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Chapter

1
Foreword and motivation

“Unless you try to do something beyond what you have al-
ready mastered, you will never grow. ”Ronald E. Osborn

Flue-gas stacks, or industrial chimneys, and launch vehicles are examples of tall and slender
circular structures with large diameters that can be prone to vortex-induced vibrations. These
vibrations can be significant when the shedding frequency, which increases linearly with incoming
wind speed, is close to the natural frequency of the structure. When these vortex-induced
vibrations occur, they create a nonlinear feedback loop that strengthens the vortex-forces and
in turn the vibrations. While turbulence-induced vibrations occur at high wind speeds, the
vortex-induced vibrations can happen at low speeds.

Industrial chimneys are often used to disperse pollutants in the air so that the concentration
is within the legal limits near the ground. Increased regulations have led to the need of better
filtration devices and taller chimneys like the concrete chimneys shown in figure 1.1. These
tall and massive chimneys aren’t necessarily the most economical and you’re more likely to see
smaller but slenderer steel chimneys like the ones in figure 1.2. Due to economic and safety
reasons, it’s necessary to build accurately designed chimneys that can withstand the static
and dynamic forces applied to it (e.g. static wind load, turbulence and vortex-shedding); this
requires good wind tunnel techniques and predictive models that accurately predict the static
deformation and dynamic amplitude response. If the amplitude response is large, a well predicted
response will also aid in designing effective tuned mass-dampers that can reduce the response.

Figure 1.1: Tall concrete chimney examples found on SkyscraperPage.com [1].



Figure 1.2: Slender steel chimney examples produced by Beirens and VL Staal (Poujoulat group) [2, 3].

Getting good response predictions are not trivial and a naive wind tunnel implementation might
over predict the wind load due to vortex-shedding by as much as 400% [4]. This is due to the
aerodynamic forces on a circular cylinder being Reynolds number dependent and the values
seen in the field for large structures can rarely be recreated in wind tunnels. Good wind tunnel
techniques are therefore needed to correctly predict vortex-induced vibrations.

Some, like the previously cited researchers, say that predictive models should be used instead
of wind tunnel experiments. There are many possible models to use (e.g. the Eurocode standard
included two vortex-induced vibration models [5] and there are more in the scientific literature
[6, 7]) though not all of them are applicable for the design of industrial chimneys or have an
unsatisfactorily performance. In addition, the predictions are contradictory and many open
questions remains on how to best include all aerodynamic and structural parameters in the
models. For instance, the effect of turbulence or surface imperfections on the predictions remain
unclear in the non-design code models as is the effect super-critical Reynolds number flow around
circular cylinders (Re > 106 e.g. large diameter chimneys). The design code models have issues
as well and fail to include the effect of tuned mass-dampers and in producing the amplitude
response needed to design them. Computational methods (FEM/CFD combinations) could
be used to predict vortex-induced vibrations and help design tuned mass-dampers but can be
difficult. For instance, the simulations can fail due to mesh deformation, the CFD calculations
needs validation at super-critical Reynolds numbers and the computational power needed to test
a single speed/configuration makes testing many configurations costly.

The goal of this work is thus threefold. Firstly, it aims at improving the collective under-
standing of vortex-shedding on large circular structures (like industrial chimneys) by experimen-
tally determining the unsteady pressure distribution for 2D circular cylinders at super-critical
Reynolds numbers (Re > 106). Secondly, it aims to improve or validate the wind tunnel tech-
niques used to determine vortex-induced vibrations of industrial chimneys and similar slender
structures with circular cross section at super-critical Reynolds numbers using small-scale mod-
els. Lastly, predictive models, like those in the Eurocode, will be compared with a newly defined
predictive model and validated using the experimental data to determine the best model for
a given situation. All of the above is done using wind tunnel experiments (at large and small
scales), a field test using a full-scale chimney-like object and appropriate analytic techniques.
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Chapter

2
Vortex-induced vibrations of
slender structures with circular
cross section

A brief introduction

Flow around a smooth circular cylinder and the vortex-shedding from it can be complex. For
instance, the location of minimum pressure and the minimum pressure coefficient changes with
the Reynolds number. In addition, the separation point and pressure coefficient in the sep-
arated region is highly Reynolds number dependent as is the behavior of the shed vortices in
the wake behind the cylinder. Add motion and the flow field becomes even more complex by
adding nonlinear coupling between the fluid and structural oscillation. This coupling gives rise
to vortex-induced vibrations which are hard to model and not fully understood. When adding
3D dimensional effects, the flow and vortex-induced vibration becomes even more complex with
correlation, coherence, end-effects and more complex modes of oscillation. This chapter is an
introduction to the parameters and factors that affects the flow around cylinder like structures
with circular cross-sections and vortex-induced vibrations. It will also be shown that there are
important knowledge gaps later chapters will fill.

2.1 Stationary cylinders in cross flow

2.1.1 The Reynolds number effect

The Reynolds number is one of the most important parameters in classifying and predicting the
flow field near a circular cylinder. This dimensionless parameter, given in equation (2.1), relates
the inertial and viscous forces experienced by a fluid and helps determine how flows behave.
For a circular cylinder, the inertial forces are ρU2, with ρ and U being the fluid density and
speed respectively, and the viscous forces µU/d, with µ and d being the dynamic viscosity and
diameter respectively.

Re = ρUd

µ
= Ud

ν
. (2.1)

Rather than being separated into two flow categories, e.g. laminar or turbuent as for pipe
flow, the flow around a cylinder can be categorized into several distinct regions based on the
Reynolds number. This is visualized in figure 2.1 which is based on the wake and flow separation
visualization and descriptions of Lienhard [9] and Blevins [6]. The difference is that figure 2.1
uses the naming convention of Szechenyi [10] which is more similar and consistent with the
naming of Mach number regimes. In addition to showing how flow around a circular cylinder
changes, figure 2.1 shows the changes in the mean drag coefficient with the Reynolds number
(cf. the textbook of White [11] or paper of Roshko [8] for the evolution of Cd). The flow changes
around a cylinder and the mean drag are intrinsically linked as the mean drag around a cylinder
is dependent on the shear and pressure.



Figure 2.1: Definition of Reynolds number regions and how mean drag coefficients changes with the
Reynolds number. Inspired descriptions by Roshko [8] and Lienhard [9] as cited by Blevins [6].

At very low Reynolds numbers, Re ⪅ 5, the boundary layer flow around the cylinder and
in the wake behind the cylinder is laminar and fully attached. As the Reynolds number is
increased, up to Re ≈ 40, the flow stays laminar but separates from the cylinder as symmetric
vortex pairs behind the cylinder. Beyond Reynolds numbers of 40 and up to 150, the shed
vortices are alternating instead of symmetrically pairwise and are called von Kármán vortices.
These shed vortices are strong and gives rise to alternating lift and drag forces. While the flow
separation changes from pairwise to periodically alternating vortices, the flow over and behind
the cylinder is still laminar at these Reynolds numbers. For the regions mentioned so far, the
drag coefficient decreases from a value of O(102) to O(100) [6, 8].

For industrial chimneys (cf. figures 1.1 and 1.2), launch vehicles and other circular civil
engineering structures, the Reynolds number will be greater than what’s described so far. Even
for a wire with a 1 cm diameter, the Reynolds number will be above 600 when the wind speed is
1 m/s. The first Reynolds number range of interest, is the sub-critical Reynolds number range
which is the region between first and second dashed line of figure 2.1 (Re ∈ [150, 3 · 105]). In
this Reynolds number range, there’s a large change in the flow behind the cylinder. While the
boundary layer flow over the cylinder stays laminar up to separation point (near θs ≈ ±80◦

from the stagnation point1), the shed vortices and wake is increasingly turbulent. The width of
the vortex street behind the cylinder and strength of the shed vortices are similar to at lower
Reynolds number, i.e. the width is relatively large and the shed vortices are strong and periodic
[6, 8, 12]. Canonically, the mean drag converges towards a value of Cd = 1.2 in this region and
lasts until the sub-critical Reynolds region ends at Re ≈ 3 · 105 [6, 10, 12–14].

Beyond Reynolds numbers of Re ≈ 3 · 105, the flow around circular cylinders changes dra-
matically and enters the critical region. This region comprises of Reynolds numbers between
3 · 105 and 1-3 · 106 for circular 2D cylinders as shown in figure 2.1 (between the second and
third dashed lines). In this range, the boundary layer flow starts transitioning from being fully
laminar to being turbulent but can have a double separation process with the final separation
being in the rear (θs ≈ ±140◦) [10, 13].

At early critical Reynolds numbers, the boundary layer flow can start as laminar, separate
from the cylinder before reattach as turbulent boundary layer flow. If asymmetrically formed,
these laminar separation bubbles give a mean lift. As the final separation is far in the rear,
the wake is relatively narrower and more chaotic with an irregular and weak vortex-shedding
signature. In addition to changing the surface flow, the mean drag coefficient has a steep
decline at low critical Reynolds numbers before reaching the global minimum drag coefficient
and subsequently increase. This drastic change in mean drag coefficient is why the flow change

1Point near the front where the fluid speed is zero and static pressure coefficients is greatest.
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Chapter 2. Vortex-induced vibrations of slender structures with circular cross section

at critical Reynolds number is often referred to as the "drag crisis" [6, 8, 12, 15].
The final Reynolds number region, and the one that’s most relevant for chimneys and launch

vehicles, is the super-critical Reynolds number region at Re > 1-3 · 106 (after the last dashed
line in figure 2.1) [6, 10, 12, 13]. Experimental data at super-critical Reynolds numbers are
scarcer than the previously described regions [16, 17]. A reason for the lack of data is the need
for more complex and specialized wind-tunnels2 (e.g. highly pressurized wind tunnels [8, 16, 17,
19–22], different flow mediums [23] or high speed wind tunnels giving high Mach numbers [24])
or modified cylinders triggering an earlier boundary layer flow transition [10, 17, 25–28].

The experimental data available at super-critical Reynolds numbers do identify some general
trends. Firstly, the boundary layer flow around the cylinder is fully turbulent just like the wake’s.
Secondly, regular vortex-shedding is re-established at super-critical Reynolds numbers with a
shedding point that starts near θs ≈ ±140◦ though it’s much more chaotic [6, 8, 15, 17, 21,
24, 29] [15]. As the Reynolds number is increased, the shedding point moves towards the front
(θs ≈ ±110◦) but stays in the rear half. This change in the separation point means that the
wake width is narrow at the start of the super-critical region but increases with the Reynolds
number [6, 8, 12, 16, 17, 21, 24]. Like the boundary layer flow, the drag coefficient stabilizes at
a fairly constant value at super-critical Reynolds numbers and this new value is lower than at
sub-critical Reynolds numbers (in the range Cd ∈ [0.7, 0.75] [8, 21, 22] though other works cite
a lower value cf. [13, 30, 31]).

2.1.2 Steady and unsteady aerodynamic forces

Pressure distribution

At Reynolds numbers of interest (Re > 3 ·105), the distribution of unsteady pressure is the main
source of aerodynamic forces on a cylinder; skin friction is at most 3% of the total mean drag
[11, 19, 20]. To compare the pressure distributions from different experiments, it’s better to use
a dimensionless pressure like the pressure coefficient

Cp,θi
(t) = 2(p(θi, t) − pinf)

ρU2 , (2.2)

with p and pinf being the static pressure on the cylinder and in the free stream respectively.
From these time series, statistics such as the mean value and standard deviation (SD or

subscript σ) or root-mean-square (rms) can be found. Note that the mean, SD and rms values are
related through rms =

√︁
mean2 + SD2. This means that the "rms of the fluctuating components"

sometimes used in the literature is identical to the standard deviation [26, 32–40]. The mean
and SD pressure coefficients are shown in figures 2.2 and 2.3 respectively. The mean pressure
distributions on a smooth cylinder at several Reynolds number regions are based on the data of
Achenbach [19] while standard deviation results at the sub-critical are by West and Apelt [41].

The mean pressure distribution is the major contributor to the mean drag and lift forces.
Ideally, the mean pressure distribution will have bilateral/reflection symmetry around the cen-
terline between 0 and 180◦ (mirror image). This should lead to a zero mean lift force but as
seen in figure 2.2, the mean force isn’t always symmetric [19, 20]. Due to flow and surface
imperfections, there can be a nonzero mean lift force and the lift can be significant with larger
flow instabilities like separation bubbles [19–21, 24].

In potential flow theory, the flow is fully attached around the cylinder and the pressure drag
zero. Due to flow separation in the rear, the pressure "flats out" (like in 2.2) and there’s a

2Super-critical Reynolds numbers are theoretically simpler to reach in water as the kinematic viscosity is O(101)
smaller. These tunnels come with their own challenges that needs to be overcome (e.g. cavitation, size, required
mass-flow rate, high fidelity force measurements and sensor equipment that can handle the fluctuating pressure
and the humidity [18]). As an example, the water speed needs to be 10 m/s to reach a Reynolds number of 106

if using a cylinder with a diameter of 0.1 m and water at 20◦C. If the water tunnel is 1x1 m2, this corresponds
to a mass-flow rate of 10000 kg/s and a kinetic energy of 500 kW.
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Figure 2.2: Distribution of mean pressure coefficient for a smooth cylinder tested in a high pressure
wind tunnel by Achenbach [19].

pressure imbalance in the flow direction which leads to a mean drag force. When the separation
occurs further in the rear, the flat pressure value in the rear is increased which decreases the
drag. This can be seen when comparing figures 2.1 and 2.2 at sub-critical (Re = 1.0 · 105),
critical (Re = 8.5 · 105) and super-critical Reynolds numbers (Re = 3.6 · 106). At Re = 2.6 · 105,
there’s a transition from sub-critical to critical Reynolds numbers which leads to lower drag and
later separation than at lower Reynolds numbers. The base pressure in the wake and separation
angle are largest for Reynolds numbers in the critical Region and smallest at sub-critical which
corroborates the separation angle/drag coefficient relationship [11, 19, 20, 22, 24, 42].

Data on the distribution of standard deviation of pressure coefficient is rarer than the mean
distribution. Basu [13] explains the difference for this as "more sophisticated instrumentation
and measurement techniques are required for measuring [Cl,σ and Cd,σ]". This also explains why
data on unsteady drag and lift are rarer than mean drag and Strouhal number [22, 24]. It also
explains why figure 2.3, showing the distribution of standard deviation of pressure coefficient
for a smooth cylinder, only contains Reynolds numbers up to 1.31 · 105. Still, the standard
deviation of pressure shows that the pressure oscillations are higher at the top of the cylinder
(θ ∈ [70, 100]) which should contribute to unsteady lift and a second higher oscillation region in
the rear which should contribute to unsteady drag [41, 43, 44].

Calculating aerodynamic forces

As mentioned, the aerodynamic forces on a cylinder can be found using the surface pressure
distribution as the effect of skin friction is relatively low at high Reynolds numbers [11, 19,
20, 26]. These forces are found by spatially integrating the pressure distributions projected
in the directions of the drag or lift (aligned and perpendicular with the free stream direction
respectively). For discretely measured pressure, the integral is replaced by a summation [26, 42]
and the two-dimensional drag coefficients is calculated by

Cd(t) = 2
ρdU2

∑︂
i∈K

p(t, θi) cos(θi)rφi, (2.3)

where K is the set of measurement locations in a 2D ring and p(t, θi) is the pressure at location
i at time t. θi is the angle between location i and the reference location (making for force at
the reference purely in drag direction), and rφi is the "integration length" (radius times angle
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Figure 2.3: Distribtuion of standard deviation of pressure coefficient for a smooth cylinder tested in a
wind tunnel by West and Apelt [41].

sensor i is working over). Similarly, the discrete lift force is found using

Cl(t) = 2
ρdU2

∑︂
i∈K

p(t, θi) sin(θi)rφi. (2.4)

Unsteady forces

Using equations (2.3) and (2.4), the statistics of the force coefficients can be calculated similarly
to the pressure’s. While the mean drag and lift have been discussed previously, but the fluctu-
ating force components have not. Relative to the total force, the fluctuating drag components
are of lesser importance than the lift’s. Up to 100% of the total unsteady lift (real rms) is from
the SD value whereas the total unsteady drag is dominated by the mean [45, 46].

For sub-critical Reynolds numbers, 0.3 has been reported as a "classical" value for the lift
coefficient’s oscillation amplitude due to vortex-shedding [6, 14] which is similar to Schewe’s
results at low Reynolds numbers [16] (see figure 2.4). This value is lower than the results
of Cheung and Melbourne [30], Blackburn and Melbourne [47] and the summarized results of
Basu [13], Ribeiro [48] and Ruscheweyh [49]; the latter specified the SD lift coefficient as 0.7 at
sub-critical Reynolds numbers.

In the review of Demartino and Ricciardelli [31], a large range of SD lift coefficients were
found at sub-critical Reynolds numbers (Cl,σ ∈ [0.09, 0.5]) [8, 16, 36, 50–52]. A possible reason
for the scatter in SD lift coefficient, is the method for calculating the forces: If found by inte-
grating over the entire length of the cylinder, e.g. using a force balance, the phase difference
between the forces (e.g. from cells of vortex-shedding) can change the total force from the 2D
pressure values. Another posibility, is the influence of roughness. While the SD lift coefficient is
scattered, the "classical" value reported isn’t too far off from the other references. It’s possible
that the SD lift coefficient is in the range Cl,σ ∈ [0.3, 0.4] at sub-critical Reynolds numbers and
that it increases towards 0.4 when it’s about to transition to critical Reynolds numbers [6, 13,
14, 16, 22].

What’s more consistent among experiments, is how the SD lift coefficient changes qualita-
tively at critical and super-critical Reynolds numbers. As the Reynolds number reaches critical
Reynolds numbers, ≈ 105, the SD lift coefficient drops before reaching a minimum value at a
Reynolds number of 4 · 105. From this point, the SD lift coefficient slowly increases towards a
value in the range Cl,σ ∈ [0.08, 0.15]; the exact value depends on the experiment in question [13,
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Figure 2.4: Standard deviation of (SD) lift coefficient for smooth cylinders (Fung [29], Schmidt [38,
39] and Schewe [16]) and one rough cylinder (van Hinsberg [22]) tested in wind tunnels.

16, 24, 30, 31, 47, 48]. The change in SD lift coefficient is, therefore, similar to how the mean
drag coefficient changes with Reynolds number. The biggest difference between the mean drag
and SD lift data, is the increased scatter that should be due to the lack of data and difficulty in
getting accurate measurements (e.g. force-balance issues and number and precisison of unsteady
pressure sensors) [13, 22, 24].

There’s even less information on SD drag coefficient than lift but the available data suggests
it’s lower than the SD lift and behaves similarly to it. The exact value varies and some studies
give a high SD drag coefficient (≈ 0.35) at sub-critical Reynolds numbers [30, 53] but the
majority gives a low value in the range Cd,σ ∈ [0.03, 0.12] [12, 29, 31, 33, 38, 39, 44]. For
all studies, the SD drag coefficient behaves like the mean drag and SD lift when increasing the
Reynolds number. On a fixed cylinder, the characteristic frequency of the fluctuating drag tends
to be twice the oscillation frequency of the fluctuating lift [6].

Characteristic shedding frequency

Like how the forces change with the Reynolds number, so do the characteristic vortex-shedding
frequency and forced frequency. To better compare experiments, a characteristic and dimension-
less shedding frequency called the Strouhal number is used; this number is defined in equation
(2.5). The experimental data on the vortex-shedding frequency is more available than the un-
steady forces. This is because the vortex-shedding frequency can be measured both from the
applied force (e.g. unsteady pressure [54] or force-balance [22, 24]) and the wake fluctuations
which is easier to measure (e.g. using Cobra probes or hot-films and wires to measure the speed
fluctuations in the wake) [8, 21, 23, 25].

St = fsd

U
= ωsd

2πU . (2.5)

A representative selection of the Strouhal number for a smooth circular cylinder at sub-
critical, critical and super-critical Reynolds numbers is shown in figure 2.5. The presented
Strouhal number is measured using two different locations and those of Achenbach and Heinecke
[21] and Adachi [25] uses the wake whereas Zan’s [54] uses pressure and wake measurements.
As mentioned, the vortex-shedding is strongly periodic at sub-critical Reynolds numbers and
the bandwidth of vortex-shedding is narrow making it easy to identify. For these Reynolds
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Figure 2.5: Strouhal number for smooth cylinders tested in wind tunnels.

numbers, the characteristic shedding frequency is consistent in the literature and is in the range
St ∈ [0.18, 0.21] [5, 6, 8, 9, 12–14, 16, 21, 23–25, 31, 36, 49, 54–56].

At critical Reynolds numbers, the vortex-shedding’s bandwidth widens and more chaotic.
The Strouhal numbers that are identified are higher and more diverse than at sub-critical
Reynolds numbers and can be found in the range St ∈ [0.25, 0.55] as figure 2.5 shows. At super-
critical Reynolds numbers, the vortex-shedding becomes easier to identify and the bandwidth
becomes narrower than the critical’s. The super-critical Strouhal number has a commonality
with sub-critical values in that both converge towards a constant value but the exact super-
critical value varies between experiments. As shown in figure 2.5, some experiments give a
Strouhal number in the range St ∈ [0.25, 0.27] [8, 13, 21, 23–25, 36, 56] whereas others give
a super-critical Strouhal number close to 0.2 [17, 54]. There is one major difference between
the studies giving high and low super-critical Strouhal numbers: The tests giving the higher
Strouhal numbers tend to be measured in the wake whereas the lower Strouhal numbers tend
to be measured using unsteady pressure measurements.

2.1.3 Modified Reynolds numbers

One of the best practices for determining the loading on large civil engineering structures, like
vortex-shedding, is to use boundary layer wind tunnels. As the models need to be scaled down
in the wind tunnels, it’s difficult to reach super-critical Reynolds numbers and the load will be
incorrect [4]. To fix this, the test conditions are normally changed so that super-critical Reynolds
numbers flow on smooth cylinders can be simulated. There are several tactics to achieve this
and it includes using uniformly distributed roughness elements (e.g. sandpaper or emery paper)
[10, 21, 25, 57, 58], discrete roughness elements (e.g. ribs or wires) [28, 37, 48, 59], turbulence
intensity and atmospheric boundary layers [40, 60]. While triggered, the resulting super-critical
unsteady forces can be different from that on a smooth cylinder.

Effect of Roughness on aerodynamics

As mentioned, added surface roughness can cause the transition to critical and super-critical
Reynolds numbers to occur at lower Reynolds numbers (in absolute value) [11, 13, 40]. Most
studies on the effect of surface roughness on flow over a cylinder focused on uniform surface
roughness and its effect on the mean drag coefficient and the Strouhal number. The sparse
data on SD lift with added uniform roughness suggest that the SD lift coefficient is increased
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Figure 2.6: Mean drag coefficient for smooth and rough cylinders tested in wind tunnels.

when using a rougher cylinder. This is shown in figure 2.4 using the data of van Hinsberg on a
cylinder with uniform roughness of height Rr ≈ 10−3 [22, 48]. Its postulated that this is due to
a stronger and stable vortex-shedding process [25, 61].

Surface roughness affects the mean drag in two ways and both can be seen in figure 2.6a.
Firstly, the drag crisis and turbulent boundary layer flow (critical Reynolds numbers) is triggered
at lower Reynolds numbers. Secondly, the triggered boundary layer flow has a larger mean drag
coefficient at super-critical Reynolds numbers. The increase in drag is related to the thickness of
the boundary layer flow: Added roughness gives a thicker boundary layer that separates earlier.
This in turn decreases the base pressure (in the rear) and increases the minimum pressure on
the cylinder [10, 13, 17, 19–23, 26, 27, 31, 40, 58, 62, 63]. Güven et al. [63] attributed the higher
mean drag to a decreased difference between the minimum and rear pressures but a lower rear
pressure acting over a larger area will increase the drag alone.

The best description of what roughness does to the Strouhal number, is that it "smooths
out" the curve as a function of Reynolds number as shown in figure 2.7a. With added roughness,
the higher Strouhal number "hump" at critical Reynolds numbers is reduced as is the Strouhal
number at super-critical Reynolds numbers [10, 13, 17, 21, 22, 25, 54, 58, 61, 62, 64]. With
the largest uniform roughness, the hump is completely smoothed out and there’s only a small
increase in the Strouhal number.

In addition to changing the shedding frequency, the added roughness has a second effect: It
makes the vortex-shedding more periodic and stronger at super-critical Reynolds numbers and
the vortex-shedding’s frequency spectrum becomes a narrowband single peak [10, 13, 17, 21, 22,
25, 58, 61, 62, 64]. This effect is also seen at critical Reynolds numbers which could explain the
smaller Strouhal number hump. Essentially, the overall effect of uniformly added roughness is to
increase the mean drag coefficient, give clearer and stronger vortex-shedding peaks (in frequency
domain), move the transition to and from critical Reynolds number to lower Reynolds numbers
and to "smooth out" any instabilities caused during the transition [61, 64].

The most promising results at simulating higher Reynolds number flow is by Ribeiro [28, 37].
Ribeiro’s lengthwise ribs not only best reproduced the mean forces [28], but also the unsteady
force spectrum [37]. Still, the ribs trigged earlier flow separation which lowered the minimum
pressure coefficient and increased it in the rear; This increased the mean and fluctuating force
coefficients [28, 31, 37, 48]. While it’s effective at triggering super-critical Reynolds numbers,
the rib height needs to be as small or the flow will be overly distorted when compared to smooth,
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Figure 2.7: Strouhal number for smooth and rough cylinders tested in wind tunnels.

super-critical data. For instance, the added ribs quickly cause the point of minimum pressure
to move forward when compared to a smooth cylinder. An alternative to ribs, is to use either
two strategically placed roughness elements to prematurely trigger super-critical flow or to have
a surface similar to that of stranded cables [31].

Nigim and Batill [65] and Perry et al. [66] explained how the attached ribs affect the surface
flow. They found that the surface flow depends on the ratio of rib height to spacing. For small
ratios, the surface vortices are small and becomes trapped between rib ridges while for large
ratios, the surface vortices can interact with and become part of the flow over cylinders [65,
66]. The use of ribs have some limitations: Only one inflow direction can be investigated (the
unsteady pressure distribution can easily become asymmetric), they need to be placed at specific
intervals and there’s no simple formula for determining the required height, width and spacing.

Effect of turbulence on aerodynamics

An earlier transition to and from the critical Reynolds number region is one of the effects of
increased turbulence intensity in addition to changing the strength of the forces and vortex-
shedding characteristics [30, 40, 47, 53, 67]. As figures 2.6–2.8 show, this is similar to the effect
of roughness and needs to be accounted for. The effect of increased turbulence on the Strouhal
number is to increase it for all Reynolds numbers. The turbulence intensity has another effect
on the Strouhal number: It increases the bandwidth and lowers the peak values [43, 47, 53, 67,
68]. Increased turbulence affects the mean drag in a more complex manner and it decreases the
mean drag at sub-critical Reynolds numbers but increases it at critical [30, 53, 54].

Like the mean drag, the SD lift and drag is decreased at sub-critical Reynolds numbers with
increased turbulence but it increases the SD values at critical [47, 53]. When combining turbu-
lent flow, 10.5%, with surface roughness (lengthwise ribs) at simulated super-critical Reynolds
numbers (post drag-crisis), the SD lift coefficient was found to be closer to smooth cylinder’s.
The main difference was that power spectra and the peak values had a larger bandwidth with
increased turbulence [48].

The turbulent length scale can be as important as the turbulence intensity [69]. When
the turbulence length scale is large, the effect of turbulence is small and can be regarded as a
slowly changing mean wind speed. Small length scales, on the other hand, can interact with the
surface flow and either damp or amplify the vortex-shedding. Its effect depends on the surface
and turbulence conditions and is related to how the turbulence penetrates the surface shear
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Figure 2.8: Standard deviation of (SD) lift and drag on smooth cylinder in turbulent flow using data
from Blackburn and Melbourne [53] and Cheung and Melbourne [30].

layers.
Batham [60] found that added roughness was unnecessary when simulating the flow over a

large chimney using a small-scale model in a turbulent atmospheric boundary layer wind tunnel.
These results need to be taken with a pinch of salt as the full-scale chimney showed no significant
vortex-induced vibrations. The unsteady aerodynamic forces were instead due to turbulence and
the added turbulent atmospheric boundary layer was enough to mimic the full-scale loading.

Effective Reynolds numbers

A useful tool in wind tunnels would be an equivalent Reynolds number that determins the
simulated Reynolds number a priori. Both Nakamura and Tomonari [58] and Szechenyi [10]
tried to create such an equivalent Reynolds number based on added uniform roughness height
and found that an assumed minimum roughness height was needed for smooth surfaces (Rr =
3.5 · 10−5). Similar techniques have been recommended by ESDU (Engineering Sciences Data
Unit) [57]. The use of such a number was disputed by Basu [13] and Buresti [62]. While the
surface roughness trigger turbulent boundary layer flow at lower Reynolds numbers, they found
that it couldn’t adequately replicate the pressure distribution, force coefficients and Strouhal
number well enough at the same time, as figures 2.6–2.8 shows, and that roughness distribution
and type needs to be included. Basu and Buresti also found that the modified Reynolds numbers
didn’t satisfactorily collapse the data to a single curve. While Basu dismissed the use of a
roughness based Reynolds number, roughness height was still found useful in deriving expressions
for the transition to super-critical Reynolds number and unsteady force characteristics [13].

Another parameter that makes an equivalent Reynolds number difficult to define, is that
turbulence intensity, length scale and gradient plays a role in the boundary layer flow transition
[30, 40, 47, 53]. While the equivalent roughness Reynolds number has been debunked, it’s
possible that correctly tuned added turbulence could negate the change in unsteady forces.

A better modified Reynolds number could be based on wake characteristics. Adachi [25]
attempted to define a universal Reynolds number using the wake width, wake spacing and base
pressure coefficient that collapsed the available mean drag and Strouhal number data so a single
curve. The modification is similar to the modified drag coefficient and Strouhal number of
Roshko [8] and Griffin [70]. Adachi and Griffin found that Griffin number (product of wake drag
coefficient and wake Strouhal number) was almost constant in all relevant Reynolds number
regimes (sub-critical, critical and super-critical when ignoring tests with separation bubbles)
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(b) Super-critical Re = 2.7-5.4 · 106 [77].

Figure 2.9: Mean drag coefficients for smooth cylinders at different aspect ratios (λ) and Reynolds
number regimes using the experimental data of Gould et al. [77] and Okamoto and Yagita [71].

while Roshko’s number does not [8, 25, 70]. Still, using wake length as characteristic length
pose issues; it’s easier to measure the size of an object than it is to get accurate wake readings
for a real and arbitrary 3D structure. Also, the drag coefficient and Strouhal number can be
wrong compared to a smooth cylinder even if their product is correct.

2.1.4 Changes in forces with 3D effects

Like the structural parameters, the fluid flow over the 3D cylinder is different from a 2D cylinder.
This needs to be accounted for when doing scaled aeroelastic wind tunnel experiments (cf. [60]
for chimney models, [26, 35, 71] for general cylindrical structures, [72] for super-tall buildings
and [73–76] for launch vehicles). The loading can be greatly under predicted or over predicted3

if the 3D effects are not accounted for or wrongly accounted for in scaled tests. The cause of
these 3D effects are many and include the boundary layer profile, aspect ratio and end effects.

3D forces

Due to end effects, the flow near the tip separates differently than the rest of the cylinder with
more regular 2D vortex-shedding only occurring when away from the tip region [35, 42, 69].
This has a large effect on the 3D forces experienced by circular cylinders as shown in figures 2.9
and 2.10. In the tip region, the extra vorticity reduces the base pressure which increases the
mean drag coefficient to a maximum value around 0.5 diameters from the tip. As the distance
from the tip is increased, the sectional flow characteristics reduces the mean drag to such an
extent that the overall drag over the height is reduced [34, 35, 42, 44, 69, 71, 77, 78]. These
effects on mean drag are shown in figure 2.9a for sub-critical Reynolds numbers [71, 79] and in
figure 2.9b for super-critical [71, 77, 79]. When compared, the evolution with distance from the
tip is similar but with a different scaling. Still, Basu [69] argued that tip effects (and the effect
of aspect ratio) should be smaller at super-critical Reynolds numbers as the pressure difference
between the front and rear of the cylinder should be smaller.

According to the results of Fox and Apelt [44], Fox and West [78] and Fox, Apelt and West
[34] on a cylinder with aspect ratio of 30, the SD forces changes differently with height than the
mean drag. While the mean drag has its maximum value in a small area near the tip, the SD
force coefficients decreased to a minimum value near 5 diameters from the tip. As the distance

3Up to 400% according to Vickery and Daly [4] when also in the wrong Reynolds number regime.
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Figure 2.10: SD lift coefficient and Strouhal number for a circular cylinder with aspect ratio of 30 at a
Reynolds number of Re = 4.4 · 104 using the experimental data of Fox and Apelt [44].

from the tip increased, the SD force coefficients increased to their maximum values near 18
diameters. From this point the SD force coefficients are nearly constant.

The Strouhal number changes differently than the forces: It’s greatly decreased near the
tip and increases to something close to the 2D values near 5 diameters from the tip as figure
2.10b shows. In addition, the variation in Strouhal number with height has several discrete
jumps and regions of constant shedding frequency are found; this behavior can be related to
vortex-cells. The decreased Strouhal numbers and increased SD forces near the tip is caused
by the same phenomena: Tip vortices are dominated by low frequency components with higher
bandwidth which disrupts the regular 2D vortex-shedding and gives higher SD forces. The
presented Strouhal number and SD force data are only at sub-critical Reynolds numbers but
the changes with height at super-critical Reynolds numbers should be similar to how the mean
drag changed i.e. mostly a scaling [34, 44, 69, 71, 77, 78].

Fox and Apelt [78] showed that the aspect ratio affects the 3D forces. When the aspect ratio
λ (ratio of height to diameter) is less than 7, regular vortex-shedding is suppressed. When the
aspect ratio is between 7 and 13, the aspect ratio affected the forces differently in two separate
regions: Near the tip, the unsteady force characteristics are independent of aspect ratio whereas
they are dependent and varied with it nearer to the base. At aspect ratios larger than 13, the
magnitude of unsteady forces are larger and varies with height like shown in figures 2.9 and 2.10
regardless of the aspect ratio. As can be seen, the force coefficients approach the 2D values as the
distance from the tip becomes large enough. Aspect ratio affected the Strouhal number less and
it becomes aspect ratio independent when λ > 10. At these aspect ratios, the vortex-shedding
develops the cell-like behavior shown in figure 2.10b.

Coherence and correlation

The coherency between two sensors, e.g. using the wake fluctuations, is measured in frequency
domain using the coherence function defined as

Cxy(f) = |Gxy(f)|2

Gxx(f)Gyy(f) , (2.6)

and indicates how "correlated" two signals are in frequency domain [80]. This statistic is often
missing from the literature and it’s possible that it’s confused with the correlation. Here, G
denotes auto-spectral densities which is the cross-spectral density when the subscripts mismatch.
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Figure 2.11: Spatial correlation coefficient for ciruclar, 2D cylinders in uniform (solid lines and ×)
and turbulent (dashed lines and ◦) flow [43] and 3D cylinder placed in a turbulent boundary layer at

different dimensionless amplitudes of motion [85].

Only the coherence at the vortex-shedding frequency (Cxy(fs)) between two sensors is plotted
and this should be at the maximum coherence unless coherent shedding is missing at a given
point; to be sure that the coherence is near the vortex shedding frequency, bandwidth filters are
applied. To calculate the coherency between two sensors, the inbuilt coherency function from
the SciPy signal package is used.

At any given frequency, the coherency Cxy is real valued, in the range [0, 1] and is expected
to drop as distance between sensors increase. This means that it does not include the phase
difference directly which is important when integrating the force along the length. If using
fixed sensors, the maximum number of tested separation distances are (N choose 2)+1 where N
is the total number of sensors, choose signifies unique combinations and the +1 is due to self
comparison.

Coherence is less investigated in the literature than the correlation and this might have been
due to the extra computing power needed or because it’s confused with the correlation. It might
still be possible to infer the coherence from the length of the vortex-cells shown in figure 2.10b
as it’s measured in frequency domain and cells with similar dominant vortex-shedding frequency
should be more coherent.

Correlation between two sensors, e.g. using the wake fluctuations, is measured in time
domain using the Pearson’s r correlation function defined as

R(x, y) = cov(x, y)
xσyσ

. (2.7)

Here, cov is the covariance between two recordings and xσyσ is the product of the standard
deviation (SD) of each sensor. The correlation ρxy is real valued, in the range [-1, 1] and is
expected to drop quicker with distance than the coherence.

The shedding characteristics vary along a cylinder’s height and forms cells with similar
characteristics. The length, correlation and coherence of these cells increases with the degree of
motion which in turn changes and increases the total aerodynamic force [34, 44, 78, 81–84].

Vortex cells and vertical correlation and coherence

The correlation as a function of separation is shown in figure 2.11a for a circular cylinder with
no end-effects (mounted with end-plates or spanning the width or height of a wind tunnel) using
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the experimental data of Novak and Tanaka [43]. When the amplitude of motion ry is low, the
correlation drops like a negative exponential function with distance. As the amplitude of motion
increases, so does the correlation at most distances and it drops slower with the distance. The
effect of turbulence on correlation is to reduce it at all amplitudes.

For cylinders of finite-length, the correlation is reduced and drops quicker with distance
than the 2D correlation as shown in figure 2.11b using the data of Howell and Novak [85]. This
reduction in correlation could be related to end-effects and be similar to how the 3D forces
changed for finite-length cylinders. The effect of motion is somewhat different for 3D cylinders
than 2D: The correlation changes little when the amplitude of motion is low (ry < 0.05) but is
greatly increased and more similar to the 2D correlation when the amplitude is higher.

The location of the reference sensor is important. This was found by Howell and Novak [85]
when measuring the correlation on a stationary 3D cylinder in a "shallow" boundary layer (i.e.
low turbulence intensities at all heights and low turbulence and speed gradients). Howell and
Novak reasoned that the spatial correlation was mostly due to tip vortices near the tip, due
to turbulence near the bottom and due to 2D vortex-shedding near the middle. In a vortex-
induced vibration model created by Ruscheweyh [49], the vortex-lift correlation along a cylinder
was specified similarly to these findings with a maximum value near 75% of the height and near
zero vortex correlation near the tip and bottom.

2.1.5 What’s missing?

Several findings on the fluid dynamics around a cylinder has so far been presented in addition
to the effect roughness and turbulence. While studied, the unsteady pressure and resulting
unsteady forces (strength and frequency spectrum) needs to be better understood. The current
data on unsteady lift (in terms of SD lift and characteristic frequency) is too scattered at super-
critical Reynolds numbers making it difficult to determine the correct values. Furthermore,
the Strouhal numbers from the literature was scattered at the super-critical Reynolds number
regions and it needs to be determined if it should be closer to 0.2, in the range St ∈ [0.25, 0.3]
or if both Strouhal numbers present at super-critical Reynolds numbers.

The literature shows that triggered super-critical Reynolds number flow is different from that
over a smooth cylinder in uniform flow. With a better understanding of the unsteady forces and
pressure distribution on smooth, stationary cylinders, better ways of simulating super-critical
Reynolds number flows using a combination of roughness and turbulence can be verified with
the goal of recreating the correct force characteristics. Finally, to get the correct 3D force
characteristics, realistic coherence and correlation is needed. Much of the correlation and 3D
force data on cylinders are limited to sub-critical Reynolds numbers and the data on coherence
is mostly missing or confused with correlation. Accurate measurements of these statistics at
super-critical Reynolds numbers would be necessary to determine if the 3D force characteristics
at simulated super-critical Reynolds numbers are correct.

2.2 Fundamentals of vortex-induced vibrations

2.2.1 A short introduction to vibrations and aeroelasticity

The main mechanics that make up the field of aeroelasticity are shown in figure 2.12. Depending
on the coupling, different physical phenomena can be observed [6, 86]. For chimneys, there
are three main causes of vibrations and deformation: 1) Static aeroelasticity and divergence,
2) turbulence-inudced vibrations and forced response (mechanical vibrations) and 3) vortex-
induced vibrations (aeroelasticity). The mechanical vibration branch can be helpful in modeling
vortex-induced vibrations as it can be reduced to a random vibration or harmonic vibration
problem if the circumstances are correct (no nonlinearities). These types of models have simple
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Chapter 2. Vortex-induced vibrations of slender structures with circular cross section

Figure 2.12: Collar’s aeroelasticity triangle [86].

Figure 2.13: 2D model of vortex-induced vibrations.

solutions (either known solutions of ordinary differential equations of simple transfer functions)
and are useful when, for example, only interested in the maximum [7, 32, 49, 86–88].

Flutter is an example of dynamic aeroelasticity and there are many different kinds. For
example, it led to the collapse of Tacoma Narrows bridge and many aircraft wings. Flutter is
related to a positive feedback loop between dynamic forces and coupled modes of motion (e.g.
coupled plunge and rotation motion) that adds energy to the system. This is often seen in the
eigenvalues which represent both the oscillation frequency and the growth rate of motion. When
eigenvalues merge, the vibration frequency of the involved modes are the same and one or more
vibration modes have a positive growth rate which amplifies the vibrations instead of damping
them. If there are no nonlinearities, these vibrations would grow unbounded [6, 86, 89, 90].

2.2.2 2D model of vortex-induced vibrations

Vortex-induced vibrations has similarities to flutter as shown by de Langre [91] and Zhang et
al. [92]. The phenomenon is a self-excited aeroelastic instability that’s the result of a coupling
between structural motion and fluctuating lift due to vortex-shedding and is complex to model
[7]. This means that there are no analytic method based on basic flow principles that fully
represents the behavior of elastic bodies experiencing vortex-shedding [90, 93, 94]. Instead,
phenomenological and empirical models that captures the essence of vortex-induced vibrations
are used [7]. Some of these only give the maximum response while some others only give an
amplitude response when the structural damping is in a specific range. Both of these model
types will be further discussed in section 2.4.

Instead of a plunge and rotation model like in flutter, vortex-induced vibrations can better
be modeled as a plunge and vortex dynamics model. This is illustrated in figure 2.13 which
shows some of the fluid and structural parameters involved in 2D vortex-induced vibrations on
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circular cylinders. Firstly, a cylinder is placed in a one dimensional flow with mean speed u
and turbulence intensity Tuu. This cylinder can only move perpendicular to the flow (êy only),
has a diameter d and mass m and is connected to a mass-damper with stiffness k and damping
coefficient c. Due to the flow, alternating vortices are shed from the top and bottom of the
cylinder (θ = ±90◦) which leads to a self-excited and limited vortex-shedding process q. This
nonlinear process is often modeled as a van der Pol or Rayleigh oscillator and the resulting
unsteady pressure distribution gives an oscillating lift force. For a real and more involved 2D
model, more parameters need to be included such as the effect of motion and loading in other
flow directions (e.g. êx). Like in flutter, the structural motion and vortex-shedding process are
coupled which gives a nonlinear flutter-like behavior during vortex-induced vibrations.

2.2.3 Lock-in of vortex-shedding

Simple forced vibration models with harmonic forcing have a linearly increasing frequency of
motion. This is not the case for vortex-induced vibrations and the nonlinear change in forced
frequency is one of its defining features. This nonlinear change in frequency due to a syn-
chronization between the shedding process and structural motion is illustrated in figure 2.14a.
When below the natural frequency, the vortex-shedding frequency increases linearly with the
fluid speed according to the Strouhal law (equation (2.5)). When close to the natural frequency,
between the green dashed lines in figure 2.14a, the shedding frequency can jump to the struc-
ture’s natural frequency and the vortex-shedding frequency "locks-in" with it. As the fluid speed
is further increased, the vortex-shedding frequency "locks-out" from the natural and the vortex-
shedding frequency again increases linearly. The speeds at which the frequency jumps occurs at
depend on the amplitude; this means that lower mass and damping gives longer lock-in [6, 7,
33, 61, 84–86, 90, 92, 95–105].

Lock-in is different for forced oscillations and freely oscillating cylinders. The former should
lead to more stable vortex-induced vibration-like behavior and the latter will have stable vortex-
induced vibrations if the incoming flow is stable and if the damping is low. If the flow is not
stable or the damping is high, it’s likely that the vortex-induced vibrations will be intermittent
and alternate between high amplitude vortex-induced vibration and low amplitude turbulence-
induced vibrations. This is exemplified in figure 2.14b where the lock-in range is shown to
increase with the structural amplitude. This can be measured in forced oscillation tests by
simply increasing the amplitude but in free-vibration tests the damping and mass needs to be
low to get high amplitudes. Lock-in in freely, vibrating structures have added complexity and
hysteresis in that it can have two amplitude response branches that can coexist at the same
speed. The resulting solution branch depends on the existing vibration amplitude but should
only be observed with low mass and damping [96, 99–102, 106].

2.2.4 Amplification of forces with motion

In addition to changing the vortex-shedding frequency, the aeroelastic effect leading to lock-in
amplifies the unsteady forces. While the effect of vortex-induced vibration on SD drag is less
explored (mere mentions of it increasing [33]), its effect on mean drag is better studied. Many
experimental studies have found that vortex-induced vibrations increases the mean drag on
circular cylinders though the results of Jones et al. [24] showed no noticeable increase in drag
for a cylinder oscillating close to the vortex-shedding frequency. The exact relation between
mean drag and structural motion is unknown but the drag has been related to the SD vibration
amplitude using empirical curve fits which are nontrivial to include in time domain models [6, 14,
33, 61, 70, 98, 99, 101, 104–106]. While increasing the mean drag might seem unimportant for
vortex-induced vibrations, it does affect response: The mean drag adds an aerodynamic damping
component to the structure by adding a velocity and drag component in the êy direction [14].
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Figure 2.14: Changes in vortex-shedding frequency and lock-in range with speed and amplitude level
for a cylinder with prescribed motion [6, 33, 85, 104, 105].

The effect of lock-in on the unsteady lift force is well studied and motion greatly amplifies
the lift when the shedding frequency is close to the natural frequency of motion. A mathematical
analogy to what happens is a forced limit cycle oscillator experiencing resonance [7, 14, 33, 98,
104]; this kind of model will have frequency entrainment (lock-in) when the driving frequency
is close to the linear natural frequency and an increased amplitude during it [95]. This force
amplification is due to the vortex-shedding process becoming stronger and more stable during
lock-in. This in turn leads to a different unsteady pressure distribution that increases the steady
and unsteady forces. If SD drag is amplified similarly to the lift, it should be possible to model
it as a limit-cycle oscillator as well [107].

2.3 Vortex-induced vibrations of slender structures

The simple 2D model consisted of a disk connected to a spring and damper but 3D models
are more complex with infinitely many modes of motion and with a stiffness and damping that
depends on the structural material and shape. Vortex-induced vibrations can then instead be
modeled like in figure 2.15. Broadly speaking, the 3D model differs from the 2D model in 3 key
areas: 1) The incoming wind has 3 speed and turbulence components that varies with height;
2) the structure has a global mass, stiffness and damping, a diameter that can vary with height,
several mode shapes with their own modal mass, damping, stiffness and displacement which
determine the global displacement; and 3) vortex-shedding characteristic and forces that are a
function of height. While the sketch in figure 2.15 only shows the dominant mode shape for
vortex-induced vibrations of chimneys (1st mode shape), the structure can simultaneously move
in the êx, êy and êz directions and be dominated by other modes.

2.3.1 Incoming wind

The incoming wind in figure 2.15 can, at any height, be characterized as a mean speed vector
with an added unsteady flow vector. These speed vectors make up the atmospheric boundary
layer can vary in both direction and magnitude with both height and can be reduced to a
speed profile and a turbulence intensity profile. The speed profile is simply the mean speed as
a function of height and should increase monotonically in the heights of interest for industrial
chimneys. The turbulence intensity profile is the ratio of the speed’s standard deviation and
mean value. Unlike the mean speed, it decreases monotonically with height in the theoretical
models; in real life it starts by increasing and then reaches a height where it starts decreasing
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Figure 2.15: 3D model of vortex-induced vibrations.

with height [5, 90, 108].
The statistical boundary layer profiles are based on long-term and high wind speed mea-

surements and are modeled using 1) the friction or shear speed near the ground, 2) an assumed
relationship between the mean speed and standard deviation and 3) a law describing the profiles
as a function of height. The shear speed is low even with very large mean wind speeds and is
related to the shear stress near the ground. This shear stress depends on the surface roughness,
described by the roughness height, and increasing it increases the friction experienced by the
wind which reduces the wind speeds near ground [90, 108].

There are two popular laws for estimating the profiles: power laws like in the CICIND model
code [55] and logarithmic laws like in the Eurocode [5]. The power laws are empirical fits of the
wind profiles and are simpler than the logarithmic law. The logarithmic boundary layer profiles
are more mathematically rigorous as they’re based on an approximate boundary layer solution
of the full Navier-Stokes equations for atmospheric flows; this approximate solution is called the
turbulent Ekman layer. By assuming that the SD values are proportional to the mean speeds
and a turbulence coefficient, the turbulence profile becomes the inverse of the speed profile times
a constant. This is because the turbulence intensity is the ratio of SD value to mean value [5, 6,
55, 90, 108]. A description of terrain types, the boundary layer produced and how to reproduce
it in wind tunnels are prescribed in design codes [5, 55].

2.3.2 Structural parameters

For flexible structures and coupled linear equations of motion, it’s much simpler to solve the
equations of motion after a modal decomposition. This method separates a coupled system
into a new set of uncoupled equations. These new sets of equations don’t model the physical
system directly but rather the degree of motion for the various modes shapes which prescribe
the motion. Each of these mode shapes have their own modal mass, stiffness, damping and
forces and all are dependent on the mode shape in question and the global parameters. For
vortex-induced vibrations of industrial chimneys, the main mode of interest is the first bending
mode and the derived quantities involving mass, frequency and damping are based on it.

There are several ways in which the mode shapes and modal masses can be estimated. For
simple beam like structures (which some simple chimneys can be approximated as), analytic
solutions can be found using beam theory (e.g. Euler-Bernoulli or Timoshenko-Ehrenfest). For
more complex structures, finite element methods (FEM) can be used to calculated the mode
shapes and corresponding mass but one can also use experimental methods [86, 87].

In experiments, the mode shape can be found by normalizing the acceleration at a several
points along the chimney/cylinder with a reference measurement. This can be done using free-
response, ping tests or forced harmonic vibration tests [87]. The experimental modal mass mg
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can be found by assuming that the stiffness k and mode shape are unchanged when adding tip
mass to the cylinder. Using ω2

i = k/mi (where subscript 1 is tests without added mass and 2
with), m2 = m1 + madd, the modal mass can be estimated from equation (2.8). For vortex-
induced vibrations on industrial chimneys, the equivalent mass per unit height me (given in
(2.9)) is often more useful than the modal mass alone.

mg = madd
ω2

2
ω2

1 − ω2
2
, (2.8)

me = mg∫︁ 1
0 ψ(z)2dz

. (2.9)

If the mass per unit height or equivalent mass without added mass is known, then the equivalent
mass can be calculated using equation (2.10). This equation is much more general and the sum
at the end is the summed effect of all N point masses placed at zi.

me =
∫︁ 1

0 m(z)ψ(z)2dz +∑︁
i∈N madd,iψ(zi)2∫︁ 1

0 ψ(z)2dz
= me,0 +

∑︁
i∈N madd,iψ(zi)2∫︁ 1

0 ψ(z)2dz
. (2.10)

Similar to the mass and mode shape, damping is an important parameter for the response.
Unfortunately, there’s no good analytic or numerical method for calculating damping and the
modal damping needs to be determined experimentally. As the damping coefficient changes
greatly with the system parameters, it’s more convenient to use the viscous damping factor ζ
(or just damping factor) as in equation (2.11) which is more similar across experiments and
scales. This value scales the damping coefficients using the critical damping coefficient (which
is determined by the mass and natural frequency). Another way of representing the damping is
through the logarithmic decrement δ. This value is based on the reduction in vibration amplitude
over n periods of oscillations and the natural frequency. For structures with low damping, the
critical damping coefficient and logarithmic decrement are related by δ = 2πζ [87].

