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École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
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Résumé en français

Depuis plus d’une vingtaine d’années, la modélisation numérique couplée est de plus en

plus utilisée en sciences du climat et de l’environnement. Aussi connus sous le nom de mod-

èles de circulation générale ou General Circulation Models (GCM), ces modèles sont idéal-

isés et permettent de simplifier le système climatique. Pour prévoir l’évolution du climat,

les scientifiques utilisent des GCM où interagissent les modèles atmosphériques, océaniques

et de la dynamique des surfaces continentales. Un modèle couplé permet d’étudier les dif-

férentes modifications futures de l’environnement. Or les études récentes montrent que le

climat calculé par ces modèles dépend fortement de la distribution horizontale mais aussi

verticale du mélange dans l’atmosphère et l’océan.

Il a été proposé par Garrett & Kunze (2007) que le mélange océanique résulterait

du déferlement des ondes internes de gravité engendrées par l’interaction entre la marée

océanique et la topographie du fond (du plateau continental, montagne sous-marine).

En effet, la présence de corps célestes induit un courant horizontal uniforme sur toute

la colonne d’eau dans l’océan, connu comme la marée barotrope très bien mesurée par

altimétrie satellitaire. En présence de la topographie, cette marée barotrope interagit avec

le fond marin et rayonne des ondes internes, appelées marées internes. Leur dissipation

par déferlement induit une turbulence tridimensionnelle qui contribue au mélange vertical

de l’océan profond, et donc joue un rôle dans la circulation océanique à grande échelle

en induisant un flux vertical de salinité et de chaleur. Il en est de même pour les ondes

engendrées par l’action des vents en surface dans la couche mélangée de surface et qui se

propagent dans la couche profonde à travers la thermocline (zone de transition thermique

rapide entre les eaux superficielles et les eaux profondes). Le déferlement des ondes ainsi

engendrées est affecté par des mécanismes analogues à ceux de la marée interne (croissance

transitoire, propagation d’instabilités...).

Comprendre la circulation océanique est un ingrédient essentiel pour la prévision du

climat. Les marées internes comme les ondes internes engendrées à la surface sont des ondes

de moyennes échelles (méso échelle), bien au-dessous des échelles résolues dans les modèles

numériques climatiques actuels. La turbulence et le mélange qui en résultent sont eux aussi

à très petites échelles et doivent être paramétrés. La variabilité spatiale que ce mécanisme

physique induit dans le mélange, à la fois horizontalement et verticalement, pourrait

induire une circulation océanique profonde radicalement différente de celle calculée par

les modèles actuels reposant sur une hypothèse de mélange uniforme. À l’heure actuelle,

il existe peu de théorie pour guider la prise en compte de ces petites échelles dans les

méthodes numériques (effets sous-maille). Le passage d’une paramétrisation heuristique



basée sur l’observation à une paramétrisation physique basée sur la compréhension des

mécanismes permet d’adapter les modèles à des situations jamais observées induites par

le changement climatique.

En utilisant à la fois les codes pour la prévision du climat en géométrie simplifiée mais

réaliste ainsi que des modèles théoriques prenant en compte la propagation des pertur-

bations, nous étudierons dans cette thèse différents mécanismes physiques d’instabilité

d’ondes internes induisant le mélange turbulent. En particulier, nous analyserons com-

ment de faibles perturbations, infinitésimales ou finies, peuvent déstabiliser une onde

dans son plan de propagation, donnant naissance à l’instabilité triadique résonante, issue

de l’interaction entre trois ondes internes à la résonance. Un tel mécanisme d’instabilité

induit la possibilité de transferts de quantités physiques, comme l’énergie ou l’action d’une

onde, à des échelles variables. Deux interactions résonantes (Elastic Scattering et Induced

Diffusion) à l’origine de modes verticaux cisaillés horizontalement (Vertically Sheared Hor-

izontal Flow modes) feront l’objet d’une analyse approfondie, étant donné leur capacité à

conduire à de fortes croissances non-linéaires, puis transitoires (linéaires) de l’énergie de

la perturbation.

Les phénomènes physiques ainsi mis en évidence pourraient modifier radicalement

la distribution verticale et horizontale du mélange induit par le déferlement d’ondes, et

inversement, permettraient de comprendre comment le rayonnement d’ondes internes par

des modes d’instabilité peuvent modifier le mélange induit par un cisaillement et faire

qu’il se produise à une altitude différente, ce dernier mécanisme pouvant être à l’oeuvre

dans l’océan et transférer le mélange de la thermocline vers l’océan profond.
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Chapter 1

General context

1.1 Description of the climate system

The climate system refers to the highly complex system made of five major compo-

nents that shape the global environment of our planet: the atmosphere, the oceans, the

cryosphere (snow, ice and permafrost), the land surface, the biosphere, and the inter-

actions occurring between them as illustrated in figure 1.1. These environments interact

continuously through physical, chemical or biological processes. Some have slow evolution,

over millions to billions of years, which is the case of solid media such as glaciers, sea ice

or the outermost layers of the land surface e.g. the lithosphere and the asthenosphere.

The others have a faster evolution: it is the case of the atmosphere and the ocean. These

two fluids play a major role by allowing numerous strong and rapid interactions between

different regions of the globe, which then exchange mass, heat and momentum fluxes.

Climate is defined as the set of statistics which describes the climate system in a given

location over a period of few decades. The ocean and the atmosphere are at the core of

mechanisms that drive climate variations or climate fluctuations and affect our planet on

various time scales that go from months to years. Statistics determining the climate and

its variations are not only mean values, but also correspond to recurring events like El

Niño, or much rarer events (100-year floods and storms).

Despite their importance in the dynamics of the climate system, the atmosphere and

ocean are in reality two very thin layers compared to the large-scale view of the Earth’s

surface: the average radius of our planet is 6400 km, whereas approximately 80% of the

mass of the atmosphere are located in the first 15 km near the ground, and the average

depth of the ocean is 3,8 km. Even though the atmosphere and ocean are very different

due to their density and equations of state, this geometrical particularity makes them

similar and a common mechanical description is possible for some phenomena occurring

in both of them and that are studied in this manuscript. Indeed, the atmosphere and the

ocean share two common characteristics making their movement often not very intuitive:

first, they move on a spherical rotating surface and second, they are stratified, meaning

that under the effect of gravity, their density decreases with height. The scientific field

specialized in the study of stratified rotating fluids is called geophysical fluid dynamics.

3



Part I, Chapter 1 – General context

Figure 1.1: The five components of the climate system, the atmosphere, the oceans,
the cryosphere, the land surface, the biosphere, and the way they all interact. Source:
Wikipedia.
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1.2. Numerical climate models

1.2 Numerical climate models

Climate models have made a tremendous step forward over the last decades and major

advances are still to come in the next decades. The first IPCC1 report in 1990 presented

simulations based on three models when doubling CO2 release into the atmosphere. The

atmospheric models used at that time were spatially low resolution, e.g. approximately

500 km between two successive horizontal nodes with ten vertical levels, and were cou-

pled with highly idealized oceanic models made of a well-mixed layer of water of tens of

meters of thickness. Only one team made preliminary tests with a real coupled ocean-

atmosphere model which included a numerical representation of the uppermost layer of

the sea and the deep ocean. On the contrary, the models used for the last decade now

all are coupled ocean-atmosphere model. The increasing resources in computational time

(thousands of calculations per second in the fifties, some ten million in the seventies and

some billion recently) generated a consistently supported gain of spatial resolution. The

majority of atmospheric models used in the second IPCC report of 1995 presented a 500

km spatial horizontal resolution, and this resolution was improved up to 100 km in the

IPCC report of 2007. This step forward might seem modest, but concerns all three dimen-

sions in space, and also affects the time step of models. Furthermore, simulations were

extended in time and repeated after perturbation to assess what remains unpredictable.

They include a larger variety of physical, chemical and biological processes. However, tech-

nological progress cannot explain everything, the combination of computational progress

with strong theoretical developments is what highlighted the approximations of Navier-

Stokes equations and their significance in many different contexts: from global to regional

scales, from tropical to mid latitude systems, short or long term predictions, and so on.

The use of numerical models describing the climate system is essential for a great

number of applications such as predicting its short term behavior for meteorologists, or

to evaluate the impact of human activity in the long run. The development of those

models meets a social need because they are often the unique tools able to guide policy

making to preserve the global environment of our planet. For more than twenty years

now, coupled numerical models are being used increasingly in environmental and climate

sciences. Also known as General Circulation Models (GCM), those computer codes give

an idealized representation of the climate system. To predict the evolution of climate,

scientists use GCM which couple models describing the dynamics of the atmosphere, the

ocean, the continents and glaciers. Observations from direct numerical simulations of these

coupled models are key in the study of the future modifications of our environment. The

constant growth of computing power will result sooner or later in the reformulation of the

climate models in depth, since the frontier between numerically resolved and non-resolved

phenomena is constantly moving toward smaller spatial scales.

1. Intergovernmental Panel on Climate Change.
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Part I, Chapter 1 – General context

1.3 Vertical mixing in the deep ocean

The climate is strongly controlled by the oceanic circulation, which is still incompletely

understood. A key process in the circulation of the ocean is the vertical mixing2, which

makes it possible for dense deep water to reach the surface. As illustrated in figure 1.2a),

water masses flow through the entire ocean with a system of oceanic currents whose

global circulation forms the Ocean Conveyor Belt (also called Meridional Overturning

Circulation3). At the poles, ocean water becomes cold and salty as a result of evaporation

and ice formation, creating sinking currents that flow and spread in the deepest part

of Earth oceans, in the Atlantic, Southern, Indian and Pacific Oceans. When returning

to equatorial latitudes where the ocean is heated in surface by air-sea fluxes, the water

masses become warmer, rise as a consequence (upwelling), and flow back to the poles

to close the global cycle. While the map of the surface horizontal currents and gyres

involved in the Ocean Conveyor Belt is shaped by winds and Earth rotation, the vertical

currents are sustained by the stratification resulting from density gradients, depending

on the amount of heat and salt carried by water masses, responsible for their sinking and

upwelling movements4, as well as their vertical mixing.

Figure 1.2b) strongly emphasizes this verticality and shows that the circulation of heat

and salt, namely the thermohaline circulation, is intrinsically 3D5 as it involves horizontal

and vertical currents flowing from Antarctica (surrounded by the Southern Ocean) to three

different regions of the globe (Indian, Pacific, and Atlantic Oceans) eventually closing

cycles of the Ocean Conveyor Belt. The present 3D representation of the ocean highlights

how water masses from different sites merge, corresponding to every color changes in the

arrows of the figure, so the Antarctic Bottom Water (AABW) is consumed by North

Atlantic (NADW), Pacific (PDW) and Indian (IDW) Deep Waters, before upwelling and

flowing back to Antarctica with Antarctic Intermediate Water (AAIW) and Sub Antarctic

Mode Water (SAMW), with residual thermocline water. In this global circulation system,

the water masses, when merging, constantly change in composition.

Not only does the flow contain heat and salt, but also other compounds coming from

nature or human activity. Figure 1.3 indicates the contribution of air-sea fluxes to the

transfer of heat, oxygen, anthropogenic and natural carbon to the surface currents at

different latitudes of the globe, from the poles to the equator. Mentioned in the present

figure, the Gulf Stream plays an important role in the global circulation, as it represents a

2. C. Wunsch and R. Ferrari, “Vertical Mixing, Energy, and the General Circulation of the Oceans”,
in: Annu. Rev. Fluid Mech. 36.1 (2004), pp. 281–314.

3. E. Kunze, “The Internal-Wave-Driven Meridional Overturning Circulation”, in: J. Phys. Oceanogr.
47.11 (Nov. 2017), pp. 2673–2689.

4. R. Ferrari and C. Wunsch, “Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks”, in:
Annu. Rev. Fluid Mech. 41.1 (2009), pp. 253–282.

5. A. Lefauve, C. Muller, and A. Melet, “A three-dimensional map of tidal dissipation over abyssal
hills”, in: J. Geophys. Res.: Oceans 120.7 (2015), pp. 4760–4777.
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1.3. Vertical mixing in the deep ocean

Figure 1.2: a) Illustration of the Ocean Conveyor Belt with a highlight on four main char-
acteristics of the induced thermohaline circulation labeled 1, 2, 3 and 4. Warm currents
are represented in orange and cold ones are in blue. In 1, the ocean cooling at the poles
resulting from evaporation and ice formation causes cold dense salty water to form, sink
and slowly spread at the bottom of the ocean. In 2, this cold salty water freely flows from
Arctic to Antarctica, passing through the abyss of the Atlantic Ocean, finally splitting into
different currents in the Southern Ocean, one going to the Indian Ocean, the other to the
Pacific Ocean. In 3, all the abyssal currents rise to the surface through the upwelling pro-
cess driven by the surface heating of the ocean when the cold water approaches equatorial
latitudes in the Indian, Pacific and Southern Oceans. In 4, the newly formed warm surface
currents flows northward, completing the cycle. Source: National Geographic (https://
www.nationalgeographic.org/media/global-conveyor-belt/). b) 3D rep-
resentation of the thermohaline circulation due to the currents of the Ocean Conveyor
Belt. From Talley (2013).
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Part I, Chapter 1 – General context

Figure 1.3: 2D schematic detailing the mean air-sea fluxes resulting from the exchanges
of heat, oxygen (O2), anthropogenic (CANTH) and natural carbon (CNAT), all being then
transported throughout the entire ocean by the currents of the Ocean Conveyor Belt. The
air-sea fluxes appear in the atmosphere with red, blue, grey and black arrows representing
exchanges of heat, O2, CANTH and CNAT respectively, and the currents in the ocean are
represented in red, white and blue arrows for the surface, intermediate and deep waters
respectively. The different water masses correspond to the ones introduced in figure 1.2
where AABW stands for Antarctic Bottom Water, NADW for North Atlantic Deep Water,
IDW for Indian Deep Water, PDW for Pacific Deep Water, AAIW for Antarctic Inter-
mediate Waters, and SAMW for Sub Antarctic Mode Water. From Delorme & Eddebar
(2016).
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1.3. Vertical mixing in the deep ocean

strong Atlantic ocean current transporting warm water at a rate of 30 million m3 s−1 from

the Gulf of Mexico, measuring typically 100 km wide and 800 m to 1,2 km deep. In their

course, water masses exchange physical (heat), chemical (oxygen, carbon, salt), biological

(nutrients, plankton) and geological (sediments) tracers with their local environment over

1000-year cycles6, essential for the life of marine species, ultimately contributing to the

balance of the global ecosystem. How the human activity impacts this equilibrium needs to

be understood and modeled accurately to predict future modifications to the environment

despite not having been observed up until now.

Global warming regulation by the ocean then depends on mechanisms controlling the

vertical mixing of deep water masses. It was recently proposed that the mixing results

from the overturning of internal waves generated by interaction between deep oceanic

tides and currents with the bottom topography (continental shelf, underwater mounts),

along with many other sources of generation, as depicted in figure 1.4. First, tidal flows

over abyssal hills, or tall, steep ridges (such as the Hawaiian Ridge) give birth to high

and low-mode7 internal wave. Storm and winds cause inertial oscillations to form in the

mixed layer8, resulting in the radiation of high and low-mode internal waves too. On the

other hand, deep currents impinging on topographic features generates lee waves9 (such

as in the Southern Ocean10). The present figure shows the topographic scattering of the

generated internal waves, which propagates in the open ocean (see ray paths) where they

may interact with other propagating waves, geostrophic currents, or mesoscale fronts and

eddies until they ultimately dissipate and break. Low-mode propagation may also lead

to dissipation near continental slopes and shelves11. The scientific community suggested

wavewave interactions to be one path leading ultimately to dissipation.

Astronomical data report that approximately 3.5 TW12 of tidal energy are available

for dissipation in the ocean, mainly due to the moon slowing down the Earth rotation and

inexorably moving away from us. For a long time, people thought that most of this energy

was dissipated in shallow waters where tidal currents are strong. But recent satellite data

indicate that approximately 1 TW could be dissipated in the deep ocean as indicated in

6. R. E. Tuerena et al., “Internal Tides Drive Nutrient Fluxes Into the Deep Chlorophyll Maximum
Over Mid-ocean Ridges”, in: Glob. Biogeochem. Cycles 33.8 (2019), pp. 995–1009.

7. High-mode internal waves dissipate in the near field while low-mode internal waves dissipate in the
far field. Waves with vertical scales comparable to the ocean depth have small mode numbers (low-mode
internal waves), whereas those with smaller vertical scales have large mode numbers (high-mode internal
waves).

8. a.k.a. the thermocline, the transition layer between warmer mixed water at the ocean’s surface and
cooler deep water below.

9. Lee waves are internal waves that are formed in the lee of a mountain.
10. A. Melet et al., “Sensitivity of the Ocean State to Lee Wave-Driven Mixing”, in: J. Phys. Oceanogr.

44.3 (Mar. 2014), pp. 900–921.
11. S. Legg and A. Adcroft, “Internal Wave Breaking at Concave and Convex Continental Slopes*”, in:

J. Phys. Oceanogr. 33 (Jan. 2002); K. Martini et al., “Internal bores and breaking internal tides on the
Oregon continental slope”, in: (2013).

12. TeraWatts
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Figure 1.4: Illustration of the different sources of internal wave generation in the open
ocean. From MacKinnon et al. (2017).

figure 1.5. The same figure also reveals that the generation of near inertial waves13 due to

the interaction between the wind and the mixed upper layer of the ocean accounts for an

energy budget estimated from 0.3 up to 1.4 TW, when being also proposed as a possible

source for deep ocean mixing through mechanisms similar to the turbulence14. In addition

to their contribution to lee wave generation when interacting with topographic features,

wind driven currents are also found to feed the previous near-inertial wave field, contribut-

ing to 1 TW of the global energy budget of the internal wave field in the ocean. Wave-wave,

wave-topography and wave-mean flow interactions are detailed with arrows between the

different propagating waves, showing that wave-wave interactions, topographic scattering

and reflection, and interaction with the background current field actually play a crucial

role in the dissipation of the global energy budget dedicated to internal waves. The under-

lying physics behind those interactions must be understood and thoroughly investigated

to model accurately the ocean state in the context of climate prediction, while bringing

answers to the fundamental question: how is tidal energy and surface born internal waves

dissipated in the abyssal ocean?

We have seen that one of the mechanisms for tidal dissipation is the breaking of small

scale internal waves. The presence of celestial bodies induces a current in the ocean, known

as the barotropic tide. In the presence of topography, this barotropic tide interacts with

13. Inertial waves are internal waves with frequency nearly equal to the Coriolis parameter, a measure
of Earth rotation frequency at a given latitude. See section 3.2 for more details.

14. Wave turbulence, also called weak turbulence, is a branch of fluid mechanics developed in the 60s
studying the evolution of random wave fields on all scales. It typically assumes that weak nonlinear
interactions between three waves of the same kind, namely triadic interaction, lead to an energy cascade
from large (forcing) scales up to small (dissipative) ones

10



1.3. Vertical mixing in the deep ocean

Figure 1.5: A simplified diagram showing the global energy budget of internal waves. From
Whalen et al. (2020).

Figure 1.6: Space and time scales of different geophysical phenomenon contributing to the
thermohaline circulation and sustaining the global overturning circulation. From Huang
(2010).
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the seafloor resulting in the radiation of internal waves, known as the internal tides. Their

dissipation through wave breaking and concomitant three dimensional turbulence con-

tributes to the vertical mixing in the deep ocean, and plays a role in the large scale ocean

circulation. Figure 1.6 displays the typical time and space scales of each process reviewed

in this section. The present figure demonstrates that, although the scales inherent to

some of the physical processes may intertwine, for instance Kelvin waves15 and barotropic

tides, the scale separation from the turbulence and internal waves up to the thermohaline

circulation clearly indicates the role of mesoscale and small scale mechanisms in large

scale flows16. As a matter of fact, the estimates17 indicate that typical scales are thou-

sands kilometers and months (102 − 106 km and 101 − 104 days) for large scale flows,

kilometers and hours (10−1 − 103 km and 10−3 − 100 days) for waves, and submeters and

seconds (10−6 − 10−2 km and 10−6 − 10−3 days) for turbulence. The induced small scale

mixing (having spatial scales of order centimeter to meter and having spatial scales of

seconds) caused by internal waves (0.1100 m and lasting for minutes to hours) is essential

for sustaining the global overturning circulation and closing the ocean energy budget, but

remains challenging to parametrize numerically in global climate models, which currently

rely on idealized empirical mixing schemes. Idealized analytical and numerical studies of

tidal conversion have concentrated on the energy conversion rate, which is the rate at

which energy is lost by the barotropic tide to the internal waves at the sea floor. Large

scale ocean circulation models used for climate prediction require a parametrization of

the small scale mixing based on empirical global maps of this energy conversion rate at

the sea floor together with ad hoc methods for the distribution of the energy dissipation

and diffusivity due to breaking waves throughout the water column, whose estimates are

based on the Garrett & Munk spectrum (1979)18, a stationary state approximation widely

used to statistically19 describe the nonlinear transfer of energy between scales of the deep

open ocean. Currently, there is little theory to guide these methods, in particular as far as

the vertical distribution of wave breaking is concerned. Previous studies in large scale nu-

merical models typically assumed exponential decay of dissipation away from topography.

But is it really exponential?

To summarize, understanding the ocean circulation is not only a fascinating topic in

itself, but also a crucial ingredient for climate prediction. Generated at the bottom of the

15. Kelvin waves and Rossby waves are two kinds of planetary waves, i.e. waves having immense scales
observed in the atmospheres and oceans of planets.

16. C. Whalen, J. MacKinnon, and L. Talley, “Large-scale impacts of the mesoscale environment on
mixing from wind-driven internal waves”, in: Nat. Geosci. 11 (Nov. 2018).

17. R. X. Huang, Ocean Circulation: Wind-Driven and Thermohaline Processes, Cambridge University
Press, 2010.

18. C. Garrett and W. Munk, “Internal Waves in the Ocean”, in: Annu. Rev. Fluid Mech. 11.1 (1979),
pp. 339–369.

19. In natural media, identifying each single process for internal waves from generation and propagation
to instability, turbulence and breaking remains difficult, a statistical approach is more appropriate.
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ocean where the the currents interact with the bathymetry20, internal waves propagate

upwards and destabilize, causing the mixing of water masses. Internal waves and their

induced turbulence are small scale, well below scales resolved by global numerical models.

As a consequence, their breaking and dissipation need to be parametrized, ultimately call-

ing for the need to improve the current numerical modeling of all the physical mechanisms

related to internal waves, in particular the resulting mixing, from a traditional passive

and unchanging parametrization to a fully interactive component of the ocean circulation

and the climate system21. The induced spatial and temporal variability in the mixing,

both horizontally and vertically, could imply a radically different interior circulation in

the models than that with uniform mixing schemes.

20. ocean floors, bottom topography.
21. J. A. MacKinnon et al., “Climate Process Team on Internal Wave-Driven Ocean Mixing”, in: Bull.

Am. Meteorol. Soc. 98.11 (Nov. 2017), pp. 2429–2454.
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Chapter 2

Focus on internal waves research

Internal waves develop in the interior of the atmosphere and the ocean due to their

intrinsic stratification in heat and salt, and to Earth rotation. More precisely, the term

internal waves refers to three different types of geophysical waves, the first being internal

gravity waves formed in a purely stratified medium, the second inertial waves driven by

Earth rotation, and the third gravito-inertial waves due to the combination of stratification

and rotation effects. Studies of internal waves in the ocean are motivated by their major

role in the vertical mixing of deep water masses, an essential component to understand

and model the global circulation of the ocean.

2.1 From internal waves generation to weakly non-

linear wave-wave interaction

The linear theory describing the generation and propagation of those waves is well-

known and gathered in Gill’s textbook (1982)1 which recalls all the fundamental properties

of the corresponding plane waves2. One of the most famous experimental evidence of those

waves confirming the results given by the linear theory is the experiment from Mowbray

& Rarity (1967)3, whose visual of the St. Andrew’s Cross displayed in figure 2.1 usually

serves as a pedagogical introduction to internal waves. Their experimental setup consists

of a sphere oscillating vertically in a stratified fluid whose density increases linearly with

depth, resulting in the generation of four ray paths of internal gravity waves observed

by toepler-schlieren method4. This fundamental experiment shows the good agreement

between predictions from the linear theory and experimental observations in terms of

wave frequencies, hence testing the validity of the theoretical dispersion relation of internal

gravity waves, which only depends on the direction of the ray paths5.

1. A. E. Gill, Atmosphere-ocean dynamics, International geophysics series, New York: Academic Press,
1982.

2. See part 4.1 for the full linear derivation of internal waves.
3. D. E. Mowbray and B. S. H. Rarity, “A theoretical and experimental investigation of the phase

configuration of internal waves of small amplitude in a density stratified liquid”, in: J. Fluid Mech. 28.1
(Apr. 1967), pp. 1–16.

4. an optical technique involving an extended light source with a system of mirrors producing con-
trasting visuals to observe disturbances in an inhomogeneous medium.

5. more precisely, on the angle between one ray and an axis of reference. See part 4.1 for further
details.
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Figure 2.1: Illustration of the St. Andrew’s Cross capturing the generation of internal
gravity waves in laboratory when a forcing cylinder oscillates in a stratified fluid at a
frequency ω equal to a multiple of the BruntVäisälä frequency N , the characteristic fre-
quency of the linearly stratified medium (see part 3.1 for more details). Here ω = 0.699N .
From Mowbray & Rarity (1967).
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Internal waves generation resulting from the interaction between deep ocean currents

and bathymetry is interestingly modeled by the experiment conducted by Sutherland

(2002)6, which demonstrates, in a tank containing a linearly salt-stratified fluid, the ra-

diation of internal waves in the lee of a step-shaped topography towed horizontally at

a uniform speed, along with the generation of lee waves, using synthetic schlieren as a

technique of visualization as illustrated on figure 2.2 in a) and b). With laboratory mea-

sures of the frequencies and amplitudes of both types of waves to see if they match,

Sutherland evidenced the ability of the lee waves to radiate internal waves away from

the lee of the topography, the former lee waves acting then as radiating "fluidic" hills,

and to interact nonlinearly with the generated internal waves, this nonlinearity being en-

hanced for steeper topographies. Indeed, figure 2.2c) shows diagonal rays, in red/orange

and green/blue for positive upward and negative downward vertical displacements respec-

tively, radiating away from the crest and the lee of the "fluidic" hills, characteristics of

generated internal waves propagating upward. In addition to reproducing a geophysical

configuration in laboratory, this experiment features the combination of linear and non-

linear properties of internal waves, showing how they intertwine, the internal waves not

only being passively generated by the topography but also by nonlinearities over the "flu-

idic" hills7, and stands as an experimental evidence of wave-wave interaction, theoretically

captured by the nonlinear terms of the constitutive equations describing the dynamics of

the flow as we will see later on.

One striking feature of wavelike solutions is that not only do they solve the linearized

dynamical equations, but also the full nonlinear system of constitutive equations when

considering a stratified rotating fluid at rest as the base flow. Developing the fundamental

equations of fluid dynamics around this base state when submitted to small perturbations,

the resulting weak nonlinearities are characterized by coupling terms between two physical

fields that appear to be quadratic in terms of the streamfunction of the wave, allowing

three internal waves to be coupled if they satisfy the resonance conditions in terms of

their frequencies and wave vectors, ultimately leading to a weakly nonlinear interaction

known as the triadic resonant instability. In the steady regime, the stability of internal

waves triads is stated by Hasselmann’s criterion (1967)8 as depending on the sign of the

secondary waves frequencies product. However, is this criterion still relevant to describe

the transient dynamics of such triads9? In his work, Hasselmann typically assumes the

amplitude of one wave, called primary wave and considered as the base state, to be

infinitely larger than the amplitudes of the two other waves, named secondary waves and

6. B. R. Sutherland, “Large-amplitude internal wave generation in the lee of step-shaped topography”,
in: Geophys. Res. Lett. 29.16 (2002), pp. 16–1–16–4.

7. for a steep topography leading to the radiation of large-amplitude internal waves characterized by
a Froude number greater than one, see Sutherland (2002) for more details.

8. K. Hasselmann, “A criterion for nonlinear wave stability”, in: J. Fluid Mech. 30.4 (Dec. 1967),
pp. 737–739.

9. one key question here that this project will try to answer...
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Figure 2.2: a) Schematic of Sutherland’s experiment showing the tank in which the step-
shaped topography of height 2H is towed at a constant speed U in a linearly stratified
fluid. b) Synthetic schlieren uses a digital camera to capture the image of horizontal lines
after the light source. c) Time series of the relative vertical displacement z as a function
of time t. The image of the towed topography is superimposed below z = 4 cm keeping
the same coordinates z, but as a function of the horizontal coordinates x = Ut, the whole
picture c) being upside down compared to a). From Sutherland (2002).
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representing the perturbation to the base state, so that the primary wave amplitude can

be regarded as a constant while the secondary waves amplitudes are depending on a slow-

time scale (taken as independent from the real time), such a classical approximation being

known as the pump wave approximation.

The set of resonant triads forms a continuum, also called resonance locus, allowing en-

ergy to be transferred from the primary wave to the perturbation, in multiple ways, and

to different scales. As demonstrated by McComas & Bretherton’s work on internal waves

(1977)10, three limiting classes of resonant triads, named Elastic Scattering11, Induced Dif-

fusion and Parametric Subharmonic Instability, dominate the energy transfer integrated

over the whole continuum, the last class being even identified as an efficient energy trans-

fer to smaller scales. Indeed, Parametric Subharmonic Instability involves one high-mode

primary wave (large scale) interacting with two low-mode secondary waves (small scales)

of equal frequencies, half that of the primary wave, and is even pointed out by recent

oceanic studies12 as the main source of internal waves dissipation. Our work focuses on

Elastic Scattering and Induced Diffusion due to their critical role in the early development

of the triadic instability, those limiting classes being even affected by a particularly intense

transient dynamics while producing shear through the generation of Vertically Sheared

Horizontal Flow mode13.

Pioneering work sometimes assumes the dependency of internal waves amplitudes on

both slow-time and slow-space variables, such as McEwan & Plumb (1977)14 who studied

theoretically and experimentally the ability of a triadic instability to develop although

being not resonant. Such a process is commonly referred to as off-resonant amplification,

or detuning effect, whose distance from a precise triad measured in the wave vector space

is assumed small. Their experimental setup consists of a rectangular channel filled with a

linearly stratified salt solution and in which a fine-scale wave produced by a wave generator

is forced by a large scale wave coming from a wavemaker. The resulting instability is

observed in the shadowgraph sequence pictured in figure 2.3. Such an experiment confirms

the theoretical prediction according to which instabilities evolve by the development of the

wave packet towards resonance, meaning that, despite being away from resonance with

the background large scale wave, the wavenumber of the forced fine-scale wave tends to be

directed towards the nearest part of the resonant locus, demonstrating how resonant triads

turns out to be a universal path to instability. The theoretical derivation of McEwan &

10. C. H. McComas and F. P. Bretherton, “Resonant interaction of oceanic internal waves”, in: J.
Geophys. Res. 82.9 (Mar. 1977), pp. 1397–1412.

11. also called interaction trapping by Phillips (1968).
12. J. A. MacKinnon et al., “Parametric Subharmonic Instability of the Internal Tide at 29řN”, in: J.

Phys. Oceanogr. 43.1 (Jan. 2013), pp. 17–28.
13. F. Waleffe, “The nature of triad interactions in homogeneous turbulence”, in: Phys. Fluids 4.2 (Feb.

1992), pp. 350–363.
14. A. D. McEwan and R. A. Plumb, “Off-resonant amplification of finite internal wave packets”, in:

Dynam. Atmos. Oceans 2.1 (Dec. 1977), pp. 83–105.
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Figure 2.3: Shadowgraph sequence of the growing instability in the experiment of McEwan
& Plumb resulting from the interaction between the background large scale wave (traveling
left to right) and the off-resonant fine-scale wave (entering from the upper hand corner)
at different stages displayed in terms of multiple of the large scale wave period indicated
in the bottom right corner of each picture. From McEwan & Plumb (1977).

Plumb will serve as a starting point to our description of internal waves resonant dynamics,

even if, in our case, we won’t be exploring the detuning effects on the wave field.

Wave-wave interaction in geophysics can be theoretically derived using two differ-

ent approaches. The first invokes the variational principle as seen in early works from

Whitham (1965)15 when minimizing the Lagrangian corresponding to water wave sys-

tems, this method being later reprised by Simmons (1969)16 in his studies of internal

gravity waves. The second theoretical approach involves a spectral analysis to find the

eigenmodes of the operators given by the dynamical equations as demonstrated by An-

drews & Mcintyre (1978)17, or Ripa (1981)18, who used this method to derive triadic

resonance between internal gravity waves with a set of coupled equations known as the

three wave interaction equations. This generic system of equations follows the classical

Manley-Rowe relations (1956)19, resulting in the conservation of physical quantities such

as the total waves energy and pseudomomentum in the inviscid case. All those results

15. G. B. Whitham, “A general approach to linear and non-linear dispersive waves using a Lagrangian”,
in: J. Fluid Mech. 22.2 (June 1965), pp. 273–283.

16. W. F. Simmons and M. J. Lighthill, “A variational method for weak resonant wave interactions”,
in: Proc. Roy. Soc. Lond. 309.1499 (Apr. 1969), pp. 551–577.

17. D. G. Andrews and M. E. Mcintyre, “On wave-action and its relatives”, in: J. Fluid Mech. 89.4
(Dec. 1978), pp. 647–664.

18. P. Ripa, “On the theory of nonlinear wave-wave interactions among geophysical waves”, in: J. Fluid
Mech. 103 (Feb. 1981), pp. 87–115.

19. J. M. Manley and H. E. Rowe, “Some General Properties of Nonlinear Elements-Part I. General
Energy Relations”, in: Proc. IRE 44.7 (July 1956), pp. 904–913.
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are reviewed in Craik’s textbook (1985)20 for various types of waves that feature triadic

resonance, namely capillary gravity waves21, internal waves22, and waves in plasma23. The

universality of those conservation rules, along with the identical dynamics of triadic reso-

nance given by the three wave interaction equations, despite the differences in the coupled

coefficients involved in such equations specific to the physics of each system, may extend

the scope of our studies to other types of waves found in many other fields of physics

ranging from optics to fluid mechanics.

2.2 Objectives of the thesis and roadmap

The present project investigates the early stage dynamics of resonant triads by showing

that a small energy perturbation to the base state, a single internal wave propagating in a

stratified rotating medium, may experience tremendous transient growth with respect to

a well-defined energy norm, this amplification being higher at initial instants for linearly

stable triads than unstable ones. The maximum transients are found for triads involving

one nearly inertial mode that generates shear: the vertically sheared horizontal flow mode.

The sensitivity of these transients to different physical parameters such as Earth rotation,

viscosity and nonlinear effects is tested with theoretical simulations, and in geophysical

configurations using a numerical code for climate modeling, the MITgcm.

2.3 Roadmap

Part II of the present manuscript is dedicated to the existing classical theories and

models that are relevant to our study of internal waves. This synthesis is divided in two

chapters. Chapter 3 starts with a pedagogical introduction to understand how internal

gravity waves and inertial waves can be easily deduced when only considering the buoy-

ancy and rotation terms respectively in simplified models describing the dynamics of a

fluid parcel. This first chapter introduces the notions of buoyancy and Coriolis frequen-

cies, characteristic to the oscillations of the fluid parcel in stratified and rotating media

respectively. Then, chapter 4 theoretically derives the linear and nonlinear properties

of gravito-inertial waves by taking inspirations from Gill’s textbook (1982)24, and from

20. A. D. D. Craik, Wave interactions and fluid flows, Cambridge monographs on mechanics and applied
mathematics, Cambridge [Cambridgeshire] ; New York: Cambridge University Press, 1985.

21. L. F. McGoldrick, “Resonant interactions among capillary-gravity waves”, in: J. Fluid Mech. 21.2
(Feb. 1965), pp. 305–331.

22. R. E. Davis and A. Acrivos, “The stability of oscillatory internal waves”, in: J. Fluid Mech. 30.4
(Dec. 1967), pp. 723–736.

23. J. Weiland and H. Wilhelmsson, “Coherent non-linear interaction of waves in plasmas”, in: Oxford
: Pergamon 88 (1977).

24. Gill, op. cit.
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the work of McEwan and Plumb (1977)25, by extending his work when rotation effects

are included, but without taking into account the detuning process of internal waves.

The chapter starts in 4.1 with the full dynamical equations describing a 3D stratified

rotating flow, and key assumptions are made during the derivation to end up with wave-

like solutions (nonlinear terms not taken into account, 2D model with 3 components, all

fields being invariant along the transverse direction, and Boussinesq approximation). The

weakly nonlinear derivation presented in 4.2, consists of three main steps: the first is the

non-dimensionalization of all the fields, followed by an asymptotic expansion for weak

nonlinearities measured by infinitely small Froude numbers. Wavelike solutions are found

at the first order of the expansion and, at the second order, it is shown that three waves

may interact, this process being referred to as triadic resonance, and characterized by a

resonance spectrum showing all the possible resonant triads. This three-wave interaction

is captured by a set of three nonlinear complex equations, called triadic equations, ex-

hibiting quadratic nonlinearities and conserving three integrals of motion, two of them

being the total energy and pseudomomentum intrinsic to the three resonating internal

waves. The triadic equations may be linearized when assuming two waves of smaller am-

plitudes compared to the third. This leads to the so-called Hasselmann criterion (1967)26,

dealing with the linear stability of resonant triads, and whose formulation is adapted to

the conventions and notations of the present project.

Part III shows the main results of the thesis, and is divided in four different chapters.

The first three chapters 5, 6, and 7 are a compilation of research articles (published or in

preparation at the moment), so redundancies may be found in this part, especially when

recalling the fundamental equations of internal waves nonlinear dynamics.

