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Je me sens très privilégiée d’avoir été encadrée par vous. Nicolas, merci d’avoir tou-
jours eu confiance dans mes initiatives et de m’avoir incitée à programmer. Merci
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transparente de mettre en forme les idées sur lesquelles nous avons travaillé. Merci à
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Résumé

Dans cette thèse nous nous intéressons aux propriétés combinatoires de la théorie des repré-
sentations modulaires des groupes symétriques et alternés.

Nous nous concentrons sur le problème de l’étiquetage des représentations irréductibles mod-
ulaires des groupes symétriques et alternés. Une façon naturelle d’aborder ce problème est de
trouver des ensembles basiques unitriangulaires pour les matrices de décomposition. Une de
nos principales motivations est liée à l’application de Mullineux, application qui contrôle la re-
striction du groupe symétrique au sous-groupe alterné. Dans le but d’avoir un étiquetage parti-
culièrement bien adapté à cette restriction, on cherche des ensembles basiques unitriangulaires
stables. De tels ensembles sont stables pour la conjugaison.

Il apparaı̂t lors de notre étude le phénomène remarquable suivant : le nombre de partitions
auto-conjuguées avec des longueurs des crochets diagonaux non divisibles par p, appelées BG-
partitions, est égal au nombre de points fixes de l’application de Mullineux, ou partitions auto-
Mullineux. Nous montrons une correspondance combinatoire explicite entre les deux ensembles
de partitions.

Récemment il a été montré qu’il n’existe pas toujours un ensemble basique unitriangulaire
pour le groupe alterné. Cependant, ces notions peuvent être définies au niveau des blocs. Nous
étudions l’application de Mullineux dans les blocs auto-conjugués de p-poids 2 du groupe sy-
métrique et nous exhibons un ensemble basique unitriangulaire stable pour ces blocs, ce qui
implique l’existence d’ensembles basiques unitriangulaires pour certains blocs des groupes al-
ternés.

Mots clés: Combinatoire algébrique, Théorie des représentations, Groupe symétrique, Groupe
alterné, involution de Mullineux.

Abstract

This thesis concerns combinatorial properties of the modular representation theory of the
symmetric and alternating groups.

We focus on the problem of labelling the modular irreducible representations of the symmet-
ric and alternating groups. A natural way to approach this is through unitriangular basic sets for
the decomposition matrices. One of our main motivations is related to the Mullineux map, which
controls the restriction from the symmetric group to the alternating subgroup. In order to have
a labelling which is particularly well adapted to this restriction, we look for stable unitriangular
basic sets. Such sets are stable for conjugation.

In our study, the following remarkable phenomenon is observed: the number of self-conjugate
partitions with diagonal hook-lengths not divisible by p, called BG-partitions, is equal to the
number of fixed points of the Mullineux map, or self-Mullineux partitions. We give a combinato-
rial and explicit correspondence between the two sets of partitions.

Recently it has been shown that there is not always a unitriangular basic set for the alternating
group. However, these notions can be defined at the level of blocks. In this thesis, we study the
Mullineux map in self-conjugate blocks of p-weight 2 of the symmetric group and we construct a
stable unitriangular basic set for these blocks, which implies the existence of unitriangular basic
sets for some blocks of the alternating groups.

Keywords: Algebraic combinatorics, Representation theory, Symmetric group, Alternating group,
Mullineux involution.
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Introduction

L’origine de la théorie des représentations des groupes finis remonte à la fin du 19ème
siècle, lorsque Frobenius a étudié la factorisation d’un certain polynôme associé à
un groupe fini, appelé le “déterminant du groupe”. Généralisant le cas connu d’un
groupe abélien, il a prouvé que ce polynôme se factorise comme un produit de po-
lynômes irréductibles, où chaque polynôme apparaı̂t avec une multiplicité égale à
son degré. Cette question, remarquée par Dedekind, est ce qui a conduit Frobenius
à inventer la théorie des caractères pour un groupe fini arbitraire et à construire les
bases de ce que nous appelons aujourd’hui la théorie des représentations. Pour des
références historiques sur l’origine du sujet, dont les pionniers sont Frobenius, Burn-
side, Schur et Brauer, voir [Cur99,Haw71]. Le domaine s’est largement développé à ce
jour et il a des liens avec la physique, la chimie et d’autres domaines. Il est intéressant
de noter que la plupart des résultats sur la classification des représentations ordi-
naires du groupe symétrique étaient connus ou découverts au début de la théorie, et,
en revanche, il y a encore beaucoup de questions sur les représentations modulaires
qui ne sont pas résolues à ce jour.

En langage moderne, la théorie des représentations des groupes (finis) étudie les
façons dont un groupe donné agit sur des espaces vectoriels en tant qu’opérateurs
linéaires. Concrètement, une représentation de dimension finie d’un groupe G est un
homomorphisme de groupes G→ GLd(K), où K est un corps quelconque et GLd(K)
est le groupe des matrices inversibles d × d. Une représentation peut alors être con-
sidérée comme une manière de “représenter” les éléments d’un groupe sous forme de
matrices ; et ce faisant, de voir le groupe, qui est en principe un objet abstrait, comme
un objet dans l’univers de l’algèbre linéaire.

Étudier la théorie des représentations du groupe G c’est étudier tous ces mor-
phismes (ou, plus précisément, à une certaine équivalence près). Une représentation
peut être construite à partir de représentations “plus petites”. Cela se produit lorsque
chaque matrice qui “représente” un élément du groupe, peut être mise simultanément
dans une structure triangulaire par blocs, par un changement de base. Chacun des
blocs diagonaux est alors une représentation “plus petite” (la taille de la matrice est
plus petite). Si un tel changement de base n’existe pas, alors la représentation est dite
irréductible. De plus, pour un groupe fini G et un corps K de caractéristique 0 (ou ne
divisant pas l’ordre deG), la structure triangulaire par blocs peut toujours être réduite
à une structure diagonale par blocs ; donc, dans ce cas, la tâche d’étudier tous les mor-
phismes G → GLd(K) se réduit plus ou moins à étudier toutes les représentations
irréductibles, à équivalence près. Pour un corps général K, la situation n’est pas
exactement la même, mais les représentations irréductibles restent des blocs fonda-
mentaux de la théorie des représentations et on commence habituellement l’étude de
la théorie des représentations d’un groupe G sur K par l’étude des représentations

1



Introduction (Français)

irréductibles.
De nombreuses questions différentes se posent dans une telle entreprise ; si nous

fixons un groupe, combien de représentations irréductibles existent (à équivalence
près) ? à quel point sont-elles explicites ? quelles dimensions possibles d apparaissent
? existe-t-il une façon “naturelle” d’indexer les représentations irréductibles ? dans
quelle mesure les réponses à ces questions changent-elles si nous changeons le corps
K ? quelles propriétés du groupe se reflètent dans les représentations et vice versa
? etcetera. Des réponses, ou des réponses partielles, à certaines de ces questions
ont été trouvées pour certains groupes ou familles de groupes et ont conduit à des
applications intéressantes, par exemple la classification des groupes simples finis.

Dans cette thèse, notre attention se porte sur les représentations du groupe sy-
métrique Sn et du groupe alterné An. Le groupe symétrique Sn est le groupe des
permutations d’une liste ordonnée de n symboles, où l’opération est la composition.
C’est un groupe d’ordre n!. Comme les permutations sont des objets assez naturels, les
groupes symétriques et, plus généralement les groupes de permutation (sous-groupes
d’un groupe symétrique), ont été largement étudiés et utilisés, bien avant la formal-
isation des groupes abstraits. Le groupe alterné An est l’ensemble des permutations
paires (permutations de signature 1) d’une liste ordonnée de n symboles. C’est donc
un sous-groupe de Sn.

La théorie des représentations du groupe symétrique a été étudiée et développée
pour la première fois par Frobenius, Schur et Young. Ils ont trouvé des réponses à
plusieurs des questions ci-dessus lorsque K = C

1. Dans ce cas, chaque représentation
de Sn se décompose en une somme de représentations irréductibles et il existe une
classification de ces représentations irréductibles ; elles peuvent être indexées par
l’ensemble des partitions de n :

Irr
C

(Sn) = {Sλ | λ est une partition de n}.

Les partitions de n sont toutes les différentes manières non ordonnées d’écrire n
comme une somme d’entiers positifs. Depuis les travaux de Young, la combinatoire
des partitions et d’autres objets qui leur sont associés sont fondamentaux dans le
développement de la théorie des représentations du groupe symétrique : les repré-
sentations Sλ, appelées modules de Specht, peuvent être décrites complètement en ter-
mes de λ. Par exemple, le module de Specht S(n) correspondant à la partition λ = (n)
est la représentation triviale, et le module de Specht S(1n) correspondant à la partition
λ = (1n) est la représentation signe. Un autre exemple est la formule appelée formule
des équerres qui donne facilement la dimension de Sλ en termes de λ. Pour citer un
dernier exemple, la décomposition en représentations irréductibles de l’induction de
Sλ de Sn à Sn+1, peut être facilement décrite en termes de λ.

En caractéristique positive, disons p = car(K), si p ne divise pas n! (de façon
équivalente p > n), les représentations de Sn ont la même classification qu’en car-
actéristique 0, c’est la théorie des représentations ordinaires. Par contre, lorsque p
divise l’ordre du groupe, dans notre cas si p divise n! (de façon équivalente p ≤ n), on
parle de théorie des représentations modulaires.

L’étude des représentations p-modulaires de Sn a commencé avec les travaux de
Nakayama dans les années 1940, après les travaux de Brauer sur les représentations

1En fait, toute représentation de Sn sur C peut être réalisée sur Q, ce qui fait que tout est similaire
si on prend K = Q ou n’importe quelle extension de Q.
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modulaires des groupes en général. Il y a différentes façons de de construire les
représentations modulaires irréductibles Irrp(Sn) de Sn. Pour une des ces construc-
tions, les représentations peuvent être indexées par l’ensemble des partitions dites
p-régulières, c’est-à-dire des partitions dans lesquelles aucune partie n’apparaı̂t p fois,

Irrp(Sn) = {Dλ | λ est une partition p-régulière de n}.
Cette construction n’est pas aussi explicite qu’en caractéristique zéro : Dλ est l’unique
quotient simple de Sλ. En conséquence la façon d’associer à λ le module Dλ n’est
pas aussi naturelle ; la partition (n) correspond à D(n) qui est la représentation triv-
iale, comme précédemment. Mais (1n) ne correspond pas à la représentation signe.
Cependant l’étude de cette classification implique des objets combinatoires, et il y
a un certain nombre de questions sans réponse sur les représentations modulaires,
par exemple, il n’y a pas d’équivalent de la formule des équerres pour calculer la
dimension de Dλ. Dans le Chapitre 1, nous rappelons plusieurs faits concernant la
théorie des représentations de Sn. Pour un traitement très complet, voir par exemple
[JK81, Sag01].

Les considérations ci-dessus nous mènent au sujet d’étude de cette thèse. Il y a
deux résultats principaux dont chacun fait l’objet d’un chapitre. Dans ce qui suit,
nous introduisons le contexte et les principales questions que nous traitons.

Partitions auto-Mullineux et partitions auto-conjuguées

Un des principaux résultats de cette thèse concerne une correspondance entre deux
familles de partitions, l’une d’entre elles étant l’ensemble des partitions auto-Mulli-
neux. Nous motivons l’intérêt pour de telles familles de partitions.

Soit n ≥ 2. Si M est une représentation irréductible de Sn sur un corps K, la
restriction M ↓An

de M à An est soit irréductible, soit elle se décompose en la somme
directe de deux représentations irréductibles de An. De plus, toute représentation
irréductible de An sur K peut être obtenue de cette façon. Plus précisément, on sait
queM ↓An

se décompose en somme directe de deux modules simples si et seulement si
M ' (M ⊗ ε), où ε est la représentation signe de Sn. Sinon, M ↓An

est irréductible. Or,
puisque ε est de dimension 1, (M ⊗ ε) est à nouveau une représentation irréductible.
Détaillons cette discussion dans les cas ordinaire et modulaire :

Dans le cas ordinaire, on sait que toute représentation irréductible peut être in-
dexée par une partition λ de n. Par conséquent, la discussion ci-dessus dit que Sλ ↓An

se décompose si et seulement si Sλ ' (Sλ ⊗ ε). Il existe une partition µ telle que
(Sλ ⊗ ε) ' Sµ. Une question naturelle est alors : comment calculer µ à partir de
λ ? Dans le cas ordinaire, il est facile de répondre à cette question ; nous avons
µ = λ′ la partition conjuguée (ou transposée) de λ. Elle est obtenue simplement en
transposant le diagramme de Young de λ. Par exemple, si λ = (n), on sait que S(n)

est la représentation triviale, alors S(n) ⊗ ε ' ε, et comme mentionné ci-dessus, la
représentation signe ε = Sµ est indexée par µ = (1n), qui est en effet la conjuguée de
λ = (n). Ainsi, la condition pour que la restriction de Sλ se décompose en somme de
deux modules simples devient : λ = λ′. Sinon, si λ , λ′, la restriction de Sλ à An est
irréductible. Les détails seront donnés dans §1.3.3.

Dans le cas modulaire, par exemple si K = Fp avec 2 < p < n, on a un ensemble
complet (à equivalence près) de représentations irréductibles indexées par les parti-
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tions p-régulières, et pour λ p-régulière, la restriction Dλ ↓An
de la représentation

p-modulaire irréductible Dλ de Sn se décompose en somme directe de deux modules
simples si et seulement si Dλ ' (Dλ ⊗ ε). Il existe une partition p-régulière µ telle que
(Dλ ⊗ ε) ' Dµ. Dans ce cas, comment calculer la partition p-régulière µ à partir de
λ ? Soit µ = mp(λ). L’involution qui assigne à λ la partition mp(λ) est l’application
de Mullineux : Dλ ⊗ ε = Dmp(λ). Le problème qui consiste à trouver une description
combinatoire de cette application est appelé le problème de Mullineux.

La réponse au problème de Mullineux n’est pas aussi simple que dans le cas or-
dinaire. Conjuguer une partition p-régulière ne résulte pas toujours en une partition
p-régulière, alors µ n’est pas simplement la partition conjuguée de λ. Dans [Mul79a]
Mullineux a défini une involution sur l’ensemble des partitions p-régulières de n, et a
conjecturé que cette involution était mp. Plus tard, dans [Kle96], Kleshchev a décrit
un algorithme différent pour calculer mp(λ) et dans [FK97], Ford et Kleshchev ont
montré que la conjecture de Mullineux était vraie. La conjecture de Mullineux a
également été prouvée dans [BO98] par Bessenrodt et Olsson en utilisant un autre
algorithme pour calculer mp(λ)2.

Revenant à la restriction de Dλ à An on a que, pour λ une partition p-régulière de
n ≥ 2,

• Si λ ,mp(λ) alors Dλ ↓An
'Dmp(λ) ↓An

est irréductible.

• Si λ = mp(λ) alors Dλ ↓An
se décompose en deux représentations irreductibles

p-modulaires non équivalentes Dλ+ et Dλ−, de An:

Dλ ↓An
' Dλ+ ⊕Dλ−,

et

{Dλ ↓An
| λ ` n, λ p-régulière et λ ,mp(λ)} t

{Dλ+,Dλ− | λ ` n, λ p-régulière et λ = mp(λ)}, (1)

où seulement l’une des λ ou mp(λ) est considérée dans le premier ensemble, est un
ensemble complet de représentations irréductibles p-modulaires non équivalentes de
An.

Étant donnée cette façon d’indexer les représentations p-modulaires irréductibles
de An, nous nous intéressons en particulier à l’ensemble des points fixes de mp :
les partitions λ de n telles que λ = mp(λ) que nous appelons les partitions auto-
Mullineux. Déterminer l’ensemble des partitions (p-)auto-Mullineux n’est pas une
tâche facile, dans le sens où avec les algorithmes disponibles pour calculer l’involution
de Mullineux, nous ne pouvons pas déterminer rapidement si une partition p-régulière
est un point fixe. On se demande alors s’il n’existe pas un autre ensemble de parti-
tions, plus facile à déterminer, qui soit en correspondance avec l’ensemble des par-
titions auto-Mullineux. En fait, le nombre de partitions (p-)self-Mullineux est égal
au nombre de partitions auto-conjuguées dont la longueur des crochets diagonaux
n’est pas divisible par p (voir §1.3.4) que nous appelons (p-)BG-partitions3. Ainsi, il

2D’autres algorithmes pour calculer mp se trouvent dans [Kle96, Xu97, BK03, Fay21a, Jac21].
3“BG” est pour Brunat–Gramain, puisque ces partitions apparaissent dans [BG10] dans l’étude des

ensembles basiques pour Sn et An.
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est naturel de demander une bijection explicite et naturelle entre les partitions auto-
Mullineux et les BG-partitions. Dans le Chapitre 3 de cette thèse nous donnons une
réponse à cette question4.

Une autre motivation pour avoir une bijection explicite entre les deux ensembles
de partitions se trouve dans le contexte des ensembles p-basiques : Dans [BG10],
Brunat et Gramain ont montré l’existence d’un ensemble p-basique pour le groupe
symétrique, qui, par restriction, donne un ensemble p-basique pour le groupe al-
terné. Cependant, cet ensemble, qui fournit de façon naturelle un ensemble d’indices
pour les représentations irréductibles p-modulaires, n’est pas explicite et il serait idéal
d’en donner une description complète. Une chose que nous savons à propos d’un
tel ensemble est que les seules partitions auto-conjuguées qu’il contient sont les BG-
partitions. Celles-ci indexent les points fixes pour l’application de Mullineux. Ceci
donne une motivation pour obtenir une bijection explicite entre les BG-partitions et
les partitions auto-Mullineux.

Aperçu du résultat principal du Chapitre 3. La construction qui mène à notre cor-
respondance explicite peut être décrite en quelques mots comme suit. Tout d’abord,
nous rappelons qu’à toute partition p-régulière λ, correspond de façon unique un
symbole de Mullineux Gp(λ). Ce symbole est un tableau formé de certains entiers posi-
tifs associés à λ. Maintenant, en nous inspirant de ce symbole de Mullineux, nous
définissons un autre symbole associé, cette fois, aux partitions auto-conjuguées. Ce
symbole est noté bgp et nous l’appelons BG-symbole.

Nous sommes alors en mesure de prouver le fait remarquable, qui est au cœur
de notre construction, que lorsque le BG-symbole est calculé sur une BG-partition
λ, le tableau bgp(λ) obtenu est exactement le symbole Mullineux Gp(µ) d’une certaine
partition auto-Mullineux µ. En associant µ à λ, on obtient la correspondance souhaitée
(puisqu’on montre en outre que le symbole BG est injectif).

Si nous prenons par example p = 3, la partition auto-Mullineux µ = (10,42) corre-
spond à la BG-partition λ = (6,5,23,1):

µλ

bg3(λ) =
(
6 6 5 1
3 3 3 1

)
= G3(µ)

Nous soulignons que la correspondance que nous avons obtenue est explicite dans
les deux sens. Les deux étapes de la bijection fonctionnent comme suit (comme il-
lustré dans le diagramme ci-dessus). D’abord, on prend une BG-partition et on cal-
cule son BG-symbole (un calcul direct). Ensuite, on considère le symbole obtenu

4Une bijection entre l’ensemble des partitions auto-Mullineux de n et les partitions de n à parties
impaires différentes, aucune d’entre elles divisible par p, peut être dérivée d’une bijection entre deux
ensembles plus généraux définis par C. Bessenrodt dans [Bes91]. Cependant, les deux approches sont
très différentes car notre bijection est définie directement entre les ensembles qui nous intéressent. De
plus, nous obtenons une bijection différente (voir Remark 3.2.4).
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comme un symbole de Mullineux. Puisque toute partition p-régulière peut être facile-
ment construite à partir de son symbole de Mullineux, nous pouvons reconstruire la
partition p-régulière correspondante. La partition obtenue est une partition auto-
Mullineux. Cette procédure est réversible, puisque reconstruire une partition auto-
conjuguée à partir d’un BG-symbole est un procédé simple. En conclusion, nous
avons une procédure explicite pour associer des BG-partitions à des partitions auto-
Mullineux et vice versa.

En utilisant cette description, nous sommes en mesure de montrer la propriété
intéressante suivante : le p-cœur d’une partition est préservé par la correspondance.
Ceci a pour conséquence que notre bijection se restreint à une bijection entre les par-
titions auto-Mullineux et les BG-partitions dans chaque bloc du groupe symétrique.

Ensembles basiques unitriangulaires pour des p-blocs

Le deuxième résultat principal de cette thèse concerne la façon d’indexer les repré-
sentations irréductibles dans certains p-blocs du groupe symétrique. Introduisons le
contexte.

Les modules de Specht Sλ sont en fait définis sur Z et il est donc possible de
“réduire mod p” et de voir Sλ comme une représentation de Sn sur Fp, en d’autres
termes, comme un FpSn-module. En général, les modules de Specht sur Fp ne sont
pas simples (irréductibles), ou même pas complètement réductibles, mais on peut re-
garder les multiplicités de composition des modules simples FpSn-modules Dµ pour
µ une partition p-régulière, dans Sλ. Ces multiplicités donnent des informations
intéressantes pour étudier la théorie des représentations de Sn sur Fp. Pour un FpSn-
module simple Dµ, soit dλµ = [Sλ : Dµ] la multiplicité de composition de Dµ dans le
module de Specht Sλ. Les nombres dλµ forment alors une matrice Dn,p à coefficients
entiers non négatifs, lignes indexées par les partitions de n et colonnes indexées par
les FpSn-modules simples. C’est la matrice de décomposition de FpSn.

Lorsque les lignes de Dn,p sont ordonnées de manière décroissante selon un or-
dre total quelconque sur les partitions qui raffine l’ordre de dominance, il se produit
quelque chose de particulièrement intéressant : Pour chaque colonne, la première
entrée non nulle est 1 et la ligne associée correspond à une unique partition p-régulière
de n. Cela donne une façon d’indexer les FpSn-modules simples par l’ensemble des
partitions p-régulières de n.

Par exemple, en prenant l’ordre lexicographique sur les partitions, D4,3 est

4 1
3,1 · 1
22 1 · 1
2,12 · · · 1
14 · · 1 ·

où les points et les entrées omises sont égales à 0. On voit en effet que, à ordre des
lignes et colonnes près, la sous-matrice carrée formée par les lignes correspondant aux
partitions p-régulières, a une forme unitriangulaire inférieure. Le fait que les FpSn-
modules simples puissent être indexés par l’ensemble des partitions p-régulières est
connu avant d’observer la forme de la matrice Dn,p. En effet, il existe autant de classes
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de FpSn-modules simples non équivalents que de classes de conjugaison de Sn dont
l’ordre est premier à p. De telles classes de conjugaison sont, à leur tour, en bijection
avec les partitions p-régulières de de n. L’information supplémentaire qui provient
de la matrice Dn,p ayant une telle forme, est que les classes des modules de Specht

{Sλ | λ est une partition p-régulière de n}, (2)

forment une base sur Z de ce qu’on appelle le groupe de Grothendieck de FpSn (en
quelques mots, le groupe de Grothendieck d’une algèbre de dimension finieA est le Z-
module engendré par les classes d’isomorphisme des A-modules finiment engendrés,
avec la relation qui dit que deux modules sont équivalents si et seulement si ils ont
les mêmes facteurs de composition). Et la sous-matrice carrée de Dn,p dont les lignes
sont indexées par les partitions p-régulières est précisément la matrice de transition
entre cette base, formée par les classes des modules de Specht dans (2), et la base
naturelle du groupe de Grothendieck, à savoir celle formée par les classes des FpSn-
modules simples. L’ensemble des partitions p-régulières est alors appelé un ensemble
basique unitriangulaire (ou UBS en abrégé, pour ses sigles en anglais) pour FpSn. En
quelques mots, un UBS est un sous-ensemble des modules de Specht, avec un ordre
total des lignes, pour lequel la matrice Dn,p prend une telle forme, c’est-à-dire qu’un
tel ensemble indexe des modules simples de FpSn, et à un tel ensemble on associe une
Z-base du groupe de Grothendieck de FpSn. L’idée générale est que les modules de
Specht sont beaucoup mieux connus que les modules simples (dimensions, caractères)
et d’une certaine manière la matrice de décomposition permet de passer des uns aux
autres de manière simple grâce à la unitriangularité.

Les ensembles basiques unitriangulaires pour FpSn ne sont pas uniques. Lors de
l’étude de la théorie des représentations du groupe alterné An, la recherche d’un UBS
plus “approprié” se pose. Une façon dont un UBS pour FpSn pourrait être plus ap-
propriée pour cette étude est un UBS pour lequel faire le produit tensoriel avec la
représentation signe, corresponde à la conjugaison des partitions, même pour 0 < p <
n. Un telle UBS est, en particulier, stable par la conjugaison de partitions. De plus,
nous ajoutons la condition que les seules partitions auto-conjuguées dans une telle
UBS sont des BG-partitions. Un ensemble basique unitriangulaire stable (SUBS pour ses
sigles en anglais) est alors un UBS U , vu comme un sous-ensemble de l’ensemble des
partitions, tel que :

(A) si µ ∈U , alors µ′ ∈U , et

(B) si µ = µ′ ∈U , alors µ est une (p-)BG-partition.

La condition (B) est une condition technique qui permet aux SUBS U de se “re-
streindre” à un UBS pour FpAn, voir [BGJ20, Theorem 12]. Cette condition implique
également que le nombre de points fixes pour la conjugaison dans l’ensemble est égal
au nombre de points fixes de l’application de Mullineux. Remarquons que l’UBS de
FpSn formée par les partitions p-régulières n’est pas un SUBS, puisque par exemple,
la conjuguée λ′ = (1n) de la partition λ = (n) est p-singulière lorsque p ≤ n. La ques-
tion est alors : existe-t-il toujours un SUBS pour le groupe symétrique ? et la réponse
est non. Dans [BGJ20, §3], Brunat, Gramain et Jacon montrent que FpAn n’a pas tou-
jours un UBS (par exemple lorsque p = 3 et n = 18), ce qui implique que le groupe
symétrique ne peut pas toujours avoir un SUBS.
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Malgré cela, la même question peut être abordée “bloc par bloc”. Grâce à la théorie
des représentations modulaires des groupes finis, on sait que l’ensemble de modules
de Specht et celui des modules simples de FpSn se répartissent dans des p-blocs, que
nous décrivons précisément dans §1.4. Cela signifie en particulier que la matrice de
décomposition est une matrice diagonale par blocs :

Dn,p =


∗
∗
. . .

∗0

0


Les concepts d’UBS et de SUBS peuvent être adaptés pour avoir une signification pour
chacun de ces p-blocs, nous les définissons précisément dans §4.2. Un entier non
négatif est associé à chaque p-bloc ; son p-poids. Le poids d’un bloc peut être considéré
comme une mesure de sa complexité. Par exemple, les blocs de poids 0 sont les plus
faciles à décrire : ils sont formés d’un seul module. L’intérêt de définir des UBS et
SUBS pour les blocs est de demander les mêmes propriétés dans le sens des blocs :
la sous-matrice correspondant au bloc aura une forme unitriangulaire inférieure, cela
donnera une façon naturelle d’indexer les FpSn-modules simples, dans un bloc, pour
lesquels l’application de Mullineux est la conjugaison. Un autre intérêt est d’obtenir
un UBS pour les blocs de FpAn : si un bloc de FpSn a un SUBS, alors il fournit par
restriction, un UBS pour les blocs de FpAn. Ainsi, la question est de déterminer si un
bloc a une SUBS et si oui, d’en décrire un. Nous donnons une réponse à cette question
dans le Chapitre 4 de cette thèse, pour tout p-bloc de FpSn de poids 2.

Aperçu du résultat principal du chapitre 4. Le résultat principal du Chapitre 4
est la construction d’un ensemble basique unitriangulaire stable pour les blocs auto-
conjugués de poids 2. Notons d’abord que les blocs de poids 0 forment automatique-
ment un SUBS eux-mêmes et que les blocs de poids 1 ont des SUBS explicitement
connus, voir [BGJ20, §5.2] et §4.4. Par conséquent, le poids 2 est naturellement la sit-
uation suivante à considérer. Néanmoins, nous étudions comment la compréhension
de la combinatoire et de l’application de Mullineux pour les partitions de poids 1 peut
aider à définir un ordre naturel sur les partitions pour ce SUBS. Dans un certain sens,
notre étude des blocs de poids 2 montre qu’un tel bloc est formé de plusieurs parties
disjointes qui se comportent indépendamment comme des blocs de poids 1.

Plus précisément, pour tout bloc auto-conjugué de poids 2, nous exhibons un sous-
ensemble explicite de partitions tel que la matrice de décomposition prenne la forme :
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λ1 · · · λt mp(λ1) · · · mp(λt) µ1 · · · µ`
λ1

... D1

λt

λ′1
...

λ′t

ν1

... D6

ν`

D5 = (0)

D2 = (0)

D3 = (0) D4 = D1

* * *

où D1 et D6 sont unitriangulaires. Les partitions {λ1, . . . ,λt} sont certaines partitions
p-régulières dans le bloc qui ont été choisies de façon appropriée. Les partitions
{ν1, . . . ,ν`} sont les BG-partitions dans le bloc et les partitions {µ1, . . . ,µ`} sont les par-
titions auto-Mullineux dans le bloc.

On remarque que l’ensemble des partitions qui indexe les lignes de la matrice est,
par construction, stable par conjugaison, de sorte que l’UBS est en fait un SUBS.

Pour montrer l’unitriangularité de la matrice, nous nous appuyons sur des pro-
priétés des nombres de décomposition qui s’expriment en termes d’ordre de domi-
nance “E” sur les partitions et l’application de Mullineux. Nous utilisons un étique-
tage des modules de Specht dans de tels blocs qui provient de l’étude de Fayers et
Richards sur les blocs de poids 2 [Fay, Ric96]. Dans [Ric96], Richards introduit un
objet appelé pyramide, associé à un bloc. Nous étudions de façon détaillée l’ordre de
dominance dans le bloc, qui est liée à la configuration de la pyramide et à d’autres
notions combinatoires, qui nous permettent de montrer le résultat souhaité.

En pratique, l’unitriangularité de la matrice ci-dessus est montrée en quatre étapes,
qui constituent la partie principale de notre travail :

D’abord, l’ensemble de partitions {λ1, . . . ,λt} a la propriété que la matrice D1 =
(dλiλj )ij est unitriangulaire. De plus, d’après les propriétés de la matrice de décompo-
sition et de l’application de Mullineux, on a D1 = D4.

Notre étude détaillée de la pyramide nous permet de montrer la propriété combi-
natoire cruciale : λi 6mp(λj ), pour tout i, j, ce qui implique que D3 = (0).

Ensuite, on montre que λi 6 µk , pour tout i,k, ce qui implique que D5 = (0).
La dernière étape consiste à montrer que la matrice D6 est unitriangulaire ; les

entrées de cette matrice sont les nombres de décomposition qui relient les partitions
auto-conjuguées et les partitions auto-Mullineux. Pour montrer l’unitriangularité,
nous étudions la forme précise de la matrice D6 en utilisant les tables des nombres de
décomposition dans [Ric96, Fay].

On signale que la bijection entre les BG-partitions et les partitions auto-Mullineux
dans ce bloc, utilisée pour définir les SUBS, est spécifique au poids 2. Cependant, des
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Introduction (Français)

tests semblent montrer que cette bijection coı̈ncide avec la bijection générale entre les
deux familles de partitions définie au Chapitre 3.

Pour conclure, nous rappelons que l’existence d’un SUBS n’est pas assurée en
général pour tout bloc. Notre résultat montre qu’il un existe toujours un pour les
blocs de poids 2, et de plus, nous en avons donné un explicitement.

Organisation de cette thèse. Dans le Chapitre 1 nous rappelons les concepts fon-
damentaux impliqués dans les représentations du groupe symétrique, y compris la
combinatoire des partitions et des p-crochets. Dans le Chapitre 2, nous donnons un
aperçu historique du problème de Mullineux et nous rappelons quelques algorithmes
pour calculer l’involution de Mullineux. Dans le chapitre 3, nous introduisons le BG-
symbole qui permet ensuite de définir une bijection explicite entre les partitions auto-
Mullineux et les BG-partitions. Ce chapitre est principalement basé sur [Ber21a]. Le
Chapitre 4 concerne les ensembles basiques unitriangulaires stables et notre construc-
tion de tels ensembles pour les blocs de poids 2 de Sn. Ce chapitre est principalement
basé sur [Ber21c]. Nous donnons enfin une annexe qui contient une liste de fonctions
écrites en GAP, qui ont été utiles pour étudier les exemples concernant la bijection
dans le Chapitre 3.
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Introduction

The origin of representation theory of finite groups goes back to the end of the 19th
century, when Frobenius studied the factorization of certain polynomial associated
to a finite group, called the “group determinant”. Generalizing the known case of
an Abelian group, he proved that this polynomial factors as a product of irreducible
polynomials, where each polynomial appears with a multiplicity equal to its degree.
This question, noticed by Dedekind, is what led Frobenius to invent character theory
for an arbitrary finite group and to build the foundations of what we now call repre-
sentation theory. For a historical references on the origin of the subject, for which the
pioneers are Frobenius, Burnside, Schur and Brauer, see [Cur99,Haw71]. The area has
widely developed and has connections with physics, chemistry and other number of
domains. It is interesting to note that most of the results on the classification of the
ordinary representations of the symmetric group were known or discovered in the be-
ginning of the theory, and, in contrast, there are still many questions on the modular
representations that are unsolved to this day.

In modern language, representation theory of (finite) groups studies the ways in
which a given group acts on vector spaces as linear operators. Concretely, a finite-
dimensional representation of a group G is a group homomorphism G → GLd(K),
where K is some field and GLd(K) is the group of invertible d × d matrices. A rep-
resentation can then be thought of as a way of “representing” elements of a group as
matrices; and by doing so, bringing the group, which is an abstract object in principle,
to the linear algebra universe.

Studying the representation theory of the group G means to study all such mor-
phisms (or more precisely, up to certain equivalence). A representation may be built
out of “smaller” representations. This happens when every matrix which represents
an element of the group, can be put simultaneously in a triangular-by-blocks struc-
ture, by a change of basis. Each of the diagonal blocks is then a “smaller” represen-
tation (the size of the matrix is smaller). If no such a change of basis exists, then the
representation is called irreducible. Moreover, for a finite group G and a field K of
characteristic 0 (or not dividing the order ofG), the triangular-by-blocks structure can
always be reduced to a diagonal-by-blocks structure; hence, in this case, the task of
studying all morphisms G→ GLd(K) reduces more or less to studying all irreducible
representations, up to equivalence. For a general field K, the irreducible representa-
tions are anyway the fundamental building blocks of the representation theory and
one usually starts the study of the representation theory of a group G over K by the
study of the irreducible representations. Many different questions can be asked in
such an enterprise; if we fix a group, how many nonequivalent irreducible represen-
tations exist? how explicit are they? what possible dimensions d come up? is there a
“natural” labelling for the irreducible representations? how much do the answers to
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these questions change if we change the field K? what properties of the group reflect
in the representations and vice versa? etcetera. Answers, or partial answers, to some
of these questions have been found for certain groups or families of groups and have
led to interesting applications, for example the classification of finite simple groups.

In this thesis our attention is focused on representations of the symmetric group
Sn and the alternating group An. The symmetric group Sn is the group of permuta-
tions of an ordered list of n symbols, where the operation is composition. It is a group
of order n!. As permutations are natural objects to consider, symmetric groups and
more generally permutation groups (subgroups of a symmetric group), have been ex-
tensively studied and used, even long before the formalization of abstract groups. The
alternating group An is the set of even permutations (permutations with signature 1)
of an ordered list of n symbols. It is then a subgroup of Sn.

The representation theory of the symmetric group was first studied and developed
by Frobenius, Schur and Young. They found answers for several of the questions above
when K = C

5. In this case, every representation of Sn splits as a sum of irreducible
representations and there is a classification of these irreducible representations; they
can be indexed by the set of partitions of n:

Irr
C

(Sn) = {Sλ | λ is a partition of n}.

Partitions of n are all the non-ordered different ways of writing n as a sum of posi-
tive integers. Since the work of Young, the combinatorics of partitions and a number
of different objects associated to them are fundamental in the development of the
representation theory of the symmetric group: the representations Sλ, called Specht
modules, can be described completely in terms of λ. For example, the Specht module
S(n) corresponding to the partition λ = (n) is the trivial representation and the Specht
module S(1n) corresponding to the partition λ = (1n) is the sign representation. An-
other example is a formula called hook formula which easily gives the dimension of
Sλ in terms of λ. To name one last example, the decomposition in irreducible repre-
sentations of the induction of Sλ to Sn+1, can be easily described from λ.

In positive characteristic, say p = char(K), if p does not divide n! (equivalently
p > n), the representations of Sn have the same classification as in characteristic 0,
this is the ordinary representation theory. On the other hand, when p divides the order
of the group, in our case if p divides n! (equivalently p ≤ n), we talk about modular
representation theory.

The study of p-modular representation theory of Sn started with the work of
Nakayama in the 1940s, after the work of Brauer on modular representations of groups
in general. There is a classification and a construction of the modular irreducible rep-
resentations Irrp(Sn) of Sn; they can be indexed by the set of p-regular partitions, that
is, partitions in which no part occurs p times,

Irrp(Sn) = {Dλ | λ is a p-regular partition of n}.