ζ = cdamping

2mωn
. (2.11)

2.3.3 Derived parameters

Structural parameters

While the modal and equivalent mass are useful, a dimensionless version should be more useful
as experiments at all scales can be compared. This can be done using the mass-ratio µ (given in
equation (2.12)) which relates the equivalent and added mass to the displaced fluid. From simple
vortex-induced vibration models, it’s clear that the mass has a direct effect on the response by
scaling the forces. When the mass-ratio is low, e.g. in oceans, there’s an important addition
from fluid-added mass (from inertial effects) [14, 101, 106, 109]. For higher mass-ratio, e.g. in
air, the added mass tends to be small compared to the equivalent mass.

µ =
me + πρd2CM

4
ρd2 , (2.12)

ry = |Y |
d
, (2.13)

Similarly, it’s useful to present the vibration amplitudes in the form of dimensionless ampli-
tudes instead as it makes it easier to compare differently sized models and chimneys. Here, the
dimensionless amplitude due to cross-wind vibrations (turbulence and vortex-induced) is denoted
by ry (equation (2.13)) and comes from assuming a harmonic response in the form y = rysin(ωt)
for 2D configurations or at the tip for 3D cantilevered or flexible support configurations.
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Figure 2.16: Mode shape corrected maximum response and emperical fits of it [105, 106].

Sc = 4πmeζ

ρd2 = 2meδ

ρd2 , (2.14)

SG = 2π3St2ζµ. (2.15)

A third useful dimensionless structural parameter is the Scruton number Sc (equation (2.14))
which is a mass-damping parameter. The Skop-Griffin parameter SG (in equation (2.15)) is an
alternative that includes the fluid added mass and some of the vortex-shedding behaviors by
including the mass-ratio and the Strouhal number. These mass-damping parameters are scaled
versions of each other if the added mass is much lower than the equivalent.

The usefulness of mass-damping parameters are debatable in predicting vortex-induced vi-
bration. Several researchers have fitted the maximum amplitude as a function of the Scruton
number but the results are mixed (cf. the article of Khalak and Williamson [101] or reviews of
Sarpkaya [106] and Williamson and Govardhan [109]). Several models predict an independent
effect [109] and several maximum amplitudes can be found at a Scruton number [106, 109] which
led Sarpkaya to conclude that "there is no compelling reason to combine the mass with damping"
[106]. What is agreed upon in the conflicting reviews and shown by Blevins and Coughran [98],
is that mass-ratio has a larger effect on the extent of lock-in than damping does in water.

r∗
y,max SB = 0.35√︂

0.12 + S2
G

, (2.16)

r∗
y,max S = 1.12e−1.05SG . (2.17)

While it’s use in predicting response has been debated, plotting the maximum response as
a function of mass-damping parameters like in figure 2.16 using the Skop-Griffin parameter can
be useful when comparing similar experiments [6, 85, 101, 105, 106]. This figure compares the
measured mode shape corrected maximum response4 r∗

y,max with the empirical least-square fits
of Skop and Balasubramanian (equation (2.16)) [105] and Sarpkaya (equation (2.17)) [106]. Both
fitted functions match the data when using log scales and, according to Sarpkaya, this makes it
plausible for ln(r∗

y,max) to be a linear function of SG [106]. This doesn’t mean that amplitude is a
4Scaled by 1/Λ where Λ is 1.0 for rigid cylinders, 1.291 for pivoted cylinders, 1.305 for cantilevered beams and

1.155 for tight cables and simply supported beams [6, 106].
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Chapter 2. Vortex-induced vibrations of slender structures with circular cross section

linear function of a mass-damping parameter nor that Sarpkaya’s skepticism was unfounded. To
quote Mar’s law, "[e]verything is linear if plotted log-log with a fat magic marker" [110]. Similar
plots and empirical fits can and have been made using the Scruton number which is used more
in chimney design [5, 55, 111].

Fluid parameters

Just like how dimensionless structural parameters are useful for comparing experiments and
structures of different sizes, so are dimensionless fluid parameters. Two examples of useful di-
mensionless fluid parameters are already defined and are the Reynolds number and the Strouhal
number in equations (2.1) and (2.5) respectively. These two numbers are useful for the fluid
dynamics but less useful for the structural response. The response is more dependent on the
incoming wind speed and the frequency of motion. A good and general dimensionless speed
should then be the reduced speed UR given in equation (2.18). This dimensionless speed is good
for buildings which can experience vortex-induced vibrations, galloping and flutter and is akin
to the inverse reduced frequency more traditionally used in unsteady aerodynamic theory (with
the frequency set to the natural) [6, 86, 89, 90].

UR = U

fnd
, (2.18)

ωq = ωs

ωn
= U

Ucrit
= URSt. (2.19)

If the focus is on response due to vortex-induced vibrations only (e.g. for mathematical
modeling or vortex-induced vibration experiments), it’s better to use a dimensionless speed or
frequency like the one given in equation (2.19). This dimensionless speed or fluid/structure
frequency ratio (ωq) combines the reduced speed UR with the characteristic shedding frequency.
The benefit of this value instead of the reduced speed, is that the vortex-induced vibrations are
centered around 1 (with maximum amplitude at a dimensionless speed greater than one) instead
of being in the range UR ∈ [4, 6] depending on the Strouhal number [5, 32, 49, 55, 112, 113].

2.3.4 Previous full-scale tests

While important for validation of mathematical and wind tunnel models, full-scale experiments
on large chimneys and chimney-like structures are rare and exhaustive pressure data from them
even rarer. Instead, the field studies end to present acceleration, strain and wind speed data
which is much simpler to gather. The existing full-scale experiments without significant pressure
data can be separated into two groups: those that aggregate and use displacement data for
validation of predictive models [114–120] and those examining the temporal statistics of vortex-
induced vibrations [121–124]. The response statistics papers tend to focus on the structural and
wind characteristics by examining the response as a function of wind speed or Reynolds number
and the probability of seeing a specific response level at a speed.

The remaining 6 full-scale chimney tests include measurements of circumferential pressure
but only four where at super-critical Reynolds numbers. All full-scale tests have a few things in
common. The first is that the dimensionless amplitudes are low (ry = O(10−3) [125, 126]). The
second is that there’s a transduced limitation and only a limited amount of pressure taps can be
used at the same time. The experiments with the most pressure data used 18 pressure taps at
four different levels [127]. For some chimneys pressure can be measured at more levels and with
more taps per level but the lack of transducers means only be a limited number of taps can be
connected at the same time.

Christensen and Askegaard [128] investigated the mean and SD pressure distribution on a
Danish chimney, using 14 pressure taps at two heights at a time, but the presented data are only
for a few selected wind speeds. The mean pressure distribution was found to be similar to that
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of Roshko [8] but the minimum and wake pressure coefficients were larger on the chimney than
in the wind tunnel experiments. In addition to the pressure, the response and bending moment
as a function of wind speed was investigated for the Danish chimney using accelerometers and
strain gauges. Hansen [129] extended the work of Christensen and Askegaard by calculating
the lift force spectrum and comparing it with the theoretical Gaussian spectrum of Vickery
and Clark used in the vortex-induced vibration model further discussed in section 2.4.1. The
theoretical and experimental spectra match qualitatively but only after fitting the experimental
turbulence bandwidth parameter to the theoretical model.

Waldeck [130] found the super-critical pressure distribution in the rear to be larger than
Christensen and Askegaard’s when measuring the pressure distribution on a South African
chimney using 16 taps at 3 different heights. In a separate study, Waldeck [126] also compared the
experimentally obtained lift spectrum to the same theoretical lift spectrum. The findings suggest
that the theoretical and experimental spectra are similar near the vortex-shedding frequency
when curve fitting the experimental data the theoretical spectrum’s shape. This was done by
fitting 1) the lift due to vortex-shedding alone 2) the variance resulting from vortex-shedding 3)
the mean vortex-shedding frequency and 4) the turbulence bandwidth parameter.

Sanada, Suzuki and Matsumoto [125] found mean rear pressure distributions in between
those of Christensen and Askegaard, Ruscheweyh and Waldeck when investigating a Japanese
chimney using 16 pressure taps at a single height [126, 128, 131]. Their results differ from the
other investigations in that they found a better theoretical lift spectrum than the Vickery and
Clark spectrum. According to them, the lift force spectrum better fits a combined Dryden-
and von Kàrmàn type wind spectrum as it includes both the vortex-shedding peak and the low
frequency lift components [125]. A similar sentiment was expressed by Scherer [124] who found
that the vortex-shedding spectrum doesn’t follow a Gaussian distribution.

Ruscheweyh [131] investigated the circumferential pressure distribution on a television tower
at super-critical Reynolds numbers using 12 pressure sensors at a single height. The pressure
data was gathered over two years and sporadic vortex-shedding was observed but only for periods
where the average separation point and flow conditions were steady. The measured mean pres-
sure distributions were similar to those found by Christensen and Askegaard making them larger
in the rear than Roshko’s wind tunnel experiments [8, 19, 132]. The last field experiment, is
the test chimney of Aachen Technical University. While it was fitted with several pressure taps,
only 50 taps could be simultaneously connected to the pressure transducers and the analysis
focused more on the aerodynamic admittance and response than the pressure distribution [127].
Additionally, the diameter (0.91 m) and height (28 m) were smaller than the other full-scale
tests and only low critical Reynolds numbers were reached.

The last full-scale experiment is that of Zuo [133] who used a 7.62 m long horizontal cylinder
mounted 6 m above ground meaning that there’s no atmospheric boundary layer effect. This
cylinder was fitted with a 32 pressure taps in a single at a location with mostly 2D flow. As the
cylinder’s diameter was only 0.3 m, only sup-critical and low critical Reynolds numbers could
be reached. Still, this experiment was a natural experiment on the effect of turbulence intensity
and the results suggest that the effect of free stream turbulence is overblown.

2.3.5 What’s missing from literature

Currently, there are several things missing on the aeroelastic behavior of cylinders due to vortex-
shedding. As shown in section 2.1.1, much of the correlation and 3D force data on cylinders are
limited to sub-critical Reynolds numbers and the data on coherence is mostly missing. There
are several potential ways to get this missing data. For instance, a full-scale field test on a large
diameter chimney that’s fitted with several pressure taps (and sensor banks) and accelerometers
could measure the vertical correlation, coherence and 3D force characteristics. If the vibration
amplitudes are high, it will differentiate itself from the literature that’s mostly from chimneys
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Chapter 2. Vortex-induced vibrations of slender structures with circular cross section

with low levels of vibrations.
Methods for recreating vortex-induced vibration of flexible structures at super-critical Reynolds

numbers are lacking. The effect of surface roughness and turbulence are more well studied for
2D cylinders and a high-fidelity field tests can serve as a validation case for 3D wind tunnel tests
and numerical simulations.

2.4 Predicting vortex-induced vibrations
As mentioned earlier, there are no accurate methods for predicting vortex-induced vibrations
using equations based on basic principles. Some attempts have been made at deriving equations
of motion based on first principle but they rely on assuming a form for the aerodynamic force [7,
90, 93, 94]. Instead, assumptions are made regarding the spectrum of vortex-lift force, the type
of motion during lock-in and the form of the nonlinear aerodynamic force (e.g. as a structural
term or as a separate equation). In this section, some useful models for predicting vortex-induced
vibrations of circular cylinders and chimneys will be presented.

2.4.1 Spectral model

Derivation of model

The spectral model of Vickery and Basu [32, 88], used in the Eurocode and CICIND model
code, is based on random vibration theory. The sectional power spectrum of vortex-lift force is
found using two assumptions: 1) the correlation of fluctuating lift as a function of distance can
be expressed as equation (2.20) (with correlation length being l) and 2) the power spectra can
be approximated using a Gaussian distribution with variance related to the turbulence intensity
Tu through the bandwidth B ≈ 0.1 + Tu as in equation (2.21). For assumption two, the
frequency components far from the vortex-shedding frequency are ignored and the lift spectrum
on a cylinder is found from equation (2.22) by evaluating the spectrum near f = fn [32, 88,
134]. The assumed correlation is based on the 2D correlation found by Novak and Tanaka and
is not changed in the full 3D model [32, 43, 88].

R(z1, z2) = cos
(︃2r

3l

)︃
exp

[︄
−
(︃
r

3l

)︃2
]︄
, r = 2h | z1 − z2 |

[d(z1) + d(z2)] , (2.20)

SC(f) = C2
lσρdU

2
√
πBfs

exp
[︄
−
(︃1 − f/fs

B

)︃2]︄
, (2.21)

SCl,viv(f) = h2
∫︂ 1

0

∫︂ 1

0

√︂
SC(f)|z1SC(f)|z2R(z1, z2)ψ(z1)ψ(z2)dz1dz2. (2.22)

When accounting for all 3D effects [32], the linearized damping factor becomes

ζA = −
(︄
ρd2

0
me

)︄[︄∫︁ 1
0 Ka(z)ψ2dz∫︁ 1

0 ψ
2dz

−
∫︁ 1

0 Ka(z)(d(z)/d0)2ψ4dz∫︁ 1
0 ψ

2dz

(︃
ry

aL

)︃2
]︄
, (2.23)

where Ka is an experimentally determined aerodynamic damping coefficient [32]. When Ka

is simplified using a Raleigh oscillator, it can be simplified to Ka = Ka0ẏ(1 − aẏ2). This
added damping should induce a limit cycle oscillation when the linear damping is negative. As
there’s no current method for including nonlinear terms in standard random vibration theory
[86, 87], this nonlinearity was approximated using a limiting amplitude (aLd) and a statistical SD
amplitude. Using an added damping of this form is debatable and Kareem [135] conjectured that
it’s disingenuous to reduce motion induced forces to linear parameters as they’re too complex.

Vickery and Basu [113] further simplified the response calculation for slender structures by
assuming that: 1) the aerodynamics over the top one third of the structure dominates and that
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an average value over it can be used, 2) tapering can be ignored unless 20% or more and 3)
the extra lift force due to the turbulence spectrum can be ignored. With this, the spectral
vortex-induced vibration model can be simplified to

ry,σ =
Clσ

8π2St2
ρd2

me

(︂√
πl

2λ

)︂0.5
φ(ωq, B)[︂∫︁ 1

0 ψ
2(z)dz

]︂0.5 [︂
ζ −Ka,0

ρd2

me

(︂
1 − ry,σ

aL

2
)︂]︂0.5 , (2.24)

φ(ωq, B) = ω
3/2
q

B1/2 exp

⎡⎢⎣−0.5

(︂
1 − ω−1

q

)︂2

B2

⎤⎥⎦ , (2.25)

where the first contains the constant terms, the latter the variable forces and ωq is the dimen-
sionless speed defined in equation (2.19). The solution to equation (2.24) in terms of ry,σ can
be found by rewriting it to a bi-quadratic equation. For design purposes, the solution can be
further simplified by only calculating maximum ry,σ found at ωq ≈ 1.1 [113]. To convert the
standard deviation of the amplitude to the statistical maximum amplitude, ry,σ is multiplied by
a peak factor kp defined as [5, 32, 55, 88, 113]

kp =
√

2
(︄

1 + 1.2 tan−1
(︄

0.75 Sc

4πKa,0

4
)︄)︄

(2.26)

A major model issue

There is a region where equation (2.24) gives high amplitude response independent of φ(ωq). By
focusing on the damping terms, the linear stability can be derived as

ζ −Ka,0
ρd2

me
> 0 → Sc > 4πKa,0. (2.27)

When the relation is unfulfilled, the linear damping is negative and amplitude response is deter-
mined by the nonlinear damping and not the variable force. The effect of this on total damping
(structural + aerodynamic) as a function of the Scruton number is shown in figure 2.17 and
it decreases linearly when Sc > 4πKa,0; in this region the nonlinear damping is negligible. As
the Scruton number further decreases, the linear damping approaches negative values and the
nonlinear damping needs increase to compensate for it. The effect of the nonlinear damping
on the total is so great that the total damping increases as the Scruton number (and linear
damping) decreases past Sc = 7 − 9. Due to the form of the nonlinear damping, this requires a
constant high amplitude at all ωq.

There have been attempts at overcoming the negative linear damping. For example, the
Danish annex of the Eurocode fixed it by making Ka,0 a function of the dimensionless frequency
ωq [5]. Another fix is to change the aerodynamic damping term completely. Experiments
by Lupi et al. [59] found that the aerodynamic damping better fits an equation in the form
a exp(−yσb)yc

σ than Ka,0(1−aẏ2) during forced response tests. Maximum amplitude predictions
with this damping form were better than the original but requires numerical methods and only
the maximum response can be calculated [59, 115]. Philosophically, the modified model of Lupi
et al. has another problem: It’s getting so far removed from the original random vibration model
of Vickery and Basu that it becomes a new empirical model based on curve fitting.

2.4.2 Correlation length model

According to Ruscheweyh [49], it’s only necessary to calculate maximum response in most cases
and this formed the basis for a model to calculate maximum modal amplitude assuming harmonic
motion that’s used in the Eurocode [5]. In the spirit of simplicity, tip effects are neglected and
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Figure 2.17: Total damping in the spectral model (denominator of equation (2.24) without the mass
and diameter scalar).

only the correlation length (which affects the force’s strength) and lock-in effects are considered.
Based on these assumptions, the equation for the mode shape’s SD amplitude becomes

ry,σ = πρU2 ∫︁ h
0 clat(z)ψddz

2ω2
nmgδ

, (2.28)

where damping is expressed using the logarithmic decrement δ.
Equation (2.28) can be simplified by assuming that the force coefficient is constant over the

correlation length, L′. This constant lift coefficient, clat, depends on the Reynolds number and
is experimentally determined from an envelope of available experimental data, i.e. assumed to
be a worst case force [136]. Using the definitions of the Scruton number, Strouhal number and
equivalent mass given in equations (2.14), (2.5) and (2.9), equation (2.28) can be rewritten to:

ry,σ = clat

ScSt2
KξK

∗
W , (2.29)

Kξ =
∫︁ 1

0 ψdz

4π
∫︁ 1

0 ψ
2dz

, (2.30)

K∗
W =

∫︁ L′
ψdz∫︁ 1

0 ψdz
. (2.31)

In equation (2.30), Kξ represents a mode shape constant and KW in equation (2.31) is
the correlation length factor. To calculate the maximum response rather than the standard
deviation, equation (2.29) is multiplied by a peak factor C. This factor is incorporated by
modifying equation (2.31) so that the integral is over the length Le (effective correlation length)
rather than L′ as in equation (2.32):

KW = C ·K∗
W =

∫︁ Le ψdz∫︁ 1
0 ψdz

. (2.32)

By combining equations (2.29), (2.30) and (2.32), the model becomes

ry,max = clat

ScSt2
KWKξ. (2.33)

To solve equation (2.33), Le needs to be defined and it can be approximated using

Le = 2d0 exp (1 + 1.4ry,max) , ry,max ≤ 0.6
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Table 2.1: Simplified calculations of correlatin length Le/d0 based on dimensionless amplitude.

ry,max ≤ 0.1 0.1 < ry,max < 0.6 ry,max ≥ 0.6
Le

d0
= 6 Le

d0
= 4.8 + 12ry,max

Le

d0
= 12

This equation has an upper limit to the amplitude and the explanation for it is simple: Aerody-
namic nonlinearities will limit the maximum limit cycle amplitude [136]. At low amplitudes, the
effective correlation length is mostly due to random vibrations and a constant effective correla-
tion length can be assumed. The correlation length between the high and low amplitudes can
be approximated using linear interpolation and Le was simplified to the function given in table
2.1 [49]. As the correlation requires the amplitude and amplitude the correlation, the maximum
amplitude needs to be solved for by iteration.

To fully transform the model into what’s used in the Eurocode [5], there is one step left:
Assume a constant mode shape for similar structures and solve the integral in equations (2.30)
and (2.32). For chimneys, and other tall cantilevered structures, the assumed mode shape is y2

and Kξ reduces to 0.133 [5, 55]. When evaluating the integral in equation (2.32) from (h− Le)
to h and using the same mode shape, KW becomes [49, 136]

KW = 3Led0
λ

[︄
1 − Led0

λ
+ 1

3

(︃
Led0
λ

)︃2]︄
(2.34)

2.4.3 Simiu and Scanlan’s design approximation

Simiu and Scanlan [90] derived a design approximation based on a nonlinear representation of
vortex-induced vibrations using a power series of ẏ terms with odd exponential. This equation
depends on experimentally determined coefficients and most of these are zero during lock-in.
When averaging the model over a cycle of oscillation, it can be approximated to the equation
(2.35) which only gives the maximum response and has a similar form to the empirical fit of
Skop and Balasubramanian in equation (2.16) [105]. While the equation could be useful for
roughly estimating the maximum response amplitude in experiments, it should not be used for
final designs.

ry = 1.29
[1 + 0.43(8π2St2Sc)]3.35 (2.35)

2.4.4 Coupled wake oscillator models

Coupled wake oscillator models can model both the vortex-induced vibrations and the oscillating
lift and are often based on the observations of Bishop and Hassan [33] and model of Birkhoff
and Zarantonello [7, 137, 138]. In these models, the structural motion (linear) and lift force
due to vortex-shedding (nonlinear) are modeled in separate but coupled equations of motion.
Due to the nonlinear nature of these equations, they are often solved numerically at several
dimensionless frequencies or approximated by for example assuming a harmonic form and by
neglecting higher order harmonics or by averaging them [139].

Skop and Griffin [104] derived an early coupled wake oscillator model where the fluid forces
were modeled using a van der Pol oscillator and arbitrarily coupled with structural speed (dis-
sipation coupling). The wake oscillator model of Tamura and Amano [112] was less arbitrary
and was based on an oscillating Magnus-lift which again was modeled as a van der Pol oscillator
with structural acceleration and speed couplings. The Tamura model was later extended to a
3D model though it’s much more complex than the 2D model, contain more assumptions on
the forces and is less user-friendly [140]. Both of these coupled wake oscillator models have
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characteristics first found by Bishop and Hassan [33] such as lock-in with amplified forces and
unsteady lift being limit-cycle oscillation-like.

A third wake oscillator model is that of Facchinetti et al. [14] who argued that the wake
should be coupled to structural acceleration if limited to a single coupling term. This form
is similar to what Meliga and Chomaz found using an asymptotic, multiple-scale analysis of
the Navier-Stokes equations which gives credence to the coupling choice. The wake coupling
can be improved and Meliga and Chomaz specified that an extra coupling in the form of the
structure’s jerk or integral of motion could improve the response predictions [94]. The simple
wake oscillator model of Facchinetti et al. is described in equations (2.36) and (2.37) where q
is the wake variable which drives the oscillating lift. The total structural damping factor D,
equation (2.38), consists of the structural and a drag induced damping due to cylinder’s motion.

ÿ +D(ωq)ẏ + y = ω2
qMq, (2.36)

q̈ + ϵ
(︂
q2 − 1

)︂
q̇ + ω2

qq = Aÿ, (2.37)

D(ωq) = 2ζ + γ

µ
ωq. (2.38)

Two of the coefficients in the model needed to be experimentally determined and 12 and 0.3
were found to be good values for A and ϵ respectively using forced response experiments [14].
Ogink and Metrikine [141] found that different values better match free-vibration experiments
and concluded that the best coefficient values depend on the experimental configurations. The
remaining model parameters depend on the aerodynamic forces and are the strength F , the
mass-scaled force M and the stall parameter γ; all three are defined in equations (2.39)–(2.41).
The stall parameter includes a factor of 5/3 and this is a simplified method for including the
mean drag amplification during high amplitude vortex-induced vibrations. This stall parameter
is also scaled by the mass-ratio in the total damping which helps limit the amplitude growth
associated with low mass-ratios and damping ratios.

F = Cl0
16π2St2

, (2.39)

M = F

µ
, (2.40)

γ = 5
3
Cd

4πSt (2.41)

A benefit of coupled wake oscillator models, is how customizable they are. For instance, it’s
quite simple to add noise to the model either as white noise or in the form of turbulence with
varying dimensionless speed [142–146]. In addition, they can easily be combined with other
phenomena to improve the predictions e.g. vortex-induced vibrations in two directions [107]
or added tuned-mass dampers [7, 87]. Some customization of the models can be regarded as
general improvements, e.g. Srinil and Zanganeh [107] improved the amplitude response predicted
by Facchinetti et al.’s model by adding a nonlinear stiffness and Ogink and Metrikine [141]
added a frequency dependent coupling term. While these changes improved the predictions, the
changes added new nonlinearities that made the system harder to solve for. Of the coupled wake
oscillator models, the model that’s shown to be the easiest, most consistent and best to use is
that of Fachinetti et al. (with modified parameter values) and it will form the basis for a new,
simple and effective predictive model for predicting the amplitude response in later chapters.

2.4.5 How to improve predictions of vortex-induced vibrations

There are ways to improve the predictive models presented. For instance, the correlation length
model can be improved by finding more accurate lift force coefficients as a function of the
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Reynolds number. The spectral model can be improved by better including the effect on non-
linear damping like in the work of Lupi et al. Instead of modifying the damping directly in the
transfer function, it would be better to include a better description of the aerodynamic damping
directly in the structural equation of motion. The downside to this is that a method for deriving
nonlinear transfer functions needs to be created. Another way to improve the model is to get
better measurements of the aerodynamic damping and the lift spectra as suggested by Sanada,
Suzuki and Matsumoto and Scherer [124, 125].

There are several things that can be improved for the wake oscillator models beyond finding
better coefficient and parameter values. Firstly, one of the best ways of getting the amplitude
response is to do computationally expensive numerical simulations. Better nonlinear approxima-
tions of the amplitude response would eliminate the need for this time consuming task. Secondly,
there’s no simple equation for the maximum structural response due to vortex-induced vibra-
tions. An equation for the maximum response could aid in designing chimneys. Lastly, it needs
to be determined if and when the model is better than the design code models at predicting the
response of 3D structures.

2.5 Original contributions of this work
To improve the prediction of vortex-induced vibrations on industrial chimneys using wind tun-
nel experiments and mathematical models, several studies have been made. Each of these have
incrementally improved our understanding and can be separated into three groups: 1) Improved
understanding of 2D unsteady pressure distribution at super-critical Reynolds numbers; 2) Im-
proved understanding of vortex-induced vibrations of finite length cylinders; and 3) Improved
models for predicting vortex-induced vibrations and understanding of when to use them.

The first gap filled, is the lack of good unsteady pressure distributions around a smooth
and stationary circular cylinders at super-critical Reynolds numbers. Experiments on a large,
smooth, circular cylinder in a high speed wind tunnel was performed and its results are presented
in chapter 3. These tests are supplemented by a small-scale test campaign that aimed to recreate
the unsteady pressure distributions seen at large Reynolds numbers but at much lower Reynolds
numbers. These results are discussed in chapter 4. The comparison and new super-critical
data focuses on the Strouhal number obtained from the unsteady pressure data and the wake
characteristics, the global force statistics (i.e. mean and SD values) and the main spatial and
temporal unsteady pressure distributions using the bi-orthogonal decomposition (BOD).

The knowledge gained from the 2D stationary tests are used to determine the response
and wake characteristics for flexible cylinders of finite length with smooth and rough surfaces
in chapter 5. These tests will show the effect of a finite length on the aerodynamics and if
the added roughness can adequately simulate super-critical Reynolds numbers when using an
atmospheric boundary layer. In addition, the effect of the added atmospheric boundary layer
is tested by repeating the tests without it. To help verify these small-scale wind tunnel tests,
a full-scale field experiment on a custom designed chimney is presented in chapter 6. This field
test campaign shows how the atmospheric boundary affects the response and verifies some of
the findings from the small-scale tests.

The last point of improvement is in mathematically predicting vortex-induced vibrations.
This is done by comparing the design code models with an approximated nonlinear wake os-
cillator model that doesn’t require numerical simulations; the approximation of this model is
described in chapter 7. In addition to deriving an expression for the amplitude response, a
simple equation for the maximum amplitude and the lock-in region as a function of mass-ratio
and damping are defined and discussed. This predictive model is finally compared with the
existing design codes in chapter 8 using the experimentally obtained amplitude responses and
the maximum amplitude of chimneys from the literature. Using these results, the best model
for a given chimney is defined using the Scruton number and Reynolds number region.
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Chapter

3
Wind tunnel results up to super-
critical Reynolds numbers

Chapter summary

This chapters details the work done to characterize the super-critical flow around a smooth cir-
cular cylinder in uniform flow. For this super-critical cylinder, several measurements are made
such as the unsteady pressure distribution and the wake characteristics. These measurements are
used to calculate the Strouhal number (using both wake and pressure), the unsteady 2D forces
and the steady and unsteady pressure distributions. Additionally, the effect of roughness ribs
(with low relative roughness) on the flow at high Reynolds numbers was investigated. The results
from these experiments should be significant as two Strouhal numbers were discovered for the
smooth cylinder. One of these Strouhal numbers was found to be related to the unsteady pres-
sure distribution that gives most of the unsteady lift force while the other was associated with a
pressure distribution with spatial energy focused post separation.

3.1 Background

As mentioned in chapter 2, the Reynolds number plays a large role in the fluid dynamics over
circular cylinders. Unfortunately, it’s hard to achieve super-critical Reynolds numbers (order
of 106) in wind tunnels without altering the flow medium (e.g. high pressure, cryogenic) or by
using flow speeds large enough to get compressibility effects [8, 16, 17, 19–24]). In addition,
the existing smooth, super-critical Reynolds number data has a large amount of scatter which
makes it challenging to use (cf. the scatter in unsteady lift from Fung [29], Schmidt [38, 39] and
Jones et al. [24]). In addition to the scatter in lift coefficient, there’s a qualitative difference in
the Strouhal number presented in the literature: Some researchers present a value in the range
0.25 to 0.27 [8, 13, 21, 23–25, 36, 56] whereas others give a value near 0.2 [17, 54]. In addition,
the presented pressure distributions are focused on the mean and sometimes the SD pressure
distribution but not on decomposing them to more informative spatial pressure distributions
(using e.g. the bi-orthogonal decomposition (BOD) method).

Overall, there’s a lack of good experimental data (both for wake measurements and unsteady
pressure distributions) for smooth cylinders at super-critical Reynolds numbers without flow or
surface modifications. This makes it harder to accurately determine if a smaller experiment
(e.g. with maximum Reynolds number around 105) reaches the correct unsteady pressure dis-
tributions and forces with added roughness or uniform turbulence. This chapter introduces
some experimental results on a large, circular, steel cylinder (d = 0.5 m) in a large, high-speed
wind tunnel. This circular cylinder was tested in four configurations where one is a nominally
smooth cylinder and with attached ribs. The smooth cylinder tests will give a good baseline for
the strength of the unsteady forces, their frequency and the pressure distributions which most
strongly affect the unsteady forces on a super-critical cylinder. The tests with added roughness
elements show if there are differences when testing a rough cylinder at large scales and at small
scales.



3.2 Experimental methodology

3.2.1 Wind tunnel description

The wind tunnel tests were performed in CSTB’s climatic wind tunnel, i.e. the Jules Verne wind
tunnel. The aerodynamic test section, 6x5 m2, can reach a maximum wind speed of 70 m/s when
operated in the high speed mode and as low as 5 m/s in the low speed mode (though with some
irregularities). The wind speed was calibrated based on the location of the cylinder’s stagnation
point and at the height the pressure taps using a fast response Pitot tube, a pre-calibrated
average Pitot tube and three Cobra probes (used for wake measurements).

The turbulence intensity was found in all three main velocity components using the Cobra
probes. It was estimated to be 1.5 % in the inward direction (u component of velocity), 1.0 % in
lateral direction (left-right or v component) and 1.5 % in longitudinal direction (up-down or w
component). The turbulence intensity was slightly higher at lower speeds but quickly converged
to the given values as the speed increased.

The wind tunnel mode was changed by changing the fans’ rotational speed; this was used to
have the smoothest flow at low speeds and high speeds. The low speed fan mode was used for
speeds in the range 4 to 24 m/s and the high speed mode for speeds between 20 and 70 m/s.
This gave a transition region for wind speeds between 20 and 24 m/s made it possible to verify
that the transition between the wind tunnel modes were smooth.

3.2.2 The test model and setup

The test model and setup is sketched shown in figure 3.1. Figure 3.1a shows an annotated photo
of the smooth cylinder along with explanations of where the various sensors and equipment were
placed, the height at which the added roughness elements were placed and their length. The
test model was a circular steel cylinder with diameter 0.5 m and was mounted vertically in the
wind tunnel and extended the entire height. This should have given good 2D conditions at
the measurement location (mid-height or 2.5 m from floor). The cylinder’s and wind tunnel’s
dimensions made the blockage ratio 8.3% and its effect on the forces and Strouhal number
should be small [147]. With this setup setup and structural characteristics, the cylinder had
a damping ratio of 36.4% and a damped first natural frequency of 64 Hz. These structural
characteristics made the maximum measured acceleration and vibration amplitude negligible
and motion should not impact the measured pressure distributions. The coordinate system used
and relative positions of the Cobra probes and cylinder in the x-y plane is shown in figure 3.1b.

To measure the unsteady pressure distribution, sixty uniformly spaced pressured taps were
drilled at mid-height. The first pressure tap was placed at θ = 0◦ (purely in drag direction)
with the rest spaced out uniformly with a separation of θ4 = 6◦. These taps were connected to
two pressure scanners using vinyl tubing with length 1.0 m. Figure 3.2a shows the location and
numbering scheme of the pressure taps in relation to the added roughness and figure 3.2b shows
the location of all added roughness elements. To investigate the effect of roughness spacing,
specific ribs were removed to increase the spacing as shown the figure 3.2.

Three four-hole Cobra probes were installed behind the cylinder to measure the wake char-
acteristics. These were mounted at different heights and placed 2 diameters behind the cylinder
and 0.25 diameter to the side of the cylinder’s center for smooth tests, 1 m and 0.125 m mea-
sured from the cylinder’s rear and center respectively. When testing with roughness, the cobra
probes were moved 0.25 diameter further to the side as the strong wake fluctuations caused bad
measurements at the original location. A focused side view of the Cobra probes’ locations is
sketched in figure 3.1c and from the top in figure 3.1b. The upper probe’s (D) location was 1
diameter above the pressure tap arrangement, the next (B) 1 diameters below probe D (near
height of pressure taps) and the last (A) 2.5 diameters below probe D (1.5 diameters below the
pressure taps). These locations were chosen to minimize any adverse interactions between the
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Reference pitot
tube

Fast response 
pitot tube

Cobra probes

Access panel

Pressure 
taps

Roughness element
height (4 diameters)

(a) Picture of experimental setup for smooth tests with annotated explanations.

(b) Sketch from top with coordinate system. (c) Side sketch focused on location of cobra probes.

Figure 3.1: Figures showing experimental setup, relative locations and coordinate system.

Cobra probes and the pressure taps. Two different types of Cobra probes were used and only
one was rated up to 70 m/s (probe D) while the other two were rated up to 35 m/s. This means
that only probe D worked at super-critical Reynolds numbers when using the smooth cylinder.

The last pieces of measuring equipment were two Pitot tubes used to measure the reference
wind speed and turbulence intensity. One of these was a fast response Pitot tube that was
rated up to 45 m/s and it was placed 4 diameters to the side of the cylinder (2 diameters from
the wall), at a height of 1.1 m (2.2 diameters) and slightly ahead of the model. This position
was chosen to characterize any freestream flow changes after installing the model. The second,
reference Pitot tube was mounted to the roof of the front section of the wind tunnel and rated
for all speeds tested. The location was 0.35 m from the roof and 0.87 m from the wall. Both
of the Pitot tubes were calibrated based on the wind speed at the location of pressure tap 1
(θ = 0◦).

3.2.3 Roughness elements

Surface roughness was added to the circular cylinder using laser-cut, acrylic ribs with rectangular
cross-sections with heights of either 0.5 mm or 1.35 mm; this corresponds to relative roughness,
Rr = kδ/d, of 1 · 10−3 and 2.7 · 10−3 respectively. These rib elements had a width of 3 mm
and a total length of 2 m (4 diameters). This length was the result of lining up 3 rib pieces
(2x0.5 m and 1x1 m) and with joints 1 diameter (0.5 m) from the pressure taps. The ribs were
glued on at regular intervals by attaching either 30 (θ1=12◦ spacing) or 14 (θ2=24◦ spacing)
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(a) Pressure tap and rib distribution. (b) Rib distribution.

Figure 3.2: Sketches showing distribution of pressure taps and ribs.

Figure 3.3: Picture of added roughness elements and pressure taps taken from the front of the cylinder.

lengths as shown in figure 3.2b. The separation angle between the ribs were different near the
stagnation point and rear of the cylinder due to the location and of the pressure taps and to
keep it symmetric around the êx axis (the first removable ribs were placed at θ3 = 0±3◦ and the
last at 180 ± 9◦). Figure 3.3 shows a frontal picture of the cylinder with the 2.7 · 10−3 roughness
elements attached every 12◦ and how they’re positioned relative to the pressure taps.

3.2.4 Instrumentations and measurements

Two separate measurement systems were used as outlined in figure 3.4: One measured the un-
steady pressure while the other focused on wind velocity. Both systems used the same recording
frequency (400 Hz) and recording length (180 s) but with a slight time-shift between them.

Figure 3.4: Diagram of wind and pressure data acquisition chains.
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Wind velocity acquisition system

Three things were measured in the wind velocity acquisition system: 1) the reference wind speeds
from the Pitot tubes; 2) the cylinder’s acceleration using two internally mounted accelerometers
and 3) the wind velocities in the wake using Cobra probes. While the Cobra probes measured
all velocity components, the main component of interest was the lateral fluctuations v which
should be the most affected by vortex-shedding. Not all Cobra probe recording were good and
the recorded velocities for many experiments had corrupted data points when the inflow angles
were large (≈ 15◦)5. Even with this limitation, there were enough good samples in succession to
perform spectral and statistical analyses of the wake’s lateral component. To calculate the power
spectrum (PSD) of a given wake component (used to identify the vortex-shedding frequencies),
an algorithm based on Welch’s method with 50% overlap and with a segment length of 8192
points was created. This was implemented in Python using a customized function and the inbuilt
Fourier transform function from NumPy.

Pressure acquisition system

The second acquisition system recorded the unsteady surface pressure distribution by connecting
the pressure taps with 1 m vinyl tubing to two 32 channel pressure scanners (32HD ESP pressure
scanners from Pressure Systems, Inc.) with multiplex frequency of 70 kHz. Both pressure
scanners were rated up to 7000 Pa and should have static errors within ± 0.03%. To correct
for the resonance and damping effects caused by the tubing, a proprietary and CSTB developed
theoretical transfer function based on the work of Bergh and Tijdeman [148] was used. The
theoretical transfer function is well tested for the tubing length, the tube fitting and pressure
scanners used. In other words, the temporal unsteadiness should be recovered and correct
unsteady forces and pressure distribution can be calculated. The power spectrum of the pressure
distributions were calculated using the same algorithm as for the Cobra probes.

3.2.5 Tested wind speeds

The wind tunnel experiments were performed at different speeds depending on the surface rough-
ness configurations. When using the smooth cylinder configurations, the wind tunnel tests were
performed at speeds between 4 and 70 m/s whereas tests with ribs were performed at speeds
between 4 and 60 m/s. For all configurations, the wind speed was increased by increments of
2 m/s. Additionally, two tests are performed at 20, 22 and 24 m/s as this is where the wind
tunnel mode was changed from low to high speed mode. This corresponds to testing Reynolds
numbers between 1.33 · 105 and 2.33 · 106, at increments of 6.7 · 104 and with the overlap region
around 7.5 · 105.

3.2.6 Characteristic dimensions

The characteristic dimension for the Reynolds number and force coefficients used here is the
diameter of the smooth cylinder. While adding surface roughness to the cylinders effectively
increases the diameter by 2 times roughness height, this value is not used due to the goal of the
test: The goal of the tests was to simulate super-critical Reynolds numbers at speeds below what
it should be for a smooth cylinder with diameter d. It should therefore be more philosophically
correct to use the diameter of the model both here and in the small-scale tests. In addition,
the use of roughness height in creating equivalent Reynolds numbers and force coefficients has
been shown to be inadequate in section 2.1.3 as it does not include the effect of flow changes
nor the use of discrete roughness elements like ribs [10, 13, 28, 37, 48, 53, 58, 62]. Instead

5This is one of the reasons for why the probes were moved for the tests with ribs.
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Figure 3.5: Experimentally obtained drag coefficient compared with the smooth results of Achenbach
and Heinecke [21] and analytic drag for the smoothest cylinder in the Eurocode [5].

Table 3.1: Reynolds numbers and roughness configurations from large-scale 2D tests identified as being
at super-critical Reynolds numbers.

Rib configuration Speed [m/s] Reynolds number [-]
Smooth surface 67.6 2.25 · 106

1.00 · 10−3∡12◦ 24.1 8.02 · 105

2.70 · 10−3∡12◦ 21.8 7.28 · 105

2.70 · 10−3∡24◦ 22.0 7.33 · 105

of comparing similar effective Reynolds numbers, configurations at similar Reynolds number
regions are compared based on the flow/drag description in section 2.1.1.

3.3 Aerodynamic forces

3.3.1 Unsteady lift and drag forces

When comparing the present results with those of Achenbach and Heinecke [21] (figure 3.5a), it
can be seen that the mean drag has a similar shape for the smooth cylinders but that Achenbach
and Heinecke [21] found higher drag coefficients. There are two differences in the arrangement
which could have led to this discrepancy: 1) Achenbach and Heinecke’s higher blockage ratio
(16.7%) was uncorrected which should increase the drag coefficient and 2) their high-pressure
tunnel had a lower turbulence intensity (0.45% instead of 1.5%). Of the two, the difference in
blockage ratio is the likely culprit for the difference.

As the mean drag coefficient data match well with the Eurocode [5] formula with the
smoothest surface, the present data should be good and the effect of blockage low. The ef-
fect of adding ribs on mean drag was also similar to the previous literature and the Eurocode
formula [5, 10, 13, 17, 19–23, 26, 27, 31, 40, 58, 62, 63]: Increasing the height of the ribs in-
creased the drag and caused earlier Reynolds number transitions and decreasing the spacing
had the opposite effect (lower roughness). Based on the mean drag data, it’s assumed that the
surface flow over the cylinders reaches good super-critical Reynolds numbers at the values given
in table 3.1.

While the added roughness increased the mean drag, it greatly decreased the SD drag as
shown in figure 3.5b. At the same time, changing the roughness barely affects the SD drag
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Figure 3.6: Experimentally otained lift coefficient compared with smooth results of Fung [29] and
Schmidt [38].

and their change with Reynolds number is similar; the increased SD drag at low speeds should
be due to low speed effects in the wind tunnel. The smooth cylinder has a more significant
Reynolds number effect; there’s a reduction in SD drag at critical Reynolds numbers which
slightly recovers to a plateau value at super-critical Reynolds numbers.

Figure 3.6 shows that the mean lift was near zero for configurations with ribs, but the
smooth cylinder had significant mean lift at high Reynolds numbers. This could either be due
to a separation bubble or geometric imperfections and cylinder deformations at high dynamic
pressures as in the work of van Hinsberg [22]. The SD lift for the smooth cylinder was closer to
the results of Fung [29] and approaches upper values found by Schmidt [38] at higher Reynolds
numbers; based on the evolution of Fung’s result with Reynolds number, it’s possible that these
results also would approach the upper values given by Schmidt. A possible reason for why the
present results better match Fung’s, is that the wind tunnel and experimental configurations
are more similar [29, 38, 39]. Contrary to Basu’s analysis [13], the configurations with added
roughness ribs have lower SD lift coefficients in the Reynolds number range of interest and match
best with Schmidt’s smooth cylinder results [38, 39]. Additionally, changing the rib height or
spacing barely changes the SD lift similar to the SD drag.

3.3.2 Correlation and coherence

The correlation and coherence, defined in section 2.1.4, are shown in figure 3.7 for the configu-
rations with roughness at simulated super-critical Reynolds numbers using the speeds specified
in table 3.1. As a reminder, the correlation and coherence for the smooth cylinder at actual
super-critical Reynolds number could not be calculated due to only one Cobra probe functioning
at these speeds. An example of the coherence between the Cobra probes are shown in figure 3.8
and its the values at the vortex-shedding peaks that are presented in figure 3.7. The locations
of the Cobra probes used to calculate the coherence and correlation are given in figure 3.1c.

The correlation, figure 3.7a, was similar for the rib configurations at distances less than
1.5 d but has a rib height based difference when the distance reaches 2.5 d. Additionally,
the correlation initially drops and then increases for all configurations. This behavior is more
similar to the correlation used in the spectral model (see equation (2.20) in section 2.4.1) than
the correlation found by Novak and Tanaka [43]. There’s another difference between the previous
literature result and the current: The correlation is much stronger in the literature. There are
two possible explanations for this. Either the wake correlation is weaker than the one from
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Figure 3.7: Comparison of correlation and coherence at super-critical Reynolds number configurations.
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Figure 3.8: Example of coherence between Cobra probes using the cylinder with 2.70 · 10−3∡12◦

roughness attached. Note that the resolution was decreased for visualization purpuses.

unsteady pressure or correlation and coherence is confused in the literature. As the correlation
given by Novak and Tanaka is that much greater, the latter explanation is more plausible.

The maximum coherence, figure 3.7b, is different from the correlation in that it’s much
stronger. A possible reason for this, is that the coherence shown is for the vortex-shedding
process only instead over all frequencies like in the time domain. Like for the correlation, the
maximum coherence is independent of roughness size at low distances (1 d) but the coherence
is significantly higher with larger roughness height at higher distances (1.5 and 2.5 d). The
coherence evolves differently with distance than the correlation: It drops significantly slower
with distance and then plateaus between distances of 1.5 and 2.5 d. The difference between
coherence at low and high distances might be because there’s a different vortex-cell when the
distance is greater than 1.5 d. While the wake correlation was different from the pressure
correlation of Novak and Tanaka, the coherence was more similar to it. Because of this and as
it focuses on a narrow band frequency, the coherence idq a much better measure of vortex-cells
and flow similarity along the height.

For the highest measured Reynolds numbers using 3 Cobra probes with the smooth cylinder
(critical Reynolds numbers), the correlation coefficients are fairly constant with distance and
is approximately {1 d: 0.08, 1.5 d: 0.01 , 2.5 d: 0.0}. Similarly, the coherence coefficients
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are approximately {1 d: 0.17, 1.5 d: 0.03 , 2.5 d: 0.01}. These coefficients are mentioned
because it shows that the coherence is higher than the correlation and because many of the
rib configurations have a similar coherence and correlation trend with Reynolds numbers: At
critical Reynolds numbers the correlation and coherence coefficients are smaller and increases
at super-critical Reynolds numbers. As the smooth cylinder’s coefficients are smaller at critical
Reynolds numbers than for the rough cylinders’ and as decreased roughness height reduces
coherence, it’s possible that the smooth cylinder’s coherence and correlation coefficients are
lower at super-critical Reynolds numbers as well.

3.4 Unsteady pressure distributions and their effect on the forces

3.4.1 Bi-orthogonal decomposition

Definition

The unsteady pressure data are decomposed into orthogonal spatial (topos) and temporal
(chronos) pairwise components using the bi-orthogonal decomposition (BOD) [46, 149]. When
transforming the continuous BOD method to discrete, the pressure field of a single ring of
pressure taps is defined as the sum of the following eigenvalue scaled orthogonal fields

p(θ, t) =
n∑︂

i=1
Ψi(θ)αiΦT

i (t).

If the pressure data is arranged in matrix form with one dimension as time and the other as
sensor location, the discreet BOD method resembles the singular value decomposition (SVD).
Because of the size of the data matrix, directly applying a SVD routine is ill advised and may
fail (e.g. RAM shortage). Instead, it can be shown that the topos is identical to the eigenvectors
of the signal’s spatial correlation matrix the corresponding eigenvalues are equal to the BOD
eigenvalues squared (αcorr = α2

BOD). As the BOD components are pairwise orthogonal, the
chronos can be recovered from in matrix form using

Φ(t) = P(θ, t)Ψ(θ)A−1,

where Φ and P are the chronos and pressure data (m by n matrices), Ψ is the topos (n by
n matrix) and A the eigenvalues (n by n diagonal matrix). The dimensions m and n are the
number of time samples and sensors respectively. The sign of a given chronos or topos can be
changed arbitrarily (for the reconstruction and visualization), provided both chronos and topos
in the pair have their signs changed.

One of the important factors in the BOD methods, is the energy each orthogonal topos and
chronos pair contributes to the total energy of the signal. As the total energy of the signals
should increase with the dynamic pressure, it’ll be much more informative to compare the
relative energy from each BOD pair to the total energy. This is done by dividing energy from
each BOD pair with the total energy which is found from the trace of the spatial or temporal
correlation matrices [46] or by diving the individual eigenvalues by the sum of eigenvalues as
shown in equation (3.1). The focus later will be on the first four manually sorted BOD pairs;
these pairs contain between 99.7 and 99.9% of the total energy of the signals measured using
the eigenvalues. Most of this energy will be contained in the mean BOD pair and it’s better
compare the energy of the fluctuating pairs using equation (3.2); this is analogous to calculating
the conditional probability given an event.

αr,i = αi∑︁n
j=1 αj

(3.1)

α̃r,i = αr,i

1 − αr,1
(3.2)
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Figure 3.9: Comparison of relative eigenvalues for the smooth cylinder at three Reynolds numbers.

Relative contribution to forces

To compare the forces from each BOD pair to the total force, the ratio of root mean square
(rms) force from pair i is compared to the total rms force [46]. The rms is defined as

xrms =
√︄

1
T2 − T1

∫︂ T2

T1
[x(t)]2dt,

which, when the mean (over-bar) and standard deviation (σ subscript) are known, simplifies to

xrms =
√︂
x̄2 + x2

σ.

Using this, the rms ratios are defined as

prms(i) = xrms, i

xrms, total
.

From this, it’s clear that a large nonzero mean force will strongly affect the rms ratios and
increase the relative importance of the first BOD pair (mean forces). Therefore, it’s better to
compare the contribution to the fluctuating forces by removing the mean contribution similar
to how the mean energy was removed from the relative energy in equation (3.2).

3.4.2 Smooth cylinder’s topos and Reynolds number effect

The energy of the signals

The relative energy for the first 19 fluctuating BOD pairs are shown in figure 3.9 for the smooth
cylinder at three Reynolds numbers (from the critical region to super-critical). This was done
by removing the mean component using equation (3.2). As can be seen, much of the energy was
contained in the first three fluctuating BOD pairs and there’s a steady decrease in energy as the
rank of the BOD pairs increases. The exception is a jump in the relative eigenvalues for pair six
with the two critical Reynolds number cases. This is due to a manual sorting of the BOD pairs
based on physical meaningfulness towards vortex-shedding instead of purely on energy levels.
The pair that’s manually moved up in the order, is the fourth BOD pair which contains a period
and oscillating frequency component found in the wake; this was done to better compare the
same physical phenomena. Finally, it can be seen that as the Reynolds number increases, the
relative energy of the pairs higher than 4 increases but that the relative energy of the first four
BOD pairs are similar regardless of the Reynolds number.
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Figure 3.10: Comparison and evolution of the mean and SD pressure coefficient with Reynolds number
for the smooth cylinder and with the mean results of Achencbach [19].

Spatial energy and unsteady pressure

The distribution of the mean pressure distribution on the smooth cylinder was similar to that
found by Achencbach [19] as shown in figure 3.10a. While unintentional, the mean pressure
distributions are not just similar in terms of values, but also similar in having asymmetry with
a higher minimum pressure coefficient at positive angles. A second difference is the higher
pressure coefficient post separation for the rough cylinder which should explain the lower drag
coefficient in the current experiment. While not directly compared, the SD pressure coefficient
has a similar shape as that found by West and Apelt [41] (shown in figure 2.3) though the peak
value is smaller and further in the rear and the current results are missing both the second high
peak in the rear and the high rear SD pressure coefficient.