Chapter 5 is a reprint from our original publication in Physical Review E27 which takes

the comparison between two different systems, rotating rigid body and rotating fluid, as

a starting point to describe the transient dynamics of a small perturbation for any three

wave systems, when generalizing the properties found on the two former systems to any

kind of waves able to form resonant triads, e.g. involving three wave of the same kind

at resonance. Indeed, rotating rigid body and rotating fluid obey to identical nonlinear

equations, in terms of angular momentum in the first case and wave amplitudes in the

second one, and share common conservation properties since two quadratic integrals of

motion appear in each system, total energy and total angular momentum in the first

case and total energy and helicity in the second one. The trajectories, solutions to those

nonlinear systems, can be represented as ellipsoids of constant values of total angular

momentum for the solid and of helicity for the fluid, laying on a unit energy sphere,

once the energy norm is taken to be the Euclidean norm. Such representation can be

25. McEwan and Plumb, op. cit.
26. Hasselmann, op. cit.
27. K. Ha, J-M. Chomaz, and S. Ortiz, “Transient growth, edge states, and repeller in rotating solid

and fluid”, in: Phys. Rev. E 103.3 (Mar. 2021), p. 033102.
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generalized to any kind of three-resonating-wave system obeying to certain conditions,

and from this representation, a criterion for the transient growth of perturbation energy

to occur is found and expressed in terms of the z components of the phase velocities of

the three waves involved in triadic resonance. Relaxation oscillations of the amplitudes

may occur as nonlinearities become finite.

Chapter 6 presents an article in preparation for Journal of Fluid Mechanics that fo-

cuses on the theoretical aspects of the evolution of a base state represented by a single

internal gravity wave, called primary wave, when submitted to a small amplitude pertur-

bation represented by two internal gravity waves referred to as secondary waves, as both

interact with the primary wave in the process of triadic resonant instability. The former

nonlinear derivations introduced in the previous part are reviewed in the purely stratified

case, and novel results are introduced when plotting the optimal energy growth and the

associated optimal growth rate to measure the transient growth of perturbation energy of

the full triadic system. The main focus of this article is the weakly nonlinear regime ob-

tained after simplifying the triadic equations in the domain of validity of the pump wave

approximation. Two limiting classes of triads, named Elastic Scattering and Induced Dif-

fusion, stand out as they exhibit higher transient growth than the other resonant triads.

The transient growth of linearly stable and unstable triads were also compared, and then

studied when varying two parameters, the viscosity and the primary wave angle, to see

how they impact the transient dynamics. Finally, the nonlinear growth of the perturbation

energy as a response to a finite perturbation of the triadic system is investigated by rep-

resenting the conserved quantities, total energy, pseudomomentum, and phase invariant,

highlighting the possibility of relaxation oscillations during the nonlinear growth of the

perturbation. All the appendices of the presented article are also included in this chapter.

Chapter 7 is based on an article in preparation for Physical Review Fluids which

aims at giving a thorough analysis of the nonlinear dynamics of three interacting internal

waves, when studying its sensitivity to the variations of the Coriolis parameter. Here,

the nonlinear dynamics of a small perturbation energy is shown to be a fundamental

feature that shapes the local transient dynamics of the triadic system linearized near a

base state. Both nonlinear and transient growth of the perturbation obey to scaling laws

inversely proportional to the Coriolis parameter, as rotation tends to attenuate those

growing processes.

Finally, chapter 8 focuses on the direct numerical simulations conducted through this

project on the MITgcm, a GCM widely used by the community, whose main characteristics

are reminded in 8. The goal of this chapter is to observe in a 2D simulation box, the

nonlinear and transient dynamics of triadic resonance demonstrated theoretically in the

three previous chapters, for a chosen triad of the resonant spectrum.
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Chapter 3

Stratification and rotation as driving

sources in wave generation

Generation of internal gravity waves occurs in a stratified medium where physical

properties, such as the temperature and salinity, vary along the vertical direction, thus

leading to a vertical gradient of density, like in the atmosphere and ocean. On the other

hand, Earth rotation drives the generation of another type of waves called inertial waves

whose frequency matches the Coriolis frequency, or Coriolis parameter, which measures

the intensity of the inertial force due to Earth rotation at a fixed latitude. The combination

of both effects, stratification and rotation, leads to the growth of inertia-gravity waves

and all three waves introduced here (internal gravity, inertia and inertia-gravity waves)

have the common property to flow through the interior of the fluid so they are called

internal waves, by contrast with surface waves which propagates at the interface of two

different fluids (e.g. between air and sea). Internal waves are ubiquitous elements of the

atmosphere as illustrated in figure 3.1 by the photograph taken in Mawson, Australia,

and of the ocean as shown in figure 3.2 with the internal wave trains captured by the

satellite image near the north coast of Trinidad. The following simplified analysis serves

as an original standpoint in the further theoretical development of internal waves to better

understand the separate influence of stratification and Earth rotation on the dynamics of

a fluid parcel.

3.1 Buoyancy driven flows

The atmosphere and ocean are the most common examples of stratified fluids where

density varies with altitude (or depth). Internal gravity waves, which are commonly ob-

served in those two fluid layers, transfer energy over long distances and across different

scales, playing a major role in the energy balance of the ocean and the understanding

of the thermohaline global circulation. The study of internal waves is motivated by their

role in the rise of abyssal cold water via their induced mixing process between stratified

layers in the deep ocean.
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Figure 3.1: Regularly spaced clouds observed in Mawson, Australia.
This structure is caused by gravity waves in the Antarctic atmo-
sphere. Source: Australian Antarctic Magazine (2015), https://www.

antarctica.gov.au/magazine/issue-28-june-2015/science/

refining-gravity-waves-in-climate-models/

Figure 3.2: North coast of Trinidad with surface manifestation of internal waves which
propagates tens of meters beneath the sea surface. The photograph is taken from
the International Space Station (ISS) using to reflection of sunlight on the sea sur-
face. Source: NASA (2013), https://www.nasa.gov/mission_pages/station/
multimedia/gallery/iss034e032377.html
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3.1. Buoyancy driven flows

3.1.1 Stratification in density

We consider a fluid parcel of density ρr in equilibrium with its surrounding fluid

of density at rest ρ0(z) continuously stratified along the vertical direction (Oz). This

dynamical equilibrium leads to ρr = ρ0(z) as a result of the balance between two forces,

the weight and Archimedes’ buoyancy. Neglecting in the first place the effects of viscosity,

diffusivity and convection, a simple perturbation of the fluid parcel out of its equilibrium

state by a small increment δz ≪ z along the vertical direction leads to the momentum

equation in time t:

ρr
d2δz

dt2
= ρ0(z + δz)g − ρrg (3.1)

where g is the standard gravity. The right hand side of the equation can be written as

ρ0(z + δz)g− ρrg = ρ0(z + δz)g− ρ0(z)g = −N2δz, with the Brunt-Väisälä frequency (or

buoyancy frequency):

N =

√

− g

ρr

dρ0

dz
(3.2)

so that the momentum equation becomes:

δ̈z +N2δz = 0 (3.3)

where the dots are time derivatives. Therefore, stratification induces purely vertical mo-

tions characterized by the vertical displacement δz of the fluid. For the rest of our inves-

tigation, we consider a layer of linear stratification so that N is independent of z. The

different solutions of equation (3.3) are reminded in table 1.1 along with the terminology

concerning the stability of a stratification.

Table 3.1: Different types of stratification in density and their analytical solution.

dρ0

dz
stratification N2 solution δz(t)

< 0 stable > 0 oscillating δz(0) cos(Nt) +
δ̇z(0)

N
sin(Nt)

= 0 neutral = 0 linear δz(0) + δ̇z(0)t

> 0 unstable < 0 exponential δz(0) cosh(Nt) +
δ̇z(0)

N
sinh(Nt)
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Figure 3.3: Oscillations of a fluid parcel of density ρr when perturbed by an increment δz
out of its equilibrium state characterized by the altitude z in a medium of linear stable
stratification ρ0(z) (i.e. of buoyancy frequency N2 > 0, meaning that ρ0 decreases with
height) when viscosity is added through an empirical friction force −Kδ̇z, K being a
constant.

When stable (N2 > 0), stratification acts as a restoring force leading to oscillations

of the fluid parcel around its equilibrium state with a frequency matching the buoyancy

frequency N of the medium. Internal gravity waves of frequency N thus arises in stably

stratified medium. Typical order of magnitudes are N = 10−2 s−1 (corresponding to a

period of 10 min) in the deep ocean versus N = 10−3 s−1 (about 100 min) in the ther-

mocline and the atmosphere. Viscosity and diffusivity would dampen those oscillations,

forcing the fluid parcel to be back at its equilibrium state characterized by the altitude

z as illustrated in figure 3.3. An unstable stratification (N2 < 0) typically occurs when a

denser fluid happens to be above a lighter one1. We will only consider stable stratification

in our research. GCM are particularly sensitive to the vertical distribution of internal

wave driven mixing which then requires a precise dynamical modeling, i.e. depending on

the ocean state2.

1. This phenomenon is referred as overturning and results in a turbulent convective mixing, which is
mentioned here but not detailed in this manuscript.

2. A. Melet et al., “Sensitivity of the Ocean State to the Vertical Distribution of Internal-Tide-Driven
Mixing”, in: J. Phys. Oceanogr. 43.3 (Dec. 2012), pp. 602–615.
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3.1. Buoyancy driven flows

3.1.2 Stratification in temperature

Figure 3.4: Vertical temperature profile of the atmosphere as a function of altitude. Source:

University of Lagos (2012), http://unilaggeography2012.blogspot.com/p/

gry-101-introduction-to-physical.html

In the atmosphere, layers of different densities originate from the vertical variations

of temperature T0 as shown in figure 3.4. In a medium of molar heat capacity Cp, the

associated potential temperature is then:

ϑ0 = T0

(

pr

p0

)R/Cp

(3.4)

where R is the molar gas constant, p0 the pressure of the medium and pr a reference

pressure. Stratification in temperature is then defined using the vertical profile of poten-

tial temperature ϑ0(z) (or "classical" temperature T0(z)) of the medium. With the same

previous analysis but now using an energy balance on the air parcel and considering air

as an ideal gas, the buoyancy frequency becomes:

N =

√

g

ϑr

dϑ0

dz
=

√

√

√

√

g

Tr

(

dT0

dz
+

g

Cp

)

(3.5)

with the same differential equation as (3.3) describing the displacement of a fluid parcel

of temperature ϑr (or temperature Tr) in equilibrium with its ambient medium at the
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altitude z. Table 1.2 summarizes the stability properties of a stratification in temperature.

Therefore, the stability of the atmosphere is characterized by the lapse rate −g/Cp (a.k.a

dry adiabatic lapse rate). If air is lifted upwards, then its temperature will decrease as a

result of cooling when it expands in the lower pressure surroundings at a rate of −10 ◦C

for each km upwards. Taking into account the humidity of air, a more realistic order of

magnitude for the lapse rate3 is −6 ◦C.

Table 3.2: Different types of stratification in temperature.

dθ0

dz

dT0

dz
stratification N2

> 0 > − g

Cp

stable > 0

= 0 = − g

Cp

neutral = 0

< 0 < − g

Cp

unstable < 0

The nearly universal stratification of the ocean4 (apart from very-near surface area)

strongly differs from the underlying physics of the atmosphere which often drive statically

neutral or unstable regions susceptible to convective instabilities5. Moreover, in the ocean,

the combination of salinity and temperature effects on density variations adds another

complexity when defining the buoyancy frequency N and can be source of ambiguity if not

precised. In this investigation, the numerical models of the deep ocean in the GCM assume

a vertical density profile based on temperature variations, whereas in our experimental

part, density variations are achieved by introducing salted water in the flume.

3.2 Inertial oscillations induced by Earth rotation

Considering a fluid parcel of velocity u, Earth rotation is physically modeled through

the introduction of an inertial force equal to −2Ω×u per mass unit where Ω is the Earth

rotation rate vector (of norm Ω = 2π day−1 = 0.73 × 10−4 s−1). For large-scale geophysical

flows, it can be shown that this expression simplifies as (fv,−fu, 0) in a (x, y, z) frame

attached to the fluid parcel where z is the local vertical direction, f = 2Ω sin λ being

3. a.k.a wet adiabatic lapse rate.
4. Regions of neutral and unstable stratification developed in the ocean tend to last for hours at most,

occupy lateral areas of a few kilometers, and have a wide range of vertical scales (see Wunsch and Ferrari
(2004) for more details).

5. A convective situation develops as the heavier fluid moves into the lighter fluid beneath it.
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3.2. Inertial oscillations induced by Earth rotation

the planetary vorticity, more commonly referred as the Coriolis parameter or Coriolis

frequency, and λ the latitude of the fluid parcel. f is positive in the northern hemisphere

and negative in the southern and its magnitude |f | varies between 0 at the equator

and 1.4 × 10−4 s−1 at the poles. From the expression of the Coriolis force, Earth rotation

induces purely horizontal motions so we restrict the further analysis to the local horizontal

plane (x, y). In the inviscid (non-viscous and non-diffusive) medium without convection,

stratification and pressure gradients, the momentum equations of the fluid parcel boil

down to:

du

dt
= fv (3.6)

dv

dt
= −fu (3.7)

where the two first equations can be rewritten V̇ + ifV = 0 using the complex change

of variable V = u + iv. Without loss of generality, solving for V with initial conditions

(u(0), v(0)) = (u0, 0) with u0 > 0 implies V = u0 exp(−ift). We take the imaginary and

the real parts to recover:

u = u0 cos(ft) (3.8)

v = −u0 sin(ft) (3.9)

so that the magnitude of the velocity vector ∥u∥ =
√
u2 + v2 is constant and equal to u0.

As (u, v) = ( ˙δx, δ̇y) where (δx, δy) are the local horizontal displacement from a defined

initial location, we get by integration δx = u0/f sin(ft) and δy = u0/f cos(ft), so the

trajectory of the fluid parcel is a circle of radius6 u0/f in the horizontal plane (x, y)

described by the equation δx2 + δy2 = (u0/f)2 in local displacement coordinates. In the

horizontal plane, the fluid parcel rotates clockwise in the northern hemisphere where f > 0

and counterclockwise in the south with a period 2π/f equal to 12 h at the poles which

increases toward the equator and becomes infinite at the equator because the Coriolis

force has no impact on the fluid at the equator. Such a period is called inertial period

and the associated motions are inertial oscillations of frequency f . In the ocean, the order

of magnitude for the velocity is u0 = 0.1 m/s, so at mid-latitude f = 10−4 s−1, inertial

oscillations of period 2π/f = 15 h and radius u0/f = 1 km occur. At mid-latitude in the

atmosphere where typically u0 = 10 m/s, inertial oscillations over the same period are

observed but with radius u0/f = 100 km.

6. a.k.a. inertial radius. If v(0) = v0 ̸= 0, then the trajectory is a circle of inertial radius
√

u2

0
+ v2

0
/f
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Chapter 4

Theoretical aspects for the dynamics

of internal waves

Part 4.1 derives internal waves from the equations of geophysical fluid dynamics lin-

earized around a base state, a method directly inspired from Gill’s classical textbook

(1982)1. Then, part 4.2 focuses on those dynamical equations in the weakly nonlinear

regime where three internal waves can interact and resonate together through triadic res-

onant instability (TRI). Hence, the following derivations are inspired from McEwan and

Plumb (1977)2 who investigated the properties of the triadic resonant instability for in-

ternal waves in the purely stratified case. We extend their work to the stratified rotating

case.

4.1 Linear theory

The dynamical behavior of a fluid parcel of velocity u immersed in an incompressible

medium (of the same fluid), characterized by its density ρ, pressure field p, viscosity µ

and diffusivity κ, is given by a set of three equations from fluid mechanics theory, namely

the incompressibility (4.1), mass-conservation3 (4.2), and Navier-Stokes (4.3) equations:

∇ · u = 0 (4.1)

Dtρ = κ∇2ρ (4.2)

ρDtu = −∇p+ ρg − ρf (ez × u) + µ∇2u (4.3)

where g is the gravity, f the Coriolis parameter introduced in part 1.2, (∇,∇2) denote

respectively the gradient and laplacian operators, and Dt the particle derivative, which

is the sum of the temporal and the convective derivatives Dt = ∂t + u · ∇. We use the

Reynolds decomposition to model the disturbance of the density, pressure and velocity

1. Gill, op. cit.
2. McEwan and Plumb, op. cit.
3. a.k.a. continuity equation.
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fields:

ρ = ρ+ ρ′, p = p+ p′, u = u′ (4.4)

where the prime over each physical quantity corresponds to the disturbance, or perturbed

fields at the first order with ρ′ ≪ ρ and p′ ≪ p, and the bar to each field at rest, which

only depends on z. The velocity field at rest is assumed to be 0 (motionless basic state).

The pressure and density fields at rest follow the hydrostatic balance:

p,z = −ρg (4.5)

For sake of clarity, we denote the partial derivative of a field A with respect to a

variable q, ∂qA = A,q. At the leading order of perturbations, the dynamical equations

(4.1), (4.2) and (4.3), combined with (4.5), result in the following linearized equations:

∇ · u = 0 (4.6)

ρ′
,t + (u′ · ∇) ρ = κ∇2ρ′ (4.7)

ρu′
,t = −∇p′ + ρ′g − ρf (ez × u) + µ∇2u′ (4.8)

We consider a 2D-3C4 model so that all the physical quantities considered in a (x, y, z)

Cartesian space5 are invariant by translation along the y axis i.e. ∂y = 0. From now

on, vector fields written with only two components refer to the two main directions of

our model (x, z), e.g. in the Cartesian basis (ex, ey, ez) corresponding to coordinates

r = (x, y, z), A = (Ax, Ay, Az) = Axex +Ayey +Azez v.s. A = (Ax, Az) = Axex +Azez.

As ∇ = (∂x, ∂z) and ∇2 = ∂2
x + ∂2

z , the projections of the linearized equations (4.6),(4.7)

and (4.8) in Cartesian coordinates are, under Boussinesq approximation6:

u,x + w,z = 0 (4.9)

b,t +N2w = κ∇2b (4.10)

u,t = −P,x + fv + ν∇2u (4.11)

v,t = −fu+ ν∇2v (4.12)

w,t = −P,z + b+ ν∇2w (4.13)

4. A model which allows variations along two main dimensions/axis (2D), and composed of three
components (3C).

5. where x is the zonal direction (west-to-east), y is the meridional direction (south-to-north), and z
the vertical axis (low-to-high).

6. Boussinesq approximation assumes weak density fluctuations ρ′ compared to the mean value ρr,
the direct consequence being the possibility to replace ρ by ρr except when multiplied by g.
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4.1. Linear theory

where N is the buoyancy frequency defined in (3.2), the density field at rest being the

sum of a reference density ρr with the background density profile ρ0(z), ρ = ρr + ρ0

with ρr ≫ ρ′, and b = −gρ′/ρr is the buoyancy field, ν = µ/ρr the kinematic viscosity,

P = p′/ρr the normalized pressure field associated to the disturbance, u′ = u = (u, v, w)

the perturbed velocity field, so the disturbance is characterized by the perturbed fields

(u, P, b). From (4.9), we can introduce the streamfunction ψ so that:

u = ψ,z, w = −ψ,x (4.14)

and rewrite (4.10)-(4.13) as:

b,t −N2ψ,x = κ∇2b (4.15)

ψ,zt = −P,x + fv + ν∇2ψ,z (4.16)

v,t = −fψ,z + ν∇2v (4.17)

ψ,xt = P,z − b+ ν∇2ψ,x (4.18)

so the derivative of (4.16) with respect to z added to the derivative of (4.18) with respect

to x leads to the following set of equations in variables (ψ, b, v):

b,t −N2ψ,x = κ∇2b (4.19)

∇2ψ,t = fv,z − b,x + ν∇4ψ (4.20)

v,t = −fψ,z + ν∇2v (4.21)

and combining (4.19), (4.20) and (4.21) leads to the wave equation of internal waves:

∇2ψ,tt +N2ψ,xx + f 2ψ,zz = ν∇4ψ,t + fν∇2v,z − κ∇2b,x (4.22)

Some key properties of internal waves

We investigate an inviscid7 medium to capture the internal wave dynamics. In this

case, the right hand side of the equation (4.22) is zero since ν = κ = 0:

∇2ψ,tt +N2ψ,xx + f 2ψ,zz = 0 (4.23)

7. non-viscous and non-diffusive medium.
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For 2D wavelike solutions in complex notations of the form:











ψ

v

b











=











Ψ0

V0

B0











exp i(kx0x+ kz0z − ω0t) + c.c (4.24)

with complex amplitudes (Ψ0, V0, B0), real frequency ω0 and wave vector k0 = (kx0, kz0)

of norm k0 =
√

k2
x0 + k2

z0, and where c.c denotes the complex conjugate, the polarization

relations resulting from (4.19) and (4.21) are:

V0 =
fkz0

ω0

Ψ0 (4.25)

B0 = −N2kx0

ω0

Ψ0 (4.26)

implying that the model is described by only two components (ψ, b) in the purely stratified

case, and (ψ, v) purely rotating case, whereas in the stratified rotating case, the three

components remain (ψ, v, b). Equation (4.22) reduces to the dispersion relation of internal

waves:

ω2
0 =

(

N
kx0

k0

)2

+

(

f
kz0

k0

)2

= (N sin θ0)
2 + (f cos θ0)

2 (4.27)

where θ0 is the angle defined by k0 = k0(sin θ0, cos θ0) so L0 = 1/k0 appears to be the

typical length scale of the internal wave. Since f < N in geophysical applications (see

part 1.1 and 1.2), internal waves propagate if f ≤ |ω0| ≤ N . The sign of ω0 is denoted

s0 = sign(ω0) so the associated phase and group velocities defined by:

c0 =
ω0

k0

k0

k0

, cg =
∂ω0

∂kx0

ex +
∂ω0

∂kz0

ez (4.28)

are explicitly evaluated:
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Figure 4.1: Surfaces of equal frequencies ω0 given by (4.27) for angles θ0 ranging from 0
to π/2 corresponding to different values of ω0/N indicated on the figure. Internal waves
propagate if f/N ≤ ω0/N ≤ 1, resulting in perpendicular group and phase velocity vectors
(cg, c0) indicated on the figure. Inspired from Gill’s textbook (1982) p.134

When f ≤ |ω0| ≤ N , internal waves propagate with phase and

group velocity vectors equal to:

c0 = s0
|ω0|
k0

(sin θ0ex + cos θ0ez) (4.29)

cg = s0
N2 − f 2

|ω0|k0

cos θ0 sin θ0(cos θ0ex − sin θ0ez) (4.30)

therefore:

c0 · cg = 0 (4.31)

and c0×cg = −(N2−f 2)/k2
0 cos θ0 sin θ0ey, meaning that the phase

and group velocities of internal waves are orthogonala, the phase

velocity being along the direction s0k0.

a. (c0, cg, −ey) form a direct orthogonal system when 0 ≤ θ0 ≤ π/2.

Phase and group velocities

Surfaces of equal frequencies ω0 are cones of angle θ0 with respect to the vertical axis

and are represented in figure 4.1. Indeed, the dispersion relation (4.27) verifies ω0(θ0) =

ω0(−θ0) = ω0(π−θ0) = ω0(π+θ0), so one frequency leads to four possible waves in a (x, z)

plane forming a St. Andrew’s Cross as illustrated in figure 4.2 from Mowbray and Rarity

(1967)8. The first wave has wave vector and frequency (k0, ω0), the second (−k0, ω0), the

third (ks, ω0), and the fourth (−ks, ω0) with ks = (−kx0, kz0).

The convective term being zero in the linearized equation, we can infer the trajectory

8. Mowbray and Rarity, op. cit.
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Figure 4.2: a) Pattern of internal waves, referred to as St Andrew’s Cross, generated
experimentally by an oscillating cylinder in a stratified fluid and observed by toepler-
schlieren technique from Mowbray and Rarity (1967). In the top figure ω/N = 0.9, in the
left bottom figure ω/N = 0.7 and the bottom right figure shows the fluid at rest when
the cylinder is not moving. b) Group and phase velocity vectors along the four rays of the
St Andrew’s Cross for a fixed frequency ω0(θ0) given by the dispersion relation (4.27).
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Figure 4.3: Elliptic trajectory of a fluid parcel, the motion being confined to the plane
perpendicular to the wave vector (X,Y ). The Z axis is oriented toward k0 which forms
an angle θ0 with the vertical z.

of the fluid parcel as the particle derivative is exactly equal to the time derivative. Identi-

cally to part 1.1, we define the local displacement (δx, δy, δz) in the Cartesian coordinate

system (x, y, z) so that (u, v, w) = ( ˙δx, δ̇y, δ̇z). For wavelike solutions, the incompress-

ible condition (4.1) implies that the movement of the fluid parcel is in a plane normal

to the wave vector k0. Therefore, the trajectories have a simple form in the new tilted

coordinate system (X,Y, Z) where the vertical Z is aligned with k0 as represented in

figure 4.3. Let (δX, δY, δZ) be the displacement in the tilted coordinate system so that

δX = (cos θ0)δx−(sin θ0)δz, δY = δy and δZ = (sin θ0)δx+(cos θ0)δz. With this change of

coordinate, (4.11)-(4.13) in the inviscid case (ν = κ = 0) lead to the following equations in

displacement at a fixed Z, ¨δX = − (N sin θ0)
2 δX+(f cos θ0) ˙δY and ¨δY = − (f cos θ0) ˙δX.

We use the dispersion relation (4.27) to obtain ¨δX + ω2
0δX = 0. Solving for initial condi-

tions (δX(0), δY (0)) = (δX0, 0) and ( ¨δX(0), ¨δY (0)) = (0, 0), we get δX = δX0 cosω0t and

δY = δY0 sinω0t with δY0 = − (f cos θ0/ω0) δX0. Combining those parametric equations,

the trajectory of the fluid parcel is described in Cartesian coordinate by the equation:

(

δX

δX0

)2

+

(

δY

δY0

)2

= 1 (4.32)

with |δY0| = |f cos θ0/ω0||δX0| ≤ |δX0| so the fluid parcel has an elliptic trajectory in a

plane normal to k0 with radii |δX0| and |δY0|. In the purely rotating case, |δY0| = |δX0|
so we recover the inertial oscillations described in part 1.2 with circular trajectories of

frequency f . In the purely stratified case, the particle has an oscillating trajectory following

the X axis, same as in part 1.1 but tilted by an angle θ0 with respect to the vertical due

to gradients of the perturbed pressure field.

4.1.1 Energy transport

The total energy of internal waves is derived by writing (4.7) and (4.8) as followed:
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b,t +N2w = 0 (4.33)

u,t = −∇P + bez − f (ez × u) (4.34)

Keeping in mind (4.1), we combine (4.33) and (4.34) to get the energy balance equation:

etot,t = −∇ · S (4.35)

the total energy etot being the sum of the kinetic and potential energies per mass unit, ek

and ep:

etot = ek + ep, ek =
1

2
u2, ep =

1

2

(

b

N

)2

(4.36)

and the wave energy flux9 S defined by S = Pu. The ratio of kinetic to potential energies

is then:

ek

ep

= 1 +

(

f

N
cot θ0

)2

(4.37)

hence, the equipartition of kinetic and potential energy is only ensured for internal gravity

waves, but not for inertial waves as f increases. For wavelike solutions (4.24), the equations

(4.14), (4.15), (4.17) and (4.17) become in complex notations:

u = ikz0ψ (4.38)

v =
fkz0

ω0

ψ (4.39)

w = −ikx0ψ (4.40)

P = i
kx0

kz0

(

N2

ω
− ω

)

ψ (4.41)

b = −N2kx0

ω0

ψ (4.42)

so the mean10 total energy and the mean energy flux of a single internal wave (4.24) is:

⟨etot⟩r,t =

⟨

1

2
(u2 + v2 + w2) +

1

2

(

b

N

)2 ⟩

r,t

=
|k0Ψ0|2

4
= Φ2

0 (4.43)

⟨S⟩r,t = ⟨Pu⟩r,t = cg⟨etot⟩r,t (4.44)

9. a.k.a the Poynting vector by analogy to electromagnetic waves energy balance.
10. averaged in space r = (x, y, z) and time t.
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4.1. Linear theory

where the brackets denote the space-time average and Φ0 = k0Ψ0/2. The previous expres-

sion remains true in the purely stratified or purely rotating cases. From (4.44), the energy

flux is directed toward cg, hence internal waves transport energy in the direction given

by the group velocity. Let E = ⟨etot⟩r be the spatial mean of the total energy, then (4.35)

implies the conservation of E .

4.1.2 Geometrical aspects and hydrostatic approximation

The aspect ratio of an internal wave r is defined as the ratio of vertical to horizontal

scales:

r =
kx0

kz0

= ±
√

√

√

√

ω2
0 − f 2

N2 − ω2
0

= ± tan θ0 (4.45)

so that the dispersion relation (4.27) becomes11:

(

ω

N

)2

=
1

1 + r2



r2 +

(

f

N

)2


 (4.46)

First case: the non-hydrostatic regime

r ≥ 1 ⇒
(

ω0

N

)2

∼ r2

1 + r2
(4.47)

Vertical scales are dominating horizontal scales so that the Coriolis effects can be

neglected. The perturbed pressure and density fields then obey to:

ρrw,t = −iω0ρrw = −p′
,z − ρ′g (4.48)

In this regime, r ≥ 1 so ω0/N can not be neglected. Hence the non-hydrostatic balance

(4.5) can not be extended to the perturbed pressure and density fields.

Second case: hydrostatic non-rotating regime

f

N
≪ r ≪ 1 ⇒

(

ω0

N

)2

∼ r2 (4.49)

Horizontal scales dominate vertical scales, the Coriolis effects are second order effects.

Due to the small value of aspect ratio corresponding to small angles θ0 ≪ 1 and small

frequency ω0/N , the perturbed pressure and density fields follows a relation identical to

the hydrostatic balance (4.5), meaning that (4.48) becomes:

p′
,z = −ρ′g (4.50)

11. f/N is commonly called the Prandtl ratio.
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Third case: hydrostatic rotating regime

r ≤ f

N
⇒

(

ω0

N

)2

∼ r2 +

(

f

N

)2

(4.51)

Horizontal scales dominate vertical scales, the Coriolis effects, but the Coriolis effects

can not be neglected. Here again, small values of aspect ratio implies the extended hydro-

static balance to the perturbed pressure and density fields, so (4.50) is also valid in this

regime.

r ≪ 1 ⇒ p′
,z = −ρ′g (4.52)

Hydrostatic approximation

4.2 Weakly nonlinear interaction between internal waves

We define all the following dimensionless variables:

r̃ → r

L0

(4.53)

t̃ → Nt (4.54)

ψ̃ → ψ

NL2
0

(4.55)

b̃ → ψ

N2L0

(4.56)

ṽ → v

L0/N
(4.57)

Dimensionless quantities such as the Prandtl ratio, the dimension-

less viscosity and diffusivity are then defined by:

f̃ → f

N
(4.58)

ν̃ → ν

NL2
0

(4.59)

κ̃ → κ

NL2
0

(4.60)

Dimensionless quantities

From now on, all the equations are dimensionless and for the sake of simplicity, we

drop the tilde for all dimensionless variables and ratios defined above. In the former

equations (4.2) and (4.3), the convective term can be written using the streamfunction ψ
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4.2. Weakly nonlinear interaction between internal waves

as (u·∇)u = −J(ψ,u) and (u·∇)b = −J(ψ, b), with the Jacobian J(f, g) = f,xg,z−g,xf,z.

The non-dimensional dynamical equations are:

b,t − ψ,x = J(ψ, b) + κ̃∇2b (4.61)

v,t + f̃ψ,z = J(ψ, v) + ν̃∇2v (4.62)

∇2ψ,tt + ψ,xx + f̃ 2ψ,zz = J(ψ,∇2ψ),t − J(ψ, b),x − f̃J(ψ, v),z

+ ν̃∇4ψ,t + f̃ ν̃∇2v,z − κ̃∇2b,x

(4.63)

We now take into account the slow variations of amplitude in time so that the per-

turbed fields (4.4) have space-time dependencies of the form:

ψ = FrΨ(T )f(r, t) + O(Fr2) (4.64)

v = FrV (T )g(r, t) + O(Fr2) (4.65)

b = FrB(T )h(r, t) + O(Fr2) (4.66)

with the introduction of the expanded scale T = Frt, Fr being the Froude number, a

dimensionless measure of amplitudes. Time derivatives become ∂t = ∂t + Fr∂T , then to

leading order, providing (ν̃, κ̃) ≪ Fr:

b,t = ψ,x (4.67)

v,t = −f̃ψ,z (4.68)

∇2ψ,tt = −ψ,xx − f̃ 2ψ,zz (4.69)

which admit wavelike solutions of the form:

ψ =
∑

n

Ψn(T ) exp i(kxnx+ kznz − ωnt) + c.c (4.70)

v =
∑

n

Vn(T ) exp i(kxnx+ kznz − ωnt) + c.c (4.71)

b =
∑

n

Bn(T ) exp i(kxnx+ kznz − ωnt) + c.c (4.72)

whose wave frequency ωn and wave vector kn = (kxn, kzn) = kn(sin θn, cos θn) are con-

nected through the dispersion relation (4.25) and the amplitudes (Ψ0, V0, B0) through the

polarization relations (4.26):
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The dispersion relation resulting from (4.69) is:

ω2
n =

(

kxn

kn

)2

+

(

f̃
kzn

kn

)2

= sin θn
2 + (f̃ cos θn)2 (4.73)

and the polarization relations from (4.67) and (4.68):

Vn =
f̃kzn

ωn

Ψn, Bn = −kxn

ωn

Ψn (4.74)

with n arbitrary but with anticipation to the resonance condition

n = 0, 1, 2 for triadic resonance, n = 0 being the basic state.

Dispersion and polarization relations

and the non-dimensionalized amplitude of the primary wave n = 0 is chosen such that

Ψ0(0) is unity giving the definition of the Froude12 number Fr = Ψ0(0)/(NL2
0).

To next order in Fr,

2∇2ψ,tT = J(ψ,∇2ψ),t − J(ψ, b),x − f̃J(ψ, v),z

+
ν̃∇4ψ

(res)
,t + f̃ ν̃∇2v(res)

,z − κ̃∇2b,x

Fr

(4.75)

with superscript (res) gathering all resonant forcing terms such that the triadic resonance

condition is fulfilled:

The wave frequencies ωn and wave vectors kn = (kxn, kzn) obey:

ω0 + ω1 + ω2 = 0 (4.76)

k0 + k1 + k2 = 0 (4.77)

Triadic resonance conditions

Replacing (4.73), and (4.74) in (4.75), we get (∂T +Fr−1(ν+κ)k2
n/2)Ψn = iSnΨ∗

pΨ∗
q where

(n, p, q) are any circular permutations of (0, 1, 2), and Sn are the interaction coefficients:

Sn =
kxpkzq − kxqkzp

2k2
n

(

k2
q − k2

p +
kxn

ωn

(

kxq

ωq

− kxp

ωp

)

+
f̃ 2kxn

ωn

(

kxq

ωq

− kxp

ωp

))

(4.78)

12. where (Ψ0(0), N, L0) are dimensional.
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Setting λn = k2
n/2 and R = Re/(1 + 1/Pr) with the Reynolds and Prandtl numbers,

Re = Ψ0(0)/ν and Pr = ν/κ, the change of variable ψ → e−iπ/3ψ gives the triadic

resonance equations:

dΨn

dT
+
λn

R
Ψn = SnΨ∗

pΨ∗
q (4.79)

From now on, the Prandtl ratio will be denoted f/N instead of f̃ . The dispersion

relation (4.73) can also be written k2
n = (kxn/ωn)2 +(f/N)2(kzn/ωn)2, so we can write the

interaction coefficient Sn in a compact form:

Sn =
1

2k2
n



Λx

(

1

cxq

− 1

cxp

)

+

(

f

N

)2

Λz

(

1

czq

− 1

czp

)



 (4.80)

where (Λx,Λz) are defined by:

Λx =
∆

k0k1k2

(

1

cx0

+
1

cx1

+
1

cx2

)

(4.81)

Λz =
∆

k0k1k2

(

1

cz0

+
1

cz1

+
1

cz2

)

(4.82)

∆ being twice the area of the triangle (k0,k1,k2):

∆ = kx1kz2 − kx2kz1

= kx2kz0 − kx0kz2

= kx0kz1 − kx1kz0

(4.83)

so that:

Λx = 0 if N = 0

Λz = 0 if f = 0
(4.84)

4.2.1 Triadic equations in the inviscid case

In the inviscid case, λn = 0 and (4.79) implies the conservation of three invariants.

Let Φn = knΨn/2 be the normalized amplitude and φ the phase of Φ0Φ1Φ2 so that the

total energy (sum of the kinetic and potential energies) and wave action of the n-th wave

are En = |Φn|2 and An = En/ωn = |Φn|2/ωn. Then13:

13. Weiland and Wilhelmsson, op. cit.
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The total energy, pseudomomentum vector, and Hamiltonian, re-

spectively defined by:

E =
∑

n

Anωn, P =
∑

n

Ankn, K = |Φ0Φ1Φ2| sinφ (4.85)

are conserved by the triadic equations (4.79) in the inviscid case

(λn = 0).

Conservation laws

The pseudomomentum vector P is a characteristic intrinsic to the wave which needs

to be distinguished from the momentum vector M, a characteristic of the matter (fluid

parcels here). In general, P ̸= M as reminded by Pippard (1992)14 when investigating

the properties of wave reflection on an obstacle in quantum mechanics, the most obvious

example being the photon in quantum mechanics which has no mass so M = 0, yet

P = ℏk, ℏ being the quanta of energy and k the wave vector. More precisely, when an

electromagnetic wave reflects on an obstacle, the radiation pressure and associated force

exerted on the surface of the obstacle results from the rate of change of pseudomomentum

of the wave. P is also called quasi-momentum or crystal momentum vector in the case

of electrons moving through a crystal lattice in which P ̸= M. The only case where

P = M is for free particle (no constraints on their mass or on their movement i.e. no

force exerted).

