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Résumé

Dans cette thése, on s’intéresse a étudier la capacité de 'approche de la théorie
des jeux a traiter certains problémes inverses ‘mal posé’, gouvernés par les équations de
Stokes ou quasi-Stokes. La premiére partie concerne la détection d’un ou plusieurs objets
(Chapitre 2), et I'identification de sources ponctuelles dans un écoulement (Chapitre 3),
en utilisant des données du type Cauchy qui seront ainsi fournies seulement sur une par-
tie frontiére de 1’écoulement. Ce type de probléme est mal posé au sens d’Hadamard du
fait de I’absence de solution si les données ne sont pas compatibles mais surtout du fait
de son extréme sensibilité aux données bruitées, dans le sens ot une légére perturbation
des données entraine une grande perturbation de la solution. Cette difficulté de stabilité
fournit aux chercheurs un défi intéressant pour la mise au point de méthodes numé-
riques permettant d’approcher de la solution du probléme inverse original. L’approche
développée ici est différente de celles existantes, elle a traité simultanément la question
de la reconstruction des données manquantes avec celle de 'identification des inclusions
ou de sources ponctuelles dans un fluide visqueux, incompressible et stationnaire. En
considérant une méthode de type minimisation de critéres, la solution est réinterprétée
en termes d’équilibre de Nash entre les deux problémes complétion /identification. Des
nouveaux algorithmes originaux dédiés au calcul d’équilibre de Nash sont présenté et
implémenté avec FreeFem ++. Une extension pour le probléme d’identification de petits
objets de I'approche proposée de jeu de Nash a été réalisé (Chapitre 4). La deuxiéme
partie est consacrée a la résolution des problémes inverses non linéaires dans le cadre des
écoulements de fluide quasi-newtonien (Chapitre 5). La viscosité est supposée une fonc-
tion non linéaire, varie en fonction du tenseur des déformations. Un probléme inverse
non linéaire du type Cauchy est reformulé comme un probléme du contrdle optimal,
puis comme un jeu de Nash & deux joueurs. Deux algorithmes ont été utilisés et com-
parés afin de résoudre les problémes aux limites non linéaires : un algorithme classique
de point fixe et un nouveau schéma proposé ‘one-shots’. Enfin, on applique la théo-
rie des jeux pour la résolution du probléme de couplage de complétion des données et
identification des inclusions pour le modéle de quasi-Stokes.

Mots-clés : Complétion des données, systéme de Stokes, méthode level-set, détection

des sources, calcul des variations, sensibilité topologique, Jeux de Nash, probléme in-
verse géométrique, écoulements quasi-Newtoniens.
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Abstract

This thesis aims to study the ability of theoretic game approaches to deal with
ill-posed problems. The first part of the thesis is dedicated to the Stokes system’s
linear problem, with the goal of detecting unknown geometric inclusions or pointwise
sources in a stationary viscous fluid, using a single compatible pair of Dirichlet and
Neumann data, available only on a partially accessible part of the boundary. Inverse
geometric-or-source identification for the Cauchy-Stokes problem is severely ill-posed
(in the sense of Hadamard) for both the inclusions or sources and the missing data
reconstructions, and designing stable and efficient algorithms is challenging. To solve the
joint completion /detection problem, we reformulate it as a three players Nash game. The
two first players aim at recovering the missing data (Dirichlet and Neumann conditions
prescribed over the inaccessible boundary), while the third player seeks to identify the
shape and locations of the inclusions (in Chapter 2) or determine the source term
(in Chapter 3). We then introduce new algorithms dedicated to the Nash equilibria,
which is expected to approximate the original coupled problems’ solutions. We present
different numerical experiments to illustrate the efficiency and robustness of our 3-
player Nash game strategy. The extension of this work to another situation, such as
identifying small objects, has been carried out (in Chapter 4). The second purpose of
this thesis is to extend those results to the case of quasi-Newtonian fluid flow whose
viscosity is assumed to be a nonlinear function that varies upon the imposed rate of
deformation. The considered problem then is a nonlinear Cauchy type because of the
non-linearity of the viscosity function. Two different iterative procedures, control-type
and Nash game algorithms, are considered to solve it. From a computational point of
view, the non-linearity needs some particular algorithms. We propose a novel one-shot
algorithm to solve the nonlinear state equations during a recovery process, representing
a different idea to treat the nonlinear Cauchy problems. Some numerical experiments
are provided to demonstrate our algorithm’s efficiency in the noise-free and noisy data
cases. A comparison between the one-shot scheme and the fixed-point method was
performed. Finally, we introduce an algorithm to jointly recover the missing boundary
data and the location and shape of the inclusions for nonlinear Stokes models based on
the Game-Theoretic approach.

Keywords : Data completion, Cauchy-Stokes problem, level-set method, point-force
detection, calculus of variations, topological sensitivity, Nash game, shape identification,
quasi-Newtonian Stokes flows.
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Introduction générale

La théorie des jeux définit un cadre pour traiter les problémes d’optimisation
multi-critére et multidisciplinaire. Dans ce contexte, la notion d’optimum se remplace
par la notion de concepts de solution ou équilibre, qui est un concept fondamental dans
la théorie des jeux. Il existe de nombreuses définitions d’équilibres de jeu, qui dépend
généralement du type de jeu considéré. Le plus célébre entre eux est I'équilibre de
Nash dans les jeux non-coopératifs. La théorie des jeux a été commencé en économie,
elle se propose d’étudier des situations (jeux) dans lesquelles les décideurs (joueurs)
interagissent dans un environnement d’interdépendance stratégique. Elle a été ensuite
largement étudiée et appliquée a un large éventail de disciplines, ou les décideurs
(joueurs) traitent des systémes régis par les équations aux dérivées partielles (EDP).
De nouvelles applications liées a la conception de la topologie de systémes couplés
physiques ou biologiques sont présentées dans [53, 54, 58]. D’une fagon générale, un
jeu non-coopératif est défini par 'ensemble des joueurs N = {1,...,n} et I’ensemble
des stratégies possibles pour chacun d’eux. Chaque joueur i choisit une stratégie s; au
sein de l'espace de ses stratégies possibles S; et cherche a améliorer son propre critére
Ji 0 S1 x ... xS, = R simultanément et indépendamment des autres. L’état d’équilibre
est atteint lorsque aucun joueur ne peut améliorer son propre critére unilatéralement,
c’est la notion de I'équilibre de Nash (EN) :

Un équilibre de Nash est un profil s* = {s7,...,s5} € S1 X ... x Sy, tel que la stratégie
du joueur i est une meilleure réponse :

Vi € N, sf € B;(s*;),
Bi(s-,) = {si € Si/Fu(s 5.) < Filsl, s%.), Vsl € Si} (1)

avec s_; est le profil s des stratégies autres que celles du joueur 1
S = {51, ooy Sim1y Sig 1y -y Sn}.

Dans cette thése, on s’intéresse essentiellement a exploiter I’approche de la théorie
des jeux pour traiter certains problémes inverses gouvernés par les équations de Stokes.
L’un des objectifs de cette thése est de montrer l'intérét et l'utilité de 'approche
introduite par la théorie des jeux dans des applications issues de la mécanique des
fluides. Le probléme inverse que nous traiterons par la suite va transformer en N
sous-problémes d’optimisation, qui vont considérer comme des joueurs. Chacun controle
seulement sa propre variable stratégie et tente de minimiser simultanément son propre
cotlit en cherchant & converger vers un équilibre qui représente un compromis entre eux,
et qui devrait étre la solution approchée du probléme inverse initial.



La premiére partie de la thése se décompose en trois chapitres. Le premier cha-
pitre est dédié a la résolution du probléme de détection des inclusions dans un
écoulement, lorsque le mouvement de fluide est régi par les équations de Stokes : On

)

I

FI1GURE 1 — Configuration géométrique du notre probléme.

considére un écoulement de fluide visqueux et incompressible dans un domaine borné
2 de R? (avec d=2 ou d=3). Soit w* C {2 un objet inconnu immergé dans le domaine
(2 rempli d’un fluide (voir la figure 1). On s’intéresse alors & identifier w*, & partir de
mesure sur I, de la vitesse f et de la contrainte normale @, ot I; est une partie de la
frontiere 0f2, tel que la vitesse du fluide u = (uy, ..., u4) et la pression correspondante p
dans (2 satisfont le probléme de Stokes suivant :

—div(o(u,p)) =0 dans 2\ w*,
divu =0 dans 2\ w*,

o(u,p)n. =0 sur  Ow*, (2)
u =f sur I,
o(u,p)n =& sur I,
avec o est le tenseur des contraintes défini par o(u,p) = —ply + (Vu + Vul), ou

I; est la matrice identité. Le probléme (2) est du type Cauchy, qui est considéré
comme un probléme inverse mal posé au sens d’'Hadamard [59], du fait de 1’absence
de solution si les données f et @ ne sont pas compatibles mais surtout du fait de son
extréme sensibilité aux données bruitées, dans le sens ol une légére perturbation des
données entraine une grande perturbation de la solution. Nous visons alors a traiter
simultanément la question de l'identification d’'un ou plusieurs objets w* immergés
dans un fluide avec celle de la reconstruction des données manquantes sur une partie
du bord du domaine ] = 012\ I; & partir des données surabondantes (f, ). Afin de
modéliser notre probléme inverse couplé, on utilise la classe des jeux statiques avec
des information complétes. Cette approche est une extension de celles publiées par
Habbal et Kallel [55, 56] sur la résolution du probléme de Cauchy pour un opérateur
elliptique de type divergence. Il s’agit alors de considérer une formulation de jeu de
Nash entre trois joueurs : les deux premiers sont consacrés a controler les données
de Neumann et Dirichlet sur la partie du bord inaccessible I;, tandis que le troisiéme
joueur contrdle la position et la forme des objets. Pour une représentation implicite
de bord de l'objet Ow*, nous avons adopté la méthode de courbes de niveau ou



