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Résumé

La presente these étudie certains problèmes de contrôlabilité, de confinement et de transmission de l’équation
de Schrödinger pour certains choix de variétés Riemanniennes. Nous présentons un test de contrôlabilité pour
l’équation de Schrödinger bilinéaire à spectre discret qui permet de conclure la contrôlabilité approchée du système
en vérifiant la contrôlabilité en dimension finie d’une famille infinie de projections et une condition spectrale faible
du système en dimension infinie. Ce test peut être appliqué en particulier à l’étude du problème de la contrôlabilité
de l’évolution quantique sur les variétés Riemanniennes, et il est particulièrement adapté aux systèmes à haut degré
de symétrie (et donc à de sévères dégénérescences spectrales). Nous spécialisons la technique à l’équation de
Schrödinger sur la variété physiquement pertinent SO(3) : de cette façon, nous fournissons une classification des
symétries et des propriétés de contrôlabilité de la dynamique rotationnelle quantique des molécules. Le corps rigide
symétrique ou asymétrique subit l’interaction entre son moment dipolaire et trois champs électriques orthogonaux
comme contrôles, et le problème de contrôlabilité est résolu en termes de moments d’inertie et de configuration
dipolaire. Grâce à la structure géométrique qui sous-tend la technique de contrôle, nous obtenons en fait des
résultats plus généraux tels que la contrôlabilité approchée de la matrice de densité et la contrôlabilité approchée
dans des topologies plus fines.

Notre approche spectrale et algébrique permet également d’identifier les fréquences et les polarisations néces-
saires pour contrôler le système : sur la base de ces informations, nous simulons numériquement la dynamique
rotationnelle de molécules chirales asymétriques de dimension finie.

En outre, nous nous concentrons sur les propriétés de confinement et de transmission quantiques pour l’équation
de Schrödinger sur des variétés presque riemanniens généralisés de dimension deux. Ces structures sont des
généralisations naturelles du cylindre de Grushin, et leurs Laplaciens associés contiennent des termes singuliers
divergents. Le problème de l’auto-adjonction est d’abord analysé pour le Laplacien de courbure −∆ + cK sur
des variétés presque Riemanniennes en 2D : ici, ∆ et K désignent respectivement l’opérateur de Laplace-Beltrami
et la courbure Gaussienne de la surface, c ≥ 0 est une constante, et un tel opérateur est typiquement issu des
procédures de quantification géométrique sur les variétés Riemanniennes. Si c = 0, le Laplacien ∆ est connu pour
être essentiellement auto-adjoint : un tel phénomène sur les variétés presque Riemanniennes est généralement
appelé confinement quantique, car il implique qu’une particule quantique ne peut pas traverser les singularités de
la structure, même si les particules classiques le peuvent. Nous prouvons qu’il n’y a pas de confinement quantique
pour l’opérateur Laplacien de courbure, en montrant différentes propriétés des opérateurs de fermeture et adjoint.

Nous considérons ensuite l’opérateur de Laplace-Beltrami ∆α associé à la structure α-Grushin, pour α ∈ [0, 1).
Cette structure est une variété presque Riemannien généralisé à deux dimensions qui interpole entre le cylindre
euclidien et le cylindre de Grushin. Nous classons les extensions locales auto-adjointes de ∆α, en utilisant la théorie
des extensions de Kreı̆n-Višik-Birman pour les opérateurs symétriques semi-bornés. Les réalisations auto-adjointes
sont caractérisées en termes de différentes conditions aux bords à imposer à la singularité de la structure. Grâce
à notre analyse, nous obtenons également la régularité de Sobolev des conditions aux bords locales permises pour
les évolutions de Schrödinger bien posées sur la surface anticonique α-Grushin.

Mots clés: Équation de Schrödinger, contrôle quantique, systèmes de contrôle bilinéaires, confinement quan-
tique, approximations deGalerkin, dynamique rotationnelle, molécule symétrique, molécule asymétrique, molécule
chirale, équation du corps rigide d’Euler, transfert sélectif d’énantiomères, variété presque Riemanniennes, plan de
Grushin, procédures de quantification géométriques, auto-adjonction du Laplacien, opérateurs de Bessel, théorie
des extensions auto-adjointes de Kreı̆n-Višik-Birman.
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Abstract

In this thesis we study some problems of controllability, confinement, and transmission for the Schrödinger
equation for some choices of Riemannian manifolds. We present a controllability test for the bilinear discrete
spectrum Schrödinger equation that allows to conclude the approximate controllability of the system by checking
the controllability of overlapping finite-dimensional projections and a weak spectral condition of the infinite-
dimensional system. This test can be applied in particular to study the controllability problem for the quantum
evolution on Riemannian manifolds, and it is particularly suited for systems with high degree of symmetry (and
hence, severe spectral degeneracies). We specialize the technique to the Schrödinger equation on the physically
relevant manifold SO(3): in this way we furnish a classification of the symmetries and the controllability properties
of the quantum rotational dynamics of molecules. The symmetric or asymmetric rigid body is experiencing the
interaction between its electric dipole moment and three orthogonal electric fields as controls, and the controllability
problem is solved in terms of the inertia moments and the dipole configuration. As a byproduct of the geometric
structure behind the control technique, we actually obtain stronger results such as approximate controllability of
the density matrix and approximate controllability in finer topologies.

Our spectral and Lie algebraic approach also allows the identification of frequencies and polarizations needed
to control the system: based on this insight, we numerically simulate the rotational dynamics of finite-dimensional
asymmetric chiral molecules.

Further, we concentrate on the properties of quantum confinement and transmission for the Schrödinger equation
on two-dimensional generalized almost-Riemannian manifolds. These structures are natural generalizations of the
Grushin cylinder, and their associatedLaplacians contain diverging singular terms. The problemof self-adjointeness
is firstly analyzed for the curvature Laplacian −∆ + cK on 2D almost-Riemannian manifolds: here ∆ and K denote
respectively the Laplace-Beltrami operator and the Gaussian curvature of the surface, c ≥ 0 is a constant, and such
an operator typically arises from coordinate-free quantization procedures on Riemannian manifolds. If c = 0, the
Laplacian ∆ is known to be essentially self-adjoint: such a phenomenon on almost-Riemannian manifolds is usually
called quantum confinement, as it implies that a quantum particle cannot cross the singularities of the structure,
even though classical particles do. We prove that there is no quantum confinement for the curvature Laplacian
operator, by showing different properties of the closure and adjoint operators.

We then consider the Laplace-Beltrami operator∆α associated with the α-Grushin structure, for α ∈ [0, 1). This
structure is a two-dimensional generalized almost-Riemannian manifold which interpolates between the Euclidean
and the Grushin cylinder. We classify the local self-adjoint extensions of ∆α, using the Kreı̆n-Višik-Birman
extension theory for semi-bounded symmetric operators. The self-adjoint realizations are characterized in terms
of different local boundary conditions to be imposed at the singularity of the structure. As a byproduct of our
analysis, we also obtain the Sobolev-regularity of the allowed local boundary conditions for well-posed Schrödinger
evolutions on the α-Grushin anti-conic surface.

Keywords: Schrödinger equation, quantum control, bilinear control systems, quantum confinement, Galerkin
approximations, rotational dynamics, symmetric-top molecule, asymmetric-top molecule, chiral molecule, Eu-
ler rigid body equation, enantiomer-selective population transfer, almost-Riemannian manifolds, Grushin plane,
coordinate-free quantization procedures, self-adjointness of the Laplacian, inverse square potential, Kreı̆n-Višik-
Birman self-adjoint extension theory
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Chapter 1

Introduction

1.1 Controlled and free quantum evolution on Riemannian manifolds

1.1.1 Outline of the subject
Given a quantum particle subject to the (possible time dependent) Schrödinger equation, in this thesis we consider
the following type of problems:

• is there a positive probability of finding it at any point of the space?

• by varying the time evolution of the potential via a fine number of parameters, is it possible to drive its wave
function from any initial state arbitrarily close to any final state?

The first question can be attacked by trying to prove that the Schrödinger operator is essentially self-adjoint in a
subset of the space. The second question is a classical question of controllability. Let us be more precise: the
quantum evolution on a Riemannian manifold M with associated Riemannian volume ω is described through its
wave function ψ, which is an element of the Hilbert space L2(M, ω) of norm one. When a system is experiencing a
(possibly time-dependent) potential, the evolution in L2(M, ω) of the wave function is governed by the Schrödinger
equation

(1.1.1) i
∂

∂t
ψ(p, t) = Hψ(p, t) +W(p, t)ψ(p, t) ,

where H = H0 + V is an operator which stands for the quantization of the kinetic H0 plus potential V energies,
and W : M × R → R is a potential of interaction with an external field. The usual choice for H0 is given by
H0 = −∆, where ∆ is the Laplace-Beltrami operator of the Riemannian manifold M . Other choices of H0 present
in the literature, coming from geometric quantizations, are given by H0 = −∆ + cK , where c > 0 is a positive real
constant determined by the quantization procedure, and K : M → R is the scalar curvature of the Riemannian
manifold M (see, e.g., [13]). The operator H +W is in general unbounded, symmetric and defined on the domain
C∞0 (M) of the smooth functions compactly supported on M . A first natural problem is given by the existence and
uniqueness of solutions of the Schrödinger equation (1.1.1). If the potential of interaction W is time-independent,
we denote by D(H +W) the completion of C∞0 (M) w.r.t. the norm induced by H + W . The self-adjointness
problem for the operator H +W consists in establishing whether the space of functions f ∈ L2(M, ω) such that
(H +W) f ∈ L2(M, ω), in the weak sense, coincides with D(H +W). As a consequence of a celebrated theorem
by Stone [104], it turns out that the symmetry of the operator H +W is not sufficient for a well-posed quantum
evolution, since the latter property is equivalent to the essential self-adjointness of H +W : there exists a unique
solution ψ(·) ∈ C1(R, L2(M, ω)) to (1.1.1) with ψ(t) ∈ D(H +W) ∀t ∈ R if and only if the operator H +W is
self-adjoint. Moreover, the solution is implemented via a strongly continuous one-parameter unitary group, given
by ψ(t) = e−it(H+W )ψ(0).

When the Riemannian manifold M is complete as a metric space, that is, is geodesicaly complete, a theorem
by Gaffney states that ∆ is essentially self-adjoint [61]. The same property holds for −∆ + cK if K is bounded; in
particular, it holds when M is compact. So, thanks to Stone’s and Gaffney’s theorems, the free (i.e., in the absence
of potentials) quantum evolution on a compact manifold without boundary is well-defined, w.r.t. H0 = −∆ and also
H0 = −∆ + cK . The same holds in the presence of bounded potentials.

In this thesis we are also interested in a complementary case, that is, when the manifold M is not complete
(and the curvature K is not bounded). Let us figure out a simple one-dimensional example, motivated by singular
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operators which we shall encounter later on, to show which different phenomena may occur in this case: consider
a quantum particle moving on a punctured line R \ {0}, and imagine that an inverse square potential c

x2 is applied
to the system, with amplitude c ∈ R. The wave function for this system evolves on the sphere of L2(R) according
to the equation

i
∂

∂t
ψ(x, t) = −

∂2

∂x2ψ(x, t) +
c
x2ψ(x, t) , ψ(·, 0) = ψ0(·) ∈ C∞0 (R \ {0}).

Wemay want to know if there is a positive probability of finding the particle in any point of the space. In particular,
if the initial state ψ0 for this system is supported on one half-line, say R+, will the wave function spread also on
the other half-line R− during the evolution? The punctured line is a non-complete manifold, so in the absence of
potential we may expect the quantum particle to cross the origin, with a dynamical transmission between R+ and
R−. On the other hand, the singular behaviour of the inverse square potential at the origin may create a barrier
which alters the dynamics. An answer to such a question is furnished by the study of the self-adjointness of the
Schrödinger operator H +W = − ∂2

∂x2 +
c
x2 defined on the half-line with the domain C∞0 (R

+): by regarding the two
linearly independent solutions of the stationary Schrödinger equation −ψ ′′(x) + c

x2ψ(x) = 0 on R+, a celebrated
theory of Weyl called limit point-limit circle method [112] implies that such an operator is essentially self-adjoint
if and only if c ≥ 3/4. As a consequence, when c ≥ 3/4, the Schrödinger evolution is well-defined on L2(R+),
and the wave function ψ(t) = e−it(H+W )ψ0 is supported on R+ for all t ∈ R, if suppψ0 ⊂ R

+. In particular, two
wave functions ψ+ and ψ− respectively supported on R+ and R− cannot be joined by a trajectory of the systems,
and the quantum particle is confined in each half-line. On the other hand, a small variation of the amplitude c
may destroy the self-adjointness, implying the possibility for the wave function to spread out the half-line, and also
the necessity of some boundary condition at x = 0 to describe the interaction between the wave function and the
singular potential.

Throughout the thesis we assume that the operators of interaction with the quantum system has the following
affine form

W(p, t) = u1(t)B1(p) + · · · + u`(t)B`(p)

where the Bi are control operators and the functions ui are piecewise constant control laws. The controllability
problem for the Schrödinger equation on a Riemannian manifold consists in establishing whether, for every pair of
states ψ0 and ψ1 in the sphere of L2(M, ω), there exists a choice of piecewise constant control laws u1, . . . , u` and
a time T ≥ 0 such that the solution to the Schrödinger equation (1.1.1) with initial condition ψ(0) = ψ0 satisfies
ψ(T) = ψ1. Such a problem has a negative answer if the control operators Bi are bounded [14, 107], so one has to
look for weaker notions of controllability, such as approximate controllability.

Let us describe how such a problem can be analyzed: for simplicity, we consider now a compact manifold
M without internal potential, that is V = 0. The controllability problem for (1.1.1) can be studied through its
finite-dimensional spectral approximations: the compactness of M guarantees that H0 is essentially self-adjoint,
and also that the spectrum {λi}i∈N ⊂ R of H0 is real discrete with the eigenfunctions {φi}i∈N of H0 forming an
orthogonal Hilbert basis of L2(M, ω). Following the paper [27], for any n ∈ N one can then project the Schrödinger
equation onto the span{φ1, . . . , φn} � C

n and study the controllability of the finite-dimensional quantum system

(1.1.2) i
d
dt
ψ(t) = H(n)0 ψ(t) +

∑̀
i=1

ui(t)B
(n)
i ψ(t) , ψ(t) ∈ span{φ1, . . . , φn},

where H(n)0 = diag(λ1, . . . , λn) and B(n)i = (〈φ j, Biφk〉)
n
j,k=1. This can be done in several ways, for example using

the Lie-algebraic structure of the equation: (1.1.2) defines a left-invariant control system on the Lie group U(n) for
the propagator U(t)(n) := e−it(H (n)0 +

∑`
i=1 ui (t)B

(n)
i ), that is controllable if and only if Lie{iH(n)0 , iB(n)1 , . . . , iB(n)

`
} = u(n)

[75], where u denotes the Lie algebra of U(n). The question is then how to pass from the finite-dimensional to
the infinite-dimensional equation. The first assumption needed is the essential self-adjointness of H0 +

∑`
i=1 uiBi

on span{φi | i ∈ N}. Then, a condition that guarantees the controllability of (1.1.2) and the (approximate)
controllability of (1.1.1) can be given in terms of a non-resonant spectral graph constructed as follows (we recall
that the controllability of (1.1.2) for every n ∈ N does not imply, in general, the controllability of (1.1.1): see
section 3.1.2, example 3, for details). Let us suppose for the sake of simplicity that ` = 1. Define Ξ as the subset
of N2 given by all (k1, k2) such that 〈φk1, B1φk2〉 , 0. Assume that for every ( j, k) ∈ Ξ such that j , k, we have
λj , λk (meaning that degenerate states are not coupled by B1). If there exists a subset S of Ξ such that the graph
whose vertices are the elements of N and whose edges are the elements of S is connected, and moreover for every
( j1, j2) ∈ S and every (k1, k2) ∈ Ξ different from ( j1, j2) and ( j2, j1),

(1.1.3) |λj1 − λj2 | , |λk1 − λk2 |,
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then the infinite-dimensional system (1.1.1) is approximately controllable. If such a graph exists, we say that the
system admits a non-resonant chain of connectedness. Notice that, in particular, the existence of a non-resonant
chain of connectedness can also be applied to check the controllability of the finite-dimensional approximations as
in (1.1.2). Summarizing, the compactness of M (that implies the self-adjointness of H0 and its discrete spectral
decomposition) and the self-adjointness of H0+

∑`
i=1 uiBi permit to conclude the (approximate) controllability of an

infinite-dimensional system, if the following properties hold: (i) the controllability of a family of finite-dimensional
systems as in (1.1.2), and (ii) a non-resonant condition (1.1.3) on the spectral gaps of H0 used for the control.

If the manifold M is not compact, the spectrum of H0 will not be discrete, but analogous controllability prop-
erties hold in the presence of a non-zero potential V , when it is such that the spectrum of H0 + V is discrete.

1.1.2 Outline of the main contributions of this thesis
In this thesis we follow the approach outlined for the controlled quantum evolution on compact Riemannian man-
ifolds: we present a new spectral Lie-algebraic control condition, which generalizes the non-resonant chain of
connectedness technique, and which is deeply related to the Lie-Galerkin tracking condition introduced in [28].
We apply it to the Schrödinger equation on the compact Lie group of rotation M = SO(3). This manifold naturally
describes the rotational dynamics of symmetric and asymmetric rigid bodies, so that we refer to this problem as the
controllability of the quantum rotational dynamics of symmetric and asymmetric molecules. In this way, we are able
to classify the symmetries (i.e., the conserved quantities) and the reachable sets of quantum rotating molecules. We
moreover numerically simulate some of our controllability results on rotational dynamics in experimentally relevant
finite-dimensional subspaces of chiral asymmetric molecules. Problems of confinement and transmission for free
quantum evolutions on singular Riemannian surfaces are then considered. We present a non-self-adjointness result
for the curvature Laplacian H0 = −∆+ cK on two-dimensional almost-Riemannian manifolds of step 2 (see Section
5.2 for a definition of these structures). We then study the self-adjoint extensions of the Laplace-Beltrami operator
H0 = −∆ on a collection of α-Grushin surfaces: we characterize four families of local self-adjoint extensions which
describe allowed transmissions between the two-halves of the α-cylinder, or in other words boundary conditions
that make the free quantum evolutions (1.1.1) well-defined on such singular Riemannian structures.

1.2 A controllability test for the discrete spectrum Schrödinger equation

1.2.1 State-of-the-art
The controllability criteria we discuss in this thesis concern the general framework of the bilinear multi-input
Schrödinger equation on an infinite-dimensional Hilbert spaceH

(1.2.1) i
dψ(t)

dt
= (H +

∑̀
j=1

u j(t)Bj)ψ(t), ψ(t) ∈ H,

with piecewise constant control laws (u1, . . . , u`) taking values in U ⊂ R` , being U a neighbourhood of the origin.
The main spectral assumptions we need are the following: (i) the operators H, B1, . . . , B` are self-adjoint; (ii) the
operatorH has discrete spectrum {λi}i∈N (with associated eigenfunctions {φi}i∈N); (iii) the operator (H+

∑`
j=1 u jBj)

is essentially self-adjoint on the set of finite linear combinations of eigenfunction of H, given by span{φi | i ∈ N},
for all u ∈ U. Applications to cases of particular interests are, e.g. : (i) H = L2(Ω), where Ω is Rd or a bounded
domain of Rd and H = −∆ + V has discrete spectrum, where ∆ is the Laplacian (with e.g. Dirichlet boundary
condition if Ω is a bounded domain); (ii) H = L2(M, ω), where M is a compact Riemannian manifold, ω is the
Riemannian volume, and H = −∆ is minus the Laplace-Beltrami operator of M; (iii) H = L2(M, ω), where M is
possibly not compact and H = −∆ + V has discrete spectrum; (iv) systems for which H has discrete spectrum and
cannot be written as a sum of a Laplacian and a potential (for example, the so called Eberly Law model [81, 25]).

We say that a couple ( j, k) ∈ N2 is a non-degenerate transition for (H, Bl) if |λj − λk | = |λm − λn | implies
{ j, k} = {m, n} or { j, k}∩ {m, n} = ∅ or 〈φm, Blφn〉 = 0. One of the main ideas behind the controllability criterium
of the non-resonant chain of connectedness is the periodic excitation of a given spectral gap of the system: if
σ = |λj − λk | > 0 is a spectral gap corresponding to a non-degenerate transition ( j, k) for (H, Bl), coupled by Bl

(i.e., 〈φ j, Blφk〉 , 0), then a control law of the form ul(t) = cos(σt)/K induces a transfer of population from the
state φ j to the state φk . This idea, also called by physicists the rotating wave approximation, is based on averaging
techniques applied to bilinear quantum systems (see, e.g., [41]). Following the paper [28], we thus define for any

16



σ > 0, the decoupled control Hamiltonians Eσ(Bl) as

〈φ j, Eσ(Bl)φk〉 =

{
〈φ j, Blφk〉, if |λj − λk | = σ
0, otherwise,

and denoting by Σn := {|λj − λk |, j, k = 1, . . . , n}, one can generalize the non-resonant chain of connectedness
technique for finite-dimensional quantum systems of the form (1.1.2) as follows: if there exist σ1, . . . , σm ∈ Σn
such that

Lie{iH(n), Eσi (iB
(n)
l
) | i = 1, . . . ,m, l = 1, . . . , `} = u(n),

then (1.1.2) is controllable. Further, to obtain the control of the original infinite-dimensional system, in [28] the
authors added a non-resonant condition: one defines Ξn as the set of (σ, l) ∈ Σn × {1, . . . , `} such that, for every
N > n,

Eσ(iB(N )i ) =

[
Eσ(iB(n)i ) 0

0 ∗

]
,

and hence Ξn is the set of frequencies which preserve the finite-dimensional truncations of the original system.
Notice that in Ξn degenerate transitions are allowed, but only inside span{φ1, . . . , φn}. Then, if for every n0 there
exists n ≥ n0 such that

Lie{iH(n), Eσ(iB(n)l
), (σ, l) ∈ Ξn} = u(n),

the Schrödinger evolution (1.2.1) is approximately controllable. The main advantage of this controllability criteria,
called the Lie-Galerkin tracking condition, is that it allows the drift operator H to have a very degenerate spec-
trum, as for example in [28] it was applied to prove the approximate controllability of the Schrödinger equation on S2.

1.2.2 A new controllability test
In this thesis we present a variation of the controllability criterium described above: the idea is to check the
controllability of the approximations on a sequence of overlapping subspaces, instead of a sequence of increasing
subspaces. This is inspired by symmetry considerations: if there exists an operator J , H such that [H, J] = 0,
it is convenient to project the evolution on the eigenspaces of J. We present here a simplified and more intuitive
version, and a more general version in Section 3.1.3 which does not assume the existence of such a commuting
operator J.

Let us assume that there exists a self-adjoint (possibly unbounded) operator J, with domain D(J), such that

• span{φk | k ∈ N} ⊂ D(J),

• J has discrete spectrum and infinitely many distinct eigenvalues (possibly degenerate),

• J(span{φk | k ∈ N}) ⊂ D(H) and J commutes with H on span{φk | k ∈ N}.

Then, there exists an Hilbert basis, which we denote by B, made by eigenvectors of H and J at the same time, that
is, if φ j

k
∈ B, then Hφ j

k
= λ

j
k
φ
j
k
and Jφ j

k
= µjφ

j
k
. Denote by mj the multiplicity of the eigenvalue µj , then we can

label the basis B as (φ j
k
| j ∈ N, k = 1, ...,mj).

ConsiderHj := span{φ j
k
| k = 1, ...,mj}, j ∈ N, which are the eigenspaces of the operator J, and let us denote

by
Σj, j+1 = {|λ

l′

k′ − λ
l
k | | l, l

′ ∈ { j, j + 1}, k ′ = 0, ...,ml′, k = 0, ...,ml}

the spectral gaps in the subspaceHj ⊕ Hj+1. Moreover, for every j ∈ N, define the orthogonal projections

Πj, j+1 : H 3 ψ 7→
∑

l=j, j+1,
k=1,...,ml

〈φlk, ψ〉φ
l
k ∈ H,(1.2.2)

Π0, j+1 : H 3 ψ 7→
∑

l=0,..., j+1,
k=1,...,ml

〈φlk, ψ〉φ
l
k ∈ H,

and we define B(j, j+1)
i := Πj, j+1BiΠj, j+1, and B(j+1)

i := Π0, j+1BiΠ0, j+1, for every i = 1, ..., l.
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Denote by u( j, j + 1) the Lie algebra associated with the Lie group of the unitary operators on the space
Hj ⊕ Hj+1, that is, u( j, j + 1) := u(mj + mj+1). We define

Ξ
0
j, j+1 = {(σ, i) ∈ Σj, j+1 × {1, ..., l} | Eσ(iB(h)i ) =


0 0 0
0 Eσ(iB(j, j+1)

i ) 0
0 0 0

 for every h > j },

and

Ξ
1
j, j+1 = {(σ, i) ∈ Σj, j+1 × {1, ..., l} | Eσ(iB(h)i ) =


∗ 0 ∗

0 Eσ(iB(j, j+1)
i ) 0

∗ 0 ∗

 for every h > j },

where Eσ(iB(j, j+1)
i ) is in the block j, j + 1. A transition associated with spectral gaps in Ξ1

j, j+1 may be resonant to a
transitions between two state that are both inside or outsideHj ⊕ Hj+1, while a transition associated with spectral
gaps in Ξ0

j, j+1 may only be resonant to a transition between two state that are both inside Hj ⊕ Hj+1. In both sets
Ξs
j, j+1, s = 0, 1, degenerate transitions are allowed, but only insideHj ⊕ Hj+1.
Let

νsj, j+1 := {H(j, j+1), Eσ(iB(j, j+1)
i ) | (σ, i) ∈ Ξs

j, j+1, σ > 0}, s = 0, 1.

Notice that ν0
j, j+1 ⊂ ν

1
j, j+1 ⊂ u( j, j+1). We denote by Lie(νsj ) the Lie subalgebra of u(nj) generated by the matrices

in νsj , s = 0, 1, and define Tj as the minimal ideal of Lie(ν1
j ) containing ν

0
j . Then we have the following result:

Theorem 1.2.1. If Tj = u(nj) for every j ∈ N, then (1.2.1) is approximately controllable.

A proof of a more general version of the above controllability test is given in Theorem 3.1.21.

1.3 The controlled Schrödinger equation on SO(3)
InChapter 3we apply the controllability test stated inTheorem1.2.1 to classify the symmetries and the controllability
properties of quantum rotational dynamics. We present a study of the Schrödinger equation associatedwith a rotating
rigid body, also named a rotating top, that is a symmetric or asymmetric molecule rotating around its center of
mass. The Schrödinger equation is infinite-dimensional, and the approximate controllability is obtained through
its finite-dimensional approximations together with weak spectral conditions. The rigid top is experiencing the
interaction of three orthogonal electric fields as controls, so that the dynamics is described via the following bilinear
multi-input controlled Schrödinger equation

(1.3.1) i
∂

∂t
ψ(R, t) =

1
2

(
P2

1
I1
+

P2
2

I2
+

P2
3

I3

)
ψ(R, t) −

3∑
j=1

u j(t)〈Rδ, ej〉ψ(R, t), ψ(·, t) ∈ L2(SO(3)),

where 1
2

(
P2

1
I1
+

P2
2
I2
+

P2
3
I3

)
is the rotational Hamiltonian, I1, I2, I3 are the moments of inertia of the molecule, P1, P2, P3

are the angular momentum operators (their differential action is given in (1.3.10)), self-adjoint w.r.t. the Haar
measure of SO(3), and −〈Rδ, ei〉 is the interaction Hamiltonian between the electric dipole moment δ of the
molecule and the direction ei of the electric field, i = 1, 2, 3 (its action as bounded multiplicative operator is given
in (1.3.6)). The Hamiltonian that generates the evolution is also called Stark effect Hamiltonian, and the control
law u = (u1, u2, u3) ∈ U is smooth or piecewise constant and represents an electric field polarized in the three
orthogonal direction e1, e2, e3, where U ⊂ R3 is a neighbourhood of the origin. Finally, R ∈ SO(3) is the matrix
which describes the orientation of the molecule in the space.

Rigid molecules are subject to the classification of rigid rotors in terms of their inertia moments I1 ≤ I2 ≤ I3:
one distinghuishes asymmetric-tops (I1 < I2 < I3), prolate symmetric-tops (I1 < I2 = I3), oblate symmetric-tops
(I1 = I2 < I3), spherical-tops (I1 = I2 = I3), and linear-tops (I1 = 0, I2 = I3).

Rotations can in general couple to vibrations in the so-called ro-vibrational states. In our mathematical analysis,
however, we shall restrict ourselves to the rotational states of the molecule, neglecting the vibrations. This approxi-
mation is in general well-justified on a physical level, being the rotational and vibrational transitions experienced at
different scales. For further details on this subject called in literature the distortable rotor, we refer to [68, Chapter 8].

The capability of controlling molecular rotations can be very important in quantum physics and chemistry
because of the variety of its applications, starting from well-established ones such as microwave molecular spec-
troscopy [45], rotational state-selective excitation of chiral molecules [51, 52], and going further to applications
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(a) (b) (c)

Figure 1.1: Three orthogonal electric fields to control the ellipsoid of inertia of a symmetric rigid molecule with:
(a) dipole δ parallel to the symmetry axis; (b) dipole δ orthogonal to the symmetry axis; (c) dipole δ neither parallel
nor orthogonal to the symmetry axis. The dipole configurations (a) and (b) correspond to non-controllable quantum
systems, due to the presence of different symmetries, after Theorems 3.2.1 and 3.2.11. The dipole configuration
(c) is (approximately) controllable, after Theorem 3.2.5.

in quantum information [115, 9]. The general problem on whether molecular rotation is controllable goes back to
the early days of quantum control; for example, in the paper [72] crucial ideas were presented and in particular a
first prove of the wave-function approximate controllability for a rotating linear-top was proposed. For a general
overview on the controllability problem in molecular rotational dynamics we refer also to the review [77], where
the controllability problem for the Schrödinger evolution on SO(3) was presented as an open problem, which is
solved in this thesis (under non-resonant assumptions on the inertia moments).

1.3.1 State-of-the-art: the controlled Schrödinger equation on S1 and S2

Due to its discrete quantization, molecular dynamics perfectly fits the mathematical quantum control theory which
has been established until now. In fact, the control of the Schrödinger equation has attracted substantialmathematical
interest in the last 15 years (see [11, 16, 29, 67, 76, 93, 17] and references therein). The partial differential equation
(1.3.1) is an example of closed quantum system modelled through a bilinear infinite-dimensional multi-input
Schrödinger equation of the form (1.2.1). The controllability of (1.2.1) is a well-established topic when the
Hilbert space H is finite-dimensional, thanks to general controllability methods for left-invariant control systems
on compact Lie groups (see [74, 75, 54, 65]). WhenH is infinite-dimensional and the control operators B1, . . . , B`
are bounded (as in (1.3.1), where H = L2(SO(3)) and the control operators are trigonometric polynomials of the
Euler’s angles, cf. (1.3.6)), it is known that (1.2.1) is not exactly controllable [15, 107]. Hence it is natural to look
for weaker controllability properties such as approximate controllability.

Given two vectors ψ0, ψ1 in H of norm one, we say that ψ1 is approximately reachable from ψ0 if for any
ε > 0, there exist a control law u (in a class of admissible functions) and a time T ≥ 0 such that the solution to the
system (1.2.1) with initial condition ψ(0) = ψ0 satisfies ‖ψ(T) − ψ1‖ < ε . Then (1.2.1) is said to be approximately
controllable if, for any ψ inH of norm one, all unit vectors are approximately reachable from ψ.

Approximate controllability and exact controllability are known to be equivalent conditions for finite-dimensional
bilinear quantum systems [29], and more in general for any finite-dimensional bilinear systems as it is proved in
the very recent paper [39]. However, this is not the case for infinite-dimensional systems.

Approximate controllability results of (1.2.1) have been obtained with different techniques: adiabatic control
[3, 36], Lyapunov methods [87, 92, 93] and Lie-algebraic methods [24, 25, 27, 41, 42, 28, 40, 76].

In particular, the problem of controlling the rotational dynamics of a planarmolecule bymeans of two orthogonal
electric fields has been analyzed in [27], where approximate controllability has been proved using a suitable non-
resonance property of the spectrum of the rotational Hamiltonian. In [28] the approximate controllability of
a linear-top controlled by three orthogonal electric fields has been established. There, a sufficient condition for
controllability, called the Lie-Galerkin tracking condition, has been introduced in an abstract framework and applied
to the linear-top system; such a condition is based on the controllability of the finite-dimensional approximations
combined with weak spectral conditions which permits to treat severe degenerate and resonant spectra. Let us
recall these two models already studied in the literature.

• Planar molecule The system of a planar bipolar molecule interacting with two orthogonal controls is
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modelled by the following bilinear controlled Schrödinger equation on the circle S1:

(1.3.2) i
∂

∂t
ψ(α, t) =

[
−
∂2

∂α2 + u1(t) cos(α) + u2(t) sin(α)
]
ψ(α, t) , ψ(·, t) ∈ L2(S1),

where α ∈ [0, 2π) is the coordinate on the circle, related to the Euclidean coordinates through the identities

x = cos(α), y = sin(α).

This equation has been proved to be approximately controllable in [27, Proposition 8.2], using a technique

Figure 1.2: Two orthogonal electric fields to control the rotation of a linear bipolar molecule confined to a plane.
Its rotation is (approximately) controllable, after [27].

based on the existence of a non-resonant connected chain in the spectrum of the drift H := − ∂2

∂α2 .

Let us point out that the spectrum of H is given by {Ek = k2 | k ∈ Z}, which is degenerate, as Ek = E−k and
an Hilbert basis made of eigenfunctions of H is given by the trigonometric functions {eikα/

√
2π | k ∈ Z}.

The eigenspace corresponding to the degenerate eigenvalue Ek , k ≥ 1, is spanned by the pair of functions
{φk := cos(kα)/

√
π, φ−k := sin(kα)/

√
π}. The control fields are given by the bounded multiplicative

operators B1 := cos(α) and B2 := sin(α).

Figure 1.3: Spectral graph associated with a planar linear-top: transitions at frequencies ω1 := |E1 − E0 | and
ω2 := |E2 − E1 |, between states |k〉 := φk , for k = −2, . . . , 2, driven by B1 or B2. Same-shaped arrows correspond
to equal spectral gaps.

In the example 3 of chapter 3 we show that this system satisfies the Lie-Galerkin tracking condition. This
implies that it is approximately controllable, and also satisfies stronger properties such as approximate
controllability in the sense of density matrices, by means of piecewise constant and smooth controls u1, u2 ∈
[−δ, δ], for any δ > 0.

• Linear molecule The system of a linear bipolar molecule interacting with three orthogonal controls is
modelled by the following bilinear controlled Schrödinger equation on the sphere S2:
(1.3.3)
i
∂

∂t
ψ(α, β, t) =

[
−∆+ u1(t) sin(β) cos(α)+ u2(t) sin(β) sin(α)+ u3(t) cos(β)

]
ψ(α, β, t) , ψ(·, ·, t) ∈ L2(S2),
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where (α, β) ∈ [0, 2π) × [0, π] are the spherical coordinates, related to the Euclidean coordinates through the
identities

x = sin(β) cos(α), y = sin(β) sin(α), z = cos(β),

and
∆ =

1
sin(β)

∂

∂β

(
sin(β)

∂

∂β

)
+

1
sin2(β)

∂2

∂α2

is the Laplace-Beltrami operator of S2 ⊂ R3. The interaction Hamiltonians B1 := sin(β) cos(α), B2 :=
sin(β) sin(α), B3 := cos(β) are sometimes called in the physical and chemical literature, resp., x-,y-, and
z-polarization of the electric field.

Figure 1.4: Three orthogonal electric fields to control the rotation of a linearmolecule inR3.The diagram represents,
e.g., the hydrogen chloride molecule HCl. Its rotation is (approximately) controllable, after [28].

System (1.3.3) has been proved to be approximately controllable, and satisfy stronger properties (e.g., it is
a modulus tracker [28, Theorem 3.1]), by means of piecewise constant [28, Theorem 2.8] and smooth [40,
Theorem 2.7] controls u1, u2, u3 ∈ [−a, a], for any a > 0. In fact, it has been proved to satisfy the Lie-
Galerkin tracking condition in [28, Lemma 3.2]. Let us point out some spectral properties of the drift −∆:
its spectrum is given by the set of eigenvalues {Ej := j( j + 1) | j ∈ N}, and the associated eigenfunctions are
the spherical harmonics {Y j

m(α, β) | j ∈ N , m = − j, . . . , j}. The spherical harmonics satisfy the following
partial differential equations:

−∆Y j
m = j( j + 1)Y j

m , m = − j, . . . , j(1.3.4)
J3 Y j

m = m Y j
m

where the operator J3 := −i ∂∂α is the third component of the angular momentum. From (1.3.4) we see that
each Ej , j ≥ 1, is degenerate with associated (2 j + 1)-dimensional eigenspace spanned by {Y j

m(α, β) | m =
− j, . . . , j}.
Even if non-resonant chains of connectedness may be constructed for degenerate systems, an unbounded
amount of degeneracies make in practice very hard the application of this technique in order to get control-
lability results, since an unbounded amount of transitions occur at the same frequency.
As we shall see in the next section, system (1.3.3) can be realized as a subsystem of the symmetric molecule.

1.3.2 New results: symmetries and controllability on SO(3)
In this thesis, we study the symmetric- and asymmetric-top as a generalization of the linear one, characterizing its
controllability in terms of the position of its electric dipole moment, fixed inside the molecular frame. While for
the linear-top two quantum numbers j,m are needed to describe the motion, the main and more evident difference
here is the presence of a third quantum number k, which for symmetric-tops classically represents the projection
of the total angular momentum on the symmetry axis of the molecule. This should not be a surprise, since the
configuration space of a linear-top is the 2-sphere S2, while symmetric- and asymmetric-tops evolve on the Lie
group SO(3), a three-dimensional manifold. As a matter of fact, by fixing k = 0, one recovers the linear-top as
a subsystem inside the symmetric-top. It is worth mentioning that the general theory developed in [27, 42, 93] is
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Figure 1.5: Spectral graph associated with a spherical linear-top: transitions at frequencies σ0 := |E1 − E0 | and
σ1 := |E2 − E1 |, between the eigenstates | j,m〉 := Y j

m, driven by B1, B2, and B3. Same-shaped arrows correspond
to equal spectral gaps.

based on non-resonance conditions on the spectrum of the internal Hamiltonian. A major difficulty in studying
the controllability properties of the rotational dynamics is that, even in the case of the linear-top, the spectrum
of the rotational Hamiltonian has severe degeneracies at the so-called m-levels. The symmetric-top is even more
degenerate, due to the additional degeneracy of the so-called k-levels.

We shall first study the symmetric-top, and set I1 = I2. Anyway, our analysis does not depend onwhether I3 ≥ I2
or I3 ≤ I2, so we are actually treating in this way both the cases of a prolate, spherical, or oblate symmetric-top.
The principal axis of inertia with associated inertia moment I3 is then called symmetry axis of the molecule. The
position of the electric dipole with respect to the symmetry axis plays a crucial role in our controllability analysis:
a symmetric molecule with electric dipole collinear to the symmetry axis will be called genuine, otherwise it will
be called accidental ([68, Section 2.6]). Most symmetric molecules present in nature are genuine. The diagram
of a genuine symmetric top is given in figure 1.7 and corresponds to the CH3Cl molecule. Nevertheless, it can
happen that two moments of inertia of a real molecule are almost equal, by “accident", although the molecule does
not possess a n-fold axis of symmetry with n ≥ 3.1For instance, the inertia moments of the molecule HSOH are
I1 ∼ I2 � I3, while its dipole components are δ1 > δ2 = δ1/2 � δ3 , 0 [113]. Such slightly asymmetric-tops
are often studied in chemistry and physics in their symmetric-top approximations (see, e.g., [113],[68, Section
3.4]), which correspond in general to accidentally symmetric-tops. The diagram of an orthogonal (i.e. δ3 = 0)
accidentally symmetric-top is given in figure 1.3.2 and corresponds to the symmetric top approximation of the
D2S2 molecule.

Figure 1.6: Diagram of the orthogonal accidentally symmetric-top approximation of the molecule D2S2. Its rotation
is not controllable, after Theorem 3.2.11, as the electric dipole δ lies in the orthogonal plane to the symmetry axis.

For the rotational Hamiltonian of a symmetric-top, closed expression for the spectrum and the eigenfunctions
are known. Beside its own interest, the accidentally symmetric-top is then used in this thesis to obtain controllability
of asymmetric-tops with a perturbative approach. The idea of studying the controllability of quantum systems in
general configurations starting from symmetric cases (even if the latter have more degeneracies) has already been
exploited, e.g., in [31, 85].

The position of the electric dipole moment turns out to play a decisive role: when it is neither along the
symmetry axis, nor orthogonal to it, as in Figure 1.1(c), then approximate controllability holds, under a suitable

1The existence of a n-fold axis of symmetry (i.e., an axis such that a rotation of angle 2π/n about it leaves unchanged the distribution of
atoms in the space) with n ≥ 3, implies that the top is genuine symmetric. This can be visualized by rotating the ellipsoid of inertia: if a rotation
of angle 2π/n, with n ≥ 3, is a symmetry then the planar sections orthogonal to the axis of symmetry are circles, implying the equality of two
inertia moments.
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non-resonance condition, as it is stated in Theorem 3.2.5 for symmetric-tops; for asymmetric-tops, approximate
controllability holds when the dipole is not along any principal axis of inertia, as it is stated in Theorem 3.3.2.
To prove both Theorems, we apply the new controllability test for the discrete spectrum Schrödinger equation
introduced in Section 1.2.2. The control strategy for the symmetric molecule is based on the excitation of the
system with external fields in resonance with three families of frequencies (cf. (3.2.11), (3.2.12), and (3.2.13)),
corresponding to internal spectral gaps. One frequency is used to overcome the m-degeneracy in the spectrum
(Appendix 3.4.1), and this step is quite similar to the proof of the linear-top approximate controllability [28, proof
of Lemma 3.2]. The other two frequencies are used in a next step to break the k-degeneracy, in a three-wave mixing
scheme (Appendix 3.4.2) typically addressed in microwave molecular spectroscopy to obtain enantiomer-selective
population transfer in chiral molecules (see, e.g., [82]).

Concerning symmetric tops, the two dipole configurations to which Theorem 3.2.5 does not apply are extremely
relevant from the physical point of view. Indeed, the dipole moment of a symmetric-top lies usually along its
symmetry axis (Figure 1.1(a), see also the diagram of the genuine symmetric molecule CH3Cl in Fig. 1.7), and if
not, for accidentally symmetric-tops, it is often found in the orthogonal plane (Figure 1.1(b), see also the diagram
of the orthogonal accidentally symmetric molecule D2S2 in Fig. 1.3.2). Here two different symmetries arise,
implying the non-controllability of these systems, as we prove, respectively, in Theorems 3.2.1 and 3.2.11.

Concerning asymmetric tops, the three dipole configurations (i.e., dipole along one of the principal axis of
inertia) that lead to conserved quantities and lack of controllability (see Theorem 3.3.1) are less relevant from
a physical point of view, as asymmetric rotors may naturally be more complex objects and have in general non-
vanishing dipole components along the three principal axis of inertia. For example, our numerical simulations
of rotational dynamics (cf. Sec. 4.4) are carried on the models of the carvone and the propanediol molecules,
which are asymmetric molecules with three non-vanishing dipole components. So, in particular, our study singles
out an important obstruction in the controllability problem of symmetric molecules, and gives a positive answer
to the controllability problem of asymmetric molecules. Nonetheless, it is worth noting that there exist in nature
very simple and important asymmetric molecules whose rotational dynamics we prove to be non-controllable: for
example the water molecule H2O, due to its simple structure, has dipole moment lying along the axis of greatest
moment of inertia (Figure 1.9), and it is thus non-controllable after Theorem 3.3.1 (i). It is also worth mentioning
the fact that our theoretical and qualitative analysis does not take into account the time needed for the transfer of
rotational population: due to the presence of quasi-resonant transitions in the spectrum of asymmetric-top rotational
Hamiltonians, this time might be large and experimentally unrealistic w.r.t. the time limit given by decoherence and
dissipative phenomena; such a problem deserves to be addressed more in details, starting from finite-dimensional
Hilbert subspaces.

Let us discuss more in detail the controlled bilinear Schrödinger PDEs which describe rotating symmetric and
asymmetric molecules, and summarize our new results on these systems.

• SymmetricmoleculeThe system of a rotating symmetric molecule interacting with three orthogonal controls
is modelled via the following bilinear controlled Schrödinger equation on the rotation group SO(3):

i
∂

∂t
ψ(α, β, γ, t) =

(
1

2I2
P2 +

( 1
2I3
−

1
2I2

)
P2

3

)
ψ(α, β, γ, t)(1.3.5)

−

3∑
l=1

ul(t)〈R(α, β, γ)δ, el〉ψ(α, β, γ, t) , ψ(·, ·, ·, t) ∈ L2(SO(3)),

where (α, β, γ) ∈ [0, 2π) × [0, π] × [0, 2π) are the Euler angles, I1 = I2, I3 are the moments of inertia of
the molecule, δ = (δ1, δ2, δ3)

T is the electric dipole expressed in the rotating frame, and R(α, β, γ) ∈ SO(3)
specifies the configuration of the molecule in the space (being e1, e2, e3 ∈ R

3 the canonical basis). The
electric dipole is transformed into a vector expressed in the fixed frame through the identities

x = −〈R(α, β, γ)δ, e1〉, y = −〈R(α, β, γ)δ, e2〉, z = −〈R(α, β, γ)δ, e3〉,

or more explicitly

x = −(cosα cos β cos γ − sinα sin γ)δ1 + (cosα cos β sin γ − sinα cos γ)δ2 − (cosα sin β)δ3

y = −(sinα cos β cos γ + cosα sin γ)δ1 + (sinα cos β sin γ + cosα cos γ)δ2 − (sinα sin β)δ3

z = (sin β cos γ)δ1 − (sin β sin γ)δ2 − (cos β)δ3.

(1.3.6)
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The bounded operators of multiplication Bi := −〈R(α, β, γ)δ, ei〉, i = 1, 2, 3, are called the x-, y- and z-
polarizations of the electric field. Notice that, if δ = (0, 0, δ3)

T (i.e., the dipole is parallel to the symmetry
axis of the molecule), we recover the interaction of a linear top with the controls. In particular, the third
angular variable γ (which describes the rotation around the symmetry axis) disappears from the controls,
suggesting that this configuration of the dipole is non-controllable.

Figure 1.7: Three orthogonal electric fields to control the rotation of a symmetric molecule in R3. The diagram
represents, e.g., the chlorometane molecule CH3Cl. Its rotation is not controllable, after Theorem 3.2.1, as the
electric dipole δ is parallel to the symmetry axis of the molecule.

The drift H :=
(

1
2I2 P2 +

(
1

2I3 −
1

2I2

)
P2

3

)
is obtained from the rotational Hamiltonian H = 1

2

(
P2

1
I1
+

P2
2
I2
+

P2
3
I3

)
after having imposed the symmetry condition I1 = I2 (being P2 := P2

1 + P2
2 + P2

3 ), and as a differential
operator in Euler’s coordinates reads

H = −
1
I2

[
1

sin(β)
∂

∂β

(
sin(β)

∂

∂β

)
+

1
sin2(β)

(
∂2

∂α2 +
∂2

∂γ2 − 2 cos(β)
∂2

∂α∂γ

)]
−

(
1

2I3
−

1
2I2

)
∂2

∂γ2 .

Notice that its action on functions which do not depend on the third angular variable γ is −1/I2-times
the action of the Laplace-Beltrami ∆ of the sphere S2. Its spectrum is given by the set of eigenvalues
{E j

k
:= j(j+1)

2I2 +
(

1
2I3 −

1
2I2

)
k2 | j ∈ N, k = − j, . . . , j} and the associated eigenfunctions are the Wigner

D-functions {D j
k,m
(α, β, γ) | j ∈ N, m, k = − j . . . , j}. The Wigner D-functions satisfy the following partial

differential equations:

P2 D j
k,m

= j( j + 1)D j
k,m

, m = − j, . . . , j

J3 D j
k,m

= m D j
k,m

,

P3 D j
k,m

= k D j
k,m

,

where P2 is given in the squared brackets of H, J3 := −i ∂∂α , and P3 := −i ∂∂γ . In quantum mechanics, P2

is interpreted as the squared norm of the angular momentum, J3 is the projection of the angular momentum
along the space fixed third axis, and P3 is the projection of the angular momentum along the molecule fixed
third axis. We remark that, as in classical mechanics the rigid body has an additional third degree of freedom
(the angle γ) w.r.t. the motion on the sphere, in quantum mechanics this additional degree of freedom is
represented by the additional quantum number k. Hence, the eigenvalue equation for the drift reads

(1.3.7)
[

1
2I2

P2 +
( 1
2I3
−

1
2I2

)
P2

3

]
D j
k,m
=

[
j( j + 1)

2I2
+

( 1
2I3
−

1
2I2

)
k2

]
D j
k,m

, m = − j, . . . , j

fromwhichwe see that each E j
k
, j ≥ 1 and k , 0, is (2 j+1)-degenerate w.r.t. m and 2-degenerate w.r.t. k, with

associated eigenspace spanned by {D j
l,m
(α, β, γ) | m = − j . . . , j , l = k,−k}. We remark that D j

0,m = Y j
m,

and in this sense we recover the linear molecule as the evolution described by (1.3.5), w.r.t. the dipole
δ = (0, 0, δ3), on the Hilbert subspace spanned by the spherical harmonics {Y j

m | j ∈ N, m = − j, . . . , j}.
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Figure 1.8: Three-dimensional spectral graph associated with a symmetric-top: transitions at frequencies λ0
0 :=

|E1
1 − E0

0 |, σ
0
0 := |E1

0 − E0
0 |, and η

1
0 = |E

1
1 − E1

0 | between the eigenstates | j, k,m〉 := D j
k,m

, driven by B1 (green
arrows), B2 (orange arrows), and B3 (blue arrows). Same-shaped arrows correspond to equal spectral gaps.

In this thesis we classify the controllability and the symmetries of (1.3.5) depending on δ, by applying the
controllability test introduced in section 1.2.2 (see also Theorem 3.1.21). More precisely, we prove that:

(i) If δ = (0, 0, δ3)
T , (1.3.5) is not controllable. More precisely, there exists a decomposition in or-

thogonal invariant Hilbert sub-spaces L2(SO(3)) =
⊕

k∈Z Sk (see Theorem 3.2.1) which are also the
simultaneously approximately reachable sets (see Theorem 3.2.3).

(ii) If δ = (δ1, δ2, 0)T , (1.3.5) is not controllable. More precisely, there exists a decomposition in orthog-
onal invariant Hilbert sub-spaces L2(SO(3)) = Le ⊕ Lo (see Theorem 3.2.11) which are also the
simultaneously approximately reachable sets (see Theorem 3.2.12), when I2

I3
< Q.

(iii) If δ , (0, 0, δ3)
T , (δ1, δ2, 0)T , (1.3.5) is a modulus-tracker, when I2

I3
< Q (see Theorem 3.2.5). In

particular, it is approximately controllable in the sense of wave-functions, and in the sense of density
matrices, by means of piecewise constant or smooth controls u1, u2, u3 ∈ [−a, a], for any a > 0. It is
also approximately controllable in higher Hs-norms.

We remark that our proof does not use a perturbative approach to lift the spectral degeneracies in the drift.
Anyway, a perturbation at first order may lead to a result similar to (iii): despite evident difficulties in finding
non-resonant chains of connectedness, one may study a first or higher order perturbation of the Lie algebra
generated by a perturbed drift and the control operators. In fact, if one considers ε > 0 and the Stark effect
Hamiltonian H̃ := H + εB3, then its spectrum is given by the analytic curves {E j

k,m
(ε) | j ∈ N, k,m =

− j, . . . , j}, and it is less degenerate than the one of H: indeed several degeneracies are lifted at first order, as
we have [68, Chapter 10]

(1.3.8)
d
dε

���
ε=0

E j
k,m
(0) = 〈D j

k,m
, B3D j

k,m
〉 = −δ3

km
j( j + 1)

.

Thus, for example, in Figure 1.8 the unperturbed eigenstates |1, 1, 1〉 and |1,−1, 1〉 have the same energy
E1

1 = E1
−1, but after the application of a constant electric field of magnitude ε and polarization z the state

|1,−1, 1〉 goes up and |1, 1, 1〉 goes down (after (1.3.8)), lifting the degeneracy at k = 1,−1. In this way one
easily finds non-resonant connected chains in the spectrum of H̃ for j = 0, 1, for example, or equivalently a
computation shows that the first order Lie algebra generated by i(H(0,1)+εB(0,1)3 ), iB(0,1)1 , iB(0,1)2 is su(10), where
A(0,1) denotes the operator Π0,1 AΠ0,1, and Πj, j+1 : L2(SO(3)) → span{Dl

k,m
| l = j, j + 1, k,m = −l, . . . , l}

is the orthogonal projection. A general perturbative proof that works for any j is an open challenge.
We finally remark that such a perturbative controllability proof, for the rotational spectrum of rigid rotors,
may be interesting for physicists and chemists, as it would represent a mathematical confirmation of a well-
established experimental technique. In fact, the application of a small constant electric field in order to
detect a splitting in the rotational energies has been widely used in experiments of microwave molecular
spectroscopy for more than 70 years [45].

• Asymmetric molecule The system of a rotating symmetric molecule interacting with three orthogonal
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controls is modelled via the following bilinear controlled Schrödinger equation on the rotation group SO(3):

i
∂

∂t
ψ(α, β, γ, t) =

1
2

(
P2

1
I1
+

P2
2

I2
+

P2
3

I3

)
ψ(α, β, γ, t)(1.3.9)

−

3∑
l=1

ul(t)〈R(α, β, γ)δ, el〉ψ(α, β, γ, t) , ψ(·, ·, ·, t) ∈ L2(SO(3)),

where I1 < I2 < I3 are the moments of inertia of the molecule. Everything is defined as for the symmetric
molecule, but the drift is more general. The angular momentum operators in Euler’s coordinates are given
by the differential operators:

P1 = −i cos γ
cos β
sin β

∂

∂γ
+ i

cos γ
sin β

∂

∂α
− i sin γ

∂

∂β
,

P2 = i sin γ
cos β
sin β

∂

∂γ
− i

sin γ
sin β

∂

∂α
− i cos γ

∂

∂β
,

P3 = −i
∂

∂γ
.

(1.3.10)

Figure 1.9: Three orthogonal electric fields to control the rotation of an asymmetric molecule in R3. The diagram
represents, e.g., the water molecule H2O. Its rotation is not controllable, after Theorem 3.3.1 (i), as the electric
dipole δ = (0, 0, δ3)

T is parallel to the axis of greatest inertia moment.

The spectral properties of the drift H = 1
2

(
P2

1
I1
+

P2
2
I2
+

P2
3
I3

)
can be deduced via symmetry considerations and

perturbation techniques from the ones of the symmetric molecule (see figure 1.10). For a spectral graph of an
asymmetric top, with eigenstates transitions at different frequencies, see figure 4.1 in chapter 4. In general, j
and m are still good quantum numbers for asymmetric molecules, while k is no longer defined. The spectrum
of H is given by the set of eigenvalues {E j

τ | j ∈ N, τ = − j, . . . , j} and each E j
τ is (2 j + 1)-degenerate w.r.t.

m, but the k-degeneracy, typical of symmetric molecules, is lifted. It is worth noting that here τ is an index,
and does not represent any physical observable (i.e., it is not a quantum number). The eigenfunctions of H
are given by

Ψ
j
τ,m(α, β, γ) =

∑
k=−j,..., j

c j
k,m
(τ)D j

k,m
(α, β, γ),

and the eigenspace corresponding to the degenerate eigenvalue E j
τ , j ≥ 1, is spanned by {Ψ j

τ,m | m =
− j, . . . , j}.
In this thesis we classify the controllability and the symmetries of (1.3.9) depending on δ, by applying
the controllability test introduced in section 1.2.2 (see also Theorem 3.1.21) and an analytic perturbative
expansion from an associated symmetric molecule. More precisely, we prove that:

(i) If δ = (0, 0, δ3)
T , (1.3.9) is not controllable. More precisely, there exists a decomposition in orthogonal

invariant Hilbert sub-spaces L2(SO(3)) = Ke ⊕ Ko (see Theorem 3.3.1 (i)).
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Figure 1.10: Three-dimensional spectral graph associated with an asymmetric-top. The frequencies
η1

1,1(µo), ρ
0
0,1(µo), σ

0
0,0(µo), η

1
0,0(µo), and λ0

0,0(µo) between the eigenstates | j, τ,m〉 := Ψ j
τ,m are defined in (3.3.10)-

(3.3.13) as analytic perturbations, w.r.t. the asymmetry parameter µo =
A−B

2C−B−A ∈ [−1, 0], of symmetric top’s
spectral gaps (where A = 1/(2I1), B = 1/(2I2) and C = 1/(2I3)).

(ii) If δ = (δ1, 0, 0)T , (1.3.9) is not controllable. More precisely, there exists a decomposition in orthogonal
invariant Hilbert sub-spaces L2(SO(3)) = Le ⊕ Lo (see Theorem 3.3.1 (ii)).

(iii) If δ = (0, δ2, 0)T , (1.3.9) is not controllable. More precisely, there exists a decomposition in orthogonal
invariant Hilbert sub-spaces L2(SO(3)) = Ge ⊕ Go (see Theorem 3.3.1 (iii)).

(iv) If δ , (0, 0, δ3)
T , (δ1, 0, 0)T , (0, δ2, 0)T , (1.3.9) is a modulus-tracker for almost every value of I1, I2, I3

(see Theorem 3.3.2). In particular, it is approximately controllable in the sense of wave-functions, and
in the sense of density matrices, by means of piecewise constant or smooth controls u1, u2, u3 ∈ [−a, a],
for any a > 0. It is also approximately controllable in higher s-norms.

Figure 1.11: Diagram of the propanediol chiral molecule. In any chiral molecule, the two tops are identical and
mirrored: that is, the opposite R- and S-enantiomers have the same rotational constants A, B, and C, and the same
magnitude of dipolemoment components |µa |, |µb |, and |µc |, but the sign of the quantity µaµbµc is distinct for each
enantiomer. The rotation of each single enantiomer is (approximately) controllable, after Theorem 3.3.2, since it has
three non-vanishing dipole components. Furthermore, the projections (on specific finite-dimensional subspaces)
of their rotational dynamics are simultaneously controllable, after Proposition 4.2.1. Numerical simulations for the
propanediol rotational dynamics, with the goal of orientational- and enantio-selectivity, are performed in sections
4.4.1 and 4.4.2. Taken from [95].
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1.3.3 An application to quantum chemistry: new results on the detection of molecular
chirality via controllability

After the study of the Schödinger PDE (1.3.1) describing symmetric and asymmetric molecules, in Chapter 4
we consider the projection of (1.3.1) on some experimentally relevant finite-dimensional subspaces of L2(SO(3)),
defined in terms of the asymmetric-top representation as

Hj,τ ⊕ Hj+1,τ′ ⊕ Hj+1,τ′′ ,

where τ ∈ {− j, . . . , j}, τ′, τ′′ ∈ {− j − 1, . . . , j + 1}, and

Hl,r := span{Ψl
r,m | m = −l, . . . , l}.

Such a finite-dimensional Hilbert space can be used to study the so-called problem of enantiomer-selective
transfer of population in chiral molecules, via generalized three-wave mixing schemes. We approach it as a
simultaneous controllability problem for two rotating asymmetric tops (in this case called enantiomers), identical
and mirrored (see Figure 1.11). The two enantiomers cannot be superimposed via rotations: they are chiral object,
and the two-body composite system is called a chiral molecule.

Figure 1.12: Three-wavemixing for a 3+3-level system, describing a simplifiedmodel (i.e., withoutm-degeneracies)
of two enantiomers. The dipole moments here are denoted by µ(±). After the three transitions indicated by the
three arrows, the rotational population can be distinguished respectively on the two 3-level systems, thanks to the
presence of a minus sign in only one dipole component (here denoted as µc).

The control target is made so that, at the end of the controlled rotational dynamics, the two enantiomers are
distinguished by regarding their rotational population. We prove that simultaneous control is possible and we find,
via Lie algebraic computations, combinations of frequencies and polarizations which realize the desired goal (see
Propositions 4.2.1 and 4.3.1). Based on these results, we then numerically simulate the rotational dynamics in
the second part of Chapter 4, in section 4.4, deriving pulse sequences which lead to the desired goal of enantio-
selectivity (see Figure 1.13); it could be used in future microwave molecular experiments, as the implementability
of such pulse sequences is at the hand of nowadays technologies. Such an analysis is based and motivated on
recent models of three-wave-mixing spectroscopy for chirality detection developed on both theoretical [82] and
experimental [95] viewpoints. Our theoretical results generalize some important properties of chiral systems which
were proved on simplified models as in Figure 1.12 (that did not include the m-degeneracies): e.g., in [82] three
polarizations and three dipole components were found to be necessary to detect chirality.

1.4 The Euler equations on SO(3): new results with external controls
The conserved quantities found in Theorems 3.2.1, 3.2.11, and 3.3.1 for the quantum evolution on SO(3) stimulated
and motivated the study of the classical dynamics of symmetric- and asymmetric-tops, presented in Chapter 2 as a
prequel of the quantum dynamics. The classical dynamics are given by the equation of motion associated with the
Hamiltonian function H + V on SO(3) × R3, where

H =
1
2

(
P2

1
I1
+

P2
2

I2
+

P2
3

I3

)
, V(g) = −

3∑
i=1

ui 〈(g−1ei), δ〉.
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Figure 1.13: Synchronized three-wave mixing, simulated for the rotational dynamics of a carvone molecule, which
leads to enantiomer-selective transfer of population. This model, studied in detail in Chapter 4 Section 4.4.3, takes
into account the m-degeneracies and is based on the Lie algebraic analysis of Chapter 4, Section 4.3

The free rotational dynamics associated with H are the well-known Euler equations for a rotating rigid body, and
V is a control potential. Concerning symmetric-tops, the first conserved quantity, appearing in Theorem 3.2.1,
corresponds to a classical observable (i.e., the component of the angular momentum along the symmetry axis of
the molecule) and it turns out to be a first integral also for the classical controlled dynamics, as we remark in
Theorem 2.2.1. The second conserved quantity, appearing in Theorem 3.2.11, is more challenging, because it does
not have a counterpart in the classical dynamics, being due to the superposition of k and −k states in the quantum
dynamics. We show in Theorem 2.2.2 that this position of the dipole, and in general any dipole not parallel to the
symmetry axis, corresponds to a controllable system for the classical symmetric-top.

Concerning asymmetric-tops, all conserved quantities presented in Theorem 3.3.1 are only quantum, and do not
have a classical analogy, as we prove that all dipole configurations are classically controllable for the asymmetric
molecule in Theorem 2.3.1.

We notice that hence, as a byproduct of our analysis, we find several examples of systems whose quantum
dynamics are not controllable even though the classical dynamics are. The possible discrepancy between quantum
and classical controllability has been already noticed, for example, in the harmonic oscillator dynamics [88].

It should be noticed that the classical dynamics of a rigid body controlled with external torques (e.g., opposite
pairs of gas jets) or internal torques (momentum exchange devices such as wheels) as studied in the literature mainly
concern the control and stabilization problem for spacecrafts and launchers (see, e.g., [7, Section 6.4], [26],[44], [73,
Section 4.6]), and differ from the ones considered here, where the controlled fields (i.e., the interactions between
the electric fields and the electric dipole) are not left-invariant and their action depends on the configuration of the
rigid body in the space.

1.5 Self-adjointness and the existence of quantum dynamics
In Chapters 5 and 6, we study the self-adjointness problem on two-dimensional generalized almost-Riemannian
manifolds. The problem of self-adjointness in quantum mechanics has a long history, and finds its roots in the
works of Von Neumann, Stone, Friedrichs [94, 104, 58] and many other great mathematicians. We wish to point
out first its relation with quantum mechanics. Indeed, the self-adjointness is equivalent to two key concepts in
mathematical physics: (i) observables have real spectra, and (ii) the quantum evolution exists, is unique, and is
unitary.

Let H,D(H) be a symmetric operator (i.e., (Hu, v) = (u,Hv) ∀u, v ∈ D(H)), that is closed on its domain of
definition (i.e., its graph is closed in H ×H ). We shall always assume that D(H) is a dense linear subspace of a
separable Hilbert space H (otherwise, the definition of adjoint operator would not be well-posed). The spectrum
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of H is defined as the set of complex numbers z such that H − z has not a bounded inverse everywhere defined on
H . The self-adjointess of H can be visualized through the following definitions/theorems (see, e.g., [100, 106]):

(i) H is self-adjoint if and only if its spectrum is real;

(ii) H is self-adjoint if and only if there exists a strongly-continuous one-parameter unitary group {U(t)}t∈R
acting onH , such that

– U(t)D(H) ⊂ D(H), for all t ∈ R,
– for any ψ0 ∈ D(H), the function ψ(t) := U(t)ψ0 solves the Schrödinger equation

(1.5.1) i
d
dt
ψ(t) = H ψ(t) , ψ(0) = ψ0.

Moreover, if (i) or equivalently (ii) holds, then U(t)ψ0 is the only solution of (1.5.1), that is explicitly given by the
formula

ψ(t) = U(t)ψ0 = e−itHψ0 ,

defined thanks to the spectral theorem of unbounded self-adjoint operators.

On the one hand, a self-adjoint operator defines in a unique way the quantum dynamics. On the other hand,
non-self-adjoint operators may be extended in order to create well-defined quantum dynamics. When the Hilbert
spaceH is identified with L2(Ω), the space of square-integrable functions on a domain Ω ⊂ Rn, the extensions are
realized by imposing additional boundary conditions for ψ(t) on ∂Ω. Non-self-adjoint operators thus generate a
variety of different quantum dynamics, each of them specified by different physical behaviours of the wave function
while hitting the boundary of a certain domain.

1.5.1 Von Neumann self-adjoint extension theory
The usual definition of essential self-adjoitness for a symmetric, densely defined, linear operator H,D(H) (it is not
assumed to be closed here, but it is always closable being symmetric and densely defined, see Chapter 5 Section
5.3) on an Hilbert space (H, 〈·, ·〉), is given in terms of two important objects, that are respectively the domains of
the closure and adjoint operator:

D(H) = D(H)
‖ · ‖H

, D(H∗) = {v ∈ H | ∃w ∈ H s.t. (Hu, v) = (u,w), ∀u ∈ D(H)},

where ‖ · ‖H = ‖ · ‖ + ‖H · ‖. Note that, when H = L2(Ω) and D(H) = C∞0 (Ω) is the set of smooth functions
compactly supported in Ω, the domain of the adjoint corresponds to the set of functions v such that Hv ∈ L2(Ω) in
the sense of distributions. One can check that the inclusionD(H) ⊂ D(H∗) is always true, for symmetric operators.
The operator H is said to be (essentially) self-adjoint if also the converse inclusion holds, that is

H,D(H) essentially self-adjoint⇔ D(H) = D(H∗).

If the operator under consideration is not essentially self-adjoint, it may have extensions that are self-adjoint: more
precisely, a self-adjoint extension He of H is a closed symmetric operator which verifies

H ⊂ He = H∗e ⊂ H∗,

where the notation A ⊂ B for two operators A, B means thatD(A) ⊂ D(B) and Bu = Au, ∀u ∈ D(A). The relation
between the closure, the adjoint, and the self-adjoint extensions is usually visualized in terms of the fundamental
Von Neumann decomposition [100, Chapter X]

D(H∗) = D(H) ⊕H∗ ker(H∗ + z) ⊕H∗ ker(H∗ + z) , ∀z ∈ C \ R ,

where the sum is an orthogonal sum of vector spaces with respect to the scalar product (·, ·)H∗ = (·, ·) + (H∗·,H∗·).
The dimensions of the vector spaces ker(H∗+ z) and ker(H∗+ z) (called deficiency spaces), which are constant in the
lower and upper complex half-planes [100, Theorem X.1], are called deficiency indices of H, and measure the codi-
mension of the domain of the closure inside the domain of the adjoint. We can thus fix z = i. If these dimensions are
both zero, the operator is essentially self-adjoint. With a further reasoning, if these dimensions are both zero then
the spectrum of H does not contain points in the lower and upper complex half-plane ([100, Theorem X.1]). So, if
D(H) = D(H∗), the spectrum of H is a subset of the real line, which is indeed another definition of self-adjointness.
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Within this decomposition, if the deficiency spaces ker(H∗ + z) and ker(H∗ + z) have the same dimension (that
is guaranteed, for example, if the operator is semi-bounded [100, Corollary to Theorem X.1] or more generally if it
commutes with complex conjugation [100, Theorem X.3]), then self-adjoint extensions exist and are in one-to-one
correspondence with the unitary transformations of the deficiency spaces [100, Theorem X.2]:{

Unitary transformations from
ker(H∗ − i) to ker(H∗ + i)

}
←→

{
Self-adjoint extensions of H,D(H)

}
(U : ker(H∗ − i) → ker(H∗ + i)) 7−→

{
D(H(U)) = {ψ + Φ +UΦ | ψ ∈ D(H), Φ ∈ ker(H∗ − i)}
H(U)(ψ + Φ +UΦ) = Hψ + iΦ − iUΦ.

The action of H(U) is, of course, the action of H∗ restricted to D(H(U)).
The Von Neumann self-adjoint extension theory, besides being very famous and widely used in the literature,

is the most general as it applies to any symmetric densely defined operator with equal deficiency indices.

