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Résumé étendu en français

Introduction

La nouvelle génération de capteurs d’imagerie de télédétection permet d’obtenir des
images à haute résolution spatiale, spectrale et temporelle avec des fréquences de revisite
élevées. Ces capteurs permettent l’acquisition de séries temporelles multivariées telles que
la réflectance spectrale de la surface dans plusieurs longueurs d’onde. La disponibilité de
ces séries temporelles multivariées a suscité l’intérêt de la communauté de la télédétection
pour développer de nouvelles stratégies d’apprentissage automatique pour la classification
supervisée. Il existe de nombreux algorithmes dédiés à la classification de séries temporelles,
où, étant donné un ensemble de séries temporelles avec des étiquettes de classe, un modèle est
formé pour prédire avec précision la classe de nouvelles séries. Classiquement, les méthodes
liées à la classification des séries temporelles reposent soit sur la mesure de la similarité entre
les séries temporelles, soit sur l’extraction de caractéristiques statistiques sur chaque sous-
séquence des séries temporelles [Atto et al. 2016, D’Urso & Maharaj 2012, Sakoe & Chiba 1978,
Berndt & Clifford 1994], afin de former une nouvelle séquence comme données d’entrée ou
même sur un ensemble de classifieurs basés sur l’apprentissage pour améliorer la robustesse de
la classification face aux valeurs aberrantes.

La plupart de ces approches de pointe s’appuient sur des caractéristiques statistiques de
premier ordre pour modéliser l’information contenue dans chaque série temporelle. Les
caractéristiques générées à partir des statistiques de premier ordre fournissent des informations
liées à chaque distribution de valeurs ponctuelles dans la séquence. Cependant, elles ne
donnent aucune information sur les dépendances relatives des caractéristiques au sein d’un
même point, comme les dépendances entre les attributs spectraux. Dans le but d’améliorer
la précision et l’efficacité de la classification des séries temporelles, de récentes avancées dans
les approches méthodologiques ont montré la pertinence de l’utilisation des descripteurs de
second ordre pour la classification, l’indexation et la segmentation dans les applications de
télédétection [Li et al. 2017, Akodad et al. 2018b], que ce soit pour des données 2-D, telles
que des images, ou des signaux 1-D incluant les séries temporelles. Pour cela, la matrice de
covariance de ces attributs spectraux/temporels est calculée et des outils de géométrie de
l’information sont utilisés afin de manipuler ce type de données.

Dans ce contexte, l’objectif principal de cette thèse est de proposer de nouvelles méthodes
d’apprentissage d’ensemble sur l’espace des matrices de covariance. En se basant sur
la représentation log-Euclidienne des matrices de covariance calculées sur les sorties de couches
convolutives d’un réseau de neurones ou encore sur des attributs multispectraux, nous visons
à évaluer le potentiel de ces caractéristiques pour diverses applications dont la classification
de scènes de télédétection et la classification de séries temporelles. Un intérêt particulier est
consacré à l’évaluation du potentiel des images radar (Sentinel-1) et optiques (Sentinel-2) pour
le problème forestier de la maladie de l’encre du châtaignier dans la forêt de Montmorency.
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Géométrie Riemannienne et modélisation statistique dans l’espace des matri-
ces symétriques définies positives (SPD)

Comme mentionné précédemment, nous nous intéressons à un problème de classification dans
l’espace des matrices de covariance. Pour comparer deux matrices de covariance, l’approche la
plus simple est d’utiliser la norme de Frobenius. Elle consiste à utiliser la norme euclidienne une
fois que les matrices de covariance sont vectorisées. Tout en étant extrêmement simple, cette
norme ne tient pas compte de la structure géométrique de ces matrices symétriques définies
positives. En fait, les matrices de covariance vivent sur une variété Riemannienne. Dans le cas
des matrices de covariance de taille 2×2, elles vivent dans un espace contraint de R3, représenté
par un cône comme illustré sur la Figure 1.

Figure 1: Espace des matrices de covariance de taille 2× 2.

Pour traiter ce type de données, certains concepts de la géométrie différentielle sont nécessaires.
Deux canevas statistiques Riemanniens peuvent être utilisés. Ils sont basés respectivement sur
les métriques Riemannienne affine-invariante (AI) et log-euclidienne (LE). Pour la métrique AI,
les calculs sont effectués directement sur la variété alors que pour la métrique LE, les calculs sont
effectués sur un espace tangent. Pour cette dernière métrique (LE), les matrices de covariance
sont projetées dans l’espace log-euclidien par l’opérateur du logarithme mapping à un point de
référence, classiquement choisi égal à la matrice identité. Cette opération est suivie d’une étape
de vectorisation pour obtenir la représentation log-Euclidienne. Pour une matrice de covariance
Mn ∈ Pd où Pd est l’espace des matrices symétriques définies positives de taille d×d, le vecteur
LE, noté mn, est obtenu tel que:

mn = Vec
(

LogId(Mn)
)
, (1)

l’opérateur LogId représente le logarithme mapping qui permet de projeter la matrice de
covariance Mn sur l’espace tangent à l’identité Id, suivi de l’opérateur de vectorisation Vec().
Et dans cet espace log-euclidien, les outils classiques de la géométrie Euclidienne peuvent
être appliqués. D’un point de vue pratique, Arsigny et al. ont montré que les métriques
affine-invariantes et log-Euclidiennes fonctionnent mieux que la norme de Frobenius pour
l’interpolation et la régularisation destinée à l’imagerie synthétique et clinique de tenseur
de diffusion 3D (DT-MRI) par résonance magnétique [Arsigny et al. 2006]. D’autre part,
en comparant les métriques Riemanniennes log-Euclidiennes et affine-invariantes, on peut
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observer qu’elles offrent plusieurs propriétés d’invariance (rotation, échelle, inversion). En
outre, en pratique, elles permettent d’obtenir des résultats comparables pour une grande variété
d’applications [Ilea et al. 2018b, Arsigny et al. 2006]. Au cours de cette thèse de doctorat, la
métrique log-euclidienne est prioritairement retenue pour sa facilité d’utilisation et sa faible
complexité calculatoire.

Dans le premier chapitre, nous introduisons quelques notions fondamentales de la géométrie
de l’information, utiles pour traiter ce type de données. Deux cadres statistiques Riemanniens
complets, basés sur les métriques log-euclidienne et affine-invariante, sont présentés. Les
modèles gaussiens sont considérés sur ces deux espaces métriques, ainsi que leurs extensions
aux modèles de mélange de gaussiennes (GMM). Pour cela, un modèle gaussien sur une
variété Riemannienne est présenté, ainsi qu’une distribution gaussienne multivariée sur l’espace
log-Euclidien. Dans le cas de la métrique log-Euclidienne, les matrices de covariance sont
projetées sur l’espace tangent à un point de référence donné, classiquement fixé égal à la matrice
identité. Cela peut entraîner une certaine distorsion lors de la projection si les matrices de
covariance sont situées loin de cette référence. Pour éviter ce problème en limitant la distorsion
pendant la projection, nous proposons un modèle de mélange de gaussiennes avec plusieurs
points de référence, un pour chaque composant du modèle. Nous proposons également un
algorithme d’expectation maximisation (EM) pour estimer les paramètres de ce GMM.

Méthodes d’ensemble basées sur le calcul de matrices de covariance en sortie
de couches convolutives d’un CNN

Dès lors que des descripteurs discriminants ont été extraits. Les méthodes de classifica-
tion appartenant aux familles d’apprentissages automatiques peuvent être employées. Les
approches traditionnelles qui ont été très populaires au début des années 2000 sont basées sur
l’encodage de descripteurs, tel que les vecteurs de Fisher [Perronnin & Dance 2007], les vecteurs
VLAD [Jégou et al. 2010] ou encore les sacs de mots (BoW) [Csurka et al. 2004].

Récemment, au vu de la réussite remportée par les réseaux de neurones, en particulier
les réseaux de neurones convolutifs (CNN) qui permettent l’extraction et l’apprentissage
automatique des descripteurs sur les images, plusieurs auteurs ont dédié leurs travaux à propo-
sition de méthodes hybrides, qui combinent à la fois des méthodes d’encodage avec les réseaux
de neurones convolutifs. A titre d’exemple, le réseau de Fisher [Perronnin & Larlus 2015], le
NetVLAD [Arandjelovic et al. 2015] ou encore l’encodage par vecteur de Fisher des sorties de
couches convolutives d’un CNN, nommé "Hybrid FV" [Li et al. 2017]. D’autre part, considérant
l’attention que les statistiques du second ordre ont pu attirer ces dernières années, l’information
modélisée par les matrices de covariance a fait l’objet de travaux de recherche où ces objets
ont été intégrés dans des architectures de classification. Dans ce contexte, plusieurs approches
ont été proposées, tel que les sacs de mots log-Euclidiens (LE BoW) [Faraki et al. 2015b], les
sacs de mots Riemmanniens (BoRW) [Faraki et al. 2014], les vecteurs VLAD log-Euclidiens
(LE VLAD) [Faraki et al. 2015a], les VLAD Riemanniens (RVLAD), etc. Enfin, afin de tirer
profit de l’information modélisée par les statistiques du second ordre dans des approches
d’apprentissage automatique par le biais des réseaux de neurones, plusieurs travaux se sont
focalisés sur la proposition d’un large panel de réseaux de neurones qui intègrent des couches
destinées au calcul de matrices de covariance, tel que le SPDNet [Huang & Gool 2017], le
MPNCov [Li et al. 2018], ou encore le SO-CNN [Yu & Salzmann 2017].
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Toutefois, toutes ces méthodes requièrent l’apprentissage du réseau sur un large ensem-
ble de données, tel que la base de données ImageNet qui est constituée de plus d’un million
d’images [Russakovsky et al. 2014]. Dans le contexte de cette thèse, les bases de données
utilisées, de taille plus modeste, ne sont pas adaptées au cas d’un apprentissage de bout en
bout d’un réseau de neurones. Pour pallier à cela, l’apprentissage par transfert est exploité. Il
s’agit d’une approche permettant le transfert de connaissances d’un réseau pré-entraîné sur une
base de données de départ, à une autre base de données d’intérêt.

Dans ce contexte, nous avons proposé deux approches hybrides d’apprentissage, combi-
nant à la fois les méthodes d’encodage et les réseaux CNN par transfert, basées sur le calcul de
matrices de covariance de façon locale et globale sur les sorties des couches convolutives d’un
CNN. En effet, les CNN standards sont généralement composés par des couches de pooling,
qui permettent de calculer la valeur moyenne (average pooling, en anglais) ou valeur maximale
(max pooling, en anglais) pour chaque patch des cartes de caractéristiques. Pour améliorer la
capacité de ces réseaux, la représentation de second ordre des cartes de caractéristiques de
CNN a récemment montré son intérêt [Akodad et al. 2018b]. Cela consiste en une opération où
la matrice de covariance des cartes de caractéristiques est extraite localement ou globalement
(covariance pooling, en anglais). Au final, chaque image peut être représentée par un ensemble
de matrices de covariance. D’une part, l’approche locale, "Hybrid LE FV" [Akodad et al. 2018b],
inspirée initialement de l’approche "Hybrid FV" [Li et al. 2017], s’appuie sur les matrices de
covariance extraites localement sur les premières couches d’un CNN, qui sont ensuite encodées
par les vecteurs de Fisher calculés sur leur représentation log-Euclidienne.

Figure 2: Principe de l’encodage des matrices de covariance par les vecteurs de Fisher log-
Euclidiens (Hybrid LE FV).

D’autre part, afin de renforcer la robustesse de la classification, la méthode proposée est
intégrée dans un algorithme d’apprentissage d’ensemble, pour donner lieu à l’approche "Ens.
Hybrid LE FV". Afin d’illustrer le potentiel des statistiques du second ordre dans un problème
de classification, le tableau 2 met en évidence les performances de classification sur la base UC
Merced. Les deux premières couches convolutives (Conv1) et (Conv2) d’un réseau VGG-16 pré-
entrainé sur la base ImagNet sont considérées et un pourcentage de 10% d’images est retenu
pour la phase d’apprentissage. Ce paramétrage est identique pour l’ensemble des résultats
ci-dessous. Comme observé, les résultats permettent de mettre en évidence, d’une part, le
potentiel des statistiques du second ordre, par le biais de l’utilisation des matrices de covariance
où un gain significatif d’environ 20% est accordé à la méthode "Hybrid LE FV" comparée à
son homologue "Hybrid FV". D’autre part, l’utilisation d’un ensemble de classifieurs, dans une
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Méthode Conv 1 Conv 2

Hybrid FV [Li et al. 2017] 41.4 ± 0.2 % 43.7 ± 1.1 %
Hybrid LE FV [Akodad et al. 2018b] 61.2 ± 0.8 % 65.1 ± 1.6 %

Ens. Hybrid LE FV 62.4 ± 0.9 % 68.1 ± 1.7 %

Table 2: Résultats de classification sur la base UC Merced en considérant la première et la
seconde couche convolutive du réseau VGG-16 (p = 10%).

approche d’ensemble, permet d’accroître les résultats de classification.
Une seconde méthode de reconnaissance de scène est proposée. Il s’agit de l’approche globale
ELCP. Elle s’inspire de la méthode MSCP de l’état de l’art proposée dans [He et al. 2018],
où une seule matrice de covariance est calculée sur les cartes de caractéristiques des couches
profondes d’un CNN comme illustré sur la Figure 3.

Figure 3: Principe de l’approche de covariance "pooling" globale.

Comparée aux méthodes exploitant les statistiques du second ordre, l’approche ELCP a
démontré d’excellents résultats en termes de taux de bonne classification. A titre d’exemple,
le tableau 3 illustre les performances de classification sur la base UC Merced. D’une part
les méthodes exploitant les réseaux de neurones convolutifs (CNN) surpassent les méthodes
traditionnelles, telles que celles basées sur l’encodage par vecteurs de Fisher de descripteurs
SIFT. D’autre part l’utilisation de réseaux de neurones pré-entrainés est privilégiée du fait de la
faible dimension des jeux de données en termes de nombre d’images d’apprentissage. Par ailleurs,
les méthodes exploitant les statistiques du second ordre, à savoir MSCP et ELCP, donnent de
meilleurs résultats. En plus, l’emploi d’une méthode d’ensemble résulte en un gain significatif,
où la méthode ELCP a su surpasser son homologue de l’état de l’art (MSCP).

Méthode OA (Mean ± sd)

FV (SIFT) [Perronnin et al. 2010b] 62.3 ± 1.1 %
CNN (VGG-16 fine-tuned) 62.7 ± 1.8 %

CNN (VGG-16 feat. extraction + SVM) [Chatfield et al. 2014] 82.7 ± 0.6 %
MSCP (VGG-16) [He et al. 2018] 86.3 ± 1.0 %

ELCP [Akodad et al. 2019c] (VGG-16) 88.4 ± 1.4 %

Table 3: Performances de classification de l’approche multi-couches proposée comparée aux
méthodes de l’état de l’art sur la base UC Merced (p = 10%).

De plus, afin de donner une plus grande importance aux objets d’intérêt présents dans les
images, nous avons proposé d’utiliser une matrice de covariance pondérée par l’information de
saillance comme illsutré sur la Figure 4.
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Figure 4: Covariance pooling des descripteurs CNN guidés par les cartes de saillance.

Ensuite, en collaboration avec le centre de recherche RIKEN au Japon, nous proposons
d’unifier ces travaux en présentant une approche d’apprentissage par transfert qui bénéficie à
la fois des aspects locaux et globaux. Cette approche d’apprentissage d’ensemble, basée sur les
ensembles les plus diversifiés notée "Fusion Ens. Hybrid LE FV-ELCP" [Akodad et al. 2020c],
combine efficacement les décisions fournies et permet d’améliorer la performance de classifica-
tion. Pour valider les méthodes, nous considérons différents types d’ensembles de données de
télédétection, y compris des images aériennes et satellites. Tels que les bases UC Merced Land
Use Land Cover, AID et SIRI-WHU. Des expérimentations sont également effectuées sur des
images texturées acquises par le satellite Pléiades pour la différenciation des classes d’âge des
peuplements de pins maritimes et la classification de parcs ostréicoles dans le bassin d’Arcachon.

Pour illustrer quantitativement les résultats obtenus, le tableau 4 résume les performances
de classification sur la base UC Merced en utilisant les différentes approches proposées. Pour

Base de données Méthode OA (Mean ± sd)

Ens. Hybrid LE FV (conv1) 62.4 ± 0.9 %
UC Merced Ens. Hybrid LE FV (conv2) 68.1 ± 1.7 %
p = 10 % ELCP 88.4 ± 1.4 %

Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 88.7 ± 1.1 %

Table 4: Performances de classification sur la base UC Merced employant les méthodes Ens.
Hybrid LE FV, ELCP ainsi que leur fusion Ens. LE FV - ELCP (p = 10 %).

conclure, la combinaison des deux approches, globale et locale, dans une unique architecture
révèle un léger gain en termes de performances de classification.

Classification de séries temporelles multivariées

La disponibilité des séries temporelles multivariées a suscité l’intérêt de la communauté
de la télédétection et plus généralement du machine learning pour l’élaboration de nouvelles
stratégies d’apprentissage pour la classification supervisée, notamment les méthodes basées
sur le calcul de distance point à point entre les séries. La façon la plus simple de comparer
deux séquences de même longueur consiste à additionner la distance ordonnée point à point
entre elles. Pour ce faire, la fonction de distance couramment utilisée est la distance euclidi-
enne [Bagnall et al. 2016b], qui correspond à la norme L2. Cependant, la distance euclidienne
et ses variantes présentent plusieurs inconvénients. D’une part, la distance euclidienne est sen-
sible aux transformations comme le décalage temporel qui induit des résultats incorrects dans
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certaines applications. À titre d’exemple, dans le domaine de la télédétection, en raison de la
variabilité intrinsèque entre les champs, comme la température de l’air, le drainage du sol et
d’autres caractéristiques environnementales, l’évolution temporelle d’une certaine culture dans
deux champs différents peut avoir un comportement différent tout en appartenant à la même
classe d’occupation de sol. D’autre part, la distance euclidienne souffre de l’invariance à la
reparametrisation. Cela signifie que la distance entre deux séries x1 et x2, notée d(x1,x2) n’est
pas conservée sous une quelconque transformation, telle qu’une composition par la fonction γ,
à savoir:

d(x1,x2) ̸= d(x1(γ),x2(γ)) (2)

Compte tenu de ces deux précédentes limitations, le chapitre 3 s’intéresse dans un premier
temps aux solutions suivantes. Tout d’abord, la distorsion dans l’axe du temps peut être
traitée par la déformation temporelle dynamique (DTW) et l’invariance de reparametrisation
est résolue par l’utilisation de la fonction (SRVF) [Srivastava et al. 2011], qui fournit une nou-
velle représentation de la série temporelle considérée tout en assurant les propriétés d’invariance.

Par ailleurs, la plupart des approches destinées à la classification de séries temporelles
reposent sur des statistiques de premier ordre pour modéliser l’information sous-jacente de
chaque série temporelle. Les descripteurs générés à partir de statistiques de premier or-
dre fournissent des informations relatives à chaque distribution des points dans la séquence.
Cependant, ils ne donnent aucune information sur les dépendances relatives des attributs
d’un même point, telles que les dépendances entre les attributs spectraux. Afin d’améliorer
l’exactitude et l’efficacité de la classification des séries temporelles, les progrès récents dans les
approches méthodologiques ont montré la pertinence de l’utilisation des descripteurs du second
ordre pour la classification, l’indexation et la segmentation pour des applications de télédétec-
tion [Pham et al. 2016, He et al. 2018, Akodad et al. 2019c, Akodad et al. 2020a], que ce soit
pour les données 2D, telles que les images, ou les signaux 1-D, y compris les séries temporelles.
Celles-ci comprennent des matrices de covariance symétriques définies positives qui décrivent les
statistiques du second ordre de la série temporelle multivariée. Pour illustrer l’idée, la Figure 5
montre un exemple de deux séries temporelles pour deux applications différentes. Le premier
représente une action de course où les capteurs enregistrent les coordonnées x, y et z des mou-
vements de la main et du genou pour une application de reconnaissance d’action. La seconde
montre l’évolution temporelle de la réflectance spectrale et des indices de végétation (R, G, B,
NDVI, etc.) pour reconnaître une plantation de riz pour une application en télédétection.
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Figure 5: Exemples de séries temporelles multivariées et de trajectoires de matrices de covariance.

À mesure qu’une personne exécute une action, le bras et le genou peuvent se déplacer de
façon corrélée au fil du temps. De même, dans la partie inférieure de la figure 5, la variation
temporelle de la réflectance spectrale et des indices de végétation de la culture de riz peut
avoir un comportement corrélé, et cette relation peut évoluer avec le temps. Pour capturer ces
corrélations entre les attributs, une matrice de covariance Σt est calculée à chaque instant. À
droite de la figure 5, les matrices de covariance calculées forment une trajectoire dans le cône
bleu. Ainsi, le problème de classification de séries temporelles multivariées peut être reformulé
en un problème de classification de trajectoires de matrices de covariance.

De plus, comme la principale contribution du chapitre est la proposition de modèles de
classification adaptés à des trajectoires de matrice de covariance, le cadre SRVF est étendu à
la représentation TSRVF (Transport Square-Root Velocity Function) [Su et al. 2014a]. Elle
fournit un moyen de représenter les trajectoires sur une variété Riemannienne de sorte que
l’invariance de re-paramétrage reste valide. Pour aller plus loin, afin de bénéficier des avantages
des méthodes à noyau, des représentations basées sur l’apprentissage de dictionnaires et des
stratégies d’apprentissage d’ensemble, Mikalsen et al. ont introduit la méthode TCK (Time
series Cluster Kernel) dans [Mikalsen et al. 2018]. Cette dernière a montré des résultats
compétitifs pour la classification des séries temporelles. Dans ce travail, nous proposons une
extension de la méthode TCK (nommée SO-TCK) au cas de données qui vivant sur une
variété. Toutes ces approches sont validées sur des bases de données de séries temporelles
multivariées incluant des applications pour la reconnaissance d’actions et la classification de
séries temporelles de télédétection pour la reconnaissance de cultures. Le tableau 5 illustre
les résultats de classification obtenus sur différentes base de données de séries temporelles en
reconnaissance de mouvement [Dua & Graff 2017] et télédétection (Tiselac) [Ienco 2017].
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Méthode Libras Natops Character
trajectory

Racket
sports Tiselac1

Euclidean distance 79.2 ± 1.1 77.8 ± 3.4 95.5 ± 0.4 68.8 ± 2.6 60.4 ± 1.0

Warping + Euclidean
distance 85.6 ± 3.8 71.7 ± 4.3 95.6 ± 0.2 81.3 ± 2.9 62.8 ± 2.9

SRVF + Euclidean
distance 82.8 ± 2.3 80.5 ± 2.4 91.9 ± 2.9 63.7 ± 2.7 70.4 ± 1.3

SRVF + Warping +
Euclidean distance 82.8 ± 2.3 80.5 ± 2.4 91.9 ± 0.2 63.8 ± 2.8 70.2 ± 1.2

TCK 72.6 ± 2.9 61.4 ± 3.5 91.7 ± 0.5 81.5 ± 3.2 63.7 ± 1.3

TSRVF + Euclidean
distance 80.1 ± 3.0 76.2 ± 2.3 94.7 ± 0.4 91.1 ± 1.7 89.3 ± 0.5

TSRVF + Warping +
Euclidean distance 88.5 ± 2.7 75.0 ± 2.7 93.2 ± 0.4 94.7 ± 1.2 92.7 ± 0.4

SO-TCK 87.1 ± 2.2 71.3 ± 3.7 93.9 ± 0.8 87.8 ± 2.8 74.5 ± 0.9

Table 5: Performances de classification sur différentes bases de données comparant les différentes
stratégies, incluant la distance Euclidienne, l’alignement par DTW et les représentations du
premier et second ordre par SRVF et TSRVF respectivement.

Comme observé, les résultats de classification démontrent un intérêt à exploiter les dépen-
dances entre attributs par le biais des statistiques du second ordre. D’une part, la méthode
proposée SO-TCK permet d’obtenir un gain significatif comparé à la version originale TCK.
D’autre part, l’alignement par DTW et les représentations TSRVF améliorent les résultats de
classification dans la majorité des cas.

Suivi de la santé des forêts par le biais des séries temporelles Sentinel-1 et
Sentinel-2

En tant que ressources naturelles vitales, les forêts fournissent divers services écosystémiques,
où elles constituent une source clé de nourriture et de fibres pour les humains. Aujourd’hui,
de nombreux pays ont conclu des accords internationaux ou régionaux pour protéger leurs
ressources forestières. Le dernier axe de cette thèse concerne la modélisation de signaux
temporels mesurés par les capteurs radar (Sentinel-1) et optique (Sentinel-2). En particulier,
pour le suivi du problème sylvo-sanitaire de la maladie de l’encre du châtaignier de la forêt de
Montmorency. Pour cela, nous cherchons à évaluer le potentiel des images radars et optiques
acquises respectivement par les capteurs Sentinel-1 et Sentinel-2. Nous étudions également
l’intérêt d’une approche multimodale en combinant ces deux types de données.

Aujourd’hui, les méthodes de télédétection par satellite permettent de détecter relativement
bien les coupes rases. Cependant, le cycle foliaire saisonnier n’étant pas forcément bien saisi, il
est généralement difficile de distinguer les différents niveaux de maladie. Pour illustrer cela, la
Figure 6 représente l’évolution temporelle de l’indice de végétation NDVI pour chaque classe
d’intérêt, à savoir : (1) Peuplement sain ou peu atteint, (2) en déclin sévère, (3) ruiné et (4)
coupes rases.
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Figure 6: Évolution temporelle sur l’année 2020 de l’indice de végétation NDVI pour chaque
classe d’intérêt.

D’un point de vue pratique, il existe diverses méthodes permettant d’étudier les changements
saisonniers de végétation, en particulier le suivi des couverts forestiers, à travers des images
satellite, l’une d’entre elles consiste à extraire des indices de végétation. Plusieurs indices de
végétation liés à la dégradation forestière peuvent être calculés à partir des images optiques
ou radars afin de surveiller la santé des forêts. A cet effet, les indices utilisés impliquent les
bandes spectrales du visible, du proche infrarouge et du moyen infrarouge pour les données
optiques, et des ratios de coefficients de rétrodiffusion polarimétriques pour les données radar.
De plus, en considérant la dépendance entre ces indices par le biais des statistiques du second
ordre, nous introduisons une approche d’apprentissage d’ensemble pour la classification de l’état
de santé de la forêt (saine ou peu atteinte, en déclin sévère, ruinée et coupe rase). Ensuite,
étant donné que la maladie évolue progressivement, d’un peuplement sain à un peuplement
complètement détruit, nous proposons de reformuler le problème en prédisant une variable
quantitative qui correspond à un indice de dégradation de la forêt (ou de l’état de santé).
Sur cette base, le potentiel des données Sentinel-1 et Sentinel-2 est évalué pour cette application.

En termes de taux de bonne classification, le tableau 6 illustre un léger gain de l’approche
d’ensemble proposée basée sur la covariance globale. Les résultats relatifs aux données optiques
et radars démontrent une bonne détection de la classe coupes rases (Classe 4), tandis que les
autres classes ne sont pas suffisamment bien classifiées.

Comme la maladie évolue continuellement de peuplements sains à des arbres complètement
détruits, nous proposons de reformuler le problème comme un problème de prédiction d’une
variable quantitative correspondant à un indice de dégradation des forêts. Pour cela, un modèle
de régression est proposé. Comme les coupes rases sont bien détectées, elle ne seront pas prises
en compte dans ce qui suit. Afin de suivre la maladie de la forêt, un indicateur de la santé des
forêts est calculé sur la base du protocole d’observation DEPERIS. Les arbres de type A sont les
plus sains et les arbres de type F sont les plus touchés par la maladie de l’encre. Selon ce dernier
score, nous avons dérivé l’indicateur I pour estimer l’état sanitaire de la forêt en fonction du

https://agriculture.gouv.fr/la-methode-deperis-pour-quantifier-letat-de-sante-de-la-foret
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Classe 1 Classe 2 Classe 3 Classe 4 OA (%) Kappa (%)

O
pt

iq
ue 1st-order 48.5 ± 12.1 42.1 ± 11.3 61.6 ± 7.6 76.2 ± 7.6 58.8 ± 4.7 44.6 ± 6.0

2nd-order 73.8 ± 10.2 27.3 ± 10.1 68.8 ± 5.9 89.5 ± 4.6 70.9 ± 2.8 59.6 ± 3.5

R
ad

ar 1st-order 44.5 ± 12.9 46.3 ± 9.2 65.0 ± 4.5 69.2 ± 7.8 56.2 ± 6.2 41.9 ± 7.6

2nd-order 74.2 ± 10.9 11.5 ± 10.4 65.5 ± 7.3 83.7 ± 7.5 66.1 ± 3.1 52.5 ± 3.6

Table 6: Comparaison des performances de classification entre les modèles du premier et second
ordre: Utilisation de la moyenne des observations pour le modèle du premier ordre et de la
covariance augmentée globale pour le second ordre. Résultats obtenus pour l’imagerie optique
et radar.

pourcentage d’arbres sains/atteint. Il est donné par :

I =
5× (%A) + 4× (%B) + 3× (%C) + 2× (%D) + (%E)

5
. (3)

L’indicateur de la santé des forêts représente une moyenne pondérée des scores DEPERIS. Il
varie entre 0 et 1. Le score le plus bas correspond à un peuplement composé de 100% d’arbres
de type F et la valeur maximale de 1 est atteinte pour les arbres sains (100% de type A). Comme
cet indicateur est une variable continue, un modèle de régression est utilisé pour le prédire à
partir des observations Sentinel-1 et Sentinel-2. Pour ce faire, le formalisme de l’approche de
covariance globale proposé est réadapté au problème de régression dans un modèle d’ensemble.
Les résultats obtenus sont reportés sur le tableau 7.

Optique Radar Fusion

M
SE

Moyenne 2.87×10−2 2.96×10−2 2.78×10−2

Covariance 3.17×10−2 3.20×10−2 2.83×10−2

Covariance + moyenne 2.67×10−2 2.79×10−2 2.59×10−2

Table 7: Méthode d’ensemble pour la covariance globale dans un modèle de régression. Com-
paraison entre l’utilisation des données optiques, radar et la fusion des deux.

Quantitativement, l’erreur quadratique moyenne mesurée (MSE) montre une amélioration
mineure lors de la combinaison des caractéristiques statistiques du premier et du deuxième ordre,
par exemple la combinaison de la matrice de covariance et le vecteur de moyenne (Covariance +
mean). En outre, l’utilisation de données optiques et radars dans un schéma de fusion apporte
une petite amélioration par rapport à leur utilisation séparée.

Conclusion

Cette thèse de doctorat a pour objectif principal de proposer de nouvelles méthodes
d’apprentissage d’ensemble sur l’espace des matrices de covariance. Dans ce contexte, nous
menons une classification supervisée sur la base de la métrique log-Euclidienne, où les matrices
de covariance des caractéristiques CNN, ou bien des attributs multi-spectraux sont représen-
tées par leurs vecteurs log-euclidiens. Nous avons évalué le potentiel de ces caractéristiques
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de deuxième ordre, en comparaison avec les modèles basés sur le premier ordre, pour diverses
applications, y compris la classification des scènes de télédétection et la classification des séries
temporelles. Enfin, un intérêt particulier est accordé à l’évaluation du potentiel des images radar
(Sentinel-1) et optique (Sentinel-2) sur une application sylvosanitaire, qui concerne la maladie
de l’encre de châtaignier dans la forêt de Montmorency.



Introduction

The new generation of remote sensing imaging sensors enables high spatial, spectral and
temporal resolution images with high revisit frequencies. These sensors allow the acquisition of
multivariate time series such as spectral surface reflectance in several wavelengths. The avail-
ability of these multivariate time series has raised the interest of the remote sensing community
to develop novel machine learning strategies for supervised classification. There are many algo-
rithms dedicated to time series classification, where, given a set of time series with class labels, a
model is trained to accurately predict the class of new time series. Classically, methods related
to time series classification rely on either similarity measurement between time series, on the
extraction of statistical features on each sub-sequences of time series, in order to form a new
sequence as the input data [Atto et al. 2016, D’Urso & Maharaj 2012] or even on an ensemble
learning based classifiers to improve classification robustness toward outliers. Most of these
state-of-the-art approaches rely on first-order statistical features to model the information be-
hind each time series. Features generated from first-order statistics provide information related
to each point value distribution in the sequence. However, they do not give any information
about the relative dependencies of the features within the same point, such as the dependencies
between spectral attributes. Aiming at improving the accuracy and efficiency of time series
classification, recent advances in methodological approaches have shown the relevance of using
second-order descriptors for classification, indexing and segmentation on remote sensing appli-
cations [Pham et al. 2016, He et al. 2018], whether for 2-D data, such as images, or 1-D signals
including time series. These include symmetric positive define matrices that describe the local
second-order statistics of the time series. To illustrate the idea, Figure 7 shows an example of
two time series for two different applications. The first represents an action of running where
sensors record the x, y and z coordinates of the hand and knee movements for action recognition
application. The second shows the temporal evolution of spectral reflectance and vegetation
indices (R, G, B, NDVI, etc.) for recognizing a rice plantation for a remote sensing application.

Figure 7: Examples of multivariate time series and covariance matrix trajectory.

As a person make an action, the arm and the knee may move in a correlated manner over
time. Similarly in the bottom part of Figure 7, the temporal variation of spectral reflectance
and vegetation indices of the rice crop may have a correlated behaviour, and this relationship
may evolve with time. To capture those correlations between attributes, a covariance matrix Σt
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is computed at each timestep. In the right side of Figure 7, the computed covariance matrices
form a trajectory on the space of a particular curved shape, which is the interior of the convex
blue cone. As such, the multivariate time series classification problem can be reformulated as a
covariance matrix trajectory classification problem.

At the same time, the availability of large volumes of satellite image data and the emergence
of new deep learning methods pose major challenges for the automatic interpretation of remote
sensing dedicated to Earth observation. In this context, Long Short Term Memory networks
(LSTMs) and Convolutional Neural Networks (CNNs) are capable of mining dynamical charac-
teristics of time series, hence their success. However, training such models involves large labeled
datasets. For datasets of relatively small dimension, the training from scratch of such deep
neural networks is hardly conceivable. In image classification problems, an effective solution
for limited training set consists of transfer learning. In that case, CNN models are considered
as feature extractors. Classically, deep CNN models pre-trained on the ImageNet dataset are
used [Russakovsky et al. 2014]. Then, features are extracted from a single or multiple layers,
and are processed with some traditional machine learning algorithm. Those combinations
between deep learning and traditional machine learning algorithms give rise to hybrid archi-
tectures, such as combining deep neural network architectures with Fisher vectors encoding
strategies [Perronnin & Larlus 2015, Simonyan et al. 2013, Arandjelović & Zisserman 2013].
They enable to benefit from both families in favour of enhancing classification performance.
Nevertheless, all these strategies generally exploit only a first-order representation of the CNN
feature maps. Indeed, standard CNNs are generally composed by a pooling operator which
calculates the mean (average pooling) or maximum (max pooling) value for each patch of the
feature maps. To improve the capability of these networks, the second-order representation of
the CNN feature maps has recently shown its interest [He et al. 2018]. It consists in a covariance
pooling operator where the covariance matrix of the feature maps are extracted whether locally
or globally. In the end, each image can be represented by a collection of covariance matrices
which lie inside the blue cone of symmetric positive definite matrices depicted in Figure 7.

As discussed previously, for both applications on time series classification and image clas-
sification, we are interested in a problem of classification on the space of covariance matrices.
The simplest approach is certainly to use the Frobenius norm. It consists in employing the
Euclidean norm once covariance matrices are vectorized. While being extremely simple, it fails
to take into account the geometric structure of these symmetric positive definite matrices.
Actually covariance matrices lie in a constrained Euclidean space which is a Riemannian
manifold. To handle these kind of data, some concepts of differential geometry are needed.
Two Riemannian statistical frameworks can basically be employed. They are based respectively
on the affine-invariant and log-Euclidean Riemannian metrics. For the former, computations
are performed directly on the manifold whereas for the latter they are done on a tangent
space. For that, covariance matrices are represented in the log-Euclidean space by the log map
operator. In this log-Euclidean space, standard operations performed in an Euclidean space can
be employed. From a practical point of view, Arsigny et al. have shown that affine-invariant
and log-Euclidean frameworks perform better than the Frobenius one for the interpolation and
regularization of their synthetic and clinical 3D diffusion tensor magnetic resonance imaging
(DT-MRI) [Arsigny et al. 2006]. This has the advantage of more accurately capturing the
underlying scatter of the data points, that are covariance matrices in our case, than is possible
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with methods that treat data points as elements in a vector space. When comparing the
log-Euclidean and affine-invariant Riemannian metrics, it can be observed that they offer several
invariance properties (rotation, scaling, inversion). Moreover, in practice, they allow to obtain
comparable results for a large variety of applications [Ilea et al. 2018b, Arsigny et al. 2006].
During this PhD thesis, the log-Euclidean metric is prioritized for its ease to use and its low
computational complexity.

In this context, the main objective of this PhD thesis is to propose new ensemble learning
methods on the space of covariance matrices. Based on the log-Euclidean representation of
the covariance matrices of CNN features or multispectral attributes, we aim to evaluate the
potential of these features for various applications including remote sensing scene classification
and time series classification. A special interest is devoted to evaluate the potential of radar
(Sentinel-1) and optical (Sentinel 2) images to the forestry problem of the chestnut ink disease
in the Montmorency forest.

The work presented in this thesis is part of the CONFETTI2 project funded by the
Nouvelle Aquitaine region and the CNES TEMPOSS3 project. These projects focus on the
characterization of the forest structure and the monitoring of its changes, with a view to
identify, map and follow sylvosanitary problems using Sentinel-1 and 2 time series. This work
is also the subject of an international collaboration with the RIKEN4 research centre in Japan
as part of the PHC Sakura project, titled "Deep ensemble learning in big data era: from models
to applications". The aim of this project is to combine ensemble learning strategies, which
fuses multiple learners to improve prediction ability, and deep learning models in order to take
advantage of their powerful ability. In addition, the PhD thesis is co-funded by the Nouvelle
Aquitaine region and Bordeaux Sciences Agro.

Covariance matrices are fundamental tools in statistical signal processing and has been
the subject of many studies. Since they lie in a Riemannian manifold, concepts of differential
geometry are needed. In chapter 1, we introduce the basic notion of information geometry that
are necessary to handle this kind of data. Two complete Riemannian statistical frameworks,
based on the log-Euclidean and affine-invariant Riemannian metrics, are presented. Gaussian
models are considered on both metric spaces, as well as their Gaussian mixture model exten-
sions. For that, a Riemannian Gaussian model is presented, as well as a multivariate Gaussian
distribution on the log-Euclidean space. When considering the log-Euclidean metric, covariance
matrices are projected on the tangent space at a given reference point, classically fixed equal to
the identity matrix. This may lead to some distortion if the covariance matrices are far away
from this reference. To avoid this problem by limiting the distortion during the projection,
we propose to consider a Gaussian mixture model (GMM) with multiple reference points, one
for each component of the model. We also derive an expectation maximization algorithm to
estimate the GMM parameters.

2CONFETTI: Characterization and monitoring of the forest ecosystem by multi-source and multi-temporal
remote sensing images.

3TEMPOSS: Modeling of the temporal trajectory of Sentinel-1 & 2 observations for forest health monitoring.
4RIKEN Center for Advanced Intelligence Project (AIP), https://www.riken.jp/en/research/labs/aip/.

https://www.riken.jp/en/research/labs/aip/
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Since the general mathematical background for the log-Euclidean representation of a
covariance matrix is assessed, and motivated by the success of deep neural networks and hybrid
architectures, chapter 2 introduces two hybrid transfer learning approaches based on covariance
pooling of CNN features [Akodad et al. 2018b, Akodad et al. 2019c]. These two methods use ei-
ther local or global second-order representation of CNN features. The local approach, called the
hybrid log-Euclidean Fisher vectors (Hybrid LE FV), relies on the covariance matrices extracted
locally on the first layers of a CNN, which are then encoded by the Fisher vectors computed on
their log-Euclidean representation. While for the global approach, namely the ensemble learning
covariance pooling (ELCP), a single covariance matrix is computed on the feature maps of the
deepest CNN layers. Moreover, in order to give more importance to the objects of interest
present in the images, we proposed to use a covariance matrix weighted by the saliency informa-
tion. It engenders the EL-SCP architecture. Next, in collaboration with the RIKEN Center for
Advanced Intelligence Project, we propose to unify these works by presenting a transfer learning
approach which benefit from both local and global aspects [Akodad et al. 2020c]. This ensemble
learning approach, based on the most diverse ensembles, efficiently combines the provided
decisions and allows to enhance the classification performance. To validate the methods, we
consider different kinds of remote sensing datasets, including both aerial and satellite images.
Some state-of-the-art databases of remote sensing scene classification are studied such as
the UC Merced land use land cover, AID and SIRI-WHU dataset. Some applications are
also done on textured images acquired from the Pleiades satellite for the differentiation of
age classes of maritime pine stands, and the classification of oyster cultures in the Arcachon bay.

Regarding time series classification, the most simple way to compare two sequences of
same length is by summing the ordered point-to-point distance between them. To do that,
the commonly used distance function is the Euclidean distance [Bagnall et al. 2016b], which
corresponds to the L2-norm. However, the Euclidean distance and its variants present several
drawbacks. First, Euclidean distance is sensitive to signal transformations as time shifting
which induces inaccurate results in certain applications. As an example, due to the intrinsic
variability between fields, such as air temperature, soil drainage and other environmental
characteristics, the temporal evolution of a certain crop in two different fields may have
different temporal behaviour while providing the same information, and thus belonging to
the same class. Second, the Euclidean distance suffers from invariance to re-parametrisation.
It means that the distance between two series x1 and x2 is not preserved under any trans-
formations. Given the above points, chapter 3 focuses on providing the following solutions.
First, the distortion in the time axis can be addressed by the Dynamic Time Warping
(DTW)[Sakoe & Chiba 1978, Berndt & Clifford 1994] and the re-parameterization invari-
ance is solved by the use of square-root velocity function (SRVF) [Srivastava et al. 2011]
representations of the considered time series. Furthermore, as the main contribution of
the chapter is the proposition of classification models suitable with second-order matrix
trajectories, the SRVF framework is extended to the transport square-root velocity function
(TSRVF) representation [Su et al. 2014a] as a representation that provides a way to represent
trajectories on Riemannian manifolds such that the re-parameterization invariance remains
valid. To go further, in order to get benefit of the advantages of kernel methods, codebook
based representations and ensemble learning strategies, Mikalsen et al. have introduced the
time series cluster kernel (TCK) method in [Mikalsen et al. 2018] which has demonstrated
competitive results for times series classification. In this work, we investigate the potential
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of extending the TCK method to second-order matrix trajectories, namely the second-order
TCK (SO-TCK) algorithm. All these approaches are validated on multivariate time series
including applications on action recognition and crop classification based on temporal signatures.

Finally, forest health monitoring is a necessary step to ensure sustainable development
and requires the gathering of information for forest conditions concerning the status of insect
inhibiting plants, leaf defoliation and trunk damages. In that context, the focus of this study,
in collaboration the UMR BIOGECO5, is on the monitoring of diseases that destroy forests in
France. Today, satellite remote sensing methods make it possible to detect clear cuts relatively
well. However, since the seasonal foliar cycle is not necessarily well captured, it is generally
difficult to detect thinning cuts and distinguish them from other silvicultural operations, as
well as distinguishing different disease levels. In chapter 4, we focus on the specific application
of the chestnut ink disease on the Montmorency forest. We aim to evaluate the potential of
both radar and optical images acquired respectively by Sentinel-1 and Sentinel-2 sensors. We
also investigate the interest of a multimodal approach by combining these two kinds of data.
From a practical aspect, we first review some state-of-the-art vegetation and degradation forest
indices that can be extracted from these images to monitor forest health. Next, based on
the covariance pooling of these indices, we introduce an ensemble learning approach for the
classification of the forest health status (healthy, declining, severely declining, and clear cut).
Next, as the disease evolves continuously from healthy stands to completely destroyed trees,
we propose to reformulate the problem as predicting a quantitative variable corresponding to
a forest degradation (or health status) index. We show how the proposed classification model
can be adapted to this regression problem. Based on it, we evaluate the potential of Sentinel-1
and Sentinel-2 data for this application.

Finally, the last chapter synthesizes the main conclusions of this work and presents some
perspectives.

5BIOGECO: Biodiversity Genes and Communities, https://www6.bordeaux-aquitaine.inrae.fr/biogeco.

https://www6.bordeaux-aquitaine.inrae.fr/biogeco
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1.1 Introduction

The goal of a supervised classification algorithm is to assign an image to the appropriate
class depending on its content. The basic technique involves extracting discriminative infor-
mation within image data, called features. Then, a suitable classification method is applied
to categorize the image into defined groups or classes. During the first stage, various kinds
of features can be extracted such as color, gradient, shape, edge or textural information.
Therefore, the major challenge is to consider image features which are highly distinctive
and robust to different nuisances such as photometric or geometrical transformations. To
this end, characterizing local image properties attracted a great research interest. Standard
approaches are based on computing first-order statistics to model the information behind each
image. If one takes a simple example, features generated from first-order statistics provide
information related to the pixel value distribution on the image. However, they do not give
any information about the relative dependencies of the features within the pixel, such as the
dependencies between spectral attributes. To this aim, some authors have dedicated their
works in exploiting the information behind second-order statistics using covariance matrix
features. These statistics have proved to be highly effective in diverse classification tasks,
including person re-identification, texture recognition, material categorization or electroen-
cephalogram (EEG) signals classification in braincomputer interfaces to cite a few of them
[Faraki et al. 2015a, Barachant et al. 2013, Said et al. 2015a].

Due to their specific properties, covariance matrices lie on a Riemannian manifold. In
fact, conventional Euclidean tools are not adapted for covariance matrix manipulation since
they are symmetric positive definite (SPD) matrices. To deal with covariance matrices
geometry, other Riemannian metrics are usually considered. Two Riemannian metrics are
generally employed: the log-Euclidean and the affine-invariant Riemannian metrics. When
analyzing those two metrics, log-Euclidean and affine-invariant Riemannian metrics offer several
invariance properties and permit to obtain comparable results for a large variety of applications
[Ilea et al. 2018b, Arsigny et al. 2006] compared to the Euclidean metric. When considering the
log-Euclidean metric, the tangent plane to the manifold is usually defined at the identity matrix.
This may lead to distortions when covariance matrices are located far from this reference point.
To avoid this problem, we will propose, latter in the chapter, to consider multiple reference
points [Simo-Serra et al. 2017, Calinon & Jaquier 2019]. By limiting the distortion during the
projection, this approach will permit a better modeling of the observed covariance matrices.

The second section of this chapter focuses on second-order statistics estimation. Starting
from the usual sample covariance matrix, two main limitations are highlighted: sensitivity
to outliers and run time of computation which is roughly proportional to the data set size.
In order to faster covariance matrices computation, an integral image based method is
presented [Tuzel et al. 2006] as well as the fixed point estimation algorithm [Tyler 1987] which
permits to enhance estimation robustness regarding outliers.

Considering the specific geometry of SPD matrix space, the most common Riemmannian
metrics are introduced in section 1.3. They allow to deal with the geometrical properties of
the SPD matrix space, in particular the affine-invariant and log-Euclidean metrics. Thus, the
second part provides some definitions that have been introduced in the literature.
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Once the general framework is established for handling the specific geometry of covariance
matrices, the focus in section 1.4 is on the statistical modeling on SPD matrix space. In fact,
the measure induced by the Riemannian metric allows to define probability density functions.
Two complete Riemannian statistical frameworks for characterising covariance matrix sample
sets are thus detailed. They are defined on the affine-invariant (AI) and log-Euclidean (LE)
metric spaces. Gaussian models are considered on both metric spaces, with their mixture
extensions. The descriptive comparison of the two families of models are assessed.