I'idée est de considérer le bord dw* comme une courbe de niveau zéro d’une fonction
lipschitzienne ¢ : {2 — R. Apreés la réécriture de nos problémes directs et nos critéres
en fonction de courbes de niveau, on présente notre nouvel algorithme de jeux. La
classe d’algorithmes que nous proposons s’applique & un large éventail de problémes
inverses mal posés, les techniques de calcul étant plutdt classiques : L’utilisation de la
méthode de descente de gradient pour la résolution de trois problémes de minimisations
partielles, 1'utilisation de la méthode de 1’état adjoint pour calculer les sensibilités, et
I'utilisation de la méthode des éléments finis pour la résolution numérique d’équations
aux dérivées partielles, ainsi que pour mettre a jour les fonctions de courbes de
niveau. Notre code est implémenté avec FreeFem++. Une étude numérique a été
développée dans un domaine de deux dimensions, ol nous avons réalisé trois tests
numériques. Dans le deuxiéme chapitre, on résout le probleme du couplage entre la
complétion des données et l'identification des sources : on considére un écoulement
de fluide visqueux et incompressible sous ’action d’un nombre fini des particules. On
suppose que chaque particule n’est pas plus qu’un seul point et que ce point exercera
une force sur le fluide, qui exprime mathématiquement en termes de distribution de
Dirac Axdp,, ou P, représente I'emplacement des particules et A est l'intensité de
la force. Dans ce cadre, la vitesse du fluide u et la pression p satisfont le systéme suivant :

—div(o(u,p) =, Mdp, dans 2,
divu =0 dans (2, )

u =G sur I,

o(u,p)n =& sur I

avec G et @ sont deux fonctions connues. L’idée essentielle de notre analyse consiste a
reconstruire deux problémes aux limites bien posées. Chacun utilise I'une ou l'autre
des données surabondantes. Ensuite, on utilise une technique de relaxation afin de
construire un nouvel algorithme de minimisation. Cette étape consiste a considérer
une approximation classique d’une fonction de Dirac au point P, par une fonction
caractéristique d’une petite boule de centre Py et de rayon e divisé par son volume. Le
probléme (3) est reformulé comme un jeux de Nash & trois joueurs. Les deux premiers
résolvent le probléme de reconstruction des données manquantes sur I} = 082\ I,
tandis que le troisiéme joueur minimise une fonctionnelle du type Kohn-Vogelius afin
de déterminer le nombre de points sources m, leur emplacement relatif P, et leurs
intensités approximatives \;. La notion de gradient topologique a été utilisée pour la
localisation des centres de source présents dans ’écoulement. Trois tests numériques
ont été effectués afin d’étudier la robustesse de l'algorithme proposé vis-a-vis des
données bruitées en bidimensionnel (2D) et en tridimensionnel (3D). Tous les codes de
résolution ont été implémentés avec FreeFem++ MPI, et le besoin de plus d’espace
mémoire pour les simulations (3D) nous a conduits a utiliser ffddm. Le troisiéme
chapitre est consacré a la détection de petits objets immergés dans un fluide a partir
des mesures effectuées sur une partie du bord extérieur. L’approche introduite par
la théorie des jeux s’applique pour ce probléme couplé, ou le troisiéme joueur ici
utilise la méthode du gradient topologique pour identifier le nombre d’objets et leur
emplacement approximatif.

La deuxiéme partie de cette thése concerne la résolution des problémes inverse
non linéaire. On considére un écoulement de fluide incompressible et quasi-Newtonien



dont la viscosité obéit a la loi de carreau. On présente deux formulations de probléme
de Cauchy pour le systéme de Stokes non linéaire, une basée sur une approche de
controle optimal et l'autre basée sur une stratégie de jeux de Nash. Le traitement
numérique de la non linéarité de la fonction de viscosité nécessite des algorithmes
spécifiques pour la résolution des problémes aux limites non linéaires. Parmi eux,
on présente l'algorithme de point fixe et on propose un nouveau schéme, qui montre
une autre fagon de traiter les problémes de Cauchy non linéaire avec un cott trés
avantageux comparé avec une résolution classique des problémes non-linéaires. Les
résultats numériques obtenus sont satisfaisants et ont montré la performance de notre
nouveau schéme par rapport a 'algorithme de point fixe. Les deux méthodes proposées
sont efficaces et robustes, puisqu’il est capable de débruiter les données et de fournir
des reconstructions satisfaisantes. Enfin, on étend ’approche de jeux de Nash pour le
probléme du couplage non linéaire entre la reconstruction des données manquantes et
la détection des inclusions.
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CHAPTER ]_

Introduction

“Satisfaction lies in the effort,
not in the attainment, full effort
is full victory."

Mahatma Gandhi

An inverse problem in science is determining the causal factors that produced them
from a collection of observations. It is called an inverse problem because it begins with
the effects and calculates the causes. It amounts to reconstructing the past state of a
physical system knowing its current state, unlike the direct problem, which predicts
the future knowing its current state. Inverse problems are some of the majority signifi-
cant mathematical problems in science because they inform us of necessary parameters
that we cannot directly follow. There are many types of inverse problems, and their
applications are found in numerous fields such as hydrogeology, geophysics, acoustics,
signal processing, medical imaging, and many other fields. The intensive study of in-
verse problems is dictated by the subjects’ richness from the theoretical and numerical
viewpoints. Any direct problem generates a local variety of inverse problems, which
gives rise to theoretical questions and numerical challenges. In particular, the inverse
problems in fluid mechanics governed by Stokes equations can be properly classified into
three possible types : reconstruction of the missing boundary data, geometric/source
inverse problem, and parameter (viscosity of the fluid) identification. Inverse problems
are well known to be severely ill-posed, and such algorithms require supplementary
prior information on the geometries or parameters to be recovery. Various algorithms
have been developed, and their abilities to recover their aims have been confirmed. All
of the proposed algorithms still require a complete set of data, demanding to carry
out measurements on the whole boundary, which is unrealistic in practical situations
because parts of the boundary may be inaccessible. In this thesis, we investigate game
theory to deal with such problems. We will show that the game’s formulation could
effectively deal with these problems, and treat even those previously inaccessible, cou-
pling ill-posedness. We will overview the most common approaches for reconstructing
the missing data and the identification problem and highlighting their advantages and
challenges in the following.
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1.1 Cauchy-Stokes problem

Cauchy’s problem involves solving a partial differential equation PDE on a domain
for which overdetermined boundary conditions are given only on the part of its
boundary. The Cauchy problem, also known as a data completion problem, consists
of recovering the missing data on the boundary’s remaining part. It is a prototype of
inverse boundary value problems (IBVP), suitable for many industrial and biomedical
applications. Among the different applications already achieved : medical imaging and
thermal inspection, such as reconstructing the temperature on the inside wall of a
pipeline. Medical imaging provides a large number of inverse problems, we can cite
Electrocardiography, Electroencephalography [23, 32, 50, 80, 89, 98|... For instance,
Electrocardiography (ECG) is a medical test measuring cardiac activity’s electrical
potential, using electrodes placed on the patient’s chest. However, this tool does not
allow to know the potential values on the surface of the heart. But, if we consider
the domain delimited by the thorax, such that the overspecified boundary data are
the obtained measurements by the electrocardiogram on the thorax surface, and the
values of the potentials are the missing data on the surface of the heart. Thus, the
numerical resolution of the Cauchy problem, in this case, allows the reconstruction of
the electrical potential on the surface of the heart.

The Cauchy problem is known to be severely ill-posed and computationally challen-
ging. The mathematical term well-posed problem was basically introduced by Jacques
Hadamard [59] in 1923. He believed that mathematical models of physical problems
must have the properties of uniqueness, existence, and stability of the solution. If at
least one of these properties is not satisfied, the problem is ill-posed. Inverse problems
are often ill-posed. In particular, the Cauchy problem’s ill-posedness is mostly related
to the solution’s instability, even it exists, for a small perturbation of the Cauchy data.
Various regularization approaches have been used in the literature to solve certain
inverse problems, particularly the ill-posed Cauchy problem. Regularization’s method
principle consists of substituting the ill-posed problem with a sequence of well-posed
problems whose approximate solutions converge to the original inverse problem’s exact
solution.

One of the most popular methods for ill-posed problems governed by partial
differential equations is the Tikhonov method [96, 97|, which was introduced by the
Russian mathematician Andrey Nikolayevich Tikhonov. The general regularization
concept can found in many papers and books on inverse theory [69]. Tikhonov’s
regularization method involves solving the inverse problem in the least-squares sense
by adding a stabilizing term. The additional term is the norm of solution or its gradient.
Cimetiére et al. [38] proposed to solve the Cauchy problem using an iterative Tikhonov
regularization method, and the regularizing term is the distance between two successive
iterated solutions. Ben Belgacem and El Fekih [27] treated the Cauchy problem for
Laplace’s equation interpreted by solving an interface problem by introducing the
Steklov Poincaré operator. With Azaiez [15], they are interested in the construction of
a stable solution of the Steklov-Poincaré problem using the Tikhonov method.

Lattés and Lion [74] proposed the quasi-reversibility method of changing an
ill-posed problem into a well-posed one by introducing a parameter. The convergence



to the original problem is achieved when the parameter tends to zero. Several authors
then took up this method to solve certain elliptic inverse problems, Klibanov and
Santosa [87], Bourgeois [28].