1.5.2 Kreı̆n-Višik-Birman self-adjoint extension theory
A less general approach to self-adjoint extensions is given by the Kreı̆n-Višik-Birman (KVB for brevity) theory
[78, 110, 23, 10]. It is based on a different decomposition of the adjoint domain, which is available when the
operator H is strictly positive (or semi-bounded). In this case, one can consider a canonical self-adjoint extension
of H, called the Friedrichs extension HF ([100, Theorem X.23]), that is also strictly positive if H is so, and thus
has an everywhere defined bounded inverse. The KVB decomposition then reads

D(H∗) = D(H) + H−1
F ker H∗ + ker H∗,

where the sum is meant in the sense of vector spaces. Within this different framework, the self-adjoint extensions
of H,D(H) are in one-to-one correspondence with the self-adjoint transformations acting on Hilbert subspaces of
ker H∗ [62, Theorem 5]:{

Self-adjoint transformations on
Hilbert subspaces of ker H∗

}
←→

{
Self-adjoint extensions of H,D(H)

}
(T : D(T) ⊂ ker H∗ → ker H∗) 7−→


D(H(T )) =

{
ψ + H−1

F (Tξ + ρ) + ξ
��� ψ ∈ D(H), ξ ∈ D(T),
ρ ∈ ker H∗ ∩ D(T)⊥

}
H(T )(ψ + H−1

F (Tξ + ρ) + ξ) = Hψ + Tξ + ρ.

Also here, we notice that the action of H(T ) is the action of H∗ on D(H(T )).

Let us discuss some examples.

Example 1. .

• Free quantum particle on the line
We considerH = L2(R),H = − d2

dx2 ,D(H) = C∞0 (R). Then,

D(H) = D(H∗) = H2(R),

so the operator is essentially self-adjoint. Note also that the metric space (R, | · |) is complete, so Gaffney’s
Theorem applies. The manifold R is then said to be quantum mechanically and classically complete.

• Quantum particle on the half-line
We considerH = L2(0,∞),H = − d2

dx2 ,D(H) = C∞0 (0,∞). Then,

D(H) = H2
0 (0,∞) ( H2(0,∞) = D(H∗),

so the operator is not essentially self-adjoint. Indeed, boundary conditions at 0 are needed. The self-adjoint
extensions form a one-parameter family of operators {Hγ}γ∈(−∞,∞] specified by the domains

D(Hγ) = {ψ ∈ H2(0,∞) | ψ ′(0) = γψ(0)}.

For γ = ∞ we find the Dirichlet Laplacian on the half-line, and for γ = 0 we find the Neumann one. The
manifold (0,∞) is neither classically nor quantum mechanically complete.
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• Quantum particle on the line subject to zero-range interaction at the origin
We considerH = L2(R),H = − d2

dx2 ,D(H) = C∞0 (R \ {0}). Then,

D(H) = H2
0 (R \ {0}) ( H2(R \ {0}) = D(H∗),

so the operator is not essentially self-adjoint. Indeed, boundary conditions at 0 are needed. The self-adjoint
extensions form a one-parameter family of operators {Hγ}γ∈(−∞,∞] specified by the domains

D(Hγ) = {ψ ∈ H1(R) ∩ H2(R \ {0}) | ψ ′(0+) − ψ ′(0−) = γψ(0)}.

For γ = ∞ we find the Friedrichs extension (that is, the unique extension that has domain contained in the
form domain of H), and for γ = 0 we find the bridging one (that is, the unique extension whose functions
in its domain have continuous derivative in 0). The manifold R \ {0} is neither classically nor quantum
mechanically complete. The operators Hγ are the rigorous realizations of the so-called Hamiltonians of
zero-range interaction at the origin of strength γ, that is Hγ = − d2

dx2 +γδ(x). Indeed, by integrating on (−ε, ε)
the stationary Schrödinger equation −ψ ′′(x) + γδ(x)ψ(x) = Eψ(x), E ∈ C, and letting ε → 0, one obtains
the boundary conditions ψ ′(0+) − ψ ′(0−) = γψ(0).

1.6 The free Schrödinger equation on almost-Riemannian surfaces
We now turn to the relation between self-adjointness and diffusion phenomena associated with the Schrödinger or
the heat equations on singular manifolds. We have already mentioned Gaffney’s Theorem [61], which states the
following
Theorem 1.6.1. Let (M, g) be a complete Riemannian manifold with associated Riemannian volume ω. Then, the
Laplace-Beltrami operator ∆ := divω ◦ gradg, defined on D(∆) = C∞0 (M), is essentially self-adjoint on L2(M, ω).

We introduce for a moment an almost-Riemannian manifold M as a Riemannian manifold where the volume
ω explodes approaching a set Z: we cut out the singular set and obtain the Riemannian manifold M \ Z, which
is the union of connected Riemannian components. Each component is non-complete, as geodesics can smoothly
cross the singularities (as we shall see later on). Then, Gaffney’s Theorem does not apply, but we can still wonder
whether the self-adjoitness holds or not.

In this thesis we focus on the 2D case. A 2-dimensional almost-Riemannian Structure (2-ARS for short) is a
generalized Riemannian structure on a 2-dimensional manifold M , that can be defined locally by assigning a pair
of smooth vector fields, which play the role of an orthonormal frame. It is assumed that the vector fields satisfy the
Hörmander condition (see Section 5.2 for a more intrinsic definition). 2-ARSs were introduced in the context of
hypoelliptic operators [57, 70] and are particular case of rank-varying sub-Riemannian structures (see for instance
[4, 19, 71, 89, 109]).

Let us denote by Dp the linear span of the two vector fields X1, X2 at a point p. We can then locally visualize a
generic 2D ARS around p in terms of the following normal forms [6]:

(a) X1(x, y) =
∂

∂x
, X2(x, y) = eφ(x,y)

∂

∂y
, (Riemannian point)

(b) X1(x, y) =
∂

∂x
, X2(x, y) = xeφ(x,y)

∂

∂y
, (Grushin Point)

(c) X1(x, y) =
∂

∂x
, X2(x, y) = (y − x2ψ(x))eξ(x,y)

∂

∂y
, (Tangency point)

where φ, ψ, and ξ are smooth functions such that φ(0, y) ≡ 0 and ψ(0) , 0. A point p ∈ M is said to be a Riemannian
point if Dp is two-dimensional, and hence a local description around p is given by (a). A point p such that Dp is
one-dimensional, andDp + [D,D]p is two-dimensional, is called a Grushin point and a local description around p
is given by (b). A point p such thatDp + [D,D]p is one-dimensional, andDp +

[
D, [D,D]

]
p
is two-dimensional

is called a tangency (or characteristic) point and a local description around p is given by (c). Structures as in (b),
resp. (c), are in particular 2-step, resp. 3-step. Outside of the singular set

Z := {p ∈ M | spanDp ( TpM}

the structure is Riemannian and hence the Riemannian volume ω and metric g are well defined. We can then
consider the Laplace-Beltrami operator associated with such structures, given by

∆ := divω ◦ gradg =
∑
i=1,2

X2
i + (divωXi)Xi .
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(a) (b) (c)

Figure 1.14: Orthonormal frames for generic 2D ARSs: (a) the origin p = (0, 0) and its neighborhood are made of
Riemannian points; (b) the origin p = (0, 0) and the vertical axis are made of Grushin points, while the plane minus
the vertical axis are made of Riemannian points; (c) the origin p = (0, 0) is a tangency point (indeed Dp ⊂ TpZ),
the parabola minus the origin is made of Grushin points, and the plane minus the parabola is made of Riemannian
points.

Example 2. .

(a) Euclidean plane
We consider the Riemannian structure on R2 given by

X1(x, y) =
∂

∂x
, X2(x, y) =

∂

∂y
←→ g =

(
1 0
0 1

)
.

The Laplace-Beltrami operator associated with this structure is of course

∆ = ∂2
x + ∂

2
y, D(∆) = C∞0 (R

2),

that is known to be essentially self-adjoint on L2(R2, dxdy). For example, Gaffney’s Theorem applies.
Indeed, this manifold is quantum mechanically and classically complete.

(b) Grushin plane
We consider the almost-Riemannian structure on R2 given by

X1(x, y) =
∂

∂x
, X2(x, y) = x

∂

∂y
←→ g =

(
1 0
0 1/x2

)
.

The Riemannian area associated with g is ω =
√

detgdxdy = 1
|x | dxdy, and the Laplace-Beltrami operator

associated with this structure is

∆ = ∂2
x + x2∂2

y −
1
x
∂x, D(∆) = C∞0 (R

2 \ {x = 0}).

Despite Gaffney’s Theorem does not apply, as the manifold (R2 \ {x = 0}, g) is not geodesically complete, it
is essentially self-adjoint [63].

(c) Plane with tangency point
We consider the almost-Riemannian structure on R2 given by

X1(x, y) =
∂

∂x
, X2(x, y) = (y − x2)

∂

∂y
←→ g =

(
1 0
0 1/(y − x2)2

)
.

The Riemannian area associated with g is ω =
√

detgdxdy = 1
|y−x2 |

dxdy, and the Laplace-Beltrami operator
associated with this structure is

∆ = ∂2
x + (y − x2)2∂2

y +
2x

y − x2 ∂x + (y − x2)∂y, D(∆) = C∞0 (R
2 \ {y − x2 = 0}).
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Almost nothing is known about this operator. In particular, its self-adjoitness on L2(R2, 1
|y−x2 |

dxdy) is an
open question. The advanced techniques developed in [99] do not apply to this operator because the almost-
Riemannian distance from the singular set is not smooth near a tangency point (for further details, see also
[55]). Interesting results such as the characterization of the closure operator for geometric perturbations of
the Laplace-Beltrami in the presence of tangency points are presented in the very recent paper [20].

One of the main features of 2-ARSs is the fact that geodesics can pass through the singular set, with no
singularities even if all Riemannian quantities (as for instance the metric, the Riemannian area, the curvature)
explode while approachingZ.

Figure 1.15: Geodesics on the Grushin cylinder, staring from the point (−1/2, 0) with final time t f = 1.3, crossing
smoothly the singular setZ (red circle). The Grushin cylinder is a 2D ARS, defined as the compactification in the
y-direction of the Grushin plane, introduced in Example 2 (b)

1.6.1 State-of-the-art: quantum confinement for the Laplacian H0 = −∆ on ARSs
Even if geodesics cross the singular set, this is not possible for the Brownian motion or for a quantum particle when
they are described by the Laplace-Beltrami operator ∆ associated with the 2-ARS. This is due to the explosion of
the Riemannian area while approachingZ, which creates highly singular first order terms in ∆.

This phenomenon is described by the following Theorem on the self-adjoitness of 2-step 2D ARSs, proved to
hold using the normal forms (b) to compute ∆ near Grushin points:

Theorem 1.6.2 ([30]). Let M be a 2-dimensional manifold equipped with a genuine 2-step 2-ARS. Assume that the
singular setZ is compact. Let Ω be a connected component of M \Z. Let g be the Riemannian metric induced by
the 2-ARS on Ω and ω be the corresponding Riemannian area. The Laplace-Beltrami operator ∆ := divω ◦ gradg
with domain C∞0 (Ω), is essentially self-adjoint on L2(Ω, ω).

Notice that by construction ∂Ω is diffeomorphic to S1, Ω is open and (Ω, g) is a non-complete Riemannian
manifold. In particular the conclusion of the theorem holds for the Grushin cylinder in figure 1.15.

In light of the classical comparison, the main consequence of Theorem 1.6.2 is that the Cauchy problems for
the heat and the Schrödinger equations2

∂tφ(t, p) = ∆ φ(t, p), φ(0, ·) = φ0 ∈ L2(Ω, ω),

i~ ∂tψ(t, p) = −~2
∆ψ(t, p), ψ(0, ·) = ψ0 ∈ L2(Ω, ω),

are well defined in L2(Ω, ω) and hence nothing can flow outside Ω, that is, et∆φ0 (resp. eit~∆ψ0) is supported in
Ω, for all t ≥ 0 (resp. t ∈ R). This phenomenon is usually known as quantum confinement (see [56, 99] and, for
similar problems, [91]). Moreover, generalizations of Theorem 1.6.2 to higher dimensional and higher step ARSs
exist, as for example the following result:

Theorem 1.6.3 ([99]). Assume that the singular set Z of an almost-Riemannian manifold M is compact and has
no tangency points. Then, the Laplace-Beltrami operator ∆, D(∆) = C∞0 (M \ Z) is essentially self-adjoint on
L2(Ω, ω), where Ω = M or a connected component of M \ Z.

2In these equations all constant are normalized to 1 except for the Planck constant ~, since its role is important for further discussions.
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1.6.2 New result: no quantum confinement for the curvature Laplacian H0 = −∆+ cK on
2D-ARSs of step 2

Given that the geodesics cross the singular set with no singularities, the impossibility for the heat or for a quantum
particle to flow throughZ implied by Theorem 1.6.2 is quite surprising. For what concerns the heat, a satisfactory
interpretation of Theorem 1.6.2 in terms of Brownian motion/Bessel processes has been provided for the Grushin
cylinder in [32] and from [5] one can extract an interpretation of Theorem 1.6.2 in terms of random walks. Roughly
speaking random particles are lost in the infinite area accumulated alongZ that, as a consequence, acts as a barrier.

Although for the heat-equation the situation is relatively well-understood, this is not the case for the Schrödinger
equation since semiclassical analysis (see for instance [116]) roughly says that for ~→ 0 sufficiently concentrated
solutions of the Schrödinger equation move approximately along classical geodesics. Clearly semiclassical analysis
breaks down on the singularityZ.

It is then natural to come back on the quantization procedure that permits to pass from the description of a free
classical particle moving on a Riemannian manifold to the corresponding Schrödinger equation.

This is a complicated subject that has no unique answer. The resulting evolution equation for quantum particles
depends indeed from the chosen quantization procedure.

Most of coordinate invariant quantization procedures provide in the Laplace-Beltrami operator a correction
term depending on the Gaussian curvature K , i.e., they provide a Schrödinger equation of the form

i~ ∂tψ(t, p) = ~2
(
− ∆ + cK(p)

)
ψ(t, p),

where ∆ is the Laplace-Beltrami operator and c ≥ 0 is a constant. Values given in the literature include:

• path integral quantization: c = 1/6 and c = 1/4 in [50], c = 1/3 in [49];

• covariant Weyl quantization: c ∈ [0, 1/3] including conventional Weyl quantization (c = 0) in [60];

• geometric quantization for a real polarization: c = 1/6 in [114];

• finite dimensional approximations to Wiener Measures c = 1/3 in [13].

We refer to [13, 60] for interesting discussions on the subject.3
In Chapter 5 we study the self-adjointness of the curvature Laplacian −∆+ cK in function of c to understand if

quantum confinement holds for the dynamics induced by this operator. Before stating the main result, let us remark
that the curvature term cK interacts with the diverging first order term in ∆.

For instance for the Grushin cylinder a unitary transformation (see Section 5.4.1, (5.4.1)) permits to transform
the operator

∆ =
∂2

∂x2 + x2 ∂2

∂y2 −
1
x
∂

∂x
on L2(R × S1,

1
|x |

dx dy)

in
∆̃ =

∂2

∂x2 + x2 ∂2

∂y2 −
3
4

1
x2 on L2(R × S1, dx dy)

and hence the adding of a term of the form−cK = −c
(
−2 1

x2

)
(that remains untouched by the unitary transformation)

to ∆̃ changes the diverging behaviour around x = 0. In particular for c = 3/8 the diverging potential disappears
and −∆̃ + cK is not essentially self-adjoint in L2(R+ × S1, dx dy) while −∆̃ does. The same conclusion applies to
−∆ + cK in L2(R+ × S1, 1

|x | dx dy).
The main result of Chapter 5 is that the perturbation term given by the curvature destroys the essential self-

adjointness of the Laplace-Beltrami operator.

Theorem 1.6.4. Let M be a compact oriented 2-dimensional manifold equipped with a genuine 2-step 2-ARS. Let
Ω be M \ Z or one of its connected component, where Z is the singular set. Let g be the Riemannian metric
induced by the 2-ARS on Ω, ω be the corresponding Riemannian area, K the corresponding Gaussian curvature
and ∆ = divω ◦ gradg the Laplace-Beltrami operator. Let c ≥ 0. The curvature Laplacian −∆ + cK with domain
C∞0 (Ω), is essentially self-adjoint on L2(Ω, ω) if and only if c=0. Moreover, if c > 0, the curvature Laplacian has
infinite deficiency indices.

3There are also other approaches to the quantization process on Riemannian manifolds that provide correction terms depending on the
curvature. For instance if one considers the Laplacian on a ε -tubular neighborhood of a surface in R3 with Dirichlet boundary conditions, then
for ε → 0 after a suitable renormalization, one gets an operator containing a correction term depending on the Gaussian curvature and the
square of the mean curvature (see [79, 80]).
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The non-self-adjointness of −∆+ cK implies that one can construct self-adjoint extensions of this operator that
permit to the solution to the Schrödinger equation to flow out of the set Ω, in the same spirit of Chapter 6 (see also
[34]). The study of these self-adjoint extension and how semiclassical analysis applies to them is a subject that
deserves to be studied in detail.

Remark 1.6.5. We remark that in Theorem 1.6.4 one can also consider the case c < 0. In this case, one can prove
that the curvature Laplacian is essentially self-adjoint (applying for example the criterion for the self-adjointes of
operators of the form −∆+V on non-complete Riemannian manifolds, found in [99]). However, if this case admits
a physical interpretation is not known to the authors.

As in Theorem 1.6.2 the compactness hypothesis is useful to simplify the statement of the theorem. A version
without the compactness hypothesis is given here where also the orientability assumption of M is not necessary.

Theorem 1.6.6. Let M be a 2-dimensional manifold equipped with a genuine 2-step 2-ARS.
Assume that

• the singular setZ is compact;

• the 2-ARS is geodesically complete.

Let Ω be a connected component of M \ Z, and c ≥ 0. With the same notations of Theorem 5.1.1, the curvature
Laplacian −∆ + cK with domain C∞0 (Ω), is essentially self-adjoint on L2(Ω, ω) if and only if c=0. Moreover, if
c > 0, the curvature Laplacian has infinite deficiency indices.

For the sake of simplicity, in Chapter 5 we prove Theorem 1.6.4 only. Theorem 1.6.6 can be proved following
the same ideas.

Theorem 1.6.6 applies in particular to the Grushin cylinder with curvature Laplacian −∆+ cK = −(∂2
x + x2∂2

y −
1
x ∂x) +

2c
x2 . For this case, the fact that the deficiency indices are infinite means that all Fourier components of

−∆ + cK are not self-adjoint.
Notice that under the hypothesis of the theorem, each connected component of ∂Ω is diffeomorfic to S1. Of

course if c > 0, the manifold does not need to be geodesically complete.
If one removes the 2-step hypothesis the situation is more complicated since tangency points [6, 8] may appear.

In presence of tangency points even the essential self-adjointness of the standard Laplace-Beltrami operator (without
the term −cK) is an open question [30]. Without the 2-step hypothesis results can indeed be very different. To
illustrate this, in Chapter 5 we also study the α-Grushin cylinder for which computations can be done explicitly.

Proposition 1.6.7. Fix α ∈ R. On R× S1 consider the generalized Riemannian structure for which an orthonormal
frame is given by

(1.6.1) X1(x, y) =
∂

∂x
, X (α)2 (x, y) = |x |

α ∂

∂y
, here x ∈ R, y ∈ S1.

Let c ≥ 0. On R+ × S1 the structure is Riemannian with Riemannian area 1
|x |α dx dy. Let −∆α + cKα be the

curvature Laplacian with domain C∞0 (R
+ × S1) acting on L2(R+ × S1, 1

|x |α dx dy). Denote by

αc,± =
(−2c + 1) ± 2

√
(c − 2 +

√
3)(c − 2 −

√
3)

4c − 1
.

• If 0 ≤ c < 1/4, −∆α + cKα is essentially self-adjoint if and only if α ≥ αc,+ or α ≤ αc,−;
• if c = 1/4, −∆α + cKα is essentially self-adjoint if and only if α ≥ 3;

• if 1/4 < c ≤ 2 −
√

3, −∆α + cKα is essentially self-adjoint if and only if αc,− ≤ α ≤ αc,+;

• if 2 −
√

3 < c < 2 +
√

3, −∆α + cKα is not essentially self-adjoint ∀α ∈ R;

• if c ≥ 2 +
√

3, −∆α + cKα is essentially self-adjoint if and only if αc,− ≤ α ≤ αc,+.

The regions where −∆α + cKα is essentially self-adjoint are plotted in Figure 1.16. Note that for some of the
quantizations listed earlier, −∆α + cKα is essentially self-adjoint for |α | sufficiently big. Hence, for such structures
quantum confinement still holds for the curvature Laplacian.

The α-Grushin cylinder is an interesting geometric structure studied in [32, 34, 64]; its analogous version on
Rx × Ry has been studied in [63, 98]. In Chapter 6 we present an original classification of its local self-adjoint
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Figure 1.16: Regions of the (α, c) parameter space where the operator −∆α + cKα is essentially self-adjoint.

extensions. For α = 0 it is a flat cylinder, for α positive integer is a (α + 1)-step 2-ARS; for α negative it describes
a conic-like surface (see Figure 1.17).

We conclude the presentation of Chapter 5 with a remark on the heat equation: while an operator of the form
−∆+cK(p) is useful to describe a quantum particle in a Riemannian manifold, it is not meaningful in the description
of the heat evolution; indeed a heat equation of the form ∂tφ = (−∆ + cK(p))φ would describe the evolution of a
random particle on a Riemannian manifold with a rate of killing proportional to the Gaussian curvature.

1.6.3 State-of-the-art: self-adjointness on α-Grushin structures
In Chapter 6 we present a classification of the uniformly fibred self-adjoint extensions of the Laplace-Beltrami
operator associated with the α-Grushin structure on the cylinder, for α ∈ [0, 1). This structure is defined for
any α ∈ R via the pair of vector fields introduced in (1.6.1), globally defined on R × S1 =: M . When α ∈ N,
(1.6.1) defines a smooth almost-Riemannian structure of step (α + 1). Notice that the same structure is considered
in Chapter 5 as an example of higher-step ARS, and the self-adjointness of its associated curvature Laplacian is
studied (cf. Proposition 1.6.7 above). For α < N, it defines a generalized almost-Riemannian structure, that is
not smooth and does not verify the Hörmander condition in general. By cutting out from the manifold R × S1 the
singular set {x = 0} where X1 and X2 become collinear, we obtain a Riemannian structure on R \ {0} × S1 with the
associated Riemannian metric, volume and Gaussian curvature given respectively by

gα = dx ⊗ dx +
1
|x |2α

dy ⊗ dy, ωα =
1
|x |α

dx ∧ dy, Kα = −
α(α + 1)

x2 .

In particular, when α > 0, all geometric quantities are singular onZ.
The Laplace-Beltrami operator

Hα = −∆α := divωα ◦ gradgα, D(∆α) = C∞0
(
R \ {0} × S1

)
of the α-Grushin structure is equivalent, via the unitary transformation L2(R × S1, ωα) → L2(R × S1, dxdy), to the
singular differential operator

(1.6.2) Hαψ =
(
−

∂2

∂x2 − |x |
2α ∂2

∂y2 +
α(2 + α)

4x2

)
ψ , ψ ∈ C∞0

(
R \ {0} × S1

)
⊂ L2(R × S1, dxdy).

The classification of the self-adjointness problem for these operators is well-known (notice that this result is also
recovered in Proposition 1.6.7 and corresponds to c = 0):

Theorem 1.6.8 (Self-adjoitness in α-Grushin conic and anti-conic surfaces, [34]).

(i) If α ∈ (−∞,−3] ∪ [1,+∞), then Hα is essentially self-adjoint.
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(ii) If α ∈ (−3,−1], then Hα is not essentially self-adjoint and it has deficiency index 2.

(iii) If α ∈ (−1, 1), then Hα is not essentially self-adjoint and it has infinite deficiency index.

Theorem 1.6.8 is not contradicting Theorem 1.6.3, as (1.6.1) defines an almost-Riemannian manifold only if
α ∈ N. To better visualize Theorem 1.6.8, let us formally decompose the operator (1.6.2) in its Fourier modes w.r.t.

Figure 1.17: Geometric interpretation of α-Grushin surfaces. It is conic for α < 0, a cylinder for α = 0, and
anti-conic for α > 0. Taken from [34].

to y ∈ S1. This gives ⊕
k∈Z

(Hα)k, (Hα)k := −
d2

dx2 + |x |
2αk2 +

α(2 + α)
4x2 ,

acting on the Hilbert space `2(Z, L2(R, dx)), with constant mode domainsD
(
(Hα)k

)
= C∞0 (R\ {0}) for all k. Then,

the self-adjointness of each (Hα)k can be studied using Sturm-Liouville theory for 1D inverse square potential
Schrödinger operators of the form − d2

dx2 + V(x). We can reinterprete the statements on the deficiency indices as
follow:

(i) If α ∈ (−∞,−3] ∪ [1,+∞), then (Hα)k is essentially self-adjoint for all k ∈ Z. That is, nothing can flow
throughZ.

(ii) If α ∈ (−3,−1], then (Hα)k is essentially self-adjoint for all k ∈ Z \ {0}, while (Hα)0 is non-self-adjoint.
That is, only the average of the wave function

ψ̂0(x) =
1

2π

∫ 2π

0
ψ(x, y)dy

can flow throughZ.

(iii) If α ∈ (−1, 1), then (Hα)k is non-self-adjoint for all k ∈ Z. That is, all modes can flow thoughZ.

1.6.4 New results: self-adjoint extensions on α-Grushin structures and their Sobolev
regularity at the boundary

A natural question regarding the region of α such that Hα is not self-adjoint, is then the following: which boundary
conditions at the singularity {x = 0} are allowed for the Schrödinger equation i∂tψ = Hαψ to be well-posed across
the two halves of the cylinder? In other words, when Hα is not self-adjoint, how do its self-adjoint extensions look
like? In Chapter 6 we partly answer this question, applying KVB extension theory, and the main results read as
follows

Theorem 1.6.9. Let α ∈ [0, 1). The operator Hα admits the following families of self-adjoint extensions in
L2(M, ωα):

• Friedrichs extension: Hα,F ;

• Family IR: {H[γ]α,R | γ ∈ R};
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• Family IL: {H[γ]α,L | γ ∈ R};

• Family IIa with a ∈ C: {H[γ]α,a | γ ∈ R};

• Family III: {H[Γ]α | Γ ≡ (γ1, γ2, γ3, γ4) ∈ R
4}.

Each operator belonging to any such family is a restriction of H∗α, and hence its differential action is given by −∆α.
The domain of each of the above extensions is qualified as the space of the functions f ∈ L2(M, ωα) satisfying the
following properties:

(i) Integrability and regularity:

(1.6.3)
∫
M

��∆α f
��2 ωα < +∞ .

(ii) Boundary condition: The limits

f ±0 (y) = lim
x→0±

f (x, y)(1.6.4)

f ±1 (y) = ±(1 + α)
−1 lim

x→0±

( 1
|x |α

∂ f (x, y)
∂x

)
(1.6.5)

exist and are finite for almost every y ∈ S1, and depending on the considered type of extension, and for
almost every y ∈ S1, they satisfy

f ±0 (y) = 0 if f ∈ D(Hα,F ) ,(1.6.6) {
f −0 (y) = 0
f +1 (y) = γ f +0 (y)

if f ∈ D(H[γ]α,R) ,(1.6.7) {
f −1 (y) = γ f −0 (y)
f +0 (y) = 0

if f ∈ D(H[γ]α,L) ,(1.6.8) {
f +0 (y) = a f −0 (y)
f −1 (y) + a f +1 (y) = γ f −0 (y)

if f ∈ D(H[γ]α,a) ,(1.6.9) {
f −1 (y) = γ1 f −0 (y) + (γ2 + iγ3) f +0 (y)
f +1 (y) = (γ2 − iγ3) f −0 (y) + γ4 f +0 (y)

if f ∈ D(H[Γ]α ) .(1.6.10)

As a byproduct of the theorem above, we can deduce the regularity of the wave-function at the boundary,
depending on the different physics imposed by different self-adjoint extensions.

Corollary 1.6.10. Let f belong to the domain of one of the self-adjoint extension of Hα listed in Theorem 1.6.9.
Then,

(1.6.11) f ±0 ∈ Hs0,± (S1, dy) and f ±1 ∈ Hs1,± (S1, dy)

with

• s1,± =
1
2

1−α
1+α for the Friedrichs extension,

• s1,− =
1
2

1−α
1+α , s0,+ = s1,+ =

1
2

3+α
1+α for extensions of type IR,

• s1,+ =
1
2

1−α
1+α , s0,− = s1,− =

1
2

3+α
1+α for extensions of type IL ,

• s1,± = s0,± =
1
2

1−α
1+α for extensions of type IIa,

• s1,± = s0,± =
1
2

3+α
1+α for extensions of type III.

The last Corollary, in particular, extends the Sobolev-regularity 1
2

1−α
1+α proved for the deficiency spaces of Hα

in [97] (which corresponds to the regularity of the Friedrichs extension) to the domains of the other self-adjoint
extensions.
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We remark that requirement (1.6.3) only means that all the considered extensions are contained in H∗α. Each of
the requirements (1.6.6)-(1.6.10) then expresses the corresponding condition of self-adjointness.

The common feature of all such extensions is that their boundary conditions as x → 0 have the same form
independently of y ∈ S1. In this sense, those are local extensions.

It is also clear that the Friedrichs extension, as well as type-IR and type-IL extensions, are reduced with respect
to the Hilbert space decomposition

L2(M, ωα) = L2(R+ × S1, ωα) ⊕ L2(R− × S1, ωα) =: L2(M+, ωα) ⊕ L2(M−, ωα).

Each such operator is the orthogonal sum of two self-adjoint operators, respectively on L2(M+, ωα) and L2(M−, ωα),
characterised by independent boundary conditions at the singularity region Z from the right and from the left.
On the contrary, type-IIa (with a , 0) and type-III extensions are not reduced in general: the boundary condition
couples the behaviour as x → 0+ and x → 0−.

The left-right reducibility

(1.6.12) H̃α � H̃−α ⊕ H̃+α

of the extension H̃α = Hα,F , or H̃α = H[γ]α,R, or H̃α = H[γ]α,L , results in a decoupled independent Schrödinger
evolution of the two components f + and f − of the solution f ∈ C1(Rt, L2(M, ωα)) to the Cauchy problem{

i ∂t f = H̃α f
f |t=0 = u0 ∈ D(H̃α) .

This means that, separately on each half-cylinder,

(1.6.13) f ±(t) = e−it H̃±αu±0 ,

where u±0 ∈ L2(M±, ωα), with no exchange between left and right at the interfaceZ.
The picture is then the following.

• Friedrichs extension Hα,F : quantum confinement on each half of the Grushin cylinder, with no interaction
of the particle with the boundary and no dynamical transmission between the two halves.

• Type-IR and type-IL extensions: no dynamical transmission acrossZ, but possible non-trivial interaction of
the quantum particle with the boundary respectively from the right or from the left, with quantum confinement
on the opposite side. (Thus, for instance, a quantum particle governed by H[γ]α,R may ‘touch’ the boundary
from the right, but not from the left, and moreover it cannot trespass the singularity region.)

• Type-IIa and type-III extensions: in general, dynamical transmission through the boundary.

Among the latter group of extensions, a special status is deserved by the Laplace-Beltrami realisation

Hα,B := H[γ]α,a with a = 1 and γ = 0 .

In this case the boundary condition (1.6.9) takes the form

lim
x→0−

f (x, y) = lim
x→0+

f (x, y)

lim
x→0−

( 1
|x |α

∂ f (x, y)
∂x

)
= lim

x→0+

( 1
|x |α

∂ f (x, y)
∂x

)(1.6.14)

for almost every y ∈ S1. Quantum-mechanically, (1.6.14) are interpreted as the continuity of the spatial probability
density of the particle in the region aroundZ and of the momentum in the direction orthogonal toZ, defined with
respect to the weight |x |−α induced by the degenerate metric. The extension Hα,B is usually called the bridging
extension of Hα. This particular extension, and the Friedrichs extension, were firstly found in [34, Proposition
3.11]. It is easily seen by inspection of (1.6.6)-(1.6.10) that no other boundary condition of self-adjointness allows
for such a two-fold continuity for any other weight.
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1.7 Conclusion
We resume here the main contributions of this thesis:

• In chapter 2 we show that the classical rotation of a symmetric rigid body controlled with three external
orthogonal fields is: (i) controllable if the dipole is not parallel to the symmetry axis; (ii) not controllable
if the dipole is parallel to the symmetry axis, due to the conservation of the angular momentum component
along that axis (and we compute the reachable sets in this non-controllable case). We then show that the
classical rotation of an asymmetric rigid body is controllable with three external orthogonal fields, for all
configuration of the dipole. W.r.t. previous known results: the problem of controlling the rotation of a rigid
body has been extensively studied, and the available results (to the best of the author knowledge) involve
different strategies of control (e.g., internal torques or wheels [44]) that in particular result in controls which
do not depend on the configuration of the rigid body in the space (i.e., left invariant control fields), which is
not the case in our problem.

• In chapter 3 we present an original (approximate) controllability test for the multi-input bilinear infinite-
dimensional discrete spectrum Schrödinger equation, and an original (approximate) simultaneous control-
lability test for evolutions that are decomposed in invariant subspaces. Both results apply also to density
matrix approximate controllability, and controllability in finer norms. We apply this technique to study the
Schrödinger equation on SO(3), controlled with three orthogonal electric fields. We show that the quantum
rotation of a symmetric rigid molecule is: (i) approximately controllable if the electric dipole is not parallel
nor orthogonal to the symmetry axis of the molecule; (ii) not controllable if the dipole is parallel to the
symmetry axis due to the conservation of the angular momentum operator component along that axis (and
we compute the reachable sets in this non-controllable case, where in particular the system decomposes in
an infinite direct sum decomposition of invariant orthogonal subspaces); (iii) not controllable if the dipole is
orthogonal to the symmetry axis (and we compute the reachable sets in this non-controllable case, where in
particular the system decomposes in a direct sum decomposition of two invariant orthogonal subspaces). We
then show that the quantum rotation of an asymmetric rigid molecule is: (i) approximately controllable if the
electric dipole is not parallel to any of the principal axis of inertia of the molecule; (ii) not controllable if the
dipole is parallel to any of the principal axis of inertia (where in particular the system decomposes in a direct
sum decomposition of two invariant orthogonal subspaces, depending on which principal axis is parallel
to the dipole). These results hold under a non-resonant assumption and for almost all value of the inertia
moments of the molecule. W.r.t. previous known results: our new controllability test is a close variation
of the Lie-Galerkin tracking condition introduced in the paper [28], where it is also proved the approximate
controllability of the quantum rotation of a linear molecule using this condition. The approximate controlla-
bility of a linear molecule was already known from [72] also. The quantum controllability of symmetric and
asymmetric rotating molecules was proposed as an open question in [77], and the operator controllability
was conjectured for finite-dimensional subspaces of linear molecules in [72].

• In chapter 4 we show the simultaneous (operator) control in finite-dimensional subspaces of two chiral
asymmetric molecules, pointing out the (minimal) combinations of spectral gaps (frequencies) and directions
of the field (polarizations) which control the system. Based on this insight, we perform numerical simulations
of microwave rotational dynamics for propanediol and carvone molecules that confirm our controllability
results. W.r.t previous known results: in [82] the authors show, on a simplified model, that three dipole
components and three polarizations are necessary for the simultaneous control, as it is confirmed in our
results.

• In chapter 5 we prove the non-self-adjointness of curvature Laplacians, on 2D almost-Riemannian manifolds
of step 2. This implies in particular that the free Schrödinger evolution on step 2 2D-ARSs generated by
the operator −∆ + cK needs boundary conditions at the singular sets of the structure to be well-defined, for
any c > 0. We also show with an example (the α-Grushin 2D-structures) that results are in general different
without the step 2 assumption. W.r.t. previous known results: the Laplace-Beltrami operator on 2D ARS of
step 2 (which corresponds to the case c = 0) has been proved to be essentially self-adjoint in the paper [30],
and more in general in the paper [99] the authors proved the same result on any ARS when the singular sets
are compact and have no tangency points.

• In chapter 6 we present a classification of four different families of local self-adjoint extensions of the Laplace-
Beltrami operator in α-Grushin anti-conic surfaces, described in terms of different boundary conditions for
the wave function to be imposed at the singularity of the structure. As a consequence of our analysis, we also
obtain the Sobolev-regularity of the local boundary conditions allowed for a well-posed Schrödinger evolution
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on such singular Riemannian structures. We also mention an estimate of the double derivative in the vertical
direction in terms of the α-Grushin Laplace-Beltrami operator (see Lemma 6.6.11), that we obtain using the
inverse of the Friedrichs extension. W.r.t. previous known results: the self-adjointness of the α-Grushin
surfaces and the Friedrichs and bridging extensions were firstly studied in [34]. The Sobolev-regularity of
the deficiency spaces of the Laplace-Beltrami on α-Grushin sufaces (which corresponds to the regularity of
the boundary conditions for the Friedrichs extension) was already found in [97]. A similar estimate of powers
of the derivative in the vertical direction in terms of Baouendi-Grushin-type operators has been obtained in
the very recent paper [84, Lemma 2.1], with a different technique based on elliptic estimates: it is interesting
to remark that both techniques rely on the positivity of these operators.
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Chapter 2

Classical controllability of a rotating
molecule

In this chapter we study the controllability problem for the Hamilton equations of a rotating symmetric- and
asymmetric-top molecule. The molecule is assumed to be rigid, and the Hamilton equation thus corresponds to the
well-known Euler equations of a rigid body rotating around its center of mass. The molecule is controlled through
three orthogonal electric fields interacting with its electric dipole.

Concerning the symmetric-top, the controllability is characterized in terms of the dipole position, which is fixed
inside the molecular frame: when it lies along the symmetry axis of the molecule the rotations are not controllable,
due to the presence of a conserved quantity, the third component of the total angular momentum; if the dipole is
not along the symmetry axis, we show controllability of the rotational dynamics.

Concerning the asymmetric-top, we prove that the rotational dynamics are controllable for all dipole configu-
rations.

The chapter is organized as follows: in Section 2.1 we recall abstract results from geometric control theory;
in Section 2.2 we apply this framework to a rotating symmetric-top; in Section 2.3 the framework is applied to a
rotating asymmetric-top.

The main original results of this Chapter are: for symmetric-tops, Theorems 2.2.1 and 2.2.2, where we prove,
respectively, the non-controllability when the dipole lies along the symmetry axis of the body (computing also its
reachable sets in Theorem 2.2.4) and the controllability in any other case; for asymmetric-tops, Theorem 2.3.1,
where we prove that the rotational dynamics are controllable for all dipole configurations.

The results on the classical symmetric-top system are in the paper [33].

2.1 Controllability of control-affine systems with recurrent drift
We recall in this section some useful results on the controllability properties of (finite-dimensional) control-affine
systems.

Let M be an n-dimensional manifold, X0, X1, . . . , X` a family of smooth (i.e., C∞) vector fields on M , U ⊂ R`

a set of control values which is a neighborhood of the origin. We consider the control system

(2.1.1) Ûq = X0(q) +
∑̀
i=1

ui(t)Xi(q), q ∈ M,

where the control functions u are taken in L∞(R,U). The vector field X0 is called the drift. The reachable set from
q0 ∈ M is

Reach(q0) :={q ∈ M | ∃ u,T s.t. the solution to (2.1.1) with q(0) = q0

satisfies q(T) = q}.

System (2.1.1) is said to be controllable if Reach(q0) = M for all q0 ∈ M .
The family of vector fields X0, X1, . . . , X` is said to be Lie bracket generating if

dim(Lieq{X0, X1, . . . , X`}) = n
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for all q ∈ M , where Lieq{X0, X1, . . . , X`} denotes the evaluation at q of the Lie algebra generated by X0, X1, . . . , X` .
The following is a basic result in geometric control theory (see, for example, [73, Section 4.6]). Recall that a

complete vector field X on M is said to be recurrent if for every open nonempty subset V of M and every time
t > 0, there exists t̃ > t such that φt̃ (V) ∩ V , ∅, where φt̃ denotes the flow of X at time t̃.

Theorem 2.1.1. Let U ⊂ Rm be a neighborhood of the origin. If X0 is recurrent and the family X0, X1, . . . , X` is
Lie bracket generating, then system (2.1.1) is controllable.

A useful test to check that the Lie bracket generating condition holds true is given by the following simple
lemma, whose proof is given for completeness.

Lemma 2.1.2. If the family of analytic vector fields X0, X1, . . . , X` is Lie bracket generating on the complement of
a subset N ⊂ M and Reach(q) 1 N , for all q ∈ N , then the family is Lie bracket generating on M .

Proof. Let q ∈ N and q1 ∈ Reach(q) \ N . By the Orbit theorem applied to the case of analytic vector fields (see,
e.g., [7, Chapter 5]) the dimension of Lieq{X0, X1, . . . , X`} and Lieq1 {X0, X1, . . . , X`} coincide. By assumption the
latter is equal to n, which implies that the same is true for the former. �

2.2 Symmetric molecule

2.2.1 The classical dynamics of a molecule subject to electric fields
Since the translational motion (of the center of mass) of a rigid body is decoupled from the rotational motion,
we shall assume that the molecule can only rotate around its center of mass. In detail, for any vector v ∈ R3,
denoting by e1, e2, e3 a fixed orthonormal frame of R3 and by a1, a2, a3 a moving orthonormal frame with the same
orientation, both attached to the rigid body’s center of mass, the configuration of the molecule is identified with
the unique g ∈ SO(3) such that g (x, y, z)T = (X,Y, Z)T , where (x, y, z) are the coordinates of v with respect to
a1, a2, a3, and (X,Y, Z) are the coordinates of v with respect to e1, e2, e3. In order to describe the equations on the
tangent bundle SO(3) × so(3), we shall make use of the isomorphism of Lie algebras

(2.2.1) a : (R3,×) → (so(3), [·, ·]), P = ©«
P1
P2
P3

ª®¬ 7→ a(P) = ©«
0 −P3 P2
P3 0 −P1
−P2 P1 0

ª®¬
where × is the vector product. As external forces to control the rotation of the molecule, we consider three
orthogonal electric fields with intensities u1(t), u2(t), u3(t) and directions e1, e2, e3. We assume that

(u1, u2, u3) ∈ U ⊂ R3, (0, 0, 0) ∈ Interior(U),

that is, the set U ⊂ R3 of admissible values for the triple (u1, u2, u3) is a neighborhood of the origin. Denoting by
δ the dipole of the molecule written in the moving frame, the three forces due to the interaction with the electric
fields are ui(t)(g−1(t)ei) × δ, i = 1, 2, 3. Then, the equations for the classical rotational dynamics of a molecule with
inertia moments I1, I2, I3 controlled with electric fields read

(2.2.2)
(
Ûg
ÛP

)
= X(g, P) +

3∑
i=1

ui(t)Yi(g, P), (g, P) ∈ SO(3) × R3, u ∈ U,

where

(2.2.3) X(g, P) :=
(
g a(ρP)
P × (ρP)

)
, Yi(g, P) :=

(
0

(g−1ei) × δ

)
, i = 1, 2, 3,

and P = (P1, P2, P3)
T , ρP = (P1/I1, P2/I2, P3/I3)

T . Similarly to [73, Section 12.2] (where this is done for the
heavy rigid body), these equations can be derived as Hamilton equations corresponding to the Hamiltonian

H =
1
2

(
P2

1
I1
+

P2
2

I2
+

P2
3

I3

)
+ V(g), V(g) = −

3∑
i=1

ui 〈(g−1ei), δ〉

on SO(3) × R3. System (2.2.2) can be seen as a control-affine system with ` = 3 controlled fields.
Rotating molecule dynamics can also be represented in terms of quaternions, lifting the dynamics from

SO(3) to the 3-sphere S3, as follows. We denote by H the space of quaternions and we identify S3 ⊂ R4 with
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{q0+ iq1+ jq2+kq3 ∈ H | q2
0+q2

1+q2
2+q2

3 = 1}. We also identifyR3 with {iP1+ jP2+kP3 ∈ H | (P1, P2, P3) ∈ R
3}.

Via this identification, the vector product P × Ω becomes 1
2 [P,Ω] := 1

2 (PΩ − ΩP), for any P,Ω ∈ R3. Moreover,
given q = cos(α) + (q1, q2, q3) sin(α) ∈ S3 and P ∈ R3, the quaternion product qPq is in R3 and corresponds to the
rotation of P of angle 2α around the axis (q1, q2, q3). Hence, S3 can be seen as a double covering space of SO(3)
(see [1, Section 5.2] for further details). System (2.2.2) is lifted to S3 × R3 to the system

(2.2.4)



dq(t)
dt
=q(t)ρP(t),

dP(t)
dt
=

1
2
[P(t), ρP(t)] +

u1(t)
2
[q(t)iq(t), δ] +

u2(t)
2
[q(t)jq(t), δ]

+
u3(t)

2
[q(t)kq(t), δ].

We are going to use the quaternion representation in order to prove that the vector fields characterizing (2.2.4) form
a Lie bracket generating family. As a consequence, the same will be true for (2.2.2).

2.2.2 Non-controllability of the classical genuine symmetric-top
In most cases of physical interest, the electric dipole δ of a symmetric-top molecule lies along the symmetry axis
of the molecule. If I1 = I2, the symmetry axis is the third one, and we have that δ = (0, 0, δ3)

T , δ3 , 0, in the body
frame. The corresponding molecule is called a genuine symmetric-top ([68, Section 2.6]).

Theorem 2.2.1. The third angular momentum P3 is a conserved quantity for the controlled motion (2.2.2) of the
genuine symmetric-top molecule.

Proof. In order to compute the equation satisfied by P3 in (2.2.2), notice that

P(t) × ρP(t) = ©«
P1(t)
P2(t)
P3(t)

ª®¬ × ©«
P1(t)/I2
P2(t)/I2
P3(t)/I3

ª®¬ =
©«
(

1
I3
− 1

I2

)
P2(t)P3(t)(

1
I2
− 1

I3

)
P1(t)P3(t)
0

ª®®®¬ .
Moreover, ui(t)(g−1(t)ei) × δ = ui(t)(g−1(t)ei) × (0, 0, δ3)

T = (?,?, 0)T . Hence, for a genuine symmetric-top, the
equation for P3 becomes dP3(t)

dt = 0. �

As a consequence, the controlled dynamics live in the hypersurfaces {P3 = const} and hence system (2.2.2) is
not controllable in the 6-dimensional manifold SO(3) × R3.

2.2.3 Controllability of the classical accidentally symmetric-top
In Theorem 2.2.1 we proved that P3 is a first integral for equations (2.2.2), using both the symmetry of the mass and
the symmetry of the charge, meaning that I1 = I2 and δ = (0, 0, δ3)

T . We consider now a symmetric-top molecule
with electric dipole δ not along the symmetry axis of the body, that is, δ = (δ1, δ2, δ3)

T , with δ1 , 0 or δ2 , 0. This
system is usually called accidentally symmetric-top ([68, Section 2.6]).

Theorem 2.2.2. For an accidentally symmetric-top molecule system (2.2.2) is controllable.

Proof. The drift X is recurrent, as observed in [7, Section 8.4]. Thus, by Theorem 2.1.1, to prove controllability it
suffices to show that, for any (g, P) ∈ SO(3) ×R3, dim

(
Lie(g,P){X,Y1,Y2,Y3}

)
= 6. Actually, we will find six vector

fields in Lie{X,Y1,Y2,Y3} whose span is six-dimensional everywhere but on a set of positive codimension, and we

will conclude by applying Lemma 2.1.2. Notice that [X,Yi](g, P) =
(
−g a(ρ[(g−1)ei × δ])

?

)
. Denote by ΠSO(3) the

projection onto the SO(3) part of the tangent bundle, that is, ΠSO(3) : T(SO(3) × R3) → TSO(3). Then we have

span{ΠSO(3)X(g, P),ΠSO(3)[X,Y1](g, P),ΠSO(3)[X,Y2](g, P),ΠSO(3)[X,Y3](g, P)}

= g a
(
ρ[{δ}⊥ ⊕ span{P}]

)
.

Hence, if 〈P, δ〉 , 0, we have

dim
(
span{ΠSO(3)X(g, P),ΠSO(3)[X,Y1](g, P),ΠSO(3)[X,Y2](g, P),

ΠSO(3)[X,Y3](g, P)}
)
= 3.(2.2.5)
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To go further in the analysis, it is convenient to use the quaternion parametrization (2.2.4) in which every field
is polynomial. We have, in coordinates q = (q0, q1, q2, q3) ∈ S3, P = (P1, P2, P3) ∈ R

3,

X(q, P) =
(

qρP
1
2 [P, ρP]

)
=

©«

−q1
P1
I2
− q2

P2
I2
− q3

P3
I3

q0
P1
I2
+ q2

P3
I3
− q3

P2
I2

q0
P2
I2
− q1

P3
I3
+ q3

P1
I2

q0
P3
I3
+ q1

P2
I2
− q2

P1
I2(

1
I3
− 1

I2

)
P2P3(

1
I2
− 1

I3

)
P1P3

0

ª®®®®®®®®®®®®®¬
,

Y1(q, P) =
(

0
1
2 [qiq, δ]

)
=

©«

0
0
0
0

(q1q2 − q0q3)δ3 − (q1q3 + q0q2)δ2
(q1q3 + q0q2)δ1 −

1
2 (q

2
0 + q2

1 − q2
2 − q2

3)δ3
1
2 (q

2
0 + q2

1 − q2
2 − q2

3)δ2 − (q1q2 − q0q3)δ1

ª®®®®®®®®®¬
,

Y2(q, P) =
(

0
1
2 [qjq, δ]

)
=

©«

0
0
0
0

1
2 (q

2
0 − q2

1 + q2
2 − q2

3)δ3 − (q2q3 − q0q1)δ2
(q2q3 − q0q1)δ1 − (q1q2 + q0q3)δ3

(q1q2 + q0q3)δ2 −
1
2 (q

2
0 − q2

1 + q2
2 − q2

3)δ1

ª®®®®®®®®®¬
.

Let us consider the six vector fields X,Y1,Y2, [X,Y1], [X,Y2], [[X,Y1],Y1]: we have that the determinant of the matrix
obtained by removing the first row from the 7 × 6 matrix

(X(q, P),Y1(q, P),Y2(q, P), [X,Y1](q, P), [X,Y2](q, P), [[X,Y1],Y1](q, P))

is equal to D(q, P) := S(q)〈P, δ〉, where S(q) = S1(q)S2(q)S3(q)S4(q) and

S1(q) :=
I2 − I3

32I3
2 I2

3
q1,

S2(q) := (−2q1q2δ1 + 2q0q3δ1 + q2
0δ2 + q2

1δ2 − (q2
2 + q2

3)δ2),

S3(q) := (q0(−2q2δ1 + 2q1δ2) + 2q3(q1δ1 + q2δ2) + (q2
0 − q2

1 − q2
2 + q2

3)δ3)
2,

S4(q) := (−2(q0q2 + q1q3)(δ
2
1 + δ

2
2) + ((q

2
0 + q2

1 − q2
2 − q2

3)δ1 + 2(q1q2 − q0q3)δ2)δ3),

〈P, δ〉 = P1δ1 + P2δ2 + P3δ3.

Remark 2.2.3. As a byproduct of this computation, we notice that when δ = (0, 0, δ3) then S2 ≡ 0 and thus D ≡ 0.
This is a signature of the non-controllability of the genuine symmetric-top, proved in Theorem 2.2.1.

Hence, for all (q, P) such that D(q, P) , 0,

dim
(
span{X(q, P),Y1(q, P),Y2(q, P), [X,Y1](q, P), [X,Y2](q, P),

[[X,Y1],Y1](q, P)}
)
= 6,

that is, outside the set N := {(q, P) ∈ S3 × R3 | D(q, P) = 0} the family X,Y1,Y2 is Lie bracket generating.
Now we are left to prove that Reach(q, P) 1 N for every (q, P) ∈ N , and then to apply Lemma 2.1.2. Let us start

by considering the factor 〈P, δ〉 of D and notice that, for any fixed q ∈ S3, Q := {P = (P1, P2, P3) ∈ R
3 | 〈P, δ〉 = 0}

defines a surface inside {q} ×R3. Denote by ΠR3 : T(S3×R3) → TR3 the projection onto the R3 part of the tangent
bundle. The vector field ΠR3 X is tangent to Q = {〈P, δ〉 = 0} if and only if

〈ΠR3 X |Q,∇D |Q〉 = 0⇔ 〈[P, ρP]|Q, δ〉 = 0⇔ δ ∈ span{P |Q, ρP |Q} ⇔ δ ∈ span{ρP |Q},
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where in the second equivalence we used that rank(P, ρP) = 2 as long as the top is not spherical, i.e., as long as the
inertia contants do not satisfy I1 = I2 = I3, and in the last equivalence we used that 〈P, δ〉|Q = 0. Then, we obtain
that ΠR3 X is tangent to Q if and only if

P = t ©«
δ1I1
δ2I2
δ3I3

ª®¬ , t ∈ R.

Using again that 〈P, δ〉|Q = 0, we see that 〈t(δ1I1, δ2I2, δ3I3)
T , (δ1, δ2, δ3)

T 〉 = 0, implying t = 0. Finally, we have
seen that ΠR3 X is tangent to Q if and only if P = 0; as ΠR3Yi(q, P = 0) , 0, for any i = 1, 2, 3, we conclude that the
distribution spanned by {ΠR3 X,ΠR3Yi} is not tangent to Q. Summarizing, we have

Reach(q, P) 1 {〈P, δ〉 = 0}, ∀(q, P) ∈ {〈P, δ〉 = 0}.

To conclude, if (q, P) ∈ {Si = 0}, i = 1, . . . , 4, then we fix P and we get two-dimensional strata {q ∈ S3 |
Si(q) = 0} ⊂ S3. Now the projections of the vector fields X, [X,Y1], [X,Y2], [X,Y3] on the base part of the bundle
span a three-dimensional vector space if 〈P, δ〉 , 0, as observed in (2.2.5). So, by possibly steering P to a point
where 〈P, δ〉 , 0, it is possible to exit from the union of {Si = 0}. This concludes the proof of the theorem. �

2.2.4 Reachable sets of the classical genuine symmetric-top
Theorem 2.2.1 states that each hypersurface {P3 = const} is invariant for the controlled motion. Next we prove that
the restriction of system (2.2.2) to any such hypersurface is controllable.

Theorem 2.2.4. Let I1 = I2 and δ = (0, 0, δ3)
T , δ3 , 0. Then for (g0, P0) ∈ SO(3) × R3, P0 = (P01, P02, P03), one

has
Reach(g0, P0) = {(g, P) ∈ SO(3) × R3 | P3 = P03}.

Proof. From Theorem 2.2.1 we know that {P3 = const} is invariant. Since the drift X is recurrent, it suffices to
prove that system (2.2.2) is Lie bracket generating on the 5-dimensional manifold {P3 = const}.

We recall from (2.2.5) that, if 〈P, δ〉 , 0, that is, if P3 , 0, we have

dim
(
span{ΠSO(3)X(g, P),ΠSO(3)[X,Y1](g, P),ΠSO(3)[X,Y2](g, P),

ΠSO(3)[X,Y3](g, P)}
)
= 3.

Moreover, since ΠR3Yi(q, P) = (g−1ei) × δ for i = 1, 2, 3, we have that

(2.2.6) dim
(
span{ΠR3Y1,ΠR3Y2,ΠR3Y3}

)
= 2

everywhere. Thus, if P3 , 0, it follows that

dim
(
span{X(g, P),Y1(g, P),Y2(g, P),Y3(g, P), [X,Y1](g, P), [X,Y2](g, P),

[X,Y3](g, P)}
)
= 5.

So the system is Lie bracket generating on the manifold {P3 = const , 0}.
We are left to consider the case P3 = 0. Notice thatΠR3Y1,ΠR3Y2,ΠR3Y3 span a two-dimensional distribution for

any value of P3. So we consider in the quaternion parametrization the projections of X, [X,Y1], [X,Y2], [[X,Y1], X]
on the S3 part of the bundle and we obtain

dim
(
span{ΠS3 X(q, P),ΠS3 [X,Y1](q, P),ΠS3 [X,Y2](q, P),

ΠS3 [[X,Y1], X](q, P)}
)
= 3,

for P3 = 0, except when q3[2P2(q1q2 − q0q3) + P1(q2
0 + q2

1 − q2
2 − q2

3)] = 0. This equation defines the union of
two surfaces inside S3. (Notice that we can assume P1 , 0 and P2 , 0 because (2.2.6) gives local controllability
in (P1, P2)). On {q3 = 0}, we have that ΠS3 X is tangent if and only if q1P2 − q2P1 = 0. On the curve γ ⊂ S3 of
equation {

q3 = 0,
q1P2 − q2P1 = 0,
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we can consider the two-dimensional distribution spanned by ΠS3 [X,Y1],ΠS3 [X,Y2], ΠS3 [X,Y3], which is clearly
not tangent to γ. Following Lemma 2.1.2, the system is Lie bracket generating also on {q3 = 0}.

Analogously, on {2P2(q1q2−q0q3)+P1(q2
0 +q2

1 −q2
2 −q2

3) = 0} we consider the vector fieldΠS3 [[[X,Y1], X],Y2]
which is tangent if and only if (q0q2 + q1q3)(P1q0q1 +P2q0q2 −P2q1q3 +P1q2q3) = 0. Again, since the distribution
spanned by ΠS3 [X,Y1],ΠS3 [X,Y2], ΠS3 [X,Y3] is two-dimensional, we can exit from the set of equations{

2P2(q1q2 − q0q3) + P1(q2
0 + q2

1 − q2
2 − q2

3) = 0,
(q0q2 + q1q3)(P1q0q1 + P2q0q2 − P2q1q3 + P1q2q3) = 0,

whose strata have dimension at most one. Thus, applying again Lemma 2.1.2, we can conclude that the restriction
of the system to the manifold {P3 = 0} is Lie bracket generating. �

2.3 Asymmetric molecule
Here we prove the following:

Theorem 2.3.1. Let δ , 0. Assume that the molecule is asymmetric, that is, 0 < I1 < I2 < I3. Then, (2.2.2) is
controllable.

Proof. We follow the proof of Theorem 2.2.2 on the controllability of an accidentally symmetric top, pointing
out the main differences. In quaternions parametrization (q, P) of S3 × R3 (as a double cover of SO(3) × R3) the
determinant D of the 6 × 6 matrix obtained by removing the first row from the 7 × 6 matrix

(X(q, P),Y1(q, P),Y2(q, P), [X,Y1](q, P), [X,Y2](q, P), [[X,Y1],Y1](q, P))

now gives
D(q, P) = 〈P, δ〉 Sδ,(I1,I2,I3)(q),

where

Sδ,(I1,I2,I3)(q) = (4I1I2I3)
−1q0

{
q0(−2q2δ1 + 2q1δ2) + 2q3(q1δ1 + q2δ2) + q2

0δ3 − (q2
1 + q2

2 − q2
3)δ3

}2

×
{
(2I1I2I3)[q0q2δ2 + q1q3δ2 − q1q2δ3 + q0q3δ3][2q0δ1(q3δ2 − q2δ3) − 2q1δ1(q2δ2 + q3δ3)

+ q2
0(δ

2
2 + δ

2
3) + q2

1(δ
2
2 + δ

2
3) − (q

2
2 + q2

3)(δ
2
2 + δ

2
3)]

+ I1
[
I2(−2q1q2δ1 + 2q0q3δ1 + q2

0δ2 + q2
1δ2 − (q2

2 + q2
3)δ2)

× [−2(q0q2 + q1q3)(δ
2
1 + δ

2
2) + (q

2
0δ1 + q2

1δ1 − (q2
2 + q2

3)δ1 + 2q1q2δ2 − 2q0q3δ2)δ3]

− I3[−2(q0q2 + q1q3)δ1 + (q2
0 + q2

1 − q2
2 − q2

3)δ3][q2
0δ1δ2 + q2

1δ1δ2 − (q2
2 + q2

3)δ1δ2 + 2q1q3δ2δ3

− 2q1q2(δ
2
1 + δ

2
3) + 2q0{q2δ2δ3 + q3(δ

2
1 + δ

2
3)}]

]}
Remark 2.3.2. The main difference here w.r.t. the symmetric top case (I1 = I2 for, e.g., oblate symmetry) is that
S(0,0,δ3),(I1,I2,I3) . 0 if I1 < I2 < I3, while S(0,0,δ3),(I2,I2,I3) ≡ 0 (cf. Remark 2.2.3): this means that this way we will
also prove controllability for the case δ = (0, 0, δ3)

T (which is not controllable for a symmetric top, cf. Theorem
2.2.1).

Now the same proof of Theorem 2.2.2 shows that

Reach(q, P) 1 {〈P, δ〉 = 0}, ∀(q, P) ∈ {〈P, δ〉 = 0}.

We then conclude exactly as in the last part of the proof of Theorem 2.2.2: by possibly steering P to a point
where 〈P, δ〉 , 0, the projection on TS3 of the distribution spanned by the vector fields X, [X,Y1], [X,Y2], [X,Y3]
is three-dimensional (as it is proven in (2.2.5), which always holds also in the asymmetric case I1 < I2 < I3), and
thus it cannot be tangent to the two-dimensional strata of {q ∈ S3 | Sδ,(I1,I2,I3)(q) = 0}. Hence, Reach(q, P) 1 N
for every (q, P) ∈ N , and the proof is concluded thanks to Lemma 2.1.2. �
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Chapter 3

Quantum controllability of a rotating
molecule

In this chapter we present a study on the controllability of the bilinear Schrödinger equation of a rotating symmetric-
and asymmetric-top molecule. The molecule is modelled as a rigid rotor and is controlled through three orthogonal
electric fields interacting with its electric dipole.

Both for the symmetric and the asymmetric system, we characterize the controllability in terms of the dipole
configuration, fixed inside the molecular frame.

Concerning the symmetric-top, we summarize our findings in the following facts: if the dipole lies along the
symmetry axis of the molecule, the rotations are not controllable, due to the presence of a conserved quantity, the
third component of the angular momentum (it corresponds to the phenomenon already observed for the classical
dynamics in Theorem 2.2.1); if the dipole is orthogonal to the symmetry axis, the rotations are not controllable, due
to the superposition of degenerate states (it has no classical counterpart); if the dipole is not along the symmetry
axis nor orthogonal to it, approximate controllability and stronger properties of the Schrödinger equation are proved
to hold for the rotational dynamics, under a non-resonant assumption on the inertia moments.

Concerning the asymmetric-top, we prove that the rotational dynamics are not controllable if the dipole is
parallel to any of the principal axis of inertia, and that any other configuration of the dipole yields approximately
controllable rotational dynamics and stronger properties, for almost all values of the inertia moments.

The chapter is organized as follows: in Section 3.1 we recall some notions of controllability and present some
criteria to prove the approximate controllability and stronger properties of the multi-input bilinear Schrödinger
equation; in Section 3.2 we apply this framework to a rotating symmetric-top; in Section 3.3 the framework is
applied to a rotating asymmetric-top. In the Appendix 3.4 we give the proof of two important propositions.

In Section 3.1 we also present two original sufficient conditions for the approximate controllability of the
bilinear Schrödinger equation, that are Corollary 3.1.20 and Theorem 3.1.21, which can be seen as consequences
of the main controllability criteria stated in Corollary 3.1.16, and whose proof can be found in [28]. The results of
Sections 3.2 and 3.3 are original, and in particular the approximate controllability of accidentally symmetric-tops
and asymmetric-tops, for almost all values of the inertia moments, are proved resp. in Theorems 3.2.5 and 3.3.2.

The results on the quantum symmetric-top system are in the papers [33] and [35].

3.1 Controllability of the multi-input bilinear Schrödinger equation

3.1.1 Notions of controllability
Let ` ∈ N and U ⊂ R` be a neighborhood of the origin. LetH be an infinite-dimensional Hilbert space with scalar
product 〈·, ·〉 (linear in the first entry and conjugate linear in the second), H, B1, . . . , B` be (possibly unbounded)
self-adjoint operators on H , with domains D(H),D(B1), . . . ,D(B`). We consider the controlled Schrödinger
equation

(3.1.1) i
dψ(t)

dt
= (H +

∑̀
j=1

u j(t)Bj)ψ(t), ψ(t) ∈ H, u(t) ∈ U.
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Definition 3.1.1. • We say that the operator H satisfies (A1) if it has discrete spectrum with infinitely many
distinct eigenvalues (possibly degenerate).
Denote byB a Hilbert basis (φk)k∈N ofH made of eigenvectors of H associated with the family of eigenvalues
(λk)k∈N and let L be the set of finite linear combination of eigenstates, that is,

L = span{φk | k ∈ N}.

• We say that (H, B1, . . . , B`,B) satisfies (A2) if φk ∈ D(Bj) for every k ∈ N, j = 1, . . . , `.

• We say that (H, B1, . . . , B`,B) satisfies (A3) if

H +
∑̀
j=1

u jBj : L → H

is essentially self-adjoint for every u ∈ U.

• We say that (H, B1, . . . , B`,B) satisfies (A) if H satisfies (A1) and (H, B1, . . . , B`,B) satisfies (A2) and (A3).

If (H, B1, . . . , B`,B) satisfies (A) then, for every (u1, . . . , u`) ∈ U, H +
∑`

j=1 u jBj generates a one-parameter

group e−it(H+
∑`

j=1 u jB j ) inside the group of unitary operators U(H). It is therefore possible to define the propagator
ΓuT at time T of system (3.1.1) associated with a piecewise constant control law u(·) = (u1(·), . . . , u`(·)) by
composition of flows of the type e−it(H+

∑`
j=1 u jB j ).

Definition 3.1.2. Let (H, B1, . . . , B`,B) satisfy (A).

• Given ψ0, ψ1 in the unit sphere S of H , we say that ψ1 is reachable from ψ0 if there exist a time T > 0 and
a piecewise constant control law u : [0,T] → U such that ψ1 = Γ

u
T (ψ0). We denote by Reach(ψ0) the set of

reachable points from ψ0.

• We say that (3.1.1) is approximately controllable if for every ψ0 ∈ S the set Reach(ψ0) is dense in S.

By fully exploiting the geometric control theory behind our technique, we will actually obtain a stronger
controllability property for (3.1.1). For this reason, let us introduce the notion of module-tracker (m-tracker, for
brevity) that is, a system for which any given curve can be tracked up to (relative) phases. The identification up to
phases of elements ofH in the basis B = (φk)k∈N can be accomplished by the projection

M : ψ 7→
∑
k∈N

|〈φk, ψ〉|φk .

Definition 3.1.3. Let (H, B1, . . . , B`,B) satisfy (A). We say that system (3.1.1) is an m-tracker if, for every r ∈ N,
ψ1, . . . , ψr in H , Γ̂ : [0,T] → U(H) continuous with Γ̂0 = IdH , and ε > 0, there exists an invertible increasing
continuous function τ : [0,T] → [0,Tτ] and a piecewise constant control u : [0,Tτ] → U such that

‖M(Γ̂tψk) −M(Γ
u
τ(t)ψk)‖ < ε, k = 1, . . . , r,

for every t ∈ [0,Tτ].

Remark 3.1.4. We recall that if system (3.1.1) is an m-tracker, then it is also approximately controllable, as noticed
in [28, Remark 2.9].

If a system is an m-tracker and the control system is weakly coupled, then approximate controllability holds
also in higher norms. Thanks to spectral calculus, we define for s > 0

|H |sψ =
∑
n∈N

|λn |
s 〈ψ, φn〉φn

for every ψ belonging to

D(|H |s) :=

{
ψ ∈ H |

∑
n∈N

|λn |
2s |〈ψ, φn〉|

2 < ∞

}
.

We consider the s-norm defined on D(|H |s) as ‖ · ‖s := ‖|H |s · ‖.
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Definition 3.1.5. We say that (3.1.1) is approximately controllable in the s-norm if, for every ψin, ψfin ∈ D(|H |s)
of norm one, and ε > 0, there exists a piecewise constant control u : [0,T] → U such that

‖ΓuT (ψ
in) − ψfin‖s < ε.

We say that (H, B1, . . . , B`,B) satisfies (A′) if it satisfies (A) and
• the operator H +

∑`
j=1 u jBj is bounded from below for every u ∈ R` ;

• the sequence (λk)k∈N of eigenvalues of H is positive non-decreasing and accumulates at∞.
Definition 3.1.6. Let (H, B1, . . . , B`,B) satisfy (A′) and let s > 0. We say that (H, B1, . . . , B`) is s-weakly coupled
if D(|H +

∑`
j=1 u jBj |

s/2) = D(|H |s/2) for every u ∈ R` and there exists C such that

|R〈|H |sψ, Bjψ〉| ≤ C |〈|H |sψ, ψ〉|,

for every j = 1, . . . , ` and ψ ∈ D(|H |s).
Remark 3.1.7. We recall that if system (3.1.1) satisfies (A′), is an m-tracker and is s-weakly coupled, then it is
also approximately controllable in the s/2-norm for every s > 0 [28, Corollary 2.13] (see also [37, Proposition 5]).
We notice that if the controls Bi are bounded operators and (λk)k∈N is positive non-decreasing and accumulates at
∞, then (3.1.1) is s-weakly coupled for every s > 0.

Another useful notion of controllability for quantum mechanical systems is given in the sense of density
matrices. Recall that a density matrix ρ is a non-negative, self-adjoint operator of trace class, whose trace is
normalized to one. Its time evolution is determined by

ρ(t) = Γut ρ(0)Γu∗t ,

where Γu∗t is the adjoint of Γut . After the above definition of time evolution for the density matrix, ρ(t) is necessarily
unitary equivalent to ρ(0).
Definition 3.1.8. Let (H, B1, . . . , B`,B) satisfy (A). We say that (3.1.1) is approximately controllable is the sense
of density matrices if for every pair of unitary equivalent density matrices ρ0, ρ1 and every ε > 0 there exists a
piecewise constant control u : [0,T] → U such that

‖ρ1 − Γ
u
T ρ0Γ

u∗
T ‖L(H) < ε,

for the operator norm on the set of bounded operators L(H) acting on the Hilbert spaceH .
Remark 3.1.9. We recall that if system (3.1.1) is an m-tracker, then it is also approximately controllable in the
sense of density matrices, as it follows from [28, Remark 2.9, Theorem 2.6] and [27, Proposition A.1].