The spatial energy (topos) of the first four BOD pairs are related to the mean and SD pressure
distribution. This is shown in figure 3.11 which compares the first four topos at three Reynolds
numbers. It should be immediately clear that the first BOD pair in figure 3.11a, the most
energetic BOD pair, has a topos containing the mean pressure distributions and its chronos
is flat with time. As the Reynolds number increases from critical to super-critical Reynolds
numbers, the separation point (flat region) moved towards earlier separation (lower angular
locations) and the pressure in the rear becomes lower. This is consistent with the literature
description given in section 2.1.1.

The asymmetry is less consistent. Due to surface imperfections (deformations at high speeds)
or a separation bubble [15], the low pressure peak on one side of the cylinder was larger than the
other at super-critical Reynolds numbers; this caused the nonzero mean lift. The super-critical
pressure distribution of Achenbach [19] (Re = 3.6 · 106) have a relative lower pressure coefficient
in the rear (which can explain the higher drag) but is similar to the present super-critical mean
pressure distribution.

The second BOD pair, figure 3.11b, has a spatial distribution which should strongly con-
tribute to the unsteady lift and will be referred to as the "vortex-lift" pair. This is because
its shape has low energy levels at most locations except θ ∈ ±[90, 110] where there are anti-
symmetric peaks. The energy in these locations contributed greatly to the SD pressure peaks
but contributes much less elsewhere. As the Reynolds number increases, the spatial energy peaks
of the vortex-lift move to lower angles similar to how the shedding point moves forward for the
mean BOD pair. While mostly anti-symmetric, one side has more energy. This was on the side
with smaller negative peaks in the mean distribution and it’s possible that the separation bubble
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(c) Comparison of the 3rd topos (vortex-drag).
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(d) Comparison of the 4th topos (second vortex-lift).

Figure 3.11: Comparison and evolution of first four topos with Reynolds number for the smooth
cylinder.

or surface deformation gave a more energetic fluctuating lift force on this side.

The third topos has peaks at the same location as the vortex-lift pair but with the same sign
at both locations. This makes it more symmetric though the side with stronger lift has a lower
energy peak. In addition, there’s higher energy levels between θ = ±90 which has a similar shape
as the mean BOD pair; these spatial peaks move forward with increasing Reynolds numbers. If
anything, this spatial energy should contribute to the unsteady drag and SD pressure between
θ = ±110 with the largest relative effect on SD pressure between θ = ±90. Because of this
shape, it’ll be referred to as "vortex-drag".

The fourth BOD pair, here dubbed "second vortex-lift", has a peculiar shape which is reminis-
cent of the vortex-lift pair until the shedding point where there’s an abrupt change in the spatial
and a change of sign; this could be related to super-critical surface flow separation. Because of
the shape, this BOD pair should be contributing to the SD pressures in the cylinder’s rear and
will contribute both to the unsteady lift and drag. As the shape of the fourth topos is more
chaotic, it’s harder to conclude on how it changes with the Reynolds number. It’s likely that
the changes in topos are highly dependent on the separation point which in turn is dependent
on the surface imperfections and formation of separation bubbles.
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(c) Comparison of the 3rd topos (vortex-drag).
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Figure 3.12: Smooth and rough configurations compared at a Reynolds number of 1.5 · 106.

3.4.3 The effect of roughness and simulated super-critical Reynolds numbers

Spatial energy

The spatial energy changes not only with the Reynolds number but also with the surface rough-
ness. When comparing the spatial energy of the first four BOD pairs at a Reynolds number of
1.5 · 106, figure 3.12, differences can be seen between the smooth and rough cylinders at simu-
lated super-critical Reynolds numbers. Firstly, it can be seen that the mean distributions (in
figure 3.12a are more symmetric with roughness ribs, that the separation occurs earlier and that
the relative energy in the rear is lower but higher in the front. This could be explained by the
ribs causing an earlier separation or that the ribs are at effectively higher Reynolds numbers
than the smooth cylinder; for instance, the smooth cylinder may not have fully reached stable
super-critical flow.

Like for the mean distribution, the earlier separation point was noticeable when comparing
the vortex-lift topos in figure 3.12b. Overall, the spatial energy distributions were similar but
the rough configurations were slightly less asymmetric, had their stronger peak and the other
side of the smooth’s and a bit more energy in the rear. Like the vortex-lift, the peaks near the
separation point were at lower angular locations with roughness than the smooth’s for the second
vortex-lift pair and the energy peaks in the rear was at higher angular locations as shown in
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Figure 3.13: Wake Strouhal numbers using the configurations in table 3.1 and compared with the
smooth results of Adachi [25] and Zan [54].

figure 3.12d. This could indicate that the rear vortex-shedding process is different when adding
the ribs. The vortex-drag BOD is compared in figure 3.12c and has the largest visual differences
between smooth and rough configurations. When adding the ribs, the peaks near the shedding
points becomes less important and the spatial energy becomes more concentrated near the
stagnation point and in the cylinder’s rear.

3.5 Wake and lift Strouhal number

There are three ways the vortex-shedding frequency and the Strouhal number can be determined
with this experimental setup: 1) the wake fluctuations, 2) the unsteady lift and 3) pressure
oscillations from a single pressure tap. As the unsteady lift can be noisy, the chronos of the
BOD pairs contributing the greatest to the shedding process (vortex-lift and second vortex-
lift) are used instead. The frequencies obtained from a pressure tap near θ = 90◦ match the
frequencies from the vortex-lift BOD pair while the frequencies obtained from a pressure tap
near θ = 155◦ match the 2nd vortex-lift BOD pair; these results are not shown. Them matching
makes sense as most of the spatial energy contributing to it is in this area.

Figure 3.13 shows the Strouhal number calculated using the lateral velocity component from
the high speed Cobra probe (D). These results are compared with the results of Adachi [25]
on a smooth and rough cylinder (uniform relative roughness of Rr = 2.54 · 10−3) using wake
measurements. As can be seen, there’s not one but two dominant wake shedding frequencies
for the present smooth cylinder and therefore twin Strouhal numbers. The upper Strouhal
number found was consistent with most of the literature St ∈ [0.24, 0.25] [8, 21, 25] and the
lower value was consistent with the pressure measured Strouhal number of Zan [54] and Shih
[17] St ∈ [0.2, 0.21].

An example PSD of the lateral wake component with a large window is shown in figure 3.14
using the smooth cylinder configuration at three different Reynolds numbers. The two dominant
dimensionless shedding frequencies are shown with the upper Strouhal number having more
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Figure 3.14: PSD of wake fluctuations using the smooth cylinder at three Reynolds numbers.

energy than the lower which is consistent among smooth tests. When reducing the window size
of the PSDs, it becomes clear that the double frequency phenomena is bi-stable. Depending on
the window, the lower frequency can either be dominant, missing or small compared to the upper
like in figure 3.14. Similarly, there are windows where the upper frequency is indeterminate.
The PSD of the wake fluctuations does differ from the PSD of the chronos in figure 3.15b in
one important aspect: In the wake the second Strouhal number is the strongest whereas in the
BOD, the first Strouhal number has more energy due to being found in the vortex-lift BOD pair
with a higher eigenvalue.

When adding the rib elements, the wake Strouhal number is consistently lower and more
consistent as figure 3.13 shows. For all three roughness configurations, the Strouhal number was
close to 0.195 at super-critical Reynolds numbers which is close to the lower Strouhal number for
the smooth cylinder (approaches 0.21) and the results of Zan [54]; the rough results of Adachi
gave higher Strouhal numbers [25]. This Strouhal number was slightly decreased when reducing
the degree of surface roughness by either increasing the spacing or decreasing the roughness
height. As the upper shedding frequency is unobserved with added roughness, it’s possible
that the added roughness smooths out the instability that leads to the second vortex-shedding
frequency.

The lower Strouhal number was found in the second BOD pair or the vortex-lift pair as
shown in figure 3.15b; it was also found in a pressure tap located on the top. Unlike the wake
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Figure 3.15: Comparison of temporal signal and PSD of chronos for the first four BOD pairs using
the smooth cylinder at a Reynolds number of 2.17 · 106.

fluctuations, this pair was the most energetic of the fluctuating the BOD pairs meaning that
the lower Strouhal number had a strong, single PSD peak. In other words, the lower Strouhal
number is associated with the vortex-lift whereas the upper is associated to another vortex-
shedding process. The PSD contain a lot of low frequency noise, as seen in figure figure 3.15a,
which explains why the PSD doesn’t have a singular peak.

The classical characteristic vortex-drag frequency (two times the Strouhal number) is not
readily observed for any of the temporal distributions6. Instead, its temporal distribution is
like the third plot of figure 3.15a. It has slowly oscillating components but the temporal energy
tends to have the same sign with time. The PSD of the chronos also shows that low frequency
components are dominating the temporal energy fluctuations and the unsteady drag caused by
this BOD pair might be dominated by flow conditions rather than vortex-shedding.

The fourth BOD pair contains the second Strouhal number as seen in the last plot of figure
3.15b. This pair’s temporal variation has a dominant frequency component at a dimensionless
frequency near 0.25 and should be due to the secondary separation in the rear of circular cylin-
ders; this frequency peak was also found with a pressure tap located near the rear. When viewed
in time domain (figure 3.15a), it can be seen that there’s a slow change in sign in addition to
the dominant frequency component. This extra vortex-shedding process might explain the lack
of a dominant shedding frequency at twice the Strouhal number.

When combining the spatial information on the second and fourth BOD pair, it’s clear that
the lower Strouhal number is associated with the main unsteady lift process whereas the higher
Strouhal number is associated with a combined lift and drag process focused in the rear that
has a lower total impact on the total unsteady force. Based on this, a good Strouhal number for
vortex-induced vibrations could be close to 0.2 at super-critical Reynolds numbers like it is at
sub-critical [55]. The wake Strouhal numbers from the smooth cylinder are directly compared
with the Strouhal numbers obtained from the BOD analysis in figure 3.16 for all tested Reynolds
numbers and configurations. From it, it can be seen that the lower Strouhal number match with
the vortex-lift BOD pair for all Reynolds numbers and the higher with the second vortex-lift.

Similar to the smooth results matching, the Strouhal number from the wake and BOD pairs
are more or less identical with roughness. In addition, the vortex-lift and second vortex-lift have
the same dominant frequencies with added roughness. This makes it plausible for roughness

6In small-scale tests for a smooth cylinder it was found in the BOD pair with a similar topos as the third pair
(vortex-drag).
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Figure 3.16: Chronos Strouhal numbers using the configurations in table 3.1 and compared with
smooth wake results from figure 3.13.

to reduce the instability that caused the secondary vortex-shedding process in the rear, and
thereby the wake, to have a higher dominant frequency.

3.6 Summary of large-scale results

This chapter has presented a super-critical Reynolds number experiment on smooth and rough
circular cylinders and the main results are summarized in table 3.2. The mean drag on the
smooth cylinder was found to be similar to the literature (though with a blockage related
scaling) and the effect of roughness was as expected. For most configurations and Reynolds
numbers, the mean lift was close to zero but not for the smooth cylinder when approaching
super-critical values. Here, the cylinder experienced a mean lift due to a separation bubble or
a surface deformation. Also like in the literature, the SD drag was found to be much smaller
than the SD lift and follow a similar trend as the mean drag. What might be more unexpected,
is the fact that added surface ribs decreased the SD lift and drag at these scales and Reynolds
numbers but changing rib spacing and size did not.

As vortex-induced vibration is a 3D phenomenon, the correlation and coherence along the
height is important. For the rough cylinders, the correlation was found to be much smaller
than the correlation found in literature using unsteady pressure but the coherence was found
to be much closer to it. Overall, the coherence should be a better measure for vortex-induced
vibrations as it focuses on the frequency bandwidth containing the vortex-shedding process
instead of the entire time signal. While not measured directly, the correlation and coherence for
the smooth cylinder had a similar pattern at critical Reynolds numbers as the rough cylinders.
If following the same pattern at super-critical Reynolds numbers, the correlation and coherence
coefficients would have the same shape as the rough cylinders’ but have smaller values.

In addition to the global forces, the pressure distributions were investigated using its statistics
and a decomposition (BOD). The first BOD pair, most energetic, was identified as being the
mean pressure distribution and was the dominating relative force if the mean value was nonzero.
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Table 3.2: Summary of results at actual or simulated super-critical Reynolds numbers.

Smooth 1.00 · 10−3∡12◦ 2.70 · 10−3∡12◦ 2.70 · 10−3∡24◦

Mean Cd 0.55 0.615 0.732 0.651
SD Cl 0.127 0.046 0.049 0.046
St1 0.2 0.17 0.19 0.18
St2 0.25 N/A N/A N/A
Cp, min -2.5 -1.27 -1.15 -1.43
Location min 80◦ 72◦ 66◦ 66◦

SD Cp, max 0.3 0.095 0.078 0.097
Location max 110◦ 84◦ 78◦ 90◦

Φ2 at St1 at St1 at St1 at St1
Ψ2, max 110◦ 84◦ 78◦ 90◦

Φ4 at St2 N/A N/A N/A
Ψ4, max 140◦ 156◦ 156◦ 162◦

The second BOD pair (vortex-lift) was anti-symmetric and contained most of the peak SD values
but had low spatial energy outside a narrow region. This pair was recognized as the dominating
unsteady lift pair and had a temporal oscillation at one of the Strouhal numbers for the smooth
cylinder.

Two Strouhal numbers were identified for the smooth cylinder and correspond to the two
conflicting literature results. The lower value (closer to 0.2) was found in the vortex-lift BOD
pair whereas the higher value (close to 0.25) was due to a different shedding or reattachment
process focused in the rear of the cylinder. While the vortex-lift was a stronger BOD pair than
the second vortex-lift, it’s the latter which was dominating in the wake. The vortex-drag BOD
pair was found to not contain any noticeable higher frequency terms (mostly low frequency
components) and the mean BOD pair had a flat temporal energy distribution.

With the unsteady pressure distribution characterized for a smooth cylinder at super-critical
Reynolds numbers, it’s possible to test and validate methods of recreating it in smaller wind
tunnels. This is the focus of the next chapter where ribs and turbulence are used to recreate
super-critical Reynolds numbers at lower ones.
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Chapter

4
Simulation of super-critical
Reynolds numbers in a smaller
wind tunnel

Chapter summary

This chapter presents the methods that were found to be the best at simulating super-critical flow
around a smooth circular cylinder at smaller scales (lower Reynolds numbers). The experiments
were done in smaller atmospheric wind tunnel than in the previous chapter but without the
boundary layer generator. The effect of roughness ribs was found to be different at this scale
when compared with the large-scale results. The effect of turbulence intensity on the unsteady
forces was found to be low on SD forces but great on mean drag and Strouhal number with the
tested intensities. Similarly, the roughness height was found to have a significant effect on the
mean drag and Strouhal number but not on the SD forces. Increasing the rib spacing, on the
other hand, greatly affected the SD forces, mean drag, Strouhal number and the unsteady pressure
distributions. The optimal surface condition found (all things considered) will later be used to
simulate super-critical flow for a 3D experiment.

4.1 Background

Having determined the correct unsteady pressure distributions and force characteristics (strength
and frequency) for a smooth circular cylinder at super-critical Reynolds numbers, the next steps
of the investigation can be discussed: How to recreate these characteristics at smaller scales.
As mentioned in section 2.1.3, there have been attempts at reducing the Reynolds number to
measurements of the diameter and relative roughness height of added uniform surface roughness.
This can prematurely trigger super-critical flow [10, 21], but does not produce satisfactory
unsteady forces [13, 62]. A better method might be the use of roughness ribs which, according
to Ribeiro, should be the best at simulating the super-critical flow around a smooth cylinder
[28, 37, 48]. The main problem with this research, is that there’s no guideline for designing the
ribs other than "use the smallest ribs able to simulate super-critical Reynolds numbers as larger
ones can distort the surface flow" [28, 37].

This leads to the goal of the current chapter. What’s the best strategy for simulating super-
critical Reynolds numbers for a smooth cylinder at lower speeds and in a smaller wind tunnel?
As rib elements seem like the best roughness type for inducing super-critical Reynolds numbers,
this roughness type is investigated in addition to the turbulence intensity. The goal is to find
the best roughness dimensions for simulating super-critical Reynolds numbers at smaller scales
and to investigate the effect of turbulence intensity and spacing on it.



4.2 Experimental methodology

4.2.1 Wind tunnel description

The small-scale experiments aimed at simulating super-critical Reynolds numbers were per-
formed in CSTB’s atmospheric wind tunnel, i.e. the NSA wind tunnel. The aerodynamic test
section, 2x4 m2, can reach a maximum wind speed of 30 m/s without the uniform turbulence
generating grids and 19 m/s with it. The grid used to generate turbulence is shown in figure
4.1a and consists of semi-circular lengths of PVC tubing with the circular side facing the inflow
and the flat side downstream. The grid components have a width of 0.05 m and the distance
between two parallel lengths are 0.2 m when measured from the center of each. This grid was
mounted 3.1 m upstream from the test model.

The wind speed was calibrated at the measurement locations using a fast response Pitot
tube, a pre-calibrated average Pitot tube and three Cobra probes. With the Cobra probes, the
turbulence intensity in the three principal directions (u, v and w) and the vertical velocity gradi-
ent was characterized. When not using the turbulence generator (uniform flow), the turbulence
was somewhat high at low wind speeds but quickly converged to 1% in the u component and
0.8% for the v and w components of velocity. When adding the turbulence generating grid, the
turbulence intensity was determined to be 6% for the u component of velocity and 3% in the
other two directions. The vertical gradient was found to be negligible with both configurations.

4.2.2 The test model and setup

The test model was a carbon fiber tube with a diameter of 0.055 m. Two sketches of the setup
and a photo of the mounted test model is shown in figure 4.1. As can be seen from the photo in
figure 4.1a, the test model was a circular carbon fiber tube that extended the height of the wind
tunnel with a reference Pitot tube beside it and with Cobra probes behind it. To make sensor
and model installation easier, the model was separated into three sections which were mounted
flush. One of the sections was shorter than the rest (only 0.1 m long) and had 30 pressure taps
drilled uniformly (12◦ spacing) at mid height. This part was placed in the middle of the model
(marked in blue in figure 4.1c).

The rest of the model consisted of two carbon fiber tubes, each 0.95 m long, where the bottom
contained the 1.5 m long vinyl tubes connecting the pressure taps to the pressure scanner. As
the size of the model was small compared to the wind tunnel, the blockage ratio was negligible.
When mounted in place, the circular cylinder had a first damped natural frequency of 25 Hz
and a damping ratio of 21.4% which made the vibration amplitude negligible. In addition, the
small size made the blockage negligible.

Three Cobra probes were mounted in the wake. The positions of their tips relative to
the cylinder were 2 diameters behind it and 0.25 diameters to the side as shown in 4.1b. This
corresponds to 0.11 m and 0.014 m measured from the rear of the cylinder and center respectively.
The vertical locations of the Cobra probes in relation to the pressure taps are shown in 4.1c and
The upper probe’s (A) location was 1 diameter below the pressure tap arrangement, the next
(B) 2 diameters below and the last (C) 3.5 diameters below the pressure taps. These locations
were chosen to minimize any adverse effect between the Cobra probes and the pressure taps.
When calibrating, the Cobra probes’ tips were moved to where the cylinder’s center would be
when mounted and raised up by 2 diameters.

The last part of the experimental setup, was a fast-response Pitot tube used to measure the
reference wind speed at the height of the pressure taps. This Pitot tube was placed 5 diameters
to the side of the cylinder (opposite side of the Cobra probes, see figures 4.1a and 4.1b) with its
tip aligned with the cylinder’s center.
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Figure 4.1: Figures showing experimental setup, relative locations and coordinate system.

4.2.3 Roughness elements

To simulate higher Reynolds numbers, the cylinders were fitted with surface roughness in the
form of ribs with rectangular cross-section (cut using a circular saw). These ribs were placed at
regular intervals (either θ5 = 12 or θ6 = 24◦ spacing between them) to make them symmetric
around the cylinder and their locations relative to the pressure taps is sketched in figure 4.2.
When using the smaller rib spacing, the angular distance between the first rib and the stagnation
point (pressure tap 2), is 6◦ and it’s the same at the rear. When using the larger spacing, the
ribs closest to θ = 0 and 180◦ were removed and then every other rib (green rectangles in figure
4.2) leaving only 14 ribs (yellow circles). This was done to preserve the rib symmetry around the
0–180◦ and the 90–270◦ lines. The photo in figure 4.3 shows a cylinder configuration mounted
with 30 ribs and how they’re placed in relation to the pressure taps.

Four differently sized roughness ribs, with lengths of 0.6 m (≈ 11d), were tested. The
smallest had a height of 0.2 mm (relative height of Rr = 3.64 · 10−3), the second smallest 0.4
mm (Rr = 7.27 ·10−3), the second largest 0.5 mm (Rr = 9.09 ·10−3) and the largest had a height
of 1.0 mm (Rr = 1.82 · 10−2). The three largest ribs had a width of 0.8 mm (relative width of
1.45·10−2 when compared with the diameter) whereas the smaller ones were 0.7 mm (1.27·10−2).
Of these roughness sizes, only the results from the two best sizes are presented in this chapter
(Rr = 9.09 · 10−3 and 1.82 · 10−2); results using all roughness elements are presented in the
appendix. To differentiate the rib configurations, they are presented in the form Rr∡xx◦(U/T )
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Figure 4.2: Distribution of ribs and pressure taps on the cylinder’s surface.

Figure 4.3: Focused picture of mounted ribs and their relative location to the pressure taps.

where Rr is the relative height of the ribs and xx is the spacing between them and U/T marks
uniform or turbulent flow.

4.2.4 Instrumentations and measurements

Like for the large-scale tests, the measurements were separated into two separate recording
systems. A difference was that both systems recorded the reference wind speeds as shown in
figure 4.4. Two other differences are the recording length and acquisition frequency: Both the
wind and pressure measurement systems had a recording frequency of 512 Hz and recording
length of 60 s. This combination produced ergodic time series based on the first 10 BOD pairs
(see appendix B.1).

Figure 4.4: Diagram of wind and pressure acquisition chains.
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Wind velocity acquisition system

The small-scale wind tunnel tests used three four-hole Cobra Probes to both determine the flow
field and the lateral wake characteristics behind the cylinder. This is similar to what was done
in the large-scale tests but there’s a difference in the sensors: For the small-scale tests, all three
sensors had a maximum rated speed of 45 m/s which was above the maximum wind speed of
the tunnel. While the sensors worked at all speeds, they had the same limitation as in the large
wind tunnel: Inflow angles above ≈ 15◦ caused individual, corrupt samples. Like previously,
the wake data was analyzed spectrally using the PSD calculated using a Welch’s method and
statistically using the coherence and correlation defined in section 2.1.4.

Also like before, reference wind speed from the Pitot tube and acceleration from an internally
mounted accelerometer was recorded in the wind velocity acquisition system. As the wind
velocity acquisition system was limited to signals of strength ± 5 V, the highest wind speeds in
the wind tunnel could not be recording using the Pitot tube.

Pressure acquisition system

As the pressure system was not limited to ± 5 V, the reference wind speed was measured in both
acquisition system as shown in figure 4.4. The pressure taps were connected to a 32 channel
pressure scanner using 1.5 m vinyl tubing and tubing effects were corrected for using the same
proprietary method as in chapter 3. This pressure scanner was similar to the ones used in the
large wind tunnel but only rated for pressures up to 2500 Pa. Figure 4.2 shows the location and
numbering scheme of the pressure taps in addition to the location of added roughness elements.
The pressure tap numbering starts at 2 as sensor 1 was reserved for the Pitot tube measuring
the wind speed.

4.2.5 Tested wind speeds

The wind tunnel experiments were performed at different speeds depending on the turbulence
intensity. When using the uniform flow configuration (no grid), the wind tunnel tests were
performed at speeds between 5 and 30 m/s. In terms of Reynolds numbers, this corresponds
to values between 1.83 · 104 and 1.10 · 105. The turbulent experiments were only performed for
wind speeds up to 19 m/s as the turbulence grid started to vibrate noticeably at higher speeds;
this speed corresponds to a Reynolds number of 6.97 · 104. For all tests, the speed was increased
by increments of 1 m/s or Reynolds number increments of 3.67 · 103.

4.3 Aerodynamic forces

4.3.1 Strouhal number

Two examples of power spectral densities at super-critical Reynolds numbers with added rough-
ness ribs are shown in figure 4.5. The PSD of the lateral wake component using a Cobra probe
is shown in figure 4.5a and can immediately be seen to be different from the wake PSD from the
smooth cylinder: Like with roughness at large scales, there’s only one strong spectral component
in the lateral PSD with added roughness at super-critical Reynolds numbers. This spectral peak
is similar to the one obtained from the vortex-lift BOD pair in figure 4.5b and should be the
lower Strouhal number. The second vortex-lift has a peak at the same location but is more
spread out with extra, small peaks near dimensionless frequencies of 0.39 and 0.43; these should
be close to the oscillation frequency of the drag. Both the vortex-drag and mean BOD pairs’
spectral densities were dominated by low noise and mean value terms making the spectrum low
valued at most frequencies of interest.
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Figure 4.5: Power spectral density of lateral wake component and chronos using same rib roughness
configuration (9.09 · 10−3∡12◦ (U)) and Reynolds number (6.22 · 104).

The similarities in shedding frequency and vortex-shedding process in the wake and unsteady
lift can be further seen in figure 4.6. For most configurations and speeds, the wake Strouhal
number was slightly larger than the vortex-lift BOD pair’s. This difference was shown to be
significant for all tested configurations using Bayesian inference (explained in section A.4) but
was negligible and could be due to rounding errors. Similarly, it can be shown that there’s little
difference between the Strouhal number obtained from a single pressure tap and the BOD pairs
(see table B.4).

Like for the smooth, large cylinder results, there’s a critical Reynolds number with increased
Strouhal numbers followed by a super-critical Reynolds number region with lower and more
constant Strouhal numbers. What’s different at small and large Reynolds numbers, is that the
Strouhal numbers at super-critical Reynolds numbers are greater than the lower smooth Strouhal
number with roughness at small-scale. This is contrary to the results with ribs at actual large
Reynolds numbers in section 3.5 where the added roughness decreased the Strouhal number
compared to the smooth’s. It’s therefore possible that the effect of added ribs is different for
small and large-scale experiments and that this is related to the actual Reynolds number.

In the large wind tunnel, the Strouhal number was similar with a reduction in the degree
of surface roughness (spacing and height) but the behavior was different at small scale (results
shown in appendix B.2). From figure 4.6 and the inference results in table B.6, it can be
concluded that increased roughness height significantly decreases the Strouhal number at small-
scale on average. This is consistent with the results of Adachi [25] and Achenbach and Heinecke
[21] on the effect of uniform roughness on the Strouhal number.

Similarly, an increase in turbulence can be shown to decrease the Strouhal number and
promote earlier transitions to super-critical Reynolds numbers. The latter is consistent with
the literature but the former is inconsistent. Some previous experiments gave a higher Strouhal
number with increased turbulence but noted that its effect was dependent on the turbulence
length scale (not estimated here) [53, 54, 69]. Similarly, the present results go against those of
Ribeiro [37] who showed that increasing the turbulence intensity does not significantly affect the
Strouhal number when using ribs possibly due to the turbulent flow interacted differently with
the added ribs.

Increasing the spacing between ribs reduced the Strouhal number. This is not consistent
with the literature as reducing the spacing should reduce the overall surface roughness which
should increase the Strouhal number instead of decreasing it [21, 25]. While not consistent with
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Figure 4.6: Comparison of Strouhal numbers from wake (◦ marks) and chronos (lines and ×).
Turbulent results are marked with (T) and uniform flow with (U).

the literature, it is consistent with the large Reynolds number tests where a negligible decrease
in the Strouhal number was observed with the larger spacing. It’s likely that the increased rib
spacing introduced a phenomena similar to that observed by Nigim and Batill [65] and Perry,
Schofield and Joubert [66]. They found that the ratio of rib spacing to diameter determines the
surface flow conditions and the shedding behavior. If the ratio is small, less than 3 for circular
ribs, the surface protrusions acts as cavities trapping vortices. With higher ratios, the surface
vortices are not trapped and instead interact with the flow over the cylinder giving a different
unsteady shedding frequency.

4.3.2 Unsteady lift and drag coefficients

The unsteady drag and lift as a function of the Reynolds number are shown in figures 4.7 and
4.8 respectively. Most configurations have a small, non-zero mean lift (see figure 4.8a) but like
for the smooth cylinder at super-critical Reynolds numbers, there can be a significant mean lift
for low rib sizes due to either a separation bubble of cylinder deformation (cf. figure B.10a).
The general behaviors of the mean drag, SD drag and SD lift are similar to that seen for the
smooth cylinder at large Reynolds numbers in that there’s a decrease and subsequent increase in
the force coefficients at critical Reynolds numbers and a more stable coefficient value at super-
critical Reynolds numbers. The exception is the SD lift which tend to have increased values at
low simulated super-critical Reynolds numbers and decreased but stables values as the Reynolds
number further increases. It’s possible that this can be observed for the smooth cylinder if the
Reynolds number was further increased but this was not tested.

When comparing the mean drag from the small-scale and large-scale tests, it’s clear that
increasing the rib height has the overall effect of increasing the drag. This is not the case for
SD drag when comparing all the configurations at simulated super-critical Reynolds numbers
and the SD drag tends to be similar when changing the rib height (cf. section B.3 and table
B.7). The exception is when the height doubles from 9.09 ·10−3 to 1.82 ·10−2 where the SD drag
reduces. Similarly, the SD lift tends to be similar when increasing the rib height (cf. table B.8)
except when increasing from 9.09 ·10−3 to 1.82 ·10−2 which again decreases it. These small-scale
results seem similar to Ribeiro’s and surface ribs should be good at mimicking the super-critical
force coefficients of a smooth, circular cylinder using lower Reynolds numbers [28, 37, 48].

The effect of increasing the rib spacing is quite different for the small and large-scale tests.
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Figure 4.7: Mean and SD drag coefficient as a function of Reynolds number. Turbulent results are
marked with (T) and uniform flow with (U).

At small-scales, the mean drag is increased when increasing the rib spacing. This doesn’t make
sense intuitively as it’s a decrease in the degree of surface roughness which should give lower drag.
The effect is opposite in the large Reynolds number tests and an increase in rib spacing decreases
the mean drag. Like the mean drag results, there’s a difference in the SD force coefficients at
large and small-scales. At large scales and Reynolds numbers, the SD force coefficients are
fairly unaffected by the rib spacing tested but at small scales they differ significantly for all
configurations (cf. figure 4.8b table B.7 and B.8]. When increasing the spacing, the SD drag
coefficient is almost doubled while the SD lift coefficient can be almost tripled. This should be
related to the Strouhal number decreasing with increased spacing and how the surface vortices
between the ribs interact with the flow over the cylinder. Based on this, the 12◦ rib spacing
better recreates the unsteady force coefficients.

The added roughness strips affect the unsteady forces differently at small and large scales.
At large-scale and high Reynolds numbers the SD force coefficients are low and changing the
spacing has little effect whereas changing the spacing has a large effect at small scales and the
SD force coefficients are higher with all roughness sizes. There are two possible explanations
for the behavior difference at large and small-scale: 1) The relative narrower ribs for large-scale
tests gives different surface vortex entrapment mechanism than at small-scale [65, 66] or 2) the
higher Reynolds number at large-scale makes surface ribs have a different effect. While both of
them could affect the aerodynamics simultaneously, it’s likely that the larger effect comes from
the higher Reynolds numbers.

The turbulence intensity has a different effect on the unsteady forces than the rib dimensions.
From the studies Cheung and Melbourne [30] and Blackburn and Melbourne [53], the mean drag
coefficient should be lower with increased turbulence intensity at sub-critical Reynolds numbers
and SD drag and lift coefficients lower. The variation at simulated super-critical Reynolds
numbers is more uncertain with turbulence (due to wind tunnel requirements), but Cheung and
Melbourne and Blackburn and Melbourne’s results indicate the coefficients can be higher with
increased turbulence at critical Reynolds numbers and lower at super-critical [30, 53]. These
conjectures have been speculative as their turbulent results don’t reach super-critical Reynolds
numbers with the exception for some results at 18% turbulence intensity.

The unsteady force results in figures 4.7 and 4.8 show some of the things mentioned by
Cheung and Melbourne and Blackburn and Melbourne but is at the same time different. When
increasing the turbulence intensity from 1 to 6%, the mean drag was indeed lower at simulated
super-critical Reynolds number but was also lower at critical Reynolds numbers instead of higher.
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Figure 4.8: Mean and SD lift coefficients as a function of Reynolds number. Turbulent results are
marked with (T) and uniform flow with (U).

Table 4.1: Reynolds numbers and roughness configurations from small-scale 2D tests identified as being
at simulated super-critical Reynolds numbers.

Configuration Speed [m/s] Reynolds number [-]
9.09 · 10−3∡12◦ (U) 17.0 62 200
9.09 · 10−3∡12◦ (T) 15.1 55 500
9.09 · 10−3∡24◦ (U) 14.9 54 800
1.82 · 10−2∡12◦ (U) 11.0 40 300

This reduction in mean drag is undeniable for all rib configurations (as per the inference in table
B.7) as is the increase in SD drag which for the smaller spacing increases towards the values
seen with the larger spacing; this goes against the previously mentioned literature. The SD
lift changes differently from the SD drag and can be shown to be slightly (but significantly)
lower when using the higher turbulence intensity. This is supported by several studies where
turbulence was found to interfere with the vortex-lift [30, 37, 67–69].

There’s one similarity between the present results and the literature on turbulence and
surface roughness: The added turbulence caused the flow over the cylinder to transition to
super-critical at lower Reynolds numbers similar to how the increased surface roughness caused
an earlier transition. Table 4.1 shows when the configurations discussed here transitioned to
well-developed super-critical Reynolds number and corresponds to when the mean drag in figure
4.7a plateaus. A fuller discussion of when super-critical Reynolds number flow occurs and its
characteristics are given in section 2.1.1.

4.3.3 Correlation and coherence

It can immediately be seen that the correlation and coherence with ribs in these small-scale
tests (figure 4.9) are different from the large scale (figure 3.7). Still, the correlation was smaller
than that given by Novak and Tanaka [43] and has a different evolution with distance (here
the correlation starts flattening out or increasing at distances of 1.5 d). The second major
difference between the small and large scale tests with ribs is that the correlation and coherence
drop slower with distance. These points should be an indication of a vortex-shedding process
and vortex-cells that are more similar along the height both over a narrow band of frequencies
(coherence) and over all frequencies (correlation).
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Figure 4.9: Comparison of correlation and coherence at the simulated super-critical Reynolds number
configurations given in table 4.1.

Taller ribs gave higher correlation and coherence on average as shown in figure 4.9 (with
the exception of the coherence for the 1.82 · 10−2 configuration). For most configurations with
low spacing, the effect of turbulence was also predictable and it reduced both statistics. The
more surprising increase in correlation is when increasing the rib spacing. This might be due to
the large spacing giving a more correlated noise at the price of a less coherent vortex-shedding
process as seen in figure 4.9. Another surprise with the larger spacing was that increasing the
turbulence reduced the correlation and increased the coherence. This suggests that there’s a
qualitative difference in how the turbulence and flow interacts with cylinder when using 24◦

spacing instead of 12◦.
There are good possible reasons for why the correlation was low and coherence high. The

correlation is measured in time domain (over all frequencies) and there are a lot of possible noise
sources that can make the signal less similar across distances. The coherence, on the other hand,
is measured in frequency domain near the vortex-shedding frequency with a small bandwidth.
Due to vortex-cells, it might be easier for it to have a high value across distances. So while there
might be noise that makes the flow less correlated along the height, the vortex-shedding process
(which the coherence measures) can be more "correlated" than the total flow.

4.4 Simulated super-critical unsteady pressure distributions

4.4.1 Topos and eigenvalue changes with Reynolds number

The mean and SD pressure distributions (figure 4.10a) was fairly consistent with the Reynolds
number for the rough cylinder like the smooth (figure 3.10a). The exception to this is at the
lowest Reynolds numbers where the minimum pressure coefficient was much lower which is
consistent with Achenbach [19] results at critical Reynolds numbers. The same can be seen
for the SD pressure distribution in figure 4.10b. In addition to being more consistent, the
rough cylinder’s pressure distributions are different from the smooth’s in the pressure coefficients
distribution and values. With the rough cylinder, the separation point and point of minimum
pressure coefficient was earlier than for the smooth and the minimum pressure coefficient and
rear pressure coefficients were larger; a comparison of this can either be based on the mean
pressure coefficient or the topos shown in figure 4.11a.

The changes with simulated Reynolds numbers are smaller for the mean and vortex-lift
distributions in figures 4.11a and 4.11b respectively. For these two distributions at super-critical
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Figure 4.10: Comparison and evolution of mean and SD pressure distibution with Reynolds number
for the 9.09 · 10−3∡12◦ cylinder configuration.

−100 0 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Angular location [◦]

To
po

s
[-]

(a) Comparison of the 1st topos (mean).

−100 0 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Angular location [◦]

To
po

s
[-]
Re = 2.57 · 104

Re = 6.22 · 104

Re = 1.09 · 105

(b) Comparison of the 2nd topos (vortex-lift).

Figure 4.11: Comparison and evolution of first and second topos with Reynolds number for the
9.09 · 10−3∡12◦ cylinder configuration.

Reynolds numbers, the main difference when increasing the Reynolds number was to slightly
reduce the energy near the stagnation point and to slightly increase the energy in the rear. Other
than that, they are similar. The critical Reynolds number configurations are again different.
As the flow separation point is at significantly larger angles, the energy near the front is much
lower than the super-critical configurations and the energy in the rear much higher. Similarly,
the vortex-lift peaks in the second topos are at a higher angular location though this is visible
only on one side of the cylinder.

The evolution of the relative fluctuating eigenvalues (found using equation (3.2)) are different
at simulated critical and super-critical Reynolds numbers as shown in figure 4.12. At critical
Reynolds numbers, the energy of vortex-lift BOD pair (2) was lower than at simulated super-
critical; this made the relative energy for the higher BOD pairs larger at a Reynolds number of
2.57 · 104. This clear qualitative difference with the Reynolds number was not seen as clearly
for the smooth cylinder in figure 3.9.
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Figure 4.12: Comparison of relative eigenvalues with Reynolds number for the 9.09 · 10−3∡12◦

cylinder configuration.

4.4.2 Spatial energy distribution at simulated super-critical Reynolds num-
bers

When comparing the topos of the mean distributions (figure 4.13a) from the rough cylinders
at simulated super-critical Reynolds numbers with the smooth large scale reference cylinder,
immediate differences can be found. Firstly, it can be seen that the small-scale configurations
have more energy both in the front of the cylinder and in the rear. While the increased energy
in the front might be to counteract the energy in the rear, the more negative energy in the rear
should be due to the surface flow separation occurring at lower angles. The amplified energy
in the rear and front of the cylinder (more negative in the rear and more positive in the front),
should be related to why the configurations with ribs have increasing mean drag.

The second difference in the mean topos with added ribs, was the jaggedness in the spatial
distribution when increasing the rib spacing. This jaggedness was present for all four topos
presented in figure 4.13 and should be a result of how the entrapped surface flow interacts
with the flow over the cylinder. It’s possible that these jagged spatial distributions were partly
responsible for why the mean drag and SD forces increased with the spacing and why the
Strouhal number decreased which is inconsistent with previous results [21, 25].

There are two similarities in the vortex-lift topos shown in figure 4.13b between the smooth
cylinder at large-scale and rough cylinders at small-scale and one major difference. The main
similarities, are the anti-symmetric shapes and spatial energy peaks near the separation point.
For the rough cylinders, the separation point and the point of peak vortex-lift were at smaller
angular locations which was a minor difference. The major difference was in the rear of the
cylinder where there’s a secondary energy peak not found with the smooth, large cylinder. This
second peak might be related to the secondary vortex-lift seen for the smooth cylinder in the
fourth pair and could help explain why the secondary shedding process was negligible with ribs.
The increased spatial energy in the rear was also seen with ribs at large scales but to a lesser
extent.

The largest differences between the rough cylinder and the smooth reference case were for
the third and fourth BOD pair. While there were qualitative similarities in the second vortex-
lift topos between the rough and smooth cylinders, the spatial energy distributions had several
differences as shown in figure 4.13c. For instance, the peaks in the rear for the rough cylinders
at simulated super-critical Reynolds numbers were at larger angular locations, narrower and
were stronger and the spatial energy in the front had a different shape; it’s reminiscent of the
smooth cylinder’s spatial energy distribution, but with different values. It’s possible that the
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(c) Comparison of the 4th topos (second vortex-lift).

Figure 4.13: Comparison of first four topos from smooth and rough experiments at the actual and
simulated super-critical Reynolds numbers defined in table 4.1.

dissimilitude in the fourth topos can be ignored as the fourth BOD pair was important for the
shedding process on the smooth cylinder but not the rough ones and as some of the rear spatial
energy was included in the vortex-lift pair. When comparing the vortex-drag topos for the rough
and smooth cylinders, the rough cylinders were found to be wildly different and are not shown.

4.4.3 MAC comparison of topos

The differences in spatial energy distribution, or topos, can be assessed using the modal assurance
criterion (MAC) described in section A.3 using the definition of Pastor, Binda and Harčarik [150].
Instead of relying purely on a visual comparison, this parameter gives a numerical quantification
of how similar two topos are while ignoring the scaling. When comparing the MAC values,
anything above 90% should be considered fantastic and anything over 75% good. To be able to
compare the results from the smooth cylinder at large-scale (60 pressure taps) with the rough
cylinders at small-scale, the pressure distribution from the smooth cylinder was down sampled
by ignoring every other pressure tap starting from θ = 0◦.

When comparing the mean BOD pair in figure 4.14, the MAC values can be seen to be high
for all compared configurations. While the comparisons with the smooth cylinder consistently
have lower MAC values, they are still above 83% for all rib configurations indicating a good
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Figure 4.14: MAC value comparison for the mean topos at super-critcal Reynolds numbers.
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Figure 4.15: MAC value comparison for the vortex-lift topos at super-critcal Reynolds numbers.

match. This signifies that most of the visual topos differences for these configurations could be
a scaling difference and most of the actual energy differences might be near the separation point
and the suction peaks or due to the asymmetry for the smooth cylinder.

The similarity of the vortex-lift topos was almost as good as the mean distribution. Figure
4.15 shows that the MAC values and similarity was high between the rib configurations but
that the similarity with the smooth cylinder was lower. As the vortex-lift distributions with
ribs had a secondary and smaller peak in the rear not present in the smooth cylinder’s, earlier
separation point and was more anti-symmetric, these lower MAC values make sense. Even with
these differences, the MAC values are around 75% and the similarity was fairly good.

For the second vortex-lift, in figure 4.16 respectively, the similarity was reduced. While
there’s some good similarity between the rib configurations, the previously mentioned differences
in the second vortex-lift gave low MAC values when comparing the rib configurations with
the smooth configuration. The best comparison was the 9.09 · 10−3∡12◦ configuration with
turbulence which had a topos more similar to the smooth cylinder’s; the similarity was especially
better in the rear.
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Figure 4.16: MAC value comparison for the 2nd vortex-lift topos at super-critcal Reynolds numbers.
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Figure 4.17: Evolution of relative eigenvalues (using the fluctuating pairs only) with BOD pair rank
for the configurations in table 4.1.

4.4.4 Eigenvalue comparison

Like for the topos, there were differences in the relative eigenvalues between the smooth super-
critical cylinder and the rough configurations at simulated super-critical values when only com-
paring the fluctuating pairs. Firstly, the rib configurations’ vortex-lift BOD pair had a much
higher relative energy than the smooth reference cylinder. This should indicate that the vortex-
lift is relatively stronger for the rib configurations than the smooth. The configuration with
the highest spacing had the highest relative lift from the vortex-lift BOD pair. Still, this alone
does not explain why the larger roughness spacing gave a stronger SD lift coefficient but the
energy in absolute values does: The energy of the vortex-lift BOD pair was 66% higher for the
9.09 · 10−3∡24◦ configuration than the 9.09 · 10−3∡12◦ configuration at comparable Reynolds
numbers.

For the higher rank BOD pairs, the smooth reference cylinder had higher relative eigenvalues
which is expected. The higher rank BOD pairs for the rough cylinder has similar relative energies
for the first five BOD pairs and the relative energy drops rapidly except for the energy bumps
due to the manual sorting of the fourth BOD pair. At BOD pairs greater than five, the relative
energy is fairly low and the main difference between the configurations is that the configurations
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with relatively higher energy at the vortex-lift pair has lower energy at higher rank BOD pairs.

4.4.5 Chronos comparison

As the simulated super-critical rib configurations had different characteristic and physical shed-
ding frequencies, they are not compared directly. Instead, they can be compared indirectly using
the bandwidth of the peaks and a qualitative description of the PSD. For most rib configura-
tions, the PSD of the first four chronos varied like in figure 4.5b and there were differences and
similarities with the smooth cylinder’s PSD.

While the PSD of the smooth and rough cylinders’ mean and vortex-drag chronos were
similar (dominated by low frequency components), the vortex-lift and second vortex-lift were
different. The vortex-lift’s PSD had significant noise at most frequencies below the shedding
frequency for the smooth large-scale cylinder. In addition, the peak at the Strouhal number
were relatively small giving a very noisy period signal. For the rough cylinders at small-scale,
on the other hand, almost all of the temporal energy was focused at the Strouhal frequency
and the signal was strongly periodic. The second vortex-lift was more similar for the smooth
and rough cylinder in that they both contain more noise than the vortex-lift. Still, they can be
differentiated as the rib configurations had more energy focused at the Strouhal number and as
the Strouhal number was significantly lower than the upper value found for the smooth cylinder.

Just like the topos, the rib configurations’ chronos were different from both the smooth
cylinder and each other. This can be exemplified by investigating the half-power bandwidth
(point where a PSD peak is reduced by a factor of

√
2) of the vortex-lift chronos’ PSD; a higher

bandwidth means that the energy is more spread out. Table B.5 shows inference results on
the average effect of rib height, spacing and turbulence intensity on the vortex-lift bandwidth at
super-critical Reynolds numbers. From this, it can be seen that increasing the turbulence and rib
spacing does not significantly affect the Strouhal number bandwidth for the rough configurations
but that rib height does: An increase in rib height can be shown to give a narrower Strouhal
number bandwidths on average.

4.4.6 Relative forces from BOD pairs

A comparison of the relative strength of the BOD pairs on total force is the last comparison
between the small and large-scale experiments. This is shown in figure 4.18. As the relative
drag (figure 4.18a) was mean dominated for both the rough and smooth cylinders, the relative
drag was quite similar in absolute values. For the higher rank BOD pairs, there were more
differences. For instance, the vortex-lift BOD pair had a negligible impact on total drag for
the smooth cylinder but was nearly as significant as the vortex-drag BOD pair for the rough.
The second vortex-lift pair had some scatter in the relative drag among configurations but
was relatively more similar than the other fluctuating force pairs even if its relative drag was
higher without roughness. These extra unsteady forces might be due to the significant secondary
vortex-shedding process for the smooth cylinder.

The relative lift, in figure 4.18b, had more dissimilarities than the relative drag. While the
relative lift on the smooth cylinder was mostly from the mean BOD pair, due to the strong mean
lift, most of the relative lift from the rough cylinders were from the vortex-lift pair. The smooth
cylinder’s lift still had a large relative contribution from the vortex-lift pair but its contribution
to the total lift was diminished by the significant mean lift bias. Even when comparing the
conditional relative lift (with the mean removed) like in table 4.2, the relative lift from the
vortex-lift BOD pairs were higher with the ribs even when removing the mean bias.

For the higher rank BOD pairs, the relative lift changed similar to the relative drag. There
were two exceptions to this. The first exception was the smooth cylinder having more relative
lift from the vortex-drag and second vortex-lift pairs compared with the rough configurations.
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Figure 4.18: Comparison of relative forces at super-critical Reynolds numbers.

Table 4.2: Comparison of conditional relative lift using fluctuating BOD pairs only.

Configuration Vortex-lift Vortex-drag 2nd vortex-lift
Smooth 9.33 · 10−1 1.55 · 10−2 5.59 · 10−3

9.09 · 10−3∡12◦ (U) 9.99 · 10−1 6.18 · 10−5 9.79 · 10−5

9.09 · 10−3∡12◦ (T) 9.97 · 10−1 3.64 · 10−4 3.88 · 10−5

9.09 · 10−3∡24◦ (U) 9.99 · 10−1 5.71 · 10−7 1.35 · 10−5

1.82 · 10−2∡12◦ (U) 9.97 · 10−1 6.62 · 10−4 1.23 · 10−4

The second exception was the 9.09 · 10−3∡24◦ (U) configuration which had a relatively lower lift
from the vortex-drag and second vortex-lift pairs compared with the relative drag.

4.5 Best configuration for simulating super-critical Reynolds
numbers at small-scale

In some regards, the added roughness failed to properly simulate the super-critical Reynolds
number flow seen for the smooth reference cylinder as the summary in table 4.3 shows. Firstly,
the tests with added ribs had a higher mean drag, SD lift and Strouhal number. Secondly, the
minimum pressure coefficient was much greater but was around the same angular location. The
maximum SD pressure coefficient, on the other hand, was much higher for the smooth cylinder,
at a higher angular location and was asymmetric. The 9.09 · 10−3∡24◦ (U) configuration was
closer to the smooth cylinder in terms of minimum mean pressure coefficient, max SD pressure
coefficient and location of maximum SD pressure coefficient but it gave a much higher SD lift
coefficient. While the correlation and coherence is important for getting the correct 3D flow
characteristics, a direct comparison with smooth super-critical flow could not be made as it
could not be measured for the smooth reference cylinder.

Overall, the tests with the small rib-spacing (12◦) and a relative height of 9.09 · 10−3 had
the best balance for simulating super-critical Reynolds numbers at a speed range usable in
the wind tunnel and in matching the smooth cylinder’s unsteady force characteristics (mean,
SD values and frequency) and important pressure distributions (mean, vortex-lift and second
vortex-lift). The other small-scale rib spacing and height configurations shown in the appendix
had coefficients that were more different from the smooth cylinder and achieved super-critical
Reynolds numbers at speeds that were less useful in the wind tunnel. When doing 3D, elastic
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Table 4.3: Reynolds numbers and roughness configurations from large-scale 2D tests identified as being
at simulated super-critical Reynolds numbers.

Roughness Smooth 9.09 · 10−3 9.09 · 10−3 9.09 · 10−3 1.82 · 10−2

Spacing/flow N/A (U) ∡12◦ (U) ∡12◦ (T) ∡24◦ (U) ∡12◦ (U)
Mean Cd 0.55 0.97 0.913 1.03 0.91
SD Cl 0.127 0.148 0.132 0.313 0.149
St1 0.2 0.213 0.211 0.211 0.221
St2 0.25 N/A N/A N/A N/A
Cp, min -2.5 -1.21 -1.26 -1.75 -1.49
Location min 80◦ 84◦ 84◦ 72◦ 84◦

SD Cp, max 0.3 0.136 0.15 0.257 0.137
Location max 110◦ 84◦ 84◦ 96◦ 84◦

Φ2 (chronos) at St1 at St1 at St1 at St1 at St1
Ψ2, max (topos) 110◦ 84◦ 84◦ 96◦ 84◦

Φ4 (chronos) at St2 N/A N/A N/A N/A
Ψ4, max (topos) 140◦ 168◦ 144◦ 156◦ 156◦

tests on circular cylinders, it will be important to have a large range of possible super-critical
Reynolds numbers and not just test at the highest speeds available in the wind tunnel.

