≤f,x for all x are compact.

Proof. Since, w.l.o.g., f is given such that f(0) = 0, its unique global argmin is 0 if
and only if f(x) > 0 for all x /= 0. Now we prove first that (i) ⇒ (ii): Let x ∈ Rn/ {0}.
Assume (by contraposition) that there exists 0 < t1 < t2 such that fx(t1) = fx(t2). Then
by scaling-invariance, fx(1) = fx ( t1t2 ). It follows by multiplying iteratively by t1

t2
that for

all k ∈ Z+, fx(1) = fx (( t1t2 )
k). Therefore if we take the limit when k → ∞, it follows

thanks to the continuity of fx at 0 that f(x) = fx(1) = f(0), which contradicts the
assumption (i). Hence, fx is an injective function. Plus, there exists ε > 0 such that fx
is continuous on [0, ε]. Therefore fx is an injective continuous function on [0, ε], which
implies that fx is a strictly monotonic function on [0, ε]. Lemma 1 implies therefore that
fx is strictly monotonic. And since 0 is an argmin of fx, then fx is strictly increasing.

(ii) ⇒ (iii): f is lower semi-continuous on the compact S1, then it reaches its
minimum on that compact: there exists s ∈ S1 such that f(s) = min

z∈S1

f(z). Also, since

sublevel sets of lower semi-continuous functions are closed, then L≤f,s is closed. Now
let us show that it is also bounded.

If y ∈ L≤f,s/ {0} , then f(y) ≤ f(s) ≤ f ( y
∥y∥). And since fy is strictly increasing, we

obtain that 1 ≤ 1
∥y∥ , thereby ∥y∥ ≤ 1. We have shown that L≤f,s ⊂ B1.

Then L≤f,s is a compact set, as it is a closed and bounded subset of Rn. By (3.6), it
follows that L≤f,ts is compact for all t > 0.

For all x ∈ Rn/{0}, f(x) > f(0) thanks to (ii). Then L≤f,0 = {0} and is compact.

Let x ∈ Rn/ {0}. Then there exists ε > 0 such that f x
∥x∥

is continuous on [0, ε]. We
have that f x

∥x∥
(0) = 0 < f(s) ≤ f x

∥x∥
(1), then by scaling-invariance, f x

∥x∥
(0) < f(εs) ≤

f x
∥x∥

(ε). Therefore by the intermediate value theorem applied to f x
∥x∥

continuous on
[0, ε], there exists t ∈ (0, ε] such that f x

∥x∥
(t) = f(εs). Then L≤

f,t x
∥x∥

= L≤f,εs and is

compact. We apply again (3.6) to observe that L≤f,x is compact.
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(iii) ⇒ (i): Let x ∈ L≤f,0, then tx ∈ L≤f,0 for all t ≥ 0, and then {tx}t∈R+ ⊂ L
≤
f,0 which is

a compact set. This is only possible if x = 0, otherwise the set {tx}t∈R+ would not be
bounded. Hence L≤f,0 = {0} which implies that 0 is the unique global argmin.

We derive from Theorem 4 the next corollary, stating when for a lower semi-
continuous SI function with a unique global argmin the intersection of any half-line
of origin 0 and a level set is a singleton.
Corollary 3. Let f be a lower semi-continuous SI function with 0 as unique global
argmin. Assume that for all x ∈ Rn, fx is continuous on a neighborhood of 0, and the
fx share the same image. Then for all x ∈ Rn, any half-line of origin 0 intersects Lf,x
at a unique point.

Proof. For all non-zero x, Theorem 4 ensures that fx is strictly increasing. Therefore
for a non-zero x, fx is injective. And then the intersection of a level set and a half-
line of origin 0 contains at most one point. In addition the fx share the same image
for all non-zero x. Then for two non-zero vectors x, y, there exists t ≥ 0 such that
fy(t) = fx(1). In other words, there exists t ≥ 0 such that ty ∈ Lf,x. We end this proof
by noticing that Lf,0 = {0} and then intersects any half-line of origin 0 only at 0.

3.4.3 Sufficient Condition for Lebesgue Negligible Level Sets

We assume that f is lower semi-continuous SI admitting a unique global argmin and
all fx are continuous and prove that f has Lebesgue negligible level sets.
Proposition 7. Let f be an SI function with 0 as unique global argmin. Assume that
f is lower semi-continuous and for all x ∈ Rn, fx is continuous. Then the level sets of
f are Lebesgue negligible.

Proof. Let x ∈ Rn. Let us denote by µ the Lebesgue measure. For all t > 0, µ (Lf,tx) =
µ (tLf,x) = tnµ (Lf,x) , thanks to (3.3). Therefore, if t ≥ 1, µ (Lf,tx) ≥ µ (Lf,x) . In ad-
dition, for all k ≥ 1, Lf,(1+ 1

k
)x ⊂ {y ∈ Rn, f(x) ≤ f(y) ≤ f(2x)} ⊂ L≤f,2x, because if x ≠ 0,

fx is strictly increasing thanks to Theorem 4. And the same theorem induces that

L≤f,x is compact and hence µ (L≤f,x) <∞. It follows that
∞
∑
k=1

µ (Lf,x) ≤
∞
∑
k=1

µ (Lf,(1+ 1
k
)x) ≤

µ (L≤f,2x) <∞. Hence, µ (Lf,x) = 0.

3.4.4 Balls Containing and Balls Contained in Sublevel Sets

The sublevel sets of continuous PH functions include and are embedded in balls
whose construction is scaling-invariant. Given that continuous SI functions are mono-
tonic transformation of PH functions, those properties are naturally transferred to SI
functions. This is what we formalize in this section.
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From the definition of a PH function with degree α, for all x ≠ 0 we have p(x) =
∥x∥αp (x/∥x∥) for all x ≠ 0. Therefore, p is continuous on Rn ∖ {0} if and only if p is
continuous on S1. For such p, we denote mp = min

x∈S1

p(x), and Mp = max
x∈S1

p(x). We have

the following propositions:
Proposition 8 ( [24, Lemma 2.8] ). Let p be a PH function with degree α such that
p(x) > 0 for all x ≠ 0. Assume that p is continuous on S1, then for all x ≠ 0, the following
holds

∥x∥m1/α
p ≤ p(x)1/α ≤ ∥x∥M1/α

p . (3.7)

Proposition 9 ( [24, Lemma 2.9] ). Let p be a PH function with degree α such that
g(x) > 0 for all x ≠ 0. Assume that p is continuous on S1. Then for all ρ > 0, the
ball centered in 0 and of radius ρ is included in the sublevel set of degree ραMp, i.e.
B (0, ρ) ⊂ L≤p,ρxMp , with p(xMp) = Mp. For all x ≠ 0, the sublevel set of degree p(x) is
included into the ball centered in 0 and of radius (p(x)/mp)α, i.e.

L≤p,x ⊂ B (0,(p(x)
mp

)
α

) .

We can generalize both propositions to continuous scaling-invariant functions us-
ing Theorem 1.
Proposition 10. Let f be a continuous SI function such that f(x) > 0 for all x ≠ 0.
Then there exist an increasing homeomorphism ϕ on R+ and two positive numbers
0 <m ≤M such that

(i) for all x ≠ 0, ϕ (m∥x∥) ≤ f(x) ≤ ϕ (M∥x∥) ,
(ii) for all ρ > 0, the ball centered in 0 and of radius ρ is included in the sublevel set

of degree ϕ(ρϕ−1(M)), i.e. B (0, ρ) ⊂ L≤f,ρxM with f(ρxM) = ϕ (ρϕ−1(M)).

(iii) for all x ≠ 0, the sublevel set of degree f(x) is included into the ball centered in 0

and of radius
ϕ−1 (f(x))
ϕ−1(m) , i.e.

L≤f,x ⊂ B (0,
ϕ−1 (f(x))
ϕ−1(m) ) . (3.8)

Proof. Thanks to Theorem 1, we can write f = fx0 ○ p where x0 ≠ 0, p PH1 ϕ defined
as fx0 is an increasing homeomorphism. Then p = ϕ−1 ○ f and hence verifies: for all
x ≠ 0, p(x) > 0. Define m and M as m = ϕ(mp) and M = ϕ(Mp), where mp = min

x∈S1

p(x)
and Mp = max

x∈S1

p(x).

For x ≠ 0, Proposition 8 ensures that mp∥x∥ ≤ p(x) ≤ Mp∥x∥. Taking the image of
this equation with respect to ϕ proves (i).
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For all ρ > 0, B (0, ρ) ⊂ L≤p,ρxMp , with p(xMp) =Mp. Since sublevel sets are invariant
with respect to an increasing bijection, it follows that L≤p,ρxMp = L≤f,ρxMp . In addition,
f(ρxMp) = ϕ(p(ρxMp)) = ϕ(ρp(xMp)) = ϕ(ρϕ−1(M)) such that we have proven (ii).

Let x ≠ 0. Again by invariance of the sublevel set, L≤p,x = L≤f,x. And Proposition 9

says that L≤p,x ⊂ B (0, p(x)
mp

). We obtain the results with the facts that p = ϕ−1 ○ f and
mp = ϕ−1(m).

3.4.5 A Generalization of a Weak Formulation of Euler’s Ho-
mogeneous Function Theorem

For a function p ∶ Rn → R continuously differentiable on Rn∖{0}, Euler’s homogeneous
function theorem states that there is equivalence between p is PH with degree α and
for all x ≠ 0

αp(x) = ∇p(x) ⋅ x . (3.9)

If in addition p is continuously differentiable in zero, then αp(0) = 0 = ∇p(0) ⋅ 0. Along
with (3.9), this latter equation implies that at each point y of a level set Lp,x, the scalar
product between ∇p(y) and y is constant equal to ∇p(x) ⋅ x or that the level sets of p
and of the function x↦ ∇p(x) ⋅x are the same, that is, the level sets of a continuously
differentiable PH function satisfy

Lp,x = Lz↦∇p(z)⋅z,x = {y ∈ Rn,∇p(y) ⋅ y = ∇p(x) ⋅ x} . (3.10)

We call this a weak formulation of Euler’s homogeneous function theorem.

If f is a continuous SI function, we can write f as ϕ ○ p where p is PH and ϕ is a
homeomorphism, according to Theorem 1. We have the following proposition in the
case where ϕ and p are also continuously differentiable.
Proposition 11. Let f be a continuously differentiable SI function that can be written
as ϕ ○ p where p is PHα, ϕ is a homeomorphism, and ϕ and ϕ−1 are continuously
differentiable (and thus p is continuously differentiable). Then for all x ∈ Rn,

∇f(x) ⋅ x = αϕ′(p(x))p(x) . (3.11)

Proof. Since p = ϕ−1 ○ f , it is continuously differentiable. From the chain rule, for all
x ∈ Rn ∶ ∇f(x) ⋅ x = ϕ′(p(x))∇p(x) ⋅ x = αϕ′(p(x))p(x). The last equality results from
the Euler’s homogeneous theorem applied to p.

Yet, the assumptions of the previous proposition are not necessarily satisfied when
f is a continuously differentiable SI function. Indeed, we exhibit in the next proposition
an example of a SI and continuously differentiable function f such that f = ϕ ○ p but
either p or ϕ is non-differentiable.
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Proposition 12. Define ϕ ∶ t↦ ∫
t

0

1

1 + log2(u)
du on R+ and p ∶ x↦ ∣x1∣. Then f = ϕ○p

is continuously differentiable and SI. Yet, for any ϕ̃ strictly increasing and p̃ PH such
that f = ϕ̃ ○ p̃ (including ϕ and p above), either p̃ is not differentiable on any point of
the set {x; x1 = 0} or ϕ̃ is not differentiable at 0.

Proof. Let us prove that f is continuously differentiable. For x ≠ 0, ∇f(x) = 1
1+log2(∣x1∣)

x1

∣x1∣e1

where e1 is the unit vector (1,0, . . . ,0). Then lim
x→0

∇f(x) exists and is equal to 0, hence
f is continuously differentiable.

Assume that (ϕ̃, p̃) is such that ϕ ○ p = ϕ̃ ○ p̃, with ϕ̃ strictly increasing and p̃ PHα.
Denote ψ = ϕ̃−1○ϕ. For all λ > 0 and x ∈ Rn, ψ(λp(x)) = ψ(p(λx)) = p̃(λx) = λαψ(p(x)).
Therefore ψ is PHα on Im(p) = R+, hence for all t > 0, ψ(t) = tαψ(1). Then up to a
positive constant multiplicative factor, p̃(x) = ∣x1∣α and ϕ̃(t) = ϕ(t1/α). And then if p̃ is
differentiable, we necessarily have that α > 1.

In the case where α > 1, for all t > 0, ϕ̃′(t) = 1
α

t
1
α
−1

1+log2(t1/α) and then ϕ̃ is not differen-
tiable at 0.

Yet we can prove that for all continuously differentiable SI functions, the level set of
f going through x, i.e. Lf,x is included in the level set of z ↦ ∇f(z) ⋅ z going through
x.
Lemma 3. For a continuously differentiable SI function f and for x ∈ Rn,

Lf,x ⊂ Lz↦∇f(z)⋅z,x = {y ∈ Rn,∇f(y) ⋅ y = ∇f(x) ⋅ x} . (3.12)

That is, each level set of f has a single value of ∇f(x) ⋅ x while also different level
sets of f can have the same value of ∇f(x) ⋅ x.

Proof. Let y ∈ Lf,x. Since f(y) = f(x), then for all t ≥ 0, f(ty) = f(tx). We define
the function h on R+ such that for all t ≥ 0, h(t) = f(tx) − f(ty). Then h is the zero
function, so is its derivative: h′(t) = ∇f(tx) ⋅ x −∇f(ty) ⋅ y = 0 for all t ≥ 0. In particular
we have the result for t = 1.

We exhibit in the next proposition a continuously differentiable SI function where
the inclusion in the above lemma is strict (another example is Lemma 4).
Proposition 13. Let p be the PH2 function x ∈ Rn ↦ ∥x∥2 and ϕ the strictly monotonic
function ϕ(t) = exp(−t) for all t ≥ 0. Then f ∶ x↦ ϕ(p(x)) = exp(−∥x∥2) is continuously
differentiable. For any 0 < r < 1, there is a unique s > 1 such that for any x ∈ Sr ∶

Lz↦∇f(z)⋅z,x = Lf,x ∪Lf, s
r
x

where Lf,x and Lf, s
r
x are disjoint.
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Proof. Remark that the transformation could be chosen to obtain a degree equal to 1
as in Theorem 1, but the differentiability of p would not be guaranteed.

We notice that t→ tϕ′(t) is not injective on R+. It is injective on [0,1) and on [1,∞)
and for any 0 < r < 1 there is a unique s > 1 such that

r2ϕ′(r2) = s2ϕ′(s2). (3.13)

We will prove that for any such r, s and any x ∈ Sr,

{y ∈ Rn,∇f(y) ⋅ y = ∇f(x) ⋅ x} = Lf,x ∪Lf, s
r
x (3.14)

Let x ∈ Rn such that ∥x∥ = r. By the chain rule, for all y ∈ Rn we have

∇f(y) ⋅ y = ϕ′(p(y))∇p(y) ⋅ y = 2ϕ′(p(y))p(y).

Therefore y ∈ {y ∈ Rn,∇f(y) ⋅ y = ∇f(x) ⋅ x} if and only if ∥y∥2ϕ′(∥y∥2) = r2ϕ′(r2).
From (3.13), we know that this is possible only if ∥y∥ = r or ∥y∥ = s, i.e. only if
f(y) = f(x) or f(y) = f( s

r
x). Hence the equality in (3.14).

We remark that Lf,x and Lf, s
r
x are disjoint whenever f(x) ≠ f( s

r
x). If x ∈ Sr,

f(x) = e−r2 ≠ e−s2 = f ( s
r
x) which implies that Lf,x and Lf, s

r
x are disjoint.

The non-injectivity of t → tϕ′(t) is essential in the above example to obtain a non-
strict inclusion in (3.12) for some SI functions. We obtain a weak formulation of Euler’s
homogeneous function theorem for some SI functions in the following proposition.
Proposition 14. Let f be a continuously differentiable SI function that can be written
as ϕ ○ p where ϕ is a homeomorphism, p is PH1 and ϕ and ϕ−1 are continuously
differentiable. Assume that the function R+ ∋ t z→ tϕ′(t) ∈ R is injective. Then for
x ∈ Rn,

Lf,x = Lz↦∇f(z)⋅z,x . (3.15)

Proof. It follows from Proposition 11 that for all x ∈ Rn, ∇f(x) ⋅ x = ϕ′(p(x))p(x).
Thanks to the bijectivity of ϕ along with the injectivity of t→ tϕ′(t), we have:

ϕ′(p(y))p(y) = ϕ′(p(x))p(x) ⇐⇒ p(x) = p(y) ⇐⇒ f(x) = f(y).

In other words, Lf,x = {y ∈ Rn,∇f(y) ⋅ y = ∇f(x) ⋅ x} .

3.4.6 Compact Neighborhoods of Level Sets with Non-vanishing
Gradient

We prove in this section that any continuously differentiable SI function f with a unique
global argmin has level sets, for example Lf,z0 , such that for some compact neighbor-
hood of the level set, N ⊃ Lf,z0 , the gradient does not vanish and ∇f(z) ⋅ z > 0 for all
z ∈ N .
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For a continuously differentiable PH function p such that p(x) > 0 for all x ≠ 0, i.e.
such that 0 is the unique global argmin of p, this result is a consequence of Euler’s
homogeneous function theorem which implies that

∇p(x) ⋅ x > 0 for all x ≠ 0 . (3.16)

In particular, (3.16) is true on any compact neighborhood of any level set of p, if that
compact does not contain 0.

We now remark that the property that ∇f ≠ 0 for all x ≠ 0 is not necessarily true if
f is a continuously differentiable SI function with a unique global argmin. Namely, f
can have level sets that contain only saddle points.

Lemma 4. Let p(z) = ∥z∥2 and ϕ(t) = ∫
t

0
sin2(u)du for t ≥ 0. Then f = ϕ ○ p is

a continuously differentiable SI function with a unique global argmin and an infinite
number of z belonging to different level sets of f , such that ∇f(z) = 0.

Proof. The function ϕ is strictly increasing since sin2 is non-negative and has zeros

on isolated points. Also, for all t ≥ 0, ϕ(t) = t

2
− sin(2t)

4
, where we use that cos(2t) =

1 − 2 sin2(t).

For any natural integer n, nπ is a stationary point of inflection of ϕ ∶ ϕ′(nπ) = 0 and
ϕ′′(t) = sin(2t) has opposite signs in the neighborhood of nπ. For all z with ∥z∥2 ∈ πZ+,
∇f(z) = ϕ′(g(z))∇g(z) = 2ϕ′(∥z∥2) z = 0.

Hence there exists an infinite number of level sets Lf,z for which ∇f(z) = 0.

Yet, a consequence of Theorem 4 and Lemma 3 is the existence of a level set of f
such that ∇f(z) ⋅ z > 0 for all z in that level set as shown in the next proposition
Proposition 15. Let f be a continuously differentiable SI function with 0 as unique
global argmin. There exists z0 ∈ B1 with Lf,z0 ⊂ B1, such that for all z ∈ Lf,z0 , ∇f(z) ⋅z >
0.

Proof. Since f is a continuous SI function, we have all the equivalences in Theorem
4.

Inside the proof of Theorem 4, we have shown that there exists s ∈ S1 such that
L≤f,s ⊂ B1, with f(s) = min

z∈S1

f(z). Since fs is strictly increasing and differentiable, there

exists t ∈ (0,1] such that f ′s(t) > 0. Let us denote z0 = ts. We have that Lf,z0 ⊂ L≤f,s ⊂ B1.

And with the chain rule, 0 < f ′s(t) = ∇f(z0) ⋅
z0

t
. Therefore along with Lemma 3, it

follows that for all z ∈ Lf,z0 , ∇f(z) ⋅ z = ∇f(z0) ⋅ z0 > 0.

From the uniform continuity of z ↦ ∇f(z) ⋅ z on a compact we deduce the an-
nounced result.
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Proposition 16. Let f be a continuously differentiable SI function with 0 as unique
global argmin. There exists δ > 0, z0 ∈ B1 with Lf,z0 ⊂ B1 such that for all z ∈ Lf,z0 +
B(0, δ), ∇f(z) ⋅ z > 0.

Proof. Since ∇f(z)⋅z > 0 for all z in the compact Lf,z0 , then z ↦ ∇f(z)⋅z has a positive
minimum (that is reached) denoted by ε = minz∈Lf,z0 ∇f(z) ⋅ z > 0. The continuous
function z ↦ ∇f(z) ⋅z is uniformly continuous on the compact Lf,z0 +B(0,1), therefore
there exists a positive number δ < 1 such that if y, z ∈ Lf,z0 + B(0,1) with y − z ≤ δ
then ∣∇f(z) ⋅ z −∇f(y) ⋅ y∣ < ε

2
. Then for all z ∈ Lf,z0 + B(0, δ), there exists y ∈ Lf,z0

such that ∣∇f(z) ⋅ z −∇f(y) ⋅ y∣ < ε

2
. Then ∇f(z) ⋅ z > ∇f(y) ⋅ y − ε

2
≥ ε

2
> 0. Hence

z ↦ ∇f(z) ⋅ z is positive on the compact set Lf,z0 + B(0, δ).

3.5 Summary and Conclusion

This paper reveals that continuous scaling-invariant functions are strictly monotonic
transformations of continuous positively homogeneous functions. Moreover, we present
necessary and sufficient conditions for any scaling-invariant function to be a strictly
monotonic transformation of a positively homogeneous function. The derivation is
solely based on analyzing restrictions to the half-lines starting from zero that need
to be strictly monotonic on a nontrivial interval (or entirely flat). We also highlight
counter-intuitive examples of scaling-invariant functions that are not monotonic on
any nontrivial interval.

We then present different properties of the level sets of a scaling-invariant function.
In particular, Proposition 16 shows that continuously differentiable scaling-invariant
functions with a unique argmin have a compact level set in a compact neighborhood
with non-vanishing gradient. The level set intersects any half-line with origin zero at a
single point—forming a “star-shaped” manifold.

Scaling-invariant functions play a central role in the analysis of the convergence
of some comparison-based stochastic optimization algorithms [25]. On this function
class, for some translation and scale invariant comparison-based algorithms, linear
convergence can be deduced when analyzing the stability of a normalized process4.
When linear convergence occurs, the step-size and the distance of the current solu-
tion to the optimum decrease geometrically fast to zero at the same (linear) rate.

4In the case of step-size adaptive algorithms where the state of the algorithm equals a
current solution and a step-size, the normalized process equals to the solution minus the
reference point x⋆ of the scaling-invariant function, divided by the step-size. Stability of the
normalized process is key to imply linear convergence of the adaptive algorithm.
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A stability analysis leading to linear convergence can be carried out for composites
of strictly increasing functions with continuously differentiable scaling-invariant func-
tions. To obtain basic stability properties deduced from a connection to a determinis-
tic control model [47], one can exploit that these functions have Lebesgue negligible
level sets as a consequence of Proposition 7. In addition, the stability study relies on
proving that when the normalized process diverges, the step-size multiplicative factor
converges in distribution to the factor on nontrivial linear functions. The proof exploits
level set properties shown in Proposition 16 and Corollary 3.
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Evolution Strategies (ES) are stochastic derivative-free optimization al-
gorithms whose most prominent representative, the CMA-ES algorithm, is
widely used to solve difficult numerical optimization problems. We provide
the first rigorous investigation of the linear convergence of step-size adap-
tive ES involving a population and recombination, two ingredients crucially
important in practice to be robust to local irregularities or multimodality. Our
methodology relies on investigating the stability of a Markov chain associ-
ated to the algorithm. Our stability study is crucially based on recent de-
velopments connecting the stability of deterministic control models to the
stability of associated Markov chains.

We investigate convergence on composites of strictly increasing func-
tions with continuously differentiable scaling-invariant functions with a global
optimum. This function class includes functions with non-convex sublevel
sets and discontinuous functions. We prove the existence of a constant r
such that the logarithm of the distance to the optimum divided by the num-
ber of iterations of step-size adaptive ES with weighted recombination con-
verges to r. The constant is given as an expectation with respect to the
stationary distribution of a Markov chain—its sign allows to infer linear con-
vergence or divergence of the ES and is found numerically.

Our main condition for convergence is the increase of the expected log
step-size on linear functions. In contrast to previous results, our condition is
equivalent to the almost sure geometric divergence of the step-size.
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4.1 Introduction

Evolution Strategies (ES) are stochastic numerical optimization algorithms introduced
in the 70’s [159,160,172,173]. They aim at optimizing an objective function f ∶ Rn → R
in a so-called zero-order black-box scenario where gradients are not available and
only comparisons between f -values of candidate solutions are used to update the
state of the algorithm. Evolution Strategies sample candidate solutions from a mul-
tivariate normal distribution parametrized by a mean vector and a covariance matrix.
The mean vector represents the incumbent or current favorite solution while the co-
variance matrix determines the geometric shape of the sampling probability distri-
bution. In adaptive ES, not only the mean vector but also the covariance matrix is
adapted in each iteration. Covariance matrices can be seen as encoding a metric
such that Evolution Strategies that adapt a full covariance matrix are variable metric
algorithms [180].

Among ESs, the covariance-matrix-adaptation ES (CMA-ES) [88,95] is nowadays
recognized as state-of-the-art to solve difficult numerical optimization problems that
can typically be non-convex, non-linear, ill-conditioned, non-separable, rugged or
multi-modal. Adaptation of the full covariance matrix is crucial to solve ill-conditioned,
non-separable problems. Up to a multiplicative factor that converges to zero, the co-
variance matrix becomes on strictly convex-quadratic objective functions close to the
inverse Hessian of the function [85].

The CMA-ES algorithm follows a (µ/µw, λ)-ES algorithmic scheme where from the
offspring population of λ candidate solutions sampled at each iteration the µ ≈ λ/2
best solutions—the new parent population—are recombined as a weighted sum to
define the new mean vector of the multivariate normal distribution. On a unimodal
spherical function, the optimal step-size, i.e. the standard deviation that should be
used to sample each coordinate of the candidate solutions, depends monotonously
on µ [160]. Hence, increasing the population size makes the search less local while
preserving a close-to-optimal convergence rate per function evaluation as long as λ
remains moderately large [12, 13, 90]. This remarkable theoretical property implies
robustness and partly explains why on many multi-modal test functions increasing
λ empirically increases the probability to converge to the global optimum [93]. The
robustness when increasing λ and the inherent parallel nature of Evolution Strategies
are two key features behind their success for tackling difficult black-box optimization
problems.

Convergence is a central question in optimization. For comparison-based algo-
rithms like Evolution Strategies, linear convergence (where the distance to the opti-
mum decreases geometrically) is the fastest possible convergence [114, 182]. Gra-
dient methods also converge linearly on strongly convex functions [147, Theorem
2.1.15].

We have ample empirical evidence that adaptive Evolution Strategies converge
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linearly on wide classes of functions [90, 96, 105, 162]. Yet, proving linear conver-
gence is known to be difficult. So far, linear convergence could be proven only for
step-size adaptive algorithms where the covariance matrix equals a scalar times the
identity [19, 24, 106–108, 110] or a scalar times a covariance matrix with eigenvalues
upper bounded and bounded away from zero [3]. In addition, these proofs require the
parent population size to be one.

In this context, we analyze here for the first time the linear convergence of a step-
size adaptive ES with a parent population size greater than one and recombination,
following a (µ/µw, λ)-ES framework. As a second novelty, we model the step-size
update by a generic function and thereby also encompass the step-size updates in
the CMA-ES algorithm [88] (however with a specific parameter setting which leads to
a reduced state-space) and in the xNES algorithm [70].

Our proofs hold on composites of strictly increasing functions with either continu-
ously differentiable scaling-invariant functions with a unique argmin or nontrivial linear
functions. This class of function includes discontinuous functions, functions with in-
finite many critical points, and functions with non-convex sublevel sets. It does not
include functions with more than one (local or global) optimum.

In this paper, we use a methodology formalized in [25] and previously used in [19,
24]. The methodology is based on analyzing the stochastic process defined as the
difference between the mean vector and a reference point (often the optimum of the
problem), normalized by the step-size. This construct is a viable model of the underly-
ing (translation and scale invariant) algorithm when optimizing scaling-invariant func-
tions, in which case the stochastic process is also a Markov chain and here referred
to as σ-normalized Markov chain. This chain is homogeneous as a consequence of
three crucial invariance properties of the ES algorithms: translation invariance, scale
invariance, and invariance to strictly increasing transformations of the objective func-
tion. Proving stability of the σ-normalized Markov chain (ϕ-irreducibility, Harris recur-
rence, positivity) is key to obtain almost sure linear behavior of the algorithm [25]. The
sign and value of the convergence or divergence rate can however only be obtained
from elementary Monte Carlo simulations.

One main difficulty is to prove ϕ-irreducibility, because the updates of mean and
step-size in the analyzed algorithms are coupled [150]. We solve this difficulty by
using recent tools that connect the stability of a deterministic control model to the
stability of an associated Markov chain [47]. Other stability properties are established
using standard Lyapunov drift conditions [140].

This paper is organized as follows. We present in Section 4.2 the algorithm frame-
work, the assumptions on the algorithm and the class of objective functions where
the convergence analysis is carried out. In Section 4.3 we present the main results of
the paper. In Section 4.4, we present the methodology and the Markov chain notions
needed for obtaining the proofs. In Section 4.5 we establish different stability proper-
ties on the σ-normalized Markov chain. We prove the main results in Section 4.6. In
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Section 4.7, we highlight previous works related to this paper.

Notation

We denote by R+ the set of non-negative real numbers and by N the set of non-
negative integers. The Euclidean norm is denoted by ∥ ⋅ ∥. For x ∈ Rn and ρ > 0,
B (x, ρ) = {y ∈ Rn; ∥x − y∥ < ρ} and B (x, ρ) is its closure.

For a set A, we denote by Ac the complement of A. For a topological space Z,
we denote its Borel sigma-field by B(Z). For a signed measure ν, we denote for
any real-valued function g, Eν(g) = ∫ g(z) ν(dz). For a positive function h, we de-
note by ∥ ⋅ ∥h the norm on signed measures on B(Z) defined for all signed measure
ν as ∥ν∥h = sup∣g∣≤h ∣Eν(g)∣. If (Z1,B(Z1), π1) and (Z2,B(Z2), π2) are two measure
spaces, we denote by π1 × π2 the product measure on the product measurable space
(Z1 ×Z2, B(Z1)⊗ B(Z2)) where ⊗ is the tensor product.

We denote by N the standard normal distribution. If x ∈ Rm and C is a covariance
matrix of dimension m×m, we denote by N (x,C) the multivariate normal distribution
with mean x and covariance matrix C. If C is the identity matrix, Nm = N (0, C)
denotes the standard multivariate normal distribution in dimension m. We denote by
pNm its probability density function.

We denote by ∥ ⋅∥∞ the infinity norm on a space of bounded functions. For a matrix
T , we denote by T ⊺ the transpose of T . For p ∈ N∖{0}, we denote an element u of Rpm

as u = (u1, . . . , um) where ui ∈ Rp for i = 1, . . . ,m. If m = 1, we write that u = (u1) = u1.
For w ∈ Rm and u ∈ Rpm, we denote ∑m

i=1wiu
i as w⊺u. For an objective function f ∶

Rn → R and an element z ∈ Rn, we denote by Lf,z the level set {y ∈ Rn ; f(y) = f(z)}.

We refer to a non-zero linear function as a nontrivial linear function.

4.2 Algorithm framework and class of functions
studied

We present in this section our step-size adaptive algorithm framework, the assump-
tions on the algorithm and the function class considered. We also present preliminary
results.

In the following, we consider an abstract measurable space (Ω,F) and a probability
measure P so that (Ω,F , P ) is a measure space.
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4.2.1 The (µ/µw, λ)-ES algorithm framework

We introduce the algorithm framework studied in this work, specifically, step-size
adaptive evolution strategies using weighted multi-recombination, referred to as step-
size adaptive (µ/µw, λ)-ES. Given a positive integer n and a function f ∶ Rn Ð→ R to be
minimized, the sequence of states of the algorithm is represented by {(Xk, σk) ;k ∈ N}
where at iteration k, Xk ∈ Rn is the incumbent (the favorite solution) and the positive
scalar σk is the step-size. The incumbent is also considered as a current estimate of
the optimum. We fix positive integers λ and µ such that µ ≤ λ.

Let (X0, σ0) ∈ Rn × (0,∞) and U = {Uk+1 = (U1
k+1, . . . , U

λ
k+1) ;k ∈ N} be a sequence

of independent and identically distributed (i.i.d.) random inputs independent from
(X0, σ0), where for all k ∈ N, Uk+1 = (U1

k+1, . . . , U
λ
k+1) is composed of λ independent ran-

dom vectors following a standard multivariate normal distribution Nn. Given (Xk, σk)
for k ∈ N, we consider the following iterative update. First, we define λ candidate
solutions as

X i
k+1 = Xk + σk U i

k+1 for i = 1, . . . , λ. (4.1)

Second, we evaluate the candidate solutions on the objective function f . We then
denote an f -sorted permutation of (X1

k+1, . . . ,X
λ
k+1) as (X1∶λ

k+1, . . . ,X
λ∶λ
k+1) such that

f(X1∶λ
k+1) ≤ ⋅ ⋅ ⋅ ≤ f(Xλ∶λ

k+1) (4.2)

and thereby define the indices i ∶ λ. To break possible ties, we require that i ∶λ < j ∶λ
if f(X i

k+1) = f(Xj
k+1) and i < j. The sorting indices i ∶ λ are also used for the σ-

normalized difference vectors U i
k+1 in that

U i∶λ
k+1 =

X i∶λ
k+1 −Xk

σk
.

Accordingly, we define the selection function αf of z ∈ Rn and u = (u1, . . . , uλ) ∈ Rnλ to
yield the sorted sequence of the difference vectors as

αf(z, u) = (u1∶λ, . . . , uµ∶λ) ∈ Rnµ, (4.3)

with f(z+u1∶λ) ≤ ⋅ ⋅ ⋅ ≤ f(z+uλ∶λ) and the above tie breaking. For λ = 2 and µ = 1, the se-
lection function has the simple expression αf(z, (u1, u2)) = (u1 −u2)1{f(z+u1)≤f(z+u2)} +
u2.

By definition, we have for k ∈ N, αf(Xk, σkUk+1) = (σkU1∶λ
k+1, . . . , σkU

µ∶λ
k+1) so that

αf(Xk, σkUk+1)
σk

= (U1∶λ
k+1, . . . , U

µ∶λ
k+1) . (4.4)

However, αf is not a homogeneous function in general, because the indices i ∶ λ in
(4.4) depend on f and hence on αf and hence on σk.
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The update of the state of the algorithm uses the objective function only through
the above selection function. This selection function is invariant to strictly increasing
transformations of the objective function as formalized in the next lemma. Indeed, the
selection is determined through the ranking of candidate solutions in (4.2) which is
the same when we optimize g ○ f instead of f given g is strictly increasing. We talk
about comparison-based algorithms in this case.
Lemma 5. Let g be a function. Define f as f = ϕ ○ g where ϕ is strictly increasing.
Then αf = αg.

To update the mean vector Xk, we consider a weighted average of the µ ≤ λ best
solutions ∑µ

i=1wiX
i∶λ
k+1 where w = (w1, . . . , wµ) is a non-zero vector. With only positive

weights summing to one, this weighted average is situated in the convex hull of the µ
best points.

The next incumbent Xk+1 is constructed by combining Xk and ∑µ
i=1wiX

i∶λ
k+1 as

Xk+1 = (1 −
µ

∑
i=1

wi)Xk +
µ

∑
i=1

wiX
i∶λ
k+1 (4.5)

= Xk +
µ

∑
i=1

wi (X i∶λ
k+1 −Xk) = Xk + σk

µ

∑
i=1

wiU
i∶λ
k+1 . (4.6)

Positive weights with small indices move the new mean vector towards the better
solutions, hence these weights should generally be large. In evolution strategies,
the weights are always non-increasing in i. With the notable exception of Natural
Evolution Strategies ([70] and related works), all weights are positive. In practice,
∑µ
i=1wi is often set to 1 such that the new mean vector is the weighted average of the

µ best solutions. Proposition 19 describes (generally weak) explicit conditions for the
weights under which our results hold.

We write the step-size update in an abstract manner as

σk+1 = σk Γ (U1∶λ
k+1, . . . , U

µ∶λ
k+1) (4.7)

where Γ ∶ Rnµ → R+/ {0} is a measurable function. This generic step-size update is
by construction scale-invariant, which is key for our analysis [25]. The update of the
mean vector and of the step-size are both functions of the f -sorted sampled vectors
(U1∶λ

k+1, . . . , U
µ∶λ
k+1).

Using (4.4), we rewrite the algorithm framework (4.6) and (4.7) for all k as:

Xk+1 = Xk +
µ

∑
i=1

wi [αf(Xk, σkUk+1)]i = Xk +w⊺αf(Xk, σkUk+1) (4.8)

σk+1 = σk Γ(αf(Xk, σkUk+1)
σk

) (4.9)

with U = {Uk+1 ;k ∈ N} the sequence of identically distributed random inputs and
w ∈ Rµ ∖ {0}.
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4.2.2 Algorithms encompassed

The generic update in (4.7) or equivalently (4.9) encompasses the step-size update
of the cumulative step-size adaptation evolution strategy ((µ/µw, λ)-CSA-ES) [25,95]
with cumulation factor set to 1 where for dσ > 0, w ∈ Rµ∖{0} and u = (u1, . . . , uµ) ∈ Rnµ,

Γ0
CSA1(u1, . . . , uµ) = exp( 1

dσ
( ∥∑µ

i=1wiu
i∥

∥w∥E [∥Nn∥]
− 1)) . (4.10)

The acronym CSA1 emphasizes that we only consider a particular case here: in the
original CSA algorithm, the sum in (4.10) is an exponentially fading average of these
sums from the past iterations with a smoothing factor of 1 − cσ. Equation (4.10) only
holds when the cumulation factor cσ is equal to 1, whereas in practice, 1/cσ is between√
n/2 and n + 2 (see [88] for more details). The damping parameter dσ ≈ 1 scales the

change magnitude of log(σk).

Equation (4.10) increases the step-size if and only if the length of ∑µ
i=1wiU

i∶λ
k+1 is

larger than the expected length of ∑µ
i=1wiU

i
k+1 which is equal to ∥w∥E [∥Nn∥]. Since

the function Γ0
CSA1 is not continuously differentiable (an assumption needed in our

analysis) we consider a version of the (µ/µw, λ)-CSA1-ES [15] that compares the
square length of ∑µ

i=1wiU
i∶λ
k+1 to the expected square length of ∑µ

i=1wiU
i
k+1 which is

n∥w∥2. Hence, we analyze for dσ > 0, w ∈ Rµ ∖ {0} and u = (u1, . . . , uµ) ∈ Rnµ:

ΓCSA1(u1, . . . , uµ) = exp( 1

2dσn
(∥∑µ

i=1wiu
i∥2

∥w∥2
− n)) . (4.11)

Another step-size update encompassed with (4.4) is given by the Exponential Nat-
ural Evolution Strategy (xNES) [25, 70, 149, 170] and defined for dσ > 0, w ∈ Rµ ∖ {0}
and u = (u1, . . . , uµ) ∈ Rnµ as

ΓxNES(u1, . . . , uµ) = exp( 1

2dσn
(
µ

∑
i=1

wi

∑µ
j=1 ∣wj ∣

(∥ui∥2 − n))) . (4.12)

Both equations (4.11) and (4.12) correlate the step-size increment with the vector
lengths of the µ best solutions. While (4.11) takes the squared norm of the weighted
sum of the vectors, (4.12) takes the weighted sum of squared norms. Hence, correla-
tions between the directions ui affect only (4.11). Both equations are offset to become
unbiased such that log ○Γ is zero in expectation when ui ∼ Nn for all 1 ≤ i ≤ λ, are i.i.d.
random vectors.

4.2.3 Assumptions on the algorithm framework

We pose some assumptions on the algorithm (4.8) and (4.9) starting with assumptions
on the step-size update function Γ.
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A1. The function Γ ∶ Rnµ → R+/ {0} is continuously differentiable (C1).

A2. Γ is invariant under rotation in the following sense: for all n × n orthogonal matri-
ces T , for all u = (u1, . . . , uµ) ∈ Rnµ, Γ(Tu1, . . . , Tuµ) = Γ(u).

A3. The function Γ is lower-bounded by a constant mΓ > 0, that is for all x ∈ Rnµ,
Γ(x) ≥mΓ.

A4. log ○Γ is Nnµ-integrable, that is, ∫ ∣log(Γ(u))∣pNnµ(u)du <∞.

We can easily verify that Assumptions A1–A4 are satisfied for the (µ/µw, λ)-CSA1
and (µ/µw, λ)-xNES updates given in (4.11) and (4.12). More precisely, the following
lemma holds.
Lemma 6. The step-size update function ΓCSA1 defined in (4.11) satisfies Assump-
tions A1−A4. Endowed with non-negative weights wi ≥ 0 for all i = 1, . . . , µ, the step-
size update function ΓxNES defined in (4.12) satisfies Assumptions A1−A4.

Proof. A1 and A4 are immediate to verify. For A2, the invariance under rotation comes
from the norm-preserving property of orthogonal matrices. For all u = (u1, . . . , uµ) ∈
Rnµ, ΓCSA1(u) ≥ exp (− 1

2dσ
) such that ΓCSA1 satisfies A3. Similarly

ΓxNES(u) = exp(− 1

2dσ

∑µ
i=1wi

∑µ
j=1 ∣wj ∣

+ 1

2dσn

µ

∑
i=1

wi

∑µ
j=1 ∣wj ∣

∥ui∥2) .

Since all the weights are non-negative, 1
2dσn

∑µ
i=1wi∥ui∥2 ≥ 0. And then − 1

2dσ
∑µ
i=1wi +

1
2dσn

∑µ
i=1wi∥ui∥2 ≥ − 1

2dσ
∑µ
i=1wi. Therefore ΓxNES(u) ≥ exp (− 1

2dσ
) which does not de-

pend on u, such that ΓxNES satisfies A3.

Assumptions A1–A4 are also satisfied for a constant function Γ equal to a positive
number. When the positive number is greater than 1, our main condition for a linear
behavior is satisfied, as we will see later on. Yet, the step-size of this algorithm clearly
diverges geometrically.

We formalize now the assumption on the source distribution used to sample can-
didate solutions, as it was already specified when defining the algorithm framework.

A5. U = {Uk+1 = (U1
k+1, . . . , U

λ
k+1) ∈ Rnλ ;k ∈ N}, see e.g. (4.1), is an i.i.d. sequence

that is also independent from (X0, σ0), and for all natural integer k, Uk+1 is an
independent sample of λ standard multivariate normal distributions on Rn at time
k + 1.

The last assumption is natural as evolution strategies use predominantly Gaussian
distributions1. Yet, we can replace the multivariate normal distribution by a distribution

1In Evolution Strategies, Gaussian distributions are mainly used for convenience: they are
the natural choice to generate rotationally invariant random vectors. Several attempts have
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with finite first and second moments and a probability density function of the form
x↦ 1

σn
g ( ∥x∥2

σ2 ) where σ > 0 and g ∶ R+ → R+ is C1, non-increasing and submultiplicative
in that there exists K > 0 such that for t ∈ R+ and s ∈ R+, g(t + s) ≤ Kg(t)g(s) (such
that Proposition 28 holds).

4.2.4 Assumptions on the objective function

We introduce in this section the assumptions needed on the objective function to
prove the linear behavior of step-size adaptive (µ/µw, λ)-ES. Our main assumption is
that the function is scaling-invariant. We remind that a function f is scaling-invariant [25]
with respect to a reference point x⋆ if for all ρ > 0, x, y ∈ Rn

f(x⋆ + x) ≤ f(x⋆ + y) ⇐⇒ f (x⋆ + ρx) ≤ f (x⋆ + ρy) . (4.13)

We pose one of the following assumptions on f :

F1. The function f satisfies f = ϕ ○ g where ϕ is a strictly increasing function and g is
a C1 scaling-invariant function with respect to x⋆ and has a unique global argmin
(that is x⋆).

F2. The function f satisfies f = ϕ ○ g where ϕ is a strictly increasing function and g is
a nontrivial linear function.

Assumption F1 is our core assumption for studying convergence: we assume scal-
ing invariance and continuous differentiability not on f but on g where f = ϕ ○ g such
that the function f can be discontinuous (we can include jumps in the function via the
function ϕ). Because ES are comparison-based algorithms and thus the selection
function is identical on f or g ○ f (see Lemma 5), our analysis is invariant if we carry
it out on f or g ○ f . Strictly increasing transformations of strictly convex quadratic
functions satisfy F1. Functions with non-convex sublevel sets can satisfy F1 (see
Figure 4.1). More generally, strictly increasing transformations of C1 positively homo-
geneous functions with a unique global argmin satisfy F1. Recall that a function p is
positively homogeneous with degree α > 0 and with respect to x⋆ if for all x, y ∈ Rn, for
all ρ > 0,

p(ρ(x − x⋆)) = ραp(x − x⋆) . (4.14)

been made to replace Gaussian distributions by Cauchy distributions [119, 171, 199]. Yet,
their implementations are typically not rotational invariant and steep performance gains are
observed either in low dimensions or crucially based on the implicit exploitation of separabil-
ity [92].
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Figure 4.1: Level sets of scaling-invariant functions with respect to the red
star x⋆. A randomly generated scaling-invariant function from a “smoothly”
randomly perturbed sphere function.

4.2.5 Preliminary results

If f is scaling-invariant with respect to x⋆, the composite of the selection function αf
with the translation (z, u) ↦ (x⋆ + z, u) is positively homogeneous with degree 1. If in
addition f is a measurable function with Lebesgue negligible level sets, then [47,
Proposition 5.2] gives the explicit expression of the probability density function of
αf(x⋆ + z,U1) where U1 follows the distribution of Nnλ. These results are formalized
in the next lemma.
Lemma 7. If f is a scaling-invariant function with respect to x⋆, then the function
(z, u) ↦ αf(x⋆ + z, u) is positively homogeneous with degree 1. In other words, for all
z ∈ Rn, σ > 0 and u = (u1, . . . , uλ) ∈ Rnλ

αf (x⋆ + σz, σu) = σαf (x⋆ + z, u) .

If in addition f is a measurable function with Lebesgue negligible level sets and
U1 = (U1

1 , . . . , U
λ
1 ) is distributed according to Nnλ, then for all z ∈ Rn, the probability

density function pfz of αf(x⋆ + z,U1) exists and for all u = (u1, . . . , uµ) ∈ Rnµ,

pfz(u) =
λ!

(λ − µ)!(1 −Q
f
z(uµ))λ−µ

µ−1

∏
i=1

1f(x⋆+z+ui)<f(x⋆+z+ui+1)

µ

∏
i=1

pNn(ui) (4.15)

where Qf
z(w) = P (f (x⋆ + z +Nn) ≤ f (x⋆ + z +w)) .

Proof. We have that f(x⋆+z+u1∶λ) ≤ ⋅ ⋅ ⋅ ≤ f(x⋆+z+uλ∶λ) if and only if f(x⋆+σ(z+u1∶λ)) ≤
⋅ ⋅ ⋅ ≤ f(x⋆+σ(z+uλ∶λ)). Therefore αf (x⋆ + σz, σu) = σ (u1∶λ, . . . , uµ∶λ) = σαf (x⋆ + z, u).
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Equation (4.15) is given by [47, Proposition 5.2] whenever f has Lebesgue negli-
gible level sets.

On a linear function f , the selection function αf defined in (4.3) is independent of
the current state of the algorithm and is positively homogeneous with degree 1. This
result is underlying previous results [19,48]. We provide here a simple formalism and
proof.
Lemma 8. If f is an increasing transformation of a linear function, then for all x ∈ Rn

the function αf (x, ⋅) does not depend on x and is positively homogeneous with degree
1. In other words, for x ∈ Rn, σ > 0 and u = (u1, . . . , uλ) ∈ Rnλ

αf (x, σu) = σαf (0, u) .