The triadic equations (4.79) when λn = 0 are written in different forms in the liter-

ature, depending on the chosen definition of the wave amplitudes. To demonstrate those

conservation laws, we will use these different formulations15. Here is a quick overview:

The amplitude Ψn of the streamfunction ψn follows:

dΨn

dT
= SnΨ∗

pΨ∗
q (4.86)

(n, p, q) being any circular permutation of (0, 1, 2) and Sn being

defined in (4.80).

Formulation 1

14. A. B. Pippard, “Momentum and pseudo-momentum: I. classical pseudo-momentum and wave pres-
sure”, in: Eur. J. Phys. 13.2 (Mar. 1992), pp. 82–87.

15. The three formulations listed here are inspired from the works of McEwan and Plumb (1977) for
formulation 1, of Waleffe (1992) for formulation 2, and of Hasselmann (1967) for formulation 3.
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4.2. Weakly nonlinear interaction between internal waves

With the change of variable Φn = knΨn/2:

dΦn

dT
= LnΦ∗

pΦ∗
q (4.87)

(n, p, q) being any circular permutation of (0, 1, 2) and:

Ln = Λx

(

1

cxq

− 1

cxp

)

+

(

f

N

)2

Λz

(

1

czq

− 1

czp

)

(4.88)

and (Λx,Λz) being defined in (4.81) and (4.82).

Formulation 2

With the change of variable an = Φn/ωn = knΨn/(2ωn):

ωn
dan

dT
= Λa∗

pa
∗
q (4.89)

Note that, in this form, the interaction coefficient is the same for

all three equations:

Λ = Λx(kxqωp − kxpωq) +

(

f

N

)2

Λz(kzqωp − kzpωq) (4.90)

(p, q) being either (0, 1), (1, 2), or (2, 0).

Formulation 3

Note that in those expressions, (Λx,Λz,Λ) are constant since they involve terms that

remains identical by any circular permutation (n, p, q) of (0, 1, 2).

Using the last form (4.89), we get the Manley-Rowe relations (1956)16 which state

that:

The wave action of each wave n, An = En/ωn = |Φn|2/ωn =

(ωnan)a∗
n, satisfies An,T = 2Λℜ(a0a1a2), implying:

dA0

dT
=
dA1

dT
=
dA2

dT
(4.91)

Manley-Rowe relations (1956)

16. Manley and Rowe, op. cit.
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introducing three quadratic invariants A0−A1 = |Φ0|2/ω0−|Φ1|2/ω1, A1−A2 = |Φ1|2/ω1−
|Φ2|2/ω2, and A2 − A0 = |Φ2|2/ω2 − |Φ0|2/ω0. Hence, as

∑

n ωn = 0 and
∑

n kn = 0 at

resonance:

dE
dT

=
d

dT

∑

n

Anωn = 2Λℜ(a0a1a2)
∑

n

ωn = 0 (4.92)

dP

dT
=

d

dT

∑

n

Ankn = 2Λℜ(a0a1a2)
∑

n

kn = 0 (4.93)

resulting in the conservation of the total energy and pseudomomentum vector. It can be

shown that this conservation is strictly equivalent to the Manley-Rowe relations at reso-

nance. Indeed, if
∑

n ωn = 0 and
∑

n kn = 0, then the vector 1 = (1, 1, 1) is orthogonal

to Ω = (ω0, ω1, ω2), Kx = (kx0, kx1, kx2) and Kz = (kz0, kz1, kz2)
17. Assuming the conser-

vation of energy and pseudomomentum, we get
∑

n An,Tωn = 0 and
∑

n An,T kn = 0, so

that vector A,T = (A0,T ,A1,T ,A2,T ) is also orthogonal to Ω, Kx and Kz. As Ω and Kx

are different from the dispersion relation, they generate a plane (Π) of normal vector 1 as

shown in figure 4.4. So A,T is orthogonal to this plan, hence colinear to 1 which results in

the Manley-Rowe relations. This proof also shows that one component of the pseudomo-

mentum along with the conservation of energy, leading to two quadratic invariants in |Φn|,
is sufficient to describe the dynamics of triadic interaction for real amplitudes. In fact, as

Ω, Kx and Kz are all different but belong to the same plane, we can find constants such

that Kz is expressed as a linear combination of Ω and Kx. Thus, at resonance, either

Manley-Rowe relations, or equivalently the conservation of energy and pseudomomentum,

give rise to two independent quadratic invariants. With (4.87) (or equivalently (4.86) or

(4.89)) having effectively 6 equations (for the three amplitudes modulus |Φn|, n being 0,

1 or 2, and their three associated phases, or equivalently real and imaginary parts of ϕn),

we demonstrate that the triadic equations actually constraint the time evolution of the

total phase φ of Φ0Φ1Φ2.

We use (4.87) again to prove the existence of a third invariant, the Hamiltonian. For

χ = Φ0Φ1Φ2 = |χ|eiφ, φ being the phase of Φ0Φ1Φ2:

arg

(

dχ

dT

)

= arctan

(

|χ|φ,T

|χ|,T

)

+ φ mod 2π (4.94)

and using (4.87), we find that χ,T is real so arg(χ,T ) = 0 mod π, and taking the tangent

of the previous equality, we find after multiplying by |χ|,T cosφ:

|χ|dφ
dT

cosφ+
d|χ|
dT

sinφ =
d|χ| sinφ

dT
= 0 (4.95)

17. with respect to the canonical scalar product a · b =
∑

n anbn, with a = (a1, a2, a3) and b =
(b1, b2, b3).
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4.2. Weakly nonlinear interaction between internal waves

Figure 4.4: Orthogonality of 1 and A,T to the plane (Π) containing (Ω,Kx,Kz).

which implies that K = |Φ0Φ1Φ2| sinφ is constant. K is referred to as the Hamiltonian in

the literature when investigating properties of three-wave interaction equations in classical

problems such as the swinging spring18, or capillary-gravity waves19. The universality of

three wave resonance in various fields of physics including optics, electronics, plasma

physics and fluid originates from common dynamics, fully described by a set of general

conservative equations for resonance, the so-called three wave interaction equations:

At resonance
∑

n ωn = 0 and
∑

n kn = 0, the renormalized ampli-

tudes An = C
√

|ωn|an obey to:

dAn

dT
= snA

∗
pA

∗
q (4.96)

sn being the sign of ωn and C = Λ/
√

|ωnωpωq| a normalization

factor.

General form of the three waves interaction equations

4.2.2 Linearized triadic system

From now on, we set the energy norm to be the Euclidean norm so that, in equations

(4.85), the energy, pseudomomentum and phase invariant are now given by:

E =
∑

n

|Φn|2, P =
∑

n

kn

ωn

|Φn|2, K = |Φ0Φ1Φ2| sinφ (4.97)

with this specific choice, the triadic equations (4.87) read:

18. D. D. Holm and P. Lynch, “Stepwise Precession of the Resonant Swinging Spring”, in: SIAM J.
Appl. Dyn. Syst. 1.1 (Jan. 2002), pp. 44–64.

19. McGoldrick, op. cit.
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dΦ0

dt
= L0Φ

∗
2Φ

∗
1 (4.98)

dΦ1

dt
= L1Φ

∗
0Φ

∗
2 (4.99)

dΦ2

dt
= L2Φ

∗
1Φ

∗
0 (4.100)

where Φ∗
n is the complex conjugate of Φn and the interaction coefficients Ln are expressed

using the phase velocities cn = (cxn, czn) = (ωn/kxn, ωn/kzn):

L0 = Λx

(

1

cx2

− 1

cx1

)

+

(

f

N

)2

Λz

(

1

cz2

− 1

cz1

)

(4.101)

L1 = Λx

(

1

cx0

− 1

cx2

)

+

(

f

N

)2

Λz

(

1

cz0

− 1

cz2

)

(4.102)

L2 = Λx

(

1

cx1

− 1

cx0

)

+

(

f

N

)2

Λz

(

1

cz1

− 1

cz0

)

(4.103)

The nonlinear triadic equations (4.98)-(4.100) is linearized assuming that one wave,

let’s say Φ0, referred to as the primary wave, has an amplitude much greater than the

two other waves, Φ1 and Φ2 called secondary waves:

The primary wave amplitudes Φ0 and the secondary waves ampli-

tudes Φ1 and Φ2 are such that:

|Φ1| ≪ |Φ0|, and |Φ2| ≪ |Φ0| (4.104)

Pump wave approximation

This means that Φ1 and Φ2 act as an infinitesimal perturbation of the base state Φ0,

the corresponding perturbation energy being equal to e = |Φ1|2 + |Φ2|2 and verifying

e ≪ E . The secondary waves varies much more than the primary, so the pump wave

approximation implies:

dΦ0

dT
= 0 (4.105)

and the triadic equations (4.98)-(4.100) can be linearized around the base state Φ0:
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Under the pump wave approximation, the triadic equations read:

dΦ′

dT
= L Φ

′∗, with L =





0 L1

L2 0



 (4.106)

where Φ
′ = (Φ1,Φ2), when setting, without loss of generality, E = 1

and Φ0 real, close to unity, so that e = ∥Φ
′∥2 ≪ 1, ∥Φ

′∥2 = |Φ1|2 +

|Φ2|2 being the 2D Euclidean norm.

Linearized triadic equations

Knowing that the interaction coefficients are such that ω0L1ω2 = ω1L2ω0, if (s0, s1, s2)

are the signs of (ω0, ω1, ω2), we get the following stability criterion20 for the linearized

system (4.106):

With the chosen convention for resonance given by (4.76) and

(4.77), the linear stability of the solutions of (4.106) is given by

the sign of L1L2, which verifies:

sign(L1L2) = s1s2 (4.107)

so that, if s1s2 > 0, the system is linearly unstable, whereas, if

s1s2 < 0, the system is linearly stable.

Hasselmann criterion (1967)

If we fix s0 = +1, then, as |ω0| + s1|ω1| + s2|ω2| = 0, all the possible sign combinations

(s0, s1, s2) are (+,+,+), which is linearly unstable, (+,+,−) and (+,−,+), which are

both linearly stable. The (+,+,+) case leads to exponential growth of the amplitudes

(Φ1,Φ2), whereas the (+,+,−) and (+,−,+) cases result in bounded periodic oscillations.

The (+,+,−) and (+,−,+) are equivalent cases obtained by exchanging the roles played

by Φ1 and Φ2. Indeed, solving (4.106), we get, for n equals 1 or 2, and complex integration

constants (An, Bn, Cn, Dn):

Φn =







An exp (σth) +Bn exp (−σth) in the (+,+,+) case

Cn exp (iσth) +Dn exp (−iσth) in the (+,±,∓) cases
(4.108)

and the associated theoretical21 growth rate σth of the perturbation field (Φ1,Φ2) in the

20. Hasselmann, op. cit.
21. given by Hasselmann theory.
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steady state reached at longer times T then equals:

σth =







√
L1L2 in the (+,+,+) case

0 in the (+,±,∓) cases
(4.109)

The resonance conditions (4.76) and (4.77)22, combined with the dispersion relation

(4.73) gives:
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√

√
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√
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2

(kx0 + kx1)2 + (kz0 + kz1)2
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(4.110)

where (s0, s1, s2) are the signs of (ω0, ω1, ω2) respectively. Without loss of generality, we

can fix wave 0 such that s0 = +1, k0 = 1 and θ0 = 0.13 to plot the resonance locus

defined by the implicit equation (4.110) in a k1 plane on figure 4.5. For all geophysical

values of f/N from 0 to 0.15, the (+,+,+), (+,+,−) and (+,−,+), plotted in red, blue

and green lines respectively, follow Hasselmann criterion of linear stability, so that the

red curve (+,+,+) is linearly unstable, whereas, the blue and green curves, (+,+,−) and

(+,−,+) respectively, are linearly stable. Moreover, the plots on figure 4.5 exhibit the

same symmetries k → −k0 −k, as the curves are invariant by exchanging the roles played

by k1 and k2. So the properties captures by the green and blue curves are the same and

the roles played by the two portions of red curves (positive kz versus negative kz on figure

4.5) are strictly identical by exchanging k1 and k2. From this remark, we can focus on

the study of the linearly stable blue curve (+,+,−), and the linearly unstable red curve

(+,+,+) in the negative kz space, without loss of information.

22. Another possible convention would be ω0 = ω1 + ω2 and k0 = k1 + k2, e.g. Hasselmann (1967).
The chosen convention in this manuscript tends to "symmetrize" the roles played by waves 0, 1, and 2.
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4.2. Weakly nonlinear interaction between internal waves

Figure 4.5: Plots of the resonance locus in a (kx, kz) plane corresponding to the components
of the wave vector k1 for different values of f/N , 0 in a), 0.05 in b), 0.07 in c), 0.15 in
d). In all figures, the (+,+,+), (+,+,−) and (+,−,+) are plotted in red, blue and green
lines respectively, the wave vector k0 is plotted in dark arrow. On figure a), a resonant
triad located by point F is taken as an example by plotting k1 from the tip of k0 to point
F and k2 = −k0 − k1.
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Chapter 5

Transient growth, edge states and

repeller in rotating solid and fluid

(reprint Physical Review E)

5.1 Abstract

For the classical problem of the rotation of a solid, we show a somehow surprising

behavior involving large transient growth of perturbation energy that occurs when the

moment of inertia associated to the unstable axis approaches the moment of inertia of

one of the two stable axes. In that case, small but finite perturbations around this stable

axis may induce a total transfer of energy to the unstable axis leading to relaxation

oscillations where the stable and unstable manifolds of the unstable axis play the role of a

separatrix, an edge state. For a fluid in solid body rotation, a similar linear and nonlinear

dynamics apply to the transfer of energy between three inertial waves respecting the

triadic resonance condition. We show that the existence of large transient energy growth

and of relaxation oscillations may be physically interpreted as in the case of a solid by

the existence of two quadratic invariants, the energy and the helicity in the case of a

rotating fluid. They occur when two waves of the triad have helicities that tend towards

each other, when their amplitudes are set such that they have the same energy. We show

that this happens when the third wave has a vanishing frequency which corresponds to

a nearly horizontal wave vector. An inertial wave, perturbed by a small amplitude wave

with a nearly horizontal wave vector, will then be periodically destroyed, its energy being

transferred entirely to the unstable wave, although this perturbation is linearly stable,

resulting in relaxation oscillations of wave amplitudes. In the general case, we show that

the dynamics described for particular triads of inertial waves is valid for a class of triadic

interactions of waves in other physical problems, where the physical energy is conserved

and is linked to the classical conservation of the so-called pseudomomentum, which singles

out the role of waves with vanishing frequency.
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5.2 Rotating rigid body

The motion of a solid is a well-studied problem. For a non-symmetric rigid body, the

rotation around the two axes with the highest and the smallest moments of inertia are

stable whereas the intermediate axis is unstable resulting in the so-called tennis racket

effect1 (see video at https://www.youtube.com/watch?v=1VPfZ_XzisU). We re-

consider this classic example and show that surprising phenomena occur also for a rotation

around a stable axis when the smallest or the highest moment of inertia of the solid J1 or

J0 gets close to the intermediate one J2 and discuss the extension to conservative waves

systems.

The rotation of a rigid body in the reference frame with its axes fixed to the body

obey to2:

dM0

dt
=
(

1

J2

− 1

J1

)

M2M1

dM1

dt
=
(

1

J0

− 1

J2

)

M0M2

dM2

dt
=
(

1

J1

− 1

J0

)

M1M0

(5.1)

where M = (M0,M1,M2)
T is the angular momentum vector and 0 < J1 < J2 < J0 are the

moments of inertia. Equations (5.1) conserve the total energy E and the total momentum

M (with the change of variables M ′
n = Mn/

√
2Jn):

E =
∑

n

M ′2
n , M2 =

∑

n

2JnM
′2
n (5.2)

In a (M ′
0,M

′
1,M

′
2) space, the energy is the Euclidean norm and trajectories are given

by the intersection of the sphere of energy E and constant momentum ellipsoids with M2

between 2J1E and 2J0E . By rescaling the angular momentum, we may set E = 1. Figure

5.1 represents those intersections for different values of M2 when J2 = (1 − ε)J0 with

ε = 2.10−2 and J1 = (1 − Σ)J0 with Σ = 0.9. On the sphere, the point M
′
2

= (0, 0, 1)T is

unstable and surrounded locally by hyperbolic trajectories, the points M
′
1

= (0, 1, 0)T and

M
′
0

= (1, 0, 0)T are stable and surrounded by ellipses (in blue and red). The two basins of

solutions nutating around M
′
1

in blue or M
′
0

in red are separated by the separatrix given

by M2 = 2J2.

Linear perturbations (m′
0,m

′
1,m

′
2)

T around the stable point M
′
0

belong to the tangent

1. L. Van Damme, P. Mardesic, and D. Sugny, “The tennis racket effect in a three-dimensional rigid
body”, in: Physica D 338 (Jan. 2017), pp. 17–25.

2. L. Euler, “Du mouvement de rotation des corps solides autour d’un axe variable”, in: Memoires de
l’academie des sciences de Berlin 8.14 (1758), pp. 154–193.
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5.2. Rotating rigid body

Figure 5.1: Trajectories on the sphere unity E = 1 in the (M ′
0,M

′
1,M

′
2) space with

J2 = (1 − ε)J0, ε = 2.10−2, J1 = (1 − Σ)J0 and Σ = 0.9. The point M
′
1

= (0, 1, 0)T is
stable and close trajectories around M

′
1

are plotted in blue, M
′
0

= (0, 0, 1)T is stable too
and close trajectories around M

′
0

are in red.

Figure 5.2: Energy gain G defined in (5.4) as a function of time τ for the linearized
problem around the stable point M

′
0

= (0, 0, 1)T for Σ = 0.9 and ε = 2.10−1 (continuous
line), ε = 2.10−2 (dashed line) and ε = 2.10−3 (dotted line).
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plane m
′ = (m′

1,m
′
2)

T since dm′
0/dt = 0 at leading order:

dm′

dτ
= L m

′ with L =





0 −ε
Σ 0



 (5.3)

with τ = t
√

2/(1 − ε)(1 − Σ)J0. We define the optimal perturbation energy gain G as:

G (τ) = max
e(0)=1

e(τ) (5.4)

where e = m′2
1 +m′2

2 is the energy of the perturbation. When ε ̸= Σ, the evolution operator

L is nonnormal with respect to the classical Euclidean inner product, its associated norm

being the energy e, and L L T ̸= L TL . The energy gain G is plotted as a function of

time on figure 5.2. The gain is periodic and when ε decreases, the maximum value of G,

Gmax = Σ/ε, and the period of oscillations T = 2π/
√
εΣ increase. This transient growth

corresponds to the elongated elliptic trajectories around the stable point M
′
0

on figure

5.2.

For finite initial amplitude, the trajectories are no more on the tangent plane but on

the sphere meaning that to conserve energy, M
′
0

has to depart from unity. They keep being

closed around the point M
′
0

until they pass the separatrix that links the saddle M
′
2

and

−M
′
2

and crosses the M ′
2 = 0 plane on the point M

′
ε = (

√

1 − ε/Σ,
√

ε/Σ, 0)T. Therefore,

a perturbation of the point M
′
0

along the M
′
1

axis of perturbation energy ε/Σ will trigger

a motion no more nutating around M
′
0

but around M
′
1

with periodic extinction of the

rotation around the point M
′
0
. The trajectories show relaxation with extremely large time

spent around the unstable point M
′
2

that acts as a repeller and transient short passage

close to the stable point M
′
0
.

5.3 Rotating fluid

Similar transient growth mechanism and nonlinear separatrix concern other conserva-

tive systems and we consider here the case of resonant triad of inertial waves in rotating

fluids3. When an incompressible, inviscid fluid is in solid body rotation at angular ve-

locity Ω along the z axis, the Coriolis force acts as a conservative restoring force and is

associated with the propagation of waves given by the dispersion relation:

(

ω

f

)2

=

(

kz

k

)2

(5.5)

where f = 2Ω is the Coriolis parameter, k the wave vector, k its modulus and kz its

3. H. K. Moffatt, “Note on the triad interactions of homogeneous turbulence”, in: J. Fluid Mech. 741
(Feb. 2014), R3.
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vertical component. This dispersion relation is derived linearizing the incompressible ro-

tating Euler equation. When the wave amplitude is not infinitesimal, the Rossby number

Ro = U/(Lf), where U and L are the typical velocity and length scale in the wave field,

becomes finite. The nonlinearity in the rotating Euler equation being quadratic, three

waves (ω0,k0), (ω1,k1), (ω2,k2) independent at leading order in Rossby number will be

coupled at the second order if they form a triad:

ω0 + ω1 + ω2 = 0

k0 + k1 + k2 = 0

(5.6)

If we note sn the sign of the frequency ωn of the n-th wave, the triadic resonance conditions

(5.6) give by eliminating k2:

s0
|kz0|
k0

+ s1
|kz1|
k1

+ s2
|kz0 + kz1|

k01

= 0 (5.7)

where k0, k1 and k01 are respectively the modulus of k0, k1 and k0 + k1. For simplic-

ity, we will assume the plane formed by the three resonant wave vectors to be verti-

cal (kyn = 0). In this so-called 2D-3C (two-dimensional, three components) model4,

waves may be defined by their streamfunction with a complex amplitude Ψn, the as-

sociated velocity along x, y and z being un = −ikznΨn exp i(kxnx+ kznz − ωnt) + c.c.,

vn = −fkzn/ωnΨn exp i(kxnx+ kznz − ωnt) + c.c. and wn = −kxn/kznun where c.c. indi-

cates the complex conjugate. Formally, the derivation involves a multiscale expansion with

the introduction of a slow time scale T = Rot, the wave amplitude Ψn(T ) then being a

function of T as in the derivation of the WKB approximation5. A second order expansion

in Rossby number leads to the amplitude equations for the resonant waves (see6 for more

details). When transforming back the slow time scale T in the primitive time t, those

equations read:

dΦ0

dt
= Λz(σ2k2 − σ1k1)Φ

∗
2Φ

∗
1

dΦ1

dt
= Λz(σ0k0 − σ2k2)Φ

∗
0Φ

∗
2

dΦ2

dt
= Λz(σ1k1 − σ0k0)Φ

∗
1Φ

∗
0

(5.8)

4. G. Bordes et al., “Experimental evidence of a triadic resonance of plane inertial waves in a rotating
fluid”, in: Phys. Fluids 24.1 (Jan. 2012), p. 014105.

5. C. M. Bender and S. A. Orszag, “Advanced Mathematical Methods for Scientists and Engineers I:
Asymptotic Methods and Perturbation Theory”, in: Advanced Mathematical Methods for Scientists and
Engineers I: Asymptotic Methods and Perturbation Theory, New York, NY: Springer, 1999, pp. 484–543.

6. L. M. Smith and F. Waleffe, “Transfer of energy to two-dimensional large scales in forced, rotating
three-dimensional turbulence”, in: Phys. Fluids 11.6 (June 1999), pp. 1608–1622.
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with the change of variable Φn = knΨn/2, σn = snsign(kzn) the vertical orientation of the

phase velocity, and Λz = ∆(σ0k0 +σ1k1 +σ2k2)/(k0k1k2), ∆ being twice the oriented area

of the triangle (k0, k1, k2), ∆ = kx1kz2 − kx2kz1
7. Equations (5.8) admit three invariants:

E =
∑

n

|Φn|2, H =
∑

n

2σnkn|Φn|2,

K = |Φ0| |Φ1| |Φ2| sinφ
(5.9)

where φ is the phase of Φ0Φ1Φ2. E is the energy, the sum of each wave total energy |Φn|2,
and H the helicity8 conserved within the triad as discussed in9. Only the invariant K, also

called Hamiltonian by10, involves the phases of Φn, as discussed in11. The analogy with the

solid body rotation is direct comparing the quadratic invariants of the two systems with

|Φn| playing the role of |M ′
n| and kn the role of the moments of inertia Jn, the differences

being that the wave amplitudes Φn are complex and that when one σn is negative, the

helicity H is not a definite positive form. For simplicity, we study the triad T plotted

in black on figure 5.3 whose helicity signs are all positive i.e. (σ0, σ1, σ2) = (+,+,+)

with k0 = 1 by rescaling the space. By rescaling the time, the energy E is set to unity.

Figure 5.4a) plots in the amplitude space |Φn| the lines where both E and H are constant

for the triad T . The trajectories lie on the lines of intersection between the unit energy

sphere and constant helicity ellipsoid following the same reasoning as for the solid with

a separatrix issuing from the unstable wave (ω2,k2) splitting the modulus space between

trajectories oscillating around (ω0,k0) and around (ω1,k1). The separatrix is then given

by the helicity of wave (ω2,k2), H = 2k2 and starts from the point M
′
2

= (0, 0, 1)T with

M
′ = (|Φ0|, |Φ1|, |Φ2|)T and crosses the plane |Φ2| = 0 at M

′
ε = (

√

1 − ε/Σ,
√

ε/Σ, 0)T

with ε = 1 − σ2k2/(σ0k0) and Σ = 1 − σ1k1/(σ0k0). The separatrix passes at a distance

in perturbation energy of ε/Σ from the point M
′
0

= (1, 0, 0)T corresponding to the stable

wave (ω0,k0). If for the solid, the lines on the sphere unity are trajectories traveled in

a unique direction, the lines on figure 5.4a) are only projections of the trajectories in

the modulus space. A point on a particular trajectory on figure 5.4a) is defined by a

unique value of the modulus |Φ2| (|Φ0| and |Φ1| being given by the invariants E and H)

but may be realized by different initial values of φ (the phase of the three waves) giving

different initial values of the invariant K between 0 and the initial value of |Φ0||Φ1||Φ2|.
The conservation of K imposes that the time evolutions of |Φ2| and φ are linked, the vector

7. The coefficient Γ from the original article is replaced by the notation Λz to fit the rest of the
manuscript.

8. Appendix A demonstrates the equality between helicity, an invariant of the rotating flow derived
from the dynamical equations as seen in Appendix B, and pseudomomentum, a characteristic of inertial
waves.

9. Moffatt, op. cit.
10. P. Lynch, “Resonant Rossby Wave Triads and the Swinging Spring”, in: Bull. Amer. Meteor. Soc.

84.5 (May 2003), pp. 605–616.
11. Weiland and Wilhelmsson, op. cit.
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Figure 5.3: Resonant triads in the wave vector space (kx1, kz1) when the wave (ω0,k0) is
fixed with s0 = +1, k0 = 1 and ω0/f = 0.84 (value taken from Bordes & al. 2012), k0 being
plotted on the figure in black arrow. The unstable branches (+,−,−) are represented
in red whereas the stable branches to (+,−,+) and (+,+,−) are represented in blue
and green. The unit circle centered on −k0 is plotted in dashed grey lines. The points
(E1, D1, A1) marked with squares indicate triads where σ2k2 → σ0k0 = 1. (E2, D2, A2)
are the symmetric of (E1, D1, A1) by exchanging k1 and k2 such that σ1k1 → σ0k0 = 1.
The exemplified triad T (k0 ∼ (0.54, 0.84), k1 ∼ (−0.83, 0.1) and k2 ∼ (0.29,−0.94)) is
plotted in black.

(|Φ0|, |Φ1|, |Φ2|) being on a particular line on the energy sphere 5.4a) and the phase φ and

the modulus |Φ2| being on the trajectory corresponding to different values of K. Figure

5.4b) shows such a set of trajectories for modulus on the separatrix i.e. for the helicity

H = 2k2, this phase portrait is symmetric with respect to φ = 0 and only φ ≥ 0 has

been plotted. Trajectories where K ̸= 0 are closed and never reaches the axis |Φ2| = 0 or

|Φ2| = 1, nor the axis φ = 0 or φ = π. The axis φ = 0 or φ = π corresponds to the cases

where K = 0 with trajectories going from |Φ2| = 1 to |Φ2| = 0 and inversely. These cases

where K = 0 correspond to the real solutions of the system (5.8) since it is straightforward

to prove that, when the initial conditions Φn are real, they stay real at all times and that

any initial conditions with K = 0 and non of the modulus |Φn| zero initially is equivalent

to a real initial condition. Using the two phases invariances associated to the time and

space translation, two of the Φn may be initially taken as real, the initial phase of the

third Φn being then 0 modulo π to respect K = 0. The cases where K = 0 are then strictly

equivalent to the solid case and the discussion on the nonlinear effects holds.

To capture the linear and nonlinear dynamics close to the wave (ω0,k0) in the triad

T , we consider an initial condition such that |Φ0| is close to unity and |Φ1| and |Φ2| small

meaning that the invariant K is small and will be assumed zero to simplify the discussion.

For the triad T , the waves (ω0,k0) and (ω1,k1) are stable, the wave (ω2,k2) unstable and

ε = 1−σ2k2/(σ0k0) = 0.02 and Σ = 1−σ1k1/(σ0k0) = 0.17. Since ε is small compared to Σ,

k2 being close to k0, large transient growth of the perturbation is possible around the wave
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Figure 5.4: Trajectories corresponding to the dynamics given by equation (5.8) for the
triad T plotted on figure 5.3, with ε = 1 −σ2k2/(σ0k0) = 0.02 and Σ = 1 −σ1k1/(σ0k0) =
0.16. a) Projection in the modulus space (|Φ0|, |Φ1|, |Φ2|), trajectories are on the sphere
of constant energy E = 1 and corresponds to lines of constant helicity H. b) Trajectories
along the separatrix in black dashed lines on a) in the plane (φ, |Φ2|). Since K is an
invariant, contour plots of K for values given by the colorbar defines the trajectories.
Three trajectories obtained by numerical integration of (5.8) for different initial conditions
are also reported in heavy lines: (φ, |Φ2|) = (π/4, 0.44) in copper, (0, 0.99) in black, and
(π, 0.01) also in black.

66



5.3. Rotating fluid

(ω0,k0) corresponding to the elliptic trajectory in red on figure 5.4a) for which the aspect

ratio is scaling like
√

ε/Σ for a small perturbation amplitude. For larger amplitudes,

the ellipses deform when approaching the point M
′
2

= (0, 0, 1)T where |Φ2| = 1. The

separatrix is reached when the helicity approaches the one of the point M
′
2
, H = 2k2.

As for the solid, trajectories close to the separatrix correspond to relaxation oscillations

with a frequency that vanishes on the separatrix. On these relaxation trajectories, the

energy in the triad is transferred fast on a time duration proportional to 1/Σ from the

stable wave (ω0,k0) to the unstable wave (ω2,k2) and stays close to this unstable wave

for a long time. Such a behavior is close to the concept of edge states12 corresponding to

an unstable point, a repeller which still dominates the dynamics, the trajectories being

attracted close to that point and leaving it slowly leading to intermittency. For extended

flow like boundary layer, the intermittency is in time space and the edge state defines the

coherent structuration of the turbulent flow13. Here, the edge state is the unstable wave

(ω2,k2) with many initial conditions leading to trajectories that will spend long time close

to (ω2,k2).

Since waves are continuous, it is standard not to study a single triad but families of

triads as in14,15. The resonant curves for the vector k0 fixed and the vector k1 varying

(k2 being −k0 −k1) solutions of (5.7) are plotted on figure 5.3 for ω0/f = 0.84. The wave

(ω0,k0) is such that k0 = 1 and s0 = +1 (i.e. upward and rightward propagating wave),

the other cases being easily deduced by symmetry. The signs (s0, s1, s2) are reported on

figure 5.3 and Hasselmann’s criterion16 states that the wave (ω0,k0) is unstable on the

(+,−,−) branch (in red lines), and stable on the (+,−,+) and (+,+,−) branches (in

blue and green lines respectively). On figure 5.3, the points (E1, D1, A1) are such that

σ2k2 = σ0k0 = 1, and their symmetric points when changing k2 ↔ k1, (E2, D2, A2), are

such that σ1k1 = σ0k0 = 1. Close to (E1, D1), k1 tends to be horizontal and k1 approaches

2kx0 and 0 respectively with ω1 vanishing in the two cases.

The study made for a single triad T extends directly for all the triads on the resonant

branches for the wave (ω0,k0) and close to the points (E1, D1, A1) where σ2k2 → σ0k0 = 1,

the maximum gain is proportional to Σ/ε with ε = 1 − σ2k2/(σ0k0), Σ = 1 − σ1k1/(σ0k0)

and the separatrix defining the edge of the different dynamics by a perturbation energy of

order ε/Σ, the two being only function of k1. Large transient growth and small threshold

for the nonlinear stability (smallest perturbation to have the transition to a different state)

then occur, the wave (ω2,k2) playing the role of a repeller attracting for long time the

dynamics of the system. In the rotating fluid, the secondary wave with wave vector nearly

12. T. M. Schneider and B. Eckhardt, “Edge states intermediate between laminar and turbulent dy-
namics in pipe flow”, in: Philos. Trans. R. Soc. A 367.1888 (Feb. 2009), pp. 577–587.

13. Ibid.
14. Hasselmann, op. cit.
15. McComas and Bretherton, op. cit.
16. Hasselmann, op. cit.
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horizontal and vanishing frequency is associated to the geostrophic and quasi-geostrophic

balance originating in the well-known Taylor column phenomenon where the motion in

all three directions is uniform along the axis of rotation i.e. in an entire column of fluid.

The transient growth of perturbation for linearly stable triads, and more importantly for

nonlinear instability characterized by a small threshold amplitude to cross the separatrix,

corresponds to the energy transfer between coupled inertial waves of finite amplitudes and

arbitrary wave vectors, and small Taylor column motions of horizontal wavelength half

that of the wave (ω0,k0) in case E, and of long horizontal period in case D. In the case

D, the secondary wave (ω2,k2) is close to wave (ω0,k0) since (−ω0,−k0) and (ω0,k0)

represent the same wave and this transfer corresponds to a sideband instability whereas

in the case E, the exchange of energy occurs with the secondary wave (ω2,k2) identical

to (ω0,k0) but propagating in the opposite horizontal direction reproducing the periodic

flip described for the tennis racket but here for wave in continuous liquid in rotation.

As for the racket, the dynamics is given by the separatrix leading to the relaxation from

one unstable state to its opposite. In this intermittent solution, the dynamics is led the

majority of the time by the unstable state playing the role of a repeller, its stable and

unstable manifold defining the edge state, here the separatrix.

5.4 Generalization to triadic wave resonance

Triadic resonance is a generic feature of any systems where small amplitude solu-

tions may be represented by a superposition of waves described by a dispersion relation

D(ω,k) = 0 and when the resonant condition (5.6) is fulfilled by three particular wave

vectors (k0,k1,k2).

As we already did for inertial waves, we follow Craik’s derivation17 in the two-dimensional

case (2D) for a scalar state field q. The field q follows an equation involving nonlinear

quadratic terms D̂(q) = N̂ (q, q) where D̂ is a linear operator and N̂ a bilinear form18.

This nonlinear equation is analyzed assuming the magnitude of q small enough of order

ε by an asymptotic procedure introducing a multiscale expansion in time with a slow

time T = εt. Expanding q in ε with q = εq1 + o(ε), we obtain at leading order in ε

that D̂(q1) = 0 whose solution is a superposition of waves exp i(kxnx+ kznz − ωnt) with

an arbitrary amplitude Qn(T ), function of the slow time scale only, and where (ωn,kn)

obey the dispersion relation D(ωn,kn) = 0 deduced from the operator D̂. At second or-

der in ε, waves respecting the triadic resonance condition (5.6) are coupled and when

going back to the primitive time variable t (see19 for more details), the compatibility

condition for a particular triad reads i∂D/∂ω|n × dQn/dt = λnQ
∗
mQ

∗
l , (n,m, l) being any

17. Craik, op. cit.
18. W. Eckhaus, Studies in Non-Linear Stability Theory, Springer Tracts in Natural Philosophy, Berlin

Heidelberg: Springer-Verlag, 1965.
19. Craik, op. cit.

68



5.4. Generalization to triadic wave resonance

circular permutation of (0, 1, 2), λn the nonlinear interaction coefficients, and ∂D/∂ω|n

is ∂D/∂ω evaluated at (ωn,kn). λn and ∂D/∂ω|n being both real. Rescaling the am-

plitudes Qn by introducing An = κ
∣

∣

∣∂D/∂ω|n/λn

∣

∣

∣

1/2
Qn, with the normalization factor

κ = −i
∣

∣

∣λ0λ1λ2/
(

∂D/∂ω|0∂D/∂ω|1∂D/∂ω|2

)∣

∣

∣

1/2
, leads to the generic three wave interac-

tion equations:
dA0

dt
= s0A

∗
2A

∗
1

dA1

dt
= s1A

∗
0A

∗
2

dA2

dt
= s2A

∗
1A

∗
0

(5.10)

with the notations sn = sign
(

∂D/∂ω|nλn

)

. Two cases should be distinguished. In the

first case, all signs sn are identical, solutions of (5.10) may diverge at finite time, and

this singularity, if it occurs, implies an explosive breakdown of the solution20. This case is

frequent in plasma physics21 and also possible in three-layer Kelvin-Helmholtz flow22. In

the other case, sn are different, solutions of (5.10) are bounded, which is the case of most

waves in fluid at rest, like surface, interfacial and internal waves as discussed by23 and24.