The iterative method used by Kozlov et al. [71, 72| was extended in [22] for the
stationary Stokes system. This method is an altering iterative one, where successive
solutions of well-posed mixed boundary value problems for the original equation are
computed. This method has been interpreted in terms of an interfacial operator in [10,
24]. Three iterative procedures have been developed by Johansson and Lesnic [63, 62, 64]
for obtaining a stable solution to the Cauchy problem for the generalized Stokes system.
The first paper proposed an algorithm based on the Landweber-Fridman method, an
iteration scheme based on solving a series of mixed well-posed boundary value problems
for the generalized Stokes system and its adjoint. A variational conjugate gradient
iterative procedure has been proposed in the second one. These two latter algorithms
are compared in the third paper with another iterative method, namely, the minimal
error method. Notice that in all these mentioned works, the regularizing procedure
lies in selecting an appropriate stopping criterion. Other contributions are focused on
carefully developing a control type method, which is graciously allowed to approximate
the Cauchy problem’s solution. Andrieux et al. [85] proposed a new procedure for linear
elliptic Cauchy problem based on minimizing energy like error functional. This method
has been studied and adapted in different frameworks : elasticity equations [19], Stokes
system [24]. A conjugate gradient type optimization procedure used in the works of
Aboulaich et al. [1, 2]. A regularization technique has achieved the stabilization of the
proposed algorithm. In [55, 56|, the authors used a Nash game approach to solve the
Cauchy-Laplace problem. Moreover, they compare the Nash game algorithm to a control
type method and show its efficiency.

1.1.1 The model problem

The considered Cauchy-Stokes problem is given in the following framework : Let (2
be a bounded open domain in R¢ (d=2,3), which is filled with a viscous incompressible
fluid flowing at low Reynolds numbers governed by the Stokes equations. Its boundary
is sufficiently smooth and composed of two parts I; and I..

Identified Data over I

FIGURE 1.1 — Example in a two-dimensional geometry : An annular domain represents a region
between two concentric circles.



Our Cauchy problem here consists to find (u,p) € H(£2)¢ x L*(§2) such that :

—div(o(u,p)) =0 in {2

divu =0 in {2,

(©5) w =f on I
o(u,p)n. =& on I,

1
where f € H2(I))? and & € (HZ (L)) are given functions, and ¢ being the stress
tensor satisfying the following constitutive law

o(u,p) = —pla+ 2vD(u),

with I; is the identity matrix, the coefficient v > 0 denotes the kinematic viscosity
and D(u) = (Vu + Vu®)/2 represents the deformation tensor. The Dirichlet data f
and the Neumann data @ are the so-called Cauchy data, which are known on the
accessible part I. of the boundary 0f2. The problem under study (CS) is known as
a data completion problem, which consists to find the fluid velocity and the normal
stress on the inaccessible part of the boundary I;.

The above Cauchy-Stokes problem does not always admit a solution for any given
data (f,®), but when a solution exists, it is necessarily unique graciously according
to the unique continuation property for the Stokes system (see [47]). Therefore, if the
Cauchy problem (C'S) has a solution, the Cauchy data are justly said to be compatible.

1.1.2 Instability in the Cauchy problem for the Stokes equations
In 1923 (Lectures on Cauchy’s Problem in Linear PDEs (New York, 1953)) [59],

J. Hadamard has been provided precisely a fundamental example to elucidate the
ill-posedness of a Cauchy problem for Laplace’s equation. He showed that the solution
does not depend continuously on the given boundary data.

In our case, we will properly build an analytical example for the stokes system by
naturally inspiring from the classic example of J. Hadamard. This example is as follows :

Consider the solution (u,p) = ((u1,us),p) to the Cauchy-Stokes problem in the
upper half plane,

—dlv(a(u,p) <I7 y)) =0 in Qv
divu(z,y) =0 in (2, (1.1)
u(z,0) = f forevery z€R, '

o(u,p)(xz,0)n =& forevery x€R,

where 2 = {(x,y) € R?*|ly > 0}. In particular, when the Cauchy data (f,®) are equal
to zero, we have the following solution

(u(z,y), p(z,y)) = (0,0),

(p=cte is also a solution, and to have a uniqueness we can choose p such that its average
is zero). For n > 0, we introduce the pair (f™,@"), the perturbation of the data (f,®),
given by

10



fmo= (0,—#cos(nx))

" = (%sm(nx), 0).
Then, the perturbed solution of the Cauchy-Stokes problem (1.1) becomes,
up(z,y) = Hsin(nz)sinh(ny),
ut(z,y) = —zcos(nz)cosh(ny),
pi(z,y) = 0.

One can remark that if n — oo, then we have (@" — @) and (f™ — f) tend to zero,
while the perturbation (u"(x,y) — u(x,y)) takes high values for any y > 0. Therefore,
to sufficiently illustrate this example we have plotted the two components of (u™(z,y) —
u(z,y)), for n = 10000 with different values of y, see Figure 1.2.

0% n=10000
15} ' ‘ '

1 g ! l“._ H
. RN [

s - s b
—,r!a‘,iu!!wa»'!!.m-u!-ﬁ‘,t.- 1
[N
W

- I IR 1 A HIEE
RN I

HTIE A R i L R
PRORSEIR G R g
et Pl

ulpeylu, (xy)

ith 1
DS
R R N R N
TR AR R AR AR AR AR
i ! st :
R AR R R A A R

A5F

FIGURE 1.2 — Exponential explosion for high frequencies.

This problem’s ill-posed character makes its mathematical resolution delicate en-
ough and cannot directly consider due to the risk of having unstable solutions. A large
number of approaches can be found in the literature for solving the Cauchy-Laplace
problem. In the following subsection, we will present an extension for the Stokes
system by two control-type approaches introduced in [2, 24]. The main idea of those
approaches was borrowed liberally from the domain decomposition. It consists of
reconstructing two well-posed problems. The solution to the Cauchy problem breaks
down into a couple of functions.

In consequence, the Cauchy-Stokes problem can be split into two well-posed sub-
problems with mixed boundary conditions as follows :

( Find (uy,p1) € H'(£2)¢ x L*(§2) such that :
—div(o(us,p1)) =0 in (2,
(Py) divu; =0 in {2,
Uy = f on ]27
\ olu,pi)n+au; =n+ar on I

( Find (ug, po) € HY(2)4 x L*(£2) such that :
—div(o(ug,p2)) =0 in {2,
(Py) divug =0 in
o(uz,p2)n =& on I
L o(ug, p2)n+ Puy =n+p7 on I

11



where 7 € (H()%O(Zz)d)’, T € H2(L)" are given functions, a and 3 are real parameters,
that makes it possible to specify the different types of boundary conditions on I; :

— The Neumann-Dirichlet case corresponds to @ = 0 and § = 400 (i.e. a Neumann
boundary condition over I; and a Dirichlet boundary condition over I; respectively
in (P) and (P) ).

— The Dirichlet-Dirichlet case corresponds to a = 3 = +oc.

— The Neumann-Neumann case corresponds to a = 3 = 0.

In general, these two problems are distinct for any values of n and 7. Although
when they coincide, the Cauchy problem is solved efficiently. The researchers carefully
have introduced methods that minimize the gap between the two sub-problems’ two
solutions to solve the initial inverse problem.

1.1.3 An optimal control formulation

Minimization of an energy-like error functional : In this paragraph, we
present an approach developed in [24] to solve the Cauchy-Stokes problem (Laplace
equation in [10]), where this latter is converted into an optimization one, and an energy-
like functional is introduced. Then, the authors proposed an optimal control formulation
given by :

1 1
Minimize €, 5(n, 7), for all (n,7) € (H&(L)?) x H2(L)4,

1
where €, 5(n,7) = 3 /Qa(ul — Uz, p1 — p2) : V(ug — ug) d,

such that (uq, p1) and (ug, p2) are the solutions of the respective BVP(P;) and ().

The authors used an iterative process based on the preconditioned gradient algo-
rithm. To show the efficiency of the proposed method, they make a comparison with
the Kozlov-Maz’ya-Fomin’s algorithm [72], which is an alternative method introduced
for solving the ill-posed problem. The basic idea of KMF’s method is to reduce the
ill-posed problem to a sequence of well-posed mixed boundary value problems, and it
describes in the following steps for the Neumann-Dirichlet case :

Step I : Choose an initial guess 7y € (H[)%O(]Z)d)’ , and solve the problem (P;) with
= To-

Step IT : For j > 1, a sequence of well-posed mixed BVP (u/,p’) is generated as
follows :
1- (u®*1 p2*1) solve the well-posed mixed BVP (P,) with 7 = u* on I}.
2- (u®12 p*12) solve the well-posed mixed BVP (P;) with n = o(u®*! p**t1n

on [;.

3- Repeat step 1 until a prescribed stopping criterion is satisfied.

The KMF’s algorithm can be properly characterized as an alternating-direction mini-
mization method for the energy-like error functional €.

A control-type regularized data recovering process : A control-type method
for solving the Cauchy problem was presented in the work of Aboulaich et al. |1, 2.
The overall idea of this approach is to convert the problem into an optimization one.

12



A regularization technique is developed here in order to properly handle the instability
of the solution of the ill-posed problem. For the Neumann-Dirichlet case, the authors
exploit the problems (P;) and (F,), to solve the following minimization problem :

Find (", 7%) € (HE,(L)®) x H*(L)*such that :
(ﬁ*,T)—arg mlnmﬁ( 7,7), '
where J(n,T) Z—HU( 1(n),p1(n ))n—@ll2 + 5 llui(n) —ua(1)I?

2y 2 H2 (L)

The functional J splits into a classical least square term on I, and a regularizing one on
I;, where the data is to be completed. The authors showed that this function is twice
Fréchet differentiable and strictly convex, and they used the Lagrangian method, which
makes it possible to evaluate the gradient components. Then, they used a conjugate
gradient algorithm to minimize the above function J.