Finally, the last part of section 1.4 constitutes the main contribution of the chapter, it
focuses on a proposition of a Gaussian mixture model with multiple reference points, one for
each cluster. This allows a better modeling by limiting the distortion when projecting the set of
covariance matrices in the tangent space. The induced distortion is analyzed and quantified to
address the effect of data projection on tangent plane against the distance between the identity
matrix and the considered reference point.

1.2 Covariance matrix estimation

With the tremendous technological advancement and increase in computational power
over the past decade, it becomes usual to extract and analyse high dimensional data in
many fields ranging from economics and finance to biology, social networks, and health sci-
ences [Donoho 2000]. Furthermore, estimating well-conditioned and large covariance matrices
is an elementary problem in modern multivariate analysis. A large covariance matrix dimen-
sion causes an estimation problem which is generally challenging. In addition, the aggregation
of massive amount of estimation errors can make considerable adverse impacts on the estima-
tion accuracy. Therefore, estimating large covariance matrices attracts rapidly growing research
attentions.

1.2.1 Sample covariance matrix

When there are complete observations, estimation of the covariance matrix C ∈ Rd×d based
on a sample x1, . . . ,xN ∈ Rd of N independent and identically distributed (iid) observations
according to a multivariate Gaussian distribution is conventionally performed using the sample
covariance matrix (SCM) estimator. The SCM estimator C, under the condition that the
number of observations is large enough compared to the number of features N >> d to obtain
a well-conditioned estimator, is defined by the classical maximum likelihood estimate as:

C =
1

N

N∑
k=1

(xk − µ)(xk − µ)T , (1.1)

where xk is a d−dimensional observation, µ = 1
N

∑N
k=1 xk is the sample mean and (.)T is the

transpose operator.

Therefore, when it comes to real data sets, they are often subject to measurement or recording
errors and uncommon observations may also appear for a variety of reasons. Those uncommon
observations are called outliers. In an other side, dealing with a large number of data may
lead to high resource and time consumption. To circumvent this drawback, a fast covariance
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computation method based on integral images is detailed in the following.

1.2.2 Integral image based method for fast covariance computation

At first, the covariance matrix as a region descriptor was proposed by Tuzel et al.
[Tuzel et al. 2006], following the modeling methodology introduced in [Viola & Jones 2001]. The
main idea is to perform a global modeling for the overall image region of interest. In the follow-
ing, the principle of integral image method is explained and then applied to the computation of
the sample covariance matrix (SCM) estimator.

1.2.2.1 Integral image principle

Integral images are an intermediate representation for the image allowing fast calculation
of region sums where few operations per pixel are performed. The integral image at location
(x′, y′) contains the sum of the pixels inside the rectangle bounded by the upper left corner pixel
of the image and the pixel of the interest. For an image I, its integral image I ′ is given by:

I ′(x′, y′) =
∑

x<x′,y<y′

I(x, y), (1.2)

where I ′(x′, y′) is the integral image and I(x, y) is the original image. Each point of the integral
image I ′ corresponds to the summation of all point values inside the feature image rectangle of I
bounded by the upper left corner and the point of interest. Following this latter representation,
computation of any rectangular region can be performed in constant time. Actually, by the use
of integral image, any rectangular sum can be computed in four array references as illustrated
in Figure 1.1. The sum of pixels within rectangle R can be computed using the four reference

Figure 1.1: Integral Image. The rectangle R is defined by its upper left a and lower right corners
d in the image.

arrays. The value of the integral image I ′ at location a is the sum of pixels inside the rectangle A

and the value at location b is the sum of the pixels A+B, at location c is A+C and at location
d is A+B +C +R. Then the sum within R can be computed as I ′(d) + I ′(a)− (I ′(b) + I ′(c)).

1.2.2.2 Application to SCM computation

In order to speed up the SCM computation, the principle of integral images is exploited.
Let’s consider F a d dimensional feature image W × H × d extracted from an image I. For
a given rectangular region R belonging to F , let xk{k=1...N} be the d-dimensional feature pixels
inside. The d× d covariance matrix of the region R is computed using integral image represen-
tation [Tuzel et al. 2006]. The (i, j)-th element of the covariance matrix defined in (1.1) can be
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rewritten as:

CR(i, j) =
1

N

N∑
k=1

(xk(i)− µ(i))(xk(j)− µ(j)). (1.3)

When rearranging the terms and expanding the mean, it becomes:

CR(i, j) =
1

N

[
N∑
k=1

xk(i)xk(j)−
1

N

N∑
k=1

xk(i)

N∑
k=1

xk(j)

]
(1.4)

According to this latter expression, to find the covariance, the integral images P is constructed
for the sum of all separate features xk(i)i=1...d as well as integral images Q of the sum of the
multiplication of any two feature combinations, xk(i)xk(j)i,j=1...d. This involves the construction
of d + d2 integral images: one for each feature xk(i) and one for any two features xk(i)xk(j).
Considering P be the W × H × d tensor of integral images and Q be the W × H × d × d the
tensor of second order integral images, both defined as:

P(x′, y′, i) =
∑

x<x′,y<y′

F (x, y, i) with i = 1 . . . d (1.5)

Q(x′, y′, i, j) =
∑

x<x′,y<y′

F (x, y, i)F (x, y, j) with i, j = 1 . . . d (1.6)

The main powerful idea about integral images is that the computation is made in one pass
over the image by taking advantage of the spatial arrangement of image pixels, which allows
hastening the calculation. As such:

Px,y = [P(x, y, 1) . . .P(x, y, d)]T (1.7)

Qx,y =


Q(x, y, 1, 1) . . . Q(x, y, 1, d)

. .

. .

. .

Q(x, y, d, 1) . . . Q(x, y, d, d)

 . (1.8)

Px,y is a d dimensional vector and Qx,y is a d× d dimensional symmetric matrix. Then, due to
this symmetry, only d + (d2 + d)/2 passes are sufficient to compute both P and Q. Then the
complexity of constructing integral images is O(d2WH). If one consider the rectangular region
R illustrated in Figure 1.1, where the upper left location a has coordinates (x′, y′) and the lower
right location d is at coordinates (x′′, y′′) and according to (1.4), the covariance matrix of the
region R(x′, y′;x”, y”) can be computed as:

CR(x
′, y′;x′′, y′′) =

1

n
[Qx′′,y′′ +Qx′,y′ −Qx′′,y′ −Qx′,y′′

− 1

n
(Px′′,y′′ +Px′,y′ −Px′′,y′ −Px′,y′′)(Px′′,y′′ +Px′,y′ −Px′′,y′ −Px′,y′′)

T ],

where n = (x′′−x′)(y′′−y′) is the number of pixels inside the region R(x′, y′;x′′, y′′). Therefore,
using integral images, the covariance of any rectangular region decreases the complexity to
O(d2).
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1.2.3 Fixed-point estimator algorithm

Due to its sensitivity to outliers, the use of the sample covariance matrix estimator may have a
poor performance in many real-world applications. Real-world data are often large and contain
a significant amount of aberrant data. As a consequence, a single erroneous observation can
lead to a completely unreliable estimate. A way to circumvent the aforementioned problem is to
use a robust covariance matrix estimator that preserves high performance even if the underlying
distribution deviates from the Gaussian assumption. The fixed point estimator (FP), also known
as the Tyler’s estimator, has been introduced in [Tyler 1987] as one possible choice to solve the
non robustness problem. The estimated covariance matrix M̂ is obtained through a recursive
algorithm where it is the solution of the following fixed-point equation:

M̂it+1 =
1

N

N∑
i=1

(xi − µ̂it)(xi − µ̂it)
T

(xi − µ̂it)TM̂
−1
it (xi − µ̂it)

, (1.9)

where the mean µit is also estimated recursively by:

µ̂it+1 =

∑N
i=1

xi

((xi−µ̂it)T M̂−1
it (xi−µ̂it))

1/2∑N
i=1

1

((xi−µ̂it)T M̂−1
it (xi−µ̂it))

1/2

, (1.10)

where it is the iteration number. In practice, the existence and the uniqueness, up to a
scalar factor, of the FP estimator of the normalized covariance matrix are established in
[Pascal et al. 2008, Gini & Greco 2002], as well as the convergence of the recursive algorithm
for any initialization. Therefore, the algorithm can be initialized with the identity matrix
and converges in practice within 10 iterations. Regarding the scale factor, for any positive
scalar c ≥ 0, if M̂ is a solution of (1.9), cM̂ is also a solution. In practice, a normalization
is performed such that tr(M̂) = d where tr(.) is the trace operator and d is the matrix dimension.

Contrary to the sample covariance estimator (SCM) which gives the same weight to all
observations (1.1), this robust covariance matrix estimation using the FP algorithm, expressed
in (1.9) allows to give a different weight to each observation xi. It thus permits to control the
influence of aberrant observation in the estimation process.

1.3 SPD matrix space geometry

A covariance matrix is a square matrix, symmetric and positive semi-definite (SPD) of par-
ticular properties. In the following, the focus is on the two-dimensional case, but it can be easily
generalized in higher dimension. According to the previous equations, the 2 × 2 covariance
matrix is given by:

C =

(
σxx σxy

σyx σyy

)
. (1.11)

The diagonal terms of the covariance matrix C are the variances of the features and the
other entries are the covariances. For this reason, the covariance matrix is sometimes called the
variance-covariance matrix. In fact, variance measures the variation of a single random variable,
whereas covariance is a measure of how much two random variables x and y vary together.
Since σxy = σyx, the covariance matrix is symmetric. Also, the covariance matrix C is positive
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semi-definite (SPD), i.e., for x ∈ Rd:
xTCx ≥ 0, (1.12)

and
C−CT = 0, (1.13)

where (.)T stands for the matrix transpose operator. As a consequence, equation (1.12) implies
that:

det(C) ≥ 0. (1.14)

Due to those latter properties, namely the positivity of the eigenvalues and the constraint of
the non-diagonal components, the symmetric positive semi-definite matrix C can be viewed as a
point lying on a constrained Euclidean space. Also called a Riemannian manifold, the space has
a particular curved shape which is the interior of a convex cone of R3 as illustrated in Figure 1.2.
The symmetric strictly positive-definite matrices are located inside the cone whereas singular
positive-semi-definite matrices with at least one null eigenvalue reside on the cone’s surface.

Figure 1.2: Convex cone of R3: space of 2× 2 covariance matrices.

While Euclidean tools are well-suited when it comes to the characterization of objects lying
on flat spaces, they do not take into consideration the curvature of the geometrical SPD space
defined by covariance matrices. Actually, in the Euclidean space, the mean of SPD matrices is
just the empirical average of SPD matrices which is not a complete characterization of these
matrices. In fact, the cone of R3 is a differentiable manifold endowed with a Riemannian struc-
ture, where the base point-dependent inner product is defined by < A,B >P= tr(P−1AP−1B)

for any elements A and B ∈ Pd where Pd is the space of d× d SPD matrices.

As a consequence, applying standard Euclidean operations on covariance matrix data, for
instance computing the Euclidean distance between two covariance matrices, are not adapted
and may lead to undesirable results such as the swelling effect [Arsigny et al. 2006], which
means that the determinant (and thus the dispersion) of the Euclidean mean can be larger
than the original determinants of the two tensors being averaged. Tensor swelling occurs
in tasks such as diffusion tensor interpolation, restoration or filtering of tensor-valued im-
ages [Castaño-Moraga et al. 2007]. In contrast, if one regards SPD matrices as points in Rie-
mannian manifold and calculates their corresponding mean [Fréchet 1948, Karcher 1977], then
the swelling effect disappears completely as illustrated in Figure 1.3 taken from the work of
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[Pennec et al. 2006]. It shows a geodesic interpolation of two tensors according to the three
frameworks : Euclidean, affine-invariant and Log-Euclidean metrics.

Figure 1.3: Geodesic interpolation of two tensors. Left: interpolated tensors. Right: graphs of
the determinants of the interpolated tensors. Top: linear interpolation on coefficients. Middle:
affine-invariant interpolation. Bottom: Log-Euclidean interpolation [Pennec et al. 2006].

As observed, the log-Euclidean and affine-invariant frameworks completely overcome the
swelling effect which can be observed in the Euclidean case. This effect causes tensors to grow
after a processing and it is shown through the growing volume of the ellipsoids, which is related
to the determinant. However, in both Riemannian frameworks, determinants are monotonically
interpolated.

1.3.1 Riemanian manifold

The geometry of non-Euclidean spaces gives rise to the notion of manifolds. Briefly,
Euclidean geometry is the study of flat space whereas a differential manifold is a generalization
of our basic understanding of a curved surface in an Euclidean space. An informal definition of
this mathematical object, could be the following: a manifold is a space that is locally similar
to the Euclidean space. This local similarity with the Euclidean space will appear to be very
convenient, as it will allow us to extend all the tools of the Euclidean space to any differential
manifold through mapping operations. Therefore, we will focus on this local resemblance to
define and describe manifolds and functions allowing the transition from manifold to the local
Euclidean space and vice versa.

Riemannian manifolds, also called elliptic geometry, are one of the non-Euclidean geometries
which are smooth 1 and equipped with the Riemannian metric which allow one to measure
geometric quantities such as distances and angles [Lee 1997]. In fact, it is a continuous collection
of scalar products (<,>x) on each tangent space TxM at points x of the manifold. To actually
perform calculation like distance on a manifold, few concepts are introduced in the following. The
first one is the notion of geodesics and its relation with distance, which refers to the curves that
are the shortest paths between two points. For example, straight lines in Euclidean space and
great circles on a sphere. Then, the tangent plane definition is assessed, followed by operations
of logarithm and exponential mapping allowing the transition from manifold to tangent space
and vice versa.

1A smooth manifold is a differentiable manifold, also called a C∞ or infinitely differentiable manifold.
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1.3.1.1 Distance and geodesics

If we consider a curve γ(t) : [0, 1] → Pd on the manifold, the velocity vector γ̇(t) and its
norm ||γ̇(t)|| the instantaneous speed, can be computed at each point. To compute the length
of the curve, the norm is integrated along the curve.

L(γ) =
∫ 1

0
||γ̇(t)||dt =

∫ 1

0
(< γ̇(t), γ̇(t) >γ(t))

1
2dt (1.15)

In the case of SPD matrices, the unique geodesic parameterized by the length, t→ γ(t), joining
two covariance matrices X and Y, is defined as [James 1973]:

γ(t) = X
1
2 (X− 1

2YX− 1
2 )tX

1
2 , (1.16)

The geodesic distance d(X,Y) : Pd ×Pd → R+, or the Rao’s distance [Terras 1988], is equal to
the minimum length connecting the two points X and Y on the manifold among the smooth
curves.

d(X,Y) = minγL(γ), with γ(0) = X and γ(1) = Y. (1.17)

Then, for SPD matrices, the geodesic distance d(X,Y) between X and Y is given by:

d2(X,Y) = tr
[
logm2(X−1/2YX−1/2)

]
=

d∑
i=1

log2(λi), (1.18)

where logm stands for the matrix logarithm function and λi is the ith eigenvalue of the matrix
X−1/2YX−1/2 ∈ Pd.

1.3.1.2 Tangent vectors and tangent space TxM

In differential geometry, one can attach to every point x of a differentiable manifold a tan-
gent space which is a real vector space that contains all possible directions in which one can
tangentially passes through x. Intuitively, when walking along a curve on a smooth manifold, as
one pass through the point x, it implicitly has velocity (magnitude and direction) that is tangent
to the manifold, in other words: a tangent vector. Then, all tangent vectors at x are elements of
the tangent space at the same point x. This is a generalization of the notion of a bound vector in
a Euclidean space where the tangent space TxM at a point x on an n-dimensional manifold M
is an n-dimensional hyperplane that best approximatesM around x as illustrated in Figure 1.4.
In addition, the dimension of the tangent space at every point of a connected manifold is the
same as that of the manifold itself. The tangent space of a manifold M at a point x is noted
TxM. An element y ∈ TxM is called a tangent vector. Generally, the point x is also called a
reference point and noted Mref .

1.3.1.3 Logarithmic and exponential mapping

The notions of matrix logarithm and exponential are central in the theoretical framework
presented here. Let x be a point of the manifold that is a reference point and −→xy a vector of the
tangent space TxM at that point.
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Figure 1.4: Illustration of a tangent space, tangent vectors and Logarithm/Exponential mapping.

As in the scalar case, the logarithm mapping is defined as the inverse of the exponential.
The important point here is that the logarithm of an SPD matrix is well defined and is also
a symmetric matrix. Conversely, the exponential of any symmetric matrix yields an SPD
matrix. This means that under the matrix exponentiation operation, there is a one to one
correspondence between symmetric matrices and covariance matrices as illustrated in Figure 1.4
where Mref = x. The inverse mapping from M to TxM is called the logarithmic map which
allows unfolding the manifold in the tangent space along geodesics.

Regarding the space Pd of symmetric positive matrices (SPD), the exponential map and its
inverse map onto the tangent vector space at a given reference matrix Mref are respectively
defined in a closed form as [Pennec et al. 2006]:

ExpMref
=


TMref

M→ Pd
Y → ExpMref

(Y) = M
1
2
ref expm(M

− 1
2

refYM
− 1

2
ref )M

1
2
ref

= Mref expm(M−1
refY)

(1.19)

LogMref
=


Pd → TMref

M

X→ LogMref
(X) = M

1
2
ref logm(M

− 1
2

refXM
− 1

2
ref )M

1
2
ref

= Mref logm(M−1
refX).

(1.20)

Note that logm and expm are matrix logarithm and exponential, respectively. Both are
explained further. As a direct consequence, the re-interpretation of addition and subtraction
using logarithmic and exponential maps is very powerful to generalize algorithms working on
vector spaces to algorithms on Riemannian manifolds such as distance, mean and gradient
descent computation, as summarized in the following Table 1.1.

Euclidean space Riemannian manifold
Substraction x⃗y = y − x x⃗y = Logx(y)

Addition y = x+ x⃗y y = Expx(x⃗y)

Distance d(x, y) = ||y − x|| d(x, y) = ||x⃗y||x
Mean value

∑
i x⃗xi = 0

∑
i Logx(xi) = 0

Gradient descent xt+ε = xt − ε∇C(xt) xt+ε = Expxt
(−ε∇C(xt))

Table 1.1: Re-interpretation of basic standard operations in a Riemannian manifold.
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Indeed, in the Riemannian manifold, a vector x⃗y (attached at the point x) can be seen as a
vector of the tangent space at the same point x. Such a vector can be identified to a point in
a manifold using the exponential map: y = Expx(x⃗y) and conversely, the logarithmic mapping
can be used to map two points (x, y) into a vector: x⃗y = Logx(y). Those tools are very powerful
in terms of implementation since all geometric operations can be expressed, for instance the
mean value and the gradient descent algorithm.

1.3.1.4 Parallel transport

In Riemanian geometry, parallel transport, also called affine transformation, is a technique
which permits transporting geometrical data along smooth curves and thereby linking tangent
spaces in a manifold by preserving the relationship between data. Let X and Y two matrices of
the manifoldM, the explicit expression of the parallel transport from X to Y of any S ∈ TXM
is defined in [Pennec et al. 2006] by:

TXM→ TYM

S→ ΓX→Y(S) = ET S E, (1.21)

with E = (YX−1)
1
2 . As illustrated in Figure 1.5, the parallel transportation allows to compare

vectors locally on a Riemannian manifold such as the comparison of probability density functions,
coordinates or vectors that are defined in tangent spaces at different points on the manifold.

Figure 1.5: Illustration of parallel transport on manifold from TXM to TYM with E =
(YX−1)

1
2 .

Furthermore, parallel transport of SPD matrices on manifold M from X to Y is given the
same transformation (1.21) applied to P = ExpX(S) such that:

ExpY (ΓX→Y(S)) = ET P E, (1.22)

with E = (YX−1)
1
2 .

Since the fundamental tools of the Riemannian manifold have been defined, the focus in
the following is on the affine-invariant and log-Euclidean statistical frameworks which allow
to consider the Riemannian geometry characteristics of the space Pd of d × d symmetric and
positive definite (SPD) matrices. The choice for these two metrics is justified by their strong
invariance properties compared to the Euclidean metric. Thus, they provide the most faithful
representations of data lying on Riemannian manifold.
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For the following sections, in order to simplify notations, the tangent space to the manifold
at a reference point TMref

M will be noted TMref
.

1.3.2 Affine-invariant (AI) metric

Many authors have raised the need of intrinsic tools to analyze covariance matri-
ces [Smith 2005, Pennec 2006, Arsigny et al. 2006]. As pointed out by Pennec et al. in
[Pennec et al. 2006], one of the most popular Riemannian metrics is the affine-invariant one,
called also Fisher-Rao. The curvature of the manifold is taken into consideration and thus the
affine-invariant Riemannian metric enjoys desirable invariance properties compared to the Eu-
clidean metric. The affine-invariant Riemannian distance has the property of being invariant by
affine transformations [Pennec 2006]. This means that for any matrices X and Y ∈ Pd and any
invertible real matrix A of size d× d, the following property holds:

d(X,Y) = d(ATXA,ATYA), (1.23)

where d(X,Y) is the geodesic distance between X and Y given in (1.18). For more de-
tails on the geometric properties induced by the Rao-Fisher metric on the space Pd, see
[Said et al. 2015b, Said et al. 2018].

Although this metric have excellent theoretical properties and allows to develop precise
and robust processing tools, it also leads in practice to complex and slow algorithms due to the
high computational costs. Indeed, it generally involves recursive algorithms. To illustrate that,
we consider the example of a sample’s center of mass computation. It usually relies on a squared
Euclidean distance [MacQueen 1967]. Since this distance is not adapted to the Riemmannian
geometry, the Euclidean distance is replaced by the Riemannian distance. In fact, considering a
random sample M = {M1, ...,MN} of N SPD matrices of size d×d, characterized by its central
value M̄, the estimated centroid, ˆ̄M, is obtained by minimizing the following cost function
f(M̄):

ˆ̄M = argmin
M̄∈Pd

f(M̄). (1.24)

In the case of the center of mass, also known as the Fréchet [Fréchet 1948] or Karcher mean
[Karcher 1977], it is obtained by minimizing the sum of squared distances between M̄ and the
observations M = {M1, ...,MN}. The cost function is therefore defined by:

f(M̄) =
1

N

N∑
n=1

d2(Mn, M̄), (1.25)

where d(.) is the Riemannian geodesic distance introduced in (1.18).

To solve this optimization problem, a gradient-based algorithm is often proposed for the
estimation of the center of mass M̄ [Absil et al. 2008, Lenglet et al. 2006]. Starting from (1.25),
the center of mass is recursively estimated using the following expression:

M̄it+1 = ExpM̄it

(
−αit∇f(M̄it)

)
, (1.26)

where αit is the descent step and ExpM the exponential map given in (1.20). Moreover, the
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Armijo’s backtracking procedure [Armijo 1966] is classically used to fix the step αit at each
iteration it. The procedure is repeated as long as the norm of ∇f(M̄it), noted Dit remains
greater than a predefined precision parameter ε, or until a maximum number of iterations Niter

is reached. Moreover, the gradient of the cost function (1.25) with respect to M̄ is defined as:

∇f(M̄) = − 2

N

N∑
i=1

LogM̄(Mi), (1.27)

with LogM̄(.) the Riemannian logarithm mapping defined in (1.20). Algorithm 1 presents a
pseudo-code describing the entire procedure for recursively estimating the centroid.

Algorithm 1 Center of mass estimator - Fréchet/Karcher mean
Input: M = {M1, . . . ,MN} a set of covariance matrices where Mn ∈ Pd, ε, Niter

Initialize: M̄ using the sample mean
1: it← 1

2: while (it ≤ Niter) and (Dit > ε) do
3: Estimate M̄ by using (1.26).
4: Compute the gradient norm Dit.
5: it← it+ 1
6: end while

Output: M̄ ∈ Pd.

As observed, affine-invariant computations involve an intensive use of matrix inverses, square
roots, logarithms, and exponentials. It thus results on slow algorithms which may be critical in
practice. To remedy this limitation, a new family of Riemannian metrics called Log-Euclidean
is introduced in [Arsigny et al. 2006]. In fact, they also have excellent theoretical properties and
yield similar results in practice, but with much simpler and faster computations.

1.3.3 Log-Euclidean (LE) metric

The log-Euclidean metric was proposed by Arsigny et al. in [Arsigny et al. 2006], as an
interesting alternative to the affine-invariant metric. Although the log-Euclidean metric does not
yield full affine invariance, it is invariant by similarity (orthogonal transformation and scaling).
This means that computations using this metric will be invariant with respect to a change of
coordinates obtained by a similarity. From a practical point of view, Arsigny et al. have shown
in [Arsigny et al. 2006] that affine-invariant and log-Euclidean frameworks perform better than
the Euclidean one for the interpolation and regularization of their synthetic and clinical 3D
diffusion tensor magnetic resonance imaging (DT-MRI) data. This has the advantage of more
accurately capturing the underlying scatter of the data points (that are covariance matrices)
than is possible with methods that treat data points as elements in a vector space. For many
applications, the log-Euclidean framework has shown competitive results compared to the affine-
invariant Riemannian one [Ilea et al. 2018b, Arsigny et al. 2006]. This log-Euclidean framework
is considered in this work for its efficiency and ease of use. In fact, it principally involves the
notions of matrix logarithm and exponential which are central in the theoretical framework
presented here. Actually, the use of logarithm matrix permits to locally flatten the manifold
via the tangent space approximation. This consists of projecting each covariance matrix X

onto a common tangent space of this manifold at the reference point Mref via the log map
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operator [Faraki et al. 2015b, Arsigny et al. 2006, Rosu et al. 2017] defined as:

X
TMref = LogMref

X (1.28)

= Mref logm
(
M−1

refX
)
. (1.29)

X
TMref means that covariance matrix X is projected on the tangent space at the reference

point Mref . Then, if one is interested in using a covariance matrix as a feature descriptor in a
classifier, a natural choice consists in vectorizing it in order to process this quantity as a vector
and use any vector-based classification algorithms. Due to symmetry, the following modified
half-vectorization operator Vec(.) stacks, with appropriate weighting, the upper triangular part
of P into a column vector such that:

Vec(P) =
[
P11,
√
2P12, . . . ,

√
2P1d, P22,

√
2P23, . . . , Pdd

]
, (1.30)

A coefficient of
√
2 is applied on the off-diagonal elements of P in order to conserve equality of

norms ||P||F = ||Vec(P)||2, where ||.||F is the Frobenius norm. The reverse operation is defined
in a straightforward manner by an operator denoted unVec(x). Pij are the elements of P at
row i and column j. Those two operations yield to the definition of the log-Euclidean vector
representation of X computed at the reference point Mref , denoted x

TMref ∈ R
d(d+1)

2 where :

x
TMref = Vec

(
X

TMref

)
= Vec

(
LogMref

(X)
)
. (1.31)

These covariance matrices are projected on the tangent space at Mref ; they lie in a vector
space where conventional image processing and machine learning methods can be used. Within
this framework, the tangent space is computed at a reference point Mref as shown in (1.28).
Different choices can be made for this reference point, such as the identity matrix, the center of
mass or the median. The use of the identity matrix Id for this latter is undoubtedly the simplest
and the most usual and adopted way to map covariance matrices on the tangent space. This
choice will be made for the following as long as no additional clarification is added. In that case,
the log map operator in Equation (1.28) vanishes to:

LogId(X) = logm(X). (1.32)

This consists of computing the ordinary matrix logarithm. Let A = VDVT be the eigen-
value decomposition of an SPD matrix, the logarithm is defined as: logm(A) = Vlogm(D)VT .
Since D is the diagonal matrix of eigenvalues, logm(D) is also a diagonal matrix whose diagonal
elements are the logarithm of the eigenvalues.

1.3.4 Comparison between the affine-invariant and log-Euclidean frameworks

The invariance properties of the LE and AI metrics are synthesized in Table 1.2. It demon-
strates the strength of the Rao’s distance invariance properties compared to the log-Euclidean
one. Let X and Y be two covariance matrices of size d× d and d(.) a distance measure between
the two matrices X and Y according to each metric.
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Euclidean Log-Euclidean Affine-Invariant
Rotation and reflection

Scaling ×
Inversion ×

Affine invariance × ×

Table 1.2: Invariance properties comparison between Euclidean, LE and AI metrics

The different invariance properties are explained in the following.

1. Rotation and reflection invariance

d(X,Y) = d(RXRT ,RYRT ), (1.33)

where R ∈ Op is a rotation and reflection matrix belonging to the group Op of real
orthogonal matrices of size d× d.

2. Scaling invariance

d(X,Y) = d(αX, αY), (1.34)

with α > 0.

3. Invariance under inversion
d(X, Id) = d(X−1, Id), (1.35)

where Id is the d× d identity matrix.

4. Invariance under affine transformation

d(X,Y) = d(AXAT ,AYAT ), (1.36)

with A a full rank d× d matrix.

As observed, although the AI metric space is endowed with stronger invariance properties com-
pared to the LE metric, estimating the parameters of the statistical models relies on recursive
estimation algorithms, inducing thus high computational expenses. In contrast, as the LE
mapping allows the transformation to a vector-form representation of covariance matrices, the
complexity and computational expenses of the algorithms on the LE metric space are signifi-
cantly reduced. Moreover, the performance evaluation of different metrics have been assessed on
both real and simulated SPD data samples in [Arsigny et al. 2006]. The non-Euclidean metrics
showed, in a global point of view, similar performance and outperform the Euclidean framework
in several image processing applications involving SPD matrices. For example, in the context
of visual objects categorisation, Jayasumana et al. in [Jayasumana et al. 2013] demonstrated
the benefits of non-Euclidean based approaches over their Euclidean counterparts in terms of
classification performances.

1.4 Statistical modelling on the SPD space

As we have seen above, in response to the need for effective methods of processing data
which lie in the space Pd, extensive use of SPD matrices and attention has been given to metrics
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and distance measurement on the Riemannian manifold. However, only few studies are dedi-
cated to assess a formal and adapted statistical modeling for using a set of covariance matrices
on the manifold of SPD matrices which is able to represent the statistical variability of data in Pd.

Pennec [Pennec et al. 2006] and Lenglet et al. [Lenglet et al. 2006] have proposed sta-
tistical models by considering the geometry of covariance matrices. Namely, the Gaussian
distributions on the Riemannian manifold, relying on the affine-invariant metric, has been
introduced. Despite of being well adapted to the data geometry, these propositions rely on
a particular case of compact distributions. These limitations are overcomed by Said et al.
in [Said et al. 2015b] where, opposed to the previous propositions, the computation of the
normalization constant of the probability density function is achieved, leading thus to an exact
expression of the Riemannian Gaussian distribution. The distribution is characterized by its
central value given by the Riemannian center of mass and its dispersion around this central value.

The goal of this section is to generalize statistical models and perform statistical inferences
on the Riemannian manifold of the space of SPD matrices. It has three major parts. In the
first part, the definition of a Riemannian and log-Euclidean Gaussian model are assessed on
the space of covariance matrices as well as the methods for parameter estimation. Then the
extension to their corresponding Gaussian mixture model (GMM) of K components is detailed.
Finally, after assessing comparison between the two frameworks, the last part constitutes the
main contribution of the chapter, it focuses on a proposition of an alternative Gaussian mixture
model with multiple reference points, one for each cluster in order to better fit the data samples
while preserving the theoretical advantages of AI and LE metrics.

For this section, a sample M = {M1, ...,MN} of N independent and identically distributed
(i.i.d) observations is considered.

1.4.1 Riemannian affine-invariant Gaussian distribution

1.4.1.1 Model definition

A Riemannian Gaussian distribution (RGD) depends on two parameters, M̄ ∈ Pd and σ > 0.
It is defined by its probability density function:

p(Mn|M̄, σ) =
1

Z(σ)
exp

[
−d2(Mn, M̄)

2σ2

]
, (1.37)

where d(.) is the Riemannian geodesic distance defined in (1.18), M̄ and σ represents respectively
the central value (centroid) and the dispersion. A first important issue for a complete description
of (1.37) is the explicit definition of Z(σ). Z(σ) is a normalization factor independent of M̄

[Said et al. 2015b], given by:

Z(σ) =

∫
Pd

exp

[
−d2(M, M̄)

2σ2

]
dv(M), (1.38)

where dv(Mn) is the Riemannian volume element. As explained in [Said et al. 2015b], an ana-
lytical expression can be derived only for d = 2,

Z(σ) = (2π)3/2σ2 exp

(
σ2

4

)
erf

(σ
2

)
, (1.39)
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where erf(.) stands for the error function.
While for d > 2, the normalization factor Z(σ) is given by;

Z(σ) = qd ×
∫
Rd

exp

(
−|r|

2

2σ2

)∏
i<j

sinh
|ri − rj |

2
dr1 . . . drd, (1.40)

where |r| = (r21 + · · ·+ r2d)
1
2 and qd is given by:

qd =
1

d!

π
d2

2

Γd(
d
2)

8
d(d−1)

4 . (1.41)

Γd(.) is the multivariate Gamma function [Muirhead 1982], defined as:

Γd(y) = 8
d(d−1)

4

d∏
j=1

Γ

(
y +

1− j

2

)
, (1.42)

and Γ(.) is the usual Gamma function. The evaluation of Z(σ) is necessary for distribution
parameter estimation, in particular for the estimate of σ. In practice, Z(σ) can be tabulated
using a Monte Carlo integration. For more information, the interested reader is referred to
[Said et al. 2015b]. Moreover, in that paper, an algorithm is proposed to generate samples from
this distribution.

1.4.1.2 Parameter estimation

The RGD’s parameters, the dispersion and the central value of the probability density func-
tion, M̄, can both be estimated through the maximum likelihood estimation (MLE). The log-
likelihood function is given by:

L(M|M̄, σ) = log
N∏

n=1

p(Mn|M̄, σ) (1.43)

= −N logZ(σ)− 1

2σ2

N∑
n=1

d2(Mn, M̄) (1.44)

This leads to the maximum-likelihood estimate ˆ̄M of the Riemannian center of mass M̄, also
known as the Fréchet [Fréchet 1948] or Karcher mean [Karcher 1977] and is obtained by mini-
mizing the sum of squared distances between M̄ and the observations M = {M1, ...,MN}:

ˆ̄M = argmax
M̄∈Pd

L(M|M̄, σ) = argmin
M̄∈Pd

N∑
n=1

d2(Mn, M̄), (1.45)

where d(.) is the geodesic distance defined in (1.18). The solution of this minimization
problem is provided by a Riemannian gradient descent algorithm detailed above in algorithm 1
[Lenglet et al. 2006].

Moreover, the maximum likelihood estimate σ̂ of the dispersion parameter σ is the solu-
tion of the following equation:

σ̂ = argmax
σ∈R+

L(M|M̄, σ). (1.46)
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This leads to find the solution of the non-linear equation:

1

N

N∑
n=1

d2(Mn, M̄) = σ3 d

dσ
(log(Z(σ)). (1.47)

Indeed, the right-hand side of equation (1.47) depends only on the unknown σ, while its left-hand
side has a fixed value. As detailed in the work provided by Said et. al in [Said et al. 2015b],
there exists a function Φ : R+ → R+ such that:

σ̂ = Φ

(
N−1

N∑
n=1

d2(Mn, M̄)

)
. (1.48)

According to (1.48), it means that Φ is the inverse function of σ3 d
dσ (log(Z(σ)). For more details,

the interested reader is referred to [Said et al. 2015b]. In practice, it is solved by tabulating the
values of the normalization factor Z(σ) introduced in (1.38).

1.4.2 Riemannian affine-invariant Gaussian mixture model

A Gaussian Mixture Model (GMM) is a parametric probability density function repre-
sented as a weighted sum of multiple Gaussian component densities. GMMs parameters are
estimated from training data using the iterative Expectation-Maximization (EM) algorithm
[Dempster et al. 1977]. Here, the definition of mixture models is extended to Riemannian Gaus-
sian distributions.

1.4.2.1 Model definition

Starting from (1.37), the probability density function for a mixture of K Riemannian Gaus-
sian distributions is given by:

p(M|ω, M̄, σ) =
K∑
k=1

ωk p(M|M̄k, σk), (1.49)

where p(M|M̄k, σk) is the probability density function of a Riemannian Gaussian distribution
given by (1.37). In (1.49), ωk ∈ [0, 1], M̄k ∈ Pd and σk ∈ R+ are respectively the weight, mean
and dispersion for the kth component of the GMM model.

1.4.2.2 Parameter estimation

For each component k = 1, . . . ,K, the parameters θ̂ = {(ωk, M̄k, σk)1≤k≤K} can be
estimated using the expectation maximization algorithm (EM) extended to the Riemannian
geometry of the space Pd as proposed by Said et al. in [Said et al. 2015a] where they proposed
an extension of the EM algorithm to the Riemannian case.

In fact, the EM algorithm consists in two main steps.

The expectation step permits assigning a responsibility score γk to each data Mn for
each component k. This quantity indicates how much the data Mn belongs to the kth

Riemannian Gaussian distribution. It is defined by:
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γk(Mn) =
ωkp(Mn|M̄k, σk)∑K
j=1 ωjp(Mn|M̄j , σj)

. (1.50)

The maximization step permits the update of the estimate values considering the scores
obtained in the previous step until some convergence threshold is reached.

For each iteration, the parameters are given by:

• The mixture weight:

ω̂k =
γk(θ̂)∑K
j=1 γj(θ̂)

. (1.51)

• The center of mass ˆ̄Mk:

ˆ̄Mk = argmin
M̄

N∑
n=1

γk(Mn)

Nk
d2(Mn, M̄), (1.52)

where d(.) stands for the geodesic distance defined in equation (1.18).

• The dispersion σ̂k:

σ̂k = Φ

(
N−1

k

N∑
n=1

γk(Mn)d
2(Mn, M̄k)

)
, (1.53)

where Nk can be seen as the effective number of points assigned to component k and is
defined by:

Nk =
N∑

n=1

γk(Mn). (1.54)

Φ is the inverse function of σ → σ3× d
dσZ(σ) introduced previously. The steps of the EM method

for the estimation of the parameters of a Riemannian Gaussian mixture model are summarized
in Algorithm 2.

Algorithm 2 EM algorithm for a Riemannian GMM model
Input: M = {M1, . . . ,MN} a set of covariance matrices where Mn ∈ Pd, K number of
components of the GMM, Niter maximum number of iterations.
Initialize: γk(M) via the EM algorithm for the GMM defined in (1.57) at the tangent plane of
the identity matrix.

1: it← 1
2: while (it ≤ Niter) do
3: Update M̄k by solving (1.52) with Karcher mean Algorithm 1.
4: Update σk with (1.53).
5: Update ωk with (1.51).
6: Update the posterior probability γk(Mn) with (1.50).
7: it← it+ 1
8: end while

Output: ωk ∈ [0, 1], M̄k ∈ Pd and σk ∈ R+.

The statistical models defined using the affine-invariant metric space are well suited to the
Riemannian geometry and provide precise characterisation of SPD matrices. Nevertheless, they
involve complex recursive algorithms of high computational time in particular when estimating
the parameters either for the Riemannian Gaussian distribution or its corresponding mixture
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model. For example, the calculation of the center of mass requires an iterative procedure (1.25) as
well as the computation of the normalization factor Z(σ) which needs to be tabulated. Moreover,
an isotropic model is used for the Riemannian Gaussian model, which is characterized by a scalar
dispersion parameter σ. Considering an isotropic model may be too restrictive when it comes
to practical applications. As a consequence, many authors oriented their researches to a less
complex framework while preserving accurate practical results. This is the case for the log-
Euclidean framework detailed in the next subsection.

1.4.3 Log-Euclidean Gaussian distribution

Once SPD matrices are mapped on the Log-Euclidean space via the operations explained in
Section 1.3.3, a multivariate Gaussian distribution can be defined on the LE vector space.

1.4.3.1 Model definition

The probability density function of the Log-Euclidean Gaussian distribution depends on two
parameters, the mean Vec(logMref

(M̄)) ∈ Rd(d+1)/2, computed on the tangent space TMref
and

the sample covariance matrix Σ ∈ Pd(d+1)/2 which ensures model anisotropy. It is given by:

p(Mn|M̄,Σ) =

exp

{
− 1

2

(
Vec

(
LogMref

(Mn)
)
− Vec

(
LogMref

(M̄)
))T

Σ−1
(

Vec
(

LogMref
(Mn)

)
− Vec

(
LogMref

(M̄)
))}

(2π)
d(d+1)

4 |Σ|1/2
.

(1.55)

As discussed previously, different choices can be made for the reference point Mref such as the
identity matrix Id, the center of mass or the median. The use of the identity matrix is certainly
the simplest and the most usual way to map covariance matrices on the tangent space. In that
case, the log map operator vanishes to:

LogId(M) = logm(M) (1.56)

By considering that the reference point is the identity matrix Id, (1.55) vanishes to:

p(M|M̄,Σ) = p(mTId |µ,Σ)

=
exp{−1

2(m
TId − µ)TΣ−1(mTId − µ)}

(2π)
d(d+1)

4 |Σ|1/2
, (1.57)

where

µ = Vec
(
logId(M̄)

)
= m̄TId ∈ R

d(d+1)
2 , (1.58)

is the log-Euclidean mean vector.

1.4.3.2 Parameter estimation

Identically to the Riemannian Gaussian distribution defined in the previous paragraphs,
the parameters of the multivariate LE Gaussian distribution are estimated by the maximum
likelihood estimation method. Moreover, since covariance matrices are projected into the tan-
gent plane and represented by their corresponding vectors, all the algorithms developed in an



1.4. Statistical modelling on the SPD space 27

Euclidean space can be employed, parameters µ and Σ are thus respectively estimated by the
sample mean and sample covariance matrix by:

µ̂ =
1

N

N∑
n=1

m
TId
n (1.59)

Σ̂ =
1

N

N∑
n=1

(m
TId
n − µ̂)(m

TId
n − µ̂)T (1.60)

Since the parameters have close-form expressions, it enable fast and effective computations.

1.4.4 Log-Euclidean Gaussian mixture model

1.4.4.1 Model definition

Equivalently to the case of the Riemannian Gaussian mixture model previously presented, a
mixture model of multivariate Gaussian distributions is proposed on the LE metric space as well,
allowing the characterizing of variability in data sets mapped on the LE space. The probability
density function is given by:

p(m
TId
n |ω, µ,Σ) =

K∑
k=1

ωkp(m
TId
n |µk,Σk). (1.61)

1.4.4.2 Parameter estimation

The mixture model’s parameters are: the set of mixture weights ωk, the mean vectors µk

and the covariance matrices Σk. Given the same data set mTId = {mTId
1 , ...,m

TId
N } of N inde-

pendent and identically distributed (i.i.d) drawn from a multivariate Gaussian mixture model,
the estimated parameters through the EM algorithm are:

• The mixture weight ω̂k:
ω̂k =

Nk

N
(1.62)

• The mean vectors µ̂k:

µ̂k =
1

Nk

N∑
n=1

γk(m
TId
n ) m

TId
n (1.63)

• The dispersion matrices Σ̂k:

Σ̂k =
1

Nk

N∑
n=1

γk(m
TId
n )

(
(m

TId
n − µk)(m

TId
n − µk)

T
)
, (1.64)

where

γk(m
TId
n ) =

ωkp(m
TId
n |µk,Σk)∑K

j=1 ωjp(m
TId
n |µj ,Σj)

, (1.65)

and

Nk =
N∑

n=1

γk(m
TId
n ).
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The steps of the EM algorithm for the estimation of the parameters of a multivariate Gaussian
mixture model are summarized in Algorithm 3.

Algorithm 3 EM algorithm for a Log-Euclidean GMM model

Input: mTId = {mTId
1 , ...,m

TId
N } the vector-form presentation of the set of covariance matrices

M = {M1, . . . ,MN}, K number of components of the GMM, Niter maximum number of
iterations.
Initialize: ωk = 1

K , µk with a random data sample from m
TId
1 , ...,m

TId
N and γk(M) according

to (1.65) with Nk = N and γk(m
TId
n ) = 1

K .
1: it← 1
2: while (it ≤ Niter) do
3: Update µk with (1.63).
4: Update Σk with (1.64).
5: Update ωk with (1.62).
6: Update the posterior probability γk(m

TId
n ) with (1.65).

7: it← it+ 1
8: end while

Output: ωk ∈ [0, 1], µk ∈ Pd and Σk ∈ Pd(d+1)/2.

Note that in this log-Euclidean case, the parameter estimates are given in closed form, while
for the statistical models defined on the AI metric space, recursive estimation algorithms are
needed to estimate these parameters. In the following, a more detailed comparison between the
two metrics is provided.

1.4.5 Comparison between the AI and LE Gaussian models

1.4.5.1 Overview of AI and LE Gaussian models

Table 1.3 draws an overview of both Riemannian and log-Euclidean statistical models on the
space of covariance matrices.

Log-Euclidean metric2 Affine-invariant metric

Gaussian
model

p
(
m

TId
n |µ,Σ

)
=

exp{− 1
2
(m

TId
n −µ)TΣ−1(m

TId
n −µ)}

(2π)
d(d+1)

4 |Σ|1/2
p(Mn|M̄, σ) = 1

Z(σ) exp
[
−d2(Mn,M̄)

2σ2

]

Gaussian
mixture
model

p(m
TId
n |θ) =

∑K
k=1 ωkp

(
m

TId
n |µk,Σk

)
p(Mn|ω, M̄, σ) =

∑K
k=1 ωk p(Mn|M̄k, σk)

where p
(
m

TId
n |µk, σk

)
=

exp

{
− 1

2
(m

TId
n −µk)

TΣ−1
k (m

TId
n −µk)

}
(2π)

d(d+1)
4 |Σk|1/2

where p(Mn|M̄k, σk) =
1

Z(σk)
exp

[
−d2(Mn,M̄k)

2σ2
k

]
with µk ∈ R

d(d+1)
2 , σ2

k = diag(Σk) ∈ R
d(d+1)

2 M̄k ∈ Pd, σk > 0

and ωk ∈ [0, 1]. and ωk ∈ [0, 1].

Characteristics Computations on the tangent space Computations on manifold
Anisotropic model (Σ ∈ Pd(d+1)/2) Isotropic model (σ ∈ R)
Closed-form parameter expression Recursive parameter estimation algorithm

Simple normalization factor Complex normalization factor Z(σ)

Table 1.3: Comparison between the two considered GMM models: one defined using the LE
metric and second using the AI Riemannian metric.

2Note that the image classification algorithms introduced in the next chapter imposes Gaussian model covari-
ance matrices, Σk, to be diagonal. This is suitable for most computer vision applications, for example Fisher
vector encoding assumes that descriptors are generated by a GMM model with diagonal covariance matrices.
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Both models share some similarities (Gaussian distribution) but differs in some points. An
anisotropic model is considered for the LE metric where the dispersion for the Gaussian mixture
model is a diagonal matrix Σk while an isotropic model is used for the affine-invariant Rieman-
nian metric by considering a scalar dispersion σk. Moreover, for the LE metric, the computations
are made on the tangent space at a defined reference point. As such, calculations are simpli-
fied while for the AI metric, the computations are performed on the manifold which involves
recursive algorithms for parameter estimation and a computation of a complex normalization
factor.

