I would like to express my sincere gratitude to my supervisor Prof. Jin-Kao Hao, who introduced me to the incredibly interesting combinatorial optimization problems. I appreciate all his contributions of time, advice, and patience to make my Ph.D. experience productive and meaningful.

I also thank all the jury members, for

GENERAL INTRODUCTION

Context

Graph partitioning problems are popular and general models that are frequently used to formulate numerous practical applications in various domains. Given an undirected graph with vertex set and edge set, graph partitioning is to divide the vertex set into two disjoint subsets to optimize a given objective. For example, the popular NP-hard 2-way graph partitioning problem is to minimize the number of edges crossing the two partition subsets. The minimum conductance graph partitioning problem (MC-GPP) studied in this thesis is a typical graph partitioning problem. Given an undirected and connected graph G = (V, E) with a vertex set V and an edge set E, MC-GPP aims to find a partition of G with minimum conductance. The conductance of a partition is given by the ratio of the number of the cut edges to the smallest volume of the two subsets of the partition, the volume of a vertex set being the sum of degrees of its vertices. MC-GPP is a relevant model in practice due to its widespread applications in the real world, such as clustering, community detection in complex networks, defining and evaluating network communities, analysis of protein-protein interaction networks in biology, and image segmentation in computer vision, etc. However, MC-GPP is known to be an NPhard problem, it is hopeless to solve the problem exactly in the general case in polynomial time unless P = NP, thus solving MC-GPP represents a real computational challenge for any solution method. Moreover, real world graphs are normally massive with millions even billions of vertices and edges, which increases the intrinsic intractability of MC-GPP. For these reasons, this thesis is dedicated to tackling MC-GPP by heuristic and metaheuristic algorithms. To assess the proposed MC-GPP algorithms, we perform extensive computational experiments on benchmark instances and show comparisons with state-of-the-art algorithms. We also investigate the key components of each proposed algorithm to shed light on their impact over the performance of the algorithm.

Objectives

This thesis aims to study effective heuristic and metaheuristic approaches for solving the well-known minimum conductance graph partitioning problem. The main objectives of this thesis are summarized as follows.

-Propose high performance heuristic and metaheuristic approaches for tackling MC-GPP to enhance the state-of-the-art algorithms in the literature.

-Detect problem-specific features and designing corresponding heuristic rules for the proposed algorithms. Develop perturbation strategies which are able to help local search algorithm escape from local optima.

-Devise an effective hybrid memetic search algorithm which follows the general framework combining the population-based evolutionary strategy and local optimization procedure. Develop effective crossover operators since the recombination is an important ingredient for hybrid memetic algorithms.

-Design graph contraction techniques based on the multilevel framework in order to deal with massive graphs which emerge in real world applications. Develop specific techniques and data structures to ensure a high computational efficiency of the proposed algorithms.

-Evaluate the proposed algorithms on a wide range of benchmark instances, and perform a comprehensive comparison with the state-of-the-art algorithms.

Contributions

The main contributions of this thesis are summarized below.

-A stagnation-aware breakout tabu search algorithm (SaBTS). In this study, we devise a stagnation-aware breakout tabu search algorithm (SaBTS) for MC-GPP. SaBTS distinguishes itself from existing MC-GPP algorithms mainly by two noteworthy features: a constrained neighborhood tabu search procedure to discover high quality solutions and a self-adaptive and multi-strategy perturbation procedure to overcome hard-to-escape local optimum traps. We assess the proposed SaBTS algorithm with state-of-the-art algorithms on five datasets of 110 benchmark instances with up to around 500,000 vertices in the literature. The results demonstrate the high performance of the proposed SaBTS algorithm. The key components of SaBTS including parameters, constrained neighborhood, and perturbation strategy are also analyzed to gain insights on the functioning of the algorithm. This work has been published in Computers & Operations Research [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF].