1.2 Game Theory

Game theory is the study of mathematical models. It allows a formal analysis of
conflicts posed by agents’ strategic interaction (are called -players), pursuing their own
goals. A formal theory of games was suggested by the mathematician John Von Neu-
mann and economist Oskar Morgenstern in a “Theory of Games and Economic Beha-
vior” in 1944 [81]. Mathematician John Nash is considered by many as contributing
the first significant extension of Neumann and Morgenstern’s work. He introduced what
has now been named the Nash equilibrium of a strategic game in the 1950s.

1.2.1 Game

The game is the object of studying game theory. All games are described as a set
of circumstances that depend on all decision-makers’ actions (players). It is defined as
a formal description of a strategic situation. It has three essential elements :

— A (finite) number of players N = {1,...,n}.

— Each player i has a strategy set .5;.

— Each player ¢ has a cost functional F; : S; X S5 x .. x §,, = R.

Different categories of games can distinguish in game-theory according to three main
criteria :

(i) the ability of players to formally commit to their future decisions,

(ii) the complete or incomplete nature of the information,

(iii) the static or dynamic nature of the game.

This classification is necessary because we do not use the same tools to solve
any game type. Roughly speaking, the first criterion refers to the two main approaches,
cooperative vs non-cooperative, around which game theory has historically been built.
Cooperative games in which players are allowed to cooperate on a joint strategy.
For non- cooperative is the basic assumption that players cannot cooperate; they are
completely free to decide when making their choices. Games with complete information,
meaning that all players know each others’ strategy spaces and cost functionals. The
failure of this assumption is termed as a game with incomplete information. Thus,
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a game will be dynamic if the game’s progress provides information to at least one
player ; otherwise, it is static.

In a game, an equilibrium is when the players have made their decisions, and
an outcome is reached. John Nash proved that every finite n-player non-cooperative
game has what is now known as a Nash equilibrium :

A Nash equilibrium is a strategy profile s* = {s},...,si} € II'_|S;, such that the
strateqy of player i is a better answer :

Vi € N, sf € B;(s*;),

Bi(s*;) = {Si € S;/Fi(s4,8%,) < Fy(sh,s*,), Vs € Si} (1.2)

where s_; is the profile s of strategies other than those of player i
S = {51, ooy Sim1y Sig 1y -y Sn}.

Game theory’s object is to formalize the interactions to predict the possible outcome
and help the player or players choose the best strategy.

1.2.2 Some Applications of Game Theory

In the present section, we overview some applications in applied mathematics and
in biology carefully studied by using the game-theoretic approach.

Tumoral angiogenesis as a Nash game : In [53, 54|, an original approach based
on game theory frameworks proposed to model pro- and antiangiogenesis. Angiogenesis
is a blood network created by cancer cells, and this network allows both to feed the
tumor and disperse the cancer cells via the blood networks. Indeed, this network is pro-
duced thanks to activators’ action, which naturally induces the migration of endothelial
cells from a nearby vessel toward the tumor and the destruction of the tissues in their
direct path to making easy the construction of new capillary and vascular networks.

Angiogenesis can be described as a competition between a density of activators,
which act to provide the tumor with an optimum blood network, and a density of
inhibitors which act to reduce the tissue degradation. These densities act in a context
described by a fluid-structure coupling model, which means a porous media model,
representing the fluid needs of the tumor, and a linear elasticity model, representing
the need for good structural behavior of the host tissue.

For that, the authors considered a two-player zero-sum game. The two players are
activator and inhibitor, where activators aim to maximize the tumor drainage while the
inhibitors play with exactly the opposite objective. The combined action of activators
and inhibitors leads to creating a blood network, whose shape is obtained using to-
pological optimization. Figure 1.3 illustrates the porosity distribution at convergence,
obtained by Habbal et al. [54].

Game-theoretic approach to joint image restoration and segmentation :
Kallel et al. [65] proposed a game-theoretic approach to solving the problem of image
restoration and segmentation jointly. The authors considered a two-player static of
complete information game where the first player is restoration, and the second is
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F1GURE 1.3 — The 2D model of a circular tumor with a vascular network : strategies converging
to a Nash equilibrium [54].

segmentation. The restoration player’s goal is to minimize, with an image intensity [
as a strategy variable, the functional :

31,0:/ 1—12dx+/ VI dz,
1(1,0) Q( 0) “mc' |

while the segmentation player aims at minimizing the following functional with the
discontinuity set C' -contours- as strategy variable,

k

~ 1

o(1,C) = E /Q‘(Io—fi)de—l—WC’\, Wherefi:@/g]x dx
=1 7 7

Since both objectives depend on both strategies, then, solving the game amounts
to finding a Nash equilibrium, defined as a possible of strategies (I*,C*) such that the
following holds

(I*,C*) = arg min; J,(I,C*),
= arg ming, Jo(I*,C),
with 7* is sought in the Sobolev space H'(£2\ C*), and C* is sought the set of the union
of curves made of a finite set of C*!-arcs. In order to compute this equilibrium, the
authors used a classical iterative method with relaxation. Figure 1.4 present a numerical
result using a level set approach, obtained by the authors of article [65].

A Nash game formulation of the Cauchy problem : Habbal and Kallel
[55, 56] introduced a game theory-based algorithm for solving the Cauchy problem for an
elliptic operator, which consists of recovering the Dirichlet and Neumann missing data
over I;. Then, in order to solve this inverse problem, the authors proposed to formulate
it as a two-player Nash game, and introduced the two following cost functional : for
neH 2(L) and 7 € H2(I}) ,

Ji(n,7) = gllkVury = @2 o+ gllkVury = EVup v

(1) \ Sy
T, m) = Hlws = 71, o+ 4RV = kw2 )
where the fields u1(n) and uy(7) are the unique solutions to the respective BVP,
V.(kVu) =0 in £ V.(kVuy) =0 in {2,
(SP) uy =f on I (SP,) uy =71 on I,
kNVuy.v =n on I kVus.v =& on I
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input image—contour 10 iterations 50 iterations

input image recovered contour recovered image: 31.98

FIGURE 1.4 — Top row : noisy image with Gaussian noise and initial contour, evolution by
iterations. Bottom row : segmentation and restoration of image by the Nash game algorithm
[65].

In a few words, the first player controls the strategy variable n, which belongs to the
space strategy H _%(IZ), and the second player controls the strategy variable 7, which
belongs to the space strategy H %(IZ). Each of the two players tries to minimize its own
cost, namely, J; for the first player and J> for player the second one. Clearly each
player’s cost depends on other strategy. Then, the Neumann and Dirichlet controls n
and 7 do cooperate to minimize either J; or J>. A pair of strategies (n*,7*) is a Nash
equilibrium if
(77,7) = arg min, Ji(n, ),
= arg min_ Jo(n*, 7).

The authors proved that there always exists a unique Nash equilibrium, which is
exactly the missing data when the Cauchy problem has a solution. The game separable
structure is crucial for the proof, by the fact that the Neumann gap in J; depending
only on 7 and the Dirichlet gap in J5 depending only on 7. According to the Nash
theorem [56], the existence of a Nash equilibrium has been proved by using the partial
ellipticity of J; and J, with respect to 1 and 7, respectively. This property allows us
to restrict the search for Nash equilibria to bounded subsets of the strategy spaces,
which remains consistent with the classical results of the conditional stability of the
Cauchy problem [3]. They also proved that the completion process by the Nash-game
approach is stable with respect to noisy data. The nonradial missing data, obtained by
Habbal and Kallel [56], are presented in Figure 1.5, with noisy Cauchy data over I.

Many other investigations are focusing on the game theory framework. For instance,

in electrocardiography imaging 36|, the authors have introduced a Nash game algorithm
to simultaneously recover the value of different tissues’ conductivity and the potential
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Dirichlet Meumann

BB it e : [

FIGURE 1.5 — Reconstructed nonradial Dirichlet (7, left) and Neumann (ny, right) data over
I;. The profiles are presented at convergence and for a noise level o = 5% [56].

and flux on the heart’s surface from available measurements on the thorax’s surface. An
application related to the topology design of coupled heat transfer-thermoelastic system
is presented in [58]. The authors formulated the problem as a 2-players Nash game,
where the structure and the temperature distribution in the structure are considered as
strategies to respectively the first and second players. In [66], the authors studied the
image inpainting problem, where the data are not available on a part of the damaged
region’s boundary. They used a Nash game approach after reformulating the inpainting
image problem as a Cauchy one.

1.3 Geometric inverse problem

The geometric inverse problem, i.e., a problem where the unknown is a geometric
shape, has been studied theoretically and numerically. It consists precisely of finding the
optimal geometry of an object with respect to certain criteria. Generally, this problem
can be modeled as follows :

min J (£2, u()) (1.3)
(2cE
where E is a given set of admissible geometries, u() is a solution to a given partial
differential equation PDE defined in (2. Various mathematical approaches in different
frameworks are available to solve this type of problem(1.3) : Level-set approach, to-
pological sensitivity analysis method, shape gradient approach, and homogenization
theory.