1.4.5.2 Application to texture image classification

The LE metric has been tested against the affine-invariant metric in different applications,
in particular Ilea et al. provides in [Ilea et al. 2018b] a fair comparison between these two
approaches in terms of overall accuracy on an image classification application. Table 1.4 shows
the classification results obtained on four texture databases (VisTex [Picard et al. 2010], Brodatz
[Brodatz 1966], Outex [Ojala et al. 2002], USPtex [Backes et al. 2012]). The performances are
displayed for the Fisher vector encoding computed by using the derivative with respect to the
centroid M̄k. This FV encoding strategy will be explained in section 2.2.1.3 of chapter 2. For
the LE metric, an isotropic model can be built by considering that Σk = σ2

kId(d+1)/2. For
the affine-invariant Riemannian metric, we recall that the Riemannian Gaussian distribution is
isotropic.

Database

Anisotropic Model Isotropic Model
Log-Euclidean Log-Euclidean Affine-Invariant

Metric Metric Riemannian Metric
VisTex 95.5 ± 0.01 88.7 ± 0.01 91.3 ± 0.01
Brodatz 93.5 ± 0.01 87.1 ± 0.01 92.9 ± 0.01
Outex 87.3 ± 0.01 83.2 ± 0.01 85.4 ± 0.01

USPtex 88.3 ± 0.01 81.5 ± 0.01 87.0 ± 0.01

Table 1.4: Comparison between anisotropic and isotropic models, classification results.

One can notice that for the LE metric, an anisotropic model yields to a significant gain of
about 4% to 7% compared to an isotropic model. More interestingly, for an isotropic model,
descriptors based on the affine-invariant Riemannian metric yield to better performances than
that obtained with the LE metric. A gain of about 2% to 6% is observed. These experiments
clearly illustrate that the gain observed for the LE metric comes better from the anisotropicity
of the Gaussian mixture model than from the metric definition. Furthermore, considering
an anisotropic Gaussian model based on the AI metric leads to very complex calculations.
In addition, when considering the Log-Euclidean metric, the GMM modeling is limited to
a single tangent plane defined at the identity matrix. This makes a hidden assumption
that the covariance matrices are located on a local region of the manifold and may lead to
projection distortions when covariance matrices are localized far from it. Since then, Pennec
has introduced in [Pennec 2004] an anisotropic Gaussian model on the Riemannian manifold
to preserve the geometrical data properties. Nevertheless, it involves complex calculations and
requires an approximation of the normalization factor for a covariance matrix of small variance.
As a consequence, this proposition remains difficult to apply in practice where FV computation
induce complex calculations.
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Since then, an intermediate alternative is proposed in the following which allows preserving
as far as possible the specific geometry of SPD matrices as well as reducing the computational
cost. It permits modeling the Gaussian distributions by considering multiple tangent planes at
different reference points that are suited properly to the distribution of covariance matrices.

1.4.6 Extension to multiple tangent planes

As shown before, the projection on a unique tangent plane allows to ease the development of
processing methods which are based on covariance matrices features, since standard Euclidean
tools can be considered. But the choice of the reference point (and in particular the identity
matrix) might be problematic. The observed covariance matrices can be far away from this
reference point. In order to capture more accurately the structure of the observed covariance
matrices, we introduce a GMM model defined at different reference points, one per component
of the GMM [Simo-Serra et al. 2017, Calinon & Jaquier 2019].

1.4.6.1 Model definition

In order to have a reference point close to the covariance matrices which belong to the cluster,
we propose to define it equal to the centroid M̄k. It yields that (1.55) vanishes to:

p(M|M̄k,Σk) =
exp{−1

2(m
TM̄k )TΣ−1

k (m
TM̄k )}

(2π)
d(d+1)

4 |Σk|1/2

=
exp

{
−1

2

(
Vec(LogM̄k

(M))
)T

Σ−1
k

(
Vec(LogM̄k

(M))
)}

(2π)
d(d+1)

4 |Σk|1/2
. (1.66)

As observed, the kth component of this GMM model corresponds to a zero-mean multivariate
Gaussian distribution for the vectors computed at the reference point M̄k. Interestingly, the
mean is zero since it has been transferred to the reference point M̄k.

1.4.6.2 Parameter estimation

Let M = {M1, . . . ,MN} be a set of N i.i.d covariance matrices issued from the GMM model
where its component is defined in (1.66). We propose to define an EM algorithm to estimate
the GMM parameters. First the Log-likelihood function is defined as follows:

L(M|M̄,Σ) = log

N∏
n=1

K∑
k=1

ωkp(Mn|M̄k,Σk) (1.67)

=
N∑

n=1

log
K∑
k=1

ωkp(Mn|M̄k,Σk) (1.68)

• The center of mass M̄k :

The estimation of M̄k is found by deriving the log-likelihood (1.68) with respect to M̄k as
follows:

∂

∂M̄k
L(M|M̄k,Σk) =

N∑
n=1

ωk
∂

∂M̄k
p(M|M̄k,Σk)∑K

j=1 ωjp(M|M̄j ,Σj)
. (1.69)
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In order to simplify calculations of the maximum likelihood (ML) derivation with respect to
M̄k, we consider two functions f and g to compute the derivative of p(M|M̄k,Σk) with respect
to M̄k. First, the function f(x) is defined by:

f(x) =
1

(2π)p/2
∏p

j=1 σk(j)
exp

(
−1

2
xTΣ−1

k x

)
,

=
1

(2π)p/2
∏p

j=1 σk(j)
exp

−1

2

p∑
j=1

x2(j)

σ2
k(j)

 . (1.70)

where x = m
TM̄k , p = d(d+1)

2 and Σk is a diagonal covariance matrix. Secondly, the function
g(x) is defined by:

g(x) = Vec(LogM̄k
(x)). (1.71)

i - Computation of the derivative f ′

According to the matrix derivative formulated in the matrix cookbook
[Petersen & Pedersen 2008], the derivative of xTΣx with respect to x is given by:

∂xTΣ−1x

∂x
=
(
Σ−1 + (Σ−1)T

)
x

= 2 Σ−1 x. (1.72)

It yields that the derivative of f(x) is:

f ′(x) = −Σ x f(x), (1.73)

ii- Computation of the derivative g′

In order to derive g(x), a first order Taylor series expansion of the log-map operator is
employed as follows:

LogM̄k
(M) = M̄klogm(M̄−1

k M)

≈ M̄k(M̄
−1
k M− Id)

= M− M̄k (1.74)

The approximation with Taylor series expansion holds if M is close to the reference point M̄k.
This is valid since M̄k is the centroid of the elements which belong to cluster k. Since M̄k is
symmetric and by using (1.74), the derivative of the log-map operator for the off-diagonal terms
are given by:

∂LogM̄k
(M)

∂M̄k(i, j)
≈ −(Jij + Jji), (1.75)

where Jij is the d×d single-entry matrix where the (i, j) element is one and the rest of elements
are zero. Similarly, the derivative of the log-map operator with respect to its diagonal terms is
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expressed as:

∂LogM̄k
(M)

∂M̄k(i, i)
≈ −Jii. (1.76)

Finally, the computation of the derivative (1.69) using the composite function rule is rewritten,
where:

(f ◦ g)′ = g′(f ′ ◦ g). (1.77)

After some straightforward computations and by combining (1.73), (1.75) and (1.76), the max-
imum likelihood estimator of M̄k is found as the solution of:

1

Nk

N∑
n=1

γk(Mn)LogM̄k
(Mn) = 0, (1.78)

where γk(M) is the posterior probability that a covariance matrix M belongs to cluster k:

γk(M) =
ωk p(M|M̄k,Σk)
K∑
j=1

ωj p(M|M̄j ,Σj)

. (1.79)

But since ∂d2(M̄k,M)
∂M̄k

= −2LogM̄k
(M), (1.78) can equivalently be rewritten as:

ˆ̄Mk = argmin
M̄

N∑
n=1

γk(Mn)

Nk
d2(M̄,Mn), (1.80)

where

Nk =

N∑
n=1

γk(Mn), (1.81)

and d(.) is the Rao’s geodesic distance induced by the affine-invariant Riemannian metric
defined in (1.18). In practice, (1.80) can be solved by a Karcher mean algorithm [Karcher 1977]
as seen in Algorithm 1.

• The dispersion σ2
k :

Similarly, the maximum likelihood estimator of the ith component of σ2
k is defined as:

∂

∂σk(i)
L(M|M̄k,Σk) =

N∑
n=1

ωk
∂

∂σk(j)
p(Mn|Σk, M̄k)∑K

j=1 ωjp(Mn|Σk, M̄k

), (1.82)

where,

∂

∂σk(i)
p(Mn|Σk, M̄k) = −

1

σk(i)
p(Mn|Σk, M̄k) +

[
m

TM̄k
n (i)

]2
σ3
k(i)

p(Mn|Σk, M̄k). (1.83)

Then (1.82) can be rewritten as:
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∂

∂σk(i)
L(Mn|M̄k,Σk) =

N∑
n=1

 ωkp(Mn|Σk, M̄k)∑K
j=1 ωjp(Mn|Σj , M̄j)

− 1

σk(i)
+

[
m

TM̄k
n (i)

]2
σ3
k(i)


 . (1.84)

Using the posterior probability γk(M) defined in (1.79), the maximum likelihood estimator
of the ith component of σ̂2

k is the weighted sample variance defined as:

σ̂2
k(i) =

1

Nk

N∑
n=1

γk(Mn)
[
m

TM̄k
n (i)

]2
. (1.85)

• The weight ωk:

The maximum likelihood estimator of ωk is given by:

ω̂k =
Nk

N
. (1.86)

1.4.6.3 Numerical instability

In practice, for the model with several tangent planes, very large dispersion coefficients σk

have been estimated for some experiments on real data. In fact, since multiple tangent planes
at M̄k are considered, dispersion coefficients σk are computed for observations projected onto
each tangent plane. As a result, large values are obtained and may yield to some numerical
instabilities for the proposed EM algorithm. To circumvent this drawback and ensure a fair
comparison, prior to estimate σk, we propose, according to the definition of parallel transport
introduced in section 1.3.1.4, to transport the observed data on a same tangent space around
the identity matrix by applying the following operation:

Z(n,k) = M̄
− 1

2
k Mn (M̄

− 1
2

k )T . (1.87)

To illustrate the fact that this transport is done for each component k of the GMM model, the
centered covariance matrix Mn is denoted Z(n,k).

It is now possible to estimate the variance η2k(j) for the transported set according to:

η̂2k(j) =
1

Nk

N∑
n=1

γk(Mn)
[
z
TId
(n,k)(j)

]2
, (1.88)

where z
TId
(n,k) is the LE vector representation of Z(n,k) computed at the identity matrix Id. In

order to explain why transporting the set of covariance matrices Mn around the identity matrix
allows to reduce the variance values, let’s compute:

LogM̄k
(Mn) = M̄

1
2
k LogId(Z(n,k)) (M̄

1
2
k )

T . (1.89)

As an example, if we consider M̄k = K Id and by combining (1.88) and (1.89), we obtain:

LogM̄k
(Mn) = (K Id)

1
2 LogId(Z(n,k)) ((K Id)

1
2 )T (1.90)

= K LogId(Z(n,k)).
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Then, (1.88) induced to:

σ̂2
k(j) = K η̂2k(j). (1.91)

It yields that the dispersion σk increases as the set of covariance matrices Mn are located far
from the identity matrix Id.

The proposed approach of parallel transport of data around the identity matrix allows hence
to reduce the dispersion and avoid the numerical instabilities. Now, to derive the EM algorithm,
the posterior probability γk(Mn) should be computed with the shifted covariance matrix Z(n,k).
It yields:

γk(Mn) =
ωk p(Z(n,k)|Id,Hk)

K∑
j=1

ωj p(Z(n,j)|Id,Hj)

, (1.92)

where Hk is a diagonal matrix containing the variance vector elements η2k on its diagonal. To
summarize, the EM algorithm for the GMM with K reference points M̄k is given in Algorithm 4.

Algorithm 4 EM algorithm for a GMM model with different reference points
Input: M = {M1, . . . ,MN} a set of covariance matrices where Mn ∈ Pd, K number of
components of the GMM, Niter maximum number of iterations.
Initialize: γk(Mn) via the EM algorithm for the GMM defined in (1.57) at the tangent plane
of the identity matrix.

1: it← 1
2: while (it ≤ Niter) do
3: Update M̄k by solving (1.80) with Karcher/Fréchet mean algorithm.
4: Compute Z(n,k) with (1.87) to transport Mn.
5: Update ηk with (1.88).
6: Update ωk with (1.86).
7: Update the posterior probability γk(Mn) with (1.92).
8: it← it+ 1

9: end while
Output: ωk ∈ [0, 1], M̄k ∈ Pd and ηk ∈ R

d(d+1)
2 .

1.4.6.4 Comparison between the two GMM models

i - Models comparison

Table 1.5 draws an overview of the two considered GMM models. The first one consists in
a classical GMM model where covariance matrices are projected on the tangent plane at the
identity matrix while the second one considers projections with multiple tangent planes. Each
mixture component has its own tangent space. Even if these two models have many similarities
(GMM models, projection on a tangent plane), they differ in some aspects:

• For the second model, there is no offset parameter µk since the mean has been transferred
to the reference point M̄k.

• The maximum likelihood estimator of the centroid for the GMM model defined at a unique
reference point is the weighted log-Euclidean mean vector while for the second model, it
is the centroid on the manifold, i.e. the Karcher/Fréchet mean [Karcher 1977].
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Unique reference point at identity K reference points

Gaussian
mixture
model

p(m
TId
n |λ) =

∑K
k=1 ωkp

(
m

TId
n |µk, σk

)
p(Mn|λ) =

∑K
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and ωk ∈ [0, 1].

Characteristics Projection onto a unique tangent plane at Id Projection on multiple tangent spaces
Centroïd : Log-Euclidean mean vector Centroïd : Karcher/Fréchet mean

Table 1.5: Comparison between the two considered GMM models: one defined at a unique
reference point and one with K reference points, one per cluster.

From a practical point of view, the difference between the two methods can be discussed in
terms of distortions induced by matrix projection onto the tangent plane. Indeed, in order to
illustrate the difference between the two approaches, in particular the influence of the chosen
reference point on fitting correctly a Gaussian model, a set of synthetic data {xi}i=1,...,N has
been generated according to a multivariate Gaussian distribution N (0,Σ). To obtain covariance
matrices {Xi}i=1,...,N , exponential mapping is performed to project the Gaussian vectors into
the Riemannian manifold at a reference point M̄. The block diagram of Figure 1.6 illustrates
the conducted experiments (1, 2, 3 and 4) to clarify the influence of the chosen reference point.

ii - Experimental procedure

Two main experiments are carried out. In the left side, blocks surrounded by a red dotted
line permit to assess the importance of transporting the data around the identity matrix Id

before projection in the tangent space. The scatter plot (xTId
i )i=1...N of data generated at M̄ and

projected directly at the identity matrix Id (1) is compared with the scatter plot (zi
TId )i=1...N

of the same data that was first transported from M̄ to Id according to the parallel transport
(1.87) then projected on the tangent space (2). The scheme in the lower left illustrates roughly
the experiment to show the quality of data fitting to the Gaussian model after projection. As
observed, the first experiment (1) results on some projection distortions where the initial shape
is not exactly preserved (in red). In contrast, when data are transported to the identity (2), it
remains fitting a Gaussian model (in blue).

Secondly, on the right side, starting from the generated covariance matrices, a novel reference
point ˆ̄M is estimated, in this instance the center of mass is computed (1.25). The comparison
is made between scatter point of data transported to the identity after applying the transport
operation from M̄ (2) and ˆ̄M (3). In the lower right scheme, one can observe that the scatter
point corresponding to both experiments (blue and orange), preserve its initial Gaussian shape
after projection to the tangent plane at Id.
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Figure 1.6: Block diagram of the two studied construction to analyze the projection behaviour
according to the chosen reference point and highlight the induced distortions.

iii - Distortion measurement

In order to quantify those effects, Figure 1.7 illustrates the distortion between two sets of
covariance matrices as a function of the geodesic distance between the identity matrix and the
considered reference point M̄. To quantify the distortion, a similarity measure between two set
of points is employed. Here, we propose to use the Hausdorff distance. It has been used in
[Labsir 2020] for similar purpose and permits measuring the similarity between two sets. Two
sets are considered close to each other in the Hausdorff distance if every point of the first set is
close to some point of the second set. Let be X and Y be two non-empty subsets of a metric
space, their Hausdorff distance dH(X,Y) is defined by:

dH(X,Y) = max

{
sup
x∈X

d(x,Y), sup
y∈Y

d(y,X)

}
, (1.93)

with d(x,Y) = miny∈Y d(x, y) and d(.) a distance. Since the computation is made on the
tangent plane, an Euclidean distance is performed, where d(x, y) = ||x− y||2.
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For this experiment, two models are considered for comparison as a function of the geodesic
distance between the identity matrix Id and M̄:

• Distor(Id) : Distance is computed between scatter plot of matrices projected at the
identity matrix (step 1), and matrices transported to the identity matrix from M̄ according
to the parallel transport in (1.87) (step 2). The mean is removed to center at the same
point with the purpose of comparing the scatter plot shapes.

• Distor( ˆ̄M) : Distance is computed between scatter plot of matrices projected at the
identity matrix after applying the transport operation (1.87) from M̄ (setp 2) and ˆ̄M

(step 3) to the identity matrix Id.

The numbers (1), (2) and (3) refers to the blocks of the diagram in Figure 1.6.
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Figure 1.7: Hausdorff distance comparison as a function of geodesic distance between Id and M̄.

As demonstrated, the Hausdorff distance in red dash line Distor(Id) increases with the
increase of the geodesic distance between M̄ and the identity Id. This dissimilarity reveals the
induced distortion between the two sets. In contrast, the distance Distor( ˆ̄M) in blue remains
unchanged regardless the distance between M̄ and Id as a sign of ensured similarity of the two
sets.

Moreover, for a complete description, the distinction between two individual cases is
assessed. It concerns the manner in which M̄ is distant from the identity matrix Id.

Case of M̄ ̸= KId, with K a positive scalar:

To visualize samples behaviour, two instances are experimented according to the two
considered models. It corresponds to the selected points (a), (b), (c) and (d) on the graph of
Figure 1.7.

• First, the considered M̄ is fixed close to the identity matrix, with M̄ =

(
1 0

0 10

)
. Fig-

ure 1.8-(a) shows the log-Euclidean vectors at the identity matrix in red and the shifted
set from M̄ to Id in blue. Where in Figure 1.8-(b), the red color is associated to samples
shifted from the estimated centroid ˆ̄M to Id. In addition, the theoretical 3-D ellipse has
also been plotted to judge the quality of the fitting at 95% confidence interval. As observed
in (a), since the two compared reference points, identity matrix and M̄, are quite close, the
distance between the two projections remains small and the Gaussian modeling is ensured.
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• Second, the considered M̄ is set far from the identity matrix where M̄ =

(
1 0

0 90

)
. As

observed in Figure 1.8-(c), distortions appear on covariance projected at the identity ma-
trix (red), where in 1.8-(d) the use of an estimated ˆ̄M as a reference point (red), allows
preventing those distortions and ensuring a well fitting of the Gaussian model. As such,
1.8-(b) and 1.8-(d) have the same behaviour where there is no distortion regardless the
distance between M̄ and Id as previously illustrated in Figure 1.7.

(a) (b)

(c) (d)

Figure 1.8: Samples behaviour on the tangent space at the identity matrix Id and representation
of the ellipse at 95 % confidence interval for a set of 3-D normally distributed samples. (a) and
(b): Experiments Distor(Id) and Distor( ˆ̄M) with M̄ close to Id, (c) and (d): Experiments
Distor(Id) and Distor( ˆ̄M) with M̄ far from Id.

Case of M̄ = KId, with K a positive scalar:

The geodesic between the two points remains linear. To illustrate that, the geodesic
between two points X = Id and Y = KId defined in (1.16) is rewritten as:

γ(t) = X
1
2 (X− 1

2KXX− 1
2 )t X

1
2 (1.94)

= Kt X

= Kt Id.

Moreover, the logarithm mapping of a matrix X on the tangent space at the reference point
M̄ = KId is equivalent to the projection onto the tangent plane at the identity matrix Id up to
a scale factor K such as:

LogM̄(X) = K LogId(X) = K logm(X). (1.95)

As a result, there is no distortion anymore. To illustrate that, the same experiment displayed in
Figure 1.7 is conducted in Figure 1.9 where the Hausdorff distance is computed as a function of
the geodesic distance between the identity matrix and M̄ = KId. As demonstrated, in this case,
the distance remains close to zero. To visualize samples behaviour, the model at the point (e)
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of Figure 1.9 is illustrated in Figure 1.10 where M̄ =

(
90 0

0 90

)
.
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Figure 1.9: Hausdorff distance comparison as a function of geodesic distance between Id and
M̄.

Figure 1.10: Samples behaviour on the tangent space at the identity matrix Id and representation
of the ellipse at 95 % confidence interval for a set of 3-D normally distributed samples. (e):
Experiment Distor(Id) with M̄ = KId.

As observed, since M̄ is proportional to the identity matrix, the distance between the two
projections remains small and the Gaussian modeling is ensured.

To conclude, the use of an adapted tangent plane relies on data properties. In fact, con-
sidering multiple tangent plane model may be useful in the case of covariance matrices which
are located far from the identity matrix, without a proportionality link to Id. As shown, the
projection distortion is limited since covariance matrices remain close to the chosen reference
point. Furthermore, the distortion power is related to (i) the distance between the considered
data generated at M̄ and the targeted tangent plane, here the identity matrix Id and (ii) the
way in which M̄ is far from Id. The distortion will increase by increasing the distance between
the two points M̄ and Id except in the special case of proportionality where M̄ = KId for any
scalar K. Moreover, since we are using different reference points M̄k for each cluster k and thus
different tangent planes on the manifold, performing EM algorithm for parameter estimation
requires to transport data to a common tangent plane to ensure numerical stability via the
parallel transport operation (1.87).

1.5 Conclusion

In this chapter, the space of symmetric positive definite matrices has been introduced.
First, methods insuring fast computation of covariance matrices and robustness to outliers
have been discussed. Then, the differential geometry, Riemannian manifolds, and related
tools to the space of symmetric positive definite matrices have been introduced. This chapter
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provides only a brief overview of the underlying deep theory. Since Euclidean computations
have proven to not be well adapted, non-Euclidean alternatives have been considered for their
characterization. In particular, the affine-invariant and log-Euclidean metrics were introduced
as being the strongest in terms of their invariance properties.

Two complete Riemannian frameworks for SPD matrix sample sets characterization have
been developed. They rely on the intrinsic affine-invariant and log-Euclidean metrics. In
addition to the LE and AI Gaussian models, their corresponding mixture models have been
introduced as well as the parameter estimation process for every case.

Then, a comparison between the two characterizations has been assessed. In fact, while
the AI metric space is endowed with stronger invariance properties, estimating the model
parameters relies on recursive estimation algorithms, which results on high computational
expenses. Furthermore, the LE metric is endowed with relatively similar invariance properties,
but, as its mapping on the tangent space allows the vector-form representation of covariance
matrices, the complexity and computational expenses associated to the algorithms on the LE
metric space are significantly reduced.

Regarding the corresponding GMM models, close conclusions are drawn. In addition, con-
sidering the AI metric leads to very complex calculations whereas considering the Log-Euclidean
metric, the GMM modeling is limited to a single tangent plane defined at the identity matrix.
In fact, projecting covariance matrices on a tangent plane can lead to projection distortions.
Thus, the projection behaviour related to covariance matrix set distance to the identity matrix
has been analyzed where two cases were depicted. The special case of proportionality between
the covariance matrices centroid and the identity matrix permits to get rid of the distortions. In
order to better preserve the geometrical data properties as well as reducing the computational
cost, the main contribution of this chapter remains on the proposition of an alternative of GMM
modeling. It is based on the choice of reference point for data projection onto the tangent plane.
A GMM model defined at different reference points is introduced, one per component of the
GMM. As such, the structure of the observed covariance matrices is captured more accurately
regardless the distance to the identity matrix.

Finally, by using covariance matrices as data features we enjoy a few key advantages. They
benefit of useful geometrical properties and a well-developed Riemannian framework, as de-
scribed in this chapter. Particularly, they are endowed with appropriate Riemannian metrics,
facilitating data samples comparisons and distance computation, which are basic ingredients of
many analysis and learning techniques. In the following of this work, we build classification algo-
rithms based on covariance matrices aiming at considering dependencies between image features
and improving classification performances.
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2.1 Introduction

The aim of a supervised classification algorithm consists of labeling an im-
age with the corresponding class according to its content. Conventional ap-
proaches are based on encoding handcrafted features with, for example, the bag
of words model (BoW) [Sivic et al. 2005], the vector of locally aggregated descrip-
tors (VLAD) [Jégou et al. 2010, Arandjelović & Zisserman 2013] or the Fisher vectors
(FV) [Perronnin & Dance 2007, Perronnin et al. 2010b, Perronnin et al. 2010a]. These lat-
ter strategies allowed to obtain successful results in a wide range of applications such as
image classification [Perronnin & Dance 2007, Douze et al. 2011, Sánchez et al. 2013], text re-
trieval [Salton & Buckley 1988], action and face recognition [Faraki et al. 2015a], etc.

Recently, the emergence of deep learning algorithms has been demonstrated to outperform
benchmark machine learning methods in many situations. In fact, neural networks are
constructed to model the human brain, where each layer is responsible for automatically
extracting and learning specific features from the input images [Kriegeskorte 2015]. One of the
most popular neural networks is the convolutional neural network (CNN), which has become a
standard for image classification problems [Le Cun et al. 1990, Krizhevsky et al. 2012]. CNN
is built from various hidden layers performing different kinds of transformations, such as
convolutions, pooling, and activation functions.

In recent years, in order to benefit from both CNN architectures and encoding methods,
many authors have focused on proposing hybrid architectures that consist of combining deep
neural network architectures with FV/VLAD descriptors. For example, Perronnin et al. have
introduced in [Perronnin & Larlus 2015] a network of fully connected layers trained on the FV
descriptors. Inspired by the multi-layer structure of neural networks, Simonyan et al. proposed
in [Simonyan et al. 2013], the Fisher network, which is composed of several stacked FV layers.
In the same spirit, the NetVLAD layer has been proposed in [Arandjelovic et al. 2015] to
mimick a VLAD layer. To benefit of multi-layer representation, other strategies have been
proposed to include the FV or VLAD encoding of CNN features from different layers of the
network [Ng et al. 2015, Cimpoi et al. 2016, Diba et al. 2017, Li et al. 2017]. Nevertheless,
all these strategies do not exploit second-order statistics, i.e., dependencies between features,
which have been shown to be important in the human visual recognition process.

To this aim, some authors have dedicated their works to exploit the information behind
second-order statistics using covariance matrix features. These have proved to be highly
effective in diverse classification tasks, including person re-identification, texture recognition,
material categorization or EEG classification in brain–computer interfaces to cite a few of
them [Faraki et al. 2015a, Barachant et al. 2013, Said et al. 2015a, Kong & Fowlkes 2016].
Several works have been proposed to extend the encoding formalism to covariance matrix
descriptors. Therefore, as explained in chapter 1, covariance matrices are symmetric positive
definite (SPD) matrices and conventional Euclidean tools are not adapted. To deal with covari-
ance matrices geometry, two Riemannian metrics are usually considered: the log-Euclidean and
the affine-invariant Riemannian metrics. Since then, some authors have proposed to extend
the usual coding methods to these two metrics, yielding to the proposition of the following
approaches: the log-Euclidean bag of words (LE BoW) [Yuan et al. 2010, Faraki et al. 2015b],
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the bag of Riemannian words (BoRW) [Faraki et al. 2014], the log-Euclidean vector of
locally aggregated descriptors (LE VLAD) [Faraki et al. 2015a] and the intrinsic Rieman-
nian vector of locally aggregated descriptors (RVLAD) [Faraki et al. 2015a]. Recently, FV
descriptors extended to SPD matrices have been proposed. This has involved the log-
Euclidean Fisher vectors (LE FV) [Akodad et al. 2018b] and the Riemannian Fisher vectors
(RFV) [Ilea et al. 2016, Ilea et al. 2018a, Ilea et al. 2018b]. When analyzing those two metrics,
log-Euclidean and affine-invariant Riemannian metrics offer several invariance properties and ob-
tain comparable results for a large variety of applications [Ilea et al. 2018b, Arsigny et al. 2006]
compared to the Euclidean metric. However, the log-Euclidean approach is much more
straightforward. To model covariance matrices that lie in a Riemannian manifold, it merely
consists in projecting them in a tangent space of a reference point classically chosen equal to the
identity matrix. Since then, the Log-Euclidean metric is exploited in the following of this chapter.

To benefit from both second-order statistics and deep learning architectures,
different second-order convolutional neural network architectures have recently
emerged [Ionescu et al. 2015, Cai et al. 2017, He et al. 2018, Huang & Gool 2017,
Yu & Salzmann 2017, Acharya et al. 2018, Gao et al. 2019, He et al. 2020] for many ap-
plications including fine-grained classification. One first attempt was the pooled covariance
matrix from CNN outputs [Ionescu et al. 2015]. Later, He et al., presented in [He et al. 2018]
a multi-layer version: the multi-layer stacked covariance pooling (MSCP). Another way to
exploit second-order statistics in a deep neural network is the Riemannian SPD matrix network
(SPDNet) [Huang & Gool 2017]. The idea behind this network is to mimick the classical CNN
fully connected convolution-like layers and rectified linear units (ReLU)-like layers to data,
which lie in an Riemannian manifold. For that, the bilinear mapping (BiMap) layers and
eigenvalue rectification (ReEig) layers were proposed. Inspired by this work, Yu et al. have
introduced in [Yu & Salzmann 2017] a second-order CNN (SO-CNN), which is trained in an
end-to-end manner. However, for these models, second-order representation is introduced only
for the deepest layers. To overcome this issue, Gao et al. [Gao et al. 2019] have proposed
the global second-order pooling (GSoP) convolutional networks which permit to introduce
higher-order representation in earlier layers. Nevertheless, training such a deep CNN model
from scratch requires a huge labeled training set. Recently, the remote sensing community has
started to build large scale datasets that can serve as pre-training, such as the BigEarthNet
composed by Sentinel-2 image patches [Sumbul et al. 2019]. In addition, they provide on their
website CNN models trained on the BigEarthNet dataset, the specificity of those CNN models,
compared to the classical models such as the VGG-16 network, lies in the nature of the input
images. In fact, they operate on multispectral images where BigEarthNet images are constitued
of 10 spectral bands. When it comes to classify remote sensing datasets, successful results were
obtained with those models where, for the same model, classification performance are higher
than with the one trained on ImageNet dataset. However, for many practical applications,
most of the remote sensing datasets are quite small.

Many authors have proposed several ideas to overcome this issue such as using a new kind
of neural network called capsule network [Souleyman et al. 2019] which has the ability to work
with a small amount of training data. Compared to convolutional neural network, capsule net-
work allows to address the “Picasso problem" in image recognition, i.e. images that show the
right components but have not the right spatial relationships. For example, for a face image,

http://bigearth.net/
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the location of the eye and ear are swapped. For our application of remote sensing scene classi-
fication, this is not critical. For instance, in a harbour scene, the location of the scene elements
(boats, pontoon, . . . ) in the image is not so important. The key point is that the network is
able to recognize them. Another effective solution for limited training set consists of transfer
learning. In that case, CNN models are considered as feature extractors. Classically, deep CNN
models pre-trained on the ImageNet dataset are used. Then, features are extracted from a single
or multiple layers, and are processed with some machine learning algorithms. This technique
has been proved to be efficient and permits to outperform traditional hand-crafted feature-
based methods [Krizhevsky et al. 2012]. In a recent paper, Pires de Lima et. al. have shown
that transfer learning strategies based on feature extraction are among the best approaches for
remote sensing scene classification, especially for dataset with a low number of training sam-
ples [Pires de Lima & Marfurt 2019]. In this context, in order to benefit of pre-trained deep
neural networks and second-order representations, this chapter aims to propose a novel ensem-
ble learning approach based on covariance pooling of CNN features for remote sensing scene
classification. It consists of a combination of two hybrid architectures exploiting second-order
features. The former is based on the log-Euclidean Fisher vector encoding of region covariance
matrices computed locally on the first layers of a CNN [Akodad et al. 2018b] and its extension
to the use of an ensemble learning strategy to combine multiple classifiers. The latter concerns
an ensemble learning approach based on the covariance pooling of CNN features extracted from
deeper layers [Akodad et al. 2019c]. All the discussed strategies can be summarized in the fol-
lowing timeline in Figure 2.1. It highlights the three families of image classification approaches
in a chronological order, first based on hand-crafted feature extraction and encoding methods,
then followed by the deep learning based methods. The emergence of deep convolutional layers
leads to the introduction of hybrid strategies and their extension to second-order statistics.

Figure 2.1: Time line of machine learning and deep learning based methods. Purple: machine
learning methods including features extraction and encoding strategies. Green: Hybrid methods
combining machine learning and deep learning approaches. Orange: Methods exploiting second-
order statistics.

In summary, second-order representation (i.e. covariance pooling) has been shown to be use-
ful for many signal and image processing tasks. Recently, in the remote sensing community, some
works have shown interest in these second-order features for various remote sensing applications
(e.g. remote sensing scene classification, texture recognition) [He et al. 2018, He et al. 2020,
Rosu et al. 2017, Pham et al. 2017]. Motivated by these works and the success of deep neural
networks, this chapter introduces two hybrid transfer learning approaches based on covariance
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pooling of CNN features [Akodad et al. 2018b, Akodad et al. 2019c]. These two methods use
either local or global second-order representation of CNN features. The main motivation of this
chapter is to unify these works by presenting a transfer learning approach which benefit from
these approaches. The main contributions of this chapter can be summarized as follows:

• We propose a transfer learning approach, which efficiently combine local and
global second-order representation of CNN features. For the local one, an ensem-
ble learning extension of our log-Euclidean Fisher vector encoding of region covariance
matrices [Akodad et al. 2018b] is introduced. For the global one, our covariance pooling
of deepest CNN features is considered [Akodad et al. 2019c]. In addition, the use of
saliency maps is adopted to enhance classification performance regarding small objects
of interest.

• An ensemble learning approach based on the most diverse ensem-
bles is proposed to combine these decisions and enhance the classification perfor-
mance [Akodad et al. 2020c].

• This transfer learning is validated on different labeled remote sensing datasets to
illustrate its efficiency. Three are publicly available, namely UC Merced Land Use Land
Cover [Yang & Newsam 2010], SIRI-WHU [Zafar & Ali 2019] and AID [Xia et al. 2017]
datasets. Two others are internal datasets, oyster racks and maritime pine forest datasets,
which are manually labeled by thematic experts [Regniers 2014].

The chapter is structured as follows. Section 2.2 introduces different machine learning and
deep learning based methods dedicated to image classification tasks and some hybrid archi-
tectures that result from combining those latter two families. Then, since the second-order
representation of CNN features is at the core of the study, and the mathematical background
for the log-Euclidean representation of a covariance matrix is explained in chapter 1, Section 2.3
introduces the proposed ensemble learning approach based on the log-Euclidean Fisher vector
encoding of region covariance matrices. Then, Section 2.4 recalls our ensemble learning approach
based on covariance pooling (ELCP) of CNN features. In order to combine these two methods,
Section 2.5 presents the fusion scheme based on the most diverse ensembles. Next, Section 2.6
summarizes a series of experiments performed on remote sensing scene classification. And finally,
Section 2.7 provides conclusions and perspectives for this work.

2.2 Image classification algorithms based on traditional machine
learning and deep learning methods

Image classification refers to the labeling of images into one predefined class according to its
content. Before the emergence of deep learning methods, a first step called feature extraction
was carried out for tasks such as image classification. Features, such as edges and interest
points, provide rich information on the image permitting the representation of their content.
Several algorithms, such as edge detection, corner detection or threshold segmentation may be
involved in this step. A model is then learned on the space of those features. At the classifier
stage, these features are searched for in other images using well-known algorithms such as
decision trees, random forests or support vector machines.
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The rise of deep learning methods over the last several years leads to drastic improve-
ments for many computer vision tasks. The adjective "deep" refers to the use of multiple
layers in the network which permit to progressively and automatically extract different levels
of features from the raw input data.

Two different workflows are illustrated in Figure 2.2 to assess a comparison between tra-
ditional machine learning methods, involving handcrafted feature extraction and a visual
codebook learning, and deep learning methods based on artificial neural networks (NN).

Figure 2.2: Difference between traditional machine learning and deep learning for image classi-
fication

In the following, the principal steps of an image classification problem whether using machine
learning or deep learning strategies are detailed.

2.2.1 Machine learning strategies

The framework used to classify an image through machine learning methods for feature
extraction and model training is illustrated in the Figure 2.3.

Figure 2.3: Classification workflow based on traditional machine learning strategies

The separation between training and testing sets is performed so that an equal number of
images are randomly drawn from each class. In order to configure this separation, we have
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defined for all simulations a factor p that corresponds to the percentage of learning images
selected for each class. Then, the classification algorithm is performed, where it is composed of
different steps: feature extraction, codebook generation, features encoding and a classification
algorithm. Each of these steps are detailed on the following subsections.

2.2.1.1 Feature extraction

This is a crucial step where statistical methods are used to identify the most interesting
patterns of the image, called features, that might be unique to distinguish a particular class and
that will, later on, allow the model to differentiate between different classes. The traditional
approach is to use well-established techniques such as feature descriptors (SIFT [Lowe 2004],
SURF [Bay et al. 2006], BRIEF [Calonder et al. 2012], etc.) for object detection.

This first step is ensured by different methods either global; calculated on the whole im-
age, or local which consist of mathematical transformations on a limited number of pixels
around the points of interest of each image, i.e. a patch. The local description of an image is an
approach applied in many areas of vision such as pattern recognition, tracking, reconstruction,
calibration, etc. It is based on matching (or mapping) points of interest characterized by a
local descriptor. Depending on the application, some invariances are necessary. In pattern
recognition, one of the most commonly used feature is the SIFT descriptor [Lowe 2004].

The SIFT algorithm, which stands for Scale Invariant Feature Transform, is a method
developed by David Lowe [Lowe 2004] and is used to identify similar points between images
at different scales. This identification goes through two stages. First, extraction of SIFT
descriptors by calculating a gradient orientation histogram. It involves transforming an image
into a set of vectors of characteristics which are invariant by geometric transformations. Next
comes the mapping step by comparing the descriptor vectors of two images in order to detect
an object or to conclude on the transformation undergone. The focus here is around the
calculation of SIFT descriptors. It consists of steps listed below:

• Construction of the pyramid: This step allows to analyze the images with a mutli-
scale approach. To do this, the Gaussian pyramid is used to sub-sample and smooth the
image gradually. This reduces the size of the image by four at each level. Concretely, this
pyramid is set up by applying to the same image Gaussian filters of different variances σ2.
The operation is repeated on the different scales of the image. The convolution between
the starting image I and a Gaussian filter G produces the smoothed image L, which is
called: the gradient of a scale factor σ. It is given by:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.1)

where ∗ is the convolution operator, and (x, y) are the pixel coordinates and

G(x, y, σ) =
1

2πσ2
exp

−(x2+y2)

2σ2 . (2.2)

• Difference of Gaussians (DoG): The difference between two consecutive images of each
octave in the pyramid allows to obtain a pyramid of DoG and identify potential points of
interest that are invariant to scale and rotation.
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D(x, y, σ) = L(x, y, kσ)− L(x, y, σ), (2.3)

with σ and kσ define two consecutive images of an octave.

These DoG images are great for finding out interesting keypoints in the image.

• Local extrema detection: This difference between two consecutive and smoothed im-
ages makes it possible to detect points of interest on several scales and different levels of
resolution. Each pixel of a DoG is compared to its 8 neighbors and 9 neighbors in the next
and previous DoG. The recovered point is therefore considered to be a local extremum.
By setting a threshold, the low contrast points are rejected as well as the unstable points
located at the edges.

• Orientation Assignment: Each keypoint is assigned one or more orientations calculated
from the gradient distribution of the neighbouring points. The gradient, amplitude m(x, y)

and orientation θ(x, y) of each point of the Gaussian image L(x, y, σ0) of the neighborhood
of L(x0, y0, σ0) are estimated by establishing a histogram of the orientations. As shown
in Figure 2.4, the final SIFT descriptor is a 4 × 4 descriptor array which summarizes the
contents over considered subregions. Each cell corresponds to the sum of the gradient
magnitudes within the region. It actually shows orientation histograms of eight directions
each, where the length of each arrow corresponds to the magnitude of that histogram entry.

Figure 2.4: The descriptor of a SIFT frame centered at a fixed pixel

Then, these features are fed into a learning algorithm for their classification. To do this, the
set of descriptors is separated into two categories. One for learning the dictionary in order to
encode it, using for example a Gaussian mixture model (GMM), and the other set, namely the
testing set, is encoded based on the learnt codebook, it also allows assessing the classification
performance.

2.2.1.2 Codebook generation

The purpose of this step is to cluster features into visual code words which means that the
space of visual descriptors is divided into several regions. Usually, this procedure is performed
by means of clustering algorithms, such as the k-means or expectation-maximization (EM) algo-
rithm by considering a Gaussian mixture model (GMM). When performing the EM algorithm,
modeling considers both cluster centers and covariances, which describe the location and shape
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of clusters, whereas for k-means clustering, despite being relatively simple to implement and
computationally fast, the method is limited by the underlying assumptions of homoscedasticity.
Here, the interest is toward the GMM modeling involving the EM algorithm to estimate the
Gaussian parameters in an unsupervised manner. Considering X = {xi}i=1,...,N an N -sample
of d dimensional observations modeled by a Gaussian mixture model with K components as
follows:

p(X|θ) =
N∏
i=1

K∑
k=1

ωkp(xi|µk,Σk), (2.4)

where θ = {(ωk, µk,Σk)1≤k≤K} is the parameter vector with ωk ∈ [0, 1] the mixture weight, µk

the mean vector and Σk the covariance matrix. Thus:

p(xi|µk,Σk) =
1

(2π)
d
2 |Σk|

1
2

exp

{
−1

2
(xi − µk)

TΣ−1
k (xi − µk)

}
. (2.5)

As detailed in chapter 1, the set of features θ = {(ωk, µk,Σk)1≤k≤K} is estimated using the
EM algorithm and partitioned into a predefined number of clusters, where a description of each
cluster k is made by computing the following parameters: the weight ωk, the cluster’s centroid µk

and the dispersion Σk. Those obtained parameters are called codewords and are grouped on a
codebook, also called a dictionary. Since the codebook is used as the basis for encoding feature
vectors, several methods permitting the features encoding are described.

2.2.1.3 Descriptor encoding

Based on the created codebook, the descriptor encoding aims to transform collections of
local image features into fixed-size vector representations. The general idea consists of pro-
jecting the extracted features onto the codebook. In this work, we investigate three differ-
ent descriptor encoding schemes, namely the bag of visual words (BoW) [Csurka et al. 2004],
vector of locally aggregated descriptors (VLAD) [Jégou et al. 2010] and Fisher vectors
(FV) [Perronnin & Dance 2007, Perronnin et al. 2010b, Perronnin et al. 2010a].

• Bag of Words (BoW):

At first, the bag-of-words model, as its name suggests, has been employed in problems such
as language modeling and document classification [Salton & Buckley 1988, Joachims 1998]. It
is considered as a simple technique to represent a text by describing the occurrence of words
within a document in a histogram as illustrated in Figure 2.5. It has been then extended to visual
categorization such as image characterization [Csurka et al. 2004] where the "words" are replaced
by the image features. Therefore, each image is described by the number of occurrences of these
patterns. For that, it involves two steps. First, the codebook is created, using a clustering
algorithm such as the k-means and data is partitioned in different regions by assigning each
sample to the closest centroid. Then the computation of the histogram of occurrences of each
codeword is performed. For classification purpose, a nearest neighbor classifier is classically
employed to measure the distance between two histograms. For that, the χ2 metric is generally
employed. It encodes the zero-order statistics of the distribution of local descriptors.
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Figure 2.5: Visual word vector computation.

• Vectors of locally aggregated descriptors (VLAD):

VLAD [Jégou et al. 2010] has been originally proposed for image retrieval application and per-
mits encoding a set of descriptors into a dictionary.

Figure 2.6: VLAD vectors computation.

Let’s consider a set X = {xi}i=1,...,N with xi ∈ Rd a d dimensional feature of N extracted
observations from an image. The k-means algorithm is usually performed to partition the set
into K clusters, defined by their centroids. The homoscedasticity assumption should also be
made i.e. σk = σ. For each cluster ck of the codebook, the vector vk contains the sum of
differences between the feature sample and the cluster centroid µk it is assigned to:

vk =
N∑
i=1

γk(xi) (xi − µk). (2.6)

where γk(xi) denotes the membership of the descriptor xi to kth cluster. In this original version,
it is a hard assignment with γk(xi) = 1 if cluster ck is the closest cluster to observation xi and
γk(xi) = 0 otherwise. To summarize, the VLAD encoding of X is obtained as the concatenation
of vectors vk:

VLAD = [vT
1 , . . . ,v

T
K ]. (2.7)

The obtained VLAD vector is of dimension K × d.

• Fisher vectors (FV):

The Fisher vector encoding of a set of features, such as SIFT features, is based on fitting a
parametric generative model, i.e. the Gaussian Mixture Model (GMM), to the features, and
then encoding the derivatives of the log-likelihood of the model with respect to its parameters,
i.e. the mixture weights, means and variances. The computation of Fisher vectors is based on
Fisher kernels [Jaakkola & Haussler 1998] which represents methods allowing to assess samples
fitting to models.

Intuitively, the encoding describes how the distribution of features of a particular image
differs from the distribution fitted to the features of all training images. Let X = {xi}i=1,...,N
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with xi ∈ Rd a d dimensional sample of N extracted features from an image. Suppose we have
a generative model p(X|θ). We can map X into a vector by computing the gradient vector of
its log-likelihood function with respect to the model’s parameters θ:

GXθ = F
− 1

2
θ ∇θ log p(X|θ), (2.8)

where GXθ is the Fisher vector which can be seen as the deviation of the direction to make
parameters θ fit better to p(X|θ). Classically, the gradient of the log-likelihood is normalized
by the square-root of the inverse of the Fisher Information Matrix Fθ [Perronnin & Dance 2007].

In the particular case of GMMs with diagonal covariances, Fisher vectors lead to the
representation which captures the average first and second-order differences between the
observations and each of the GMM centers. Considering the GMM model defined in (2.5),
diagonal covariance matrices are usually assumed to simplify the model and thus reduce the
Fisher vector size. Then, σ2

k = diag(Σk) is the variance vector. As a result, the derivatives of
each dimension j = 1, . . . , d with respect to the parameters θ are computed.

∂ log p(X|θ)
∂µk(j)

=
N∑

n=1

γk(xn)

(
xn(j)− µk(j)

σ2
k(j)

)
, (2.9)

∂ log p(X|θ)
∂σk(j)

=

N∑
n=1

γk(xn)

(
(xn(j)− µk(j))

2

σ3
k(j)

− 1

σk(j)

)
, (2.10)

∂ log p(X|θ)
∂ωk(j)

=

N∑
n=1

(γk(xn)− ωk), (2.11)

where γk(xn) is the soft assignment of xn to the kth component defined as:

γk(xn) =
ωk p(xn|µk, σk)∑K
j=1 ωj p(xn|µj , σj)

. (2.12)

The diagonal Fisher Information Matrix (FIM) [Perronnin & Dance 2007] can be taken into
account by a coordinate-wise normalization of the obtained gradient vectors, which yields the
following normalized gradients:

GXµk(j)
=

1
√
ωk

N∑
n=1

γk(xn)

(
xn(j)− µk(j)

σk(j)

)
, (2.13)

GXσk(j)
=

1√
2ωk

N∑
n=1

γk(xn)

(
(xn(j)− µk(j))

2

σ2
k(j)

− 1

)
, (2.14)

GXωk(j)
=

1
√
ωk

N∑
n=1

(γk(xn)− ωk). (2.15)

The final Fisher vector is the concatenation of the Fisher vectors GXµk
, GXσk

and GXωk
for

k = 1, . . . ,K. It leads to a dimension of (2d+ 1)K where GXωk
is a scalar while GXµk

and GXσk
are

d-dimensional vectors. In [Sánchez et al. 2013], it has been demonstrated that the combination
of GXµk

and GXσk
are the most discriminating descriptors compared to GXωk

.