This construction is not as explicit as in characteristic zero: Dλ is the unique simple
quotient of Sλ. Then the way of associating to λ the module Dλ is not as natural;
the partition (n) corresponds to D(n) which is the trivial representation, as before.

5In fact, every representation of Sn over C can be realized over Q, then everything is similar if we
take K = Q or any extension of Q.
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But (1n) does not correspond to the sign representation. However the study of this
classification involves combinatorial objects, and there is a number of unanswered
questions about the p-modular representations, for example, there is no equivalent of
the hook formula for computing the dimension of Dλ. In Chapter 1 we recall several
facts about the representation theory of Sn. For a very complete treatment see for
example [JK81, Sag01].

The above considerations lead us to the subject of study in this thesis. There are
two main results each of which makes the subject of a chapter. In what follows we
introduce the context and the main questions that we treat.

Self-Mullineux partitions and self-conjugate partitions

One of the main results in this thesis concerns a correspondence between two families
of partitions, one of them being the set of self-Mullineux partitions. We motivate the
interest for such families.

Let n ≥ 2. If M is an irreducible representation of Sn over a field K, the restriction
M ↓An

of M to An is either irreducible, or it splits in the direct sum of two irreducible
representations of An. Moreover every irreducible representation of An over K arises
in this way. More precisely, we know that M ↓An

splits as a direct sum of two simple
modules if and only ifM ' (M⊗ε), where ε is the sign representation of Sn. Otherwise
M ↓An

is irreducible. Now, since ε is one-dimensional, (M ⊗ ε) is again an irreducible
representation. Let us detail this discussion in both the ordinary and modular cases:

In the ordinary case, we know that every irreducible representation can be indexed
by a partition λ of n. Hence, the above discussion says that Sλ ↓An

splits if and only
if Sλ ' (Sλ ⊗ ε). There exists a partition µ such that (Sλ ⊗ ε) ' Sµ. A natural ques-
tion is then how to compute µ from λ. In the ordinary case, this question is easy to
answer; we have µ = λ′ the conjugate (or transposed) partition of λ. It is obtained
just by transposing the Young diagram of λ. For example, if λ = (n), we know that
S(n) is the trivial representation, then S(n) ⊗ ε ' ε, and as mentioned above, the sign
representation ε = Sµ is indexed by µ = (1n), which is indeed the conjugate of λ = (n).
Hence the condition for the splitting of the restriction of Sλ as a direct sum of two
simple modules becomes: λ = λ′. Otherwise, if λ , λ′, the restriction of Sλ to An is
irreducible. Details will be given in §1.3.3.

In the modular case, for exemple if K = Fp with 2 < p < n, we have a complete
set of non-equivalent irreducible representations indexed by the p-regular partitions,
and for λ p-regular, the restriction Dλ ↓An

of the p-modular irreducible module Dλ

of Sn splits as a direct sum of two simple modules if and only if Dλ ' (Dλ ⊗ ε). Now,
there is a p-regular partition µ such that (Dλ ⊗ ε) ' Dµ. In this case, how to compute
the p-regular partition µ from λ ? Let µ = mp(λ). The involution which assigns to λ
the partition mp(λ) is the Mullineux map: Dλ ⊗ ε = Dmp(λ). The problem of finding a
combinatorial description of this map is referred to as the Mullineux problem.

The answer to the Mullineux problem is not as straightforward as in the ordinary
case. Conjugating a p-regular partition does not always result in a p-regular partition,
then µ is not simply the conjugate partition of λ. In [Mul79a] Mullineux defined an
involution on the set of p-regular partitions of n, and conjectured it to be mp. Later, in
[Kle96], Kleshchev described a different algorithm to compute mp(λ) and in [FK97],
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Ford and Kleshchev proved Mullineux conjecture to be true. Mullineux conjecture
was also proven to be true in [BO98] by Bessenrodt and Olsson by using yet another
algorithm for computing mp(λ)6.

Back to the restriction of Dλ to An we have that, for λ a p-regular partition of
n ≥ 2,

• If λ ,mp(λ) then Dλ ↓An
'Dmp(λ) ↓An

is irreducible.

• If λ = mp(λ) then Dλ ↓An
splits into two non-equivalent irreducible p-modular

representations Dλ+ and Dλ− of An:

Dλ ↓An
' Dλ+ ⊕Dλ−,

and

{Dλ ↓An
| λ ` n, λ p-regular and λ ,mp(λ)} t

{Dλ+,Dλ− | λ ` n, λ p-regular and λ = mp(λ)}, (3)

where only one of λ or mp(λ) is considered in the first set, is a complete set of non-
equivalent p-modular irreducible representations of An.

Following such an indexing of the irreducible p-modular representations of An,
we are interested in particular in the set of fixed points of mp: the partitions λ of n
such that λ = mp(λ) which we call the self-Mullineux partitions. Determining the set
of (p-)self-Mullineux partitions is not an easy task, in the sense that with the available
algorithms for computing the Mullineux involution, we can not quickly determine
if a p-regular partition is a fixed point. We then wonder if there is a different set
of partitions, easier to determine, which is in correspondence with the set of self-
Mullineux partitions. In fact, the number of (p-)self-Mullineux partitions is equal to
the number of self-conjugate partitions with diagonal hook-lengths not divisible by
p (see §1.3.4) which we refer to as (p-)BG-partitions7. Thus, it is natural to ask for
an explicit and natural bijection between the self-Mullineux partitions and the BG-
partitions. In Chapter 3 of this thesis we give an answer to this question8.

A further motivation for having an explicit bijection between the two sets of par-
titions is found in the context of p-basic sets: In [BG10], Brunat and Gramain have
shown the existence of a p-basic set for the symmetric group, which, by restriction,
gives a p-basic set for the alternating group. However, this set, which provides a nat-
ural indexing set for the modular irreducible representations is not explicit and it
would be ideal to give a complete description of it. One thing we know about such
a set is that the only self-conjugate partitions that it contains are the BG-partitions,
which index the fixed points of the Mullineux map. This gives a motivation for ob-
taining an explicit bijection between BG-partitions and self-Mullineux partitions.

6Other algorithms for computing mp are found in [Kle96, Xu97, BK03, Fay21a, Jac21].
7“BG” is for Brunat–Gramain, since these partitions appear in [BG10] in the study of p-basic sets for

Sn and An.
8A bijection between the set of self-Mullineux partitions of n and partitions of n with different odd

parts, none of them divisible by p can alternatively be derived from a bijection between two more general
sets defined by C. Bessenrodt in [Bes91]. However, the two approaches are quite different because our
bijection is defined directly between the sets of our interest. Moreover, we obtain a different bijection
(see Remark 3.2.4).
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Outline of the main result in Chapter 3. Roughly speaking, the construction lead-
ing to our explicit correspondence can be described as follows. First, we recall that
to any p-regular partition λ, corresponds uniquely a Mullineux symbol Gp(λ). This
symbol is an array of certain positive integers associated to λ. Now, inspired by this
Mullineux symbol, we define another symbol associated, this time, to self-conjugate
partitions. We denote it bgp and call it BG-symbol.

Then we are able to prove the remarkable fact, which lies at the heart of our con-
struction, that when the BG-symbol is computed on a BG-partition λ, the array bgp(λ)
obtained is exactly the Mullineux symbol Gp(µ) of some self-Mullineux partition µ.
Associating µ to λ, this provides the desired correspondence (since moreover the BG-
symbol is shown to be injective).

If we take for example p = 3, the 3-self-Mullineux partition µ = (10,42) corre-
sponds to the 3-BG-partition λ = (6,5,23,1):

µλ

bg3(λ) =
(
6 6 5 1
3 3 3 1

)
= G3(µ)

We emphasize that the correspondence we have obtained is really explicit, in both
directions. The two steps work as follows (as illustrated in the diagram above). First
take a BG-partition and calculate its BG-symbol (a straightforward calculation). Then
see the obtained symbol as a Mullineux symbol. Since any p-regular partition can be
easily constructed from its Mullineux symbol, we can reconstruct the corresponding
p-regular partition. The partition obtained is a self-Mullineux partition. This proce-
dure is reversible, since it is also a straightforward procedure to reconstruct a self-
conjugate partition from its BG-symbol. In conclusion, we have an explicit procedure
for associating BG-partitions to self-Mullineux partitions and vice versa.

Using this description we are able to show the following interesting property of
this combinatorial procedure: the p-core of a partition is preserved under the cor-
respondence. This has the consequence that our bijection restricts to a bijection be-
tween self-Mullineux partitions and BG-partitions within each block of the symmetric
group.

Unitriangular basic sets for p-blocks

The second main result in this thesis concerns the labelling of irreducible representa-
tions in certain p-blocks of the symmetric group. Let us introduce the context.

Specht modules Sλ are actually defined over Z and thus it is possible to “reduce
mod p” and see Sλ as a representation of Sn over Fp, in other words, as an FpSn-
module. In general, Specht modules over Fp are not simple (irreducible), or not even
completely reducible, but one can look at the composition multiplicities of the simple
FpSn-modules Dµ for µ a p-regular partition, in Sλ. These multiplicities give inter-
esting information to study the representation theory of Sn over Fp. For a simple
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FpSn-module Dµ, let dλµ = [Sλ : Dµ] be the composition multiplicity of Dµ in the
Specht module Sλ. The numbers dλµ form then a matrix Dn,p with non-negative in-
teger coefficients, rows indexed by the partitions of n and columns indexed by the
simple FpSn-modules. This is the decomposition matrix of FpSn.

When the rows of Dn,p are organised decreasingly according to any total order on
partitions which refines the dominance order, something of special interest happens:
For each column, the first non-zero entry is 1 and the associated row corresponds to
a unique p-regular partition of n. This gives the mentioned indexing of the simple
FpSn-modules by the set of p-regular partitions of n.

For example, taking the lexicographic order on partitions, D4,3 is

4 1
3,1 · 1
22 1 · 1
2,12 · · · 1
14 · · 1 ·

where the dots and ommited entries are equal to 0. Indeed we can see that up to rear-
ranging the rows and columns, the square submatrix formed by rows corresponding
to p-regular partitions, has a lower unitriangular shape. The fact that the simple FpSn-
modules can be indexed by the set of p-regular partitions is known before observing
the form of the matrix Dn,p. Indeed, there are as many classes of nonequivalent simple
FpSn-modules as conjugacy classes of Sn with order which is prime to p. Such conju-
gacy classes are, in turn, in bijection with the p-regular partitions of n. The additional
information which comes from the matrix Dn,p having such a form, is that the classes
of the Specht modules

{Sλ | λ is a p-regular partition of n}, (4)

form a Z-basis of the so-called Grothendieck group of FpSn (roughly speaking, the
Grothendieck group of a finite dimensional algebra A is the Z-module generated by
the isomorphism classes of the finitely generated A-modules, with the relation that
says that two modules are equivalent if and only if they have the same composition
factors). And the square sub-matrix of Dn,p with rows indexed by the p-regular parti-
tions is precisely the transition matrix between this basis, formed by the classes of the
Specht modules in (4), and the natural basis of the Grothendieck group; namely the
one formed by the classes of simple FpSn-modules. The set of p-regular partitions is
then said to be a unitriangular basic set, or UBS for short, for FpSn. Roughly speaking,
a UBS is a subset of the Specht modules, together with a total order of the rows, for
which the matrix Dn,p takes such a form i.e. such a set indexes simple FpSn-modules,
and to such a set we associate a Z-basis of the Grothendieck group of FpSn. The gen-
eral idea is that the Specht modules are much better known than the simple modules
(dimensions, characters) and in some way the decomposition matrix allows to simply
pass from one the another by using the unitriangularity.

Unitriangular basic sets for FpSn are not unique. When studying the representa-
tion theory of the alternating group An, the quest of finding a more “suitable” UBS
arises. Hence, one way in which a UBS for FpSn could be more suitable for this study
is one for which tensoring with the sign representation corresponds to conjugation of
partitions, even for 0 < p < n. Such a UBS is, in particular, stable by conjugation of

16



partitions. Moreover, we add the condition that the only self-conjugate partitions in
such a UBS are p-BG-partitions. A stable unitriangular basic set (SUBS) is then a UBS
U , seen as a subset of the set of partitions, such that:

(A) if µ ∈U , then µ′ ∈U , and

(B) if µ = µ′ ∈U , then µ is a (p-)BG-partition.

The condition (B) is a technical condition which allows the SUBS U to “restrict” to a
UBS for FpAn, see [BGJ20, Theorem 12]. This condition also implies that the number
of fixed points of conjugation in the set is equal to the number of fixed points of the
Mullineux map. Notice that the UBS of FpSn formed by p-regular partitions is not a
SUBS, since for example, the conjugate λ′ = (1n) of partition λ = (n) is p-singular when
p ≤ n. The question is then: does a SUBS always exist for the symmetric group? and
the answer is no. In [BGJ20, §3], Brunat, Gramain and Jacon show that FpAn does not
always have a UBS (for example when p = 3 and n = 18), implying that the symmetric
group cannot always have a SUBS.

Despite this, the same question can be addressed “blockwise”. From the modu-
lar representation theory of finite groups we know that the Specht modules and the
simple modules of FpSn fall into p-blocks, which we describe precisely in §1.4. This
means in particular that the decomposition matrix is a block diagonal matrix:

Dn,p =


∗
∗
. . .

∗0

0


The concepts of UBS and SUBS can be adapted to have a meaning for each of these
p-blocks, we define them precisely in §4.2. There is a non-negative integer associated
to each p-block; its p-weight. The weight of a block can be thought of a measure of
its complexity, for example, blocks of weight 0 are the easiest to describe: they are
formed by just one module. The interest of defining UBS and SUBS for blocks is to
ask for the same properties blockwise: the submatrix corresponding to the block will
have a lower unitriangular shape, this will give a natural labelling of the simple FpSn-
modules in a block, for which the Mullineux map is conjugation. Another interest is
to obtain a UBS for blocks of FpAn: if a block of FpSn has a SUBS, then it provides by
restriction, a UBS for blocks of FpAn. So that the question is to determine whether a
block has a SUBS and if yes, to describe one. We give an answer to this question in
Chapter 4 of this thesis, for any p-block of FpSn of weight 2.

Outline of the main result in Chapter 4. The main result in Chapter 4 is to provide
a stable unitriangular basic set for self-conjugate blocks of p-weight 2. First we note
that blocks of weight 0 form automatically a SUBS themselves and blocks of weight
1 have explicitely known SUBS, see [BGJ20, §5.2] and §4.4. Therefore the weight 2
is naturally the following situation to consider. Nevertheless, we study how under-
standing the combinatorics and Mullineux map for partitions of weight 1 can help
to define a natural order on partitions for this SUBS. In a sense, our study of blocks
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of weight 2 shows that such a block is formed of several disjoint parts which behave
independently like blocks of weight 1.

More precisely, for any self-conjugate block of weight 2, we exhibit an explicit
subset of partitions such that the decomposition matrix takes the form:

λ1 · · · λt mp(λ1) · · · mp(λt) µ1 · · · µ`
λ1

... D1

λt

λ′1
...

λ′t

ν1

... D6

ν`

D5 = (0)

D2 = (0)

D3 = (0) D4 = D1

* * *

where D1 and D6 are unitriangular. The partitions {λ1, . . . ,λt} are certain p-regular
partitions in the block which have been appropriately chosen. The partitions {ν1, . . . ,ν`}
are the BG-partitions in the block and the partitions {µ1, . . . ,µ`} are the self-Mullineux
partitions in the block.

Note that the set of partitions forming the lines of the matrix is by construction
stable by conjugation, so that the resulting UBS is indeed a SUBS.

To show the unitriangularity of the matrix, we base on properties of the decom-
position numbers which are expressed in terms of the dominance order “E” on parti-
tions and the Mullineux map. We use a labelling of the Specht modules in such blocks
which comes from Fayers’ and Richards’ study of blocks of weight 2 [Fay, Ric96]. In
[Ric96], Richards introduces an object called a pyramid, associated to a block. We
make a very detailed study of the dominance order, related to the pyramid and other
combinatorial notions, which allow us to show the desired result.

In practice, the unitriangularity of the above matrix is then shown in four steps,
which form the main part of our work:

First, the set {λ1, . . . ,λt} has the property that the matrix D1 = (dλiλj )ij is unitri-
angular. Moreover, from properties of the decomposition matrix and the Mullineux
map D1 = D4.

Our detailed study of the pyramid allows us to show the crucial combinatorial
property: λi 6mp(λj ), for any i, j, which implies that D3 = (0).

Then, we show that λi 6 µk , for any i,k, which implies that D5 = (0).
The last step is to show that the matrix D6 is unitriangular; the entries in this

matrix are the decomposition numbers which relate self-conjugate partitions and self-
Mullineux partitions. To show the unitriangularity we study the precise form of the
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matrix using the tables of decomposition numbers in [Ric96, Fay]. We note that the
bijection between the BG-partitions and the self-Mullineux partitions in this block,
used to define the SUBS, is specific to weight 2. However, tests seem to show that this
bijection coincides with the general bijection between the two families of partitions
defined in Chapter 3.

To conclude, we recall that the existence of SUBS is not assured in general for any
block. Our result shows that it always exists for blocks of weight 2, and moreover, we
have provided one explicitly.

Organisation of this thesis. The organisation of this thesis is as follows. In Chapter 1
we recall the fundamentals concepts involved in the representations of the symmet-
ric group, including the combinatorics of partitions and p-hooks. In Chapter 2 we
give a historial background on the Mullineux problem and we recall some algorithms
for computing the Mullineux involution. In Chapter 3 we introduce the BG-symbol
which then allows to define the explicit bijection between self-Mullineux partitions
and BG-partitions. This chapter is mainly based on [Ber21a]. Chapter 4 concerns
stable unitriangular basic sets and our construction of these sets for blocks of weight
2 of Sn. This chapter is mainly based on [Ber21c]. Finally, the appendix contains a
list of functions written in GAP, which were useful to study examples concerning the
bijection in Chapter 3.
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1 Preliminaries

In this chapter we recall the fundamentals of the representation theory of the sym-
metric group which are necessary for the following chapters. The organization of the
present chapter is the following: The first section is about partitions and some com-
binatorial objects associated to them. In §1.2 we recall the description of conjugacy
classes of the symmetric group and the alternating group. Then, in §1.3 we recall the
classification of the modular and ordinary irreducible representations of the symmet-
ric and alternating groups.

1.1 Combinatorics of partitions

Integer partitions are combinatorial objects that arise when studying the symmetric
group. This section contains definitions related to integer partitions.

1.1.1 Partitions

Let n ∈ N. A partition of n is a weakly decreasing sequence λ = (λ1,λ2, . . .) of non-
negative integers containing only finitely many non-zero terms such that λ1 +λ2 +· · · =
n. We write λ ` n. The number n is called the rank of λ, denoted Rk(λ).

We denote by Par(n) the set of partitions of n. The integers λi are called the parts
of the partition λ. If there is a part that repeats k times, say λi = λi+1 = · · · = λi+k−1,
we abbreviate the writing of the part λi as (. . . ,λki , . . .). The number of non-zero parts
is the length of λ and is denoted l(λ). The empty partition is the only partition of 0, it
is denoted ∅.

The conjugate (or transpose) partition of λ = (λ1, . . . ,λl), where l = l(λ), is the par-
tition of n denoted λ′ and defined as λ′i = #{j | 1 ≤ j ≤ l and λj ≥ i}. The operation of
conjugation of a partition is an involution. A partition which is equal to its conjugate
is called a self-conjugate partition.

For a positive integer p, the partition λ is said to be p-regular if it does not contain
p parts λi , 0 which are equal. A partition which is not p-regular is called p-singular.
The partition λ = (4,22,1) is not 2-regular but it is 3-regular. We denote by Regp(n)
the set of p-regular partitions of n.

1.1.2 Young diagrams

A partition can be represented by its Young diagram. The Young diagram [λ] of a
partition λ is the set

[λ] = {(i, j) ∈N×N | i ≥ 1 and 1 ≤ j ≤ λi},

21



1. Preliminaries

whose elements are called nodes. We represent [λ] as an array of boxes in the plane
with the convention that i increases downwards and j increases from left to right. For
example, the Young diagram of λ = (4,22,1) is

[λ] =

We will often identify a partition with its Young diagram.

Remark 1.1.1. A partition can also be graphically represented by what is known as
its Ferrers graph. For which, instead of boxes, every node in the Young diagram is
represented by a dot. 4

The diagonal of [λ] (or diagonal nodes) is the set of nodes of the form (i, i) for
1 ≤ i ≤ λi for every 1 ≤ i ≤ l(λ). Conjugation of partitions is easily seen in the Young
diagram; the Young diagram of λ′ is the reflection of the Young diagram of λ against
the main diagonal. Then the i-th part of λ′ is the number of nodes in the i-th column
of λ. If λ = (4,22,1), then λ′ = (4,3,12), its Young diagram is

[λ′] =

1.1.3 Orders on partitions

The dominance order “E” is a partial order defined on the set of all partitions. It is
defined as follows: let λ and µ be two partitions, we say that λ E µ if and only if

k∑
i=1

λi ≤
k∑
i=1

µi for every k ≥ 1.

We write λ/µ if λ E µ but λ , µ. The lexicographic order “≤” is a total order defined
on the set of all partitions. It is defined as follows: let λ and µ be two partitions, we say
that λ ≤ µ if and only if the first non-vanishing difference µi −λi is positive. We write
λ < µ if λ ≤ µ but λ , µ. The lexicographic order is a refinement of the dominance
order in the set Par(n), and they are different if n ≥ 6. Indeed, we have (32) < (4,12)
but (32) and (4,12) are not comparable for the dominance order.

1.1.4 Rim, hooks and cores

Hooks are certain parts of the Young diagram of a partition, which are important
when studying the modular representations of symmetric groups. They were first
considered by Nakayama [Nak41a, Nak41b]. We recall some definitions.

To any node (i, j) of the diagram of λwe can associate its (i, j)-th hook, denotedHλ
ij ,

which consists of: the node (i, j), the nodes to the right of it in the same row (the arm),
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1.1. Combinatorics of partitions

and the nodes lower down in the same column (the leg). The cardinal of Hλ
ij is the

length (or hook-length) of the (i, j)-th hook, it is denoted hλij and it is equal to

hλij = λi − j +λ′j − i + 1.

The number of nodes on the arm (resp. leg) of the hook is called the arm-length (resp.
leg-length).

The rim of λ is the set of nodes {(i, j) ∈ [λ] | (i + 1, j + 1) < [λ]}, in words, it is the
south-east border of [λ]. For example, the rim of λ = (5,4,3,1) is formed by the shaded
nodes in the following diagram

ToHλ
ij (or to the node (i, j)) we can associate a set Rλij of the same size, consisting of

the adjacent nodes forming a segment in the rim of λ between nodes (i,λi) and (λ′j , j).
The set Rλij is called the (i, j)-th rim-hook. We call p-rim-hook any rim-hook of length
p, for a positive integer p. We call (p)-rim-hook of (p)-hook any rim-hook of length
divisible by p.

Example 1.1.2. Let λ = (5,4,3,1). The hookHλ
1,2 is illustrated by shaded nodes and the

corresponding rim-hook Rλ1,2 illustrated by nodes marked with “×” in the following
diagram

× ×
× ×

× ×

The hook (and the rim-hook) in this diagram has length 6, the arm-length is 3 and the
leg-length is 2. 4

Given a partition λ and any node (i, j) ∈ [λ], a new partition µ can be defined by
removing the rim-hook Rλij from λ. That is, µ is the partition with Young diagram

[µ] = [λ]rRλij . The partition µ is well defined since a rim-hook is precisely a subset of
adjacent nodes that can be removed from a Young diagram such that the remaining
nodes form a Young diagram.

The operation of removing a rim-hook will be repeatedly used in this thesis; it is
involved in some recursive algorithms. Let us start using the recursive removal of
rim-hooks by defining the p-core of a partition.

Let p be a positive integer, and λ ` n a partition. Consider the following procedure :
If λ has a p-rim-hook, remove it from λ. We obtain a partition of n−p. If the partition
obtained has a p-rim-hook, remove it, and we get a partition of n − 2p. Continue
removing p-rim-hooks recursively until obtaining a partition γλ, possibly the empty
partition, for which the diagram does not have p-rim-hooks. Suppose that in total we
removed w p-rim-hooks in this sequence of steps. The partition obtained γλ ` (n−wp)
does not depend on the way that the p-rim-hooks were removed (see [Nak41a, §4] or
[JK81, Theorem 2.7.16]). This partition is called the p-core of λ. The number w is
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also independent of the way they were removed and it is called the p-weight of λ. The
p-weight of λ is also equal to the number of rim-hooks of λ of length divisible by p
[JK81, 2.7.40]. A partition without p-rim-hooks is called a p-core, in other words, a
partition of p-weight 0. The p-core of a p-core is equal to itself.

Example 1.1.3. Let p = 3 and λ = (5,4,1). There are two possible sequences of rim-
hook removals to obtain the p-core of λ. They are shown in the following diagrams:
first the rim-hook with “×” nodes and then the rim-hook with “◦” nodes.

◦ × ×
◦ ◦ ×

◦ ◦ ◦
× × ×

The p-core of λ is then (2,12), which does not have 3-rim-hooks. For this example we
show the possible sequences of rim-hooks removals, but it is sufficient to find one of
these sequences to compute the p-core of a partition. Since a sequence in this example
contains exactly two 3-rim-hooks, then λ is a partition of 3-weight 2. 4

1.1.5 The abacus

The abacus display for a partition is a graphic representation which is convenient
when considering the p-hooks of a partition and its p-core. It was introduced by
James in [Jam78].

In order to define the abacus, we first recall a family of sets of integers associated
to a partition. The following definition is based on [Fay14].

Let λ = (λ1,λ2, . . .) be a partition and r an integer. The β-set Bλr is the set defined
as:

Bλr := {λi − i + r | i ∈N∗}.

For every r ∈Z, the set Bλr is then an infinite set of integers bounded above. Since
from a certain rank λi is zero, if we denote βi = λi−i+r, then the sequence β1 > β2 > · · ·
is formed of consecutive negative integers, starting from a certain rank. Hence, the
complement of Bλr in Z is bounded below. Conversely, let B be a set of integers formed
by a sequence bounded above and whose complement in Z is bounded below. Denote
the numbers in B as β1 > β2 > · · · . There is a unique partition λ and an integer r such
that B = Bλr . Indeed, let r be the number of positive integers in B minus the number
of negative integers in ZrB. Let λi := βi + i − r. Then B = Bλr .

Example 1.1.4. Let λ = (4,33,2,12). The β-set corresponding to r = 0 is

Bλ0 = {3, 1, 0, −1, −3, −5, −6, −8,−9, −10, . . .}.

The β-set corresponding to r = 7 is

Bλ7 = {10, 8, 7, 6, 4, 2, 1, −1, −2, −3, . . .}.

4
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1.1. Combinatorics of partitions

The abacus is a very convenient way of visualizing β-sets. For a positive integer p,
consider p vertical lines called runners on which there are positions labelled by Z as
follows.

...
...

...
...

...

−p · · ·−p+ 2−p+ 1 −1

0 · · ·21 p − 1

p p+ 1 p+ 2 · · · 2p − 1

...
...

...
...

... (1.1)

Each position can be either empty or occupied by a bead. A p-abacus (or abacus)
for a partition λ is the abacus with beads placed in positions corresponding to some
β-set Bλr and empty spaces in positions corresponding to ZrBλr .

Example 1.1.5. Let p = 5 and λ = (4,33,2,12) as in Example 1.1.4. The p-abacus dis-
plays for λ corresponding to β-sets Bλ7 and Bλ0 are:

...
...

...
...

...
−5 −4 −3 −2 −1

1 2 4

6 7 8

10

...
...

...
...

...

...
...

...
...

...
−15 −14 −13 −12 −11

−10 −9 −8 −6

−5 −3 −1

0 1 3

...
...

...
...

...
Bλ7 Bλ0

where only positions with beads are labelled. 4

Since each p-abacus corresponds to a β-set for λ, there is a whole family of p-
abacuses which represent graphically a same partition λ. But two β-sets differ only by
shifting, that is, adding the same integer to each of the numbers in one β-set. Hence
we can drop the labelling of beads in the abacus display without losing information.
Unless otherwise specified, the preferred abacus for a partition λ is the one corre-
sponding to the β-set Bλ0 . For this abacus can be said to have a number of beads which
is a multiple of p. By having a number of beads we mean all the beads in the set of
rows of the abacus which contain at least one empty space. It is clear that this set
of beads is finite since empty spaces correspond to the complement of Bλ0 which is
bounded below. With these conventions, the 5-abacus of the partition λ = (4,33,2,12)
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from Example 1.1.5 is:
...

...
...

...
...

...
...

...
...

...

(1.2)

A practical way to obtain the p-abacus for a partition λ = (λ1, . . .) from its Young
diagram and vice versa is the following. Start with the Young diagram of λ. The south-
east border of the diagram is made of segments. We can think of this segments as

being oriented right “ > ” and “ > ” segments which define then a lattice path starting
from the bottom of the diagram to the top and following the south-east border, see
the diagram below. We define an infinite word on the symbols “•” and “◦” as follows:

form a finite word from the lattice path by replacing every “ > ” for “◦” and every

“ > ” for “•”; then concatenate an infinite number of “•” to the left of the finite word
and an infinite number of “◦” to the right, we obtain an infinite •◦-word. For example,
for the partition λ = (4,33,2,12), with Young diagram

>

>
>

>

>
>

>

>
>

>

>

the infinite word is

· · · • • • ◦ • • ◦ • ◦ • • • ◦ • ◦ ◦ ◦ · · ·

Now, if we divide the •◦-word in groups of consecutive p symbols (we can represent
such a division by drawing vertical bars), then such a division gives a p-abacus for λ
by associating each group of p symbols, from right to left, to a row in the abacus from
top to bottom. Or, in other words, by wrapping the •◦-word in an a empty abacus
with p runners in the direction of the labelling in Figure 1.1. Then the symbol “•”
corresponds to a bead and the symbol “◦” to an empty position. For obtaining the
5-abacus (1.2) we draw vertical bars every 5 symbols as follows:

· · ·•︸︷︷︸
a

| • • • ◦ •︸  ︷︷  ︸
b

| • ◦ • ◦ •︸  ︷︷  ︸
c

| • • ◦ • ◦︸  ︷︷  ︸
d

| ◦ · · ·︸︷︷︸
e
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1.1. Combinatorics of partitions

Finally, we have given the names a,b,c,d for the groups of symbols from left to right
in this example. We now put them from top to bottom as follows:

a {• • • • •
b {• • • ◦ •
c {• ◦ • ◦ •
d {• • ◦ • ◦
e {◦ ◦ ◦ ◦ ◦

We can see that we obtain the 5-abacus of λ = (4,33,2,12) shown in (1.2).

The correspondence Young diagram - •◦-word - abacus is well defined: to a Young
diagram corresponds a unique family of β-sets, each one indexed by r ∈Z. For every r,
a β-set Bλr ⊆ Z determines an indicator function 1Bλr : Z −→ {0,1}, which is 0 starting
from a certain rank and 1 for all values less than certain rank, that is, there exist
m,M ∈ Z such that 1Bλr (l) = 0 for all l ≥M or 1Bλr (l) = 1 for all l ≤ m. A •◦-word with
divisions is completely determined by choosing the position of one division, hence,
making correspond 0 and 1 to ◦ and •, respectively, such a word is equivalent to a
function Z −→ {0,1}, which is 1 at −∞ and 0 at +∞.

The last fact for verifying that the correspondence is well defined is that the south-
east lattice path encodes a β-set for λ. Consider the β-set Bλ0 , where βi = λi − i for all
i ∈N∗. And observe that for this β-set (hence for any β-set), the number of integers
in the gap between two consecutive β-numbers, βi and βi+1 is equal to βi+1 − βi − 1 =
λi+1 − λi . That is, the difference between two parts of λ. In terms of the abacus, the
gap between two consecutive beads has a number of empty spaces equal to a difference
between consecutive parts of λ.

1.1.6 Core and quotient in the abacus

Let us see why the abacus display is particularly nice for computing the p-core and
p-quotient in practice. Consider the β-set Bλh , where h = l(λ). The set Bλh is formed by
the numbers

λ1 + h− 1, λ2 + h− 2, . . . , λh−1 + 1, −1, −2, −3, . . .

The positive integers in Bλh are exactly the hook-lengths of the nodes in the first col-
umn of [λ], that is, hooks H1,1,H2,1, . . .Hh,1. Hence, if a p-rim-hook is removed from
λ, for some positive integer p, then a β-set for the resulting partition is obtained from
Bλh by replacing certain βi for βi − p, which in the p-abacus amounts to sliding a bead
one position up. This is true in general for any β-set associated to λ, and it is the
motivation for introducing β-sets:

Lemma 1.1.6 (Lemma 2.7.13, JK81). Removing a p-rim-hook Rλi,j from [λ] means for

every β-set Bλr that a suitable βrk ∈ Bλr is changed into βrk −p, and the resulting set is a β-set
for [λ]rRλi,j . Conversely, changing a number βk in a β-set for λ into βk −p (if βk −p is not
already in the β-set) results in a β-set for a partition µ which arises from λ by removing a
p-rim-hook.

β-sets are a way of formalizing the fact of removing p-rim-hooks from a partition.
Hence they are useful for proving results involving p-rim-hooks, such as the unique-
ness of the p-core for a partition.
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Remark 1.1.7. The leg-length of a p-hook is encoded in the p-abacus: let λ be any
partition and consider its p-abacus display. Take any bead that can be moved one
position down, say the bead is in position t ∈ Z and move it down one position. The
new position is then t + p. The new abacus corresponds to a partition obtained from
λ by adding some p-rim hook Hi,j . From the correspondence of Young diagrams and
•◦-words, we have that the leg-length of Hi,j is equal to the number of beads occuring
in positions t + 1, t + 2, . . . , t + p − 1. That is the number of beads in positions between
the initial and final position of the moved bead. Similarly, the arm-length of Hi,j is
equal to the number of empty spaces occuring in the same list of positions. 4

A direct consequence of Lemma 1.1.6 is that a β-set for the p-core γ of the partition
λ is obtained from a β-set Bλr of λ by replacing β ∈ Bλr with β − p as far as possible.
Which is then seen in the p-abacus as sliding the beads up as far as possible, that is,
such that there are no empty positions between beads in a same runner. Also, the
p-weight of λ is the number of such replacements, or bead slide movements. That
confirms the fact that every partition has a uniquely determined p-core.

Example 1.1.8. The 5-core of the partition λ = (4,33,2,12) from Example 1.1.5 can be
calculated by removing for example the 5-rim-hooks Hλ

1,3,H
λ
4,1, and Hλ

1,1 in that order.
In the following diagram they are marked respectively as 0,1 and 2.

2 0 0
2 0

2 2 0
2 1 0
1 1
1
1

The resulting diagram (12) does not have any 5-rim-hooks. The partition (12) is then
the 5-core of λ. In the abacus, the partition (12) is obtained from diagram (1.2) by
sliding up the only two beads that can be moved, as far as possible. In total, 3 sliding
movements have to be made, which agrees with the 3 hooks removed from λ. We
obtain the following abacus:

...
...

...
...

...

...
...

...
...

...

4
We now recall the definition of the p-quotient of a partition λ. Consider the abacus

corresponding to the β-set Bλ0 , that is, the p-abacus for λ in which the number of beads
is a multiple of p. This convention ensures that the abacus display for a partition is
unique. Observe that each runner can be seen as a 1-abacus, which corresponds then
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to some partition. Denote such a partition λ(i) if it corresponds to the i-th runner from
left to right for 1 ≤ i ≤ p − 1. The p-tuple of these partitions

λp := (λ(0),λ(1), . . . ,λ(p−1)),

is called the p-quotient of λ. In general, a k-tuple µ of partitions is called a k-partition.
For an integer m we call rank of µ or we say that µ is k-partition of m if the sum of the
ranks of the partition which form µ is equal to m. The p-quotient of λ is a p-partition
of w, where w is the p-weight of λ.

Example 1.1.9. Let p = 5 and λ = (4,33,2,12) with abacus (1.2) in page 26. The p-
quotient of λ is λp = (∅, (1), ∅, (2), ∅). This is a p-partition of 3, the p-weight of λ.

4

The uniqueness of the abacus, under the chosen convention and Lemma 1.1.6 gives

Theorem 1.1.10 ([JK81, Theorem 2.7.30]). For every p ∈ N
∗, a partition is uniquely

determined by its p-core and its p-quotient.

Theorem 1.1.10 can be seen as a version of the Euclidean division for partitions.
In fact, for a one-row partition, the p-core and the p-quotient are exactly the residue
and quotient from the division by p, let us see this in detail.

Example 1.1.11. Let n ∈ N
∗ and λ be the one-row partition λ = (n). Let 1 ≤ p < n.

Euclidean division says that there exist unique integers q and r such that

n = pq+ r, and 0 ≤ r < p.

The p-abacus of λ = (n) has the following form:

0 1 · · · r−2 r−1 · · · p−2 p−1
...

...
...

...
...

...

