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Abstract

In order to investigate the Very High Cycle fatigue behavior of FCC metals using

Discrete Dislocation Dynamics simulations, the present thesis proposes an improved

model of cross-slip mechanism which has been implemented in the nodal DDD code

NuMoDis (Drouet et al., 2014). The first step was to obtain the effect of stress

on the activation enthalpy of cross-slip using discrete dislocation dynamics. The

obtained results were compared with two modern cross-slip models, namely the

numerical model of Kang et al. (2014) and the analytical model of Malka-Markovitz

and Mordehai (2019). It was shown that both cross-slip models were in quantitative

agreement with the results obtained using discrete dislocation dynamics simulations.

Due to its easy calibration based on the unstressed energy barrier of cross-slip,

the analytical model of Malka-Markovitz and Mordehai (2019) was preferred to

be employed in the discrete dislocation dynamics code to effectively calculate the

activation enthalpy of screw segments.

The second step was to implement the recent cross-slip rate model proposed

by Esteban-Manzanares et al. (2020) into the discrete dislocation dynamics code

NuMoDis (Drouet et al., 2014). The obtained results were compared with the nu-

merical values of the cross-slip rate estimated by Vegge et al. (2000) and Oren et al.

(2017) using atomistic simulations. It was demonstrated that the proposed cross-

slip modelling was able to reproduce atomistic results using only one free parameter,

namely the unstressed energy barrier of cross-slip required to fit the analytical model

developed by Malka-Markovitz and Mordehai (2019).

As a first application of the benchmarked simulation methodology, the firsts

cycles of the gigacycle fatigue regime were simulated two different configurations,

namely one isolated screw dislocation and a network of twelve mixed dislocations.

It was found that the effect of cross-slip on an isolated dislocation was negligible,

whereas it produced irreversible changes in the case of a dislocation network. With

the aim of simulating a much larger number of cycles, a jump-in-cycles method was

finally proposed in the last chapter.

i



Résumé

Afin de simuler le comportement en fatigue à très grand nombre de cycle de métaux

par dynamique des dislocations, cette thèse propose une modélisation améliorée

de la loi de glissement dévié utilisée jusqu’alors. La première étape a consisté à

obtenir l’effet de la contrainte sur l’enthalpie d’activation du glissement dévié en

utilisant la dynamique des dislocations discrètes. Les résultats obtenus ont été

comparés à deux modèles récents de glissement dévié, à savoir le modèle numérique

de Kang et al. (2014) et le modèle analytique de Malka-Markovitz and Mordehai

(2019). Il a été démontré que ces deux modèles étaient en accord quantitatif avec les

résultats obtenus à l’aide de simulations de la dynamique des dislocations discrètes.

L’enthalpie d’activation des segments vis est estimée à partir du modèle analytique

de Malka-Markovitz and Mordehai (2019) dont la calibration est aisée à partir de la

valeur de la barrière d’énergie sans contrainte.

La deuxième étape a consisté à mettre en œuvre le récent modèle de probabilité

de glissement dévié proposé par Esteban-Manzanares et al. (2020) dans le code de

dynamique des dislocations discrètes. Les résultats obtenus ont été comparés aux

valeurs numériques du taux de glissement dévié estimées par Vegge et al. (2000)

et Oren et al. (2017) en utilisant des simulations atomistiques. Il a été démontré

que le modèle de glissement dévié proposé était capable de reproduire les résultats

atomistiques en utilisant un seul paramètre libre, à savoir la barrière d’énergie sans

contrainte du glissement dévié requise par le modèle analytique développé par Malka-

Markovitz and Mordehai (2019).

Comme première application du code de DDD ainsi amélioré, les premiers cy-

cles du régime de fatigue gigacyclique ont été simulés dans deux configurations

différentes, à savoir une dislocation vis isolée et un réseau de douze dislocations

mixtes. Il a été constaté que l’effet du glissement dévié sur une dislocation isolée

était négligeable, alors qu’il produisait des changements irréversibles dans le cas d’un

réseau de dislocations. Dans le but de simuler un nombre beaucoup plus important

de cycles, une méthode de saut dans les cycles a finalement été proposée dans le

dernier chapitre.

ii



Für

Elina Longsworth

und

Bernhard Klemt



Acknowledgements

Hereby I thank my advisors, Marc FIVEL and Nicolas RANC, for making this

project possible. Their thoughtful suggestions and wise commentaries were greatly

appreciated throughout these years. I also want to express my deepest gratitude

to the other jury members, namely Ghiath MONNET, Alexander HARTMAIER,

Edgar RAUCH, Dan MORDEHAI and Laurent DUPUY, for carefully reading this

manuscript and contributing to it with their expertise.

I would like to express my sincere appreciation to the other members of the

FastMat team, namely Vincent JACQUEMAIN, Christophe CHEULEU, Doriana
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Chapter 1

Introduction

Mechanical structures can break under repeated loading well below the yield stress

associated to the underlying material. In the engineering jargon, fatigue of materials

refers to the progressive destruction of the cohesive atomic bonds as a result of cyclic

loading. Many machine components and structures are subjected to cyclic loading

at small stress amplitudes, such as gas turbines, car engines, drilling machines and

high-speed trains (Kazymyrovych, 2009). The formation and propagation of cracks

due to a repetitive or cyclic load is known as fatigue failure (Freudenthal, 1946).

It has been estimated that 90% of all mechanical systems associated to the en-

ergy production and transportation industry fail as a result of fatigue mechanisms

(de Freitas, 2017). Many relevant mechanical structures are subjected to gigacyclic

fatigue in our modern technological society. In automobiles, the valve in a thermal

engine can endure up to 109 cycles during its lifespan. In airplanes, the wings and

fuselage can endure up to 107 loading cycles associated to the take-off and landing

(Costa et al., 2020). Fatigue design has developed scientific methods and experi-

mental approaches to asses the fatigue life of such structures, which require a precise

characterization of the underlying material to minimize the risk of failure. An effi-

cient characterization of materials undergoing gigacycle fatigue is still a challenging

problem because more than 107 cycles are typically required for this process.

This chapter provides a brief overview on the experimental characterization and

physical modelling of the gigacyclic regime as a way to introduce the main objective

of the present manuscript, namely the development of a more physical simulation

technique that is able to simulate the gigacyclic regime at the microstructure scale.

Section 1.1 gives an overview of the experimental characterization of the gigacyclic

regime using modern ultrasonic machines, section 1.2 presents the few attempts to

simulate the gigacyclic regime and section 1.3 shows the thesis structure.

1
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Figure 1.1: SN curve showing the fatigue domains. Source: Ranc (2017).

1.1 Characterization of the ultrasonic fatigue

1.1.1 Classical fatigue design

The present fatigue standards are based on the concept of fatigue limit introduced

by Wöhler (1860). A fatigue test can be performed by subjecting a sample to cyclic

stresses using a fatigue machine over many cycles until the sample fails. The aim is

to obtain a SN curve of the material. A SN curve is a plot of the stress amplitude

versus the number of cycles required to break an specimen. The fatigue domain is

characterized by the number of cycles to failure. Figure 1.1 shows the typical three

broad fatigue regimes evidenced on the SN curve: (1) the Low-Cycle-Fatigue (LCF)

regime - up to 104 cycles to failure, (2) the High-Cycle-Fatigue (HCF) regime -

between 104 and 107 cycles to failure and (3) the Very-High-Cycle-Fatigue (VHCF)

regime - over 107 cycles to failure. The stress value associated to the horizontal

asymptote obtained by extrapolation from the LCF and HCF domain is known as

the fatigue limit. In the present standards it is assumed that the specimen will

never break if the applied stress amplitude is smaller than the fatigue limit. In

other words, the sample is expected to exhibit an infinite lifespan for lower stress

amplitudes than the fatigue limit.

Obtaining a single SN curve can be extremely time-consuming. Traditionally,

hydraulic machines operating at 30 Hz have been used to perform fatigue tests.

Therefore, the test must be carried on for at least a month in order to compute

part of the HCF domain. Moreover, fatigue failure is a stochastic process. In

consequence, a minimum of 25 fatigue tests are required in order to obtain a reliable
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SN curve. Due to the impractical test duration, the infinite lifespan under the

fatigue limit was generally accepted until recent years.

The fatigue characterization in the VHCF domain represents an even greater

challenge. In the past two decades, powerful ultrasonic machines operating at 20

kHz have been used to improve the test duration (Bathias, 1999; Stanzl-Tschegg

and Mayer, 2001; Stanzl-Tschegg, 2014). The ultrasonic machines represented an

immense progress on the generation of reliable SN curves up to the VHCF domain.

Moreover, the testing time up to 109 cycles was considerably reduced to a few

days, which constituted an important breakthrough on practical fatigue testing.

Most crucially, experiments confirmed that most materials can break at stress levels

considered to be safe after more than 107 cycles (Bathias, 1999; Pyttel et al., 2011;

Shiozawa et al., 2001), in contradiction to the assumption of an infinite lifetime for

applied stresses below the fatigue limit. It can be concluded that it is possible to

have fracture for number of cycles higher than 107 and for stress amplitude lower

than the fatigue limit defined by modern standards. The technological relevance of

the VHCF regime has motivated a deeper research using ultrasonic machines. Some

of the most important challenges currently are:

i to understand the effect of loading frequency on the fatigue mechanism. The

reason why some SN curves obtained using hydraulic and ultrasonic machines

can be different is still controversial (Furuya et al., 2002; Tsutsumi et al., 2009;

Willertz, 1980).

ii to estimate the applied stress more accurately. A the present time, the calcula-

tion is based on the elastic approximation, which is only valid when the plastic

strain is small.

iii to account for the effect of self-heating on the obtained SN curves. Air guns

have helped to counterbalance the specimen’s self-heating. In spite of it, the

samples’ temperature can increase up to several hundreds of degrees due to the

high-frequency vibrations. Since temperature significantly affects the physics of

materials, the fatigue characterization at room temperature is still a challenge.

iv to improve the test duration beyond 109 cycles. As an example, a fatigue test of

1011 cycles using an ultrasonic machine takes approximately 2 months. Although

the testing has been drastically reduced, the test duration beyond 1010 cycles

remains impractical.
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Figure 1.2: Self-heating curve of XC55 steel. Source: Luong (1995).

1.1.2 Self-heating methods

When a sample is subject to cyclic fatigue, its temperature increases. The mechan-

ical energy is dissipated as heat, which provokes an increase of temperature. This

effect is known as self-heating. Experimental techniques have been developed to de-

termine the fatigue limit using the so-called self-heating methods (Luong, 1995, 1998;

La Rosa and Risitano, 2000; Krapez et al., 2000; Munier et al., 2014). In these tech-

niques, the stress amplitude is increased after applying a sequence of approximately

104 cycles to allow the temperature to stabilize. Infrared cameras or thermocouples

are used to measure the specimen’s self-heating during cyclic fatigue. The obtained

plots of stabilized temperature vs applied stress are known as self-heating curves.

Two characteristic regimes can be observed in the typical self-heating curve (see

figure 1.2). In both regimes, the temperature increases linearly with the applied

stress. In the low-stress regime, the temperature increases slowly, whereas in the

high-stress regime, the temperature increases drastically faster. The conventional

fatigue limit is thus conventionally defined as the stress amplitude separating these

two regimes.

The self-heating method can be used to estimate the fatigue limit of materials

within a few hours. Hydraulic machines working at 30 Hz are typically employed.

The self-heating method has been used to determine the fatigue limit of several

steels (Munier et al., 2014). However, it was shown that for 316L steel under tension-

tension cyclic loading, the self-heating method can lead to an underestimation of the

fatigue limit (Krapez et al., 2000). For materials in which the temperature increase is

weak, such as in aluminum and some of its alloys, the two regimes of the self-heating

curve are hardly distinguishable (Krapez et al., 2000). In this case, the fatigue limit
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Figure 1.3: Schematic diagram of an ultrasonic fatigue machine.

Source: Ors et al. (2019).

cannot be easily determined using the self-heating method. Moreover, it has been

reported that the temperature of aluminum alloys does not easily stabilize at certain

stress amplitudes (Wagner et al., 2010). For that reason, the self-heating curve can

be difficult to obtain.

In general, the heat source can be categorized into two components, namely,

the thermo-elastic source associated to the thermal expansion of the material, and

the dissipative source related to the irreversible deformation of the microstructure

(Boulanger et al., 2004). In fact the average value of the thermo-elastic source is zero

because it reversibly oscillates during one cycle, whereas the dissipated energy rate

is always positive due to its monotonic increment with time. At the microstructural

level, part of the work applied to the crystal is dissipated through the motion of

dislocations, which might lead to an increased dislocation density, reactions between

dislocations and the formation of complex dislocation structures. The stored energy

is associated to the plastic deformation generated by the microstructural defects.

Since the stored energy indicates the amount of permanent damage accumulated,

it can be used to characterize the fatigue level during cyclic loading. Once the

temperature of the sample has been stabilized, the applied work is equal to the

dissipated and stored energy. The self-heating method has been thus implemented

to estimate the stored energy of steels in the LCF and HCF regimes (Chrysochoos

et al., 2008; Connesson et al., 2011).

In the VHCF regime, the applied stresses are very weak with respect to the yield

stress. Sophisticated measurements have shown that the temperature variations are

very small when the cyclic fatigue is generated by hydraulic machines operating

at 30 Hz. In order to increase the heat rate emitted at low applied stresses, the
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self-heating method has been recently implemented in the case of ultrasonic ma-

chines (Blanche et al., 2015). The heat equation must be inverted to obtain the

heat sources. However, the noisy character of the temperature field can make the

inversion unstable. A reduced-basis projection of thermal data has been proposed

to improve the signal-to-noise ratio before estimating the heat sources (Ranc et al.,

2015). In the VHCF regime, the time integration of the infrared camera does not

detect the thermo-elastic source. In this particular case, the heat source is equal to

the average dissipation after many cycles. However, the applied work must be also

estimated in order to calculate the stored energy. Modern experiments at the syn-

chrotron SOLEIL are currently being performed to estimate the applied work during

ultrasonic fatigue. These experiments are challenging because the time-resolved evo-

lution of both stress and strain must be obtained in order to estimate the applied

work. A new method based on time-resolved X-ray diffraction was implemented to

measure the elastic strain and applied stress during ultrasonic fatigue (Ors et al.,

2019).

The left-handed side of figure 1.3 shows an ultrasonic device consists of three

main components, namely (a) the power generator, which converts the voltage into

a sinusoidal signal, (b) the piezo-electric converter, which loads the specimen into

its first longitudinal mode and (c) a horn that amplifies the mechanical vibration

generated by the converted to obtain the desired stress amplitude. The total strain

on the specimen is directly measured using two gauges glued at its center. A prob-

ing monochromatic X-ray beam of 16 keV hits the sample during cyclic loading to

obtain information about the microstructure, such as the stress heterogeneity and

the dislocation density evolution (see right-handed side of figure 1.3). Since the

fatigue machine is operated at 20 kHz, the period of an applied cycle is 50 microsec-

onds. In order to reproduce the time-resolved intensity of the diffracted beam, the

aperture time of the detector must be sufficiently fast. For that reason, an XPAD

detector with an aperture time of one microsecond is necessary for the investigation

of ultrasonic fatigue. After a certain adjustable delay, an XPAD detector acquires

the corresponding diffractogram for one microsecond. By monitoring the diffracted

X-ray beam as a function of the time delay, the time-resolved diffracted intensity

during one full cycle can be reproduced with the information obtained from the 50

diffractograms.

Once the accumulated intensity of the XPAD image is sufficiently strong, the

image is stored.

A detailed diagram of the triggering chain of the XPAD detector is shown in

figure 1.4 (a). The gauge conditioner reads the signal sent by the strain gauge.

At a prescribed voltage value, the first data card signalizes a waiting time to the

delay line. Once said delay has passed, the delay line triggers simultaneously the
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gauge acquisition using the second data card and the detector aperture during one

microsecond. The signal send by the delay line passes through a function generator

before arriving to the XPAD detector. This step ensures that the signal sent by

the delay line has the appropriate shape. In the particular experiments done at the

synchrotron SOLEIL, the zero delay signal is set when the gauge reaches a value

of 0.5 V (labeled as TRIG in Fig 1.4 (b)). The triggering process is repeated each

50 microseconds. In this way, a diffractogram corresponding to the exact same

part of the cycle is periodically read. The same process must be repeated until

the accumulated intensity on the XPAD image is sufficiently strong to achieve good

counting statistics on every pixel conforming the picture. Once the XPAD image

acquires the desired quality, it is finally registered on the system. The time delay is

then increased by one microsecond and the process is repeated until the full cycle

has been probed. As a result, 50 diffractograms are obtained as function of the

time delay. Finally, the peak position and width are reported as function of the

time delay (see Fig 1.4 (b)). The mean elastic strain obtained from the shift of

diffraction peaks allows to estimate the applied stress using the scale transition

model. On the other hand, the fluctuation of elastic strain obtained from the peak

broadening provides information about the intragranular strain heterogeneities and

the dislocation density (Bretheau and Castelnau, 2006).

Ors et al. (2019) found that in order to obtain a strain resolution of 6×10−6, the

detector must be triggered 20,000 times for each XPAD image. Since the applied

frequency is 20000 Hz, each XPAD image can be obtained after one second. Con-

sidering also the reading time, each diffractogram is obtained after 4.5 seconds. For

that reason, 4.5 × 106 cycles are executed after completing the 50 images required

to describe the full cycle, which are a small amount of cycles with respect to the

total number of cycles to failure. Therefore, the fatigue properties are assumed to

remain constant during the acquisition process.

1.2 Physics of the ultrasonic fatigue

1.2.1 Damage mechanisms and fatigue-life diagrams

The effect of LCF and HCF on the physical microstructure has been thoroughly

investigated (Lukáš and Klesnil, 1973; Suresh, 1998; Polak, 1991). In contrast,

the theoretical research on VHCF has been limited to the available experimental

results. At the microstructural level, fatigue can be described as the initiation and

subsequent propagation of cracks, which ultimately lead to the specimen failure.

This physical process strongly depends on the stress amplitude and the number

of cycles. In the LCF regime, the cracks appear very quickly but they propagate
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Figure 1.4: Schematic diagram of an ultrasonic fatigue machine.

Source: Ors et al. (2019).
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Figure 1.5: Intrusions and extrusions conforming the PSBs.

Source: Karuskevich et al. (2012).

at much slower rate to the surface, typically near the grain boundary. In strong

contrast, the stage of crack initiation on the HCF and VHCF regimes is much

longer than the crack propagation, which indicates that the underlying mechanisms

occurring on the LCF regime might be fundamentally different.

The firsts VHCF theories were developed by Mughrabi (2002). He specified the

conditions under which fatigue failure could occur. Moreover, he identified differ-

ent physical mechanisms leading to fatigue for two broad types of solids, namely for

pure single-phase metallic materials (type I) and for imperfect crystalline solids rein-

forced by non-metallic inclusions (type II). According to Mughrabi (2002), materials

of type I can only exhibit surface cracking. In contrast, depending on the applied

stress amplitude, materials of type II can undergo either surface or internal fatigue

failure. Surface cracks occur more often at intermediate and high stress amplitudes,

whereas cracks growing from the internal structure are more common at small stress

amplitudes (Mughrabi, 2002). The fatigue damage is caused by irreversible slip dur-

ing cyclic loading. Cyclic slip is said to be irreversible if the atomic positions at the

beginning of the cycle are not completely restored when the stress cycle ends. In

other words, the slip displacements during the first half of the cycle are not com-

pletely reversed on the second half of the cycle (Mughrabi, 2001). As a consequence,

the small changes accumulate on the material after every cycle forming microstruc-

tural inhomogeneities. The strain concentration at the plastically deformed zone

constitutes a strain localization (Croft et al., 2008). In general, microstructural in-

homogeneities leading to strain localization can be present on the material before

loading, such as internal inclusions, twin boundaries, or even external defects (Vogt

et al., 2020).

For perfect single-phase metallic materials (type I), the dominant form of strain
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Figure 1.6: Crack initiation process at lower stress amplitudes than the PSB thresh-

old: (a) initial state, (b) surface roughening and (c) stage I crack initiation.

Source: Mughrabi (2006).

localization is the Persistent Slip Band (PSB) (Mughrabi, 2001). The PSBs are

zones of high cyclic slip activity. The zones of high dislocation density are linked

together below the material surface, whereas the zones of low dislocation density

serve as channels of relatively free glide Lukáš and Kunz (2004). The steps formed

at the material surface when dislocations reach the boundary are known as extrusions

(Lukáš et al., 1966). For that reason, the width, length and depth of the slip bands

increases with the number of cycles. The word “persistent” refers to the fact that

such slip bands remain after etching or polishing the surface (Lukáš et al., 1966).

Reverse extrusions penetrating the bulk were termed intrusions (see Figure 1.5). In

the case of ductile metals, there is no distinction between an intrusion and a crack.

According to Basinski and Basinski (1989), cracks are intrusions which have grown

deeper than the limiting extrusion height. Failure occurs when a crack reaches

some critical depth at which the crack propagates throughout the bulk, breaking

the complete material (Basinski and Basinski, 1989).

For many pure metals and alloys, PSBs are reported to be formed at well-defined

stress threshold amplitudes (Mughrabi et al., 1983; Mughrabi, 1984). By definition,

the PSB threshold corresponds to the minimum stress at which PSBs can be formed

(Mughrabi, 2002). The PBS threshold can also be associated to the (stage I) crack

initiation and the initial crack growth (Mughrabi et al., 1983; Mughrabi, 1984). At

stress levels above the PSB threshold, fatigue cracks emerge at the PSB surface. The

rapid formation of extrusions can lead to fatigue crack initiation (Essmann et al.,

1981). According to Mughrabi (2002), cracks can initiate when the surface roughness

reaches a critical value. In an earlier work, Mughrabi et al. (1983) characterized the

surface roughness as the local root-mean-square deviation between neighboring glide

planes:

R ≈
√

4pNγplbh (1.1)
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where N is the number of cycles, γpl the local plastic strain at the surface, b

the Burgers vector magnitude, h the plane separation and p the slip irreversibility,

defined as the irreversible plastic strain divided by the plastic strain accumulated

during one cycle. Both the slip irreversibility and the local plastic strain are de-

creasing functions of the applied stress. If the slip irreversibility and the local

plastic strain are negligibly small, but finite, the surface roughness can reach the

critical value after a sufficiently large number of cycles (see equation 1.1). When the

material surface reaches a state of critical roughness, the local stress produced by

the extrusions and intrusions can surpass the PSB threshold value at the surface.

This can lead to the formation of inhomogeneities at the surface, which are capable

of initiating stage-I cracks. After a sufficiently large number of cycles, the surface

cracks might be able to grow and propagate into the material, which can cause

failure at stress amplitudes below the PSB threshold (Mughrabi, 2002) (see figure

1.6). In principle, there exists a sufficiently small stress known as the irreversibil-

ity threshold, below which the surface roughness remains negligible for a specific

maximum number of cycles (Mughrabi, 2002).

Figure 1.7 shows an schematic fatigue life diagram for type I materials in the form

of a Coffin-Manson plot (plastic strain amplitude vs number of cycles to failure).

Alternatively, a fatigue life diagram can also be presented in the SN form (applied

stress amplitude vs number of cycles to failure) as previously shown in figure 1.1.

The range I (LCF) corresponds to the strain amplitudes above the PSB threshold.

In this range, cracks initiation is fast with respect to crack propagation. The range

II (HCF) corresponds to the PSB threshold. In this range, crack initiation is slow

with respect to crack propagation. The range III (VHCF) corresponds to the strain

amplitudes between the PSB and irreversibility thresholds. In this range, most of

the fatigue life is invested in crack initiation. Therefore, fatigue lives are much longer

but finite. The range IV (true VHCF) corresponds to the strain amplitudes below

the irreversibility threshold. In principle, cracks are simply not formed and infinite

fatigue life could be possible. The extent of range II was explained by Mughrabi

(2002) using the concept of critical roughness. The local plastic strain just below the

PSB threshold γpl is significantly lower than the local plastic strain just above the

PSB threshold γPSB (γPSB ≈ 102γpl for copper (Mughrabi et al., 1983; Mughrabi,

1984)). Similarly, the slip irreversibility just below the PSB threshold is small

with respect to the slip irreversibility just above the PSB threshold. Therefore, the

number of cycles required to reach the critical roughness at the onset of range II

is much smaller than the number of cycles required to reach the critical roughness

at the onset of range III. In the particular case of copper, the number of cycles to

failure at the beginning of range II is approximately two orders of magnitude smaller

than the number of cycles to failure at the beginning of range III (see figure 1.7).
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Figure 1.7: Multi-stage life diagram for Type I materials. The numerical values

correspond to pure copper.

Source: Mughrabi (2002).

As a conclusion, type I materials can only exhibit surface failure. In contrast,

type II materials can undergo both internal and surface failure. By definition, type

II materials can contain internal defects, such as non-metallic inclusions, pores or

contraction cavities (Mughrabi, 2002). An inclusion is a region contained inside an

homogeneous elastic solid that has undergone inelastic deformation (Eshelby, 1961).

It is widely agreed that crack initiate more easily at larger intrusions (Mughrabi,

2002; Billaudeau and Nadot, 2004; Itoga et al., 2003; Murakami et al., 1999). The

critical intrusion size depends on the specific material. In the particular case of

2124-T4 aluminum alloys (Al2CuMg), the probability of crack initiation at inclusions

smaller than 6 µm decreases rapidly (Kung and Fine, 2007). It has been reported

that inclusions located deeper into the material tend to be larger compared to those

located at the surface (Yang et al., 2004). For that reason, internal cracks are more

likely to initiate at larger inclusions lying deep into the material (Itoga et al., 2003).