1.3.1 Level set approach

The level-set method was proposed first by the mathematicians Stanley Osher and
James Sethian [83]. It has become popular in many disciplines, such as computational
fluid dynamics, optimization, and image processing [13, 65, 82|. This approach supplies
an efficient way of describing time-evolving curves and surfaces that may undergo a
topological change ; with this approach, one can perform numerical computations on a
fixed grid without parameterizing the unknown objects included in the domain.
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In a few words, the level set method is used to describe interfaces that evolve along a
given velocity field implicitly, as zero level sets of an evolving scalar function ¢ = ¢(z, t).
This function ¢ attains positive values in one subdomain and negative values in the
other, while the material interface is given by the zero level set of the function ¢.
Therefore, the level set function ¢ here represents the shape’s boundary to be identified
during the optimization process. The Hamilton—Jacobi equation governs the change of
the level set function ¢ as follows :

0
gqb—l—Vng =0,

where t is a pseudo-time parameter and V' is the desired normal velocity on the boun-
dary. In a conventional level set method, it is crucial to keep the level set function as a
distance function during the evolution procedure because steep or flat slopes can deve-
lop in the evolution of ¢ through the Hamilton—Jacobi equation. It is well known that a
signed distance function must satisfy the property |V¢| = 1. This initialization, which
does not affect the zero level set’s computation, increases the computation accuracy
and has been extensively used as a remedial measure.

1.3.2 Shape optimization method

Advanced shape optimization techniques have become a potent tool in the de-
sign and construction of industrial structures. The shape optimization problem is
formulated as the minimization of a given shape functional (1.3), which consists of
finding the unknown shape of domain or subdomain of R"”, whose topology is given.
The sensitivity analysis has been rigorously investigated in several published works [60].

There is either nonparametric (free form) or parametric shape optimization. In pa-
rametric shape optimization, the shape of a body is varied by parameters, typically
assuming the role of dimensions or orientations of this body to build the optimal shape.
Thus, when a spline curve or surface describes a shape, the shape sensitivities may also
be related to the control points’ position meanings this curve or surface. On the other
hand, the nonparametric shape optimization is excessively linked to the body’s general
geometry. A shape functional’s sensitivity concerning a smooth arbitrary perturbation
of these shapes is called the shape derivative. The last method is based on the accurate
computation of the shape derivative of the functional 7 :

dJ(2;V) = lim T (02) — T (1)

t—o00 t ’

(1.4)

where (2, = T3({2) denotes the transformed domain under the flow 73(V') generated by
a smooth vector field V.

There exists a certain number of methods available to compute the shape derivative
above (1.4) the direct method based on calculating the material derivative of a solution
of a partial differential equation PDE [99], and the Lagrangian method developed by
J. Cea [33].

If in addition the derivative is linear with respect to V', then, one can be written it as
follows :

dJ ;v :/ V.nds,
(V) 00!
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FIGURE 1.6 — Perturbed domain.

where g € L?(0f2). This gives a natural idea of gradient descent, where the boundary
0f? is evolved in the direction of negative shape gradient in order to reduce the value
of the cost functional.

As soon as a descent direction V' is obtained, it advects the shape in the direction
of V. There are, respectively, two different processes to describe a shape, explicitly
and implicitly. If the interface is given explicitly, e.g., by a spline, then the procedure
consists of simply moving the interface a certain distance into the direction given by
V' and looking at the impact of these variations on the objective function. One of the
difficulties of this method is the remeshing. Indeed, so that the computation by finite
elements is reliable, the mesh must respect certain criteria. If the form varies a lot,
that imposes to remesh the domain. However, the software generally uses the number
of the elements to define the boundary conditions or the extraction of the results, and
a remeshing necessarily implies a renumbering. Another way is possible, where the
shape can be represented in an implicit mode, employing a level set function where the
Hamilton-Jacobi equation describes its evolution.

1.3.3 Topological gradient method

To present the basic idea, let 2 be a bounded domain of R? (d = 2,3), and j(£2) =
J(£2,up)). For € > 0, let 2. = 2\ (zy + €B) be the domain obtained by removing a
small part (zg + €B) from (2, at a location zy € {2, and B is a fixed bounded domain
containing the origin. Then, the asymptotic expansion of the cost function 5 with respect
to €, takes the form

J(2\ (zo + €B)) — j(£2) = pe)g(wo) + o(p(e)).

In this expansion, p(€) denotes an explicit positive function going to zero with p and
g(xp) is called the topological gradient or topological derivative. Therefore, to minimize
the cost functional j, one has to create holes at some points x where the topological gra-
dient g(x) is the most negative. It is usually simple to compute using direct and adjoint
problems defined in the initial domain. Various kinds of topology optimization problems
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have been solved efficiently by using the topological gradient method : the elasticity
case [52], Laplace equation [9], Navier-Stokes equations [8] and Maxwell equations [79]...

In [25], a numerical process based on the topological gradient method is applied
to solve the inverse problem of detecting of small flaws’ locations from boundary
measurements. The topological sensitivity analysis is given for the Stokes system
with respect to the insertion of a small hole (gas bubble) B, in the domain (2,
with a homogeneous Neumann condition is prescribed on the boundary 9B.. In [35],
Caubet et al. used the notion of a topological gradient in combination with the shape
derivative of a Kohn-Vogelius functional to find the number, the location, and the
shape of the obstacle, which are immersed in a fluid, for the two-dimensional case
via the measurement of the velocity of the fluid and the Cauchy forces on the outer
boundary. They considered the homogeneous Dirichlet boundary conditions on the
obstacles. Ben Ameur et al. [26] studied the geometric inverse problem in linear
elasticity. This problem consists of identifying an unknown interface or inclusion from
a single boundary measurement. A regularization approach was used to compute stable
approximations of the solutions by adding multiple perimeters as a penalty to the
least-square functional. The authors employed the level-set approach with the shape
gradient method for the reconstruction problem’s numerical solution.

The topological gradient method has also been greatly used to identify the source
location. In [49], Ferchichi et al. investigated a Dirac—Stokes problem under the action
point-forces located inside the domain. In order to solve this problem, they have properly
used relaxation techniques and have formulated the relaxed problem as a topological
optimization one.

1.4 Quasi-Newtonian Fluids

Experimental observations show that, for some fluids as water, the viscosity is
constant. These precious fluids are called Newtonian. However, considered experiments
show that the viscosity, for several other fluids such as biological or polymer fluids,
is no more constant, called non-Newtonian or complex fluids. The latter sufficiently
showed that the fluid viscosity might typically vary depending on gradient tensor or
temperature or else time... Governed by the classical Stokes or Navier—Stokes equa-
tions, the Newtonian fluid flows are a well-reasoned estimation of the more realistic
non-Newtonian fluids. In this work, we will be interested in the quasi-Newtonian
fluid flow models, which could be considered a first step into the world of complex
fluids. The most applied formulations of the viscosity, in this case, are based on the
deformation tensor [18, 20, 21, 88].

The model that we work is as follows : consider the motion of incompressible

fluids in a bounded open domain 2 € R? (d=2,3), described by the fluid velocity u
and the pressure p such that

i A e g
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where f is a given source term, and the stress tensor o expresses as follows :
o(u,p) = —ply + 2v(|D(w)[*) D(u),

with v : R, — R, is a viscosity function. There are two prevalent classical models :
Carreau’s law and the power law. The boundary Dirichlet condition allows us to close
simply the equation’s system (QQN.S) and write their weak formulation. There are other
boundary conditions gently leading to a closed system of equations, i.e., capable of
admitting a unique solution [18, 21, 39]. Existence and uniqueness results are given in
the previous references, for the system (QN.S) with homogeneous Dirichlet boundary
data. Specific techniques developed in these investigations allow the correct handling of
non-linearity. To the best of our knowledge, there is no work devoted to the case where a
single pair of Dirichlet and Neumann data are available only on the part of the boundary,
that is, the case of the Cauchy problem for nonlinear Stokes system. But, there are a
few works that were concerned with nonlinear elliptic Cauchy problems ; we can cite the
work of Avdonin et al. [14] which used an iterative method for solving a nonlinear elliptic
Cauchy problem in glaciology. In [66], the authors used a game strategy to solve the
image inpainting problem as a nonlinear Cauchy problem. In [73|, the authors proposed
two iterative methods based on the segmenting Mann iteration applied to fixed point
equations. The first approach consists of transforming the nonlinear Cauchy problem
into a linear Cauchy problem and analyzing a linear fixed point equation. A nonlinear
fixed point equation is considered on the second approach, and a thoroughly nonlinear
iterative method is investigated. An approach is based on a Tikhonov regularization
method in [42].

Organization of the Thesis
This thesis is organized into five chapters and a conclusion.

Chapter 1 gives an overview of the most common approaches used to solve parameter
or geometric identification problems highlight their advantages and challenges. Chap-
ter 2 takes the form of an article published in Inverse problems and imaging [57].
It is dedicated to solving the inverse inclusion Cauchy-Stokes problem. This problem
involves detecting one or more inclusions immersed in a stationary viscous fluid, using
only a single pair of Dirichlet and Neumann boundary measurements. We use the
simplest class of games in order to model our coupled inverse problem, specifically, the
class of static games with complete information.

In Chapter 3, we present an approach to recover jointly the location, magni-
tude of a finite but unknown number of point-wise sources, and missing boundary data
using an original Nash game strategy. This approach studies the strategic interactions
between players, where the optimal point-force location is characterized as the solution
to the topological optimization problem.

Chapter 4 is based on the work presented in [57]. We consider the topological
gradient method to determine some small objects’ best locations, using incomplete

measurements, which was the subject of a paper that has been accepted for publication
in the ARIMA journal.
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Chapter 5 aims to treat nonlinear Stokes models arising in quasi- Newtonian
fluids and the Cauchy type problem framework. Thus, we consider two well-posed
mixed BVPs, and we propose a new one-shot scheme to solve the nonlinear Cauchy
problem. Two iterative procedures were developed to reconstruct the solution of our
inverse problem numerically. A comparison of the one-shot scheme with a fixed-point
method to solve the nonlinear BVPs is performed. This comparison shows our novel
scheme’s excellent performance from a data completion viewpoint for noise-free and
noisy cases.
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CHAPTER 2

Nash strategies for the inverse inclusion
Cauchy-Stokes problem

“But in my opinion, all things in
nature occur mathematically."

