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Résumé

Dans cette thése nous nous intéressons aux propriétés combinatoires de la théorie des repré-
sentations modulaires des groupes symétriques et alternés.

Nous nous concentrons sur le probléme de I’étiquetage des représentations irréductibles mod-
ulaires des groupes symétriques et alternés. Une facon naturelle d’aborder ce probléme est de
trouver des ensembles basiques unitriangulaires pour les matrices de décomposition. Une de
nos principales motivations est liée a I'application de Mullineux, application qui controéle la re-
striction du groupe symétrique au sous-groupe alterné. Dans le but d’avoir un étiquetage parti-
culierement bien adapté a cette restriction, on cherche des ensembles basiques unitriangulaires
stables. De tels ensembles sont stables pour la conjugaison.

Il apparait lors de notre étude le phénomeéne remarquable suivant : le nombre de partitions
auto-conjuguées avec des longueurs des crochets diagonaux non divisibles par p, appelées BG-
partitions, est égal au nombre de points fixes de ’application de Mullineux, ou partitions auto-
Mullineux. Nous montrons une correspondance combinatoire explicite entre les deux ensembles
de partitions.

Récemment il a été montré qu’il n'existe pas toujours un ensemble basique unitriangulaire
pour le groupe alterné. Cependant, ces notions peuvent étre définies au niveau des blocs. Nous
étudions l'application de Mullineux dans les blocs auto-conjugués de p-poids 2 du groupe sy-
métrique et nous exhibons un ensemble basique unitriangulaire stable pour ces blocs, ce qui
implique l’existence d’ensembles basiques unitriangulaires pour certains blocs des groupes al-
ternés.

Mots clés: Combinatoire algébrique, Théorie des représentations, Groupe symétrique, Groupe
alterné, involution de Mullineux.

Abstract

This thesis concerns combinatorial properties of the modular representation theory of the
symmetric and alternating groups.

We focus on the problem of labelling the modular irreducible representations of the symmet-
ric and alternating groups. A natural way to approach this is through unitriangular basic sets for
the decomposition matrices. One of our main motivations is related to the Mullineux map, which
controls the restriction from the symmetric group to the alternating subgroup. In order to have
a labelling which is particularly well adapted to this restriction, we look for stable unitriangular
basic sets. Such sets are stable for conjugation.

In our study, the following remarkable phenomenon is observed: the number of self-conjugate
partitions with diagonal hook-lengths not divisible by p, called BG-partitions, is equal to the
number of fixed points of the Mullineux map, or self-Mullineux partitions. We give a combinato-
rial and explicit correspondence between the two sets of partitions.

Recently it has been shown that there is not always a unitriangular basic set for the alternating
group. However, these notions can be defined at the level of blocks. In this thesis, we study the
Mullineux map in self-conjugate blocks of p-weight 2 of the symmetric group and we construct a
stable unitriangular basic set for these blocks, which implies the existence of unitriangular basic
sets for some blocks of the alternating groups.

Keywords: Algebraic combinatorics, Representation theory, Symmetric group, Alternating group,
Mullineux involution.
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Introduction

L'origine de la théorie des représentations des groupes finis remonte a la fin du 19¢me
siecle, lorsque Frobenius a étudié la factorisation d’un certain polynéme associé a
un groupe fini, appelé le “déterminant du groupe”. Généralisant le cas connu d’un
groupe abélien, il a prouvé que ce polyndéme se factorise comme un produit de po-
lyndmes irréductibles, ou chaque polynéme apparait avec une multiplicité égale a
son degré. Cette question, remarquée par Dedekind, est ce qui a conduit Frobenius
a inventer la théorie des caractéres pour un groupe fini arbitraire et & construire les
bases de ce que nous appelons aujourd’hui la théorie des représentations. Pour des
références historiques sur l'origine du sujet, dont les pionniers sont Frobenius, Burn-
side, Schur et Brauer, voir [Cur99,Haw71]. Le domaine s’est largement développé a ce
jour et il a des liens avec la physique, la chimie et d’autres domaines. Il est intéressant
de noter que la plupart des résultats sur la classification des représentations ordi-
naires du groupe symétrique étaient connus ou découverts au début de la théorie, et,
en revanche, il y a encore beaucoup de questions sur les représentations modulaires
qui ne sont pas résolues a ce jour.

En langage moderne, la théorie des représentations des groupes (finis) étudie les
facons dont un groupe donné agit sur des espaces vectoriels en tant qu’opérateurs
linéaires. Concretement, une représentation de dimension finie d’un groupe G est un
homomorphisme de groupes G — GL;(IK), ou K est un corps quelconque et GL;(K)
est le groupe des matrices inversibles d x d. Une représentation peut alors étre con-
sidérée comme une maniere de “représenter” les éléments d’un groupe sous forme de
matrices ; et ce faisant, de voir le groupe, qui est en principe un objet abstrait, comme
un objet dans 'univers de I’algebre linéaire.

Etudier la théorie des représentations du groupe G c’est étudier tous ces mor-
phismes (ou, plus précisément, a une certaine équivalence pres). Une représentation
peut étre construite a partir de représentations “plus petites”. Cela se produit lorsque
chaque matrice qui “représente” un élément du groupe, peut étre mise simultanément
dans une structure triangulaire par blocs, par un changement de base. Chacun des
blocs diagonaux est alors une représentation “plus petite” (la taille de la matrice est
plus petite). Si un tel changement de base n’existe pas, alors la représentation est dite
irréductible. De plus, pour un groupe fini G et un corps K de caractéristique 0 (ou ne
divisant pas l'ordre de G), la structure triangulaire par blocs peut toujours étre réduite
a une structure diagonale par blocs ; donc, dans ce cas, la tdche d’étudier tous les mor-
phismes G — GL;(K) se réduit plus ou moins a étudier toutes les représentations
irréductibles, a équivalence pres. Pour un corps général K, la situation n’est pas
exactement la méme, mais les représentations irréductibles restent des blocs fonda-
mentaux de la théorie des représentations et on commence habituellement 1’étude de
la théorie des représentations d’un groupe G sur K par I’étude des représentations
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irréductibles.

De nombreuses questions différentes se posent dans une telle entreprise ; si nous
fixons un groupe, combien de représentations irréductibles existent (a équivalence
pres) ? a quel point sont-elles explicites ? quelles dimensions possibles d apparaissent
? existe-t-il une facon “naturelle” d’indexer les représentations irréductibles ? dans
quelle mesure les réponses a ces questions changent-elles si nous changeons le corps
K ? quelles propriétés du groupe se refletent dans les représentations et vice versa
? etcetera. Des réponses, ou des réponses partielles, a certaines de ces questions
ont été trouvées pour certains groupes ou familles de groupes et ont conduit a des
applications intéressantes, par exemple la classification des groupes simples finis.

Dans cette these, notre attention se porte sur les représentations du groupe sy-
métrique S,, et du groupe alterné A,,. Le groupe symétrique S, est le groupe des
permutations d’une liste ordonnée de n symboles, ou 'opération est la composition.
C’est un groupe d’ordre n!. Comme les permutations sont des objets assez naturels, les
groupes symétriques et, plus généralement les groupes de permutation (sous-groupes
d’un groupe symétrique), ont été largement étudiés et utilisés, bien avant la formal-
isation des groupes abstraits. Le groupe alterné R, est I’ensemble des permutations
paires (permutations de signature 1) d’une liste ordonnée de n symboles. C’est donc
un sous-groupe de S,,.

La théorie des représentations du groupe symétrique a été étudiée et développée
pour la premiere fois par Frobenius, Schur et Young. Ils ont trouvé des réponses a
plusieurs des questions ci-dessus lorsque IK = C'. Dans ce cas, chaque représentation
de S, se décompose en une somme de représentations irréductibles et il existe une
classification de ces représentations irréductibles ; elles peuvent étre indexées par
I’ensemble des partitions de # :

Irre(S,) = {S* | A est une partition de n}.

Les partitions de n sont toutes les différentes manieéres non ordonnées d’écrire n
comme une somme d’entiers positifs. Depuis les travaux de Young, la combinatoire
des partitions et d’autres objets qui leur sont associés sont fondamentaux dans le
développement de la théorie des représentations du groupe symétrique : les repré-
sentations S*, appelées modules de Specht, peuvent étre décrites complétement en ter-
mes de A. Par exemple, le module de Specht S correspondant a la partition A = (1)
est la représentation triviale, et le module de Specht S1") correspondant a la partition
A = (1") est la représentation signe. Un autre exemple est la formule appelée formule
des équerres qui donne facilement la dimension de S* en termes de ). Pour citer un
dernier exemple, la décomposition en représentations irréductibles de I'induction de
S*de S, a5,,,, peut étre facilement décrite en termes de A.

En caractéristique positive, disons p = car(K), si p ne divise pas n! (de facon
équivalente p > n), les représentations de S, ont la méme classification qu’en car-
actéristique 0, c’est la théorie des représentations ordinaires. Par contre, lorsque p
divise l'ordre du groupe, dans notre cas si p divise n! (de facon équivalente p < n), on
parle de théorie des représentations modulaires.

L’étude des représentations p-modulaires de S, a commencé avec les travaux de
Nakayama dans les années 1940, apres les travaux de Brauer sur les représentations

En fait, toute représentation de S, sur C peut étre réalisée sur Q, ce qui fait que tout est similaire
si on prend K = Q ou n'importe quelle extension de Q.



modulaires des groupes en général. Il y a différentes fagons de de construire les
représentations modulaires irréductibles Irr,(S,) de S,. Pour une des ces construc-
tions, les représentations peuvent étre indexées par l’ensemble des partitions dites
p-régulieres, c’est-a-dire des partitions dans lesquelles aucune partie n’apparait p fois,

Irry(S,) = {D*] A est une partition p-réguliere de n}.

Cette construction n’est pas aussi explicite qu’en caractéristique zéro : D* est l'unique
quotient simple de S*. En conséquence la fagon d’associer a A le module D* n’est
pas aussi naturelle ; la partition (1) correspond a D" qui est la représentation triv-
iale, comme précédemment. Mais (1") ne correspond pas a la représentation signe.
Cependant 1'étude de cette classification implique des objets combinatoires, et il y
a un certain nombre de questions sans réponse sur les représentations modulaires,
par exemple, il n'y a pas d’équivalent de la formule des équerres pour calculer la
dimension de D*. Dans le Chapitre 1, nous rappelons plusieurs faits concernant la
théorie des représentations de S,. Pour un traitement trés complet, voir par exemple
[JK81,Sag01].

Les considérations ci-dessus nous ménent au sujet d’étude de cette these. Il y a
deux résultats principaux dont chacun fait 'objet d’un chapitre. Dans ce qui suit,
nous introduisons le contexte et les principales questions que nous traitons.

Partitions auto-Mullineux et partitions auto-conjuguées

Un des principaux résultats de cette these concerne une correspondance entre deux
familles de partitions, I'une d’entre elles étant I’ensemble des partitions auto-Mulli-
neux. Nous motivons I'intérét pour de telles familles de partitions.

Soit n > 2. Si M est une représentation irréductible de S, sur un corps K, la
restriction M | de M a A, est soit irréductible, soit elle se décompose en la somme
directe de deux représentations irréductibles de A,. De plus, toute représentation
irréductible de A, sur K peut étre obtenue de cette facon. Plus précisément, on sait
que M |7, se décompose en somme directe de deux modules simples si et seulement si
M~ (M ®e¢), ou ¢ est la représentation signe de $,,. Sinon, M l;\” est irréductible. Or,
puisque ¢ est de dimension 1, (M ® ¢€) est a nouveau une représentation irréductible.
Détaillons cette discussion dans les cas ordinaire et modulaire :

Dans le cas ordinaire, on sait que toute représentation irréductible peut étre in-
dexée par une partition A de . Par conséquent, la discussion ci-dessus dit que S* In,
se décompose si et seulement si S* ~ (S*®¢). 1l existe une partition p telle que
(S*® ¢) ~ S¥. Une question naturelle est alors : comment calculer y a partir de
A ? Dans le cas ordinaire, il est facile de répondre a cette question ; nous avons
p = A’ la partition conjuguée (ou transposée) de A. Elle est obtenue simplement en
transposant le diagramme de Young de A. Par exemple, si A = (1), on sait que S
est la représentation triviale, alors S ®¢e ~ ¢, et comme mentionné ci-dessus, la
représentation signe ¢ = S¥ est indexée par y = (1"), qui est en effet la conjuguée de
A = (n). Ainsi, la condition pour que la restriction de S* se décompose en somme de
deux modules simples devient : A = A". Sinon, si A # A’, la restriction de S* a A,, est
irréductible. Les détails seront donnés dans §1.3.3.

Dans le cas modulaire, par exemple si K = [, avec 2 < p <1, on a un ensemble
complet (a equivalence pres) de représentations irréductibles indexées par les parti-
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tions p-réguliéres, et pour A p-réguliére, la restriction D* la, de la représentation
p-modulaire irréductible D* de S, se décompose en somme directe de deux modules
simples si et seulement si D* ~ (D*®¢). Il existe une partition p-réguliére u telle que
(D*® ¢) ~ DF. Dans ce cas, comment calculer la partition p-réguliere u & partir de
A ? Soit u = mp(/\). L’involution qui assigne a A la partition mp(/\) est 'application
de Mullineux : D*® ¢ = D™ W, Le probléme qui consiste a trouver une description
combinatoire de cette application est appelé le probleme de Mullineux.

La réponse au probléme de Mullineux n’est pas aussi simple que dans le cas or-
dinaire. Conjuguer une partition p-réguliére ne résulte pas toujours en une partition
p-réguliére, alors y nest pas simplement la partition conjuguée de A. Dans [Mul79a]
Mullineux a défini une involution sur l’ensemble des partitions p-régulieres de n, et a
conjecturé que cette involution était m,,. Plus tard, dans [Kle96], Kleshchev a décrit
un algorithme différent pour calculer m, (1) et dans [FK97], Ford et Kleshchev ont
montré que la conjecture de Mullineux était vraie. La conjecture de Mullineux a
également été prouvée dans [BO98] par Bessenrodt et Olsson en utilisant un autre
algorithme pour calculer mp(/\)z.

Revenant a la restriction de D* 4 A, on a que, pour A une partition p-réguliére de
nx?2,

* SiA=m,(A)alors D* In,= p™W) Ia, estirréductible.

* Si A =m,(A) alors D* ln, se décompose en deux représentations irreductibles
p-modulaires non équivalentes D** et D*~, de A,

D/\ \LI\” ~ D/\+ @D/\_,

et

{D* I, | AFn, Ap-réguliere et A = m, (1)} U

(DM, DY | Ak n, A p-réguliére et A = m, (1)}, L)
ou seulement I'une des A ou m,(A) est considérée dans le premier ensemble, est un
ensemble complet de représentations irréductibles p-modulaires non équivalentes de
A,

Etant donnée cette facon d’indexer les représentations p-modulaires irréductibles
de A,, nous nous intéressons en particulier a l’ensemble des points fixes de m, :
les partitions A de n telles que A = m,(1) que nous appelons les partitions auto-
Mullineux. Déterminer I’ensemble des partitions (p-)auto-Mullineux n’est pas une
tache facile, dans le sens ou avec les algorithmes disponibles pour calculer I'involution
de Mullineux, nous ne pouvons pas déterminer rapidement si une partition p-réguliere
est un point fixe. On se demande alors s’il n’existe pas un autre ensemble de parti-
tions, plus facile a déterminer, qui soit en correspondance avec ’ensemble des par-
titions auto-Mullineux. En fait, le nombre de partitions (p-)self-Mullineux est égal
au nombre de partitions auto-conjuguées dont la longueur des crochets diagonaux
n’est pas divisible par p (voir §1.3.4) que nous appelons (p-)BG-partitions>. Ainsi, il

2D’autres algorithmes pour calculer mp se trouvent dans [Kle96,Xu97,BK03,Fay21a,Jac21].
3“BG” est pour Brunat-Gramain, puisque ces partitions apparaissent dans [BG10] dans ’étude des
ensembles basiques pour S, et R,,.



est naturel de demander une bijection explicite et naturelle entre les partitions auto-
Mullineux et les BG-partitions. Dans le Chapitre 3 de cette thése nous donnons une
réponse & cette question®.

Une autre motivation pour avoir une bijection explicite entre les deux ensembles
de partitions se trouve dans le contexte des ensembles p-basiques : Dans [BG10],
Brunat et Gramain ont montré l'existence d’un ensemble p-basique pour le groupe
symétrique, qui, par restriction, donne un ensemble p-basique pour le groupe al-
terné. Cependant, cet ensemble, qui fournit de fagon naturelle un ensemble d’indices
pour les représentations irréductibles p-modulaires, n’est pas explicite et il serait idéal
d’en donner une description compléte. Une chose que nous savons a propos d’un
tel ensemble est que les seules partitions auto-conjuguées qu’il contient sont les BG-
partitions. Celles-ci indexent les points fixes pour 'application de Mullineux. Ceci
donne une motivation pour obtenir une bijection explicite entre les BG-partitions et
les partitions auto-Mullineux.

Apercu du résultat principal du Chapitre 3. La construction qui mene a notre cor-
respondance explicite peut étre décrite en quelques mots comme suit. Tout d’abord,
nous rappelons qu’a toute partition p-réguliére A, correspond de fagon unique un
symbole de Mullineux G,(1). Ce symbole est un tableau formé de certains entiers posi-
tifs associés a A. Maintenant, en nous inspirant de ce symbole de Mullineux, nous
définissons un autre symbole associé, cette fois, aux partitions auto-conjuguées. Ce
symbole est noté bg, et nous l'appelons BG-symbole.

Nous sommes alors en mesure de prouver le fait remarquable, qui est au cceur
de notre construction, que lorsque le BG-symbole est calculé sur une BG-partition
A, le tableau bg, (1) obtenu est exactement le symbole Mullineux G, (u) d’une certaine
partition auto-Mullineux p. En associant y a A, on obtient la correspondance souhaitée
(puisqu’on montre en outre que le symbole BG est injectif).

Si nous prenons par example p = 3, la partition auto-Mullineux p = (10, 4?) corre-
spond a la BG-partition A = (6,5,23,1):

A

bgs(0=(3 5 3 1)=Gatm

Nous soulignons que la correspondance que nous avons obtenue est explicite dans
les deux sens. Les deux étapes de la bijection fonctionnent comme suit (comme il-
lustré dans le diagramme ci-dessus). D’abord, on prend une BG-partition et on cal-
cule son BG-symbole (un calcul direct). Ensuite, on considere le symbole obtenu

4Une bijection entre I'ensemble des partitions auto-Mullineux de # et les partitions de 7 a parties
impaires différentes, aucune d’entre elles divisible par p, peut étre dérivée d’une bijection entre deux
ensembles plus généraux définis par C. Bessenrodt dans [Bes91]. Cependant, les deux approches sont
tres différentes car notre bijection est définie directement entre les ensembles qui nous intéressent. De
plus, nous obtenons une bijection différente (voir Remark 3.2.4).
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comme un symbole de Mullineux. Puisque toute partition p-réguliere peut étre facile-
ment construite a partir de son symbole de Mullineux, nous pouvons reconstruire la
partition p-réguliere correspondante. La partition obtenue est une partition auto-
Mullineux. Cette procédure est réversible, puisque reconstruire une partition auto-
conjuguée a partir d'un BG-symbole est un procédé simple. En conclusion, nous
avons une procédure explicite pour associer des BG-partitions a des partitions auto-
Mullineux et vice versa.

En utilisant cette description, nous sommes en mesure de montrer la propriété
intéressante suivante : le p-coeur d’une partition est préservé par la correspondance.
Ceci a pour conséquence que notre bijection se restreint a une bijection entre les par-
titions auto-Mullineux et les BG-partitions dans chaque bloc du groupe symétrique.

Ensembles basiques unitriangulaires pour des p-blocs

Le deuxiéme résultat principal de cette these concerne la fagon d’indexer les repré-
sentations irréductibles dans certains p-blocs du groupe symétrique. Introduisons le
contexte.

Les modules de Specht S* sont en fait définis sur Z et il est donc possible de
“réduire mod p” et de voir S* comme une représentation de S, sur [, en d’autres
termes, comme un [F,S,-module. En général, les modules de Specht sur IF, ne sont
pas simples (irréductibles), ou méme pas completement réductibles, mais on peut re-
garder les multiplicités de composition des modules simples IF,S,-modules D¥ pour
p une partition p-réguliere, dans S*. Ces multiplicités donnent des informations
intéressantes pour étudier la théorie des représentations de 5,, sur [F,. Pour un IF,S,,-
module simple DF, soit d,, = [S* : D¥] la multiplicité de composition de D* dans le
module de Specht S*. Les nombres d Au forment alors une matrice D, , a coefficients
entiers non négatifs, lignes indexées par les partitions de n et colonnes indexées par
les IF,S,,-modules simples. C’est la matrice de décomposition de IE,S,,.

Lorsque les lignes de D,, , sont ordonnées de maniere décroissante selon un or-
dre total quelconque sur les partitions qui raffine l'ordre de dominance, il se produit
quelque chose de particulierement intéressant : Pour chaque colonne, la premiere
entrée non nulle est 1 et la ligne associée correspond a une unique partition p-réguliere
de n. Cela donne une facon d’indexer les IF,S,-modules simples par I'ensemble des
partitions p-régulieres de n.

Par exemple, en prenant l'ordre lexicographique sur les partitions, Dy 3 est

4 1

3,1 |- 1

2?2 1 -1
2,12 . - . 1
14 |

ou les points et les entrées omises sont égales a 0. On voit en effet que, a ordre des
lignes et colonnes pres, la sous-matrice carrée formée par les lignes correspondant aux
partitions p-régulieres, a une forme unitriangulaire inférieure. Le fait que les IF,5,-
modules simples puissent étre indexés par I'ensemble des partitions p-réguliéres est
connu avant d’observer la forme de la matrice D, ,. En effet, il existe autant de classes



de IF,S,-modules simples non équivalents que de classes de conjugaison de S, dont
l'ordre est premier a p. De telles classes de conjugaison sont, a leur tour, en bijection
avec les partitions p-réguliéres de de n. L'information supplémentaire qui provient
de la matrice D,, , ayant une telle forme, est que les classes des modules de Specht

{S*] A est une partition p-réguliere de n}, (2)

forment une base sur Z de ce qu'on appelle le groupe de Grothendieck de F,S,, (en
quelques mots, le groupe de Grothendieck d’une algebre de dimension finie A est le Z-
module engendré par les classes d’isomorphisme des A-modules finiment engendrés,
avec la relation qui dit que deux modules sont équivalents si et seulement si ils ont
les mémes facteurs de composition). Et la sous-matrice carrée de D,, , dont les lignes
sont indexées par les partitions p-réguliéres est précisément la matrice de transition
entre cette base, formée par les classes des modules de Specht dans (2), et la base
naturelle du groupe de Grothendieck, a savoir celle formée par les classes des IF,S,,-
modules simples. L'ensemble des partitions p-régulieres est alors appelé un ensemble
basique unitriangulaire (ou UBS en abrégé, pour ses sigles en anglais) pour IF,S,. En
quelques mots, un UBS est un sous-ensemble des modules de Specht, avec un ordre
total des lignes, pour lequel la matrice D,,, prend une telle forme, c’est-a-dire qu'un
tel ensemble indexe des modules simples de IF,S,, et a un tel ensemble on associe une
Z-base du groupe de Grothendieck de IF,S,,. L'idée générale est que les modules de
Specht sont beaucoup mieux connus que les modules simples (dimensions, caracteres)
et d’une certaine maniére la matrice de décomposition permet de passer des uns aux
autres de maniere simple grace a la unitriangularité.

Les ensembles basiques unitriangulaires pour [F,3, ne sont pas uniques. Lors de
I’étude de la théorie des représentations du groupe alterné A, la recherche d’un UBS
plus “approprié” se pose. Une fagon dont un UBS pour [F,S, pourrait étre plus ap-
propriée pour cette étude est un UBS pour lequel faire le produit tensoriel avec la
représentation signe, corresponde a la conjugaison des partitions, méme pour 0 < p <
n. Un telle UBS est, en particulier, stable par la conjugaison de partitions. De plus,
nous ajoutons la condition que les seules partitions auto-conjuguées dans une telle
UBS sont des BG-partitions. Un ensemble basique unitriangulaire stable (SUBS pour ses
sigles en anglais) est alors un UBS U, vu comme un sous-ensemble de I’ensemble des
partitions, tel que :

(A) sipeU,alors p’ e U, et

(B) si p=p’ €U, alors p est une (p-)BG-partition.
La condition (B) est une condition technique qui permet aux SUBS U de se “re-
streindre” a un UBS pour IF, A, voir [BGJ20, Theorem 12]. Cette condition implique
également que le nombre de points fixes pour la conjugaison dans I’ensemble est égal
au nombre de points fixes de 'application de Mullineux. Remarquons que I'UBS de
F,3, formée par les partitions p-régulieres n’est pas un SUBS, puisque par exemple,
la conjuguée A’ = (1") de la partition A = (1) est p-singuliére lorsque p < n. La ques-
tion est alors : existe-t-il toujours un SUBS pour le groupe symétrique ? et la réponse
est non. Dans [BGJ20, §3], Brunat, Gramain et Jacon montrent que IFpl\n n’a pas tou-
jours un UBS (par exemple lorsque p = 3 et n = 18), ce qui implique que le groupe
symétrique ne peut pas toujours avoir un SUBS.
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Malgré cela, la méme question peut étre abordée “bloc par bloc”. Grace a la théorie
des représentations modulaires des groupes finis, on sait que I’ensemble de modules
de Specht et celui des modules simples de [F,S,, se répartissent dans des p-blocs, que
nous décrivons précisément dans §1.4. Cela signifie en particulier que la matrice de
décomposition est une matrice diagonale par blocs :

Les concepts d’UBS et de SUBS peuvent étre adaptés pour avoir une signification pour
chacun de ces p-blocs, nous les définissons précisément dans §4.2. Un entier non
négatif est associé a chaque p-bloc ; son p-poids. Le poids d’un bloc peut étre considéré
comme une mesure de sa complexité. Par exemple, les blocs de poids 0 sont les plus
faciles a décrire : ils sont formés d’un seul module. L'intérét de définir des UBS et
SUBS pour les blocs est de demander les mémes propriétés dans le sens des blocs :
la sous-matrice correspondant au bloc aura une forme unitriangulaire inférieure, cela
donnera une facon naturelle d’indexer les [F,S,,-modules simples, dans un bloc, pour
lesquels l'application de Mullineux est la conjugaison. Un autre intérét est d’obtenir
un UBS pour les blocs de IF, A, : si un bloc de F,S,, a un SUBS, alors il fournit par
restriction, un UBS pour les blocs de IF, A\, Ainsi, la question est de déterminer si un
bloc a une SUBS et si oui, d’en décrire un. Nous donnons une réponse a cette question
dans le Chapitre 4 de cette these, pour tout p-bloc de IF,S,, de poids 2.

Apercu du résultat principal du chapitre 4. Le résultat principal du Chapitre 4
est la construction d’un ensemble basique unitriangulaire stable pour les blocs auto-
conjugués de poids 2. Notons d’abord que les blocs de poids 0 forment automatique-
ment un SUBS eux-mémes et que les blocs de poids 1 ont des SUBS explicitement
connus, voir [BGJ20, §5.2] et §4.4. Par conséquent, le poids 2 est naturellement la sit-
uation suivante a considérer. Néanmoins, nous étudions comment la compréhension
de la combinatoire et de I'application de Mullineux pour les partitions de poids 1 peut
aider a définir un ordre naturel sur les partitions pour ce SUBS. Dans un certain sens,
notre étude des blocs de poids 2 montre qu’un tel bloc est formé de plusieurs parties
disjointes qui se comportent indépendamment comme des blocs de poids 1.

Plus précisément, pour tout bloc auto-conjugué de poids 2, nous exhibons un sous-
ensemble explicite de partitions tel que la matrice de décomposition prenne la forme :
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ou Dy et D¢ sont unitriangulaires. Les partitions {1;,...,A;} sont certaines partitions
p-régulieres dans le bloc qui ont été choisies de facon appropriée. Les partitions
{v1,...,v¢} sont les BG-partitions dans le bloc et les partitions {y1,..., p¢} sont les par-
titions auto-Mullineux dans le bloc.

On remarque que ’ensemble des partitions qui indexe les lignes de la matrice est,
par construction, stable par conjugaison, de sorte que I’'UBS est en fait un SUBS.

Pour montrer l'unitriangularité de la matrice, nous nous appuyons sur des pro-
priétés des nombres de décomposition qui s’expriment en termes d’ordre de domi-
nance “<” sur les partitions et I'application de Mullineux. Nous utilisons un étique-
tage des modules de Specht dans de tels blocs qui provient de I’étude de Fayers et
Richards sur les blocs de poids 2 [Fay, Ric96]. Dans [Ric96], Richards introduit un
objet appelé pyramide, associé a un bloc. Nous étudions de facon détaillée 'ordre de
dominance dans le bloc, qui est liée a la configuration de la pyramide et a d’autres
notions combinatoires, qui nous permettent de montrer le résultat souhaité.

En pratique, I'unitriangularité de la matrice ci-dessus est montrée en quatre étapes,
qui constituent la partie principale de notre travail :

D’abord, I’ensemble de partitions {A4,...,A;} a la propriété que la matrice D; =
(dx;2,)ij est unitriangulaire. De plus, d’apres les propriétés de la matrice de décompo-
sition et de 'application de Mullineux, on a D; = Dy.

Notre étude détaillée de la pyramide nous permet de montrer la propriété combi-
natoire cruciale : A; 4 my(A;), pour tout i, j, ce qui implique que D3 = (0).

Ensuite, on montre que A; 4 p, pour tout i, k, ce qui implique que D5 = (0).

La derniére étape consiste a montrer que la matrice Dy est unitriangulaire ; les
entrées de cette matrice sont les nombres de décomposition qui relient les partitions
auto-conjuguées et les partitions auto-Mullineux. Pour montrer 'unitriangularité,
nous étudions la forme précise de la matrice D4 en utilisant les tables des nombres de
décomposition dans [Ric96, Fay].

On signale que la bijection entre les BG-partitions et les partitions auto-Mullineux
dans ce bloc, utilisée pour définir les SUBS, est spécifique au poids 2. Cependant, des
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tests semblent montrer que cette bijection coincide avec la bijection générale entre les
deux familles de partitions définie au Chapitre 3.

Pour conclure, nous rappelons que l'existence d’'un SUBS n’est pas assurée en
général pour tout bloc. Notre résultat montre qu’il un existe toujours un pour les
blocs de poids 2, et de plus, nous en avons donné un explicitement.

Organisation de cette these. Dans le Chapitre 1 nous rappelons les concepts fon-
damentaux impliqués dans les représentations du groupe symétrique, y compris la
combinatoire des partitions et des p-crochets. Dans le Chapitre 2, nous donnons un
apercu historique du probleme de Mullineux et nous rappelons quelques algorithmes
pour calculer I'involution de Mullineux. Dans le chapitre 3, nous introduisons le BG-
symbole qui permet ensuite de définir une bijection explicite entre les partitions auto-
Mullineux et les BG-partitions. Ce chapitre est principalement basé sur [Ber21a]. Le
Chapitre 4 concerne les ensembles basiques unitriangulaires stables et notre construc-
tion de tels ensembles pour les blocs de poids 2 de S,,. Ce chapitre est principalement
basé sur [Ber21c]. Nous donnons enfin une annexe qui contient une liste de fonctions
écrites en GAP, qui ont été utiles pour étudier les exemples concernant la bijection
dans le Chapitre 3.



Introduction

The origin of representation theory of finite groups goes back to the end of the 19th
century, when Frobenius studied the factorization of certain polynomial associated
to a finite group, called the “group determinant”. Generalizing the known case of
an Abelian group, he proved that this polynomial factors as a product of irreducible
polynomials, where each polynomial appears with a multiplicity equal to its degree.
This question, noticed by Dedekind, is what led Frobenius to invent character theory
for an arbitrary finite group and to build the foundations of what we now call repre-
sentation theory. For a historical references on the origin of the subject, for which the
pioneers are Frobenius, Burnside, Schur and Brauer, see [Cur99,Haw?71]. The area has
widely developed and has connections with physics, chemistry and other number of
domains. It is interesting to note that most of the results on the classification of the
ordinary representations of the symmetric group were known or discovered in the be-
ginning of the theory, and, in contrast, there are still many questions on the modular
representations that are unsolved to this day.

In modern language, representation theory of (finite) groups studies the ways in
which a given group acts on vector spaces as linear operators. Concretely, a finite-
dimensional representation of a group G is a group homomorphism G — GL;(K),
where K is some field and GL,;(K) is the group of invertible d x d matrices. A rep-
resentation can then be thought of as a way of “representing” elements of a group as
matrices; and by doing so, bringing the group, which is an abstract object in principle,
to the linear algebra universe.