52 Chapter 2. Ensemble learning approaches based on covariance pooling of CNN Features

To summarize, BoW can be considered as a special case of the FV encoding where the
gradient computation is restricted to the mixture weight parameters of the GMM defined in
(2.15) under the hypothesis of hard thresholding. In addition, the VLAD encodes the first-
order information rather than the zero-th order information (counts) and gains in recognition
accuracy. It also can be thought as a simplified version of the FV encoding where it uses k-means
clustering, and switches from soft to hard assignment. Starting from (2.13), the VLAD vector is
defined for a binary assignment γk(xi) where it is equal to 1 if cluster ck is the closest cluster to
descriptor xi and 0 otherwise and σ2

k a constant. As such, (2.13) induced to (2.6) for the hard
assignment hypothesis.

2.2.1.4 Classification algorithms

This step categorizes detected objects into predefined classes by using a suitable classification
technique that compares the image patterns with the target patterns. In fact, the dataset of
interest is divided into training and testing dataset. The chosen model uses the training dataset
and calculate how to best map samples of input data to specific class labels. As such, the training
dataset must be sufficiently representative of the problem. There are many different types of
classification algorithms where the most popular are: the support vector machine (SVM), the
decision trees, random forests and the K-nearest neighbors (KNN). These four methods are
briefly detailed in the following.

• Support vector machine (SVM):

It is a supervised machine learning algorithm used for both regression and classification problems.
When used for classification purposes, it separates the classes using a linear boundary by building
a hyper-plane. The separation between two classes is achieved by the hyperplane that has the
largest distance to the nearest training data point of any class, such distance being called margin.
In the Figure 2.7, SVM needs to find the optimal line with the constraint of correctly classifying

Figure 2.7: Illustration of the SVM hyperplane which best separates the two classes.

either class of red dots or blue crosses. In real life, the training data can be rarely separated
using an hyperplane and there is a need to transform the data into a higher dimensional space
in order to fit a support vector classifier. This transformation is made by functions that can
map the data to any number of higher dimensions. This illustrates the power of this algorithm,
where different kernel functions can be used. The most commonly used kernels are: linear kernel,
Gaussian kernel and polynomial kernel.
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• Decision trees and random forest (RF):

Decision trees and random forests are also supervised machine learning algorithms based on
decision tree data structure. They use a series of if/else statements on the feature space at each
intermediary stage/level. They proceed generally in three steps: Partitioning the nodes, finding
the terminal nodes and allocating the corresponding class label to terminal node.

Figure 2.8: A simple decision tree classifier with 4 features.

In most supervised problems, a single tree is not sufficient to produce stable results. This
is where the Random Forest algorithm comes into the picture. The name random forest refers
to Breiman’s work in [Breiman 2001] and the method aims at combining several decision trees
where each node in the decision tree works on a random subset of features, called bootstrap
sample, to calculate the output. During this phase, at each node of the tree, a splitting rule is
designed by selecting a feature over used features chosen uniformly at random among the initial
features. This selection can be performed by maximizing the well-known Gini impurity criterion
[Raileanu & Stoffel 2004]. The algorithm operates until a stopping criterion is achieved and the
output of individual decision trees are fused to generate the final decision which would be more
accurate and stable.

• K-Nearest Neighbor (K-NN):

The k-nearest neighbor is by far the most simple machine learning algorithm. This algorithm
simply relies on the distance between feature vectors, classically the Euclidean distance, and
classifies unknown data points by finding the most common class among the k-closest examples.
Figure 2.9 below illustrates the classification algorithm for the 1 nearest neighbor (1-NN) where
the nearest observation to the new sample is from the red dots class. As such, the algorithm
will classify it on the red dots class.
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Figure 2.9: Illustration of 1-NN classifier for a two-class problem.

2.2.1.5 Performance evaluation

Once the model is built, the most important question that arises is how good is the model?
A learned classifier has to be evaluated based on the testing set which hasn’t been fed to the
model during the training stage. The experimental performance on the testing data is related
to the performance on unseen data and permit validating the classifier’s generalization ability.
Performance evaluation relies on the use of several performance indicators. Such indicators
convey the qualities of an algorithm. Typical performance indicators include:

1. Accuracy: how well the algorithm has performed with respect to some reference;

2. Robustness: an algorithm’s capacity for tolerating various conditions;

3. Sensitivity: how responsive an algorithm is to small changes in features;

4. Stability: the degree to which an algorithm, when repeated using the same stable data,
yields the same result.

Several evaluation metrics are used in the literature to address classification quality. Table 2.1
provides the most commonly used metrics to evaluate classification performance for a two-class
problem. Most of them, such as the precision and recall, are defined in terms of the cells in the
confusion matrix.
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Metric Description Formula

Confusion matrix (M)

It shows a detailed breakdown of
correct and incorrect predictions for
each class. For a two-class classifica-
tion problem, each cell in the table
has a specific and well-understood
name.

M =

[
TP FP
FN TN

]

Overall accuracy (OA)

It measures how often the classifier
makes the correct prediction across
all classes. In the general case, it is a
ratio between the number of correct
predictions and the total number of
produced predictions

OA = TP+TN
TP+FP+FP+FN

Precision (P) It identifies how accurately the
model predicted the positive classes. P = TP

TP+FP

Recall (R)

It is a sensitivity metric that quan-
tifies the number of correct positive
predictions made out of all positive
predictions that could have been
made. In this way, it provides an
indication of missed positive predic-
tions.

R = TP
TP+FN

F-score (F)

It provides a single measure which
capture both properties of overall
accuracy and recall metrics. It
might be the most common met-
ric used on imbalanced classification
problems.

F = 2 P×R
P+R

Kappa accuracy (K)

Also named Cohen’s Kappa, is a
useful measure for problems that
have an imbalance in the classes.
It permits identifying how well the
model is predicting by considering
the level of expected accuracy ob-
tained by chance pc

K = OA−pc
1−pc

,

Table 2.1: Metrics for performance evaluation for a two-class problem. TP: True Positives, FP:
False Positives (false alarms), FN: False Negatives (misses) and TN: True Negatives (correct
rejections).

Overall accuracy is an easy way to evaluate classification performance. However, it doesn’t
make any distinction between classes. For example, when the classes are imbalanced, i.e., there
are different numbers of samples per class, the accuracy will give a very distorted picture,
because the class with more samples will dominate the statistic. In that case, the per-class
average accuracy is well adapted. It returns a metric corresponding to each class, which is the
precision for each class. For the conducted experiment, the overall accuracy is often exploited to
quantify classification performance, especially when it comes to balanced datasets. Moreover,
per-class average accuracy and kappa accuracy are also evaluated

The difficulty with traditional machine learning approaches is that it is necessary to choose
which features are important in each given image. Furthermore, as the number of classes to clas-
sify increases, feature extraction becomes more and more cumbersome whereas deep learning
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strategies have the ability to automatically adapt to changes by constant feedback and improve
the model. It collects data, learns from it, and optimises the model. As such, deep learning algo-
rithms can be regarded as a sophisticated and mathematically complex evolution of traditional
machine learning algorithms.

2.2.2 Deep learning based methods

Inspired by the properties of biological neural networks, artificial neural networks are statis-
tical learning algorithms and are used for a variety of tasks, from relatively simple classification
tasks to computer vision and speech recognition. Like the human brain, it is composed of many
computing cells, namely "neurons" where each performs a simple operation and interacts with
each other to make a decision. Deep Learning (DL) techniques are conquering over the prevail-
ing traditional machine learning approaches. They are relatively important when it comes to
the large amount of images, applications requiring complex functions and demanding increased
accuracy with lower time complexities.

2.2.2.1 Convolutional neural networks (CNN)

Convolutional neural networks (CNNs) introduce a special architecture of artificial neural
networks, and were first introduced in the 1980s by Kunihiko Fukushima [Fukushima 1988]
which designed an artificial neural network, namely the Neocognitron, for visual pattern recog-
nition. This paper was followed by the work of Yann Le Cun which proposed the LeNet model
[Le Cun et al. 1998]. It represents a first modern application of convolutional neural networks
for handwritten digits recognition. Then, with the availability of large sets of data, namely the
ImageNet dataset with millions of labeled pictures, and the increase of computer resources, a
multi-layered neural network version appeared in 2012 under the name AlexNet. It refers to
its main creator, Alex Krizhevsky. CNNs are composed of multiple layers of artificial neurons,
inspired by their biological counterparts, which are mathematical functions that calculate the
weighted sum of multiple inputs and output an activation value. A typical CNN is constituted
of two parts:

• The convolutional part is composed by a stack of convolutional and pooling layers permit-
ting the extraction of image features.

• The classifier is usually composed by fully connected layers. The main goal of the classifier
is to classify the image based on the extracted features.

Figure 2.10 shows the architecture of a model based on CNN. Contrary to machine learning
methods, deep learning models can automatically learn hierarchical feature representations.
Features computed by the first layer are general, while features computed by the last layer are
specific and depend on the chosen dataset and task.
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Figure 2.10: Convolutional neural network (CNN) architecture

A CNN is basically composed of elementary layers, namely convolutional, pooling, activation
and fully-connected layers. They are explained in the following.

Convolutional layer:
Convolution basically means a pointwise multiplication of two functions to produce a third
function, which is then summed. Here, the first function is the input image pixels matrix while
the second one is the filter. The convolutional layer performs by sliding the filter over the image
and get the dot product of the two matrices as displayed in Figure 2.11.

Figure 2.11: Example of a convolution filter on the convolutional layer.

The resulting matrix is called an "Activation Map" or "Feature Map". The innovation of
convolutional neural networks is to learn the filters during training which permits updating
filter weights. In fact, the learning phase allows adjusting its weights in order to minimize a
cost function.

Pooling layer:
Similar to the convolutional layer, the pooling layer is responsible for reducing the spatial
size of the extracted activation map. This is to decrease the computational power required
to process the data through dimensionality reduction. Furthermore, it is useful for extracting
dominant features which are rotational and positional invariant, thus maintaining the process
of effectively training the model. There are basically two types of pooling: max pooling and
average pooling which operate locally among the feature map. As illustrated in Figure 2.12,
max pooling returns the maximum value from the portion of the image covered by the kernel,
whereas average pooling returns the average of all the values from the portion of the image
covered by the kernel.
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Figure 2.12: Example of max and average pooling.

The main purpose of a pooling layer is to apply a first-order pooling and reduce the number
of parameters of the input tensor and thus:

- Helps reduce over-fitting and insures small invariance to translation.
- Extracts representative features from the input tensor.
- Reduces model complexity and computational time and thus aids efficiency.

Activation layer:
After each convolutional layer, a CNN applies an activation function that transforms each
pixel value. Usually, a ReLU (Rectified Linear Unit) activation function is performed. For
an input x, ReLU function simply turns all negative values into 0’s (black) and keeps x for
all values of x > 0. An activation function also introduces non-linearity into a model, and
this means that the CNN will be able to find nonlinear boundaries that effectively separate data.

Fully-connected layer:
The input to the fully connected layer is the output from the final pooling or convolutional
layer, which is flattened and then fed into the fully connected layer. As its name suggests, the
neurons in this layer are connected to every neuron in the previous layer. After passing through
the fully connected layers, the final layer uses the softmax activation function which is used to
get probabilities of the input being in a particular class.

2.2.2.2 Transfer learning

Transfer learning is usually expressed through the use of pre-trained models. A pre-trained
model is a model that was trained on a large benchmark dataset to solve a problem similar
to the target problem. With transfer learning, instead of starting the learning process from
scratch, the significant part of the learned knowledge is transferred to the dataset of interest
which reduces the computational cost.

Thus, the key motivation is the fact that most models which solve complex problems
need a large set of data, and getting vast amounts of labeled data for supervised models can
be really difficult, by considering the time and effort it takes to label data points. A simple
example would be the ImageNet dataset [Russakovsky et al. 2014], which has millions of images
and is commonly used to train convolutional neural networks.

From a practical perspective, the entire transfer learning process can be summarised as
follows:
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• Select a pre-trained model: A pre-trained model is chosen from available models that have
been learned on large and challenging datasets. For image classification tasks, several
models are available such as the AlexNet, CaffeNet or even deep models such as VGG
models which were learned on the ImageNet dataset [Russakovsky et al. 2014]. This latter
is the most widely used large scale dataset and contains more than 14 millions of labeled
images. The pre-trained CNN models can be downloaded and incorporated directly into
new models.

• Freeze the pre-trained model: The considered model is used as a feature extractor through
the convolutional layers. In fact, the pre-trained model is kept at its original form and
then its outputs are fed on a selected classifier. This option is usually adopted for problems
with low computational power, and/or when dataset is small, and/or the pre-trained model
solves a problem very similar to the task of interest.

• Fine-tune the pre-trained model: In this case, some layers of the pre-trained model are
trained according to the dataset of interest. As shallow layers refer to basic features, such
as horizontal, vertical, and diagonal edges, and deeper layers refer to specific features,
such as corners and combinations of edges. The choose of frozen layers and retrained
layers comes down to play with that dichotomy in order to improve the model and avoid
overfitting.

In recent years, in order to benefit from both CNN architectures and encoding methods, many
authors have focused on proposing hybrid architectures that consist of combining deep neu-
ral network architecture with traditional machine learning methods such as those based on
FV/VLAD descriptors.

2.2.3 Hybrid architectures

A scene image is composed by a set of visual elements. For example, an harbour scene
is formed by many objects such as boat, water, pontoon, etc. In this context, coding based
methods such as Fisher vectors (FV) or Vector of Locally Aggregated (VLAD) descriptors
have reached the state-of-the-art at the beginning of the 2000’s [Perronnin & Dance 2007,
Arandjelović & Zisserman 2013, Jégou et al. 2010]. More recently, the development of CNNs
has had a tremendous influence in the field of computer vision and is responsible for a big
jump in the ability to recognize objects. In fact, they have shown to outperform coding
methods by a significant margin. For instance, on the ImageNet large scale visual recog-
nition challenge, deep learning based methods have won since 2012 [Krizhevsky et al. 2012].
In order to benefit from both strategies, in the recent literature on scene classification,
many authors have introduced hybrid architectures that combine CNN with some coding
methods. For example, Perronnin et al. [Perronnin & Larlus 2015] have proposed a net-
work of fully connected layers trained on the FV descriptors. Simonyan et al., intro-
duced in [Simonyan et al. 2013] the Fisher network, which is composed of several stacked
FV layers. Later, Arandjelovic et al. [Arandjelovic et al. 2015] proposed the NetVLAD layer,
which mimicks the VLAD layer. To benefit of multi-layer representation, other strate-
gies include the FV or VLAD encoding of CNN features from different layers of the net-
work [Ng et al. 2015, Cimpoi et al. 2016, Diba et al. 2017, Li et al. 2017]. The next subsections
briefly present these hybrid architectures.
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2.2.3.1 Fisher vectors meet fully-connected layers network

Perronnin et al. proposed in [Perronnin & Larlus 2015] a first hybrid architecture allowing
the combination of the best of both worlds, the leading architectures on machine learning based
on Fisher vectors encoding and neural networks. For that, the introduced architecture, illus-
trated in Figure 2.13 is constituted of unsupervised layers involving the feature extraction, the
computation and the dimensionality reduction of FVs. Then, instead of using a standard classi-
fier, such as the SVM algorithm, a set of fully-connected neural network (NN) layers are plugged
in the following. However, this architecture can not be trained on an end-to-end manner.

Figure 2.13: Fully-connected network model.

2.2.3.2 NetVLAD

The authors in [Arandjelovic et al. 2015] proposed a convolutional neural network (CNN)
architecture that is trainable in an end-to-end manner directly for the place recognition task.
The main component of this architecture is the NetVLAD as illustrated in Figure 2.14. It is a
new generalized VLAD layer, inspired by the VLAD encoding method and is trained using the
last convolutional feature of the CNN model.

Figure 2.14: NetVLAD model architecture.

The NetVLAD layer permits to mimic a VLAD in a CNN framework and design a trainable
generalized VLAD layer. By doing that, it results on a powerful image representation which has
the ability to be trainable on an end-to-end manner regarding the target task. The specificity
of the VLAD layer is that it is easily pluggable into any CNN architecture as it is amenable
to back-propagation. To make operations differentiable and avoid discontinuities in the VLAD
due to the use of hard assignment’s of descriptors to cluster centers, the soft assignment layer is
performed which allows to assign the weight of each descriptor to a specific cluster proportional
to their proximity, but relative to proximities to other clusters. This comes down to replace the
hard assignment introduced in (2.6) with a soft assignment described by:

γk(xi) =
eα||xi−ck||2∑
k′ e

α||xi−ck′ ||2
. (2.16)
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Note that γk(xi) ranges between 0 and 1 and α is a positive parameter that controls the decay
of the response where a very large α approximates to hard assignment of the original VLAD.
The form of (2.16) can result on the form in (2.17) by expanding the squares and cancelling the
term eα||xi||2 between the numerator and the denominator. It gives:

γk(xi) =
ew

T
k xi+bk∑

k′ e
wT

k′xi+bk′
. (2.17)

where wk = 2αck and bk = −α||ck||2. Then the final form of the NetVLAD layer is given by the
VLAD descriptor (2.6) weighted by the soft-assignment obtained in (2.17). It results in:

vk =

N∑
i=1

ew
T
k xi+bk∑

k′ e
wT

k′xi+bk′
(xi − ck). (2.18)

As a consequence, the NetVLAD layer has three independent sets of parameters for each cluster k
(weight {wk}k=1,...,K , biases {bk}k=1,...,K and cluster centers {ck}k=1,...,K) which enables greater
flexibility than the original VLAD. As illustrated in Figure 2.14, the soft-assignment can be seen
as a softmax function such as:

γk(xi) = softmax(wT
k xi + bk), (2.19)

where wT
k xi+ bk is obtained as an output of a convolution with a set of 1×1 filters {wk}k=1,...,K

and biases {bk}k=1,...,K . At the end, a normalization step is performed and the obtained
descriptor is of dimension (K ×D)× 1.

In [Arandjelovic et al. 2015], the NetVLAD model significantly outperforms off-the-shelf
CNN models and improves over the state-of-the-art on challenging image datasets, specially for
place recognition benchmarks.

2.2.3.3 Fisher network

To take advantages of local features encoding and inspired by the multi-layer architecture
of convolutional neural networks which allows to capture complex image structures, Simonyan
et al. [Simonyan et al. 2013] defined the Fisher network which is constitued of stack of Fisher
layers as illustrated in Figure 2.15.

Figure 2.15: Fisher network architecture: Stack of Fisher layers on top of each other.

Such Fisher layers consists of the operations illustrated in Figure 2.16. On the input, the
Fisher layer at each level receives the d-dimensional SIFT features after being decorrelated
using PCA, densely computed over multiple scales on a regular image grid. Then, Fisher vector
encoding is performed by pooling only a set of semi-local regions of the image. The idea is to
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consider more than a unique FV vector to describe each image by considering semi-local FVs
on square regions of the image where more complex image statistics are captured. For the FV
encoding, a GMM generative model of K components is considered to produce a FV of dimension
2Kd. To reduce FV dimensionality, a discriminatively trained linear projection is applied.
The spatially adjacent features are stacked in a 2 × 2 window. Finally, to enhance invariance
properties, reduce dimension and decorrelate, the produced features are L2-normalized and
PCA-projected before being passed as the input to the following Fisher layer.

Figure 2.16: Architecture of a Fisher layer.

As illustrated, the Fisher network is constructed by stacking several Fisher layers on the
basis of dense features, such as SIFT features. In analogy to the state-of-the-art deep neural
network architecture, the Fisher network is trained in a supervised manner, since each Fisher
layer depends on discriminative dimensionality reduction.

The hybrid architectures presented above provided significant improvement. However,
they do not exploit second-order statistics, i.e., dependencies between features, which have been
shown to be important in the human visual recognition process. Since then, we introduce in
the following sections different models based on covariance pooling of CNN features to exploit
second-order statistics.

2.3 Local covariance pooling: Ensemble log-Euclidean Fisher
vector architecture

Building on the success of those latter hybrid architectures, more attention is given to a par-
ticular approach introduced in [Li et al. 2017]. In that paper, Li et al. have proposed a hybrid
structure, which consists of encoding each output of the convolutional layers of a pre-trained
neural network with FV. This technique has demonstrated competitive results for remote sens-
ing scene classification. To capture various scale phenomenons when applying the FV encoding,
a Gaussian pyramid is considered. This permits generating multiscale images by using a Gaus-
sian smoothing and sub-sampling at different scales as detailed in [Li et al. 2017]. Classification
results have demonstrated the interest of using multiscale images compared to a single input
image. Therefore, a pyramid of three scale levels is retained in the following. Those multiscale
images are fed into the CNN model, allowing the extraction of convolutional features which
are then concatenated before being encoded with FV. Note that CNN models are used only
to extract deep features without any retraining from scratch or fine-tuning. In fact, once the
multiscale features are extracted from each convolutional layer, an individual codebook is gen-
erated. In this approach, the dimension K of the codebook is the same for all the layers. The
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CNN features are then encoded with the improved FV [Perronnin et al. 2010b]. Next, those FVs
are fused to represent the mid-level feature vectors of a scene image. Therefore, this approach
does not consider second-order features, which have proved to be efficient in many classifica-
tion problems and have shown to outperform first-order features for many image processing
applications, including material recognition and person re-identification. To this aim, we have
proposed in [Akodad et al. 2018b] a novel hybrid architecture named Hybrid LE FV, which
integrates second-order features in the classification algorithm,

2.3.1 Hybrid log-Euclidean Fisher vector (Hybrid LE FV)

As illustrated in Figure 2.17, the hybrid LE FV architecture consists of a local covariance
pooling where the log-Euclidean Fisher Vector (LE FV) encoding of the covariance matrices of
CNN features are computed locally on layers output. The next Section 2.3.1.1 presents in details
the principle of this Hybrid LE FV approach starting from the extraction of region covariance
matrices to the FV encoding with the learned codebook [Akodad et al. 2018b]. Then, aiming at
improving the classification performance, a proposition of an ensemble learning version of Hybrid
LE FV strategy is detailed in Section 2.3.2.

Figure 2.17: Principle of the proposed log-Euclidean Fisher vector encoding of region covariance
matrices (Hybrid LE FV).

2.3.1.1 Region covariance matrices

The first step is to extract the region covariance matrices computed on a sliding window on
the CNN feature maps. Hence, each image is represented by a set M = {Mn}n=1:N of covariance
matrices Mn ∈ Pd. As the size of the output CNN layer depends on layer depth, only the first
and second layers of a CNN are considered for computing local covariance matrices. Indeed, for
the deepest layers, the feature maps are of small spatial dimension which does not allow the
extraction of a large set of covariance matrices. For this purpose, a particular attention is given
to the choice of the CNN model. Here, the CNN model adopted is a very deep convolutional
network named VGG-16 [Simonyan & Zisserman 2014]. It is composed of 16 weight layers and
is characterized by using a simple 3×3 convolutional layer stack with a stride fixed to 1 pixel and
a spatial padding of 1 pixel. Therefore, the size of the output feature map is preserved through
the first two layers that permit the extraction of a sufficient set of region covariance matrices.
Then, according to the log-Euclidean framework detailed in section 1.3.3, these region covariance
matrices are encoded with the LE FV. For that, a codebook is first learned by considering a
Gaussian mixture model on the manifold of SPD matrices.
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2.3.1.2 Gaussian mixture model and codebook creation

Referring to chapter 1, let’s consider the following GMM model:

p(M|ω, M̄,Σ) =
K∑
k=1

ωk p(M|M̄k,Σk), (2.20)

where p(M|M̄k,Σk) is a multivariate Gaussian distribution defined on the tangent space of the
identity matrix. In the context of log-Euclidean framework detailed in section 1.4.4 of chapter 1,
the probability density function is given by:

p(M|M̄k,Σk) =
exp

{
−1

2

(
Vec (log(M))−Vec

(
log(M̄k)

))T
Σ−1
k

(
Vec (log(M))−Vec

(
log(M̄k)

))}
(2π)

d(d+1)
4 |Σk|1/2

.

(2.21)
ωk ∈ [0, 1], M̄k ∈ Pd and Σk ∈ P d(d+1)

2

are respectively the weight, mean and covariance
matrices for the kth component of the GMM model. In addition, the classical assumption
of diagonal covariance matrices Σk is made, i.e. σ2

k = diag(Σk) ∈ R
d(d+1)

2 is the variance
vector [Perronnin & Dance 2007].

Moreover, Equation (2.21) can be rewritten as:

p(M|M̄k,Σk) = p(mTId |µk,Σk) =
exp{−1

2(m
TId − µk)

TΣ−1
k (mTId − µk)}

(2π)
d(d+1)

4 |Σk|1/2
, (2.22)

where µk = Vec
(
log(M̄k)

)
∈ R

d(d+1)
2 is the log-Euclidean mean vector for the kth component of

the GMM model, and mTId is the LE vector representation of M given by Equation (1.31) and
Equation (1.32). Since covariance matrices are projected into the tangent space and represented
by their corresponding LE vectors, all the algorithms developed on a vector space can be used. In
particular, the EM algorithm for parameter estimation of a GMM model is used to estimate the
weights, means, and dispersions parameters. The set of these estimated parameters represents
the codebook that will further be used to encode the set of region covariance matrices extracted
from each image.

2.3.1.3 Log-Euclidean Fisher vector encoding

Considering X = (m
TId
1 , m

TId
2 , . . . , m

TId
N ) be a set of d(d+ 1)/2-dimensional log-Euclidean

vectors extracted locally from the first convolutional layers of an image. The LE FV encoding
consists of projecting these local vectors onto the codebook defined in the previous subsection.
The LE FV descriptor assigned to X is obtained by computing the gradient of the log-likelihood
with respect to GMM model parameters, scaled by the inverse square root of the Fisher Infor-
mation Matrix (FIM) Fθ [Perronnin & Dance 2007]:

GX
θ = F

− 1
2

θ ∇θ log p(X |θ). (2.23)

Here, θ represents each of the distribution parameters (ωk, µk and σk). In practice, the
derivatives with respect to the mean µk(j) and standard deviation σk(j) have been found to
be the most useful [Perronnin & Dance 2007]. Hence, the following two FVs are obtained after
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deriving with respect to these two elements

GX
µk(j)

=
1
√
ωk

N∑
n=1

γk(m
TId
n )

(
m

TId
n (j)− µk(j)

σk(j)

)
, (2.24)

GX
σk(j)

=
1√
2ωk

N∑
n=1

γk(m
TId
n )

([
m

TId
n (j)− µk(j)

]2
σ2
k(j)

− 1

)
, (2.25)

where µk(j) (resp. σk(j)) is the jth element of vector µk (resp. σk) and γk(m
TId
n ) is the

occupancy probability of m
TId
n to the kth Gaussian component of the GMM, also named the

posterior probability, and is defined as:

γk(m
TId
n ) =

ωk p(m
TId
n |µk,Σk)∑K

j=1 ωj p(m
TId
n |µj,Σj)

. (2.26)

Once FV descriptors are obtained, a post-processing step is conventionally used to enhance
the classification accuracy [Perronnin et al. 2010b, Sánchez et al. 2013]. This consists of a power
and an ℓ2 normalization. Furthermore, to avoid the curse of the dimensionality phenomenon
when the dimensionality of the FV descriptor is high, a dimension reduction step can be used.
In the following, the Kernel Discriminant Analysis (KDA) as suggested in [Mika et al. 1999].
Finally, a classification with a linear SVM is performed to make the decision for each test image
depending on the information contained in the FV vector representation.

2.3.1.4 Dimensionality reduction

Working in high-dimensional spaces can be challenging for many reasons; raw data are often
sparse as a consequence of the curse of dimensionality which degrade algorithms performance,
and analyzing the data is usually computationally expensive. Machine learning problems that
involve many features make training extremely slow. Dimensionality reduction aims at solving
this issue. It can be defined as the process of transforming data from a high-dimensional space
into a low-dimensional space while preserving some meaningful properties of the original data.
More precisely, the reduction refers to techniques that reduce the number of feature variables
in a dataset. There are many techniques that can be used for dimensionality reduction. The
following diagram in Figure 2.18 categorizes some of the principal dimension reduction methods.

Feature selection aims at building a model of high accuracy by selecting the optimal features
from the input dataset and leaving out the irrelevant features. Forward and backward selection
methods [Weisberg 2005, Kutner 2005] are based on evaluation an machine learning model
performance using dataset features. The features are kept or discarded, depending on the model
accuracy. Furthermore, feature extraction methods aims at transforming the high-dimensional
into space into a low-dimensional space. This category is divided in two families: linear and
non-linear methods.
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Figure 2.18: Chart summarizing some dimensionality reduction methods.

Linear methods involve linearly projecting the original data onto a low-dimensional space.
The most common method is the principal component analysis (PCA). PCA proceeds in an
unsupervised manner to transform a set of correlated variables d into a smaller (k ≤ d) number
of uncorrelated variables called principal components, while preserving as much as possible
the variance of the original dataset. In contrast, the linear discriminant analysis (LDA) is a
supervised method which attempts to find a feature subspace that maximizes class separability.
For an empirical comparison between PCA and LDA techniques, the interested reader is referred
to [Martinez & Kak 2001]. Singular Value Decomposition (SVD) is also used to decompose the
original dataset into its constituents, resulting in dimensionality reduction [Halko et al. 2010].
Non-linear methods permit to use more advanced techniques for dimensionality reduction, such
as the t-Distributed Stochastic Neighbor Embedding (t-SNE) [van der Maaten & Hinton 2008]
algorithm which is one of the few algorithms capable of capturing both local and global structure
of the data at the same time. Also, the Kernel Discriminant Analysis (KDA) [Cai et al. 2007]
is an extension of the LDA based on the introduction of a kernel function which corresponds to
the non-linear mapping.

For our work, PCA and LDA as well as its variant KDA are adopted for the aim of dimen-
sionality reduction and feature decorrelation.

2.3.1.5 Sensitivity analysis

As explained in subsection 2.3.1.3, two parameters have to be tuned for the proposed Hy-
brid LE FV method, namely the number of components K in the GMM model and the di-
mension d of the covariance matrices. To evaluate the influence of each parameter on classi-
fication accuracy, some experiments are carried out on the UC Merced Land Use Land Cover
dataset [Yang & Newsam 2010]. This dataset is composed of 21 classes where each class contains
100 remote sensing images of dimension 256 × 256 pixels. Figure 2.19 shows some examples of
the UC Merced dataset. In order to prove the efficiency of the proposed approaches in challeng-
ing conditions, only a small set of p = 10% images is retrained for training for all experiments
and the remaining images are used for testing. Classification results are evaluated in terms of
overall accuracy averaged on five runs. Moreover, to allow a fair comparison between the models,
the same images are used for training.
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Figure 2.19: Samples from the UC Merced dataset.

Figure 2.20 draws the evolution of the classification accuracy of the proposed Hybrid
LE FV approach for the first convolutional layer as a function of the dimension d of the
covariance matrix. Here, the number of GMM components is fixed equal to 30. The di-
mension d is the number of selected principal components. If d is too small, a low number
of principal components is retained. All the variability is not well explained, which leads
to low classification accuracy. When d increases, more variability is explained, and the
classification performance also increases. But after a certain value (d = 5 in our experiments),
the variance gain is not so important and the classification performance remains quite sta-
ble. Hence, it is recommended to consider a covariance matrix size greater than a value of d = 5.

To evaluate the sensitivity of the proposed approach to the number of GMM components,
Table 2.2 shows the classification accuracy using three values of K in the GMM model. As
observed, the approach is not very sensitive to the codebook dimension.

Method K = 10 K = 30 K = 60

Hybrid LE FV (conv 1) 60.5 ± 1.0 % 61.2 ± 0.8 % 61.2 ± 0.8 %

Table 2.2: Classification accuracy of Hybrid LE FV using three codebook dimensions K (d=5).
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Figure 2.20: Influence of dimension d of covariance matrices for Hybrid LE FV (conv 1) on the
UC Merced dataset (K=30).
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2.3.2 Ensemble hybrid log-Euclidean Fisher vector (Ens. Hybrid LE FV)

In machine learning, ensemble learning strategies have become more and more popu-
lar [Breiman 2001, Kuncheva & Whitaker 2003]. They rely on the combination of multiple weak
classifiers to form a stronger one, hence allowing improvements to the classification performance.
The most basic approaches are boosting and bagging [Freund & Schapire 1996, Breiman 2005].
Boosting is based on an iterative re-training process where the weakness is identified, related
to the misclassified samples, and is considered to focus on the learning process. In contrast,
the bagging strategy, also called bootstrap aggregation, consists in randomly generating sam-
ples with replacement, of a fixed size, called bootstrap samples, from an initial dataset. Those
samples are used to fit several independent models in order to obtain a final model with a lower
variance. As an example, random forest algorithm is an ensemble learning method that seeks
to train each model, through decision trees, on a different sample of the same training dataset.
The predictions made by the ensemble members are then combined together to elect the final
decision using simple statistics, such as voting for classification or averaging for regression prob-
lems. The diversity in the ensemble is actually ensured by the variations within the data in
which each decision tree is trained on.

2.3.2.1 Proposed architecture

Inspired by this idea, we introduce an ensemble learning approach for the hybrid log-
Euclidean Fisher vector presented in the previous subsection. The workflow of this method
named “Ens. Hybrid LE FV", is shown in Figure 2.21. As observed, for each convolutional
layer (conv 1 and/or conv 2), N ′ subsets are considered. For each subset, d feature maps are
randomly selected without replacement1. Actually, some conditions are necessary to ensure a
good decision making, in particular, the following criteria:

• Decision independence of considered classifiers

• Diversity of features in each classifier

As detailed in [Surowiecki 2004], diversity of opinions bring meaningful differences rather than
minor variations, as such, chances that decisions end up to the good decision increase. Also,
diversity helps to preserve the independence, where each classifier acts of its own motion without
any effect of other classifiers. To satisfy those conditions, there is a trade-off when choosing the
number of features d for each subset. The size d of the initial subset should be small enough
to ensure the diversity from one subset to another and decreases correlation to make classifiers
act independently. Also, the covariance matrices are well estimated. Therefore, the classifier
looses its stability due to the poor explanatory power of considered d feature maps. In contrast,
a high value of d improves the features explanatory and the model stability, whereas it results
on a poor diversity between classifiers, and a loss of independence where features have a higher
probability to figure in each subset. In addition, it leads to a not well-conditioned covariance
matrix.

1Replacement means that if a feature is selected, it is returned to the training dataset for potential re-selection
in the same training dataset.
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Figure 2.21: Ensemble Hybrid LE FV workflow.

A first experiment is conducted in order to evaluate the sensitivity of the proposed approach.
This consists of evaluating the influence of the number of subsets N ′. Table 2.3 shows the
classification accuracy of the “Ens. Hybrid LE FV strategy regarding the first convolutional
layer of VGG-16 model. Five values of N ′ are experimented (5, 7, 9, 11, and 13) for d = 5 and
p = 10% of training images of the UC Merced dataset.

N’ Ens. Hybrid LE FV

5 63.7 ± 0.6 %

7 64.0 ± 0.3 %

9 64.0 ± 0.3 %

11 63.9 ± 0.1 %

13 64.0 ± 0.5 %

Table 2.3: Classification accuracy of ”Ens. Hybrid LE FV" using different number of subsets N ′

One can observe that results remain quite stable for the different considered N ′. For further
experiments, the number of subsets N ′ will be fixed to 7.

2.3.2.2 Results for GMM modeling involving a unique tangent space

Table 2.4 highlights the classification results obtained on the UC Merced dataset for the
first (conv 1) and second (conv 2) convolutional layers of VGG-16 network. The proposed
ensemble learning approach, “Ens. Hybrid LE FV”, is compared to two closely related state-
of-the-art strategies. The first one, named “Hybrid FV”, consists of encoding the output of the
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convolutional layers with FV [Li et al. 2017]. Note that this approach considers only first-order
statistics. The second one, named “Hybrid LE FV” is the one presented in Section 2.3.1.1. It
exploits second-order statistics but not in an ensemble learning approach [Akodad et al. 2018b].

Method Conv 1 Conv 2

Hybrid FV [Li et al. 2017] 41.4 ± 0.2 % 43.7 ± 1.1 %
Hybrid LE FV [Akodad et al. 2018b] 61.2 ± 0.8 % 65.1 ± 1.6 %

Ens. Hybrid LE FV 62.4 ± 0.9 % 68.1 ± 1.7 %

Table 2.4: Classification results on the UC Merced dataset for the first and second convolutional
layers of the VGG-16 network (p = 10%).

As observed in Table 2.4, the benefit of exploiting second-order statistics is clearly demon-
strated for the first and second CNN convolutional layers. A significant gain of 20% to 25% is
reported for the proposed "Hybrid LE FV and Ens. Hybrid LE FV methods compared to the
conventional Hybrid FV approach. In addition, for these first two layers, a significant gain is
observed when exploiting an ensemble learning strategy compared to the use of a single classifier.

2.3.2.3 Results for GMM modeling involving multiple tangent spaces

In chapter 1, we have discussed in section 1.3.3 the choice of reference point for constructing
the tangent plane and have proposed to extend the GMM modeling to multiple tangent planes
defined at different reference points. As explained, this would be a better alternative to preserve
the specific geometry of the SPD matrices and limit distortion when projecting covariance
matrices at the same tangent plane, especially when the set of covariance matrices is located far
from the considered reference point. For that, in order to define a reference point close to the
covariance matrices, the centroid M̄k of each GMM cluster k has been estimated and a tangent
space is defined for each GMM cluster at the estimated centroid.

As detailed in chapter 1, experimental results on synthetic data demonstrated the bene-
fit of using adapted tangent planes to preserve the correct fitting of Gaussian models and avoid
projection distortions, especially when data are located far from the reference point. Here, the
objective is to extend the proposed architectures, Hybrid LE FV and Ens. Hybrid LE FV, to
a GMM modeling with multiple tangent planes for a classification problem. For that, the EM
algorithm is used to learn the codebook on the training set, and this latter one is used to encode
a set M = {M1, . . . ,MN} of N covariance matrices with Fisher vectors. By combining (2.23)
and (1.66), the FV associated to a GMM model with K reference points are obtained as:

GM
M̄k(j)

=
1
√
ωk

N∑
n=1

γk(Mn)

(
z
TId
(n,k)(j)

ηk(j)

)
, (2.27)
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1√
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]2
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− 1

)
, (2.28)

where z
TId
(n,k) is the vector version of Z(n,k) computed at the identity matrix Id. As detailed in

chapter 1, Section 1.4.6.3, Z(n,k) is the result of parallel transport of covariance matrices Mn to
the identity matrix Id and η2k(j) is the variance of the transported set. Table 2.5 highlights the
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classification results obtained on a single convolutional layer of the VGG-16 model, for instance
the second layer (conv 2). In the proposed approaches, each layer is represented by a set of
region covariance matrices which are further encoded with Hybrid LE FVTId when using a single
tangent plane at the identity matrix whereas for FVTM̄k

, multiple tangent planes are considered.

Method Conv 2

Hybrid LE FVTId (VGG-16) 65.1 ± 1.6 %
Hybrid LE FVTM̄k

(VGG-16) 66.7 ± 0.9 %

Table 2.5: Classification results on the UC Merced dataset for the first and second convolutional
layers of the VGG-16 model (p = 10%).

As observed, since the two strategies are comparable, results are quite similar. To explain
that, one hypothesis may be the fact that the induced distortion does not affect the classification
results. In fact, covariance matrix features extracted from the UC Merced dataset are relatively
discriminant and provide a sufficient separation between classes regardless the distorted data
shape. As such, the encoding step between the two models, whether using a single tangent plane
or multiple planes, gives similar results. Furthermore, as using multiple tangent planes requires
high computational time, it is preferred to use the single tangent plane approach for the following.

In this approach, only covariance matrices computed on the first layers of a CNN have been
encoded with the LE FV. Indeed, as the deepest convolutional layers of the VGG-16 network
are of relatively small spatial dimensions, it is irrelevant to compute a sufficient number of
region covariance matrices. Nevertheless, the deepest layers may provide useful features for the
classification. To alleviate this issue, instead of considering a local approach, the covariance
matrix will be computed globally for the deepest feature maps. For that, Section 2.4 introduces
first a multilayer stacked covariance pooling approach, namely MSCP, proposed by He et al. in
[He et al. 2018] then our extension to an ensemble learning approach based on a global covariance
pooling of CNN features [Akodad et al. 2019c].

2.4 Global covariance pooling: Ensemble learning based on co-
variance pooling of CNN features (ELCP)

2.4.1 Multilayer stacked covariance pooling (MSCP)

Willing to exploit second-order statistics on deep convolutional layers of a CNN, He et al.
have proposed in [He et al. 2018] a strategy named multilayer stacked covariance pooling
(MSCP). The originality lies in the replacement of the usual first-order pooling (i.e. average or
max pooling) in a CNN by a second-order pooling (i.e. covariance pooling). Note also that, in
contrast with the ensemble hybrid LE FV method introduced in section 2.3.2, where each layer
is represented by a set of covariance matrices computed locally on the feature maps, a single
covariance matrix is computed for MSCP, which can significantly speed up the computation time.

The general principle of MSCP is summarized in Figure 2.22.
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Figure 2.22: Architecture of the multilayer stacked covariance pooling strategy (MSCP).

First, three convolutional layers, with different depth, are considered and analyzed sepa-
rately. For a given convolutional layer, an ensemble learning approach is considered by splitting
the convolutional features into d subsets. For each subset, k features are selected without
replacement. These latter are next downsampled and averaged in order to obtain only one
descriptor by subset (see Figure 2.23). Then, the d average descriptors for each convolutional
layer are concatenated allowing to obtain a tensor of dimension s × s × 3d. The covariance
pooling operator is next applied, it consists in computing the 3d × 3d covariance matrix
descriptor. Finally, the log-Euclidean metric is considered for classification. For that, the LE
vector representation is computed and an SVM classifier is adopted. MSCP has successfully
been validated for remote sensing scene classification, but it suffers from two main drawbacks.

First, a single decision is obtained at the end. Second, the main drawback of MSCP
concerns the averaging operator presented in Figure 2.23. In fact, it may lead to a not
well-conditioned covariance matrices: there is no practical reason that the average descriptor
obtained on one subset is different from the one calculated on another subset.
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Figure 2.23: Description of the downsampling and averaging fusion operations over convolutional
feature maps in the MSCP algorithm.

To overcome these problems, we have introduced in [Akodad et al. 2019c] a novel hybrid
approach named ELCP, which consists of an ensemble learning approach based on covariance
pooling of CNN features. This architecture is detailed in the next subsection.

2.4.2 Ensemble learning approach based on covariance pooling (ELCP)

The global principle of the proposed architecture [Akodad et al. 2019c] is shown in Fig-
ure 2.24. First, the feature maps M1, M2 and M3 produced by three deep convolutional lay-
ers (conv3−3, conv4−3 and conv5−3) are considered. Commonly, CNN layers have different
spatial dimensions. For example, for the VGG-16 model, dimensions are M1 ∈ R56×56×256,
M2 ∈ R28×28×512 and M3 ∈ R14×14×512. A downsampling to the smallest spatial dimension is
performed using a bilinear interpolation to stack the feature maps of these latter layers. Fur-
thermore, for each image, an ensemble learning approach is considered where the stacked feature
maps generated by the convolutional layers are split into N subsets of k features each. This
splitting is achieved for each subset by random sampling without replacement. Then, for each
subset n, a global covariance pooling strategy is adopted. It consists in computing the k × k

covariance matrix Cn. The log-Euclidean framework presented in chapter 1 is then adopted to
represent Cn in the tangent plane of the identity matrix by c

TId
n according to equation (1.30).

Then, for each subset, these log-Euclidean vectors are fed to a base linear SVM classifier allow-
ing them to obtain a decision. The final prediction is obtained as the most represented decision
among the N subsets.
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Figure 2.24: Ensemble learning approach based on covariance pooling of CNN features (ELCP)
workflow.

As explained, two parameters should be tuned: the number N of subsets and the number k

of selected features in each subset. In order to evaluate the sensitivity of the proposed ELCP
approach, an experiment is conducted. Figure 2.25 draws the evolution of the classification
accuracy as a function of k for different values of N (N = 10 to N = 30).

Figure 2.25: Influence of the number N of subsets and the number k of selected features in each
subset on the classification accuracy.

As observed, the classification results for this method are stable and not so sensitive to
parameter tuning, the number of subsets N and the number of feature maps k per subset retained
in the following will, respectively be equal to 20 and 170 as suggested on [Akodad et al. 2019c].
These parameters are set to these values in the following.
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2.4.3 Experimental results

2.4.3.1 Classification results for a single convolutional layer

This section introduces an application to large scale remote sensing scene classification.
For that, the UC Merced Land Use is considered to evaluate the performance of the proposed
supervised classification algorithm. Images are randomly separated into training and testing
sets according to a fixed rate. 10 % of images are retained for training. In the following,
two CNN models pretrained on ImageNet are considered: AlexNet [Krizhevsky et al. 2012]
and VGG-16 [Simonyan & Zisserman 2014]. Note also that the final classification step in
Figure 2.24 is performed by the linear SVM classifier.

The proposed ELCP approach is tested when CNN feature maps are issued from a single
layer. Some comparisons are carried out with two other strategies: (1) an hybrid architecture
based on the FV encoding of CNN features (Hybrid FV) [Li et al. 2017] and (2) the MSCP
algorithm [He et al. 2018] detailed in Section 2.4.1. Table 2.6 summarizes the classification
results obtained on the UC Merced dataset for three convolutional layers for AlexNet and VGG-
16 CNN models.

AlexNet

Conv3 Conv4 Conv5

Hybrid FV [Li et al. 2017] 77.2 ± 0.5 % 79.9 ± 0.7 % 81.0 ± 1.2 %

MSCP [He et al. 2018] 79.3 ± 0.8 % 82.8 ± 1.2 % 80.6 ± 0.7 %

ELCP 81.7 ± 1.1 % 83.8 ± 1.4 % 83.6 ± 1.4 %

VGG-16

Conv3,3 Conv4,3 Conv5,3

Hybrid FV [Li et al. 2017] 73.5 ± 2.3 % 85.0 ± 0.7 % 86.5 ± 0.5 %

MSCP [He et al. 2018] 73.5 ± 1.2 % 86.2 ± 1.3 % 84.4 ± 1.0 %

ELCP 76.7 ± 1.1 % 86.7 ± 1.1 % 88.8 ± 1.1 %

Table 2.6: Classification performance obtained on UC Merced dataset using Hybrid FV, MSCP
and the proposed ELCP approaches.

As observed in Table 2.6, the proposed ELCP architecture allows to improve the classification
accuracy compared to Hybrid FV and MSCP architectures when a single layer is considered. A
mean average gain of about 1.5 % and 2.6 % are respectively observed for AlexNet and VGG-16
models. Note also that the best results are obtained for the VGG-16 model. In the following,
only this CNN model will be considered.

