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A B S T R A C T

Next-generation sequencing has enabled researchers to conduct in-depth analy-

ses of the immunological repertoire landscape. However, a significant concern

in these studies is the computational cost of analyzing millions of sequences

with inherent complexity, variability, and mutational capacity, imposing compu-

tational challenges and necessitating the development of efficient methods. This

challenge is even more evident in the clinical context that does not always have

access to professionals with computing skills or robust computational resources.

Thus, the main goal of this thesis is to develop a set of dedicated and integrated

tools to be used in the clinical environment, for medical diagnostic and patient

care, and in the research environment, to perform large-scale and in-depth reper-

toire analysis. We have designed and implemented multiple algorithms and gath-

ered them in a user-friendly interactive BCR repertoire visualization pipeline to

facilitate the process of integrating BCR repertoire analysis into medical prac-

tices.
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Part I

I N T R O D U C T I O N



1
I N T R O D U C T I O N

An effective response to the vast antigenic diversity of the microbial world is

the primary physiological function of the immune system. The human immune

system has two levels of protection: innate and adaptive immunity. The innate

immune system protects us from infection during the first critical hours and

days of exposure to a new pathogen; it is not specific to a particular microorgan-

ism. The innate immune response depends on a group of cells and proteins that

recognize conserved features of pathogens and become rapidly activated to help

destroy them. It is quintessential for efficient protection against pathogens, but

it cannot target all infectious threats. When the innate immune response is in-

sufficient to control infection, the adaptive immune response interferes by elim-

inating pathogens or preventing their growth, see Figure 1. Adaptive immune

responses are slow to develop on their first encounter with a new pathogen

since specific clones of B and T cells have to become activated and then expand;

it can therefore take a few days before the responses are functional. However,

once established, the adaptive immune system remembers its previous encoun-

ters with specific pathogens, and it can destroy them quickly in the case of re-

peated exposure. This feature is the hallmark of the adaptive immune system; it

occurs during an individual’s lifetime as an adaptation to infection with many

pathogens.

The adaptive immune response is characterized by high specificity and mem-

ory, both of which are attributes of T-lymphocytes (Thymus-derived cells) and B

lymphocytes (Bone marrow-derived cells) [1]. B-lymphocytes can recognize and

directly bind to several pathogen-associated antigens thanks to their cell-surface

receptors: the B cell receptors (BCR) [2]. Each B-cell expresses a unique BCR that

allows the recognition of a particular antigen. The BCR consists of two elements:

the recognition unit, structured by a membrane Immunoglobulin (Ig) protein,

and an associated signaling unit.

2
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Figure 1: Innate and adaptive immune responses Pathogens directly stimulate innate

immune responses, which protect all multicellular organisms from infection.

Pathogens, together with the innate immune responses they induce adaptive

immunological responses in vertebrates, which can then aid in the fight against

infection.

The immune system can respond to almost any antigen to which it is exposed

due to a multifarious set of BCRs, about 1010, 1011 molecules in a human adult,

that form the BCR repertoire [3]. This enormous variability is achieved through

complex genetic mechanisms for BCR assembly (VDJ gene recombination) dur-

ing B-cell ontogeny happening before the antigen encounter, and later during

affinity maturation that occurs after the antigen encounter. B lymphocytes that

encounter their cognate antigen will be activated and therefore proliferate to pro-

duce a clone, capable of giving a robust protective response against the pathogen.

A clone of B lymphocytes can massively secrete a soluble form of BCRs, called

antibodies. This phenomenon is known as clonal expansion and plays a funda-

mental role in an efficient immune response[2].

Next-generation sequencing (NGS) has transformed the immune system’s anal-

ysis and shed light on BCR repertoires of healthy individuals and those with

various pathologic states [4]. The BCR Repertoire Sequencing (Rep-Seq) studies

have crucial theoretical and clinical relevance. An extremely diversified BCR

repertoire reflects the expected diversity in healthy individuals. However, such

diversity can be significantly affected by different factors such as autoimmune

diseases [5–11], allergy [12–14], cancer [15, 16], and aging [17, 18]. The study of
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BCR repertoire is an active field of research that can provide insights into im-

munological memory[19], response to infections, mechanisms of vaccines [19],

antibody engineering [20, 21], and immunoproliferative diseases [22], among

others.

With decreasing costs of DNA sequencing technology, Rep-Seq datasets have

become increasingly accessible in clinical contexts leading to a rapid rise in de-

mand for appropriate methods to further investigate and interpret such data.

The availability of Rep-Seq data has motivated researchers with different back-

grounds (biological, computational, and statistical) to investigate and examine

the adaptive immune complexity.

Numerous methods and computational tools have been developed for treating

different steps of BCR Rep-Seq analysis, producing multiple integrated context-

specific softwares [23–25]. However, only a few of these tools are suitable for the

clinical environment [26], hindering their use in the medical context.

At least two factors contribute to this inadequacy :

1. Lack of standard terminology. Not having a common definition for terms

like "clone" and "clonotypes" has induced researchers to have different in-

terpretations of the same dataset [27]. Indeed, it complicates the commu-

nication among basic, translational, clinical, and technical researchers and

decelerates the process of carrying out a meta-analysis.

2. The high complexity of implementing theoretical research-oriented tools

for clinicians/immunologists without computational background. BCR Rep-

Seq analysis tools often demand high computational resources, calculation

time, and software skills, restraining the clinically trained professionals

from fully utilizing them. This state has a baneful influence on the Rep-

Seq analysis design and its application. The lack of medical practitioners’

perpetual feedback can limit extracting the most appropriate information

from these analyses to address unmet clinical needs in diagnosis, progno-

sis, and monitoring of lymphocyte malignancies.Hence, there’s a need for

developing practical BCR repertoire analysis tools specifically developed

for clinical use.
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This thesis attempts to address the above-mentioned issues by taking a dy-

namic multidisciplinary approach to reconciling research-oriented clonal and

intra-clonal BCR repertoire analyses with lymphocyte malignancies examination

in clinical settings. For this, we have developed several algorithms and assembled

them in an interactive visualization pipeline. All algorithms can analyze millions

of BCR sequences with inherent complexity, variability, and mutational capacity.

They are very efficient, being compatible with the use in a clinical environment.

Moreover, we believe that our data visualization can help the medical commu-

nity by facilitating the selection of helpful information in BCR repertoire analyses

and easier patient monitoring. These tools could improve healthcare clinician’s

work, organizing their tasks, and increase the number of patients treated with a

more personalized approach.

1.1 overview of the study

This dissertation is organized into three sections.

• Section one: Background and problem statement

– Chapter 2 outlines genetic mechanisms that lead to high BCR reper-

toire diversity, particularly the VDJ recombination and somatic hy-

permutations. It also includes practical information about measuring

BCR repertoire diversity, such as the sample size and the currently

available technologies in Rep-Seq analyses.

– Chapter 3 presents the principal steps in Rep-Seq analysis and an

overview of tools for fundamental analysis of BCR repertoires. We

highlight the most critical questions in the literature that guided us

towards one tangible area of investigation during my thesis, the BCR

intraclonal analysis.

– The starting point of BCR intra-clonal analysis is precisely defining the

clone, as the essential subject of study. As detailed in chapter 4, there is

no consensus in the scientific community about how to define clones,

and it can cause ambiguity in the interpretation of results produced

by different algorithms.
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– Since this study aims to facilitate the usage of Rep-Seq analysis tools

for clinically trained professionals, chapter 5 introduces a practical

framework for such tools’ design and validation processes. This step

has helped us clarify the criteria of developing methods to encourage

usage of intraclonal analysis in the diagnosis, prognosis, and monitor-

ing of lymphocyte malignancies.

– After gaining an insight into the current needs in BCR Rep-Seq analysis,

chapter 6 presents the problem statement of this research work. It

provides the aim and the scope of the study.

• Section two: proposed solutions

– Given the most appropriate definition for the BCR clone for the in-

traclonal analysis in the clinical context, we need a clonal grouping

tool that is capable of performing this level of clustering granularity.

Furthermore, It should be accurate, fast, and easy to use. In chapter 7,

we present Agreeable, a tool that has been developed with the aim of

responding to these needs.

– In chapter 8, we evaluate the performance of agreeable by comparing

it with some of other BCR clonal grouping tools. This chapter also

investigates the impact of different clonal grouping algorithms on re-

sults while the clonal definition is the same.

– Phylogenetic trees can represent evolutionary relations among distinct

genotypes in a B cell lineage or clone. For that, phylogenetic recon-

struction methods should process B-cell population data derived from

experimental sampling, common in clinical routine. Chapter 9 intro-

duces ClonalTree, a fast and accurate algorithm that reconstructs BCR

lineage trees using cellular abundances and minimal spanning trees.

ClonalTree was designed particularly for analyzing clinical data.

– Considering the important role of the visualization for a complex mul-

tidisciplinary context such as BCR Rep-Seq analysis, we gathered all

previously developed programs and created a versatile interactive vi-

sualization pipeline called ViCloD. Chapter 10 is dedicated to present-

ing this tool and its possible clinical usability.

• Section three: Conclusion and Perspectives



1.1 overview of the study 7

– In the last chapter, I will summarize our findings, contributions, and

suggestions for future research directions.



Part II

B A C K G R O U N D A N D P R O B L E M S TAT E M E N T



2
S T U D Y I N G I M M U N E R E P E RT O I R E S

This chapter introduces the biological notions used in the following parts; then,

we will discuss practical aspects of studying adaptive immune behavior.

2.1 an overview of the human adaptive immune system

Adaptive immunity response has two major types of immune cells: T and B

cells. Such cells, also called lymphocytes, have cell surface antigen receptors,

respectively called T cell receptors (TCR) and B cell receptors BCR, capable of

recognizing and responding to an unlimited number of pathogens.

2.2 generation and maturation of lymphocytes

Both B and T lymphocytes originate in the bone marrow, but only B lymphocytes

mature there; T lymphocytes migrate to the thymus to complete their maturation.

B and T lymphocytes that have matured but have not yet confronted antigens

are known as naive lymphocytes. Such cells circulate continually between the

blood and the peripheral lymphoid tissues. If an infection occurs, mature naive

lymphocytes with receptors recognizing the infectious agent are held in the lym-

phoid tissues. These cells are activated and start to divide, giving rise to clones

of antigen-specific cells that mediate adaptive immunity to fight the infection.

Some of the proliferating B cells differentiate into effector cells generating anti-

bodies, the soluble form of BCR, and some develop into memory B cells, capable

of evoking an enhanced response to reinfection. Antibodies, through various

mechanisms, help eliminate pathogens and their toxins. Any substance capable

of eliciting an adaptive immune response is referred to as an antigen. Since the

work presented in this dissertation deals exclusively with B cells and their recep-

tors, they will be discussed in more detail in the following section.

9
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2.3 basic structure of b cell receptor

BCR sequences determine the B-cell antigen-binding properties. In order to react

to a wide variety of pathogens, the immune system needs to generate an equiv-

alent variety of BCRs. However, to have individual genes encoding the number

of different types of BCR, the entire human genome should be dedicated to lym-

phocyte receptor generation. Therefore, the recombination of preexisting genes

creates a part of the required diversity of BCRs [28].

The BCR consists of two types of components: the recognition unit, struc-

tured by a membrane Immunoglobulin Ig protein, and the transmembrane signal

unit formed by the CD79a and CD79b molecules. An Ig is a heterodimer com-

posed of two Immunoglobulin Heavy chain (IgH) and two Immunoglobulin Light

chain (IgL) bound by disulfide bridges (Figure 2-A). Each chain has two distinct

parts: the variable domain on the N-terminal side responsible for antigen recog-

nition and the constant region on the C-terminal side attached to the cell surface.

Three gene groups encode the IgH variable domain: Variable (V), Diversity (D),

and Joining (J). They are clustered in loci on human chromosome 14q32, but dur-

ing early B-cell ontogeny, one gene from each gene group is randomly selected

and joined together,by two successive rearrangement events. This leads to the

formation of a complete Variable domain encoded by a VDJ-REGION. Joining is

imprecise as nucleotides are randomly deleted and inserted in the V-D (N1) and

D-J (N2) junctions (Figure 2-B). Altogether such a process is known as VDJ re-

combination, and it is responsible for the production of highly diversified "naive"

BCR repertoire.

As shown in Figure 2-C., the variable domain, after VDJ rearrangement, con-

tains a beta-sheet Framework region (FR), that maintains the structure of the Ig

molecule. FR are relatively conserved and support three hypervariable stretches

spatially close to each other and form loops that interact directly with antigens.

For this reason, they are called complementarity determining region (CDR). The

CDR3 is at the junction of the IGHV, IGHD, and IGHJ genes, and has the highest

variability, and plays a crucial role in determining antigen properties. The IMGT

unique numbering for V-REGION [29, 30] has allowed redefining the limits of
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the CDR and FR Regions, known as CDR-IMGT and FR-IMGT. We have used

these definitions in this work.

Antigen-activated naive B cells undergo rapid proliferation (clone expansion)

and further diversify their BCR by Somatic HyperMutation (SHM), an enzymatically-

driven process introducing mainly point substitutions into the Ig locus. In the

normal process of SHM, the variable domain, and not the constant region of the

expressed heavy chains, are mutated. The mutation rate is estimated to be of the

order of 103 to 104 per base cell per cell generation, and there are hotspots and

coldspots of SHM that have been described [31, 32]

Figure 2: A:Representation of BCRs on the surface of B cells and the different parts of

immunoglobulins, B: Organization of the genes encoding the heavy chains of

immunoglobulins, during the rearrangements in the IGH locus, first one of the

IGHD genes is joined to one of the IGHJ genes and the intermediary DNA

is deleted as an excision loop, then one of the IGHV genes is joined to the

partially rearranged DJ gene to generate a completely rearranged IGHV-D-J

gene C: Schematic representation of the V domain of immunoglobulin after

VDJ rearrangement
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In summary, there are several sources of Variable domaine of the Ig heavy

chain:

1. the combinatorial joining of IGHV, IGHD, and IGHJ genes

2. the junctional diversity derived from exonuclease digestion and the inser-

tion of non-templated bases at the IGHV-D and IGHD-J junctions

3. the pairing of heavy and light chains

4. the intra-clonal diversification provided by somatic hypermutation, caus-

ing point mutations and occasionally longer insertions or deletions in VDJ

rearrangements in antigen-experienced B cells.

The theoretical estimations of BCR diversity cover a wide range of values (from

1014 to 1018). The combinatorial possibilities of genes are approximately 104 for

human Ig loci. However, the diversity of CDR3 regions encoded by IGHV-D-

J gene junctions has the most significant theoretical contribution to repertoire

diversities. The only limiting parameter of such diversity is the length of the

non-templated base sequences embedded at the junctions.

Thus, gene combinations and junctional diversity could easily exceed 1015 dif-

ferent nucleotide compositions for Ig heavy chains. Combined with light chain

diversity, one can expect another 104 to 106 fold of diversity. Lastly, somatic

hypermutation could contribute to generating enormous numbers of potential

unique BCR sequences. However, not all of the genotype space’s points will en-

code unique amino acid sequences; also, some will be incompatible with Ig pro-

tein stability, and some will not be expressed. Concretely, the number of B cells in

the human body is estimated to be approximately 1011[3]. Different approaches

of estimating BCR diversity from sequencing data suggest that the B cell clone

number in a human adult is in the range of 108- 109 per individual. In practice,

Ig heavy chains serve as the signature of each BCR sequence to detect the clonal

diversity of an individual’s BCR repertoire.

Ig heavy chains are more diverse than Ig light chain sequences; therefore, they

are a more appropriate choice for establishing the clonal association between

sequences. A high variety of IgH chains can be due to:
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1. the presence of the IGHD gene in CDR3, which is lacking in IgL chains.

IGHD genes can be read in up to six different reading frames and occa-

sionally undergo D–D fusion [33],

2. the two rearrangement junctions in the CDR3, with a higher junction vari-

ability since the enzyme which creates N additions is more active during

IgH chain rearrangement [34].

2.4 the practical aspects of measuring bcr repertoire’s diver-

sity

To evaluate the BCR repertoire diversity, we should consider two practical as-

pects: the sample size and the capacity of current sequencing technology.

2.4.1 The sample size

Most BCR repertoire analyses in clinical routines consider single blood samples,

sometimes repeated in multiple time points. Since the results may be subject to

inevitable sampling bias and experimental noise, it is essential to use mathemat-

ical and statistical models to estimate the real repertoire diversity from a given

sample. In this work, we did not address this point, but one should have in mind

the importance of sample significance to better understand the interpretability

of the results.