Studying the representation theory of the group G means to study all such mor-
phisms (or more precisely, up to certain equivalence). A representation may be built
out of “smaller” representations. This happens when every matrix which represents
an element of the group, can be put simultaneously in a triangular-by-blocks struc-
ture, by a change of basis. Each of the diagonal blocks is then a “smaller” represen-
tation (the size of the matrix is smaller). If no such a change of basis exists, then the
representation is called irreducible. Moreover, for a finite group G and a field K of
characteristic 0 (or not dividing the order of G), the triangular-by-blocks structure can
always be reduced to a diagonal-by-blocks structure; hence, in this case, the task of
studying all morphisms G — GL;(K) reduces more or less to studying all irreducible
representations, up to equivalence. For a general field K, the irreducible representa-
tions are anyway the fundamental building blocks of the representation theory and
one usually starts the study of the representation theory of a group G over K by the
study of the irreducible representations. Many different questions can be asked in
such an enterprise; if we fix a group, how many nonequivalent irreducible represen-
tations exist? how explicit are they? what possible dimensions d come up? is there a
“natural” labelling for the irreducible representations? how much do the answers to
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these questions change if we change the field IK? what properties of the group reflect
in the representations and vice versa? etcetera. Answers, or partial answers, to some
of these questions have been found for certain groups or families of groups and have
led to interesting applications, for example the classification of finite simple groups.

In this thesis our attention is focused on representations of the symmetric group
S, and the alternating group A,. The symmetric group S, is the group of permuta-
tions of an ordered list of n symbols, where the operation is composition. It is a group
of order n!. As permutations are natural objects to consider, symmetric groups and
more generally permutation groups (subgroups of a symmetric group), have been ex-
tensively studied and used, even long before the formalization of abstract groups. The
alternating group R, is the set of even permutations (permutations with signature 1)
of an ordered list of n symbols. It is then a subgroup of S,,.

The representation theory of the symmetric group was first studied and developed
by Frobenius, Schur and Young. They found answers for several of the questions above
when K = C°. In this case, every representation of S, splits as a sum of irreducible
representations and there is a classification of these irreducible representations; they
can be indexed by the set of partitions of n:

Irre(S,) = {S*| A is a partition of n}.

Partitions of n are all the non-ordered different ways of writing »n as a sum of posi-
tive integers. Since the work of Young, the combinatorics of partitions and a number
of different objects associated to them are fundamental in the development of the
representation theory of the symmetric group: the representations S*, called Specht
modules, can be described completely in terms of A. For example, the Specht module
S corresponding to the partition A = (n) is the trivial representation and the Specht
module SI") corresponding to the partition A = (1") is the sign representation. An-
other example is a formula called hook formula which easily gives the dimension of
S* in terms of A. To name one last example, the decomposition in irreducible repre-
sentations of the induction of S* to $,,,;, can be easily described from A.

In positive characteristic, say p = char(K), if p does not divide n! (equivalently
p > n), the representations of S, have the same classification as in characteristic 0,
this is the ordinary representation theory. On the other hand, when p divides the order
of the group, in our case if p divides n! (equivalently p < n), we talk about modular
representation theory.

The study of p-modular representation theory of S, started with the work of
Nakayama in the 1940s, after the work of Brauer on modular representations of groups
in general. There is a classification and a construction of the modular irreducible rep-
resentations Irr,(S,,) of S,;; they can be indexed by the set of p-regular partitions, that
is, partitions in which no part occurs p times,

Irr,(S,) = {D*| ) is a p-regular partition of n}.

This construction is not as explicit as in characteristic zero: D* is the unique simple
quotient of S*. Then the way of associating to A the module D* is not as natural;
the partition (1) corresponds to D which is the trivial representation, as before.

3In fact, every representation of $,, over C can be realized over Q, then everything is similar if we
take KK = Q or any extension of Q.



But (1") does not correspond to the sign representation. However the study of this
classification involves combinatorial objects, and there is a number of unanswered
questions about the p-modular representations, for example, there is no equivalent of
the hook formula for computing the dimension of D*. In Chapter 1 we recall several
facts about the representation theory of S,. For a very complete treatment see for
example [JK81,Sag01].

The above considerations lead us to the subject of study in this thesis. There are
two main results each of which makes the subject of a chapter. In what follows we
introduce the context and the main questions that we treat.

Self-Mullineux partitions and self-conjugate partitions

One of the main results in this thesis concerns a correspondence between two families
of partitions, one of them being the set of self-Mullineux partitions. We motivate the
interest for such families.

Let n > 2. If M is an irreducible representation of S, over a field KK, the restriction
M |n, of M to R, is either irreducible, or it splits in the direct sum of two irreducible
representations of A,. Moreover every irreducible representation of A, over K arises
in this way. More precisely, we know that M |5 splits as a direct sum of two simple
modules if and only if M ~ (M ®¢), where ¢ is the sign representation of S,,. Otherwise
M lg.\n is irreducible. Now, since ¢ is one-dimensional, (M ® ¢) is again an irreducible
representation. Let us detail this discussion in both the ordinary and modular cases:

In the ordinary case, we know that every irreducible representation can be indexed
by a partition A of n. Hence, the above discussion says that S* la, splits if and only
if S* ~ (S*®¢). There exists a partition p such that (S*®¢e) ~ S*. A natural ques-
tion is then how to compute y from A. In the ordinary case, this question is easy to
answer; we have y = A’ the conjugate (or transposed) partition of A. It is obtained
just by transposing the Young diagram of A. For example, if A = (n), we know that
S is the trivial representation, then S’ ® ¢ ~ ¢, and as mentioned above, the sign
representation ¢ = S¥ is indexed by u = (1"), which is indeed the conjugate of A = (n).
Hence the condition for the splitting of the restriction of S* as a direct sum of two
simple modules becomes: A = A’. Otherwise, if A # A’, the restriction of S to A, is
irreducible. Details will be given in §1.3.3.

In the modular case, for exemple if K = IF, with 2 < p < n, we have a complete
set of non-equivalent irreducible representations indexed by the p-regular partitions,
and for A p-regular, the restriction D* la, of the p-modular irreducible module D*
of S, splits as a direct sum of two simple modules if and only if D* ~ (D* ® €). Now,
there is a p-regular partition y such that (D* ® €) ~ D¥. In this case, how to compute
the p-regular partition y from A ? Let y = m,(A). The involution which assigns to A
the partition m,(A) is the Mullineux map: D*®¢e = D™, The problem of finding a
combinatorial description of this map is referred to as the Mullineux problem.

The answer to the Mullineux problem is not as straightforward as in the ordinary
case. Conjugating a p-regular partition does not always result in a p-regular partition,
then y is not simply the conjugate partition of A. In [Mul79a] Mullineux defined an
involution on the set of p-regular partitions of 7, and conjectured it to be m,,. Later, in
[K1e96], Kleshchev described a different algorithm to compute m,, (1) and in [FK97],
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Ford and Kleshchev proved Mullineux conjecture to be true. Mullineux conjecture
was also proven to be true in [BO98] by Bessenrodt and Olsson by using yet another
algorithm for computing mp(/\)é.

Back to the restriction of D* to A, we have that, for A a p-regular partition of
n>2,

* If A #m,(}) then DA | =~ D™ ln, is irreducible.

¢ If A=m,(A) then D* la, splits into two non-equivalent irreducible p-modular
representations DA* and D4~ of A,;:

D/\ \Lf\” ~ D/\+ @D/\_,

and
{D* I, AFn, A p-regular and A #m, (1)} U

A+ A= ) B (3)
{D™",D"" | A+ n, A p-regular and A =m, (1)},

where only one of A or m,(A) is considered in the first set, is a complete set of non-
equivalent p-modular irreducible representations of A,,.

Following such an indexing of the irreducible p-modular representations of R,,
we are interested in particular in the set of fixed points of m,: the partitions A of n
such that A = m, (1) which we call the self-Mullineux partitions. Determining the set
of (p-)self-Mullineux partitions is not an easy task, in the sense that with the available
algorithms for computing the Mullineux involution, we can not quickly determine
if a p-regular partition is a fixed point. We then wonder if there is a different set
of partitions, easier to determine, which is in correspondence with the set of self-
Mullineux partitions. In fact, the number of (p-)self-Mullineux partitions is equal to
the number of self-conjugate partitions with diagonal hook-lengths not divisible by
p (see §1.3.4) which we refer to as (p-)BG-partitions’. Thus, it is natural to ask for
an explicit and natural bijection between the self-Mullineux partitions and the BG-
partitions. In Chapter 3 of this thesis we give an answer to this question®.

A further motivation for having an explicit bijection between the two sets of par-
titions is found in the context of p-basic sets: In [BG10], Brunat and Gramain have
shown the existence of a p-basic set for the symmetric group, which, by restriction,
gives a p-basic set for the alternating group. However, this set, which provides a nat-
ural indexing set for the modular irreducible representations is not explicit and it
would be ideal to give a complete description of it. One thing we know about such
a set is that the only self-conjugate partitions that it contains are the BG-partitions,
which index the fixed points of the Mullineux map. This gives a motivation for ob-
taining an explicit bijection between BG-partitions and self-Mullineux partitions.

®Other algorithms for computing m,, are found in [Kle96,Xu97,BK03, Fay21a,Jac21].

7“BG” is for Brunat-Gramain, since these partitions appear in [BG10] in the study of p-basic sets for
S, and A,

8 A bijection between the set of self-Mullineux partitions of # and partitions of # with different odd
parts, none of them divisible by p can alternatively be derived from a bijection between two more general
sets defined by C. Bessenrodt in [Bes91]. However, the two approaches are quite different because our
bijection is defined directly between the sets of our interest. Moreover, we obtain a different bijection
(see Remark 3.2.4).



Outline of the main result in Chapter 3. Roughly speaking, the construction lead-
ing to our explicit correspondence can be described as follows. First, we recall that
to any p-regular partition A, corresponds uniquely a Mullineux symbol G,(A). This
symbol is an array of certain positive integers associated to A. Now, inspired by this
Mullineux symbol, we define another symbol associated, this time, to self-conjugate
partitions. We denote it bg, and call it BG-symbol.

Then we are able to prove the remarkable fact, which lies at the heart of our con-
struction, that when the BG-symbol is computed on a BG-partition A, the array bgp(/\)
obtained is exactly the Mullineux symbol G,(u) of some self-Mullineux partition p.
Associating p to A, this provides the desired correspondence (since moreover the BG-
symbol is shown to be injective).

If we take for example p = 3, the 3-self-Mullineux partition u = (10,42) corre-
sponds to the 3-BG-partition A = (6,5, 23, 1):

A

We emphasize that the correspondence we have obtained is really explicit, in both
directions. The two steps work as follows (as illustrated in the diagram above). First
take a BG-partition and calculate its BG-symbol (a straightforward calculation). Then
see the obtained symbol as a Mullineux symbol. Since any p-regular partition can be
easily constructed from its Mullineux symbol, we can reconstruct the corresponding
p-regular partition. The partition obtained is a self-Mullineux partition. This proce-
dure is reversible, since it is also a straightforward procedure to reconstruct a self-
conjugate partition from its BG-symbol. In conclusion, we have an explicit procedure
for associating BG-partitions to self-Mullineux partitions and vice versa.

Using this description we are able to show the following interesting property of
this combinatorial procedure: the p-core of a partition is preserved under the cor-
respondence. This has the consequence that our bijection restricts to a bijection be-
tween self-Mullineux partitions and BG-partitions within each block of the symmetric

group.
Unitriangular basic sets for p-blocks

The second main result in this thesis concerns the labelling of irreducible representa-
tions in certain p-blocks of the symmetric group. Let us introduce the context.
Specht modules S* are actually defined over Z and thus it is possible to “reduce
mod p” and see S* as a representation of S, over [F,, in other words, as an [F,S,,-
module. In general, Specht modules over IF, are not simple (irreducible), or not even
completely reducible, but one can look at the composition multiplicities of the simple
F,3,-modules D¥ for p a p-regular partition, in S*. These multiplicities give inter-
esting information to study the representation theory of S, over [F,. For a simple
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F,S,-module D, let d,, = [S* : D¥] be the composition multiplicity of D* in the
Specht module S*. The numbers dy, form then a matrix D,,, with non-negative in-
teger coefficients, rows indexed by the partitions of n and columns indexed by the
simple [F, S, -modules. This is the decomposition matrix of IF,S,,.

When the rows of D,, , are organised decreasingly according to any total order on
partitions which refines the dominance order, something of special interest happens:
For each column, the first non-zero entry is 1 and the associated row corresponds to
a unique p-regular partition of n. This gives the mentioned indexing of the simple
[F,3,-modules by the set of p-regular partitions of n.

For example, taking the lexicographic order on partitions, Dy 3 is

4 1

3,1 |- 1

22 |1 - 1
2,12 - -1
14 |

where the dots and ommited entries are equal to 0. Indeed we can see that up to rear-
ranging the rows and columns, the square submatrix formed by rows corresponding
to p-regular partitions, has a lower unitriangular shape. The fact that the simple IF,5,-
modules can be indexed by the set of p-regular partitions is known before observing
the form of the matrix D,, ,. Indeed, there are as many classes of nonequivalent simple
[F,3,-modules as conjugacy classes of S,, with order which is prime to p. Such conju-
gacy classes are, in turn, in bijection with the p-regular partitions of n. The additional
information which comes from the matrix Dn’p having such a form, is that the classes
of the Specht modules

{S*| ) is a p-regular partition of n}, (4)

form a Z-basis of the so-called Grothendieck group of IF,S,, (roughly speaking, the
Grothendieck group of a finite dimensional algebra A is the Z-module generated by
the isomorphism classes of the finitely generated A-modules, with the relation that
says that two modules are equivalent if and only if they have the same composition
factors). And the square sub-matrix of D,, , with rows indexed by the p-regular parti-
tions is precisely the transition matrix between this basis, formed by the classes of the
Specht modules in (4), and the natural basis of the Grothendieck group; namely the
one formed by the classes of simple [F,S,,-modules. The set of p-regular partitions is
then said to be a unitriangular basic set, or UBS for short, for [F,S,,. Roughly speaking,
a UBS is a subset of the Specht modules, together with a total order of the rows, for
which the matrix D, , takes such a form i.e. such a set indexes simple IF,5,-modules,
and to such a set we associate a Z-basis of the Grothendieck group of IF,S,,. The gen-
eral idea is that the Specht modules are much better known than the simple modules
(dimensions, characters) and in some way the decomposition matrix allows to simply
pass from one the another by using the unitriangularity.

Unitriangular basic sets for IF,S, are not unique. When studying the representa-
tion theory of the alternating group A, the quest of finding a more “suitable” UBS
arises. Hence, one way in which a UBS for [F,S,, could be more suitable for this study
is one for which tensoring with the sign representation corresponds to conjugation of
partitions, even for 0 < p < n. Such a UBS is, in particular, stable by conjugation of



partitions. Moreover, we add the condition that the only self-conjugate partitions in
such a UBS are p-BG-partitions. A stable unitriangular basic set (SUBS) is then a UBS
U, seen as a subset of the set of partitions, such that:

(A) if ye U, then p’ € U, and

(B) if p =y’ € U, then pis a (p-)BG-partition.

The condition (B) is a technical condition which allows the SUBS U to “restrict” to a
UBS for IF,A,,, see [BG]20, Theorem 12]. This condition also implies that the number
of fixed points of conjugation in the set is equal to the number of fixed points of the
Mullineux map. Notice that the UBS of [F,S,, formed by p-regular partitions is not a
SUBS, since for example, the conjugate " = (1") of partition A = (n) is p-singular when
p < n. The question is then: does a SUBS always exist for the symmetric group? and
the answer is no. In [BGJ20, §3], Brunat, Gramain and Jacon show that F, A, does not
always have a UBS (for example when p = 3 and n = 18), implying that the symmetric
group cannot always have a SUBS.

Despite this, the same question can be addressed “blockwise”. From the modu-
lar representation theory of finite groups we know that the Specht modules and the
simple modules of IF,S, fall into p-blocks, which we describe precisely in §1.4. This
means in particular that the decomposition matrix is a block diagonal matrix:

0

0

The concepts of UBS and SUBS can be adapted to have a meaning for each of these
p-blocks, we define them precisely in §4.2. There is a non-negative integer associated
to each p-block; its p-weight. The weight of a block can be thought of a measure of
its complexity, for example, blocks of weight 0 are the easiest to describe: they are
formed by just one module. The interest of defining UBS and SUBS for blocks is to
ask for the same properties blockwise: the submatrix corresponding to the block will
have a lower unitriangular shape, this will give a natural labelling of the simple [F,S, -
modules in a block, for which the Mullineux map is conjugation. Another interest is
to obtain a UBS for blocks of [F,A,;: if a block of [F,S,, has a SUBS, then it provides by
restriction, a UBS for blocks of IF, A, So that the question is to determine whether a
block has a SUBS and if yes, to describe one. We give an answer to this question in
Chapter 4 of this thesis, for any p-block of IF,S,, of weight 2.

np =

Outline of the main result in Chapter 4. The main result in Chapter 4 is to provide
a stable unitriangular basic set for self-conjugate blocks of p-weight 2. First we note
that blocks of weight 0 form automatically a SUBS themselves and blocks of weight
1 have explicitely known SUBS, see [BGJ20, §5.2] and §4.4. Therefore the weight 2
is naturally the following situation to consider. Nevertheless, we study how under-
standing the combinatorics and Mullineux map for partitions of weight 1 can help
to define a natural order on partitions for this SUBS. In a sense, our study of blocks
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of weight 2 shows that such a block is formed of several disjoint parts which behave
independently like blocks of weight 1.

More precisely, for any self-conjugate block of weight 2, we exhibit an explicit
subset of partitions such that the decomposition matrix takes the form:

Ay Ay omp(Ay) o my(Ay) g e g
Ay
Dl D2 - (0)
A¢
D5 = (0)
M
D; =(0) D, =D,
A
V1
% % D
6
Ve

where Dy and Dg are unitriangular. The partitions {14,..., A;} are certain p-regular
partitions in the block which have been appropriately chosen. The partitions {vy,..., v}
are the BG-partitions in the block and the partitions {1,..., pt¢} are the self-Mullineux
partitions in the block.

Note that the set of partitions forming the lines of the matrix is by construction
stable by conjugation, so that the resulting UBS is indeed a SUBS.

To show the unitriangularity of the matrix, we base on properties of the decom-
position numbers which are expressed in terms of the dominance order “<” on parti-
tions and the Mullineux map. We use a labelling of the Specht modules in such blocks
which comes from Fayers’ and Richards’ study of blocks of weight 2 [Fay, Ric96]. In
[Ric96], Richards introduces an object called a pyramid, associated to a block. We
make a very detailed study of the dominance order, related to the pyramid and other
combinatorial notions, which allow us to show the desired result.

In practice, the unitriangularity of the above matrix is then shown in four steps,
which form the main part of our work:

First, the set {14,...,1;} has the property that the matrix D; = (d/\’,,\],)i]- is unitri-
angular. Moreover, from properties of the decomposition matrix and the Mullineux
map D; =Dy,.

Our detailed study of the pyramid allows us to show the crucial combinatorial
property: A; 4 m,(A;), for any i, j, which implies that D3 = (0).

Then, we show that A; <4 iy, for any i, k, which implies that D5 = (0).

The last step is to show that the matrix Dy is unitriangular; the entries in this
matrix are the decomposition numbers which relate self-conjugate partitions and self-
Mullineux partitions. To show the unitriangularity we study the precise form of the



matrix using the tables of decomposition numbers in [Ric96, Fay]. We note that the
bijection between the BG-partitions and the self-Mullineux partitions in this block,
used to define the SUBS, is specific to weight 2. However, tests seem to show that this
bijection coincides with the general bijection between the two families of partitions
defined in Chapter 3.

To conclude, we recall that the existence of SUBS is not assured in general for any
block. Our result shows that it always exists for blocks of weight 2, and moreover, we
have provided one explicitly.

Organisation of this thesis. The organisation of this thesis is as follows. In Chapter 1
we recall the fundamentals concepts involved in the representations of the symmet-
ric group, including the combinatorics of partitions and p-hooks. In Chapter 2 we
give a historial background on the Mullineux problem and we recall some algorithms
for computing the Mullineux involution. In Chapter 3 we introduce the BG-symbol
which then allows to define the explicit bijection between self-Mullineux partitions
and BG-partitions. This chapter is mainly based on [Ber2la]. Chapter 4 concerns
stable unitriangular basic sets and our construction of these sets for blocks of weight
2 of $,. This chapter is mainly based on [Ber21c]. Finally, the appendix contains a
list of functions written in GAP, which were useful to study examples concerning the
bijection in Chapter 3.
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Preliminaries

In this chapter we recall the fundamentals of the representation theory of the sym-
metric group which are necessary for the following chapters. The organization of the
present chapter is the following: The first section is about partitions and some com-
binatorial objects associated to them. In §1.2 we recall the description of conjugacy
classes of the symmetric group and the alternating group. Then, in §1.3 we recall the
classification of the modular and ordinary irreducible representations of the symmet-
ric and alternating groups.

1.1 Combinatorics of partitions

Integer partitions are combinatorial objects that arise when studying the symmetric
group. This section contains definitions related to integer partitions.

1.1.1 Partitions

Let n € IN. A partition of n is a weakly decreasing sequence A = (Ay,A,,...) of non-
negative integers containing only finitely many non-zero terms such that A +A,+--- =
n. We write A + n. The number n is called the rank of A, denoted Rk(A).

We denote by Par(n) the set of partitions of n. The integers A; are called the parts
of the partition A. If there is a part that repeats k times, say A; = A1 =+ = Aj 11,
we abbreviate the writing of the part A; as (..., /\f,) The number of non-zero parts
is the length of A and is denoted I/(A). The empty partition is the only partition of 0, it
is denoted 0.

The conjugate (or transpose) partition of A = (Ay,..., A;), where | = [(A), is the par-
tition of n denoted A" and defined as A} = #{j | 1 < j <l and A; > i}. The operation of
conjugation of a partition is an involution. A partition which is equal to its conjugate
is called a self-conjugate partition.

For a positive integer p, the partition A is said to be p-regular if it does not contain
p parts A; # 0 which are equal. A partition which is not p-regular is called p-singular.
The partition A = (4,22,1) is not 2-regular but it is 3-regular. We denote by Reg, (1)
the set of p-regular partitions of n.

1.1.2 Young diagrams

A partition can be represented by its Young diagram. The Young diagram [A] of a
partition A is the set

[Al={(i,j)eNxN|i>1 and 1<j< Ay,
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whose elements are called nodes. We represent [A] as an array of boxes in the plane
with the convention that i increases downwards and j increases from left to right. For
example, the Young diagram of A = (4,22,1) is

[A]=

We will often identify a partition with its Young diagram.

Remark 1.1.1. A partition can also be graphically represented by what is known as
its Ferrers graph. For which, instead of boxes, every node in the Young diagram is
represented by a dot. A

The diagonal of [A] (or diagonal nodes) is the set of nodes of the form (7,i) for
1 <i< A forevery 1 <i<I(A). Conjugation of partitions is easily seen in the Young
diagram; the Young diagram of 1’ is the reflection of the Young diagram of A against
the main diagonal. Then the i-th part of A’ is the number of nodes in the i-th column
of L. If A=(4, 22, 1), then A" = (4,3, 12), its Young diagram is

[A]=

1.1.3 Orders on partitions

The dominance order “<” is a partial order defined on the set of all partitions. It is
defined as follows: let A and y be two partitions, we say that A < p if and only if

k k
ZAi < Zpi for every k > 1.
i=1

i=1

We write A<y if A < pbut A = pu. The lexicographic order “<” is a total order defined
on the set of all partitions. It is defined as follows: let A and y be two partitions, we say
that A < if and only if the first non-vanishing difference y; — A; is positive. We write
A<pif A <pbut A #pu. The lexicographic order is a refinement of the dominance
order in the set Par(n), and they are different if n > 6. Indeed, we have (32) < (4,1?)
but (32) and (4,1?) are not comparable for the dominance order.

1.1.4 Rim, hooks and cores

Hooks are certain parts of the Young diagram of a partition, which are important
when studying the modular representations of symmetric groups. They were first
considered by Nakayama [Nak41a,Nak41b]. We recall some definitions.

To any node (i, j) of the diagram of A we can associate its (i, j)-th hook, denoted Hi’},
which consists of: the node (i, j), the nodes to the right of it in the same row (the arm),
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and the nodes lower down in the same column (the leg). The cardinal of H {} is the
length (or hook-length) of the (i, j)-th hook, it is denoted hlf\j and it is equal to

By =Ai—j+ A =i+l

The number of nodes on the arm (resp. leg) of the hook is called the arm-length (resp.
leg-length).

The rim of A is the set of nodes {(i,j) € [A] | (i +1,j + 1) ¢ [A]}, in words, it is the
south-east border of [1]. For example, the rim of A = (5,4,3,1) is formed by the shaded
nodes in the following diagram

To H{} (or to the node (i, j)) we can associate a set R?j of the same size, consisting of
the adjacent nodes forming a segment in the rim of A between nodes (i, A;) and (/\]’,])
The set R;\j is called the (i, j)-th rim-hook. We call p-rim-hook any rim-hook of length
p, for a positive integer p. We call (p)-rim-hook of (p)-hook any rim-hook of length

divisible by p.
Example 1.1.2. Let A =(5,4,3,1). The hook Hﬂz is illustrated by shaded nodes and the

corresponding rim-hook sz illustrated by nodes marked with “x” in the following
diagram

x| x|
X | X

The hook (and the rim-hook) in this diagram has length 6, the arm-length is 3 and the
leg-length is 2. A

Given a partition A and any node (i, j) € [1], a new partition y can be defined by
removing the rim-hook R;\j from A. That is, p is the partition with Young diagram

(] =[A]N Rl’\] The partition p is well defined since a rim-hook is precisely a subset of
adjacent nodes that can be removed from a Young diagram such that the remaining
nodes form a Young diagram.

The operation of removing a rim-hook will be repeatedly used in this thesis; it is
involved in some recursive algorithms. Let us start using the recursive removal of
rim-hooks by defining the p-core of a partition.

Let p be a positive integer, and A - n a partition. Consider the following procedure :
If A has a p-rim-hook, remove it from A. We obtain a partition of n—p. If the partition
obtained has a p-rim-hook, remove it, and we get a partition of n —2p. Continue
removing p-rim-hooks recursively until obtaining a partition y,, possibly the empty
partition, for which the diagram does not have p-rim-hooks. Suppose that in total we
removed w p-rim-hooks in this sequence of steps. The partition obtained y, + (n—wp)
does not depend on the way that the p-rim-hooks were removed (see [Nak41a, §4] or
[JK81, Theorem 2.7.16]). This partition is called the p-core of A. The number w is
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also independent of the way they were removed and it is called the p-weight of A. The
p-weight of A is also equal to the number of rim-hooks of A of length divisible by p
[JK81, 2.7.40]. A partition without p-rim-hooks is called a p-core, in other words, a
partition of p-weight 0. The p-core of a p-core is equal to itself.

Example 1.1.3. Let p = 3 and A = (5,4,1). There are two possible sequences of rim-
hook removals to obtain the p-core of A. They are shown in the following diagrams:
first the rim-hook with “x” nodes and then the rim-hook with “o” nodes.

OXX‘ OOO‘

The p-core of A is then (2, 12), which does not have 3-rim-hooks. For this example we
show the possible sequences of rim-hooks removals, but it is sufficient to find one of
these sequences to compute the p-core of a partition. Since a sequence in this example
contains exactly two 3-rim-hooks, then A is a partition of 3-weight 2. A

1.1.5 The abacus

The abacus display for a partition is a graphic representation which is convenient
when considering the p-hooks of a partition and its p-core. It was introduced by
James in [Jam78].

In order to define the abacus, we first recall a family of sets of integers associated
to a partition. The following definition is based on [Fay14].

Let A = (A1, A,,...) be a partition and r an integer. The S-set B} is the set defined
as:

B}:={Aj—i+r|ieN).

For every r € Z, the set B} is then an infinite set of integers bounded above. Since
from a certain rank A, is zero, if we denote ; = A;—i+r, then the sequence 1 > f, > ---
is formed of consecutive negative integers, starting from a certain rank. Hence, the
complement of B} in Z is bounded below. Conversely, let B be a set of integers formed
by a sequence bounded above and whose complement in Z is bounded below. Denote
the numbers in B as f; > p, > ---. There is a unique partition A and an integer r such
that B = B;'. Indeed, let r be the number of positive integers in B minus the number
of negative integers in Z\ B. Let A; := f; +i—r. Then B = B},

Example 1.1.4. Let A = (4,3%,2,1?). The B-set corresponding to r = 0 is
B =13,1,0, -1, -3, -5, -6, —-8,-9, 10, ...}.
The S-set corresponding to r =7 is

B} =1{10,8,7,6,4,2,1, -1, -2, -3, ...}.
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The abacus is a very convenient way of visualizing f-sets. For a positive integer p,
consider p vertical lines called runners on which there are positions labelled by Z as
follows.

P -p+1 -p+2 - -1

| | | | |
0 1 2 - p-1
| | | | |
p p+t1l p+2 - 2p—-1
|

(1.1)

Each position can be either empty or occupied by a bead. A p-abacus (or abacus)
for a partition A is the abacus with beads placed in positions corresponding to some
B-set B} and empty spaces in positions corresponding to Z \ B;.

Example 1.1.5. Let p = 5and A = (4,3%,2,1%) as in Example 1.1.4. The p-abacus dis-
plays for A corresponding to -sets B;‘ and B()\ are:

3—5 +;4 +;3 ‘—2 t41 -15 -14 -13 $712 -11

-10 |9 -8 -6
6 7 8 -5 -3 -1
1 ® s + +
10 0 1 3
® T T ® ®
A A
B7 BO
where only positions with beads are labelled. A

Since each p-abacus corresponds to a f-set for A, there is a whole family of p-
abacuses which represent graphically a same partition A. But two f-sets differ only by
shifting, that is, adding the same integer to each of the numbers in one f-set. Hence
we can drop the labelling of beads in the abacus display without losing information.
Unless otherwise specified, the preferred abacus for a partition A is the one corre-
sponding to the f-set B()\. For this abacus can be said to have a number of beads which
is a multiple of p. By having a number of beads we mean all the beads in the set of
rows of the abacus which contain at least one empty space. It is clear that this set
of beads is finite since empty spaces correspond to the complement of Bé which is
bounded below. With these conventions, the 5-abacus of the partition A = (4, 33,2, 12)
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from Example 1.1.5 is:

A practical way to obtain the p-abacus for a partition A = (1y,...) from its Young
diagram and vice versa is the following. Start with the Young diagram of A. The south-
east border of the diagram is made of segments. We can think of this segments as

being oriented right “=” and “ 4\ ” segments which define then a lattice path starting
from the bottom of the diagram to the top and following the south-east border, see

«w_n «w_n

the diagram below. We define an infinite word on the symbols “e” and “o” as follows:
“«—=>y

«w_»

form a finite word from the lattice path by replacing every for “o” and every

«w_»

“ %\ ” for “e”; then concatenate an infinite number of “e” to the left of the finite word

«w_»

and an infinite number of “o” to the right, we obtain an infinite ec-word. For example,
for the partition A = (4, 33,2, 12), with Young diagram

the infinite word is

000000000000 0000O0"""

Now, if we divide the eo-word in groups of consecutive p symbols (we can represent
such a division by drawing vertical bars), then such a division gives a p-abacus for A
by associating each group of p symbols, from right to left, to a row in the abacus from
top to bottom. Or, in other words, by wrapping the eo-word in an a empty abacus
with p runners in the direction of the labelling in Figure 1.1. Then the symbol “e”

corresponds to a bead and the symbol “o” to an empty position. For obtaining the
5-abacus (1.2) we draw vertical bars every 5 symbols as follows:

o |eseece|ecece|eecec| o
—_—— ——’ ——— — ' ~——

a b c d e
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Finally, we have given the names a,b,c,d for the groups of symbols from left to right
in this example. We now put them from top to bottom as follows:

a{e o o o o
bie o o o o
C{o O e O e
d{e ¢ o e o
elo o o o o

We can see that we obtain the 5-abacus of A = (4,33,2,1?) shown in (1.2).

The correspondence Young diagram - eo-word - abacus is well defined: to a Young
diagram corresponds a unique family of -sets, each one indexed by r € Z. For every r,
a B-set B} C Z determines an indicator function 1gr: Z — {0,1}, which is 0 starting
from a certain rank and 1 for all values less than certain rank, that is, there exist
m,M € Z such that 151(I) = 0 for all I > M or 1z (I) =1 for all | <m. A eo-word with
divisions is completely determined by choosing the position of one division, hence,
making correspond 0 and 1 to o and e, respectively, such a word is equivalent to a
function Z — {0, 1}, which is 1 at —co and 0 at +oo.

The last fact for verifying that the correspondence is well defined is that the south-
east lattice path encodes a -set for 1. Consider the g-set B, where p; = A; —i for all
i € N*. And observe that for this -set (hence for any f-set), the number of integers
in the gap between two consecutive f-numbers, ; and f;,; is equal to f; 11 — ;i —1 =
Aiy1 — A;. That is, the difference between two parts of . In terms of the abacus, the
gap between two consecutive beads has a number of empty spaces equal to a difference
between consecutive parts of A.

1.1.6 Core and quotient in the abacus

Let us see why the abacus display is particularly nice for computing the p-core and
p-quotient in practice. Consider the f-set B, where i = I(1). The set B,’I\ is formed by
the numbers

/\1+h—1, /\2+h—2, cee /\h_1+1, -1, -2, -3,

The positive integers in B;l\ are exactly the hook-lengths of the nodes in the first col-
umn of [A], that is, hooks H; 1,H; 1,... Hy ;. Hence, if a p-rim-hook is removed from
A, for some positive integer p, then a -set for the resulting partition is obtained from
B;’l\ by replacing certain B; for p; — p, which in the p-abacus amounts to sliding a bead
one position up. This is true in general for any f-set associated to A, and it is the
motivation for introducing p-sets:

Lemma 1.1.6 (Lemma 2.7.13, JK81). Removing a p-rim-hook R;"j from [A] means for

every B-set B} that a suitable By € B} is changed into By —p, and the resulting set is a -set
for [A]\ R;\’j. Conversely, changing a number By in a p-set for A into py —p (if Bx — p is not
already in the B-set) results in a f-set for a partition y which arises from A by removing a
p-rim-hook.