If the aim is to reproduce the lower Strouhal number from the smooth large-scale tests
(St ≈ 0.2), then the 1.82·10−2∡12◦ configurations could be the better choice. Unfortunately, the
largest rib configurations tended to have other problems and there are three reasons why these
configurations should not be used: 1) The behavior of the global force coefficients, correlation
and coherence was weird when compared to the other rib configurations; 2) the transition from
critical to super-critical could not be verified (the flow might be super-critical at all speeds
or distorted into something else); and 3) the topos tended to be less similar to the smooth
super-critical cylinder’s when compared with the other rib configurations.

4.6 Summary of small-scale results
In addition to finding a good roughness configuration for replicating super-critical Reynolds
number at small-scale, several findings were made on how changes in turbulence and roughness
affect the aerodynamics of a circular cylinder; all results are summarized in table 4.3. In section
4.3.1, it was shown that increasing the turbulence intensity had a statistically negligible impact
on the Strouhal number. Increasing the rib height, on the other hand, was shown to decrease both
the Strouhal number and its bandwidth at the super-critical Reynolds numbers. The Strouhal
number also decreased when increasing the rib spacing but this didnt affect the bandwidth.
Like at large-scale, there were differences in the wake Strouhal number and Strouhal number
obtained from vortex lift’s chronos but it tended to be small in absolute value.

Increasing the turbulence intensity had a statistically negligible effect on the unsteady lift,
but significantly decreased the mean drag as shown in section 4.3.2. The standard deviation
of the unsteady forces were also affected by the increased turbulence intensity and the SD lift
was shown to decrease while the SD drag increases. The effect of increased rib height on the
standard deviation of unsteady forces was found to be more negligible than the increase in mean
drag. In addition, it was shown that increasing the rib spacing gave a higher mean drag and
greatly increased SD lift and drag. This is contrary to the conventional wisdom and large-scale
experiments where lower overall roughness gave lower mean drag.

The coherence and correlation of the vortex-shedding process along the height is related to
the unsteady forces; these values give an indication of the 3D forces. This was investigated
in section 4.3.3 and the effect of turbulence was to decrease the correlation and coherence
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when the spacing was small. When the spacing was large, the added turbulence increased
the coherence but decreased the correlation. Increasing the spacing tended to increase the
correlation and decrease the coherence for both turbulence intensities. With the exception of
the 1.82·10−2 configurations, the effect of increased rib height was to increase both the correlation
and coherence.

Increasing rib spacing caused the spatial energy distributions of unsteady pressure (BOD
topos) to have more jagged shapes. The effect of increased turbulence was small for most of
the pertinent BOD pairs but did introduce a more pronounced and jagged shape for the second
vortex-lift topos. Changing the rib height had a much smaller effect on the relative forces and
topos than the other two changes.

For most speeds, the relative drag from the BOD pairs was dominated by the mean dis-
tribution and relative lift by the vortex-lift distribution. There were speeds where other BOD
pairs contributed greatly to the total lift and this tended to be due to asymmetric pressure
distributions or when two physical BOD pairs were combined into new conflated shapes. This
was clearest when the mean lift was non-zero and the lift rms had a bias associated with the
mean pressure distribution.
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Aeroelastic experiments
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Chapter

5
Small-scale aeroelastic wind
tunnel experiments

Chapter summary

This chapter presents a 3D aeroelastic wind tunnel experiment on elastic circular cylinders of
finite height. To simulate the response of a full-scale structure at super-critical Reynolds num-
bers, the best roughness configuration from the previous chapter was used to simulate the super-
critical flow. The results from these experiments showed that the Strouhal number, correlation
and coherence (with and without motion) was significantly lower than the small-scale 2D results.
Additionally, it’s shown that increasing the roughness reduced the response. This should indicate
that something akin to the super-critical Reynolds number region, where the lift force is weaker
compared to sub-critical values, was reached for the rough cylinder. Additionally, removing the
boundary layer increased the response meaning that it’s an important parameter when it comes
to the coherence, force amplitude, and response.

5.1 Background

The scaling and Reynolds number issue for circular cylinders subjected to vortex-induced vi-
brations can be aptly summarized using the claim of Vickery and Clark [4]: The loads due
to vortex-induced vibrations may be overestimated by as much as 400% when large structures
are scaled down in wind tunnels. This is hard to verify as, according to the investigation of
Belloli et al. [27], there are no super-critical vortex-induced vibrations experiments on circular
cylinders where the cylinder is free to move and relatively few experiments at critical Reynolds
numbers (c.f. the works of Ding et al. [151], Raghavan and Bernitsas [103] and Swithenbank
et al. [152]). Many of the previous experiments in the literature have an additional limitation
which makes them less applicable when testing chimneys and other tall, slender structures with
circular cross-section: The previous experiments tend to use quasi-2D cylinder (end plates) with
the motion limited to one degree of freedom and with a fixed, rigid mode shape or use cables
with large aspect ratios (λ > 100) [27, 103, 151, 152].

There is an additional factor that needs to be considered when scaling wind tunnel experi-
ments: The effect of an atmospheric boundary layer and turbulence intensity on the response.
Batham [60] reported that an atmospheric boundary layer was enough to experimentally recre-
ate the response of a chimney at super-critical Reynolds numbers. The caveat to this is that
Batham was simulating the response due to random vibrations but it does raise an interest-
ing question: Is a turbulent atmospheric boundary layer enough to simulate the super-critical
response of circular cylinders of finite height?

The experiment presented in this chapter deals with these issues by doing the following.
Firstly, the response and wake characteristics for a slender cylinder of finite height was measured
for a smooth sub-critical cylinder and a rough cylinder at super-critical Reynolds numbers. These
tests will show if the Reynolds number effect is as large as proclaimed in 3D tests. Secondly, the
same measurements will be repeated with and without an atmospheric boundary layer. These
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(b) Turbulence profile (legend in figure 5.1a).

Figure 5.1: Comparison of experimentally obtained wind profile (at 1:100 scale) with full-scale wind
profile generated by the Eurocode using terrain category II [5].

tests will show if surface roughness is needed to simulate the super-critical flow over a 3D cylinder
or if it adds unnecessary complexity.

5.2 Experimental methodology

5.2.1 The generated atmospheric wind

The aeroelastic tests were performed in the same small-scale wind tunnel described in chapter
4. The difference between these tests and the previous, was that some of the aeroelastic tests
were performed with an artificial atmospheric boundary layer generated upstream of the model.
To calibrate the gradient and wind speed at the dimensionless reference height (z=0.83), a fast
response Pitot tube and a pre-calibrated average Pitot tube was used. By varying the height of
the fast response pitot tube, the wind gradient (turbulence intensity and speed) was measured
in relation to the calibrated average Pitot tube.

Figure 5.1 shows the wind gradient produced in the wind tunnel. The measured speed
profile (figure 5.1a) matches the Eurocode speed profile but the measured turbulence (figure
5.1b) matches less; the turbulence was lower at most heights and with an increasing difference
with height. As mentioned in chapter 4, the turbulence intensity was measured to 1% using
a Cobra probe (1%, 0.8% and 0.8% for the u, v, w components of velocity respectively) when
testing without the boundary layer and with negligible height gradient.

5.2.2 Test model and setup

The test models were two carbon fiber tubes and both had an external diameter of 0.055 m (d),
internal diameter of 0.051 m and length of 0.9 m. One of these tubes were fitted with the best
roughness from chapter 4, ribs with relative roughness height 9.09 · 10−3 and a spacing of 12◦

between them (30 ribs), to trigger usable, super-critical Reynolds numbers. These tubes were
mounted to a steel diabolo support, as shown in figure 5.2a, which in turn was securely bolted
down below the wind tunnel. This arrangement gave better control of the natural frequency
and damping of the model at the expense of the mode shape.

To increase the damping, the diabolo support could be further modified by adding polyurethane
foam in the gap between the wind tunnel’s floor and the model. An example of this added damp-
ing arrangement is shown in figure 5.2b. This increased the damping ratio near uniformly in the
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(a) Diabolo support. (b) Added polyurethane foam.

Figure 5.2: Pictures of diabolo support used to mount the cylinders and the polyurethane foam used to
add structural damping.

êx and êy directions with little effect on the natural frequency.
The experimental setup is pictured and sketched in figure 5.3. Figure 5.3a shows the exper-

imental setup (rough test model and aerodynamic sensors) with the equipment used to produce
the atmospheric boundary layer in the background. The relative locations of the hot-film sensors
and the fast Pitot tube is given in figure 5.3b with the Pitot tube placed 10 diameters to the
side of the cylinder (0.55 m), at a height of 7.5 diameters (z=0.83 or Z=0.75 m) and with its tip
aligned with the cylinder’s front. The hot-films were placed 4 diameters behind the cylinder’s
rear (0.22 m) and 0.5 diameters off the cylinder’s centerline (0.0275 m).

Figure 5.3b shows the relative height of the hot-film sensors. The first and upper hot-film
(1) was placed 1 diameter below the cylinder’s tip, the second (2) 2 diameters below the tip, the
third (3) 3.25 diameters and the last and lowest (4) 4.75 diameters below the tip. This made the
distances between sensors 1 and 2, 2 and 3 and 3 and 4 1, 1.25 and 1.5 diameters respectively.
Finally, a 3D accelerometer was placed inside the cylinders on a level mounting bracket at a
height of 15.55 diameters (Z=0.855 m or z=0.95) or 0.82 diameters from the model’s tip.

5.2.3 The first mode shape

The experimentally obtained first mode shape was determined from tests without added mass
by using two accelerometers (one reference and one movable) and is compared with two often
assumed mode shapes [5, 55] in figure 5.4. The two assumed mode shapes are the straight
ψ(z) = z (flexible support) and parabolic ψ(z) = z2 (cantilevered support) mode shapes. As
figure 5.4 shows, flexible support mode shape has a closer shape to the experimentally obtained
mode shape than the cantilevered. This makes sense as most of the bending was concentrated
in the diabolo support with some additional bending of the cylinder.

5.2.4 Model configurations and parameters

A simplifying assumption was needed to estimate the equivalent mass per unit length (me) for
all configurations: It’s assumed that the mode shape was similar when adding extra mass and
damping and when testing without the roughness strips. Part of this assumption was that the
modal stiffness of the cylinder stayed constant. With these assumptions, the modal mass for
the cylinders without added mass was estimated from equation (2.8) by first adding a calibrated
mass and then comparing the natural frequencies. From this, the equivalent mass without added
mass was found using equation (2.9) using the mode shape integral from the best fitted mode
shape and the equivalent mass with added mass using equation (2.10).

77



Reference pitot
tube

Fast response
pitot tube

Hot-film
sensors

Model
h=0.9 m
d=0.055 m

Boundary layer
generating grid

(a) Picture of setup with explanations.

(b) Sketch from top with coordinate system. (c) Sketch from side focused on hot-film locations.

Figure 5.3: Sketches of experimental setup, relative locations and coordinate system used.

The resulting equivalent masses, me, for each test case are given in table 5.1 along with:
cylinder surface condition, mass added near the tip (madd), dimensionless mass-ratio µ (defined
in equation (2.12)), natural frequency (fn) in the across-wind direction (êy), damping ratio (ζ) in
across-wind direction, Scruton number Sc (mass-damping parameter defined in equation (2.14)),
Strouhal number St and the Reynolds number giving vortex-induced vibrations using the best
estimate of the constant Strouhal numbers in figure 5.5. For all configurations, the natural
frequencies and damping ratios were characterized before and after testing a configuration to
verify that the structural parameters remained the same.

Two of the configurations in 5.1 are marked with an asterisk. They were tested without
the atmospheric boundary layer generator shown in figure 5.3a. These tests showed how the
atmospheric boundary layer affected the response at sub-critical and simulated super-critical
Reynolds numbers.

5.2.5 Instrumentation and measurements

Unsteady pressures are not recorded for these tests as the tubing connecting the pressure taps
to the sensors adds significant damping. Instead, there’s just one acquisition chain measuring
tip acceleration using an 3D accelerometer (with êx aligned in the along wind and êy in the
across wind direction), wind speed using a reference fast-response Pitot tube and the wake
characteristics using four hot-film probes placed behind the cylinder. To be sure that the
displacement and wake statistics can be properly measured, all time signals were recorded for
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Figure 5.4: Experimental first mode shape and comparison with two assumed mode shapes [5, 55].

Table 5.1: Characteristics of experimental models in the across-wind direction. Asterisk marks tests
without atmospheric boundary layer and with low turbulence.

Surface madd [kg] me [kg/m] µ [-] fn [Hz] ζ [%] Sc [-] St [-] Recrit [-]
Rough 0 0.61 168.1 56.3 0.244 5.47 0.182 61000
Rough 0.15 0.75 207.0 42.4 0.265 9.99 0.182 47000
Rough 0.3 0.90 247.8 36.7 0.324 17.2 0.182 40000
Rough 0 0.61 168.1 56.4 0.351 7.87 0.182 61000
Smooth 0 0.60 165.3 56.7 0.209 4.50 0.178 63000
Smooth 0.15 0.74 204.2 42.5 0.257 9.45 0.178 48000
Rough∗ 0 0.61 168.1 56.0 0.240 5.38 0.176 63000
Smooth∗ 0 0.60 165.3 56.6 0.278 5.98 0.162 69000

120 s at a frequency of 512 Hz. Note that two of the hot-films (probes 1 and 4, i.e. bottom and
upper) broke when changing from the rough to smooth cylinder due to human error.

5.2.6 Analysis of displacement and acceleration

The displacement for each recording, y(t), was calculated from the acceleration signal using
the Fourier transform process outlined in section A.1. To eliminate unwanted low-frequency
noise, which would become over represented in the displacement signal, a fifth order high-pass
Butterworth filter with cutoff frequency of 5 Hz was applied to the acceleration data. This cut-off
frequency was well below both the lowest vortex-shedding frequencies and natural frequencies.

The response envelope of displacement was calculated using the Hilbert transform [153].
By separating each recording into 120 segments (each 1 s), the amplitude statistics (mean and
maximum) could be estimated with outliers removed (defined as four standard deviations away
from mean maximum amplitude). The dominant vibration frequencies were identified from the
spectrum Y (ω) by peak detection but these were mostly at the natural frequency.

These amplitude data were compared using the dimensionless fluid speed ωq defined in
equation (5.1). As this speed includes the Strouhal number, or equivalently the critical vortex-
induced vibration speed, the vortex-induced vibrations should be in the same dimensionless
speed range regardless of surface and flow configuration. To better compare the experiments
across scales, the response amplitudes are shown in dimensionless form ry using equation (5.2).

ωq = ωs

ωn
= U

Ucrit
= URSt, (5.1)
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Figure 5.5: Strouhal number for cylinders without added mass and damping (with and without
atmospheric boundary layer). ◦ are experiments with increasing speed, × decreasing.

ry = |Y |
d
. (5.2)

5.3 Wake and response results

5.3.1 Strouhal number

Two quick conclusions can be made regarding the Strouhal numbers (measured using hot-film
sensor 3 at z = 0.8) shown in figure 5.5. Firstly, tests with smooth cylinders had lower Strouhal
numbers than the rough cylinder. Similar results were seen in 2D tests on similar cylinders
(size, material, flow conditions and roughness), but the measured 3D Strouhal numbers were
significantly lower than their 2D counterparts (as also shown in the literature presented in section
2.1.4). This reduction should not be due to top effects as the Strouhal numbers were similar
when investigating the bottom hot-film probe (4 in figure 5.3c), y = 0.71) and the hot-film
placed second from the top (2, y = 0.88).

The second quick conclusion, was that removing the atmospheric boundary layer (uniform
flow) reduced the Strouhal numbers, increased the lock-in region and made the smooth and rough
cylinders have noticeably different Strouhal numbers. The latter is in contrast to tests with
the turbulent atmospheric boundary layer where the vortex-shedding frequencies were similar
for both roughness configurations. This could indicate that adding a turbulent atmospheric
boundary layer was enough to simulate or suppress any transition to super-critical Reynolds
numbers and that roughness in unnecessary.

The Strouhal number had a significant nonlinear variation with ωq for the configurations
shown in figure 5.5 and two different shedding frequency behaviors were found in the wake. One
of these shedding patterns correspond to having a constant Strouhal number (linearly increasing
vortex-shedding frequency as for stationary cylinders) whereas the other had a linearly decreasing
Strouhal number (constant shedding at the first natural frequency). The latter shedding pattern
with ωq occurs during lock-in and the vortex-induced vibrations should be clearer if there’s only
one shedding frequency during lock-in. This was seen for the rough cylinder when testing without
the atmospheric boundary layer where the linearly increasing Strouhal number was missing for
parts of the lock-in region.

Hysteresis was observed for three of the four configurations in figure 5.5. While the smooth
cylinder tested with the atmospheric boundary layer showed no hysteresis in figure 5.5a, the
rough did have possible lock-in (two vortex-shedding frequencies) at lower speeds when reducing
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Figure 5.6: Experimentally obtained maximum response as a function of Scruton number for tests with
atmospheric boundary layer. The exponential function is ry ≈ 0.00166 + 0.377 exp(−0.339 · Sc) and the

power law is ry ≈ 1.97 · Sc−2.08

the speed than when increasing it. This same hysteresis pattern was seen for the rough cylinder
without the atmospheric boundary layer in figure 5.5b.

The smooth cylinder had a different hysteresis pattern than the rest when tested without the
atmospheric boundary layer. The two frequency region started lower speeds with increasing wind
speeds and started at higher speeds with decreasing wind speeds. This is contrary to common
sense as one would expect the hysteresis to be a continued lock-in instead of a preemptive lock-
in. In addition, this smooth cylinder had Strouhal number evolution different from the rest with
more recorded shedding frequencies at the natural frequencies at ωq > 1 than above; this is the
opposite of what’s observed for the other three cylinders.

5.3.2 Structural response

Maximum response as a function of the Scruton number

Maximum response as a function of Scruton number is shown in figure 5.6 for the smooth and
rough cylinders tested with atmospheric boundary layer. The maximum responses for the rough
cylinders droped almost like an exponential or power law function with Sc which is classical
but there were some less classical aspects [101, 106, 109]. When increasing the equivalent mass
and damping by adding a tip mass (Sc = 10 and 17.2), the response seemed to drop slightly
differently from when just adding damping (slightly different exponetial functions). It’s possible
that the equivalent mass either cannot be found by linearly superimposing the added mass or
that the effect of damping and mass on maximum amplitude cannot be reduced to a mass-
damping parameter which is inline with the view of Sarpkaya [106]. The smooth cylinders’
maximum response adds little information as it’s only two points but does fit in with the rough
cylinder’s evolution with Sc.

The response characteristics depended on the Scruton number. This can be inferred from
the error bars in figure 5.6 which represent the standard deviation of the maximum amplitude
when splitting the signal into 120 segments. When coupled with the time histories, the change
in amplitude for the low Scruton number cylinders was seen to be mostly due to an amplitude
modulation with time whereas the time history of the high Scruton number cases were more like
random vibration. Note that while the low Scruton number cases have the largest SD values,
their coefficient of variation were the smallest.
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Figure 5.7: Response for the rough cylinder with atmospheric boundary layer. ◦ marks experiments
with increasing speeds and × decreasing.

Amplitude response of rough cylinders at super-critical Reynolds numbers

Depending on the Scruton number, the response characteristics and shape was quite different.
When the Scruton number was low (Sc < 8 for the rough cylinders), the response during
lock-in was dominated by harmonic vortex-induced vibration. This led to quite high vibration
amplitudes as seen in figure 5.7 for Sc = 5.47 and 7.87. In addition to the larger vibration
amplitudes, the amplitude response had hysteresis. This can be seen for the rough cylinder
with Sc = 5.47 when decreasing the speed where the vortex-induced vibration amplitudes were
higher compared to tests with increasing speeds. There’s further hysteresis in the lock-in range
and it’s more prolonged at ωq < 1 which is consistent with the Strouhal results in figure 5.5a.

At high Scruton numbers (Sc > 9), the rough cylinder’s response was greatly diminished
as seen in figure 5.7 for Sc = 9.99 and 17.2. In addition, the response characteristics changed
greatly when increasing the Scruton number from Sc = 7.87 to Sc = 9.99. This change was
large and should be due to the vortex-induced vibrations entering a different vibration regime
which matches well with the predictive model of Vickery and Basu where theres a transition
from harmonic response to random vibration around Sc = 9 [32, 88]. This was also seen in the
response time history where the high Scruton number cylinder (Sc = 17.2) had a more random
change (but still periodic) time history than the low Scruton number cylinder (Sc = 5.47) as
shown in figure 5.8b.

While the amplitudes were reduced with the Scruton number, the vortex-induced vibration
regions had similarities regardless of the Scruton number. The vortex-induced vibrations tended
to start at ωq ≈ 0.8 at the same speed and ended at ωq ≈ 1.35 − 1.5 for all tested rough
configurations. The end points did reduce with the Scruton number but not nearly as much as
the amplitude levels dropped making the vortex-induced vibrations negligible regardless. As the
speed increased past this, turbulence-induced vibration took over for the rough cylinders with
atmospheric boundary layer but this was only observed for the configurations with added mass
and lower natural frequencies.

Amplitude response of smooth cylinders at sub-critical Reynolds numbers

The amplitude response of the smooth cylinders at sub-critical Reynolds numbers were different
from the previous super-critical results as shown in figure 5.9. Firstly, the amplitude hysteresis
was less noticeable for the smooth cylinder with the lowest Scruton number (Sc = 4.5) and
tests with decreasing speeds only had slightly higher amplitudes than when increasing it. The
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Figure 5.8: Time histories of cross-wind vibrations for two rough cylinders at relatively high
amplitudes of vibrations.
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Figure 5.9: Response for the smooth cylinder with atmospheric boundary layer. ◦ marks experiments
with increasing speeds and × decreasing.

second difference was in the amplitudes and the smooth cylinder experienced higher amplitudes
of motion than the rough. As shown in chapters 2, 3 and 4, the SD lift coefficient was larger at
sub-critical Reynolds numbers when compared to super-critical which partly explains the higher
amplitudes. Another reason for the higher amplitude, was the lower Scruton number.

There might be two causes for the lack of hysteresis. Either there’s no conditional lock-in
which can lead to hysteresis or the turbulence intensity and stronger vortex-process (compared
to rough cylinder) triggered the high amplitude vortex-induced vibration response more easily
when ωq ≶ 1. The latter can be observed in numerical simulations of a nonlinear, coupled wake-
oscillator model (for modeling vortex-induced vibrations) with strong added noise and force (cf.
the work of Aswathy and Sakar [142]). Conditional lock-in is here defined as a lock-in region
that’s sustained when either decreasing or increasing the speed when the vibration amplitude
already is high. Conversely, if the amplitude is low when changing the speed, it will remain low.

There were similarities between the amplitude responses of the rough and smooth cylinders.
For both, the response was much lower with large Scruton numbers (Sc > 9) with more ran-
dom response time histories even at the highest amplitudes. Additionally, the vortex-induced
vibration range was approximately the same when using the dimensionless speed ωq and can be
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Figure 5.10: Response for the cylinders without atmospheric boundary layer. ◦ marks experiments
with increasing speeds and × decreasing.

found in the range ωq ∈ [0.8, 1.4 − 1.5]. The general behavior with increasing speed was also
the same. Overall, this speaks volumes about the usefulness of this dimensionless fluid speed
(which is similar to the vortex-induced vibration speed ratio in design codes [5, 55]) and should
be preferred over the reduced speed given in (2.18) when dealing with vortex-induced vibrations.

Overall, the effect of roughness on the amplitude response was smaller than expected when
compared to the statement of Vickery and Daly (loading up to 400% greater) [4]. As the
Strouhal numbers also were quite similar for the rough and smooth configuration (see figure
5.5b), it might be enough to add an atmospheric boundary layer when simulating super-critical
flow for a model of this size, scale and aspect ratio.

Amplitude response without an atmospheric boundary layer

The response increased for both the smooth and rough cylinders when removing the atmospheric
boundary layer. This should be due to a stronger vortex-shedding process and larger SD lift
coefficient as shown in chapter 4 when reducing the turbulence. This effect and subsequent
increase in the response was stronger for the smooth cylinder were the response increased even
if the Scruton number was 33% higher. As seen in figure 5.10, the highest amplitudes for the
rough cylinder was in the range ωq ∈ [0.9, 1.2] but some degree of vortex-induced vibration
can be found in the range ωq ∈ [0.8, 1.4]. This vortex-induced vibration range was slightly
smaller but consistent with the range found using an atmospheric boundary layer. What’s more
interesting about the response, and really differentiates it from the results with an atmospheric
boundary layer, was the nonlinearity. At ωq = 0.9, the response shot up and then stayed fairly
constant before rapidly dropping starting at ωq = 1.15 which was in contrast to the more rounded
amplitude response with the atmospheric boundary layer.

The smooth cylinder had a similar jump in vibration amplitude at low dimensionless speeds
as shown in figure 5.10 but had, like the Strouhal number evolution in figure 5.5b, an odd
amplitude response. For the smooth cylinder, the flatter, high amplitudes were in the range
ω ∈ [0.85, 1] and was followed by a gradual but rapid decrease in vibration amplitude. A
possible explanation for this odd Strouhal number and amplitude response is that the Strouhal
number measured at low vibration amplitudes was different from the linear Strouhal number
with high amplitude vortex-induced vibrations. A higher Strouhal number would push the
amplitude response towards higher dimensionless speeds and make the amplitude response more
similar to the rough cylinder’s.
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(a) Correlation compared with the results of Howell
and Novak [85].
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Figure 5.11: Coherence and correlation at different amplitudes but the same dimensionless speed
(ωq = 1.14). The amplitudes are × = 0.059, △= 0.041, □ = 0.0062 and + = 0.0028.

When combining the results for tests with and without the turbulent atmospheric boundary
layer, it becomes clear that there’s a roughness or simulated Reynolds number effect when
testing without the boundary layer but this disappears when adding it. This was seen for
both the vortex-shedding frequencies and the amplitude responses which were quite similar
when testing without the atmospheric boundary layer but different without it. In other words,
adding a Eurocode terrain category II atmospheric boundary layer could be enough to simulate
the super-critical Reynolds number response due to vortex-induced vibrations of cylinders with
similar aspect ratios and scales. This matches the results of Batham [60] who found that a
turbulent boundary layer was enough the recreate the random response of a full-scale chimney
(super-critical Reynolds numbers).

5.3.3 Correlation and coherence

The correlation and coherence (defined in section 2.1.4) as a function of distance (measured in
diameters) is shown in figure 5.11. As a reminder, sensor 1 is placed 1 diameter below the tip,
sensor 2 is placed 2 diameters below the tip, sensor 3 is placed 3.25 diameters below the tip
and sensor 4 is placed 4.75 diameters below the tip. The results are from the rough cylinder
with atmospheric boundary layer and is compared at four different amplitudes using the same
wind speed. As 3D effects can affect the correlation and coherence, the reference sensors used to
calculate the statistics are marked by color. This way, the sensors used to calculate the statistics
at a given distance can be identified by two differently colored markers placed next to each other.

The correlation, shown in figure 5.11a changed little with amplitude. Most of the changes
in correlation were related the distance between two sensors and the correlation dropped near
exponentially with distance. This drop was consistent with the 3D pressure correlation results
of Howell and Novak [85] but their correlation was higher even without motion. While lower,
the differences between the present wake measurements and pressure correlation were less for
these elastic 3D cylinders than for the stationary 2D cylinders presented in chapters 3 and 4.

Unlike the correlation, the coherence at a given location is increased with the amplitude as
figure 5.11b shows. Even with the increase, the wake measured coherence was significantly lower
than the correlation at most distances and amplitude levels. This goes against the 2D results
at large and small-scale (chapters 3 and 4) where the coherence was consistently greater than
the correlation which implies that the vortex-cells are smaller and vortex-process weaker. The
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Figure 5.12: Response for the cylinders without atmospheric boundary layer. ◦ marks experiments
with increasing speeds and × decreasing.

Figure 5.13: Possible shape of maximum coherence. Inspired by sketch by Ruscheweyh [49].

exception to the change in coherence with amplitude is when using sensor 1 (near the tip) as the
reference. With sensors 1 as the reference, the coherence barely changed with amplitude. As
this sensor is near the tip, tip effects and tip shedding could dominate and suppress the more
regular vortex-shedding seen at other sensors. An example of the coherence is shown in figure
5.12 for the rough configuration with a Scruton number of 5.47 at a speed of 19 m/s (× in figure
5.11).

While the correlation almost dropped like an exponential function, the coherence did not
(with the exception of when sensor 1 was used as reference). Instead, the coherence along the
3D cylinder should be more like what’s shown in figure 5.13. Because of end-effects, regular
vortex-shedding should be absent near the tip (tip-vortex instead) and the point of maximum
vortex-lift force (and best reference point for coherence) lower down. This point was a few
diameters from the tip (around y = 0.7 or 0.8 or 3-5 diameters from the tip) and was similar
to what Howell and Novak [85] and Kareem et al. [35] observed and expressed for pressure and
lift correlation. With more measurement points, or a moving set of sensors, the exact shape of
the 3D coherence could be determined. From this maxima, the coherence and force strength as
a function of position should drop like a bell shaped curve (∼ log normal7).

This vertical coherence pattern is not accounted for in spectral model of Vickery and Basu
[32, 88] but is similar to what was found by Ruscheweyh [49] for forces on cantilevered cylinders
due to vortex-induced vibrations. It’s therefore possible that the spectral model can be improved
by using a coherence (or correlation) function with this kind of shape instead of the one that
is currently used in the model. The coherence is not included in most wake oscillator models

7An alternative function, is an exponential function multiplied by a sine function with origin at the tip.
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as they tend to be limited to 2D models and this finding could help in analytically deriving 3D
parameters used in the model (e.g. the wake forcing strength and nonlinear damping).

5.4 Summary of small-scale aeroelastic results
The response and wake characteristics was measured for several flexible, 3D cylinders in an
atmospheric wind tunnel using 1:100 scale models. The models were tested with two surface
roughness conditions, with the rough giving super-critical Reynolds numbers and the smooth
sub-critical, and two boundary layer configurations, Eurocode terrain category II and none.
The wake characteristics were shown to be dependent on both the surface and flow conditions
where both surface roughness and a realistic atmospheric boundary layer increased the Strouhal
number independently.

When testing with the Eurocode type II boundary layer, the Strouhal number and response
become more similar for the smooth and rough configurations than without it. This means that
it’s possible that several aspects of super-critical vortex-induced vibrations can be captured by
a smooth cylinder when similar cylinders, scales and boundary layers are used. This can be
related to the small-scale 2D experiments on stationary cylinders (chapter 4) and the results of
Cheung and Melbourne [30] where strong added turbulence "smooths out" the force evolution
with Reynolds number. When removing the boundary layer, there was a significant amplitude
difference between the rough and smooth cylinder which should be due to the rough cylinders
being at prematurely triggered super-critical Reynolds numbers with a lower unsteady lift and
higher Strouhal numbers than the smooth sub-critical cylinder.

When increasing the Scruton number, there’s a qualitative difference between low values
(with harmonic vibrations) and higher values (dominated by random vibrations). In these
experiments, the transition threshold was when increasing the Scruton number from 7.87 to
9.99 and the maximum amplitude was much lower beyond it. The presented result might be
skewed as the highest Scruton number tests are with added mass which could have affected
the equivalent mass (and thereby the Scruton number) differently than expected. Another
possibility is that the response is not a function of Scruton number alone, as it’s often presented
as, but rather a combined function of mass, damping and aerodynamics rather than the singular
Scruton number.

In addition to the 2D forces, the correlation and coherence along the cylinders’ height is
important. This was measured in the wake using the rough cylinder with atmospheric boundary
layer only. Both of these statistics were found to be significantly lower at all distances when
compared to their 2D counterparts. While lower, the 3D correlation was much closer to the 3D
pressure correlation found in literature than for the 2D results. Even if the coherence grew with
the amplitude, the correlation (which was fairly constant with amplitude) was higher than the
correlation at all measured amplitudes of motion. This is different from the 2D results where
the coherence was larger than the correlation.

The last correlation and coherence finding, was that the correlation dropped like an expo-
nential function that’s independent of the reference sensor but that the coherence was highly
dependent on the reference sensor. If the coherence was measured along the entire height using
a single reference point, it’s likely that the shape would be a log normal probability distribution
with the best reference point being 3-5 diameters from the tip for this cylinder.
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Chapter

6
Field tests: The Bouin chimney

Chapter summary

This chapters presents a field-experiment on a custom-made 35.5 m tall chimney placed in real
atmospheric wind near the Atlantic coast of France. These experiments supplement the wind
tunnel experiments and the dimensionless response of this real chimney was higher than that
measured with the wind tunnel models. This amplitude difference is mostly due to the lower
Scruton number. There are two other related findings from the field tests: The response and in-
coming atmospheric boundary layer was dependent on the direction of the incoming wind. When
the wind came from inland, the speed gradient was the greatest with height and the turbulence
intensity the lowest and both profiles matched poorly with the statistical Eurocode boundary layer.
This turbulence intensity reduction should be accounted for in design models as it should cause
stronger vortex-shedding and larger response.

6.1 Background

To supplement the 2D and 3D wind tunnel experiments on pressure distribution around a cylin-
der and its response, a full-scale field chimney was designed and erected. As the Reynolds number
and turbulence incoming flow impacts the pressure distributions and response, it’s important to
have actual data on vortex-induced vibrations of slender structure in an atmospheric boundary
layer [5, 32, 49, 121]. As shown, the vortex-shedding at super-critical Reynolds numbers is
re-established and strengthened in smooth flow but is this the case in the field?

Continuous measurements from monitored industrial chimneys are found in the literature
[121–123, 125, 126, 128, 129] but the monitoring is often limited to acceleration data and a
reference velocity. This is often due to limited access and opportunity to install extra sensors as
the chimneys are in use. Additionally, these chimneys have been designed to or treated to limit
vibrations meaning that the observed vortex-induced vibrations were small.

For other more well-studied field-experiments on circular structures, there are problems
with the structural dimensions. Due to their smaller size, the high amplitude vortex-induced
vibrations were at sub-critical or critical Reynolds numbers rather than super-critical [127, 133,
154]. The same problem was observed in wind tunnels where the speed required to reach super-
critical wind speed was large (cf. the experiments of Belloli et al. on a rough cylinder [27]).
This often required a higher natural frequency which should reduce the degree of motion (cf.
the spectral vortex-induced vibration model in section 2.4.1).

To remedy the above (and to validate the design methodology and the wind tunnel experi-
ments), a custom-made 35.5 m steel chimney was erected on a monitored wind field, in Bouin
(near the Atlantic coast of France), and instrumented with several sensors. This chimney was
designed to have a low Scruton number (Sc < 2) and to experience super-critical vortex-induced
vibrations at moderate wind speeds (U < 10 m/s).



Figure 6.1: Experimental chimney in the monitored field with the wind anemometer mast slightly
visible (see figure 2 for details). Photo by Lilian Vezin.

Figure 6.2: Sketch with the dimensions of the chimney and wind anemometer mast as well as locations
of anemometers and accelerometers.

6.2 Chimney design and methodology

6.2.1 Structural characteristics of the chimney

The chimney used in this field-test was designed, manufactured and erected by Beirens (Pou-
joulat group) during the summer of 2020 and figure 6.1 shows it mounted in the field. This
custom-made steel chimney had a height h of 35.5 m, a bottom diameter dbottom of 1 m for the
first 12 m and a tip diameter dtip of 2 m for the last 20.5 m. In between these two sections,
there’s a 3 m long tapered section connecting the elements (see figure 6.2 for the setup).

This shape is unusual for a chimney and was chosen specifically for this experiment. Two of
the criteria for the chimney were to have vortex-induced vibrations in the super-critical Reynolds
number range (Re > 106) and that this would be at moderate wind speeds (U < 10 m/s) likely
to be seen in the field. To achieve this, the larger diameter upper part was used to achieve a high
Reynolds number, as this is the area where the vortex-lift should be most important, whereas
the smaller diameter section added the necessary rigidity and support for a low critical wind
speed. Structural characteristics of the chimney as measured after erecting the chimney (i.e. at
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Table 6.1: Structural characteristic of the chimney (as identified at the start of the experiment).

dtip dbottom h hd=2 m me f1 ζ1 Sc Recrit

[m] [m] [m] [m] [kg/m] [Hz] [%] [-] [-]
2 1 35.5 20.5 322.6 0.78 0.22 1.82 1.16e6
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Figure 6.3: Mode shape of chimney and simplified mode shape used in models [5, 55].

the start of the experiments are given table 6.1). Both the first natural frequency (f1) and the
damping factor (ζ1) were estimated from free vibration tests.

The equivalent mass, me, was calculated by the chimney designers using an equation similar
to (2.9) and using the mode shape (ψ(z)) and modal mass found during the design phase using
CAD and FEM tools. Figure 6.3 shows the mode shape found using FEM tools and is compared
to an often used approximation of a chimney’s mode shape (ψ ≈ y2) [5, 55]. From it, it can be
seen that the assumed and FEM mode shapes have similar shapes but different relative deflection
at most heights. As they are fairly close, the simpler to use assumed mode shape will be used
in later sections involving the predictive design code models instead of the discrete FEM mode
shape.

The low Scruton number, calculated using equation (2.14), should give a high amplitude re-
sponse if there’s well organized vortex-shedding. The maximum dimensionless amplitude (in tip
diameters) was predicted to be either 0.31 using Eurocode’s method 1 (Ruscheweyh’s correlation
length model [5, 49]) or 0.53 using Eurocode’s method 2 (Vickery and Basu’s spectral model [5,
32, 88]). When using aerodynamic values from the Eurocode (St = 0.18) [5], the critical wind
speed for vortex-induced vibrations (when fs = fn) should be close to 8.7 m/s which made the
critical Reynolds number Recrit ≈ 1.16 · 106. This fulfills the requirements of vortex-induced
vibrations at low wind speeds but at super-critical Reynolds numbers.

It is important to note that due to a damaged bolt, the natural frequency decreased to
around 0.71 Hz. This was a reduction of almost 9% which affected the amplitude response and
the dominant frequency of motion. It’s suspected that this increased the damping factor of the
first mode (ζ1) but was not measured.

6.2.2 Field-test location and instrumentation

The chimney was mounted in a monitored wind field located in Bouin near the Atlantic coast
of France (GPS coordinates 46,975, -1,998). According to the Eurocode [5], this area is in a
wind zone category with 26 m/s as the 50-year reference wind speed. The site is surrounded
by farmland with sparse gatherings of trees which makes the terrain category type II. Due to
the remote location of the field, and the lack of nearby structures, the model chimney has been
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designed without fear of loss or damage of human life, animal life or nearby structures.
The chimney was instrumented with two bi-directional accelerometers, one at 20.4 m and

one at 35.35 m (near the top) as shown in figure 6.2. Their measuring range was ±2 g and the
acquisition frequency was set to 10 Hz. Wind velocity was measured at four heights using wind
anemometers mounted to the 40 m tall truss mast located 50 m northwest of the chimney (see
figure 6.2). Vane anemometers, measuring velocity, were placed at heights of 18 and 35 m and
a cup anemometer (speed only) was located at 10 m. These anemometers only recorded wind
statistics (e.g. mean and standard deviation of speed and direction) over a 10-minute period.

In addition to the wind statistics, the unsteady velocity (three components) was measured
using an additional sonic anemometer located at a height of 25 m height. The acquisition
frequency of this sensor was 5 Hz. While the sonic anemometer’s recording frequency was
different from the accelerometers, the recordings were time synchronized. The locations of the
sensors and relative locations of the mast and chimney are sketched in figure 6.2.

6.2.3 Data analysis process

The vibration and wind results shown in the present study are based on 1872 ten-minute records
gathered at 35 m over a sequential 13-day period in September 2020. Additional wind data,
gathered using all anemometers, were used to plot the mean wind gradient.

Each ten-minute sample was analyzed by first finding the mean velocity and dominant wind
direction. This was used for two things: 1) to transform the acceleration and displacement to
across and along wind directions and 2) to sort and group the response and dominant vibration
frequencies calculated from the top bi-directional accelerometer. The displacement y(t) was
calculated from the acceleration a(t) following the method outline in section A.1 which uses the
inverse Fourier transform of the frequency corrected acceleration spectrum A(ω). To eliminate
low frequency noise, a fifth order high-pass Butterworth filter with cutoff frequency of 0.3 Hz was
applied to the acceleration data. The response envelopes of the displacement were calculated
using the Hilbert transform [153]. From this envelope, the response amplitude statistics (e.g.
the mean and maximum) were calculated for each 10-minute recording.

A statistical analysis was performed, using all 1872 samples, to plot the probability distri-
bution of the vibration amplitudes and associated dominant frequency as a function of wind
velocity and direction. These probability distributions were calculated using a statistical kernel
function [155] and plotted as violin plots with added box plots. The kernel used here, is the
standard kernel used in Python’s Matplotlib package (versions 3.7.0 and 3.2.2 respectively).

6.3 Wind characteristics

6.3.1 Distribution of wind speed and direction

The top vane anemometer was used to create the wind rose shown in figure 6.4a which shows the
distribution of wind speeds and directions. Northwesterly and northeasterly were the two most
frequent wind directions and the most frequent speed range was 4 to 6 m/s. When ignoring
the direction, the distribution of all wind speeds resembled a discrete log-normal probability
distribution (see figure 6.4b) or a negative binomial distribution with a long tail at high speeds
and short at low. The probabilities of a specific wind direction were found using the relative
frequencies shown in the wind rose (figure 6.4a) and were: S–4,4%, SW–1,5%; W–1,9%; NW–
29,5%; N–16,8%; NE–31,4%; E–11,4% and SE–3,1%.

Using the measured wind speeds and Ucrit = 8.7 m/s, the probability of seeing a speed above
0.8 · Ucrit ≈ 7 m/s (Eurocodes recommendations for the onset of vortex-induced vibration), is
12.9%. As vortex-induced vibrations are only observed in a specific speed range, an upper limit
to the investigated wind speed range can be added. This speed is here defined as 1.2·Ucrit ≈ 10.5
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Figure 6.4: Wind rose showing wind distribution and probability distribution of observed wind speeds.
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Figure 6.5: Mean wind profile for the cardinal and ordinal directions compared with the terrain
category II wind profile from the Eurocode [5].

m/s which is when one of the Eurocode design methods gives the highest amplitude [5]. This
gave the same observation frequency because 10.44 m/s was the maximum observed mean wind
speed.

6.3.2 Mean incoming wind profiles

The mean wind speed and turbulence intensity as a function of height are shown in figure 6.5 for
all eight cardinal and ordinal directions. These mean profiles were based on all 10-minute wind
samples with a mean wind speed greater than 5 m/s at 35 m. The turbulence intensity I(z), is
defined as the standard deviation of speed at a given height divided by the corresponding mean
speed. The Eurocode’s mean wind speed and turbulence profiles for terrain category II are also
plotted in figure 6.5.

It is evident that the mean speed and turbulence profiles strongly depended on the wind
direction. While the Eurocode type II mean speed profile was close to a median profile in
comparison with the experiments, the Eurocode type II turbulence profile overestimates the
turbulence intensity for all directions. A direct comparison with Eurocode atmospheric boundary
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Figure 6.6: Probability distributions of maximum dimensionless amplitude (using dtip) at a given speed
range. The interior rectangle and lines are box plots showing summary statistics.

layer profiles should then be considered with some caution as they’re related to the reference
50-year wind speed (ten-minute at 10 m) and not the instantaneous. Nevertheless, this low-to-
moderate wind speed campaign highlights relevant information on the incoming wind useful for
vibration analysis.

Northwesterly wind, which has the highest probability of occurrence, had a mean speed
profile close to the Eurocode type II model but a lower turbulence intensity (slightly less than
12% at 35 m vs. 15% for the Eurocode). The easterly wind, accounting for 11.4% of the observed
wind and much of the vortex-induced vibrations of the chimney, was characterized by the largest
speed gradient with height and the lowest turbulence intensity (around 6% at 35 m). In other
words, the wind coming from inland and headed towards the ocean had the strongest shear and
lowest mean turbulence intensity at the heights measured.

6.4 Cross-wind vibrations

Following the data analysis process in section 6.2.3, a statistical analysis of the chimney’s cross-
wind vibration was performed. Statistical distributions of the maximum dimensionless amplitude
of vibration (ry with dtip for normalization) and associated dominant frequency (normalized with
f1), are plotted in figures 6.6 and 6.8 as a function of wind speed and direction in figure 6.7.

The results are reported using violin plots as a function of discrete wind speed groups (speed
±0.25 m/s) using mirrored probability distributions of the data along the y-axis. The exceptions
are for 1.25 and 10.25 m/s grouping all speeds below 1.5 and above 10 m/s respectively. In
addition to the violins, box plots with summary statistics (median and quartiles) are shown.
One benefit of violin plots over box plots is that they show the distribution of the data. This
is particularly useful for multimodal processes where the most likely value, associated with the
widest point of the violin/density, can differ from the median value [156]. Note that the mirrored
probability distributions shown in figures 6.6–6.7 are scaled to a fixed width for all speeds and
direction for visibility. Moreover, the tails of the probability distributions contains artifacts of
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Figure 6.7: Probability distributions of maximum dimensionless amplitude (using dtip) for different
directions ±22.5◦. The interior rectangle and lines are box plots showing summary statistics.

the kernels used and were removed.
As pointed out in section 6.3, the wind direction strongly affected the mean wind speed

and turbulence intensity profiles. The wind direction should therefore have a significant impact
on the chimney’s cross-wind vibration. Statistical distributions of the maximum dimensionless
amplitude of vibration are therefore plotted in figure 6.7 as a function of wind direction. The
directional groups used in figure 6.7 are the cardinal and ordinal directions ±22.5◦, with 0◦±22.5◦

defined as northerly wind and 90◦ ± 22.5◦ as easterly.

6.4.1 Amplitude response

Figure 6.6 clearly shows that high amplitude cross-wind vibrations were observed at wind speeds
between 5 and 8.5 m/s. The maximum amplitude, up to 35% of the diameter (0.7 m), was
observed at speeds between 6 and 6.5 m/s. This maximum amplitude was close to the one
calculated using Eurocode’s method 1 (based on Ruscheweyhs approach [49]) and 35% lower
than the one calculated using Eurocode’s method 2 (based on Vickery and Basus approach [32,
88]). However, this maximum amplitude was observed at a wind speed 2 m/s lower than the
one suggested by Eurocode. This suggests that the Strouhal number might be higher at these
high Reynolds numbers (Re ≈ 8.3 · 105 at U = 6.25 m/s), that the natural frequency was lower
than measured at the start of the experiments or a combination of the two.

There were cases of amplitudes greater than 20% of the diameter at speeds below 5 m/s. In
most of these cases, the vibration amplitudes were already high and the mean speed was slowly
reducing from the lock-in speed region over several 10-minute recordings (see hours). This low
speed, high amplitude response continued until the mean wind speed reached as low as 3.3 m/s.
Similar conditional lock-in phenomena were observed in the wind tunnel experiments, detailed
in chapter 5, when decreasing the speed. For other cases (1-2 samples), the high amplitudes
were due to the speed increasing to the lock-in range at the end of the 10-minute interval.

Lower amplitude levels (less than 15% of diameter) were frequently observed in the wind
speed range 5 to 8.5 m/s. Based on the violin plots, the lower amplitude vibrations are more likely

95



than the high amplitude vibrations (higher conditional probability). The probability densities
of maximum amplitude as a function of the wind direction, shown in figure 6.7, suggest that
most of the low amplitude vortex-induced vibrations are associated with northwesterly wind.
This wind direction was the most frequently observed direction and has a high likelihood of low
amplitude vibration. Similarly, the high amplitude vortex-induced vibrations were most likely
and frequent for the easterly wind with the lowest turbulence.

No vibration amplitudes greater than 7.5% of the diameter were observed for wind speeds
higher than 8.5 m/s. From 8.5 m/s to 10.25 m/s (which groups all speeds above 10 m/s), one
can observe that the probability distributions of the maximum amplitude are more centered
with a median value that gradually increases with the speed. The vibrations should therefore
be due to turbulence-induced vibrations.

6.4.2 Frequency of motion

At speeds above 8.5 m/s the probability distributions of dominant frequency were more surpris-
ing than the response. For turbulence-induced vibrations, a dominant frequency close to the
first natural frequency of the chimney is expected (f/f1 ≈ 1). Instead, the shape of the violin
plots reveals two highly likely dominant frequencies (see for example figure 6.8 at U = 8.75 m/s):
one with normalized frequencies between 0.9 and 1 and the other with normalized frequencies
between 0.8 and 0.9. As reported in section 6.2 a damaged bolt was observed at the end of the
test campaign. A check of the random vibration data showed that the chimney’s first natural
frequency decreased by 9% towards 0.71 Hz. This could explain the peculiar distribution of the
dominant frequencies during turbulence-induced vibration regime.

While the probability of high amplitude vortex-induced vibration was low for speeds below 5
m/s, the evolution of the dominant frequency’s probability distribution with speed (seen in figure
6.8) is interesting. Up to 4.75 ± 0.25 m/s, two distinct frequency groups were found. The first
group contains the median frequencies which increases almost linearly with the wind speed. The
second group contains normalized frequencies between 0.9 and 1 and its conditional probability
increases with speed. The first group is clearly related to vortex-shedding while the second is due
to a combination of turbulence-induced vibrations and vortex-induced vibration at lock-in for a
few recordings (conditional lock-in). At speeds between 5 and 8.5 m/s, the dominant frequency
was mainly clustered around 0.9 and should be related to lock-in (frequency entertainment) and
vortex-induced vibrations. Instead of 12.8% of the observed wind speeds, this lock-in region
makes up 37.7% which is almost three times as much.

6.4.3 Directional response statistics

Relevant information on the directional response statistics is found in figure 6.7. Easterly winds
(low turbulence) were the most favorable to generate high amplitude vortex-induced vibrations
(> 30% of tip diameter). This wind direction also has the highest conditional probability of
maximum amplitudes greater than 15% of the diameter (near 50% of the maximum amplitudes
were above 15% of the diameter).

For southerly wind, vibrations up 18% of the diameter were observed but the conditional
probability of high amplitudes were low. Instead, the shape of the violin plot for southerly direc-
tions shows a high conditional probability for vibrations lower than 5% of the tip diameter, even
if much of the incoming wind in this direction is in the vortex-induced vibration speed range,
and this could be turbulence-induced vibration. According to figure 6.5b, the turbulence inten-
sity is high for this direction, close to 15% at 35 m height, giving stronger turbulence-induced
vibrations. Vortex-induced vibrations were also observed with the more turbulent northwesterly
winds, but tended to be at significantly lower amplitude of vibrations.

The conditional probability of wind speeds in the range 5 to 8.5 m/s was highest for easterly,
northwesterly and southerly winds (59.6% for northwesterly wind, 47.6% for southerly and 42.7%
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Figure 6.8: Probability distributions of dominant frequency of motion (using f1) at a given speed
range. The interior rectangle and lines are box plots showing summary statistics.

for easterly wind, see figure 6.4a for visual). For northerly and northeasterly wind, on the other
hand, it’s much more likely to see speeds below 5 m/s and low amplitudes. This might explain
why some of these directions have higher conditional probability for high amplitude vortex-
induced vibrations. Easterly winds (wind towards the ocean) also had the strongest speed
gradient with height (figure 6.5a) and the lowest turbulence intensity (seen to be less than 6%
at a height of 35 m in figure 6.5b compared to 12% for the northwesterly wind).

While the full impact of shear flow on vortex-shedding and vortex-induced vibration isn’t
fully understood, it’s known that vortex-induced vibrations are stronger for low turbulence 2D
flows [32, 37, 78, 88, 90]. This was also shown in the present study due to the atmospheric
boundary layers (see speed and turbulence intensity) naturally varying with the direction.