Another important parameter influencing the type of failure is the volumetric

density of inclusions. Mughrabi (2002) established two necessary conditions for

internal crack to nucleate, namely (1) the existence of extrinsic defects at which

cracks can initiate, such as non-metallic inclusions, pores of cavities and (2) a critical

volumetric density of inclusions below which surface failure is inhibited. Assuming

a cylindrical specimen and spherical inclusions, Mughrabi (2002) deduced a critical

volumetric density of inclusions as function of the specimen thickness d and external

area A:
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Figure 1.8: Multi-stage life diagram for Type II materials.

Source: Mughrabi (2006).

nc =
1

dA
(1.2)

For volumetric densities below nc, no inclusion can be found within the exter-

nal layer of thickness d. As a consequence, crack initiation at inclusions located

inside the external layer can be neglected. In this case, crack initiation occurs at

the internal inclusions. For volumetric densities above nc, the probability of crack

initiation at inclusions located inside the external layer increases. At the same time,

crack initiation can occur at the internal inclusions. However, it has been reported

(Mughrabi, 2002; Billaudeau and Nadot, 2004) that internal crack propagation is

slow with respect to cracks propagating from the surface. For that reason, internal

failure is only privileged for volumetric densities below nc.

Figure 1.8 shows the typical fatigue life diagram of type II materials. In ranges I

and II (LCF and HCF regimes) most cracks initiate at inclusions located just below

the surface. However, it has been reported that cracks can also initiate at internal

inclusions, although much less frequently (Sakai, 1999; Nishijima and Kanazawa,

1999). The analogous situation occurs in ranges III and IV (UHCF regime). Al-

though most cracks initiate at internal inclusions, there is experimental evidence

(Sakai, 1999; Nishijima and Kanazawa, 1999) that surface failure can also occur to

a lesser extent. When the volumetric density of inclusions lies below the critical

value, the fatigue mechanisms in range III are similar for materials of type I and II.

Under this condition, crack initiation at the surface inhomogeneities would be the

dominant fatigue mechanism (Mughrabi, 2002).
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1.2.2 A brief overview on cyclic-fatigue simulations

Most cyclic-fatigue simulations have been done using the Finite Element Method

(FEM) coupled with the Continuum Damage Mechanics (CDM) framework (Tak-

agaki and Nakamura, 2007; Hilgendorff et al., 2013; Bhamare et al., 2014; Pandey

et al., 2021). CDM is a branch of classical continuum mechanics dedicated to the

study of fatigue. In the CDM framework, the average microstructural degradation

is represented by the damage variable (Lemaitre and Chaboche, 1994). Therefore,

the overall effect of crack initiation and propagation can be represented in an uni-

fied manner via the damage variable, which continuously varies from zero to one.

At the initiation stage, the damage variable value increases under the influence of

mechanical loading. When a certain value of damage is reached, the crack initi-

ates. A further increase of the accumulated damage causes the crack to propagate.

The material finally breaks when the damage variable acquires the value of one

(Lemaitre and Chaboche, 1994). The evolution equation of the damage variable is

known as the damage law. Many models have been proposed to predict the fatigue

life of materials on the HCF regime, most notably the damage laws developed by

Kachanov (1958), Chaboche and Lesne (1988), Paas et al. (1993), Xiao et al. (1998),

Lemaitre et al. (1999), Peerlings et al. (2000) and Abdel Wahab (2001). In general,

the damage laws are expressed as functions of the stress or strain. Therefore, the

FEM has been used to calculate the stress and strain at each Gauss point of the

representative volume.

The numerical simulation of fatigue crack propagation based on fracture mechan-

ics and the conventional FEM is computationally expensive (Takagaki and Naka-

mura, 2007). For that reason, Takagaki and Nakamura (2007) proposed to imple-

ment the anisotropic theory of CDM developed by Chow and Wang (1987a,b, 1988)

and their own damage law in the finite element code FINAS. They simulated the

propagation of multiple cracks in 316L steel subjected to LCF. Based on their simu-

lation results, failure occurred at the 1298th cycle. Their simulated crack length as

function of the cycle number was in good quantitative agreement with experimental

results. More recently, Pandey et al. (2021) simulated the propagation of cracks un-

der LCF using the eXtended Finite Element Method (XFEM). In contrast with the

work of Takagaki and Nakamura (2007), the XFEM results are mesh-independent.

The XFEM was developed by Belytschko and Black (1999) based on the theory of

Melenk and Babuška (1996) and Duarte and Oden (1996). The XFEM allows dis-

continuities to exist within a finite element by implementing enrichment functions

at certain nodes (Pascoe et al., 2013). Therefore, the XFEM can be considered as a

“meshless” FEM, which allows to simulate crack growth without having to define a

crack plane (Pascoe et al., 2013). In an older work, Murakami and Liu (1995) showed
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Figure 1.9: Crack growth simulations (left image) and fatigue-life diagram of stain-

less steel (right image).

Source: Bhamare et al. (2014).

that exponential damage laws are less mesh-dependent with respect to power-based

damage laws. For that reason, Pandey et al. (2021) proposed a new exponential law

for the damage increment per cycle, which they used in their model to simulate crack

propagation under LCF in stainless steels and aluminum alloys. Their fatigue-life

diagrams obtained from simulations were in good quantitative agreement with their

experimental results.

HCF simulations typically require extrapolation techniques to simulate a large

number of cycles. In the conventional jump-in-cycle method (Cojocaru and Karls-

son, 2006), the damage values are stored during one full cycle. Afterwards, the

damage values of the next block of cycles are obtained by extrapolation. The pro-

cess is iteratively repeated for a large number of cycles. However, Zhang et al. (2012)

showed that the jump-in-cycles method generates stable results only for sufficiently

small number of cycles. On the other hand, space-time methods are known to be

unconditionally stable (Hughes and Hulbert, 1988; Hulbert and Hughes, 1990). In

order to simulate a large number of cycles without having to rely on the jump-in-

cycle procedure, Bhamare et al. (2014) developed the eXtended space-Time Finite

Element Method (XTFEM) based on the time-discontinuous Galerkin formulation

(Chessa and Belytschko, 2004; Chirputkar et al., 2008). In their work, the XTFEM

was coupled with the two-scale CDM (Lemaitre et al., 1999; Desmorat et al., 2007) to

evaluate the irreversible-damage accumulation. As a result, Bhamare et al. (2014)

were able to successfully simulate more than one million fatigue cycles using the

commercial FEM code LS-DYNA. In particular, they obtained the fatigue-life di-

agrams of stainless steel, along with the crack length evolution as function of the

cycle number. Their simulations were in good quantitative agreement with the ex-

perimental results (see figure 1.9). In recent years, Zhang et al. (2019) drastically

improved the numerical efficiency of the XTFEM-CDM method (Bhamare et al.,
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Figure 1.10: Shearing-stress contours at the most critical slip systems. An increased

cyclic slip irreversibility is associated to a larger number of experimental cycles.

Figures (a)-(c) show the effect of cyclic slip irreversibility after one cycle, (d)-(f) five

cycles and (g)-(i) ten cycles.

Source: Hilgendorff et al. (2013).

2014) using parallel computing.

The damage mechanisms under VHCF have been thoroughly studied using di-

verse simulation methods. Fatigue cracks are known to initiate at the slip bands

(Mughrabi, 2002). For that reason, slip bands are considered to be the first sign of

fatigue damage (Man et al., 2003). Hilgendorff et al. (2013) simulated the forma-

tion, sliding, irreversibility and hardening of slip bands using the two-dimensional

Boundary Element Method (BEM) (Aliabadi, 2002). In their method, the slip band

was approximated as two closely separated layers. Therefore, the slip band evolu-

tion was determined by the sliding distribution between these two layers. Once a

critical resolved shear stress was exceeded, one layer started to slide with respect to

the other. Another contribution to the sliding distribution was the total irreversible
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displacement per cycle, which was directly proportional to the total displacement

per cycle. The proportionality constant was given by the cyclic-slip irreversibility

as a free parameter. They simulated only a few cycles due to the generic com-

putational limitations. In order to simulate the slip bands after 107 experimental

cycles, the value of cyclic-slip irreversibility was increased (see figure 1.10). The

simulated slip bands were in qualitative agreement with their electron-microscopy

images (Hilgendorff et al., 2013, 2014, 2016a,b).

In the last two decades, finite element simulations have achieved an unrivaled

success on fatigue-life prediction. However, all the finite element methods for fa-

tigue simulations must be coupled with constitutive laws at the macroscopic scale,

which invariably depend on empirical constants. In other words, most of the recent

progress on fatigue-life prediction has been based on the amelioration of empirical

laws to better fit the latest experimental data (Pascoe et al., 2013). In order to

predict fatigue-life diagrams without having to rely on experimental results, the em-

pirical laws used in simulations must be replaced by the appropriate physical models.

Macroscale continuum simulation methods such as the FEM aim to describe the ef-

fect of the physical phenomena occurring at the microscale1 and mesoscale2 using

constitutive relations. Experimental results or even simulations at the mesoscale

are typically employed to develop the appropriate constitutive relations due to their

more fundamental nature. Mesoscale methods such as Discrete Dislocation Dynam-

ics (DDD) are specifically designed to track the evolution of microstructural defects.

DDD was developed to simulate plastic deformation through the motion of dislo-

cations under the influence of stress (El-Awady et al., 2008). In contrast to FEM

simulations, the DDD framework does not require the specification of elastic-plastic

constitutive laws to study plastic deformation (Olarnrithinun, 2013). As an exam-

ple, DDD have successfully provided physically-based simulations of the most crucial

fatigue mechanisms, such as crack initiation (Deshpande et al., 2003a; Brinckmann

and Van der Giessen, 2003, 2004; Déprés et al., 2004a; Tran and Homma, 2009),

crack growth (Cleveringa et al., 2001; Deshpande et al., 2001, 2003b; Huang et al.,

2014) and crack propagation (Déprés et al., 2012, 2014, 2015; Deshpande et al.,

2001; Prasad Reddy et al., 2013).

The fatigue mechanisms occurring during the firsts cycles of the LCF regime

have been studied using DDD simulations. In the work of Déprés et al. (2006),

the DDD code TRIDIS (Verdier et al., 1998) was used to estimate the number

of cycles to micro-crack initiation in 316L steel during LCF. In TRIDIS (Verdier

et al., 1998), the DDD framework is coupled with the FEM to calculate the image

forces induced by the presence of a free surface. Considering a single grain, they

1Scale between picometers and a few nanometers.
2Scale between nanometers and a few micrometers.
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Figure 1.11: Evolution of the slip markings at the same position of the surface.

Source: Déprés et al. (2006).

quantified the size of intrusions and extrusions formed at the crystal surface during

cyclic loading (see figure 1.11). Therefore, Déprés et al. (2006) were able to calculate

the growth rate of surface markings at the crystal boundary from the simulation of

35 cycles. By defining a crack as a 3-µm-deep intrusion, they estimated the number

of cycles required for crack initiation. According to the calculations of Déprés et al.

(2006), cracks in 316L steels initiate after 3459 cycles at an applied plastic strain

amplitude of 10−3. As an important conclusion of their work, they emphasized

the role of cross-slip on the formation and growth of PSBs. Years later, El-Achkar

and Weygand (2019) used DDD simulations to study the dislocation microstructures

formed on Face-Centered Cubic (FCC) Aluminum during LCF. They simulated up to

160 cycles in the range of applied plastic strain amplitudes between 10−3 and 10−2.

In their work, El-Achkar and Weygand (2019) provided a statistical description

of the stable defects formed during cyclic loading, such as prismatic loops, sessile

junctions, dislocation dipoles and surface steps (see figure 1.12). In agreement with

the conclusions of Déprés et al. (2006), El-Achkar and Weygand (2019) emphasized

the importance of cross-slip on the emergence and evolution of PSBs. In the present

year, Meng et al. (2021) used the TRIDIS code (Verdier et al., 1998) to analyze

the microstructural damage of FCC copper and 316L steel subject to LCF. They

simulated up to 80 fatigue cycles in the range of applied plastic strain amplitudes

between 0.6× 10−3 and 1.5× 10−3. According to Meng et al. (2021), PSBs emerged

more easily in copper than in 316L steel due to the higher cross-slip probability of

screw dislocations in copper.

A few years ago, El-Achkar and Weygand (2018) used DDD simulations to study

the irreversible changes occurring on the microstructure of FCC Aluminum in the

VHCF regime. They simulated up to 50 loading cycles at applied plastic strain am-
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Figure 1.12: Number of junctions (left-handed image) and prismatic loops (right-

handed image) formed during the firsts cycles of the VHCF regime. Notice that the

simulation box’ symmetry affected the number of structures formed during cyclic

loading.

Source: El-Achkar and Weygand (2018).

plitudes in the range between 5× 10−6 and 5× 10−5. In their work, El-Achkar and

Weygand (2018) used dislocation-network analysis to study the dislocation struc-

tures formed during cyclic loading. They measured a higher concentration of ir-

reversible changes in the crystal regions where cross-slip was most likely to occur.

A possible explanation might be that cross-slip enables the formation of prismatic

loops, which can act as obstacles to other gliding dislocations (Erel et al., 2017a).

For that reason, prismatic loops are believed to play a significant role in strain hard-

ening of FCC metals (Erel et al., 2017a). El-Achkar and Weygand (2018) concluded

that the persistent roughness formed at the crystal surface was due to the irre-

versible motion of prismatic loops and dislocation dipoles gliding along the channels

of plastic slip.

The cross-slip mechanism plays thus an important role on realistic DDD sim-

ulations. Cross-slip is a thermally activated process that strongly depends on the

local stress acting on the screw dislocations. Molecular Dynamics (MD) can pro-

vide an appropriate time scale to accurately simulate a single cross-slip event. For

sufficiently small screw dipoles, one of the screw dislocations can spontaneously

cross-slip, glide on the deviated plane and annihilate the other dislocation (Vegge

et al., 2000). For that reason, screw dipoles have been simulated using molecular

dynamics to quantify the average waiting time required for an spontaneous cross-

slip event to occur. The reciprocal of said waiting period is known as the cross-slip

rate. In the past two decades, molecular dynamics have provided a few quantitative

results of the cross-slip rates at different stress conditions and temperatures (Vegge

et al., 2000; Mordehai et al., 2005; Oren et al., 2017; Esteban-Manzanares et al.,
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2020). However, most DDD simulations have been based on cross-slip models un-

able to reproduce quantitative atomistic results. Following the pioneering work of

Kubin et al. (1992), the cross-slip of screw dislocations in most DDD simulations is

implemented using the kinetic Monte Carlo method. Based on the cross-slip rate

proposed by Kubin et al. (1992), the vast majority of the rate models implemented

on DDD simulations were expressed as function of the Schmid stress applied on the

glide plane or the deviate plane (Déprés et al., 2004a). Two decades later, Kang

et al. (2014) used molecular dynamics to quantity the effect of Schmid and Escaig

stresses on the activation enthalpy of cross-slip. They showed that both Schmid

and Escaig stresses have a comparable effect on the activation enthalpy of cross-slip.

For that reason, the full effect of the stress components must be considered on the

cross-slip rate in order to reproduce atomistic results. More recently, Hussein et al.

(2015) proposed a new cross-slip rate model in which the main stress component is

the difference of Escaig stresses on the glide and cross-slip planes. However, their

model is incomplete because it neglects the effect of Schmid stress on the deviate

plane. A few years later, Malka-Markovitz and Mordehai (2019) proposed an analyt-

ical expression for the activation enthalpy of cross-slip that considers the full effect

of all stress components. Shortly after, Esteban-Manzanares et al. (2020) deduced

a general model for the cross-slip rate by coupling the Harmonic Transition State

Theory with the Meyer-Neldel rule.

Based on the notable research of Malka-Markovitz and Mordehai (2019) and

Esteban-Manzanares et al. (2020), the present manuscript introduces the first quan-

titative DDD methodology that is able to reproduce the cross-slip rates of screw

dislocations found from atomistic simulations. In contrast with previous works, the

present cross-slip model does not rely on any fitting parameters nor empirical re-

sults. For that reason, the physical properties of solids calculated using the present

DDD methodology can be now directly compared with quantitative experimental

results. One important drawback of DDD simulations with respect to macro-scale

methods is that they are computationally more expensive. Therefore, only a limited

amount fatigue cycles can be performed. In order to study the system evolution on

the VHCF regime after a large number of cycles, a new time-coarsening algorithm

for DDD simulations is proposed.

In the following section, a more detailed overview of the present manuscript is

given.

1.3 Thesis structure

The present thesis is structured as follows:
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� Chapter 2 introduces the cross-slip framework by giving clear definitions of all

dislocation types, establishing unambiguous rules to predict in which direction

a perfect dislocation would move and then employing those rules to understand

the effect of each stress component on the geometry and motion of extended

dislocations.

� Chapter 3 shows that the activation enthalpy of cross-slip obtained from DDD

simulations can be well fitted with two line tension models of cross-slip, namely

the numerical model of Kang et al. (2014) and the analytical expression of

Malka-Markovitz and Mordehai (2019). For that reason, it was concluded that

those line tension models could be reliably used in DDD codes to calculate the

activation enthalpy of screw segments.

� Chapter 4 proposes to compute the cross-slip probability of screw segments

using the rate equation proposed by Esteban-Manzanares et al. (2020) and the

general expression for the activation enthalpy obtained by Malka-Markovitz

and Mordehai (2019) to remove the scaling factors often required in cross-

slip models. The annihilation rates of a screw dipole obtained from the DD

simulations were in quantitative agreement with the atomistic results of Vegge

et al. (2000) and Oren et al. (2017), which demonstrates that the presented

DDD methodology was able to reproduce atomistic results without any fitting

parameters.

� Chapter 5 shows some qualitative applications of the recently benchmarked

cross-slip modeling described in chapter 4 to cyclic fatigue simulations. The

objective was to study the effect of cross-slip on two simple microstructural

configurations in FCC copper, namely on one isolated dislocation, and on

twelve dislocations with an arbitrary angle between their Burgers vector and

line direction. It was found that even forcing an isolated dislocation to cross-

slip did not cause any cyclic irreversibilities, whereas some segments of the

configuration with twelve dislocations naturally cross-slipped due to strong in-

ternal stress on certain dense parts of the configuration, provoking irreversible

changes in the microstructure due to reactions between dislocations. It was

confirmed that the physical description of the cross-slip mechanism plays an

important role on realistic DDD simulations.

� Chapter 6 summarizes the main conclusions of the present manuscript and

proposes a novel time-coarsening method to simulate a larger number of cycles

in the future.
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Theory of dislocations

Dislocations are crystallographic defects within a regular crystal structure. The first

experimental evidence of dislocations was provided by Ewing and Rosenhain (1899),

who formally announced the existence of slip-bands on metals subjected to mechan-

ical loading. According to their studies, the plastic deformation was attributed

to the relative slip of crystalline planes. Years later, Volterra (1907) studied the

elastic fields generated by elementary deformations of isotropic continuous media.

Although some of the deformed configurations that he proposed were later on used

to describe real dislocations, his work included more general defects that are not nor-

mally found in regular metals. The discovery of X-rays by Röntgen (1896) enabled

Darwin (1914) and Ewald (1917) to study the crystalline structure of metals. They

found that the diffracted intensity was about twenty times larger than expected

for a perfect crystal. Moreover, the diffracted-beam width was also many times

larger than expected for a perfect crystal. Due to these discrepancies, real crystals

were envisioned as an array of slightly misoriented crystallites glued together by an

amorphous material. According to said theory, the diffracted intensity was asso-

ciated to the crystallite size, whereas the diffracted-beam width accounted for the

misorientation between crystallites (Anderson et al., 2017). Based on the theory of

a perfect crystalline solid, Frenkel (1926) postulated an expression for the applied

Figure 2.1: Model of Frenkel (1926) for: (A) the shear stress τ as function of the

relative displacement x and (B) the periodic lattice potential W as function of x.

Source: figure adapted from Anderson et al. (2017).
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shear stress τ as function of the relative shear displacement x. Assuming a periodic

crystalline lattice with period equal to the Burgers vector of magnitude b, Frenkel

(1926) approximated the corresponding potential energy W using a trigonometric

function (see figure 2.1):

W (x) = 1− cos

(
2π

b
x

)
=⇒ τ = τ0 sin

(
2π

b
x

)
(2.1)

where τ0 is the theoretical shear strength of the crystal. Assuming that the

relative shear displacement is much smaller than the Burgers’ vector magnitude,

the applied stress reduces to:

τ =
2πτ0x

b
(2.2)

Under the condition of small displacements, the Hooke’s law can be applied:

τ = µγ = µ
x

a
(2.3)

where γ is the strain, µ the elastic shear modulus and a the interplanar distance.

Combining equations 2.2 and 2.3, an expression for the theoretical shear strength

can be deduced:

τ0 =
µb

2πa
(2.4)

Assuming that the interplanar separation is similar to the Burgers vector mag-

nitudes, a simpler expression for the theoretical shear strength is obtained:

τ0 =
µ

2π
(2.5)

which gives an approximate value of τ0 ≈ 0.2µ. In strong disagreement, ex-

periments performed at the time of Frenkel’s work measured values the theoretical

shear strength between 10−4µ and 10−3µ (Anderson et al., 2017). A few years later,

Orowan (1934a,b), Polanyi (1934) and Taylor (1934) postulated the existence of

edge dislocations to explain the discrepancy between theoretical and experimental

values of the shear strength. Shortly after, Burgers (1939) proposed the existence

of screw dislocations in metals.

In the following sections, a more rigorous description of dislocation encountered

in real crystalline solids is given. The present chapter introduces the framework

required to explain the cross-slip process of screw dislocations affecting the fatigue

of materials. Section 2.1 defines all dislocation types and provides rules describing

their motion under the influence of shearing stress. Said rules are used in section

2.2 to understand the effect of stress on extended dislocations composed by two

Shockley partials in FCC metals. Finally, section 2.3 provides equations for the
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Figure 2.2: Movement under shearing stress of: 1(A)-1(C) a right-handed edge dis-

location and 2(A)-2(C) a left-handed edge dislocation. The segmented line indicates

the extra half-plane, the gray solid line represents the dislocation line and the shaded

area shows the slipped surface.

Source: figure adapted from Anderson et al. (2017).

stress components affecting the dislocation width and glide of extended dislocations,

which are employed on the next chapter to describe the influence of stress on the

cross-slip process of extended screw dislocations.

2.1 Perfect dislocations

2.1.1 Dislocation types

Real metals are not perfect crystalline structure because they typically contain de-

fects. The particles of perfect crystalline solids form a periodic arrangement among

all available lattice planes. When a perfect crystalline solid undergoes an applied

stress, the constituent atoms rearrange themselves on the crystalline planes causing

local regions of deformation. A shearing stress provokes a relative shear displace-

ment when parts of the solid material move respect to others along the crystalline

planes. Consider the shearing stress τ applied on the upper part of the perfect crys-

tal as shown in figure 2.2 1(A). Due to the relative shearing displacement b across

one crystalline plane, an extra half-plane was created on the upper part of the crys-
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Figure 2.3: Movement under shearing stress of: 1(A)-1(C) a right-handed screw

dislocation and 2(A)-2(C) a left-handed screw dislocation. The shaded area indicates

the slipped surface and the gray solid line represents the dislocation line.

Source: figure adapted from Anderson et al. (2017).

tal as shown in figure 2.2 1(B). Said extra half-plane consists of a right-handed edge

dislocation that provokes local deformation on the otherwise perfect structure. A

right-handed edge dislocation is represented with the symbol ⊥ because its rela-

tive displacement is perpendicular to the extra half-plane (Anderson et al., 2017).

Interpreted graphically, the symbol points out towards the extra half-plane. As a

dislocation propagates across the glide plane, the atomic planes above the sheared

area undergo a relative shear displacement with respect to the lower part of the crys-

tal. Moving through the glide plane, the dislocation finally exits the crystal leaving

a step of magnitude b as shown in figure 2.2 1(C). As a result, the external crystal

surface acquires a step of size b at the glide plane. A left-handed edge dislocation

is represented with the symbol >. In contrast with right-handed dislocations, the

extra half-plane appears on the negative side of the surface where stress is applied.

As a consequence, right-handed edge dislocations move in the direction of applied

shearing stress, whereas left-handed edge dislocations move in the exact opposite

direction (see figure 2.2 2(B)).

Edge dislocations are simpler to visualize than other more complex structures

such as screw dislocations. In contrast with the direct visual image of an extra half-

plane inserted in the structure, a screw dislocation is visualized by cutting across

on plane and slipping both parts with shearing displacement b (see figures 2.3 1(B)



Chapter 2. Theory of dislocations 26

Figure 2.4: Burgers circuits based on the RH-SF convention in: (A) a perfect crystal

and (B) a deformed crystal. The ⊗ symbol indicates that the line direction of the

edge dislocation points into the page. The starting point of the circuit is denoted

as S and the final point as F .

Source: figure adapted from Anderson et al. (2017).

and 2.3 2(B)). The dotted gray line indicating where the cut ends represents the

dislocation line. Similar to edge dislocations, the atomic planes above the sheared

area undergo a relative shear displacement with respect to the lower part of the

crystal. It implies that the dislocation line topologically separates the slipped and

unslipped regions. Right-handed and left-handed screw dislocations move in oppo-

site directions. When placing a right hand on the plane where stress is applied, a

right-handed dislocation moves in the thumb’s direction. Analogously, when placing

a left hand on the plane where shear stress is applied, a left-handed dislocation also

moves in the thumb’s direction.

The following section presents an univocal definitions for both the shear displace-

ment and the dislocation lines as vector quantities. Later on, section 2.1.3 provides

clear rules to determine the motion of edge, screw and mixed dislocations.