Our notion of solution to (3.1.1) is given for piecewise constant controls u as a composition of time-independent
flows. Hence, our definitions of controllability are given by means of piecewise constant controls. We can extend
the notion of solution to (3.1.1) also for different classes of controls.
Definition 3.1.10. • We say that u ∈ L∞([0,T],R`) is admissible for (3.1.1) if u(t) ∈ U for almost every

t ∈ [0,T] and, for every ψ0 ∈ H , there exists ψ : [0,T] → H such that ψ(0) = ψ0, the function t 7→ 〈ψ(t), φk〉
is absolutely continuous for every k ∈ N, and satisfies

i
d
dt
〈φk, ψ(t)〉 = 〈(H +

∑̀
j=1

u j(t)Bj)φk, ψ(t)〉

for almost every t ∈ [0,T]. The function t 7→ ψ(t) is called the solution of (3.1.1) with initial condition
ψ0 ∈ H associated with the control u.

• If u ∈ L∞([0,T],R`) is admissible for (3.1.1), we call the propagator of (3.1.1) associated with u the map
[0,T] 3 t 7→ Γut , where, for any ψ0 ∈ H , Γut ψ0 is the evaluation at time t of the solution of (3.1.1) having ψ0
as initial condition.

Remark 3.1.11. • If u : [0,T] → U is piecewise constant, then u is admissible for (3.1.1) and we recover the
notion of propagator as a composition of time-independent flows.

• Let a > 0 such that [−a, a]` ⊂ U. If u ∈ C1([0,T], [−a, a]`) and B1, . . . , B` are H-small with H-bound smaller
than 1/a (see (5.3.2) for the definition of H-smallness), then u is admissible for (3.1.1), as a consequence
of the Kato-Rellich theorem [100, Theorem X.12], and [100, Theorem X.70]. In particular, it applies if the
control operators Bi are bounded.

As a consequence of the previous remark, the notions of controllability previously introduced can be extended
to the class of smooth controls u, and all the following results hold in the class of piecewise constant controls and
also in the class of smooth controls under the additional smallness assumption on the Bi .
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3.1.2 Lie-Galerkin tracking condition
In this section we mostly follow [28] and [40] in order to state a sufficient condition for a system to be an m-tracker.
At the end of this section we propose an original simultaneous approximate controllability result, particularly suited
for controlled evolutions in the presence of symmetries.

For any n ∈ N, we consider the projection

Πn : H 3 ψ 7→
∑

j=1,...,n
〈φ j, ψ〉φ j ∈ H .

and we define H(n) = ΠnHΠn, B
(n)
j = ΠnBjΠn, j = 1, . . . , `. The set of spectral gaps of H for the n-dimensional

truncation of the spectrum is defined as Σn := {|λi − λj |, i, j = 1, . . . , n}.
For every σ ≥ 0, and every square matrix M of dimension m, let

Eσ(M) = (Ml,kδσ, |λl−λk |)l,k=1,...,m,

where δl,k is the Kronecker delta. The n × n matrix Eσ(B(n)i ) corresponds to the activation in B(n)i of the spectral
gap σ ∈ Σj : every element is 0 except for the (l, k)-elements such that |λl − λk | = σ. We introduce

Ξn := {(σ, l) ∈ Σn × {1, . . . , l} | (Bj)k,lδσ, |λl−λk | = 0, for every k = 1, . . . , n and l > n}.

To give a picture of the set Ξn, we notice that, if (σ, l) ∈ Ξn, then for every N > n

Eσ(iB(N )i ) =

[
Eσ(iB(n)i ) 0

0 ∗

]
,

and hence Ξn is the set of frequencies which preserve the finite-dimensional truncations of (3.1.1). We then define
an operator which acts on the vector space of square matrices, Wξ , ξ ∈ S1 ⊂ C, defined by

(3.1.2) (Wξ (M))l,k =


ξMl,k, λl < λk,

0, λl = λk,

ξ̄Ml,k, λl > λk .

We remark that the definition of Wξ is motivated by the following formula of Lie algebraic nature

(3.1.3) σWiEσ(B
(n)
j ) =

[
Eσ(B

(n)
j ),H

(n)
]
.

Then, we consider the set of effective auxiliary matrices

νn := {Wξ (Eσ(iB(n)i )) | (σ, i) ∈ Ξn, σ , 0, ξ ∈ S1}

acting on ΠnH � Cn. Denote by ‖ · ‖L(ΠnH,H) the norm on the space of linear operators from ΠnH toH . We have
the following averaging result on periodic excitations, proved in [40, Lemma 3.2] and inspired by [41, Theorem 1]:

Lemma 3.1.12. Let n ∈ N, j ∈ {1, . . . , l} and σ > 0 such that (σ, l) ∈ Ξn. Fix also 0 < a < b and an admissible
periodic control of period T = 2π/σ that is non-vanishing at the j-th component only: u = (0, . . . , 0, v, 0, . . . , 0) ∈
Rl . Assume moreover that

∫ T

0 v(t)dt = 0,
∫ T

0 v(t)eiσtdt = α and
∫ T

0 v(t)eimσtdt = 0 for every m ≥ 2 such that
mσ ∈ Σn. Then

lim
K→∞

‖Γ
τu/K
KT − e−iKTHexp(ταEσ(iB(n)j ))‖L(ΠnH,H) = 0,

uniformly w.r.t. τ ∈ [a, b]

Thus, under the assumption that a given frequency σ := |λi − λk | is non-resonant (in the sense of the
set Ξn) and that (Bj)i,k , 0, by applying a control (that has only j-th non vanishing component) of the form
(0, . . . , 0, cos(σt)/K, 0, . . . , 0) in (3.2.4), the system is approximating (modulo a phase) the transfer of population
from state φ j to state φk , with an error that goes to 0 as the amplitude of the control 1/K goes to 0.

The last lemma suggests to consider the effective problem:

(3.1.4)
d
dt
ψ = M(t)ψ, M(t) ∈ νn, ψ ∈ Cn.

The next lemma (whose proof can be found in [40, Proposition 4.1]) tells that any propagator of (3.1.4) can be
approximated by a propagator of (3.1.1).
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Lemma 3.1.13. Let n, k ∈ N, and fix 0 < a < b. Consider M1, . . . , Mk ∈ νn. Then, for every ε > 0 and
τ1, . . . , τk ∈ [a, b] there exist an admissible control u, Tu > 0 and γ ≥ 0 such that

‖ΓuTu − e−iγH ◦ eτkMk ◦ · · · ◦ eτ1M1 ‖L(ΠnH,H) < ε.

One can then let evolve the system freely for a time τ (that is, consider e−iτHΓuTu ) to correct the dephasing term
e−iγH , as it is proved in [40, Lemma 4.2] :

Lemma 3.1.14. Let ψ ∈ H , µ > 0, N ∈ N, and N be a neighborhood of ΠN (e−iµHψ) in span{φ1, . . . , φN }.Then
there exists τ ≥ 0 such that e−iτHN is a neighborhood of ΠNψ in span{φ1, . . . , φN }.

Now we can state an important consequence:

Definition 3.1.15. We say that (3.1.1) satisfies the Lie-Galerkin tracking condition if for every n0 there exists
n > n0 such that Lie(νn) = su(n).

Corollary 3.1.16 ([28]). If (3.1.1) satisfies the Lie-Galerkin tracking condition, then it is an m-tracker.

Example 3. Wegive here two examples of physically relevant systems: the first one does not satisfy the Lie-Galerkin
tracking condition, and the second one does.

• Quantum harmonic oscillator We consider the controlled bilinear Schrödinger equation

(3.1.5) i
∂

∂t
ψ(x, t) =

1
2

(
−
∂2

∂x2 + x2
)
ψ(x, t) + u(t)xψ(x, t) , ψ(·, t) ∈ L2(R).

This system represents an example where any finite n-dimensional truncation is controllable [59], while
the whole infinite-dimensional system is known to be noncontrollable, neither exactly nor approximately
[88, 72].
An Hilbert basis made of eigenfunctions of the drift − ∂2

∂x2 + x2 is given by the Hermite functions {φn}n∈N,
and the spectrum of the drift is given by the set of eigenvalues {En = n − 1/2 | n ∈ N}. In this basis, the
control field B1 = x is given by

〈φ j, Bφk〉 =


√

k − 1 if j = k − 1,
√

k if j = k + 1,
0 otherwise.

For any n ∈ N, as Σn = {0, 1, . . . , n} and Ξn := Σn \ {1}, we see that Eσ(B1) is the zero matrix for all σ ∈ Ξn.
Thus, system (3.1.5) does not satisfy the Lie-Galerkin tracking condition. For further interesting remarks on
the relation between (3.1.5) and its finite-dimensional truncations, see also [37, Section IV.D].

• Planar molecule The system of a planar bipolar molecule interacting with two orthogonal controls is
modelled by the following bilinear controlled Schrödinger equation on the circle S1:

(3.1.6) i
∂

∂t
ψ(α, t) =

[
−
∂2

∂α2 + u1(t) cos(α) + u2(t) sin(α)
]
ψ(α, t) , ψ(·, t) ∈ L2(S1).

Let us show here that (3.1.6) satisfies the Lie-Galerkin tracking condition. An Hilbert basis of L2(S1) that
diagonalizes the drift ∂2

∂α2 =: H is given by the exponential trigonometric functions: {eikα/
√

2π | k ∈ Z}.
The spectrum of the drift H is given by {Ek = k2 | k ∈ Z}, which is degenerate, as Ek = E−k . We take
as basis for the eigenspace corresponding to the degenerate eigenvalue Ek , k ≥ 1, the pair of functions
{φk := cos(kα)/

√
π, φ−k := sin(kα)/

√
π}, and we set φ0 = 1/

√
2π. Denoting by B1 = cos(α), B2 = sin(α)

the two multiplicative control operators, we have the following selection rules:

〈φk, Blφ j〉 = 0, if | j − k | > 1, l = 1, 2.

Moreover, the pairings

〈φk , B1φk+1〉 = 1/2 , k ∈ Z \ {−1, 0} ,
〈φ0 , B1φ1〉 = 1/

√
2 ,

〈φ−1 , B1φ0〉 = 0 ,
〈φ−1 , B2φ0〉 = 1/

√
2 ,

〈φk , B2φk+1〉 = 0 , k ∈ Z \ {−1} ,
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imply that the operators B1, B2 projected in the Galerkin approximation L2(S1)(n) = span{φ0, φk, φ−k | k =
1, . . . , n} read

iB(n)1 := ΠniB1Πn =
1
√

2
F0,1 +

1
2

∑
k=−n,...,n−1

k,0,−1

Fk,k+1 ,

iB(n)2 := ΠniB2Πn =
1
√

2
F−1,0 ,

where Πn : L2(S1) 3 ψ 7→
∑

j=−n,...,n〈φ j, ψ〉φ j ∈ L2(S1)(n), Fj,k = iej,k + iek, j is a generalized Pauli
(2n + 1) × (2n + 1)-matrix, and ej,k is the (2n + 1) × (2n + 1)-matrix whose entries are all zero except for the
entry at (row j, column k) which is equal to one. Because of the selection rules, we only need to consider
spectral gaps of the form ωk = |Ek − Ek−1 |, k ∈ Z, and we easily see that the only resonance is

ωk = ωj ⇔ j = k or j = −k + 1 ,

which is due to the degeneracy Ek = E−k : |Ek − Ek−1 | = |E−k − E−k+1 | = |2k − 1|. So we can consider the
spectral gaps ωk for positive k = 1, . . . ,∞ only, and write

Eωk
(iB(n)1 ) =

1
2
(Fk−1,k + F−k,−k+1) , k = 2, . . . , n ,(3.1.7)

Eω1 (iB
(n)
1 ) =

1
√

2
F0,1 ,

Eωk
(iB(n)2 ) = 0 , k = 2, . . . , n

Eω1 (iB
(n)
2 ) =

1
√

2
F−1,0 .

Our claim is that

(3.1.8) Lie{WξEωk
(iB(n)1 ),WξEω1 (iB

(n)
2 ) | k = 1, . . . , n, ξ = 1, i} = su(2n + 1),

being 2n + 1 = dim L2(S1)(n). Recall the commutation rules of the Lie algebra su:

(3.1.9) [G j,k,Gk,n] = G j,n, [Fj,k, Fk,n] = −G j,n, [G j,k, Fk,n] = Fj,n,

(3.1.10) [G j,k, Fj,k] = 2Dj,k, [Fj,k,Dj,k] = 2G j,k .

and

(3.1.11) [Yj,k, Z j′,k′] = 0 if { j, k} ∩ { j ′, k ′} = ∅,

with Y, Z ∈ {G, F,D}, where Fj,k = iej,k + iek, j , G j,k = ej,k − ek, j , and Dj,k = iej, j − iek,k is a basis of su,
and ej,k is the (2n + 1) × (2n + 1)-matrix whose entries are all zero except for the entry at (row j, column k)
which is equal to one. Moreover,

(3.1.12) [iH,G j,k] = −|Ej − Ek |Fj,k , [iH, Fj,k] = |Ej − Ek |G j,k .

The main issue here is breaking the sum in (3.1.7), due to the degeneracy Ek = E−k , in order to get the
transitions k − 1↔ k and −k ↔ −k + 1 independently: noticing that[ [

Eω2 (iB
(n)
1 ), Eω1 (iB

(n)
2 )

]
, Eω2 (iB

(n)
1 )

]
= −

1
4

F−2,−1 ,

we obtain also
Eω2 (iB

(n)
1 ) +

[ [
Eω2 (iB

(n)
1 ), Eω1 (iB

(n)
2 )

]
, Eω2 (iB

(n)
1 )

]
=

1
2

F1,2.

From here, it is easy to break the sum in (3.1.7) for k ≥ 3, and using the commutation rules prove the claim
(3.1.8). Finally, as ωn , ωn+1, we see that (ωk, l) ∈ Ξn for all k = 1, . . . , n and l = 1, 2, and hence we proved
that the system (3.1.6) verifies the Lie-Galerkin tracking condition.
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As another application of Lemma 3.1.13, we would like to point out an interesting spectral Lie-algebraic fact
on finite-dimensional quantum systems. Suppose that dimH = N < ∞. Then, it is well-known from the theory of
control systems on Lie groups that (3.1.1) is operator controllable (that is, the equation lifted on the group SU(N)
is controllable) if and only if the Lie algebra has maximal rank, that is, Lie{iH, iB1, . . . , iBl} = su(N) [75]. We can
actually check this maximal rank condition on the decoupled Hamiltonians:

Corollary 3.1.17. Suppose that dimH = N < ∞, and denote by Σ the set of spectral gaps of H.
If Lie{iH, Eσ(iB1), . . . , Eσ(iBl) | σ ∈ Σ, σ , 0} = su(N), then Lie{iH, iB1, . . . , iBl} = su(N). Conversely, if
Lie{iH, iB1, . . . , iBl} = su(N), then Lie{iH, Eσ(iB1), . . . , Eσ(iBl) | σ ∈ Σ} = su(N).

Proof. If Lie{iH, Eσ(iB1), . . . , Eσ(iBl) | σ ∈ Σ, σ , 0} = su(N), then (3.1.1) is approximately controllable
on SU(N), thanks to Lemma 3.1.13. Since any finite-dimensional approximately controllable quantum sys-
tem is exactly controllable [29, Theorem 17] (see also [103]), we get that Lie{iH, iB1, . . . , iBl} = su(N).
Conversely, if Lie{iH, iB1, . . . , iBl} = su(N), since we can write any Bi =

∑
σ∈Σ Eσ(Bi), we conclude that

Lie{iH, Eσ(iB1), . . . , Eσ(iBl) | σ ∈ Σ} = su(N). �

In Corollary 3.1.16 we see that, under some non-resonant assumptions on the spectral gaps (in the sense of the
set Ξn), controllability properties of the finite-dimensional truncations imply approximate controllability properties
of the infinite-dimensional system.

We present now an original application/corollary in terms of simultaneous controllability over invariant sub-
spaces, that will be useful later on for applications on quantum systems with symmetries (for similar results, see also
[43]). Suppose thatH =

⊕
k∈NHk is an orthogonal decomposition, and eachHk is an infinite-dimensional Hilbert

space that is invariant for H, B1, . . . , B` .1 For any n ∈ N, denote by Hn
k

:= (ΠnH) ∩ Hk and nk := dimHn
k
. Of

course, as eachHk is invariant for H, B1, . . . , Bl , we have νn ⊂ su(nk1 )⊕ · · ·⊕su(nkr ), whereΠnH =
⊕

i=1,...,r H
n
ki

and n =
∑

i=1,...,r nki .

Definition 3.1.18. Suppose that there exists an orthogonal decompositionH =
⊕

k∈ZHk in invariant subspaces for
H, B1, . . . , Bl . We say that (3.1.1) is approximately simultaneously controllable if, for every r ∈ N, ψin

k j
, ψfin

k j
∈ Hk j

of norm one, j = 1, . . . , r , and ε > 0, there exists a piecewise constant control u : [0,Tu] → U such that

‖ΓuTuψ
in
k j
− ψfin

k j
‖ < ε, ∀ j = 1, . . . , r .

Definition 3.1.19. Suppose that there exists an orthogonal decomposition H =
⊕

k∈ZHk in invariant subspaces
for H, B1, . . . , Bl . We say that (3.1.1) satisfies the Lie-Galerkin simultaneous control condition if for every n0 there
exists n > n0 such that Lie(νn) = su(nk1 ) ⊕ · · · ⊕ su(nkr ), with

∑
i=1,...,r nki = n.

Corollary 3.1.20. If (3.1.1) satisfies the Lie-Galerkin simultaneous control condition, then it is approximately
simultaneously controllable.

Proof. Let r ∈ N and ψin
k j
, ψfin

k j
∈ Hk j of norm one, j = 1, . . . , r . For ε > 0, consider n0 ∈ N such thatψin

k j
−

Πn0ψ
in
k j

‖Πn0ψ
in
k j
‖

 < ε

3
,

ψfin
k j
−

Πn0ψ
fin
k j

‖Πn0ψ
fin
k j
‖

 < ε

3
, ∀ j = 1, . . . , r .

The Lie-Galerkin simultaneous control condition ensures the existence of n > n0 such that system (3.1.4) is
simultaneously controllable in

⊕
j=1,...,r H

n
k j
. By Lemma 3.1.13 there exists an admissible control u, Tu ≥ 0, and

γ ≥ 0 such that ΓuTu
(
Πn0ψ

in
k j

‖Πn0ψ
in
k j
‖

)
− e−iγH

Πn0ψ
fin
k j

‖Πn0ψ
fin
k j
‖

 < ε

3
, ∀ j = 1, . . . , r .

Then, by the triangular inequality we conclude that

‖ΓuTu (ψ
in
k j
) − e−iγHψfin

k j
‖ < ε, ∀ j = 1, . . . , r .

Finally, the phase tuning can be handled following the same argument of [27, Section 6.2] �

1This happens, for example, when there exists a self-adjoint operator P that commutes with all the Hamiltonians H, B1, . . . , B` : such an
operator P is called a symmetry of (3.1.1).

55



3.1.3 A block-wise version of the Lie-Galerkin tracking condition
In this section we propose another sufficient condition for a system to be an m-tracker. The main difference
w.r.t. the Lie-Galerkin tracking condition is that, instead of testing a sequence of finite-dimensional properties on
an increasing sequence of linear subspaces of H , we test them on a sequence of overlapping finite-dimensional
spaces, not necessarily ordered by inclusion. This allows the sufficient condition to be checked block-wise, and it
is particularly suited for systems with high degree of symmetries, such as rotating molecules.

Let {Ij | j ∈ N} be a family of finite subsets of N such that ∪j∈NIj = N. Denote by nj the cardinality of Ij .
Consider the subspaces

M j := span{φn | n ∈ Ij} ⊂ H

and their associated orthogonal projections

ΠM j
: H 3 ψ 7→

∑
n∈Ij

〈φn, ψ〉φn ∈ H .

Given a linear operator Q on H we identify the linear operator ΠM j
QΠM j

preservingM j with its complex
matrix representation with respect to the basis (φn)n∈Ij . The set Σj = {|λl − λl′ | | l, l ′ ∈ Ij} is then the collection
of the spectral gaps of ΠM j

HΠM j
. We define B(j)i := ΠM j

BiΠM j
for every i = 1, . . . , `.

If the element (Bi)l,k is different from zero, then a control ui oscillating at frequency |λl − λk | induces a
population transfer between the states φl and φk ([41]). The dynamics of such a population transfer depend on the
other pairs of states φl′ , φk′ having the same spectral gap and whose corresponding element (Bi)l′,k′ is different
from zero. We are interested in controlling the induced population dynamics within a spaceM j . This motivates
the definition of the sets

Ξ
0
j = {(σ, i) ∈ Σj × {1, . . . , `} | (Bi)l,k = 0 for every l ∈ N, k ∈ N \ Ij

such that |λl − λk | = σ},

and

Ξ
1
j = {(σ, i) ∈ Σj × {1, . . . , `} | (Bi)l,k = 0 for every l ∈ Ij, k ∈ N \ Ij

such that |λl − λk | = σ}.

While the set Ξ1
j compares only with pairs of states φl, φk with φl in M j , such a requirement is not present in

the definition if Ξ0
j . This means that for (σ, i) ∈ Ξ0

j the induced population dynamics obtained by a control ui
oscillating at frequency σ not only does not produce population transfer out ofM j , but also is trivial within the
orthogonal complement toM j .

Let us consider the sets of excited modes

(3.1.13) νsj := {Wξ (Eσ(iB(j)i )) | (σ, i) ∈ Ξ
s
j, σ , 0, ξ ∈ S1}, s = 0, 1.

Notice that ν0
j ⊂ ν

1
j ⊂ su(nj). Indeed, we have the following picture:

Eσ(iB(j)i ) ∈ ν
0
j ⇒ Eσ(Πj−1, j, j+1iBiΠj−1, j, j+1) =


0 0 0
0 Eσ(iB(j)i ) 0
0 0 0


Eσ(iB(j)i ) ∈ ν

1
j ⇒ Eσ(Πj−1, j, j+1iBiΠj−1, j, j+1) =


∗ 0 ∗

0 Eσ(iB(j)i ) 0
∗ 0 ∗


where Πj−1, j, j+1 denotes the projection ontoM j−1 ⊕M j ⊕M j+1.

We denote by Lie(νsj ) the Lie subalgebra of su(nj) generated by the matrices in νsj , s = 0, 1, and define Tj as
the minimal ideal of Lie(ν1

j ) containing ν
0
j .

Finally, we introduce the graphGwith verticesV = {Ij | j ∈ N} and edgesE = {(Ij, Ik) | j, k ∈ N, Ij∩Ik , ∅}.
We are now in a position to state a new sufficient condition for a system to be an m-tracker, and thus, approximately
controllable.

Theorem 3.1.21. Assume that (A) holds true. If the graph G is connected and Tj = su(nj) for every j ∈ N, then
(3.1.1) is an m-tracker.
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Proof. The proof works by showing that the Lie-Galerkin tracking condition holds true, which guarantees that
(3.1.1) is an m-tracker (Corollary 3.1.16, see [28, Theorem 2.8] for the proof). In terms of the notation introduced
here, the Lie-Galerkin tracking condition is true if there exists a sequence { Ĩj | j ∈ N} of finite subsets ofN, strictly
increasing with respect to the inclusion, such that ∪j∈N Ĩj = N and Tj = su(nj) for every j ∈ N.

Up to reordering the sets Ij , we can assume that

(3.1.14) Ij+1 ∩ (∪
j
k=1Ik) , ∅, ∀ j ∈ N.

For j ∈ N, let Ĩj = ∪
j
i=1Ii andZj =

∑j
k=1Mk .

The Lie–Galerkin tracking condition holds true if

(3.1.15) Lie(∪mj=1T̃j) = su(dim(Zm)), m ∈ N,

where the set of operators T̃j is obtained similarly to Tj , replacing νsj , s = 0, 1, by

{Wξ (Eσ(iΠZm
BiΠZm

)) | (σ, i) ∈ Ξs
j, σ , 0, ξ ∈ S1}, s = 0, 1.

We proceed by induction on m. For m = 1, (3.1.15) is true, since we have that Lie(T1) = T1 = su(n1) =
su(dim(Z1)). Assume now that (3.1.15) is true for m, and consider the vertex Im+1 ∈ V. Consider t, p ∈ ∪m+1

j=1 Ij
and let us prove that Gt,p := et,p − ep,t is in Lie(∪m+1

j=1 T̃j), where ea,b is the matrix with all entries equal to 0 except
for the one in row a and column b, which is equal to 1 (and the indices in ∪m+1

j=1 Ij are identified with the elements
of {1, . . . , dim(Zm+1)}). Decomposing Zm+1 as a direct orthogonal sum V1 ⊕ (Zm ∩Mm+1) ⊕ V2 with V1 ⊂ Zm

and V2 ⊂ Mm+1, a matrix in T̃m+1 has the form
0 0 0
0 Q11 Q12
0 Q21 Q22

 ,
[

Q11 Q12
Q21 Q22

]
∈ su(nm+1),

as it follows from the definition of Ξ0
j and Ξ

1
j and the fact that T̃m+1 is the ideal generated by ν0

j inside Lie(ν1
j ).

Similarly, a matrix in ∪m
j=1T̃j has the form

Q11 Q12 0
Q21 Q22 0

0 0 0

 ,
[

Q11 Q12
Q21 Q22

]
∈ su(dim(Zm)).

If t, p ∈ ∪m
j=1Ij or t, p ∈ Im+1 the conclusion follows from the induction hypothesis and the identity Tm+1 =

su(nm+1). Let then t ∈ Im+1 \ (∪
m
j=1Ij) and p ∈ ∪m

j=1Ij . Fix, moreover, r ∈ Im+1 ∩ (∪
m
j=1Ij), whose existence is

guaranteed by (3.1.14). Again by the induction hypothesis and the identity Tm+1 = su(nm+1), we have that Gp,r and
Gr,t are in Lie(∪m+1

j=1 T̃j). The bracket [Gp,r,Gr,t ] = Gp,t is therefore also in Lie(∪m+1
j=1 T̃j). By similar arguments,

we deduce that every element of a basis of su(dim(Zm+1)) is in Lie(∪m+1
j=1 T̃j). �

3.2 Symmetric molecule

3.2.1 The Schrödinger equation of a rotating molecule subject to electric fields
We recall in this section some general facts about Wigner D-functions and the theory of angular momentum in
quantum mechanics (see, for instance, [22, 108]).

We use Euler’s angles (α, β, γ) ∈ [0, 2π) × [0, π] × [0, 2π) to describe the configuration space SO(3) of the
molecule. More precisely, the coordinates of a vector change from the body fixed frame a1, a2, a3 to the space fixed
frame e1, e2, e3 via three rotations

(3.2.1) ©«
X
Y
Z

ª®¬ = Re3 (α)Re2 (β)Re3 (γ)
©«

x
y

z

ª®¬ =: R(α, β, γ) ©«
x
y

z

ª®¬
where (x, y, z)T are the coordinates of the vector in the body fixed frame, (X,Y, Z)T are the coordinates of the vector
in the space fixed frame and Rei (θ) ∈ SO(3) is the rotation of angle θ around the axis ei . The explicit expression
of the matrix R(α, β, γ) ∈ SO(3) is

(3.2.2) R = ©«
cosα cos β cos γ − sinα sin γ − cosα cos β sin γ − sinα cos γ cosα sin β
sinα cos β cos γ + cosα sin γ − sinα cos β sin γ + cosα cos γ sinα sin β

− sin β cos γ sin β sin γ cos β

ª®¬ .
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In Euler coordinates, the angular momentum operators are given by

(3.2.3)



J1 = i cosα cot β
∂

∂α
+ i sinα

∂

∂β
− i

cosα
sin β

∂

∂γ
,

J2 = i sinα cot β
∂

∂α
− i cosα

∂

∂β
− i

sinα
sin β

∂

∂γ
,

J3 = −i
∂

∂α
.

These are linear operators acting on the Hilbert space L2(SO(3)), self-adjoint with respect to the Haar measure
1
8 dαdγ sin βdβ. Using (3.2.3), the self-adjoint operator P3 := −i ∂∂γ can be written as P3 = sin β cosα j1 +
sin β sinα j2 + cos β j3, that is,

P3 =

3∑
i=1

Ri3(α, β, γ)Ji,

where R = (Ri j)
3
i, j=1 is given in (3.2.2).

In the samewaywe define P1 =
∑3

i=1 Ri1(α, β, γ)Ji, P2 =
∑3

i=1 Ri2(α, β, γ) ji . The operators Ji and Pi , i = 1, 2, 3,
are the angular momentum operators expressed in the fixed and in the body frame, respectively. The rotational
Hamiltonian of a molecule with inertia moments I1, I2, I3 > 0 is given by

H =
1
2

( P2
1

I1
+

P2
2

I2
+

P2
3

I3

)
,

which is seen here as a self-adjoint operator acting on the Hilbert space L2(SO(3)). The interaction Hamiltonian
between the dipole δ inside the molecule and the external electric field in the direction ei , i = 1, 2, 3, is given by
the Stark effect ([68, Chapter 10])

Bi(α, β, γ) = −〈R(α, β, γ)δ, ei〉,

seen as a multiplicative self-adjoint operator acting on L2(SO(3)). Then, the rotational Schrödinger equation for a
rigid molecule subject to three orthogonal electric fields reads

(3.2.4) i
∂

∂t
ψ(α, β, γ; t) = Hψ(α, β, γ; t) +

3∑
l=1

ul(t)Bl(α, β, γ)ψ(α, β, γ; t),

with ψ(t) ∈ L2(SO(3)) and u(t) ∈ U, for some neighborhood U of 0 in R3.
We also consider the square norm operator J2 := J2

1 + J2
2 + J2

3 = P2
1 + P2

2 + P2
3 . The self-adjoint operators

J2, J3, P3 can be considered as the three commuting observables needed to describe the quantum motion of a
molecule. Indeed,

[J2, J3] = [J2, P3] = [J3, P3] = 0,

and hence there exists an orthonormal Hilbert basis of L2(SO(3)) which diagonalizes simultaneously J2, J3 and P3.
In terms of Euler coordinates, this basis is made by the so-called Wigner functions

(3.2.5) D j
k,m
(α, β, γ) := ei(mα+kγ)d j

k,m
(β), j ∈ N, k,m = − j, . . . , j,

where the function d j
k,m

solves a suitable Legendre differential equation, obtained by separation of variables (see,
e.g., [68, Section 2.5] for the separation of variables ansatz and [108, Chapter 4] for a detailed description of the
properties of these functions).

Summarizing, the family of Wigner functions {D j
k,m
| j ∈ N, k,m = − j, . . . , j} forms an orthonormal Hilbert

basis for L2(SO(3)). Moreover,

(3.2.6) J2D j
k,m
= j( j + 1)D j

k,m
, J3D j

k,m
= mD j

k,m
, P3D j

k,m
= kD j

k,m
.

Thus, m and k are the quantum numbers which correspond to the projections of the angular momentum on the
third axis of, respectively, the fixed and the body frame. In this section we treat the symmetric molecule, so we
impose the symmetry relation I1 = I2, which implies that one can write the rotational Hamiltonian in the following
form

H =
J2

2I2
+

( 1
2I3
−

1
2I2

)
P2

3 .
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Thus,

(3.2.7) HD j
k,m
=

( j( j + 1)
2I2

+
( 1
2I3
−

1
2I2

)
k2

)
D j
k,m
=: E j

k
D j
k,m

.

implying that the Wigner functions are also the eigenfunctions of the rotational Hamiltonian of the symmetric
molecule. Since the eigenvalues of H do not depend on m, the energy level E j

k
is (2 j + 1)-degenerate with respect

to m. This property is common to every molecule in nature: the spectrum σ(H) does not depend on m, just like in
classical mechanics the kinetic energy does not depend on the direction of the angular momentum. Moreover, when
k , 0 the energy level E j

k
is also 2-degenerate with respect to k. This extra degeneracy is actually a characterizing

property of symmetric molecules. Breaking this k-symmetry will be one important feature of our controllability
analysis.

3.2.2 Non-controllability and reachable sets of the quantum genuine symmetric-top
We recall that the genuine symmetric-top molecule is a symmetric rigid body with electric dipole δ along the
symmetry axis: δ = (0, 0, δ3)

T in the principal axis frame on the body. We then introduce for any k ∈ Z the
subspaces Sk := span{D j

k,m
| j ∈ N, j ≥ |k |,m = − j, . . . , j}, where span denotes the closure of the linear hull in

L2(SO(3)).

Theorem3.2.1. The quantum number k is invariant in the controlledmotion of the genuine symmetric-topmolecule.
That is, if I1 = I2 and δ = (0, 0, δ3)

T , the subspaces Sk , k ∈ Z, are invariant for any propagator of the Schrödinger
equation (3.2.4).

Proof. We have to show that H and B1, B2, B3, do not couple different levels of k, that is,

(3.2.8)

{
〈D j

k,m
, iHD j′

k′,m′
〉L2(SO(3)) = 0, k , k ′,

〈D j
k,m
, iBlD

j′

k′,m′
〉L2(SO(3)) = 0, k , k ′, l = 1, 2, 3.

The first equation of (3.2.8) is obvious since the orthonormal basis {D j
k,m
} diagonalizes H. Under the genuine

symmetric-top assumption, the second equation of (3.2.8) is also true: for l = 1 and k , k ′ we compute

〈D j
k,m
,iB1D j′

k′,m′
〉L2(SO(3))

= −

∫ 2π

0
dα

∫ 2π

0
dγ

∫ π

0
dβ sin(β)D j

k,m
(α, β, γ)iB1(α, β, γ)D

j′

k′,m′
(α, β, γ)

= iδ3

(∫ 2π

0
dγeikγe−ik′γ

) (∫ 2π

0
dα cos(α)eimαe−im′α

)
×

(∫ π

0
dβ sin2(β)d j

k,m
(β)d j′

k′,m′
(β)

)
= 0,

using the orthogonality of the functions eikγ and the explicit form (3.2.2) of the matrix R, which yields

B1(α, β, γ) = −〈R(α, β, γ)
©«

0
0
δ3

ª®¬ , ©«
1
0
0

ª®¬〉 = −δ3 cosα sin β.

The computations for l = 2, 3 are analogous, since the multiplicative potentials Bl do not depend on γ. �

Remark 3.2.2. Equation (3.2.8) also shows that, for a genuine symmetric-top, the third component of the angular
momentum P3 commutes with H and Bl , l = 1, 2, 3, hence[

P3,H +
3∑
l=1

ulBl

]
= 0, ∀u ∈ U.

Thus, 〈ψ(t), P3ψ(t)〉 is a conserved quantity, where ψ is the solution of (3.2.4).

In (3.2.8) we see that, when δ = (0, 0, δ3)
T , transitions k → k ′ are forbidden if k , k ′. Thus, if the quantum

system is prepared in the initial state ψ(0) with P3ψ(0) = kψ(0), the wave function ψ evolves in the subspaces
Sk = span{D j

k,m
| j ∈ N, j ≥ |k |,m = − j, . . . , j}. The next theorem tells us that the restriction of (3.2.4) to this

subspace is approximately controllable, and that it is simultaneously approximately controllable w.r.t. k, with the
exception of −k. Recall that S denotes the unit sphere of L2(SO(3)).
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Theorem 3.2.3. Let I1 = I2. If δ = (0, 0, δ3)
T , δ3 , 0, then

(i) the Schrödinger equation (3.2.4) is an m-tracker in the Hilbert space Sk , for any k ∈ Z. In particular,
Reach(ψ) is dense in Sk ∩ S for all ψ ∈ Sk ∩ S.

(ii) the Schrödinger equation (3.2.4) is simultaneously approximately controllable w.r.t. the orthogonal decom-
position L2(SO(3)) =

⊕
k∈N(Sk ⊕S−k), while the evolution inS−k is completely determined by the evolution

in Sk . In particular, denoting by Φ : Sk → S−k the linear transformation that acts as Φ(D j
k,m
) = D j

−k,m
on

the basis elements, if ψ ∈ S decomposes as ψ =
∑

k∈Z pkψk , ψk ∈ Sk∩S,
∑

k∈Z |pk |2 = 1, with ψ−k = Φ(ψk),
then Reach(ψ) is dense in {φ ∈ S | φ =

∑
k∈Z pkφk, φk ∈ Sk ∩ S, φ−k = Φ(φk)}.

Proof. For every integer j ≥ |k |, let Ij,k := {ρ(l,m) | l = j, j + 1, m = −l, . . . , l}, where ρ : {(l,m) | l ≥
|k |, m = −l, . . . , l} → N is the lexicographic ordering. Then the graph Gk with vertices {Ij,k}∞j= |k | and edges
{(Ij,k, Ij′,k) | Ij,k ∩ Ij′,k , ∅} is linear.

In order to apply Theorem 3.1.21 to the restriction of (3.2.4) to Sk , we should consider the projected dynamics
onto Nj,k := L j,k ⊕ L j+1,k , where Ll,k := span{Dl

k,m
| m = −l, . . . , l}. The only spectral gaps in Sk are

σ
j
k
= |E j+1

k
− E j

k
| =

j+1
I2
, j ≥ |k |. Notice that (σ j

k
, l) ∈ Ξ0

j .
We write the electric potentials projected onto Nj,k :

E
σ

j
k
(iB1) =

∑
m=−j,..., j

aj,k,mδ3G(j,k,m),(j+1,k,m+1) + aj,k,−mδ3G(j,k,m),(j+1,k,m−1),

E
σ

j
k
(iB2) =

∑
m=−j,..., j

aj,k,mδ3F(j,k,m),(j+1,k,m+1) − aj,k,−mδ3F(j,k,m),(j+1,k,m−1),

E
σ

j
k
(iB3) =

∑
m=−j,..., j

−bj,k,mδ3F(j,k,m),(j+1,k,m),

having used the explicit pairings (3.4.11), which can be found in Appendix 3.4.2, and which describe the transitions
excited by the frequency σ j . Note that here the sum does not run over k since we are considering the dynamics
restricted to Sk . We consider the family of excited modes

Fj,k = {Eσ j
k
(iBl),Wi(Eσ j

k
(iBl)) | l = 1, 2, 3} ⊂ ν0

j .

We claim that the Lie algebra generated by Fj,k is equal to su((2 j + 1) + (2( j + 1) + 1)) =: su(Nj,k). Such an
identity has been proved in [28, Section 3.3] (with computations analogous to the ones we perform in the Appendix
3.4.1) since the projection to Nj,k is isomorphic to an analogous projection for the linear molecule. Hence, we
conclude that system (3.2.4) is an m-tracker in Sk , which concludes the proof of (i).

In order to prove (ii), we need the following result on the simultaneous control of left-invariant bilinear control
systems on finite-dimensional connected compact simple Lie groups, here stated in the case of interest, that is the
group SU(n), and with multiple controls:

Lemma 3.2.4 ([18]). Consider the finite direct sum bilinear control system on
⊕K

k=1H
(k), where each H (k) is a

finite-dimensional Hilbert space, driven by m controls u1, ..., um, with |u j(t)| ≤ 1,

d
dt
Ψ(t) = ©«

K⊕
k=1

iH(k) +
m∑
j=1

u j(t)
K⊕
k=1

iH(k)j

ª®¬Ψ(t), Ψ(t) =
K⊕
k=1

ψ(k)(t), ψ(k)(t) ∈ H (k),

where each H(k)j is a hermitian matrix. Suppose that each single system is operator controllable, that is,

Lie{iH(k), . . . , iH(k)m } = su(H
(k)), ∀k = 1, ...,K .

Then the direct sum system is NOT simultaneously operator controllable if and only if there exist k, k ′ ∈ {1, ...,K},
with k , k ′, and an isomorphism of Lie algebras f : su(H (k)) → su(H (k

′)) such that

(3.2.9) f (iH(k)j ) = iH(k
′)

j , j = 0, . . . ,m.

In other words, given the finite direct sum of some finite-dimensional controllable systems, if we are able to
prove that such an isomorphism cannot exist, then all the dynamics are independent and the last lemma implies
simultaneous operator controllability, that is,

Lie

{
K⊕
k=1

iH(k), . . . ,
K⊕
k=1

iH(k)m

}
=

K⊕
k=1

su(H (k)).
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In our case, we are going to prove the non-existence of such isomorphism (except for k and −k) thanks to a
dimension argument. Indeed, for any j ∈ N, upon setting K = 2 j, m = 3,

H (k) :=
⊕

l=0,..., j+1
Ll,k, H(k) = H |H(k), H(k)i =

∑
l=0,..., j

Eσl
k
(iBi), i = 1, 2, 3

for k = − j, . . . , j, we obtain in particular from part (i) that each k component is operator controllable inH (k), i.e.,
in any finite-dimensional truncation of Sk . Moreover, we easily see that dim(H (k)) = dim(H (k′)) if and only if
k ′ = ±k, and thus an isomorphism between su(H (k)) and su(H (k′)) can exist only if k ′ = ±k. On the other end,
an isomorphism between su(H (k)) and su(H (−k)) that matches conditions (3.2.9) surely exists, and is given by the
transformation of vectors Φ : Sk → S−k (defined in statement (ii)) lifted to a transformation of endomorphisms
(indeed, this follows from the fact that ak = a−k and bk = b−k , as one can see in (3.4.11)). So, we obtain that (3.2.4)
is simultaneously controllable within the finite-dimensional truncation of

⊕
k(Sk ⊕ S−k), by means of spectral

gaps (σ j
k
, l) that belong to Ξ0

j . The application of Corollary 3.1.20 concludes the proof of (ii). �

3.2.3 Controllability of the quantum accidentally symmetric-top
So far we have studied the dynamics of a symmetric-top molecule with electric dipole moment along its symmetry
axis and we have proven that its dynamics are trapped in the eigenspaces of P3.

Nevertheless, for applications to molecules charged in the laboratory, or to particular molecules present in
nature such as D2S2 (Figure 1.3.2) or H2S2, it is interesting to consider also the case in which the dipole is not along
the symmetry axis: this case is called the accidentally symmetric molecule.

Under a non-resonance condition, we are going to prove that, if the dipole moment is not orthogonal to
the symmetry axis of the molecule, the rotational dynamics of an accidentally symmetric-top are approximately
controllable. To prove this statement, we are going to apply Theorem 3.1.21 to (3.2.4). Moreover, the following
Theorem will be crucial in the next section for proving the controllability of an asymmetric-top.

Theorem 3.2.5. Assume that I1 = I2 and I2
I3
< Q. If δ = (δ1, δ2, δ3)

T is such that δ , (0, 0, δ3)
T and δ , (δ1, δ2, 0)T ,

then system (3.2.4) is an m-tracker, and in particular approximately controllable.

Proof. First of all, one can check, for example in [68, Table 2.1], that the pairings induced by the interaction
Hamiltonians satisfy

(3.2.10) 〈D j
k,m
, iBlD

j′

k′,m′
〉 = 0,

when | j ′ − j | > 1, or |k ′ − k | > 1 or |m′ −m| > 1, for every l = 1, 2, 3. Equation (3.2.10) is the general form of the
so-called selection rules.

We then define for every j ∈ N the set Ij := {ρ(l, k,m) | l = j, j + 1, k,m = −l, . . . , l} ⊂ N, where
ρ : {(l, k,m) | l ∈ N, k,m = −l, . . . , l} → N is the lexicographic ordering. The graph G whose vertices
are the sets Ij and whose edges are {(Ij, Ij′) | Ij ∩ Ij′ , ∅} = {(Ij, Ij+1) | j ∈ N} is linear. In order to
apply Theorem 3.1.21 we shall consider the projection of (3.2.4) onto each space M j := Hj ⊕ Hj+1, where
Hl := span{Dl

k,m
| k,m = −l, . . . , l}. The dimension ofM j is (2 j + 1)2 + (2( j + 1) + 1)2, and we identify su(M j)

with su((2 j + 1)2 + (2( j + 1) + 1)2).
According to (3.2.10), the three types of spectral gaps inM j , j ∈ N, which we should consider are

(3.2.11) λ
j
k

:= |E j+1
k+1 − E j

k
| =

��� j + 1
I2
+

( 1
2I3
−

1
2I2

)
(2k + 1)

���, k = − j, . . . , j,

corresponding to pairings for which both j and k move (see Figure 3.1),

(3.2.12) ηk := |E j
k+1 − E j

k
| =

���( 1
2I3
−

1
2I2

)
(2k + 1)

���, k = − j, . . . , j,

and

(3.2.13) σ j := |E j+1
k
− E j

k
| =

j + 1
I2

, k = − j, . . . , j,

for which, respectively, only k or j moves (see, Figures 3.5(a) and 3.5(b)).
We now classify the spectral gaps in terms of the sets Ξ0

j and Ξ
1
j introduced in Section 3.1.

Lemma 3.2.6. Let I2/I3 < Q. Then (λ j
k
, l), (σ j, l) ∈ Ξ0

j , and (ηk, l) ∈ Ξ
1
j , for all k = − j, . . . , j, l = 1, 2, 3.
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Figure 3.1: Graph of the transitions associated with the frequency λ j
k
between eigenstates | j, k〉 = | j, k,m〉 := D j

k,m
(m fixed). Same-shaped arrows correspond to equal spectral gaps.

(a) (b)

Figure 3.2: Transitions between states: (a) at frequency ηk ; (b) at frequency σ j . Same-shaped arrows correspond
to equal spectral gaps.

Proof. Because of the selection rules (3.2.10), we only need to check if there are common spectral gaps in the
spacesM j andM j′ for j ′ , j.

We start by proving that (λ j
k
, l), (σ j, l) ∈ Ξ0

j by showing that a spectral gap of the type λ j
k
(respectively, σ j)

is different from any spectral gap of the type λ j′

k′
, σ j′ , or ηk′ unless λ j

k
= λ

j′

k′
and (k, j) = (k ′, j ′) (respectively,

σ j = σ j′ and j = j ′).
Using the explicit structure of the spectrum (3.2.7), any spectral gap of the type λ j′

k′
, σ j′ , or ηk′ can be written

as ���q1
I2
+ q2

( 1
I3
−

1
I2

)���, q1, q2 ∈ Q.

Since, moreover, 1
I2
and

(
1
I3
− 1

I2

)
are Q-linearly independent, one easily deduces that, indeed, (λ j

k
, l), (σ j, l) ∈ Ξ0

j .
Notice that the gaps of the type ηk correspond to internal pairings in the spaces Hj . Henceforth, in order to

prove that (ηk, l) ∈ Ξ1
j it is enough to check that ηk is different from any gap of the type λ j

k′
, σ j . This fact has

already been noticed in the proof of the first part of the statement. The proof of the lemma is then concluded. �

Next, we introduce the family of excited modes associated with the spectral gap λ j
k
, that is,

Fj := {E
λ
j
k
(iBl),Wi(Eλ j

k
(iBl)) | l = 1, 2, 3, k = − j, . . . , j},

where the operators Eµ and Wξ are defined in Section 3.1, and where, with a slight abuse of notation, we write Bl

instead of ΠM j
BlΠM j

. Notice that Fj ⊂ ν0
j as it follows from Lemma 3.2.6, where ν0

j is defined as in (3.1.13).
In order to write down the matrices in Fj , we need to study the resonances between the spectral gaps insideM j .

We claim that there are no internal resonances except those due to the degeneracy E j
k
= E j

−k
. Indeed, we already

noticed in Lemma 3.2.6 that a spectral gap of the type λ j
k
is different from any spectral gap of the type λ j′

k′
, σ j′ , or

ηk′ unless λ j
k
= λ

j′

k′
and (k, j) = (k ′, j ′). We collect in the lemma below also the similar observations that σ j is

different from any spectral gap of the type λ j′

k′
, σ j′ , or ηk′ unless σ j = σ j′ and j = j ′, and that ηk , ηk′ if k , k ′.

Lemma 3.2.7. Let I2/I3 < Q. Then

1. λ j
k
-resonances: the equation

|E j+1
k+1 − E j

k
| = |E j′′

s+h
− E j′

s |, j ≤ j ′ ≤ j ′′ ≤ j + 1, − j ′ ≤ s ≤ j ′, h ∈ {−1, 0, 1},
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implies that j ′ = j, j ′′ = j + 1, s = ±k, s + h = ±(k + 1);

2. ηk-resonances: the equation

|E j
k+1 − E j

k
| = |E j′′

s+h
− E j′

s |, j ≤ j ′ ≤ j ′′ ≤ j + 1, − j ′ ≤ s ≤ j ′, h ∈ {−1, 0, 1},

implies that j ′ = j ′′ = j or j ′ = j ′′ = j + 1 and s = ±k, s + h = ±(k + 1);

3. σ j-resonances: the equation

|E j+1
k
− E j

k
| = |E j′′

s+h
− E j′

s |, j ≤ j ′ ≤ j ′′ ≤ j + 1, − j ′ ≤ s ≤ j ′, h ∈ {−1, 0, 1},

implies that j ′ = j, j ′′ = j + 1, h = 0, s = ±k.

Denote by Lj := Lie(Fj) the Lie algebra generated by the matrices in Fj . Let us introduce the generalized Pauli
matrices

G j,k = ej,k − ek, j, Fj,k = iej,k + iek, j, Dj,k = iej, j − iek,k,

where ej,k denotes the (2 j + 1)2 + (2( j + 1) + 1)2-square matrix whose entries are all zero, except the one at row
j and column k, which is equal to 1. Consider again the lexicographic ordering ρ : {(l, k,m) | l = j, j + 1, k,m =
−l, . . . , l} → N. By a slight abuse of notation, also set e(l,k,m),(l′,k′,m′) = eρ(l,k,m),ρ(l′,k′,m′). The analogous
identification can be used to define G(l,k,m),(l′,k′,m′), F(l,k,m),(l′,k′,m′),D(l,k,m),(l′,k′,m′). The next proposition tells us
how the elements in Lj look like. For a proof, see Appendix 3.4.1.

Proposition 3.2.8. Let m = − j, . . . , j and k = − j, . . . , j with k , 0. Then the matrices X(j,k,m),(j+1,k+1,m) −
X(j,−k,m),(j+1,−k−1,m) and X(j,k,m),(j+1,k+1,m±1) − X(j,−k,m),(j+1,−k−1,m±1) are in Lj , where X ∈ {G, F}.

To break the degeneracy between k and −k which appears in the matrices that we found in Proposition 3.2.8,
and obtain all the elementary matrices that one needs to generate su(M j), we need to exploit the other two types
of spectral gaps that we have introduced in (3.2.12) and (3.2.13) (see Figure 3.5).

Let us introduce the family of excited modes at the frequencies σ j and ηk ,

Pj := {Eσ j (iBl),Wi(Eσ j (iBl)), Eηk (iBl),Wi(Eηk (iBl)) | l = 1, 2, 3, k = − j, . . . , j},

and notice that, by Lemma 3.2.6, Pj ⊂ ν
1
j (cf. (3.1.13)). Therefore,

P̃j := {A, [B,C] | A, B ∈ Lj,C ∈ Pj} ⊂ Tj,

where we recall that Tj is the minimal ideal of Lie(ν1
j ) containing ν

0
j .

The following proposition, whose proof is given in Appendix 3.4.2, concludes the proof of Theorem 3.2.5.

Proposition 3.2.9. Lie(P̃j) = su(M j).

�

Remark 3.2.10. • The assumption I2/I3 < Q on the moments of inertia appearing in Theorem 3.2.5 is
technical, and prevents the system from having both external resonances (as we saw in Lemma 3.2.6) and
internal ones (Lemma 3.2.7). Anyway, we have not proven that controllability fails if the ratio I2/I3 is
rational.

• As a matter of fact, if I2/I3 = 1, the top is symmetric spherical (i.e., I1 = I2 = I3) and any axis in
the molecular frame is a symmetry axis. Then, Theorem 3.2.1 implies that (3.2.4) is not controllable for
spherical symmetric tops.

3.2.4 Non-controllability and reachable sets of the quantum orthogonal accidentally
symmetric-top

We now consider the case where δ = (δ1, δ2, 0)T , left out by Theorem 3.2.5. The situation in which the dipole
lies in the plane orthogonal to the symmetry axis of the molecule (that we shall call the orthogonal accidentally
symmetric-top) is interesting from the point of view of chemistry, since the accidentally symmetric-top molecules
present in nature are usually of that kind (see Figure 1.3.2). In order to study this problem, let us introduce the
Wang functions [68, Section 7.2]

(3.2.14) S j
0,m,0 := D j

0,m, S j
k,m,p

:=
1
√

2
(D j

k,m
+ (−1)pD j

−k,m
), k = 1, . . . , j,
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for j ∈ N, m = − j, . . . , j, and p = 0, 1. Due to the k-degeneracy E j
k
= E j

−k
in the spectrum of the rotational

Hamiltonian H, the functions S j
k,m,p

still form an orthogonal basis of eigenfunctions of H. Then we consider the
change of basis D j

k,m
→ e−ikθD j

k,m
, and we choose θ ∈ [0, 2π) such that

(3.2.15)


e−iθ (δ2 + iδ1) = i
√
δ2

1 + δ
2
2,

eiθ (δ2 − iδ1) = −i
√
δ2

1 + δ
2
2 .

System (3.2.15) describes the rotation of angle ∓θ in the complex plane of the vector δ2 ± iδ1. The composition
of these two changes of basis gives us the rotated Wang states S j

k,m,p
(θ) := 1√

2
(e−ikθD j

k,m
+ (−1)peikθD j

−k,m
), for

k , 0, and S j
0,m,0 = D j

0,m.
In the next theorem we express in this new basis a symmetry which prevents the system from being controllable.

We define the spaces

Le(o) := span{S j
k,m,p

| j ∈ N, k = 0, . . . , j, m = − j, . . . , j, p = 0, 1, j + k + p even (odd)}.

Theorem 3.2.11. Let I1 = I2 and δ = (δ1, δ2, 0)T . Then the parity of j + p + k is conserved, that is, the spaces Le

and Lo are invariant for the propagators of (3.2.4).

Proof. We need to prove that the pairings allowed by the controlled vector fields B1, B2 and B3 conserve the parity
of j + p + k. To do so, let us compute

〈S j
k,m,p
(θ), iB1S j+1

k+1,m+1,p(θ)〉 = −cj,k,me−iθ (δ2 + iδ1) + cj,k,meiθ (δ2 − iδ1)

= −2icj,k,m
√
δ2

1 + δ
2
2,(3.2.16)

〈S j
k,m,p
(θ), iB1S j+1

k+1,m+1,p′(θ)〉 = −cj,k,me−iθ (δ2 + iδ1) − cj,k,meiθ (δ2 − iδ1)

= 0, p , p′,

having used the expression of the Wang functions as linear combinations of Wigner functions, the explicit pairings
(3.4.2) which can be found in Appendix 3.4.1, and the choice of θ made in (3.2.15). Then we also have

(3.2.17)

〈S j

k,m,p
(θ), iB1S j

k+1,m+1,p(θ)〉 = 0,

〈S j
k,m,p
(θ), iB1S j

k+1,m+1,p′(θ)〉 = −2ihj,k,m

√
δ2

1 + δ
2
2, p , p′,

having used this time the pairings (3.4.10), which can be found in Appendix 3.4.2. From (3.2.16) and (3.2.17) we
can see that the allowed transitions only depend on the parity of j + p and k; indeed, we have either transitions
between states of the form {

j + p even
k even

←→

{
j ′ + p′ odd
k ′ odd,

or transitions between states of the form{
j + p even
k odd

←→

{
j ′ + p′ odd
k ′ even.

The same happens if we replace m + 1 with m − 1 and k + 1 with k − 1 in (3.2.16) and (3.2.17). Because of the
selection rules (3.2.10), these are the only transitions allowed by the field B1. One can easily check, in the same
way, that every transition induced by B2, B3 also conserves the parity of j + p + k. �

Having established that L2(SO(3)) = Le ⊕ Lo is a decomposition in orthogonal invariant subspaces for
the motion of an orthogonal accidentally symmetric molecule, we next prove that it is also a decomposition in
simultaneously approximately reachable sets:

Theorem 3.2.12. Let I1 = I2, I1
I2
< Q. If δ = (δ1, δ2, 0)T with δ1 , 0 or δ2 , 0, then

(i) the Schrödinger equation (3.2.4) is an m-tracker in the Hilbert space Le, and in the Hilbert space Lo. In
particular, Reach(ψ) is dense in Le(o) ∩ S for all ψ ∈ Le(o) ∩ S.
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(ii) the Schrödinger equation (3.2.4) is simultaneously approximately controllable w.r.t. the orthogonal decom-
position L2(SO(3)) = Le ⊕ Lo. That is, if ψ ∈ S decomposes as ψ = peψe + poψo, ψe(o) ∈ Le(o) ∩ S,
|pe |2 + |po |2 = 1, then Reach(ψ) is dense in {φ ∈ S | φ = peφe + poφo, φe(o) ∈ Le(o) ∩ S}.

Proof. The proof of part (i) goes through the same reasonings of Theorem 3.2.5’s proof. The proof of part (ii)
follows the arguments proposed in the proof of Theorem 3.2.3 part (ii), in particular it is again an application of
Lemma 3.2.4 and Corollary 3.1.20

We outline the proof of (i) for Le, the computations for Lo being analogous. We already know that Le is
invariant; we shall then prove that (3.2.4) is an m-tracker in the Hilbert space Le. We then define for every j ∈ N
the set Ij := {ρ(l, k,m, p) | l = j, j + 1, k = 0, . . . , l, m = −l, . . . , l, p = 0, 1, j + k + p even} ⊂ N, where ρ :
{(l, k,m, p) | l = j, j + 1, k = 0, . . . , l, m = −l, . . . , l, p = 0, 1, j + k + p even} → N is the lexicographic ordering.
The graph Ge whose vertices are the sets Ij and whose edges are {(Ij, Ij′) | Ij ∩ Ij′ , ∅} = {(Ij, Ij+1) | j ∈ N} is
linear.

Let us project (3.2.4) onto the subspace of Le given byMe, j := He, j ⊕ He, j+1, where He,l := span{S j
k,m,p

|

j + p + k even, j = l}, l ∈ N. The dimension ofMe, j is (2 j + 1)( j + 1) + (2( j + 1) + 1)( j + 1), if j is even, and
(2 j + 1) j + (2( j + 1) + 1)( j + 2), if j is odd. Let us assume that j is even, being the computation in the case j odd
analogous. We identify su(Me, j) with su((2 j + 1)( j + 1) + (2( j + 1) + 1)( j + 1)).

Referring to the notations introduced in Section 3.1, we shall consider the following spectral gaps inMe, j

λ
j
±k

:= |E j+1
k±1 − E j

k
| =

��� j + 1
I2
+

( 1
2I3
−

1
2I2

)
(±2k + 1)

��� ∈ Σj, k = 0, ..., j,

η±k := |E j+1
k±1 − E j+1

k
| =

���( 1
2I3
−

1
2I2

)
(±2k + 1)

��� ∈ Σj, k = 0, ..., j .(3.2.18)

As in Lemma 3.2.6, the assumption I2
I3
< Q guarantees that (λ j

±k
, l) ∈ Ξ0

j , and (η±k, l) ∈ Ξ
1
j , for all k = 0, . . . , j,

Figure 3.3: Graph of the transitions associated with the frequency λ j
±k

(solid arrows) and the frequency η±k (dashed
arrows) between eigenstates | j, k〉 = | j, k,m〉 := D j

k,m
(m is fixed).

l = 1, 2, 3.
We drive the electric fields at the frequencies defined in (3.2.18) to excite the corresponding transitions between

the rotational states of H. To be more precise, as in Lemma 3.2.7, the assumption I2
I3
< Q guarantees that the

frequencies (3.2.18) are not resonant between each other, and thus we can write that the three polarizations driven
at frequency λ j

±k
, k = 0, ..., j, are represented by

E
λ
j
±k
(iBe

1 ) =
∑

m=−j,. . . , j

−2cj,±k,mδ1F(j,k,m,p),(j+1,k±1,m+1,p) − 2cj,±k,−mδ1F(j,k,m,p),(j+1,k±1,m−1,p),

E
λ
j
±k
(iBe

2 ) =
∑

m=−j,. . . , j

−2cj,±k,mδ1G(j,k,m,p),(j+1,k±1,m+1,p) + 2cj,±k,−mδ1G(j,k,m,p),(j+1,k±1,m−1,p),

E
λ
j
±k
(iBe

3 ) =
∑

m=−j,. . . , j

−2dj,±k,mδ1G(j,k,m,p),(j+1,k±1,m,p),

(3.2.19)

where p = 0 if k is even, and p = 1 if k is odd. The three fields in (3.2.19) are seen as skew-adjoint operators acting
on the Hilbert spaceMe, j , and, with a slight abuse of notation, we write Be

l
instead of Be,(j)

l
:= ΠMe, j

BlΠMe, j
,

where ΠMe, j
is the orthogonal projection ontoMe, j .

In (3.2.19), the matrices Gs,t, Fs,t ∈ su(M j) are defined by Gs,t = es,t − et,s, Fs,t = ies,t + iet,s , where es,t
denotes the (2 j + 1)( j + 1) + (2( j + 1) + 1)( j + 1)-square matrix whose entries are all zero, except the one at row s
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and column t, which is equal to 1. Moreover, we are implicitly using the lexicographic correspondance between the
sets {(l, k,m, p) | l = j, j + 1, k = 0, ..., l,m = −l, ..., l, p = 0, 1} and {1, 2, ..., (2 j + 1)( j + 1)+ (2( j + 1)+ 1)( j + 1)},
to label the matrices in (3.2.19).

Finally, the coupling constants in (3.2.19) are given by the pairings (3.4.1), where we have already performed
a rotation around the symmetry axis to get rid of the δ2-component (see eq. (3.4.2)).

In the same way, one can represent the interaction operators Eη±k (iBe
l
), l = 1, 2, 3, k = 0, ..., j relative to the

spectral gaps η±k . We have

Eη±k (iB
e
1 ) =

∑
l=j, j+1,m=−l,. . . ,l−1

∓2hl,±k,mδ1F(l,k,m,p),(l,k±1,m+1,p′) +
∑

l=j, j+1,m=−l+1,. . . ,l
±2hl,±k,−mδ1F(l,k,m,p),(l,k±1,m−1,p′),

Eη±k (iB
e
2 ) =

∑
l=j, j+1,m=−l,. . . ,l−1

±2hl,±k,mδ1G(l,k,m,p),(l,k±1,m+1,p′) +
∑

l=j, j+1,m=−l+1,. . . ,l
±2hl,±k,−mδ1G(l,k,m,p),(l,k±1,m−1,p′),

Eη±k (iB
e
3 ) =

∑
l=j, j+1,m=−l,. . . ,l

±2ql,±k,mδ1G(l,k,m,p),(l,k±1,m,p′),

(3.2.20)

where p = 0, p′ = 1 if k is even, and p = 1, p′ = 0 if k is odd. The coupling constants in (3.2.20) are given by the
pairings (3.4.10), and also here we get rid of the δ2-component.

We now introduce the family

F 0
j := {E

λ
j
±k
(iBe

l ),Wi(Eλ j
±k
(iBe

l )), | l = 1, 2, 3, k = 0, ..., j} ⊂ ν0
j

of the interaction operators excited at non-resonant frequencies, and we denote by Lie(F 0
j ) the Lie algebra generated

by the matrices in F 0
j ; finally, let us introduce the new family

Fj := {A,
[
Wξ (Eη±k (iB

e
l )), B

]
| A, B ∈ Lie(F 0

j ), l = 1, 2, 3, ξ = 1, i, k = 0, ..., j} ⊂ Tj,

the sets of operators ν0
j and Tj being defined in Section 3.1.

Then, direct Lie bracket computations, analogous to the ones performed in Appendix 3.4.1 and 3.4.2, prove
that Lie(Fj) = su(Me, j), for every j ∈ N, which concludes the proof of (i).

To proof part (ii), we apply Lemma 3.2.4 to the finite-dimensional truncations of Le ⊕ Lo: indeed, for any
j ∈ N, upon setting K = 2, m = 6( j + 1) and

H (r) :=
⊕

l=0,..., j+1
Hr,l, H(r) = H |H(r ), H(r)i =

∑
l=0,..., j

Eλl
±k
(iBr

i ), i = 1, 2, 3, k = 0, . . . , j,

H(r)i =
∑

l=0,..., j
Eηl
±k
(iBr

i ), i = 4, 5, 6, k = 0, . . . , j,

for r = e, o, we obtain in particular from part (i) that each r component is operator controllable in H (r), i.e.,
in any finite-dimensional truncation of Lr . We easily see that dimH (e) , dimH (o), implying that there cannot
be an isomorphism between su(H (e)) and su(H (o)). Then, Lemma 3.2.4 implies that (3.2.4) is simultaneously
controllable in every finite-dimensional truncation of Le ⊕ Lo be means of spectral gaps (λ j

±k
, l), (η j

±k
, l) that

belongs to Ξ0
j and Ξ

1
j . The application of Corollary 3.1.20 concludes the proof of (ii). �

3.3 Asymmetric molecule

3.3.1 Eigenfunctions of the asymmetric-top
It is convenient to adopt a slightly different notation to describe the asymmetry of the rigid body: we denote as
{a, b, c} = {a1, a2, a3} the principal axes of inertia, such that the associated inertia moments satisfy Ia < Ib < Ic .
We also introduce the rotational constants A > B > C, related to the inertia moments through the identities
2A = 1/Ia, 2B = 1/Ib, 2C = 1/Ic . We then write the rotational Hamiltonian as a function of the rotational
constants

H = H(A, B,C) = AP2
a + BP2

b + CP2
c,

and we want to study the controllability of (3.2.4). We have to choose which principal axis corresponds to a3
(which in the symmetric top case is the symmetry axis of the molecule): let us set a = a1, b = a2, c = a3, and hence
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H = H(A, B,C) = AP2
1 + BP2

2 + CP2
3 . As we have previously seen, the Wang functions S j

k,m,p
defined in (3.2.14)

(in terms of the Wigner functions D j
k,m

(cf. (3.2.5)) which are the solution to the eigenvalue problem (3.2.6)) are
the eigenfunctions of the symmetric top rotational Hamiltonian H(B, B,C) = BP2 + (C − B)P2

3 . We also recall that

[H(B, B,C), J2] = [H(B, B,C), J3] = [H(B, B,C), P3] = 0.

When A > B > C, the asymmetric rotational Hamiltonian H(A, B,C) shares the first two symmetries with the
symmetric one

[H(A, B,C), J2] = [H(A, B,C), J3] = 0,

while the third symmetry is broken
[H(A, B,C), P3] , 0, if A > B.

So, the eigenfunctions of H(A, B,C)must be eigenfunctions of J2 and J3 too, and hence they are linear combinations
in k of the same j and m. This fact is usually understood by saying that j and m are still good quantum numbers
for an asymmetric molecule, while k is not. It means that the eigenfunctions {Ψ j

τ,m | j ∈ N,m, τ = − j, . . . , j} of
H(A, B,C) must satisfy

(3.3.1) Ψ
j
τ,m(α, β, γ) =

∑
k=0,..., j
p=0,1

c j
k,m,p
(τ)S j

k,m,p
(α, β, γ).

Other useful symmetries of these eigenfunctions are known, which allow to conclude that: the coefficients c j
k,m,p
(τ)

in (3.3.1) can be taken in R; the coefficients c j
k,m,p
(τ) in (3.3.1) do not depend on m; for any Ψ j

τ,m, the sum in
(3.3.1) involves even or odd k only; for any Ψ j

τ,m, the sum in (3.3.1) involves p = 0 or p = 1 only (see, e.g., [68,
Chapter 7]). That is, any eigenfunction Ψ j

τ,m of H(A, B,C) must satisfy the following additional requirement

(3.3.2) Ψ
j
τ,m(α, β, γ) =

∑
k=0,..., j,

k only even or only odd
p=0 or p=1

c j
k,p
(τ)S j

k,m,p
(α, β, γ),

for certain c j
k,p
(τ) ∈ R. Moreover, it is also well-known that the eigenvalues of H(A, B,C) are still (2 j + 1)-

degenerate w.r.t m, while the k-degeneracy is lifted (see, e.g., [68, Chapter 7]): the spectrum of H(A, B,C) is the
set of eigenvalues {E j

τ | j ∈ N, τ = − j, . . . , j}, and

H(A, B,C)Ψ j
τ,m = E j

τΨ
j
τ,m , m = − j, . . . , j

and each E j
τ , is degenerate with associated eigenspace spanned by {Ψ j

τ,m | m = − j, . . . , j}. We also remark that,
of course, a formula analogous to (3.3.2) holds w.r.t. the D j

k,m
representation, that is,

(3.3.3) Ψ
j
τ,m(α, β, γ) =

∑
0≤k≤ j,

k only even or only odd

c j
k
(τ)D j

k,m
(α, β, γ).

3.3.2 Symmetries: non-controllability of critical dipole configurations
Thanks to the structure (3.3.2) of the eigenfunctions of the asymmetric-top, we can derive three consequences on
the controllability properties of (3.2.4). Indeed, in Theorem 3.2.1 we proved that

(3.3.4) δ = (0, 0, δ3)
T ⇒ 〈S j

k,m,p
, BiS

j′

k′,m′,p′
〉 = 0 if k , k ′, i = 1, 2, 3,

moreover, analogously to the proof of Theorem 3.2.11, using the pairings (3.4.1) and (3.4.10) one sees that

(3.3.5) δ = (δ1, 0, 0)T ⇒ 〈S j
k,m,p

, BiS
j′

k′,m′,p′
〉 = 0 if j + k + p . j ′ + k ′ + p′ mod 2, i = 1, 2, 3,

and also that

(3.3.6) δ = (0, δ2, 0)T ⇒ 〈S j
k,m,p

, BiS
j′

k′,m′,p′
〉 = 0 if j + p . j ′ + p′ mod 2, i = 1, 2, 3.
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We thus define

Ke(o) := span{S j
k,m,p

| j ∈ N, m = − j, . . . , j, k = 0, . . . , j, p = 0, 1, k even(odd)},

Le(o) := span{S j
k,m,p

| j ∈ N, m = − j, . . . , j, k = 0, . . . , j, p = 0, 1, j + k + p even(odd)},

Ge(o) := span{S j
k,m,p

| j ∈ N, m = − j, . . . , j, k = 0, . . . , j, p = 0, 1, j + p even(odd)}

that in particular give three different orthogonal decompositions of the ambient space

L2(SO(3)) = Ke ⊕ Ko = Le ⊕ Lo = Ge ⊕ Go .