6.5 Summary of field-test results

A custom-made chimney with a large tip diameter (2 m) and low Scruton number (Sc = 1.82)
was erected in a monitored wind field, near the Atlantic coast of France. Preliminary vibration
results and wind characteristics obtained from this chimney during a sequential 13-day period
in September 2020 were presented. The amplitude and frequency responses were reported in
terms of probability distributions and plotted as a function of both wind speed and direction.
As expected two types of cross-wind vibrations were observed, turbulence-induced vibrations
and vortex-induced vibrations.

Vortex-induced vibrations with significant amplitudes were mostly observed for wind speeds
between 5 and 8.5 m/s with a maximum amplitude near 6.25 m/s. This vortex-induced vibration
range was lower than expected and there are two likely culprits: the reduced natural frequency
(from 0.78 to 0.71 Hz) and a higher Strouhal number. When using a Strouhal number of 0.3
and a natural frequency of 0.71, the new critical speed becomes 4.73 m/s (Re ≈ 6.3 · 105) which
doesn’t fit with the literature. Vickery and Basu estimated that the maximum amplitude is
when U = 1.1 · Ucrit [113, 120] and Ruscheweyh when U = 1.2 · Ucrit [49] but both are lower
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than found here (maximum at U ≈ 1.3 · Ucrit).
Vortex-induced vibrations were observed at low (< 15% of the diameter) and high (> 30%

of the diameter) amplitudes of vibration in the speed range U ∈ [5, 8.5] with the lower ampli-
tudes being more likely. The results also showed that easterly winds with low turbulence were
responsible for the highest amplitudes of vibration (> 30% of the tip diameter) while the low
amplitude vortex-induced vibrations were mainly due to northwesterly and southerly winds with
higher turbulence intensities. The wind directions giving high vibration amplitudes had wind
profiles different from the Eurocode’s and the lower turbulence intensities seen in the field could
indicate that the Eurocode isn’t as conservative it needs to be for vortex-induced vibrations.
As the response changed with the direction and boundary layer profile, it’s therefore safe to
conclude that the atmospheric boundary layer has a significant effect on the response just like
in the small-scale aeroelastic tests.

The goal of this test chimney was to gather vortex-induced vibration data at super-critical
Reynolds numbers in real atmospheric winds. This has been accomplished but the test platform
can be used for more. These preliminary results will help forecast specific vortex-induced vi-
bration events which can be used when performing unsteady pressure measurements along the
height of the chimney at super-critical Reynolds numbers with and without vortex-induced vi-
brations. This extra data will help strengthen the present results and improve our understanding
of 3D vortex-shedding, pressure loading and vortex-induced vibrations at super-critical Reynolds
numbers with different turbulence conditions.
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Part IV

Predicting the response due to
vortex-induced vibrations
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Chapter

7
Mathematical modeling of re-
sponse

Chapter summary

This chapters presents a new analytic approximation of a well-studied vortex-induced vibration
model. The approximation is based on Facchinetti et al.’s wake oscillator model and was found
to match well with numerical simulations. From this approximation, several new findings on
the amplitude response were derived. For instance, an equation for the speeds giving an absolute
lock-in region (high amplitude only) and two conditional lock-in regions (high and low amplitudes
possible) was derived and the effect of mass-ratio and damping on it were investigated. In
addition, an equation for the maximum response using the approximated model was postulated
and its results match well with both the numerical simulations and the correlation length model
from design codes.

7.1 Background

As shown in the field test chapter, chapter 6, the design models for vortex-induced vibrations
used in the Eurocode predicted different amplitudes with one of them over predicting the re-
sponse greatly. This behavior is not good and is partly why the Eurocode design models will
exclude the correlation length in the next iteration8. But is the spectral model really the best
model for predicting vortex-induced vibrations?

While critics might say that Ruscheweyh’s correlation length model is a maximum response
model only (assuming purely harmonic vibration), the same is true for the spectral model for
most practical purposes and many Scruton numbers [5, 32, 49, 55, 88, 113]. With the spectral
model, the amplitude response can only be calculated if the Scruton number is high enough
(dominated by random vibrations) or if empirical corrections are applied. The former has a
second adverse effect on the response: As the Scruton number decreases, the linear damping
becomes negative and the response needs to greatly increase to create a positive total damping.
There are attempts at fixing this damping issue, but they mostly end up reducing the full model
from an amplitude response model to a simple maximum amplitude model.

In an attempt to create a better predictive vortex-induced vibration model, that doesn’t
require numerical integration or simulation, an existing nonlinear coupled wake oscillator model
was approximated. These vortex-induced vibration models tend to be based on harmonic vibra-
tions (which should be better at predicting response compared with the spectral model when
the Scruton number is low (e.g. Sc < 8 − 9)) and use coupled, harmonic differential equations
describing the applied force and response separately where one or more are nonlinear. The
model focused on, was the wake oscillator model of Facchinetti et al. [14] as it’s easy to work
on and well-studied. From it, approximations of the amplitude response and the dimensionless
speeds giving vortex-induced vibrations were derived as a function of mass-ratio and damping

8The CICIND design code already uses only the Spectral model.



factor in addition to a maximum amplitude equation.

7.2 A new amplitude approximation

7.2.1 Approximation of amplitudes and phase

The first step in approximating the coupled wake oscillator model of Facchinetti et al. [14],
was to rewrite equations (2.36) and (2.37) (which define the system as per section 2.4) so that
each equation only contains one acceleration term; this made the work easier. This is shown in
equations (7.1) and (7.2) with the total structural damping given in equation (7.3) and using
dimensionless time τ = tωn. From these equations, it can be seen that the structural acceleration
coupling term in the wake has a different impact on the system when coupled with an elastic
structure. Instead of being a single term coupling structural acceleration to the wake, the
effect of structural motion on the wake is to reduce the natural frequency of the wake oscillator
and to force it through a dissipative term dependent on damping and a reactive coupling term
(structural speed and displacement respectively).

ÿ +D(ωq)ẏ + y = ω2
qMq, (7.1)

q̈ + ϵ
(︂
q2 − 1

)︂
q̇ + ω2

q (1 −AM)q = −AD(ωq)ẏ −Ay, (7.2)

D(ωq) = 2ζ + γ

µ
ωq. (7.3)

Instead of numerically integrating this system of equations, equations (7.1) and (7.2) were
approximated using a nonlinear approximation method like the Method of Averaging outlined
in section A.5. This method assumes that the amplitude and phase of a differential equation
slowly changes over a cycle and that they can be found by averaging a rewritten form of the
differential equations over one cycle of oscillation; this reduces the solution process to solving
two integrals involving trigonometric function which is trivial. When applied to this system,
it reduced the system to equations (7.4)–(7.6) at steady-state conditions (amplitude and phase
derivatives are zero) [157] as shown in section A.5.

ry =
ω2

qM

D
rq sin(θ), (7.4)

rq =2

√︄
1 + ωqAM sin(θ)

ϵD
(sin(θ) −D cos(θ)), (7.5)

0 =ω2
q (1 −AM) − 1 + ω2

qAM sin2(θ) +
(︄

D

sin(θ) +
ω2

qAM

D
sin(θ)

)︄
cos(θ), (7.6)

In these equations, θ is the phase difference between the wake and structural motion and rq

and ry are the wake and structural oscillation amplitudes. The total damping in the structural
equation is frequency dependent but was this badly implemented with this approximation. Set-
ting the frequency in D(ωq) to ωn = 1 simplified the approximation and gave better results as
shown in figure 7.1. As the aerodynamic drag term should only be notable during lock-in (the
predicted amplitudes are low outside of lock-in), setting the frequency in D(ωq) to a constant
makes sense: During lock-in and high amplitude vibrations, the forced frequency should be at
the natural frequency instead of the linearly increasing vortex-shedding frequency [33, 106, 157].

Equations (7.4) and (7.5) are trivial to solve once θ is known. By using trigonometry and
algebra, an analytic closed-form solutions for θ was found by rewriting equation (7.6) to

0 = c3x
3 + c2x

2 + c1x+ c0, x = sin2(θ)
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Figure 7.1: Comparison of simulations of equations (2.36) and (2.37) and the approximations using:
ϵ=0.3, A=12, γ=0.442, F=0.04, ζ=0.0019 and µ=72.9. Solid lines represent stable solutions and

dashed unstable.

c3 = ω4
qA

2M2
[︂
1 +D−2

]︂
, c2 = 2ω2

qAM
[︂
ω2

q (1 −AM) − 1
]︂

+ 2ω2
qAM −

ω4
qA

2M2

D2 ,

c1 =
[︂
ω2

q (1 −AM) − 1
]︂2

− 2ω2
qAM +D2, c0 = −D2. (7.7)

This is a bi-cubic equation with three roots. Depending on the parameters and dimensionless
speed, the solution for θ can have either three real number solutions or one real number and two
complex number solutions. As the complex number solutions are non-physical, they are ignored.

The approximations are compared with numerical simulations of the differential equations
(at several fluid speeds) in figure 7.1 with variable and constant frequency in the total damping
D(ωq). It shows that the approximation with constant damping frequency was similar to the
numerical integration, but with extra solution branches and higher phase difference during lock-
in, and that the approximation with variable damping frequency was different (smaller lock-
in region). At two dimensionless speed regions, three solution branches were found whereas
the numerical simulations only have two. To find out which solution branches are physically
meaningful, a stability analysis was performed.

7.2.2 Stability of solutions

The system stability can normally be found by first rewriting the equations of motion in state-
space form and then formulate the Jacobian (J) using these state-space equations, find all fixed
points, evaluate the Jacobian at all fixed points (A = J|y=ỹ) and finally solve the eigenvalue
problem [A − αI] veαt = 0. For the solution to be asymptotically stable (shrinking perturba-
tions), all eigenvalues need to be negative. If one of the eigenvalues for a given fixed point is
positive, then the point is asymptotically unstable (growing perturbations).

For equations (7.1) and (7.2), there’s a simpler way of evaluating the stability. According to
Balanov et al. [95], the stability of a forced van der Pol equation can be found from the phase
difference equation by finding its derivative with respect to the phase. In other words, by taking
the derivative d/dθ of equation (7.6), the stability of the approximated system in equations
(7.4)–(7.6) can be evaluated. The equation governing the stability is given in equation (7.8) and
was solved for all real number solutions of θ.

α(θ) =
ω2

qAM cos(2θ)
2D − D

2 csc2(θ) +
ω2

qAM

2 sin(2θ) (7.8)

103



0.8 ωq1 ωq2 1 ωq3 1.2ωq4
0

0.05

0.1

0.15

0.2

0.25

Fluid speed ωq [-]

St
ru

ct
ur

al
am

pl
itu

de
r y

[-]

Stable
Unstable

Figure 7.2: Stability and boundaries of synchronization for given parameters. Dotted lines with arrows
mark the jumps when sweeping ωq.

From figure 7.2, it can be seen that there were two stable amplitude branches, an upper and
a lower structural amplitude branch, and an unstable amplitude branch in between them. The
corresponding extra solution branches were also shown for the wake variable and the phase dif-
ference in figure 7.1 as dashed lines. These solution branches were not obtained in the numerical
simulations as they would require perfect initial conditions and no oscillating force.

The unstable solutions do serve a purpose: They mark the amplitude thresholds for transi-
tions to low or high amplitude solutions and regions with conditional lock-in. If at some point
the structural amplitude is above the dashed line, the amplitude should grow until the high
amplitude branch is reached. The same is true for low amplitudes and the lower branch. As the
existence of this unstable amplitude branch seems to mark where synchronization and lock-in
occurs, it’s further investigated to find an analytical expression for the lock-in regions rather
than finding them visually.

7.3 Predicting when vortex-induced vibrations occurs

7.3.1 Defining the lock-in regions

In the current design codes, the methods for determining when lock-in and high amplitude
vortex-induced vibrations occurs are lacking. As a practical use case, a good lock-in definition
enables designers to quickly estimate the speeds giving high amplitudes of vibrations and how
the regions changes with the parameters. de Langre previously defined the lock-in region to
be between ωq = (1 ±

√
AM)−1 by linearizing the same system of equations as investigated

here. This linearization was done by neglecting all damping terms and reduced the problem
to a coupled-mode flutter problem [91]. The coupled-mode flutter analogy matches with the
results of Zhang et al. who found that vortex-induced vibrations at higher dimensionless speeds
(ωq ∈ [1.11, 1.38]) was similar to coupled-mode flutter [92]. Another lock-in definition based on
the same set of equations was created by Denoël [144]. This was done using Cardano’s formula
and gave an approximation for the upper and lower bound of the three solution region.

The new lock-in definition was based on the approximate phase difference in cubic form,
i.e. equation (7.7), which is similar to Denoël’s approach. Instead of approximating the outer
bounds of lock-in from Cardano’s formula, the number of real solutions of this equation was
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found from the discriminant9 of equation (7.7). When the discriminant passes zero, it changes
from having one to three real solutions (two stable and one unstable). This property was used
to define the lock-in region as a function of ωq and gives up to five amplitude regions: two
conditional lock-in regions with two stable solutions, one absolute lock-in region with the high
amplitude solution branch only and two locked-out region with low amplitudes.

Setting the discriminant of equation (7.7) to zero gives a bi-sextic equation in terms of ωq

which is two more than expected. Luckily, two of the solutions were trivial and could be ignored
as they provide no physically meaningful solutions (ω2

q5,6 = (D2 + 1)/(1 − AM)). The start
and end of the synchronization regions can then be found from the solutions of the bi-quartic
equation system

0 = a8ω
8
q + a6ω

6
q + a4ω

4
q + a2ω

2
q + a0

a8 = (1 −AM)2[A2M2 − 4D2(1 −AM)],
a6 = 2[D2(1 −AM)(A2M2 + 8) +A2M2(AM + 1)],
a4 = A2M2(D2 − 1)2(D2 + 1)2 − 4AMD2(5D2 + 1) − 8D2(D2 + 3),
a2 = 8D2(AM + 2)(D2 + 1),
a0 = −4D2(D2 + 1)2, (7.9)

where only the positive solutions are kept; the negative solutions are mirrored with negative
speeds instead of positive. The positive solutions of equation (7.9) are identical to the locations
marked ωq1–ωq4 in figure 7.2. An analytic solution to the quartic roots exists and was found
using a symbolic solver. Due to the increased complexity and number of terms involved10 the
analytic solutions to this quartic equation are not presented.

7.3.2 Changes in lock-in region with mass-ratio and damping

If we assume that aerodynamic conditions are fixed, the two defining characteristics of this new
lock-in region definition are the structural damping ratio ζ and the mass-ratio µ which scales the
force M and the stall parameter γ in the total drag. As the lock-in region changes greatly at low
mass-ratios11, it is instead investigated by changing the mass-scaled force M . Changing both
the mass-scaled force and the damping ratio produces a 3D plot of the lock-in regions. Instead
of a 3D plot, the lock-in regions are investigated in figure 7.3 using slices with constant damping
ratio or constant mass-scaled force. The total damping D was inferred from the mass-scaled
force by keeping the drag and lifts coefficients and Strouhal number constant.

Figure 7.3a shows how the lock-in regions changes with mass-scaled force M . As seen, the
solutions of equation (7.9) gives three different lock-in regions: a small conditional region for low
values of M and ωq < 1, an ever-growing region of absolute lock-in and a region of conditional
lock-in that persists with increasing M at ωq > 1. The small conditional region disappears
quickly with increased mass-scaled force M and damping ratios ζ (see figure 7.3b) and therefore
less likely to be observed in experiments. Still, if the model is adequate in predicting vortex-
induced vibrations, the conditional lock-in region at lower ωq shouldn’t be ignored in wind
engineering applications. Due to the relatively higher mass-ratios and low damping ratios, high
amplitude vortex-induced vibrations could occur at lower fluid speeds than expected like in the
experiments detailed in chapters 5 and 6.

The upper conditional region is different from the lower one. Like the lower, its extent grows
at very low values of M before decreasing once M reaches a value of 0.002–0.004. Unlike the
lower region, the extent of the upper region is relatively large when the shrinking starts and

9For a cubic equation, the discriminant is defined as ∆ = 18c3c2c1c0 − 4c3
2c0 + c2

2c
2
1 − 4c3c

3
1 − 27c2

3c
2
0.

10When printed in the form rooti=... and using AM = C, the solutions consisted of 476683 characters.
11This makes the changes with mass-ratio less noticeable at higher mass-ratio.
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Figure 7.3: Lock-in regions in terms of ωq, M and ζ using: ϵ=0.3, A=12, γ=0.442, F=0.04,
ζ=0.0019 and a variable mass-ratio µ.

begins growing again when M reaches a value of 0.03 as figure 7.3a shows. While interesting,
this growing region is unlikely to be experimentally observed for cylinders in air at super-critical
Reynolds numbers as it requires a mass-ratio close to 10. This upper conditional lock-in region
was previously detected experimentally for cylinders in cross-flow [33] and for freely rotating
airfoils at high angles of attack [97] but was less noticeable in the experiments detailed in
chapters 5 and 6. It’s possible that method for calculating the response statistics (using the
maximum amplitudes) obfuscated the region in the wind tunnel and field experiments.

For low damping ratios, the upper lock-in region is significant and should be accounted for
in structural design and experiments. As the damping ratio is increased, the upper conditional
region’s size and importance decreases as shown in figure 7.3b. This behavior is similar to the
lower conditional region. A difference from the lower region, is that the region’s size decreases
slower with damping ratio when mass-scaled force M is higher; this means that it can persist
at significantly higher damping ratios.

The absolute region is the final lock-in region and should be observed regardless of initial
conditions. The lines marking it as a function of ωq has different slopes for ωq greater or less
than one. For ωq < 1, the slope is reminiscent of a function of the form f(x) = a(x− 1)2 (with
a ≫ 1) while the slope is more reminiscent of a higher degree polynomial for ωq > 1 with a
slope that changes sign with ωq. This shape is different from the forced oscillation lock-in region
shown in figure 2.14b and discussed in section 2.2.3 as it does not have the distinct V-shape and
by having more different lock-in regions around ωq = 1.

The absolute lock-in region grows rapidly with mass-scaled force and only decreases with
damping once one of the conditional regions disappear. Before the disappearance of the lower
conditional region, the absolute region stays fairly constant with the damping ratio as figure
7.3b shows. Once the lower region disappears, the absolute regions starts shrinking noticeably
and uniformly with the damping ratio on both sides of ωq = 1.

The changes in the lock-in regions are compared with the undamped region predicted by
de Langre’s equation in figure 7.3. The previous definition should only predict the absolute
synchronization region and is similar to it when the damping ratio and mass-scaled force are
very low. As both parameters are increased independently, de Langre’s lock-in region diverges
from the new one and becomes wider than the total extent of the new conditional and absolute
lock-in regions combined even at low mass-scaled force.
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7.4 Predicted maximum response

In the design code models, there’s an assumed dimensionless speed ωq giving the largest response.
For the Eurocode models, this is at ωq = 1.1 for the spectral model and ωq = 1.2 for the
correlation length model [49, 113]. Similarly, the approximated coupled wake oscillator model
will be better for design purposes if the speed at which maximum response occurs at can be
determined a priori. By inserting the high amplitude analytic root solution for θ(ωq), equation
(7.7), and the wake amplitude, equation (7.5), into the structural amplitude, equation (7.4),
standard methods for finding the maximum response can be used. This is nontrivial to solve
and a simpler method was sought. By inspecting the structural amplitude response and phase
differences using different parameter values, the maximum amplitude was found to occur when
θmax ≈ 0.65π but θmax = 0.61π was found to give better restults at realistic damping values
[157]. With this θ(ωq) approximation, the speed at maximum, ωq,max, can be found from
equation (7.6) and the equations for maximum amplitude becomes

ωq,max =
√︄

D [sin (θmax) −D cos (θmax)]
AMD sin (θmax)3 +AM cos (θmax)sin (θmax)2 +D (1 −AM) sin (θmax)

, (7.10)

ry(ω, θmax) =2
ω2

qM

D
sin(θmax)

√︄
1 + ωqAM sin(θmax)

ϵD
(sin(θmax) −D cos(θmax)). (7.11)

Figure 7.4 compares the approximated maximum amplitude and speed at maximum with
results from numerical integration at several Scruton numbers. As seen in figure 7.4a, the
predicted fluid speed at maximum response using the approximation was slightly higher than the
numerical integration results at high Scruton numbers and slightly lower at low Scruton numbers.
While slightly different, the speeds at predicted maximum response were consistent between the
methods. When increasing the damping ratio alone, the speed at which the maximum occurs
at was slightly increased for the numerical simulations (better resolution could make it clearer)
and this is reflected in the approximation as well.

The predicted maximum amplitudes using the approximation, shown in figure 7.4b, were
quite close to the numerical results indicating that the speed difference was negligible for finding
the maximum amplitude. The main issue is that the approximated model starts becoming higher
than the numerical integration results as the Scruton number decreases below 2. The above is
also true when changing the structural damping.

The evolution of maximum predicted amplitude as a function of damping and mass differs
between the spectral, correlation length and approximated coupled wake oscillator model. When
ignoring the form of the nonlinear aerodynamic damping, the maximum predicting amplitude
for the spectral model drops like equation (7.12) with C being a force strength constant. Sim-
ilarly, the amplitude for the correlation length model drops like equation (7.13) and the new
approximated model like equation (7.14) when ignoring the square root term in equation (7.11).

ry,max ∝ Cspectral
me
ρd2 (Sc− 4πKa) Spectral model (7.12)

ry,max ∝ Ccorrelation

Sc
Correlation length (7.13)

ry,max ∝ 2πF
Sc+ π2ζCM + CD

2St

Wake oscillator (7.14)

From these equations, the predicted maximum amplitude can be seen to be a function of
the Scruton number alone or as a combination of the Scruton number and an aerodynamic
parameter. The latter is consistent with Sarpkaya’s sentiment of the Scruton number alone not
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Figure 7.4: Comparison of fluid speed at maximum amplitude and the amplitude from simulation and
maximum approximation using: ϵ=0.3, A=12, γ=0.442, F=0.04, ζ0=0.0019 and µ=72.9.

being enough for predicting response [106] (see section 2.3.3) which was also observed in the 3D
wind tunnel experiments (see section 5.3.2).

The difference in predicted maximum amplitude is shown in 7.5 for a generic chimney with
variable Scruton number using the Eurocode implementation of the spectral and correlation
length model [5] and the novel approximation of maximum amplitude given in equation (7.11).
While the wake oscillator has both a structural and an aerodynamic damping term in the
denominator that varies independently of the Scruton number, their values are comparatively
small at Sc ≫ 1. Because of this, the predicted maximum amplitude behaves similarly for the
wake oscillator and correlation length models at most Scruton numbers shown in figure 7.5. As
the Scruton number is further reduced, the two models starts to predict different amplitudes as
the Scruton number independent terms will limit the maximum amplitude in the wake oscillator
but not in the correlation length model.

The spectral model, on the other hand, has three different regions of changing amplitudes:
When the Scruton number is below 6 it barely changes with the Scruton number, when above
8 it has a moderate linear increase with the Scruton number and when in between there’s a
large nonlinear change in the predicted maximum amplitude. This is the region where the linear
damping becomes increasing negative and the amplitude barely changes with ωq. At these
Scruton numbers, the response is decided by the vibration amplitude required to keep the total
damping positive and the forces can be simplified to a constant.

7.5 An approximate summary

A new approximation of a nonlinear vortex-induced vibration model, based on the model of
Facchinetti et al. [14], has been presented in this chapter. The model was approximated using
the Method of Averaging which produced two simple equations for the wake and structural
amplitude and a governing phase difference equation in the form of a bi-cubic polynomial.
When setting the total structural damping to a constant value (instead of varying with fluid
speed), the approximation was found to match well in terms of wake and structural amplitude
but the phase difference could match better. As the goal was to predict the amplitude, the
difference in the phase difference is of lesser importance.

From the cubic phase equation, more novel information on vortex-induced vibrations could
be gained. As the number of real and stable phase difference solutions depended on the fluid

108



Chapter 7. Mathematical modeling of response

100 101

10−2

10−1

100

Scruton number Sc [-]

St
ru

ct
ur

al
am

pl
itu

de
r y

[-]
Spectral model
Correlation model
Wake oscillator

Figure 7.5: Evolution of maximum amplitude with Scruton number for a generic cylinder (placed in a
Eurocode type II terrain) with diameter 3 m, damping ratio of 0.2 % and natural frequency of 1 Hz and

variable mass-ratio µ.

speed, the number of solutions could be used to mathematically define when the lock-in regions
started and ended. This was done by finding the discriminant of the cubic equation and by
setting it to zero: When the discriminant passes zero, the number of real solutions goes from
one to three and this defined the conditional and absolute lock-in regions.

This model has three lock-in regions and two locked-out regions with negligible amplitudes of
vibration. The first lock-in region was a conditional region at ωq < 1(initial conditions determine
if the amplitudes are high or low) and this branch existed for a limited range of mass-scaled
force and damping ratios but could be observed in wind. The second region was an absolute
lock-in region (always high amplitudes) and this region grows with the mass-scaled force with
the growth being much stronger at ωq > 1. The effect of damping ratio on the absolute region
was negligible at low damping ratios and only started being noticeable once the lower conditional
region disappeared.

The last lock-in region was the upper conditional region. This region was much more no-
ticeable than the lower region and was relatively wide when the mass-scaled force was low and
smaller with high. The effect of damping ratio on it was similar to the effect on the lower
region, i.e. it decreases with increased damping. Still the upper region persisted at much higher
damping ratios than the lower. Additionally, the size of the upper conditional region decreased
slower with increased damping when the force’s strength was higher.

As designers are often interested in the maximum vibration amplitude only, an expression
for the maximum amplitude was derived. This expression was based on the phase difference
rather than choosing an arbitrary speed at which the maximum occurs. When investigating the
amplitude response, it was found that the phase difference was approximately θmax = 0.61π
when the structural response was at its maximum. Using this, an expression for the speed
at maximum response was derived and inserted into the structural amplitude equation which
match well with numerical integration results. The resulting maximum amplitudes match well
with the correlation model when plotting the maximum response as a function of the Scruton
number. The wake oscillator model did not match well with the spectral model which predicted
significantly higher amplitudes at low Scruton numbers and significantly lower at high Scruton
numbers.
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Chapter

8
Predictions compared with ex-
perimental results

Chapter summary

This chapters compares the predictive powers of the new analytic approximation with two de-
sign models. The comparison was done using both the amplitude response (using the results
from small-scale tests and the field experiment) and the maximum measured response from a
curated list of chimneys. The main finding of this chapter, is that the best model for predicting
the maximum response depends on the Scruton number. When the Scruton number is low and
amplitudes are high, the best model for predicting the amplitude response was the new approxi-
mation while the spectral model was the best when the Scruton number is high and vortex-induced
vibrations are relatively low. When predicting the maximum response of real chimneys, the new
approximation was found to be closest to the real life measurements on average.

8.1 Background

When designing a chimney or similar structures of circular cross sections, it’s useful to know the
maximum response and how the response changes with the fluid speed. The former is important
when designing the structural supports and the latter is important when designing an effective
vibration absorber. Unfortunately, many design codes focus on maximum response only and
leave the amplitude response as a curiosity that can be ignored [5, 55].

On the other spectrum, there are models that are more suited for predicting the amplitude
response but are less suitable at predicting the maximum response. This class of models includes
the wake oscillator approximated in chapter 7 and similar models like the ones presented in
section 2.4. The downside is that these models cannot be solved analytically and either need to
be approximated, like in the previous chapter, or numerically integrated.

In this chapter, the experimentally obtained amplitude and maximum response are compared
with the codified vortex-induced vibration models defined in section 2.4 (Vickery and Basu’s
spectral model [5, 32, 55, 88] and Ruscheweyh’s correlation length model [5, 49]) and with the
new approximated wake oscillator model described in chapter 7. This was done by comparing
the models with the small-scale aeroelastic tests from chapter 5, the field-test from chapter 6
and the maximum amplitude of several chimneys from the literature [115]. The goal of this
was to determine the strength and weaknesses of the various models and to determine the best
vortex-induced vibration model for a given situation.

8.2 Model parameters and versions used

8.2.1 Design code models

There are two types of spectral models: those for finding the amplitude response and those
for finding the maximum amplitude. Rather than using the approximate maximum amplitude



Table 8.1: Aerodynamic coefficients, model parameters and Reynolds number region used for all
cylinder and boundary layer configurations.

Configuration Cl Cd St A ϵ Tu Ka0 Reynolds
[-] [-] [-] [-] [-] [%] [-] region

Rough w/ ABL 0.125 0.70 0.182 15 0.7 10.5 0.6 Super
Rough w/o ABL 0.150 0.70 0.176 15 1.0 1.0 0.6 Super
Smooth w/ ABL 0.223 1.20 0.178 10 0.7 10.5 1.2 Sub
Smooth w/o ABL 0.247 1.20 0.162 10 1.0 1.0 1.2 Sub

version of the spectral model used in the Eurocode [5], the spectral model used here is based
on the fuller but simplified model with variable speed given in equation (2.24) [32, 55, 88, 113,
115]; this is the version shown in section 2.4. The aerodynamic parameters used in the model
are based on the Eurocode’s [5] and the limiting amplitude aL is set to 0.4.

Normally, Ruscheweyh’s correlation length model [49] is a maximum amplitude model that’s
based on the statistical maximum observed wind speed. Here, a variable speed is used instead
which gives a pseudo amplitude response. The aerodynamic parameters used in these com-
parisons are the same as those used in the Eurocode and the original work of Ruscheweyh at
super-critical and sub-critical Reynolds number [5, 49].

8.2.2 Wake oscillator modification

The amplitude response of the wake oscillator is more centered around ωq = 1 than the other two
models. This can be useful when the turbulence intensity is low and natural frequency is high,
but produces an erroneous amplitude response with high turbulence intensities. To remedy this,
an empirical turbulence correction is applied to the dimensionless speed used when calculating
the wake oscillator’s amplitude response: Instead of calculating it for ωq, the amplitude response
will be calculated for ω′

q which is empirically related to ωq by ω′
q = ωq · (1 − Tu) where Tu is

the turbulence intensity. There’s no theoretical justification for why this correction should work
but, as will be seen, it does.

When calculating the response for full-scale chimneys, the force coefficients (mean drag
and unsteady lift) are calculated using the CICIND [55] definition of SD lift and mean drag.
To transform the SD lift to amplitudes, the SD values are scaled by

√
2. This is based on

the assumption of periodic, sinusoidal oscillations with zero mean where the amplitude is
√

2
times the rms value. Contrarily, the force coefficients found in the 2D, stationary wind tunnel
experiments are used when predicting the response of the cylinders used in the 3D wind tunnel
tests as the cylinders and surface roughness are the same.

Another issue with the coefficients used in calculating the response with this model is whether
or not the more quasi 2D model can be extended to 3D cylinders of finite height. The assumption
made here is that the model can be used with finite height cylinders by modifying the empirical
wake coefficients (A and ϵ) and by using an aspect ratio corrected lift coefficient. Changing the
empirical coefficients based on the aerodynamic conditions does have support in the literature
and shows good results (c.f. the work of Ogink and Metrikine [141]).

8.3 Predicting the response from the small-scale wind tunnel

8.3.1 Model configurations and parameters

While the structural characteristics of the small-scale models have already been described in
section 5.2.4 and table 5.1, the aerodynamics have not been. The aerodynamic parameters used
when comparing the small-scale aeroelastic tests with the predictive models are based on the
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surface roughness and the turbulence intensity. The variation with surface and flow conditions
are summarized in table 8.1 (using ρ = 1.225) and the mode shape used was ψ(z) = z.

For the design models, this corresponds to artificially setting the Reynolds number to a super-
critical value for the rough cylinders and to sub-critical for the smooth. In addition, the spectral
models contain an unsteady lift term. The values used here are the ones measured during the
small-scale 2D experiments detailed in chapter 4 using the closest turbulence intensity.

For the approximated wake oscillator model, there are two parameter groups that needs to be
determined: the aerodynamic constants and the empirical wake parameters. The aerodynamic
coefficients used are the same as for the spectral model, i.e. the ones measured during the 2D
experiments. To determine the best wake force coefficient A and wake damping factor ϵ, the
lowest Scruton number tests were investigated. This investigation showed that the wake force
coefficient A depended on the Reynolds number while the wake damping factor ϵ depended on
the turbulence intensity or atmospheric boundary layer. The best values found are shown in
table 8.1 and these will also be used when comparing the full-scale measurements.

8.3.2 Structural response

Amplitude response of rough cylinders

Figure 8.1 shows the dimensionless amplitude responses predicted by the models and measured
in the wind tunnel using the rough cylinders with the atmospheric boundary layer as a function
of dimensionless speed ωq. For the cylinder with the lowest Scruton number, figure 8.1a, there’s
an immediate problem with the spectral model: The predicted response overshadows the ex-
perimental and other predictions. Including it in the figure would obfuscate the changes in the
experimental data and other models. As the spectral model predicts a near constant amplitude
of ry = 0.370, including it in the plot would not add extra information.

The wake oscillator model and correlation length model better predicts the amplitude re-
sponse for the Sc = 5.47 cylinder with decreasing speed in figure 8.1a than with increasing
speed. After the turbulence correction, the wake oscillator model best captures the highest
amplitudes, the extent of the region with the highest amplitudes and the dimensionless speed
giving the maximum amplitude but does not predict the full lock-in range. It underestimates
the extents of lock-in and instead of starting and ending at 0.8 and 1.5 respectively, it starts
and ends around 1.0 and 1.2.

On the other hand, the correlation length model seems to capture the start of the vortex-
induced vibration region but as expected, the predicted response does not resemble the experi-
mental amplitude response after reaching the maximum value; it instead stays constant as was
expected. The correlation length and wake oscillator models matching the experimental am-
plitudes at low Scruton numbers makes sense as they assume harmonic vibration like the ones
observed experimentally. What could make them differ are different force coefficients.

As the Scruton number is increased, the spectral model becomes increasingly better at pre-
dicting the response. The wake oscillator and correlation length models, on the other hand,
becomes worse. The transition between for this can be seen in figure 8.1b with a Scruton num-
ber of 7.87. The wake oscillator model still predicts the closest amplitude (and a high amplitude
range between ωq ∈ [1, 1.2]) but the spectral models amplitude response is closer in shape. The
main problem for the spectral model is that the predicted amplitudes are consistently higher for
all ωq and this is especially noticeable for ωq /∈ [1, 1.2].

At even higher Scruton numbers, figures 8.1c and 8.1d with Scruton numbers of 9.99 and 17.2
respectively, the harmonic models poorly predic the response. Neither the correlation length nor
wake oscillator models are close to predicting the amplitude responses’ shape and the amplitudes
are greatly overestimated. The spectral model, on the other hand, does a much better job at
predicting the response at high Scruton numbers. This should not come as a surprise as the
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(a) Response without added mass Sc = 5.47. Spectral
model predicts an amplitude near 0.370.
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(b) Response with added damping only Sc = 7.87.
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(c) Response with 150 g added mass Sc = 9.99.
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(d) Response with 300 g added mass Sc = 17.2.

Figure 8.1: Response for the rough cylinders (super-critical Reynolds numbers) with atmospheric
boundary layer. The spectral model is not shown when it predicts a flat response much greater than the

rest.

spectral model was based on random vibration theory [32, 88] and as the response was much
more random when the Scruton number was high.

For most of these cylinders, the Eurocode implementation of the spectral model predicts
different maximum amplitudes than the speed dependent version plotted. For the lowest Scruton
number cylinder, the maximum amplitudes were the same while the Eurocode version predicts
an amplitude almost twice as high for the other configurations as shown in table 8.2. The
differences in response at higher Scruton numbers was due to the spectral model with variable
speed using the lift force measured with the 2D experiments instead of the larger force used in
the Eurocode.

Amplitude response of smooth cylinders

Like for the rough cylinders with atmospheric boundary layer, the best model for predicting
the response of the smooth cylinders depended on the Scruton number. This is why neither of
the smooth cylinders in figure 8.2 (Sc = 4.5 and 9.45) are compared with the spectral model.
The spectral model predicted a flat response for the smooth cylinder with a Scruton number of
9.45 even if the model predicted a non-flat amplitude response for a rough cylidner with lower
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Table 8.2: Comparison of maximum amplitudes predicted by the spectral model with variable speed and
the maximum amplitude formulation given in the Eurocode [5].

Scruton number Eurocode (max only) Spectral (variable speed)
5.47 0.37 0.37
7.87 0.087 0.049
9.99 0.034 0.018
17.2 0.017 0.009
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(a) Response without added mass Sc = 4.5. Spectral
model and Eurocode version predicts a flat amplitude

near 0.477.
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(b) Response with 150 g added mass Sc = 9.45.
Spectral model and Eurocode version predicts a flat

amplitude near 0.394.

Figure 8.2: Response for the smooth cylinders (sub-critical Reynolds numbers) with atmospheric
boundary layer. The spectral model is not shown when it predicts a flat response much greater than the

rest.

Scruton number. The reason for this is simple: The negative aerodynamic damping is greater
at sub-critical Reynolds numbers than at super-critical which means that the linear damping
becomes negative at higher Scruton numbers [5, 55].

For the lowest Scruton number tested, Sc = 4.5 shown in figure 8.2a, the wake oscillator
model can be seen to best match the response. Just like for the rough cylinders, the wake oscil-
lator predicts high amplitude vortex-induced vibrations between ωq ≈ 1 and 1.2 with amplitudes
that are slightly higher than what’s measured in this region. Outside this region, the wake oscil-
lator greatly underestimates the response. The biggest change in the correlation length model’s
predictions is in the amplitudes: The higher lift coefficient greatly increases the predicted re-
sponse and makes it much greater than the experimental measurements. This is related to why
the wake oscillator model and correlation length model predicts different maximum amplitudes:
The correlation length model uses a higher SD lift.

Amplitude response without an atmospheric boundary layer

When comparing the predicting models with the rough and smooth cylinder tests without an
atmospheric boundary layer, shown in figure 8.3, the wake oscillator model can be seen to be the
best. This result matches well with the tests with atmospheric boundary layer. The best model
to predict the response of the small-scale cylinders depends on two parameters: The Scruton
number and the aerodynamic damping parameter used in the spectral model. When the Scruton
number is low, the wake oscillator best predicts the response and when it’s high the spectral
model is better. Low and high Scruton numbers are ambivalent and this is because the best
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(a) Response of rough cylinder Sc = 5.98. Spectral
model predicts a flat amplitude near 0.373.
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(b) Response of smooth cylinder Sc = 5.38. Spectral
model predicts a flat amplitude near 0.449.

Figure 8.3: Response for the rough and smooth cylinders without atmospheric boundary layer. The
spectral model is not shown when it predicts a flat response much greater than the rest.

Table 8.3: Modified structural characteristic of the field-test chimney used for amplitude prediction.

dtip h me f1 ζ1 Sc
[m] [m] [kg/m] [Hz] [%] [-]
2 35.5 322.6 0.71 0.22 1.82

model depends on the aerodynamic damping parameter which depends on the Reynolds number.
A useful tool for approximating the best model would be equation (2.27): When Sc > 4πKa,0,
the spectral model should be better and the wake oscillator when Sc < 4πKa,0.

The dimensionless speed modification used in the wake oscillator model does much better
without the atmospheric boundary layer. As the peaks were captured when increasing the
turbulence intensity, it’s possible that the correction used needs an extra term that accounts for
the atmospheric boundary layer profile.

8.4 Predicting the field test’s amplitude response

8.4.1 Aerodynamic and structural parameters

The structural parameters used to calculate the response of the field-test chimney from chapter
6 are given in table 8.3 (using ρ = 1.225) and the mode shape was ψ(z) = z2. These parameters
are based solely on the upper part of the structure and use the estimated natural frequency
towards the end of the tests. As the aerodynamic parameters affecting the response of the field-
test’s chimney were not measured, the design codes are used to estimate them. When using the
CICIND model code to define the lift and drag on the chimney (using the structural parameters
in 8.3 to calculate the critical Reynolds number and aspect ratio), the aerodynamic parameters
are those given in table 8.4.

Table 8.4: Aerodynamic coefficients and model parameters used for the field-test chimney.

Configuration Cl Cd St A ϵ Tu Ka0
[-] [-] [-] [-] [-] [-] [%] [-]
Field-test 0.206 0.68 0.18 15 0.7 6.0 1.0
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Figure 8.4: Comparison of mathematical models with the response measured in the field experiment
(super-critical Reynolds numbers).

8.4.2 Comparison of amplitude response

The predicted amplitude responses are compared with the field experiment’s response in figure
8.4 and they can be seen to follow the general trends outlined for the small-scale experiments.
As the Scruton number is low, the spectral model fails to predict an amplitude response and the
predicted amplitude is significantly higher. The correlation length model also gives the same
pseudo amplitude response and predicts a maximum amplitude slightly lower than observed.
The wake oscillator model does the best job at predicting the maximum response and captures
fairly well the end of the high amplitude vortex-induced vibrations region.

The wake oscillator and correlation length models have one thing in common: The predicted
high amplitude regime starts later than what’s observed experimentally. This makes the pre-
dicted high amplitude vortex-induced vibrations regions smaller which was also observed in the
small-scale tests to a lesser extent. There are two possible reasons for the mismatch: 1) It’s
possible that the longer time period used when calculating the response gave an artificially wider
response and 2) It’s possible that the models and speed correction does not fully capture the
full extent of vortex-induced vibrations of a cylinder in an atmospheric boundary layer. Even
with this limitation, the wake oscillator model captures the experimental, low Scruton number
amplitude response quite well.

8.5 Predicting maximum response

It’s been shown that some predictive models are better at predicting the amplitude response.
As mentioned, designers are often more interested in the maximum response as this dictates the
loads that the chimney, or structure in general, needs to withstand. Therefore, the predicted
maximum responses for a collection of real chimneys from the literature are used to compare
the Eurocode versions of the spectral and correlation length models and the wake oscillator’s
maximum amplitude approximation given in section 7.4.

The chimneys used to compare the models are a collection of the 27 chimneys vetted by
Lupi et al. [115] and are shown in table D.1 of the appendix. Their collated data include
most of the characteristics needed for predicting the response (height, diameter, aspect ratio,
equivalent mass, Scruton number and natural frequency) as well as an analysis of how reliable
the chimney characteristics are; the 27 chimneys are the most reliable out of a greater collection
of 96 chimneys. As it’s unknown, the turbulence intensity was set to 10% for all cases as in the

117



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

E
xa
ct

−20%

+20
%

Full-scale amplitude ry,meas. [-]

P
re

di
ct

ed
am

pl
itu

de
r y

,p
r

e
d

.
[-]

Wake oscillator
Spectral model
Correlation model

Figure 8.5: Comparison of mathematical models with maximum amplitudes from the literature [115].
The data points marked with × are chimneys that either are modified, have weird damping behavior or

have amplitudes measured by eye.

work of Lupi et al. The aerodynamic coefficients used in the wake oscillator model was found
using the CICIND model code [55] while the correlation length and spectral model uses those
given in the Eurocode [5].

The amplitudes predicted by the spectral model are highly dependent on the Scruton number
and the Reynolds number. Of the chimneys in figure 8.5, 66.7% had Scruton numbers below
4πKa,0 making the linear damping negative. This made the spectral model near consistently
predict dimensionless amplitudes above 0.3 when the Scruton number was low as shown in
figure 8.5. Most of these high amplitudes were over predictions with the lowest over predicted
amplitude being least 20% greater than what’s measured but several of them were over estimated
by as much as 300%; this is similar to what Vickery and Daly complained about when using
wind tunnels and instead recommended to use this model. Of the remaining seven chimneys,
most of them are close to the actual amplitudes except for one that’s under predicted.

The correlation length and wake oscillator model also over predicted the vibration amplitude
for most chimneys, but the over predictions were less severe which makes these models more
economical. In addition, the predicted responses were quite similar for these models. Concep-
tually, this makes sense: Both models use similar force coefficients, have amplitude dependent
forces and predict harmonic resonance at the speed giving the maximum response. For a few
of the chimneys, the response was slightly under predicted but still within 20% of the actual
amplitude. The major downside of these models, is that the predicted response was significantly
lower than the actual response for six of the chimneys which is not only uneconomical but also
dangerous. Before dismissing these models as unsafe, these chimneys need further investigation
to verify that there’s nothing wrong with the measurements.

The under predicted chimneys are numbers 5 and 11–15 of table D.1. Chimneys 11–14 were
measured by eye at night during the same extreme event with negligible turbulence intensities
(very cold winter and stable atmospheric stratification) [158]. As shown in the small-scale 2D
tests in chapter 4 and in the field experiment in chapter 6, the lower turbulence intensities
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should have given different force coefficients (vortex-lift and mean drag) than the ones used in
the wake oscillator and correlation length model which leads to larger amplitudes. In addition
to the very low turbulence and the changed aerodynamics, the cold temperature had an effect
on the structural parameters: The cold temperatures increased the density which reduced the
mass-ratio and the Scruton number [158]. Outside of the rare event, no significant vibrations
were observed making it possible for the average vortex-induced vibration amplitudes to be lower
than what’s reported.

Chimney 5 was a modified version of number 4 where the top 1/3 of the chimney had
a reduced diameter (1 m instead of 1.58 m). While van Koten [118] verified that the listed
parameters were correct for the modified chimney, it was found that the vibrations were focused
in the upper part with the lower part being mostly rigid. This should have changed many of
the parameters like the effective height and mode shape which could give lower equivalent mass,
mass-ratio and effective damping which results in a higher response. The last odd chimney was
not a chimney but a distillation column. According to Basu [79], the damping of this column
was highly uncertain, highly amplitude dependent and should be lower than the one presented.
All-in-all, there are reasons for believing that the six under predicting chimneys are anomalies.
The correlation length and wake oscillator models could therefore be good at predicting the
maximum response but they may need an extreme event modification that prevents the extreme
under prediction seen with chimneys 11–14.

In addition to the visual comparison, the models’ ability to predict the response should be
compared quantitatively. This was done using the sum of squares of residuals (RSS). The RSS
error is defined in equation (8.1) where N is the set of chimneys and ry,pred. and ry,meas. are the
predicted and measured amplitudes respectively. For the chimneys used, the spectral model had
a RSS of 1.79, the correlation length method 0.407 and the wake oscillator model 0.304. Based
on these errors and figure 8.5, it’s clear that the spectral model had the greatest error (least
economical and most conservative). Similarly, the wake oscillator model had the smallest error
and should produce the most economical designs provided that the chimneys don’t collapse due
to rare events.

RSS =
∑︂
n∈N

(ry,pred. − ry,meas.)2 (8.1)

8.6 Which model to use?

As mentioned and shown, the experimental amplitude response and maximum responses were
compared with predictions from three models. Based on the models’ performance, the best
model for a given situation could be concluded on. The model that should be less used, is
Ruscheweyh’s correlation length model as it cannot predict the amplitude response. It’s quite
good at getting the maximum amplitude but routinely over predicts the maximum response for
most cylinders; this was most evident for cylinders experiencing vortex-induced vibrations at
sub-critical Reynolds numbers. This makes sense as the model was not made to calculate the
maximum amplitude up to a given speed and was made to be a conservative design model.

When increasing the Scruton number, there’s a qualitative difference between low values
(with harmonic vibrations) and higher values (dominated by random vibrations). In the small-
scale experiments, the threshold was when the Scruton number was increased from 7.87 to 9.99
though the exact value was dependent on the surface roughness. These qualitative differences
means that the best vortex-induced vibration model is dependent on the Scruton number.

When the damping and mass is high (Sc > 8–10)12, the best model for predicting the
response due to vortex-induced vibrations was the random vibration based spectral model of
Vickery and Basu. At these Scruton numbers, the experimentally obtained responses were

12The exact Scruton number depends on the Reynolds number region and the aerodynamic damping.
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Figure 8.6: Visualization of best predictive model for a given Scruton number using the imaginary
chimney from figure 7.5 at super-critical Reynolds numbers.

much more random than at low Scruton numbers and the effect of the nonlinear aerodynamics
damping was negligible. As the Scruton number was decreased, this random vibration model
became increasingly bad at predicting the response and started predict a near flat response
at amplitudes up to 7 times greater than the measured response. This transition occurs in a
small Scruton number region where the nonlinearity became increasingly important and the
response more harmonic than random. This model fault is not unknown and even the creators
of the model noted that the predicted response became independent of nominal forcing at low
Scruton numbers due to the negative linear damping and form of the nonlinear damping [113].
As mentioned, other versions of the model use a modified nonlinear damping but these don’t
give an amplitude response (cf. the work of Lupi et al. [59, 115]).

The best model at low Scruton numbers (Sc < 8), was the approximated version of Facchinetti
et al.’s wake oscillator that’s presented in chapter 7. This model is based on harmonic oscilla-
tors (where one is nonlinear) which helps explain why it performs well at low Scruton numbers
(harmonic vibration region) and badly at high Scruton numbers (random vibration region).
As getting the correct amplitude response is more important at low Scruton numbers due to
the higher response that needs to be treated, this newly approximated vortex-induced vibra-
tion model should be a highly valuable tool when designing chimneys (and similar structures).
With this tool, it should also be possible to design better vibration absorbers that suppress
vortex-induced vibrations though this would require a third coupled differential equation.

It’s possible to further improve the wake oscillator model. Firstly, the predictions will be
improved with better force coefficients as a function of the turbulence intensity, atmospheric
boundary layer and Reynolds numbers. Secondly, a better dimensionless speed correction should
be derived. The current correction makes the speed at maximum amplitude match but does not
predict the full lock-in region when using atmospheric boundary layers.

Overall, the best model for a given Scruton number is sketched out in figure 8.6 but needs to
be modified for each Reynolds number region. In the transition region, care needs to be taken
but it’s possible that the model predicting the lowest response is the best.
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Chapter

9
General conclusions

9.1 2D wind tunnel experiments on stationary cylinders

This work has presented and tied together several studies aimed at improving the predicted
response of industrial chimneys due to vortex-induced vibrations at high Reynolds numbers
(Re > 106, i.e. at super-critical Reynolds numbers). The first step was first to determine the
unsteady forces on a stationary circular cylinder at actual super-critical Reynolds numbers in a
large wind tunnel. With this baseline, the best roughness configuration for simulating the super-
critical Reynolds number flow at lower ones was determined at smaller scales. The requirements
for a well reproduced super-critical flow were: 1) To simulate super-critical Reynolds numbers at
reasonable wind speeds; 2) To have similar unsteady force characteristics (mean and SD values);
and 3) To have a similar characteristic vortex-shedding frequency (Strouhal number).

Two bi-stable Strouhal numbers were found for the smooth cylinder at large Reynolds num-
bers. When decomposing the unsteady pressure distribution using the bi-orthogonal decompo-
sition (BOD), the two different Strouhal numbers were found to originate from different spatial
unsteady pressure distributions (topos). The lower Strouhal number (St ≈ 0.2) was found to
be associated with the vortex-lift BOD pair which had its spatial energy (topos) focused near
the "top"; this pair also produced most of the fluctuating lift (θ ∈ ±[90◦, 110◦]). The higher
Strouhal number (St ≈ 0.25), on the other hand, was associated with the "secondary vortex-lift"
distribution. Instead of being near the top, the spatial energy of this BOD pair was focused in
the rear (θ ∈ ±[120◦, 180◦]) which produced fluctuating lift and drag.

Finding these Strouhal numbers consolidated some conflicting literature on vortex-shedding
at super-critical Reynolds numbers: Depending on the measurement type, previous experiments
gave a Strouhal number either in the range St ∈ [0.25, 0.27] or near St = 0.2 [8, 13, 17, 21,
23–25, 36, 54, 56]. This work showed that both of them exists in the wake and unsteady
pressure measurements and are not a scatter of possible values. The relative strength of these
two shedding frequencies (measured in frequency domain) depended on where it was measured.
In the wake, the strongest spectral peak was for the higher Strouhal while the lower Strouhal
number was relatively weak. In the decomposed unsteady pressure, the lower Strouhal number
had a much stronger spectral peak and total energy than the higher Strouhal number.