· · · · · ·q rows

Then, the p-quotient of λ is then the p-partition λp = (∅, . . . ,∅, (q), ∅, . . . ,∅), with
partition (q) as the r-th component. The p-core of λ is obtained by sliding up the bead
that can be moved in the (r − 1)-th runner from left to right, all the way up, which
gives partition (r). The p-core of λ is then (r). 4
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1.1.7 Labelling of runners in the abacus

We recall a useful labelling for the runners of the abacus of a p-core. Let γ be a p-core
and consider its abacus. Take the positions of the lowest bead in each runner. This
gives a list of p integers ρ0 < ρ1 < · · · < ρp−1. Since each of these integers corresponds
to (a position on) a runner, such a list yields a labelling 0,1, . . . ,p − 1 of the runners,
possibly different from the natural left-to-right labelling: now the 0-th runner is the
leftmost with “minimal number” of beads, the (p − 1)-th runner is the rightmost with
the “maximal number” of beads. We can rephrase this by defining a total order on
runners: Let “l” be the following order on runners. For R and S two runners on the
abacus of γ we say that Rl S iff R has strictly less beads than S, or R and S have the
same number of beads and R is to the left of S. Where, of course, we talk about “num-
ber of beads” in a figurative sense. Now, with this order, our new labelling 0,1, . . . ,p−1
coincides with increasingly ordering the runners with respect to “l”. From now on, if
not otherwise specified, we use this labelling for runners on an abacus.

Example 1.1.12. Let p = 5 and γ = (2,1). The Young diagram and 5-abacus of γ , with
the corresponding labelling of runners is

γ
1 4 2 0 3

4

1.2 The symmetric and alternating groups

One of our principal objects of study is the symmetric group. In this section we recall
some definitions about the symmetric group, its conjugacy classes and the alternating
group.

Let n ∈ N. The symmetric group Sn, on n symbols, is the set of bijections from
{1,2, . . . ,n} to itself. The multiplication is composition. The degree of Sn is then |Sn| =
n!. An element π ∈ Sn is called a permutation of {1, . . . ,n} or simply a permutation.
There are different ways to write a permutation. One way is two-line notation, that is:

π =
(

1 2 · · · n
π(1) π(2) · · · π(n)

)
.

For example, the permutation defined by 1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 5 and 5 7→ 4 is
written

π =
(
1 2 3 4 5
2 3 1 5 4

)
.

Our preferred way of denoting permutations is cycle notation: for a i ∈ {1,2, . . . ,n}
consider i,π(i),π2(i), . . .. There exists r ≥ 1 such that πr(i) = i. The cycle containing i is

( i π(i) π2(i) · · · π(r−1)(i) ).
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1.2. The symmetric and alternating groups

Conversely, a cycle (i j k · · · l) means that π sends i to j, j to k, . . . , and finally
l to i, cyclically. Now, if there is any, take j ∈ {1,2, . . . ,n} which is not in the cycle
containing i and iterate the process. The concatenation of the obtained cycles gives
the cycle notation for π. For example, for the permutation π, above the cycle notation
is (1 2 3)(4 5). Cyclically permuting elements within a cycle does not change the
permutation. For example (1 2 3) = (2 3 1) = (3 1 2) in S3. A cycle with k elements is
called a k-cycle. Sometimes 1-cycles are omitted; by convention, omitted numbers are
considered fixed points of the permutation.

Example 1.2.1. S3 = {Id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. 4

The 2-cycles in Sn are an important kind of permutations, they are also referred to
as transpositions. The group Sn is generated by transpositions: Any cycle (i j k · · · l m)
is equal to the product (i j)(j k) · · · (l m). Moreover, it can be shown that Sn is generated
by adjacent transpositions, that is, the transpositions (1 2), (2 3), . . . (n − 1 n). Given a
permutation π ∈ Sn, there is not a unique way of writing π as a product of transposi-
tions, for example (1 2)2 = (2 3)2 in S3. However, it can be proved that the parity of
the number of transpositions in any writing of π is always the same. In view of this
fact, let π = τ1τ2 · · ·τk with τi transpositions, the sign of π is defined as

ε(π) := (−1)k .

Another notation for the sign of π is sgn(π). The map ε : Sn −→ {1,−1} defines an ho-
momorphism into the multiplicative group {1,−1}. The kernel of ε is the subgroup
denoted An and called the alternating group. According with the parity of transposi-
tion writing, the elements ofAn are called even permutations and those in SnrAn are
called odd.

Example 1.2.2. A3 = {Id, (1 2 3), (1 3 2)}. 4

The alternating group is a normal subgroup of Sn. From the isomorphism theo-
rems for groups |A0| = |A1| = 1 and |An| = n!

2 for n ≥ 2. A useful remark is that a k-
cycle (i1 i2 · · · ik−1 ik) is in An (is even) if and only if k is odd. Indeed (i1 i2 · · · ik−1 ik) =
(i1 i2)(i2 i3) · · · (ik−1 ik) is written as the product of k − 1 transpositions.

1.2.1 Conjugacy classes of Sn

The cycle notation for a permutation is unique up to permutation of the cycles, if the
cycles are disjoint. Hence the set of lengths of the cycles is well defined for a permu-
tation. Let π ∈ Sn. Write π in cycle notation and organize the cycles decreasingly by
length

π = (i1 · · · iλ1
)(j1 · · · jλ2

) · · · (k1 · · · kλr ).
The cycle type of π is the partition λ of n whose parts are the lengths of the cycles of π

λ = (λ1,λ2, . . . ,λr ).

Example 1.2.3. The cycles types of the permutations Id, (1 2) and (1 2 3) in S3 are,
respectively the partitions (13), (2,12) and (3) of 3. 4

31



1. Preliminaries

Note that every partition of n occurs as the cycle type of some permutation. This
correspondence is not a bijection, though, since two different permutations can have
the same cycle type. As a matter of fact, all permutations with a same cycle type form
a conjugacy class of Sn. Let us observe this in detail.

Recall that two elements g,h in a group G are conjugates if there exists k ∈ G such
that g = khk−1. This relation between pairs of elements inG defines an equivalence re-
lation. The equivalence classes in this case are called conjugacy classes. In the symmet-
ric group Sn, the action of conjugating a cycle has an interesting behavior: consider
the cycle (i1 i2 · · · ik) ∈ Sn and let π ∈ Sn. Then

π (i1 i2 · · · ik) π−1 = (π(i1) π(i2) · · · π(ik)).

Thus, in general, conjugating a permutation σ ∈ Sn written in cycle notation by a per-
mutation π is equal to applying π to every number 1,2, . . . ,n keeping the same cycle
structure of σ . Hence, conjugating does not change the cycle type of a permutation.
Conversely, two permutations having the same cycle type are conjugated. For exam-
ple, in S5, the permutations π = (2 3)(1 4 5) and σ = (4 5)(1 2 3) are conjugated by any
permutation mapping the 2-cycle to the 2-cycle and the 3-cycle to the 3-cycle; take

π =
(
1 2 3 4 5
1 4 5 2 3

)
.

In consequence, the cycle type of permutation defines a bijection:

Par(n) ←→ { C | C is a conjugacy class of Sn}
λ 7−→ Cλ := {π ∈ Sn | the cycle type of π is λ}.

1.2.2 Conjugacy classes of An

We recall the structure of conjugacy classes of An. We saw that conjugacy classes of
Sn are indexed by the partitions of n by means of the cycle type of partitions. Then,
all permutations in a conjugacy class of Sn are either even or odd. That is, if Cλ is a
conjugacy class of Sn then Cλ ⊆An or Cλ ⊆ Sn rAn.

Let Cλ be a conjugacy class of Sn of even elements, that is, Cλ ⊆ An. That means
that λ has an even number of even parts. Let π ∈ Cλ. Consider the following two
situations.

• Suppose that there is σ ∈ Sn rAn such that π and σ commute. That is, σπσ−1 =
π. Let π′ be such that π′ = xπx−1, for some x ∈ Sn.
If x ∈ An, then π and π′ are conjugates in An; if x ∈ Sn rAn then xσ ∈ An as
it is the product of two odd permutations. Now, π′ = xπ x−1 = x(σπσ−1)x−1 =
(xσ )π(xσ )−1, then π and π′ are conjugates in An.
Hence, in this case, the conjugacy class of π in An coincides with the conjugacy
class of π in Sn.

• If π does not commute with any element in Sn rAn, then the Sn-conjugacy
class Cλ of π splits in two An-conjugacy classes of the same size, which are re-
spectively formed by elements of type xπx−1 with x ∈An, and elements of type
xπx−1 with x ∈ Sn rAn. The two An-classes are of equal size since one is the
image of the other under conjugation with any permutation in Sn rAn.
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In conclusion, given a Sn-conjugacy class Cλ, included inAn (λ has an even number of
even parts), either all of the elements in Cλ form a conjugacy class of An, or Cλ splits
in two An-conjugacy classes of the same size. Moreover, Cλ splits if and only if for
every π ∈ Cλ, π does not commute with any element σ ∈ Sn rAn.

Now, the only elements which commute with a given permutation π are generated
by the product of powers of cycles in π, as well as elements permuting cycles in π of
a same length. Hence, if there is a cycle of even length in π, then the permutation
formed only by this cycle is in Sn \An, and commutes with π. Also, if there are two
cycles of the same odd length in π, the permutations which exchanges one by one
elements in these two cycles, commutes with π and it is odd, as it is an odd product
of transpositions. We then have the following known criterion for when an even Sn-
conjugacy class splits as two An-conjugacy classes:

Proposition 1.2.4. Let Cλ be a conjugacy class of Sn such that Cλ ⊆An.

• Cλ is the disjoint union of two conjugacy classes Cλ+ tCλ− of equal size of An if and
only if λ is formed by different odd parts.

• Cλ is a conjugacy class of An otherwise.

Furthermore, in the first case, we have that for any σ ∈ Sn rAn

σCλ+σ−1 = Cλ−.

That is, the conjugacy classes Cλ+ and Cλ− are conjugate in Sn.

Example 1.2.5. Let n = 4 and consider the partitions of 4: λ = (3,1) and µ = (22). The
associated conjugacy classes of S4 are, for λ the 3-cycles:

Cλ = {(1 2 3), (1 3 2), (2 3 4), (2 4 3), (1 3 4), (1 4 3), (1 2 4), (1 4 2)},

and for µ the double-transpositions:

Cµ = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Now, as sets, both conjugacy classes are included in A4, but the partition λ is formed
by different odd parts, then from Proposition 1.2.4 we know that Cλ = Cλ+ t Cλ−,
where Cλ+ and Cλ− are A4-conjugacy classes. We have:

Cλ+ = {(1 2 3), (1 3 4), (2 4 3), (1 4 2)},

and
Cλ− = {(1 3 2), (1 2 4), (2 3 4), (1 4 3)},

where the notations + and − where randomly assigned. On the other hand, µ is not a
partition formed by different odd parts, then Cµ is itself a A4-conjugacy class. 4

Proposition 1.2.4 gives an indexing of the conjugacy classes of An: Denote by
ParA(n) the set of partitions of nwith an even number of even parts (the cycle types of
permutations in An). Denote by ParA+−(n) the set of partitions of n formed by different

33



1. Preliminaries

odd parts. We have ParA+−(n) ⊆ ParA(n). Finally let ParA◦ (n) = ParA(n)rParA+−(n). There
is a bijection:

ParA◦ (n)
⊔ (

ParA+−(n)× {+,−}
)
←→ { C | C is a conjugacy class of An}{

λ
(µ,+) or (µ,−)

7−→
7−→

Cλ
Cµ+ or Cµ−.

(1.3)

A partition bijection The set ParA+−(n) is in bijection with the set of self-conjugate
partitions of n. Indeed, let λ ∈ ParA+−(n). We define a partition µ as the self-conjugate
partition with diagonal hook-lengths the parts of lambda:

h
µ
1,1 = λ1, h

µ
2,2 = λ2, . . .

Since the parts of λ are odd and different, µ is well-defined. Conversely, a self-
conjugate partition µ gives a partition λ by defining the parts of λ as the diagonal
hook-lengths of µ, as above. That way, the parts of λ are different and odd since µ
is self-conjugate. This correspondence is easily seen in the Young diagrams: parts
become diagonal hooks and vice versa. For example, if λ = (9,5,3) ∈ ParA+−(17) then
µ = (5,44,3,1):

[λ] =
• • • • • • • • •
• • • • •
• • •

←→ [µ] =

• • • • •
• • • •
• • • •
• • •
•

(1.4)

Then, there is a bijection:

ParA+−(n) = { λ | λ ` n, λi are all odd and different } ←→ { λ | λ ` n, λ = λ′ }.

Remark 1.2.6. Later, when reviewing the representation theory of An we will see
that there exists a bijection between the set of conjugacy classes of An and the set of
partitions:

{ λ | λ ` n, λ > λ′ } t ({ λ | λ ` n, λ = λ′ } × {+,−}) ,
(see Theorem 1.3.12). Implying that the set ParA◦ (n)

⊔ (
ParA+−(n)× {+,−}

)
is also in

bijection with the preceding set of partitions of n. Now, considering the fact that we
have an explicit bijection ParA+−(n)↔ { λ | λ ` n, λ = λ′ }, the natural question for an
explicit bijection between the sets

{ λ | λ ` n, λ > λ′ } ↔ ParA◦ (n),

arises. We ask for an explicit bijection between the set of partitions strictly greater
than their conjugate (or a set of partitions on which we chose one of λ or λ′, for every
λ ` n) and the set of partitions with an even number of even parts such that if all
the parts are odd, then there exist two equal parts. We do not have an answer to this
combinatorial problem. 4
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1.2.3 p-prime conjugacy classes and BG-partitions

There is a family of conjugacy classes of Sn which is involved in the p-modular rep-
resentation theory of Sn. Before discussing this relation in detail, let us see a useful
combinatorial correspondence.

Recall that the order of an element in a group depends only on the conjugacy class.
We can then talk of the order of a conjugacy class. For a prime number p, we say that
a conjugacy class is p-prime if the order is relatively prime to p.

In the symmetric group Sn, the order of a conjugacy class is easy to calculate: it is
the least common multiple of the lengths of the cycles in the cycle structure. Hence,
a conjugacy class Cλ is p-prime if and only if

gcd(lcm(λ1,λ2, . . . ,λl(λ)),p) = 1.

Which is equivalent to p - λi for all i ≤ λ ≤ l(λ). Then the partitions indexing p-prime
conjugacy classes of Sn are those for which none of the parts are divisible by p. We
call such partitions p-prime1 partitions.

There are as many p-prime partitions of n as p-regular partitions. This is true in
general for any p ∈ N. Recall that a partition is p-regular if it does not contain p
non-zero parts which are equal. One bijection between the two sets of partitions is
due to Glaisher (1883, see [Bre99, Exercise 2.2.7]). Such bijection is a generalization
of his correspondence between partitions formed of odd parts and partitions formed
of different parts. A proof with generating functions, that these two sets of partitions
have the same number of elements can be found in [JK81, proof of Lemma 6.1.2].

Glaisher’s correspondence Glaisher’s bijection from p-prime partitions to p-regular
partitions is as follows. Take a p-prime partition. If it is already p-regular there is
nothing to do. If it is not p-regular, there is a part λi repeated p times. Replace these
p parts for one part of length pλi . Iterate this process until none of the parts repeats
p times. The obtained partition is p-regular. This process is uniquely reversible.

Example 1.2.7. Let p = 3 and take λ = (7,23) ` 13. The partition λ is not 3-regular, but
it is 3-prime. Under Glaisher’s correspondence, the three repeated parts (of length 2)
become one part (of length 6). The obtained partition is (7,6) which is 3-regular. 4

We have then a one-to-one correspondence:

{ p-prime conjugacy classes of Sn } ←→ { p-regular partitions of n }. (1.5)

The importance of the fact that these two sets are in bijection will be more clear
when studying the representation theory, where instead of indexing p-modular irre-
ducible representations of Sn by p-prime partitions, they will be indexed by p-regular
partitions.

Let us now consider some p-prime conjugacy classes of An. We saw in Proposition
1.2.4 that there are two kinds of Sn-conjugacy classes which are included inAn: those

1In the literature these partitions are sometimes called p-regular partitions, and our p-prime conju-
gacy classes are called p-regular conjugacy classes. Since we use the term p-regular for a different kind
of partitions, we chose to leave the term p-prime for the corresponding conjugacy classes and partitions.
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which split as two An-conjugacy classes and those which do not split. Those which
split are indexed by the set of partitions of n formed with different odd parts. Now,
from these conjugacy classes, choose the ones which are p-prime. From the correspon-
dence (1.4), we obtain a bijection{

Cλ
∣∣∣∣∣∣ Cλ ⊆An is a p-prime

conj. class with λ ∈ ParA+−(n)

}
←→

{
λ

∣∣∣∣∣∣ λ ` n, λ is self-conjugate and
p - hλii , for all λi , 0

}
(1.6)

The two sets are important in this work. Hence we give a name to the set of parti-
tions in the right.

Definition 1.2.8. A partition λ of n is called a p-BG-partition (or a BG-partition) if λ
is self-conjugate and none of the diagonal hook-lengths of λ is divisible by p. The
set of p-BG-partitions of n is denoted BGn

p. The set of all partitions which are p-BG
partitions is denoted BGp.

In terms of (p)-hooks, as defined in §1.1.4, λ is a p-BG-partition if and only if λ is
self-conjugate and it does not have diagonal (p)-hooks.

Example 1.2.9. The set of 3-BG-partitions of 18 is

BG18
3 = {(6,5,23,1), (7,4,22,13), (9,2,17)}.

4

1.3 Representations of the symmetric and alternating groups

In this section we state well known facts about the representation theory of the sym-
metric and alternating groups. Statements and definitions are principally borrowed
from [JK81, Sag01, CR62].

1.3.1 Fundamentals

Some vocabulary

Before discussing the representation theory of the symmetric group, we set some gen-
eral vocabulary.

Let K be any field and G a finite group. A representation (π,V ) of G over K (or a K-
representation of G) is a group homomorphism π : G −→GL

K
(V ), where V is a finite-

dimensional vector space over K and GL
K

(V ) is the group of K-automorphisms of V .
The dimension of the representation is the dimension of V . We refer to a representation
by either the morphism π or the vector space V .

Consider the group algebra KG. There is a one-to-one correspondence between
the set of K-representations of G and the set of finitely generated KG-modules: Let
(M,∗) be a KG-module. In particular, M is a K-vector space. For a fixed g ∈ G, the
K-linear map

πg : M −→ M
m 7−→ g ∗m
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is a K-automorphism of M, of inverse πg−1 . Hence

π : G −→ GL
K

(M)
g 7−→ πg

defines a representation of the group G. Conversely, any K-representation (π,V ) of G
uniquely defines a KG-module, with action ∗ defined linearly as

g ∗ v := π(g)(v),

for g ∈ G and v ∈ V . We use this correspondence throughout this text, by referring to
either a representation of a group or a module.

Two representations (π,M) and (ρ,L) ofG are said to be equivalent (or isomorphic) if
there is an isomorphism of K-vector spaces φ :M −→ L such that φ◦π(g) = ρ(g)◦φ. In
this case, the isomorphism φ is called a G-isomorphism. We writeM ' L. Equivalence
of representations is, of course, an equivalence relation.

Let M be a KG-module and let H ≤ G be a subgroup. The restriction of M to H
is the KH-module denoted M ↓H where the underlying module is M and the action
is the action of G restricted to H . If N is a KH-module, the induced KG-module is
N ↑G= KG⊗

KH N.

Reducibility and decomposition

A submodule of a KG-module M is a subspace N ⊆ M that is stable, that is, closed
under the action of G. A KG-module M is said to be simple (or irreducible for the
corresponding representation), if the only submodules are 0 and M.

In representation theory of finite groups, we aim to classify the irreducible repre-
sentations of a group, up to equivalence. The reason for this is that when the charac-
teristic char(K) of K does not divide |G|, Maschke’s theorem states that any represen-
tation V of G over K decomposes as a direct sum of irreducible representations

V = V1 ⊕ · · · ⊕Vk .
In this case, we also say that V is semisimple. If char(K) divides |G|, there is not al-
ways such a decomposition. However, since KG is a finite-dimensional associative
K-algebra, the Jordan-Hölder theorem ensures a different kind of decomposition.

A composition series of a KG-module M is a sequence of submodules

0 =M0 (M1 ( · · · (Mk =M,

such that Mi/Mi−1 is simple for all i. If M is, in particular, a finite-dimensional vector
space over K, as in our case, then M satisfies the so-called ascending chain condi-
tion and descending chain condition for submodules. This ensures the existence of a
composition series ([CR62, 13.10]). The Jordan-Hölder theorem states that whenever
composition series exist, the isomorphism classes of the simple quotients and their
(composition) multiplicities are uniquely determined (they only depend on M). More
precisely, if 0 = M0 ( M1 ( · · · ( Mk = M and 0 = M ′0 ( M ′1 ( · · · ( M ′l = M are two
composition series for the KG-module M, then k = l and there exists a permutation
σ of 1, . . . ,n such that Mi/Mi−1 is isomorphic to M ′σ (i)/M

′
σ (i)−1. The simple modules
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Mi/Mi−1 are called the composition factors of M, and the set of composition factors of
a KG-module is thus well-defined.

In both cases, roughly speaking, irreducible representations of G are the layers
forming any representation of G. When char(K) does not divide |G| we talk about
ordinary representation theory, for example if char(K) = 0. Otherwise, we talk about
modular representation theory.

1.3.2 Representations of the symmetric groups: Specht modules

For a finite group, it is well known that the number of nonequivalent irreducible rep-
resentations is the same as the number of conjugacy classes, in the ordinary case, or
p-prime conjugacy classes, in the modular case [CR62, 30.12 and 83.5]. Now, recall
from Section 1.2.1 that conjugacy classes of Sn are indexed by partitions of n, and
p-prime conjugacy classes are, in turn, indexed by p-regular partitions of n. For every
partition λ we are going to define a module Sλ. From such modules we are going to
obtain the classification of ordinary and modular irreducible representations of Sn.
From now on, let K be any field with char(K) , 2.

Let λ ` n. A Young tableau of shape λ (or a λ-tableau), is an array t obtained by re-
placing boxes in the Young diagram of λwith the numbers 1,2, . . . ,n, bijectively. There
are n! tableaux of shape λ. The symmetric group Sn acts on the set of λ-tableaux. For
example, let λ = (3,2) ` 5. A tableau of shape λ is:

t =
3 2 4
5 1

(1.7)

The permutation π = (23)(45) ∈ S5 acting on the tableau t gives:

πt =
2 3 5
4 1

We say that two λ-tableaux t and t′ are row equivalent if t′ is obtained from t by a
permutation which fixes the row. In other words, t and t′ are equivalent if they are
the same up to reordering each row. The equivalence class of t is denoted {t} and is
called a tabloid of shape λ (or a λ-tabloid). We represent a tabloid like a tableau with
lines between rows, indicating that the order in each row can be ignored. For example:

{t} = 3 2 4
5 1

=
4 3 2
1 5

There are n!
λ1!···λl ! tabloids of shape λ, where l = l(λ).

The group Sn acts on tabloids by π{t} = {πt}. This action gives rise to a KSn-
module: Let λ ` n, and suppose that {t1}, . . . , {tk} is a complete list of λ-tabloids. We
define the KSn-module Mλ as the K-vector space spanned by the λ-tabloids:

Mλ := K{{t1}, . . . , {tk}}.
Now, for a λ-tableau t define a subgroup of Sn as follows. Suppose that the

columns of t are the sets C1, . . . ,Cm ⊆ {1, . . . ,n}. The column-stabilizer of t is the sub-
group

Ct := SC1
× · · · × SCm ,
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of Sn, where ST denotes the group of bijections of the set T . Define an element κt, in
the group algebra KSn, associated to the tableau t as

κt :=
∑
π∈Ct

ε(π)π.

Associated to t, as well, we define the polytabloid as the following element in the mod-
ule Mλ:

et := κt{t}.
If t is of shape λ we say that et is a polytabloid of shape λ or a λ-polytabloid.

Example 1.3.1. if t is the tableau in (1.7), the column-stabilizer of t is

Ct = S{3,5} × S{2,1} × S{4}
= {Id, (3 5)} × {Id, (2 1)} × {Id},

then, κt factors as
κt = (Id− (3 5)) (Id− (2 1)).

Hence,

et :=
3 2 4
5 1

− 5 2 4
3 1

− 3 1 4
5 2

+
5 1 4
3 2

.

4
Definition 1.3.2. The Specht module Sλ is defined as the submodule of Mλ spanned
by the polytabloids et, where t is of shape λ.

Example 1.3.3. If λ = (n), the Specht module Sλ is the trivial representation: there is
only one polytabloid et = 1 2 · · · n , and πet = et for every π ∈ Sn.

If λ = (1n), it can be shown that Sλ is one-dimensional as well, and πet = ε(π)et for
every π ∈ Sn. The Specht module Sλ is the sign representation. 4
Remark 1.3.4. There exists a basis for the Specht module Sλ indexed by the set of
standard tableaux. A standard tableau of shape λ is a tableau in which the entries
in each row and column are increasing. The dimension of Sλ is given by the Hook
length formula in terms of the hook-lengths in the Young diagram [λ], see [FRT54].
The dimension is

n!
∏

(i,j)∈[λ]

1

hλij
.

4
There is a bilinear form Φ(·, ·) that can be defined in Mλ, which is symmetric,

Sn-invariant and bilinear. For this bilinear form, the KSn-module Sλ/(Sλ ∩ Sλ⊥) is
either irreducible or zero (see [JK81, §7.1]). In the ordinary case, that is, when char(K)
does not divide |Sn| = n!, we know that (Sλ ∩ Sλ⊥) = 0, and since there are as many
irreducible representations as conjugacy classes of Sn, we have:

Theorem 1.3.5 ([JK81, Theorem 7.1.9]). The Specht modules Sλ for λ ` n give a complete
list of nonequivalent ordinary irreducible representations of Sn.
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In the modular case, that is when p = char(K) divides |Sn| = n!, we know that
Sλ/(Sλ ∩ Sλ⊥) is non-zero if and only if λ is a p-regular partition. We have:

Theorem 1.3.6 ([JK81, Theorem 7.1.14]). Let p = char(K). As λ varies over p-regular
partitions of n,

Dλ := Sλ/(Sλ ∩ Sλ⊥)

varies over a complete set of nonequivalent modular irreducible representations of Sn.

The result in Theorem 1.3.6 explains, in particular, the interest of having a corre-
spondence (1.5) between p-prime conjugacy classes and p-regular partitions.

Remark 1.3.7. Some authors (for example Mathas in [Mat99]) use a different way to
define the Specht modules and the modular irreducible representations of Sn. We
use James’ definition. As James defined it, the Specht module Sλ is isomorphic to
the dual module which Mathas indexed by λ′, the conjugate of λ. Now, for us, the
modular irreducible modules are indexed by p-regular partitions. For Mathas, they
are indexed then by all the conjugates of p-regular partitions, which are called p-
restricted partitions. A p-restricted partition λ is then a partition such that λi+1−λi < p
for every i. In other words, a partition is p-restricted if and only if its conjugate is p-
regular. 4

Remark 1.3.8. The construction of Specht modules shown here is due to James, and it
is valid more generally for the representation theory of Hecke algebras, see [DJ86]. 4

Remark 1.3.9 (About the field). If K is the algebraic closure of the field K, a splitting
field E for a finite group G, is a finite extension of K such that all irreducible KG-
modules are realizable over E. The symmetric group Sn has the property that every
field is a splitting field for Sn ([JK81, Theorem 2.1.12]). Hence, in this thesis when we
talk about ordinary representations of Sn, the field K can be taken as being for exam-
ple Q, or Fp with p - n!, that is, p > n. When we talk about modular representations,
for the field K we take Fp with p | n!, that is, p < n. 4

1.3.3 Representations of the alternating groups

Let K be a field with char(K) , 2 and let n ≥ 2. The irreducible representations of
the alternating group An can be derived from those of Sn applying Clifford’s theory
of representations of normal subgroups. Our case is an easy application, since [Sn :
An] = 2. Let us see this in detail.

For stating Clifford’s theorem, we introduce the notion of conjugate modules. LetG
be a finite group, and letH / G be a normal subgroup. Let (π,L) be a KH-representation.
For an element g ∈ G, the conjugate (by g)representation (π(g),L(g)) is the KH-repre-
sentation with underlying vector space L and action defined as

π(g)(h) · l = π(ghg−1) · l.

Two KH-modules N and N ′ are said to be conjugates if N ′ = N (g) for some g ∈ G.
As stated in [CR62, 49.7], we have:
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Theorem 1.3.10 (Frobenius, Clifford [Cli37]). Let M be an irreducible KG-module, and
let H /G. Then M ↓H is a semisimple KH-module, and the irreducible KH-submodules of
M ↓H are all conjugates of each other. Moreover, if L is an irreducible KH-submodule of
M ↓H , then

M ↓H= k(L(g1) ⊕ · · · ⊕L(gr ))

where {L(g1), . . . ,L(gr )} is a full set of nonequivalent conjugates of L, and k is some positive
integer.

Before applying Theorem 1.3.10, let us do some preparation by observing the effect
of conjugating KAn-modules.

Lemma 1.3.11. Let n ≥ 2 and let L be a KAn-module. Then L and L(1 2) form a maximal
set of nonequivalent conjugates of L. In other words, for any σ ∈ Sn, any conjugate L(σ ) of
L is equivalent to L or to L(1 2), or possibly both.

Proof. Denote ρ the representation associated to the module L. For σ ∈ Sn, denote
(ρσ ,L(σ )) the conjugate module of L by σ .

If σ ∈ An we claim that L(σ ) ' L. Indeed, let τ ∈ An. We have that ρ(σ )(τ) =
ρ(στσ−1). Then ρ(σ )(τ) = ρ(σ )ρ(τ)ρ(σ )−1. Thus ρ(σ )−1ρ(σ )(τ) = ρ(τ)ρ(σ )−1. Then
ρ(σ )−1 is a An-isomorphism of L and L(σ ).

If σ ∈ Sn rAn, we claim that L(σ ) ' L(1 2). For this, we first rewrite the element σ :
we have σ = ν(1 2), where ν = σ (1 2) ∈An. Now, let τ ∈An. We have

ρ(σ )(τ) = ρ(στσ−1)
= ρ(ν(1 2)τ(1 2)ν−1)
= ρ(ν)ρ((1 2)τ(1 2))ρ(ν−1)
= ρ(ν)ρ(1 2)(τ)ρ(ν−1).

Then ρ(ν−1)ρ(σ )(τ) = ρ(1 2)(τ)ρ(ν−1), so that ρ(ν−1) is a An-isomorphism of L(σ ) and
L(1 2).

We now apply Theorem 1.3.10 to G = Sn and H = An. The following explanation
is based in [For97]. Let M be an irreducible KSn-module.

A preliminary remark is the following. Consider the KSn-module Mε defined as

Mε :=M ⊗ ε,
where ε is the sign representation of Sn. Since ε is a one-dimensional representation,
Mε is an irreducible KSn-module. On the other hand, notice that

M ↓An
'Mε ↓An

,

since An acts as the identity on ε. We keep this remark for later.

Now, Theorem 1.3.10 says that M ↓An
is semisimple. Let D be an irreducible con-

stituent of M ↓An
. From Lemma 1.3.11 we have either

M ↓An
= k(D) or M ↓An

= k
(
D ⊕D(1 2)

)
,

where k is as in Theorem 1.3.10.
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• We are in the first case if and only if D(1 2) ' D. In this situation, from [Fei82,
III.2.14], we have that

M ↓An
=D,

that is, k = 1. In this case M and Mε are not isomorphic KSn-modules. Indeed,
suppose that there is a Sn-isomorphism ϕ. Then, ϕ is also a An-isomorphism;
but D is an irreducible KAn-module. Then ϕ must be a scalar multiple of the
identity map; but this contradicts the assumption that this is an isomorphism
between M and M ⊗ ε.

• We are in the second case if and only if D(1 2) ;D. We have

M ↓An
=D ⊕D(1 2) =Mε ↓An

.

In this case, the integer k from Theorem 1.3.10 is equal to 1 since D ⊕ D(1 2)

is stable for the action of Sn, then it is a stable submodule of the (irreducible)
KSn-module M. From Mackey’s subgroup theorem ([CR62, §44]) we have that

M 'D ↑Sn'Mε,

then in this case M 'M ⊗ ε.

Summarizing, let M be an irreducible KSn-representation.

(i) If M ;Mε, then M ↓An
'Mε ↓An

is an irreducible KAn-representation, while

(ii) if M 'Mε, then M ↓An
'Mε ↓An

splits into two nonequivalent irreducible KAn-
representations (conjugated by Sn).

With this characteristic free reasoning (provided that char(K) , 2), we are now
ready to give the classification of ordinary and modular irreducible representations of
An.

Ordinary case

The ordinary irreducible KSn-modules are the Specht modules Sλ, for every λ ` n.
Since Sλ ⊗ ε is again irreducible, then there exists λε ` n such that Sλ ⊗ ε ' Sλε . From
the construction of Sλ, it can be shown that λε is the conjugate λ′ of lambda:

Sλ ⊗ ε ' Sλ′ .
Hence, from the above discussion we obtain:

Theorem 1.3.12 (Ordinary irreducible An-representations). Let λ be a partition of n ≥
2.

(i) If λ , λ′, then Sλ ↓An
' Sλ′ ↓An

is an irreducible KAn-representation, while

(ii) if λ = λ′, then Sλ ↓An
' Sλ′ ↓An

splits into two nonequivalent irreducible and conju-
gate representations Sλ+, Sλ− of An (conjugated by Sn).

A complete system of nonequivalent ordinary irreducible KAn-representations is

{Sλ ↓An
| λ ` n, λ > λ′} t {Sλ+,Sλ− | λ ` n, λ = λ′}.

Remark 1.3.13. In the first set of irreducible KAn-representations, since Sλ ↓An
'

Sλ
′ ↓An

and we want to list a complete set of nonequivalent KAn-representations,
we choose one of Sλ ↓An

or Sλ
′ ↓An

by taking only λ > λ′ 4
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Modular case

Let p = char(K). The modular irreducible KSn-modules are the modulesDλ, for every
p-regular partition λ ` n. Then, being irreducible, the KSn-module Dλ ⊗ ε is equiva-
lent to some Dλ

ε
. In this case, in the construction of the modules Dλ, the connection

between the partition λ and the module Dλ is not as transparent as in the ordinary
case (construction of Sλ). Then, it is not straightforward to find the p-regular par-
tition λε corresponding to the irreducible module Dλ ⊗ ε. Moreover, it is a difficult
problem, for which Mullineux proposed a solution ([Mul79a]). Mullineux conjecture
was later proven to be true. Let mp(λ) denote the partition λε (which depends on p).
In §2 we explain Mullineux algorithm for finding mp(λ) explicitly .

With such notations we have:

Dλ ⊗ ε 'Dmp(λ).

From the discussion above we obtain:

Theorem 1.3.14 (Modular irreducible An-representations). Let λ be a p-regular parti-
tion of n ≥ 2.

(i) If λ ,mp(λ), then Dλ ↓An
'Dmp(λ) ↓An

is an irreducible KAn-representation, while

(ii) if λ = mp(λ), then Dλ ↓An
' Dmp(λ) ↓An

splits into two nonequivalent irreducible
and conjugate representations Dλ+, Dλ− of An (conjugated by Sn).

A complete system of modular nonequivalent irreducible KAn-representations is

{Dλ ↓An
| λ ∈ Regp(n), λ >mp(λ)} t {Dλ+,Dλ− | λ ∈ Regp(n), λ = mp(λ)}.

Remark 1.3.15. As in the ordinary case, in the first set of irreducible KAn-representa-
tions, since Dλ ↓An

' Dmp(λ) ↓An
and we want to list a complete set of nonequivalent

KAn-representations, we choose one of Dλ ↓An
or Dmp(λ) ↓An

by taking only one of λ
or mp(λ). For making this choice we take λ >mp(λ). 4

1.3.4 On the number of self-Mullineux partitions

In the preceding section we saw representations of Sn which split upon restriction
to An. Recall, from Proposition 1.2.4, when discussing conjugacy classes of Sn, con-
tained in An, that there was a similar splitting situation. Moreover, we know that
ordinary (or modular) representations are indexed by conjugacy classes (or p-prime
conjugacy classes) of Sn. These observations give interesting bijections, that allow to
say more about the latter correspondence. Namely, we have the following proposition
which follows from [AO91, Proposition 2]. We call p-self-Mullineux partition (or self-
Mullineux), any partition λ such that λ = mp(λ). The set of p-self-Mullineux partitions
of n is denoted Mn

p, and the set of p-self-Mullineux partitions is denoted Mp.

Proposition 1.3.16. Let n ≥ 2 and let p be an odd positive integer. The number of p-BG
partitions of n is equal to the number of p-self-Mullineux partitions of n.

Remark 1.3.17. As mentioned, Proposition 1.3.16 follows from [AO91, Proposition
2]. Here, we give an alternative proof using characters and the study of An-conjugacy
classes in §1.2.2. 4

43



1. Preliminaries

Before proving Proposition 1.3.16 we make some preparation. We know that
the number of An-conjugacy classes is equal to the number of ordinary irreducible
An-representations. The two sets can be indexed by sets of partitions (or partitions
marked with a sign) of n. The first indexing comes from (1.3) after Example 1.2.5, and
the second comes from Theorem 1.3.12. Hence, the following two sets of partitions
have the same cardinality:∣∣∣∣ ParA◦ (n) t

{
λ+,λ− | λ ∈ ParA+−(n)

} ∣∣∣∣ =
∣∣∣ {λ ` n | λ > λ′} t {

λ+,λ− | λ ` n, λ = λ′
} ∣∣∣

As tempting as it might be to affirm that the couples of corresponding subsets in the
two sides of this relation have the same number of elements as well, it is not auto-
matically true. It would be ideal, though, since the right-hand subsets on each side
correspond to splitting conjugacy classes and splitting representations. Fortunately,
we can make such affirmation since we know that there is an explicit bijection ((1.4)
on page 34) between the two sets:

ParA+−(n) ←→ {λ ` n | λ = λ′}.