Multiplying each line of (5.10) by A∗
n and adding the complex conjugate of the equation,

we get d |An|2 /dt = 2snℜ(A0A1A2) leading to relations equivalent to the Manley-Rowe

relations25:

d

dt
(s0 |A0|2) =

d

dt
(s1 |A1|2) =

d

dt
(s2 |A2|2) (5.11)

which imply the existence of two quadratic invariants C0 = s1 |A1|2 − s2 |A2|2 and C1 =

s2 |A2|2 − s0 |A0|2, the third permutation being a combination of these two invariants

C2 ≡ −C0 − C1 = s0 |A0|2 − s1 |A1|2. These two invariants may be combined in infinitely

many linear combinations, as for example for any three real coefficients α = (α0, α1, α2)

such that α0 + α1 + α2 = 0, B =
∑

n snαn |An|2 is an integral of motion, but only in

particular cases, some invariants B, linked to a particular trinomial α = (α0, α1, α2), have

a physical interpretation.

For many classical cases of waves in a medium initially at rest, triadic resonance

between waves conserves the total energy, sum of the kinetic and potential energy of

the three waves. This physically conserved quantity correspond to a particular choice of

20. B Coppi, M. N. Rosenbluth, and R. N. Sudan, “Nonlinear interactions of positive and negative
energy modes in rarefied plasmas (I)”, in: Annals of Physics 55.2 (Nov. 1969), pp. 207–247.

21. Weiland and Wilhelmsson, op. cit.
22. A. D. D. Craik and J. A. Adam, “Explosive resonant wave interactions in a three-layer fluid flow”,

in: J. Fluid Mech. 92.1 (May 1979), pp. 15–33.
23. F. K. Ball, “Energy transfer between external and internal gravity waves”, in: J. Fluid Mech. 19.3

(July 1964), pp. 465–478.
24. T. M. Joyce, “Nonlinear interactions among standing surface and internal gravity waves”, in: J.

Fluid Mech. 63.4 (May 1974), pp. 801–825.
25. Manley and Rowe, op. cit.
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trinomial α = (α0, α1, α2), but this choice is a priori complex since the normalization

from the wave amplitudes Qn to the rescaled amplitudes An depends on the form of

the dispersion relation and on the nonlinear operator N̂ (q, q), and may be an intricate

function of ωn and kn. Still, in some particular cases as the one treated here (inertial

waves26) and for capillary gravity waves27, internal waves28, waves in plasma29, and the

swinging spring30, the normalization is such that choosing then α = (ω0, ω1, ω2), the

three wave frequencies, leads to the energy invariant up to a normalization constant

Ktriad that depends on the considered triad31, E =
∑

n snωn |An|2 /Ktriad =
∑

n En, the

energy of the n-th wave being En = snωn |An|2 /Ktriad. In the studied cases, choosing α =

(kx0, kx1, kx2) gives the conservation of the x component of the pseudomomentum Px =
∑

n snkxn |An|2 /Ktriad =
∑

n Ankxn with the classical wave action An = sn |An|2 /Ktriad =

En/ωn up to the same normalization constant as for the energy32 Ktriad. Similarly, α =

(kz0, kz1, kz2) gives the conservation of the z component of the pseudomomentum Pz =
∑

n snkzn |An|2 /Ktriad =
∑

n Ankzn. However, we should insist on the fact that this direct

matching between energy and wave action definitions with the invariants of (5.10) is not

imposed by the present derivation given by choosing respectively the frequencies and the

components of the wave vectors as the prefactor αn, and should be specifically verified. In

particular, we may remark that choosing α = (ω0 +ckx0, ω1 +ckx1, ω2 +ckx2), equivalent to

a Doppler shift along the x direction, where c would be a uniform velocity, also leads to an

invariant of equation (5.10), which would be the physical energy for an inertial wave, only

if the fluid were not at rest but in a uniform motion at velocity −c along the x direction.

As for inertial waves, equations (5.10) admit a third invariant linking the phase of the

waves to their amplitudes, which imposes K = ℑ(A0A1A2) is constant in time, leading to

the same equation for K as (5.9).

In the cases where the physical energy is such that E =
∑

n snωn |An|2 /Ktriad, all

the results discussed for inertial waves apply, and the dynamics of resonating triads is

characterized by the intersection of energy and pseudomomentum ellipsoids. The distance

measured in the energy norm between the separatrix, the unstable manifold of the unsta-

ble wave, and the stable wave with the closest pseudomomentum, depends only on the

frequencies and wave vectors of the three waves in the triad. Relaxation oscillations may

dominate in systems where this distance can become infinitely small for some particular

triads. If subscript 2 indicates the unstable wave, 0 and 1 the stable ones as we did for

inertial waves, relaxation oscillations dominate in triadic resonant systems achieving the

condition that, on the unit energy ellipsoid, the x and z components of P0 −P2 are small

26. Bordes et al., op. cit.
27. McGoldrick, op. cit.
28. Davis and Acrivos, op. cit.
29. Weiland and Wilhelmsson, op. cit.
30. Lynch, op. cit.
31. Joyce, op. cit.
32. Whitham, op. cit.
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compared to those of P0 − P1, with Pn = kn/ωn the pseudomomentum of the n-th wave

at unit energy En = 1. It is easy to show that the two vectors P0 −P2 and P0 −P1 are co-

linear and co-directed as a result of the definitions of energy and pseudomomentum on the

separatrix, P0−P2 = γ×(P0−P1) with γ > 0, and that relaxation oscillations dominate

if γ ≪ 1. In terms of phase velocity of the n-th wave cn = (cxn, czn) = (ωn/kxn, ωn/kzn),

we have, when the denominator is not nil:

γ =
c−1

x0 − c−1
x2

c−1
x0 − c−1

x1

=
c−1

z0 − c−1
z2

c−1
z0 − c−1

z1

(5.12)

that should be small for large transient growth of perturbation energy and relaxation

oscillations to be present. Achieving this criterion depends solely on the form of the

dispersion relation D(ω,k) = 0 specific to the studied waves. In the case of inertial waves,

those criteria can be simplified using the dispersion relation (5.5), and we show that the

previous condition, γ ≪ 1, is equivalent to σ2k2 → σ0k0 for triads indicated by points

(E1, D1, A1) on figure 5.3, and σ1k1 → σ0k0 for (E2, D2, A2), hence recovering the main

results of the previous part.

5.5 Conclusion and discussion

The analogy between rotating solid and fluid is based on the conservation of two

quadratic invariants: energy and momentum for the rotating solid, and energy and he-

licity for the triadic resonance of inertial waves in a rotating fluid. Both systems, when

initially rotating around a stable mode and submitted to a perturbation of small but

finite amplitude, exhibit high transient growth of perturbation energy and relaxation os-

cillations towards the unstable mode. Those dynamics are captured by the intersection of

constant energy sphere and varying momentum ellipsoids in the solid case, and constant

energy sphere and varying helicity ellipsoids for triadic resonant inertial waves.

The general case of resonant wave triads may be reduced to two cases depending on the

three signs of the coupling coefficients. In the first case, these three coefficients have the

same sign, the amplitude of the waves may grow unbounded. In the other case, a quadratic

invariant of the motion corresponds to a definite positive form, preventing the solution

to diverge to infinity. The stability of the three waves is then well-defined and studied,

one wave being unstable and the other stable, for any finite amplitude initial condition.

In many specific problems where the energy may be defined as a physically conserved

quantity in the triads, the dynamics described for inertial waves applies with the possibility

to define the energy of the perturbation around a single wave in the triads, the main

result being that this departure from a single wave may exhibit large transient growth.
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In particular, for a a large class of systems such as capillary gravity waves33, internal

waves34, waves in plasma35, and the swinging spring36, the conservation of energy and

the properties of triadic interaction allow to define the pseudomomentum, by introducing

the wave action, as we did for inertial waves, and to show that the pseudomomentum is

also conserved. Then, for triads such that, at equal energy, the pseudomomentum of the

unstable wave 2 gets closer to that of the stable wave 0 than that of wave 1, the linear

dynamics around the perturbed wave 0 exhibits strong transient growth of perturbation

energy, and the distance in energy norm between the stable mode 0 and the separatrix (i.e.

the stable manifold of wave 2) becomes small leading to relaxation oscillations towards

the unstable wave 2.

Such dynamics may be evidenced experimentally in the solid case by taking inspiration

from the experiment shown in the YouTube video mentioned in the introduction, which

demonstrates the tennis racket effect by unscrewing a T-handle in zero gravity at the

International Space Station, resulting in a spinning motion around its unstable axis with

a periodic 180◦ twist. The T-handle is such that the screwed bar has the intermediate

moment of inertia along the symmetry axis of the T. This moment is smaller, but close

to the highest moment of inertia along the normal axis to the plane of the T, since the

two differ by the moment of inertia of the vertical branch of the T, which is thin for the

T-handle used. The third moment around the upper branch of the T is much smaller, since

it involves mainly the rotation of the thin vertical branch. The present study predicts the

dynamics of a solid object having its intermediate moment of inertia close to the greatest

one when spinning such object around its stable axis of greatest moment of inertia. Such

object could be shaped as an ellipsoid of semi-axes a < b < c with b → a and scratched

on its axis of greatest moment of inertia a to distinguish it from the intermediate axis b

indicated by a dot. In zero gravity, we may spin this ellipsoid around the stable axis a,

scratched, and, for a small perturbation, we expect to observe a growth of the perturbation

and a rapid reorientation of the rotation from this stable axis, toward the unstable one

b indicated by the dot. The solid should then keep spinning around the unstable axis b

(dotted) for a large time with relaxation oscillations, where the rotation axis turns and

passes close to the stable axis a (scratched) before finishing the 180◦ flip rotating along

the unstable axis, but in the opposite direction and so on and so forth.

This YouTube video also shows a second experiment under zero gravity condition.

A liquid-filled cylinder, initially spinning around its stable axis of smallest moment of

inertia, becomes unstable, and the cylinder ends up rotating around its stable axis of

greatest moment of inertia. The physical interpretation proposed is that the inner fluid

adds the possibility of dissipation of energy, effective as soon as a small nutation is imposed

33. McGoldrick, op. cit.
34. Davis and Acrivos, op. cit.
35. Weiland and Wilhelmsson, op. cit.
36. Lynch, op. cit.
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in the initial condition, and as this viscous fluid motion dissipates energy leading to the

destabilization of the stable axis with transfer of momentum towards the direction with

the largest inertia. This phenomenon was already described by Lord Kelvin in his 1880

paper in Nature on the difference of stability in the dynamics of a liquid-filled gyroscope

with a slight prolate ovoidal shape37. He attributed this difference to the property of the

support:

The rotation of a liquid in a rigid shell of oval figure, being a configuration of

maximum energy for given vorticity, would be unstable if the containing vessel

is left to itself supported on imperfectly elastic supports, although it would

be stable if the vessel were held absolutely fixed, or borne by perfectly elastic

supports, or left to itself in space unacted on by external force.

This physical interpretation may be partial, since the destabilization of the stable axis of

the solid may not only be due to dissipation or to the holding support properties, but

also to the coupling with internal degrees of freedom in the fluid. Indeed, the nutation

and precession of the solid filled with a liquid have been shown to excite inertial waves38

via resonance mechanisms, similar to triadic interaction, involving the destabilization of

the secondary flow induced by the solid motion. Instead of the viscous damping of this

secondary flow, its coupling with resonnant internal wave would add to equations (5.1)

other degrees of freedom, corresponding to secondary wave amplitudes, able to change the

stability properties of the initial condition of a pure solid body rotation along the axis of

smallest moment of inertia. Such system remains to be derived and explored.

Though the dynamics described in this second experiment is quite different from the

one described in the present article (as the liquid introduces extra degrees of freedom and

adds internal dissipation), the same experiment could be adapted with a spinning liquid-

filled ellipsoid of semi-axes a < b < c with b → a, same as before (scratched on the a axis

and dotted on the b axis). We may conjecture that adding an inner fluid should suppress

the relaxation oscillations around a. Experimental evidences of the dynamics predicted

here is not straightforward, but we may suggest that, for a rotating fluid in an infinite

domain, the present model predicts that, in the presence of a weak mode with nearly zero

frequency, characterized by columns of fluid moving in a vertically nearly uniform way

(Taylor columns), any wave moving vertically up will progressively transfer its energy to

a similar wave moving down and back again.

37. W. Thomson, “On An Experimental Illustration of Minimum Energy”, in: Nature 23.577 (Nov.
1880), pp. 69–70.

38. M. Le Bars, D. Cebron, and P. Le Gal, “Flows Driven by Libration, Precession, and Tides”, in:
Annu. Rev. of Fluid Mech. 47.1 (2015), pp. 163–193.
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Chapter 6

Transient growth of triadic

instability for internal gravity waves

(in preparation for Journal of Fluid

Mechanics)

6.1 Abstract

Triadic resonant instability is a key component in the understanding of the breaking

process of inertia gravity waves in geophysical applications when the fluid is stably strat-

ified. We reconsider this classical triadic instability for a single wave of finite but small

amplitude1 and demonstrate that, due to the nonnormality of the evolution operator lin-

earized around this base wave, stable as well as unstable triadic resonant interactions

result in large transient amplification of perturbation energy. Stable triads can sustain

longer and more intense transient growth than unstable triads. The augmented initial

energy growth is related to the differential growth of the two leading eigenmodes that are

making a shallow angle in the energy norm between each other for unstable triads in a

manner similar to the mathematical structure of the classical lift-up mechanism. Instead,

the transient growth of stable triads originates from the differential rotation (i.e. phase

shift) of two stable eigenmodes making a small angle between each other. We show that

for a small but finite amplitude perturbation around a stable base wave, the nonlinear dy-

namics of the system features high transient growth of perturbation energy and relaxation

oscillations towards an unstable mode.

6.2 Introduction

Global warming regulation by the ocean depends on mechanisms controlling the ver-

tical mixing of deepwater masses. It was recently proposed by Garrett & Kunze (2007)2

1. O. M. Phillips, The dynamics of the upper ocean, 2d ed, Cambridge monographs on mechanics and
applied mathematics, Cambridge ; New York: Cambridge University Press, 1966.

2. C. Garrett and E. Kunze, “Internal Tide Generation in the Deep Ocean”, in: Annu. Rev. Fluid
Mech. 39.1 (2007), pp. 57–87.
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that this mixing results in an important proportion from the breaking of internal tides, the

gravity waves generated by the barotropic tide interacting with the bottom topography,

Understanding the ocean circulation is a key ingredient for climate modeling3. In-

ternal tide is believed to have a crucial role in the ocean dynamics. Its wave vector

spectrum is broad with energy injected in small scale waves, well below scales resolved

in global numerical models. The mechanisms by which internal tide breaks and transfers

energy to small scale turbulence are also not resolved in numerical models. As a conse-

quence, all the dynamics of internal tide (generation, breaking and dissipation) needs to

be parametrized. Wunsch & Ferrari4 and Melet et al.5 found that changing the horizontal

or vertical distribution of the parametrized turbulent mixing in the ocean model from

uniform to horizontally and vertically localized radically modifies the deep ocean circula-

tion in the models. Idealized analytical and numerical studies of gravity wave generation

have evaluated the energy conversion rate of the barotropic tide to the internal tides at

the seafloor6. Large scale numerical ocean circulation models used for climate prediction

require a parametrization of small scale mixing based on the horizontal global maps of this

barotropic tide conversion rate to the internal tide, together with the vertical estimates,

throughout the water column, of the transfer of internal tide energy towards turbulence

and mixing7. Classically, the transfer of energy from internal wave to turbulence is ana-

lyzed in terms of instability mechanisms and the present work proposes to reconsider the

instability route by analyzing and computing the transient growth of perturbation energy,

and nonlinear transfer.

Wave-wave interaction is part of a significant research effort on the dynamics of inter-

nal waves in a stratified medium whose density varies with the vertical8. The Garrett &

Munk9 spectrum models empirically the spectral energy distribution as a function of the

vertical and horizontal wave vector components, resulting from nonlinear interactions of

waves with different wavenumbers. In the regime of weak nonlinearities, the stability of

gravity waves was first investigated by Davis & Acrivos10 and Hasselmann (1967)11 who

both derived specific conditions to form an instability when a finite amplitude internal

wave (referred as primary wave) is submitted to perturbations. The resulting instability

which involves three resonant gravity waves (the primary and two secondary waves) inter-

3. W. Munk and C. Wunsch, “Abyssal recipes II: energetics of tidal and wind mixing”, in: Deep Sea
Res. I 45.12 (Dec. 1998), pp. 1977–2010; G. Siedler, J. Church, and J. Gould, Ocean circulation and
climate: observing and modelling the global ocean, San Diego: Academic Press, 2001; Melet et al., op. cit.

4. Wunsch and Ferrari, op. cit.
5. A. Melet, S. Legg, and R. Hallberg, “Climatic Impacts of Parameterized Local and Remote Tidal

Mixing”, in: J. Climate 29.10 (Dec. 2015), pp. 3473–3500.
6. Garrett and Kunze, op. cit.
7. J. M. Klymak, S. Legg, and R. Pinkel, “A Simple Parameterization of Turbulent Tidal Mixing near

Supercritical Topography”, in: J. Phys. Oceanogr. 40.9 (May 2010), pp. 2059–2074.
8. Phillips, op. cit.
9. Garrett and Munk, op. cit.

10. Davis and Acrivos, op. cit.
11. Hasselmann, op. cit.
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acting together, is called triadic resonant instability (TRI). Studies conducted by McEwan

(1971)12 and Mied (1976)13 predicted the resulting growth rate of instability and under-

lined that this growth originates from resonant triads where two secondary internal waves

extract energy from the primary internal wave. Koudella & Staquet14 investigated the

properties of the parametric subharmonic instability (PSI), as a mechanism leading a

plane, monochromatic, small amplitude internal gravity wave, the primary wave, to insta-

bility, and adressed the breaking mechanisms of internal gravity waves. They found that

the parametric subharmonic instability, a particular case of triadic resonant instability for

secondary waves of large wavenumbers compared to the primary wave, transfers energy

from this wave to the perturbation. The transferred energy is in kinetic form when locally

the primary wave shear is negative, and potential form for a locally positive shear, limiting

the reverse transfer to the primary wave.

The present work considers the problem of triadic resonant instability with a primary

finite amplitude uniform internal gravity wave interacting with two secondary infinitesimal

internal gravity waves but instead of considering only the classical stability problem that

characterize the exponential growth of decay at large time, it takes a different approach

by analyzing the possibility of transient growth of perturbation energy at finite time.

We reconsider the classical 2D problem of triadic resonant instability when linearized

around a wave of small amplitude as the base state, but instead of searching for instability

and exponential or algebraic growth, we compute, for each time horizon T , the initial

perturbation that leads to the maximum gain of perturbation energy at time T . The

derivation of the linearized problem results in an evolution operator, referred to as the

triadic instability operator, that describes the dynamics of the linearized triadic system.

This approach is motivated by the nonnormality of the triadic instability operator

according to the well-defined energy norm resulting in nonorthogonal eigenvectors and

then in transient growth of the disturbances. Transient growth is a phenomenon in which

linearized perturbations to a stable state of a system may initially show large growth of

perturbation energy before relaxing to zero. For unstable states, transient growth may

also be defined as the initial gain in energy of the perturbation larger than the exponen-

tial growth given by the leading eigenvalue. Reddy & Henningson (1993)15, Trefethen et

al.(1993)16 and Schmid & Henningson (1994)17 investigated this phenomenon when look-

12. A. D. McEwan, “Degeneration of resonantly-excited standing internal gravity waves”, in: J. Fluid
Mech. 50.3 (Dec. 1971), pp. 431–448.

13. R. P. Mied, “The occurrence of parametric instabilities in finite-amplitude internal gravity waves”,
in: J. Fluid Mech. 78.4 (Dec. 1976), pp. 763–784.

14. C. R. Koudella and C. Staquet, “Instability mechanisms of a two-dimensional progressive internal
gravity wave”, in: J. Fluid Mech. 548 (Feb. 2006), pp. 165–196.

15. S. C. Reddy and D. S. Henningson, “Energy growth in viscous channel flows”, in: J. Fluid Mech.
252 (July 1993), pp. 209–238.

16. L. N. Trefethen et al., “Hydrodynamic Stability Without Eigenvalues”, in: Science 261.5121 (July
1993), pp. 578–584.

17. P. J. Schmid and D. S. Henningson, “Optimal energy density growth in Hagen-Poiseuille flow”, in:
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ing at the transition from laminar to turbulent regimes in Couette and Poiseuille 2D flows

of a viscous incompressible fluid. The present work follows the same path to revisit the

classical problem of triadic resonant interactions by bringing concepts of nonnormal oper-

ator theory into the field of wave-wave interactions and to consider the transient growth

of the energy of resonant triads that may represent a different route to turbulence and

mixing.

6.3 Derivation of the triadic resonant instability

6.3.1 Derivation in a two-dimensional space

We are looking at the linear evolution of the perturbation of a basic state characterized

by a single internal gravity wave of finite amplitude, by following the derivation of McEwan

& Plumb (1977)18. We assume the space to be two-dimensional (x′, z′), the prime symbol

being used to indicate a dimensional quantity, and the fluid to be linearly stratified, the

dynamics being then given by the Boussinesq approximation. The motion of the fluid

is defined by the velocity vector u′ = (u′, w′), the pressure p′ and the total density of

a fluid parcel ρ′
t = ρ′

r + ρ′
0 + ρ′, ρ′

r being the constant reference density, ρ′
0 the mean

density profile, a linear function of z′ only, and ρ′ the perturbation density, a function of

x′ and z′. The flow being two dimensional, we introduce the stream function ψ′ such that

(u′, w′) = (∂ψ′/∂z′,−∂ψ′/∂x′). The typical frequency of this system, the Brunt-Väisälä

frequency, defined by N ′ =
√

−g′/ρ′
rdρ

′
0/dz

′ with g′ the gravity, is constant. We define

L′
0 as the typical length scale characteristic of the spatial variations of the velocity and

density fields.

We nondimensionalize the space variables (x′, z′) by L′
0, and time t′ by the Brunt-

Väisälä frequency N ′. The streamfunction ψ′ is nondimensionalized by N ′L′2
0 , and the

density perturbation ρ′ by ρ′
rN

′2L′
0/g

′. The buoyancy field is defined by b′ = −ρ′g′/ρ′
r. All

dimensionless quantities are indicated by dropping the prime of the corresponding dimen-

sional quantity. To ease the notations, derivatives are marked by ∂f/∂x = f,x, ∂f/∂z = f,z

and ∂f/∂t = f,t. Under Boussinesq approximation, dimensionless streamfunction ψ and

buoyancy b obey to Navier-Stokes and mass conservation equations:

∇2ψ,tt + ψ,xx = J(ψ,∇2ψ),t − J(ψ, b),x

b,t − ψ,x = J(ψ, b)
(6.1)

where J(f, g) ≡ f,xg,z − g,xf,z is the Jacobian of f and g, and ∇2 = ∂2/∂2
x + ∂2/∂2

z the

Laplacian. We follow the derivation of McEwan & Plumb (1977)19 and assume Ψ and b

J. Fluid Mech. 277 (Oct. 1994), pp. 197–225.
18. McEwan and Plumb, op. cit.
19. Ibid.
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small. Their order of magnitude is denoted Fr and we introduce a multiscale expansion

with variations both on the fast and slow timescales, respectively t and T = Frt, but

contrary to them, we do not introduce a multiscale expansion in space. Thus, we assume

ψ = Frf(x, z, t, T ) + O(Fr2), b = Frg(x, z, t, T ) + O(Fr2), and using the multiscale

expansion in time, ∂/∂t → ∂/∂t+ Fr∂/∂T .

At the first order of the asymptotic expansion O(Fr), equations (6.1) leads to:

∇2f,tt + f,xx = 0

g,t − f,x = 0
(6.2)

whose solutions are an arbitrary superposition of linear internal gravity waves with am-

plitudes function of the slow time T , wave vectors kn = (kxn, kzn) and frequencies ωn:

f =
∑

n

Ψn(T ) exp i(kn · r − ωnt) + c.c

g =
∑

n

Bn(T ) exp i(kn · r − ωnt) + c.c
(6.3)

with n arbitrary (but with anticipation to the resonance condition n = 0, 1, 2 for triadic

interactions), and c.c being the complex conjugate. The polarization relation deduced

from (6.3) injected in (6.2), reads:

Bn(T ) = −kxnΨn(T )

ωn

(6.4)

and the dispersion relation:

ωn = sn
|kxn|
kn

(6.5)

with sn = sign(ωn) and kn =
√

k2
xn + k2

zn.

At the second order O(Fr2), equation (6.1) leads to:

2∇2f,tT = J(f,∇2f)
(res)
,t − J(f, g)(res)

,x (6.6)

with superscript (res) gathering all resonant forcing terms such that the triadic resonance

condition is fulfilled:

ω0 + ω1 + ω2 = 0

k0 + k1 + k2 = 0

(6.7)

The non-dimensionalized wave vector of the primary wave k0 is chosen of norm unity

and then L′
0 is such that k′

0 = 1/L′
0 so the wavelength is 2πL′

0. Similarly, the non-
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dimensionalized amplitude of the primary wave n = 0 is chosen such that Ψ0(0) ≡ 1,

which gives the definition of the Froude number Fr = Ψ′
0(0)/(N ′L′2

0 ).

With the change of variable Φn → (knΨn/2)e−iπ/4 compared to the derivation of

McEwan & Plumb (1977)20, the total energy of the n-th wave can be written as En =

⟨u2
n + w2

n + b2
n⟩ /2 = |Φn|2, where the brackets are the spatial average over the domain and

(un, wn, bn) the velocity components and buoyancy field of the studied wave. Equations

(6.3) injected in (6.6) when (6.7) is fulfilled, result in the triadic interaction equations:

dΦ0

dT
= Λx

(

1

cx2

− 1

cx1

)

Φ∗
2Φ

∗
1

dΦ1

dT
= Λx

(

1

cx0

− 1

cx2

)

Φ∗
0Φ

∗
2

dΦ2

dT
= Λx

(

1

cx1

− 1

cx0

)

Φ∗
1Φ

∗
0

(6.8)

with Λx = ∆(kx0/ω0 + kx1/ω1 + kx2/ω2)/(k0k1k2), ∆ = kx1kz2 − kx2kz1 twice the oriented

area of the triangle (k0,k1,k2), and cxn = ωn/kxn the x component of the phase velocity

cn = (cxn, czn) of the n-th wave.

Equations (6.8) conserve three invariants: the total energy E =
∑

n En, the x component

of the pseudo-momentum P =
∑

n En/cxn, and a phase invariant K = ℑ(Φ0Φ1Φ2), as

demonstrated by Whitham (1965)21, Andrews & Mcintyre (1978)22 and Ripa (1981)23.

Those invariants can be expressed as a function of the amplitudes Φn:

E =
∑

n

|Φn|2, P =
∑

n

|Φn|2
cxn

, K = |Φ0Φ1Φ2| |sinφ| . (6.9)

where φ is the phase of Φ0Φ1Φ2. The analogy between the triadic resonant instability and

the rotation of a rigid body around its principal axis is pointed out by Moffatt (2014)24

in the case of inertial waves. The two first invariants in (6.9) are quadratic, and E is here

a positive definite form, which is not the case for P . In the case of internal gravity waves,

McComas & Bretherton (1977)25 discussed those invariants by expressing them in terms

of wave action An = |Φn|2/ωn, such that E =
∑

n Anωn and P =
∑

n Ankxn.

6.3.2 Linearization of the triadic equations around a base state

We linearize the triadic resonant equations (6.8) by assuming the secondary waves

small compared to the primary wave, |Φ1| ≪ |Φ0| and |Φ2| ≪ |Φ0|, so that the amplitude

20. Ibid.
21. Whitham, op. cit.
22. Andrews and Mcintyre, op. cit.
23. Ripa, op. cit.
24. Moffatt, op. cit.
25. McComas and Bretherton, op. cit.
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6.3. Derivation of the triadic resonant instability

Figure 6.1: Resonance locus for the stable and unstable triads represented in the wave
vector space −k1 = (kx, kz) (k2 being −k1 − k0) for k0 = (kx0, kz0) = (sin θ0, cos θ0)
represented by the heavy black arrow with θ0 = 0.25. The heavy red, thin blue and dashed
green curves correspond respectively to the combinations of frequency signs (s0, s1, s2)
equal to (+,−,−), (+,−,+) and (+,+,−). The black dotted curve is the unit circle
k1 = k0 = 1. Three limiting classes of triads are represented on the red and blue curves
we have chosen to study: Elastic Scattering located by point E with the △ symbol, Induced
Diffusion by points (D+, D−) with the ⃝ symbols, and parametric subharmonic instability
by (PSI1, PSI2) at the end of heavy red arrows prolongating the branches indicated by
□ symbols as k1 → ∞. Point F will be introduced in part 3.2 and the corresponding triad
is plotted as an example, with (k1,k2) in thin black arrows joining both ends of k0 to F .
Yellow and orange dots near points D−, D+ and E indicate the equally spaced points at
distances δk = {0.1, 0.2, 0.3, 0.4} from D−, D+, E−, and E+ introduced in figure 6.3.
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of the primary wave Φ0 is considered constant. Without loss of generality, the phase of

Φ0 is chosen to be nil. Denoting the transpose by superscript T, the complex rescaled

amplitudes Φ = (Φ1,Φ2)
T of the secondary waves then obey to the linearized system:

∂T Φ = L Φ
∗ with L =





0 L1

L2 0



 (6.10)

where Φ
∗ is the conjugate of Φ, and the real coupling coefficients (L1, L2) are:

L1 = Λx

(

1

cx0

− 1

cx2

)

Φ0, L2 = Λx

(

1

cx1

− 1

cx0

)

Φ0 (6.11)

with the notations introduced in (6.8). Using (6.5) and (6.7), it can be shown that each

coefficient only depends on k1, L1(k1) and L2(k1), for a fixed primary wave (k0, ω0). The

evolution operator L is real and Φ is complex. The sum of the energies of the secondary

waves 1 and 2 is the energy of the perturbation ∥Φ∥2 = |Φ1|2 + |Φ2|2, where ∥.∥ is

the Euclidean norm. As a result of (6.11), the coupling coefficients verify the identity

ω0L1ω2 = ω1L2ω0 for a resonant triad, or, equivalently:

L1

L2

=
ω1

ω2

(6.12)

6.3.3 Stability of the resonant triads

Combining the frequency and wave vector resonance conditions (6.7) leads to:

s0
|kx0|

√

k2
x0 + k2

z0

+ s1
|kx1|

√

k2
x1 + k2

z1

+ s2
|kx0 + kx1|

√

(kx0 + kx1)2 + (kz0 + kz1)2
= 0 (6.13)

whose solutions in the k1 plane are resonant lines presented in figure 6.1. In figure 6.1, we

have set σ0 = +1 and s0 = +1 without loss of generality and represented the wave vector

of the primary wave k0 = (kx0, kz0) = (sin θ0, cos θ0) by a black arrow for a fixed value of

θ0 = 0.25. The unit circle is indicated in black dotted lines. As s0 = +1, all the possible

frequency sign combinations (s0, s1, s2) in (6.13) are (+,−,−), (+,−,+) and (+,+,−),

represented respectively in heavy red, thin blue and dashed green lines in figure 6.1.

Hasselmann’s criterion for stability (1967) states that the sign combination (+,−,−)

corresponds to an unstable interaction, whereas (+,−,+) and (+,+,−) correspond to

stable interactions. Hasselmann’s derivation is valid for all systems of waves and only

implies conservation of energy and symmetries.
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From equation (6.12), Hasselmann’s criterion is recovered since sign(L1L2) = s1s2,

so equation (6.10) corresponds to a saddle node in the Φ plane when L1L2 > 0 with a

stable and an unstable manifold respectively with a positive and negative growth rate

σth =
√
L1L2 and −σth, and to a neutral node associated to two complex eigenvalues

corresponding to perturbations rotating at frequencies ±√−L1L2 when L1L2 < 0.

6.3.4 Remarkable limit triads

The symmetry k → −k0 − k of the resonance locus transforms k1 in k2, thus we

only need to study the unstable and stable combinations (+,−,−) and (+,−,+) which

correspond respectively to the heavy red and thin blue curves in figure 6.1 and all the

figures presented thereafter.

Along those curves in figure 6.1, points E, D, and PSI indicate three limiting classes

of triads identified by McComas & Bretherton (1977), respectively called Elastic Scatter-

ing, Induced Diffusion, and parametric subharmonic instability, denoted E− for Elastic

Scattering, D− for Induced Diffusion, PSI1 and PSI2 for parametric subharmonic in-

stability along the (+,−,−) unstable curve, and E+ for Elastic Scattering and D+ for

Induced Diffusion along the (+,−,+) stable curve.

All the three types of triads, Elastic Scattering, Induced Diffusion, and parametric

subharmonic instability, are limiting cases meaning they can be approached infinitely

close by the set of resonant triads but these limits are singular. We investigate properties

of triads in the vicinity of these limiting cases.

Table 1 is used as a chart to locate these three limiting triads in later plots and

analyze the associated effect on energy gain at finite time. Elastic Scattering and In-

duced Diffusion triads exist along stable and unstable curves when ω1 or ω2 tend to 0

whereas parametric subharmonic instability is only defined along the unstable branch for

secondary wavenumbers going to infinity. These triads have dominant contributions to

energy transfers as stated by McComas & Bretherton (1977).

We revisit this problem and give a different interpretation by focusing on the stability

of a single primary wave considering the possibility of transient growth for each identified

triad. Our approach is motivated by the nonnormality of the operator involved in the

linearized problem describing the triadic resonant interaction at a finite amplitude primary

wave.

6.4 Transient growth

6.4.1 Nonnormality of the triadic resonant instability operator

Since we choose the variables such that the energy norm is the Euclidean norm ∥Φ∥2 =

|Φ1|2 + |Φ2|2, the evolution operator L introduced in (6.10) is normal with respect to
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Table 6.1: Notations and properties of the three limiting classes of triads, Elastic Scat-
tering, Induced Diffusion and parametric subharmonic instability, along the unstable
(+,−,−) and stable (+,−,+) resonant curves. The generic notation E (resp. D) refers
to both points E− and E+ (resp. D− and D+).

limit triad symbol notation declinations properties comments

Elastic
scattering

△ E (E−, E+)

k1 → (−kx0, kz0)
k2 → (0,−2kz0)
ω1 → −ω0

ω2 → 0

E− ∈ (+,−,−)
E+ ∈ (+,−,+)
ω2 → 0− for E−

ω2 → 0+ for E+

Induced
diffusion

⃝ D (D−, D+)

ki → −k0

kj → 0

ωi → −ω0

ωj → 0

D− ∈ (+,−,−)
D+ ∈ (+,−,+)

(i, j) = (2, 1) for D−

(i, j) = (1, 2) for D+

Parametric
subharmonic

instability
□ PSI (PSI1, PSI2)

k1 → −k2

k1 ∼ k2 → ∞
ω1 ∼ ω2 → −ω0

2

PSI1 ∈ (+,−,−)
PSI2 ∈ (+,−,−)
kx1+ → ∞ for PSI1

kx1 → −∞ for PSI2

this energy norm only when L L H = L HL , superscript H being the transconjugate of

a matrix, which imposes |L1| = |L2|. For all the resonant triads plotted in figure 6.1,

|L1| ̸= |L2| so:

L is always nonnormal with respect to the energy norm ∥Φ∥2 (6.14)

This nonnormality is exacerbated when L becomes singular as one of the coefficient

tends to be infinitely small compared to the other, which is the case when one of the two

ratios, L1/L2 = ω1/ω2 or L2/L1 = ω2/ω1, tends to 0. From table 1, this is only the case for

the Elastic Scattering and Induced Diffusion limiting classes of triads. High nonnormality

of L results in strong transient growth of perturbation energy ∥Φ∥2.

6.4.2 Optimal growth rate of stable and unstable triads

Short-time growth of perturbation energy is studied by optimizing the energy norm

∥Φ∥2 over initial conditions, and the associated optimal energy gain is defined by:

G (T, k1) = max
∥Φ(0)∥=1

∥Φ(T )∥2 = ||| exp(TL )|||2 (6.15)

where |||.||| is the operator norm induced by the Euclidean norm ∥.∥.

Figure 6.2 features the optimal growth rate σ between times 0 and T , computed nu-

merically with Matlab as a function of k1 for all the resonant triads, using the computation

of the optimal energy gain G based on the singular value decomposition of the operator
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6.4. Transient growth

Figure 6.2: Plots of the optimal growth rate σ as a function of k1 for T = 0.1 in a), T = 3
in b), and T = 100 in c), for stable and unstable resonant triads represented in thin blue
and in bold red lines respectively. In c), σ has converged toward the growth rate σth of
the classical triadic instability theory plotted as a dark dashed line on all the graphics.
The points (E,D−, D+, F ) from figure 6.1 are reported on all three figures, point D being
in reality D−, as D− and D+ lead to the same growth rate.
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exp(TL ), whose anlytical expression is given in appendix 6.9.2. The optimal growth rate

σ is defined by:

σ (T, k1) =
lnG (T, k1)

2T
(6.16)

so, when T goes to infinity, σ(T → ∞, k1) = σth, the growth rate given by the classical

stability theory equal to σth =
√
L1L2 for the (+,−,−) unstable branches and σth = 0

for the (+,−,+) and (+,−,+) stable branches26. When T goes to zero, σ(T → 0, k1) =

|L1 + L2| /2, which is the slope of G at T = 0 divided by 2 as demonstrated by Schmid

& Henningson (1994)27 (see appendix 6.9.1).