2.4.2 The capacity of current sequencing instruments

2.4.2.1 Sequencing technologies

In the short history of rapid technological development in Rep-Seq analysis, the

Roche (454), Illumina, and Ion Torrent instruments have generated most of the

current bulk sequencing data in the literature [35]. These platforms use a sequencing-

by-synthesis technology; the Roche (454) and the Ion Torrent platforms use reac-

tion mixtures containing only one of the deoxynucleotide triphosphates (dNTPs)

per sequencing cycle, while Illumina uses a mix of all four dNTPs with nucleotide-

specific fluorophores in each sequencing cycle. The Roche and Ion torrent plat-



2.4 the practical aspects of measuring bcr repertoire’s diversity 14

forms produce longer reads than the Illumina; consequently, sequencing errors

in homopolymer (single-nucleotide repeat) regions are more likely to occur. Cur-

rently, Illumina instruments are the dominant platform in Ig repertoire sequenc-

ing for the clinical context. The third-generation DNA sequencing such as Pacific

Biosciences’ Single Molecule Real Time (SMRT), and nanopore systems allow un-

precedented long reads [36]. The generation of long sequencing reads with high

accuracy improves the assembly of whole genomes. Such techniques create a

valuable opportunity for in-depth Rep-seq analysis; however, their frequent us-

age in clinical settings seems to be unlikely in the immediate future.

2.4.2.2 Library construction and technical strategies

Most sequencing libraries for sequencing platforms have been generated from

unpaired Ig heavy chains and light chains in the published literature. The prox-

imity of rearranged V(D)J genes allows for polymerase chain reaction (PCR) am-

plification of the entire V(D)J-REGION using various gene-specific primer strate-

gies. Most amplification strategies are selected to include the CDR3 containing

sufficient information to examine many of the antigen-recognizing features of

the receptor molecules.

Libraries can be generated from sorted lymphocyte populations, peripheral

blood mononuclear cells (PBMCs), or lymphocyte-containing tissues. An essen-

tial technical decision to make before starting a Rep-Seq analysis is the choice of

template. Two starting materials can serve as the initial template to sequence Ig

repertoires: genomic DNA (gDNA) and mRNA.

1. Using gDNA has the advantage of sampling and analyzing both produc-

tive and unproductive V(D)J rearrangements. Unproductive rearrangement

happens when the IGHV and IGHJ are not in the same frame. Even though

it does not give rise to functional proteins, sequences of unproductive re-

arrangements can provide helpful information on features like gene rear-

rangement frequencies, base deletion, and non-templated base addition in

junction regions, receptor diversity, and selection in lymphocyte develop-

ment [36]. Also, the copy number of the gDNA template per cell is consistent

(only one productively rearranged heavy and light chain locus per cell). It

can be used to evaluate and quantify clonal frequencies and expansions

[37].
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2. Using mRNA as an initial template requires an additional step to con-

vert mRNA to DNA via reverse transcription. The number of Ig mRNA

transcripts can vary widely among different B cell subpopulations, which

prevents the reliable quantification of expanded clonal lymphocyte popu-

lations while using mRNA as the template. One way of overcoming this

inconvenience is to separate cells into different replicate aliquots before

isolating the mRNA. Using mRNA as a template, on the other hand, can

increase the likelihood of capturing a more exhaustive representation of

rare clones due to the existence of multiple Ig transcript copies per cell.

Several approaches for sequencing of lymphocyte receptor repertoires can be

taken, depending on the research questions of a particular experiment. The data

used in this work were collected during routine diagnostic procedures at Pitié-

Salpêtrière hospital in Paris. Sequences were obtained from peripheral blood

lymphocytes by performing polymerase chain amplification of IGH-VDJ rear-

rangements on genomic DNA followed by NGS paired-end sequencing on an

Illumina MiSeq platform. Typically 105 sequences were obtained per sample.

In the following chapter, we will detail how to analyze the BCR repertoire

starting from the raw output of sequencing platforms.



3
B I O I N F O R M AT I C S P I P E L I N E S A N D R E P E RT O I R E A N A LY S I S

High throughput sequencing methods produce large data sets that demand spe-

cialized computational tools for proper analysis and interpretation. This neces-

sity has contributed to the expansion of Immunoinformatics. This field com-

bines biological, computational, mathematical, and statistical approaches to in-

vestigate the immune system’s complexity. Its applications make use of genomic,

proteomic, and structural data. This chapter focuses on immunoinformatics tools

for decoding B cell receptor repertoires obtained from sequencing studies de-

scribed in the previous chapter. B cell receptor repertoire analysis can be divided

into three main stages: pre-processing, sequence analysis, and clustering of clon-

ally related sequences, see Figure 3.

Figure 3: The essential steps in repertoire sequencing analysis, adapted from [38]

16
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3.1 pre-processing

The pre-processing stage aims to transform the raw reads produced by sequenc-

ing methods into properly curated sequences. The output of high throughput

sequencing platforms is a binary file that must be converted to Fasta or Fastq

format. Illumina and Roche platform propose integrated scripts (sffinfo-Roche;

bcl2fastq-Illumina), but many independent scripts are also available (bamtoFastq,

sff-extract). Fasta and Fastq are two standard input formats for most analysis

programs. Fasta format consists of a list of sequences with a unique identifi-

cation tag preceding each sequence. Fastq files also include, in addition to the

nucleotide sequence, information about the quality of each residue in the se-

quence in the form of a Phred score (*Q* score). The *Q* score gives an esti-

mated probability of error for each nucleotide position. Both the sequence letter

and quality score are encoded with a single ASCII character, and the quality

score can be transformed into integers. Pre-processing includes filtering out low-

quality reads, sequence trimming to remove continuous low-quality nucleotides

and primer sequences, merging paired-end reads by consensus building, and, if

possible, identifying and filtering out PCR artifacts [39].

3.2 sequence analysis and clustering clonally related sequences

The two initial steps of B-cell population structure inference named VDJ assign-

ment and clonal grouping (or clone expansion prediction), have a tremendous

impact on the success of the following phases. VDJ assignment consists in de-

tecting IGHV, IGHD and, IGHJ germline genes used in the VDJ recombination

process, where clonal grouping finds clusters of BCR sequences that might have

been derived from the same precursor.

3.2.1 VDJ germline assignment

The V(D)J germline assignment is one of the most critical steps when treating

Rep-Seq data. This step aims to infer the correct V, D, and J germline genes and

alleles that were recombined to produce each BCR sequence. An germline infer-

ence is required to correctly identify somatic hypermutations for each sequence,
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cluster them into clonal groups, and carry out an appropriate diversity approx-

imation. Frequently, the germline inference applies an algorithm to choose the

best match among a set of potential germline genes from a database of known

genes and alleles. The current public database for Ig germline genes, the Interna-

tional ImMunoGeneTics information system [40], is the most used reference for

an accurate VDJ assignment. It is important to highlight that the inference for

D genes is particularly challenging because they tend to be short and modified

during the rearrangement.

3.2.2 Clonal grouping

Clonal grouping (sometimes referred to as clonotyping) involves clustering a

set of BCR sequences into groups that could potentially represent B-cell clones.

Clonally related BCR sequences descend from a common ancestor and present

the same V(D)J rearrangement, but they may differ due to the accumulation of

somatic hypermutations. Consequently, detecting clones from BCR sequences is

challenging. Clonal grouping tools are generally restricted to heavy chain se-

quences due to their high variability compared to the light chain sequences and

also because they constitute the first genetic event in the B-cell ontogeny. How-

ever, most recently, experimental protocols for determining paired heavy and

light chains have been developed [36, 41], these sequences could be combined.

Several clonal grouping methods have been developed to identify clones in B

cell populations from IgH patient sequences. Most of them try to identify clones

by first performing a VDJ assignment for unraveling V, D, and J genes used

in the B-cell rearrangement. Second, sequences with the same V and J genes,

and junctions of the same length, are grouped. Finally, clustering algorithms are

applied to sequences within each group. For that, sequence-based distance mea-

sures are required. Most commonly, the distance measure focuses on nucleotide

similarities of the junction regions (CDR3), since they are the most variable part

of the BCR with antigen recognition and binding properties. Sequences with a

junction similarity above a defined threshold are considered to have been orig-

inated from the same rearrangement, composing the same clone. Nevertheless,

setting a fixed distance cut-off for clonal definition is inaccurate since it cannot



3.3 repertoire characterization and analysis 19

account for different levels of clonal diversification within a repertoire. There-

fore, much effort is put into more advanced and alternative strategies that use

different grouping criteria or thresholds to infer clones, including ones based on

probabilistic models or spectral clustering with adaptive thresholds [42]. Given

that the definition of clones and the assumptions made for each approach are

different, interpreting the results of clonal grouping via different tools is labo-

rious. The next chapter is dedicated to further investigating this problem. Most

clonal grouping methods use IGHV and IGHJ annotation for detecting clonally

related sequences, however, this strategy neglects the potential gene annotation

errors which can later on negatively affect the clustering results.

In theory, clonal grouping can also be done before or in parallel with V(D)J

assignments. In this case, clonal groups could improve the initial V(D)J allele as-

signments, as all the sequences in a clone emerge from the same gene rearrange-

ment. Vidjil [43] has put into practice alignment-free clonal grouping methods

bypassing initial V and J gene assignments. Kleinstein et al. [44] have recently de-

veloped an alignment-free clonal identification method that is not restricted to

a fixed junction length. They have shown that alignment-free methods can iden-

tify clones with multiple V or J gene assignments or junction lengths that are not

detectable with the junction-based distance methods. Chapter 8 is dedicated to

scrutinizing clonal grouping methods.

3.3 repertoire characterization and analysis

In order to interpret the Rep-seq results, it is necessary to quantify the reper-

toire diversity. The quantification of the repertoire diversity helps characterize a

repertoire and associate it with an immunological status (e.g., healthy, infected,

vaccinated, etc.). Moreover, it can provide features to compare multiple reper-

toires. The repertoire comparison can be carried out from the same person at

different time points or within a group of individuals.
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3.3.1 Diversity Profiles

Diversity profiles characterize the repertoire’s composition and dynamics. There

are two main aspects to B cell repertoire diversity analysis: diversity quantifica-

tion of a sample, and the estimation of total diversity.

1. Diversity quantification: it refers to a basic characterization and statistics

of a repertoire such as mean clone sizes and their read counts, the num-

ber of non-functional clonotypes, CDR3 region characterization, identifi-

cation of the most used IGHV, IGHD, and IGHJ genes and alleles in the

repertoire, and the most frequent VDJ combinations. Other diversity mea-

sures, inspired by the quantification of species’ diversity in ecology, such

as species’ richness, Shannon’s entropy, and Simpson’s index, are also com-

monly used to evaluate the clonal diversity of the BCR repertoires [23]. The

main difference among these diversity measures is their capacity to treat

small clones [21]. Depending on the analysis context, one can use measures

that account only for abundant clones, or one can investigate rare clones.

Hill-based diversity profiles use a continuum of single diversity indices

to provide a more exhaustive vision of the diversity [45], which contains,

on top of what has been mentioned above, the inverse Simpson index, the

Berger Parker index, the Gini index, and the Chao1 index [23].

2. Estimation of Total Diversity: the peripheral blood compartment, which is

currently the principal source of Rep-Seq analysis mainly for lymphoprolif-

erative diseases, contains only 2.5% [21] (109 B cells) of the estimated total

number of cells (1011) [46], moreover, we use blood samples to analyze the

repertoire which implies that only a fraction of the total diversity reper-

toire can be identified by Ig Sequencing. Thus, the total diversity analysis

must include the estimation of the undetected clones. Mora and colleagues

[47] have recently demonstrated that based on existing repertoire data and

computational models, no statistical method can overcome the limitations

of small sampling. They suggest that combining statistical models with

stochastic models of lymphocyte population dynamics could reach a more

accurate estimation of immune repertoire diversity.
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3.3.2 Mutation analysis

High-affinity BCRs are the product of mutational events that have been accu-

mulated during B cell maturation. The purpose of mutation analysis is to gain

insight into the maturation process that B cells underwent during the course of

an immune response and their encounter with antigens. As mutations accumu-

late in the CDRs, it is possible to identify specific motifs or punctual mutations

as signatures of certain clonal populations. This can provide an enhanced under-

standing of the lineage and the evolution process that took place at specific time

points, or immunological events. The common features that build a mutation

analysis enclose: mutation frequencies, mutations by position and hotspots iden-

tification, mutation types (i.e., number of synonymous, and non-synonymous

mutations, which may indicate potential lineages under antigen-driven selection)

and selection pressure. The selection pressure is measured by comparing the ob-

served frequency of non-synonymous mutations with the expected frequency

that considers hot and cold spots and nucleotide replacement bias. A higher

replacement frequency implies a positive selection, while a lower frequency in-

dicates a negative selection. A positive selection of the CDRs is expected since

it may increase the affinity of the receptor towards the antigen, while a negative

selection of the framework regions is necessary to guaranty the maintenance of

the Ig functional structure[48].

3.3.3 Clonal Evolution / Evolution of repertoire /clonal dynamic

A constantly changing antigenic landscape implies constant modifications of the

immune repertoire. Upon antigen recognition, B cells undergo somatic hyper-

mutations, producing BCR sequence variants that share the same specificity but

have different affinities. The collection of these sequences is known as the B cell

lineage. Phylogenetic trees are often used to reconstruct both ancestral and in-

termediate relationships between B cell clonal sequences, thereby enabling the

tracking of clonal evolution, which can be, inter alia, indicative of the antigen

specificity [24, 49], refer to 9 for an in-depth discussion. Under the assumption

that B cell maturation drives improved affinity, the study of the tree topology

reveals the clonal selection. It allows identification of the clonal sequences or
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features correlating with increased affinities for an antigen [36]. Reconstructing

the evolutionary path of antigen-reactive B cells is especially relevant in the pro-

cess of rational vaccine design, for example, in HIV research, where increased

somatic hypermutation levels are known to be important features of broadly

neutralizing antibodies [50].

Note that clonal grouping is vital for the success of the following phases. Al-

beit, there is no singular definition of clonal grouping. The definition varies de-

pending on the analysis, available data, and the stage of B cell maturation, which

poses a burden when it comes to properly interpreting the results.

In the next chapter, we will highlight different clone definitions and how such

definitions impact the study of BCR repertoires.
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T H E D E F I N I T I O N O F C L O N E

B cell clones are the fundamental selection units of the humoral immune re-

sponse. A clone is a cellular concept that groups all cells having a common pro-

genitor. A major issue in the BCR receptor diversity analysis is clone identifica-

tion since we are unable to precisely identify clonally related cells. In Rep-Seq

analysis, we group BCR sequences into clusters, under the assumption that rela-

tively close sequences have originated from the same clonally-expanded cell. Due

to the complex B cell ontogeny and intrinsic variability of BCR genes studied in

Rep-Seq, we have a spectrum of molecularly defined clusters that can be associ-

ated with the cellular concept of the clone. The main obstacle of this research area

is that the term clone addresses multiple representations of biological-related

sequences. This causes several misunderstandings and can lead to involuntary

misrepresentation of different Rep-Seq analysis methods, and consequently gen-

erating inaccurate results.

one solution would be to review the terminologies of this domain and to des-

ignate a specific name to groups of clonally related sequences at different levels,

which then can potentially improve the interpretability of results. We propose

in Figure 4 three different molecular levels to represent BCR clonally related

sequences. It is important to highlight that such definitions consider only BCR

Ig heavy chains, and other input information can change the molecular mean-

ing of each level. According to suggested definitions, the BCR repertoire can be

evaluated in three levels of biological resolutions, which are as follow :

1. Clone : a set of sequences that represent a B-cell lineage, that is, all progeny

of a given naive B cell. Sequences within a clone should have the same VDJ

rearrangement event, but they can vary due to their differences in the SHM

rate. This level gathers productive and unproductive sequences.

2. Clonotype : Since affinity selection is based on amino acid level, we based

our grouping criteria, at least partially, on the amino acid level. We used

23
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Figure 4: Different levels of grouping related sequences in a BCR repertoire.

the IMGT definition that considers a clonotype as sequences with a unique

V-(D)-J rearrangement, conserved anchors (C104, W or F 118), and a unique

CDR3-IMGT AA in frame junction [51].

3. Unique nucleotide sequence : group of identical sequences within a given

clonotype. Knowing that clonotype is defined at the amino acid level, dif-

ferent nucleotide sequences within a clonotype should pinpoint different

positions in BCR genotype landscapes.

There are several approaches to grouping sequences within each level. For

instance, at the clone level, a commonly used method is to group sequences

with the same V and J genes and a certain nucleotide difference at the junction

region [36]. Alternatively, other approaches employ single linkage clustering, a

statistical method for hierarchical clustering that does not need a pre-defined

threshold for junction region [42, 52]. For grouping clonotypes, one can cluster

sequences based on the amino acid similarity of the entire sequence or, as the

IMGT suggests, cluster sequence with the same CDR3 length and amino acid

composition. We have adopted the IMGT clonotype definition because sequences
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with identical CDR3 are likely to react to the same antigen. Lastly, grouping

sequences at the last level seems trivial, but based on the selected parameters

for merging paired-end reads, one can obtain diverse set of unique nucleotide

sequences starting from the same set of reads.

Large-scale repertoire analysis of immune receptors has important clinical us-

ages and applications. For that, a clear description of the employed concepts

and used terminologies are required. The clinically trained experts need to have

a comprehensive view of the algorithmic and parameter choices since they are

at the helm of providing feedback on the robustness of implemented solutions,

based on their analysis context and research questions. Conclusively, we need

a well-defined collaboration model between the developers and users of Im-

munoinformatics’ softwares and pipelines.