We note that we do not know an explicit bijection between the sets ParA◦ (n) and {λ `
n | λ > λ′}, which, as a consequence of the latter, have the same number of elements.

Similarly, in the modular setting, if p = char(K), we know that the number of
An-p-prime conjugacy classes is equal to the number of modular irreducible An-
representations. The two sets can be indexed by sets of partitions (or partitions marked
with a sign) of n. The first indexing comes from the restriction to p-regular partitions
of (1.3) after Example 1.2.5, and the second comes from Theorem 1.3.14. Hence, the
following two sets of partitions have the same cardinality:∣∣∣{λ ∈ ParA◦ (n) | λ is p-prime } t {λ+,λ− | λ ∈ ParA+−(n) and λ is p-prime }

∣∣∣ =∣∣∣∣{λ ∈ Regp(n) | λ >mp(λ)} t {λ+,λ− | λ ∈ Regp(n), λ = mp(λ)}
∣∣∣∣

Now, as before, we would like to affirm, in particular, that the set of partitions
{λ ∈ ParA+−(n) and λ is p-prime } has the same cardinality as the set of self-Mullineux
partitions: {λ ∈ Regp(n), λ = mp(λ)}. Recall, from (1.6) in §1.2.3, that we have a bi-

jection between {λ ∈ ParA+−(n) | λ is p-prime} and BGn
p. For now, we do not have an

explicit bijection, as for the ordinary case above, however the equality of the cardinal-
ities makes the content of Proposition 1.3.16.

Proof of Proposition 1.3.16. In this proof we use Brauer characters: To an irreducible
KAn-module D we can associate a function χD which is called the (irreducible) Brauer
character of An afforded by D. This function χD is a complexed-valued function de-
fined on the set of p-prime elements of An (permutations with order which is rela-
tively prime to p) and it is constant on conjugacy classes. Isomorphic KAn-modules
are associated to equal Brauer characters. See [Isa06, §15] for the precise definition of
Brauer character and for further information.

In particular [Isa06, Theorem 15.10] says that the set of irreducible Brauer char-
acters of An form a basis of the space of C-valued functions defined on p-prime ele-
ments of An and constant on conjugacy classes. This implies that there are as many
irreducible Brauer characters ofAn as p-prime conjugacy classes ofAn, and by [Isa06,

44



1.3. Representations of the symmetric and alternating groups

Corollary 15.11], this is also the number of isomorphism classes of KAn-modules.
Therefore to each element λ of the set

{λ ∈ Regp(n) | λ >mp(λ)} t {λ+,λ− | λ ∈ Regp(n), λ = mp(λ)},
we can associate an irreducible Brauer character χ[µ]. That way, a basis of the space
of C-valued functions defined on p-prime elements of An and constant on conjugacy
classes is

{χ[λ] | λ ∈ Regp(n), λ > m(λ)} t {χ[λ+],χ[λ−] | λ ∈ Regp(n), λ = mp(λ)}.
To prove that

|{λ | λ ∈ ParA+−(n) and λ is p-prime }| = |{λ | λ ∈ Regp(n), λ = mp(λ)}|,
we will give two bases of a same space of functions, and the equality of the cardinality
of these bases will give the result.

Denote by E the space of C-valued functions defined on p-regular elements of An

and constant on conjugacy classes

E = { f : {p-regular elements of An} −→C | f is a class function of An } .
Define an action of Sn on E by conjugation as follows: for σ ∈ Sn and f ∈ E, f σ is

the class function
f σ (τ) := f (στσ−1).

For σ ∈ Sn rAn, let Eσ be the set of class functions fixed by conjugation by σ :

Eσ = {f ∈ E | f σ = f }.
This is a subspace of E. From Proposition 1.2.4 and the comment after such proposi-
tion, a basis for Eσ is

{1Cλ | λ ∈ ParA◦ (n), λ is p-prime} t {1Cλ+ +1Cλ− | λ ∈ ParA+−(n)},
where 1T denotes the indicator function for T ⊂An. We claim that a basis for Eσ is

{χ[λ] | λ ∈ Regp(n), λ > m(λ)} t {χ[λ+] +χ[λ−] | λ ∈ Regp(n) λ =m(λ)}.
Indeed, this comes from the fact that, as with usual characters of representations in
characteristic zero, conjugation of the character of a representation is the character of
the conjugate representation, here with Brauer characters. And also from the fact that
conjugation by σ permutes the modules associated to λ+ and λ− above.

Now, we have two bases for E and two bases for Eσ . On one hand, from the char-
acteristic function basis, the dimension of E is

|{λ | λ ∈ ParA◦ (n) and λ is p-prime }| + 2|{λ | λ ∈ ParA+−(n) and λ is p-prime }|,
or

|{λ | λ ∈ ParA◦ (n) and λ is p-prime }| + 2 |BGn
p |,

from (1.4). From the Brauer character basis, the dimension of E is

|{λ ∈ Regp(n) | λ >mp(λ)}| + 2|{λ | λ ∈ Regp(n), λ = mp(λ)}|,
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or
|{λ ∈ Regp(n) | λ >mp(λ)}| + 2|Mn

p |.
Hence

|{λ | λ ∈ ParA◦ (n) and λ is p-prime }|+ 2|BGn
p | = |{λ ∈ Regp(n) | λ >mp(λ)}|+ 2|Mn

p |.
Now, counting the elements on the two bases for Eσ , we obtain that the dimension

of Eσ is

|{λ | λ ∈ ParA◦ (n) and λ is p-prime }|+ |BGn
p | = |{λ ∈ Regp(n) | λ >mp(λ)}|+ |Mn

p |.
These two identities imply that |BGn

p | = |Mn
p |.

1.4 Decomposition matrix and blocks of the symmetric
group

Decomposition matrices are important objects which allow to study the modular rep-
resentation theory of Sn in particular. They contain the information of the relation-
ship between the ordinary and the modular irreducible representations. In this sec-
tion we recall the definition of the decomposition matrix of the symmetric group Sn.
Here, let p < n.

1.4.1 Decomposition matrix of the symmetric group

As mentioned in §1.3.1, FpSn-modules are not always semisimple. However the Jordan-
Hölder theorem allows to assert the uniqueness of the multiplicity of an irreducible
FpSn-module Dµ, as a composition factor of any FpSn-module, where µ ` n is p-
regular. In particular we can consider the Specht module Sλ, for any λ ` n, which
is not in general a p-modular irreducible. Consider the composition multiplicity of
Dµ for µ ` n p-regular. Denote this multiplicity

dλµ = [Sλ :Dµ]

.
If we denote by ∼ the equivalence relation on the set of FpSn-modules given by:

M ∼N if and only ifM andN have the same composition factors (with multiplicities),
and [M] denotes the equivalence class of M, we have:

[Sλ] ∼
 ⊕
µ ∈ Regp(n)

dλµD
µ

 .
The multiplicities dλµ are called the (p-modular) decomposition numbers of Sλ. They
can be arranged in a matrix

Dn,p = (dλµ) λ ∈ Par(n)
µ ∈ Regp(n)

,

called the (p-modular) decomposition matrix. It is a rectangular matrix with as many
rows as partitions of n and as many columns as p-regular partitions of n.

A crucial fact about the modular irreducible representations of Sn, which reflects
on the decomposition matrix is the following.
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1.4. Decomposition matrix and blocks of the symmetric group

Theorem 1.4.1 ([JK81, Theorem 7.1.14]). IfDµ is a composition factor of Sλ, where λ,µ `
n and µ p-regular, then µ D λ. The composition multiplicity of Dµ in Sµ is 1.

That is, if we organize the rows of the matrix Dn,p downwards, placing the p-
regular partitions before the p-singular partitions, in any total order which respects
the dominance order (for example the lexicographic order), it takes the following
form:



1
1

. . .
1

∗

∗

0
Sλ, λ ∈ Regp(n)

Sλ, λ ∈ Par(n)rRegp(n)

Dλ, λ ∈ Regp(n)

In this form, we say that the matrix is lower unitriangular: it is lower triangular
and the diagonal entries are equal to 1. Let us introduce some terminology:

Definition 1.4.2. Let U ⊆ {Sλ | λ ` n}. We denote by DU
n,p the matrix formed by the

rows in Dn,p labelled by elements in U , and all the columns in Dn,p. We call DU
n,p the

restriction of Dn,p to U . In terms of [JK81, §6.3], we say that DU
n,p has wedge shape if the

rows and columns can be reordered in such a way that the resulting matrix is lower
unitriangular. 4

In such terms D
Regp(n)
n,p has wedge shape (or DU

n,p for any Regp(n) ⊆U ).

Let us rephrase Theorem 1.4.1 in terms of the decomposition numbers.

Theorem 1.4.3 ([Mat99, Corollary 4.17]). Let λ ∈ Par(n) and µ ∈ Regp(n). Then,

(i) dµµ = 1, and

(ii) if dλµ , 0 then λ E µ.

Example 1.4.4. The decomposition matrix D4,3 is

D(4) D(3,1) D(22) D(2,12)

S(4) 1
S(3,1) · 1
S(22) 1 · 1
S(2,12) · · · 1
S(14) · · 1 ·

where both dots · and blank spaces are 0. 4
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1.4.2 p-block structure of Sn

From the modular representation theory of finite groups (see for example [Isa06,
Alp86]), the sets of ordinary irreducible modules and the p-modular irreducible mod-
ules of Sn can be partitioned into p-blocks. It means that if rows and columns are
arranged according to these p-blocks, then the decomposition matrix is a block ma-
trix:

Dn,p =


∗
∗
. . .

∗0

0


In other words, we can define an equivalence relation ∼p on Specht modules as
follows: for two partitions of n, Sλ ∼p Sµ if and only if Sλ and Sµ have at least one
composition factor in common; we let ∼p be the transitive closure of such relation. We
also define ∼p on the set of p-modular irreducibles asDλ ∼p Dµ if and only if Sλ ∼p Sµ.
An equivalence class of ∼p for the Specht modules is called a p-block of Sn.

An important result on the representation theory of Sn says that p-blocks are char-
acterized by the p-cores of the Young diagrams which index the modules. The follow-
ing result was conjectured by Nakayama [Nak41b] and proved first by Brauer and
Robinson [Bra47, Rob47].

Theorem 1.4.5 (Nakayama’s Conjecture). Two ordinary irreducible representations Sλ

and Sµ of Sn lie in the same p-block if and only if the p-cores of λ and µ are equal.

Hence, a p-blockB of Sn can be indexed by a p-core, γ which is the p-core of every
λ ` n such that Sλ ∈B.

Definition 1.4.6. Let w ≥ 0 be an integer such that n −wp ≥ 0. Let γ ` n −wp be a
p-core. The p-block (or block) Bγ of FpSn is the following set of ordinary irreducible
representations of Sn up to equivalence:

Bγ := {Sλ | λ ` n and the p-core of λ is γ}.
The p-block Bγ in the set of modular irreducible representations is the subset:

Irrp(Bγ ) := {Dλ | λ ∈ Regp(n) and p-core of λ is γ}.
The p-weightw of the blockBγ (or Irrp(Bγ )) is defined as the p-weight of any partition

in the block, which is equal to w = n−Rk(γ)
p . The submatrix of Dn,p given by rows

indexed by Bγ and columns indexed by Irrp(Bγ ) is denoted Dγ . 4
By abuse of notation, we consider Bγ and Irrp(Bγ ) as subsets of partitions of n;

that is if we write λ ∈Bγ , it really means Sλ ∈Bγ .

Example 1.4.7. Let p = 3. There are 4 p-blocks of F3S8. From Nakayama conjecture,
the partitions of 8 with 3-core equal to (12) form a block, of weight 2:

B(12) = {(18), (23,12), (3,2,13), (3,22,1), (4,14), (4,22), (42), (6,2), (7,1)}.
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The other p-blocks of F3S8 are indexed by p-cores (2), (3,12) and (4,2,12), they are:

B(2) = {(2,16), (22,14), (24), (32,12), (4,3,1), (5,13), (5,2,1), (5,3), (8)},
B(3,12) = {(3,15), (32,2), (6,12)},
B(4,2,12) = {(4,2,12)}.

The respective p-weights are 2,1 and 0. 4

1.4.3 About the number of partitions in a p-block

From Nakayama’s conjecture, the number of partitions λ in a block labelled by the p-
core γ is equal to the number of λ ` nwith p-core γ . We saw in §1.1.6, Theorem 1.1.10
that a partition is uniquely determined by its p-core and its p-quotient. Recall that
the p-quotient of λ is a p-partition of the p-weight of λ. Then, if w is the weight of
Bγ , the number of partitions in Bγ is equal to the number of p-quotients, that is, of
p-partitions of the weight w. Let p(k) denote the number of partitions of k for k ∈N.
We have

Theorem 1.4.8 ([JK81, 6.2.1]). The number of ordinary irreducible representations in a
p-block of weight w of Sn depends only on p and w. It is equal to

∑
(w0,...,wp−1)

w0+···+wp−1=w
wi∈N

p(w0) · · ·p(wp−1) =
∏
k≥1

1
(1− tk)p

∣∣∣∣∣∣∣
tw

which is equal to the number of p-partitions of w. The expression in the right means the
coefficient of the monomial tw in the corresponding formal series.

There is a corresponding result for the number of p-modular irreducible represen-
tations. It turns out that the number of p-modular irreducibles in a p-block is equal
to the number of (p − 1)-partitions of the weight:

Theorem 1.4.9 ([JK81, 6.2.2]). The number of p-modular irreducible representations in a
p-block of weight w of Sn depends only on p and w. It is equal to

∑
(w1,...,wp−1)

w1+···+wp−1=w
wi∈N

p(w1) · · ·p(wp−1) =
∏
k≥1

1
(1− tk)p−1

∣∣∣∣∣∣∣
tw

which is equal to the number of (p − 1)-partitions of w. The expression in the right means
the coefficient of the monomial tw in the corresponding formal series.

In conclusion, if we fix a weight w, blocks of Sn with that given weight have the
same size. In fact, there are certain equivalences that can be defined in the set of
p-blocks of the symmetric group for which two p-blocks with the same weight are
equivalent, see for Example [Sco95,CR08]. Hence, roughly speaking, when looking at
certain properties, blocks of the same weight have similar structures.
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2 The Mullineux map

In this chapter we give a historical background on the Mullineux problem and we
recall different algorithms to compute the Mullineux map. For these descriptions we
follow closely [FK97, Fay21b].

2.1 On the Mullineux problem

Recall, from the introduction, that the Mullineux map mp is the involution on Regp(n)
such that, for λ ∈ Regp(n)

Dλ ⊗ ε 'Dmp(λ).

When p = 0 or p > n, the Mullineux map is conjugation of partitions: mp(λ) = λ′

for every p-regular partition λ (which in this case is any partition of n, and Dλ ' Sλ)
[JK81, 2.1.8]. When p = 2, the sign representation ε is equivalent to the trivial repre-
sentation, then the Mullineux map is the identity map.

The Mullineux problem concerns then the case p < n, where, as explained in the
introduction, we look for a combinatorial description of the Mullineux map.

In [Mul79a], Mullineux defined a bijection mM
p in Regp(n), we refer to the com-

putation as Mullineux’s algorithm. This algorithm uses Mullineux symbols which are
arrays of integers that record some information in the Young diagram of the parti-
tion. Mullineux conjectured that mM

p = mp. Later, in [Kle96], Kleshchev defined
an algorithm for computing mp, different from Mullineux’s algorithm, which pro-
vides a bijection mK

p = mp in Regp(n). Kleshchev’s algorithm uses the notion of good
node of a p-regular partition, introduced in [Kle95] in the context of the study of the
branching rules for modular representations of symmetric groups. That is, the study
of the composition factors of Dλ ↓Sn−1

, where Dλ is an irreducible representation of
Sn. In [Kle96], Kleshchev reduced the Mullineux conjecture to a combinatorial ques-
tion about the compatibility of the Mullineux’s algorithm with the removal of good
nodes. This problem was then solved in [FK97] where Ford and Kleshchev showed
that mK

p = mM
p , proving the Mullineux conjecture. In [BO94], Bessenrodt and Olsson

gave a shorter and easier proof of the Mullineux conjecture, by introducing a residue
symbol associated to p-regular partitions. Since these different algorithms compute
the Mullineux map, we keep only the notation mp.

Other algorithms have been found to compute the Mullineux map. Xu’s algorithm
[Xu97] is in a similar spirit from the one of Mullineux, but it does not use Mullineux
symbols. Brundan and Kujawa gave a different proof of the Mullineux conjecture by
showing that Xu’s algorithm computes the Mullineux map, see [BK03]. Their proof
uses an analogue of the Schur–Weyl duality in the context of superalgebras. In [Fay14],

51



2. The Mullineux map

Fayers gives a new algorithm for computing the Mullineux map which uses crystal
isomorphisms of ŝlp. Then, in [Jac21], in the context of affine Hecke algebras, Jacon
gives an algorithm which is equivalent to Xu’s algorithm.

The history of this problem lets see the importance and interest of the question.

2.2 Mullineux’s algorithm

Mullineux’s algorithm is defined recursively : starting with a p-regular partition λ,
and recursively removing certain subsets of the rim of λ, called p-rims. In this process,
certain numbers are recorded in an array called Mullineux symbol. The array is then
transformed and the output of this process is a partition recursively defined from the
new array.

Let λ be a p-regular partition λ. Recall that the rim of λ is the rim-hook Rλ11. We
label the nodes of the rim with positive integers following a path from the top right
to the bottom left. For example, if λ = (8,5,3,1), the labelling is:

4 3 2 1
7 6 5

10 9 8
11

The first p-segment of the rim consists of the nodes corresponding to integers less or
equal than p. If the last node (i, j) of the first p-segment is in the last row of [λ], then
[λ] only has one p-segment. If not, let l be the smallest label on row i + 1. The second
p-segment of the rim consists of the nodes labelled by l ≤m ≤ l +p−1. Repeating this
procedure we will eventually reach the bottom row of the diagram and it is clear that
all p-segments have p nodes, except possibly the last one. The p-rim of λ is defined as
the union of all the p-segments.

Definition 2.2.1. The p-rim of λ is a subset of the rim defined as the union of all
the p-segments. This set of nodes is denoted as Rimp(λ). The cardinal of Rimp(λ) is
denoted aλ. 4
Example 2.2.2. The following two diagrams illustrate the p-rim of λ = (9,6,3,1) for
p = 3 and p = 5.

Rim3(λ) Rim5(λ)

4
Define diagrams λ(0),λ(1), . . . ,λ(l) as follows. Put λ(0) = λ and for i ≥ 1 put

λ(i) = λ(i−1)
rRimp(λ(i−1)),

where we choose l maximal with respect to λ(l) , ∅; so λ(l+1) = ∅.
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Definition 2.2.3. Fix a partition λ, and p an odd prime. For λ(i) in the sequence of
partitions, depending on λ (and p), defined above, we associate the following infor-
mation:

• The p-rim Rimp(λ(i)) of λ(i) is called the i-th p-rim of λ,

• the cardinal aλ(i) of Rimp(λ(i)) is abbreviated as ai ,

• ri denotes the number of rows of λ(i), that is, ri = l(λ(i)), and finally

• a number εi ∈ {0,1} defined by

εi :=

0 if p | ai ,
1 if p - ai .

4
The following definition was introduced in [BO94].

Definition 2.2.4. The Mullineux symbol of λ is

Gp(λ) :=
(
a0 a1 · · · al
r0 r1 · · · rl

)
. (2.1)

4
Example 2.2.5. Let p = 5 and λ = (9,6,3,1). In the following diagram we represent
the i-th p-rim of λ with label i on its nodes.

2 2 2 2 1 0 0 0 0
2 1 1 1 1 0
0 0 0
0

G5(λ) =
(
9 5 5
4 2 2

)
.

We have: λ(1) = (52) and λ(2) = (4,1). 4

The following proposition is a reformulation ([AO91, §5]) of a result proved in [Mul79a,
3.6].

Proposition 2.2.6. Let p be an odd prime and λ a p-regular partition of a non-negative
integer n. The entries of Gp(λ) satisfy

1. εi ≤ ri − ri+1 < p+ εi for 0 ≤ i < l,
2. 1 ≤ rl < p+ εl ,

3. ri − ri+1 + εi+1 ≤ ai − ai+1 < p+ ri − ri+1 + εi+1 for 0 ≤ i < l,
4. rl ≤ al < p+ rl ,

5.
∑l
i=0 ai = n.

53



2. The Mullineux map

Moreover, if a0, . . . , al , r0, . . . , rl are positive integers such that these inequalities are satisfied
then there exists exactly one p-regular partition λ of n such that

Gp(λ) =
(
a0 a1 · · · al
r0 r1 · · · rl

)
.

Remark 2.2.7. It is easy to recover the p-regular partition λ from its Mullineux symbol
Gp(λ); start with the hook λ(l) of size al and length rl , and for i = l − 1, l − 2, . . . ,0, add
the i-th p-rim (consisting of ai nodes) to λ(i+1) from the bottom to the top, starting by
placing a node on the first free placement in row ri . Then, adding nodes either on top
(whenever it is possible) or to the right of the last added node until having added the
last node of the p-segment and add the following p-segment starting on the first free
placement of the row on top of the last added node. This procedure finishes at the
first row. This algorithm is precisely described in [FK97, §1]. 4
Let λ be a p-regular partition of n, with Mullineux symbol

Gp(λ) =
(
a0 a1 · · · al
r0 r1 · · · rl

)
. (2.2)

and let εi be as in Proposition 2.2.6. For 0 ≤ i ≤ l define

si := ai + εi − ri .

In [Mul79a, 4.1] it is shown that the array(
a0 a1 · · · al
s0 s1 · · · sl

)
,

which is the Mullineux symbol of λ where ri has been replaced by si for all 0 ≤ i ≤ l,
corresponds to the Mullineux symbol of a unique p-regular partition. In view of this,
we have the following definition.

Definition 2.2.8. With the above notations, let mp(λ) be defined as the unique p-
regular partition such that

Gp(mp(λ)) =
(
a0 a1 · · · al
s0 s1 · · · sl

)
.

4
Because of Proposition 2.2.6, mp(λ) is well defined, and from the definition we

can see that mp is an involution.

Example 2.2.9. Let p = 5 and λ = (9,6,3,1) as in Example 2.2.5. Since

G5(λ) =
(
9 5 5
4 2 2

)
,

We have that

G5(mp(λ)) =
(
9 5 5
6 3 3

)
.
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Now, from this Mullineux symbol we construct mp(λ). Since the symbol has 3 columns,
we know that there are 3 partitions mp(λ)(2), mp(λ)(1), and mp(λ)(0), that we construct
in that order: the partition mp(λ)(2) is the only 5-regular partition with length 3; the
partition mp(λ)(1) is the only 5-regular partition obtained by adding exactly 1 5-rim
to mp(λ)(2), and keeping the length 3; finally the partition mp(λ)(0) = mp(λ) results
from adding one 4-rim (in a way that the length is 6), and then one 5-rim starting in
the row above, to mp(λ)(1):

mp(λ)(2) =
2 2 2
2
2

mp(λ)(1) =
2 2 2 1
2 1 1 1
2 1

mp(λ)(0) = mp(λ) =

2 2 2 1 0
2 1 1 1 0
2 1 0 0 0
0 0
0
0

Then, mp(λ) = (53,2,12). 4
Example 2.2.10. Let 2 < p < n, and let λ be the one-row partition λ = (n). We compute
mp(λ). The Euclidean division of n by p says that there are unique integers q and r
such that

n = pq+ r, and 0 ≤ r < p.
We compute the Mullineux symbol of λ = (n):

λ = q q 1 1 0 0

p times p timesr times

then

Gp(λ) =
(
p · · · p r
1 · · · 1 1

)
.

q times

Then, the Mullineux symbol of Gp(mp(λ)) is:

Gp(mp(λ)) =
(
p · · · p r

p − 1 · · · p − 1 r

)
.

q times

Hence if we construct mp(λ) as described in Remark 2.2.7, we know that the Young
diagram of mp(λ) has the following shape

mp(λ) =

q′ times

p − 1 times
r′ times
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2. The Mullineux map

where q′ and r ′ are some positive integers. Hence, to write the partition mp(λ), we do
the Euclidean division of n by (p − 1): the integers q′ and r ′ are such that

n = (p − 1)q′ + r ′ , and 0 ≤ r ′ < p − 1,

so that n = r ′(q′ + 1) + (p − 1− r ′)q′, and

mp(λ) = ((q′ + 1)r ,q′(p−1−r ′)).

4
Remark 2.2.11. If p > n, then Regp(n) = Par(n) and irreducible KSn-modules are
therefore indexed by all partitions of n. In this case, the Mullineux’s algorithm co-
incides with conjugation: mp(λ) = λ′. 4

2.3 Xu’s algorithm

Xu’s algorithm is recursive as well in the sense that nodes are removed from the ini-
tial partition to obtain the empty partition. The number of nodes removed at each
staged is recorded, and unlike Mullineux’s algorithm, the output is not constructed
recursively but these numbers give the column lengths of the final partition. Let us
explain Xu’s algorithm. The following description is based in [Fay08].

Let λ be a partition. The truncated p-rim of λ is the set of nodes (i, j) in the p-rim
Rimp(λ), of λ such that (i, j − 1) also lies in the p-rim, together with the node (l(λ),1)
if p - |Rimp(λ)|. In other words to obtain the set of nodes in the truncated p-rim we
take all the nodes on the p-rim, from these we remove the first appearing in each
row except for the last row if p - |Rimp(λ)|. Denote RimX

p (λ) the set of nodes in the
truncated p-rim of λ.

Example 2.3.1. Let p = 3 and λ = (10,7,4,3,2). In the following diagram we represent
the p-rim Rimp(λ) of λ with highlighted nodes ( ) and the truncated p-rim is the set

of nodes marked with a “•” ( • ).

• •
• •

•

• •
4

We now describe Xu’s algorithm. Start with a p-regular partition λ.

1. Let µ0 be the number of nodes in the truncated p-rim of λ: µ0 := |RimX
p (λ)|. Let

λ1 be the partition obtained from λ by removing its truncated p-rim.

2. Let µ1 := |RimX
p (λ1)| and let λ2 be the partition obtained from λ1 by removing

its truncated p-rim.

3. Continue until obtaining the empty partition: λz+1 = ∅.
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2.4. Kleshchev’s algorithm

4. The list of positive integers µ0,µ1, . . . ,µz is decreasing and defines a partition
µ := (µ0, . . . ,µz). These numbers are the column lengths of mp(λ):

mp(λ) = µ′ .

Example 2.3.2. Let p = 3 and λ = (5,22,1). We illustrate the sequence of removal of
the truncated p-rim. The nodes in the truncated p-rim are marked with a “•”.

• •

•
•

•

• •
•

• • ∅

The partition which records the size of the truncated p-rim at each stage is µ = (4,2,14).
Then

mp(λ) = µ′ = (6,2,12).

4

2.4 Kleshchev’s algorithm

Kleshchev’s algorithm for computing the Mullineux map uses his results on modular
branching rules for the symmetric group. Here we describe this algorithm in a com-
pletely combinatorial way. The notions and operations used in the algorithm have an
algebraic sense that we do not explain here, for the details see [Kle95].

Let p > 2 be a prime. To each node (r, c) ∈ N∗ ×N∗ we can associate its p-residue
(or simply residue): i = (c − r) mod p. In this case (r, c) is called an i-node. We can
consider, for example, the p-residues of the nodes in the Young diagram of a partition
λ. If p = 3 and λ = (5,22,1), the p-residues of the nodes in the Young diagram of λ are:

0 1 2 0 1
2 0
1 2
0

Let λ be a partition. For i ∈Z/pZ, an i-node x in [λ], the Young diagram of λ, is called
removable if [λ]r {x} is the Young diagram of some partition. An addable i-node for λ
is an i-node x ∈N∗ ×N∗ such that x < [λ] and [λ]∪ {x} is the Young diagram of some
partition. For p = 3 and λ = (5,22,1), the following diagram shows all the addable and
removable i-nodes for λ that we indicate with the corresponding residues:

21
1

2
10

2

In this example, λ has exactly one removable i-node for each i ∈ Z/pZ, it does not
have addable 0-nodes, it has two addable 1-nodes and two addable 2-nodes.
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2. The Mullineux map

For i ∈Z/pZ, the i-signature of λ is a word on the symbols “+” and “−” constructed
by following the south-east border of the Young diagram from the top to the bottom
and writing “+” for each addable i-node and “−” for each removable i-node. In our
example, the 0-signature is just −, the 1-signature is −++, and the 2-signature is +−+.
The reduced i-signature is the i-signature after having erased every “+−” occurrence.
In our example, the reduced i-signatures are then: for i = 0 we have −, for i = 1 we
have −+ + and finally for i = 2 we have +.

A good i-node, if there is one, is the removable i-node corresponding to the last
“−” in the reduced i-signature. In our example there is a good 0-node and a good
1-node. The only removable 2-node is not a good node since it does not correspond
to a “−” in the reduced 2-signature. Every non-empty p-regular partition has at least
one good i-node for some i ∈ Z/pZ. The following diagram shows the good i-nodes,
highlighted:

1

2
0

For i ∈ Z/pZ, denote by ẽi the operation that takes a partition having a good i-
node and returns the partition obtained by removing this good i-node. The partition
obtained is p-regular. In our example, we have ẽ1(λ) = (4,22,1). The inverse operation
can also be defined: a cogood i-node, if there is one, is the addable i-node correspond-
ing to the first “+” in the reduced i-signature. For i ∈Z/pZ, denote by f̃i the operation
that takes a partition having a cogood i-node and returns the partition obtained by
adding this good i-node. The partition obtained is p-regular. The operations ẽi and f̃i
are inverses of each other ([MM90]). Indeed, in our example f̃1((4,22,1)) = λ.

With these definitions we can now describe Kleshchev’s algorithm for computing
mp. Start with a p-regular partition λ.

1. Choose any good i-node of λ. Denote this p-residue as i1. Remove this good
i1-node to obtain the partition ẽi1(λ).

2. Choose any good i-node of ẽi1(λ). Denote this p-residue as i2. Remove this good
i2-node to obtain the partition ẽi2 ẽi1(λ).

3. Continue until obtaining the empty partition ∅ = ẽiz · · · ẽi2 ẽi1(λ). We get a list of
residues iz, . . . , i2, i1.

4. The partition mK
p (λ) is constructed recursively by starting with the empty parti-

tion and adding cogood nodes with the residues −i1,−i2, . . . ,−iz, where −ij is −ij
mod p. That is

mK
p (λ) = f̃−iz · · · f̃−i2 f̃−i1(∅).

The result is independent of the chosen sequence of good i-nodes. As announced
mK
p = mp ([Kle96]). Let us see an example.

Example 2.4.1. We continue the ongoing example: p = 3 and λ = (5,22,1). Let us
do the first three steps of the algorithm. We show the diagram at each stage, and we
highlight the chosen good i-node to be removed.
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1 2
1

2
0 1
2

1 2
1

2
0

0 1
1

2
0

2 0
1

2
0

2 0
0 1

1 2
0

2
0

1 2
0

1 2
0

1
0

1 2
2 0
1

1
2
1

0 ∅

We obtain the sequence of p-residues: 0 1 0 2 2 0 1 1 2 0. Hence, for the fourth step,
we recursively add the cogood nodes with residues 0 1 2 2 0 1 1 0 2 0 in that order
starting with the empty partition, which has a unique addable (and cogood) 0-node.
We highlight the cogood node to be added:

0
0 1
2

1 2
2

2 0
2

2 0
2 0
1

0 1
2 0
1

1 2
2 0
1

1 2
0

1
0

1 2
0 1

1 2
0

2 0
0 1

1 2
0

2 0
0 1

1 2
0
2

Then mp(λ) = (6,2,12).
4

Remark 2.4.2. The combinatorial algorithms for computing the Mullineux map do
not depend on p being prime. Moreover there is an algebraic interpretation of the
Mullineux map when p > 1 is any integer: let q ∈ C

∗ be a primitive root of unity
of order e > 1. The Iwahori–Hecke algebra Hn(q) of Sn is an associative C-algebra
whose simple modules Dλ are also indexed by the e-regular partitions (see [Mat99]).
When q = 1 and e is a prime number we encounter our particular case Hn(q) ' FeSn,
for this reason Hn(q) is sometimes called a “deformation” of the group algebra of
Sn. In the general case, there is an involution # on Hn(q) with which the action on
a Hn(q)-module V can be twisted to obtain another Hn(q)-module V # (when q = 1,
V # is exactly ε ⊗V ). When we apply this to a simple Hn(q)-module Dλ, where λ is a
e-regular partition, we obtain a simple Hn(q)-module Dme (λ). The involution me on
e-regular partitions is the Mullineux map in this more general setting. In [Bru98],
Brundan proved the analogues of the modular branching rules for the symmetric
group, by Kleshchev, for Hn(q), showing in particular that Kleschev’s description of
the Mullineux map generalized for the Iwahori–Hecke algebra. Since all the other
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2. The Mullineux map

algorithms do not depend on p being prime, they are also valid for Hn(q), and any
e > 1. 4
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3 A combinatorial bijection

This chapter is based on [Ber21a]. The organization of this chapter is as follows. In
§3.1 we introduce a symbol, the BG-symbol defined on self-conjugate partitions and
we show that it defines an injective mapping. Section 3.2 contains the main result:
the BG-symbol computed on the set of BG-partitions produces Mullineux symbols as-
sociated to fixed points of the Mullineux map, defining a one-to-one correspondence,
by an additional argument of cardinalities. This section also contains a proposition
which is not included in [Ber21a], that says that the one-to-one correspondence is
compatible with (fixes) the p-core. Finally, in §3.4 we show that the cardinality ar-
gument is not necessary: we show that every Mullineux symbol of a self-Mullineux
partition is the BG-symbol of a BG-partition.

3.1 BG-partitions and the BG-symbol

We introduce a symbol, defined in general for self-conjugate partitions. This symbol is
inspired by the Mullineux symbol. In a similar way as the Mullineux symbol, which is
defined by counting nodes on the p-rims of a sequence of partitions, the BG-symbol is
defined by counting elements in a set of nodes called the p-rim* which is a symmetric
analogue of the p-rim.

Let λ be a self-conjugate partition. Set

Uλ = {(i, j) ∈ Rimp(λ) | i ≤ j},

that is, Uλ consists of the nodes of the p-rim which are above (or on) the diagonal of
[λ]. We denote r∗λ := |Uλ|. Set

Lλ = {(j, i) | (i, j) ∈Uλ}.

The set Lλ consists of the nodes in Uλ reflected across the diagonal of λ. Notice that
Lλ ⊆ [λ], since λ = λ′, so that (i, j) ∈ [λ] if and only if (j, i) ∈ [λ].

Definition 3.1.1. Let λ be a self-conjugate partition. The p-rim* of λ is the set

Rim∗p(λ) =Uλ ∪Lλ.

The cardinal of Rim∗p(λ) is denoted a∗λ. Define ε∗λ as ε∗λ := a∗λ mod 2. 4
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3. A combinatorial bijection

Example 3.1.2. The following two diagrams illustrate the p-rim* of λ = (6,2,14) in
shaded boxes, for p = 3 and p = 5.

Rim∗3(λ) Rim∗5(λ)

4

Remark 3.1.3. Notice that for a self-conjugate partition λ, from the definition of p-
rim* we have

ε∗λ = 0 ⇔ a∗λ is even.
⇔ Rim∗p(λ) has no diagonal nodes.

4
Following this remark, we associate a number r∗λ to λ as follows.

Definition 3.1.4. For λ, self-conjugate, the cardinal ofUλ, that is, the number of nodes
of the p-rim* of λ which are above (or on) the diagonal is

r∗λ =

a
∗
λ

2 if a∗λ is even,
a∗λ+1

2 otherwise,

thus

r∗λ :=
a∗λ + ε∗λ

2
.

4
Now, let λ be a self-conjugate partition. We define diagrams λ(0)∗,λ(1)∗, . . . ,λ(l)∗ in

an analogue way as for the Mullineux symbol, by considering the p-rim* instead of
the p-rim. Put λ(0)∗ = λ and for i ≥ 1 put

λ(i)∗ = λ(i−1)∗
rRim∗p(λ(i−1)),

where we chose l maximal with respect to λ(l)∗ , ∅; so λ(l+1)∗ = ∅. We call the p-rim* of
λ(i)∗ the i-th p-rim* of λ.