Adding surface roughness in the form of ribs eliminated the instability that lead to the
upper vortex-shedding frequency. The remaining Strouhal number was found in the wake and
both the vortex-lift and second vortex-lift BOD pairs. This shedding frequency depended on
the roughness configuration and scale. At small-scales and Reynolds numbers, increasing the
roughness decreased the Strouhal number. The effect of roughness was different at large-scales
and Reynolds numbers where increased roughness at large Reynolds numbers slightly increased
the Strouhal number.

The added roughness and scale also changed the correlation and coherence along the height.
This was clearly seen when comparing the correlation at small-scale with the large-scale results:
The correlation and coherence was much greater when testing with the larger ribs at small-scales.
The increased correlation and coherence could partly explain why the standard deviation (SD)
of the lift coefficient was larger at small-scales but fails to explain it fully. At small-scales and



Reynolds numbers, increasing the rib spacing decreased the correlation but greatly increased the
SD lift and drag coefficients while increasing the rib size barely changed the force but increased
the correlation. This indicates that there’s a Reynolds number or wind field difference.

The spatial distribution of unsteady pressure was investigated and compared between the
smooth large-scale tests and the small-scale tests with roughness. This comparison used the
first four BOD pairs which represent (in order of decreasing relative energy) the mean, vortex-
lift, vortex-drag and second vortex-lift pressure distributions. The two most important pairs
to match were the mean and vortex-lift pressure distributions as they represent most of the
fluctuating lift force and energy from the time signals.

Even if the smooth cylinder at actual super-critical Reynolds numbers had an asymmetric
mean pressure distribution, it matched well with the rough small-scale cylinders at simulated
ones. This asymmetry also caused a bias in the vortex-lift distribution which affected the
difference in relative lift for the rough and smooth configurations. This difference was smaller
when only considering the unsteady force components but still noticeable. There were two big
differences between the vortex-lift topos from the small-scale and large-scale configurations: 1)
earlier separation point with the rough cylinders and 2) increased spatial energy in the rear for
the rough cylinders. Even with the differences, the agreement of the vortex-lift was good for the
rough and smooth configurations as indicate by the high MAC values.

The differences between the smooth and rough cylinders were greater for the vortex-drag and
second vortex-lift with the vortex-drag being more or less incomparable. The asymmetry in the
mean and vortex-lift should also have affected the second vortex-lift and part of the differences
between the smooth and rough cylinders were due to this asymmetry. Still, there were other
more prominent differences: Many of the differences in second vortex lift were due to the spatial
energy for the rough cylinders being focused further in the rear than for the smooth cylinder
and the spatial energy distributions barely match as indicated by the low MAC values.

9.2 Aeroelastic experiments

The response of a flexible cylinder at simulated super-critical Reynolds numbers was determined
using the previous investigation on surface roughness and compared with a sub-critical cylinder.
In addition, tests were performed with and without an Eurocode type II boundary layer to test
the effect of a turbulent atmospheric boundary layer. These tests allowed us to test two hy-
potheses: 1) The wrong Reynolds number region gives a very different response and 2) Turbulent
atmospheric boundary layers can be enough to simulate super-critical Reynolds numbers.

There are three results that make it seem like the added turbulent atmospheric bound-
ary layer was enough for simulating super-critical vortex-induced vibrations making roughness
unnecessary. Firstly, the Strouhal numbers were fairly similar for both the super-critical and
sub-critical cylinders when testing with the boundary layer; this suggests similar aerodynamics.
Secondly, while tests at simulated super-critical Reynolds numbers using roughness did have a
different amplitude response than the sub-critical cylinder when testing with the atmospheric
boundary layer, the differences were mostly due to a different Scruton number (a mass-damping
parameter). This result is also seen when comparing the maximum amplitude for several Scru-
ton numbers and the results from the smooth and rough cylinders seems to be part of the same
exponential or power law curve.

Finally, removing the atmospheric boundary layer removes these similarities between the
cylinders and the rough cylinder at super-critical Reynolds numbers have different vortex-
shedding frequencies and response than the smooth sub-critical cylinder. The effect of the
boundary layer on the shedding was also greater for the smooth cylinder than the rough which
suggests that the added turbulent atmospheric boundary layer could be enough to simulate
super-critical Reynolds numbers of similar experiments.

The small-scale aeroelastic tests were accompanied by a field experiment on a 35.5 m tall
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custom-made chimney that had a diameter of 2 m at the top but only 1 m at the base. The only
aerodynamic parameter measured in the field was the wind speed at four heights. This chimney
was designed to have a low Scruton number and to experience high amplitude vortex-induced
vibrations at moderately low speeds. While not measured, the chimney was constructed so that
unsteady pressure and forces could be measured at several heights.

The response of this chimney and the incoming wind was recorded over a 13-day period and
the data split into 10-minute segments for a statistical analysis. The response followed typical
real life response patterns based on the wind speed and frequency of motion. At low speeds, the
dominant frequency was either at the linearly increasing Strouhal shedding frequency (vortex-
induced vibrations) or natural frequency (turbulence-induced vibration). At high speeds, the
response was mainly due to turbulence-induced vibrations.

The response was more interesting at intermediate speeds (5-8 m/s) where the response
was either large and due to vortex-induced vibrations or small and due to turbulence. The
vortex-induced vibration amplitude depended on the atmospheric boundary layer profiles and
this parameter changed with the direction. The wind direction giving the highest amplitudes of
motion had a steep speed gradient but low turbulence at all heights. The directions with low
response, on the other hand, had high turbulence with height. These atmospheric boundary
layers were different from the Eurocode type II boundary layer and the turbulence intensities
were significantly lower in the field for all directions.

9.3 Predicting the response due to vortex-induced vibrations

Approximate solutions to a nonlinear wake oscillator model was derived to improve the predic-
tions of vortex-induced vibrations using mathematical models. This new approximation matched
well with numerical integration of the same model but required a constant total damping (aero-
dynamic + structural) in the structural equation instead of a speed dependent. With this
approximation, two new investigations on the size of the lock-in regions and the maximum
amplitude was performed.

By investigating the stability and phase difference between forcing and motion, a bi-quartic
equation for the bounds of 3 lock-in regions in terms of the dimensionless speed was found. At
low speeds, there’s a conditional lock-in region (needs high existing amplitudes) that only exists
with low mass-scaled force M and low structural damping ratio. The next lock-in region was
a region of absolute lock-in and this region grew in size with the mass-scaled forcing. When
increasing the damping ratio, the absolute region did not start shrinking until the low-speed
conditional region disappeared. At this point, further damping decreased the absolute lock-in
regions size at high and low dimensionless speeds.

The last lock-in region was a higher speed conditional lock-in region. While the lower region
disappeared with increasing force, the upper region persisted: As the force’s strength grew,
the conditional region grew, then decreased until the force reached a certain value where the
upper conditional region started growing again. The effect of damping factor on the upper
conditional region was similar to the lower one and it decreased with damping. The main
difference between them was that the upper region was larger at low damping which led to the
upper region persisting at much higher damping ratios.

Designers often only use the maximum response when designing a chimney and an expression
for the maximum response was therefore derived. It was found that the maximum amplitude
tended to occur at the same phase difference and an expression for the speed at maximum
response was derived from this. This is different from the design models which assumes the
maximum occurs at a specific speed. This new expression was compared with numerical simula-
tions at several Scruton numbers and both the speed at maximum and the maximum amplitude
matched well.

To be sure that this new model was an improvement to the existing design code models, the
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predicted response using this approximated wake-oscillator model, the spectral model and the
correlation length model were compared with experimental data. The best model for predicting
the amplitude response was found to depend on the Scruton number. When the Scruton number
was low, the best model at reproducing the amplitude response was the new approximation while
the spectral model was best at high Scruton numbers. This makes sense as the response is more
harmonic at low Scruton numbers, which favors harmonic models like the wake oscillator, and
more random at high Scruton numbers, which favors random vibration models like the spectral
model used in the CICIND model code and the Eurocode.

When comparing the maximum predicted response with that found in the literature, the
new approximation was found to be significantly better than the spectral model on average.
The exception was for six chimneys where the approximated wake-oscillator model severely
under predicted the response. The amplitude for most of these chimneys were measured during
the night and experienced a rare event where the density was much higher and the turbulence
intensity became negligible. It’s possible that the under prediction is not as severe as shown and
that a safety factor in the form of an extreme event modifier, or wake parameters that account
for variations between chimneys, could alleviate any issues. With this, the approximated wake-
oscillator model should still be viewed as the best model for predicting the response at low
Scruton numbers.

9.4 Perspectives

While much new knowledge has been gained from this work, there’s still a few points that can be
improved by continuing the studies made here. Firstly, the chimney used in the field tests was
fitted with taps for measuring unsteady pressure at 7 levels. In the current study, this has not
done yet. Measuring the unsteady pressure in the field at critical and super-critical Reynolds
numbers (with and without motion) could help verify the large-scale 2D tests. Most notably,
it can verify whether or not the two Strouhal numbers exists in the field. In addition, the field
measurements will give a better idea of how the Strouhal number, correlation and coherence
changes with the mean boundary layer profile as it depended on the direction.

The large and small-scale tests at simulated super-critical Strouhal numbers gave very differ-
ent force characteristics (dimensionless frequency and mean and SD values). This indicates that
the actual Reynolds number is important for the flow characteristics when simulating higher
Reynolds numbers. There are a few ways to test this claim. Firstly, a large and a small cylinder
fitted with ribs of similar dimensionless roughness size should be tested in the same wind tunnel.
This will show that the difference in force characteristics at simulated super-critical Reynolds
numbers is not due to different wind fields. If the difference in wind tunnels and scales are
not the causes, e.g. still gives different force coefficients with different scales in the same wind
tunnel, a new 2D test campaign with cylinders of different diameters and similar ribs would
be advised. This would help determine the best rib size and spacing combination for a circular
cylinder with a given diameter. With enough data, a regression analysis or a look-up table could
be created.

The total force experienced by a cylinder depends on both the 2D force coefficients and
how coherent it is along the height and was measured in the form of correlation and coherence.
This was not measured for a smooth circular cylinder at super-critical Reynolds number and
is gap in this work. Determining these statistics will improve any further investigation on the
best method of simulating super-critical Reynolds numbers and should be regarded as a vital
measurement for this.

In addition to such 2D comparisons, the correlation and coherence should be measured for
finite height cylinders and with more turbulent atmospheric boundary layer profiles and surface
roughness configurations. By comparing these with field measured correlation and coherence,
e.g. using the field experiment mentioned in chapter 6, a conclusion could be reached regarding
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whether or not a turbulent atmospheric boundary layer is enough to simulate vortex-induced
vibrations at super-critical Reynolds numbers.

The last pieces of improvements are related to predictive models. As the aerodynamic
damping. As the nonlinear aerodynamic damping becomes less important at high Scruton
numbers, it might be better to combine the good parts of the spectral model with the wake
oscillator model. When the Scruton number is low, the best option is to use the wake oscillator
as concluded in chapter 8. When it’s high, the best course of action might be to combine parts of
the spectral and wake oscillator model into one model. This can be done by using the structural
definition of the wake oscillator model but a forcing similar the spectral model’s instead of the
nonlinear wake oscillator force. The difference in the model at high and low Scruton numbers
is exemplified in equation (9.1) where Frms is the root mean square of the applied force. Of
course, the threshold for harmonic forcing and random forcing depends on both the Scruton and
Reynolds number and needs to be better determined.

ÿ +D(ωq)ẏ + y =

⎧⎨⎩Force = ω2
qMq, if Sc is low

Forcerms ∝
√︂
SCl,viv(f), otherwise

(9.1)

The wake oscillator model can be improved in more ways. As mentioned in chapter 8, the
empirical turbulence correction did make most of the predicted vortex-induced vibrations match
the observed. But it did not capture the full extent of lock-in and higher amplitude vibrations.
A possible fix to the model would be to incorporate turbulence fix in the form of a noise term
or a randomly varying speed like added by Denoël [144] or Aswathy and Sarkar [142].

The last mentioned point of improvement for the wake oscillator is to create a more general
3D model. For linear systems, modal decomposition can be used to get the 3D response but this
is not possible for nonlinear equations. Instead, it might be useful to assume that the structural
oscillator is modeling the response amplitude for a specific mode shape and then use equivalent
3D parameters in the structural and wake equation. To do this, good expressions for the wake
force and damping (A and ϵ) need to be defined as a function of wind conditions, Reynolds
number and aspect ratio and should be related to the coherence (possibly through a spatial and
modal projection of the aerodynamic forces).
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Appendix

A
Mathematical tools

“Someone told me that each equation I included in the book
would halve the sales. ” Stephen Hawking

Following the publishing guide given to Stephen Hawking, much of the mathematical defini-
tions and additional data that might confuse the readers rather than help them further under-
stand the material are moved here.

A.1 Transforming acceleration to response
In a typical vibration modeling framework, it’s often assumed that the displacement can be
written in the form y(t) = rye

−iωt. From this, the speed and acceleration (ẏ and ÿ respectively)
can be found by taking the derivative of y(t) with respect to time. A similar relationship can
be defined in frequency domain for Fourier transforms. When denoting A(ω) and Y (ω) as
the Fourier transforms of ÿ(t) and y(t) respectively, the relationship between acceleration and
displacement in frequency domain can be defined as in equation (A.1). [86, 87]

A(ω) = −ω2Y (ω) (A.1)

From the above, a useful and a not-so-useful property can use used to derive the response
of a structure. If the acceleration in time domain is known, the displacement can be found by
taking the inverse Fourier transform of the frequency scaled Fourier transform of acceleration.
The alternative would be a double time integration of the data. Due to the identity in equation
(A.1), it’s important to filter the data so that low-frequency noise isn’t amplified and so that
high frequency components aren’t drowned out. [86, 87, 159]

A.2 Hilbert transform
The Hilbert transform (H[s(t)]) is, like the Fourier transform, a linear transformation of a time
series where the spectral components of a signal is phase shifted by −π/2 [153, 160] which alone
isn’t interesting. What’s more interesting for vibrations is the analytic signal defined in equation
(A.2). From the analytic signal, the instantaneous amplitude can be found from the modulus or
magnitude and the instantaneous frequency from the argument of the complex number provided
the phase difference is constant; this should hold true for free-response tests but not in forced
tests with varying frequency and strength. An example of the response envelope obtained from
experimental data is shown in figure A.1.

z(t) = s(t) + iH[s(t)] (A.2)



0 5 10 15 20 25 30 35 40 45 50 55 60

−0.2

0

0.2

Time [s]

St
ru

ct
ur

al
re

sp
on

se
(y

(t
))

[-]
Response envelope ry(t)
Response y(t)

Figure A.1: Example time history of response response and amplitude envelope from the Hilbert
transform.

Once the instantaneous frequency and amplitude is known, the corresponding damping and
natural frequency can easily be found for free-response tests. This is can done by fitting the
data to an equation in the form A(t) = A0e

ζωnt and by using the standard relationships between
damped natural frequency, critical damping ratio and the natural frequency. Instead of doing a
best fit, the natural frequency and damping can be calculated for all amplitudes making their
change with amplitude apparent.

A.3 Modal assurance criterion
The modal assurance criterion (MAC) used to calculate how similar the shape of two vectors
are (ignoring any scaling factors) and is defined as [150]

MAC = |viv̄j |2

(viv̄i) (vjv̄j) , (A.3)

where the over score indicates complex conjugate and v are vectors. There’s ongoing discussions
on what’s the best way of comparing two vectors [161] (e.g. representing mode shapes or related
to BOD components) and the form given in equation (A.3) was chosen for its simplicity and
ease of use. In the current format, MAC values ranges between 0 and 1 and values greater than
0.9 is considered as consistent correspondence [150]. For ease of use and comparison, the MAC
values are scaled by 100 making them percentages.

A.4 Bayesian inference
Bayesian inference is used to test if changes in rib and turbulence configurations have significant
effects on the aerodynamics around the cylinder (e.g. in Strouhal number). This Bayesian anal-
ysis uses an improper Normal Gamma reference prior (known as "independent Jeffreys prior")
where the posterior probabilities are found using Bayes updating [162] as implemented in the
R package "statsr" [163]. The prior distribution used is a "non-generative model" meaning the
density doesn’t integrate to 1 but is still a constant value. As the name implies, samples cannot
be drawn from this prior. This distribution is based on setting the sample in the prior distri-
bution in the sample to zero and prior probabilities as uniform. Inference using the posterior
probabilities, based the data and prior, then becomes similar to a frequentist based inference
using a Student’s t-distribution. The difference is that the Bayesian is probabilistic and the
frequentist approach is deterministic.
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Within this frame work, H0 is the conservative hypothesis/model (no difference), H1 is the
alternative, P(H2|data) is posterior probability of H1 given the data (posterior probability of
H1 is 1-P(H2|data)) and BF as the Bayes factor which indicates the strength of one hypothesis
compared to the other (denoted BFHi:Hj ) (defined by posterior and prior likelihood odds). The
strength of evidence, Bayes factor, is a numerical value and a value above 3 indicates evidence
for the alternative [164]. Values above 20 shows strong evidence and values above 150 indicates
very strong evidence for a model. Bayes factors less than 1 indicates evidence for the other
model and its strength of evidence is the inverse of the Bayes factor. Exact Bayes factor values
are meaningless when one is above 104; in these cases, the order of magnitude is given instead.

A.5 Analytic approximation of deterministic equations
Description of the method

The analytic approximation used here, is called the method of averaging; the Krylov-Bogoliubov
technique to be more precise. For deeper information of the technique and full derivation, see
the textbooks of Nayfeh and Mook [139] or Balanov, Janson, Postnov and Sosnovetseva [95].
As an introduction to the method, first write the nonlinear equations in the form of equation
(A.4). Then impose the conditions for yi and ẏi given in equations (A.5) and (A.6). If equation
(A.6) is to be true, equation (A.7) needs to hold.

ÿi + ω2
i y = −h(yi, ẏi) (A.4)

yi = ryi(t) cos(ωt+ φyi(t)) = ry(t) cos(Ψyi(t)) (A.5)
ẏi = −ωryi(t) sin(Ψyi(t)) (A.6)
ṙyi cos(Ψyi(t)) − ryi(t)φ̇yi

sin(Ψyi(t)) = 0 (A.7)

From equation (A.6), an expression for ÿi can be derived and is inserted into equation (A.4)
along with equation (A.5)). The equation of motion are now in terms of ryi , φi and their time
derivatives. Using the condition in equation (A.7), the equation can be rewritten twice to yield
equations for ṙyi and φ̇i. Another assumption is now needed: We assume that ryi and φi are
slowly varying functions when compared to the forced frequency Ψi. The equations of ṙyi and
φ̇i are then averaged over one cycle of fast oscillation; ryi and φi can be regarded as constant
as they are invariant over one fast oscillation. This gives equations (A.8) and (A.9). As the
equations can be lengthy, the final equations are presented with yi and ẏi for brevity.

ṙyi =
∫︂ 2π

0

sin(Ψ)
2πω

(︂
h(yi, ẏi) + (ω2

i − ω2)yi

)︂
dΨi (A.8)

φ̇i =
∫︂ 2π

0

cos(Ψ)
2πωryi

(︂
h(yi, ẏi) + (ω2

i − ω2)yi

)︂
dΨi (A.9)

Applying the method

ÿ +D(ωq)ẏ + y = ω2
qMq (A.10)

q̈ + ϵ
(︂
q2 − 1

)︂
q̇ + ω2

qq = Aÿ (A.11)

D(ωq) = 2ζ + γ

µ
ωq (A.12)

Equations (A.10) – (A.12) define the system investigated. Here, D is total linear structural
damping and ωq = StUR (where St is the Strouhal number and UR is the reduced speed using
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a frequency in Hz). To approximate the system using the method of averaging, the first thing
to do is to rewrite equation A.11 using equation (A.10); this gets rid of the ÿ term in equation
A.11. Applying equations (A.8) and (A.9) to the system and defining θ = φq − φy yields the
following equations for ṙy, φ̇y, ṙq and φ̇q.

ṙy = 1
2

(︄
ω2

q

ω
MRq sin(θ) −DRy

)︄
(A.13)

φ̇y = 1 − ω2

2ω −
ω2

qMrq

2ωry
cos(θ) (A.14)

ṙq = −1
2ϵωqrq

(︄
r2

q

4 − 1
)︄

+ Ary

2

(︃sin(θ)
ω

−D cos(θ)
)︃

(A.15)

φ̇q =
ω2

q (1 −AM) − ω2

2ω + Ary

2rq

(︃
D sin(θ) + cos(θ)

ω

)︃
(A.16)

Using the phase difference (θ = φq − φy) instead of individual phases, equations (A.16) and
(A.14) becomes:

θ̇ =
ω2

q (1 −AM) − 1
2ω +

(︄
ω2

qMrq

2ωry
+ Ary

2ωrq

)︄
cos(θ) + ADry

2rq
sin(θ) = g(θ) (A.17)

To find the amplitudes of motion and phase difference, equations (A.13), (A.15) and (A.17)
are solved when the time derivatives are zero. This is during steady state conditions and is
assumed to be a valid assumption; either the system is steady-state during lock-in and dominated
by ÿ or it is not locked-in and ÿ is negligible. When rewriting the equations for rq and θ using
equation (A.18), the equations governing ry, rq and θ are:

ry =
ω2

qM

D(ωq)ωrq sin(θ) (A.18)

rq = 2
(︄

1 + AMωq sin(θ)
ϵωD(ωq) (sin(θ) −D(ωq) cos(θ))

)︄0.5

(A.19)

0 =
ω2

q (1 −AM) − 1
2ω + cos(θ)

(︄
ω2

qAM

2D(ωq)ω2 sin(θ) + D(ωq)
2sin(θ)

)︄
+
ω2

qAM

2ω sin2(θ) = g(θ) (A.20)

To solve the equation, one simply needs to solve for the possible θs and insert this into the
solution for rq and ry (or insert equation (A.19) into equation (A.18) and skip a step).
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Appendix

B
Additional results from small
2D wind tunnel

In addition to the results and configurations shown in chapter 4, the wind tunnel test campaign
contained several more roughness configurations. These results are presented here to avoid
cluttering the main results chapter. The full list of tested configurations are those given in table
B.1.

In addition to the tests with ribs, two experiments were performed with added sand rough-
ness. This roughness was added to the cylinder by gluing on a near uniform layer of sand
particles with size between 0.4 and 0.5 mm in the same area as where the roughness ribs were
placed. This corresponds to a relative roughness in the range [7.27, 9.09]·10−3.

B.1 Ergodicity of unsteady pressure

To be sure that the unsteady pressure data gathered is good, the ergodicity of it is tested using
some 10 minute recordings for the unsteady pressure data. This is done by comparing the MAC
values for five experimental configurations at a single speed as shown in figure B.1. As can
be seen, there’s difference in both the topos and chronos when comparing the long and short
recording for higher BOD pairs (BOD pairs>10). The difference between configurations tested
at 19 and 20 m/s is turbulence. The results at 19 m/s is for configurations with added turbulence
generating grid and 20 m/s is for configurations without it.
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Figure B.1: MAC values for topos and PSD of chronos comparing 10 minutes and 1 minute tests.

For the topos’ MAC values, figure B.1a, shows that the correspondence is excellent for
most BOD pairs and experimental configurations. There are some where the correspondence is



Table B.1: Test details, dates and naming of configurations. Rib dimmensions are height times width
and relative roughness height and rib separation angle (Rr∡α).

Date Setup Test details U [m/s] Rr∡α
6/12 grad Wind calibration and characterization 5 speeds N/A
6/15 azim Find zero degree inflow 5 speeds N/A
6/16 Rib01 Ribs 0.2 × 0.7 and 12◦ separation 5-28 3.64 · 10−3∡12◦

6/16 Rib02 Ribs 0.2 × 0.77 and 12◦ separation (turbulent) 5-19 3.64 · 10−3∡12◦

6/16 Rib03 Ribs 0.2 × 0.7 and 24◦ separation (turbulent) 5-19 3.64 · 10−3∡24◦

6/16 Rib04 Ribs 0.2 × 0.7 and 24◦ separation 5-28 3.64 · 10−3∡24◦

6/16 Rib05 No ribs (smooth) 5-30 Smooth
6/16 Rib06 No ribs (smooth, turbulent) 5-19 Smooth
6/17 Rib07 Ribs 0.4 × 0.8 and 12◦ separation (turbulent) 5-19 7.27 · 10−3∡12◦

6/17 Rib08 Ribs 0.4 × 0.8 and 12◦ separation 5-30 7.27 · 10−3∡12◦

6/17 Rib09 Ribs 0.4 × 0.8 and 24◦ separation 5-30 7.27 · 10−3∡24◦

6/17 Rib10 Ribs0.4 × 0.8 and 24◦ separation (turbulent) 5-19 7.27 · 10−3∡24◦

6/18 Rib11 Ribs 0.5 × 0.8 and 12◦ separation (turbulent) 5-19 9.09 · 10−3∡12◦

6/17 Rib12 Ribs 0.5 × 0.8 and 12◦ separation 5-30 9.09 · 10−3∡12◦

6/18 Rib13 Ribs 0.5 × 0.8 and 24◦ separation 5-30 9.09 · 10−3∡24◦

6/18 Rib14 Ribs 0.5 × 0.8 and 24◦ separation (turbulent) 5-19 9.09 · 10−3∡24◦

6/18 Rib15 Ribs 1.0 × 0.8 and 12◦ separation (turbulent) 5-19 1.82 · 10−2∡12◦

6/18 Rib16 Ribs 1.0 × 0.8 and 12◦ separation 5-30 1.82 · 10−2∡12◦

6/19 Rib17 Ribs 1.0 × 0.8 and 24◦ separation 5-30 1.82 · 10−2∡24◦

6/18 Rib18 Ribs 1.0 × 0.8 and 24◦ separation (turbulent) 5-19 1.82 · 10−2∡24◦

6/19 Rib19 Sand roughness 5-30 7.27 − 9.09 · 10−3

6/19 Rib20 Sand roughness (turbulent) 5-19 7.27 − 9.09 · 10−3

nonexistent, see ribs 5 and 9 between pairs 16 and 23, and this could be due to differences in
the strength of various higher pairs. It’s the lower pairs that are important for vortex induced
vibration (pairs 1-5) and the agreement here is excellent. The agreement for PSD of chronos is
less corresponding for long and short recording as seen in figure B.1b. For the lower BOD pairs,
the agreement is good with MAC values above 0.9 but it’s reduced for the smooth cylinder and
rib 7.27 ·10−3∡24◦ without turbulence between pairs 16 and 23. Overall, the agreement between
recording length is consistently acceptable for determining the vortex shedding characteristics
around a cylinder and 1 minute recordings are acceptable in getting the global statistics.

B.2 Strouhal number

B.2.1 Strouhal number comparison

In addition to the Strouhal numbers presented in section 4.3.1, the Strouhal number was cal-
culated for all experimental configurations. This is shown in figure B.2 for the configurations
with ribs and in figure B.3 for the configurations with sand roughness and smooth surface (no
roughness added). Note that the Strouhal number for the configurations with sand roughness
are measured with the unsteady pressure only as loose sand could damage the Cobra probes.

B.2.2 Strouhal comparison using single pressure tap and vortex-lift’s chronos

The difference in Strouhal number when calculating it using a single pressure tap and the vortex
lift’s chronos can be estimated similarly to the difference between vortex lift’s chronos and wake
measurements. Pressure tap 10, located at an angular position of 96◦ compared to the pure
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Appendix B. Additional 2D results
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(c) Rib relative roughness 9.09 · 10−3
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Figure B.2: Comparison of Strouhal numbers from wake (× marks) and chronos (lines) using the rib
configurations. Turbulent results are marked with (T) and uniform flow with (U).

drag direction, is chosen for this analysis as it should be experiencing mostly lift and be in
a zone of clear vortex-shedding. An example of PSDs from this pressure tap, using the same
configurations as in the wake PSD example in figure 4.5a, is shown in figure B.4a. As seen,
the absolute PSD values are greater when using the pressure rather than wake fluctuations and
there’s relatively more frequency content at low frequencies; the PSD at low frequencies have
higher values here but relatively lower values at the Strouhal frequency (more noise dominated).

An example of the difference in Strouhal numbers (Stchronos − Sttap is shown in figure B.4b
for the smooth cylinder without turbulence. For most speeds, the difference is minute (either
zero or ∼ 10−10) and the small differences are due to numerical rounding of the wind speeds.
For a few other speeds, the difference is greater and the peak frequency (and Strouhal number)
has a slightly different value. This difference is only present at certain speeds and additional
statistical inference is perform to evaluate the mean differences.

The inference results on the mean difference in peak Strouhal number and the bandwidth is
shown in table B.4. As seen the difference is ambiguous and there’s no real evidence for either
model. For both tests, the probability of the conservative model being correct given the data is
slightly higher than the alternative. This gives a small Bayes factor (BF) and poor evidence for
either model. There are mean differences in the peak and bandwidth, but the mean differences

137



104 105
0.15

0.2

0.25

0.3

0.35

Reynolds number [-]

St
ro

uh
al

nu
m

be
r

[-]

Smooth (U)
Smooth (T)
Sand 7.27 · 10−3 (U)
Sand 7.27 · 10−3 (T)

Figure B.3: Strouhal number from chronos using sand roughness configuration. Turbulent results are
marked with (T) and uniform flow with (U).

are small and the likelihood of the alternative model is less than the conservative.

B.3 Unsteady forces

The mean and SD drag coefficients calculated for all configurations using equation (2.3) are
shown in figures B.5 – B.9. Similarly, the mean and SD lift coefficients calculated for all configu-
rations using equation (2.4) are shown in figures B.10 – B.14. Both forces and statistics conform
to the discussions presented in chapter 4. The reason for not including all configurations in one
plot is because there are too many configurations to compare.

B.4 Super-critical Reynolds numbers

The onset of super-critical Reynolds numbers is defined as in section 2.1.1. I.e., the onset is
when the mean drag coefficient (and other force statistics) reaches a steady value with Reynolds
numbers post drag crisis. The configurations that reached and the speeds/Reynolds numbers
that the configurations reach super-critical Reynolds numbers are shown in table B.2. The con-
figurations marked with N/A in the speed and Reynolds numbers columns does not satisfactorily
reach the super-critical region.

B.5 Correlation and coherence

B.5.1 Correlation

The vertical correlation for the cylinder configurations with ribs that reached super-critical
Reynolds numbers (per table B.2 are shown in figures B.15a–B.15d. As mentioned, the tests with
sand roughness did not use the Cobra probes meaning that no correlation could be measured. As
can be seen, the correlation at super-critical Reynolds numbers conform to the trends discussed
in chapter 4

B.5.2 Coherence

The vertical correlation for the cylinder configurations with ribs that reached super-critical
Reynolds numbers (per table B.2 are shown in figures B.16a–B.16d. As mentioned, the tests
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Figure B.4: Examples of PSD from pressure tap and the absolute difference in Strouhal numbers for
topos and pressure tap measurements.

with sand roughness did not use the Cobra probes meaning that no coherence could be measured.
As can be seen, the coherence at super-critical Reynolds numbers conform to the trends discussed
in chapter 4

B.6 Topos comparison using MAC
The MAC value comparisons shown in figures B.17–B.20 are an extension of the MAC value com-
parison in section 4.4.3. This is done by comparing the super-critical topos for all configurations
rather than the chosen few in chapter 4.

B.7 Relative forces
The relative forces shown in figures B.21–B.24 extends the relative force comparison done in
section 4.4.6 to all roughness configurations reaching super-critical Reynolds numbers. These
results conform to the analysis done in chapter 4.

B.8 Inference results
To better compare the force statistic results (e.g. Strouhal number, lift and drag), Bayesian
inferences is used to evaluate the significance of any differences between configurations. This
procedure follows the technique outlined in section A.4 and the Bayesian inference performed is
as follows:

• Differences in Strouhal number between wake measurements and vortex lift’s chronos in
table B.3.

• Differences in Strouhal number between single pressure tap and vortex lift’s chronos in
table B.4.

• Differences in Strouhal number between configurations using the vortex lift’s chronos in
table B.5.
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Figure B.5: Mean and SD drag coefficient for ribs with relative roughness 3.64 · 10−3. Turbulent
results are marked with (T) and uniform flow with (U).

• Differences in Strouhal number between configurations using the wake measurements in
table B.6.

• Differences in mean and SD drag between configurations in table B.7.

• Differences in mean and SD lift between configurations in table B.8.

For Bayesian inference result tables, the first column describes the conservative hypothesis (null
model in frequentist inference), the second the probability of the alternative model being true
given the data and the third and fourth columns are the Bayes factors described in section A.4
which describes how strong the evidence is.
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Figure B.6: Mean and SD drag coefficient for ribs with relative roughness 7.27 · 10−3. Turbulent
results are marked with (T) and uniform flow with (U).
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Figure B.7: Mean and SD drag coefficient for ribs with relative roughness 9.09 · 10−3. Turbulent
results are marked with (T) and uniform flow with (U).
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Figure B.8: Mean and SD drag coefficient for ribs with relative roughness 1.82 · 10−2. Turbulent
results are marked with (T) and uniform flow with (U).
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Figure B.9: Mean and SD drag coefficients for sand roughness and smooth surface configurations.
Turbulent results are marked with (T) and uniform flow with (U).
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Figure B.10: Mean and SD lift coefficient for ribs with relative roughness 3.64 · 10−3. Turbulent
results are marked with (T) and uniform flow with (U).
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Figure B.11: Mean and SD lift coefficient for ribs with relative roughness 7.27 · 10−3. Turbulent
results are marked with (T) and uniform flow with (U).
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Figure B.12: Mean and SD lift coefficient for ribs with relative roughness 9.09 · 10−3. Turbulent
results are marked with (T) and uniform flow with (U).
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Figure B.13: Mean and SD lift coefficient for ribs with relative roughness 1.82 · 10−2. Turbulent
results are marked with (T) and uniform flow with (U).
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Figure B.14: Mean and SD lift coefficients for sand roughness and smooth surface configurations.
Turbulent results are marked with (T) and uniform flow with (U).

Table B.2: Reynolds numbers and roughness configurations from small-scale 2D tests identified as
being at super-critical Reynolds numbers.

Rib # Configuration Speed [m/s] Reynolds number [-]
Rib 01 3.64 · 10−3∡12◦ (U) 27.8 102000
Rib 02 3.64 · 10−3∡12◦ (T) 19.0 69800
Rib 03 3.64 · 10−3∡24◦ (U) N/A N/A
Rib 04 3.64 · 10−3∡24◦ (T) N/A N/A
Rib 07 7.27 · 10−3∡12◦ (T) 19.1 70100
Rib 08 7.27 · 10−3∡12◦ (U) 23.0 84400
Rib 09 7.27 · 10−3∡24◦ (U) 20.9 76600
Rib 10 7.27 · 10−3∡24◦ (T) 18.1 66300
Rib 11 9.09 · 10−3∡12◦ (T) 15.1 55500
Rib 12 9.09 · 10−3∡12◦ (U) 17.0 62200
Rib 13 9.09 · 10−3∡24◦ (U) 14.9 54800
Rib 14 9.09 · 10−3∡24◦ (T) 14.0 51500
Rib 15 1.82 · 10−2∡12◦ (T) 14.8 54400
Rib 16 1.82 · 10−2∡12◦ (U) 11.0 40300
Rib 17 1.82 · 10−2∡24◦ (U) 8.01 29400
Rib 18 1.82 · 10−2∡24◦ (T) 7.10 26000
Rib 19 Sand 7.27 · 10−3 (U) 29.7 109000
Rib 20 Sand 7.27 · 10−3 (T) 14.9 54700
Rib 21 Smooth 67.6 2170000

Table B.3: Bayesian inference results comparing Strouhal numbers obtained from wake measurements
and vortex lift’s chronos.

H1 (conservative test model) P(H2|data) BFH2:H1 BFH1:H2 Interpretation
No difference in mean Strouhal num-
ber between wake and vortex lift’s
chronos

1 ∼ 1017 ∼ 0 Very strong evi-
dence against H1

No difference in mean Strouhal num-
ber bandwidth between wake and
vortex lift’s chronos

0.587 1.42 0.704 No evidence
worth mentioning
for H1
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Figure B.15: Correlation for all rib configurations at super-critical Reynolds numbers per table B.2.

Table B.4: Bayesian inference results comparing Strouhal numbers obtained from pressure tap and
vortex lift’s chronos.

H1 (conservative test model) P(H2|data) BFH2:H1 BFH1:H2 Interpretation
No difference in mean Strouhal num-
ber between pressure tap data and
vortex lift’s chronos

0.439 0.784 1.28 No evidence
worth mentioning
for H1

No difference in mean Strouhal num-
ber bandwidth between pressure tap
data and vortex lift’s chronos

0.273 0.375 2.70 No evidence
worth mentioning
for H1
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Appendix B. Additional 2D results
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Figure B.16: Coherence for all rib configurations at super-critical Reynolds numbers per table B.2.
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Figure B.17: MAC matrix for mean topos at super-critical Reynolds numbers using the configurations
in table B.2.
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Figure B.18: MAC matrix for vortex-lift topos at super-critical Reynolds numbers using the
configurations in table B.2.
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Figure B.19: MAC matrix for vortex-drag topos at super-critical Reynolds numbers using the
configurations in table B.2.
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Figure B.20: MAC matrix for secondary vortex-lift topos at super-critical Reynolds numbers using the
configurations in table B.2.
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Figure B.21: Comparison of relative forces at super-critical Reynolds numbers using the 3.64 · 10−3

and sand roughness configurations in table B.2.
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Figure B.22: Comparison of relative forces at super-critical Reynolds numbers using the 7.27 · 10−3

configurations in table B.2.
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Figure B.23: Comparison of relative forces at super-critical Reynolds numbers using the 9.09 · 10−3

configurations in table B.2.

152



Appendix B. Additional 2D results

Mean Lift Drag 2nd lift

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

BOD pair [-]

R
el

at
iv

e
dr

ag
[-]

Smooth
1.82 · 10−2∡12◦ (U)
1.82 · 10−2∡12◦ (T)
1.82 · 10−2∡24◦ (U)
1.82 · 10−2∡24◦ (T)

(a) Relative drag.

Mean Lift Drag 2nd lift

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

BOD pair [-]

R
el

at
iv

e
lif

t
[-]

(b) Relative lift.

Figure B.24: Comparison of relative forces at super-critical Reynolds numbers using the 1.82 · 10−2

configurations in table B.2.

Table B.5: Bayesian inference results testing the effect of roughness and turbulence intensity on
Strouhal number obtained from vortex lift’s chronos.

H1 (conservative test model) P(H2|data) BFH2:H1 BFH1:H2 Interpretation
No difference in mean Strouhal num-
ber when changing turbulence

0.983 60.7 0.0165 Strong evidence
against H1

No difference in mean Strouhal num-
ber bandwidth when changing turbu-
lence

0.0916 0.101 9.92 Positive evidence
for H1

No difference in mean Strouhal num-
ber when changing turbulence at
super-critical Reynolds numbers

1.00 ∼ 106 ∼ 0 Very strong evi-
dence against H1

No difference in mean Strouhal num-
ber bandwidth when changing turbu-
lence at super-critical Reynolds num-
bers

0.104 0.116 8.61 Positive evidence
for H1

No difference in mean Strouhal num-
ber when changing rib spacing

1.00 ∼ 104 ∼ 0 Very strong evi-
dence against H1

No difference in mean Strouhal num-
ber bandwidth when changing rib
spacing

0.131 0.151 6.63 Positive evidence
for H1

No difference in mean Strouhal num-
ber when changing rib size at super-
critical Reynolds numbers

1.00 ∼ 1013 ∼ 0 Very strong evi-
dence against H1

No difference in mean Strouhal num-
ber bandwidth when changing rib
size at super-critical Reynolds num-
bers

0.960 23.8 0.0421 Strong evidence
against H1
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Table B.6: Bayesian inference results testing the effect of roughness and turbulence intensity on
Strouhal numbers from wake measurements.

H1 (conservative test model) P(H2|data) BFH2:H1 BFH1:H2 Interpretation
No difference in mean Strouhal num-
ber when changing turbulence

0.873 6.85 0.146 Positive evidence
against H1

No difference in mean Strouhal band-
width when changing turbulence

0.0877 0.0962 10.4 Positive evidence
for H1

No difference in mean Strouhal num-
ber when changing turbulence at
super-critical Reynolds numbers

1.00 ∼ 104 ∼ 0 Very strong evi-
dence against H1

No difference in mean Strouhal band-
width when changing turbulence at
super-critical Reynolds numbers

0.104 0.116 8.62 Positive evidence
for H1

No difference in mean Strouhal num-
ber when changing rib spacing

1.00 ∼ 105 ∼ 0 Very strong evi-
dence against H1

No difference in mean Strouhal band-
width when changing rib spacing

0.709 2.44 0.409 No worthwhile ev-
idence against H1

No difference in mean Strouhal num-
ber when changing rib size at super-
critical Reynolds numbers

1.00 ∼ 1019 ∼ 0 Very strong evi-
dence against H1

No difference in mean Strouhal band-
width when changing rib size at
super-critical Reynolds numbers

0.951 19.6 0.0510 Positive evidence
against H1

Table B.7: Bayesian inference results testing the effect of roughness and turbulence intensity on global
unsteady drag coefficients.

H1 (conservative test model) P(H2|data) BFH2:H1 BFH1:H2 Interpretation
No difference in mean drag coefficient
when changing turbulence

1.00 ∼ 1019 ∼ 0 Very strong evi-
dence against H1

No difference in mean SD drag when
changing turbulence

1.00 ∼ 1030 ∼ 0 Very strong evi-
dence against H1

No difference in mean drag coefficient
when changing turbulence at super-
critical Reynolds numbers

1.00 ∼ 1017 ∼ 0 Very strong evi-
dence against H1

No difference in mean SD drag when
changing turbulence at super-critical
Reynolds numbers

1.00 ∼ 1043 ∼ 0 Very strong evi-
dence against H1

No difference in mean drag coefficient
when changing rib spacing

0.881 7.39 0.135 Positive evidence
against H1

No difference in mean SD drag when
changing rib spacing

1.00 ∼ 1012 ∼ 0 Very strong evi-
dence against H1

No difference in mean drag coeffi-
cient when changing rib size at super-
critical Reynolds numbers

0.999 1570 0.135 Very strong evi-
dence against H1

No difference in mean SD drag when
changing rib size at super-critical
Reynolds numbers

0.0927 0.102 9.78 Positive evidence
for H1
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Table B.8: Bayesian inference results testing the effect of roughness and turbulence intensity on global
unsteady lift coefficients.

H1 (conservative test model) P(H2|data) BFH2:H1 BFH1:H2 Interpretation
No difference in mean lift coefficient
when changing turbulence

0.181 0.222 4.510 Positive evidence
for H1

No difference in mean SD lift when
changing turbulence

0.960 24.1 0.0414 Strong evidence
against H1

No difference in mean lift coefficient
when changing turbulence at super-
critical Reynolds numbers

0.129 0.148 6.77 Positive evidence
for H1

No difference in mean SD lift when
changing turbulence at super-critical
Reynolds numbers

1.00 ∼ 108 ∼ 0 Very strong evi-
dence against H1

No difference in mean lift coefficient
when changing rib spacing

1.00 ∼ 104 ∼ 0 Very strong evi-
dence against H1

No difference in mean SD lift when
changing rib spacing

1.00 ∼ 1010 ∼ 0 Very strong evi-
dence against H1

No difference in mean lift coefficient
when changing rib size at super-
critical Reynolds numbers

1.00 ∼ 106 ∼ 0 Very strong evi-
dence against H1

No difference in mean SD lift when
changing rib size at super-critical
Reynolds numbers

0.0755 0.0817 12.2 Positive evidence
for H1
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Appendix

C
Additional data for the 3D wind
tunnel experiment

C.0.1 The first mode shape

To further refine the approximated mode shape, the adjusted R2 (defined in equation (C.1)) was
used to evaluate the best fit. This statistic is a goodness-of-fit indicator that prevents overfitting
and takes into account the number of explanatory variables and the residual error [155]. Here,
varres is the unbiased variance of the residuals (varres =measured value-predicted value) and
vartot the unbiased variance of the measured values. To be unbiased, the degrees of freedom
used in the denominator uses the number of measurements with the number of independent
variables subtracted from it (p+ 1 where the +1 is from the mean).

Adjusted R2 = 1 − varres
vartot

= 1 − (1 −R2) n− 1
n− p− 1 (C.1)

From table C.1, it can be seen that the mode shape ψ(z) = 0.221z2 + 0.786z has a slightly
better goodness-of-fit than ψ(z) = 1.01z − 0.0344 but that the mode shape integrals used for
the equivalent mass

∫︁ 1
0 ψ(z)2dz are similar. ψ(z) = z is a worse fit with a larger mode shape

integral. Overall, ψ(z) = 1.01z − 0.0344 was chosen as the best fit to the experimental mode
shape.

Table C.1: Goodness-of-fit and mode shape integral for three functions fitted to the experimental mode
shape in figure 5.4.

ψ(z) Adjusted R2 ∫︁ 1
0 ψ(z)2dz

z 0.879 0.333
1.01z − 0.0344 0.996 0.309
0.221z2+0.786z 1.00 0.303
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Appendix

D
Chimneys compared

Table D.1 shows the structural details of the chimneys used to compare the predicted maximum
response in chapter 8. The sources used by Lupi et al. are: Basu and Vickery [32], Basu [79],
Clobes et al. [165], Daly [166], Dyrbye and Hansen [108], Frandsen [167], Hansen [158], Hirsch
et al. [168], Langer et al. [169], Nakagawa [170], Pritchard [171], Ruscheweyh and Verwiebe
[172], Ruscheweyh [173], Tranvik and Alpsten [174] and van Koten [118].

Table D.1: Chimneys used in model comparison of section 8.5 from the work of Lupi et al. [115].

No h d λ me Sc fn Recrit ry,meas

[−] [m] [m] [−] [kg/m] [−] [Hz] [−] [−]
1 90 5.1 17.6 2090 4.04 0.75 6500000 0.062
2 91.5 5.13 17.8 2010 3.42 0.68 5970000 0.057
3 83 4.1 20.2 1360 4.88 1.15 6440000 0.063
4 60 1.58 38.0 233 2.24 0.5 420000 0.25
5 60 1 60.0 148 3.08 1.375 460000 0.4
6 55 2.14 25.7 323 1.69 1.12 1710000 0.18
7 45 1.26 35.7 341 16.5 0.642 340000 0.013
8 50 2.2 22.7 945 4.37 0.919 1480000 0.016
9 45 1.1 40.9 258 11.6 0.629 250000 0.025
10 54 2.2 24.5 834 16.27 0.61 980000 0.012
11 64 2.8 22.9 1085 3.1 0.578 1510000 0.357
12 56 2.2 25.5 593 5.88 0.62 1000000 0.227
13 75 2.4 31.3 490 4.08 0.37 710000 0.417
14 56 1.8 31.1 386 4.77 0.49 530000 0.278
15 80 3.96 20.2 5090 8.31 0.53 2770000 0.174
16 60 2 30.0 340 1.63 0.802 1070000 0.28
17 60 2 30.0 344 17.2 0.77 1030000 0.025
18 28 0.914 30.6 89 2.56 1.72 480000 0.153
19 38 1.016 37.4 230 10.71 0.68 230000 0.073
20 52 2 26.0 340 1.63 0.75 1000000 0.25
21 120 4.9 24.5 2418 2.9 0.49 3920000 0.122
22 99 4.25 23.3 3057 3.25 0.425 2560000 0.089
23 29 1.016 28.5 328 8.65 1.3 450000 0.07
24 140 6 23.3 1440 1.92 0.51 6120000 0.2
25 76.2 2.62 29.1 535 1.87 0.55 1260000 0.29
26 100 6 16.7 1639 3.06 0.61 7320000 0.133
27 35 0.728 48.1 155 14 0.52 90000 0.124
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Velocity response of VIV models for vertical structures 
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ABSTRACT: Slender vertical structures such as chimneys, towers or stacks can be prone to vi-
brations under wind effect. Cross-wind vibrations due to the vortex signature, known as vortex-
induced vibrations (VIV), is of importance. It is the consequence of a nonlinear coupling between 
the fluid force due to the Kármán vortex wake and the structure’s motion. Significant oscillations 
of self-limited amplitude can then be observed in a limited range of velocities. Various VIV 
models can be found in the literature and some codified methods are also proposed in civil-
engineering standards. This work aims to evaluate different models and methods for estimating 
the amplitude as a function of wind velocity for structures with circular cross-section.  

KEYWORDS: Vortex-induced vibrations, aeroelasticity, design models, wind-effects, chimney 

1 INTRODUCTION 

Bluff bodies in cross-flow can be submitted to unsteady transverse forcing due to the periodic 
build-up and shedding of vortices in their wake. The wake organisation and associated aerody-
namic loading are affected by the incoming flow characteristics and motion of the structure1. For 
a tall vertical structure in the atmospheric boundary layer, both the wind speed and turbulence 
vary along the height. The Reynolds number can be high and close to the critical condition for 
circular cross-section. Structural elasticity further complicates the phenomena, as its motion and 
deformation change the vortex organisation and fluid forcing in a complex nonlinear coupling 
mechanism. 

Two design approaches are familiar to the authors for estimating the response of civil engi-
neering structures due to VIV: the spectral method first developed by Vickery and Basu2 and the 
effective correlation length method proposed by Ruscheweyh3. The latter is adapted from the 
single mode response of a structure due to a harmonic forcing term partially correlated along the 
structure. The former is derived from linear random vibration theory using a forcing term de-
pendent on turbulence intensity. Both methods are codified in the Eurocode4 and the spectral 
method is also codified in the CICIND standard5.  

In addition to those design methods, fluid-structure interaction models using different forcing 
models can be used. These models can be separated into three groups6: those based on harmonic 
forcing independent of motion, those based on motion dependent forcing (aeroelastic) and the 
ones based on coupling the structural motion with a wake oscillator model. 

The aim of this paper is to evaluate and discuss different models and codified approaches for 
estimating the VIV response as a function of wind velocity for a slender structure with circular 
cross section. Experimental results provided in Vickery and Basu7 for a tall chimney is used as a 
reference. 
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2 VORTEX-INDUCED VIBRATION MODELS 

2.1 Simplified spectral method 

The spectral method is derived from linear random vibration theory where a nonlinear damping 
term is added. Assuming that the forcing term due to the vortex shedding and wind turbulence is 
acting on the top third of the structure and averaging the wind speed in that area, the simplified 
spectral method as described by Vickery and Basu7 is expressed as: 

σY

d
=

CL,rms

8 π2St 2
ρd2

me (
√πl

2 ( λ+2 ))
0 .5

B−1/ 2k3/2exp(−0 .5(1−k
− 1

B )
2

)

(1h∫
0

h

ψ2 ( z)dz)
0 .5

(ζ−Ka)
0 .5

 (1) 

Where the following notations are used: σY is the standard deviation at the top of the structure, 
d and h are the diameter and height, l is the characteristic length (in diameters), z is the vertical 
position, ψ is the mode shape, λ is the aspect ratio, ζ is the structural damping ratio, fn is the natu-
ral frequency, Ka is an aerodynamic damping parameter, St is the Strouhal number defined as 
fsd/V, where fs is the shedding frequency and V is the wind speed, B is a coefficient related to the 
forcing spectrum and turbulence, k is the ratio of wind speed to critical wind speed where 
Vcr=fnd/St, CL, rms is the standard deviation of the lift coefficient, aL is a limiting factor, me is the 
equivalent mass and ρ is the fluid density. 