σ is plotted in figure 6.2 as a function of k1 for different instants T = 0.1 in 6.2a),

T = 3 in 6.2b), T = 100 in 6.2c). At longer times T = 100, σ(T = 100, k1) has converged

toward the growth rate of the linear stability theory σth plotted as a dashed line that

overlays exactly the optimal growth rate of the wave. The limiting case corresponding to

the initial optimal growth rate at short time T = 0.1 plotted in figure 6.2 shows that for all

the triads in the vicinity of E, the initial growth is higher for stable triads than unstable

triads. The perturbation energy grows more rapidly at early times for stable triads, the

maximum maxk1
σ(T = 0.1, k1) being reached by a stable resonant triad corresponding

to point F in figure 6.1. This emphasizes the major role of stable triads during the initial

growth of perturbation. The plots of σ(T = 0.1, k1) and σ(T = 3, k1) in figure 6.2a-b)

show that the optimal growth rate σ is larger at early times than later times. These

curves feature a shift of the maximum of optimal growth rate curves σ from stable triads

(thin blue curve) to unstable triads (bold red curve) when T increases. The time at which

the maximum of σ shifts from a stable (+,−,+) curve to an unstable curve (+,−,−)

estimates the typical time at which the unstable triads take over the stable triads. With

the settings of parameters of figure 6.1 (θ0 = 0.25), this time is close to T = 3. The plot

of σ(T = 3, k1) for stable triads exhibits a large number of oscillations associated to the

form of stable solutions in equation (6.19) which oscillate with a period 2π/
√

|L1L2|. This

period depends on the norm of the wave vector k1 and for a particular time presently

T = 3 this leads to constructive or destructive interferences.

At points E, D− and D+, the evolution operator L becomes nonnormal and singular

as shown in part 6.4, resulting in high transient growth of perturbation energy quantified

by the optimal energy gain G. Figure 6.3 represents G as a function of time T for the

four equally spaced points plotted in yellow and orange dots in figure 6.1, and located at

an arbitrary distance δk = {0.1, 0.2, 0.3, 0.4} of E−, E+, D− and D+, those limit points

corresponding to δk → 0. The curves of G taken at four equally spaced points δk from

E−, E+, D− and D+ have the same initial slope as their limit points and the same short

26. Davis and Acrivos, op. cit.
27. Schmid and Henningson, op. cit.
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6.4. Transient growth

Figure 6.3: Semilog plots of the optimal energy gain G as a function of time T for four
equally-spaced points at a distance δk = {0.1, 0.2, 0.3, 0.4} (respectively in thin solid,
dashed, dash-dotted and dotted lines on each plot) of E−, E+, D− and D+ along the
resonant curves, and indicated by yellow and orange dots in figure 6.1. On all figures,
the curves in heavy lines represent G at the limiting points E− in a) and E+ b) (with △
markers), D− in c) and D+ in d) (with ◦ markers). Denoting (kx1E−, kx1E+, kx1D−, kx1D+)
the values of kx1 taken at points E, D− and D+, the x component of the four equally-
spaced points are chosen such that kx1 < kx1E− near E−, kx1 < kx1E+ near E+, kx1 < kx1D−

near D−, and kx1 < kx1D+ near D+, the same graphs being obtained when considering
four equally-spaced points reversing the order of these inequalities.
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term evolution. When δk increases (thin continuous, dashed, dash-dotted and dotted lines

for δk = {0.1, 0.2, 0.3, 0.4} respectively), the long term evolution of G of the four points

at a distance δk from E−, E+, D− and D+ differs from that of the corresponding singular

points (represented in heavy lines). In 6.3b-d), the points at a distance δk from a singular

point E+ or D+ belongs to the stable branch, so the corresponding solutions are oscillating

with an initial growth given by the optimal energy gain G of the singular points and when

δk increases, the amplitude and the period of those oscillations decrease. In 6.3a-c), the

unstable solution at the equally spaced points described by δk grows rapidly and when

δk increases, the curves of G in thin lines increases from their initial asymptotes given

by the singular points E− or D−. Up until T = 5, the optimal growth rate G of resonant

points at a distance δk ≤ 0.4 of the singular points follow the transient growth given by

the singular operator L taken at points E,D−, D+ and given by equation (6.17).

We locate the points E, D− and D+ along the resonant branches in figure 6.1 by the

values of k1 at those points, denoted (k1E, k1D−, k1D+) respectively. One point along the

resonant curves and corresponding to a value k1 is in the vicinity of E if δk = k1−k1E ≪ 1,

and the same remark applies to D− and D+ if δk = k1−k1D− ≪ 1 and δk = k1−k1D+ ≪ 1

respectively. In a vicinity δk of E, D− and D+ along the resonant branches, the evolution

operator can be developed asymptotically in LE, LD−
and LD+

respectively:

LE ∼




0 LE
1

L′E
2 δk 0



 , LD−
∼




0 L′D
1 δk

LD
2 0



 , LD+
∼




0 LD
2

L′D
1 δk 0



 (6.17)

where L′
1 and L′

2 are the derivatives of L1 and L2 with respect to k1, and LE
1 = L1(k1E),

L′E
2 = L′

2(k1E), L′D
1 = L′

1(k1D−) = L′
2(k1D+), and LD

2 = L2(k1D−) = L1(k1D+).

The nonnormality of the evolution operator L gives rise to transient amplification

of perturbation energy as described by Trefethen et al. (1993)28 for a two dimensional

system following similar equations than (6.10), and those transients are significant as L

becomes singular. The Elastic Scattering and Induced Diffusion limiting classes of triads

may experience high transient growth of perturbation energy. More specifically, at those

limits symbolized by points E, D− and D+ and their corresponding evolution operators,

LE, LD−
and LD+

respectively, the solutions of system (6.10), denoted ΦE, ΦD−
and

ΦD+
, exhibit algebraic growth with complex initial conditions Φ(0) = (Φ0

1,Φ
0
2)

T:

ΦE =





LE
1 Φ0

2T + Φ0
1

Φ0
2



 ΦD−
=





Φ0
1

LD
2 Φ0

1T + Φ0
2



 ΦD+
=





LD
2 Φ0

2T + Φ0
1

Φ0
2



 (6.18)

28. Trefethen et al., op. cit.
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Figure 6.4: Semilog plots of the optimal energy gain G as a function of time T for early
times T ∈ [0, 20], at the singular limits E in orange line with △ markers, D in purple
line with ◦ and (PSI1, PSI2) in black and grey lines with □ markers respectively. The
limiting points D+ and D− leads to the same gain G and are then gathered in a single
curve G at point D.
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Figure 6.4 uses Matlab to compute numerically the optimal energy gain G for a time

horizon 0 < T < 20 by calculating the limit of ||| exp(TL )|||2 for the limiting classes

of triads along the resonant branches indicated by D−, D+, PSI1 and PSI2 marked on

figure 6.1. The limiting points D− and D+ lead to the same optimal energy gain G, so

both points are referenced as D in figure 6.4. The curves of G at the limits D, E, PSI1 and

PSI2 are denoted G(D), G(E), G(PSI1) and G(PSI2) respectively. All curves of G slowly

depart from their associated algebraic growth, the intensity of it being different from one

curve to the next. In the limit case of parametric subharmonic instability indicated by

(PSI1, PSI2), the evolution operator L is normal, G follows an exponential growth with a

larger slope for PSI1 than for PSI2 as shown by the dark and grey curves with □ markers.

In the case of Induced Diffusion and Elastic Scattering indicated respectively by D and

E, L is nonnormal and singular, resulting in remarkable transient growth, as displayed

when comparing the curves of D with PSI2, and of E with PSI1. The two comparisons

show that the nonnormality of L results in an extra gain at short times, as the curves

of optimal energy gain of D and E are above that of PSI2 and PSI1 respectively. G(E)

and G(PSI1) intersect at time T = 15 from figure 6.4. The plots of the optimal energy

gain G for longer durations (not displayed here) show that G(D) and G(PSI2) intersect

near T = 60, and that G(E) and G(PSI2) intersect near T = 100, whereas G(E) remains

above G(D), and G(PSI1) also remains above G(PSI2). The duration of the extra gain

due to the nonnormality of L is given by the previous intersections when comparing

one nonnormal case (points D and E) to one normal case (points PSI1 and PSI2). We

conclude that the longest extra gain due to nonnormality can last up to T = 100 in slow

timescales and is obtained when comparing the optimal gains G(E) and G(PSI2), as

G(E) > G(PSI2) for T < 100.

6.4.3 Finite time solution

The solutions of equation (6.10) for a particular triad along the stable (+,−,+) or

unstable (+,−,−) resonant branches can be written in the general form:

Φ(T ) =

⟨

Φ(0)|ΦA
α

⟩

⟨

Φα|ΦA
α

⟩ ΦαeαT +
⟨Φ(0)|ΦA

β ⟩
⟨Φβ|ΦA

β ⟩ ΦβeβT (6.19)

where (Φα,Φβ) are the eigenvectors associated to the eigenvalues (α, β) respectively,

⟨Φp|Φq⟩ = ΦpΦ
H
q , and superscript A corresponds to the eigenvectors of the adjoint prob-

lem.

In the stable case, L1L2 < 0, the eigenvalues are (α, β) = (i
√

|L1L2|,−i
√

|L1L2|), and
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Figure 6.5: Representation, when ε = |L2/L1| ≪ 1, of the solution Φ(T ), defined in
(6.19), for the initial condition Φ(0) = Φα − Φβ, in red vectors in the (Φ1,Φ2) plane at
different instants T > 0. As T increases, the linestyle of the represented vectors Φ(T ) are
going from solid to dashed, then dashed dotted to dotted lines. The scales indicated are
1/

√
1 + ε ∼ 1 and

√

ε/(1 + ε) ∼ √
ε and the vectors (Φα,Φβ), represented in purple and

green respectively, generate two axes a and b that are not orthogonal, forming an angle
that is narrowed as ε becomes nil. High transients occur as ε tends to 0.
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Figure 6.6: Representation, when ε = |L2/L1| ≪ 1, of the solution Φ(T ), defined in (6.19),
for the initial condition Φ(0) = Φα−Φβ, in blue vectors in the Φ1 plane in a) and in the Φ2

plane in b), and in a (ℑ(Φ1),ℑ(Φ2)) plane in c) at different instants 0 < T <
√

|L1L2|π/2
with. As T increases, the linestyle of the represented vectors are going from solid to
dashed then dashed dotted to dotted lines. The radius of the circles in a) and b) are re-
spectively 1/

√
1 + ε ∼ 1 and

√

ε/(1 + ε) ∼ √
ε and the vectors (Φα exp(αT ),Φβ exp(βT ))

are represented in purple and green respectively,. In the (ℑ(Φ1),ℑ(Φ2)) plane of figure c),
Φ(T ) experiences transient growth when T increases, leading to a quarter ellipse shape
of semi-minor axis 2

√
ε and semi-major axis 2. High transients occur as ε tends to 0.
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the associated eigenvectors read:

Φα = (1, i
√

|L2/L1|)T/
√

1 + |L2/L1|
Φβ = (1,−i

√

|L2/L1|)T/
√

1 + |L2/L1|
(6.20)

In the unstable case, L1L2 > 0, the eigenvalues are (α, β) = (
√

|L1L2|,−
√

|L1L2|),
and the associated eigenvectors read:

Φα = (1,
√

|L2/L1|)T/
√

1 + |L2/L1|
Φβ = (1,−

√

|L2/L1|)T/
√

1 + |L2/L1|
(6.21)

Figures 6.5 and 6.6 illustrate the time evolution of the solution Φ(T ), defined in

(6.19), for the initial condition Φ(0) = Φα − Φβ, along the unstable and stable branches

respectively, when ε is equal to |L2/L1| = |ω2/ω1| ≪ 1, which is the case at point E

and D+. At point D−, the figures 6.5 and 6.6 are still valid if the roles of Φ1 and Φ2

are exchanged. Instead of being related to the differential growth of two eigenmodes for

unstable triads as illustrated in figure 6.5a), the transient growth of stable triads originates

from the differential rotation (i.e. phase shift) of two eigenmodes as shown in figures 6.6a)

and 6.6b). When comparing figures 6.5b) and 6.6c), Φ(T ) grows similarly for unstable and

stable triads from 2
√
ε to 2 in a time horizon 0 < T < |L1L2|−1/2, meaning the transient

growth of stable and unstable triads are comparable and both have a characteristic time

equal to |L1L2|−1/2.

6.5 Effect of viscosity and diffusivity

Following calculations of McEwan & Plumb (1977)29, the triadic wave interaction can

also be extended to take into account all viscous effects when the Reynolds and Prandtl

numbers are finite. The 2 × 2 linearized equation describing the stability of a constant

finite amplitude wave remains valid when viscous effects are included ∂T Φ = L Φ
∗, the

L matrix being modified as:

L =









−λ1

R
L1

L2 −λ2

R









(6.22)

with the diagonal terms λn = k2
n/2, and R = Re/(1 + 1/Pr) a nondimensional number

associated to the dissipative effects described by Re = Ψ′
0(0)/ν ′ and Pr = ν ′/κ′, the

Reynolds and Prandtl numbers of the flow of viscosity and diffusivity (ν ′, κ′).

29. McEwan and Plumb, op. cit.
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In the unstable case L1L2 > 0, L has eigenvalues (α, β) with:

α = −λ1 + λ2

2R
+

√

√

√

√

(

λ1 − λ2

2R

)2

+ L1L2

β = −λ1 + λ2

2R
−
√

√

√

√

(

λ1 − λ2

2R

)2

+ L1L2

(6.23)

and associated eigenvectors Φα = ηα/∥ηα∥ and Φβ = ηβ/∥ηβ∥ with:

ηα =











1

1

2L1





λ1 − λ2

R
+

√

√

√

√

(

λ1 − λ2

R

)2

+ 4L1L2















ηβ =











1

1

2L1





λ1 − λ2

R
−
√

√

√

√

(

λ1 − λ2

R

)2

+ 4L1L2















(6.24)

Following the notations of (6.19), the considered unstable solution can be written as:

Φ(T ) =

⟨

Φ(0)|ΦA
α

⟩

⟨

Φα|ΦA
α

⟩ ΦαeαT +
⟨Φ(0)|ΦA

β ⟩
⟨Φβ|ΦA

β ⟩ ΦβeβT (6.25)

so the growth rate in the classical theory of triadic resonant instability is σth = α:

σth = −λ1 + λ2

2R
+

√

√

√

√

(

λ1 − λ2

2R

)2

+ L1L2
(6.26)

and, if σth becomes negative, the solution becomes stable due to dissipation effects.

Figure 6.7 represents σth as a function of k1 for unstable resonant triads when θ0 = 0.25

in the inviscid case and in the viscous case with Re = 1000 and Pr = 7. σth remains iden-

tical in the inviscid and viscous case for triads with k1 ≤ 1.5 and then viscosity attenuates

the growth rate σth for higher wavenumbers k1 ≥ 1.5. The triads near (PSI1, PSI2) with

large k1 have a negative growth rate σth < 0 as a result of viscosity so the optimal energy

gain G of PSI triads decreases from 1 to 0 when T increases. On the unstable reso-

nant branches containing the limiting branches (PSI1, PSI2), σth reaches a maximum

indicated by the point M ′ at k1 ∼ 1.5. The corresponding triad has the most amplified

exponential growth compared to the other triads near (PSI1, PSI2) along the resonant

branches. When k1 ≤ 1.5, the most amplified triad due to exponential growth at later

time horizons correspond to another maximum of σth indicated by point M . Both triads

indicated by points M and M ′ experience exponential growth of energy at later time hori-

zons without attenuation due to viscosity. At a high fixed Re, when getting close to E in
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Figure 6.7: Growth rate from Hasselmann’s theory σth as a function of k1 in the inviscid
case (dark dashed line) and the viscous case (heavy red line) with Re = 1000 and Pr = 7
corresponding to the ocean. M and M ′ are two points on the unstable branch where the
two first maximum values of σth are reached and are marked by pink and green cross
symbols. In the inviscid case, at longer time horizons (after the transient growth) for
which the exponential growth dominates, M ′ is the most amplified point on the unstable
resonant branches outside the unit circle k1 > 1, whereas M is the most amplified point on
the unstable resonant branch inside the unit circle k1 < 1. The points (D,E, PSI1, PSI2)
from figure 6.2 are reported in the present figure.
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a radius δk ≪ 1 along the resonant branches, there exist δkR such that, when δk < δkR,

the unstable solution becomes linearly stable as σth becomes negative. The scaling of δkR

as a function of Re is δkR ∝ Re−2 as demonstrated in appendix 6.9.3. This stabilization

due to the introduction of viscosity does not occur in the vicinity of D− or D+, since σth

remains positive close to those singular points. The stability properties are different near

D− or D+, since one of the resonant wave vectors vanishes leading to vanishing dissipation

effects. This is evident from the expression of σth > 0 as, for any number R, δk may be

taken sufficiently small to give σth > 0.

Figure 6.8 is the same as figure 6.2 but for the viscous case Re = 1000 and Pr = 7 with

T = 0.1 in 6.8a), T = 3 in 6.8b) and T = 100 in 6.8c), for stable and unstable resonant

triads. The comparison of figure 6.8 with figure 6.2 shows that the introduction of viscosity

and diffusivity does not change the main features of the dynamics, but globally decreases

σ along the resonant branches. Higher wavenumbers are more affected by this decrease

than lower ones. The convergence of σ when T → ∞ toward the theoretical growth rate

σth is shown in figure 6.8c) which displays σ(T = 100, k1), σth being represented as a

black dashed curve in 6.8a), 6.8b) and 6.8c). In the viscous case, the shifting time Tc

defined as the time at which the maximum of σ shifts from a stable (+,−,+) curve to

an unstable curve (+,−,−) remains the same as in the inviscid case Tc ∼ 3. The energy

of stable triads being more amplified than unstable ones during the transient growth is

a key feature of the triadic resonant instability that does not depend on viscosity and

diffusivity.

Figure 6.9 shows the plots of the optimal energy gain G as a function of time T at

the different singular points on the resonant branches E and D (D+ and D− lead to

the same gain so D refer to both points), same as in figure 6.2, and at the points of

largest modal growth defined as M and M ′ for two time horizons, 0 < T < 20 in a)

and 0 < T < 4000 in b), in the viscous case with Re = 1000 and Pr = 7. For the

singular points D and E, the gain G is identical at early times in the inviscid case and

in the viscous case when comparing figures 6.9a) and 6.4. The optimal energy gain G is

superior at E than at M (resp. M ′) for T < 5 (resp. T < 15). Triads in the vicinity

of E have the highest transient growth compared to the other triads so they dominate

the early increase of G. The influence of viscosity is illustrated by the plots of G for a

longer duration 0 < T < 4000 in figure 6.9b), which show that the curve of G at point

E decreases at later times T ≥ 1000, leading to a maximum Gmax reached at time Tmax

verifying:

Gmax ∝ Re2

Tmax ∝ Re
(6.27)

as demonstrated analytically in appendix 6.9.3. This exponential decrease due to viscosity
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Figure 6.8: Same as in figure 6.2 in the viscous case with Re = 1000 and Pr = 7.
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Figure 6.9: Same as figure 6.4 but in the viscous case with Re = 1000 and Pr = 7 and
for two time horizons, 0 < T < 20 in a), and 0 < T < 4000 in b). M and M ′ are defined
in figure 6.7.
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concerns triads in the vicinity of E, whereas triads near D are not affected by the viscous

effects. Triads in the vicinity of D have a less intense energy growth than for triads near

E up until T ∼ 600. After this time horizon, the optimal energy gain of triads near D

dominates the energy growth of triads near E. In all cases, the energy gain of triads in

the vicinity of those singular points is significant during the transient growth. For longer

time horizons, the exponential growth of energy at M and M ′ takes over.

6.6 Variations of the transient growth with the pri-

mary wave angle

Figure 6.10 shows the evolution of the resonant locus shape for different angles θ0 of

the primary wave of wave vector k0 = (kx0, kz0) = (sin θ0, cos θ0). For nearly horizontal

primary wave vectors θ0 = 1.6 close to π/2 as in figure 6.10b), ω0 is close to unity, the

unstable branches (+,−,−) remain, and the stable branches (+,−,+) and (+,−,+) tend

to be reduced to the point D corresponding to ki = k0 and kj = 0. Conversely, for nearly

vertical primary wave vectors as in figure 6.10a) with θ0 = 0.05, the two stable solutions

(+,−,+) and (+,−,+) exist and the two unstable branch are nearly vertical with PSI1

and PSI2 getting infinitely close as θ0 goes to zero. Intermediate angles θ0 = 0.4 and

θ0 = 0.8 are shown in figure 6.10b) and 6.10c) respectively. For intermediate angles, the

resonant triads conserve their features on the resonant branches.

We introduce two variants of the limit point E, denoted E− and E+, depending on

the sign of the x component of the phase velocity of the secondary wave 2 equal to

sign(cx2) = −1 for E− and sign(cx2) = +1 for E+. Points D− and D+ leads to the same

energy growth G so both points will be referred to as D when comparing the transient

growth of D with E− and E+. Figures 6.11 represents the optimal growth rate σ as a

function of k1 at different instants T in the inviscid case for stable and unstable resonant

triads in thin blue and bold red lines respectively for different angles θ0 : θ0 = 0.05 in a-b-

c), θ0 = 0.4 in d-e-f), θ0 = 0.8 in g-h-i), and θ0 = 1.6 in j-k-l). For small angles θ0 = 0.05

corresponding to geophysical flows, the optimal growth rate of stable triads dominates the

growth rate unstable triads at early times as seen in 6.11a-b) since maxk1
σ is obtained

along the thin blue curve corresponding to stable triads, same result as in figure 6.2a-b)

for θ0 = 0.25. The time at which the maximum of σ shifts from a stable (+,−,+) branch

to an unstable branch (+,−,−) is found numerically : Tc = 20 for θ0 = 0.05 whereas

Tc = 3 for θ0 = 0.25 as seen previously in figure 6.2b). The characteristic time Tc at

which the energy growth of unstable triads takes over the stable triads increases when the

primary wave angle θ0 decreases. The magnitude of the growth rate σ differs significantly

when T increases for θ0 = 0.05 : when comparing 6.11a), b) and c), the early maximum

of σ(T = 0.1, k1) reached for stable triads with k1 = 10 is 0.25 whereas the maximum at
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Figure 6.10: Plots of the resonant curves in the −k1 domain for extreme angles θ0 = 0.05
in a) and θ0 = 1.6 in d), and for intermediate angles θ0 = 0.4 in b) θ0 = 0.8 in c). Same
conventions as in figure 6.1.
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Figure 6.11: Same as in figure 6.2 but for θ0 = 0.05 in a-b-c), for θ0 = 0.4 in d-e-f), for
θ0 = 0.8 in g-h-i), and for θ0 = 1.6 in j-k-l). In each figure, the points D, E+ and E− are
indicated with circles and triangles pointing upward and downward respectively. Vertical
scales are the same for graphs in the same row.
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Figure 6.12: Plots of the slope ratios minus one r − 1 as a function of the primary wave
angle 0 < θ0 < π/2 for the ratios m(E+) over m(D) in solid blue line, m(E−) over m(D)
in dashed line, and m(E+) over m(E−) in dotted line. Each curve respectively crosses the
horizontal zero axis at θa ≈ 0.68, θb = π/4, and θc ≈ 1.05.

later times σ(T = 100, k1) reached for unstable triads with k1 = 1 is 0.05. This difference

of 0.20 between maxk1
σ(T = 0.1, k1) and maxk1

σ(T = 100, k1) shows that stable triads

are more amplified at early times than unstable triads are at later times for small angles

θ0 = 0.05. When the wave angle increases, the gap between maxk1
σ(T = 0.1, k1) and

maxk1
σ(T = 100, k1) is reduced and the shifting time decreases as Tc = 1.5 for θ0 = 0.4

and Tc = 0.01 for θ0 = 0.8. The convergence of the optimal growth rate σ toward the

theoretical growth rate σth =
√
L1L2 (represented in dark dash-dotted lines) at a longer

time horizon is shown in 6.11c-f-i-l). The maximum value of the optimal growth rate at

later times maxk1
σ(T = 100, k1) is then reached by an unstable triad near E− for smaller

angles θ0 = 0.05 and θ0 = 0.4 from 6.11c-f) whereas maxk1
σ(T = 100, k1) is reached

by unstable triads near PSI1 for higher angles θ0 = 0.8 and θ0 = 1.6 from 6.11i-l). To

summarize, a decreasing primary wave angle increases the duration and the intensity

of the early growth rate of stable resonant triads compared to the late growth rate of

unstable resonant triads given by Hasselmann’s theory of instability (1967).

Comparing all the curves of σ(T = 0.1, k1) 6.11a), d), g), and j) to rank the intensity

of the transient growth of the limiting points D, E+ and E−, as σ(T → 0, k1) = m/2, m

being the slope of G at T = 0, we observe that the relative position between those points

varies depending on the primary wave angle θ0. The expressions of m at those three points

are m(D) = 2 |Φ0k0 sin(θ0)| and m(E±) = m(D)|1 ∓ sign(cx2) cos(θ0) − 2 cos2(θ0)|. Figure

6.12 plots the three ratios r of the slopes of G at T = 0, m(E+)/m(D), m(E−)/m(D)

and m(E+)/m(E−), as a function of θ0. For a primary wave angle 0 < θ0 < π/2, the

three represented curves of r−1 crosses the horizontal zero axis at three points θa ≈ 0.68,
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θb = π/4, and θc ≈ 1.05 delimiting four distinct regimes in which the relative intensity

of the transient growth of E+, E−, and D changes. In the first regime, 0 < θ0 ≤ θa and

m(E+) ≥ m(D) > m(E−), so the transient growth of triads near D dominates that of

triads near E−, but is less intense than that of triads near E+. When θa < θ0 ≤ θb,

the intensities of the transient growth near the three points of interest, measured by

their initial slopes of G, are such that m(D) > m(E+) ≥ m(E−). For θb < θ0 ≤ θc,

m(D) > m(E−) ≥ m(E+), and for θc < θ0 < π/2, m(E−) > m(D) > m(E+). In

geophysical applications, as the primary wave angle becomes small, 0 < θ0 ≪ θa and

m(E+) ≫ m(D) > m(E−), so, from figures 6.11a) and 6.12, the fastest transient growth

of perturbation energy among all the resonant triads is obtained for stable triads near

E+, in the Elastic Scattering limit with two secondary waves propagating in the same x

direction as the primary wave, (sign(cx0), sign(cx1), sign(cx2)) being all equal to +1.

6.7 Effect of nonlinearities

When nonlinear effects are important, the complex amplitudes of the secondary waves

become finite. (Φ0,Φ1,Φ2) obey to equations (6.8) whose solutions are described by Coppi

et al. (1969)30 and Cairns (1979)31. They identified two types of solutions depending on if

the frequency signs sn are different or if they are all identical. From equation (6.13), sn are

different in our case, resulting in bounded periodic modulations of amplitudes Φn. This

case applies for most waves in fluid at rest, such as surface, interfacial, inertial and internal

waves as investigated by Ball (1964)32 and Joyce (1974)33. The other case corresponds to

identical frequency signs sn. Such condition is achieved by waves in plasma physics as

studied by Weiland & Wilhelmsson (1977)34, or in a three-layer Kelvin Helmholtz as seen

by Craik & Adam (1979)35, and in those cases, solutions of (6.8) may diverge at finite

time.

The nonlinear triadic equations (6.8) admit three invariants, the total energy E , the x

component of the pseudomomentum P , and the phase invariant K whose expressions are

given by (6.9). Without loss of generality, we can set E = 1 and first consider the case

of the triad F plotted in figure 6.1 for θ0 = 0.25, characterized by the phase velocities

(c0, c1, c2) such that c−1
x0 < c−1

x1 < c−1
x2 , and (sign(cx0), sign(cx1), sign(cx2)) are all equal to

+1, so that P is positive definite.

In the quarter space (|Φ0|, |Φ1|, |Φ2|), the possible trajectories are given by the in-

tersection of the unit energy sphere of radius E = 1 and the P-ellipsoid of semi-axes

30. Coppi, Rosenbluth, and Sudan, op. cit.
31. R. A. Cairns, “The role of negative energy waves in some instabilities of parallel flows”, in: J. Fluid

Mech. 92.1 (May 1979), pp. 1–14.
32. Ball, op. cit.
33. Joyce, op. cit.
34. Weiland and Wilhelmsson, op. cit.
35. Craik and Adam, op. cit.
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Figure 6.13: a) Plots of the trajectories given by (6.8) for the exemplified triad F plotted in
figure 6.1 in a (|Φ0|, |Φ1|, |Φ2|) space. At point F , γ = 0.4. The trajectories are represented
by lines of constant momentum c−1

x0 < P < c−1
x2 on the unit energy sphere E = 1 in the

quarter space (|Φ0|, |Φ1|, |Φ2|). The blue lines correspond to the trajectories c−1
x0 < P <

c−1
x1 , the red to c−1

x1 < P < c−1
x2 , and the black dashed lines to the separatrix of equation

P = c−1
x1 . b) Plots of the trajectories along the separatrix in a (φ, |Φ1|) plane. In b),

trajectories are contour lines corresponding to different values of the phase invariant K
given by the colorbar. Some trajectories obtained by numerical integration of (6.8) for
different initial conditions are represented in heavy lines in b) : (φ, |Φ1|) = (0, 0.99) in
dark, (π, 0.01) also in dark, and (π/2, 0.8) in grey.

104



6.7. Effect of nonlinearities

Figure 6.14: Plots of γ−1 as a function of k1 along the resonant branches (+,−,−) and
(+,−,+) represented in bold red and thin blue lines respectively. Four peaks to infinity
located at points D−, D+, E−, E+ are indicated on the figure.

√Pcx0,
√Pcx1 and

√Pcx2 as represented in figure 6.13a) for different values of P be-

tween c−1
x0 and c−1

x2 . The saddle point Φ1 = (0, 1, 0)T is unstable and surrounded locally

by parabolas of axis |Φ2|, whereas the stable points, Φ0 = (1, 0, 0)T and Φ2 = (0, 0, 1)T,

are circled by elliptic trajectories as represented in figure 6.13a) by blue and red ellipses

respectively. Those different regimes are delimited by a separatrix of equation P = c−1
x1

represented in dark dashed lines. The separatrix crosses the plane |Φ1| = 0 on the point

Φγ = (
√
γ, 0,

√
1 − γ)T with γ = (c−1

x2 − c−1
x1 )/(c−1

x2 − c−1
x0 ), such that 0 < γ < 1. For

the examplified triad F , γ = 0.41. In the general case, for a resonant triad such that

c−1
x0 < c−1

x1 < c−1
x2 , different cases appear when linearizing the problem (6.8) as demon-

strated in appendix 6.9.5. If the considered triad is unstable, the 2D linearized prob-

lem (6.10) consists in linearizing the triadic equations (6.8) around the saddle point Φ1

(dΦ1/dT = 0). If the considered triad is stable, the triadic equations (6.8) is linearized

around one of the base states Φ0 or Φ2 (dΦ0/dT = 0 or dΦ2/dT = 0 respectively), leading

to (6.10). In this last case, if c−1
x2 − c−1

x1 < c−1
x2 − c−1

x0 (resp. c−1
x2 − c−1

x1 > c−1
x2 − c−1

x0 ), higher

transient growth of perturbation energy |Φ0|2 + |Φ1|2 (resp. |Φ1|2 + |Φ2|2) are observed

when considering (Φ2,k2, ω2) (resp. (Φ0,k0, ω0)) as a base state. For the exemplified triad

F , c−1
x2 − c−1

x1 < c−1
x2 − c−1

x0 so (Φ2,k2, ω2) is taken as the base state, then perturbed by a

small energy perturbation to observe higher transients, instead of considering (Φ0,k0, ω0)

like in part 6.3.2.

Figure 6.13b) shows the contour plots of the phase invariant K defined in (6.9) in a

(|Φ1|, φ) space. When the total phase φ equals to 0 or π, Φ1 remains real and its modulus

varies between 0 and 1 as illustrated by the trajectories in dark bold lines in the phase
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portrait. This case is equivalent to the rotation of a rigid body around its axis of inertia

in which the components of the momentum in all three directions are real. The case of

φ non-equal to 0 or π shows the behavior of a system when complex initial conditions

are imposed. |Φ1| is then only bounded by 0 and 1, without reaching those bounds. On

the unit energy sphere in figure 6.13a), the trajectory along the separatrix never reaches

the saddle point Φ1 or the point Φγ . In figure 6.13a), all the represented trajectories

are oscillatory, and the trajectory described by the separatrix in black dashed lines is

characterized by relaxation oscillations towards the unstable mode Φ1, with a large time

spent around the unstable point and a short time spent around Φγ , leading to the periodic

destruction of the base state (Φ2,k2, ω2) when initially perturbed along (Φ0,k0, ω0).

For finite amplitudes, as γ ≪ 1, figure 6.13a) shows that, around the focal point

Φ2, a small amplitude perturbation of magnitude greater than
√
γ along the |Φ0| axis is

sufficient to cross the separatrix leading to the nonlinear growth of the perturbation, up

until it destroys the primary wave (Φ2,k2, ω2). Below this threshold, the perturbation is

bounded and oscillates with high excursion characterized by an increase in amplitude of

order
√
γ, or γ in terms of energy gain G. In the linearized problem, the exemplified triad

F maximizes the optimal growth rate σ as T → 0, so F is the triad having the fastest

initial growth. As γ is not small compared to one in the case of F , the intensity of the

linear transients and of the nonlinear growth of perturbation energy measured in terms

of energy gain G is approximately γ−1 = 2.44 at F , and is overwhelmed by far by other

resonant triads.

Resonant triads for which the separatrix gets infinitely close to one stable axis exhibit

higher linear transients and nonlinear growth than other resonant triads. In terms of the

x components of the phase velocity, this condition reads :

γ =
min(c−1

x2 − c−1
x1 , c

−1
x1 − c−1

x0 )

c−1
x2 − c−1

x0

(6.28)

which must be small to develop high transients of perturbation energy as demonstrated

in appendix 6.9.4. This generic criterion captures the greatest transient reached by any

resonant triad of the spectrum in figure 6.1, and gives a wider view than the linearization

method around (Φ0,k0, ω0) introduced in part 6.3.2, some linear transients and nonlinear

growth of stable triads being actually higher when considering (Φ2,k2, ω2) as a base state

instead of (Φ0,k0, ω0). Figure 6.14 plots γ−1 as a function of k1 along the resonant branches

of figure 6.1. We observe two peaks which correspond to γ−1 going to infinity for the two

limit triads, Elastic Scattering and Induced Diffusion, as k1 → 0 or k1 → 1. For finite

amplitude waves, the highest transients and nonlinear growth of perturbation energy is

reached for triads in the vicinity of the two limit cases, Elastic Scattering and Induced

Diffusion.
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6.8 Discussion and conclusion

In the linearized problem (6.10) of a primary wave perturbed by two secondary waves

leading to triadic resonance, the nonnormality of the evolution operator L results in

transient growth of perturbation energy whose intensity is measured by the energy growth

G and the associated growth rate σ. When L becomes singular, this nonnormality is

exacerbated and generates higher transients. Along the resonant branches represented in

figure 6.1, L is always nonnormal and becomes singular at the limit points E and D, as

one of the interaction coefficients goes to zero. The corresponding triads refer to as Elastic

Scattering and Induced Diffusion respectively by McComas & Bretherton (1977)36.

Figure 6.15 represents the two limit triads, Induced Diffusion and Elastic Scattering.

The primary wave vector k0 is represented in black arrow and the secondary wave vectors

(k1,k2) are represented either in blue for points (D+, E+), or in red for (D−, E−). One

key feature for both Elastic Scattering and Induced Diffusion triads is the generation of

a zero frequency mode since one of the secondary wave has a nearly vertical wave vector

as represented on the right column in figure 6.15. This nearly vertical mode refers to as

the Vertically Sheared Horizontal Flow (VSHF) modes investigated by Smith & Waleffe

(2002)37 in the context of forced three-dimensional turbulence. They found an anisotropic

transfer of energy to the VSHF modes in a 3D purely stratified flow at small Froude

number (Fr = 0.2) randomly forced at small scales. The VSHF modes are characterized by

zero vertical vorticity, they have vanishing vertical velocity and only have kinetic energy,

the associated buoyancy field being zero. Those modes create vertically sheared horizontal

layers in which energy piles up selectively at specific wavenumbers. In rotating stratified

turbulence, this accumulation of energy is the result of a strong growth of kinetic energy.

For slow motion flows, Smith & Waleffe (2002)38 highlighted the major implications of

the VSHF mode on the dynamics as the vertical shearing leads to strong shear-Induced

Diffusion of the potential vorticity component and the flow tends to a layered or pancake

structure. Smith & Waleffe (2002)39 considered rotating stratified turbulence with small

f/N where f is the Coriolis parameter. In that case, the VSHF modes are inertial and

correspond to the frequency f , small compared to N .

The plots of the optimal growth rate σ as a function of k1 in figure 6.2 for short dura-

tions T = 0.1 reveal that stable resonant triads initially grow faster than unstable ones,

in particular for triads near E+, in the Elastic Scattering limit with two secondary waves

propagating in the same x direction as the primary wave, (sign(cx0), sign(cx1), sign(cx2))

being all equal to +1. σ(k1, T = 0.1) reaches its maximum for a stable triad indicated by

36. McComas and Bretherton, op. cit.
37. L. M. Smith and F. Waleffe, “Generation of slow large scales in forced rotating stratified turbulence”,

in: J. Fluid Mech. 451 (Jan. 2002), pp. 145–168.
38. Ibid.
39. Ibid.
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Figure 6.15: Illustration of Elastic Scattering and Induced Diffusion triads with the
resulting Vertically Sheared Horizontal Flow (VSHF) mode of velocity field U (z) (green
vectors). The phase velocity of the each mode cn is indicated in red vectors for unstable
triads D−, E− and in blue vectors for stable triads D+, E+. The wave amplitudes are
represented by oscillations located on the vectors (k0,k1) on the left column and on the
vertical axis on the right column for k2.
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point F , corresponding to the fastest growth. Those key results remain when considering

realistic values of viscous effects (Re, Pr) and smaller primary wave angles with respect

to the vertical θ0 for geophysical applications. Viscosity primarly affects higher wavenum-

bers by decreasing the growth rate and making it negative, which may stabilize unstable

triads in a vicinity δkR ∝ Re−2 of E− as predicted by the scalings (6.27), as G reaches a

maximum Gmax ∝ Re2 at time Tmax ∝ Re, confirmed by figure 6.9b).