In order to increase the usability of Rep-Seq analysis tools in the clinical con-

text, we will outline in the next chapter a communication model for solving

multidisciplinary problems observed during the developing phase of Rep-Seq

pipelines.
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A C O M M U N I C AT I O N M O D E L F O R O P T I M I Z I N G R E P - S E Q

C L I N I C A L U S E

Two major obstacles have hampered the vast clinical application of BCR reper-

toire analysis. The first one is the lack of gold-standard experimental data, which

could analytically and clinically validate the multiples available tools. The sec-

ond one is the ambiguity of the clones and clonotypes definition among research

teams involved in producing and analysing Rep-Seq data. We included a third

obstacle that is one of the most significant: the lack of a common language

among immunoinformatics experts and clinically trained professionals, which

can adversely impact their collaboration and their interpretation of results. The

establishment of the Adaptive Immune Receptor Repertoire (AIRR) Community

of The Antibody Society [53, 54], was a significant step to face these challenges.

The AIRR community has expressed a need for addressing communicational

obstacles and therefore is attempting to develop new standards for describing,

reporting, storing, and sharing adaptive immune receptor repertoires.

To the best of our knowledge, the widespread model of interdisciplinary coop-

eration that involves several heterogeneous experts for integrating rep-seq anal-

ysis tools in the clinical context is linear, as shown in Figure 5. This linearity

neglects the complexity of operating theoretical research-oriented tools for non-

specialists in the clinical context. These tools often demand high computational

resources, significant calculation time, and software skills. Such inconveniences

limit the appropriate usage of such tools and could consequently discourage

their integration into the clinical workflow.

A more realistic approach that could help us overcome this predicament is to

perpetually receive feedback; on every stage of the development and validation

process. Both experts (clinically-trained and immunoinformatics) should provide

feedback to ensure the practical clinical use of Rep-seq tools. Feedbacks in this

26
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Figure 5: The linear model of interdisciplinary communication to carry out the BCR

repertoire analysis

approach can circulate in various ways among different stages, as illustrated in

Figure 6.

The V3 model [55] inspires the representation proposed in Figure 6. V3 was

initially developed for establishing a reliable evaluation framework for Biomet-

ric Monitoring Technologies. This framework has continuous feedback between

verification, analytical validation, and clinical validation steps, see solid lines

in Figure 6. To adapt the V3 model to our context, we added two extra steps

to cover the whole process of developing Rep-Seq tools from the initial idea to

clinical validation, see dotted lines in Figure 6.

The communication model proposed in Figure 6 is appealing to all experts

involved in this process: mathematical or computational scientists and medical

or biological specialists. The nature of Rep-Seq data can be intrinsically inter-

esting to mathematical or computational scientists due to the complexity of the

immune system’s behaviour and the modelisation complexities. It can also be en-

gaging for medical and biological experts to respond to their research or clinical

questions.

According to this model the initial stage is developing an idea for answering

a research or clinical question. Based on the answers, during the next stage (the
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Figure 6: The interactive model of interdisciplinary communication to carry out the BCR

repertoire analysis

development stage), an algorithm will be designed and implemented. Since the

delivered code should be free of any implementational problems or errors,it will

be checked, verified, and corrected during the verification stage. Simulated data

sets are often used during this stage because such data are controlled and can

reproduce various conditions such as different diseases or treatments. The goal

of this stage is to make sure that the developed tool meets the requirements

needed to fulfill its intended objective(s).

During the analytical validation stage, the tool’s performance will be tested on

a set of well-characterized real data sets and provides us with a realistic view of
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it’s abilities since it has been exposed to real data sets and their complexities.

The intent here is to assess the pragmatic feasibility of the analysis and the

consequent reliability of the results.

Throughout the clinical validation, we will check whether or not the developed

tool is clinically relevant; that is, it identifies, measures, or predicts the clinical,

biological, functional state, or experience in the defined context of the use. This

type of validation is usually carried out by analysing numerous patients’ data

sets and their detailed case studies. It is important to note that the original ques-

tion can be modified during this stage, enabling us to develop a more clinically

appropriate method.

The dynamic nature of knowledge organization emphasizes the importance

of having transparent interdisciplinary and multidisciplinary communication

model throughout the tool development process. In order to further improve

this process, have focused on data visualization, a communication tool that pro-

vides the maximum clarity by using the least amount of domain-specific jargons

which can prevent unnecessary confusion. Data visualization is an extensive field

that uses graphic representations to delineate complex quantitative information

to facilitate large-scale data-driven applications.

There are an increasing number of tools for visualizing the immune repertoire

analyses. For instanceARResT/Interrogate [56]is an interactive web browser-based

interface that enables multiple queries on data and metadata, visualizes, pro-

vides access to whole sequences, and enables their detailed analysis. In addi-

tion, Igrec[57], SONAR[58], ImmuneDB[59], ImmunediveRsity[60] are among

the tools that offer one or multiple visualization features in Rep-Seq analysis.

The epitome of visualization in the immune repertoire analysis context ,in

my opinion,is put in best light by Vidjil[43]; an open-source platform that uses

multiple visualization structures to analyse Rep-Seq data, notably to diagnose

patients with Acute Lymphoblastic Leukemia. This visualization tool has taught

me how a well-designed and user-friendly interface can easily bring together ex-

perts from different fields and help solve complex interdisciplinary problems by

facilitating the interpretation of data engendering the acceleration of knowledge
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mining. Despite accurate and detailed BCR repertoire analysis methods, some

tools like Partis[61, 62] are not commonly employed in the clinical context since

they need a high level of informatics skill and computational power. Moreover,

the interpretation of their results is not straightforward. Considering these exam-

ples, the value of offering a user-friendly interface to gain medical community

recognition becomes more evident. This has given us a solid reason to invest in

an efficient visualization pipeline that will be explained further in chapter 10 .

Integrating Rep-seq analysis into clinical context is a multidimensional prob-

lem that requires multiple stages of development and validation. Such complex-

ity forces us to split it into several tasks and address them subsequently. In the

next chapter, we will clarify our research questions and highlight the different

tasks.
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T H E P R O B L E M S TAT E M E N T

After establishing the bases of immune repertoire analysis, reviewing the current

practices/pipelines of BCR immune repertoires in the clinical context, reformu-

lating clone’ definitions, and proposing a new communication model for better

Rep-seq clinical development, we shed light on the following question : "How

can BCR repertoire organization and intraclonal properties be better explored

to produce helpful tools for the medical community?".

The answer to this question is particularly important for clinical haematolo-

gists, immunologists, and experts in immunoinformatics interested in expanding

their understanding of the immune system’s behaviour in normal and patholog-

ical situations.

The main question can be split into the following sub-questions :

1. Among multiple clone definitions and associated algorithms, how to choose

the most appropriate for carrying out a meaningful clonal analysis?

2. Among existing BCR clonal grouping tools using the appropriate clone

definition for our research question, is there any that can be used in the

clinical context with the aim of intraclonal analysis? If not, how should we

design it?

3. What is the most efficient and accurate way to reconstruct the evolution of

a B-cell lineage or clone?

4. How, in practice, can we integrate BCR repertoire and intraclonal analyse

tools into the clinical context?

In the following chapters, we will discuss each question mentioned above and

describe our approaches to addressing them.
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A G R E E A B L E ; A B C R R E P E RT O I R E C L O N A L G R O U P I N G

M E T H O D W I T H A N A P P L I C AT I O N F O R I N T R A - C L O N A L

A N A LY S I S I N C L I N I C A L S E T T I N G S

7.1 introduction

Reconstructing clonal families from B cell receptor sequences is an essential

step in the Rep-Seq analysis. The accuracy of identifying the clonally-related

sequences can significantly impact the reliability and interpretability of all the

downstream analyses. Several computational methods for clonal grouping have

been developed, which generally employ some clustering algorithms to infer

clonal relationships[52, 61, 63]. However, there are limits for their usage while

aiming to carry out intraclonal analysis, especially in the clinical context. The

principal limitations are the clone definition used for designing the method and

the practical usability of the tool. As presented in chapter 4, based on the re-

search question, there are various definitions of a clone that has been used in the

BCR repertoire analysis. Therefore, we can obtain different results from the same

data set using different clonal grouping algorithms. This difference comes not

only from the different premises for designing clustering algorithms but also is

influenced by the implementation of the algorithm. Tools that cluster sequences

based on their lineage are more appropriate for our project’s objective, the intra-

clonal analysis. The most accurate clonal grouping methods demand high com-

putational resources and are time consuming. Some of them require multiple

preprocessing steps; even though each step is not necessarily time-consuming,

they often require a high level of computing and software skills.

In this chapter, we present Agreeable, a fast and accurate clustering method

for grouping clonally-related Ig heavy chain sequences from bulk sequencing

data. Our approach has high scalability, low runtime, and minimal memory re-

quirement. Moreover, it has a few parameter settings that do not require much

effort and expertise to be tuned.

33
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7.2 material and methods

In this section we will elaborate the Agreeable algorithm and present data sets

that have been used to evaluate this method’s performance and it’s usability.

Comparison with other tools are detailed in the chapter 8.

7.2.1 The algorithm

We proceed through two main steps: pre-clustering and refinement. Figure 7

shows our method’s flowchart and Algorithm 1, the pseudo-code for the refine-

ment step.

7.2.1.1 Pre-clustering

The pre-clustering step aims to group similar sequences to form initial clonal

groups that can be refined later:

1. Sequences are annotated to identify their IGHV and IGHJ genes (and alle-

les) and locate their CDR3 regions. For this purpose, we used IMGT/HighV-

QUEST [64], but theoretically, any V(D)J annotation software could be

used.

2. Sequences with the same IGHV and IGHJ genes and the same CDR3 se-

quence length are then grouped together.

3. lastly,we seperated sequences with less than t% of CDR3 identity (by de-

fault t is 70%), see the ”pre-clustering” panel in Figure 7.

7.2.1.2 Clustering refinement

In this step, we iteratively refine clonal groups until we reach the minimum val-

ues for intra-clonal distances and the maximum values for inter-clonal distances.

The algorithm described in Algorithm 1 takes as input the set of initial clones C

, generated during the pre-clustering step. For each sequence i ∈ C it computes

two distances: ai (intraclonal) and bi (interclonal). Such distances measure the

cohesion/separation within detected clones; they were initially introduced to

compute the Silhouette [65], a performance measure that helps to interpret and
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Figure 7: Flowchart of Agreeable. This method requires IGH annotated sequences

(IGHV, IGHJ, and CDR3 region previously identified). To form initial clusters

(pre-clustering step), sequences with the same IGHV, IGHJ, and same CDR3

(AA) length are first grouped together; then, sequences with less than 70%

CDR3 identity are separated. During the refinement step, sequences can move

amongst different clusters until no improvement is observed in cluster cohe-

sion or separation. The final groups represent clones with low intra-clonal di-

versity and high inter-clonal diversity
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evaluate cluster algorithms when ground truth data are unavailable. ai is the

average distance between the sequence i and any other sequence s in the same

clone; bi is the smallest average distance from i to all sequences in any other

clone. In a well-detected cluster, ai is smaller than bi , thus, if for a given se-

quence ai is higher than bi , it might indicate that i was placed in the wrong

cluster, and it should be moved to the cluster with the smallest average distance.

If sequences are moved from a cluster k to a cluster l , then ai and bi need to

be recomputed for all sequences in both clusters. Consequently, each sequence

movement launches a new iteration of the algorithm, and it stops if no move-

ment was observed in the previous iteration. Certainly, the distance metric d(i, j)

(between sequences i and j) plays an important role when computing ai and bi.

Distances based on sequence similarity of the whole sequences can be inaccu-

rate since different IGHV and IGHJ genes can present a considerable similarity.

Moreover, CDR3 regions are shorter than IGHV/IGHJ genes, and a normalized

distance is more appropriate. For that, we split the sequences into three parts,

IGHV, IGHJ and CDR3 region, and compute a different distance of each part,

separately. The distance d(i, j) is the arithmetic mean of these three distances

and is defined by the equation:

d(i, j) =
dVij + dCDR3ij + dJij

3
, (1)

where dVij is a binary distance based on IMGT/highv-quest gene identifica-

tion, it is 0 if i and j were annotated with the same IGHV gene or 1 otherwise;

dCDR3ij is the normalized Levenshtein distance [66] between i’s and j’s CDR3

amino acid sequences; dJij is the normalized Levenshtein distance between i’s

and j’s IGHJ nucleotide sequences. We recall that the Levenshtein distance com-

putes the minimum number of single-character editions (insertions, deletions or

substitutions) required to transform one sequence into the other.

7.2.2 Data sets

For verifying any algorithms, a set of data sets are needed that best represent

the context in which the algorithm can be used. When real datasets that provide

an unbiased evaluation are not accessible, the method has to be tested at hand
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Algorithm 1 : Clustering refinement
Require: C {initial groups}

repeat

stop← true

for all k ∈ C do

if |k| > 1 then

for all i ∈ k do

ai ← 1
|k|−1

∑
j∈k d(i, j)

bi ← minl6=k
1
|l|

∑
j∈l d(i, j)

N = argminl
1
|l|

∑
j∈l d(i, j)

if ai > bi then

move i to cluster N

stop← false

end if

end for

end if

end for

until not stop

on a set of simulated data since they are well-characterized sequences. While

the premises to simulate data are unique in many fields, there is no unified and

standardized premise for simulating data sets in our field. Consequently, any

group that wants to perform an analysis on BCR repertoire needs to create sim-

ulated datasets with their own assumptions [42, 62, 67]. Since these assumptions

are identical to those used in the analysis process, the achieved results have a

certain degree of bias and therefore are not fully reliable.

As far as is known, an independent B-cell repertoire simulator that could pro-

duce different types of IGH repertoires (clonal and non-clonal) does not exist.

“Independent” is taken to signify stimulators having been designed and imple-

mented separately from a BCR repertoire analysis method to minimize the bias

in results. In order to create artificial repertoires, we adapted GCTree [67], a B-

cell lineage simulator. To generate one repertoire, we ran GCTree several times to

produce independent B-cell lineages that assembled together to simulate a reper-

toire. To produce a B-cell lineage, GCTree first randomly selects IGHV, IGHD,
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and IGHJ germline genes from the IMGT database [40], and then nucleotide(s)

can be added to or removed from the IGHV-IGHD and IGHD-IGHJ junction re-

gions. Next, a branching process is performed, and point mutations are included

in the descendants. For the branching, GCTree uses an arbitrary offspring distri-

bution that does not require an explicit bounding. Instead, it uses a Poisson

distribution with parameter λ to estimate the expected number of offsprings of

each node in the lineage tree. SHM is simulated through a sequence-dependent

process, where mutations are preferentially introduced within certain hot- and

cold-spot different simulations. The clonal size distribution of each repertoire

that was tested is shown in Table 1.

Table 1: Clonal size distribution for three types of simulated repertoires. Each clone

is the result of an IGH rearrangement. We only keep the productive simulated

sequences; therefore, the final population size might be different from the total

sequence count in this table for different simulated datasets..

Monoclonal Oligoclonal Polyclonal

#Clone #sequences #Clone #sequences #Clone #sequences

1 701 1 151 14 51

14 11 1 101 14 11

12 6 10 51 12 6

8 4 14 11 8 4

8 2 12 6 8 2

8 4

8 2

43 975 54 1036 56 988

7.2.3 Performance evaluation

When clonal assignments are known, we can quantitatively assess the ability

of clonal grouping algorithms to identify clonally-related sequences. We applied

common measures such as precision and recall for comparing the inferred clones
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to the true ones. We also computed the F-measure (FM), the harmonic mean of

precision and recall, which is an aggregate measure of the inferred cluster’s

quality. Precision and recall both require three disjoint rates, which are: true

positive (TP) rate, false-positive (FP) rate, and false-negative (FN) rate. Then, we

have computed precision p = TP
TP+FP , recall r = TP

TP+FN , and FM = 2∗p∗r
p+r . The

values of these three metrics are in the interval [0,1], one being the best and 0

the worst performance. Of note, the way TP, FP, and FN are computed will affect

the accuracy of precision and recall.

There are at least two ways to compute these values depending on the group-

ing level considered. The pairwise procedure that considers the binary clustering

task and focuses on the relationship between each pair of sequences and the

closeness procedure intends to evaluate the clone compositions and repertoire

structure.

7.2.3.1 Pairwise

In the pairwise procedure, a pair of sequences is counted as TP, if the sequences

are found together in both ‘true’ and ’inferred’ clusters; FP, if the sequences are

found separately in the true, but together in the inferred clone; FN, if the pair are

found together in the true but separated in the inferred clone, see an example in

Figure 8-A.