2.1.2 Burgers vector definition

Dislocations can be unambiguously defined using two vectors: the unitary line di-

rection ξ̂ tangent to the dislocation line and the Burgers vector b characterizing the

direction and magnitude of the relative shear displacement. Once the line direction

has been specified, the Burgers vector of the dislocation is defined by drawing a

so-called Burgers circuit around the line direction. There are several conventions to

draw Burgers circuits. Every established convention leads to the same Burgers vec-

tor provided that the lattice distortions around the dislocation line are small. Due

to its specific adoption in several standard books such as Anderson et al. (2017) and
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Figure 2.5: Construction of a Burgers circuit around: (A) a right-handed edge

dislocation and (B) a right-handed screw dislocation. The Burgers vector is parallel

to the displacement vector that has its tail at point S and its head at point F .

Source: figure adapted from Nix (2010).

Cai and Nix (2016), the right-handed, start-finish (RH-SF) convention will be used

in this work. As a first step, an arbitrary right-handed loop is drawn in the perfect

part of the crystal. Figure 2.4 (A) shows a Burgers circuit constructed around an

arbitrary point of the perfect part of the crystal, consisting of four steps up, four

steps right, four steps down, four steps left and four steps up, which results in the

formation of a closed loop. As a second step, the same Burgers circuit is drawn

around an existing dislocation using the right-hand rule. Figure 2.4 (B) shows that

reproducing the same Burgers circuit around an edge dislocation prevents the loop

from closing due to the lattice distortion. According to the RH-SF convention, the

Burgers vector has its tail at the starting point S and its head at final point F on

the distorted structure.

Figure 2.5 (A) shows an application of the RH-SF convention to find the Burgers

vector on a right-handed edge dislocation. For the given line direction pointing into

the crystalline structure, the chosen circuit denoted with black arrows show that

the Burgers vector points towards the left. When a dislocation moves under the

influence of stress, its motion is confined in a glide plane containing both the line

direction ξ̂ and the Burgers vector b. Notice that reversing the line direction leads

to a Burgers vector pointing in the opposite sense. Since the extra half-plane is

located on the other side of the plane for left-handed edge dislocations, the cross

product between the line direction and the Burgers vector is reversed respect to

right-handed edge dislocations. For that reason, the extra half-plane direction n̂
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can be determined from the cross product of the line direction and the Burgers

vector for both right-handed and left-handed edge dislocations:

n̂ = ξ̂ × b (2.6)

Once an specific positive side of the glide plane has been defined, the extra half-

plane of a right-handed edge dislocation is contained on the positive side of the glide

plane, whereas the extra half-plane of a left-handed edge dislocation is contained on

the negative side of the glide plane. For those reasons, a right-handed edge is also

known as a positive edge and a left-handed edge is also referred as a negative edge.

In sections 2.1.3 and 2.2.2, the positive side of the plane will be more concretely

defined.

Figure 2.5 (B) shows an application of the RH-SF convention to find the Burgers

vector of a right-handed screw dislocation. For the given line direction pointing into

the crystalline structure, the chosen circuit denoted with black arrows shows that the

Burgers vector is parallel to the line direction. As observed on the edge dislocations,

the reversed line direction leads to a Burgers vector pointing in the opposite sense.

In both cases, a right-handed screw dislocation satisfies ξ̂ · b > 0. Since the relative

shear displacements of left-handed and right-handed dislocations have opposite sense

by definition, a left-handed dislocation satisfies ξ̂ · b < 0. For those reasons, a right-

handed screw is also known as a positive screw and a left-handed screw is also

referred as a negative screw.

Each dislocation type moves on a different direction under the influence of shear-

ing stress. A mixed dislocation can be decomposed on its screw and edge compo-

nents. By knowing the direction in which pure screw and edge dislocations move,

the direction of motion of a mixed dislocation can be inferred. Next section presents

a helpful diagram used to predict on which direction an arbitrary dislocation would

move in response to shearing stress.

2.1.3 Standard glide loop

Consider a dislocation loop oriented in the clockwise sense as indicated in figure

2.6. The Burgers vector of the dislocation loop shown was determined using the

RH-SF convention. Although the local line direction changes at each point, the

Burgers vector is an invariant quantity associated to the entire loop, which implies

that each local dislocation type conforming the glide loop contributes to the same

amount of shear displacement despite of moving on different directions. Because a

dislocation produces shear displacement on the Burgers vector direction, the only

shear component affecting the dislocation motion must be parallel to the Burgers

vector. Expressed in terms of the Cartesian coordinate system shown in figure 2.6,
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Figure 2.6: Standard glide loop formed by different dislocation types expanding

under the influence of shearing stress. The region shaded in dark gray inside the

glide loop indicates the slipped surface and the region shaded in light gray outside

the glide loop indicates the unslipped surface.

Source: figure adapted from Nix (2010).

the Burgers vector of the dislocation loop is b = −bx̂. A shearing stress equal to

σxz = −σ is therefore applied on the positive side of the z plane to set the dislocation

loop into motion. Recall that the movement of each pure dislocation types was

briefly discussed in section 2.1.1. It was deduced that under the influence of shearing

stress, a right-handed screw (RHS) moves from right to left, a positive edge (+E)

moves in the shearing direction, a left-handed screw (LHS) moves from left to right

and a negative edge dislocation (-E) moves opposite to the shearing direction. These

observations are consistent with the movement of each dislocation type conforming

the glide loop. Moreover, the direction of motion is always perpendicular to the

dislocation line. For these reasons, the glide loop expands under positive shearing

stress. The pure dislocation types forming part of the glide loop are continuously

joined together through the different mixed dislocation types. Since the shearing

stress drives the motion of any dislocation with its Burgers vector parallel to the

shear direction, the shearing plane defines what side of the glide plane is positive.

Notice that the edge dislocation with its extra half-plane contained on the positive

side of the glide plane is defined as a positive edge dislocation. Analogously, the

edge dislocation with its extra half-plane contained on the negative side of the glide

plane is defined as a negative edge dislocation.

Figure 2.7 shows the same standard glide loop from above. The diagram proposes

a right-hand rule to predict in which direction a given dislocation would move under
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Figure 2.7: Standard glide loop showing the hand rules to determine the exact

direction in which dislocations would move according to their type.

Source: figure adapted from Nix (2010).

the influence of shearing stress. By laying a right hand on the shear plane with

the fingers parallel to the shearing, a RHS dislocation would move in the direction

indicated by the right thumb. As previously discussed, a positive edge dislocation

simply moves in the direction of shearing. Analogously, by laying a left hand on

the shear plane with the fingers parallel to the applied shearing, a LHS dislocation

would move in the direction indicated by the left thumb. Finally, a negative edge

dislocation simply moves opposite to the shearing direction.

The present section has discussed the direction of dislocation movement due to

a shearing stress. For completion, the following section introduces the concept of a

force acting on a dislocation due to a general stress state.

2.1.4 Forces on dislocations

The Peach-Köhler force acting on a dislocation of line direction ξ̂ and perfect Burgers

vector b in response to a stress state σ is given by:

fPK = (σ · b)× ξ̂ (2.7)

It has a climbing component fc perpendicular to the glide plane and a gliding

component fg parallel to the direction of motion (see figure 2.8). Obtaining the

scalar version of equation 2.7, it can be deduced that the magnitude of said gliding
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Figure 2.8: Mixed dislocation gliding due to a Peach-Köhler force having a climbing

and a gliding component.

force is proportional to the shearing stress component parallel to the Burgers vector,

also known as the gliding stress τ :

fg = τb (2.8)

The gliding stress can be expressed as (Kubin, 2013):

τ = σ · n̂ · b̂ (2.9)

Equation 2.9 shows that the shearing stress is positive if the Burgers vector is

parallel to the applied stress, whereas it is negative if the Burgers vector is anti-

parallel to the applied stress. Substituting equation 2.9 into 2.8, another useful

scalar version of the gliding force can be obtained:

fg = σ · n̂ · b (2.10)

It is well-known that the force acting on the dislocation is parallel to its direction

of motion, which according to section 2.2.3 is given by n̂ × ξ̂ for all dislocation

types. Therefore, the vectorial equation of the gliding force can be also expressed

on a simpler form:

fg = fg(n̂× ξ̂) (2.11)

Perfect dislocations tend to dissociate into two partials to lower their elastic en-

ergy density. A perfect dislocation that has been dissociated into two partials is

known as an extended dislocation. Due to the mixed character of partial disloca-

tions, the effect of a general stress on the partial dislocations is more difficult to
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Figure 2.9: Unit cell showing the three different atomic layers of the FCC structure.

predict. The concept of Peach-Köhler force and the standard glide loop will be nec-

essary to understand in which direction an extended dislocation would move under

the influence of a shearing stress. Section 2.2 introduces the concept of extended

dislocations, proposes a method to express an uniaxial stress into its relevant com-

ponents and explains the effect of each stress component on extended dislocations.

2.2 Extended dislocations

2.2.1 Partial dislocations in FCC metals

The previous section was focused on the description of perfect dislocations based on

the theory of continuum elasticity, where the relative shear displacement can take

place on any direction. Although the continuum elasticity theory has been used to

study important properties of crystalline solids, such as the elastic stress and strain

fields provoked by dislocations, the relative shear displacement of crystalline solids

is restricted to certain discrete directions. In order to understand the dislocation

movement in crystalline solids, the particles constituting each atomic plane are as-

sumed to be hard spheres bonded with their nearest neighbors. The Burgers vector

of a perfect dislocation is therefore equal to the shortest translation vector of the

crystalline lattice. In the FCC structure, the Burgers vector joins a corner of the

cube to an atom at the center of a face, or equivalently, it joins the two atoms at

the center of two neighboring faces. Plastic deformation occurs on the slip planes

containing the Burgers vector, which are the most widely spaced atomic planes of

the FCC structure. Figure 2.9 shows the three different atomic layers corresponding
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Figure 2.10: Displacement of atoms caused by the gliding of: (A) a perfect disloca-

tion versus (B) an extended dislocation. Figure (A) shows how atoms on layer B end

up on the same layer when displaced by an amount b. Figure (B) shows that atoms

on layer B end up on the layer C when displaced by an amount b1, which return to

layer B after being displaced by an amount b2. All layers above the dislocation are

displaced as well but only the layer B is shown for clarity.

Source: figure adapted from Zhigilei (2018).

to parallel slip planes. Each layer has a different atomic pattern despite belonging

to the same family of planes. A dislocation located at a given slip plane would move

under the influence of shearing stress by relative slip respect to the adjacent atomic

layer. A given family of planes constitute an infinite amount of atomic layers stacked

in the same periodic order such as ABCABCABC.

Figure 2.10 (A) shows a perfect dislocation at layer B gliding an amount b with

respect to layer A. When the atoms that conform the perfect dislocation are moved

by a lattice vector b, all the atomic layers above are moved by the same amount

as well. Recall that a particle displaced by a lattice vector end up on a translated

atomic position of the same layer. For that reason, the stacking order of the atomic

layers is preserved on both sides of the perfect dislocation, except that the two

parts end up displaced by an amount b with respect to each other. The crystalline

structure remains thus perfect on both sides of the dislocation line except for the

relative shear displacement separating the two regions.

A more detailed study of the dislocation movement determined that dislocations

do not directly slide a full lattice vector when moving from one atomic position to

the other. As a matter of fact, the relative displacement of a full lattice vector is split

into two partial movements. Figure 2.10 (B) shows a so-called extended dislocation

in layer B slipping with respect to layer A. An extended dislocation consists of two

partial dislocations known as the leading and trailing partials. Taking the direction

of motion as a reference, the leading partial is located at the moving front whereas

the so-called trailing partial follows behind it. In a first step, the atoms that are

part of the leading partial moves an amount b1 with respect to the layer A. As
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shown in Figure 2.10 (B), the leading partial on layer B ends up at the atomic

positions of layer C. Because all particles are bounded with their nearest neighbors,

the successive atomic planes above the leading dislocation undergo a transition such

that A
b17→ B, B

b17→ C and C
b17→ A. The leading partial thus provokes a so-called

stacking-fault on the atomic layers between the two partials, which means that the

original periodic arrangement ABCABCABC between the atomic layers has been

disrupted:

ABCA|BCABC
↓ ↓ ↓ ↓ ↓
CABCA

(2.12)

where the vertical line indicates the dislocation position. A so-called intrinsic

stacking-fault is formed between the partials due to the missing B layer:

ABCA|CABCA (2.13)

When the trailing partial moves an amount b2 respect to the layer A, the trailing

partial on layer C returns back to the B layer. As a consequence, the successive

atomic planes above the trailing dislocation transition back to their original positions

such that A
b27→ C, B

b27→ A and C
b27→ B:

ABCA|CABCA
↓ ↓ ↓ ↓ ↓
BCABC

(2.14)

Consider that the leading partial had Burgers vector b2 instead. In that case,

the original stacking order would be transformed to a higher-energy configuration:

ABCA|BCABC
↓ ↓ ↓ ↓ ↓
ABCAB

(2.15)

that will spontaneously split into an extrinsic stacking fault made of a double

fault of the type ABCA|C|B involving a faulted prismatic loop. Since the slip

provoked by the trailing partial restores the original stacking order of the atomic

layers, one says that the leading partial creates a stacking-fault whereas the subse-

quent movement of the trailing partial removes it.
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Figure 2.11: Illustrations of the Thompson tetrahedron showing: (A) the crystallo-

graphic position of the vertices at A = a
2
[101], B = a

2
[011], C = a

2
[110] and D = [000]

inside an FCC unit cell and (B) the notation for the unitary normals pointing in-

wards to the Thompson tetrahedron represented by Greek letters at the center of

each triangular face, namely α = (111), β = (111), γ = (111) and δ = (111).

Source: figure adapted from Nix (2010).

In order to find the configuration of minimum energy, the Burgers vectors of the

partials conforming an intrinsic stacking-fault must be obtained. The Thompson

tetrahedron shows all the Burgers vectors of both perfect and partial dislocations

in FCC metals. For that reason, the Thompson tetrahedron defined in section 2.2.2

will be used to find the intrinsic stacking-fault arrangement in section 2.2.3.

2.2.2 Thompson tetrahedron

The present section introduces the notation used on the Thompson tetrahedron and

deduces how to construct it based on the FCC unit cell. Figure 2.11 (A) shows that

the Thompson tetrahedron is obtained by joining four vertices of the FCC structure:

one vertex at a cell corner and three vertices at the center of each neighboring face.

An edge of the tetrahedron has an associated vector identified by two Roman letters,

where the first Roman letter indicates the initial position of the tail, and the second

Roman letter refers to the final position of the head. Notice that each closed-packed

directions of the FCC structure is parallel to a vector formed by a pair of two

different Roman letters, such that the tetrahedron edges represent the six Burgers

vectors of the FCC structure. It can be also easily verified that the four faces

of the Thompson tetrahedron are parallel to the closed-packed planes of the FCC

structure, namely the {111} family composed by the (111), (111), (111) and (111)

directions. Recall that a family consists of crystallographically equivalent planes

possessing the same atomic packing. The Greek letter centered at each triangular
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Figure 2.12: Two-dimensional representation of a Thompson tetrahedron. The gray

segmented lines represent the Burgers vector of the partial dislocations.

Face α Face β Face γ Face γ

CB = a
2
[101] DA = a

2
[101] AD = a

2
[101] AB = a

2
[110]

BD = a
2
[011] AC = a

2
[011] DB = a

2
[011] AC = a

2
[011]

DC = a
2
[110] CD = a

2
[110] BA = a

2
[110] BC = a

2
[101]

Cα = a
6
[211] Dβ = a

6
[211] Aγ = a

6
[211] Aδ = a

6
[121]

Bα = a
6
[112] Aβ = a

6
[112] Dγ = a

6
[112] Bδ = a

6
[211]

Dα = a
6
[121] Cβ = a

6
[121] Bγ = a

6
[121] Cδ = a

6
[112]

Table 2.1: Burgers vectors of the Shockley partials in the FCC structure.

face of figure 2.11 (B) represents a unitary normal vector with its tail centered at

the corresponding triangular face and its head pointing towards the opposite vertex

facing the triangular surface, which means that said unitary vector point inwards

to the Thompson tetrahedron. Notice also that the Greek letter associated to each

triangular face corresponds to the Roman letter of the facing vertex, such that α

points towards A, β points towards B, γ points towards C and δ points towards D.

Consider the two-dimensional representation of the Thompson tetrahedron de-

picted in figure 2.12. The three vertices of the resulting triangle represent the same

point because the Thompson tetrahedron was unfolded with respect to the D vertex,

namely the origin associated to the Cartesian system indicated in figure 2.11 (A).

The solid lines represent the Burgers vectors having type a
2
〈110〉 and magnitude

a√
2
, whereas the segmented lines refer to the Burgers vector of the Shockley par-

tials having type a
6
〈112〉 and magnitude a√

6
. According to the notation used in the

Thompson tetrahedron, the Burgers vectors of the Shockley partials are also vector

quantities identified either by a Roman-Greek pair, or a Greek-Roman pair, where

the first letter indicates the initial position of the tail, and the second letter refers to
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Figure 2.13: Extended RHS dislocation moving towards n̂ × ξ̂ under the influence

of a positive shearing stress τ .

Source: figure adapted from Nix (2010).

the final position of the head. Due to the parallelogram rule, every Burgers vector

associated to a perfect dislocation can be dissociated into two Burgers vectors of

the partials, one starting at the first Roman letter of the perfect Burgers vector and

ending on the Greek letter centered at the triangular surface, and the other starting

from the Greek letter centered at the triangular surface and ending at the second

Roman letter of the perfect Burgers vector, so that for example AB on the δ plane

splits into Aδ and δB. The Burgers vectors of all perfect and partial dislocations of

the FCC structure are listed in table 2.1. Based on the presented notation of the

Thompson tetrahedron, the following section deduces the intrinsic stacking-fault

arrangement of several extended dislocations for different stress conditions.

2.2.3 Dislocation partials under stress

Section 2.1.3 described the direction in which dislocations would move under the

influence of stress. The standard glide loop was assumed to expand by applying a

positive shearing stress on one specific side of the glide plane. This section unam-

biguously defines the positive side of the glide plane using the Thompson tetrahe-

dron. According to the observations of Hirth and Lothe (1982), atoms inside the

Thompson tetrahedron slide under the influence of a shearing stress with respect

to the atoms outside of the Thompson tetrahedron along the Burgers vector direc-

tion, which implies that the positive side of the glide plane where the stress acts

is located inside the Thompson tetrahedron. For that reason, the normal vector

pointing inwards the Thompson tetrahedron is called the positive normal vector of
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Figure 2.14: Extended LHS dislocation moving towards n̂ × ξ̂ under the influence

of a positive shearing stress τ .

Source: figure adapted from Nix (2010).

the glide plane, and analogously, the normal vector pointing outwards the Thomp-

son tetrahedron is called the negative normal vector of the glide plane. Based on

the convention proposed by Hirth and Lothe (1982), a shearing stress is defined to

be positive when the force acting along the Burgers vector is resolved on the glide

plane with its normal pointing inwards to the Thompson tetrahedron. By applying

the standard glide loop depicted in figure 2.7 to each Shockley partial, the direction

in which an extended dislocation moves can also be determined. Figure 2.13 shows

a dissociated RHS aligned along the BC direction on the δ plane. When a positive

shearing stress is applied on the ABC plane in the direction of BC, the dissociated

dislocation would move a full Burgers vector in two steps, namely from B to δ, and

then from δ to C. For that reason, the leading partial at the movement front would

have the Burgers vector Bδ whereas the trailing partial following behind would carry

the Burgers vector δC. Both partials are 60◦ mixed dislocations with a screw and

an edge component. Since the stress acts along the direction of BC parallel to the

line vector, the stress affects only the screw component of the partials, which can

be considered as two pure RHS dislocations. By laying the right hand aligned with

the line direction on the positive side of the glide plane, the thumb points in the

direction of motion, towards the A vertex. Since the leading partial is located at the

front respect to the direction of motion and the trailing partial follows from behind,

the Burgers vectors of the partials point away from each other as shown in figure

2.13.

The same reasoning can be applied to other dislocation types. Consider the

dissociated LHS subjected to a positive shearing stress as shown in figure 2.14. By
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Figure 2.15: Extended negative edge moving towards n̂ × ξ̂ under the influence of

a positive shearing stress τ .

Source: figure adapted from Nix (2010).

laying the left hand aligned with the line direction on the positive side of the glide

plane, the thumb points towards the direction of motion, away from the A vertex.

Due to the positive shearing stress applied on the ABC plane in the direction of CB,

the dissociated dislocation would move a full Burgers vector in two steps, namely

from C to δ, and then from δ to B. For that reason, the leading partial at the

movement front would have Burgers vector δC whereas the trailing partial following

behind would carry the Burgers vector δB. Since the leading partial is located at the

front respect to the direction of motion and the trailing partial follows from behind,

the Burgers vectors of the partials point away from each other as shown in figure

2.14. Consider the negative edge dislocation subjected to a positive shearing stress

as shown in figure 2.15. According to the right-hand rule, the extra half-plane point

towards the ξ̂ × b̂, which is located outside of the Thompson tetrahedron. Since

the shearing stress is applied inside of the Thompson tetrahedron, it is confirmed

that the edge dislocation is negative. Due to the positive shearing stress applied on

the ABC plane in the direction of BC, the dissociated dislocation would move a

full Burgers vector in two steps, namely from B to δ, and then from δ to C. For

that reason, the leading partial at the movement front would have Burgers vector Bδ

whereas the trailing partial following behind would carry the Burgers vector δC. The

resulting direction of motion is parallel to CB because negative edge dislocations

move in the opposite direction of applied stress. As a final comment, notice that all

the dislocation types move in the direction of n̂× ξ̂ under the influence of a positive

shearing stress.
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Figure 2.16: View from inside the Thompson tetrahedron of an extended RHS dis-

location with Burgers vector AB under a shearing stress along: (A) δC vs (B) Cδ

affecting only the equilibrium separation. The gray segmented line represents the

unstressed dissociation width and the � symbol indicates that the plane normal n̂

points out of the page.

It is well know that the Shockley partials repel each other by an elastic force

inversely proportional to their separation. On the other hand, the intrinsic stacking-

fault decreases the elastic energy density of the dislocation, which leads to an at-

tractive force between the partials. As an analogy to the surface tension of liquids,

an intrinsic stacking-fault holds both partials together. The balance of attractive

and repulsive forces leads to an equilibrium separation between the partials. It is

clear that shearing stresses do not affect the equilibrium separation of an extended

dislocation because shearing stresses exert the same gliding force on both partials. A

careful observation of the Thompson tetrahedron shown in figure 2.12 demonstrates

that the screw components of an extended dislocations are identical, whereas the

edge components of Shockley partials have opposite sign. A force applied in the

perpendicular direction to the line vector would affect the only edge components

of the partials. Since each edge component have opposite signs, said force would

drive each Shockley partial in opposite directions. The stresses affecting only the

edge components would therefore change the equilibrium separation between the

partials. According to the present terminology, a widening stress increases the equi-

librium separation between the partials, whereas a compressive stress decreases it.

In contrast, positive shearing stresses exerting an identical force on both partials

are known as gliding stresses, which do not affect the equilibrium separation.

Figure 2.16 shows a dissociated RHS dislocation of Burgers vector AB laying
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on the positive side of the δ plane. Using an hypothetical positive shearing stress,

the intrinsic stacking-fault arrangement can be found. Under a positive shearing

stress in the direction of AB, the dissociated dislocation would move a full Burgers

vector in two steps, namely from A to δ, and then from δ to B. The leading partial

would thus have Burgers vector Aδ, whereas the trailing partial following behind

would have Burgers vector δB. By laying the right hand aligned with the line

direction on the positive side of the glide plane, the thumb points in the direction of

motion, namely towards the C vertex. Figure 2.16 (A) shows the effect of a shearing

stress along δC on the equilibrium separation. An application of the ξ̂ × b̂ rule

proofs that the extra-half plane of the edge component corresponding to the leading

partial is contained inside the Thompson tetrahedron, whereas the extra-half plane

of the edge component corresponding to the trailing partial is contained outside the

Thompson tetrahedron. Since the shearing stress is applied on the positive side of the

glide plane, the edge component of the leading partial is positive, whereas the edge

component of the trailing partial is negative. As discussed in section 2.1.3, a positive

edge moves in the shearing direction, whereas a negative edge moves against it. As

a consequence, the equilibrium separation between the partials increases under the

influence of shearing stress along the δC direction. Figure 2.16 (B) shows the effect

shearing stress along Cδ on the equilibrium separation for completion. Since the

positive edge moves in the shearing direction and the negative edge moves against

it, the equilibrium separation decreases under the influence of a shearing stress in

the direction of Cδ.

The same procedure can be applied to a dissociated dislocation located outside

the Thompson tetrahedron to understand the effect of shearing stress on the equilib-

rium separation. A dissociated RHS dislocation of Burgers vector AB laying on the

negative side of the δ plane is shown in figure 2.17. Using an hypothetical positive

shearing stress to determine the intrinsic stacking-fault arrangement, it is found that

the leading partial at the front would have Burgers vector Aδ, whereas the trailing

partial following behind would have Burgers vector δB. Applying the right hand

on the positive side of the glide plane, the direction of motion would be along Cδ,

the exact opposite direction of the RHS dislocation located inside the Thompson

tetrahedron. It can be concluded that the partials point towards each other when

viewing the intrinsic stacking-fault from outside the Thompson tetrahedron. Figure

2.17 (A) shows the effect shearing stress along δC on the equilibrium separation.