Then, as the Ψ j
τ,m are eigenfunctions of H, (3.3.2) implies that the decompositions are preserved by the rotational

Hamiltonian:
HKe(o) ⊂ Ke(o) , HLe(o) ⊂ Le(o) , and HGe(o) ⊂ Ge(o)

while (3.3.2) plus (3.3.4) imply

δ = (0, 0, δ3)
T ⇒ BiKe(o) ⊂ Ke(o), i = 1, 2, 3,

(3.3.2) plus (3.3.5) imply
δ = (δ1, 0, 0)T ⇒ BiLe(o) ⊂ Le(o), i = 1, 2, 3,

and (3.3.2) plus (3.3.6) imply

δ = (0, δ2, 0)T ⇒ BiGe(o) ⊂ Ge(o), i = 1, 2, 3.

We have thus proved the following

Theorem 3.3.1. Let A ≥ B ≥ C > 0.

(i) If δ = (0, 0, δ3)
T , then the spaces Ke and Ko are invariant for the propagators of (3.2.4). In particular,

(3.2.4) is not controllable.

(ii) If δ = (δ1, 0, 0)T , then the spaces Le and Lo are invariant for the propagators of (3.2.4). In particular,
(3.2.4) is not controllable.

(iii) If δ = (0, δ2, 0)T , then the spaces Ge and Go are invariant for the propagators of (3.2.4). In particular,
(3.2.4) is not controllable.

3.3.3 Controllability of the quantum asymmetric-top
In this section we prove that, except for the critical configurations (i),(ii), and (iii) of Theorem 3.3.1, the system
(3.2.4) is almost always an m-tracker:

Theorem 3.3.2. Let A > B > C > 0. If δ , (δ1, 0, 0)T , (0, δ2, 0)T , (0, 0, δ3)
T , (3.2.4) is an m-tracker for almost

every value of A, B, and C. In particular, it is approximately controllable for almost every value of A, B, and C.

Proof. In what follows it will be crucial to express the asymmetric rotational Hamiltonian as a perturbation of a
symmetric rotational Hamiltonian. Let us first consider the case δ , (δ1, δ2, 0)T , (0, 0, δ3)

T . The case δ = (δ1, δ2, 0)T
with δ1 , 0 and δ2 , 0 will be treated at the end.

We then express the asymmetric Hamiltonian as a perturbation of an oblate symmetric Hamiltonian, using a
single asymmetry parameter:

H(A, B,C) = AP2
1 + BP2

2 + CP2
3

=
1
2
(A + B)P2 + [C −

1
2
(A + B)]P2

3 +
( A − B
2C − B − A

)
[C −

1
2
(A + B)](P2

1 − P2
2 )

= H
(1
2
(A + B),

1
2
(A + B),C

)
+ bV =: H(b),

(3.3.7)

where H
(

1
2 (A+ B), 1

2 (A+ B),C
)
is the rotational Hamiltonian of an oblate symmetric top with rotational constants

1
2 (A + B) and C, and we have defined the Wang oblate asymmetry parameter

(3.3.8) b :=
A − B

2C − B − A
∈ [−1, 0],
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and a perturbation operator
V := [C −

1
2
(A + B)](P2

1 − P2
2 ).

The proof is based on an application of Theorem 3.1.21 in combination with a perturbative approach from the
construction given in the proof of Theorem 3.2.5. Define for every j ∈ N the set Ij := {ρ(l, τ,m) | l = j, j+1, τ,m =
−l, . . . , l} ⊂ N, where ρ : {(l, τ,m) | l ∈ N, τ,m = −l, . . . , l} → N is the lexicographic ordering. The graph G
whose vertices are the sets Ij and whose edges are {(Ij, Ij′) | Ij ∩ Ij′ , ∅} = {(Ij, Ij+1) | j ∈ N} is linear. For every
j ∈ N, we consider

M j := Hj ⊕ Hj+1, Hl := span{Ψl
τ,m | τ,m = −l, . . . , l}.

The dimension ofM j is (2 j + 1)2 + (2( j + 1) + 1)2, and we identify su(M j) with su((2 j + 1)2 + (2( j + 1) + 1)2).
Notice that asM j is by definition invariant under the action of H(b), we identify H(b)with its matrix representation
acting onM j and its eigenvalues are the same as if it acted on L2(SO(3)). Set

E j
k,0 := E j

k
, k = 0, . . . , j,

E j
k,1 := E j

−k
, k = 1, . . . , j,

being the E j
k
defined in (3.2.7), and let E j

k,0 = E j
k,1, k > 0, be a degenerate eigenvalue of H(0) with different

eigenfunctions S j
k,m,0 and S j

k,m,1, m = − j, . . . , j, k = 1, . . . , j. We can then consider the eigenvalue E j
k,p
(b) of

H(b) which converges to E j
k,p

as b tends to 0, for p = 0, 1. It is well known [68, Chapter 7] that E j
k,p
(b) is still

(2 j + 1)-degenerate w.r.t. m, but the 2-fold k-degeneracy is broken: E j
k,0(b) , E j

k,1(b) if b , 0. Moreover, since
M j is finite-dimensional, the function [−1, 0] 3 b 7→ E j

k,p
(b) ∈ R is analytic.

Since for b = 0 the k-degeneracy appears, we need to choose the good basis of the eigenspace E j
k

:=
span{D j

k,m
,D j
−k,m

| m = − j, . . . , j} corresponding to the unperturbed degenerate eigenvalue E j
k
in order to expand

the eigenbasis with respect to b. Here, the good basis of the eigenspace means the basis to which the expanded
eigenbasis converges as the perturbation goes to zero. This is equivalent to ask that the perturbation V is diagonal
in the basis chosen for the degenerate eigenspace [101, Chapter 5]. Since [68, Chapter 7]

〈D j
k,m
,V D j

±k,m′
〉 = 0, if m′ , m,

and

(3.3.9) 〈D j
k,m
,V D j

−k,m
〉 =

{
0, if k , ±1,
[C − 1

2 (A + B)] j(j+1)
2 , if k = ±1,

we see that the perturbation is not diagonal in the Wigner basis {D j
k,m
,D j
−k,m

| m = − j, . . . , j}, but it is diagonal
in the Wang basis {S j

k,m,0, S
j
k,m,1 | m = − j, . . . j}, as a basis of E j

k
, for every k = 0, . . . , j. In other words, the

asymmetric top eigenfunctions Ψ j
τ,m = Ψ

j
τ,m(b) tend to Wang functions as the asymmetry parameter b goes to zero,

as it is well-known. So, to each asymmetric top eigenfunction Ψ j
τ,m(b) is attached one and only one perturbed

symmetric top eigenfunction S j
k,m,p
(b), and we can write

Hl = span{Sl
k,m,p(b) | m = − j, . . . , j, k = 0, . . . , j, p = 0, 1},

for any b ∈ [−1, 0]. Notice that [−1, 0] 3 b 7→ S j
k,m,p
(b) is analytic (being a family of eigenvectors of an analytic

family of matrices H(b)ΠM j
) and S j

k,m,p
(b) → S j

k,m,p
as b→ 0. We then express the matrices ΠM j

BiΠM j
of the

control problem (projected onM j , that with abuse of notation we still denote Bi in the same way as the operators
on L2(SO(3))) in this basis that depends on the asymmetry parameter.

Remark 3.3.3. From (3.3.9) we can also evidence that the k-degeneracy for k = 1 is lifted even at first order, since:

d
db

���
b=0

E j
1,p(b) = 〈S

j
1,m,p,VS j

1,m,p〉 =

{
[C − 1

2 (A + B)] j(j+1)
2 , if p = 0,

−[C − 1
2 (A + B)] j(j+1)

2 , if p = 1,

while for k > 1 one has to expand at higher order to see this fact [68, Table 7.8].
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The spectral gaps inM j that we consider are perturbations of symmetric top spectral gaps (cf. figures 3.4 and
3.5). Indeed, we define:

λ
j
k,0(b) := |E j+1

k+1,0(b) − E j
k,0(b)|, k = 0, . . . , j,

λ
j
k,1(b) := |E j+1

k−1,1(b) − E j
k,1(b)|, k = 2, . . . , j, λ

j
1,1(b) := |E j+1

0,0 (b) − E j
1,1(b)|

(3.3.10)

ρ
j
k,0(b) := |E j+1

k−1,0(b) − E j
k,0(b)|, k = 1, . . . , j, ρ

j
0,0(b) := |E j+1

1,1 (b) − E j
0,0(b)|

ρ
j
k,1(b) := |E j+1

k+1,1(b) − E j
k,1(b)|, k = 1, . . . , j,

(3.3.11)

then

η
j
k,0(b) := |E j

k+1,0(b) − E j
k,0(b)|, k = 0, . . . , j − 1,

η
j
k,1(b) := |E j

k−1,1(b) − E j
k,1(b)|, k = 2, . . . , j, η

j
1,1(b) := |E j

0,0(b) − E j
1,1(b)|

(3.3.12)

and finally

(3.3.13) σ
j
k,p
(b) := |E j+1

k,p
(b) − E j

k,p
(b)|, k = 1, . . . , j, p = 0, 1, σ

j
0,0(b) := |E j+1

0,0 (b) − E j
0,0(b)|.

Figure 3.4: Graph of the transitions associated with the unperturbed frequencies λ j
k,p
(0) and ρ

j
k,p
(0) between

unperturbed eigenstates | j, k〉 = | j, k,m〉 := D j
k,m

(m fixed). Same-shaped arrows correspond to equal spectral
gaps.

(a) (b)

Figure 3.5: Transitions between unperturbed eigenstates | j, k〉 = | j, k,m〉 := D j
k,m

(m fixed): (a) at unperturbed
frequency η j

k,p
(0); (b) at unperturbed frequency σ j

k,p
(0). Same-shaped arrows correspond to equal spectral gaps.

Remark 3.3.4. The spectral gaps listed above exhibit several symmetries at b = 0, due to the fact that E j
k,0(0) =

E j
k,1(0): indeed, we have (compare also with figures 3.4 and 3.5)

λ
j
0,0(0) = ρ

j
0,0(0) , λ

j
k,0(0) = ρ

j
k,1(0) , λ

j
k,1(0) = ρ

j
k,0(0) , k = 1, . . . , j,

η
j
k,0(0) = η

j
k+1,1(0) , k = 0, . . . , j − 1, σ

j
k,0(0) = σ

j
k,1(0) , k = 1, . . . , j .

(3.3.14)
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Lemma 3.3.5. Let (A + B)/C < Q. Then, for almost every b ∈ [−1, 0], (ω j
k,p
(b), l) ∈ Ξ0

j , for all ω ∈ {λ, ρ, σ} for
all k = 0, . . . , j, if p = 0, and for all k = 1, . . . , j, if p = 1, with l = 1, 2, 3. Moreover, (η j

k,p
(b), l) ∈ Ξ1

j , for all
k = 0, . . . , j − 1, if p = 0 and for all k = 1, . . . , j, if p = 1, with l = 1, 2, 3.

Proof. In order to prove that, for almost every b, (ω j
k,p
(b), l) belongs to Ξ1

j for all ω ∈ {λ, ρ, η, σ}, we have to prove
that the spectral gaps ω j

k,p
(b) do not couple transitions between two states that are, respectively, inHj−1 andHj or

inHj+1 andHj+2, for almost every b. We are thus concerned with the condition

(3.3.15) ω
j
k,p
(b) , ω, ∀ω ∈ Σj−1, j ∪ Σj+1, j+2,

where Σt,u := {|E t
k,p
(b) − Eu

k′,p′
(b)| | k, k ′ = 0, . . . , j, p, p′ = 0, 1} is the set of spectral gaps of H(b) between

eigenstates inHm andHn. Since every spectral gap ω of H(b) can be seen as an analytic function ω(b) where ω(0)
is a spectral gap of H(0), and since the zeros of an analytic function (in this case, the function ω j

k,p
(b) − ω(b)) on

[−1, 0] are finite, condition (3.3.15) is implied for all but a finite number of b ∈ [−1, 0] if it is true at b = 0. At
b = 0, (3.3.15) is true if (A + B)/C < Q after Lemma 3.2.6.

The additional requirement (ω j
k,p
(b), l) ∈ Ξ0

j ∀ω ∈ {λ, ρ, σ}, is proved in an analogous way: for each
m, n ∈ N \ { j, j + 1}, we are concerned with the condition

(3.3.16) ω
j
k,p
(b) , ω, ∀ω ∈ Σm,n

that holds true at b = 0, if (A + B)/C < Q, after Lemma 3.2.6. So, by analyticity, (3.3.16) holds true for all but a
finite number of b ∈ [−1, 0]. Hence, the set Λ defined as the set of b such that condition (3.3.16) holds true for
all m, n ∈ N \ { j, j + 1} is given by a countable intersection of sets of full measure 12, which has measure 1. This
concludes the proof. �

Following the proof of Theorem 3.2.5, we consider first the family of decoupled control operators

Fj(b) :=
{1

2

(
WξEλ j

0,0(b)
(iBl) +WξEρ j

0,0(b)
(iBl)

)
,

1
2

(
WξEλ j

k,0(b)
(iBl) +WξEρ j

k,1(b)
(iBl)

)
,

1
2

(
WξEλ j

k,1(b)
(iBl) +WξEρ j

k,0(b)
(iBl)

) ��� l = 1, 2, 3, k = 1, . . . , j, ξ = 1, i
}
.

(3.3.17)

We denote by Lj(b) := Lie(Fj(b)) and notice that, thanks to Lemma 3.3.5, Lj(b) ⊂ Lie(ν0
j ) (cf. (3.1.13)) for almost

every b. Then we define the family of matrices

Pj(b) :=
{1

2

(
WξEη j

k,0(b)
(iBl) +WξEη j

k+1,1(b)
(iBl)

)��� l = 1, 2, 3, k = 0, . . . , j, ξ = 1, i
}

∪

{
WξEσ j

0,0(b)
(iBl),

1
2

(
WξEσ j

k,0(b)
(iBl) +WξEσ j

k,1(b)
(iBl)

) ��� l = 1, 2, 3, k = 1, . . . , j, ξ = 1, i
}
,

(3.3.18)

and notice that, by Lemma 3.3.5, Pj(b) ⊂ Lie(ν1
j ) (cf. (3.1.13)), for almost every b. Therefore,

P̃j(b) := {A, [B,C] | A, B ∈ Lj(b),C ∈ Pj(b)} ⊂ Tj, for almost every b ∈ [−1, 0],

where we recall that Tj is the minimal ideal of Lie(ν1
j ) containing ν

0
j .

The next proposition concludes the proof of Theorem 3.3.2 with the additional hypothesis δ , (δ1, δ2, 0):

Proposition 3.3.6. For almost every b ∈ [−1, 0], Lie(P̃j(b)) = su(M j).

Proof. We first claim that, for all but a finite number of b ∈ [−1, 0], one can write

E
λ
j
k,0(b)
(iB3) + Eρ j

k,1(b)
(iB3) =

∑
m=−j,..., j

p=0,1
〈S j

k,m,p
(b), iB3S j+1

k+1,m,p(b)〉 |S
j
k,m,p
(b)〉〈S j+1

k+1,m,p(b)|(3.3.19)

+ 〈S j+1
k+1,m,p(b), iB3S j

k,m,p
(b)〉 |S j+1

k+1,m,p(b)〉〈S
j
k,m,p
(b)|,

where the operator |ψ〉〈φ| is the rank-one projector defined by |ψ〉〈φ|ϕ := 〈ϕ, ψ〉φ, for all ψ, φ, ϕ ∈ L2(SO(3)).
Indeed, (3.3.19) holds when there are no internal resonances, that is, for all b ∈ [−1, 0] such that

(3.3.20) λ
j
k,0(b), ρ

j
k,1(b) , ω, ∀ω ∈ Σj, j+1 \ {λ

j
k,0(b), ρ

j
k,1(b)}.

2Indeed, Λ =
⋂

m,n∈N\{ j, j+1} Λm,n where Λm,n is defined as the set of b ∈ [−1, 0] such that (3.3.16) holds true.
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Since there exists a finite number of gaps, and every gap ω can be written as the analytic perturbation ω(b) of a gap
at b = 0, and since (3.3.20) holds if (A + B)/C < Q at b = 0 (cf. Lemma 3.2.7), by analyticity (3.3.20) holds for
all but a finite number of b ∈ [−1, 0], and the claim is proved. In particular, when (A + B)/C < Q, (3.3.19) holds
at b = 0 and gives an analytic expression (that is, the RHS) for E

λ
j
k,0(b)
(iB3) + Eρ j

k,1(b)
(iB3), for a.e. b. Analogous

formulas to (3.3.19) hold for the other matrices, corresponding to ξ = 1, of (3.3.17) and (3.3.18). Noticing that

λ
j
k,0(b)WiEλ j

k,0(b)
(iB3) =

[
iH(b) , E

λ
j
k,0(b)
(iB3)

]
,

we see that also the matrices corresponding to ξ = i in (3.3.17) and (3.3.18) coincide with analytic curves of
matrices for all but a finite number of b. To conclude, since the statement holds at b = 0 when (A + B)/C < Q and
δ , (0, 0, δ3)

T , (δ1, δ2, 0)T (cf. Proposition 3.2.9), by analyticity it holds for all but a finite number of b ∈ [−1, 0]. �

We now turn to the case δ = (δ1, δ2, 0)T , with δ1 , 0 and δ2 , 0. Recalling the choice we made at the beginning
of section 3.3.1 for the principal axis of inertia (that is, a = a1, b = a2, c = a3), we have that δ1 is the dipole
component along the principal axis a. Let us then change convention and set a = a3, b = a2, c = a1, so that the
rotational Hamiltonian reads H(A, B,C) = CP2

1 + BP2
2 + AP2

3 , and the dipole reads (0, δ2, δ1)
T in the new a1, a2, a3

molecular frame. We then write H(A, B,C) as in (3.3.7), exchanging the role of A and C in the formula, and
obtaining thus the perturbation of an associated prolate symmetric top: that is,

H(A, B,C) = CP2
1 + BP2

2 + AP2
3

=
1
2
(C + B)P2 + [A −

1
2
(C + B)]P2

3 +
( C − B
2A − B − C

)
[A −

1
2
(C + B)](P2

1 − P2
2 )

= H
(
A,

1
2
(C + B),

1
2
(C + B)

)
+ b̃Ṽ =: H(b̃),

(3.3.21)

where H
(
A, 1

2 (C + B), 1
2 (C + B)

)
is the rotational Hamiltonian of a prolate symmetric top with rotational constants

A and 1
2 (C + B), and we have defined the new asymmetry parameter

(3.3.22) b̃ :=
C − B

2A − B − C
∈ [−1, 0],

and a perturbation operator
Ṽ := [A −

1
2
(C + B)](P2

1 − P2
2 ).

We can then apply the same proof and conclude that in the case left (which is δ = (δ1, δ2, 0)T with δ1 , 0 and
δ2 , 0, w.r.t. the choice a = a1, b = a2, c = a3) the system (3.2.4) is an m-tracker. �

3.4 Appendix
Sections 3.4.1 and 3.4.2 of this Appendix aim at providing the proofs of two important original propositions, that
were stated in the proof of Theorem 3.2.5.

3.4.1 Proof of Proposition 3.2.8
As a consequence of Lemma 3.2.7, part 1, if I2/I3 < Q, the only transitions driven by the fields iBl , l = 1, 2, 3,
excited at frequency λ j

k
, are the ones corresponding to the following matrix elements (written in the basis ofM j

given by the Wigner functions) and can be computed using, e.g., [68, Table 2.1]:

(3.4.1)



〈D j
k,m
, iB1D j+1

k+1,m±1〉 = −cj,k,±m(δ2 + iδ1),

〈D j
k,m
, iB1D j+1

k−1,m±1〉 = cj,−k,±m(δ2 − iδ1),

〈D j
k,m
, iB2D j+1

k+1,m±1〉 = ∓icj,k,±m(δ2 + iδ1),

〈D j
k,m
, iB2D j+1

k−1,m±1〉 = ±icj,−k,±m(δ2 − iδ1),

〈D j
k,m
, iB3D j+1

k±1,m〉 = ±idj,±k,m(δ2 ± iδ1),

where
cj,k,m :=

[( j + k + 1)( j + k + 2)]1/2[( j + m + 1)( j + m + 2)]1/2

4( j + 1)[(2 j + 1)(2 j + 3)]1/2
,
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and
dj,k,m :=

[( j + k + 1)( j + k + 2)]1/2[( j + 1)2 − m2]1/2

2( j + 1)[(2 j + 1)(2 j + 3)]1/2
.

Now, using a symmetry argument, we explain how to get rid of one electric dipole component between δ1 and
δ2.

By the very definition of the Euler angles, one has that the rotation of angle θ around the symmetry axis a3 is
given by γ 7→ γ + θ. This rotation acts on the Wigner functions in the following way

D j
k,m
(α, β, γ) 7→ D j

k,m
(α, β, γ + θ) = eikθD j

k,m
(α, β, γ) =: D j

k,m
(θ)(α, β, γ),

having used the explicit expression of the symmetric states (3.2.5). Note that these rotated Wigner functions form
again an orthogonal basis for L2(SO(3)) of eigenfunctions of the rotational Hamiltonian H, so we can also analyze
the controllability problem in this new basis. In this new basis the matrix elements (corresponding to the frequency
λ
j
k
) of the controlled fields are

(3.4.2)

{
〈D j

k,m
(θ), iB1D j+1

k+1,m+1(θ)〉 = −cj,k,me−iθ (δ2 + iδ1),

〈D j
k,m
(θ), iB1D j+1

k−1,m+1(θ)〉 = cj,−k,meiθ (δ2 − iδ1),

and the same happens for all the other transitions described in (3.4.1). So, the effect of this change of basis is
that we are actually rotating the first two components of the dipole moment, by the angle θ. We can now choose
θ ∈ [0, 2π) such that

e−iθ (δ2 + iδ1) =
√
δ2

1 + δ
2
2 = eiθ (δ2 − iδ1).

In other words, thanks to this change of basis, we can assume without loss of generality that δ1 = 0, since we can
rotate the vector δ2 ± iδ1 and get rid of its imaginary part (note that in (3.2.15) and in the proof of Theorem 3.2.11
we are rotating the vector δ2± iδ1 in the other sense, i.e., to get rid of its real part). This will simplify the expression
of the controlled fields. Note that

Wi(G(j,k,m),(j+1,k+1,n)) = −F(j,k,m),(j+1,k+1,n),(3.4.3)
Wi(F(j,k,m),(j+1,k+1,n)) = G(j,k,m),(j+1,k+1,n).

Finally, we can conveniently represent the matrices corresponding to the controlled vector field (projected onto
M j) in the rotated basis found with the symmetry argument. So, for each k = − j, . . . , j, because of Lemma 3.2.7,
part 1, and (3.4.1), we have

E
λ
j
k
(iB1) =

∑
m=−j,..., j

−cj,k,mδ2G(j,k,m),(j+1,k+1,m+1) − cj,k,−mδ2G(j,k,m),(j+1,k+1,m−1)

+ cj,k,mδ2G(j,−k,m),(j+1,−k−1,m+1) + cj,k,−mδ2G(j,−k,m),(j+1,−k−1,m−1),(3.4.4)

E
λ
j
k
(iB2) =

∑
m=−j,..., j

−cj,k,mδ2F(j,k,m),(j+1,k+1,m+1) + cj,k,−mδ2F(j,k,m),(j+1,k+1,m−1)

+ cj,k,mδ2F(j,−k,m),(j+1,−k−1,m+1) − cj,k,−mδ2F(j,−k,m),(j+1,−k−1,m−1),(3.4.5)

E
λ
j
k
(iB3) =

∑
m=−j,..., j

dj,k,mδ2F(j,k,m),(j+1,k+1,m) − dj,k,mδ2F(j,−k,m),(j+1,−k−1,m),(3.4.6)

where, with a slight abuse of notation, we write Bl instead of ΠM j
BlΠM j

.
Now we show how the sum over m in (3.4.4), (3.4.5) and (3.4.6) can be decomposed, in order to obtain that the

matrices X(j,k,m),(j+1,k+1,m±1) + X(j,−k,m),(j+1,−k−1,m±1) and X(j,k,m),(j+1,k+1,m) − X(j,−k,m),(j+1,−k−1,m) are in Lj , for
any m, k = − j, . . . , j, where X ∈ {G, F}. Recall the laws of the Lie algebra su described in (3.1.9),(3.1.10),(3.1.11).
Let us first fix k , 0 and consider

Wi(Eλ j
k
(iB3))

=
∑

m=−j,..., j

dj,k,mδ2G(j,k,m),(j+1,k+1,m) − dj,k,mδ2G(j,−k,m),(j+1,−k−1,m),
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and the brackets

ad2s
E
λ
j
k

(iB3)
(Wi(Eλ j

k
(iB3))) =

∑
m=−j,..., j

(−1)s22sd2s+1
j,k,mδ

2s+1
2 G(j,k,m),(j+1,k+1,m)

+ (−1)s22s(−dj,k,m)
2s+1δ2s+1

2 G(j,−k,m),(j+1,−k−1,m),

for s ∈ N, where adA(B) = [A, B] and adn+1
A (B) = [A, adnA(B)]. Since dj,k,m = dj,k,−m, the invertibility of the

Vandermonde matrix gives that

G(j,k,m),(j+1,k+1,m) + G(j,k,−m),(j+1,k+1,−m)

−G(j,−k,m),(j+1,−k−1,m) − G(j,−k,−m),(j+1,−k−1,−m) ∈ Lj,(3.4.7)

for m = 0, . . . , j. In particular, G(j,k,0),(j+1,k+1,0) − G(j,−k,0),(j+1,−k−1,0) is in Lj . Hence,[ [Eλk (iB1) −Wi(Eλk (iB2))

2
,G(j,k,0),(j+1,k+1,0) − G(j,−k,0),(j+1,−k−1,0)

]
,(3.4.8)

G(j,k,0),(j+1,k+1,0) − G(j,−k,0),(j+1,−k−1,0)

]
= cj,k,0δ2G(j,k,0),(j+1,k+1,−1)

+ cj,k,−1δ2G(j,k,1),(j+1,k+1,0) − cj,k,0δ2G(j,−k,0),(j+1,−k−1,−1)

− cj,k,−1δ2G(j,−k,1),(j+1,−k−1,0)

is also in Lj . Define

Q0 =cj,k,0δ2G(j,k,0),(j+1,k+1,−1) + cj,k,−1δ2G(j,k,1),(j+1,k+1,0)

− cj,k,0δ2G(j,−k,0),(j+1,−k−1,−1) − cj,k,−1δ2G(j,−k,1),(j+1,−k−1,0),

Qm =cj,k,−mδ2G(j,k,−m),(j+1,k+1,−m−1) + cj,k,−m−1δ2G(j,k,m+1),(j+1,k+1,m)

− cj,k,−mδ2G(j,−k,−m),(j+1,−k−1,−m−1) − cj,k,−m−1δ2G(j,−k,m+1),(j+1,−k−1,m),

if 0 < m < j, and

Q j = cj,k,−jδ2G(j,k,−j),(j+1,k+1,−j−1) − cj,k,−jδ2G(j,−k,−j),(j+1,−k−1,−j−1).

We have [ [ ∑
m=s,..., j

Qm,G(j,k,s),(j+1,k+1,s) + G(j,k,−s),(j+1,k+1,−s) − G(j,−k,s),(j+1,−k−1,s)

− G(j,−k,−s),(j+1,−k−1,−s)

]
,G(j,k,s),(j+1,k+1,s) + G(j,k,−s),(j+1,k+1,−s)

− G(j,−k,s),(j+1,−k−1,s) − G(j,−k,−s),(j+1,−k−1,−s)

]
= Qs,

for s = 1, . . . , j. By iteration on s and because of (3.4.7), it follows that Qs ∈ Lj for every s = 0, . . . , j. Now, since

Q j

cj,k,−jδ2
= G(j,k,−j),(j+1,k+1,−j−1) − G(j,−k,−j),(j+1,−k−1,−j−1) ∈ Lj,

then

ad2
G( j,k,− j),( j+1,k+1,− j−1)−G( j,−k,− j),( j+1,−k−1,− j−1)

(G(j,k, j),(j+1,k+1, j)

+ G(j,k,−j),(j+1,k+1,−j) − G(j,−k, j),(j+1,−k−1, j) − G(j,−k,−j),(j+1,−k−1,−j))

= G(j,k,−j),(j+1,k+1,−j) − G(j,−k,−j),(j+1,−k−1,−j) ∈ Lj,

which, in turns, implies that

ad2
G( j,k,− j),( j+1,k+1,− j)−G( j,−k,− j),( j+1,−k−1,− j)

(Q j−1)

= cj,k,−j+1G(j,k,−j+1),(j+1,k+1,−j) − cj,k,−j+1G(j,−k,−j+1),(j+1,−k−1,−j) ∈ Lj .

Iterating the argument,

(3.4.9) G(j,k,m),(j+1,k+1,m) − G(j,−k,m),(j+1,−k−1,m) ∈ Lj, m = − j, . . . , j
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and G(j,k,m),(j+1,k+1,m−1) − G(j,−k,m),(j+1,−k−1,m−1) are in Lj for m = − j, . . . , j.

By the same argument as above, with
E
λ
j
k

(iB1)−Wi(E
λ
j
k

(iB2))

2 replaced by

E
λ
j
k
(iB1) +Wi(Eλ j

k
(iB2))

2
=

∑
m=−j,..., j

−cj,k,mG(j,k,m),(j+1,k+1,m+1)

+ cj,k,mG(j,−k,m),(j+1,−k−1,m+1)

in (3.4.8) we also have that G(j,k,m),(j+1,k+1,m+1) − G(j,−k,m),(j+1,−k−1,m+1) is in Lj for all m = − j, . . . , j.

If we now replace
E
λ
j
k

(iB1)−Wi(E
λ
j
k

(iB2))

2 with

E
λ
j
k
(iB2) +Wi(Eλ j

k
(iB1))

2
=

∑
m=−j,..., j

−cj,k,−mF(j,k,m),(j+1,k+1,m−1)

+ cj,k,−mF(j,−k,m),(j+1,−k−1,m−1)

or

E
λ
j
k
(iB2) −Wi(Eλ j

k
(iB1))

2
=

∑
m=−j,..., j

−cj,k,mF(j,k,m),(j+1,k+1,m+1)

+ cj,k,mF(j,−k,m),(j+1,−k−1,m+1),

the arguments above prove that bothF(j,k,m),(j+1,k+1,m)−F(j,−k,m),(j+1,−k−1,m) andF(j,k,m),(j+1,k+1,m±1)−F(j,−k,m),(j+1,−k−1,m±1)
are in Lj for all m = − j, . . . , j.

3.4.2 Proof of Proposition 3.2.9
Using again [68, Table 2.1] we write the pairings

(3.4.10)



〈D j
k,m
, iB1D j

k+1,m±1〉 = ∓hj,k,±m(δ2 + iδ1),

〈D j
k,m
, iB1D j

k−1,m±1〉 = ∓hj,−k,±m(δ2 − iδ1),

〈D j
k,m
, iB2D j

k+1,m±1〉 = −ihj,k,±m(δ2 + iδ1),

〈D j
k,m
, iB2D j

k−1,m±1〉 = −ihj,−k,±m(δ2 − iδ1),

〈D j
k,m
, iB3D j

k±1,m〉 = −iqj,±k,m(δ2 ± iδ1),

where

hj,k,m :=
[ j( j + 1) − k(k + 1)]1/2[ j( j + 1) − m(m + 1)]1/2

4 j( j + 1)
,

qj,k,m :=
[ j( j + 1) − k(k + 1)]1/2m

2 j( j + 1)
.

Moreover,

(3.4.11)


〈D j

k,m
, iB1D j+1

k,m±1〉 = aj,k,±mδ3,

〈D j
k,m
, iB2D j+1

k,m±1〉 = ±iaj,k,±mδ3,

〈D j
k,m
, iB3D j+1

k,m
〉 = −ibj,k,mδ3,

where

aj,k,m :=
[( j + 1)2 − k2]1/2[( j + m + 1)( j + m + 2)]1/2

2( j + 1)[(2 j + 1)(2 j + 3)]1/2
,

bj,k,m :=
[( j + 1)2 − k2]1/2[( j + 1)2 − m2]1/2

( j + 1)[(2 j + 1)(2 j + 3)]1/2
.
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Note that the k → k transitions are driven by δ3. Recall that, up to a rotation, we can assume that δ1 = 0.
Because of Lemma 3.2.7, parts 2 and 3, the expression of the controlled fields excited at the frequencies ηk and σ j

are

Eηk (iB1) =
∑

l=j, j+1,
m=−l,...,l−1

−hl,k,mδ2G(l,k,m),(l,k+1,m+1) − hl,k,mδ2G(l,−k,m),(l,−k−1,m+1)

+
∑

l=j, j+1,
m=−l+1,...,l

hl,k,−mδ2G(l,k,m),(l,k+1,m−1) + hl,k,−mδ2G(l,−k,m),(l,−k−1,m−1),(3.4.12)

Eηk (iB2) =
∑

l=j, j+1,
m=−l,...,l−1

−hl,k,mδ2F(l,k,m),(l,k+1,m+1) − hl,k,mδ2F(l,−k,m),(l,−k−1,m+1)

+
∑

l=j, j+1,
m=−l+1,...,l

−hl,k,−mδ2F(l,k,m),(l,k+1,m−1) − hl,k,−mδ2F(l,−k,m),(l,−k−1,m−1),(3.4.13)

(3.4.14) Eηk (iB3) =
∑

l=j, j+1,
m=−l,...,l

−ql,k,mδ2F(l,k,m),(l,k+1,m) − ql,k,mδ2F(l,−k,m),(l,−k−1,m),

and

Eσ j (iB1) =
∑

m,k=−j,..., j

aj,k,mδ3G(j,k,m),(j+1,k,m+1) + aj,k,−mδ3G(j,k,m),(j+1,k,m−1),(3.4.15)

Eσ j (iB2) =
∑

m,k=−j,..., j

aj,k,mδ3F(j,k,m),(j+1,k,m+1) − aj,k,−mδ3F(j,k,m),(j+1,k,m−1),

Eσ j (iB3) =
∑

m,k=−j,..., j

−bj,k,mδ3F(j,k,m),(j+1,k,m).

Note that in Eηk (−iB3) the term for m = 0 vanishes, since qj,k,0 = 0 for every j, k.
To decouple all the m-degeneracies in the excited modes, we just consider double brackets with the elementary

matrices that we have obtained above. As an example, using (3.4.9) we can decouple the m → m transitions
corresponding to the frequency σ j by considering

[[Wi(Eσ j (iB3)),G(j,k,m),(j+1,k+1,m) − G(j,−k,m),(j+1,−k−1,m)],

G(j,k,m),(j+1,k+1,m) − G(j,−k,m),(j+1,−k−1,m)]

= G(j,k,m),(j+1,k,m) + G(j,−k,m),(j+1,−k,m) ∈ Lie(P̃j).

Considering every possible double brackets as above, we obtain, for X ∈ {G, F}, that

(3.4.16) X(j,k,m),(j+1,k,m) + X(j,−k,m),(j+1,−k,m) ∈ Lie(P̃j), k , 0,

when we start from the matrices in (3.4.15), and that

X(l,k,m),(l,k+1,m) + X(l,−k,m),(l,−k−1,m), X(l,k,m),(l,k+1,m±1) + X(l,−k,m),(j,−k−1,m±1)

are in Lie(P̃j), l = j, j + 1, m, k , 0, when we start from the matrices in (3.4.12), (3.4.13), (3.4.14). Now
we can also generate the missing k = 0 elements of (3.4.9) by taking double brackets with X(j+1,1,m),(j+1,2,m) +

X(j+1,−1,m),(j+1,−2,m) ∈ Lie(P̃j). As an example, we have that

[[E
λ
j
0
(iB3), F(j+1,1,m),(j+1,2,m) + F(j+1,−1,m),(j+1,−2,m)],

F(j+1,1,m),(j+1,2,m) + F(j+1,−1,m),(j+1,−2,m)]

= F(j,0,m),(j+1,1,m) − F(j,0,m),(j+1,−1,m) ∈ Lie(P̃j).

Moreover, also the m = 0 elements in the transitions (3.4.14) are in Lie(P̃j), as one can check by considering a
bracket between two transitions obtained in (3.4.9) and (3.4.16). For example,

[G(j,k,0),(j+1,k+1,0) − G(j,−k,0),(j+1,−k−1,0),G(j+1,k+1,0),(j,k+1,0)

+ G(j+1,−k−1,0),(j,−k−1,0)] = G(j,k,0),(j,k+1,0) − G(j,−k,0),(j,−k−1,0) ∈ Lie(P̃j).
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Figure 3.6: Three-wave mixing around k = 1,−1. The same-shaped arrows correspond to equal spectral gaps, and
thus, coupled transitions. The goal of the three-wave mixing is to decouple those arrows.

Finally, we apply a three-wave mixing argument (Figure 3.4.2) in order to decouple the sum over k and −k in every
elementary matrices: consider the bracket between the following elements in Lie(P̃j)

[G(j,k+1,m),(j,k,m) + G(j,−k−1,m),(j,−k,m),G(j,k,m),(j+1,k,m) + G(j,−k,m),(j+1,−k,m)]

= G(j,k+1,m),(j+1,k,m) + G(j,−k−1,m),(j+1,−k,m) ∈ Lie(P̃j), k , 0,

and notice that from (3.4.9) we already have that G(j,k+1,m),(j+1,k,m) −G(j,−k−1,m),(j+1,−k,m) is in Lie(P̃j), and hence
G(j,k+1,m),(j+1,k,m) and G(j,−k−1,m),(j+1,−k,m) are in Lie(P̃j). In this way we can break every k-degeneracy, and finally
obtain that Lie(P̃j) = su(M j), which concludes the proof.
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Chapter 4

Enantiomer-selective transfer of rotational
population in chiral asymmetric molecules

4.1 The physical model
In this chapter we consider a molecule made of two identical, mirrored, asymmetric-tops, whose rotations are
controlled with three orthogonal electric fields. Identical means that the two tops have same inertia constants
A, B,C and hence same rotational spectra. Mirrored means that the two tops have resp. electric dipoles δ(+) and
δ(−) such that two components are equal, and and third differs only in sign. The two tops composing the molecule
are also called enantiomers: the left-handed top is called S-enantiomer, and the right-handed is the R-enantiomer.
The two enantiomers are chiral objects, meaning that they are not superimposable with their mirrored images: such
a two-body system is also called a chiral asymmetric molecule.

We interpret the problem of enantiomer-selective transfer of population as the following control problem:
assuming that the initial state of the Schrödinger equation (3.2.4) is supported on the same finite-dimensional
combination of rotational eigenfunctions on both the enantiomers, and assuming that there is no conversion
between the two enantiomers, we want to steer the system to a state that is supported on different finite-dimensional
linear combinations of rotational eigenfunctions, on the two enantiomers. The interpretation is that, at the end of
the controlled evolution, the enantiomers are selected because their rotational populations are on different states.
This is surely possible if the two enantiomers are simultaneously controllable (Section 4.2), but it is also possible
under weaker controllability properties on the reachable sets of the direct sum system (Section 4.3).

Given the nature of the problem, we focus on a finite-dimensional quantum system, under a generic non-resonant
assumption (specified below in (4.1.2) and (4.1.3)) between the spectral gaps involved and the ones connecting
states inside and outside the finite-dimensional subspace, that ensures an arbitrary precision of transfer despite the
negligence of the infinite-dimensional complement. In general, for experimental set up, it is possible to prepare at
low temperature a state that is supported in a finite-dimensional portion of the rotational spectrum, but we need to
take into account an average over the orientational quantum number m. Moreover, we also want the transitions to
couple with the three dipole components, to exploit the sign inversion.

The bilinear multi-input finite-dimensional Schrödinger equation which models this system reads as the direct
sum system

(4.1.1) i
d
dt

(
ψ(+)(t) ⊕ ψ(−)(t)

)
=

[(
H(+) ⊕ H(−)

)
+

3∑
l=1

ul(t)
(
B(+)
l
⊕ B(−)

l

)] (
ψ(+)(t) ⊕ ψ(−)(t)

)
where ψ(t)(±) ∈ H := Hj,τ ⊕ Hj+1,τ′ ⊕ Hj+1,τ′′ , τ ∈ {− j, . . . , j}, τ′, τ′′ ∈ {− j − 1, . . . , j + 1},

Hl,r := span{Ψl
r,m | m = −l, . . . , l},

H(±) = H |H , H = AP2
1 +BP2

2 +CP2
3 , with rotational constants A > B > C > 0 and B(±)

l
= ΠH

(
−〈R(±)δ(±), el〉

)
ΠH ,

where ΠH : L2(SO(3)) → H denotes the orthogonal projection, and δ(±) = (δ(±)1 , δ
(±)

2 , δ
(±)

3 )
T , with

|δ
(+)

i | = |δ
(−)

i |, i = 1, 2, 3 and δ
(+)

1 δ
(+)

2 δ
(+)

3 = −δ
(−)

1 δ
(−)

2 δ
(−)

3 ,

and u(t) ∈ U, for some neighborhood U of 0 in R3. Finally, R(±) ∈ SO(3) describe the orientations of the two
enantiomers in the space. The angular momentum operators Pi and the asymmetric-top eigenfunctions Ψ j

τ,m have
been introduced, resp., in Sections 3.2.1 and 3.3.1.
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We are thus interested in the following control problem: given an initial and final state ψi⊕ψi, ψf ⊕φ f ∈ H ⊕H ,
with ψf , φ f , we want to find a piecewise constant control u = (u1, u2, u3) : [0,T] → U such that the solution of
(4.1.1) satisfies

ψ(0)(+) ⊕ ψ(0)(−) = ψi ⊕ ψi and ψ(T)(+) ⊕ ψ(T)(−) = ψf ⊕ φ f .

A simplified version of (4.1.1) was studied in [82], where the authors considered a 3 ⊕ 3-level quantum system,
to deduce some important properties that are confirmed in our more general analysis which takes into account
also the m-degeneracies. For example, in [82] the authors proved that three polarizations and three dipole compo-
nents are necessary for an enantio-selective transfer of rotational population. Detection of chirality through three
orthogonal polarizations in dipole approximation has been observed in experiments ofmicrowave spectroscopy [95].

We denote the spectral gaps of H inH as

ω1 := |E j+1
τ′ − E j

τ |, ω2 := |E j+1
τ′′ − E j+1

τ′ |, ω2 := |E j+1
τ′′ − E j

τ |.
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Figure 4.1: 2D spectral graphs of a near prolate asymmetric-top. In (i): transitions at frequenciesω1 = |E2
−1−E1

−1 |,
ω2 = |E2

0 − E2
−1 | and ω3 = |E2

0 − E1
−1 |. In (ii): transitions at frequencies ω1 = |E1

0 − E0
0 |, ω2 = |E1

1 − E1
0 | and

ω3 = |E1
1 − E0

0 |. Here the dipole components are labeled as: µb = δ1, µa = δ2, and µc = δ3.

We remark here that there is an additional assumption on the space H : the choice of τ, τ′, τ′′ has to be such
that the spectral gaps ω1, ω2, ω3 couple with all dipole components, say resp. δ1, δ2, δ3; this is not always the case,
as it may happen that the gaps are all coupled with δ3 only, but in that case we only need to choose a different τ,
which is always possible.

We denote as I := ∪l∈N{(l, r) | r = −l, . . . , l} the set of spectral indices and Iint = {( j, τ), ( j + 1, τ′), ( j + 1, τ′′)}
the set of spectral indices involved in the spaceH ⊂ L2(SO(3)). Throughout the chapter we assume the following
non-resonant assumptions

ωi , ωj if i , j , i, j = 1, 2, 3,(4.1.2)
ωi , ω ∀ω ∈ {|E l

r − E l′

r′ | | (l, r) ∈ Iint, (l ′, r ′) ∈ I \ Iint}.(4.1.3)

(4.1.2) guarantees that there are no internal resonances, and (4.1.3) guarantees that there are no resonances that
couple a state in H and a state outside H . Then, Lemma 3.1.12 ensures that the transfer of population inside H
is achievable with arbitrary small error, w.r.t. the infinite-dimensional system. Moreover, assumptions (4.1.2) and
(4.1.3) are satisfied for almost every value of A, B,C, as proved resp. in (3.3.20) and Lemma 3.3.5.

The chapter is organized as follows: in Sections 4.2 and 4.3 we find combinations of polarizations Bl , l =
1, 2, 3, and frequencies ωi , i = 1, 2, 3, such that the reduced operators Eωi (B

(+)

l
) ⊕ Eωi (B

(−)

l
) yields simultaneous
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controllability of (4.1.1); based of these insights, in Section 4.4 we confirm the controllability results by numerically
simulating the rotational dynamics for j = 0, 1, 1 and j = 1, 2, 2 systems, thus producing pulse sequences that
numerically achieve enantiomer-selective transfer of population.

The results of this chapter are in the paper [83].

4.2 Controllability
In what follows, we identify su(H)with su(6 j +7), where dimH = 6 j +7. For brevity, we write Hχ = H(+) ⊕H(−)

and Bχ
l
= B(+)

l
⊕ B(−)

l
. Recall that, for any σ > 0, the operator Eσ(Bl) is defined on the basis {Ψl

τ,m | l =
j, j + 1, τ,m = −l, . . . , l} as

〈Ψ
j
τ,m, Eσ(Bl)Ψ

j′

τ′,m′〉 =

{
〈Ψ

j
τ,m, BlΨ

j′

τ′,m′〉, if |E j
τ − E j′

τ′ | = σ

0, otherwise.

The main result of this section is that with five combinations of polarizations and frequencies (that involve three
polarizations and three dipole components) we are able to control (4.1.1).

Proposition 4.2.1. Let j ≥ 1, and assume that δ(+)1 = δ
(−)

1 , δ
(+)

2 = −δ
(−)

2 , and δ(+)3 = δ
(−)

3 . Then,

(i) Lie
{
iH, Eω1 (iB1), Eω1 (iB2), Eω3 (iB2), Eω3 (iB3)

}
= su(H);

(ii) Lie
{
iHχ, Eω1 (iB

χ
1 ), Eω1 (iB

χ
2 ), Eω3 (iB

χ
2 ), Eω3 (iB

χ
3 ), Eω2 (B

χ
l
)
}
= su(H) ⊕ su(H), for any l = 1, 2, 3.

The proof of Proposition 4.2.1 is postponed to the Appendix 4.5, but we make several remarks here:

Remark 4.2.2. .

• By applying Corollary 3.1.17, we see that part (ii) of Proposition 4.2.1 in particular states that (4.1.1) is
operator controllable. It actually states a stronger result: indeed, denoting ψχ = ψ(+) ⊕ ψ(−), it says that

i
d
dt
ψχ(t) =

[
Hχ + u1(t)Eω1 (iB

χ
1 ) + u2(t)Eω1 (iB

χ
2 ) + u3(t)Eω3 (iB

χ
2 ) + u4(t)Eω3 (iB

χ
3 ) + u5(t)Eω2 (B

χ
l
)
]
ψχ(t)

is operator controllable.

• Part (i) of Proposition 4.2.1 states that four combinations of polarizations and frequencies which involve three
polarizations and two frequencies are sufficient to control one top. Part (ii) of Proposition 4.2.1 states that five
combinations of polarizations and frequencies which involve three polarizations and three frequencies are
sufficient to simultaneously control two tops. By numerically compute the dimension of the associated Lie
algebra for small values of j, one can also see that it is the minimal number, that is, three (four) combinations
cannot control (simultaneously) one (two) top(s).

• By numerically computing the Lie algebra for small values of j, one sees that there are many choices
of combinations of five pulses that lead to simultaneous control. Of course one needs to consider three
polarizations and three frequencies/dipole components (as it was already proved in [82]). Among the
combinations that involve three polarizations and three frequencies, we realized that the only ones which do
not lead to simultaneous control have the forms:

(A) : {Eωπ(1) (iB
χ

σ(1)), Eωπ(1) (iB
χ

σ(2)), Eωπ(2) (iB
χ

σ(1)), Eωπ(2) (iB
χ

σ(2)), Eωπ(3) (B
χ

σ(3))},

with π, σ permutations of {1, 2, 3}, or the form of five combinations where three of them are

(B) : {Eωa (iB
χ
1 ), Eωa (iB

χ
2 ), Eωa (iB

χ
3 )}, a ∈ {1, 3}.

As we shall see in the next section, family of combinations like in (A) are still very useful to obtain
enantiomer-selection within the simultaneously reachable sets.

For j = 0, we prove in the next example a controllability result for the specific subsystem whose dynamics will
be numerically investigated in Sections 4.4.1 and 4.4.2.
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Example 4. The scope of this example is proving that, for

H = H0,0 ⊕ H1,0 ⊕ H1,1 = C
7

(which corresponds to Figure 4.1(ii)) and dipole components δ(+)1 = δ
(−)

1 , δ
(+)

2 = δ
(−)

2 , and δ(+)3 = −δ
(−)

3 one has that

Lie{iH, Eω1 (iB1), Eω1 (iB3), Eω2 (iB2), Eω2 (iB3)} = su(7),(4.2.1)
Lie{iHχ, Eω1 (iB

χ
1 ), Eω1 (iB

χ
3 ), Eω2 (iB

χ
2 ), Eω2 (iB

χ
3 ), Eω3 (iB

χ
1 )} = su(7) ⊕ su(7).(4.2.2)

Of course, this can also be checked by computing numerically the dimension of the Lie algebra, but we give here
an explicit proof for completeness. In this example we diagonalize the rotational Hamiltonian H of an asymmetric-
top in H starting from its representation w.r.t. the symmetric-top representation S j

k,m,p
, to find eigenvalues and

eigenvectors, and we express the control problem w.r.t. the representation Ψ j
τ,m is which H is diagonal. We have

H = diag
(
E0

0 , E
1
0 , E

1
0 , E

1
0 , E

1
1 , E

1
1 , E

1
1

)
and using the pairings (3.4.1),(3.4.10),(3.4.11) we write

Eω1 (iB1) =
δ1
√

6
(G1,4 − G1,2) ,

Eω1 (iB3) = −
δ1
√

3
G1,3 ,

Eω2 (iB2) =
δ2

2
√

2
(G3,5 + G4,6 − G2,6 − G3,7) ,

Eω2 (iB3) =
δ2
2
(−F2,5 + F4,7) ,(4.2.3)

where the matrix elements are labeled according to Fig. 4.1(ii). We recall that, instead of using iH we may use the
operator Wi thanks to the relation (3.1.3). Recalling the action of the operator Wi given in (3.4.3), and the laws of
the Lie algebra su described in (3.1.9),(3.1.10),(3.1.11), we compute (where ∝ means proportional by a non-zero
number) [

Eω1 (iB1),Wi(Eω2 (iB3))
]
∝ G1,5 + G1,7,[

Eω1 (iB3), Eω2 (iB2)
]
∝ G1,5 − G1,7.(4.2.4)

Taking the sum and the difference, we obtain[
Eω1 (iB1),Wi(Eω2 (iB3))

]
+

[
Eω1 (iB3), Eω2 (iB2)

]
∝ G1,5[

Eω1 (iB1),Wi(Eω2 (iB3))
]
−

[
Eω1 (iB3), Eω2 (iB2)

]
∝ G1,7.(4.2.5)

Moreover, we find [
G1,7,Wi(Eω2 (iB3))

]
∝ G1,4[

G1,5,Wi(Eω2 (iB3))
]
∝ G1,2[

G1,2, Eω2 (iB2)
]
∝ G1,6.(4.2.6)

So far, we have obtained all elements G j,k with j = 1. Using the laws of su is now easy to get every element
G j,k, Fj,k,Dj,k , that is a basis of su(7). We have proven (4.2.1). In order to prove (4.2.2), since

(δ
(+)

1 , δ
(+)

2 , δ
(+)

3 ) = (δ
(−)

1 , δ
(−)

2 ,−δ
(−)

3 ) = (δ1, δ2, δ3),

it follows that

(4.2.7) Lie{iHχ, Eω1 (iB
χ
1 ), Eω1 (iB

χ
3 ), Eω2 (iB

χ
2 ), Eω2 (iB

χ
3 )} =

{(
A 0
0 A

)
| A ∈ su(7)

}
.

We then consider

Eω3 (iB1)
χ =

(
Eω3 (iB1) 0

0 −Eω3 (iB1)

)
(4.2.8)

81



with Eω3 (iB1) =
δ3√

6
(F1,5 − F1,7) and the minus sign in the lower block occuring because we are assuming that

δ
(+)

3 = −δ
(−)

3 . We also consider

M :=
(
G1,5 − G1,7 0

0 G1,5 − G1,7

)
which is an element of the Lie algebra generated in (4.2.7). Moreover,

Wi(Eω3 (iB
χ
1 )) :=

(
G1,5 − G1,7 0

0 −G1,5 + G1,7

)
.

Taking the sum and difference of the two matrices, we obtain

1
2

(
Wi(Eω3 (iB

χ
1 )) + M

)
=

(
G1,5 − G1,7 0

0 0

)
and

1
2

(
Wi(Eω3 (iB

χ
1 )) − M

)
=

(
0 0
0 −G1,5 + G1,7

)
.

From here, we can apply Lemma 3.2.4 to conclude: in this case, K = 2 is the number of tops, which we denote by
(+) and (−), the two Hilbert spaces are C7, m = 5 is the number of interaction Hamiltonians, and

H(+) = H(−) = H , H(+)1 = H(−)1 = Eω1 (iB1),

H(+)2 = H(−)2 = Eω1 (iB3) , H(+)3 = H(−)3 = Eω2 (iB2) ,

H(+)4 = H(−)4 = Eω2 (iB3) , H(+)5 = −H(−)5 = Eω3 (iB1) .

Indeed, we have proven that the LHS of (4.2.2) contains element of the form A⊕0, with A , 0, and this in particular
implies that there cannot be an automorphism f of su(7) which matches the conditions described in Lemma 3.2.4,
otherwise such isomorphism should satisfies f (A) = 0, that is impossible.

We will show how to exploit these (minimal) sets of fields for the example of the propanediol molecule in
Sec. 4.4.2.

4.3 Enantiomer-selection
In order to distinguish the two enantiomers via their final rotational population, it is not crucial that (4.1.1) is
simultaneously controllable: it suffices that simultaneous controllability holds in smaller invariant subspaces ofH .
Imagine that the initial population is averaged over the eigenstates corresponding to the eigenvalues E j

τ , on both
enantiomers. Using interactions of the form

1
2

(
Eω1 (iB1) +WiEω1 (iB2)

)
=: Eω1 (iB+)(4.3.1)

1
2

(
Eω2 (iB1) −WiEω2 (iB2)

)
=: Eω2 (iB−)(4.3.2)

and Eω3 (iB3), we see that (2 j + 1) 3-level systems are composed and invariant for (4.1.1) (see Figure 4.2 for
an example with j = 1). The operators defined in (4.3.1) and (4.3.2) are usually called right- and left-circular
polarizations, at frequencies ω1 and ω2.

We denote this new smaller Hilbert subspaces ofH made by sums of 3-level systems as

(4.3.3) h :=
⊕

l=−j,..., j

hl, hl := span{Ψ j
τ,l
,Ψ

j+1
τ′,l+1,Ψ

j+1
τ′′,l
},

and we notice that each hl is invariant for Eω1 (iB+), Eω2 (iB−) and Eω3 (iB3) which allows to write (4.1.1) projected
in h as a direct sum control systems on each top. The main result is that, on each top, the 3-level systems are
simultaneously controllable, and each 3-level system is simultaneously controllable w.r.t. the two tops, as stated in
the following:

Proposition 4.3.1. Let j ≥ 1 and assume that δ(+)1 = δ
(−)

1 , δ
(+)

2 = δ
(−)

2 , and δ(+)3 = −δ
(−)

3 . Consider (4.1.1) projected
onto h. Then,
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Figure 4.2: Spectral graph for eigenstates corresponding to the eigenvalues E1
−1, E

2
−1, E

2
0 with transitions moved by

Eω1 (iB+) (orange), Eω2 (iB−) (violet) and Eω2 (iB−) (blue). We can see the splitting given in (4.3.3) as follows: h
is spanned by states 1, 6, 10, 2, 7, 11, 3, 8, 12; h−1 is spanned by states 1, 6, 10; h0 is spanned by states 2, 7, 11;h1 is
spanned by states 3, 8, 12.

• Lie{iH, Eω1 (iB+), Eω2 (iB−)} = su(3) ⊕ · · · ⊕ su(3)︸                  ︷︷                  ︸
(2j + 1)-times

;

• Lie{iHχ, Eω1 (iB
χ
+ ), Eω2 (iBχ− ), Eω3 (iB

χ
3 )} = (su(3) ⊕ · · · ⊕ su(3)︸                  ︷︷                  ︸

(2j + 1)-times

) ⊕ (su(3) ⊕ · · · ⊕ su(3)︸                  ︷︷                  ︸
(2j + 1)-times

);

The proof of this result is basically contained in the following example, whose dynamics is numerically
investigated in Section 4.4.3.

Example 5. The scope of this example is proving Proposition 4.3.1 for the example described in Figure 4.2.
In order to determine the Lie algebra for a single enantiomer, we first consider the interaction Hamiltonians

Eω1 (iB+) ∝ δ1

(
G1,6 +

√
3G2,7 +

√
6G3,8

)
,(4.3.4)

Eω2 (iB−) ∝ δ2

(
G8,12 +

√
3
2

(
G6,10 + G7,11

))
(4.3.5)

and show that, together with iH, they generate su(3) ⊕ su(3) ⊕ su(3). Recall that, instead of using iH we may use
the operator Wi, whose action is given in (3.4.3) and whose relation with iH is given in (3.1.3). Recall moreover
the rules of the Lie algebra su given in (3.1.9),(3.1.10),(3.1.11). We have

Wi(Eω1 (iB+)) ∝ F1,6 +
√

3F2,7 +
√

6F3,8 .

Moreover, abbreviating commutators as adn+1
A B = [A, adnAB] with ad0

AB = B, we note that

ad2s
WiEω1 (iB+)

Eω1 (iB+) ∝ G1,6 +
√

3
2s+1

G2,7 +
√

6
2s+1

G3,8

with s = 0, 1, 2, . . . Thus, ©«
ad0

WiEω1 (iB+)
Eω1 (iB+)

ad2
WiEω1 (iB+)

Eω1 (iB+)
ad4

WiEω1 (iB+)
Eω1 (iB+)

ª®®®¬ = V ©«
G1,6
G2,7
G3,8

ª®¬
with

V =
©«
1
√

3
√

6
1
√

3
3 √

6
3

1
√

3
5 √

6
5

ª®®¬ .(4.3.6)

The matrix V , being a Vandermonde matrix, is invertible since the entries 1,
√

3,
√

6 are all different which implies
that G1,6,G2,7,G3,8 ∈ Lie{iH, Eω1 (iB+)}. It then follows that

X1,6, X2,7, X3,8 ∈ Lie{iH, Eω1 (iB+)}, X ∈ {G, F,D}.
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We then calculate the commutators

[[Eω2 (iB−),G1,6],G1,6] ∝ G6,10,

[[Eω2 (iB−),G2,7],G2,7] ∝ G7,11,

[[Eω2 (iB−),G3,8],G3,8] ∝ G8,12,

finding that

(4.3.7) X6,10, X7,11, X8,12 ∈ Lie{iH, Eω1 (iB+), Eω2 (iB−)}, X ∈ {G, F,D}.

Since
Lie

{
X1,6, X2,7, X3,8, X6,10, X7,11, X8,12 | X ∈ {G, F,D}

}
� su(3) ⊕ su(3) ⊕ su(3),

we have proven the first part of the statement.
To obtain the simultaneous control of each of these three cycles w.r.t. the two enantiomers, we consider the

interaction with the third field, namely

Eω3 (iB3) ∝ δ3

(
G2,11 +

√
3

2

(
G3,12 + G1,10

))
,

or, for the composite system consisting of the two enantiomers,

Eω3 (iB
χ
3 ) = (Eω3 (iB3)) ⊕ (−Eω3 (iB3)),

where we are assuming that the sign inversion is in the dipole components δ3. From (4.3.7) we get the operators
G1,6 ⊕ G1,6 and G1,10 ⊕ G1,10. We compute the double bracket

[[Eω3 (iB3)
χ,G1,6 ⊕ G1,6],G1,6 ⊕ G1,6] ∝ G1,10 ⊕ (−G1,10),

and taking the sum and difference with G1,10 ⊕ G1,10, the operators G1,10 ⊕ 0 and 0 ⊕ G1,10 are generated. Form
here, the proof is easily concluded.

Proof of Proposition 4.3.1. In order to generalize the previous example to any E j
τ, E

j+1
τ′ , E

j+1
τ′′ , we follow the same

construction and notice that the matrix V (cf. (4.3.6)) is again in Vandermonde form, with 2 j + 1 different entries
in the first row and thus is invertible (this fact is also proved in the Appendix 4.5, see equation (4.5.8)). �

As we shall see for the example of carvone in Sec. 4.4.3, those isolated three-level systems are particularly
suited for enantio-selective excitation in real molecules.

4.4 Application: Derivation of pulse sequences for asymmetric topmolecules
We now show how to use the controllability results of the previous section to derive actual pulse sequences in
order to control the rotational dynamics in asymmetric top molecules. In all examples presented below, the control
target is to energetically separate an initially incoherent mixture of degenerate rotational states, as encountered in
gas phase experiments with randomly oriented molecules.

We simulate the rotational dynamics for the R- and S-enantiomers of propanediol and of carvone by numerically
solving the Schrödinger equation (4.1.1). For propanediol, the rotational constants are A = 7644.7MHz, B =
3927.3MHz, and C = 2878.0MHz, and the dipole moments δ1 = 1.2D, δ2 = 1.9D and δ3 = 0.36D [95].
For carvone, A = 2237.21MHz, B = 656.28MHz, and C = 579.64MHz, and δ1 = 2.0D δ2 = 3.0D, and
δ3 = 0.5D [90].

Our choice of examples is motivated by experiments with propanediol [53] and carvone [96], on enantiomer-
selective population transfer. Here, we address the problem of solving the degeneracy with respect to the orien-
tational quantum number M , relevant whenever the initial state is chosen with j > 0. Our pulse sequences will
induce the maximal degree of orientational- and enantiomer-selectivity.

We present two different control strategies to energetically separate population initially distributed over m-
degenerate states. For the first strategy, we exploit evolution operator-controllability of the complete rotational
subsystem, as shown in Sec. 4.2: We use the insight into which fields are required, for orientational, respectively
enantiomer-specific, state transfer in Sec. 4.4.1 and 4.4.2. More in detail, Sec. 4.4.1 illustrates controllability of
a single enantiomer, showing how to drive population initially in degenerate rotational states into levels separated
in energy. In this case, the rotational dynamics of the two enantiomers is identical. Enantiomer-selective control-
lability is exemplified in Sec. 4.4.2, where we show how to energetically separate the two enantiomers. For the
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Figure 4.3: Choice of four, respectively five, microwave fields, which are sufficient to ensure evolution operator-
controllability (a) and enantiomer-selective evolution operator-controllability (b) in the rotational subsystem con-
sisting of the states |0, 0, 0〉, |1, 0,m〉, and |1, 1,m〉. The orange and pink lines in panel (a) indicate the four fields
which yield complete controllability of this subsystem for a single enantiomer. The polarization of the fields is
denoted by x, y, and z. The additional field which is required for enantiomer-selective control is indicated in panel
(b) by turquoise lines. For propanediol, the frequencies are ω1 = 11363MHz, ω2 = 849.1MHz, ω3 = 12212MHz.

second strategy, we use the simultaneous controllability of “parallel” three-level cycles, introduced in Sec. 4.3, for
enantiomer-specific state transfer in Sec. 4.4.3. The working principle of both strategies is to combine enantiomer-
selectivity (due to the sign difference in one of the dipole moments) with an energetic separation of population
residing initially in degenerate states.

In Sec. 4.4.1 and 4.4.2, the pulses drive transitions within the E0
0 /E

1
0/E

1
1 rotational submanifold, cf. Fig. 4.3,

for the example of propanediol molecules. Even in this comparatively small manifold, the pulse sequence for
enantiomer-selective population transfer consists of 12 pulses sampled from five different fields, i.e., five different
combinations of polarization directions and frequencies. In order to obtain a simpler sequence, we forego full
evolution operator-controllability in Sec. 4.4.3 and use a sequence of three pulses which partitions the rotational
submanifold into isolated subsystems and drives simultaneously several three-wave mixing cycles. For this strategy
to succeed, the initial rotational submanifold needs to have the smallest degeneracy factor gj = 2 j +1. We therefore
consider transitions within the E1

−1, E
2
−1, E

2
0 rotational submanifold in Sec. 4.4.3, this time using carvone molecules

as an example. In the following Sections we use the quantum mechanical notation to denote the eigenstates of the
rotational Hamiltonian: Ψ j

τ,m = | j, τ,m〉.

4.4.1 Orientation-selective excitation exploiting complete controllability
The simplest rotational subsystem that allows for enantiomer-selective population transfer using three-wave mixing
spectroscopy consists of the rotational states | j, τ,m〉 = |0, 0, 0〉, |1, 0,m〉, and |1, 1,m〉 with m = −1, 0, 1, and
rotational energies E j

τ = E0
0 , E1

0 , and E1
1 , cf. Fig. 4.3. In the following, an x-,y- or z-polarization field denotes,

resp., the control field B1 =: Bx, B2 =: By or B3 =: Bz . An asymmetric top molecule is completely controllable with
four fields, as we have shown in Sec. 4.2 (Proposition 4.2.1 (i)). In the Example 4, we proved it for the investigated
rotational system using two fields with frequency ω1 = (E1

0 −E0
0 ) and x-, respectively z-polarization, and two fields

with frequency ω2 = (E1
1 − E1

0 ) and y-, respectively z-polarization. The transitions induced by these fields are
indicated by orange and pink lines in Fig. 4.3(a); they form closed loops connecting the four states |0, 0, 0〉, |1, 0, 1〉,
|1, 1, 1〉, and |1, 0, 0〉. Complete controllability implies that population in any initial state within the rotational
manifold can be driven into any other initial state within that manifold (with both enantiomers undergoing the same
dynamics). This means in particular that population in degenerate states, for example |1, 0,±1〉, can be driven into
states with different energy. Such an energetic separation can serve as precursor for complete enantiomer-selective
excitation, as we show below. It also has further applications and could, for example, be used towards purifying an
incoherent ensemble with electric fields only or distilling a specific molecular orientation.

We consider the following control problem: Given that the initial state is an incoherent ensemble of the two
degenerate |1, 0,m = ±1〉 states, that as a density matrix is expressed as

(4.4.1) ρ(0) =
1
2
|1, 0,−1〉〈1, 0,−1| +

1
2
|1, 0, 1〉〈1, 0, 1| ,

find a pulse sequence that drives the population with m = +1 into a final state with different rotational energy than
the m = −1 component. As an example, we have chosen |0, 0, 0〉 and 1/

√
2(|1, 1,−1〉 + |1, 1, 1〉) as target states.
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Figure 4.4: Control of the rotational dynamics for propanediol molecules to energetically separate the degenerate
initial states |1, 0,−1〉 (a) and|1, 0, 1〉 (b). Both enantiomers undergo the same dynamics. Top: Population of the
rotational states |0, 0, 0〉 (lowest panels), |1, 0,m〉 (middle panels), and |1, 1,m〉 (upper panels). The population
dynamics of the degenerate states are depicted by green (m = −1), purple (m = 0), and orange (m = 1) lines. The
envelope of the pulses is indicated by the orange (ω = ω1) and pink (ω = ω2) shapes, and the polarization of the
corresponding fields by x, y, and z. Time is given in units of t0 = 1/B. Bottom: Sketch of the initial (t = 0) and
final (t = T) states, marked by gray dots.

The initial and desired final states are sketched as gray dots in the bottom panels of Fig. 4.4, the upper panel of
which shows the pulse sequence that drives the corresponding rotational dynamics. In detail, starting from the
initial states |1, 0,−1〉 (see Fig. 4.4(a)) and |1, 0, 1〉 (see Fig. 4.4(b)), the state |1, 0, 0〉 (purple line in the middle
panel) can be reached by two different excitation pathways: via the states |1, 1,±1〉 and via |0, 0, 0〉. The 1st, 2nd,
and 4th pulse transfer 50% of the population to state |1, 0, 0〉 via the first pathway, while pulses 1 and 3 transfer the
other half of the initial population along the second pathway. Interference between the two pathways in |1, 0, 0〉 is
constructive for the initial state |1, 0,−1〉 and destructive for the initial state |1, 0, 1〉.

Therefore, the initial state |1, 0,−1〉 is transferred to |1, 0, 0〉 while the initial state |1, 0, 1〉 is transferred to
1/
√

2(|1, 1,−1〉 + |1, 1, 1〉) at the end of pulse 4. Finally, the 5th pulse transfers the population from |1, 0, 0〉 to
the desired final state |0, 0, 0〉 in Fig. 4.4(a) while not affecting the population in |1, 1,±1〉 Fig. 4.4(b). The two
initially degenerate states thus become energetically separated using four fields, with two different frequencies and
two polarization components.