7.2.3.2 Closeness

The closeness procedure first identifies the best correspondence between inferred

clones and correct clonal assignments. Then, it associates clone pairs that share

the maximum of common sequences. Then, for each pair of clusters/clones, con-

sidering ‘I’ inferred and ‘T’ true, we compute TP as the intersection between the

two sets (I ∩ T ), FP as the difference between inferred and True clusters (I \ T ),

and FN as the difference between these sets (T \ I), see an example in Figure 8-B.
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Figure 8: Clustering performance measures
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7.3 results

7.3.1 Reconstruction simulated repertoire’s clonal architecture

Using data presented in Section 7.2.2, we evaluated our method by comparing

inferred clones to truly related clonal sequences generated during the construc-

tion of each simulated repertoire. We used two complementary approaches to

precisely evaluate the clonal grouping’s accuracy; pairwise and closeness, see

Section 7.2.3. Agreeable achieved high precision, recall, and F-measure across

all simulated data sets for both pairwise and closeness performance measures,

Table 2. Across all mutation rates, it accurately identified all pairwise relation-

ships and reconstructed all repertoires precisely. Furthermore, the absolute per-

formance measures were remarkably high for both clustering accuracy evalu-

ation approaches, exhibiting a mean recall over 99% and a mean precision/F-

measure equal to 1.

7.3.2 Parameter optimization

The Agreeable’s pre-clustering step adopts these criteria to group clonally re-

lated sequences: having the same IGHV gene and allele, the same IGHJ gene, and

a CDR3 amino acid identity of at least 70%. IGHV and IGHJ gene annotations

are often used for grouping sequences into initial clusters by several tools[23].

The only disputable parameter is the CDR3 amino acid identity threshold. Here

we chose a 70% cutoff based on the definition of BCR subgroups with highly

similar CDR3 motifs detailed in [68], often referred to as stereotyped BCR. How-

ever, other studies [69–71] suggest different cutoffs, varying from 50% to 70%.

To obtain the most appropriate threshold, we varied the pre-clustering thresh-

old from 50% to 90% and measured the performance of Agreeable on simulated

data sets. The results are shown in Figure 9. For different repertoire types and

different mutation rates, a threshold of 70% achieved the best results. Note that a

higher CDR3 identity threshold reduces the performance of Agreeable in recon-

structing the repertoire. It can be explained by the larger number of singletons

generated with a higher threshold. singletons are clusters containing only one se-

quence. Once singletons are formed, Agreeable cannot merge them into higher
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Table 2: Evaluating the performance of Agreeable on simulated repertoires. The third,

fourth, and fifth columns show the number of sequences, the number of ex-

pected clones, and the number of detected clones, respectively. Pre, Rec, and

FM are the abbreviations of precision, recall, and F-measure, respectively.

Agreeable’s performance

λ0 Clonality # seq # exp. clusters # det. clusters Pairwise Closeness

Pre Rec FM Pre Rec FM

0.16

Monoclonal 958 34 34 1 1 1 1 1 1

Oligoclonal 1014 43 43 1 1 1 1 1 1

Polyclonal 968 44 44 1 1 1 1 1 1

0.26

Monoclonal 659 33 33 1 1 1 1 1 1

Oligoclonal 958 43 43 1 1 1 1 1 1

Polyclonal 964 44 45 1 0.99 1 1 0.95 0.97

0.36

Monoclonal 924 35 35 1 1 1 1 1 1

Oligoclonal 991 40 40 1 1 1 1 1 1

Polyclonal 897 42 43 1 0.99 1 1 1 1

0.46

Monoclonal 952 35 36 1 0.99 1 1 0.99 1

Oligoclonal 1016 43 43 1 1 1 1 1 1

Polyclonal 952 43 43 1 1 1 1 1 1

density clusters since its intraclonal distance ai is zero, and it is smaller than

any other interclonal distance. We also observed that closeness performances de-

graded faster than pairwise when increasing the CDR3 identity threshold (Fig-

ure 9-B,D,F), mainly in the monoclonal repertoire with a high mutation rate

(Figure 9-B). It is still the effect of a large number of singletons that disturbs the

repertoire topology. On the other hand, a lower CDR3 identity threshold does

not seem to significantly impact the Agreeable performance. Figures 9-A,B,C,E

show threshold levels having no influence, while others (Figure 9-D,F) induce

performance perturbations. Agreeable can adapt its performance when using

the CDR3 identity threshold in the 50%-70% range, while higher values are not

recommended since many singletons are generated.
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Figure 9: Effect of pre-clustering threshold on Agreeble’s performance

7.3.3 Runtime

Agreeable can process large numbers of BCR sequences within a reasonable

amount of time. For example, using a 3.4 GHz Octa-Core processor with 32 GB

of memory, Agreeable requires 34 seconds to process a monoclonal repertoire

with 33578 sequences and requires 22 seconds to process a polyclonal repertoire

with 68133 sequences. Note that the clonal distribution significantly influences

the runtime of Agreeable since calculating intraclonal distances in repertoires

with a very high abundant clone is more time-consuming. Therefore, for the

same amount of sequences but different distribution within clones, Agreeable

can present different runtimes.

7.3.4 Outputs’ interpretability

Agreeable generates multiple output files for a given set of BCR sequences, pro-

viding a well-characterized benchmark. The main outputs are :

1. A text file with clonal distribution (clones and their abundance sorted from

highest to lowest),

2. A text file with all detected clones, that is, clones obtained after minimizing

intraclonal distances and maximizing interclonal distances,
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3. A text file with details of each analyzed sequences: the clone identifier, the

clonotype identifier (based on clonotype definition of IMGT), functionality,

IGHV gene and allele, IGHJ gene and allele, CDR3, and junction, a text file

containing sequences that IMGT could not fully annotate.

4. A PNG file (see Figure 10) containing:

a) Circle representation of the clone abundance. Each circle symbolizes

a clone, and its size represents the clone’s abundance.

b) Number of sequences in each clone, all clones are represented, the

vertical axis is in logarithmic scale.

c) Lorenz curve and Gini index [72, 73]. A Lorenz curve shows the graph-

ical representation of clonal inequality. The horizontal axis plots the

cumulative fraction of total clones when arranged from the less to

the most abundant; on the vertical axis, the cumulative fraction of

sequences.

d) Percentage of the 100 most abundant clones.

More details and examples are presented in the Agreeable Github repository

https://github.com/NikaAb/AGREEABLE.

7.3.5 Usability

To demonstrate the application of Agreeable on real data, we have selected nine

samples of human peripheral blood mononuclear cells collected during routine

diagnostic procedures at Pitié-Salpêtrière hospital for this project. Three of these

samples contained clonal leukemic cells, and six of them were considered non-

clonal (polyclonal) originating from patients devoid of malignancy. Their clonal-

ity status was previously established by conventional methods, including PCR

amplification of IGH-VDJ rearrangements followed by Genescan analysis [74]

(see Figure 11).

DNA sequences were obtained by performing polymerase chain amplification

of IGH-VDJ rearrangements followed by NGS paired-end sequencing on an Il-

lumina MiSeq platform. We obtained one ”Read 1” and ”Read 2” FASTQ files

for each sample, which were then merged by the PEAR software [75]. Next, the
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Figure 10: Agreeable’s png file output. (A) shows the circle representation of the clone

abundance. (B) shows the number of sequences in each clone, all clones are

represented, the vertical axis is in logarithmic scale. (C) is the Lorenz curve

and Gini index.In (D), the horizontal axis plots the cumulative fraction of total

clones when arranged from the less to the most abundant; on the vertical axis,

the cumulative fraction of sequences.

merged FASTQ files were converted to FASTA format with seqtk (https://github-

.com/lh3/seqtk). FASTA sequences were then analyzed using IMGT/HighV-

QUEST tool [64] to identify the IGHV, IGHD, and IGHJ genes (and alleles) and

delimit the junction and CDR3 regions. The first three columns in Table 3 repre-

sent the number of reads (sequences), the number of unique sequences, and the

clonality status of each repertoire.

Figure 12 shows the clonal distribution for each analyzed repertoire by Agree-

able. To measure the disequilibrium of a repertoire, we used the Gini index [76],

which reflects the inequalities among values of a frequency distribution; zero

indicates perfect equality, while one corresponds to maximal inequality. Clonal

repertoires presented the highest Gini index, close to 1 for individuals 1 to 3 (see

Figure 12-A,B,C). Repertoires 1 and 3 presented similar clonal distributions, with

the presence of a major clone representing the quasi-totality of the repertoire and
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Figure 11: GeneScan profiles of human peripheral blood samples. IGH-VDJ rearrange-

ments were amplified using conventional methods and PCR products were

further analyzed by capillary electrophoresis. (A-C) Samples from individuals

with monoclonal B-cell malignancy: monoallelic profile (A and C) or biallelic

profile (B); (D-I) non-malignant samples: regular polyclonal profile (D, E, G,

H, I) or irregular polyclonal profile (F).

a small number of minor clones having a low number of sequences (see Figure

12-A,C). Individual 2 presented a different clonal distribution with two major

clones, each one accounting for more than 40% of the repertoire, see Figure 12-B.

Detailed sequence analysis revealed that the two major clones were composed of

a productive and an unproductive IGH-VDJ rearrangement, corresponding to a

leukemic cell population with biallelic IGH rearrangements. Allelic exclusion is

a process that prevents recombination on the second allele in one cell if the first

IGH allele is correctly rearranged [77]. If the first IGH allele is rearranged out-of-

frame, the process progresses to the second allele. The lack of allelic exclusion is

greater in CLL than in normal cells [78], and these are known as biallelic IGH re-

arrangements. (see Figure 11-B). The Agreeable’s results are compatible with the

Genescan analysis; in the next chapter, we will evaluate our tool’s performance

by comparing it to the other clonal grouping methods.
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7.4 discussion

The ability to obtain millions of antigen receptor sequences using NGS tech-

niques has dramatically changed our possibilities to explore immune repertoires.

Clonal relationships can be computationally identified from a large set of IGH

sequences. Clonally-related sequences are descending from a common ancestor

and present the same V(D)J rearrangement, but they may differ due to the ac-

cumulation of somatic hypermutations. Face to the lack of a rapid and accurate

tool to group clonally related sequences from bulk sequencing IGH BCR data;

we have developed Agreeable. We validated our method on artificial data that

simulated three types of immune repertoires (monoclonal, oligoclonal, and poly-

clonal) with different mutation rates.For that, we used two different evaluation

approaches: pairwise and closeness. On unbalanced data sets, both measures

have some drawbacks: pairwise tend to bias towards high-density clusters’ per-

formance, concealing the performance of less abundant ones; closeness tends to

be very sensitive to changes in the repertoire topology and over-penalize single-

ton detection. Therefore, It is our contention that both strategies should be used

to evaluate clonal grouping methods.

Further improvements will be brought to Agreeable by choosing a more ap-

propriate metric to evaluate the quality of inferred clones. The current version

does not allow a singleton joining to a multiplet.

Having done the first set of tool validation, the next step is to compare Agree-

able performance to other state-of-the-art tools in this domain. The next chapter

is dedicated to this study.
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8
P E R F O R M A N C E E VA L U AT I O N O F B C R C L O N A L G R O U P I N G

A L G O R I T H M S

8.1 introduction

Clonal grouping is at the core of BCR repertoire analysis. All downstream inves-

tigations such as repertoire diversity estimation and intraclonal analysis, among

others, depend on the correct grouping of BCR sequences. Members of a B-cell

clone do not have identical V(D)JGHV sequences due to SHM. Consequently,

defining clones based on BCR sequence data is more complex than TCR [79, 80].

In chapter 7 we proposed a new clustering tool Agreeable, that groups sequences

representing a B-cell lineage into the clones (see chapter 4). In this chapter, we

have chosen four tools that use the same definition of clone to compare with

Agreeable. Even though the clone definition is the same, each method has its

own set of characteristics concerning the underlying algorithm, prior informa-

tion, and produced outputs.

8.2 material and methods

We start by describing the four freely available BCR clonal grouping methods

considered for comparisons (see Table 3), report to chapter 7 to Agreeable method-

ology. Next, we explain two new data sets used to evaluate those methods. We

also presented some metrics to quantify the differences between detected clones

of analysed tools.

49



8.2 material and methods 50

8.2.1 Clonal grouping methods

8.2.1.1 Brilia

B-cell Repertoire Inductive Lineage and Immunosequence Annotator (Brilia) bui-

lds up lineage tree reconstruction, clonal grouping, and V(D)J annotation into a

single algorithm [81]. Since Brilia performs lineage tree reconstruction, it defines

a clone as a set of BCR sequences associated with the same cell lineage. From a

collection of Igh sequences, Brilia first provides initial V(D)J gene identification.

For a given Igh sequence, it first matches the IGHV gene, keeping at least nine

nucleotides for matching IGHD and IGHJ genes. It also corrects the indels de-

tected before 104Cys since such indels are probably the result of a sequencing

error [82]. Next, it matches the IGHJ gene, preserving at least three nucleotides

for IGHD at the right of the IGHV gene. After detecting IGHJ, all remaining nu-

cleotides are used to detect the IGHD gene and N regions. Brilia uses the IMGT

database as a reference to annotate V(D)J genes. Brilia proceeds by reconstruct-

ing lineage trees that will determine groups of clonally related sequences. It first

clusters together sequences with the same IGHV and IGHJ gene subgroups and

same CDR3 sequence length. Next, it determines parent-child sequence relation-

ships within each cluster for further reconstructing lineage trees. Evolutionary

relationships are based on an adjusted hamming distance called SHM that pe-

nalizes dissimilarities in the N region. For each independent tree cluster, Brilia

determines the root as the sequence involved in a cyclic dependency having the

smallest total SHM distance to all other sequences in that cluster. Finally, a clone

is a group of sequences sharing a common root sequence.

8.2.1.2 Partis

Partis [62] perform V(D)J assignment before clonal grouping and consider Igh

sequences having the same rearrangement event as a clone, level 1 of 4. For gene

annotation, Partis uses hidden Markov model (HMM) [61] to represent V(D)J

rearrangement events. An HMM is a probabilistic model, where the modelled

system is assumed to be a Markov process with hidden states and unknown

parameters; HMM is frequently used for modelling biological sequences, where

a sequence is modelled as an output of a discrete stochastic process, which pro-

gresses through a series of states that are hidden from the observer. Each of
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the hidden state emits a symbol representing an elementary unit of the mod-

elled data; for example, in DNA, a symbol represents a nucleotide. In BCR se-

quences, the hidden states represent either gene positions or N-region (addition

or deletion) nucleotides. The HMM states represent nucleotides of each IGHV,

IGHD, and IGHJ gene, the emission probabilities incorporate the probability

of somatic hypermutation at each nucleotide, and transition probabilities repre-

sent the probability of moving from one state to another. The HMM’ parameters

(emission and transition probabilities) are estimated from a large panel of avail-

able sequences. Once the model is trained, BCR sequences are annotated by com-

puting the Viterbi path through the HMM and finding the maximum-likelihood

annotation. After V(D)J assignment, Partis applies its clonal grouping strategy.

First, it creates initial clones of sequences sharing the same IGHV and IGHJ

genes, and the same CDR3 length. Then, it applies an agglomerative clustering

algorithm to merge clusters that maximize the likelihood.

8.2.1.3 SCOPe

In SCOPe, clone sequences should share a common ancestral, that is, being part

of the same B-cell lineage (level 1 of Figure 4). It requires V(D)J annotation before

clonal grouping, and tools such as IMGT/HighV-QUEST [64] or IgBlast [83] can

be used. To define a clone, SCOPe applies a spectral clustering method with an

adaptive threshold to determine the local sequence neighborhood; it means that

it does not require a fixed threshold for detecting clonally-related sequences.

Given a set of BCR Igh sequences, first SCOPe divides sequences into groups

with the same IGHV gene, IGHJ gene, and junction length (VJl groups). Each

VJ(l)-group is retrieved for inferring BCR clonal relationships. To do so, SCOPe

computes the similarity matrix considering the hamming distance between junc-

tion regions of each pair of sequences within the VJl group. Then, it generates

a fully connected graph from the data points, and performs local scaling to de-

termine the local neighborhood. Based on the graph, SCOPe builds an adjacency

matrix and creates a graph Laplacian. The eigenvalues of such a graph can then

be used to find the best number of clusters, and the eigenvectors can be used to

find the actual cluster labels. Finally, SCOPe performs k-means clustering on the

eigenvectors to get the labels (clone) for each node (sequence).



8.2 material and methods 52

8.2.1.4 SONAR

For the Ontogenic analysis of Antibody Repertoires (SONAR) [58], a clonal

group contains all Ig reads that share a common ancestor. This tool focuses fur-

ther on seeded lineage assignment, where the sequences of one or more known

antibodies are used as seeds to find all sequences in the dataset from the same

lineage while leaving the rest of the sequences unclassified. In addition, it can

perform "unseeded lineage assignment," which consists of classifying sequences

into component lineages without any additional information. In order to per-

form an unseeded lineage assignment, Sonar separates sequences based on their

assigned IGHV and IGHJ genes. The sequences in each group are then clustered

based on their CDR3 nucleotide identity (by default, 90% of CDR3 sequence),

using the UCLUST algorithm in USEARCH [84]. Eventually, each clone is iden-

tified as a distinct unseeded lineage.

Table 3: A few of the general characteristics of the tools that we have compared.

Partis SONAR Brilia SCOPe Agreeable

Year 2016 2016 2017 2018 2021

Number of citations 51 37 12 12 -

Implementation Python, c++ Python Matlab R python

Required level of computing skills Advanced Intermediate Intermediate Intermediate Basic

Approximate prediction of the required

time needed for a data set containing 10000 sequences
>10 min <1 min <5min <1min <1 min

8.2.2 BCR high throughput sequencing data

To better understand the distinction among different clonal grouping algorithms

and their results, we have used one set of simulated repertoires detailed in Sec-

tion 7.2.2 and two types of high throughput sequencing data: two artificial mon-

oclonal repertoires and three experimental BCR repertoires.