Using the ξ̂× b̂ rule it can be shown that the edge component of the leading partial

is positive, whereas the edge component of the trailing partial is negative. It follows

that the equilibrium separation between the partials decreases under the influence

of shearing stress along the δC direction. Figure 2.17 (B) shows the effect shearing

stress along Cδ on the equilibrium separation for completion. Since the positive edge
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Figure 2.17: View from outside the Thompson tetrahedron of an extended RHS

dislocation with Burgers vector AB under a shearing stress along: (A) δC vs (B)

Cδ affecting only the equilibrium separation. The gray segmented line represents

the unstressed dissociation width and the ⊗ symbol indicates that the plane normal

n̂ points into the page.

moves in the shearing direction and the negative edge moves against it, the equilib-

rium separation increases under the influence of a shearing stress in the direction of

Cδ.

Notice that the partials point away from each other when viewing the intrinsic

stacking-fault arrangement inside the Thompson tetrahedron, whereas they point

towards each other when viewing it outside the Thompson tetrahedron. This is

a generic feature of the extended dislocation in FCC crystals. Said observation is

succinctly summarized in the Axiom of Anderson et al. (2017):

Viewing the perfect dislocation from inside the tetrahedron and along

the positive sense of the line, the intrinsic stacking-fault arrangement is

achieved by placing the Roman-Greek partial on the viewer’s left and the

Greek-Roman on the right; viewed in the positive sense from outside the

tetrahedron, the intrinsic arrangement is achieved by placing the Greek-

Roman partial on the left and the Roman-Greek partial on the right.

In the next section, an explicit formula for the widening, compressive and gliding

stresses will be deduced for materials subjected to uniaxial stress.
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Figure 2.18: Material undergoing tensile stress of magnitude P along the û direction.

2.3 Stress components under uniaxial loading

Materials subjected to an uniaxial stress are loaded along a single principal direction.

There are two types of uniaxial stress, namely tensile and compressive stresses. The

equal stretching forces acting on each side of the material due to a tensile stress

provoke an increase of length along the principal direction, whereas the compressive

forces pushing the material equally towards its center due to a compressive stress

provoke a decrease of length along the principal direction. By convention, a positive

value of P represents a tensile stress, whereas a negative value of P refers to a

compressive stress (see figure 2.18). The state of loading can be expressed as a

diagonal matrix by using the principal directions as an orthonormal basis. In that

case, the stress state associated to an uniaxial loading would posses a single non-zero

eigenvalue P corresponding to the principal direction û:

σ̃ =

P 0 0

0 0 0

0 0 0

 (2.16)

Figure 2.19 illustrates that the orthonormal eigenbasis is a rotation of the original

coordinate system. Therefore, each element of the orthonormal eigenbasis can be

expressed in terms of the original coordinate system:

uxx̂+ uyŷ + uzẑ = (û · x̂)x̂+ (û · ŷ)ŷ + (û · ẑ)ẑ (2.17a)

vxx̂+ vyŷ + vzẑ = (v̂ · x̂)x̂+ (v̂ · ŷ)ŷ + (v̂ · ẑ)ẑ (2.17b)

wxx̂+ wyŷ + wzẑ = (ŵ · x̂)x̂+ (ŵ · ŷ)ŷ + (ŵ · ẑ)ẑ (2.17c)

The following direction cosine matrix transforms the orthonormal eigenbasis back

to the original coordinate system:

U =

ux uy uz

vx vy vz

wx wy wz

 (2.18)
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Figure 2.19: Orthonormal eigenbasis in blue can be expressed as a rotation of the

reference coordinate system in black.

Using a rotation transformation on the diagonalized matrix given by equation

2.16, the stress state due to an uniaxial loading can be obtained in terms of the

original coordinate system:

σ = UT · σ̃ ·U (2.19a)

= P

ux vx wx

uy vy wy

uz vz wz


1 0 0

0 0 0

0 0 0


ux uy uz

vx vy vz

wx wy wz

 (2.19b)

= P

ux vx wx

uy vy wy

uz vz wz


ux uy uz

0 0 0

0 0 0

 (2.19c)

= P

 u2
x uxuy uxuz

uyux u2
y uyuz

uzux uzuy u2
z

 (2.19d)

Consider the following unitary normal to the plane expressed in terms of the

original coordinate system:

nxx̂+ nyŷ + nzẑ = (n̂ · x̂)x̂+ (n̂ · ŷ)ŷ + (n̂ · ẑ)ẑ (2.20)
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By definition, the stress vector T acting on said plane is given by:

T = σ · n̂ (2.21a)

= P

 u2
x uxuy uxuz

uyux u2
y uyuz

uzux uzuy u2
z


nxny
nz

 (2.21b)

= P

nxu2
x + nyuxuy + nzuxuz

nxuyux + nyu
2
y + nzuyuz

nxuzux + nyuzuy + nzu
2
z

 (2.21c)

= P
(
nxux + nyuy + nzuz

)uxuy
uz

 (2.21d)

= P (û · n̂)û (2.21e)

Equation 2.21e shows that the stress vector is proportional to the loading direc-

tion. Recall that the goal is to obtain an expression for the widening, compressive

and gliding stresses for materials subjected to uniaxial loading. In section 2.2.3 a

gliding stress inducing pure dislocation motion was defined as the component of

stress parallel to the Burgers vector of the perfect dislocation. A shearing stress

applied perpendicular to the Burgers vector could increase or decrease the equilib-

rium separation depending on the chosen unitary normal to the glide plane. When

considering the glide plane with unitary normal pointing inwards to the Thompson

tetrahedron, a shearing stress parallel to the Greek-Roman partial perpendicular to

the perfect Burgers vector would increase the equilibrium separation between the

partials, whereas a shearing stress parallel to the Roman-Greek partial perpendicular

to the perfect Burgers vector would decrease the equilibrium separation between the

partials. It is therefore necessary to express the unitary loading direction in terms of

the normalized Burgers vector of the perfect dislocation b̂, the Greek-Roman partial

perpendicular to the perfect Burgers vector p̂ and the normal pointing inwards to

the Thompson tetrahedron n̂ to obtain the stress components:

û = (û · b̂)b̂+ (û · p̂)p̂+ (û · n̂)n̂ (2.22)

Substituting equation 2.22 into 2.21e gives:

T = P (û · n̂)(û · b̂)b̂+ P (û · n̂)(û · p̂)p̂+ P (û · n̂)2n̂ (2.23)
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Therefore, the stress components are given by:

T · b̂ = P (û · n̂)(û · b̂) (2.24a)

T · p̂ = P (û · n̂)(û · p̂) (2.24b)

T · n̂ = P (û · n̂)2 (2.24c)

The gliding stress given by equation 2.24a is the well-known Schmid law used to

calculate the resolved shear stress on a glide system. As discussed in section 2.1.3,

dislocations move according to the standard glide loop when the applied stress is

parallel to the Burgers vector, which implies that if the value of equation 2.24a is

positive, dislocations would move according to the standard glide loop, whereas if it

is negative, dislocations would move in the exact opposite direction. With regards

to the shear component affecting the equilibrium separation between the partials, if

the value of equation 2.24b is positive, then its value represents the widening stress,

if the value of equation 2.24b is negative, then its value represents the compressing

stress. Finally, equation 2.24c gives the normal stress acting perpendicularly to

the gliding plane. If the value of equation 2.24c is positive, then the shearing stress

pulls the dislocation away from the plane, whereas if it is negative, then the shearing

stress pushes the gliding dislocation against the plane.

The present section has provided simple relations to find all relevant stress com-

ponents and gliding forces acting on dislocations, which are employed on the next

chapter to describe the influence of stress on the cross-slip process of screw disloca-

tions.



Chapter 3

The activation enthalpy of cross-slip

Cross-slip is a thermally-activated process by which screw dislocations change their

glide plane, allowing them to overcome obstacles and populate other slip planes

(Anderson et al., 2017). It plays an important role in two competing processes during

plastic deformation (Jackson, 1983). On the one hand, it causes dynamic recovery

during stage III by dislocation annihilation (Hirsch, 2009), and other, it contributes

to work hardening by dislocation multiplication (Jackson, 1985; Sudmanns et al.,

2019).

Since cross-slip is a thermally activated process, its rate is controlled by an

Arrhenius-like equation. Many DDD simulations have successfully model plastic

deformation in crystals (Zbib et al., 1998; Weygand et al., 2002; Verdier et al., 1998;

Déprés et al., 2006; Chaussidon et al., 2008). Most of them use the rate equation

proposed by Kubin et al. (1992). In their model, the cross-slip probability explicitly

depends on the resolved shear stress at the onset of stage-III plastic deformation,

which is a macroscopic parameter obtained from the stress-strain curve of the ma-

terial. This probability law has demonstrated to be robust enough to allow the

formation of persistent slip bands in the low-cycle fatigue regime (Déprés et al.,

2004a), or to study the recovery dynamics in copper (Devincre et al., 2005). How-

ever, it is not sufficient in many situations. As an example, in the case of irradiated

materials, the local level of stress is very high because of the large number of ob-

stacles associated with the defect density. In this case, the cross-slip events are too

frequent (Nogaret et al., 2008). Contrarily, when the stress level is very low, the

probability of inducing cross-slip events will be very low or nonexistent.

Based on the work of Kubin et al. (1992), Hussein et al. (2015) recently proposed

a more physical rate equation that depends only on microstructure parameters, e.g.

the energy barrier required to form a constriction point on a screw dislocation, the

Debye frequency of the material, the activation volume and the local stress. This

allowed them to implement cross-slip in DDD simulations considering the different

mechanisms identified from molecular dynamics (MD) simulations. Quantifying the

47
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Figure 3.1: Cross-slip models of: (A) Fleischer. The leading partial a
6
[211] can dis-

sociate into a
6
[211], which is contained on the cross-slip plane (111), and a sessile

partial a
3
[010], which is contained at the plane intersection. The remaining trailing

partial a
6
[112] would be attracted to the sessile dislocation a

3
[010]. The resulting par-

tial a
6
[112] is contained on the deviate plane, which completes the cross-slip process;

(B) Friedel-Escaig. An initial constriction separates into two semi-constrictions A

and B on the deviate plane. Their separation increases until the cross-slip process

is completed.

Sources: figures adapted from Fleischer (1959) and Friedel (1964).

effect of stress on the activation barrier is thus of great importance to generate

realistic DDD simulations.

The two most plausible cross-slip models for FCC crystals are the Fleischer (FL)

and Friedel-Escaig (FE) mechanisms. The FL model was developed by Fleischer

(1959). In his model, the leading partial in a stacking-fault dissociates into two

partials; one glides on the cross-slip plane and the other remains sessile at the

intersection of the two planes (stair-rod dislocation). The trailing partial then reacts

with the stair-rod dislocation to form another Shockley partial in the conjugate

plane, which completes the cross-slip process (see figure 3.1 (A)). The FE model was

developed by Escaig (1968) based on J. Friedel’s ideas Friedel (1964). Moreover, he

used the line tension (LT) model of cross-slip developed by Stroh (1954) to study

the effect of the widening stress (Escaig stress) on the energy barrier. In the FE

model, the extended dislocation stops moving in the glide plane due to an obstacle.

An already-existing constriction then splits into two halves and then separate in

the cross-slip plane. This process proceeds spontaneously due to the stress on the

cross-slip plane until the dissociation is completed (see figure 3.1 (B)).
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Although there have been some controversy on which cross-slip model prevails

(Püschl, 2002), recent atomistic simulations confirm that both FL and FE mecha-

nisms can occur. The determination of which process would dominate depends on

many factors. Jin et al. (2011) used the nudged-elastic-band method to study FCC

aluminum. They concluded that there is a critical dislocation length below which

the screw dislocation cross-slips only via FL mechanism, whereas longer ones would

cross-slip either via FL or FE mechanisms, depending on the initial and final posi-

tions of the dislocation. The critical length they found was of the order of 22b ≈ 5.6

nm, where b is the magnitude of the Burgers vector. Xu et al. (2017) reported

similar findings in FCC nickel using dynamic concurrent atomistic-continuum and

MD simulations. They found that screw dislocations of length 6.47 nm cross-slip

via FL mechanism, whereas longer dislocations (of length 12.94 nm) can cross-slip

via either the FE or FL mechanisms. They also suggested that the critical shear

stress for both FE and FL mechanisms depends on the dislocation length. Recently,

Kuykendall et al. (2020) used atomistic simulations to examine the effect of stress

on the energy barrier of cross-slip via FE and FL mechanisms in FCC nickel. They

concluded that the FE mechanism prevails when the Escaig stress on the glide plane

is dominant, and that increasing the Schmid and Escaig stress on the cross-slip plane

promotes the FL mechanism.

The material of study in this work is FCC copper due to its broad literature.

The mechanism of cross-slip in copper has been fully examined using atomistic sim-

ulations and it was reported that dislocations in this material cross-slip via FE

mechanism (Rasmussen et al., 1997b; Vegge et al., 2001). The activation energy of

copper has been calculated using both elasticity theory and atomistic simulations.

However, the vast majority of energy barrier calculations employed atomistic simula-

tions (Rao et al., 1999, 2009, 2011, 2015; Vegge et al., 2001; Rasmussen et al., 1997a).

Alternatively, Ramı́rez et al. (2012) used a network-based formulation of dislocation

dynamics to study the effect of a general stress on the energy barrier of cross-slip

via FE mechanism. They found that the stress-free activation energy in copper is

1.9 eV when the core is represented by two partials, and that it converges to 1.43

eV when the core is distributed among 20 Volterra partial fractional dislocations,

the later value being in better agreement with the experimental results. They also

found that the cross-slip energy reduces to 0.62 eV in presence of a Lomer-Cottrel

junction. The DDD simulations of fatigue mostly rely on the energy barrier, which

is often calculated using atomistic simulations. However, the interatomic potential

quantitatively affects the simulation results (Rao et al., 1999). Hence, they may not

be reliable. On the other hand, in DDD simulations, the core-width used to compute

the elastic energy can be determined using the theory developed by Schöck (2010),

as suggested by Ramı́rez et al. (2012). Moreover, DDD simulations naturally enable
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the possibility to study the effect of complex structures on the energy barrier. In

this way, they offer an attractive alternative to large-scale atomic simulations.

In recent years, Kang et al. (2014) extended Escaig’s LT model to include the

effect of gliding stress (Schmid stress) on the cross-slip plane. Contrary to Escaig’s

claim that the Schmid stress had a negligible effect on the energy barrier, they

found that it had a comparable effect to the Escaig stress. They calculated the

energy barrier in FCC nickel using atomistic methods at different stress conditions

and found good qualitative agreement with their LT model. More recently, Malka-

Markovitz and Mordehai (2019) solved Strohs’s LT model of cross-slip (Stroh, 1954)

exactly by linearizing the interaction force between the partials. They obtained a

general expression for the activation enthalpy as function of the elastic constants

and local stress.

The contribution of this work is twofold. First, the effect of stress on the cross-

slip activation enthalpy is carefully calculated using DDD simulations, which is an

interesting alternative to the common atomistic approach found in the literature.

Second, the results are compared with those obtained from two recent LT models

of cross-slip in order to verify their consistency. The objective is to determine

whether the aforementioned LT models could be reliably used in DDD simulations

to calculate the activation enthalpy of screw segments.

The rest of this chapter is organized as follows. Section 3.1 introduces the cross-

slip model of Kang et al. (2014) and the general expression for the activation enthalpy

proposed by Malka-Markovitz and Mordehai (2019), section 3.2 introduces the DDD

methodology and the simulation setup, subsequently section 3.3 describes the effect

of stress on the activation enthalpy obtained using DDD simulations compared with

the two LT models and section 3.4 presents the summary and conclusions of this

work.

3.1 Theory

3.1.1 Cross-slip model of Kang

The LT model of Kang et al. (2014) assumes the FE mechanism. Thus, the dislo-

cation does not move before cross-slipping i.e. the Schmid stress on the glide plane

is zero (σgS = 0). However, the Escaig stress on the glide plane σgE is not necessarily

zero. The equilibrium separation between the partials in the glide plane lg depends

on σgE:

lg =
A

F g
(3.1)
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Figure 3.2: The shape of the partials in the cross-slip plane are described by the

y1(x) and y2(x), and satisfy the boundary conditions y1(±xd) = y2(±xd) = 0 (figure

adapted from Kang et al. (2014)).

where for a screw dislocation dissociated into two 30◦ partials (Cai et al., 2000):

A =

(
1

4
− 1

12(1− ν)

)
µb2

2π
(3.2)

F g = γi − bσgE/(2
√

3) (3.3)

The convention used in this framework is that positive σgE increases the distance

between the partials and negative decreases it. Analogously, if the dislocation does

not move in the cross-slip plane, its equilibrium distance lcs is given by:

lcs =
A

F cs
(3.4)

where

F cs = γi − bσcsE /(2
√

3) (3.5)

The partials surrounding the stacking fault are described by continuous functions

y1(x) and y2(x) (see figure 3.2). The constriction points are located in the x axis at

±xd and thus y1(±xd) = y2(±xd) = 0 must be satisfied.

The energy contribution from the cross-slipped segment (measured with respect

to the energy of an infinite straight screw dislocation resting at equilibrium in the

glide plane) is given by (Kang et al., 2014):

Ecs = W1 +W2 +W3 (3.6)

where W1 is the change in elastic repulsion between the partials, W2 is the change

of the line energy and W3 the change in SF energy and the work done by the stress.

Specifically,
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W1 = A

∫ xd

−xd
ln

(
lg

y1 − y2

)
dx (3.7)

W2 = T

∫ xd

−xd

(√
1 + (y′1)2 +

√
1 + (y′2)2

)
dx− 4Txd (3.8)

W3 =

∫ xd

−xd
(F cs

1 y1 + F cs
2 y2) dx− 2F glgxd (3.9)

where

F cs
1 = F cs − bσcsS /2 (3.10)

F cs
2 = −F cs − bσcsS /2 (3.11)

The energy functional in equation 3.6 was minimized using the conjugate gradient

method as suggested by Kang et al. (2014).

The line energy per unit length was given by (Kang et al., 2014):

T = αµb2/2 (3.12)

where α is a dimensionless fitting parameter. Formally, the energy barrier is

given by:

Eb(σ
g
E, σ

cs
S , σ

cs
E ) = max

xd
E(xd;σ

g
E, σ

cs
S , σ

cs
E ) (3.13)

where

E = min
y1,y2

Ecs(y1, y2;xd;σ
g
E, σ

cs
S , σ

cs
E ) + Eg(σgE) (3.14)

Eg being the energy of an isolated constriction on a perfect screw dislocation:

Eg = 2lg
√
AT

∫ 1

0

[− ln t+ (t− 1)]1/2dt (3.15)

The activation energy can be obtained for a given stress condition by solving

equation 3.14 numerically.
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3.1.2 Cross-slip model of Malka-Markovitz and Mordehai

Another useful formulation of the LT model of cross-slip was proposed by Malka-

Markovitz and Mordehai (2019), who solved Strohs’s LT model (Stroh, 1954) exactly

by linearizing the interaction force between the partials. They obtained the following

general expression for the activation enthalpy as function of the elastic constants and

local-stress components:

∆H(σ)

∆E0

=
βg

2
+

(
βcs

2

)
tanh(lc)−

(
βcs

2

)[
2αL
1.55

lcE
∗ +

α3
Ls

1.55

δ

βcs
l3c

]
(3.16)

where ∆E0 = 1.9 eV is the energy barrier of copper obtained in this work using

DD simulations and αL ≈ 0.6 is a scale factor.

βg and βcs are functions of the Escaig stresses on the glide and cross-slip plane,

respectively:

βg =
1

1 +
√

3b
6γi
σgE

and βcs =
1

1 +
√

3b
6γi
σcsE

(3.17)

whereas δ is a quadratic function of the Schmid stress on the cross-slip plane:

δ =
1

6

(
bσcsS
γi

)2

(3.18)

The E∗ function is a dimensionless off-set in the interaction energy between the

glide and cross-slip planes (Malka-Markovitz and Mordehai, 2018):

E∗ = ln

(
βcs

βg

)
(3.19)

The critical length lc in equation 3.16 can be found by solving the following

expression numerically (Malka-Markovitz and Mordehai, 2018):

1.55

cosh2(lc)
− 3δ

βcs
l2c = 2E∗ (3.20)

In contrast with the convention used in Kang et al. (2014) LT model of cross-slip,

a positive σgE decreases the equilibrium separation between the partials, whereas a

negative one increases it.

3.2 Methodology

3.2.1 Dislocation dynamics method

Dislocation dynamics is a modeling approach to study crystal plasticity, in which

dislocation lines are discretized in linear segments and their motion is determined
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(Sills et al., 2016). A segment is defined by two nodes on its ends and a tangent

line ξ̂ that connects them. The Burgers vector b associated to it indicates the

displacement’s magnitude and direction. The following sections briefly explain how

discrete dislocations were modeled.

Force computation

The force exerted by the local stress at each node is calculated using the Peach-

Köhler formula. Similarly to other DDD codes (Arsenlis et al., 2007), NuMoDis

(Drouet et al., 2014) uses the formalism developed by Arsenlis et al. (2007) to

compute the nodal forces. This force affects the nodal velocity through a given

mobility law. Thus, the dislocation dynamics can be determined by updating the

position of all nodes after a simulation step.

In order to study cross-slip in FCC crystals, the dissociated character of dis-

locations must be considered. As discussed in chapter 2, the stacking-fault (SF)

produces a force that tends to attract the partials towards each other, compensat-

ing the elastic repulsion between them. This results in an equilibrium separation

distance in the SF ribbon. Perfect dislocations dissociate into partials if it decreases

its elastic energy. However, DDD codes are based on nodal forces and do not con-

sider the systems energetics to determine its evolution. In consequence, Mart́ınez

et al. (2008) proposed to account for the intrinsic SF energy γi by introducing a SF

force (fsf ) on the discretization nodes. They derived that fsf should be of magni-

tude γi, and perpendicular to both the tangent line and SF plane n̂. The equation

satisfying these conditions is given by:

fsf = γin̂× ξ̂ (3.21)

In NuMoDis (Drouet et al., 2014), the SF ribbon is defined by an ordered list of

nodes conforming the dislocation partials and the plane that contains them. The SF

forces acting on a partial, in order to be physical, must point towards the opposite

partial. Thus, given a slip plane orientation, the node order defining the circuit

must be such that the SF force given by equation 3.21 satisfy this condition.

Velocity computation

In FCC metals, the relationship between forces and velocities is linear due to the

small intrinsic lattice resistance (Bulatov and Cai, 2006). The total force at a node

f is given by f = fPK +fsf , where fPK is the Peach-Köhler force. The projections

of fPK and fsf on the glide plane act perpendicular to the line segment. Therefore,

the mobility law is of the form:
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f = B · v (3.22)

where v is the nodal velocity and B the viscosity matrix:

B(ξ̂) = B(I − ξ̂ ⊗ ξ̂) (3.23)

where B is the viscosity coefficient.

Thus, the nodal velocity is obtained by inverting the viscosity matrix from equa-

tion 3.22:

v = B−1 · f (3.24)

At each simulation step, the force at every node due to the influence of all other

segments and SF is computed; the nodal velocities are thus calculated and their new

positions are updated.

Elastic energy

Cai et al. (2006) showed that the non-singular interaction energy Ens between a

segment with ends x1 and x2 and Burgers vector b with another segment with ends

x3 and x4 and Burgers vector b′ is given by:

Ens = − µ

8π

∫ x4

x3

∫ x2

x1

∂k∂kRabib
′
jdxidx

′
j

− µ

4π(1− ν)

∫ x4

x3

∫ x2

x1

∂i∂jRabib
′
jdxkdx

′
k

+
µ

4π(1− ν)

∫ x4

x3

∫ x2

x1

∂k∂kRabib
′
idxjdx

′
j

− µν

4π(1− ν)

∫ x4

x3

∫ x2

x1

∂k∂kRabib
′
jdxjdx

′
i

(3.25)

where µ is the shear modulus, ν the Poisson’s ratio, Ra =
√
R ·R+ a2, R =

x− x′, and a the core-width parameter.

The analytical expressions resulting from the solution of equation 3.25 for par-

allel and non-parallel segments were provided by Cai et al. (2006). These formulas

were used to calculate the interaction and self-energies of the segments in NuMoDis

(Drouet et al., 2014).

The core-width parameter a affects the elastic energy both qualitatively and

quantitatively. Schöck (2010) developed a theory based on the Peierls framework

(Schoeck, 2005) to obtain a physical value of a. He showed that the total energy of

a single straight dislocation is given by (Schöck, 2010):
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EP = EL(φ)

[
ln

(
r

2w(φ)

)
+ 1

]
(3.26)

where φ is the angle between the Burgers vector and the line direction, r is the

outer cut-off radius, w(φ) is the average width of its edge and screw components,

and EL(φ) is the pre-logarithmic elastic line energy factor:

EL(φ) =
µb2

4π

(
cos2(φ) +

sin2(φ)

1− ν

)
(3.27)

Schöck (2010) argued that w(φ) can be approximated as the width of a single

dislocation in an isotropic medium passing through two equilibrium positions i.e.

with SF energy γ = γu (Schöck, 2010):

w(φ)

b
=

cos2(φ) + sin2(φ)/(1− ν)

b/c+ 2π2γu/(µb)
(3.28)

where c is the interplanar glide plane spacing, γu the unstable SF energy and b

is the magnitude of the Burgers vector.

Using the model of Cai et al. (2006), the line energy for screw ES and edge

dislocation EE are found to be (Schöck, 2010):

ES =
µb2

4π
ln

(
r
√
e

aS

)
(3.29)

EE =
µb2

4π(1− ν)
ln

(
r

aE

)
(3.30)

where aS and aE are the core spreading parameters of the screw and edge com-

ponents, respectively, and e is the base of the natural logarithm.