Equation 1 will hereby be referred to as “Simplified V&B I”. The aerodynamic damping Ka is 
calculated using σY and defined as: Ka=Ka,0(1-(σY/d/aL)2) where Ka,0 is Reynolds number depend-
ent. The equation is rewritten in the form aσY

4+bσY
2+c=0 and solved. A different approach for 

solving equation 1, is to determine the aerodynamic damping directly from surface roughness 
data. This version is referred to as “Simplified V&B II”.  

A further simplification of equation 1 is used in the CICIND design code and Eurocode where 
maximum amplitude is calculated at k=1.1. l is also assumed constant for all structures and St is 
set to either 0.2 (CICIND) or 0.18 (Eurocode). 

2.2 Effective correlation length method 

The effective correlation length method is derived from the modal response of the structure to a 
harmonic lateral forcing for which the correlation length along the structure depends on the re-
sponse amplitude. In the present study, the procedure recommended in the Eurocode4 is used. 
The correlation length is solved in an iterative process until the oscillation amplitude converges 
or is out of bounds. The forcing coefficient used in the model is based on an envelope of a series 
of experimental measurements and gives a secure “worst case” forcing scenario. A statistical 
maximum speed must be used in the Eurocode but here a variable incoming speed is used. 

2.3 Fluid-structure interaction models 

Two other types of fluid-structure interaction models can be used for predicting the VIV response 
with variable wind velocity. The first are aeroelastic models using a single degree of freedom 
system with either modified harmonic forcing, F(Ay, fs, t), where Ay is the lateral response ampli-
tude, or a nonlinear motion-induced expression of the lateral force F(ÿ, ẏ, y, t). The second type, 
wake oscillator models, use two coupled equations, one for the structure and one for the vortex-
induced loading. Equation 2 is an example of such a coupled system model where the first equa-
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tion is related to the structural motion and the second one is for a fluid variable that can be inter-
preted as a dimensionless reduced lift coefficient6. The coupling terms are s and f where s is typi-
cally q but f can be the acceleration, velocity or displacement of the structure, or a combination of 
them. In the present study, the coupled-system model will be used with f equal the acceleration of 
the structure and parameters used by Facchinetti et al.8. In this model, δ is the ratio of stationary 
shedding frequency to natural frequency, γ is the added damping coefficient, μ is the mass ratio 
(structure to fluid) and ε is the van der Pol damping coefficient. 

ÿ+(2ζδ+
γ

μ) ẏ+δ
2
y=s, q̈+ϵ (q2−1) q̇+q=f

 (2) 

3 COMPARISON WITH EXPERIMENT 

Experimental results provided in Vickery and Basu7 for a tall chimney are compared with the 
predictions of vortex-induced vibration models and standard methods. The chimney’s structural 
and aerodynamic parameters are listed in table 1 and 2 respectively. Mode shape is ψ=(z/h)2. 

 
Table 1. Structural parameters 

Parameter   Value  Unit 

 h   201 m 
 d   12.8 m 
 λ   15.7 [-] 
 me   23000 kg/m 
 fn   0.37 [-] 
 aL   0.4 [-] 
 ζ   0.01 [-] 

 
Table 2. Aerodynamic parameters 

Parameter   Value  Unit 

 CL, rms   0.146 [-] 
 St      0.207 [-] 
 B    0.25 [-] 
 l    1 [-] 
 ρ    1.225 kg/m3 
  Ka,0   1 [-] 

  

Figure 1 compares the evolution of the amplitude response with the wind velocity as predicted by 
the simplified spectral methods (using the aerodynamic parameters in table 2), the effective cor-
relation length method (using the parameters provided in the Eurocode), the CICIND standard 
(using the parameters provided in the CICIND model code) and the coupled model. The ampli-
tude response is here plotted as the maximum dimensionless amplitude defined as: Ay=σYkp/d, 
where σY is the standard deviation of the displacement at the top of the structure and kp is a peak 
factor set here equal to 3.5. 

As expected, the CICIND model quickly converges towards a unique value associated to the 
maximum amplitude prediction at high speed. One can also notice that this maximum value is 
slightly overestimated. Following the procedure recommended in the Eurocode4, the effective 
correlation length method highlight an interesting shape response but overestimates the maxi-
mum amplitude and predict this maximum at a lower velocity ratio. The coupled system model 
also predicts a maximum amplitude close to V/Vcr=1.1 and strongly reduces the lock-in region. 
Simplified V&B I and II best match the response shape, but the location of the maximum ampli-
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tude is also predicted at a lower velocity. One can also notice that simplified V&B II gives lower 
amplitudes than the simplified V&B I. 

 
Figure 1 Evolution of the dimensionless amplitude response with the wind velocity, comparison of model predictions 

with experiment from Vickery and Basu7. 

4 CONCLUSION 

Among the two codified approaches that have been tested, the effective correlation length meth-
od, as proposed in the Eurocode standard, is the only one exhibiting a velocity dependant re-
sponse. The maximum amplitude is however strongly overestimated in comparison with the CI-
CIND prediction. As expected, the simplified Vickery and Basu methods better fit the data ex-
trapolated from their paper. Using a coupled system model the shape response is too sharp but a 
wider response could be obtained by tweaking the model parameters and coupling terms. Further 
work need to be done to better catch the shape of the response and the location of the maximum 
amplitude. Comparison with further experimental data is going on. 
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Abstract

Vortex-induced vibrations can damage structures exposed to cross-�ows. The current design
estimates of structural amplitude are based on structural nonlinearity but we will here derive
a di�erent estimate based on a coupled system with nonlinear �uid forcing. Two estimates
of maximum structural amplitude is investigated based on approximations the coupled system
and �uid speed at maximum amplitude. Our result shows that both estimates are close to
the maximum amplitude found using numerical integration but that the predicted �uid speed
di�ers. With further re�nement, the result presented may prove useful in designing structures
to withstand vortex-induced vibrations.

Keyword: Vortex-induced vibrations, nonlinear approximation, design estimates, prediction
error

1 Introduction

Structures in cross-�ow will experience unsteady periodic, loading due to shedding of vortexes
(Blevins, 2001) that can lead to severe vortex-induced vibrations (VIV). For a designer, there are
two useful pieces of information: when vibrations occurs and how severe vibration amplitudes
are. These information pieces enables us to �nd the lifetime of a structure and to design a
good tuned-mass damper.

When designing structures to withstand these aerodynamic loads, simple estimates of load-
ing and response reduces the time spent iterating designs. In the Eurocode (2010) and CICIND
(2010) building codes, structural excitation due to VIV is modeled using random vibration the-
ory and a simpli�ed structural nonlinearity (Vickery and Basu, 1983). This simpli�ed model is
made for the design o�ces of the early 1980s and often only the maximum response is found.

Another approach in modeling VIV is to couple a structural equation with a nonlinear
equation describing or mimicking the vortex forcing. This approach was used Facchinetti et
al. (2004) and several other researchers before them (Païdoussis et. al, 2010). A bene�t of
Facchinetti's model is that it has a simple but powerful coupling between wake and structure.
The problem is that it's a set of nonlinear di�erential equations. This is numerically solvable
but work is needed to make it as simple and useful as the current design model.

Why should a designer consider using something other than the existing design model?
According to Lupi et al. (2018), it is overly conservative and can be unrealistic for many
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Figure 1 � Sketch of the vortex-induced vibration system

designs. This is partly due to the formulation of the method and the parameters used; their
e�ect is especially prevalent at low Scruton numbers.

We will take steps to address the above concerns by creating a new predictive model that
perform better at low Scruton number (Sc<10). Based on an approximation of structural and
forcing amplitudes, we will de�ne two approximations of the �uid speed at maximum response.
The speed estimates is then plugged back into the amplitude approximates. Amplitude and
speed results from both estimates will then be compared with numerical simulations.

2 Vortex-induced vibrations model and approximation

2.1 Model de�nition

Fig 1 shows a simple system experiencing vortex-induced vibrations. The structure is left free
to vibrate in the êy direction and the wake oscillates on it. This has been modeled using a
combination of a linear structural oscillator and a nonlinear wake oscillator shown respectively
in Eqs. 1 and 2 below

ÿ+Dẏ + y = ω2
qMq, (1)

q̈+ε
(
q2 − 1

)
q̇ + ω2

qq = Aÿ . (2)

where the variables y and q are dimensionless. Here, A and ε are experimentally determined
constants and M is the unsteady lift force, F , scaled by the mass-ratio µ (M = F/µ). The
parameters D, F and µ as de�ned as

µ =
m + 0.25πρd2Cm

ρd2
, (3)

D =2ζ +
CD

4πµSt
, (4)

F =
CLo

16π2St2
, (5)

m is structural mass per unit length, ρ �uid density, d diameter, ζ critical damping ratio and St
Strouhal number. Cm, CD and CLo are the added mass, mean drag and unsteady lift amplitude
coe�cients respectively.
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One variable is unde�ned and it's one of the most important: the �uid speed variable ωq.
It's de�ned as the product of the reduced velocity based on the structure's natural frequency
and the Strouhal number (ωq = URSt). It is therefore a reduced �uid frequency equivalent to
the ratio of shedding frequency to the natural structural frequency.

If we assume that the equations are weakly nonlinear, then they can be approximated. This
system can be shown to have the approximate steady-state solutions below when using the
method of averaging:

ry (ωq, θ) =2
ω2
qM

D

[
1 +

ωqAM sin(θ)

εD
(sin(θ)− D cos(θ))

]0.5
sin(θ), (6)

0 =ω2
q(1− AM)− 1 + ω2

qAM sin2(θ) +

(
D

sin(θ)
+
ω2
qAM

D
sin(θ)

)
cos(θ). (7)

where ry is the structural amplitude and θ is the phase di�erence between q and y , i.e. phase
di�erence between force and motion. Notice that there is no equation for the wake amplitude.
As the structural equation and coupling is linear, the equations for wake amplitude can be
expressed as a function of phase di�erence only. This then enables us to write the structural
amplitude as a function of phase di�erence only.

2.2 Amplitude scaling

If we ignore the square root term and the last sin θ term in Eq. Eq. 6, we get an equation that
depend linearly on the ratio of M to D. If we expand this ratio, we get the scaling relationship

ry ∝
2πF

Sc + 2π2ζ +
CD

2St

. (8)

where Sc is the Scruton number de�ned as

Sc =
4πζm

ρd2
. (9)

In words, predicted amplitude is dependent on four parameters: geometry, mass, structural
damping and aerodynamics. This di�ers from some previous notions on maximum amplitude
scaling. However, it corroborates the opinion that combining mass and damping into a param-
eter is arbitrary (Sarpkaya 2004).

2.3 Model validation

To �nd the amplitude at a given speed, the �rst step is to �nd the phase di�erence using Eq.
7. This may look daunting, but it can be rewritten to a cubic equation. One of the closed form
solutions corresponds to the high amplitude VIV response, another to low amplitude and the
last to an unstable solution. Only the phase di�erences between 0 and 180◦ are used.

A "postcritical Reynolds" experiment with dampers by Belloli et al. (2015) is used for
validation and for comparison with the maximum amplitude of the CICIND model (2010). See
Tab. 1 for parameters. Fig. 2 shows the comparison and the design code over predict by
more than a factor of 2. Our model does well at ωq < 1 and less well above. The maximum
amplitude between experiment and model is similar as is the range of high amplitude vibrations.
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Table 1 � Parameters used to compare the approximations and the numerical results.

Case ε A γ F ζ d ρ
Exp. 0.3 [-] 12 [-] 0.479 [-] 0.0401 [-] 0.01200 [-] 0.72 [m] 1.225 [kg/m3]
Low dam 0.3 [-] 12 [-] 0.442 [-] 0.0401 [-] 0.00191 [-] 2.00 [m] 1.225 [kg/m3]
High damp 0.3 [-] 12 [-] 0.442 [-] 0.0401 [-] 0.00955 [-] 2.00 [m] 1.225 [kg/m3]

0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

Fluid speed (ωq)

A
m
p
lit
u
d
e
(r

y
)

Experiment
Our model
Design code

Figure 2 � Comparison of models and experiment of Belloli et al. (2015)
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3 Estimates of maximum

3.1 The approximations

Two di�erent approximates of the frequency at maximum amplitude are tested:

ωq1 =
1

1−
√
AM

, (10)

ωq2 =

√
D (sin (θ)− D cos (θ))

AMD sin (θ)3 + AM cos (θ)sin (θ)2 + D (1− AM) sin (θ)
. (11)

The �rst approximate (Eq. 10), dubbed "method 1", is based on the work of de Langre
(2006). Our guess is that maximum amplitude corresponds to the upper limit of the linear
synchronization de�nition. In terms of Fig. 2, this corresponds to the start of our rightmost
low amplitude solutions. Method 1 is independent of the structural damping parameter D and
depends only on the coupling terms associated with forcing.

The second approximate, "method 2", is based on assuming that maximum response coin-
cide with a speci�c phase di�erence. The form of method 2 is shown in Eq. 11 and includes
structural damping and the forcing terms. An added bene�t of this approach, is that it reduces
the calculation process to one longer equation; we are assuming we know θ, so there is no need
to calculate the value. By inspection, the phase di�erence at maximum response is ≈ 0.65π.

The estimates of maximum amplitude and dimensionless �uid speed are compared to results
from numerical simulations at several Sc using two damping cases. One corresponds to a low
damping case and the other to a high damping. The values of µ are inferred from Sc using the
constants given in Tab. 1 and Eqs. 3 and 9. For comparison, both absolute values and the
relative di�erence in percentage are used in the next two subsections.

3.2 Approximation of �uid speed at maximum response

The evolution of dimensionless �uid speed as a function of Sc when structural damping is low
is shown in Fig. 3. When comparing the results using method 1 and numerical, it is easy to
spot di�erences. Predicted speed changes di�erently with Scruton number and the values are
inconsistent for method 1 and numerical. The approximate speed using method 2 is consistently
higher than the numerical result but does drop similarly with increasing Sc .

To further evaluate the approximations, a second damping case is studied. The evolution of
�uid speed at maximum response when damping is �ve times greater is shown in Fig. 4. With
the higher damping, predicted speed drops similarly for method 1 and numerical although the
predicted speed is consistently much higher. Increasing damping barely changed the di�erences
between numerical results and method 2. The main di�erence would be a slightly increased
di�erence in predicted value.

3.3 Maximum response

Maximum response is predicted to decrease similarly to how the �uid speed at maximum re-
sponse drops, i.e. like Sc−1. This gives a rapid drop in predicted vibration amplitude as seen
in Figs. 5 and 6 showing the progression for the lightly and higher damped cases respectively.
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Figure 3 � ωq corresponding to maximum ry for low damping case
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Figure 4 � ωq corresponding to maximum ry for high damping case
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Figure 5 � Comparison of maximum response amplitude using approximates and numerical
integration at low structural damping

Even with the di�erence in predicted speed, method 1 predict similar amplitudes as the
numerical results for most tested Scruton numbers in the lightly damped case. This could be
an indication of low sensitivity in �uid speed when it comes to estimating maximum amplitude.
For the higher damped case, this is not true. At Scruton numbers below 2, the amplitude
becomes noticeably over predicted and then under predicts for all Scruton numbers. The more
egregious error, is that the predicted speed corresponds to the low amplitude solution for Scruton
numbers higher than nine.

Method 2 performs similarly to method 1 for the lightly damped case but with a di�erence,
the predicted amplitude is noticeably higher at Sc = 1. The real point of improvement is in
the higher damped case. While it has the same over predicting behavior at Scruton numbers
below 2, the predicted amplitude is close to the numerical results for all other tested Scruton
numbers. In other words, the maximum speed predicted is within the VIV region and close to
the amplitude peak.

At the shown damping levels, method 1 performed passably for Scruton numbers less than
10. If we increase the damping, method 1 eventually under predicts for all Scruton numbers.
The best estimate of maximum amplitude and �uid speed at maximum is method 2 which is
based on assuming we know the phase di�erence that give maximum amplitude. The results
are promising and in the next section we will further explore the usefulness of our estimate.

4 Applicability of our estimate of maximum amplitude

We have so far compared the absolute di�erences between our approximates and the numerical
results for two di�erent damping levels. This section is focused on the applicability of our
predictions and a comparison with other predictive models, more speci�cally the model of
Vickery and Basu used in building codes (CICIND, 2010; Eurocode, 2010).

As seen in section 2.3 and Fig. 2, there is room for improvement in the models used in the
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Figure 6 � Comparison of maximum response amplitude using approximates and numerical
integration at high structural damping

mentioned building code. We will focus on two connected, negative properties. The �rst of
them, is that they tend to be overly conservative in estimating amplitudes. Lupi et al. (2017)
studied the di�erence between predicted and actual VIV amplitude and found that the predicted
amplitude tended to be much larger than the actual vibration amplitude.

The second property has to do with predictive amplitude as a function of Scruton number
(Lupi et al., 2017). The formulation used in the building codes can have abrupt jumps in pre-
dicted amplitude when slightly changing structural damping or aerodynamics. This is associated
with a critical Scruton number that marks the transition from positive linear structural damp-
ing to negative. High amplitude prediction can also be connected with the imposed negative
aerodynamic damping e�ect.

Our estimates of maximum amplitude follows a di�erent trend and there is a smooth increase
in predicted amplitude as Scruton number decreases without abrupt jumps. Our predicted
maximum amplitude can have large changes with Scruton number at Sc < 2, but this is not as
pronounced as the behavior of the design models..

How applicable is our two dimensional model in predicting the dynamic response of a three
dimensional structure? Due to three dimensional e�ects, lengthwise force correlation and struc-
tural mode shapes, it is not unthinkable that our predictions will be wrong. But it may be
possible to simplify and include the mentioned e�ects into our model. If we follow the same
reasoning as Vickery and Basu (1983), we can modify our lift force by assuming a constant
average speed over the top part of the cylinder. The lift force is then weighted and integrated
over the cylinder length with a weighting factor proportional to the structural mode shape.

Another aerodynamic e�ect not accounted for in our model, but is in the design models,
is the e�ect of turbulence and noise on the prediction. We can theoretically get the response
amplitude using unsteady aerodynamic coe�cients measured in turbulent conditions, but pre-
dicting the correct wind speed is harder; amplitude might be correct but the speed not. Getting
the correct coe�cients at super-critical (or "postcritical") Reynolds numbers is another story
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and requires extensive work.

5 Conclusions

Two estimates of maximum structural amplitude due to vortex-induced vibrations has been
tested and shown to accurately estimate maximum response. The best of the two is to assume
that maximum amplitude occurs at a prede�ned phase di�erence between forcing and motion.
Using a phase di�erence of θ = 0.65π gives an approximate �uid speed at maximum response
slight higher than numerical results but similar evolution with Scruton number. The di�erence
in �uid speed has a small e�ect on the di�erence in predicted maximum amplitude and the
numerical result and estimate are similar.
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1 Abstract 
Industrial chimneys, launch vehicles and stacks are examples of large diameter circular cross section structures 

which can be prone to cross-wind vortex-induced vibrations. VIV has been extensively studied for both 

fundamental and applied issues, but few documented studies concern high Reynolds number regime (> 5·105) in 

atmospheric turbulent wind. This paper introduces a field test on a slender light and low damped chimney designed 

to experience “supercritical” VIV at moderate wind velocity. The chimney was recently erected in a wind monitored 

field, near the Atlantic coast of France. The purpose of this paper is to present the first vibration results obtained 

during a sequential 13-days period in September 2020. A statistical analysis has been performed on the amplitude 

and dominant frequency responses and results are reported in term of probability distribution as a function of wind 

speed and direction.  VIV events of low (< 15 % of diameter) to moderate amplitude (> 30 % of diameter) have been 

highlighted in a range of wind velocity 25 % lower than expected, along with significant influence of the wind 

direction. Low turbulent easterly wind giving vortex-induced vibrations with the highest amplitude.    

Keywords: Vortex-induced vibration; super-critical Reynolds number; full-scale experiment; chimney 

2 Introduction 
Slender structures with circular cross section can be prone to vibrations under wind effects and must be designed 

and/or treated accordingly. For an isolated tower, stack or chimney, one generally considers two kinds of 

vibrations: in-line vibrations due to atmospheric turbulence and cross-wind vibrations due to the vortex signature. 

The former concerns extreme wind speed and is the consequence of random aerodynamic load due to turbulence. 

Since this load can be considered as independent from the structure’s dynamic response, the problem can be 

addressed using well-accepted random vibration methods or simplified equivalent static formulation (see for 

example [9, 26]). The latter is more complex. It is the consequence of a nonlinear coupling between the fluid force 

due to the Karman vortex wake and the chimney’s motion. This phenomenon, known as vortex-induced vibration 

(VIV), has been extensively studied for both fundamental and applied issues (see for example [5, 20, 26] for a 

review).  

VIV is characterized by significant oscillations of self-limited amplitude in a limited velocity range where the wake 

frequency is controlled by the motion, a phenomenon referred as lock-in. Both the oscillation amplitude and range 

of lock-in strongly depend on the structure to fluid mass ratio and on the damping ratio of the structure. This is 

encapsulated in the Scruton number (Sc, a dimensionless mass-damping ratio parameter) with low values leading 

to higher vibration amplitudes and a wider lock-in range. The Reynolds number and turbulence characteristic of the 

incoming flow can also have significant impact on the VIV of slender structure in atmospheric boundary layer [23, 

28]. It is well established that the VIV response is strong for low turbulence flow in the sub-critical Reynolds 

number regime (< 3·105), comparatively negligible in the critical-transitional Reynolds number regime and that a 

recovering VIV response can be observed in the super-critical Reynolds number regime (> 106) [23]. 

Tall industrial chimneys, launch vehicles and stacks are examples of large diameter circular cross section structures 

which can be prone to vortex-induced vibrations at supercritical Reynolds number in atmospheric turbulent wind. It 
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is then necessary to validate appropriate methodology for their design and/or the design of additional damping 

devices (cf. [4] for simulations on the effect of additional damping devices). VIV models are numerous and codified 

methods can be found in many standards but their ability to capture the VIV amplitude response at super-critical 

Reynolds numbers and with real atmospheric boundary layers needs validation. Wind tunnels are also important in 

response prediction though the scaled models can cause cross-wind loads to be highly overestimated [29]. A 

method for overcoming the scaling effect is to artificially increase the Reynolds number by adding surface 

roughness to the cylinder’s surface [20, 21]. While this can satisfactorily change the vortex wake signature (e.g. 

mean drag and rms lift) for a fixed cylinder, the impact on an 3D slender cylinder during lock-in is less clear and 

wind tunnel studies shows various conclusions so that it needs to be further investigated [2, 6, 11, 27]. 

Continuous measurements from monitored industrial chimneys can be found in the literature [7, 13, 14, 18, 19, 25, 

30] but the monitoring is often limited to acceleration data and a reference velocity. These chimneys have been 

designed to or treated to limit VIV meaning that the observed vibrations were small. Additionally, the access and 

opportunity to install extra sensors were limited as they are in use. More response data on industrial chimneys are 

available but often only the maximum amplitudes are mentioned and are used to validate VIV models in design 

standards [15, 16]. 

For other more well-studied circular structures using field-experiments, there is a problem of dimensions [12, 23, 

32]. Due to their smaller size, the high amplitude VIV response was at sub-critical or critical Reynolds numbers 

rather than super-critical. The same problem was observed in wind tunnels when using larger scale wind tunnel 

experiments [3] as the speed needed to reach super-critical wind speed is large.  

In that context, a custom-made 35,5 m steel chimney have been recently erected and instrumented on a monitored 

wind field, in Bouin (near the Atlantic coast of France). This chimney was designed to have a low Scruton number 

(Sc < 2) and to experience “super-critical” VIV at moderate wind speeds (< 10 m/s). The paper is organized as 

follows: field test information and methodology including the structural characteristics of the chimney are 

presented in Section 3. Characterization of the incoming wind is reported in Section 4. Vibration results obtained 

during a sequential 13-days period in September 2020 are presented in section 5, before the conclusion and 

outlooks of this new test platform. 

3 Field-test platform details and methodology 

3.1 Structural characteristics of the chimney 
The chimney was designed, manufactured and erected by Beirens (Poujoulat group) during the summer of 2020. 

Figure 1 shows a view of the chimney in the field. This custom-made steel chimney of height h = 35,5 m has a 

diameter dlower = 1 m for its 12 m long bottom part and a diameter dtop = 2 m for its 20,5 m long upper part, with a 3 

m long tapered connecting element (see figure 2). This unusual shape (for a chimney) was chosen to ensure vortex-

induced vibrations in the super-critical Reynolds number range (> 106 ) at moderate wind speed (< 10 m/s) for the 

purpose of this experiment. 

Structural characteristics of the chimney are given table 1, along with the expected Reynolds number at the critical 

wind speed, referred to as ReVIV. 

Table 1 Structural characteristic of the chimney (as identified at the start of the experiment). 

dtop  [m] dlower  [m] h  [m] hd=2m [m] me  [kg/m] f1  [Hz] ζ1  [%] Sc  [-] ReVIV  [-] 

2 1 35,5 20,5 322,6 0,78 0,22 1,82 1,16·106 

The equivalent mass, me, has been calculated using equation (1) where ψ(z) is the shape of the first bending mode 

and m(z) is the mass per unit height (both being identified during the design phase of the chimney using CAD). 

Experimental tests performed at the beginning of the test campaign identified first natural frequency, f1, as 0,78 Hz 

and allowed the identification of the associated damping ratio ζ1. The Scruton number, calculated using formula (2), 
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was rather low Sc=1,82 and high amplitude response was expected. Using the Eurocode’s recommendations [10], 

the critical wind speed (fs=fn with a Strouhal number St=0,18) was close to 8,7 m/s (ReVIV ≈ 1,16·106) and the 

maximum dimensionless amplitude (in top diameter) would be either 0,31 (method 1 of Ruscheweyh [23]) or 0,53 

(method 2 of Vickery and Basu [28]). 

 

Figure 1 Experimental chimney in the monitored field (the mast with wind anemometers is slightly visible, see figure 2 for 
details). 

 

 

Figure 2 Sketch of the chimney and anemometer’s mast, dimensions and locations of anemometers and accelerometers sensors. 

 

𝑚𝑒 =
∫ ψ(z)2𝑚(z)𝑑𝑧

ℎ

0

∫ ψ(z)2𝑑𝑧
ℎ

0

(1) 

𝑆𝑐 =
4𝜋𝜁𝑚𝑒

𝜌𝑑2
(2) 
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It is important to note that due to a damaged bolt, the natural frequency decreased to around 0,71 Hz at the end of 

the experimental campaign. In that context, an increase of the associated damping ratio, not measured, is also 

suspected. This will be discussed further in section 5.  

3.2 Field-test location and instrumentation 
The chimney was mounted in a monitored wind field, in Bouin (GPS coordinates 46,975, -1,998), near the Atlantic 

coast of France. According to the Eurocode [10], this area is in a wind zone category with a 50-years reference wind 

equal to 26 m/s. The site is surrounded by farmland with sparse gathering of trees and the terrain category is 

classified as type II [10]. Due to the remote location of the field, and lack of nearby structures, the model chimney 

has been designed without fearing for loss of human life, animal life or damage to nearby structures. 

The chimney was instrumented with two bi-directional accelerometers, one at 20,4 m and one at 35,35 m (near the 

top) as shown in figure 2. Their measuring range was ±2 g and the acquisition frequency was set to 10 Hz. Wind 

velocity was measured at several heights using wind anemometers mounted to a 40 m tall truss mast, located 50 m 

North-West of the chimney (see figure 2). Vane anemometers, measuring speed and direction, were placed at 

heights of 18 and 35 m and a cup anemometer was located at 10 m. Both Vane and cup anemometers record the 

wind statistics (mean, standard deviation, maximum of speed and direction for the vane anemometers) over a 10-

minute period. An additional sonic anemometer was located at 25 m height. It could measure the unsteady velocity 

(3 components) at a rate of 5 Hz. While the recording frequency of the sonic anemometer was different from the 

accelerometers, the recordings were time synchronized. Locations of sensors are sketched in figure 2. 

3.3 Data analysis process  
Vibration and wind results shown in the present study are based on 1872 ten-minutes records gathered at 35 m 

over a sequential 13-days period in September 2020. Additional wind data, gathered with all the anemometers 

distributed along the truss mast, were used to plot the mean and turbulent velocity profiles of the incoming wind.  

Each sample of ten-minutes top wind was analyzed by first getting the mean velocity and dominant wind direction. 

As the accelerometer directions are constant, the displacements are transformed to cross and inline vibrations 

using the direction of incoming wind. This was used to calculate, using the top bi-directional accelerometer, an 

associated 10-minute cross-wind acceleration signal. The displacement, y(t), was calculated from the acceleration 

signal using the inverse Fourier transform of the spectrum 𝑌(𝜔) obtained from the Fourier transform of the 

acceleration A(ω) and relation (4). A fifth order high-pass Butterworth filter with cutoff frequency of 0,3 Hz has 

been applied to the acceleration data to eliminate low frequency noise amplified by the Fourier identity [17]. 

 𝐴(𝜔) = −𝜔2𝑌(𝜔) (4) 

The Hilbert transform [8] was used to calculate the response envelopes of the displacement in order to get the 

mean, maximum and standard deviation of the displacement amplitude over a 10-minute recording. The associated 

dominant vibration frequency was identified by peak detection on the spectrum Y(ω). 

For each ten-minutes sample two cross-wind vibration values were gathered: the maximum amplitude of vibration 

and the associated dominant frequency along with two wind values: the mean velocity and the dominant direction. 

Statistical analysis was performed using the 1872 samples in order to plot the probability distribution of the 

vibration amplitudes and associated dominant frequency as a function of wind velocity or direction. These 

probability distributions were calculated using a statistical kernel function [31]. The kernel used here is the 

standard Gaussian kernel used in R and the ggplot2 library (version 4.0.2 and 3.3.2 respectively).  
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4 Wind characterization 

4.1 Wind speed and directional distribution 
The top vane anemometer was used to create the “wind rose” plotted in Figure 3 which shows the distribution of 

wind speeds and directions. The two most frequent wind directions were north-westerly and north-easterly. 

Additionally, the most frequently observed speed range was 4 to 6 m/s with speeds above 6 m/s having a long tail 

and short tail for speeds below 4 m/s. When ignoring the direction, the distribution of all wind speeds resembles a 

discrete log-normal probability distribution or a negative binomial distribution. The probability of a specific wind 

direction was found using the relative frequencies and are: S -4,4 %, SW -1,5 %; W -1,9 %; NW -29,5%; N -16,8%; 

NE-31,4%; E -11,4% and SE -3,1%. 

 

Figure 3 Frequency of incoming wind velocity (with 8 directional bins) using the 10-mintue mean directions and speeds at 35 m. 

Using the measured wind speeds and Ucrit = 8,7 m/s, the probability of seeing a speed above 0,8·Ucrit (Eurocode’s 

recommendations for the onset of VIV), is 21,3 %. As vortex-induced vibrations is only observed in a specific speed 

range, an upper limit to the investigated wind speed range can be added and is defined as 1,2·Ucrit which is when 

one of the Eurocode design methods gives the highest amplitude [10]. With this, 21,3 % of the observed incoming 

wind speeds can be found in the vortex-induced wind speed range of 7 to 10,5 m/s. The two given percentages are 

the same as 10,44 m/s was the maximum observed mean wind speed. 

4.2 Wind speed and turbulence profiles 

The mean wind velocity and turbulence intensity evolution with height, for all eight cardinal and ordinal directions 

are plotted in figure 4, gathering wind data over the anemometer masts, for wind speeds greater than 5 m/s at 35 

m height. The turbulence intensity I(z), is defined as the standard deviation of speed at a given height divided by 

the corresponding mean speed. Eurocode mean wind velocity and turbulence profiles, for terrain category II is also 

plotted in figure 4.  

One can first notice that those mean velocity and turbulence profiles, for which ten-minute wind speed at 35 m 

remain lower that 12 m/s, strongly depend on the wind direction. While the Eurocode type II mean velocity profile 
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was close to a median profile in comparison with the experiments, the Eurocode type II turbulent profile 

overestimate the turbulent intensity for all the direction. A direct comparison with Eurocode profiles, which 

concern reference wind (ten-minutes at 10 meters) of higher mean value (50-years wind), should then be 

considered with some cautions. Nevertheless, for this low to moderate wind speed campaign one can highlight 

some relevant information regarding the incoming wind that will be useful for the vibration analysis.  

The north-westerly wind which has the highest probability of occurrence has a mean velocity profile close to 

Eurocode type II model but a turbulence intensity value twice lower with a value slightly less than 10 % at 35 m. 

The easterly wind which concerns 11,4 % of the observed direction but highlight significant sequences of vortex-

induced vibrations of the chimney, was characterized by an important speed gradient with height and a low 

turbulent intensity less than 2 % at 35 m. This means that wind coming from inland and headed towards the ocean 

has the strongest shear but the lowest mean turbulence intensity at the heights measured. 

 

Figure 4 Mean incoming speed and turbulence profiles (filled dots) compared with the Eurocode profile  for terrain category II 
(solid lines). 

5 Cross-wind vibrations of the chimney 
Following the data analysis process recalled in section 3.3, a statistical analysis of the chimney’s cross-wind 

vibration was performed. An example of build-up to vortex-induced vibrations and the steadiness of it during lock-

in is shown in figure 5. This figure shows the displacement and amplitude envelope for a segment with easterly 

wind which starts at 4,5 m/s but steadily increased to above 5 m/s according to the sonic data. Statistical 

distributions of the maximum dimensionless amplitude of vibration (normalized with the top diameter) and 

associated dominant frequency (normalized with the chimney’s natural frequency), are plotted in figures 6 and 7 as 

a function of wind velocity.  
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Figure 5 Example of cross-wind displacement signal with build-up to vortex-induced vibrations and the vibration during lock-in at 
5 m/s. 

 

Figure 6 Probability distributions of maximum dimensionless amplitude (normalized with tip diameter) at given speed range. The 
interior rectangle and lines are boxplots showing summary statistics. 

Results are reported using violin plots, mirroring the probability distribution of the data along the y-axis, as a 

function of discrete wind speed groups (nominal speed value ±0,25 m/s). The exceptions are for 1,25 and 10,25 m/s 

which groups all speeds below 1,5 and above 10 m/s respectively. In addition to the violin plot, boxplots 

highlighting the summary statistics (median and quartiles) are shown. A benefit of violin plots over boxplots, is that 

it shows the distribution of the data. It is particularly relevant for multimodal processes [31] for which the most 

likely value, associated to the widest point of the violin shape, can differ from the median value. It should also be 

noted that for the sake of visibility, the mirrored probability distributions shown in figures 6-8 were scaled so that 

their width were fixed for all speeds. Moreover, the tails of the probability distributions, which contain artifacts of 

the kernels used, were removed from these plots. 
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Figure 7 Probability distributions of the dominant frequency of motion (normalized with chimney’s first natural frequency) at 
given speed range. The interior rectangle and lines are boxplots showing summary statistics. 

As pointed out in section 4.2, the direction of the incoming wind strongly affects the mean wind velocity and 

turbulent intensity profiles. One then expects a significant impact of the wind direction on the chimney’s cross-

vibration. Statistical distributions of the maximum dimensionless amplitude of vibration are then plotted in figure 8 

as a function of wind direction. Direction groups used in figure 8 were the cardinal and ordinal directions ±22,5°, 

with 0°±22,5° defined as northerly wind and 90±22,5° as easterly. Both of the groups were based on the mean 

values from the vane anemometer at 35 m.  

Figure 6 clearly shows that cross-wind vibrations of significant amplitude can be observed for wind speeds between 

5 and 8,5 m/s. With a maximum amplitude up to 35% of the diameter (0,7 m) observed at speeds between 6 and 

6,5 m/s. This maximum amplitude was close to the one calculated using the Eurocode’s method 1 (based on 

Ruscheweyh’s approach [23]) and 35 % lower than the one calculated using the Eurocode’s method 2 (based on 

Vickery and Basu’s approach [28]). However, this maximum amplitude was observed at a wind speed 2 m/s lower 

than the one recommended by Eurocode, suggesting a higher Strouhal number value (closer to 0,25) at high 

Reynolds number (Re ≈ 8,3·105 for U = 6,25 m/s). 

At speeds below 5 m/s, there were cases of amplitudes greater than 20 % of the diameter. In most of these cases, 

the mean speed was slowly reducing from the VIV lock-in speed region over several 10-minute recordings. The 

vibration amplitude continued to be high and it was possible for high amplitude VIV to continue until mean wind 

speeds as low as 3,3 m/s. In a few other cases, high amplitudes response could be due to the speed increasing 

towards the end of the 10-minute recording.  

Lower amplitude levels (less than 15 % of diameter) were also observed in the wind speed range 5 to 8,5 m/s. 

Based on the shape of the violin plot, the lower amplitude vibrations have higher conditional probability than the 

high amplitude vibrations. The statistical distributions of the maximum amplitude as a function of the wind 

direction, reported in figure 8, suggest that the lower VIV data are likely to be attributed to north-westerly wind 

which was the most frequently observed direction and that the sequences of vortex-induced vibrations with the 

highest amplitude were due to the low turbulent easterly wind. 
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Figure 8 Probability distributions of maximum dimensionless amplitude (normalized with tip diameter) for different directions 
±22,5°. The interior rectangle and lines are boxplots showing summary statistics. 

No vibration amplitudes greater than 7,5 % of the diameter were observed for wind speeds higher than 8,5 m/s. 

From 8,5 m/s up the 10,25 m/s (which groups all speeds above 10 m/s), one can observe that the probability 

distributions of the maximum amplitude are more centered with a median value gradually increasing with the 

velocity. The vibrations can then be due to turbulence-induced vibrations. In this range of wind velocities, the 

probability distributions of dominant frequency are more surprising. For turbulence-induced vibrations one would 

expect a dominant frequency close to the first natural frequency of the chimney (and thus a dominant normalized 

frequency close to 1). Nevertheless, the shape of the violin plot reveals two areas of high probability for the 

dominant frequency (see for example figure 7, for U = 8,75 m/s), one with normalized frequencies between 0,9 and 

1 and the other with normalized frequency between 0,8 and 0,9. As reported in section 3.1, a damaged bolt was 

observed at the end of the test campaign. A check showed a decrease of 10 % for the chimney’s first natural 

frequency that could explain this peculiar distribution of the dominant frequency in this turbulence-induced 

vibration regime.  

Even if the probability of occurrence of cross-vibrations with significant amplitude was rather low below 5 m/s, it is 

interesting to focus on the evolution of the probability distribution of the dominant frequency with wind speed 

before the lock-in (see figure 7). Up to 4,75±0,25 m/s, two distinct frequency groups can be highlighted. One group 

contains the median frequency which increases almost linearly with the wind speed while the other group concern 

normalized frequencies between 0,9 and 1 with increasing conditional probability with speed. The first group is 

clearly related to the vortex shedding signature while the second is due to turbulence-induced vibrations. 

Relevant information on response can be found in figure 8 which shows the statistical distributions of maximum 

amplitude as a function of the wind direction. Easterly (low turbulent) winds were the most favorable to generate 

high amplitude (>30 % of top diameter) vortex-induced vibrations. Easterly winds also have the highest conditional 

probability of maximum amplitudes greater than 15 % of the diameter (near 50 % of the maximum amplitudes 

were above 15 % of the diameter). Vortex-induced vibrations were also observed with the more turbulent north-

westerly winds, but with lower amplitude of vibrations. Vibrations up to 18% of the diameter was observed for 

southerly winds but with a low probability of occurrence. The shape of the violin plot for southerly direction shows 

a high conditional probability for vibrations lower than 5 % of the top diameter and this could be due to turbulence 

induced vibration (according to figure 4, the turbulent intensity was high, close to 15 % at 35 m height, for 

southerly winds).  

The conditional probability of wind speeds in the range 5 to 8 m/s was higher for easterly, north-westerly and 

southerly winds (it was 59,6 % for north-westerly wind, 47,6 % for southwardly and 42,7 % for easterly wind, see 

figure 3). For northerly and north-easterly wind, on the other hand, it’s much more likely to see speeds below 5 m/s 
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and the most likely amplitudes are low. This might be a reason for why the first three mentioned directions have 

higher conditional probability for VIV of significant amplitude. Easterly wind (towards the ocean) also has the 

strongest speed gradient with height and the lowest turbulent intensity (less than 2 % at a height of 35 m in 

comparison to 12 % for the north-westerly wind). While the full impact of shear flow on vortex wake signature and 

VIV is not well understood, it is well known that VIV is stronger for low turbulent flow in 2D experiments [1, 11, 22, 

26, 29]. This is also shown in the present study in the presence of atmospheric boundary layers with different 

turbulence intensity profiles. 

6 Conclusion 
A custom-made chimney with large top diameter (2 m) and low Scruton number (Sc = 1,82) was erected in a 

monitored wind field, near the Atlantic coast of France. Details on the field-test platform and methodology, 

including the structural characteristics of the chimney and the wind “potential”, have been presented. Preliminary 

vibration results, obtained during a sequential 13-days period in September 2020, was presented and discussed. 

Amplitude and frequency responses were reported in term of probability distributions plotted as a function of both 

wind speed and direction. As expected two types of cross-wind vibrations were observed, turbulence-induced 

vibrations and vortex-induced vibrations.  

Vortex-induced vibrations of significant amplitude were mostly observed for wind speeds between 5 and 8,5 m/s 

with maximum amplitude near 6,25 m/s. This “critical” velocity value was lower than expected, suggesting a higher 

Strouhal number (closer to 0,25) for high Reynolds numbers (Re ≈ 8,3·105 for U = 6,25 m/s). Several VIV events of 

low (< 15 % of diameter) to moderate amplitude (> 30 % of diameter) were observed with lower amplitudes being 

more likely. The results also show that easterly (low turbulent) winds were mainly responsible for the highest 

amplitudes of vibration (> 30 % of top diameter) while the low amplitude VIV response were mainly due to north-

westerly and south winds with higher turbulence intensity. 

The goal of this test platform is to gather VIV data at supercritical Reynolds number in real atmospheric wind. These 

preliminary results will help to forecast specific VIV events on this chimney in order to strengthen the present 

results and perform additional unsteady pressure measurement, to better understand the 3D vortex signature, 

loading and VIV response at “super-critical” Reynolds numbers and for different turbulence conditions.   

7 Acknowledgement 
This work is part of a partnership co-funded by Beirens (of the Poujoulat Group), Centre Scientifique et Technique 

du Bâtiment (CSTB), Centre National d’Etudes Spatiales (CNES) and LadHyX, CNRS-Ecole polytechnique. Special 

acknowledgement is extended to Aurélien Jeanneton (of Beirens) for designing and constructing the chimney used 

in the field experiment. 

8 References 
1.  Basu RI, Vickery BJ. Across-wind vibrations of structure of circular cross-section. Part II. Development of a 

mathematical model for full-scale application. J Wind Eng Ind Aerod. 1983;12(1):75–97.  

2.  Batham JP. Wind tunnel tests on scale models of a large power station chimney. J Wind Eng Ind Aerod. 

1985;18(1):75–90.  

3.  Belloli M, Giappino S, Morganti S, Muggiasca S, Zasso A. Vortex induced vibrations at high Reynolds 

numbers on circular cylinders. Ocean Eng. 2015;94:140–54.  

4.  Blanchard A, Bergman LA, Vakakis AF. Vortex-induced vibration of a linearly sprung cylinder with an 

internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 2020 Jan 1;99(1):593–609.  

5.  Blevins RD. Flow-Induced Vibration. 2nd ed. Krieger Pub Co: Krieger Pub Co; 2001.  

184



6.  Cheng C, Kareem A. Acrosswind response of reinforced concrete chimneys. J Wind Eng Ind Aerod. 1992 

Jan;43(1–3):2141–52.  

7.  Christensen O, Askegaard V. Wind forces on and excitation of a 130-m concrete chimney. J Wind Eng Ind 

Aerod. 1978;3(1):61–77.  

8.  Cohen L. Time-frequency analysis. Englewood Cliffs, N.J: Prentice Hall PTR; 1995. 299 p. (Prentice Hall 

signal processing series).  

9.  Davenport AG. The spectrum of horizontal gustiness near the ground in high winds. Q J R Meteorol Soc. 

1961 Apr;87(372):194–211.  

10.  Eurocode. 1: Actions on structures, Part 1 – 4: General Actions (EN–1991). Eurocode; 2010.  

11.  Fox TA, West GS. Fluid-Induced Loading of Cantilevered Circular Cylinders in a Low-Turbulence Uniform 

Flow. Part 2: Fluctuating Loads on a Cantilever of Aspect Ratio 30. J Fluids Struct. 1993 Jan 1;7(1):15–28.  

12.  Galemann T, Ruscheweyh H. Measurements of wind induced vibrations of a full-scale steel chimney. J 

Wind Eng Ind Aerod. 1992 Oct;41(1–3):241–52.  

13.  Hansen SO. Cross-wind vibrations of a 130-m tapered concrete chimney. J Wind Eng Ind Aerod. 1981 

Jul;8(1–2):145–55.  

14.  Hirsch G, Ruscheweyh H. Full-scale measurements on steel chimney stacks. J Wind Eng Ind Aerod. 1975 

Jan;1:341–7.  

15.  Lipecki T, Bec J, Jamińska P. A comparative study of along-wind and crosswind responses of steel chimneys 

according to Polish and Eurocode standards. Czasopismo Techniczne. 2016;  

16.  Lupi F, Niemann H-J, Höffer R. A novel spectral method for cross-wind vibrations: Application to 27 full-

scale chimneys. J Wind Eng Ind Aerod. 2017;171:353–65.  

17.  Meirovitch L. Fundamentals of vibrations. Long Grove, Illinois: Waveland Press; 2010.  

18.  Melbourne WH, Cheung JCK, Goddard CR. Response to wind action of 265-m Mount Isa stack. J Struct Eng. 

1983;109(11):2561–77.  

19.  Müller FP, Nieser H. Measurements of wind-induced vibrations on a concrete chimney. J Wind Eng Ind 

Aerod. 1975;1:239–48.  

20.  Paidoussis MP, Price SJ, de Langre E. Fluid-Structure Interactions Cross-Flow-Induced Instabilities. 

Cambridge, New York: Cambridge University Press; 2010.  

21.  Ribeiro JLD. Effects of surface roughness on the two-dimensional flow past circular cylinders I: mean forces 

and pressures. J Wind Eng Ind Aerod. 1991 Apr;37(3):299–309.  

22.  Ribeiro JLD. Effects of surface roughness on the two-dimensional flow past circular cylinders II: fluctuating 

forces and pressures. J Wind Eng Ind Aerod. 1991 Apr;37(3):311–26.  

23.  Ruscheweyh H. Vortex Excited Vibrations. In: Sockel H, editor. Wind-Excited Vibrations of Structures. 

Springer Vienna; 1994. p. 51–84.  

24.  Ruscheweyh H, Galemann T. Full-scale measurements of wind-induced oscillations of chimneys. J Wind 

Eng Ind Aerod. 1996 Dec;65(1–3):55–62.  

Appendix E. Publications

185



25.  Sanada S, Suzuki M, Matsumoto H. Full scale measurements of wind force acting on a 200m concrete 

chimney, and the chimney’s response. J Wind Eng Ind Aerod. 1992 Jan;43(1–3):2165–76.  

26.  Simiu E, Scanlan RH. Wind effects on structures: fundamentals and applications to design. Wiley New York; 

1996.  

27.  Stansby PK. The locking-on of vortex shedding due to the cross-stream vibration of circular cylinders in 

uniform and shear flows. J Fluid Mech. 1976 Apr;74(4):641–65.  

28.  Vickery BJ, Basu RI. Across-wind vibrations of structures of circular cross-section. Part I. Development of a 

mathematical model for two-dimensional conditions. J Wind Eng Ind Aerod. 1983;12(1):49–73.  

29.  Vickery BJ, Daly A. Wind tunnel modelling as a means of predicting the response of chimneys to vortex 

shedding. Eng Struct. 1984 Oct 1;6(4):363–8.  

30.  Waldeck JL. The measured and predicted response of a 300 m concrete chimney. J Wind Eng Ind Aerod. 

1992 Oct;41(1–3):229–40.  

31.  Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. 2016. Cham: Springer International 

Publishing : Imprint: Springer; 2016. 1 p. (Use R!).  

32.  Zuo D. Full-scale measurement of wind pressure on the surface of an oscillating circular cylinders. J Wind 

Eng Ind Aerod. 2014 Oct;133:65–79.  

186



Under consideration for publication in J. Fluid Mech. 1

Banner appropriate to article type will appear here in typeset article

Twin Strouhal numbers in flow around circular1

cylinder at high Reynolds numbers2

Pascal Hémon1†, Ø. M. Ellingsen1 2, X. Amandolese3, and O. Flamand2
«

1LadHyX, CNRS-Ecole polytechnique, IP Paris, France»

2CSTB, Nantes, France5

«LMSSC, CNAM, Paris, France6

(Received xx; revised xx; accepted xx)7

Large diameter structures of circular cross section encountered in wind engineering are8

often prone to supercritical Reynolds number issues. This paper aims at invetigating the9

technique of artificially increasing the Reynolds number by means of surface roughness in10

order to simulate the supercritical vortex shedding regime at small scale. Two wind tunnel11

studies are performed, one for a large scale smooth cylinder up to the supercritical regime12

which is intented to serve as the reference, and the other for a 1/100 scale model with1«

added roughness. Twin Strouhal numbers are measured for the large scale cylinder up to1»

supercritical regimeȷ by using a spatio-temporal analysis of the wall pressures, we show that15

each Strouhal number is associated to a specific wall pressure distribution. Comparison with16

the small scale experiment shows that the technique of artificially increasing the Reynolds17

number by means of surface roughness is not achieved, while it approaches some global18

coefficients.19

Key words: Authors should not enter keywords on the manuscript20

1. Introduction21

The circular cylinder is one of the most studied bodies in aerodynamics, for both fundamental22

issues and engineering applications. Industrial chimneys and launch vehicles are examples of2«

civil engineering structures with circular cross section, for which the fundamental properties2»

of the mean and unsteady flow signature are of great interest. The flow regime around those25

structures strongly depends on the Reynolds number, 𝑅𝑒 = �̄�𝐷/𝜈, which combines the26

effect of the cylinder’s diameter 𝐷, mean wind velocity �̄� and air kinematic viscosity 𝜈.27

As a first approach, the drag force coefficient of a 2D smooth circular cylinder is given in28

Figure 1 versus the Reynolds number (Roshko 1961; Lienhard 1966; Blevins 2001). For29

practical applications, i.e. 𝑅𝑒 greater than 1000, three kinds of regime can be observed,«0

namely subcritical, critical and supercritical (Hoerner 1965).«1

In the subcritical regime the boundary layer around the cylinder is laminar and the«2
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2

Figure 1ȷ Reynolds number regions and drag coefficient, inspired by (Roshko 1961;
Lienhard 1966; Blevins 2001).

drag coefficient 𝐶𝐷 ≈ 1.2. The alternate vortex shedding is well established and its non««

dimensional frequency is given by the Strouhal number 𝑆𝑡 = 𝑓 𝐷/�̄� in which f is the«»

dimensional frequency. In the subcritical regime one observes that 𝑆𝑡 = 0.1ß − 0.20. As«5

the Reynolds number increases, the boundary layer becomes progressively turbulent at the«6

separation point and the cylinder is subject to the “drag crisis” which characterizes the critical«7

regime. In this regime the drag coefficient decreases down to 0.» before increasing again and«8

the alternate vortex shedding is not well organized. When the Reynolds number is further«9

increased, reaching the supercritical regime, the boundary layer is fully turbulent with a drag»0

coefficient𝐶𝐷 = 0.55−0.60. One can observe a re-organization of the wake with an alternate»1

vortex shedding having a Strouhal number subject to scattering, in the range 0.1ß − 0.27»2

(Schewe 198«; Roshko 1961). From these data, it is obvious that wind tunnel tests have to»«

be made at the right Reynolds number, which can be up to the supercritical regime for wind»»

engineering of circular cross section (Lupi et al. 2017; Ellingsen et al. 2021).»5

In practice, wind tunnel tests for such structures are performed with scaled models typically»6

of the order of 1/100 that do not allow to ensure the Reynolds number similarity. To»7

compensate for this, a number of authors have considered the technique of added roughness»8

on the cylinder model (Achenbach 1971; Szechenyi 1975; Achenbach and Heinecke 1981;»9

Nakamura and Tomonari 1982; Shih et al. 199«; Adachi 1997; van Hinsberg 2015).50

Rough cylinders are indeed known for shifting the drag crisis at smaller Reynolds numbers,51

depending on the roughness height. However those studies were based on global parameters,52

the drag force coefficient 𝐶𝐷 , the unsteady lift coefficient (RMS value) 𝐶 ′
𝑙

and the Strouhal5«

number 𝑆𝑡, leaving aside the wall pressure distribution around the cylinder. The simulation5»

of the supercritical regime in wind tunnel by means of added roughness on low scale models55

still requires investigations.56

In this paper two wind tunnel experimental studies are presented. The most important one57

is for a large scale cylinder up to the supercritical regime and the other one for a 1/100 scale58

model with added roughness. The reproduction of the supercritical vortex shedding regime59

is the main goal that justifies the study. The large scale experiments are presented in section 260

and the small scale results are reported in section «. Further analysis, based on bi-orthogonal61

decomposition of the unsteady pressure distribution are presented in section » prior to a62

conclusion section.6«

2. Large Reynolds number wind tunnel tests6»

This experiment is devoted to the measurement of reference data for wind tunnel tests at65

supercritical Reynolds number up to 2.2 × 106 without any added roughness.66
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«

Figure 2ȷ Views of the large 0.5 m diameter cylinder in the CSTB wind tunnel test section.