B-sets are a way of formalizing the fact of removing p-rim-hooks from a partition.
Hence they are useful for proving results involving p-rim-hooks, such as the unique-
ness of the p-core for a partition.
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Remark 1.1.7. The leg-length of a p-hook is encoded in the p-abacus: let A be any
partition and consider its p-abacus display. Take any bead that can be moved one
position down, say the bead is in position t € Z and move it down one position. The
new position is then ¢ + p. The new abacus corresponds to a partition obtained from
A by adding some p-rim hook H; ;. From the correspondence of Young diagrams and
eo-words, we have that the leg-length of H; ; is equal to the number of beads occuring
in positions t+1,t+2,...,t + p — 1. That is the number of beads in positions between
the initial and final position of the moved bead. Similarly, the arm-length of H; ; is
equal to the number of empty spaces occuring in the same list of positions. A

A direct consequence of Lemma 1.1.6 is that a S-set for the p-core y of the partition
A is obtained from a f-set B;* of A by replacing € B;' with g - p as far as possible.
Which is then seen in the p-abacus as sliding the beads up as far as possible, that is,
such that there are no empty positions between beads in a same runner. Also, the
p-weight of A is the number of such replacements, or bead slide movements. That
confirms the fact that every partition has a uniquely determined p-core.

Example 1.1.8. The 5-core of the partition A = (4,3%,2,1?) from Example 1.1.5 can be
calculated by removing for example the 5-rim-hooks Hl/\,3'HAI\,1' and Hl/\’1 in that order.
In the following diagram they are marked respectively as 0,1 and 2.

0]

(e} lelie) i)

= ININN

"—“'—"—‘NN

The resulting diagram (1?) does not have any 5-rim-hooks. The partition (1?) is then
the 5-core of A. In the abacus, the partition (12) is obtained from diagram (1.2) by
sliding up the only two beads that can be moved, as far as possible. In total, 3 sliding
movements have to be made, which agrees with the 3 hooks removed from A. We
obtain the following abacus:

A

We now recall the definition of the p-quotient of a partition A. Consider the abacus
corresponding to the f-set B, that is, the p-abacus for A in which the number of beads
is a multiple of p. This convention ensures that the abacus display for a partition is
unique. Observe that each runner can be seen as a 1-abacus, which corresponds then
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to some partition. Denote such a partition A(/) if it corresponds to the i-th runner from
left to right for 1 <i <p —1. The p-tuple of these partitions

Ay = (0,00, Ay,

is called the p-quotient of A. In general, a k-tuple i of partitions is called a k-partition.
For an integer m we call rank of 7 or we say that j is k-partition of m if the sum of the
ranks of the partition which form 7 is equal to m. The p-quotient of A is a p-partition
of w, where w is the p-weight of .

Example 1.1.9. Let p=5and A = (4,3%,2,1%) with abacus (1.2) in page 26. The p-
quotient of Ais A, = (0, (1), @, (2), ). This is a p-partition of 3, the p-weight of A.
A

The uniqueness of the abacus, under the chosen convention and Lemma 1.1.6 gives

Theorem 1.1.10 ([JK81, Theorem 2.7.30]). For every p € IN*, a partition is uniquely
determined by its p-core and its p-quotient.

Theorem 1.1.10 can be seen as a version of the Euclidean division for partitions.
In fact, for a one-row partition, the p-core and the p-quotient are exactly the residue
and quotient from the division by p, let us see this in detail.

Example 1.1.11. Let n € IN* and A be the one-row partition A = (n). Let 1 <p < n.
Euclidean division says that there exist unique integers q and r such that

n=pq+r, and 0<r<p.

The p-abacus of A = (n) has the following form:

0 1 - r-2 r-1 - p=2 p-1

q TOws

Then, the p-quotient of A is then the p-partition Xp =0, ...,0, (9), 0, ...,0), with
partition (q) as the r-th component. The p-core of A is obtained by sliding up the bead
that can be moved in the (r — 1)-th runner from left to right, all the way up, which
gives partition (7). The p-core of A is then (7). A
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1.1.7 Labelling of runners in the abacus

We recall a useful labelling for the runners of the abacus of a p-core. Let y be a p-core
and consider its abacus. Take the positions of the lowest bead in each runner. This
gives a list of p integers pg < p; <--- <p,_;. Since each of these integers corresponds
to (a position on) a runner, such a list yields a labelling 0,1,...,p — 1 of the runners,
possibly different from the natural left-to-right labelling: now the 0-th runner is the
leftmost with “minimal number” of beads, the (p — 1)-th runner is the rightmost with
the “maximal number” of beads. We can rephrase this by defining a total order on
runners: Let “<” be the following order on runners. For R and S two runners on the
abacus of y we say that R < S iff R has strictly less beads than S, or R and S have the
same number of beads and R is to the left of S. Where, of course, we talk about “num-
ber of beads” in a figurative sense. Now, with this order, our new labelling 0,1,...,p—1
coincides with increasingly ordering the runners with respect to “<”. From now on, if
not otherwise specified, we use this labelling for runners on an abacus.

Example 1.1.12. Let p=5and y = (2,1). The Young diagram and 5-abacus of y, with
the corresponding labelling of runners is

1 4 2 0 3

=

1.2 The symmetric and alternating groups

One of our principal objects of study is the symmetric group. In this section we recall
some definitions about the symmetric group, its conjugacy classes and the alternating
group.

Let n € N. The symmetric group S,, on n symbols, is the set of bijections from
{1,2,...,n} to itself. The multiplication is composition. The degree of $,, is then |S,,| =
n!. An element 7 € S, is called a permutation of {1,...,n} or simply a permutation.
There are different ways to write a permutation. One way is two-line notation, that is:

For example, the permutation defined by 1 — 2,2+~ 3,3~ 1,4+— 5and 5~ 4 is
written
. (1 2 3 4 5)
2 3 1 5 4)

Our preferred way of denoting permutations is cycle notation: for a i € {1,2,...,n}
consider i,7(i), 7©%(i),.... There exists r > 1 such that 7"(i) = i. The cycle containing i is

(i n() =@ - 7"7H3E)).
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Conversely, a cycle (i j k --- I) means that 7 sends i to j, j to k, ..., and finally
I to i, cyclically. Now, if there is any, take j € {1,2,...,n} which is not in the cycle
containing i and iterate the process. The concatenation of the obtained cycles gives
the cycle notation for 7t. For example, for the permutation 7, above the cycle notation
is (1 2 3)(4 5). Cyclically permuting elements within a cycle does not change the
permutation. For example (123)=(231)=(312)in S3. A cycle with k elements is
called a k-cycle. Sometimes 1-cycles are omitted; by convention, omitted numbers are
considered fixed points of the permutation.

Example 1.2.1. S5 = {Id, (12), (13), (23), (123), (132)}. A

The 2-cycles in S, are an important kind of permutations, they are also referred to
as transpositions. The group S, is generated by transpositions: Any cycle (i j k --- [ m)
is equal to the product (i j)(j k)--- (I m). Moreover, it can be shown that S,, is generated
by adjacent transpositions, that is, the transpositions (1 2),(2 3),...(n—1 n). Given a
permutation 7w € S, there is not a unique way of writing 7 as a product of transposi-
tions, for example (1 2)? = (2 3)? in S3. However, it can be proved that the parity of
the number of transpositions in any writing of 7 is always the same. In view of this
fact, let ™ = 11, --- 7 with 7; transpositions, the sign of r is defined as

e(m) = (-1)k.

Another notation for the sign of 7 is sgn(m). The map ¢ : S,, — {1, -1} defines an ho-
momorphism into the multiplicative group {1,—1}. The kernel of ¢ is the subgroup
denoted A, and called the alternating group. According with the parity of transposi-
tion writing, the elements of A, are called even permutations and those in 5, \ R, are
called odd.

Example 1.2.2. A5 ={Id, (12 3), (13 2)}. A

The alternating group is a normal subgroup of S,. From the isomorphism theo-
rems for groups |[Rg| = |RA1] =1 and |R,| = "7' for n > 2. A useful remark is that a k-
cycle (iy ip -+ ix_q 1) isin A, (is even) if and only if k is odd. Indeed (i} i -+ ix_1 i) =
(17 1p)(ip 13)-- - (ik_1 ix) is written as the product of k — 1 transpositions.

1.2.1 Conjugacy classes of S,

The cycle notation for a permutation is unique up to permutation of the cycles, if the
cycles are disjoint. Hence the set of lengths of the cycles is well defined for a permu-
tation. Let w € S,,. Write 7 in cycle notation and organize the cycles decreasingly by
length

o= (i iy )1 o jay) (koo ky).
The cycle type of 1 is the partition A of n whose parts are the lengths of the cycles of 7

A=A A A

Example 1.2.3. The cycles types of the permutations Id, (1 2) and (1 2 3) in Sj are,
respectively the partitions (13), (2,12) and (3) of 3. A
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Note that every partition of n occurs as the cycle type of some permutation. This
correspondence is not a bijection, though, since two different permutations can have
the same cycle type. As a matter of fact, all permutations with a same cycle type form
a conjugacy class of S,,. Let us observe this in detail.

Recall that two elements g,/ in a group G are conjugates if there exists k € G such
that ¢ = khk~!. This relation between pairs of elements in G defines an equivalence re-
lation. The equivalence classes in this case are called conjugacy classes. In the symmet-
ric group S,, the action of conjugating a cycle has an interesting behavior: consider
the cycle (i1 i --- i) €S, and let ® € S,,. Then

m(iy iy -+ dx) 7t = (n(iy) m(iy) oo m(iy)).

Thus, in general, conjugating a permutation o € S, written in cycle notation by a per-
mutation 7 is equal to applying 7 to every number 1, 2,...,n keeping the same cycle
structure of 0. Hence, conjugating does not change the cycle type of a permutation.
Conversely, two permutations having the same cycle type are conjugated. For exam-
ple, in Ss, the permutations 7 = (2 3)(1 4 5) and o = (4 5)(1 2 3) are conjugated by any
permutation mapping the 2-cycle to the 2-cycle and the 3-cycle to the 3-cycle; take

1 2 3 45
1 45 2 3)

In consequence, the cycle type of permutation defines a bijection:

Par(n) «— {C| Cis a conjugacy class of S,,}

A > C":={ne$S,|the cycle type of 7 is A}.

1.2.2 Conjugacy classes of A,

We recall the structure of conjugacy classes of A,,. We saw that conjugacy classes of
S, are indexed by the partitions of n by means of the cycle type of partitions. Then,
all permutations in a conjugacy class of S, are either even or odd. That is, if C* is a
conjugacy class of S, then CrCRA,orC*CS, \A,.

Let C* be a conjugacy class of S, of even elements, that is, C* C A,. That means
that A has an even number of even parts. Let = € C*. Consider the following two
situations.

* Suppose that there is 0 € S, \ A, such that 77 and ¢ commute. That is, oo~ =

7. Let 7’ be such that 7’ = xmtx™!, for some x € S,,.

If x € A\, then 7t and 7’ are conjugates in A,; if x € S, \ A, then xo0 € A, as
it is the product of two odd permutations. Now, 7w’ = x7t x™! = x(omo™1)x~! =
(xo)m(xo)~!, then 7t and 7" are conjugates in A,,.

Hence, in this case, the conjugacy class of 7w in A, coincides with the conjugacy
classof Tin S,,.

* If © does not commute with any element in S, \ R,,, then the $,-conjugacy
class C* of 7 splits in two A,-conjugacy classes of the same size, which are re-
spectively formed by elements of type xmx~! with x € A,,, and elements of type
xrx~! with x € S, \ A,,. The two A,-classes are of equal size since one is the
image of the other under conjugation with any permutation in S, \ A,,.
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In conclusion, given a $,,-conjugacy class C*, included in A,, (A has an even number of
even parts), either all of the elements in C* form a conjugacy class of A,,, or C* splits
in two A,-conjugacy classes of the same size. Moreover, C* splits if and only if for
every 7 € C*, it does not commute with any element o € S, \ A,

Now, the only elements which commute with a given permutation 7 are generated
by the product of powers of cycles in 7, as well as elements permuting cycles in 7 of
a same length. Hence, if there is a cycle of even length in 7, then the permutation
formed only by this cycle is in S, \ A,,, and commutes with 7. Also, if there are two
cycles of the same odd length in 7, the permutations which exchanges one by one
elements in these two cycles, commutes with 7 and it is odd, as it is an odd product
of transpositions. We then have the following known criterion for when an even S, -
conjugacy class splits as two R,-conjugacy classes:

Proposition 1.2.4. Let C* be a conjugacy class of S, such that C* C R,

o CAis the disjoint union of two conjugacy classes C** LIC*™ of equal size of R, if and
only if A is formed by different odd parts.

* C*is a conjugacy class of R\, otherwise.
Furthermore, in the first case, we have that forany 0 € 5, \ R,
oCMol =c
That is, the conjugacy classes C** and C*~ are conjugate in S,,.

Example 1.2.5. Let n = 4 and consider the partitions of 4: A = (3,1) and y = (2?). The
associated conjugacy classes of S, are, for A the 3-cycles:

C*=1{(123),(132),(234), (243), (134), (143),(124), (142)},
and for y the double-transpositions:
Cr={(12)(34), (13)(24), (14)(23)}.

Now, as sets, both conjugacy classes are included in A4, but the partition A is formed
by different odd parts, then from Proposition 1.2.4 we know that C* = C* 1 €A,
where C** and C*~ are A4-conjugacy classes. We have:

CM={(123),(134),(243), (142)},

and
CY ={(132),(124),(234), (143)},

where the notations + and — where randomly assigned. On the other hand, y is not a
partition formed by different odd parts, then C# is itself a A4-conjugacy class. A

Proposition 1.2.4 gives an indexing of the conjugacy classes of A,: Denote by
Par® (1) the set of partitions of 1 with an even number of even parts (the cycle types of
permutations in A, ). Denote by Parf_(n) the set of partitions of n formed by different
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odd parts. We have Parf_(n) C Par®(n). Finally let Par?(n) = Par®(n) \ Par{’\_(n). There
is a bijection:

Parl(n) || (Par_{"\_(n) X {+,—}) «— {C| Cis a conjugacy class of R}

(p,+) or (4, —) — CHt or CH~.

A partition bijection The set Parf_(n) is in bijection with the set of self-conjugate
partitions of n. Indeed, let A € Par) (n). We define a partition y as the self-conjugate
partition with diagonal hook-lengths the parts of lambda:

oo #o_
hl,l = A, hz,z = Ay,

Since the parts of A are odd and different, p is well-defined. Conversely, a self-
conjugate partition y gives a partition A by defining the parts of A as the diagonal
hook-lengths of y, as above. That way, the parts of A are different and odd since u
is self-conjugate. This correspondence is easily seen in the Young diagrams: parts
become diagonal hooks and vice versa. For example, if A =(9,5,3) € Parf_(17) then
u=(54%3,1):

[ ]
®
[}

= (1.4)

Then, there is a bijection:
Parf_(n) ={A|Arn, A; are all odd and different } «— {A|Arn, A=21"}.

Remark 1.2.6. Later, when reviewing the representation theory of A, we will see
that there exists a bijection between the set of conjugacy classes of A, and the set of
partitions:

(AArm, ASA U (Al Ak A=X ) x{+-)),

(see Theorem 1.3.12). Implying that the set ParR(n) || (Parf_(n) X {+,—}) is also in
bijection with the preceding set of partitions of n. Now, considering the fact that we
have an explicit bijection Par_{'\_(n) < {A|A+n A= 1"}, the natural question for an

explicit bijection between the sets
{AlAFn, A> )} o Parl(n),

arises. We ask for an explicit bijection between the set of partitions strictly greater
than their conjugate (or a set of partitions on which we chose one of A or A’, for every
A+ n) and the set of partitions with an even number of even parts such that if all
the parts are odd, then there exist two equal parts. We do not have an answer to this
combinatorial problem. A
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1.2.3 p-prime conjugacy classes and BG-partitions

There is a family of conjugacy classes of S,, which is involved in the p-modular rep-
resentation theory of S,,. Before discussing this relation in detail, let us see a useful
combinatorial correspondence.

Recall that the order of an element in a group depends only on the conjugacy class.
We can then talk of the order of a conjugacy class. For a prime number p, we say that
a conjugacy class is p-prime if the order is relatively prime to p.

In the symmetric group S,;, the order of a conjugacy class is easy to calculate: it is
the least common multiple of the lengths of the cycles in the cycle structure. Hence,
a conjugacy class C* is p-prime if and only if

ged(lem(Ay, A, ..., Ayyy)p) = 1.

Which is equivalent to pt A; for all i < A <I(A). Then the partitions indexing p-prime
conjugacy classes of S, are those for which none of the parts are divisible by p. We
call such partitions p-prime' partitions.

There are as many p-prime partitions of n as p-regular partitions. This is true in
general for any p € IN. Recall that a partition is p-regular if it does not contain p
non-zero parts which are equal. One bijection between the two sets of partitions is
due to Glaisher (1883, see [Bre99, Exercise 2.2.7]). Such bijection is a generalization
of his correspondence between partitions formed of odd parts and partitions formed
of different parts. A proof with generating functions, that these two sets of partitions
have the same number of elements can be found in [JK81, proof of Lemma 6.1.2].

Glaisher’s correspondence Glaisher’s bijection from p-prime partitions to p-regular
partitions is as follows. Take a p-prime partition. If it is already p-regular there is
nothing to do. If it is not p-regular, there is a part A; repeated p times. Replace these
p parts for one part of length pA;. Iterate this process until none of the parts repeats
p times. The obtained partition is p-regular. This process is uniquely reversible.

Example 1.2.7. Let p = 3 and take A = (7,23) +- 13. The partition A is not 3-regular, but
it is 3-prime. Under Glaisher’s correspondence, the three repeated parts (of length 2)
become one part (of length 6). The obtained partition is (7,6) which is 3-regular. A

We have then a one-to-one correspondence:
{ p-prime conjugacy classes of S,, } «— { p-regular partitions of n }. (1.5)

The importance of the fact that these two sets are in bijection will be more clear
when studying the representation theory, where instead of indexing p-modular irre-
ducible representations of $,, by p-prime partitions, they will be indexed by p-regular
partitions.

Let us now consider some p-prime conjugacy classes of A,,. We saw in Proposition
1.2.4 that there are two kinds of $,-conjugacy classes which are included in R,;: those

In the literature these partitions are sometimes called p-regular partitions, and our p-prime conju-
gacy classes are called p-regular conjugacy classes. Since we use the term p-regular for a different kind
of partitions, we chose to leave the term p-prime for the corresponding conjugacy classes and partitions.
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which split as two R, -conjugacy classes and those which do not split. Those which
split are indexed by the set of partitions of n formed with different odd parts. Now,
from these conjugacy classes, choose the ones which are p-prime. From the correspon-
dence (1.4), we obtain a bijection

(e
(1.6)

The two sets are important in this work. Hence we give a name to the set of parti-
tions in the right.

C*C A, isap-prime A+ n, Ais self-conjugate and
. . A “—> /\ A )
conj. class with A € Pary" (n) pths, forall A;#0

Definition 1.2.8. A partition A of n is called a p-BG-partition (or a BG-partition) if A
is self-conjugate and none of the diagonal hook-lengths of A is divisible by p. The
set of p-BG-partitions of n is denoted BG,. The set of all partitions which are p-BG
partitions is denoted BG,,.

In terms of (p)-hooks, as defined in §1.1.4, A is a p-BG-partition if and only if A is
self-conjugate and it does not have diagonal (p)-hooks.

Example 1.2.9. The set of 3-BG-partitions of 18 is

BGL® ={(6,5,2%,1), (7,4,2%,1%), (9,2,17)).

1.3 Representations of the symmetric and alternating groups

In this section we state well known facts about the representation theory of the sym-
metric and alternating groups. Statements and definitions are principally borrowed
from [JK81,Sag01,CR62].

1.3.1 Fundamentals
Some vocabulary

Before discussing the representation theory of the symmetric group, we set some gen-
eral vocabulary.

Let K be any field and G a finite group. A representation (1, V') of G over K (or a K-
representation of G) is a group homomorphism 7 : G — GLg(V), where V is a finite-
dimensional vector space over K and GL (V) is the group of KK-automorphisms of V.
The dimension of the representation is the dimension of V. We refer to a representation
by either the morphism 7 or the vector space V.

Consider the group algebra IKG. There is a one-to-one correspondence between
the set of KK-representations of G and the set of finitely generated IKG-modules: Let
(M,*) be a KG-module. In particular, M is a IK-vector space. For a fixed g € G, the
K-linear map
M — M
m > gxm

T(gl
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is a K-automorphism of M, of inverse 7,-1. Hence

n: G — GLg(M)

g —> T(g

defines a representation of the group G. Conversely, any IK-representation (7, V) of G
uniquely defines a IKG-module, with action * defined linearly as

g*v:=m(g)(v),

for g € G and v € V. We use this correspondence throughout this text, by referring to
either a representation of a group or a module.

Two representations (77, M) and (p, L) of G are said to be equivalent (or isomorphic) if
there is an isomorphism of KK-vector spaces ¢ : M — L such that ¢pomn(g) = p(g)o¢. In
this case, the isomorphism ¢ is called a G-isomorphism. We write M ~ L. Equivalence
of representations is, of course, an equivalence relation.

Let M be a KG-module and let H < G be a subgroup. The restriction of M to H
is the KH-module denoted M |y where the underlying module is M and the action
is the action of G restricted to H. If N is a IKH-module, the induced IKG-module is
N 16=KG®gy N.

Reducibility and decomposition

A submodule of a IKG-module M is a subspace N C M that is stable, that is, closed
under the action of G. A KG-module M is said to be simple (or irreducible for the
corresponding representation), if the only submodules are 0 and M.

In representation theory of finite groups, we aim to classify the irreducible repre-
sentations of a group, up to equivalence. The reason for this is that when the charac-
teristic char(IK) of K does not divide |G|, Maschke’s theorem states that any represen-
tation V of G over K decomposes as a direct sum of irreducible representations

V=Vi&---aV.

In this case, we also say that V is semisimple. If char(K) divides |G|, there is not al-
ways such a decomposition. However, since IKG is a finite-dimensional associative
IK-algebra, the Jordan-Ho6lder theorem ensures a different kind of decomposition.

A composition series of a KG-module M is a sequence of submodules

0=MyGCM; G- CMy=M,

such that M;/M;_; is simple for all i. If M is, in particular, a finite-dimensional vector
space over KK, as in our case, then M satisfies the so-called ascending chain condi-
tion and descending chain condition for submodules. This ensures the existence of a
composition series ([CR62, 13.10]). The Jordan-Hélder theorem states that whenever
composition series exist, the isomorphism classes of the simple quotients and their
(composition) multiplicities are uniquely determined (they only depend on M). More
precisely, if 0 = My CM; € CMy=Mand 0 =My C M| C -G M/ =M are two
composition series for the IKG-module M, then k = [ and there exists a permutation

o of 1,...,n such that M;/M;_; is isomorphic to M(’I(Z.)/M(;(i)_l. The simple modules
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M;/M;_; are called the composition factors of M, and the set of composition factors of
a IKG-module is thus well-defined.

In both cases, roughly speaking, irreducible representations of G are the layers
forming any representation of G. When char(KK) does not divide |G| we talk about
ordinary representation theory, for example if char(K) = 0. Otherwise, we talk about
modular representation theory.

1.3.2 Representations of the symmetric groups: Specht modules

For a finite group, it is well known that the number of nonequivalent irreducible rep-
resentations is the same as the number of conjugacy classes, in the ordinary case, or
p-prime conjugacy classes, in the modular case [CR62, 30.12 and 83.5]. Now, recall
from Section 1.2.1 that conjugacy classes of S, are indexed by partitions of n, and
p-prime conjugacy classes are, in turn, indexed by p-regular partitions of n. For every
partition A we are going to define a module S*. From such modules we are going to
obtain the classification of ordinary and modular irreducible representations of S,,.
From now on, let K be any field with char(K) = 2.

Let A + n. A Young tableau of shape A (or a A-tableau), is an array t obtained by re-
placing boxes in the Young diagram of A with the numbers 1, 2,...,n, bijectively. There
are n! tableaux of shape A. The symmetric group S, acts on the set of A-tableaux. For
example, let A =(3,2) + 5. A tableau of shape A is:

3 2 4
b= o (1.7)

The permutation 7t = (23)(45) € S5 acting on the tableau t gives:
_ 235

401

We say that two A-tableaux t and t’ are row equivalent if t’ is obtained from t by a
permutation which fixes the row. In other words, t and t’ are equivalent if they are
the same up to reordering each row. The equivalence class of t is denoted {t} and is
called a tabloid of shape A (or a A-tabloid). We represent a tabloid like a tableau with
lines between rows, indicating that the order in each row can be ignored. For example:

2

324 43
t=-57"=773

There are /\1,”—'/\1, tabloids of shape A, where I = I(1).

The group S, acts on tabloids by m{t} = {rt}. This action gives rise to a KS,-
module: Let A + 1, and suppose that {t1},...,{ti} is a complete list of A-tabloids. We
define the KS,-module M* as the K-vector space spanned by the \A-tabloids:

MY = K{{ty),..., {ti})-

Now, for a A-tableau t define a subgroup of S, as follows. Suppose that the
columns of ¢t are the sets Cy,...,C,, C {1,...,n}. The column-stabilizer of t is the sub-
group

Ci:=Sc, x-+xS¢c ,
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of S,, where St denotes the group of bijections of the set T. Define an element «;, in
the group algebra KS,,, associated to the tableau t as

Ky = Z e(m)m.

neCy

Associated to t, as well, we define the polytabloid as the following element in the mod-
ule M*:
ey = Kk, {t}.

If t is of shape A we say that e, is a polytabloid of shape A or a A-polytabloid.

Example 1.3.1. if ¢ is the tableau in (1.7), the column-stabilizer of t is

C: = Sps) X S0y X Sig
= {1d, (35)) x {14, (2 1)} x {1d],

then, «, factors as
;= (Id—-(35)) (Id—(21)).

Hence,

[S24RCN)
N | —
N | —

€t =

A

Definition 1.3.2. The Specht module S* is defined as the submodule of M* spanned
by the polytabloids e;, where t is of shape A.

Example 1.3.3. If A = (n), the Specht module S* is the trivial representation: there is
only one polytabloide;= 1 2 --- n ,and e, =e; foreverym e $5,,.

If A = (1"), it can be shown that S* is one-dimensional as well, and e, = (7)e, for
every € S,,.. The Specht module S* is the sign representation. A

Remark 1.3.4. There exists a basis for the Specht module S* indexed by the set of
standard tableaux. A standard tableau of shape A is a tableau in which the entries
in each row and column are increasing. The dimension of S* is given by the Hook
length formula in terms of the hook-lengths in the Young diagram [A], see [FRT54].
The dimension is
n! H L/\
)

(i,j)€[A]
A

There is a bilinear form ®(-,-) that can be defined in M*, which is symmetric,
S,-invariant and bilinear. For this bilinear form, the KS,-module $1/(S* N §*+) is
either irreducible or zero (see [JK81, §7.1]). In the ordinary case, that is, when char(K)
does not divide |S,| = n!, we know that (S* N S*+) = 0, and since there are as many
irreducible representations as conjugacy classes of S,,, we have:

Theorem 1.3.5 ([JK81, Theorem 7.1.9]). The Specht modules S* for A + n give a complete
list of nonequivalent ordinary irreducible representations of S,,.
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In the modular case, that is when p = char(K) divides |S,| = n!, we know that
$4/(8* N S*) is non-zero if and only if A is a p-regular partition. We have:

Theorem 1.3.6 ([JK81, Theorem 7.1.14]). Let p = char(K). As A varies over p-regular
partitions of n,
D" :=sY/(s* n st

varies over a complete set of nonequivalent modular irreducible representations of S,,.

The result in Theorem 1.3.6 explains, in particular, the interest of having a corre-
spondence (1.5) between p-prime conjugacy classes and p-regular partitions.

Remark 1.3.7. Some authors (for example Mathas in [Mat99]) use a different way to
define the Specht modules and the modular irreducible representations of $,. We
use James’ definition. As James defined it, the Specht module St is isomorphic to
the dual module which Mathas indexed by A’, the conjugate of A. Now, for us, the
modular irreducible modules are indexed by p-regular partitions. For Mathas, they
are indexed then by all the conjugates of p-regular partitions, which are called p-
restricted partitions. A p-restricted partition A is then a partition such that A;, 1 —A; <p
for every i. In other words, a partition is p-restricted if and only if its conjugate is p-
regular. A

Remark 1.3.8. The construction of Specht modules shown here is due to James, and it
is valid more generally for the representation theory of Hecke algebras, see [D]86]. A

Remark 1.3.9 (About the field). If K is the algebraic closure of the field KK, a splitting
field E for a finite group G, is a finite extension of KK such that all irreducible KG-
modules are realizable over [E. The symmetric group S, has the property that every
field is a splitting field for $,, ([JK81, Theorem 2.1.12]). Hence, in this thesis when we
talk about ordinary representations of S, the field KK can be taken as being for exam-
ple Q, or IF, with p { !, that is, p > n. When we talk about modular representations,
for the field K we take IF, with p | n!, thatis, p <n. A

1.3.3 Representations of the alternating groups

Let K be a field with char(K) # 2 and let n > 2. The irreducible representations of
the alternating group A, can be derived from those of S, applying Clifford’s theory
of representations of normal subgroups. Our case is an easy application, since [S,, :
A, ] = 2. Let us see this in detail.

For stating Clifford’s theorem, we introduce the notion of conjugate modules. Let G
be a finite group, and let H <« G be a normal subgroup. Let (7, L) be a KH-representation.
For an element g € G, the conjugate (by g)representation (&), L(8)) is the IKH-repre-
sentation with underlying vector space L and action defined as

& (h)-1=m(ghg™")-1.

Two IKH-modules N and N’ are said to be conjugates if N’ = N8 for some g € G.
As stated in [CR62, 49.7], we have:
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Theorem 1.3.10 (Frobenius, Clifford [Cli37]). Let M be an irreducible KG-module, and
let H<G. Then M |y is a semisimple KH-module, and the irreducible KH-submodules of
M |y are all conjugates of each other. Moreover, if L is an irreducible IKH-submodule of
M |y, then

M lg=k(L®@...0 L&)
where {L8V), ..., L8} is a full set of nonequivalent conjugates of L, and k is some positive
integer.

Before applying Theorem 1.3.10, let us do some preparation by observing the effect
of conjugating KA, -modules.

Lemma 1.3.11. Let n > 2 and let L be a KR,,-module. Then L and L' ?) form a maximal
set of nonequivalent conjugates of L. In other words, for any o € S, any conjugate L\%) of
L is equivalent to L or to L' 2, or possibly both.

Proof. Denote p the representation associated to the module L. For ¢ € S,,, denote
(p°,L'?)) the conjugate module of L by o.

If 0 € A, we claim that L\®) ~ L. Indeed, let T € A,. We have that pl9)(7) =
p(oto™!). Then pl9)(t) = p(o)p(t)p(0)'. Thus p(a)p'?)(t) = p(t)p(c0)~!. Then
p(0)7!is a A,-isomorphism of L and L),

If 0 €5,\A,, we claim that L(®) ~ L1 2)_ For this, we first rewrite the element o:
we have 0 = v(1 2), where v = (1 2) € A,,. Now, let T € A,,. We have

Then p(v‘l)p(")(T) = p\l 2)(T)p(1/‘1), so that p(v!) is a A,-isomorphism of L) and
L2,

O]

We now apply Theorem 1.3.10 to G =S,, and H = A,,. The following explanation
is based in [For97]. Let M be an irreducible KS,,-module.
A preliminary remark is the following. Consider the KS,-module M¢ defined as

Mt :=M®e,

where ¢ is the sign representation of S,,. Since ¢ is a one-dimensional representation,
MZ¢ is an irreducible IKS,,-module. On the other hand, notice that

M n,>M1n,,

since A, acts as the identity on €. We keep this remark for later.

Now, Theorem 1.3.10 says that M | is semisimple. Let D be an irreducible con-
stituent of M | . From Lemma 1.3.11 we have either

Mlp,=k(D) or Mla=k(DeD"?),
where k is as in Theorem 1.3.10.
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* We are in the first case if and only if D! ?)

I11.2.14], we have that

~ D. In this situation, from [Fei82,

M lp =D,

that is, k = 1. In this case M and M¢ are not isomorphic KS,-modules. Indeed,
suppose that there is a $,-isomorphism ¢. Then, ¢ is also a A,-isomorphism;
but D is an irreducible IKA,,-module. Then ¢ must be a scalar multiple of the
identity map; but this contradicts the assumption that this is an isomorphism
between M and M ®¢.

 We are in the second case if and only if D! 2)  D. We have
Mlp,=DeD"? =M |p, .
In this case, the integer k from Theorem 1.3.10 is equal to 1 since D @ D1 ?)
is stable for the action of S,, then it is a stable submodule of the (irreducible)
KS,-module M. From Mackey’s subgroup theorem ([CR62, §44]) we have that

M =D 19~ M¥,
then in this case M ~ M ®e.
Summarizing, let M be an irreducible KKS, -representation.
(i) If M = M¢, then M | =~ M?® |5 1isanirreducible KA, -representation, while

(ii) if M ~ M¥¢, then M l}\nz M¢ l}\” splits into two nonequivalent irreducible KA,,-
representations (conjugated by S,)).