2.4.3.2 Classification results for multilayer features

Now that the proposed ELCP approach has successfully been validated for a single layer,
the potential of a multilayer version is investigated. The proposed ELCP approach is compared
with some standard and recent state-of-the-art approaches on the UC Merced dataset. A first
approach is the FV encoding of handcrafted SIFT features (FV SIFT) [Perronnin et al. 2010b].
The next approaches are transfer learning methods based on the VGG-16 pre-trained CNN
model on the ImageNet dataset. A fine-tuning of this model is first considered (CNN (VGG-16
fine-tuned)). For that, the convolutional layers are frozen, and a fully connected layer is added
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and trained on the UC Merced dataset. The second transfer learning approach (VGG-16 feat.
extraction + SVM) consists in considering the CNN model as a feature extractor. CNN features
are then fed to an SVM classifier. Finally, the two second-order based methods, namely MSCP
and the proposed ELCP approaches, are compared. Table 2.7 summarizes the classification
results obtained for these five methods.

Method OA (Mean ± sd)

FV (SIFT) [Perronnin et al. 2010b] 62.3 ± 1.1 %
CNN (VGG-16 fine-tuned) 62.7 ± 1.8 %

CNN (VGG-16 feat. extraction + SVM) [Chatfield et al. 2014] 82.7 ± 0.6 %
MSCP (VGG-16) [He et al. 2018] 86.3 ± 1.0 %

ELCP (VGG-16) 88.4 ± 1.4 %

Table 2.7: Classification performance of the proposed multi-layer architecture compared to some
state-of-the-art algorithms on the UC Merced dataset (p = 10%).

As observed in Table 2.7, several conclusions can be drawn. First, deep learning-based
methods outperform traditional handcrafted based ones. Second, since a low number of
samples is used for training in this experiment, a fine-tuning strategy does not provide
the best results. It is better to consider a pre-trained CNN model as a feature extrac-
tor [Pires de Lima & Marfurt 2019, Cheng et al. 2020]. A gain of more than 20% is observed
between these strategies. Third, among the transfer learning strategies based on feature extrac-
tion, methods exploiting second-order statistics of CNN features (MSCP and ELCP) outperform
the first-order one. Fourth, by exploiting an ensemble strategy, the proposed ELCP significantly
outperforms MSCP. A gain of about 2% is observed.

2.4.4 Ensemble learning covariance pooling guided by saliency maps (EL-
SCP)

Visual saliency has been investigated in the computer vision literature in many different
tasks, such as image classification and retrieval, semantic segmentation and object recognition
[Moosmann et al. 2006, Gao & Vasconcelos 2004]. It permits to identify parts of the input
image which are the most important for classification.

In the ELCP approach, all the pixels of the image contribute equally during the estima-
tion of the sample covariance matrix. This might be problematic when the objects of interest
are of small dimension compared to the surrounding environment. In order to give more
strength to those elements, several approaches can be considered, especially by exploiting
saliency maps. The simplest one consists in using the ELCP approach where the input image
is multiplied by the saliency map.

But this approach loses the contextual information. To circumvent this drawback, we
propose to exploit the saliency map on the CNN features. For that, we introduce a weighted
covariance matrix estimator where the weights depend on the visual saliency. Larger weights
will be given to more salient regions. In practice, each branch related to each subset in the
ELCP approach shown in Figure 2.24 is replaced by the one shown in Figure 2.26 to form the
proposed EL-SCP method.
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Figure 2.26: Covariance pooling of CNN feature bloc guided by saliency maps.

2.4.4.1 Saliency maps

Visual saliency describes the spatial locations in an image that attract the human attention.
According to a bottom-up process, it consists in an exploration of the image by a human
observer during a small duration and without any prior about its content. The progress in
convolutional neural networks opened a possibility to leverage a new family of models to extract
saliency maps where Pan et al., inspired by generative adversarial networks (GANs), introduced
in [Pan et al. 2017] the SalGAN architecture to estimate the saliency map of an input image.
SalGAN, as illustrated in Figure 2.27, is composed of two competing convolutional neural
networks: a generator which allows the generation of saliency maps using a convolutional
encoder-decoder architecture and a discriminator which tells whether the generated saliency
map is real or fake.

The training of SalGAN is made through two competing convolutional neural networks:

• Generator:
Permits the generation of saliency maps using a convolutional encoder-decoder architec-
ture. The encoder part is similar to a pretrained VGG-16 network. Filter weights of the
last layers are modified and trained for saliency prediction. The decoder is structured in
a reversed order than the encoder. The final output of the generator is a saliency map
having the same size as the input image. The values are normalized such that each pixel
is in range [0, 1].

• Discriminator:
The convolutional network is constituted by kernel convolutions, pooling, fully connected
layers and activation functions. It produces an output score which tells whether the input
saliency map is real or fake. shown in the Figure 2.27 this network is initially trained with
a binary cross entropy (BCE) loss over the saliency maps.

In this work, the SalGAN strategy is employed to produce the saliency maps of the considered
image datasets. In fact, only the trained generative part of the architecture is considered for
prediction. Figure 2.28 illustrates an example of saliency map obtained with SalGAN for an
image belonging to UC Merced airplane class. As expected, the most salient regions correspond
to the three airplanes.
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Figure 2.27: Overall architecture of the SalGAN network involving a generator and a discrimi-
nator for producing a saliency map.

(a) Input image (b) Corresponding saliency map

Figure 2.28: Example of saliency map obtained with SalGAN for an image belonging to airplane
class.

2.4.4.2 Weighted covariance matrix estimator

Inspired by the theory of robust statistics [Maronna et al. 2006], we propose to consider a
weighted covariance matrix estimator during the covariance pooling step. The idea is similar to
the fixed point algorithm explained in the previous chapter to enhance robustness of covariance
estimation. For a given set of k dimensional CNN features {xi}i=1...N , the k × k weighted
covariance matrix is:

C =
N∑
i=1

ωi(xi − µ)(xi − µ)T , (2.29)

where µ is the weighted mean vector, i.e. µ =
∑N

i=1 ωixi, and ωi is the weight assigned to pixel
i and N is the number of pixels. In order to give more strength to salient regions, we propose
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to define weights by:

ωi =
exp

(
si
σ

)∑N
j=1 exp

( sj
σ

) , (2.30)

where si is the saliency information obtained by SalGAN for pixel i and σ is a positive scalar pa-
rameter which controls the importance given to the saliency information. Note that when σ tends
toward infinity, the weights ωi are equal to 1

N and (2.29) reduces to the sample covariance matrix.
Hence, in this case, the proposed EL-SCP approach reduces to ELCP [Akodad et al. 2019c].

2.4.4.3 Classification results

This section summarizes some classification experiments on large scale scene remote sensing
images on the UC Merced land use land cover dataset [Yang & Newsam 2010]. Figure 2.29
draws the evolution of overall accuracy as a function of σ in (2.30). As expected, when σ tends
toward infinity, the proposed EL-SCP approach is equivalent to ELCP [Akodad et al. 2019c].
Note that the best results are obtained for σ = 50. This value will be retained in the following.
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Figure 2.29: Influence of σ parameter for 20 % of training images.

Figure 2.30 shows the evolution of the classification performance with the percentage of train-
ing samples. Five benchmark approaches are considered. The first one, named VGG-16, consists
of a simple transfer learning approach where features are extracted from VGG-16 model and
classified with an SVM. The four other approaches are based on second-order features, namely
MSCP [He et al. 2018], ELCP [Akodad et al. 2019c], Hybrid LE FV [Akodad et al. 2018b] and
the proposed EL-SCP. As observed, EL-SCP allows to obtain competitive results compared to
these state-of-the-art methods.
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Figure 2.30: Influence of the percentage of training sample on the classification accuracy.

In order to analyze the pros and cons of the proposed EL-SCP approach over ELCP and
MSCP, Table 2.8 shows classification performance per class on the UC Merced dataset where
only 10 % of images are used for training. As it can be seen, EL-SCP performs better for most
of the classes. Figure 2.31 shows some examples of images (with their corresponding saliency
map). The three first images, belonging to (a) airplane, (b) tennis court and (c) storage tanks
classes, are correctly classified only by EL-SCP, whereas the ELCP assigned them to runway, golf
course and intersection classes, respectively. As observed, these images contain object of interest
that are well captured by the saliency map. The proposed weighted covariance matrix estimator
in EL-SCP allows hence to focus more on them, while for the ELCP, all pixels of the image
contribute equally, the decision is therefore made in the basis of the whole image information
and hence disregarding under-represented objects. In contrast, for very few images, there are
some cases where the saliency map can be misguiding. This is the case of Figure 2.31(d) which
belongs to intersection class. Here, the saliency does not focus on the intersection but on the
surrounding area. This image is hence assigned to the buildings class for EL-SCP whereas it is
correctly classified by ELCP.

Class EL-SCP ELCP MSCP

1 86.8 87.0 80.8
2 89.6 88.2 85.4
3 76.2 75.4 66.2
4 86.0 87.0 81.2
5 72.0 71.6 66.2
6 88.0 88.0 85.4
7 62.0 60.4 57.6
8 89.4 86.2 88.4
9 84.4 83.4 66.0
10 80.2 80.0 79.4
11 88.4 88.2 84.4

Class EL-SCP ELCP MSCP

12 78.8 80.4 66.8
13 74.0 76.6 66.4
14 72.4 72.6 66.6
15 80.6 80.4 66.6
16 89.6 89.8 88.8
17 79.8 80.8 69.8
18 82.2 81.6 78.0
19 80.2 79.8 66.0
20 69.2 67.6 58.2
21 72.8 67.8 59.8

OA 89.0 88.6 80.8

Table 2.8: Classification performance per class for 10% of training images: comparison between
MSCP, ELCP and EL-SCP approaches.
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(a) (b) (c) (d)
Ground truth Airplane Tennis court Storage tanks Intersection

ELCP Runway Golf course Intersection Intersection
EL-SCP Airplane Tennis court Storage tanks Buildings

Figure 2.31: Examples of images (and saliency maps) correctly classified : only by EL-SCP (a)
airplane, (b) tennis court, (c) storage tanks; and only by ELCP (d) intersection.

Therefore, the proposed architecture still have some points that can be improved. In fact,
the considered saliency maps are provided by a pre-trained model. The SalGAN model is
not retrained on the dataset of interest but is only applied on a transfer learning procedure.
To improve that, one can extend the proposed architecture to an end-to-end training process.
In addition, the considered saliency map remains the same for each subset on the EL-SCP
approach whatever the considered feature maps. This can be overcame by proposing a more
adapted strategy where the saliency maps are estimated for each EL-SCP branch according to
the considered subset features.

2.5 Decision combination

2.5.1 Comparison between Ens. Hybrid LE FV and ELCP methods

Two transfer learning approaches have been presented, namely Ens. Hybrid LE FV in
Section 2.3 and ELCP in Section 2.4. There are some similarities between these two methods.
Both are based on covariance pooling of CNN features, where the log-Euclidean framework
presented in Section 1.3.3 is adopted. They also exploit an ensemble learning approach. The
main difference is that second-order statistics of CNN feature maps are computed locally on the
first layers for Ens. Hybrid LE FV, while they are computed globally on deeper layers for ELCP.
Unsurprisingly, as observed in Tables 2.5 and 2.7, ELCP has better classification performance
than Ens. Hybrid LE FV since it exploits deeper CNN features. A gain of 26 % and 20 % are
respectively observed for ELCP compared to the first and second layers of Ens. Hybrid LE FV.
However, by looking closely at the classification results, it is possible to find some images that
are well classified only by Ens. Hybrid LE FV, whereas ELCP fails at this task. Figure 2.32
shows some images from the UC Merced dataset with the predicted class by these methods. As
observed, the first two ones are correctly classified only by Ens. Hybrid LE FV, while for the
last two ones, only ELCP succeeds. By taking a closer look at these results, it can be observed
that, for the first two images which belong to the baseball diamond class, ELCP seems to focus
on the road and building located at the top of the images. Since it exploits deeper layers of a
CNN, ELCP learns high-level features that are not so useful for these particular images. Low-
level features are sufficient for these images. On the other hand, the third and fourth images of
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Figure 2.32, are well classified only by ELCP; since the scene is more complex, high-level features
are helpful. It therefore seems natural to combine Ens. Hybrid LE FV and ELCP in order to
benefit from both low-level and high-level features. Based on the principle of the most diverse
ensembles, the next subsection presents a simple fusion scheme between these two approaches.

(a) (b) (c) (j)
Ground truth Baseball diamond Baseball diamond Airplane River

Ens. Hybrid LE FV (c1) Baseball diamond Baseball diamond Runway Forest
Ens. Hybrid LE FV (c2) Baseball diamond Baseball diamond Runway Forest

ELCP Intersection Building Airplane River

Figure 2.32: Samples from the UC Merced dataset. Below, ground truth and class prediction
by Ens. Hybrid LE FV and ELCP approaches.

2.5.2 Fusion scheme

As previously mentioned, Ens. Hybrid LE FV and ELCP methods can be complementary
since they exploit features extracted from different layers. To benefit from both strategies,
many multiple classifier systems have been proposed in the literature, such as dynamic selec-
tion techniques [Cruz et al. 2018]. However, the goal here is not to provide the best way to
combine Ens. Hybrid LE FV and ELCP methods but rather to show the potential of their
fusion. For that, we will focus on two standard and straightforward strategies. The first one,
denoted as Fusion Ens. Hybrid LE FV-ELCP (MV), is simply a majority vote (MV) on the
decision obtained on the output of each subset of Ens. Hybrid LE FV and ELCP. The sec-
ond one, denoted as Fusion Ens. Hybrid LE FV-ELCP (MDE+MV), selects the most diverse
ensembles (MDE) from these methods according to the disagreement diversity measure and
greedy optimization [Kuncheva & Whitaker 2003]. The disagreement measure was first used
in [Skalak 1996] to characterize the diversity between a base classifier and a complementary
classifier, and then in [Ho 1998] to measure diversity in decision forests. It is given by the ratio
between the number of observations on which one classifier is correct and the other is incorrect
to the total number of observations. Here, the objective is to select the most diverse classifiers
based on the disagreement measure. More precisely, let’s consider an example of a binary clas-
sification problem where X = {x1, ...,xN} be a labeled data set, xi ∈ Rd. An ensemble of L

classifiers are used where a classifier Di output is represented with an N−dimensional vector
yi = [y1,i, ..., yN,i], such that :{

yj,i = 1 if Di recognizes correctly xj,

yj,i = 0 otherwise.
(2.31)

The disagreement measure between a pair of classifiers Di and Dk is assessed as follows:

Disi,k =
N01 +N10

N11 +N10 +N01 +N00
, (2.32)
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with Nab is the number of elements xi of X for which yj,i = a and yj,k = b according to the
table 2.9 below.

Dk correct (1) Dk wrong (0)

Di correct (1) N11 N10

Di wrong (0) N01 N00

Table 2.9: A 2× 2 contingency table of the relationship between a pair of classifiers.

This measure is computed for all pairs of classifiers to form the matrix Dis of size L×L. The
most diverse classifiers are then selected according to this disagreement measure where K ≤ L

classifiers are retained providing the highest disagreement measurement. In the end, a majority
vote on these selected ensembles is performed. Table 2.10 summarizes the main results obtained
on the UC Merced dataset for the original Ens. Hybrid LE FV and ELCP approaches and their
fused versions. As observed, since the classification performances are significantly better for
ELCP than Ens. Hybrid LE FV, a simple majority vote is not adapted. The accuracy of this
fusion scheme (MV) is profoundly affected by the Ens. Hybrid LE FV scheme. However, by
selecting the most diverse ensembles (MDE+MV), a slight gain is observed compared to ELCP,
illustrating its potential.

Dataset Method OA (Mean ± sd)

Ens. Hybrid LE FV (conv1) 62.4 ± 0.9 %
UC Merced Ens. Hybrid LE FV (conv2) 68.1 ± 1.7 %
p = 10 % ELCP 88.4 ± 1.4 %

Fusion Ens. Hybrid LE FV-ELCP (MV) 88.2 ± 1.2 %
Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 88.7 ± 1.1 %

Table 2.10: Classification accuracy on UC Merced dataset obtained using Ens. Hybrid LE FV,
ELCP and their fusion version Ens. LE FV - ELCP methods (p = 10 %).

2.6 Experiments on other datasets

In this section, experiments on other remote sensing scene classification datasets are con-
ducted to evaluate the effectiveness of the proposed approach. For that, the SIRI-WHU Google
dataset [Zhao et al. 2016], the AID dataset and two real texture datasets, respectively, for mar-
itime pine forest and on oyster fields [Regniers et al. 2015, Regniers et al. 2016] were tested. In
order to prove the efficiency of the proposed approaches in challenging conditions, only 10 % of
images were considered for training.

2.6.1 Image datasets

2.6.1.1 SIRI-WHU:

This is a 12-class Google image dataset [Zafar & Ali 2019], where each class contains 200
images of 200 × 200 pixels, with a 2-m spatial resolution. This dataset was acquired from Google
Earth and covers urban areas in China. Figure 2.33 shows some image examples of the dataset.
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Figure 2.33: Samples from the Google image dataset of SIRI-WHU.

2.6.1.2 Maritime pine forest

This dataset, created in [Regniers 2014] comprises four classes of panchromatic Pléiades
satellite images with a spatial resolution of 50 cm. It represents a monitoring of growing maritime
pine tree stands located in the South-West of France. Figure 2.34 illustrates one image from
each age class. The classes considered in this dataset correspond to three age classes to which
is added a clear-cut class. As observed in the images, the textural information evolves from one
class to another. In fact, crops are marked by a specific spatial arrangement due to cropping
practices and row plantings.

Clear-cut 1–9 years 10–19 years >19 years

Figure 2.34: Samples from the maritime pine forest dataset.

2.6.1.3 Oyster racks

This five-class dataset [Regniers 2014] is also formed from panchromatic Pléiades satellite
high-resolution images. The study site is located in the Arcachon bay, an intertidal lagoon with
an area of approximately 180 km2 located along the Atlantic coast in the South West of France.
It is comprised, in particular, of images representing cultivated oyster racks and abandoned
fields. Figure 2.35 shows one image of each class of the oyster dataset where it presents also a
distinctive spatial organization.
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Foreshore Oyster racks Disused fields Sand Salt-meadow

Figure 2.35: Samples from the oyster racks dataset.

2.6.1.4 AID

This dataset contains 10, 000 aerial images of dimension 600 × 600 pixels partitioned into
30 classes, with a 2-m spatial resolution. Figure 2.36 illustrates some dataset images.

Figure 2.36: Samples from the AID dataset.

Table 2.11 below summarizes the main characteristics of the considered datasets.

Dataset Resolution (m) Classes Images Image Size Image Type

SIRI-WHU 2 12 2,400 200 × 200 Aerial
Maritime pine forests 0.5 4 471 256 × 256 Satellite (Pléiades)

Oyster racks 0.5 5 371 128 × 128 Satellite (Pléiades)
AID 2 30 10,000 600 × 600 Aerial

Table 2.11: Remote sensing scene dataset properties

2.6.2 Classification results

The experiments carried out consist of validating the proposed fusion scheme of the
two proposed ensemble learning approaches, namely the Fusion Ens. Hybrid LE FV-ELCP
(MDE+MV) strategy.
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Table 2.12 summarizes the main results. As observed, a similar conclusion can be drawn from
these four datasets. Firstly, the ELCP approach performs better than Ens. Hybrid LE FV on
first and second CNN convolutional layers due to the considered convolutional layer depth. This
clearly illustrates the interest of exploiting deep feature maps from CNN model, which character-
izes high-level features compared to the first ones. Secondly, a similar conclusion can be drawn to
the one obtained from the UC Merced dataset: the fusion of both local and global second-order
statistics computation strategies permits enhancing classification performance, which illustrates
the multi-layer fusion efficiency.

Database Method OA (Mean ± sd)

Ens. Hybrid LE FV (conv1) 70.0 ± 0.8 %

SIRI-WHU Ens. Hybrid LE FV (conv2) 79.1 ± 0.9 %

p = 10% ELCP 88.3 ± 1.2 %

Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 89.9 ± 1.6 %

Ens. Hybrid LE FV (conv1) 86.5 ± 2.2 %

Maritime pine forest Ens. Hybrid LE FV (conv2) 85.7 ± 0.4 %

p = 10% ELCP 87.8 ± 2.3 %

Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 89.1 ± 1.3 %

Ens. Hybrid LE FV (conv1) 84. 1 ± 2.4 %

Oyster racks Ens. Hybrid LE FV (conv2) 86.1 ± 1.1 %

p = 10% ELCP 85.7 ± 1.4 %

Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 86.4 ± 1.4 %

Ens. Hybrid LE FV (conv1) 67.4 ± 0.4 %

AID Ens. Hybrid LE FV (conv2) 70.9 ± 0.2 %

p = 10% ELCP 87.6 ± 0.2 %

Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 88.7 ± 0.3 %

Table 2.12: Classification accuracy on different datasets obtained using Ens. Hybrid LE FV,
ELCP and their fusion version Ens. LE FV - ELCP methods (p = 10%).

2.7 Conclusions

Throughout this chapter, we started by exploring the most familiar machine learning and
deep learning methods dedicated to image classification problems. In addition, the combination
of machine and deep learning strategies has proved to be efficient and has shown relevant
performance in many applications. In that context, hybrid architectures have been proposed,
namely the Fisher network or the NetVLAD method. However, all these strategies exploit only
first order statistics and do not take into account dependencies between features, which have
been shown to be important in the human visual recognition process. Since then, we introduced
different models based on covariance pooling of CNN features to exploit second-order statistics.

The proposed architectures consists of a new transfer learning approach based on the co-
variance pooling of CNN features maps. The first approach, published in [Akodad et al. 2018b],
takes advantages of low-level features extracted from the first and second layers. It consists of
the log-Euclidean Fisher vector encoding of region covariance matrices computed locally. The
second architecture, published in [Akodad et al. 2019c], uses high-level features issued from
deeper layers that are pooled together by computing their covariance matrix. In order to give
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more importance to small objects of interest in the scene, the visual saliency map is computed
with SalGAN and then used during covariance pooling. The largest weights are given to the
most salient regions. These two strategies use features extracted from models pre-trained on
the ImageNet dataset and share many other similarities. They are ensemble learning strategies
based on the log-Euclidean representation of the covariance matrix of these CNN features.
However, since they exploit feature maps extracted from different layers, they can be considered
as complementary. As such, the last proposed architecture, described in [Akodad et al. 2020c]
is an ensemble learning approach which consists of the fusion of the two previous hybrid
architectures. The two ensemble learning strategies were hence combined together using the
strategy of the most diverse ensembles. The proposed approach was then successfully validated
on various dataset for remote sensing scene classification, illustrating its efficiency and the
interest of second-order features. Competitive results have been obtained in challenging
conditions where only 10% of images were used for the training process. As a result, a gain of
about 1 to 2% were obtained in term of overall accuracy, compared to the recent state-of-the-art.

Since the proposed approach is based on covariance pooling of CNN features, any deep con-
volutional neural network can be used as backbone. Future works will concern the adaptation
of the proposed strategy to multispectral or hyperspectral images dataset, where a CNN will
be used for this kind of data [Hu et al. 2015, Paoletti et al. 2018]. Furthermore, the proposed
architecture could be extended to an end-to-end learning strategy which permits developing
forward and backward propagation regarding second-order pooling layers. In the same context,
the exploited saliency maps can be also generated by a supervised trainable model instead of
including them as a fixed input parameter. By doing that, the model will focus on object of
interest and exclude useless information. Moreover, as the architecture is based on an ensemble
strategy, the saliency map estimation can be fed on each subset.

Finally, another perspective of this work is to look deeper on the architectures to study
their generalization capacities. In fact, deep learning has proven itself in several areas, so
models are being introduced into increasingly critical applications, such as medical assistance and
autonomous navigation. The learning process of neural networks requires fairly large databases,
such as the ImageNet database for object recognition used to learn convolutional neural networks
(AlexNet, VGG16, VGG19, etc). However, these types of approaches are subject to problems
related to uncertainty and their generalization ability. In image classification, there is no control
over the behavior of the network to predict objects that have never been included in the learning
process. The values produced can therefore be arbitrary. Indeed, quantifying the uncertainty
of the model in order to explain the predictions obtained is essential in order to study the
confidence that can be given to the predictions, in particular for sensitive applications. This is
therefore related to the degree of interpretability and explicability that an AI network is able to
provide, in order to meet human needs to understand the reasons for decision-making and the
variables involved. In other words, we are aiming to no longer consider deep learning models
as black boxes but to try using bayesian approaches and human expertise to qualify the results
and define their margin of uncertainty.
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3.1 Introduction

A time series is a sequence of data points which have been acquired during an ordered
time segment. Many real-world pattern recognition tasks deal with time-series analy-
sis [Box & Jenkins 1994] such as biomedical signals (e.g. electroencephalography (EEG)
and electrocardiography (ECG)), financial data (e.g. stock market and currency exchange
rates), industrial devices (e.g. gas sensors and laser excitation), biometrics (e.g. voice,
signature and gesture), video processing, data mining, cyber security [Rajkomar et al. 2018,
Gogolou et al. 2019, Nwe et al. 2017, Yang & Wu 2006, Susto et al. 2018], etc. In fact, any
classification problem, using recorded data with a specific order, can be converted into a
time series classification problem. In addition, the diversity of the datasets in the UCR/UEA
archive [Dau et al. 2019], which is the largest repository of time series datasets, shows the
different applications of the time series classification problem, as a result of a collaborative
effort between researchers at the University of California, Riverside (UCR) and the University
of East Anglia (UEA).

Earth observation satellites are increasingly considered as devices that can provide se-
quences of images. Indeed, recently, the launch of the last generation of Earth observation
satellites such as Sentinel-1 and Sentinel-2 has yield more recurrent acquisition of Earth surface
images. These sensors allow the acquisition of multivariate time series such as spectral surface
reflectance in several wavelengths. Being available for free, these multivariate time series has
raised the interest of the remote sensing community to develop novel machine learning strategies
for supervised classification. For example, [Courteille et al. 2021] proposed an attention-based
model to classify Sentinel-2 land cover time series, where [López-Quiroz et al. 2009] focuses on
ENVISAT radar time series images to analyze subsidence gradients affecting Mexico city.
To deal with time series, many models were proposed in the literature. In particular, many
deep learning approaches have recently been proposed [Ismail Fawaz et al. 2019]. They include
convolutional neural networks (CNN) [Krizhevsky et al. 2012] and deep recurrent neural
networks (RNN) such as long short-term memory (LSTM) [Hochreiter & Schmidhuber 1997,
Ienco et al. 2017] and gated recurrent units (GRU) [Cho et al. 2014b]. In the following, these
approaches will not be considered since the training of such models involves large datasets
for avoiding over-fitting and generalization purpose, while the aim here is to work with
relatively small datasets. Other non deep learning approaches can be categorized into three
main categories: distance-based time series classifiers, feature-based time series classifiers
and ensemble classifiers. Distance-based strategies rely on a point-to-point distance between
time series which is then fed in a conventional classifier such as a k-nearest neighbor or an
SVM. In this family, the most popular approach is certainly the Euclidean distance, which
measures the similarity (or dissimilarity) between two time series. As the Euclidean distance
suffers from several limitations related to its sensitivity to transformations and to distortions
in time dimension, many researchers oriented their work to improve distance-based methods.
For example, the SRVF representation [Srivastava et al. 2011] ensures re-parameterization
invariance while dynamic time warping (DTW) allows to measure the similarity between two
time series by aligning them [Sakoe & Chiba 1978, Berndt & Clifford 1994]. It has the ability
to match time series that are distorted and shifted along the temporal axis. Inspired by the
principle of DTW, some closely related approaches have been proposed such as derivative
DTW (DDTW) [Keogh & Pazzani 2001] or weighted DTW (WDTW) [Jeong et al. 2011].
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Kernel based methods have also been introduced such as the global alignment kernel
(GAK) [Cuturi 2011] for the family of DTW distances. More recently, many feature-based
methods have been proposed. It consists in extracting features such as wavelet coefficients
[Atto et al. 2016, D’Urso & Maharaj 2012] or 1D SIFT descriptors from multivariate time
series before the classification step. Among these feature-based methods, codebook based
representations have raised an interest [Wang et al. 2013]. For example, the bag-of-words
(BoW) model has been used in [Bailly et al. 2016] to obtain an histogram representation of
the time series by encoding SIFT features in a codebook. The third family concerns ensemble
based classifier systems. The basic idea relies on the combination of multiple classifiers in order
to obtain more accurate and robust decisions. Once again, many approaches can be considered.
For example, a random forest classifier trains a single base classifier (i.e. decision tree) on
different subsets of training data (sample, attributes and/or temporal subsets). Another
strategy consists in using different classifiers on the same dataset such as in the collective
of transformation-based ensembles (COTE) [Bagnall et al. 2016a] and its extension based on
a hierarchical vote (HIVE-COTE) [Lines et al. 2016] where 35 and 37 standalone classifiers
are respectively considered. Even if this latter has demonstrated successful results and is
considered as the reference for time series classification [Bagnall et al. 2017], it suffers from a
high computation cost since each classifier should be trained on the whole dataset. Since then,
in order to get benefit of the advantages of kernel methods, codebook based representations
and ensemble learning strategies, Mikalsen et al. have introduced the time series cluster kernel
(TCK) method in [Mikalsen et al. 2018] which has demonstrated competitive results for times
series classification.

At the same time, second-order features have shown a great interest for many image process-
ing applications including person re-identification, texture recognition, material categorization
or EEG classification in brain-computer interfaces to cite a few of them [Faraki et al. 2015a,
Barachant et al. 2013, Said et al. 2015a]. For example, as shown in chapter 2, the use of co-
variance matrices has demonstrated to be successful in [Akodad et al. 2018b] for remote sensing
scene classification. When it comes to time series, covariance matrices can be used to model
dependencies between attributes at each timestep. To illustrate the idea, Figure 3.1 shows an
example of two time series for two different applications. The first represents an action of run-
ning where sensors record the x, y and z coordinates of the hand and knee movements for action
recognition application. The second shows the temporal evolution of spectral reflectance and
vegetation indices (R, G, B, NDVI, etc.) for recognizing a rice plantation for a remote sensing
application.
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Figure 3.1: Examples of multivariate time series and covariance matrix trajectory.

As a person make an action, the arm and the knee may move in a correlated manner over
time. Similarly in the bottom part of Figure 7, the temporal variation of spectral reflectance
and vegetation indices of the rice crop may have a correlated behaviour. To capture those
correlations between attributes, a covariance matrix Σt is computed at each time-step. In the
right side of Figure 7, the computed covariance matrices form a trajectory on the space of
SPD matrices, illustrated by the blue cone. As such, the multivariate time series classification
problem is extended to a covariance matrix trajectory classification problem. Therefore, as
explained in chapter 1 and 2, since this type of data lies in a Riemannian manifold, traditional
time series classification methods need to be adapted.

Furthermore, to utilize second-order statistics in applications related to time series,
second-order trajectories are computed in a way that comparisons between two trajectories
are possible. For that, the transport square-root velocity function (TSRVF) representation
is recently proposed [Su et al. 2014a] as a representation that provides a way to represent
trajectories on Riemannian manifolds such that the distance between two trajectories is
invariant to identical time-warpings. The method has been widely used for human action and
visual-speech recognition applications [Anirudh et al. 2017, Zhang et al. 2015].

To summarize, the increasing volume of available time series data, covering a large area of
applications, have prompted researchers to develop numerous methods and software packages
for analyzing such data and extract meaningful information for a certain goal. Therefore, this
comes with several issues that need to be addressed. In the case of remote sensing time se-
ries, satellite sensors offer a global coverage and different spectral and temporal characteristics
but may suffer from shortcoming of sample availability and irregular temporal sampling and
thus missing information in the datasets due to cloud contamination for example. In addition,
vegetation cycles can be influenced by weather and soil conditions which results on temporal
variabilities from one crop to another. More generally, many other applications may face the
same issues. All of these challenges require the development of methods capable of dealing with
time profile distortions. To that end, we have tried to improve some state of the art methods
and the main contributions of this work are the following:

• We present the dynamic time warping (DTW) framework which allows aligning time
series to ensure speed invariance and decrease distance distortions. As the main purpose
is the use of second-order statistics as well as satisfying all desired properties, in particular
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re-parameterization invariance, we focus on the extension of the DTW to second-
order feature time series by introducing the SRVF framework for second-order
time series, that is the TSRVF. The main particularity here is to exploit the multiple
tangent plane framework introduced in chapter 1 involving the logarithm mapping and
the use of parallel transport to bring the features on the same tangent space. Finally, the
DTW is performed to align the TSRVF representations.

• We present how TCK proposed in [Mikalsen et al. 2018] for multivariate time
series can be extended to work with second-order feature time series, namely
the SO-TCK for second-order time series cluster kernel [Akodad et al. 2020a].
Regarding the algorithm complexity, which involves an ensemble learning strategy and a
GMM modeling for each subset, the use of multiple tangent planes for handling second-
order data is of a very high computational complexity. Thus, the log-Euclidean framework
is employed to manipulate second-order statistics on the tangent plane at the identity
matrix.

• The proposed strategies are validated on various labeled time series datasets.
For generalization purposes, datasets of different applications, from action recognition
to remote sensing time series classification are experimented.

The chapter is structured as follows. Section 3.2 assesses a brief literature review of different
multivariate time series classification methods, including machine learning and deep learning
based architectures that are commonly used. Section 3.3 introduces the dynamic time warping
framework and its extension to align time series of second-order features using the TSRVF rep-
resentation. Section 3.4.1 presents and discusses the principle of TCK, which can be considered
as an ensemble learning strategy for classifying multivariate time series. Then, Section 3.4.2
introduces the proposed extension of TCK for the modeling of the time series of second-order
statistics (SO-TCK). In addition, an application on different datasets is next presented in Sec-
tion 3.5. Finally, Section 3.6 concludes this chapter and provides some perspectives to this
work.

3.2 Multivariate time series classification

Time series classification is related to many different domains, such as health, finance, and
bioinformatics. Due to its broad applications, researchers have developed many algorithms for
these tasks where the overall goal is to identify a time series as coming from one of possibly
many classes. For doing that, classification methods were proposed in the literature, whether
using traditional machine learning strategies, involving distance metrics, feature based methods
or ensemble learning algorithms. Also, with the success known by deep learning architectures
in the last years, many researchers focus on proposing neural network based methods for time
series classification problems.

Before introducing the different types of classification algorithms whether using machine
learning or deep learning strategies, some formal definitions and notations of time series
classification are given.
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3.2.1 Definitions and notations

In statistics and signal processing, a time series is a sequence of data points exhibiting a
temporal dependency, and measured typically at successive times. Time series can be univariate
or multivariate depending if one or multiple variables (attributes) are available at each timestep.

• A univariate time series (UTS):
A univariate time series x = [ x(1),x(2), . . . ,x(T ) ] with x ∈ RT refers to a time series
that consists of a single observation recorded over time increments. The length of x is
equal to the number of instances T .

• A multivariate time series (MTS):

A V-dimensional multivariate time series X, also denoted MTS, consists of a matrix of
dimension V ×T where V is the number of attributes. X is a finite sequence of V univariate
time series where X = {xv ∈ RT } for v = 1, . . . , V .

Figure 3.2: Illustration of a multivariate time series (MTS), T: time length, V: number of
attributes.

Supervised time series classification (TSC) is a common time series analysis task which aims
at restoring a functional dependence between the set of possible time series and the finite set of
classes using a training set with known classes. Methods dedicated to TSC can be grouped into
two categories: traditional machine learning based methods and deep learning based methods.
A brief review of these two families is described in the following subsections.

3.2.2 Machine learning based methods

In this section, an overview of the state-of-the-art time series classification methods are
given. This section is dedicated to the most common classification methods.

The practical objective of machine learning is to make correct predictions regarding se-
ries that were not seen before in an efficient and robust way. This is done based on many
time series classification algorithms that can be categorized onto three families: distance-based,
feature-based and ensemble-based methods. The purpose of the following is to introduce each
time series classification family as well as detailing some of the most competitive and commonly
used methods.
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3.2.2.1 Distance-based algorithms

• Distance measurement

The distance-based methods reflects the techniques that measures the similarity between two
series in a point-to-point manner. First, a similarity (respectively dissimilarity) measure is
a real-valued function that measures how close (respectively dissimilar) two instances are to
each other. As such, the closer the instances are, the larger the similarity is. Many similarity
measures exist. We start by formally defining distance and similarity functions. For the sake
of simplicity, let’s consider x and y be two univariate time series. A distance is a pairwise
function d : RT × RT → R+ which satisfies the conditions:

Non-negativity: d(x,y) ≥ 0,
Identity: d(x,y) = 0 ⇔ x = y,
Symmetry: d(x,y) = d(y,x),
Triangle inequality: d(x,z) ≤ d(x,y) + d(y,z).

The most commonly used distances are based on Lp distance, which is defined for x and
y ∈ RT and p ≥ 0 as:

dp(x,y) = ||x− y||p =

(
T∑
t=1

|x(t)− y(t)|p
) 1

p

. (3.1)

The Lp distance, also called Minkowski distance, is a generalization of Manhattan distance for
p = 1, Euclidean distance for p = 2 and Chebyshev distance for p = ∞. Regarding time series
applications, the definition of suitable distances is essential in order to determine the closeness
or common patterns between two time series, among which the most common is the Euclidean
distance, also called L2 norm. The Euclidean distance between two univariate time series x and
y treats time instances as different features such as:

d2(x,y) =

(
T∑
t=1

|x(t)− y(t)|2
) 1

2

. (3.2)

The Euclidean distance has the advantage of being easy to implement and parameter-free,
however, this distance measure is very sensitive to noise and misalignments in time, and is unable
to handle local time shifting. In fact, it requires that the two series x and y have the same phase
and time length T where, in practice, there is no one-to-one correspondence between time sample,
and temporal distortions and shifts should be taken into account in distance measurements. To
this end, time series need to be realigned before being compared.

• Dynamic time warping (DTW)

For that, the dynamic time warping (DTW) [Kruskal & Liberman 1999] technique, introduced
in 1978 in the context of speech recognition [Sakoe & Chiba 1978], is the most well-known
algorithm for computing the optimal alignment for a given pair of time series. Intuitively, it is
seen as an elastic measure of similarity between two time series which seeks to provide the best
alignment between them. As illustrated in Figure 3.3, the idea behind DTW technique allows,
unlike the Euclidean distance, to build one-to-many and many-to-one matches between two time
series. As such, the effects of shifting and distortion in time are minimized. To do that, the
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DTW calculates an optimal match between two given time series where sequences are warped
by stretching or shrinking the time dimension. This technique is detailed in section 3.3.1.

Figure 3.3: Comparison between Euclidean distance and DTW distance of two time series. The
latter applies an elastic transformation to the time axis.

Once time series are warped, the classification step is carried out through usual classifiers. One
of the simplest and effective ways to exploit a distance measure within a classification process
is by using k-NN classifiers where it classifies a time series from the test set with the most
given label of its closest time series in the training set. Although approaches from this category
provide accurate results where k-NN classifier is fast for small data sets, it becomes slow for
large ones, since it needs storing and searching the entire set to compare each observation of the
test set with every observation in the training set.

3.2.2.2 Feature-based algorithms

In this category, a high-level representation of time series is constructed, called features,
and permits to find a compact description of the considered time series before the classification
phase. The main idea is to transform the time series into feature vectors and then use a
conventional classifier in this feature space.

Diverse techniques were employed such as Discrete Wavelet Transform
[Popivanov & Miller 2002], Discrete Fourier Transform [Faloutsos et al. 2000], where fea-
tures of frequency domain are considered. In these representations, each time series is
represented as a feature vector, then, the set of feature vectors are fed together to a classifica-
tion model such as a Support Vector Machine (SVM) for time series classification.

Other works have investigated the extraction of local and global features in time series.
Among these works, Baydogan et al. [Baydogan et al. 2013] proposed a framework to classify
time series based on bag-of-features representation, denoted TSBF, where local features such
as mean, variance and extremum values are computed on sliding windows, another strategy,
introduced in [Wang et al. 2013], aims at extracting discrete wavelet coefficients on sliding
windows and then quantizing them into words using k-means strategy. In another standard
approach proposed in [Bailly et al. 2016], authors introduced the Bag-of-Temporal-SIFT-Words
where the Bag-of-Words (BoW) approach has been extended to time series data. It consists
in representing time series using a histogram of word occurrences where words correspond to
local SIFT features adapted to mono-dimensional signals. The method starts by extracting
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keypoints in time series following the SIFT framework. The difference with the original SIFT
method lies on the detection of local extrema in terms of both scale and temporal location
using the DoG function adapted to time series. More details about SIFT features extraction
are given in chapter 2. This step allows to represent each time series by a collection of feature
vectors (SIFT features). The second step is dedicated to the codebook learning of k words
using k-means clustering. The words represent different local behaviours in time series and
each feature vector is assigned to the closest word in the codebook. At the end, the number
of occurrences of each word in the time series is computed. A linear SVM is next used for the
classification. In addition, normalization schemes were added to improve the informative power
by reducing the influence of frequent codewords. Experiments were conducted over 86 UCR
repository available datasets, including a wide variety of problems such as sensor reading of
ECG signals, human motion (GunPoint), and were compared with 1NN classifier combined with
Euclidean distance and DTW. The classification results and parameters selection are detailed
in [Bailly et al. 2016]. The method yields interesting performance and improve classification
accuracy compared to state-of-the-art methods.

3.2.2.3 Ensemble-based algorithms

Another category that have been explored over the last years for solving time series classifi-
cation (TSC) is based on ensemble learning strategies. Ensemble learning, based on combining
multiple classifiers, have advanced the field by significantly outperforming the other strategies.
Many ensemble classifiers methods have been proposed over the last years in the context of time
series classification problems where they can be grouped according to those following categories:

• The use of a single model with different input data, where training data is divided into
several subsets, such as the random forest method;

• The use of a single model with different training parameters and initializations, as is the
case of initial weights for neural networks;

• The use of different models, also called stacking models.

For example, the Collective Of Transformation based Ensembles (COTE) [Bagnall et al. 2015],
belongs to the third family where it combines 35 classifiers built on four representations of TSC
problems: time, frequency, change, and shapelet transformation domains.

Another effective ensemble strategy focuses on combining all classifiers into a flat hierar-
chy (Flat-COTE) [Bagnall et al. 2015]. This latter strategy is an ensemble that combines 35
different classifiers over four data representations where each classifier is built independently and
produces separate training accuracies. Given a test sample, the output class of each classifier
is weighted by the training accuracy. After pooling operation over all weighted outputs, the
class with the highest combined vote is retained. Therefore, due to the imbalanced number
of classifiers in each data representation, Flat-COTE can be biased. In fact, time domain
classifiers may give higher weights compared to other domains simply because more classifiers
are built in the time domain. To overcome this issue, an improved version was proposed,
namely the heterogeneous meta-ensemble Hierarchical Vote Collective of Transformation-based
Ensembles (HIVE-COTE). It allows to modularise the elements of each group of classifiers. As
such, components of a module are the ensemble of classifiers on a certain type. It was first
proposed in 2016 [Lines et al. 2018], and is defined including two other ensemble classifiers
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built in existing feature spaces and allows only a single probabilistic prediction from each
domain. This approach, and its updated versions, proved state-of-the-art for accuracy on
the UCR benchmark time series datasets. Regarding classification performance, it has been
demonstrated that HIVE-COTE is significantly more accurate than Flat-COTE and became
the new state-of-the-art for time series classification. In fact, it is characterized by a modulable
structure and has the ability to capture more sources of possible discriminatory features in time
series. However, as the complexity increases, it involves high resources consumption.

3.2.3 Deep learning based methods

Recently, deep learning methods become commonly used to classify time series and improve
the performance of traditional machine learning based approaches. Recurrent neural networks
(RNN) such as long short-term memory (LSTMs) and convolutional neural networks (CNNs)
are capable of mining dynamical characteristics of time series, hence their success.

3.2.3.1 Recurrent neural networks (RNN) based methods

Recurrent neural networks (RNNs) are dynamical systems that make efficient use of
temporal information in the input sequence, both for classification [Ruffini et al. 2016,
Malhotra et al. 2017] and regression [Williams et al. 2002, Dunis & Huang 2002]. The key
feature of an RNN is that the network has feedback connections which allows to model the
effects of the earlier parts of the sequence on the later part of the sequence. As such, its output,
at each time step, depends on previous inputs and past computations and hence allows the
network to develop a memory of previous events.

The basic structure of a simple RNN consists of a feed-forward part and a memory part; the
latter one stores the activations of the feed-forward neurons from the previous time step and
serves as additional input for the feed-forward part. This simple RNN is known under the name
of the Elman Recurrent Neural Network (ERNN), also as Vanilla RNN. A typical architecture
of a simple RNN is depicted in Figure 3.4. The left side of the image is a graphical illustration
of the recurrence relation. The right part illustrates how the network unfolds through time over
a time series.

Figure 3.4: The diagram depicts the RNN being unfolded

The RNN is trained on input temporal data xt in order to reproduce a desired temporal
output yt. The hidden internal state gets updated every time it reads the input data. The
mathematical representation is given below:

ht = fW (ht−1,xt), (3.3)
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where ht is the new state, fW is some function with parameters W , ht−1 the old state and xt is
the input vector at some time step t. While processing, it passes the previous hidden state to
the next step of the sequence. As such, the hidden state acts as the neural networks memory
where it holds information on previous data the network has seen before.

Theoretically, RNNs can remember long sequences. However, their memory is in prac-
tice limited by their finite size. As a result, it has a very short-term memory. In fact, during the
learning process, in particular the back propagation, recurrent neural networks suffer from the
vanishing gradient problem. It means that earlier layers get small gradient update and thus stop
learning. As a consequence, RNNs can forget what it has seen in longer sequences. To overcome
memory limitations, recent researchers have led to the design of novel RNN architectures, which
are equipped with a permanent memory capable of storing information for long amount of time
such as Long Short-Term Memory (LSTM) and Gated Reccurent Unit (GRU), which can be
interpreted as a variation or as an extension of RNNs and are commonly used for deep learn-
ing applications such as speech recognition, speech analysis, natural language understanding, etc.

The LSTM networks, introduced in [Hochreiter & Schmidhuber 1997] are a modified ver-
sion of recurrent neural networks, which can handle the information in memory for a longer
period of time compared to RNN. It is capable to learn more than 1,000 time steps, depending
on the complexity of the built network. A basic LSTM is built of a cell state and it’s various
gates. Cell state is considered as the memory which carry relevant information during the
processing of the series by the use of internal mechanisms called gates. Those latter are the
different neural network elements, namely the sigmoïd activation, forget gate, input gate and
output gate, that are learned to regulate the flow of information and thus make the decision
whether to allow information on the cell state or forget it. Moreover, the Gated Recurrent
Units (GRU) [Cho et al. 2014a] is similar to an LSTM. It has almost the same gates but has
fewer tensor operations which makes him little speedier to train than LSTM.

Furthermore, another deep learning based model has been introduced in the last few years to out-
perform the RNN, LSTM and GRU models: the transformer [Vaswani et al. 2017]. It is a model
that uses attention in an encoder-decoder architecture to significantly improve the performance
of deep learning models. The key to the transformers performance is its use of attention where
impressive results were demonstrated, in particular for applications related to text translation
[Bahdanau et al. 2016]. It has also been exploited in remote sensing application such as satellite
image time series classification [Garnot et al. 2020, Sainte Fare Garnot & Landrieu 2020].

3.2.3.2 Convolutional neural networks (CNN) based methods

Motivated by the success of deep CNN architectures in various domains, such as reaching
human level performance in image recognition problems [Szegedy et al. 2014] as well as different
natural language processing tasks [Sutskever et al. 2014], many researchers have started
exploiting them for time series analysis [Gamboa 2017]. For that, the convolutional filters
exhibit only one dimension over time instead of two dimensions corresponding to image width
and length. As such, the convolution is applied as a sliding window over the time series.

In this context, many architectures were proposed to deal with multivariate time series,
such as the multi-channel deep CNN (MCDCNN) [Zheng et al. 2014], where it is considered
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as a traditional CNN with an adaptation to multivariate time series data: it is constituted of
two convolutional stages, with 8 filters each, a ReLU activation function and a max pooling
operation. The convolutions are applied independently on each dimension of the input MTS.
The output of the second convolutional stage for all dimensions is concatenated over the
channels axis and then fed to a fully-connected layer followed by a softmax classifier.