When amplitudes are finite, nonlinear effects appear as discussed in part 6.7. High

transients and nonlinear growth of perturbation energy occur if the x components of one

resonant wave gets close to that of another resonant wave as stated in (6.28). An energy

perturbation of order γ along the Vertically Sheared Horizontal Flow mode (VSHF) is

amplified by a factor γ−1 up until it destroys the energy of the primary wave (Φ2,k2, ω2).

The nonlinear solution is limited to those three modes corresponding to an exchange of

energy between the primary wave (Φ2,k2, ω2) and one secondary wave (Φ1,k1, ω1) with

cx1 ∼ cx2 catalyzed by the VSHF mode i.e. the secondary wave (Φ0,k0, ω0) of weakly

varying amplitude.

6.9 Appendices

6.9.1 Appendix A: Initial slope of the optimal energy gain

At short times, the optimal energy gain G introduced in (6.15) can be developed

following Schmid & Henningson (1994)40:

G (T, k1) ∼
T →0

max
∥Φ(0)∥=1

⟨
(

I + T (L + L
H)
)

Φ (0) |Φ (0)⟩ (6.29)

with I the identity matrix. In the present 2D case, with the evolution operator L given

in equation (6.10) :

G (T, k1) ∼
T →0

1 + T |L1 + L2| (6.30)

so the optimal energy gain G experiences initial linear growth characterized by the positive

slope at T = 0 equal to |L1 + L2|.

40. Schmid and Henningson, op. cit.
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Using the definition of the optimal growth rate (6.16), we get :

σ (T, k1) ∼
T →0

1

2T
ln

(

1 + T
∂G

∂T
(T = 0, k1)

)

∼
T →0

1

2

∂G

∂T
(T = 0, k1)

∼
T →0

|L1 + L2|
2

(6.31)

6.9.2 Appendix B: Computation of the optimal energy gain

The general expression of the optimal energy gain G in (6.15) involves the computation

of the exponential operator exp(TL ) which has the explicit analytical form :

exp(TL ) =



































cos(T/τ)
√

|L1/L2| sin(T/τ)

−
√

|L2/L1| sin(T/τ) cos(T/τ)



 if L1L2 < 0





cosh(T/τ)
√

|L1/L2| sinh(T/τ)
√

|L2/L1| sinh(T/τ) cosh(T/τ)



 if L1L2 > 0

(6.32)

where sinh and cosh are the hyperbolic sines and cosines functions, and when one of the

interaction coefficients is nil, L1L2 = 0 :

exp(TL ) =



































1 L1T

0 1



 if L2 = 0





1 0

L2T 1



 if L1 = 0

(6.33)

6.9.3 Appendix C: Scaling of the optimal energy gain in the

viscous case

When getting infinitely close to E, D− or D+ in a radius δk ≪ 1 along the resonant

branches, the operator L asymptotes :

LE ∼









− 1

2R
LE

1

L′E
2 δk −2k2

z0

R









LD−
∼









−δk2

2R
L′D

1 δk

LD
2 − 1

2R









LD+
∼









− 1

2R
LD

1

L′D
2 δk −δk2

2R









(6.34)

with the same notations introduced in equation (6.17). Geophysical flows involve high
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Figure 6.16: Illustration of the optimal energy gain G as a function of T at one of the sin-
gular points E− in the viscous case. Different types of solution are represented depending
on the value of δk near δkR. The blue and red curves represent stable (exponentially decay-
ing) and unstable (exponentially growing) solutions respectively obtained when δk > δkR

and δk < δkR whereas the purple curve corresponds to the case δk = δkR. The asymp-
totes of all curves are also displayed : 1 + |L1|T in dashed line and G0 exp(2σthT ) (with
G0 = 1/|

⟨

Φα|ΦA
α

⟩

|2 and σth the greatest eigenvalue of the evolution operator) in dot-
ted, dash dotted and dash dot dotted lines when δk > δkR, δk = δkR and δk < δkR

respectively. In the last case, Gmax and Tmax are also indicated.
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Reynolds number Re ≥ 103 and for different environments, Pr can vary over three

decades, from 0.7 for heat in the atmosphere up to 700 for salt in the ocean. At a high

fixed Re when getting close to E in a radius δk ≪ 1 along the resonant branches, the

condition for viscous stabilization is σth < 0, which, from (6.26) and (6.34), reads :

LE
1 L

′E
2 δk +

(

1 − 2k2
z0

2R

)2

<

(

1 + 2k2
z0

2R

)2

(6.35)

so there exist δkR = 2k2
z0/(L

E
1 L

′E
2 R2) such that, when δk < δkR, the unstable solution

becomes linearly stable as σth becomes negative. The scaling of δkR as a function of Re is

δkR ∝ Re−2. Close to the singular points D− or D+, the stability properties are different

since one of the resonant wave vectors vanishes leading to vanishing dissipation effects.

This is evident from the expression of σth in (6.26) as, for any number R, δk may be taken

sufficiently small to give σth > 0.

From equations (6.30) and (6.25), the asymptotic behavior of the optimal energy gain

G in the vicinity of point E is G ∼ 1 + |L1|T as T → 0 and G ∼ G0e2σthT as T → ∞ with

G0 = 1/|
⟨

Φα|ΦA
α

⟩

|2. Figure 6.16 illustrates the different regimes for triads in the vicinity

of E due to viscous effects : exponential decay versus exponential growth depending on

the sign of the maximum eigenvalue σth. The transition from one regime to the other is

delimited by δkR. At a high fixed Reynolds number Re, the scalings of Gmax and Tmax

as a function of Re are approximated by those of G0 = 1/|⟨Φα|ΦA
α ⟩|2 and T ∗ defined

by 1 + |L1|T ∗ = G0e2σthT ∗

. The asymptotic developments of G0 and T ∗ are obtained

analytically for δk ≪ δkR ∝ Re−2 at a high fixed Reynolds number. The adjoint mode

corresponding to the highest eigenvalue is Φ
A
α = ηA

α/∥ηA
α ∥ with :

ηA
α =











1

1

2L2





λ1 − λ2

R
+

√

√

√

√

(

λ1 − λ2

R

)2

+ 4L1L2















(6.36)

Calculating G0 = 1/|
⟨

Φα|ΦA
α

⟩

|2 and 1 + |L1|T ∗ = G0e2σthT ∗ ∼ G0(1 + 2σthT
∗) for

δk ≪ δkR, the different scalings obtained analytically for fixed high Reynolds number are

:

Gmax ∝ Re2

Tmax ∝ Re
(6.37)
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6.9.4 Appendix D: Criterion for transient growth for finite am-

plitudes

Considering the unit energy sphere, the two conserved quantities, the total energy and

the x component of the pseudomomentum given by (6.9), can be written :

E = |Φ0|2 + |Φ1|2 + |Φ2|2 = 1

P =
|Φ0|2
cx0

+
|Φ1|2
cx1

+
|Φ2|2
cx2

(6.38)

Without loss of generality, we order the x components of the phase velocity cxn of each

wave of the triad assuming :

1

cx0

<
1

cx1

<
1

cx2
(6.39)

Using (6.38), we get :

1

cx0

− P =
(

1

cx0

− 1

cx1

)

|Φ1|2 +
(

1

cx0

− 1

cx2

)

|Φ2|2 < 0

1

cx1

− P =
(

1

cx1

− 1

cx0

)

|Φ0|2 +
(

1

cx1

− 1

cx2

)

|Φ2|2

1

cx2

− P =
(

1

cx2

− 1

cx0

)

|Φ0|2 +
(

1

cx2

− 1

cx1

)

|Φ1|2 > 0

(6.40)

which shows that P is bounded and :

1

cx0

< P <
1

cx2

, and P =
1

cx1

at the separatrix. (6.41)

At the crossing between the plane |Φ1| = 0 and the separatrix, we get :

1

cx0

− 1

cx1

=
(

1

cx0

− 1

cx2

)

|Φ2|2

1

cx2

− 1

cx1

=
(

1

cx2

− 1

cx0

)

|Φ0|2
(6.42)

or equivalently :

|Φ0|2 =
c−1

x2 − c−1
x1

c−1
x2 − c−1

x0

|Φ2|2 =
c−1

x1 − c−1
x0

c−1
x2 − c−1

x0

(6.43)

The separatrix gets infinitely close to one of the axes |Φ0| or |Φ2| if |Φ0|2 ≪ 1 or
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|Φ2|2 ≪ 1. This condition reads :

γ =
min(c−1

x2 − c−1
x1 , c

−1
x1 − c−1

x0 )

c−1
x2 − c−1

x0

(6.44)

which should be small compared to 1, so that strong transient growth of perturbation

energy and relaxation oscillations occur.

6.9.5 Appendix E: Linearized problem from the nonlinear tri-

adic equations

We consider the triadic equations (6.8), with the assumption introduced previously

(6.39). Three linearized problems can be derived from (6.8).

Assuming Φ0 real, the linearized problem around Φ0 reads dΦ0/dT = 0 and :

d

dT





Φ1

Φ2



 = L0





Φ∗
1

Φ∗
2



 , with L0 =
ΛxΦ0

cx0





0 1 − cx0/cx2

cx0/cx1 − 1 0



 (6.45)

Assuming Φ1 real, the linearized problem around Φ1 reads dΦ1/dT = 0 and :

d

dT





Φ0

Φ2



 = L1





Φ∗
0

Φ∗
2



 , with L1 =
ΛxΦ1

cx1





0 cx1/cx2 − 1

1 − cx1/cx0 0



 (6.46)

Assuming Φ2 real, the linearized problem around Φ2 reads dΦ2/dT = 0 and :

d

dT





Φ0

Φ1



 = L2





Φ∗
0

Φ∗
1



 , with L2 =
ΛxΦ2

cx2





0 1 − cx2/cx1

cx2/cx0 − 1 0



 (6.47)

The determinants of L0 and L2 are positive, whereas that of L1 is negative, so (6.45)

and (6.47) lead to bounded solutions in amplitudes corresponding to stable resonant triads

represented in thin blue and green lines in figure 6.1, whereas (6.46) results in exponential

growth of amplitudes corresponding to the dynamics of unstable resonant triads in bold

red lines in figure 6.1.

For stable resonant triads described by equations (6.45) or (6.47), we show that the

linearized problem (6.45) (resp. or (6.47)) leads to the highest transient growth of per-

turbation energy if cx1 → cx0 (resp. cx1 → cx2). Without loss of generality, we assume

cx1 → cx0 such that γ = (c−1
x1 −c−1

x0 )/(c−1
x2 −c−1

x0 ). Then, the evolution operator L0 in (6.45)
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reads :

L0 = ΛxΦ0(c
−1
x2 − c−1

x0 )





0 −1

γ 0



 (6.48)

so nonnormality is ensured if γ ̸= 1, and when γ ≪ 1, L0 becomes singular (i.e. highly

nonnormal). In this case, high transients are observed in the linearized problem (6.45),

which is not the case of (6.47), as :

L2 = ΛxΦ2(c
−1
x2 − c−1

x0 )





0 1 − γ

−1 0



 (6.49)

hence, in the limit γ ≪ 1, L2 becomes normal, whereas L0 becomes nonnormal and

singular.
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Chapter 7

Internal waves: nonlinear growth and

linear transients of perturbation

energy (in preparation for Physical

Review Fluids)

Some information available in the previous sections, such as a review of the fundamen-

tal equations describing our systems and their properties, may be found in the following

article as an introduction to the theoretical basis needed for the novel results. Despite some

extra terms in the coupling coefficients when including rotation effects in the description

of a stratified medium, we find the previous transients to form in weakly rotating medium

for gravito-inertial waves submitted to small perturbations. The transient growth of per-

turbation energy, as well as the nonlinear growth for a finite perturbation, are sensitive

to the variations of the Coriolis parameter captured by some novel scalings.

7.1 Abstract

Internal waves play an important role in the evolution of the global climate system, the

atmosphere and the ocean being the host of intense local mixing resulting from internal

waves activity. Internal wave-driven mixing is regulated by the energy transfers resulting

from wave-wave interaction, a key element whose understanding needs to be advanced to

accurately represent the energy transfers within the internal wave field, which ultimately

leads to dissipation, turbulence, breaking and mixing. Our investigation focuses on the

triadic resonant instability, a nonlinear interaction involving three internal waves whose

frequencies and wave vectors follow a specific resonance condition. We show that, in a

stratified rotating medium, the triadic system is analytically constrained by three invari-

ants, the total energy, pseudo momentum and a phase invariant, such that, when this

system is submitted to a finite perturbation, nonlinear growth of the perturbation energy

characterized by relaxation oscillations take place, and may represent another path to in-

stability. This nonlinear process is enhanced by triads involving one zero wave frequency,

but, as rotation increases, the disappearance of waves of zero frequency in the triadic
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resonant spectrum leaves room for triadic interactions involving inertial waves, and the

magnitude of the associated nonlinear growth of perturbation energy decreases compared

to the non-rotating case, with a growth rate being inversely proportional to the Coriolis

parameter.

7.2 Introduction

The evolution of the global climate system is sensitive to the distribution and the

magnitude of the vertical mixing of deep water masses in the ocean1, and of layers of dif-

ferent densities in the atmosphere2. This turbulent mixing is driven by waves generated

inside the high atmosphere and the deep ocean, called internal waves3, as a result of the

natural stratification occurring in both media. Internal waves transport nutrients, green-

house gases and carbon around the planet4, and contribute to the Meridional Overturning

Circulation (MOC), one major large-scale ocean circulation system on Earth, which redis-

tributes heat and salt all over the entire ocean during a one thousand year cycle5, mixing

deep, cold, salty, dense water with warmer, less dense surface currents.

Oceanic internal waves are generated by tides, surface winds and geostrophic currents,

and each of these sources accounts for a fraction of the total energy budget dedicated

to internal waves of order 1 TW6. Once generated, internal waves propagate throughout

the ocean, and interact with other waves, currents and topography, causing energy to

transfer across different spatio-temporal scales. One major process contributing to this

energy transfer is triadic resonant instability (TRI), a nonlinear interaction involving three

resonating internal waves of different wave vectors and frequencies7, that continuously

exchange energy8. The parametrization of vertical mixing in numerical climate model is

part of an international effort to accurately model and predict the evolution of climate9,

which necessarily includes a thorough understanding of wave interaction.

7.3 Triadic equations and invariants

Internal waves propagate in the atmosphere and the ocean, two geophysical fluids that

are stratified and rotating media, as both fluids undergo Earth’s rotation and gravity,

1. Melet, Legg, and Hallberg, op. cit.
2. J. Holton et al., “Stratosphere-Troposphere Exchange”, in: Rev. Geophys. 33 (Nov. 1995), pp. 403–

439.
3. Klymak, Legg, and Pinkel, op. cit.
4. Tuerena et al., op. cit.
5. Kunze, op. cit.
6. Wunsch and Ferrari, op. cit.
7. Ripa, op. cit.
8. McComas and Bretherton, op. cit.
9. MacKinnon et al., “Climate Process Team on Internal Wave-Driven Ocean Mixing”.
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which makes heavier fluid stay at the bottom while fluid of smaller density is generally

found at higher elevations. Stratification in density originates from layers arranged in

order of increasing temperature in the atmosphere, and layers of different temperature

and salinity in the ocean, from cold and salty deep water masses to light and warm

seawater at the surface.

We consider an incompressible, inviscid flow characterized by a constant BruntVäisälä

frequency N =
√

−g/ρrdρ0/dz measuring the strength of the stratification, ρr being the

constant reference density, ρ0 the mean density profile, a linear function of the vertical

coordinate z, and by a Coriolis parameter f = 2Ω sin λ, where Ω is the norm of the

Earth’s rotation vector, and λ the latitude. We assume the flow, described by the Cartesian

coordinates (x, y, z), to be invariant along the y direction, so the so-called 2D-3C (two-

dimensional, three components) model is used to model the flow. In this 2D flow in the

(x, z) plane, the dispersion relation of an internal wave of nondimensional frequency ω

and wave vector k = (kx, kz), propagating in the considered fluid is10:

ω2 =

(

kx

k

)2

+

(

f

N

)2 (
kz

k

)2

(7.1)

where k =
√

k2
x + k2

z is the norm of the wave vector k. This dispersion relation is derived

by linearizing the incompressible, stratified, rotating Euler equations in which time t and

space variables (x, z) are nondimensionalized respectively by N and L, the typical length

scale of the wave field. As a result of (7.1), (f/N)2 ≤ ω2 ≤ 1, and the two limiting

cases correspond to inertial waves as11 ω = ±f/N , and to internal gravity waves as12

ω = ±1. In geophysical applications, |f | ranges from 0 at the equator to approximately

1.5×10−4rad s−1 at the poles, and the order of magnitude of N varies between 10−3rad s−1

and 10−2rad s−1, so we are interested in flows characterized by values of f/N , also known

as Prandtl ratio, ranging from 0 to 0.15.

When the wave amplitude is not infinitesimal, the Froude and Rossby numbers, Fr =

U/(NL) and Ro = U/(fL), where U is the typical velocity in the wave field, become finite.

The nonlinearities in the Euler equations being quadratic, three waves (ω0,k0), (ω1,k1),

(ω2,k2) independent at leading order in Froude and Rossby numbers will be coupled at

the second order if they form a triad13:

ω0 + ω1 + ω2 = 0

k0 + k1 + k2 = 0

(7.2)

10. Gill, op. cit.
11. O. M. Phillips, “Energy Transfer in Rotating Fluids by Reflection of Inertial Waves”, in: Phys.

Fluids 6.4 (Apr. 1963), pp. 513–520.
12. McEwan and Plumb, op. cit.
13. Hasselmann, op. cit.
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so, denoting sn the sign of the frequency ωn of the n-th wave, the triadic resonance

conditions (7.2) combined with the dispersion relation of each wave (7.1) to eliminate k1

or k2 give:

s0D(k0) + s1D(k) + s2D(k0 + k) = 0 (7.3)

with D(k) =
√

k2
x + (f/N)2k2

z/k, k being indifferently k1 or k2.

Without loss of generality, we can fix one of the wave vector, for instance k0 and the

associated frequency sign s0, to study the set of resonant triads by plotting the implicit

equation (7.3) in the k plane, the wave vector k corresponding indifferently to k1 or k2 in

(7.2). Setting k0 = (kx0, kz0) = k0(sin θ0, cos θ0) with k0 = 1 and θ0 = 0.13, and s0 = +1,

the resonance loci defined by equation (7.3) are plotted on figure 7.1 for different values

of f/N . Each possible sign combination (s0, s1, s2) in (7.3) leads to a distinct resonant

branch represented in a specific color: the red curves correspond to the sign combination

(+,+,+), the blue ones to (+,+,−), and the green ones to (+,−,+). The red curves

cease to exist when f/N > ω0/2, or equivalently when f/N > sin θ0/(3 + sin2 θ0)
1/2. Each

resonant triad is obtained by joining the tip of k0 to one resonant curve, forming the

vector k, and closing the triangle by plotting −k0 − k, as presented by the exemplified

triad indicated by point F at the tip of k.

We introduce the normalized streamfunction Φn of the n-th wave so that the asso-

ciated velocities along the (x, y, z) directions, respectively denoted (un, vn, wn), and the

buoyancy field bn can be expressed as un = −2ikzn/knΦn exp i(kxnx+ kznz − ωnt) + c.c.,

vn = if/ωnun, wn = −kxn/kznun, and bn = −iN2/ωnwn, where c.c. indicates the complex

conjugate16. Formally, the derivation involves a multiscale expansion with the introduc-

tion of a slow time scale T = Frt, the wave amplitude Φn(T ) then being a function of T

as in the derivation of the WKB approximation17. A second order expansion in Froude

number leads to the amplitude equations for the resonant waves (see18 for more details).

When transforming back the slow time scale T in the primitive time t, those equations

read19:

dΦ0

dt
= L0Φ

∗
2Φ

∗
1

dΦ1

dt
= L1Φ

∗
0Φ

∗
2

dΦ2

dt
= L2Φ

∗
1Φ

∗
0

(7.4)

16. Gill, op. cit.
17. Bender and Orszag, op. cit.
18. McEwan and Plumb, op. cit.
19. F. P. Bretherton, “Resonant interactions between waves. The case of discrete oscillations”, in: J.

Fluid Mech. 20.3 (1964), pp. 457–479.
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Figure 7.1: Plots of the resonant branches defined by the implicit equation (7.3) in
the k = (kx, kz) plane for different values of Prandtl ratios f/N for a fixed wave vector
k0 = k0(sin θ0, cos θ0) with k0 = 1 and θ0 = 0.13, the primary wave angle being taken from
simulations in15, and a fixed frequency sign s0 = +1: f/N = 0 in a), f/N = 0.05 in b),
f/N = 0.1 in c), and f/N = 0.15 in d). In each figure, the black arrow represents the wave
vector k0, the red curves correspond to the wave frequency signs (s0, s1, s2) = (+,+,+) in
equation (7.3), the blue curve to (+,+,−), and the green curve to (+,−,+). In figure a),
the exemplified triad F is represented with wave vectors k and −k0 − k in black arrows
and the tip of vector k is indicated by the circles point F . The tip of vector k for Induced
Diffusion triads is indicated by points (D1, D2), and, for Elastic Scattering triads, by point
E.
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where Φ∗
n is the complex conjugate of Φn and the interaction coefficients Ln are expressed

using the phase velocities cn = (cxn, czn) = (ωn/kxn, ωn/kzn):

L0 = Λx

(

1

cx2

− 1

cx1

)

+

(

f

N

)2

Λz

(

1

cz2

− 1

cz1

)

L1 = Λx

(

1

cx0

− 1

cx2

)

+

(

f

N

)2

Λz

(

1

cz0

− 1

cz2

)

L2 = Λx

(

1

cx1

− 1

cx0

)

+

(

f

N

)2

Λz

(

1

cz1

− 1

cz0

)

(7.5)

with Λx = ∆(k0k1k2)
−1(c−1

x0 + c−1
x1 + c−1

x2 ) and Λz = ∆(k0k1k2)
−1(c−1

z0 + c−1
z1 + c−1

z2 ), ∆

being twice the oriented area of the triangle (k0, k1, k2), ∆ = kx1kz2 − kx2kz1. The

three interaction coefficients defined here are linked by the relations ω2L0ω1 = ω0L1ω2 =

ω1L2ω0. Hence, the triadic equations (7.4) are identical to other formulations found in the

literature20 that feature different expressions for the interaction coefficients than those

given in (7.5), those expressions depending in fact on the definition of the wave amplitudes

chosen by the authors. Our choice of wave amplitudes Φn is motivated by the definition

of the energy norm, so that the total energy of the n-th wave, sum of the kinetic and

potential energy averaged in space, is now equal to |Φn|2.
The plots of the resonant curves on figure 7.1 reveal the existence of triads with

one wave of nearly vertical wave vector, whose corresponding frequency approaches f/N ,

suggesting that triadic resonant instability may involve one nearly inertial wave if f differs

from zero, and one nearly zero frequency wave otherwise. In a non-rotating flow, such

limiting classes of triads were given names, Elastic Scattering and Induced Diffusion21,

and are located on the resonant branches by points E and (D1, D2) respectively on figure

7.1. Those triads contributes to the numerically computed transfer of energy in the Garrett

and Munk models of the oceanic internal wave spectrum22. From equations (7.5), one of

the interaction coefficients, L1 or L2, becomes nil when considering those limiting triads,

and the corresponding wave, Φ1 or Φ2, is time independent. Induced Diffusion triads

physically refer to the diffusion of wave action |Φ0|2/ω0 mainly along the kz direction in

the wave spectrum, towards waves of nearly same wave vector and frequency (k2, ω2),

with k2 → k0 and ω2 → ω0, mediated by a nearly zero frequency wave (k1, ω1), with

ω1 → 023. Elastic Scattering triads correspond to an energy transfer between an upward

and a downward propagating higher-frequency waves with little change in energy of a third

low-frequency wave. The last limiting case tends to equalize the intensities of the upward

20. Ibid.
21. McComas and Bretherton, op. cit.
22. C. Garrett and W. Munk, “Space-time scales of internal waves: A progress report”, in: J. Geophys.

Res. 80.3 (1975), pp. 291–297.
23. McComas and Bretherton, op. cit.
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and downward propagating waves leading to the vertical symmetry of the spectrum24.

From figure 7.1, as f/N increases, the resonant curves do not cross the singular points

(E,D1, D2) anymore, so the corresponding singularity vanishes. Increasing rotation then

attenuates the two effects associated to Induced Diffusion and Elastic Scattering triads,

respectively the diffusion of wave action between waves of nearly same wave vector and

frequencies, and the energy transfer between waves of horizontally symmetric wave vector.

However, for small values f/N ≪ 1, the singular points (E,D1, D2) are nearly resonant

and the two effects described as Induced Diffusion and Elastic Scattering remain relevant.

Those two limiting classes of triads induce the emergence of Vertically Sheared Hori-

zontal Flow modes (VSHF)25, an ubiquitous feature in non-rotating and weakly rotating

stratified turbulence26, and identified as resonant waves characterized by purely vertical

wave vectors. Triadic resonant instability is one of the mechanisms proposed for the gen-

eration of such modes27, which oscillate at the inertial frequency, thus considered as being

roughly time independent if f/N ≪ 1, have kinetic energy only and transfer energy to

large scales, as shown in simulations conducted by28 of homogeneous, forced turbulence

in 3D rotating, stably stratified flow in the Boussinesq approximation, in which energy is

injected through an isotropic, white-noise forcing localized at small scales. In those sim-

ulations, as f/N ≪ 1, energy piles up in VSHF modes, organized as vertically sheared,

horizontal layers, and referred to as pancake structure, suggesting that wave interactions

are responsible for the energy transfer to scales larger than the forcing scales.

The triadic equations (7.4) conserve the total energy E , the pseudo-momentum vector

P = (Px,Pz), and the phase invariant K, also known as Hamiltonian29, respectively

defined by:

E =
∑

n

|Φn|2, P =
∑

n

|Φn|2
(

1

cxn

,
1

czn

)

,

K = |Φ0Φ1Φ2| sinφ

(7.6)

where φ is the phase of Φ0Φ1Φ2. The conservation of the two first invariants, energy E and

pseudo-momentum P , is identical to the Manley-Rowe relations30, derived from the triadic

equations (7.4), which state that ω−1
0 d|Φ0|2/dt = ω−1

1 d|Φ1|2/dt = ω−1
2 d|Φ2|2/dt, leading

to the existence of two independent quadratic invariants C0 = |Φ1|2/ω1 − |Φ2|2/ω2 and

C1 = |Φ2|2/ω2 −|Φ0|2/ω0, the third being the sum of these two invariants C2 = −C0 −C1.

Two integrals of motion that have a physical interpretation emerge as a linear combination

24. O. M. Phillips, “The interaction trapping of internal gravity waves”, in: J. Fluid Mech. 34.2 (1968),
pp. 407–416.

25. Waleffe, op. cit.
26. Smith and Waleffe, “Transfer of energy to two-dimensional large scales in forced, rotating three-

dimensional turbulence”.
27. Idem, “Generation of slow large scales in forced rotating stratified turbulence”.
28. Ibid.
29. Whitham, op. cit.
30. Manley and Rowe, op. cit.
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of the Cn, e.g. for any trinome (α0, α1, α2) such that α0 +α1 +α2 = 0, B =
∑

αn|Φn|2/ωn

is an integral of motion (demonstration in31). In the purely rotating case, E and Pz,

which correspond to the trinomes (α0, α1, α2) equal to (ω0, ω1, ω2) and to (kz0, kz1, kz2)

respectively, were chosen as they physically represent the energy and helicity of resonant

triads respectively32, up to a constant factor that does not depend on the selected triad33.

The current investigation focuses on geophysical fluids, the atmosphere and the ocean,

two stratified weakly rotating media such that f/N is small compared to unity. Therefore,

we choose E and Px, associated to the trinomes (ω0, ω1, ω2) and (kx0, kx1, kx2) respectively,

to be the two physically meaningful quadratic invariants, this choice being motivated by

the purely stratified case.

7.4 Nonlinear growth of perturbation energy

Without loss of generality, we change the indices (0, 1, 2) of each resonant triad rep-

resented on figure 7.1, so that each involves three resonating waves (ω0,k0), (ω1,k1),

(ω2,k2) such that:

1

cx0

<
1

cx1

<
1

cx2
(7.7)

along with the condition:

1

cx1

− 1

cx0

<
1

cx2

− 1

cx1
(7.8)

so that the quantity defined by:

γ =
c−1

x1 − c−1
x0

c−1
x2 − c−1

x0

(7.9)

varies between 0 and 1. γ is the colinearity factor such that p1 − p0 = γ × (p2 − p0)

with pn = (1/cxn, 1/czn), implying that γ = (c−1
z1 − c−1

z0 )/(c−1
z2 − c−1

z0 ), or, in terms of wave

frequencies γ = −ω2/ω1. Along the resonant branches, γ is minimum for the limiting

classes of triad, Elastic Scattering and Induced Diffusion, even reaching 0 as f/N becomes

nil, Φ2 being then the VSHF mode as ω2 → 0 when ω1 and ω0 remain finite and nearly

equal.

Each resonant triad corresponds to a set of three triadic invariants (4.85), in which

energy can be set to unity E = 1. The plots of those invariants are shown on figure 7.2

31. Ha, Chomaz, and Ortiz, op. cit.
32. Bordes et al., op. cit.
33. Ha, Chomaz, and Ortiz, op. cit.
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Figure 7.2: a) Plots of the trajectories solving the tradic equations (7.4) for the exemplified
triad F indicated on figure 7.1 in a (|Φ0|, |Φ1|, |Φ2|) space, obtained by intersecting the
unit energy sphere E = 1 with quadrics of pseudomomentum Px varying in different
ranges: trajectories corresponding to 1/cx0 < Px < 1/cx1 are plotted in blue, and to
1/cx1 < Px < 1/cx2 in red. The separatrix distinguishing the two previous regimes is
defined by Px = 1/cx1, and is plotted in dashed lines. The four points Φ0 = (1, 0, 0),
Φ1 = (0, 1, 0), Φ2 = (0, 0, 1), and Φγ = (

√
1 − γ, 0,

√
γ), γ being defined by equation

(7.9), are indicated. b) Contour plots of the phase invariant K in a (|Φ1|, φ) plane for the
separatrix represented on figure 7.2a), for different values of K indicated on the colorbar.
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for the exemplified triad F represented on figure 7.1a). When intersecting the unit energy

sphere E = 1 with varying pseudo-momentum ellipsoids Px in a (|Φ0|, |Φ1|, |Φ2|) space, two

distinct regimes appear on figure 7.2a): trajectories corresponding to 1/cx0 < Px < 1/cx1

and to 1/cx1 < Px < 1/cx2 are represented in blue and red respectively, and are separated

by the separatrix of equation Px = 1/cx1 in dashed lines. Four points:

Φ0 = (1, 0, 0), Φ1 = (0, 1, 0), Φ2 = (0, 0, 1),

Φγ = (
√

1 − γ, 0,
√
γ)

(7.10)

are also represented in this (|Φ0|, |Φ1|, |Φ2|) space. With the conventions introduced in

(7.7) and (7.8) and the normalization of the energy to unity, every resonant triad leads to

a representation in the (|Φ0|, |Φ1|, |Φ2|) space similar to the one represented on the present

figure 7.2a), for triad F , in which Φγ is closer to Φ0 than to Φ2 in the plane |Φ1| = 0 with

respect to the energy norm, i.e. ∥Φγ − Φ0∥2
NL < ∥Φγ − Φ2∥2

NL with the energy norm:

∥Φ∥2
NL = |Φ0|2 + |Φ1|2 + |Φ2|2 (7.11)

for any vector Φ = (Φ0,Φ1,Φ2). For the exemplified triad F , Φγ differs greatly from Φ0

with respect to the energy norm, but for the limiting classes of triads, Induced Diffusion

and Elastic Scattering, Φγ gets infinitely close to Φ0, so, in a vicinity O(f/N) of the

singular points (D1, D2, E) along the resonant branches on figure 7.1:

γ → 0, ∥Φγ − Φ0∥2
NL → 0, as

f

N
→ 0 (7.12)

In stratified weakly rotating flows, the limiting classes of triads, Induced Diffusion and

Elastic Scattering, are nearly resonant, and Φγ can be developed asymptotically for small

values of Prandtl ratios f/N ≪ 1 near the singular points (D1, D2, E):

Φγ = Φ0 +
Φ2√
ω0

√

f

N
+ o





√

f

N



 (7.13)

this ultimate asymptotic expansion showing that, for Induced Diffusion and Elastic Scat-

tering triads, an infinitely small perturbation of energy γ ≪ 1 of a single traveling wave

Φ0 along the Φ2 direction in the (|Φ0|, |Φ1|, |Φ2|) space may experience intense nonlinear

growth by a factor γ−1, leading to the periodic destruction of the base state Φ0 when

creating the new state Φ1. This small perturbation, symbolized by the vector Φ − Φ0

in figure 7.2b), departs from its initial value Φγ − Φ0, along the direction of the VSHF

mode Φ2, and reaches Φ1 − Φ0. Therefore, for all the resonant triads plotted in figure

7.1a), a perturbation of the triadic system from Φ0 along Φ2 in the (|Φ0|, |Φ1|, |Φ2|) space
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exhibits nonlinear growth, measured by an energy gain maximized by Induced Diffusion

and Elastic Scattering triads, Φ2 then emerging as the VSHF mode in stratified weakly

rotating flows. As f/N → 0, this maximum energy gain, obtained at the singular points

(D1, D2, E) and denoted G, goes to infinity, as γ → 0 at those points. This infinite peak

is decreased by the introduction of rotation, making it finite as the resonant branches

change from figure 7.1a) to 7.1d), the value of this peak being captured by the scalings

at (D1, D2, E):

γ ∝ f

N
, G ∝

(

f

N

)−1

, as
f

N
→ 0 (7.14)

those power laws being only relevant if (D1, D2, E) are nearly resonant, which is the case

when f/N ≪ 1.

Along the separatrix on the unit energy sphere E = 1, for any resonant triads, the phase

invariant reads K = |Φ1|
√

(1 − γ)γ(1 − |Φ1|2) sinφ, whose contour plots are displayed in

a (|Φ1|, φ) plane for the exemplified triad F on figure 7.2b). Without loss of generality,

we consider values of φ between 0 and π, and all the possible values of K are indicated in

the colorbar from dark to light, as K goes from 0 to 0.15. If φ is initially nil or equal to π,

|Φ1| varies continuously between 0 and 1 as indicated by the darkest contour associated to

K = 0, and the wave amplitudes (Φ0,Φ1,Φ2) remain real at all time as φ jumps from 0 to π

periodically, meaning that Φ0Φ1Φ2 oscillates with equal duration spent in the positive and

negative values during one period. In this case, the triadic equations (7.4) are identical to

the Euler equations describing the dynamics of a rotating rigid body34, the two integrals

of motion, the energy and the pseudo-momentum of the fluid (4.85), being then replaced

by the energy and the angular momentum of the solid35, two positive definite forms (the

components of the pseudo-momentum (Px,Pz) are not necesarily positive definite, but

the two systems, stratified weakly rotating fluid and rotating solid, still exhibit the same

dynamics). If φ initially differs from 0 and π, |Φ1| and φ vary continuously between 0 and

1, and 0 and π respectively, without reaching those bounds, so the states represented by

points Φγ and Φ1 act as repellers. In all the cases above, for a fixed initial value of φ, |Φ1|
oscillates between 0 and 1, and relaxation oscillations may occur as, for any blue or red

trajectories getting close to the separatrix with respect to the energy norm, |Φ1| oscillates

with a quick passage near 0 and a long duration near 1, this duration being infinite for any

given trajectory infinitely close to the separatrix. Starting from Φ0, a small perturbation

of energy γ along the Φ2 direction experiences relaxation oscillations, characterized by

an energy gain γ−1 that measures the nonlinear growth of the perturbation energy. This

periodic evolution is universal to all resonant triads in the range of values of f/N explored

here, the corresponding energy gain being maximized for Elastic Scattering and Induced

34. Euler, op. cit.
35. Lynch, op. cit.
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Diffusion triads when f/N → 0 as indicated by the scalings (7.14).

7.5 Transient growth of perturbation energy

The nonlinear dynamics of the triadic system (7.4), fully captured by the separatrix,

shapes the response of a propagating internal wave, Φ0 or Φ1, called primary wave,

submitted to an infinitesimal perturbation of energy along the Φ2 direction. On the unit

energy sphere plotted on figure 7.2a), such perturbation energy results in a linear resonant

response, captured by the blue ellipsoids infinitely close to Φ0 or the red hyperboloids

infinitely close to Φ1, derived respectively by linearizing the triadic system (7.4) when

setting dΦ0/dt = 0 or dΦ1/dt = 0, so that:

dΦ′

dτ
= L Φ

′∗ (7.15)

with the evolution operator:

L =





0 1

ε 0



 (7.16)

where Φ
′ = (Φ1,Φ2), τ = L1t, ε = −|ω2/ω1| = −γ when setting Φ0 = 1 without loss of

generality, and Φ
′ = (Φ0,Φ2), τ = L0t, ε = |ω2/ω0| when setting Φ1 = 1. The linearized

triadic system (7.15) is either linearly stable if Φ0 = 1, resulting in bounded periodic

oscillations of the perturbation Φ
′, captured by the blue ellipsoids infinitely close to Φ0

on figure 7.2a) and specific to any resonant triad along the blue or green branches on figures

7.1, or linearly unstable if Φ1 = 1, implying the exponential growth of Φ
′ illustrated by

the red hyperboloids infinitely close to Φ1 and specific to any resonant triad along the

red branches. The energy norm is now set to be the 2D Euclidean norm ∥Φ
′∥2, equal to

|Φ1|2 + |Φ2|2 for the blue and green resonant branches, and to |Φ0|2 + |Φ2|2 for the red

resonant branches. With respect to this energy norm, L is normal if L L H = L HL ,

L H being the transconjugate of the evolution operator L , which is equivalent to ε2 = 1.