Proof. By linearity f(x + σu1∶λ) ≤ ⋅ ⋅ ⋅ ≤ f(x + σuλ∶λ) if and only if f(u1∶λ) ≤ ⋅ ⋅ ⋅ ≤ f(uλ∶λ).
Therefore αf (x, σu) = σ (u1∶λ, . . . , uµ∶λ) = σαf (0, u).

Let l⋆ be the linear function defined for all x ∈ Rn as l⋆(x) = x1 and U1 = (U1
1 , . . . , U

λ
1 )

where U1
1 , . . . , U

λ
1 are i.i.d. with law Nn. Define the step-size change Γ⋆linear as

Γ⋆linear = Γ (αl⋆(0, U1)) . (4.16)

We prove in the next proposition that for all nontrivial linear functions, the step-size
multiplicative factor of the algorithm (4.8) and (4.9) has at all iterations the distribution
of Γ⋆linear. This result derives from the rotation invariance of the function Γ (see As-
sumption A2) and of the probability density function pNnµ ∶ u ↦ 1

(2π)nµ/2 exp (−∥u∥2/2).
The details of the proof are in Appendix 1.2.
Proposition 17. (Invariance of the step-size multiplicative factor on linear functions)
Let f be an increasing transformation of a nontrivial linear function, i.e. satisfy F2.
Assume that {Uk+1 ;k ∈ N} satisfies Assumption A5 and that Γ satisfies Assumption
A2, i.e. Γ is invariant under rotation. Then for all z ∈ Rn and all natural integer k,
the step-size multiplicative factor Γ (αf(z,Uk+1)) has the law of the step-size change
Γ⋆linear defined in (4.16).

The proposition shows that on any (nontrivial) linear function the step-size change
factor is independent of Xk, Zk and even σk. We can now state the result which is
at the origin of the methodology used in this paper, namely that on scaling-invariant
functions, {Zk = (Xk − x⋆)/σk ;k ∈ N} is a homogeneous Markov chain. (We specify
later on why the stability of this chain is key for the linear convergence of {(Xk, σk) ;k ∈
N}.) For this, we introduce the following function

Fw(z, v) =
z +∑µ

i=1wivi
Γ(v) for all (z, v) ∈ Rn ×Rnµ, (4.17)

96



which allows to write Zk+1 as a deterministic function of Zk and Uk+1. The following
proposition establishes conditions under which {Zk;k ∈ N} is a homogeneous Markov
chain that is defined with (4.17), independently of {(Xk, σk) ;k ∈ N}. We refer to
{Zk;k ∈ N} as the σ-normalized chain. This is a particular case of [25, Proposition
4.1] where a more abstract algorithm framework is assumed.
Proposition 18. Let f be a scaling invariant function with respect to x⋆ and {(Xk, σk) ;k ∈
N} be the sequences defined in (4.6) and (4.7). Then {Zk = (Xk − x⋆)/σk ;k ∈ N} is a
homogeneous Markov chain and for all natural integer k, the following equation holds

Zk+1 = Fw (Zk, αf (x⋆ +Zk, Uk+1)) , (4.18)

where αf is defined in (4.3), Fw is defined in (4.17) and {Uk+1 ;k ∈ N} is the sequence
of random inputs used to sample the candidate solutions in (4.1) corresponding to the
random input in (4.8) and (4.9).

Proof. The definition of the selection function αf allows to write (4.6) and (4.7) as (4.8)
and (4.9). We then divide (4.8) by (4.9), it follows:

Zk+1 =
Xk+1 − x⋆
σk+1

=
Xk − x⋆ +∑µ

i=1wi [αf(Xk, σkUk+1)]i
σk Γ (αf (Xk,σkUk+1)

σk
)

=
Zk +∑µ

i=1wi
[αf (Xk,σkUk+1)]i

σk

Γ (αf (Xk, σkUk+1)
σk

)
.

By Lemma 7, αf (Xk, σkUk+1)
σk

= αf (x⋆+Xk−x⋆, σkUk+1)
σk

= αf(x⋆ + Xk−x⋆
σk

, Uk+1). Then Zk+1 =
Fw (Zk, αf (x⋆ +Zk, Uk+1)) and {Zk;k ∈ N} is a homogeneous Markov chain.

Three invariances are key to obtain that {Zk = (Xk − x⋆)/σk ;k ∈ N} is a homo-
geneous Markov chain: invariance to strictly increasing transformations (stemming
from the comparison-based property of ES), translation invariance, and scale invari-
ance [25, Proposition 4.1]. The last two invariances are satisfied with the update we
assume for mean and step-size.

4.3 Main results

We present our main results that express the global linear convergence of the algo-
rithm presented in Section 4.2. Linear convergence can be visualized by looking at
the distance to the optimum: after an adaptation phase, we observe that the log dis-
tance to the optimum diverges to minus infinity with a graph that resembles a straight
line with random perturbations. The step-size converges to zero at the same linear
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Figure 4.2: Four independent runs of (µ/µw, λ)-xNES and (µ/µw, λ)-CSA1-ES
(without cumulation) as presented in Section 4.2.1 on the functions x ↦ ∥x∥2

(first two figures) and x ↦ ∑n
i=1 103 i−1

n−1x2
i (last two figures). Illustration of ∥Xk∥ in

blue and σk in red where k is the number of iterations, µ = 3, λ = 11 and wi = 1/µ.
Initializations: σ0 equals to 10−11 in two runs and 1 in the two other runs, X0 is
the all-ones vector in dimension 10.

rate (see Figure 4.2). We call this constant the convergence rate of the algorithm.
Formally, in case of convergence, there exists r > 0 such that

lim
k→∞

1

k
log

∥Xk − x⋆∥
∥X0 − x⋆∥

= lim
k→∞

1

k
log

σk
σ0

= −r (4.19)

where x⋆ is the optimum of the function. We prove (4.19) for f satisfying F1 while our
approach does not allow to prove the sign of the rate r. When (4.19) holds and r is
strictly negative, then the algorithm diverges linearly. We prove this linear divergence
for functions satisfying F2. In the sequel we talk about linear behavior when (4.19)
holds but the sign of the rate r is not specified. We can in a straightforward manner
simulate the convergence rate (and obtain its sign, see for example Figure 4.2) as our
theory shows consistency of the estimators, as is discussed later.

4.3.1 Linear behavior

Our condition for the linear behavior is that the expected logarithm of the step-size
change function Γ on a nontrivial linear function is positive. More precisely, let us
denote the expected change of the logarithm of the step-size for any state z ∈ Rn of
the σ-normalized chain as

Rf(z) = EU1∼Nnλ [log (Γ (αf(x⋆ + z,U1)))] . (4.20)

By Proposition 17, when f satisfies F2, the expected change of the logarithm of the
step-size is constant and for all z,

Rf(z) =Rf(−x⋆) = E [log (Γ⋆linear)]

where Γ⋆linear is defined in (4.16). Our main result states that if the expected logarithm
of the step-size increases on nontrivial linear functions, in other words if E [log (Γ⋆linear)] >
0, then almost sure linear behavior holds on functions satisfying F1 or F2. If f satisfies
F2, then almost sure linear divergence holds with a divergence rate of E [log (Γ⋆linear)].
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Theorem 5. Let f be a scaling-invariant function with respect to x⋆. Assume that
f satisfies F1 (in which case x⋆ is the global optimum) or F2. Let {(Xk, σk) ;k ∈
N} be the sequence defined in (4.6) and (4.7) such that Assumptions A1−A5 are
satisfied. Let {Zk = (Xk − x⋆)/σk ;k ∈ N} be the homogeneous Markov chain defined
in Proposition 18. Define Rf as in (4.20). If the expected logarithm of the step-size
increases on nontrivial linear functions, i.e. if E [log (Γ⋆linear)] > 0 where Γ⋆linear is defined
in (4.16), then {Zk ;k ∈ N} admits an invariant probability measure π such that Rf is
π-integrable. And for all (X0, σ0) ∈ (Rn ∖ {x⋆}) × (0,∞) , linear behavior of Xk and σk
as in (4.19) holds almost surely with

lim
k→∞

1

k
log

∥Xk − x⋆∥
∥X0 − x⋆∥

= lim
k→∞

1

k
log

σk
σ0

= Eπ(Rf) . (4.21)

In addition, for all initial conditions (X0, σ0) = (x, σ) ∈ Rn × (0,∞) , we have linear
behavior of the expected log-progress, with

lim
k→∞

Ex−x⋆
σ

[log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥

] = lim
k→∞

Ex−x⋆
σ

[log
σk+1

σk
] = Eπ(Rf) . (4.22)

If f satisfies F2, then Rf is constant equal to Eπ(Rf) = E [log (Γ⋆linear)] > 0, and
then both Xk and σk diverge to infinity with a divergence rate of E [log (Γ⋆linear)].

If Eπ(Rf) < 0, then Xk converges (linearly) to the global optimum x⋆ with a conver-
gence rate of −Eπ(Rf) and the step-size converges to zero.

The result that both the step-size and log distance converge (resp. diverge) to the
optimum (resp. to ∞) at the same rate is noteworthy and directly follows from our
theory. In addition, we provide the exact expression of the rate. Yet it is expressed
using the stationary distribution of the Markov chain {Zk ;k ∈ N} for which we know
little information. Indeed, in contrast to the analysis of many Markov Chain Monte
Carlo (MCMC) algorithms like the Metropolis algorithm [98,138] where the stationary
distribution is known a priori (it is the distribution we wish to simulate), here we do
not know π and have to show its existence. This explains the difficulties in actually
proving the sign of the convergence or divergence rate.

From a practical perspective, while we never know the optimum of a function on a
real problem, (4.19) suggests that we can track the evolution of the step-size to define
a termination criterion based on the tolerance of the x-values.

The almost sure linear behavior result in (4.21) derives from applying a Law of
Large Numbers (LLN) to {Zk ;k ∈ N} and a generalized law of large numbers to
the chain {(Zk, Uk+2) ;k ∈ N}. Our proof techniques are mostly about showing that
{Zk ;k ∈ N} satisfies the right properties for a LLN to hold. Yet we actually prove
stronger properties than what is needed for a LLN and imply from there a central limit
theorem related to the expected logarithm of the step-size change.
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4.3.2 Central limit theorem

The rate of convergence (or divergence) of a step-size adaptive (µ/µw, λ)-ES given
in (4.21) is expressed as ∣Eπ(Rf)∣ where π is the invariant probability measure of the
σ-normalized Markov chain andRf is defined in (4.20). Yet we do not have an explicit
expression for π and thus of Eπ(Rf). However we can approximate Eπ(Rf) with
Monte Carlo simulations. We present a central limit theorem for the approximation
of Eπ(Rf) as 1

t ∑
t−1
k=0Rf(Zk) where {Zk;k ∈ N} is the homogeneous Markov chain

defined in Proposition 18.
Theorem 6. (Central limit theorem for the expected log step-size) Let f be a scaling-
invariant function with respect to x⋆ that satisfies F1 or F2. Let {(Xk, σk) ;k ∈ N}
be the sequence defined in (4.6) and (4.7) such that Assumptions A1−A5 are sat-
isfied. If the expected logarithm of the step-size increases on nontrivial linear func-
tions, i.e. if E [log (Γ⋆linear)] > 0 where Γ⋆linear is defined in (4.16), then the Markov chain
{Zk = (Xk − x⋆)/σk ;k ∈ N} admits an invariant probability measure π. Define Rf as
in (4.20) and for all positive integer t, define St(Rf) = ∑t−1

k=0Rf(Zk). Then the constant
γ2 defined as

Eπ [(Rf(Z0) −Eπ(Rf))2] + 2
∞
∑
k=1

Eπ [(Rf(Z0) −Eπ(Rf)) (Rf(Zk) −Eπ(Rf))]

is well defined, non-negative, finite and lim
t→∞

1

t
Eπ [(St(Rf) − tEπ(Rf))2] = γ2.

If γ2 > 0, then the central limit theorem holds in the sense that for any initial condi-

tion z0,

√
t

γ2
(1

t
St(Rf) −Eπ(Rf)) converges in distribution to N (0,1). If γ2 = 0, then

lim
t→∞

St(Rf) − tEπ(Rf)√
t

= 0 a.s.

4.3.3 Sufficient conditions for the linear behavior of (µ/µw, λ)-
CSA1-ES and (µ/µw, λ)-xNES

Theorems 5 and 6 hold for an abstract step-size update function Γ that satisfies
Assumptions A1−A4. For the step-size update functions of the (µ/µw, λ)-CSA1-ES
and the (µ/µw, λ)-xNES defined in (4.11) and (4.12), sufficient and necessary con-
ditions to obtain a step-size increase on linear functions are presented in the next
proposition. They are expressed using the weights and the µ best order statistics
N 1∶λ, . . . ,N µ∶λ of a sample of λ standard normal distributionsN 1, . . . ,N λ defined such
as N 1∶λ ≤ N 2∶λ ≤ ⋅ ⋅ ⋅ ≤ N λ∶λ.
Proposition 19 (Necessary and sufficient condition for step-size increase on
nontrivial linear functions). For the (µ/µw, λ)-CSA-ES without cumulation,
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E [log ((ΓCSA1)⋆linear)] = 1
2dσn

(E [(∑µ
i=1

wi
∥w∥N

i∶λ)
2
] − 1). Therefore, the expected loga-

rithm of the step-size increases on nontrivial linear functions if and only if

E
⎡⎢⎢⎢⎣
(
µ

∑
i=1

wi
∥w∥N

i∶λ)
2⎤⎥⎥⎥⎦

> 1 . (4.23)

For the (µ/µw, λ)-xNES without covariance matrix adaptation, if wi ≥ 0 for all

i = 1, . . . , µ, E [log ((ΓxNES)⋆linear)] = 1
2dσn

(∑µ
i=1

wi
∑µj=1wj

E [(N i∶λ)2] − 1). Therefore the

expected logarithm of the step-size increases on nontrivial linear functions if and only
if

µ

∑
i=1

wi

∑µ
j=1wj

E [(N i∶λ)2] > 1 . (4.24)

In addition, this latter equation is satisfied if λ,µ and w are set such that λ ≥ 3, µ < λ
2

and w1 ≥ w2 ≥ ⋯ ≥ wµ ≥ 0.

The positivity of E [log (Γ⋆linear)] is the main assumption for our main results. In
this context, Proposition 19 gives more practical and concrete ways to obtain the
conclusion of Theorems 5 and 6 for the (µ/µw, λ)-CSA1-ES and (µ/µw, λ)-xNES.

In the case where µ = 1, (4.23) and (4.24) are equivalent and yield the equation
E [(N 1∶λ)2] > 1. The latter is satisfied if λ ≥ 3 and µ = 1, which is the linear divergence
condition on linear functions of the (1, λ)-CSA1-ES in [48].

Conditions similar to (4.23) had already been derived for the so-called mutative
self-adaptation of the step-size [84].

4.4 Introduction of the methodology and reminders
on Markov chains

We sketch in this section the main steps of our methodology and introduce definitions
and tools stemming from Markov chain theory that are needed in the rest of the paper.

If f is scaling-invariant with respect to x⋆, {Zk = (Xk − x⋆)/σk ;k ∈ N} is a ho-
mogeneous Markov chain where {(Xk, σk) ;k ∈ N} is the sequence of states of the
step-size adaptive (µ/µw, λ)-ES defined in (4.6) and (4.9) (see Proposition 18). Since
Xk − x⋆ = σkZk, it follows that

log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥

= log
∥Zk+1∥
∥Zk∥

+ log
σk+1

σk
(4.25)

= log
∥Zk+1∥
∥Zk∥

+ log (Γ (αf (x⋆ +Zk, Uk+1)))
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where Γ and αf are defined in (4.7) and in (4.3). We deduce from the previous
equation the following one

1

k
log

∥Xk − x⋆∥
∥X0 − x⋆∥

= 1

k

k−1

∑
t=0

log
∥Xt+1 − x⋆∥
∥Xt − x⋆∥

(4.26)

= 1

k

k−1

∑
t=0

log
∥Zt+1∥
∥Zt∥

+ 1

k

k−1

∑
t=0

log(Γ(αf(x⋆ +Zt, Ut+1))) . (4.27)

This latter equation suggests that if we can apply a law of large numbers to {Zk ;k ∈ N}
and {(Zk, Uk+1) ;k ∈ N}, the right-hand side converges to

∫ EU1∼Nnλ [log (Γ (αf(x⋆ + z,U1)))]π(dz) = Eπ(Rf) whereRf is defined in (4.20) and
π is the invariant measure of {Zk ;k ∈ N}. From there, we obtain the almost sure

convergence of
1

k
log

∥Xk − x⋆∥
∥X0 − x⋆∥

towards Eπ(Rf) expressed in (4.21) translating the

asymptotic linear behavior of the algorithm.

This is the main idea behind the asymptotic linear behavior proof we provide in the
paper. This idea was introduced in [33] in the context of a self-adaptation evolution
strategy on the sphere function, exploited in [19] and generalized to a wider class of
algorithms and functions in [25]. We therefore see that we need to investigate under
which conditions {Zk ;k ∈ N} and {(Zk, Uk+1) ;k ∈ N} satisfy a LLN.

Similarly the proof idea for (4.22) goes as follows. Let us first define for a Markov
chain {Zk ;k ∈ N} on a measure space (Z,B(Z), P ) where Z in an open subset of
Rn, for all k ∈ N its k-step transition kernel as

P k(z,A) = P (Zk ∈ A∣Z0 = z)
for z ∈ Z, A ∈ B(Z). We also denote P (z,A) and Pz(A) as P 1(z,A).

If we take the expectation under Z0 = z in (4.9), then

Ez [log
σk+1

σk
] = Ez [log (Γ (αf (x⋆ +Zk, Uk+1)))] = ∫ P k(z,dy)Rf(y).

With (4.25) we have that

Ez [log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥

] = Ez [log
∥Zk+1∥
∥Zk∥

] +Ez [log
σk+1

σk
] (4.28)

= ∫ P k+1(z,dy) log(∥y∥) − ∫ P k(z,dy) log(∥y∥)

+ ∫ P k(z,dy)Rf(y). (4.29)

If P k(z, .) converges to π assuming all the limits can be taken, then the right-hand
side converges to Eπ(Rf) as the two first integrals cancel each other such that

lim
k→∞

Ex−x⋆
σ

[log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥

] = lim
k→∞

Ex−x⋆
σ

[log
σk+1

σk
] = Eπ(Rf),
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i.e. (4.22) is satisfied. To prove that P k(z, .) converges to π we prove the h-ergodicity
of {Zk ;k ∈ N}, a notion formally defined later on.

We remind in the rest of this part different notions on Markov chains that we in-
vestigate later on to prove in particular that {Zk ;k ∈ N} satisfies a LLN, a central limit
theorem and that for some z ∈ Z, P k(z, ⋅) converges to a stationary distribution. Fol-
lowing the terminology of [140], we refer in an informal way to those properties as
stability properties.

4.4.1 Stability notions and practical drift conditions

The first stability notion to be verified is the so-called ϕ-irreducibility. If there exists
a nontrivial measure ϕ on (Z,B(Z)) such that for all A ∈ B(Z), ϕ(A) > 0 implies
∑∞
k=1P

k(z,A) > 0 for all z ∈ Z, then the chain is called ϕ-irreducible. A ϕ-irreducible
Markov chain is Harris recurrent if for all A ∈ B(Z) with ϕ(A) > 0 and for all z ∈ Z,
Pz (ηA =∞) = 1, where ηA = ∑∞

k=1 1Zk∈A is the occupation time of A.

A σ-finite measure π on (Z,B(Z)) is an invariant measure for {Zk;k ∈ N} if for all
A ∈ B(Z), π(A) = ∫Z π(dz)P (z,A). A Harris recurrent chain admits a unique (up to
constant multiples) invariant measure π (see [140, Theorem 10.0.1]). A ϕ-irreducible
Markov chain admitting an invariant probability measure π is said positive. A positive
Harris-recurrent chain satisfies a LLN as reminded below.
Theorem 7. [140, Theorem 17.0.1] If {Zk;k ∈ N} is a positive and Harris recurrent
chain with invariant probability measure π, then the LLN holds for any π-integrable
function g, i.e. for any g with Eπ(∣g∣) <∞, limk→∞

1
k ∑

k−1
t=0 g(Zt) = Eπ(g).

We prove positivity and Harris-recurrence using Foster-Lyapunov drift conditions.
Before introducing those conditions we need the notion of aperiodicity. Assume that
d is a positive integer and {Zk ;k ∈ N} is a ϕ-irreducible Markov chain defined on
(Z,B(Z)). Let (Di)i=1,...,d ∈ B(Z)d be a sequence of disjoint sets. Then (Di)i=1,...,d is
called a d-cycle if

(i) P (z,Di+1) = 1 for all z ∈ Di and i = 0, . . . , d − 1 (mod d),

(ii) Λ ((⋃di=1Di)
c) = 0 for all irreducibility measure Λ of {Zk ;k ∈ N}.

If {Zk;k ∈ N} is ϕ-irreducible, there exists a d-cycle where d is a positive integer [140,
Theorem 5.4.4]. The largest d for which there exists a d-cycle is called the period of
{Zk ;k ∈ N}. We then say that a ϕ-irreducible Markov chain {Zk ;k ∈ N} on (Z,B(Z))
is aperiodic if it has a period of 1.

A set C ∈ B(Z) is called small if there exists a positive integer k and a nontrivial
measure νk on B(Z) such that P k(z,A) ≥ νk(A) for all z ∈ C, A ∈ B(Z). We then say
that C is a νk-small set [140].
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Given an extended-valued, non-negative and measurable function V ∶ Z → R+ ∪
{∞} (called potential function), the drift operator is defined for all z ∈ Z as

∆V (z) = E [V (Z1)∣Z0 = z] − V (z) = ∫Z V (y)P (z,dy) − V (z) .

A ϕ-irreducible, aperiodic Markov chain {Zk ;k ∈ N} defined on (Z,B(Z)) satisfies a
geometric drift condition if there exist 0 < γ < 1, b ∈ R, a small set C and a potential
function V greater than 1, finite at some z0 ∈ Z such that for all z ∈ Z ∶

∆V (z) ≤ (γ − 1)V (z) + b1C(z) ,

or equivalently if E [V (Z1)∣Z0 = z] ≤ γV (z) + b1C(z). The function V is called a ge-
ometric drift function and if {y ∈ Z ;V (y) <∞} = Z, we say that {Zk ;k ∈ N} is V -
geometrically ergodic.

If a ϕ-irreducible and aperiodic Markov chain is V -geometrically ergodic, then it is
positive and Harris recurrent [140, Theorem 13.0.1 and Theorem 9.1.8]. We prove
a geometric drift condition in Section 4.5.3, this in turn implies positivity and Harris-
recurrence property.

From a geometric drift condition follows a stronger result than a LLN, namely a
central limit theorem.
Theorem 8. [140, Theorem 17.0.1 and Theorem 16.0.1] Let {Zk ;k ∈ N} be a ϕ-
irreducible aperiodic Markov chain on (Z,B(Z)) that is V -geometrically ergodic, with
invariant probability measure π. For any function g on Z that satisfies g2 ≤ V , the
central limit theorem holds for {Zk ;k ∈ N} in the following sense. Define ḡ = g −
Eπ(g) and for all positive integer t, define St(ḡ) = ∑t−1

k=0 ḡ(Zk). Then the constant
γ2 = Eπ[(ḡ(Z0))2] + 2∑∞

k=1 Eπ[ḡ(Z0)ḡ(Zk)] is well defined, non-negative, finite and

lim
t→∞

1

t
Eπ[(St(ḡ))2] = γ2. Moreover if γ2 > 0 then 1√

tγ2
St(ḡ) converges in distribution to

N (0,1) when t goes to ∞, else if γ2 = 0 then 1√
t
St(ḡ) = 0 a.s.

For a measurable function h ≥ 1 on Z, [140, Theorem 14.0.1] states that a ϕ-
irreducible aperiodic Markov chain {Zk ;k ∈ N} defined on (Z,B(Z)) is positive Harris
recurrent with invariant probability measure π such that h is π-integrable if and only if
there exist b ∈ R, a small set C and an extended-valued non-negative function V ≠∞
such that for all z ∈ Z:

∆V (z) ≤ −h(z) + b1C(z). (4.30)

Recall that for a measurable function h ≥ 1, we say that a general Markov chain
{Zk ;k ∈ N} is h-ergodic if there exists a probability measure π such that lim

k→∞
∥P k(z, ⋅)−

π∥h = 0 for any initial condition z. The probability measure π is then called the invariant
probability measure of {Zk ;k ∈ N}. If h = 1, we say that {Zk ;k ∈ N} is ergodic.

With [140, Theorem 14.0.1], a ϕ-irreducible aperiodic Markov chain on Z that sat-
isfies (4.30) is h-ergodic if in addition {y ∈ Z ;V (y) <∞} = Z.
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Prior to establishing a drift condition, we need to identify small sets. Using the
notion of T-chain defined below, compact sets are small sets as a direct consequence
of [140, Theorem 5.5.7 and Theorem 6.2.5] stating that for a ϕ-irreducible aperiodic
T-chain, every compact set is a small set.

The T-chain property calls for the notion of kernel: a kernel K is a function on
(Z,B(Z)) such that for all A ∈ B(Z), K(.,A) is a measurable function and for all
z ∈ Z, K(z, .) is a signed measure. A non-negative kernel K satisfying K(z,Z) ≤ 1
for all z ∈ Z is called substochastic. A substochastic kernel K satisfying K(z,Z) = 1
for all z ∈ Z is a transition probability kernel. Let b be a probability distribution on N
and denote by Kb the probability transition kernel defined as

Kb(z,A) =
∞
∑
k=0

b(k)P k(z,A) for all z ∈ Z, A ∈ B(Z).

If T is a substochastic transition kernel such that T (.,A) is lower semi-continuous
for all A ∈ B(Z) and Kb(z,A) ≥ T (z,A) for all z ∈ Z, A ∈ B(Z), then T is called a
continuous component of Kb. If a Markov chain {Zk ;k ∈ N} admits a probability dis-
tribution b on N such that Kb has a continuous component T that satisfies T (z,Z) > 0
for all z ∈ Z, then {Zk ;k ∈ N} is called a T -chain.

4.4.2 Generalized law of large numbers

To apply a LLN for the convergence of the term 1
k ∑

k−1
t=0 log(Γ(αf(x⋆+Zt, Ut+1))) in (4.27),

we proceed in two steps. First we prove that if {Zk ;k ∈ N} is defined as Zk+1 =
G(Zk, Uk+1) where G ∶ Z × Rm → Z is a measurable function and {Uk+1 ;k ∈ N} is a
sequence of i.i.d. random vectors, then the ergodic properties of {Zk ;k ∈ N} are trans-
ferred to {Wk = (Zk, Uk+2) ;k ∈ N}. Afterwards we apply a generalized LLN introduced
in [118] and recalled in the following theorem.
Theorem 9. [118, Theorem 1] Assume that {Zk ;k ∈ N} is a homogeneous Markov
chain on an abstract measurable space (E,E) that is ergodic with invariant proba-
bility measure π. For all measurable function g ∶ E∞ → R such that for all s ∈ N,
Eπ(∣g(Zs, Zs+1, . . . )∣) < ∞ and for any initial distribution Λ, the generalized LLN holds
as follows

lim
k→∞

1

k

k−1

∑
t=0

g (Zt, Zt+1, . . . ) = Eπ(g(Zs, Zs+1, . . . )) PΛ a.s.

where PΛ is the distribution of the process {Zk ;k ∈ N} on (E∞,E∞).

Theorem 9 generalizes [179, Theorems 3.5.7 and 3.5.8]. Indeed in [179, Theorems
3.5.7 and 3.5.8], the generalized LLN holds only if the initial state is distributed under
the invariant measure, whereas in [118, Theorem 1], the initial distribution considered
can be anything.
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If we have the generalized LLN for a chain {(Zk, Uk+2) ;k ∈ N} on Rn ×Rm, then a
LLN for the chain {(Zk, Uk+1) ;k ∈ N} is directly implied. We formalize this statement
in the next corollary.
Corollary 4. Assume that {Wk = (Zk, Uk+2) ;k ∈ N} is a homogeneous Markov chain
on Rn × Rm that is ergodic with invariant probability measure π. Then the LLN holds
for {(Zk, Uk+1) ;k ∈ N} in the following sense. Define the function T ∶ (Rn ×Rm)2 →
Rn ×Rm as T ((z1, u3), (z2, u4)) = (z2, u3). If g ∶ Rn ×Rm → R is such that for all s ∈ N,
Eπ(∣g ○ T ∣ (Ws,Ws+1)) <∞, then limk→∞

1
k ∑

k−1
t=0 g(Zt, Ut+1) = Eπ [(g ○ T ) (Ws,Ws+1)].

Proof. We have limk→∞
1
k ∑

k−1
t=0 (g ○ T ) (Wt,Wt+1) = Eπ [(g ○ T ) (Ws,Ws+1)] thanks to

Theorem 9. For t ∈ N, (g ○ T ) (Wt,Wt+1) = g (Zt+1, Ut+2). Therefore

Eπ [(g ○ T ) (Ws,Ws+1)] = lim
k→∞

1

k

k−1

∑
t=0

g (Zt+1, Ut+2) = lim
k→∞

1

k

k−1

∑
t=0

g(Zt, Ut+1) .

We formulate now that for a Markov chain following a non-linear state space model
of the form Zk+1 = G(Zk, Uk+1) with G measurable and {Uk+1 ;k ∈ N} i.i.d., then ϕ-
irreducibility, aperiodicity and V -geometric ergodicity of Zk are transferred to {Wk =
(Zk, Uk+2) ;k ∈ N}. We provide a proof of this result in Appendix 1.3 for the sake of
completeness.
Proposition 20. Let {Zk ;k ∈ N} be a Markov chain on (Z,B(Z)) defined as Zk+1 =
G(Zk, Uk+1) where G ∶ Z × Rm → Z is a measurable function and {Uk+1 ;k ∈ N} is
a sequence of i.i.d. random vectors with probability measure Ψ. Consider {Wk =
(Zk, Uk+2) ;k ≥ 0}, then it is a Markov chain on B(Z)⊗B(Rm) which inherits properties
of {Zk ;k ∈ N} in the following sense:

• If ϕ (resp. π) is an irreducibility (resp. invariant) measure of {Zk ;k ∈ N}, then
ϕ ×Ψ (resp. π ×Ψ) is an irreducibility (resp. invariant) measure of {Wk ;k ∈ N}.

• The set of integers d such that there exists a d-cycle for {Zk ;k ∈ N} is equal to
the set of integers d such that there exists a d–cycle for {Wk ;k ∈ N}. In particular
{Zk ;k ∈ N} and {Wk ;k ∈ N} have the same period. Therefore {Zk ;k ∈ N} is
aperiodic if and only if {Wk ;k ∈ N} is aperiodic.

• If C is a small set for {Zk ;k ∈ N}, then C ×Rm is a small set for {Wk ;k ∈ N}.
• If {Zk ;k ∈ N} satisfies a drift condition

∆V (z) ≤ −βh(z) + b1C(z) for all z ∈ Z, (4.31)

where V is a potential function, 0 < β < 1, h ≥ 0 is a measurable function and
C ⊂ Z is a measurable set, then {Wk ;k ∈ N} satisfies the following drift condition
for all (z, u) ∈ Z ×Rm ∶

∆Ṽ (z, u) ≤ −βh̃(z, u) + b1C×Rm(z, u) , (4.32)

where Ṽ ∶ (z, u)↦ V (z) and h̃ ∶ (z, u)↦ h(z).
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Remark that the drift condition in (4.31) includes the geometric drift condition by
taking h = V , the drift condition for h-ergodicity by dividing the equation by β and
assuming that h ≥ 1, for positivity and Harris recurrence by taking h = 1/β, and for
Harris recurrence by taking h = 0. This is obtained assuming that V and C satisfy the
proper assumptions for the drift to hold.

4.4.3 ϕ-irreducibility, aperiodicity and T -chain property via
deterministic control models

Proving that a Markov chain is a ϕ-irreducible aperiodic T-chain can sometimes be
immediate. In our case however, it is difficult to establish those properties “by hand”.
We thus resort to tools connecting those properties to stability notions of the underly-
ing control model [140, Chapter 13] [47]. We remind here the different notions needed
and refer to [47] for more details. Assume that Z is an open subset of Rn. We consider
a Markov chain that takes the following form

Zk+1 = F (Zk, α (Zk, Uk+1)) , (4.33)

where Z0 ∈ Z and for all natural integer k, F ∶ Z ×Rnµ → Z and α ∶ Z ×Rnλ → Rnµ are
measurable functions, U = {Uk+1 ∈ Rnλ ; k ∈ N} is a sequence of i.i.d. random vectors.
We consider the following assumptions on the model:

B1. (Z0, U) are random variables on a probability space (Ω,F , PZ0) .
B2. Z0 is independent of U.

B3. U is an independent and identically distributed process.

B4. For all z ∈ Z, the random variable α(z,U1) admits a probability density function
denoted by pz, such that the function (z, u)z→ pz(u) is lower semi-continuous.

B5. The function F ∶ Z ×Rnµ → Z is C1.

We recall the deterministic control model related to (4.33) denoted by CM(F ) [47].
It is based on the notion of extended transition map function [139], defined recursively
for all z ∈ Z as S0

z = z, and for all k ∈ N/{0}, Skz ∶ Rnµk → Z such that for all w
= (w1, . . . , wk) ∈ Rnµk,

Skz (w) = F (Sk−1
z (w1, . . . , wk−1) , wk) .

Assume in the following that Assumptions B1−B4 are satisfied and that F is continu-
ous.

Let us define the process W for all k ∈ N/ {0} and z ∈ Z as W1 = α (z, U1) and Wk =
α (Sk−1

z (W1, . . . ,Wk−1), Uk). Then the probability density function of (W1,W2, . . . ,Wk)
denoted by pkz is what is called the extended probability function. It is defined in-
ductively for all k ∈ N/{0}, w = (w1, . . . , wk) ∈ Rnµk by p1

z(w1) = pz(w1) and pkz(w) =
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pk−1
z (w1, . . . , wk−1)pSk−1

z (w1,...,wk−1)(wk). For all k ∈ N/ {0} and for all z ∈ Z, the con-
trol sets are finally defined as Okz = {w ∈ Rnµk ; pkz(w) > 0} . The control sets are
open sets since F is continuous and the functions (z,w) ↦ pkz(w) are lower semi-
continuous (see [47] for more details).

The deterministic control model CM(F ) is defined recursively for all k ∈ N/ {0} ,
z ∈ Z and (w1, . . . , wk+1) ∈ Ok+1

z as

Sk+1
z (w1, . . . , wk+1) = F (Skz (w1, . . . , wk) , wk+1) .

For z ∈ Z, A ∈ B(Z) and k ∈ N/{0}, we say that w ∈ Rnµk is a k-steps path from z
to A if w ∈ Okz and Skz (w) ∈ A. We introduce for z ∈ Z and k ∈ N the set of all states
reachable from z in k steps by CM(F ), denoted by Ak+(z) and defined as A0

+(z) = {z}
and Ak+(z) = {Skz (w) ; w ∈ Okz}.

A point z ∈ Z is a steadily attracting state if for all y ∈ Z, there exists a sequence
{yk ∈ Ak+(y)∣k ∈ N ∖ {0}} that converges to z.

The controllability matrix is defined for k ∈ N/ {0}, z ∈ Z and w ∈ Rnµk as the
Jacobian matrix of (w1, . . . , wk) z→ Skz (w1, . . . , wk) and denoted by Ck

z (w). Namely,
Ck
z (w) = [∂Skz

∂w1
(w)∣ . . . ∣ ∂S

k
z

∂wk
(w)] .

If F is C1, the existence of a steadily attracting state z and a full-rank condition on
a controllability matrix of z imply that a Markov chain following (4.33) is a ϕ-irreducible
aperiodic T -chain, as reminded in the next theorem.
Theorem 10. [47, Theorem 4.4: Practical condition to be a ϕ-irreducible aperiodic
T-chain.] Consider a Markov chain {Zk ;k ∈ N} following the model (4.33) for which
the conditions B1−B5 are satisfied. If there exist a steadily attracting state z ∈ Z,
k ∈ N/ {0} and w ∈ Okz such that rank (Ck

z (w)) = n, then {Zk ;k ∈ N} is a ϕ-irreducible
aperiodic T-chain, and every compact set is a small set.

The next lemma allows to loosen the full-rank condition stated above if the control
set Okz is dense in Rnµk.
Lemma 9. Consider a Markov chain {Zk ;k ∈ N} following the model (4.33) for which
the conditions B1−B5 are satisfied. Assume that there exist a positive integer k and
z ∈ Z such that the control set Okz is dense in Rnµk. If there exists w ∈ Rnµk such that
rank(Ck

z (w)) = n, then the rank condition in Theorem 10 is satisfied, i.e. there exists
w ∈ Okz such that rank(Ck

z (w)) = n.

Proof. The function w z→ Skz (w) is C1 thanks to [47, Lemma 6.1]. Then by openness
of the set of matrices of full rank, there exists an open neighborhood Vw of w such
that for all w ∈ Vw, rank(Ck

z (w)) = n. By density of Okz , the non-empty set Vw ∩ Okz
contains an element w.

If z is steadily attracting, then there exists under mild assumptions an open set
outside of a ball centered at z, with positive measure with respect to the invariant
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probability measure of a chain following the model (4.33). We state this result in the
next lemma.
Lemma 10. Consider a Markov chain {Zk ;k ∈ N} on Rn following the model (4.33) for
which the conditions B1−B5 are satisfied. Assume that there exist a steadily attracting
state z ∈ Rn such that O1

z is dense in Rn and w ∈ O1
z with rank (C1

z (w)) = n. Assume
also that {Zk ;k ∈ N} is a positive Harris recurrent chain with invariant probability
measure π. Then there exists 0 < ε < 1 such that π(Rn ∖B (z, ε)) > 0.

Proof. A ϕ-irreducible Markov chain admits a maximal irreducibility measure ψ dom-
inating any other irreducibility measure [140, Theorem 4.0.1]. In other words, for a
measurable set A, ψ(A) = 0 induces that ϕ(A) = 0 for any irreducibility measure ϕ.
Thanks to [140, Theorem 10.4.9], π is equivalent to the maximal irreducibility measure
ψ. Since z is steadily attracting, then thanks to [47, Proposition 3.3] and [47, Proposi-
tion 4.2], supp ψ = A+(z) = ⋃k∈N {Skz (w) ; w ∈ Okz }. We have rank (C1

z (w)) = n, there-
fore the function F (z, ⋅) is not constant. Along with the density of O1

z , we obtain that
there exists ε > 0 and a vector v ∈ supp ψ such that ∥z − v∥ = 2 ε. By definition of
the support, it follows that every open neighborhood of v has a positive measure with
respect to π. Since Rn∖B (z, ε) is an open neighborhood of v, the result of the lemma
follows.

4.5 Stability of the σ-normalized Markov chain {Zk ;k ∈

N}

The goal of this section is to prove stability properties of the σ-normalized Markov
chain associated to the step-size adaptative (µ/µw, λ)-ES defined in Proposition 18,
on a function f that is the strictly increasing transformation of either a C1 scaling-
invariant function with a unique global argmin or a nontrivial linear function. We prove
that if Assumptions A1−A5 are satisfied and the expected logarithm of the step-size
increases on nontrivial linear functions, then the σ-normalized Markov chain is a ϕ-
irreducible aperiodic T -chain that is geometrically ergodic. In particular, it is positive
and Harris recurrent.

4.5.1 Irreducibility, aperiodicity and T-chain property of the
σ-normalized Markov chain

Prior to establishing Harris recurrence and positivity of the chain {Zk ;k ∈ N}, we es-
tablish the ϕ-irreducibility and aperiodicity as well as identify some small sets such
that drift conditions can be used. Establishing those properties can be relatively im-
mediate for some ES algorithms (see [19,24]). Yet for the algorithms considered here,
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establishing ϕ-irreducibility turns out to be tricky because the step-size change is a de-
terministic function of the random input used to update the mean. We hence use the
tools developed in [47] and reminded in Section 4.4.3 using the underlying determin-
istic control model. The chain investigated satisfies Zk+1 = Fw (Zk, αf (x⋆ +Zk, Uk+1))
and therefore fits the model (4.33). We prove next that the necessary assumptions
needed to use the tools developed in [47] are satisfied if f satisfies F1 or F2. This
result relies on [47, Proposition 5.2] ensuring that if f is a continuous scaling-invariant
function with Lebesgue negligible level sets, then for all z ∈ Rn, the random variable
αf(x⋆ + z,U1) admits a probability density function pfz such that (z, u)↦ pfz(u) is lower
semi-continuous, i.e. B4 is satisfied.
Proposition 21. Let f be scaling-invariant with respect to x⋆ defined as ϕ ○ g where
ϕ is strictly increasing and g is a continuous scaling-invariant function with Lebesgue
negligible level sets. Let {Zk ;k ∈ N} be a σ-normalized Markov chain associated to
the step-size adaptive (µ/µw, λ)-ES defined as in Proposition 18 satisfying

Zk+1 = Fw (Zk, αf (x⋆ +Zk, Uk+1)) .

Then model (4.33) follows. In addition, if Assumption A1 is satisfied, then Fw is C1

and thus B5 is satisfied. If Assumption A5 is satisfied, then Assumptions B1−B4 are
satisfied and the probability density function of the random variable αf(x⋆ + z,Uk+1)
denoted by pfz and defined in (4.15) satisfies (z, u)↦ pfz(u) is lower semi-continuous

In particular, if f satisfies F1 or F2, the assumption above on f holds such that the
conclusions above are valid.

Proof. It follows from (4.18) that {Zk ;k ∈ N} is a homogeneous Markov chain following
model (4.33). By (4.17), Fw is of class C1 (B5 is satisfied) if A1 is satisfied (Γ ∶ Rnµ →
R+/ {0} is C1). If A5 is satisfied, then B1−B3 are also satisfied.

With [47, Proposition 5.2], for all z ∈ Rn, αg(x⋆ + z,Uk+1) has a probability density
function pgz such that (z, u)↦ pgz(u) is lower semi-continuous, and defined for all z ∈ Rn

and u ∈ Rnµ as in (4.15). With Lemma 5, αf = αg and then B4 holds.

A nontrivial linear function is a continuous scaling-invariant function with Lebesgue
negligible level sets. Also [184, Proposition 4.2] implies that f still has Lebesgue
negligible level sets in the case where it is a C1 scaling-invariant function with a unique
global argmin.

We show in the following lemma the density of a control set for strictly increas-
ing transformations of continuous scaling-invariant functions with Lebesgue negligible
level sets, especially for functions f that satisfy F1 or F2. This is useful for Proposi-
tion 22 and for the application of Lemma 9.
Lemma 11. Let f be a scaling-invariant function defined as ϕ ○ g where ϕ is strictly
increasing and g is a continuous scaling-invariant function with Lebesgue negligible
level sets. Assume that {Zk ;k ∈ N} is the σ-normalized Markov chain associated to a
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step-size adaptive (µ/µw, λ)-ES as defined in Proposition 18 such that A5 is satisfied.
Then for all z ∈ Rn, the control set O1

z = {v ∈ Rnµ ; pfz(v) > 0} is dense in Rnµ.

In particular, if f satisfies F1 or F2, the assumption above on f holds and thus the
conclusions above are valid.

Proof. By Proposition 21, we obtain that for all z ∈ Rn, pfz is defined as in (4.15). In ad-
dition, f has Lebesgue negligible level sets (see [184, Proposition 4.2] and Lemma 5).
Therefore pfz > 0 almost everywhere. Hence we have that O1

z is dense in Rnµ.

According to Theorem 10, to ensure that {Zk ; k ∈ N} is a ϕ-irreducible aperiodic
T -chain, we prove in the following that 0 is a steadily attracting state and that there
exists w ∈ O1

0 such that rank (C1
0(w)) = n. We start with the steady attractivity in the

next proposition.
Proposition 22. Let f be a scaling-invariant function defined as ϕ○g where ϕ is strictly
increasing and g is a continuous scaling-invariant function with Lebesgue negligible
level sets. Assume that {Zk ;k ∈ N} is the σ-normalized Markov chain associated to a
step-size adaptive (µ/µw, λ)-ES as defined in Proposition 18 such that Assumptions
A1 and A5 are satisfied. Then 0 is a steadily attracting state of CM(Fw).

Especially, if f satisfies F1 or F2, the assumption above on f holds and thus the
conclusions above are valid.

Proof. We fix z ∈ Rn and prove that there exists a sequence {zk ∈ Ak+(z) ;k ∈ N} that
converges to 0. We construct the sequence recursively as follows.

We define z0 = z and fix a natural integer k. We define zk+1 iteratively as follows.
We set ṽk = − 1

∥w∥2 (w1zk, . . . , wµzk) , then zk + w⊺ṽk = zk − 1
∥w∥2 ∑µ

i=1w
2
i zk = 0. By con-

tinuity of Fw and density of O1
zk

thanks to Lemma 11, there exists vk ∈ O1
zk

such that
∥Fw(zk, vk)∥ = ∥Fw(zk, vk) − Fw(zk, ṽk)∥ ≤ 1

2k+1 . Define zk+1 = Fw(zk, vk). Then the se-
quence (zk)k∈N converges to 0. Now let us show that zk ∈ Ak+(z) for all k ∈ N.

Since A0
+(z) = {z} , then z0 = z ∈ A0

+(z). We fix again a natural integer k and
assume that zk ∈ Ak+(z). It is then enough to prove that zk+1 ∈ Ak+1

+ (z). Recall in the
following order that for all u ∈ Rnµ(k+1),

Ak+1
+ (z) = {Sk+1

z (u) ; u ∈ Ok+1
z }

Sk+1
z (u) = Fw (Skz (u1, . . . , uk) , uk+1)

pf,k+1
z (u) = pf,kz (u1, . . . , uk)pfSkz (u1,...,uk)(uk+1)

Ok+1
z = {u ∈ Rnµ(k+1) ; pf,k+1

z (u) > 0} .

Therefore by construction, pf,k+1
z (v0, . . . , vk) = pf,kz (v0, . . . , vk−1)pfzk(vk) > 0, hence

(v0, . . . , vk) ∈ Ok+1
z . Finally, zk+1 = Fw(zk, vk) = Sk+1

z (v0, . . . , vk) ∈ Ak+1
+ (z).
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The next proposition ensures that the steadily attracting state 0 satisfies also the
adequate full-rank condition on a controllability matrix of 0.
Proposition 23. Let f be a scaling-invariant function defined as ϕ○g where ϕ is strictly
increasing and g is a continuous scaling-invariant function with Lebesgue negligible
level sets. Assume that {Zk ;k ∈ N} is the σ-normalized Markov chain associated to a
step-size adaptive (µ/µw, λ)-ES as defined in Proposition 18 such that Assumptions
A1 and A5 are satisfied. Then there exists w ∈ O1

0 such that rank (C1
0(w)) = n.

In particular, if f satisfies F1 or F2, the assumption above on f holds and thus the
conclusions above are valid.

Proof. Lemma 9 along with the density of the control set O1
0 in Lemma 11 ensure that

it is enough to prove the existence of v ∈ Rnµ such that rank (C1
0(v)) = n. Let us show

that the matrix C1
0(0) =

∂S1
0

∂v1
(0) has a full rank, with S1

0 ∶ Rnµ ∋ v z→ Fw(0, v) ∈ Rn. This
is equivalent to showing that the differential DS1

0(0) ∶ Rnµ → Rn of S1
0 at 0 is surjective.

Denote by l the linear function Rnµ ∋ h z→ ∑µ
i=1wihi ∈ Rn. Then S1

0 = l/Γ and then
DS1

0(h) = Dl(h) 1
Γ(h) + l(h)D( 1

Γ
)(h). Since l(0) = 0, it follows that DS1

0(0) = l
Γ(0) and

finally we obtain that DS1
0(0) is surjective.