4.4.2 Enantiomer-selective control exploiting complete controllability
For enantiomer-selective control, an additional field with frequencyω3 = ω1+ω2 is required to allow for three-wave
mixing. In our example, we choose x-polarization for ω3 such that we have three mutually orthogonal fields with
Eω1 (Bz) (central orange line in Fig. 4.3 (b)), Eω2 (By) (pink lines), and Eω3 (Bx) (turquoise lines). If the initial state
is the ground rotational state, three-wave mixing results in complete separation of the enantiomers into energetically
separated levels [82]. This requires, however, preparation of the molecules close to zero temperature. For typical
experimental conditions, the initial state has to be chosen with j > 0 [53, 96] and thus contains degenerate rotational
states. Then, three fields are not sufficient to obtain complete enantiomer-selectivity. We illustrate this in Fig. 4.5,
considering the initial ensemble with

(4.4.2) ρ(±)(0) =
1
2
(|1, 0,−1〉〈1, 0,−1| + |1, 0, 1〉〈1, 0, 1|) .

The initial states |1, 0,−1〉 and |1, 0, 1〉 are depicted in Fig. 4.5(e) and (f) with the gray circles indicating that
both enantiomers occupy the same states. The control aim is to drive the two enantiomers into rotational states
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Figure 4.5: Full control of enantiomer-selective state transfer despite m-degeneracy using five different fields in
panels (a,b) with the two enantiomers denoted by solid blue and dashed red lines. The complete pulse sequence
reads: (1) Eω1 (Bx); (2) Eω2 (Bz); (3) Eω1 (Bz); (4) Eω2 (By); (5) Eω1 (Bz); (6) Eω3 (Bx); (7) Eω2 (By); (8) Eω2 (Bz);
(9) Eω3 (Bx); (10) Eω1 (Bz); (11) Eω2 (By); (12) Eω1 (Bx). Panels (c,d) show for comparison enantiomer-selective
state transfer in standard three-wave mixing cycles that is incomplete due to the m-degeneracy (using Eω1 (Bx);
Eω2 (Bz); Eω3 (By)). Panels (a,c) depict the rotational dynamics for the initial state |1, 0,−1〉 and (b), (d) those for
the initial state |1, 0, 1〉 with the sup-panels showing the accumulated population of the rotational states |0, 0, 0〉
(lowest panels), |1, 0, M〉 (middle panels), and |1, 1, M〉 (top panels). The pulse envelopes are indicated by orange
(ω = ω1), pink (ω = ω2), and turquoise (ω = ω3) shapes. The height of these shapes corresponds to the maximal
electric field strength and the polarization is denoted by x, y and z. Time is given in units of t0 = 1/B. Panels (e)
and (f) illustrate the initial (t = 0) and final (t = T) populations with gray indicating both enantiomers in the same
state and blue and red representing the two separated enantiomers.
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with different energies, cf. the red and blue shades in Fig. 4.5(e) and (f). The combination of fields Eω1 (Bz),
Eω2 (By), and Eω3 (Bx), indicated in Fig. 4.3(b), which works if the initial state is |0, 0, 0〉, obviously fails for the
initial density matrix (4.4.2) since it does not create three-wave mixing cycles for the |1, 0,m〉 states. This can be
remedied by choosing instead a sequence containing the fields Eω1 (Bx), Eω2 (Bz), and Eω3 (By). However, due to
insufficient controllability with three fields in the presence of m-degeneracy, the population transfer is only partially
enantiomer-selective, cf. the corresponding rotational dynamics in Fig. 4.5(c) and (d), where the solid blue and
dashed red lines present the two enantiomers. For complete enantio-selective excitation, all five fields depicted
in Fig. 4.3(b) are required, as is illustrated by Fig. 4.5(a) and (b). We use the five fields that yield simultaneous
control, as proved in the Example 4.

The pulse sequence, which leads to complete separation of the enantiomers into energetically separated levels,
consists of 12 pulses: the first four pulses are the same as the pulse sequence shown in Fig. 4.4. Transferring the
initial states |1, 0,−1〉 and |1, 0, 1〉 into |1, 0, 0〉, respectively 1/

√
2(|1, 1,−1〉 + |1, 1, 1〉), they lead to an energetic

separation of the two initially degenerate m-states, but are not yet enantiomer-selective. Two more pulse sequences
realize enantiomer-selective three-wave mixing cycles for the two initial states separately. First, enantiomer-
selective transfer for the initial state |1, 0,−1〉 is obtained by three-wave mixing with the fields Eω1 (Bz), Eω3 (Bx),
and Eω2 (By) (pulses 5, 6, and 7). Analogously, pulses 9, 10, and 11 form a three-wave mixing cycle for the
initial state |1, 0, 1〉. After pulse 11 the enantiomers of both initial states are separated in energy. The two cycles
for the different m-states are synchronized by applying pulse 12 ( at the same time as pulse 11), such that all
population of one enantiomer is collected in the highest rotational state (blue lines) while all population of the other
enantiomer is excited to the intermediate level (dashed red lines). Figure 4.5(a) and (b) thus confirms complete
enantio-selective state transfer in a racemic mixture of initially degenerate m-states for a set of microwave fields for
which simultaneous controllability is proved in Example 4.

The Lie algebraic analysis of simultaneous controllability of Sec. 4.2 yields the control Hamiltonians which are
required for enantiomer-selective population transfer, but does not make any predictions about the temporal shape
of the electric field. In particular, it does not predict the number of individual pulses. The control sequence shown
in Fig. 4.5(a) and (b) contains 12 individual pulses applied either sequentially or overlapping. Here, complete
enantio-selectivity is obtained by constructing an individual three-wave mixing cycle for every initial state. This
implies that population initially in the degenerate m-states first has to be separated in energy so that they can be
addressed individually. If the degeneracies become larger (for higher j), the pulse sequences become more and
more complicated, because more degenerate states have to be separated in energy and three-wave mixing cycles
for each of these states have to be constructed. Such pulse sequences may experimentally not be feasible or at least
technically very challenging to implement. This is true in particular for rotational subsystems with higher rotational
quantum numbers as in earlier microwave three-wave mixing experiments [96], where cycles with j = 1/2/2 or
j = 2/3/3 have been addressed because of their better frequency match and higher Boltzmann factors. For these
cases, circularly polarized fields B+ and B− (cf. (4.3.1) and (4.3.2)) resulting in simpler pulse sequences may be
better suited. This will be discussed in the next section.

4.4.3 Complete enantiomer-selective population transfer using synchronized three-wave
mixing

Another route to enantiomer-selective state transfer is provided by partitioning the relevant rotational manifold
into subsystems that form individual three-wave mixing cycles, as discussed in Sec. 4.3. Provided that the initial
state contains population only within the various three-level cycles, the lack of complete controllability does not
preclude enantiomer-selective population transfer: one needs to consider rotational systems | j, τ,m〉, | j + 1, τ′,m〉,
| j + 1, τ′′,m〉 and choose the transitions realizing the three-wave mixing such that the initial state resides in the
states with lower j. An advantage of this approach is that three different fields, if properly chosen, are sufficient to
simultaneously control the reachable states (as proved in Proposition 4.3.1).

As an experimentally relevant example, we consider the rotational subsystem made up of |1,−1,m〉, |2,−1,m〉,
and |2, 0,m〉 and construct a pulse sequence that achieves complete enantiomer-selective population transfer despite
m-degeneracy. This is proved to be possible in the Example 5. We assume that, initially, only the lowest rotational
levels, those with j = 1, are populated. From a physical point of view, this initial condition can be realized if all or
at least the upper two rotational levels are chosen in an excited vibrational level where the thermal population of
the higher rotational levels is negligible [82]. The initial state is then given in terms of the density matrix

(4.4.3) ρ(±)(0) =
1
3
(
|1,−1,−1〉〈1,−1,−1| + |1,−1, 0〉〈1,−1, 0| + |1,−1, 1〉〈1,−1, 1|

)
.

Applying a standard three-wave mixing pulse sequence with linearly polarized fields with orthogonal polarization
directions results at most in about 80% enantio-selectivity (data not shown). In contrast, the circularly polarized
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Figure 4.6: Full control of enantiomer-selective state transfer, based on synchronized three-wave mixing with
Eω1 (B+), Eω2 (B−), Eω3 (Bz). Panels (a), (b), and (c) depict the rotational dynamics for the initial states with
m = −1, m = 0, and m = 1, respectively, with the overall population in |1,−1,m〉, |2,−1,m〉, and |2, 0,m〉 shown
in the upper, middle, and lower sub-panels. The two enantiomers are denoted by solid blue and dashed red lines.
The envelope of the pulses is indicated by the orange (ω = ω1), pink (ω = ω2), and turquoise (ω = ω3) shapes.
Time is given in units of t0 = 1/B. Bottom: Sketch of the initial (t = 0) and final (t = T) states with gray circles
indicating both enantiomers in the same state, blue and red circles representing the two (separated) enantiomers.
The transitions induced by the three fields are indicated by the orange, pink, and turquoise lines with the transition
affecting the respective initial state highlighted. For carvone, the frequencies are ω1 = 3976.1 MHz, ω2 = 229.9
MHz and ω3 = 4206, 0 MHz.

fields discussed in Sec. 4.3 allow for a complete separation of the enantiomers. This can be seen in Fig. 4.6.
The three subsystems, which are isolated by applying left- and right-circularly polarized light are indicated in the
bottom panels of Fig. 4.6: The field with +-polarization (orange line) induces transitions between |1,−1,m〉 and
|2,−1,m+1〉, while the −-polarized field (pink line) drives transitions between |2,−1,m〉 and |2, 0,m− 1〉, and the
linearly z-polarized field (turquoise line) closes the cycles. For all the initially populated, degenerate m-states, the
population is thus trapped into a three-level subsystem and cannot spread over the whole manifold, as it would
happen when using three linearly polarized fields with orthogonal polarization directions.

The corresponding rotational dynamics is depicted in the upper panels of Fig. 4.6(a)–(c). The pulse sequence
that leads to complete enantio-selective excitation is essentially a three-wave mixing cycle: The first pulse creates a
50/50 coherence between the ground and first excited rotational level of each three-level system. The second pulse
transfers the population from the intermediate state to the highest state and the third, z-polarized pulse induces the
enantiomer-specific interference between the ground state and highest excited state. There is, however, an important
difference to the standard three-wave mixing cycles used so far — the pulses are chosen such that they synchronize
the three subsystems, allowing to reach a 50/50 coherence between the ground and first excited state for each of the
subsystems. As can be seen in Fig. 4.6, the Rabi frequencies of each subsystem are different, since they correspond
to different m-transitions. This exactly corresponds to the fact that the Clebsch-Gordon coefficients (which are the
coefficients cj,k,m in (3.4.1)) are different, and hence the matrix V in (4.3.6) is invertible. A 50/50 coherence for
all three subsystems occurs after three Rabi oscillations for the subsystem depicted in (a), 5 oscillations for (b),
and 7 oscillations for (c). The synchronized three-level cycles then lead to complete separation of the enantiomers
into energetically separated levels, by applying a sequence of only three pulses, cf. Fig. 4.6. When choosing the
pulse amplitude and duration, it is important to realize that the subsystems undergo either all an even or all an odd
number of Rabi oscillations, so that they accumulate the same phase. Otherwise, the interference effects induced
by the third pulse will cancel each other.

In the present example, synchronized three-wave mixing with circularly polarized pulses improves the enantio-
selectivity from 80% for standard three-wave mixing with linearly polarized pulses to almost 100%, assuming no
thermal population in the two upper levels.

Our excitation scheme can easily be extended to rotationalmanifoldswith larger j, since themanifolds can always
be broken up into isolated subsystems where three pulses are sufficient to energetically separate the enantiomers.
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Figure 4.7: Four (five) fields with frequencies ω1, ω2, and ω3 are sufficient to ensure (enantiomer-selective)
evolution-operator-controllability for any rotational subsystem consisting of the levels with quantum numbers
( j, τ), ( j + 1, τ′), and ( j + 1, τ′′). (a) The red and blue lines indicate the transitions induced by the interaction
Hamiltonians Eω1 (iB1) and Eω1 (iB2). The blue (red) lines alone represent the interaction Hamiltonians Eω1 (iB+)
(Eω1 (iB−)). The green and purple lines present Eω3 (iB3) (b) and Eω3 (iB2) (c). Each of these lines represents one
of the matrices Gτ,τ′

m,m′ .

The number of pulses and fields is thus independent of the number of degenerate states in the initial ensemble. The
duration of the first pulse may have to be longer (or its amplitude larger), since, for larger j, this pulse needs to
synchronize Rabi oscillations of more three-level cycles. However, this does not pose a fundamental difficulty.

4.5 Appendix: proof of Proposition 4.2.1
We write the control problem w.r.t. the asymmetric-top representation Ψ j

τ,m. Thanks to the fact that the coefficients
c j
k
(τ) in (3.3.3) do not depend on m, when one writes the control operators Bl w.r.t. the Ψ j

τ,m, the summation over
these coefficients only results in a common prefactor, which is not relevant for the generated Lie algebra, as it can be
factored out. Note further that the m-dependence of the control operators is solely determined by the m-dependence
in (3.4.1), (3.4.10), (3.4.11). This means that we do not need to compute explicitly the eigenvalues E j

τ , nor to
express the eigenfunctions Ψ j

τ,m of H as linear combination of symmetric-top eigenfunctions S j
k,m,p

(as we actually
did in the examples 4 and 5) in order to express the control problem in the asymmetric-top representation. This
fact is quite remarkable and relies on the algebraic structure of angular momentum theory. Let us explicitly show
this for the representation of iB3 (decoupled at frequency ω3) in the Ψ j

τ,m basis (the other operators are computed
analogously): we have

Eω3 (iB3) =
∑

m=−j,..., j

〈Ψ
j
τ,m, iB3Ψ

j+1
τ′′,m〉 |Ψ

j
τ,m〉〈Ψ

j+1
τ′′,m | + 〈Ψ

j+1
τ′′,m, iB3Ψ

j
τ,m〉 |Ψ

j+1
τ′′,m〉〈Ψ

j
τ,m |,
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where the operator |ψ〉〈φ| is the rank-one projector defined by |ψ〉〈φ|ϕ := 〈ϕ, ψ〉φ, for all ψ, φ, ϕ ∈ L2(SO(3)).
Computing the matrix elements

〈Ψ
j
τ,m,iB3Ψ

j+1
τ′′,m〉 =

〈 ∑
−j≤k≤ j

c j+1
k
(τ)D j

k,m
, iB3

∑
−j−1≤k≤ j+1

c j
k
(τ′′)D j+1

k,m

〉
= [( j + 1)2 − m2]1/2

×
∑
−j≤k≤ j

(
−ic j

k
(τ)c j+1

k−1(τ
′′)dj,−k(δ2 − iδ1) − ic j

k
(τ)c j+1

k
(τ′′)bj,kδ3 + ic j

k
(τ)c j+1

k+1(τ
′′)dj,k(δ2 + iδ1)

)
:= [( j + 1)2 − m2]1/2C j(τ, τ′′),

where we have used (3.4.1) and (3.4.11), and defined

bj,k :=
[( j + 1)2 − k2]1/2

( j + 1)[(2 j + 1)(2 j + 3)]1/2
, dj,k :=

[( j + k + 1)( j + k + 2)]1/2

2( j + 1)[(2 j + 1)(2 j + 3)]1/2
,

we see that C j(τ, τ′′) is a common factor that does not depend on m. Moreover, plugging the information that k
is even or odd only (cf. (3.3.3)), in the definition of C j(τ, τ′′), we find that either c j+1

k−1 = c j+1
k+1 = 0 or c j+1

k
= 0,

implying that C j(τ, τ′′) depends on δ3 or δ2 ± iδ1 only. Furthermore, when C j(τ, τ′′) depends on δ2 ± iδ1, using
the representation (3.3.2) (where there is the additional information that p = 0 or 1 only), one sees that C j(τ, τ′′)

actually depends on δ1 or δ2 only. In this sense, we need to choose eigenstates Ψ j
τ,m, Ψ

j+1
τ′,m, and Ψ

j+1
τ′′,m such

that the spectral gaps ω1, ω2, ω3 couple with all dipole components, say resp. δ1, δ2, δ3 (and not only with δ3, as
it may happen), but this assumption is always true, by possibly choosing a different τ. Summarizing, we have
C j(τ, τ′′) = −iδ3

∑
−j≤k≤ j c j

k
(τ)c j+1

k
(τ), and we remark that, as the dependence of the coefficients c j

k,τ
(β) := c j

k
(τ)

and c j+1
k,τ′′
(β) := c j+1

k
(τ′′) is analytic in the Wang asymmetry parameter b ∈ [−1, 0] (cf. (3.3.8)), the coefficients

C j(τ, τ′′) is also analytic in b and non-zero for a.e. b ∈ [−1, 0] as long as c j
k,τ
(b = 0) , 0 and c j+1

k,τ′′
(b = 0) , 0 and

thus
Eω3 (iB3) ∝ δ3

∑
m=−j,..., j

i[( j + 1)2 − m2]1/2 |Ψ
j
τ,m〉〈Ψ

j+1
τ′′,m | + i[( j + 1)2 − m2]1/2 |Ψ

j+1
τ′′,m〉〈Ψ

j
τ,m |.

With similar arguments, we can express all the control fields as proportional to the following operators:

Eω1 (iB1) = δ1

(√
( j + 1)(2 j + 1)(Gτ,τ′

−j,−j−1 + Gτ,τ′

j, j+1) +
√

j(2 j + 1)(Gτ,τ′

−j+1,−j + Gτ,τ′

j−1, j)

+ ... +
√

3(Gτ,τ′

j−1, j−2 + Gτ,τ′

−j+1,−j+2) + (G
τ,τ′

j, j−1 + Gτ,τ′

−j,−j+1)
)
,(4.5.1)

Eω1 (iB2) = δ1

(√
( j + 1)(2 j + 1)(−Fτ,τ

′

−j,−(j+1) + Fτ,τ
′

j, j+1) +
√

j(2 j + 1)(−Fτ,τ
′

−j+1,−j + Fτ,τ
′

j−1, j)

+ ... +
√

3(−Fτ,τ
′

j−1, j−2 + Fτ,τ
′

−j+1,−j+2) + (−Fτ,τ
′

j, j−1 + Fτ,τ
′

−j,−j+1)
)
,(4.5.2)

Eω3 (iB2) = δ3

(√
( j + 1)(2 j + 1)(−Gτ,τ′′

−j,−(j+1) + Gτ,τ′′

j, j+1) +
√

j(2 j + 1)(−Gτ,τ′′

−j+1,−j + Gτ,τ′′

j−1, j)

+ ... +
√

3(−Gτ,τ′′

j−1, j−2 + Gτ,τ′′

−j+1,−j+2) + (−Gτ,τ′′

j, j−1 + Gτ,τ′′

−j,−j+1)
)
,(4.5.3)

Eω3 (iB3) = δ3

(√
2 j + 1(Fτ,τ

′′

−j,−j + Fτ,τ
′′

j, j ) +
√

4 j(Fτ,τ
′′

−j+1,−j+1 + Fτ,τ
′′

j−1, j−1)

+ ... + ( j + 1)Fτ,τ
′′

0,0

)
.(4.5.4)

Labeling the three rotational levels by τ, τ′ and τ′′, we denote the matrices that describe the interaction between
the states Ψ j

τ,m and Ψ j+1
τ′,m′ as Gτ,τ′

m,m′ and Fτ,τ
′

m,m′ , and the interaction between the states Ψ
j
τ,m and Ψ j+1

τ′′,m′ as Gτ,τ′′

m,m′ and
Fτ,τ

′′

m,m′ . The colored lines in Fig. 4.7 indicate which of the rotational states are connected.
We denote

L := Lie
{
iH, Eω1 (iB1), Eω1 (iB2), Eω3 (iB2), Eω3 (iB3)

}
and we prove part (i) in several steps.

Step 1: Isolating the basis elements occurring in Eω1 (iB1) and Eω1 (iB2)

Recalling the action of the operator Wi (cf. (3.4.3)), we consider
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Eω1 (iB+) :=
1
2

(
Eω1 (iB1) +WiEω1 (iB2)

)
= δ1

(√
( j + 1)(2 j + 1)Gτ,τ′

j, j+1 +
√

j(2 j + 1)Gτ,τ′

j−1, j + ... +
√

3Gτ,τ′

−j+1,−j+2 + Gτ,τ′

−j,−j+1

)
(4.5.5)

and

Eω1 (iB−) :=
1
2

(
Eω1 (iB1) −WiEω1 (iB2

)
= δ1

(√
( j + 1)(2 j + 1)Gτ,τ′

−j,−(j+1) +
√

j(2 j + 1)Gτ,τ′

−j+1,−j + ... +
√

3Gτ,τ′

j−1, j−2 + Gτ,τ′

j, j−1

)
,(4.5.6)

Operators in Eqs. (4.5.5) and (4.5.6) contain only those matrices which correspond to the blue and red lines in
Fig. 4.7 (a). Using the abbreviations adn+1

A B = [A, adnAB] and ad0
AB = B, we find

ad2s
WiEω1 (iB+)

Eω1 (iB+) ∝
(√
( j + 1)(2 j + 1)

2s+1
Gτ,τ′

j, j+1 +
√

j(2 j + 1)
2s+1

Gτ,τ′

j−1, j + ... +
√

3
2s+1

Gτ,τ′

−j+1,−j+2 + Gτ,τ′

−j,−j+1

)
for s = 0, . . . , 2 j. We can thus write

©«

ad0
WiEω1 (iB+)

Eω1 (iB+)
ad2

WiEω1 (iB+)
Eω1 (iB+)

...

ad4j−2
WiEω1 (iB+)

Eω1 (iB+)

ad4j
WiEω1 (iB+)

Eω1 (iB+)

ª®®®®®®®®®¬
= V

©«

Gτ,τ′

j, j+1
Gτ,τ′

j−1, j
...

Gτ,τ′

−j+1,−j+2
Gτ,τ′

−j,−j+1

ª®®®®®®®®¬
(4.5.7)

with

(4.5.8) V =

©«

√
( j + 1)(2 j + 1)

√
j(2 j + 1) · · ·

√
3 1√

( j + 1)(2 j + 1)
3 √

j(2 j + 1)
3
· · ·

√
3

3
1√

( j + 1)(2 j + 1)
5 √

j(2 j + 1)
5 √

3
5

1
...√

( j + 1)(2 j + 1)
4j−1 √

j(2 j + 1)
4j−1 √

3
4j−1

1√
( j + 1)(2 j + 1)

4j+1 √
j(2 j + 1)

4j+1 √
3

4j+1
1

ª®®®®®®®®®®®¬
.

Since V is a Vandermonde matrix, its determinant is given by the product of the sum and the difference of every
pair of the coefficients in the first row. Noticing that those coefficients form a positive, strictly increasing sequence,
we see that they are all different. Thus V is invertible, and we find that

Gτ,τ′

j, j+1,G
τ,τ′

j−1, j, ...,G
τ,τ′

−j+1,−j+2,G
τ,τ′

−j,−j+1 ∈ L ,
(4.5.9)

Replacing Eω1 (iB+) by Eω1 (iB−) in Eq. (4.5.7), we find analogously that

Gτ,τ′

−j,−(j+1),G
τ,τ′

−j+1,−j, ...,G
τ,τ′

j−1, j−2,G
τ,τ′

j, j−1 ∈ L.
(4.5.10)

We have thus shown that each of the basis elements indicated by the blue and red lines in Fig. 4.7 is an element of
L.

Step 2: Isolating the basis elements occurring in Eω3 (iB3)

We now reproduce the previous argument for the operator Eω3 (iB3). Replacing Eω1 (iB+) by Eω3 (iB3) in Eq. (4.5.7),
and noticing that in this case the sequence of coefficients in the first row of the corresponding matrix V is positive
and strictly decreasing, we find that

Fτ,τ
′′

−j,−j + Fτ,τ
′′

j, j , Fτ,τ
′′

−j+1,−j+1 + Fτ,τ
′′

j−1, j−1,

..., Fτ,τ
′′

0,0 ∈ L,(4.5.11)
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J,�

J+1,�'

J+1,�'' ...

...

...

G�,�''M,MG�,�''-M,-M G�,�'M,M+1

-M M M+1

G�',�''M+1,M

Figure 4.8: Illustration of the double commutator Eq. (4.5.14): The commutator between Gτ,τ′′

−M,−M +Gτ,τ′′

M,M (green
lines) and Gτ,τ′

M,M+1 (blue line) results in the basis element indicated by the gray line. The commutator between the
basis elements represented by the gray and blue lines then results in Gτ,τ′′

M,M (right green line) alone.

J,�

J+1,�'

J+1,�''

-J-1 -J -J+1 -J -J+1 -J+2

...

J-1    JM=

Figure 4.9: Illustration of the double commutator between Eω3 (iB2) and the basis elements (4.5.14), depicted
as green lines: The double commutator between Eω3 (iB2) and Gτ,τ′′

−j,−j results in an operator, which contains the
three purple lines shown in the left panel. The four purple lines in the next panel depict the result of the double
commutator between Eω3 (iB2) and Gτ,τ′′

−j+1,−j+1, and so on.

and commuting with iH also that

Gτ,τ′′

−j,−j + Gτ,τ′′

j, j ,G
τ,τ′′

−j+1,−j+1 + Gτ,τ′′

j−1, j−1,

...,Gτ,τ′′

0,0 ∈ L.(4.5.12)

To separate the sum over m from that over −m in (4.5.12), we take double commutators with matrices the of
Eq. (4.5.9), that is,

(4.5.13)
[ [

Gτ,τ′′

−m,−m + Gτ,τ′′

m,m,G
τ,τ′

m,m+1

]
,Gτ,τ′

m,m+1

]
= −Gτ,τ′′

m,m ,

which is also illustrated in Fig. 4.8. Thus

Gτ,τ′′

−j,−j, ...,G
τ,τ′′

j, j , ∈ L,(4.5.14)

i.e., all basis elements indicated by the green lines in Fig. 4.7(b) are elements of L. Note, that instead of calculating
the double commutators as in Eq. (4.5.13), one could also graphically deduce the basis elements: The double
commutator between a linear combination of basis elements (indicated by the green lines in Fig. 4.8), and a single
basis element (indicated by the blue line) contains only those basis elements of the linear combination, which have
a common vertex with the single basis element. We will extensively use this technique in the following steps of the
proof.

Step 3: Isolating the basis elements occurring in Eω3 (iB2)

Next, we isolate the basis elements that occur in interactionHamiltonian Eω3 (iB2), i.e., the purple lines in Fig. 4.7(c),
bymeans of a graph proof. Taking double commutators of Eω3 (iB2)with the basis elements obtained in Eq. (4.5.12),
we can isolate 2 j + 1 groups of interactions within Eω3 (iB2), where each group is centered around the transition

( j, τ,m) ↔ ( j + 1, τ′′,m), m = − j, . . . , j .
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J,�

J+1,�'

J+1,�''

Figure 4.10: A linear combination of the basis elements depicted by the (light and dark) purple lines is an operator
∈ L. The basis elements depicted by the dark purple lines in (a), (b), and (c) can be isolated by calculating the
double commutator with the basis element depicted by the blue (a, c) and red (b) lines.

This is illustrated in Fig. (4.9). We find for all m , ± j,

[ [
Eω3 (iB2),Gτ,τ′′

m,m

]
,Gτ,τ′′

m,m

]
= −

√
1
2
( j + m + 1)( j + m)Gτ,τ′′

m−1,m −

√
1
2
( j + m + 2)( j + m + 1)Gτ,τ′′

m,m+1

+

√
1
2
( j − m + 1)( j − m)Gτ,τ′′

m+1,m +

√
1
2
( j − m + 2)( j − m + 1)Gτ,τ′′

m,m−1 ,

(4.5.15)

with the resulting four matrices indicated by the purple lines in the second panel from the left in Fig. 4.9. If m = − j,

(4.5.16)
[ [
Eω3 (iB2),G

τ,τ′′

−j,−j

]
,Gτ,τ′′

−j,−j

]
=

√
( j + 1)(2 j + 1)Gτ,τ′′

−j,−j−1 +
√

j(2 j + 1)Gτ,τ′′

−j+1,−j − Gτ,τ′′

−j,−j+1 ,

where three generalized Pauli matrices are shown as purple lines in the left panel of Fig. 4.9. Finally, if m = j,

(4.5.17)
[ [
Eω3 (iB2),G

τ,τ′′

j, j

]
,Gτ,τ′′

j, j

]
= −

√
( j + 1)(2 j + 1)Gτ,τ′′

j, j+1 −
√

j(2 j + 1)Gτ,τ′′

j−1, j + Gτ,τ′′

j, j−1 ,

with the three matrices shown in the right panel of Fig. 4.9.
Next, we show by induction on m that each of the purple lines in Fig. 4.9 can be isolated. As basis for the

inductive argument, we first show that the transitions around ( j, τ,− j) ↔ ( j + 1, τ′′,− j) and ( j, τ,− j + 1) ↔
( j + 1, τ′′,− j + 1), indicated by the purple lines in the left and second-left panel of Fig. 4.9, can be isolated. We
then carry out the inductive step, that is, we prove that, if we can isolate each of the four basis elements around
the transition ( j, τ,m) ↔ ( j + 1, τ′′,m), then we can do the same for the basis elements around the transition
( j, τ,m + 1) ↔ ( j, τ′′,m + 1) for all m < j − 1.

Step 4: Basis of induction

Since Gτ,τ′

−j+1,−j+2 ∈ L, cf. Eq. (4.5.9), we start by computing the double commutator of (4.5.16) with Gτ,τ′

−j+1,−j+2.
As indicated in Fig. 4.10(a), this operation yields

(4.5.18) Gτ,τ′′

−j+1,−j ∈ L .

Moreover, according to Eq. (4.5.10), we can compute the double commutators of (4.5.15) for M = − j + 1 with
Gτ,τ′

−j,−j−1. The action of this double commutator is depicted in Fig. 4.10(b) and results in

(4.5.19) Gτ,τ′′

−j,−j+1 ∈ L .

Taking the double commutator of (4.5.15) for M = − j + 1 with Gτ,τ′

−j+2,−j+3 we find that

(4.5.20) Gτ,τ′′

−j+2,−j+1 ∈ L ,

which is illustrated in Fig. 4.10(c). Now, subtracting a suitable linear combination of Eqs. (4.5.18), (4.5.19), and
(4.5.20) from (4.5.15) for m = − j + 1 results in

(4.5.21) Gτ,τ′′

−j+1,−j+2 ∈ L .
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Figure 4.11: The dark purple lines are part of the set of basis elements centered around the ( j, τ, M) ↔ ( j+1, τ′′, M)-
transition as well as of the set of basis elements centered around the ( j, τ, M + 1) ↔ ( j + 1, τ′′, M + 1)-transition.

We have thus shown that the generalized Pauli matrices corresponding to the four purple lines in the second-left
panel of Fig. 4.9 can be isolated. Subtracting a suitable linear combination of Eqs. (4.5.18) and (4.5.19) from
(4.5.16), we find that

(4.5.22) Gτ,τ′′

−j,−j−1 ∈ L .

Thus, also the three generalized Pauli matrices indicated by the purple lines in the first panel of Fig. 4.9 can be
isolated. This concludes the basis of the induction.

Step 5: Inductive step

We now prove the inductive step, that is, if we can isolate each of the basis elements presented by the four lines
around the transition ( j, τ,m) ↔ ( j+1, τ′′,m), then we can do the samewith the basis elements around the transition
( j, τ,m + 1) ↔ ( j + 1, τ′′,m + 1) for all m < j − 1. Indeed, inspection of Fig. 4.11 reveals that the transitions
( j, τ,m) ↔ ( j + 1, τ′′,m + 1) and ( j, τ,m + 1) ↔ ( j + 1, τ′′,m) are common for both sets of transitions. Thus the
inductive hypothesis implies that we are left to show that the sum of basis elements√

1
2
( j + m + 3)( j + m + 2)Gτ,τ′′

m+1,m+2

+

√
1
2
( j − m)( j − m − 1)Gτ,τ′′

m+2,m+1 ∈ L

can be separated. This can be done by taking double commutators with Gτ,τ′

m+2,m+3 ∈ L and Gτ,τ′

m+1,m ∈ L, as
illustrated in Fig. 4.12. Thus, it remains to be shown that the basis elements depicted by purple lines in the right
panel in Fig. 4.10 can be isolated. Since it has already been shown that the basis elements corresponding to the
transitions ( j, τ, j − 1) ↔ ( j + 1, τ′′, j) and ( j, τ, j) ↔ ( j + 1, τ′′, j − 1) can be isolated, the remaining basis element
corresponding to the transition ( j, τ, j) ↔ ( j + 1, τ′′, j + 1) can be isolated by subtracting these two elements. We
have thus demonstrated that all generalized Pauli matrices appearing in Eω3 (iB2), i.e. all basis elements depicted
by purple lines in Fig. 4.7(c) are in L. From here one easily concludes the proof of part (i).

Proof of part (ii)
After showing that each single enantiomer is controllable with a set of four fields, we now add

Eω2 (iB
χ
l
) =

(
Eω2 (iBl) 0

0 −Eω2 (iBl)

)
,(4.5.23)

where l ∈ {1, 2, 3}, assuming that the sign inversion is in the dipole component δ(+)2 = −δ
(−)

2 . We then apply Lemma
3.2.4: here K = 2 is the number of enantiomers, which we denote by (+) and (−), the two Hilbert spaces are C6j+7,
m = 5 is the number of interaction Hamiltonians, and

H(+)0 = H(−)0 = H , H(+)1 = H(−)1 = Eω1 (B1),

H(+)2 = H(−)2 = Eω1 (B2) , H(+)3 = H(−)3 = Eω3 (B2) ,

H(+)4 = H(−)4 = Eω3 (B3) , H(+)5 = −H(−)5 = Eω2 (Bl) .
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Figure 4.12: A linear superposition of the basis elements depicted by the (light and dark) purple lines is an operator
∈ L. The basis elements depicted by the dark purple lines in both panels can be isolated by calculating the double
commutator with the basis element depicted by the blue and red lines.

We will prove enantiomer-selective controllability by showing that Lchiral contains operators of the form A⊕ 0,
with A , 0. This means that the control can induce a nontrivial unitary transformation acting on the first enantiomer
while inducing the identity on the second one. Lemma 3.2.4 guarantees that this is enough to establish simultaneous
evolution operator-controllability. Indeed, if an isomorphism f between su(6 j + 7) and itself were to match the
condition of Lemma 3.2.4 then it would necessarily verify f (A) = 0, which is impossible because A , 0 and any
isomorphism is injective.

We denote
Lχ := Lie

{
iHχ, Eω1 (iB

χ
1 ), Eω1 (iB

χ
2 ), Eω3 (iB

χ
2 ), Eω3 (iB

χ
3 ), Eω2 (B

χ
l
)
}
,

and we are left to prove that Lχ contains operators of the form A ⊕ 0, with A , 0. So far we proved that

Lie{iHχ, Eω1 (iB
χ
1 ), Eω1 (iB

χ
2 ), Eω3 (iB

χ
2 ), Eω3 (iB

χ
3 )} =

{ (
A 0
0 A

)
| A ∈ su(6 j + 7)

}
,

and in particular that (
Eω2 (iBl) 0

0 Eω2 (iBl)

)
∈ Lχ .

Thus, (
Eω2 (iBl) 0

0 −Eω2 (iBl)

)
+

(
Eω2 (iBl) 0

0 Eω2 (iBl)

)
=

(
2Eω2 (iBl) 0

0 0

)
∈ Lχ,

which concludes the proof.
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Chapter 5

Non-self-adjointness of the curvature
Laplacian on 2D almost-Riemannian
manifolds

In this Chapter we study the self-adjointness of a geometric perturbation of the Laplace-Beltrami operator on
two-dimensional almost-Riemannian structures (ARSs for brevity) of step 2.

ARSs can be seen as generalizations of the Grushin plane. They are generalized Riemannian structures for
which the vectors of a local orthonormal frame can become parallel. Under the 2-step assumption the singular set
Z, where the structure is not Riemannian, is a 1D embedded submanifold. While approaching the singular set, all
Riemannian quantities diverge. A remarkable property of these structures is that the geodesics can cross the singu-
lar set without singularities, but the heat and the solution of the Schrödinger equation (with the Laplace-Beltrami
operator ∆) cannot. This is due to the fact that (under a natural compactness hypothesis), the Laplace-Beltrami
operator is essentially self-adjoint on a connected component of the manifold without the singular set (as recalled in
the Introduction, Theorem 1.6.2, proved in [30]). In the literature such phenomenon is called quantum confinement.

Here, we study the self-adjointness of the curvature Laplacian, namely −∆ + cK , for c > 0, where K is the
Gaussian curvature, which originates in coordinate-free quantization procedures (as for instance in path-integral or
covariant Weyl quantization). The Chapter is devoted to the proof of Theorem 5.1.1, which states that there is no
quantum confinement for this type of operators.

It is organized as follows: in Section 5.1 we recall the main original results of the Chapter, already described in
the Introduction. In Section 5.2 we recall some key definitions and results for 2-ARS. In Section 5.3 we introduce
the basic concepts to study the self-adjointness of symmetric operators and give a proof of an original results on
the quantum confinement of curvature Laplacians on α-Grushin surfaces, α ∈ R (see Proposition 5.1.2). The proof
of Theorem 5.1.1 spans Sections 5.4 and 5.5. A local version around a singular region is studied in Section 5.4,
where a description of the closure and adjoint curvature Laplacian operators is given. The main tools needed for
our proof are a characterization of the closure of inverse square potential perturbations of the Laplace-Beltrami on
2D-ARSs recently found in [20], and Sturm-Liouville theory applied here in the context of 2D operators. We then
extend the results on the whole manifold in Section 5.5.

The results of this chapter are in the paper [21].

5.1 Main results
The main original result of the Chapter reads as follows:

Theorem 5.1.1. Let M be a compact oriented 2-dimensional manifold equipped with a genuine 2-step 2-ARS. Let
Ω be a connected component of M \ Z , where Z is the singular set. Let g be the Riemannian metric induced
by the 2-ARS on Ω, ω be the corresponding Riemannian area, K the corresponding Gaussian curvature and
∆ = divω ◦ gradg the Laplace-Beltrami operator. Let c ≥ 0. The curvature Laplacian −∆ + cK with domain
C∞0 (Ω), is essentially self-adjoint on L2(Ω, ω) if and only if c=0. Moreover, if c > 0, the curvature Laplacian has
infinite deficiency indices.

To illustrate that results are in general different if one removes the 2-step assumption, we also study the self-
adjoitness of the curvature Laplacian on the α-Grushin cylinder, which for α ∈ N in particular is a (α + 1)-step
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ARS:

Proposition 5.1.2. Fix α ∈ R. On R× S1 consider the generalized Riemannian structure for which an orthonormal
frame is given by

X1(x, y) =
∂

∂x
, X (α)2 (x, y) = xα

∂

∂y
, here x ∈ R, y ∈ S1.

Let c ≥ 0. On R+ × S1 the structure is Riemannian with Riemannian area 1
|x |α dx dy. Let −∆α + cKα be the

curvature Laplacian with domain C∞0 (R
+ × S1) acting on L2(R+ × S1, 1

|x |α dx dy). Denote by

αc,± =
(−2c + 1) ± 2

√
(c − 2 +

√
3)(c − 2 −

√
3)

4c − 1
.

• If 0 ≤ c < 1/4, −∆α + cKα is essentially self-adjoint if and only if α ≥ αc,+ or α ≤ αc,−;
• if c = 1/4, −∆α + cKα is essentially self-adjoint if and only if α ≥ 3;

• if 1/4 < c ≤ 2 −
√

3, −∆α + cKα is essentially self-adjoint if and only if αc,− ≤ α ≤ αc,+;

• if 2 −
√

3 < c < 2 +
√

3, −∆α + cKα is not essentially self-adjoint ∀α ∈ R;

• if c ≥ 2 +
√

3, −∆α + cKα is essentially self-adjoint if and only if αc,− ≤ α ≤ αc,+;

The proof of Proposition 5.1.2, which is instructive since it is simple and presents already some crucial
ingredients necessary for the general theory, is given in Section 5.3.

5.2 2D almost-Riemannian structures
Definition 5.2.1. Let M be a 2D connected smooth manifold. A 2-dimensional almost-Riemannian Structure
(2-ARS) on M is a pair (U, f ) as follows:

1. U is an Euclidean bundle over M of rank 2. We denote each fiber by Uq , the scalar product on Uq by (· | ·)q
and the norm of u ∈ Uq as |u| =

√
(u | u)q .

2. f : U → T M is a smooth map that is a morphism of vector bundles i.e., f (Uq) ⊆ TqM and f is linear on
fibers.

3. the distribution D = { f (σ) | σ : M → U smooth section}, is a family of vector fields satisfying the
Hörmander condition, i.e., defining D1 := D, Di+1 := Di + [D1,Di], for i ≥ 1, there exists s ∈ N such that
Ds(q) = TqM .

A particular case of 2-ARSs is given by Riemannian surfaces. In this case U = T M and f is the identity.
Let us recall few key definitions and facts. We refer to [4] for more details.

• Let Dp = {X(p) | X ∈ D} = f (Up) ⊆ TpM . The set of points in M such that dim(Dp) < 2 is called
singular set and it is denoted by Z . SinceD satisfies the Hörmander condition, the subspaceDp is nontrivial
for every p and Z coincides with the set of points p where D is one-dimensional. The 2-ARS is said to be
genuine if Z , ∅. The 2-ARS is said to be 2-step if for every p ∈ M we have Dp + [D,D]p = TpM .

• The (almost-Riemannian) norm of a vector v ∈ Dp is

‖v‖ := min{|u|, u ∈ Up s.t. v = f (p, u)}.

• An admissible curve is a Lipschitz curve γ : [0,T] → M such that there exists a measurable and essentially
bounded function u : [0,T] 3 t 7→ u(t) ∈ Uγ(t), called control function, such that Ûγ(t) = f (γ(t), u(t)), for a.e.
t ∈ [0,T]. Notice there may be more than one control corresponding to the same admissible curve.

• If γ is admissible then t → ‖ Ûγ(t)‖ is measurable. The (almost-Riemannian) length of an admissible curve
γ : [0,T] → M is

`(γ) :=
∫ T

0
‖ Ûγ(t)‖dt.
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• The (almost-Riemannian) distance between two points p0, p1 ∈ M is

d(p0, p1) = inf{`(γ) | γ : [0,T] → M admissible, γ(0) = p0, γ(T) = p1}.

Thanks to the bracket-generating condition, the Chow-Rashevskii theorem guarantees that (M, d) is a metric
space and that the topology induced by (M, d) is equivalent to the manifold topology.

• Given a local trivializationΩ×R2 of U, an orthonormal frame for the 2-ARS onΩ is the pair of vector fields
{F1, F2} := { f ◦ σ1, f ◦ σ2} where {σ1, σ2} is an orthonormal frame for (· | ·)q on Ω × R2 of U. On a local
trivialization the map f can be written as f (p, u) = u1F1(p) + u2F2(p). When this can be done globally (i.e.,
when U is the trivial bundle) we say that the 2-ARS is free.
Notice that orthonormal frames in the sense above are orthonormal frames in the Riemannian sense out of
the singular set.

• Locally, for a 2-ARS, it is always possible to find a system of coordinates and an orthonormal frame that in
these coordinates has the form

F1(x, y) =
(

1
0

)
, F2(x, y) =

(
0

f(x, y)

)
,(5.2.1)

where f : Ω → R is a smooth function. In these coordinates we have that Z = {(x, y) ∈ Ω | f(x, y) = 0}.
Using this orthonormal frame one immediately gets:

Proposition 5.2.2. The 2-ARS is 2-step in Ω if and only if for every (x, y) ∈ Ω such that f(x, y) = 0, we have
∂xf(x, y) , 0.

Moreover, the implicit function theorem applied to the function f directly implies:

Proposition 5.2.3. If the 2-ARS is genuine and 2-step then Z is a closed embedded one dimensional
submanifold.

In particular if Z is compact, each connected component of Z is diffeomorphic to S1.

• Out of the singular set Z , the structure is Riemannian and the Riemannian metric, the Riemannian area,
the Riemannian curvature, and the Laplace-Beltrami operator are easily expressed in the orthonormal frame
given by (5.2.1):

g(x,y) =

(
1 0
0 1

f(x,y)2

)
,(5.2.2)

ω(x,y) =
1

|f(x, y)|
dx dy,(5.2.3)

K(x, y) =
f(x, y)∂2

x f(x, y) − 2 (∂xf(x, y))2

f(x, y)2
,(5.2.4)

∆ = ∂2
x + f

2∂2
y −

∂xf

f
∂x + f(∂yf)∂y .(5.2.5)

• To prove the main results of this paper, the following normal forms are going to be important.

Proposition 5.2.4 ([6]). Consider a 2-step 2-ARS. For every p ∈ M there exist a neighborhood U of p, a
system of coordinates in U, and an orthonormal frame {X1, X2} for the ARS on U, such that p = (0, 0) and
{X1, X2} has one of the following forms:

F1. X1(x, y) =
∂

∂x
, X2(x, y) = eφ(x,y)

∂

∂y
,

F2. X1(x, y) =
∂

∂x
, X2(x, y) = xeφ(x,y)

∂

∂y
,

where φ is a smooth function such that φ(0, y) = 0.
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Apoint p ∈ M is said to be aRiemannian point ifDp is two-dimensional, and hence a local description around
p is given by F1. A point p such that Dp is one-dimensional, and thus Dp + [D,D]p is two-dimensional, is
called a Grushin point and a local description around p is given by F2.
When M is compact orientable, each connected component of Z is diffeomorphic to S1 and admits a tubular
neighborhood diffeomorphic to R × S1. In this case the normal form F2 can be extended to the whole
neighborhood.

Proposition 5.2.5 ([30]). Consider a 2-step 2-ARS on a compact orientable manifold. Let W be a connected
component of Z . Then there exist a tubular neighborhood U of W diffeomorphic to R × S1, a system of
coordinates in U, and an orthonormal frame {X1, X2} of the 2-ARS on U such that W = {(0, y), y ∈ S1} and
{X1, X2} has the form

(5.2.6) X1(x, y) =
∂

∂x
, X2(x, y) = xeφ(x,y)

∂

∂y
.

5.3 Self-adjointness of operators
Let A be a linear operator on a separable Hilbert space H , 〈·, ·〉H . The linear subspace of H where the action of
A is well-defined is called the domain of A, denoted by D(A). We shall always assume that D(A) is dense in H .
Following [100], we recall several definitions and properties of linear operators:

• A is said to be symmetric if 〈Au, v〉H = 〈u, Av〉H for all u, v ∈ D(A).

• A is said to be closed if D(A) with the norm ‖ · ‖A := ‖ · ‖H + ‖A · ‖H is complete.

• A linear operator B, D(B) such that D(A) ⊂ D(B) and Bu = Au for all u ∈ D(A) is called an extension of
A. In this case we write A ⊂ B.

• If A is symmetric and densely defined, there exists a minimal closed symmetric extension A of A, which is
said to be the closure of A. We describe this construction: take any sequence (un)n ⊂ D(A)which converges
to a limit u ∈ H , and for which the sequence (Aun)n converges to a limit w ∈ H . Then, by symmetry of A,
we have that

(5.3.1) 〈w, v〉H = lim
n→∞
〈Aun, v〉H = lim

n→∞
〈un, Av〉H = 〈u, Av〉H, ∀v ∈ D(A).

Since D(A) is dense in H , w is uniquely determined by u. The closure of A is defined by setting Au = w,
and the domain D(A) is the closure of D(A) with respect to the norm ‖ · ‖A. One can easily see that A is
closed, symmetric, and any closed extension of A is an extension of A as well.

• Given a densely defined linear operator A, the domain D(A∗) of the adjoint operator A∗ is the set of all
v ∈ H such that there exists w ∈ H with 〈Au, v〉H = 〈u,w〉H for all u ∈ D(A). The adjoint of A is defined
by setting A∗v = w.

• A is said to be self-adjoint if A∗ = A, that is, A is symmetric and D(A∗) = D(A).

• A is said to be essentially self-adjoint if its closure is self-adjoint.

• If B is a closed symmetric extension of A, then A ⊂ A ⊂ B ⊂ A∗.

• If a densely defined operator B is such that D(A) ⊂ D(B) and there exist a, b ≥ 0 such that

(5.3.2) ‖Bu‖ ≤ a‖Au‖ + b‖u‖, ∀u ∈ D(A),

then B is said to be small with respect to A. The infimum of the set of a ≥ 0 such that (5.3.2) holds is called
the A-bound of B. If a can be chose arbitrarily small, B is said to be infinitesimally small w.r.t A.

We will need the following classical result in perturbation theory:

Proposition 5.3.1 (Kato-Rellich’s Theorem). Let A, B be two densely defined operators and assume that B is small
with respect to A. Then D(A) ⊂ D(A + B). If moreover a < 1 in (5.3.2), then D(A) = D(A + B).
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To study the self-adjointness and more in general describe the extensions of a symmetric operator A, one has
the fundamental Von Neumann decomposition ([100, Chapter X])

(5.3.3) D(A∗) = D(A) ⊕A ker(A∗ + i) ⊕A ker(A∗ − i),

where the sum is orthogonal with respect to the scalar product 〈·, ·〉A = 〈·, ·〉H + 〈A∗·, A∗·〉H . As a first direct
consequence of (5.3.3), one has the fundamental spectral criterion for self-adjointness:

Proposition 5.3.2. Let A, D(A), be a symmetric operator, densely defined on the Hilbert spaceH . The following
are equivalent:

(a) A is essentially self-adjoint;

(b) Ran(A ± i) is dense inH ;

(c) ker(A∗ ± i) = {0}.

• The dimensions of the vector spaces ker(A∗ + i) and ker(A∗ − i) are called deficiency indices of A.

Always using (5.3.3), one can deduce that A admits self-adjoint extensions if and only if its deficiency indices are
equal ([100, Corollary to Theorem X.2]).

Another immediate consequence of (5.3.3) is the following fact concerning 1D operators: let A be a 1D Sturm-
Liouville operator − d2

dx2 + V(x), where V is a continuous real function on R+, acting on L2(R+, dx) with domain
C∞0 (R

+) (for a general introduction to 1D Sturm-Liouville operators, see e.g. [102, Chapter 15]). Then, since the
eigenvalue equation

−u′′(x) + V(x)u(x) = ±i u(x)

has always two linearly independent solutions, the quotient D(A∗)/D(A) has at most dimension four. Moreover,
let us recall the limit point-limit circle Weyl’s Theorem (see, e.g, [100, Appendix to Chapter X.1]) which says that
the self-adjointness of a 1D Sturm-Liouville operator can be deduced by regarding the solutions to the ODE

(5.3.4) − u′′(x) + V(x)u(x) = 0.

• If all solutions to (5.3.4) are square-integrable near 0 (respectively∞), then V is said to be in the limit circle
case at 0 (resp. ∞). If V is not in the limit circle case at 0 (resp. ∞), it is said to be in the limit point case at
0 (resp. ∞).

Proposition 5.3.3 (Weyl’s Theorem). The operator − d2

dx2 + V(x) with domain C∞0 (R
+) has deficiency indices

• (2, 2) if V is in the limit circle case at both 0 and∞;

• (1, 1) if V is in the limit circle case at one end point and in the limit point at the other;

• (0, 0) if V is in the limit point case at both 0 and∞.

In particular, − d2

dx2 +V(x) is essentially self-adjoint on L2(R+, dx) if and only if V is in the limit point case at both
0 and∞.

Some useful criteria to determine whether a potential V is in the limit point or limit circle case (it is also said to be
quantum-mechanically complete or incomplete, respectively) at 0 and∞ are the following:

Proposition 5.3.4. Let V ∈ C1(R+) be real and bounded above by a constant E on [1,∞). Suppose that∫ ∞
1

1√
E−V (x)

dx = ∞ and V ′/|V |3/2 is bounded near∞. Then V is in the limit point case at∞.

Proposition 5.3.5. Let V ∈ C0(R+) be real and positive near 0. If V(x) ≥ 3
4x2 near 0 then V is in the limit point

case at 0. If for some ε > 0, V(x) ≤ ( 34 − ε)
1
x2 near 0, then V is in the limit circle case at 0.

Proposition 5.3.6. Let V ∈ C0(R+) be real, and suppose that it decreases as x ↓ 0. Then V is in the limit circle
case at 0.

Weyl’s Theorem and these criteria are, respectively, [100, Theorem X.7, Corollary to Theorem X.8, Theorem
X.10 and Problem X.7 ].

Here we give the proof of Proposition 5.1.2, which makes use of the limit point-limit circle argument.
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Proof. of Proposition 5.1.2 The Laplace-Beltrami operator (with domain C∞0 (R
+ × S1)) and the curvature asso-

ciated with the orthonormal frame X1, X (α)2 are given by

∆α =
∂2

∂x2 + x2α ∂2

∂y2 −
α

x
∂

∂x
, Kα = −

α(α + 1)
x2 .

We perform a unitary transformation

Uα : L2
(
R+ × S1,

1
|x |α

dx dy
)
→ L2(R+ × S1, dx dy), ψ 7→ |x |−α/2ψ,

which gives the operator

Lα,c := Uα(−∆α + cKα)U−1
α = −

∂2

∂x2 − x2α ∂2

∂y2 +
(1 − 4c)α2 + (2 − 4c)α

4x2 .

Via Fourier transform with respect to the variable y ∈ S1, one considers the direct sum operator

L̃α,c := ⊕k∈Z(Lα,c)k, (Lα,c)k := −
∂2

∂x2 + x2αk2 +
(1 − 4c)α2 + (2 − 4c)α

4x2 ,

acting on the Hilbert space `2(L2(R+)), with domain D(L̃α,c) = {( fk)k∈Z ∈ `2(L2(R+)) | fk ∈ D((Lα,c)k) ∀k ∈

Z, fk = 0 for almost every k}, whereD
(
(Lα,c)k

)
= C∞0 (R

+) for all k. Moreover, as a general fact concerning direct

sum operators, L̃α,c is essentially self-adjoint if and only if (Lα,c)k is so for all k ([34, Proposition 2.3]). Let us thus
study the essential self-adjointness of (Lα,c)0: it is a Sturm-Liouville operator of the form − d2

dx2 + Vα,c(x), where

(5.3.5) Vα,c(x) =
(1 − 4c)α2 + (2 − 4c)α

4x2 =:
k(α, c)

x2 .

The potential Vα,c is quantum-mechanically complete at infinity, for all (α, c) ∈ R × [0,∞) (as one can check by
applying Proposition 5.3.4). So, applying Propositions 5.3.5 and 5.3.6, we can conclude that (Lα,c)0 is essentially
self-adjoint if and only if Vα,c(x) ≥ 3

4x2 near zero, since Vα,c(x) = k(α, c)/x2 and when k(α, c) < 0 then Vα,c
decreases for x ↓ 0. By using the explicit formula (5.3.5) for Vα,c , we obtain k(α, c) ≥ 3/4 which yields the values
of (α, c) given in the statement. For what we said before, when (Lα,c)0 is not essentially self-adjoint, neither is so
L̃α,c . Finally, when (Lα,c)0 is essentially self-adjoint, then

x2αk2 +
(1 − 4c)α2 + (2 − 4c)α

4x2 ≥
3

4x2 ,

so (Lα,c)k is essentially self-adjoint too, for all k, and hence L̃α,c is so. �

Remark 5.3.7. As a by-product of the proof of Proposition 5.1.2 we obtain that for the Grushin cylinder (α = 1) with
c > 0 all Fourier components of −∆1+cK1 are not essentially self-adjoint, due to the inequality x2k2+ ( 34 −2c) 1

x2 <
3

4x2 which holds near zero for all k ∈ Z. Hence −∆1 + cK1 has infinite deficiency indices, for any c > 0. Theorem
5.1.1 extends this result to any two-dimensional almost Riemannian manifold of step 2 (under some natural
topological assumptions).

However, from this proof we can also point out that this is not always the case for the α-Grushin cylinder, as
for instance in the case of a flat cone (α = −1) with c ≥ 0 (note that this is not an ARS). In that case, the inequality
(k2 − 1

4 )
1
x2 ≥

3
4x2 implies that the k-th’s Fourier components of −∆−1 + cK−1 are essentially self-adjoint for all

k , 0, even if (−∆−1 + cK−1)0 is not. This means that −∆−1 + cK−1 has deficiency indices equal to 1, for all c ≥ 0.

We conclude this Section by considering a Riemannian manifold (M, g) without boundary, with associated
Riemannian volume formω, and Laplace-Beltrami operator ∆ = divω ◦gradg acting on the Hilbert space L2(M, ω),
with domain D(∆) = C∞0 (M). Green’s identity implies

(i)
∫
M

u ∆v dω =
∫
M
∆u v dω, for all u, v ∈ C∞0 (M), i.e., ∆ is a symmetric operator.

(ii) D(∆∗) = {u ∈ L2(M, ω) | ∆u ∈ L2(M, ω) in the sense of distributions}.

Letting F be a real-valued continuous function locally L2(M, ω) seen as a multiplicative operator with domain
C∞0 (M), (i) and (ii) still hold true for the operator ∆ + F instead of ∆.

Remark 5.3.8. Being ∆+ F a real operator (that is, it commutes with complex conjugation), its deficiency indices
are equal ([100, Theorem X.3]) and thus it always admits self-adjoint extensions.
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5.4 Grushin zone
We focus now our attention around a Grushin point. We thus define the Riemannian manifold Ω = {(x, y) ∈
R × S1 | x , 0} with metric g = diag(1, x−2e−2φ(x,y)), where φ is a smooth function which is constant for large
|x | . The smoothness of φ is guaranteed by Proposition 5.2.4, and even if it is only defined locally, we extend
it constantly in the coordinates (x, y), since what matters is the analysis close to x = 0. Note that X1, X2 given
by Proposition 5.2.4 (F2) is an orthonormal frame for g. We then consider also the two connected components
Ω+ = {(x, y) ∈ R × S1 | x > 0} and Ω− = {(x, y) ∈ R × S1 | x < 0}. We start by proving the following key result:

Theorem 5.4.1. Consider the Riemannian manifold (Ω+, g), with associated Riemannian volume formω, curvature
K and Laplace-Beltrami operator ∆. Let c > 0. Consider the curvature Laplacian −∆+ cK , with domain C∞0 (Ω+),
acting on L2(Ω+, ω). Then for every ε > 0 there exists a function hε,c ∈ L2(Ω+, ω) ∩ C∞(Ω+) such that

(i) hε,c ∈ D((−∆ + cK)∗);

(ii) hε,c < D(−∆ + cK);

(iii) supp(hε,c) ⊂ (0, ε) × S1.

In particular, −∆ + cK is not essentially self-adjoint (here c > 0). The same conclusions hold if we replace Ω+
with Ω− or Ω.

What we can actually prove is the following stronger version of Theorem 5.4.1:

Theorem 5.4.2. With the same notations of Theorem 5.4.1, dimD((−∆ + cK)∗)/D(−∆ + cK) = ∞, i.e., −∆ + cK
has infinite deficiency indices.

The proofs of Theorems 5.4.1 and 5.4.2 span Sections 5.4.1 and 5.4.3, where we shall describe respectively the
closure and the adjoint of −∆ + cK .

5.4.1 Closure operator
We shall work on the manifold Ω+, being the case Ω− analogous. Then the statement for Ω follows from the
decomposition L2(Ω, ω) = L2(Ω−, ω) ⊕

⊥ L2(Ω+, ω).

For a metric g of the form diag(1, f(x, y)−2), plugging f(x, y) = xeφ(x,y) into (5.2.3), (5.2.4), and (5.2.5) one has
the following:

ω(x,y) =
1

xeφ(x,y)
dxdy,

K(x, y) = −
2
x2 −

2∂xφ(x, y)
x

+ ∂2
xφ(x, y) − (∂xφ(x, y))

2,

∆ = ∂2
x + x2e2φ(x,y)∂2

y −
1
x
∂x − ∂xφ(x, y)∂x + ∂yφ(x, y)x2e2φ(x,y)∂y .

We perform a unitary transformation

(5.4.1) U : L2(Ω+, ω) → L2(Ω+, dxdy), ψ 7→ (xeφ)−1/2ψ,

and the corresponding transformed Laplacian is given by

L = U∆U−1

= ∂2
x + x2e2φ∂2

y + 2x2e2φ(∂yφ)∂y −
3

4x2 −
∂xφ

2x
−

1
4
(∂xφ)

2 +
1
2
∂2
xφ +

3
4

x2(∂yφ)
2e2φ +

1
2

x2(∂2
yφ)e

2φ .

We shall analyze the self-adjointness of the operator

−L + cK = U(−∆ + cK)U−1

= −∂2
x − x2e2φ∂2

y − 2x2e2φ(∂yφ)∂y +
(3
4
− 2c

) 1
x2 +

1 − 4c
2

∂xφ

x
+

(1
4
− c

)
(∂xφ)

2

+
(
c −

1
2

)
∂2
xφ −

3
4

x2(∂yφ)
2e2φ −

1
2

x2(∂2
yφ)e

2φ

= Hc + ηc,(5.4.2)
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where we have defined the operator

(5.4.3) Hc = −∂
2
x − x2e2φ∂2

y − 2x2e2φ(∂yφ)∂y +
(3
4
− 2c

) 1
x2 +

(1 − 4c
2

) ∂xφ
x
,

and the multiplicative operator

(5.4.4) ηc =
(1
4
− c

)
(∂xφ)

2 +
(
c −

1
2

)
∂2
xφ −

3
4

x2(∂yφ)
2e2φ −

1
2

x2(∂2
yφ)e

2φ,

both with domain C∞0 (Ω+), acting on the Hilbert space L2(Ω+, dxdy) =: L2(Ω+). For later convenience, we also
define the operator

Tc = −∂
2
x − x2e2φ∂2

y − 2x2e2φ(∂yφ)∂y +
(3
4
− 2c

) 1
x2 , D(Tc) = C∞0 (Ω+), acting on L2(Ω+),

and

(5.4.5) Sc = −
d2

dx2 +
(3
4
− 2c

) 1
x2 , D(Sc) = C∞0 (Ω+), acting on L2(Ω+).

As a 1D operator, − d2

dx2 +
(

3
4 − 2c

)
1
x2 is usually called inverse square potential Hamiltonian, or Bessel operator,

and its closed extensions have been largely studied in the recent literature both for real and complex values of c
(see, e.g., [12, 47] and reference therein). In particular, the domain of its closure is known:

Proposition 5.4.3. ([47, Theorem 4.1, Lemma 4.2]) Let c>0 and consider the 1D operator

(5.4.6) sc := −
d2

dx2 +

(
3
4
− 2c

)
1
x2 , D(sc) = C∞0 (R

+),

acting on L2(R+, dx). Then, D(sc) = H2
0 (R

+, dx).
Moreover the following inequality holds

(5.4.7)
 f

x2


L2(R+)

≤
1
2c
‖sc f ‖L2(R+) , ∀ f ∈ C∞0 (R

+).

In order to describe the space D(−L + cK), for all c > 0, we apply a general result on inverse-square potential
perturbations of the Laplace-Beltrami operator on 2D-ARS. Consider the vector fields

Y1(x, y) = x
∂

∂x
, Y2(x, y) = x2 ∂

∂y
, (x, y) ∈ Ω+,

and define the Sobolev space H2
Y1,Y2

(
Ω+,

dxdy

x3

)
as the completion of C∞0 (Ω+) w.r.t. the norm

‖ f ‖
H2

Y1,Y2

(
Ω+,

dxdy

x3

) = ‖ f ‖
L2

(
Ω+,

dxdy

x3

) + ∑
i=1,2
‖Yi f ‖

L2
(
Ω+,

dxdy

x3

) + ∑
i, j=1,2

‖YiYj f ‖
L2

(
Ω+,

dxdy

x3

) .
Moreover we write u ∈ xH2

Y1,Y2

(
Ω+,

dxdy

x3

)
if u/x ∈ H2

Y1,Y2

(
Ω+,

dxdy

x3

)
.

Proposition 5.4.4. ([20, Theorem 1.1]) Let ∆ be the Laplace-Beltrami operator of (Ω+, g) with domain C∞0 ((0, ε] ×
S1), for ε > 0. Suppose that h ∈ C∞(Ω+) is such that h(0, ·) does not have zeroes. Then,

D

(
−∆ +

h
x2

)
= xH2

Y1,Y2

(
Ω+,

dxdy
x3

)
.

We remark that Proposition 5.4.4 is actually proved in a more general setting in [20, Theorem 1.1], and it holds
even in the presence of tangency points. We consider here the domain C∞0 ((0, ε] × S1) (that is, the smooth functions
that are compactly supported away from 0, whose support may touch ε), in order to avoid the non-compactness of
Ω+, which however does not play any role since we are interested only in the behaviour around x = 0. A direct
consequence of Proposition 5.4.4 is collected in the next corollary, and will be crucial later:

Corollary 5.4.5. Let c>0 and f ∈ D(−L + cK) with supp f ⊂ (0, ε) × S1. Then, f (·, y) = o(x3/2) as x → 0+, for
a.e. y ∈ S1.
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Proof. First, f ∈ D(−L + cK) if and only if g := U−1( f ) = (xeφ)1/2 f ∈ D(−∆ + cK) (cf. (5.4.1)). We set
h = cK x2 ∈ C∞(Ω+), and notice that h(0, ·) = −2c does not have zeroes for c > 0. Thanks to Proposition 5.4.4,

g ∈ D

(
−∆ +

h
x2

)
⇔ g/x ∈ H2

Y1,Y2

(
Ω+,

dxdy
x3

)
,

which implies that in particular, for any ε > 0, and for a.e. y ∈ S1 the norm∫ ε

0

���g(x, y)
x

���2 dx
x3 < ∞,

which is true if and only if g(·, y) = o(x2) as x → 0+, for a.e. y ∈ S1. Finally, coming back to f via f = U(g) =
(xeφ)−1/2g and noticing that φ(0, y) = 0 ∀y ∈ S1, we conclude the proof. �

5.4.2 An alternative proof of Corollary 5.4.5, for c ∈ (0, 3/8]
We furnish in this section a different proof of Corollary 5.4.5 for small values of c, which uses only the Hardy
inequality and the Fourier transform w.r.t. the y-variable.

Lemma 5.4.6. Let c ∈ [0, 3/8] and f ∈ L2(Ω+) with supp f ⊂ (0, ε)× S1, for some ε > 0. Then, f ∈ D
(
−L + cK

)
if and only if f ∈ D(Tc).

Proof. Since −L + cK = Hc + ηc , and ηc is a bounded operator on (0, ε) × S1, Proposition 5.3.1 implies that
f ∈ D(−L + cK) if and only if f ∈ D(Hc), for all c > 0. Furthermore, we want to show that the singular term
g1,c
x :=

(
1−4c

2

)
∂xφ
x is infinitesimally small w.r.t. Tc , if c ∈ [0, 3/8]. In order to do this we will use two main

ingredients. The first one is Hardy inequality:∫ ∞

0

|u(x)|2

x2 dx ≤ 4
∫ ∞

0
|u′(x)|2dx, ∀u ∈ C∞0 (R

+).

The second one is perturbation theory, in particular Proposition 5.3.1.
For all functions u ∈ C∞0 (R

+ × S1) we haveg1,cu
x

2

L2(R+×S1)
=

∫
R+×S1

|g1,c(x, y)|2

x2 |u(x, y)|2dxdy

≤4‖g2
1,c ‖L∞(R+×S1)

∫
R+×S1

|∂xu(x, y)|2dxdy (Fubini + Hardy)

≤4‖g2
1,c ‖L∞(R+×S1)

∫
R+×S1

|∂xu(x, y)|2 + x2e2φ |∂yu(x, y)|2 +
(

3
4
− 2c

)
|u(x, y)|2

x2 dxdy

=4‖g2
1,c ‖L∞(R+×S1)(Tcu, u)L2(R+×S1) (Parts)

≤2‖g2
1,c ‖L∞(R+×S1)

(
δ‖Tcu‖2

L2(R+×S1)
+

1
δ
‖u‖2

L2(R+×S1)

)
, (Young)

where the last inequality holds for every δ > 0, which proves that g1,c
x is infinitesimally small w.r.t. Tc if c ∈ [0, 3/8].

Proposition 5.3.1 then implies that D(Hc) = D(Tc). �

For any function f ∈ L2(R+ × S1), we denote by f =
∑

k∈Z f̂k(x)eiky its Fourier series.

Proposition 5.4.7. Let c ∈ (0, 3/8], and let f ∈ D(−L + cK) be a function supported in (0, ε)× S1, for some ε > 0.
Then, f̂k(x) = o(x

3
2 ) for x ↓ 0, for every k ∈ Z.

Proof. Let f ∈ C∞0 ((0, ε) × S1). Lemma 5.4.6 shows that f ∈ D(−L + cK) if and only if f ∈ D(Tc). Thus, we are
left to study the behavior near x = 0 of a function f ∈ D(Tc). For any k ∈ Z, we have

�(Tc f )k = sc f̂k −
1
2

x2
∑

m+m′=k

(−m2) f̂m�(e2φ)m′ − x2
∑

m+m′=k

(im) f̂m �(∂yφ e2φ)m′,
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where sc is defined in (5.4.6), and we compute the norm using the triangular inequality

‖�(Tc f )k ‖L2(R+) ≥

sc f̂k

L2(R+)

−

1
2

x2
∑

m+m′=k

(−m2) f̂m�(e2φ)m′

L2(R+)

−

x2
∑

m+m′=k

(im) f̂m �(∂yφ e2φ)m′


L2(R+)

We have,  ∑
m+m′=k

(−m2) f̂m�(e2φ)m′

L2(R+)

= ∑
m+m′=k

(−m′2) f̂m�(e2φ)m′ − k2
∑

m+m′=k

f̂m�(e2φ)m′ + 2k
∑

m+m′=k

m′ f̂m�(e2φ)m′

L2(R+)

≤

‖ f ‖L2(R+×S1)

(
sup
x∈R+

‖e2φ ‖H2(S1) + k2 sup
x∈R+

‖e2φ ‖L2(S1) + 2|k | sup
x∈R+

‖e2φ ‖H1(S1)

)
≤

Cφ,k ‖ f ‖L2(R+×S1)

thanks to the Cauchy-Schwartz inequality and the Plancherel formula. Similarly, ∑
m+m′=k

(im) f̂m �(∂yφ e2φ)m′


L2(R+)

≤

‖ f ‖L2(R+×S1)

(
sup
x∈R+

‖e2φ∂yφ‖H1(S1) + |k | sup
x∈R+

‖e2φ∂yφ‖L2(S1)

)
≤ C ′φ,k ‖ f ‖L2(R+×S1)

Thus sc f̂k

L2(R+)

≤ ‖�(Tc f )k ‖L2(R+) + ε
2C ′′φ,k ‖ f ‖L2(R+×S1)

≤ ‖Tc f ‖L2(R+×S1) + ε
2C ′′φ,k ‖ f ‖L2(R+×S1) ∀ f ∈ C∞0 ((0, ε) × S1).