Remark 3.1.5. Notice that the p-rim* is only defined for self-conjugate partitions,
but we claim that the diagrams λ(i)∗ are well defined, given the fact that Rim∗p(λ) is
symmetric in the sense that (u,v) ∈ Rim∗p(λ) if and only if (v,u) ∈ Rim∗p(λ). Therefore,
removing these nodes from [λ] to obtain λ(1)∗ results again in a self-conjugate partition
and then so it is for every λ(i)∗. In other words, if λ(i)∗ is self-conjugate, then λ(i+1)∗ is
self-conjugate. 4
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Example 3.1.6. Let p = 3 and λ = (6,52,32,1). Then

[λ] = λ(0)∗ = λ(1)∗ = λ(2)∗ = λ(3)∗ =

where shaded boxes represent the i-th p-rim* of λ. 4
In a similar way as for p-regular partitions, for a fixed self-conjugate partition we

associate a set of information:

Definition 3.1.7. Fix a self-conjugate partition λ, and p an odd prime. For λ(i)∗ in
the sequence of partitions depending on λ (and p) defined above, we associate the
following information:

• The cardinal a∗
λ(i)∗ of Rim∗p(λ(i)∗) is abbreviated as a∗i ,

• the number r∗
λi∗ of nodes on Rim∗p(λ(i)∗) which are above or on the diagonal of

λ(i)∗ is abbreviated as r∗i , and finally

• the parity ε∗
λ(i)∗ ∈ {0,1} of a∗

λ(i)∗ is abbreviated as ε∗i .

4
All these values associated to self-conjugate partitions may seem technical, and they
are better understood by means of an example.

Example 3.1.8. Let p = 3, λ = (42,22), and µ = (3,2,1)

λ = µ =

We have a∗λ = 6, ε∗λ = 0, and r∗λ = 3. For µ, we have a∗µ = 5, ε∗µ = 1, and r∗µ = 3. 4
Definition 3.1.9. Let λ be a self-conjugate partition. The (p-)BG-symbol of λ is

bgp(λ) :=
(
a∗0 a∗1 · · · a∗l
r∗0 r∗1 · · · r∗l

)
. (3.1)

The length of the BG-symbol is l.
4

Example 3.1.10. If p = 3, the BG-symbol of the partition λ = (6,52,32,1) from Exam-
ple 3.1.6, is

bg3(λ) =
(
11 6 5 1
6 3 3 1

)
.
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In this diagram, each i-th 3-rim* is shown in a different shade. 4

The following lemmas will allow us to prove that two different self-conjugate par-
titions correspond to different BG-symbols. Lemma 3.1.12 is an analogue of [Mul79a,
2.1]. Its proof is quite technical and the arguments are easier to understand with an
example, see Example 3.1.13.

Lemma 3.1.11. Let λ be a self-conjugate partition. If a∗λ is an even number, then p | a∗λ.

Proof. From the definition (or see Remark 3.1.3), a∗λ is even if and only if Uλ ∩ Lλ = ∅.
Then the p-rim* of λ does not contain diagonal nodes. From the definition of Rim∗p(λ),
this means that the set Uλ only contains p-segments of length p. And then the same is
true for Lλ. Therefore

p | |Uλ ∪Lλ| = a∗λ.

The converse is not true in general, for example, if p = 3 and λ = (5,3,2,1,1), we
have that a∗λ = 9.

Lemma 3.1.12. Let λ̃ be a self-conjugate partition, ε ∈ {0,1} and m, a residue modulo p,
such that m = 0 if ε = 0. Then, there exists a unique self-conjugate partition λ such that

(i) a∗λ ≡ ε (mod 2);

(ii) r∗λ − ε∗λ ≡m (mod p) and

(iii) λ(1)∗ = λ̃.

Moreover, if λ̃ ∈ BGp, and p - 2m+ 1 when ε = 1, then λ ∈ BGp.

Proof. Given ε ∈ {0,1} and m, a residue modulo p, let us see that there is a unique way
to add nodes to λ̃ to obtain a self-conjugate partition λ such that the added nodes are
the p-rim* of λ.

Let us study how nodes (i, j) over the diagonal (i ≤ j) must be added. This will
determine all nodes that must be added (if (i, j) is added to λ̃, then (j, i) is added as
well).

First, the last row i over the diagonal that will contain new nodes (i, j) is uniquely
fixed by λ̃ and ε. Indeed, let d = k(λ̃). If ε = 0, then i = d and (d, λ̃d + 1) must be added
to λ̃. If ε = 1, then i = d + 1 and (d + 1,d + 1) must be added to λ̃.

Now, let (i, j) be the first node that we add (with i fixed as before by λ̃ and ε) and
j ∈ {λ̃d + 1,d + 1} depending on λ̃ and ε. Starting from this node, it is clear that there
is a unique way to add nodes such that (i), (ii), and (iii) hold: If the position (i + 1, j)
just above (i, j) is empty in λ̃, we add a node in that position, otherwise we add a
node in (i, j + 1). We repeat this procedure for adding nodes until we have added m
nodes (including (i, j) if ε = 0, not including (i, j) if ε = 1). If the last added node
is in row 1 we stop here. If it is added in row k > 1, we add a node in row k − 1
in position (k − 1, λ̃k−1 + 1) and we restart the procedure to keep adding nodes until
having added p nodes. We iterate this procedure, of adding groups of p nodes, until
reaching the first row. This way we added nodes over the diagonal. Finally for each
node (a,b) added, we add its reflection through the diagonal (b,a). And we obtain a
self-conjugate partition λ.
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It remains to verify that λ(1)∗ = λ̃. If ε = 1, it is straightforward that λ(1)∗ = λ̃. Since
when removing the nodes of the p-rim* of λ over the diagonal we eventually reach a
diagonal node, and then just remove the reflection of the removed nodes. It is clear
that in this case we obtain λ̃. If ε = 0, the condition m = 0 says that a p-segment of λ
will eventually reach the row d and this p-segment has exactly p nodes, so that there
is no ambiguity when removing p-segments and λ(1)∗ = λ̃.

For the last part of the theorem, suppose that λ̃ ∈ BGp, and let us see that λ ob-
tained as above is also in BGp. In other words, we are assuming that λ̃ does not contain
any diagonal (p)-hooks and we want to show that the same is true for λ.

Suppose that λ has a diagonal (p)-hook, say the (i, i)λ-th hook, that is hλii = pk for
some integer k > 0. For a partition µ, we set the convention h

µ
ij = 0 if (i, j) < [µ].

Since λ̃ ∈ BGp, then the (i, i)λ-th hook is different from the (i, i)λ̃-th hook since if
they were equal, λ̃ would have a (p)-hook, which is not possible. Therefore (i, λ̃i + 1) ∈
[λ]. Since this node is not in [λ̃], by definition, it is on the p-rim* of λ, in particular,
it belongs to a p-segment of Rim∗p(λ) above the diagonal. Consider the two cases: this
p-segment starts at row i, or this p-segment starts before row i, that is, this p-segment
starts at a row j for 1 ≤ j < i.

• If the p-segment containing node (i, λ̃i + 1) starts at row i, let (i, j) be the first
node of this p-segment and (a,b) its last node (i ≤ a). Then a ≤ b because this
segment is above the diagonal.

Let N be the number of nodes on this p-segment. Then we have:

N = a− i + j − b+ 1,
hλii = 1 + 2(j − i),
hλ̃aa = 1 + 2(b − a− 1),

where the last identity holds if b > a (since this implies that (a,b − 1) ∈ λ̃). Then
we have

hλii =

2N − 1 if a = b,

2N + hλ̃aa if a < b.

If a = b, this p-segment is the last segment inUλ and ε∗λ = 1. So thatN =m+1 and
we get hλii = 2m+ 1. This contradicts p - 2m+ 1. If a < b, then the last node of this
p-segment, (a,b) is not a diagonal node so that N = p and we get hλii = 2p + hλ̃aa,
which implies p | hλ̃aa, a contradiction.

• If the p-segment containing node (i, λ̃i + 1) starts at a row j with j < i, then it
contains nodes on row i − 1, in particular (i − 1, λ̃i−1 + 1). The next node on this
p-segment is the node just below: (i, λ̃i−1 + 1). Then λi = λ̃i−1 + 1. Let us see
that hλ̃(i−1,i−1) = hλii . Since these are diagonal hooks contained in self-conjugate
partitions, their lengths are calculated as follows

hλ̃(i−1,i−1) = 2(λ̃i−1 − (i − 1)) + 1

= 2λ̃i−1 − 2i + 3,
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and

hλ(i,i) = 2(λi − i) + 1

= 2((λ̃i−1 + 1)− i) + 1

= 2λ̃i−1 − 2i + 3.

Since p | hλ(i,i), then p | hλ̃(i−1,i−1), a contradiction.

In conclusion, λ does not have any diagonal (p)-hooks, that is, λ ∈ BGp.

Example 3.1.13. Let p = 3. We use the notations of Lemma 3.1.12. Consider the
self-conjugate partition λ̃ = (6,4,22,12).

[λ̃] =

• Let ε = 0, then m = 0. Let us see that there is only one self-conjugate partition λ
satisfying: a∗λ is even, r∗λ − ε∗λ = |Uλ| − ε∗λ ≡ 0 (mod 3) and λ(1)∗ = λ̃. We add to [λ̃]
the nodes of Rim∗3(λ) =Uλ ∪Lλ.

In this case, since a∗λ ≡ 0 (mod 2), then Uλ does not contain diagonal nodes.
That is, Uλ consists only on nodes strictly over the diagonal, so that the last row
containing nodes from Uλ is row 2, since k(λ̃) = 2.

Since m = 0, then every 3-segment of Uλ has 3 nodes. The bottom 3-segment of
Uλ is shown in shaded nodes in the following diagram

Since we have not reached the top of [λ̃], there is at least another 3-segment,
which starts at the following upper row :

Now, λ is self-conjugate, then for each upper node (i, j) that we added, we add
the node (j, i) (or also because (i, j) ∈Uλ if and only if (j, i) ∈ L)
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[λ] =

So that λ = (9,7,25,12) is the only possibility for λ self-conjugate such that a∗λ is
even, r∗λ − ε∗λ = |Uλ| ≡ 0 (mod 3) and λ(1)∗ = λ̃.

• Let ε = 1, and m = 2. Let us see that there is only one possible partition λ
satisfying: a∗λ is odd, r∗λ − ε∗λ = |Uλ| − ε∗λ ≡ 2 (mod 3) and λ(1)∗ = λ̃. We add to [λ̃]
the nodes of Rim∗3(λ) =Uλ ∪Lλ.

In this case, a∗λ ≡ 1 (mod 2), then there is a diagonal node in Uλ:

We add now the rest of the nodes in Uλ. Here r∗λ−ε∗λ = |Uλr {(3,3)}| ≡ 2 (mod 3).
That means that the rest of the nodes in Uλ contain one 3-segment of 2 nodes,
we add this 3-segment

and the rest are 3-segments of 3 nodes:
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and finally, for making λ self-conjugate:

And we see that λ = (9,7,5,32,22,12) is the only possibility for having a∗λ odd,
r∗λ − ε∗λ = |Uλ| − 1 ≡ 2 (mod 3), and λ(1)∗ = λ̃.

4

Proposition 3.1.14. Let p be an odd prime. Two different self-conjugate partitions have
different BG-symbols. In other words, the BG-symbol gives rise to an injective map from
self-conjugate partitions to the set of two-row positive integer symbols.

Proof. We proceed by induction on l, the length of the BG-symbol. Let l = 0. Let λ be
a self-conjugate partition with BG-symbol

bgp(λ) =
(
a∗0
r∗0

)
.

Notice that having a BG-symbol of length 0 means that λ = λ(0)∗ = λ(l)∗ is a hook and
its size is a∗0, that is, there are positive integers u,v such that λ = (u,1v) and u+v = a∗0.
But λ is self-conjugate, then u − 1 = v, so that a∗0 = 2u − 1, and ε∗0 = 1. Then

r∗0 =
a∗0 + ε∗0

2
= u.

Therefore λ = (r∗0,1
r∗0−1). This way, λ is determined from its BG-symbol and, from this

reasoning, we see that any self-conjugate partition with BG-symbol bgp(λ) is com-
pletely determined by it and is then equal to λ.

Now, fix l > 0 ∈N, let λ be a self-conjugate partition with BG-symbol

bgp(λ) =
(
a∗0 a∗1 · · · a∗l
r∗0 r∗1 · · · r∗l

)
,

and let µ be a self-conjugate partition such that bgp(µ) = bgp(λ).

Then, by definition, the BG-symbol of λ(1)∗ (and also of µ(1)∗) is the BG-symbol of
λ after removing its first column

bgp(λ(1)∗) = bgp(µ(1)∗) =
(
a∗1 · · · a∗l
r∗1 · · · r∗l

)
.
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By induction, there exists a unique self-conjugate partition τ̃ such that

bgp(τ̃) =
(
a∗1 · · · a∗l
r∗1 · · · r∗l

)
.

Then τ̃ = λ(1)∗ = µ(1)∗. Let us see, from Lemma 3.1.12, that λ = µ.
Let ε = a∗0 mod 2, and m = r∗0 − ε∗0 mod p. By Lemma 3.1.11, if ε = 0 then m = 0.

Therefore, by Lemma 3.1.12 there exists a unique self-conjugate partition τ such that

(i) a∗τ ≡ ε (mod 2);

(ii) r∗τ − ε∗τ ≡m (mod p) and

(iii) τ (1)∗ = τ̃ .

But partitions λ and µ are self-conjugate and they satisfy (i) and (ii) since a∗0 = a∗λ = a∗µ.
Moreover λ(1)∗ = µ(1)∗ = τ̃ , then by the uniqueness of τ we have that τ = λ = µ.

3.2 From BG-partitions to self-Mullineux partitions

As it turns out, the BG-symbol of a BG-partition is a Mullineux symbol of some
self-Mullineux partition. Denote by Mp the set of Mullineux symbols of the self-
Mullineux partitions Mp.

Proposition 3.2.1. Let p be an odd prime and λ a BG-partition. The BG-symbol of λ,
bgp(λ) is the Mullineux symbol of some self-Mullineux partition. That is

bgp(BGp) ⊆Mp.

We postpone the proof of this proposition since some technical lemmas are neces-
sary.

Recall, from Proposition 2.2.6 and Remark 2.2.7, that to a Mullineux symbol cor-
responds a unique p-regular partition. So that the Mullineux symbol determines a
bijection between p-regular partitions and their Mullineux symbols. In particular, to
a symbol inMp corresponds a unique self-Mullineux partition in Mp. As a corollary
from Proposition 3.1.14, which says that bgp is injective, Proposition 3.2.1, which af-
firms that the image of bgp is contained in the self-Mullineux symbols, and finally
from the fact that the sets BGn

p and Mn
p have the same number of elements (Proposi-

tion 1.3.16), we obtain the following result.

Theorem 3.2.2. We have that
bgp(BGp) =Mp,

and the BG-symbol provides an explicit bijection between BG-partitions and self-Mullineux
partitions. This bijection is given by associating to a BG-partition λ its BG-symbol bgp(λ),
which corresponds to a unique self-Mullineux partition. This bijection restricts to bijections
between BGn

p and Mn
p for every n ∈N.

Remark 3.2.3. If we consider the Mullineux symbol Gp as a bijection from the set of
p-regular partitions into its image in the set of two-row arrays of integers, then the
bijection in Theorem 4.6.1, from BGp to Mp is given precisely by G−1

p ◦bgp. 4
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Remark 3.2.4. In [AO91], Andrews and Olsson prove a general partition identity,
which depends on some integer parameters. A special case of this identity is the fact
that the number of (p-)self-Mullineux partitions of a non-negative integer n equals the
number of partitions of n with different odd parts, none of them divisible by p, which
is in turn equal to the number of BG-partitions.

Now, in [Bes91], C. Bessenrodt shows a combinatorial proof of the Andrews–
Olsson identity, which provides, by choosing the right parameters, an explicit bijec-
tion between BGn

p and Mn
p . The bijection from Theorem 4.6.1 is obtained in a more

direct way and it is different from Bessenrodt’s bijection. In particular, for p = 5 and
n = 20, the partition (7,6,3,22) ∈M20

5 is mapped to partition (9,3,2,16) ∈ BG20
5 under

Bessenrodt’s bijection, and it is mapped to (7,5,23,12) ∈ BG20
5 under bijection from

Theorem 4.6.1. 4

3.2.1 Some technical lemmas

In this section we prove Proposition 3.2.1. For this proof we need some technical
lemmas.

Definition 3.2.5. For a partition λ = (λ1, . . .) we define k(λ) as the coordinate of the
maximal diagonal node of λ:

k(λ) := max{i | λi , 0 and (i, i) ∈ [λ]}.

Which is also equal to |{λi | λi ≥ i}|. 4
Remark 3.2.6. The number k(λ) is known in the literature as the size of the side of
the Durfee square of λ: the biggest square formed by boxes contained in the Young
diagram of λ. For more on Durfee squares see for example [AE04]. 4
Lemma 3.2.7. Let p be an odd prime and λ = (λ1,λ2, . . . ,λr ) a partition in BGp. Let
k = k(λ) as in Definition 3.2.5. Then the partition µ := (λ1,λ2, . . . ,λk) is p-regular.

Example 3.2.8. Let p = 3 and λ = (7,4,3,2,13). This partition is a 3-BG-partition.
Here k = 3, so that l(µ) = 3, and indeed, the partition µ = (7,4,3) is 3-regular. The
following diagram illustrates both the partitions λ and µ (in shaded boxes).

4

Proof of the lemma. Suppose that µ is not p-regular. So that there exists 1 ≤ i ≤ k such
that

λi = λi+1 = · · · = λi+p−1.
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3.2. From BG-partitions to self-Mullineux partitions

Since i+p−1 ≤ k, then λi+p−1 ≥ i+p−1. Then (i+p−1, i+p−1) ∈ [µ] ⊆ [λ]. Let a be the
length of the (i +p−1, i +p−1)-th hook of λ, that is a = hλ(i+p−1,i+p−1). Then, the length

of the (i +p−2, i +p−2)-th hook of λ, is hλ(i+p−2,i+p−2) = a+ 2, since λi+p−1 = λi+p−2 and

λ is self-conjugate. And h(i+p−3,i+p−3) = a + 4. In general hλ(i+p−1−j,i+p−1−j) = a + 2j for
j = 0, . . . ,p − 1. That is, the lengths of these hooks are:

a, a+ 2, a+ 4, . . . , a+ 2j, . . . , a+ 2(p − 1).

But since p is odd, this list, modulo p, forms a complete collection of residues. Then,
there exists j ∈ {0, . . . ,p − 1} such that p | a+ 2j = hλ(i+p−1−j,i+p−1−j), and this contradicts
the fact that λ ∈ BGp.

In the set of p-BG-partitions, the implication in Lemma 3.1.11 becomes an equiv-
alence:

Lemma 3.2.9. Let λ ∈ BGp. Then a∗λ is even if and only if p | a∗λ.

Proof. As already noted, the fact that a∗λ implies p | a∗λ is proved in Lemma 3.1.11.
Suppose that p | a∗λ. If a∗λ is odd, then Rim∗p(λ) contains a diagonal node. Then Uλ

is formed by p-segments of length p and one last p-segment of length possibly less
than p, which, in this case contains the diagonal node. Let us name B the set of nodes
in this last p-segment, and let A be the set

A = B∪ {(j, i) ∈ [λ] | (i, j) ∈ B} ⊆ Rim∗p(λ).

The set A is formed by a symmetrical segment along the rim of [λ]. See Figure 3.1a.

j

i a

A

(a) Segment A.

i j

i a

A

(b) (i, i)λ-th hook in darker shaded boxes.

Figure 3.1

The set Rim∗p(λ) is formed by the disjoint union of A and some p-segments. There-
fore, since p | a∗λ, we have that |A| = p.
Now, let a = (i, j) be the first node of the segment B, that is i = min{r | (r, s) ∈ B} and
j = max{s | (r, s) ∈ B}. We have that the (i, i)-th hook contains exactly |A| = p nodes. See
Figure 3.1b.
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3. A combinatorial bijection

This means that λ has a diagonal (p)-hook, which is a contradiction because λ ∈
BGp.

We obtain the following corollary from Remark 3.1.3 and Lemma 3.2.9.

Corollary 3.2.10. Let λ ∈ BGp. The following statements are equivalent

1. ε∗λ = 0.

2. a∗λ is even.

3. Rim∗p(λ) does not contain diagonal nodes.

4. p | a∗λ.

Consider a partition λ ∈ Mp, that is, a fixed point of the Mullineux map. This is
a condition that depends only on the columns of the Mullineux symbol of λ. There-
fore, the partition λ(1) obtained by removing the p-rim of λ is also a fixed point of
the Mullineux map, since its Mullineux symbol is obtained by removing the first col-
umn of the Mullineux symbol of λ. The following lemma is an analogue property for
partitions in BGp.

Lemma 3.2.11. If λ ∈ BGp then λ(1)∗ ∈ BGp. In other words, if λ is a p-BG-partition, then,
removing its p-rim* results in a p-BG-partition.

Proof. Recall (Remark 3.1.5) that if λ is self-conjugate, then so it is for λ(1)∗. In par-
ticular, if λ ∈ BGp, then λ(1)∗ is self-conjugate. It remains to prove that λ(1)∗ does not
have any diagonal (p)-hooks.

For simplicity of notations let µ = λ(1)∗. Suppose that µ has a diagonal (p)-hook,
say the (i, i)µ-th hook, with h

µ
i,i = pk for some k ∈N.

We claim that the node (i,µi + 1) is in the p-rim* of λ. Indeed, (i,µi + 1) ∈ [λ]
since if (i,µi + 1) < [λ], then µi = λi and hλi,i = h

µ
i,i = pk so that λ has a diagonal (p)-

hook, which contradicts the fact that λ ∈ BGp. Now, since (i,µi + 1) ∈ [λ] r [µ], then
(i,µi + 1) ∈ Rim∗p(λ). See Figure 3.2a.

There are now two possible cases: either (i,µi + 1) is the last node of a p-segment
of Uλ (the nodes on the p-rim* of λ over the diagonal), or it is not the last node of the
p-segment to which it belongs. Let us examine these two cases.

Suppose (i,µi + 1) is the last node of a p-segment of Uλ, and this p-segment starts
on a node (a,b). See Figure 3.2b.

Then, the (a,a)λ-th hook has length equal to the length of the (i, i)µ-th hook plus
twice the length of the p-segment of Rim∗p(λ) containing the node (i,µi + 1), that is

hλa,a = p+ h
µ
i,i + p = p+ pk + p = p(k + 2),

so that λ contains diagonal (p)-hook, which is impossible.
Suppose now that (i,µi + 1) is not the last node of a p-segment of Uλ. First, notice

that the node (i + 1,µi + 2) < [λ]. This is true because (i,µi + 1) is in the p-rim* of λ. We
claim that (i + 1,µi + 1) ∈ Rim∗p(λ) ⊆ [λ]. In Figure 3.3, node (i + 1,µi + 2) is illustrated
as a cross (meaning it is not in [λ]) and node (i + 1,µi + 1) as a shaded box (as are their
opposites with respect to the diagonal). Indeed, (i + 1,µi + 1) ∈ Rim∗p(λ) because, since
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µi + 1
i ↓

i

(a) Shaded boxes are in Rim∗p(λ).

µi + 1
a i ↓ b

a

i

(b) Shaded boxes are p-segments in Rim∗p(λ).

Figure 3.2

µi + 1
i ↓

i
i + 1 ×

×

Figure 3.3

(i,µi + 1) is not the last node of a p-segment, then the next node of its p-segment is
either to the left or down. But the node to the left of (i,µi + 1), that is, (i,µi) is not in
the p-rim* of λ since it is in µ, so that the next node of this p-segment is (i + 1,µi + 1),
which is then in Rim∗p(λ).

The fact that (i + 1,µi + 1) ∈ Rim∗p(λ) ⊆ [λ] and (i + 1,µi + 2) < [λ] implies that
λi+1 = µi + 1 and therefore the (i + 1, i + 1)λ-th hook has length

hλ(i+1,i+1) = h
µ
(i,i) = pk,
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that is, λ has a diagonal (p)-hook, a contradiction.
We conclude that µ does not have any diagonal (p)-hooks and then, µ = λ(1)∗ ∈

BGp.

3.2.2 Proof of Proposition 3.2.1

Proof of Proposition 3.2.1. Let us first state which properties characterize elements in
Mp. That is, if λ ∈Mn

p which conditions characterize its Mullineux symbol

Gp(λ) =
(
a0 a1 · · · al
r0 r1 · · · rl

)
.

Let si = ai + εi − ri . The partition λ is a fixed point of the Mullineux map if and only if
ri = si , that is

ai = 2 ri − εi .
We also know that λ is the only p-regular partition whose Mullineux symbol satisfies
properties (1)–(5) from Proposition 2.2.6. This way, the properties that characterize
Mullineux symbols of partitions in Mp are equivalent to the following properties

1. εi ≤ ri − ri+1 < p+ εi for 0 ≤ i < l,
2. 1 ≤ rl < p+ εl ,

3.
∑l
i=0 ai = n, and

4. ai = 2ri − εi .

On the other hand, from the definition of ε∗i and Corollary 3.2.10, we have that

ε∗i =

0 if p | a∗i
1 if p - a∗i

Let λ ∈ BGn
p. Let us see that its BG-symbol

bgp(λ) =
(
a∗0 a∗1 · · · a∗l
r∗0 r∗1 · · · r∗l

)
is inMp by verifying properties (1)–(4) for a∗i , ε

∗
i and r∗i .

From the definition of the sequence a∗0, . . . , a
∗
l , it is clear that (3) holds. We have

that (4) is satisfied from Remark 3.1.3. Let us first show that (2) holds. Since λ(l)∗ is
not the empty partition, r∗l ≥ 1. On the other hand, the partition λ(l)∗ is a hook and
it is self-conjugate; more precisely λ(l)∗ = (r∗l ,1

a∗l−r∗l ). Then a∗l = |λ(l)∗| is odd, so that
ε∗l = a∗l mod 2 = 1. Suppose that r∗l ≥ p+ ε∗l = p+ 1. This means that the first p-segment
over the diagonal of λ(l)∗ consists of p nodes. But then, there are more nodes remaining
in the first row of [λ(l)∗] that are not in the p-rim*, but this contradicts the maximality
of l.

It remains to prove (1). A key element for this task is Lemma 3.2.7, which roughly
says that truncating a BG-partition to some particular row results in a p-regular parti-
tion. The idea is to use the fact that this truncated partition, being p-regular, satisfies
properties from Proposition 2.2.6, which uses numbers from the Mullineux symbol,
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3.2. From BG-partitions to self-Mullineux partitions

and these will give us information about r∗i and ε∗i , which are numbers appearing in
the BG-symbol.

Let us see that λ satisfies

ε∗i ≤ r∗i − r∗i+1 < p+ ε∗i for 0 ≤ i < l.

It suffices to prove this for i = 0 and then, the property follows recursively by
Lemma 3.2.11.
To simplify notation, set:

values associated to λ values associated to λ(1)∗
a := a∗0 a′ := a∗1
r := r∗0 r ′ := r∗1
ε := ε∗0 ε′ := ε∗1

Let us prove that
ε ≤ r − r ′ < p+ ε.

We study the four possible cases for the values of ε and ε′, namely

ε ε′
(i) 0 0
(ii) 0 1
(ii) 1 0
(iv) 1 1

In each case we will consider some diagram

[λ] := {(i, j) ∈ [λ] | i ≤ k(λ) and j ≥ k(λ)− x+ 1},

for a certain 1 ≤ x ≤ k(λ) (which will be chosen depending on the case). That is, [λ]
is obtained from [λ] by removing rows below row k(λ) and columns up to column
k(λ) − x. In an abuse of notation we will call λ the partition with Young diagram
obtained by shifting the diagram [λ] to the left by k(λ)−x columns. This will allow us
to identify nodes of λ and nodes of λ (for example (i,λi), and not (i,λi − k(λ) + x), will
be the last node on row i of λ for 1 ≤ i ≤ k(λ)).

In each case we denote a the number of nodes in Rimp(λ), r the length of λ and

ε =

0 if p | a,
1 if p - a.

And for λ(1), similar notation with primes: a′ the number of nodes in Rimp(λ(1)), r ′

the length of λ(1) and

ε′ =

0 if p | a′ ,
1 if p - a′ .

Let us now consider each of the four cases.
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(i) In this case, the fact that both ε and ε′ are zero means that neither λ nor λ(1)∗ con-
tain diagonal nodes on their p-rims*. For example as in the partition (6,5,23,1)
with p = 3. The Young diagram below on the left represents the 3-rims* of
(6,5,23,1) and (6,5,23,1)(1)∗ in different shades.

: Rim∗3((6,5,23,1)) Partition (6,5,23,1) in

: Rim∗3((6,5,23,1)(1)∗) thicker lines.

Let x = 1 in this case. The diagram above on the right illustrates (6,5,23,1).
Lemma 3.2.7 ensures that λ is p-regular, then, from Proposition 2.2.6, we have

r − r ′ + ε′ ≤ a− a′ < p+ r − r ′ + ε′ . (3.2)

Notice that the nodes in Rim∗p(λ) over the diagonal of λ are exactly the nodes of
Rimp(λ), that is, Uλ = Rimp(λ). Hence |Uλ| = |Rimp(λ)|. That is r = a. Similarly,
Uλ(1)∗ = Rimp(λ(1)), since ε′ = 0, meaning that node (k(λ)−1, k(λ)−1) < Rim∗p(λ(1)∗)
so that this node is not in Rimp(λ1), either. Hence r ′ = a′.

We claim that Rimp(λ) and Rimp(λ(1)) end at the same row; row k(λ). This is not
obvious since it could be possible that the p-rim of a partition µ, which always
contains nodes in the last row of µ, row l(µ), contains every node in this last row,
and then µ(1) does not have any nodes in row l(µ). But in our setting, this is not
the case. Indeed, by definition, every node of a partition is in some i-th p-rim
of the partition. In particular, the diagonal node (k(λ), k(λ)) is in the j-th p-rim
of λ for some j > 1 since Rimp(λ) and Rimp(λ(1)) do not contain diagonal nodes.
On the other hand the p-rim of any partition contains nodes in the last row of
the partition and since k(λ) is the last row of both λ and λ(j), then it is also the
last row of λ(1). So that both λ and λ(1) contain nodes in row k(λ).

Now, the fact that Rimp(λ) and Rimp(λ(1)) end at the same row means that l(λ) =
k(λ) = l(λ(1)), that is r − r ′ = 0.

On the other hand, in this case, we have that ε′ = 0, which means that p | a′. But
since a′ = 2r ′ − ε′, then p | r ′ = a′ (p , 2), which means that ε′ = 0.

The fact that r − r ′ = 0, together with the fact that a = r, a′ = r ′ and ε = 0, make
Equation 3.2 become

0 ≤ r − r ′ < p+ 0.

So that ε ≤ r − r ′ < p+ ε, as we wanted to show, since in this case ε = 0.

(ii) Suppose that ε = 0 and ε′ = 1. For example as in the partition (7,5,23,12)
with p = 3. Below, in the left, we represent the 3-rims* of (7,5,23,12) and
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3.2. From BG-partitions to self-Mullineux partitions

(7,5,23,12)(1)∗ in different shades.

: Rim∗3((7,5,23,12)) Partition (7,5,23,12) in

: Rim∗3((7,5,23,12)(1)∗) thicker lines.

As in the previous case, let x = 1. We illustrate (7,5,23,12) by thicker lines above
in the right hand diagram.

Let us see that also in this case we have that r − r ′ = 0. As before, the nodes in
Rim∗p(λ) over the diagonal of λ, or Uλ, are exactly the nodes of Rimp(λ). And

we also have that Uλ(1)∗ = Rimp(λ(1)). So that r = a and r ′ = a′. On the other
hand, since in this case (k(λ), k(λ)) ∈ Rim∗p(λ(1)∗), then (k(λ), k(λ)) ∈ Rimp(λ(1)).

Furthermore, the fact that Rim∗p(λ(1)∗) has a node on row k(λ), implies that λ(1)

has a node on row k(λ), and then so it is for λ. Therefore l(λ) = k(λ) = l(λ(1)),
then r − r ′ = 0.

Now, consider the two possible cases for ε′. If ε′ = 0, we obtain, as in the previous
case

0 ≤ r − r ′ < p+ 0,

which is what we wanted to show. If ε′ = 1, Equation 3.2 becomes

1 ≤ r − r ′ < p+ 1,

In particular 0 ≤ r − r ′ ≤ p. But actually, r − r ′ < p. Indeed, if r − r ′ = p, since
p | a = 2r, then p | r and therefore p | r ′ = a′, which contradicts the fact that
ε′ = 1. In conclusion 0 ≤ r − r ′ < p, which ends this case.

(iii) Suppose that ε = 1 and ε′ = 0. For example as in the partition (6,52,32,1)
with p = 3. Below, in the left, we represent the 3-rims* of (6,52,32,1) and
(6,52,32,1)(1)∗ in different shades.

: Rim∗3((6,52,32,1)) Partition (6,52,32,1) in

: Rim∗3((6,52,32,1)(1)∗) thicker lines.
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As before, let x = 1. We illustrate (6,52,32,1) in thicker lines, above in the right
hand diagram. Let us see that in this case r − r ′ = 1.

As in the preceding cases, the nodes in Rim∗p(λ) over the diagonal of λ are exactly
the nodes of Rimp(λ). This fact implies that a = r, and since ε′ = 0, by the
same argument that in case (i), we have that a′ = r ′. Now, since ε = 1, the last
diagonal node of λ, that is, the node (k(λ), k(λ)) is in Rim∗p(λ). In particular
(k(λ), k(λ)) ∈ Rimp(λ), and since it is the first node of the last row of λ, that
means that all nodes on this last row are in the p-rim of λ. So that this last row
k(λ) = r of λ does not have any nodes from Rim∗p(λ(1)∗) (or Rimp(λ(1))). We claim

that row k(λ) − 1 in λ contains at least one node in Rim∗p(λ(1)∗) (or Rimp(λ(1))).
Indeed, node (k(λ) − 1, k(λ) − 1) is in Rim∗p(λ(j)∗) for a j > 1, since it is not in
Rim∗p(λ(1)∗) (because ε′ = 0). If we suppose that row k(λ)− 1 does not have node
in Rim∗p(λ(1)∗), we are supposing that to the left of node (k(λ)− 1, k(λ)− 1) there
are only nodes from Rim∗p(λ). If this is the case, the last node in row k(λ) − 1

in λ(1)∗ is (k(λ) − 1, k(λ) − 1), that is: λ(1)∗
k(λ)−1 = k(λ) − 1. But the last node on

every row (over or on the diagonal) belongs to the p-rim*. In this case, node
(k(λ) − 1, k(λ) − 1) belongs to the p-rim* of λ(1)∗, a contradiction since λ(1)∗ does
not have any diagonal nodes on its p-rim*. In conclusion, row k(λ) − 1 in λ
contains at least one node in Rim∗p(λ(1)∗), in particular, row k(λ)−1 in λ contains

at least one node in λ(1), so that l(λ(1)) = k(λ). Therefore r − r ′ = k(λ)− l(λ(1)) = 1.

On the other hand, since we have that ε′ = 0, by the same argument as in case
(i), we have that ε′ = 0.

Puting all together in Equation 3.2, we obtain

1 ≤ r − r ′ < p+ 1.

That is, ε ≤ r − r ′ < p+ ε.

(iv) Suppose finally that ε = ε′ = 1. An example is given by partition (7,4,3,2,13) for
p = 3. Below, in the left, we represent the 3-rims* of (7,4,3,2,13) and (7,4,3,2,13)(1)∗
in different shades.

Let x = 2. Lemma 3.2.7 still assures that λ is p-regular. And from the way that
it is defined, λ contains both diagonal nodes in Rim∗p(λ) and Rim∗p(λ(1)∗). We
illustrate (7,4,3,2,13) by thicker lines in the right hand diagram below.

: Rim∗3((7,4,3,2,13)) Partition (7,4,3,2,13) in

: Rim∗3((7,4,3,2,13)(1)∗) thicker lines.
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3.2. From BG-partitions to self-Mullineux partitions

Notice that in this case it is not necessarily true that a = r and a′ = r ′. Since λ
contains the node (k(λ), k(λ) − 1) which is under the diagonal of λ, where the
p-rim* does not behave as the p-rim. For the partition (7,4,3,2,13), this node is
the node (3,2), which in this case is in the p-rim* of (7,4,3,2,13). But it could be
the case that the node (k(λ), k(λ) − 1) is not in the p-rim* of λ but in the p-rim*
of λ(1)∗. This depends on the divisibility of r by p.

Recall that r = |Uλ| is the number of nodes in the p-rim* of λ that are above (or
on) the diagonal of λ. Let us consider the two cases: p | r and p - r.

• Suppose that p | r. As in λ = (7,4,3,2,13) with p = 3 (see the diagram
above). In this case every p-segment of the p-rim* of λ contains exactly p
nodes. In particular the segment which contains the node (k(λ), k(λ)). And
since this node is the last (and p-th) node of this p-segment, then the node
to its left (k(λ), k(λ) − 1) is not in the p-rim of λ. And we have a = r and
r − r ′ = 0. Moreover, the node (k(λ), k(λ)− 1) is then in the p-rim of λ(1). So
that a′ = r ′+1 (the r ′ nodes of Rim∗p(λ(1)∗) above the diagonal, together with

node (k(λ), k(λ) − 1), form Rimp(λ(1))). Therefore we have a = r, a′ = r ′ + 1
and r − r ′ = 0. Puting this together in Equation 3.2 we get

ε′ ≤ r − (r ′ + 1) < p+ ε′ ,

or
ε′ + 1 ≤ r − r ′ < p+ ε′ + 1.