By applying Propositions 21, 22 and 23 along with Theorem 10, we directly deduce
that the σ-normalized Markov chain associated to a step-size adaptive (µ/µw, λ)-ES
is a ϕ-irreducible aperiodic T-chain. More formally, the next proposition holds.
Proposition 24. Let f be a scaling-invariant function defined as ϕ○g where ϕ is strictly
increasing and g is a continuous scaling-invariant function with Lebesgue negligible
level sets. Assume that {Zk ;k ∈ N} is the σ-normalized Markov chain associated to a
step-size adaptive (µ/µw, λ)-ES as defined in Proposition 18 such that Assumptions
A1 and A5 are satisfied. Then {Zk ;k ∈ N} is a ϕ-irreducible aperiodic T -chain, and
every compact set is a small set.

In particular, if f satisfies F1 or F2, the assumption above on f holds and thus the
conclusions above are valid.

4.5.2 Convergence in distribution of the step-size multiplica-
tive factor

In order to prove that {Zk ;k ∈ N} satisfies a geometric drift condition, we investigate
the distribution of {Zk ;k ∈ N} outside of a compact set (small set). Intuitively, when Zk
is very large, i.e. Xk − x⋆ large compared to the step-size σk, the algorithm sees the
function f in a small neighborhood from Xk − x⋆ where f resembles a linear function
(this holds under regularity conditions on the level sets of f ). Formally we prove
that for all z ∈ Rn, the step-size multiplicative factor Γ (αf(x⋆ + z,U1)) converges in
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distribution2 towards the step-size change on nontrivial linear functions Γ⋆linear defined
in (4.16).

To do so we derive in Proposition 25 an intermediate result that requires to intro-
duce a specific nontrivial linear function lfz defined as follows.

We consider a scaling-invariant function f with respect to its unique global argmin
x⋆. Then the function f̃ ∶ x ↦ f(x⋆ + x) − f(x⋆) is C1 scaling-invariant with respect to
0 which is the unique global argmin. Thanks to [184, Corollary 4.1 and Proposition
4.10], there exists a vector in the closed unit ball zf0 ∈ B (0,1) whose f̃ -level set is
included in the closed unit ball, that is L

f̃ ,z
f
0
⊂ B (0,1) and such that for all z ∈ L

f̃ ,z
f
0
,

the scalar product between z and the gradient of f at x⋆ + z satisfies z⊺∇f(x⋆ + z) > 0.
In addition, any half-line of origin 0 intersects the level set L

f̃ ,z
f
0

at a unique point. We
denote for all z ≠ 0 by tfz the unique scalar of (0,1] such that tfz

z
∥z∥ belongs to the level

set L
f̃ ,z

f
0
⊂ B (0,1). We finally define for all z ≠ 0, the nontrivial linear function lfz for all

w ∈ Rn as

lfz (w) = w⊺∇f (x⋆ + tfz
z

∥z∥) . (4.35)

We state below the intermediate result that when ∥z∥ goes to ∞, the selection ran-
dom vector αf(x⋆ + z,U1) has asymptotically the distribution of the selection random
vector on the linear function lfz . According to Lemma 8, the latter does not depend on
the current location and is equal to the distribution of α

l
f
z
(0, U1).

Proposition 25. Let f be a C1 scaling-invariant function with a unique global argmin.
Then for all ϕ ∶ Rnµ → R continuous and bounded,

lim
∥z∥→∞∫ ϕ(u) (pfz(u) − pl

f
z
z (u))du = 0

where lfz is defined as in (4.35). In other words, the selection random vectors αf(x⋆ +
z,U1) and α

l
f
z
(0, U1) have asymptotically the same distribution when ∥z∥ goes to ∞.

Proof idea. We sketch the proof idea and refer to Appendix 1.4 for the full proof. Note
beforehand that αf(x⋆+z,U1) = αf̃(z,U1) so that we assume without loss of generality

2Recall that a sequence of real-valued random variables {Yk}k∈N converges in distribution
to a random variable Y if limk→∞FYk

(x) = FY (x) for all continuity point x of FY , where FYk

and FY are respectively the cumulative distribution functions of Yk and Y.
The Portmanteau lemma [34] ensures that {Yk}k∈N converges in distribution to Y if and only

if for all bounded and continuous function ϕ,

lim
k→∞

E [ϕ(Yk)] = E [ϕ(Y )] . (4.34)
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that x⋆ = 0 and f(0) = 0. If f is a C1 scaling-invariant function with a unique global
argmin, we can construct thanks to [184, Proposition 4.11] a positive number δf such
that for all element z of the compact set L

f,z
f
0
+ B(0,2δf), z⊺∇f(z) > 0. In particular

this result produces a compact neighborhood of the level set L
f,z

f
0

where ∇f does not
vanish. This helps to establish the limit of E [ϕ(αf(z,U1))] when ∥z∥ goes to ∞. We do
it in a similar fashion than in [24], by exploiting the uniform continuity of a function that
we obtain thanks to its continuity on the compact set (L

f,z
f
0
+B(0, δf)) × [0, δf].

Thanks to Proposition 25 and Proposition 17, we can finally state in the next theo-
rem the convergence in distribution of the step-size multiplicative factor for f satisfying
F1 towards Γ⋆linear defined in (4.16).
Theorem 11. Let f be a scaling-invariant function satisfying F1. Assume that {Uk+1 ;k ∈
N} satisfies Assumption A5, Γ is continuous and satisfies Assumption A2, i.e. Γ is in-
variant under rotation. Then for all natural integer k, Γ (αf(x⋆ + z,Uk+1)) converges in
distribution to Γ⋆linear defined in (4.16), when ∥z∥→∞.

Proof. Let ϕ ∶ Γ(Rnµ) → R be a continuous and bounded function. It is enough to
prove that lim∥z∥→∞EU1∼Nnλ [ϕ (Γ (αf(x⋆ + z,U1)))] = E [ϕ (Γ⋆linear)] and apply the Port-
manteau lemma.

By Propositions 25, lim
∥z∥→∞∫ ϕ (Γ(u)) (pfz(u) − pl

f
z
z (u))du = 0. Therefore

lim
∥z∥→∞

EU1∼Nnλ [ϕ (Γ (αf(x⋆ + z,U1)))] −EU1∼Nnλ [ϕ (Γ (α
l
f
z
(x⋆ + z,U1)))] = 0.

With Propostiion 17, EU1∼Nnλ [ϕ (Γ (α
l
f
z
(x⋆ + z,U1)))] = E [ϕ (Γ⋆linear)].

4.5.3 Geometric ergodicity of the σ-normalized Markov chain

The convergence in distribution of the step-size multiplicative factor while optimizing a
function f that satisfies F1, proven in Theorem 11, allows us to control the behavior of
the σ-normalized chain when its norm goes to ∞. More specifically, we use it to show
the geometric ergodicity of {Zk ;k ∈ N} defined as in Proposition 18 for f satisfying F1
or F2. Beforehand, let us show the following proposition, which is a first step towards
the construction of a geometric drift function.
Proposition 26. Let f be a scaling-invariant function that satisfies F1 or F2 and
{Zk ;k ∈ N} be the σ-normalized Markov chain associated to a step-size adaptive
(µ/µw, λ)-ES defined as in Proposition 18. We assume that Γ is continuous and As-
sumptions A2, A3 and A5 are satisfied. Then for all α > 0,

lim
∥z∥→∞

E [∥Z1∥α∣Z0 = z]
∥z∥α = E [ 1

[Γ⋆linear]α
]

114



where Γ⋆linear is the random variable defined in (4.16) that represents the step-size
change on any nontrivial linear function.

Proof. Let z ≠ 0. Since Z1 = Fw (Z0, αf (x⋆ +Z0, U1)) = Z0+w⊺αf (x⋆+Z0,U1)
Γ(αf (x⋆+Z0,U1)) , then

E [∥Z1∥α∣Z0 = z]
∥z∥α −E [ 1

Γ (αf(x⋆ + z,U1))α
] = E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∥ z
∥z∥ +

w⊺αf (x⋆+z,U1)
∥z∥ ∥

α

− 1

Γ (αf(x⋆ + z,U1))α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The function Γ is lower bounded by mΓ > 0 thanks to Assumption A3. In addition,
∥w⊺αf (x⋆ + z,U1) ∥ ≤ ∥w∥ ∥U1∥. Then the term

∣∥ z
∥z∥ +

1
∥z∥w

⊺αf(x⋆ + z,U1)∥
α
− 1∣

Γ (αf(x⋆ + z,U1))α
(4.36)

converges almost surely towards 0 when ∥z∥ goes to ∞, and is bounded (when ∥z∥ ≥
1) by the integrable random variable 1+(1+∥w∥ ∥U1∥)α

mαΓ
. Then it follows by the dominated

convergence theorem that

lim
∥z∥→∞

E [∥Z1∥α∣Z0 = z]
∥z∥α −E [ 1

Γ (αf(x⋆ + z,U1))α
] = 0. (4.37)

Since x ↦ 1

xα
is continuous and bounded on Γ (Rnµ) ⊂ [mΓ,∞), then for f satis-

fying F1, Theorem 11 implies that lim
∥z∥→∞

E [ 1

Γ (αf(x⋆ + z,U1))α
] exists and is equal to

E [ 1
[Γ⋆linear]α

]. Starting from (4.37) and using Proposition 17 to replace E [ 1
Γ(αf (x⋆+z,U1))α ]

by E [ 1
[Γ⋆linear]α

], the same conclusion holds for f satisfying F2. Thereby

lim
∥z∥→∞

E [∥Z1∥α∣Z0 = z] /∥z∥α = E [ 1

[Γ⋆linear]α
] .

We introduce the next two lemmas, that allow to go from Proposition 26 to a for-
mulation with the multiplicative log-step-size factor.
Lemma 12. Let f be a continuous scaling-invariant function with respect to x⋆ with
Lebesgue negligible level sets, let z ∈ Rn. Assume that Γ satisfies Assumption A4.
Then u↦ log (Γ (αf(x⋆ + z, u))) is Nnλ-integrable with

EU1∼Nnλ [∣log (Γ (αf(x⋆ + z,U1)))∣] ≤
λ! EW1∼Nnµ [∣log ○Γ∣ (W1)]

(λ − µ)! . (4.38)
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Proof. With (4.15), we have (λ−µ)!

λ!
E [∣log (Γ (αf(x⋆ + z,U1)))∣] ≤ ∫

Rn
∣log ○Γ∣ (v)

∏µ
i=1 pNn(vi)dv = E [∣log ○Γ∣ (Nnµ)] , and A4 says that log ○Γ is Nnµ-integrable.

The next lemma states that if the expected logarithm of the step-size change is
positive, then we can find α > 0 such that the limit in Proposition 26 is strictly smaller
than 1. This is the key lemma to have the condition in the main results expressed as
E [log (Γ⋆linear)] > 0, instead of E [ 1

[Γ⋆linear]α
] < 1 for a positive α as was done in [24].

Lemma 13. Assume that Γ satisfies Assumptions A3 and A4. If E [log (Γ⋆linear)] > 0,
then there exists 0 < α < 1 such that E [ 1

[Γ⋆linear]α
] < 1, where Γ⋆linear is defined in (4.16).

Proof. Lemma 12 ensures that log (Γ⋆linear) is integrable. For α > 0,

1

[Γ⋆linear]α
= exp [−α log (Γ⋆linear)] = 1 − α log (Γ⋆linear) + o(α).

Then the random variable A(α) = ( 1
[Γ⋆linear]α

− 1 + α log (Γ⋆linear)) /α depending on the
parameter α converges almost surely towards 0 when α goes to 0.

Let u ∈ Rnµ and α ∈ (0,1). Define the function ϕu ∶ c↦
1

Γ(u)c = exp(−c log(Γ(u))) on

[0, α]. By the mean value theorem, there exists cu,α ∈ (0, α) such that ( 1
Γ(u)α − 1) /α =

ϕ′u(cu,α) = − log(Γ(u)) 1
Γ(u)cu,α . In addition, 1

Γ(u)cu,α ≤ 1

m
cu,α
Γ

thanks to Assumption A3,

and 1

m
cu,α
Γ

= exp (−cu,α log(mΓ)) ≤ exp (∣log(mΓ)∣). Therefore

∣A(α)∣ ≤ (1 + exp (∣log(mΓ)∣)) ∣log (Γ⋆linear)∣ .

The latter is integrable thanks to Assumption A4, and does not depend on α. Then
by the dominated convergence theorem, E [A(α)] converges to 0 when α goes to 0

or equivalently E [ 1
[Γ⋆linear]α

] = 1 − αE [log (Γ⋆linear)] + o(α). Hence there exists 0 < α < 1

small enough such that E [ 1
[Γ⋆linear]α

] < 1.

We now have enough material to state and prove the desired geometric ergodicity
of the σ-normalized Markov chain in the following theorem.
Theorem 12. (Geometric ergodicity) Let f be a scaling-invariant function that satisfies
F1 or F2. Let {Zk ;k ∈ N} be the σ-normalized Markov chain associated to a step-size
adaptive (µ/µw, λ)-ES defined as in Proposition 18 such that Assumptions A1−A5 are
satisfied. Assume that E [log (Γ⋆linear)] > 0 where Γ⋆linear is defined in (4.16).

Then there exists 0 < α < 1 such that the function V ∶ z ↦ 1+∥z∥α is a geometric drift
function for the Markov chain {Zk ;k ∈ N}. Therefore {Zk ;k ∈ N} is V -geometrically
ergodic, admits an invariant probability measure π and is Harris recurrent.
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Proof. Propositions 24 shows that {Zk ;k ∈ N} is a ϕ-irreducible aperiodic T-chain.
Therefore using [140, Theorem 5.5.7 and Theorem 6.2.5], every compact set is a
small set. Since we assume that E [log (Γ⋆linear)] > 0, by Lemma 13, there exists
0 < α < 1 such that E [ 1

[Γ⋆linear]α
] < 1. Consider the function V ∶ z ↦ 1 + ∥z∥α. By Propo-

sition 26, lim
∥z∥→∞

E [∥Z1∥α∣Z0 = z] /∥z∥α = E [ 1

[Γ⋆linear]α
]. Since E [V (Z1)∣Z0 = z]/V (z) =

(1 +E [∥Z1∥α∣Z0 = z]) / (1 + ∥z∥α), then it follows that lim∥z∥→∞E [V (Z1)∣Z0 = z] /V (z) =
E [ 1

[Γ⋆linear]α
] .

Denote γ = 1
2
(1 +E [ 1

[Γ⋆linear]α
]) < 1. There exists r > 0 such that for all ∥z∥ > r

E [V (Z1)∣Z0 = z] /V (z) < γ. (4.39)

In addition, since ∥z + w⊺αf (x⋆ + z,U1) ∥ ≤ ∥z∥ + ∥w∥∥U1∥ then E [V (Z1)∣Z0 = z] ≤

E [(∥z∥ + ∥w∥∥U1∥)α]/mα
Γ. Since the function z ↦ E [(∥z∥ + ∥w∥∥U1∥)α]

mα
Γ

− γV (z) is con-

tinuous on the compact B (0, r), it is bounded on that compact. Denote by b ∈ R+ an
upper bound. We have proven that for all z ∈ B (0, r), E [V (Z1)∣Z0 = z] ≤ γV (z)+b. This
result, along with (4.39), show that for all z ∈ Rn, E [V (Z1)∣Z0 = z] ≤ γV (z)+b1

B(0,r)(z).
Therefore {Zk ;k ∈ N} is V -geometrically ergodic. Then thanks to [140, Theorem
15.0.1], {Zk;k ∈ N} is positive and Harris recurrent with invariant probability measure
π.

4.6 Proofs of the main results

We present in this section the proofs of the main results stated in Section 4.3 namely
Theorems 5, 6 and Proposition 19. Before establishing those main results, we need
to prove the integrability of z ↦ log ∥z∥ and Rf defined in (4.20), with respect to the
invariant probability measure of the Markov chain {Zk ;k ∈ N} whose existence is
established in Theorem 12.

4.6.1 Integrabilities with respect to the invariant probability
measure

For a scaling-invariant function f that satisfies F1 or F2, the limit in Theorem 5 is ex-
pressed as Eπ(Rf) where the functionRf is defined as in (4.20) and π is a probability
measure. Therefore the π-integrability of the function z ↦ Rf(z) is necessary to ob-
tain Theorem 5. In the following, we present a result stronger than its π-integrability,
that is the boundedness of Rf under some assumptions.
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Proposition 27. Let f be a continuous scaling-invariant function with Lebesgue neg-
ligible level sets. Let {(Xk, σk) ;k ∈ N} be the sequence defined in (4.6) and (4.7)
such that Assumptions A4 and A5 are satisfied. Then z ↦ ∣Rf ∣ (z) is bounded by
λ!

(λ−µ)!
EW∼Nnµ [∣log ○Γ∣ (W )], where the function z ↦Rf(z) is defined as in (4.20).

If in addition f satisfies F1 or F2, Assumptions A1−A3 are satisfied and
E [log (Γ⋆linear)] > 0 where Γ⋆linear is defined in (4.16), then

Eπ(∣Rf ∣) = ∫ ∣Rf(z)∣π(dz) <∞

that is z ↦ Rf(z) is π-integrable where π is the invariant probability measure of
{Zk ;k ∈ N} defined as in Proposition 18.

Proof. Lemma 12 shows that for all z ∈ Rn, z ↦ log (Γ (αf(x⋆ + z, u))) isNnλ-integrable

with E [∣log (Γ (αf(x⋆ + z,U1)))∣] ≤
λ!

(λ − µ)!EW∼Nnµ [∣log ○Γ∣ (W )] . Then ∣Rf ∣ is bounded

since ∣Rf(z)∣ ≤ λ!
(λ−µ)!

EW∼Nnµ [∣log ○Γ∣ (W )] for all z ∈ Rn. If in addition Assumptions
A1−A3 are satisfied and E [log (Γ⋆linear)] > 0, Theorem 12 ensures that {Zk ;k ∈ N}
is a positive Harris recurrent chain with invariant probability measure π. Hence the
integrability with respect to π.

We prove in the next proposition the π-integrability of the function z ↦ log ∥z∥,
where π is the invariant probability measure of the σ-normalized chain, under some
assumptions.
Proposition 28. Let f satisfy F1 or F2 and {Zk ;k ∈ N} be the Markov chain de-
fined as in Proposition 18 such that Assumptions A1−A5 are satisfied. Assume that
E [log (Γ⋆linear)] > 0 where Γ⋆linear is defined in (4.16). Then {Zk ;k ∈ N} has an invariant
probability measure π and z ↦ log ∥z∥ is π-integrable.

Proof. Theorem 12 ensures that {Zk ;k ∈ N} is V -geometrically ergodic with invariant
probability measure π, where V ∶ Rn ∋ z z→ 1 + ∥z∥α ∈ R+. We define for all z ∈ Rn,

g(z) = (λ−µ)!

2λ!
∣log ∥z∥∣ . Based on [189, Theorem 1], the π-integrability of g is obtained

if there exist a set A with π(A) > 0 such that ∫
A
g(z)π(dz) < ∞, and a measurable

function h with h1Ac ≥ g1Ac such that:

1. ∫
Ac
P (z,dy)h(y) < h(z) − g(z) ,∀z ∈ Ac

2. sup
z∈A

∫
Ac
P (z,dy)h(y) <∞.

For z ∈ B (0,1) and v ∈ Rnµ, denote ϕ(z, v) as

ϕ(z, v) = pNnµ (v −
1

∥w∥2
(w1z, . . . , wµz))1∥w⊺v∥≤1 .
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We prove in a first time that lim
∥z∥→0

∫ ∣log ∥w⊺v∥∣ϕ(z, v)dv <∞. We have

(2π)nµ/2ϕ(z, v) = exp(1

2
(−∥v∥2 − ∥w∥2∥z∥2

∥w∥4
+ 2(w⊺v)⊺z

∥w∥2
))1∥w⊺v∥≤1

≤ exp(1

2
(−∥v∥2 − ∥w∥2∥z∥2

∥w∥4
+ 2∥w⊺v∥∥z∥

∥w∥2
))1∥w⊺v∥≤1

= exp(1

2
(−∥v∥2 − ∥w∥2∥z∥2

∥w∥4
+ 2∥z∥

∥w∥2
))1∥w⊺v∥≤1 (4.40)

≤ (2π)nµ/2 exp (1/∥w∥2)ϕ(0, v).

Since v ↦ ∣log ∥w⊺v∥∣ϕ(0, v) is Lebesgue integrable, it follows by the dominated con-

vergence theorem that z ↦ ∫ ∣log ∥w⊺v∥∣ϕ(z, v)dv is continuous on B (0,1) and

lim
∥z∥→0

∫ ∣log ∥w⊺v∥∣ϕ(z, v)dv < ∞. In addition, lim
∥z∥→0

g(z) = ∞. Then there exists

ε1 ∈ (0,1) such that for z ∈ B (0, ε1) ∶

∫ ∣log ∥w⊺v∥∣ϕ(z, v)dv + 2EW∼Nnµ [∣log ○Γ∣ (W )] ≤ g(z). (4.41)

We define ε2 from Lemma 10 and denote ε = min(ε1, ε2). Define A = Rn ∖B (0, ε).
Then from Lemma 10 it follows that π(A) > 0. Note also that Ac = B (0, ε). In addition,
g is dominated by the π-integrable function V around ∞, then ∫

A
g(z)π(dz) < ∞. We

define now the function h for all z ∈ Rn as h(z) = 2g(z)1Ac(z). Then h1Ac ≥ g1Ac .

It remains to verify the items 1 and 2 from above to obtain the π-integrability of
g. To do so, we give in the following an upper bound of K(z) = ∫

Ac
P (z,dy)h(y)

for all z ∈ Rn. We have K(z) = −(λ − µ)!
λ!

Ez [1B(0,ε)(Z1) log ∥Z1∥]. Then K(z) ≤

−(λ − µ)!
λ! ∫∥z+w⊺v∥≤Γ(v)

log
∥z +w⊺v∥

Γ(v) pfz(v)dv. With (4.15), we obtain that
(λ − µ)!
λ!

pfz ≤

pNnµ . Then K(z) ≤ ∫ ∣log(Γ(v))∣pNnµ(v)dv+

∫∥z+w⊺v∥≤Γ(v)
∣log ∥z +w⊺v∥∣pNnµ(v)dv.

We split the latter integral between the events {∥z +w⊺v∥ ≤ min(1,Γ(v))} and the
events {1 < ∥z +w⊺v∥ ≤ Γ(v)}. Then

K(z) ≤ ∫∥z+w⊺v∥≤min(1,Γ(v))
∣log ∥z +w⊺v∥∣pNnµ(v)dv +

∫
Γ(v)≥1

log(Γ(v))pNnµ(v)dv + ∫ ∣log(Γ(v))∣pNnµ(v)dv. Hence
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K(z) ≤ 2EW∼Nnµ [∣log ○Γ∣ (W )]−∫∥z+w⊺v∥≤1
log ∥z+w⊺v∥pNnµ(v)dv.With a translation

v → v − 1
∥w∥2 (w1z, . . . , wµz) within the last integrand, we obtain:

K(z) ≤ 2EW∼Nnµ [∣log ○Γ∣ (W )] + ∫ ∣log ∥w⊺v∥∣ϕ(z, v)dv. (4.42)

Equations (4.41) and (4.42) show that for z ∈ Ac = B (0, ε), ∫
Ac
P (z,dy)h(y) ≤

g(z) = h(z) − g(z). Therefore the item 1 follows.

With (4.40), it follows that there exist c1 > 0 and c2 > 0 such that for ∥z∥ ≥ c1

and v ∈ Rn, ϕ(z, v) ≤ c2ϕ(0, v). Thanks to the dominated convergence theorem,
lim

∥z∥↦∞∫ ∣log ∥w⊺v∥∣ϕ(z, v)dv = 0. Therefore that integral is bounded outside of a com-

pact. In addition, z ↦ ∫ ∣log ∥w⊺v∥∣ϕ(z, v)dv is continuous and is bounded on any

compact included in A. Then along with (4.42) it follows that sup
z∈A

∫
Ac
P (z,dy)h(y) <∞.

Hence the item 2 is also satisfied, which ends the integrability proof of z ↦ log ∥z∥.

4.6.2 Proof of Theorem 5

We start by proving (4.21). Theorem 12 ensures that {Zk ;k ∈ N} is a positive Harris
recurrent chain with invariant probability measure π. With (4.25), we have that

1

k
log

∥Xk − x⋆∥
∥X0 − x⋆∥

= 1

k
log

∥Zk∥
∥Z0∥

+ 1

k
log (σk

σ0

)

= 1

k

k−1

∑
t=0

log
∥Zt+1∥
∥Zt∥

+ 1

k

k−1

∑
t=0

log(Γ(αf(x⋆ +Zt, Ut+1))) ,

where Γ and αf are defined in (4.7) and in (4.3).

Since z ↦ log ∥z∥ is π-integrable, Theorem 7 ensures that the LLN holds with
limk→∞

1
k ∑

k−1
t=0 log ∥Zt+1∥

∥Zt∥ = ∫ log (∥z∥)π(dz) − ∫ log (∥z∥)π(dz) = 0.

Let us consider the chain {Wk = (Zk, Uk+2) ;k ∈ N}. Then thanks to Proposition 20,
{Wk = (Zk, Uk+2) ;k ∈ N} is geometrically ergodic with invariant probability measure π×
Nnλ. Define the function g for ((z1, u3), (z2, u4)) ∈ (Rn ×Rnλ)2

as g ((z1, u3), (z2, u4)) =
log(Γ(αf(x⋆ + z2, u3))). We have by Proposition 27 that for all natural integer t,

Eπ×Nnλ(∣g(Wt,Wt+1)∣) ≤
λ!

(λ − µ)!EY ∼Nnµ [∣log ○Γ∣ (Y )] <∞ .

By Theorem 9 or Corollary 4, for any initial distribution, 1
k ∑

k−1
t=0 log(Γ(αf(x⋆+Zt, Ut+1)))

converges almost surely towards Eπ×Nnλ(g(W1,W2)) = Eπ(Rf).
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Let us prove now (4.22). Equations (4.28) and (4.29) show that for all z ∈ Rn

Ez [log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥

] = Ez [log
∥Zk+1∥
∥Zk∥

] +Ez [log
σk+1

σk
]

= ∫ P k+1(z,dy) log(∥y∥) − ∫ P k(z,dy) log(∥y∥)

+ ∫ P k(z,dy)Rf(y).

Define h on Rn as h(z) = 1 + ∣log ∥z∥∣ for all z ∈ Rn which is π-integrable thanks to
Proposition 28. Then z ↦ log ∥z∥ is π-integrable, and by [140, Theorem 14.0.1], for z ∈
{y ∈ Rn ;V (y) <∞} = Rn, lim

k→∞
∥P k(z, ⋅) − π∥h = 0. Then lim

k→∞∫ P k+1(z,dy) log(∥y∥) =

lim
k→∞∫ P k(z,dy) log(∥y∥) = ∫ log(∥y∥)π(dy). In addition, ∣Rf ∣ /h is bounded, then

lim
k→∞∫ P k(z,dy)Rf(y) = ∫ Rf(y)π(dy) = Eπ(Rf), and finally (4.22) follows:

lim
k→∞

Ex−x⋆
σ

[log
∥Xk+1 − x⋆∥
∥Xk − x⋆∥

] = lim
k→∞

Ex−x⋆
σ

[log
σk+1

σk
] = Eπ(Rf).

We also note that if f satisfies F2, then thanks to Proposition 17, for all z ∈ Rn,

Rf(z) = E [log (Γ⋆linear)], hence Rf is constant. Then Eπ (Rf) = ∫ Rf(z)π(dz) =
E [log (Γ⋆linear)]. If in addition E [log (Γ⋆linear)] > 0, we obtain that ∥Xk∥ and σk both
diverge to ∞ when k goes to ∞.

4.6.3 Proof of Theorem 6

Thanks to Proposition 27, ∣Rf ∣ is bounded. And then there exists a positive con-
stant K large enough such that R2

f ≤ K V where V is the geometric drift function
of {Zk ;k ∈ N} given by Theorem 12. Then K V remains a geometric drift func-
tion. Thanks to Theorem 8, the constant γ defined as Eπ [(Rf(Z0) −Eπ(Rf))2] +
2∑∞

k=1 Eπ [(Rf(Z0) −Eπ(Rf)) (Rf(Zk) −Eπ(Rf))] is well defined, non-negative, finite

and lim
t→∞

1

t
Eπ [(St(Rf) − tEπ(Rf))2] = γ2.

Moreover if γ2 > 0, then the CLT holds for any z0 as follows

lim
t→∞

Pz0 ((tγ2)− 1
2 (St(Rf) − tEπ(Rf)) ≤ z) = ∫

z

−∞

1√
2π
e−u

2/2du.

Which can be rephrased as 1√
tγ2

(St(Rf) − tEπ(Rf)) converges in distribution toN (0,1)
when t→∞. And if γ = 0, then limt→∞(St(Rf) − tEπ(Rf))/

√
t = 0 a.s.
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4.6.4 Proof of Proposition 19

We first prove the statement related to the (µ/µw, λ)-CSA1-ES. Then we show the
condition regarding (µ/µw, λ)-xNES. And finally we prove the general practical condi-
tion that allows to obtain (4.24).

If m is a positive integer and u = (u1, . . . , um) ∈ Rnm, we denote u1 = (u1
1, . . . , u

m
1 )

and u−1 = (u1
−1, . . . , u

m
−1) where ui−1 = (ui2, . . . , uin) for i = 1, . . . ,m. Define the nontrivial

linear function l⋆ such that l⋆(x) = x1 for x ∈ Rn, and denote by e1 the unit vector
(1, . . . ,0).

Part 1. It is enough to prove that EU1∼Nnλ [log (ΓCSA1 (αl⋆(e1, U1)))] has the same

sign than E [(∑µ
i=1

wi
∥w∥N

i∶λ)
2
] − 1, and apply Theorem 5. We have:

EU1∼Nnλ [log (ΓCSA1 (αl⋆(e1, U1)))] =
1

2dσ∥w∥2n
(EU1∼Nnλ [∥

µ

∑
i=1

wi (αl⋆(e1, U1))i ∥2] − ∥w∥2n) .

Therefore it is enough to show that

E
⎡⎢⎢⎢⎣
∥
µ

∑
i=1

wi
∥w∥ (αl⋆(e1, U1))i∥

2⎤⎥⎥⎥⎦
− n = E

⎡⎢⎢⎢⎣
(
µ

∑
i=1

wi
∥w∥N

i∶λ)
2⎤⎥⎥⎥⎦
− 1. (4.43)

Recall that the probability density function of αl⋆(e1, U1) is pl
⋆
e1 defined for all u ∈ Rnµ

as pl
⋆
e1(u) =

λ!
(λ−µ)!

(1 −Ql⋆
e1(uµ))λ−µ

µ−1

∏
i=1

1{l⋆(ui)<l⋆(ui+1)}

µ

∏
i=1

pNn(ui).

Denote A = EU1∼Nnλ [∥∑
µ
i=1

wi
∥w∥ (αl⋆(e1, U1))i∥2] . It follows that

A = λ!

(λ − µ)!∫ ∥
µ

∑
i=1

wi
∥w∥u

i∥
2

(1 −Ql⋆
e1(u

µ))λ−µ
µ−1

∏
j=1

1{l⋆(uj)<l⋆(uj+1)}

µ

∏
j=1

pNn(uj)du =∫ ⎛
⎝
∥
µ

∑
i=1

wi
∥w∥u

i
1∥

2

+ ∥
µ

∑
i=1

wi
∥w∥u

i
−1∥2⎞

⎠
P (N > uµ1)

λ−µ

µ−1

∏
j=1

1{uj1<u
j+1
1 }

µ

∏
j=1

pN (uj1)
µ

∏
j=1

pNn−1(uj−1)du.

If we expand the integrand, the first term gives E [(∑µ
i=1

wi
∥w∥N

i∶λ)
2
] , as it is the 1-

D version of EU1∼Nnλ [∥∑
µ
i=1

wi
∥w∥ (αl⋆(e1, U1))i∥

2
] . Denote B = E [(∑µ

i=1
wi
∥w∥N

i∶λ)
2
] and

C = B −A. It follows that

(λ − µ)!
λ!

C =∫ ∥
µ

∑
i=1

wi
∥w∥u

i
−1∥

2

P (N > uµ1)
λ−µ

µ−1

∏
j=1

1{uj1<u
j+1
1 }

µ

∏
j=1

pN (uj1)pNn−1(uj−1)du.
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Then C =∫Rµ
λ!

(λ−µ)!
P (N > uµ1)

λ−µ∏µ−1
j=1 1{uj1<u

j+1
1 }∏

µ
j=1 pN (uj1)du1

∫R(n−1)µ ∥∑µ
i=1

wi
∥w∥u

i
−1∥

2

∏µ
j=1 pNn−1(uj−1)du−1.

The first integral equals 1 as it is the integral of a probability density function. The
second integral is equal to E [∥∑µ

i=1
wi
∥w∥Wi∥2] where W1, . . . ,Wµ are i.i.d. random vari-

ables of law Nn−1. Then the law of ∑µ
i=1

wi
∥w∥Wi is Nn−1. Then E [∥∑µ

i=1
wi
∥w∥Wi∥

2
] =

n − 1. Hence EU1∼Nnλ [∥∑
µ
i=1

wi
∥w∥ (αl⋆(e1, U1))i∥

2
] − E [(∑µ

i=1
wi
∥w∥N

i∶λ)
2
] = n − 1, which

induces (4.43) and ends this part.

Part 2. For the second item, we show that EU1∼Nnλ [log (ΓxNES (αl⋆(e1, U1)))] has
the same sign than ∑µ

i=1
wi

∑µj=1wj
E [(N i∶λ)2] − 1, and apply Theorem 5. We have

EU1∼Nnλ [log (ΓxNES (αl⋆(e1, U1)))] =
1

2dσn∑µ
i=1wi

µ

∑
i=1

wi (EU1∼Nnλ [∥ (αl⋆(e1, U1))i ∥2] − n) .

Then it is enough to show:
µ

∑
i=1

wi (EU1∼Nnλ [∥ (αl⋆(e1, U1))i ∥2] − n) =
µ

∑
i=1

wiE [(N i∶λ)2] −
µ

∑
i=1

wi. Denote A = ∑µ
i=1wiEU1∼Nnλ [∥ (αl⋆(e1, U1))i ∥2] . It follows

A = λ!

(λ − µ)! ∫
µ

∑
i=1

wi∥ui∥2(1 −Ql⋆
e1(u

µ))λ−µ
µ−1

∏
j=1

1{l⋆(uj)<l⋆(uj+1)}

µ

∏
j=1

pNn(uj)du =
λ!

(λ − µ)! ∫ (
µ

∑
i=1

wi∥ui1∥2 +
µ

∑
i=1

wi∥ui−1∥2)

P(N > uµ1)
λ−µ µ−1

∏
j=1

1{uj1<u
j+1
1 }

µ

∏
j=1

pN (uj1)
µ

∏
j=1

pNn−1(uj−1)du.

Therefore if we expand the integrand, the integral of the first term of the integrand is

equal to
(λ − µ)!
λ!

µ

∑
i=1

wiE [(N i∶λ)2] . Denote B = ∑µ
i=1wiE [(N i∶λ)2] and C = A−B. Then

(λ − µ)!
λ!

C = ∫
µ

∑
i=1

wi∥ui−1∥2 (P (N > uµ1))
λ−µ

µ−1

∏
j=1

1{uj1<u
j+1
1 }

µ

∏
j=1

pN (uj1)pNn−1(uj−1)du.

Then C = ∫
Rµ

λ!

(λ − µ)!
µ−1

∏
j=1

1{uj1<u
j+1
1 }P (N > uµ1)

λ−µ
µ

∏
j=1

pN (uj1)du1

∫
R(n−1)µ

µ

∑
i=1

wi∥ui−1∥2
µ

∏
j=1

pNn−1(uj−1)du−1. The first integral is equal to 1 as it is the integral
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of a probability density function. The second integral is equal to ∑µ
i=1wiE [∥Nn−1∥2] =

(n − 1)∑µ
i=1wi. We finally have that

µ

∑
i=1

wiEU1∼Nnλ [∥ (αl⋆(e1, U1))i ∥2] −
µ

∑
i=1

wiE [(N i∶λ)2] = (n − 1)
µ

∑
i=1

wi.

Part 3. If (X1, . . . ,Xλ) is distributed according to (N 1∶λ, . . . ,N λ∶λ) , then X1 ≤ ⋅ ⋅ ⋅ ≤
Xλ and then −Xλ ≤ ⋅ ⋅ ⋅ ≤ −X1. Therefore (−Xλ, . . . ,−X1) is also distributed according
to (N 1∶λ, . . . ,N λ∶λ) . Assume that λ ≥ 3 and µ > λ

2
. We show the results in two parts.

Part 3.1. First we assume that w1 = ⋅ ⋅ ⋅ = wµ = 1
µ
. In this case, we have to prove that:

1 < ∑µ
i=1

wi
∑µj=1wj

E [(N i∶λ)2] = 1
µ ∑

µ
i=1 E [(N i∶λ)2] . Since N 1∶λ ≤ ⋅ ⋅ ⋅ ≤ N λ∶λ is equivalent to

−N λ∶λ ≤ ⋅ ⋅ ⋅ ≤ −N 1∶λ, then (N 1∶λ, . . . ,N λ∶λ) has the distribution of (−N λ∶λ, . . . ,−N 1∶λ) .
And then for i = 1, . . . , λ, (N i∶λ)2

has the distribution of (N λ−i+1∶λ)2
. It follows that:

λ

∑
i=1

E [(N i∶λ)2] = 2
µ

∑
i=1

E [(N i∶λ)2] +
λ−µ
∑
i=µ+1

E [(N i∶λ)2] . (4.44)

Moreover,

λ

∑
i=1

E [(N i∶λ)2] =
λ

∑
i=1

E [(N i)2] = λ , (4.45)

meaning that we lose the selection effect of the order statistics when we do the above
summation. Equations (4.44) and (4.45) ensure that

2
µ

∑
i=1

E [(N i∶λ)2] +
λ−µ
∑
i=µ+1

E [(N i∶λ)2] = λ . (4.46)

For any j ∈ {µ + 1, . . . , λ − µ} and any i ∈ {1 . . . , µ} , N i∶λ ≤ N j∶λ ≤ N λ+1−i∶λ. Therefore if
N j∶λ ≥ 0, (N j∶λ)2 ≤ (N λ+1−i∶λ)2

, and if N j∶λ ≤ 0, (N j∶λ)2 ≤ (N i∶λ)2
.

Since (N λ+1−i∶λ)2
has the distribution of (N i∶λ)2

, then for all j ∈ {µ + 1, . . . , λ − µ}
and i ∈ {1 . . . , µ} ∶ (N j∶λ)2 ≤ (N i∶λ)2

, and it is straightforward to see that the we do
not have almost sure equality. It then follows that for all j ∈ {µ + 1, . . . , λ − µ} 3 and
i ∈ {1 . . . , µ} ∶ E [(N j∶λ)2] < E [(N i∶λ)2] . Therefore for all j ∈ {µ + 1, . . . , λ − µ} ∶

E [(N j∶λ)2] < 1

µ

µ

∑
i=1

E [(N i∶λ)2] . (4.47)

3Note that the set {µ + 1, . . . , λ − µ} is not empty since 1 ≤ µ < λ
2 .
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With (4.47) and (4.46), we have

λ = 2
µ

∑
i=1

E [(N i∶λ)2] +
λ−µ
∑
i=µ+1

E [(N i∶λ)2]

< 2
µ

∑
i=1

E [(N i∶λ)2] + λ − 2µ

µ

µ

∑
i=1

E [(N i∶λ)2]

= λ
µ

µ

∑
i=1

E [(N i∶λ)2] .

Finally it follows that

1

µ

µ

∑
i=1

E [(N i∶λ)2] > 1. (4.48)

Part 3.2. Now we fall back to the general assumption where w1 ≥ ⋅ ⋅ ⋅ ≥ wµ. Let us
prove beforehand that:

E [(N 1∶λ)2] ≥ E [(N 2∶λ)2] ≥ ⋅ ⋅ ⋅ ≥ E [(N µ∶λ)2] . (4.49)

Let i ∈ {1, . . . , µ − 1} . We have that N i∶λ ≤ N i+1∶λ ≤ N λ+1−i. Then if N i+1∶λ ≥ 0,

(N i+1∶λ)2 ≤ (N λ+1−i∶λ)2
and if N i+1∶λ ≤ 0, (N i+1∶λ)2 ≤ (N i∶λ)2

. Since (N λ+1−i∶λ)2
and

(N i∶λ)2
have the same distribution, it follows that (N i+1∶λ)2 ≤ (N i∶λ)2

. Therefore (4.49)
holds.

To prove the general case, we use the Chebyshev’s sum inequality which states
that if a1 ≥ a2 ≥ ⋅ ⋅ ⋅ ≥ aµ and b1 ≥ b2 ≥ ⋅ ⋅ ⋅ ≥ bµ, then

1

µ

µ

∑
k=1

akbk ≥ ( 1

µ

µ

∑
k=1

ak)( 1

µ

µ

∑
k=1

bk) . (4.50)

Therefore we apply the Chebyshev’s sum inequality onw1 ≥ ⋅ ⋅ ⋅ ≥ wµ and E [(N 1∶λ)2] ≥
E [(N 2∶λ)2] ≥ ⋅ ⋅ ⋅ ≥ E [(N µ∶λ)2] . It follows that

1

µ

µ

∑
i=1

wiE [(N i∶λ)2] ≥
⎛
⎝

1

µ

µ

∑
j=1

wj
⎞
⎠
( 1

µ

µ

∑
i=1

E [(N i∶λ)2]) .

Therefore, ∑µ
i=1

wi
∑µj=1wj

E [(N i∶λ)2] ≥ 1
µ ∑

µ
i=1 E [(N i∶λ)2]. And the first case in (4.48)

ensures that ∑µ
i=1

wi
∑µj=1wj

E [(N i∶λ)2] ≥ 1
µ ∑

µ
i=1 E [(N i∶λ)2] > 1.
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4.7 Relation to previous works

We discuss in this section the positioning of our work with respect to previous studies
establishing the convergence of Evolution Strategies.

Most theoretical analyses of linear convergence concern the so-called (1+1)-ES
where a single candidate solution is sampled (λ = 1). The new mean is the best
among the current mean and the sampled solution and in addition the one-fifth suc-
cess rule is used to adapt the step-size [121, 159]. Jägersküpper established lower-
bounds and upper-bounds related to linear convergence on spherical functions [106,
110] and on some convex-quadratic functions [107, 108]. The underlying methodol-
ogy used for the proof is to a great extent hidden within the algorithm analysis but was
later unveiled as connected to drift analysis where an overall Lyapunov function of the
state of the algorithm (mean and step-size) is found [2]. This Lyapunov function is
shown to satisfy drift conditions from which upper and lower bounds of the hitting time
of an epsilon neighborhood of the optimum can be derived. This analysis technique
was recently used to provide a simple analysis of the hitting time pertaining to linear
convergence of the (1+1)-ES with one-fifth success rule on spherical functions [2].
It was generalized for classes of functions including strongly convex functions with
Lipschitz gradient as well as positively homogeneous functions [3,143].

In [24], the linear convergence of a (1 + 1)-ES is proven on increasing transforma-
tions of C1 positively homogeneous functions p with a unique global argmin and upper
bounds on the degree of p and on the norm of the gradient ∥∇p∥. The methodology
in [24] is similar to ours, as it consists in applying a LLN to ergodic Markov chains.

A few studies attempt to analyze ES with a covariance matrix adaptation: Diouane
et al. [60] prove the convergence (but not linear convergence) of a variant of CMA-ES
where the algorithm is modified to ensure a sufficient decrease and the convergence
proof relies on this modification; an abstract covariance adaptation is included in the
linear convergence analysis in [3] provided the eigenvalues stay upper bounded and
bounded away from zero (hence the affine-invariant update of the original algorithm
is not included). In addition, Akimoto et al. prove that when convergence occurs on
a twice continuously differentiable function for CMA-ES without step-size adaptation,
the limit point is a local (or global) optimum [8].

On the condition of step-size increase on linear functions Our main con-
dition for the linear behavior proven in Theorem 5 is that “the logarithm of the step-size
increases on linear functions”, formally, stated as E [log (Γ⋆linear)] > 0 where Γ⋆linear is
the step-size change on nontrivial linear functions. This condition is equivalent to the
geometric divergence of the step-size on nontrivial linear functions, as shown by the
next lemma.
Lemma 14. Let f be an increasing transformation of a nontrivial linear function, i.e.
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satisfy F2. Let {(Xk, σk) ;k ∈ N} be the sequence defined in (4.6) and (4.7). Assume
that {Uk+1 ;k ∈ N} satisfies Assumption A5 and that Γ satisfies Assumptions A2 and

A4, i.e. Γ is invariant under rotation and log ○Γ is Nnµ-integrable. Then lim
k→∞

1

k
log

σk
σ0

=
E [log (Γ⋆linear)].

Proof. We have 1
k

log σk
σ0

= 1
k ∑

k−1
t=0 log σt+1

σt
. With (4.16) and Proposition 17,

σt+1 = σt Γ (αl⋆(0, Ut+1)) where l⋆ is the linear function defined as l⋆(x) = x1 for
x ∈ Rn. Therefore 1

k
log σk

σ0
= 1

k ∑
k−1
t=0 (log ○Γ ○ αl⋆) (0, Ut+1) . Using Assumption A3 and

Lemma 12, we have that the function u ↦ (log ○Γ ○ αl⋆) (0, u) is Nnλ-integrable. Then
by the LLN applied to the i.i.d. sequence {Uk+1 ;k ∈ N}, 1

k
log σk

σ0
converges almost

surely to E [log (Γ⋆linear)].

We find in the literature a different condition for the (1 + 1)-ES [2,24] and the (1, λ)
self-adaptive ES [19], that is “the step-size increases on linear functions”. That condi-

tion is formally stated as the existence of β > 0 such that E [ 1

Γ⋆linear
β ] < 1. With the con-

cavity of the logarithm, we have thanks to Jensen’s inequality that log (E [ 1

Γ⋆linear
β ]) ≥

E [log ( 1

Γ⋆linear
β )] = −β E [log (Γ⋆linear)]. Therefore if E [ 1

Γ⋆linear
β ] < 1, then E [log (Γ⋆linear)] >

0. Thereby our condition “the logarithm of the step-size increases on linear functions”
is tighter than the traditional condition “the step-size increases on linear functions”.

Previous results on CSA-ES For the (µ/µw, λ)-CSA-ES algorithm without cu-
mulation, our main condition in Proposition 19 for the linear behavior is formulated
based on λ, µ, the weights w and the order statistics of the standard normal distribu-

tion. It reads E [(∑µ
i=1

wi
∥w∥N

i∶λ)
2
] > 1. For µ = 1, this condition is satisfied when λ ≥ 3,

thanks to Proposition 19.

In [48], the linear divergence of both the incumbent and the step-size is obtained
in a (1, λ) scenario without cumulation on linear functions whenever λ ≥ 3, with a
divergence rate equal to E[(N 1∶λ)2]−1

2dσn
. This result is therefore incorporated in Propo-

sition 19. Note that we have simultaneously linear divergence on strictly increasing
transformations of nontrivial linear functions and linear behavior on strictly increasing
transformations of C1 scaling-invariant functions with a unique global argmin.

While our framework does not include cumulation by a path for the step-size up-
date via CSA [95], cumulation is encompassed in [48] and linear divergence of the
step-size holds on linear functions for the (1, λ)-CSA-ES. The key aspect consists in
applying a LLN to the cumulation path. Linear divergence is only proven for the step-
size as it requires the application of the LLN to a more complex Markov chain to prove
it for the mean [48].
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4.8 Conclusion and discussion

We have proven the asymptotic linear behavior of step-size adaptive (µ/µw, λ)-ESs
on composites of strictly increasing functions with continuously differentiable scaling-
invariant functions. The step-size update has been modeled as an abstract function of
the random input multiplied by the current step-size. Two well-known step-size adap-
tation mechanisms are included in this model, namely derived from the Exponen-
tial Natural Evolution Strategy (xNES) [70] and the Cumulative Step-size Adaptation
(CSA) [88] without cumulation.