(5.4.8)

By density, (5.4.8) implies that f ∈ D(Tc) ⇒ f̂k ∈ D(sc)∀k ∈ Z. Then, the conclusion follows by applying
Proposition 5.4.3, since every function u ∈ H2

0 (R+) satisfies u(x) = o(x
3
2 ) for x → 0. �

Remark 5.4.8. We remark that the values of c ∈ (0, 3/8] cover all the cases listed in the introduction, that is
c ∈ (0, 1/3], arising from different quantizations procedures.

5.4.3 Adjoint operator
We first consider the 1D Sturm-Liouville model operator given by

(5.4.9) A = −
d2

dx2 +
g2

x2 +
g1
x
, g1, g2 ∈ R.

Moreover, we introduce a C∞ cut-off function 0 ≤ Pε ≤ 1,

(5.4.10) Pε (x) =

{
1 if x ≤ ε/2,
0 if x ≥ ε .

Lemma 5.4.9. Let g1, g2 ∈ R, g2 < 3/4. Consider the operator A acting on the Hilbert space L2(R+) with domain
C∞0 (R

+). Then,

(a) for any f ∈ D(A), f (x) = o(x
3
2 ), as x → 0;

(b) D(A∗) = D(A) + span{ψ+Pε, ψ−Pε }, where Pε is the cut-off function defined in (5.4.10), and

ψ±(x) = xα± + a± xα±+1, α± =
1
2
±

1
2
√

4g2 + 1, a± =
g1

(α± + 1)α± − g2
,

if g2 , −1/4 and g2 , 0,

ψ+(x) = x
1
2 + g1x

3
2 , ψ−(x) = x

1
2 log(x) + g1x

3
2 log(x) + 2x

1
2 ,

if g2 = −1/4, and
ψ+(x) = x, ψ−(x) = 1 + g1x log(x),

if g2 = 0.
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Proof. To prove part (a) of the statement, it suffices to consider functions f that are supported arbitrarily near
x = 0. Then, we can show that g1

x is infinitesimally small w.r.t. − d2

dx2 +
g2
x2 . Indeed, notice that (5.4.7) w.r.t. this

notation reads  f
x2


L2(R+)

≤
1

3/4 − g2

(− d2

dx2 +
g2

x2

)
f

L2(R+)

∀ f ∈ C∞0 (R
+) ,

which at once implies that for any ε > 0 we haveg1
x

f

L2(R+)

=

 xg1

x2 f

L2(R+)

≤ ε

(− d2

dx2 +
g2

x2

)
f

L2(R+)

∀ f ∈ C∞0 (0, δ) ,

where δ > 0 is such that supx∈(0,δ) |g1x |(g2 − 3/4)−1 < ε . Propositions 5.3.1 and 5.4.3 then imply

D

(
−

d2

dx2 +
g2

x2 +
g1
x

)
= D

(
−

d2

dx2 +
g2

x2

)
= H2

0 (R
+),

that concluded the proof of part (a).
To prove the second statement, we look for the solutions of

(5.4.11) − u′′(x) +
g2

x2 u(x) +
g1
x

u(x) = 0.

These are two linearly independent functions which can be expressed via confluent hypergeometric functions, but
since we are only interested in their behavior near x = 0, we can just use the Frobenius method (see, for instance,
[105, Chapter 4]) to understand their asymptotics.

The first step is to write down the indicial polynomial, which is defined as

P(α) = (x−α+2 Axα)|x=0 = α(α − 1) − g2.

The construction depends whether or not the two roots of this polynomial are separated by an integer. The two
roots are given by

α± =
1
2
±

1
2
√

4g2 + 1.

Under the stated ranges of g2 it follows that the only two cases where the two roots are separated by an integer are
given by g2 = 0 and g2 = −1/4.

Assume that g2 , 0 and g2 , −1/4. Then the Frobenius method states that there exist two independent
solutions, which can be represented as converging series of the form

(5.4.12) u±(x) = xα±
∞∑
i=0

ai xi .

We plug the ansatz (5.4.12) into (5.4.11) and obtain the following conditions for the dominating terms{
a0[α(α − 1) − g2] = 0,
a1(α + 1)α − a1g2 + a0g1 = 0.

Setting a0 = 1, we obtain that α± are exactly the roots of the indicial polynomial, that

a1,± =
g1

(α± + 1)α± − g2
=: a±,

and that the solutions are
u±(x) = xα± + a± xα±+1 + o(xα±+1).

Assume now that g2 = −1/4 or g2 = 0. Then the Frobenius method tells us that u+(x) is still a solution
of (5.4.11) and the second solutions is given by

u−(x) = Cu+(x) log(x) + xα−
∑
i=0

ai xi .

Plugging this series expression into (5.4.11) allows us to recover ψ± as the dominating terms of u±. Moreover notice
that, as a direct consequence of the Frobenius method, A(u±−ψ±) is bounded near x = 0, and hence Aψ± ∈ L2(0, 1).
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So, let ψ± as in the statement. Then

(i) ψ± ∈ L2(0, 1), (ii) Aψ± ∈ L2(0, 1), (iii) ψ± < D(A),

where (i) and (ii) imply at once that ψ±Pε ∈ D(A∗) and (iii) follows from part (a) and the asymptotics of ψ± near
x = 0. Since the functions ψ+Pε and ψ−Pε are linearly independent and the quotient D(A∗)/D(A) has dimension
at most 2 (as it follows from the fact that A is in the limit point case at ∞, by applying Proposition 5.3.4, which in
turns implies that ker(A+ ± i) have at most dimension 1, by applying Proposition 5.3.3), the thesis follows. �

Remark 5.4.10. A result similar to Lemma 5.4.9 (that includes also complex values of g1, g2) is proved in [48,
Proposition 3.1]. Here we have provided a different proof, that uses perturbative arguments and does not require
the introduction of Bessel functions.

Now, we can use Lemma 5.4.9 to obtain informations on the adjoint of the 2D operator we are interested in,
that is, −L + cK defined in (5.4.2), and complete the proof of Theorem 5.4.1.

Proof. of Theorem 5.4.1 We take the coefficient of 1
x evaluated at x = 0 (i.e., on the singularity) and treat the

second variable y as a parameter. Indeed, setting

(5.4.13) g2 =
3
4
− 2c, g1(y) =

1 − 4c
2

∂xφ(0, y) ∈ C∞(S1)

we obtain from Lemma 5.4.9 two functions ψ±,c ∈ C∞(Ω) of both variables x, y. Then, we get the following:

Proposition 5.4.11. Let c > 0, and define h̃±,ε,c(x, y) = ψ±,c(x, y)Pε (x) ∈ L2(Ω+) ∩C∞(Ω+), where ψ±,c have the
same form as functions ψ± from Lemma 5.4.9 with g1, g2 given by (5.4.13) and Pε is defined in (5.4.10). Then,

(i) h̃±,ε,c ∈ D((−L + cK)∗);

(ii) h̃±,ε,c < D(−L + cK);

(iii) supp(h̃±,ε,c) ⊂ (0, ε) × S1.

Proof. Part (iii) is obvious, as supp(Pε ) ⊂ (0, ε). To prove (i), we consider the operator R on the domain C∞0 (Ω+),
whose action is defined by R := (−L + cK) − A, (where A is the operator whose action is defined in (5.4.9), but
now is considered on the domain C∞0 (Ω+), and g1, g2 are the functions defined in (5.4.13)), and we claim that
Rh̃±,ε,c ∈ L2(Ω+), in the weak sense. Indeed, we have

R = −x2e2φ∂2
y − 2x2e2φ(∂yφ)∂y +

1 − 4c
2

( ∂xφ(x, y) − ∂xφ(0, y)
x

)
+ ηc

= −x2e2φ∂2
y − 2x2e2φ(∂yφ)∂y + η̃c,

(where ηc and η̃c are functions that are bounded on (0, ε) × S1) and the claim follows from the C∞-regularity of
h̃±,ε,c w.r.t. y. Then, by the very construction of h̃±,ε,c , we have that Ah̃±,ε,c ∈ L2(Ω+), which in turns implies that
(−L + cK)h̃±,ε,c = (R + A)h̃±,ε,c ∈ L2(Ω+) in the weak sense, and proves part (i).

To prove part (ii) we first notice that for all c > 0 and all y ∈ S1, h̃±,ε,c(·, y) is not o(x3/2) (notice that
xα± = x1/2±

√
1−2c), and we can apply Corollary 5.4.5 to conclude that h̃±,ε,c < D(−L + cK). �

To conclude the proof of Theorem 5.4.1, it suffices to consider h±,ε,c := U−1 h̃±,ε,c , where U is the unitary
transformation defined in (5.4.1). �

The proof of Theorem 5.4.2 is now an immediate consequence:

Proof. of Theorem 5.4.2 It follows by considering the infinite-dimensional vector space spanned by the family of
functions {h±,ε,ceiky}k∈Z ⊂ D((−∆ + cK)∗) \ D(−∆ + cK). �
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5.5 Proof of Theorem 5.1.1
If c = 0, −∆ is known to be essentially self-adjoint on L2(M, ω) ([30, Theorem 1.1]). Then, let c > 0.

Let Z =
∐

j∈ j Wj be the disjoint union in connected components for the singular set, and M = ∪i∈IΩi be an
open cover such that, for every Wj , there exist a unique Ωi j (Grushin zone) with Wj ⊂ Ωi j and Wj ∩ Ωi = ∅ if
i , ij . Moreover, as previously remarked, we can assume thatΩi j is a tubular neighborhood ofWj , i.e.,Ωi j � R×S1.

LetW be a connected component of Z , andΩ the correspondingGrushin zone. Consider the operator (−∆+cK)Ω
defined as the restriction of −∆+cK on the domainC∞0 (Ω\W). In the local chartΩwith coordinates (x, y) ∈ R×S1,
W = {(x, y) ∈ R × S1 | x = 0}, and Theorem 5.4.1 gives a function, e.g. h+,ε,c , supported arbitrarily close to W ,
such that h+,ε,c ∈ D((−∆ + cK)∗

Ω
) \ D((−∆ + cK)Ω).

We define the function

Fε,c =

{
h+,ε,c on Ω,
0 on M \Ω.

So we have

〈Fε,c, (−∆ + cK)u〉L2(M) = 〈Fε,c, (−∆ + cK)u〉L2(Ω) + 〈Fε,c, (−∆ + cK)u〉L2(M\Ω)

= 〈(−∆ + cK)∗
Ω

h+,ε,c, u〉L2(Ω), ∀u ∈ C∞0 (M \ Z),

having integrated by parts (h+,ε,c vanishes away from ∂Ω, and u vanishes away from W), which proves that

(−
1
2
∆ + cK)∗Fε,c =

{
(−∆ + cK)∗

Ω
h+,ε,c on Ω,

0 on M \Ω,

and Fε,c ∈ D((−∆ + cK)∗). We are left to prove that Fε,c < D(−∆ + cK), which implies the non-self-adjointness
of −∆ + cK on L2(M).

Suppose by contradiction that Fε,c ∈ D(−∆ + cK). Then, there exist a sequence (φn)n∈N ⊂ C∞0 (M \ Z) and a
function Gε,c ∈ L2(M) such that

(i) φn → Fε,c , as n→∞, in L2(M),

(ii) (−∆ + cK)φn → Gε,c , as n→∞, in L2(M).

Now, Gε,c must satisfy

Gε,c = (−∆ + cK)Fε,c = (−∆ + cK)∗Fε,c =

{
(−∆ + cK)∗

Ω
h+,ε,c on Ω,

0 on M \Ω,
.

So, Fε,c and Gε,c are both supported in U ( Ω. We then consider the cut-off function ξ ∈ C∞0 (Ω)

(5.5.1) ξ(x) =

{
1 if x ∈ U,
0 if x < Ω,

with 0 ≤ ξ ≤ 1, and define the sequence (φ̃n = ξφn)n∈N ⊂ C∞0 (Ω \W). We have the following

Lemma 5.5.1. φ̃n → h+,ε,c and (−∆ + cK)φ̃n = (−∆ + cK)Ωφ̃n → Gε,c |Ω , as n→∞, in L2(Ω).

Thus, we conclude by applying Lemma 5.5.1 which says that h+,ε,c ∈ D((−∆ + cK)Ω), which is impossible.

Proof. of Lemma 5.5.1 Because of (i) and (ii), we have as n→∞

(i.1) ‖φn − h+,ε,c ‖L2(U) → 0 , (i.2) ‖φn‖L2(M\U) → 0,
(ii.1) ‖(−∆ + cK)φn − Gε,c ‖L2(U) → 0 , (ii.2) ‖(−∆ + cK)φn‖L2(M\U) → 0,

since supp(h+,ε,c) and supp(Gε,c) are both contained in U. Then we have (as n→∞)

‖φ̃n − h+,ε,c ‖L2(Ω) = ‖φn − h+,ε,c ‖L2(U) + ‖ξφn‖L2(Ω\U) ≤ ‖φn − h+,ε,c ‖L2(U) + ‖φn‖L2(M\U) → 0.
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Moreover, using that ∆(ξφn) = (∆ξ)φn + 2∇ξ · ∇φn + ξ(∆φn), we have

‖(−∆ + cK)φ̃n − Gε,c |Ω‖L2(Ω) ≤

‖(−∆ + cK)φn − Gε,c ‖L2(U) + C‖(−∆ + cK)φn + |∇φn | + φn‖L2(Ω\U),

where C is a constant such that C > ‖∆ξ‖L∞(Ω), ‖ |∇ξ | ‖L∞(Ω), ‖ξ‖L∞(Ω). Since K is a bounded function on Ω \U,
we have

‖Kφn‖L2(Ω\U) ≤ ‖K ‖L∞(Ω\U) · ‖φn‖L2(Ω\U) → 0, as n→∞,

and
‖∆φn‖L2(Ω\U) ≤ ‖(−∆ + cK)φn‖L2(Ω\U) + ‖cKφn‖L2(Ω\U) → 0, as n→∞.

Finally, by Sobolev embedding, we have

‖ |∇φn | ‖L2(Ω\U) ≤ C̃(‖∆φn‖L2(Ω\U) + ‖φn‖L2(Ω\U)) → 0, as n→∞.

�

To prove that the deficiency indices of−∆+cK are infinite if c > 0, it suffices to consider the infinite-dimensional
vector space spanned by the family of functions {Fk

ε,c}k∈Z contained inD((−∆+ cK)∗) \D(−∆ + cK) defined by

Fk
ε,c =

{
eikyh+,ε,c on Ω,
0 on M \Ω.

Remark 5.5.2. One can construct such family of functions close to any singular region of M , and each singular
region has an infinite family of self-adjoint extensions; this gives room to self-adjoint extensions on the whole
manifold, characterized by different boundary conditions to be imposed at each singular region.

This concludes the proof of Theorem 5.1.1.
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Chapter 6

Self-adjoint extensions of the Laplacian on
anti-conic Grushin surfaces

In this chapter we classifY all the uniformly fibered self-adjoint extension of the Laplace-Beltrami operator on the
α-Grushin cylinder, for α ∈ [0, 1), through the Kreı̆n-Višik-Birman (KVB for brevity) theory (see Theorem 6.1.1).
These extensions correspond to boundary conditions which are uniform w.r.t. the Fourier decomposition. In this
region of α, the Laplace-Beltrami is a non-negative operator, with infinite deficency indices. The Friedrichs and
bridging extension were already found in [34], and we recover them as particular cases within our general scheme.
As a byproduct of our analysis, we are also able to compute the Sobolev-regularity on the singular set of the Grushin
cylinder of functions belonging to different self-adjoint extensions (see Corollary 6.1.2), extending thus the results
found in [97] (on the regularity of functions belonging to the deficency spaces).

The chapter is organized as follows: in Section 6.1 we state the main original results of the chapter already
presented in the Introduction. In Section 6.2 we formulate the problem in terms of the Fourier decomposition,
which yields a direct sum with constant fibre structure to the problem. In Section 6.3 we proved the main result on
each half-fibre for the Fourier component (see Theorem 6.3.1); in particular, in Proposition 6.3.8 we characterize
the operator closure of each Fourier component and in Theorem 6.3.13 we recall the KVB extension scheme. In
Section 6.4 we extend the result of the previous section to the whole fibre, in Theorem 6.4.1. In Section 6.5 we
describe how to realize general (i.e. possibly not uniformly fibred) self-adjoint extensions using the KVB scheme,
giving in particular a characterization of the adjoint Laplace-Beltrami operator (see Lemma 6.5.2) in terms of
the Sobolev-regularity of the Fourier coefficients involved in its decomposition. In Section 6.6 we finally prove
the main results of the Chapter in Theorem 6.6.1 and Corollary 6.6.3; in particular, in order to go back from the
description in Fourier components to the description w.r.t. the (x, y)-variables, we prove that the second derivative
w.r.t. the y-variable is controlled by the Laplace-Beltrami operator (that is Lemma 6.6.11) thanks to a uniform
estimate on the inverse of the Friedrichs extension, proved in Lemma 6.3.3(ii).

The results of this chapter are in the paper [64].

6.1 Main results
Let M = (R \ {0}) × S1 and ωα = |x |−αdx dy, for α ∈ [0, 1). We consider the linear differential operator

Hα = −
∂2

∂x2 − x2α ∂2

∂y2 +
α

x
∂

∂x
,

acting on the Hilbert space L2(M, ωα), densely defined on the domainD(Hα) = C∞0 (M). As we have recalled in the
Introduction, −Hα is the Laplace-Beltrami operator associated with the generalized almost-Riemannian structure

X1(x, y) =
∂

∂x
, X (α)2 (x, y) = |x |

α ∂

∂y
, (x, y) ∈ R × S1.

The main original results of the chapter are a classification of the local self-adjoint extensions of the operator Hα

and their Sobolev regularity at the boundary.

Theorem 6.1.1. Let α ∈ [0, 1). The operator Hα admits the following families of self-adjoint extensions in
L2(M, ωα):
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• Friedrichs extension: Hα,F ;

• Family IR: {H[γ]α,R | γ ∈ R};

• Family IL: {H[γ]α,L | γ ∈ R};

• Family IIa with a ∈ C: {H[γ]α,a | γ ∈ R};

• Family III: {H[Γ]α | Γ ≡ (γ1, γ2, γ3, γ4) ∈ R
4}.

Each operator belonging to any such family is a restriction of H∗α, and hence its differential action is precisely Hα.
The domain of each of the above extensions is qualified as the space of the functions f ∈ L2(M, ωα) satisfying the
following properties.

(i) Integrability and regularity:

(6.1.1)
∫
M

��Hα f
��2 ωα < +∞ .

(ii) Boundary condition: The limits

f ±0 (y) = lim
x→0±

f ±(x, y)(6.1.2)

f ±1 (y) = ±(1 + α)
−1 lim

x→0±

( 1
|x |α

∂ f (x, y)
∂x

)
(6.1.3)

exist and are finite for almost every y ∈ S1, and depending on the considered type of extension, and for
almost every y ∈ S1, they satisfy

f ±0 (y) = 0 if f ∈ D(Hα,F ) ,(6.1.4) {
f −0 (y) = 0
f +1 (y) = γ f +0 (y)

if f ∈ D(H[γ]α,R) ,(6.1.5) {
f −1 (y) = γ f −0 (y)
f +0 (y) = 0

if f ∈ D(H[γ]α,L) ,(6.1.6) {
f +0 (y) = a f −0 (y)
f −1 (y) + a f +1 (y) = γ f −0 (y)

if f ∈ D(H[γ]α,a) ,(6.1.7) {
f −1 (y) = γ1 f −0 (y) + (γ2 + iγ3) f +0 (y)
f +1 (y) = (γ2 − iγ3) f −0 (y) + γ4 f +0 (y)

if f ∈ D(H[Γ]α ) .(6.1.8)

We can also deduce the regularity of the wave-function at the singular boundary S1, depending on the different
physics imposed by different self-adjoint extensions.

Corollary 6.1.2. Let f belong to the domain of one of the self-adjoint extensions of Hα listed in Theorem 6.1.1.
Then,

(6.1.9) f ±0 ∈ Hs0,± (S1, dy) and f ±1 ∈ Hs1,± (S1, dy)

with

• s1,± =
1
2

1−α
1+α for the Friedrichs extension,

• s1,− =
1
2

1−α
1+α , s0,+ = s1,+ =

1
2

3+α
1+α for extensions of type IR,

• s1,+ =
1
2

1−α
1+α , s0,− = s1,− =

1
2

3+α
1+α for extensions of type IL ,

• s1,± = s0,± =
1
2

1−α
1+α for extensions of type IIa,

• s1,± = s0,± =
1
2

3+α
1+α for extensions of type III.
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6.2 Unitary equivalent reformulation of the problem
Let us introduce a unitarily equivalent re-formulation of the problem of the self-adjoint extensions of Hα in
L2(M, ωα).

We recall that Hα is reduced with respect to the decomposition

(6.2.1) L2(M, ωα) = L2(R+ × S1, ωα) ⊕ L2(R− × S1, ωα) =: L2(M+, ωα) ⊕ L2(M−, ωα).

hence we will manipulate H+α := Hα |C∞0 (M
+) and H−α := Hα |C∞0 (M

−) separately.
We shall map L2(M±, ωα) unitarily onto the space

(6.2.2) H± :=
⊕
k∈Z

L2(R±, dx) � `2(Z, L2(R±, dx)) � L2(R±, dx) ⊗ `2(Z).

We first apply the unitary transformation

U±α : L2(R± × S1, |x |−αdxdy) �
−→ L2(R± × S1, dxdy)

f 7→ ψ := |x |−
α
2 f

(6.2.3)

(thus restoring the standard Euclidean metric by removing the weight), and then the further unitary transformation

(6.2.4) F ±2 : L2(R± × S1, dxdy) �
−→ L2(R±, dx) ⊗ `2(Z) =: H± ,

consisting of a partial Fourier transform in the y-variable only, that is,

ψ 7→ (ψk)k∈Z

ek(y) :=
eiky
√

2π
, ψk(x) :=

∫ 2π

0
ek(y) φ(x, y) dy , x ∈ R± .

(6.2.5)

So wemay write ψ(x, y) =
∑

k∈Z ψk(x)ek(y) in the L2-convergent sense. Each ψk ∈ L2(R±, dx) and
∑

k∈Z ‖ψk ‖
2
L2 <

+∞.
Thus,

(6.2.6) H± = F ±2 U±αL2(M±, ωα)

with a natural constant-fibre orthogonal sum structure on such space, namely,

(6.2.7) H± =
⊕
k∈Z

h
± , h± := L2(R±, dx)

with constant fiber h± and scalar product

(6.2.8)
〈
(ψk)k∈Z, (ψ̃k)k∈Z

〉
H±
=

∑
k∈Z

∫
R±
ψk(x) ψ̃k(x) dx ≡

∑
k∈Z

〈ψk, ψ̃k〉h± .

Analogously, and with self-explanatory notation, F2 := F −2 ⊕ F
+

2 , Uα := U−α ⊕ U+α , whence F2Uα = F
−

2 U−α ⊕
F +2 U+α , and

(6.2.9) H := F2UαL2(M, ωα) � `2(Z, L2(R, dx)) � H− ⊕ H+ �
⊕
k∈Z

h

with bilateral fibre

(6.2.10) h := L2(R−, dx) ⊕ L2(R+, dx) � L2(R, dx) .

By means of (6.2.3) and (6.2.4) we obtain the operators

(6.2.11) H±α := U±α H±α (U
±
α)
−1

acting on L2(R± × S1, dxdy) as

D(H±α) = C∞0 (R
±
x × S1

y)

H±αφ =
(
−

∂2

∂x2 − |x |
2α ∂2

∂y2 +
α(2 + α)

4x2

)
φ,

(6.2.12)
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as well as the operators

(6.2.13) H ±
α := F ±2 U±α H±α (U

±
α)
−1(F ±2 )

−1 = F ±2 H±α(F
±

2 )
−1

acting onH± as

D(H ±
α ) =

{
ψ ≡ (ψk)k∈Z ∈

⊕
k∈Z

L2(R±, dx)
���ψ ∈ F ±2 C∞0 (R

±
x × S1

y)

}
H ±
α ψ =

((
−

d2

dx2 + k2 |x |2α +
α(2 + α)

4x2

)
ψk

)
k∈Z

.

(6.2.14)

Completely analogous formulas hold for Hα and Hα, defined in the obvious way.
In particular, for each ψ± ∈ D(H ±

α ) the component functions ψ±
k
(·) are compactly supported in x inside R± for

every k ∈ Z, and moreover∑
k∈Z

( − d2

dx2 + k2 |x |2α +
α(2 + α)

4x2

)
ψ±k

2

L2(R±,dx)

= ‖H ±
α ψ
±‖2
H±
= ‖(F ±2 )

−1H ±
α F

±
2 φ
±‖2

L2(R±x×S
1
y )

=

( − ∂2

∂x2 − |x |
2α ∂2

∂y2 +
α(2 + α)

4x2

)
φ±

2

L2(R±x×S
1
y )

< +∞ ,

(6.2.15)

where φ± = F ±2 ψ ∈ C∞0 (R
±
x × S1

y).
The above construction establishes a unitarily equivalent version of the operators of interest. Thus, the self-

adjointness problem for H±α in L2(M±, ωα) is equivalent to the self-adjointness problem for H ±
α in H±, and the

same holds for Hα with respect to Hα. Furthermore, when non-trivial self-adjoint extensions exist for H±α (resp.,
Hα), they can be equivalently (and in practice more conveniently) identified as self-adjoint extensions ofH ±

α (resp.,
Hα).

In fact, such an analysis for H ±
α (resp., Hα) is naturally boiled down to the analysis of such operators on each

fibre and a subsequent recombination of the information over the whole constant-fibre orthogonal sum.
To develop this approach, it is convenient to introduce on each fibre h±, thus for each k ∈ Z, the operators

(6.2.16) A±α(k) := −
d2

dx2 + k2 |x |2α +
α(2 + α)

4x2 , D(Aα(k)) := C∞0 (R
+) ,

and similarly on h we define

D(Aα(k)) := C∞0 (R
−) � C∞0 (R

+)

Aα(k) := A−α(k) ⊕ A+α(k) ,
(6.2.17)

where the notation ‘�’ simply indicates the direct sum of two (non-complete) subspaces of each summand of the
orthogonal sum of two Hilbert spaces.

By construction the map Z 3 k 7→ Aα(k) has values in the space of densely defined, symmetric, non-negative
operators on h, all with the same domain irrespectively of k. In each Aα(k) the integer k plays the role of a fixed
parameter. Moreover, all the Aα(k)’s are closable and each Aα(k) is non-negative and with the same dense domain
in h.

As non-trivial self-adjoint extensions are suitable restrictions of the adjoints, let us characterise the latter
operators. The adjoint of Hα is the maximal realisation of the same differential operator, that is,

D((H±α)
∗) =

{
φ ∈ L2(R± × S1, dxdy) such that(

− ∂2

∂x2 − |x |2α ∂2

∂y2 +
α(2+α)

4x2

)
φ ∈ L2(R± × S1, dxdy)

}
(H±α)φ =

(
−

∂2

∂x2 − |x |
2α ∂2

∂y2 +
α(2 + α)

4x2

)
φ .

(6.2.18)

This, and the unitary equivalence (6.2.13), yields at once

D((H ±
α )
∗) =


ψ ≡ (ψk)k∈Z ∈

⊕
k∈Z L2(R±, dx) such that∑

k∈Z

( − d2

dx2 + k2 |x |2α +
α(2 + α)

4x2

)
ψk

2

L2(R±,dx)
< +∞


(H ±

α )
∗ψ =

((
−

d2

dx2 + k2 |x |2α +
α(2 + α)

4x2

)
ψk

)
k∈Z

.

(6.2.19)
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Clearly, d2

dx2 is a weak second derivative in (6.2.19) and a classical second derivative in (6.2.14). Furthermore, with
respect to the decomposition (6.2.9),

(6.2.20) (Hα)
∗ = (H −

α )
∗ ⊕ (H +

α )
∗ .

Analogously to (6.2.19), one has

D(A±α(k)
∗) =

{
g± ∈ L2(R±, dx) such that(

− d2

dx2 + k2 |x |2α + α(2+α)
4x2

)
g± ∈ L2(R±, dx)

}
A±α(k)

∗g± =
(
−

d2

dx2 + k2 |x |2α +
α(2 + α)

4x2

)
g± ,

(6.2.21)

and

(6.2.22) Aα(k)∗ = A−α(k)
∗ ⊕ A+α(k)

∗ .

6.3 Extensions of the differential operator on each half-fibre
In this Section and in the next one we classify the self-adjoint extensions of the right-fibre operators Aα(k)+ defined
in (6.2.16) for α ∈ [0, 1) and k ∈ Z, with respect to the fibre Hilbert space L2(R+, dx).

For simplicity of notation, we shall temporarily drop the superscript ‘+’ and simply write Aα(k) for Aα(k)+,
and 〈·, ·〉L2 and ‖ · ‖L2 for scalar products and norms taken in L2(R+), with analogous notation for the Sobolev
norms. Obviously, the whole discussion is completely analogous for Aα(k)− in L2(R−) instead of Aα(k)+.

As already recalled from [63, Corollary 3.8], for each fixed α ∈ [0, 1) and k ∈ Z, Aα(k) has deficiency index 1,
hence admits a one-(real-)parameter family of self-adjoint extensions. We reconstruct and classify this family by
means of the KVB extension theory [62].

When α = 0 the operator Aα(k) is the minimally defined, shifted Laplacian − d2

dx2 + k2 on L2(R+): the family of
its self-adjoint realisations is well-known (see, e.g., [66, 46]) and the extension formulas that we find for α ∈ (0, 1)
take indeed the usual form for the extensions of the Laplacian in the limit α ↓ 0.

Let us observe preliminarily that Aα(k) has strictly positive lower bound for every non-zero k. Indeed,

min
x∈R+

(
k2x2α +

α(2 + α)
4x2

)
= (1 + α)

( 2+α
4

) α
1+α |k |

2
1+α =: Mα,k ,

whence

(6.3.1) 〈h, Aα(k)h〉L2 > Mα,k ‖h‖2L2 ∀h ∈ D(Aα(k)) .

Instead, when k = 0 one sees that

(6.3.2) inf
h∈D(Aα (0))\{0}

〈h, Aα(0)h〉L2

‖h‖2
L2

= 0 .

Therefore, as long as k , 0, owing to (6.3.1) we can apply the KVB extension theory directly in the setting of
a strictly positive operator. This programme will be completed in the present Section. The special case k = 0 is
deferred to the appendix of this chapter, where we highlight the main steps that need be modified – starting from
the auxiliary shifted operator Aα(0) + 1, which has again strictly positive bottom.

For convenience of notation let us set

(6.3.3) Cα :=
α(2 + α)

4
.

Then Cα ∈ [0, 3
4 ). Let us also refer to

(6.3.4) Sα,k := −
d2

dx2 + k2x2α +
Cα
x2 ,

as the differential operator (with no domain specification) representing the action of both Aα(k) and Aα(k)∗, where
the derivative is classical or weak depending on the context.

Clearly, in order to characterise the operator closure Aα(k) of Aα(k), its Friedrichs extension Aα,F (k), as well
as any other self-adjoint extension, it suffices to indicate the corresponding domains, for all such operators are
restrictions of the adjoint Aα(k)∗ and as such they all act with the action of the differential operator Sα,k .

Here is the main result of this Section.
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Theorem 6.3.1. Let α ∈ [0, 1) and k ∈ Z\{0}.

(i) The operator closure of Aα(k) has domain

(6.3.5) D(Aα(k)) = H2
0 (R

+) ∩ L2(R+, 〈x〉4α dx) .

(ii) The adjoint of Aα(k) has domain

D(Aα(k)∗) =
{

g ∈ L2(R+) such that(
− d2

dx2 + k2x2α + α(2+α)
4x2

)
g ∈ L2(R+)

}
= D(Aα(k)) u span{Ψα,k} u span{Φα,k} ,

(6.3.6)

whereΦα,k andΨα,k are two smooth functions onR+ explicitly defined, in terms of modified Bessel functions,
respectively by formula (6.3.12) and by formulas (6.3.21), (6.3.23), (6.3.26), and (6.3.28) below. Moreover,

(6.3.7) ker Aα(k)∗ = span{Φα,k} .

(iii) The Friedrichs extension of Aα(k) has operator domain

D(Aα,F (k)) =
{
g ∈ D(Aα(k)∗)

�� g(x) x↓0
= g1x1+ α2 + o(x

3
2 ) , g1 ∈ C

}
= D(Aα(k)) u span{Ψα,k}

(6.3.8)

and form domain

(6.3.9) D[Aα,F (k)] = H1
0 (R

+) ∩ L2(R+, 〈x〉2α dx) .

Moreover, Aα,F (k) is the only self-adjoint extension of Aα(k) whose operator domain is entirely contained
in D(x−1), namely the self-adjointness domain of the operator of multiplication by x−1.

(iv) The self-adjoint extensions of Aα(k) in L2(R+) form the family

{A[γ]α (k) | γ ∈ R ∪ {∞}} .

The extension with γ = ∞ is the Friedrichs extension, and for generic γ ∈ R one has

(6.3.10) D(A[γ]α (k)) =
{
g ∈ D(Aα(k)∗)

�� g(x) x↓0
= g0x−

α
2 + γg0x1+ α2 + o(x

3
2 ) , g0 ∈ C

}
.

It is interesting to immediately point out that the asymptotics near x = 0 of functions belonging to D(A[γ]α (k))
depend on α, but do not depend on k.

The proof of Theorem 6.3.1 requires an amount of preparatory material that is presented in Sections 6.3.1-6.3.5
and will be finally completed in Section 6.3.6.

Despite the technical hypothesis k , 0 in Theorem 6.3.1, the same conclusions hold for k = 0, by considering
the shifted operator Aα(0) + 1, which is now strictly positive (the details are given in the Appendix, see Theorem
6.7.11).

6.3.1 Homogeneous differential problem: kernel of Aα(k)∗

Let us qualify the kernel of the adjoint Aα(k)∗.
To this aim, we make use of the modified Bessel functions Kν and Iν [2, Sect. 9.6], that are two explicit, linearly

independent, smooth solutions to the modified Bessel equation

(6.3.11) z2w′′ + zw′ − (z2 + ν2)w = 0 , z ∈ R+

with parameter ν ∈ C. In particular, in terms of K 1
2
and I 1

2
we define the functions

Φα,k(x) :=
√

x K 1
2

( |k |
1+α x1+α)

Fα,k(x) :=
√

x I 1
2

( |k |
1+α x1+α) .(6.3.12)
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Explicitly, as can be deduced from [2, Eq. (10.2.4), (10.2.13), and (10.2.14)],

Φα,k(x) :=
√
π(1+α)

2 |k | x−α/2 e−
|k |

1+α x1+α

Fα,k(x) :=
√

2(1+α)
π |k | x−α/2 sinh

( |k |
1+α x1+α) .(6.3.13)

From (6.3.13) we obtain the short-distance asymptotics

Φα,k(x)
x↓0
=

√
π(1+α)

2 |k | x−
α
2 −

√
π |k |

2(1+α) x1+ α2 +
√

π |k |3

8(1+α)3 x2+ 3
2α +O(x3+ 5

2α)

Fα,k(x)
x↓0
=

√
2 |k |
(1+α)π x1+ α2 +O(x3+ 5

2α) ,

(6.3.14)

and the large-distance asymptotics

Φα,k(x)
x→+∞
=

√
π(1+α)

2 |k | e−
|k |x1+α

1+α x−
α
2 (1 +O(x−(1+α)))

Fα,k(x)
x→+∞
=

√
1+α

2π |k | e
|k |x1+α

1+α x−
α
2 (1 +O(x−(1+α))) ,

(6.3.15)

as well as the norm

(6.3.16) ‖Φα,k ‖
2
L2 = π (1 + α)

1−α
1+α Γ

( 1−α
1+α

)
(2|k |)−

2
1+α .

Lemma 6.3.2. Let α ∈ (0, 1) and k ∈ Z\{0}. One has

(6.3.17) ker Aα(k)∗ = span{Φα,k} .

Proof. Owing to (6.2.21), a generic h ∈ ker Aα(k)∗ belongs to L2(R+) and satisfies

(i) Sα,k h = −h′′ + k2x2αh + Cα x−2h = 0 .

Setting

(ii) z :=
|k |

1 + α
x1+α , w(z) :=

h(x)
√

x
, ν :=

√
1 + 4Cα

2(1 + α)
=

1
2
,

the ordinary differential equation (i) takes precisely the form (6.3.11) with the considered ν. The two linearly
independent solutionsK 1

2
and I 1

2
to (6.3.11) yield, through the transformation (ii) above, the two linearly independent

solutions (6.3.12) to (i). In fact, only Φα,k is square-integrable, whereas Fα,k fails to be so at infinity (as is seen
from (6.3.16)-(6.3.15)). Formula (6.3.17) is thus proved. �

6.3.2 Non-homogeneous inverse differential problem

Let us now focus on the non-homogeneous problem

(6.3.18) Sα,k u = g

in the unknown u for given g. With respect to the fundamental system {Fα,k,Φα,k} given by (6.3.12), of solutions
for the problem Sα,k u = 0, the general solution is given by

(6.3.19) u = c1Fα,k + c2Φα,k + upart

for c1, c2 ∈ C and some particular solution upart, i.e., Sα,k upart = g.
The Wronskian

(6.3.20) W(Φα,k, Fα,k)(r) := det
(
Φα,k(r) Fα,k(r)
Φ′
α,k
(r) F ′

α,k
(r)

)
relative to the fundamental system {Fα,k,Φα,k} is clearly constant in r , since it is evaluated on solutions to the
homogeneous differential problem, with a value that can be computed by means of the asymptotics (6.3.14) or
(6.3.15) and amounts to

(6.3.21) W(Φα,k, Fα,k) = 1 + α =: W .
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A standard application of the method of variation of constants [111, Section 2.4] shows that we can take upart
to be

(6.3.22) upart(r) =
∫ +∞

0
Gα,k(r, ρ)g(ρ) dρ,

where

(6.3.23) Gα,k(r, ρ) :=
1
W

{
Φα,k(r)Fα,k(ρ) if 0 < ρ < r
Fα,k(r)Φα,k(ρ) if 0 < r < ρ .

For a ∈ R and k ∈ Z\{0}, let R(a)
Gα,k

be the integral operator acting on functions g on R+ as

(
R(a)
Gα,k

g
)
(x) :=

∫ +∞

0
G (a)
α,k
(x, ρ) g(ρ) dρ

G (a)
α,k
(x, ρ) := xa k2 Gα,k(x, ρ) ,

(6.3.24)

and let

(6.3.25) RGα,k
:= |k |−2 R(0)

Gα,k
,

whence

(6.3.26) (RGα,k
g)(x) =

∫ +∞

0
Gα,k(x, ρ) g(ρ) dρ .

The following property holds.

Lemma 6.3.3. Let α ∈ (0, 1) and k ∈ Z\{0}.

(i) For each a ∈ (− 1−α
2 , 2α], R(a)

Gα,k
can be realised as an everywhere defined, bounded operator on L2(R+, dx),

which is also self-adjoint if a = 0.

(ii) When a = 2α, the operator R(2α)
Gα,k

is bounded uniformly in k.

Remark 6.3.4. The uniformity in k of the norm of R(2α)
Gα,k

will be useful in Subsect. 6.6.5. In fact, it is to prove the
boundedness claim (i) in a form that implies the k-uniformity of claim (ii) that we have to do a somewhat lengthy
proof, given in the Appendix 6.7.3.

A relevant consequence of Lemma 6.3.3 is the following large-distance decaying behaviour of a generic function
of the form RGα,k

u.

Corollary 6.3.5. Let α ∈ (0, 1) and k ∈ Z\{0}. Then

(6.3.27) ran RGα,k
⊂ L2(R+, 〈x〉4αdx) .

Proof. By Lemma 6.3.3 we know that both x2αRGα,k
and RGα,k

are bounded in L2(R+, dx). Therefore, for any
u ∈ L2(R+, dx) one has that both RGα,k

u and x2αRGα,k
u must belong to L2(R+, dx), whence indeed RGα,k

u ∈
L2(R+, (1 + x4α)dx). �

Moreover, we recognise that RGα,k
inverts a self-adjoint extension of Aα(k).

Lemma 6.3.6. Let α ∈ (0, 1) and k ∈ Z\{0}. There exists a self-adjoint extension Aα(k) of Aα(k) in L2(R+) which
has everywhere defined and bounded inverse and such that Aα(k)−1 = RGα,k

.

Proof. RGα,k
is bounded and self-adjoint (Lemma 6.3.3), and by construction satisfies Sα,k RGα,k

g = g ∀g ∈
L2(R+). Therefore, RGα,k

g = 0 for some g ∈ L2(R+) implies g = 0, i.e., RGα,k
is injective. Then RGα,k

has
dense range ((ran RGα,k

)⊥ = ker RGα,k
). As a consequence (see, e.g., [102, Theorem 1.8(iv)]), Aα(k) := R−1

Gα,k
is

self-adjoint. One thus has RGα,k
= Aα(k)−1 and from the identity Aα(k)∗RGα,k

= 1 on L2(R+) one deduces that
for any h ∈ D(Aα(k)), say, h = RGα,k

g = Aα(k)−1g for some g ∈ L2(R+), the identity Aα(k)∗h = Aα(k)h holds.
This means that Aα(k)∗ ⊃ Aα(k), whence also Aα(k) = Aα(k)∗∗ ⊂ Aα(k), i.e., Aα(k) is a self-adjoint extension
of Aα(k). �
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We conclude this Subsection by examining the function

(6.3.28) Ψα,k := RGα,k
Φα,k .

We prove the following useful asymptotics.

Lemma 6.3.7. Let α ∈ (0, 1) and k ∈ Z\{0}. Then

(6.3.29) Ψα,k(x)
x↓0
=

√
2 |k |

π(1+α)3 ‖Φα,k ‖
2
L2 x1+α/2 + o(x3/2) .

Proof. Owing to (6.3.23) and (6.3.26),

Ψα,k(x) =
1
W

(
Φα,k(x)

∫ x

0
Fα,k(ρ)Φα,k(ρ)dρ + Fα,k(x)

∫ +∞

x

Φα,k(ρ)
2dρ

)
.

By means of (6.3.14) we then find

Φα,k(x)
∫ x

0
Fα,k(ρ)Φα,k(ρ)dρ

x↓0
=

√
π(1+α)

8 |k | x−
α
2 +2 + o(x3)

x↓0
= o(x3/2)

(having explicitly used that α ∈ (0, 1)), and

Fα,k(x)
∫ +∞

x

Φα,k(ρ)
2dρ x↓0

= Fα,k(x)
(
‖Φα,k ‖

2
L2 −

∫ x

0
Φα,k(ρ)

2dρ
)

x↓0
=

√
2 |k |
π(1+α) ‖Φα,k ‖

2
L2 x1+ α2 +O(x2− α2 ) .

The latter quantity is leading, and using the expression (6.3.21) for W yields (6.3.29). �

In fact, using (6.3.21), (6.3.23), and (6.3.26) as in the proof above, and using the explicit expression (6.3.13)
for Φα,k and Fα,k , one finds

Ψα,k(x) =
√
π(1+α)
2 |k |3

(
x−

α
2 e−

|k |
1+α x1+α

∫ x

0
dρ ρ−α sinh ( |k |1+α ρ

1+α) e−
|k |

1+α ρ
1+α

+ x−
α
2 sinh ( |k |1+α x1+α)

∫ +∞

x

dρ ρ−α e−
2|k |
1+α ρ

1+α
)(6.3.30)

or also, with a change of variable ρ 7→ |k | 1
1+α ρ,

Ψα,k(x) =
√
π(1+α)

2 |k |−
5+α

2(1+α)×

×

(
x−

α
2 e−

|k |
1+α x1+α

∫ x |k |
1

1+α

0
dρ ρ−α sinh ( ρ

1+α

1+α ) e
−
ρ1+α
1+α

+ x−
α
2 sinh ( |k |1+α x1+α)

∫ +∞

x |k |
1

1+α
dρ ρ−α e−

2ρ1+α
1+α

)
.

(6.3.31)

However, we will not need such an explicit expression for Ψα,k until Subsect. 6.7.8.

6.3.3 Operator closure Aα(k)

The next fundamental ingredient for the KVB extension scheme is the qualification of the operator closure
Aα(k) of Aα(k).

In this Subsection we establish the following result.

Proposition 6.3.8. Let α ∈ (0, 1) and k ∈ Z\{0}. Then

(6.3.32) D(Aα(k)) = H2
0 (R

+) ∩ L2(R+, 〈x〉4α dx) .
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Here, by definition,

(6.3.33) D(Aα(k)) = C∞0 (R
+)
‖ ‖Aα (k)

,

where the norm ‖ · ‖Aα (k) is defined by

‖ϕ‖2Aα (k) := ‖ − ϕ′′ + k2x2αϕ + Cαx−2ϕ‖2
L2(R+)

+ ‖ϕ‖2
L2(R+)

∀ϕ ∈ D(Aα(k)) = C∞0 (R
+) .

(6.3.34)

In order to prove Proposition 6.3.8 we shall need several lemmas, whose proves follow standard ODE arguments
and are given in the Appendix.

First, we need a useful representation of D(Aα(k)∗) based on the differential nature (6.2.21) of the adjoint
Aα(k)∗.

Lemma 6.3.9. Let α ∈ (0, 1) and k ∈ Z\{0}.

(i) For each g ∈ D(Aα(k)∗) there exist uniquely determined constants a(g)0 , a(g)∞ ∈ C and functions

b(g)0 (x) :=
1
W

∫ x

0
Fα,k(ρ)(Aα(k)∗g)(ρ) dρ

b(g)∞ (x) := −
1
W

∫ x

0
Φα,k(ρ)(Aα(k)∗g)(ρ) dρ

(6.3.35)

on R+ such that

(6.3.36) g = a(g)0 Fα,k + a(g)∞ Φα,k + b(g)∞ Fα,k + b(g)0 Φα,k

with Φα,k and Fα,k defined in (6.3.12) and W = −(1 + α) as in (6.3.21).

(ii) The functions b(g)0 and b(g)∞ satisfy the properties

b(g)0 , b(g)∞ ∈ AC(R+)(6.3.37)

b(g)0 (x)
x↓0
= o(1) , b(g)∞ (x)

x↓0
= o(1)(6.3.38)

b(g)∞ (x)Fα,k(x) + b(g)0 (x)Φα,k(x)
x↓0
= o(x3/2) .(6.3.39)

Next, proceeding towards the proof of Proposition 6.3.8, we introduce, for any two functions inD(Aα(k)∗), the
Wronskian

(6.3.40) R+ 3 x 7→ Wx(g, h) := det
(
g(x) h(x)
g′(x) h′(x)

)
, g, h ∈ D(Aα(k)∗)

and the boundary form

(6.3.41) ω(g, h) := 〈Aα(k)∗g, h〉L2 − 〈g, Aα(k)∗h〉L2, g, h ∈ D(Aα(k)∗).

The boundary form is anti-symmetric, i.e.,

(6.3.42) ω(h, g) = −ω(g, h),

and it is related to the Wronskian by

(6.3.43) ω(g, h) = − lim
x↓0

Wx(g, h) .

Indeed,

ω(g, h) =
∫ +∞

0
(Aα(k)∗g)(ρ) h(ρ) dρ −

∫ +∞

0
g(ρ) (Aα(k)∗h)(ρ)dρ

= lim
x↓0

( ∫ +∞

x

(−g′′(ρ) h(ρ) dρ +
∫ +∞

x

g(ρ) h′′(ρ) dρ
)

= lim
x↓0

(
g′(x)h(x) − g(x)h′(x)

)
= − lim

x↓0
Wx(g, h) .
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It is also convenient to refer to the two-dimensional space of solutions to the differential problem Sα,k u = 0 as
the space

(6.3.44) L := {u : R+ → C | Sα,k u = 0} = span {Φα,k, Fα,k} ,

where the second identity follows from what argued in the proof of Lemma 6.3.2. As well known, x 7→ Wx(u, v)
is constant whenever u, v ∈ L, and this constant is zero if and only if u and v are linearly dependent. Clearly, any
u ∈ L is square-integrable around x = 0, as follows from the asymptotics (6.3.14).

Lemma 6.3.10. Let α ∈ (0, 1) and k ∈ Z\{0}. For given u ∈ L,

Lu : D(Aα(k)∗) → C

g 7→ Lu(g) := lim
x↓0

Wx(u, g)
(6.3.45)

defines a linear functional on D(A∗α(k)) which vanishes on D(Aα(k)).

With this preparatory material at hand, we can characterise the space D(Aα(k)) as follows.

Lemma 6.3.11. Let α ∈ (0, 1), k ∈ Z\{0}, and ϕ ∈ D(Aα(k)∗). The following conditions are equivalent:

(i) ϕ ∈ D(Aα(k)),

(ii) ω(ϕ, g) = 0 for all g ∈ D(Aα(k)∗),

(iii) Lu(ϕ) = 0 for all u ∈ L,

(iv) in the decomposition (6.3.36) of ϕ one has a(ϕ)0 = a(ϕ)∞ = 0.

We can now characterise the short-distance behaviour of the functions in D(Aα(k)) and of their derivative.

Lemma 6.3.12. Let α ∈ (0, 1) and k ∈ Z \ {0}. If ϕ ∈ D(Aα(k)), then ϕ(x) = o(x3/2) and ϕ′(x) = o(x1/2) as x ↓ 0.

Proof. Owing to Lemma 6.3.11,
ϕ = b(ϕ)∞ Fα,k + b(ϕ)0 Φα,k .

Thus, ϕ = o(x
3
2 ) follows from (6.3.39) of Lemma 6.3.9. Moreover,

ϕ′ =
(
b(ϕ)∞ Fα,k + b(ϕ)0 Φα,k

) ′
= b(ϕ)∞ F ′α,k + b(ϕ)0 Φ

′
α,k ,

thanks to the cancellation (b(ϕ)∞ )′Fα,k + (b
(ϕ)
0 )
′Φα,k = 0 that follows from (6.3.35). From the short-distance

asymptotics (6.3.14) one has

Fα,k(x) = O(x1+ α2 ) , F ′α,k(x) = O(x
α
2 ) ,

Φα,k(x) = O(x−
α
2 ) , Φα,k(x)′ = O(x−(1+

α
2 )) ,

whence

|b(ϕ)∞ (x)F
′
α,k(x)| . x

α
2 ‖Aα(k)∗ϕ‖L2((0,x))

( ∫ x

0
|ρ−

α
2 |2dρ

)1
2

. x
1
2 ‖Aα(k)ϕ‖L2((0,x)) = o(x

1
2 ) ,

and also

|b(ϕ)0 (x)Φ
′
α,k(x)| .

1
x1+ α2

‖Aα(k)∗ϕ‖L2((0,x))

( ∫ x

0
|ρ1+ α2 |2dρ

)1
2

. x
1
2 ‖Aα(k)ϕ‖L2((0,x)) = o(x

1
2 ) .

The proof is thus completed. �

We are finally in the condition to prove Proposition 6.3.8.
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Proof of Proposition 6.3.8. Let us first prove the inclusion

(*) H2
0 (R

+) ∩ L2(R+, 〈x〉4α dx) ⊂ D(Aα(k)) .

If ϕ belongs to the space on the l.h.s. of (*), then ϕ′′ ∈ L2(R), x2αϕ ∈ L2(R), and ϕ(x) = o(x3/2) as x ↓ 0, whence
also x−2ϕ ∈ L2(R). As a consequence, −ϕ′′ + k2x2αϕ + Cαx−2ϕ ∈ L2(R), i.e., owing to (6.2.21), ϕ ∈ D(Aα(k)∗).
Representing now ϕ according to (6.3.36) as

ϕ = a(ϕ)0 Fα,k + a(ϕ)∞ Φα,k + b(ϕ)∞ Fα,k + b(ϕ)0 Φα,k ,

we deduce that a(ϕ)0 = a(ϕ)∞ = 0, for otherwise the behaviour (6.3.14) ofΦα,k and Fα,k as x ↓ 0would be incompatible
with ϕ(x) = o(x3/2). Instead, the component b(ϕ)∞ Fα,k + b(ϕ)0 Φα,k displays the o(x3/2)-behaviour, as we see from
(6.3.39). Lemma 6.3.11 then implies ϕ ∈ D(Aα(k)), which proves (*).

Next, let us prove the opposite inclusion

(**) H2
0 (R

+) ∩ L2(R+, 〈x〉4α dx) ⊃ D(Aα(k)) .

Owing to Lemma 6.3.6 there exists a self-adjoint extension Aα(k) of Aα(k) with D(Aα(k)) = ranRGα,k
, and

owing to Corollary 6.3.5 ranRGα,k
⊂ L2(R+, 〈x〉4α dx). Therefore, D(Aα(k)) ⊂ L2(R+, 〈x〉4α dx). It remains

to prove that D(Aα(k)) ⊂ H2
0 (R

+). For ϕ ∈ D(Aα(k)) ⊂ D(Aα(k)∗) formula (6.2.21) prescribes that g :=
−ϕ′′ + k2x2αϕ + Cαx−2ϕ ∈ L2(R). As proved right above, x2αϕ ∈ L2(R), whereas the property x−2ϕ ∈ L2(R+)
follows from Lemma 6.3.12. Then by linearity ϕ′′ ∈ L2(R+), which also implies ϕ ∈ H2(R+) by standard arguments
[69, Remark 4.21]. Lemma 6.3.12 ensures that ϕ(0) = ϕ′(0) = 0, and we conclude that ϕ ∈ H2

0 (R
+). This completes

the proof of (**). �

6.3.4 Kreı̆n-Višik-Birman extension scheme for symmetric positive operators
Following, e.g., [10], and [62], we recall the main theorem of the KVB self-adjoint extension theory.

LetH be a Hilbert space and H a linear operator that we assume to be symmetric, densely defined, and positive
(i.e., there exists c > 0 such that (v,Hv) ≥ c‖v‖2, ∀v ∈ H ). Assume moreover that there exists a self-adjoint
extension of H, denoted by H , with everywhere defined bounded inverse. Notice that such an extension always
exists when H is positive, since in this case one can take as H the Friedrich extension [100, Theorem X.32], which
is also positive and thus has an everywhere defined bounded inverse.

Theorem 6.3.13 (Kreı̆n-Višik-Birman extension Theorem). .

• The domain of the adjoint H∗ can be decomposed as

(6.3.46) D(H∗) = D(H) uH −1 ker H∗ u ker H∗,

and
D(H ) = D(H) u ker H∗.

• There is a one-to-one correspondence S ↔ H S between the self-adjoint extensions H S of H and the
self-adjoint operators S defined on Hilbert subspaces of ker H∗. If S is any such operator with domain
D(S) ⊂ ker H∗, the corresponding extension H S is given by

D(H S) =


ψ = ϕ̃ +H −1(Sv + w) + v

such that
ϕ̃ ∈ D(H) , v ∈ D(S) ,
w ∈ ker(H∗) ∩ D(S)⊥


H Sψ = Hϕ̃ + Sv + w .

(6.3.47)

6.3.5 Distinguished extension and induced classification
We apply here the general Theorem 6.3.13 to the operator Aα(k), exploiting the self-adjoint reference extension
Aα(k) (defined in Lemma 6.3.6), that has everywhere defined bounded inverse. Since (see Lemmas 6.3.2, 6.3.6,
and (6.3.28))

ker Aα(k)∗ = span{Φα,k} , and Aα(k)−1
Φα,k = Ψα,k ,
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Theorem 6.3.13 gives at once that all self-adjoint extensions of Aα(k) constitute a one-real-parameter-family
{A[β]α (k) | β ∈ R}, given by

D(A[β]α (k)) =
{
g = ϕ + c(βΨα,k + Φα,k)

�� ϕ ∈ D(Aα(k)) , c ∈ C
}

A[β]α (k)g = Aα(k)∗g = Aα(k) ϕ + c βΦα,k
(6.3.48)

and we have the decomposition

D(Aα(k)∗) = D(Aα(k)) u span{Ψα,k} u span{Φα,k}

D(Aα(k)) = D(Aα(k)) u span{Ψα,k} .
(6.3.49)

By comparing (6.3.49) with the short-range asymptotics for Φα,k (formula (6.3.14) above), for Ψα,k (Lemma
6.3.7), and for the elements of D(Aα(k)) (Lemma 6.3.12), one deduces that for a function

(6.3.50) g = ϕ + c1Ψα,k + c0Φα,k ∈ D(Aα(k)∗)

(with ϕ ∈ D(Aα(k)) and c0, c1 ∈ C) the limits

g0 := lim
x↓0

x
α
2 g(x) = c0

√
π(1+α)

2 |k |

g1 := lim
x↓0

x−(1+
α
2 )(g(x) − g0x−

α
2 ) = c1

√
2 |k |

π(1+α)3 ‖Φα,k ‖
2
L2 − c0

√
π |k |

2(1+α)

(6.3.51)

exist and are finite, and one has the asymptotics

(6.3.52) g(x)
x↓0
= g0x−

α
2 + g1x1+ α2 + o(x3/2) .

In turn, by comparing (6.3.50) with (6.3.48) we see that for given β the domain of the extension A[β]α (k) consists
of all those g’s in D(Aα(k)∗) that, decomposed as in (6.3.50), satisfy the condition

(6.3.53) c1 = β c0 .

Moreover, replacing c0 and c1 of the expression (6.3.50) with g0 and g1 according to (6.3.51), the self-adjointness
condition (6.3.53) takes the form

(6.3.54) g1 = γ g0 , γ := |k |
1+α

( 2‖Φα,k ‖2
L2

π(1+α) β − 1
)
.

We can therefore equivalently parametrise each extension with the new real parameter γ and write A[γ]α (k) in place
of A[β]α (k), with β and γ linked by (6.3.54).

We have thus proved the following.

Proposition 6.3.14. Let α ∈ (0, 1) and k ∈ Z \ {0}. The self-adjoint extensions of Aα(k) in L2(R+) form the family
{A[γ]α (k) | γ ∈ R ∪ {∞}}. The extension with γ = ∞ is the reference extension Aα(k) = R−1

Gα,k
, where RGα,k

is the
operator defined by (6.3.26). For generic γ ∈ R one has

A[γ]α (k) = Aα(k)∗
���
D(A

[γ]
α (k))

D(A[γ]α (k)) = {g ∈ D(Aα(k)
∗) | g1 = γg0} ,

(6.3.55)

where, for each g, the constants g0 and g1 are defined by the limits (6.3.51).

The above classification allows us to finally identify the Friedrich extension Aα,F (k) :

Proposition 6.3.15. Let α ∈ (0, 1) and k ∈ Z \ {0}. Then Aα(k) = Aα,F (k), and hence RGα,k
= Aα,F (k)−1 and

Ψα,k = (Aα,F (k))−1Φα,k .

For the proof of Proposition 6.3.15 it is convenient to recall the following.

Lemma 6.3.16. Let α ∈ (0, 1) and k ∈ Z \ {0}. The quadratic form of the Friedrichs extension of Aα(k) is given by

D[Aα,F (k)] =
{
g ∈ L2(R+)

�� ‖g′‖2
L2 + ‖xαg‖2L2 + ‖x−1g‖2

L2 < +∞
}

Aα,F (k)[g, h] =
∫ +∞

0

(
g′(x)h′(x) + k2x2α g(x)h(x) + Cα

g(x)h(x)
x2

)
dx .

(6.3.56)
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Proof. It is a standard construction (see, e.g., [62, Theorem 15]), that follows from the fact that D[Aα,F (k)] is the
closure of D(Aα(k)) = C∞0 (R

+) in the norm

‖g‖2F := 〈g, Aα(k)g〉L2 + 〈g, g〉L2

= ‖g′‖2
L2 + k2‖xαg‖2

L2 + Cα‖x−1g‖2
L2 + ‖g‖

2
L2 .

Then (6.3.56) follows at once from the above formula, since k2 > 0 and Cα > 0. �

Proof of Proposition 6.3.15. Let g ∈ D(A[γ]α (k)) for some γ ∈ R. The short-distance expansion (6.3.52), combined
with the self-adjointness condition (6.3.55), yields

x−1g(x)
x↓0
= g0 x−(1+

α
2 ) + γ g0 x

α
2 + o(x

1
2 ) .

Therefore, in general (namely whenever g0 , 0) x−1g is not square-integrable at zero. When this is the case,
formula (6.3.56) prevents g from belonging to D[Aα,F (k)]. This shows that no extension A[γ]α (k), γ ∈ R, has
operator domain entirely contained in D[Aα,F (k)]. The latter statement does not cover Aα(k) (γ = ∞). Now,
Aα,F (k) can be none of the A[γ]α (k)’s, γ ∈ R, because the Friedrichs extension has indeed operator domain inside
D[Aα,F (k)] – in fact, it is the unique extension with such property. Necessarily the conclusion is that Aα,F (k) and
Aα(k) are the same. �

A straightforward consequence of Proposition 6.3.15 (and of its proof) is the following.

Corollary 6.3.17. Let α ∈ (0, 1) and k ∈ Z\ {0}. The Friedrichs extension Aα,F (k) of Aα(k) is the only self-adjoint
extension whose operator domain is contained in D(x−1).

6.3.6 Proof of the classification theorem on fibre
Let us collect the results of the preceding discussion and prove Theorem 6.3.1.

Remark 6.3.18. The case α = 0 and hence Aα(k) is (a positive shift of) the minimally defined Laplacian, is well
known in the literature (see, e.g., [66]) and in this case Theorem 6.3.1 recover this information. In particular,
the operator closure has domain H2

0 (R
+), the adjoint has domain H2(R+), the Friedrichs extension is the Dirichlet

Laplacian and has form domain H1
0 (R

+).

Thus, Theorem 6.3.1 need only be proved when α ∈ (0, 1), the regime in which the analysis of Subsections
6.3.1-6.3.5 was developed.

Part (i) of Theorem 6.3.1 is precisely Proposition 6.3.8. Part (ii) follows from (6.2.21) and (6.3.49) concerning
the operator domain, and from Lemma 6.3.2 concerning the kernel.

Part (iv), the actual classification of extensions, is the rephrasing of Proposition 6.3.14, using the fact that the
reference extension is Aα(k) = Aα,F (k) (Proposition 6.3.15), and plugging the self-adjointness condition g1 = γg0
into the general asymptotics (6.3.52).

In part (iii), formula (6.3.8) for the operator domain follows from (6.3.49) (with Aα(k) = Aα,F (k)) and from
the short-range asymptotics for Ψα,k (Lemma 6.3.7), and for the elements ofD(Aα(k)) (Lemma 6.3.12) – which is
the same as taking formally γ = ∞ in the general asymptotics. The distinctive property of Aα,F (k) with respect to
the space D(x−1) is given by Corollary 6.3.17.

Thus, it remains to prove (6.3.9) for the form domain of Aα,F (k). The inclusion D[Aα,F (k)] ⊂ H1
0 (R

+) ∩

L2(R+, 〈x〉2α dx) follows directly from Lemma 6.3.16, as (6.3.56) prescribes that if g ∈ D[Aα,F (k)], then
g′, xαg, x−1g ∈ L2(R+), and the latter condition implies necessarily g(0) = 0. Conversely, if g ∈ H1

0 (R
+)

and g ∈ L2(R+, 〈x〉2α dx), then g(x)
x↓0
= o(x

1
2 ) and all three norms ‖g′‖L2 , ‖xαg‖L2 , and ‖x−1g‖L2 are finite.

Owing to (6.3.56), g ∈ D[Aα,F (k)].
The proof of Theorem 6.3.1 is completed.

6.4 Bilateral-fibre extensions
In this Section we study the two-sided version of the problem considered in Sections 6.3, namely the problem of
the self-adjoint extensions in L2(R) of the bilateral differential operator

D(Aα(k)) = C∞0 (R
−) � C∞0 (R

+)

Aα(k) = A−α(k) ⊕ A+α(k) ,
(6.4.1)
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already defined in (6.2.17). The Hilbert space L2(R) is now canonically decomposed into the orthogonal sum

(6.4.2) L2(R, dx) � L2(R−, dx) ⊕ L2(R+, dx) .

Each g ∈ L2(R) reads therefore

(6.4.3) g = g− ⊕ g+ ≡

(
g−

g+

)
, g±(x) := g(x) for x ∈ R± ,

and

(6.4.4) Aα(k)g = Sα,kg− ⊕ Sα,kg+ , Sα,k := −
d2

dx2 + k2 |x |2α +
Cα
x2 .

As A±α(k) has deficiency index 1 in L2(R±), Aα(k) has deficiency index 2 in L2(R), thus it comes with a richer
variety of extensions.

Among them, one has extensions of form

(6.4.5) B−α(k) ⊕ B+α(k)

where B±α(k) is a self-adjoint extension of A±α(k) in L2(R±), namely a member of the family determined in the
previous Section (Theorem 6.3.1). Extensions of type (6.4.5) are reduced with respect to the decomposition (6.4.2)
(in the usual sense of, e.g., [102, Sect. 1.4]): they provide decoupled self-adjoint realisations of the differential
operator Sα,k , with no constraint between the behaviour as x → 0+ and x → 0−. An important extension of this
type is the Friedrich extension Aα,F (k): indeed, a standard check shows that

(6.4.6) Aα,F (k) = A−α,F (k) ⊕ A+α,F (k) ,

where A±α,F is the Friedrichs extension of A±α(k) in L2(R±), described in Theorem 6.3.1(iii).
Generic extensions, instead, are not reduced as in (6.4.5), and are characterised by coupled bilateral boundary

conditions. We classify them using again the KVB scheme described in Sec. 6.3.4.
Following the same steps of Sections 6.3 and 6.7.5, we are now interested in self-adjoint restrictions of the

adjoint Aα(k)∗ = A−α(k)
∗ ⊕ A+α(k)

∗.
In order to export the one-sided analysis of Sections 6.3 to the present two-sided context, let us introduce a

unique expression for the functions of relevance, Φα,k and Ψα,k , valid for the left and the right side. Thus, we set

(6.4.7) Φ̃α,k(x) := Φα,k(|x |) , Ψ̃α,k(x) := Ψα,k(|x |) ,

understanding Φ̃α,k and Ψ̃α,k both as functions on R− and on R+, depending on the context. Let us recall that such
functions are defined in (6.3.13) and (6.3.28) when k , 0, and in (6.7.21) and (6.7.29) when k = 0.

Let us discuss the case k , 0 first. We deduce at once, respectively from Proposition 6.3.8, Lemma 6.3.2,
formula (6.3.28), and Proposition 6.3.15, that

D(Aα(k)) =
(
H2

0 (R
−) � H2

0 (R
+)

)
∩ L2(R, 〈x〉4α dx)(6.4.8)

ker Aα(k)∗ = span{Φ̃α,k} ⊕ span{Φ̃α,k}(6.4.9)
Aα,F (k)−1 ker Aα(k)∗ = span{Ψ̃α,k} ⊕ span{Ψ̃α,k} ,(6.4.10)

whence also [62, Theorem 1]

D(Aα(k)∗) =
(
H2

0 (R
−) � H2

0 (R
+)

)
∩ L2(R, 〈x〉4α dx)

u span{Ψ̃α,k} ⊕ span{Ψ̃α,k}

u span{Φ̃α,k} ⊕ span{Φ̃α,k} ,

(6.4.11)

namely, the analogue of (6.3.49).
In the notation of (6.4.3), a generic g ∈ D(Aα(k)∗) has therefore the short-range asymptotics

(6.4.12) g(x) ≡
(
g−(x)
g+(x)

)
x→0
=

(
g−0
g+0

)
|x |−

α
2 +

(
g−1
g+1

)
|x |1+

α
2 + o(|x |

3
2 )

for suitable g±0 , g
±
1 ∈ C given by the limits

g±0 = lim
x→0±

|x |
α
2 g±(x)

g±1 = lim
x→0±

|x |−(1+
α
2 )

(
g±(x) − g±0 |x |

− α2
)
.

(6.4.13)
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Formula (6.4.12) follows from (6.4.11) and the usual short-range asymptotics for Φα,k , Ψα,k , and D(Aα(k)).
Now, the KVB extension Theorem 6.3.13 establishes a one-to-one correspondence between self-adjoint ex-

tensions of Aα(k) and self-adjoint operators T in Hilbert subspaces of ker Aα(k)∗: denoting by A(T )α (k) each such
extension, and by K ⊂ ker Aα(k)∗ the Hilbert subspace where T acts in, A(T )α (k) is the restriction of Aα(k)∗ to the
domain

(6.4.14) D
(
A(T )α (k)

)
=


g = ϕ + Aα,F (k)−1(Tv + w) + v

with
ϕ ∈

(
H2

0 (R
−) � H2

0 (R
+)

)
∩ L2(R, 〈x〉4α dx) ,

v ∈ K , w ∈ span{Φ̃α,k} ⊕ span{Φ̃α,k} , w ⊥ v

 .
Clearly dimK can be equal to 0, 1, or 2. The former case corresponds to taking formally ‘T = ∞’ on D(T) = {0},
and reproduces the Friedrichs extension. The other two cases produce the rest of the family of extensions.