René Descartes

Abstract. We introduce a new algorithm to solve the problem of detecting
unknown cavities immersed in a stationary viscous fluid, using partial boundary
measurements. The considered fluid obeys a steady Stokes regime, the cavities are
inclusions and the boundary measurements are a single compatible pair of Dirichlet
and Neumann data, available only on a partial accessible part of the whole boundary.
This inverse inclusion Cauchy-Stokes problem is ill-posed for both the cavities and
missing data reconstructions, and designing stable and efficient algorithms is not
straightforward. We reformulate the problem as a three-player Nash game. Thanks to
an identifiability result derived for the Cauchy-Stokes inclusion problem, it is enough
to set up two Stokes boundary value problems, then use them as state equations. The
Nash game is then set between 3 players, the two first targeting the data completion
while the third one targets the inclusion detection. We used a level-set approach to get
rid of the tricky control dependence of functional spaces, and we provided the third
player with the level-set function as strategy, with a cost functional of Kohn-Vogelius
type. We propose an original algorithm, which we implemented using Freefem+-+. We
present 2D numerical experiments for three different test-cases.The obtained results
corroborate the efficiency of our 3-player Nash game approach to solve parameter or
shape identification for Cauchy problems.
keywords : Data completion, Cauchy-Stokes problem, shape identification, Nash
games.

This chapter takes the form of a published article :

A. Habbal, M. Kallel, and M. Ouni. Nash strategies for the inverse inclusion Cauchy-
stokes problem. Inverse problems and imaging, 13 :827-862, 2019.
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2.1 Introduction

Fluid dynamics are central in many industrial, biological and biomedical processes.
The good functioning of the involved systems could be dramatically damaged in the pre-
sence of undesired small obstacles (impurities) or inclusions (cavitation). For example,
polymer material degradation is related to the formation of inclusions during polymer
extrusion [92]; as well, the mechanism of joint cracking is related to cavity formation
[68].

A large spectrum of the processes above can be considered as Stokes flows, though
they should be taken unsteady and anisotropic to render satisfactorily the complex
phenomenon of the formation of cavities [93]. The shape and location of the inclusions
is generally out of reach for direct observation, hence the need for effective nondes-
tructive monitoring solutions, known as geometric inverse problems when mathematics
and algorithms are involved. Popular mathematical models build on the assumption
that some specific measurements are available over the whole boundary of the struc-
ture under investigation, dealing with partial differential equations of boundary value
-BVP- type. However, it should be noticed that from a technological point of view,
when industrial devices are involved, the assumption above is in general impossible to
fulfill, either because it is too expensive, or simply because part of the boundary is
not accessible to probing, think of a heart valve [76]. Such restrictions lead to develop
complex protocoles like for the detection of flaws in metal melts in foundry industry
[67]. Industrial solutions use in general protocoles where emission and reception of the
probing signals are set on the same location of the boundary. From a mathematical
point of view, we have access to over specified boundary data (e.g. temperature and
thermal flux) on the probing location, and no data elsewhere. Thus, we deal with partial
differential equations, having access to over specified boundary data, and missing data
to recover as well as unknown inclusions to detect. We are then in the framework of
geometric inverse problems for the so called Cauchy-Stokes system. We shall restrict
ourselves to the case of steady and Newtonian Stokes flows.

|
’
l-.r' : ].11'

o\

FIGURE 2.1 — An example of the geometric configuration of the problem : the whole domain
including cavities is denoted by (2. It contains an inclusion w*. The boundary of {2 is composed
of I, an accessible part where over-specified data are available, and an inaccessible part I; where
the data are missing.

Let us introduce a preliminary mathematical description of the problem. Consider
a bounded open domain 2 C R? (d=2, 3) occupied by an incompressible viscous fluid,
see Figure-2.1. We assume that the outer boundary of (2 is sufficiently smooth and
composed of two parts I. and [;. Let w* CC (2 be an unknown inclusion immersed in
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(2. The Cauchy-Stokes geometric inverse problem considered here consists, then, from
given velocity f and fluid stress forces @ prescribed only on the accessible part I, of the
boundary, to identify w* € D,q (a set of admissible shapes defined later) such that the
fluid velocity v and the pressure p are solution of the following Stokes problem :

vAu—Vp =0 in 02\ w*
divu =0 in 2\ w
o(u,p)n. =0 on  Ow*, (2.1)
u =f on I,
o(u,p)n. =& on I,

where n is the unit outward normal vector on the boundary, and o (u, p) the fluid stress
tensor defined as follows :

o(u,p) = —ply + 2vD(u)

with D(u) = 1(Vu + Vu”) being the linear strain tensor and I; denotes the d x d
identity matrix. For the sake of simplicity, from now on, the viscosity v of the fluid is
set to v = 1.

Additionally to the geometric identification problem (i.e. detect the inclusions w*)
one has to complete the boundary data, that is to recover the missing traces of the ve-
locity u and of the normal stress o(u, p).n over I the inaccessible part of the boundary.
Remark that the difference between obstacles and inclusions amounts to which boun-
dary condition is used : homogeneous Dirichlet one for the obstacles and homogeneous
Neumann condition for the inclusions (considered as free surfaces).

Even when restricted to elliptic equations, mostly Laplace and Stokes systems, there
exists a prolific literature dedicated to each of these two problems separately, and be-
cause of their well known ill-posedness (in the sense of Hadamard) [59], most of the
literature addresses as well (if not exclusively) the ensuing stability and other computa-
tional issues. For the Cauchy problem, far from being exhaustive, an excerpt of popular
approaches are the least-square penalty techniques used in [48] and in the earlier paper
[50], Tikhonov regularization methods [38], quasi reversibility methods 28], alternating
iterative methods [72, 62] and control type methods |10, 2]. Recently, an approach ba-
sed on game theory, using decentralized strategies, was proposed in [56]. This work has
been extended in [66], in the image inpainting problem for a nonlinear Cauchy problem
and in [36] for the solution of coupled conductivity identification and data completion
in cardiac electrophysiology.

Let us mention that many of the papers dedicated to data completion or to obs-
tacle detection and based on control or optimization approaches, minimize a so-called
Kohn-Vogelius type functional, an energy error function introduced in the framework
of parameter identification in |70].

Regarding the obstacle identification problem, a more challenging geometric inverse
problem, and again with a very partial on the existing literature, the authors in [5]
address the obstacle detection problem for unsteady Stokes and Navier-Stokes flows,
quasi reversibility coupled to a level set approach is used in [29] for the Laplace equation,
shape optimization [16] and topological gradient [46] are used for the Stokes system,
and in [17] stability issues are addressed for the inverse obstacle problem in a Stokes
flow.

In contrast, rather a few papers address the joint geometric and data completion
inverse problems, at least regarding its computational aspects. Close to our present
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work, the inverse obstacle problem for the Cauchy-Laplace equation is studied in [35]
where a control-type approach is used and applied to a Kohn-Vogelius functional. In [30]
the authors use quasi reversibility coupled to a level set approach to solve the inverse
obstacle problem for the Cauchy-Stokes equations. A formulation based on nonlinear
integral equations arising from the reciprocity gap [11] principle is used in [6].

Presently, we consider the inverse inclusion problem for the Cauchy-Stokes system.
In order to solve the joint completion/detection problem, we reformulate it as a three
players Nash game, following the ideas introduced earlier in [56] to solve the Cauchy-
Laplace (completion) problem.

The game is defined as follows : first, the Cauchy-Stokes problem is formulated as two
boundary value problems (BVP). The first BVP defines the first player, it inherits the
available Dirichlet data f specified on the boundary I/, and has control on a Neumann
data set over the inaccessible boundary I;, the latter control being the first player’s
strategy aimed at minimizing the gap over I between first player’s normal stress and
the prescribed normal stress @. The second BVP defines the second player, as it inherits
the available normal stress data @ set over I/, and uses Dirichlet data set over the
inaccessible boundary I as strategy variables. The second player’s Dirichlet strategy
is aimed at minimizing the gap over I, between second player’s and the prescribed
Dirichlet data f. The fading and regularizing difference between the solutions to these
two BVPs is shared by the two players. The third player has no own BVP, but has access
to the two previous ones, and uses as control variable the shape of the inclusion(s). The
third player’s criteria to minimize is a Kohn-Vogelius type functional. The three players
play a static Nash game with complete information, whose relevant solution concept is
the so-called Nash equilibrium (NE).

We shall present and prove some theoretical results for the Cauchy-Stokes problem,
precisely that a Nash equilibrium exists and is unique, and coincides with the missing
data as soon as the Cauchy problem has a solution (that is, when the over specified data
are compatible). Then, we propose a new algorithm dedicated to the joint computation
of the missing data and the obstacle shapes. In this algorithm, a Nash subgame is
played by the completion first and second players in order to precondition the Cauchy
problem and tackle its ill-posedness. A level set approach is used for the latter geometric
identification problem. We lead a sensitivity analysis, and present several numerical
experiments that corroborate the efficiency of our approach and its nice stability with
respect to noisy data.

The paper is organized as follows. In Section 2.2, we extend our previous [56] Nash
game approach to the data completion for the steady Stokes flows. In view of the for-
mulation of the geometric inverse problem, we first recall in Section 2.3 a now classical
identifiability proof [5| usually established for obstacles, so with homogeneous Dirichlet
boundary condition, with a minor adaption to fit the case of inclusions, whose boun-
dary conditions are of homogeneous Neumann type. Then, we formulate in Section 2.4
the Nash game approach to tackle the joint completion and geometric identification
problem. We detail our algorithm, and some numerical aspects of the level set method,
used to capture the inclusion boundary. Section 2.5 is devoted to the presentation of
three numerical 2D test cases which assess the ability of our algorithm to jointly recover
the missing boundary data and the location and shape of the inclusions as well. We
finally draw some concluding remarks in Section 2.6.
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2.2 Data completion for the Stokes problem

We consider in the present section the case where possible obstacles or inclusions
are known, which amounts to simply not consider them, focusing solely on the data
completion problem. In the following, we apply the Nash game formulation of [56] to
the Stokes problem. Results and proofs in the cited reference extend easily to the present
case.