Similarly, the time convolutional neural network (Time-CNN), proposed in [Zhao et al. 2017], is
designed for univariate and multivariate time series classification. The main difference with the
previous architecture lies in the use of fully-connected layer with a sigmoid activation function
instead of the softmax classifier. Another difference to traditional CNNs resides in the use of
local average pooling instead of the local max pooling operation. In addition, unlike MCDCNN,
for MTS data it applies one convolution for all the dimensions of a multivariate classification
task.

3.2.3.3 Hybrid architectures combining RNN and CNN models

Convolutional neural networks (CNNs) are a type of deep neural networks with the ability
to act as feature extractors, stacking several convolutional operators to create a hierarchy of
more abstract features. Such models are able to learn multiple layers of feature hierarchies
automatically. Recurrent neural networks, in particular long-short-term memory (LSTMs)
neural networks, are characterized by a memory allowing to model temporal dependencies in
time series problems. The combination of CNNs and LSTMs in a unified framework is able
to capture time dependencies on features extracted by convolutional operations. For example,
DeepConvLSTM, introduced in [Ordóñez & Roggen 2016], has already offered state-of-the-art
results in the speech recognition domain. The main difference between DeepConvLSTM and
a classical CNN is the topology of the dense layers. In the case of DeepConvLSTM, the
units of these layers are LSTM recurrent cells, and in the case of the baseline model, the
units are non-recurrent and fully connected. Moreover, the input to the network consists
of a data sequence, which is a short time series extracted from the initial time series data
using a sliding window. Then, convolutional layers process the input only along the axis
representing time. For more details about model implementation, the interested reader may
refer to [Ordóñez & Roggen 2016].

In the following, the approaches based on deep neural networks will not be considered
since the training process involves large data for avoiding overfitting and generalization
purpose, while the aim here is to work with relatively small datasets. Moreover, the following
two sections focus on two state-of-the-art approaches for time series classification and their
extension to second-order trajectories. First, the dynamic time warping (DTW) and the
square-root velocity function (SRVF) representation are detailed as well as their extension
to the use of covariance matrices, by applying the transported square-root velocity function
(TSRVF). Then, the time series cluster kernel (TCK) architecture is introduced followed by its
extension to covariance matrices trajectories by proposing the second-order TCK, called the
SO-TCK.
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3.3 Dynamic time warping for second-order statistical features

3.3.1 Dynamic time warping (DTW)

When treating time series, the similarity between two sequences of the same length
can be calculated by summing the ordered point-to-point distance between them. To do
that, the most common distance function is the Euclidean distance [Bagnall et al. 2016b],
which corresponds to the L2-norm. Therefore, Euclidean distance and its variants present
several drawbacks. In fact, Euclidean distance is sensitive to signal transformations as time
shifting which induces inaccurate results in certain applications. This problem of distortion
in the time axis can be addressed by Dynamic Time Warping (DTW). DTW was originally
designed to treat automatic speech recognition [Sakoe & Chiba 1978] and it looks for the opti-
mal and global alignment between two time series, exploiting temporal distortions between them.

To illustrate that, Figure 3.5 shows the temporal evolution of a rice crop in two differ-
ent fields. Due to differences among those two regions, such as air temperature, soil drainage
and other environmental characteristics, the same crop may have different temporal behaviour
while providing the same information, and thus belonging to the same class. In fact, rice
growing passes through three different crop stages. It starts by a vegetation phase to reach its
highest NDVI value then goes through a reproductive phase, followed by the ripening phase
until its decline. The comparison of NDVI among different crop stages shows this temporal
shifting between the two series. Indeed, as observed in Figure 3.5, the vegetative phase for crop
(b) is longer than the one for crop (a). Hence, the Euclidean distance is not adapted to measure
the similarity between the two curves. The irregular rice growth NDVI time series data needs
to be separated from the variability of classes.

Figure 3.5: Temporal evolution of a rice plant. Left: two different behaviours (a) and (b)
illustrating a speed variation inducing a time shifting between the two series. Right: their
corresponding normalized difference vegetation index (NDVI).

To address that, the use of an adapted similarity measure is required. Here comes the benefit
of using DTW, where it offers an optimal alignment between the two sequences by matching their
temporal patterns in which rice planting schedules are flexible. That optimal warping path γ

that minimizes the global cost between pairs x1 and x2 is found by minimizing the following
optimization problem:

dw(x1,x2) = inf
γ
(||x1 − x2 ◦ γ||2), (3.4)

where the composition x2 ◦ γ means warping the series x2 by γ. In the following, we first define
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the cost between points of time series, which is used later to generate the optimal warping path.

3.3.1.1 Cumulative cost matrix computation

Formally, given two time series represented by the sequences x1 = [ x1(1),x1(2), . . . ,x1(T ) ]

and x2 = [ x2(1),x2(2), . . . ,x2(T
′) ] with T, T ′ ∈ N, the first step consists of constructing a cost

matrix C ∈ RT×T ′ where the input at indices (i, j) represents the distance between the time
instance i of the series x1 and the time moment j in x2. The cost matrix is usually computed
using the Euclidean distance of all pairwise observations between x1 and x2 as:

C ∈ RT×T ′
: Ci,j = ||x1(i)− x2(j)||, i ∈ [1 : T ], j ∈ [1 : T ′] (3.5)

It is needed to compute a cumulative cost matrix C+ ∈ RT×T ′ where each element C+
i,j is

the minimum cost for aligning the series x1 up to point i with series x2 up to point j. The
matrix C+ is obtained as follows:

C+
i,j = Ci,j +min(C+

i−1,j−1,C
+
i,j−1,C

+
i−1,j), (3.6)

with C+
1,1 = C1,1. Then, the minimum distance under the best alignment is found in C+

T,T ′ . The
pseudo-code for computing the cumulative cost matrix is detailed in Algorithm 5.

Algorithm 5 Computation of the cumulative cost matrix for DTW
Input: Time series x1 of length T and x2 of length T ′, a distance d().
Initialize: C+ an empty array.

1: for i = 1 : T do
2: C+(i, 0)←∞
3: end for
4: for j = 1 : T ′ do
5: C+(0, j)←∞
6: end for
7: for i = 1 : T do
8: for j = 1 : T ′ do
9: C+(i, j)← d(x1(i),x2(j)) + min (C+(i− 1, j − 1), C+(i− 1, j), C+(i, j − 1))

10: end for
11: end for
Output: The cumulative cost matrix C+.

3.3.1.2 Optimal warping path

Once the accumulated cost matrix is built, the next step aims to find the best match between
these two sequences. For that, we can find a path through the matrix that minimizes the total
cumulative distance between them, namely the warping path. It is the minimal cost that can be
found by backtracking from the end point (T, T ′) to the start point (1, 1) following the strategy
described in Algorithm 6.
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Algorithm 6 Optimal warping path
Input: i = T and j = T ′.
Initialize: path as an empty array.

1: while i > 1 & j > 1 do
2: if i == 1 then
3: j = j − 1
4: else if j == 1 then
5: i = i− 1
6: else
7: if C+(i− 1, j) == min{C+(i− 1, j);C+(i, j − 1);C+(i− 1, j − 1)} then
8: i = i− 1
9: else if C+(i, j − 1) == min{C+(i− 1, j);C+(i, j − 1);C+(i− 1, j − 1)} then

10: j = j − 1
11: else
12: i = i− 1; j = j − 1
13: end if
14: path.add((i,j))
15: end if
16: end while
Output: path.

To evaluate classification performance of the proposed approach, one time series dataset of
the UCI/UCR benchmark datasets is experimented: the Libras dataset. This latter, acronym
of the Portuguese name "Lingua BRAsileira de Sinais", represents hand movement of Brazilian
official language. It contains 15 classes of 24 instances each, where each class refers to a hand
movement type. The hand movement is represented as a bi-dimensional curve performed by the
hand in a period of time recorded by a video. As an example, Figure 3.6 illustrates two time
series of the Libras dataset. As shown, the two sequences have a similar shape while there is a
time shift.
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Figure 3.6: Example of two time series x1 and x2 from the Libras dataset.

To evaluate the potential of the DTW strategy over the usual Euclidean distance, the dy-
namic programming is performed to compute the cumulative cost matrix and find the optimal
path according to Algorithms 5 and 6. Figure 3.7 shows the resulting cumulative cost between
two series x1 and x2 and the obtained optimal path is highlighted in white color.
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Figure 3.7: Illustration of the cumulative cost matrix between two sequences x1 and x2 of the
Libras dataset, the optimal warping path is shown in white line.

Once the optimal warping path γ is produced, the warping operation can start in order to
align x1 and x2 by applying a time dilation or a time contraction. It is performed by matching
between corresponding points of one series to another. Figure 3.8 illustrates the original signals
in the left and the warped signals in the right.
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Figure 3.8: Two temporal signals x1 and x2 before and after time warping using the DTW
method.

The mapping of the points from the first sequence x1 to points from the other sequence x2

enables a fair comparison regardless the initial time shifting.

To quantify the efficiency of DTW, the Euclidean distance is computed point-to-point
over the original sequences x1(t) and x2(t). Then, the series are aligned using the previously
explained DTW algorithm, to match the corresponding points, before distance computation.
Numerically, it gives the results in Table 3.1.
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Euclidean DTW d(x1,x2)

× 1.21

0.42

Table 3.1: Distance measurements between x1 and x2 with and without using DTW alignment.

Euclidean distance, which assumes the ith point in one sequence is aligned with the ith point
in the other, will produce a pessimistic dissimilarity measure. The non-linear dynamic time
warped alignment allows a more intuitive distance measure to be calculated.

3.3.1.3 Variations of the DTW

Inspired by the principle of DTW, some closely related approaches have been pro-
posed such as derivative DTW (DDTW) [Keogh & Pazzani 2001] or weighted DTW
(WDTW) [Jeong et al. 2011]. Kernel based methods have also been introduced such as
the global alignment kernel (GAK) [Cuturi 2011] for the family of DTW distances.

One of the investigated ideas in this work is the constrained DTW, also called
LDTW [Zhang et al. 2017]. In fact, the simple DTW can bring undesired effects when a
large number of points from the first time series is mapped to a single point of another time
series. To avoid this problem, a common way is to restrict the warping path in the sense that
it has to follow the diagonal direction. For that, a threshold β is added for the calculation of
the cumulative distance matrix as follows:

C+
i,j =

{
Ci,j +min(C+

i−1,j−1,C
+
i,j−1,C

+
i−1,j) if |i− j| < β

∞ otherwise
(3.7)

By doing that, two special cases may arise when choosing the time-constraint on the warping
path. First, when β = 0 the computation is limited to the diagonal elements, which reduces
to the Euclidean distance. Second, when β is higher than the temporal length of the longest
sequence, the entire DTW matrix is computed which comes to the original DTW method. Since
then, the value of β needs to be adjusted to the characteristics of the times series. Therefore,
despite being useful for speeding up the processing, when it comes to the considered datasets
of this work, this version may not be helpful. In fact, as illustrated in Figure 3.7, the produced
warping path is located around the diagonal of the matrix, the condition of the constrained
DTW is naturally verified, thus the procedure remains unchanged whether using the original
DTW or the improved version of constrained DTW.

A key problem in distance-based methods is to ensure invariance to time-domain warp-
ing, also known as re-parameterization. In the following, we present the definition of
square-root velocity function representation (SRVF), which enables to evaluate the difference
between two curves, and show that it satisfies the re-parameterization invariance. Furthermore,
since the interest of second-order features has been demonstrated, such as covariance matrices,
and are naturally constrained to be symmetric positive-definite matrices, adapted tools are
required for comparing trajectories of covariance matrices. In the following, the transported
square-root vector field (TSRVF) representation is introduced as an extension of SRVF to
temporal trajectories of second-order statistical features.
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3.3.2 Transported square-root vector field (TSRVF)

A main drawback of the Euclidean distance is that it is not invariant to re-parametrisation
of the time series. To illustrate that, let’s consider γ a transformation function and x1 and
x2 two time series. It means that, if the trajectories x1 and x2 are warped by γ, to result in
the composition x1 ◦ γ and x2 ◦ γ, also noted x1(γ) and x2(γ), which are a time-warped or re-
parameterized versions of x1 and x2, the Euclidean distance is not preserved, i.e., d(x1◦γ,x2◦γ)
̸= d(x1,x2).
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Figure 3.9: Illustration of the original signals, the composition x1(γ) and x2(γ) and function γ.

Figure 3.9 illustrates this. On the left, the two times series x1 and x2 are displayed respectively
in blue and red. By applying a distortion γ (shown on the right of Figure 3.9) on these two times
series, the re-parametrized signals x1 ◦ γ and x2 ◦ γ are obtained (on the middle of Figure 3.9).
So far we compute the distance d(x1,x2) between x1 and x2, it will not be preserved under
composition. Numerically, the resulting distances d(x1,x2) and d(x1 ◦ γ, x2 ◦ γ) are given in
Table 3.2.

d(x1,x2) d(x1 ◦ γ, x2 ◦ γ)

L2-norm 1.21 1.06

Table 3.2: Distance comparison before and after warping x1 and x2 by γ.

Recent methods from the field of functional analysis and elastic shape analysis
[Srivastava et al. 2011] were proposed in the literature to overcome those limitations. The
square-root velocity function (SRVF) [Joshi et al. 2007] method allows development of more
efficient solution while providing a rigorous mathematical framework, especially in imposing in-
variance to rotation, translation, scaling, and re-parameterization. The SRVF associates to each
time series its velocity normalized by the square root of its norm and allows to well capture the
matching relation between considered sequences. This framework uses the Fisher-Rao metric.
That is, it permits to satisfy:

d(x1,x2) = d(x1 ◦ γ,x2 ◦ γ), (3.8)
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3.3.2.1 Computation of SRVF representation

Let x be a time series, the square-root velocity function (SRVF) is defined as:

h(t) =
ẋ(t)√
|ẋ(t)|

∈ R. (3.9)

This can be seen as a mapping of the sequence onto some feature space. Series comparison is
then reduced to the computation of distance in the feature space. To illustrate the produced
SRVF transformation, Figure 3.10 shows in left side the series x1 and x2 of the Libras dataset,
and their corresponding SRVF representation in the right side.
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Figure 3.10: Time series x1 and x2 and their SRVF representations.

By using this representation, the SRVF offers a natural and efficient framework for align-
ing the series where distance computation (3.8) is simplified and preserved under warp-
ing. To summarize, those following properties are verified. The interested reader is refered
to [Srivastava et al. 2011] for more details.

• If x is warped by γ, the SRVF of x ◦ γ is given by:

hx◦γ(t) = hx(γ(t))
√

γ̇(t). (3.10)

• Under the SRVF representation, the distance between two sequences x1 and x2 is given
by the standard L2 norm, which is the Euclidean distance between their corresponding
SRVFs, it satisfies:

dSRV F (x1,x2) = ||hx1 − hx2 ||2 = d(hx1 ,hx2), (3.11)

where dSRV F is the Euclidean distance between the SRVF representations of x1 and x2, that
are hx1and hx2 .

• For any two SRVFs hx1 , hx2 ∈ RT and a warping function γ. The distance between SRVFs
remains unchanged to warping such that:

dSRV F (x1 ◦ γ,x2 ◦ γ) = ||hx1◦γ − hx2◦γ ||2 = ||hx1 − hx2 ||2 = d(hx1 ,hx2). (3.12)

To illustrate the efficiency of the SRVF transformation, and its re-parameterization invari-
ance, we refer to the previous example of the two observations x1 and x2 from the Libras dataset.
The induced distance after computing SRVFs are shown in Table 3.3.
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d(hx1 ,hx2) d(hx1◦γ , hx2◦γ)

L2-norm 2.76 2.76

Table 3.3: Distance comparison before and after re-parameterizing x1 and x2 by γ.

As observed, the invariance is well ensured. Moreover, since we assign to each curve its
square root velocity function (SRVF), the optimal warping path which aligns x1 and x2 is found
as the function γ that minimizes the following optimization problem.

dw(hx1 ,hx2) = inf
γ
(||hx1 − hx2◦γ ||2) = inf

γ
d(hx1 ,hx2) (3.13)

After warping, the distance between hx1 and hx2 is given by dw. Computation of γ which better
aligns hx1 and hx2 can be efficiently done using a dynamic programming method (DTW). For
that, Algorithms 5 and 6 are applied.

Furthermore, to extend this framework to second-order trajectories, the TSRVF representa-
tion was introduced in [Su et al. 2014a]. It offers a way to represent trajectories on Riemannian
manifolds and is defined by a parallel transport of scaled-velocity vectors SRVFs, defined in
(3.9), of trajectories to a reference tangent space on the manifold, including Riemannian metric
and vector space representations. The objective of the TSRVF representation is twofold. The
first is related to the data geometry, since they do not obey to conventional Euclidean properties,
the TSRVF permits to represent trajectories on a tangent space. The second is related to the
need of warping for speed invariance, which causes two sequences to be mis-aligned in time
inducing distortions in distance computation and thus classification performance losses.

We focus here on the problem of classification of time series by treating them as second-
order trajectories introduced in the following subsection. To start, the computation of an SPD
matrix trajectory of the multivariate time series is introduced, then the TSRVF representation
framework is defined as well as the distance measurement between two TSRVFs. The theoretical
framework used here has been introduced in statistics literature [Su et al. 2014a], but our goal
here is to show its applicability to multivariate time series classification, in particular for a
remote sensing application.

3.3.2.2 SPD matrix time series (SPD-MTS)

In this work, each considered time series is represented by a set of time-dependent second-
order features which constitutes a SPD matrix time series (SPD-MTS) as shown in Figure 3.11.
Those latter are computed on a sliding temporal window of dimension ∆t. Specifically second-
order features are determined for overlapping sub-sequences of time series. Overlapping sub-
sequences are selected in order to cover all discriminative portions of the time series. Moreover,
a shrinkage estimator of the covariance matrix can be used. The simplest way is to add a
small ridge εI to each covariance matrix where I is the identity matrix and ε = 10−6. This
regularization is performed to ensure the positive definiteness of the computed covariance matrix.
Positive definiteness is important for the LE representation used in the following which involves
a logarithm operation over the eigenvalues. We associate for each MTS of dimension V × T a
SPD-MTS of dimension V × V × (T −∆t+ 1).
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Figure 3.11: Illustration of SPD-MTS computation.

In order to improve the feature representation and enhance classification performance, a
full local Gaussian descriptor can be used. In this model, the local mean vector µ is jointly
exploited with the V × V covariance matrix M which gives the augmented SPD matrix of
dimension (V + 1)× (V + 1) as proposed in [Lovric et al. 2000]:

Maugmented = |M|−
1

V +1

[
M+ µµT µ

µT 1

]
. (3.14)

3.3.2.3 Computation of TSRVF representation

In order to deal with SPD matrices trajectories, it is required to take into account the geom-
etry of the SPD matrix space and exploit the mathematical framework to manipulate this type
of data, particularly, the mapping operations to project data lying on the Riemannian manifold
to a tangent space, and the parallel transport to translate data for comparison purposes. As
detailed in chapter 1, two options can be considered where two different frameworks were
established for handling the specific geometry of covariance matrices. The first one is based
on a log-Euclidean metric where it involves projecting the matrices on a unique tangent plane
by exploiting the logarithm mapping operator, where the set of covariances is transformed
into a vector representation and thus calculations are simplified. For multivariate time series,
it comes down to project its corresponding second-order trajectory (SPD-MTS) on a tangent
plane, and perform the remaining operations for computing the SRVF representations in the
tangent vector space. The second option focuses on a proposition of a more adapted framework
where multiple tangent planes are considered. It aims at remaining the closest to the manifold.
This allows to better consider the specific geometry of the SPD space and improve the model-
ing by limiting the distortion when projecting the set of covariance matrices in the tangent space.

As seen in the second chapter, comparisons have been done between a model with a
unique tangent plane and a model with multiple tangent planes. This latter has yield to
an increasing complexity while classification results remain stable for the two models. As
such, the model with a unique tangent space was the best trade-off to limit model complexity
while preserving good classification performance. Here, the context is totally different where
complexity is much lower; it neither considers an ensemble learning nor apply a GMM modeling.
In addition, there is no iterative process such as the EM or Karcher mean algorithms. Thus,
one can afford to use the second option of taking into account as much as possible the geometry
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of data by considering multiple tangent spaces to the manifold, that is, a scalar product is
defined locally on each tangent space.

Let’s consider α a trajectory on a Riemannian manifold M, where M is endowed with a
Riemannian metric <,>. M = {α : [0, 1] → M} denotes the set of all trajectories where for
a covariance matrix time series M = M(1), . . . ,M(T ), α is defined such as α(0) = M(1) and
α(1) = M(T ). By definition, the transported square-root vector field (TSRVF) of any smooth
trajectory α is a parallel transport, defined in (1.87) of chapter 1, of a scaled velocity vector field
of α to a reference point c ∈M such that (3.9) can be rewritten for data lying in a Riemannian
manifold [Su et al. 2014a]:

hα(t) =
α̇(t)α(t)→c√
|α̇(t)|

∈ TcM, (3.15)

where | · | is defined by the Riemannian metric on M and α̇(t) comes down to project α(t+ 1)

on the tangent plane defined at α(t), using the logarithm mapping operator. Indeed, as seen in
Table 1.1 of chapter 1, the derivative α̇(t) is a tangent vector in the tangent space Tα(t)M, it is
computed using the logarithm mapping given by:

α̇(t) = Logα(t)
(
α(t+ 1)

)
. (3.16)

Then, since the velocities α̇(t) are elements of different tangent spaces at different times, by
applying the parallel transport from α(t) to c, trajectories are brought back together to the
same vector space at c, denoted by TcM as shown in Figure 3.12. By doing that, comparisons
become possible.

Figure 3.12: Illustration of the TSRVF representation.

As such, each trajectory of covariance matrices, SPD-MTS, is represented by its corresponding
TSRVF. As explained in chapter 1, there are many options for the choice of the reference point
c. Experimental results in [Su et al. 2014a, Su et al. 2014b] demonstrated that classification are
quite stable with respect to this choice, and thus we will fix it equal to the identity matrix.

• Distance between TSRVFs:

Under the TSRVF representation, the distance between two trajectories α1 and α2 is given by
the standard L2 norm, between the corresponding TSRVFs hα1 and hα2 , such that:

dTSRV F (α1, α2) = ||hα1 − hα2 ||2 = d(hα1 ,hα2). (3.17)
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Since TSRVF is a path in the tangent space TcM, the L2 norm can be used to compare trajec-
tories. Moreover, the optimal path to align hα1 and hα2 is found by:

dw(hα1 ,hα2) = inf
γ
(||(hα1 − hα2◦γ ||2) (3.18)

Similarly to (3.13), this minimization is solved using the dynamic time warping (DTW) presented
in Algorithm 6.

3.3.2.4 Classification performance on Libras dataset

Since the time series have been defined using the TSRVF representation and aligned by the
DTW technique to overcome the temporal distortions, a classification algorithm can be applied.
Here, a k-NN classifier is performed.

Figure 3.13 compares classification performance involving three second-order descriptors,
second-order moment (in blue), covariance matrix (in red), and full local Gaussian descriptor
(augmented SPD matrix in green) as a function of considered time segment ∆t. The used
dataset is the Libras hand movement dataset.
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Figure 3.13: Classification comparison between three considered second-order statistics for SPD-
MTS computation (V = 2).

Since the use of full Gaussian descriptor gives the most successful results, this descriptor is
retained for the following experiments. Regarding the choice of ∆t, it is selected in such a
way that it preserves a good temporal localisation, and at the same time sufficiently large for
estimation purpose.

The following experiment, showed in Table 3.4, assesses a classification comparison between
different combinations where it provides a threefold interest. First, we aim at demonstrating the
benefit of warping the time series to improve similarity measurement using the DTW algorithm
detailed in section 3.3.1. For that, the Euclidean distance between time series, introduced in
equation (3.2), for a point-to-point measurement is compared with the version where series
are first aligned using the DTW before distance measurement. Second, for the purpose of
satisfying all desired properties, in particular distance re-parameterization invariance, we look
at the classification performance while representing time series with their corresponding SRVF
representation introduced in equation (3.9). The two versions, whether aligning series or not
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are experimented. Finally, we seek to highlight the potential of using second-order statistics
through the TSRVF representation in equation (3.15) which involves multiple tangent planes
whether the DTW alignment is applied or not. The experimented data is the Libras dataset
and the applied classifier is a nearest neighbor classifier.

Methods OA (%)

Euclidean distance 79.2 ± 1.1

Warping + Euclidean distance 85.6 ± 3.8

SRVF + Euclidean distance 82.8 ± 2.3

SRVF + Warping + Euclidean distance 82.8 ± 2.3

TSRVF + Euclidean distance 80.1 ± 3.0

TSRVF + Warping + Euclidean distance 88.5 ± 2.7

Table 3.4: Classification performance on the Libras dataset for different combinations involv-
ing the use of Euclidean distance, the dynamic time warping and the first and second-order
representations SRVF and TSRVF, respectively.

As shown, exploiting second-order statistics, by using SPD-MTS trajectories, improves
classification performance. In addition, as almost all methods that exploit warping technique
outperform those which do not use it, it proves the need of warping trajectories to match
corresponding time series points.

Furthermore, as the benefit of exploiting ensemble learning strategies has been demon-
strated in the previous chapter, where it enhances the classification robustness, the focus in the
following is mainly on an ensemble learning based architecture, called the time series cluster
(TCK) strategy proposed in [Mikalsen et al. 2018], and our contribution to extend it to the use
of second-order statistical features.

3.4 Time series cluster Kernel for second-order statistical fea-
tures (SO-TCK)

3.4.1 Time series cluster kernel (TCK)

TCK has recently been introduced in [Mikalsen et al. 2018] for the classification of multi-
variate time series. It exploits the power of kernel methods, codebook based representations
and ensemble learning strategies. The global principle is explained in Figure 3.14. The main
idea behind this method is to compute a positive semi-definite similarity measure (i.e. a ker-
nel) between two multivariate times series (MTS). For that, a GMM model is first trained on
a sample extracted from the training set, which is next used to encode each multivariate time
series. Moreover, to ensure robustness, an ensemble learning strategy is considered. The next
subsection presents the main steps during training and testing.
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Figure 3.14: General principle of the time series cluster kernel (TCK).

3.4.1.1 Training phase

A multivariate time series (MTS) X is represented as a matrix of dimension V × T where
V is the number of attributes and T is the time length. It is a finite sequence of V univariate
time series, i.e. X =

{
xv ∈ RT

}
for v = 1, . . . , V . During this stage, N MTS are considered for

training, and X(n) represents the nth MTS sample. To cope with missing data, a second MTS
is considered. R(n) is a binary MTS defined by r

(n)
v (t) = 0 if the value x

(n)
v (t) is missing and

r
(n)
v (t) = 1 otherwise.

As explained before and shown in Figure 3.14, TCK is based on an ensemble learning
approach. The considered ensemble learning is based on using the same model, for instance
the GMM modeling, with different parameters and initializations. Practically, Q subsets are
considered, where each subset is a subsample of Nq data, Vq attributes and Tq consecutive time
instances extracted from the training set. For example, as illustrated in Figure 3.15, the subset
X1 is constituted of N1 time series (orange, light and dark blue) of length T1 and described
by V1 attributes. Then, for each subset, a codebook is created by learning a GMM model
to estimate weights ωg, means µg and variances σ2

g . Here, for the illustration, the considered
number of GMM components is G = 4. Those GMM parameters are then used to encode each
MTS and produce posterior assignments Π1.

Figure 3.15: Diagram of TCK steps for a single subset (q = 1).
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The illustrated steps are fully detailed in the following.

• GMM modeling for codebook generation

For the qth subset, the training set is composed of Nq MTS X
(n)
q of dimension Vq × Tq with

their associated binary MTS R
(n)
q . A GMM model with G1 components is considered to learn a

codebook, where its probability density function for the incompletely observed MTS (X
(n)
q ,R

(n)
q )

is given by:

p(X(n)
q |R(n)

q ,Θ) =

G∑
g=1

ωg

Vq∏
v=1

Tq∏
t=1

N (x(n)
v (t)|µgv(t), σgv)

r(n)
v (t), (3.19)

where Θ = {ωg, µgv, σgv} for g = 1, . . . , G. MTS are assumed to have time-dependent means,
i.e. {µgv ∈ RTq} for each attribute v. To enforce regularity, a kernel-based Gaussian prior
is defined for the mean. In addition, the covariance matrix for each Gaussian components is
assumed to be diagonal and time-independent, that is Σg = diag{σ2

g1, . . . , σ2
gVq
} and σ2

gv is the
variance of attribute v for data belonging to the gth cluster. To estimate the GMM parame-
ters Θ, a MAP-EM algorithm has been proposed in [Mikalsen et al. 2018]. The algorithm is
detailed in Algorithm 7. The set composed by the estimated GMM parameters represents the
codebook. Here, by referring to the different families of ensemble classifiers, the used ensemble
strategy is based on training a same model, for instance the GMM model, by using different
parameters and initializations. As such, to ensure even more robustness, the number of GMM
components G and the initialization of the MAP-EM algorithm are randomly selected for each
subset.

As such, to estimate the GMM parameters Θ, a MAP-EM algorithm is considered. For that,
some priors are defined for the mean µgv and the deviation σgv, where:

• P (µgv) = N (µgv|mv, Sv), with mv are the empirical means and Sv the prior covariance
matrices defined as Sv = svK. sv are the empirical standard deviations and K a kernel
matrix such as: Ktt′ = b0 exp(−a0(t − t′)2), t, t′ = 1, . . . , T . a0 and b0 are user-defined
hyper-parameters.

• P (σgv) ∝ σ−N0
gv exp(−N0sv

2σ2
gv
), with N0 a user-defined hyper-parameter.

The set of hyper-parameters is denoted Ω = {a0, b0, N0} and the estimates θ are found using
the MAP-EM algorithm as detailed in Algorithm 7.

• Coding method

The encoding of the nth MTS X(n) for subset q is carried out by computing the posterior
assignment Π

(n)
q , obtained by:

Π(n)
q (g) =

ωg

∏Vq

v=1

∏Tq

t=1N (x
(n)
v (t)|µgv(t), σgv)

r(n)
v (t)∑G

k=1 ωk

∏Vq

v=1

∏Tq

t=1N (x
(n)
v (t)|µkv(t), σkv)r

(n)
v (t)

. (3.20)

1To avoid notation confusion, in this chapter G refers to the GMM components whereas K refers to the kernel
matrix.
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Algorithm 7 MAP-EM for GMM parameters estimation
Input: Time series dataset X(n)

{n=1,...,N} of length T , hyper-parameters Ω and G number of GMM
components.
Initialize: the parameters Θ.

1: E-step: For each X(n), compute the posterior probabilities Π(n)(g) using current parame-
ters Θ.

2: M-Step: Update parameters using the current posteriors until convergence.
θg = 1

N

∑N
n=1Π

(n)(g)

σ2
gv =

(
N0 +

∑N
n=1

∑T
t=1 r

(n)
v (t)Π(n)(g)

)−1 (
N0s

2
v +

∑N
n=1

∑T
t=1 r

(n)
v (t)Π(n)(g)(x

(n)
v (t)− µgv(t))

2
)

µgv =
(
S−1
v + σ−2

gv

∑N
n=1Π

(n)(g)diag(r(n)v )
)−1 (

S−1
v mv + σ−2

gv

∑N
n=1Π

(n)(g)diag(r(n)v )x
(n)
n

)
Output: Mixture parameters Θ.

Then, the vectors of each component g are concatenated to obtain the final posterior
assignment Π

(n)
q of length G. Figure 3.16 shows visually an example of encoding an observation

X(n) where G = 4 clusters are considered for the GMM modeling. As seen, since X(n) is located
closer to the orange cluster than the others (gray, blue, green), the posterior assignment of X(n)

to belong to that cluster is the highest, which corresponds to the largest bar in the diagram.

Figure 3.16: Illustration of encoding a sample X(n) on the space of GMM parameters.

In the following, vector Π
(n)
q containing the G posterior probabilities Π

(n)
q (g) is considered to

define the feature map used in the kernel.

As different number of components G is considered for each subset q, the model has the
ability to capture different levels of granularity in the data. As such, considering a low number
of components allows a global comparison of the considered time series segments, whereas a
high number of components reflects a more local comparison to extract specific details. To
visually explain that, let’s take the example of two samples X

(n)
1 and X

(m)
1 from the subset X1.

Figure 3.17 gives two examples of GMM modeling where in (a), three components (G = 3)
are considered, while in (b), a larger number of components (G = 7) is taken and their
corresponding encoding Π

(n)
1 and Π

(m)
1 . As shown, both samples, X(n)

1 and X
(m)
1 are assigned

to the same cluster in (a) while they are separated on two different clusters in (b).
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Figure 3.17: Example of effect on the encoding of two different GMM modeling settings. Left:
using three GMM components (G = 3). Right: using seven GMM components (G = 7).

As shown, for model (a), the encoding of the two samples is similar while for (b) the
produced vectors Π(n)

1 and Π
(m)
1 are different. In fact, considering a high number of components

will allow to focus on underlying details on the sequence. In a complementary manner, a low
number of component permits a comparison at a most general level. This supports the benefit
of varying the parameterization to improve the discriminating power of the model.

Then, to build the TCK kernel matrix, the different parameters are set as follows:

• Each GMM model uses a different number of components from the interval [2, C], where for
each component, Q represents different random initialization conditions (q1) and number
of components (G) such as: Q = {(q1, G) | q1 = 1, . . . Q, G = 2, . . . , C}.

• As each GMM model is trained on a random subset of MTS, a random subset of attributes
is denoted Vq < V , over a randomly chosen time segment Tq < T .

• Then, the inner product of posterior probabilities from each mixture component are then
added up to build the TCK kernel matrix.

To summarize, the ensemble learning strategy to build the TCK kernel matrix is described in
Algorithm 8.
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Algorithm 8 Training phase
Input: Training set X

(n)
{n=1,...,N} of length T , Q initializations, C maximal number of mixture

components.
1: for q ∈ Q do
2: Define subsets with randomly selecting:

i. hyper-parameters Ω(q)
ii. a time segment Tq

iii. a subset of Vq

iv. a subset Nq of MTS
v. initialization of the mixture parameters Θ(q)

3: Estimate GMM parameters by applying Algorithm 7 with G clusters.
4: Compute posteriors Π

(n)
q =

(
π
(n)
q (1), . . . , π

(n)
q (G)

)T
, n = 1, . . . , N with (3.20).

5: end for
Output: Time segments Tq, subsets of attributes Vq, subsets of MTS Nq, GMM parameters
Θ(q) and posteriors Π

(n)
q .

3.4.1.2 Testing step

To evaluate the TCK over time series from the test set, the sub-sampling parameters need
to be stored in order to estimate corresponding posterior assignments. Using the estimated
mixture parameters in the training phase, the computation of posterior distributions of the
testing time series dataset remains similar.

To compute a similarity measure between a training MTS X(n) and a testing MTS X(m), a
kernel based approach is considered. It is built on the basis of an inner product between two
posterior distributions to form a linear kernel in the space of posterior distributions as:

K
(
X(n),X(m)

)
= Knm =

Q∑
q=1

Π(n)
q

TΠ(m)
q , (3.21)

where Π
(n)
q and Π

(m)
q are respectively the vector of posterior probabilities for the training and

testing MTS obtained with (3.20). To summarize, the Algorithm 9 describes the testing phase
steps for building the testing kernel matrix.

Algorithm 9 Testing phase
Input: Testing set X

(m)
{m=1,...,M}, time segments Tq, subset of attributes Vq, subsets of MTS Nq,

GMM parameters Θ(q) and posteriors Π
(n)
q .

Initialize: the kernel matrix K = 0N×M .
1: for q ∈ Q do
2: Compute posteriors Π

(m)
q , m = 1, . . . ,M by applying (3.20) with mixture parame-

ters Θ(q)

3: Update kernel matrix Knm = Knm +Π
(n)T
q Π

(m)
q , n,m = 1, . . . , N

4: end for
Output: K TCK test kernel matrix.
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In the end, a nearest neighbor classifier is used with the induced distance d between X(n)

and X(m) given by:

d2
(
X(n),X(m)

)
= K

(
X(n),X(n)

)
− 2K

(
X(n),X(m)

)
+K

(
X(m),X(m)

)
. (3.22)

Again, as observed in (3.21) and (3.22), two MTS will be similar if their posterior probability
vectors Π

(n)
q and Π

(m)
q are similar for each subset q.

At the end, this approach employs the existing time series distances within k-NN classi-
fiers. In particular, the 1-NN classifier which has mostly been used in time series classification
due to its simplicity. Given a distance measure and a time series, the 1-NN classifier predicts
the class of this series as the class of the object closest to it from the training set.

3.4.2 TCK for second-order statistical features

As seen in the previous chapter, second-order features, in particular covariance matrices
features, have proved to play an important role in different tasks related to visual recogni-
tion process. Compared to first-order feature based classification algorithms, many authors
have shown the interest of exploiting second-order statistics such as covariance matrix at-
tributes [Faraki et al. 2015a, Barachant et al. 2013, Said et al. 2015a]. This kind of data has
a particular structure, they are symmetric positive-definite (SPD) matrices. One of the major
contributions of the thesis is a novel representation for time series. The proposed representation
is based on feature covariance matrices. This section focuses on introducing the log-Euclidean
representation of SPD-MTS in order to exploit them in TCK, yielding to the so called second-
order time series cluster kernel (SO-TCK) method.

3.4.2.1 Log-Euclidean representation of SPD-MTS

In order to adapt TCK to work with SPD-MTS, the geometry of the space Pd of d × d

symmetric and positive definite (SPD) matrices should be considered. In case of using covariance
matrices, d = Vq, while for the augmented SPD matrix: d = Vq +1. As observed in Figure 3.11,
SPD matrices lie in a convex cone which is a Riemannian manifold. Tools developed in the
context of Euclidean geometry are hence not adapted to manipulate these data points. A
Riemannian metric is better suited such as the log-Euclidean (LE) one [Arsigny et al. 2006] or
the affine-invariant (AI) metric. As detailed in chapter 1 and 2, considering the LE metric is
as efficient in practice as the AI metric. In addition, it avoids adding more complexity to the
model and yield to high computational costs. It consists in projecting the set of SPD matrices
on a tangent space defined at a reference point, classically considered at the identity matrix.
After being projected on the tangent space, tools of the Euclidean geometry can be used such as
the MAP-EM algorithm defined in Section 3.4.1.1 to estimate GMM parameters and the Kernel
method presented in Section 3.4.1.2. Practically, each SPD matrix M is mapped on the tangent
space by applying the following operations:

m = Vec(logm(M)), (3.23)
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where logm() is the matrix logarithm and Vec() the vectorization operator:

x = Vec(X) =
[
X11,

√
2X12, . . . ,

√
2X1d, X22,

√
2X23, . . . , Xdd

]
. (3.24)

To summarize, these operations lead to a transformation from a SPD matrix M ∈ Rd×d to a
vector m ∈ R

d(d+1)
2 . To illustrate the SO-TCK framework, Figure 3.18 shows the extension

of TCK approach, illustrated in Figure 3.15 to the use of second-order statistics. The subset
X1 is constituted of N1 time series (orange, blue and black) of length T1 and described by V1

attributes. Then, for each multivariate time series of the subset, a covariance matrix trajectory
of size Vq × Vq × (Tq − ∆t + 1) is obtained following the explanations given in section 3.3.2.2.
As the set of SPD-MTS M

(n)
1 lies on a Riemannian manifold, they are projected on the tangent

plane at the identity matrix Id and vectorized according to (3.23) to obtain the log-Euclidean
representation set of time series m

(n)
1 of size Nq × Vq(Vq+1)

2 × (Tq − ∆t + 1). Finally, similarly
to the TCK approach, a codebook is created by learning a GMM model to estimate weights ωg,
means µg and variances σg for each multivariate time series m

(n)
1 of the subset. Those GMM

parameters are then used to encode each time series and compute posterior assignments Π1.

Figure 3.18: Diagram of SO-TCK steps for a single subset (q = 1).

3.4.2.2 Parameters selection

Figure 3.19 draws the evolution of the overall accuracy on the Libras dataset as a function
of the temporal support ∆t for the proposed SO-TCK approach. Three kind of second-order
descriptors are considered:

• the covariance matrix (in red),

• the second-order moment (E
[
xxT

]
, in blue),

• and the full local Gaussian descriptor defined in (3.14) (Augmented SPD matrix in green).

As observed, the best results are obtained for this latter. In the following, SO-TCK will refer
to the classification performance obtained with this full local Gaussian descriptor. Note also
that the choice of ∆t reflects a trade-off. It should be small enough to preserve a good temporal
localisation, and at the same time sufficiently large for estimation purpose.
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Figure 3.19: Classification comparison between three considered second-order statistics for SPD-
MTS computation (Vq = 2).

Furthermore, Table 3.5 compares the classification performance between the original TCK
and the proposed SO-TCK for the Libras dataset. As shown, the benefit of exploiting second-

Methods OA (% )

TCK 72.6 ± 2.9

SO-TCK 87.1 ± 2.8

Table 3.5: Classification comparison between TCK and SO-TCK on the Libras dataset.

order statistics is clearly demonstrated where a gain of 15% is obtained when using the SO-TCK
strategy.

3.5 Experiments

In this section, we illustrate the potential of the proposed approaches to multivariate time
series classification on four publicly available well-known datasets from UCI/UCR machine
learning repository [Dua & Graff 2017], which constitutes the largest repository of time series
datasets, and one on a remote sensing application.

3.5.1 Datasets of experiment

• Libras:

The dataset, acronym of the Portuguese name "Lingua BRAsileira de Sinais, represents hand
movement of Brazilian official language, it contains 15 classes of 24 instances each, where each
class references to a hand movement type. The hand movement is represented as a bi-dimensional
curve performed by the hand in a period of time recorded by a video.

• Natops:

The Naval Air Training and Operating Procedures Standardization (NATOPS) is a manual of
aircraft handling signals: the gestures most often used in routine practice on the deck environ-
ment. The data is collected using sensors on the hands, elbows, wrists and thumbs. Coordinates
x, y, z for each of the eight locations are stored resulting in 400 samples for each gesture class.
Figure 3.20 illustrates gestures of the NATOPS dataset.
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Figure 3.20: Gestures from the NATOPS dataset [Ribeiro et al. 2016].

• Character trajectory:

The dataset contain labelled samples of pen tip trajectories recorded whilst writing individual
characters by the same writer [Williams et al. 2006]. Each character sample is a 3-dimensional
pen tip velocity trajectory: x, y, and pen tip force as illustrated in Figure 3.21.

Figure 3.21: Examples of two classes from the character trajectories of ’g’ and ’m’ and the pen
tip force highlighted with green color.

• Racket sports:

The dataset was created by university students playing badminton or squash while wearing
a smart watch that sends x, y, z coordinates for both the gyroscope and accelerometer to an
android phone. The considered four classes are either a forehand/backhand in squash or a
clear/smash in badminton.

• Tiselac:

The Tiselac dataset, introduced in [Ienco 2017], has been generated from an annual time series
of 23 Landsat 8 images acquired in 2014 above the Reunion Island. A total of 10 attributes
(7 surface reflectances and 3 vegetation/water indices) are considered for each pixel at each
timestamp. For this dataset, the goal is to predict 9 land cover classes, namely:
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1. urban areas

2. other built-up surfaces

3. forests

4. sparse vegetation

5. rocks and bare soil

6. grassland

7. sugarcane crops

8. other crops

9. water

To ensure classes homogeneity and speed up calculations, the retained number of pixels of each
classes is reduced to 200 pixels.

Table 3.6 gives the main characteristics of these datasets. In the following, performance
are measured in terms of mean overall accuracy evaluated over 5 runs.

Datasets Attributes
V

Time
length T

Samples
for

training

Samples
for

testing
Classes

Libras 2 23 180 180 15

Natops 3 51 180 180 6

Character traj. 3 23 300 2 558 20

Racket sports 6 30 151 152 4

Tiselac 10 23 900 900 9

Table 3.6: Characteristics of the experimented time series datasets.

3.5.2 Classification results

A classification comparison is conducted over five datasets. First, in the same spirit than
experiments established in Table 3.4, where different configurations are tested to demonstrate
the benefit of aligning series with DTW, using a re-parameterization invariant representation
SRVF as well as exploiting second-order statistics through TSRVF. Also, the TCK and its
extension to second-order statistics SO-TCK are compared. Results in Table 3.7 make the same
comparisons for all datasets of interest.

2The reported results with the use of second-order statistics are given for the covariance matrix descriptor. In
fact, the conducted experiments on the Tiselac dataset has demonstrated a benefit of using the covariance matrix
instead of the full Gaussian descriptor.
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Methods Libras Natops Character
trajectory

Racket
sports Tiselac2

Euclidean distance 79.2 ± 1.1 77.8 ± 3.4 95.5 ± 0.4 68.8 ± 2.6 60.4 ± 1.0

Warping + Euclidean
distance 85.6 ± 3.8 71.7 ± 4.3 95.6 ± 0.2 81.3 ± 2.9 62.8 ± 2.9

SRVF + Euclidean
distance 82.8 ± 2.3 80.5 ± 2.4 91.9 ± 2.9 63.7 ± 2.7 70.4 ± 1.3

SRVF + Warping +
Euclidean distance 82.8 ± 2.3 80.5 ± 2.4 91.9 ± 0.2 63.8 ± 2.8 70.2 ± 1.2

TCK 72.6 ± 2.9 61.4 ± 3.5 91.7 ± 0.5 81.5 ± 3.2 63.7 ± 1.3

TSRVF + Euclidean
distance 80.1 ± 3.0 76.2 ± 2.3 94.7 ± 0.4 91.1 ± 1.7 89.3 ± 0.5

TSRVF + Warping +
Euclidean distance 88.5 ± 2.7 75.0 ± 2.7 93.2 ± 0.4 94.7 ± 1.2 92.7 ± 0.4

SO-TCK 87.1 ± 2.2 71.3 ± 3.7 93.9 ± 0.8 87.8 ± 2.8 74.5 ± 0.9

Table 3.7: Classification performance for different combinations involving the use of Euclidean
distance, the dynamic time warping (DTW) and the first and second-order statistics through
the SRVF and the TSRVF representations of SPD matrix trajectories, respectively.

As observed, second-order based methods perform better than first-order based strategies.
For instance, the proposed SO-TCK is compared with the state-of-the-art approaches, including
the original version TCK [Mikalsen et al. 2018]. We have adopted the same experimental setup
as the one used in [Mikalsen et al. 2018]. For reproducibility purpose, TCK has been launched
with the authors Matlab implementation. As observed, the best results are obtained for the
proposed SO-TCK approach with a gain of 2 to 15 % compared to TCK, hence illustrating its
potential for various application on time series classification.

In addition, the potential of warping series and the use TSRVF representation is clearly
demonstrated where higher results are obtained in most cases compared to other strategies.
Also, as far as the knowledge of authors are concerned, this is the first time, the use of TSRVF
and SRVF representations are performed in the context of remote sensing monitoring (Tiselac)
where, the combination of second-order statistics through the TSRVF representation and the
warping technique, has shown a significant gain compared to other strategies.

3.6 Conclusion

This chapter assesses the problem of time series classification. The first part reviews
different methods dedicated to this problem including machine learning and deep learning based
methods. Since second-order statistics demonstrated a great interest in many applications, two
methods were investigated and extended to second-order statistics. Since then, this chapter
exploit the benefit of considering dependencies between multivariate time series attributes and
their potential for enhancing classification performance.