Our methodology leans on investigating the stability of the σ-normalized homoge-
neous Markov chain to be able to apply a LLN and obtain the limit of the log-distance
to the optimum divided by the iteration index. Then we obtain an exact expression of
the rate of convergence or divergence as an expectation with respect to the station-
ary distribution of the σ-normalized chain. This is an elegant feature of our analysis.
Other approaches (see previous section) provide bounds on the convergence rate
but not its exact expression. Bounds are often expressed depending on dimension or
population size which are relevant parameters in practice.

The class of scaling-invariant functions is, as far as we can see, the largest class
to which our methodology can conceivably be applied—because on any wider class
of functions, a selection function for the σ-normalized Markov chain can not anymore
reflect the selection operation in the underlying chain. We require additionally that
the objective function is a strictly increasing transformation of either a continuously
differentiable function with a unique global argmin or a nontrivial linear function. Many
non-convex functions with non-convex sublevel sets are included.

The implied requirement of smooth level sets is instrumental for our analysis. We
believe that there exist unimodal functions with non-smooth level sets on which scale
invariant ESs can not converge to the global optimum with probability one, for example
x ↦ ∑n

i=1

√
∣xi∣. However, we also believe that smooth level sets are not a necessary

condition for convergence—we consistently observe convergence on x ↦ ∑n
i=1 ∣xi∣ for

smaller values of n and understand the reason why ESs succeed on the one-norm
but fail on the 1

2
-norm function. Capturing this distinction in a rigorous analysis of the

Markov chain remains an open challenge.

In contrast, the approach used in [3] allows to handle functions that are not scaling-
invariant. This approach requires a drift condition to hold on the whole state-space
while our methodology requires that the drift condition only holds outside of a small
set which means here when the step-size is much smaller than the distance to the
optimum. Hence in our approach, it suffices to control the behavior in the limit when
the step-size normalized by the distance to the optimum approaches zero.

A major limitation of our current analysis is the omission of cumulation that is used
in the (µ/µw, λ)-CSA-ES to adapt the step-size (we have set the cumulation param-
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eter to 1, see Section 4.2.2). In case of a parent population of size µ = 1, Chotard
et al. obtain linear divergence of the step-size on linear functions also with cumula-
tion [48]. However, no proof of linear behavior exists, to our knowledge, on functions
whose level sets are not affine subspaces. While we consider cumulation a crucial
component in practice, proving the drift condition for the stability of the Markov chain
is much harder when the state space is extended with the cumulative evolution path
and this remains an open challenge.

Technically, our results rely on proving ϕ-irreducibility, positivity and Harris-recurrence
of the σ-normalized Markov chain. The ϕ-irreducibility is difficult to prove directly for
the class of algorithms studied in this paper while it is relatively easy to prove for the
(1, λ)-ES with self-adaptation [19] or for the (1+1)-ES with one-fifth success rule [24].
With the tools developed in [47], proving ϕ-irreducibility, aperiodicity and a T-chain
property is much easier, illustrating how useful the connection between stability of
Markov chains with stability of deterministic control models can be. Positivity and
Harris-recurrence are proven using Foster-Lyapunov drift conditions [140]. We prove
a drift condition for geometric ergodicity that implies positivity and Harris-recurrence.
It relies on the convergence in distribution of the step-size change towards the step-
size change on a linear function when Zk = z goes to infinity. We also prove in
Lemma 10 the existence of non-negligible sets with respect to the invariant proba-
bility measure π, outside of a neighborhood of a steadily attracting state. This is used
in Proposition 28 to obtain the π-integrability of the function z ↦ log ∥z∥.

We have developed generic results to facilitate further studies of similar Markov
chains. More specifically, applying a LLN to the σ-normalized chain is not enough to
conclude linear convergence. We introduce the technique to apply the generalized
LLN to an abstract chain {(Zk, Uk+2) ;k ∈ N} and prove that stability properties from
{Zk;k ≥ 0} are transferred to {(Zk, Uk+2) ;k ∈ N}.
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Chapter 5

Background on
multiobjective evolutionary
algorithms

Contents
5.1 Basic notions of multiobjective optimization . . . . . . 131

5.1.1 Pareto notions . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.1.2 Sorting among a set of non-dominated points . . . . . . . 132

5.1.3 Hypervolume-based performance indicators . . . . . . . . 134

5.1.4 The crowding distance . . . . . . . . . . . . . . . . . . . . 135

5.2 Multiobjective evolutionary algorithms with non-dominated
sorting methods . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.1 Non-dominated sorting multiobjective genetic algorithms 138

5.2.2 SMS-EMOA . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2.3 MO-CMA-ES . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.4 Drawbacks of the non-dominated sorting methods . . . . 142

Multiobjective optimization consists of optimizing a vector-valued func-
tion f ∶ x ∈ Rn z→ f(x) = (f1(x), . . . , fm(x)) ∈ Rm where m ≥ 2. The Pareto
notions are used to define a partial order in Rm. The optimal solutions of a
multiobjective optimization problem f form a set called Pareto set, and their
images with respect to f are called Pareto front.

The goal of a multiobjective optimization problem is to find the Pareto set
and the Pareto front. Typically the Pareto set is an infinite set and in practice,
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a multiobjective optimization algorithm aims to find a subset of the Pareto set
as interesting as possible, i.e.with search points that have images as distinct
as possible. Several indicators exist to quantify this quality of a subset.
Typically they introduce another order (in addition to the partial order of the
Pareto notions) so that the overall order on Rm is total, and thus all the points
are comparable.

We present in this chapter basic notions of multiobjective optimization,
that are Pareto notions and quality indicator methods. We also highlight
how these notions are used to design well-known multiobjective evolutionary
algorithms.

5.1 Basic notions of multiobjective optimization

In what follows, we assume without loss of generality the minimization of a vector-
valued function

f ∶ x ∈ Rn z→ f(x) = (f1(x), . . . , fm(x)) ∈ Rm (5.1)

that maps a search point from the search space Rn to the objective space f(Rn) ⊆ Rm.

5.1.1 Pareto notions

The minimization of f is generally formalized in terms of the weak Pareto dominance
relation. A search point x ∈ Rn weakly Pareto-dominates (or weakly dominates) an-
other search point y ∈ Rn (written in short as x ⪯ y or as f(x) ⪯ f(y)) if and only if
fi(x) ≤ fi(y) for all i ∈ {1, . . . ,m}. Note also that we can naturally extend the (weak)
Pareto dominance relation to subsets A,B ⊂ Rn as A ⪯ B if and only if for all b ∈ B,
there exists a ∈ A such that a ⪯ b. If the relation ≤ is strict for at least one objective func-
tion, we say that x Pareto-dominates y (and write x ≺ y). The set of non-dominated
search points constitutes the so-called Pareto set, its image under f is called the
Pareto front.

Assume that P is a finite set of Rn. For an element s of P , we say that s is non-
dominated if s is not Pareto dominated by any element of P ∖ {s} . The set of non-
dominated points of P is denoted by Non-dom(P ) and has by definition a Pareto rank
equal to 1. The set Non-dom(P ) is refer to as a Pareto approximation set [206] and
{f(s), s ∈ Non-dom(P )} as the Pareto approximation front, with respect to P.

We define the sequence {Fi}i=1,2,... as follows

Fi = Non-dom(P ∖ {
i−1

⋃
j=1

Fj}) . (5.2)
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Note beforehand that F1 is equal to Non-dom(P ) and that the sequence is station-
ary with a limit equal to the empty set. Denote by l = max

i
{Fi ≠ ∅} . We say that

(F1, . . . ,Fl) are the different layers of P and for each i = 1, . . . , l, the Pareto rank of Fi
is by definition equal to i.

Equation (5.2) gives the different layers of the population P in O(m∣f(P )∣3) com-
putations. Indeed, finding the non-dominated points of P based on (5.2) requires
each element of P to be compared with each other element of P to see whether it
is dominated. This operation costs O(m∣f(P )∣2). And to find the next layer, all non-
dominated points are removed and the same procedure is repeated. In the worse
case, the second layer (with Pareto rank 2) also requires a complexity of O(m∣f(P )∣2),
which happens when O(∣f(P )∣) number of solutions belong to the second layer. The
same argument holds for the other layers, namely when there is one element per
layer. This requires O(m∣f(P )∣3) computations.

In [56], a fast non-dominated sorting method has been proposed, allowing to re-
duce the complexity of finders the different layers of P until O(m∣f(P )∣2). The corre-
sponding algorithm achieving that complexity is presented in Algorithm 4. First, two
entities are always computed for each solution p ∶ the domination count np which is the
number of solutions dominating p, Sp which is the set of solutions that p dominates.
This operation cost O(m∣f(P )∣2). Therefore the solutions for which their domination
count is equal to 0 represents the first non-dominated front (the first layer). Next, for
each solution p with np = 0, each element q of the set Sp is visited and has its dom-
ination count decremented by 1. The q for which nq becomes equal to 0 are put in
a separate list Q, which constitutes the second non-dominated front (second layer).
The procedure continues until all layers are known.

For each solution p, np ≤ ∣f(P )∣−1 (with equality if each layer has exactly one point),
therefore p is visited at most ∣f(P )∣−1 times before np decremented to 0. And whenever
np = 0, the layer of p is detected and p is then removed from the population. The cost of
that operation isO(∣f(P )∣2) since there are at most ∣f(P )∣−1 such solutions. Therefore
the overall time complexity is O(m∣f(P )∣2).

5.1.2 Sorting among a set of non-dominated points

As reminded in the introduction of this chapter, the weak Pareto-dominance is a partial
order in Rm that we denote by ⪯. It is typically not total, i.e. the connex property
(saying that any pair can be compared with respect to ⪯) is not satisfied. To repair this
defect, many workarounds have been proposed throughout the years, that consist
of finding a well-suited metric able to compare the non-dominated points of a set.
A standard technique consists of deriving a metric from a generic indicator called a
quality indicator.
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Algorithm 4 fast-non-dominated-sort(P )
1: Given: a population P , an empty set F1 = ∅
2: for each p ∈ P do
3: Sp = ∅
4: np = 0

5: for each q ∈ P do
6: if p ≺ q then ▷ if p dominates q
7: Sp = Sp⋃{q} ▷ add q to the set of solutions dominated by p
8: else if q ≺ p then
9: np = np + 1 ▷ increment the domination counter of p

10: end if
11: end for
12: if np = 0 then ▷ p belongs to the first front (is of Pareto rank 1)
13: prank = 1

14: F1 = F1⋃{p}
15: end if
16: end for
17: i = 1 ▷ initialize the front counter
18: while Fi ≠ ∅ do
19: Q = ∅ ▷ for the storage of the next front’s members
20: for each p ∈ Fi do
21: for each q ∈ Sp do
22: nq = nq − 1

23: if nq = 0 then ▷ q belongs to the next front
24: qrank = i + 1

25: Q = Q⋃{q}
26: end if
27: end for
28: end for
29: i = i + 1

30: Fi = Q
31: end while

Let us denote by Ωm the set of all Pareto set approximations in Rn, i.e. the set of all
sets containing only non-dominated points. A quality indicator I is defined as [206]1

1Note that in [206], the set of departure is defined as the set of all Pareto front approxima-
tions, while we opt here for the set of all Pareto set approximations. We can take I ○ f from
our definition to get the same formalism than [206].
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I ∶ Ωm Ð→ R (5.3)

A quality indicator is called monotone [203] if A ⪯ B Ô⇒ I(A) ≥ I(B), i.e. if it
does not contradict the weak Pareto dominance relation. If A ≺ B Ô⇒ I(A) > I(B),
then I is said to be strictly monotone.

For a monotone quality indicator I, if S is a Pareto set approximation and s∈ S, then
S∖{s} is still a Pareto set approximation and I(S) ≥ I(S∖{s}).We then denote by ∆I
the indicator contribution, defined for a Pareto set approximation S and an element s
∈ S as:

∆I(s, S) = I(S) − I(S ∖ {s}) . (5.4)

It represents the contribution in I(S) that we lose if we remove s from S.

The indicator improvement is a variant of the indicator contribution. It is denoted
by ∆̃I is defined for a Pareto set approximation S and an element s ∈ S as:

∆̃I(s, S) = I(S ∪ {s}) − I(S) . (5.5)

It represents the indicator value that we gain when we add s to the set S.

Well-known metrics among the performance indicators are the hypervolume con-
tribution [30, 104], the hypervolume improvement [63, 198] and the crowding dis-
tance [56,104]. We give a succinct reminder of these methods in the following.

5.1.3 Hypervolume-based performance indicators

Natural candidates for practically relevant quality indicators are monotone indicators
such as the epsilon-indicator [204], the R2 indicator [78] and strictly monotone indi-
cators such as the hypervolume indicator, that is (with its variants) the unique known
strictly monotone indicator to date.

The hypervolume HVr [205] of a finite set of solutions S ⊂ Rn with respect to
the reference point r ∈ Rm is defined as HVr(S) = λm ({z ∈ Rm;∃y ∈ S, f(y) ≺ z ≺ r}),
where λm is the Lebesgue measure on the objective space Rm and f is the objective
function.

The hypervolume indicator allows to formulate a multiobjective optimization prob-
lem f ∶ Rn → Rm as a single-objective optimization problem where (x1, . . . , xp) ↦
HVr ({x1, . . . , xp}) where p is fixed. Thanks to the strictly monotone quality, an argmax
of this single-objective problem in Rnp is a tuple of p elements of the Pareto set of f . It
is the so-called optimal p-distribution of the Pareto set [16,22].
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Two perfomance indicators are derived from the hypervolume indicator: the hyper-
volume contribution and the hypervolume improvement. The hypervolume contribu-
tion HVCr(s, S) of a search point s ∈ Rn to a set S ⊆ Rn with respect to the reference
point r ∈ Rm is defined as in (5.4). The hypervolume improvement [63,198] of s ∈ Rn to
a set S ⊆ Rn with respect to the reference point r ∈ Rm is defined in (5.5) and denoted
by HVIr(s, S).

Thanks to its unique strictly-monotonic property among the quality indicators, well-
known modern multiobjective evolutionary algorithms consider the hypervolume indi-
cator (along with the hypervolume contribution) as a way to satisfy the second-order
ranking (after the Pareto ranking), during the selection phase of the algorithm [30,
104]. In Figure 5.1, the hypervolume contributions with respect to a reference point r
are shown in the hatched boxes.

Along with the partial order ⪯, we can construct total orders ⪯HVCr
and ⪯HVIr in Rn

as follows:

• If s1 ⪯ s2 then s1 ⪯HVCr
s2 and s1 ⪯HVIr s2.

• For a Pareto set approximation (non-dominated points) S, if (s1, s2) ∈ S2, then

s1 ⪯HVCr
s2 ⇐⇒ HVCr(s1, S) ≥ HVCr(s2, S). (5.6)

s1 ⪯HVIr s2 ⇐⇒ HVIr(s1, S) ≥ HVIr(s2, S). (5.7)

That settles the connex property that is missing with the weak Pareto dominance
relation ⪯ .

5.1.4 The crowding distance

The crowding distance defined in Algorithm 5 is a performance indicator that gives
an estimate of the density of solutions in the neighbor of a specific point in a given
population. For each j = 1, . . . , k, fj(S) is sorted so that the distance of the two neigh-
bors of fj(s) is known (by convention equal to ∞ if s is an extreme point and then may
not have two neighbors with respect to the objective function fj). In Figure 5.2, the
distance of the neighbors of i is determined in the objective functions f1 and f2. After-
wards, the crowding distance is computed as the sum of the above distance values
(normalized in each objective j by fmaxj − fminj where fmaxj represents the maximum of
fj and fminj represents the minimum of fj) corresponding to each objective function.
We denote the crowding distance of the point s ∈ S with respect to the Pareto set ap-
proximation S as c(s, S). It is uses in [56] as a second-order ranking of the selection
method.

The computation of the crowding distances of all elements of S requires then
to sort f(S) with respect to each objective function, which is of time complexity
O(m∣S∣ log(∣S∣)).
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min f1
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Figure 5.1: Hypervolume contributions of non-dominated points with respect
to a reference point r. A filled box (cuboid) with a hatch represents the hyper-
volume contributed by a non-dominated point.

The new total order called ⪯n in Rm [56] that derives from the crowding distance
and the partial order ⪯ is defined as follows:

• If s1 ⪯ s2 then s1 ⪯n s2.

• For a Pareto set approximation (non-dominated points) S, if (s1, s2) ∈ S2, then

s1 ⪯n s2 ⇐⇒ c(s1, S) ≥ c(s2, S).
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Figure 5.2: Computation of the crowding-distance of point i. Filled circles are
points of Pareto rank 1, no filled circles are points of Pareto rank 2.

5.2 Multiobjective evolutionary algorithms with non-
dominated sorting methods

A multiobjective evolutionary algorithm is similar to its single-objective counterpart in
the way that it proceeds. A population is initialized, then evaluations are done with a
fitness function, and finally recombination, mutation and selection are operated.

We present in the following non-dominated sorting multiobjective genetic algo-
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Algorithm 5 crowding-distance-assignment(S)

1: Given: a population of non-dominated points S = {S[1], . . . , S[l]} ⊂ Rn,
with l = ∣S∣

2: for i = 1, . . . , l do
3: c(S[i], S) = 0

4: end for
5: for each objective m do
6: S = sort (S,m) ▷ sort with respect to objective function fm
7: c(S[1], S) = c(S[l], S) =∞ ▷ so that boundary points are always

selected
8: for i = 2, . . . , l - 1 do ▷ for all other points

9: c(S[i], S) = c(S[i], S) + fm(S[i + 1]) − fm(S[i − 1])
max fm −min fm

10: end for
11: end for

rithms that embed the popular family of NSGA algorithms. SMS-EMOA and MO-
CMA-ES are also briefly presented, as examples of multiobjective algorithms using
the non-dominated sorting method. Finally we present some general drawbacks re-
lated to the non-dominated sorting methods.

5.2.1 Non-dominated sorting multiobjective genetic algo-
rithms

The first practical multiobjective genetic algorithm is the Vector Evaluated Genetic
Algorithm (VEGA) [169]. However, its bias towards some specific Pareto-optimal
solutions is too large and then VEGA encounters a major difficulty to produce suf-
ficient diversity among the solutions [178]. That leads to the development of a non-
dominated sorting method in [73] to tackle this problem. That technique has been
firstly incorporated in [67] and in [102]. However it is in [178], with the creation of
the Non-dominated Sorting Genetic Algorithm (NSGA), that it encounters more suc-
cesses by the practitioners. The crossover and mutation operators remain the same
as in single-objective Genetic Algorithms. Only the selection method among the so-
lutions changes. The same observation holds among the variant of NSGA algorithms
in [55,56,113,178,192].

The main principle of the NSGA in [178] is based on a two-way ranking. Firstly,
the solutions are ranked with respect to their Pareto rank (this phase is known as a
ranking selection method). Lastly, the solutions with the same Pareto rank are sorted
with respect to a specific method referred to the niche method.
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Figure 5.3: Illustration of the NSGA procedure.

Within the solutions of the same Pareto rank, a “dummy” fitness is used to always
ensure that the maximum fitness value of a layer is smaller than the minimum fitness
value of another layer which has a smaller Pareto rank, so that the solutions with
smaller Pareto rank are always selected before solutions with greater Pareto rank.
Figure 5.3 illustrates the complete structure of the NSGA algorithm.
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However, the heavy-dependence of the NSGA algorithm to the sharing parameter
σshare (with little a priori information that guarantee a good parameter setting of σshare)
and the expensive time complexity deriving from the sharing function (O(∣P ∣2) where
P is the population) make the use of NSGA less practical. Therefore in [56], NSGA-II
is created, where the second-order ranking is replaced with the crowding distance
that we reminded in 5.1.4. NSGA-II does not depend heavily on a parameter setting
(like NSGA) as it is shown in Algorithm 6, and the crowding distance technique aims
to conduct niching by allocating a crowding distance score to each element of a pop-
ulation. The role of the crowding distance is then to keep a diverse front during the
convergence of the NSGA-II.

The NSGA-II algorithm is well established and still used in a variety of very recent
industries like automatic refactoring [151], automated Machine learning [175]. And in
the multiobjective research community, NSGA-II has been used for the design of Mul-
tiobjective Bayesian Optimization Algorithm (Multiobjective BOA) developed in [124].

Algorithm 6 NSGA-II algorithm
1: Given: t = 0, the parent population P0 with ∣P0∣ = N, the offspring popula-

tion Q0

2: while not stopping criterion do
3: Rt = Pt⋃Qt ▷ combine parent and offspring population
4: F = fast-non-dominated-sort(Rt) ▷ F = (F1,F2, . . . ), all non-dominated

fronts of Rt
5: Pt+1 = ∅ and i = 1

6: while ∣Pt+1∣ + ∣Fi∣ ≤ N do ▷ until the parent population is filled
7: crowding-distance-assignment(F) ▷ compute crowding-distance in Fi
8: Pt+1 = Pt+1⋃Fi i = i + 1

9: end while
10: sort(Fi,≺n) ▷ sort in descending order using ≺n
11: Pt+1 = Pt+1⋃Fi [1 ∶ (N − ∣Pt+1∣)] ▷ choose the first (N − ∣Pt+1∣) elements

of Fi
12: Qt+1 = make new pop(Pt+1) ▷ use selection, crossover and mutation to

create a new population Qt+1

13: t = t + 1 ▷ increment the generation counter
14: end while

5.2.2 SMS-EMOA

SMS-EMOA [30] is an Evolutionary Multiobjective Optimization Algorithm using the
non-dominated sorting method and the hypervolume contribution as the first and sec-
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ond order ranking during the selection phase. It stands for S metric selection Evolu-
tionary Multiobjective Optimization Algorithm, where S metric refers to the hypervol-
ume indicator.

SMS-EMOA is inspired by archiving strategies presented in [125, 127], and uses
simulated binary crossover (SBX) and a polynomial mutation operator [54]. The op-
timization algorithm is recalled in Algorithm 7. Given a non-empty population P ⊂ Rn

of λ individuals, we generate a new element p ∈ Rn from P using the above variation
operators. Then the subset S of the elements of P ⋃{p} with the largest Pareto rank
is found using the non-dominated sorting algorithm presented in Algorithm 4. Later,
an element of S minimizing s ↦ HVCr(s, S) where r is a reference point is chosen
and removed from P ⋃{p}. This process is repeated until a stopping criteria is met.

Algorithm 7 SMS-EMOA
1: Given: initialize randomly a population P ⊂ Rn of λ individuals
2: while not stopping criterion do
3: p ←Ð generate(P) ▷ generate an offspring by variation.
4: (F1,F2, . . . ,Fv) = fast-non-dominated-sort(P ⋃{p}), S = Fv ▷ all

non-dominated fronts of P ⋃{p}.
5: choose a reference point r

6: q ←Ð an element of arg mins∈S HVCr(s, S)
7: P ←Ð (P ⋃{p}) ∖ {q} ▷ select λ best individuals.
8: end while
9: return P

The experiments in [30] show that SMS-EMOA is well-suited for an optimization
with two or three objectives, if the number of individuals is fixed and small. It out-
performs NSGA-II, with a more diversified Pareto approximation thanks to the hy-
pervolume indicator. SMS-EMOA also focuses the evolutionary search towards less
explored regions near the Pareto set.

In [66], the SMS-EMOA algorithm uses the hypervolume contribution as a perfor-
mance indicator to approximate the optimal distribution of p points on the Pareto set.
The corresponding Pareto front is empirically shown to be well-distributed [63,127].

5.2.3 MO-CMA-ES

The Multiobjective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES) is
introduced in [104, 193]. It is based on an elitist variant of the true CMA-ES (which
is non-elitist). For the selection method, MO-CMA-ES has also a two-way ranking,
with the first ranking being the Pareto rank. The performance indicator for the sec-
ond ranking can be either the crowding distance (c-MO-CMA-ES) or the hypervolume
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contribution (s-MO-CMA-ES). Therefore c-MO-CMA-ES differs from NSGA-II and s-
MO-CMA-ES from SMS-EMOA mainly due to the variation operators that guide the
genetic algorithm or the evolution strategy. With the elitist CMA-ES defined in Sec-
tion 1.3.2, (1 + λ)-CMA-ES, λ can be chosen as small as 1.

Based on the (1 + λ)-CMA-ES introduced in Section 1.3.2, the multiobjective vari-
ant is constructed by evolving a population of λMO individuals, where each individual
is a candidate solution for an elitist (1 + λ)-CMA-ES. The corresponding algorithm is
called λMO × (1 + λ)-MO-CMA-ES.

Algorithm 8 depicts the evolution of a λMO × (1 + 1)-MO-CMA-ES, which can be
naturally generalized to a λMO × (1 + λ)-MO-CMA-ES version. First, we consider λMO

(1 + 1)-CMA-ES denoted by es1, . . . , esλMO
, we then make a copy of each esk for k =

1, . . . , λMO, and replace the candidate solution of each copy by the offspring of its
original’s parent. Then all the 2λMO parents are merged in one population Q, that we
sort with a two-way ranking order (the Pareto ranking and then either the hypervolume
contribution or the crowding distance) denoted by ≺Q. Then, the covariance matrices
of the λMO copied evolution strategies are updated, the same for all the 2λMO step-
sizes. For k = 1, . . . , λMO, the success rate is the same for esk and its copy, denoted
by λsucc,Q,k and is equal to 1 if the offspring is smaller than the parent with respect to
≺Q and 0 otherwise. And finally, the best λMO candidate solutions among the 2λMO

become the new population.

The experiments in [104] show that the MO-CMA-ES variant with the hypervol-
ume contribution, namely s-MO-CMA-ES, generally outperforms the variant with the
crowding distance, i.e. c-MO-CMA-ES and the NSGA-II. And for non-separable prob-
lems, s-MO-CMA-ES significantly outperforms NSGA-II.

5.2.4 Drawbacks of the non-dominated sorting methods

We have presented multiobjective optimization algorithms based on a two-way rank-
ing, with an elitist selection. This type of algorithms prevails among the multiobjective
evolutionary algorithms. Recently in [181], non-elitist evolutionary multi-objective op-
timizers are shown to experimentally perform better than their elitist counter-parts.

Another observation contests the quality of the points that the non-dominated sort-
ing algorithms presented above aim to obtain. In Figure 5.4, six points are plotted
with their corresponding hypervolume improvement’s level sets. The left plot is in the
search space and the right plot is in the objective space. We observe the total order
effect of the hypervolume improvement as the level sets are not flat on same Pareto
rank regions, which could not be done by the Pareto ranking. However the dominated
point goes towards the direction orthogonal to the level sets. It steers towards a re-
gion already occupied by a non-dominated point. Therefore by observing the level
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Algorithm 8 λMO × (1 + 1)-MO-CMA

1: Given: g = 0, initialize a
(g)
k for k = 1, . . . , λMO

2: while not stopping criterion do
3: for k = 1, . . . , λMO do
4: a′

(g+1)

k ←Ð a
(g)
k

5: x
g+1
k ∼ N (x(g)parent, σ(g)

2

C(g))
6: end for
7: Q(g) = {a′(g+1)

k , a
(g)
k ; 1 ≤ k ≤ λMO}

8: for k = 1, . . . , λMO do
9: updateStepSize(a(g)k , λ

(g+1)

succ,Q(g),k
) ▷ defined in Algorithm 1

10: updateStepSize(a′(g)k , λ
(g+1)

succ,Q(g),k
)

11: updateCovariance(a′(g)k ,
x
′(g+1)
k −x

(g)
k

σ
(g)
k

) ▷ defined in Algorithm 2

12: end for
13: for i = 1, . . . , λMO do
14: Q

(g)
≺∶i ←Ð i first elements in Q(g) sorted with respect to the ≺Q(g) order.

15: a
g+1
i ←Ð Q

(g)
≺∶i

16: end for
17: g ←Ð g + 1

18: end while

sets, it follows that the two-way ranking tends to make the final solutions crowded in
some regions.
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Figure 5.4: Level sets of the two-way ranking fitness selection with the hyper-
volume contribution for a bi-objective problem with two spheres of optimum
respectively at (0, 0) and at (1, 0). Left: search space. Right: objective space.
The black dot indicates the reference point of [1.1, 1.1].
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In this chapter we analyze theoretical properties of bi-objective convex-
quadratic problems. We give a complete description of their Pareto set and
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prove the convexity of their Pareto front. We show that the Pareto set is a
line segment when both Hessian matrices are proportional.

We then propose a novel set of convex-quadratic test problems, describe
their theoretical properties and the algorithm abilities required by those test
problems. This includes in particular testing the sensitivity with respect to
separability, ill-conditioned problems, rotational invariance, and whether the
Pareto set is aligned with the coordinate axis.

6.1 Introduction

Convex-quadratic functions are among the simplest yet very useful test functions in
optimization. Given a positive definite matrix Q of Rn×n, a convex-quadratic function
is defined as

f(x) = 1

2
(x − x∗)⊺Q(x − x∗)

where x∗ is the unique optimum of the function. The Hessian of f coincides with the
matrix Q. The level-sets of f defined as {x ∈ Rn ∶ (x − x∗)⊺Q(x − x∗) = c, c ≥ 0} are
hyper-ellipsoids whose main axes are the eigenvectors of the matrix Q with length
proportional to the inverse of the eigenvalues of Q.

By changing the eigenvalues and eigenvectors of Q, one can model different es-
sential difficulties in numerical optimization: if the eigenvectors are not aligned with
the coordinate axes (if the matrix Q is not diagonal), then the associated function
is non-separable: it cannot be efficiently optimized by coordinate-wise search. In
practice, difficult optimization problems are non-separable. Having a large condition
number for Q, that is a large ratio between the largest and smallest eigenvalue of Q
models ill-conditioned problems where the characteristic scale along different direc-
tions is very different. Ill-conditioning is very frequent in real-world problems. They
arise naturally as one often optimizes quantities that have different natures and differ-
ent intrinsic scales (some variables can be akin to time, others to weights, ...) such
that a unit change along each variable can have a completely different impact on the
function optimized. More generally, the eigenspectrum of Q entirely characterizes the
scale among the different axes of the hyper-ellipsoidal level sets and parametrizes
the difficulty of the function: from the arguably easiest function, the sphere function
f(x) = ∑n

i=1 x
2
i , to very difficult ill-conditioned functions where condition numbers of Q

of up to 1010 have been observed in real-world problems, for example in [50].

Convex-quadratic functions have been central to the design of several important
classes of optimization algorithms for single-objective optimization. Newton or quasi-
Newton methods use or learn a second order approximation of the objective func-
tion optimized [148]. This second order approximation is done by convex-quadratic
functions (assuming that the function is twice continuously differentiable and convex).
Introduced more recently, the class of derivative-free-optimization (DFO) trust-region
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based algorithms builds a second-order approximation of the objective function by
interpolation [156]. In the evolutionary computation (EC) context, convex-quadratic
functions have also played a central role for the design of algorithms like CMA-ES:
they have been intensively used for designing the algorithm and the performance of
the method has been carefully quantified on different eigenspectra of the matrix Q for
different condition numbers [95].

Given that a multiobjective problem is “simply” the simultaneous optimization of
single-objective problems, the typical difficulties of each objective function are the
same as the typical difficulties of single-objective problems. In particular non-separability
and ill-conditioning are important difficulties that the single functions have. Therefore,
combining convex-quadratic problems seems natural for testing and designing mul-
tiobjective algorithms. This has already been done in the past for instance for the
design of multiobjective versions of CMA-ES [104] or as a subset of the biobjective
BBOB test function suite [39,188].

Yet, while the difficulties encoded and parametrized within a convex-quadratic prob-
lem are well-understood for single-objective optimization, the situation is different for
multiobjective optimization, starting from bi-objective optimization. Simple properties
like convexity of the Pareto front associated to bi-objective convex-quadratic problems
as well as properties of the Pareto set have not been systematically investigated. Ad-
ditionally, convex-quadratic bi-objective test problems used in the literature do not
capture all important properties one could be testing with convex-quadratic problems.
There is more degree of freedom than for single objective optimization that is not ex-
ploited: we can combine two functions having the same Hessian matrix, place the
optima on the functions both on one axis of the search space, ... and this will affect
how the Pareto set and Pareto front look like.

This paper aims at filling the gaps from the literature on multiobjective optimization
with respect to convex-quadratic problems. More precisely the objectives are twofold:
clarify theoretical Pareto properties of bi-objective problems where each function is
convex-quadratic and define sets of bi-objective convex-quadratic problems that allow
to test different (well-understood) difficulties of bi-objective problems. The paper is
organized as follows: in subsection 6.2 we present theoretical properties of convex-
quadratic problems and discuss new test functions in subsection 6.3.

6.2 Theoretical Properties of Bi-Objective Convex-
Quadratic Problems

6.2.1 Preliminaries

We consider bi-objective problems (f1, f2) defined on the search space Rn.
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The Pareto set of (f1, f2) is defined as the set of all non-dominated (or efficient) so-
lutions {x ∈ Rn ∣ /∃y ∈ Rn ; f1(y) ≤ f1(x) and f2(y) ≤ f2(x) and at least one inequality is strict}.
The image of the Pareto set (in the objective space R2) is called the Pareto front of
(f1, f2). We first remark that the Pareto set remains unchanged if we compose the
objective functions with a strictly increasing function. More precisely the following
lemma holds.
Lemma 15 (Invariance of the Pareto set to strictly increasing transformations of the
objectives). Given a bi-objective problem x ↦ (f1(x), f2(x)) and g1 ∶ Im(f1) z→ R,
g2 ∶ Im(f2) z→ R two strictly increasing functions, then (f1, f2) and (g1 ○ f1, g2 ○ f2)
have the same Pareto set.

Proof. If x is not in the Pareto set of (g1 ○ f1, g2 ○ f2), then their exists y such that
g1 ○ f1(y) ≤ g1 ○ f1(x) and g2 ○ f2(y) ≤ g2 ○ f2(x) with one inequality being strict, which
is equivalent to the fact that f1(y) ≤ f1(x) and f2(y) ≤ f2(x), with one inequality being
strict. And vice versa. Hence x is not in the Pareto set of (g1 ○ f1, g2 ○ f2) if and only
if it is not in the Pareto set of (f1, f2), which shows that both problems have the same
Pareto set.

From now on (f1, f2) denote a bi-objective convex-quadratic problem. More pre-
cisely, let x1, x2 be two different vectors in Rn, and α,β > 0. Let Q1 and Q2 (in Rn2

)
be two positive definite matrices and consider the bi-objective minimization problem
(f1, f2) defined for x ∈ Rn as

f1(x) =
1

α
(x − x1)⊺Q1 (x − x1) , f2(x) =

1

β
(x − x2)⊺Q2 (x − x2) . (6.1)

We denote this general bi-objective convex-quadratic problem by P, and assume that
the optimization goal is to find (an approximation of) the Pareto set of P.

6.2.2 Pareto set

We characterize in this subsection the Pareto set of P. We use the linear scalarization
method to obtain the whole Pareto set. This is doable, whenever f1 and f2 are strict
convex functions (see [112]). Then the Pareto set of P is described by the solutions
of

min
x∈Rn

(1 − t) f1(x) + tf2(x) , for t ∈ [0,1] .

We prove in the next proposition that the Pareto set of P is a continuous and
differentiable parametric curve of Rn whose extremes are x1 and x2.
Proposition 29. The Pareto set of P is the image of the function ϕ defined as

ϕ ∶ t ∈ [0,1]↦ [(1 − t)Q1 + tQ2]−1 [(1 − t)Q1x1 + tQ2x2] . (6.2)
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The function ϕ is differentiable and verifies for any t in [0,1]
(1 − t)Q1 (ϕ(t) − x1) = tQ2 (x2 − ϕ(t)) , (6.3)

t [(1 − t)Q1 + tQ2]ϕ′(t) = Q1 (ϕ(t) − x1) . (6.4)

Hence, the Pareto set is a continuous (differentiable) curve of Rn whose extremes are
x1 = ϕ(0) and x2 = ϕ(1).

Proof. For any s in [0,1], define gs
def= (1 − s)f1 + sf2. We observe that gs, like f1 and

f2, is strictly convex, differentiable, and diverges to ∞ when ∥x∥ goes to ∞ (where ∥x∥
denotes the Euclidean norm). Then its critical point minimizes gs. Let us now compute
the gradient of gs times αβ for x in Rn:

αβ∇gs(x) = (1 − s)αβ∇f1(x) + sαβ∇f2(x) = 2(1 − s)β Q1(x − x1) + 2sαQ2(x − x2)
Thus, αβ∇gs(x) = 2 [(1 − s)β Q1 + sαQ2]x − 2(1 − s)β Q1x1 − 2sαQ2x2.

Then it follows that for any s in [0,1], the point that minimizes gs (its critical point),

denoted by x̃s verifies
(1 − s)β Q1 + sαQ2

(1 − s)β + sα x̃s =
(1 − s)β Q1x1 + sαQ2x2

(1 − s)β + sα . Since [0,1] ∋

s z→ sα

(1 − s)β + sα ∈ [0,1] is bijective (its derivative is s z→ αβ

((1 − s)β + sα)2 ), then it

is equivalent to parametrize the Pareto set with t def= sα

(1 − s)β + sα . Hence, the Pareto

set is fully described by (ϕ(t))t∈[0,1] such that:

[(1 − t)Q1 + tQ2]ϕ(t) = (1 − t)Q1x1 + tQ2x2, (6.5)
(1 − t)Q1 (ϕ(t) − x1) = tQ2 (x2 − ϕ(t)) . (6.6)

The function t → [(1 − t)Q1 + tQ2]−1 is differentiable as inverse of a differentiable and
invertible matrix function. Then ϕ is differentiable.
We differentiate (6.5) and multiply by t to obtain t [(1 − t)Q1 + tQ2]ϕ′(t) = tQ2x2 −
tQ1x1+tQ1ϕ(t)−tQ2ϕ(t). Injecting in (6.6) gives: t [(1 − t)Q1 + tQ2]ϕ′(t) = Q1 (ϕ(t) − x1),
for any t ∈ [0,1] .

We obtain as corollary that when f1 and f2 have proportional Hessian matrices,
then the Pareto set is the line segment between the optima of the functions f1 and f2.
Corollary 5. In the case where f1 and f2 have proportional Hessian matrices, the
Pareto set of P is the line segment between x1 and x2.

Proof. In that case, their exists a real γ such that
Q1

α
= γQ2

β
. Then, Proposition 29

implies that for any t ∈ [0,1],

ϕ(t) = [(1 − t)γα
β
Q2 + tQ2]

−1

[(1 − t)γα
β
Q2x1 + tQ2x2] =

γα(1 − t)x1 + tβx2

(1 − t)αγ + tβ ,

which is [x1, x2], since [0,1] ∋ tz→ tβ
(1−t)αγ+tβ ∈ [0,1] is a bijection.
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Using Lemma 15, we directly deduce the following corollary.
Corollary 6. If f1 and f2 have proportional Hessian matrices, g1 ∶ Im(f1) z→ R,
g2 ∶ Im(f2) z→ R are two strictly increasing functions, then the Pareto set of the
problem (g1 ○ f1, g2 ○ f2) is the line segment between x1 and x2.

As an example, the double-norm problem defined as:
(x→ x − x1 2, x→ x − x2 2) can be seen as: (g ○f1, g ○f2) where g(x) = √

x, f1(x) =
x − x1

2
2 and f2(x) = x − x2

2
2.

Then (g ○ f1, g ○ f2) has the same Pareto set than the double-sphere problem (f1, f2),
which is the line segment between x1 and x2. Therefore the Pareto front of the double-
norm problem is described by (t x2 − x1 2, (1 − t) x2 − x1 2)t∈[0,1]. Thereby, the front
is described by the function uz→ x2−x1 2−u. We recover the well-known result that
the double-norm problem has a linear front.

Corollary 6 allows also to recover the Pareto set description for the one-peak sce-
nario in the Mixed-Peak Bi-Objective Problem (see [122] and [123]).1

In general, the Pareto set of a bi-objective convex-quadratic problem is not nec-
essarily a line segment. Consider for instance for n = 2 the case where x1 = (0,0)⊺,
x2 = (1,1)⊺ and where we generate two different matrices Q1 and Q2 by randomly
rotating a diagonal matrix with eigenvalues 1 and 10. Two resulting Pareto fronts as-
sociated to different random rotations are depicted in Figure 6.1.

For n = 10, we also define P10 setting x1 = (0, . . . ,0)⊺, x2 = (1, . . . ,1)⊺ and Q1 and
Q2 as diagonal matrices such that for i = 1, . . . ,10

Q1(i, i) = 100
i−1
9 ,and Q2(i, i) = 10

i−1
9 . (6.7)

The different coordinates of the Pareto set given in (6.3) are depicted in Figure 6.1.

6.2.3 Convexity of the Pareto front

Corollary 5 proves that in the case where we have proportional Hessian matrices
in problem P, the Pareto set is a line segment. Then it is reasonable to expect a
simple analytic expression for the corresponding Pareto front. In what follows, we
will express the Pareto front of a bi-objective problem as a one-dimensional function
u ∈ R↦ g(u). Formally, if t ∈ R↦ ϕ(t) ∈ Rn is a parametrization of the Pareto set, then
the function g satisfies f2(ϕ(t)) = g(f1(ϕ(t)). It is well-known that when (f1, f2) is the
double-sphere, that is f1(x) = 1

n ∑
n
i=1 x

2
i and f2(x) = 1

n ∑
n
i=1(xi − 1)2, then the Pareto

front expression is given by g(u) = (1 −√
u)2 [65]. In the next proposition, we show

1In that scenario, we set f1(x) = (x − c)⊺ Σ (x − c), f2(x) = (x − c′)⊺ Σ′ (x − c′) (f1 and f2

are seen as squares of the Mahalanobis distance to the optima, with respect to the Hessian

matrices), g1(u) = 1 − h1

1 +
√
u
r1

, g2(u) = 1 − h2

1 +
√
u
r2

.
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Figure 6.1: Left: Two Pareto sets for n = 2 represented in R2 with Q1 and Q2

randomly sampled and different. Right: Pareto set for n = 10 with matrices
given in (6.7) represented as the function of the parameter t given in (6.3).
The coordinates are ordered, the first one is on top and last one below.

that this expression of the Pareto front holds (up to a normalization) for all bi-objective
convex-quadratic problems, provided the Hessians of f1 and f2 are proportional.
Proposition 30. When we have proportional Hessian matrices in the problem P, the
Pareto front is described by the following continuous and convex function:

u ∈ [0, κα]↦ κβ (1 −
√

u

κα
)

2

,where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κα =
(x2 − x1)⊺Q1 (x2 − x1)

α

κβ =
(x2 − x1)⊺Q2 (x2 − x1)

β

(6.8)

Proof. Denote u def= f1 ○ϕ and v def= f2 ○ϕ, where ϕ ∶ [0,1] ∋ tz→ (1− t)x1 + tx2 ∈ [x1, x2]
is the line segment between x1 and x2.
For any t ∈ [0,1], u(t) = f1(ϕ(t)) = 1

α
(x2 − x1)⊺Q1 (x2 − x1) t2, v(t) = f2(ϕ(t)) =

1
β
(x2 − x1)⊺Q2 (x2 − x1) (1 − t)2 . It follows that for any t ∈ [0,1]:

v(t) = (x2 − x1)⊺Q2 (x2 − x1)
β

⎛
⎝

1 −
¿
ÁÁÀ αu(t)

(x2 − x1)⊺Q1 (x2 − x1)
⎞
⎠

2

.

From Proposition 30, we deduce that if we set κα = κβ = 1, then the Pareto front
will be independent from the Hessian matrix and will be described by the front of the
double-sphere problem: u↦ (1 −√

u)2.
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We investigate now the general case where the Hessians of the functions f1 and f2

are not necessarily proportional. Yet, before digging into the general convex-quadratic
problems, we show a result on the shape of the Pareto front of a larger class of bi-
objective problems.
Theorem 13. Let f1 ∶ Rn z→ R and f2 ∶ Rn z→ R be strict convex differentiable func-
tions such that the problem (f1, f2) has, as Pareto set, the image of a differentiable
function ϕ ∶ [0,1]z→ Rn.

Assume that: (i) f1○ϕ is strictly monotone, (ii) lim
t→0

(f1 ○ ϕ)′(t)
t

≠ 0 and (iii) lim
t→1

(f2 ○ ϕ)′(t)
1 − t ≠

0. Then, the Pareto front is a convex curve, with vertical tangent at t = 0 and
horizontal tangent at t = 1.

Proof. Denote by u def= f1 ○ ϕ and v def= f2 ○ ϕ. Then the Pareto front is described by the
parametric equation (u(t), v(t)) , for t ∈ [0,1]. We will show that u′v′′ − u′′v′ > 0 which
implies the convexity of the curve.

By linear scalarization (see [112], or weighted sum method in [76]), as in the proof
of Proposition 29, we have (1 − t)∇f1(ϕ(t)) + t∇f2(ϕ(t)) = 0. If we take the scalar
product of the former equation with ϕ′(t), we obtain that

(1 − t) ⟨∇f1(ϕ(t)) , ϕ′(t)⟩ + t ⟨∇f2(ϕ(t)) , ϕ′(t)⟩ = 0. (6.9)

Moreover, for any differentiable function f with suitable domains,

(f ○ ϕ)′ (t) = d (f ○ ϕ)t (1) = dfϕ(t) (dϕt(1)) = ⟨∇f(ϕ(t)) , ϕ′(t)⟩ . (6.10)

Inserting this in (6.9) shows (1 − t) (f1 ○ ϕ)′ (t) + t (f2 ○ ϕ)′ (t) = 0, which is the same
as:

(1 − t)u′(t) + tv′(t) = 0, for any t ∈ [0,1]. (6.11)

Since lim
t→0

(f1 ○ ϕ)′(t)
t

exists, (6.11) implies that:

v′(t) = (1 − 1

t
)u′(t), for any t ∈ [0,1]. (6.12)

By deriving (6.12) and multiplying by u′(t) in a suitable way, we obtain

u′(t)v′′(t) = 1

t2
u′(t)2 + (1 − 1

t
)u′(t)u′′(t), for any t ∈ [0,1]. (6.13)

Using (6.12) in (6.13) gives u′(t)v′′(t) = 1
t2
u′(t)2+v′(t)u′′(t). Thanks to the assertions

on f1 ○ ϕ, we have that u′(t)v′′(t) − u′′(t)v′(t) > 1
t2
u′(t)2 > 0, for any t ∈ [0,1]. Thus,

the Pareto front is a convex curve.
Evaluating (6.11) at t = 0 and at t = 1 implies that u′(0) = 0, v′(1) = 0. And if we
divide (6.11) by t (resp. 1 − t) and take the limit to 0 (resp. 1), it follows that v′(0) ≠ 0
(resp. u′(1) ≠ 0). Thereby we also obtain the derivative assumptions on the extremal
points.
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Remark 1. Note that the above result about the tangents in the extremal points have
additional consequences: according to [21], the assumptions of Theorem 13 imply
that the extremal points are never included in any optimal µ-distributions of the Hy-
pervolume indicator.

We now deduce the convexity of the Pareto front for convex-quadratic bi-objective
problems and characterize the derivatives at the extremes of the front.
Corollary 7. For the problem P, the Pareto front is a convex curve, with vertical
tangent at (0, f2(x1)) and horizontal tangent at (f1(x2),0).

Proof. We will show that f1 ○ ϕ verifies the assumptions of Theorem 13. From (6.10)
we know that

(f1 ○ ϕ)′ (t) = ⟨∇f1(ϕ(t)) , ϕ′(t)⟩ . (6.14)

In addition, ∇f1(ϕ(t)) = 2
α
Q1 (ϕ(t) − x1) and Eq. (6.4) of Proposition 29 gives

t [(1 − t)Q1 + tQ2]ϕ′(t) = Q1 (ϕ(t) − x1) .