But ε′ + 1 ≥ 1 = ε. Therefore we have

1 ≤ r − r ′ < p+ ε′ + 1.

Let us see that r − r ′ < p+ 1 = p+ ε. There are two possibilities for ε′. Either
ε′ = 0, in which case r − r ′ < p + 1, or ε′ = 1. If ε′ = 1, we have r − r ′ < p + 2,
so that r − r ′ ≤ p + 1. But in fact r − r ′ < p + 1, since if r − r ′ = p + 1, then
r − (r ′ + 1) = p. But in this case p | r, therefore, p | r ′ + 1 = a′, and this
contradicts the fact that ε′ = 1.

• Suppose that p - r. As in λ = (6,2,14) with p = 3.

: Rim∗3((6,2,14)) Partition (6,2,14) in

: Rim∗3((6,2,14)(1)∗) thicker lines.

In this case, the p-segment of Rim∗p(λ) which contains the node (k(λ), k(λ))
has less than p nodes. This implies that the node to the left of this diagonal
node, namely (k(λ), k(λ) − 1), is on the p-rim of λ. Then a = r + 1 (the r
nodes of Rim∗p(λ) above the diagonal, together with node (k(λ), k(λ) − 1),
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form Rimp(λ)), and we also have that r − r ′ = 1 and a′ = r ′. Equation 3.2
gives

1 + ε′ ≤ (r + 1)− r ′ < p+ 1 + ε′ ,

or
ε′ ≤ r − r ′ < p+ ε′ .

But p+ε′ ≤ p+1 = p+ε. Then ε′ ≤ r−r ′ < p+ε. Let us show that r−r ′ ≥ 1 = ε.
There are two possibilities for ε′. Either ε′ = 1, in which case r − r ′ ≥ 1 = ε
or ε′ = 0. If ε′ = 0, then r − r ′ ≥ 0. But actually r − r ′ ≥ 1, since if r − r ′ = 0,
from the fact that p | a′ = r ′ we would have that p | r, a contradiction.

3.3 A proposition on the correspondence and p-blocks

The BG-symbol provides a one-to-one correspondence between the set BGn
p ⊆ Par(n)

of p-BG-partitions of n and the set Mn
p ⊆ Regp(n) of p-self-Mullineux partitions of n.

We know that p-blocks of Sn define a (set) partition in each of Par(n) and Regp(n).
A natural question is then: does the correspondence agree with the partition into p-
blocks ? Since this partition is determined by the p-cores (Theorem 1.4.5), the question
says: if λ ∈ BGn

p and µ ∈Mn
p correspond with each other, that is, the BG-symbol of λ is

equal to the Mullineux symbol of µ, do λ and µ have the same p-core ? In this section
we show that this is the case.

In §2.4 we recalled the definition of the p-residue of a node in N
∗ ×N∗. The p-

content contp(λ) of a partition λ is the multi-set of p-residues of the nodes in the
Young diagram of λ.

Example 3.3.1. If p = 3 and λ = (5,22,1), the p-residues of the nodes in the Young
diagram of λ are:

0 1 2 0 1
2 0
1 2
0

Then the p-content of λ is the multi-set

cont3(λ) = {04,13,23},

where a power indicates the number of times that an element appears in the multi-
set. 4

The p-content determines the p-block to which a partition belongs:

Proposition 3.3.2 ([JK81, 2.7.41]). Two partitions λ and µ have the same p-core if and
only if they have the same p-content.

Proposition 3.3.3. Let λ ∈ BGn
p and µ ∈Mn

p such that the BG-symbol of λ is equal to the
Mullineux symbol of µ. Then λ and µ have the same p-core.
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Proof. The proof is by induction on the length of the symbol.
Suppose that

Gp(µ) =
(
a
r

)
= bgp(λ)

In this case we have that λ = µ. Indeed, the unique p-BG-partition with such a bg-
symbol is (r,1r−1) (see proof of Proposition 3.1.14). Similarly, the unique p-regular
partition with such a Mullineux symbol is (r,1r−1). Since λ = µ, they have the same
p-core.

Suppose now that

Gp(µ) =
(
a a1 · · · az
r r1 · · · rz

)
= bgp(λ).

We prove that contp(λ) = contp(µ), and from Proposition 3.3.2 the result follows. From
the definition of the symbols, we know that

Gp(µ(1)) =
(
a1 · · · az
r1 · · · rz

)
= bgp(λ(1)∗),

where the partitions λ(1)∗ and µ(1) are obtained from λ and µ by respectively remov-
ing the p-rim* and p-rim. By induction, λ(1) and µ(1)∗ have the same p-core. From
Proposition 3.3.3, these two partitions have the same multi-set of p-residues:

contp(λ(1)∗) = contp(µ(1)).

Let L and M be the multi-sets with elements from Z/pZ such that

contp(µ) = contp(λ(1)∗)∪M

and
contp(λ) = contp(µ(1))∪L.

Let us see that M = L, which will complete the proof.
Notice first the following about p-residues and segments on the rim. If (r, c) is a

node in N
∗ ×N∗, the p-residue of this node is (c − r) mod p. The residue of the node

above or to the right of (r, c) is ((c−r)+1) mod p. The residue of the node below or to
the left of (r, c) is ((c−r)−1) mod p. That is to say: the set of p-residues of any path or
segment of nodes is a list of residues which are consecutive mod p. In particular, the
p-residues of a segment in the p-rim of a partition is a subset of consecutive residues
mod p.

Now, it is clear that |M | = a = |L|, from the definition of the symbols and of the
partitions λ(1)∗ and µ(1). This number is the length of the p-rim of µ and the length of
the p-rim* of λ. Let q and s be the positive integers such that

a = pq+ s and 0 ≤ s < p.

If s = 0, then p | a. Hence µ is obtained from µ(1) by adding q segments of length p
to form the p-rim of µ. Then

M = {0q,1q, . . . , (p − 1)q}.
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Similarly, λ is obtained from λ(1)∗ by adding q segments of length p to form the p-rim*
of λ. Then

L = {0q,1q, . . . , (p − 1)q}.
Hence, M = L when s = 0.

If s > 0, p - a so that ε0 = 1 = ε∗λ. Recall that for such a symbol we have that a = 2r−1,
see Definition 3.1.4. Then

r =
a+ 1

2
. (3.3)

Let us see in this case what is the multi-setM. The partition µ is obtained from µ(1)

by adding q segments of length p to form the p-rim of µ, plus one segment of length
s. This last segment can be seen as a segment starting at node (r,1) and then it is a
sequence of nodes that are either above or to the right of the preceding node. From
the above remark, the set of p-residues of nodes in this last segment is exactly

(1− r) modp, (2− r) mod p, . . . , (s − r) mod p.

Hence,

M = {0q,1q, . . . , (p − 1)q} ∪ {(1− r) modp, (2− r) mod p, . . . , (s − r) mod p}.
We now compute the multi-set L. For this we consider the two cases: q is even or q

is odd.
Suppose that q is even. Then s is odd and from Equation 3.3 we have

r = p
q

2
+
s+ 1

2
,

and s+1
2 < s < p so that s+1

2 = r mod p. That means that the self-conjugate partition λ
has q

2 p-segments on the p-rim* over the diagonal (and also under the diagonal), and
a “middle” (symmetric with respect to the diagonal) segment on the p-rim* which has
exactly s+1

2 nodes over the diagonal, one of which is on the diagonal. The multi-set of
residues of the p-segments is then formed by

0q, 1q, . . . , (p − 1)q.

Now, for the middle segment: A node on the diagonal has p-residue equal to 0 by
definition. Then the p-residues of the nodes in the middle segment are exactly

1− s
2

modp, . . . ,−2 modp, −1 modp, 0 modp,

1 modp, 2 modp, . . . ,
s − 1

2
modp,

(3.4)

but 1−s
2 = 1− s+1

2 ≡ 1− r (mod p), so that the list (3.4) is a set of s consecutive residues
mod p starting at 1− r mod p, that is

(1− r) modp, (2− r) mod p, . . . , (s − r) mod p,

which proves that L =M, when q is even.
Suppose that q is odd, say q = 2q′ + 1. Then a = 2pq′ + p + s so that the p-rim* of

the self-conjugate partition λ is formed of: 2q′ segments on the rim of length p (q′

82



3.4. From self-Mullineux partitions to BG-partitions

segments at each side of the diagonal), and one middle (symmetric) segment of length
p+ s. The p-residues of the 2q′ segments are

02q′ , 12q′ , . . . , (p − 1)2q′ . (3.5)

The p+ s p-residues of the middle segment are

1− p − s
2

modp, . . . ,−2 modp, −1 modp, 0 modp,

1 modp, 2 modp, . . . ,
p+ s − 1

2
modp.

(3.6)

Take the first p of these p-residues:

1− p − s
2

modp,
3− p − s

2
modp, . . . ,

1− p − s
2

+ (p − 1) modp.

which form a complete set of residues mod p. They form, together with the
residues on 3.5, the multi-set

0q, 1q, . . . , (p − 1)q.

The rest of residues in the list (3.6) is the set of s p-residues

1− p − s
2

modp,
3− p − s

2
modp, . . . ,

−1− p − s
2

+ (s − 1) modp. (3.7)

Notice that p+s+1
2 ≡ r mod p. Indeed, r = a+1

2 = pq′ + p+s+1
2 . Then, the first p-residue

in the list (3.7) is
1− p − s

2
= 1− p+ s+ 1

2
≡ 1− r modp.

This shows that the list (3.7) is equal to

(1− r) modp, (2− r) mod p, . . . , (s − r) mod p,

proving that L =M.

3.4 From self-Mullineux partitions to BG-partitions

From Theorem 4.6.1, we know that the BG-symbol induces an algorithm for the corre-
spondence between BG-partitions and self-Mullineux partitions. Then we know that
to each Mullineux symbol of a self-Mullineux partition, corresponds a unique BG-
partition. Moreover, from the definition of the BG-symbol, and Lemma 3.1.12, we
know how to find the BG-partition associated to such a Mullineux symbol under this
correspondence. In this section we prove that this inverse algorithm is well defined,
that is, we prove that applying it to a Mullineux symbol of a self-Mullineux partition
results in a BG-partition. This confirms Theorem 4.6.1 in a combinatorial way without
using the fact that |BGn

p | = |Mn
p |.

Proposition 3.4.1. Let p be an odd prime and λ a self-Mullineux partition. The Mullineux
symbol of λ, Gp(λ) is the BG-symbol of some BG-partition. That is

Mp ⊆ bgp(BGp).
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3. A combinatorial bijection

Proof. We give a combinatorial proof of this fact, although it follows also directly from
Proposition 3.1.14 and Proposition 3.2.1.

We proceed by induction on l, the length of the Mullineux symbol.

Let l = 0 and S =
(
al
rl

)
∈ Mp, that is, S = Gp(λ) for some λ ∈Mp. Let εl = 0 if p | al

and εl = 1 otherwise. Since S has exactly one column, then λ = λ(l) is a hook, that
is λ is of the form λ = (x,1y), with x ≤ p. On the other hand, since λ is fixed by the
Mullineux map, we know that

al = 2rl − εl .
We claim that εl = 1. If εl = 0, that is, if p | al , then the p-segments that form Rimp(λ) =
[λ] are all of length exactly p. We know that λ is a p-regular hook, this means that
λ is formed by exactly one p-segment. If there was more than one p-segment, then
al > p (so that al = 2kp for some k ≥ 1) it follows that y ≥ p, and then λ would not be
p-regular. Thus al = p = 2rl . But this is not possible since p is odd. Then εl = 1 and
al = 2rl − 1.

The partition µ = (rl ,1rl−1) is self-conjugate, and is a hook of length 2rl − 1 = al .
Since p - al , then µ ∈ BGp. Its BG-symbol is

bgp(µ) =
(
2rl − 1
rl

)
=

(
al
rl

)
= S.

In fact µ = λ.
Consider now l > 0. Let

S =
(
a0 a1 · · · al
r0 r1 · · · rl

)
be a symbol inMp corresponding to a partition λ in Mp. Consider the array

S̃ =
(
a1 · · · al
r1 · · · rl

)
.

By definition, S̃ is the Mullineux symbol of the partition λ(1), obtained from λ by
removing the nodes on the p-rim. We know that λ(1) is fixed by the Mullineux map,
given that this only depends on the columns of the symbol. Then λ(1) ∈ Mp, and
S̃ ∈Mp. By induction, there exists a partition µ̃ ∈ BGp such that

bgp(µ̃) = S̃.

We will apply Lemma 3.1.12. Let ε0 = 0 if p | a0, or ε0 = 1 otherwise. Let m =
(r0 − ε0) mod p.

Suppose that ε0 = 0 and let us see that in this case m = 0. Since ε0 = 0, then p | a0.
But a0 = 2r0 − ε0 = 2r0, since λ is a fixed point of the Mullineux map. Now, since p is
odd, then p | r0 so that m = (r0 − ε0) mod p = r0 mod p = 0.

If ε0 = 1, we have that p - a0. Therefore p - 2m+1 since 2m+1 ≡ 2(r0−ε0)+1 (mod p)
and 2(r0 − ε0) + 1 = 2r0 − ε0 = a0.

Lemma 3.1.12 implies that there exists a unique self-conjugate partition µ ∈ BGp
such that

(i) a∗µ ≡ ε0 (mod 2);
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3.4. From self-Mullineux partitions to BG-partitions

(ii) r∗µ − ε∗µ ≡m (mod p) and

(iii) µ(1)∗ = µ̃.

The condition µ(1)∗ = µ̃ implies that

bgp(µ) =


a∗µ

bgp(µ̃)
r∗µ

 =


a∗µ

S̃
r∗µ

 =
(
a∗µ a1 · · · al
r∗µ r1 · · · rl

)
.

Let us see that in fact bgp(µ) = S, that is, a∗µ = a0 and r∗µ = r0. Indeed, from (i), a∗µ
is even if and only if ε0 = 0, if and only if p | aλ. But a∗µ is even if and only if p | a∗µ,
by Corollary 3.2.10. This sequence of equivalences says that ε0 = ε∗µ. Then, by (ii) we
have that r∗µ ≡ r0 (mod p).

Since S ∈Mp, then, from Proposition 2.2.6, we have, in particular

ε0 ≤ r0 − r1 < p+ ε0. (3.8)

On the other hand, since µ ∈ BGp, then bgp(µ) ∈ Mp, by Proposition 3.2.1, so that, in
particular we have

ε∗µ ≤ r∗µ − r1 < p+ ε∗µ. (3.9)

Substracting Equation 3.8 from Equation 3.9, we get

−p < r∗µ − r0 < p,

but since p | r∗µ − r0 we can conclude that r∗µ − r0 = 0, so that r∗µ = r0. Therefore a∗µ =
2r∗µ − ε∗µ = 2r0 − ε0 = a0, and

bgp(µ) =
(
a0 a1 · · · al
r0 r1 · · · rl

)
= S.
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4 Stable unitriangular basic sets for
blocks of small weights

This chapter is based on [Ber21c]. The organization of this chapter is as follows: In
the first section we recall the notions of p-basic sets and p-unitriangular basic sets
(UBS) for the symmetric group. Then, in §4.2 we recall the more general notion of
p-unitriangular basic sets for unions of p-blocks of Sn and we define stable unitri-
angular basic sets for unions of p-blocks (SUBS). In §4.3 we recall the fact that non
self-conjugate blocks or self-conjugate blocks of odd weight have a SUBS with certain
underlying set denoted U

γ
n,p. Then, in §4.4, we show that the Mullineux map has

an easy description for blocks of weight 1, allowing us to show that Uγ
n,p is the un-

derlying set for a different SUBS. The reason for such “parentheses” about weight 1
blocks is that, then in §4.5, in the study of the combinatorics of weight 2 partitions we
see that the behavior of the Mullineux map on weight 1 blocks is very similar to the
Mullineux map in certain subsets of weight 2 blocks. This allows us to find a SUBS
for self-conjugate blocks of weight 2, in §4.6.

4.1 Basic sets and unitriangular basic sets

In this section we recall the definition of a p-basic set and a p-unitriangular basic set
for the symmetric group. Definitions are based on [BG10, BGJ20].

For introducing basic sets for Sn, it is useful to talk in terms of the so-called
Grothendieck group of Sn. Let 2 < p < n be a prime. Denote by Irr(FpSn) the set of
irreducible FpSn-modules up to equivalence. The Grothendieck group of FpSn is the Z-
module Gp(n) generated by the symbols [M], for M a finitely generated FpSn-module
together with the relations

[M] =
∑

D ∈ Irr(FpSn)

mD [D],

where mD is the composition multiplicity of D in M, and Irr(FpSn) is the set of p-
modular irreducibles of Sn up to equivalence. From Theorem 1.3.6 and the Jordan-
Hölder theorem we have

Proposition 4.1.1. The set {[Dλ] | λ ∈ Regp(n)} is a Z-basis of Gp(n).

In the Grothendieck group, we can then rewrite the definition (§1.4.1) of the p-
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decomposition numbers dλµ: For every λ ` n

[Sλ] =
∑

µ∈Regp(n)

dλµ[Dµ].

Moreover, from Theorem 1.4.1, the system of equations formed by all equations as
above for λ p-regular, has a unique solution, that is:

Proposition 4.1.2. The set {[Sλ] | λ ∈ Regp(n)} is a Z-basis of Gp(n).

This motivates the general definition of a subset of Specht modules having such
property:

Definition 4.1.3. A p-basic set (or basic set) for the symmetric group Sn is a subset
B ⊂ {[Sλ] | λ ` n} such that B is a Z-basis of Gp(n). 4

In these terms, {Sλ | λ ` n, p-regular} is a p-basic set for Sn. By abuse of nota-
tion we consider the set of partitions {λ | λ ∈ Regp(n)} = Regp(n) instead of the set of
Specht modules, as the basic set. With this notations, Proposition 4.1.1 says that, as
Z-modules

Gp(n) 'ZRegp(n).

Remark 4.1.4. B is a p-basic set of Sn if and only if the determinant of the restriction
matrix DB

n,p is 1 or −1 (the matrix is invertible in Z).

The p-basic set Regp(n) has an additional property. The system of equations is easy
to solve, since the submatrix is unitriangular (see Theorem 1.4.1). For λ ∈ Regp(n) we
have:

[Sλ] = [Dλ] +
∑

µ∈Regp(n)
µ.λ

dλµ[Dµ].

Hence, the p-basic set Regp(n) not only is a basis for Gp(n), but it indexes naturally
the irreducible FpSn-modules. This motivates the following general definition.

Definition 4.1.5. A p-unitriangular basic set (UBS) (or unitriangular basic set) for FpSn
is a set U ⊂ Par(n) such that the matrix DU

n,p (formed by the rows of Dp,n labelled by U
and all the columns) has wedge shape. More precisely, a UBS is the datum of a triplet
(U,≤,Ψ ) where U ⊂ Par(n), ≤ is a total order defined on Par(n) and Ψ is a bijective
map:

Ψ :U −→ Irr(FpSn),

satisfying:

(1) for all λ ∈U we have dλ,Ψ (λ) = 1, and

(2) for all M ∈ Irr(FpSn) and λ ∈U , we have: if dλ,M , 0 then λ ≤ Ψ −1(M).

4
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Since we are interested in particular in the labelling of simple modules, for this
purpose, it is sufficient for the order ≤ to be defined on U .

A UBS for FpSn is in particular a p-basic set for FpSn. The interest of UBSs is
then that they give a natural parametrization of the irreducible FpSn-modules. This
parametrization is explicit in the sense that there is an explicit bijection between the
irreducible FpSn-modules and the modules in the UBS (which is Ψ ).

Example 4.1.6. The set Regp(n) ⊂ Par(n), together with the lexicographic order ≤ on

Par(n) and the bijection: λ 7→Dλ, is a UBS for FpSn. 4
The notion of p-basic set is defined more generally for finite groups, or even sym-

metric algebras. Such sets are useful for computing p-decomposition matrices. It
is an open question whether a p-basic set for a group exists in general1. In [BG10],
Brunat and Gramain showed that the alternating group An has a p-basic set. Their
strategy is to find a p-basic set B∅ for Sn which satisfies certain properties that make
its “restriction to An” be a p-basic set for An. The basic set B∅ has two properties:

(A) B∅ is stable for conjugation: If λ ∈ B∅, then λ′ ∈ B∅.
(B) The only self-conjugate partitions in B∅ are p-BG-partitions: If λ = λ′ ∈ B∅, then

λ ∈ BGn
p.

Brunat and Gramain showed that if B is a UBS for FpSn which satisfies the proper-
ties (A) and (B), then a UBS for An can be constructed by restriction [BG10, Lemmas
6.4 and 6.6]. Having a UBS for An is interesting because it would provide a natural
labelling of the irreducible FpAn-modules. The p-basic set B∅ does not help in this
task, since it is not a UBS for FpSn (see [BG10, Remark 6.5]). They conjectured the
existence of such a p-basic set for FpSn, which partly motivated the results in Chapter
3. However, in [BGJ20, §3.2], Brunat, Gramain and Jacon showed that FpAn does not
always have a UBS (in particular F3A18 and F3A19), proving that the asked p-basic set
for FpSn does not always exist. Now, the question can be asked “block wise”, that is,
with notions of p-basic sets and UBSs for p-blocks of FpSn. This makes the subject of
the following sections.

4.2 UBS and SUBS for p-blocks of the symmetric group

We recall the notions of p-basic sets and UBS for p-blocks of Sn.

Definition 4.2.1. Let U =
⋃
γ∈Γ Bγ be a union of p-blocks of FpSn. Denote by Irr(U )

the set
⋃
γ∈Γ {[Dλ] | λ ∈ Irr(Bγ )}. A subset B ⊂ U is a p-basic set for U if B is a basis for

the Z-module generated by Irr(U ).
Equivalently: the matrix formed from the rows of Dn,p labelled by B and columns

labelled by Irr(U ) is invertible in Z.
If U =Bγ is formed by only one block then we say that B is a basic set for the block

Bγ . 4
1The answer is known to be positive for p-soluble groups, for finite groups of Lie type in the non-

defining characteristics under some additional hypotheses, for the finite general linear groups GL2(q),
GL3(q) and GL4(q) in the defining characteristic, and also for the symmetric group Sn. See [BG10, §1]
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4. Stable unitriangular basic sets for blocks of small weights

A p-basic set for FpSn is a p-basic set for the union of all the p-blocks of FpSn.

Definition 4.2.2. Let Γ = {γ | γ ` (n − wp) is a p-core} be some set of p-cores. Let
U =

⋃
γ∈Γ Bγ be the union of the corresponding blocks of FpSn. A p-unitriangular

basic set (UBS) (or unitriangular basic set) for U is a set B ⊂ U such that the matrix
formed by the rows of Dn,p labelled by B and columns labelled by Irr(U ) has wedge
shape. Formally, a UBS for U is the datum of a triplet (B , ≤ , Ψ ) where B ⊆ U , ≤ is a
total order defined on U and Ψ is a bijection

Ψ : B −→ Irr(U )

satisfying:

(1) for all µ ∈ B, we have dµΨ (µ) = 1, and

(2) for all D ∈ Irr(U ) and λ ∈U , if dλD , 0 then λ ≤ Ψ −1(D).

Equivalently: the matrix formed from the rows of Dn,p labelled by B and columns
labelled by Irr(U ) has wedge shape.

If U = Bγ is formed by only one block then we say that B is a UBS for the block
Bγ . 4

A UBS for FpSn is a UBS for the union of all the p-blocks of FpSn.

Example 4.2.3. Any UBS (U, ≤ , Ψ ) for FpSn restricts to a UBS (Uγ , ≤γ , Ψγ ) for any
p-block Bγ of FpSn. For example:

Denote Regp(Bγ ) the following subset of Bγ :

Regp(Bγ ) := Regp(n)∩Bγ .

Then Regp(Bγ ) together with the lexicographic order of partitions on Bγ and the

mapping λ 7→Dλ, from Regp(Bγ ) to Irrp(Bγ ) is a UBS for the block Bγ . 4
Having defined the notion of UBS for a block, or union of blocks, we recall that

our initial motivation (see discussion after Example 4.1.6) is the quest for an UBS
for a union of p-blocks of Sn, satisfying conditions (A) and (B) (with the motivation
that such a SUBS would allow a natural parametrization for certain irreducible FpAn-
modules in that union of blocks). With this in mind we make the following two defi-
nitions.

Definition 4.2.4. For a p-block Bγ of FpSn, we call its conjugate block the block Bγ ′

consisting of the partitions of n with p-core γ ′. If γ = γ ′, then Bγ = Bγ ′ and we say
that Bγ is a self-conjugate block. 4
Example 4.2.5. The block of F5S8 associated to the 5-core τ = (3) is

Bτ = {(8), (42), (32,12), (3,2,13), (3,15)}.

Its conjugate block is the block Bτ ′ associated to the 5-core τ ′ = (13), whose partitions
are all the conjugates of partitions in Bτ :

Bτ ′ = {(6,12), (5,2,1), (4,22), (24), (18)}.
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4.3. A SUBS for blocks of odd weight or not self-conjugate

The block of F5S8 associated to the 5-core γ = (2,1) is a self-conjugate block since
γ = γ ′.

Bγ = {(7,1), (5,3), (32,2), (23,12), (2,16)}.
4

Definition 4.2.6. A UBS (B,≤,Ψ ) for a union U of blocks of FpSn is said to be stable
or a stable unitriangular basic set (SUBS) if the following two conditions hold:

(A) B is stable for conjugation: If λ ∈ B, then λ′ ∈U .

(B) The only self-conjugate partitions in U are p-BG-partitions: If λ = λ′ ∈ U , then
λ ∈ BGn

p.

If U =Bγ and Bγ is self-conjugate, we say that B is a SUBS for the block Bγ . 4

As mentioned in the discussion after Example 4.1.6, FpSn does not have a SUBS,
that is, there is not a SUBS for the union

⋃
B is a p-blockB, of all p-blocks of FpSn.

4.3 A SUBS for blocks of odd weight or not self-conjugate

Given that there is not always a SUBS for FpSn, it is interesting to have a SUBS for
some unions of blocks. By the following proposition, which has been adapted to our
notation, this question is already solved for self-conjugate blocks of odd weight and
for Bγ ∪Bγ ′ where γ is not self-conjugate.

Proposition 4.3.1 ([BGJ20, Theorem 38]). Let γ ` (n −wp) be a p-core. Let Bγ be the
corresponding block of FpSn. Consider the following subset of Bγ ∪Bγ ′

U
γ
n,p = {λ ∈ Regp(Bγ ) |mp(λ) < λ} t {λ′ | λ ∈ Regp(Bγ ) and mp(λ) < λ}

t {λ ∈ Regp(Bγ ) |mp(λ) = λ},

where mp denotes the Mullineux map. If w is odd or if γ is not self-conjugate, then
there exists an order �γ on Bγ ∪Bγ ′ and a bijection Ψγ :Uγ

n,p −→ Irr(Bγ ∪Bγ ′ ) such that
(Uγ

n,p, �γ , Ψγ ) is a SUBS for Bγ ∪Bγ ′ .

We make some comments on this proposition. For this, let us define a total order
on Par(n) by setting λ � µ if:

• λ = µ,

• or λ = µ′ and µ ≤ µ′,

• or if Max≤(λ,λ′) <Max≤(µ,µ′),

where ≤ denotes the lexicographic order on partitions. We have the following
result.
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4. Stable unitriangular basic sets for blocks of small weights

Proposition 4.3.2 ([BGJ20, Proposition 33]). Let

Un,p := {λ ∈ Regp(n) |mp(λ) < λ} t {λ′ | λ ∈ Regp(n) and mp(λ) < λ}
t {λ ∈ Regp(n) |mp(λ) = λ}. (4.1)

Let
U1
n,p := {λ ∈ Regp(n) |mp(λ) < λ},

U2
n,p := {λ′ | λ ∈ Regp(n) and mp(λ) < λ}, and

U3
n,p := {λ ∈ Regp(n) |mp(λ) = λ}.

And let Ψ be the bijection defined as:

Ψ : Un,p −→ Irr(FpSn)

λ 7−→
Dλ if λ ∈U1

n,p ∪ U3
n,p,

Dmp(λ′) if λ ∈U2
n,p.

Then (Un,p, �, Ψ ) is a unitriangular basic set (UBS) for FpSn.

In general, Un,p is not a SUBS for FpSn, since it contains the self-Mullineux par-
titions which could fail to verify properties (A) or (B) in Definition 4.2.6. However,
since the restriction Un,p ∩Bγ of Un,p to each block results into a UBS (see Example
4.2.3), we can still wonder for which unions of blocks such restriction results in a
SUBS for the block. Proposition 4.3.1 answers to this by giving a sufficient condition.

The reason why the restriction of the UBS Un,p to self-conjugate blocks of odd
weight or blocks which are not self-conjugate is that, for such blocks, the restriction
of U3

n,p to the block is empty: The block does not contain self-Mullineux partitions.
Let us see why.

First for blocks which are not self-conjugate:

Lemma 4.3.3. Let γ ` (n − pw) a p-core such that γ , γ ′. Let Bγ be the corresponding
block of FpSn. Then Bγ does not contain self-Mullineux partitions. Consequently, the
UBS which comes from the restriction of the UBS Un,p for FpSn (from Proposition 4.3.2) to
Bγ ∪Bγ ′ is a SUBS for this union of p-blocks.

Proof. From [Mul79b], we know that the p-core of a partition λ and that of its im-
age mp(λ) under the Mullineux map, are conjugates. This says in particular that
self-Mullineux partitions only occur in self-conjugate blocks. Then, ifBγ is not a self-
conjugate block, the set Un,p ∩ (Bγ ∪Bγ ′ ) is a SUBS, by restricting the total order �
on Par(n) to Bγ ∪Bγ ′ . Indeed, this restriction does not contain any self-Mullineux
partitions (any partition from U3

n,p), or any self-conjugate partition, and then by con-
struction of Un,p, it satisfies conditions (A) and (B) in Definition 4.2.6.

Denote by Mn
p(γ) and by BGn

p(γ) the set of self-Mullineux partitions and p-BG-
partitions in Bγ .

Proposition 4.3.4 ([BG10, Proposition 6.1]). |Mn
p(γ)| = |BGn

p(γ)|.
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4.4. About blocks of weight 1

Now, the following lemma shows why self-conjugate blocks of odd weight do not
have any self-Mullineux partitions. It also contains a known fact about the number of
self-Mullineux partitions in a block of even weight. A combinatorial proof of this fact
can be found in [BO98, Theorem 3.5].

Lemma 4.3.5. Let γ ` (n − pw) be a self-conjugate p-core. Let Bγ be the corresponding
block of FpSn. Then, the set of self-Mullineux partitions in Bγ is non-empty if and only if

w is even. In this case, there are as many self-Mullineux partitions as (p−1
2 )-multipartitions

of rank w
2 .

Proof. We know that in a fixed block, any partition is completely determined by its p-
quotient (§1.1.6). From [BG10, Lemma 3.4], by choosing an appropriate convention,
the p-quotient νp = (ν(1),ν(2), . . . ,ν(p)) of ν ∈ BGn

p(γ), which has rank w, is of the form

(ν(1),ν(2), . . . ,ν( p−1
2 ),∅,ν( p−1

2 )′ , . . . ,ν(2)′ ,ν(1)′),

where ν(i)′ is the conjugate partition of ν(i). Hence the rank, w, of this p-quotient is

even: it is twice the sum of the ranks of ν(1),ν(2), . . . ,ν( p−1
2 ). Also, this p-quotient is

completely determined by these p−1
2 partitions. Thus, |Mn

p(γ)| is equal to the number

of (p−1
2 )-multipartitions of w

2 .

Conversely, if w is even, each (p−1
2 )-multipartition of w

2 determines a unique p-
quotient

(ν(1),ν(2), . . . ,ν( p−1
2 ),∅,ν( p−1

2 )′ , . . . ,ν(2)′ ,ν(1)′),

which corresponds to a p-BG-partition in the block Bγ .

Proposition 4.3.1 follows from Lemma 4.3.3 and Lemma 4.3.5.

4.4 About blocks of weight 1

In §4.3 we saw that, in particular, for any block Bγ of weight 1 of FpSn, either self-
conjugate or not self-conjugate, there is a SUBS for Bγ ∪Bγ ′ . The underlying set of
this SUBS is

U
γ
n,p = {λ ∈ Regp(Bγ ) |mp(λ) < λ} t {λ′ | λ ∈ Regp(Bγ ) and mp(λ) < λ}. (4.2)

In this section we show that the set Uγ
n,p arises as a SUBS in a different way, that is,

with a total order defined differently. The interesting part about this newly defined
SUBS for the already well known blocks of weight 1, is that, later in §4.5 we will see
that blocks of weight 2 partition into certain subsets ∂`, and each of these subsets
behave similarly to weight 1 blocks with respect to the new order, the Mullineux map
and conjugation. We show that the Mullineux map has an easy description for blocks
of weight 1. This description allows to characterize the partitions λ in Bγ such that
mp(λ) < λ. Then, we define a total order, different from �γ in the restriction of Uγ

n,p

from (4.1). This total order makes the corresponding decomposition matrix lower
unitriangular.
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4. Stable unitriangular basic sets for blocks of small weights

Remark 4.4.1. From the form of the decomposition matrix of blocks of weight 1 (see
4.4), it can be seen that the set Uγ

n,p in (4.2) is the underlying set of any SUBS for a
self-conjugate block of weight 1. Indeed: any SUBS consists in p − 1 partitions of the
p partitions in Bγ , which contains a unique self-conjugate partition. Then, the only
option for a SUBS to be stable is to choose every partition in Bγ but the self-conjugate
one. On the other hand, if the block is not self-conjugate, any choice of p−1 partitions
in Bγ (together with their conjugates in Bγ ′ ) form a SUBS. In this case, there are p−1
possible underlying sets for a SUBS.

4.4.1 Combinatorics of partitions with weight 1

Notation for partitions in a block It can be shown that a block Bγ of p-weight 1
contains exactly p partitions λ0,λ1, . . . ,λp−1 that can be labelled so that

λ0 E λ1 E · · · E λp−1, (4.3)

where λ0 is the unique p-singular partition. Moreover, the decomposition numbers
are given as follows. For any partition λ ` n and for 1 ≤ i ≤ p − 1, we have

dλλi =
{

1, if λ ∈ {λi ,λi−1},
0, otherwise.

(4.4)

See [Mat99, Exercise 5.10]. In general, if rows are organized downwards in decreasing
lexicographic order, the shape of the matrix Dγ is:

λp−1 λp−2 λp−3 · · · λ2 λ1

λp−1 1 · · · · · · ·
λp−2 1 1 · · · · · ·
λp−3 · 1 1 · ·

λ2 · · · · · 1 ·
λ1 · · · · · 1 1
λ0 · · · · · · · · · 1

...
...

...

where simple dots are zeros.
Notice that a consequence of the fact that the dominance order totally orders par-

titions in Bγ is that it coincides with the lexicographic order in Bγ . The fact that the
dominance order totally orders the partitions in a block of weight 1 can be proven by
using the abacus display for partitions. Each partition inBγ is obtained from the aba-
cus display of γ by sliding down one bead in some runner, which amounts to adding
a p-hook to the Young diagram of γ . For 0 ≤ i ≤ p − 1 denote by γ i the partition
obtained by sliding down the bead in runner i. From the defined labelling for the
runners (§1.1.7), the corresponding p-hook has leg length (p − 1) − i (and arm length
i), see Remark 1.1.7. Hence, this notation for partitions inBγ agrees with the notation
chosen above in (4.3). Then:

Throughout this section, unless otherwise specified, Bγ is a block of p-weight 1,
with its partitions denoted γ0 E γ1 E · · · E γp−1.
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4.4. About blocks of weight 1

Example 4.4.2. Let p = 5 and γ = (2,1) ` (8 − 5). There are in total five partitions in
the block Bγ of F5S8; four of them are 5-regular. The Young diagram and 5-abacus of
γ is:

γ
1 4 2 0 3

The five partitions in Bγ are

γ0

1 4 2 0 3
γ1

1 4 2 0 3 γ2 1 4 2 0 3

γ3
1 4 2 0 3

γ4
1 4 2 0 3

where the shaded nodes correspond to the 5-rim-hook added to γ to obtain each par-
tition in the block. We have then

Bγ = {(2,16), (23,12), (33,2), (5,3), (7,1)},
where only (2,16) is 5-singular. The matrix D(2,1), with rows organized downwards in
decreasing lexicographic order is

γ4 γ3 γ2 γ1

γ4 7,1 1
γ3 5,3 1 1
γ2 32,2 · 1 1
γ1 23,12 · · 1 1
γ0 2,16 · · · 1

4

Conjugation and the Mullineux map in blocks of weight 1 Since conjugation re-
verses the dominance order on partitions, it is easy to describe in Bγ , given that
it permutes the blocks Bγ and Bγ ′ . Denote τ = γ ′ and denote partitions in Bτ as
τ0 E τ1 E · · · E τp−1. When conjugating each partition in Bγ , we obtain all partitions
in Bτ . We have

(γp−1)′ E · · · E (γ1)′ E (γ0)′ .
Then,

(γ i)′ = τ (p−1)−i .
Thus, since conjugation produces the p-core to conjugate, in a diagram it is as follows.
If γ is not self-conjugate:
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4. Stable unitriangular basic sets for blocks of small weights

Whereas if γ is self-conjugate, conjugation does the following in Bγ :

The following proposition asserts that the Mullineux map works similarly, but in
Regp(Bγ ) = {γ1, . . . ,γp−1} and Regp(Bτ ) = {τ1, . . . , τp−1}.