8.2.2.1 Artificial monoclonal repertoires

To evaluate the accuracy of clonal grouping tools, we have constructed artificial

monoclonal repertoires by mixing a known clone (from a B cell lineage) and a

polyclonal background. For the known clone, we used genomic DNA from a
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pure B lymphocyte lineage. These sequences are our ground truth, and accurate

clonal grouping algorithms might cluster them together. To make the task more

complex, we combine sequences from each pure lineage to sequences obtained

from a polyclonal background. Our goal was to determine if clonal grouping

methods can separate sequences from these two sources. To form a data set, we

consider a total of 10000 sequences, where 10% of them were sampled from the

pure lineage and 90% from the polyclonal background. Since we know the truly

clonally related sequences in the data set, we can compare the different tools

for determining their grouping differences. We created two artificial monoclonal

repertoires with two different B cell lineages, each having a specific V(D)J re-

arrangement. The known clone of the artificial monoclonal data named AMD1

has IGHV1-69*01 and IGHJ6*03 genes, while the known clone of the monoclonal

dataset AMD2 is characterized by IGHV3-48*02/IGHJ4*02 rearrangements. For

AMD1 and AMD2, the sampling of the main clone has been performed from

83902 and 60522 sequences, respectively. In addition, the polyclonal background

was sampled out of 136977 sequences.

8.2.2.2 Experimental data sets

To compare the results of Agreeable with other clonal grouping methods on

experimental repertoires, we have selected three samples of human peripheral

blood mononuclear cells collected during routine diagnostic procedures at Pitié-

Salpêtrière hospital. Two samples with clonal leukemic cells (I1 and I2) and one

sample (I8) considered non-clonal (polyclonal), taken from patients devoid of ma-

lignancy. Their clonality status had been previously established by conventional

methods, including PCR amplification of IGH-VDJ rearrangements followed by

Genescan analysis [74], see Figure 11. I1 and I2 are monoclonal repertoires, while

I8 is a polyclonal repertoire, for more details, see 7.3.5.

8.2.3 Performance evaluation

To measure clonal grouping tools’ accuracy, we have compared the distribution

of sequences within detected clones to the expected ones. For artificial mono-

clonal repertoires, expected clones are the ground truth (Section 7.2.2), while

for experimental repertoires, the expected clones were those obtained by the tool
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that achieved the best performance on artificial or simulated data. Once the set of

expected clones is defined, we can use the classical measures defined in Section

7.2.3 to evaluate the performance, such as precision, recall, and F-measure.

8.2.3.1 Clonal comparison

To compare clones obtained by different tools with expected ones, we have de-

fined four "events" that describe the differences between each pair of clonal dis-

tributions. For this, we labelled clusters of a given distribution D1 and compared

them with clusters in a distribution D2. These events are represented in Figure

13, and can be interpreted as follows:

1. join: when sequences of different clusters in D1 were joined in the same

cluster in D2 (Figure 13-A).

2. identical: clusters in both distributions are identical, they contain the same

set of sequences (Figure 13-B)

3. split: when sequences of a cluster in D1 were divided into multiple clusters

in D2 (Figure 13-C)

4. Mix: when a mixture of the three above events occurs. For instance, in

Figure 13-D, we observe two events, “split” and “join”
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Figure 13: Four "events" describe the differences between two clonal distributions of

the same set of sequences.

An example of how we have used this labeling system to compare two distri-

butions is illustrated in (Figure 14). We have used pie charts to quantify these

events, when comparing each tool and corresponding Agreeable’s output. Pie

charts are constructed based on the number of sequences in clusters labeled with

each event. On the plot legends, besides each event name associated with a color

used in the pie chart, there are the number of clusters with this label and number

of sequences in these clusters. ‘Not found’ shows the number of sequences that

have been in the analysed tool’s output but are not in the Agreeable’s output .
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Figure 14: An example of comparison between two clonal distribution using "4

events" labeling system.

8.3 results

8.3.1 Simulated repertoires

We created artificial benchmarks that simulate several types of repertoire (clonal

and non-clonal) with different SHM rates, see Section 7.2.2. Figure 15 shows the

results of five analysed tools for different mutation rates, see also tables 11-22 in

appendix.

8.3.1.1 Pairwise performances

Agreeable achieved the best pairwise performance across all simulated data sets,

see details in Section 7.3.1. Scope and Partis achieved better performances than

Sonar and Brilia. All tools achieved a precision close to 1, demonstrating that
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few false positives were detected. However, most tools have oversplit clones,

detecting many false negatives that considerably decrease their recall and F-score

values.

SCOPe achieved high recall and F-measure for simulated data sets with lower

mutation rates, see Appendix B (tables with λ0 = {0.16, 0.26}). Recall and F-

measure values were above 0.94 for these six simulated repertoires. For the re-

maining data sets, produced with higher mutation rates λ0 = {0.36, 0.46}, we ob-

served lower recalls and F-measures. On the other hand, Partis obtained a good

pairwise performance across all simulated data sets independently of mutation

rates. The only exception is the monoclonal repertoire produced with λ0 = 0.36.

For this data set, Partis has detected more clones, decreasing its pairwise recall

considerably. Interestingly, for lower mutation rates, Scope outperformed Partis,

but we observed the reverse for higher mutation rates for most simulated reper-

toires. Thus, Partis seems to be more accurate when analysing clonally related

sequences with higher divergence.

For oligoclonal and polyclonal repertoires, the different mutation rates seem to

influence Sonar performances. Recall and F-score decrease as long as mutation

rates increase, especially for the oligoclonal repertoires. For the monoclonal sam-

ples with λ0 = 0.26, Sonar obtained lower recall and F-score than with λ0 = 0.36.

We observed that Sonar has oversplit the largest clone of the first repertoire

(λ0 = 0.26), grouping only 37% of sequences. On the other hand, it has less split

the most abundant clone of monoclonal repertoire generated with λ0 = 0.36,

grouping 62% of sequences. Once splits in large clones contribute more to accu-

racy decreasing, it can explain the lower performance of Sonar on monoclonal

repertoire (λ0 = 0.26). For the monoclonal repertoire with λ0 = 0.46, Sonar

detected four times more clones than expected, obtaining its lowest recall and

F-score, 0.03 and 0.06, respectively.

Most of the times Brilia achieved the lowest pairwise performances across all

simulated repertoires generated with different mutation rates. Brilia removes se-

quences that cannot annotate, reducing the original data set, which impacts the

accuracy calculation. We also observed that Brilia oversplit clones; it has pro-

duced the highest number of clones for most simulated data sets. The best per-

formance was obtained on polyclonal repertoires generated with lower mutation



8.3 results 58

rates (λ0 = {0.16, 0.26}) and the lowest performance on monoclonal repertoires

with higher mutation rates (λ0 = {0.36, 0.46}).

8.3.1.2 Closeness performances

Agreeable also achieved the best closeness performance across all simulated data

sets; see details in Section 7.3.1. As observed for pairwise performances, Scope

and Partis outperformed Sonar and Brilia. All tools obtained high precision val-

ues but much lower recall and F-score values. We also observed lower closeness

performance values for the four tools; the closeness evaluation tends to be more

challenging than pairwise since clonal distribution are also evaluated rather than

pairwise relationships.

Scope performances were affected by higher mutation rates. In general, it

achieved better F-scores on repertoires generated with lower mutation rates, es-

pecially for oligoclonal and polyclonal samples, where we observed a notable

difference between repertoires generated with λ0 = {0.16, 0.26} than those gen-

erated with λ0 = {0.36, 0.46}. Scope obtained higher F-score values (>0.73) on

monoclonal repertoires generated with λ0 = {0.16, 0.26, 0.36}. However, its per-

formance sharply decreased on the monoclonal repertoire with the highest mu-

tation rate, achieving 0.16 and 0.28 for recall and F-score.

Higher mutation rates did not impact the performance of Partis. Its perfor-

mance was stable on polyclonal repertoires and had some fluctuations on oligo-

clonal repertoires. Interesting, on monoclonal repertoires, it achieved better per-

formance for highly mutated repertoires, being the best values obtained on sam-

ple generated with λ0 = {0.46}.

Sonar performance was entirely affected by higher mutation rates. We ob-

served a decrease in the performance, especially on oligoclonal and polyclonal

repertoires. Independently of mutation rates, Sonar achieved very low recall and

F-score values on monoclonal repertoires, smaller than 0.2. It has oversplit the

most abundant clones that greatly impact closeness performances. For all reper-

toires generated with higher mutation rates (λ0 = {0.36, 0.46}), Sonar achieved a

F-score inferior to 0.4.

Brilia achieved the lowest performance for most of the analysed repertoires.

The only exception is the oligoclonal sample generated with λ0 = 0.46, where

it outperformed Sonar. Compared to Sonar, we observed a notable difference in
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the polyclonal and oligoclonal repertoires. However, in monoclonal repertoires,

Brilia and Sonar achieved an equivalent performance, with very low values for

recall and F-score.

8.3.2 Artificial monoclonal repertoires

Figures 16 and 17 show the clonal grouping performances for the artificial mono-

clonal repertoires AMD1 and AMD2, respectively (Section 8.2.2.1). Here we com-

pared Agreeable to the other algorithms. To better interpret the performances,

we used an alluvial diagram that represents flows between expected clones (left)

and detected ones (right). Blue blocks represent expected clones, and pink or

orange detected clones. Pink blocks contain only sequences of the pure B-cell

lineage, while the orange blocks sequences from the polyclonal background.

Thus, pink blocks represent true positives and orange ones false positives. Block

height symbolises the size of a clone, that is, the number of sequences. The

split counter (SC) counts the number of splits in the expected clone. The false-

positive (FP) gives the number of sequences in the detected clones unrelated to

the B-cell pure lineage. The output of tools on AMD1 showed three different

profiles of sequence distribution. Agreeable obtained the best separation with

zero SC and minimal FP (only 3). Partis and SCOPe also obtained the minimal

FP, but higher SC, 4 and 5, respectively. Sonar and Brilia did not find any FP, but

both tools carried out a significant number of splits, 90 and 64, respectively. Inter-

estingly, for AMD1, Agreeable has accurately found the whole lineage without

detecting separations as observed in Partis and SCOPe results. The sequences

separated by other tools possess more than two consecutive Tyrosine (Y) in

the CDR3 (ARDRRGEWPPSDYYYYYYMDV, ARDRRGEWPPSDYYYYMDV and

ARDRRGEWPPTDYYYMDV). For sequences containing IGHJ6 genes, Agreeable

tolerates the change in the number of Tyrosine for similar sequences and consid-

ers them as originating from the same lineage. This assumption is based on our

observations from many NGS runs during routine analysis; its origin (real bi-

ological phenomenon or sequencing artifact) remains unknown. So, naturally,

other tools are not tuned to recognize this particularity of the IGHJ6.
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Figure 16: Performance evaluation of four different clonal grouping methods on AMD1

As observed for AMD1, Agreeable did not split sequences of the AMD2 B-cell

lineage in different clones. Similarly, Partis and SCOPe achieved a SC equal to

zero. However, Agreeable achieved the lowest FP number, followed by SCOPe

and Partis. Sonar and Brilia still split the sequences of the B-cell lineage consid-

erably. Sonar obtained less FP than Brilia.

For both data sets, we observed the same behaviour in the results of each tool.

We can perceive that the granularity of sequence grouping is different. It was

surprising to observe different clustering tendencies among tools with a similar

clone definition. Partis, SCOPe and Agreeable have grouped most sequences in

the pure B-cell lineage, and a few false positives were introduced. Sonar and
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Brilia tend to over-split, but they have detected less FPs than Partis, SCOPe and

Agreeable.

Figure 17: Performance evaluation of four different clonal grouping methods on AMD2

8.3.3 Experimental benchmarks

We have compared the output of each clonal grouping tool with the Agreeable’s

clustering results, using the method detailed in 8.2.3.1. Figure 18 and Table 4

show the result of analysing I1, a monoclonal repertoire with a major clone con-

taining 98% of total sequences. As expected, the number of detected clusters by

each tool is different. Brilia, and SCOPe have a similar number of clusters, at

the order of magnitude of the Agreeable output. Partis has a smaller number of
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clusters than Agreeable. On the other hand, Sonar has a significantly higher num-

ber of clusters. Considering both pairwise and closeness relationships, the preci-

sion values are high for all analysed tools. The overall Pairwise F-score value is

greater than the closeness F-score value which was also seen in previous studies

discussed in chapter 7. The low recall for the closeness calculation shows that

the structure of reconstructed repertoire is different for each tool. Even the best

value of recall, which is achieved by using Partis, is equal to 0.14 ,which is partic-

ularly low. Sonar has the lowest When counting clustering events: join, identical,

split and mix (Section 8.2.3.1 and Figure 13), we observed the prevalence of mix

events since compared tools have constructed the major clone differently. We can

conclude this difference is in the major clone, because of the number of clusters

labeled as Mix and their respective number of sequences.

Figure 19 shows the result of I2, a monoclonal repertoire with a biallelic Igh re-

combination. Partis has the closest detected repertoire architecture to the Agree-

able with a closeness Fscore equal to 0.79(Table 4). It is interesting to note that

Brilia, which has the second closest distribution to Agreeable while analysing the

first dataset, has a very low overall F-score for this repertoire. One of the reasons

is that the number of clustered sequences is significantly less for Brilia, since it

only clusters functional sequences, therefore many unproductive sequences of

this repertoire have been excluded from the analysis.

The third dataset analyzed in this study is a polyclonal repertoire. The first

thing we notice is that all tools achieved a higher F-score compared to the mon-

oclonal repertoire (Table 5). This happens because the task of correctly grouping

together small B cell lignages is easier due to the much lower number of sequence

variants as compared to an extremely developed lignage. Base on Figure 19 we

can also see that Agreeable and all other tools share many identical clusters.

Comparing the clustering events between Brilia and SCOPe, we can notice that

SCOPe has more splits and joins than Brilia. The latter shared a higher number

of identical clusters with Agreeable; however, these differences have translated to

comparable F-scores. Sonar has the lowest F-score values due to the high number

of splits.
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Table 4: Comparison of Agreeable with four different clonal grouping methods on the

I1 data set. The I1 data set has 33599 sequences distributed into 162 clones by

Agreeable

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 33578 161 0.99 0.99 0.99 1 0.06 0.11

Sonar 29335 3542 0.99 0.21 0.36 0.99 0 0

Partis 33585 73 0.99 0.99 0.99 1 0.14 0.25

Scope 33554 176 0.99 0.96 0.98 1 0.01 0.02

Figure 18: Performance evaluation of four different clonal grouping methods on I1

dataset using "4 events" labeling system
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Table 5: Performance evaluation of four different clonal grouping methods on the

I2 dataset. The I2 dataset has 70050 sequences distributed into 2398 clones by

Agreeable

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 90236 7234 0.99 0.11 0.2 0.99 0.01 0.01

Sonar 138439 1975 0.99 0.87 0.93 0.99 0.19 0.32

Partis 138688 927 0.99 0.99 1 0.98 0.66 0.79

Scope 138250 1387 0.99 0.98 0.99 0.97 0.5 0.66

Figure 19: Performance evaluation of four different clonal grouping methods on I2

dataset using "4 events" labeling system
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Table 6: Performance evaluation of four different clonal grouping methods on the I8

dataset. The I8 dataset has 70050 sequences distributed into 10461 clones by

Agreeable

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 68133 10461 0.96 0.90 0.93 0.96 0.76 0.85

Sonar 68171 17096 0.57 0.04 0.08 0.43 0.07 0.12

Partis 68327 10095 0.95 0.88 0.92 0.94 0.68 0.79

Scope 67312 7192 0.96 0.89 0.93 0.89 0.77 0.83

Figure 20: Performance evaluation of four different clonal grouping methods on I8

dataset using "4 events" labeling system
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8.4 discussion

We have studied different performance evaluation measures and found out that

from the same input data, using different BCR repertoire clustering tools, results

in having :

• variable number of clusters

• variable cluster sizes (especially for the major clones of each repertoire)

• various standards to accept a sequence as an input.

The compartmentalization of the mentioned tools is not based on their overall

value but their efficiency in a given context. The goal here is not to judge the

performance of these tools but instead get a clear understanding of them and

their assumptions to use them properly. Note that this is an ongoing study and

we would like to expand the number of analyses in order to better comprehend

the difference between tools. We have prepared an in vitro benchmark to evaluate

the clone detection caliber of each tool in a more realistic setting by using data

sets constructed by serial dilutions (1%, 0.1%, and 0.01% ) of a known clone in a

polyclonal background and then sequenced.

We are also aware of the sampling bias impact on the artificial monoclonal

repertoires analysis, and it is crucial to repeat the sampling to reduce this effect.

Unfortunately, however, running some tools like Partis are highly demanding in

time, and we did not have the opportunity to do so yet.