Multiplying (6.14) by t ∈ [0,1] shows

t (f1 ○ ϕ)′ (t) =
2

α
⟨[(1 − t)Q1 + tQ2]−1Q1 (ϕ(t) − x1) , Q1 (ϕ(t) − x1)⟩ . (6.15)

Since [(1 − t)Q1 + tQ2]−1 is a positive definite matrix, then t (f1 ○ ϕ)′ (t) ≥ 0. Let us
prove that ϕ(t) ≠ x1, for t ∈ (0,1]. By contradiction, assume that there exists t ∈ (0,1]
such that ϕ(t) = x1. Then Equation (6.3) in Proposition 29 shows that: tQ2 (x2 − ϕ(t)) =
(1 − t)Q1 (ϕ(t) − x1) = 0, which implies that x2 = ϕ(t) = x1: that is impossible since
x1 ≠ x2. Hence, by reductio ad absurdum, ϕ(t) ≠ x1, for t ∈ (0,1]. From (6.15), it
follows that

(f1 ○ ϕ)′ (t) > 0, for any t ∈ (0,1]. (6.16)

If we use again the relation from Proposition 29, we obtain

lim
t→0

Q1 (ϕ(t) − x1)
t

= Q2 (x2 − ϕ(0)) = Q2 (x2 − x1) .

Injecting this result in (6.15), it follows that:

lim
t→0

(f1 ○ ϕ)′(t)
t

= 2

α
⟨Q−1

1 Q2 (x2 − x1) , Q2 (x2 − x1)⟩

> 0, since (Q−1
1 is a positive definite matrix) (6.17)

In the same way as above, we obtain that

lim
t→1

(f2 ○ ϕ)′(t)
1 − t = − 2

β
⟨Q−1

2 Q1 (x1 − x2) , Q1 (x1 − x2)⟩ < 0 . (6.18)

Equations (6.16), (6.17), and (6.18) allow us to apply Theorem 13.
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We illustrate the previous corollary by taking three random instances of our general
problem P, with the scalings always chosen as α = β = max (f1(x2), f2(x1)). The
Pareto fronts are presented in Figure 6.2. We observe that the Pareto fronts are
convex and their derivatives are infinite on the left and zero on the right.

Figure 6.2: Left: Two Pareto fronts for n = 2 represented in R2 with Q1,Q2

randomly sampled and different. Right: Pareto front for n = 10 with matrices
given in (6.7).

6.3 New Classes of bi-objective test functions

Bi-objective problems using convex-quadratic functions have been used to test MO
algorithms (see for example [104]). Problems where both Hessian matrices have the
same eigenvalues have been used in particular. Yet, test problems considered so
far do not explore the full possibilities of properties that can be tested. We therefore
extend the test problems from the literature to be able to capture more properties.
To do so we present seven classes of bi-objective convex-quadratic problems where
the eigenspectra of both Hessian matrices are equal. A natural extension of these
classes is to use in each objective different eigenspectra, ∆, which leads in general
to a nonlinear Pareto set.

The proposed construction parametrizes, apart from search space translations, all
bi-objective convex-quadratic functions with identical Hessian eigenspectrum in seven
classes with increasing difficulty. The particular focus is on problems with a linear
Pareto set in five of the seven classes. Some classes represent essentially different
problems, hence we do not expect uniform performance over all problems within each
class. Independently of the given construction, invariance to search space rotation
can be tested by applying an orthogonal transformation to the input argument.
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We start from a diagonal matrix ∆ with positive entries that define a separable
convex-quadratic function f(x) = 1

α
x⊺∆x. For instance, ∆ can be equal to the identity

and we recover the sphere function. If ∆(1,1) = 1, ∆(n,n) = 108 and ∆(i, i) = 104, we
recover the separable cig-tab function and if ∆(i, i) = 106 i−1

n−1 , we recover the separable
ellipsoid function.

In the sequel, O and O2 denote orthogonal matrices. O1 is either a permutation
matrix, or an orthogonal matrix, depending on the context. The classes of problems
proposed are summarized in Table 6.1 and Table 6.2.

The Sep problem classes

We define the Sep-k class by considering two separable functions and place the op-
timum of f1 in 0 and of f2 in the kth unit vector: fsep-k

1,∆ (x) = 1
α
(x − x1)⊺ ∆ (x − x1) and

fsep-k
2,∆ (x) = 1

β
(x − x2)⊺ ∆ (x − x2), where x1 = (0, . . . ,0)⊺ and x2 = (0, . . . ,0,√n,0, . . . ,0)⊺

where
√
n is at coordinate k. According to Corollary 5, the Pareto set of this class of

problems is the line segment between the optima of the single-objective problems.
These problems allow to test the performance on separable problems with a Pareto
set aligned with the coordinate axis and check the sensibility with respect to different
axes (by varying k).

For the Sep-O class, we only change the location of the optimum of the second
objective by taking x2 = O(1, . . . ,1)⊺. If O has elements /∈ {−1,0,1}, the Pareto set is
not anymore aligned with the coordinate system, but the objectives f1 and f2 them-
selves remain separable. Comparing with class Sep-k, we can test whether having
the Pareto set not aligned with the coordinate axis has an influence on the perfor-
mance of the algorithm.

For the Sep-Two-O class, we define fsep-Two-O
1,∆ (x) = 1

α
(x − x1)⊺ ∆ (x − x1) and

fsep-Two-O
2,∆ (x) = 1

β
(x − x2)⊺O⊺

1 ∆O1 (x − x2) where O1 is a permutation matrix, x1 =
(0, . . . ,0)⊺ and x2 = O(1, . . . ,1)⊺. The matrix O⊺

1 ∆O1 is also diagonal, and thereby
each function is separable. Yet the Pareto set is generally not a line segment anymore
since we have different Hessian matrices. We can test here the difficulty of having a
nonlinear Pareto set on separable functions.

The One and the One-O problem classes.

We now consider non-separable problems with a line segment as Pareto set. We de-
fine fone

1,∆ (x) = 1
α
(x − x1)⊺O⊺

1 ∆O1 (x − x1) and fone
2,∆ (x) = 1

α
(x − x2)⊺O⊺

1 ∆O1 (x − x2),
where O1 is an orthogonal matrix, x1 = (0, . . . ,0)⊺ and x2 = (1, . . . ,1)⊺. We replace x2

by Ox2 to obtain the One-O problems.
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Table 6.1: Unconstrained quadratic bi-objective test problems: ∆ is a positive
diagonal matrix, O is an orthogonal matrix, O1 is a permutation matrix.

Sep-k Sep-O Sep-Two-O

x1 (0, . . . , 0)⊺ (0, . . . , 0)⊺ (0, . . . , 0)⊺
x2 (0, ..,

√
n, .., 0)⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
√
n is at row k

O(1, . . . , 1)⊺ O(1, . . . , 1)⊺

Q1,Q2 ∆, ∆ ∆, ∆ ∆, O⊺

1∆O1

Le
ve
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et

s

These two problem classes allow to test the performance on non-separable prob-
lems that have a line segment as Pareto set comparing in particular to class Sep-O.
Up to a reformulation, the problems ELLI1 and CIGTAB1 from [104] are from the One-
O problem class. Generally, we do not expect different performance over all problems
of the One vs the One-O class.

The Two and the Two-O problem classes.

For these classes, we rotate each function independently; then the Pareto set is gen-
erally not a line segment anymore. We define f two

1,∆ (x) = 1
α
(x − x1)⊺O⊺

1 ∆O1 (x − x1)
and f two

2,∆ (x) = 1
α
(x − x2)⊺O⊺

2 ∆ O2 (x − x2), with O1 orthogoanal, x1 = (0, . . . ,0)⊺ and
x2 = (1, . . . ,1)⊺. The corresponding O problems are obtained with Ox2 replacing x2.
All presented classes are subsets of the Two-O class. ELLI2 and CIGTAB2 from [104]
fall within the Two-O class. Compared to the respective One classes, we can test the
impact of having a nonlinear Pareto set.

6.4 Summary

We have presented an analytic description of the Pareto set for quadratic bi-objective
problems. We have shown that the Pareto set is a line segment when both objectives
have proportional Hessian matrices and deduced a complete description of the Pareto
front in that case. We have also proven that some properties of the double-sphere are
conserved in a wider framework that includes the general quadratic bi-objective prob-
lem: the Pareto front remains convex and its vertical and horizontal tangents remain
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Table 6.2: Unconstrained quadratic bi-objective test problems: ∆ is a positive
diagonal matrix, O, O1 and O2 are three independent orthogonal matrices.

One One-O Two Two-O

x1 (0, . . . , 0)⊺ (0, . . . , 0)⊺ (0, . . . , 0)⊺ (0, . . . , 0)⊺
x2 (1, . . . , 1)⊺ O(1, . . . , 1)⊺ (1, . . . , 1)⊺ O(1, . . . , 1)⊺

Q1,Q2 O⊺

1∆O1, O⊺

1∆O1 O⊺

1∆O1, O⊺

1∆O1 O⊺

1∆O1, O⊺

2∆O2 O⊺

1∆O1, O⊺

2∆O2

Le
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at the extremal points of the front. Such assumptions on the derivatives imply that
when looking at the optimal µ-distributions of the Hypervolume indicator, the extremal
points are always excluded [21]. We have also presented several classes of problems,
where each one tests a specific capability of the multiobjective algorithm.
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volume improvement: COMO-CMA-ES and the sofomore framework, Proceedings of
the Genetic and Evolutionary Computation Conference, 2019, pp 638–646.

We present a framework to build a multiobjective algorithm from single-
objective ones. This framework addresses the p × n-dimensional problem
of finding p solutions in an n-dimensional search space, maximizing an in-
dicator by dynamic subspace optimization. Each single-objective algorithm
optimizes the indicator function given p − 1 fixed solutions. Crucially, domi-
nated solutions minimize their distance to the empirical Pareto front defined
by these p − 1 solutions. We instantiate the framework with CMA-ES as
single-objective optimizer. The new algorithm, COMO-CMA-ES, is empiri-
cally shown to converge linearly on bi-objective convex-quadratic problems
and is compared to MO-CMA-ES, NSGA-II and SMS-EMOA.

7.1 Introduction

Multiobjective optimization problems must be solved frequently in practice. In contrast
to the optimization of a single objective, solving a multiobjective problem involves to
handle trade-offs or incomparabilities between the objective functions such that the
aim is to approximate the Pareto set–the set of all Pareto-optimal, or non-dominated
solutions. One might be interested to obtain an approximation of unbounded size (the
more points the better) or just to have p points approximating the Pareto set. Evolu-
tionary Multiobjective Optimization (EMO) algorithms aim at such an approximation in
a single algorithm run whereas more classical approaches, e.g. optimizing a weighted
sum of the objectives with changing weights, operate in multiple runs.

The first introduced EMO algorithms simply changed the selection of an existing
single-objective evolutionary algorithm keeping the exact same search operators. The
population at a given iteration was then providing an approximation of the Pareto
set. This idea led to the practically highly successful NSGA-II algorithm [56] that em-
ploys a two-step fitness assignment: after a first non-dominated ranking [71], solutions
with equal non-domination rank are further distinguished by their crowding distance—
based on the distance of each solution to its neighbors in objective space. However,
it has been pointed out that NSGA-II does not converge to the Pareto set in a math-
ematical sense due to so-called deteriorative cycles: if all population members of the
algorithm are non-dominated at some point in time, it is only the crowding distance
that is optimized, without indicating any search direction towards the Pareto set to the
algorithm. As a result, solutions which had been non-dominated solutions at some
point in time can be replaced by previously dominated ones during the optimization,
ending up in a cyclic but not in convergent behavior [29].
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To improve the convergence properties of EMO algorithms, different approaches
have been introduced later, most notably the indicator-based algorithms and espe-
cially algorithms based on the hypervolume indicator. They replace the crowding
distance of NSGA-II with the (hypervolume) indicator contribution, see e.g. [30, 104].
Using the hypervolume indicator has the advantage that it is the only known strictly
monotone quality indicator [126] (see also next section) and thus, its optimization will
result in solution sets that are subsets of the Pareto set.

The optimization goal of indicator-based algorithms such as SMS-EMOA [30] or
MO-CMA-ES [104] is to find the best set of p solutions with respect to a given quality
indicator (the set with the largest quality indicator value among all sets of size p). This
optimal set of p solutions is known as the optimal p-distribution [21]. In principle, the
search for the optimal p-distribution can be formalized as a p ⋅n-dimensional optimiza-
tion problem where p is the number of solutions and n is the dimension of the search
space.

As we will discuss later, it turns out that this optimization problem is not only of
too high dimension in practice but also flat in large regions of the search space if the
hypervolume indicator is the underlying quality indicator. The combination of non-
dominated ranking and hypervolume contribution as in SMS-EMOA or MO-CMA-ES
corrects for this flatness, but also introduces search directions that are pointing to-
wards already existing non-dominated solutions and not towards not-yet-covered re-
gions of the Pareto set. In this chapter, we show that we can correct the flat region of
the hypervolume indicator by introducing a search bias towards yet-uncovered regions
of the Pareto set by adding the distance to the empirical non-domination front, which
leads to the new notion of Uncrowded Hypervolume Improvement. Then, we define a
(dynamic) fitness function that can be optimized by single-objective algorithms. From
there, going back to this original idea of EMO algorithms to use single-objective opti-
mizers to build an EMO, we define the Single-objective Optimization FOr Optimizing
Multiobjective Optimization pRoblEms framework (Sofomore) to build in an elegant
manner, a multiobjective algorithm from a set of p single-objective optimizers. Each
single-objective algorithm optimizes (iteratively or in parallel) a dynamic fitness that
depends on the output of the other p − 1 optimizers.

We instantiate the Sofomore framework with the state-of-the-art single-objective al-
gorithm CMA-ES. We show experimentally that the ensuing COMO-CMA-ES (Comma-
Selection Multiobjective CMA-ES) exhibits linear convergence towards the optimal p-
distribution on a wide variety of bi-objective convex quadratic functions. In contrast,
default implementations of the SMS-EMOA where the reference point is fixed and
NSGA-II do not exhibit this linear convergence. The comparison between COMO-
CMA-ES and a previous MATLAB implementation of the elitist MO-CMA-ES also
shows the same or an improved convergence speed in COMO-CMA-ES except for
the double sphere function.

The chapter is structured as follows. In the next section, we start with preliminaries
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related to multiobjective optimization and quality indicators. Section 7.3 discusses the
fitness landscape of indicator- and especially hypervolume-based quality measures
and eventually introduces our Sofomore framework. Section 7.4 gives details about
the new COMO-CMA-ES algorithm as an instantiation of Sofomore with CMA-ES.
Section 7.5 experimentally validates the new algorithm and compares it with three
existing algorithms from the literature and Section 7.6 discusses the results and con-
cludes the chapter.

7.2 Preliminaries

In the remainder, we will use the term empirical non-dominated front or empirical
Pareto front (EPFS,r) for objective vectors that are on the boundary of the (objective
space) region dominating a reference point r ∈ Rm, and not dominated by any element
of f(S) with S ⊂ Rn:

EPFS,r = ∂US,r, with US,r = {z ≺ r;∀s ∈ S, f(s) ⊀ z} (7.1)

where ∂US,r is the boundary of the non-dominated region US,r. Note that EPFS,r ∩
f(Rn) is the Pareto front when S contains the Pareto set.

Indicator-Based Set Optimization Problems Pareto sets and Pareto fronts
are, under mild assumptions, m − 1 dimensional manifolds. In practice, we are often
interested in a finite size approximation of these sets with, let us say, p (≥ 1) many
search points. To assess the quality of a Pareto set approximation S ⊆ Rn, we slightly
modify the set of departure of a quality indicator with respect to Equation (5.3):

I ∶ 2Rn Ð→ R (7.2)

assigns a real valued quality I(S) to S. Formally speaking, this transforms the original
multiobjective optimization of f(x) into the single-objective set problem of finding the
so-called optimal p-distribution [22]

X∗
p = arg max

X ⊆ Rn, ∣X ∣ ≤ p
I(X) (7.3)

as the set of search points of cardinality p (or lower) with the highest indicator value
among all sets of this size [21].

Natural candidates for practically relevant quality indicators are monotone or even
strictly monotone indicators such as the epsilon-indicator [204], the R2 indicator [78],
or the hypervolume indicator ( [21,205], still the only known strictly monotone indicator
family to date). We remind that an indicator is called monotone if A ⪯ B Ô⇒ I(A) ≥
I(B), for A,B subsets of Rn—or in other words, if it does not contradict the weak
Pareto dominance relation. If A ≺ B Ô⇒ I(A) > I(B), we say that I is strictly
monotone.
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Hypervolume, Hypervolume Contribution, and Hypervolume Improvement
Because the hypervolume indicator [21, 205] and its weighted variant is the only
known strictly monotone indicator, we use it as well in our framework. We remind
here that the hypervolume HVr [205] of a finite set of solutions S ⊂ Rn with respect to
the reference point r ∈ Rm is defined as HVr(S) = λm ({z ∈ Rm;∃y ∈ S, f(y) ≺ z ≺ r}),
where λm is the Lebesgue measure on the objective space Rm and f is the objective
function. In the case of two objective functions, the hypervolume indicator value of
p non-dominated solutions S = {s(1), . . . , s(p)} with f1(s(1)) ≤ f1(s(2)) ≤ . . . ≤ f1(s(p))
can also be written as the sum of the area of p axis parallel rectangles: HVr(S) =
∑p
i=1(f1(s(i+1)) − f1(s(i))) ⋅ (r2 − f2(s(i))); f1(s(p+1)) def= r1.

Furthermore, the hypervolume contribution HVC(s, S) of a search point s ∈ Rn

to a solution set S ⊆ Rn with respect to the reference point r ∈ Rm is the hypervol-
ume indicator value that we lose when we remove s from the set [38]: HVCr(s, S) =
HVr(S) −HVr(S ∖ {s}) .

Also, the Hypervolume Improvement HVIr(s, S) of a search point s ∈ Rn to a fi-
nite set S ⊂ Rn with respect to the reference point r ∈ Rm is defined as [63, 198] :
HVIr(s, S) = HVr(S ∪ {s}) − HVr(S) . Or in other words, HVIr(s, S) equals the in-
crease in hypervolume when s is added to the set S. Up to a null set HVIr(s, S) =
HVCr(s, S ∪ {s}).

7.3 Sofomore: Building Multiobjective from Single-
Objective Algorithms

Quality indicators have been introduced as a way to measure the quality of a set of
objective vectors but also to define a multiobjective optimization problem as a single-
objective set problem of maximizing the quality indicator as in (7.3). This naturally
defines a single-objective p × n dimensional problem to be maximized

F ∶ (x1, . . . , xp) ∈ (Rn)p ↦ I({x1, . . . , xp}) . (7.4)

Because n and in particular p are typically large in practice, we usually do not
attempt to solve a multiobjective optimization problem by directly optimizing (7.4).
Nevertheless, when I is the hypervolume indicator, Hernández et al. suggest to use
a Newton method to directly solve (7.4). It assumes that f is twice continuously dif-
ferentiable, in which case the gradient and Hessian of F can be computed analyti-
cally [99]. Yet, directly attacking (7.4) is not possible because dominated points have
a zero sub-gradient and the Newton direction is therefore zero. Thus, Hernández et
al. need to start from a set of non-dominated points, close enough to the Pareto set,
which requires in practice to couple the approach with another algorithm [99].
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Instead of directly optimizing (7.4), our proposed Sofomore framework performs
iterative subspace optimization of the function F and penalizes the flat landscape
of F in dominated regions. More precisely, the basic idea behind Sofomore is to
optimize F subspace- or component-wise, by iteratively fixing all but one search point
x(i) and only optimizing the indicator with respect to x(i) while the other search points
X¬i ∶= {x(1), . . . , x(i−1), x(i+1), . . . , x(p)} are temporarily fixed. Hence we maximize the
functions

ΦI,X¬i ∶ x ∈ Rn ↦ I({x} ∪X¬i) . (7.5)

If the placement of each of the p search points x(i) (1 ≤ i ≤ p) is optimized iteratively
by fixing a different point set each time, as we suggest in our Sofomore framework
below, we are in the setup of optimizing a dynamic fitness. More details on this aspect
of our Sofomore framework will be given below in Section 7.3.2.

7.3.1 A Fitness Function for Subspace Optimization

If we use as quality indicator I in (7.5) a (strictly) monotone indicator like the hyper-
volume indicator, the overall fitness Φ is flat in the interior domain of regions where
points are dominated. Hence, we suggest to not optimize (7.5) directly but to unflatten
it in dominated areas of the search space without changing the optimization goal.

Any solution x that is dominated by the other points in X¬i will receive zero fit-
ness Φ when we use as indicator in (7.5) the hypervolume indicator of the entire set
{x} ∪ X¬i with respect to the reference point r or replace it with the hypervolume
improvement HVIr(x,X¬i) of the solution x to X¬i. This situation is depicted in the
first column of Figure 7.1 where for a fixed set of six arbitrarily chosen search points,
the hypervolume improvement’s level sets (of equal fitness) in both search and ob-
jective space are shown. This flat fitness with zero gradient will not allow to steer the
search towards better search points which has also been highlighted by Hernández
et al. [99].

A common approach to guide an optimization algorithm in the dominated space is
to use the hypervolume (contribution) as secondary fitness after non-dominated sort-
ing [71], as it is done for example in the SMS-EMOA [30] or the MO-CMA-ES [104].
The idea is that all search points with a worse non-domination rank get assigned a
fitness that is worse than for search points with a better non-domination rank. Within
a set of the same rank, the hypervolume contribution with respect to all points with the
same rank is used to refine the fitness. The middle column of Figure 7.1 shows the re-
sulting level sets of equal fitness. As we can see, this fitness assignment distinguishes
between dominated solutions, i.e. the fitness is not flat anymore. Yet it still has an-
other major disadvantage: the search direction in the dominated area (perpendicular
to its level sets) points towards already existing non-dominated solutions. Attracting
dominated solutions towards non-dominated solutions seems however undesirable,
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as they will compete for the same hypervolume area. Instead, we want dominated
points to enter the uncrowded space between non-dominated points thereby comple-
menting their hypervolume contribution (improvement).

Uncrowded Hypervolume Improvement For this purpose, we define the Un-
crowded Hypervolume Improvement UHVI based on the Hypervolume Improvement
for non-dominated search points and on the Euclidean distance to the non-dominated
region for dominated search points. More concretely, UHVIr(s, S) of a search point
s ∈ Rn with respect to a finite set S ⊂ Rn and the reference point r ∈ Rm is defined as

UHVIr(s, S) = { HVIr(s, S) if EPFS,r ⊀ f(s)
−dr(s, S) if EPFS,r ≺ f(s) , (7.6)

where dr(s, S) = infy∈EPFS,r d(f(s), y) is the distance between an objective vector
f(s) ∈ Rm and the empirical non-domination front of the set S defined as in (7.1).

We define the fitness ΦUHVI,X¬i(x) for a search point x ∈ Rn with respect to other
solutions in X¬i as

ΦUHVI,X¬i(x) = UHVIr(x,X¬i) . (7.7)

Note that ΦUHVI,X¬i is continuous on the empirical non-domination front where both
the hypervolume improvement and the considered distance are zero.

Figure 7.2 illustrates this fitness for one non-dominated and two dominated search
points (blue plusses) with respect to a set of six other search points (black crosses).
The right-hand column of Figure 7.1 shows the level sets of this fitness. The newly in-
troduced hypervolume improvement and distance based fitness ΦUHVI shows smooth
level sets, both in search and in objective space. Maybe most importantly, in the dom-
inated area, the fitness function’s descent direction (perpendicular to its level sets)
now points towards the gaps in the current Pareto front approximation.

7.3.2 Iteratively Optimizing the ΦUHVI Fitness: The Sofomore
Framework

After we have discussed a fitness assignment that looks worth to optimize, we come
back to our initial idea of subspace optimization and define the underlying algorithmic
framework behind Sofomore.

At first, we consider a single-objective optimizer in an abstract manner as an it-
erative algorithm with state θ ∈ Θn updated as θt+1 = Gf(θt, Ut+1) where f ∶ Rn → R
is the single-objective function optimized by the optimizer and Ut+1 encodes possible
random variables sampled within one iteration if we consider a randomized algorithm
(and can be taken as constant in the case of a deterministic optimizer). The transition
function Gf contains all updates done within the algorithm in one iteration.
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Figure 7.1: Comparison of block-coordinate-wise fitness functions on
the double sphere problem. Given a fixed set of six solutions,
{[0.5, 0.2], [0.75,−0.25], [0.1, 0.2], [1, 0], [0.03, 0.004], [0.5, 0.55]}, the above three
plots show level sets of equal fitness for a new search point in the search
space, the second row shows the same level sets in objective space. Left:
standard hypervolume improvement HVI. Middle: HVI within the local non-
dominated fronts. Right: newly proposed hypervolume improvement (if non-
dominated) together with distance to the non-dominated front (if dominated),
denoted as uncrowded hypervolume improvement UHVI. Note that the colors
for the fitness levels are not comparable over indicators, but are the same for
a given indicator in both search and objective space. The search space plots
further show the single-objective’s level sets as dotted lines. The black dot
indicates the reference point of [1.1, 1.1].

We assume that in each iteration t, the optimizer returns a best estimate of the
optimum, often called incumbent solution or recommendation. This is the solution
that the optimizer would return if we stop it at iteration t. We denote this incumbent
as E ∶ θ ∈ Θn z→ E(θ) ∈ Rn—mapping the state of the algorithm to the estimate of the
optimum given this state.

The overall idea behind the subspace optimization and the Sofomore framework
can then be formalized as in Algorithm 9: after initializing p single-objective algorithms
with their states θ1, . . . , θp and denoting their transition functions as Gf

i (1 ≤ i ≤ p), we
consider their incumbents or recommendations E(θi) as the p search points that are
expected to approximate the optimal p-distribution.

In each step of the Sofomore framework, we choose one of the algorithms (denoted
by its number i, with 1 ≤ i ≤ p) and run it τi iterations on the fitness ΦUHVI,X(¬i) to
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Figure 7.2: Illustration of the proposed UHVI fitness for three points in objec-
tive space (blue +). The top two points are dominated by the given set S of
five points (black crosses) and are thus assigned a fitness of their distance to
the empirical non-dominated set while the bottom point is non-dominated and
thus gets assigned the hypervolume improvement with respect to S.

update the recommendation x(i) while keeping all other recommendations fixed. It is
important to note that the fitness used for algorithm i is actually changing dynamically
with the optimization because it depends on all the other incumbents but x(i) which,
over time, are expected to move towards the Pareto set as well.

Algorithm 9 proposes a generic framework where the order in which the single-
objective algorithms are run and the number of iterations for them are not explicitly
defined. A simple strategy would be to choose the algorithms at random or in a given,
fixed order and run each single-objective algorithm a fixed number of time steps. But
also more elaborate strategies can be envisioned, for example based on the idea
of multi-armed bandits [42]: we can log the changes in the fitness value of each
incumbent over time and favor as the next chosen algorithms the ones that give the
highest expected fitness improvements. Note also that the single-objective algorithms’
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types may be different such that we can combine local with global algorithms or even
change the algorithms over time, allow restarts etc. In the following experimental
validation of our concept, however, we choose a single optimization algorithm and a
simple, random strategy to choose which of them to run next.

Algorithm 9 General Sofomore Framework, with fitness of (7.7)
1: Given: the initial states of p single-objective optimizers, θ1, . . . , θp
2: Initialize incumbents: X = {x(1) = E(θ1), . . . , x(p) = E(θp)}
3: while not stopping criterion met do
4: Choose i in {1, . . . , p} and τi ∈ N
5: REPEAT τi times:
6: θi ← G

Φ
UHVI,X(¬i)

i (θi, Ui) ▷ run ith algo on fitness ΦUHVI,X(¬i)

7: x(i) ← E(θi) ▷ update x(i) in X

8: end while
9: return x(1), . . . , x(p)

With a simple change, Algorithm 9 can be made parallelizable (resulting in slightly
different search dynamics though): postponing the updates of the x(i) after every algo-
rithm has been touched at least once makes the optimization of the fitness functions
independent such that they can be performed in parallel.

Relation of Sofomore with other existing algorithms We briefly discuss
how some existing algorithms and algorithm frameworks relate to the new Sofomore
proposal.

The coupling of single-objective algorithms to form a multiobjective one has been
done before, especially in the MOEA/D framework [201]. In MOEA/D, p static search
directions (in objective space) are defined via p (single-objective) scalarizing func-
tions. Each of them is optimized in parallel with solutions potentially shared between
neighboring search directions. On the contrary, the fitness in Sofomore is dynamic,
depending on the other incumbents. Optimizing a set of scalarizing functions in clas-
sical approaches to multiobjective optimization have static optimization problems to
solve without any interaction between them [141].

Many other EMO algorithms, such as NSGA-II, SMS-EMOA, or MO-CMA-ES are
not covered by the Sofomore framework. One simple reason is that the UHVI is newly
defined.

The already mentioned Newton algorithm on the hypervolume indicator fitness
of [99] is probably the closest existing approach from Sofomore, but [99] needs to
initialize the Newton algorithm with a set of non-dominated solutions in order for the
algorithm to optimize due to the flat regions of its objective space. Also algorithms for
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expensive multiobjective optimization based on the optimization of the expected hy-
pervolume improvement [194] can be seen as related to Sofomore, although the pro-
posal of new solutions in algorithms like SMS-EGO [152] or S-metric based ExI [64]
use Gaussian Processes to model the objective function. These algorithms, in con-
trary to Sofomore, propose iteratively a single solution based on the expected hyper-
volume improvement over all known solutions and do not aim at replacing succes-
sively a single recommendation by another (better) one. Interesting to note is that
algorithms like SMS-EGO and S-metric based ExI employ the expected hypervolume
indicator improvement as fitness while the approach of Keane [120] “uses the Eu-
clidean distance to the nearest vector in the Pareto front” [194].

7.4 COMO-CMA-ES

In this section, we instantiate Sofomore with the CMA-ES as single objective opti-
mizer.

Regarding the choice of which optimization algorithm to run (and how long), we
opt for a simple strategy: we sample a permutation from Sp, the set of all permuta-
tions on {1, . . . , p} uniformly at random and use this fixed permutation to touch each
algorithm i once in the order of the permutation. Once all algorithms have been
touched, we then resample a new permutation. We run each algorithm for a single
iteration. Letting the algorithms run for a too long period right from the start seems
suboptimal. As the fitness is dynamic, we do not need to optimize it too precisely.
We mainly have two requirements for the choice of single objective optimizers: (i) an
optimization algorithm has to be stoppable at any iteration and resumable thereafter
and (ii) an optimization algorithm needs to be able to give a good recommendation
about the best estimate of the optimum, given its current state. The Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES, [95]) is a natural choice. Not only is it
a state-of-the-art algorithm for difficult blackbox optimization problems but also does
it fulfill our requirements. In CMA-ES, the state of the algorithm θ is composed of a
step size σ and the parameters of a multivariate normal distribution, namely a mean
vector m representing the favorite solution and a covariance matrix C. In addition, two
n-dimensional evolution paths speed up step-size and covariance matrix adaptation.
For each θi, the incumbent solution x(i) = E(θi) is the mean m of the CMA algorithm.
A convenient implementation of CMA-ES is via the ask and tell interface [51], where
the ask function returns λ candidate solutions and the tell function updates the state
from their fitness values. The interface allows to easily stop and resume the optimiza-
tion and to integrate the dynamic fitness of Sofomore, see Algorithm 10. We call this
instantiation of the Sofomore framework COMO-CMA-ES. The p CMA-ES instances
are called kernels.

We see in particular how CMA-ES is integrated into Sofomore via its ask-and-
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Algorithm 10 The COMO-CMA-ES: an instance of the Sofomore framework
with the CMA-ES as single-objective optimizer

1: Required:
2: objective function f = (f1, . . . , fm) in dimension n

3: lower and upper bounds for each variable lower ∈ Rn

and upper ∈ Rn of a region of interest
4: number of desired solutions p
5: global initial step-size σ0 for all CMA-ES
6: fixed reference point r for the hypervolume indicator

7: Initialization:
8: x(i) = uniformSample(lower, upper) for all 1 ≤ i ≤ p
9: evaluate all x(i) on f and store the f(x(i)) for later use

10: es(i) ← (µ/µ, λ) -CMA-ES (x(i), σ0) for all 1 ≤ i ≤ p
11: while not stopping criterion do
12: sample uniformly at random a permutation π from all

permutations on {1, . . . , p}
13: for i = 1 to p do
14: {s1, . . . , sλ}← es(π(i)).ask() ▷ get λ offspring from

▷ π(i)th CMA-ES
15: compute the fitness Φ(sj) = ΦUHVI,X(¬π(i))(sj)

for all 1 ≤ j ≤ λ
16: es(π(i)).tell(Φ(s1), . . . ,Φ(sλ))
17: x(π(i)) ← es(π(i)).mean
18: update the stored objective vector f(x(π(i)))
19: end for
20: end while
21: Return x(1), . . . , x(p)

tell interface. After choosing the next kernel i, the corresponding CMA-ES instance
samples λ solutions (“ask”). It then evaluates them on the uncrowded hypervolume
improvement based fitness defined in Eq (7.7)—given all other kernels being fixed.
After sorting the λ solutions with respect to their fitness, COMO-CMA-ES feeds the
sampled points with their fitness values back to the CMA-ES instance (“tell”) which up-
dates all its internal algorithm parameters. Finally, the new mean of the correspond-
ing CMA-ES instance updates the list of the COMO-CMA-ES’s proposed p solutions.
Note here that CMA-ES is usually not evaluating the mean of the sample distribution
which therefore is done in line 18.
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7.5 Experimental Validation

We present in this section numerical experiments of the COMO-CMA-ES. Though, in
principle, the algorithm can be defined for any number of m objectives, we present
results only for m = 2. We use the pycma Python package [89] version 2.6.0 for CMA-
ES as single-objective optimizer without further parameter tuning.

7.5.1 Test Functions and Performance Measures

For a matrix P and two vectors x and y, we denote

Quad(P,x, y) = (x − y)⊺P (x − y) . (7.8)

We also denote by 0 the all-zeros vector, 1 the all-ones vector, and ek the unit vector
with its only nonzero value at position k. Starting from a positive diagonal matrix
∆, and two independent orthogonal matrices O1 and O2, we consider the classes of
bi-objective convex quadratic problems Sep-k, One and Two defined as follows [183]

• fsep-k
1,∆ (x) = Quad(∆,x,0)

Quad(∆,0,ek) , fsep-k
2,∆ (x) = Quad(∆,x,ek)

Quad(∆,0,ek) .

• fone
1,∆ (x) = Quad(OT1 ∆O1,x,0)

Quad(OT1 ∆O1,0,1) , f two
2,∆ (x) = Quad(OT1 ∆O1,x,1)

Quad(OT1 ∆O1,0,1)

• f two
1,∆ (x) = Quad(OT1 ∆O1,x,0)

α
, f two

2,∆ (x) = Quad(OT2 ∆O2,x,1)
α

with α = max (Quad(OT
1 ∆O1,0,1),Quad(OT

2 ∆O2,0,1)).

If ∆ is the identity matrix, we call the problems as sphere-sep-k in the first case and
bi-sphere in the second and third cases (the rotations are ineffective). If ∆(i, i) =
106 i−1

n−1 for i = 1, . . . , n, then we denote the problems as elli-sep-k, elli-one or elli-
two. If ∆(1,1) = 10−4, ∆(2,2) = 104 and ∆(i, i) = 1 for i = 3, . . . , n, then we have
cigtab-sep-k, cigtab-one or cigtab-two.

We fix the reference point to r = (1.1,1.1). The scalings above ensure that the
reference point is dominated by all Pareto fronts considered, and that the Sep-k and
the One problems have the same Pareto front (see [183]) than the bi-sphere g ∶ [0,1] ∋
tz→ (1 −

√
t)2 ∈ R. Note that the expression does not depend on the dimension n.

We use two performance measurements in each run of an algorithm. First the
convergence gap defined as the difference between an offset called hv max and the
hypervolume of the p points {x(1), . . . , x(p)} found by the algorithm (in case of COMO-
CMA-ES or of the population for the other algorithms tested) called hv; and second the
archive gap defined as the difference between an offset called hvarchive max and
the hypervolume of all non-dominated points found by the algorithm called hvarchive.
The setting of hv max is done for each problem as the maximum hypervolume value
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Figure 7.3: Convergence of COMO-CMA-ES on sphere-sep-1 (first row),
elli-sep-1 (second row), cigtab-sep-1 (third row) and elli-two in 10D with 31

kernels. The first column represents the convergence gap. The second col-
umn is the ratio of non-dominated points among the kernels incumbents (red)
and the quartiles of the 31 ratios of non-dominated points among each ker-
nel’s incumbent and its offspring (median in blue and the remaining quartiles
in green). And the last three columns are square root eigenspectra of uniform
randomly chosen 3 among the 31 kernels’ covariance matrices.

of p kernels found so far anytime the problem was optimized in our machines, plus a
small number (< 10−14). For the Sep-k and the One problems, we take hvarchive max

as 1.12 − ∫
1

0 g(t)dt = 1.21 − 1
6

which corresponds to the hypervolume of the theoretical
Pareto front. For the two-class of problems, we use the analytic expression of their
Pareto set [183] to sample a large number of points on the Pareto set, and compute
their hypervolume as hvarchive max. Thus for the elli-two problem in dimension 10,
we sample 107 points.

7.5.2 Linear convergence of COMO-CMA-ES

We investigate the convergence of COMO-CMA-ES for different dimensions and num-
ber of kernels, and display the results on the sphere-sep-1, elli-sep-1, cigtab-sep-1
and elli-two functions for n = 10 and p = 31. The global initial step-size is set to

√
10

and the initial lower, upper bounds (line 8 of Algorithm 10) respectively to −51, 51. In
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Figure 7.3, we observe linear convergence in the convergence gap (first column) on
all test functions, starting roughly when all displayed ratios of non-dominated points
reach 1 (second column). The last three columns of Figure 7.3 illustrate the eigen-
spectra of the kernels covariance matrices. The first two columns reveal two phases.

First, the kernels incumbents approach the non-dominated region: for sphere-
sep-1 this takes about 1500 evaluations per kernel, for elli-sep-1, cigtab-sep-1 and
elli-two it takes about 5000, 4000 and 6600 evaluations per kernel. Afterwards, the
convergence gap converges linearly. In our settings, there are 11 evaluations per
kernel during the update of a kernel, thus for the *-1 functions (which have the same
Pareto set and front), the linear convergence rate is about 10−

6×11
15000 and for elli-two, it

is about 10−
3×11
5000 .

For the first 1000 function evaluations per kernel on elli-sep-1, there is no point
dominating the reference point, which means that the algorithm started far from the
Pareto front. Looking at elli-two, we confirm that it has a different Pareto front than
the three other problems: hv max = 1.2099... (instead of 1.0327...).

The Uncrowded Hypervolume Improvement depends on other kernels’ incumbents
and therefore changes in each iteration. Yet, the last three columns are similar to what
one would observe when optimizing a single objective convex-quadratic function with
corresponding Hessian matrix. After a large enough number of iterations, the proba-
bility that the incumbents and their offspring are in the Pareto set becomes close to 1.
Then if the incumbents X = {x(1), . . . x(p)} is a subset of the Pareto set and x is non-
dominated, Eq (7.7) becomes: ΦUHVI,X¬i(x) = UHVIr(x,X¬i) = HVIr(x,X¬i). Its Hes-
sian on smooth bi-objective problems is ∇2ΦUHVI,X¬i(x) = (f2(x) − f2(x(i−1)))∇2f1(x)+
(f1(x) − f1(x(i+1)))∇2f2(x) + ∇f2(x)∇f1(x)⊺ + ∇f1(x)∇f2(x)⊺. For our test functions,
it is a linear combination of the single objectives Hessian matrices, up to a rank-one
matrix and its transpose (the gradients are colinear on the Pareto set of bi-objective
convex quadratic problems [183]). That might give a glimpse on the behavior seen in
the last three columns of Figure 7.3.

7.5.3 Comparing COMO-CMA-ES with MO-CMA-ES, NSGA-
II and SMS-EMOA

We compare four multiobjective algorithms: COMO-CMA-ES, MO-CMA-ES [104],
NSGA-II [56] and SMS-EMOA [30], by testing them on classes of bi-objective convex-
quadratic problems. We draw once and for all one rotation for elli-one in 10D and
two different rotations for elli-two in 10D. The Simulated Binary Crossover operator
(SBX) and the polynomial mutation are used for NSGA-II (run with the evoalgos pack-
age [196]) and SMS-EMOA (run with the Matlab version by Fabian Kretzschmar and
Tobias Wagner [195]): we use a crossover probability of 0.7 and a mutation probabil-
ity of 0.1, and the distribution indexes for crossover and mutation operators are both
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Figure 7.4: Convergence gaps (odd columns) and archive gaps (even
columns) for bi-sphere, elli-one, cigtab-sep-1 and elli-two. Each algorithm
is run 4 times, in 5D or 10D, with 11 or 31 kernels. The random matrices are
drawn from the same seed in all the algorithms.

equal to 10. We use the version of MO-CMA-ES from [193]. The number of kernels
for COMO-CMA-ES corresponds to the population size of the other algorithms, that
we set to either 11 or 31, and the dimensions considered are 5 and 10. The global
initial step-size of COMO-CMA-ES is set to 0.2 with initial lower, upper bounds (line 8
of Algorithm 10) set to the all-zeros and all-ones vectors. The initial population for the
three other algorithms is sampled uniformly at random in [0,1]n.

We run each multiobjective optimization 4 times and display the convergence gap
(of the population or the incumbent solutions of the kernels) and the archive gap.

In Figure 7.4, the values of the convergence gap reached by COMO-CMA-ES and
MO-CMA-ES are several orders of magnitude lower than for the two other algorithms.

On the 5-dimensional bi-sphere, COMO-CMA-ES and MO-CMA-ES appear to
show linear convergence, where the latter appears to be about 30% faster than the
former. On the cigtab-sep-1 function, COMO-CMA-ES is initially slow, but catches
up after about 1000 evaluations per kernel. In all other cases, COMO-CMA-ES shows
superior performance for the convergence gap. On the 10-dimensional cigtab-sep-
1, COMO-CMA-ES shows a plateau between 2000 and 4000 evaluations per kernel.
This kind of plateau cannot be observed in the MO-CMA-ES and the observed final
convergence speed is better for COMO-CMA-ES than for MO-CMA-ES. The observed
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plateau is typical for the behavior of non-elitist multi-recombinative CMA-ES on the
tablet function, because CSA barely reduces an initially large step-size before the
tablet-shape has been adapted, which is related to the neutral subspace defect found
in [129]. Elitism as in the MO-CMA-ES, on the other hand, also helps to decrease an
initially too large step-size.

Although COMO-CMA-ES was not designed to perform well on the archive gap,
it shows consistently the best results over all experiments. Only on the cigtab-
sep-1 in 5D with 11 kernels, NSGA-II reaches and slightly surpasses the archive
gap of COMO-CMA-ES after 7000 function evaluations per kernel. This suggests,
as expected from the known dependency between optimal step-size and population
size [90], that COMO-CMA-ES adds valuable diversity while approaching the optimal
p-distribution of the Pareto front at the same time.

7.6 Conclusions

We have proposed (i) the Sofomore framework to define multiobjective optimizers
from single-objective ones, (ii) a fitness for dominated solutions to be the distance
to the empirical Pareto front (Uncrowded Hypervolume Improvement UHVI) and (iii)
the non-elitist ”comma” CMA-ES to instantiate the framework (COMO-CMA-ES). We
observe that COMO-CMA-ES converges linearly towards the p-optimal distribution of
the hypervolume indicator on several bi-objective convex quadratic problems. The
COMO-CMA-ES appears to be robust to independently rotating the Hessian matrices
of convex-quadratic problems, even if such rotations transform the Pareto set from a
line segment to a bent curve. In our limited experiments, COMO-CMA-ES performed
generally better than MO-CMA-ES, SMS-EMOA and the NSGA-II, w.r.t. convergence
gap and archive gap while COMO-CMA-ES was solely designed to optimize the con-
vergence gap. We conjecture that the advantage on the archive gap is due to (i) the
large stationary variance obtained with non-elitist evolution strategies and (ii) the fit-
ness assignment of dominated solutions which favors the vacant (uncrowded) space
between non-dominated solutions and hence serves as implicit crowding distance
penalty measure.
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Chapter 8

Comparing COMO-CMA-ES
to well-known multiobjective
evolutionary algorithms
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Note: the content of this chapter is presented in [61]:
Paul Dufosse and Cheikh Toure, Benchmarking MO-CMA-ES and COMO-CMA-ES
on the Bi-objective bbob-biobj Testbed, Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2019, pp 1920–1927.

In this paper, we propose a comparative benchmark of MO-CMA-ES,
COMO-CMA-ES (recently introduced in [185]) and NSGA-II, using the COCO
framework for performance assessment and the Bi-objective test suite
bbob-biobj. For a fixed number of points p, COMO-CMA-ES approximates
an optimal p-distribution of the Hypervolume Indicator. While not designed
to perform on archive-based assessment, i.e. with respect to all points eval-
uated so far by the algorithm, COMO-CMA-ES behaves well on the COCO
platform. The experiments are done in a true Black-Blox spirit by using a

175



minimal setting relative to the information shared by the 55 problems of the
bbob-biobj Testbed.

8.1 Introduction

As the COCO platform assesses bi-objective algorithms by computing the covered
Hypervolume of evaluated points in a black-box optimization framework, it is natural
that well-performing benchmarked algorithms on COCO are designed to tackle these
two issues (covering the front and black-box paradigm). Hence [128] uses a hybrid
algorithm and parameter tuning to handle the black-box difficulty, and [136] develops
an unbounded population size variant of MO-CMA-ES [104, 193] for the Pareto front
covering issue.
MO-CMA-ES and COMO-CMA-ES, however, are non-hybrid algorithms with a popu-
lation size p (number of kernels for COMO-CMA-ES) fixed a priori.

8.2 Algorithms Description

NSGA-II is a popular choice among Evolutionary Multi-Objective (EMO) algorithms
[56], based on non dominated sorting of candidates and crowding distance compar-
isons. It has already been benchmarked on the bbob-biobj Testbed [17]. The archive
data, i.e. the data for all points evaluated so far, is shown under the name NSGA-II
along with the best2016 reference, as a baseline for the reader.

The elitist Multiobjective CMA-ES, MO-CMA-ES [104], is based on a two-way rank-
ing: the Pareto ranking and the hypervolume contribution among individuals with the
same Pareto rank. Each parent is not only a point in the search space but a 5-tuple
of data representing a (1+1)-CMA-ES, which is a Single Objective (SO) optimizer de-
fined in [104]. We use here the improved step-size adaptation designed in [193].
The algorithm also uses greedy mating, which means that parents are selected only
among non-dominated solutions. We choose the default settings for the λMO-(1+1)-
CMA-ES presented in [104]. In this paper, the term population size refers to the MO
population size, namely the parameter λMO.

A recent EMO algorithm using the non-elitist CMA-ES [88] is the Comma Mul-
tiobjective CMA-ES (COMO-CMA-ES) defined in [185], and is designed to approx-
imate the optimal p-distribution of the Hypervolume indicator. It is the instantia-
tion of a wider framework called Sofomore, on the non-elitist CMA-ES [185]. We
also take the default setup for the standard CMA-ES presented in [88]. The Single-
objective Optimization FOr Optimizing Multiobjective Optimization pRoblEms frame-
work (Sofomore) finds p points approximating the optimal p-distribution of the Hyper-
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volume indicator, by iteratively maximizing an extended notion of the hypervolume
contribution (hypervolume improvement) called Uncrowded Hypervolume Improve-
ment UHVI [185]. As the two-way ranking in [104], UHVI unflattens the hypervol-
ume improvement’s level sets in dominated regions, but the novelty is inherent to the
fact that this unflattening operation still preserves diversity among the solutions, by
ensuring them to be uncrowded.