-A hybrid evolutionary algorithm (MAMC). In this study, we propose an effective hybrid evolutionary algorithm (MAMC) for MC-GPP. Based on the population memetic search framework, MAMC integrates some important features. 1)

To ensure an effective and efficient intensification of its local optimization component on large graphs, the algorithm adopts an original progressive neighborhood whose size is dynamically adjusted according to the search state. 2) To maintain a healthy population of high diversity and good quality, the algorithm uses a proven distance-and-quality pool updating strategy for its population management. 3) To further diversify the search, a conventional crossover is applied to generate offspring solutions. We show that the proposed MAMC algorithm competes very favorably with the current best performing algorithms when it is assessed on 60 large scale real world benchmark instances (including 50 graphs from the 10th DIMACS Implementation Challenge Benchmark and 10 graphs from the Network Data Repository online, with up to 23 million vertices). As an application example, we show the proposed MAMC algorithm can be used to detect meaningful community structures in complex networks. Finally, we investigate the essential components of the proposed MAMC algorithm to disclose the source of its success. This work has been published in Future Generation Computer Systems [START_REF] Lu | A hybrid evolutionary algorithm for finding low conductance of large graphs[END_REF].

-An iterated multilevel simulated annealing algorithm (IMSA). In this study, we present an iterated multilevel simulated annealing algorithm (IMSA) for MC-GPP. IMSA is the first multilevel algorithm dedicated to the challenging NPhard MC-GPP. Based on the general (iterated) multilevel optimization framework, IMSA integrates an original solution-guided coarsening method to construct a hierarchy of reduced graphs and a powerful simulated annealing local refinement procedure that makes full use of a constrained neighborhood to rapidly and effectively improve the quality of sampled solutions. We assess the performance of IMSA on two sets of 66 very large benchmark instances in the literature, including 56 graphs from the 10th DIMACS Implementation Challenge Benchmark and 10 graphs from the Network Data Repository online, with up to 23 million vertices. The computational results demonstrate the high competitiveness of the proposed IMSA algorithm compared to three state-of-the-art methods. Particularly, IMSA obtains strictly best solutions for 41 very large instances out of the 66 benchmark graphs, while reaching equal best solutions reported by the reference algorithms for 20 other graphs. Only for 5 instances, IMSA performs slightly worse. We present additional experiments to get insights into the design of the proposed IMSA algorithm including the usefulness of the iterated multilevel framework, the impact of the simulated annealing local refinement procedure, and its parameters. We make the code of our IMSA algorithm publicly available, which can help researchers and practitioners to better solve various practical problems that can be recast as MC-GPP. This work is preparing to submit to a journal paper.

Organization

The manuscript is organized in the following way:

-In the first chapter, we introduce the problem studied in this thesis. Then, we present a number of applications related to this problem and a brief overview of the most representative solution methods including exact, approximation, and heuristic (metaheuristic) algorithms. We also introduce benchmark instances that are frequently used to evaluate the performance of MC-GPP algorithms, as well as the experimental platforms for testing our computational studies.

-In the second chapter, we describe our stagnation-aware breakout tabu search algorithm (SaBTS) for MC-GPP. We explain its algorithmic components in detail, including the initial solution generation, the constrained neighborhood tabu search, and the self-adaptive perturbation strategy. We evaluate the proposed SaBTS algorithm on 110 benchmark instances and report experimental comparative results.

Moreover, we investigate and analyze some key issues of SaBTS to understand their impacts on the performance of the proposed SaBTS algorithm.

-In the third chapter, we present our novel hybrid evolutionary algorithm (MAMC) for MC-GPP. We describe the components in detail, including the quality-anddiversity based population initialization, the recombination operator and parent selection, the progressive constrained neighborhood tabu search, and the distanceand-quality based pool updating procedure. Next, we provide computational results of the proposed MAMC algorithm on well-known benchmark instances and compare our approach with some best performing algorithms. Finally, we study some key components of the MAMC algorithm.

Chapter 1

INTRODUCTION

Minimum conductance graph partitioning

Graph partitioning problems are popular and general models that are frequently used to formulate numerous practical applications in various domains. Given an undirected graph with vertex set and edge set, graph partitioning problem involves finding a particular partition to optimize a given minimization or maximization objective while possibly satisfying some constraints. For example, the highly popular graph 2-way partitioning problem requires to minimize the number of cut edges (whose endpoints belong to different subsets) of the partitions while the two subsets have roughly equal size [START_REF] Ravi | Eigenvalues and graph bisection: An average-case analysis[END_REF].

The minimum conductance graph partitioning problem (MC-GPP) studied in this thesis is another typical graph partitioning problem and can be formally stated as follows.