Tools that cluster sequences based on their lineage are more appropriate for

our project’s objective, intraclonal analysis. Despite comparable output results,

Partis, Agreeable, and SCOPe have significant differences in practical usability.

Partis needs high computational power and analysing time. SCOPe has multiple

preprocessing steps before clustering. Agreeable is relatively fast and does not

require complicated preprocessing data preparation. These are the reasons why

we have decided to use Agreeable as the clustering tool for this project.

Knowing the clonal architecture of a given repertoire, we will focus on BCR

intraclonal analysis in the following chapter.
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R E C O N S T R U C T I N G T H E E V O L U T I O N A RY H I S T O RY O F A

B C R L I N E A G E U S I N G M I N I M U M S PA N N I N G T R E E A N D

C L O N O T Y P E A B U N D A N C E S

9.1 introduction

When exposed to an antigen, naive B cell’s genes that encode Ig undergo mul-

tiple rounds of mutations, e.g. somatic hypermutations, and Darwinian antigen

selection. This stage of the B-cell development is known as affinity maturation

since it progressively increases the Ig’s affinity for a pathogen-associated antigen.

The naive B cell and its variants (generated during affinity maturation process)

form a B cell lineage. The natural selection during affinity maturation permits

a variety of Ig-antigen affinities. Among B cells with the same receptor’s speci-

ficity, those having higher affinity for the antigen can proliferate, and those with

lower affinity will be eliminated. Consequently, the number of unique variant

sequences and their respective abundance provide a remarkable perspective on

the ongoing evolutionary process, and can help to elucidate clonal selection. The

BCR intraclonal analysis has several clinical applications such as developing ef-

fective vaccines, discovering therapeutic monoclonal antibodies, or diagnostic

and prognostic immunoproliferative disease .

Genetic evolution as observed during affinity maturation is often studied thro-

ugh phylogenetic inference, a well-known methodology that describes the evolu-

tion of related DNA or protein sequences in various species. Theoretically, phy-

logenetic inference methods could reconstruct BCR lineage trees if we replace

species with sequences having different affinities. However, in a phylogenetic

tree, the root is usually unknown, the observed sequences are represented usu-

ally only in the leaves, and the inner nodes represent the relationships amongst

sequences. Conversely, in a BCR lineage tree, the root or the BCR sequence of

the naive B cell giving rise to the lineage is available. Such ancestral sequence is

68
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typically estimated by aligning each sequence with germline genes of a reference

genome.

B cells with different BCR affinities can coexist; therefore, the observed BCR

sequences can be leaves or internal nodes in the tree. Due to simultaneous diver-

gence, multifurcations are common. Moreover, Ig sequences are under intense se-

lective pressure, and the neutral evolution assumption is invalid, and the SHM

process occurring during the affinity maturation is highly nucleotide-context-

dependent. In this scenario, conventional phylogenetic tree algorithms are not

appropriate for creating BCR evolution lineage trees. The performance of such

methods varies substantially in terms of the tree topology and the ancestral se-

quence.

Some computational tools have been designed specifically for the reconstruc-

tion of BCR lineage trees. IgTree [85] employs maximum parsimony criterion

to find the minimal set of events that could justify the observed sequences.

It first constructs a preliminary tree, which only contains observed sequences,

then uses a combined score, based mainly on sequence mutations, to gradually

add internal nodes. GCTree [67] employs the maximum parsimony principle,

and additionally it incorporates the cellular abundance of a given genotype in

phylogenetic inference. This information is used for ranking parsimonious trees,

obtained by dnapars [86] with the assumption that the more abundent the par-

ent is,the more likely it is for it to generate mutant decendants. GCtree uses a

likelihood function based on the Galton-Watson Branching process [87]. It is an

accurate method, but its computational complexity is exorbitant, especially for

a high number of sequences. GlaMST [88] is another method for reconstructing

BCR lineage trees. It is a minimum spanning tree (MST)-based algorithm [89],

and iteratively grows the lineage tree from the root to leaves by adding mini-

mal edge costs. GLaMST is more efficient than GCTree, but it ignores genotype

abundance information.

Here we propose ClonalTree, a method to reconstruct BCR lineage trees that

combines MST and genotype abundance to infer maximum parsimony trees.

ClonalTree starts from the root (the ancestral sequence) and iteratively adds

nodes to the tree presenting minimal edge cost and maximum genotype abun-
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dance; therefore, it optimises a multi-objective function rather than a single func-

tion based only on edge costs as implemented in GLaMST. Using simulated and

experimental data, we demonstrate that ClonalTree outperforms GLaMST and

achieves a comparable performance to the performance of GCtree. ClonalTree

has a lower time complexity, making it more suitable for reconstructing phyloge-

netic lineage trees from high throughput BCR sequencing data obtained in the

clinical applications.

9.2 material and methods

We start from a formal description of the BCR lineage tree reconstruction and

minimum spanning tree. Next, we describe how we modified Prim’s algorithm

to incorporate genotype abundance information. Ultimately, we show how trees

can be improved by creating intermediate nodes that describe non-observed se-

quences or editing operations.

9.2.1 Problem statement

Given a set of observed BCR sequences and an ancestral sequence (root), we look

for a minimum-sized directed tree structure, otherwise known as the maximum

parsimony tree, so that, all observed sequences are reachable from the root, ver-

tices (nodes) represent BCR sequences or their relationships, and the weight of

edges connecting vertices represents mutation, insertion and deletion operations.

9.2.2 Minimum spanning Tree

Given a connected graph (V, E), where V is the vertices, E the weight edges,

its minimum spanning tree (MST) is a subset of vertices and edges that form

a tree (a graph without cycles/loops) so that the sum of the weights of all the

edges is at minimum. For a given connected graph, several MSTs can exist. All

trees have the same sum of weights, but their topologies are different. The MST

construction is a greedy approximation algorithm in which edges are sorted

according to their weights and selected with some criteria. Greedy algorithms
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normally find a local optimum solution, which may eventually lead to globally

optimised solutions.

9.2.3 A modified Prim’s algorithm

Prim’s [90] and Kruskal’s [91] are algorithms for finding the minimum spanning

tree of a graph. Both are greedy approaches and present low time complexity.

However, Prim’s algorithm runs faster than Kruskal in dense graphs. Therefore,

we used a modified version of Prim’s algorithm to construct BCR lineage trees.

We start at the root and add all its neighbours to a priority queue. We then

iteratively extract from the priority queue the node with the lowest weight and

highest genotype abundance. A node and an edge will be added to the tree if no

cycle is formed. When adding a node to a tree, all its neighbours are included

in the priority queue. We keep on adding nodes and edges until we cover all

nodes. In order to decrease the time complexity of the algorithm, we add each

node only once at the priority queue. Prim’s algorithm has only one objective

function, which minimizes the sum of edge weights. Here we include a second

objective function to maximize genotype abundance. If a set of edges have the

same weight, we will choose the one that connects nodes with high abundance.

Prim’s algorithm has a time complexity of O(|V |2) in the worst case, but can be

improved up to O(|E|+ log|V |) when using data structures based on Fibonacci

heaps[92] Figure 21 shows a simple example of the tree construction process.

9.2.4 Editing the reconstructed lineage tree

A greedy algorithm never reconsiders its choices. This is the main difference be-

tween this algorithm and an optimal algorithm, which is exhaustive and always

finds the best solution. A possible amelioration of our algorithm would be to edit

the obtained lineage tree. We implemented two strategies: add the unobserved

intermediate nodes to the tree and detach/reattach subtrees.

Unobserved internal nodes represent unobserved sequences that were not

sampled or disappeared during the affinity maturation process. In those cases,

the evolutionary relationships are also missed, but one can try to reconstruct
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Figure 21: ClonalTree construction example. Given a connected weighted graph (A), we

start by placing the ancestral sequence or root (B), we iteratively add nodes

to the tree with the lowest edge weights and highest genotype abundances

(C,D), when edges have the same weight (E) we choose those connected to

the node with higher abundance (F), we repeat this process until all nodes

were added to the tree (G), the final tree is shown in (H).

them. Unobserved internal nodes represent unobserved sequences that were not

sampled or disappeared during the affinity maturation process. In those cases,

the evolutionary relationships were also lost. One way to recover them is to

analyse the reconstructed tree to identify common ancestors not yet represented.

This process is similar to building a phylogenetic tree among species, where un-

observed internal nodes represent common ancestors of descendants. In a classi-

cal phylogenetic tree, only leaves’ nodes are observed, and all internal nodes are

unobserved, while in a BCR lineage tree, internal nodes can be observed or unob-

served. We add unobserved internal nodes when we detect a common ancestral

not represented in the tree. It generally happens when we observe a distance

between sister nodes that is smaller or equal to the distance for their parent, see

an example in Figure 22-A. Once we find the exact position of an internal node

in the tree, we connect it to the observed nodes by direct edges (see Figure 22-B).

We can detach a subtree from an internal node by removing its edge and reat-

taching it to another internal node or leaf. We perform this editing operation if

it can reduce the size of the lineage tree by keeping the overall cost. We consider

all branching nodes (i.e. nodes with more than one descendent) for this edition

operation. For each node under edition, we try to detach it and reattach it to any
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Figure 22: Editing the reconstructed lineage tree by adding internal nodes. When the

distance between two sister nodes is smaller or equal to the distance to their

parent, we add an unobserved internal node as the common ancestor of the

two sister nodes.

other node in the lineage tree. If this operation reduces the tree size, we accept

it and examine the resulting lineage tree again for additional edition operations

that may further reduce the tree size. We repeat this process until no editing

operation can reduce the tree size (see an illustration in Figure 23).

9.2.5 Tools used in the comparisons

We have selected two tools to compare with Clonaltree. GCTree [67] incorporates

genotype abundance information in the parsimony tree inference, and GLaMST

[88] uses Minimum Spanning Tree (MST). Since in the publication presenting

GCtree, the authors have shown the higher performance of these tools compared

to other available methods, we have decided to keep only these two approaches

for the evaluation.

9.2.6 Data sets

We used two types of data sets to evaluate ClonalTree performance and com-

pare it with other algorithms: artificial and experimental. Artificial data were
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Figure 23: Editing the reconstructed lineage tree to reduce the size of the tree while

keeping its overall cost. In this example, the total cost of the tree, or the sum

of edge weights, remained the same while the size of it has been reduced.edge

weights represent the Hamming distance between sequences

produced by GCTree simulator [67], while one of two experimental data sets

was created during CLL routine diagnostic procedures at the Pitié Salpêtrière

hospital and the other one was collected from public data. In order to create

artificial lineage trees, we used the B-cell lineage simulator provided by GCTree.

The simulator produces B-cell lineage by randomly selecting IGHV, IGHD and

IGHJ germline genes from the IMGT database; then, nucleotide(s) can be added

to or removed from the junction region: IGHV-IGHD and IGHD-IGHJ. Next,

it performs a branching process, and point mutations can be included in the

descendants. Somatic hypermutations are simulated by a sequence-dependent

process, where mutations are preferentially introduced within specific hot- and

cold-spot motifs [93]. We kept simulator default parameters and generated 92

artificial lineage trees. The sizes of simulated trees ranged from 6 to 99 nodes,

being the number of observed sequences between 20 and 200; the degree of roots

vary from 1 to 42, and depth trees from 2 to 7, see Table 7.

The public experimental data set contains IGHV gene sequences from 48 ger-

minal B cells of a lineage sorted from a brainbow mouse using multicolor fat
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Table 7: Characteristics of artificial lineage trees

Min Max Mean

Tree size 6 99 33.82

Observed seq 20 200 81.98

Root degree 1 42 11.54

Tree depth 2 7 4.29

mapping [94]; we label this dataset as “32-IGHV”. In the experiment, the au-

thors performed single-cell mRNA sequencing of the IGH and IGL loci of the

48 germinal B cells, resulting in 32 distinct IGH and 26 distinct IGL genotypes,

with different SHM mutation rates acquired during affinity maturation. The “32-

IGHV” data set, along with IGL sequences obtained from the same set of cells,

were used to evaluate the robustness and accuracy of GCtree [67]. In their pa-

per, Masten and colleagues showed that for both loci, parsimony analysis results

generated by dnapars [95] did not achieve a consensus, and they demonstrated

that GCtree correctly resolved this degeneracy by incorporating abundance in-

formation. Therefore, we used the "32-IGHV" data set and compared the inferred

trees produced by GLaMST and Clonal tree to GCtree trees considered ground

truth. The second experimental data set was generated by sampling sequences

from the most abundant clone of a CLL monoclonal repertoire. It contains 20

unique sequences with different abundance, totalizing 3406 sequences; we label

this data set as “20-major”.

9.2.7 Tree comparison and evaluation

To measure the performance of B-cell lineage reconstruction algorithms, we used

multiple metrics to compare tree topologies : graph editing distances [96], and

ancestral sequence inferences (most recent common ancestor [67], and correct-

ness of ancestral reconstruction [97]).

9.2.7.1 Graph Editing Distance

Let G1 and G2 be two graphs; the Graph Editing Distance (GED) finds the best

set of graph transformations capable of transforming G1 into G2 through edit
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operations on G1. A graph transformation is any operation that modifies the

graph : insertion, deletion, and substitutions of vertices and edges. GED is sim-

ilar to string edit distances such as Levenshtein distance [66] when we replace

strings by connected directed acyclic graphs of maximum degree one. We used

two versions of GED, one applied to the whole tree (GED tree-based) and the

other one applied to each branch separately (GED path-based). The latter version

is more stringent than the first one since any difference in the path from each

leaf to the root is considered a transformation. Figure 24 illustrates an example

of such graph distances.

Figure 24: Example of Graph Edit Distance calculation.The GED in this example is

equal 2.

The problem of computing graph edit distance is NP-complete [98], and there

is no optimal solution in a reasonable time. This problem is hard to approxi-

mate, and most approximation algorithms have cubic computational time [99,

100]. Here we could use an optimal algorithm implementation since the size of

evaluated trees is small.

9.2.7.2 The Most Recent Common Ancestor (MRCA), and The Correctness Of Ances-

tral Reconstruction (COAR)

For a given pair of leaves in the tree, the MRCA distance is the average Hamming

distance between the true and the inferred ancestral sequences. COAR distance

is a metric that emphasizes the importance of correct ancestral reconstruction

and does not penalize the minor topology difference between a true tree and

inferred tree when the ancestral reconstruction is accurate. Figure 25 shows for

each metric, which are the nodes that have been compared between the true and

the inferred tree.
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Figure 25: Nodes compared between two trees with MRCA and COAR metrics.

9.3 results

9.3.1 Reconstructing BCR lineage trees from simulated data

To evaluate ClonalTree performance and compare it to GCTree and GLaMST,

we generated simulated datasets using 92 different simulation settings, vary-

ing the root sequence genes and the relative probabilities of mutation, insertion,

and deletion (see section7.2.2 and Table 7). The artificial lineage trees served as

ground truth that we would like to recover using BCR lineage tree algorithms.

Thus, the performance measures how close reconstructed trees are from sim-

ulated ground truths. Several approaches can quantify this. Here we have used

graph editing distances (GED) that measure the dissimilarity between two graph-

s/trees and two distances related to the correctness of common ancestral infer-

ences. We have computed two types of GED distances, based on the entire tree

(GED tree-based) and in all separate paths (GED path-based), see Section 9.2.7.

Figure 26 shows boxplots of GED distances for each compared method on the

92 simulated lineages trees. We observe that GCtree and ClonalTree had compa-

rable performances. Reconstructed BCR lineage trees of both tools have similar

topologies, while trees produced by GLaMST are pretty different. Figure 26-A

shows GED tree-based distances, while Figure 26-B shows GED path-based dis-

tances. For GED tree-based distances, median values were 0, 2, and 12 and the

highest distance 37, 38, and 120 for GCtree, ClonalTree and GLaMST, respec-
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tively. GLaMST presented the highest median value and the highest distance.

ClonalTree produced 39 correct trees (GED tree-based distance equal to zero),

while GLaMST produced only two trees.

Figure 26: Performance comparison between GCtree, ClonalTree, and GLaMST using

GED distances.

GED path-based distances compare each tree path, from leaves to the root, be-

tween inferred and ground truth trees; therefore, it is more sensitive to topology

changes, and the obtained distances were higher than GED tree-based. Figure

26-B confirms that GCtree and ClonalTree reconstruct BCR lineage trees with

similar paths. Median values were 0, 4, and 18, the highest distance 56, 58, and

180 for GCtree, ClonalTree and GLaMST, respectively. As observed for GED tree-

based, GLaMST presented the highest median value and the highest distance.

ClonalTree produced 39 correct paths (GED path-based distance equal to zero),

while GLaMST produced only one path.

In order to better evaluate the performances, we devide the trees into three

categories according to their number of sequences: small (between 30 and 50),



9.3 results 79

middle (between 60 and 80), and big (having more than 90 sequences). We ob-

served a slight difference between GCtree and ClonalTree, mainly in small and

big groups. On the other hand, we observed that GLaMST had difficulties in

all groups; GED distances were increased as the number of sequences grew, see

Figure 27.

Figure 27: Performance comparison among GCtree, ClonalTree, and GLaMST using

GED distances on three categories of trees. The categories are based on the

tree sizes.