With the previous notations, let be f € H2(I)* and & € Hz(I))? given Cauchy
data. The Cauchy-Stokes problem is stated as follows : find u € H'(£2)? and p € L*(12)
such that

Ayu—Vp =0 in £,
divu =0 in (2

u =[f on L,
olu,pyjn. =@ on I.

The data completion problem, which is simply a reformulation of the Cauchy-Stokes
one, amounts to find 7* € H2 (L) and n* € H2 (L)* such that u = 7* and o (u, p)n = n*
over I;. ‘

For any given n € Hz(I))* and 7 € H2(I))%, we define the states (ui(n), p1(n)) €
HY(2)% x L*(2) and (ug(7),pa(7)) € HY(02)? x L*(£2) as the unique weak solutions of
the following Stokes mixed boundary value problems (SP;) and (SP) :

Auy —Vpy =0 in (2 Augs —Vpy =0 in {2,

divu; =0 in (2 divug =0 in (2

(Sh) up =f on I (55) up =7 on Ij
U(U1,p1)n =n on I U(UQ,pQ)n =¢ on [..

The existence and uniqueness of solutions to (SP;) and (SP;) can be derived from
the general theory on existence of solutions to the incompressible steady state Stokes
equations, which can be found e.g. in [40, 95|. See also [34] annex A.1 which is suitable
to the Cauchy-Stokes framework of the present paper. Notice that, thanks to the
assumption on Cauchy data, we have (ui(n),p1(n)) € H*(£2)? x H'(£2)%.

We then define the following cost functionals :

1 1
Ji(n,7) = 5llo(ur(n), pr(n))n — ¢||§{%(12)d + 5l (n) - U2(7)||2%(E)d (2.2)
_ 1 2 1 2
Fo(n,7) = Sllua(7) ~ fHH%(ZZ)d +5llua(n) = u2(T)HHg(E)d (2.3)

We are now in a position to formulate the two-player Nash game. The first player
is defined by its strategy n € H %(];’)d and cost J;, while the second one has control on
T € H%(]Z)d and aims at minimizing the cost J;. The two players play a static Nash
game with complete information. The most popular solution concept for such games is
the one of a Nash equilibrium (NE) given by the

Definition 2.2.1 A strategy pair (ny,7v) € Hz(5)* x H2 (L) is a Nash equilibrium
iof the following holds :

{ Ji(nn,Tn) < Ti(n, 1), Vi € H%(-l;)da
d

3 2.4
To(n, ™) < To(nn,T), V7 € Hz(L) 24)
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Recall that, similarly as [56], this two players solve in parallel the associated BVP’s
(SP1) and (SP2). Their respective objectives involve the gap between the non used
Neumann /Dirichlet known data and the traces of the BVP’s solutions over the accessible

2
| |H% (]?)d ‘

on both 1 and 7, has a regularizing effect in partial minimization, u; (resp. uz) is fixed
in the partial minimization process of J> (resp. J;). Furthermore, the partial mapping
n+— Ji(n,7) (resp. 7 — Jo(n,7) ) is a quadratic strongly convex functional over
H %(];’)d (resp. H %(If)d). This partial ellipticity property of J; holds uniformly w.r.t.
7, and conversely for J,. It allows to restrict the search for Nash equilibrium in data
completion to a bounded subsets of the strategy spaces, which remains consistent with
the classical results of conditional stability of Cauchy problem (see e.g. [3]).

The recourse to a game formulation and to a NE solution finds its justification in
the following result :

1
boundary I, plus a common coupling term 3 [l (n) — ua(T) This term depends

Proposition 2.2.1 Consider the Nash game defined above, with costs given by (2.2)
and (2.3).
(i) There always exists a unique Nash equilibrium (ny,7v) € Hz (L)% x H? (L)%,
which is also the minimum of the potential

1 1 1
L0y, 7) = Sllo () pm)n=aly p + 5l =F1Ey p 45l =7l o,

(i1) If the Cauchy problem has a solution (u,p), then (ui(nn),p1(nn)) =

(uz(7n), p2(7n)) = (u,p) and (ny,Tn) are the missing data, i.e. ny = o(u,p)n n
and TN = u -

Proof 2.2.1 (i). We first prove the uniqueness of a NE. It is easy to check that the
potential L s strictly convex by computing its second order differential with respect to
(n,7), see [2]. Thus, L has at most a one minimum. Moreover, if it exists, the minimum
of L is a Nash equilibrium, and conversely. Indeed, let be (1o, 7o) the minimum of L,
then, we have

L(77077-0) S L(7777-0)7 vn c H%( i)d7

L(no, 7o) < L(mo, ), Vr € H2(L)".
Thanks to the specific structure of L, this is equivalent to write
{ jl(T]OaTO) Sjl(f'%’ro)a VUGHQ( )
Jo(m0;70) < Folmo, 7), V7 € H3 (L),

That is, (o, 7o) is a Nash equilibrium. Conversely, if (no, 7o) is a Nash equilibrium then,
1

{ jl(T]OaTO) Sjl(f'%’ro)a VUGHQ( )
To(no, 70) < Ja(mo,7), VT E HQ( L)<

Adding the term 3||us(T) — inI%(F)d in the first inequality and the term

o (ur, pr)n — ngiI%(F)d in the second one, we get,
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By the optimality conditions, we have

oL
%(77077—0) = Oa
oL
g(ﬁoﬁo) =0,

thus, (no, 7o) is the minimum of L, the uniqueness of which implies that of the Nash
equilibrium.

The proof of existence follows the same lines as in [56], the main ingredient being

the uniform ellipticity of the convex partial maps n — J1(n,7) and of T — Jao(n, T)
which allows for a direct application of the Nash Theorem, see ibidem references to the
Nash games and theorem.
(i1). If we assume that the Cauchy-Stokes problem has a solution (u,p), which is then
unique by the unique continuation property, proved by Fabre and Lebeau in [/7], then
let us define the following nc = a(u,p)nlE and Tc = u It is then straightforward to
check that the solutions (ui(nc), pi(ne)) to (SPy) and (ua(7c), p2(1¢)) to (SP2) coincide
with the Cauchy solution (u,p), thanks to the uniqueness of the solution of the boundary
value Stokes problem. Thus, L(nc,7c) = 0 so that (ne,7¢) is a minimum of L > 0.
Thanks to the uniqueness result above, (nn,Tn) = (Nc, To)-

For the computation of the NE for the Cauchy-Stokes problem, we used a popular algo-
rithm [12| which amounts basically to solve iteratively the following coupled problem,
using gradient descent methods,

(nw, 7v) = argmin, J1(n, 7v),
(v, 7v) = argmin, J> (1, 7).
We describe in Algorithm 2.2.1 below the main steps of the method, with a version

where the Cauchy data of the Dirichlet type f are possibly perturbed by a noise
with some magnitude o, yielding for the Cauchy problem a noisy Dirichlet data f7 :

Algorithm 2.2.1: Computation of a Cauchy-Stokes Nash equilibrium
Given : € > 0 a convergence tolerance, K,,,, a computational budget, o a noise
level and p(o) a -tuned- function which depends on the noise.
Choose an initial guess S© = (n©, 7)) e H2 () x H2 (L)% Set k = 1.
e Step 1 : Compute 7*) solution of minnjl(n,T(k_l))
and determine n® = t*=Y + (1 —t)®  with0<t<1.
e Step 2 : Compute 7*¥) solution of min, Jo(n*~Y, 1)
and determine 7*) = ¢7(+-1 (1-— H7®  witho<t<1.

e Step 3 : Compute s = Huék) = [l 21y, Where (ugk),pék)) is the solution

of the following direct problem

Augk) - Vpgk) =0 in {2,
divugk) =0 in {2,

ugk) =7® on I3,
a(ugk),pgk))n =¢ on I,

While s > p(0)e and k < K4 set k = k + 1, return back to step 1.
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The gradient descent methods used to solve steps 1 and 2 in the algorithm above do
require the computation of the gradients of the costs J; and 5, with respect to their
respective strategies. The fast computation of the latter is classical, and led by means
of an adjoint state method, as shown by the Proposition 2.2.2 below.

We shall use the following classical notation :

HHQ)={p e H()* [opr=0} and HHQ)={pe H*(Q)? [p =0}

whenever [I'is a non empty subset of the boundary of (2.

Proposition 2.2.2 We have the following two partial derivatives :

EoE /w ds, Ve H(R),

wzth (A, k1) € HIL(_Q) x L*(2)  solution of the adjoint problem :

(APy) /]Z(U(ulapl)n — D)(Vy + Vv )n)ds + /F(ul — T)yds

i

] (V7 V) s Vhide - /deivvdx =0, vy e Hp(2).

_ / (o(u3, 1) — B)onds — /Qédiv)\lda: _0, V5e H\(Q),

\ . c

r %M = /]7(0()\2, /‘€2)n — (Ul(n) — UQ(T)))ILLdS’ VM c H%(];)d7

with ()2\2, ko) € HY ()4 x L?(£2) solution of the adjoint problem :
(AP) /Q(V)\Q + VD) 1 Vpdr — /Q/fgdiwpdx = /F(f — uy(7))ds,

Vo € H(1),

/dimgdx =0, Ve¢elL*9),

where, by a classical convention, Vu : Vv = Tr(VuVuvT) Z 3 0 )
€Lj O

Remark 2.2.1 The existence and uniqueness of the solutions to the problems (AP;)
and (APy), namely the adjoint states (Mi,k1) € Hp(2) x L*(£2) and (Mo, K2) €
HY ()% x L*(£2) is straightforward, thanks to the reqularity assumption on the Cau-
chy data (f,®) € H2 (L) x H2(I))* and to the regularity H2(2)* x HY(£2)? results on
the solutions to the Stokes problems (SPy) and (SPs), see e.g. [51] (or [22] Theorem
5.2).