Let G = (V, E) be an undirected and connected graph with a vertex set V and an edge set E. For a vertex v ∈ V , its degree deg(v) is equal to the sum of edges incident to v in G. For a given vertex subset S ⊂ V , its volume vol(S) is the sum of degrees of the vertices in S, i.e., vol(S) = v∈S deg (v) (1.1)

Let S = V \ S be the complement set of S. Sets S and S define a partition (also called a cut) of G, which is denoted by s = {S, S}. The cut edges of partition s, cut(s), is defined as follows.

cut(s) = {(u, v) ∈ E : u ∈ S, v ∈ S} (1.2)
The conductance Φ(s) of the partition s is the ratio between the number of cut edges and the smallest volume of the two partition subsets, i.e.,

Φ(s) = |cut(s)| min{vol(S), vol(S)}

(1.3)

Part , Chapter 1 -Introduction

Finally, let Ω = {{S, S} : S ⊂ V } be the search space including all possible partitions of G, the minimum conductance graph partitioning problem involves determining the partition s * of an arbitrary graph G with minimum conductance, i.e., (MC-GPP) s * = arg min s∈Ω Φ(s) (1.4) For two partitions s , s ∈ Ω, we evaluate their relative quality as follows: s is better than s if and only if Φ(s) < Φ(s). An optimal solution s * verifies thus Φ(s *) ≤ Φ(s) for any s ∈ Ω.

MC-GPP is known to be an NP-hard combinatorial optimization problem in terms of complexity [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF][START_REF] Šíma | On the NP-completeness of some graph cluster measures[END_REF]. The conductance optimization criterion is also named as quotient cut. In mathematics and statistical physics, the conductance of a graph is called the Cheeger constant, Cheeger number, or isoperimetric number [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF].

Besides, inspired by [START_REF] Hochbaum | Polynomial time algorithms for ratio regions and a variant of normalized cut[END_REF], we introduce the following mathematical model to formulate MC-GPP.

Let s = {S, S} be a partition of G, we define, for each vertex i ∈ V , a binary variable x i such that

x i =    1, if i ∈ S 0, if i ∈ S (1.5)
We define, for each edge (i, j) ∈ E, two additional binary variables: z ij = 1 if exactly one of its endpoints i or j is in S; y ij = 1 if both i and j are in S,

z ij =    1, if i ∈ S,
j ∈ S, or i ∈ S, j ∈ S 0, if i, j ∈ S, or i, j ∈ S (1.6) Subject to x i -x j ≤ z ij and x j -x i ≤ z ji , ∀(i, j) ∈ E (1.11)

y ij =    1, if i, j ∈ S 0, otherwise (1
y ij ≤ x i and y ij ≤ x j , ∀(i, j) ∈ E (1.12) 1 ≤ (i,j)∈E y ij ≤ |E| -1 (1.13) x i , x j ∈ {0, 1}, ∀i, j ∈ V (1.14) z ij , y ij ∈ {0, 1}, ∀(i, j) ∈ E (1.15)
where s = {S, S} is a cut. Equation (1.10) states the minimization objective which is equivalent to Equation (1.3). Constraint (1.11) ensures that the endpoints of each edge crossing the cut are located in different subsets of the cut, while Constraint (1.12) imposes that the endpoints of an edge (i, j) which does not cross the cut belong to the same subset. Constraint (1.13) ensures that subset S contains at least one edge with its endpoints in S, and at least one edge crossing the cut (thus no subset is empty). Constraints (1.14) and (1.15) indicate that the corresponding variables take binary values.

Figure 1.1 shows a graph G = (V, E) with 7 vertices V = {a, b, c, d, e, f, g} and a partition s = {S, S} with S = {c, d, f, g} and S = {a, b, e}. Since vol(S) = 15, vol(S) = 7 and |cut(s)| = 5, the conductance of this partition is Φ(s) = 5/7 = 0.71. -Image segmentation in computer vision [START_REF] Shi | Normalized cuts and image segmentation[END_REF] For example, in the context of graph clustering, the quality of a cluster can be measured by its conductance. In the field of community detection, conductance can be used to characterize the "best" possible community of large sparse real world networks taken from a wide range of application domains. Chalupa et.al [START_REF] Chalupa | Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks[END_REF] applied a graph partitioning approach with minimum conductance to find bottlenecks in complex networks where the existence of low conductance minima indicates bottlenecks. Yang et.al [START_REF] Yang | Defining and evaluating network communities based on ground-truth[END_REF] identified ground-truth communities in large real world networks by conductance measurement where vertices organize into densely linked communities with edges appearing with high concentration among the members of the community. In the bioinformatics domain, Voevodski et.al. [START_REF] Voevodski | Finding local communities in protein networks[END_REF] measured the quality of a cluster in protein-protein interactions (PPIs) networks with conductance. In the computer vision domain, Shi et.al. [START_REF] Shi | Normalized cuts and image segmentation[END_REF] treated image segmentation as a graph partitioning problem and proposed a novel global criterion, the normalized cut for segmenting the graph.