The continuum description in equations 3.29 and 3.30 must be consistent with

the Peierl’s atomistic treatment in equation 3.26. Imposing this condition, aS and

aE are required to be (Schöck, 2010):

aS =
2w(0)√

e
and aE =

2w(π/2)

e
(3.31)

Following the work of Ramı́rez et al. (2012), the core-width parameter can be

considered as an averaged value of aS and aE:

a ≈ 2w(0)

e
=

2

e

(
b

b/c+ 2π2γu/(µb)

)
(3.32)
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Figure 3.3: The solid dots denote the nodal positions; the shape of the leading and

trailing partials are described by L and L̃, respectively.

Effective stacking-fault energy

As discussed in chapter 2, the partial located at the front with respect to the di-

rection of motion is called the leading partial, and the other trailing partial. Let

L = {P1,P2, ...,PN} and L̃ = {Q1,Q2, ...,QN} represent the set of nodes conform-

ing the leading and trailing partials, respectively (see figure 3.3).

The effective SF energy is given by the SF energy WSF plus the work done by

the applied forces Wapp, which can be calculated as follows:

WSF = γi

N∑
j=1

[
yj+1 + yj

2
∆xj −

ỹj+1 + ỹj
2

∆x̃j

]
(3.33)

Wapp =
N∑
j=1

Fyj∆xj + F̃ ỹj∆x̃j (3.34)

where:

yj = Pj · û (3.35a)

ỹj = Qj · û (3.35b)

∆xj = (Pj+1 − Pj) · b̂ (3.35c)

∆x̃j = (Qj+1 −Qj) · b̂ (3.35d)

û = n̂× b̂ is an unitary vector contained in the slip plane of normal n̂ perpen-

dicular to the normalized Burgers vector b̂. In absence of Schmid stress, the partials

are indistinguishable from each other due to the spatial symmetry with respect to

the x̂ axis. For that reason, the sign of û does not affect the energy. However,

the leading and trailing partials are univocally defined in the presence of a Schmid

stress. In that case, û must point towards the bowing-out direction because the

energy barrier does not depend on the sign of the Schmid stress (Kang et al., 2014;

Kuykendall et al., 2020; Malka-Markovitz and Mordehai, 2019).

The proportionality factors F and F̃ are given by:
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Figure 3.4: An equilibrium configuration during cross-slip via FE mechanism. The

process is completed when the constriction separation tends to infinity. In this

limit, the dislocation is completely contained in the conjugate plane with separation

between the partials lcs for all x (figure adapted from Kang et al. (2014)).

F = − bσE
2
√

3
− bσS

2
and F̃ =

bσE

2
√

3
− bσS

2
(3.36)

where the subscripts E and S refer to the Escaig and Schmid stress, respectively.

All the nodes were mobile except those two at the extremes, which simulate the

constriction points at the equilibrium configurations. Therefore, the partials always

satisfied y1 = ỹ1 = yN = ỹN = 0.

3.2.2 Simulation setup

Cross-slip via FE mechanism was assumed in all simulations. The DDD code Nu-

MoDis was used to find the equilibrium configurations at different cross-slip stages.

The total energy of a configuration consisted of its total elastic energy plus the

effective stacking-fault energy, which were computed as described in sections 3.2.1

and 3.2.1. The applied stresses were small enough such that the Frank-Read source

remained deactivated in all simulations.

According to the FE mechanism, the dislocation must stop moving before cross-

slipping. Therefore, the Schmid stress on the glide plane σgS was always assumed to

be zero. The dislocation width in the glide plane was affected by the Escaig stress

σgE. Soon after stop moving, an already-existing constriction splits into two halves

and the dislocation expands in the cross-slip plane until equilibrium is reestablished

(see figure 3.4). This occurs in the limit when the distance between the constriction

points in the cross-slip plane 2xd tends to infinity. In DDD codes, an infinite dislo-

cation does not really exist. Thus, the initial configuration consisted of a dislocation

with length of 1000 Å lying in the (111) plane. This was a long-enough dislocation

such that most part of it attained equilibrium i.e the distance lg between the par-

tials. The dislocation was pinned at its ends. The Burgers vector of the partials

pointed away from each other on the glide plane as shown in figure 3.5 (a), whereas
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Figure 3.5: Simulation setup showing: (a) the reference configuration consisting of

a dissociated b = AB right-handed screw (RHS) dislocation at equilibrium on the

glide plane (111) with partials’ Burgers vector bg1 = Aδ = a0

6
[121] and bg2 = δB =

a0

6
[211] pointing away from each other, and (b) the final configuration consisting of a

dissociated RHS dislocation at equilibrium in the cross-slip plane (111) with partials’

Burgers vector bcs1 = γB = a0

6
[121] and bcs2 = Aγ = a0

6
[211] pointing towards each

other.

the Burgers vector of the partials pointed towards each other on the deviated plane

as shown in figure 3.5 (b).

An intermediate cross-slip configuration consisted of a semi-infinite dislocation

on the glide plane with a constricted cross-slipped segment on the conjugate plane

(111) as shown in figure 3.6 (a). The total configuration length was fixed to 1000 Å,

in agreement with the initial state (see figure 3.6 (b)). The intermediate cross-slip

configuration was thus characterized by the distance between its constriction points.

In the limiting case when the constrictions points are infinitely apart, the dislocation

must be completely contained in the cross-slip plane. Unlike in the glide plane, the

dislocation was allowed to move by bowing-out on the conjugate plane. The sign

of the Schmid stress on the cross-slip plane σcsS was affected only the bowing-out

direction, and not the total energy. As in the glide plane, the width of dislocation

in the conjugate plane was affected by the Escaig stress σcsE .

3.2.3 Loading setup

In order to study the effect of σgE, σcsS and σcsE , the coordinate system was rotated

such that the [111] direction matched with the ẑ axis and the Burgers vector [110]

with the x̂ axis. Thus, the stress on the glide and cross-slip planes as function of

the tensor components in the Cartesian coordinate system were given by:
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Figure 3.6: Graphic visualization of: (a) an intermediate cross-slip configuration

of distance L between its constriction points and (b) the reference configuration

consisting of a relaxed dislocation completely contained on the glide plane. The

area shaded in red represents the deviated plane, whereas the region shaded in

green indicates the glide plane.

σgS = σxz (3.37)

σgE = σyz (3.38)

σcsS =
2
√

2σxy − σxz
3

(3.39)

σcsE =
7σzy + 2

√
2(σyy − σzz)
9

(3.40)

The energy of an intermediate cross-slip configuration was measured with re-

spect to the energy of the initial state i.e. the energy of the dislocation resting at

equilibrium in the glide plane under stress σgE. Thus, the energy barrier was defined

as the maximum energy among all intermediate cross-slip configurations as function

of the distance between the constriction points.

3.3 Results and discussion

3.3.1 Calibration of the cross-slip models

The relative energy of the intermediate cross-slip configurations at zero stress is

shown in figure 3.7. The elastic constants of copper used in both the DDD simu-

lations and LT model are shown in table 3.1. The energy uncertainty of the order

of ±0.1 eV in all the simulations results can be attributed to the line discretization

used in the DDD simulations, as well as to the finite core-width size of the non-

singular theory of dislocations. The parameter α in the LT model of Kang et al.

(2014) LT model was calibrated such that the equilibration energy matched with

the DDD simulations at zero stress. The value was found to be α = 0.22. Together
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Property Value

a0 3.61 Å (Davey, 1925)

b a0/
√

2 (Kittel and McEuen, 2018)

γi 42 mJ/m2 (Bonneville and Escaig, 1979)

γu 182 mJ/m2 (Ramı́rez et al., 2012)

ν 0.324 (Ledbetter and Naimon, 1974)

µ 54.6 GPa (Schmauder and Mishnaevsky, 2008)

B 1.5 ×10−5 Pa-s (Philibert, 1979)

a 1.95 Å (from equation 3.32)

Table 3.1: Parameters used for FCC copper; a0 is the lattice parameter, b the

magnitude of the Burgers vector, γi the intrinsic SF energy, γu the unstable SF

energy, ν the Poisson’s ratio, µ the shear modulus, B the viscosity coefficient at

room temperature and a the core-width parameter.
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Figure 3.7: The energy barrier as function of the constriction separation at zero

stress.
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Figure 3.8: The effect of Escaig stress on the equilibrium separation between the

partials. The segmented line corresponds to equation 3.1.

with the core-width parameter in the elastic energy, the choice of α was a key pa-

rameter for the good agreement between the LT model of Kang et al. (2014) and the

DDD simulations. The effect of compressive Escaig stress was to decrease the SF

width. The stressed equilibrium separation obtained from the DDD simulations was

in great agreement with the LT model, as shown in figure 3.8. The energy predicted

by the LT model of Kang et al. (2014) and that obtained with the simulations does

not match for short cross-slipped segments as seen in figure 3.7. This is expected

because the LT model approximates the energy of a differential segment as that of a

straight dislocation (Dupuy and Fivel, 2002). In fact, the LT model breaks down in

the limiting case were 2xd = 0 because the elastic repulsion diverges (see equation

3.7). However, this is not relevant since the objective of this work is to quantify the

stress effect on the energy barrier, which occurs for longer dislocation lines where

the LT model is more physical.

In the unstressed case, the energy monotonically augments as the constriction

separation increases, but quickly reaches a maximum value of 1.9 eV. This means

that once the cross-slip segment reaches a critical length (around 60 Å), no further

energy is required to be invested and the cross-slip process continues spontaneously.

Therefore, the unstressed energy barrier of copper is equal to 1.9 eV as reported by

Ramı́rez et al. (2012). The equilibration energy encountered in the unstressed cross-

slip is roughly equal to twice the energy required to form an isolated constriction.

It can be argued that at the beginning of cross-slip, when the two constrictions

are close to each other, the elastic repulsion between them adds up to the energy

required to form them in isolation. However, as the distance between them increases,

their interaction further decreases. Thus, if they are sufficiently far apart, the total

energy with respect to the relaxed dislocation is roughly equal to that of the two
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Figure 3.9: The effect of compressive Escaig stress on the constriction energy ac-

cording to DDD simulations.

independent constrictions.

3.3.2 Effect of stress on the constriction energy

The planar constriction energy at zero stress is 0.7 eV, according to the DDD sim-

ulations (see figure 3.9). Stroh (1954) found the energy of a constriction using

elasticity theory. Assuming a shear modulus of G = 45 GPa and an equilibration

distance between the partials at zero stress of d0 = 18 Å, one finds that in his model

the energy of a single constriction is roughly 2 eV, which is almost three times

higher than that found in this work (0.7 eV). Püschl (1990) estimated a constriction

energy of 1.1 eV for FCC copper using elasticity theory. Later on, Saada (1991)

generalized the LT model of Püschl (1990) for arbitrary constricting distance. He

obtained different constriction energy values in the range of 0.33 - 0.7 eV, depending

on the choice r0/b, where r0 is a cut-off radius. Although these values are in better

agreement with the experimental energy barrier, the (arbitrary) choice of r0 was

not clearly determined. Rasmussen et al. (1997a) found a constriction energy of 1.6

eV using atomistic simulations, in reasonable agreement with Stroh (1954), but too

high according to the experimental energy barrier. More recently, Ramı́rez et al.

(2012) found a constriction energy of 0.7 eV using dislocation dynamics, in excellent

agreement with this work.

The effect of pure compressing stress on the constriction energy was found to

be negligible. The slight decrease on the constriction energy observed in figure 3.9

is not conclusive. Nevertheless, one can assert that the average constriction energy

did not vary much in the given range of stresses. The small effect of stress on the

constriction energy can be explained by using the model developed by Püschl (1990).
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It predicts a marginal decrease in constriction energy (of less than 0.2 eV) when the

splitting width between the partials decreases from 8b ≈ 20.4 Å to 6b ≈ 15.3 Å.

These are roughly the equilibration distances simulated by NuMoDis (Drouet et al.,

2014) at zero (17.4 Å) and -250 MPa (12.1 Å), respectively. Thus, according to this

model, one should not expect the constriction energy to vary much by applying a

pure compressing stress for the given range of values.

The asymptotic convergence of the cross-slip energy barrier at zero stress ob-

served in figure 3.7 has been thoroughly reported before. Duesbery et al. (1992)

calculated the constriction pair energy as function of the stacking-fault energy using

a linear-elastic framework, and found that for constriction separation larger than

∼ 50b, the total energy becomes that of two independent constrictions. In par-

ticular, for FCC copper, they found that the asymptotic value of the cross-slipped

configuration was 3.7 eV. They also identified the asymmetric nature of the two con-

strictions in the cross-slip plane, as they asserted that one had lower energy being

screw-like, and the other higher energy being edge-like. These are different from the

Stroh-type constriction, which are edge-like on the one side, and screw-like on the

other. Later on, Rasmussen et al. (1997a) corroborated several results of Duesbery

et al. (1992) using atomistic simulations, as they obtained that indeed the total en-

ergy converged to the value of two independent constrictions for separations larger

than ∼ 50b. They measured a screw-like constriction energy of -3.8 eV, and an edge-

like constriction energy of 1.1 eV, which added up to the total energy barrier in FCC

copper (2.7 eV). Although this value is lower than that obtained by Duesbery et al.

(1992), it is roughly the double of the experimental value obtained by Bonneville

et al. (1988). Rao et al. (1999) calculated an energy barrier for cross-slip at zero

stress in the range of 1.07 - 1.28 eV using molecular statics. This energy is signifi-

cantly smaller than that predicted by Rasmussen et al. (1997a). They argued that it

could be due to the difference in interatomic potentials used, as well as the Green’s

function technique used to relax the boundary forces in the simulations developed

by Rao et al. (1999). Ramı́rez et al. (2012) found an unstressed energy barrier of

1.9 eV using DDD simulations for dislocations dissociated into two partials. They

obtained that the energy plateau was reached for a constriction separation of about

60 Å. Both results are in excellent agreement with the simulations in this work.

Furthermore, notice that the critical length is about the half of the value found by

previous methods.
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3.3.3 Effect of stress on an isolated dislocation

Uncoupled stress case

In order to study the independent influence of the stress components on the energy

barrier, three cross-slip possibilities were considered: (A) pure compression on the

glide plane, (B) pure expansion on the conjugate plane and (C) pure bowing-out

on the conjugate plane. The stress was increased up to 250 MPa, because the

equilibrium configuration breaks down around 260 MPa (Davis et al., 2001). The

activation enthalpy obtained from DDD simulations, the LT model of Kang et al.

(2014) and the general expression for the activation enthalpy proposed by Malka-

Markovitz and Mordehai (2019) are in good quantitative agreement with each other,

as shown in figure 3.10.

The largest influence on the energy barrier was obtained by pure compression

on the glide plane, which reduced it up to 45% (see figure 3.10 (A)). The minimum

energy barrier of 1 eV was obtained by applying a compressive Escaig stress of 250

MPa on the glide plane. This is in contrast with the lower energy value of 0.95 eV

obtained by Ramı́rez et al. (2012) under a pure σcsE of 220 MPa. On the other hand,

Kang et al. (2014) also concluded that the compressive Escaig stress applied on the

glide was the most effective way of reducing the energy barrier in FCC nickel. The

pure widening Escaig stress on the cross-slip reduced it up to 20% (see figure 3.10

(B)) and the pure Schmid stress on the cross-slip produced a decrease in the energy

barrier of about 15% (see figure 3.10 (C)).

The effect of stress was not only to decrease the energy barrier but also the

activation length of cross-slip. The maximum of energy at 200 MPa occurred for

a constriction separation of about 25 Å. This value is comparable to the activation

length of 12b ≈ 30.6 Å at 220 MPa obtained by Ramı́rez et al. (2012).

Coupled stress case

In order to study the combined effect of the stress components on the energy barrier,

three cross-slip possibilities were considered: (A) compression on the glide plane and

expansion on the conjugate plane, (B) compression on the glide plane and bowing-

out on the conjugate plane and (C) expansion and bowing-out on the conjugate

plane. As in the previous case, the activation enthalpy obtained from DD simulations

and the two formulations of the LT model of cross-slip analyzed in this work (Kang

et al., 2014; Malka-Markovitz and Mordehai, 2019) are in good agreement (see figure

3.11). The effect of applying a coupled compressive stress on the glide plane lead

to the largest decrease in the energy barrier (see figures 3.11 (A) and (B)). These

results resemble the effect applying an uncoupled compressive stress on the glide
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Figure 3.10: The effect of stress on the energy barrier: (A) σgS = σcsE = σcsS = 0,

(B) σgS = σgE = σcsS = 0 and (C) σgS = σgE = σcsE = 0. The green circles represent

the DD simulation results, the blue diamonds correspond to the LT model of Kang

et al. (2014) (see equation 3.14) and the red crosses were obtained from the general

expression for the activation enthalpy proposed by Malka-Markovitz and Mordehai

(2019) (see equation 3.16).
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plane (see figure 3.10 (A)), which also lead to an energy barrier reduction of roughly

50%.

The effect of applying coupled stresses on the conjugate plane only (see figure 3.11

(C)) was comparable of applying an uncoupled Schmid stress on the conjugate plane

(see figure 3.10 (C)). In both cases, the energy barrier decreased up to 20%. These

observations are validated by the atomistic simulations of Esteban-Manzanares et al.

(2020), who studied the effect of stress in aluminum using MD and obtained the same

qualitative results.

3.4 Conclusions and future work

In this work, the unstressed constriction energy was equal to 0.7 eV, as reported

by Ramı́rez et al. (2012). The effect of pure compressive stress in the range of -50

to -250 MPa on the constriction energy was negligible, in agreement with Püschl

(1990).

The unstressed energy barrier was found to be 1.9 eV, as obtained by Ramı́rez

et al. (2012). However, it does not lie within the experimental range of 1.15±0.37

eV measured by Bonneville et al. (1988). On the other hand, the energy barrier

could be reduced by applying an external stress, leading to an energy barrier in

better agreement with the experimental results. The most effective way of reducing

it, was by pure compression on the glide plane. Furthermore, it was found using

DDD simulations, that both the Schmid and Escaig stress on the conjugate plane

have a comparable effect in reducing the energy barrier, in qualitative agreement

with the atomistic simulations performed by Kang et al. (2014) in FCC nickel.

The energy barrier of FCC copper at zero stress has been obtained using the line

LT model and atomistic simulations before. Some of them reported an energy barrier

in better agreement with experiments (Saada, 1991; Rao et al., 1999). However, the

LT model suffers from arbitrariness in the cut-off radius determination (Saada, 1991)

and the atomistic simulations are highly sensitive to the interatomic potential used

(Rao et al., 1999). In DDD simulations, these problems do not exist and the core-

width used to compute the elastic energy can be calculated using the elastic theory

of Schöck (2010) as suggested by Ramı́rez et al. (2012). Moreover, the effect of non-

homogeneous stress on the energy barrier, like those generated by pile-ups and forest

dislocations, can be more naturally studied using DDD simulations, in comparison

with other simulation techniques.

The activation enthalpy obtained from DDD simulations was in excellent agree-

ment with both the LT model of Kang et al. (2014) and the general expression for

the activation enthalpy proposed Malka-Markovitz and Mordehai (2019). Since the
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Figure 3.11: The effect of stress on the energy barrier: (A) σgS = σcsS = 0, (B)

σgS = σcsE = 0 and (C) σgS = σgE = 0.
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later is an analytical model, it can be easily implemented in a DDD code to calculate

the activation enthalpy of screw segments.

Acknowledging a limitation of this work, a perfect screw dislocation in FCC

crystals can be dissociated in a set of Fractional Partial Dislocations (FPD) pairs,

instead of two Shockley partials with Burgers vectors b1 and b2 . Based on the

work of Banerjee et al. (2007), Ramı́rez et al. (2012) generalized the dissociation of

perfect screw dislocations into n pairs of FPDs with Burgers vectors b1/n and b2/n.

By using 20 FPDs, they obtained an energy barrier reduction from 1.9 to 1.43 eV at

zero stress, which lies within the experimental error of the energy barrier measured

by Bonneville et al. (1988).

With regards to the LT model, the constant line energy per unit length T makes

it impossible to distinguish between edge-like and screw-like constrictions. Thus,

a more physical description of cross-slip can be made by letting the total energy

depend on the angle between the Burgers vector and the local tangent vector (Kang

et al., 2014; Dupuy and Fivel, 2002; Malka-Markovitz and Mordehai, 2018). In

spite of it, the energy barrier calculated using the LT model was found to be in

good quantitative agreement with the DDD simulations, at least for the case of

dissociation into two partials. Hence, the orientation-dependent LT model might be

in better agreement with DDD simulations that describe the dislocation core using

more than a pair of FPDs.

As a final remark it is important to mention that the effect of Schmid stress on

the glide plane should be considered in a future work. Since the FE mechanism

assumes that a dislocation stops moving before cross-slipping due to the existence

of invisible obstacles, the LT models based on the FE mechanism assume that the

Schmid component of stress does not affect the cross-slip energy. However, a Schmid

stress acting on the glide plane pressing both partials against an obstacle could

reduce the stacking-fault region, which would be equivalent to the effect of applying

a compressive Escaig stress on the glide plane. In order to study the general effect

of all stress components on the cross-slip energy via the FE mechanism, a further

contribution to the Escaig stress on the glide plane must be included as an implicit

function of the Schmid stress on the glide plane. In that way, the presented LT

models could be easily generalized.
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The rate of cross-slip

Many DDD simulations have successfully modeled plastic deformation in crystals

(Zbib et al., 1998; Weygand et al., 2002; Verdier et al., 1998; Déprés et al., 2004b;

Chaussidon et al., 2008). The first cross-slip model used in DDD simulations was

proposed by Kubin et al. (1992). They postulated that the cross-slip probability

explicitly depends on the resolved shear stress at the onset of stage-III plastic de-

formation, which is a macroscopic parameter obtained from the stress-strain curve

of the material:

P = β
L

L0

exp

(
[τ − τIII ]V

kbT

)
δt (4.1)

where β is a scaling factor, L the screw-segment length, L0 a reference length,

τ the resolved shear stress in the primary plane, τIII the resolved shear stress at

the onset of stage III, V the activation volume, kb the Boltzmann constant, T the

absolute temperature and δt the time step. The values for the activation volume

and resolved shear stress at the onset of stage III were obtained from experiments.

However, the scaling factor and reference length were defined arbitrarily. In conse-

quence, the absolute cross-slip rates were difficult to validate using other simulation

methods.

Hussein et al. (2015) proposed a more physical model depending only on the

microstructure parameters:

P = ω
L

L0

exp

(
−∆Ec − V∆σE

kbT

)
δt (4.2)

where ω is the attempt frequency, ∆Ec the energy barrier required to form a

constriction point on the screw dislocation, and ∆σE = σgE − σcsE the difference of

Escaig stresses on the glide and cross-slip planes. Although the energy barrier and

activation volume were obtained from atomistic simulations, the attempt frequency

was determined using an heuristic argument, which introduced uncertainty in the

absolute cross-slip rates.

70
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The models 4.1 and 4.2 depend either on the Schmid or Escaig stresses, but not

on both. Hence, they might be incomplete descriptions of the cross-slip rate. In

fact, Kang et al. (2014) showed that both stress components have a comparable

effect on the activation enthalpy as demonstrated in the previous chapter. This

assertion has been thoroughly verified using different formulations of the LT model

(Kang et al., 2014; Liu et al., 2019; Longsworth and Fivel, 2021a), linear-elasticity

models (Longsworth and Fivel, 2021a; Kuykendall et al., 2020) and atomistic simu-

lations (Kang et al., 2014; Esteban-Manzanares et al., 2020; Kuykendall et al., 2020;

Liu et al., 2019). Therefore, the influence of all the stress components should be

considered in the cross-slip rate.

More recently, Malka-Markovitz et al. (2021) calculated the cross-slip probability

of screw segments in DD simulations using the following equation:

P = β
L

L0

exp

(
−∆H

kbT

)
δt (4.3)

where ∆H is the activation enthalpy. They considered the full effect of a gen-

eral stress in the activation enthalpy by using the analytical expression of Malka-

Markovitz and Mordehai (2019) to calculate it. Nonetheless, their semi-empirical

model of the cross-slip rate requires the scaling factor β to be calibrated with atom-

istic results.

The present work provides a method to calculate the cross-slip rate of screw seg-

ments in DDD simulations without relying on scaling factors, yet able to reproduce

atomistic results. The rest of this chapter is organized as follows. Section 4.1 intro-

duces the rate equation proposed by Esteban-Manzanares et al. (2020) to compute

the cross-slip probability of screw segments and the general expression obtained by

Malka-Markovitz and Mordehai (2019) to calculate the activation enthalpy, section

4.2 presents the DDD simulation setup used for the presented results, section 4.3

shows a comparison between the annihilation rates of a screw dipole obtained from

DDD simulations respect to atomistic results (Vegge et al., 2000; Oren et al., 2017),

and section 4.4 presents the summary and conclusions of this work.

4.1 Theory

4.1.1 Cross-slip rate model of Esteban-Manzanares

Consider the potential energy Φ(y1, .., yN) of a system having only one saddle point

P between two minima A and B. There is a unique hyper-surface S of dimension

N − 1 passing though P that is perpendicular to the level curves of Φ. Let S0 be

another hyper-surface with the same shape as S, but passing through A and oriented
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Figure 4.1: Contour plot of a potential with two minima and a saddle point. The

solid lines represent level curves and the segmented ones hyper-surfaces.

such that the normal to S0 at A is along the line of force leading to P (see figure

4.1). In this framework, the following constrained partition functions are defined

(Vineyard, 1957):

QS = ρ0

∫
S

exp

(
− Φ

kbT

)
dS (4.4)

Q0 = ρ0

∫
S0

exp

(
− Φ

kbT

)
dS0 (4.5)

and

QA = ρ0

∫
A

exp

(
− Φ

kbT

)
dV (4.6)

where ρ0 is a normalization factor, kb the Boltzmann constant, T the absolute

temperature,
∫
S

the surface integral over S,
∫
S0

the surface integral over S0 and
∫
A

the volume integral under S.