With this characteristic free reasoning (provided that char(K) # 2), we are now
ready to give the classification of ordinary and modular irreducible representations of

AW

Ordinary case

The ordinary irreducible KKS,-modules are the Specht modules S*, for every A+ n.
Since S* ® ¢ is again irreducible, then there exists A¢ + 1 such that S*® ¢ ~ S**. From
the construction of S*, it can be shown that A¢ is the conjugate A’ of lambda:

St@e~st,
Hence, from the above discussion we obtain:

Theorem 1.3.12 (Ordinary irreducible A, -representations). Let A be a partition of n >
2.

(i) If A= X, then st In,= s La, is an irreducible KR ,-representation, while

(ii) if A=A, then S* | =~ sV La, splits into two nonequivalent irreducible and conju-
gate representations S**, SA~ of R, (conjugated by S,,).
A complete system of nonequivalent ordinary irreducible IKR,,-representations is
(S alArm ASVIU{SM, SV [ Ak n, A= X)),
Remark 1.3.13. In the first set of irreducible IKA,-representations, since S* In,=

sV la, and we want to list a complete set of nonequivalent KA, -representations,
we choose one of $* | or sV la, by taking only A > )\’ A
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Modular case

Let p = char(KK). The modular irreducible KS,-modules are the modules D*, for every
p-regular partition A - n. Then, being irreducible, the KS,-module D* ® ¢ is equiva-
lent to some D*°. In this case, in the construction of the modules D?, the connection
between the partition A and the module D* is not as transparent as in the ordinary
case (construction of S*). Then, it is not straightforward to find the p-regular par-
tition A¢ corresponding to the irreducible module D* ® . Moreover, it is a difficult
problem, for which Mullineux proposed a solution ([Mul79a]). Mullineux conjecture
was later proven to be true. Let m,(A) denote the partition A° (which depends on p).
In §2 we explain Mullineux algorithm for finding m (1) explicitly .
With such notations we have:

D @e~ D™,
From the discussion above we obtain:

Theorem 1.3.14 (Modular irreducible A,-representations). Let A be a p-regular parti-
tion of n > 2.

(i) If A #my,(A), then DA |p =~ D™ In, is an irreducible IKR,,-representation, while

(ii) if A = my(A), then Dt |p = D™ La, splits into two nonequivalent irreducible
and conjugate representations D', DA~ of R, (conjugated by S,,).

A complete system of modular nonequivalent irreducible KR, -representations is
(D% a1 A €Reg,(n), A>my,(A)}u (DM, DV | A € Reg,,(n), A = my,(A)).

Remark 1.3.15. As in the ordinary case, in the first set of irreducible KA, -representa-
tions, since D* Ia,= D™ la, and we want to list a complete set of nonequivalent

KA, -representations, we choose one of D* | or p™W la, by taking only one of A
or m,(A). For making this choice we take A >m, (). A

1.3.4 On the number of self-Mullineux partitions

In the preceding section we saw representations of S, which split upon restriction
to A,. Recall, from Proposition 1.2.4, when discussing conjugacy classes of S,,, con-
tained in A, that there was a similar splitting situation. Moreover, we know that
ordinary (or modular) representations are indexed by conjugacy classes (or p-prime
conjugacy classes) of S,,. These observations give interesting bijections, that allow to
say more about the latter correspondence. Namely, we have the following proposition
which follows from [AO91, Proposition 2]. We call p-self-Mullineux partition (or self-
Mullineux), any partition A such that A = m,(A). The set of p-self-Mullineux partitions
of n is denoted My, and the set of p-self-Mullineux partitions is denoted M,,.

Proposition 1.3.16. Let n > 2 and let p be an odd positive integer. The number of p-BG
partitions of n is equal to the number of p-self-Mullineux partitions of n.

Remark 1.3.17. As mentioned, Proposition 1.3.16 follows from [AO91, Proposition
2]. Here, we give an alternative proof using characters and the study of A,-conjugacy
classesin §1.2.2. A
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Before proving Proposition 1.3.16 we make some preparation. We know that
the number of A,-conjugacy classes is equal to the number of ordinary irreducible
A, -representations. The two sets can be indexed by sets of partitions (or partitions
marked with a sign) of n. The first indexing comes from (1.3) after Example 1.2.5, and
the second comes from Theorem 1.3.12. Hence, the following two sets of partitions
have the same cardinality:

| Par2(n) U A+, A= | A e Parf (m)}| = [{A+n]A> X} U A+, A= [k A= 1}

As tempting as it might be to affirm that the couples of corresponding subsets in the
two sides of this relation have the same number of elements as well, it is not auto-
matically true. It would be ideal, though, since the right-hand subsets on each side
correspond to splitting conjugacy classes and splitting representations. Fortunately,
we can make such affirmation since we know that there is an explicit bijection ((1.4)
on page 34) between the two sets:

Parf_(n) — {Arn|A=X).

We note that we do not know an explicit bijection between the sets Par(n) and {) +
n|A> A"}, which, as a consequence of the latter, have the same number of elements.

Similarly, in the modular setting, if p = char(K), we know that the number of
A,-p-prime conjugacy classes is equal to the number of modular irreducible A,,-
representations. The two sets can be indexed by sets of partitions (or partitions marked
with a sign) of n. The first indexing comes from the restriction to p-regular partitions
of (1.3) after Example 1.2.5, and the second comes from Theorem 1.3.14. Hence, the
following two sets of partitions have the same cardinality:

|{/\ € ParlMn)| A is p-prime } U {A+,A-| A e Parf,(n) and A is p-prime }| =
(A€ Reg,(n)| A >m,(A)) U (A+,A=| A € Reg,(n), A = mp(/\)}|

Now, as before, we would like to affirm, in particular, that the set of partitions
{Ae Parf_(n) and A is p-prime } has the same cardinality as the set of self-Mullineux
partitions: {1 € Regp(n), A =m,(A)}. Recall, from (1.6) in §1.2.3, that we have a bi-

jection between {A € Parf_(n) | Ais p-prime} and BG;. For now, we do not have an
explicit bijection, as for the ordinary case above, however the equality of the cardinal-
ities makes the content of Proposition 1.3.16.

Proof of Proposition 1.3.16. In this proof we use Brauer characters: To an irreducible
KA, -module D we can associate a function xp which is called the (irreducible) Brauer
character of R, afforded by D. This function xp is a complexed-valued function de-
fined on the set of p-prime elements of A, (permutations with order which is rela-
tively prime to p) and it is constant on conjugacy classes. Isomorphic KA,-modules
are associated to equal Brauer characters. See [Isa06, §15] for the precise definition of
Brauer character and for further information.

In particular [Isa06, Theorem 15.10] says that the set of irreducible Brauer char-
acters of A, form a basis of the space of C-valued functions defined on p-prime ele-
ments of A, and constant on conjugacy classes. This implies that there are as many
irreducible Brauer characters of R, as p-prime conjugacy classes of R, and by [Isa06,
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Corollary 15.11], this is also the number of isomorphism classes of IKA,-modules.
Therefore to each element A of the set

{Ae Regp(n) [A>m,(A)} U {A+,A-[A e Regp(n), A=m,(A)},

we can associate an irreducible Brauer character x[,). That way, a basis of the space
of C-valued functions defined on p-prime elements of A, and constant on conjugacy
classes is

{)([/\] | Ae Regp(n), A> m(/\)} U {)([/\+],)([/\—] | A€ Regp(n), A= mp(/\)}
To prove that
A A€ Parf_(n) and Ais p-prime }| = |[{A| A e Regp(n), A=m, (M},

we will give two bases of a same space of functions, and the equality of the cardinality
of these bases will give the result.

Denote by E the space of C-valued functions defined on p-regular elements of R,
and constant on conjugacy classes

E ={ f :{p-regular elements of A,} — C| f is a class function of A, }.

Define an action of S, on E by conjugation as follows: for 0 € S, and f € E, f9 is
the class function

£9() = flowa™).
For 0 € 5,,\ R, let EY be the set of class functions fixed by conjugation by o

E?={f€E|f7=f}

This is a subspace of E. From Proposition 1.2.4 and the comment after such proposi-
tion, a basis for E? is

{Ica|Ae Parf\(n), Ais p-prime} U {Ica+1ca-| A € Parf_(n)},
where 11 denotes the indicator function for T C A,,. We claim that a basis for E? is
{xp 1A eReg,(n), A>m(A)} U {xpa+xa-) | A € Reg(n) A = m(A)}.

Indeed, this comes from the fact that, as with usual characters of representations in
characteristic zero, conjugation of the character of a representation is the character of
the conjugate representation, here with Brauer characters. And also from the fact that
conjugation by o permutes the modules associated to A* and A~ above.

Now, we have two bases for E and two bases for E°. On one hand, from the char-
acteristic function basis, the dimension of E is

{A] A € Par(n) and A is p-prime }| + 2[{A | A e Parf_(n) and A is p-prime }|,

or
{A] A € Par’\(n) and A is p-prime }| + 2 [BGpl,

from (1.4). From the Brauer character basis, the dimension of E is

l{A e Regp(n) [A>m, (M} + 2[{A|Ae Regp(n), A=m, (M)},
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or
[{A e Reg,(n) | A>m, (D} + 2[Mp|.

Hence
{A|Ae Parg'l(n) and A is p-prime }| + 2|BG;| ={1e Regp(n) | A>m, ()} + 2|M;|.
Now, counting the elements on the two bases for E?, we obtain that the dimension
of E° is
[{A]| A € Par’\(n) and A is p-prime }| + BGyl = l{Ae Reg,(n) [ A >m, (L)} + IMp .
These two identities imply that |BG;| = |MI’,’|. O

1.4 Decomposition matrix and blocks of the symmetric
group

Decomposition matrices are important objects which allow to study the modular rep-
resentation theory of S, in particular. They contain the information of the relation-
ship between the ordinary and the modular irreducible representations. In this sec-
tion we recall the definition of the decomposition matrix of the symmetric group S,,.
Here, let p <n.

1.4.1 Decomposition matrix of the symmetric group

As mentioned in §1.3.1, [F,S,,-modules are not always semisimple. However the Jordan-
Holder theorem allows to assert the uniqueness of the multiplicity of an irreducible
F,5,-module D¥, as a composition factor of any [F,5,-module, where p + n is p-
regular. In particular we can consider the Specht module S#, for any A + 1, which
is not in general a p-modular irreducible. Consider the composition multiplicity of
DH for p + n p-regular. Denote this multiplicity

dy, =[S*: D¥]

If we denote by ~ the equivalence relation on the set of [F,5,-modules given by:
M ~ N if and only if M and N have the same composition factors (with multiplicities),
and [M] denotes the equivalence class of M, we have:

[S1] ~ @ d,,D"|.

ne Regp(n)

The multiplicities d,, are called the (p-modular) decomposition numbers of S*. They
can be arranged in a matrix

Dn,p = (d/\y) A € Par(n) »
H € Reg,(n)
called the (p-modular) decomposition matrix. It is a rectangular matrix with as many
rows as partitions of n and as many columns as p-regular partitions of n.
A crucial fact about the modular irreducible representations of S, which reflects
on the decomposition matrix is the following.
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Theorem 1.4.1 ([JK81, Theorem 7.1.14])). If D¥ is a composition factor of S*, where A, u +
n and y p-regular, then p> A. The composition multiplicity of D¥ in S¥ is 1.

That is, if we organize the rows of the matrix D, , downwards, placing the p-
regular partitions before the p-singular partitions, in any total order which respects
the dominance order (for example the lexicographic order), it takes the following

form:

D}, Ae Reg,, (1)

St Ae Reg, (1)

sh e Par(n) \ Regp(n) {

In this form, we say that the matrix is lower unitriangular: it is lower triangular
and the diagonal entries are equal to 1. Let us introduce some terminology:

Definition 1.4.2. Let U C {S* | A - n}. We denote by D,ﬂ{p the matrix formed by the
rows in D, , labelled by elements in U, and all the columns in D,, ,. We call D,%{p the

restriction of D, , to U. In terms of [JK81, §6.3], we say that D,({,p has wedge shape if the
rows and columns can be reordered in such a way that the resulting matrix is lower
unitriangular. A

In such terms DI,:;gp(n) has wedge shape (or D%p for any Reg,(n) € U).
Let us rephrase Theorem 1.4.1 in terms of the decomposition numbers.
Theorem 1.4.3 ([Mat99, Corollary 4.17]). Let A € Par(n) and p € Reg,,(n). Then,
(i) dW =1, and
(ii) if dy, = 0 then A < p.

Example 1.4.4. The decomposition matrix Dy 3 is

p¥ pBL p) pr?)
s® 1
sG31) 1
s@) 1 1
§(21%) 1
s 1
where both dots - and blank spaces are 0. A
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1.4.2 p-block structure of S,

From the modular representation theory of finite groups (see for example [Isa06,
Alp86]), the sets of ordinary irreducible modules and the p-modular irreducible mod-
ules of S,, can be partitioned into p-blocks. It means that if rows and columns are
arranged according to these p-blocks, then the decomposition matrix is a block ma-
trix:

In other words, we can define an equivalence relation ~, on Specht modules as
follows: for two partitions of n, $* ~p §t if and only if S* and S* have at least one
composition factor in common; we let ~,, be the transitive closure of such relation. We
also define ~, on the set of p-modular irreducibles as D* ~p D if and only if st ~p SH.
An equivalence class of ~, for the Specht modules is called a p-block of S,,.

An important result on the representation theory of S, says that p-blocks are char-
acterized by the p-cores of the Young diagrams which index the modules. The follow-
ing result was conjectured by Nakayama [Nak41b] and proved first by Brauer and
Robinson [Bra47,Rob47].

Theorem 1.4.5 (Nakayama’s Conjecture). Two ordinary irreducible representations S*
and S of S, lie in the same p-block if and only if the p-cores of A and p are equal.

Hence, a p-block 1 of S,, can be indexed by a p-core, y which is the p-core of every
A+ n such that S* € 1.

Definition 1.4.6. Let w > 0 be an integer such that n —wp > 0. Let ¥y - n—wp be a
p-core. The p-block (or block) B, of IF,S,, is the following set of ordinary irreducible
representations of S, up to equivalence:

B, = {S*| A+ 1 and the p-core of A is y}.
The p-block B, in the set of modular irreducible representations is the subset:
Irrp(B,) = (D' A e Regp(n) and p-core of A is y}.

The p-weight w of the block 13, (or Irr,(13,)) is defined as the p-weight of any partition

in the block, which is equal to w = n—Rk(y)

indexed by 1,, and columns indexed by Irr,(1,) is denoted D,,. A

. The submatrix of D,,, given by rows

By abuse of notation, we consider 13, and Irr,(13,) as subsets of partitions of #;
that is if we write A € 3, it really means Ste B,.

Example 1.4.7. Let p = 3. There are 4 p-blocks of [F;Sg. From Nakayama conjecture,
the partitions of 8 with 3-core equal to (1?) form a block, of weight 2:

Bz = {(18), (2,1%), (3,2,1%), (3,22, 1), (4,1%), (4,22), (4%), (6,2), (7,1)}.
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The other p-blocks of F;Sg are indexed by p-cores (2), (3,1%) and (4,2,1?), they are:
B = ((2,19), (22,14, (2%, (32,17), (4,3,1), (5,1%), (5,2,1), (5.3), (8)},
B,z =((3,1°), (3%,2), (6,1%)},
B2 =1{(4,2,12)).

The respective p-weights are 2,1 and 0. A

1.4.3 About the number of partitions in a p-block

From Nakayama'’s conjecture, the number of partitions A in a block labelled by the p-
core y is equal to the number of A +- n with p-core . We saw in §1.1.6, Theorem 1.1.10
that a partition is uniquely determined by its p-core and its p-quotient. Recall that
the p-quotient of A is a p-partition of the p-weight of A. Then, if w is the weight of
1, the number of partitions in 1,, is equal to the number of p-quotients, that is, of
p-partitions of the weight w. Let p(k) denote the number of partitions of k for k € IN.
We have

Theorem 1.4.8 ([JK81, 6.2.1]). The number of ordinary irreducible representations in a
p-block of weight w of S,, depends only on p and w. It is equal to

Z p(wo)---pwp-1) = ﬂﬁ

(woyeswp_1) k>1 fw
Wote Wy =W
w;eN

which is equal to the number of p-partitions of w. The expression in the right means the
coefficient of the monomial tV in the corresponding formal series.

There is a corresponding result for the number of p-modular irreducible represen-
tations. It turns out that the number of p-modular irreducibles in a p-block is equal
to the number of (p — 1)-partitions of the weight:

Theorem 1.4.9 ([JK81, 6.2.2]). The number of p-modular irreducible representations in a
p-block of weight w of S,, depends only on p and w. It is equal to

Z p(wy)---p(wp_1) = HW

(W, wp_1) k>1 w
w1+-~-+wp,1 =w
w,-elN

which is equal to the number of (p — 1)-partitions of w. The expression in the right means
the coefficient of the monomial t¥ in the corresponding formal series.

In conclusion, if we fix a weight w, blocks of S, with that given weight have the
same size. In fact, there are certain equivalences that can be defined in the set of
p-blocks of the symmetric group for which two p-blocks with the same weight are
equivalent, see for Example [Sc0o95,CR08]. Hence, roughly speaking, when looking at
certain properties, blocks of the same weight have similar structures.
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The Mullineux map

In this chapter we give a historical background on the Mullineux problem and we
recall different algorithms to compute the Mullineux map. For these descriptions we
follow closely [FK97,Fay21b].

2.1 On the Mullineux problem

Recall, from the introduction, that the Mullineux map 1, is the involution on Reg (1)
such that, for A € Regp(n)

D'*®e ~D™W),

When p = 0 or p > n, the Mullineux map is conjugation of partitions: m,(1) = A’
for every p-regular partition A (which in this case is any partition of n, and D* ~ S§%)
[JK81, 2.1.8]. When p = 2, the sign representation ¢ is equivalent to the trivial repre-
sentation, then the Mullineux map is the identity map.

The Mullineux problem concerns then the case p < n, where, as explained in the
introduction, we look for a combinatorial description of the Mullineux map.

In [Mul79a], Mullineux defined a bijection mg/f in Reg (1), we refer to the com-
putation as Mullineux’s algorithm. This algorithm uses Mullineux symbols which are
arrays of integers that record some information in the Young diagram of the parti-
tion. Mullineux conjectured that mg/f = m,. Later, in [Kle96], Kleshchev defined
an algorithm for computing m,,, different from Mullineux’s algorithm, which pro-
vides a bijection mg =m,, in Reg,(n). Kleshchev’s algorithm uses the notion of good
node of a p-regular partition, introduced in [Kle95] in the context of the study of the
branching rules for modular representations of symmetric groups. That is, the study
of the composition factors of D* ls, ,,» where D*% is an irreducible representation of
S, In [Kle96], Kleshchev reduced the Mullineux conjecture to a combinatorial ques-
tion about the compatibility of the Mullineux’s algorithm with the removal of good
nodes. This problem was then solved in [FK97] where Ford and Kleshchev showed
that mll,f = mé,\/[, proving the Mullineux conjecture. In [BO94], Bessenrodt and Olsson
gave a shorter and easier proof of the Mullineux conjecture, by introducing a residue
symbol associated to p-regular partitions. Since these different algorithms compute
the Mullineux map, we keep only the notation m,.

Other algorithms have been found to compute the Mullineux map. Xu’s algorithm
[Xu97] is in a similar spirit from the one of Mullineux, but it does not use Mullineux
symbols. Brundan and Kujawa gave a different proof of the Mullineux conjecture by
showing that Xu’s algorithm computes the Mullineux map, see [BK03]. Their proof
uses an analogue of the Schur-Weyl duality in the context of superalgebras. In [Fay14],
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Fayers gives a new algorithm for computing the Mullineux map which uses crystal
isomorphisms of },\[p, Then, in [Jac21], in the context of affine Hecke algebras, Jacon
gives an algorithm which is equivalent to Xu’s algorithm.

The history of this problem lets see the importance and interest of the question.

2.2 Mullineux’s algorithm

Mullineux’s algorithm is defined recursively : starting with a p-regular partition A,
and recursively removing certain subsets of the rim of A, called p-rims. In this process,
certain numbers are recorded in an array called Mullineux symbol. The array is then
transformed and the output of this process is a partition recursively defined from the
new array.

Let A be a p-regular partition A. Recall that the rim of A is the rim-hook Ri\l. We
label the nodes of the rim with positive integers following a path from the top right
to the bottom left. For example, if A = (8,5, 3,1), the labelling is:

413]2]1]
7065
1098
11]

The first p-segment of the rim consists of the nodes corresponding to integers less or
equal than p. If the last node (i, j) of the first p-segment is in the last row of [1], then
[A] only has one p-segment. If not, let / be the smallest label on row i + 1. The second
p-segment of the rim consists of the nodes labelled by I <m <[+ p—1. Repeating this
procedure we will eventually reach the bottom row of the diagram and it is clear that
all p-segments have p nodes, except possibly the last one. The p-rim of A is defined as
the union of all the p-segments.

Definition 2.2.1. The p-rim of A is a subset of the rim defined as the union of all
the p-segments. This set of nodes is denoted as Rim,(A). The cardinal of Rim, (1) is
denoted a,. A

Example 2.2.2. The following two diagrams illustrate the p-rim of A =(9,6,3,1) for
p=3andp=>5.

[ 1] [ 1]

Rim;(1) Rims ()

Define diagrams A0 A A0 a5 follows. Put A = ) and fori > 1 put

A0 = 26D Rim,, (A1),

p

where we choose I maximal with respect to A = 0; so A(+1) = 0.
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Definition 2.2.3. Fix a partition A, and p an odd prime. For A1) in the sequence of
partitions, depending on A (and p), defined above, we associate the following infor-
mation:

* The p-rim Rimp(/\(i)) of AU) is called the i-th p-rim of A,
* the cardinal a,) of Rimp(/\(i)) is abbreviated as a;,
* r; denotes the number of rows of A1), that is, r; = [(A()), and finally

* anumber ¢; € {0,1} defined by

0 if p | ai,
€= .
1 ifpta;.
A
The following definition was introduced in [BO94].
Definition 2.2.4. The Mullineux symbol of A is
L ao al e al
Gp(/\).—(r0 B ’”l). (2.1)
A

Example 2.2.5. Let p =5and A =(9,6,3,1). In the following diagram we represent
the i-th p-rim of A with label i on its nodes.

2[2]2]2][1]0]o0]0]0]
2[1]1]1]1]o0 9 55
0 GS(A)‘(AL 2 2)'
0]
We have: A() = (52) and A(?) = (4,1). A

The following proposition is a reformulation ([AO91, §5]) of a result proved in [Mul79a,
3.6].

Proposition 2.2.6. Let p be an odd prime and A a p-regular partition of a non-negative
integer n. The entries of G,(A) satisfy

1. g, <ri—tij1<p+¢ for0<i<l,
2. 1S7’l<p+é'l,
3. ri—ris1+ €41 <A —aj <pHTi—Tiyp+ &€ for 0<i <,
4. n<a<p+r,
5 VL 4=
C i@ =M.
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Moreover, if ag,...,a;,1g,..., 1 are positive integers such that these inequalities are satisfied
then there exists exactly one p-regular partition A of n such that

_ ag ap -+ 4q
Gp(/\)_(ro 71 rl)'

Remark 2.2.7. It is easy to recover the p-regular partition A from its Mullineux symbol
Gp(/\); start with the hook A() of size a; and length rj, and fori =1-1,1-2,...,0, add

the i-th p-rim (consisting of a; nodes) to A*1) from the bottom to the top, starting by
placing a node on the first free placement in row r;. Then, adding nodes either on top
(whenever it is possible) or to the right of the last added node until having added the
last node of the p-segment and add the following p-segment starting on the first free
placement of the row on top of the last added node. This procedure finishes at the
first row. This algorithm is precisely described in [FK97, §1]. A

Let A be a p-regular partition of n, with Mullineux symbol

a a; - a
GP(/\):(rS rll r,l) (2.2)

and let ¢; be as in Proposition 2.2.6. For 0 <i <[ define
Sji=a;+¢& —15.

In [Mul79a, 4.1] it is shown that the array

ao al oo al
50 51 cee Sl ’
which is the Mullineux symbol of A where r; has been replaced by s; for all 0 <i <1,

corresponds to the Mullineux symbol of a unique p-regular partition. In view of this,
we have the following definition.

Definition 2.2.8. With the above notations, let m,(1) be defined as the unique p-
regular partition such that

A

Because of Proposition 2.2.6, m,(A) is well defined, and from the definition we
can see that m, is an involution.
Example 2.2.9. Letp=5and A1 =(9,6,3,1) as in Example 2.2.5. Since

Gs=(3 3 3)

We have that
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Now, from this Mullineux symbol we construct m, (). Since the symbol has 3 columns,
we know that there are 3 partitions mp(/\)(z), mp(/\)(l), and mp(/\)(o), that we construct
in that order: the partition mp(/\)(z) is the only 5-regular partition with length 3; the
partition mp(/\)(l) is the only 5-regular partition obtained by adding exactly 1 5-rim
to mp(/\)(z), and keeping the length 3; finally the partition mp(/\)(o) = my(A) results
from adding one 4-rim (in a way that the length is 6), and then one 5-rim starting in
the row above, to mp(/\)(l):

212[2]1]0
2[2]2] 2[2]2]1 ;}158
m,(1)? =2 m,()V=12[1]1]1 m, (1) =m, (1) = 510
2 21
— 0
0]
Then, m, (1) = (5°,2,12). A

Example 2.2.10. Let 2 < p <n, and let A be the one-row partition A = (n). We compute
my(A). The Euclidean division of n by p says that there are unique integers q and r
such that

n=pq+r, and 0<r<p.

We compute the Mullineux symbol of A = (n):

A=[al-Tg [T T10 -]

H_/ ~ ~
r times p times p times

then

(p P
%/—/
q times

Hence if we construct m, (1) as described in Remark 2.2.7, we know that the Young
diagram of m,(A) has the following shape

N r’ times
mp(/\) = p-1times

q’ times

55



2. THE MULLINEUX MAP

where ¢” and r” are some positive integers. Hence, to write the partition m,(1), we do
the Euclidean division of n by (p — 1): the integers q” and r’ are such that

n=(p-1)¢ +r, and 0<r'<p-1,
sothatn=r'(¢"+1)+(p—-1-1")q’, and
mp(A) = ((q"+1)",q""71").
A

Remark 2.2.11. If p > n, then Regp(n) = Par(n) and irreducible KS,-modules are
therefore indexed by all partitions of n. In this case, the Mullineux’s algorithm co-
incides with conjugation: m, (1) = A". A

2.3 Xu’s algorithm

Xu’s algorithm is recursive as well in the sense that nodes are removed from the ini-
tial partition to obtain the empty partition. The number of nodes removed at each
staged is recorded, and unlike Mullineux’s algorithm, the output is not constructed
recursively but these numbers give the column lengths of the final partition. Let us
explain Xu’s algorithm. The following description is based in [Fay08].

Let A be a partition. The truncated p-rim of A is the set of nodes (i, j) in the p-rim
Rim,(A), of A such that (i, j — 1) also lies in the p-rim, together with the node (I(1),1)
if p { |Rim,(A)|. In other words to obtain the set of nodes in the truncated p-rim we
take all the nodes on the p-rim, from these we remove the first appearing in each
row except for the last row if p { |Rim,(A)|. Denote Rimg(/\) the set of nodes in the
truncated p-rim of A.

Example 2.3.1. Let p =3 and A =(10,7,4,3,2). In the following diagram we represent
the p-rim Rim, (1) of A with highlighted nodes (CJ) and the truncated p-rim is the set

of nodes marked with a “e” ([e]).

[ole]

We now describe Xu’s algorithm. Start with a p-regular partition A.

1. Let py be the number of nodes in the truncated p-rim of A: yg := |Rim;f(/\)|. Let
Al be the partition obtained from A by removing its truncated p-rim.

2. Let py := |Rimff(/\l)| and let A2 be the partition obtained from A! by removing
its truncated p-rim.

3. Continue until obtaining the empty partition: A>*! = 0.
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4. The list of positive integers pi, jiq,..., 4, is decreasing and defines a partition
= (Ho,---, piz)- These numbers are the column lengths of m,(A):

mp(/\) =K.

Example 2.3.2. Let p = 3 and ) = (5,22,1). We illustrate the sequence of removal of

«w_»

the truncated p-rim. The nodes in the truncated p-rim are marked with a “e”.

. T PR E e

The partition which records the size of the truncated p-rim at each stage is y = (4,2,1%).
Then
my(A) = =(6,2,12).

2.4 Kleshchev’s algorithm

Kleshchev’s algorithm for computing the Mullineux map uses his results on modular
branching rules for the symmetric group. Here we describe this algorithm in a com-
pletely combinatorial way. The notions and operations used in the algorithm have an
algebraic sense that we do not explain here, for the details see [Kle95].

Let p > 2 be a prime. To each node (r,c) € IN* x IN* we can associate its p-residue
(or simply residue): i = (c—r) mod p. In this case (r,c) is called an i-node. We can
consider, for example, the p-residues of the nodes in the Young diagram of a partition
A If p=3and A =(5,2% 1), the p-residues of the nodes in the Young diagram of A are:

1[2]0]1]

2

‘O'—*NO

Let A be a partition. For i € Z/pZ, an i-node x in [1], the Young diagram of 1, is called
removable if [A] \ {x} is the Young diagram of some partition. An addable i-node for A
is an i-node x € IN* x IN* such that x ¢ [A] and [A] U {x} is the Young diagram of some
partition. For p = 3 and A = (5,22, 1), the following diagram shows all the addable and
removable i-nodes for A that we indicate with the corresponding residues:

[ [1]2
1

01

2

In this example, A has exactly one removable i-node for each i € Z/pZ, it does not
have addable 0-nodes, it has two addable 1-nodes and two addable 2-nodes.
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”

Fori € Z/pZ, the i-signature of A is a word on the symbols “+” and “~” constructed
by following the south-east border of the Young diagram from the top to the bottom
and writing “+” for each addable i-node and “~” for each removable i-node. In our
example, the 0-signature is just —, the 1-signature is —++, and the 2-signature is +—+.
The reduced i-signature is the i-signature after having erased every “+-" occurrence.
In our example, the reduced i-signatures are then: for i = 0 we have —, for i =1 we
have — + + and finally for i = 2 we have +.

A good i-node, if there is one, is the removable i-node corresponding to the last

in the reduced i-signature. In our example there is a good 0-node and a good
1-node. The only removable 2-node is not a good node since it does not correspond
toa “—” in the reduced 2-signature. Every non-empty p-regular partition has at least
one good i-node for some i € Z/pZ. The following diagram shows the good i-nodes,
highlighted:

«w »

| [1]

0

For i € Z/pZ, denote by ¢; the operation that takes a partition having a good i-
node and returns the partition obtained by removing this good i-node. The partition
obtained is p-regular. In our example, we have & (1) = (4,22,1). The inverse operation
can also be defined: a cogood i-node, if there is one, is the addable i-node correspond-
ing to the first “+” in the reduced i-signature. For i € Z/pZ, denote by f; the operation
that takes a partition having a cogood i-node and returns the partition obtained by
adding this good i-node. The partition obtained is p-regular. The operations ¢; and f;
are inverses of each other ([MM90]). Indeed, in our example f;((4,2%,1)) = \.

With these definitions we can now describe Kleshchev’s algorithm for computing
m,. Start with a p-regular partition A.

1. Choose any good i-node of A. Denote this p-residue as i;. Remove this good
i;-node to obtain the partition &; (A).

2. Choose any good i-node of ¢; (1). Denote this p-residue as i,. Remove this good
i>-node to obtain the partition ¢&;,¢; (1).

3. Continue until obtaining the empty partition § = ¢; ---¢;,¢; (A). We get a list of
residues iy,...,1,1].

4. The partition mll,f (A) is constructed recursively by starting with the empty parti-
tion and adding cogood nodes with the residues —iy, —iy,..., —i,, where —i; is —i;
mod p. That is

my (A) = foi - fi, i, (0).

The result is independent of the chosen sequence of good i-nodes. As announced
mll,f =m,, ([Kle96]). Let us see an example.

Example 2.4.1. We continue the ongoing example: p = 3 and A = (5,2%,1). Let us
do the first three steps of the algorithm. We show the diagram at each stage, and we
highlight the chosen good i-node to be removed.
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I [1]2 | [1]2 [0]1 2]0 2|0
5 1 1 1 0]1
F 2 2 2 12
> 0 0 0 0
02 (1)2 12 [ |1
12 [1] 1210 o] o

0 0 1 1

We obtain the sequence of p-residues: 010220112 0. Hence, for the fourth step,
we recursively add the cogood nodes with residues 012201 10 2 0 in that order
starting with the empty partition, which has a unique addable (and cogood) 0-node.
We highlight the cogood node to be added:

0]1 T T1]2 " T2]0 [2]0 | [ fol1
0 > . 5 2]0 2]0
1

1
[ [1]2 [ [2]0
01 01
f 12 1]2
0 0

1
0]

2

Then my,(A) = (6,2,12).