8.3 Implementation and Experimental Procedure

The code for MO-CMA-ES was written in Matlab, 2014, using routines from the Shark
library for hypervolume computation. COMO-CMA-ES is implemented in Python and
uses NumPy. Note that the hypervolume is computed in pure Python and does not
call any NumPy method. Implementation details for NSGA-II can be found in [17].

For MO-CMA-ES, the algorithm starts with random starting point uniformly sam-
pled in I = [−5,5]n with an initial stepsize σ0 equals to 1. From this starting point a
population of p (1+1)-CMA-ES is evolved, with p the population size of the algorithm.
Any (1+1)-CMA-ES can send a warning, meaning that it has somehow terminated.
When any warning is met, the MO algorithm stops. Then a restart is performed with
a random starting point in I, with the same settings. The population size is a core
parameter fixed a priori for each run (including restarts), which is why MO-CMA-ES
is benchmarked with different population sizes, namely 10, 32 and 100. The reference
point used for computing the contributing hypervolume is iteratively chosen as the
nadir point among the current population, and adding 1 to each coordinate.

COMO-CMA-ES also starts with a random point sampled in I, with an initial step-
size σ0 = √

n. No restart is performed and no parameter tuning is done on pur-
pose to observe the behaviour of the algorithm with default settings. In the same
spirit, the only stopping criteria is given by the allocated budget of function evalua-
tions. As COMO-CMA-ES is designed to approximate the optimal p-distribution of the
Hypervolume indicator, it is then necessary to fix one and for all a reference point
for each run; which is done by setting an attribute of each COCO problem called
largest fvalues of interest [81] as reference point.

We benchmark MO-CMA-ES (with population sizes equal to 10, 32 and 100), COMO-
CMA-ES (with 3, 10, 32, 100, 316 and 1000 kernels), and NSGA-II. The latter is run
with a population size of 100 as in [17]. COCO is run with the common settings for the
bbob-biobj test suite; 10 instances with dimension n ∈ {2,3,5,10,20}. The allocated
budget is 105n function evaluations for each algorithm.
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Algorithm p 2-D3-D5-D10-D20-D
MO- 10 2.8 3.3 3.0 3.6 3.3

CMA-ES 32 2.7 2.9 2.8 2.9 2.9
1003.0 3.2 3.5 3.4 3.0

COMO- 10 5.9 6.0 5.0 4.7 4.8
CMA-ES 32 5.8 5.2 5.8 4.1 4.9

100 12 8.9 7.7 7.5 4.3

Table 8.1: CPU times per function evaluation of MO-CMA-ES and COMO-
CMA-ES (in 10−4 seconds) for varying dimensions. p is the population size (or
number of kernels).

8.4 CPU Timing

In order to evaluate the duration of each algorithm, we have reported here the timing
results when running the full budget experiment. Both codes were run on a linux
machine with 64 cores, Intel®Xeon ®E7 to E3 v4 processors. We are interested in
CPU time per function evaluation for varying dimensions and population sizes. To
account for Matlab internal parallelization we use the function cputime and not real
timing. The results can be found in Table 8.1.

We are benchmarking algorithms written in different languages, therefore compar-
isons should be made carefully. COMO-CMA-ES computation per function evaluation
takes 1.5 to 4 times longer than MO-CMA-ES, and this ratio is less important when
the dimension increases.

8.5 Results

Results from experiments according to [81], [79] and [40] on the benchmark functions
given in [187] for the three algorithms called MO-*, NSGA-II or COMO-* (with * being
the fixed population size) are presented in Figures 8.1, 8.2, 8.3 and 8.4. In Tables 8.2
and 8.3 we display results for each algorithm only with a population size of 100.

The average runtime (aRT) used in the tables depends on a given quality indicator
value, Itarget = Iref +∆ICOCO

HV , and is computed over all relevant trials as the number of
function evaluations executed during each trial while the best indicator value did not
reach Itarget, summed over all trials and divided by the number of trials that actually
reached Itarget [81]. Statistical significance is tested with the rank-sum test for a
given target Itarget using, for each trial, either the number of needed function evalua-
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tions to reach Itarget (inverted and multiplied by −1), or, if the target was not reached,
the best ∆ICOCO

HV -value achieved, measured only up to the smallest number of overall
function evaluations for any unsuccessful trial under consideration.

The experiments were performed with COCO [80], version 2.2, the plots were pro-
duced with version 2.3.1.

For either COMO-CMA-ES or MO-CMA-ES, one can compare the shapes of the
empirical cumulative distribution functions (ECDFs) for different population sizes. Note
that for each algorithm and each COCO problem, the function is evaluated first with a
zero-vector, since we know this produces a point with better f-values than a random
sampled point. This allows rigorous comparison of the different algorithms ECDFs.

A glance on the data allows to surmise the following: the larger the population
size, the better the reached target precisions are in the long run. However for small
budgets, algorithms with smaller population size reach better target precisions. For
example in Figure 8.1 on function f28, MO-10 is the first to solve 35% of the tar-
gets, MO-32 is the first to solve 45% for a larger budget, and finally MO-100 has the
best overall performance with more than 50% of the targets solved. This result is not
new and a MO-CMA-ES adapting the population size has been studied for example
in [133]. It is still interesting to note that this tendency appears for almost all functions
in the test suite.

The same comment can be made on the same function f28 for COMO-CMA-ES
with 3, 10 and 32 kernels: among the COMO-CMA-ES variants, COMO-3 is the first
one to solve 40% of the targets, COMO-10 the first to solve 55%, and COMO-32 the
first to solve 70%. Note that COMO-32 performs well at a budget of 104n, compared to
the other COMO-CMA-ES. And for a budget of 105n, COMO-100 and COMO-316 are
systematically better. We can expect the variants with more kernels (1000 is proposed
here) to solve more targets for longer runs, where the ones with smaller number of
kernels will stagnate sooner.

There are some functions where MO-CMA-ES outperforms the best 2016 data
for small budgets, say up to 102n, see f7, f17, f27, f32 on Figure 8.1. In contrast
the COMO-CMA-ES’ ECDFs dynamics are different: compared to the MO-CMA-ES
with the same population size, it solves less targets on small budgets; there is a
longer-lasting starting phase. This is partly due to the elitist nature of the (1+1)-CMA-
ES used by MO-CMA-ES and the non-elitist nature of the standard CMA-ES used
by COMO-CMA-ES. However COMO-CMA-ES performs better in the long run, for
instance with a budget of 104n on functions f2, f4, f19, f53 in Figures 8.1, 8.2. Note
that this effect (starting phase duration and fraction of targets solved) increases with
the number of kernels. Remark that the MO-CMA-ES algorithms perform particularly
well on problems where one of the functions is the Gallagher 101 (f40, f45, f49, f52,
f54, f55) where a MO-* systematically outperforms the best2016 reference.

In 5-D on Figure 8.3, if we look at the fraction of targets found for a budget of
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35 Sharp ridge/Sharp ridge

Figure 8.1: Empirical cumulative distribution of simulated (boot-
strapped) runtimes, measured in number of objective function evalua-
tions, divided by dimension (FEvals/DIM) for the 58 targets {−10−4,−10−4.2,

−10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} in dimension
10.
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Figure 8.2: Bootstrapped empirical cumulative distribution of the number of
objective function evaluations divided by dimension (FEvals/DIM) as in Fig. 8.1
but for functions f36 to f55 in 10-D.

104n, a global statement is that NSGA-II is ranking below either MO-100 or COMO-
100 (which have the same population size), but it can be above the variants with a
population size far from 100. In 20-D, as we can see on Figure 8.4, for a budget of 104n
and considering all subgroups of functions, COMO-100 solves more targets than MO-
100 which in turn performs better than NSGA-II. As an example, on ill-cond, ill-cond
subgroup, COMO-100 solves 50% of the target precisions versus roughly 40% for
MO-100 and 20% for the NSGA-II. This kind of gap appears in most subgroups with
one ill conditioned objective function. COMO-3 and COMO-10 also perform better
than best2016 on subgroups with one multimodal objective function for small budgets,
between 102n and 104n.

8.6 Conclusion

We have benchmarked COMO-CMA-ES and MO-CMA-ES with different population
sizes to particularly test the influence of this parameter on the performances. We also
used NSGA-II as a baseline. COMO-CMA-ES performs well although it is a priori
designed to approximate the optimal p-distribution of the Hypervolume Indicator, for
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Figure 8.3: Bootstrapped empirical cumulative distribution of
the number of objective function evaluations divided by dimension
(FEvals/DIM) for 58 targets with target precision in {−10−4,−10−4.2,

−10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} for all func-
tions and subgroups in 5-D.
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p the population size (number of kernels). As observed in [185], this performance
is mainly due to the the large stationary variance obtained with non-elitist (comma)
evolution strategies and with the use of UHVI which guides the evolution towards the
uncrowded space in the non-dominated region. The overall results for MO-CMA-ES
and COMO-CMA-ES show that a smaller population size performs better for smaller
budget, while a larger population size end up performing better for a budget large
enough. Hence as done in [136] with MO-CMA-ES, a population size adaptation for
COMO-CMA-ES should guarantee better performance on COCO.
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Figure 8.4: Bootstrapped empirical cumulative distribution of
the number of objective function evaluations divided by dimension
(FEvals/DIM) for 58 targets with target precision in {−10−4,−10−4.2,

−10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} for all func-
tions and subgroups in 20-D.
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∆f 1e0 1e-1 1e-2 1e-3 #succ

f1 1 75 584 3660 10/10
COMO 1.2(0) 20(14) 20(2) 8.7(0.2) 0/10
MO 3.2(6) 11(16) 12(2) 4.0(0.1) 0/10
NSGA 39(188) 14(2) 11(5) 35(6) 0/10

f2 5.0 105 601 3715 10/10
COMO 5.1(4) 34(52) 22(11) 8.7(3) 0/10
MO 10(22) 17(15) 11(4) 3.7(0.9) 0/10
NSGA 63(83) 11(2) 4.1(2) 36(16) 0/10

f3 3.0 115 665 5170 10/10
COMO 3.1(6) 21(7) 20(11) 6.5(3) 0/10
MO 2.8(6) 11(15) 10(3) 2.8(0.8) 0/10
NSGA 89(132) 22(20) 14(36) 93(111) 0/10

f4 2.0 109 571 2669 10/10
COMO 4.8(0) 15(8) 20(6) 11(1) 0/10
MO 1.6(0) 10(11) 12(3) 5.0(0.5) 0/10
NSGA 171(178) 10(2) 13(0.8) 46(63) 0/10

f5 2.0 120 1277 21889 10/10
COMO 1.1(3) 27(8) 17(2) 3.4(1) 0/10
MO 1.2(2) 16(12) 7.4(1) 3.7(4) 0/10
NSGA 86(76) 11(2) 19(14) ∞5e5 0/10

f6 3.0 73 688 3976 10/10
COMO 3.5(0.2)34(26) 20(8) 8.5(2) 0/10
MO 12(28) 27(22) 11(4) 3.7(0.8) 0/10
NSGA 104(122) 18(8) 11(8) 114(66) 0/10

f7 2.0 2763 1.2e5 3.5e6 0/10
COMO 1.9(0) 3.3(5) 6.6(9) ∞5e5 0/10
MO 1.5(2) 1.7(1) 5.2(14) ∞5e5 0/10
NSGA 80(198) 3.2(2) 4.2(10) ∞5e5 0/10

f8 3.0 2167 1.6e5 2.1e6 0/10
COMO 19(43) 4.7(2) 1.9(2) ∞5e5 0/10
MO 1.8(2) 2.6(1) 1.3(1) ∞5e5 0/10
NSGA 142(44) 1.0(0.2) 4.6(3) ∞5e5 0/10

f9 4.0 96 521 1986 10/10
COMO 7.9(2) 18(15) 22(3) 14(1) 0/10
MO 14(38) 14(2) 12(5) 6.3(0.5) 0/10
NSGA 67(92) 25(73) 11(24) 30(10) 0/10

f10 4.0 323 9839 52107 10/10
COMO 16(48) 13(5) 2.2(0.3) 11(5) 0/10
MO 15(6) 8.4(6) 0.96(0.1) 4.4(14) 0/10
NSGA 95(111) 10(26) 6.1(5) 10(9) 0/10

f11 5.0 56 436 9189 9/10
COMO 4.5(12) 10(37) 12(22) 3.1(2) 0/10
MO 1.8(0.6) 5.4(12) 4.3(3) 1.5(2) 0/10
NSGA 28(23) 11(5) 3.2(0.8) 5.7(11) 0/10

f12 5.0 44 641 3991 10/10
COMO 1(0.8) 29(64) 11(26) 4.6(5) 6/10
MO 5.0(2) 16(7) 4.6(9) 7.3(21) 4/10
NSGA 80(102) 23(24) 11(24) 36(63) 5/10

f13 7.0 60 560 5582 10/10
COMO 6.2(4) 15(16) 11(9) 3.6(2) 6/10
MO 7.6(15) 5.5(6) 5.4(4) 1.5(0.5) 0/10
NSGA 65(40) 15(6) 9.4(28) 10(3) 3/10

f14 5.0 247 1713 12801 10/10
COMO 0.54(0.4)27(12) 17(2) 5.4(3) 0/10
MO 0.60(0.5)16(4) 202(147) 108(78) 0/10
NSGA 66(60) 13(17) 45(50) 378(537) 0/10

f15 6.0 74 677 6559 10/10
COMO 10(21) 59(72) 24(16) 5.8(1) 0/10
MO 17(56) 30(45) 11(4) 2.7(1) 0/10
NSGA 80(93) 32(25) 11(17) 28(28) 0/10

∆f 1e0 1e-1 1e-2 1e-3 #succ

f20 4.0 70 1162 5724 10/10
COMO 33(80) 26(26) 11(5) 6.5(4) 2/10
MO 15(35) 17(29) 5.2(4) 3.7(5) 2/10
NSGA 761(106) 63(9) 12(5) 153(201) 0/10

f21 5.0 86 3249 9924 10/10
COMO 3.4(8) 21(23) 3.5(3) 3.3(3) 3/10
MO 8.7(15)14(18) 1.5(1) 1.1(0.9) 1/10
NSGA 56(80) 13(6) 19(3) 20(31) 1/10

f22 3.0 97 1168 12608 9/10
COMO 16(35) 43(62) 22(10) 5.5(3) 0/10
MO 10(5) 21(25) 13(25) 14(36) 0/10
NSGA 41(102) 16(5) 25(23) ∞5e5 0/10

f23 1 59 618 4410 10/10
COMO 1.9(0) 21(25) 21(12) 7.5(2) 0/10
MO 2.2(0) 15(24) 10(5) 3.7(2) 0/10
NSGA 202(318) 23(7) 11(4) 143(133) 0/10

f24 5.0 2347 1.8e5 4.1e6 0/10
COMO 1.3(3) 4.0(3) 0.36(0.1)∞5e5 0/10
MO 2.0(4) 2.1(1) 27(27) ∞5e5 0/10
NSGA 71(25) 5.2(1) 5.7(8) ∞5e5 0/10

f25 9.0 3143 1.2e5 2.5e6 3/10
COMO 14(35) 2.8(3) 0.99(0.4) 0.36(0.5)0/10
MO 0.81(3) 1.5(2) 3.3(6) ∞5e5 0/10
NSGA 47(87) 10(29) 7.2(7) ∞5e5 0/10

f26 7.0 59 2182 13673 8/10
COMO 13(30) 21(13) 5.6(4) 5.9(9) 0/10
MO 11(7) 13(13) 2.0(2) 10(18) 0/10
NSGA 88(76) 31(29) 1.5(2) 7.5(19) 0/10

f27 6.0 2631 21971 44576 10/10
COMO 27(124) 1.2(2) 0.83(0.5) 5.5(9) 0/10
MO 15(37) 0.97(0.9)0.36(0.1) 3.1(3) 2/10
NSGA 386(61) 5.5(6) 12(24) 15(12) 0/10

f28 2.0 20 145 1230 9/10
COMO 7.4(1) 36(35) 35(23) 16(5) 8/10
MO 1.9(6) 18(6) 25(11) 7.4(0.3) 0/10
NSGA 95(63) 46(7) 16(9) 27(32) 0/10

f29 3.0 114 1413 13660 10/10
COMO 41(201) 54(29) 18(6) 5.8(2) 0/10
MO 12(29) 33(18) 36(70) 55(50) 0/10
NSGA 140(118) 36(6) 29(32) ∞5e5 0/10

f30 1 33 366 2294 10/10
COMO 2.5(8) 41(62) 34(14) 13(3) 2/10
MO 1.2(0.5)37(45) 17(7) 6.3(1) 0/10
NSGA 155(177) 92(147) 42(71) 71(148) 0/10

f31 3.0 2166 50028 3.2e6 0/10
COMO 7.4(10) 4.2(3) 1.1(0.4)∞5e5 0/10
MO 4.8(16) 2.2(1) 90(217) ∞5e5 0/10
NSGA 71(117) 7.0(14)10(18) ∞5e5 0/10

f32 3.0 2131 1.1e5 2.4e6 1/10
COMO 5.3(11) 2.7(2) 0.53(0.2)∞5e5 0/10
MO 1.1(2) 1.4(0.9) 7.0(4) ∞5e5 0/10
NSGA 73(70) 5.1(11) 8.2(9) ∞5e5 0/10

f33 6.0 627 1214 3730 7/10
COMO 10(41) 90(200) 50(108) 20(36) 2/10
MO 22(68) 89(1.0) 48(2) 17(1) 1/10
NSGA 64(67) 90(399) 47(104) 18(37) 1/10

∆f 1e0 1e-1 1e-2 1e-3 #succ

f38 4.0 4366 2.7e5 5.4e6 1/10
COMO 1.0(0.6) 4.6(2) 17(13) ∞5e5 0/10
MO 2.5(2) 1.8(0.5) 1.9(3) ∞5e5 0/10
NSGA 88(71) 2.2(2) 5.2(4) ∞5e5 0/10

f39 2.0 215 1160 47472 8/10
COMO 5.0(3) 19(7) 22(7) 1.9(0.8) 0/10
MO 1.9(0.2)12(7) 87(126) 10(11) 0/10
NSGA 95(144) 6.8(1) 19(17) 31(35) 0/10

f40 2.0 998 34442 2.0e5 8/10
COMO 2.9(2) 9.3(2) 2.6(7) 11(8) 0/10
MO 1.8(2) 4.6(0.8) 0.41(0.1)1.4(2) 0/10
NSGA 161(169) 2.7(1) 4.1(9) ∞5e5 0/10

f41 2.0 48 708 6343 10/10
COMO 4.0(4) 53(63) 20(10) 5.5(2) 0/10
MO 5.3(9) 41(42) 11(4) 2.3(0.4) 0/10
NSGA 173(185) 29(16) 12(16) 81(144) 0/10

f42 2.0 2525 3.4e5 4.3e6 0/10
COMO 3.9(13) 26(103) 13(13) ∞5e5 0/10
MO 7.0(16) 2.2(2) 2.9(2) ∞5e5 0/10
NSGA 220(230) 4.3(15) 2.8(4) ∞5e5 0/10

f43 4.0 2468 1.5e5 3.8e6 2/10
COMO 2.2(3) 3.1(2) 1.8(1.0)∞5e5 0/10
MO 7.1(14) 1.4(1) 1.4(0.6)∞5e5 0/10
NSGA 65(99) 6.8(3) 4.3(4) ∞5e5 0/10

f44 6.0 86 513 1853 10/10
COMO 23(46) 34(17) 28(20) 17(6) 1/10
MO 21(1) 20(27) 13(8) 7.7(4) 0/10
NSGA 80(113) 14(9) 7.4(2) 34(65) 0/10

f45 4.0 816 5730 53653 10/10
COMO 3.7(0.4) 5.8(4) 14(2) 23(24) 0/10
MO 6.9(15) 3.2(2) 1.6(0.2) 2.8(5) 0/10
NSGA 53(62) 2.3(0.8)10(5) 90(77) 0/10

f46 4.0 11925 4.9e5 5.6e7 0/10
COMO 3.0(2) 2.3(1) 2.7(5) ∞5e5 0/10
MO 3.5(6) 5.4(0.4)∞ ∞5e5 0/10
NSGA 88(65) 3.5(4) ∞ ∞5e5 0/10

f47 3.0 4172 2.7e5 4.4e6 0/10
COMO 1.2(2) 4.6(3) 7.7(9) ∞5e5 0/10
MO 0.73(0.7)1.6(0.9) 8.9(15) ∞5e5 0/10
NSGA 67(105) 6.8(14) 17(17) ∞5e5 0/10

f48 9.0 2160 1.1e5 2.1e6 2/10
COMO 8.8(30) 6.7(9) 2.3(4) ∞5e5 0/10
MO 6.7(14) 1.9(1) 39(17) ∞5e5 0/10
NSGA 35(36) 11(52) 2.7(4) ∞5e5 0/10

f49 9.0 3737 2.0e5 1.3e6 1/10
COMO 10(2) 18(35) 10(16) ∞5e5 0/10
MO 1.6(3) 1.5(0.8) 4.5(5) ∞5e5 0/10
NSGA 42(50) 7.9(15) 5.2(4) 3.5(5) 0/10

f50 6.0 3913 2.2e5 2.6e6 1/10
COMO 0.93(2) 3.7(2) 1.4(2) ∞5e5 0/10
MO 1.2(2) 1.4(1) 1.0(0.7)∞5e5 0/10
NSGA 39(68) 2.4(3) 5.8(6) ∞5e5 0/10

f51 8.0 1251 32465 2.5e6 1/10
COMO 3.3(1) 5.4(5) 1.7(0.8) 0.86(1) 1/10
MO 2.5(6) 3.0(3) 3.7(4) ∞5e5 0/10
NSGA 53(50) 2.6(5) 11(13) ∞5e5 0/10
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∆f 1e0 1e-1 1e-2 1e-3 #succ

f16 3.0 2810 2.0e5 4.2e6 3/10
COMO 0.63(0.5) 2.5(2) 0.27(0.1) 0.50(1) 1/10
MO 2.0(5) 1.6(1) 6.0(8) ∞5e5 0/10
NSGA 135(134) 4.0(14) 6.5(9) ∞5e5 0/10

f17 29 2935 48624 2.4e6 3/10
COMO 51(127) 3.3(5) 2.2(3) 0.34(0.4)0/10
MO 12(0.7) 1.7(4) 25(21) ∞5e5 0/10
NSGA 16(23) 3.4(1) 10(19) 2.0(2) 0/10

f18 2.0 56 557 6912 8/10
COMO 4.2(8) 5.6(5) 7.6(2) 4.7(3) 0/10
MO 9.0(17) 3.2(5) 3.6(4) 1.2(0.5) 0/10
NSGA 158(215) 15(5) 2.4(0.5) 41(56) 0/10

f19 9.0 1292 6164 88464 9/10
COMO 4.9(10) 2.5(1) 2.4(1) 0.39(0.2)1/10
MO 2.6(1) 1.4(1) 10(0.3) 0.77(0.0)4/10
NSGA 67(22) 18(0.6) 11(18) 1.8(1) 0/10

∆f 1e0 1e-1 1e-2 1e-3 #succ

f34 9.0 1376 15575 54195 10/10
COMO 1.5(3) 2.2(2) 1.1(0.4) 3.0(5) 0/10
MO 0.82(0.7)1.4(1) 0.51(0.1)6.4(14) 2/10
NSGA 21(36) 1.6(0.4) 5.2(6) 15(15) 0/10

f35 1 141 2268 51388 8/10
COMO 3.7(2) 28(23) 10(4) 1.7(0.3) 0/10
MO 3.9(6) 22(15) 35(50) 14(14) 0/10
NSGA 64(158) 9.5(3) 29(37) ∞5e5 0/10

f36 2.0 204 4640 41237 10/10
COMO 4.2(1) 32(13) 8.3(3) 3.0(1) 0/10
MO 2.7(2) 17(6) 4.9(10) 5.4(5) 0/10
NSGA 91(185) 12(14) 20(8) ∞5e5 0/10

f37 2.0 3956 1.5e5 2.5e6 1/10
COMO 1(2) 3.2(2) 2.0(2) ∞5e5 0/10
MO 0.70(1) 1.6(1) 6.2(5) ∞5e5 0/10
NSGA 73(121) 1.0(0.9) 5.0(3) ∞5e5 0/10

∆f 1e0 1e-1 1e-2 1e-3 #succ

f52 2.0 3027 1.4e5 2.1e6 1/10
COMO 2.1(3) 2.6(3) 1.2(3) 2.2(4) 0/10
MO 3.8(6) 1.5(1) 0.42(0.3)1.0(2) 0/10
NSGA 133(181) 3.2(6) 3.0(2) ∞5e5 0/10

f53 2.0 13 42 1443 2/10
COMO 9.1(0) 12(19) 29(53) 42(173) 1/10
MO 6.9(32) 14(11) 21(42) 41(87) 0/10
NSGA 116(229) 62(13) 29(6) 40(88) 1/10

f54 98 1514 12856 45502 10/10
COMO 2.1(5) 1.8(4) 1.2(0.2) 0.72(0.2)0/10
MO 2.2(0.1) 0.94(1) 0.61(0.2)7.6(11) 0/10
NSGA 23(52) 2.0(0.1) 4.5(4) 7.3(7) 0/10

f55 3.0 1415 18086 51245 9/10
COMO 2.2(0.9) 5.2(3) 1.2(0.5) 7.4(13) 0/10
MO 1(1) 1.6(1) 0.51(0.1)10(15) 1/10
NSGA 98(121) 7.7(7) 10(8) 27(25) 0/10

Table 8.2: Average runtime (aRT in number of function evaluations) divided
by the respective best aRT measured during BBOB-2016 in dimension 5.
This aRT ratio and, in braces as dispersion measure, the half difference be-
tween 10 and 90%-tile of bootstrapped run lengths appear for each algo-
rithm and target, the corresponding reference aRT in the first row. The dif-
ferent target ∆ICOCO

HV -values are shown in the top row. #succ is the num-
ber of trials that reached the (final) target Iref + 10−5. The median number
of conducted function evaluations is additionally given in italics, if the tar-
get in the last column was never reached. Entries, succeeded by a star,
are statistically significantly better (according to the rank-sum test) when
compared to all other algorithms of the table, with p = 0.05 or p = 10−k

when the number k following the star is larger than 1, with Bonferroni cor-
rection by the number of functions (55). A ↓ indicates the same tested
against the best algorithm from BBOB 2016. Best results are printed in bold.
Data produced with COCO v2.3.1, hv-hash=ff0e71e8cd978373
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∆f 1e0 1e-1 1e-2 1e-3 #succ

f1 1 157 1468 8244 10/10
COMO 1(0) 189(15) 48(2) 17(0.4) 0/10
MO 1(0) 100(12) 24(0.9) 90(11) 0/10
NSGA 1(0) 702(1356)∞ ∞2e6 0/10

f2 5.0 163 2170 21153 10/10
COMO 2.0(8)237(91) 42(8) 9.2(2) 0/10
MO 12(30) 90(12) 17(3) ∞2e6 0/10
NSGA 50(94) 654(762)8459(2e4) ∞2e6 0/10

f3 1 216 2384 11104 10/10
COMO 1(0) 163(32) 32(4) 14(2) 0/10
MO 1(0) 71(6) 16(6) 34(30) 0/10
NSGA 1(0) 663(648)∞ ∞2e6 0/10

f4 1 172 1682 10200 9/10
COMO 1(0) 210(22) 45(2) 14(0.5) 0/10
MO 1(0) 91(8) 23(5) 34(9) 0/10
NSGA 1(0) 504(408)1.1e4(9216) ∞2e6 0/10

f5 1 190 3207 32860 10/10
COMO 1(0) 245(16) 35(3) 7.9(0.9)0/10
MO 1(0) 101(9) 18(2) 72(53) 0/10
NSGA 1(0) 1635(650)∞ ∞2e6 0/10

f6 3.0 236 2134 16568 10/10
COMO 2.2(10)150(38) 39(5) 10(0.7) 0/10
MO 3.1(7) 64(15) 16(2) 77(22) 0/10
NSGA 72(94) 459(583)∞ ∞2e6 0/10

f7 1 24981 6.8e5 3.8e7 0/10
COMO 1(0) 3.7(3) 27(18) ∞2e6 0/10
MO 1(0) 1.1(0.4)∞ ∞2e6 0/10
NSGA 1(0) 326(260)∞ ∞2e6 0/10

f8 4.0 16448 2.4e6 2.8e7 0/10
COMO162(0.4) 6.0(3)∞ ∞2e6 0/10
MO 81(201) 4.3(8)∞ ∞2e6 0/10
NSGA 27(68)1164(1216)∞ ∞2e6 0/10

f9 1 144 1468 5944 10/10
COMO 1(0) 248(20) 49(2) 22(1) 8/10
MO 1(0) 105(11) 22(0.9) 36(6) 0/10
NSGA 111(275)375(294)1654(1946) ∞2e6 0/10

f10 1 6124 2.0e5 2.4e5 10/10
COMO 1(0) 9.2(0.9) 1.7(0.1) 20(29) 0/10
MO 1(0) 3.8(0.7) 4.8(12) 22(21) 0/10
NSGA 94(0) 223(303)∞ ∞2e6 0/10

f11 3.0 246 3177 1.1e5 1/10
COMO 1.3(2) 89(98) 48(21) 16(11) 0/10
MO 2.9(13)14(13) 8.1(6) 13(10) 0/10
NSGA 84(140) 19(27) 215(256) ∞2e6 0/10

f12 11 131 1483 11435 10/10
COMO 0.98(0.1)161(94) 76(25) 24(8) 0/10
MO 0.87(1)48(21) 13(4) 65(166)0/10
NSGA 38(40) 142(223)236(556) 779(1093)0/10

f13 7.0 139 1087 17899 7/10
COMO318(3) 197(98) 70(7) 13(4) 0/10
MO 45(220) 60(34) 20(2) 136(185)0/10
NSGA 77(77) 128(232)782(1800) ∞2e6 0/10

f14 3.0 349 6102 63789 10/10
COMO 0.63(2)180(62) 23(5) 14(9) 0/10
MO 0.63(0)66(19) 117(87) ∞2e6 0/10
NSGA 112(157)4054(3715)∞ ∞2e6 0/10

f15 6.0 210 2099 25094 9/10
COMO 6.0(1)224(99) 53(5) 8.7(2) 0/10
MO 5.8(0) 52(12) 37(51) 381(259)0/10
NSGA 74(81) 192(387)∞ ∞2e6 0/10

∆f 1e0 1e-1 1e-2 1e-3 #succ

f20 3.0 136 1870 8641 10/10
COMO 0.57(0)125(50) 30(14) 26(15) 5/10
MO 2.3(0) 70(21) 10(5) 8.2(4) 0/10
NSGA 101(159) 56(52) 570(540)330(442) 0/10

f21 5.0 331 1753 9785 8/10
COMO 39(128) 76(31) 39(12) 22(16) 3/10
MO 29(58) 33(11) 14(4) 71(102) 0/10
NSGA 126(559) 84(111)1993(1148)∞2e6 0/10

f22 1 313 4469 23797 10/10
COMO 1(0) 160(33) 26(3) 11(6) 0/10
MO 1(0) 68(11) 58(27) 119(182) 0/10
NSGA 1(0) 6470(6329)∞ ∞2e6 0/10

f23 3.0 332 2660 16975 10/10
COMO 1.6(3) 130(24) 37(3) 13(15) 0/10
MO 1.7(0) 39(10) 27(36) 67(50) 0/10
NSGA 110(84) 710(394)7301(1e4)∞2e6 0/10

f24 1 61504 8.1e5 6.5e7 0/10
COMO963(4808) 1.4(0.8) 23(38) ∞2e6 0/10
MO 59(0) 5.6(4)∞ ∞2e6 0/10
NSGA 589(202) 293(195)∞ ∞2e6 0/10

f25 1 34160 9.2e5 1.2e7 0/10
COMO 1(0) 1.7(2) 1.2(3)∞2e6 0/10
MO 1(0) 0.64(0.5)∞ ∞2e6 0/10
NSGA 193(402) 42(44) ∞ ∞2e6 0/10

f26 3.0 136 1117 4425 9/10
COMO615(3072)195(98) 56(30) 88(122) 1/10
MO 180(0) 73(23) 19(9) 11(13) 0/10
NSGA 53(214) 62(107) 315(914)807(1260)0/10

f27 1 60235 1.3e6 6.4e6 7/10
COMO 2.3(0) 4.8(0.4) 2.4(2) 1.3(0.5)0/10
MO 9.1(40) 8.7(17) 2.6(2) 2.9(6) 0/10
NSGA 400(568) 58(51) ∞ ∞2e6 0/10

f28 1 62 539 6898 8/10
COMO 1(0) 387(91) 102(7) 17(2) 5/10
MO 1(0) 185(34) 45(4) 314(235) 0/10
NSGA 195(506) 441(329)2960(3264)∞2e6 0/10

f29 1 359 3841 30739 8/10
COMO 1(0) 154(23) 31(2) 7.2(0.8)0/10
MO 1(0) 64(9) 48(9) 205(391) 0/10
NSGA 126(0) 1327(503)∞ ∞2e6 0/10

f30 1 220 1777 10156 9/10
COMO 7.4(32)158(54) 47(7) 15(1) 0/10
MO 8.1(36) 57(18) 20(6) 109(131) 0/10
NSGA 183(458) 293(433)5082(7316)∞2e6 0/10

f31 3.0 27722 8.6e5 3.0e7 0/10
COMO 92(277) 3.9(1) 21(30) ∞2e6 0/10
MO 93(231) 32(36) ∞ ∞2e6 0/10
NSGA 45(140) 657(902)∞ ∞2e6 0/10

f32 6.0 32985 1.1e6 2.6e7 0/10
COMO289(604) 2.5(1) 1.1(2)∞2e6 0/10
MO 92(208) 61(76) ∞ ∞2e6 0/10
NSGA 99(98) 149(166)∞ ∞2e6 0/10

f33 1 33 278 3348 6/10
COMO 1(0) 662(203) 184(41) 47(31) 0/10
MO 1(0) 272(56) 69(9) 27(39) 0/10
NSGA 106(262) 578(500)2412(1712)∞2e6 0/10

∆f 1e0 1e-1 1e-2 1e-3 #succ

f38 3.0 36705 3.9e6 2.2e8 0/10
COMO 1.0(0) 5.3(2)∞ ∞2e6 0/10
MO 0.47(0.7) 1.6(0.5)∞ ∞2e6 0/10
NSGA 64(167)∞ ∞ ∞2e6 0/10

f39 1 457 3876 25958 10/10
COMO 1(0) 113(16) 30(3) 8.5(3) 0/10
MO 1(0) 48(9) 99(136) 115(39) 0/10
NSGA 1(0) 2584(2559)∞ ∞2e6 0/10

f40 1 26134 2.1e5 2.6e6 7/10
COMO 1(0) 2.3(0.4) 7.0(10) 1.9(2) 0/10
MO 1(0) 1.0(0.2) 13(25) ∞2e6 0/10
NSGA 1(0) 144(241)∞ ∞2e6 0/10

f41 2.0 245 2389 15818 10/10
COMO 42(207) 144(37) 37(4) 10(1.0) 1/10
MO 31(72) 49(15) 14(2) 1198(1770)0/10
NSGA 107(252) 456(1001)∞ ∞2e6 0/10

f42 1 34578 2.9e6 2.3e7 0/10
COMO 1(0) 3.3(2)∞ ∞2e6 0/10
MO 1(0) 0.70(0.2)∞ ∞2e6 0/10
NSGA 191(432) 149(111)∞ ∞2e6 0/10

f43 2.0 55957 2.3e6 3.9e7 0/10
COMO 1.3(0.9) 1.4(0.5) 2.1(3)∞2e6 0/10
MO 4.4(3) 0.90(0.5)∞ ∞2e6 0/10
NSGA 122(214) 162(274)∞ ∞2e6 0/10

f44 3.0 168 1485 6584 10/10
COMO 31(48) 200(65) 52(10) 21(3) 4/10
MO 56(267) 69(31) 25(7) 84(101) 0/10
NSGA 93(130) 261(971)1477(3126)∞2e6 0/10

f45 1 49797 2.4e6 5.2e6 7/10
COMO 1.1(0.2) 1.3(0.8) 0.88(0.8) 3.5(4) 0/10
MO 4.1(0) 4.9(0.2) 1.3(0.8)∞2e6 0/10
NSGA 170(188) 32(40) ∞ ∞2e6 0/10

f46 1 55141 1.0e6 1.1e8 0/10
COMO 1(0) 2.8(0.8)∞ ∞2e6 0/10
MO 1(0) 16(9) ∞ ∞2e6 0/10
NSGA 81(0) ∞ ∞ ∞2e6 0/10

f47 2.0 54618 2.2e6 5.2e7 0/10
COMO 0.60(0.2) 3.3(0.6)∞ ∞2e6 0/10
MO 2.5(10) 42(64) ∞ ∞2e6 0/10
NSGA 45(112) 331(220)∞ ∞2e6 0/10

f48 1 22301 3.5e5 3.3e7 0/10
COMO 1(0) 3.6(2) 23(15) ∞2e6 0/10
MO 1(0) 1.1(0.5)∞ ∞2e6 0/10
NSGA 91(0) 220(184)∞ ∞2e6 0/10

f49 2.0 1.6e5 1.1e7 7.1e7 0/10
COMO 1.1(3) 0.84(0.4)∞ ∞2e6 0/10
MO 3.5(15) 1.3(1)∞ ∞2e6 0/10
NSGA 52(128) 113(107)∞ ∞2e6 0/10

f50 3.0 22169 1.3e6 2.0e7 0/10
COMO 0.67(0.8) 4.8(2) 6.7(14)∞2e6 0/10
MO 7.3(32) 26(25) ∞ ∞2e6 0/10
NSGA 72(101)∞ ∞ ∞2e6 0/10

f51 1 8574 9.9e5 2.2e7 0/10
COMO 1(0) 7.4(3) 0.28(0.1)∞2e6 0/10
MO 1(0) 29(118)∞ ∞2e6 0/10
NSGA 269(243) 566(1279)∞ ∞2e6 0/10

187



∆f 1e0 1e-1 1e-2 1e-3 #succ

f16 6.0 32242 1.0e6 1.9e7 0/10
COMO 1.1(2) 3.5(3) 2.4(3) ∞2e6 0/10
MO 1.3(2) 7.9(0.8)∞ ∞2e6 0/10
NSGA 85(106) 84(17) ∞ ∞2e6 0/10

f17 1 33890 9.3e5 2.7e7 0/10
COMO 1(0) 2.4(1) 1.7(3) 0.69(0.7)0/10
MO 1(0) 40(30) ∞ ∞2e6 0/10
NSGA 227(70) 139(208) ∞ ∞2e6 0/10

f18 6.0 141 1507 17541 10/10
COMO 22(94) 221(84) 54(21) 17(4) 0/10
MO 1.8(0.5) 52(24) 12(3) 70(84) 0/10
NSGA 62(87) 27(17) 54(18) ∞2e6 0/10

f19 7.0 18889 2.4e5 5.1e6 6/10
COMO 1.7(0.0) 3.3(0.7) 1.5(2) 3.6(3) 0/10
MO 3.5(8) 6.9(0.4)20(19) ∞2e6 0/10
NSGA 69(114) 42(29) ∞ ∞2e6 0/10

∆f 1e0 1e-1 1e-2 1e-3 #succ

f34 3.0 45588 1.9e5 2.3e5 8/10
COMO477(1192) 1.2(0.2) 5.2(5) 36(50) 0/10
MO 95(238) 0.48(0.1)13(27) 41(37) 0/10
NSGA 49(121) 17(22) ∞ ∞2e6 0/10

f35 1 338 4782 41429 10/10
COMO 1(0) 127(17) 22(2) 5.2(0.6)⋆20/10
MO 1(0) 60(8) 88(42) ∞2e6 0/10
NSGA 1(0) 1968(1326)∞ ∞2e6 0/10

f36 1 454 4824 48159 10/10
COMO 1(0) 142(35) 30(5) 6.8(3) 0/10
MO 1(0) 48(6) 61(106) ∞2e6 0/10
NSGA 1(0) 4570(2112)∞ ∞2e6 0/10

f37 1 10528 5.2e5 3.5e7 0/10
COMO 1(0) 10(5) ∞ ∞2e6 0/10
MO 1(0) 3.3(1) ∞ ∞2e6 0/10
NSGA 1(0) ∞ ∞ ∞2e6 0/10

∆f 1e0 1e-1 1e-2 1e-3 #succ

f52 1 82166 4.9e6 2.4e7 1/10
COMO 1(0) 1.5(0.5)∞ ∞2e6 0/10
MO 1(0) 0.80(0.1) 3.7(5) ∞2e6 0/10
NSGA 39(96) 240(280) ∞ ∞2e6 0/10

f53 1 28 159 1952 8/10
COMO 1(0) 649(131) 250(24) 46(5) 6/10
MO 1(0) 234(90) 94(4) 13(1) 0/10
NSGA 1(0) 123(160) 147(120) 124(84) 0/10

f54 7.0 6049 1.6e5 2.5e6 8/10
COMO293(1143) 8.5(1) 5.9(9) 2.0(3) 0/10
MO 59(122) 3.3(0.5) 7.0(9) ∞2e6 0/10
NSGA 66(118) 155(208) ∞ ∞2e6 0/10

f55 1 8.4e5 8.8e6 8.8e6 7/10
COMO 1(0) 0.37(1) 0.93(0.8) 2.1(3) 0/10
MO 1(0) 1.1(3) 0.92(0.4) 2.1(2) 0/10
NSGA 1(0) ∞ ∞ ∞2e6 0/10

Table 8.3: Average runtime (aRT in number of function evaluations) divided
by the respective best aRT measured during BBOB-2016 in dimension 20.
This aRT ratio and, in braces as dispersion measure, the half difference be-
tween 10 and 90%-tile of bootstrapped run lengths appear for each algo-
rithm and target, the corresponding reference aRT in the first row. The dif-
ferent target ∆ICOCO

HV -values are shown in the top row. #succ is the num-
ber of trials that reached the (final) target Iref + 10−5. The median number
of conducted function evaluations is additionally given in italics, if the tar-
get in the last column was never reached. Entries, succeeded by a star,
are statistically significantly better (according to the rank-sum test) when
compared to all other algorithms of the table, with p = 0.05 or p = 10−k

when the number k following the star is larger than 1, with Bonferroni cor-
rection by the number of functions (55). A ↓ indicates the same tested
against the best algorithm from BBOB 2016. Best results are printed in bold.
Data produced with COCO v2.3.1, hv-hash=ff0e71e8cd978373
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Implementations
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We present in this chapter different implementations done with respect
to this PhD project. Mainly, we introduce the ask-and-tell pattern [51] in
all the implementations. We present an implementation of the ask-and-tell
paradigm for the weighted multi-recombination step-size adaptive evolution
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strategies, specifically applied to CSA without cumulation and xNES with-
out covariance matrix adaptation. We then present the pycomocma Python
package that implements COMO-CMA-ES [185] by using the ask-and-tell
interface along with the CMA-ES Python package [89]. Finally we present
the Matlab interface of COMO-CMA-ES, that we derive from the pycomocma

Python package.

9.1 The ask-and-tell optimization interface

Often in practice, optimization algorithms are implemented with a functional paradigm
placing the optimization method at the top of the hierarchy, i.e. where a single call to a
procedure does all the optimization process [44]. This technique has the advantage to
be easy to use. However it does not allow any prototyping from the user, specifically
if one wants to interact consistently with the optimizer, step by step.

This is why the ask-and-tell paradigm introduced in [51] is particularly adapted in
our context. It allows to create an optimization algorithm independently to the objec-
tive function that we want to optimize. The optimization algorithm implementation is
mainly based on the search space, instead of the objective space. This independence
is helpful in practice to, for instance, implement the optimization algorithm in Python
and apply it to an objective function implemented in Matlab.

As indicated by its nomenclature, the ask-and-tell paradigm contains mainly the
two methods of the optimizer ask and tell. The method ask asks the optimizer to
generate search space points to be evaluated, based on its mechanism, and returns
the asked points. Then the method tell tells to the optimizer’s instance the asked
points along with their corresponding objective function values, and returns the new
instance. It can be summarized in Algorithm 11.

Algorithm 11 The ask-and-tell interface
1: Given: optimizer opt

2: while not stopping criterion do
3: X = ask(opt)
4: Y = (f(x) for x ∈ X)
5: opt = tell(opt, X, Y)

6: end while

At the end of the loop, the favorite solution xopt is given by the method best :

xopt = best(opt).
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A direct observation from Algorithm 11 is that for the optimization of an expensive
problem (where the evaluation of the objective function is too expensive with respect
to the standard operations of the optimizer), the procedure is easily parallelizable by
distributing on each iteration the evaluations of the objective functions, between the
method ask and the method tell.

9.1.1 An ask-and-tell Python interface for the step-size adap-
tive evolution strategies with recombination

We introduce here a generic implementation of step-size adaptive evolution strategies
with recombination, where only the step-size is adapted, without adaptations that use
the cumulative path. The main goal is to observe in practice how the ask-and-tell
interface works.� �

1 from cma import interfaces

2

3

4 class Saes(interfaces.OOOptimizer):

5 """

6 Step -size adaptive Evolution Strategy framework that inherits from the

7 cma `interfaces.OOOptimizer `, with the ask -and -tell interface available.

8

9 Attributes and Properties

10 =========================

11 - `incumbent `: current solution of the optimizer.

12 - `dimension `: dimension of the search space.

13 - `sigma `: current step -size of the optimizer.

14 - `countevals `: number of function evaluations.

15 - `countiter `: number of iterations.

16 - `popsize `: population size.

17 - `mu `: number of selected offspring.

18 - `ksigma `: learning rate for the step -size.

19 - `km `: learning rate for the incumbnent.

20 - `weights `: weights given to the `mu` selected offspring for the

21 recombination.

22 - `step_size_factor `: ratio between the current and latter step -size

values.

23 - `ask `: generates new candidate solutions.

24 - `tell `: passes the objective values and updates the states of the

25 optimizer.

26 """

27 def __init__(self , x0 , sigma0 , inopts = {

28 'popsize ': None , 'mu': None , 'weights ': None}):

29 """

30 Initialization:

31 - `x0` is the initial solution

32 - `sigma0 ` is the initial step -size

33 - `inopts ` is a dictionary setting the population size (with the

34 key 'popsize ') and the number of selected offspring ('mu ').
35 """

36
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37 self.incumbent = np.array(x0)

38 self.dimension = len(x0)

39 self.sigma = sigma0

40 self.countevals = 0

41 self.countiter = 0

42 popsize = inopts['popsize ']
43 if popsize is None:

44 self.popsize = int(4 + np.floor (3 * np.log(self.dimension)))

45 else:

46 self.popsize = popsize

47 mu = inopts['mu']
48 if mu is None:

49 self.mu = int(self.popsize // 4)

50 else:

51 self.mu = mu

52 self.km = 1

53 self.ksigma = 1

54 weights = inopts['weights ']
55 if weights is not None:

56 self.weights = weights

57 else:

58 self.weights = 1/self.mu * np.ones(self.mu)

59 self.step_size_factor = 0.0

60 self.x0 = x0

61 self.sigma0 = sigma0

62 def ask(self):

63 """

64 ask `popsize ` offspring normally distributed with

65 mean `incumbent ` and standard deviation `sigma `.
66 """

67 return [np.array(self.incumbent) + self.sigma * np.array(u) for u in

68 np.random.randn(self.popsize , self.dimension)]

69

70 def tell(self , solutions , objective_values):

71 """

72 pass function values to update the variables ' states.

73 """

74 _old_incumbent = self.incumbent

75

76 sorted_indices = sorted(range(len(solutions)),

77 key = lambda i: objective_values[i])

78 selected_indices = sorted_indices [:self.mu]

79 selection = np.array([ solutions[i] for i in selected_indices ])

80

81 normal_selection = (selection - self.incumbent) / self.sigma

82

83

84 self.incumbent = (1 - self.km) * np.array(self.incumbent) + (

85 self.km * np.dot(self.weights , selection))

86

87 self.step_size_factor = self.step_size_update(normal_selection)

88 self.sigma = self.sigma * self.step_size_factor

89

90 self.dist = np.linalg.norm(self.incumbent - _old_incumbent)

91

92 self.countevals += self.popsize
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93 self.countiter += 1

94

95 def stop(self):

96 """

97 """

98 pass

99

100 def step_size_update(self , selection):

101 """

102 """

103 pass

104

105

106 class XNes(Saes):

107 """

108 inherits from the `Saes ` class to implement the 'xNES' Evolution Strategy

109 without covariance matrix adaptation.