Later on, Algorithm 2.2.1 described above will be embedded into an overall algorithm
with the specific task of processing the data recovery problem. We shall then use the
partial derivatives given by Proposition 2.2.2. The overall algorithm stems from the
Nash game played by the data recovery problem against the inclusion inverse problem.
Next section is then devoted to a mandatory preamble for geometric inverse problems,
that is the identifiability question.
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2.3 An identifiability result for the inverse inclusion
Cauchy-Stokes problem

In the present section, we adapt an identifiability result in [5], established for the case
of obstacles, that is with a homogeneous Dirichlet condition, to the case of inclusions
defined by Neumann (or free surface) boundary conditions.

The set of admissible inclusions is definded by :

Daq = {w CC Nis a C"'open set and 2\ @ is connected}.

We follow grosso modo the same proof technique of |5], noticing that, differently from
the obstacle (Dirichlet) case, inclusions are not identifiable in case of over specified data
f of affine free divergence form. Consequently, even if the over specified fluid stress @
is identically zero, it is enough for the identifiability to hold, that the velocity data f
be non affine.

Theorem 2.3.1 Let be 2 C R? an open bounded Lipschitz domain and I, a non-
empty open subset of the boundary 0f2. Assume there exists a pair of compatible data
(f,®) € H2(L) x H2(I))* for the Cauchy-Stokes problem, such that either & # 0 or
f(x)#£ Ax+0b where A is a constant matriz with null diagonal. Consider two admissible
open sets wy and wy in Dag. For i = 1,2, let be (u;,p;) the solutions to the following
Cauchy-Stokes inclusion problem :

Au; —Vp;, =0 in 02\,
divu; =0 in 2\,
o(ui,p)n =0 on  Ow;, (2.5)
up =[f on VAN
o(us,pi)n =& on L.

Then w; = ws.

Proof 2.3.1 Denote by w = w; Uwy and define, over the set 2\ @, v = u; — uy and
q = p1 — p2, where (uy,p1) and (ug, p2) are the solutions to the system (2.5).

One sees that (v,q) satisfies

Av—Vq =0 in 2\,
divoe =0 in 02\,
v =0 on I,
ov,g)n =0 on L.

Thus, thanks to the unique continuation property for the Stokes system (see []7] or [5]
Corollary 2.2), we have v =0 in 2\ @ and then uy = uy in 2\ @.

FIGURE 2.2 — Different situations
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Let us suppose that wy # wa, and assume then (up to a swap in subscripts) that wy \ws
is an open non-empty subset of 2. We know from system (2.5) that :  Aus — Vpy =
0 in w \ s

First, let us consider the case where wy \wy is Lipschitz. Then, we multiply the equa-
tion above by us and take the integral over wi\ws. Observe then that, thanks to divuy = 0
in wi \ @z, one has Auy = 2div(D(uy)) where we recall that D(us) = 1/2(Vuy + Vul).
By use of the Green formula, we obtain

D(us) : Vusdx — /

wi\wz

podivusdr = / (—p2lyq + D(ug))nuqds,
w1 \&72)

w1 \W2

which can be rewritten as follows :

1/ | D(us)|*dx :/ o (ug, p2)nusds.

2 )on\em Owr\a3)

Now, since o(v,q) vanishes in 2\ @, and thanks to the continuity of the involved -
normal- traces, one has o(v,q)n = 0 on Ow. From other part, one has o(uy,p1)n =0 on
Owy thanks to equations (2.5). We then have o(uz,pa)n =0 on dw; \ O(w; Nws). Now,
since we know that o(ug, pa)n = 0 on Owy thanks to equations (2.5), we obtain

/ o (ug, p2)nusds = 0,
Owr\@2)

that is,
1

-/ |D(us)|2dz = 0,
2 w1 \w2

Since ||D(u2)||2Lg(wl\@) = 0, the components of the matrixz of D(us) are a.e. zero. Conse-
quently, the velocity field us has an affine form in wy \ws, shortly given by us(z) = Az+b
where A is a constant matrix with null diagonal.
We know from above and from equations (2.5) that (us,ps) satisfies the following
system,
Aus —Vpy =0 in  w; \ g,
divus =0 in  wp \ W, (2.6)
o(ug,po)n =0 on O(w; \w2).

Thus, by application to us(x) — (Ax + b) which fulfills the system (2.6) above, of
the unique continuation theorem for the steady Stokes equation established in [}7], we
conclude that uy(x) = Az +b and ps = 0 in the whole domain 2\ ws;. Finally, reasoning
with the traces on the boundary of the domain 012, we observe that us(x) = Az +b and
pe =0 in 2\ Wy yields o(ug, po)n = @ =0 and us(x) = f(z) = Az + b over I, which,
by assumption, is impossible. We conclude that wy \ @Wa = (), and so wy = ws.

Now, when wy \ Wy is not Lipschitz, then the use the Green formula is not justified.
We recall and follow here the solution given by [3/] : the author in the cited reference
introduces an additional reqularity assumption on wy and wy, assuming that they have
CYt boundary. We assumed more regularity on the Cauchy data in order to have more
reqularity for the solution (ug,p2), that is uy € H*(2\wz)? and py € H(2\w3). Then,
consider two Lipschitz open sets O1, Oy € 2\ Wy, such that O; C 2\ wy, 00 \ (0w U
8&)2) = 8(92 \ (8w1 U &ug) and 8w2 Nwy C 8(’)1

Next, by use the Green formula on O; and Oy, we obtain

1 1
= |D(uz)|2d:v:/a(ug,pg)ands and = |D(uz)|2d:1::/ o (ug, p2)nusds.
2 01 8(91 2 (@) 802
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Subtracting these two equalities, we get

1
—/ |D(uy)|*dz = 0.
2 wi\w2

Hence, we conclude as previously. Finally, for the case where the domain 2\ wi U wy
is not connected (fourth case in figure 2.2), we refer the reader to the same cited above
[34] where this case is successfully handled.

The identifiability result suggests that there is no need for a third party state equa-
tion, the two state equations (SP;) and (SP;) formulated with inclusions and dedicated
to the completion problem should suffice. Only a third player’s cost functional should
be defined, playing with inclusions as strategies. Hence we enforced the data completion
steps, by letting the first and second players lead a Nash subgame during the overall
iterations, see next section. Numerical experiments show that this choice turned out to
be efficient.

2.4 Coupled data completion and geometry identifi-
cation for the Stokes problem

The aim of the present section is to introduce an algorithm dedicated to recover the
missing boundary data while solving the inverse inclusion problem for steady Stokes
flows. We extend the two-player Nash game set for the completion problem to a three-
player Nash game, the third player being in charge of the inverse inclusion problem.

We recall that the inverse inclusion problem amounts to find w* € D,q such that the
fluid velocity u and the pressure p are solution to the following Cauchy-Stokes problem :

Au—Vp =0 in 02)\w
divu =0 in 2\ w¥
o(u,p)n. =0 on  Ow*, (2.7)
u =f on I
o(u,p)n. =® on .

Thanks to the identifiability result stated in section 2.3, a single pair of -compatible-
measurements (f, @) is enough to recover the inclusion(s) as well as the missing data.
Next, we shall set up a three-player Nash game following the same philosophy than in
section 2.2 dedicated for the sole completion.

Forn € H2(I[)* ,7 € H2(L)* and w € Dy, let us define the following three cost
functionals :

. — 1 w w 2 1 w w 2
i mi0) = SN0k (o), 5t (e — DR,y 1+ SIS ) = (DI e (29
. _ 1 w 2 1 w w 2 2 9
Jo(n, Tyw) = 5”“2 (1) — f||H%(E)d + §||U1 (n) — u3 (T)HH%(E)d’ (2.9)
Toln, i) = [0 (), 15 () = o (5 (P, 5 (D) e + O], (210)

where the parameter p > 0 is a penalization of the perimeter |Ow|, defined as the
Hausdorff measure H'(0w), (u$(n),p%(n)) and (u(7),ps (7)) are the solutions of the
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respective BVP (P;) and (P) :

Auy —Vpy =0 in 02\, Augy —Vpy =0 in 2\,
divuy =0 in 2\, divuy =0 in 2\,
(Py) ouy,p{)n =0 on Ow, (P2) o(ug,py)n =0 on Ow,
uy =f on I, oug,p§)n =@ on I,
oluy,p{)n =n on I uy =7 on I

In a few words, there are three players : Player (1) controls the strategy variable
n € H2(I)* and aims at minimizing the cost 7, and Player (2) controls the strategy
variable 7 € H %(I;)d and aims at minimizing the cost [J,. These two players may be
interpreted exactly the same way than in the completion game stated section 2.2 :
they are given Dirichlet (resp. Neumann) data and try to minimize the gap with the
Neumann (resp. Dirichlet) remaining condition. The player (3) controls the strategy
variable w € D,q and aims at minimizing the Kohn-Vogelius type functional J3, to
which we added the regularizing term p|0w| which prevents from obtaining too irregular
contours, as classical from Mumford-Shah functionals, see e.g. [13].

Notice that the state variables (u$(n), p{(n)) and (ug(7), p§ (7)) belong to the space
(HY(2\w))¢ x L*(2\ @), which obviously depends on w, a variabl