A

Remark 2.4.2. The combinatorial algorithms for computing the Mullineux map do
not depend on p being prime. Moreover there is an algebraic interpretation of the
Mullineux map when p > 1 is any integer: let g € C* be a primitive root of unity
of order e > 1. The Iwahori-Hecke algebra H,(q) of S, is an associative C-algebra
whose simple modules D* are also indexed by the e-regular partitions (see [Mat99]).
When g =1 and e is a prime number we encounter our particular case H,(q) ~ IF,S,,
for this reason H,(q) is sometimes called a “deformation” of the group algebra of
S,. In the general case, there is an involution # on H,(q) with which the action on
a H,(g)-module V can be twisted to obtain another H,(q)-module V¥ (when g = 1,
V* is exactly e ® V). When we apply this to a simple H,(g)-module D*, where A is a
e-regular partition, we obtain a simple H,(gq)-module D™¢(A). The involution m, on
e-regular partitions is the Mullineux map in this more general setting. In [Bru98],
Brundan proved the analogues of the modular branching rules for the symmetric
group, by Kleshchev, for H,(q), showing in particular that Kleschev’s description of
the Mullineux map generalized for the Iwahori-Hecke algebra. Since all the other
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algorithms do not depend on p being prime, they are also valid for H,(gq), and any
e>1. A
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A combinatorial bijection

This chapter is based on [Ber21a]. The organization of this chapter is as follows. In
§3.1 we introduce a symbol, the BG-symbol defined on self-conjugate partitions and
we show that it defines an injective mapping. Section 3.2 contains the main result:
the BG-symbol computed on the set of BG-partitions produces Mullineux symbols as-
sociated to fixed points of the Mullineux map, defining a one-to-one correspondence,
by an additional argument of cardinalities. This section also contains a proposition
which is not included in [Ber21a], that says that the one-to-one correspondence is
compatible with (fixes) the p-core. Finally, in §3.4 we show that the cardinality ar-
gument is not necessary: we show that every Mullineux symbol of a self-Mullineux
partition is the BG-symbol of a BG-partition.

3.1 BG-partitions and the BG-symbol

We introduce a symbol, defined in general for self-conjugate partitions. This symbol is
inspired by the Mullineux symbol. In a similar way as the Mullineux symbol, which is
defined by counting nodes on the p-rims of a sequence of partitions, the BG-symbol is

defined by counting elements in a set of nodes called the p-rim* which is a symmetric
analogue of the p-rim.

Let A be a self-conjugate partition. Set

Ur={(i,j) e Rimp(A) | i < j},

that is, U, consists of the nodes of the p-rim which are above (or on) the diagonal of
[A]. We denote 1) :=|U,|. Set

Ly={(,1) | (i,j) € Uy}

The set L) consists of the nodes in U, reflected across the diagonal of A. Notice that
L) C[A], since A = XV, so that (7,) € [A] if and only if (j,7) € [A].

Definition 3.1.1. Let A be a self-conjugate partition. The p-rim* of A is the set
le;(/\) =U,UL,.

The cardinal of Rim} (1) is denoted a)). Define ¢ as ¢} := ), mod 2. A
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Example 3.1.2. The following two diagrams illustrate the p-rim* of A = (6,2,1%) in
shaded boxes, for p =3 and p = 5.

[ T[] N

Rim3(A) Rim3(A)

Remark 3.1.3. Notice that for a self-conjugate partition A, from the definition of p-
rim* we have
€,=0 & a)iseven.
o Rim;(/\) has no diagonal nodes.

Following this remark, we associate a number ) to A as follows.

Definition 3.1.4. For ], self-conjugate, the cardinal of U,, that is, the number of nodes
of the p-rim* of A which are above (or on) the diagonal is

ay e % -
sl if @' is even,
A7) ay+1 .
4 otherwise,
thus .\ .
«_ate)
rA o— T .
2

A

Now, let A be a self-conjugate partition. We define diagrams A0, A%, A0 in

an analogue way as for the Mullineux symbol, by considering the p-rim* instead of
the p-rim. Put (%" = A and for i > 1 put
AL = 161 Rim (A67Y),

where we chose | maximal with respect to A 2 0; 50 AU+D* = 0, We call the p-rim* of
AU the i-th p-rim* of A.

Remark 3.1.5. Notice that the p-rim* is only defined for self-conjugate partitions,
but we claim that the diagrams A()* are well defined, given the fact that Rimj (1) is
symmetric in the sense that (1,v) € Rim}(A) if and only if (v,u) € Rim}(A). Therefore,
removing these nodes from [ 1] to obtain A(1)* results again in a self-conjugate partition
and then so it is for every A()*. In other words, if A" is self-conjugate, then A1) is
self-conjugate. A
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Example 3.1.6. Let p=3 and A = (6,5%,3%,1). Then

[A] = A0 = PULE A2r = ABr =[]

where shaded boxes represent the i-th p-rim* of . A

In a similar way as for p-regular partitions, for a fixed self-conjugate partition we
associate a set of information:

Definition 3.1.7. Fix a self-conjugate partition ), and p an odd prime. For A()* in
the sequence of partitions depending on A (and p) defined above, we associate the
following information:

* The cardinal ;. of Rim;,(/\(i)*) is abbreviated as aj,

e the number rj\,-*

Al is abbreviated as r;, and finally

of nodes on Rim;(/\(i)*) which are above or on the diagonal of

* the parity €. € {0,1} of @) is abbreviated as ¢.
A

All these values associated to self-conjugate partitions may seem technical, and they
are better understood by means of an example.

Example 3.1.8. Let p=3, 1 =(4%,2%),and u=(3,2,1)

A= U=

We have af\ =6, e*/\ =0, and rf\ = 3. For u, we have a*y =5, el’; =1, and r’j =3. A

Definition 3.1.9. Let A be a self-conjugate partition. The (p-)BG-symbol of A is

(% @
bgp(/\)"(rs P r;)' (3.1)

The length of the BG-symbol is I.
A

Example 3.1.10. If p = 3, the BG-symbol of the partition A = (6,52,32,1) from Exam-
ple 3.1.6, is
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In this diagram, each i-th 3-rim* is shown in a different shade. A

The following lemmas will allow us to prove that two different self-conjugate par-
titions correspond to different BG-symbols. Lemma 3.1.12 is an analogue of [Mul79a,
2.1]. Its proof is quite technical and the arguments are easier to understand with an
example, see Example 3.1.13.

Lemma 3.1.11. Let A be a self-conjugate partition. If @’y is an even number, then p | a).

Proof. From the definition (or see Remark 3.1.3), a is even if and only if UyNL) = 0.
Then the p-rim* of A does not contain diagonal nodes. From the definition of Rimy (1),
this means that the set U, only contains p-segments of length p. And then the same is
true for L,. Therefore

pllULUL,|=a).
O

The converse is not true in general, for example, if p =3 and A = (5,3,2,1,1), we
have that a’ = 9.

Lemma 3.1.12. Let A be a self-conjugate partition, € € {0,1} and m, a residue modulo p,
such that m = 0 if € = 0. Then, there exists a unique self-conjugate partition A such that

(i) ay =¢ (mod 2);
(ii) ry—¢&| =m (mod p) and

(iii) A= 1.
Moreover, if A € BG,, and p {2m+1 whene=1, then A € BG,,.

Proof. Given ¢ € {0,1} and m, a residue modulo p, let us see that there is a unique way
to add nodes to 1 to obtain a self-conjugate partition A such that the added nodes are
the p-rim* of A.

Let us study how nodes (i, j) over the diagonal (i < j) must be added. This will
determine all nodes that must be added (if (i, j) is added to A, then (j,i) is added as
well).

First, the last row i over the diagonal that will contain new nodes (i, j) is uniquely
fixed by A and ¢. Indeed, let d = k(). If e = 0, then i = d and (d, A; + 1) must be added
tod. Ife=1,theni=d+1and (d+1,d+1) must be added to 1.

Now, let (i, j) be the first node that we add (with i fixed as before by A and ¢) and
j€{As+1,d+1} depending on A and ¢. Starting from this node, it is clear that there
is a unique way to add nodes such that (i), (ii), and (iii) hold: If the position (i + 1, )
just above (i,j) is empty in A, we add a node in that position, otherwise we add a
node in (i,j + 1). We repeat this procedure for adding nodes until we have added m
nodes (including (i, j) if € = 0, not including (7,j) if € = 1). If the last added node
is in row 1 we stop here. If it is added in row k > 1, we add a node in row k -1
in position (k —1,A;_; + 1) and we restart the procedure to keep adding nodes until
having added p nodes. We iterate this procedure, of adding groups of p nodes, until
reaching the first row. This way we added nodes over the diagonal. Finally for each
node (a,b) added, we add its reflection through the diagonal (b,4). And we obtain a
self-conjugate partition A.
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It remains to verify that A(V* = 1. If ¢ = 1, it is straightforward that A(1* = 1. Since
when removing the nodes of the p-rim* of A over the diagonal we eventually reach a
diagonal node, and then just remove the reflection of the removed nodes. It is clear
that in this case we obtain . If ¢ = 0, the condition m = 0 says that a p-segment of 1
will eventually reach the row d and this p-segment has exactly p nodes, so that there
is no ambiguity when removing p-segments and A(1* = 1.

For the last part of the theorem, suppose that A € BG,, and let us see that A ob-
tained as above is also in BGP. In other words, we are assuming that A does not contain
any diagonal (p)-hooks and we want to show that the same is true for A.

Suppose that A has a diagonal (p)-hook, say the (i,7),-th hook, that is hz/‘\i = pk for
some integer k > 0. For a partition y, we set the convention h?j =0if (3,]) ¢ [p].

Since A € BG,, then the (i,1),-th hook is different from the (i, ) ;-th hook since if
they were equal, A would have a (p)-hook, which is not possible. Therefore (i, A; + 1) €
[A]. Since this node is not in [A], by definition, it is on the p-rim* of A, in particular,
it belongs to a p-segment of Rim (1) above the diagonal. Consider the two cases: this
p-segment starts at row i, or this p-segment starts before row i, that is, this p-segment
starts at arow j for 1 <j <i.

« If the p-segment containing node (i, A; + 1) starts at row i, let (i,j) be the first
node of this p-segment and (4, b) its last node (i < a). Then a < b because this
segment is above the diagonal.

Let N be the number of nodes on this p-segment. Then we have:
N a-i+j-b+1,
By o= 1+2(j-i),
Yy, = 1+2(b-a-1),

where the last identity holds if b > a (since this implies that (a,b—1) € 1). Then
we have
i1

“|2N+h), ifa<b.

If a = b, this p-segment is the last segment in U, and ¢} = 1. So that N = m+1 and
we get h;\i =2m+ 1. This contradicts p { 2m + 1. If a < b, then the last node of this
A

aa’

p-segment, (a,b) is not a diagonal node so that N = p and we get hlf‘i =2p+h
which implies p | h},, a contradiction.

« If the p-segment containing node (i, A; + 1) starts at a row j with j < i, then it
contains nodes on row i — 1, in particular (i — 1, A;_; + 1). The next node on this
p-segment is the node just below: (i,A;_1 +1). Then A; = A;_1 +1. Let us see
that h(jz‘—l,i—l) = hl/‘Z Since these are diagonal hooks contained in self-conjugate
partitions, their lengths are calculated as follows

i
hiz1,izn)

=2(Ai —(i-1)+1
=21, 1-2i+3,
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and
Wy =2(Ai—i)+1
=2((Ais +1)—i)+1
=214 -2i+3.

A

(i-1,i-1) @ contradiction.

Since p | h(’\i’i), thenp|h

In conclusion, A does not have any diagonal (p)-hooks, that is, A € BG,,.
O

Example 3.1.13. Let p = 3. We use the notations of Lemma 3.1.12. Consider the
self-conjugate partition A= (6,4, 22, 12).

[A]=

* Let ¢ =0, then m = 0. Let us see that there is only one self-conjugate partition A
satisfying: a is even, r} — &} =|U,| - ¢, = 0 (mod 3) and A = 1. We add to [A]
the nodes of Rim3(A) = U UL,.

In this case, since @} = 0 (mod 2), then U, does not contain diagonal nodes.
That is, U, consists only on nodes strictly over the diagonal, so that the last row

containing nodes from U, is row 2, since k() = 2.

Since m = 0, then every 3-segment of U, has 3 nodes. The bottom 3-segment of
U, is shown in shaded nodes in the following diagram

Since we have not reached the top of [A], there is at least another 3-segment,
which starts at the following upper row :

Now, A is self-conjugate, then for each upper node (i, j) that we added, we add
the node (j,1) (or also because (i,j) € U, if and only if (j,i) € L)
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[ ]

[A]=

So that A = (9,7,2°,1%) is the only possibility for A self-conjugate such that a} is
even, r) — &) =|U,| =0 (mod 3) and A =

* Let ¢ =1, and m = 2. Let us see that there is only one possible partition A
satisfying: a’ is odd, r} — ¢’ = |U,| - ¢} = 2 (mod 3) and A = 1. We add to [A]
the nodes of Rim3(A) = Uy UL,.

In this case, a} =1 (mod 2), then there is a diagonal node in U:

We add now the rest of the nodes in U,. Here r} — &’ = |Uy \{(3,3)}| = 2 (mod 3).
That means that the rest of the nodes in U, contain one 3-segment of 2 nodes,
we add this 3-segment

and the rest are 3-segments of 3 nodes:
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and finally, for making A self-conjugate:

And we see that A = (9,7, 5,32,22, 12) is the only possibility for having ay odd,
=&y =|Uy|-1=2(mod 3), and A=

Proposition 3.1.14. Let p be an odd prime. Two different self-conjugate partitions have
different BG-symbols. In other words, the BG-symbol gives rise to an injective map from
self-conjugate partitions to the set of two-row positive integer symbols.

Proof. We proceed by induction on /, the length of the BG-symbol. Let I = 0. Let A be
a self-conjugate partition with BG-symbol

_ (g
- ()
Notice that having a BG-symbol of length 0 means that A = A9 = 1()* is a hook and
its size is aj), that is, there are positive integers u, v such that A = (4,1") and u+v = aj,.
But A is self-conjugate, then u — 1 = v, so that a; = 2u —1, and ¢; = 1. Then

an + €,
0% _
2

*

ro =

Therefore A = (r,1707!). This way, A is determined from its BG-symbol and, from this
reasoning, we see that any self-conjugate partition with BG-symbol bg,(1) is com-
pletely determined by it and is then equal to A.

Now, fix I >0 € N, let A be a self-conjugate partition with BG-symbol

(g @ o oa
bey0=(2 )

and let p be a self-conjugate partition such that bg,(u) = bg,(A).

Then, by definition, the BG-symbol of A(1)* (and also of u(!) is the BG-symbol of
A after removing its first column

% % a* Y a*
by, (1) =bg, () =(1 7 ).
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By induction, there exists a unique self-conjugate partition 7 such that

Then 7 = A = y(1)*, Let us see, from Lemma 3.1.12, that A = p.
Let € = ay; mod 2, and m = ry — ¢y mod p. By Lemma 3.1.11, if ¢ = 0 then m = 0.
Therefore, by Lemma 3.1.12 there exists a unique self-conjugate partition 7 such that

(i) a; = ¢ (mod 2);
(ii) 77 —e; =m (mod p) and
(iii) 7 = 7.
But partitions A and p are self-conjugate and they satisfy (i) and (ii) since aj, = a’) = aj,.
Moreover A(1* = 41" = £, then by the uniqueness of T we have that T = A = p.
O

3.2 From BG-partitions to self-Mullineux partitions

As it turns out, the BG-symbol of a BG-partition is a Mullineux symbol of some
self-Mullineux partition. Denote by M, the set of Mullineux symbols of the self-
Mullineux partitions M,.

Proposition 3.2.1. Let p be an odd prime and A a BG-partition. The BG-symbol of A,
bg,, (1) is the Mullineux symbol of some self-Mullineux partition. That is

bg,(BG,) € M,

We postpone the proof of this proposition since some technical lemmas are neces-
sary.

Recall, from Proposition 2.2.6 and Remark 2.2.7, that to a Mullineux symbol cor-
responds a unique p-regular partition. So that the Mullineux symbol determines a
bijection between p-regular partitions and their Mullineux symbols. In particular, to
a symbol in M,, corresponds a unique self-Mullineux partition in M. As a corollary
from Proposition 3.1.14, which says that bg,, is injective, Proposition 3.2.1, which af-
firms that the image of bg, is contained in the self-Mullineux symbols, and finally
from the fact that the sets BG, and M have the same number of elements (Proposi-
tion 1.3.16), we obtain the following result.

Theorem 3.2.2. We have that
bgp(BGp) = Mp;

and the BG-symbol provides an explicit bijection between BG-partitions and self-Mullineux
partitions. This bijection is given by associating to a BG-partition A its BG-symbol bg (1),
which corresponds to a unique self-Mullineux partition. This bijection restricts to bijections
between BGy, and M for every n € IN.

Remark 3.2.3. If we consider the Mullineux symbol G, as a bijection from the set of
p-regular partitions into its image in the set of two-row arrays of integers, then the
bijection in Theorem 4.6.1, from BG,, to M, is given precisely by G;l obg,. A
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Remark 3.2.4. In [AO91], Andrews and Olsson prove a general partition identity,
which depends on some integer parameters. A special case of this identity is the fact
that the number of (p-)self-Mullineux partitions of a non-negative integer n equals the
number of partitions of n with different odd parts, none of them divisible by p, which
is in turn equal to the number of BG-partitions.

Now, in [Bes91], C. Bessenrodt shows a combinatorial proof of the Andrews—
Olsson identity, which provides, by choosing the right parameters, an explicit bijec-
tion between BGy, and M. The bijection from Theorem 4.6.1 is obtained in a more
direct way and it is different from Bessenrodt’s bijection. In particular, for p = 5 and
n = 20, the partition (7, 6,3,22) € M2° is mapped to partition (9,3,2,1°) € BGZ® under
Bessenrodt’s bijection, and it is mapped to (7,5,23,12) € BG%O under bijection from
Theorem 4.6.1. A

3.2.1 Some technical lemmas

In this section we prove Proposition 3.2.1. For this proof we need some technical
lemmas.

Definition 3.2.5. For a partition A = (A4,...) we define k() as the coordinate of the
maximal diagonal node of A:

k(A) :=max{i | A; #0and (i,i) € [A]}.
Which is also equal to |{A; | A; > i}. A

Remark 3.2.6. The number k(1) is known in the literature as the size of the side of
the Durfee square of ): the biggest square formed by boxes contained in the Young
diagram of A. For more on Durfee squares see for example [AE04]. A

Lemma 3.2.7. Let p be an odd prime and A = (A1, A,..., A;) a partition in BG,. Let
k = k(X) as in Definition 3.2.5. Then the partition y:= (A1, Ay,..., A) is p-regular.

Example 3.2.8. Let p = 3 and A = (7,4,3,2,13). This partition is a 3-BG-partition.
Here k = 3, so that I(y) = 3, and indeed, the partition y = (7,4,3) is 3-regular. The
following diagram illustrates both the partitions A and p (in shaded boxes).

[ 1]

Proof of the lemma. Suppose that y is not p-regular. So that there exists 1 <i < k such
that

A=A == i
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Sincei+p-1<k,then A;,, | >i+p—1. Then (i+p-1,i+p—1) € [u] C[A]. Let a be the

length of the (i+p—1,i+p—1)-th hook of A, thatisa = h(/\i+p—1,i+p—l)' Then, the length
of the (i+p—2,i+p—2)-th hook of 1, is h(\i+p—2,i+p—2) =a+2,since Aj;, 1 = Ajyp o and
A

A is self-conjugate. And h(iyp_3,i1p-3) = a+4. In general h =a+2j for

(i+p—1-j,i+p-1-j)
j=0,...,p—1. That is, the lengths of these hooks are:

aa+2,a+4,...,a+2j,...,a+2(p-1).

But since p is odd, this list, modulo p, forms a complete collection of residues. Then,
there exists j € {0,...,p—1} such that p|a+2j = h(/\i+p—1—j,i+p—1—j)’ and this contradicts
the fact that A € BG,,.

O

In the set of p-BG-partitions, the implication in Lemma 3.1.11 becomes an equiv-
alence:

Lemma 3.2.9. Let A € BG,,. Then @) is even if and only if p | a).

Proof. As already noted, the fact that 4’ implies p | @ is proved in Lemma 3.1.11.

Suppose that p | 4. If 4)) is odd, then Rim},(1) contains a diagonal node. Then U,
is formed by p-segments of length p and one last p-segment of length possibly less
than p, which, in this case contains the diagonal node. Let us name B the set of nodes
in this last p-segment, and let A be the set

A=BU{(j,i) € [A]] (i) € B} C Rim}(A).

The set A is formed by a symmetrical segment along the rim of [1]. See Figure 3.1a.

WS

(a) Segment A. (b) (i,i) ,-th hook in darker shaded boxes.

Figure 3.1

The set Rim),(A) is formed by the disjoint union of A and some p-segments. There-
fore, since p | @'}, we have that |A| = p.
Now, let a = (i, j) be the first node of the segment B, that is i = min{r | (r,s) € B} and
j =max{s|(r,s) € B}. We have that the (7,1)-th hook contains exactly |A| = p nodes. See
Figure 3.1b.
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This means that A has a diagonal (p)-hook, which is a contradiction because A €
BG,,.
O

We obtain the following corollary from Remark 3.1.3 and Lemma 3.2.9.
Corollary 3.2.10. Let A € BG,,. The following statements are equivalent

1. & =0.

2. ay is even.

3. Rimy,(A) does not contain diagonal nodes.

4. pla.

Consider a partition A € M, that is, a fixed point of the Mullineux map. This is
a condition that depends only on the columns of the Mullineux symbol of A. There-
fore, the partition A(!) obtained by removing the p-rim of A is also a fixed point of
the Mullineux map, since its Mullineux symbol is obtained by removing the first col-
umn of the Mullineux symbol of A. The following lemma is an analogue property for
partitions in BG,,.

Lemma 3.2.11. If A € BG,, then A e BG,,. In other words, if A is a p-BG-partition, then,
removing its p-rim* results in a p-BG-partition.

Proof. Recall (Remark 3.1.5) that if A is self-conjugate, then so it is for A()*. In par-
ticular, if A € BG, then A" is self-conjugate. It remains to prove that A(* does not
have any diagonal (p)-hooks.

For simplicity of notations let 4 = A*, Suppose that u has a diagonal (p)-hook,
say the (i,1),-th hook, with hy = pk for some k € IN.

We clalm that the node (z pi + 1) is in the p-rim* of A. Indeed, (i,y; + 1) € [A]
since if (7, p; + 1) ¢ [A], then p; = A; and hl’\'l = hffl pk so that A has a diagonal (p)-
hook, which contradicts the fact that A € BG,. Now, since (i,p; + 1) € [A] \ [], then
(i, pi +1) € Rimy,(A). See Figure 3.2a.

There are now two possible cases: either (i, y; + 1) is the last node of a p-segment
of U, (the nodes on the p-rim* of A over the diagonal), or it is not the last node of the
p-segment to which it belongs. Let us examine these two cases.

Suppose (i, y; + 1) is the last node of a p-segment of U,, and this p-segment starts
on a node (a,b). See Figure 3.2b.

Then, the (a,4),-th hook has length equal to the length of the (i,1),-th hook plus
twice the length of the p-segment of Rim;(/\) containing the node (i, y; + 1), that is

h:}ﬂ:p+hzi+p:p+pk+p:p(k+2),

so that A contains diagonal (p)-hook, which is impossible.

Suppose now that (i, y; + 1) is not the last node of a p-segment of U),. First, notice
that the node (i + 1, y; + 2)  [A]. This is true because (i, #; + 1) is in the p-rim* of A. We
claim that (i + 1, y; + 1) € Rim, (1) € [A]. In Figure 3.3, node (i + 1, y; + 2) is illustrated
as a cross (meaning it is not in [/\]) and node (i +1, y; + 1) as a shaded box (as are their
opposites with respect to the diagonal). Indeed, (i + 1, y; + 1) € Rim}, (1) because, since



3.2. From BG-partitions to self-Mullineux partitions

(a) Shaded boxes are in Rimy,(1). (b) Shaded boxes are p-segments in Rimy,(A).
Figure 3.2
pi+1
i 1
i [T |
i+1 |: : R
Hir
Figure 3.3

(i, pj + 1) is not the last node of a p-segment, then the next node of its p-segment is
either to the left or down. But the node to the left of (i, 4; + 1), that is, (i, ;) is not in
the p-rim* of A since it is in y, so that the next node of this p-segment is (i + 1, y; + 1),
which is then in Rimj, ().

The fact that (i + 1,p; + 1) € Rimy(A) € [A] and (i + 1, p; + 2) € [A] implies that
Air1 = i + 1 and therefore the (i + 1,7 + 1) ;-th hook has length

A _gH
Wiivny = Mgy = P
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that is, A has a diagonal (p)-hook, a contradiction.
We conclude that u does not have any diagonal (p)-hooks and then, y = A" €

BG,,. O

3.2.2 Proof of Proposition 3.2.1

Proof of Proposition 3.2.1. Let us first state which properties characterize elements in
M, That is, if A € M which conditions characterize its Mullineux symbol

_ ao al e ul
O )

Let s; = a; +¢; —r;. The partition A is a fixed point of the Mullineux map if and only if
r; = s;, that is

a; = 2 ri —&;.
We also know that A is the only p-regular partition whose Mullineux symbol satisfies

properties (1)—(5) from Proposition 2.2.6. This way, the properties that characterize
Mullineux symbols of partitions in M, are equivalent to the following properties

1. gi<ri—-rig<p+egfor0<i<li,
2. 1<n<p+¢g,

3. Zgzoai:n, and

4. a; =2r; —¢;.

On the other hand, from the definition of e;* and Corollary 3.2.10, we have that

. |0ifpla;
C1ifpta

Let A € BGy,. Let us see that its BG-symbol

=[5

* * *
rO r’l e rl

is in M,, by verifying properties (1)—(4) for aj, &} and r;.

From the definition of the sequence aa,...,a;’, it is clear that (3) holds. We have
that (4) is satisfied from Remark 3.1.3. Let us first show that (2) holds. Since A()* is
not the empty partition, r; > 1. On the other hand, the partition A" is a hook and
it is self-conjugate; more precisely A()* = (r], 147"). Then a; = A" is odd, so that
¢, =a; mod 2 = 1. Suppose that r; > p+¢; = p+ 1. This means that the first p-segment
over the diagonal of A(* consists of p nodes. But then, there are more nodes remaining
in the first row of [A()*] that are not in the p-rim*, but this contradicts the maximality
of I.

It remains to prove (1). A key element for this task is Lemma 3.2.7, which roughly
says that truncating a BG-partition to some particular row results in a p-regular parti-
tion. The idea is to use the fact that this truncated partition, being p-regular, satisfies
properties from Proposition 2.2.6, which uses numbers from the Mullineux symbol,
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and these will give us information about r; and ¢j, which are numbers appearing in
the BG-symbol.

Let us see that A satisfies

e <r

* o .
i<ri—r,, <p+eg for 0<i<l

It suffices to prove this for i = 0 and then, the property follows recursively by
Lemma 3.2.11.

To simplify notation, set:

values associated to A | values associated to A(1*

e ¥ ) e A%
a.= ﬂo a = al
o ¥ ) e X
ri= 1’0 r o= 1’1
~e— o e o*
&= (‘,0 & = él

Let us prove that
e<r—r' <p+e.

We study the four possible cases for the values of ¢ and ¢’, namely

8/
0
1
0
1

_ =0 O M

In each case we will consider some diagram
[A]:={(i,j) € [A]|i < k(A) and j > k(A) —x+ 1},

for a certain 1 < x < k(A) (which will be chosen depending on the case). That is, [A]
is obtained from [A] by removing rows below row k(A1) and columns up to column
k(1) —x. In an abuse of notation we will call A the partition with Young diagram
obtained by shifting the diagram [A] to the left by k(1) —x columns. This will allow us
to identify nodes of A and nodes of A (for example (i, A;), and not (i, A; —k(A) + x), will
be the last node on row i of A for 1 <i <k(A)).

In each case we denote 4 the number of nodes in Rim (1), r the length of A and

. 0ifpla,
= \1ifpta

And for AV, similar notation with primes: a’ the number of nodes in Rimp(i(l)), v’
the length of A() and

Let us now consider each of the four cases.
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(i) In this case, the fact that both ¢ and ¢’ are zero means that neither A nor A(!>* con-

tain diagonal nodes on their p-rims*. For example as in the partition (6,5,23,1)
with p = 3. The Young diagram below on the left represents the 3-rims* of
(6,5, 23, 1) and (6,5, 23, 1)(1)* in different shades.

| H

CJ:  Rim3((6,5,23,1)) Partition (6,5,2%,1) in
Ml Rim3((6,5,23,1)(1) thicker lines.

Let x = 1 in this case. The diagram above on the right illustrates (6,5,23,1).
Lemma 3.2.7 ensures that A is p-regular, then, from Proposition 2.2.6, we have

r-r'+e<a-a'<p+r-r'+¢. (3.2)

Notice that the nodes in Rim} (1) over the diagonal of A are exactly the nodes of
Rim,(A), that is, Uy = Rim,(A). Hence |U,| = [Rim,(A)|. That is r = a. Similarly,
Ujyar = Rimp(i(l)), since ¢’ = 0, meaning that node (k(1)-1,k(1)-1) ¢ Rim;(/\(l)*)
so that this node is not in Rim,, (A1), either. Hence ' = a’.

We claim that Rim, (1) and Rim,, (A1) end at the same row; row k(). This is not
obvious since it could be possible that the p-rim of a partition y, which always
contains nodes in the last row of y, row I(p), contains every node in this last row,
and then u!!) does not have any nodes in row /(). But in our setting, this is not
the case. Indeed, by definition, every node of a partition is in some i-th p-rim
of the partition. In particular, the diagonal node (k(A), k(1)) is in the j-th p-rim
of A for some j > 1 since Rim,(A) and Rim,, (A1) do not contain diagonal nodes.
On the other hand the p-rim of any partition contains nodes in the last row of
the partition and since k(A7) is the last row of both A and AU, then it is also the
last row of A1), So that both A and A(!) contain nodes in row k().

Now, the fact that Rim, (1) and Rimp(i(l)) end at the same row means that [(1) =
k(A) = 1(AM), thatis r—r" = 0.
On the other hand, in this case, we have that ¢’ = 0, which means that p | a’. But
since a’ = 21" —¢’, then p |+’ =4’ (p # 2), which means that ¢’ = 0.
The fact that r —r’ = 0, together with the fact that a =r, 2’ =" and ¢ = 0, make
Equation 3.2 become

0<r-r'<p+0.

So that e <r -1’ <p+e¢, as we wanted to show, since in this case ¢ = 0.

Suppose that ¢ = 0 and ¢ = 1. For example as in the partition (7,5,23,1?)
with p = 3. Below, in the left, we represent the 3-rims* of (7, 5,23,12) and
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(7,5,23,12)* in different shades.

[ 1] [ 1]

[]:  Rim3((7,5,2%,12)) Partition (7,5,23,1%) in
B Rimj((7,523,12)0F) thicker lines.

As in the previous case, let x = 1. We illustrate (7,5, 23, 12) by thicker lines above
in the right hand diagram.

Let us see that also in this case we have that r —7” = 0. As before, the nodes in
Rim} (1) over the diagonal of A, or U,, are exactly the nodes of Rim,(1). And
we also have that U, = Rimp(i(l)). So that r = g and ' = a’. On the other
hand, since in this case (k(A),k(1)) € Rim3(A(V"), then (k(1),k(A)) € Rim,,(A1V).
Furthermore, the fact that Rim;(/\(l)*) has a node on row k(A), implies that A
has a node on row k(J), and then so it is for A. Therefore (1) = k(1) = (A1),
thenr—1r"=0.

Now, consider the two possible cases for ¢’. If ¢’ = 0, we obtain, as in the previous
case
0<r-r'<p+0,

which is what we wanted to show. If ¢’ = 1, Equation 3.2 becomes
1<r-r'<p+1,

In particular 0 < r—+" < p. But actually, r — " < p. Indeed, if r —r’ = p, since
p | a = 2r, then p | r and therefore p | v’ = a’, which contradicts the fact that
¢’ =1.In conclusion 0 < r — 7’ < p, which ends this case.

(iii) Suppose that ¢ = 1 and ¢’ = 0. For example as in the partition (6,5%,3%1)
with p = 3. Below, in the left, we represent the 3-rims* of (6,52,32,1) and
(6,52,3%,1)(1* in different shades.

L] ]

[J:  Rim}((6,5%3%1)) Partition (6,52,32,1) in
B Rimj((6,5%32,1)1F) thicker lines.
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As before, let x = 1. We illustrate (6,52,32,1) in thicker lines, above in the right
hand diagram. Let us see that in this case r —r" = 1.