All the preceding discussion has an immediate counterpart when k = 0, based on the results of Sect. 6.7.5. The
above formulas are valid for k = 0 too, except for (6.4.8), that need be replaced with the generic identity

(6.4.15) D(Aα(0)) = D
(
A−α(0)

)
⊕ D

(
A+α(0)

)
as we did not make the characterisation of D

(
A±α(0)

)
as explicit as when k , 0 (nor we need that, for only the

asymptotics as x → 0 are relevant for our purposes), and except for (6.4.11), that consequently reads now

D(Aα(0)∗) = D
(
A−α(0)

)
�D

(
A+α(0)

)
u span{Ψ̃α,0} ⊕ span{Ψ̃α,0}

u span{Φ̃α,0} ⊕ span{Φ̃α,0} .

(6.4.16)

Thus when k = 0 formula (6.4.14) takes the form

(6.4.17) D
(
A(T )α (0)

)
=


g = ϕ + (Aα,F (0) + 1)−1(Tv + w) + v

with
ϕ ∈ D

(
A−α(0)

)
�D

(
A+α(0)

)
,

v ∈ K , w ∈ span{Φ̃α,0} ⊕ span{Φ̃α,0} , w ⊥ v

 ,
where now K is a Hilbert subspace of ker(Aα(0)∗ + 1) and T is a self-adjoint operator in K.

We can now formulate the main result of this Section.

Theorem 6.4.1. Let α ∈ [0, 1) and k ∈ Z. Each self-adjoint extension Bα(k) of Aα(k) acts as

(6.4.18) Bα(k)g = Sα,k g− ⊕ Sα,k g+

on a generic g of its domain, written in the notation of (6.4.3) and (6.4.12)-(6.4.13). The family of self-adjoint
extensions of Aα(k) is formed by the following sub-families.

• Friedrichs extension.
It is the operator (6.4.6). Its domain consists of those functions in D(Aα(k)∗) whose asymptotics (6.4.12)
has g±0 = 0.

• Family IR.

It is the family {A[γ]α,R(k) | γ ∈ R} defined, with respect to the asymptotics (6.4.12), by

D(A[γ]α,R(k)) = {g ∈ D(Aα(k)
∗) | g−0 = 0 , g+1 = γg

+
0 } .

• Family IL.

It is the family {A[γ]α,L(k) | γ ∈ R} defined, with respect to the asymptotics (6.4.12), by

D(A[γ]α,L(k)) = {g ∈ D(Aα(k)
∗) | g+0 = 0 , g−1 = γg

−
0 } .

• Family IIa with a ∈ C.

It is the family {A[γ]α,a(k) | γ ∈ R} defined, with respect to the asymptotics (6.4.12), by

D(A[γ]α,a(k)) =
{
g ∈ D(Aα(k)∗)

���� g+0 = a g−0
g−1 + a g+1 = γ g

−
0

}
.
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family of
extensions space K boundary

conditions parameters notes

Friedrichs {0} ⊕ {0} g±0 = 0 bilateral
confining

IR {0} ⊕ span{Φ̃α,k}
g−0 = 0

g+1 = γg
+
0

γ ∈ R
left

confining

IL span{Φ̃α,k} ⊕ {0}
g−1 = γg

−
0

g+0 = 0 γ ∈ R
right

confining

IIa
a ∈ C span{Φ̃α,k ⊕ aΦ̃α,k}

g+0 = a g−0
g−1 + a g+1 = γ g

−
0

γ ∈ R
bridging
for a = 1
and γ = 0

III span{Φ̃α,k} ⊕ span{Φ̃α,k}
g−1 = γ1g

−
0 + ζg

+
0

g+1 = ζg
−
0 + γ4g

+
0

ζ := γ2 + iγ3

γj ∈ R
j = 1, 2, 3, 4

Table 6.1: Summary of all possible boundary conditions of self-adjointness for the bilateral-fibre extensions of
Aα(k)

• Family III.

It is the family {A[Γ]α (k) | Γ ≡ (γ1, γ2, γ3, γ4) ∈ R
4} defined, with respect to the asymptotics (6.4.12), by

D(A[Γ]α (k)) =
g ∈ D(Aα(k)∗)

������
g−1 = γ1g

−
0 + ζg

+
0

g+1 = ζg
−
0 + γ4g

+
0

ζ := γ2 + iγ3

 .
The families IR, IL, IIa for all a ∈ C \ {0}, and III are mutually disjoint and, together with the Friedrichs extension,
exhaust the family of self-adjoint extensions of Aα(k).

The proof of Theorem 6.4.1 is straightforward, and it is given here in all details for completeness, and also to
provide an explicative example of the KVB extension theory for a reader that may be familiar with Von Neumann
extension theory or may not be familiar in general with the extension theories (in this example, of operators of
deficiency index 2).

Proof of Theorem 6.4.1. Let us consider first k , 0 and let us exploit the classification formula (6.4.14) in all
possible cases.

The choice K = {0} ⊕ {0} yields to the extension with domain

D(Aα(k)) u Aα,F (k)−1 ker Aα(k)∗ = D(Aα,F (k)) ,

namely the Friedrichs extension. Formula (6.3.8) of Theorem 6.3.1, applied on both sides R+ and R−, then implies
g+0 = 0 = g−0 .

The choice K = {0} ⊕ span{Φ̃α,k} yields to the extensions in the domain of which a function g = ϕ +
Aα,F (k)−1(Tv + w) + v is decoupled into a component g− in the domain of A−α,F (k) (the Friedrichs extension of
A−α(k)) and a component g+ in the domain of a self-adjoint extension of A+α(k) in L2(R+). This identifies a family
{A[γ]α,R(k) | γ ∈ R} of extensions with

A[γ]α,R(k) = A−α,F (k) ⊕ A+,[γ]α (k) ,

where A+,[γ]α (k) denotes here the generic extension of A+α(k), according to the classification of Theorem 6.3.1(iv),
for which therefore g+1 = γg

+
0 . The symmetric choice K = span{Φ̃α,k} ⊕ {0} is treated in a completely analogous

way.
The next one-dimensional choice is K = span{Φ̃α,k ⊕ aΦ̃α,k} for some 0 , a ∈ C. Formula (6.4.14) is now to

be specialised with

v ∈ K , w ∈ K⊥ ∩
(
span{Φ̃α,k} ⊕ span{Φ̃α,k}

)
= span{Φ̃α,k ⊕ (−a−1

)Φ̃α,k} .
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The generic self-adjoint operator T on K is now the multiplication by some τ ∈ R. Then (6.4.14) reads

g = ϕ + Aα,F (k)−1
(
τc0

(
Φ̃α,k

aΦ̃α,k

)
+ c̃0

(
Φ̃α,k

−a−1
Φ̃α,k

))
+ c0

(
Φ̃α,k

aΦ̃α,k

)
= ϕ +

(
(τc0 + c̃0)Ψ̃α,k

(τc0a − c̃0 a−1
)Ψ̃α,k

)
+ c0

(
Φ̃α,k

aΦ̃α,k

)
for generic coefficients c0, c̃0 ∈ C. From the expression above we find that the limits (6.4.13), computed with the
short-range asymptotics (6.3.14) and (6.3.29) (and Lemma 6.3.12), amount to

g−0 = c0

√
π(1+α)

2 |k |

g+0 = c0 a
√
π(1+α)

2 |k |

g−1 = (τc0 + c̃0)
√

2 |k |
π(1+α)3 ‖Φα,k ‖

2
L2 − c0

√
π |k |

2(1+α)

g+1 = (τc0a − c̃0 a−1
)

√
2 |k |

π(1+α)3 ‖Φα,k ‖
2
L2 − c0a

√
π |k |

2(1+α) .

Let us stress that here the constant ‖Φα,k ‖L2 is the L2-norm of Φα,k on the sole positive half-line. The first two
equations above yield g+0 = ag−0 . The last two yield

g−1 + a g+1 = c0(1 + |a|2)
(
τ
√

2 |k |
π(1+α)3 ‖Φα,k ‖

2
L2 −

√
π |k |

2(1+α)

)
= g−0 (1 + |a|2)

|k |
1+α

( 2‖Φα,k ‖2
L2

π(1+α) τ − 1
)
,

having replaced c0 = g−0

√
2 |k |
π(1+α) . We can also write

g−1 + a g+1 = γ g−0

after re-parametrising the extension parameter as

(6.4.19) γ := (1 + |a|2) |k |1+α

( 2‖Φα,k ‖2
L2

π(1+α) τ − 1
)
∈ R .

This completes the identification of the extensions A[γ]α,a(k).
The remaining choice is K = span{Φ̃α,k} ⊕ span{Φ̃α,k} = ker Aα(k)∗. In this case formula (6.4.14) only has

v-vectors and no w-vectors, and the self-adjoint T is represented by a generic 2 × 2 Hermitian matrix

T =
(

τ1 τ2 + iτ3
τ2 − iτ3 τ4

)
, τ1, τ2, τ3, τ4 ∈ R .

Then (6.4.14) reads

g = ϕ + Aα,F (k)−1T
(
c−0 Φ̃α,k
c+0 Φ̃α,k

)
+

(
c−0 Φ̃α,k
c+0 Φ̃α,k

)
= ϕ +

(
(τ1c−0 + (τ2 + iτ3)c+0 )Ψ̃α,k
((τ2 − iτ3)c−0 + τ4c+0 )Ψ̃α,k

)
+

(
c−0 Φ̃α,k
c+0 Φ̃α,k

)
for generic coefficients c±0 ∈ C. From the expression above we find that the limits (6.4.13), computed with the
short-range asymptotics (6.3.14) and (6.3.29) (and Lemma 6.3.12), amount to

g±0 = c±0
√
π(1+α)

2 |k |

g−1 = c−0
(
τ1

√
2 |k |

π(1+α)3 ‖Φα,k ‖
2
L2 −

√
π |k |

2(1+α)

)
+ c+0 (τ2 + iτ3)

√
2 |k |

π(1+α)3 ‖Φα,k ‖
2
L2

g+1 = c−0 (τ2 − iτ3)
√

2 |k |
π(1+α)3 ‖Φα,k ‖

2
L2 + c+0

(
τ4

√
2 |k |

π(1+α)3 ‖Φα,k ‖
2
L2 +

√
π |k |

2(1+α)

)
.
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Replacing c±0 = g±0

√
2 |k |
π(1+α) in the last two equations above and re-defining the extension parameters as

γ1 := |k |
1+α

( 2‖Φα,k ‖2
L2

π(1+α) τ1 − 1
)

γ2 + iγ3 := (τ2 + iτ3)
2 |k |

π(1+α)2 ‖Φα,k ‖
2
L2

γ4 := |k |
1+α

( 2‖Φα,k ‖2
L2

π(1+α) τ4 − 1
)(6.4.20)

yields the boundary condition that qualifies the extension A[Γ]α (k) with Γ = (γ1, γ2, γ3, γ4).
Last, let us repeat the above reasonings when k = 0, based now on the classification formula (6.4.17). The only

modifications needed are the replacement of Aα,F (k)−1 with (Aα,F (0)+1)−1, and the use, instead of the short-range
asymptotics given by (6.3.14), (6.3.29), and Lemma 6.3.12 valid for k , 0, of the short-range asymptotics given
by (6.7.22), (6.7.30), and Lemma 6.7.8 valid for k = 0.

The net result concerning the extensions of type IIa, namely the extensions A[γ]α,a(0), is that (6.4.19) is replaced
by

(6.4.21) γ := (1+ |a |2)Γ( 1−α
2 )

2α (1+α)Γ( 1+α
2 )

(
(1+α) ‖Φα,0 ‖2

L2

Γ( 3+α
2 )Γ(

1−α
2 )

τ − 1
)
∈ R .

Analogously, concerning the extensions of type III, namely the extensions A[Γ]α (0), (6.4.20) is now replaced by

γ1 := Γ( 1−α
2 )

2α (1+α)Γ( 1+α
2 )

(
(1+α) ‖Φα,0 ‖2

L2

Γ( 3+α
2 )Γ(

1−α
2 )

τ1 − 1
)

γ2 + iγ3 := (τ2 + iτ3)
‖Φα,0 ‖

2
L2

2αΓ( 3+α
2 )Γ(

1+α
2 )

γ4 := Γ( 1−α
2 )

2α (1+α)Γ( 1+α
2 )

(
(1+α) ‖Φα,0 ‖2

L2

Γ( 3+α
2 )Γ(

1−α
2 )

τ4 − 1
)
.

(6.4.22)

The proof is now completed. �

Whereas Theorem 6.4.1 expresses the various conditions of self-adjointness in terms of the representation
(6.4.3) and (6.4.12)-(6.4.13) of a generic g ∈ D(Aα(k)∗), that is, in terms of the short-range behaviour of g, for the
forthcoming analysis it will be convenient to re-formulate the above classification in two further equivalent forms.

The first one refers to the representation (6.4.3), (6.4.11), and (6.4.16) of g ∈ D(Aα(k)∗), that is,

(6.4.23) g =

(
ϕ̃−

ϕ̃+

)
+

(
c−1 Ψ̃α,k
c+1 Ψ̃α,k

)
+

(
c−0 Φ̃α,k
c+0 Φ̃α,k

)
with ϕ̃± ∈ D(A±α(k)) and c±0 , c

±
1 ∈ C. Then the proof of Theorem 6.4.1 demonstrates also the following.

Theorem 6.4.2. Let α ∈ [0, 1) and k ∈ Z. The family of self-adjoint extensions of Aα(k) is formed by the following
sub-families.

• Friedrichs extension. It is the operator (6.4.6). Its domain consists of those functions in D(Aα(k)∗) whose
representation (6.4.23) has c±0 = 0.

• Family IR. It is the family {A[γ]α,R(k) | γ ∈ R} defined, with respect to the representation (6.4.23), by

D(A[γ]α,R(k)) = {g ∈ D(Aα(k)
∗) | c−0 = 0 , c+1 = βc+0 } ,

where β and γ are related by (6.3.54) for k , 0 and (6.7.34) for k = 0.

• Family IL. It is the family {A[γ]α,L(k) | γ ∈ R} defined, with respect to the representation (6.4.23), by

D(A[γ]α,L(k)) = {g ∈ D(Aα(k)
∗) | c+0 = 0 , c−1 = βc−0 } ,

where β and γ are related by (6.3.54) for k , 0 and (6.7.34) for k = 0.
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• Family IIa with a ∈ C. It is the family {A[γ]α,a(k) | γ ∈ R} defined by

D(A[γ]α,a(k)) =


g ∈ D(Aα(k)∗) with (6.4.23) of the form

g =

(
ϕ̃−

ϕ̃+

)
+

(
(τc0 + c̃0)Ψ̃α,k

(τc0a − c̃0 a−1
)Ψ̃α,k

)
+ c0

(
Φ̃α,k

aΦ̃α,k

)  ,
where τ and γ are related by (6.4.19) if k , 0, and by (6.4.21) if k = 0.

• Family III. It is the family {A[Γ]α (k) | Γ ≡ (γ1, γ2, γ3, γ4) ∈ R
4} defined by

D(A[Γ]α (k)) =

g ∈ D(Aα(k)∗) satisfying (6.4.23) with(

c−1
c+1

)
=

(
τ1 τ2 + iτ3

τ2 − iτ3 τ4

) (
c−0
c+0

)  ,
where (τ1, τ2, τ3, τ4) and (γ1, γ2, γ3, γ4) are related by (6.4.20) if k , 0 and (6.4.22) if k = 0.

The second alternative to the formulation of the conditions of self-adjointness provided by Theorem 6.4.1, is
in fact a very close alternative to the formulation of Theorem 6.4.1 itself, with the same short-range parameters g±0
and g±1 and the same classification parameters γ or Γ, except that it is referred to the following representation of g,
which is valid identically for any x ∈ R \ {0}, and not just as |x | → 0.

To this aim, and also for later convenience, we shall refer to P as a cut-off function in C∞0 (R) such that

(6.4.24) P(x) =

{
1 if |x | < 1 ,
0 if |x | > 2 .

In fact, in the following Theorem it is enough that P be smooth, compactly supported, and with P(0) = 1, but we
keep the general assumption (6.4.24) for later use.

Theorem 6.4.3. Let α ∈ [0, 1) and let k ∈ Z. Then for any g ∈ D(Aα(k)∗) there exist a unique ϕ ∈ D(Aα(k)) and
uniquely determined coefficients g±0 , g

±
1 ∈ C such that

(6.4.25) g(x) = ϕ(x) + g0 |x |−
α
2 P(x) + g1 |x |1+

α
2 P(x) ∀x ∈ R \ {0}

in the usual notation
ϕ(x) ≡

(
ϕ−(x)
ϕ+(x)

)
, g0 ≡

(
g−0
g+0

)
, g1 ≡

(
g−1
g+1

)
.

Here g±0 and g±1 are precisely the same as in the asymptotics (6.4.12)-(6.4.13). Therefore, the same classification
of Theorem 6.4.1 in terms of g±0 and g±1 applies.

Proof. Let k , 0 and let us decompose g ∈ D(Aα(k)∗) as g± = ϕ̃± + c±1 Ψ̃α,k + c±0 Φ̃α,k with respect to the
decomposition (6.4.23). For short, let us discuss only the component g+, dropping the ‘+’ superscript: the
discussion for g− is completely analogous. Thus, g = ϕ̃ + c1Ψ̃α,k + c0Φ̃α,k for all x > 0 and uniquely determined
ϕ̃ ∈ D(Aα(k)) and c0, c1 ∈ C. Let us introduce the functions

L0,k(x) :=
(√

π(1+α)
2 |k | −

√
π |k |

2(1+α) |x |
1+α

)
P(x)

L1,k(x) :=
√

2 |k |
π(1+α)3 ‖Φα,k ‖

2
L2 P(x)

and re-write

g = ϕ̃ + c1(Ψ̃α,k − |x |1+
α
2 L1,k) + c0(Φ̃α,k − |x |−

α
2 L0,k) + c1 |x |1+

α
2 L1,k + c0 |x |−

α
2 L0,k

= ϕ +
(
c1

√
2 |k |

π(1+α)3 ‖Φα,k ‖
2
L2 − c0

√
π |k |

2(1+α)

)
|x |1+

α
2 P + c0

√
π(1+α)

2 |k | |x |
− α2 P ,

having set
ϕ := ϕ̃ + c1(Ψ̃α,k − |x |1+

α
2 L1,k) + c0(Φ̃α,k − |x |−

α
2 L0,k) .

Because of the relation (6.3.51) between c0, c1 and g0, g1, we also have

g = ϕ + g0 |x |−
α
2 P + g1 |x |1+

α
2 P .
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Next, let us argue that ϕ ∈ D(Aα(k)). First, we observe that both |x |−
α
2 L0,k and |x |1+ α2 L1,k belong to D(Aα(k)∗).

The latter statement, owing to (6.2.21) and (6.3.4), is proved by checking the square-integrability of Sα,k(|x |−
α
2 L0,k)

and of Sα,k(|x |1+
α
2 L1,k). Since P localises L0,k and L1,k around x = 0, square-integrability must only be checked

locally. It is then routine to see that

−(|x |−
α
2 L0,k)

′′ + k2 |x |2α(|x |−
α
2 L0,k) + Cαx−2(|x |−

α
2 L0,k) ,

−(|x |1+
α
2 L1,k)

′′ + k2 |x |2α(|x |1+
α
2 L1,k) + Cαx−2(|x |1+

α
2 L1,k) ,

are both square-integrable around x = 0. As a consequence, both (Ψ̃α,k − |x |1+
α
2 L1,k) and (Φ̃α,k − |x |−

α
2 L0,k) are

elements of D(Aα(k)∗). Therefore, owing to the representation (6.3.49)-(6.3.51), in order to check that such two
functions also belong to D(Aα(k)) it suffices to verify the limits

lim
x→0
|x |

α
2 (Ψ̃α,k − |x |1+

α
2 L1,k) = lim

x→0
|x |

α
2 (Φ̃α,k − |x |−

α
2 L0,k) = 0

lim
x→0
|x |−(1+

α
2 )(Ψ̃α,k − |x |1+

α
2 L1,k) = lim

x→0
|x |−(1+

α
2 )(Φ̃α,k − |x |−

α
2 L0,k) = 0 .

The check is obvious, and holds thanks to the short-distance asymptotics that were chosen for L0,k and L1,k precisely
so as to suitably match with the short-distance asymptotics (6.3.14) of Φ̃α,k and (6.3.29) of Ψ̃α,k . This finally shows
that ϕ ∈ D(Aα(k)) and establishes (6.4.25). Of course, if conversely a function g of the form (6.4.25) is given with
ϕ ∈ D(Aα(k)), unfolding the above arguments one sees that g ∈ D(Aα(k)∗).

If instead k = 0, the same argument can be repeated decomposing now g ∈ D(Aα(0)∗) as g± = ϕ̃± + c±1 Ψ̃α,0 +
c±0 Φ̃α,0 according to the decomposition (6.4.16), and using now the short-range asymptotics (6.7.22), (6.7.30), and
Lemma 6.7.8 valid for k = 0. We omit the straightforward details. �

6.5 General extensions of Hα

Let us now come in this Section to the study of the self-adjoint extensions, in the Hilbert space (6.2.9), namely

(6.5.1) H �
⊕
k∈Z

hk � `2(Z, h) , hk � h � L2(R−) ⊕ L2(R+) ,

of the operator Hα introduced in (6.2.14) for α ∈ (0, 1). Such extensions are restrictions of H ∗
α , and it is standard

that H ∗
α =

⊕
k∈Z Aα(k)∗ (see also Lemma 6.7.2)

Clearly, Hα is semi-bounded from below, since Hα ⊂
⊕

k∈Z Aα(k) and owing to the uniform semi-
boundedness of each Aα(k) (see (6.3.1)). One can then naturally associate to Hα its Friedrichs extension
Hα,F =

⊕
k∈Z Aα,F (k) (see the Appendix, Sec. 6.7.6 for more details).

There is an obvious peculiarity of the mode k = 0 that needs be dealt with separately. Indeed, we know from
(6.3.1) that

(6.5.2) Aα,F (k) > (1 + α)
( 2+α

4
) α

1+α 1k , k ∈ Z \ {0} ,

whereas the bottom of Aα(0), and hence also of Aα,F (0) is precisely zero. Thus, all Friedrichs extensions on fibre
have everywhere-defined bounded inverse but the one corresponding to k = 0.

It is then convenient to consider a positive shift of Hα in the zero mode only. Clearly, with 10 acting as the
identity in the 0-th fibre and as the zero operator in all other fibres, the operators Hα and Hα + 10 have precisely
the same domain, and so do the respective adjoints and the respective Friedrichs extensions.

Lemma 6.5.1. Let α ∈ [0, 1). Let (ψk)k∈Z ∈ H � `2(Z, h). Then:

(i) (ψk)k∈Z ∈ ker(Hα + 10)
∗ if and only if

(6.5.3) ψk = c−0,kΦ̃α,k ⊕ c+0,kΦ̃α,k ∀k ∈ Z

for coefficients c±0,k ∈ C such that

(6.5.4)
∑

k∈Z\{0}
|k |−

2
1+α |c±0,k |

2 < +∞ .

Furthermore, there is a Hilbert space isomorphism

(6.5.5) ker(Hα + 10)
∗ � `2(Z,C2, µk)
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with

(6.5.6) µk :=

{
|k |−

2
1+α , k , 0 ,

1 , k = 0 ,

(ii) (ψk)k∈Z ∈ (H F
α + 10)

−1 ker(Hα + 10)
∗ if and only if

(6.5.7) ψk = c−1,k Ψ̃α,k ⊕ c+1,k Ψ̃α,k ∀k ∈ Z

for coefficients c±1,k ∈ C such that

(6.5.8)
∑

k∈Z\{0}
|k |−

2
1+α |c±1,k |

2 < +∞ .

Proof. Part (i) follows from the identity ker(Hα + 10)
∗ =

⊕
k∈Z ker(A(k)∗ + δk,010) (Lemma 6.7.3, eq. (6.7.13)),

from ker(A(k)∗ + δk,010) = span{Φ̃α,k} ⊕ span{Φ̃α,k} (Lemmas 6.3.2 and 6.7.5, and formula (6.4.9)), and from
‖Φα,k ‖

2
L2(R+)

∼ |k |−
2

1+α for k , 0 (formula (6.3.16)).
Part (ii) follows from the identity

(H F
α + 10)

−1 ker(Hα + 10)
∗ =

⊕
k∈Z\{0}

(Aα,F (k))−1 ker Aα(k)∗

⊕ (Aα,F (0) + 10)
−1 ker(Aα(0)∗ + 10) ,

which is a consequence of Lemma 6.7.3 (eq. (6.7.13)) and Lemma 6.7.12, from the identity

(Aα,F (k) + δk,010)
−1 ker(Aα(k)∗ + δk,010) = span{Ψ̃α,k} ⊕ span{Ψ̃α,k} ,

which is a consequence of Lemmas 6.3.2 and 6.7.5, and of Propositions 6.3.15 and 6.7.9, from the consequent
identity ∑

k∈Z\{0}

Aα(k)∗
(
c−1,k Ψ̃α,k
c+1,k Ψ̃α,k

)2

h

=
∑

k∈Z\{0}


(
c−1,kΦ̃α,k
c+1,kΦ̃α,k

)2

h

and again from the norm asymptotic ‖Φα,k ‖2L2(R+)
∼ |k |−

2
1+α .

�

This allows us to characterise the domain of H ∗
α in terms of the representation given by Theorem 6.3.13

D(H ∗
α ) = D((Hα + 10)

∗)

= D(Hα + 10) u (Hα,F + 10)
−1 ker(Hα + 10)

∗ u ker(Hα + 10)
∗

= D(Hα) u (Hα,F + 10)
−1 ker(H ∗

α + 10) u ker(H ∗
α + 10) .

(6.5.9)

Lemma 6.5.2. Let α ∈ [0, 1). Let (gk)k∈Z ∈ H � `2(Z, h). Then (gk)k∈Z ∈ D(H ∗
α ) if and only if

(6.5.10) gk =

(
ϕ̃−
k
ϕ̃+
k

)
+

(
c−1,k Ψ̃α,k
c+1,k Ψ̃α,k

)
+

(
c−0,kΦ̃α,k
c+0,kΦ̃α,k

)
∀k ∈ Z

with

(6.5.11) (ϕ̃k)k∈Z ∈ D(Hα) , ϕ̃k ≡

(
ϕ̃−
k
ϕ̃+
k

)
and ∑

k∈Z\{0}
|k |−

2
1+α |c±0,k |

2 < +∞(6.5.12) ∑
k∈Z\{0}

|k |−
2

1+α |c±1,k |
2 < +∞ .(6.5.13)
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Proof. From the representation (6.5.9) one deduces at once that in order for (gk)k∈Z to belong to D(H ∗
α ) it is

necessary and sufficient that
(gk)k∈Z = (ϕ̃k)k∈Z + (ψk)k∈Z + (ξk)k∈Z

for some (ϕ̃k)k∈Z ∈ D(Hα), (ψk)k∈Z ∈ (H F
α +10)

−1 ker(H ∗
α +10), and (ξk)k∈Z ∈ ker(H ∗

α +10). The conclusion
then follows from Lemma 6.5.1. �

We now present the general family of self-adjoint extensions of Hα inH , as it follows directly from Theorem
6.3.13. The object of the next Section, is the study of the uniformly fibred extensions of Hα (see also Prop. 6.7.4).
In fact, for the latter a clean and explicit description can be further obtained when going back to the original
variables (x, y) of the Grushin cylinder.

Theorem 6.5.3. Let α ∈ [0, 1). There is a one-to-one correspondence S ↔H S
α between the self-adjoint extensions

H S
α of Hα and the self-adjoint operators S defined on Hilbert subspaces of ker(H ∗

α + 10) � `2(Z,C2, µk). If S is
any such operator, the corresponding extension H S

α is given by

D(H S
α ) =


ψ = ϕ̃ + (Hα,F + 10)

−1(Sv + w) + v
such that

ϕ̃ ∈ D(Hα) , v ∈ D(S) ,
w ∈ ker(H ∗

α + 10) ∩ D(S)⊥


(H S

α + 10)ψ = (Hα + 10)ϕ̃ + Sv + w .

(6.5.14)

Proof. A direct application of the KVB self-adjoint extension theory (see Theorem 6.3.13). The second formula
in (6.5.14) follows from the first as (H S

α + 10) = (H ∗
α + 10) � D(H S

α ). �

Theorem 6.5.3 encompasses a huge variety of extensions, forHα has infinite deficiency index (that is, ker(H ∗
α +

10) is infinite-dimensional). The self-adjointness condition for each H S
α is in fact a restriction condition on the

domain H ∗
α : in terms of the representation (6.5.9), such a restriction selects, among the generic elements

ψ = ϕ̃ + (Hα,F + 10)
−1η + ξ

of D(H ∗
α ), only those for which the vectors ξ, η ∈ ker(H ∗

α + 10) (customarily referred to as the ‘charges’ of ψ,
see e.g. [86] and references therein) satisfy

ξ = v ∈ D(S) ,

η = Sv + w , w ∈ ker(H ∗
α + 10) ∩ D(S)⊥ .

In this respect, the above condition produces in general a non-fibre-preserving mixing of the charge η with respect
to the charge ξ: such a mixing is encoded in the auxiliary operator S.

The class of relevant extensions that we are going to study more in detail is such that the above mixing is absent
instead, and the restriction condition of self-adjointness operates independently in each fibre. This is the case when

(6.5.15) S =
⊕
k∈Z

S(k) on ker(H ∗
α + 10) =

⊕
k

ker(Aα(k)∗ + δk,010)

for operators S(k)’s each of which is self-adjoint on a (zero-, one-, two-dimensional) subspace K of the two-
dimensional space ker(Aα(k)∗ + δk,010). Extensions (6.5.14) where S is of the form (6.5.15) shall be referred as
fibred extensions.

Since each fibre of ker(H ∗
α + 10) is isomorphic to C2, we can identify each self-adjoint component S(k) with

an hermitian 2 × 2-matrix. Then, we shall more precisely study the extensions produced by operators S that act in
the same way on each fibre, that are those S such that S(k) = S(0), for all k ∈ Z: those shall be referred as uniformly
fibred extensions.

6.6 Uniformly fibred extensions of Hα

From now on we focus on the relevant sub-class of self-adjoint extensions ofHα: those that we refer to as uniformly
fibred extensions. For such extensions we shall obtain a more explicit and convenient characterisation, namely
Theorem 6.6.1 below, as compared to the general classification of Theorem 6.5.3.
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6.6.1 Generalities and classification theorem

We are now concerned with extensions that are fibred, in the sense discussed in the end of Sect. 6.5, hence given
by the direct sum of a self-adjoint extension of Aα(k) on each fibre, and therefore with conditions of self-adjointness
that do not couple different fibres, which in addition display uniformity.

Let us recall that a generic fibred extension acts on each fibre as a generic self-adjoint realisation of Aα(k) that
belongs to one of the families of the classification of Theorem 6.4.1, and is therefore parametrised (apart when
it is Aα,F (k)) by one real parameter or four real parameters. Such extension types and extension parameters may
differ fibre by fibre, say, parameter γ(k1) for an extension of type IR or IL or IIak

on the k1-th fibre, and parameters
γ
(k2)
1 , . . . , γ

(k2)
4 for an extension of type III on the k2-th fibre.

Uniformly fibred extensions are those for which, fibre by fibre, the type of extension of Aα(k) is the same, and
all have the same extension parameter(s) γ (and a), or γ1, . . . , γ4.

By definition, uniformly fibred extensions can be therefore grouped into sub-families in complete analogy to
those of Theorem 6.4.1:

• Friedrichs extension: the operator Hα,F =
⊕

k∈Z Aα,F (k) (see Lemma 6.7.12);

• Family IR: operators of the form

(6.6.1) H [γ]
α,R :=

⊕
k∈Z

A[γ]α,R(k)

for some γ ∈ R;

• Family IL: operators of the form

(6.6.2) H [γ]
α,L :=

⊕
k∈Z

A[γ]α,L(k)

for some γ ∈ R;

• Family IIa for given a ∈ C: operators of the form

(6.6.3) H [γ]
α,a :=

⊕
k∈Z

A[γ]α,a(k)

for some γ ∈ R;

• Family III: operators of the form

(6.6.4) H [Γ]
α :=

⊕
k∈Z

A[Γ]α (k)

for some Γ ≡ (γ1, γ2, γ3, γ4) ∈ R
4.

Physically, uniformly fibred extensions have surely a special status in that the boundary condition experienced as
x → 0 by the quantum particle governed by any such Hamiltonian has both the same form and the same ‘magnitude’
(hence the same γ-parameter, or γj-parameters) irrespective of the transversal momentum, namely the quantum
number k.

In addition, from the mathematical point of view uniformly fibred extensions allow for a completely explicit
description not only in mixed position-momentum variables (x, k), namely extensions of Hα, but also in the
original physical coordinates (x, y), namely extensions of the symmetric operator Hα = F −1

2 HαF2 acting on
L2(R × S1, dxdy), explicitly described in (6.2.12).

This is the content of the main result of the present Section.

Theorem 6.6.1. Let α ∈ [0, 1). The densely defined, symmetric operator

Hα = F −1
2 HαF2 = −

∂2

∂x2 − |x |
2α ∂2

∂y2 +
α(2 + α)

4x2

D(H±α) = C∞0 (R
±
x × S1

y)

admits the following families of self-adjoint extensions in L2(R × S1, dxdy) :
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• Friedrichs extension: Hα,F , where Hα,F = F −1
2 Hα,FF2;

• Family IR: {H[γ]α,R | γ ∈ R}, where H[γ]α,R = F
−1

2 H [γ]
α,R F2;

• Family IL: {H[γ]α,L | γ ∈ R}, where H[γ]α,L = F
−1

2 H [γ]
α,L F2;

• Family IIa with a ∈ C: {H[γ]α,a | γ ∈ R}, where H[γ]α,a = F −1
2 H [γ]

α,a F2;

• Family III: {H[Γ]α | Γ ≡ (γ1, γ2, γ3, γ4) ∈ R
4}, where H[Γ]α = F −1

2 H [Γ]
α F2.

Each element from any such family is characterised by being the restriction of the adjoint operator

D(H∗α) =

{
φ ∈ L2(R × S1, dxdy) such that(

− ∂2

∂x2 − |x |2α ∂2

∂y2 +
α(2+α)

4x2

)
φ± ∈ L2(R± × S1, dxdy)

}
(H±α)

∗φ± = −
∂2φ±

∂x2 − |x |
2α ∂

2φ±

∂y2 +
α(2 + α)

4x2 φ±

(6.6.5)

to the functions

φ =

(
φ−

φ+

)
, φ± ∈ L2(R± × S1, dxdy)

for which the limits

φ±0 (y) = lim
x→0±

|x |
α
2 φ±(x, y)(6.6.6)

φ±1 (y) = lim
x→0±

|x |−(1+
α
2 )

(
φ±(x, y) − φ±0 (y)|x |

− α2
)

(6.6.7)

= ±(1 + α)−1 lim
x→0±

|x |−α∂x
(
|x |

α
2 φ±(x, y)

)
exist and are finite for almost every y ∈ S1, and satisfy the following boundary conditions, depending on the
considered type of extension, for almost every y ∈ R:

φ±0 (y) = 0 if φ ∈ D(Hα,F ) ,(6.6.8) {
φ−0 (y) = 0
φ+1 (y) = γφ

+
0 (y)

if φ ∈ D(H[γ]α,R) ,(6.6.9) {
φ−1 (y) = γφ

−
0 (y)

φ+0 (y) = 0
if φ ∈ D(H[γ]α,L) ,(6.6.10) {

φ+0 (y) = a φ−0 (y)
φ−1 (y) + a φ+1 (y) = γφ

−
0 (y)

if φ ∈ D(H[γ]α,a) ,(6.6.11) {
φ−1 (y) = γ1φ

−
0 (y) + (γ2 + iγ3)φ

+
0 (y)

φ+1 (y) = (γ2 − iγ3)φ
−
0 (y) + γ4φ

+
0 (y)

if φ ∈ D(H[Γ]α ) .(6.6.12)

Moreover,

(6.6.13) φ±0 ∈ Hs0,± (S1, dy) and φ±1 ∈ Hs1,± (S1, dy)

with

• s1,± =
1
2

1−α
1+α for the Friedrichs extension,

• s1,− =
1
2

1−α
1+α , s0,+ = s1,+ =

1
2

3+α
1+α for extensions of type IR,

• s1,+ =
1
2

1−α
1+α , s0,− = s1,− =

1
2

3+α
1+α for extensions of type IL ,

• s1,± = s0,± =
1
2

1−α
1+α for extensions of type IIa,

• s1,± = s0,± =
1
2

3+α
1+α for extensions of type III.
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6.6.2 General strategy

The proof of Theorem 6.6.1 is going to require quite a detailed analysis, as we shall now explain. All the
preparation is developed in Subsect. 6.6.2 through 6.7.8, and the proof will be discussed in Subsect. 6.6.6.

The trivial part is of course the reconstruction of each uniformly fibred extension of Hα through a direct sum
of self-adjoint extensions of the Aα(k)’s. Instead, the difficult part is to extract the appropriate information so as
to export the boundary conditions of self-adjointness from the mixed position-momentum variables (x, k) to the
physical coordinates (x, y). The inverse Fourier transform F −1

2 is indeed a non-local operation, and in order to ‘add
up’ the boundary conditions initially available k by k, one needs suitable uniformity controls in k.

LetH u.f.
α be a uniformly fibred extension ofHα. A generic element (gk)k∈Z ∈ D(H u.f.

α ) can be represented as
in (6.5.10) with the ‘summability’ conditions (6.5.11)-(6.5.12) that guarantee (gk)k∈Z to belong toD(H ∗

α ) (Lemma
6.5.2), plus additional constraints among the coefficients c±0,k and c±1,k that guarantee that D(H u.f.

α ) is indeed a
domain of self-adjointness.

However, the above-mentioned representation (6.5.10) for the elements of D(H u.f.
α ) seems problematic when

one needs to describe F −1
2 D(H

u.f.
α ).

We shall follow a second route inspired to the alternative representation (6.4.25) (Theorem 6.4.3).
Now the generic element (gk)k∈Z ∈ D(H u.f.

α ) is represented for each k as

(6.6.14) gk =

(
ϕ−
k
ϕ+
k

)
+

(
g−0,k
g+0,k

)
|x |−

α
2 P +

(
g−1,k
g+1,k

)
|x |1+

α
2 P

where each ϕk ∈ D(Aα(k)) and P is the short-scale cut-off (6.4.24).
The evident advantage of (6.6.14) is that computing

(6.6.15) φ := F −1
2 (gk)k∈Z

and using the linearity of F −1
2 yields formally

(6.6.16) φ(x, y) = ϕ(x, y) + g1(y)|x |1+
α
2 P(x) + g0(y)|x |−

α
2 P(x)

with

ϕ := F −1
2 (ϕk)k∈Z(6.6.17)

g0 := F −1
2 (g0,k)k∈Z(6.6.18)

g1 := F −1
2 (g1,k)k∈Z .(6.6.19)

In (6.6.16) the function ϕ is expected to retain the regularity in x and the fast vanishing properties, as x → 0,
of each ϕk , and hence ϕ is expected to be a subleading term when taking limx→0 φ(x, y) and limx→0 ∂xφ(x, y);
on the other hand, the regularity and short-distance behaviour in x of the other two summands in the r.h.s. of
(6.6.16) are immediately read out. Moreover, since H u.f.

α is a uniformly fibred extension, the boundary condition
of self-adjointness in (6.6.14) (namely a condition among those listed in the third column of Table 6.1) takes the
same form, with the same extension parameter, irrespective of k, and therefore is immediately exported, in the
same form and with the same extension parameter, between g0(y) and g1(y) for almost every y ∈ S1.

Clearly, so far (6.6.16) is only formal: one must guarantee that (6.6.17)-(6.6.19) are actually well-posed and
define square-integrable functions in the corresponding variables, with the desired properties.

Aswe shall comment further on (Subsect. 6.7.7), such a strategywill lead to the following singular circumstance:
whereas Lemma 6.5.2 guarantees that applying F −1

2 on (gk)k∈Z represented as in (6.5.10) yields three distinct
functions, each of which belongs to F −1

2 D(H
∗
α ) = D(H∗α), the three summands in the r.h.s. of (6.6.16) will be

proved to belong to L2(R × S1, dxdy), none of which being however in D(H∗α) in general – only their sum is, due
to cancellations of singularities. This explains why the analysis is going to be onerous.

6.6.3 Integrability and Sobolev regularity of g0 and g1

Following the programme outlined in the previous Subsection, let us show that (6.6.18) and (6.6.19) indeed
defines functions in L2(S1, dy) with suitable regularity.

Proposition 6.6.2. Let α ∈ [0, 1) and let (gk)k∈Z ∈ D(H u.f.
α ), where H u.f.

α is one of the operators (6.7.39) or
(6.6.1)-(6.6.4), for given parameters γ ∈ R, a ∈ C, Γ ∈ R4, depending on the type. With respect to the representation
(6.6.14) of each gk , one has the following.

136



(i) If H u.f.
α is the Friedrichs extension, then

(6.6.20)
∑
k∈Z

|k |
1−α
1+α |g±1,k |

2 < +∞ , g±0,k = 0 .

(ii) If H u.f.
α is of type IR, then∑

k∈Z

|k |
1−α
1+α |g−1,k |

2 < +∞ , g−0,k = 0 ,∑
k∈Z

|k |
3+α
1+α |g+1,k |

2 < +∞ ,
∑
k∈Z

|k |
3+α
1+α |g+0,k |

2 < +∞ .
(6.6.21)

(iii) If H u.f.
α is of type IL , then∑

k∈Z

|k |
1−α
1+α |g+1,k |

2 < +∞ , g+0,k = 0 ,∑
k∈Z

|k |
3+α
1+α |g−1,k |

2 < +∞ ,
∑
k∈Z

|k |
3+α
1+α |g−0,k |

2 < +∞ .
(6.6.22)

(iv) If H u.f.
α is of type IIa, then∑

k∈Z

|k |
1−α
1+α |g±1,k |

2 < +∞ ,
∑
k∈Z

|k |
3+α
1+α |g±0,k |

2 < +∞ ,∑
k∈Z

|k |
3+α
1+α |g−1,k + ag+1,k |

2 < +∞ .
(6.6.23)

(v) If H u.f.
α is of type III, then

(6.6.24)
∑
k∈Z

|k |
3+α
1+α |g±0,k |

2 < +∞ ,
∑
k∈Z

|k |
3+α
1+α |g±1,k |

2 < +∞ .

Corollary 6.6.3. Under the assumptions of Proposition 6.6.2, (g±0,k)k∈Z and (g
±
1,k)k∈Z belong `

2(Z). Hence, (6.6.18)
and (6.6.19) define functions y 7→ g±0 (y) and y 7→ g±1 (y) that belong to L2(S1, dy). In particular, the summability
properties (6.6.20)-(6.6.24) imply that g±0 ∈ Hs0,± (S1, dy) and g±1 ∈ Hs1,± (S1, dy), where the order of such Sobolev
spaces is, respectively,

(i) s1,± =
1
2

1−α
1+α for the Friedrichs extension,

(ii) s1,− =
1
2

1−α
1+α , s0,+ = s1,+ =

1
2

3+α
1+α for extensions of type IR,

(iii) s1,+ =
1
2

1−α
1+α , s0,− = s1,− =

1
2

3+α
1+α for extensions of type IL ,

(iv) s1,± = s0,± =
1
2

1−α
1+α for extensions of type IIa,

(v) s1,± = s0,± =
1
2

3+α
1+α for extensions of type III.

Proof of Proposition 6.6.2. For each case, the proof is organised in two levels. First, we consider each family
of extensions as characterised by Theorem 6.4.2 in terms of certain self-adjointness constraints between the
coefficients c±0 and c±1 of the representation (6.5.9)-(6.5.10) of the elements of D(H ∗

α ), and we show that owing
to such constraints the a priori summability (6.5.12)-(6.5.13) of the c±0 ’s and c±1 ’s is actually enhanced (see also
Remark 6.6.5 below). Then, we export the resulting summability of the c±0 ’s and c±1 ’s on to the g±0 ’s and g±1 ’s by
means of the relations

g±0,k = c±0,k
√
π(1+α)

2 |k |(6.6.25)

g±1,k = c±1,k
√

2 |k |
π(1+α)3 ‖Φα,k ‖

2
L2(R+)

− c±0,k

√
π |k |

2(1+α)(6.6.26)

valid for k , 0 (see (6.3.51) above).
Let us also recall from (6.3.16) that

‖Φα,k ‖
2
L2(R+)

∼ |k |−
2

1+α ,
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namely for some multiplicative constant depending only on α.
(i) Theorem 6.4.2 states that for this case c±0,k = 0. This, together with (6.5.12) and (6.6.26), yields

+∞ >
∑

k∈Z\{0}
|k |−

2
1+α |c±1,k |

2 ∼
∑

k∈Z\{0}
|k |

1−α
1+α |g±1,k |

2 .

(ii) Theorem 6.4.2 states that for this case c+0,k = 0 and c+1,k = βkc+0,k with βk given for k , 0 by

γ = |k |
1+α

( 2‖Φα,k ‖2
L2

π(1+α) βk − 1
)

(see (6.3.54) above), that is, βk ∼ |k |
2

1+α at the leading order in k. (Here the operator of multiplication by βk is what
we denoted in abstract by S(k) in the discussion following Theorem (6.5.3) – see (6.5.15) above.) This, together
with (6.5.13) and (6.6.25) yields

+∞ >
∑

k∈Z\{0}
|k |−

2
1+α |c+1,k |

2 =
∑

k∈Z\{0}
|k |−

2
1+α |βkc+0,k |

2 ∼
∑

k∈Z\{0}
|k |

3+α
1+α |g+0,k |

2 .

From this one also obtains ∑
k∈Z\{0}

|k |
3+α
1+α |g+1,k |

2 < +∞ ,

owing to the self-adjointness condition in the form g+1,k = γg
+
0,k (Theorem 6.4.1). As for the summability of the

c−1,k , one proceeds precisely as in case (i).
(iii) The reasoning for this case is completely analogous as for case (ii), upon exchanging the ‘+’ coefficients

with the ‘−’ coefficients.
(iv) Theorem 6.4.2 states for this case

c−0,k = c0,k , c−1,k = τkc0,k + c̃0,k ,

c+0,k = ac0,k , c+1,k = τkac0,k − a−1c̃0,k ,

with τk given for k , 0 by

γ := (1 + |a|2) |k |1+α

( 2‖Φα,k ‖2
L2

π(1+α) τk − 1
)
,

(see (6.4.19) above), that is τk ∼ |k |
2

1+α at the leading order in k. This, together with the a priori bounds (6.5.13),
and with (6.6.25), yields

+∞ >
∑

k∈Z\{0}
|k |−

2
1+α |c−1,k + ac+1,k |

2 =
∑

k∈Z\{0}
|k |−

2
1+α |(1 + |a|2)τkc0,k |

2

∼
∑

k∈Z\{0}
|k |

3+α
1+α |g−0,k |

2 .

From this, and self-adjointness conditions g+0,k = ag−0,k and g−1,k + ag+1,k = γg
−
0,k (Theorem 6.4.1), one obtains the

last two conditions in (6.6.23). As for establishing the first condition in (6.6.23), one has∑
k∈Z\{0}

|k |
1−α
1+α |g±1,k |

2

6
∑

k∈Z\{0}
|k |

1−α
1+α |c±1,k |

2 4 |k |
π(1+α3)

‖Φα,k ‖
4
L2(R+)

+
∑

k∈Z\{0}
|k |

1−α
1+α |c±0,k |

2 π |k |
(1+α)

∼
∑

k∈Z\{0}
|k |−

2
1+α |c±1,k |

2 +
∑

k∈Z\{0}
|k |

3+α
1+α |g±0,k |

2 < +∞ ,

having used (6.6.26) for the first step, (6.6.25) for the second step, and the a priori bounds (6.5.13) as well as the
already proved second condition in (6.6.23) for the last step.

(v) Theorem 6.4.2 states for this case(
c−1,k
c+1,k

)
=

(
τ1,k τ2,k + iτ3,k

τ2,k − iτ3,k τ4,k

) (
c−0,k
c+0,k

)
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with

γ1 =
|k |

1+α

( 2‖Φα,k ‖2
L2

π(1+α) τ1,k − 1
)

γ2 + iγ3 = (τ2,k + iτ3,k)
2 |k |

π(1+α)2 ‖Φα,k ‖
2
L2

γ4 =
|k |

1+α

( 2‖Φα,k ‖2
L2

π(1+α) τ4,k − 1
)

(see (6.4.20) above). Thus,

τ1,k ∼ |k |
2

1+α , τ2,k ± iτ3,k ∼ |k |
1−α
1+α , τ4,k ∼ |k |

2
1+α ,

and (
c−1,k
c+1,k

)
∼

(
|k |

2
1+α |k |

1−α
1+α

|k |
1−α
1+α |k |

2
1+α

) (
c−0,k
c+0,k

)
∼

(
|k |

5+α
2(1+α) |k |

3−α
2(1+α)

|k |
3−α

2(1+α) |k |
5+α

2(1+α)

) (
g−0,k
g+0,k

)
at the leading order in k, having used (6.6.25) in the last asymptotics. As the above matrix has determinant of
leading order |k | 5+α1+α , we obtain (

g−0,k
g+0,k

)
∼ |k |−

5+α
2(1+α)

(
1 −|k |−1

−|k |−1 1

) (
c−1,k
c+1,k

)
,

whence
|g−0,k |

2 + |g+0,k |
2 . |k |−

5+α
1+α

(
|c−0,k |

2 + |c+0,k |
2)

at the leading order in k. Therefore,∑
k∈Z\{0}

|k |
3+α
1+α |g±0,k |

2 .
∑

k∈Z\{0}
|k |−

2
1+α

(
|c−0,k |

2 + |c+0,k |
2) < +∞ ,

having used the a priori bound (6.5.13) for the last step. This establishes the first condition in (6.6.24). The second
condition follows at once from the first by means of the self-adjointness constraints

g−1,k = γ1g
−
0,k + (γ2 + iγ3)g

+
0,k

g+1,k = (γ2 − iγ3)g
−
0,k + γ4g

+
0,k

from Theorem 6.4.1. �

Remark 6.6.4. In the work [97] it was determined that the deficiency space ker(H ∗
α + 10) of Hα is isomorphic to

H
1
2

1−α
1+α (S1). This fact can be easily deduced from the proof of Proposition 6.6.2, in a completely analogous way of

part (i). Our analysis thus goes further the Sobolev regularity of the deficiency space, computing higher Sobolev
regularities for the domains of self-adjoitness of uniform extensions of Hα.

Remark 6.6.5 (Enhanced summability). Let (gk)k∈Z ∈ D(H ∗
α ). As established in Lemma 6.5.2, the coefficients

c0,k given by the representation (6.5.9)-(6.5.10) of gk satisfy∑
k∈Z\{0}

|k |−
2

1+α |c±0,k |
2 < +∞ .

If in addition (gk)k∈Z ∈ D(H u.f.
α ) for some uniformly-fibred extension of Hα, then Prop. 6.6.2 above shows that

the coefficients g0,k given by the representation (6.6.14) of gk satisfy∑
k∈Z\{0}

|k |
3+α
1+α |g±0,k |

2 < +∞

(this covers also the case when the g+0,k’s or the g
−
0,k’s are all zero, depending on the considered type of extension).

The latter condition, owing to (6.6.25) and hence g±0,k ∼ |k |
− 1

2 c±0,k , implies∑
k∈Z\{0}

|k |
2

1+α |c±0,k |
2 < +∞ .

Thus, the condition of belonging to D(H u.f.
α ), instead of generically to D(H ∗

α ), enhances the summability of the
sequence (c±0,k)k∈Z.
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6.6.4 Detecting short-scale asymptotics and regularity

Asobservedwith (6.7.41),F −1
2 is applicable to (ϕk)k∈Z and thus (6.6.17) defines a function ϕ ∈ L2(R×S1, dxdy).

The next step in the strategy outlined in Subsect. 6.6.2 is to show convenient short-scale asymptotics as x → 0 for
ϕ(x, y) and ∂xϕ(x, y).

Evidently, the possibility that ϕ < F −1
2 D(H

∗
α ) = D(H∗α) (Lemma 6.7.14) complicates this analysis: no

regularity or short-scale asymptotics of the elements of D(H∗α) can be claimed a priori for ϕ.
For the above purposes we shall make use of the following auxiliary result.

Lemma 6.6.6. Let α ∈ [0, 1) and let R : (0, 1) × S1 → C be a function such that

(a)
x−(

3
2+

α
2 )R


L2((0,1)×S1,dxdy) < +∞ ,

(b)
∂2

xR

L2((0,1)×S1,dxdy) < +∞ .

Then for almost every y ∈ S1 the function (0, 1) 3 x 7→ R(x, y) belongs to H2
0 ((0, 1]) and as such it satisfies the

following properties:

(i) R(·, y) ∈ C1(0, 1),

(ii) R(x, y)
x↓0
= o(x3/2),

(iii) ∂xR(x, y)
x↓0
= o(x1/2).

Remark 6.6.7. H2
0 ((0, 1]) in the statement of Lemma 6.6.6 denotes as usual the closure of C∞0 ((0, 1]) in the H2-

norm. The edge x = 1 is included so as to mean that there is no vanishing constraint at x = 1 for the elements of
H2

0 ((0, 1]) and their derivatives: only vanishing as x ↓ 0 emerges, in the form of conditions (ii) and (iii).

Proof of Lemma 6.6.6. Assumption (a) in Lemma 6.6.6 implies that R(·, y) ∈ L2((0, 1)), and hence together with
(b) it implies that R(·, y) ∈ H2((0, 1)) for a.e. y ∈ S1. Therefore R(·, y) = ay + by x + ry(x) for a.e. y ∈ S1, for
some ay, by ∈ C and ry ∈ H2

0 ((0, 1]). For compatibility with assumption (a), necessarily ay = by = 0, whence
R(·, y) ∈ H2

0 ((0, 1]) for a.e. y ∈ S1. �

Let us discuss the application of Lemma 6.6.6 to our context.
As we are interested in characterising for fixed y ∈ S1 the behaviour and the regularity of x 7→ ϕ(x, y)

as x → 0 from each side of the singular point x = 0, it suffices to analyse the case x > 0; then completely
analogous conclusions are obtained for x < 0. Lemma 6.6.6 is thus meant to be applied to the restriction
R(x, y) = ϕ(x, y)1(0,1)(x).

In fact, since in general ϕ ∈ L2(R × S1, dxdy) \ D(H∗α), we are not able to check the assumptions (a) and (b)
of Lemma 6.6.6 directly for ϕ. We opt instead for splitting ϕ into a component in D(Hα) plus a remainder, the
explicit form of which will allow to apply Lemma 6.6.6.

This idea is implicit in the very choice of (ϕk)k∈Z made in (6.6.14). Let us recall that for given (gk)k∈Z we
could represent

g±k = ϕ±k + g
±
1,k |x |

1+ α2 P + g±0,k |x |
− α2 P

and also
g±k = ϕ̃±k + c±1,k Ψ̃α,k + c±0,kΦ̃α,k ,

where

(6.6.27) (ϕ̃±k )k∈Z ∈ D

(⊕
k∈Z

A±α(k)
)
= D

(
H ±
α

)
Moreover, as argued in the proof of Theorem 6.4.3, for each k ∈ Z \ {0} we can split

(6.6.28) ϕ±k = ϕ̃±k + ϑ
±
k ,

while keeping

(6.6.29) ϕ̃±0 ≡ ϕ±0 and ϑ±0 ≡ 0 when k = 0 ,

where

(6.6.30) ϑ±k = ϑ±0,k + ϑ
±
1,k
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with

ϑ±0,k := c±0,k
(
Φ̃α,k −

√
π(1+α)

2 |k | |x |
− α2 P +

√
π |k |

2(1+α) |x |
1+ α2 P

)
(6.6.31)

ϑ±1,k := c±1,k
(
Ψ̃α,k −

√
2 |k |

π(1+α)3 ‖Φα,k ‖
2
L2(R+)

|x |1+
α
2 P

)
(6.6.32)

and

(6.6.33) ϑ±0,k, ϑ
±
1,k ∈ D

(
A±α(k)

)
= H2

0 (R
±) ∩ L2(R±, 〈x〉4α dx) .

It is important to remember that for later convenience the zero mode is all cast into ϕ̃±0 ≡ ϕ±0 , hence (ϑk)k∈Z ≡
(ϑk)k∈Z\{0}.

The decomposition (6.6.28)-(6.6.32) induces the splitting

(6.6.34) (ϕk)k∈Z = (ϕ̃k)k∈Z + (ϑk)k∈Z

as an identity in `2(Z, L2(R+, dx)), where (ϑk)k∈Z does not necessarily belong toD(H ∗
α ), as (ϕk)k∈Z does not either

(Lemma 6.7.14). In turn, owing to (6.7.41) and (6.6.27), the identity (6.6.34) yields the splitting

(6.6.35) ϕ(x, y) = ϕ̃(x, y) + ϑ(x, y) , (x, y) ∈ R × S1 ,

with

ϕ̃ := F −1
2 (ϕ̃k)k∈Z ∈ F

−1
2 D

(
H ±
α

)
= D(Hα)(6.6.36)

ϑ := F −1
2 (ϑk)k∈Z ∈ L2(R × S1, dxdy) .(6.6.37)

Here ϑ may fail to belong to D(H∗α), precisely as ϕ.
The explicit information that ϕ̃ ∈ D(Hα) and the explicit expression for ϑ will finally allow us to apply Lemma

6.6.6 separately to each of them. This will be the object of Subsect. 6.6.5.

6.6.5 Estimates for ϕ̃ and ϑ: domain of the closure

In order to undesrtand the behaviour of ϕ̃, we are first concerned now with the regularity and the behaviour as
x → 0± of the functions belonging to the domain of the closure D

(
H±α

)
. This result may be interesting by itself.

Clearly, from (6.2.12),

(6.6.38) D
(
H±α

)
= C∞0 (R

±
x × S1

y)
‖ ‖Hα

,

where ‖h‖Hα :=
(
‖h‖2

L2(R±x×S
1
y )
+ ‖H±αh‖2

L2(R±x×S
1
y )

)1/2.

We also recall, from H±α ⊂ (H±α)∗ and from (6.2.18), that

(6.6.39) H±α ϕ̃± =
(
−

∂2

∂x2 − |x |
2α ∂2

∂y2 +
Cα
|x |2

)
ϕ̃± ∀ϕ̃± ∈ D (

H±α
)
.

The main result here is the following.

Proposition 6.6.8. Let α ∈ [0, 1). There exists a constant Kα > 0 such that for any ϕ̃± ∈ D(H±α) one has

(6.6.40)
 |x |−2ϕ̃±


L2(R±x×S

1
y )
+

∂2
x ϕ̃
±

L2(R±x×S

1
y )
6 Kα

H±α ϕ̃±

L2(R±x×S

1
y )
.

When α ↑ 1, then Kα → +∞. As a consequence, ϕ̃± satisfies the assumptions of Lemma 6.6.6 and therefore, for
almost every y ∈ S1,

(i) the function x 7→ ϕ̃±(x, y) belongs to C1(0, 1),

(ii) ϕ̃±(x, y) = o(|x |3/2) as x → 0±,

(iii) ∂x ϕ̃±(x, y) = o(|x |1/2) as x → 0±.
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As we only need information on the limit separately from each side of the singularity, it is enough to consider
the ‘+’ case: the same conclusions will apply also to the ‘-’ case. Thus, in the remaining part of this Subsection,
we shall simply write ϕ̃ for ϕ̃+ ∈ D(H+α).

The proof of Proposition 6.6.8 relies on two technical estimates. The first is an iterated version of the standard
one-dimensional inequality by Hardy,

(6.6.41) ‖r−1h‖L2(R+,dr) 6 2 ‖h′‖L2(R+,dr) ∀ h ∈ C∞0 (R
+) .

Lemma 6.6.9 (Double-Hardy inequality). For any h ∈ C∞0 (R
+) one has

(6.6.42) ‖r−2h‖L2(R+,dr) 6
4
3
‖h′′‖L2(R+,dr) .

Corollary 6.6.10. Let ϕ̃ ∈ C∞0 (R
+
x × S1

y). Then

(6.6.43) ‖x−2ϕ̃‖L2(R+x×S
1
y )
6

4
3
‖∂2

x ϕ̃‖L2(R+x×S
1
y )
.

The proof of Lemma 6.6.9 is well-known and we avoid giving details here. The second estimate is meant to
control the term x2α∂2

y of Hα and reads as follows.

Lemma 6.6.11. Let α ∈ [0, 1). There exists a constant Dα > 0 such that for any ϕ̃ ∈ D(H+α) one has

(6.6.44) ‖x2α∂2
y ϕ̃‖L2(R+x×S

1
y )
6 Dα

H+α ϕ̃

L2(R+x×S

1
y )
.

Proof. It is enough to prove (6.6.44) for any ϕ̃ ∈ C∞0 (R
+
x × S1

y); then the general inequality is merely obtained by
closure, owing to (6.6.38). To this aim, let (ϕ̃k)k∈Z := F +2 ϕ̃ ∈ H � `2(Z, L2(R+, dx)). One hasx2α∂2

y ϕ̃
2
L2(R+x×S

1
y )
=

∑
k∈Z

‖x2αk2 ϕ̃k ‖
2
L2(R+)

=
∑

k∈Z\{0}
‖x2αk2 RGα,k

Aα,F (k)ϕ̃k ‖2L2(R+)

6
∑

k∈Z\{0}
‖x2αk2 RGα,k

2
op

A+α(k)ϕ̃k ‖
2
L2(R+)

where we used Plancherel’s formula in the first identity and Proposition 6.3.15 in the second identity. Owing from
Lemma 6.3.3(ii), ‖x2αk2 RGα,k

‖op 6 Dα uniformly in k for some Dα > 0. Based on this fact, one then hasx2α∂2
y ϕ̃

2
L2(R+x×S

1
y )
6 D2

α

∑
k∈Z

A+α(k)ϕ̃k ‖
2
L2(R+)

= D2
α

H +
α (ϕ̃k)k∈Z

2
H

= D2
α

H+α ϕ̃
2
L2(R+x×S

1
y )
,

which completes the proof. �

Remark 6.6.12. A result similar to Lemma 6.6.11 has been obtained in the very recent paper [84, Lemma 2.1] for
Baouendi-Grushin-type Laplacians of the form ∂2

x + |x |
2α∂2

y , α ≥ 1, using the ellipticity of the Fourier components.
Both our and their estimates are based on the positivity of the Laplacians. Notice that ∂2

x + |x |
2α∂2

y = divL ◦ ∇g,
where L = dxdy is the Lebesgue measure and g = diag(1, |x |−2α).

Based upon the above estimates, we can prove Proposition 6.6.8.

Proof of Proposition 6.6.8. Again, it suffices to establish (6.6.40) when ϕ̃ ∈ C∞0 (R
+
x × S1

y), and then conclude by
density from (6.6.38).

One has

‖∂2
x ϕ̃‖L2(Rx×S

1
y )
6

H+α ϕ̃

L2(Rx×S

1
y )
+

x2α∂2
y ϕ̃


L2(R+x×S

1
y )
+ Cα‖x−2ϕ̃‖L2(R+x×S

1
y )

6
H+α ϕ̃


L2(R+x×S

1
y )
+ Dα

H+α ϕ̃

L2(R+x×S

1
y )
+

4Cα
3
‖∂2

x ϕ̃‖L2(R+x×S
1
y )
,

where the first inequality is a triangular inequality based on (6.6.39), whereas the second inequality follows directly
from Corollary 6.6.10 and Lemma 6.6.11.
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Therefore,
‖∂2

x ϕ̃‖L2(R+x×S
1
y )
6

1 + Dα

1 − 4
3Cα

H+α ϕ̃

L2(R+x×S

1
y )
.

As Cα = 1
4α(2 + α), the constant Kα := (1 + Dα)(1 − 4

3Cα)−1 is strictly positive for any α of interest, namely,
α ∈ (0, 1). Moreover, Kα → +∞ as α ↑ 1 (indeed, tracing back the constant Dα through the proof of Lemma 3.3
where it was imported from in Lemma 6.6.11, it is easy to see that Dα does not diverge when α ↑ 1). The proof is
thus completed. �

Let us recall that ϑ±maywell fail to belong toD(H±α) and therefore cannot be controlled bymeans of Prop. 6.6.8:
a separate analysis is needed, and we base it on the explicit expression and homogeneity properties of ϑ.

We state the needed result here, and postpone the technical proof to the Appendix 6.7.8.

Proposition 6.6.13. Let α ∈ [0, 1). For almost every y ∈ S1,

(i) the function x 7→ ϑ±(x, y) belongs to C1(0, 1),

(ii) ϑ±(x, y) = o(|x |3/2) as x → 0±,

(iii) ∂xϑ±(x, y) = o(|x |1/2) as x → 0±.

6.6.6 Proof of the classification theorem
Proof of Theorem 6.6.1. Let us characterise the domainD(F −1

2 H u.f.
α F2) of the various uniformly fibred extensions

of Hα = F −1
2 HαF2.

The expression (6.6.5) for H∗α provided in the statement of the theorem was already found in (6.2.18).
Next, let us consider a generic φ = F −1

2 (gk)k∈Z ∈ D(F
−1

2 H u.f.
α F2), where (gk)k∈Z ∈ D(H u.f.

α ). Owing to the
definitions (6.6.16)-(6.6.19) and to Corollary 6.6.3,

(6.6.45) φ(x, y) = ϕ(x, y) + g1(y)|x |1+
α
2 P(x) + g0(y)|x |−

α
2 P(x)

where P is a smooth cut-off which is identically equal to one for |x | < 1 and zero for |x | > 2, and g0, g1 ∈ L2(S1)
with further Sobolev regularity as specified therein.

Moreover, upon splitting ϕ = ϕ̃+ϑ as in (6.6.35), and using Prop. 6.6.8 for ϕ̃ and Prop. 6.6.13 for ϑ, we deduce
that for almost every y ∈ S1

• the function x 7→ ϕ±(x, y) belongs to C1(0, 1),

• ϕ±(x, y) = o(|x |3/2) as x → 0±,

• ∂xϕ
±(x, y) = o(|x |1/2) as x → 0±.

Plugging this information into (6.6.45) yields

lim
x→0±

|x |
α
2 φ±(x, y) = g±0 (y)

lim
x→0±

|x |−(1+
α
2 )

(
φ±(x, y) − g±0 (y)|x |

− α2
)
= g±1 (y) + lim

x→0±
|x |−(1+

α
2 )ϕ±(x, y)

= g±1 (y) ,

namely

(6.6.46) g0 = φ0 , g1 = φ1 ,

proving also that the limits (6.6.6), as well as the limits of the first line of (6.6.7), do exist. Also, the Sobolev
regularity stated for φ0 and φ1 follows directly from Corollary 6.6.3.

The second identity in (6.6.7) is obtained as follows. By means of (6.6.45) we compute

±(1 + α)−1 lim
x→0±

|x |−α∂x
(
|x |

α
2 φ±(x, y)

)
=

= ±(1 + α)−1 lim
x→0±

|x |−α∂x
(
|x |

α
2 ϕ±(x, y) + g±1 (y)|x |

1+α + g±0 (y)
)

= g±1 (y) ± (1 + α)
−1 lim

x→0±
|x |−α∂x

(
|x |

α
2 ϕ±(x, y)

)
.
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On the other hand,

lim
x→0±

|x |−α∂x
(
|x |

α
2 ϕ±(x, y)

)
= lim

x→0±
(
α
2 |x |

−(1+ α2 )ϕ±(x, y) + |x |−
α
2 ∂xϕ

±(x, y)
)
= 0 ,

having used the properties ϕ±(x, y) = o(|x |3/2) and ∂xϕ±(x, y) = o(|x |1/2) as x → 0±. This yields the second
identity in (6.6.7).

It remains to show that for each type of extension, the stated boundary conditions of self-adjointness do hold
for φ0 and φ1. As, by (6.6.18)-(6.6.19) and by (6.6.46)

φ±0 (y) =
1
√

2π

∑
k∈Z

eikyg±0,k

φ±1 (y) =
1
√

2π

∑
k∈Z

eikyg±1,k ,

the above series converging in L2(S1), and since for each uniformly fibred extension H u.f.
α the boundary conditions

are expressed by the same linear combinations of the g±0,k’s and g
±
1,k’s for each k, then now the boundary conditions

of self-adjointness in terms of φ0 and φ1 are immediately read out from those of the classification Theorem 6.4.1
for bilateral-fibre extensions (see also Table 6.1) in terms of g±0,k and g±1,k . �

To conclude, the thesis of Theorem 6.1.1 follows by conjugating back the operator Hα, and its self-adjoint
extensions that we found, via the unitary transformation φ± = U±α f ± = |x |−

α
2 f ±.

6.7 Appendix
This appendix aims at furnishing details and proves that have been postponed in order to ease the reading of the
chapter. Some of them are original and thus more important than others that are revisited and already known facts.
More precisely, Sections 6.7.1, 6.7.2, and 6.7.6 revisit well-known facts about infinite-direct sum of operators, their
properties on closure, adjoint and self-adjoint extensions. Sections 6.7.3 and 6.7.8 present the proves of technical
yet important results, which are original. Section 6.7.4 contains the proves of three lemmas that are standard and
well-known. Section 6.7.5 is a revisitation of some known results about inverse-square potential hamiltonians on
the half-line, which correspond to the fibre k = 0 of our investigated operator. Section 6.7.7 is original and provides
examples of why a particular decomposition of the adjoint operator may present singular factors: that is, the factors
may not belong individually to the domain of the adjoint but their sum does due to the cancellation of singular
terms.

6.7.1 Orthogonal sum operators
We recall the structure of operators acting on H (resp., on H±) in the form of infinite orthogonal sum, that is,
operators that are reduced by the orthogonal decomposition (6.2.9) (resp., (6.2.7)). By this we mean an operator T
for which there is a collection (T(k))k∈Z of operators on h (resp., on h±) such that

D(T) :=
ψ ≡ (ψk)k∈Z ∈ H

������ (i) ψk ∈ D(T(k)) ∀k ∈ Z
(ii)

∑
k∈Z

T(k)ψk

2
h
< +∞


Tψ :=

(
T(k)ψk

)
k∈Z ,

(6.7.1)

(and analogous formulas on each half-fibre), the shorthand for which is

(6.7.2) T =
⊕
k∈Z

T(k) .