110 """

111 def __init__(self , x0 , sigma0 , inopts = {

112 'popsize ': None , 'mu': None , 'weights ': None}):

113 """

114 """

115

116 Saes.__init__(self , x0, sigma0 , inopts)

117

118

119

120 def step_size_update(self , selection , expo=True):

121 """

122 return the step -size factor for the 'xNes' Evolution Strategy.

123 """

124 norm_square_selection = np.array ([np.linalg.norm(u)**2 for u in

125 selection ]) - self.dimension

126 log_factor = 1/(2 * self.dimension) * self.ksigma * np.dot(

127 self.weights , norm_square_selection)

128 if expo:

129 return np.exp(log_factor)

130 else:

131 return log_factor

132

133 class Csaes(Saes):

134 """

135 inherits from the `Saes ` class to implement the 'Csa -es' Evolution

Strategy

136 without covariance matrix adaptation.

137 """

138 def __init__(self , x0 , sigma0 , inopts = {

139 'popsize ': None , 'mu': None , 'weights ': None}):

140 """

141 """

142 Saes.__init__(self , x0, sigma0 , inopts)

143

144 def step_size_update(self , selection , expo=True):

145 """

146 return the step -size factor for the 'xNes' Evolution Strategy.

147 """
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148 norm_weights_square = (np.linalg.norm(self.weights))**2

149 log_factor = 1/2* self.ksigma * (-1 + np.linalg.norm(np.dot(

150 self.weights , selection))**2/( self.dimension *

norm_weights_square))

151 if expo:

152 return np.exp(log_factor)

153 else:

154 return log_factor� �
Based on this ask-and-tell implementation, we illustrate the main results of Chap-

ter 4 in Section 1.5 of the appendix. In Figure A.1, we present for (1,3)-CSA-ES
and for (5,11)-CSA-ES a linear behavior of the distance of the favorite solution to a
reference point and of the step-size. The objective functions are the Euclidean norm
square and a nontrivial linear function. With the same settings, the stability of the
σ-normalized chain is illustrated in Figure A.2, and the linear behavior of the expected
log-progress is illustrated in Figure A.3. For (1,3)-xNES and for (5,11)-xNES, we ob-
serve in Figure A.6 a linear behavior of the expected log-progress on the Euclidean
norm square and on a nontrivial linear function. In Figure A.5, the ergodicity of the
σ-normalized chain is presented. In Figure A.4, we observe with the same problems
a linear behavior of the distance of the favorite solution to a reference point (usually
the optimum) and of the step-size.

9.1.2 Use case: Exponential Natural Evolution Strategies
without covariance matrix adaptation

We test the above code of Section 9.1.1 with a specific Optimization algorithm. We
create in the following a simple calling sequence example for the Exponential Natural
Evolution Strategy (xNES) [70], without covariance matrix adaptation, minimizing the
following linear function l⋆ ∶ x z→ x1. We then expect the final favorite solution having
its first coordinate diverging towards −∞.

[1]: import cma

import saes

%pylab nbagg

from matplotlib import pyplot as plt

import numpy as np

import scipy.stats as sps

Populating the interactive namespace from numpy and matplotlib

[2]: lam = 11

mu = 5

weights = np.arange(mu, 0, -1)
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weights = weights / sum(weights)

es = saes.XNes(10 * [1], 0.2, inopts={'popsize': lam, 'mu': mu,

↪'weights': weights}) # es with non-uniform weights

function = lambda x: x[0]

#function = cma.ff.sphere

num_steps = 10000

[3]: for i in range(num_steps):

X = es.ask()

objective_values = [function(x) for x in X]

es.tell(X, objective_values)

[4]: es.incumbent # gives the solution at the last step

[4]: array([-2.27683548e+113, 7.92314104e+111, -4.38439697e+111,

2.45857432e+111, 5.40496049e+111, -1.71161266e+111,

1.79033942e+112, -2.83903187e+111, 1.10629799e+112,

-9.41423910e+110])

[5]: function(es.incumbent) # gives the value at the last step

[5]: -2.276835476814582e+113

9.2 The pycomocma Python package

The pycomocma package is a Python implementation of COMO-CMA-ES [185] which
is a Multiobjective Evolution Strategy, based upon the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) single optimizer [95].

For the time being, only the bi-objective case is tested and functional. The package
is located in the following link: https://github.com/CMA-ES/pycomocma. It contains
the module called comocma.

The ask-and-tell paradigm is used for the implementation of this package. A num-
ber of points p is fixed before the optimization process, and the goal of the multiob-
jective optimizer is to obtain the optimal p-distribution of the points with respect to the
hypervolume indicator [21]. In pycomocma, each point of those p points is represented
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by the favorite solution of a CMA-ES instance. Those p CMA-ES evolve sequentially
until a stopping criteria is met [185]. The parallelizable version of the multiobjective
optimizer is available with a slight different search dynamic, wherein all the CMA-ES
instances are updated at the same time.

9.2.1 Installation

The pycomocma Python package can be installed either via

pip install git+https://github.com/CMA-ES/pycomocma.git@master

or simply via

pip install comocma

9.2.2 Links

The following links give detailed information with respect to the pycomocma package.

• Code on Github: https://github.com/CMA-ES/pycomocma
• Documentation in

– apidocs format: https://cma-es.github.io/pycomocma/comocma-apidocs/index.html
– epydocs format: https://cma-es.github.io/pycomocma/comocma-epydocs/index.html

9.2.3 Testing of the comocma module

In order to test if everything is well installed, the script

python -m comocma

runs the test written in the main file, which allows to test all the doctest scripts
included inside the comocma module.

9.2.4 Instantiating a multiobjective solver

To create a multiobjective solver instance, we use beforehand a factory function within
the comocma module called get cmas. It allows to create the adequate number of CMA-
ES instances with additional attributes, called in this context kernels, whose favorite
solutions represent the estimated Pareto set. The following process can be used to
initialize a COMO-CMA-ES instance, and to create a callable multiobjective problem
based on callable single-objective problems.
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Importing necessary packages:

import cma, comocma

Setting parameters:

dimension = 10 # dimension of the search space

num_kernels = 5

# number of single-objective solvers (number of points on the front)

sigma0 = 0.2 # initial step-sizes

Instantiate a multiobjective solver

list_of_solvers = comocma.get_cmas(num_kernels * [dimension * [0]], sigma0)

# produce `num_kernels cma instances`

moes = comocma.Sofomore(list_of_solvers, reference_point=[11, 11])

# create a bi-objective como-cma-es instance

moes3 = comocma.Sofomore(list_of_solvers, reference_point=[11, 11, 11])

# create a multiobjective como-cma-es instance

Setting a callable multiobjective function

fitness = comocma.FitFun(cma.ff.sphere, lambda x: cma.ff.sphere(x-1))

# a callable bi-objective function

fitness3 = comocma.FitFun(cma.ff.sphere, lambda x: cma.ff.sphere(x-1),

lambda x: cma.ff.sphere(x+1)) # a callable multiobjective function

Single-objective options: a use case with few cma-es’ options

list_of_solvers = comocma.get_cmas(num_kernels * [dimension * [0]], 0.2,

inopts={'bounds': [0.2, 0.9], 'tolx': 10**-7,'popsize': 32})
# produce `num_kernels cma instances`

moes = comocma.Sofomore(list_of_solvers, [1.1, 1.1])

# create a como-cma-es instance
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Use case with some Multiobjective options

list_of_solvers = comocma.get_cmas(num_kernels * [dimension * [0]], 0.2)

moes = comocma.Sofomore(list_of_solvers, [1.1, 1.1],

opts={'archive': True, 'restart': None, 'update_order': None})
# create a como-cma-es instance

9.2.5 The Optimize interface

This interface is inherited from the pycma package [89]. It is a method of the multiob-
jective optimizer, taking as required argument the multiobjective function to optimize.
The following sequences are the baselines to use in practice.

Initialization

import cma, comocma

dimension = 10 # dimension of the search space

num_kernels = 5 # number of single-objective solvers

# (number of points on the front)

sigma0 = 0.2 # initial step-sizes

list_of_solvers = comocma.get_cmas(num_kernels * [dimension * [0]], sigma0)

# produce `num_kernels cma instances`

moes = comocma.Sofomore(list_of_solvers, [11,11])

# create a como-cma-es instance

fitness = comocma.FitFun(cma.ff.sphere, lambda x: cma.ff.sphere(x-1))

# a callable bi-objective function

Optimizing fitness until default stopping criteria

moes.optimize(fitness)

Iterat #Fevals Hypervolume axis ratios sigmas min&max stds

(median) (median) (median)

1 10 1.210000000000000e+00 1.0e+00 2.00e-01 2e-01 2e-01

2 20 1.210000000000000e+00 1.0e+00 2.00e-01 2e-01 2e-01

3 30 1.210000000000000e+00 1.0e+00 1.85e-01 2e-01 2e-01

100 1000 1.207601015381810e+00 1.6e+00 3.40e-02 3e-02 3e-02
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200 2000 1.209903687756354e+00 1.7e+00 7.74e-03 5e-03 6e-03

300 3000 1.209997694077156e+00 1.8e+00 2.03e-03 1e-03 1e-03

400 4000 1.209999800600613e+00 1.8e+00 4.90e-04 2e-04 3e-04

480 4800 1.209999979594839e+00 1.9e+00 2.02e-04 7e-05 9e-05

Optimizing fitness with a limited number of iterations

moes.optimize(fitness, iterations=300)

Iterat #Fevals Hypervolume axis ratios sigmas min&max stds

(median) (median) (median)

1 10 1.100000000000000e+01 1.0e+00 2.00e-01 2e-01 2e-01

2 20 2.158412269365152e+01 1.0e+00 2.00e-01 2e-01 2e-01

3 30 2.896035267829712e+01 1.0e+00 1.98e-01 2e-01 2e-01

100 1000 9.512982413314423e+01 1.7e+00 1.01e-01 8e-02 9e-02

200 2000 9.703624875547615e+01 1.9e+00 4.27e-02 3e-02 4e-02

300 3000 9.722958234416403e+01 1.9e+00 1.63e-02 9e-03 1e-02

Optimizing fitness with a maximum number of evaluations

moes.optimize(fitness, maxfun=3000)

Iterat #Fevals Hypervolume axis ratios sigmas min&max stds

(median) (median) (median)

1 10 1.100000000000000e+01 1.0e+00 2.00e-01 2e-01 2e-01

2 20 2.158412269365152e+01 1.0e+00 2.00e-01 2e-01 2e-01

3 30 2.896035267829712e+01 1.0e+00 1.98e-01 2e-01 2e-01

100 1000 9.512982413314423e+01 1.7e+00 1.01e-01 8e-02 9e-02

200 2000 9.703624875547615e+01 1.9e+00 4.27e-02 3e-02 4e-02

300 3000 9.722958234416403e+01 1.9e+00 1.63e-02 9e-03 1e-02

9.2.6 The ask-and-tell interface

while not moes.stop():

solutions = moes.ask("all")

objective_values = [fitness(x) for x in solutions]

moes.tell(solutions, objective_values)

moes.disp() # display datas during the optimization

moes.logger.add()

# logging data after each `ask` and `tell` call
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Iterat #Fevals Hypervolume axis ratios sigmas min&max stds

(median) (median) (median)

1 180 1.990425600000000e-01 1.0e+00 1.88e-01 2e-01 2e-01

2 360 2.279075246432772e-01 1.1e+00 1.87e-01 2e-01 2e-01

3 540 2.436105134581627e-01 1.2e+00 1.90e-01 2e-01 2e-01

100 18000 3.607157703968831e-01 2.1e+00 1.80e-02 1e-02 2e-02

200 35172 3.635275131024869e-01 2.1e+00 5.95e-03 4e-03 5e-03

300 49788 3.637412031970786e-01 2.2e+00 1.29e-03 8e-04 1e-03

320 50784 3.637421277015990e-01 2.2e+00 1.26e-03 7e-04 9e-04

Argument of moes.ask

solutions = moes.ask()

# we generate offspring for only one kernel (sequential)

solutions = moes.ask("all")

# we generate offspring simultaneously for all kernels (parallel)

solutions = moes.ask(number_asks)

# we generate offspring for `number_asks` kernels

9.2.7 Picklable object: saving and resuming a MO optimiza-
tion with the ask-and-tell interface

With our collaboration with Storengy, the produced implementation is used in produc-
tion, with all the human constraints that come with it. For example the implemented
optimizer should be robust enough with respect to server failures or to periodic main-
tenances of the systems that require the interruption of the running machines. There-
fore it is very useful to serialize the optimizer (seen as Python objects). Alongside the
ask-and-tell interface, the serialization allows the user, after each iteration (step), to
save the current optimizer’s instance to a file per se, and then load it in a program
later on. These serialization and de-serialization methods are what Python’s pickle

module does [190]. We present in the following simple use cases of multiobjective
optimization with pickled COMO-CMA-ES instances.

Initialization

import cma, como, pickle

dimension = 10 # dimension of the search space

num_kernels = 5
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# number of single-objective solvers (number of points on the front)

sigma0 = 0.2 # initial step-sizes

list_of_solvers = como.get_cmas(num_kernels * [dimension * [0]], sigma0)

# produce `num_kernels cma instances`

moes = como.Sofomore(list_of_solvers, reference_point = [11,11])

# create a como-cma-es instance

fitness = como.FitFun(cma.ff.sphere, lambda x: cma.ff.sphere(x-1))

# a callable bi-objective function

Saving an optimization

for i in range(100):

solutions = moes.ask()

objective_values = [fitness(x) for x in solutions]

moes.tell(solutions, objective_values)

moes.disp()

pickle.dump(moes, open('saved-mocma-object.pkl', 'wb'))

# we save the instance

print('saved')

del moes # deleting completely the Sofomore instance

Output

Iterat #Fevals Hypervolume axis ratios sigmas min&max stds

(median) (median) (median)

1 10 1.100000000000000e+01 1.0e+00 2.00e-01 2e-01 2e-01

2 20 2.845200549045931e+01 1.0e+00 2.00e-01 2e-01 2e-01

3 30 3.440089785096067e+01 1.0e+00 2.00e-01 2e-01 2e-01

100 1000 9.562953505152342e+01 1.9e+00 1.13e-01 9e-02 1e-01

saved

Resuming an optimization

moes = pickle.load(open('saved-mocma-object.pkl', 'rb'))

# we load the saved file here

moes.optimize(fitness, iterations=400)
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Output

200 2000 9.716644477685412e+01 1.9e+00 3.33e-02 2e-02 3e-02

300 3000 9.723550009906029e+01 2.0e+00 1.13e-02 6e-03 8e-03

400 4000 9.724067117112808e+01 1.9e+00 2.95e-03 1e-03 2e-03

500 5000 9.724107479961819e+01 2.0e+00 9.38e-04 4e-04 5e-04

9.2.8 Example of plots

At the end of a multiobjective optimization process with the comocma module in Python,
some data visualization tools are handy to assess in some images the behavior of the
multiobjective optimizer’s instance. We have within the Python pycomocma package
some visualization tools specific to COMO-CMA-ES, and we also preserve the data
visualization tools from the pycma package [89], since each point of the estimated
Pareto set is in fact the favorite solution of an underlying CMA-ES instance (called a
kernel in our context).

COMO-CMA-ES data plottings

moes.logger.plot_front()
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Figure 9.1: Estimated Pareto front of (f1, f2) where f1 ∶ x ↦ ∥x∥2 and f2 ∶ x ↦
∥x − 1∥2

and 1 is the all-ones vector. The points in blue represents the non-dominated
points found throughout the optimization process, and the points in orange

are the objective values of the favorite solutions of the single-objective
solvers’ instances.

For the visualization of various and generic metrics related to the COMO-CMA-ES
algorithm, the following calling sequence line can be used.

moes.logger.plot_divers()
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Figure 9.2: Various graphs representing the medians of some parameters of
the different CMA-ES instances that constitute the COMO-CMA-ES instance,
the convergence gap, the archive gap and the inverse length of the archive, all
with respect to the function evaluations.

CMA-ES plots of written data

As stated above, the standard data plots of the CMA-ES instances that form the
COMO-CMA-ES instance can still be visualized. Those data are stored in a folder
named by default cma kernels. The index of a kernel is the name of the file within
that folder where the corresponding CMA-ES data are stored. For example for kernel
number 0, we have the following.

cma.plot("cma_kernels/0")
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Figure 9.3: Standard visualization of a CMA-ES instance plot.

9.3 The Matlab interface of COMO-CMA-ES

We descrtibe in this section a Matlab interface implementation of the COMO-CMA-ES
algorithm [185]. The interface typically calls the Python methods from the pycomocma

Python package. It exploits the ask-and-tell paradigm adopted in that Python package
and the adaptability of some specific data structures from Python to Matlab, and from
Matlab to Python too. Note that this interface is only functional for Matlab 2014b or
later, and the installation of the pycomocma Python package is necessary as it is mainly
used.

More concretely at each iteration, the Matlab interface calls the method ask of
the Python module comocma, then evaluates the generated solutions with the Matlab
multiobjective function to optimize (after adaptation of the data structure), and finally
call the tell method of comocma with the adequate Python data structure this time.

One additional constraint is that the interface should be the same as Matlab imple-
mentations of well-known multiobjective evolutionary algorithms such as MO-CMA-ES
and SMS-EMOA, developed by Dimo Brockhoff (for the MO-CMA-ES part) and Timo
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Wagner (for the SMS-EMOA part) [41,186].

9.3.1 The Matlab interface

With the latter constraint, the Matlab interface for the COMO-CMA-ES algorithm pro-
duces the following calling sequence.

1 [ paretoFront , paretoSet , out ] = COMOCMAES( problem , nObj , x s t a r t ,
insigma , i nop ts )

Input arguments

• PROBLEM is a string function name. Calling a problem with a matrix as first param-
eter interprets the columns as individual solutions and computes the objective
vectors and the repaired variables for all solutions in parallel.

• nObj gives the number of objectives of the multiobjective problem.

• xstart indicates the initial sample points that will be used to initialize the indi-
vidual means of COMO-CMA-ES’s sample distributions. The number of rows
thereby gives the number of variables and the number of columns the popula-
tion size. If the number of columns does not match the population size given in
opts.nPop, the first column of xstart is used to initialize the mean vectors of all
sample distributions. Note also that a string can be given that will be evaluated
as MATLAB code such as ’rand(10, nPop)’.

• insigma is the initial step-sizes for the single-objective cma-es.

• inopts (an optional argument) is a struct holding additional input options.

Output

• paretoFront is a matrix holding the objectives in rows. Each column holds the
objective vector of one solution.

• paretoSet is a matrix holding the parameters in rows. Each column holds one
solution.

• out a struct with additional information about the run.

9.3.2 Options of the Matlab interface

In addition, several options are inherited from the Python package. More specifically
the picklable property of the Python COMO-CMA-ES instance is diversified into finer
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options very specific to industrial uses. More generally, the user can have access to
most of the options in Python, provided that the correct wrapping is done to handle
the changes of the data structures. Here are some example of the options’ usage.

• opts = COMOCMAES() sets the default options.

• opts.nPop is the number of kernels for the algorithm.

• opts.popsize defines the number of offspring per kernel.

• opts.tolx is the tolerance in x-values for stopping criterion purpose.

• opts.number asks is the number of kernels from which we generate offspring
simultaneously. By default all “active” kernels are asked simultaneously.

• opts.maxiter is the maximum number of iterations allowed.

• opts.maxEval is the maximum number of evaluations allowed.

• opts.logger is the log data if 1. If 0, no data is logged.

• opts.okresume is a boolean. If 1 then the optimization is resumed from a saved
one. Otherwise it is 0 and the optimization starts from scratch.

• opts.resumefile is a string. if the string is empty, then the optimization is
not saved. Else, the optimization is saved in the given path. If in addition
opts.okresume = 1, then the optimization is resumed from the file opts.resumefile.

• opts.verb disp allows to display plots every opts.verb disp iterations.

• opts.abscissa If 1, plot with number of function evaluations as axis, if 0 plot with
number of iterations.

• opts.bounds is the search space boundary constraints.

• opts.restart states whether or not we do COMO-CMA-ES with restart. The
default value is ’False’.

• opts.incrementer is the incrementer of the population size in the case where
opts.restart is true. The default value is 2.
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Conclusion and discussion

In this work, we have approached various topics in designing multiobjective optimizers
and analyzing single-objective evolution strategies. We have posed questions in the
introduction that we all answer to some extent.

In single-objective optimization, we have analyzed a subclass of step-size adaptive
evolution strategies with recombination on scaling-invariant functions. This class in-
cludes well-known algorithms, such as CSA-ES without cumulation and xNES without
covariance matrix adaptation.

This analysis starts by characterizing continuous scaling-invariant functions in Chap-
ter 3: they are composites of homeomorphisms with continuous positively homoge-
neous functions. We also present necessary and sufficient conditions for a scaling-
invariant function to be a strictly increasing transformation of a positively homoge-
neous function. Surprisingly, we present real scaling-invariant functions that are not
monotonic on any nontrivial interval.

Various properties of the sublevel sets of scaling-invariant functions are also devel-
oped in Chapter 3. We have shown conditions for a lower semi-continuous scaling-
invariant function with a unique global argmin to have compact sublevel sets. For a
C1 scaling-invariant function with a unique global argmin, we have crafted a geomet-
ric object that is a compact neighborhood of a level set with non-vanishing gradient,
intersecting any half-line from the reference point to a unique point.

That geometric object is key in the way that we prove in Chapter 4 the conver-
gence in distribution of the step-size multiplicative factor on an increasing transfor-
mation of a C1 scaling-invariant function with a unique global argmin, towards the
step-size change on a nontrivial linear function. This convergence is observed when
the σ-normalized chain—the difference between the favorite solution and a reference
point, divided by the step-size—goes to ∞. Based on the invariance under rota-
tion of the step-size update function that we consider, we derive that the step-size
multiplicative factors have the same distribution on nontrivial linear functions. The
convergence in distribution above is what leads us to the geometric ergodicity of the
σ-normalized chain. We use existing results from deterministic control models to
deduce ϕ-irreducibility, aperiodicity and T-chain property for the σ-normalized chain.
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Overall, that chain is geometrically ergodic.

We develop generic results for the ergodicity of an abstract double chain of the
form {Wk = (Zk, Uk+2) ;k ∈ N} with Zk+1 = G(Zk, Uk+1) where G is a measurable func-
tion. Under suitable conditions, we transfer the stability of the chain {Zk;k ∈ N} to the
double chain {Wk;k ∈ N}. This transfer is crucial in the way that we apply the LLN and
obtain linear behaviors for our class of step-size adaptive evolution strategies with
recombination on increasing transformations of either C1 scaling-invariant functions
with a unique global argmin, or nontrivial linear functions.

The main condition for linear behavior is that the logarithm of the step-size in-
creases on expectation. We show that this is the tightest condition we can get (also
tighter than previous conditions in the literature for ES with one parent population),
since it is equivalent to the geometric divergence of the step-size on nontrivial linear
functions.

A notable limitation in our proofs is that we do not give the sign of the rate on in-
creasing transformations of C1 scaling-invariant functions with a unique global argmin.
It is an expectation taken over an unknown invariant probability measure. Yet we give
a central limit theorem to efficiently approximate that rate, via Monte Carlo simula-
tions. Another major limitation is the omission of cumulation in our methodology, whilst
step-size adaptive evolution strategies with cumulation are what is used in practice.
Therefore adding the cumulative stochastic process in the algorithm framework is a
natural next step of this work.

In multiobjective optimization, we design COMO-CMA-ES in Chapter 7, a multiob-
jective optimizer based on the non-elitist CMA-ES with recombination, that converges
geometrically fast on bi-objective strictly convex-quadratic functions thoroughly stud-
ied in Chapter 6. The convergence notion is built upon the hypervolume indicator.

COMO-CMA-ES is an instance of the designed Sofomore framework, that allows
to build a multiobjective optimizer based on single-objective optimization algorithms.
In Sofomore, we create a new performance metric based on the hypervolume indi-
cator, that we call UHVI: Uncrowded Hypervolume Improvement. That performance
metric improves the limitations of the traditional two-way ranking that consists of using
a Pareto ranking followed by a hypervolume Improvement or a hypervolume contribu-
tion. The two-way ranking tends to steer dominated points towards regions already
occupied by a non-dominated point. This provokes an undesirable crowdedness of
the final solutions. With the UHVI, the opposite of the distance to the so-called empiri-
cal Pareto front is added for dominated points. This mechanism guides the dominated
solutions towards regions of the Pareto front unexplored by non-dominated points.

COMO-CMA-ES is experimentally studied on various classes of bi-objective con-
vex quadratic problems constructed in Chapter 6. These subclasses test the bahavior
of the multiobjective optimizer with respect to non-separability, ill-conditioning of the
objective functions, and curvature of the Pareto front. COMO-CMA-ES converges
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linearly on these subclasses of problems. We also observe that COMO-CMA-ES per-
forms better than well-known multiobjective optimizers on these problems, that are
MO-CMA-ES and NSGA-II.

In Chapter 8, COMO-CMA-ES is benchmarked in the COCO platform that com-
pares continuous optimizers on a variety of problems. Yet COCO has a performance
metric that depends on all the non-dominated points observed so far by the algorithm,
while COMO-CMA-ES is designed to approximate the optimal distribution of a fixed
number of solutions p on the Pareto set, in order to maximize the hypervolume of p
points. Nonetheless, COMO-CMA-ES performs good on this platform for large bud-
gets. We conjecture that it is due to two things: the UHVI that allows to visit more
unexplored regions, and the recombination effect of the CMA-ES that produces a
large stationary variance.

COMO-CMA-ES has not yet been tested on a problem with three or more objective
functions. This is therefore a natural next step to our work, to observe especially
whether or not the UHVI remains relevant in this framework. We have presented
the implementation of COMO-CMA-ES and the Sofomore framework in Chapter 9.
A python package pycomocma is developed for this purpose. The implementation
is quite compatible with the pycma package of the CMA-ES. This allows to transfer
the regular updates of the CMA-ES so that the underlying single-objective optimizers
used in COMO-CMA-ES will stay up to date.

For industrial usage by our partner Storengy, we have implemented a Matlab in-
terface for COMO-CMA-ES. That version incorporates various options often needed
in the industry. Especially the function evaluations of the multiobjective optimizer can
be fully parallelized during an optimization. An instance of the Sofomore framework is
also picklable, to help saving and resuming efficiently an optimization problem, after
each iteration. This is much needed to cope with server failures and periodic mainte-
nances that happen in industrial use cases.
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[59] Arnaud Denjoy. Sur les fonctions dérivées sommables. Bulletin de la Société
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Climbing-und Zufallsstrategie, volume 1. Springer, 1977.

[174] Hans-Paul Schwefel and Günter Rudolph. Contemporary evolution strategies.
In European conference on artificial life, pages 891–907. Springer, 1995.

[175] Andrew Sohn, Randal S Olson, and Jason H Moore. Toward the automated
analysis of complex diseases in genome-wide association studies using genetic
programming. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 489–496, 2017.

[176] Ralf Solomon and J Leo Van Hemmen. Accelerating backpropagation through
dynamic self-adaptation. Neural Networks, 9(4):589–601, 1996.

[177] Danny C Sorensen. Newton?s method with a model trust region modification.
SIAM Journal on Numerical Analysis, 19(2):409–426, 1982.

[178] Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimization us-
ing nondominated sorting in genetic algorithms. Evolutionary computation,
2(3):221–248, 1994.

223



[179] William F Stout and William F Stout. Almost sure convergence, volume 24.
Academic press, 1974.

[180] Thorsten Suttorp, Nikolaus Hansen, and Christian Igel. Efficient covariance
matrix update for variable metric evolution strategies. Machine Learning,
75(2):167–197, 2009.

[181] Ryoji Tanabe and Hisao Ishibuchi. Non-elitist evolutionary multi-objective opti-
mizers revisited. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 612–619, 2019.

[182] Olivier Teytaud and Sylvain Gelly. General lower bounds for evolutionary al-
gorithms. In Parallel Problem Solving from Nature-PPSN IX, pages 21–31.
Springer, 2006.

[183] Cheikh Toure, Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. On bi-
objective convex-quadratic problems. In International Conference on Evolution-
ary Multi-Criterion Optimization, pages 3–14, Lansing, Michigan, USA, 2019.
Springer.

[184] Cheikh Toure, Armand Gissler, Anne Auger, and Nikolaus Hansen. Scaling-
invariant functions versus positively homogeneous functions. Journal of Opti-
mization Theory and Applications, 191(1):363–383, 2021.
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Appendix A

Supplements in
single-objective analysis

1.1 Bijection Theorem

This standard theorem is reminded for the sake of completeness.
Theorem 14 (Bijection theorem, [145, Theorem 2.20]). Let I ⊂ R be a nontrivial inter-
val, J ⊂ R and ϕ ∶ I → J be a continuous bijection (and therefore strictly monotonic).
Then J is an interval and ϕ is a homeomorphism, i.e. ϕ−1 ∶ J → I is also a continuous
bijection, and if ϕ is strictly increasing (respectively strictly decreasing), then ϕ−1 is
strictly increasing (respectively strictly decreasing).

1.2 Proof of Proposition 17

With Lemma 5, we assume without loss of generality that f is a nontrivial linear func-
tion. Let us remark beforehand that the random variable αf(z,U1) does not depend
on z thanks to Lemma 8. Let ϕ ∶ Γ(Rnµ)→ R be a continuous and bounded function, it
is then enough to prove that EU1∼Nnλ [ϕ (Γ(αf(z,U1)))] = EU1∼Nnλ [ϕ (Γ(αl⋆(0, U1)))] .
Denote by e1 the unit vector (1,0, . . . ,0), then for all x ∈ Rn, l⋆(x) = e⊺1x. Denote by ẽ1

the σ-normalized gradient of f at some point. Then there exists K > 0 such that for
all x ∈ Rn, f(x) = Kẽ⊺1x. And by the Gram-Schmidt process, there exist (e2, . . . , en)
and (ẽ2, . . . , ẽn) such that (e1, e2, . . . , en) and (ẽ1, ẽ2, . . . , ẽn) are orthonormal bases.
Denote by T the linear function defined as T (ei) = ẽi for i = 1, . . . , n. Then T is an
orthogonal matrix. For all x ∈ Rn,

ẽ⊺1T (x) = e⊺1x, and ∥T (x)∥ = ∥x∥. (A.1)
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Denote A = EU1∼Nnλ [ϕ (Γ(αf(z,U1)))] .

We do a change of variable u ↦ (T (u1), . . . , T (uµ)) and incorporate the results
of (A.1): (λ−µ)!

λ!
A = ∫ ϕ (Γ(u))1ẽ⊺1(u2−u1)> 0,...,ẽ⊺1(uµ−uµ−1)> 0P (ẽ⊺1Nn > ẽ⊺1uµ)

λ−µ
pNn(u1) . . .

pNn(uµ)du1 . . .duµ = ∫ ϕ (Γ (T (u1), . . . , T (uµ)))1e⊺1(u2−u1)> 0,...,e⊺1(uµ−uµ−1)> 0

P (e⊺1Nn > e⊺1uµ)
λ−µ

pNn(T (u1)) . . . pNn(T (uµ))du1 . . .duµ, thanks to the fact that e⊺1Nn ∼
ẽ⊺1Nn ∼ N (0,1). Since Γ and pNn are invariant under rotation, it follows that

EU1∼Nnλ [ϕ (Γ(αf(z,U1)))] = EU1∼Nnλ [ϕ (Γ(αl⋆(0, U1)))] .

1.3 Proof of Proposition 20

We have Zk+1 = G(Zk, Uk+1) and Uk+3 is independent from {Wt ; t ≤ k}, therefore
{Wk ;k ∈ N} is a Markov chain on B(Z) ⊗ B(Rm). Let (A,B) ∈ B(Z) × B(Rm) and
(z, u) ∈ Z ×Rm. Then by independence

P ((Zt+1, Ut+3) ∈ A ×B∣(Zt, Ut+2) = (z, u)) = P (Zt+1 ∈ A∣Zt = z)P (Ut+3 ∈ B) .

For (A,B) ∈ B(Z)×B(Rm), for (z, u) ∈ Z×Rm,∑∞
k=1P

k((z, u),A×B) = Ψ(B) ∑∞
k=1P

k(z,A).
Therefore ∑∞

k=1P
k((z, u), ⋅) is a product measure.

Let ϕ be an irreducible measure of {Zk ;k ∈ N} and let E ∈ B(Z) ⊗ B(Rm). By
definition of a product measure,

(ϕ ×Ψ) (E) = ∫ ϕ(Ev)Ψ(dv)
∞
∑
k=1

P k((z, u),E) = ∫
∞
∑
k=1

P k(z,Ev)Ψ(dv)

where Ev = {z ∈ Z ; (z, v) ∈ E}.

If ∑∞
k=1P

k((z, u),E) = 0, then 0 = ∑∞
k=1P

k(z,Ev) for almost all v and then ϕ(Ev) =
0 for almost all v. Then (ϕ ×Ψ) (E) = ∫ ϕ(Ev)Ψ(dv) = 0, hence the (ϕ ×Ψ)-
irreducibility of {Wk ;k ∈ N}.

Let us show that π ×Ψ is an invariant probability measure of {Wk ;k ∈ N} when π is
an invariant measure of {Zk ;k ∈ N}. Assume that (A,B) ∈ B(Z) × B(Rm). Then

∫ P ((Z1, U3) ∈ A ×B∣(Z0, U2) = (z, u)) (π ×Ψ) (d(z, u)) =

∫ Pz (Z1 ∈ A)Ψ(B)π(dz)Ψ(du) = Ψ(B)π(A) = (π ×Ψ)(A ×B).

Hence π ×Ψ is an invariant probability of {Wk ;k ∈ N}.
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Assume that {Wk ;k ∈ N} has a d-cycle (Di)i=1,...,d ∈ (B(Z)⊗ B(Rm))d. Define
for i = 1, . . . , d, D̃i = {z ∈ Z ∣∃u ∈ Rm ; (z, u) ∈ Di} and let us prove that (D̃i)i=1,...,d

is a
d-cycle of {Zk ;k ∈ N}.

Let z ∈ D̃i and i = 0, . . . , d − 1 (mod d). There exists u ∈ Rm such that (z, u) ∈ Di.
Then 1 = P ((z, u),Di+1) = P ((Z1, U3) ∈ Di+1∣Z0 = z) ≤ P (Z1 ∈ D̃i+1∣Z0 = z). Thereforer
P (Z1 ∈ D̃i+1∣Z0 = z) = 1.

If Λ is an irreducible measure of {Zk ;k ∈ N}, then we have proven above that
Λ ×Ψ is an irreducible measure of {Wk ;k ∈ N}. Then 0 = (Λ ×Ψ) ((⋃di=1Di)

c). For i =
1, . . . , d, (Λ ×Ψ) (Di) = ∫ Λ(Dv

i )Ψ(dv) ≤ ∫ Λ(D̃i)Ψ(dv) = Λ(D̃i). Then Λ (⋃di=1 D̃i) =
∑d
i=1 Λ(D̃i) ≥ (Λ ×Ψ) (⋃di=1Di). Hence Λ ((⋃di=1 D̃i)

c) = 0 and finally we have a d-cycle
for {Zk ;k ∈ N}.

Similarly we can show that if {Zk ;k ∈ N} has a d-cycle, then {Wk ;k ∈ N} also has
a d-cycle.

Now assume that C is a small set of {Zk ;k ∈ N}. Then there exists a positive
integer k and a nontrivial measure νk on B(Z) such that P k(z,A) ≥ νk(A) for all
z ∈ C, A ∈ B(Z). If (z, u) ∈ C ×Rm and E ∈ B(Z)⊗B(Rm), P k((z, u),E) ≥ (νk ×Ψ) (E)
and therefore C ×Rm is a small set of {Wk ;k ∈ N}.

The drift condition for {Wk ;k ∈ N} follows directly from the drift condition for {Zk ;k ∈
N}.

1.4 Proof of Proposition 25

To prove the convergence in distribution of the step-size multiplicative factor for a func-
tion f that satisfies F1 or F2, we use the intermediate result given by Proposition 25,
that asymptotically links Γ (αf(x⋆ + z,U1)) to the random variable Γ (α

l
f
z
(z,U1)) where

the nontrivial linear function lfz depends on z, ∇f , and is introduced in (4.35). Since
αf(x⋆ + z,U1) = αf̃(z,U1), we assume without loss of generality that x⋆ = 0 and
f(0) = 0.

The next lemma is our fist step towards understanding the asymptotic behavior
of αf (z,U1) for a C1 scaling-invariant function f with a unique global argmin. For
ϕ ∶ Rnµ → R continuous and bounded, we approximate E [ϕ(αf(z,U1))] by using the

explicit definition of pfz in (4.15), and observing the integrals in the balls B (0,
√

∥z∥),

such that the f -values we consider are relatively close to the f -values of t
f
z

∥z∥z ∈ Lf,z0 .
Lemma 16. Let f be a C1 scaling-invariant function with a unique global argmin. Then
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for all ϕ ∶ Rnµ → R continuous and bounded:

lim
∥z∥→∞∫∥u∥≤

√
∥z∥

⎛
⎜
⎝
∫∥w∥≤

√
∥z∥
1
f( t

f
z
∥z∥ z+

t
f
z
∥z∥w)>f( t

f
z
∥z∥ z+

t
f
z
∥z∥u

µ)
pNn(w)dw

⎞
⎟
⎠

λ−µ

λ!

(λ − µ)!ϕ(u)
µ−1

∏
i=1

1
{f( t

f
z
∥z∥ z+

t
f
z
∥z∥u

i+1)>f( t
f
z
∥z∥ z+

t
f
z
∥z∥u

i)}

µ

∏
i=1

pNn(ui)du

− ∫ ϕ(u)pfz(u)du = 0.

Proof. For z ∈ Rn, define A(z) = ∣ ∫ ϕ(u)pfz(u)du − λ!
(λ−µ)! ∫∥u∥≤√∥z∥ϕ(u)

P (f(z +Nn) > f(z + uµ))λ−µ∏µ−1
i=1 1f(z+ui+1)>f(z+ui)∏µ

i=1 pNn(ui)du∣. It follows thatA(z) =

λ!
(λ−µ)!

∣ ∫∥u∥>√∥z∥ϕ(u)P (f(z +Nn) > f(z + uµ))λ−µ∏µ−1
i=1 1f(z+ui+1)>f(z+ui)∏µ

i=1 pNn(ui)du∣.

Then A(z) ≤ λ!
(λ−µ)!

∥ϕ∥∞ ∫∥u∥>√∥z∥∏
µ
i=1 pNn(ui)du = λ!

(λ−µ)!
∥ϕ∥∞

∫∥u∥>√∥z∥ pNnµ(u)du =
λ!

(λ−µ)!
∥ϕ∥∞ (1 − P (∥Nnµ∥ ≤

√
∥z∥)) .

Then by scaling-invariance with a multiplication by tfz /∥z∥,

lim
∥z∥→∞∫∥u∥≤

√
∥z∥
ϕ(u)P (f ( tfz

∥z∥z +
tfz
∥z∥Nn) > f ( tfz

∥z∥z +
tfz
∥z∥u

µ))
λ−µ

µ−1

∏
i=1

1
f( t

f
z
∥z∥ z+

t
f
z
∥z∥u

i+1)>f( t
f
z
∥z∥ z+

t
f
z
∥z∥u

i)

µ

∏
i=1

pNn(ui)du −
(λ − µ)!
λ! ∫ ϕ(u)pfz(u)du = 0. (A.2)

In addition, P (f ( t
f
z

∥z∥z +
t
f
z

∥z∥Nn) > f ( t
f
z

∥z∥z +
t
f
z

∥z∥u
µ))−

∫∥w∥≤
√

∥z∥ 1
f( t

f
z
∥z∥ z+

t
f
z
∥z∥w)>f( t

f
z
∥z∥ z+

t
f
z
∥z∥u

µ)
pNn(w)dw =

∫∥w∥>
√

∥z∥ 1
f( t

f
z
∥z∥ z+

t
f
z
∥z∥w)>f( t

f
z
∥z∥ z+

t
f
z
∥z∥u

µ)
pNn(w)dw ≤ 1−P (∥Nn∥ ≤

√
∥z∥). Hence (A.2) along

with the dominated convergence theorem proves the lemma.

Proof of Proposition 25. Let ϕ ∶ Rnµ → R be continuous and bounded. Using Lemma
16, it is enough to prove that

lim
∥z∥→∞∫∥u∥≤

√
∥z∥

⎛
⎜
⎝
∫∥w∥≤

√
∥z∥
1
f( t

f
z
∥z∥ z+

t
f
z
∥z∥w)>f( t

f
z
∥z∥ z+

t
f
z
∥z∥u

µ)
pNn(w)dw

⎞
⎟
⎠

λ−µ

ϕ(u)
µ−1

∏
i=1

1
f( t

f
z
∥z∥ z+

t
f
z
∥z∥u

i+1)>f( t
f
z
∥z∥ z+

t
f
z
∥z∥u

i)

µ

∏
i=1

pNn(ui)du −
(λ − µ)!
λ! ∫ ϕ(u)pl

f
z
z (u)du = 0.
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Let us define the function g on the compact set (L
f,z

f
0
+B(0, δf))×[0, δf] as follows.

For (x, ρ) ∈ (L
f,z

f
0
+B(0, δf)) × (0, δf], g(x, ρ) equals

∫∥u∥≤ 1√
ρ

(∫∥w∥≤ 1√
ρ

1(w−uµ)⊺∇f(x+tfxρ(uµ+τρx(uµ,w)(w−uµ)))> 0
pNn(w)dw)

λ−µ

ϕ(u)
µ−1

∏
i=1

1(ui+1−ui)⊺∇f(x+tfxρ(ui+τρx(ui,ui+1)(ui+1−ui)))> 0

µ

∏
i=1

pNn(ui)du

with τ ρx(v1, v2) ∈ (0,1) defined thanks to the mean value theorem by f(x+tfxρv2)−f(x+
tfxρv

1) = tfxρ(v2 − v1)⊺∇f (x + tfxρ(v1 + τ ρx(v1, v2)(v2 − v1))). And for x ∈ L
f,z

f
0
+B(0, δf),

g(x,0) equals

∫ ϕ(u)P((Nn − uµ)⊺∇f(x) > 0)
λ−µ µ−1

∏
i=1

1(ui+1−ui)⊺∇f(x)> 0

µ

∏
i=1

pNn(ui)du.

Remark that g (tfz z
∥z∥ ,0) =

(λ−µ)!

λ! ∫ ϕ(u)pl
f
z
z (u)du. Then using Lemma 16,

lim
∥z∥→∞

g (tfz
z

∥z∥ ,
1

∥z∥) −
(λ − µ)!
λ! ∫ ϕ(u)pfz(u)du = 0.

Therefore it is enough to prove that g is uniformly continuous in order to obtain that

(λ − µ)!
λ!

( lim
∥z∥→∞∫ ϕ(u)pfz(u)du − ∫ ϕ(u)pl

f
z
z (u)du)

= lim
∥z∥→∞

g (tfz
z

∥z∥ ,
1

∥z∥) − g (t
f
z

z

∥z∥ ,0) = 0.

For (x, ρ) ∈ (L
f,z

f
0
+B(0, δf)) × (0, δf], for u ∈ B(0,1/√ρ), w ∈ B(0,1/√ρ), ∇f(x +

tfxρ(uµ+τ ρx(uµ, w)(w−uµ))) ≠ 0 since x+ tfxρ(uµ+τ ρx(uµ, w)(w−uµ)) ∈ L
f,z

f
0
+B(0,2δf).

Then the set

{w ∈ Rn; (w − uµ)⊺∇f (x + tfxρ(uµ + τ ρx(uµ, w)(w − uµ))) = 0}

is Lebesgue negligible. In addition, the function y ↦ 1y > 0 is continuous on R/ {0},
therefore it follows that for almost all w, the function

(x, ρ, uµ)↦ 1∥w∥≤ 1√
ρ
1(w−uµ)⊺∇f(x+tfxρ(uµ+τρx(uµ,w)(w−uµ)))pNn(w)

is continuous and bounded by the integrable function pNn . Then by the dominated
convergence theorem, for almost all u, the function (x, ρ)↦

1∥u∥≤ 1√
ρ
(∫∥w∥≤ 1√

ρ

1(w−uµ)⊺∇f(x+tfxρ(uµ+τρx(uµ,w)(w−uµ)))> 0
pNn(w)dw)

λ−µ

231



is continuous. The same tools allows to say that for almost all u, the function (x, ρ)↦
1∥u∥≤ 1√

ρ
∏µ−1
i=1 1(ui+1−ui)⊺∇f(x+tfxρ(ui+τρx(ui,ui+1)(ui+1−ui)))> 0

is continuous. Therefore we can

conclude that g is continuous on (L
f,z

f
0
+B(0, δf)) × (0, δf], and for all x ∈ L

f,z
f
0
+

B(0, δf), limρ→0 g(x, ρ) exists, and is equal to:

∫ lim
ρ→0

1∥u∥≤ 1√
ρ
ϕ(u)

µ−1

∏
i=1

1(ui+1−ui)⊺∇f(x+tfxρ(ui+τρx(ui,ui+1)(ui+1−ui)))>0

(∫∥w∥≤ 1√
ρ

1(w−uµ)⊺∇f(x+tfxρ(uµ+τρx(uµ,w)(w−uµ)))>0
pNn(w)dw)

λ−µ

µ

∏
i=1

pNn(ui)du = g(x,0).

Finally g is continuous on the compact (L
f,z

f
0
+B(0, δf))×[0, δf]; it is thereby uniformly

continuous on that compact.