Although GED measures the accuracy of lineage reconstructed trees, it is very

dependent on the tree topologies. It should also be an accurate estimator of the

correctness of ancestral reconstruction without penalizing minor differences in

the tree topologies. For that, we used two metrics: the MRCA and the COAR.

MRCA distance focuses on the most recent common ancestor and considers the

entire evolutionary lineage. On the other hand, COAR measures the correctness

of ancestral reconstruction from the root to any leaf.

We first compared ClonalTree and GLaMST to ground truth trees and then

with GCTree. It is important to perform this comparison since it gives us a basis
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for evaluating these methods on experimental datasets, where the true lineage

evolution is unknown. Figure 28-A shows MRCA distance distributions for Clon-

alTree and GLaMST when compared to ground truth trees, while Figure 28-B

to GCTree. For both plots, we observed better performance for ClonalTree that

could reconstruct recent ancestrals more accurately.

Figure 28: Performance comparison among GCtree, ClonalTree, and GLaMST using

MRCA distance.

Figure 29-A shows COAR distance distributions for ClonalTree and GLaMST

compared to ground truth trees, while Figure 29-B shows comparisons with GC-

Tree trees. As observed for MRCA, ClonalTree outperformed GLaMST for both

comparisons. We noted a slight difference between the two plots, the difference

between ClonalTree and GLaMST being more significant on the plot of Figure

29-A then on the plot of Figure 29-B.

The number of inferred trees with null COAR distances is significantly larger

for ClonalTree than GLaMST, meaning that ClonalTree reconstructs the whole

evolutionary path from leaves to the root more accurately.
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Figure 29: Performance comparison among GCtree, ClonalTree, and GLaMST using

COAR distance.

9.3.2 Biological validation using BCR sequencing data

We then performed a biological validation on two experimental data sets: 32-

IGHV and 20-major (see Section 9.2.6). Since ground truth trees are unavailable

for these data sets, we compared the inferred trees of ClonalTree and GLaMST

with the trees inferred by GCtree. We consider GCTree trees as references for

the empirical validation because it achieved the best performance on simulated

data sets. Table 8 shows tree distances for the two experimental data sets. We

observed that the trees generated by ClonalTree are closer to GCTree trees; all

distance metrics are smaller for ClonalTree. We noted a slight difference between

ClonalTree and GLaMST MRCA values on both data sets, but a significant differ-

ence between COAR values. ClonalTree has reconstructed more accurately the

entire evolutionary lineage than GLaMST.

We also compared the shape of trees through a set of extracted features, such

as depth, root degree, number of leaves, etc. Table 9 shows six shape features
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Table 8: Performance evaluation of ClonalTree, and GLaMST on real BCR repertoire

datasets.

32_IGHV 20_major

ClonalTree GlaMST ClonalTree GlaMST

GED tree based 10 47 3 36

GED path-based 22 230 18 1616

MRCA 0,000515957 0,000570489 0.00064 0.00075

COAR 0,023255814 0,544186047 0.11759 0.78161

for the three algorithms. All methods infer trees with similar shape features; the

main difference is the features related to the total number of nodes.

Table 9: Comparison of GLAMST and ClonaTree with GCtree using 7 tree features

and two metrics based on two real datasets.

32_IGHV dataset 20_major dataset

Features Features

ClonalTree GlaMST Gctree ClonalTree GlaMST Gctree

D-Root Out-degree of the root of the tree 1 1 1 1 1 1

Depth Maximum depth of the tree leaves 5 10 6 6 57 7

D-Avg Average out-degree of all tree nodes 0,98 0,99 0,98 1 1 1

Avg-dist-root Average distance from root to all nodes 5,24 5,26 5,19 46 47 47

Min-dist-Root Minimum distance from root to any leaf 4 4 4 44 44 44

Tree Size Total number of tree nodes 43 79 48 21 74 22

Leaves Number of leaves 36 35 36 12 13 13

9.4 discussion

We present ClonalTree, a novel approach to reconstructing BCR lineage evolution

that combines the minimum spanning tree algorithm with the genotype abun-

dance of distinct BCRs. Using simulated BCR lineage trees, we demonstrated

that such combination improves the accuracy of the inferred tree. ClonalTree

outperformed GLaMST, a method based only on the minimum spanning tree al-

gorithm. Genotype abundance seems to be valuable information and allows our

method to be a competitor of GCTree, an accurate but time-consuming method.
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ClonalTree also achieved acceptable results on experimental BCR sequencing

data where the genotype abundance is evident. In some pathological situations,

BCR lineage trees can be deep and involve a large set of sequences. In such

conditions, GCtree becomes highly time-consuming. For instance, it takes sev-

eral days to analyze 176000 sequences sampled from the most abundant clone

of a monoclonal repertoire. It is impractical to use such a tool in clinical set-

tings, where computational time and accuracy are essential. A way to address

this issue is to sample sequences before reconstructing the lineage tree. It could

allow researchers to use very precise yet highly time-consuming methods like

GCtree. The problem is that less abundant genotypes having an essential con-

tribution to the correct inference of BCR intraclonal evolution trees are likely to

be neglected during the sampling process, as illustrated in Figure 30. The tree

on the top section was generated with the 30 most abundant genotypes, while

the bottom tree was obtained by pruning the complete tree until it achieves 30

nodes (see pruning algorithm details in Section 10.2.3). We observed that tree

topologies are significantly different in both scenarios. Although sampling can

decrease the computational time, it can cause incorrect interpretations of intra-

clonal evolutionary events. For instance, the clonotype represented by the dark

blue circle has a different evolutionary role in each tree shown in Figure 30.

ClonalTree can be an alternative to GCTree since it can achieve comparable

results with a lower runtime. The high performance of our method allows the

users to consider all the available sequences when reconstructing lineage trees.

It can help researchers to understand B cell receptor affinity maturation lineages,

mainly when sequence data from dense quantitative sampling of diversifying

loci are available. Integrating ClonalTree into existing BCR sequencing analysis

frameworks can lead to significant improvements in the lineage tree reconstruc-

tion.

Nonetheless, visual interpretation of such large trees is not trivial, and will be

discussed in Chapter 10. In order to put all the above-mentioned information to

use, we have been developing a versatile interactive visualization pipeline with

the purpose of analyzing BCR repertoires at the clonal and intraclonal level. The

detailed description and various functionalities of this tool will be also discussed

in Chapter 10.
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Figure 30: Two different evolutionary histories of the same B cell lineage. The tree on

top is constructed by using the 30 most abundant clonotypes, while the tree

on the bottom is the simplified version of the tree constructed by using the

entire collection of clonotypes in the BCR lineage.
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C L O N A L A N D I N T R A - C L O N A L D I V E R S I T I E S

BCR repertoire analysis by high throughput sequencing has research and clini-

cal interests, but it is still a challenge to enable immunologists and researchers

to explore their data to discover discriminating repertoire features on their par-

ticular examinations. As discussed in chapter 5, data visualisation is an efficient

communication model, independent from any discipline-specific language, and

can provide the maximum clarity and transparency. The flexibility of data vi-

sualisation enables users to interactively browse their data and easily interpret

their results. To promote repertoire visualisation and complement experimental

studies of BCR repertoires, we developed ViCloD, a web-based interactive tool

that provides a visual analysis for repertoire clonality and intra-clonal diversity.

ViCloD is compatible with clinical applications since it can analyze hundreds of

thousands of BCR sequences in a reasonable amount of time. In this chapter, we

will explain the general framework of ViCloD and outline how the generated

outputs can be used for answering a set of biological questions.

10.1 pipeline

The current version of ViCloD is designed to analyze the IGH repertoire. After

sequencing, IGH sequences should be annotated to determine their V, D, J genes

and CDR3 region. ViCloD accepts data coming directly from IMGT/HighV-

QUEST, which is the international standard web software for parsing BCR se-

quences. However, other annotating tools can be used as long as they provide

the minimum information required for the analysis. The input file of the ViCloD

pipeline is an AIRR formatted file [26]. Users can upload the AIRR file on the

first page of the webserver and provide their email address to receive a link to

their outputs. The analysis is relatively fast, for instance, it takes around three

minutes to analyze a monoclonal repertoire containing 270 000 sequences. The

85
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required time can vary depending on the structure of the sample (the size of

clusters and sequence mutations).

Once sequences are uploaded, the first step is to group clonally-related se-

quences together. For that, we used Agreeable, detailed in chapter 7, and per-

formed clonotype grouping based on IMGT definition. Then for the five most

abundant clones of the repertoire, we inferred the lineage tree using ClonalTree

algorithm, demonstrated in chapter 9. ClonalTree requires a file in FASTA format

containing sequences and their abundances; we also need to determine which se-

quence is the hypothetical naive (the root tree). Each sequence in the FASTA file

represents a clonotype. Since sequences in a given clonotype can differ due to

SHM, we chose the most abundant sequence to represent each clonotype. The

clonotype abundance is the total number of sequences. To compose the hypo-

thetical naive, we considered the germline sequences of the corresponding IGHV

and IGHJ genes provided by IMGT/HighV-QUEST; for the junction sequences,

we took it from those with the lowest number of mutations on the IGHV gene,

when compared to the germline determined by IMGT/HighV-QUEST. Eventu-

ally, we concatenate the three parties to obtain the hypothetical naive sequence.

10.2 description of functionalities

In figure 31 the ViCloD workflow is illustrated and the list of different function-

alities is presented below.
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Figure 31: Overview of ViCloD’s workflow. First, AIRR seq data are devided into

groups of clonally related sequences, and clonotypes within each group

(clone) are then identified. After that, for the N most abundant clones, lin-

eage trees are inferred. Multiple visualization modules and associated anal-

yses are then available: A) BCR repertoire’s clonal analysis, B) intra-clonal

diversity analysis and C) and lineage tree study.

10.2.1 Clonal analysis

In a repertoire, we presented clones by nested circles. The outer circle represents

the entire BCR repertoire, while internal circles correspond to clones (Figure 32).

The size of each circle correlates to the clones’ abundance. On the same web page,

there is a bar plot representing the abundance of each clone (Figure 33). Users

can choose between a normal (Figure 33-A) or logarithmic (Figure 33-B) scale;

they can also select a threshold of clonotype frequency to analyze the clonality

of the repertoire. At the bottom of the page, a table classifies all the information

about clones: name, abundance, V gene annotation, J gene annotation, and CDR3

of the most abundant sequence within the clone (Figure 34)
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Figure 32: Repertoire view. The outer circle (gray) represents the entire repertoire, while

inner circles represent clones, their sizes are proportional to their abundance

in the repertoires.

Figure 33: Clone abundance. Clone abundance is represented by the bars (A) normal

scale, and (B) logarithmic scale. In both cases, users can define a threshold

for analyzing the clonality of the repertoire, and see which clone bypasses its

threshold.
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Figure 34: Clone details Columns show the clone identifier, abundance in the repertoire

(%), number of reads, IGHV gene, IGHJ gene, and CDR3 amino acid sequence.

All this information is available for download by clicking on the download

button.

10.2.2 Intra-clonal diversity analysis

When users click on one of the circles representing clones, it zooms in, and other

circles appear (see dotted arrow in Figure 31). These circles correspond to clono-

types, and their size depict their abundance within the clone. Figure 35 shows

the clonotypes of clone C3 (the green circle in Figure 32). For a given set of

clonotypes, we also show the B cell lineage tree generated by ClonalTree that

represents the evolutionary relationships among such clonotypes and the an-

cestral sequence (Figure 36). Several options of tree representation are available.

For instance, nodes can be colored by clonotype (Figure 36-A) or by functionality

(Figure 36-B). The green and red nodes represent productive and unproductive

rearrangements respectively; unproductive sequences have stop codon(s). It is

also possible to display the length of branches representing distances between

sequences (Figure 36-B). We chose different geometric forms to represent the

hypothetical naive sequence (a triangle) and the most abundant clonotype (a

square). At last, we displayed additional information about clonotypes such as

identifiers, abundances, CDR3 sequences (Figure 37).
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Figure 35: Clone view. Each circle represents a clonotype of a selected clone (the light

green circle). Circle sizes represent clonotype abundance within the clone.

Figure 36: B-cell lineage trees. (A) the most abundant clonotypes are colored. (B) nodes

are colored according to functionality of their sequence. Green nodes rep-

resent productive and red nodes represent unproductive sequences. In both

trees, the triangle represents the hypothetical naive sequence, and a square

represents the largest clonotype.
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Figure 37: Clonotype details. Columns show the clonotype identifiers, abundances in

the repertoire (%), abundance in the clone (%), CDR3 amino acid sequence,

and functionality of the clonotype representative sequence.

10.2.3 Pruning trees for a better interpretation

The lineage tree inferred by the ClonalTree algorithm represents at most the

200 of the most abundant clonotypes of a clone. For large clones containing

many clonotypes, interpreting the complete lineage tree can be demanding. After

studying multiple tree topologies obtained from different types of repertoires,

we decided to simplify the trees while conserving nodes with high abundance

and their evolutive path to the root. We developed two strategies for pruning the

tree adapted to this context.

Pruning [101] helps achieve a simple, comprehensible, yet approximative de-

scription of a tree. In some situations, this simplified version may be more valu-

able than an entirely accurate description that involves many details. The first

pruning strategy, shown in Figure 38-top, eliminates the nodes that do not have

any descendant or with an abundance lower than a defined threshold. Figure

39-B shows the simplified tree after applying this first strategy to the tree in Fig-

ure 39-A. The first approach is more useful for relatively small trees. Trees with

a large number of clonotypes require a second stage of pruning that eliminates

nodes with low abundance if they present high similarity with more abundant

clonotypes (Figure 38-bottom). Figure 39-C shows the simplified tree after apply-

ing this second strategy to the tree in Figure 39-B. For both strategies, we elimi-

nate just leaf nodes, and keep the N most abundant clonotypes in the simplified

tree (by default N=10). By eliminating only leaves’ nodes, we try to preserve

the tree’s evolutionary paths, which can be destroyed when an internal node is

removed. We keep the N largest clonotypes because they represent relevant in-

formation to analyze the lineage tree. We apply the first strategy once, and on
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the resulting tree, we repeat the second one several times until we achieve 30

nodes.

Figure 38: Strategies for pruning trees. The first strategy is to eliminate less abundant

nodes without descendants. For instance nodes 3, 5, and 8 were eliminated

(top). The second strategy eliminates nodes which are highly similar to higher

abundant nodes. At first node 5 and then node 3 are removed.

Figure 39: Simplifying lineage trees (A) A tree constructed with the 200 most abundant

clonotypes. (B) The first simplification (C) The second simplification.
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10.2.4 Intra-clonal diversity analysis

Users can also explore the simplified lineage tree to examine clonotype diversi-

ties. ViCloD provides three types of representations: an interactive tree, a circular

bar chart and multiple sequence alignments, see Figures 40, 41 and 42.

10.2.4.1 Lineage tree

We kept the most pruned tree with at least the ten most abundant clonotypes

in order to better examine the lineage tree (Figure 40-top). Colored circles repre-

sent observed clonotypes, while white circles represent unobserved nodes (see

Section 9.2.4). The branch length represents the number of somatic hypermuta-

tions among connected clonotypes. We identify clonotypes by a number, sorted

by their abundance, which means that clonotype 1 is the most abundant in the

clone. Nodes that represent the largest clonotypes have a bold border in the tree.

When passing the mouse over nodes, clonotype details (identifier, abundance

and functionality) appear. By clicking on “display abundance”, it is possible to

display the abundance of each clonotype by increasing the size of the corre-

spondent node; see an example in Figure 40-bottom, where the most abundant

clonotypes were highlighted. Nodes are then labeled with their abundance (%)

rather than a sequential number.
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Figure 40: Lineage tree. The triangle represents the hypothetical naive sequence, nodes

represent clonotypes, and the branch length represents their evolutionary dis-

tance. (top) clonotypes are identified by a sequential number, and all have the

same size. (bottom) clonotypes are identified by their abundance in the clone

(%), and their size is proportional to the clonotype abundance.

10.2.4.2 Circular bar chart

The circular bar chart represents the distances (number of somatic hypermuta-

tions) between the ancestral and selected clonotypes’ sequences (Figure 41). By

default, ViCloD displays the five most abundant clonotypes, but any clonotype

can be included and/or removed from the plot with a maximum of eight clono-

type. Each colored section is related to a clonotype and represents the number

of mutations observed between this clonotype and its parent in the tree. To high-

light the tree path from a clonotype to the root, users should hover the mouse

over their desired clonotype identifiers; to highlight a branch in the tree, one can

hover the mouse over each section of the circular bar; it also displays the number

of mutations between a pair of connected clonotypes.
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Figure 41: Circular bar plot. To display the entire path from a leaf to the root, users

should hover the mouse over the clonotype identifiers, for instance, C3-1.

10.2.4.3 Multiple sequence alignment

To illustrate the conservation/mutations between representative sequences of

each clonotype and ancestral sequences, we build a multiple sequence align-

ment with MUSCLE program [102] from the biopython “Bio.Align.Applications”

package. As shown in Figure 42, for each sequence of this alignment, we have

displayed multiple pieces of information separated by columns in the table: the

identifier, the percentage and number of reads, the divergence rate (number of

mutations) from the hypothetical naive sequence, and the percent deviation of

IGHV sequence from the germline. Only the altered nucleotides of clonotype

sequences compared to the hypothetical ancestor are shown in the alignment,

whereas a dot represents conserved ones. CDR and framework sections are high-

lighted with different colors, and the IGHD gene is underlined in each sequence.