Proposition 4.4.3. For 1 ≤ i ≤ p − 1 we have

mp(γ i) = τp−i ,

where mp is the Mullineux map. In terms of arm-length of hooks : If the p-hook of a weight
1 partition γ i has arm-length i, then the arm-length of the p-hook in mp(γ i) is p − i.

Illustrated as in the diagrams above, the proposition says that the Mullineux map
does the following. If γ is not self-conjugate

If γ is self-conjugate:

where the highlighted partitions are the p-singular partitions.

Proof. We prove the equivalent statement: for 1 ≤ i ≤ p − 1 we have

mp(γp−i) = τ i .

The proof is by induction on i, and using the form of the decomposition matrix Dγ

(or Dτ ) of the block Bγ (or Bτ ), described in (4.4).
Let i = 1. We show that mp(γp−1) = τ1. We know that dγp−1,γp−1 = 1, from the usual

UBS Regp(Bγ ). From Proposition 4.6.2, we have that dγp−1,γp−1 = d(γp−1)′mp(γp−1). But
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4.4. About blocks of weight 1

(γp−1)′ = τ0. So that dτ0mp(γp−1) = 1. Now, from (4.4), the row τ0 of Dτ has exactly one

non-zero entry, in the column indexed by the simple module Dτ
1
. Hence

mp(γp−1) = τ1.

Let 2 ≤ i ≤ p − 2, and suppose that mp(γp−i) = τ i . We show that mp(γp−i−1) = τ (i+1).
From (4.4), we know that dγp−i−1γp−i−1 = 1. Now, from Proposition 4.6.2, dγp−i−1γp−i−1 =
d(γp−i−1)′mp(γp−i−1). Since (γp−i−1)′ = τ i , we have that dτ imp(γp−i−1) = 1. But the only

non-zero entries in row τ i correspond to the columns τ i+1 and τ i , then mp(γp−i−1) ∈
{τ i+1, τ i}. But, by the induction hypothesis τ i = mp(γp−i). Hence, since the Mullineux
map is a bijection, mp(γp−i−1) = τ i+1.

The assertion about the arm-lengths of hooks is justified by Remark 1.1.7.

4.4.2 SUBS for blocks of weight 1

Having in mind that we will define a SUBS for Bγ ∪Bγ ′ with underlying set

U
γ
n,p = {λ ∈ Regp(Bγ ) |mp(λ) < λ} t {λ′ | λ ∈ Regp(Bγ ) and mp(λ) < λ}, (4.5)

where γ ` n−p, with the preceding description of the combinatorics and the Mullineux
map in Bγ , we are able to characterize the partitions λ ∈ Bγ such that mp(λ) < λ,
where < is the lexicographic order.

Proposition 4.4.4. With the same notations, the partitions λ in Bγ such that mp(λ) < λ
are exactly

γ ( p+1
2 ),γ ( p+3

2 ), . . . ,γp−1.

Proof. If γ is self-conjugate, it is straightforward from Proposition 4.4.3: Since Bγ ∪
Bτ = Bγ which is equal to the list τ0, . . . , τp−1. This list is organized increasingly
following the lexicographic order, then the second half of the list is formed by the
partitions λ such that mp(λ) < λ.

Suppose that γ is not self-conjugate. Let 1 ≤ i ≤ p − 1. If mp(γ i) < γ i , then, for
every i ≤ j ≤ p − 1, we have mp(γ j ) < γ j . This holds because γ i < γ j and, on the other
hand mp(γ i) = τp−i and mp(γ j ) = τp−j , so that mp(γ j ) <mp(γ i). We are saying that
any partition λ in Bγ with mp(λ) < λ, forces every partition in the block, greater than
λ, to have that same property.

Now, since U is a UBS for Bγ , the number of partitions λ such that mp(λ) < λ is
the same for every block of weight 1. In particular Bγ and Bτ . On the other hand, a
SUBS for Bγ ∪Bτ contains 2(p−1) partitions. Where (p−1) of this partitions have the

property mp(λ) < λ. Then there must be (p−1
2 ) partition having such property in Bγ

(and in Bτ ). This, together with the previous paragraph show that such partitions are
precisely

γ ( p+1
2 ),γ ( p+3

2 ), . . . ,γ (p−1),

in Bγ .

We now set the total order and bijection for the SUBS for Bγ ∪Bτ . Let Λ be the
following subset of Bγ ∪Bτ :

Λ = {λ ∈Bγ |mp(λ) < λ}.
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4. Stable unitriangular basic sets for blocks of small weights

Denote partitions in Λ as λ1,λ2, . . . ,λr in a way such that λ1 < λ2 < · · · < λr , where
< is the lexicographic order on partitions (the partitions λi and the number r are
completely described by Proposition 4.4.4 and depend on whether γ is self-conjugate
or not). Define the following total order ≺ in Uγ

n,p

λr � λr−1 � · · · � λ1 � (λr )′ � (λr−1)′ � · · · � (λ1)′ .

Extend this total order to a total order, equally denoted, inBγ∪Bτ such that every
partition in (Bγ ∪Bτ )rU is less than every partition in Uγ

n,p.
Define the following bijection.

Ψ : U
γ
n,p −→ Irrp(Bγ ∪Bτ )

λ 7−→
{
λ if λ ∈Λ,

mp(λ′) otherwise.

Proposition 4.4.5. The total order ≺ in Bγ ∪Bτ , together with the bijection Ψ and the set
U
γ
n,p, form a SUBS for Bγ ∪Bτ .

Proof. We show that the submatrix of Dn,p with rows indexed by Uγ
n,p, and columns

indexed by Irrp(Bγ ∪Bτ ) has wedge shape. Organise the rows and columns of such
submatrix as follows:

λr · · · λ1 mp(λr ) · · · mp(λ1)
λr

... D1 D2

λ1

(λr )′

... D3

(λ1)′

* * *

The sub-matrix D1 is lower unitriangular. Indeed, from Proposition 4.4.4, the
partitions λr , . . . ,λ1 are p-regular. Hence, on one hand dλiλi = 1 for every 1 ≤ i ≤ r. On
the other hand if dλiλj , 0 for some 1 ≤ i, j ≤ r, then λj < λi , and, from the definition of
≺, we have λj ≺ λi as well. This shows that D1 is lower unitriangular. Now, D3 = D1,
from Proposition 4.6.2. Then, D3 is lower unitriangular.

We claim that D2 = (0)r×r . Indeed, suppose that dλimp(λj ) , 0 for some 1 ≤ i, j ≤ r
and that λi = γk for some p+1

2 ≤ k ≤ p−1. We know that row γk has only two non-zero
entries (one, if k = p − 1), one in column γk = λi , and the other in column γk+1. But
γk+1 ,mp(λj ) for every 1 ≤ j ≤ r. Indeed, if γ is self-conjugate, γk+1 = mp(γp−k−1),

by 4.4.3. But p − k − 1 ≤ p−3
2 , then γp−k−1 < Λ. A similar reasoning is done if γ is not

self-conjugate. Hence D2 = (0)r×r , and the submatrix with rows indexed by U is lower
unitriangular.
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4.5. Blocks of weight 2

4.5 Blocks of weight 2

With SUBS in hand for non self-conjugate blocks or blocks of odd weight, the next
step is to study in detail self-conjugate blocks of weight 2. It is the subject of this
section.

In this section γ is a p-core and Bγ is a block with self-conjugate p-core γ and
p-weight 2.

In [Ric96], Richards studied blocks of weight 2, in particular the combinatorics
of partitions in such blocks and he gave a complete description of the decomposition
numbers. In this section we recall some of his definitions and results which we use.
Within his definitions there is an object associated to a block called pyramid, it will be
one of the main objects in this section. We also use notations from [Fay], where Fayers
presents an efficient way to label simple modules.

Remark 4.5.1. Some of the following results and affirmations are still valid if γ is not
self-conjugate. 4

4.5.1 Combinatorics and notations for partitions in blocks of weight 2

Pyramids

From here we always use the labelling of runners in the abacus as defined in §1.1.7.
Let γ be a p-core. Consider the abacus display for γ . Let ρ0 < ρ1 < . . . < ρp−1 be the

positions of the lower beads as in §1.1.7. The pyramid of γ is a triangular array (iγj )ij
of 0s and 1s, defined as follows: for 0 ≤ i ≤ j ≤ p − 1 let

iγj =

1 if ρj − ρi < p,

0 if ρj − ρi > p.

We organise these numbers in a diagram as follows

row
p − 1 0γp−1

...
...

2 0γ2 1γ3 · · · p−3γp−1
1 0γ1 1γ2 2γ3 · · · p−2γp−1
0 0γ0 1γ1 1γ1 · · · p−1γp−1

(4.6)
For short, we write i0j if iγj = 0 and i1j if iγj = 1. The definition of the pyramid

can be extended for convenience by allowing i and j to be any integers: if i > j, then
iγj = 1. Otherwise, if i < 0 or j ≥ p we define iγj = 0. In the pyramid diagram, that
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4. Stable unitriangular basic sets for blocks of small weights

means that the outside upper left and upper right is filled with 0s and the outside
lower part is filled with 1s. For 0 ≤ k ≤ p−1, we call the k-th row of the pyramid as the
set or entries iγj such that j − i = k. The apex of the pyramid is the entry 0γp−1.

Example 4.5.2. Let p = 5 and the 5-core γ = (2,2). The 5-abacus for γ is

3 4 2 0 1
...

...
...

...
...

...
...

...
...

...

The positions of the lower beads in each runner are 11,10,7,3, and 4. Then, organised
increasingly, (ρ0,ρ1,ρ2,ρ3,p4) = (3,4,7,10,11), so that the labelling of the runners is
3,4,2,0,1 from left to right. The pyramid for γ is

004

003 104

012 103 214

011 112 213 314

010 111 212 313 414

4
The definition of the pyramid implies that if an entry is 1, then the two entries

just below are 1 as well. Hence, below a 1 there is a whole triangle or pyramid of 1s.
Hence if an entry is 0, there are only 0s above it.

Remark 4.5.3. Pyramids are originally defined for p-blocks (p-cores) of any weight.
Two different pyramids correspond to different p-cores. But two different p-cores can
have the same pyramid. However, there is an equivalence relation that can be defined
in the set of p-cores, for which the equivalences classes are certain (Scopes) families of
p-cores. Two blocks have the same pyramid if and only if they are Scopes-equivalent
([Ric96, Proposition 3.3]).

Moreover, two blocks corresponding to partitions of p-weight w with p-cores in
the same family have essentially the same decomposition numbers. See [Sco95] and
[Ric96, §3]. 4

Notation for partitions in block of weight 2

We recall a notation introduced by Fayers [Fay], for partitions in Bγ . Since Bγ is of
weight 2, a partition λ in Bγ is obtained from the abacus of γ by moving twice a bead
down one position. This can be done in three different ways

• The lowest bead on each of the runners i and j, with i < j, is moved one position
down. In which case λ is denoted 〈i, j〉.
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4.5. Blocks of weight 2

• The lowest bead on runner i is moved down two positions. In this case λ is
denoted 〈i〉.

• The lowest bead on runner i is moved down one position and the next bead
above it is moved down one position. In this case λ is denoted 〈i2〉.

So that every partition inBγ corresponds to exactly one of 〈i, j〉 for 0 ≤ i < j ≤ p−1
or 〈i〉 or 〈i2〉 for 0 ≤ i ≤ p − 1. We refer to this notation as 〈·〉 notation for partitions in
Bγ .

Remark 4.5.4 (counting partitions). This shows that there is a total of
(p

2
)
+ 2p = p(p+3)

2
partitions in Bγ (in any block of p-weight 2). Which agrees with Theorem 1.4.8: it is
equal to the number of p-partitions of w = 2. 4
Remark 4.5.5. The 〈·〉 notation is also well defined in blocks which are not self-
conjugate.

Conjugation in the abacus and notation for self-conjugate partitions

In order to characterize self-conjugate partitions in Bγ in terms of 〈·〉 notation, let us
study the form of the abacus of γ .

Let us refer to the following transformation of a runner as reversing: reflecting the
runner with respect to a horizontal axis (turning it upside down), and transforming
the beads into empty spaces and viceversa.

Since p is odd, any p-abacus has a runner which is in the middle, we refer to this
runner as the middle runner. For any other runner, we can associate what we call its
opposite runner which is the different runner equally spaced to the middle runner.

Now, conjugation of partitions can be done in the abacus in two steps: first we
switch each runner with its opposite runner, and then we reverse all runners simulta-
neously (with respect to a same horizontal axis). Thus, the abacus of a self-conjugate
p-core is such that the middle runner is its own reverse and opposite runners are mu-
tual reverses. For example, the abacus of the self-conjugate 5-core γ = (6,5,3,22,1)
is

4 1 2 3 0

The chosen labelling for the runners in the abacus has the property that the labels of
two runners opposite to each other, add up to p − 1. Let us see why. Recall the total
order l defined on the set of runners of the abacus (§1.1.7). It is easy to see, following
the discussion in the previous paragraph, that conjugation reverses this order, that is,
if R and S are two runners of the abacus of a p-core such that R l S, and R′ and S ′
are their images under conjugation, then S ′ l R′. So if a runner R has label r, then
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4. Stable unitriangular basic sets for blocks of small weights

its image R′ under conjugation, has label p − 1 − r. In the abacus of a self-conjugate
p-core, this means that the labels (r0, r1, . . . , rp−1) must satisfy ri = p−1− rp−1−i . See the
example above.

Now, observe that any self-conjugate partition in Bγ is obtained from the abacus
of γ by sliding down two beads, each one in a runner opposite to the other: First, we
are saying that such a partition belongs to the first kind of partitions described just
before Remark 4.5.5, that is, partitions of the form 〈i, j〉. Indeed, being self-conjugate,
the middle runner is equal to its reverse. A runner on which at most two beads have
been moved and which is equal to its reverse is of one of the following forms

...

...

or

...

...

or

...

...

but the third option is not possible since it requires more than two movements. The
second option requires only one bead movement, but that means that the second (and
last) movement occurs in a runner different from the middle runner, which would
then not be equal to the reversed opposite runner, since its opposite runner has all of
its beads all the way up. This leaves the first option as the only possibility. Thus, none
of the two bead movement are done in the middle runner; they are done in a pair of
opposite runners. Such a partition is then written 〈i, j〉 in the 〈·〉 notation, and more
precisely, we have:

Lemma 4.5.6. In 〈·〉-notation, the self-conjugate partitions in Bγ are exactly

νk =
〈p − 1

2
− k, p − 1

2
+ k

〉
for 1 ≤ k ≤ p − 1

2
.

Example 4.5.7. There are exactly two self-conjugate partitions in the 5-block B(2,2),
from Example 4.5.2. They are (6,3,2,13) = 〈1,3〉 and (7,2,15) = 〈0,4〉. 4

Notation for p-regular partitions in Bγ

For this subsection, γ is not necessarily self-conjugate.
In [Fay], Fayers introduced a notation d·c for indexing p-regular partitions in Bγ .

We recall this notation and we slightly modify it for our convenience. Recall that,
any partition in Bγ corresponds to one of 〈i〉, 〈i2〉, or 〈i, j〉 for 0 ≤ i < j ≤ p − 1 and
0 ≤ i ≤ p − 1. Now, some of these partitions are p-regular, and this depends on γ . Let
(iγj )ij be the pyramid of Bγ . For 0 ≤ i ≤ j < p with i < p − 1, define
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4.5. Blocks of weight 2

di, jc :=



〈i + 1〉 if i = j and i+10i+2 ,

〈i + 1, i + 2〉 if i = j and i+11i+2 ,

〈i + 1, j〉 if i , j and i+10j ,

〈j2〉 if i , j and i+11j and i0j ,

〈i〉 if i , j and i1j and i0j+1,

〈i, j + 1〉 if i , j and i1j+1 .

From the abacus and the information encoded in the pyramid, it is easy to see
that each p-regular partition corresponds to exactly one of di, jc for 0 ≤ i ≤ j < p and
i < p − 1. We refer to this notation for p-regular partitions in Bγ as d·c-notation.

Remark 4.5.8 (counting partitions). This shows that there is a total of
(p−1

2
)
+2(p−1) =

p(p+1)−2
2 p-regular partitions partitions in Bγ (in any block of p-weight 2). Which

agrees with Theorem 1.4.9 : it is equal to the number of (p−1)-partitions of w = 2. 4
Remark 4.5.9. If d·cF denotes Fayers’ labelling for p-regular partitions as originally
defined in [Fay], then

di, jc :=
{di + 1cF if i = j and,

di + 1, jcF otherwise.
4

Notice that p-regular partitions are in bijection with the set of all but one entry in
(iγj ) by making

Regp(Bγ ) ! (iγj )
di, jc ←→ iγj

(4.7)

for 0 ≤ i ≤ j < p and i < p − 1. The reason for using d·c-notation (and shifting the
original definition) is the simple description of this correspondence. There is only
the entry p−1γp−1, the last entry to the right of row 0 in the pyramid, which is not
associated to a p-regular partition.

Example 4.5.10. Recall the pyramid for the 5-blockB(2,2) of F5S14, shown in Example
4.5.2. The 5-regular partitions in B(2,2) are

Reg4(B(2,2)) = {(12,2), (72), (6,42), (34,12), (11,3), (7,4,3), (6,32,12), (5,32,13),

(33,2,13), (8,32), (7,32,1), (6,3,2,13), (4,32,14), (7,22,13)}.
In d·c-notation, in the same order:

Reg4(B(2,2)) = {d3,3c, d2,2c, d1,1c, d0,0c, d3,4c, d2,3c, d1,3c, d1,2c,
d0,1c, d2,4c, d1,4c, d0,3c, d0,2c,d0,4c}.

4

4.5.2 Richards’ ∂ map and the Mullineux map in the pyramid

In this section we explore in detail the correspondence (4.7) between p-regular par-
titions in Bγ and entries in the pyramid. We will see how these partitions are dis-
tributed in the pyramid: in which positions are the self-Mullineux partitions and what
says the position in the pyramid with respect to the dominance order.
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4. Stable unitriangular basic sets for blocks of small weights

Richards’ ∂ map

In [Ric96], Richards gives an explicit description of decomposition numbers for blocks
of weight 2. For this, he defines a value ∂λ associated to every partition λ on such a
block. We recall this definition and some of his results which we use later.

As already noted, the core γ of any partition λ in Bγ is obtained by succesive
removal of two rim p-hooks. Let ∂λ be the absolute value of the difference of the
leg lengths of the two rim p-hooks. Then 0 ≤ ∂λ = ∂λ′ ≤ p − 1. The value of ∂λ is
independent of the way in which the rim hooks are removed, see [Ric96, Lemma 4.1].
Then ∂λ is well defined.

Denote by ∂` the set of partitions in Bγ such that their ∂ value is `, that is,

∂` := {λ ` n | λ ∈Bγ and ∂λ = `}.

We write ∂γ,` if the block needs to be specified and is not clear from the context. We
denote ∂reg

` the subset of p-regular partition in ∂`, so that ∂reg
` = Regp(Bγ )∩ ∂`. We

have

Bγ =
p−1⊔
`=0

∂`.

Example 4.5.11. Following Example 4.5.10, we have, for partitions in the block B(2,2)
of F5S14:

∂0 = { (22,110) , (27) , (34,12), (6,42), (72), (12,2)}
∂1 = { (23,18) , (33,2,13), (5,32,13), (6,32,12), (7,4,3), (11,3)}
∂2 = { (33,15) , (4,32,14), (6,3,2,13), (7,32,1), (8,32)}
∂3 = { (6,3,15) , (7,22,13)}
∂4 = { (7,2,15) }

Where highlighted partitions are those which are not 5-regular. The rest of the
partitions are 5-regular and, in d·c-notation they are, in the same order:

∂
reg
0 = {d0,0c,d1,1c,d2,2c,d3,3c}
∂

reg
1 = {d0,1c,d1,2c,d1,3c,d2,3c,d3,4c}
∂

reg
2 = {d0,2c,d0,3c,d1,4c,d2,4c}
∂

reg
3 = {d0,4c}

4
From the abacus and the pyramid, we have some information about particular

partitions belonging in some of the sets ∂`.

Lemma 4.5.12 ([Ric96, §4, p. 398]). Let 1 ≤ k ≤ p−1
2 and let νk =

〈
p−1

2 − k, p−1
2 + k

〉
be a

self-conjugate partition in Bγ . Then νk ∈ ∂2k−1 ∪∂2k .

This is easily seen in the abacus. We include a proof for completeness, which is
adapted to notation in this thesis.
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Proof. Consider the abacus of a partition λ. Let 1 ≤ r ≤ p−1, and let us call runner-hook
r the hook added to λ by moving down one position the last bead in runner r. Recall,
from Remark 1.1.7, that the leg-length of the runner-hook r is the number of beads
between the start and final position of the moved bead. Now, If we take the abacus of
γ , the leg-length of the runner-hook r is

p − 1− r.

We want to calculate ∂νk . For this, we calculate the leg-lengths of two p-hooks
successively added to γ to obtain νk : the partition νk =

〈
p−1

2 − k, p−1
2 + k

〉
can be ob-

tained from the abacus of γ by first moving down one bead in runner p−1
2 − k. From

the discussion above the leg-length of this hook is

l1 := p − 1−
(p − 1

2
− k

)
=
p − 1

2
+ k.

Now, we have a new abacus in which we have to calculate the leg-length of the runner-
hook p−1

2 +k, runner in which we move the second bead. In the previous abacus for γ ,
this leg-length would have been p−1−

(
p−1

2 + k
)

= p−1
2 −k, but since we already moved

one bead in the abacus for γ , we might have added 1 to this leg-length, since we might
have added one bead (the first moved bead) to the set of beads between the start and
final position of the second bead. This happens only if the difference of positions of
the last beads in runners p−1

2 −k and p−1
2 +k, in the abacus for γ , is less than p. In other

words, only if ( p−1
2 −k)γ( p−1

2 +k) = 1. Hence, the leg-length of the runner hook p−1
2 + k in

this new abacus is

l2 :=


p−1

2 − k + 1 if ( p−1
2 −k)γ( p−1

2 +k) = 1,

p−1
2 − k otherwise.

Then

∂νk :=

2k − 1 if ( p−1
2 −k)γ( p−1

2 +k) = 1,

2k otherwise.

The family of partitions ∂0 can be partitioned into two sets ∂+
0 and ∂−0 as follows. A

partition λ of weight 2 has either two rim p-hooks or one rim p-hook and one rim 2p-
hook (since the p-weight is also equal to the number of rim hooks of length divisible
by p). In the first case, Richards showed that the leg lengths of the rim p-hooks are
consecutive integers. Define λ to be in ∂+

0 or ∂−0 following

λ ∈ ∂0 has



two rim p-hooks
{
λ ∈ ∂+

0 if the larger leg is of even length,

λ ∈ ∂−0 otherwise.

or

one rim p-hook and
one rim 2p-hook


λ ∈ ∂+

0
if the leg length of the rim 2p-hook
is ≡ 0 or 3 mod 4,

λ ∈ ∂−0 otherwise.
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4. Stable unitriangular basic sets for blocks of small weights

Richards proved the following

Proposition 4.5.13 ([Ric96, Lemma 4.2 and 4.3]). For 0 ≤ i ≤ p − 1, the set ∂` is totally
ordered by E. Moreover the partitions ofBγ which are p-singular are precisely: the smallest
partition on each ∂` for 0 < ` ≤ p − 1 and the smallest partition on each of ∂+

0 and ∂−0 .

Notice the resemblence of the combinatorics of partitions in a set ∂` with that of
partitions in weight 1 blocks shown in §4.4.1.

Remark 4.5.14. Then, there are exactly (p−1)+2 = p+1 p-singular partitions inBγ (in
any block of p-weight 2). Which agrees with the counting of partitions and p-regular
partitions in Bγ in Remark 4.5.4 and Remark 4.5.8. 4

Richards’s ∂-function on p-regular partitions can be expressed in the d·c notation.
Direct analysis with the abacus of γ and its relation with the leg-lengths of p-hooks
of partitions in Bγ gives:

Proposition 4.5.15 ([Fay, Proposition 4.1]). Let (iγj )ij be the pyramid of γ . For 0 ≤ i ≤
j < p and i < p − 1

∂di, jc = j − i − 1 + iγj .

With such an expression for ∂di, jc, together with the correspondence (4.7), we can
say precisely to which positions in the pyramid correspond the partitions ∂reg

` for a
given `. This helps for graphically visualizing ∂reg

` in the pyramid:

Corollary 4.5.16. For 1 ≤ l ≤ p − 1, the set ∂reg
` is in correspondence with the set of “1”

entries in the l-th row on the pyramid and the “0” entries in the (`+ 1)-th row. The set ∂reg
0

corresponds to the first p−1 entries on the 0-th row (all entries in the 0-th row are “1”) and
the “0” entries in the 1-st row.

Proof. Let 1 ≤ ` ≤ p − 1, and let λ ∈ ∂reg
` . Write λ as λ = di, jc with 0 ≤ i ≤ j < p and

i < p − 1.
Suppose that i < j. If i0j , then from Proposition 4.5.15, j − i = ` + 1. So that iγj = 0

is in row ` + 1. Now, if i1j then from Proposition 4.5.15, j − i = `. So that iγj = 1 is in
row `.

If i = j, by definition of the pyramid, i1i and this entry on the 0-th row. On the
other hand, Proposition 4.5.15 implies that ` = 0. And since 0 ≤ i < p − 1, this entry is
one of the first p − 1 entries in 0-th row.

Example 4.5.17. We continue Example 4.5.11. Associating p-regular partitions in
B(2,2) with their corresponding entries in the pyramid, we have that, in the pyramid
of B(2,2), the subsets ∂reg

` are distributed as follows:
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4

Conjugation and the Mullineux map in the sets ∂`

We characterize self-conjugate and self-Mullineux partitions in a given set ∂`, by
studying how these involutions behave with respect to E.

Recall, from Proposition 4.5.13 that the sets ∂` are totally ordered by E. Let 1 ≤
` ≤ p − 1 and denote k` := |∂` |. Denote the partitions in ∂` as

λ1 E λ2 E · · · E λk`−1 E λk` ,

where the highlighted partition is the unique p-singular partition. Now, from the fact
that ∂λ = ∂λ′ for any partition λ, and that conjugation reverses the dominance order
([Mac79, I.1.11]), we have λ′i = λk`−i+1 for any 1 ≤ i ≤ k`. Graphically, conjugation does
the following in ∂` for 1 ≤ ` ≤ p − 1:

For ` = 0 it is easy to see that, since p is odd, if λ ∈ ∂+
0 then λ′ ∈ ∂−0 , that is, conjuga-

tion changes the sign of partitions in ∂0. Then, k0 is even. Let k0 = 2j0 and denote
partitions in ∂+

0 as

λ+
1 E λ

+
2 E λ

+
3 E · · · E λ+

j−1 E λ
+
j0
,

Denote partitions in ∂−0 as

τ−1 E τ
−
2 E τ

−
3 E · · · E τ−j−1 E τ

−
j0
,

where the highlighted partitions are the only p-singular partitions in ∂0. Then, since
conjugation changes the sign and reverses the dominance order (λ+

i )′ = τj0 − i + 1.
Graphically, conjugation does the following in ∂0:

Let us now see that the Mullineux map behaves in a similar way, but within ∂reg
` .

Recall that, for a p-regular partition µ, the p-cores of µ and mp(µ) are conjugates.
Since Bγ is self-conjugate, then for any µ ∈ Regp(Bγ ) the partition mp(µ) is also in
Regp(Bγ ). Moreover, Richards showed that (mp(µ))′ is the biggest partition (for E) in
Bγ such that (mp(µ))′ E µ and ∂(mp(µ))′ = ∂µ, and if ∂µ = 0, it has the same sign as µ
([Ric96, Th. 4.4 and Prop. 2.12]). Then, for 2 ≤ i ≤ k` we have that (mp(λi))′ = λi−1.
So that mp(λi) = λ′i−1 = λk`−(i−1)+1 = λ(k`−i+1)+1. Graphically, the Mullineux map does
the following in ∂` for 1 ≤ ` ≤ p − 1:
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For l = 0, and for 2 ≤ i ≤ j0 we have that (mp(λ+
i ))′ = λ+

i−1. So that mp(λ+
i ) = (λ+

i−1)′ =
τ−j0−(i−1)+1 = τ−(j0−i+1)+1. Graphically, the Mullineux map does the following in ∂0:

Remark 4.5.18. Notice the resemblance of the behavior of conjugation and the Mullineux
map in each set ∂` and in a weight 1 block.

The behavior of these two involutions in the sets ∂l allows to easily deduce in
which sets lie their fixed points, that is, the self-conjugate and the self-Mullineux
partitions: It all depends on the parities of kl and j0, for 1 ≤ ` ≤ p − 1 and j0. The
conclusion is summarized in the following lemma.

Lemma 4.5.19. The set ∂0 does not contain any self-conjugate or self-Mullineux partition
and |∂0| is even. For 1 ≤ ` ≤ p − 1, the set ∂` contains either exactly one self-conjugate
partition or one self-Mullineux partition: If |∂` | is even, it contains one self-Mullineux
partition. If |∂` | is odd, it contains one self-conjugate partition.

Proof. From the discussion above describing conjugation in ∂` and the Mullineux map
in ∂reg

` , we see that none of these involutions has fixed points in ∂0. For ` ≥ 1, on the
other hand, we can see that if k` = |∂` | is even, then conjugation defines pairs (λ,λ′)
with λ , λ′. In this case |∂reg

` | = k`−1 is then odd, and the Mullineux map has a unique
fixed point: the partition in the middle of the list λ2,λ3, . . . ,λk` . The contrary occurs
when k` is odd.

Example 4.5.20. We continue Example 4.5.17 to illustrate this lemma. The block Bγ

contains exactly two self-conjugate partitions: (6,3,2,13) = 〈1,3〉 and (7,2,15) = 〈0,4〉;
and two self-Mullineux partitions: (6,31,12) = d1,3c and (7,22,13) = d0,4c. The car-
dinalities of ∂1, ∂2, ∂3 and ∂4 are respectively 6, 5, 2 and 1. The two self-conjugate
partitions are respectively in ∂2 and ∂4 and the two self-Mullineux partitions are re-
spectively in ∂1 and ∂3. 4

Dominance order in the pyramid

We study how we can compare p-regular partitions inBγ with respect to E depending
on their positions in the pyramid of γ . This allows to improve what we already know
about the distribution of the sets ∂reg

` in the pyramid (Corollary 4.5.16), and to identify
self-Mullineux partitions in the pyramid.

Let (iγj )ij be the pyramid of γ . We identify the entry iγj with the corresponding
p-regular partition di, jc in Bγ .

Proposition 4.5.21. Let 1 ≤ i ≤ j < p and i < p − 1. Then di − 1, jc E di − 1, j + 1c and
di − 1, jc E di, jc. In the correspondence with the pyramid array, graphically, we have the
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local configuration
di − 1, j + 1c

E
di − 1, jc

E

di, jc
Proof. In [Ric96], Richards introduces a notation for partitions in the block, which
depends on the entries of the pyramid. With this notation he obtains a complete
description of the dominance order E in the block (in the appendix §4.7 for Chapter
4 we recall this notation). Every partition in the block corresponds to a pair written
{s, t} for some 0 ≤ s < t ≤ 2p. Lemma [Ric96, Lemma 4.4] says

{s, t}E {s′ , t′} if and only if s ≤ s′ and t ≤ t′ . (4.8)

We translate Richards’ notation in the notation d·c, and using this, our assertion is
easily verified.

This proposition implies that the distribution of the sets ∂reg
` in the pyramid, as

we know it from Corollary 4.5.16, does not only correspond to some entries of the
pyramid as a set, but this distribution also agrees with the dominance order, which
then is increasing from left to right in the pyramid.

Furthermore, in our case, since γ is self-conjugate then, by construction the pyra-
mid is horizontally symmetrical. Hence, each set ∂reg

` occurs in symmetrical positions
(is equally distributed with respect to the middle of the pyramid). Then, any self-
Mullineux partition µ ∈ ∂` (some 1 ≤ ` ≤ p − 1), being in the middle of the list

λ2 E · · · E λ`,
occurs in the middle of the pyramid. And any entry in the middle of the pyramid cor-
responds, reciprocally to a self-Mullineux partition. We state this fact in the following
corollary

Corollary 4.5.22. Let (iγj )ij be the pyramid of γ . The self-Mullineux partitions in Bγ

correspond exactly to the entries on the middle column of the pyramid, except for the one
on row 0. In d·c-notation, these partition are:

µk =
⌈p − 1

2
− k, p − 1

2
+ k

⌋
for 1 ≤ k ≤ p − 1

2
.

Moreover µk ∈ ∂2k−1 ∪∂2k .

Proof. There is nothing to prove for the first affirmation: Indeed, the indices i = p−1
2 −k

and j = p−1
2 − k for 1 ≤ k ≤ p−1

2 are those exactly in the middle column of the pyramid
by construction. Let us see that µk ∈ ∂2k−1∪∂2k . Since µk =

⌈
p−1

2 − k, p−1
2 + k

⌋
, then µk is

in row
(
p−1

2 + k
)
−
(
p−1

2 − k
)

= 2k. If p−1
2 +kγ p−1

2 −k = 0, then by Corollary 4.5.16, µk ∈ ∂reg
2k−1,

otherwise µk ∈ ∂reg
2k .

Example 4.5.23. From the last two results, we can add new information to the dia-
gram in Example 4.5.17, namely (some) dominance order relations, and we can also
highlight the entries corresponding to the self-Mullineux partitions in B(2,2):
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4

Bijection between self-conjugate and self-Mullineux partitions

Here we state the natural correspondance between self-conjugate and self-Mullineux
partitions in the block Bγ given by the chosen notations.

A direct consequence of Lemmas 4.5.6, 4.5.12, 4.5.19 and Corollary 4.5.22 is the
following:

Corollary 4.5.24. There is a natural one-to-one correspondence between the set of self-
conjugate partitions and the set of self-Mullineux partitions inBγ given by, for 1 ≤ k ≤ p−1

2 ,

νk =
〈p − 1

2
− k, p − 1

2
+ k

〉
←→ µk =

⌈p − 1
2
− k, p − 1

2
+ k

⌋
.

The partitions µk and νk are the unique self-Mullineux and self-conjugate partitions, re-
spectively, in the set ∂2k−1 ∪∂2k .

Example 4.5.25. We continue Example 4.5.20. We have {ν1,µ1} ⊆ ∂1 ∪∂2, where ν1 =
〈1,3〉 = (6,3,2,13) and µ1 = d1,3c = (6,31,12); and {ν2,µ2} ⊆ ∂3∪∂4, where ν2 = 〈0,4〉 =
(7,2,15) and µ2 = d0,4c = (7,22,13). 4
Remark 4.5.26. In Chapter 3 there is a bijection BGn

p ←→Mn
p between the sets of p-

BG-partitions of n and the set of p-self-Mullineux partitions of n. Recall that |Mn
p ∩

B| = |BGn
p ∩B| for a p-block B (Proposition 4.3.4); the number of p-self-Mullineux

partitions in a p-block is equal to the number of p-BG-partitions in the p-block. Now,
in a block of weight 2, the set of p-BG-partitions is equal to the set of self-conjugate
partitions. On the other hand, from Proposition 3.3.3 the bijection in Chapter 3 re-
stricts to each block, that is, preserves the p-core of a partition. Hence, a question
is whether this bijection coincides with the correspondence just defined in Corol-
lary 4.5.24. Tests, which give a positive answer, have been made in GAP ([S+97])
for n up to 56 (p odd < n). 4

Two lemmas

We state two technical lemmas which are important for the proof of the main theorem
(Theorem 4.6.1).

We know “more or less” to which sets ∂` belong the self-conjugate and self-Mu-
llineux partitions in Bγ ; indeed, for 1 ≤ ` ≤ p−1

2 , we know that the pair of partitions
µk and νk are in ∂2k−1 ∪ ∂2k , see Corollary 4.5.24. The information encoded in the
pyramid of the block Bγ allows us to be more precise. For this we state the following
lemma.
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Consider the set µ1,µ2, . . . ,µ p−1
2

of self-mullineux partitions in Bγ . The entries of

the pyramid corresponding to partitions µ1,µ2, . . . ,µ p−1
2

are are gk := iγj with i = p−1
2 −k

and j = p−1
2 − k, for 1 ≤ k ≤ p−1

2 (Corollary 4.5.22). Such entries are in the middle
column of the pyramid. When k runs from 1 to p−1

2 , these entries run from bottom
to top in the pyramid, and because of the definition and properties of the pyramid,
the sequence g1, g2, . . . , g p−1

2
is of one the forms 1,1, . . . ,1,0,0, . . . ,0, or 1,1, . . . ,1, or else

0,0, . . . ,0.

Definition 4.5.27. In the notation from the preceding paragraph, define δ = δ(γ) as

δ =

0 if gk = 0 for all 1 ≤ k ≤ p−1
2 ,

max {k | gk = 1} otherwise.

4

Lemma 4.5.28. For k = 1, . . . , p−1
2 we have:

• If k ≤ δ, then µk ∈ ∂2k and νk ∈ ∂2k−1;

• if k > δ, then µk ∈ ∂2k−1 and νk ∈ ∂2k .