In Transition State Theory (TST), the rate of transition from state A to B can

be expressed as (Vineyard, 1957):

ΓTST =

√
kbT

2π

QS

QA

(4.7)

Multiplying and diving the latter equation by Q0:

ΓTST =

√
kbT

2π

Q0

QA

QS

Q0

=

√
kbT

2π

Q0

QA

exp

(
−∆F

kbT

)
(4.8)

where ∆F is the free-energy change from A to P . The rate prefactor represents

the effective frequency ν̃:
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ν̃ =

√
kbT

2π

Q0

QA

(4.9)

In systems subject to constant stress, ∆F is the Gibbs free-energy ∆G ≡ ∆H −
T∆S, where ∆H and ∆S are the activation enthalpy and entropy, respectively.

Under this assumption, equation 4.8 can be rewritten as:

ΓTST = ν̃ exp

(
∆S

kb

)
exp

(
−∆H

kbT

)
(4.10)

In Harmonic TST (HTST), the potential energy is expanded in Taylor series

around A up to second order, which leads to the following simplified rate equation

(Vineyard, 1957; Granato et al., 1964):

ΓHTST = ν1

N∏
i=2

νi
ν ′i

exp

(
−∆H

kbT

)
(4.11)

where νi are the eigenfrequencies of state A and ν ′i those of the transition state

P . In particular, ν1 is the fundamental frequency.

A comparison between equations 4.10 and 4.11 shows that the entropic factor

e∆S/kb is approximately equal to
∏N

i=2
νi
ν′i

if ν̃ is considered to be ν1.

The activation entropy can also be calculated using an empirical relation known

as the Meyer-Neldel (MN) rule (Meyer and Neldel, 1937):

∆S =
∆H

Tm
(4.12)

where Tm is the melting temperature.

Esteban-Manzanares et al. (2020) studied the effect of stress on the cross-slip

rate in aluminum using atomistic simulations. They found a rate equation in great

quantitative agreement with their results by applying the MN rule within the HTST

framework:

ΓHTST = ν
L

Ln
exp

(
−∆H

kbT

[
1− T

Tm

])
(4.13)

where ν = 1011 Hz is the fundamental frequency (Sobie et al., 2017), L the

screw-dislocation length and Ln the nucleation length of cross-slip.

4.1.2 Nucleation length of cross-slip

In this study, the nucleation length was inferred from a LT model of cross-slip.

According to said model, the dislocations can be approximated as flexible strings

with line tension Tp (Kang et al., 2014):
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Figure 4.2: Cross-slip stages of a dissociated screw dislocation as function of the

reaction coordinate s. The shaded region indicates that the stacking-fault is located

the cross-slip plane.

Source: Figure adapted from Malka-Markovitz and Mordehai (2018).

Tp =
αµb2

2
(4.14)

where α is the line-energy parameter, µ is the shear modulus and b the magnitude

of the Burgers vector.

The total energy of the dislocations Es is a function of the line tension, the shape

of the partials y1(x) and y2(x) and the interaction energy between them V (y1, y2)

(Malka-Markovitz and Mordehai, 2018):

Es =

∫ +∞

−∞

[
1

2
Tp(y

′
1)2 +

1

2
Tp(y

′
2)2 + V

]
dx (4.15)

The prime symbol denotes the derivative with respect to the line direction x.

Under Escaig stress σE, the equilibrium separation between the partials is given by

(Malka-Markovitz and Mordehai, 2018):

dσ = β(σE)d0 (4.16)

where:

β(σE) =
1

1 +
√

3b
6γ
σE

and d0 =
µb2

24πγ

2− 3ν

1− ν (4.17)

γ being the intrinsic stacking-fault energy and ν the Poisson’s ratio. In absence

of stress, β(0) = 1 and dσ reduces to d0 as expected.

The dissociation width D(x) satisfies D(x) = y1(x)−y2(x). Therefore, an infinite

dislocation at equilibrium satisfies D(x) = dσ for all x.
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The reaction coordinate s is a dimensionless variable defined in the interval [-

1,1]. The cross-slip process as function of s is illustrated in figure 4.2. For s ∈ (0, 1],

the dislocation is fully contained in the glide plane at equilibrium. The dissociation

width at the pinning point x = 0 decreases as s goes to 0 i.e. Ds(0) = sdσ. At

s = 0, the dislocation constricts, which means that Ds(0) = 0. For s ∈ [−1, 0), the

dislocation expands in the cross-slip plane. When only Escaig stresses are applied,

the dissociation width at the pinning point can be expressed as Ds(0) = |s|dσ. The

cross-slip process finishes when s = −1, as the dislocation is completely contained

in the conjugate plane at equilibrium.

The energy functional Es(y1, y2) can be minimized using the Euler-Lagrange

equation in order to find the cross-slip trajectory. Applying the boundary conditions

Ds(x→∞) = dσ and D′s(x→∞) = 0, it can be shown that the dissociation width

in the glide plane satisfies (Malka-Markovitz and Mordehai, 2018):

x = dσ

√
Tp
4

∫ D∗s (x)

s

dη√
V (η)

(4.18)

where D∗s = Ds/dσ is the normalized dissociation width between the partials and

η an adimensional integration variable.

The linear approximation can be used to model the interaction force between

the partials for distances near the equilibrium dissociation width d0. This is called

the Harmonic Approximation (HA) because the resulting interaction energy is a

quadratic function of their separation. It can be shown that using this approxima-

tion, the interaction potential in the glide plane is given by (Malka-Markovitz and

Mordehai, 2018):

V g
HA(D∗) =

1

2
(γd0)(D∗ − 1)2 (4.19)

Substituting equation 4.19 into 4.18 gives the relation between x and D∗:

x = βg

√
Tpd0

2γ

∫ D∗s (x)

s

dη

|η − 1| (4.20)

The notation βg means β(σgE), where σgE is the Escaig stress on the glide plane

(see equation 4.17).

Thus, the normalization factor in front of the integral could be interpreted as the

dislocation length bowing towards the constriction (Malka-Markovitz and Mordehai,

2018). For that reason, it was used in the present work to estimate the nucleation

length of cross-slip Ln on the glide plane:

Ln = βg

√
Tpd0

2γ
(4.21)
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Since σgE appears in the denominator of βg, Ln decreases with positive Escaig

stress on the glide plane. In the convention of Malka-Markovitz and Mordehai

(2018), a positive Escaig stress shrinks the dissociation width, which increases the

cross-slip probability.

4.1.3 Activation enthalpy of cross-slip

The activation enthalpy can be also obtained from the LT model of cross-slip. The

first formulation of it was proposed by Stroh (1954) to estimate the effect of Escaig

stress in the constriction energy. Kang et al. (2014) generalized it by including the

influence of Schmid stress in the cross-slip plane. Later on, Malka-Markovitz and

Mordehai (2019) generalized the LT model of Stroh (1954) for an arbitrary interac-

tion force between the partials, and then solved it analytically by using the linear

approximation for the interaction force. Malka-Markovitz and Mordehai (2019) as-

sumed the FE mechanism in their LT model, which implies that the dislocation

does not move before cross-slipping. As a consequence, the Schmid stress on the

glide plane σgS does not appear in their model. They found a general expression for

the cross-slip energy as a function of the separation between the constriction points

l, the elastic constants and the local stress. In their model, the cross-slip energy

reaches its maximum when the separation between the constriction points l = lc

satisfies the following critical equation (Malka-Markovitz et al., 2021):

1.55

cosh2(lc)
− 3δ

βcs
l2c = 2E∗ (4.22)

where δ is a function of the Schmid stress on the cross-slip plane σcsS and E∗

is a dimensionless off-set in the interaction energy between the glide and cross-slip

planes:

δ =
1

6

(
bσcsS
γ

)2

and E∗ = ln

(
βcs
βg

)
(4.23)

The notation βcs means β(σcsE ), where σcsE is the Escaig stress on the cross-slip

plane (see equation 4.17). Once the value of lc was found, the activation enthalpy

∆H is obtained by evaluating the corrected cross-slip energy H(σ, l) at l = lc (Malka-

Markovitz et al., 2021):

H(σ, l)

∆E0

=
βg
2

+

(
βcs
2

)[
tanh(l)− 2αLs

1.55
lE∗ − α3

Ls

1.55

δ

βcs
l3
]

(4.24)

where ∆E0 is the unstressed energy barrier and αLs ≈ 0.6. In the present work,

we consider the energy barrier to be the maximum of equation 4.24. For that reason,
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Figure 4.3: Effect of the stress components on the energy barrier for: (A) compres-

sive Escaig stress on the glide plane (σgS = σcsE = σcsS = 0), (B) expansive Escaig

stress on the cross-slip plane (σgS = σgE = σcsS = 0) and (C) Schmid stress on the

cross-slip plane (σgS = σgE = σcsE = 0). The green line shows the energy barrier

obtained by evaluating H at the solution of equation 4.22. The blue line show the

energy barrier obtained by evaluating H at the solution of equation 4.25.
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the critical relation for lc was obtained by differentiating equation 4.24 with respect

to l and equating it to zero, which gives:

1.55

cosh2(lc)
− 3α3

Lsδ

βcs
l2c = 2αLsE

∗ (4.25)

Figure 4.3 shows the minor difference between evaluating H(σ, l) at the critical

length given by equations 4.22 and 4.25 for FCC copper. The magnitude of the

Burgers vector was assumed to be b = 2.55 Å, the intrinsic stacking-fault energy

γ = 42 mJ/m2 and the unstressed energy barrier ∆E0 = 1.9 eV. Notice that the

activation enthalpy obtained by evaluating H(σ, l) at the solution of equation 4.22

is slightly lower than the maximum of H(σ, l) for a given stress condition.

4.2 Methodology

The Metropolis Monte Carlo (MMC) method generates configurations according

to a prescribed probability distribution. Since the time progression leading to an

equilibrium state is stochastic, there is no information about dynamics of the system.

Moreover, it is not known how fast the equilibrium state is reached. Fortunately,

there are other Monte Carlo methods that take into consideration the physical time

in simulations. The kinetic Monte Carlo (kMC) method can be used to account for

the time increments related to the kinetics of the system. In the MMC method, the

transition probability between two states depends on the activation energy, which is

time-independent, but in the kMC method, the transition probability is calculated

using a rate equation Γ that implicitly depends on the activation energy. For single

processes (such as cross-slip, where the screw segment can only lie either on its

glide plane or on its conjugate plane), the reciprocal of the rate is equal to the

average time required for the process to occur. Therefore, the probability that such

transition occurs within an specified time step ∆t is simply given by:

P = Γ∆t (4.26)

The cross-slip mechanism is the main cause of slip irreversibility during cyclic

loading (Mughrabi, 2009; Lukáš and Klesnil, 1973). Therefore, the cross-slip events

are very important to determine the microstructure evolution accurately. The cross-

slip process in DDD simulations is modeled using a kMC method. The screw chains

were identified among the dislocation lines every simulation step. A dislocation chain

was considered to have a screw character if the angle between its Burgers vector and

line direction was smaller than one degree. For each screw chain, a random number

R between 0 and 1 was generated. If the cross-slip probability P was larger than
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R, the glide plane of the corresponding screw segment was changed to its deviated

plane. Else, the system remained unchanged.

The cross-slip process in DDD simulations is usually modeled using a kinetic

Monte Carlo method (Kubin et al., 1992; Hussein et al., 2015; Déprés et al., 2004b;

Malka-Markovitz et al., 2021). In the present work, the cross-slip rate proposed by

Esteban-Manzanares et al. (2020) (see equation 4.13) is implemented in the DDD

code NuMoDis (Drouet et al., 2014) to compute the cross-slip probability of screw

segments. Thus, the probability of a screw segment of length L to cross-slip during

a time step δt is given by:

P = ν
L

Ln
exp

(
−∆H

kbT

[
1− T

Tm

])
δt (4.27)

where ν = 1011 Hz is the fundamental frequency (Sobie et al., 2017), Ln the nu-

cleation length of cross-slip, kb the Boltzmann constant, T the absolute temperature,

Tm the melting temperature and ∆H the activation enthalpy.

The activation enthalpy was obtained by evaluating the cross-slip energy H(σ, l)

at the critical length satisfying equation 4.25. The only free parameter in the theory

of Malka-Markovitz and Mordehai (2019) is the unstressed energy barrier ∆E0,

which can be obtained either from line tension models (Kang et al., 2014; Malka-

Markovitz and Mordehai, 2019), atomistic simulations (Oren et al., 2017; Liu et al.,

2019; Esteban-Manzanares et al., 2020; Kuykendall et al., 2020) or DDD simulations

(Ramı́rez et al., 2012; Longsworth and Fivel, 2021a). In the present chapter, the

energy barrier of FCC copper ∆E0 = 1.9 eV was obtained from DDD simulations

(Longsworth and Fivel, 2021a) to make the work independent of other numerical

results.

The nucleation length was deduced from the theory of Malka-Markovitz and

Mordehai (2018) (see equation 4.21). In said model, the only free variable is the line

tension Tp, which is proportional to the line-energy parameter α (see equation 4.14).

Typical values of the line-energy parameter are in the range between 0.1 and 0.6.

Kang et al. (2014) studied the cross-slip energy of FCC nickel using MD simulations

and their line tension model. They reported a reasonable agreement between their

atomistic simulations and LT model for α values in the range from 0.1 to 0.6. In

chapter 3, the line-energy parameter was calibrated using the LT model of Kang

et al. (2014). In order to obtain an unstressed energy barrier of 1.9 eV in FCC

copper, the line-energy parameter was adjusted to 0.22. For that reason, an average

line-energy value of 0.3 was used in the present work.

In order to calculate the activation enthalpy and the nucleation length, σgS, σgE,

σcsS and σcsE must be obtained as functions of the total stress tensor components.

Therefore, the Cartesian coordinate system was rotated such that the [111] direction
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Property Value

a0 3.61 Å (Davey, 1925)

b a0/
√

2 (Kittel and McEuen, 2018)

d a0/
√

3 (Kittel and McEuen, 2018)

γ 42 mJ/m2 (Bonneville and Escaig, 1979)

ν 0.324 (Ledbetter and Naimon, 1974)

µ 54.6 GPa (Schmauder and Mishnaevsky, 2008)

Tm 1358 K (Mangum et al., 2001)

B 1.5 ×10−5 Pa-s (Philibert, 1979)

Table 4.1: Parameter values used for FCC copper; a0 is the lattice parameter, b

the magnitude of the Burgers vector, d the interplanar separation, γ the intrinsic

stacking-fault energy, ν the Poisson’s ratio, µ the shear modulus, Tm is the melting

temperature and B the viscous drag coefficient at room temperature.

h [Å] Li [Å] yi [Å] yc [Å] δt

6d ≈ 12.5 2000b ≈ 5105.3 10b ≈ 25.5 4.4 0.0001

25d ≈ 52.1 350b ≈ 893.4 30b ≈ 76.6 18.5 0.01

Table 4.2: Dipole dimensions in the DDD simulations; h is the dipole height, Li the

initial dislocation length, yi the initial separation of the dislocations in the direction

of ŷ, yc their separation at the common cross-slip plane and δt the time step.

Figure 4.4: Screw dipole of height h contained in the glide plane (shaded in gray).

The dislocation separation at the common cross-slip plane (shaded in blue) is de-

noted as yc.
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matched with the ẑ axis and the Burgers vector [110] with the x̂ axis. The resulting

equations of the stress components were given by:

σgS = σxz (4.28)

σgE = σyz (4.29)

σcsS =
2
√

2σxy − σxz
3

(4.30)

σcsE =
7σzy + 2

√
2(σyy − σzz)
9

(4.31)

The cross-slip mechanism has been extensively studied using atomistic simula-

tions. In particular, Vegge et al. (2000) and Oren et al. (2017) have investigated the

kinetics of cross-slip in FCC copper. Both studies offer a quantitative analysis of

the activation enthalpy and annihilation rate of screw dipoles, which can be used as

a standard to compare against other results. For the purpose of comparison, sim-

ilar dipole dimensions to theirs were used in the present DDD simulations of FCC

copper.

Consider a screw dipole of height h with both dislocations arrested in the glide

plane, at the intersection with the common cross-slip plane. In FCC structures,

the angle between two conjugate planes is θc = arccos
(

1
3

)
≈ 70.5◦. Consequently,

the dislocation separation in the direction of ŷ is yc = h cot θc (see figure 4.4). If

under these conditions one of the dislocations cross-slips, it would start gliding in the

conjugate plane and both dislocations would annihilate each other. For that reason,

the activation enthalpy and annihilation rate were calculated at the intersection with

the common cross-slip plane.

The dipole dimensions, physical properties and elastic constants used in the DDD

simulations are shown in tables 4.1 and 4.2.

4.3 Results and discussion

4.3.1 Activation enthalpy of cross-slip

The DDD simulations were performed using non-dissociated dislocations. In con-

sequence, there were no internal Escaig stresses induced by the screw dipole in the

present DDD simulations. According to linear elasticity theory, a screw dislocation

with Burgers vector b = bx̂ generates non-zero stress components σxy and σxz (An-

derson et al., 2017). As a result, a perfect screw dipole can only produce Schmid
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Figure 4.5: Activation enthalpy of the 50-Å-high dipole as function of compressive

Escaig stress applied on the glide plane. The blue circles are the activation en-

thalpies obtained from the DDD simulations using the model of Malka-Markovitz

and Mordehai (2019). The black diamonds are the data points obtained by Oren

et al. (2017) using MD simulations.

stresses on the glide and cross-slip planes (see equations 4.28 and 4.30). However, a

dissociated screw dipole could create both Schmid and Escaig stresses on the glide

and cross-slip planes. The screw component of the Shockley partials would induce

Schmid stresses on the glide and cross-slip planes as the perfect screw dipole. On the

other hand, the edge components of the Shockley partials would introduce Escaig

stresses on the glide and cross-slip planes. It can be shown that an edge disloca-

tion with line direction ξ̂ = x̂ and Burgers vector b = bŷ generates non-zero stress

components σxx, σyy, σzz and σyz (Anderson et al., 2017). For that reason, the edge

component of the Shockley partials will introduce Escaig stresses on the glide and

cross-slip planes of a dissociated screw dipole (see equations 4.29 and 4.31).

In order to compensate for the absence of internal Escaig stresses in the DDD

simulations, a compressive Escaig stress of 1300 MPa was applied on the glide plane

of the 13-Å-high dipole. As a result, the activation enthalpy decreased to ∆H =

0.295 eV. In contrast, the internal Escaig stress in the 50-Å-high dipole are expected

to be less strong than in the 13-Å-high dipole. For that reason, no external stress was

applied in the glide plane of the 50-Å-high dipole to account for the internal stress.

Oren et al. (2017) used MD simulations to obtain the activation enthalpy as function

of compressive Escaig stress on the glide plane. Figure 4.5 shows the activation

enthalpy of the 50-Å-high dipole obtained using DDD simulations. The atomistic

results of Oren et al. (2017) are also plotted for reference. The activation enthalpy

at σgE =1500 MPa was approximately 0.3 eV using both simulation techniques. The
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σgE [MPa] ∆H [eV] L [Å] Ln [Å] Γ0
HTST [Hz]

0 1.190 4862 32.9 3.93×1017

1300 0.295 4862 10.0 6.07×1014

Table 4.3: Parameter values obtained from DDD simulations for the 13-Å-high

dipole; σgE is the compressive Escaig stress applied on the glide plane of the screw

dipole, ∆H the activation enthalpy, L the screw-segment length, Ln the nucleation

length and Γ0
HTST = ν L

Ln
exp

(
∆H
kbTm

)
the constant prefactor of equation 4.13.

results were in good quantitative agreement. Although not all the values obtained

in this work lie within their uncertainty, the largest discrepancy was only a small

fraction of an electron-volt.

Oren et al. (2017) deduced an energy barrier of 1.05 ± 15% eV, which lies within

the experimental value of 1.15 ± 0.37 eV measured by Bonneville et al. (1988). They

inferred this value from their data by double interpolation to both zero applied stress

and infinite dipole height. On the other hand, the energy barrier of 1.9 eV used in

this work was almost the double of their estimate. In spite of it, the simulation

results are in good agreement because the activation enthalpy does not decrease

linearly with the applied stress. Instead, the activation energy reduces to almost

half of its value at 250 MPa (Longsworth and Fivel, 2021a), but decreases only 0.3

eV when increasing the stress magnitude from 700 to 1500 MPa.

4.3.2 Nucleation rate of cross-slip

Figure 4.6 shows the Arrhenius of the cross-slip rate for the 13-Å-high dipole. The

logarithm of the annihilation rates obtained by Vegge et al. (2000) using MD sim-

ulations are also plotted for reference. Since their data points could be fitted well

with a straight line, they proposed the following rate equation:

Γ =
1

τ
= Γ0 exp

(
−∆H

kbT

)
(4.32)

where τ is the average annihilation time and Γ0 is a the rate prefactor. The least

squares fit lead them to the values ∆H = 291 ± 27 meV and Γ0 = 7.8× 1014 Hz.

The parameter values obtained from DDD simulations are shown in table 4.3.

The rate-prefactor value calculated using the model of Esteban-Manzanares et al.

(2020) was similar to the one proposed by Vegge et al. (2000) to fit their atomistic

data (6.07×1014 and 7.8×1014 Hz, respectively). Therefore, the cross-slip rates were

in good quantitative agreement as observed in figure 4.6. It is worth mentioning

that the external Escaig stress only affects the dissociation width. For that reason,
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Figure 4.6: Arrhenius plots of the cross-slip rate for the 13-Å-high dipole. The

black dots with error bars represent the 19 data points obtained by Vegge et al.

(2000) using MD simulations. The black line corresponds to the linear fit proposed

by Vegge et al. (2000) to model their atomistic data. The blue line represents the

model of Esteban-Manzanares et al. (2020) used in the DDD simulations.

the screw-segment length remains unaffected by the applied Escaig stress for a given

dipole height (see the third column of table 4.3).

Figure 4.7 shows the Arrhenius plots of the cross-slip rate for the 50-Å-high dipole

as function of compressive Escaig stress applied on the glide plane. Most values

were in good quantitative agreement. The harmonic approximation used in the rate

equation assumes that the transition state is close to the original one. This is most

accurate at sufficiently low temperatures, when the transition cannot be induced by

thermal activation. In the investigated temperature range, the activation enthalpy

is larger than the thermal energy. For that reason, the cross-slip rates calculated

using the HTST should be valid.

σgE [MPa] ∆H [eV] L [Å] Ln [Å] Γ0
HTST [Hz]

0 1.55 447 32.9 8.14×1017

700 0.56 447 14.8 3.61×1014

900 0.45 447 12.8 1.58×1014

1100 0.36 447 11.2 8.86×1013

1500 0.26 447 9.1 4.64×1013

Table 4.4: Parameter values obtained from DDD simulations for the 50-Å-high

dipole.
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Figure 4.7: Arrhenius plots of the cross-slip rate for the 50-Å-high dipole as function

of compressive Escaig stress applied on the glide plane. The dots are the cross-slip

rates obtained from the DDD simulations using the model of Esteban-Manzanares

et al. (2020). The diamonds correspond to the atomistic results of Oren et al. (2017).

The temperature range goes from 350K to 650K in steps of 25K.

In faulted screw dipoles, the compressive Escaig stresses in the glide plane are

expected to increase with decreasing dipole height (Rasmussen et al., 2000). As

a result, the nucleation length modeled using equation 4.21 would decrease with

decreasing dipole height. However, there are no internal Escaig stresses in perfect

screw dipoles. In consequence, the nucleation length was 32.9 Å at zero applied

stress, independently of the dipole height (compare tables 4.3 and 4.4). As reference,

the nucleation length of aluminum was approximately 28 Å according to Esteban-

Manzanares et al. (2020).

4.4 Summary and conclusions

The objective of this work is to propose a method to compute the cross-slip rate

of screw segments in DDD simulations without relying on scaling factors, yet able

to reproduce atomistic results. Thus, all the input information used to compute

the cross-slip rate was retrieved from DDD simulations. The stress and forces on

the dislocation segments were calculated using the analytical expressions obtained

by Cai et al. (2006), who developed the non-singular theory of dislocations. As

a consequence, the core-width parameter introduced to obtain those non-singular

expressions influenced the DDD simulations strongly. In particular, atomistic and



Chapter 4. The rate of cross-slip 86

continuum energies are only comparable if the core-width value is deduced using both

an atomistic and a continuum dislocation model. Since the aim was to compare the

DDD simulations’ outcome with previous atomistic results, the core-width value was

calculated using the theory of Schöck (2010) as proposed by Ramı́rez et al. (2012).

They deduced an expression for the core-width parameter based on both atomistic

and continuum dislocation models.

The cross-slip rate of screw segments was calculated using the atomistic-based

model proposed by Esteban-Manzanares et al. (2020) (see equation 4.13), which

combines the HTST framework and the NM rule. In that model, the only two

input parameters that depend on the local stress are the activation enthalpy and

the nucleation length. Both quantities were obtained from the LT model of cross-slip

as follows.