In the context of similarity measurement between time series, the focus is on distance-
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based methods to deal with the problems related to time series where the most commonly used
distance is the Euclidean distance. Therefore, the measure does not provide satisfactory results
when there is a time shifting between series of interest. For that, dynamic time warping (DTW)
approach permits aligning series before comparing them. By doing that, corresponding points
are matched regardless the differences of the speed profile between the series. However, despite
ensuring speed invariance, the induced distance between series still have some limitations. In
fact, the re-parameterization of the series does not preserve the distance between them. To
overcome this, the square-root velocity function (SRVF) representation is introduced. For each
time series, its corresponding SRVF representation is computed, then the whole set is aligned
using the DTW algorithm to find the optimal warping path. Furthermore, to extend this
framework to second-order statistics, the transported square-root velocity function (TSRVF) is
required. It involves first the computation of SPD matrix time series (SPD-MTS) and then the
representation of the trajectories on a manifold as a vector field by considering multiple tangent
spaces at different reference points, which allows us to use existing algorithms efficiently,
while also respecting the geometric and temporal constraints. The efficiency of the strategy
is evaluated in different benchmark time series datasets and it has shown a significant gain
compared to other state-of-the art strategies.

Future works in this context may aim at investigating the potential of different
DTW variants, such as the constrained DTW [Zhang et al. 2017], the derivative DTW
(DDTW) [Keogh & Pazzani 2001] or the weighted DTW [Jeong et al. 2011], to outperform
the original DTW algorithm. In fact, DTWs variants have been intensively evaluated to
demonstrate their interest. As such, they can be used to replace the original version in aligning
second-order trajectories of TSRFV representations.

In addition, inspired by the time series cluster kernel (TCK) and the potential of second-order
statistical descriptors for many classification tasks, this work has extended the formalism
of TCK to second-order features. For that, the log-Euclidean metric has been considered
to represent a SPD-MTS as a multivariate time series where the principle of TCK can be
employed. Experimental results on benchmark datasets and land cover classification with
remote sensing data have shown, most of the time, the potential of the proposed method
compared to state-of-the-art times series classification algorithm.

To go further, the two proposed strategies can be combined in order to align time series
before applying the proposed SO-TCK approach. This requires the use of time series matching
techniques extended to multiple alignment problem. For doing that, the given trajectories can
be used to define a template trajectory and then align each given trajectory to this template in
a pairwise fashion. One way of defining this template is to use the mean of given trajectories
under an appropriately chosen metric. For example, based on the original version of TSRVF,
the mean trajectory can be computed by using a Karcher mean algorithm [Su et al. 2014b].

Moreover, many works focuses on neural network strategies to deal with time series clas-
sification problems. For example, CNNs have been popular for time series classification through
their ability to capture spatial and temporal patterns using trainable filters. In the same
spirit, one can exploit the power of CNN models to learn multiple discriminative features
where a convolution can be seen as applying a filter over the time series. A perspective of
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interest can be the development of a hybrid model, in the same spirit than those developed in
chapter 2. For example, the CNN convolutional layer outputs, which represents a novel time
series representation, would feed the proposed architectures such as the SO-TCK strategy.
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4.1 Introduction

Forests are an integral part of natural ecosystems where they cover a large part of the
continental surface, approximately 30% of the worlds total land mass. It is a source of renewable
materials and energy and provides numerous ecological, economic, social, and cultural services
[Boyd et al. 2013]. Also, it carries out major actions on our environment such as the provision
of ecosystem services (conservation of biodiversity, regulation of climate change through the
carbon cycle, etc.). However, environmental changes and global trade have increased forest
vulnerability to a range of disturbances, including diseases and insects. Natural forest declines
include those related to the action of climatic and biotic factors (damage caused by storms,
drought, heat waves, insect attack etc.). In fact, climatic changes, such as temperature, will
alter tree health, tree species distributions, and tree resistance. Simultaneously, changes in
moisture and precipitation regimes, becoming drier in certain areas and wetter in others, will
also cause a range expansion of insects and diseases, allowing organisms to occupy areas of
forests cover. Some of these sylvosanitary problems have been known for a long time and
reappear recurrently. Other problems are caused by exotic species and are serious threats due
to the lack of co-evolution between these pathogens or pests and native forest species. Also,
human, at the origin of many fires and deforestation, is not left behind.

Finally, the interactions between all those different factors are numerous and result in
an increased forest vulnerability. For example, bark beetles cause significant damages after
storms or fires and lead to mortality and die-off. In France, because of those different factors,
damages are observed in the South-West (Dordogne) and also in other French regions (Centre,
Île-de-France, Occitanie, etc.).

At the national level, the health of forests and grasslands is an issue of high concern.
For that, different systems to monitor the vitality and health of forests exist. Specifi-
cally, the french ministry of agriculture and food provides forest monitoring implemented
by the department of forest health (DSF)1. These missions are carried out by mobilizing
correspondents-observers (CO), agents of the national forest office (ONF)2, of the national
forest ownership centre (CNPF)3, and other organisms responsible for providing advice and
guidance to private forest owners, and decentralized administration services.

In terms of monitoring the evolution of forest stands by remote sensing techniques, it
remains difficult to detect less radical events such as silvicultural interventions (thinning,
clearing, soil maintenance, afforestation) or damage caused by biotic or abiotic vagaries. Even
with high spatial resolution, using only one or a few satellite observations is a barrier to fine
detection and accurate dating of these events. As Kennedy et al. [Kennedy et al. 2014] pointed
out, the Landsat time series can capture only a small portion of the ecological and functional
processes involved in the forest cover dynamics. In order to be able to identify the forest health
problems on the images, the first condition is to be able to characterize the seasonal leaf cycle
for abnormalities identification, that is to say the differences in the seasonal cycle of healthy
stands and infected stands.

1DSF: Département Santé des Forêts
2ONF: Office National des Forets
3CNPF: Centre National de la Propriété Forestière

https://agriculture.gouv.fr/le-departement-de-la-sante-des-forets-role-et-missions
https://www.onf.fr
https://www.cnpf.fr
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Within this framework, the TEMPOSS project, which stands for "Modelling of the tem-
poral trajectory of Sentinel-1 & 2 observations for monitoring forest health", focuses on the fine
characterization of the structure of the forest and the monitoring of its changes, with a view
to identify, map and follow sylvosanitary problems. It is conducted on several French sites,
representing various types of forest cover (different species, pure or mixed, various environ-
mental conditions, fragmentation or continuity of cover classes, etc.) and sylvosanitary contexts.

The project aims to model and classify the temporal trajectories of the signals measured
by radar (Sentinel-1) and optical (Sentinel-2) sensors with a revisit frequency of several days.
The results are expected at two levels: (1) the development of original algorithms to identify
homogeneous settlement entities; (2) an initial assessment of their potential to derive indicators
of forest health and its evolution.

This work is realized in close collaboration with the national focal point "Data, remote
sensing and epidemiology" of the forest health department (DSF) who plays an important
role as a forestry expert where he helps introducing the forest issues and supplies the ground
truth data related to the studied problems. In addition, the initial results obtained by DSF
using a random forest classification provide a starting point. Therefore, providing both a
remote sensing monitoring problem and ground truth data, the TEMPOSS project defines an
appropriate application framework for this thesis. So we worked on evaluating the potential of
Sentinel-1 and Sentinel-2 for monitoring the forest health with a focus on a particular forest
disease, namely the chestnut ink disease, affecting the Montmorency forest. For this end, this
chapter proposes original algorithms exploiting second-order descriptors and it focuses on the
following main points:

• An overview of diseases and insects attack that causes forest damages, especially in France.
In collaboration with the department of forest health (DSF), more attention will be di-
rected to chestnut disease caused by the pathogens named phytophtoras.

• As the objective is to exploit remote sensing data, this chapter focuses on evaluating
the potential of the Sentinel-1 (C-band radar) and Sentinel-2 (optical) time series as well
as a fusion scheme of optical and radar imagery for monitoring the symptoms of the
phytophtoras attack on chestnut Montmorency forest (in France).

From a methodological point of view, the main developments concern the satellite data to be
used, the selection of variables and indices extracted from Sentinel-1 and Sentinel-2 images, the
choice of classification and regression algorithms and their parameterization. To summarize, the
main contributions are:

• Identification of discriminating attributes from Sentinel-1 and Sentinel-2. It consists
of selecting the remote sensing variables of interest by extracting various effective
vegetation indices related to forest health issues.

• Since second-order statistics manifested a great potential on different classification appli-
cations, they are exploited in the context of forest health monitoring to improve accuracy
of discriminating healthy from damaged classes. For that, a covariance pooling frame-
work is proposed to exploit dependencies between different attributes, such
as spectral bands and vegetation indices for optical data, and backscattering
coefficients and forest degradation indices for radar data.
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• Furthermore, in accordance to previous chapters, considering ensemble strategies may be
useful for enhancing algorithm robustness. In particular, in such challenging applications
related to forest health monitoring. For that, we proposed to extend the covariance
pooling strategy to an ensemble approach where several features of attributes
were be considered to fed each ensemble branch. At the end, a majority vote is
applied to elect the most relevant decision.

• For the sake of improvement, as the disease evolves continuously from healthy stands to
completely destroyed trees, a forest health indicator is defined and a regression
model based on covariance pooling is proposed. As such, the regression model
permits to predict a quantitative variable related to the forest degradation status.

The chapter is organized as follows. Section 4.2 assesses a brief review of some selected forest
diseases caused by insect attacks and the role of remote sensing data, whether optical or radar,
in quantifying and monitoring the forest health related issues. Section 4.3 introduces Sentinel
optical and radar imagery and gives an overview of their properties. Also, a brief review of their
use in different land cover and land use applications is exposed. Then, section 4.4 addresses the
targeted application, that is the chestnut ink disease, including explanations about the studied
area and the dataset of interest. After that, section 4.5 investigates the potential of using second-
order features on an ensemble strategy while using Sentinel-1 and Sentinel-2 images. Finally,
Section 4.6 gives the main conclusions and perspectives for this work.

4.2 Remote sensing for forest health monitoring

In general, forest diseases are caused by pathogens that are infectious and transmissible,
such as bacteria, fungi and viruses. Besides, insects attack different parts of the tree, with
defoliators feeding on leaves or needles, and bark borers.

Most of the time, the only alternative to limit the spread of an epidemic is the rapid re-
moval of wood. For that, exceptional operations of cutting are carried out and supervised by
the National Forest Office (ONF) in public forests. For the most impacted stands, clear cuts
can be considered, while ensuring the preservation of soils, memorial sites and natural areas.

4.2.1 Forest diseases

Over the past few decades, the frequency and intensity of disease and forest disturbances
due to insect attacks have dramatically increased, leading to extensive tree mortality worldwide.
Examples include the oak death epidemic in western United States, outbreaks of mountain
pine beetle in Canada’s boreal forest, bronze bug damage in forest plantations in South Africa,
and the spread of bark beetles in central Europe and Scandinavia [Kelly & Meentemeyer 2002,
Fassnacht et al. 2014, Oumar & Mutanga 2014]. In the following, some of the well-known forest
disturbances in France caused by insects or diseases are described.

4.2.1.1 Bark beetles attack

Large forest losses occurred in the past due to bark beetle attacks. Bark beetles are small
wood-eating insects, ranging in length from 2 to 7 mm, black or brown in colour, and belonging
to the order of Coleoptera. The larvae of this beetle hatch under the bark, they dig galleries as
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illustrated in the left side image of Figure 4.1. The larval stage lasts 8 to 10 weeks, young adults
feed under the bark. In fact, they are beneficial insects for forest regeneration, because they
usually feed on dead wood, allowing to accelerate their decomposition. However, under certain
conditions, they attack healthy trees; either because the populations of bark beetles are too
large to be satisfied only with dead wood, or because the trees are weakened (water stress due
to drought, mutilations following a storm, nutritional deficiency linked to depleted soil, etc.).
Also, bark beetles normally reproduce twice a year but recently, they were able to reproduce
three times due to the climate changes (hot and dry weather).

Figure 4.1: Bark beetles attack. Left: larval galleries dug by oak bark beetles. Right: Trees
turned red because of the attack4.

Bark beetle attacks result in the disturbance of tree physiological function, eventually leading
to loss of moisture from the canopy foliage and a change in color from green to red, as shown
in the right-sided image of Figure 4.1, then comes the gray stage before completely dying. In
France, bark beetle attacks are particularly feared in forestry where they cause serious damages
in pine forests. It initially started in the "Grand Est" region. Now, the beetle epidemic covered
almost all spruce forests in the northern half of France.

4.2.1.2 Forest chafer crisis

This beetle is a plague for the forests with sandy soils. In France, these species are naturally
found in the forests of the Oise region. The evolution of a generation takes place over 5 years.
The beetle lays its larvae in the soil and for four years they feed by nibbling the roots of plants
and trees until causing their mortality as shown in Figure 4.2. When the insect takes off, it
devours the leaves of trees, mainly oak. According to foresters, beyond a density of 10 larvae
per square meter, the situation becomes irreversible.

These are mainly the root consumption of the larvae of these widespread insects that
cause damages, leading to plants mortality and seedlings of all species.

4http://ephytia.inra.fr/fr/C/21221/Forets-Scolyte-du-chene-ou-scolyte-intrique
5http://ephytia.inra.fr/fr/C/20318/Forets-Hanneton-forestier

http://ephytia.inra.fr/fr/C/21221/Forets-Scolyte-du-chene-ou-scolyte-intrique
http://ephytia.inra.fr/fr/C/20318/Forets-Hanneton-forestier
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Figure 4.2: Mortality of young conifers that have suffered root attacks from forest chafer larvae5.

In France, the combination of the chafer beetle crisis and climate change is of great impact for
forests [Nageleisen et al. 2015]. As the species live in soil, the beetles are not visible and observed
symptoms associated with root consumption are more tenuous, they consist of dwarf shoots, leaf
wilts and stem mortalities. These symptoms may be confused with a drought problems.

4.2.1.3 Chesnut ink disease

Chestnut is the third broad-leaved species in France, after oak and beech. Although
difficult to estimate because it is often present in a mixture with other species, chestnut trees
covers more than one million hectares. Over the past few years, a great deal of progress has
been made in developing dynamic chestnut forestry to meet the growing demand of wood.
However, in many regions, the health status of chestnut forests has deteriorated over the past
decade [Goudet 2016]. In 2005, 60% of chestnut groves were dying, and 40% of mortality
was attributed to this decline. Forest wasting is often the result of several predisposing,
triggering and aggravating factors. For the chestnut trees, these factors can be multiple: the
disease of the canker, repeated droughts, human silvicultural interventions, etc. However, root
infections with primary pathogens can also cause loss of vitality and mortality on their own
or predispose chestnut trees to decay. Due to the increased intercontinental trade and climate
change, pathogen invasion are increasing exponentially in Europe [Santini et al. 2013]. These
pathogens, such as phytophtoras, cause emerging diseases that pose a significant threat to the
health of all ecosystems.

Phytophthora [Zentmyer 1988] are eukaryotic microorganisms and are root necrosis pathogens
of a very large number of plants. Most species live and multiply in the soil and infect the
roots. Phytophthora, belonging to the Oomycete group, are native to Asia and are one
of the hundred most invasive species recorded worldwide. They are characterized by their
sensitivity to temperature. On chestnut, it causes the disease of the ink, whose reports are
in very strong increase over the last ten years [Saintonge 2003]. Two species of Phytophthora
have been found to be responsible for ink disease in Europe, namely P. cambivora and P.
cinnamomi [Vannini et al. 2001]. The disease is thus present in western France, in regions under
oceanic influence. Further east, it is limited by harsh winters and it is absent in the chestnut
groves of Alsace and the Alps.
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The two species of Phytophthora produce the same symptomas: the destruction of all or
part of the root system leading to the degradation of its crown, or even to the death of the tree.
As illustrated in the left side image of Figure 4.3, the disease progresses by staining from the first
infected trees from near to near. Long-range dissemination is possible through the transport of
infected soil and plants.

Figure 4.3: Phytophtora attack in oak tree. Left: Flame necrosis surrounded by a black border.
Right: Chestnut mortality in Montmorency forest6.

In the field, diagnosis is always difficult. In oaks, flame necrosis are quite characteristic as shown
in left side of Figure 4.3. But this phenomenon is less common in the chestnut tree since their
symptoms are not enough characteristic and discriminating which results on underestimated
presence in France of phytophthoras. In fact, for a more accurate diagnosis, it is necessary to
carry out a sampling for a laboratory examination.

As seen on these examples, the increasing problems related to forest health necessitate new
tools for quantifying, measuring and analyzing the forest areas to bring a comprehensive moni-
toring system of forest ecosystems, their state and changes regarding different spatial, temporal
and meteorological modifications. The use of satellite data for Earth observation is a good
candidate for forest monitoring as shown by the increasing focus on remote sensing imagery for
forest applications.

4.2.2 Remote sensing techniques for forest health monitoring

The two main types of satellite data used in remote sensing are optical and synthetic
aperture radar (SAR) images. Optical satellite imagery provides a rich spectral information.
However, since optical sensors measure reflected sun light, they can’t penetrate through clouds.
In contrast, radar sensors can acquire images at both day and night and in almost all weather
conditions. Moreover, radar images can reveal details of the land cover that are not visible
to the human eye, such as soil moisture or inundated vegetation, marine pollution, or forest
biomass.

As illustrated in Figure 4.4, one can distinguish between "passive" and "active" remote
sensing systems because the processing and analysis for the study of forests are completely
different. The optical sensors, are dependent on sunlight and on the atmosphere. The

6http://ephytia.inra.fr/fr/C/20253/Forets-Encre-du-chataignier

http://ephytia.inra.fr/fr/C/20253/Forets-Encre-du-chataignier
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atmosphere conditions therefore compromises temporal stability and spatial coherence of
optical measurements. Active instruments emit their own signal and are able to measure the
reflected part of the target area. In addition, they use wavelength longer than the one of the
optical sensors, allowing measuring different characteristics of the imaged area.

Figure 4.4: Illustration of the sensitivity of optical and radar signals to different tree elements.

For radar sensors, depending on the frequency and therefore the wavelength used (about
2 to 30 cm), the sensor will be sensitive to certain elements on the Earths surface. Long
wavelengths (P and L bands) can penetrate the vegetation, while shorter wavelengths (X band)
are more sensitive to the roughness of the soil surface and are reflected from the tops of trees.
Also, SAR images provide information on geometric and dielectric properties of the surface or
studied volume, depending essentially on the surface roughness, the type of material and its
moisture content. Specifically, a rough surface will have a higher feedback signal than a flat and
smooth surface (which will return almost no signal), a high volume of vegetation will return a
stronger signal than a low volume, and wet vegetation will give more signal than the same dry
vegetation. For forests, the backscatter signal is therefore not directly related to the trees from
a physical point of view, but it will be influenced by the structure of the canopy and the spatial
variability. The signal penetrates the canopy according to its wavelength. Shorter wavelengths
(X and C bands) are sensitive to small elements such as leaves and small branches, while the
larger wavelengths (P and L bands) are sensitive to large branches and trunks.

Optical imaging, on the other hand, is sensitive to the pigments of vegetation linked to
photosynthesis, in the Red, Green and Blue bands, and to the cellular structure of the
leaves in the near-infrared band. Thus optical and radar remote sensing provide different but
complementary information to estimate general forest status such as crown height, density and
shape, tree basal area, timber volume and biomass.

Sustainable forest management is essential to alleviate the destructive impacts of dis-
eases or insects on forest ecosystems. Recently, remote sensing images, either optical data
or SAR imagery, has generated much interest for forest applications. To use remote sensing
images, damaged trees needs to show distinct symptoms which can be observed remotely. As
such, and depending on damage type or stage, the symptoms may indicate the decline in
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chlorophyll/water quantity in foliage, leaf discoloration, defoliation, or tree-fall gaps. Sensors
are then expected to capture the differences between damaged and healthy trees. Moreover, the
acquired data may also offer the ability of monitoring different damage stages from the healthy
stage to the destroyed tree stage.

4.2.2.1 Remote sensing data characteristics

Remote sensing data proved their potential for monitoring forest disturbances through their
qualifications based on:

• Spectral characteristics:

Multispectral imagery has proven its potential to asses the status of damaged
trees [Meddens et al. 2011]. In fact, remote sensors have the ability to record the visible portion
of the electromagnetic spectrum (wavelengths from approximately 400 to 700 nm) and are ca-
pable of detecting disease symptoms where the spectral values in a forest images can be linked
to the forest health. Because of the disease or insects, the tree ability to photosynthesize is
affected, which results on visual change in foliage color, also called discoloration. For example,
as described previously, pine trees turn red in the red-attack stage by bark beetles and oak trees
visually appear brown as a result of the sudden oak death. However, since the disease or the in-
sect attack is a gradual process, some symptoms cannot be easily observed. In contrast, sensors
with the capacity of recording the near-infra-red spectrum (wavelengths from approximately 700
to 1300 nm) could be more sensitive to such delicate changes. To further improve performance
of remote detection, researchers tried to combine different spectral bands to produce a variety
of spectral indices.

• Spatial characteristics:

Recent development in remote sensing allows us to perceive spatial details on the Earth’s surface
at varying scales. For example, the MODIS sensors allow to acquire images with a spatial
resolution of 1 km, 500 m and 250 m where SPOT-7 data shows a resolution of 6 m and 1.5 m
and Landsat a resolution of 30 m and 15 m. The increase of damaged trees within small and
discrete patches arises the challenges and the need of high spatial resolution images. In fact,
considering a high-resolution pixel will allow covering a portion of a tree, and the corresponding
pixel value may contain a high spectral variation as a result of the complex forest structure.

• Temporal characteristics:

Since the progression of a disease or insect damages have a duration in time, the temporal
characteristics allow to consider trajectories of disease and insect propagation over a long time.
As such, temporal imagery offers a characterization of forest change which attracts the interest
of many researchers. Increasing application of diverse data archives for long-term forest health
are widely used, in particular, the Landsat and Sentinel time series, which offers minimized
temporal gaps, global coverage and provide images for free.

4.2.2.2 Forest health monitoring using remote sensing data

Many advanced classification methods were already developed. These methods are based
on both pixel and objects. The main objective of the following is to provide a brief survey of
remote sensing methods to detect forest damages by diseases and insects.
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• Classification

First, classification using satellite imagery was developed to differentiate between land-cover
types. The measurement of forest damage is more challenging where the focus would be on
disease symptoms. As seen previously, compared to healthy trees, damaged trees have distinct
symptoms, such as reduced moisture, discolored foliage, and defoliated canopy. To make the
parallel with classical algorithms for land cover classification, the distinct symptoms of infected
forests are considered as land-cover types.

The classic maximum-likelihood classifier demonstrated a great success on detecting forest
disease. It was applied to Landsat images in [Walter & Platt 2013] for differentiating mountain
pine beetle red attacks from non-red attacks. As a complement to classic classifiers, machine
learning methods have been introduced to the domain of remote sensing classification since the
1990s. For example, to monitor the changes in chlorophyll concentration using the red edge,
which is the inflection point that occurs in the rapid transition between red and near infra-red
reflectance, support vector machines (SVMs) have proven to be successful. [Adelabu et al. 2014]
used red edge bands of RapidEye images for detecting three levels of insect defoliation ranging
from healthy to defoliated plants under severe defoliation in an African savanna. In addition,
[Adelabu et al. 2014] have studied the use of random forest classification for insect defoliation
levels which gives comparable results with SVMs. In fact, one of the key points of ran-
dom forest algorithms is their capacity to rank variables according to their importance which
allows identifying the most discriminating spectral bands or indices involved in disease mapping.

Despite being useful for the purpose of detecting changes in forest health, especially us-
ing near-infra-red channels, optical data are sensitive to weather conditions, which results on
complications to acquire data in cloudy regions. To overcome this limitation, many researchers
focus on combining optical with radar data. In fact, the SAR systems are not only capable
of providing images regardless the weather conditions, but also have the ability to penetrate
the forest canopy to some degree. As such, microwave and optical data offer complementary
information that can improve the classification accuracy. Since then, this point become an
important focus of remote sensing research. For example, [Ortiz et al. 2013] combined images
from both sensors, optical from RapidEye and radar from TerraSAR-X sensors, for monitoring
different levels of discoloration of bark beetle infestation.

• Regression

Regression analysis allows practitioners to estimate continuous defoliation or tree mor-
tality levels, from healthy to damaged. For example, a regression model was applied
to estimate an outbreak of black-headed budworm in Western Newfoundland, in Canada
[Luther et al. 1997]. In addition, in order to understand continuous tree damage levels, some
researches [de Beurs & Townsend 2008] exploit multiple linear regression to link attributes (such
as spectral bands and spectral indices) with measured damage indicators, such as defoliation
intensity. A large range of remote sensing data types (MODIS, Landsat, Lidar, etc.) were
used. With the development of sensors ability to provide high spectral resolution, the dimen-
sionality of data increases and causes many computation challenges. To overcome this issue,
[Verbesselt et al. 2009] proposed a regression model able to select the best performing variables
out of a large amount of variables.
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4.3 Sentinel remote sensing data

Sentinel missions are jointly implemented by the EC (European Commission) and ESA
(European Space Agency) for global land observation (data on vegetation, soil and water cover
for land, inland waterways and coastal areas, and also provide atmospheric absorption and
distortion data corrections) at high resolution with high revisit capability. It constitutes an
enhanced continuity of data provided by SPOT-5 and Landsat-7. In addition, data are available
for free which make them more attractive for many challenging applications.

4.3.1 Optical data: Sentinel-2

The Sentinel-2 mission is an operational mission from the European Space Agency (ESA),
based on two satellites launched respectively in 2015 and 2017. Sentinel-2 acquires high
resolution images (10 to 60 m depending on the spectral band). The orbital repeat cycle is 10
days and 2 satellites were placed on that orbit with a 180◦ angular distance: the two satellites
can therefore achieve together a 5 days revisit period.

Compared to other satellite images, Sentinel-2 incorporates three new spectral bands in
the red-edge field for the study of vegetation. They are important for the recovery and
monitoring of important biophysical parameters such as indicators of vegetation health, the
structural and functional parameters of the vegetation cover and the estimation of the biomass.

The Sentinel-2 products are available with three types of post processing, namely level-
1C, level-2A and level-3A. The characteristics of each Sentinel-2 product types are summarized
in Table 4.1. The products are obtained via the MAJA processor [Hagolle et al. 2017] which is
a joint algorithm developed by CNES, CESBIO and DLR for cloud detection and atmospheric
correction. Pre-processing of Sentinel-2 images is performed using Sen2Cor. It is a prototype
processor for tasks of atmospheric, terrain and Level-1C data is surface reflectance measured at
the top of the atmosphere. Level-1C data processed with Sen2Cor algorithm allows to obtain
Level-2A products, the bottom-of-atmosphere reflectance. Level-2A data is the most ideal
for research activities as it allows further analysis without applying additional atmospheric
corrections. Furthermore, level-3A provides cloud-free images based on data acquired over a
longer period of time. In fact, the Weighted Average Synthesis Processor (WASP) developed
by Theia produces monthly summaries of Sentinel-2. For each pixel, and each spectral band,
WASP averages the surface reflectances observed in clear skies over a 45-day period. For
example, the July 15 synthesis will average cloud-free observations collected between June 26
and August 5. And this is repeated every month.

Level Description Tile size Resolution

1C Top-of-atmosphere reflectance 100× 100 km2 10, 20, 60 m

2A Bottom-of-atmosphere reflectance 100× 100 km2 10, 20, 60 m

3A Monthly summary 100× 100 km2 10 m

Table 4.1: Sentinel-2 product types.

https://cnes.fr/fr
https://www.cesbio.cnrs.fr/
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-16002/25948_read-66677/
https://step.esa.int/main/snap-supported-plugins/sen2cor/
https://www.theia-land.fr/les-produits-3a-syntheses-mensuelles-de-reflectances-sans-nuages-ou-presque/
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The images, also called tiles, are 100× 100 km2 ortho-images in UTM/WGS84 projection as
illustrated in Figure 4.5.

Figure 4.5: Level-1C product tiling7.

With two satellites, Sentinel-2A and Sentinel-2B, areas are theoretically revisited every five days.

4.3.1.1 Spectral bands and product types

The Sentinel-2 thirteen spectral bands range from visible (VIS) to the short wave infra-red
(SWIR) and are represented in Figure 4.6.

Figure 4.6: Sentinel-2 spectral bands [Bertini et al. 2012].

In summary, Sentinel-2 data are acquired on 13 spectral bands in the visual near-infra-red
(VNIR) and short wave infra-red (SWIR):

• four bands at 10 m: 490 nm (B2), 560 nm (B3), 665 nm (B4), 842 nm (B8);

• six bands at 20 m: 705 nm (B5), 740 nm (B6), 783 nm (B7), 865 nm (B8a), 1 610 nm
(B11), 2 190 nm (B12);

• three bands at 60 m: 443 nm (B1), 945 nm (B9) and 1 375 nm (B10).
7https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/product-types

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/product-types
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4.3.1.2 Derived vegetation indices

The absorption and reflectance of different light wavelengths by vegetation is a consequence
of the cellular structure of the leaf. Healthy leaves absorb 70−90% of incident visible radiation,
particularly in the blue and red wavelengths (centered on 450 nm and 670 nm respectively), and
reflect most of the green light (centered on 533 nm) which is the reason why leaves appear green
to the human eye. A typical spectral reflectance curve is given in Figure 4.7.

Figure 4.7: The spectral reflectance curve of vegetation [Roman & Ursu 2016].

The physiological changes that comes with the growth of a plant, from the maturation phase
to its senescence, whether natural (phenological stages) or stress-related, strongly influence the
vegetation spectral signature. Regarding natural changes, when autumn comes for example,
plants decrease their photosynthetic activity, chlorophyll pigments disappear leaving the other
foliar pigments to express their colors until the deconstruction of the cell layers. Consequently,
there is a noticeable increase in reflectance in the longest wavelengths of the visible (yellow -
red) and at the same time, a decrease in reflectance in the near-infra-red.

Regarding plant stress, it also considerably changes the spectral properties of vegetation,
as the chlorophyll pigment rapidly decays and loses its absorption properties. Also, it results
in leaf chlorosis: a yellowing discoloration due to chlorophyll losing dominance. Stressed plants
have, therefore, a different spectral signature which can be observed in visible light and have
a lower reflectance in the near-infra-red (NIR) region. In addition, as shown in Figure 4.8,
reflectance varies not only according to state of health of a plant (a), but also according to
the types of plants (b). The spectral signature of the vegetation in the visible does not vary
according to the plant type, whereas in the near-infra-red, softwood trees, the pine tree for
example, have a lower reflectance than broad leaves trees, such as oak trees.

8https://e-cours.univ-paris1.fr/modules/uved/envcal/html/vegetation/caracteristique-vegetation/
proprietes.html.

https://e-cours.univ-paris1.fr/modules/uved/envcal/html/vegetation/caracteristique-vegetation/proprietes.html
https://e-cours.univ-paris1.fr/modules/uved/envcal/html/vegetation/caracteristique-vegetation/proprietes.html
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(a) (b)

Figure 4.8: Spectral signature variations based on: (a) physiological vegetation state, (b) vege-
tation type8.

Therefore, images captured in the visible spectrum can be visually interpreted, while the
ones involving bands from the invisible wavelengths or their combinations with visible light
require a mathematical transformations to make them interpretable.

In order to evaluate vegetation cover, vigor, and growth dynamics, many vegetation in-
dices (VIs) have been proposed in the literature within remote sensing applications using
different satellite sensors. They are quantitative measures and are based on the principle of
combining spectral bands to highlight specific characteristics of vegetation regarding growth
and health. The different extracted VIs rely on the spectral characteristics of vegetation and
the different instruments and platforms to determine which solution is best to get a particular
issue.

• The normalized difference vegetation index (NDVI):

With the use of high resolution spectral sensors, the number of bands obtained by remote sensing
is increasing which allows the proposition of a large range of vegetation indices for many remote
sensing applications. One of the most commonly used and implemented index is the Normalized
Difference Vegetation Index (NDVI) [Kriegler et al. 1969]. It consists of a normalized ratio
between the red and near-infra-red bands such as:

NDVI = NIR− R
NIR + R

, (4.1)

where NIR is the near-infra-red reflectance band and R is red reflectance band . It is based on
the difference between the maximum absorption of radiation in red as a result of chlorophyll
pigments and the maximum reflectance in NIR as a result of leaf cellular structure. Hence,
NDVI characterizes canopy growth or vigor and allows the distinction of vegetation from the
soil background. For vegetation, the range of NDVI values is between 0 and 1 with a sensitive
response to green vegetation but remains also sensitive to the effects of soil brightness, soil color,
atmosphere, cloud and cloud shadow. It also takes negative values between -1 and 0 in case of
clouds, water and snow.

• The ratio vegetation index (RVI):

Jordan [Jordan 1969] proposed in 1969 the ratio vegetation index (RVI), which is based on the
principle that leaves absorb relatively more red than infra-red light. The RVI is given by:
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RVI = NIR
R

(4.2)

Dense vegetation will generate high values of RVI, soil will lead to values close to 1, whereas
clouds, water and snow, which have high reflectance in the visible than the near-infrared, will
give values lower than 1.

• The brightness index (BI):

The brightness index permits to estimate whether the observed surface element is light or dark.
This index is therefore sensitive to the gloss of the soil, related to its moisture and the presence
of salts on the surface. It is also computed from the red R and near-infra-red NIR channels as
follows:

BI =
√

R2 + NIR2 (4.3)

• Normalized Difference Vegetation Indices involving red-edge bands (NDVIre2, NDII and
NBR)

The potential of the red-edge bands in detecting vegetation stress, forest disturbance and mois-
ture content changes has promoted the development of many red-edge related modified veg-
etation indices [Cheret et al. 2018], such as the NDVIre2, which has proven its sensitivity to
detecting changes in the canopy [Potter et al. 2012], the Normalized Difference Infrared Index
NDII [Ji et al. 2011] and the Noise Burn Ratio NBR [Keeley 2009]. They are computed using
the near infrared NIR and middle infra-red MIR bands. According to Figure 4.6, it gives:

NDVIre2 =
B8a− B6
B8a + B6

(4.4)

NDVII = B8− B11
B8 + B11

(4.5)

NBR =
B8− B12
B8 + B12

(4.6)

• Continuum removal-Short waved infra-red (CR-SWIR)

This index was recently introduced by Raphael Dutrieux et. al [Dutrieux et al. 2021b], in the
context of monitoring forest health, especially for bark beetle infestation detection. It uses near
and medium infra-red bands and is sensitive to the water content of vegetation. When the
vegetation is decaying, the index is high. Conversely, when the vegetation is healthy, the in-
dex will be low. For more information, the interested reader is referred to [Dutrieux et al. 2021b].

In addition to optical data, Synthetic Aperture Radar (SAR) images are generally preferred
when meteorological conditions are not suitable to acquire cloud-free optical images.

4.3.2 Radar data: Sentinel-1

SAR images has attracted a lot of attention and has been investigated in several studies
proving their effectiveness in many land cover monitoring applications.

In fact, in contrast to optical sensors, a radar is an active system. It permits to illumi-
nate the Earth surface using microwave energy and measuring the reflected signal. Then, the
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elapsed time and energy of the return pulse are recorderd by the antenna. Therefore, images
can be acquired day or night, completely independent of the solar lighting. In addition, the
radar signal penetrates the clouds without difficulty, allowing to acquire images regardless of
the weather conditions. Once the radar has emitted a microwave signal, the power with which
an object reflects the signal is measured. This is called backscatter. The amplitude and phase
of the backscattered signal depends on the physical (i.e., geometry, roughness) and electrical
properties (i.e., permittivity) of the image object. Amplitude is the strength of the radar
response and phase is the fraction of one complete sine wave cycle (a single SAR wavelength).
The phase of the SAR image is determined primarily by the distance between the satellite
antenna and the ground targets.

4.3.2.1 Acquisition modes and polarizations

The European Space Agency (ESA) launched one of the constellation of two radar satellite
Sentinel-1A in April 2014. It provides C-band images, that is to say with wavelengths of
5.6 cm, in both singular and dual polarization within a cycle of 12 days. Since 2016, the
acquisition is made every 6 days with the combination of the two satellites Sentinel-1A
and Sentinel-1B. Sentinel-1 images are available with two polarizations: in co-polarization
VV and crossed VH. Polarizations is a property of the electromagnetic wave that describes
its orientation. Thus in simple VV polarization, the waves are sent and picked up vertically
(V). In VH cross polarization, waves are emitted vertically (V) and are received horizontally (H).

Sentinel-1 data are available in the following acquisition modes:

• Interferometric wide swath (IW): This mode allows to take measurements on a swath
of 250 km with a 5 m × 20m resolution;

• Wave mode (WV): This mode is used to know the direction and height of ocean waves.
This mode acquires a series of 20 km × 20 km;

• Strip map (SM): This mode provides coverage with 5 m× 5 m resolution on a strip of
80 km;

• Extra-width swath (EW): This mode, similar to the IW mode, is used for maritime or
polar areas. It provides resolutions of 20 m to 40 m on a swath of 400 km.

In this work, Interferometric Wide Swath (IW) is the pre-defined mode over land and has
a swath width of 250 km. It provides dual polarization images in VV and VH. In addition,
Sentinel-1 images are available in two different formats: Ground range detected (GRD) format,
comprising perceived intensity and amplitudes and single look complex (SLC) format, which
contain phase information, useful for interferometric applications. However at C-band, for a
12 day interval, the interferometric coherence is lost on forested area. To illustrate this point,
Figure 4.9 (left) shows this coherence over the Montmorency forest, located near Paris. The
black color indicates a low coherence while the white color corresponds to a high coherence
value. In this figure, the forest is located at the center of the image (as seen in the right-sided
image). As observed, the interferometric coherence is low on the forested area.
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Figure 4.9: Left: Illustration of the interferometric coherence for an interval of 12 days between
two Sentinel-1 images of Montmorency forest. Right: optical image of the Montmorency.

For this reason, in the following, the interferometric phase will not be considered, only
radiometric attributes will be used to monitor forest health.

4.3.2.2 Derived vegetation indices

Regarding radar images, several approaches are used for monitoring crop growth by exploit-
ing the notion of polarization. Thus vegetation indices are calculated from the polarization
ratios. The use of indices is important as they are developed from a combination of radar
measurements, which can improve the sensitivity for estimating or monitoring a surface charac-
teristics while reducing other impacts (forest type and structural form, environmental conditions,
or radar imaging geometry including incidence angle and topography). Our analyses are based
upon the three following indices.

• Radar vegetation index (RVI):

The Radar Vegetation Index (RVI) was proposed in [Kim & van Zyl 2009] and is effective for
assessing plant biomass [Kim et al. 2012]. It is expressed as follows:

RVI = 8 VH
HH + VV + 2 VH

. (4.7)

It imposes three polarizations HH, VV and VH and can be considered as an alternative to
the NDVI index used for optical data [Sahadevan et al. 2013] where it is near zero for a smooth
bare surface and increases with vegetation growth. It has an enhanced sensitivity to vegetation
cover and biomass. In 2005, Trudel et al. introduced in [Trudel et al. 2012] the radar vegetation
index adapted to two polarizations (IVRD), which stands fo dual polarization radar vegetation
index. It permits the evaluation of plant biomass using only two polarisations, whether VH and
HH or VH and VV. They are computed such as:

IVRDHH =
VH

HH + VH
, (4.8)

IVRDV V =
VH

VV + VH
. (4.9)
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Also, Charbonneau et al. assumed in [Charbonneau et al. 2005] that HH = VV. This
assumption is valid when the interaction between the soil and vegetation is negligible. Thus
equation for RVI (4.7) reduces to:

RVI = 4 VH
VV + VH

. (4.10)

This index is useful in case of Sentinel-1 images where the provided data are given in only
two polarizations. It will be retained for the following.

• Radar forest degradation index (RFDI):

RFDI [Joshi et al. 2015] is an useful index when it comes to monitor changes in forest cover due
to deforestation and degradation. Its values range from less than 0.3 for dense forests, between
0.4 and 0.6 for degraded forests, and greater than 0.6 for deforested landscapes.

RFDI = VV−VH
VV + VH

. (4.11)

As shown in (4.11), RFDI can be used with dual-polarization imagery such as Sentinel-1.

• Volume scattering index (VSI):

VSI is an indicator of canopy thickness or density. It uses the average cross-polarized magnitude
CS = VH+HV

2 and the average like-polarized magnitude LK = VV+HH
2 such that:

VSI = CS

CS + LK
. (4.12)

By using the previous assumption that HH = VV [Charbonneau et al. 2005], (4.12) reduces to:

VSI = VH
VV + VH

= 4RVI. (4.13)

Since there is a linear relationship between the indices VSI and RVI, only one of them will be
used for the following.

4.3.2.3 Pre-processing methods

Pre-processing of SAR imagery was conducted using the ESA SNAP toolbox. SAR image
processing chain consists of 3 main steps: (1) Radiometric calibration; (2) Terrain correction;
(3) speckle filtering.

• Radiometric calibration

Before processing the SAR images, the data are radiometrically calibrated. Radiometric cor-
rection involves removing the misleading influence of topography on backscatter values. For
example, the correction eliminates bright backscatter caused by radar reflection from steep
slopes, leaving only the backscatter that reveals surface characteristics such as vegetation and
soil moisture.

• Terrain correction

SAR images are likely affected by geometric and brightness distortions over elevated and sloping
terrain due to the nature of the SAR range mapping and reflectance functions. In fact, it is due

https://step.esa.int/main/download/snap-download/


4.3. Sentinel remote sensing data 145

to side-looking rather than straight-down looking imaging and compounded by rugged terrain.
Therefore, before using SAR images, these distortions are removed through a process called
terrain correction. It consists on moving image pixels into the proper spatial relationship with
each other.

• Speckle filtering

In coherent imaging systems, speckle is a strong noise which visually degrades the appearance
of images. In fact, it is a physical phenomena generated during the process of creating the SAR
image and is caused by coherent radiation. As illustrated in Figure 4.10, within every pixel of
the resolution cell, many objects contribute to backscattering. The result is the coherent sum of
all contributions (vector addition of all the contributions in the complex plane). Resultant am-
plitudes interfere, either constructively (yellow vector) or destructively (red vector), depending
on the phase of the contributions. As such, the resulting images exhibit bright and dark pixels,
even for homogeneous regions. This phenomenon is called speckle noise and it often reduces the
quality of images and complicates image interpretation.

Figure 4.10: Every grey vector corresponds to a scatterer in the resolution cell. Resultant
amplitude of the pixel (red and yellow vector) is the coherent sum of all individual contributions9.

To reduce the speckle noise while preserving the informative structure of the underlying
image, several strategies have been proposed, such as the Lee’s multiplicative filter and its
variants [Lee 1980, Lee et al. 2009, Yommy et al. 2015].

Regarding the increased frequency of forest insect attacks and the attendant increase of
ecological and economic impacts, there is a strong demand for remote sensing-based monitoring
approaches for such applications. Many publications oriented their researches on remote sensing
data for detecting forest diseases and insect attacks. The following section gives some examples
of land cover and land use monitoring application involving Sentinel-1 and Sentinel-2 images.

4.3.3 Land cover and land use monitoring using Sentinel imagery

The increasing availability of global satellite coverage acquisitions, providing high spatial
resolution and temporal repetitiveness, such as those of the Sentinel satellites, allows the emer-
gence of methods based on the exploitation of dense time series. Many advanced methods,

9https://www.earthstartsbeating.com/2017/05/26/detroit-reducing-the-noise-speckle/

https://www.earthstartsbeating.com/2017/05/26/detroit-reducing-the-noise-speckle/
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dedicated for both pixel and object-based supervised classification, were applied using Sen-
tinel images. With the advancement in computing capabilities, focus was directed towards ma-
chine learning approaches, including random forests (RF), k-nearest neighbors (k-NN), support
vector machine (SVM) [Inglada et al. 2015, Denize et al. 2018, Thanh Noi & Kappas 2018],
and deep learning techniques such as convolutional neural network (CNN) and recurrent
neural networks [Segal-Rozenhaimer et al. 2020, Pelletier et al. 2019, Ndikumana et al. 2018,
Courteille et al. 2021].

4.3.3.1 Sentinel for agricultural monitoring

As an example, Sentinel-2 is an important tool for monitoring agricultural activities.
Various studies focused on developing methods to support agricultural activities. Many projects
aim at producing global agricultural maps using Sentinel-2 products with machine-learning
strategies. Other works also used Sentinel-2 images for managing agriculture, crop production
monitoring, crop type mapping, irrigation agriculture monitoring, and assessment of crop
health [Lambert et al. 2018, Hiestermann & Ferreira 2017], etc.

Furthermore, with the increasing potential of SAR images, as they provide spatial infor-
mation on agricultural crops, Sentinel-1 sensor is investigated for land cover mapping. For
example, [Abdikan et al. 2016] uses GRD products over the city of Istanbul in Turkey during
the year 2016. A composite images using VV, VH and (VV-VH) data are exploited. For the
classification, a supervised SVM method is implemented to map land cover types, that is water,
urban, forest, agriculture and bareland.

In addition, for the same purpose of mapping land cover areas, deep neural networks
(DNNs) are getting increasing attention to deal with land cover classification. For example,
[Segal-Rozenhaimer et al. 2020] proposed a convolutional neural network (CNN) algorithm for
the detection of cloud and cloud shadow fields in multi-channel satellite imagery, with the use
of Sentinel-2 and World-View-2 sensors.

4.3.3.2 Sentinel for forest monitoring

In the forestry sector, Sentinel-2 products have been powerful in many applications
including mapping of forest area, discrimination of forest types and setting their bound-
aries [Nzimande et al. 2021, Wang et al. 2018]. Also, it knows a successful interest for applica-
tions related to health monitoring such as leaf area index (LAI) analysis [Sibanda et al. 2019]
and invasive plant species monitoring [Kattenborn et al. 2019, Ng et al. 2017].
In [Kattenborn et al. 2019], random forest models are trained with multi-temporal Sentinel-1
and Sentinel-2 data to map three invasive species in Chile, where [Ng et al. 2017] aims at
comparing the use of Sentinel-2 and Pléiades images, combined with random forest classifier, to
produce a highly accurate vegetation map that would differentiate an invasive tree species from
native forest trees and mixed vegetation classes in Kenya. It has been concluded that despite
of the high spatial resolution, Pléiades images are expensive and the free of charge Sentinel-2
data provide a comparable alternative as its increased spectral resolution compensates for the
lack of spatial resolution.
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In the context of monitoring forest health at the national level, the french ministry of
agriculture and food has established an agreement with the joint research unit for territories
and environment through remote sensing and spatial information (UMR TETIS) of the national
research institute for agriculture, food and the environment (INRAE) of Montpellier in order
to develop a processing chain, called ForDead [Dutrieux et al. 2021a], allowing to detect and
map forest changes. The package is based on the analysis of Sentinel-2 image time series and
is already used in the context of the forest health crisis due to bark beetles in the North-East
of France. The main objective is to make it available and easily manipulated for a routine use
by all services and forest managers such as the ONF and the CNPF for all problems related to
forest health.

ForDead uses Sentinel-2 time series collected to define for each pixel a seasonality of the
index CR-SWIR, modelled using a harmonic function. The definition of a specific seasonality
to each pixel allows to take into account different data variability factors corresponding to
the mass of spruce: topography, exposure, tree density, nature of the undergrowth, possible
presence of other species. The CR-SWIR calculated for images acquired from the year of
interest are compared to the CR-SWIR expected by the periodic model, and values that deviate
too much are considered as anomalies. As the anomaly can be explained by multiple factors
other than bark beetles attack (imperfect atmospheric correction, presence of undetected clouds,
dry period, etc.), the pixel is considered to belong to the disease class when it is detected as
anomaly three successive times.