2.1. Experimental apparatus67

Tests were performed in CSTB’s climatic wind tunnel in Nantes, having a closed rectangular68

test-section of 6×5 𝑚2, a maximum wind speed of 70 m/s and a turbulence intensity between69

1 and 1.5 %. A smooth rigid circular cylinder with diameter 0.5 m and height-to-diameter70

ratio of 10 was mounted vertically in the wind tunnel to extend the entire height, as shown71

in Figure 2. With a blockage ratio of 8.« %, the effect on the wake flow and Strouhal number72

is expected to be negligible (West and Apelt 1982). The setup also makes the first natural7«

frequency close to 6» Hz with a high damping ratio, «6.» %. Any residual vibrations should7»

then be of minor impact. Sixty uniformly spaced pressure taps were drilled at mid-height.75

The first pressure tap is placed at the stagnation point (𝜃 = 0◦) and the others are spaced76

out uniformly with a separation of 6◦. The pressure taps were pneumatically connected to77

two «2 channels unsteady pressure scanners fitted inside the model («2HD ESP pressure78

scanners from Pressure Systems Inc.) with multiplex frequency of 70 kHz. Both pressure79

scanners, rated up to 7000 Pa, have static errors within ± 0.0« %. As the 1 meter length80

tubing can introduce resonance and damping effects, signal corrections were performed81

using a theoretical transfer function based on the work of Bergh and Tijdeman (1965).82

Four-hole Cobra probes were used to measure the wake characteristics. They were mounted8«

at different heights and placed 2 diameters behind the cylinder and 0.25 diameters aside. A8»

reference Pitot tube, mounted upstream of the model was also used to quantify the reference85

wind speed. For each wind speed, the unsteady pressures are measured during 180 s, that is86

roughly 5000 periods of the vortex shedding, at the sampling frequency of »00 Hz.87

2.2. Global results88

Integration of the wall pressure signals provides the global force coefficients on the cylinder.89

The mean drag coefficient 𝐶𝐷 and the root-mean square value of the lift coefficient 𝐶 ′
𝑙

are90

shown in Figure «a versus the Reynolds number in the range [150 000 – 2 170 000]. The91

end of the critical region and the beginning of the super-critical regime are then covered. In92

Figure «b the mean drag coefficient is compared to the results of Achenbach and Heinecke9«

(1981). The global trend is quite similar but our results are slightly lower. This is probably9»

due to the higher blockage ratio (16.7 %) in the experiment of Achenbach and Heinecke,95

which was uncorrected. However our results match very well the values obtained with the96

Eurocode formula (European Committee for Standardization 2005) in the critical region. As97

expected, the unsteady lift coefficient exhibits a bump during the drag crisis, i.e. the critical98

regime, and slightly increases in the supercritical region. At 𝑅𝑒 = 106, 𝐶 ′
𝑙

is close to 0.1, that99
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»

Figure «ȷ (a) Mean drag coefficient and standard deviation of the lift coefficient versus 𝑅𝑒
and (b) comparison of the drag coefficient with (Achenbach and Heinecke 1981) and

Eurocode formula (European Committee for Standardization 2005).

Figure »ȷ 𝐶𝑝 distribution at different 𝑅𝑒 (a) mean values compared with (Achenbach &
Heinecke 1981) at 𝑅𝑒 = 3600000, (b) standard deviation values

is slightly lower than the value of 0.12 reported by Fung (1960) and higher than the range100

[0.0»- 0.095] reported in Schmidt (1966).101

The distribution of the time-averaged wall pressure coefficients is shown in Figure »a for102

three Reynolds number values that span the supercritical regime achieved in the study. It10«

exhibits a classical supercritical shape, with a minimum 𝐶𝑝𝑚𝑖𝑛 ≈ −2.5 located at 𝜃 = 80◦10»

and a small Reynolds number effect can be observed in the separated area |𝜃 | > 120◦. For105

the highest Reynolds number (2 170 000), the comparison with the results of (Achenbach106

and Heinecke 1981) at 𝑅𝑒 = 3600000 is relatively good. One can however observe a slight107

asymmetry of the curves which, in the present study, is attributed to circular section static108

deformation at high speed velocity (up to 67 m/s). The associated distribution of the standard109

deviation of the pressure is given in Figure »b. Two remarkable peaks are observed around110

𝜃 = 110◦ which are the main contributors to the unsteady lift coefficient. A deeper analysis111

of these unsteady signals will be done further in Section ».112

Power Spectral Densities (PSD) of the lateral unsteady velocity measured in the cylinder11«

wake were used to identify the vortex shedding periodicity. As reported in Figure 5b two11»

frequencies emerge on the PSD. The two associated Strouhal number are reported in Figure115

5a. The upper one, which is the strongest and will be referred as “second” Strouhal number,116

agrees well with the high Strouhal number values reported in (Adachi 1997) in the critical117

regime. It also fits well the wake measurement reported in the supercritical regime. The118
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5

Figure 5ȷ (a) 𝑆𝑡 versus 𝑅𝑒 (b) PSD of lateral velocity from a Cobra probe at 𝑅𝑒 = 2170000.

lower one, referred as “first” Strouhal number, has an almost constant value which is close119

to the one found in subcritical regime. It agrees well with the results of Shih et al. (199«),120

obtained from surface pressure measurement, and it is also coherent with the lower Strouhal121

number values reported in Adachi (1997) in the critical and early supercritical regimes.122

Further discussion on these results will be done in Section ».12«

3. Small scale wind tunnel tests12»

Experiments on a 1/100 scale model are performed. In order to reach the supercritical regime,125

the technique of adding roughnesses on the cylinder surface is used.126

«.1. Experimental apparatus127

Experiments were carried out in the 2 × 4 𝑚2 test section of the NSA CSTB’s wind tunnel128

in Nantes, that has a maximum wind speed of «0 m/s. The turbulence is 1 % in the main129

flow direction and 0.8 % in the transverse directions. The test model consists of a circular1«0

cylinder made of carbon fiber reinforced polymer of diameter 0.055 m, vertically mounted in1«1

the wind tunnel and extending the entire 2 m height (see Figure 6a). The cylinder has a first1«2

damped natural frequency of 25 Hz and a critical damping ratio of 21.» % which make the1««

vibration level negligible. The central section is equipped with «0 uniformly spaced pressure1«»

taps, as shown Figure 6b. Measurement systems and acquisition parameters are identical to1«5

the large wind tunnel experiment, except that the pressure sensor has a 2500 Pa full scale1«6

range.1«7

To add roughness to the circular cylinder, ribs with rectangular cross-section of constant1«8

width 0.8 mm were glued and spaced out uniformly with a separation of 12◦ (see Figure1«9

6b). Ribs were made with acrylic sheets of different thicknesses ℎ = 0.2, 0.5 and 1 mm.1»0

Three different roughness configurations characterized with non-dimensional roughness 𝑘 =1»1

ℎ/𝐷 = 0.0036, 0.00ß1 and 0.0182 were tested.1»2

«.2. Global results1»«

The drag and unsteady lift coefficients versus Reynolds number are shown in Figure 7a for1»»

the three ribs configurations. One can observe that each roughness configuration promotes an1»5

earlier critical regime, down to Reynolds number values at least ten times lower than for the1»6

reference values reported in Figure «a. The supercritical regime is not reached for the thinner1»7
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6

Figure 6ȷ (a) Photo of the small scale cylinder in the test section and (b) detail of the
measurement section equipped with pressure taps and ribs.

Figure 7ȷ (a) 𝐶𝐷 and 𝐶 ′
𝑙

and (b) 𝑆𝑡 versus 𝑅𝑒 for different ribs heights.

ribs configuration 𝑘 = 0.0036 but it is for the two others. Nevertheless, the associated mean1»8

drag and unsteady lift coefficients are both higher than in the reference smooth supercritical1»9

configuration. For the medium roughness 𝑘 = 0.00ß1 the supercritical regime seems to be150

reached for 𝑅𝑒 > 30000 and even earlier than the minimum wind tunnel speed for the highest151

roughness 𝑘 = 0.0182 that has been tested.152

Unlike the reference supercritical configuration, only one clear frequency is observed on15«

the PSD of the lateral wake velocity component at small scale, whatever the roughness15»

size tested. The associated Strouhal number is given in Figure 7b. By comparison with the155

large scale experiment those results exhibit maximum Strouhal number values (at the drag156

crisis) significantly lower than for the second Strouhal number observed at large scale and157

an asymptotic value between those reported for the first and second Strouhal numbers.158

Concerning the pressure distribution, results obtained at small scale supercritical regimes159

are found quite different from the reference supercritical data. If the 𝐶𝑝𝑚𝑖𝑛 occurs for the160

same azimuth angle, its absolute value is twice lower, around−1.25. On another hand,𝐶𝑝𝑏𝑎𝑠𝑒161

are similar, around 0.7 in both cases. Differences are also important in the distribution of162

the standard deviation, with two main peaks around 𝜃 = 80◦ at small scale, while they were16«

sharper, twice higher and located around 110◦ for the reference case. While some similarities16»

can be pointed out, there is no complete simulation of the supercritical regime in the small165

scale (1/100) model.166

Page 6 of 10

Cambridge University Press

Journal of Fluid Mechanics

192



7

Figure 8ȷ (a) Comparison of the Strouhal numbers (𝑆𝑡1 and 𝑆𝑡2) measured in the wake with
those issued from PSD of chronos 2 & » and (b) PSD of chronos 2 & » at 𝑅𝑒 = 2170000.

4. Analysis of the unsteady wall pressure167

A bi-orthogonal decomposition (BOD) of the wall pressure signals is performed now to168

analyse the vortex shedding impact on the unsteady loading for both experiments.169

».1. The bi-orthogonal decomposition170

The BOD was first introduced by Aubry et al. (1991) to decompose spatio-temporal signals171

in a series of spatial functions named further as “topos” and associated temporal functions172

named as “chronos”. For a spatio-temporal distribution of pressure coefficient, the BOD can17«

be written as 𝐶𝑝(𝜃, 𝑡) =

∑
𝑁

𝑖=1 𝛼𝑖𝜙𝑖 (𝜃)𝜓𝑖 (𝑡) where 𝛼𝑖 are the eigenvalues of the spatial or17»

temporal covariance matrix of the distribution and N is the number of terms retained for the175

decomposition. Chronos 𝜓𝑖 (𝑡) and topos 𝜙𝑖 (𝜃) are orthogonal between them and normed.176

Mathematical details can be found in Aubry et al. (1991) and practical applications are177

presented in Hémon and Santi (200«). It was shown that the eigenvalues 𝛼𝑖 are common to178

chronos and topos and that the series converge rapidly so that N is smaller than the original179

size T of the problem (number of pressure taps or number of time records). This means that180

𝛼𝑖 value decreases rapidly with their sum, 𝐴 =

∑
𝑇

𝑖=1 𝛼𝑖 representing the total energy in the181

original signal. Then each couple of chronos and topos have their contribution to the signal182

which decreases as long as their rank i increases. Note that BOD is very similar to proper18«

orthogonal decomposition, except that the mean value of the original signal is kept in the18»

analysis, refer to Hémon and Santi (200«) for a discussion on that point.185

».2. BOD of wall pressure signals186

BOD is performed on the reference large Reynolds numbers data. Analyzing the chronos187

in terms of their frequency content, we observe that chronos 2 and » present a significant188

peak in their PSD which is related to vortex shedding. Results plotted in Figure 8a are in full189

agreement with the ones issued from the wake analysis. Moreover, it is interesting to notice190

that both 𝑆𝑡1 and 𝑆𝑡2 are physically separated through the BOD and associated to chronos 2191

and » respectively.192

The first four topos issued from the BOD of the wall pressure at high Reynolds numbers19«

are shown in Figure 9. The first one represents the mean value of the wall pressure and19»

contributes to the mean drag. The topos 2 has an anti-symmetrical shape and is the main195

contributor to the unsteady lift at the first Strouhal number value. It is characterized by a196

sharp peak at 𝜃 ≈ 105◦ with a width of about 15◦. The third topos mainly contributes to the197

unsteady drag at a dominant frequency twice the value of the one observed in chronos 2. The198

topos » also contributes to the unsteady lift but at a dominant frequency corresponding to199
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8

Figure 9ȷ First four topos of the wall pressure at different supercritical Reynolds numbers.

the second Strouhal number value. As topos 2 it exhibits an anti-symmetrical shape but with200

a wider region in the rear part and a bump starting at 𝜃 ≈ 120◦ up to 160◦.201

The relative energy contribution of the unsteady BOD "modes" can be assessed by checking202

their relative contribution �̃�𝑖 to the unsteady energy, which readsȷ �̃�𝑖 = 100
𝛼𝑖

1−𝛼1/𝐴
. It appears20«

that the Reynolds number does not influence this energy distribution in the supercritical20»

regime tested here. The second "mode" contributes to about «» % of the unsteady energy205

and the fourth one to about 7.» %. One should note that, contrary to what was found in the206

wake analysis, the most energetic structure is at the lower Strouhal number value, referred as207

𝑆𝑡1 while the less energetic fourth mode is associated to 𝑆𝑡2.208

BOD analysis is also performed for the small scale cylinder equipped with the medium209

roughness 𝑘 = 0.00ß1. The Strouhal number found with the PSD of the chronos 2 is in full210

agreement with the one which was found in the wake. The unsteady energy contribution211

shows that the contribution of this second term increase up to 79 %. The topos 2 is shown212

in Figure 10. In the range of Reynolds number explored, its shape is not influenced by the21«

Reynolds number. It is characterized by two anti-symmetrical bumps with their maximum21»

located at 𝜃 ≈ 80◦, which creates a strong unsteady lift. It is then quite different from the215

case of the reference supercritical flow. Remaining terms are not participating in the vortex216

shedding mechanism, as there is no emerging frequency in the corresponding chronos.217

5. Conclusion218

A large scale experiment was performed on a smooth cylinder at supercritical Reynolds219

number in order to obtain a reference case. It is compared to another study at lower scale220

for which artificially increased Reynolds numbers are tentatively performed by means of221

roughness fixed at the surface of the cylinder. The main findings are summarized in Table 1.222

In the supercritical regime, one of the most important results is the detection of twin Strouhal22«

numbers which might explain the scattering results usually found in previous studies. These22»

two frequencies mechanisms are well separated by means of a BOD of the wall pressure225
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9

Figure 10ȷ Topos 2 for rough cylinder with 𝑘 = 0.00ß1 at various 𝑅𝑒.

Smooth cylinder 𝑅𝑒 = 2000000 Rough cylinder 𝑅𝑒 = 66000

𝐶𝐷 0.55 𝐶𝐷 0.97
𝐶 ′
𝑙

0.127 𝐶 ′
𝑙

0.1»6

𝑆𝑡1 0.20 𝑆𝑡 0.22
𝑆𝑡2 0.25
𝐶𝑝𝑚𝑖𝑛 -2.5 at 80◦ 𝐶𝑝𝑚𝑖𝑛 -1.25 at 80◦

𝐶𝑝′𝑚𝑎𝑥 0.« at 105◦ 𝐶𝑝′𝑚𝑎𝑥 0.1« at 80◦

𝜙2 (𝜃) on 𝑆𝑡1 𝜙2𝑚𝑎𝑥 at 110◦ 𝜙2 (𝜃) on 𝑆𝑡 𝜙2𝑚𝑎𝑥 at 80◦

𝜙4 (𝜃) on 𝑆𝑡2 𝜙4𝑚𝑎𝑥 at 140◦

Table 1ȷ Comparison of the main characteristics between the large and small cylinder.

distribution around the cylinder and recovered on the second and the fourth term of the226

decomposition.227

Small scale experiments with a cylinder equipped with roughness show that the flow at228

supercritical regime can be roughly approached, as on the unsteady lift coefficient, but not229

completely reproduced. A single Strouhal number is observed with value between the two2«0

ones of the reference supercritical case. The corresponding unsteady lift is recovered by one2«1

single BOD mode. Moreover the shape of the associated topos 2 is quite different from the2«2

one identified in the large Reynolds number reference configuration. The lift production at2««

supercritical Reynolds number is concentrated in a narrow region of the azimuth angle, while2«»

it is produced in a wider range for the artificially simulated supercritical flow case.2«5
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Appendix

F
Changes suggested by the jury

Following the defense, the jury suggested minor improvements to this work. Many of these were
of grammatical nature, to improve text flow and readability or to improve legends, labels and
figure texts. In addition to these improvements, the jury raised a few questions that could help
improve this work and future works based on it; some of these would require major studies that
could be spun-off into new research projects. These were:

• Further investigate the twin Strouhal numbers for the smooth, large-scale cylinder. While
its been discovered that the two different shedding frequencies found from the BOD pairs
can be found when investigating two different pressure taps, a better temporal investigation
needs to be conducted. This will indicate how intermittent and bi-stable the vortex-
shedding is.

• Investigate the effect of turbulent length-scale. The turbulent length-scale was sadly not
included in this work though the author shares the belief of Claudio Mannini: Changing the
turbulent length-scale will change the effect of turbulence. This parameter could explain
some of the differences between the tests with ribs with small and large-scale cylinders,
but the actual Reynolds number should still be an important factor for the differences. In
addition, this investigation could be combined with an investigation on the effect of wind
shear and turbulence profile as suggested by Carlo Cossu.

• Verify that having ribs not extending the entire height didn’t affect the flow around it as
pointed out by Claudio Mannini. On the lower and upper parts of the cylinder, there will
be sub-critical/normal flow and circulation of this flow can change the simulated super-
critical flow. To verify the results here, it would be useful to test with cylinders that have
roughness strips attached along the entire height. This improvement would require a new
experimental campaign.

• Better explain why the chosen ribs for simulating 2D super-critical flow were the best.
The jury found the justification unclear and the reasoning was clarified and improved in
the relevant chapters.

• Isolate vortex-induced vibrations from the experiments (especially the field-test) so that it
can be investigated independently of turbulent-induced vibrations or buffeting. This will
give a much clearer pictures of the effect of direction and incoming atmospheric boundary
layer on vortex-induced vibrations. The author agrees that this could improve the results
and that this would be a valuable addition in future projects dealing with similar vortex-
induced vibration results.

• Investigate how to improve the predictive models more thoroughly. Many jury members
shared this sentiment, but mostly focused on how the coefficients in the wake oscillator
model could be improved. Vincent Denoël (specifically) wanted a deeper investigation
of how the coefficients could be analytically defined using 2D forcing coefficients, the
correlation or coherence, the mode shape, geometrical factors and combined using an
aerodynamic projection along the height; this sentiment was shared by the author but



would require an additional, deep investigation. Another suggestion, or rather question,
was to determine how to better improve the models used in design codes. The author
believes that the correlation length model can be improved with better coefficients but
that the spectral model requires more modifications: It’s the author’s belief that this
model needs fundamental changes. Instead of included the effect of aerodynamic damping
due to motion in the structural damping, this should be included in the rms forcing used
in the numerator and that the structural damping should instead be the sum of structural
damping and added drag-induced damping.

• The Scruton number may not be the best dimensionless variable for characterizing a chim-
ney. Instead, something like the Skop-Griffin number, that includes the effect of added
fluid-mass, should be used. This number can be further improved by including the ef-
fect of drag-induced damping in the which might make it possible to compare cylinders
with different shapes. This new number would also help reduce the differences between
vortex-induced vibrations in water and in air.

This marks the end of this thesis and three years of hard labor. I would like to extend a
final thank you to my advisers (Pascal, Xavier and Olivier) and the rest of the project group
(Aurélien, François and Julien). Finally, I would like to thank the jury (Vincent, Carlo, Claudio,
Emmanuel and François) for making this thesis even better.
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Appendix

G
Résumé en français

G.1 L’état de l’art

G.1.1 Écoulement 2D et 3D

L’écoulement autour d’un cylindre circulaire est complexe et varie en fonction du nombre de
Reynolds, de la rugosité de la surface et de l’intensité de la turbulence. Lorsque le nombre de
Reynolds augmente jusqu’à environ 80, l’écoulement autour des cylindres circulaires commence à
se déplacer selon un modèle alternatif. C’est ce qu’on appelle le tourbillon de von Karman. A ces
faibles nombres de Reynolds, l’écoulement dans le sillage et au-dessus du cylindre est laminaire
mais l’écoulement dans le sillage devient turbulent lorsque le nombre de Reynolds augmente
au-delà de 103. A partir d’un nombre de Reynolds de 1000 jusqu’à environ 3 · 105 (région du
nombre de Reynolds sous-critique), les paramètres de l’écoulement (coefficient de traînée moyen,
coefficient de portance SD et fréquence de délestage tourbillonnaire sans dimension ou nombre
de Strouhal) restent assez constants.

Une fois que le nombre de Reynolds passe 3 · 105, il y a un changement abrupt dans la
dynamique des fluides autour des cylindres circulaires lisses. Ce point est lié à la crise de la
traînée (fortement réduite, tout comme la portance SD) et la région du nombre de Reynolds est
qualifiée de critique. À ces nombres de Reynolds, l’écoulement autour des cylindres circulaires
commence par être laminaire avant de se séparer puis de se rattacher au cylindre avec une
couche limite turbulente. Ce comportement de délestage rend le délestage tourbillonnaire et
le sillage très irréguliers et le nombre de Strouhal est classiquement soit inexistant (pas de
délestage tourbillonnaire cohérent), soit à une valeur plus élevée qu’aux nombres de Reynolds
sous-critiques.

Lorsque le nombre de Reynolds augmente pour dépasser Re > 106, l’écoulement autour du
cylindre et dans le sillage commence à devenir plus régulier. À ces nombres de Reynolds, l’écoule-
ment autour du cylindre est entièrement turbulent et il ne devrait pas y avoir de rattachement
après la séparation. En raison de l’écoulement plus régulier, les coefficients de traînée et de por-
tance SD augmentent à des valeurs inférieures à celles des nombres de Reynolds sous-critiques
et deviennent à nouveau presque constants avec la vitesse. Il en va de même pour le nombre de
Strouhal, mais il diminue jusqu’à une valeur supérieure à celle du nombre sous-critique.

Ce changement avec le nombre de Reynolds crée un problème lorsqu’on essaie de recréer
l’écoulement de grandes cheminées dans des souffleries qui ne peuvent atteindre que de faibles
nombres de Reynolds. Pour contrer ce problème, on a essayé de simuler des nombres de Reynolds
plus élevés en utilisant une rugosité de surface uniforme et des turbulences. Le meilleur traite-
ment et la possibilité de reproduire précisément l’écoulement sont discutables, mais la rugosité
et la turbulence ajoutées modifient les caractéristiques de l’écoulement autour et derrière les
cylindres circulaires.

Le premier changement notable dans les caractéristiques de l’écoulement autour des cylindres
avec une rugosité de surface ou une turbulence ajoutée, est que la transition vers et depuis
les nombres de Reynolds critiques se produit à des nombres de Reynolds plus bas. C’est ce
phénomène qui a conduit les chercheurs à utiliser la rugosité de surface comme un outil pour
obtenir des nombres de Reynolds supercritiques similaires. Des tentatives ont été faites pour



calculer la transition exacte vers l’écoulement critique et supercritique sur la base de la hauteur
de rugosité, mais elles ne tiennent pas compte de tous les paramètres (par exemple, le type,
l’espacement et la turbulence).

En plus de la transition antérieure, l’ajout de la rugosité et de la turbulence affecte les
constantes aérodynamiques. Une rugosité de surface accrue augmente la traînée moyenne aux
nombres de Reynolds critiques et supercritiques, tandis qu’une turbulence accrue la diminue aux
nombres de Reynolds sous-critiques et l’augmente au nombre critique ; l’effet est similaire au
lissage de la courbe.

La rugosité et la turbulence ajoutées affectent également les caractéristiques instationnaires.
L’effet de la rugosité est de diminuer le nombre de Strouhal aux nombres de Reynolds critiques
et supercritiques alors que la turbulence ajoutée l’augmente dans les deux régions. L’effet de la
rugosité sur la portance et la traînée instationnaires est moins étudié que l’effet de la turbulence
et il affecte les forces instationnaires d’une manière similaire à la traînée moyenne.

En plus de ces changements d’écoulement en 2D, l’écoulement autour des cheminées et autres
cylindres circulaires est plus complexe en raison de leur hauteur finie. Ces effets 3D font que
la traînée moyenne augmente jusqu’à un maximum à un diamètre de la pointe (lorsqu’elle est
mesurée à partir de la pointe) avant de diminuer jusqu’à une valeur stable (inférieure à la 2D)
à 3-4 diamètres de la pointe. Ceci a pour effet global d’abaisser le coefficient de traînée moyen
2D.

Les coefficients de force instationnaire changent différemment avec la distance de la pointe.
En s’éloignant de la pointe, les coefficients de traînée et de portance SD diminuent jusqu’à une
valeur minimale à quelques diamètres de la pointe avant d’augmenter jusqu’à une valeur plus
élevée et stable à quelques diamètres du minimum. Le nombre de Strouhal augmente jusqu’au
nombre 2D avec la distance mais avec un comportement bizarre. En raison de la formation de
cellules tourbillonnaires, la fréquence de déversement des tourbillons est constante sur de petites
régions.

Le dernier effet 3D est la corrélation et la cohérence des forces et du processus d’éjection
des tourbillons avec la hauteur. La différence entre ces statistiques est que la corrélation est
mesurée dans le domaine temporel, alors que la cohérence est mesurée dans le domaine fréquentiel
et évaluée à la fréquence de l’éjection des tourbillons. Bien que les données sur la cohérence
manquent dans la littérature, on suppose que de nombreuses études antérieures ont calculé la
cohérence plutôt que la corrélation (par exemple, en raison du filtrage ou de la confusion des
statistiques par inadvertance).

La littérature montre que la corrélation dépend à la fois de l’intensité de la turbulence et
du degré de mouvement. L’effet de la turbulence est la diminution de la corrélation, ce qui est
attendu ; un flux moins uniforme devrait donner moins de corrélation. L’effet du mouvement est
d’augmenter la corrélation. Cela pourrait être lié au verrouillage et au renforcement du délestage
des tourbillons avec le mouvement lorsque la fréquence d’oscillation est proche de la fréquence
de délestage des tourbillons. Des effets similaires sont observés dans l’écoulement autour de
cylindres circulaires 3D, mais avec une corrélation réduite à toutes les distances.

G.1.2 Réponse aéroélectrique

Les vibrations induites par les tourbillons des structures circulaires sont compliquées car le
forçage et le mouvement s’influencent mutuellement. Bien qu’elles soient souvent modélisées
de manière similaire aux systèmes à réponse forcée, avec une oscillation sinusoïdale ou à cycle
limite forçant et un oscillateur structurel linéaire, les vibrations induites par les tourbillons
présentent des aspects de synchronisation qui les font davantage penser à des flotteurs. Cette
synchronisation est appelée "lock-in" et fait passer la fréquence de délestage de la fréquence de
Strouhal, qui augmente linéairement, à la fréquence naturelle ou à la fréquence de l’oscillation
forcée. Au fur et à mesure que l’amplitude de la vibration augmente, la plage de vitesse donnant
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Appendix G. Résumé en français

lieu au "lock-in" augmente.
La réponse aéroélectrique est plus complexe sur le terrain qu’en 2D. Sur le terrain, le vent

entrant est affecté par la couche limite atmosphérique turbulente, ce qui signifie que l’intensité
de la turbulence peut être élevée et que la vitesse moyenne et l’intensité de la turbulence le long
de la cheminée changent avec la hauteur. Néanmoins, de nombreux paramètres sans dimension
utilisés sont similaires et la principale différence consiste à inclure l’effet de la principale forme de
mode d’intérêt ; pour de nombreux cas de vibrations induites par les tourbillons (en particulier
pour les cylindres et les cheminées), une seule forme de mode structurel est importante pour
obtenir la réponse.

Outre l’estimation de la réponse des cylindres circulaires 3D sur le terrain en utilisant des
souffleries à couche limite (avec une correction appropriée du nombre de Reynolds), l’amplitude
structurelle due aux vibrations induites par les tourbillons peut être estimée à l’aide de modèles
mathématiques. Cela va de l’ajustement simpliste des courbes de données à des modèles de
vibration unidimensionnels simplifiés, en passant par des modèles couplés plus complexes de
force et de structure (modèles d’oscillateur de sillage).

Les codes de conception actuels, comme l’Eurocode et le code modèle CICIND, ont tendance
à se baser sur les modèles de vibration simplifiés, car ils permettent d’estimer facilement la
réponse. Les deux modèles les plus populaires sont connus sous le nom de "modèle spectral"
et de "modèle de longueur de corrélation" et ont tous deux été utilisés dans l’Eurocode. Le
premier modèle est basé sur l’estimation du forçage en utilisant une forme supposée du spectre
de puissance et un amortissement aérodynamique non linéaire qui est exprimé comme un amor-
tissement structurel ; cet amortissement change avec le nombre de Reynolds et la turbulence.
Le deuxième modèle est un modèle simple qui n’est valable que pendant le verrouillage et à la
vitesse de l’amplitude maximale. Ceci est dû aux hypothèses concernant la fréquence, la force
et la forme du forçage pendant la conception. De ces deux modèles, seul le "modèle spectral"
sera utilisé dans les futurs codes modèles Eurocode et CICIND.

Un type de modèle qui pourrait être utile pour prédire la réponse mais qui n’est pas utilisé
dans les codes de conception, est un groupe de modèles d’oscillateur de sillage. Ces modèles
modélisent la réponse de la structure et le forçage tourbillonnaire comme deux équations dif-
férentielles couplées où l’équation de forçage est un oscillateur de van der Pol. Le couplage entre
ces modèles varie selon les études mais celui qui est étudié ici est basé sur l’accélération et la
force dans le sillage et l’équation de structure respectivement. Comme ces modèles sont non
linéaires, leur solution a été basée sur l’intégration numérique, ce qui peut être amélioré par une
meilleure approximation non linéaire.

G.1.3 Objectifs de la thèse

Beaucoup des phénomènes mentionnés dans ce résumé de l’état de l’art sont étudiés mais pas
suffisamment. Cette thèse rectifiera cela et fournira de nouvelles connaissances sur le processus
de déversement des tourbillons et la modélisation des vibrations induites par les tourbillons.
Ceci sera fait en réalisant des expériences 2D supercritiques, en simulant à plus petite échelle,
en réalisant des tests aéroélectriques 3D en soufflerie et sur le terrain et enfin en créant une
meilleure méthodologie pour prédire les vibrations induites par les vortex en utilisant des modèles
mathématiques.

G.2 Expériences en soufflerie 2D sur des cylindres stationnaires

Ce travail a présenté et relié plusieurs études visant à améliorer la réponse prédite des cheminées
industrielles due aux vibrations induites par les tourbillons à des nombres de Reynolds élevés
(Re > 106, c’est-à-dire à des nombres de Reynolds supercritiques). La première étape a con-
sisté à déterminer les forces instationnaires sur un cylindre circulaire stationnaire à des nombres
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de Reynolds supercritiques réels dans une grande soufflerie. Avec cette base de référence, la
meilleure configuration de rugosité pour simuler l’écoulement à nombre de Reynolds supercri-
tique a été déterminée à des échelles plus petites. Les exigences pour une bonne reproduction de
l’écoulement supercritique étaient les suivantes : 1) simuler les nombres de Reynolds supercri-
tiques à des vitesses de vent raisonnables ; 2) avoir des caractéristiques de force instationnaire
similaires (valeurs moyennes et SD) ; et 3) avoir une fréquence de délestage tourbillonnaire
caractéristique similaire (nombre de Strouhal).

Deux nombres de Strouhal bi-stables ont été trouvés pour le cylindre lisse à de grands
nombres de Reynolds. En décomposant la distribution de pression instable à l’aide de la dé-
composition bi-orthogonale (BOD), les deux nombres de Strouhal différents proviennent de dif-
férentes distributions spatiales de pression instable (topos). Le nombre de Strouhal le plus faible
(St ≈ 0.2) a été associé à la paire BOD vortex-lift, avec une énergie spatiale concentrée près
du "sommet" qui a produit la plus grande partie du lift fluctuant (θ ∈ ±[90◦, 110◦]), tandis
que le nombre de Strouhal le plus élevé (St ≈ 0.25) a été associé à la distribution "vortex-lift
secondaire". Au lieu d’être près du sommet, l’énergie spatiale du second soulèvement tourbillon-
naire était concentrée à l’arrière (θ ∈ ±[120◦, 180◦]) ce qui produisait une certaine fluctuation
de la portance et de la traînée.

La découverte de ces nombres de Strouhal a permis de consolider une littérature contradic-
toire sur le décollement des tourbillons à des nombres de Reynolds supercritiques : Selon le
type de mesure, les expériences précédentes ont donné un nombre de Strouhal soit dans la plage
St ∈ [0, 25, 0, 27], soit proche de St = 0.2 [8, 13, 17, 21, 23–25, 36, 54, 56]. Ce travail a montré
que les deux existent dans les mesures de pression de sillage et instationnaire et ne sont pas une
dispersion de valeurs possibles. La force relative de ces deux fréquences de délestage (mesurée
dans le domaine fréquentiel) dépendait de l’endroit où elle était mesurée. Dans le sillage, le pic
spectral le plus fort correspondait au nombre de Strouhal le plus élevé, tandis que le nombre
de Strouhal le plus faible était relativement faible. Dans la pression instable décomposée, le
nombre de Strouhal inférieur avait un pic spectral et une énergie totale beaucoup plus forts que
le nombre de Strouhal supérieur.

L’ajout d’une rugosité de surface sous la forme de nervures a éliminé l’instabilité qui con-
duisait à la fréquence supérieure de délestage des tourbillons. Le nombre de Strouhal restant
a été trouvé dans le sillage et dans les paires de BOD tourbillon-lift et second tourbillon-lift.
Cette fréquence de délestage dépendait de la configuration et de l’échelle de la rugosité. Aux pe-
tites échelles et aux nombres de Reynolds, l’augmentation de la rugosité diminuait le nombre de
Strouhal, tandis que l’augmentation de la rugosité aux grands nombres de Reynolds l’augmentait
légèrement.

La rugosité et l’échelle ajoutées ont également modifié la corrélation et la cohérence le long
de la hauteur. Cela a été clairement constaté en comparant la corrélation à petite échelle avec
les résultats à grande échelle : La corrélation et la cohérence étaient beaucoup plus importantes
lors des essais avec les côtes plus grandes à petite échelle. L’augmentation de la corrélation
et de la cohérence pourrait expliquer en partie pourquoi l’écart-type (SD) du coefficient de
portance était plus important à petite échelle, mais ne l’explique pas entièrement. Aux petites
échelles et aux nombres de Reynolds, l’augmentation de l’espacement des nervures diminue la
corrélation mais augmente considérablement les coefficients de portance et de traînée SD, tandis
que l’augmentation de la taille des nervures modifie à peine la force mais augmente la corrélation.
Cela indique qu’il y a une différence de nombre de Reynolds ou de champ de vent.

La distribution spatiale de la pression instationnaire a été étudiée et comparée entre les essais
à grande échelle lisses et les essais à petite échelle avec rugosité. Cette comparaison a utilisé
les quatre premières paires de DBO qui représentent (par ordre d’énergie relative décroissante)
les distributions de pression moyenne, de soulèvement par vortex, de traînée par vortex et de
second soulèvement par vortex. Les deux paires les plus importantes à faire correspondre étaient
les distributions de pression moyenne et de pression de soulèvement tourbillonnaire, car elles
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représentent la majeure partie de la force et de l’énergie de soulèvement fluctuante des signaux
temporels.

Même si le cylindre lisse aux nombres de Reynolds supercritiques réels avait une distribution
de pression moyenne asymétrique, il correspondait bien aux cylindres rugueux à petite échelle
aux nombres simulés. Cette asymétrie a également provoqué un biais dans la distribution du
soulèvement tourbillonnaire qui a affecté la différence de soulèvement relatif pour les configu-
rations rugueuses et lisses. Cette différence était moins importante si l’on ne considérait que
les composantes de la force instationnaire, mais elle restait perceptible. La plupart des dif-
férences spatiales entre les configurations à petite échelle et à grande échelle étaient dues au
point de séparation plus précoce pour les cylindres rugueux et à l’énergie spatiale accrue à l’ar-
rière. Malgré ces différences, la concordance du soulèvement tourbillonnaire était bonne pour
les configurations rugueuses et lisses, comme l’indiquent les valeurs élevées de MAC.

Les différences entre les cylindres lisses et rugueux étaient plus importantes pour le vortex-
drag et le second vortex-lift, le vortex-drag étant plus ou moins incomparable. L’asymétrie de
la moyenne et du vortex-lift aurait également dû affecter le second vortex-lift et une partie des
différences entre les cylindres lisses et rugueux était due à cette asymétrie. Néanmoins, il y avait
d’autres différences plus importantes : De nombreuses différences dans le soulèvement du second
tourbillon étaient dues au fait que l’énergie spatiale des cylindres rugueux était concentrée plus
loin à l’arrière que celle du cylindre lisse et que les distributions d’énergie spatiale correspondent
à peine comme l’indiquent les faibles valeurs MAC.

G.3 Expériences aéroélectriques

La réponse d’un cylindre flexible à des nombres de Reynolds supercritiques simulés a été déter-
minée en utilisant l’étude précédente et comparée à un cylindre sous-critique. En plus de tester
l’effet de la rugosité sur le nombre de Reynolds simulé, des tests ont été effectués avec et sans
couche limite Eurocode de type II pour tester l’effet d’une couche limite atmosphérique tur-
bulente. Ces tests nous ont permis de vérifier deux hypothèses : 1) La mauvaise région de
nombre de Reynolds donne une réponse très différente et 2) Les couches limites atmosphériques
turbulentes peuvent être suffisantes pour simuler des nombres de Reynolds supercritiques.

Trois résultats donnent à penser que la couche limite atmosphérique turbulente ajoutée
était suffisante pour simuler la réponse d’une hypothétique cheminée supercritique et que l’effet
de la rugosité n’est perceptible qu’en l’absence de couche limite. Premièrement, les nombres
de Strouhal étaient assez similaires pour les cylindres supercritiques et sous-critiques lors des
essais avec la couche limite ; cela suggère une aérodynamique similaire. Deuxièmement, bien
que les essais aux nombres de Reynolds supercritiques simulés en utilisant la rugosité aient
eu une réponse d’amplitude différente de celle du cylindre sous-critique lors des essais avec la
couche limite atmosphérique, les différences étaient principalement dues à un nombre de Scruton
différent (un paramètre d’amortissement de la masse). Ce résultat est également observé en
comparant l’amplitude maximale pour plusieurs nombres de Scruton et les résultats des cylindres
lisses et rugueux semblent faire partie de la même courbe exponentielle ou loi de puissance.

Enfin, l’élimination de la couche limite atmosphérique supprime ces similitudes entre les
cylindres et le cylindre rugueux aux nombres de Reynolds supercritiques a des fréquences de
délestage tourbillonnaire et une réponse différentes de celles du cylindre lisse sous-critique. L’ef-
fet de la couche limite sur le délestage était également plus important pour le cylindre lisse que
pour le cylindre rugueux, ce qui suggère que la couche limite atmosphérique turbulente ajoutée
pourrait être suffisante pour simuler les nombres de Reynolds supercritiques d’expériences sim-
ilaires.

Les essais aéroélectriques à petite échelle ont été accompagnés d’une expérience sur le terrain
sur une cheminée sur mesure de 35,5 m de haut qui avait un diamètre de 2 m au sommet mais
seulement 1 m à la base. Le seul paramètre aérodynamique mesuré sur le terrain était la vitesse
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du vent à quatre hauteurs, mais la cheminée a été construite de manière à ce que la pression
instationnaire puisse être mesurée à plusieurs hauteurs. Cette cheminée a été conçue pour avoir
un faible nombre de Scruton et pour subir des vibrations de grande amplitude induites par les
tourbillons à des vitesses modérément faibles.

La réponse de cette cheminée et du vent entrant a été enregistrée sur une période de 13
jours et les données ont été divisées en segments de 10 minutes pour une analyse statistique. La
réponse a suivi des modèles de réponse typiques de la vie réelle, basés sur la vitesse du vent et la
fréquence du mouvement. À faible vitesse, la fréquence dominante se situait soit à la fréquence
de délestage de Strouhal qui augmente linéairement (vibrations induites par les tourbillons),
soit à la fréquence naturelle (vibrations induites par les turbulences). À des vitesses élevées, la
réponse était principalement due aux vibrations induites par la turbulence.

La réponse était plus intéressante à des vitesses intermédiaires (5-8 m/s) où la réponse
était soit importante et due aux vibrations induites par les tourbillons, soit faible et due aux
turbulences. L’amplitude des vibrations induites par les tourbillons dépendait des profils de la
couche limite atmosphérique et ce paramètre changeait avec la direction. La direction du vent
donnant les plus grandes amplitudes de mouvement avait un gradient de vitesse abrupt mais une
faible turbulence à toutes les hauteurs alors que les directions ayant une faible réponse avaient
une forte turbulence avec la hauteur. Ces couches limites atmosphériques étaient différentes de
la couche limite de type II de l’Eurocode et les intensités de turbulence étaient significativement
plus faibles dans le champ pour toutes les directions.

G.4 Prédiction de la réponse due aux vibrations induites par
les vortex

Des solutions approximatives d’un modèle d’oscillateur de sillage non linéaire ont été dérivées
pour améliorer les prédictions des vibrations induites par les tourbillons à l’aide de modèles
mathématiques. Cette nouvelle approximation correspond bien à l’intégration numérique du
même modèle mais nécessite un amortissement structurel constant (à la fréquence naturelle)
au lieu d’un amortissement dépendant de la vitesse. Avec cette approximation, deux nouvelles
études sur la taille des régions de verrouillage et l’amplitude maximale ont été réalisées.

En étudiant la stabilité et la différence de phase entre le forçage et le mouvement, une
équation biquadratique pour les limites des trois régions de verrouillage en termes de vitesse
sans dimension a été trouvée. À faible vitesse, il existe une région de verrouillage conditionnel
(nécessitant de fortes amplitudes existantes) qui n’existe qu’avec une faible force à l’échelle de
la masse M et un faible rapport d’amortissement structurel. La région de verrouillage suivante
est une région de verrouillage absolu et cette région augmente en taille avec le forçage à échelle
de masse. En augmentant le rapport d’amortissement, la région absolue n’a pas commencé
à se rétrécir avant la disparition de la région conditionnelle à faible vitesse. À ce stade, un
amortissement supplémentaire a diminué la taille des régions de verrouillage absolu à des vitesses
sans dimension élevées et faibles.

La dernière région de verrouillage était une région de verrouillage conditionnelle à vitesse
plus élevée. Alors que la région inférieure a disparu avec l’augmentation de la force, la région
supérieure a persisté : À mesure que la force augmentait, la région conditionnelle augmentait,
puis diminuait jusqu’à ce que la force atteigne une certaine valeur où la région conditionnelle
supérieure recommençait à croître. L’effet du facteur d’amortissement sur la région condition-
nelle supérieure était similaire à celui de la région inférieure et diminuait avec l’amortissement.
La principale différence entre eux était que la région supérieure était plus grande à faible amor-
tissement, ce qui a conduit à la persistance de la région supérieure à des taux d’amortissement
beaucoup plus élevés.

Les concepteurs n’utilisent souvent que la réponse maximale lors de la conception d’une
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cheminée et une expression pour la réponse maximale a donc été dérivée. Il a été constaté
que l’amplitude maximale avait tendance à se produire à la même différence de phase et une
expression pour la vitesse à la réponse maximale a été dérivée de cela. Ceci est différent des
modèles de conception qui supposent que le maximum se produit à une vitesse spécifique. Cette
nouvelle expression a été comparée à des simulations numériques pour plusieurs nombres de
Scruton et la vitesse maximale et l’amplitude maximale correspondaient bien.

Pour s’assurer que ce nouveau modèle constitue une amélioration par rapport aux modèles
existants du code de conception, la réponse prédite à l’aide de ce modèle approximatif de l’oscil-
lateur de sillage, du modèle spectral et du modèle de la longueur de corrélation a été comparée
aux données expérimentales. On a constaté que le meilleur modèle pour prédire la réponse
en amplitude dépendait du nombre de Scruton. Lorsque le nombre de Scruton est faible, le
meilleur modèle pour reproduire la réponse en amplitude est la nouvelle approximation, tandis
que le modèle spectral est meilleur lorsque le nombre de Scruton est élevé. Ceci est logique car la
réponse est plus harmonique à faible nombre de Scruton, ce qui favorise les modèles harmoniques
comme l’oscillateur de sillage, et plus aléatoire à nombre de Scruton élevé, ce qui favorise les
modèles de vibration aléatoire comme le modèle spectral utilisé dans le code du modèle CICIND
et l’Eurocode.

En comparant la réponse maximale prédite avec celle trouvée dans la littérature, la nouvelle
approximation s’est avérée être significativement meilleure que le modèle spectral en moyenne.
L’exception était pour six cheminées où le modèle approximatif de sillage-oscillateur a sévèrement
sous-estimé la réponse. L’amplitude pour la plupart de ces cheminées a été mesurée pendant la
nuit et a connu un événement rare où la densité était beaucoup plus élevée et où l’intensité de la
turbulence est devenue négligeable. Il est possible que la sous-estimation ne soit pas aussi sévère
que ce qui est montré et qu’un facteur de sécurité sous la forme d’un modificateur d’événement
extrême puisse atténuer les problèmes. Cela étant, le modèle approximatif de l’oscillateur de
sillage doit toujours être considéré comme le meilleur modèle pour prédire la réponse à de faibles
nombres de Scruton.
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Titre : Effet de l’excitation des structures cylindriques par les tourbillons alternés : modélisation de l’amplitude
pour les codes de construction

Mots clés : Aeroelasticité, Ingénierie du vent, Vibrations, Vibrations induites par vortex, Cheminée

Résumé : Les vibrations causées par le détachement
de tourbillons alternés (vibrations induites par vor-
tex) constituent une préoccupation majeure lors de la
conception de cheminées industrielles. Cette excitation
est due à un couplage non linéaire entre le lâcher tour-
billonnaire et le mouvement d’oscillation. Elle peut en-
gendrer des amplitudes de vibration élevées à faible vi-
tesse de vent. Il existe de nombreuses méthodes pour
les prédire et la plupart d’entre elles doivent être amé-
liorées.
Pour améliorer les prédictions en soufflerie, il est né-
cessaire de connaître l’écoulement autour des cylindres
circulaires à des nombres de Reynolds élevés. Une ex-
périence dans une grande soufflerie a révélé une nou-
velle information concernant la fréquence de lâcher des
tourbillons à grands nombres de Reynolds : au lieu
d’une seule fréquence, nous avons trouvé deux nombres
de Strouhal bien distincts, 0.2 et 0.25 environ. Or
de nombreuses études antérieures avaient trouvé des
nombres de Strouhal dispersés dans l’intervalle 0.2-0.25
sans plus de précision.
De plus, les distributions de pression instationnaire et
les mesures de force à grande échelle sont utilisées pour
valider une méthode expérimentale pour simuler un

écoulement à haut nombre de Reynolds dans une souf-
flerie à petite échelle. Des éléments de rugosité col-
lés sur la surface peuvent déclencher un écoulement à
nombre de Reynolds élevé et reproduire en grande par-
tie les distributions de pression instationnaire. Néan-
moins, les fréquences de lâcher de tourbillons et les
efforts restent différents à petite échelle.
Dans des essais aéroélastiques 3D, on trouve que la
couche limite atmosphérique turbulente affecte davan-
tage l’écoulement que les rugosités artificielles. Sans
couche limite atmosphérique, la réponse augmente et
diffère entre le cylindre rugueux et le cylindre lisse. Ces
résultats ont été corroborés par une expérience vraie
grandeur sur site avec des profils de couche limite va-
riant naturellement.
Une autre méthode pour prédire les vibrations induites
par les tourbillons consiste à utiliser des modèles analy-
tiques. Pour trouver le meilleur modèle, deux modèles
classiques sont comparés à un nouveau modèle ap-
proximatif. Les résultats dépendent du produit masse-
amortissement. Lorsque ce produit est faible, le nou-
veau modèle fonctionne mieux, tandis que l’un des
modèles classiques reste meilleur lorsque ce produit
masse-amortissement est élevé.

Title : Vortex-induced vibrations on industrial chimneys

Keywords : Aeroelasticity, Wind engineering, Vibrations, Vortex-induced vibrations, Chimney

Abstract : Vibrations due to the alternating shed-
ding of vortexes (vortex-induced vibrations) are a great
concern when designing industrial chimneys. These vi-
brations are complex and can give large amplitudes
of motion at low speeds. There are many methods for
predicting these vibrations (e.g. wind tunnels or pre-
dictive models) but they need improvements.
An experiment in a large wind tunnel revealed im-
portant, new knowledge on the vortex-shedding fre-
quency which will help predict vortex-induced vibra-
tions using wind tunnels. Instead of a finding a single
vortex-shedding frequency, either in the range 0.25-
0.27 or near 0.2 as in previous studies, two distinct
Strouhal numbers were found at around 0.2 and 0.25.
In addition, the spatial unsteady pressure distribu-
tions and forcing results at large-scale helped validate
an experimental method for simulating the high Rey-
nolds number flow in smaller wind tunnels. These tests
showed that surface roughness can trigger high Rey-
nolds number flow and mostly reproduce the spatial
pressure distributions. While promising, the vortex-

shedding frequencies and forces were different at small-
scale than at large-scale.
Turbulent atmospheric boundary layers were found to
affect the response more than the surface roughness
in 3D aeroelastic tests. When testing a rough and
a smooth cylinder with a turbulent boundary layer,
the responses were similar but the vibration ampli-
tudes and differences increased when testing without
the boundary layer. The importance of the turbulent
boundary layer on the response was corroborated in
a field experiment on a chimney exposed to naturally
varying turbulence profiles.
Lastly, ways to improve analytic modeling of predic-
ting vortex-induced vibrations were found by finding
the best model for a given situation. This was done
using two classical design models and a newly approxi-
mated model and the best predictive model was found
to depend on the product of mass and damping. When
this product was low, the newly approximated model
worked best while one of the design models was better
when the mass-damping product was high.
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