Users can sort out sequences in the table based on each column. By clicking on

the download button, the table will be downloaded into a text file.
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Figure 42: Intra-clonal multiple sequence alignment in ViCloD.

10.2.5 Availability

ViCloD is a user-friendly web server for visualizing BCR repertoire data, and

studying intra-clonal diversities. The web server is available at http://genome.

lcqb.upmc.fr/ViCoD/example.php For the time-being, a login and a password

are required, but ViCloD will be available without registration after the publica-

tion.

10.2.6 Implementation

The web server uses the PHP language, Java Script (https://d3js.org/), bash

and Python. It also uses MySql database to control the user pending jobs. Users

submit their input file and should provide an email address in order to receive

the/their results. For each user we check if the input file contains all required

information. Then, users’ files (inputs and outputs) are stored in a specific direc-

tory; these files are available for download during a certain time. Data analysis is

performed by a Bash script that launches the various stages of the pipeline. The

pipeline is made of several Python scripts that are executed in an Anaconda en-

vironment [103]. When the users’ analysis is finished, they will receive an email

with the link for their results; we used Exim Internet Mailer [104] as message

transfer.

http://genome.lcqb.upmc.fr/ViCoD/example.php
http://genome.lcqb.upmc.fr/ViCoD/example.php
https://d3js.org/
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10.2.7 Downloads

All the plots and figures are available for download in png format, while tables

are available in CSV format. All analyses remain accessible on the server for 7

days after submitting the repertoire’s data.

10.3 use case

We demonstrate here how ViCloD could be used to process and analyse BCR

high throughput sequencing data.

In order to understand how ViCIoD affects processing and analysing high

throughput sequencing data, we analyzed a monoclonal repertoire (obtained

from a patient with a circulating population of leukemic B lymphocytes) se-

quenced during the routine diagnostic analysis at Pitié-Salpêtrière hospital. First,

IMGT/HighV-QUEST preprocessed 269206 IGH sequences to generate a series

of data annotations, including the assignment of V(D)J-genes and CDR3 delim-

itations. Then, IMGT’s data in AIRR format was uploaded to the ViCloD web

server. After being processed by the pipeline, a total of 2646 clones were de-

tected, Figure 43-top left. The major clone, identified as C1 (blue circle), contains

89.5% of the repertoire sequences. Its high abundance can also be seen in the bar

plot of Figure 43-top right, which shows the abundance of nine largest clones. C1

has a rearrangement characterised by IGHV4-38-2*01 and IGHJ 5*01 genes, and

the CDR3 of its largest clonotype is ARGSADDRNNWFDS (Figure 43-bottom).
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Figure 43: Example of repertoire visualization using ViCloD.

Further scrutinization shows that C1 clone is composed by 2608 different

clonotypes represented in figure 44-top left; the repartition of the sequences

within different clonotypes is not homogeneous, and there is a dominant clono-

type, C1-1, with 90% of the C1’s sequences, corresponding to 81% of the total

sequences of the repertoire. The general tree topology of C1’ clonotypes is shown

in Figure 44-top right, where the reconstructed naive sequence is represented by

a triangle and the most abundant clonotypes by different colors. Note that the

largest clonotype C1-1 is highlighted by a square.
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Figure 44: Example of intra-clonal diversity visualization in ViCloD.

To see more details of the lineage tree, users can click on the button “Intra-

clonal study”, which leads to the page shown in Figure 45. The circular elbow

tree represents the evolutionary history of at least the 10 most abundant clono-

types. This tree is the result of two consecutive simplifications on the complete

lineage tree (Section 10.2.3). The hypothetical naive sequence is represented by a

triangle. The dashed circle shows an unobserved node added by ClonalTree for

better outlining the evolutionary relations between clonotypes 10 and 33. The

most abundant clonotype, identified by the number 1, has three observed as-

cendentes: 50, 59 et 76; it has 15 nucleotide mutations, when compared to the

clonotype 76, which is the closest observed sequence to the hypothetical naive.

The clonotype abundances on the tree can also be displayed by selecting the

option “display abundance”, which changes the tree to the one shown in Fig-

ure 45-bottom left. Note that the numbers beside each clonotype in the “display

abundance” mode are the abundance percentage. Among the 10-top most abun-

dant clonotypes, 3 (C1-3) is the closest to the hypothetical naive, having the

highest IGHV gene identity (Figure 45-bottom).
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Figure 45: Example of lineage tree visualization in ViCloD. without (top) and with

(bottom) "display abundance" option.

10.4 conclusion

We have produced a new RepSeq bioinformatics tool, ViCloD, which can be

used to process and analyse data obtained from IMGT/HighV-Quest, the inter-

national standard web software for parsing adaptive immune receptor sequence

data. It is a user-friendly and versatile pipeline, particularly devoted to the anal-

ysis of B cell intra-clonal diversity and its visualization. Additional features will

be implemented in future such as carrying out intra-clonal analysis at the amino

acid level, since the clonal selection is based on the BCR protein sequence. Fur-

ther progress also includes providing comparison functionality, which will allow

users to analyze repertoires from the same patient at various times or to compare

repertoires of different patients. These comparative features will be performed

at clonal and intra-clonal levels.
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11.0.1 Conclusion

Next-generation sequencing has enabled researchers to conduct in-depth analy-

ses of the immunological activity and the immune response. However, a signif-

icant concern in immune repertoire studies is the computational cost of analyz-

ing millions of sequences with inherent complexity, variability, and mutational

capacity, imposing computational challenges and necessitating the development

of efficient methods. Such challenge is even more evident in the clinical context

that does not necessarily have access to professionals with computing skills or

robust computational resources. Thus, the main goal of this thesis was to develop

a set of dedicated and integrated tools to be used in the clinical environment, for

medical diagnostic and patient care, and in the research environment to perform

large-scale and in-depth repertoire analysis.

The first four chapters established the biological foundation for addressing the

set of questions posed in chapter 6:

1. Among multiple clone definitions and associated algorithms, how to choose

the most appropriate for carrying out a meaningful clonal analysis?

2. Among existing BCR clonal grouping tools using the appropriate clone

definition for our research question, is there any that can be used in the

clinical context with the aim of intraclonal analysis? If not, how should we

design it?

3. What is the most efficient and accurate way to reconstruct the evolution of

a B-cell lineage or clone?

4. How, in practice, can we integrate BCR repertoire and intraclonal analyse

tools into the clinical context?

In order to respond to them, we started by developing Agreeable, a clustering

tool dedicated to clonal grouping, with practical use in the clinical context. The
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details of Agreeable’s design, execution, and validation were presented in Chap-

ters 7 and 8. In the 8 we also demonstrated the impact of the algorithmic choices

on the results of BCR clonal grouping. This comparative study is still ongoing.

In chapter 9, we have presented a new phylogenetic reconstruction method,

Clonaltree, that can provide the accuracy and efficiency required to be used

for analyzing clinical data. In chapter 10, we have described the process of de-

signed and implemented a user-friendly interactive BCR repertoire visualization

pipeline,called ViCloD. We believe that this can make the implementation of

the interactive, interdisciplinary communication model possible. This model is

described in chapter 4 which can facilitate the process of integrating BCR intra-

clonal analysis into medical practices.

Each of the demonstrated tools (Agreeable, GCtree, and ViCloD) are objected

to be presented in a scientific publication, and their manuscripts are under prepa-

ration.

11.0.2 Direction for future work

In light of the limitations identified and this study’s findings, we plan to analyze

multiple repertoires collected from patients with different pathologies to explore

the potential relevance of intraclonal diversity to the origin of each pathology

and, consequently, suggest a better-adapted treatment to each individual’s case.

Given that our collaborators are specialized in Chronic Lymphocytic Leukemia

(CLL), we would like to start by analyzing CLL datasets. Based on the previous

experiences with other forms of B-cell malignancies, the study of intraclonal di-

versification can improve our understanding of the role of antigen in CLL patho-

genesis and potentially to cure them more effectively [105, 106]. BCR intraclonal

analysis can assist in defining the original cell of the pathology in a more precise

manner [107]. It is prophesied that this analysis can contribute to characterizing

the role of intraclonal diversity in prognosis, and response to therapy[108]. We

also plan on adding new features to ViCloD which enables the users to compare

multiple repertoires at clonal and intraclonal levels.

These new features can compare multiple BCR repertoires of :

• the same person at different time points, which can be particularly useful

for studying the effects of a treatment or a vaccine.
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• different people for the study of stereotyped BCR immunoglobulins. Sev-

eral studies have shown that there are subsets of CLL patients expressing

highly similar, stereotyped BCR Ig, despite the fact that the chances of two

independent B cell clones having identical immunoglobulins is negligible

[22].

This visualization pipeline, combined with feature selection methods in machine

learning, could permit clinicians/immunologists to discover discriminating fea-

tures that characterize a repertoire and associate it with an immunological sta-

tus. (e.g., healthy, infected, vaccinated, etc.[21]). We have also started to examine

the possibility of developing a clustering approach that can accurately identify

sequences belonging to the same B cell lineage without VDJ annotations since

the latter information does not substantially improve the performance of clonal

grouping; however, it can slow down the whole process of repertoire analysis.

Moreover, clustering into clonally related groups can help annotate more accu-

rately the sequences with a high number of mutations and often have multiple

possible genes associated with them.
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Table 10: Required fields of AIRR file in the input of ViCloD.

Name Type Definition

sequence_id string Unique query sequence identifier for the Rearrangement.

productive boolean True if the V(D)J sequence is predicted to be productive.

v_call string V gene with allele.

j_call string J gene with allele.

sequence_alignment string

Aligned portion of query sequence, including any indel

corrections or numbering spacers, such as IMGT-gaps.

Typically, this will include only the V(D)J region.

germline_alignment string

Assembled, aligned, full-length inferred germline sequence

spanning the same region as the sequence_alignment field

(typically the V(D)J region) and including the same set of

corrections and spacers (if any).

junction string
Junction region nucleotide sequence, where the junction is

defined as the CDR3 plus the two flanking conserved codons.

np1 string

Nucleotide sequence of the combined N/P region between

the V gene and first D gene alignment or between the V

gene and J gene alignments.

np2 string

Nucleotide sequence of the combined N/P region between

either the first D gene and J gene alignments or the first D

gene and second D gene alignments.

cdr1 string Nucleotide sequence of the aligned CDR1 region.

cdr2 string Nucleotide sequence of the aligned CDR2 region.

cdr3 string Nucleotide sequence of the aligned CDR3 region.

fwr1 string Nucleotide sequence of the aligned FWR1 region.

fwr2 string Nucleotide sequence of the aligned FWR2 region.

fwr3 string Nucleotide sequence of the aligned FWR3 region.

fwr4 string Nucleotide sequence of the aligned FWR4 region.

v_identity number Fractional identity for the V gene alignment.

v_germline_alignment string

Aligned V gene germline sequence spanning the same

region as the v_sequence_alignment field and including

the same set of corrections and spacers (if any).

d_germline_alignment string

Aligned D gene germline sequence spanning the same

region as the d_sequence_alignment field and including

the same set of corrections and spacers (if any).

j_germline_alignment string

Aligned J gene germline sequence spanning the same

region as the j_sequence_alignment field and including

the same set of corrections and spacers (if any).
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Table 11: Monoclonal repertoire, generated with λ0 = 0.16, number of sequences is equal

to 958 and number of expected clusters is 34.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 922 68 1 0.26 0.42 1 0.05 0.09

Sonar 958 52 1 0.77 0.87 1 0.07 0.14

Partis 958 43 1 0.92 0.96 1 0.21 0.35

Scope 958 35 1 0.99 1 1 0.58 0.73

Agreeable 958 34 1 1 1 1 1 1

Table 12: Oligoclonal repertoire, generated with λ0 = 0.16, number of sequences is equal

to 1014 and number of expected clusters is 43.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 658 69 1 0.47 0.64 1 0.26 0.42

Sonar 1014 55 1 0.94 0.97 1 0.56 0.72

Partis 1014 52 1 0.96 0.98 1 0.71 0.83

Scope 1014 46 1 0.97 0.99 1 0.9 0.95

Agreeable 1014 43 1 1 1 1 1 1
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Table 13: Polyclonal repertoire, generated with λ0 = 0.16, number of sequences is equal

to 968 and number of expected clusters is 44.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 947 78 1 0.63 0.77 1 0.39 0.56

Sonar 968 55 1 0.93 0.97 1 0.64 0.78

Partis 968 53 1 0.97 0.99 1 0.72 0.84

Scope 968 46 1 0.94 0.97 1 0.88 0.94

Agreeable 968 44 1 1 1 1 1 1

Table 14: Monoclonal repertoire, generated with λ0 = 0.26, number of sequences is equal

to 659 and number of expected clusters is 33.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 618 72 1 0.08 0.15 1 0.04 0.08

Sonar 659 72 1 18 0.31 1 0.05 0.09

Partis 659 42 1 0.85 0.92 1 0.34 0.51

Scope 659 36 1 0.9 0.95 1 0.6 0.75

Agreeable 659 33 1 1 1 1 1 1

Table 15: Oligoclonal repertoire, generated with λ0 = 0.26, number of sequences is equal

to 958 and number of expected clusters is 43.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 745 90 1 0.29 0.46 1 0.15 0.26

Sonar 958 87 1 0.67 0.81 1 0.22 0.37

Partis 958 52 1 0.88 0.94 1 0.69 0.81

Scope 958 50 1 0.94 0.97 1 0.65 0.79

Agreeable 958 43 1 1 1 1 1 1
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Table 16: Polyclonal repertoire, generated with λ0 = 0.26, number of sequences is equal

to 964 and number of expected clusters is 44.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 876 109 1 0.51 0.68 1 0.22 0.36

Sonar 964 79 1 0.82 0.9 1 0.37 0.54

Partis 964 53 1 0.94 0.97 1 0.74 0.85

Scope 964 49 1 0.95 0.98 1 0.78 0.88

Agreeable 964 45 1 0.99 1 1 0.95 0.97

Table 17: Monoclonal repertoire, generated with λ0 = 0.36, number of sequences is equal

to 924 and number of expected clusters is 35.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 897 116 1 0.04 0.09 1 0.02 0.04

Sonar 924 105 1 0.40 0.57 1 0.02 0.04

Partis 924 44 1 0.45 0.62 1 0.31 0.47

Scope 924 36 1 0.66 0.8 1 0.58 0.73

Agreeable 924 35 1 1 1 1 1 1

Table 18: Oligoclonal repertoire, generated with λ0 = 0.36, number of sequences is equal

to 991 and number of expected clusters is 40.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 724 102 1 0.3 0.47 1 0.14 0.25

Sonar 991 124 1 0.38 0.56 1 0.12 0.21

Partis 991 49 1 0.81 0.9 1 0.62 0.77

Scope 991 57 0.99 0.66 0.8 1 0.43 0.60

Agreeable 991 40 1 1 1 1 1 1
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Table 19: Polyclonal repertoire, generated with λ0 = 0.36, number of sequences is equal

to 897 and number of expected clusters is 42.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 639 101 1 0.35 0.53 1 0.19 0.32

Sonar 897 120 1 0.53 0.69 1 0.21 0.35

Partis 897 51 1 0.94 0.97 1 0.7 0.82

Scope 897 58 1 0.82 0.9 1 0.57 0.73

Agreeable 897 43 1 0.99 1 1 1 1

Table 20: Monoclonal repertoire, generated with λ0 = 0.46, number of sequences is equal

to 952 and number of expected clusters is 35.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 926 152 1 0.02 0.05 1 0.01 0.03

Sonar 952 157 1 0.03 0.06 1 0.01 0.02

Partis 952 44 1 0.97 0.99 1 0.55 0.71

Scope 952 46 1 0.73 0.83 1 0.16 0.28

Agreeable 952 36 1 0.99 1 1 0.99 1

Table 21: Oligoclonal repertoire, generated with λ0 = 0.46, number of sequences is equal

to 1016 and number of expected clusters is 43.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 689 96 1 0.44 0.62 1 0.2 0.34

Sonar 1016 160 1 0.40 0.58 1 0.1 0.19

Partis 1016 53 1 0.89 0.94 1 0.6 0.75

Scope 1016 62 1 0.84 0.92 1 0.45 0.62

Agreeable 1016 43 1 1 1 1 1 1
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Table 22: Polyclonal repertoire, generated with λ0 = 0.46, number of sequences is equal

to 952 and number of expected clusters is 43.

# analyzed seq # clones Pairwise Closeness

Tool name Precision Recall F-score Precision Recall F-score

Brilia 705 123 1 0.26 0.41 1 0.14 0.25

Sonar 952 147 1 0.48 0.65 1 0.17 0.28

Partis 952 52 1 0.92 0.96 1 0.72 0.84

Scope 952 57 1 0.79 0.88 1 0.57 0.73

Agreeable 952 43 1 1 1 1 1 1
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