In a table:
ν p−1

2
∈ ∂p−1

µ p−1
2
∈ ∂p−2

...
νδ+1 ∈ ∂2(δ+1)
µδ+1 ∈ ∂2(δ+1)−1
µδ ∈ ∂2δ
νδ ∈ ∂2δ−1

...
µ2 ∈ ∂4
ν2 ∈ ∂3
µ1 ∈ ∂2
ν1 ∈ ∂1

Example 4.5.29. We continue Example 4.5.25. The pyramid is in Example 4.5.23. We
see that the entries in the middle column corresponding to self-Mullineux partitions
are all equal to 0. Hence, here δ = 0, and we have indeed that µ1 ∈ ∂1 and µ2 ∈ ∂3, as
this lemma implies. 4
Proof of Lemma 4.5.28. The entries g1, g2, . . . , g p−1

2
are exactly those in the middle col-

umn of the pyramid (except that on row 0 which corresponds to a p-regular partition
in ∂0), from bottom to top and they correspond to the self-Mullineux partitions on the
block. These entries are respectively in rows 2,4,6, . . . ,p − 1.

Let 1 ≤ k ≤ p−1
2 . If k > δ, then gk = 0. Hence µk which is in row 2k, belongs to ∂2k−1,

by Corollary 4.5.16. Thus, for k > δ, we have νk ∈ ∂2k . If k ≤ δ, then gk = 1, and since
µk is in row 2k we know that µk ∈ ∂2k . Then, for k ≤ δ we have νk ∈ ∂2k−1.
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4. Stable unitriangular basic sets for blocks of small weights

The following is a technical lemma concerning the dominance order in Regp(Bγ )
with respect to positions in the pyramid. This is an adaptation of [Ric96, Lemma 4.4],
which is a characterisation of the dominance order in the block to our notation for
partitions. This lemma is a key fact in the proof of Theorem 4.6.1.

Let (iγj )ij be the pyramid of the p-core γ . For two entries iγj and kγl , we say that
iγj is to the left of kγl (or, equivalently kγl is to the right of iγj ) if iγj is in a column of
the pyramid to the left of the column of kγl . In terms of indices, this is equivalent to
i + j < k + l.

Lemma 4.5.30 ([Ric96, Lemma 4.4]). Let λ,τ ∈ Regp(Bγ ) such that λ is to the left of τ .
Then, λ E τ or λ and τ are not comparable for the dominance order; written equivalently
as τ 6 λ.

Proof. By definition the pyramid of γ has 2p−1 columns. Suppose that λ is in column
c and τ is in column c +N . The proof is by induction on N . The crucial part is the
base case. Suppose that N = 1, and let λ = di, jc in d·c-notation. Making correspond
positions in the pyramid to p-regular partitions the local configuration in column c+1
is as follows:

c c+ 1
...

di − 2, j + 3c

di − 1, j + 2c

... di, j + 1c
λ = di, jc

... di + 1, jc

di + 2, j − 1c

di + 3, j − 2c
...

A

B

Now, if τ = di, j + 1c or τ = di + 1, jc (highlighted in the diagram above), Proposition
4.5.21 says that λ E τ , so that τ 6 λ. Let us split the rest of the partitions (or entries of
the pyramid) in this column in two sets A and B, where

A = {di − k, j + k + 1c | k ≥ 1},

and
B = {di + k + 1, j − kc | k ≥ 1},

where k takes values such that partitions in A and B lie in the pyramid. Consider the
two possible cases iγj = 0 or iγj = 1. In the first case, we necessarily have iγj+1 = 0, as
well as all the entries in A. In the second case i+1γj = 1, as well as all the entries in B.
In the pyramid, these configurations look as follows:
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4.6. A SUBS for blocks of weight 2

Case 1:

c c+ 1
0
...
0

... 0
iγj = 0
... ∗

...
∗

Case 2:

c c+ 1
∗
...

... ∗
iγj = 1
... 1

1
...
1

Let us consider these two cases. In each case, we translate d·c-notation of λ and of τ
for each partition τ in column c+1, into {·}-notation to get {s, t} and {s′ , t′}, respectively
and we will see that τ 6 λ by noticing that {s′ , t′} E {s, t} or they are not comparable,
using Proposition 4.7.1 in the appendix §4.7. Consider all possible cases for positions
of λ and τ . We get the following values for λ = {s, t} and τ = {s′ , t′}, where k ≥ 1:

Case 1:

λ τ
s t s′ t′

2i + 3 2j + 1 2i − 2k + 3 2j + 2k + 3
2i + 2 2j + 1 2i + 2k + 5 ≤ 2p

2i + 2k + 5 2j − 2k + 5
2i + 2k + 5 2j − 2k + 1
2i + 2k + 4 2j − 2k + 1
2i + 2k + 3 2j − 2k + 2
2i + 2k + 3 2j − 2k + 3

Case 2:

λ τ
s t s′ t′

2i + 1 2j + 3 2i + 2k + 5 2j − 2k + 3
2i + 2 2j + 2 2i + 2k + 5 ≤ 2p

2i + 2k + 3 2j − 2k + 3
2i − 2k + 3 2j + 2k + 3
2i − 2k + 2 2j + 2k + 3
2i − 2k + 1 2j + 2k + 4
2i − 2k + 1 2j + 2k + 5

For each of these possible values for s, s′ , t, t′ we always obtain that s < s′ or t < t′,
then either λ E τ or λ and τ are not comparable for E, by Proposition 4.7.1. That is
τ 6 λ. This concludes the base case.

For the inductive step, suppose that τ is in column c+N , withN > 1. And suppose
that τ E λ. Let us see that there is a contradiction. By Proposition 4.5.21, there is a
partition τ̃ in column c + (N − 1) such that τ̃ E τ . Since τ̃ is in column c + (N − 1), by
induction τ̃ 6 λ. But τ̃ E τ and τ E λ imply that τ̃ E λ, a contradiction.

4.6 A SUBS for blocks of weight 2

In this section we will show that the set defined as

V
γ
n,p := {λ ∈ Regp(Bγ ) |mp(λ) < λ} t {λ′ | λ ∈ Regp(Bγ ) and mp(λ) < λ}

t {λ ∈ Regp(Bγ ) | λ′ = λ},
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4. Stable unitriangular basic sets for blocks of small weights

is the underlying set of a SUBS forBγ , a self-conjugate p-block of weight 2 of FpSn.
Denote

V 1
γ := {λ ∈ Regp(Bγ ) |mp(λ) < λ},
V 2
γ := {λ′ | λ ∈ Regp(Bγ ) and mp(λ) < λ}, and

V 3
γ := {λ ∈ Regp(Bγ ) | λ′ = λ}.

Then, V γn,p = V 1
γ t V 2

γ t V 3
γ , and V

γ
n,p is in one-to-one correspondence with

Regp(Bγ ). Indeed, write Regp(Bγ ) as

Regp(Bγ ) =W 1
γ t W 2

γ t W 3
γ ,

where
W 1
γ := {λ ∈ Regp(Bγ ) |mp(λ) < λ},

W 2
γ := {mp(λ) | λ ∈ Regp(Bγ ) and mp(λ) < λ}, and

W 3
γ := {λ ∈ Regp(Bγ ) | λ = mp(λ)}.

Hence, it is straightforward to see that V 1
γ t V 2

γ and W 1
γ t W 2

γ are in bijection, and

on the other hand, V 3
γ and W 3

γ are in bijection since V 3
γ = {νk | 1 ≤ k ≤ p−1

2 } and

W 3
γ = {µk | 1 ≤ k ≤ p−1

2 }. Hence there is a bijection

Ψγ : V
γ
n,p −→ Regp(Bγ )

λ 7−→


λ if λ ∈ V 1

γ ,

mp(λ′) if λ ∈ V 2
γ ,

µk if λ ∈ V 3
γ and λ = νk for some 1 ≤ k ≤ p−1

2 ,

which restricts to the bijection from Corollary 4.5.24 on the self-conjugate partitions.

We now define a total order in Bγ . First, label partitions in V 1
γ = {λ1,λ2, . . . ,λt},

where t = |V 1
γ |, in such a way that λ1 > λ2 > · · · > λt in the lexicographic order. Now,

let ≺ be a total order in Bγ such that

λ1 � λ2 � · · · � λt � λ′1 � λ′2 � · · · � λ′t � ν1 � ν2 � · · · � νδ−1

� νδ � ν e−1
2
� ν e−3

2
� · · · � νδ+2 � νδ+1,

(4.9)

where the number δ is as in Definition 4.5.27, and such that for any other partition
λ ∈ Bγ \ V γn,p, we have λ ≺ τ for every τ ∈ V γn,p. Having defined the bijection Ψγ and
the total order ≺, we can now state our main result:

Theorem 4.6.1. The set (V γn,p,≺,Ψγ ) is a stable unitriangular basic set (SUBS) for the block
Bγ .

We state two important facts about decomposition numbers for the proof:

Proposition 4.6.2 (The Mullineux map [Mat99, §6.4 Rule 11]). Let λ ∈ Par(n) and µ ∈
Regp(n). Then dλµ = dλ′mp(µ), where mp is the Mullineux map.
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4.6. A SUBS for blocks of weight 2

Proposition 4.6.3 (Theorem 4.4 [Ric96]). Let p , 2 be a prime. Let γ ` (n − 2p) be a
p-core and Bγ the corresponding block of Sn. Let λ ∈Bγ and µ ∈ Regp(Bγ ). Then dλµ = 1
if λ = µ or λ = mp(µ)′ or both mp(µ)′ E λ E µ and ∂λ−∂µ = ±1; otherwise dλµ = 0.

Proof of Theorem 4.6.1. The fact that properties (A) and (B) from Definition 4.2.6, hold
for V γn,p are a direct consequence of its definition. Property (A) is true by definition of
the set V γn,p. Property (B) holds because, in a p-block of weight 2, every self-conjugate
partition is a BG-partition. Let us see this. Recall that, under a certain convention
for defining the p-quotient of a partition in a block, if qp,γ (λ) = (λ(1),λ(2), . . . ,λ(p)) is
the p-quotient of a partition with p-core γ then qp,γ ′ (λ′) = (λ(p)′ ,λ(p−1)′ , . . . ,λ(1)′) is the
p-quotient of its conjugate partition λ′. The BG-partitions in a p-block are those self-
conjugate partitions ν for which the (p+1

2 )-th partition in the quotient is the empty
partition. That is, partitions ν such that the p-quotient is of the form

qp,γ (ν) = (ν(1),ν(2), . . . ,ν( p−1
2 ),∅, ν( p−1

2 )′ , . . . ,ν(2)′ ,λ(1)′).

In a block of p-weight 2, the quotient qp,γ (λ) of a self-conjugate partition λ is a p-
multi-partition of total rank 2. Since λ is self-conjugate, qp,γ (λ) is completely deter-

mined by λ(1),λ(2) . . . ,λ( p+1
2 ), where either (λ(1),λ(2), . . . ,λ( p−1

2 )) is a multipartition of 1

and λ( p+1
2 ) = ∅, or λ(i) = ∅ for all 1 ≤ i ≤ p−1

2 and λ( p+1
2 ) is a self-conjugate partition of 2.

The second option is not possible, then there exists 1 ≤ j < p+1
2 such that ν(j) = (1) and

ν(j) = (1) and ν(i) = ∅ for i , j with 1 ≤ i ≤ p+1
2 . Hence λ is a BG-partition.

It remains to prove that (V γn,p,≺,Ψγ ) is a unitriangular basic set for the block Bγ .
For this, consider the square matrix D̃γ formed by the rows of Dγ indexed by V γn,p,
arranged according to the total order ≺ and columns organized as follows.

λ1 · · · λt mp(λ1) · · · mp(λt) µ1 · · · µδ+1
λ1

... D1 D2

λt

λ′1
... D3 D4

λ′t

ν1

... D6

νδ+1

D5

* * *

We will show that D̃γ is lower unitriangular. We do it by steps: first, for the
square submatrices D1, . . . ,D4, we show that D1 = D4 is lower unitriangular and that
D2 = D3 = (0)t×t. We show as well that D5 = (0)2t× p−1

2
. Finally we show that D6 is lower
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unitriangular. Having shown this we will have that (Ṽγ ,≺,Ψγ ) is a stable unitriangu-
lar basic set for the block Bγ .

D1 and D4: Since λi is p-regular for 1 ≤ i ≤ t, then dλiλi = 1 for 1 ≤ i ≤ t. Let 1 ≤ i, j ≤ t.
By definition of ≺, if λi � λj , then λi > λj for the lexicographic order. Hence either
λi D λj or λi and λj are not comparable for E. By Theorem 1.4.3, dλiλj = 0. This shows
that D1 is lower unitriangular. For 1 ≤ i, j ≤ t, by Proposition 4.6.2, dλ′imp(λj ) = dλiλj .
Hence D4 = D1 is lower unitriangular.

D2, D3, and D5: For studying D2, D3 and D5, notice that we have the following prop-
erty: Let λ,τ ∈W 1

γ such that ∂λ,∂τ ≥ 1 and let µ ∈W 3
γ . Then λ 6 µ and λ 6mp(τ).

We prove this property. Let 1 ≤ l ≤ p−1. From §4.5.2 we know that, depending on
|∂reg
l |, the partitions in ∂reg

l can be listed as either

τ1 . τ2 . · · · . τr . µ .mp(τr ) . · · · .mp(τ2) .mp(τ1),

or
τ1 . τ2 . · · · . τr .mp(τr ) . · · · .mp(τ2) .mp(τ1),

where r =
⌊ |∂reg

l |
2

⌋
, mp is the Mullineux map and µ is some self-Mullineux partition.

On the other hand, by Corollary 4.5.16, Corollary 4.5.22 and Proposition 4.5.21,
we know that these partitions are distributed in the pyramid from left to right in
increasing dominance order, horizontally symmetrical and that the self-Mullineux
partitions are in the middle column. These observations allow to identify three zones
in the pyramid with the intersection of

⋃
l≥1∂

reg
l with the three subsets W 1

γ , W 2
γ and

W 3
γ of Regp(Bγ ): W 1

γ is the left half, W 2
γ is the right half and W 3

γ is the column in the
middle:

Now, let λ,τ ∈W 1
γ with ∂λ,∂τ ≥ 1 and let µ ∈W 3

γ . Then µ is to the left of λ in the
pyramid, and mp(τ) is to the left of λ. By Lemma 4.5.30, λ 6 µ and λ 6mp(τ), which
concludes the proof of this property.

Let us see that D2, D3 and D5 are matrices of zeros. Let λi ,λj ∈ V 1
γ = W 1

γ for
some 1 ≤ i ≤ t. From the affirmation above, λi 6 mp(λj ). Then, by Theorem 1.4.3,
dλimp(λj ) = 0. That is, D2 = (0)t×t. On the other hand, by Proposition 4.6.2 dλ′iλj =
dλimp(λj ) = 0, so that D3 = D2 = (0)t×t.

Let µk ∈ W 3
γ , for some 1 ≤ k ≤ p−1

2 . From the assertion above, λi 6 µk . Then by
Theorem 1.4.3, dλiµk = 0. On the other hand, dλ′iµk = dλimp(µk) = dλiµk = 0. This shows
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that D5 = (0)2t× p−1
2

.

D6: It remains to show that D6, is lower unitriangular. We first prove that it is

lower triangular. Consider the matrix D̃6 defined by taking D6 and ordering rows
as ν1,ν2, . . . ,ν p−1

2
and columns as µ1,µ2, . . . ,µ p−1

2
. The matrix D̃6 is “almost” lower trian-

gular. For making clear what we mean by “almost”, let us study the precise form of the
matrix, with Proposition 4.6.3 and Lemma 4.5.28 (for clarity see Example 4.6.4 after
this proof). From Proposition 4.6.3, in Dγ every entry in the column µk is zero except
for rows µk , mp(µk)′ = µ′k which are 1, and any λ with µ′k E λ E µk and ∂λ−∂µk = ±1,
which is also 1. Now if µk ∈ ∂l then µ′k ∈ ∂l , and for D̃6 we are only interested in rows
corresponding to the self-conjugate partitions in Bγ . Self-conjugate partitions and
self-Mullineux partitions are never in a same set ∂l , so that µ′k is not self-conjugate.
Hence we are only left with looking for partitions λwith µ′k E λ E µk and ∂λ−∂µk = ±1,
among self-conjugate partitions ν1,ν2, . . . ,ν p−1

2
. Consider the possible two cases: δ = 0

of δ ≥ 1.
If δ = 0, from Lemma 4.5.28, the partitions µ1,ν1,µ2,ν2, . . .µ p−1

2
,ν p−1

2
belong respec-

tively, in that same order, to sets ∂1,∂2,∂3,∂4, . . . ,∂ p−3
2
,∂ p−1

2
. Then, the first column of

D̃6, column µ1, has possibly a 1 only in row ν1, since ∂ν1 − ∂µk = 1, and the rest of
entries in this column are equal to 0 since ∂νi − ∂µk = 1 for i , 1. For 1 < k ≤ p−1

2 ,
µk ∈ ∂2k−1 has only two 1; one in row νk−1 ∈ ∂2k−2 and one in row νk ∈ ∂2k . In this case,
then D̃6 takes the following form:

µ1 µ2 · · · µ p−3
2

µ p−1
2

ν1 ∗ ∗
ν2 · ∗
...

. . .
ν e−3

2
∗ ∗

ν e−1
2

· ∗

Where “∗” is either 0 or 1 (we will see that it is 1) and dots are 0.
If δ ≥ 1, the partitions ν1,µ1,ν2,µ2, . . . ,νδ,µδ,µδ+1,νδ+1, . . . ,µ p−1

2
,ν p−1

2
belong respec-

tively, in that same order, to sets ∂1,∂2,∂3, ∂4, . . . ,∂ p−3
2
,∂ p−1

2
. Hence, for a similar rea-

soning, starting from column µδ+1, the matrix D̃6 is of the same form as in the case
δ = 0, but columns µk with 1 ≤ k ≤ δ, have a 1 in rows νk and νk+1:

µ1 µ2 · · · µδ µδ+1 µδ+2 · · · µ p−1
2

ν1 ∗ ·
ν2 ∗ ∗
...

. . .
νδ ∗
νδ+1 ∗ ∗
νδ+2 · ∗
...

. . .
ν p−1

2
∗
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In any of the two cases we can see that the total order

ν1 � ν2 � · · · � νδ−1 � νδ � ν p−1
2
� ν p−3

2
� · · · � νδ+2 � νδ+1,

which is the order chosen in matrix D6, makes this matrix lower triangular. It remains
to prove that the entries in the diagonal are 1. That is, for every 1 ≤ k ≤ p−1

2 , we have
to prove that dνkµk = 1. For this, we use Tables 1 and 2 in [Ric96], adapted by Fayers

in [Fay, Proposition 3.1]. Recall that νk =
〈
p−1

2 − k, p−1
2 + k

〉
and µk = dp−1

2 − k, p−1
2 + kc.

From [Fay, Proposition 3.1], we have in particular that if µ = di − 1, jc and λ = 〈i − 1, j〉
then dλµ = 1, since for µ = µk and λ = νk we are exactly in that case, then dνkµk = 1.
Hence D6 is lower unitriangular and this concludes the proof of Theorem 4.6.1.

Example 4.6.4. Let p = 11, n = 36 and let γ be the 11-core γ = (7,2,15). The self-
Mullineux partitions in the block Bγ of weight 2 of F11S36 are

µ1 = (9,8,6,4,3,23), µ2 = (10,8,5,4,24,1), µ3 = (12,8,4,25,12),

µ4 = (12,8,3,25,13), µ5 = (18,27,14).

They belong respectively to ∂2,∂4,∂6,∂7,∂9. The self-conjugate partitions in Bγ

are

ν1 = (82,6,4,32,22), ν2 = (9,8,5,4,3,23,1), ν3 = (10,8,42,24,12),

ν4 = (12,8,26,14), ν5 = (18,2,116).

They belong respectively to ∂1,∂3,∂5,∂8,∂10. The matrix D̃γ is

µ1 µ2 µ3 µ4 µ5
ν1 1
ν2 1 1
ν3 · 1 1
ν4 · · · 1 1
ν5 · · · · 1

4

4.7 Appendix for Chapter 4

In this appendix we recall the system of abbreviations given by Richards in [Ric96]
for partitions of p-weight 2.

We fix a p-core γ . Consider the abacus configuration for γ and let (iγj ) be the
corresponding pyramid. Let ρ0 < ρ1 < · · · < ρp−1 be the positions of the lowest beads
on each runner (as in 1.1.7). The abacus configuration for a partition of n with p-core
γ and p-weight 2 can be obtained from that for γ in one of three ways:

(a) Moving down one space the beads at positions ρi and ρj for some 0 ≤ i < j ≤ p−1,
or

(b) Moving down one space the beads at positions ρi and ρi−p for some 0 ≤ i ≤ p−1,
or
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(c) Moving down two spaces the bead at position ρi for some 0 ≤ i ≤ p − 1.

In the system of abbreviations, each partition is represented by {s, t} for some 0 ≤
s < t ≤ 2p, according to the following rules. For partitions of the type (a) we set
s = 2i+1 and t = 2j+1. For partitions of the type (b) we set s = 2k and t = 2i+1, where
k is the largest such that 0 ≤ k ≤ i and k−1γi = 0. Finally, for partitions of the type (c)
we set s = 2i+1 and t = 2k+2, where k is the smallest such that i ≤ k ≤ p−1 and iγk+1.

This system of notations has the following property:

Proposition 4.7.1 ([Ric96, Lemma 4.4]). We have

{s, t}E {s′ , t′} if and only if s ≤ s′ and t ≤ t′ .

Hence, the dominance order is easy to describe using this system of notations for
partitions.
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GAP functions

In this appendix we include the code for some functions used when working in this
thesis. The functions are written in GAP 3 [S+97] and they require to load the package
Specht [Mat]. A file selfmuBG.g containing the functions below and a more readable
documentation can be found in the Github repository [Ber21b].

The function EBeta is the bijection from Theorem 4.6.1. EBeta takes an odd prime
p and a p-self-Mullineux partitions and it returns the corresponding p-BG-partition.
The inverse is EBetaInverse. For defining these functions, there is a list of auxiliary
functions.

DiagramPartition:=function(mu)

# Takes a partition mu and returns the set of nodes

# that form the Young diagram of mu.

local d,i,j;

if mu=[] then

return [];

else

d:=[];

for i in [1..Length(mu)] do

for j in [1..mu[i]] do

Add(d,[i,j]);

od;

od;

return Set(d);

fi;

end;

Rim:=function(mu)

# Takes a partition mu and returns the set of nodes

# (i,j) of the rim of mu

local r,c;

r:=[];

for c in DiagramPartition(mu) do

if not ( [c[1]+1,c[2]+1] in DiagramPartition(mu) ) then

Add(r,c);

fi;
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od;

return Set(r);

end;

OrgRim:=function(mu)

# Takes a partition mu and returns a list of the nodes

# of the rim of the diagram of mu, organized from

# "north-east" to "south-west" of the Young diagram.

local r,i,j;

r:=[];

if mu=[] then

return [];

else

for i in [1..Length(mu)] do

j:= mu[i];

while j > 0 do

if [i,j] in Rim(mu) then

Add(r,[i,j]);

fi;

j:= j-1;

od;

od;

fi;

return r;

end;

HookLength:=function(la,i,j)

# Takes a partition la and a node (i,j) in the Young

# diagram of la and returns the hook-length of the

# (i,j)-th hook

local lap,l;

lap:=ConjugatePartition(la);

l:= Length(la);

if i>=1 and i<=l and j>=1 and j<=la[i] then

return la[i]-j+lap[j]-i+1;

else

Print("the node (",i,",",j,") is not in the

Young diagram of ",la,"\n");

fi;

end;

PartitionDiag:=function(nodes)

# Takes a set of nodes forming a Young diagram and

# returns the associated partition.

local col,n,b,mu,i,j;

mu:=[];

n:= Length(nodes);

if nodes=[] then
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return [];

else

i:=1;

col:=[];

while i<=n do

for j in [1..n] do

if [i,j] in nodes then

Add(col,j);

fi;

od;

if col=[] then

return mu;

else

Add(mu,Maximum(col));

fi;

col:=[];

i:=i+1;

od;

return mu;

fi;

end;

DiagBoxRim:=function(mu)

# Takes a self-conjugate partition mu an returns i the

# only diagonal

where (i,i) is the only diagonal node in the rim of mu.

local i;

for i in [1..Length(mu)] do

if [i,i] in Rim(mu) then

return i;

fi;

od;

end;

PRim1:=function(e,mu)

# Set U of the p-rim* of mu.

local n,res,rim,d,i,k,mil,r,l,m,x,b,compte,muprime,

prim,j;

rim:= OrgRim(mu);

prim:= [];

m:= DiagBoxRim(mu);

d:=Position(rim,[m,m]);

if mu=[] then

return [];

elif Length(rim) <= e then

return rim;

else

i:=1;
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while i <= d do

compte:= e;

j:=i;

while compte <> 0 do

if j <= Length(rim) then

Add(prim,rim[j]);

compte:= compte - 1;

j:=j+1;

else

# Add(prim,rim[j]);

return prim;

fi;

od;

k:=j-1;

if j-1 = Length(rim) then

return prim;

elif j-1 >= d then

return prim;

else

while rim[k][1] = rim[j-1][1] do

k:= k + 1;

od;

i:= k;

compte:= e;

fi;

od;

fi;

return prim;

end;

PRim2:=function(l,e)

# Fix the middle segment.

local r,enlever,b,mil,x;

r:= Length(l) mod e;

if r = 0 then

r := e;

fi;

mil:=l{[Length(l)-r+1..Length(l)]};

x:= mil[1];

enlever:=[];

for b in mil do

if b[2]<x[1] then

Add(enlever,b);

fi;

od;

l:=Set(l);

for y in enlever do
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RemoveSet(l,y);

od;

return l;

end;

PRim3:=function(e,mu)

# The subset U of the p-rim*

local rim;

rim:= PRim1(e,mu);

rim:=PRim2(rim,e);

return rim;

end;

PRim4:=function(e,mu)

# The reflection of subset U of the p-rim*

local rim,srim,j,i,m,b,d,a,k,l,orgsrim,compte,res;

rim:=OrgRim(mu);

srim:=Set(rim);

m:= DiagBoxRim(mu);

d:=Position(rim,[m,m]);

for b in rim do

if (Position(rim,b) <= d) or b in PRim3(e,mu) then

RemoveSet(srim,b);

fi;

od;

orgsrim:=[];

j:=Length(mu);

while j>0 do

for i in [1..mu[j]] do

if [j,i] in srim then

Add(orgsrim,[j,i]);

fi;

od;

j:=j-1;

od;

res:=[];

a:=1;

compte:=e;

if Length(orgsrim)<=e then

return orgsrim;

else

while a<=Length(orgsrim) do

k:=a;

while compte <> 0 do

if k <= Length(orgsrim) then

Add(res,orgsrim[k]);

compte:= compte-1;

k:=k+1;
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else

return res;

fi;

od;

l:=k-1;

if k-1 = Length(orgsrim) then

return res;

else

while orgsrim[l][2] = orgsrim[k-1][2] do

l:= l + 1;

if l>Length(orgsrim) then

return res;

fi;

od;

a:= l;

compte:= e;

fi;

od;

fi;

return res;

end;

PRim5:=function(e,mu)

# p-rim* for self-conjugate mu

local l;

l:=PRim3(e,mu);

Append(l,PRim4(e,mu));

return l;

end;

ERim:=function(e,mu)

#Takes an odd prime e and a self-conjugate partition

# mu and returns[mu^(1)*,e-rim*] where e-rim is the

# e-rim* of a self-conjugate partition and mu^(1)*

# is the partition obtained from mu after deleting

#the e-rim*.

local diag,erim,b ;

erim:=PRim5(e,mu);

diag:=Set(DiagramPartition(mu));

for b in erim do

RemoveSet(diag,b);

od;

return [PartitionDiag(diag),erim];

end;

AutoSymb:=function(e,mu)

# Takes a prime e and a self-conjugate partition mu

# and returns the first line of the (first line of the)# p-BG-symbol for mu.
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local muprime,symb;

symb:=[];

if mu=[] then

return [];

else

muprime:=mu;

while muprime <> [] do

Add(symb,Length(ERim(e,muprime)[2]));

muprime:=ERim(e,muprime)[1];

od;

return symb;

fi;

end;

EBGsymb:=function(p,mu)

# Takes a prime p and a self-conjugate partition mu

# and returns the p-BG-symbol mu

local i, symb;

symb:=[];

symb[1]:=AutoSymb(p,mu);

symb[2]:=[];

for i in AutoSymb(p,mu) do

if EuclideanRemainder(i,2)=0 then

Add(symb[2],i/2);

else

Add(symb[2],(i+1)/2);

fi;

od;

return symb;

end;

EBetaInverse:=function(e,la)

# Takes an odd prime e, and a e-BG-partition la and

# returns the e-self-Mullineux partition corresponding

# to la under the bijection defined by the bg-symbol.

local n,m,i,l,j ;

n:=Sum(la);

m:=1;

j:=1;

l:=Length(la);

if la<>ConjugatePartition(la) then

return Print("E: this is not a BG-partition. \n");

fi;

while la[m]>=m do

m:=m+1;

od;

m:=m-1;

while j<=m and HookLength(la,j,j) mod e <> 0 do
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j:=j+1;

od;

j:=j-1;

if j<m then

return Print("E: this is not a BG-partition. \n");

fi;

return PartitionMullineuxSymbol(e,EBGsymb(e,la));

end;

DurfeeNumber:=function(mu)

# takes a partition and returns its durfee number.

local d,i,l;

d:=1;

l:=Length(mu);

if mu=[0] then

return 0;

else

while d <= l and d<=mu[d] do

d:=d+1;

od;

fi;

return d-1;

end;

EBGPartitions:=function(p,n)

# Takes an odd prime p and an integer n and returns

# the list of p-BG-partitions of n.

local list,d,la,i,inlist;

list:=[];

for la in Partitions(n) do

if la=ConjugatePartition(la) then

d:=DurfeeNumber(la);

i:=1;

inlist:=true;

while i <= d and inlist=true do

if HookLength(la,i,i) mod p = 0 then

inlist:=false;

else i:= i+1;

fi;

od;

if inlist=true then

Add(list,la);

fi;

fi;

od;

return list;

end;
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EBetaSymbol:=function(e,symb)

# Takes a prime e and the Mullineux symbol symb (list

# of rows) of a e-self-Mullineux partition and returns

# the associated e-BG-partition.

local k,i,n,s;

if MullineuxMap(e,PartitionMullineuxSymbol(e,symb))=

PartitionMullineuxSymbol(e,symb) then

n:=Sum(symb[1]);

k:=0;

i:=1;

while k=0 do

if EBGsymb(e,EBGPartitions(e,n)[i])=symb then

k:=1;

s:=EBGPartitions(e,n)[i];

else

i:=i+1;

fi;

od;

return s;

else

return Print("This is not the symbol of a ",e,"-self-mullineux partition.

","\n");

fi;

end;

EBeta:=function(e,mu)

# Takes a prime e and a e-self-Mullineux mu and

# returns the e-BG-partition partition corresponding

# to mu under the bijection defined by the bg-symbol.

local symb ;

if MullineuxMap(e,mu)=mu then

return EBetaSymbol(e,MullineuxSymbol(e,mu));

else return Print(mu," is not a ",e,"-self-mullineux partition");

fi;

end;

129





Bibliography

[AE04] G. Andrews and K. Eriksson. Integer partitions. Cambridge University Press,
Cambridge, 2004.

[Alp86] J. L. Alperin. Local representation theory, volume 11 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1986. Mod-
ular representations as an introduction to the local representation theory of
finite groups.

[AO91] G. Andrews and J. Olsson. Partition identities with an application to group
representation theory. J. Reine Angew. Math., 413:198–212, 1991.

[Ber21a] A. Bernal. On self-mullineux and self-conjugate partitions. Electron. J. Com-
bin., 28, 2021.

[Ber21b] A. Bernal. Self-mullineux-SUBS. https://github.com/ana-bernal/

self-Mullineux-SUBS, 2021.

[Ber21c] A. Bernal. Unitriangular basic sets for blocks of the symmetric and al-
ternating groups of small weights, 2021. To appear in Journal of Algebra.
arXiv:2106.07215.

[Bes91] C. Bessenrodt. A combinatorial proof of a refinement of the Andrews-Olsson
partition identity. European J. Combin., 12(4):271–276, 1991.

[BG10] O. Brunat and J.-B. Gramain. A basic set for the alternating group. J. Reine
Angew. Math., 641:177–202, 2010.

[BGJ20] O. Brunat, J.-B. Gramain, and N. Jacon. On unitriangular basic sets
for symmetric and alternating groups, arxiv:2011.00815., 2020. Preprint
arXiv:2011.00815.

[BK03] J. Brundan and J. Kujawa. A new proof of the Mullineux conjecture. J. Alge-
braic Combin., 18(1):13–39, 2003.

[BO94] C. Bessenrodt and J. Olsson. On Mullineux symbols. J. Combin. Theory Ser. A,
68(2):340–360, 1994.

[BO98] C. Bessenrodt and J. Olsson. On residue symbols and the Mullineux conjec-
ture. J. Algebraic Combin., 7(3):227–251, 1998.

[Bra47] R. Brauer. On a conjecture by Nakayama. Trans. Roy. Soc. Canada Sect. III,
41:11–19, 1947.

131

https://github.com/ana-bernal/self-Mullineux-SUBS
https://github.com/ana-bernal/self-Mullineux-SUBS


Bibliography

[Bre99] D. Bressoud. Proofs and confirmations. MAA Spectrum. Mathematical Associ-
ation of America, Washington, DC; Cambridge University Press, Cambridge,
1999. The story of the alternating sign matrix conjecture.

[Bru98] J. Brundan. Modular branching rules and the Mullineux map for Hecke al-
gebras of type A. Proc. London Math. Soc. (3), 77(3):551–581, 1998.

[Cli37] A. H. Clifford. Representations induced in an invariant subgroup. Ann. of
Math. (2), 38(3):533–550, 1937.

[CR62] C. Curtis and I. Reiner. Representation theory of finite groups and associative
algebras. Pure and Applied Mathematics. 11. New York-London: Interscience
Publishers, a division of John Wiley & Sons. xiv, 685 pp, 1962.
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Ensembles basiques pour les groupes symétriques et alternés, involution de
Mullineux

Dans cette thèse nous nous intéressons aux propriétés combinatoires de la théorie des représentations modulaires des
groupes symétriques et alternés.

Nous nous concentrons sur le problème de l’étiquetage des représentations irréductibles modulaires des groupes symé-
triques et alternés. Une façon naturelle d’aborder ce problème est de trouver des ensembles basiques unitriangulaires pour
les matrices de décomposition. Une de nos principales motivations est liée à l’application de Mullineux, application qui
contrôle la restriction du groupe symétrique au sous-groupe alterné. Dans le but d’avoir un étiquetage particulièrement
bien adapté à cette restriction, on cherche des ensembles basiques unitriangulaires stables. De tels ensembles sont stables
pour la conjugaison.

Il apparaît lors de notre étude le phénomène remarquable suivant : le nombre de partitions auto-conjuguées avec
des longueurs des crochets diagonaux non divisibles par p, appelées BG-partitions, est égal au nombre de points fixes
de l’application de Mullineux, ou partitions auto-Mullineux. Nous montrons une correspondance combinatoire explicite
entre les deux ensembles de partitions.

Récemment il a été montré qu’il n’existe pas toujours un ensemble basique unitriangulaire pour le groupe alterné.
Cependant, ces notions peuvent être définies au niveau des blocs. Nous étudions l’application de Mullineux dans les blocs
auto-conjugués de p-poids 2 du groupe symétrique et nous exhibons un ensemble basique unitriangulaire stable pour ces
blocs, ce qui implique l’existence d’ensembles basiques unitriangulaires pour certains blocs des groupes alternés.

Mots clés : Combinatoire algébrique, Théorie des représentations, Groupe symétrique, Groupe alterné, involution de
Mullineux.

Basic sets for the symmetric and alternating groups, Mullineux involution

This thesis concerns combinatorial properties of the modular representation theory of the symmetric and alternating
groups.

We focus on the problem of labelling the modular irreducible representations of the symmetric and alternating groups.
A natural way to approach this is through unitriangular basic sets for the decomposition matrices. One of our main motiva-
tions is related to the Mullineux map, which controls the restriction from the symmetric group to the alternating subgroup.
In order to have a labelling which is particularly well adapted to this restriction, we look for stable unitriangular basic sets.
Such sets are stable for conjugation.

In our study, the following remarkable phenomenon is observed : the number of self-conjugate partitions with diagonal
hook-lengths not divisible by p, called BG-partitions, is equal to the number of fixed points of the Mullineux map, or self-
Mullineux partitions. We give a combinatorial and explicit correspondence between the two sets of partitions.

Recently it has been shown that there is not always a unitriangular basic set for the alternating group. However, these
notions can be defined at the level of blocks. In this thesis, we study the Mullineux map in self-conjugate blocks of p-weight
2 of the symmetric group and we construct a stable unitriangular basic set for these blocks, which implies the existence of
unitriangular basic sets for some blocks of the alternating groups.

Keywords : Algebraic combinatorics, Representation theory, Symmetric group, Alternating group, Mullineux involu-
tion.

Discipline : Mathématiques.
Spécialité : Théorie des représentations.
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