The activation enthalpy was obtained by evaluating the cross-slip energy H(σ, l)

at the critical length satisfying equation 4.25. In the model of Malka-Markovitz

and Mordehai (2019), the activation enthalpy is a function of the microstructure

parameters and the stress components acting on the crystallographic planes, which

are easily accessible from the DDD simulation. With the aim of calibrating their

model, the unstressed energy barrier was set to 1.9 eV as obtained with the DDD

simulations of FCC copper (Ramı́rez et al., 2012; Longsworth and Fivel, 2021a).

The nucleation length was inferred from the LT model of cross-slip developed

by Malka-Markovitz and Mordehai (2018) (see equation. 4.21). It is expressed as

a function of the line tension, the microstructure parameters and the Escaig stress

on the glide plane. In said model, the only free variable is the line tension, which is

proportional to the line-energy parameter (see equation 4.14). Typical values of the

line-energy parameter are in the range between 0.1 and 0.6 (Kang et al., 2014). For

that reason, an average line-energy value of 0.3 was used in the present work.

In summary, the cross-slip modeling proposed in this paper by combining equa-

tions 4.13, 4.21 and 4.24 with α = 0.3 and ∆E0 = 1.9 eV can be reliably used in

DDD simulations of FCC copper. The activation enthalpies and cross-slip rates ob-

tained were in good quantitative agreement with the atomistic results of Oren et al.

(2017) and Vegge et al. (2000). These results ratify that the HTST approximation

and the MN rule are valid in the studied temperature range and stress conditions.



Chapter 5

The effect of cross-slip during cyclic fatigue

When a material is subjected to cyclic fatigue, its temperature increases. This

well-known effect is usually called self-heating (see chapter 1). Over the past three

decades, experimental approaches based on self-heating measurements during cyclic

loading have been employed to determine the fatigue limit of materials (Galtier,

1993; Luong, 1998; La Rosa and Risitano, 2000; Yang et al., 2001; Krapez et al.,

2000; Krapez and Pacou, 2002). In said experimental approaches, the fatigue limit

is identified with the range of applied stresses corresponding to an abrupt increase of

the probe’s temperature. Although the so-called self-heating method has been able

to fairly estimate the fatigue limit in many cases, the temperature as a physical quan-

tity cannot be directly considered as an indicator of fatigue damage (Meneghetti,

2007). In fact, it is widely acknowledged that temperature can also increase due

to non-damaging phenomena during reversible cyclic deformation (Halford, 1966;

Blotny and Kaleta, 1986). In strong contrast to the direct measurement of tempera-

ture at the specimen’s surface, energy estimations are expected to be invariant with

respect to the loading frequency and the specimen geometry (Meneghetti, 2007).

According to the first law of thermodynamics, one part of the mechanical work trans-

ferred to the material is dissipated through self-heating and the rest is converted

into stored energy in the form of plastic deformation (Halford, 1966; Meneghetti,

2007). In order to improve the fatigue characterization of materials, experimental

methods based on the quantification of a particular form of energy have been pro-

posed. Several candidates have been postulated as plausible indicators of fatigue

damage, most notably the mechanical work (Feltner and Morrow, 1961), the stored

energy (Wan et al., 2014; Warren and Wei, 2010), the dissipated energy (Charkaluk

et al., 2002; Meneghetti, 2007; Wang et al., 2017; Meneghetti et al., 2015) or even the

plastic strain energy (Halford, 1966; Ellyin and Kujawski, 1984; Duyi and Zhenlin,

2001). It has been reported that most of the mechanical work is converted into heat,

specially in the VHCF regime (Halford, 1966). Moreover, the dissipated energy is

easier to be measured compared to the stored energy, which requires the previous

87
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determination of the input mechanical work. For these reasons, the present work

will be focused on the dissipated energy as a damage indicator.

In the VHCF regime, the fatigue damage can be attributed to the slip irre-

versibilities during cyclic loading. Many authors have reported that the cross-slip

mechanism strongly affects the slip irreversibilities of ductile metals (Mughrabi,

2001; Déprés et al., 2006; El-Awady et al., 2008; Hilgendorff et al., 2013). Thus, the

first objective of this chapter is to study the effect of cross-slip on the dislocation

density evolution during cyclic loading, with particular focus on the firsts fatigue

cycles of the ultrasonic regime. In the present work, the extent of plastic damage

to the microstructure due to cross-slip was quantified using the dissipated energy.

For that reason, the second objective of this chapter is to present a DDD simulation

procedure to calculate the dissipated energy of dislocations. Section 5.1 reviews

the models used to calculate cross-slip of screw segments during cyclic loading and

presents the model used in the DDD simulations to calculate the dissipated energy.

Section 5.2 shows the corresponding simulation setups. For its simplicity, the effect

of cross-slip during cyclic fatigue on an isolated screw dislocation was analyzed first.

In order to consider a more complex case, the effect of cross-slip on a network of

twelve dislocations with an arbitrary angle between their Burgers vector and line

direction was also studied. Subsequently, section 5.3 discusses the effect of cross-slip

on the dislocation density and dissipated energy. Finally, section 5.4 presents the

summary and conclusions of this chapter.

5.1 Theory

5.1.1 Energy balance during cyclic fatigue

The energy balance after a loading cycle involves three quantities, namely the me-

chanical work supplied to the specimen, the dissipated energy associated to the

self-heating and the stored energy into the microstructure (Halford, 1966; Connes-

son et al., 2011). It is widely acknowledged that materials undergoing mechanical

deformation produce heat, even when loaded in the macroscopic elastic regime (See-

lan et al., 2020). The Fourier’s law modelling the heat conduction of a solid can be

expressed in terms of the heat sources, namely the amount of heat energy per unit

volume generated per unit time. In the case of a self-heated metal, the temperature

variation originates from two sources, specifically the thermoelastic heat source θTE

associated to the thermal expansion of the crystalline structure (Chrysochoos et al.,

2008), and the dissipative heat source θD caused by plasticity phenomena (Connes-

son et al., 2011). As a consequence, the thermoelastic heat source provokes a cyclical

variation of the temperature, whereas the dissipative heat source causes an increase
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on the mean temperature of the material (Seelan et al., 2020). Their associated en-

ergy can be obtained by integrating the heat sources over time (Chrysochoos et al.,

2008):

∆ETE =

∫
cycle

θTEdt = 0 ∆ED =

∫
cycle

θDdt (5.1)

It has been conclusively verified using infrared thermography that the thermoe-

lastic energy per cycle ∆ETE vanishes (Chrysochoos et al., 2008). In contrast, the

dissipated energy ∆ED monotonically increases over time because θD is always larger

than zero for dissipative materials. Intrinsic dissipation has been attributed to grain

boundary sliding and dislocation movements (Seelan et al., 2020). Most importantly,

it has been shown that most of the dissipated heat can be attributed to dislocation

motion in the majority of materials (Mareau et al., 2013).

Mechanical deformation directly affects the stored energy that characterizes the

crystalline imperfections, such as dislocations, vacancies, stacking-faults and twins

(Rosakis et al., 2000). The stored energy is defined as the contribution of internal

stress due to defects. Applying the first law of thermodynamics to one loading

cycle, the input work W is equal to the stored energy ∆ES plus the dissipated

energy (Connesson et al., 2011):

W =

∫
cycle

σε̇dt = ∆ES + ∆ED (5.2)

where σ is the stress and ε̇ the total strain rate.

In order to estimate the mechanical work experimentally, the time-resolved evo-

lution of the stress and total strain must be obtained. In the case of ultrasonic

fatigue at 20 kHz, the required time resolution is one microsecond or less. For that

reason, there are very few experimental attempts to estimate the mechanical work or

the stored energy in the VHCF regime. More recently, an experimental method for

microsecond time-resolved x-ray diffraction has been proposed to estimate the stress

and total strain (Ors et al., 2019) as a first step to compute the stored energy. De-

spite the significant progress to estimate the mechanical work, the dissipated energy

must be simultaneously obtained in order to compute the stored energy (Connesson

et al., 2011). For that reason, the present work will only be focused on the dissipated

energy as indicator of fatigue damage.

Considering the circumstance in which all plasticity is attributed to dislocations,

the dissipated energy per unit cycle is directly available from DDD simulations. In

the current work, the dissipated energy per unit cycle is calculated as (Lachowicz,

2001; Cui et al., 2017):
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Figure 5.1: Diagram showing the nodes’ positions of a segment at time t and at the

next instant t + ∆t. The shaded region denotes the incremental area swept by the

dislocation segment.

ED =

∫
cycle

σ : dεp =

∫
cycle

N∑
i=1

fPKi · vidlidt (5.3)

where σ is the effective stress tensor, N the total number of segments, dt the

time step, dl the segment length, fPK the Peach-Köhler force and v the velocity.

In chapter 2 it was learned that a dislocation moving on the glide plane with

normal n̂ produces a relative displacement over the swept area dA given by the

Burgers vector b. It can be inferred that the relative displacement caused by the

dislocation motion introduces a plastic strain on the microstructure proportional to

the swept area (Bulatov and Cai, 2006):

dεpij =
binj + bjni

2Ω
dA i, j = 1, 2, 3. (5.4)

where Ω is the total volume of the material. Consider a dislocation segment

defined by two nodes with initial positions xi1 and xi2 ending at final positions xf1
and xf2 after a simulation step (see figure 5.1). The incremental area swept out by

the segment after a simulation step can be expressed in terms of the nodes’ positions

as follows:

dA =
1

2
(xf2 − xi1)× (xf1 − xi2) = dAn̂ (5.5)

By virtue of the superposition principle, the addition of all segment’s contribu-

tions gives the total plastic strain increment at a given simulation step t. Thus, the

plastic strain after at time t+ ∆t can be obtained by adding the new plastic strain

increment generated as a result of the dislocation motion:



Chapter 5. The effect of cross-slip during cyclic fatigue 91

εp(t+ ∆t) = εp(t) + dεp(t+ ∆t) (5.6)

5.1.2 Cross-slip probability

Atomistic simulations have been used to estimate the average waiting time for a

single cross-slip process to occur. The reciprocal of said average waiting time is

known as the cross-slip rate Γ, which multiplied by an specified time step ∆t gives

the probability P that a single cross-slip event occurs at the end of said time window:

P = Γ∆t (5.7)

Following the cross-slip theory presented in chapter 4, the rate equation im-

plemented in the NuMoDis code (Drouet et al., 2014) was proposed by Esteban-

Manzanares et al. (2020):

Γ = ν
L

Ln
exp

(
−∆H

kbT

[
1− T

Tm

])
(5.8)

where ν = 1011 Hz is the fundamental frequency (Sobie et al., 2017), ∆H the

activation enthalpy of cross-slip, kb the Boltzmann constant, T the absolute tem-

perature, Tm the melting temperature, L the screw-dislocation length and Ln the

nucleation length of cross-slip (Malka-Markovitz and Mordehai, 2018):

Ln = β

√
Tpd0

2γ
(5.9)

where

β =
1

1 +
√

3b
6γ
σE
, Tp =

αµb2

2
, d0 =

µb2

24πγ

2− 3ν

1− ν (5.10)

γ being the intrinsic SF energy, σE the Escaig stress, α the line-energy parameter

and ν the Poisson’s ratio.

The activation enthalpy was calculated using the general expression developed by

Malka-Markovitz and Mordehai (2019) based on the LT model presented in chapter

3:

∆H(σ)

∆E0

=
βg

2
+

(
βcs

2

)
tanh(lc)−

(
βcs

2

)[
2αL
1.55

lcE
∗ +

α3
Ls

1.55

δ

βcs
l3c

]
(5.11)

where ∆E0 is the unstressed energy barrier and αL ≈ 0.6 is a scale factor. The

superscript g and cs refer to the glide and cross-slip plane, respectively. As discussed
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in chapter 4, the critical length lc can be found by solving the following equation

numerically:

1.55

cosh2(lc)
− 3α3

Lsδ

βcs
l2c = 2αLsE

∗ (5.12)

where the E∗ and δ functions are given by (Malka-Markovitz and Mordehai,

2018):

E∗ = ln

(
βcs

βp

)
and δ =

1

6

(
bσcsS
γ

)2

(5.13)

5.2 Methodology

According to the presented models, the cross-slip rate and activation enthalpy are

expressed as function of the Schmid stress in the glide plane σgS, the Escaig stress

in the glide plane σgE, the Schmid stress in the cross-slip plane σcsS and the Escaig

stress in the cross-slip plane σcsE . Similarly to the procedure carried out in chapter 3,

the Cartesian coordinate system was rotated such that the [111] direction matched

with the ẑ axis and the Burgers vector [110] with the x̂ axis. In said basis, the glide

plane n̂g, the cross-slip plane n̂cs, the direction of expansion under positive Escaig

stress in the glide plane ŵg, the direction of expansion under positive Escaig stress

in the cross-slip plane ŵcs and the unitary Burgers vector b̂ are given by:

n̂g = [0, 0, 1] (5.14)

ŵg = [0, 1, 0] (5.15)

n̂cs =

[
0,

2
√

2

3
,−1

3

]
(5.16)

ŵcs =

[
0,

1

3
,
2
√

2

3

]
(5.17)

b̂ = [1, 0, 0] (5.18)

as illustrated in figure 5.2. Consider a symmetric stress tensor in the Cartesian

basis:

σ =

 σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (5.19)
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Figure 5.2: Simulation setup showing loading directions on a a
6
[110] dissociated dis-

location located in: (a) the glide plane and (b) the cross-slip plane. The dissociated

RHS dislocation in the glide plane has partials’ Burgers vector bg1 = a0

6
[121] and

bg2 = a0

6
[211], whereas the dissociated RHS dislocation in the cross-slip plane has

partials’ Burgers vector bcs1 = a0

6
[121] and bcs2 = a0

6
[211].

Setting σxx = σyy = 0, the stress components σgE, σgS, σcsE and σcsS are given by:

σgE = σ · n̂g · ŵg = σyz (5.20)

σgS = σ · n̂g · b̂ = σxz (5.21)

σcsE = σ · n̂cs · ŵcs =
7σzy − 2

√
2σzz

9
(5.22)

σcsS = σ · n̂cs · b̂ =
2
√

2σxy − σxz
3

(5.23)

where σ ·n̂·û is the Schmid’s law. Appendix A shows a more detailed calculation

of Escaig and Schmid stresses.

Dislocation motion is inertial at both low and high velocities. Said inertia orig-

inates from the kinetic energy of the moving core (Tang, 2018). In order to study

the cyclic movement of dislocations, the dislocation motion must resonate with the

applied stress. Since dislocations are slow respect to the time required for equilibra-

tion, the external loading must be increased in a quasi-static manner (Déprés et al.,

2004a,b, 2006; Erel et al., 2017b). The effect of frequency on cyclic fatigue simula-

tions using DDD methods has been therefore not considered. Instead, the fatigue

regimes are studied according to their range of applied stress amplitudes. In the
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Figure 5.3: Perfect right-handed screw dislocation of length equal to 10,000 Å con-

tained on the (111) plane. Its Burgers vector and line orientation are parallel to the

[110] direction.

present simulations, the time step was set such that the displacement of segments

did not exceed 10 nm per step, which resulted in a time step with values between 0.1

and 1 ns for the present simulations. A pure Schmid stress was applied on the glide

plane to set the maximum stress amplitude. The applied load was slowly increased

at each simulation step once the dislocation reached quasi-static equilibrium with

the external load. For this purpose, the applied stress tensor was multiplied by a

sine wave of sufficiently large period:

σcyc = sin

(
2πn

N

)
σ (5.24)

where n is the current simulation step and N is the number of steps per cycle. For

the particular DDD simulations described in this work, it was found thatN = 40, 000

steps was a sufficiently long period. When a much smaller N was used, the external

loading was faster than the inertial motion. In that case, the dislocation was not

able to complete the cycle at simulation step n = N .

The cross-slip mechanism in the present simulations was modeled using the ki-

netic Monte Carlo method. Every simulation step, the screw chains were identified.

If the angle between its Burgers vector and the line direction was smaller than ten

degrees, the dislocation was considered to be screw. A random number between zero
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Figure 5.4: Arrangement of twelve dislocations corresponding to each glide system

of the FCC structure. Solid arrows denote the Burgers vectors.

and one was generated for each screw chain. The associated cross-slip probability per

time step was calculated using equation 5.7. If the cross-slip probability was smaller

than the random number, the glide plane of the screw dislocation was changed to its

corresponding deviated plane, otherwise, the glide plane of the dislocation remained

unchanged.

Single dislocation case

The effect of cross-slip during cyclic fatigue in FCC copper was studied using a

perfect screw Frank-Read source. The separation between its pinning points was

10,000 Å (see figure 5.3). The simulation box was 5×104 Å wide, 5×104 Å deep and

4× 106 Å high with fixed boundary conditions. The temperature used to calculate

the cross-slip rate of screw segments was set to 400 K. As a consequence of the

prohibitively high unstressed energy barrier, cross-slip events of isolated dislocations

are extremely unlikely to occur. Considering for example a dislocation of length

10,000 Å in copper, the cross-slip probability at room temperature is proportional

to 10−21. A pure Schmid stress driving the cyclic motion was not sufficient to trigger

any cross-slip events. In order to further decrease the activation enthalpy of cross-

slip, a compressive Escaig can be added to the pure Schmid stress that drives the

cyclic motion. The present DDD simulations showed that to trigger cross-slip events

during one cycle, it was sufficient to add a compressive Escaig stress of 300 MPa

to the pure Schmid stress acting on the glide plane. The corresponding dissipated

energy per cycle was obtained for a large range of applied Schmid stress amplitudes

between 20 and 90 MPa. The dissipated energy per cycle at the pure Schmid stress

when no cross-slip occurs was also obtained as a reference. The dissipated energy

per cycle was calculated using equation 5.3 in both cases.
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Property Symbol Value

Unstressed energy barrier ∆E0 1.9 eV (Longsworth and Fivel, 2021a)

Line-energy parameter α 0.3 (Longsworth and Fivel, 2021b)

Lattice parameter a0 3.61 Å (Davey, 1925)

Length of Burgers vector b a0/
√

2 (Kittel and McEuen, 2018)

Intrinsic SF energy γ 42 mJ/m2 (Bonneville and Escaig, 1979)

Shear modulus µ 54.6 GPa (Schmauder and Mishnaevsky, 2008)

Poisson’s ratio ν 0.342 (Bradfield and Puesey, 1953)

Melting temperature Tm 1358 K (Mangum et al., 2001)

Viscous drag coefficient B 1.5 ×10−5 Pa-s (Philibert, 1979)

Table 5.1: Parameter values for FCC copper used in the DDD simulations.

Multiple dislocations case

The effect of cross-slip during VHCF was simulated using twelve dislocations asso-

ciated to each gliding system of the FCC structure. Every dislocation was pinned at

its ends. All dislocations had an initial length of 10,000 Å. The simulation box was

5× 104 Å wide, 5× 104 Å deep and 4× 106 Å high with fixed boundary conditions.

The temperature used to calculate the cross-slip rate of screw segments was equal to

400 K. In FCC copper, the VHCF regime corresponds to the range of stress ampli-

tudes between 3 and 26 MPa (Mughrabi, 1978). In order to study the VHCF regime

of FCC copper, a pure Schmid stress of 20 MPa was applied to the glide system

[110](111). The loading tensor was attenuated by the sine function to simulate the

cyclic fatigue as shown in equation 5.24. A single perfect right-handed screw was

placed in the activated system. The angle between the Burgers vector and line di-

rection of the remaining dislocations was arbitrarily set, with initial values varying

between 0 and 126 degrees (see figure 5.4). The center of every dislocation was also

randomly assigned. However, the maximum separation between the center of the

dislocation in the activated system and the center of the remaining dislocations was

45 Angstroms. Sufficiently strong internal stresses on the screw dislocation were

generated by the remaining dislocations. In contrast to the simulations of an iso-

lated screw dislocation, an additional compressive Escaig stress was not necessary to

trigger cross-slip events. In the present simulations, the dislocation density during

the firsts cycles of the VHCF was computed. The dislocation density obtained with

the disabled cross-slip feature was also shown as a reference.

The elastic constants of FCC copper used in the DDD simulations are shown in

table 5.1.
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Figure 5.5: Cross-slip at the crystal boundary due to a dislocation pile-up.

5.3 Results and discussion

5.3.1 Effect of cross-slip on the dislocation density

Figure 5.6 (A) shows density evolution of single perfect screw Frank-Read source

during the firsts five fatigue cycles. The green curve shows the dislocation density

obtained when a compressive Escaig stress of 300 MPa is applied in the glide plane

to trigger the cross-slip events, whereas the green curve represents the dislocation

density obtained at zero additional Escaig stress. In both cases, a pure Schmid stress

of approximately 40 MPa was applied in the glide plane to drive the cyclic motion.

At sufficiently low applied stress, the dislocation remained close to its equilibrium

position. By increasing the applied stress, the Frank-Read source gets activated.

As a consequence, an increasing number of dislocation loops started to reach the

crystal boundaries. When the maximum stress was applied, the dislocation loops

had zero velocity. A pile-up of screw dislocations was formed at the boundary

side which is parallel to the dislocation source as shown in figure 5.5. Said pile-

up generated internal Schmid stresses on the deviated plane. In the case where

an additional compressive Escaig of 300 MPa was applied, the activation enthalpy

decreased sufficiently and some screw dislocations within the pile-up could cross-slip.

However, the cross-slipped screws got pulled back to the glide plane immediately

after the applied stress started to decrease. For that reason, the dislocation density

was only slightly higher for a short period of time when an additional compressive

Escaig was applied. It can be concluded that the effect of cross-slip on an isolated

dislocation was negligible due to the absence of irreversibility during the cycling.

Figure 5.6 (B) shows the effect of cross-slip on the dislocation density evolution

of twelve dislocations during firsts cycles of the VHCF regime corresponding to low

stress amplitudes. The green curve represents the dislocation density obtained with

the cross-slip feature enabled in the code, whereas the blue curve represents the

dislocation density obtained with the cross-slip feature disabled. The vertical lines

indicate the instants at which cross-slip events occur in the corresponding simula-
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Figure 5.6: Effect of cross-slip on the dislocation density evolution during the firsts

fatigue cycles for: (A) a perfect screw Frank-Read source and (B) twelve dislocations

with an arbitrary angle between their Burgers vector and line direction.

tion. During the first cycle, the density abruptly decreased due to junction zipping

before the first cross-slip event occurs. For the particular dislocation network used

in the present simulations, the density obtained with the cross-slip feature enabled

decreased further with respect to the dislocation density simulated with the cross-

slip feature disabled. At certain parts of the fatigue cycles, the dislocation structure

generated strong compressive Escaig stresses near the center of the screw dislocation

located on the activated system, in addition to sufficiently large Schmid stresses on

the corresponding deviated plane. As a consequence, the screw dislocation moved

back and forth between the glide plane and its corresponding cross-slip plane, re-

leasing the strong internal stresses near the center of the dislocations. It can be

concluded that the cross-slip mechanism can have a significant effect on the dislo-

cation density evolution even at small applied stress amplitudes.

5.3.2 Effect of cross-slip on the dissipated energy

Figure 5.7 shows the dissipated energy per cycle of an isolated screw dislocation

for a large range of applied Schmid stress amplitudes between 20 and 90 MPa. As

earlier discussed on section 5.2, cross-slip events could be triggered by adding a

compressive Escaig stress of 300 MPa to the pure Schmid stress acting on the glide

plane. The green curve shows the dissipated energy per cycle obtained when a

compressive Escaig stress of 300 MPa is applied on the glide plane to trigger the

cross-slip events, whereas the green curve represents the dissipated energy per cycle

at zero additional Escaig stress. For applied stress amplitudes smaller than 40 MPa,

the Frank-Read source remains deactivated. As a consequence, the dissipated energy

per cycle was the same regardless of the additional compressive Escaig stress. For

applied stress amplitudes larger than 40 MPa, the Frank-Read source gets activated
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Figure 5.7: Dissipated energy per cycle of a perfect screw Frank-Read source. The

abscissa axis represents the pure Schmid stress acting on the glide plane, which

corresponds to the applied stress amplitude.

and the dislocation loops generated start to pile up at the crystal boundary. As

mentioned on section 5.3.1, the cross-slip events occur at the box sides which are

parallel to the dislocation source. However, the cross-slipped screws are pulled back

to the glide plane immediately after the applied stress reaches its maximum value.

For that reason, the dissipated energy per cycle does not significantly increase due

to the cross-slip events. In agreement with the results of section 5.3.1, it can be

concluded that the effect of cross-slip on an isolated dislocation is negligible.

5.4 Summary and conclusions

In the present chapter, the effect of cross-slip during cyclic fatigue on two different

microstructural defects on FCC copper was studied. For simplicity, the effect of

cross-slip during cyclic fatigue on a perfect screw Frank-Read source was analyzed

first. In order to consider a more complex case, the effect of cross-slip on a network

of twelve dislocations with an arbitrary angle between their Burgers vector and line

direction was also studied. For the purpose of characterizing said microstructural

defects, the dislocation density evolution during the firsts fatigue cycles was ob-

tained. Moreover, the dissipated energy per cycle was used to quantify the extend

of plastic deformation due to cross-slip of a perfect screw Frank-Read source. It was

found that although the cross-slip probability of an isolated screw dislocation source

is negligible at 400 K, the cross-slip probability could be significantly increased by
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adding a compressive Escaig stress of 300 MPa to the pure Schmid stress acting on

the glide plane. As a result, some dislocations could cross-slip at the crystal bound-

aries due to the internal Schmid stress arising from the dislocation pile-up. However,

the cross-slipped screws were pulled back to the glide plane immediately after the

applied stress reached its maximum value, such that there was no dislocation stor-

age during the cycling. It follows that for the case of an isolated dislocation, the

cross-slip mechanism did not cause any irreversible change on the microstructure. It

can be concluded that the effect of cross-slip on an isolated dislocation was negligi-

ble. In contrast, the cross-slip mechanism produced irreversible changes in the case

of a dislocation network. Due to the small distance of less than 45 Å between the

centers of the dislocations, a pure Schmid stress of 20 MPa was sufficient to trigger

the cross-slip events without the need to add any external Escaig stress. For that

reason, cross-slip plays a significant role on the microstructure evolution even in the

firsts cycles of the VHCF regime.