For all the resonant triads on figure 7.1, ε2 ̸= 1, so L is always non-normal. This non-

normality intensifies for resonant triads verifying ε ≪ 1, and implies that an infinitely

small perturbation of energy ∥Φ
′∥2 ≪ ε experiences intense transient growth characterized

by an energy gain equal to ε−1. Those transients are maximum for Elastic Scattering and

Induced Diffusion triads, ε being minimum for those two singular triads and scaling as

f/N for resonant triads in a vicinity O(f/N) of those two limiting classes of triads on

figure 7.1. For those triadic interactions, the evolution operator L become singular when

f/N = 0, so the resulting energy gain of the perturbation is infinite, even for linearly

stable triads whose amplitude oscillations ∥Φ
′∥2 now diverge.
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7.6 Conclusion and discussion

Including the effect of internal waves in numerical climate models is key to accurately

predict the evolution of the climate system, as the atmosphere and the ocean are substan-

tially sensitive to the mixing resulting from internal waves activity. Internal wave-driven

mixing occurs inside the atmosphere and the ocean, redistributing heat, salt, nutrients,

carbon, greenhouse gases, and may result from wave interactions such as the triadic res-

onant instability which involves three resonating internal waves.

A single internal wave propagating in a stratified weakly rotating medium, when sub-

mitted to small perturbations, may resonate with two other internal waves through triadic

resonant instability. The induced resonant triads may sustain substantial growth of per-

turbation energy, that is either nonlinear for small but finite perturbations, or leading to

transient growth for infinitesimally small perturbation energy. In both cases, the energy

gain is maximized for two types of resonant interactions, Induced Diffusion and Elastic

Scattering, that correspond respectively to the diffusion of wave action to waves of nearly

same wave vectors, and to the transfer of energy to waves of horizontally symmetric wave

vector.

The intensification of such processes occur in the singular case when rotation effects

vanishes, and is captured by the scalings of the energy gain as the inverse of the Coriolis

parameter for Induced Diffusion and Elastic Scattering triads. In the purely stratified

case, those limiting classes of triads involve one zero frequency wave, a time independent

mode called Vertically Sheared Horizontal Flow (VSHF) which acts as a catalyst in the

process of Induced Diffusion or Elastic Scattering. In stratified weakly rotating flows, the

VSHF mode oscillates at the inertial frequency and its catalytic role in the two previous

processes may be attenuated when the Coriolis parameter is increased.
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Chapter 8

Direct numerical simulations using

the MITgcm

8.1 MIT General Circulation Model (MITgcm)

The MIT General Circulation Model (MITgcm) is a numerical computer code that

solves the equations of motion governing the ocean or Earth’s atmosphere using the finite

volume method (Marshall et al., 1997)1. Released back in 1997, it was one of the first

non-hydrostatic models of the ocean. The MITgcm has been designed and used to model

a wide range of phenomena, from convection on the scale of meters in the ocean to the

global pattern of atmospheric winds as illustrated in figure 8.1.

• a single hydrodynamical kernel, implying the ability to

model phenomena occurring either in the atmosphere or in

the ocean,

• the non-hydrostatic capability, resulting in the possibility

to solve multiple scales e.g. both small scale and large scale

processes,

• the finite volume techniques, essential to capture the

main features of irregular geometries.

Main characteristics of the MITgcm

We choose the MITgcm to run simulations and study the dynamical behavior of in-

ternal waves in the deep ocean. The MITgcm uses a finite volume method for spatial

discretization and the Adams-Bashforth method2 for explicit time-stepping in order to

solve numerically the nonlinear non-hydrostatic dynamical equations in the Boussinesq

approximation:

1. J. Marshall et al., “A finite-volume, incompressible Navier Stokes model for studies of the ocean on
parallel computers”, in: J. Geophys. Res.: Oceans 102.C3 (1997), pp. 5753–5766.

2. See MITgcm user manual for further details.
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Figure 8.1: The MITgcm has non-hydrostatic capabilities, allowing the model to address
a wide range of phenomena - from convection on the left, all the way through to global
circulation patterns on the right. Source: MITgcm user manual.

∂xu+ ∂yv + ∂zw = 0 (incompressibility) (8.1)

Dtb+N2w − Pr−1(νh∂
2
h + νz∂

2
z )b = 0 (continuity) (8.2)

Dtu− fv + ∂xP − (νh∂
2
h + νz∂

2
z )u = Fu (x-momentum) (8.3)

Dtv − fu+ ∂yP − (νh∂
2
h + νz∂

2
z )v = Fv (y-momentum) (8.4)

Dtw − b+ ∂zP − (νh∂
2
h + νz∂

2
z )w = Fw (z-momentum) (8.5)

b = b(ϑ, S, z) (equation of state) (8.6)

Dtϑ− (κhϑ∂
2
h + κzϑ∂

2
z )ϑ = Qϑ (potential temperature) (8.7)

DtS − (κhS∂
2
h + κzS∂

2
z )S = QS (salinity) (8.8)

with the same notations introduced in part 4.13, and where ∂2
h = ∂2

x +∂2
y is the horizontal

laplacian, (νh, νz) are horizontal and vertical viscosities, (Fu, Fv, Fw) are the forcing terms

of the Navier-Stokes equation, and (Qϑ, QS) are the forcing terms of the heat and salinity

equations in which ϑ stands for the potential temperature and S for salinity, (κhϑ, κzϑ) and

(κhS, κzS) being the associated horizontal and vertical diffusivities. In all our simulations,

buoyancy and stratification are due to vertical variations of potential temperature with

κhϑ = κzϑ = κ and νh = νz = ν so that Pr = ν/κ. We also assume constant salinity and

κhS = κzS = 0, and a linear equation of state (EOS) b = br(1 − α(ϑ − ϑr)) where ϑr is

the reference temperature defined by b(ϑr) = br and α the thermal expansion coefficient.

Similar effects are expected if we implement salinity in a similar fashion than temperature.

3. ϑ being the potential temperature field.
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8.1.1 Overcoming the hydrostatic approximation

The MITgcm overcomes the hydrostatic approximation introduced in part 4.1.2 with

equation (4.52). Further details concerning this approximation are given here to under-

stand how meaningful this approximation is for simulation purposes. Recall that the per-

turbed normalized pressure field and buoyancy are related through the vertical projection

of the Navier-Stokes equation, which is, in the inviscid case:

Dtw = −P,z + b (8.9)

hence, the hydrostatic approximation consists in neglecting the vertical acceleration com-

pared to the buoyancy:

Dtw ≪ b ⇒ P,z = b (8.10)

w being directly deduced from the incompressibility condition.

As a measure of the velocity field amplitudes, the Froude number Fr, when being small

Fr ≪ 1, implies Dtw ∼ w,t ∼ ωw and ωb ∼ N2w resulting from the linearized Navier-

Stokes and mass conservation equations, ω being the frequency of the considered wave. In

this case, all the results developed in part 4.1.2 concerning the hydrostatic approximation

in the linear theory apply. Therefore, the validity of the approximation is equivalent

to ω ≪ N , which correspond to the case of small aspect ratios r ≪ 1 i.e. horizontal

wavenumbers dominate vertical ones. For highly nonlinear internal waves, the convective

terms dominate so that the hydrostatic approximation is equivalent to Ukx/N ≪ 1, U and

kx being the typical amplitude of the horizontal velocity and the horizontal wavenumber

respectively. When advection can’t be neglected, the hydrostatic approximation is valid

for flows that are either slow, or large scale, or strongly stratified.

Back in the nineties, most models were based on the hydrostatic primitive equations

(HPE) in which the vertical momentum equation is reduced to a statement of hydrostatic

balance. According to Marshall et al. (1997), the numerical codes needed to overcome the

hydrostatic approximation when they started to numerically solve scales from 1 to 10 km,

which correspond to small scale geostrophic eddies, convective phenomena or internal

waves of weak wavelength radiated near rough bottom topographies.

8.1.2 Choice of parameters according to numerical stability cri-

teria

In computational fluid dynamyics (CFD), numerical stability criteria are conditions

for the stability of unstable numerical methods which ensure the convergence of the code

while solving partial differential equations. Those criteria arise in the numerical analysis

of explicit time integration schemes and must be fulfilled in order for the code to produce
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correct results. The main purpose of those criteria is summarized by the idea that the

full numerical domain of dependence must contain the physical domain of dependence,

as described in the book Computational Gasdynamics of Culbert B. Laney4. To illustrate

this idea, we use the following convection equation for the quantity u:

u,t + au,x = 0 (8.11)

with a > 0 the velocity magnitude. Applying a numerical discretization of this partial

differential equation based on a first order explicit upwind scheme, we obtain:

un+1
i − un

i

dt
+ a

un
i − un

i−1

dx
= 0 (8.12)

where dt is the timestep and dx is the length between mesh elements.

un+1
i = un

i − a
dt

dx
(un

i − un
i−1) = 0 (8.13)

so replacing by the function u(x, t) gives:

u(x, t+ dt) = v(x, t) − a
dt

dx
(u(x, t) − u(x− dx, t)) (8.14)

Now, performing a Taylor series expansion on this scheme at a fixed dt/dx:

(

u,t +
1

2
(dt)u,tt + · · ·

)

+ a
(

u,x − 1

2
(dx)u,xx + · · ·

)

= 0 (8.15)

at the first order O(dt), so:

u,t + au,x =
1

2
(a(dx)u,xx − (dt)u,tt) (8.16)

which can be derived with respect to time:

u,tt = −au,xt +
1

2
(a(dx)uxxt − (dt)u,ttt) (8.17)

and with respect to space:

u,tx = −auxx +
1

2
(a(dx)u,xxx − (dt)u,ttx) (8.18)

Combining the last two equations at the first order O(dt) results in:

u,tt = a2u,xx + O(dt) (8.19)

4. C. B. Laney, Computational Gasdynamics, Cambridge University Press, June 1998.
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and when replaced in (8.16):

u,t + au,x =
1

2

(

a(dx)u,xx − a2(dt)u,xx

)

+ O(dt2) (8.20)

which is simplified as the following advection-diffusion equation:

u,t + au,x =
1

2
adx(1 − C)u,xx (8.21)

with the Courant number C = adt/dx, a being in fact the maximum speed of the consid-

ered physical phenomenon and dx/dt the maximum speed of information allowed by the

spatio-temporal scheme. The diffusion coefficient on the right hand side must be positive

for non-diverging solutions. Hence the numerical stability is ensured if C ≤ 1 which is

the stability limit of the upwind method. Each scheme and phenomenon leads to different

definitions of the Courant number C and stability criteria C ≤ Cmax with different up-

per limits Cmax as reviewed in table 8.1.2. This condition is referred to as the Advective

Courant-Freidrichs-Lewy (CFL) condition5. In the case of the MITgcm, a list of those

criteria from the MITgcm user manual is reminded in the following table when taking

into account all the relevant phenomena of our simulations. CFL are only necessary con-

ditions, but their use usually allows a first empirical choice of resolution (for example,

when doubling the spatial resolution, one should divide the time-step by two).

Table 8.1: Numerical stability parameter and corresponding numerical stability criteria

from the MITgcm user manual.

Paramater Expression Upper limit

Advective Courant-Freidrichs-Lewy (CFL) SCF L =
|u|dt
dx

0.5

Propagating internal waves SIW =
∥cg∥dt
dx

0.25

Horizontal Laplacian friction Sh = 4
Ahdt

(dx)2
0.3

Vertical Laplacian friction Sv = 4
Avdt

(dz)2
0.3

Inertial Oscillations SIO = (fdt)2 0.5

5. R. Courant, K. Friedrichs, and H. Lewy, “On the Partial Difference Equations of Mathematical
Physics”, in: IBM J. Res. and Dev. 11.2 (Mar. 1967), pp. 215–234.
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8.2 Modeling internal waves with the MITgcm

8.2.1 Physical and numerical parameters

We consider a simulation domain bounded in the vertical direction z, horizontally

periodic in the x direction and consisting of a single tile in the y direction. Here is a

quick overview of the different parameters used in our simulations separated into two

categories6:

• Buoyancy frequency N = 10−3 s−1

• Coriolis parameter f = 0

• Thermal expansion coefficient α = 2 × 10−4 kg m−3 K−1

• Haline contraction coefficient β = 0

• Depth H = 3.5 km

Physical parameters

• Horizontal length L = 23.6 km (periodic)

• Resolution dx = dy = 29.5 m and dz = 10.3 m

• Time step dt = 15 s

• Viscosity ν = 0

• Diffusivity κ = 0

• Horizontal grid points nx = 800, ny = 1 (nx = L/dx)

• Vertical grid points nz = 350 (nz = H/dz)

Numerical parameters

where the thermal expansion and haline contractions are parametrized by N2 = g(α∂zϑ+

β∂zS) as a result of the linear equation of state7. Figure 8.2 illustrates the current simu-

lation box, in which our goal is to initialize all the fields, horizontal velocities (u, v) and

potential temperature ϑ, in the MITgcm so that the domain contains an internal wave of

wave vector k0 = (kx0, kz0), of amplitude Ψ0, and characterized by a vertically confined

profile.

6. Our choice of numerical parameters are guided by the convergence tests detailed the next section
8.3.1 and some of those parameters such as nx may be varied depending on the run.

7. See MITgcm user manual for further details.
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Figure 8.2: Illustration of the 2D simulation box of Cartesian coordinates (x, z) used in
the MITgcm to model the properties of an internal wave of wave vector k0 = (kx0, kz0).
The boundary conditions are such that the box is periodic along the x direction, but
confined in the z direction. Each tile measures dx horizontally and dz vertically so that
the simulation box measures L = nxdx and L = nzdz, (nx, nz) being the number of tiles
along the (x, z) directions.

8.2.2 Theory on vertically confined internal waves

The linear wave equation given by (4.23) is recalled here:

∇2ψ,tt +N2ψ,xx + f 2ψ,zz = 0 (8.22)

with the boundary conditions at the surface and bottom of the domain w(z = 0) = w(z =

−H) = 0 as presented in figure 8.2. As w = −ψ,x, the boundary conditions can be written

in terms of streamfunction ψ:

ψ,x(z = 0) = ψ,x(z = −H) = 0 (8.23)

Looking for wavelike solutions in real form ψ = F (z) cos (kxx− ωt), then F must verify:

F,zz + k2
zF = 0 (8.24)

with the real vertical wave number kz, knowing that f ≤ ω ≤ N :

kz = ±kx

√

√

√

√

N2 − ω2

ω2 − f 2
(8.25)

solving for F , we get F (z) = A cos (kzz) + B sin (kzz) where (A,B) are integration

constants. The boundary conditions F (z = 0) = F (z = −H) = 0 give A = 0 and
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sin (kzH) = 0 meaning that:

kzn =
nkznπ

H
(8.26)

where nkzn is an integer. Hence, the streamfunction is given by:

ψ =
∑

n

Ψn sin(kznz) cos (kxnx− ωnt) (8.27)

where kxn = rnkzn, rn being the aspect ratio of the wave:

rn = ±
√

√

√

√

ω2
n − f 2

N2 − ω2
n

(8.28)

ω2
n =

(

N
kxn

kn

)2

+

(

f
kzn

kn

)2

(8.29)

kn =
√

k2
xn + k2

zn (8.30)

In our numerical simulations, the domain is periodic in the x direction of extension L so

we also get the following condition with nkxn an integer:

kxn =
2nkxnπ

L
(8.31)

The two former conditions (8.26) and (8.31) must be implemented when initializing

the MITgcm. To summarize, the domain of calculation satisfies:

L = nxdx = nkxn

(

2π

kxn

)

H = nzdz = nkzn

(

π

kzn

) (8.32)

where (nx, nz) are integers and H is fixed in our simulations to a physical value represent-

ing the typical depth of the ocean. L however can be changed, as the 2D medium can be

considered infinite in the x direction.

8.3 Direct numerical simulations

8.3.1 Numerical convergence tests

In the numerical configuration of interest represented on figure 8.2, the vertical bound-

aries of the ocean and the periodicity along the x direction impose wavelike solutions of

the form ψ(x, z, t) = Ψ0 sin(kz0z) cos(kx0x−ω0t), characterized by a stationary component

along z and a propagative one along x, and whose wave vector k0 = (kx0, kz0) and fre-
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quency ω0 are taken from the simulations of Richet (2018)8. Such a solution is initialized

in the MITgcm by setting specific initial conditions so that the horizontal velocity field

(u, v) and the potential temperature ϑ initially obey to9:

u(x, z, t = 0) = kz0Ψ0 cos(kz0z) cos(kx0x) (8.33)

v(x, z, t = 0) = 0 (8.34)

ϑ(x, z, t = 0) = −N2

αg

kx0

ω0

Ψ0 sin(kz0z) cos(kx0x) (8.35)

When fixing the physical parameters of the domain to reproduce the properties of

the ocean, the variations of numerical parameters may influence the convergence of the

code. To guide our choice of numerical parameters which best describes the geophysical

system of interest, we run six simulations consisting of a single internal gravity wave in our

simulation box during a duration of 10 simulation days, by fixing the physical parameters

when varying the numerical parameters to see how they affect the Advective Courant-

Freidrichs-Lewy (CFL) condition, measured by the quantity SCF L, and the relative error

between the results of the simulation and the predictions from the theory, especially for

the wave period ∆τ/τth and its total energy ∆E/Eth. The results of those convergence

tests are all collected in table 8.2 and interpreted in the present section.

The relative error in the wave period is determined when interpreting the output file

of the MITgcm, and more specifically when plotting (u, v, w, ϑ) as a function of time

t at a fixed location in the simulation box. In all six simulations, we observe periodic

sine oscillations so that we can measure the numerical period by taking a peak to peak

duration and dividing it by the number of peaks during this duration. For the relative

error in energy, we plot the wave total energy, spatially averaged over the simulation box

and deduced from (u, v, w, ϑ) using the formula E = ⟨(u2 + v2 + w2)/2 + (αgϑ/N)2/2⟩r,

as a function of time t. The plots of the total energy exhibit regular oscillations (instead

of being completely constant as predicted by the theory) with a mean value matching

the total energy predicted by the linear theory. Thus, the error in energy consists in the

relative distance between the maximum value of those oscillations and the theoretical

energy. Finally, the numerical stability parameter SCF L is determined by measuring the

maximum velocity reached by our simulations Um so that SCF L = Umdt/dx for a set of

numerical parameters dt and dx intrinsic to each simulation. Having a reasonable running

time in our simulations when getting a good agreement between theory and simulation is

our priority, and this calls for a good compromise between increasing the space and time

8. O. Richet, J.-M. Chomaz, and C. Muller, “Internal Tide Dissipation at Topography: Triadic Reso-
nant Instability Equatorward and Evanescent Waves Poleward of the Critical Latitude”, in: J. Geophys.
Res. 123.9 (2018), pp. 6136–6155.

9. Those relations are obtained using the polarization relations.
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resolutions and decreasing the computational cost.

All six simulations exhibit a CFL number well below the upper limit indicated in

the MITgcm user manual SCF L ≪ 0.5, meaning that the numerical stability criteria is re-

spected, despite some small variations between each simulation that won’t be commented.

The dz and ∆E/Eth lines in table 8.2 reveals that increasing the vertical resolution of the

domain reduces the relative error in energy: for instance, doubling nz divides this error

by 9 when looking at runs 2 and 3 in comparison with the other runs; except for run 6,

which shows that quadrupling the value of nz from runs 2-3 even leads to smaller errors.

The error in energy is unaffected by the horizontal resolution as seen when comparing

run 1 and 4, where only nx and dx are changed. When comparing run 2 and 3, we deduce

that the time resolutions doesn’t affect the relative error in energy. On the other hand,

the relative error of the wave period is attenuated when increasing the horizontal resolu-

tion and decreasing the time step. The influence of the time step on the error is shown

when looking at run 2 which has a time step equal to 30 when other runs have 15. The

energy error of run 2 is relatively high compared to the other runs, the other concerned

parameter being the horizontal resolution. Indeed, from run 4 to run 1 up to run 5, the

horizontal resolution is doubled each run, all the other parameters being fixed, leading to

a decreasing relative error on the wave period which goes from 0.66 to 0.38, down to 0.27.

The relative errors between the simulation and the theory are af-

fected by the variations of numerical parameters such that, in our

simulation domain:

• the relative error on the internal wave period is decreased

when increasing the horizontal and time resolutions (x, t),

• the relative error on the internal wave energy when increasing

the vertical resolution z.

Results of the convergence tests

For those reasons, the set of numerical parameters used as a starting point for our up-

coming simulations where three vertically confined internal waves are initialized to observe

the nonlinear and transient properties of triadic resonance, is (nx, ny, nz) = (800, 1, 350),

dx = dy = 29.5 m, dz = 10.3 m, and dt = 15 s. This choice of parameters, also exposed

earlier in section 8.2.1, offers a good compromise between minimizing the relative errors

and the duration of each run. Only nx can be changed as the box is horizontally periodic,

eventually modifying the primary wave angle θ0, so that the three resonating waves belong

to the same grid characterized by the 6 integers (nkxn, nkzn) from the conditions given in

equations (8.32).
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Table 8.2: Convergence tests of the simulation box described in 8.2 on the MITgcm. The
relative error between the the simulation and the predictions from the theory are denoted
∆τ/τth for the wave period and ∆E/Eth for its total energy.

Physical parameters
H [km] 3.5938
kx0 [m−1] 8 × 10−4

θ0 [rad] 0.13
N [s−1] 1 × 10−3

f [rad s−1] 0
α [kg m−3 K−1] 2 × 10−4

β [PSU−1] 0
Ψ0 [m2 s−1] 3.241

Non-dimensional quantities
Fr 3.11 × 10−3

Numerical parameters
Run 1 2 3 4 5 6
L [km] 23.562 23.562 23.562 23.562 23.562 23.562
dx [m] 29.452 58.905 29.452 58.905 14.726 29.452
nx 800 400 800 400 1600 800

dz [m] 10.2681 20.5362 20.5362 10.2681 10.2681 5.13405
nz 350 175 175 350 350 700
nkx0

3 3 3 3 3 3
nkz0

7 7 7 7 7 7
dt [s] 15 30 15 15 15 15

Results
SCF L 0.01 0.01 0.01 0.005 0.02 0.01

∆τ/τth [%] 0.38 0.59 0.42 0.66 0.27 0.6
∆E/Eth [%] 0.12 0.92 0.92 0.12 0.1 0.02
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8.3.2 Simulation with three resonating waves

The numerical implementation of a chosen resonant triad from the resonance locus

on figure 4.5 requires the resonance condition to be achieved by the three internal waves

(4.76)-(4.77) when obeying to the boundary conditions of the simulation domain resulting

in equations (8.32). This leads to three resonating internal waves (k0, ω0), (k1, ω1), and

(k2, ω2), such that, for n = 0, 1, 2, kxn = nkxn(2π/L), kzn = nkzn(π/H), (nkxn, nkzn) being

integers obeying to:

nkx0 + nkx1 + nkx2 = 0

nkz0 + nkz1 + nkz2 = 0
(8.36)

so the selected triad belongs to the resonance locus and the corresponding wave vectors

(k0,k1,k2) are located on the same mesh grid defined in the wave vector space (kx, kz),

one tile being of size (∆kx,∆kz) = (2π/L, π/H). As shown in figure 8.3, we select a triad

indicated by point F along the resonance locus of internal gravity waves (N ̸= 0 and

f = 0), located nearby the Elastic Scattering singularity, in order to observe the transient

dynamics derived theoretically in chapter 6. This leads to the following choice of integers:

(nkx0, nkz0) = (3, 7)

(nkx1, nkz1) = (−4, 8)

(nkx2, nkz2) = (1,−15)

(8.37)

corresponding to a wave angle θ0 = 0.2, adjusted so that the selected resonant triad

belongs to the same mesh grid in the wave vector space10.

Our goal here is to observe numerically the transient dynamics when a single wave

is perturbed by a small energy. Such a process was derived theoretically with respect to

a well-defined energy norm, and represented multiple times in this manuscript along the

unit energy sphere in a (|Φ0|, |Φ1|, |Φ2|) space, as seen on figures 5.4, 6.13, and 7.2. The

code being dimensional, the energy won’t be unity, and, knowing that Φn = knΨn/2, the

dynamical fields on the MITgcm (u, v, ϑ) are then initialized by:

u(x, z, t = 0) = ui0(x, z) + ui2(x, z) (8.38)

v(x, z, t = 0) = 0 (8.39)

ϑ(x, z, t = 0) = ϑi0(x, z) + ϑi2(x, z) (8.40)

10. This is achieved by changing L through nx as the simulation box is horizontally periodic. Although
we loose precision on the time period of the simulated waves in the process of varying nx, the convergence
of the code remains fine enough to observe good agreement between nonlinear theory and simulations in
terms of wave energy as a function of time as we will see later on.
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Figure 8.3: Illustration of the chosen triad F on the resonance branch corresponding to the
wave frequency signs (s0, s1, s2) = (+,+,−). The represented mesh grid in the wave vector
space (kx, kz) consists of tiles, each being of size (∆kx,∆kz) = (2π/L, π/H). The wave
vectors (k0,k1,k2) involved in triad F are represented in red arrows. As kxn = nkxn∆kx

and kzn = nkzn∆kz to obey to the vertical boundary conditions, the selected triad F is
such that (nkx0, nkz0) = (3, 7), (nkx1, nkz1) = (−4, 8), and (nkx2, nkz2) = (1,−15). On the
present figure, the singular triads are also indicated by letters E for Elastic Scattering,
and (D1, D2) for Induced Diffusion.
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Table 8.3: Initial conditions and corresponding pseudomomentum and Froude numbers
Fr = 2k0Φ0(0)/N used for each simulation (A, B, C, D, E, F) on the MITgcm.

Simulation (Φ0(0),Φ2(0)) [m s−1] Px [J m−1 s] Fr
A (0.009999,0.000093) 0.0062 0.124820
B (0.009957,0.000924) 0.0063 0.124292
C (0.009810,0.001939) 0.0065 0.122456
D (0.009585,0.002850) 0.0068 0.119648
E (0.009292,0.003694) 0.0072 0.115994
F (0.008627,0.005057) 0.0080 0.107689

with, for n = 0 or 2:

uin(x, z) =
2kzn

kn

Φn(0) cos(kznz) cos(kxnx) (8.41)

ϑin(x, z) = −2N2

αg

kxn

ωnkn

Φn(0) sin(kznz) cos(kxnx) (8.42)

and different values of Φ0(0) and Φ2(0), so that the perturbation energy is directed along

|Φ2| on the energy sphere E = |Φ0|2 + |Φ1|2 + |Φ2|2 in a (|Φ0|, |Φ1|, |Φ2|) space, Φ1 being

initially nil, Φ1(0) = 0. The total energy is initialized in our simulations to E = 10−4J, and

we consider six trajectories named (A, B, C, D, E, F)11, each corresponding to a different

initial pseudomomentum Px as illustrated on figure 8.4. The present figure draws the

energy sphere of radius E = 10−4J with the trajectories (A, B, C, D, E, F) of constant

pseudomomentum obtained by solving the triadic equations for specific initial conditions

(Φ0(0),Φ1(0),Φ2(0)) listed in table 8.3. Trajectories A, B, C, D and E, plotted in blue,

red, green, magenta and cyan lines respectively, are located between the |Φ0| axis and the

separatrix, whereas trajectory F plotted in black is located between the separatrix and

the |Φ2| axis. Trajectory E is chosen to be close to the separatrix whereas A is chosen to

be near the |Φ0| axis.

A set of initial conditions, (Φ0(0),Φ2(0)), involving two waves only12, (Φ0,k0, ω0) and

(Φ2,k2, ω2), is defined using figure 8.4 when looking at the intersection between the energy

sphere E = 10−4J and the plane |Φ1| = 0 at the start of each trajectory (A, B, C, D,

E, F) on figure 8.4, to initialize each simulation on the MITgcm. Table 8.3 summarizes

the chosen set of initial conditions (Φ0(0),Φ2(0)), and, for each trajectory, such values

(Φ0(0),Φ2(0)) are initialized on the MITgcm using the expressions (8.38) and (8.41).

Table 8.3 also indicates the pseudomomentum Px and Froude number Fr = 2k0Φ0(0)/N

associated to each simulation.

11. Every reference to a selected triad is in in italic letter e.g. (D1, D2, E, F ), whereas the six considered
trajectories are named in capital letter (A,B,C,D,E,F), so that there is no ambiguity in the notations.

12. meaning Φ1(0) = 0.

144



8.3. Direct numerical simulations

Figure 8.4: Plot of the energy sphere of radius E = 10−4J with the separatrix of equation
Px = E/cx1 in white line. Six chosen trajectories designated by letters A, B, C, D, E,
F, and corresponding to different values of pseudomomentum Px (see table 8.3 for the
pseudomomentum values) are indicated using lines of different colors on the energy sphere.
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The output of each simulation on the MITgcm is interpreted with Matlab, so, using a

color map, we can plot the total dynamical fields, (u, v, w) and ϑ, respectively the velocity

and potential temperature fields, in the (x, z) space at different instants t until the end of

each run, knowing that all simulations last 10 days. Figures 8.5, 8.6, and 8.7 show those

plots (u,w, ϑ) on the left hand side at three different instants, respectively t equals to

0, 1.3 and 10 days, when initializing the MITgcm with initial conditions (Φ0(0),Φ2(0))

corresponding to trajectory E on the energy sphere E = 10−4J (v is not shown here as it

remains equal to 0 in the domain at all time). On the right hand side of the same figures,

the spatial discrete Fourier transforms of the fields u(x, z, t), w(x, z, t), and ϑ(x, z, t),

denoted û(kx, kz, t), ŵ(kx, kz, t), and ϑ̂(kx, kz, t) respectively, are represented. (û, ŵ, ϑ̂) are

useful to identify the internal waves (Φ0,k0, ω0), (Φ1,k1, ω1), and (Φ2,k2, ω2) involved

in the triadic resonance and predicted by the theory, while identifying other harmonics

eventually appearing at later instants. At each instant t, we define (ûn, ŵn, ϑ̂n) for n equal

to 0, 1 or 2, by:

ûn(t) = û(kxn, kzn, t) (8.43)

ŵn(t) = ŵ(kxn, kzn, t) (8.44)

ϑ̂n(t) = ϑ̂(kxn, kzn, t) (8.45)

Due to the vertical boundary conditions13 and the symmetry resulting from the defi-

nition of the Fourier Transform, the presence of one wave (Φn,kn, ωn) with kn = (kxn, kzn),

at a specific instant t always results in four different peaks located at (kxn, kzn), (kxn,−kzn),

(−kxn, kzn), and (−kxn,−kzn) on the plots of û(kx, kz, t), ŵ(kx, kz, t), and ϑ̂(kx, kz, t), and

those peaks are referred to as ûn, ŵn, and ϑ̂n respectively on figures 8.5, 8.6, and 8.7.

Looking at the Fourier transforms on the right column of figure 8.5, one wave stands

out on the representation of (û, ŵ, ϑ̂), namely (Φ0,k0, ω0), with peak values at (kx0, kz0),

(kx0,−kz0), (−kx0, kz0), and (−kx0,−kz0), as seen on the yellow peaks circled in red and

referred to as (û0, ŵ0, ϑ̂0) on the legends, whose intensity is of order 9 × 10−3m s−1 along

û, 1.7 × 10−3m s−1 along ŵ, and 5 × 10−3m s−1 along ϑ̂. Indeed, as Φ0(0) ≫ Φ2(0) by

almost a factor 3, we also get peaks for wave 2, (Φ2,k2, ω2) as seen with the light blue

peaks marked by triangles pointing downward and referred to as (û2, ŵ2, ϑ̂2) on the leg-

ends of lower intensities than the previous peaks for wave 0, of order 3 × 10−3m s−1 along

û, 0.3 × 10−3m s−1 along ŵ, and 2 × 10−3m s−1 along ϑ̂. The wavelike structure (standing

wave along z, propagative along x) is dominated by wave 0 initially, as seen in the wave

fields (u,w, ϑ) on the left column of figure 8.5, with a global periodic structure alternating

13. implying wave reflection at z = 0 and z = −H.
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positive and negative velocity values at regular intervals (λx0, λz0) = (L/nkx0, 2H/nkx0)

in the (x, z) domain. However, this periodic structure is slightly affected by the superim-

posed wave 2 as seen on the plots of (u,w, ϑ), which exhibit some irregularities compared

to the typical wavelike structure of a single wave vertically confined. This corresponds to

a physical reality in which the background field consists of a propagating wave 0 that is

initially perturbed by a small, but finite, wave 2, identified as a nearly Vertically Sheared

Horizontal Flow mode.

At t = 1.3 days, the right column of figure 8.6 shows that wave 1 is fully formed on

the Fourier transforms (û, ŵ, ϑ̂), with an intensity matching that of wave 2 (see green

peaks marked by triangles pointing upward referred to as (û1, ŵ1, ϑ̂1) on the legends),

as predicted by the weakly nonlinear theory describing the triadic resonant interaction

between three internal gravity waves. The weak nonlinearities are characterized spatially

by growing irregularities when representing (u, v, w, ϑ) compared to the screenshot at t = 0

days on figure 8.5. A striking feature of the present numerical simulation is the birth of

modes not predicted by the second order expansion in Fr of the wave equations(4.75).

Such modes attributed to higher orders begin to be formed at 1 day approximately, and

ultimately leads to a set of additional intense peaks that can’t be neglected after 10

days of simulation, as seen on figure 8.7 when looking at the additional green and blue

peaks appearing on the Fourier transforms, not indicated by any markers, and whose

intensities are approximately 2 to 10 times lower than the peaks indicated by the red

markers (circle and triangles). A closer inspection to those higher order modes shows

that, when capturing the wave vector and frequency of such modes, they obey to the

dispersion relation of internal gravity waves. This feature reveals that those modes are

actually internal waves, and a further analysis (not detailed here) shows that those waves

even follow a specific resonance condition different from that given in equations (4.76) and

(4.77). Figures 8.5, 8.6, and 8.7 follow the evolution of the dynamical fields (u, v, w, ϑ) as

well as their Fourier transforms (û, v̂, ŵ, ϑ̂) when considering initial conditions relative to

the trajectory E on the energy sphere, but the growth of resonating higher order waves

identified here for this specific trajectory, is also observed when initializing the simulations

with initial conditions relative to the other trajectories A, B, C, D, F, this phenomenon

being enhanced for the trajectories close to the separatrix as detailed later on in this

section.

On the figures 8.5, 8.6, and 8.7, higher order effects appear through the birth of

peaks on the Fourier transforms (û, ŵ, ϑ̂) that are different from those characteristics of

waves 0, 1 or 2, respectively located by the circle, upper and downward triangles to in-

dicate (û0, ŵ0, ϑ̂0), (û1, ŵ1, ϑ̂1), and (û2, ŵ2, ϑ̂2). We distinguish the higher order peaks

from (ûn, ŵn, ϑ̂n), by referring to them as (û′
p, ŵ

′
p, ϑ̂

′
p). From the outputs of the MITgcm

(u, v, w) and ϑ, we can derive numerically the time evolution of the (second order) ampli-

tudes |Φn| and compute the total energy of the waves in the simulation box Etot = E + E ′
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as a function of time, by decoupling the contributions from the resonating second order

waves contained in E , and the resonating higher order waves contained in E ′. Such terms

are obtained using the following expressions:

E =
1

2

2
∑

n=0

|ûn|2 + |ŵn|2 +
(

αg

N

)2

|ϑ̂n|2 (8.46)

E ′ =
1

2

∑

p∈S

|û′
p|2 + |ŵ′

p|2 +
(

αg

N

)2

|ϑ̂′
p|2 (8.47)

where the set S gathers the (kx, kz) positions of the higher order peaks observed on the

plots of (û, ŵ, ϑ̂). The amplitudes |Φn| are obtained using the dispersion relation:

|Φn| =
kn

2|kzn| |ûn| (8.48)

as we choose to normalize the Fourier transforms such that max(kx,kz) |û| = max(x,z) |u|,
max(kx,kz) |ŵ| = max(x,z) |w|, and max(kx,kz) |ϑ̂| = max(x,z) |ϑ| at all time t. Finally, the

energy of the perturbation is deduced from (8.48) as e = |Φ1|2 + |Φ2|2. The plots of the

amplitudes |Φn| as a function of time t for the trajectories A, B, C, D, E, F are gathered

in 8.8 and 8.9, and both figures compares the amplitudes derived theoretically for each

trajectory by solving the triadic equations (4.87) (see left column in 8.8 and 8.9) to those

derived using the MITgcm (see right column in 8.8 and 8.9). On the other hand, the time

evolution of the energies (Etot, E , E ′, e) computed numerically are displayed on figure 8.10.