After assessing a general review of existing methods for monitoring forest diseases and
insect attacks using remote sensing data. The main contribution of this work is to exploit
Sentinel-1 and Sentinel-2 time series to monitor chestnut disease causes by phytophtoras. This
work is part of the TEMPOSS project in close collaboration with the national focal point
"Data, remote sensing and epidemiology" of the forest health department (DSF).

4.4 Chestnut ink disease

4.4.1 Context

The dieback of chestnut groves in Ile-de-France are due in particular to ink disease. This
is particularly the case in the forest of Montmorency (Val d’Oise) which represents the main
study area. Chestnut trees, which represent 70% of the Montmorency forest, are affected by
the ink disease. This disease is caused by a pathogen, namely the Phytophthora cambivora and
Phytophthora cinnamomi, that destroys the root system of chestnut trees. The two species
of Phytophthora produce the same symtpomas: the destruction of all or part of the root
system leading to the degradation of its canopy, or even the death of the tree. As illustrated
in Figure 4.11, chestnut trees affected by phytophtora are characterised by discoloration of the
foliage, where leaves become small and yellow, then branches start wilting until the death of
the tree.

10https://www.verneuil78.fr/wp-content/uploads/2021/04/article-etat-sanitaire-chataignier-IdF_
Oise.pdf

https://www.verneuil78.fr/wp-content/uploads/2021/04/article-etat-sanitaire-chataignier-IdF_Oise.pdf
https://www.verneuil78.fr/wp-content/uploads/2021/04/article-etat-sanitaire-chataignier-IdF_Oise.pdf
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Figure 4.11: Increasing stand levels of chestnut disease due to phytophtoras10.

In order to better characterise the extent of the phenomenon, which knows a rapid deteriora-
tion since 2016, several public (ONF) and private (CNPF) forestry organisms have joined forces
with the department of forest health (DSF) in a project to map the health status of chestnut
groves in Ile-de-France and in the Oise region based on the analysis of satellite images. It is in
this context that the TEMPOSS project was born, aiming at monitoring the forest disease by
exploiting Sentinel-1 and Sentinel-2 images.

4.4.2 Ground truth data

The construction of ground truth map is made by foresters who evaluate the infested areas,
the different observed stages and the expansion of the infestation. Despite the care taken in
data collection, observation are subject to several errors related to the following factors:

• Positioning error: First, there may be an uncertainty related to the geographic positioning
of the infestations. Indeed, it is left to the appreciation of forest workers who perform
a rough location on a map. It is likely to some error, which may change the quality of
the analysis results. In fact, this is the whole point of establishing a detailed observation
protocol for data acquisition. The more accurate the protocol is and is correctly followed
during field observation companions, the less positioning errors occur.

• Temporal error: A second potential problem is that the expansion of the disease is not
constant in time, but can evolve over a long period of time. Foresters delineate the infested
area at the time of its discovery. This area will vary depending on the expansion of the
disease. It is therefore possible that the area of damaged trees, delineated during surveys
of the evaluation period, does not correspond to the original surface marked out by the
forest agents.

• Enumeration error: A last possible difficulty remains in the criteria defining the limits of
the infested trees. The criteria used for comprehensive censuses are visual. They considered
an infested stand as belonging to a damaged class as several dominant trees are infested
in a small area. But there is still a proportion of healthy trees, or ruined trees due to
other factors. Since then, enumeration errors can easily happen when learning models on
inaccurate pixels.

In order to produce harmonized ground truth data, the collection of data in our case is made
by following a rigorous observation protocol. This latter has been developed corresponding
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to the different stages of disease or pest development (healthy stands and stands affected at
different degrees). The main objective is to extract terrain information, analyze and aggregate
information from various sources (different organisms interpretations) and produce a final ground
truth map.

4.4.2.1 Observation protocol

As several organisations are involved, and in order to produce an effective and homogeneous
mapping of the forest health status in a geographic information system (GIS), the DSF has
established a simplified assessment method called DEPERIS which can be used by all actors
who wish to carry out an assessment of the state of forest health. The method is based on two
criteria that describe the appearance of the tree crowns: branch mortality and lack of branching
(or lack of needles for softwoods). Those two points are complementary to determine the level
of the disease, represented by a score from 0 to 5. A tree is in the best apparent health when
its DEPERIS score is at the lowest or when it is ranked with a low letter from A to F in the
following abacus (Table 4.2).

Lack of branching (hardwoods)

Lack of needles (softwoods)

B
ra

nc
h

m
or

ta
lit

y

0 1 2 3 4 5

0 A B C D E F

1 B B C D E F

2 C C C D E F

3 D D D E F F

4 E E E F F F

5 F F F F F F

Table 4.2: Abacus describing the overall condition of the tree canopy can be combined to define
a synthetic DEPERIS decline score for each tree11.

Based on this protocol, the first step for mapping the chestnut groves in the Ile-de-France is
to choose a pure chestnut stand (more than 90 % chestnut trees), as homogeneous as possible
in terms of cover and health, then its center is defined and positioned. It should be located at a
distance of at least 60 m from another type of stand, a path, a track, a road, a clearing or any
other open space. Following the DEPERIS protocol, it gives rise to the classes described in the
diagram of Figure 4.12.

11https://agriculture.gouv.fr/la-methode-deperis-pour-quantifier-letat-de-sante-de-la-foret

https://agriculture.gouv.fr/la-methode-deperis-pour-quantifier-letat-de-sante-de-la-foret
https://agriculture.gouv.fr/la-methode-deperis-pour-quantifier-letat-de-sante-de-la-foret
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Figure 4.12: Considered (detailed and grouped) classes of the chestnut disease based on the
DEPERIS protocol.

For classes of healthy, declining and severely declining stands, a descriptive small square
of 20 dominant trees representing the characteristics of the class is geo-referenced using a GNSS
receptor. For the other classes, ruined stands and clear-cuts of up to one year, there is no need to
set a descriptive plot. In fact, the area of the ruined stand is measured with at least a minimum
radius of 20 m from the center. Initially, the dataset is constituted of six classes of intermediate
stages from healthy to ruined stand. As illustrated in Figure 4.12, close classes can be grouped
to simplify the exercise. In summary, two observation missions of the health status of chestnut
groves in the Montmorency state forest, particularly affected by the phenomenon, were carried
out in 2019 and 2020.

4.4.2.2 Data management

The data are centralized in the DSF department which make them available to all partici-
pating organisations. Using the coordinates of the center of the plot and the radius, the plots
were vectorized as discs. They cover a study area and have been integrated into a geographical
information system (GIS). They include:

• A vector layer of polygons of the area of interest delineating disease outbreaks.

• Characteristics of the area (density, stand type, disease degree, number and/or volume of
trees attacked, etc.)

The chestnut forests map is illustrated in Figure 4.13 where the blue highlighted areas corre-
sponds to chetsnut covers in Ile-de-France region.
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Figure 4.13: Sentinel-2 tiles covering the Ile-de-France region. In blue, chestnut groves in Ile-de-
France and Oise (sources: National institute for geographic and forest information (IGN) and
the national forests office (ONF))

Then, for our study, the satellite data used concern data acquired from the Sentinel-1 and
Sentinel-2 satellites. The studied period is from January 2018 to December 2020. As shown in
Figure 4.13, the area corresponding to the stands of interest are spread out over several Sentinel-
2 tiles. For our study, the focus is only on tile 31UDQ where most of acquisition campaigns are
carried out.

4.4.3 Dataset of experiment

For our study, we have constructed a dataset of experiment based on the provided ground
truth map. This dataset is used to build all of classification and regression algorithms proposed
on this chapter.

First, as shown in Figure 4.13, the area of study is very large, covering several Sentinel
tiles of 100 km2 each. We have restricted our study at analyzing two forests of the central tile
31UDQ, namely the Montmorency and Marly forests, where the infield observation protocol
were carried out. Table 4.3 summarizes the main characteristics of the considered dataset.

Image size Number of polygons

Montmorency forest 694 × 1009 104

Marly forest 1952 × 1477 61

Table 4.3: Characteristics of images of interest.

To provide a visual example of the study area as well as an overview of the ground truth
polygons, Figure 4.14 illustrates one of the considered areas of this study, which covers the
Montmorency forest.
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Figure 4.14: Example of Sentinel-1 and Sentinel-2 images of the Montmorency forest. Polygons
of colors: green, yellow, orange and gray are the ground truth data for (1) healthy or little
decline, (2) declining, (3) ruined and (4) clear-cut classes, respectively. To distinguish colours
in the radar image, the clear cut polygons are shown in red.

To analyze the disease behaviour, the study is carried out over a duration of several years
from January 2018 to December 2020. In this chapter, reported results will concern only the
year 2020 involving the ground truth map produced in 2020. For that, Sentinel-2 image were
downloaded as Level-3A products, which were already atmospherically corrected. They are
monthly summaries provided every 15th of each month from January to December 2020. For
optical data, 12 different dates were used. Regarding the radar imagery, more images are
available since the electromagnetic waves penetrate through cloud cover. A total number of 26
Sentinel-1 images are considered. Table 4.4 gives an overview of the used dataset characteristics
by summarizing the number of ground truth polygons and the total number of pixels within
each class.

Class 1 Class 2 Class 3 Class 4

Number of polygons 50 27 26 62

Number of pixels 1360 543 492 7117

Table 4.4: Overview of ground truth data for each class.

To summarize, the study of this work and the results of all following experiments are reported
for the three cases:

• Optical data derived from Sentinel-2 images involving 10 spectral bands: 4 bands at
resolution of 10 m and 6 bands at the resolution of 20 m. To simplify the processing
workflow, the 20 m resolution images are re-sampled to the smallest resolution (i.e, 10 m).

• Radar data involving the provided polarizations VV and VH and different combinations
of those latter, for instance the ratio VV/VH, the dual difference intensity V V −V H, the
dual multiple intensity V V × V H and the vegetation indices RFDI and RVI detailed in
section 4.3.2.2.

• Combination of optical and radar images to operate simultaneously with information
provided by the two sensors. SAR imagery offers roughness information and is not sensible
to weather conditions, while multi-spectral images could provide color information of the
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study area. To evaluate their complementarity, we propose a fusion scheme of both radar
and optical images.

4.4.3.1 Temporal behaviour

The relationship of different Sentinel-2 indices over the area of interest were investigated.
Reflectances change with vegetation phenology over time. What is meant by phenology is the
study of cyclic and seasonal natural phenomena. Thus, the information provided by the Sentinel-
2 images will not be the same according to the dates of acquisition. Temporal profiles of the
indices can therefore give an overview about the development of the disease over time, and the
pertinence of the considered indices. Figure 4.15 shows the NDVI index behaviour derived from
Sentinel-2 images for the 4 considered classes during the year 2020.
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Figure 4.15: The median and interquartile range of the NDVI variation according to each class
during the year 2020. (a) Temporal profiles for each class, (b) representation of these profiles
on the same plot.

The evolution of vegetation phenology is well observed, with an increase of NDVI in
spring-summer and a decrease in the autumn for the classes (1), (2) and (3). Also, the clear cut
class can be easily separated from the three other classes. It has a lower NDVI index during the
vegetation period. However, for the 3 other classes, it is difficult to make a distinction between
different health status since the temporal behaviour is almost similar for the three classes (1),
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(2) and (3) as shown in Figure 4.15 (b). This point constitutes the main challenge of this dataset.

For further, as the vegetative period is well marked, the focus is within that time-frame.
Retained Sentinel images, whether optical or radar, cover the period between May and Septem-
ber 2020. Table 4.5 gives a summary of the used dataset.

Attributes Number of images

Radar data VV, VH, VV/VH, VV+VH, VV×VH, May to September

(Sentinel-1) RVI and RFDI 26 images

Optical data B2, B3, B4, B8, May to September

(Sentinel-2) B5, B6, B7, B8a, B11, B12 6 monthly summaries

NDVI, BI, RVI, NDVIre2, NDII and NBR

Table 4.5: Summary of the used dataset.

4.5 Experiments

Preliminary studies were conducted by our project partner, Thierry Belouard from DSF.
Based on optical Sentinel-2 images, he has applied a random forest algorithm to classify different
disease levels [Carteron 2019]. From this point, the objective of this study is to present results
obtained with the random forest classifier and to compare its performance with the use of second-
order descriptors. In this section, a brief overview of the random forest algorithm is assessed.
Then, to evaluate the potential of second-order descriptors using Sentinel-1 and Sentinel-2 data,
an ensemble based strategy is proposed.

4.5.1 Random forest algorithm

A random forest [Breiman 2001] is an ensemble learning strategy that is used to solve re-
gression and classification problems. It is based on a combination of many classifiers, namely
decision trees, to provide solutions to complex problems. Training sets for multiple decision
trees in random forest are made using the concept of bootstrapping, which is basically random
sampling of the initial training set with replacement.

4.5.1.1 Classification

In classification, the prediction of the random forest is based on the collective predictions of
the trees that make up the forest. The resulting random forest classifier with T decision trees
is noted as:

H(x) = {ht(x)}t=1,...,T , (4.14)

where ht(x) is a random tree which produces a unique decision. The final decision is obtained
by electing the most dominant class among predictions by individual trees such as:

vc =
T∑
t=1

I(ŷt == c), (4.15)
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where ŷt is the prediction of the t−th tree ht and the indicator function I(ŷt == c) takes
the value 1 if the condition is met, as such the vote is counted. Given those votes, the final
prediction ŷ of the random forest is the class with the highest number of votes:

ŷ = argmax
c∈{1,...,C}

vc (4.16)

4.5.1.2 Training the random forest

The training stage of a random forest algorithm is based on the idea of bootstrap aggregating,
which works by repeating the following steps for each of the T trees that form the random forest.

1. randomly sample, with replacement, L training examples from the training set;

2. train a tree-based model on the selected sample of first step.

The goal behind constructing the T trees is to divide data into small and homogeneous groups,
where each node is constituted of data coming mostly from the same class. Several parameters
of the algorithm can be adjusted but two are essential to optimize it, the number of trees
that the model will calculate T and the number of predictors tested at each node L whose
default value is, in the case of classification, equal to the square root of the number of predictors.

As a splitting criterion, the Gini impurity, introduced by Breiman et al. [Breiman 2001], is
a commonly used measure of non-homogeneity. It is defined as:

G =
∑
c

pc(1− pc), (4.17)

where pc is the probability of class c and the interval of Gini index is [0, 0.5]. The Gini index is
the smallest when the sample set is pure. In addition, the number of considered trees, T , is a
hyper-parameter that can be tuned depending on the training set size. For that, cross-validation
or out-of-bag error can be employed. The out-of-bag (OOB) error is a method of measuring
the prediction error and allows validating the model. In fact, while splitting the samples to
feed each node, data points were chosen randomly and with replacement, and the data points
which are not a part of that particular sample are known as the out-of-the-bag (OOB) sample.
The OOB error is the average error, for each observation in the training set, calculated using
predictions from the trees that do not contain it in their respective bootstrap sample. Globally,
the larger is the number of trees T , the less is the OOB error. It is because a large number of
trees contributes to the proper generalization of the model. There is however no need to run
the algorithm with too many trees T . From of a certain value, the OOB error is only slightly
improved, where the calculation time increases very substantially.

4.5.2 Application to chestnut ink disease monitoring

Random forest algorithms became popular in applications related to mapping diverse range
of vegetation attributes in which they are known to perform well, are fast to compute and easy
to tune. Although it requires that the time series dataset is transformed where the temporal
arrangement structure is discarded. As such, it implicitly supposes that the observations are
independent. Given a sequence of numbers for a time series dataset, we can restructure the
data by using time steps as input variables. For a series X of length T and attributes V , it can
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be phrased as an input observation of T × V attributes.

To evaluate the classification performance, the accuracy of the methods are computed in
terms of the overall accuracy (OA) and the Kappa coefficient (K). First of all, in the context
of chestnut ink disease, preliminary experiments were carried by performing a simple random
forest algorithm to evaluate the potential of considered attributes, which are the spectral bands
and the vegetation indices. The obtained results regarding optical data imagery are reported in
Tables 4.6 and 4.7. Table 4.6 shows the classification results using 10 Sentinel-2 spectral bands
whereas Table 4.7 gathers both spectral bands and vegetation indices derived from Sentinel-2
images. Random forest default settings are retained and a total number of 32 polygons are
considered for the training stage.

• Classification results with optical data using spectral bands: the four bands at a resolution
of 10 m , and six bands at a resolution of 20 m:

Class 1 Class 2 Class 3 Class 4

Class accuracy 49.5 ± 12.2 42.1 ± 12.1 61.6 ± 7.6 77.0 ± 7.5

Overall accuracy 59.8 ± 4.7

Kappa accuracy 45.4 ± 6.0

Table 4.6: Classification performance involving only spectral bands of Sentinel-2 images.

• Classification results with optical data combining the previous spectral bands and vegeta-
tion indices introduced in section 4.3.1.2, namely the NDVI, BI, RVI and indices exploiting
red-edge bands: NDVIre2, NDII and NBR.

Class 1 Class 2 Class 3 Class 4

Class accuracy 48.8 ± 13.8 47.3 ± 11.3 63.8 ± 9.6 84.3 ± 6.2

Overall accuracy 62.8 ± 6.4

Kappa accuracy 50.0 ± 8.2

Table 4.7: Classification performance involving spectral bands and vegetation indices derived
from Sentinel-2 images.

As observed, a slight gain 3% is obtained when using vegetation indices.

4.5.3 Ensemble covariance pooling for chestnut ink disease classification

Since second-order statistics demonstrated a great success in the previous chapters. It is
obvious to exploit their potential in applications related to forest health to enhance classification
performance. For that, the proposed approach is based on a global covariance pooling where
polygons are considered as individual observations. As the remote sensing data is sensitive
to outliers, we also exploit the benefit of combining several classifiers to improve classification
robustness. The sub-sampling is performed randomly, without replacement, where a predefined
number of polygones are selected to fed each subset. Then an SPD matrix is computed. The
general framework of a single subset is illustrated in Figure 4.16.
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Figure 4.16: Global covariance pooling framework.

To deal with the geometrical properties of the SPD matrix space, the log-Euclidean frame-
work is applied. Hence, second-order statistics of each subset are transformed to their log-
Euclidean representation as detailed in equation (1.56) of chapter 1 and are then given as inputs
to the random forest classifier. At the end, a majority vote is applied to produce the final pre-
diction as shown in Figure 4.17.

Figure 4.17: Ensemble global covariance pooling framework.

As seen, several ensemble parameters need to be tuned, namely, the number of subsets N

and the subset size k which represents the number of considered features from the initial set of
V × T features. To assess a fair comparison, four kind of descriptors are considered:

• the mean of polygons, which represents a first-order statistical feature. Let’s consider a
set of pixels xi{i=1,...,M} belonging to a single polygon, the mean is given by:

µ =
1

M

M∑
i=1

xi,

It "roughly" corresponds to the random forest classifier used in the previous section.
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• the covariance matrix, where each polygon is represented by a covariance matrix, defined
by:

C =
1

M

M∑
i=1

(xi − µ)(xi − µ)T

• the combination of covariance, after applying the logarithm mapping and the vectorization
operations to produce its log-Euclidean representation CLE (see equation (1.56) of chap-
ter 1), and mean to verify the benefit of fusing first and second-order statistical features
through a simple concatenation, such as:

(CLE , µ) = Concat
(
CLE , µ

)
,

• and the full local Gaussian descriptor (Augmented SPD matrix), which is:

Caugmented = |C|−
1

k+1

[
C+ µµT µ

µT 1

]
.

In the following, the performance of Sentinel-1 and Sentinel-2 imagery are investigated for mon-
itoring the chestnut disease on the Montmorency forest.

4.5.3.1 Optical data

Figure 4.18 assesses the comparison between different considered descriptors. Moreover,
to evaluate the influence of the ensemble parameters, different values of number of subsets N

and subset size k are experimented. As observed, the classification results for this method are
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Figure 4.18: Optical imagery classification results: Comparison between first and second-order
based models for various ensemble parameter setting.

relatively stable regarding the number of subsets N and the considered features k for each subset.
Therefore, the best results are recorded when using the full Gaussian descriptor. It demonstrates
the benefit of using second-order features compared to the first-order features represented by the
mean. Under this configuration, and using the parameters N = 50 subsets, and k = 9 features
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for each subset, a detailed summary of the obtained results are reported in Table 4.8 comparing
the ensemble model whether using first or second-order statistical features.

Class 1 Class 2 Class 3 Class 4 OA (%) Kappa (%)

1st-order 48.5 ± 12.1 42.1 ± 11.3 61.6 ± 7.6 76.2 ± 7.6 58.8 ± 4.7 44.6 ± 6.0

2nd-order 73.8 ± 10.2 27.3 ± 10.1 68.8 ± 5.9 89.5 ± 4.6 70.9 ± 2.8 59.6 ± 3.5

Table 4.8: Classification performances with optical data (Sentinel-2) for comparison between
first and second-order models: Use of the sample mean for the first order strategy, and the
global covariance pooling approach involving the full Gaussian descriptor for the second-order
strategy (N = 50 and k = 9).

Table 4.8 depicts the accuracy for each class. As shown, best results are recorded for the
prediction of the clear cuts (class 4) while it totally fails classifying the damaged trees (class 2).

4.5.3.2 Radar data

First of all, in the same manner than with optical data based model, experiments carried
out in Figure 4.19 will be used to verify the influence of ensemble parameters and the chosen
descriptor on the classification performance using the radar imagery. One more time, the radar
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Figure 4.19: Radar imagery classification results: Comparison between first and second-order
based models for various ensemble parameter setting.

imagery acts similarly than optical data where the augmented covariance shows the highest
classification performance. To summarize, Table 4.9 assesses comparison between first-order
(mean) and second-order (augmented covariance) based ensemble models. Same conclusions
can be drawn. Accuracy assessment for the classification results highlights the potential of
detecting the clear cuts areas.
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Class 1 Class 2 Class 3 Class 4 OA (%) Kappa (%)

1st-order 44.5 ± 12.9 46.3 ± 9.2 65.0 ± 4.5 69.2 ± 7.8 56.2 ± 6.2 41.9 ± 7.6

2nd-order 74.2 ± 10.9 11.5 ± 10.4 65.5 ± 7.3 83.7 ± 7.5 66.1 ± 3.1 52.5 ± 3.6

Table 4.9: Classification performances with radar data (Sentinel-1) for comparison between first
and second-order models: Use of the sample mean for the first order strategy, and the global
covariance pooling approach involving the full Gaussian descriptor for the second-order strategy
(N = 50 and k = 9).

4.5.3.3 Fusion of optical and radar imagery

Furthermore, since radar and optical data do not capture the same information, it can be
of interest to combine these two kind of information. In the proposed framework, we simply
propose to concatenate the optical and radar features as input of our ensemble global covariance
pooling model.

Optical imagery Radar imagery Fusion

OA (%) 70.9 ± 2.8 66.1 ± 3.1 71.3 ± 3.1

Kappa (%) 59.6 ± 3.5 52.5 ± 3.6 59.7 ± 4.1

Table 4.10: Ensemble covariance pooling classification results summary comparison between the
use of optical, radar data and the fusion of both of them.

Finally, classification results reveal a slight benefit of exploiting second-order statistics by
means of combining covariance matrix descriptor and the mean vector. To synthesize, based
on tables 4.8 and 4.9, we observed that classification performs well to detect clear-cut areas.
Nevertheless, it remains not efficient enough to distinguish the different stages of the disease.
Moreover, the different type of remote sensing imagery have approximately comparable be-
haviours with a small gain of the use of optical and the fusion scheme compared to the radar data.

For the sake of improvement, as the disease evolves continuously from healthy stands to
completely destroyed trees, we propose to reformulate the problem as predicting a quantitative
variable corresponding to a forest degradation index. For that, a regression model is proposed.

4.5.4 Ensemble covariance pooling for chestnut ink disease regression

Regression trees are constructed by a recursive partitioning of the input space based on
some criterion to estimate the regression function. In the regression setting, the prediction of
the random forest is the average of the predictions made by the individual trees. If there are T

trees in the forest, each providing a prediction ŷt, the final prediction ŷ is obtained by:

ŷ =
1

T

T∑
t=1

ŷt (4.18)

In contrast with classification methods, the use of regression analysis allows to estimate not
only the discrete stages of forest disturbances (e.g., damaged vs. healthy) but also continuous
defoliation or tree mortality levels from none to 100%. In the present study, we derived a
quantitative forest health indicator using the provided health status scores.
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4.5.4.1 Forest health indicator

As explained in section 4.4.2.1, the disease levels are ranked following the DEPERIS
protocol, where a tree is in the best health when its score is the lowest, i.e. when it is ranked
using a score from 0 to 5 or letters from A to F.

A clear cut can appear once a stand is ruined. But it can also happen for an healthy stand
which constitutes the final step of the forest cycle. As observed in the previous section, this
class can be quite easily detected with whether optical or radar image. For this reason, clear
cuts will not be taken into account in the following. Type A trees are the healthiest trees and
type F trees are the most affected by ink disease. According to those latter score, we derived
the forest health indicator to estimate continuous defoliation according to the percentage of
healthy/decaying trees. It is given by:

I =
5× (%A) + 4× (%B) + 3× (%C) + 2× (%D) + 1× (%E)

5
. (4.19)

The forest health indicator represents a weighted average of the DEPERIS scores. It ranges
from 0 to 1. The lowest score corresponds to a stand composed of 100% of type F trees while the
maximum value of 1 is reached for healthy trees (100% of type A). Since this health indicator
is a continuous variable, a regression model should be used to predict it from Sentinel-1 and
Sentinel-2 observations. For that, the proposed ensemble global covariance pooling framework
is re-adapted where the base regressor is a random forest.

The Mean Squared Error (MSE) is used as a default metric for evaluation of the regres-
sion performance of the following experiments. In that case, the lower the MSE, the better the
performance are.

4.5.4.2 Global covariance pooling

In the same spirit of the experiment carried out for the classification case. Figures 4.20
and 4.21 assess comparison between different choices of first and second-order descriptors, as
well as their combination regarding optical and radar data, respectively. Also, it allows to tune
the ensemble parameters with N the number of considered subsets and k the features retained
for each subset.
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Figure 4.20: MSE comparison between different descriptors using optical data.
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Figure 4.21: MSE comparison between different descriptors using radar data.

As shown, results are quite stable regarding the number of chosen subsets (N) and the size of
each subset (k). However, best results are recorded when using second-order statistical features
whether combining first and second-order descriptors (mean + covariance) or using the full
Gaussian descriptor (augmented covariance). In the following, first and second-order strategies
are compared to illustrate the potential of each. For that, mean feature is compared with the
covariance and the combination of both of them using optical and radar imagery as well as the
fusion of both of them. Ensemble parameters are set to N = 50 subsets with k = 5 features for
each subset. The results are displayed in Figure 4.22.
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Figure 4.22: Regression model sample illustration. Comparison between the first order based
model (mean), second-order (covariance) and combination (mean + covariance) while using
optical, radar and fusion of both optical and radar data.
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Through the obtained results, the following conclusions can be drawn when comparing the
three statistics, i.e. the mean vector, the covariance matrix and the combination of the two.

• The use of mean (left of Figure 4.22) operates well when it comes to health indicator values
lower than 0.5, this mainly concerns the advanced stages of the disease.

• Meanwhile, the use of covariance matrices (middle of Figure 4.22) allow a better detection
of first classes related to healthy or little declining trees. That is for values higher than
0.5.

• The combination benefits from the predictive power of both, first and second features
(right of Figure 4.22). As observed, the samples are slightly better predicted.

Quantitatively, the measured mean square error (MSE) for all experiments is represented on
Table 4.11.

Optical imagery Radar imagery Fusion

M
SE

Mean 2.87×10−2 2.96×10−2 2.78×10−2

Covariance 3.17×10−2 3.20×10−2 2.83×10−2

Covariance + mean 2.67×10−2 2.79×10−2 2.59×10−2

Table 4.11: Ensemble covariance pooling regression results comparison between the use of opti-
cal, radar data and the fusion of both of them.

Results show a minor improvement when combining first and second-order statistical features,
for instance the mean vector and the covariance matrix descriptors. Furthermore, the use of
optical and radar data in a fusion scheme brings a small enhancement compared to their use
separately.

4.6 Conclusion

This chapter is aimed to figure out the potential of using Sentinel-1 and Sentinel-2 imagery
for monitoring the chestnut disease of Montmorency forest. First of all, a review of different
forest diseases is assessed as well as a brief overview of the remote sensing based methods
dedicated to analyze, quantify and monitor forest health issues. Then, the focus is on Sentinel
data imagery where the characteristics of two sensors are summarized and some recent studies
involving those satellites for land cover and land use applications are investigated.

In this context, the TEMPOSS project objectives are toward the monitoring of forest
changes due to sylvosanitary problems, in particular the chestnut ink disease and the bark
beetle infestations. Regarding the outbreaks of bark beetles in spruce and pine forests localized
in north-eastern France (Grand Est and Bourgogne-Franche-Comté regions), a preliminary
study was conducted (but not presented in this chapter). Due to global warming, this insect can
reproduce several times on a year which causes severe and rapid forest damages. To monitor
effectively the changes that take place within a short period, it is required to use remote sensing
data with high temporal resolution. Regarding optical data, Sentinel-2 of level 2-A are well
suited. Therefore, provided images have an irregular time lag since orbits with different phases
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are involved. Also, due to clouds and shadows, many images are discarded and the irregular
sampling is more pronounced. In addition, the temporal signature is not sufficiently marked.
Indeed, capabilities of optical satellite data to detect the first stage of a bark beetle infestation,
known as the green attack, are limited because no discoloration of the needles occurs at this
stage. For all those reasons, the first obtained classification results on the damage caused by
bark beetle attacks in the forests of the Meuse, with the use of Sentinel-2 time series, were not
satisfying.

In this work, attention is given to the chestnut ink disease that results on significant de-
foliation and tree mortality in France, especially in the forest of Montmorency (Val d’Oise).

From a methodological point of view, optical and radar sensors are analyzed separately
and in combination to detect the different levels of the disease. The remote sensing data were
acquired during the year 2020. In order to make the distinction between healthy stands and
areas affected by the phytophtoras, two statistical approaches were compared. The first one is
based on first-order statistical feature, employing a simple random forest while the second model
exploit dependencies between different attributes by means of global second-order statistics.
The highest classification accuracy was recorded for clear cut areas in comparison with other
classes.

Since the disease continuously changes over time, the classification problem is reformu-
lated as a regression analysis. We have introduced a forest health indicator and proposed to
re-adapt the ensemble learning based on covariance pooling framework. When it comes to
results, the combination of the first and second-order statistics show their complementarity
regarding different disease levels. In addition, the fusion scheme of optical and radar data
demonstrates a slight improvement. However, the use of the global covariance pooling approach
requires the availability of homogeneous areas, in this case calculus are done directly on
polygons. This makes it an object-based method. Therefore, this technique cannot be applied
to any forest area without a first step of data collection in order to bring out the homogeneous
areas of interest. To overcome that, a pixel-oriented method could be more appropriate where
the area of interest would be treated without any prior information. For that, a pre-processing
step can be applied to extract homogeneous areas using a segmentation algorithm before
performing the proposed covariance pooling approach, with for example a superpixel approach
(SLIC, etc.) [Achanta et al. 2012].

Future studies should investigate whether the findings from the current study can be vali-
dated on larger areas and different forest health applications such as the bark beetles attack. In
addition, to improve the results, one can explore monitoring the long-term, including the his-
torical impacts of diseases and insects on forests. Meanwhile, the use of other rich indices such
as the CR-SWIR index provided from the developed ForDead package [Dutrieux et al. 2021a]
could be of great interest for chestnut ink disease application.





Conclusions and perspectives

Conclusions

This main objective of this PhD thesis is to propose new ensemble learning methods on the
space of covariance matrices. In this setting, we have conducted supervised classification on the
basis of the log-Euclidean metric, where covariance matrices of CNN features or multispectral
attributes were represented by their corresponding log-Euclidean vectors. We have evaluated
the potential of these second-order features, with comparison with first-order based models, for
various applications including remote sensing scene classification and time series classification.
Additionally, a special interest has been given to assess the potential of radar (Sentinel-1) and
optical (Sentinel-2) images to monitor forestry health problem, in particular regarding the
chestnut ink disease in the Montmorency forest.

In the context of both applications, whether for time series classification or image classifi-
cation, we were interested in a problem of classification on the space of covariance matrices.
Chapter 1 introduced the space of symmetric positive definite matrices and the basic notion of
information geometry that are necessary to handle this kind of data. For that, two complete
Riemannian statistical frameworks, based on the log-Euclidean (LE) and affine-invariant (AI)
Riemannian metrics, were presented. Gaussian models are considered on both metric spaces, as
well as their Gaussian mixture model extensions. In practice, regarding the comparison of their
corresponding GMM models, close conclusions were drawn where comparable classification
results were obtained. Therefore, the use of AI metric leads to very complex calculations
whereas considering the Log-Euclidean metric, the GMM modeling is limited to a single tangent
plane defined at the identity matrix. However, projecting covariance matrices on a tangent plane
can lead to projection distortions. To overcome this problem, we have proposed to consider
a Gaussian mixture model (GMM) with multiple reference points, one for each component of
the model as well as deriving an expectation-maximization algorithm to estimate the GMM
parameters. It allows limiting the distortion during the projection as well as maintaining the
computational complexity at its lowest.

Based on that general mathematical background for the log-Euclidean representation
of a covariance matrix, and motivated by the success of deep neural networks and hybrid
architectures, we have proposed in chapter 2 two hybrid transfer learning approaches based on
covariance pooling of CNN features. The first approach, called the hybrid log-Euclidean Fisher
vectors (Hybrid LE FV) and published in [Akodad et al. 2018b], relies on the log-Euclidean
Fisher vector encoding of region covariance matrices of first and second CNN layers. The
second architecture, uses high-level features issued from deeper layers that are pooled together
by computing their covariance matrix, namely the ensemble learning covariance pooling
(ELCP) [Akodad et al. 2019c]. In order to give more importance to small objects of interest
in the scene, the visual saliency map are used, where largest weights are given to the most
salient regions during covariance computation. Furthermore, to take full advantage of the
local and global aspects, we have proposed to fuse both strategies on an ensemble learning
architecture based on the most diverse ensembles. The proposed Ensemble LE FV - ELCP
efficiently combines the provided decisions and allows to enhance the classification performance.
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The resulting approaches have been applied for different remote sensing scene classification
problems, including aerial and satellites based images, and they demonstrate a significant
accuracy improvement compared to state-of-the-art methods. This is firstly thanks to the use
of second-order statistics through the covariance pooling and secondly by means of ensemble
learning techniques that helped enhancing the performances.

Time series classification is a general task that can be useful across many subject-matter
domains and applications. The overall goal of chapter 3 focuses on extending some classification
algorithms to second-order statistical features. For that, the study was carried out step by
step. Starting from the point-to-point distance measurement between two time series, we have
highlighted two limitations of the usual Euclidean distance, namely, its sensitivity to temporal
transformations, such as speed changes between the two sequences and its variance toward
re-parameterization. To overcome those drawbacks, we have investigated the Dynamic Time
Warping (DTW) to limit the distortion in the time axis and the re-parameterization invariance
is solved by the use of square-root velocity function (SRVF) representations of the considered
time series. Furthermore, the second-order matrix trajectory (SPD-MTS) is introduced to
take into account the dependencies between time series attributes. Since then, multivariate
classification problem is rephrased as a second-order matrix trajectory classification problem.
Given that, the SRVF framework is extended to the transport square-root velocity function
(TSRVF) representation [Su et al. 2014a] as a representation that provides a way to deal with
trajectories on Riemannian manifolds while preserving invariance properties. Moreover, in
order to get benefit of the advantages of kernel methods, codebook based representations and
ensemble learning strategies, we have investigated the potential of extending the time series
cluster kernel (TCK) [Mikalsen et al. 2018] method to second-order matrix trajectories, namely
the second-order TCK (SO-TCK) algorithm [Akodad et al. 2020a]. All these approaches were
validated on various multivariate time series including applications on action recognition and
crop classification.

Finally, in the context of forest health issues, chapter 4 focused on monitoring the chestnut
ink disease in Montmorency forest. We evaluated the potential of both radar and optical
images acquired respectively by Sentinel 1 and 2 sensors. We also investigate the interest
of a multimodal approach by combining these two kinds of data. The main challenge in
this application is the need to find patterns in the data that are different between classes in
order to determine the class of the time series at hand. To this end, we first reviewed some
state-of-the-art vegetation and degradation forest indices that can be extracted from satellite
images to monitor forest health. Then, based on the covariance pooling of these indices, we
have introduced an ensemble learning approach for the classification of the forest health status
(healthy, declining, severely declining, and clear cut). Next, as the disease evolves continuously
from healthy stands to completely destroyed trees, we proposed to reformulate the problem as
predicting a quantitative variable corresponding to the forest degradation (or health status)
index. We also have demonstrated how the proposed classification model can be adapted to
this regression problem. On that basis, we have evaluated the potential of Sentinel 1 and 2 data
for this application.

The main contributions and the obtained results in the course of this thesis work have
been valued by several scientific publications: a journal article and four conference papers. In
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addition, it is worth noting that the different projects involved have opened the opportunity to
propose several internship subjects and thus to supervise five master students.

Perspectives

The work of this thesis have opened the way to many prospects and areas of improvement.
At the end of each chapter, we have drawn some future works. In this section, we propose to
develop some of these ideas.

Since the considered remote sensing datasets are of small dimension, we have chosen the use
of pre-trained CNN models on the ImageNet dataset, to transfer the learning to our datasets
of interest. However, ImageNet dataset is constituted of computer vision images, which have
different characteristics than remote sensing images, usually made of multiple spectral bands.
Pre-trained models on the ImageNet dataset are, therefore, not the most relevant for remote
sensing classification problems. Recently, with the increase of freely available satellite images,
covering large areas and providing different temporal and spectral characteristics, new large
remote sensing databases have emerged. For example, BigEarthNet12 is a benchmark archive,
consisting of 590,326 pairs of Sentinel-1 and Sentinel-2 image patches. Pre-trained models on
this dataset are hence more suitable to remote sensing application.

To go one step further, the proposed second-order based architectures could be extended
to an end-to-end learning strategy which would permit developing forward and backward
propagation regarding second-order pooling layers. In that context, several methods were
proposed in the literature to integrate global covariance pooling into deep CNNs. For example,
the global Matrix Power Normalized COVariance (MPN-COV) pooling architecture proposed
in [Li et al. 2018] is based on capturing CNN feature maps correlation through a robust covari-
ance matrix estimator and thus produces a normalized covariance matrix as a representation.
Similar idea may be considered here to extend the proposed ensemble covariance pooling
(ELCP) method to an end-to-end training. A successful first attempt was completed during
this thesis by a master student, Maria-Camelia Puscasu, where she has achieved, along the
same lines as the MPN-COV technique, an end-to-end training of multi-layer ensemble based
method involving covariance pooling layers for remote sensing scene classification and texture
classification.

Moreover, training such a complex model may include extremely complex problem state-
ments with expensive computationally costs. One solution that attracted an increasing
attention in recent years rely on the use of knowledge distillation [Hinton et al. 2015]. It is
the process of transferring knowledge from a large model to a smaller one while preserving
comparable performance. For example, in our case, the ensemble learning strategy knowledge
may be transferred to a simple CNN model which would be less expensive.

Besides, saliency based algorithms attracted intense attention in recent years. It permits
increasing the representation power of many models by focusing on important features and
reducing the impact of unnecessary ones. In this work, we have demonstrated the potential
of weighting covariance matrices by saliency. Therefore, since saliency maps are generated

12http://bigearth.net/

http://bigearth.net/


170 Chapter 4. Forest health monitoring using Sentinel-1 and Sentinel-2 time series

using a pre-trained model, the produced attention maps remain the same for each subset while
feature maps vary from one subset to another. To overcome that issue, different architectures
were proposed in the literature to design an attention module. For example, the Convolutional
Block Attention Module (CBAM) [Woo et al. 2018] took inspiration from the CNN model to
extract informative features by blending cross-channel and spatial information together. By
incorporating this trainable module on the ELCP branches, the learning will be made using the
corresponding subset feature maps in the channel and spatial axes respectively.

Furthermore, many works focuses on neural network strategies to deal with time series
classification problems, one candidate is the convolutional neural network (CNN) which is
the most popular, since it is able to successfully capture the spatial and temporal patterns
through the use of trainable filters, assigning importance to specific patterns using trainable
weights. Back to SO-TCK strategy, consideration might be given to integrate CNN networks
on the proposed architecture. Following the idea of chapter 2, an hybrid architecture may be
developed combining pre-trained CNN models and the proposed SO-TCK method. By doing
so, convolutional layers perform a convolution of an input series with a set of filter matrices to
obtain as output different series of feature maps, with the goal to extract richer statistics of
high-level features. Those produced convolutional time series would be used further to compute
second-order matrix trajectories.

In the context of forest health monitoring, as a perspective, the proposed strategy can be
complemented by overcoming the need of homogeneous areas, for covariance pooling, with a
segmentation algorithms which would be seen as a pre-processing step. For example a super-
pixel approach (SLIC, etc.) can be used [Achanta et al. 2012]. In addition, the study may be
extended to a longer time period to include the multi-year aspect as well as considering other
weather information such as temperature and rainfall to evaluate their effect. Also, the proposed
strategies could be tried on other applications related to forest health diseases.
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Abstract: In view of the growing success of second-order statistics in classification
problems, the work of this thesis has been oriented towards the development of learning
methods in manifold. Indeed, covariance matrices are symmetric positive definite matrices
that live in a non-Euclidean space. It is therefore necessary to adapt the classical tools of
Euclidean geometry to handle this type of data. To do that, we have proposed to exploit the
log-Euclidean metric. This latter allows to project the set of covariance matrices on a tangent
plane to the manifold defined at a reference point, classically chosen equal to the identity
matrix, followed by a vectorization step to obtain the log-Euclidean representation. On this
tangent plane, it is possible to define parametric Gaussian models as well as Gaussian mixture
models. Nevertheless, this projection on a single tangent plane can induce distortions. In order
to overcome this limitation, we have proposed a GMM model composed of several tangent
planes, where the reference points are defined by the centers of each cluster.

In view of the success of neural networks, in particular convolutional neural networks
(CNNs), we have proposed two hybrid transfer learning approaches based on the covariance
matrix computed locally and globally on the CNN convolutional layers’ outputs. The local
approach relies on the covariance matrices extracted locally on the first layers of a CNN, which
are then encoded by the Fisher vectors computed on their log-Euclidean representation, while
for the global approach, a single covariance matrix is computed on the feature maps of the
CNN deep layers. Moreover, in order to give more importance to the objects of interest present
in the images, we proposed to use a covariance matrix weighted by the saliency information.
Furthermore, in order to take advantage of both local and global aspects, these two approaches
are subsequently combined in an ensemble strategy.

On another hand, the availability of multivariate time series has aroused the interest of
the remote sensing community and more generally of machine learning researchers for the
development of new learning strategies dedicated to supervised classification. In particular,
methods based on the calculation of point-to-point distance between series. Moreover, two
series belonging to the same class can evolve in different ways, which can induce temporal
distortions (translation, compression, dilation, etc.). To avoid this, warping methods allow to
align the time series. In order to extend this approach to time series of covariance matrices,
while ensuring invariance to the re-parametrization of the series, we were interested in the
TSRVF representation. In the same context, several ensemble methods have been proposed in
the literature, including TCK, which relies on similarity computation to classify time series.
We have proposed to extend this strategy to covariance matrices by introducing the SO-TCK
approach which relies on the log-Euclidean representation of such matrices.

Finally, the last axis of this thesis concerns the modeling of temporal trajectories of signals
measured by the radar (Sentinel 1) and optical (Sentinel 2) sensors. In particular, we are
interested in the forestry problem of the chestnut ink disease in the Montmorency forest. For
this purpose, we developed classification and regression models to predict a health status score
from the covariance matrix computed on multi-temporal radiometric attributes.

Keywords: Supervised classification, remote sensing, multivariate time series, ensemble
learning, second-order statistics, Sentinel 1 & 2.



Résumé: Devant le succès grandissant des statistiques du second ordre dans les problèmes
de classification, les travaux de cette thèse se sont orientés vers le développement de méthodes
d’apprentissage sur variété. En effet, les matrices de covariance sont des matrices symétriques
définies positives qui vivent dans un espace non Euclidien. Il est donc nécessaire de réadapter
les outils classiques de la géométrie Euclidienne pour manipuler ce type de données. Pour ce
faire, nous avons proposé d’exploiter la métrique log-Euclidienne. Celle-ci permet de projeter
l’ensemble des matrices de covariance sur un plan tangent à la variété défini à un point de
référence, classiquement choisi égal à la matrice identité, suivi d’une étape de vectorisation
pour obtenir la représentation log-Euclidienne. Sur ce plan tangent, il est possible de définir des
modèles paramétriques Gaussien ainsi que des modèles de mélange de Gaussiennes. Néanmoins,
cette projection sur un unique plan tangent peut induire des distorsions. Afin de limiter cela,
nous avons proposé un modèle de GMM composé de plusieurs plans tangents, où les points de
référence sont définis par les centres de chaque cluster.

Au vu de la réussite remportée par les réseaux de neurones, en particulier les réseaux de
neurones convolutifs (CNN), nous avons proposé deux approches hybrides d’apprentissage
par transfert basées sur la matrice de covariance calculée de façon locale et globale sur les
sorties des couches convolutives d’un CNN. D’une part, l’approche locale s’appuie sur les
matrices de covariance extraites localement sur les premières couches d’un CNN, qui sont
ensuite encodées par les vecteurs de Fisher calculés sur leur représentation log-Euclidienne.
Tandis que pour l’approche globale, une seule matrice de covariance est calculée sur les cartes
de caractéristiques des couches profondes d’un CNN. De plus, afin de donner une plus grande
importance aux objets d’intérêt présents dans les images, nous avons proposé d’utiliser une
matrice de covariance pondérée par l’information de saillance. Par ailleurs, afin de tirer profit
des aspects local et global, ces deux approches sont par la suite combinées dans une stratégie
d’ensemble.

D’autre part, la disponibilité des séries temporelles multivariées a suscité l’intérêt de la
communauté de la télédétection et plus généralement du machine learning pour l’élaboration de
nouvelles stratégies d’apprentissage pour la classification supervisée, notamment les méthodes
basées sur le calcul de distance point à point entre les séries. Par ailleurs, deux séries
appartenant à la même classe peuvent évoluer de façons différentes, ce qui peut induire des
distorsions temporelles (translation, compression, dilatation, etc.). Pour s’affranchir de cela, le
"warping" permet d’aligner les séries temporelles. Afin d’étendre cette approche pour des séries
temporelles de matrices de covariance, tout en assurant l’invariance à la reparamétrisation
des séries, nous nous sommes intéressés à la représentation TSRVF. Dans le même contexte,
plusieurs méthodes d’ensemble ont été proposées dans la littérature, notamment le TCK, qui
repose sur le calcul de similarité afin de classifier les séries temporelles. Nous avons proposé
d’étendre cette stratégie aux matrices de covariance en introduisant l’approche SO-TCK qui
s’appuie sur la représentation log-Euclidienne de ces matrices.



Finalement, le dernier axe de cette thèse concerne la modélisation de trajectoires temporelles
des signaux mesurés par les capteurs radar (Sentinel 1) et optique (Sentinel 2). En particulier,
nous nous sommes intéressés au problème sylvosanitaire de la maladie de l’encre du châtaignier
sur la forêt de Montmorency. Pour cela, nous avons développé des modèles de classification
et de régression afin de prédire une note d’état sanitaire à partir de la matrice de covariance
calculée sur les attributs radiométriques multitemporels.

Mots clés: Classification supervisée, télédétection, séries temporelles multivariées,
méthodes d’ensemble, statistiques du second ordre, Sentinel 1 & 2.
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