Chapter 6

Conclusions and future work

As a way to conclude the present manuscript, a short overview of each chapter is

provided. With the expectation of simulating many cycles of the VHCF regime in the

future, a time-coarsening algorithm and some possible extensions of the presented

work are finally given in the last section.

Conclusions

Theory of dislocations

Chapter 2 reviewed the fundamental concepts necessary to understand the cross-

slip mechanism, such as the physical dissociation of perfect dislocations on the FCC

structure, the description of Escaig stresses that affect the dissociation separation

between the partial dislocations and the definition of Schmid stresses driving the

dislocation motion perpendicularly to the Burgers vector. In order to clarify the

effect of Escaig and Schmid stresses on a general dissociated dislocation, the direction

of motion under the influence of stress was carefully discussed for each dislocation

type.

The activation enthalpy of cross-slip

Chapter 3 presented a study of the cross-slip energetics in FCC copper using DDD

simulations. In agreement with the work of Ramı́rez et al. (2012), the constriction

energy required for cross-slip initiation was 0.7 eV. A negligible effect on the con-

striction energy was obtained for applied compressive Escaig stresses in the range

between 50 to 250 MPa. In further agreement with the DDD simulations of Ramı́rez

et al. (2012), the unstressed energy barrier of cross-slip was found to be 1.9 eV. As

a second step, the effect of stress on the activation enthalpy of cross-slip was esti-

mated for a wide range of Escaig and Schmid stresses. In qualitative agreement with

the atomistic simulations performed by Kang et al. (2014), it was confirmed that

101
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both stress components have a comparable effect in reducing the energy barrier. By

applying a compressive Escaig stress on the glide plane, the energy barrier was most

drastically reduced up to 50% of its value. Two modern LT models of cross-slip

were used as references to compare with the DDD simulation results, namely, the

numerical LT model of Kang et al. (2014) and the general expression for the acti-

vation enthalpy developed by Malka-Markovitz and Mordehai (2019). The model

of Kang et al. (2014) was calibrated by tweaking the line-energy parameter α to

match the unstressed energy barrier obtained from DDD simulations, whereas the

model of Malka-Markovitz and Mordehai (2019) was simply calibrated by using the

same unstressed energy barrier of 1.9 eV as obtained from DDD simulations. It

was concluded that both theoretical models were in good quantitative agrement

with the DDD simulation results. For that reason, the model of Malka-Markovitz

and Mordehai (2019) could be reliably employed on DDD codes to calculate the

activation enthalpy of screw segments.

As a final remark, the core-width parameter value of the non-singular theory

of Cai et al. (2006) used in DDD simulations must be carefully deduced from the

models of Schöck (2010) as suggested by Ramı́rez et al. (2012). Otherwise, neither

the constriction energies nor the energy barriers could be correctly estimated using

DDD simulations.

The content of this chapter was published in the Journal of Mechanics and

Physics of Solids (Longsworth and Fivel, 2021a).

The rate of cross-slip

Based on the quantitative consistency between the DDD simulation results and

the LT models demonstrated in chapter 3, a new DDD methodology employing

the analytical model of Malka-Markovitz and Mordehai (2019) to simulate cross-

slip was proposed in chapter 4. To calibrate their model, the unstressed energy

barrier was set to 1.9 eV as obtained with the DDD simulations of FCC copper

(Longsworth and Fivel, 2021a). In contrast with many previous cross-slip models

used in DDD simulations, no scaling factors nor fitting parameters were required

to reproduce quantitative atomistic results. The rate of cross-slip was calculated

using the atomistic-based model proposed by Esteban-Manzanares et al. (2020).

Besides the activation enthalpy, the nucleation length was the only other stress-

dependent parameter required to compute the cross-slip rate. Said nucleation length

was inferred from the LT model of cross-slip developed by Malka-Markovitz and

Mordehai (2018). The only free variable of the nucleation length was the line-energy

parameter, which has typical values in the range between 0.1 and 0.6 (Kang et al.,

2014; Longsworth and Fivel, 2021a). For that reason, an average line-energy value
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of 0.3 was used in chapter 4 to compute the nucleation length of cross-slip.

There are not many quantitative studies of the cross-slip rate in the literature.

A small number of rate estimates have been obtained using atomistic simulations.

In particular, Vegge et al. (2000) and Oren et al. (2017) provided some estimates

of the cross-slip rate in FCC copper, which have been used as a standard. Their

activation enthalpies and cross-slip rates were both in good quantitative agreement

with the presented DDD simulation results. It was concluded that the proposed

cross-slip methodology can be reliably implemented on any DDD code to simulate

the physics of fatigue in metals.

The content of this chapter was published in the Journal of Mechanics and

Physics of Solids (Longsworth and Fivel, 2021b).

The effect of cross-slip during cyclic fatigue

Chapter 5 showed some preliminary applications of the recently benchmarked cross-

slip modeling described in chapter 4 to cyclic fatigue simulations. Since the external

loading was increased in a quasi-static manner, the effect of frequency on the DDD

simulations was not considered. Instead, the fatigue regimes were studied according

to their range of applied stress amplitudes. The concrete objective of chapter 5

was to study the effect of cross-slip on two different microstructural defects on FCC

copper was studied, namely on one isolated dislocation, and on twelve dislocations

with an arbitrary angle between their Burgers vector and line direction. It was found

that cross-slip on an isolated dislocation could be triggered at the crystal boundary

by applying an additional compressive Escaig stress to the cyclic loading. Under

this condition, cross-slip events caused the screw segments to bow-out at the crystal

boundary due to the Schmid stress arising from the dislocation pile-up. However,

the cross-slip mechanism did not cause any irreversible change on the microstructure

because cross-slipped screws were immediately pulled back to the glide plane after

the applied Schmid stress reached its maximum value. In strong contrast, the pure

Schmid stress driving the cyclic motion was sufficient to trigger cross-slip events

on the dislocation network. It can be concluded that cross-slip plays a significant

role on the microstructure evolution by allowing dislocations on different planes to

irreversibly react with each other.

The content of this chapter was presented at the 8th international conference on

very high cycle fatigue (VHCF8) on July 2021.
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Future work

Time-coarsening algorithm for VHCF simulations

DDD methods have been adequate to study the firsts cycles of the LCF regime. They

can only simulate a few tens of fatigue cycles due to the computational limitations

imposed by the fine description of the microstructure. At the time of writing, no at-

tempts to simulate the other fatigue regimes have been found in the literature. Since

the VHCF regime corresponds to very small applied stress amplitudes, cross-slip of

screw dislocations provoking cyclic irreversibilities are far more infrequent than in

the LCF regime, which implies that a significant accumulation of microstructural

defects would occur at a much larger number of cycles. Jump-in-cycle techniques

can be coupled with the kinetic Monte Carlo model of cross-slip to skip the fatigue

cycles where no cyclic irreversibilities occur, enabling to predict the number of cycles

to failure in the VHCF regime occurring at a much larger time scale. The present

section proposes a new time-coarsening algorithm based on the Monte Carlo method

to simulate the VHCF regime after many cycles.

The two most prominent Monte Carlo (MC) methods are the Metropolis Monte

Carlo (MMC) and the kinetic Monte Carlo (kMC) methods. The MMC method

can be used to improve the spatial-sampling efficiency in simulations (Longsworth,

2017; Zhang and Yang, 1993; Chen and Roux, 2015). It generates configurations

according to a prescribed probability distribution. Since the time progression leading

to an equilibrium state is stochastic, there is no information about dynamics of the

system nor on how fast the equilibrium state is reached. For problems in which

the time increments related to the kinetics of the system are important, the kMC

method is the appropriate alternative to take into consideration the physical time

of simulations. The transition probability in the MMC method relies on the time-

independent activation energy between two states, whereas the transition probability

in the kMC method is calculated using a time-dependent rate equation Γ. For single

processes such as the cross-slip of screw dislocations, the reciprocal of the rate is

equal to the average time required for the process to occur. The probability P that

such transition occurs within an specified time step ∆t is given by:

P = Γ∆t (6.1)

Recall that NuMoDis (Drouet et al., 2014) employs the atomistic-based cross-slip

rate developed by Esteban-Manzanares et al. (2020):

Γ = ν

(
L

Ln

)
e
−∆H

kbT
(1− T

Tm
) (6.2)
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Variable Value

ν[s−1] 1011 (Sobie et al., 2017)

Tm [K] 1357 (Mangum et al., 2001)

kb [eV/K] 8.6× 10−5

T [K] 300

∆H [eV] 0.4

L [Å] 10000

Ln [Å] 15

Table 6.1: Example values associated to the fastest cross-slip process; ν is the

fundamental frequency, Tm the melting temperature, kb the Boltzmann constant,

T the absolute temperature, ∆H the activation enthalpy, L the screw-dislocation

length and Ln the nucleation length of cross-slip, which typically varies between 10

and 30 Å.

where ν is the fundamental frequency, L the screw-dislocation length, Ln the

nucleation length of cross-slip, kb the Boltzmann constant, Tm the melting tem-

perature, T the absolute temperature and ∆H the activation enthalpy, which is

calculated using the general expression developed by Malka-Markovitz and Morde-

hai (2019) based on the LT model. According to the kMC method, a random number

between zero and one is generated at the beginning of each simulation step. If said

random number is larger than the cross-slip probability of a given screw segment, its

glide plane is changed to the corresponding deviated plane, or else the glide plane

remains unchanged.

There are several schemes to determine the time step (Cao, 1994; Voter, 1986;

Dawnkaski et al., 1995b,a). By simply choosing a constant time step for the whole

simulation (Dawnkaski et al., 1995a) , the time step should be smaller than the

fastest process. In the context of discrete dislocation dynamics simulations, examples

of physical processes are the glide of dislocations over a given distance, the cross-slip

of a screw segment having a certain length, the annihilation between two dislocations

of opposite signs, the process of junction formation, among others. Assuming that

the screw segment most likely to cross-slip at all times has the parameter values

indicated in table 6.1, the evaluation of equation 6.2 using said parameter values

gives the maximum possible rate:

Γmax = 3.8× 108 Hz (6.3)

Setting the maximum cross-slip probability to the arbitrary value of 0.5, the time

step can be determined using equation 6.1:
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∆H [eV] P

1.9 1.1× 10−20

1.6 9.1× 10−17

1.2 1.6× 10−11

0.8 2.8× 10−6

0.6 1.2× 10−3

0.4 0.5

Table 6.2: Cross-slip probability P as function of the activation enthalpy ∆H ob-

tained using the parameter values shown in table 6.1 and the time step value ∆t =

1.3 ns.

∆t =
0.5

3.8× 108
= 1.3 ns (6.4)

The number of cross-slip events at the applied stress levels corresponding to the

VHCF regime are negligible. Table 6.2 shows the cross-slip probability obtained

using the parameter values shown in table 6.1 at different activation enthalpies.

For the low stress amplitudes between 3 and 26 MPa corresponding to the VHCF

regime of copper (Mughrabi, 1978), the unstressed energy barrier of 1.9 eV does

not significantly decrease. As discussed in chapter 3, the energy barrier of copper

decreases on average only 0.1 eV at the maximum stress amplitude of the VHCF

regime, which corresponds to a negligible cross-slip probability in the range between

10−18 and 10−20 for isolated screw dislocations. Assuming that cross-slip is the

main mechanism inducing cyclic irreversibilities in the microstructure, the simula-

tions steps where cross-slip trials are rejected can be skipped while increasing the

simulation time. Following the work of Déprés et al. (2004a), the number of cycles

to failure could be estimated by assuming a critical extrusion size, which represents

the initiation of a micro-crack at the crystal surface leading to fatigue failure. The

time-coarsening procedure consists of three phases that repeat until the prescribed

number of simulation steps is completed, namely the Learning phase where the in-

formation during a full cycle is stored, the Stall phase where the loaded information

is repeatedly tested until a cross-slip event is detected and the Stabilization phase

where the system is evolved until cyclic behavior is obtained after the cross-slip

execution. The following sections address each phase independently and present a

diagram depicting their interconnection.

Learning phase

When the velocity, position and force acting on each node has been stored for each

step of a complete cycle, no more computation using discrete dislocation dynamics
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Figure 6.1: Stress cycle applied τ as function of the simulation step N . The loading

stage corresponds to a specific part of the cycle characterized by k = N%M .

is further necessary until a cross-slip event occurs: the simulation is predictable for

every future step due to the cyclic motion driven by the external loading. In the

Learning phase all information about the system is registered during a full loading

cycle where all cross-slip events have been rejected. The fast-forwarding algorithm

starts in the Learning phase. Each temporal stage of the loading cycle must be

indexed such that for a constant number of simulation steps M per cycle, the first

stage is characterized by k = 0 and the last one by k = M−1. The loading stage after

N simulation steps can be calculated as k = N%M , where the symbol % refers to the

modulus operator (see figure 6.1). Notice that although the Learning phase is limited

to the storage of information during M simulation steps, the loading indexation will

be essential to account for the real time in the other two phases. Once all physical

parameters of the system have been computed and the cross-slip probability of each

screw segment P has been calculated, all the obtained information is stored in arrays

characterized by the loading index k. Due to the reduced probability of two cross-

slip events occurring at the same time, it is assumed that only one cross-slip event

occurs per simulation step. In order to select a screw segment with homogeneous

probability, an integer random number R1 between 0 and S−1 is generated, where S

is the number of screw segments detected at the loading stage k. Assuming that the

cross-slip probability of the selected screw segment is P = P [R1], a rational random

number R2 between 0 and 1 must be generated to implement the MC method. If

the cross-slip event is accepted, the Learning phase is immediately terminated to

execute the cross-slip event in the Stabilization phase, whereas if the transition is

rejected, the total system is simply evolved and the time step is increased. The same

process must be repeated until the Learning phase is completed. The configuration

obtained after M simulation steps must be compared with the first stored state to

confirm that the simulation is cyclic. Once the Learning phase has been completed,

no further DDD simulations are generated. The program enters directly into the
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Stall phase where only MC trials are processed using the information obtained from

the Learning phase. Summarizing:

1. Determine the loading stage using k = N%M .

2. Store the complete simulation state, such as nodal forces, positions and veloc-

ities for all the dislocation segments.

3. Compute all available cross-slip probabilities and store them:

Π[k] = {P [0], P [1], ..., P [S − 1]}

where S is the total number of screw segments and P [i] is the cross-slip prob-

ability of the ith screw segment.

4. Select a cross-slip candidate with homogeneous probability using an integer

random number R1 ∈ {0, 1, 2, ..., S − 1}:

P = P [R1]

5. Generate a rational random number R2 ∈ (0, 1]. If P > R2: enter into the

Stabilization phase, or else continue to step 6.

6. Update the configuration using DDD and increase the simulation step N =

N + 1, which implicitly augments the loading stage to k = k + 1. If the total

number of steps has been completed: terminate the program, or else continue

to step 7.

7. Compare the updated configuration after the last loading stage with the first

registered state, which occurs when the condition k = M is satisfied. If they

are identical: enter into the Stall phase, or else return to step 1.

Stall phase

The successful completion of the Learning phase is followed by the Stall phase, where

the number of cross-slip trials is indefinitely increased until one trial is accepted.

Since the Stall phase loads the cyclic evolution of the system stored during the

Learning phase, the number of simulation steps N in the Stall phase is identified with

the number of cross-slip trials. Once the loading stage has been determined using

k = N%M , the corresponding probability array Π is loaded. An integer random

number R1 between 0 and S−1 is typically required to select an element of the array

with homogeneous probability, where S is the number of screw segments detected



Chapter 6. Conclusions and future work 109

at the corresponding loading stage. Assuming that the cross-slip probability of the

selected screw segment is P = P [R1], a rational random number R2 between 0 and 1

must be generated to implement the MC method. If the cross-slip event is accepted,

the Stall phase is immediately terminated to execute the cross-slip event in the

Stabilization phase, whereas if the transition is rejected, the number of time steps

is increased. No further DDD simulation step is necessary because the hypothetical

cross-slip trial has been rejected. The same process is indefinitely repeated until a

cross-slip trial is accepted. Summarizing:

1. Determine the loading stage using k = N%M .

2. Load all available cross-slip probabilities at the current loading stage:

Π[k] = {P [0], P [1], ..., P [S − 1]}

where S is the total number of screw segments and P [i] is the cross-slip prob-

ability of the ith screw segment.

3. Select a cross-slip candidate with homogeneous probability using an integer

random number R1 ∈ {0, 1, 2, ..., S − 1}:

P = P [R1]

4. Generate a rational random number R2 ∈ (0, 1]. If P > R2: enter into the

Stabilization phase, or else continue to step 5.

5. Increase the simulation step N = N+1, which implicitly augments the loading

stage to k = k+1. If the total number of steps has been completed: terminate

the program, or else return to step 1.

Stabilization phase

The accepted cross-slip trials generated either during the Learning phase or the

Stall phase are executed in the Stabilization phase using the DDD method. A

cross-slip event can lead to dislocation reactions that disrupt the cyclic motion of

the dislocations during a short period of time. The Stabilization phase comprises a

series of DDD simulations steps where the dislocation movement is not cyclical. It

starts with the configuration evolution after cross-slip and its corresponding storage

on the registry. An integer random number R1 between 0 and S − 1 is typically

required to select an element of the array with homogeneous probability, where

S is the number of screw segments detected at the corresponding loading stage.
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Assuming that the cross-slip probability of the selected screw segment is P = P [R1],

a rational random number R2 between 0 and 1 must be generated to implement

the MC method. If the cross-slip event is accepted, the glide plane of the screw

segment is changed to its corresponding deviate plane, whereas if the transition is

rejected, the total system is updated again and the time step is increased. Since

the DDD simulation must be evolved until the configuration is stabilized by the

cyclic stress, the updated state must be compared with each past registered state

to detect initiation of cyclic behavior. The same process must be repeated until the

Stabilization phase is completed. Once an updated state has already been registered,

the program enters back into the Learning phase. Summarizing:

1. Execute cross-slip process.

2. Update the configuration using DDD and increase the simulation step. If the

total number of steps has been completed: terminate the program, or else

continue to step 2.

3. Store the complete simulation state, such as nodal forces, positions and veloc-

ities.

4. Compute all available cross-slip probabilities:

Π = {P [0], P [1], ..., P [S − 1]}

where S is the total number of screw segments and P [i] is the cross-slip prob-

ability of the ith screw segment.

5. Select a cross-slip candidate with homogeneous probability using an integer

random number R1 ∈ {0, 1, 2, ..., S − 1}:

P = P [R1]

6. Generate a rational random number R2 ∈ (0, 1]. If P > R2: return to step 1,

or else continue to step 7.

7. Update the configuration using DDD and increase the simulation step. If the

total number of steps has been completed: terminate the program, or else

continue to step 8.

8. Compare the updated configuration with each past registered state. If the

system started to repeat itself: enter into the Learning phase, or else return

to step 3.

The complete algorithm is graphically synthesized in figure 6.2.
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Figure 6.2: Simulation scheme to be implemented in the DDD code to model the

microstructure evolution in the VHCF regime.
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Virtual X-ray diffraction patterns

In chapter 1 it was learned that microsecond time-resolved X-ray diffraction dur-

ing ultrasonic loading has been recently used to determinate the fatigue behavior

of materials (Ors et al., 2019). Important micromechanical information can be de-

duced from the diffraction data, such as the lattice elastic strain and the longitudinal

normal stress. By implementing the previously described time-coarsening algorithm

and the computational method proposed by Bertin and Cai (2018), the virtual X-ray

diffraction patterns from discrete dislocation structures can be obtained as function

of time using DDD simulations, which would serve to compute the temporal evolu-

tion of the dissipated and stored energy in the VHCF regime. By employing the tem-

perature value obtained using infrared thermography (Wagner et al., 2010) in a DDD

code, a good agreement with the experimental studies is expected to be achieved.

It can be concluded that the successful implementation of both methodologies in a

DDD code would enable the direct comparison between numerical simulations and

experimental techniques to further study the VHCF regime.



Appendix A

Escaig and Schmid stresses

As discussed in chapter 3, the normalized Burgers vector b̂, the unitary normal to

the glide plane n̂g, the Escaig vector on the glide plane ŵg, the unitary normal to

the cross-slip plane n̂cs and the Escaig vector on the cross-slip plane ŵcs are given

by:

b̂ =

1

1

0

 n̂g =

1

1

1

 n̂cs =

1

1

1

 ŵg =

1

1

2

 ŵcs =

1

1

2

 (A.1)

Recall that the rotation of φ about the initial ẑ axis, followed by a second

rotation of θ about the rotated x̂ axis and finishing with a third rotation of ψ about

the rotated ẑ can be represented by the following matrix:

R = Rz′′(ψ)Rx′(θ)Rz(φ) (A.2)

=

CφCψ − SφSθSψ −CφSψ − SφCθCψ SφSθ

SφCψ + CφCθSψ −SφSψ + CφCθCψ −CφSθ
SθSψ SθCψ Cθ

 (A.3)

where C and S are the shorthanded terms for cosine and sine.

The transformation matrix that rotates the [111] direction to the ẑ axis and the

Burgers vector [110] with the x̂ axis is obtained using the Bunges angles ψ = 0,

θ = −3π
4

and φ = arccos
(
− 1√

3

)
, which gives:

R =

−
√

2
2

√
2

2
0

√
6

6

√
6

6
−
√

6
3

−
√

3
3
−
√

3
3
−
√

3
3

 (A.4)

One can easily verify that the application of the rotation matrix R to the vectors

shown on equation A.1 give:
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b̂′ =

1

0

0

 n̂′g =

0

0

1

 n̂′cs =

 0
2
√

2
3

−1
3

 ŵ′g =

0

1

0

 ŵ′cs =

 0
1
3

2
√

2
3

 (A.5)

Consider the stress tensor in the previously defined base:

σ =

 σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (A.6)

Then, the stress components are given by:

σgS = σ · n̂′g · b̂′ = σxz (A.7)

σgE = σ · n̂′g · ŵ′g = σyz (A.8)

σcsS = σ · n̂′cs · b̂′ =
2
√

2σxy − σxz
3

(A.9)

σcsE = σ · n̂′cs · ŵ′cs =
7σzy + 2

√
2(σyy − σzz)
9

(A.10)

Inverting the system of equations A.7 to A.10 gives the tensor components as

function of σgS, σgE, σcsS and σcsE :

σxx = σyy = 0 (A.11)

σzz =
7
√

2σgE − 9
√

2σcsE
4

(A.12)

σxy =

√
2σgS + 3

√
2σcsS

4
(A.13)

σxz = σgS (A.14)

σyz = σgE (A.15)
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faces centrées. Journal de Physique, 29(2-3):225–239, 1968. ISSN 0302-0738.

doi: 10.1051/jphys:01968002902-3022500. URL http://www.edpsciences.org/

10.1051/jphys:01968002902-3022500. 48

J. Eshelby. Elastic inclusions and inhomogeneities, Vol. 2, 1961. 12
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P. Lukáš and M. Klesnil. Cyclic stress-strain response and fatigue life of metals in low

amplitude region. Materials Science and Engineering, 11(6):345–356, jun 1973.

ISSN 00255416. doi: 10.1016/0025-5416(73)90125-0. URL https://linkinghub.

elsevier.com/retrieve/pii/0025541673901250. 7, 78
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J. Man, K. Obrtĺık, and J. Polák. Study of surface relief evolution in fatigued 316L

austenitic stainless steel by AFM. Materials Science and Engineering A, 351(1-2):

123–132, 2003. ISSN 09215093. doi: 10.1016/S0921-5093(02)00846-8. 16

B. W. Mangum, G. T. Furukawa, K. G. Kreider, C. W. Meyer, D. C. Ripple, G. F.

Strouse, W. L. Tew, M. R. Moldover, B. C. Johnson, H. W. Yoon, C. E. Gibson,

and R. D. Saunders. The Kelvin and temperature measurements. Journal of

Research of the National Institute of Standards and Technology, 106(1):105, 2001.

doi: 10.6028/jres.106.006. URL https://nvlpubs.nist.gov/nistpubs/jres/

106/1/j61man.pdf. 80, 96, 105

C. Mareau, D. Cuillerier, and F. Morel. Experimental and numerical study of the

evolution of stored and dissipated energies in a medium carbon steel under cyclic

loading. Mechanics of Materials, 60:93–106, 2013. ISSN 01676636. doi: 10.1016/j.

https://doi.org/10.1080/14786435.2017.1406194
https://www.tandfonline.com/doi/full/10.1080/14786435.2019.1584410
https://www.tandfonline.com/doi/full/10.1080/14786435.2019.1584410
https://doi.org/10.1016/j.scriptamat.2020.08.008
https://nvlpubs.nist.gov/nistpubs/jres/106/1/j61man.pdf
https://nvlpubs.nist.gov/nistpubs/jres/106/1/j61man.pdf


Bibliography 129

mechmat.2013.01.011. URL http://dx.doi.org/10.1016/j.mechmat.2013.01.

011. 89

E. Mart́ınez, J. Marian, A. Arsenlis, M. Victoria, and J. Perlado. Atomistically in-

formed dislocation dynamics in fcc crystals. Journal of the Mechanics and Physics

of Solids, 56(3):869–895, 2008. ISSN 00225096. doi: 10.1016/j.jmps.2007.06.014.

URL https://linkinghub.elsevier.com/retrieve/pii/S0022509607001408.

54
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