As in the preceding cases, the nodes in Rim},(1) over the diagonal of A are exactly
the nodes of Rim,(A). This fact implies that a = r, and since ¢’ = 0, by the
same argument that in case (i), we have that 2’ = r’. Now, since ¢ = 1, the last
diagonal node of A, that is, the node (k(A),k(A)) is in Rim,(A). In particular
(k(A), k(1)) € Rim,(A), and since it is the first node of the last row of A, that
means that all nodes on this last row are in the p-rim of A. So that this last row
k(1) =r of A does not have any nodes from Rim;(/\(l)*) (or Rimp@(l))). We claim
that row k(1) — 1 in A contains at least one node in Rim;(/\(l)*) (or Rimp(A(l))).
Indeed, node (k(X) —1,k(A)—1) is in Rim;(/\(j)*) for a j > 1, since it is not in
Rim;(/\(l)") (because ¢’ = 0). If we suppose that row k(1) — 1 does not have node
in Rim;(/\(l)"), we are supposing that to the left of node (k(A) —1,k(1) — 1) there
are only nodes from Rimy(A). If this is the case, the last node in row k(1) -1

in A is (k(1) - 1,k(A) - 1), that is: Aj(y | = k(1) - 1. But the last node on

every row (over or on the diagonal) belongs to the p-rim*. In this case, node
(k(A) = 1,k(1) — 1) belongs to the p-rim* of A1), a contradiction since A(V* does
not have any diagonal nodes on its p-rim*. In conclusion, row k(A1) -1 in A
contains at least one node in Rim;(/\(l)*), in particular, row k(A)—1 in A contains

at least one node in A(l), so that Z(A(l)) = k(A). Therefore r—r’ = k()\)—l(i(l)) =1.

On the other hand, since we have that ¢’ = 0, by the same argument as in case
(i), we have that ¢’ = 0.

Puting all together in Equation 3.2, we obtain
1<r-r'<p+1.

Thatis,e<r—r'<p+e.

(iv) Suppose finally that ¢ = ¢’ = 1. An example is given by partition (7,4,3,2,13) for
p = 3. Below, in the left, we represent the 3-rims* of (7,4, 3, 2, 13) and (7,4, 3,2, 13)(1)*
in different shades.
Let x = 2. Lemma 3.2.7 still assures that A is p-regular. And from the way that
it is defined, A contains both diagonal nodes in Rimy(}) and Rim;(/\(l)*). We
illustrate (7,4, 3, 2, 13) by thicker lines in the right hand diagram below.

OJ:  Rim3((7,4,3,2,1%) Partition (7,4,3,2,13) in
B Rim}((7,4,3,2,13)0r) thicker lines.
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Notice that in this case it is not necessarily true that 4 = r and @’ = r’. Since A
contains the node (k(A),k(A) — 1) which is under the diagonal of A, where the
p-rim* does not behave as the p-rim. For the partition (7,4, 3,2,17), this node is
the node (3, 2), which in this case is in the p-rim* of (7,4, 3,2, 13). But it could be
the case that the node (k(1),k(A) —1) is not in the p-rim* of A but in the p-rim*
of A, This depends on the divisibility of r by p.

Recall that r = |U, | is the number of nodes in the p-rim* of A that are above (or
on) the diagonal of A. Let us consider the two cases: p|rand ptr.

* Suppose that p | . Asin A = (7,4,3,2,1%) with p = 3 (see the diagram
above). In this case every p-segment of the p-rim* of A contains exactly p
nodes. In particular the segment which contains the node (k(1),k(1)). And
since this node is the last (and p-th) node of this p-segment, then the node
to its left (k(A),k(A) — 1) is not in the p-rim of A. And we have 4 = r and
r—r1" = 0. Moreover, the node (k(A), k(1) — 1) is then in the p-rim of A, S0
that a’ = r’+1 (the " nodes of Rim;(/\(l)*) above the diagonal, together with
node (k(A),k(A) —1), form Rimp(&(l))). Therefore we havea=r, 4" =1+ 1
and r —r’ = 0. Puting this together in Equation 3.2 we get

g<r—(r+1)<p+¢é,
or
E+l1<r-r'<p+e+1.

But ¢’+1>1 = ¢. Therefore we have
1<r-r'<p+e+1.

Let us see that r—1' <p+1 = p+¢. There are two possibilities for ¢’. Either
¢’ =0,inwhichcaser—r"<p+1,ore’=1.If ¢ =1, wehaver—r' <p+2,
sothat r—r"<p+1. Butin fact r—r' < p+1, since if r—+" = p+ 1, then
r—(r"+1) = p. But in this case p | r, therefore, p | ' + 1 = 4/, and this
contradicts the fact that ¢’ = 1.

* Suppose that p}r. Asin A = (6,2,1%) with p = 3.

O Rim3((6,2,1%)) Partition (6,2,1%) in
E Rim3((6,2,14)) thicker lines.

In this case, the p-segment of Rimy, (1) which contains the node (k(A), k(1))
has less than p nodes. This implies that the node to the left of this diagonal
node, namely (k(A),k(A) — 1), is on the p-rim of A. Then a =r+1 (the r

nodes of Rim;(A) above the diagonal, together with node (k(A),k(A) - 1),
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form Rim,(A)), and we also have that r —r" =1 and a’ = r’. Equation 3.2
gives
1+ <(r+1)-r'<p+1+¢,

or
g<r-r<p+ée.

Butp+¢’<p+1=p+e. Thene' <r—r’'<p+e. Letus show thatr—r">1 =¢.
There are two possibilities for ¢’. Either ¢’ =1, in which case r—1'>1=¢
ore’=0.If ¢ =0,then r—+">0. But actually r—r" > 1, since if r—+" =0,
from the fact that p | 4’ = v’ we would have that p | 7, a contradiction.

3.3 A proposition on the correspondence and p-blocks

The BG-symbol provides a one-to-one correspondence between the set BG; C Par(n)
of p-BG-partitions of n and the set M, C Reg,(1) of p-self-Mullineux partitions of n.
We know that p-blocks of S, define a (set) partition in each of Par(n) and Regp(n).
A natural question is then: does the correspondence agree with the partition into p-
blocks ? Since this partition is determined by the p-cores (Theorem 1.4.5), the question
says: if A € BG, and p € My correspond with each other, that is, the BG-symbol of A is
equal to the Mullineux symbol of s, do A and p have the same p-core ? In this section
we show that this is the case.

In §2.4 we recalled the definition of the p-residue of a node in IN* x IN*. The p-
content cont,(A) of a partition A is the multi-set of p-residues of the nodes in the
Young diagram of A.

Example 3.3.1. If p = 3 and A = (5,2%,1), the p-residues of the nodes in the Young
diagram of A are:

1/2]0]1]

‘O’—‘NO

Then the p-content of A is the multi-set
cont;(1) = {0%,13,23},

where a power indicates the number of times that an element appears in the multi-
set. A

The p-content determines the p-block to which a partition belongs:

Proposition 3.3.2 ([JK81, 2.7.41]). Two partitions A and p have the same p-core if and
only if they have the same p-content.

Proposition 3.3.3. Let A € BGy, and p € M such that the BG-symbol of A is equal to the
Mullineux symbol of u. Then A and y have the same p-core.
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Proof. The proof is by induction on the length of the symbol.
Suppose that

Gylp) = (“) = bg, (A)

In this case we have that A = y. Indeed, the unique p-BG-partition with such a bg-
symbol is (r,17"!) (see proof of Proposition 3.1.14). Similarly, the unique p-regular
partition with such a Mullineux symbol is (r,1""!). Since A = p, they have the same
p-core.

Suppose now that
a a; -+ a,
rory e 1y

Gyt = | ):bg,,u).
We prove that cont, (1) = cont,(u), and from Proposition 3.3.2 the result follows. From
the definition of the symbols, we know that

al .o aZ
rl “e T‘Z

ot = )= bg, (1),

where the partitions A()* and u(!) are obtained from ) and y by respectively remov-
ing the p-rim* and p-rim. By induction, A} and u(V* have the same p-core. From
Proposition 3.3.3, these two partitions have the same multi-set of p-residues:

contp(/\(l)*) = contp(y(l)).
Let L and M be the multi-sets with elements from Z/pZ such that
cont,(p) = contp(/\(l)*) UM

and
cont,(A) = contp(y(l)) UL.

Let us see that M = L, which will complete the proof.

Notice first the following about p-residues and segments on the rim. If (r,c) is a
node in IN* x IN¥, the p-residue of this node is (¢ —r) mod p. The residue of the node
above or to the right of (r,c) is ((c—7)+1) mod p. The residue of the node below or to
the left of (r,c)is ((c—r)—1) mod p. That is to say: the set of p-residues of any path or
segment of nodes is a list of residues which are consecutive mod p. In particular, the
p-residues of a segment in the p-rim of a partition is a subset of consecutive residues
mod p.

Now, it is clear that |[M| = a = |L|, from the definition of the symbols and of the
partitions A()* and (1), This number is the length of the p-rim of y and the length of
the p-rim* of A. Let g and s be the positive integers such that

a=pq+s and 0<s<p.

If s = 0, then p | a. Hence y is obtained from u!) by adding q segments of length p
to form the p-rim of y. Then

M=1{07,19,...,(p - 1)9).
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Similarly, A is obtained from A(1* by adding q segments of length p to form the p-rim*
of A. Then
L={09,19,...,(p—1)1).

Hence, M = L when s =0.

If s>0,ptasothat ¢y =1 = ¢). Recall that for such a symbol we have that a = 2r-1,

see Definition 3.1.4. Then .

a+

=—. 3.3
r=— (3.3)
Let us see in this case what is the multi-set M. The partition y is obtained from p(!)
by adding g segments of length p to form the p-rim of y, plus one segment of length
s. This last segment can be seen as a segment starting at node (r,1) and then it is a
sequence of nodes that are either above or to the right of the preceding node. From

the above remark, the set of p-residues of nodes in this last segment is exactly
(I1-r)ymodp, (2-r)modp, ... ,(s—r) mod p.
Hence,
M={01,19,...,(p-1)1} U {(1-r) modp, (2—r)mod p, ... ,(s—r) mod p}.

We now compute the multi-set L. For this we consider the two cases: g is even or ¢
is odd.
Suppose that g is even. Then s is odd and from Equation 3.3 we have

q s+1
= — 4+ _—,
TPt
and % < s < p so that % =r mod p. That means that the self-conjugate partition A
has 1 p-segments on the p-rim* over the diagonal (and also under the diagonal), and
a “middle” (symmetric with respect to the diagonal) segment on the p-rim* which has
exactly % nodes over the diagonal, one of which is on the diagonal. The multi-set of

residues of the p-segments is then formed by
09,19, ..., (p—-1)L.

Now, for the middle segment: A node on the diagonal has p-residue equal to 0 by
definition. Then the p-residues of the nodes in the middle segment are exactly
1-
-3 modp, ... ,—2modp, -1 modp, 0 modp,
2 (3.4)

-1
1 modp, 2modp, ..., sTmodp,

but % =1- % =1—-r (mod p), so that the list (3.4) is a set of s consecutive residues
mod p starting at 1 —r mod p, that is

(1-r)modp, (2—r)modp, ... ,(s—r)mod p,

which proves that L = M, when g is even.
Suppose that g is odd, say g = 2q’ + 1. Then a = 2pg’ + p + s so that the p-rim* of

the self-conjugate partition A is formed of: 249" segments on the rim of length p (¢’
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segments at each side of the diagonal), and one middle (symmetric) segment of length
p +s. The p-residues of the 2q”" segments are

029,129, ..., (p—-1)*. (3.5)
The p +s p-residues of the middle segment are

1-p-s

modp, ... ,—2modp, -1 modp, 0 modp,

-1
1 modp, 2modp, ..., P+; mod p.

Take the first p of these p-residues:

1-p- 3-p- 1-p-
4 Smodp, 4 Smodp,..., gs

+(p—1) modp.

which form a complete set of residues mod p. They form, together with the
residues on 3.5, the multi-set

09, 14, ..., (p—1)".

The rest of residues in the list (3.6) is the set of s p-residues

1-p- 3-p- —1-p-
’2’ Smodp,#modp, ...,%Jr(s—l)modp. (3.7)
Notice that @ =r mod p. Indeed, r = % =pq’ + @. Then, the first p-residue
in the list (3.7) is
1-p- 1
A Y L mod p.
2 2
This shows that the list (3.7) is equal to

(1-r)ymodp, (2—r)modp, ... ,(s—r)mod p,

proving that L = M. O

3.4 From self-Mullineux partitions to BG-partitions

From Theorem 4.6.1, we know that the BG-symbol induces an algorithm for the corre-
spondence between BG-partitions and self-Mullineux partitions. Then we know that
to each Mullineux symbol of a self-Mullineux partition, corresponds a unique BG-
partition. Moreover, from the definition of the BG-symbol, and Lemma 3.1.12, we
know how to find the BG-partition associated to such a Mullineux symbol under this
correspondence. In this section we prove that this inverse algorithm is well defined,
that is, we prove that applying it to a Mullineux symbol of a self-Mullineux partition
results in a BG-partition. This confirms Theorem 4.6.1 in a combinatorial way without
using the fact that |BG;| = |M;}|.

Proposition 3.4.1. Let p be an odd prime and A a self-Mullineux partition. The Mullineux
symbol of A, G,(A) is the BG-symbol of some BG-partition. That is

M, Cbg,(BG)).
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Proof. We give a combinatorial proof of this fact, although it follows also directly from
Proposition 3.1.14 and Proposition 3.2.1.

We proceed by induction on /, the length of the Mullineux symbol.

Let/=0and S = (ill) € M,, thatis, S = G,(A) for some A € M,,. Let ¢, =0if p|a
and ¢ = 1 otherwise. Since S has exactly one column, then A = A() is a hook, that
is A is of the form A = (x,1¥), with x < p. On the other hand, since A is fixed by the
Mullineux map, we know that

a) = 21’1 — €.

We claim that ¢; = 1. If ¢, = 0, that is, if p | 4;, then the p-segments that form Rim, (A1) =
[A] are all of length exactly p. We know that A is a p-regular hook, this means that
A is formed by exactly one p-segment. If there was more than one p-segment, then
a; > p (so that a; = 2kp for some k > 1) it follows that y > p, and then A would not be
p-regular. Thus a; = p = 2r;. But this is not possible since p is odd. Then ¢ =1 and
ay=2r-—1.

The partition y = (r;,1"7!) is self-conjugate, and is a hook of length 2r; — 1 = a;.
Since p t a;, then HE BGP. Its BG-symbol is

bg, (1) = (21’1 - 1) _ (a,) _s

] T
In fact p= A.
Consider now [ > 0. Let
S _ ao al oo al)
ro rl e rl

be a symbol in M, corresponding to a partition A in M,. Consider the array

S_, _ (al oo al) .
rl .o rl
By definition, S is the Mullineux symbol of the partition A1), obtained from A by
removing the nodes on the p-rim. We know that A(!) is fixed by the Mullineux map,

given that this only depends on the columns of the symbol. Then A1) € M, and
Se M, By induction, there exists a partition ji € BG, such that

bg, (1) =S.

We will apply Lemma 3.1.12. Let ¢y = 0 if p | ag, or ¢g = 1 otherwise. Let m =
(ro — €g) mod p.

Suppose that ¢y = 0 and let us see that in this case m = 0. Since ¢y = 0, then p | ag.
But ay = 2rg — g9 = 2ry, since A is a fixed point of the Mullineux map. Now, since p is
odd, then p | ry so that m = (ry — ¢y) mod p = ry mod p = 0.

If g = 1, we have that p t ag. Therefore p t 2m+1 since 2m+1 = 2(ry—¢g)+1 (mod p)
and 2(rg—&g) + 1 = 2ry — &g = ay.

Lemma 3.1.12 implies that there exists a unique self-conjugate partition y € BG,
such that

(1) a, = & (mod 2);



3.4. From self-Mullineux partitions to BG-partitions

(ii) r;,—¢;, =m (mod p) and

(iii) pt = p.

The condition p(1)* = ji implies that

a;l a* a* a .o a
bgp(,u): bgp(ﬁ) - S :(r*y rl rll)
T " po ot

*

Let us see that in fact bgp(y) =S, that is, a4}, = ag and r;, = ro. Indeed, from (i), ay
is even if and only if ¢g = 0, if and only if p | a). But aj, is even if and only if p | 4y,
by Corollary 3.2.10. This sequence of equivalences says that ¢ = ¢;.. Then, by (ii) we
have that r =T (mod p).

Since S € /\/lp, then, from Proposition 2.2.6, we have, in particular

g <rg—r1 <p+&p. (3.8)

On the other hand, since y € BG,, then bg,, (1) € M), by Proposition 3.2.1, so that, in
particular we have

o
Eﬂ_ry

Substracting Equation 3.8 from Equation 3.9, we get

-1 <p+ée, (3.9)

—p<r,—ro<p,

but since p | r, — o we can conclude that r; —ry = 0, so that r;, = ry. Therefore a

2, — €, = 2rg— €9 = ap, and

*
u=

=(  %)s

ro rl cee rl
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Stable unitriangular basic sets for
blocks of small weights

This chapter is based on [Ber21c]. The organization of this chapter is as follows: In
the first section we recall the notions of p-basic sets and p-unitriangular basic sets
(UBS) for the symmetric group. Then, in §4.2 we recall the more general notion of
p-unitriangular basic sets for unions of p-blocks of S, and we define stable unitri-
angular basic sets for unions of p-blocks (SUBS). In §4.3 we recall the fact that non
self-conjugate blocks or self-conjugate blocks of odd weight have a SUBS with certain
underlying set denoted Ufl/,p. Then, in §4.4, we show that the Mullineux map has
an easy description for blocks of weight 1, allowing us to show that U,zp is the un-
derlying set for a different SUBS. The reason for such “parentheses” about weight 1
blocks is that, then in §4.5, in the study of the combinatorics of weight 2 partitions we
see that the behavior of the Mullineux map on weight 1 blocks is very similar to the
Mullineux map in certain subsets of weight 2 blocks. This allows us to find a SUBS
for self-conjugate blocks of weight 2, in §4.6.

4.1 Basic sets and unitriangular basic sets

In this section we recall the definition of a p-basic set and a p-unitriangular basic set
for the symmetric group. Definitions are based on [BG10,BGJ20].

For introducing basic sets for S,, it is useful to talk in terms of the so-called
Grothendieck group of S,. Let 2 < p < be a prime. Denote by Irr(IF,5,) the set of
irreducible [F,5,-modules up to equivalence. The Grothendieck group of IF,S,, is the Z-
module G,(n) generated by the symbols [M], for M a finitely generated IF,S,-module
together with the relations

M]= ) mp[D],
Delrr(E,S,)

where mp is the composition multiplicity of D in M, and Irr(FF,3,) is the set of p-

modular irreducibles of S, up to equivalence. From Theorem 1.3.6 and the Jordan-
Hoélder theorem we have

Proposition 4.1.1. The set {{D*]| A € Regp(n)} is a Z-basis of G,(n).

In the Grothendieck group, we can then rewrite the definition (§1.4.1) of the p-
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decomposition numbers d,: For every A+ n

[sY]= ) dy[D].

],leRegp(n)

Moreover, from Theorem 1.4.1, the system of equations formed by all equations as
above for A p-regular, has a unique solution, that is:

Proposition 4.1.2. The set {[S}]| A e Reg, ()} is a Z-basis of Gy(n).

This motivates the general definition of a subset of Specht modules having such
property:

Definition 4.1.3. A p-basic set (or basic set) for the symmetric group S, is a subset
B c {[S*]| A+ n} such that B is a Z-basis of Gp(n). A

In these terms, {S* | A + n, p-regular} is a p-basic set for S,,. By abuse of nota-
tion we consider the set of partitions {1 | A € Regp(n)} = Regp(n) instead of the set of
Specht modules, as the basic set. With this notations, Proposition 4.1.1 says that, as
Z-modules

Gp(n) =~ ZRegp(n).

Remark 4.1.4. Bis a p-basic set of S, if and only if the determinant of the restriction
matrix Dg’p is 1 or —1 (the matrix is invertible in Z).

The p-basic set Reg (1) has an additional property. The system of equations is easy
to solve, since the submatrix is unitriangular (see Theorem 1.4.1). For A € Reg (1) we
have:

[$']=[D"]+ > dpu[DF].
peReg, (1)
w2

Hence, the p-basic set Reg,, (1) not only is a basis for G,(n), but it indexes naturally
the irreducible IF,S,-modules. This motivates the following general definition.

Definition 4.1.5. A p-unitriangular basic set (UBS) (or unitriangular basic set) for If,S,
is a set U C Par(n) such that the matrix D,gj’p (formed by the rows of D, ,, labelled by U
and all the columns) has wedge shape. More precisely, a UBS is the datum of a triplet
(U,<, V) where U C Par(n), < is a total order defined on Par(n) and W is a bijective
map:

V:U —Irr(F,S,),

satisfying:
(1) forall A € U we have d) ¢(1) =1, and

(2) forall M € Irr(F,S,) and A € U, we have: if d) py # 0 then A < w-(M).



4.2. UBS and SUBS for p-blocks of the symmetric group

Since we are interested in particular in the labelling of simple modules, for this
purpose, it is sufficient for the order < to be defined on U.

A UBS for F,S, is in particular a p-basic set for [F,S,. The interest of UBSs is
then that they give a natural parametrization of the irreducible [F,5,-modules. This
parametrization is explicit in the sense that there is an explicit bijection between the
irreducible [F,S,-modules and the modules in the UBS (which is V).

Example 4.1.6. The set Reg, (1) C Par(n), together with the lexicographic order < on
Par(n) and the bijection: A — D?, is a UBS for E,S,. A

The notion of p-basic set is defined more generally for finite groups, or even sym-
metric algebras. Such sets are useful for computing p-decomposition matrices. It
is an open question whether a p-basic set for a group exists in general'. In [BG10],
Brunat and Gramain showed that the alternating group R, has a p-basic set. Their
strategy is to find a p-basic set By for S,, which satisfies certain properties that make
its “restriction to A,,” be a p-basic set for A,. The basic set By has two properties:

(A) By is stable for conjugation: If A € By, then A’ € Bj.

(B) The only self-conjugate partitions in By are p-BG-partitions: If A = A" € By, then
A e BGj.
p

Brunat and Gramain showed that if B is a UBS for [F,S,, which satisfies the proper-
ties (A) and (B), then a UBS for A, can be constructed by restriction [BG10, Lemmas
6.4 and 6.6]. Having a UBS for A, is interesting because it would provide a natural
labelling of the irreducible [F,RA,-modules. The p-basic set By does not help in this
task, since it is not a UBS for [F,3, (see [BG10, Remark 6.5]). They conjectured the
existence of such a p-basic set for IF,S,,, which partly motivated the results in Chapter
3. However, in [BGJ20, §3.2], Brunat, Gramain and Jacon showed that IF, A, does not
always have a UBS (in particular IF;RA;g and [F3A9), proving that the asked p-basic set
for IF,S,, does not always exist. Now, the question can be asked “block wise”, that is,
with notions of p-basic sets and UBSs for p-blocks of [F,S,,. This makes the subject of
the following sections.

4.2 UBS and SUBS for p-blocks of the symmetric group
We recall the notions of p-basic sets and UBS for p-blocks of S,,.

Definition 4.2.1. Let U = {J,¢r D) be a union of p-blocks of IF,S,,. Denote by Irr(U)
the set Uyer{[D/‘] | A €Irr(B,)}. A subset BC U is a p-basic set for U if B is a basis for
the Z-module generated by Irr(U).

Equivalently: the matrix formed from the rows of D,, , labelled by B and columns
labelled by Irr(U) is invertible in Z.

If U =1, is formed by only one block then we say that B is a basic set for the block
B,. A

IThe answer is known to be positive for p-soluble groups, for finite groups of Lie type in the non-
defining characteristics under some additional hypotheses, for the finite general linear groups GL;(g),
GL3(g) and GL4(g) in the defining characteristic, and also for the symmetric group S,,. See [BG10, §1]
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A p-basic set for IF,3,, is a p-basic set for the union of all the p-blocks of IF,S,,.

Definition 4.2.2. Let I' = {y | ¥ + (n — wp) is a p-core} be some set of p-cores. Let
U = Uyer By be the union of the corresponding blocks of IF,5,,. A p-unitriangular
basic set (UBS) (or unitriangular basic set) for U is a set B C U such that the matrix
formed by the rows of D, , labelled by B and columns labelled by Irr(U) has wedge
shape. Formally, a UBS for U is the datum of a triplet (B, <, W) where BC U ,<isa
total order defined on U and W is a bijection

WV :B—Irr(U)
satisfying:
(1) for all y € B, we have d,y(,) =1, and
(2) forall D elrr(U)and A e U, if dp # 0 then A < W~1(D).

Equivalently: the matrix formed from the rows of D, , labelled by B and columns
labelled by Irr(U) has wedge shape.
If U =1, is formed by only one block then we say that B is a UBS for the block
B,. A
)4

A UBS for IF,S,, is a UBS for the union of all the p-blocks of IF,S,,.
Example 4.2.3. Any UBS (U, <, V) for IFpSn restricts to a UBS (Uy, <y, ‘Py) for any

p-block B, of IF,S,,. For example:
Denote Reg,,(13,) the following subset of 13, :

Reg,(B,) :=Reg,(n)N 1D,

Then Reg,(13,) together with the lexicographic order of partitions on 15, and the
mapping A - D*, from Regp(EV) to Irr,(,) is a UBS for the block 13,,. A

Having defined the notion of UBS for a block, or union of blocks, we recall that
our initial motivation (see discussion after Example 4.1.6) is the quest for an UBS
for a union of p-blocks of S,, satisfying conditions (A) and (B) (with the motivation
that such a SUBS would allow a natural parametrization for certain irreducible IF,A,,-
modules in that union of blocks). With this in mind we make the following two defi-
nitions.

Definition 4.2.4. For a p-block 1, of IF,S,, we call its conjugate block the block 1,
consisting of the partitions of n with p-core y’. If y = )/, then B3, = 15, and we say
that 1, is a self-conjugate block. A

Example 4.2.5. The block of [F5Sg associated to the 5-core 7 = (3) is
B, ={(8), (4%), (3%,1%), (3,2,1%), (3,1%)).

Its conjugate block is the block 1, associated to the 5-core 7’ = (13), whose partitions
are all the conjugates of partitions in B,:

By ={(6,1%), (5,2,1), (4,2%), (2*), (1%)).



4.3. A SUBS for blocks of odd weight or not self-conjugate

The block of FsSg associated to the 5-core ¥ = (2,1) is a self-conjugate block since
r=v’
B, ={(7,1), (5,3), (3%2), (2°,1%), (2,1°)).

A

Definition 4.2.6. A UBS (B, <, V) for a union U of blocks of F,5,, is said to be stable
or a stable unitriangular basic set (SUBS) if the following two conditions hold:

(A) Bis stable for conjugation: If A € B, then A’ € U.

(B) The only self-conjugate partitions in U are p-BG-partitions: If A = A’ € U, then
A€ BGj.
p

If U =1, and B, is self-conjugate, we say that B is a SUBS for the block 15,,. A
As mentioned in the discussion after Example 4.1.6, IFPSn does not have a SUBS,

that is, there is not a SUBS for the union (Jy i 4 p-plock ©» Of all p-blocks of IF,S,,.

4.3 A SUBS for blocks of odd weight or not self-conjugate

Given that there is not always a SUBS for |F,S,, it is interesting to have a SUBS for

some unions of blocks. By the following proposition, which has been adapted to our

notation, this question is already solved for self-conjugate blocks of odd weight and
for 1, UD,  where y is not self-conjugate.

Proposition 4.3.1 ([BGJ20, Theorem 38]). Let y + (n—wp) be a p-core. Let B, be the
corresponding block of IF,S,,. Consider the following subset of 13, UD,,/

Unp = (A €Reg, (1)) [ m,(A) <A} U 1| A €Reg,(1B,) and m, (1) < A)
L {A €Reg, (D)) | mp(A) = AL,

where m, denotes the Mullineux map. If w is odd or if 'y is not self-conjugate, then
there exists an order <, on 13, UL, and a bijection \V), : U,Z/,p — Irr(B, UDB,,) such that
(Uhp, <y, W) is a SUBS for B, UD,,.

We make some comments on this proposition. For this, let us define a total order
on Par(n) by setting A < p if:

e )\ = 78
corA=p'and u<y’,
¢ or if Max<(A, A') < Max<(p, i),

where < denotes the lexicographic order on partitions. We have the following
result.
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Proposition 4.3.2 ([BGJ20, Proposition 33]). Let

Uy,p :={A €Reg,(n) | m,(1) <A} U (AM]Ae Reg,, (1) and m(1) < A}
L{A e Reg,(n) | m,(A) = A}

Let
Uﬁ’p = {de Regp(n) | mp(A) <A},
U,f,p = {M]Ae Regp(n) and m,(A) <A}, and
U,?,p = {de Regp(n) | m,(A) = AL

And let \V be the bijection defined as:
v: U, — Ir(ES,)

D* ifAeU,, U Uy,
D™ if A e U2,

Then (U,,p, <, V) is a unitriangular basic set (UBS) for IF,S,,.

In general, U,,, is not a SUBS for IF,S,, since it contains the self-Mullineux par-
titions which could fail to verify properties (A) or (B) in Definition 4.2.6. However,
since the restriction U, , N B, of U, , to each block results into a UBS (see Example
4.2.3), we can still wonder for which unions of blocks such restriction results in a
SUBS for the block. Proposition 4.3.1 answers to this by giving a sufficient condition.

The reason why the restriction of the UBS U, , to self-conjugate blocks of odd
weight or blocks which are not self-conjugate is that, for such blocks, the restriction
of U,f"p to the block is empty: The block does not contain self-Mullineux partitions.
Let us see why.

First for blocks which are not self-conjugate:

Lemma 4.3.3. Let y + (n—pw) a p-core such that y # y’. Let 13, be the corresponding
block of F,S,. Then 1, does not contain self-Mullineux partitions. Consequently, the
UBS which comes from the restriction of the UBS U, , for IE,S,, (from Proposition 4.3.2) to
B, U, is a SUBS for this union of p-blocks.

Proof. From [Mul79b], we know that the p-core of a partition A and that of its im-
age my(A) under the Mullineux map, are conjugates. This says in particular that
self-Mullineux partitions only occur in self-conjugate blocks. Then, if B, is not a self-
conjugate block, the set U, , N (D, UB, ) is a SUBS, by restricting the total order <
on Par(n) to B, U, . Indeed, this restriction does not contain any self-Mullineux
partitions (any partition from U;ip), or any self-conjugate partition, and then by con-
struction of U, ,, it satisfies conditions (A) and (B) in Definition 4.2.6. O

Denote by Mj(y) and by BG () the set of self-Mullineux partitions and p-BG-
partitions in 13,,.

Proposition 4.3.4 ([BG10, Proposition 6.1]). [Mp(y)|=BGp(y)I.



4.4. About blocks of weight 1

Now, the following lemma shows why self-conjugate blocks of odd weight do not
have any self-Mullineux partitions. It also contains a known fact about the number of
self-Mullineux partitions in a block of even weight. A combinatorial proof of this fact
can be found in [BO98, Theorem 3.5].

Lemma 4.3.5. Let y + (n—pw) be a self-conjugate p-core. Let 13, be the corresponding
block of F,S,,. Then, the set of self-Mullineux partitions in 15, is non-empty if and only if

w is even. In this case, there are as many self-Mullineux partitions as (%)—multipartitions

of rank 5.

Proof. We know that in a fixed block, any partition is completely determined by its p-
quotient (§1.1.6). From [BG10, Lemma 3.4], by choosing an appropriate convention,
the p-quotient v, = (v, v, vP))of ve BG;(y), which has rank w, is of the form

(v(l),v(z),...,v(%),(l),v(%)’,...,v(z)’,v(l)'),

where v!)’ is the conjugate partition of v\). Hence the rank, w, of this p-quotient is
even: it is twice the sum of the ranks of v(l),v(z),...,v(%). Also, this p-quotient is
completely determined by these % partitions. Thus, [Mp(y)| is equal to the number
of (’%)—multipartitions of 5.

Conversely, if w is even, each (%)—multipartition of § determines a unique p-
quotient

‘W:
N

(v, v@, ),(Z),v(%)',...,v(z)’,v(l)'),

which corresponds to a p-BG-partition in the block 1,,. O

Proposition 4.3.1 follows from Lemma 4.3.3 and Lemma 4.3.5.

4.4 About blocks of weight 1

In §4.3 we saw that, in particular, for any block 1, of weight 1 of IF,S,, either self-
conjugate or not self-conjugate, there is a SUBS for 13, U1,,. The underlying set of
this SUBS is

Unp= {A € Reg,(13,) | mp(1) <A} U (1] A €Reg,(B,) and my(A) < A). (4.2)

In this section we show that the set U, p arises as a SUBS in a different way, that is,
with a total order defined differently. The interesting part about this newly defined
SUBS for the already well known blocks of weight 1, is that, later in §4.5 we will see
that blocks of weight 2 partition into certain subsets dy, and each of these subsets
behave similarly to weight 1 blocks with respect to the new order, the Mullineux map
and conjugation. We show that the Mullineux map has an easy description for blocks
of weight 1. This description allows to characterize the partitions A in B, such that
mp(/\) < A. Then, we define a total order, different from <y in the restriction of U,Z/,p
from (4.1). This total order makes the corresponding decomposition matrix lower
unitriangular.
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Remark 4.4.1. From the form of the decomposition matrix of blocks of weight 1 (see
4.4), it can be seen that the set U,Zp in (4.2) is the underlying set of any SUBS for a
self-conjugate block of weight 1. Indeed: any SUBS consists in p — 1 partitions of the
p partitions in B,, which contains a unique self-conjugate partition. Then, the only
option for a SUBS to be stable is to choose every partition in 1, but the self-conjugate
one. On the other hand, if the block is not self-conjugate, any choice of p—1 partitions
in B, (together with their conjugates in 1) form a SUBS. In this case, there are p — 1
possible underlying sets for a SUBS.