Figure 8.8 shows a good agreement between the amplitudes (|Φ0|, |Φ1|, |Φ2|) predicted

by the weakly non-linear theory and those simulated by the MITgcm for the trajectories

A, B, and C, close to the |Φ0| axis. Indeed, this case corresponds to an infinitesimal

perturbation affecting a primary wave (Φ0,k0, ω0) in its course, so that the triadic system

can be linearized around this base state, leading to the 2 × 2 equation (4.106) in which

the evolution operator L is nonnormal and nearly singular for the chosen triad F . Such

properties result in the observed periodic transients, as (|Φ1|, |Φ2|) grow with periodic

arches, while |Φ0| remains nearly constant when considering trajectories A and B, or

greater than the perturbation (|Φ1|, |Φ2|) in C, such that the variations of |Φ0| can be

neglected compared to those of (|Φ1|, |Φ2|).
On figure 8.9, the amplitudes (|Φ0|, |Φ1|, |Φ2|) associated to trajectory D are nearly

identical when comparing the theory with the simulation. However, as the initial Φ2(0)

becomes greater, the trajectory D moves towards the separatrix, and, as indicated by

the curves of the amplitudes for the trajectory E close to the separatrix, the simulated

waves are getting further from the theoretical prediction. The three main differences are

that |Φ2| doesn’t oscillate down to 0 in the simulation contrary to the theory, the peak
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Figure 8.8: Time evolution of the amplitudes (|Φ0|, |Φ1|, |Φ2|) for the trajectories A, B, and
C. The left column of the figure shows the amplitudes obtained theoretically when solving
the triadic equations using Matlab, whereas the right column features the amplitudes
obtained with the simulations on the MITgcm.
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Figure 8.9: Same as figure 8.8, but for the trajectories D, E, and F.
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to peak variation of |Φ0| is less important (0.05 in the simulation compared to 0.09 in

theory), and the saturation effects of |Φ1| is more amplified in theory, with long lasting

plateaux at 0.01 over approximately 5 days, while this saturation is nearly absent on the

amplitudes simulated by the MITgcm. The amplification of residual modes characterized

by higher order waves may play a role in the observed gap between simulation and theory

for trajectories near the separatrix. Those differences seem to be attenuated when looking

at the time evolution of the amplitudes corresponding to trajectory F located after the

separatrix, the only main difference being that |Φ2| still doesn’t oscillate down to 0 in the

simulation contrary to the theory.

The role played by the higher order waves appears when representing the time evo-

lution of the energy (Etot, E , E ′, e) on figure 8.10. For all six trajectories, the total energy

averaged over the simulation domain Etot, is conserved. For the trajectories A, B, and

C, the contribution of the higher order terms in energy E ′ is almost nil, and the curves

of Etot and E are nearly identical. For these three trajectories, the perturbation energy e

constantly experiences transient growth at periodic intervals. For the trajectories D, E,

and F, the energy of the second order triad E decreases, while E ′ increases starting from

0, when conserving the total energy Etot = E + E ′. Over 10 days of simulation, E × 104

decreases from 1 to 0.9 for trajectory D, from 1 to 0.75 for E and from 1 to 0.85 for F. The

higher order waves break the conservation of the triadic energy E predicted theoretically,

and a portion of this energy feeds the growth of the resonating higher order waves. A

larger portion of the energy E is pumped by these residual modes as nonlinear effects

increase for the trajectories near the separatrix (see E). The peak to peak variations of

the perturbation energy e is attenuated at each period as seen in F (also observed for

D and E with simulations running for more than 10 days, but not displayed here) due

to the developing higher order waves, ultimately reducing the nonlinear growth of the

perturbation energy e in the long run, up until this energy becomes entirely consumed by

the higher order waves.
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Figure 8.10: Energy as a function of time for all the six simulations A, B, C, D, E, F on
the MITgcm, corresponding to each trajectory represented on figure 8.4. Etot, E , E ′ and e
designate the total energy averaged over the simulation domain, the energy associated to
the triad F, the energy of higher order waves, and the perturbation energy respectively.
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Chapter 9

Conclusions on the project

Internal waves are an ubiquitous feature in the climate system as they strongly con-

tribute to the turbulent mixing occurring among stratified layers in the atmosphere and

the ocean. During their life cycle, those waves undergo multiple physical phenomena, from

their generation at localized sites, to their propagation in a stratified medium, with the

ability to become unstable and to break, ultimately generating turbulence and dissipating

energy, which alters the stratification by mixing water of different densities in the ocean

for instance. The production of turbulence is dominated by the dynamics of internal waves

and affect the local environment in which they evolve.

In the ocean, the resulting small scale mixing from internal waves activity ranges

from centimeters to meters, and contributes to sustain the global overturning circulation,

while closing the ocean energy budget, but remains challenging to model due to the

computational limits of climate numerical models. This project takes part in the recent

progress to parametrize the internal wave driven mixing. We proposed a theory to take

into account the transient evolution of a perturbation that affects a single internal wave

propagating in a stratified medium. In this process we revisited the classical theories to

describe the dynamics of internal waves.

This thesis offered the opportunity to deepen our knowledge of wave-wave interac-

tion, and more specifically, on the triadic resonant instability, a nonlinear interaction

between three internal waves at resonance, also one of the paths to turbulent mixing.

Understanding the underlying physical processes involved in the transient dynamics of a

small perturbation energy disturbing the propagation of internal waves is key to model

the energy transfers between different scales triggered by the present instability. To our

knowledge, the transient growth of such instability were not captured by the classical

theories so far, and may play a major role in the parametrization of internal wave driven

mixing in numerical climate models and of internal waves near the inertial frequency at

different latitudes of the globe. This project answers the persistent need for a thorough

parametrization of the physical processes the climate models are sensitive to, so as to help

the understanding and modeling of the climate system despite its complexity.
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9.1 Modeling the evolution of an infinitesimal per-

turbation from a single internal wave

Classical theories1 of internal waves mainly predict the physical behavior of the present

waves in the steady regime, and is widely used by the scientific community as a standard

tool for experimental interpretation2and direct numerical simulations of climate3. Re-

viewing those theories as a starting point of this project highlighted how they could be

completed to fully take into account the dynamics of internal waves, especially when it

comes to describing their transient behavior.

When digging into former research ideas from the community investigating transient

growth and stability of disturbances in hydrodynamic flows4, we realize that the main

concepts introduced in this particular field could be of good use to guide the theory

describing the transient dynamics of the triadic resonant instability. More precisely, a

single internal wave propagating in a stratified medium and submitted to an infinitesimal

perturbation, may experience intense transient growth of perturbation energy.

Measuring how fast and strong those transients may be requires time dependent physi-

cal quantities that genuinely capture the instantaneous growth of the perturbation energy.

The optimal energy and optimal growth rate were then introduced as ways to quantify

those transients, making sure that they were coherent with the former classical theories.

Indeed, at large time, the optimal growth rate turns out to be the classical growth rate

predicted by Hasselmann theory (1967)5, and the properties of linear stability of resonant

triads remain valid.

While the growth rate predicted by the classical theory for linearly stable triads re-

mains nil, a more important growth rate was observed at short times for linearly stable

triads than unstable ones when plotting the optimal growth rate along the resonant curves

at different instants. This property is barely affected by the introduction of viscous effects,

but this difference of growth rate is largely enhanced for primary waves with nearly verti-

cal wave vector. The frontier between linear stability and instability may be clearly defined

at large time, however, during the transient regime, this frontier needs to be redefined in

some ways that take into account the transient dynamics dominated by linearly stable

triads. One major consequence is that the Parametric Subharmonic Instability, although

being classically investigated to model energy transfers to small scales in the ocean, is not

the only candidate among wave-wave interactions responsible for developing instabilities

and transferring energy between scales, the Parametric Subharmonic Instability being

even quickly overwhelmed by linearly some stable triads, which initially grow at a faster

1. Davis and Acrivos, op. cit.; Hasselmann, op. cit.
2. Bordes et al., op. cit.
3. Richet, Chomaz, and Muller, op. cit.
4. Reddy and Henningson, op. cit.
5. Hasselmann, op. cit.
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and stronger pace.

Investigating the optimal energy growth of the perturbation for internal gravity waves,

some specific classes of resonant triads cause more important transients to develop. Those

triads involve one wave of nearly vertical wave vector standing out from the others, and

were given names in the field of stratified turbulence, Elastic Scattering and Induced Dif-

fusion6, relative to the turbulence they induce. Such generated singular wave has zero

frequency for a nil Coriolis parameter, inertial frequency otherwise, and induces shear,

hence being known as the Vertically Sheared Horizontal Flow mode. Transient growth

of perturbation energy occur for triads near this singularity and are intrinsically link to

the nonnormality of the 2 × 2 evolution operator (relative to the fixed energy norm, the

Euclidean norm of the waves normalized amplitudes being the energy of the perturba-

tion) describing the behavior of the linearized triadic system around its base state. This

transient dynamics is enhanced as the evolution operator becomes nonnormal and sin-

gular. To our knowledge, the introduction to the concept of nonnormality in the field of

wave-wave interaction to describe the short time behavior of the linearized triadic system

seems to be novel, raises many questions concerning the sensitivity of climate models to

such phenomenon, and opens new areas of research that need to be explored, from nu-

merical simulation to experimental evidence confirming the importance of such transient

dynamics in the process of generating small scale turbulence.

9.2 Quantifying the growth of a finite perturbation

from the instability generated by waves

A small but finite disturbance may result in nonlinear effects that condition the growth

of the perturbation energy. This question was raised by a member of the audience during

the November 2019 meeting of the American Physics Society, in which the previously high-

lighted results for infinitely small perturbation were presented in conference. This is how

our former studies were extended from the linearized system considering an infinitesimal

perturbation to the fully nonlinear problem involving a finite perturbation.

The similarities between the nonlinear triadic equations for wave-wave resonant in-

teraction and Euler equations for the rotation of a rigid body around its three principal

axes was the starting point to analyze and discuss the analogy between rotating solid

and fluid. Both systems conserve two quadratic quantities, total energy and momentum

for the rigid body and total energy and helicity (equivalent to the vertical component of

the pseudomomentum) for the triadic system. While the three components of the angular

momentum in each direction are real in the nonlinear equations describing the rotation

of the rigid body, the three amplitudes of the resonant inertial waves are complex in the

6. McComas and Bretherton, op. cit.
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triadic equations, thus adding an extra constraint, modeled by a phase invariant, known

as the Hamiltonian, as a third integral of motion.

When linearizing both systems, we were able to retrieve the identical transient growth

of an infinitely small perturbation energy measured by the optimal energy gain. In such

linearized problems, the perturbation is infinitely small, and the smaller it is, the greater

the transients are, since the evolution of the energy gain features high periodic arches

whose peaks scale as the inverse of the perturbation to the base state. In the case of a

rotating solid, the base state is a rigid body with two equal moments of inertia, let’s say

the greatest and the intermediate ones, the last one being different from the two firsts,

and the perturbation consists of an infinitely small defect along the intermediate moment

of inertia, hence becoming different from the greatest one. For the inertial wave system,

the base state is a single inertial wave, called primary wave, perturbed when propagating

by an infinitesimal energy, which results in the growth of two inertial waves forming the

perturbation, one wave being nearly time independent with a horizontal wave vector, when

the two others are either nearly identical or have symmetrical wave vector with respect to

the vertical axis. Looking at the transients of the optimal energy gain, the primary wave

periodically transfers energy to the perturbation.

The work done for inertial waves was then generalized to any wave system undergo-

ing triadic resonant instability utilizing Craik’s work (1978)7. The present extension was

useful to the description of finite nonlinearities for internal waves generating instability

in stratified rotating flows. The periodic evolution described previously remains relevant

to any triadic wave system when taking into account nonlinear effects. By fixing the

energy norm to be the Euclidean norm of the wave amplitudes, nonlinearities are well

represented in a three-wave-amplitude space by the intersection between the unit energy

sphere and the pseudomomentum ellipsoids, forming all the possible trajectories obtained

when solving the triadic equations. Two stable regimes represented by two different axes of

the three-wave-amplitude space surrounded by pseudomomentum ellipsoids appear. The

separatrix distinguishes those two stable regimes, and gives rise to a third regime of insta-

bility when crossing the last axis. While the weak nonlinearities appear when considering

trajectories in a plane crossing the energy sphere near one of the axes of the three-wave-

amplitude space, the nonlinearities are captured by the dynamics of the edge states along

the separatrix. For resonant triads characterized by two nearly identical phase velocities,

the separatrix gets infinitely close to one axis, causing a small perturbation to exhibit

large growth. When getting infinitely close to the separatrix, the trajectories turn out to

oscillate periodically with an infinite duration spent near one axis, the attractor, and even-

tually a very short time spent near another axis, the repeller, the base state being either

the attractor or the repeller depending on the linear stability of the considered resonant

7. A. D. D. Craik, J. A. Adam, and K. Stewartson, “Evolution in space and time of resonant wave
triads - I. The ’pump-wave approximation’”, in: Proc. Roy. Soc. Lond. 363.1713 (Nov. 1978), pp. 243–255.
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triad. Those relaxation oscillations correspond to a nutating perturbation energy in the

three-wave-amplitude space, and result in the periodic destruction of the primary wave,

whose energy is transferred back and forth between the base state and the perturbation.

The direct numerical simulations conducted on the MITgcm to model the triadic res-

onant interaction between three internal gravity waves reveal the limits of the weakly

nonlinear theory when it comes to modeling small but finite perturbations to a single

propagating wave as the base state. The conservation of the triadic energy remains true

for infinitesimal perturbations (see trajectories A, B, and C on figure 8.10), but this con-

servation drops for more intense perturbations, implying the growth of resonating higher

order waves that pump energy from the triadic reservoir (see trajectories D, E, F on figure

8.10). This phenomenon is enhanced for the trajectories near the separatrix (see E on fig-

ure 8.10), so the energy of higher order waves grows significantly more as nonlinear effects

increase, ultimately attenuating the nonlinear growth of the second order perturbation.
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Chapter 10

Discussion, future work and

perspectives

10.1 Discussion

Both the atmosphere and the ocean are sensitive to the distribution and magnitude of

the localized internal wave driven mixing, whose parametrization remains challenging and

impact the reliability of General Circulation Models predicting the evolution of the climate

system. The diffusivity induced by the internal wave field occurs at scales smaller than

those captured by the GCM, and only a few heuristic parametrization for this diffusivity

exist to measure the sensitivity of numerical climate models to varying mixing schemes.

Speaking of sensitivity, recent studies show that small changes in this parametrization

or in the distribution of the diffusivity have a great impact on global models by modify-

ing radically the predicted temperature, circulation and fluxes in the atmosphre and the

ocean. Such observation calls for a shift from an heuristic representation to a physical

parametrization of the mixing dynamics which needs to be supported by theoretical stud-

ies to understand the underlying physics. How the transient dynamics and the nonlinear

growth of a small perturbation highlighted in the present project could affect the current

parametrizations is key when seeking to improve them. Developing physical parametriza-

tions is the first step to adapt numerical models to predict situations not yet observed up

until now and induced by global warming.

10.2 Future work

In the light of recent studies dedicated to improving the representations of ocean

and atmosphere in climate models, the results of the present project raises some possible

thoughts on the future of numerical parametrization and on the understanding of the

physical processes involved. The physics of mixing due to breaking internal waves still

remains incompletely understood and represents a challenge in the numerical representa-

tion of the ocean and atmosphere. Further investigations are needed to understand how

the transient dynamics found here may form energy pathways that drive the turbulent

mixing and the breaking of waves. The transfer of physical quantities intrinsic to internal
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waves, such as energy and pseudomomentum, to different scales may be guided at first

by the transient and nonlinear growth emanating from triadic resonance. However, the

physics behind the origins of such growth needs to analyzed, also experimentally, to point

out what causes an internal wave to be disturbed at a certain stage of its life cycle, leading

to any form of transient instability.

During the pandemic, a laboratory set up similar to the one used by Aguilar et al.

(2006)1 was built in our laboratory (LadHyX) to observe the finite time evolution of

internal wave instabilities generated by a 3D printed sinusoidal topography towed at

constant speed in a tank filled with linearly salt stratified water as shown in figure 10.1.

The tank is L = 6 m long, W = 50 cm wide, filled by salty water of maximum height

H = 50 cm, such that the BruntVäisälä frequency equals N = 1.1 rad s−1, and the

topography can be towed with speed U up to 1.1 m s−1. In comparison, the set up of

Aguilar et al. has characteristics L = 197 cm, W = 17.5 cm, H = 27 cm, N = 1.1

rad s−1, and U in the range 0.9 − 4.9 cm s−1. The linear stratification N = 1.1 rad s−1

is reached by having clear water of density ρc = 1000 kg m−3 at the surface and a brine

solution of density ρb such that ∆ρ = ρb −ρc = N2H/g = 0.06 kg m−3 at the bottom. The

identical experiment may be reproduced at first to successfully observe the generation of

vertically-propagating internal waves and boundary-trapped lee waves, by adapting the

speed U to the ranges of Aguilar et al. when reproducing their dimensions for the 3D

printed topography. This is exactly what guided our choice of dimensions when printing

the topography pictured in figure 10.2 of wavelength λ = 13.7 cm, and height h = 2.6 cm,

corresponding to an aspect ratio of h/λ = 0.2. The corresponding vertical and horizontal

Froude numbers defined in Aguilar et al. (2006)2 are Frv = U/(Nh) and Frh = U/(Nλ)

respectively, and linear theory predicts propagating waves if Frh < 1, and the flow is

hydrostatic if Frh ≪ 1. In their paper, Aguilar et al. focus on the weakly (Fr−1
v ≤ 1) and

nonlinear (Fr−1
v > 1) regimes measured by the vertical Froude number.

Their laboratory experiment may be adapted to challenge the theoretical results of

our investigations found in the weakly nonlinear regime (Frv = 1) from an experimental

perspective. Indeed, the topography may be towed over larger distances, for longer dura-

tions, and eventually with a grid placed at the front end of the topography so that the grid

produces noise (hence disturbing the passive generation of waves over the topography),

to observe the growth of an instability and its evolution at finite time. We can choose at

first U = 0.55 cm s−1 so that the generated waves have a frequency ω = U(2π/λ) = 0.25

rad s−1 (ω < N) corresponding to the wave angle θ = 0.25 chosen in part 6. For the

interpretation of the experimental results, their vertical Froude number Frv = U/(Nh),

related to the characteristics of the topography, must be linked at first with the theoretical

1. D. A. Aguilar, B. R. Sutherland, and D. J. Muraki, “Laboratory generation of internal waves from
sinusoidal topography”, in: Deep Sea Research Part II: Topical Studies in Oceanography, Ocean Mixing
53.1 (Jan. 2006), pp. 96–115.

2. Ibid.
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Figure 10.1: a) Schematics of the laboratory set up at LadHyX, similar to the one used by
Aguilar et al. (2006), but with a larger tank, measuring L = 6 m long, W = 50 cm wide,
filled by salty water of maximum height H = 50 cm, such that the buoyancy frequency
equals N = 1.1 rad s−1. The topography mounted on an adjustable support arm can reach
speed U up to 1 m s−1. b) Panoramic photo of the (empty) tank at LadHyX (sideview). c)
Photo of the experimental setup from another perspective, showing the console piloting
the motor conveyor belt placed at the top right end of the tank. The console controls the
speed of the towed topography, and durations of the acceleration and deceleration phases.
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Figure 10.2: a) Schematics of the sinusoidal shaped topography, which is 3D printed in
three separated parts and then assembled before being mounted over the support arm
and towed in the tank. b) Photos of the middle piece of the 3D printed topography.

definition used in the present manuscript Fr = Ψ0(0)/(NL2
0), intrinsic to the generated

internal waves, leading to Fr = U/(Nh)Frv = 0.2, as Frv = 1 in the weakly nonlinear

regime. Then, the grid located in front of the topography perturbs the flow over the hills,

and such an instability may be observed using shadowgraph technique.

In the proposed experiment, the placement of the grid relative to the position of the

topography on the support arm is dictated by the grid induced turbulence so that its

intensity is maximized to perturb the flow over the hills, and, ultimately, the internal

wave radiation. Indeed, the work conducted by Irps (2016)3 when observing the turbu-

lence generated by a grid placed in a wind tunnel illustrated in figure 10.3a) recalls that

the presence of the grid modifies the flow and the boundary layer development directly

downstream of the grid. When defining five locations along his tunnel as shown in figure

10.3b), Irps was able to observe a clear modification of the boundary layer near the grid

downstream, as pictured in 10.3c) where the horizontal velocity profile of location 2 (pro-

file B, captured at 21.5 mm downstream of the grid) is characterized by a alternate wake

and jet pattern in presence of the grid (solid lines), compared to the case without grid

(dashed lines). At location 1 upstream (profile A, at 16.5 mm upstream), the u profile

is almost unaffected by the presence of the grid, whereas, at locations 3 and 4 (profiles

C and D at 151.5 mm and 281.5 mm downstream respectively), u experiences overshoot

near the surface lower wall, this overshoot being attenuated when getting further down-

stream. In fact, Irps used five different grids in his experiments are manufactured from 2

mm thick aluminium sheets and made following the design criteria described by Roach

3. T. Irps and V. Kanjirakkad, “On the interaction between turbulence grids and boundary layers”,
in: EPJ Web of Conferences 114 (2016), p. 02048.
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Figure 10.3: a) Experimental setup of Irps (2016) with a fixed surface lower wall in (1)
where boundary layer flow is tracked. In (2), pressure tappings along the center line of the
lower wall are used to measure pressure drops along the duct. (3) points out a background
window with slots containing hot-wires, (4) is the grid around which pneumatic probe
traverses in the wall normal direction (Y axis) at five selected locations defined on figure
b). A linear actuator mechanism for traversing the probe is fixed on the outside of the
wind-tunnel (5). Non-intrusive PIV setup is used for visualising the horizontal velocity
field u in the intended measuring area (9) and is composed of a non-reflective glass (8), a
laser head (7), a the camera (10). b) View of the tunnel from above defining five locations.
c) Horizontal velocity profile for a grid G3 of 9 mm holes, 3 mm strut, with a porosity
0.563 and a pressure drop factor 2.27, at the four locations 1, 2, 3 and 4, corresponding
to the plots A, B, C and D respectively, Uref being a referenced velocity. Dashed curves
correspond to the absence of grid, and the continuous curves to the presence of grid G3.
From Irps (2016).
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(1987)4 with square-mesh arrays of square bars (SMS). The induced turbulence depends

on the parameters of the chosen grid in terms of sizes of the holes, strut widths, porosities,

and pressure drop coefficient, as stated by Roach (1987)5 who also showed the attenu-

ation of the turbulence far from the grid with an empirical scaling Tu = C(X/d)−5/7,

Tu being the turbulence intensity, X > 0 the distance downstream from the grid, d the

strut width, and C a coefficient equal to 1.13 for grids of the SMS type. Tu is determined

experimentally by calculating the rms of the horizontal velocity field above the lower wall

in presence of the grid, and dividing it by the rms value of same field when the grid is

absent. The scaling law of Tu, inversely proportional to X, suggests that the grid must

be placed directly at the front edge of the 3D printed topography in order to maximize

the induced turbulence affecting the flow over the topography. For our setup, we can first

choose one of the SMS grid listed in Irps work (2016)6, whose induced turbulence on a

basic flow is well-known, but eventually measured again in our configuration when towing

the support only, without the 3D printed topography on it. A possible grid could have 9

mm holes, 3 mm strut, for a porosity 0.563 and a pressure drop factor 2.27, corresponding

to grid G3 in Irps work and whose turbulence is illustrated on figure 10.3.

The presence of the grid perturbs the downstream flow such that this perturbation

may grow at finite time, characterized by a measured experimental growth rate σexp(t)

corresponding to one of the points in the curves computed theoretically on figure 6.8,

i.e. σ(T, k1) for a fixed k1 at a certain stage t = T/(NFr) ∼ 5T s of the experiment,

corresponding to a localization x = Ut ∼ 2.8T cm in the frame of the topography as

we capture pictures using a camera that follows the translation of the hills. The noise

of the grid being random, σexp(t) may be equal to σ(T, k1) for a certain triad of the

resonant spectrum identified by its wave vector norm k1, hence giving information on

the nature of the generated triadic instability (linearly stable or unstable). The transient

amplification of linearly stable triads highlighted on figure 6.8 for short times, T = 0.1

up to T = 3 for a wave angle θ0 = 0.25 corresponding to the positions x = 0.28 cm up

to x = 8.4 cm downstream of the grid, are expected to be observed. The reconstitution

of the curves σ(T, k1) on figure 6.8 requires a set of experiments and measures involving

different grid properties (hole size, strut width, porosity, and pressure drop factor of SMS

grids) for one 3D printed topography, and the nonlinear effects may also be explored by

increasing the towing speed U up to the permitted experimental range, or by building

steeper topographies.

The analysis may be pushed further by taking into account detuning effects on the tran-

sient dynamics identified here. The transient growth of a small perturbation in the course

of a propagating internal wave is already sensitive to different parameters of the system

4. P. E. Roach, “The generation of nearly isotropic turbulence by means of grids”, in: International
J. Heat and Fluid Flow 8.2 (June 1987), pp. 82–92.

5. Ibid.
6. Irps and Kanjirakkad, op. cit.
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such as those studied in the present project: primary wave angle, viscosity/diffusivity, and

Earth rotation. When increasing nonlinearities, some universal scaling laws were found to

quantify the sensitivity of the transient dynamics to the modification of Earth rotation

in a range that corresponds to a geophysical reality. How would the detuning of resonant

wave triads affect the relaxations oscillations of a nutating perturbation in a three-wave-

amplitude space theoretically demonstrated here? It would be interesting to reprise the

theoretical and experimental investigations conducted by McEwan & Plumb (1977), to

answer this open question. Indeed, their setup mentioned in section 2.1 and whose results

are presented on figure 2.3 uses one fine-scale wave generator consisting of an oscillating

cylinder and one large scale wave maker to produce two slightly detuned waves in a 5.5

m long channel filled with a salt solution. As stated by McEwan & Plumb (1977):

The beams, being of fine scale, weakened rapidly with distance from the gener-

ating cylinder and likewise decayed rapidly when the cylinder was withdrawn

from the water. They were the realization of a discrete, spatially non uniform

fine-scale internal wave packet.

In our intended setup, a 3D topography being towed in a 6 m tank, we may add the

wave maker in the course of the topography to generate a second wave, in addition to

those generated passively at the hills, adjusting the period of the oscillating cylinder so

that the second wave is slightly detuned from the waves of frequency ω = U(2π/λ), to

observe the effects of detuning on the emerging transient and nonlinear dynamics in the

interacting region, sufficiently close to the wave maker to avoid the rapid decay of the

fine-scale wave. When there is no detuning, we may recover the results of our theoretical

study in which two resonant waves, (Φ0,k0, ω0) and (Φ2,k2, ω2), are initially considered,

describing a trajectory of constant pseudomomentum on a sphere of fixed energy in the

amplitudes space (|Φ0|, |Φ1|, |Φ2|), then forming the third resonant wave (Φ1,k1, ω1). The

triadic system corresponds to a trajectory exhibiting high transient and nonlinear growth

for triads close to Elastic Scattering and Induced Diffusion, along with the generation of

Vertically Sheared Horizontal Flow modes (VSHF), so this criterion will guide our choice

on the forcing frequencies of the two inital waves (radiated from the hills and generated

by the cylinder) in order to get nearly singular triads. It would be interesting to set

multiple cylinders vertically aligned at a fixed horizontal position and oscillating at the

same detuned frequency to eventually enlarge the interacting zone of the three resonating

waves.

10.3 Perspectives

Fundamental knowledge gaps still exist when it comes to understanding the physical

processes that transfer energy within the internal wave field, ultimately leading to dissi-
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pation and turbulent mixing. The transfer of physical quantities, such as energy and pseu-

domomentum, across different length scales and frequencies remains poorly understood.

This transfer is ensured by numerous physical processes, such as wave-wave interaction,

topographic scattering and reflection, and interaction of the waves with the mean cur-

rent, that may be all concomitant. This study focused on one of the above mechanisms

and must be completed by further analysis to include the combination of the mentioned

physical processes.

To understand the observed features of internal wave spectrum, we suggested an al-

ternative to the classical Parametric Subharmonic Instability when modeling the energy

transfer between scales by focusing on two singular triads, Elastic Scattering and Induced

Diffusion. Those two triadic resonant interactions were thoroughly investigated in the

present project from a novel perspective, as they induce the strong transient (and non-

linear) growth of a small perturbation energy, along with sustaining Vertically Sheared

Horizontal Flow modes (VSHF). The resulting shear could imply a radically different

horizontal and vertical distribution of the turbulent mixing induced by internal waves,

and may explain how the radiation of internal waves by modes of instability modifies the

mixing induced by shear, such that it occurs at a different height/depth, possibly modify-

ing the spatial, temporal, and directional properties of shear7. Such dynamics may affect

the ocean, transferring the mixing from the thermocline to the deep ocean, as well as the

atmospheric boundary layer in stable configuration, blocking its mixing and transferring

wave breaking to higher layers.

7. M. H. Alford et al., “SpaceTime Scales of Shear in the North Pacific”, in: J. Phys. Oceanogr. 47.10
(Oct. 2017), pp. 2455–2478.
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Appendix A: Relation between the pseudomomentum

and the helicity for inertial waves

We use the formalism introduced by Moffatt (2014) to make the link between the z

component of the pseudomomentum Pz = P · ez and the helicity, denoted H, which is in

our case, an invariant of the Euler equations8 of fluid flow. The mean helicity of the wave

is defined by H = ⟨u ·ω⟩, where ω = ∇×u is the vorticity of the fluid parcel which turns

out to be:

ω =











−v,z

∇2ψ

v,x











(1)

so the helicity can be written as:

H = ⟨∇2ψv⟩ − ⟨ψ,xv,x⟩ − ⟨ψ,zv,z⟩
= ⟨∇2ψv⟩ + ⟨ψ,xxv⟩ + ⟨ψ,zzv⟩
= 2⟨∇2ψv⟩
= 2⟨ωyv⟩

(2)

Now let, F = (F0, F1, F2), G = (G0, G1, G2) and H = (H0, H1, H2) and:

ψ =
∑

n

Fn(t)eikn·r + c.c (3)

v =
∑

n

Gn(t)eikn·r + c.c (4)

ωy =
∑

n

Hn(t)eikn·r + c.c (5)

so Hn = −k2
nFn. Combining the polarization relation (4.74) with the dispersion relation

of inertial waves, ωnkn = σznfkzn with σzn = sign(ωnkzn), we get Gn = −σznknFn, so:

8. Navier-Stokes equations in the inviscid case ν = κ = 0.
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H = 2⟨ωyv⟩

= 2
∑

n

1

4
ℜ(Gn · Hn

∗)

=
1

2

∑

n

σznk
3
n|Fn|2

= 2
∑

n

σznkn|ϕn|2

(6)

keeping in mind that ϕn = knFn/2, and:

Pz = P · ez

=
∑

n

Ankzn

=
∑

n

σznkn|ϕn|2
f

(7)

or in other terms H = 2⟨ωyv⟩ = 2fPz hence, in the purely rotating case9, the z components

of the pseudomomentum Pz and of the momentum Pz are equal to the helicity of the

inertial wave, up to a factor 2f .

9. in the purely stratified case, the same derivation gives Px = ⟨ωyb⟩ =
∑

n σxnkn|ϕn|2
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Here we demonstrate that the total mean energy and helicity are global invariants of

the full dynamical system of nonlinear equations, meaning that the result in part 4.2 is

valid at all order of disturbances and does not depend on the internal waves definition.

For full generality, we consider the stratified rotating case by keeping the same notations

introduced in part 4.110 and only making one single assumption, the Boussinesq approxi-

mation11 in the Reynolds decomposition given by (4.4) to show the general12 conservation

of energy and helicity:

∇ · u = 0 (8)

Dtb = −N2w + Db(b) (9)

Dtu = −∇P + bez − f (ez × u) + Dm(u) (10)

where Db and Dm are dissipation terms. Taking the curl of the last equation, the vorticity

vector ω = ∇ × u obeys:

Dtω + J(u, v) = −fu,z − b,xey + ∇ × Dm(u) (11)

Conservation of the mean total energy in inviscid stratified ro-

tating flows

By definition, the mean total energy E is:

E = ⟨etot⟩r (12)

with etot the total energy, sum of the kinetic and potential energies (ek, ep) defined by:

etot = ek + ep (13)

ek =
1

2
u2 (14)

ep =
1

2

(

b

N

)2

(15)

multiplying (9) by b and (10) by u, and using (8)13, we get14:

10. in which all equations were dimensional.
11. which assumes small density fluctuations ρ′ ≪ ρr.
12. at all order of disturbances, instead of assuming small Fr numbers.
13. ∇ · (Pu) = ∇P · u + P∇ · u and ∇ · u = 0.
14. keeping also in mind that Dt(fh) = hDtf + fDth.
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Dtep = −wb+ bDb(b)/N
2 (16)

Dtek = −∇ · S + wb+ u · Dm(u) (17)

with the energy flux S = Pu, so that:

Dtetot = −∇ · S + u · Dm(u) + bDb(b) (18)

Calculations of the convective term concerning the total energy etot result in15, we get:

⟨(u · ∇)etot⟩r = ⟨uetot,x⟩r + ⟨wetot,z⟩r

= −⟨u,xetot⟩r − ⟨w,zetot⟩r

= −⟨(∇ · u)etot⟩r

= 0

(19)

so ⟨Dtetot⟩r = E,t and taking the spatial mean of (18) finally ends up to:

E,t = ⟨u · Dm(u) + bDb(b)⟩r (20)

the right hand side being 0 in the inviscid case which implies the time conservation of the

mean total energy.

Conservation of the mean helicity in inviscid rotating flows

Recall that the mean helicity H can be written as H = ⟨u · ω⟩r, with ω = ∇ × u

being the vorticity vector. Now:

Dt(u · ω) = ω ·Dtu + u ·Dtω (21)

so using (10) combined with (11), and noticing16 that ⟨u·J(u, v)⟩r = 0, ⟨Dt(u·ω)⟩r = H,t

and ⟨ω · (b,xey)⟩r = 0, we get:

H,t = 2⟨bv,x⟩r + ⟨ω · Dm(u) + u · ∇ × Dm(u)⟩r (22)

In the purely rotating17 inviscid case, (9) becomes Dtb = 0 so b is constant and ⟨bv,x⟩r =

b⟨v,x⟩r = 0, hence the right hand side of (22) is 0 which implies the time conservation of

the mean total helicity for a purely rotating inviscid fluid.

15. keeping in mind that ⟨fh,xi
⟩r = −⟨f,xi

h⟩r and ⟨f,xi
⟩r = 0 with xi being x, y, z or r = (x, y, z)

16. same calculations as (19)
17. non-stratified case N = 0, f ̸= 0
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Titre : Dynamique transitoire et nonlinéaire de la résonance triadique des ondes internes
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Résumé : La régulation du réchauffement climatique

par l’océan dépend du mélange vertical de masses

d’eau profondes résultant du déferlement d’ondes in-

ternes générées par l’interaction entre la marée ba-

rotrope et la topographie du fond marin. Le mélange

induit par ces ondes internes entre les couches stra-

tifiées de l’océan profond joue un rôle essentiel dans

la remontée des eaux abyssales froides, contribuant

au transport de chaleur et de sel, ainsi que de nutri-

ments et de carbone, à travers l’océan entier sur des

cycles de l’ordre de 1000 ans.

Les interactions onde-onde sont l’un des mécanismes

responsables de la dissipation, du mélange et du

déferlement des ondes internes en transférant de

l’énergie à différentes échelles. Trois ondes internes

sont susceptibles d’interagir à travers l’interaction

triadique résonante, une interaction faiblement non

linéaire qui se produit lorsqu’une onde propagative

est perturbée par deux autres ondes, les trois ondes

devant obéir à des conditions de résonances spatio-

temporelles. Les théories classiques ont montré

que ce système triadique devient instable si le

critère d’Hasselmann est respecté. Cependant, au-

cune théorie existante n’explique le comportement

court terme de l’instabilité triadique résonante.

Ce projet propose d’analyser la dynamique initiale des

triades résonantes en montrant qu’une perturbation

de petite énergie affectant l’état de base, une onde

interne se propageant dans un milieu stratifié tour-

nant, pourrait être affectée par des croissances tran-

sitoires intenses par rapport à une norme énergie

bien définie, cette amplification étant plus fortes ini-

tialement pour des triades linéairement stables plutôt

qu’instables. Les plus fortes transitoires sont ca-

ractéristiques de triades à l’origine d’un mode quasi-

inertiel générant du cisaillement : le mode horizon-

tal cisaillé verticalement. La sensibilité de tels tran-

sitoires à différents paramètres physiques comme la

rotation terrestre, la viscosité et les effets non linéaires

est testée à l’aide de simulations théoriques, et dans

des configurations géophysiques reproduites par un

code numérique du climat, le MITgcm.

Title : Transient and nonlinear dynamics of triadic resonance for internal waves

Keywords : transient growth, internal waves, triadic resonant instability

Abstract : Global warming regulation by the ocean

depends on the vertical mixing of deep water masses

resulting from the breaking of internal waves ge-

nerated by the interaction between barotropic tides

with the ocean floor topography. Internal wave driven

mixing of stratified layers in the deep ocean plays an

important role in the rise of abyssal cold water, ulti-

mately contributing to the transport of heat and salt,

as well as nutrients and carbon, throughout the entire

ocean over 1000-year cycles.

Wave-wave interactions are one of the physical me-

chanisms responsible for the dissipation, mixing and

breaking of internal waves by transferring energy to

different scales. Three internal waves may interact

through triadic resonance, a weakly nonlinear inter-

action that occurs when a single propagating wave is

perturbed by two other waves, all three waves obeying

to the spatial and temporal resonance conditions.

Classical theories have shown that the present triadic

system becomes unstable if Hasselmann’s criterion is

respected. However, none of the existing theories ex-

plains the short term behavior of the triadic resonant

instability.

The present project investigates the early stage dyna-

mics of resonant triads by showing that a small energy

perturbation to the base state, a single internal wave

propagating in a stratified rotating medium, may ex-

perience tremendous transient growth with respect to

a well-defined energy norm, this amplification being

higher at initial instants for linearly stable triads than

unstable ones. The maximum transients are found

for triads involving one nearly inertial mode that ge-

nerates shear : the vertically sheared horizontal flow

mode. The sensitivity of these transients to different

physical parameters such as Earth rotation, viscosity

and nonlinear effects is tested with theoretical simu-

lations, and in geophysical configurations using a nu-

merical code for climate modeling, the MITgcm.
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