Thus, T(k) = T � (D(T) ∩ hk), where hk is the fibre h counted in the k-th position with respect to the sum (6.2.9),
and each hk is a reducing subspace for T . A convenient shorthand for the above expression for D(T) is

(6.7.3) D(T) = �
k∈Z

D(T(k)) .

As commented already, we write ‘�’ instead of ‘⊕’ to denote that the infinite orthogonal sum involves now
non-closed subspaces ofH .
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Remark 6.7.1. It is crucial to observe that Hα is not decomposable as Hα =
⊕

k∈Z Aα(k) in the sense of formula
(6.7.1), and in fact

(6.7.4) Hα  
⊕
k∈Z

Aα(k) .

Indeed, as seen in (6.2.15),∑
k

‖Aα(k)ψk ‖
2
h =

( − ∂2

∂x2 − |x |2α ∂2

∂y2 +
α(2+α)

4x2

)
φ
2

L2(R±x×S
1
y )
,

where ψ = F2φ, the finiteness of which is guaranteed by φ ∈ C∞0 (R
±
x × S1

y) in the case when ψ ∈ D(Hα), but of
course is also guaranteed by a much larger class of φ’s that are still smooth and compactly supported in x, but are
not smooth in y – thus corresponding to ψ’s that do not belong to D(Hα).

Most relevantly for our purposes, the closure and the adjoint pass through the orthogonal sum of operators.

Lemma 6.7.2. If T =
⊕

k∈Z T(k), then

T∗ =
⊕
k∈Z

T(k)∗(6.7.5)

T =
⊕
k∈Z

T(k) ,(6.7.6)

where the symbol of operator closure and adjoint clearly refers to the corresponding Hilbert spaces where the
considered operators act on. Moreover,

(6.7.7) ker T∗ =
⊕
k∈Z

ker T(k)∗ .

Proof. Let ψ ∈ D(T∗): then there exists η ∈ H such that∑
k∈Z

〈ηk, ξk〉h = 〈η, ξ〉H = 〈ψ,T ξ〉H =
∑
k∈Z

〈ψk,T(k) ξk〉h ∀ξ ∈ D(T) .

By localising ξ separately in each fibre hk one then deduces that for each k ∈ Z ψk ∈ D(T(k)∗) and ηk = T(k)∗ψk ,
whence also

∑
k∈Z

T(k)∗ψk

2
h
= ‖η‖2

H
< +∞. This means precisely that ψ ∈ D(

⊕
k∈Z T(k)∗) and T∗ψ =

(T(k)∗ψk)k∈Z = (
⊕

k∈Z T(k)∗)ψ, i.e., T∗ ⊂
⊕

k∈Z T(k)∗.
Conversely, ifψ ∈ D(

⊕
k∈Z T(k)∗), then for each k ∈ Z one has 〈T(k)∗ψk, ξk〉h = 〈ψk,T(k) ξk〉h ∀ξk ∈ D(T(k))

and
∑

k∈Z ‖T∗(k)ψk ‖
2
h
< +∞. Setting ηk := T∗(k)ψk and η := (ηk)k∈Z one then has that η ∈ H and

〈η, ξ〉H =
∑
k∈Z

〈ηk, ξk〉h =
∑
k∈Z

〈ψk,T(k)ξk〉h = 〈ψ,T ξ〉H ∀ξ ∈ D(T) .

This means that ψ ∈ D(T∗) and T∗ψ = η = (T(k)∗ψk)k∈Z = (
⊕

k∈Z T(k)∗)ψ, i.e., T∗ ⊃
⊕

k∈Z T(k)∗.
Identity (6.7.5) is thus established, and (6.7.6) follows from applying (6.7.5) to the operator T∗ instead of T .

Identity (6.7.7) is another straightforward consequence of (6.7.5). �

Now, although Hα  
⊕

k∈Z Aα(k) (Remark 6.7.1), the two operators have actually the same adjoint and the
same closure.

Lemma 6.7.3. One has

(6.7.8) H ∗
α =

⊕
k∈Z

Aα(k)∗

and

(6.7.9) Hα =
⊕
k∈Z

Aα(k) ,

i.e.,

D(H ∗
α ) :=

ψ ≡ (ψk)k∈Z ∈ H

������ (i) ψk ∈ D(Aα(k)∗) ∀k ∈ Z
(ii)

∑
k∈Z

Aα(k)∗ψk

2
h
< +∞


H ∗
α ψ :=

(
Aα(k)∗ ψk

)
k∈Z

(6.7.10)
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and

D(Hα) :=
ψ ≡ (ψk)k∈Z ∈ H

������ (i) ψk ∈ D(Aα(k)) ∀k ∈ Z
(ii)

∑
k∈Z

Aα(k)ψk

2
h
< +∞


Hαψ :=

(
Aα(k)ψk

)
k∈Z .

(6.7.11)

Analogously,

(6.7.12) (H ±
α )
∗ =

⊕
k∈Z

A±α(k)
∗ , H ±

α =
⊕
k∈Z

A±α(k) .

Moreover,

(6.7.13) ker H ∗
α =

⊕
k∈Z

ker Aα(k)∗ .

Proof. On the one hand, H ∗
α ⊃ (

⊕
k∈Z Aα(k))∗ =

⊕
k∈Z Aα(k)∗ (owing to (6.7.4) and (6.7.5) above).

On the other hand, one proves the opposite inclusion, namely H ∗
α ⊂

⊕
k∈Z Aα(k)∗, following the very same

argument used for the proof of T∗ ⊂
⊕

k∈Z T(k)∗ in Lemma 6.7.2. This is possible because for ξ ∈ D(Hα), one
has ξk ∈ C∞0 (R \ {0}) = D(Aα(k)).

Thus, explicitly, if ψ ∈ D(H ∗
α ), then there exists η ∈ H such that∑

k∈Z

〈ηk, ξk〉h = 〈η, ξ〉H = 〈ψ,Hα ξ〉H =
∑
k∈Z

〈ψk, Aα(k) ξk〉h ∀ξ ∈ D(Hα) .

By localising ξ separately in each fibre hk one then deduces that for each k ∈ Z ψk ∈ D(Aα(k)∗) and ηk =
Aα(k)∗ψk , whence also

∑
k∈Z

Aα(k)∗ψk

2
h
= ‖η‖2

H
< +∞. This means that ψ ∈ D(

⊕
k∈Z Aα(k)∗) and H ∗

α ψ =

(Aα(k)∗ψk)k∈Z = (
⊕

k∈Z Aα(k)∗)ψ.
Thus, (6.7.8) is proved. Applying (6.7.5) to (6.7.8) then yields (6.7.9). �

6.7.2 Momentum-fibred extensions. Local and non-local extensions.

The technical point that is going to be crucial for us in studying the self-adjoint extensions of H ±
α and Hα is

the following.

Proposition 6.7.4. Let {B(k) | k ∈ Z} be a collection of operators on the fibre space h (resp., h±) such that, for
each k, B(k) is a self-adjoint extension of Aα(k) (resp., A±α(k)), and let

(6.7.14) B =
⊕
k∈Z

B(k) .

Then B is a self-adjoint extension of Hα (resp., H ±
α ).

The proof goes through reasonings that are somewhat standard, but for completeness and later discussion we
sketch it here.

Proof of Proposition 6.7.4. B is an actual extension of Hα, because

Hα ⊂
⊕
k∈Z

Aα(k) ⊂
⊕
k∈Z

B(k) .

It is straightforward to see that B is symmetric, so in order to establish the self-adjointness of B one only needs
to prove that ran(B ± i1) = H .

For generic η ≡ (ηk)k∈Z ∈ H let us then set ψk := (B(k) + i1)−1ηk ∀k ∈ Z. By construction ψk ∈ D(B(k)),
‖ψk ‖h 6 ‖ηk ‖h, and ‖B(k)ψk ‖h 6 ‖ηk ‖h, whence also

∑
k∈Z ‖ψk ‖

2
h
< +∞ and

∑
k∈Z ‖B(k)ψk ‖

2
h
< +∞. Therefore,

ψ ≡ (ψk)k∈Z ∈ D(B). Moreover, (B+ i1)ψ = ((B(k)+ i1)ψk)k∈Z = (ηk)k∈Z = η. This proves that ran(B+ i1) = H .
Analogously, ran(B − i1) = H . �
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Proposition 6.7.4 provides a mechanism for constructing self-adjoint operators B of the form (6.7.14) by re-
assembling, fibre by fibre in the momentum number k conjugate to y, self-adjoint extensions of the fibre operators
Aα(k); by further exploiting the canonical unitary equivalence

(6.7.15) B
�
7−→ (F −2 U−α ⊕ F

+
2 U+α)

∗ B (F −2 U−α ⊕ F
+

2 U+α)

this yields actual self-adjoint extensions of Hα. With self-explanatory meaning, we shall refer to such extensions
as ‘momentum-fibred extensions’, or simply ‘fibred extensions’.

Thus, fibred extensions have the distinctive feature of being characterised, in position-momentum coordinates
(x, k), by boundary conditions on the elements ψ of their domain which connect the behaviour of eachmode ψk(x)
as x → 0+ and x → 0−, with no crossing conditions between different modes. In other words, such extensions are
local in momentum – which is another way we shall refer to them in the following – whence their primary physical
and conceptual relevance.

Evidently, Hα (and hence Hα) admits plenty of extensions that are non-local in momentum, namely with
boundary condition as x → 0± that mixes different k-modes.

It is also clear that a generic fibred extension of Hα may or may not be reduced into a ‘left’ and ‘right’
component by the Hilbert space direct sum (6.2.9), whereas Hα itself certainly is. Indeed, at the level of each fibre,
the extension B(k) may or may not be reduced by the sum h = h− ⊕ h+ as is instead Aα(k) by construction (see
(6.2.17) above).

In fact, the decoupling between left and right half-cylinder may hold for all modes k ∈ Z or only for some
sub-domains of k. In the former case, the resulting extension of Hα is in fact a mere ‘juxtaposition’ of two separate
extensions for H ±

α in the left/right half-cylinder.
We shall apply the above formalism and the latter considerations in Section 6.5, where the actual classification

of the self-adjoint extensions of Hα is discussed.

6.7.3 Proof of Lemma 6.3.3
For the proof of Lemma 6.3.3 it is convenient to re-write, by means of (6.3.13) and (6.3.21), for any k ∈ Z\{0},

(6.7.16) G (a)
α,k
(x, ρ) =

{
|k | xa−

α
2 ρ−

α
2 e−

|k |
1+α x1+α sinh

( |k |
1+α ρ

1+α) if 0 < ρ < x

|k | xa−
α
2 ρ−

α
2 e−

|k |
1+α ρ

1+α sinh
( |k |

1+α x1+α) if 0 < x < ρ .

It is also convenient to use the bound

(6.7.17) G (a)
α,k
(x, ρ) 6 G̃ (a)

α,k
(x, ρ)

with

(6.7.18) G̃ (a)
α,k
(x, ρ) :=

{
|k | xa−

α
2 ρ−

α
2 e−

|k |
1+α x1+α

e
|k |

1+α ρ
1+α if 0 < ρ < x

|k | xa−
α
2 ρ−

α
2 e−

|k |
1+α ρ

1+α
e
|k |

1+α x1+α if 0 < x < ρ .

Proof of Lemma 6.3.3. R(a)
Gα,k

splits into the sum of four integral operators with non-negative kernels given by

G ++α,k,a(x, ρ) := G (a)
α,k
(x, ρ) 1(M,+∞)(x) 1(M,+∞)(ρ)

G +−α,k,a(x, ρ) := G (a)
α,k
(x, ρ) 1(M,+∞)(x) 1(0,M)(ρ)

G −+α,k,a(x, ρ) := G (a)
α,k
(x, ρ) 1(0,M)(x) 1(M,+∞)(ρ)

G −−α,k,a(x, ρ) := G (a)
α,k
(x, ρ) 1(0,M)(x) 1(0,M)(ρ)

for some cut-off M > 0.
The (−,−) operator is a Hilbert-Schmidt operator on L2(R+). Indeed, owing to (6.7.17)-(6.7.18),

G −−α,k,a(x, ρ) 6 |k |x
a− α2 ρ−

α
2 e−

|k |
1+α |x

1+α−ρ1+α | 1(0,M)(x) 1(0,M)(ρ)

6 |k |xa−
α
2 ρ−

α
2 1(0,M)(x) 1(0,M)(ρ) ,

whence, for a > − 1
2 (1 − α),∬

R+×R+
dx dρ

��G −−α,k,a(x, ρ)��2 6 k2
∫ M

0
dx x2a−α

∫ M

0
dρ ρ−α

=
k2 M2(a+1−α)

(2a + 1 − α)(1 − α)
.
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Also the (−,+) operator is a Hilbert-Schmidt operator on L2(R+). Indeed,

G −+α,k,a(x, ρ) 6 |k | e
|k |

1+αM1+α
xa−

α
2 ρ−

α
2 e−

|k |
1+α ρ

1+α
1(0,M)(x) 1(M,+∞)(ρ) ,

whence, for a > − 1
2 (1 − α),∬

R+×R+
dx dρ

��G −+α,k,a(x, ρ)��2
6 k2 e

2|k |
1+αM1+α

∫ M

0
dx x2a−α

∫ +∞

M

dρ ρ−α e−
2|k |
1+α ρ

1+α

6 k2 M−2α e
2|k |
1+αM1+α

∫ M

0
dx x2a−α

∫ +∞

M

dρ ρα e−
2|k |
1+α ρ

1+α

=
|k |
2

M−2α e
2|k |
1+αM1+α

∫ M

0
dx x2a−α

∫ +∞

2|k |
1+αM1+α

dy e−y

=
|k | M2a+1−3α

2(2a + 1 − α)
.

With analogous reasoning,

G +−α,k,a(x, ρ) 6 |k | e
|k |

1+αM1+α
ρ−

α
2 xa−

α
2 e−

|k |
1+α x1+α

1(M,+∞)(x) 1(0,M)(ρ) ,

whence ∬
R+×R+

dx dρ
��G +−α,k,a(x, ρ)��2 6 k2 e

2|k |
1+αM1+α

∫ M

0
dρ ρ−α

∫ +∞

M

dx x2a−α e−
2|k |
1+α x1+α

=
k2M1−α

1 − α
e

2|k |
1+αM1+α

∫ +∞

M

dx x2a−α e−
2|k |
1+α x1+α

.

In turn, integrating by parts, and for a 6 1
2 +

3
2α,∫ +∞

M

dx x2a−α e−
2|k |
1+α x1+α

=
M2a−2α

2|k |
e−

2|k |
1+αM1+α

+
a − α
|k |

∫ +∞

M

dx x2a−1−3α xα e−
2|k |
1+α x1+α

6
M2a−2α

2|k |
e−

2|k |
1+αM1+α

+
(a − α)M2a−1−3α

2k2

∫ +∞

2|k |
1+αM1+α

dy e−y

= e−
2|k |
1+αM1+α

( M2a−2α

2|k |
+
(a − α)M2a−1−3α

2k2

)
.

Thus, ∬
R+×R+

dx dρ
��G +−α,k,a(x, ρ)��2 6 1

2(1 − α)
(
2|k |M2a+1−3α + (a − α)M2(a−2α)) ,

which shows that the (+,−) operator is a Hilbert-Schmidt operator on L2(R+).
Last, let us show by means of a standard Schur test that the norm of the (+,+) operator is bounded by

√
AB,

where

A := sup
x∈(M,+∞)

∫ +∞

M

dρ G (a)
α,k
(x, ρ)

B := sup
ρ∈(M,+∞)

∫ +∞

M

dx G (a)
α,k
(x, ρ) .

Owing to (6.7.17)-(6.7.18),

A 6 A1 + A2

B 6 B1 + B2
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with

A1 := sup
x∈(M,+∞)

|k | xa−
α
2 e−

|k |
1+α x1+α

∫ x

M

dρ ρ−
α
2 e

|k |
1+α ρ

1+α

A2 := sup
x∈(M,+∞)

|k | xa−
α
2 e

|k |
1+α x1+α

∫ +∞

x

dρ ρ−
α
2 e−

|k |
1+α ρ

1+α

B1 := sup
ρ∈(M,+∞)

|k | ρ−
α
2 e−

|k |
1+α ρ

1+α
∫ ρ

M

dx xa−
α
2 e

|k |
1+α x1+α

B2 := sup
ρ∈(M,+∞)

|k | ρ−
α
2 e

|k |
1+α ρ

1+α
∫ +∞

ρ
dx xa−

α
2 e−

|k |
1+α x1+α

.

Concerning A1, integration by parts yields

|k |
∫ x

M

dρ ρ−
α
2 e

|k |
1+α ρ

1+α
= x−

3
2α e

|k |
1+α x1+α

− M−
3
2α e

|k |
1+αM1+α

+
3α
2

∫ x

M

dρ ρ−(1+
3
2α) e

|k |
1+α ρ

1+α

and choosing M > M◦, where

M◦ :=
(2 + 3α

2|k |

) 1
1+α

is the point of absolute minimum of the function ρ 7→ ρ−(1+
3
2α) e

|k |
1+α ρ

1+α , yields

|k |
∫ x

M

dρ ρ−
α
2 e

|k |
1+α ρ

1+α
6 x−

3
2α e

|k |
1+α x1+α

+
3α
2

x−(1+
3
2α) e

|k |
1+α x1+α

∫ x

0
dρ

=
(
1 + 3

2α
)
x−

3
2α e

|k |
1+α x1+α

.

Therefore,
A1 6 sup

x∈(M,+∞)

(
1 + 3

2α
)
xa−2α =

(
1 + 3

2α
)
Ma−2α ,

the last identity being valid for a 6 2α.
Concerning A2,

|k |
∫ +∞

x

dρ ρ−
α
2 e−

|k |
1+α ρ

1+α
6 |k | x−

3
2α

∫ +∞

x

dρ ρα e−
|k |

1+α ρ
1+α

= x−
3
2α

∫ +∞

|k |
1+α x1+α

dy e−y = x−
3
2α e−

|k |
1+α x1+α

,

whence, when a 6 2α,
A2 6 sup

x∈(M,+∞)

xa−2α = Ma−2α .

Concerning B1,

|k |
∫ ρ

M

dx xa−
α
2 e

|k |
1+α x1+α

= |k |
∫ ρ

M

dx xa−
3
2α xα e

|k |
1+α x1+α

6 |k |
∫ ρ

M

dx xα e
|k |

1+α x1+α
×

{
ρa−

3
2α if a > 3

2α

Ma− 3
2α if a < 3

2α

6

∫ |k |
1+α ρ

1+α

0
dy ey ×

{
ρa−

3
2α if a > 3

2α

Ma− 3
2α if a < 3

2α

6 e
|k |

1+α ρ
1+α
×

{
ρa−

3
2α if a > 3

2α

Ma− 3
2α if a < 3

2α ,

whence

B1 6 sup
ρ∈(M,+∞)

{
ρa−2α if a > 3

2α

ρ−
α
2 Ma− 3

2α if a < 3
2α .
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In either case, as long as a 6 2α,
B1 6 Ma−2α .

Concerning B2, let us split the analysis between a 6 3
2α and a > 3

2α. In the former case,

|k |
∫ +∞

ρ
dx xa−

α
2 e−

|k |
1+α x1+α

6 ρa−
3
2α |k |

∫ +∞

ρ
dx xα e−

|k |
1+α x1+α

= ρa−
3
2α

∫ +∞

|k |
1+α

dy e−y = ρa−
3
2α e−

|k |
1+α ρ

1+α
,

whence, as long as a 6 2α,
B2 6 sup

ρ∈(M,+∞)

ρa−2α 6 Ma−2α .

When instead a > 3
2α, then, integrating by parts and using a 6 1 + 5

2α,

|k |
∫ +∞

ρ
dx xa−

α
2 e−

|k |
1+α x1+α

= ρa−
3
2α e−

|k |
1+α ρ

1+α
+

(
a − 3α

2
)∫ +∞

ρ
dx xa−

3
2α−1 e−

|k |
1+α x1+α

6 ρa−
3
2α e−

|k |
1+α ρ

1+α
+

(
a − 3α

2
)
ρa−

5
2α−1

∫ +∞

ρ
dx xα e−

|k |
1+α x1+α

= ρa−
3
2α e−

|k |
1+α ρ

1+α
+

(
a − 3α

2
)
ρa−

5
2α−1 |k |−1

∫ +∞

|k |
1+α ρ

1+α
dy e−y

= e−
|k |

1+α ρ
1+α (

ρa−
3
2α + (a − 3α

2 ) |k |
−1ρa−

5
2α−1) ,

whence

B2 6 sup
ρ∈(M,+∞)

(
ρa−2α + (a − 3α

2 ) |k |
−1ρa−3α−1)

6 Ma−2α (
1 + (a − 3α

2 ) (|k |M
1+α)−1) .

This completes the proof of the boundedness, via a Schur test, of the (+,+) operator.
Summarising, with the above choice of the cut-off M > M◦, and under the intersection of all the above

restrictions of a in terms of α, that is, − 1
2 (1−α) 6 a 6 2α, we have found that there is an overall constant Za,α > 0

such that R(a)
Gα,k

2
op 6 Za,α

(
k2M2(a+1−α) + |k | M2a+1−3α + M2a−4α

+ M2a−4α(|k | M1+α)−1
)
.

This yields the statement of boundedness of part (i). The self-adjointness of RGα,k
= |k |−2 R(0)

Gα,k
is clear from

(6.3.23): the adjoint R∗Gα,k
has kernel Gα,k(ρ, r), but G is real-valued and Gα,k(ρ, r) = Gα,k(r, ρ), whence indeed

R∗Gα,k
= RGα,k

. Thus, part (i) is proved.
As for part (ii), for the cut-off we make the special choice M = M◦ when a = 2α. In this case,

|k | M1+α = 1 + 3
2α

|k | M2a+1−3α = |k | M1+α = 1 + 3
2α

k2M2(a+1−α) =
(
|k | M1+α)2

=
(
1 + 3

2α
)2
,

implying that there is an updated constant Z̃a,α > 0 such thatR(2α)
Gα,k


op 6 Z̃a,α

uniformly in k. Thus, also part (ii) is proved. �
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6.7.4 Proves of some ODE lemmas
Proof of Lemma 6.3.9. (i) Let h := Aα(k)∗g = Sα,k g. As already observed at the beginning of Sect. 6.3.2, g can
be expressed in terms of h by the standard representation

g = A0Fα,k + A∞Φα,k + Θ
(h)
∞ Fα,k + Θ

(h)
0 Φα,k

for some constants A0, A∞ ∈ C determined by h and some h-dependent functions explicitly given, as follows from
(6.3.19), (6.3.22), and (6.3.23), by

Θ
(h)
0 (x) :=

1
W

∫ x

0
Fα,k(ρ)h(ρ) dρ

Θ
(h)
∞ (x) :=

1
W

∫ +∞

x

Φα,k(ρ)h(ρ) dρ .

Comparing the latter formulas with (6.3.35)-(6.3.36), we deduce that

Θ
(h)
0 (x) = b(g)0 (x)

Θ
(h)
∞ (x) =

1
W

∫ +∞

x

Φα,k(ρ)(Aα(k)∗g)(ρ) dρ

= W−1 〈Φα,k, Aα(k)∗g〉L2(R+) + b(g)∞ (x) .

So (6.3.36) is proved upon setting

a(g)0 := A0 +W−1 〈Φα,k, Aα(k)∗g〉L2(R+)

a(g)∞ := A∞ .

(ii) Since Φα,k , Fα,k and Aα(k)∗g are all square-integrable on the interval [0, x], the integrand functions in
(6.3.35) are L1-functions on [0, x]: this proves (6.3.37) and justifies the simple estimates

|b(g)0 (x)| . ‖Fα,k ‖L2((0,x))‖A
∗
α(k)g‖L2((0,x))

x↓0
= o(1)

|b(g)∞ (x)| . ‖Φα,k ‖L2((0,x))‖A
∗
α(k)g‖L2((0,x))

x↓0
= o(1) ,

so (6.3.38) is proved too. Last, we find

|b(g)∞ (x)Fα,k(x)| . x1+ α2
( ∫ x

0
ρ−α dρ

) 1
2
‖h‖L2((0,x)) . x3/2o(1) = o(x3/2)

|b(g)0 (x)Φα,k(x)| . x−
α
2

∫ x

0
ρ1+ α2 |h(ρ)|dρ 6 x‖h‖L2((0,x))x

1/2 = o(x3/2) ,

and (6.3.39) follows. �

Proof of Lemma 6.3.10. The linearity of Lu is obvious.
We check the finiteness of Lu(g) as follows. Let us decompose (according to (6.3.36) and using the basis of L)

g = a(g)0 Fα,k + a(g)∞ Φα,k + b(g)∞ Fα,k + b(g)0 Φα,k

u = c0Fα,k + c∞Φα,k .

Owing to (6.3.45) it suffices to control the finiteness of LFα,k (g) and LΦα,k (g). By linearity

LFα,k (g) = a(g)0 LFα,k (Fα,k) + a(g)∞ LFα,k (Φα,k) + LFα,k (b
(g)
∞ Fα,k + b(g)0 Φα,k)

LΦα,k (g) = a(g)0 LΦα,k (Fα,k) + a(g)∞ LΦα,k (Φα,k) + LΦα,k (b
(g)
∞ Fα,k + b(g)0 Φα,k) .

(i)

Moreover, obviously,

LFα,k (Fα,k) = LΦα,k (Φα,k) = 0
LFα,k (Φα,k) = −W = −LΦα,k (Fα,k) ,

(ii)

and we also claim that

(iii) LFα,k

(
b(g)∞ Fα,k + b(g)0 Φα,k

)
= 0 = LΦα,k

(
b(g)∞ Fα,k + b(g)0 Φα,k

)
.
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Plugging (ii) and (iii) into (i) the finiteness

LFα,k (g) = −Wa(g)∞ , LΦα,k (g) = Wa(g)0

follows.
To prove (iii) we compute

det

(
Fα,k b(g)∞ Fα,k + b(g)0 Φα,k

F ′
α,k

(b(g)∞ Fα,k + b(g)0 Φα,k)
′

)
=

= F2
α,k(b

(g)
∞ )
′ + Fα,k(b

(g)
0 )
′
Φα,k + Fα,kb(g)∞ F ′α,k − F ′α,kb(g)0 Φα,k

= Fα,kb(g)∞ F ′α,k − F ′α,kb(g)0 Φα,k ,

having used the cancellation
F2
α,k(b

(g)
∞ )
′ + Fα,k(b

(g)
0 )
′
Φα,k = 0 ,

that follows from (6.3.35). Therefore, by means of the asymptotics (6.3.14) and (6.3.38) as x ↓ 0, namely,

Fα,k(x) = O(x1+ α2 ) , F ′α,k(x) = O(x
α
2 ) , Φα,k(x) = O(x−

α
2 ) ,

b(g)0 (x) = o(1) , b(g)∞ (x) = o(1) ,

we conclude
LFα,k

(
b(g)∞ Fα,k + b(g)0 Φα,k

)
= lim

x↓0

(
Fα,kb(g)∞ F ′α,k − F ′α,kb(g)0 Φα,k

)
= 0 .

The proof of the second identity in (iii) is completely analogous.
Last, let us prove that Lu(ϕ) = 0 for ϕ ∈ D(Aα(k)) and u ∈ L. Although u does not necessarily belong to

D(Aα(k)∗) (it might fail to be square-integrable at infinity), the function χu surely does for χ ∈ C∞0 ([0,+∞)) with
χ(x) = 1 on x ∈ [0, 1

2 ] and χ(x) = 0 on x ∈ [1,+∞). This fact follows from (6.2.21) observing that χu ∈ L2(R+)
and also

Sα,k(uχ) = χSα,k u − 2u′χ′ − uχ′′ = −2u′χ′ − uχ′′ ∈ L2(R+) .

The choice of χ guarantees that the Wronskians Wx(uχ, g) and Wx(u, g) coincide in a neighbourhood of x = 0, that
is, Luχ = Lu . Therefore, by means of (6.3.41), (6.3.43), and (6.3.45) we deduce

Lu(ϕ) = Luχ(ϕ) = lim
x↓0

Wx(uχ, ϕ) = −ω(uχ, ϕ)

= 〈uχ, Aα(k)∗ϕ〉 − 〈Aα(k)∗uχ, ϕ〉 = 〈uχ, Aα(k)ϕ〉 − 〈uχ, Aα(k)ϕ〉 = 0 ,

which completes the proof. �

Proof of Lemma 6.3.11. The implication (i)⇒ (ii) follows at once from

ω(ϕ, g) = 〈Aα(k)∗ϕ, g〉 − 〈ϕ, Aα(k)∗g〉 = 〈Aα(k)ϕ, g〉 − 〈Aα(k)ϕ, g〉 = 0 .

For the converse implication (i)⇐ (ii), we observe that the property

0 = ω(ϕ, g) = 〈Aα(k)∗ϕ, g〉 − 〈ϕ, Aα(k)∗g〉 ∀g ∈ D(Aα(k)∗)
is equivalent to 〈Aα(k)∗ϕ, g〉 = 〈ϕ, Aα(k)∗g〉 ∀g ∈ D(S∗), which implies that ϕ ∈ D(Aα(k)∗∗) = D(Aα(k)).

The implication (i)⇒ (iii) is given by Lemma 6.3.10. Let us now prove that (iii)⇒ (ii): thus, now Lu(ϕ) = 0
for all u ∈ L and we want to prove that for such ϕ one has ω(ϕ, g) = 0 for all g ∈ D(Aα(k)∗). Owing to the
decomposition (6.3.36) for g,

ω(ϕ, g) = a(g)0 ω(ϕ, Fα,k) + a(g)∞ ω(ϕ,Φα,k) + ω(ϕ, b
(g)
∞ Fα,k) + ω(ϕ, b

(g)
0 Φα,k) .

The first two summands in the r.h.s. above are zero: indeed,

ω(ϕ, Fα,k) = −ω(Fα,k, ϕ) = lim
x↓0

Wx(Fα,k, ϕ) = LFα,k (ϕ) = 0
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having used in the last step the assumption that Lu(ϕ) = 0 for all u ∈ L, and analogously,ω(ϕ,Φα,k) = LΦα,k (ϕ) = 0.
Therefore,

ω(ϕ, g) = ω(ϕ, b(g)∞ Fα,k) + ω(ϕ, b
(g)
0 Φα,k)

= −ω(b(g)∞ Fα,k, ϕ) − ω(b
(g)
0 Φα,k, ϕ)

= lim
x↓0

(
Wx(b

(g)
∞ Fα,k, ϕ) +Wx(b

(g)
0 Φα,k, ϕ)

)
= lim

x↓0

(
b(g)∞ Wx(Fα,k, ϕ) + b(g)0 Wx(Φα,k, ϕ)

)
= b(g)∞ LFα,k (ϕ) + b(g)0 LΦα,k (ϕ) = 0 ,

having used again the assumption (ii) in the last step (observe also that helpful cancellation (b(g)∞ )′Fα,kϕ +
(b(g)0 )

′Φα,kϕ = 0 occurred in computing the determinants in the fourth step).
Properties (i), (ii), and (iii) are thus equivalent. Last, let us establish the equivalence (i)⇔ (iv). Representing

ϕ according to (6.3.36) as
ϕ = a(ϕ)0 Fα,k + a(ϕ)∞ Φα,k + b(ϕ)∞ Fα,k + b(ϕ)0 Φα,k ,

and using the identities Wx(Fα,k, Fα,k) = 0 and Wx(Fα,k,Φα,k) = −W , one has

LFα,k (ϕ) = lim
x↓0

Wx(Fα,k, ϕ) = −Wa(ϕ)∞ + lim
x↓0

Wx(Fα,k, b
(ϕ)
∞ Fα,k + b(ϕ)0 Φα,k) .

The determinant in the latterWronskian has the very same form of the determinant computed in the proof of Lemma
6.3.10: using the same cancellation F2

α,k
(b(ϕ)∞ )′ + Fα,k(b

(ϕ)
0 )
′Φα,k = 0 and the usual short-distance asymptotics we

find
LFα,k (ϕ) = −Wa(ϕ)∞ .

In a completely analogous fashion,
LΦα,k (ϕ) = Wa(ϕ)0 .

Therefore, ϕ ∈ D(Aα(k)) if and only if Lu(ϕ) = 0 for all u ∈ L (because (i) ⇔ (iii)), and the latter property is
equivalent to a(ϕ)0 = a(ϕ)∞ = 0. �

6.7.5 The mode k = 0
We discuss here how the analysis of the previous Section is to be modified when k = 0. It is straightforward, but for
completeness we present it in the appendix. In fact, by other means and from a different perspective, the extensions
of Aα(0) were also determined in [38]: we shall therefore omit an amount of details that can be either worked out
in the very same manner of Sect. 6.3, or can be found in [38].

We follow the same conceptual scheme, but applying it now to the shifted operator Aα(0)+1: owing to (6.3.2),
such a (densely defined, symmetric) operator has strictly positive bottom.

Thus, whereas for k , 0 self-adjoint extensions were determined a la KVB by implementing the self-adjointness
condition between regular and singular part of the domain of the adjoint

D(Aα(k)∗) = D(Aα(k)) u (Aα,F (k))−1 ker Aα(k)∗ u ker Aα(k)∗ ,

when k = 0 the self-adjointness condition is implemented as a restriction in the formula

D(Aα(0)∗ + 1) = D(Aα(0) + 1)u
u (Aα,F (0) + 1)−1 ker(Aα(0)∗ + 1) u ker(Aα(0)∗ + 1) ,

where obviouslyD(Aα(0)∗ +1) = D(Aα(0)∗) andD(Aα(0)+1) = D(Aα(0)), and analogously the domain of each
extension is insensitive to the shift by 1. The main result is Theorem 6.7.11 below.

Let us start with the homogeneous problem

(6.7.19) 0 = (Sα,0 + 1)h = −h′′ + Cαx−2h + h .

Setting

w(z) :=
h(x)
√

x
, ν :=

√
1 + 4Cα

4
=

1 + α
2

,
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(6.7.19) takes the form of the modified Bessel equation

(6.7.20) x2w′′ + xw′ − (z2 + ν2)w = 0 , x ∈ R+ .

From the two linearly independent solutions Kν and Iν to the latter [2, Sect. 9.6] we therefore have that

Φα,0(x) :=
√

x K 1+α
2
(x)

Fα,0(x) :=
√

x I 1+α
2
(x)

(6.7.21)

are two linearly independent solutions to (6.7.19). In fact, only Φα,0 is square-integrable, as is seen from the
short-distance asymptotics [2, Eq. (9.6.2) and (9.6.10)]

Φα,0
x↓0
= 2

α−1
2 Γ

(
1+α

2

)
x−

α
2 −

Γ

( 1−α
2

)
2

1+α
2 (1+α)

x1+ α2 +O(x2− α2 )

Fα,0(x)
x↓0
=

(
2 1+α

2 Γ

(
3+α

2

) )−1
x1+ α2 +O(x3+ α2 )

(6.7.22)

and from the large-distance asymptotics [2, Eq. (9.7.1) and (9.7.2)]

Φα,0(x)
x→+∞
=

√
π
2 e−x (1 +O(x−1))

Fα,0(x)
x→+∞
= 1√

2π
ex (1 +O(x−1)) .

(6.7.23)

Thus, in analogy to Lemma 6.3.2, we find:

Lemma 6.7.5. For α ∈ (0, 1),

(6.7.24) ker(Aα(0)∗ + 1) = span{Φα,0} .

Next, concerning the non-homogeneous problem

(6.7.25) Sα,0u + u = g

in the unknown u for given g, the Wronskian relative to the fundamental system {Φα,0, Fα,0} is constant in r and
explicitly given by

(6.7.26) W(Φα,0, Fα,0) = det
(
Φα,0(r) Fα,0(r)
Φ′α,0(r) F ′α,0(r)

)
= 1 ,

as one computes based on the asymptotics (6.7.22) or (6.7.23). By standard variation of constants, a particular
solution to (6.7.25) is

(6.7.27) upart(r) =
∫ +∞

0
Gα,0(r, ρ)g(ρ) dρ

with

(6.7.28) Gα,0(r, ρ) :=

{
Φα,0(r)Fα,0(ρ) if 0 < ρ < r
Fα,0(r)Φα,0(ρ) if 0 < r < ρ .

With the same arguments used for Lemma 6.3.3, using now the asymptotics (6.7.22)-(6.7.23), we find the following
analogue (an explicit proof of which can be found also in [38, Lemma 4.4]).

Lemma 6.7.6. Let α ∈ (0, 1). Let RGα,0 be the operator associated with the integral kernel (6.7.28). RGα,0 can be
realised as an everywhere defined, bounded, and self-adjoint operator on L2(R+, dr).

Analogously to (6.3.28) we set

(6.7.29) Ψα,0(x) := RGα,0Φα,0 .

The proof of Lemma 6.3.7 can be then repeated verbatim, with Φα,0 and Fα,0 in place of Φα,k and Fα,k , so as to
obtain:
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Lemma 6.7.7. For α ∈ (0, 1),

(6.7.30) Ψα,0(x)
x↓0
=

(
2 1+α

2 Γ

(
3+α

2

) )−1
‖Φα,0‖

2
L2 x1+ α2 + o(x3/2) .

Concerning Aα(0), it suffices for our purposes to import from the literature the following analogue of Lemma
6.3.12.

Lemma 6.7.8. Let α ∈ (0, 1). If ϕ ∈ D(Aα(0)), then ϕ(x) = o(x3/2) and ϕ′(x) = o(x1/2) as x ↓ 0.

Proof. A direct consequence of [38, Prop. 4.11(i)]: in the notation therein Aα(0) is the operator Lmin
m with

m2 − 1
4 = Cα, that is, m = 1+α

2 , and their requirement m ∈ (0, 1) is therefore satisfied. �

As a further step, repeating the argument for Lemma 6.3.6 one concludes that R−1
Gα,0

is a self-adjoint extension
of Aα(0)+ 1 with everywhere defined and bounded inverse, whose domain clearly contains Ψα,0. Such a reference
extension induces a classification of all other self-adjoint extensions in complete analogy to what discussed in
Subsect. 6.3.5. Thus, (6.3.48) and (6.3.49) are valid in the identical form also when k = 0, and the short-range
asymptotics for Φα,0 (formula (6.7.22)), for Ψα,0 (Lemma 6.7.7), and for the elements ofD(Aα(0)) (Lemma 6.7.8)
imply that for a generic

(6.7.31) g = ϕ + c1Ψα,0 + c0Φα,0 ∈ D(Aα(0)∗)

(with ϕ ∈ D(Aα(0)) and c0, c1 ∈ C) the limits

g0 := lim
x↓0

x
α
2 g(x) = c0 2− 1−α

2 Γ

(
1+α

2

)
g1 := lim

x↓0
x−(1+

α
2 )(g(x) − g0x−

α
2 )

= c1
(
2 1+α

2 Γ( 3+α2 )
)−1
‖Φα,0‖

2
L2(R+)

− c0
(
2 1+α

2 (1 + α)
)−1
Γ( 1−α2 )

(6.7.32)

exist and are finite, and one has the asymptotics

(6.7.33) g(x)
x↓0
= g0x−

α
2 + g1x1+ α2 + o(x3/2) .

Then, analogously to (6.3.53)-(6.3.54), the condition of self-adjointness reads again as c1 = βc0 for some β ∈ R,
or equivalently as

(6.7.34) g1 = γg0 , γ :=
‖Φα,0 ‖

2
L2

2αΓ( 1+α
2 )Γ(

3+α
2 )

(
β −

Γ( 1−α
2 )Γ(

3+α
2 )

(1+α) ‖Φα,0 ‖2
L2

)
.

This yields an obvious analogue of the ‘temporary’ classification of Prop. 6.3.14, where if A[γ]α (0)+1 is a self-adjoint
extension of Aα(0) + 1, so is A[γ]α (0) for Aα(0), with D(A[γ]α (0) + 1) = D(A

[γ]
α (0)).

In fact, based on the very same argument of Lemma 6.3.16, repeated now for the characterisation of the form
domain of Aα,F (0), one can also reproduce the argument of Prop. 6.3.15, establishing the following analogue.

Proposition 6.7.9. For α ∈ (0, 1), one has Aα,F (0) + 1 = R−1
Gα,0

and Ψα,0 = (Aα,F (0) + 1)−1Φα,0.

Noticeably, the following useful characterisation of the domain of the Friedrichs extension of Aα(0) is available
in the literature.

Proposition 6.7.10. For α ∈ (0, 1),

(6.7.35) D(Aα,F (0)) = D(Aα(0)) + span{x1+ α2 P} ,

where P ∈ C∞0 ([0,+∞)) with P(0) = 1.

Proof. In the notation of [38], the Friedrichs extension is the operator Hθ
m withm2− 1

4 = Cα, hencem = 1+α
2 ∈ (0, 1),

and with θ = π
2 ([38, Prop. 4.19]), whereas Aα(0) is the operator Lmin

m . In turn, such Hθ
m is recognised to be the

operator Luθ
m , where uθ is the function that for θ = π

2 has the form uπ/2(x) = x1+α/2 ([38, Prop. 4.17(1)]). With this
correspondence, the formula D(Luθ

m ) = D(Lmin
m ) + span{uθP} ([38, Prop. A.5]) then yields precisely (6.7.35). �

With all the ingredients collected so far, and based on a straightforward adaptation of the arguments of
Subsect. 6.3.6, the above ‘temporary’ classification then takes the following final form.
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Theorem 6.7.11. Let α ∈ [0, 1).

(i) The adjoint of Aα(0) has domain

D(Aα(0)∗) =
{

g ∈ L2(R+) such that(
− d2

dx2 +
α(2+α)

4x2

)
g ∈ L2(R+)

}
= D(Aα(0)) u span{Ψα,0} u span{Φα,0} ,

(6.7.36)

whereΦα,0 andΨα,0 are two smooth functions on R+ explicitly defined, in terms of modified Bessel functions,
respectively by formulas (6.7.21), (6.7.28), and (6.7.29). Moreover,

(6.7.37) ker(Aα(0)∗ + 1) = span{Φα,0} .

(ii) The self-adjoint extensions of Aα(0) in L2(R+) form the family

{A[γ]α (0) | γ ∈ R ∪ {∞}} .

The extension with γ = ∞ is the Friedrichs extension Aα,F (0), whose domain is given by (6.7.35), and
moreover (Aα,F (0) + 1)−1 = RGα,0 , the everywhere defined and bounded operator with integral kernel given
by (6.7.28). For generic γ ∈ R one has

(6.7.38) D(A[γ]α (0)) =
{
g ∈ D(Aα(0)∗)

�� g(x) x↓0
= g0x−

α
2 + γg0x1+ α2 + o(x

3
2 ) , g0 ∈ C

}
.

6.7.6 Friedrichs extension for infinite sum operators
Lemma 6.7.12. Let α ∈ [0, 1). One has

(6.7.39) Hα,F =
⊕
k∈Z

Aα,F (k) .

Lemma 6.7.12 is an application of a general fact that for completeness we revisit here.

Lemma 6.7.13. Let T =
⊕

k∈Z T(k) be a direct sum operator acting on the Hilbert space H =
⊕

k∈Z hk , where
each T(k) is densely defined, symmetric, and semi-bounded from below on hk , with uniform lower bound

m := inf
k∈Z

inf
u∈D(T (k))

u,0

〈u,T(k)u〉hk
‖u‖2

hk

> −∞ .

Denote by TF , resp. TF (k), the Friedrichs extension of T , resp. T(k). Then

TF =
⊕
k∈Z

TF (k) .

Proof. It is clear that
⊕

k∈Z TF (k) is a self-adjoint extension of T . To recognise it as the Friedrichs extension, it
suffices to check that the operator domain D(

⊕
k∈Z TF (k)) is an actual subspace of the form domain D[T]. To

this aim, let us observe that

D(
⊕
k∈Z

TF (k)) = �
k∈Z

D(TF (k)) ⊂ �
k∈Z

D[T(k)]

(the first identity is precisely (6.7.3) discussed previously, and the inclusion is due to the fact that for each
k the Friedrichs-extension characterising property D(TF (k)) ⊂ D[T(k)] holds). On the other hand, D[T] =
D((T − m1)1/2) and D[T(k)] = D((T(k) − m1k)

1/2), whence

D[T] = D
[⊕
k∈Z

T(k)
]
= D

((⊕
k∈Z

(T(k) − m1k)

)1/2 )
= D

(⊕
k∈Z

(T(k) − m1k)
1/2

)
= �

k∈Z

D
(
(T(k) − m1k)

1/2) = �
k∈Z

D[T(k)] .

This proves the desired inclusion. �

Proof of Lemma 6.7.12. One applies Lemma 6.7.13 to Hα =
⊕

k∈Z Aα(k). �

156



6.7.7 Decomposition of the adjoint into singular terms

As alluded to at the end of Subsect. 6.6.2, let us show that the decomposition induced by (6.6.14) of a generic
element in the domain of a uniformly fibred extension H u.f.

α , namely

(6.7.40) (gk)k∈Z = (ϕk)k∈Z +
(
g1,k |x |1+

α
2 P

)
k∈Z +

(
g0,k |x |−

α
2 P

)
k∈Z ,

unavoidably displays a form of singularity, in the following sense.

Lemma 6.7.14. Let α ∈ [0, 1) and let H u.f.
α be a uniformly fibred self-adjoint extension. There exists (gk)k∈Z ∈

D(H u.f.
α ) such that, with respect to the decomposition (6.7.40),(

g1,k |x |1+
α
2 P

)
k∈Z < D(H ∗

α ) ,(
g0,k |x |−

α
2 P

)
k∈Z < D(H ∗

α ) ,

with the obvious exception of those terms above that are prescribed to be identically zero for all elements of the
domain of the considered uniformly fibred extension.

Clearly, the fact that

(6.7.41) (ϕk)k∈Z ∈ `
2(Z, L2(R, dx))

follows at once by difference from (6.7.40), because owing toCorollary 6.6.3 both (g1,k |x |1+
α
2 P)k∈Z and (g0,k |x |−

α
2 P)k∈Z

belong to `2(Z, L2(R, dx)). However, whereas in (6.6.14)/(6.7.40) each ϕk belongs to D(Aα(k)), their collection
(ϕk)k∈Z may fail to belong to D(Hα) because it may even fail to belong to D(H ∗

α ).
In preparation for the proof of Lemma 6.7.14, a simple computation shows that

A±α(k)
∗
(
|x |−

α
2 P

)
= α |x |−(1+

α
2 )P′ − |x |−

α
2 P′′ + k2 |x |

3α
2 P

A±α(k)
∗
(
|x |1+

α
2 P

)
= −(2 + α)|x |

α
2 P′ − |x |1+

α
2 P′′ + k2 |x |1+

5α
2 P

for any k ∈ Z and x ≷ 0 depending on the ‘+’ or the ‘-’ case. In particular, as the cut-off function P is constantly
equal to one when |x | < 1,

1I± (x)A±α(k)
∗
(
|x |−

α
2 P

)
= 1I± (x)k2 |x |

3α
2

1I± (x)A±α(k)
∗
(
|x |1+

α
2 P

)
= 1I± (x)k2 |x |1+

5α
2 ,

(6.7.42)

where I− := (−1, 0) and I+ := (0, 1). We can see that this implies(H ±
α )
∗
(
g±0,k |x |

− α2 P)k∈Z
2
H±
>

∑
k∈Z

k4 |g±0,k |
2 ,(6.7.43) (H ±

α )
∗
(
g±1,k |x |

1+ α2 P)k∈Z
2
H±
>

∑
k∈Z

k4 |g±1,k |
2 .(6.7.44)

Indeed, (H +
α )
∗
(
g+1,k x1+ α2 P)k∈Z

2
H+
=

∑
k∈Z

A+α(k)
∗
(
g+1,k x1+ α2 P

)2
L2(R+,dx)

>
∑
k∈Z

g+1,k k2x1+ 5α
2
2
L2((0,1),dx)

= (3 + 5α)−1
∑
k∈Z

k4 |g+1,k |
2 ,

where we used (6.7.8) in the first step and (6.7.42) in the second; all other cases for (6.7.43)-(6.7.44) are obtained
in a completely analogous way.

Proof of Lemma 6.7.14. Let us discuss case by case all possible types of uniformly fibred extensions. For arbitrary
ε > 0 let

ak(ε) :=

{
|k |

1
1+α −

1
2 (1+ε) if k ∈ Z \ {0}

0 if k = 0

bk(ε) :=

{
|k |−

1
1+α −

1
2 (1+ε) if k ∈ Z \ {0}

0 if k = 0 .
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(i) Friedrichs extension Hα,F =
⊕

k∈Z Aα,F (k). For this case we choose (gk)k∈Z with

gk :=
(
ak(ε) Ψ̃α,k
ak(ε) Ψ̃α,k

)
.

With respect to the representation (6.5.10), c±0,k = 0 and c±1,k = ak(ε). Therefore,∑
k∈Z

|k |−
2

1+α |c±1,k |
2 =

∑
k∈Z\{0}

|k |−1−ε < +∞

and, owing to Lemma 6.5.2, (gk)k∈Z ∈ D(H ∗
α ). Moreover, by construction gk satisfies the conditions of self-

adjointness characterisingD(Aα,F (k)) stated in Theorem 6.4.2; thus, (gk)k∈Z ∈ D(Hα,F ). Expressing now (gk)k∈Z
in the representation (6.7.40), formulas (6.6.25)-(6.6.26) yield

g±0,k = 0 , g±1,k ∼ |k |
− 1

2 (
2

1+α +ε) (k , 0) ,

whence ∑
k∈Z\{0}

k4 |g±1,k |
2 ∼

∑
k∈Z\{0}

|k |
2+4α
1+α −ε = +∞ ⇔ ε ∈ (0, 3+5α

1+α ] .

Thus, for ε ∈ (0, 3+5α
1+α ], we deduce from (6.7.44) that (g1,k |x |1+

α
2 P)k∈Z < D(H ∗

α ).
(ii) Extensions of type IR: for γ ∈ R let us consider H [γ]

α,R =
⊕

k∈Z A[γ]α,R(k). For this case we choose (gk)k∈Z
with

gk :=
(

ak(ε)Ψ̃α,k
βkbk(ε)Ψ̃α,k + bk(ε)Φ̃α,k

)
and βk given by

γ = |k |
1+α

( 2‖Φα,k ‖2
L2(R+)

π(1+α) βk − 1
)
.

From (6.3.16), ‖Φα,k ‖2L2(R+)
∼ |k |−

2
1+α (for some multiplicative α-dependent constant), whence βk ∼ |k |

2
1+α at the

leading order in k ∈ Z \ {0}. With respect to the representation (6.5.10),

c−0,k = 0 , c−1,k = ak(ε) = |k |
1

1+α −
1
2 (1+ε) ,

c+0,k = bk(ε) = |k |−
1

1+α −
1
2 (1+ε) , c+1,k = βkbk(ε) ∼ |k |

1
1+α −

1
2 (1+ε) ,

at the leading order in k ∈ Z \ {0}, whereas all the above coefficients vanish for k = 0. Therefore,∑
k∈Z

|k |−
2

1+α |c+0,k |
2 =

∑
k∈Z\{0}

|k |−
4

1+α −1−ε < +∞ ,∑
k∈Z

|k |−
2

1+α |c±1,k |
2 =

∑
k∈Z\{0}

|k |−1−ε < +∞ ,

which implies, owing to Lemma 6.5.2, that (gk)k∈Z ∈ D(H ∗
α ). Moreover, by construction gk satisfies the conditions

of self-adjointness characterisingD(A[γ]α,R(k)) stated in Theorem 6.4.2; thus, (gk)k∈Z ∈ D(H [γ]
α,R). Expressing now

(gk)k∈Z in the representation (6.7.40), formulas (6.6.25)-(6.6.26) yield

g−0,k = 0 , g−1,k ∼ |k |
− 1

2 (
2

1+α +ε) ,

g+0,k ∼ |k |
− 1

2 (
4+2α
1+α +ε) , g+1,k ∼ |k |

− 1
2 (

4+2α
1+α +ε) ,

for k ∈ Z \ {0}, up to multiplicative pre-factors depending on α and γ only, all the above coefficients vanishing for
k = 0. From this one obtains∑

k∈Z

k4 |g+0,k |
2 ∼

∑
k∈Z\{0}

|k |
2α

1+α −ε = +∞ ⇔ ε ∈ (0, 1+3α
1+α ] ,∑

k∈Z

k4 |g+1,k |
2 ∼

∑
k∈Z\{0}

|k |
2α

1+α −ε = +∞ ⇔ ε ∈ (0, 1+3α
1+α ] ,∑

k∈Z

k4 |g−1,k |
2 ∼

∑
k∈Z\{0}

|k |
2+4α
1+α −ε = +∞ ⇔ ε ∈ (0, 3+5α

1+α ] .
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Thus, for ε ∈ (0, 1+3α
1+α ], we deduce from (6.7.43)-(6.7.44) that (g0,k |x |−

α
2 P)k∈Z < D(H ∗

α ) and (g1,k |x |1+
α
2 P)k∈Z <

D(H ∗
α ).

(iii) Extensions of type IL: for γ ∈ R let us consider H [γ]
α,L =

⊕
k∈Z A[γ]α,L(k). For this case we choose (gk)k∈Z

with

gk :=
(
βkbk(ε)Ψ̃α,k + bk(ε)Φ̃α,k

ak(ε)Ψ̃α,k

)
,

with the same βk as in case (ii). With the obvious inversion between ‘-’ and ‘+’ components, the reasoning is the
same as in case (ii).

(iv) Extensions of type IIa for given a ∈ C \ {0}: for γ ∈ R let us consider H [γ]
α,a =

⊕
k∈Z A[γ]α,a(k). For this

case we choose (gk)k∈Z with

gk :=
( (

τkbk(ε) + ak(ε)
)
Ψ̃α,k + bk(ε)Φ̃α,k(

τkabk(ε) − a−1ak(ε)
)
Ψ̃α,k + abk(ε)Φ̃α,k

)
and τk given by

γ := (1 + |a|2) |k |1+α

( 2‖Φα,k ‖2
L2(R+)

π(1+α) τk − 1
)
.

In particular, τk ∼ |k |
2

1+α at the leading order in k ∈ Z \ {0}. With respect to the representation (6.5.10),

c±0,k ∼ |k |
− 1

1+α −
1
2 (1+ε) , c±1,k ∼ |k |

1
1+α −

1
2 (1+ε)

at the leading order in k ∈ Z \ {0}, whereas all the above coefficients vanish for k = 0. Therefore,∑
k∈Z

|k |−
2

1+α |c±0,k |
2 =

∑
k∈Z\{0}

|k |−
4

1+α −1−ε < +∞ ,∑
k∈Z

|k |−
2

1+α |c±1,k |
2 =

∑
k∈Z\{0}

|k |−1−ε < +∞ ,

which implies, owing to Lemma 6.5.2, that (gk)k∈Z ∈ D(H ∗
α ). Moreover, by construction gk satisfies the conditions

of self-adjointness characterising D(A[γ]α,a(k)) stated in Theorem 6.4.2; thus, (gk)k∈Z ∈ D(H [γ]
α,a). Expressing now

(gk)k∈Z in the representation (6.7.40), formulas (6.6.25)-(6.6.26) yield

g±0,k ∼ |k |
− 1

2 (
4+2α
1+α −ε) , g±1,k ∼ |k |

− 1
2 (

2
1+α +ε)

at the leading order in k ∈ Z \ {0}, all the above coefficients vanishing for k = 0. From this one obtains∑
k∈Z

k4 |g±0,k |
2 ∼

∑
k∈Z\{0}

|k |
2α

1+α −ε = +∞ ⇔ ε ∈ (0, 1+3α
1+α ] ,∑

k∈Z

k4 |g±1,k |
2 ∼

∑
k∈Z\{0}

|k |
2+4α
1+α −ε = +∞ ⇔ ε ∈ (0, 3+5α

1+α ] .

Thus, for ε ∈ (0, 1+3α
1+α ], we deduce from (6.7.43)-(6.7.44) that (g0,k |x |−

α
2 P)k∈Z < D(H ∗

α ) and (g1,k |x |1+
α
2 P)k∈Z <

D(H ∗
α ).

(v) Extensions of type III: for Γ ∈ R4 let us consider H [Γ]
α =

⊕
k∈Z A[Γ]α (k). For this case we choose (gk)k∈Z

with

gk :=
( (
τ1,k + τ2,k + iτ3,k

)
bk(ε)Ψ̃α,k + bk(ε)Φ̃α,k(

τ2,k − iτ3,k + τ4,k
)
bk(ε)Ψ̃α,k + bk(ε)Φ̃α,k

)
and (τ1,k, τ2,k, τ3,k, τ4,k) given by

γ1 =
|k |

1+α

( 2‖Φα,k ‖2
L2(R+)

π(1+α) τ1,k − 1
)

γ2 + iγ3 = (τ2,k + iτ3,k)
2 |k |

π(1+α)2 ‖Φα,k ‖
2
L2(R+)

γ4 =
|k |

1+α

( 2‖Φα,k ‖2
L2(R+)

π(1+α) τ4,k − 1
)
.

In particular,
τ1,k ∼ |k |

2
1+α , τ2,k ± iτ3,k ∼ |k |

1−α
1+α , τ4,k ∼ |k |

2
1+α ,

at the leading order in k ∈ Z \ {0}. With respect to the representation (6.5.10),

c±0,k ∼ |k |
− 1

1+α −
1
2 (1+ε) , c±1,k ∼ |k |

1
1+α −

1
2 (1+ε)

at the leading order in k ∈ Z \ {0}, whereas all the above coefficients vanish for k = 0. From this point one repeats
verbatim the reasoning of part (iv). �
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6.7.8 Proof of Proposition 6.6.13
In preparation for the proof of Proposition 6.6.13, in terms of the functions

h0,k :=
√

2
π(1+α) |k |

1
2(1+α)

(
Φα,k −

√
π(1+α)

2 |k | x−
α
2 +

√
π |k |

2(1+α) x1+ α2
)

h1,k :=
√

2
π(1+α) |k |

5
2(1+α)

(
Ψα,k −

√
2 |k |

π(1+α)3 ‖Φα,k ‖
2
L2(R+)

|x |1+
α
2

)(6.7.45)

defined on R+ for each k ∈ Z \ {0}, one sees from (6.6.31)-(6.6.32) that

ϑ±0,k(x) = c±0,k

√
π(1+α)

2 |k |−
1

2(1+α) h0,k(|x |) 0 < ±x < 1 ,

ϑ±1,k(x) = c±1,k

√
π(1+α)

2 |k |−
5

2(1+α) h1,k(|x |) 0 < ±x < 1 .
(6.7.46)

Clearly the above identities are not valid when |x | > 1.

Lemma 6.7.15. Let α ∈ [0, 1) and k ∈ Z \ {0}. For x ∈ R+ one has

(6.7.47) h0,k(x) := w0
(
|k |x1+α) , h1,k(x) := w1

(
|k |x1+α)

with

(6.7.48) w0(x) := x−
α

2(1+α)
(
e−

x
1+α − 1 + x

1+α
)

and

w1(x) := x−
α

2(1+α) e−
x

1+α

∫ x
1

1+α

0
dρ ρ−α sinh ( ρ

1+α

1+α ) e
−
ρ1+α
1+α

+ x−
α

2(1+α) sinh ( x
1+α )

∫ +∞

x
1

1+α
dρ ρ−α e−

2ρ1+α
1+α

− 2−
1−α
1+α (1 + α)−

1+3α
1+α Γ

( 1−α
1+α

)
x

2+α
2(1+α) .

(6.7.49)

Proof. Plugging the explicit expression (6.3.13) for Φα,k into the first formula in (6.7.45) one finds

h0,k(x) =
(
|k |

1
1+α x)−

α
2

(
e−

|k |
1+α x1+α

− 1 + |k |x
1+α

1+α

)
= w0

(
|k |x1+α)

with w0 defined by (6.7.48). Analogously, inserting the expression (6.3.31) for Ψα,k and the expression (6.3.16) for
‖Φα,k ‖

2
L2(R+)

into the second formula in (6.7.45), one obtains

h±1,k(x) =
(
|k |

1
1+α x

)− α2 e−
|k |x1+α

1+α

∫ x |k |
1

1+α

0
dρ ρ−α sinh ( ρ

1+α

1+α ) e
−
ρ1+α
1+α

+
(
|k |

1
1+α x

)− α2 sinh
( |k |x1+α

1+α
)∫ +∞

x |k |
1

1+α
dρ ρ−α e−

2ρ1+α
1+α

− 2−
1−α
1+α (1 + α)−

1+3α
1+α Γ

( 1−α
1+α

) (
|k |

1
1+α x

)1+ α2

= w1
(
|k |x1+α)

with w1 defined by (6.7.49). �

Lemma 6.7.16. Let α ∈ [0, 1) and k ∈ Z \ {0}. The functions h0,k and h1,k defined in (6.7.45) satisfyx−2hj,k

2
L2((0,1)) 6 |k |

3
1+α

x−2hj,1
2
L2(R+)

(6.7.50) h′′j,k
2
L2((0,1)) 6 |k |

3
1+α

h′′j,1
2
L2(R+)

(6.7.51)

for j ∈ {0, 1}.
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Proof. By means of the homogeneity properties (6.7.47) one findsx−2hj,k

2
L2((0,1)) =

∫ 1

0

��x−2wj

(
|k |x1+α) ��2 dx

= |k |
3

1+α

∫ |k |
1

1+α

0
|x−2wj(x1+α)|2 dx

6 |k |
3

1+α

∫ +∞

0
|x−2hj,1(x)|2 dx

and h′′j,k
2
L2((0,1)) =

∫ 1

0

��� d2

dx2 wj

(
|k |x1+α) ���2 dx

=

∫ 1

0

��(1 + α)2 |k |2x2αw′′j
(
|k |x1+α) + α(1 + α)|k |x−(1−α)w′j (|k |x1+α) ��2 dx

= |k |
3

1+α

∫ |k |
1

1+α

0

��(1 + α)2x2αw′′j
(
x1+α) + α(1 + α)x−(1−α)w′j (x1+α) ��2 dx

= |k |
3

1+α

∫ |k |
1

1+α

0

��� d2

dx2 wj

(
x1+α) ���2 dx 6 |k |

3
1+α

∫ +∞

0
|h′′j,1(x)|

2 dx ,

which proves, respectively, (6.7.50) and (6.7.51). �

Lemma 6.7.17. Let α ∈ [0, 1). The functions h0,1 and h1,1 defined in (6.7.45) satisfyx−2hj,1
2
L2(R+)

< +∞(6.7.52) h′′j,1
2
L2(R+)

< +∞(6.7.53)

for j ∈ {0, 1}.

Proof. As h0,1 (resp., h1,1) only agrees with ϑ+0,1 (resp., ϑ+1,1) over the interval (0, 1), apart from a α-dependent
pre-factor, one cannot deduce (6.7.52)-(6.7.53) from (6.6.33), because the considered norms are over the whole
R+. However, the reasoning made in the proof of Theorem 6.4.3, which led to (6.6.33), can be essentially repeated
here. Clearly, both h0,1 and h1,1 are C∞(R+)-functions; therefore, the finiteness of the norms in (6.7.52)-(6.7.53) is
only to be checked as x ↓ 0 and x → +∞. In fact, for

h0,1 = x−
α
2
(
e−

x1+α
1+α − 1 + x1+α

1+α
)

one can perform a straightforward computation and find

h0,1(x)
x↓0
= x2+ 3

2α(1 +O(x1+α)) ,

h0,1(x)
x→+∞
= 1

1+α x1− α2 (1 +O(x−1)) ,

and

h′′0,1(x)(x)
x↓0
= x

3
2α

( 9
8 −

1
8(1+α)2

)
(1 +O(x1+α)) ,

h′′0,1(x)
x→+∞
=

α(2+α)
4(1+α) x

−(1+ α2 )(1 + o(1)) .

Such asymptotics imply (6.7.52)-(6.7.53) when j = 0, as α ∈ (0, 1). Concerning

h1,1 =
√

2
π(1+α) Ψα,1 −

2
π(1+α)2 ‖Φα,1‖

2
L2(R+)

x1+ α2 ,

the square-integrability of x−2h1,1 is controlled analogously to the proof of Theorem 6.4.3: the short-distance
asymptotics (6.3.29) for Ψα,1 gives a convenient compensation in h1,1 as x ↓ 0, whereas at infinity the control can
be simply made term by term, as Ψα,1 ∈ L2(R+). Thus, (6.7.52) is also proved for j = 1. Next, we consider

h′′1,1 =
√

2
π(1+α) Ψ

′′
α,1 −

2
π(1+α)2 ‖Φα,1‖

2
L2(R+)

α(2+α)
2 x−(1−

α
2 ) .
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As Ψα,1 = RGα,1Φα,1 and RGα,1 = (A
+
α,F (1))

−1 (see (6.3.28) and Prop. 6.3.15 above), then

Ψ
′′
α,1 = −

(
− d2

dx2 + x2α + α(2+α)
2 x−2)RGα,1Φα,1 +

(
x2α + α(2+α)

2 x−2)
Ψα,1

= −Φα,1 +
(
x2α + α(2+α)

2 x−2)
Ψα,1 ,

whence

h′′1,1 = −
√

2
π(1+α) Φ1,α +

√
2

π(1+α)
(
x2α + α(2+α)

2 x−2)
Ψα,1

− 2
π(1+α)2 ‖Φα,1‖

2
L2(R+)

α(2+α)
2 x−(1−

α
2 )

= −
√

2
π(1+α) Φ1,α +

√
2

π(1+α) x2α
Ψα,1 +

α(2+α)
2 x−2 h1,1 .

Each of the three summands in the r.h.s. above belongs to L2(R+): in particular, the second does so because
Ψα,1 ∈ ran RGα,k

⊂ L2(R+, 〈x〉4αdx) (Corollary 6.3.5). This proves (6.7.53) for j = 1. �

From (6.7.46), and from Lemmas 6.7.16 and 6.7.17, one immediately deduces:

Corollary 6.7.18. Let α ∈ [0, 1) and k ∈ Z \ {0}. Thenx−2ϑ±0,k
2
L2(I±)

. |c±0,k |
2 |k |

2
1+α(ϑ±0,k)′′2

L2(I±)
. |c±0,k |

2 |k |
2

1+α
(6.7.54)

and x−2ϑ±1,k
2
L2(I±)

. |c±1,k |
2 |k |−

2
1+α(ϑ±1,k)′′2

L2(I±)
. |c±1,k |

2 |k |−
2

1+α
(6.7.55)

with I+ = (0, 1) and I− = (−1, 0), where the constants in the above inequalities only depend on α.

In fact, (6.7.54)-(6.7.55) are trivially true also for k = 0: recall indeed (see (6.6.29) above) that ϑ0 ≡ 0.

Proof of Proposition 6.6.13. It clearly suffices to discuss the proof for the ‘+’ component ϑ+ = F −1
2 (ϑ

+
k
)k∈Z. Recall

also that ϑ+0 ≡ 0.
Now, owing to Corollary 6.7.18,x−2(ϑ+0,k)k∈Z

2
`2(Z,L2((0,1),dx)) .

∑
k∈Z\{0}

|c±0,k |
2 |k |

2
1+α

((ϑ±0,k)′′)k∈Z2
`2(Z,L2((0,1),dx)) .

∑
k∈Z\{0}

|c±0,k |
2 |k |

2
1+α .

The series in the r.h.s. above are finite, because of the enhanced summability of the c0,k’s due to the fact that the
initially considered (gk)k∈Z belongs to the domain of a uniformly fibred extension (as observed already in Remark
6.6.5).

As a first consequence, (ϑ+0,k)k∈Z belongs to `2(Z, L2((0, 1), dx)), and so too does (ϑ+1,k)k∈Z by difference from
(ϑ+

k
)k∈Z: therefore, the inverse Fourier transform can be separately applied to

ϑ+ = F −1
2 (ϑ

+
k )k∈Z = F

−1
2 (ϑ

+
0,k)k∈Z + F

−1
2 (ϑ

+
1,k)k∈Z .

As a further consequence, the above estimates imply, by means of Plancherel’s formula,x−2F −1
2 (ϑ

+
0,k)k∈Z

2
L2((0,1)×S1,dxdy) =

x−2(ϑ+0,k)k∈Z
2
`2(Z,L2((0,1),dx)) < +∞ ,∂2

xF
−1

2 (ϑ
+
0,k)k∈Z

2
L2((0,1)×S1,dxdy) =

(∂2
xϑ
+
0,k)k∈Z

2
`2(Z,L2((0,1),dx)) < +∞ .

Analogously, Corollary 6.7.18 also impliesx−2(ϑ+1,k)k∈Z
2
`2(Z,L2((0,1),dx)) .

∑
k∈Z\{0}

|c±1,k |
2 |k |−

2
1+α ,((ϑ±1,k)′′)k∈Z2

`2(Z,L2((0,1),dx)) .
∑

k∈Z\{0}
|c±1,k |

2 |k |−
2

1+α ,
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and the series in the r.h.s. above are finite because of the general summability for elements in D(H ∗
α ) established

in Lemma 6.5.2, formula (6.5.13). Thus, for almost every y ∈ S1,x−2F −1
2 (ϑ

+
1,k)k∈Z

2
L2((0,1)×S1,dxdy) < +∞∂2

xF
−1

2 (ϑ
+
1,k)k∈Z

2
L2((0,1)×S1,dxdy) < +∞ .

Summarising,
‖x−2ϑ+‖L2((0,1)×S1,dxdy) + ‖∂

2
xϑ
+‖L2((0,1)×S1,dxdy) < +∞ .

Therefore, ϑ+ satisfies the assumptions (a) and (b) of Lemma 6.6.6 (for obviously |x−( 3
2+

α
2 )ϑ+(x, y)| 6 |x−2ϑ+(x, y)|

when x ∈ (0, 1), since α ∈ (0, 1)). The thesis then follows by applying Lemma 6.6.6. �
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