4.4.1 Combinatorics of partitions with weight 1

Notation for partitions in a block It can be shown that a block 1, of p-weight 1
contains exactly p partitions A0, A1 .. AP~! that can be labelled so that

Aart g (4.3)
where A° is the unique p-singular partition. Moreover, the decomposition numbers

are given as follows. For any partition A +#n and for 1 <i <p -1, we have

(4.4)

1, if Ae{Al, A1y,
dyyi = .
0, otherwise.

See [Mat99, Exercise 5.10]. In general, if rows are organized downwards in decreasing
lexicographic order, the shape of the matrix D, is:

Ap-L yp=2 yp-3 L. A2 Al
AT ~
AP2 1
AP=3 1 1
12 . ... . 1 .
Al . .. . 1 1
pIL . .. . ... . 1

where simple dots are zeros.

Notice that a consequence of the fact that the dominance order totally orders par-
titions in 1,, is that it coincides with the lexicographic order in 15,,. The fact that the
dominance order totally orders the partitions in a block of weight 1 can be proven by
using the abacus display for partitions. Each partition in 1,, is obtained from the aba-
cus display of y by sliding down one bead in some runner, which amounts to adding
a p-hook to the Young diagram of y. For 0 < i < p—1 denote by y' the partition
obtained by sliding down the bead in runner i. From the defined labelling for the
runners (§1.1.7), the corresponding p-hook has leg length (p —1) —i (and arm length
i), see Remark 1.1.7. Hence, this notation for partitions in By agrees with the notation
chosen above in (4.3). Then:

Throughout this section, unless otherwise specified, Ey is a block of p-weight 1,
with its partitions denoted y° < ! <. < P71,




4.4. About blocks of weight 1

Example 4.4.2. Let p=5and y =(2,1) + (8 = 5). There are in total five partitions in
the block 1, of IF;Sg; four of them are 5-regular. The Young diagram and 5-abacus of

Yy is:

4203
Y
|
The five partitions in B,, are
0
iiii ii{i |
4 4
Y
[ ] [ T[]

0

where the shaded nodes correspond to the 5-rim-hook added to y to obtain each par-
tition in the block. We have then

B, ={(2,1°), (2°,1%), (3°,2), (5,3), (7,1)},

where only (2,1°) is 5-singular. The matrix D 5,1), with rows organized downwards in
decreasing lexicographic order is

=

1

[T 111

[6N)

yorr v
yt 7,1 1
y3 53 11
y2 342 | - 1 1
yto23121 . - 1 1
yo 2,16 . . .1

A

Conjugation and the Mullineux map in blocks of weight 1 Since conjugation re-
verses the dominance order on partitions, it is easy to describe in 1, given that
it permutes the blocks 1, and 1,,. Denote 7 = y” and denote partitions in B, as
¥ 97! 9... 97771, When conjugating each partition in 1,,, we obtain all partitions
in ;. We have

P 220 20
Then,

(7/1’)/: T(p—l)—i'

Thus, since conjugation produces the p-core to conjugate, in a diagram it is as follows.
If y is not self-conjugate:
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’ . 0 1 -2 -1

B, : y oy Q- QPR ayb
NN 7

B, : el g qrP 2 a7

Whereas if y is self-conjugate, conjugation does the following in 13,

NN,

')/04')/1 S...ﬂyp_zﬂyp_l

The following proposition asserts that the Mullineux map works similarly, but in
Regp(By) ={yl,...,yP"'}and Regp(BT) ={r!,..., P71}
Proposition 4.4.3. For 1 <i <p—1 we have

—i

m,(y') =17,

where my, is the Mullineux map. In terms of arm-length of hooks : If the p-hook of a weight
1 partition y' has arm-length i, then the arm-length of the p-hook in mp(yi) isp—1i.

Illustrated as in the diagrams above, the proposition says that the Mullineux map
does the following. If y is not self-conjugate

0

B, y? gyl ay?

51...517!’—2517/!7—1

B,  arl 9t <g. qrP? g

If y is self-conjugate:

,}/0 S‘}/l 317/2§1___S]7/p—2ﬂ7/p—1

where the highlighted partitions are the p-singular partitions.
Proof. We prove the equivalent statement: for 1 <i < p—1 we have
mp(yp_i) =7

The proof is by induction on i, and using the form of the decomposition matrix D,,
(or D) of the block B, (or 1), described in (4.4).

Let i = 1. We show that mp(yp’l) = 1!, We know that dypfl'ypfl =1, from the usual
UBS Reg,(15,). From Proposition 4.6.2, we have that dyp-1 yp-1 = d(yp-l),mp<yp_1). But



4.4. About blocks of weight 1

()/P—l)’ =179, So that dT(’mp(Vp_l

non-zero entry, in the column indexed by the simple module D"'. Hence

) = 1. Now, from (4.4), the row 79 of D, has exactly one

mp(Vp_l) =7’

Let 2 <i < p -2, and suppose that mp(y/p‘i) = 7', We show that mp(yp‘i‘l) = ¢li+]),
From (4.4), we know that dyp—i—lyp—i—l = 1. Now, from Proposition 4.6.2, dyp—i—l)/p—i—l =
d(yp—i—l)/mp(yp—ifl). Since (yp—i—l)’ = 7!, we have that dTimp(yp—i—l) = 1. But the only

non-zero entries in row 7’ correspond to the columns 7'*! and 7/, then mp(yp”’l) €

7i+1 11}, But, by the induction hypothesis ©! = m,(»P~?). Hence, since the Mullineux
y yp p\V

map is a bijection, mp(yp‘i‘l) = 7itl,

The assertion about the arm-lengths of hooks is justified by Remark 1.1.7. ]

4.4.2 SUBS for blocks of weight 1

Having in mind that we will define a SUBS for 1, U 13, with underlying set
Unp = (A €Reg,(B,) [m,y(A) <A} U {A|Ae Reg,(B,) and my(1) <A}, (4.5)

where y  n—p, with the preceding description of the combinatorics and the Mullineux
map in B,, we are able to characterize the partitions A € 13, such that m,(1) < A,
where < is the lexicographic order.

Proposition 4.4.4. With the same notations, the partitions A in 13,, such that my(1) < A
are exactly

NC I Sy
Proof. 1f y is self-conjugate, it is straightforward from Proposition 4.4.3: Since 13, U
B, = 157, which is equal to the list 70,..., 7P~ This list is organized increasingly
following the lexicographic order, then the second half of the list is formed by the
partitions A such that m, (1) < A.

Suppose that y is not self-conjugate. Let 1 <i<p-1. If mp(yi) < y', then, for
everyi <j<p-1, wehave mp(yj) < /. This holds because ¥’ < / and, on the other
hand mp(yi) = 7P~ and mp(yf) = 7P7J, so that mp(yj) < mp()/i). We are saying that
any partition A in 13, with m,(A) < A, forces every partition in the block, greater than
A, to have that same property.

Now, since U is a UBS for 13,,, the number of partitions A such that m,(1) <A is
the same for every block of weight 1. In particular 1, and 13;. On the other hand, a
SUBS for 1, U, contains 2(p — 1) partitions. Where (p—1) of this partitions have the

property m,(A) < A. Then there must be (%) partition having such property in B,,
(and in B;). This, together with the previous paragraph show that such partitions are
precisely

P, ) e,

in By. O

We now set the total order and bijection for the SUBS for 1, U 13;. Let A be the
following subset of 1, U 1:

A={1eDB, |m,(1)<A).
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Denote partitions in A as A1, A%,..., A" in a way such that A! < A2 < ... < A", where
< is the lexicographic order on partitions (the partitions A’ and the number r are
completely described by Proposition 4.4.4 and depend on whether y is self-conjugate
or not). Define the following total order < in U,Z,p

AT A s s A (7Y s (ALY s (ALY

Extend this total order to a total order, equally denoted, in 1, U3, such that every

partition in (1, U13;) \ U is less than every partition in U,z/,p.
Define the following bijection.

W U,Z/'p — I, (B, UDB,)

Y A if AeA,
—
m,(1’) otherwise.

Proposition 4.4.5. The total order <in 15, U1, together with the bijection \V and the set
Uy p, form a SUBS for B, U B,.

Proof. We show that the submatrix of D,,, with rows indexed by Uy », and columns
indexed by Irr, (13, U1,) has wedge shape. Organise the rows and columns of such
submatrix as follows:

b Al my(A) - mp(/\l)
/\r
D, D,
/\1
(A
* % % D3
(A1)

The sub-matrix Dy is lower unitriangular. Indeed, from Proposition 4.4.4, the
partitions A’,..., A! are p-regular. Hence, on one hand d )i = 1 for every 1 <i <r. On
the other hand if d,i); # 0 for some 1 <i,j <r, then /\]- < A;, and, from the definition of
<, we have A; < A; as well. This shows that D is lower unitriangular. Now, D3 = Dy,
from Proposition 4.6.2. Then, D3 is lower unitriangular.

We claim that D, = (0),,. Indeed, suppose that d/\imp(/\j) #0 forsome 1 <i,j<r

and that A’ = y¥ for some % <k < p-1. We know that row y* has only two non-zero

entries (one, if k = p—1), one in column y* = A1, and the other in column y**!. But
ykel 2 m, (M) for every 1 < j <r. Indeed, if y is self-conjugate, ykel = mp(ypfkfl),
by 4.4.3. Butp-k-1< ?, then yP7%~1 ¢ A. A similar reasoning is done if y is not
self-conjugate. Hence D, = (0),,, and the submatrix with rows indexed by U is lower
unitriangular.
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4.5 Blocks of weight 2

With SUBS in hand for non self-conjugate blocks or blocks of odd weight, the next
step is to study in detail self-conjugate blocks of weight 2. It is the subject of this
section.

In this section y is a p-core and 1B, is a block with self-conjugate p-core y and
p-weight 2.

In [Ric96], Richards studied blocks of weight 2, in particular the combinatorics
of partitions in such blocks and he gave a complete description of the decomposition
numbers. In this section we recall some of his definitions and results which we use.
Within his definitions there is an object associated to a block called pyramid, it will be
one of the main objects in this section. We also use notations from [Fay], where Fayers
presents an efficient way to label simple modules.

Remark 4.5.1. Some of the following results and affirmations are still valid if y is not
self-conjugate. A

4.5.1 Combinatorics and notations for partitions in blocks of weight 2
Pyramids

From here we always use the labelling of runners in the abacus as defined in §1.1.7.

Let y be a p-core. Consider the abacus display for y. Let pg <p; <... <p,_; be the
positions of the lower beads as in §1.1.7. The pyramid of y is a triangular array (;;);;
of 0s and 1s, defined as follows: for 0 <i <j<p—1let

o 1 ifpj—pi<p,
5= 0 ifp;—p;>p.

We organise these numbers in a diagram as follows

row
p-1 0Vp-1

2 072 173 o p=3Yp-1

1 071 172 V3 p-2Vp-1

0 070 171 171 p-1Vp-1

(4.6)

For short, we write ;0; if ;; = 0 and ;1 if ;; = 1. The definition of the pyramid
can be extended for convenience by allowing i and j to be any integers: if i > j, then
iyj = 1. Otherwise, if i <0 or j > p we define ;; = 0. In the pyramid diagram, that
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means that the outside upper left and upper right is filled with Os and the outside
lower part is filled with 1s. For 0 <k < p—1, we call the k-th row of the pyramid as the
set or entries ;y; such that j —i = k. The apex of the pyramid is the entry ¢y,_;.

Example 4.5.2. Let p =5 and the 5-core y =(2,2). The 5-abacus for y is

3 4 2 0 1

b b

The positions of the lower beads in each runner are 11,10,7, 3, and 4. Then, organised
increasingly, (po, p1,02,P3,P4) = (3,4,7,10,11), so that the labelling of the runners is
3,4,2,0,1 from left to right. The pyramid for y is

004
003 104
ol2 103 21y
oly 112 213 31y
olo 11 21 3l3 4ly

A

The definition of the pyramid implies that if an entry is 1, then the two entries
just below are 1 as well. Hence, below a 1 there is a whole triangle or pyramid of 1s.
Hence if an entry is 0, there are only 0s above it.

Remark 4.5.3. Pyramids are originally defined for p-blocks (p-cores) of any weight.
Two different pyramids correspond to different p-cores. But two different p-cores can
have the same pyramid. However, there is an equivalence relation that can be defined
in the set of p-cores, for which the equivalences classes are certain (Scopes) families of
p-cores. Two blocks have the same pyramid if and only if they are Scopes-equivalent
([Ric96, Proposition 3.3]).

Moreover, two blocks corresponding to partitions of p-weight w with p-cores in
the same family have essentially the same decomposition numbers. See [Sco95] and
[Ric96, §3]. A

Notation for partitions in block of weight 2

We recall a notation introduced by Fayers [Fay], for partitions in 13,,. Since B, is of
weight 2, a partition A in 13,, is obtained from the abacus of by moving twice a bead
down one position. This can be done in three different ways

* The lowest bead on each of the runners i and j, with i < j, is moved one position
down. In which case A is denoted (i, j).
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* The lowest bead on runner i is moved down two positions. In this case A is
denoted (i).

* The lowest bead on runner i is moved down one position and the next bead
above it is moved down one position. In this case A is denoted (i?).

So that every partition in 13, corresponds to exactly one of (i, j) for 0 <i <j<p-1
or (i) or (i?) for 0 <i < p—1. We refer to this notation as (-) notation for partitions in
B,.

Remark 4.5.4 (counting partitions). This shows that there is a total of (})+2p = @
partitions in 1,, (in any block of p-weight 2). Which agrees with Theorem 1.4.8: it is
equal to the number of p-partitions of w = 2. A

Remark 4.5.5. The (-) notation is also well defined in blocks which are not self-
conjugate.

Conjugation in the abacus and notation for self-conjugate partitions

In order to characterize self-conjugate partitions in 13, in terms of (-) notation, let us
study the form of the abacus of y.

Let us refer to the following transformation of a runner as reversing: reflecting the
runner with respect to a horizontal axis (turning it upside down), and transforming
the beads into empty spaces and viceversa.

Since p is odd, any p-abacus has a runner which is in the middle, we refer to this
runner as the middle runner. For any other runner, we can associate what we call its
opposite runner which is the different runner equally spaced to the middle runner.

Now, conjugation of partitions can be done in the abacus in two steps: first we
switch each runner with its opposite runner, and then we reverse all runners simulta-
neously (with respect to a same horizontal axis). Thus, the abacus of a self-conjugate
p-core is such that the middle runner is its own reverse and opposite runners are mu-
tual reverses. For example, the abacus of the self-conjugate 5-core y = (6,5,3,22,1)

1s
4 1 2 3

¢

1
T
1
T

The chosen labelling for the runners in the abacus has the property that the labels of
two runners opposite to each other, add up to p— 1. Let us see why. Recall the total
order < defined on the set of runners of the abacus (§1.1.7). It is easy to see, following
the discussion in the previous paragraph, that conjugation reverses this order, that is,
if R and S are two runners of the abacus of a p-core such that R< S, and R” and S’
are their images under conjugation, then S’ <R’. So if a runner R has label r, then
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its image R’ under conjugation, has label p —1 —r. In the abacus of a self-conjugate
p-core, this means that the labels (ro,r1,...,7,_1) must satisfy r; =p—1-r,_1_;. See the
example above.

Now, observe that any self-conjugate partition in 13, is obtained from the abacus
of y by sliding down two beads, each one in a runner opposite to the other: First, we
are saying that such a partition belongs to the first kind of partitions described just
before Remark 4.5.5, that is, partitions of the form (i, j). Indeed, being self-conjugate,
the middle runner is equal to its reverse. A runner on which at most two beads have
been moved and which is equal to its reverse is of one of the following forms

but the third option is not possible since it requires more than two movements. The
second option requires only one bead movement, but that means that the second (and
last) movement occurs in a runner different from the middle runner, which would
then not be equal to the reversed opposite runner, since its opposite runner has all of
its beads all the way up. This leaves the first option as the only possibility. Thus, none
of the two bead movement are done in the middle runner; they are done in a pair of
opposite runners. Such a partition is then written (i, j) in the (-) notation, and more
precisely, we have:

Lemma 4.5.6. In (-)-notation, the self-conjugate partitions in 13, are exactly

-1 -1 -1
Vk:<pT—k,pT+k> fOT 1Sk$p—

N

Example 4.5.7. There are exactly two self-conjugate partitions in the 5-block B, ,),
from Example 4.5.2. They are (6,3, 2, 13) =(1,3)and (7,2, 15) =(0,4). A

Notation for p-regular partitions in 15,

For this subsection, y is not necessarily self-conjugate.

In [Fay], Fayers introduced a notation [-] for indexing p-regular partitions in 13,,.
We recall this notation and we slightly modify it for our convenience. Recall that,
any partition in 1, corresponds to one of (i), (i%), or {(i,j) for 0 <i<j<p-1and
0 <i<p-1. Now, some of these partitions are p-regular, and this depends on . Let
(i7j)ij be the pyramid of 13,,. For 0 <i <j <p withi <p-1, define
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<Z+1> 1f1:]ar1d i+10i+21
<i+1,i+2> 1f1=]ar1d i+11i+21
o <l+1,]> 1f1¢]and i+10j1

L= . s
7] (%) if i # jand j;11; and ;0; ,
<Z> 1f1¢]and11] and 1'0]'+1,

<i,j+1> ifi:tjandiljﬂ.
From the abacus and the information encoded in the pyramid, it is easy to see

that each p-regular partition corresponds to exactly one of [i,j] for 0 <i <j <p and
i <p—1. We refer to this notation for p-regular partitions in 13,, as [-]-notation.

Remark 4.5.8 (counting partitions). This shows that there is a total of (pgl) +2(p-1)=

w p-regular partitions partitions in 1, (in any block of p-weight 2). Which

agrees with Theorem 1.4.9: it is equal to the number of (p—1)-partitionsof w=2. A

Remark 4.5.9. If [-|F denotes Fayers’ labelling for p-regular partitions as originally
defined in [Fay], then
il [i+1)f ifi=jand,
i,j]:=
7 [i+1,j]f otherwise.
A

Notice that p-regular partitions are in bijection with the set of all but one entry in
(iyj) by making
Regg,(ﬁy) (i)
[%,7] — iV
for 0<i<j<pandi<p-1. The reason for using [-]-notation (and shifting the
original definition) is the simple description of this correspondence. There is only
the entry ,_1y,_1, the last entry to the right of row 0 in the pyramid, which is not
associated to a p-regular partition.

(4.7)

Example 4.5.10. Recall the pyramid for the 5-block 1, ,) of IF55;4, shown in Example
4.5.2. The 5-regular partitions in B, , are

Reg,(B,2) = {(12,2), (7%), (6,4?), (3%,1%), (11,3), (7,4,3), (6,3%,1%), (5,3%,1%),
(33,2,1%), (8,3%), (7,3%,1), (6,3,2,1%), (4,3%,1%), (7,22,1%)}.
In [-]-notation, in the same order:

Reg4(B(2,2)) = {|_31 3Jr |_2’ 2Jr fl,le |_0, 0.]} |_3;4J; |—2' 3J; [-113J: [-LZJ:
[0,1], [2,4), [1,4],10,3], 0,2],70,4]}.

4.5.2 Richards’ d map and the Mullineux map in the pyramid

In this section we explore in detail the correspondence (4.7) between p-regular par-
titions in 13, and entries in the pyramid. We will see how these partitions are dis-
tributed in the pyramid: in which positions are the self-Mullineux partitions and what
says the position in the pyramid with respect to the dominance order.
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Richards’ d map

In [Ric96], Richards gives an explicit description of decomposition numbers for blocks
of weight 2. For this, he defines a value dA associated to every partition A on such a
block. We recall this definition and some of his results which we use later.

As already noted, the core y of any partition A in B, is obtained by succesive
removal of two rim p-hooks. Let d) be the absolute value of the difference of the
leg lengths of the two rim p-hooks. Then 0 < dA = dA" < p—1. The value of dA is
independent of the way in which the rim hooks are removed, see [Ric96, Lemma 4.1].
Then dA is well defined.

Denote by d; the set of partitions in 13, such that their d value is ¢, that is,

de={A+rn|1eB, and JA={(}

We write d,, ¢ if the block needs to be specified and is not clear from the context. We
denote a;eg the subset of p-regular partition in dy, so that a;eg = Reg,(B,) N dp. We

have
p-1
B, = |_| ;.
=0

Example 4.5.11. Following Example 4.5.10, we have, for partitions in the block 13, 5
of IF55141

22,119, (27), (3%,1%), (6,4%), (7%), (12,2)}
23,18),(33,2,13), (5,32,13), (6,3%,12), (7,4,3), (11,3)}
33,1%), (4,32,1%), (6,3,2,13), (7,3%,1), (8,32)}
6,3,1°), (7,22,13)}

(7,2,1°) )

(
(
(
(

{
{
{
{
94—{

Where highlighted partitions are those which are not 5-regular. The rest of the
partitions are 5-regular and, in [-|-notation they are, in the same order:

dy ® =110,0],11,1],12,2,[3,3]}
918 ={[0,1,11,2),11,3,[2,3],[3,4]}
d5° =110,2],10,3],11,4],12,4]}

d5 8 ={[0,4])
A

From the abacus and the pyramid, we have some information about particular
partitions belonging in some of the sets d.

Lemma 4.5.12 ([Ric96, §4, p. 398]). Let 1 <k < EL and let Vg = (‘UT -k, ’%1 + k> be a
self-conjugate partition in 1,,. Then vy € dyp_1 U 82k.

This is easily seen in the abacus. We include a proof for completeness, which is
adapted to notation in this thesis.
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Proof. Consider the abacus of a partition A. Let 1 <r < p—1, and let us call runner-hook
r the hook added to A by moving down one position the last bead in runner r. Recall,
from Remark 1.1.7, that the leg-length of the runner-hook r is the number of beads
between the start and final position of the moved bead. Now, If we take the abacus of
7, the leg-length of the runner-hook r is

p-1-r.

We want to calculate dvg. For this, we calculate the leg lengths of two p-hooks
successively added to y to obtain vi: the partition v, = < -k, pz + k> can be ob-

tained from the abacus of y by first moving down one bead in runner % — k. From

the discussion above the leg-length of this hook is

1 -1
li=p—1- (p2 ):”—+k.

Now, we have a new abacus in which we have to calculate the leg-length of the runner-
hook 231 +k, runner in which we move the second bead. In the previous abacus for y,
this leg length would have been p—1— (T + k) == L _k, but since we already moved
one bead in the abacus for y, we might have added 1 to this leg-length, since we might
have added one bead (the first moved bead) to the set of beads between the start and
final position of the second bead. This happens only if the difference of positions of
the last beads in runners £~ L _kand &1 +k in the abacus for y, is less than p. In other
words, only if (oY (k) = 1. Hence, the leg-length of the runner hook £~ Lt kin
this new abacus is

-1 ' _
lzz—{ ol eyt = b

% -k otherwise.

Then
vy := {2k o (k) V(2 k) = L

2k otherwise.

O]

The family of partitions dj can be partitioned into two sets d{ and d; as follows. A
partition A of weight 2 has either two rim p-hooks or one rim p-hook and one rim 2p-
hook (since the p-weight is also equal to the number of rim hooks of length divisible
by p). In the first case, Richards showed that the leg lengths of the rim p-hooks are
consecutive integers. Define A to be in d|| or d, following

. Aedf if thelarger leg is of even length,
two rim p-hooks

Aed, otherwise.

A € dg has o

if the leg length of the rim 2p-hook

one rim p-hook and Aed; is =0 or 3 mod 4,

one rim 2p-hook

Aed; otherwise.
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Richards proved the following

Proposition 4.5.13 ([Ric96, Lemma 4.2 and 4.3]). For 0 <i < p —1, the set dy is totally
ordered by 9. Moreover the partitions of 15, which are p-singular are precisely: the smallest
partition on each d¢ for 0 <€ < p —1 and the smallest partition on each of d§ and d.

Notice the resemblence of the combinatorics of partitions in a set d, with that of
partitions in weight 1 blocks shown in §4.4.1.

Remark 4.5.14. Then, there are exactly (p—1)+2 = p+1 p-singular partitions in 1,, (in
any block of p-weight 2). Which agrees with the counting of partitions and p-regular
partitions in B, in Remark 4.5.4 and Remark 4.5.8. A

Richards’s d-function on p-regular partitions can be expressed in the [-] notation.
Direct analysis with the abacus of y and its relation with the leg-lengths of p-hooks
of partitions in 1,, gives:

Proposition 4.5.15 ([Fay, Proposition 4.1]). Let (;y;);; be the pyramid of y. For 0 <i <
j<pandi<p-1
8[1,}] Zj—i— 1 +Z")/]‘.

With such an expression for d[i, j |, together with the correspondence (4.7), we can
say precisely to which positions in the pyramid correspond the partitions a;‘*g for a
given £. This helps for graphically visualizing a;eg in the pyramid:

Corollary 4.5.16. For 1 <[ < p -1, the set ajfg is in correspondence with the set of “1”
entries in the I-th row on the pyramid and the “0” entries in the (£ + 1)-th row. The set ageg
corresponds to the first p—1 entries on the 0-th row (all entries in the 0-th row are “1”) and

the “0” entries in the 1-st row.

Proof. Let 1 <£ <p-1,and let A € Bzeg. Write A as A =[i,j] with 0 <i <j <p and
i<p-1.

Suppose that i <j. If ;0;, then from Proposition 4.5.15, j—i =€+ 1. So that ;; =0
is in row £ + 1. Now, if ;1; then from Proposition 4.5.15, j —i = £. So that ;; = 1 is in
row £.

If i = j, by definition of the pyramid, ;1; and this entry on the 0-th row. On the
other hand, Proposition 4.5.15 implies that £ = 0. And since 0 <i < p —1, this entry is
one of the first p — 1 entries in 0-th row.

O

Example 4.5.17. We continue Example 4.5.11. Associating p-regular partitions in
1(2,) with their corresponding entries in the pyramid, we have that, in the pyramid

of B(,,2), the subsets QZeg are distributed as follows:

03 104

wm
ol 103 21y
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Conjugation and the Mullineux map in the sets d,

We characterize self-conjugate and self-Mullineux partitions in a given set dy, by
studying how these involutions behave with respect to <.

Recall, from Proposition 4.5.13 that the sets d, are totally ordered by <. Let 1 <
¢ < p-1 and denote k; :=|d/|. Denote the partitions in d, as

Ay ﬂAzﬂ“'ﬂAk€_1 Sl/\k(,x

where the highlighted partition is the unique p-singular partition. Now, from the fact
that dA = d)’ for any partition A, and that conjugation reverses the dominance order
([Mac79,1.1.11]), we have A} = A, _;,; for any 1 <i < k,. Graphically, conjugation does
the following in dy for 1 <{ <p-1:

e N

Ap2dy @ ady g Ay,

For ¢ = 0 it is easy to see that, since p is odd, if A € d§ then A’ € d, that is, conjuga-
tion changes the sign of partitions in dy. Then, k; is even. Let kg = 2j, and denote
partitions in d as

+ + + + +
Denote partitions in dj, as
T 97913447, 97,

where the highlighted partitions are the only p-singular partitions in dy. Then, since
conjugation changes the sign and reverses the dominance order () = 7j, —i + 1.
Graphically, conjugation does the following in dy:

47 + + +
Al < Az < < A]—l < A]O

i

Tl <T2 <"'<Tj_1<Tjo

Let us now see that the Mullineux map behaves in a similar way, but within Qfg.
Recall that, for a p-regular partition p, the p-cores of y and m,(u) are conjugates.
Since 1, is self-conjugate, then for any u € Reg,(15,) the partition m, () is also in
Reg, (15, ). Moreover, Richards showed that (m,,())" is the biggest partition (for <) in
B, such that (m,(¢))’ < p and d(m,(p))’ = dp, and if du = 0, it has the same sign as
([Ric96, Th. 4.4 and Prop. 2.12]). Then, for 2 <i < k, we have that (m,(1;))" = A;_;.
So that m,(1;) = Ay = Ag,—(i-1)+1 = A(k,—i+1)+1- Graphically, the Mullineux map does
the following in dy for 1 <{ <p-1:

m

SN

A <Ay edze e ady g <Ay,
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For I = 0, and for 2 < i < jy we have that (m,(A]))" = A[_,. So that m,(\]) = (A1) =

T (=11 = Tjgmit1)+1” Graphically, the Mullineux map does the following in dy:

+ + + + +
Al <Ay <A3 < </\j_1</\]-0

n
m
n

Tl <T2 <T3 4"'<Tj_1 <T]‘0

Remark 4.5.18. Notice the resemblance of the behavior of conjugation and the Mullineux
map in each set dy and in a weight 1 block.

The behavior of these two involutions in the sets d; allows to easily deduce in
which sets lie their fixed points, that is, the self-conjugate and the self-Mullineux
partitions: It all depends on the parities of k; and jj, for 1 < ¢ < p -1 and jy. The
conclusion is summarized in the following lemma.

Lemma 4.5.19. The set dyy does not contain any self-conjugate or self-Mullineux partition
and |dy| is even. For 1 < € < p —1, the set dg contains either exactly one self-conjugate
partition or one self-Mullineux partition: If |d,| is even, it contains one self-Mullineux
partition. If |d¢| is odd, it contains one self-conjugate partition.

Proof. From the discussion above describing conjugation in d; and the Mullineux map
in a}eg, we see that none of these involutions has fixed points in dy. For € > 1, on the
other hand, we can see that if k, = |d/| is even, then conjugation defines pairs (1, 1)
with A # 1. In this case |82eg| = ky—1is then odd, and the Mullineux map has a unique
fixed point: the partition in the middle of the list A, A3,..., Ak, The contrary occurs
when k; is odd. O

Example 4.5.20. We continue Example 4.5.17 to illustrate this lemma. The block B,
contains exactly two self-conjugate partitions: (6,3,2,1%) = (1,3) and (7,2,1°) = (0,4);
and two self-Mullineux partitions: (6,3',12) =[1,3] and (7,2%,13%) = [0,4]. The car-
dinalities of dy, d,, d; and d, are respectively 6, 5, 2 and 1. The two self-conjugate
partitions are respectively in d, and d4 and the two self-Mullineux partitions are re-
spectively in d; and ds. A

Dominance order in the pyramid

We study how we can compare p-regular partitions in 13, with respect to < depending
on their positions in the pyramid of y. This allows to improve what we already know
about the distribution of the sets QZeg in the pyramid (Corollary 4.5.16), and to identify
self-Mullineux partitions in the pyramid.

Let (;j);j be the pyramid of . We identify the entry ;; with the corresponding
p-regular partition [7,j]in 1,,.

Proposition 4.5.21. Let 1 <i<j<pandi<p-1. Then[i—-1,j]<[i—1,j+1] and
[i—1,j] Q[i,j]. In the correspondence with the pyramid array, graphically, we have the
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local configuration
[i-1,7+1]
5
[i-1jl
\V
[,

Proof. In [Ric96], Richards introduces a notation for partitions in the block, which
depends on the entries of the pyramid. With this notation he obtains a complete
description of the dominance order < in the block (in the appendix §4.7 for Chapter
4 we recall this notation). Every partition in the block corresponds to a pair written
{s,t} for some 0 <s <t <2p. Lemma [Ric96, Lemma 4.4] says

{s,t}2{s’,t’} ifandonlyif s<s’ and t<t. (4.8)

We translate Richards’ notation in the notation [-], and using this, our assertion is
easily verified. O

This proposition implies that the distribution of the sets 8zeg in the pyramid, as
we know it from Corollary 4.5.16, does not only correspond to some entries of the
pyramid as a set, but this distribution also agrees with the dominance order, which
then is increasing from left to right in the pyramid.

Furthermore, in our case, since y is self-conjugate then, by construction the pyra-
mid is horizontally symmetrical. Hence, each set a;fg occurs in symmetrical positions
(is equally distributed with respect to the middle of the pyramid). Then, any self-
Mullineux partition y € dy (some 1 <€ < p —1), being in the middle of the list

Ay,

occurs in the middle of the pyramid. And any entry in the middle of the pyramid cor-
responds, reciprocally to a self-Mullineux partition. We state this fact in the following
corollary

Corollary 4.5.22. Let (;y;)j be the pyramid of y. The self-Mullineux partitions in 13,
correspond exactly to the entries on the middle column of the pyramid, except for the one
on row 0. In [-|-notation, these partition are:

,uk:[p%l—k,p%l+kJ for 1Sk£%.

Moreover py € do_1 U dpi.

Proof. There is nothing to prove for the first affirmation: Indeed, the indices i = %1 -k

and j = % —kforl1<k< p%l are those exactly in the middle column of the pyramid

by construction. Let us see that py € dx_1 U dyy. Since py = [% -k, % + kJ, then py is

reg

: p-1 p-1 — —

in row (T + k)—rST - ) =2k. If %+k7’%—k =0, then by Corollary 4.5.16, py € 82,(_1,
otherwise iy € azkg. O
Example 4.5.23. From the last two results, we can add new information to the dia-

gram in Example 4.5.17, namely (some) dominance order relations, and we can also
highlight the entries corresponding to the self-Mullineux partitions in 1, 5):
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. sed f-Mullineux

Bijection between self-conjugate and self-Mullineux partitions

Here we state the natural correspondance between self-conjugate and self-Mullineux
partitions in the block B, given by the chosen notations.

A direct consequence of Lemmas 4.5.6, 4.5.12, 4.5.19 and Corollary 4.5.22 is the
following:

Corollary 4.5.24. There is a natural one-to-one correspondence between the set of self-
conjugate partitions and the set of self-Mullineux partitions in 13,, given by, for 1 <k < %,

Vk=<%—k,%+k> — l’lk:"%_k’%-l'kf

The partitions py and vy are the unique self-Mullineux and self-conjugate partitions, re-
spectively, in the set dp;_1 U dyy.