1.5 Linear convergence and divergence illustra-
tions for CSA1-ES and for xNES
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Figure A.1: Illustration of Theorem 5 for CSA1-ES algorithms. Left: f is the
linear function x → x1. Right: f is the spherical function: x → x 2. Top: µ = 1,

λ = 3 and the weight is 1. Bottom: µ = 5, λ = 11 and the weights are set as
weights = cma.recombination weights.RecombinationWeights(5) .
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Figure A.2: Illustration of {∥Zk∥ ; k ∈ N} from the main results in Section 4.3 on
CSA1-ES. Left: f is the linear function x→ x1.Right: f is the spherical function:
x → x 2. Top: µ = 1, λ = 3 and the weight is 1. Bottom: µ = 5, λ = 11 and the
weights are set as weights = cma.recombination weights.RecombinationWeights(5) .
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Figure A.3: Illustration of Theorem 5 for CSA1-ES algorithms. Left: f is the
linear function x → x1. Right: f is the spherical function: x → x 2. Top: µ = 1,

λ = 3 and the weight is 1. Bottom: µ = 5, λ = 11 and the weights are set as
weights = cma.recombination weights.RecombinationWeights(5).
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Figure A.4: Illustration of Theorem 5 for xNES algorithms. Left: f is the linear
function x → x1. Right: f is the spherical function: x → x 2. Top: µ = 1, λ = 3

and the weight is 1. Bottom: µ = 5, λ = 11 and the weights are all equal to 1
5 .
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Figure A.5: Illustration of {∥Zk∥ ; k ∈ N} from the main results in Section 4.3 on
xNES. Left: f is the linear function x → x1. Right: f is the spherical function:
x → x 2. Top: µ = 1, λ = 3 and the weight is 1. Bottom: µ = 5, λ = 11 and the
weights are all equal to 1

5 .
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Figure A.6: Illustration of Theorem 5 for xNES algorithms. Left: f is the linear
function x → x1. Right: f is the spherical function: x → x 2. Top: µ = 1, λ = 3

and the weight is 1. Bottom: µ = 5, λ = 11 and the weights are set as weights =

cma.recombination weights.RecombinationWeights(5).
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Appendix B

The Matlab code of
COMO-CMA-ES

1 f u n c t i o n [ paretoFront , . . . % o b j e c t i v e s
2 paretoSet , . . . % parameters
3 out , opts ] = COMOCMAES( . . . % s t r u c t w i th

i n fo rma t i on
4 problem , . . . % problem− s t r i n g
5 nObj , . . . % number o f o b j e c t i v e s
6 x s t a r t , . . . % i n i t i a l sample po in t ( s ) ( i f

on ly one po in t i s given , the i n i t i a l popu la t ion w i l l
con ta in copies ; len ( x s t a r t , 1 ) =nVar ( number o f
v a r i a b l e s ) )

7 insigma , . . . % i n i t i a l step s ize ( s )
8 i nop ts ) % s t r u c t w i th op t ions ( o p t i o n a l )
9

10 % OPTS = COMOCMAES re tu rns d e f a u l t op t ions .
11 % OPTS = COMOCMAES( ' de fau l t s ' ) r e tu rns d e f a u l t op t ions

q u i e t l y .
12 % OPTS = COMOCMAES( ' d i sp layop t ions ' ) d i sp lays opt ions .
13 % OPTS = COMOCMAES( ' de fau l t s ' , OPTS) supplements op t ions OPTS

wi th d e f a u l t
14 % opt ions .
15 %
16 % f u n c t i o n c a l l :
17 % [PARETOFRONT, PARETOSET[ , OUT ] ] = COMOCMAES(PROBLEM, NOBJ,

XSTART[ , OPTS] )
18 %
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19 % Inpu t arguments :
20 % PROBLEM i s a s t r i n g f u n c t i o n name l i k e 'DTLZ1 ' . Each

problem
21 % takes as argument a column vec to r o f va r i a b l e s toge ther

w i th the
22 % number o f o b j e c t i v e s and a pena l ty f a c t o r and re tu rns

[ ob jec t i ves ,
23 % v a r i a b l e s ] ( both column vec to rs ) . The feedback o f

v a r i a b l e s can be
24 % used to r e p a i r i l l e g a l values . The parameter

' pena l t y f ac to r ' can be
25 % used to handle c o n s t r a i n t v i o l a t i o n s .
26 % C a l l i n g a problem wi th a mat r i x as f i r s t parameter

i n t e r p r e t s the
27 % columns as i n d i v i d u a l s o l u t i o n s and computes the

o b j e c t i v e vec to rs
28 % and the repa i red v a r i a b l e s f o r a l l s o l u t i o n s i n

p a r a l l e l .
29 % NOBJ gives the number o f o b j e c t i v e s o f the m u l t i o b j e c t i v e

problem
30 % XSTART i n d i c a t e s the i n i t i a l sample po in t s t h a t w i l l be

used to
31 % i n i t i a l i z e the i n d i v i d u a l means of MO−CMA−ES ' s sample

d i s t r i b u t i o n s .
32 % The number o f rows thereby gives the number o f

v a r i a b l e s and the
33 % number o f columns the popu la t ion s ize . I f the number o f

columns does
34 % not match the popu la t ion s ize given i n opts . nPop , the

f i r s t column of
35 % XSTART i s used to i n i t i a l i z e the mean vec to rs o f a l l

sample
36 % d i s t r i b u t i o n s . Note t h a t a lso a s t r i n g can be given

t h a t w i l l be
37 % evaluated as MATLAB code such as ' rand (10 , nPop ) ' .
38 % OPTS ( an o p t i o n a l argument ) i s a s t r u c t ho ld ing a d d i t i o n a l

i npu t
39 % opt ions . Va l i d f i e l d names and a shor t documentation

can be
40 % discovered by look ing a t the d e f a u l t op t ions ( type

'mocmaes '
41 % wi thou t arguments , see above ) . Empty or missing f i e l d s
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i n OPTS
42 % invoke the d e f a u l t value , i . e . OPTS needs not to have

a l l v a l i d
43 % f i e l d names . C a p i t a l i z a t i o n does not mat ter and

unambiguous
44 % abbrev ia t i ons can be used f o r the f i e l d names . I f a

s t r i n g i s
45 % given where a numer ica l value i s needed , the s t r i n g i s

evaluated
46 % by eval , where
47 % ' nVar ' expands to the problem dimension
48 % ' nObj ' expands to the o b j e c t i v e s dimension
49 % ' nPop ' expands to the popu la t ion s ize
50 % ' countEval ' expands to the number o f the recent

eva lua t i on
51 % 'nPV ' expands to the number p a r e t o f r o n t s
52 %
53 % Output :
54 % PARETOFRONT i s a mat r i x ho ld ing the o b j e c t i v e s i n rows .

Each column
55 % holds the o b j e c t i v e vec to r o f one s o l u t i o n .
56 % PARETOSET i s a mat r i x ho ld ing the parameters i n rows . Each

column holds
57 % one s o l u t i o n .
58 % OUT i s a s t r u c t w i th a d d i t i o n a l i n f o rma t i on about the run .
59 %
60

61

62

63 % −−−−−−−−−−− Set Defau l t s f o r Options
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

64 % opt ions : genera l − these are evaluated once
65 defopts . nPop = ' 10 % s ize o f the

popula t ion , which means here the number o f kerne ls ' ;
66 defopts . nOf fsp r ing = ' (4+ f l o o r ( 3* log ( nVar ) ) ) * 10

% t o t a l number o f o f f s p r i n g ' ;
67 defopts . popsize = ' 4+ f l o o r ( 3* log ( nVar ) )

% number o f o f f s p r i n g per kerne l ' ;
68 defopts . maxEval = ' i n f % maximum number o f

eva lua t ions ' ;
69 defopts . r e f p o i n t = ' (1 + nVar ) . * ones (1 , nObj ) %

reference po in t o f the hypervolume ' ;
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70 defopts . bounds = ' [− i n f , i n f ] % bounds manage the
boundary c o n s t r a i n t s ' ;

71 % bounds can be of s ize (1 ,2 ) , or (2 ,1 ) or o f type [ l b ; rb ]
where l b and rb

72 % r e s p e c t f u l l y represent the lower and upper bounds of s ize
(1 , nVar ) , or

73 % of type [ lb , rb ] where l b and rb r e s p e c t f u l l y represent the
lower and

74 % upper bounds of s ize ( nVar , 1) .
75 defopts . okresume = ' False % resume former run ' ;
76 defopts . i s a r c h i v e = ' False % whether or not we keep

t rack o f the non−dominated po in t s ' ;
77 defopts . resumef i l e = ' ' ;
78 defopts . max i ter = ' i n f % maximum number o f

i t e r a t i o n dur ing a run ' ;
79 defopts . number asks = ' py . s t r ( ” a l l ” ) % the number o f

kerne ls from which we generate o f f s p r i n g s imul taneous ly ' ;
80 % In the a lgor i thm , when we do 'moes . ask ( number asks ) ' , then

' number asks ' kerne ls generate
81 % o f f s p r i n g , t h a t they w i l l pass to the ' t e l l ' method , a f t e r

a l l o f f s p r i n g
82 % are evaluated ( i n p a r a l l e l ) . I f opts . number asks = ' a l l ' ,

then a l l
83 % kerne ls are asked dur ing a c a l l o f the ' ask ' method .
84 defopts . t o l x = ' 1e−6 % to le rence i n x f o r

s topp ing c r i t e r i o n ' ;
85 defopts . f r a c i n a c t i v e = ' 1 % f r a c t i o n o f i n a c t i v e

kerne l f o r s topp ing ' ;
86 defopts . logger = ' 1 % i f 1 , we log data to f i l e .

And i f 0 , we do not ' ;
87 defopts . e l i t i s t = ' 0 % 3 p o s s i b i l i t i e s : 0 , 1 , 2 ' ;
88 % i f 0 : non− e l i t i s t mode , i f 1 : e l i t i s t mode , and 2 f o r

' i n i t ' : on ly
89 % the s t a r t i s e l i t i s t .
90 defopts . ve rb d isp = ' 100 % d isp lay r e s u l t s each

verb d isp i t e r a t i o n s ' ;
91 defopts . d i sp lay = ' on % d isp lay some

th ings dur ing the run and graphics ' ;
92 defopts . showWaitbar = ' on % FHU d isp lay wa i tbar i f

c losed dur ing process stop o p t i m i z a t i o n ' ;
93 defopts . abscissa = ' 0 % i f 1 , the x ax i s represents

count evals , and i f 0 , i t shows the i t e r a t i o n s ' ;
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94

95 % −−−−−−−−−−−−−−−−−−−−−− Handl ing Inpu t Parameters
−−−−−−−−−−−−−−−−−−−−−−

96

97 i f narg in < 1 | | i sequa l ( problem , ' d e f a u l t s ' ) % pass d e f a u l t
op t ions

98 i f narg in < 5
99 disp ( ' De fau l t op t ions re turned ( type ” help mocmaes”

f o r help ) . ' ) ;
100 end
101 pare toFront = defopts ;
102 i f narg in > 5 % supplement second argument w i th d e f a u l t

op t ions
103 pare toFront = ge top t ions ( inopts , defopts ) ;
104 end
105 r e t u r n ;
106 end
107

108 i f i sequa l ( problem , ' d i sp l ayop t i ons ' )
109 names = f ie ldnames ( defopts ) ;
110 f o r name = names '
111 disp ( [ name{ :} repmat ( ' ' , 1 , 20− l eng th (name{ : } ) ) ' :

' ' ' de fopts . ( name{ : } ) ' ' ' ' ] ) ;
112 end
113 r e t u r n ;
114 end
115

116 i f isempty ( problem )
117 e r r o r ( ' Ob jec t i ve f u n c t i o n not determined ' ) ;
118 end
119 % i f ˜ ( i scha r ( problem )
120 % e r r o r ( ' f i r s t argument ' ' problem ' ' must be a s t r i n g or

an handle func t ion ' ) ;
121 % end
122

123 % Compose opt ions opts
124 i f narg in < 5 | | isempty ( i nop ts ) % no inpu t op t ions a v a i l a b l e
125 opts = defopts ;
126 else
127 opts = ge top t ions ( inopts , defopts ) ;
128 end
129
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130 % −−−−−−−−−−− Impor t ing python modules t h a t we need
−−−−−−−−−−−−−−−−−−−−

131

132 py . i m p o r t l i b . import module ( ' comocma ' ) ;
133 py . i m p o r t l i b . import module ( 'cma ' ) ;
134

135 % −−−−−−−−−−−−−−−−−−−−−−−− I n i t i a l i z a t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

136 %c l c ;
137

138 % get parameters f o r i n i t i a l i z a t i o n
139

140 % i n i t i a l means
141 i f narg in < 3
142 x s t a r t = [ ] ;
143 end
144 i f isempty ( x s t a r t )
145 e r r o r ( ' I n i t i a l search po in t s and problem dimension not

determined ' ) ;
146 end
147 x s t a r t = myeval ( x s t a r t ) ;
148 maxi ter = myeval ( opts . max i ter ) ;
149 maxEval = myeval ( opts . maxEval ) ;
150 resume = myeval ( opts . okresume ) ;
151 i s a r c h i v e = myeval ( opts . i s a r c h i v e ) ;
152 resumef i l e =opts . resumef i l e ;
153 %resumef i l e = py . s t r ( resumef i l e ) ; % i n case i t ' s a matlab char
154 l ogger = myeval ( opts . logger ) ;
155 d i sp lay = myeval ( opts . d i sp lay ) ;
156 abscissa = myeval ( opts . abscissa ) ;
157 nVar = s ize ( x s t a r t , 2 ) ;
158 nPop = s ize ( x s t a r t , 1 ) ;
159 t o l x = myeval ( opts . t o l x ) ;
160 f r a c i n a c t i v e =myeval ( opts . f r a c i n a c t i v e ) ;
161 verb d isp = myeval ( opts . ve rb d isp ) ;
162 d isp layWai tbar = myeval ( opts . showWaitbar ) ; % FHU d isp lay

wa i tbar
163 e l i t i s t = myeval ( opts . e l i t i s t ) ;
164 i f e l i t i s t == 0
165 e l i t i s t = py . False ;
166 e l s e i f e l i t i s t == 2
167 e l i t i s t = py . s t r ( ' i n i t ' ) ;
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168 else
169 e l i t i s t = py . True ;
170 end
171 nPop opts = myeval ( opts . nPop ) ; % i n order to t e s t f o r

cons is tency
172 i f nPop ˜= nPop opts
173 x s t a r t = repmat ( x s t a r t ( 1 , : ) , nPop opts , 1) ;
174 nPop = nPop opts ;
175 end
176 number asks = myeval ( opts . number asks ) ;
177 i f i sa ( number asks , ' double ' ) | | i sa ( number asks , ' i n t 64 ' ) | |

i sa ( number asks , ' i n t 32 ' )
178 number asks = py . i n t ( number asks ) ;
179 end
180

181 % i n i t i a l step s izes
182 i f narg in < 4
183 insigma = [ ] ;
184 end
185

186

187 i f any ( insigma ) <= 0
188 e r r o r ( ' I n i t i a l step s izes cannot be <= 0. ' ) ;
189 end
190 i f s i ze ( insigma , 1) ˜= nPop
191 insigma = repmat ( insigma (1 , : ) , nPop , 1) ;
192 end
193

194

195 r e f p o i n t = myeval ( opts . r e f p o i n t ) ;
196 i f s i ze ( r e f p o i n t , 1) ˜= 1
197 r e f p o i n t = r e f p o i n t ' ;
198 end
199

200 r e f e r e n c e p o i n t = py . numpy . ar ray ( r e f p o i n t ) ;
201 x s t a r t s = py . l i s t ({} ) ;
202 sigma0 = py . l i s t ({} ) ;
203

204 f o r i = 1 :nPop
205 x s t a r t s . append ( py . numpy . ar ray ( x s t a r t ( i , : ) ) ) ;
206 sigma0 . append ( py . f l o a t ( insigma ( i ) ) ) ;
207 end
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208

209 bounds = myeval ( opts . bounds ) ;
210 i f s i ze ( bounds , 1) ˜= 2
211 bounds = bounds ' ;
212 end
213 l b = bounds (1 , : ) ;
214 rb = bounds (2 , : ) ;
215

216 newbounds = py . l i s t ({ lb , rb } ) ;
217 popsize = py . i n t ( myeval ( opts . popsize ) ) ;
218 %TODO: au tho r i ze the p o s s i b i l i t y f o r d i f f e r e n t op t ions to

d i f f e r e n t cma−es
219 cmaes opts = py . d i c t ( s t r u c t ( ' popsize ' , popsize , ' bounds ' ,

newbounds , ' t o l x ' , t o l x , ' C M A e l i t i s t ' , e l i t i s t ) ) ;
220 l i s t o f s o l v e r s = py . comocma . get cmas ( x s t a r t s , sigma0 ,

pyargs ( ' i nop ts ' , cmaes opts ) ) ;
221 sofomore opts = py . d i c t ( s t r u c t ( ' a rch ive ' , i s a r c h i v e ) ) ;
222

223 i f d i sp lay && logger
224

225 f i g u r e (44444) ;
226 h ( 1 ) =subp lo t (2 ,2 ,1 ) ;%#TODO: FHU subp lo t i n i t i a l i z a t i o n to

avoid t r o u b l e w i th wa i tbar
227 h ( 2 ) =subp lo t (2 ,2 ,2 ) ;
228 h ( 3 ) =subp lo t (2 ,2 ,3 ) ;
229 h ( 4 ) =subp lo t (2 ,2 ,4 ) ;
230 % h ( 5 ) =subp lo t (2 ,3 ,5 ) ;
231 % h ( 6 ) =subp lo t (2 ,3 ,6 ) ;
232 hold o f f ;
233

234

235 end
236

237 % −−−−−−−−−−−−−−−−−−−−−−−− end I n i t i a l i z a t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

238

239 i f ˜ resume
240

241 moes = py . comocma . Sofomore ( l i s t o f s o l v e r s ,
re fe rence po in t , sofomore opts ) ;

242

243 else
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244 t r y
245 moes = py . p i c k l e . load ( py . open ( py . s t r ( resumef i l e ) +

py . s t r ( ' . pk l ' ) , ' rb ' ) ) ;
246 %TODO: a way to modify the opt ions o f moes here .
247 catch % when the f i l e doesn ' t e x i s t
248 %( f o r example 0 i t e r a t i o n has been made) .
249 moes = py . comocma . Sofomore ( l i s t o f s o l v e r s ,

re fe rence po in t , sofomore opts ) ;
250 end
251

252

253 end
254

255 s t o p f l a g = {} ;
256 stopByUser= f a l s e ;
257 i f d i sp layWai tbar
258 t r y
259 hw=

wai tbar ( i n t 64 (moes . c o u n t i t e r ) / maxi ter , Wai tbarSt r ing ,
'Name ' , 'COMOCMAES ' ) ;

260 catch
261

262 hw= wai tbar ( i n t 64 (moes . c o u n t i t e r ) / maxi ter , ' from
resume ' , 'Name ' , 'COMOCMAES ' ) ;

263 end
264 end
265 %% boucle de calage
266 i n a c t i v e =0;
267 whi le moes . stop ( ) == 0 && moes . c o u n t i t e r < maxi ter &&

moes . countevals < maxEval && ˜ stopByUser &&
i n a c t i v e< f r a c i n a c t i v e

268

269 X = moes . ask ( number asks ) ; %
270 X matlab = zeros ( i n t 64 ( py . len (X) ) , nVar ) ;
271 f o r i =1: s ize ( X matlab , 1 )
272 X matlab ( i , : ) = double ( py . ar ray . a r ray ( ' d ' ,X{ i } ) ) ;
273 end
274 f v a l u e s a n d c o n s t r a i n t s = f e v a l ( problem , X matlab ) ;
275 F matlab = f v a l u e s a n d c o n s t r a i n t s ( : , 1 : nObj ) ;
276 C matlab = f v a l u e s a n d c o n s t r a i n t s ( : , nObj +1:end ) ;
277 C = py . l i s t ({} ) ;
278 i f s i ze ( C matlab , 2) ˜= 0 % we have c o n s t r a i n t s
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279 f o r i =1: s ize ( C matlab , 2 )
280 C. append ( py . l i s t ( C matlab ( : , i ) ' ) ) ;
281 % C. append ( py . l i s t ( C matlab ( i , : ) ) )
282 end
283 end
284 F = py . l i s t ({} ) ;
285 f o r i =1: s ize ( X matlab , 1 )
286 F . append ( py . l i s t ( F matlab ( i , : ) ) ) ;
287 % C. append ( py . l i s t ( C matlab ( i , : ) ) )
288 end
289

290 % moes . t e l l (X , F , py . l i s t (C) ) ;
291 moes . t e l l (X , F ) ;
292

293 moes . d isp ( ve rb d isp ) ;
294 drawnow ; % to d i sp lay immediate ly what i s i n d isp ( )
295

296

297 i f logger
298 moes . logger . add ( )
299 end
300

301 i f strcmp ( resumef i le , ' ' ) == 0
302 py . p i c k l e . dump(moes , py . open ( py . s t r ( resumef i l e ) +

py . s t r ( ' . pk l ' ) , 'wb ' ) )
303 % TODO: expose the name of the saved f i l e i n the

opt ions
304

305 end
306

307

308 i f d i sp lay && logger && mod( i n t 64 (moes . c o u n t i t e r ) ,
ve rb d isp ) == 0

309 i n a c t i v e =myplot (moes , abscissa , nObj , nVar , opts ,
hw) ;%, r e f p o i n t ) ;

310

311 e l s e i f logger && mod( i n t 64 (moes . c o u n t i t e r ) , ve rb d isp ) ==
0

312 f i l e n a m e s r a t i o = py . l i s t ({moes . logger . name pref ix +
py . s t r ( ' r a t i o i n a c t i v e k e r n e l s . dat ' ) , . . .

313 moes . logger . name pref ix +
py . s t r ( ' rat io nondom incumb . dat ' ) ,
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moes . logger . name pref ix +
py . s t r ( ' ra t io nondom of fsp incumb . dat ' ) } ) ;

314 t u p l e r a t i o = moes . logger . load ( f i l e n a m e s r a t i o ) ;
315 r e s r a t i o = t u p l e r a t i o {3} ;
316 i n a c t i v e = max( double ( py . ar ray . ar ray ( ' d ' ,

r e s r a t i o {1}) ) ) ;
317

318 end
319 d isp layWai tbar = myeval ( opts . showWaitbar ) ;
320 i f d i sp layWai tbar && moes . c o u n t i t e r > 2
321 max max stds = double (moes . max max stds ) ;
322 Wai tbarS t r ing =[ ' I t ' , num2str ( i n t 64 (moes . c o u n t i t e r ) ) ,

' HVmax= ' , num2str ( . . .
323 double ( py . f l o a t (moes . bes t hypervo lume pare to f ron t ) ) ,

' %.3e ' ) , ' max(max stds ) = ' , num2str ( max max stds ,
' %.3e ' ) ] ;

324

325 maxi ter = myeval ( opts . max i ter ) ;
326 i f i shand le (hw)
327 wai tbar ( double ( i n t 64 (moes . c o u n t i t e r ) ) / maxi ter ,

hw, Wai tbarSt r ing , 'Name ' , 'COMOCMAES ' ) ;
328 else % wai tbar closed−> stop
329 stopByUser= t rue ;
330 s t o p f l a g ={ s t o p f l a g { :} , ' Stop by user ' } ;
331 end
332 end
333

334

335 end
336

337 % l a s t d i sp lay ( end of wh i le loop ) :
338 i f d i sp lay
339 myplot (moes , abscissa , nObj , nVar , opts , hw) ;
340 end
341

342

343 pare toFront = zeros ( i n t 64 ( py . len (moes . p a r e t o f r o n t c u t ) ) ,
nObj ) ;

344 f o r i = 1 : s ize ( paretoFront , 1 )
345 i n f r o n t = moes . p a r e t o f r o n t c u t { i } ;
346 pare toFront ( i , : ) = double ( py . a r ray . a r ray ( ' d ' , i n f r o n t ) ) ;
347 end
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348

349 paretoSet = zeros ( i n t 64 ( py . len (moes . p a r e t o s e t c u t ) ) , nVar ) ;
350 f o r i = 1 : s ize ( paretoSet , 1 )
351 i n f r o n t = moes . p a r e t o s e t c u t { i } ;
352 paretoSet ( i , : ) = double ( py . ar ray . ar ray ( ' d ' , i n f r o n t ) ) ;
353 end
354 out = s t r u c t ( ) ;
355

356 i f i s a r c h i v e
357 arch ive = zeros ( i n t 64 ( py . len (moes . arch ive ) ) , nObj ) ;
358 f o r i = 1 : s ize ( archive , 1 )
359 i n f r o n t = moes . arch ive { i } ;
360 arch ive ( i , : ) = double ( py . a r ray . a r ray ( ' d ' , i n f r o n t ) ) ;
361 end
362 out . a rch ive = arch ive ;
363 end
364 out . t e r m i n a t i o n s t a t u s = moes . t e r m i n a t i o n s t a t u s ;
365 out . num kernels = i n t 64 ( py . len (moes) ) ;
366 out . stop = moes . stop ( ) ;
367 out . c o u n t i t e r = i n t64 (moes . c o u n t i t e r ) ;
368 out . countevals = double (moes . countevals ) ;
369 out . bes t hypervo lume pare to f ron t =

double ( py . f l o a t (moes . bes t hypervo lume pare to f ron t ) ) ;
370 out . hypervo lume pare to f ron t =

double ( py . f l o a t (moes . p a r e t o f r o n t c u t . hypervolume ) ) ;
371 i f i s a r c h i v e
372 out . hypervolume archive =

double ( py . f l o a t (moes . arch ive . hypervolume ) ) ;
373 end
374 out . moes = moes ;
375 i f i shand le (hw)
376 c lose (hw) ;
377 end
378 end
379 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
380 f u n c t i o n opts=ge top t ions ( inopts , defopts )
381 % OPTS = GETOPTIONS( INOPTS, DEFOPTS) handles an a r b i t r a r y

number o f
382 % o p t i o n a l arguments to a f u n c t i o n . The given arguments are

c o l l e c t e d
383 % i n the s t r u c t INOPTS . GETOPTIONS matches INOPTS wi th a

d e f a u l t
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384 % opt ions s t r u c t DEFOPTS and re tu rns the merge OPTS. Empty
or missing

385 % f i e l d s i n INOPTS invoke the d e f a u l t value . Fieldnames i n
INOPTS can

386 % be abbrev ia ted .
387 i f narg in < 2 | | isempty ( defopts ) % no d e f a u l t op t ions

a v a i l a b l e
388 opts= inop ts ;
389 r e t u r n ;
390 e l s e i f isempty ( i nop ts ) % empty inop ts invoke d e f a u l t op t ions
391 opts = defopts ;
392 r e t u r n ;
393 e l s e i f ˜ i s s t r u c t ( defopts ) % handle a s i n g l e op t ion value
394 i f isempty ( i nop ts )
395 opts = defopts ;
396 e l s e i f ˜ i s s t r u c t ( i nop ts )
397 opts = inop ts ;
398 else
399 e r r o r ( ' I npu t op t ions are a s t r u c t , wh i le d e f a u l t

op t ions are not ' ) ;
400 end
401 r e t u r n ;
402 e l s e i f ˜ i s s t r u c t ( i nop ts ) % no v a l i d i npu t op t ions
403 e r r o r ( ' The opt ions need to be a s t r u c t or empty ' ) ;
404 end
405

406 opts = defopts ; % s t a r t from defopts
407 % i f necessary ove rwr i t e opts f i e l d s by inop ts values
408 defnames = f ie ldnames ( defopts ) ;
409 idxmatched = [ ] ; % ind i ces o f defopts t h a t a l ready matched
410 f o r name = f ie ldnames ( inop ts ) '
411 name = name{1} ; % name of i − th inopts − f i e l d
412 i dx = st rncmpi ( defnames , name, leng th (name) ) ;
413 i f sum( idx ) > 1
414 e r r o r ( [ ' op t ion ” ' name ' ” i s not an unambigous

abb rev ia t i on . ' . . .
415 ' Use opts=RMFIELD( opts , ' ' ' name, . . .
416 ' ' ' ) to remove the f i e l d from the s t r u c t . ' ] ) ;
417 end
418 i f sum( idx ) == 1
419 defname = defnames{ f i n d ( idx ) } ;
420 i f ismember ( f i n d ( i dx ) , idxmatched )
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421 e r r o r ( [ ' i npu t op t ions match more than ones wi th
” ' . . .

422 defname ' ” . ' . . .
423 ' Use opts=RMFIELD( opts , ' ' ' name, . . .
424 ' ' ' ) to remove the f i e l d from the s t r u c t . ' ] ) ;
425 end
426 idxmatched = [ idxmatched f i n d ( idx ) ] ;
427 va l = g e t f i e l d ( inopts , name) ;
428 % next l i n e can rep lace prev ious l i n e from MATLAB

vers ion 6 .5 .0 on and i n octave
429 % va l = inop ts . ( name) ;
430 i f i s s t r u c t ( va l ) % v a l i d syntax only from vers ion

6 .5 .0
431 opts = s e t f i e l d ( opts , defname , . . .
432 ge top t ions ( val , g e t f i e l d ( defopts , defname ) ) ) ;
433 e l s e i f i s s t r u c t ( g e t f i e l d ( defopts , defname ) )
434 % next th ree l i n e s can rep lace prev ious three

l i n e s from MATLAB
435 % vers ion 6 .5 .0 on
436 % opts . ( defname ) = . . .
437 % getop t ions ( val , defopts . ( defname ) ) ;
438 % e l s e i f i s s t r u c t ( defopts . ( defname ) )
439 warning ( [ ' op t ion ” ' name ' ” d isregarded ( must be

s t r u c t ) ' ] ) ;
440 e l s e i f ˜ isempty ( va l ) % empty value : do nothing , i . e .

s t i c k to d e f a u l t
441 opts = s e t f i e l d ( opts , defnames{ f i n d ( idx ) } , va l ) ;
442 % next l i n e can rep lace prev ious l i n e from MATLAB

vers ion 6 .5 .0 on
443 % opts . ( defname ) = inop ts . ( name) ;
444 end
445 else
446 warning ( [ ' op t ion ” ' name ' ” d isregarded ( unknown

f i e l d name) ' ] ) ;
447 end
448 end
449 end
450 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
451 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
452 f u n c t i o n res=myeval ( s )
453 i f i s cha r ( s )
454 i f s t rncmpi ( s , ' yes ' , 3) | | st rncmpi ( s , ' on ' , 2) . . .
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455 | | st rncmpi ( s , ' t r ue ' , 4) | | strncmp ( s , ' 1 ' , 2)
456 res = 1;
457 e l s e i f s t rncmpi ( s , ' no ' , 2) | | st rncmpi ( s , ' o f f ' , 3) . . .
458 | | st rncmpi ( s , ' f a l s e ' , 5) | | strncmp ( s , ' 0 ' , 2)
459 res = 0;
460 else
461 t r y res = e v a l i n ( ' c a l l e r ' , s ) ; catch
462 e r r o r ( [ ' S t r i n g value ” ' s ' ” cannot be

evaluated ' ] ) ;
463 end
464 t r y res ˜= 0 ; catch
465 e r r o r ( [ ' S t r i n g value ” ' s ' ” cannot be evaluated

reasonably ' ] ) ;
466 end
467 end
468 else
469 res = s ;
470 end
471 end
472

473

474 f u n c t i o n max inac t ive=myplot (moes , abscissa , nObj , nVar ,
opts , hw, r e f p o i n t )

475 f i l e n a m e s r a t i o = py . l i s t ({moes . logger . name pref ix +
py . s t r ( ' r a t i o i n a c t i v e k e r n e l s . dat ' ) , . . .

476 moes . logger . name pref ix +
py . s t r ( ' rat io nondom incumb . dat ' ) ,
moes . logger . name pref ix +
py . s t r ( ' ra t io nondom of fsp incumb . dat ' ) } ) ;

477 t u p l e r a t i o = moes . logger . load ( f i l e n a m e s r a t i o ) ;
478 i t e r r a t i o = double ( py . ar ray . ar ray ( ' d ' , t u p l e r a t i o {1}) ) ;
479 c o u n t e v a l s r a t i o = double ( py . ar ray . ar ray ( ' d ' ,

t u p l e r a t i o {2}) ) ;
480 r e s r a t i o = t u p l e r a t i o {3} ;
481

482 f i lenames hypervolume = py . l i s t ({moes . logger . name pref ix +
py . s t r ( ' hypervolume . dat ' ) , . . .

483 moes . logger . name pref ix +
py . s t r ( ' hypervolume archive . dat ' ) ,
moes . logger . name pref ix + py . s t r ( ' l e n a r c h i v e . dat ' ) } ) ;

484 tup le hypervolume = moes . logger . load ( f i lenames hypervolume ) ;
485 i t e r hypervo lume = double ( py . ar ray . ar ray ( ' d ' ,
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tup le hypervolume {1}) ) ;
486 countevals hypervolume = double ( py . ar ray . ar ray ( ' d ' ,

tup le hypervolume {2}) ) ;
487 res hypervolume = tuple hypervolume {3} ;
488

489 f i lenames median = py . l i s t ({moes . logger . name pref ix +
py . s t r ( ' median sigmas . dat ' ) , . . .

490 moes . logger . name pref ix + py . s t r ( ' median min stds . dat ' ) ,
moes . logger . name pref ix +
py . s t r ( ' median max stds . dat ' ) } ) ;

491 tup le median = moes . logger . load ( f i lenames median ) ;
492 i t e r med ian = double ( py . a r ray . a r ray ( ' d ' , tup le median {1}) ) ;
493 countevals median= double ( py . ar ray . ar ray ( ' d ' ,

tup le median {2}) ) ;
494 res median = tuple median {3} ;
495

496 f i lenames median stds = py . l i s t ({moes . logger . name pref ix +
py . s t r ( ' median stds . dat ' ) } ) ;

497 tup le med ian s tds = moes . logger . load ( f i lenames median stds ) ;
498 i t e r m e d i an s t d s = double ( py . ar ray . ar ray ( ' d ' ,

tup le med ian s tds {1}) ) ;
499 counteva ls median stds= double ( py . a r ray . a r ray ( ' d ' ,

tup le med ian s tds {2}) ) ;
500 res median stds python = py . l i s t ( tup le med ian s tds {3}{1}) ;
501 res median stds = zeros ( s ize ( i t e r med ian s tds , 2) , nVar ) ;
502 f o r i =1: s ize ( res median stds , 1)
503 res median stds ( i , : ) =

double ( py . ar ray . ar ray ( ' d ' , res median stds python { i } ) ) ;
504 end
505

506 i f abscissa
507 x axis hypervolume = countevals hypervolume ;
508 x axis median = countevals median ;
509 x a x i s r a t i o = c o u n t e v a l s r a t i o ;
510 x ax is med ian s tds = counteva ls median stds ;
511 else
512 x axis hypervolume = i te r hypervo lume ;
513 x axis median = i te r med ian ;
514 x a x i s r a t i o = i t e r r a t i o ;
515

516 x ax is med ian s tds = i t e r m e d i an s t d s ;
517 % x ax is med ian s tds = counteva ls median stds ;
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518 end
519

520 f i g u r e (44444) ;
521 h ( 1 ) =subp lo t (2 ,2 ,1 ) ;%#TODO: FHU subp lo t i n i t i a l i z a t i o n to

avoid t r o u b l e w i th wa i tbar
522 h ( 2 ) =subp lo t (2 ,2 ,2 ) ;
523 h ( 3 ) =subp lo t (2 ,2 ,3 ) ;
524 h ( 4 ) =subp lo t (2 ,2 ,4 ) ;
525 %fixedpop = popu la t ion ; % t e s t i n g
526 l i n e s t y l e = '−− ' ;
527 set (0 , ' Cur rentF igure ' , 44444) ;
528

529 %%%%%%%%%%%%%%%%
530 % subp lo t (2 ,3 ,1 ) ;
531 axes ( h ( 1 ) ) ; %TODO FHU: rep lace subp lo t by axes
532 %%%%%%%%%%%%%%%%
533 % e v o l u t i o n o f HV:
534 c la ;
535 hold o f f ;
536 HV = double ( py . a r ray . a r ray ( ' d ' , res hypervolume {1} ) ) ;
537 HV max = double ( py . f l o a t (moes . bes t hypervo lume pare to f ron t ) ) ;
538 sigmas = double ( py . ar ray . ar ray ( ' d ' , res median {1} ) ) ;
539 min stds = double ( py . ar ray . ar ray ( ' d ' , res median {2}) ) ;
540 max stds = double ( py . ar ray . ar ray ( ' d ' , res median {3}) ) ;
541

542

543 semilogy ( x axis hypervolume , HV max − HV, ' L ineSty le ' ,
l i n e s t y l e , . . .

544 ' Color ' , ' red ' ) ;
545 hold on ;
546 i f moes . i s a r c h i v e ˜= 0
547 HV archive = double ( py . ar ray . ar ray ( ' d ' ,

res hypervolume {2}) ) ;
548 HV archive max = HV archive ( end ) ;
549 l en g t h a r c h i ve = double ( py . ar ray . a r ray ( ' d ' ,

res hypervolume {3}) ) ;
550 i n v e r s e l e n g t h a r c h i v e = 1 . / l en g t h a r c h i ve ;
551 semilogy ( x axis hypervolume , HV archive max − HV archive ,

' L ineSty le ' , l i n e s t y l e , . . .
552 ' Color ' , ' b lue ' ) ;
553 hold on
554 semilogy ( x axis hypervolume , i nve rse leng th a rch i ve ,
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' L ineS ty le ' , l i n e s t y l e , . . .
555 ' Color ' , ' cyan ' ) ;
556 end
557

558 % hold on
559 % semilogy ( x axis median , sigmas , ' L ineSty le ' ,

l i n e s t y l e , . . .
560 % ' Color ' , ' k ' ) ;
561 % hold on
562 % semilogy ( x axis median , min stds , ' L ineSty le ' ,

l i n e s t y l e , . . .
563 % ' Color ' , ' green ' ) ;
564 % hold on
565 % semilogy ( x axis median , max stds , ' L ineSty le ' ,

l i n e s t y l e , . . .
566 % ' Color ' , ' green ' ) ;
567 % hold on
568 % legend ( ' HV {max} − HV' , ' HV { a rch i ve {max}} −

HV { arch ive } ' , ' i nverse leng th archive ' , ' median sigmas ' ,
' median min stds ' , ' median max stds ' ) ;

569 t i t l e ( ' HV {max}−HV ( red , blue ) , inverse − length −arch ive ( cyan )
' ) ;

570 i f abscissa
571 x l a b e l ( ' Count evals ' ) ;
572 else
573 x l a b e l ( ' N i t e r ' ) ;
574 end
575 %t e x t (0 ,100 , s p r i n t f ( 'HV = %e ' , max( HVtota l ) ) ) ;
576 ax = ax is ;
577 t e x t ( ax ( 1 ) ,

10ˆ ( log10 ( ax ( 3 ) ) +0.05* ( log10 ( ax ( 4 ) )− log10 ( ax ( 3 ) ) ) ) , . . .
578 [ ' HV= ' num2str ( double ( py . f l o a t ( . . .
579 moes . bes t hypervo lume pare to f ron t ) ) , ' %.15g ' ) ] ) ;
580

581

582 g r i d on ;
583

584 %%%%%%%%%%%%%%%%
585 % subp lo t (2 ,3 ,2 ) ;
586 axes ( h ( 2 ) ) ; %TODO FHU: rep lace subp lo t by axes
587 %%%%%%%%%%%%%%%%
588 % popu la t ion i n o b j e c t i v e space over t ime :
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589 c la ;
590 hold o f f ;
591

592 cu r ren tF ron t = zeros ( i n t 64 ( py . len (moes . p a r e t o f r o n t c u t ) ) ,
nObj ) ;

593 f o r i = 1 : s ize ( cu r ren tFron t , 1 )
594 i n f r o n t = moes . p a r e t o f r o n t c u t { i } ;
595 cu r ren tF ron t ( i , : ) = double ( py . ar ray . ar ray ( ' d ' , i n f r o n t ) ) ;
596 end
597 % need to p l o t a l l ke rne ls i n o b j e c t i v e space
598 % A l l kerne ls i n o b j e c t i v e space
599 A l l k e r n e l s = zeros ( i n t 64 ( py . len (moes . kerne ls ) ) , nObj ) ;
600 f o r i = 1 : s ize ( A l l k e r n e l s , 1 )
601 kerne l = moes . kerne ls { i } ;
602 i n f r o n t = kerne l . o b j e c t i v e v a l u e s ;
603 A l l k e r n e l s ( i , : ) = double ( py . a r ray . a r ray ( ' d ' , i n f r o n t ) ) ;
604 end
605

606

607 i f moes . i s a r c h i v e ˜= 0
608 cu r ren tA rch i ve = zeros ( i n t 64 ( py . len (moes . arch ive ) ) , nObj ) ;
609 f o r i = 1 : s ize ( cur ren tArch ive , 1 )
610 i n f r o n t = moes . arch ive { i } ;
611 cu r ren tA rch i ve ( i , : ) = double ( py . a r ray . a r ray ( ' d ' ,

i n f r o n t ) ) ;
612 end
613 end
614

615 i f nObj == 3 % 3 o b j e c t i v e s
616

617 i f moes . i s a r c h i v e ˜= 0
618 p lo t3 ( cu r ren tA rch i ve ( : , 1 ) , cu r ren tA rch i ve ( : , 2 ) ,

cu r ren tA rch i ve ( : , 3 ) , ' . ' , ' Color ' , ' b lue ' ) ;
619 x l a b e l ( ' f 1 ' ) ;
620 y l a b e l ( ' f 2 ' ) ;
621 z l a b e l ( ' f 3 ' ) ;
622 MinAbciss=min ( cu r ren tA rch i ve ) ;
623 hold on ;
624 else
625 MinAbciss=min ( cu r ren tF ron t ) ;
626 end
627 p lo t3 ( A l l k e r n e l s ( : , 1 ) , A l l k e r n e l s ( : , 2 ) ,
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A l l k e r n e l s ( : , 3 ) , ' o ' , ' Color ' , ' green ' ) ; hold on
628 p lo t3 ( cu r ren tF ron t ( : , 1 ) , cu r ren tF ron t ( : , 2 ) ,

cu r ren tF ron t ( : , 3 ) , ' o ' , ' Color ' , ' red ' ) ;
629 x l a b e l ( ' f 1 ' ) ;
630 y l a b e l ( ' f 2 ' ) ;
631 z l a b e l ( ' f 3 ' ) ;
632 i f nargin>6
633 x l im ( [ MinAbciss ( 1 ) , r e f p o i n t ( 1 ) ] ) ;
634 y l im ( [ MinAbciss ( 2 ) , r e f p o i n t ( 2 ) ] ) ;
635 z l im ( [ MinAbciss ( 3 ) , r e f p o i n t ( 3 ) ] ) ;
636 end
637 else % 2 o b j e c t i v e s
638

639

640 i f moes . i s a r c h i v e ˜= 0
641 p l o t ( cu r ren tA rch i ve ( : , 1 ) , cu r ren tA rch i ve ( : , 2 ) , ' . ' ,

' Color ' , ' b lue ' ) ;
642 x l a b e l ( ' f 1 ' ) ;
643 y l a b e l ( ' f 2 ' ) ;
644 hold on ;
645 MinAbciss=min ( cu r ren tA rch i ve ) ;
646 else
647 MinAbciss=min ( cu r ren tF ron t ) ;
648 end
649 p l o t ( A l l k e r n e l s ( : , 1 ) , A l l k e r n e l s ( : , 2 ) , ' o ' , ' Color ' ,

' green ' ) ; hold on
650 p l o t ( cu r ren tF ron t ( : , 1 ) , cu r ren tF ron t ( : , 2 ) , ' o ' , ' Color ' ,

' red ' ) ;
651 x l a b e l ( ' f 1 ' ) ;
652 y l a b e l ( ' f 2 ' ) ;
653 i f nargin>6
654 x l im ( [ MinAbciss ( 1 ) , r e f p o i n t ( 1 ) ] ) ;
655 y l im ( [ MinAbciss ( 2 ) , r e f p o i n t ( 2 ) ] ) ;
656 end
657 end
658

659 t i t l e ( ' o b j e c t i v e space : arch ive ( blue ) , kerne ls ( red ) ' ) ;
660

661 % legend ( ' est imated f r o n t ' , ' arch ive ' ) ;
662 g r i d on ;
663

664 %%%%%%%%%%%%%%%%
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665 % subp lo t (2 ,3 ,3 ) ;
666 axes ( h ( 3 ) ) ; %TODO FHU: rep lace subp lo t by axes
667 c la ;
668 % ax is ( [ −0.01 , 1 . 0 1 ] ) ;
669 %%%%%%%%%%%%%%%%
670 % popu la t ion i n dec is ion space ( p r o j e c t i o n ) over t ime :
671 hold o f f ;
672

673 i n a c t i v e = double ( py . ar ray . ar ray ( ' d ' , r e s r a t i o {1} ) ) ;
674 max inac t ive=max( i n a c t i v e ) ;
675 nondom incumbent = double ( py . a r ray . a r ray ( ' d ' , r e s r a t i o {2}) ) ;
676 % f i r s t q u a r t i l e n o n d o m o f f s p r i n g i n c u m b e n t =

double ( py . ar ray . ar ray ( ' d ' , r e s r a t i o {3}) ) ;
677 median nondom offspr ing incumbent =

double ( py . ar ray . ar ray ( ' d ' , r e s r a t i o {4}) ) ;
678 % las t qua r t i l e nondom o f f sp r i ng i ncumben t =

double ( py . ar ray . ar ray ( ' d ' , r e s r a t i o {5}) ) ;
679

680 p l o t ( x a x i s r a t i o , i n a c t i v e , '− ' , ' Color ' , ' red ' ) ;
681 hold on ;
682 p l o t ( x a x i s r a t i o , nondom incumbent , '− ' , ' Color ' , ' b lue ' ) ;
683 hold on ;
684 % p l o t ( x a x i s r a t i o ,

f i r s t q u a r t i l e n o n d o m o f f s p r i n g i n c u m b e n t , ' − ' , ' Color ' ,
' green ' ) ;

685 % hold on ;
686 p l o t ( x a x i s r a t i o , median nondom offspr ing incumbent , '− ' ,

' Color ' , ' k ' ) ;
687 % hold on ;
688 % p l o t ( x a x i s r a t i o ,

l as t qua r t i l e nondom of f sp r i ng incumben t , ' − ' , ' Color ' ,
' green ' ) ;

689

690 i f abscissa
691 x l a b e l ( ' Count evals ' ) ;
692 else
693 x l a b e l ( ' N i t e r ' ) ;
694 end
695 y l a b e l ( ' Rat ios ' ) ;
696 t i t l e ( ' Fracpareto ( Kernels : blue , o f f s p r i n g : b lack ) and i n a c t i v e

kerne ls ( red ) ' ) ;
697 % legend ( ' i n a c t i v e kernels ' , ' non−dominated
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incumbents ' , ' 1 s t q u a r t i l e non−dom incumbent +
o f f s p r i n g ' , . . .

698 % ' median non−dom incumbent + o f f s p r i n g ' , ' l a s t
q u a r t i l e non−dom incumbent + o f f s p r i n g ' ) ;

699 g r i d on ;
700

701 %%%%%%%%%%%%%%%%
702 % subp lo t (2 ,3 ,5 ) ;
703 axes ( h ( 4 ) ) ; %TODO FHU: rep lace subp lo t by axes
704 %%%%%%%%%%%%%%%%
705 % ax is r a t i o s o f a l l covar iances :
706 c la ;
707 hold o f f ;
708 semilogy ( x ax is median stds , res median stds ) ;
709 hold on ;
710 t o l = myeval ( opts . t o l x ) ;
711 t o l = t o l / double (moes . kerne ls {1} . sigma0 ) ;
712 semilogy ( x ax is median stds , t o l *

ones ( s ize ( x ax is med ian s tds ) ) ) ;
713

714 i f abscissa
715 x l a b e l ( ' Count evals ' ) ;
716 else
717 x l a b e l ( ' N i t e r ' ) ;
718 end
719 t i t l e ( ' ( sor ted ) median standard dev ia t i ons ' ) ;
720 g r i d on
721

722 hold o f f ;
723 drawnow ;
724

725

726

727 end % of p l o t t i n g
728 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Titre: Conception d’algorithmes d’optimisation multiobjective et analyse
théorique de stratégies d’évolution

Mots clés: CMA-ES, COMO-CMA-ES, Sofomore, UHVI, xNES, CSA-ES

Résumé: Nous avons analysé les com-
portements linéaires asymptotiques de
stratégies d’évolution avec recombinai-
son, avec un step-size adaptatif, sur
une classe de fonctions très large con-
stituée des fonctions scaling-invariant.
Notre cadre d’analyse inclut deux
stratégies d’évolution connues que sont
xNES et CSA-ES. Notre principale con-
dition de convergence est que le loga-
rithme du step-size croı̂t en espérance
sur les fonctions linéaires non triviales,
ce qui est la condition optimale qu’on

puisse obtenir. Dans le cadre multiob-
jectif, nous avons introduit un indica-
teur de performance appelé UHVI, qui
crée un biais en faveur des zones non
explorées du Pareto set. Nous avons
developpé un système d’algorithmes
appelé Sofomore, instancié avec le
CMA-ES pour obtenir le COMO-CMA-
ES. Un package Python appelé py-
comocma est publié pour ce travail
sur ce lien : https://github.com/CMA-
ES/pycomocma.

Title: Design of multiobjective optimization algorithms and theoretical analysis of
evolution strategies

Keywords: CMA-ES, COMO-CMA-ES, Sofomore, UHVI, xNES, CSA-ES

Abstract: We have analyzed linear be-
haviors of step-size adaptive evolution
strategies with recombination mecha-
nism, on a wide class of functions that
are the scaling-invariant functions. Our
framework includes two known step-
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