Example 4.5.25. We continue Example 4.5.20. We have {vy, y1} C d1 U d,, where v,
(1,3y=(6,3,2,13) and p; =[1,3] = (6,3',12); and {v,, yo} C d3 U dy, where v, = (0, 4)
(7,2,1°) and py =[0,4] = (7,22,13). A

Remark 4.5.26. In Chapter 3 there is a bijection BG, «— M between the sets of p-
BG-partitions of n and the set of p-self-Mullineux partitions of n. Recall that [M} N
Bl = [BG, N B for a p-block 1 (Proposition 4.3.4); the number of p-self-Mullineux
partitions in a p-block is equal to the number of p-BG-partitions in the p-block. Now,
in a block of weight 2, the set of p-BG-partitions is equal to the set of self-conjugate
partitions. On the other hand, from Proposition 3.3.3 the bijection in Chapter 3 re-
stricts to each block, that is, preserves the p-core of a partition. Hence, a question
is whether this bijection coincides with the correspondence just defined in Corol-
lary 4.5.24. Tests, which give a positive answer, have been made in GAP ([ST97])
for n up to 56 (p odd < n). A

Two lemmas

We state two technical lemmas which are important for the proof of the main theorem
(Theorem 4.6.1).

We know “more or less” to which sets dy belong the self-conjugate and self-Mu-
llineux partitions in B,; indeed, for 1 < £ < %, we know that the pair of partitions
pr and v are in dx_1 U dy, see Corollary 4.5.24. The information encoded in the
pyramid of the block 15, allows us to be more precise. For this we state the following
lemma.
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Consider the set p1, piy, ..., pp-1 of self-mullineux partitions in 13,. The entries of
2
the pyramid corresponding to partitions P12, Ppl ATE ATE Gk 1= ) withi =2~ L

and j = 5~ —k, for 1 <k < B~ (Corollary 4.5. 22) Such entries are in the mlddle

column of the pyramid. When k runs from 1 to £ T’ these entries run from bottom

to top in the pyramid, and because of the definition and properties of the pyramid,

the sequence ¢1,%»,...,9p-1 is of one the forms 1,1,...,1,0,0,...,0, or 1,1,...,1, or else
2

0,0,...,0.

Definition 4.5.27. In the notation from the preceding paragraph, define 6 = 6(y) as

s_ 10 if g =0forall 1 <k<Z21,
max {k|gx =1} otherwise.

Lemma 4.5.28. Fork=1,..., 2 we have:
o Ifk <96, then py € dy and vy € dox_1;

* if k>0, then py € 0ak_1 and vy € dyy.

In a table:

V%l gp_l

I"% € p—2

Vsi1 € dosi)

Hs+1 € a2(5+1)—1
Hs € dos
Vs € dysg
H2 € dy
V) S 83
M € d;
V1 c 91

Example 4.5.29. We continue Example 4.5.25. The pyramid is in Example 4.5.23. We
see that the entries in the middle column corresponding to self-Mullineux partitions
are all equal to 0. Hence, here 6 = 0, and we have indeed that y; € d; and y; € d3, as
this lemma implies. A

Proof of Lemma 4.5.28. The entries g1,¢»,...,9p-1 are exactly those in the middle col-
2

umn of the pyramid (except that on row 0 which corresponds to a p-regular partition
in dy), from bottom to top and they correspond to the self-Mullineux partitions on the
block. These entries are respectively in rows 2,4,6,...,p— 1.

Let 1 <k <EZ-.If k>0, then g = 0. Hence Wthh is in row 2k, belongs to dy;_1,
by Corollary 4. 5 16. Thus, for k > 0, we have vy € dyi. If k <9, then g = 1, and since
i is in row 2k we know that py € dy. Then, for k < 6 we have vy € doi_;. O
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The following is a technical lemma concerning the dominance order in Reg,(1,)
with respect to positions in the pyramid. This is an adaptation of [Ric96, Lemma 4.4],
which is a characterisation of the dominance order in the block to our notation for
partitions. This lemma is a key fact in the proof of Theorem 4.6.1.

Let (;y;)ij be the pyramid of the p-core y. For two entries ;y; and ), we say that
iyj is to the left of ) (or, equivalently ; is to the right of ;y;) if ;; is in a column of
the pyramid to the left of the column of ;. In terms of indices, this is equivalent to
i+j<k+l

Lemma 4.5.30 ([Ric96, Lemma 4.4]). Let A, T € Regp(By) such that ) is to the left of t.
Then, A < T or A and T are not comparable for the dominance order; written equivalently
as T4\

Proof. By definition the pyramid of y has 2p—1 columns. Suppose that A is in column
c and 7 is in column ¢ + N. The proof is by induction on N. The crucial part is the
base case. Suppose that N =1, and let A =[i,j] in [-|-notation. Making correspond
positions in the pyramid to p-regular partitions the local configuration in column c+1
is as follows:

c c+1

[i—2,'j+3j

[i-1,7+2]

: [i,j+1]
A=Tij]

: [i+1,f]

[i+2,j-1]

[i+3,j—-2]

Now, if t =[i,j+1]or T =[i+1,]] (highlighted in the diagram above), Proposition
4.5.21 says that A < 7, so that 7 4 A. Let us split the rest of the partitions (or entries of
the pyramid) in this column in two sets A and B, where

A={[i-kj+k+1] | k>1},

and
B={[i+k+1,j—k] | k>1},

where k takes values such that partitions in A and B lie in the pyramid. Consider the
two possible cases ;; = 0 or ;; = 1. In the first case, we necessarily have ;7,1 =0, as
well as all the entries in A. In the second case ;,1; = 1, as well as all the entries in B.
In the pyramid, these configurations look as follows:
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Case 1:
c c+1
0
0
: 0
ivj=0

Case 2:

c c+1

ivj=1

*

Let us consider these two cases. In each case, we translate [-|-notation of A and of T
for each partition 7 in column c+1, into {-}-notation to get {s, t} and {s’, '}, respectively
and we will see that T 4 A by noticing that {s’,¢’} < {s,t} or they are not comparable,
using Proposition 4.7.1 in the appendix §4.7. Consider all possible cases for positions
of A and t. We get the following values for A = {s,t} and 7 = {s’,#’}, where k > 1:

Case 1: Case 2:
A T A
s t s’ t’ s t s’ t’
2i+3 2j+1 | 2i-2k+3 2j+2k+3 2i+1 2j+3 | 2i+2k+5 2j-2k+3
2i+2 2j+1 | 2i+2k+5 <2p 2042 2j+2 | 2i+2k+5 <2p
2i4+2k+5 2j-2k+5 204+2k+3 2j-2k+3
2i+2k+5 2j-2k+1 2i-2k+3 2j+2k+3
204+2k+4 2j-2k+1 2i-2k+2 2j+2k+3
2i+2k+3 2j-2k+2 2i-2k+1 2j+2k+4
2i+2k+3 2j-2k+3 2i-2k+1 2j+2k+5

For each of these possible values for s,s’,t,t" we always obtain that s <s’ or t < t/,
then either A < 7 or A and 7 are not comparable for <, by Proposition 4.7.1. That is
T 4 A. This concludes the base case.

For the inductive step, suppose that 7 is in column c+ N, with N > 1. And suppose
that T < 1. Let us see that there is a contradiction. By Proposition 4.5.21, there is a
partition 7 in column c + (N — 1) such that 7 < 7. Since 7 is in column c+ (N — 1), by
induction 7 <4 A. But 7 <7 and v < A imply that 7 < A, a contradiction.

4.6 A SUBS for blocks of weight 2

In this section we will show that the set defined as

Vilpi= (A €Reg,(1B,) | m,(1) <A} U {A'| A €Reg,(1,) and m,(A) < A}
L {1 €Reg,(B)) | A=A},

O]
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is the underlying set of a SUBS for 13, a self-conjugate p-block of weight 2 of IF,S,,.

Denote
V)} = {AeReg, (1)) m,(1) <A,
V;f = V] Ae Regp(By) and my(}) <A}, and
vy o= {de Reg,(13,)| A" = A}.

Then, V,zf = Vj} L V)g L V;, and V,Z p is in one-to-one correspondence with
Regp(By). Indeed, write Regp(By) as

Reg,(1B,) = W) U W2 U W),

where
Wy = {A€Reg,(13,)|m,y(1) <A},
W)% = {my(A)|Ae Regp(lﬁy) and m, (1) < A}, and
W; = {AeReg,(1By) | A =mp(A)}.

Hence, it is straightforward to see that V;} L Vy2 and W;} L W)% are in bijection, and
on the other hand, V; and W; are in bijection since V)f‘ ={v | 1<k< %} and
W; ={u | 1<k< ’%1}. Hence there is a bijection

W,: Vi, — Reg,(B))
A if \e Vv,
A= {my(V) ifAe V],

Ui if)\eV;and)\:kaorsomelSkép%l

’

which restricts to the bijection from Corollary 4.5.24 on the self-conjugate partitions.

We now define a total order in B,. First, label partitions in V)} ={A1, A9, A4},

where t = |V)}|, in such a way that A; > A, >--- > A, in the lexicographic order. Now,
let < be a total order in B, such that

A=A > A > A > > A > v > vy > > Vs

4.9
>V5>V%>V%>"'>V5+2>V5+1, ( )

where the number 0 is as in Definition 4.5.27, and such that for any other partition
AeDB,\ V,Zp, we have A < 7 for every 7 € V,Zp. Having defined the bijection ), and
the total order <, we can now state our main result:

Theorem 4.6.1. The set (V,Zp, <, \I’y) is a stable unitriangular basic set (SUBS) for the block
B,.
v

We state two important facts about decomposition numbers for the proof:

Proposition 4.6.2 (The Mullineux map [Mat99, §6.4 Rule 11]). Let A € Par(n) and py €
Regp(n). Then dy, = d,\/mp(ﬂ), where m, is the Mullineux map.
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Proposition 4.6.3 (Theorem 4.4 [Ric96]). Let p # 2 be a prime. Let y + (n—2p) be a
p-core and 15, the corresponding block of 5,,. Let A € 15, and p € Reg,(B,,). Then dy, =1
if A =por A =my(p) or both m,(p)’ <A< pand dA—du = +1; otherwise d, = 0.

Proof of Theorem 4.6.1. The fact that properties (A) and (B) from Definition 4.2.6, hold
for v,/ n,p are a direct consequence of its definition. Property (A) is true by definition of

the set V) - Property (B) holds because, in a p-block of weight 2, every self-conjugate
partition is a BG-partition. Let us see this. Recall that, under a certain convention
for defining the p-quotient of a partition in a block, if g, (1) = (AW, A2 AP s
the p-quotient of a partition with p-core y then g, ,.(1’) = (AP, Ae=1)7 A(1)7) is the
p-quotient of its conjugate partition A’. The BG-partitions in a p-block are those self-

conjugate partitions v for which the ( ) -th partition in the quotient is the empty
partition. That is, partitions v such that the p-quotient is of the form

Gpy(v) = (V1,012,000 v (P2 @ A7),

In a block of p-weight 2, the quotient gy, (1) of a self-conjugate partition A is a p-
multi-partition of total rank 2. Since A is self-conjugate, g,,, (1) is completely deter-
mined by A A(2) ..,/\(¥ where either (/\(1), /\(2),...,/\(%)) is a multipartition of 1
and A7) =0,0r A =@ forall 1 <i <2 and A7) isa self-conjugate partition of 2.
The second optlon is not possible, then there exists 1 <j < % such that v\/) = (1) and
v =(1)and v() =@ fori #j w1th 1<i < p . Hence A is a BG-partition.

It remains to prove that v, pr<W,)isa unltrlangular basic set for the block b,,.

For this, consider the square matrix 57 formed by the rows of D, indexed by V,Zp,
arranged according to the total order < and columns organized as follows.

A A omy(Ay) o mp(Ay) o psn

Al

V1

x* X %

D¢

Vs+1

We will show that ﬁy is lower unitriangular. We do it by steps: first, for the
square submatrices Dy,...,Dy4, we show that D; = D, is lower unitriangular and that
D, = D3 = (0);x;. We show as well that D5 = (0),,, »-1 . Finally we show that D is lower

2
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unitriangular. Having shown this we will have that (\77,, <,)) is a stable unitriangu-
lar basic set for the block 1,,.

D; and Dy: Since A, is p-regular for 1 <i <t,thend, , =1for1 <i<t. Letl1<i,j<t
By definition of <, if A; > A;, then A; > A; for the lexicographic order. Hence either
Ai 2 Ajor Ajand A; are not comparable for J. By Theorem 1.4.3, d, . = 0. This shows
that D; is lower unitriangular. For 1 <1i,j <t, by Proposition 4.6.2, d/\;mp(/\j) = d)w\,-'
Hence D4 = D, is lower unitriangular.

D,, D3, and Ds5: For studying D,, D3 and D5, notice that we have the following prop-
erty: Let A, 7 € W; such that dA,dt >1and let p W;. Then A 4 pand A 4 mp(T).

We prove this property. Let 1 <1 <p—1. From §4.5.2 we know that, depending on
|8;eg|, the partitions in Q;eg can be listed as either

Tl[>T2l’"'DTrDI’“’mp(Tr)D"'Dmp(T2)‘>mp(Tl)r

or
T >772‘>"">TrD"n'p(Tr)>"'l>'rnp(’l—2)l>'rn'p(r[1)l
reg

where r = lalz |J, m,, is the Mullineux map and y is some self-Mullineux partition.

On the other hand, by Corollary 4.5.16, Corollary 4.5.22 and Proposition 4.5.21,
we know that these partitions are distributed in the pyramid from left to right in
increasing dominance order, horizontally symmetrical and that the self-Mullineux
partitions are in the middle column. These observations allow to identify three zones
in the pyramid with the intersection of | J;5; H;eg with the three subsets W;}, Wyf and
W;dgi Reg,(B,): W; is the left half, Wﬁ is the right half and W; is the column in the
middle:

3

W

X

3
Now, let A, 7 € W)} with dA,dt > 1and let y € W;’. Then p is to the left of A in the
pyramid, and m,(7) is to the left of A. By Lemma 4.5.30, A 4 p and A <« m,(t), which
concludes the proof of this property.

Let us see that Dy, D3 and D5 are matrices of zeros. Let A;,A; € V; = W; for
some 1 <i < f. From the affirmation above, A; ¢ m,(A;). Then, by Theorem 1.4.3,
d/\imp(/\,-) = 0. That is, D, = (0);x;. On the other hand, by Proposition 4.6.2 d/\;_/\]_ =
d/\imp(/\j) =0, so that D3 = Dy, = (0);y;.

Let pyy € Wﬁ, for some 1 < k < %. From the assertion above, A; 4 y;. Then by
Theorem 1.4.3,d,,, = 0. On the other hand, d/\l{yk = d/\imp(#k) =d),, = 0. This shows
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that D5 = (O)

2tx¥;'

Dg: It remains to show that Dg, is lower unitriangular. We first prove that it is

lower triangular. Consider the matrix D¢ defined by taking D4 and ordering rows
as vy, Va,..., v% and columns as pq, yy, ..., y%. The matrix 56 is “almost” lower trian-
gular. For making clear what we mean by “almost”, let us study the precise form of the
matrix, with Proposition 4.6.3 and Lemma 4.5.28 (for clarity see Example 4.6.4 after
this proof). From Proposition 4.6.3, in D,, every entry in the column py is zero except
for rows pg, m,(py)’ = py which are 1, and any A wit~h H S A S py and dA -y = 1,
which is also 1. Now if y € d; then € d;, and for D¢ we are only interested in rows
corresponding to the self-conjugate partitions in 1,. Self-conjugate partitions and
self-Mullineux partitions are never in a same set dj, so that y; is not self-conjugate.
Hence we are only left with looking for partitions A with ;. <A < g and dA-dpy = +1,
among self-conjugate partitions vy, v,,..., Ve Consider the possible two cases: 6 =0
of 6> 1.

If 6 =0, from Lemma 4.5.28, the partitions py, vy, iy, Vo o, Vet belong respec-
tively, in that same order, to sets dy,d,,d3,dy,..., 8@, 8%. Then, the first column of

66, column pq, has possibly a 1 only in row vy, since dv; — dpuy = 1, and the rest of
entries in this column are equal to 0 since dv; —duy =1 for i # 1. For 1 <k < E,
Uk € dak_1 has only two 1; one in row vy_; € dy_, and one in row vy € dy. In this case,
then Dy takes the following form:

w1 p2 ﬂ@ ﬂ%
V1 * *
V) *
Ve-3 * *
2
Vel . *
2

Where “+” is either 0 or 1 (we will see that it is 1) and dots are 0.
If 6 > 1, the partitions vy, p1, Vo, fo, ..., Vs, Uy o1, Vssls---» hp-1, Vp-1 belong respec-
2 2
tively, in that same order, to sets dy,d»,d3, dy,...,dp-3,dp-1. Hence, for a similar rea-
2 2

soning, starting from column ps,, the matrix Dy is of the same form as in the case
0 =0, but columns yj with 1 <k <9, have a 1 in rows v; and vy, q:

i B2 o Me Merl Mos2 o Med
41 * .
V2 * *

Vs *
Vé+1 * *
Vs+2 *
Vp-1 *
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In any of the two cases we can see that the total order

VI >Vy > o >Vs_1 >Vs5>Vp-1 >Vp3 > >Vs5.9>Vs:1,
2

2

which is the order chosen in matrix D¢, makes this matrix lower triangular. It remains
to prove that the entries in the diagonal are 1. That is, for every 1 <k < p%l, we have
to prove that d,, , = 1. For this, we use Tables 1 and 2 in [Ric96], adapted by Fayers

Vi Pk
in [Fay, Proposition 3.1]. Recall that vy = <p%1 -k, % + k> and py = (p%l -k, % + k.
From [Fay, Proposition 3.1], we have in particular thatif py=[i—1,j]and A =(i—1,j)
then d,, = 1, since for y = p; and A = vy we are exactly in that case, then d,,,, = 1.
Hence Dy is lower unitriangular and this concludes the proof of Theorem 4.6.1.

O

Example 4.6.4. Let p = 11, n = 36 and let ¥ be the 11-core y = (7,2,1°). The self-
Mullineux partitions in the block 1, of weight 2 of IFj; S3¢ are

11 =(9,8,6,4,3,2%), uy =(10,8,5,4,24,1), uz =(12,8,4,2°,12),
1y =(12,8,3,25,1%), us =(18,27,1%).

They belong respectively to d,dy, dg,d7,dg. The self-conjugate partitions in 1,
are

vy =(82,6,4,3%,2%), v, =(9,8,5,4,3,23,1), v3 =(10,8,42,2%,1?),
vy =(12,8,25,1%), vs = (18,2,1'9).

They belong respectively to dy, d3, ds, dg, d1o. The matrix 5), is

H1 K2 K3 Ha Ps

V1 1

%) 1 1

V3 . 1 1

V4 . . . 1

Vs . . . . 1

4.7 Appendix for Chapter 4

In this appendix we recall the system of abbreviations given by Richards in [Ric96]
for partitions of p-weight 2.

We fix a p-core y. Consider the abacus configuration for y and let (;y;) be the
corresponding pyramid. Let py < p; <--- <p,_; be the positions of the lowest beads
on each runner (as in 1.1.7). The abacus configuration for a partition of n with p-core
y and p-weight 2 can be obtained from that for y in one of three ways:

(a) Moving down one space the beads at positions p; and p; forsome 0 <i<j<p-1,
or

(b) Moving down one space the beads at positions p; and p;—p for some 0 <i <p-1,
or
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(c) Moving down two spaces the bead at position p; for some 0 <i<p-1.

In the system of abbreviations, each partition is represented by {s, ¢} for some 0 <
s < t < 2p, according to the following rules. For partitions of the type (a) we set
s=2i+1and t = 2j+1. For partitions of the type (b) we set s = 2k and t = 2i+ 1, where
k is the largest such that 0 < k <i and ;_;y; = 0. Finally, for partitions of the type (c)
we set s =2i+1 and t = 2k + 2, where k is the smallest such that i <k <p-1and ;yx.
This system of notations has the following property:

Proposition 4.7.1 ([Ric96, Lemma 4.4]). We have
{s,t}2{s’,t"} ifandonlyif s<s' and t<t.

Hence, the dominance order is easy to describe using this system of notations for
partitions.
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GAP functions

In this appendix we include the code for some functions used when working in this
thesis. The functions are written in GAP 3 [ST97] and they require to load the package
Specht [Mat]. A file selfmuBG.g containing the functions below and a more readable
documentation can be found in the Github repository [Ber21b].

The function EBeta is the bijection from Theorem 4.6.1. EBeta takes an odd prime
p and a p-self-Mullineux partitions and it returns the corresponding p-BG-partition.
The inverse is EBetaInverse. For defining these functions, there is a list of auxiliary
functions.

DiagramPartition:=function (mu)
# Takes a partition mu and returns the set of nodes
# that form the Young diagram of mu.
local d,i,j;
if mu=[] then

return [];
else

d:=[1;

for i in [1..Length(mu)] do

for j in [1..mu[il] do

Add(d, [i,j]);

od;

od;

return Set(d);
fi;
end;

Rim:=function (mu)
# Takes a partition mu and returns the set of nodes
# (i,j) of the rim of mu
local r,c;
r:=[1;
for ¢ in DiagramPartition(mu) do
if not ( [c[1]+1,c[2]+1] in DiagramPartition(mu) ) then
Add(r,c);
fi;
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od;
return Set(r);
end;

OrgRim:=function (mu)
# Takes a partition mu and returns a list of the nodes
# of the rim of the diagram of mu, organized from
# "north-east" to "south-west" of the Young diagram.
local r,i,j;
r:=[1;
if mu=[] then
return [];

else
for i in [1..Length(mu)] do
j:=mulil;
while j > 0 do
if [i,j] in Rim(mu) then
Add(r, [1,31);
fi;
j:= j-1;
od;
od;
fi;
return r;
end;

HookLength:=function(la,i,j)
# Takes a partition la and a node (i,j) in the Young
# diagram of la and returns the hook-length of the
# (i,j)-th hook
local lap,l;
lap:=ConjugatePartition(la);
1:= Length(la);
if i>=1 and i<=1 and j>=1 and j<=lal[i] then
return lal[i]l-j+lap[jl-i+1;

else
Print("the node (",i,",",j,") is not in the
Young diagram of ",la,"\n");

fi;

end;

PartitionDiag:=function(nodes)

# Takes a set of nodes forming a Young diagram and
# returns the associated partition.

local col,n,b,mu,i,j;

mu:=[];

n:= Length(nodes) ;

if nodes=[] then
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return [];
else
i:=1;
col:=[];
while i<=n do
for j in [1..n] do
if [i,j] in nodes then
Add(col,j);
fi;
od;
if col=[] then
return mu;
else
Add (mu,Maximum(col));
fi;
col:=[];
i:=i+1;
od;
return mu;
fi;
end;

DiagBoxRim:=function(mu)
# Takes a self-conjugate partition mu an returns i the
# only diagonal
where (i,i) is the only diagonal node in the rim of mu.
local i;
for i in [1..Length(mu)] do
if [i,i] in Rim(mu) then

return i;

fi;
od;
end;

PRiml:=function(e,mu)
# Set U of the p-rim* of mu.
local n,res,rim,d,i,k,mil,r,1,m,x,b,compte,muprime,

prim,j;
rim:= OrgRim(mu) ;
prim:= [];

m:= DiagBoxRim(mu) ;
d:=Position(rim, [m,m]);
if mu=[] then
return [];
elif Length(rim) <= e then
return rim;
else
i:=1;
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while i <= d do

compte:= e;

j:=1i;

while compte <> 0 do

if j <= Length(rim) then

Add (prim,rim[j1);
compte:= compte - 1;
Jji=j+1;

else

# Add(prim,rim[jl);
return prim;
fi;

od;
k:=j-1;
if j-1 = Length(rim) then
return prim;

elif j-1 >= d then
return prim;

else
while rim[k] [1] = rim[j-1]1[1] do
k:=k + 1;
od;
i:= k;
compte:= e;
fi;
od;
fi;
return prim;
end;

PRim2:=function(l,e)

# Fix the middle segment.
local r,enlever,b,mil,x;
r:= Length(l) mod e;

if r = 0 then

r = e;

fi;
mil:=1{[Length(1)-r+1..Length(1)]1};
x:= mil[1];

enlever:=[];

for b in mil do

if b[2]<x[1] then

Add(enlever,b);

fi;

od;

1:=Set(1);

for y in enlever do
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RemoveSet (1,y);
od;

return 1;
end;

PRim3:=function(e,mu)

# The subset U of the p-rimx*
local rim;

rim:= PRiml(e,mu);
rim:=PRim2(rim,e) ;

return rim;

end;

PRim4:=function(e,mu)

# The reflection of subset U of the p-rim*
local rim,srim,j,i,m,b,d,a,k,l,orgsrim,compte,res;

rim:=0rgRim(mu) ;
srim:=Set (rim) ;

m:= DiagBoxRim(mu) ;
d:=Position(rim, [m,m]);
for b in rim do

if (Position(rim,b) <= d) or b in PRim3(e,mu)

RemoveSet (srim,b) ;
fi;
od;
orgsrim:=[];
j:=Length(mu) ;
while j>0 do
for i in [1..mu[j]] do
if [j,i] in srim then
Add (orgsrim, [j,i]);
fi;
od;
ji=j-1;
od;
res:=[];
a:=1;
compte:=e;
if Length(orgsrim)<=e then
return orgsrim;
else
while a<=Length(orgsrim) do
k:=a;
while compte <> 0 do
if k <= Length(orgsrim) then
Add(res,orgsrim[k]);
compte:= compte-1;
k:=k+1;
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else

return res;

fi;

od;

1:=k-1;

if k-1 = Length(orgsrim) then
return res;

else

while orgsrim[1][2] = orgsrim[k-1][2] do
1:=1 + 1;

if 1>Length(orgsrim) then
return res;

fi;

od;

a:= 1;

compte:= e;

fi;

od;

fi;

return res;

end;

PRim5:=function(e,mu)

# p—rim* for self-conjugate mu
local 1;

1:=PRim3(e,mu) ;

Append (1,PRim4 (e, mu)) ;

return 1;

end;

ERim:=function(e,mu)

#Takes an odd prime e and a self-conjugate partition
# mu and returns[mu”(1)*,e-rim*] where e-rim is the
# e-rim* of a self-conjugate partition and mu~(1)x*
# is the partition obtained from mu after deleting
#the e-rimx.

local diag,erim,b ;

erim:=PRim5(e,mu) ;

diag:=Set(DiagramPartition(mu)) ;

for b in erim do

RemoveSet (diag,b) ;

od;

return [PartitionDiag(diag),erim];

end;

AutoSymb:=function(e,mu)
# Takes a prime e and a self-conjugate partition mu

# and returns the first line of the (first line of the)# p-BG-symbol for mu.
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local muprime,symb;
symb:=[];

if mu=[] then

return [];

else

muprime:=mu;

while muprime <> [] do

Add (symb,Length(ERim(e,muprime) [2]));
muprime:=ERim(e,muprime) [1];
od;

return symb;

fi;

end;

EBGsymb:=function(p,mu)

# Takes a prime p and a self-conjugate partition mu
# and returns the p-BG-symbol mu

local i, symb;

symb:=[];
symb[1] :=AutoSymb (p,mu) ;
symb[2] :=[];

for i in AutoSymb(p,mu) do
if EuclideanRemainder(i,2)=0 then
Add(symb[2],i/2);

else
Add(symb[2], (i+1)/2);

fi;

od;

return symb;

end;

EBetaInverse:=function(e,la)

# Takes an odd prime e, and a e-BG-partition la and

# returns the e-self-Mullineux partition corresponding
# to la under the bijection defined by the bg-symbol.
local n,m,i,1,j ;

n:=Sum(la);
m:=1;
j:=1;

1:=Length(la);

if la<>ConjugatePartition(la) then

return Print("E: this is not a BG-partition. \n");
fi;

while 1la[m]>=m do

m:=m+1;
od;
m:=m-1;

while j<=m and HookLength(la,j,j) mod e <> 0 do
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ji=j+1;
od;
ji=i=1;

if j<m then

return Print("E: this is not a BG-partition. \n");
fi;

return PartitionMullineuxSymbol (e,EBGsymb(e,la));
end;

DurfeeNumber:=function (mu)

# takes a partition and returns its durfee number.
local d,i,1;

d:=1;

1:=Length(mu);

if mu=[0] then

return O;
else
while d <= 1 and d<=mu[d] do
d:=d+1;
od;
fi;

return d-1;
end;

EBGPartitions:=function(p,n)
# Takes an odd prime p and an integer n and returns
# the list of p-BG-partitions of n.
local list,d,la,i,inlist;
list:=[];
for la in Partitions(n) do
if la=ConjugatePartition(la) then
d:=DurfeeNumber (la);
i:=1;
inlist:=true;
while 1 <= d and inlist=true do
if HookLength(la,i,i) mod p = O then
inlist:=false;
else i:= i+1;
fi;
od;
if inlist=true then
Add(1list,la);
fi;
fi;
od;
return list;
end;
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EBetaSymbol:=function(e, symb)
# Takes a prime e and the Mullineux symbol symb (list
# of rows) of a e-self-Mullineux partition and returns
# the associated e-BG-partition.
local k,i,n,s;
if MullineuxMap(e,PartitionMullineuxSymbol (e,symb))=
PartitionMullineuxSymbol(e,symb) then
n:=Sum(symb[1]);
k:=0;
i:=1;
while k=0 do
if EBGsymb(e,EBGPartitions(e,n)[i])=symb then

k:=1;
s:=EBGPartitions(e,n) [i];
else
i:=i+1;
fi;
od;
return s;
else
return Print("This is not the symbol of a ",e,"-self-mullineux partition.
", "\n");
fi;
end;

EBeta:=function(e,mu)
# Takes a prime e and a e-self-Mullineux mu and
# returns the e-BG-partition partition corresponding
# to mu under the bijection defined by the bg-symbol.
local symb ;
if MullineuxMap(e,mu)=mu then
return EBetaSymbol(e,MullineuxSymbol(e,mu));
else return Print(mu," is not a ",e,"-self-mullineux partition");
fi;
end;
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ENSEMBLES BASIQUES POUR LES GROUPES SYMETRIQUES ET ALTERNES, INVOLUTION DE
MULLINEUX

Dans cette thése nous nous intéressons aux propriétés combinatoires de la théorie des représentations modulaires des
groupes symétriques et alternés.

Nous nous concentrons sur le probléme de 1’étiquetage des représentations irréductibles modulaires des groupes symé-
triques et alternés. Une facon naturelle d’aborder ce probléme est de trouver des ensembles basiques unitriangulaires pour
les matrices de décomposition. Une de nos principales motivations est liée a I'application de Mullineux, application qui
controle la restriction du groupe symétrique au sous-groupe alterné. Dans le but d’avoir un étiquetage particuliérement
bien adapté a cette restriction, on cherche des ensembles basiques unitriangulaires stables. De tels ensembles sont stables
pour la conjugaison.

Il apparait lors de notre étude le phénomene remarquable suivant : le nombre de partitions auto-conjuguées avec
des longueurs des crochets diagonaux non divisibles par p, appelées BG-partitions, est égal au nombre de points fixes
de I'application de Mullineux, ou partitions auto-Mullineux. Nous montrons une correspondance combinatoire explicite
entre les deux ensembles de partitions.

Récemment il a été montré qu’il n'existe pas toujours un ensemble basique unitriangulaire pour le groupe alterné.
Cependant, ces notions peuvent étre définies au niveau des blocs. Nous étudions ’application de Mullineux dans les blocs
auto-conjugués de p-poids 2 du groupe symétrique et nous exhibons un ensemble basique unitriangulaire stable pour ces
blocs, ce qui implique I'existence d’ensembles basiques unitriangulaires pour certains blocs des groupes alternés.

Mots clés : Combinatoire algébrique, Théorie des représentations, Groupe symétrique, Groupe alterné, involution de
Mullineux.

BASIC SETS FOR THE SYMMETRIC AND ALTERNATING GROUPS, MULLINEUX INVOLUTION

This thesis concerns combinatorial properties of the modular representation theory of the symmetric and alternating
groups.

We focus on the problem of labelling the modular irreducible representations of the symmetric and alternating groups.
A natural way to approach this is through unitriangular basic sets for the decomposition matrices. One of our main motiva-
tions is related to the Mullineux map, which controls the restriction from the symmetric group to the alternating subgroup.
In order to have a labelling which is particularly well adapted to this restriction, we look for stable unitriangular basic sets.
Such sets are stable for conjugation.

In our study, the following remarkable phenomenon is observed : the number of self-conjugate partitions with diagonal
hook-lengths not divisible by p, called BG-partitions, is equal to the number of fixed points of the Mullineux map, or self-
Mullineux partitions. We give a combinatorial and explicit correspondence between the two sets of partitions.

Recently it has been shown that there is not always a unitriangular basic set for the alternating group. However, these
notions can be defined at the level of blocks. In this thesis, we study the Mullineux map in self-conjugate blocks of p-weight
2 of the symmetric group and we construct a stable unitriangular basic set for these blocks, which implies the existence of
unitriangular basic sets for some blocks of the alternating groups.

Keywords : Algebraic combinatorics, Representation theory, Symmetric group, Alternating group, Mullineux involu-
tion.

Discipline : Mathématiques.
Spécialité : Théorie des représentations.
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