Applications

Solution methods

In this section, we review the most representative and effective solution methods for MC-GPP, including the exact, approximation, and heuristic (metaheuristic) algorithms. Table 1.1 summarizes the main characteristics of these solution methods.

Exact algorithms

Exact methods guarantee the optimality of the found solutions by enumerating, often implicitly, all candidate solutions of the search space. Surprisingly, exact algorithms for the general MC-GPP were rarely proposed, even if studies exist on special cases.

Hochbaum [START_REF] Hochbaum | Polynomial time algorithms for ratio regions and a variant of normalized cut[END_REF] devised the first polynomial time algorithms to solve optimally the ratio region problem and a variant of normalized cut, as well as a few other ratio problems in the field of image segmentation. These algorithms applied a subroutine of minimum s, t-cut procedure on a related graph which is of polynomial size and produced the optimal solution to the respective ratio problems.

Hochbaum [START_REF] Hochbaum | A polynomial time algorithm for rayleigh ratio on discrete variables: Replacing spectral techniques for expander ratio, normalized cut, and cheeger constant[END_REF] solved a discrete relaxation of a family of NP-hard Rayleigh problems such as the normalized cut problem, the graph expander ratio problem, the Cheeger constant problem, and the conductance problem. The results showed that the solution to the discrete Rayleigh ratio problem without balance constraint is strongly polynomial time solvable, and the algorithm is more efficient and the result is much better than the spectral algorithm.

Approximation algorithms

Approximation methods provide provable performance guarantees on the quality of the obtained solutions. Indeed, most existing methods for MC-GPP rely on the approximation framework, and specific to a particular application such as clustering, community identification, etc.

Cheeger [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF] studied the first (and a weak) approximation algorithm for the graph conductance. He established a lower bound for the smallest eigenvalue of the Laplacian, according to a certain global geometric invariant.

Leighton & Rao [START_REF] Leighton | Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms[END_REF] implemented a O(logn)-approximation algorithm for MC-GPP by establishing max-flow min-cut theorems for several classes of multicommodity flow problems. [START_REF] Leighton | Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms[END_REF] and proposed a O(√ logn)-approximation algorithm for the sparsest cut problem, the edge expansion problem, the balanced separator problem, and the graph conductance problem. They applied a well-known semidefinite relaxation with triangle inequality constraints to implement this algorithm.

Arora et al. [AHK04; ARV09] improved Leighton & Rao's work

Leskovec et al. [START_REF] Leskovec | Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters[END_REF] proposed approximation algorithms for the graph partitioning Part , Chapter 1 -Introduction problem according to the conductance measure to define and identify clusters or communities in social and information networks. Their results suggest a detailed and counterintuitive picture of community structures in large social and information networks.

Spielman et al. [START_REF] Daniel | A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning[END_REF] designed a nearly linear time local clustering algorithm to determine a good cluster, in complying with the conductance measurement. Their clustering algorithm can handle massive graphs, such as social networks and web graphs. One of the applications of this clustering algorithm can find an approximate sparsest cut with a nearly optimal balance. Zhu et al. [START_REF] Allen Zhu | A Local Algorithm for Finding Well-Connected Clusters[END_REF] studied random-walk based local algorithms with improved theoretical guarantees in terms of the clustering accuracy and the conductance. They improved significantly the conductance of cluster where it is well-connected inside.

Heuristic and metaheuristic algorithms

Heuristic and metaheuristic methods aim to find high quality sub-optimal solutions in an acceptable computation time frame, but without provable performance guarantee of the solutions they found. We observe that solution methods based on modern metaheuristics remain scarce for MC-GPP, even though they have shown to be powerful tools for solving many difficult optimization problems. new objective function, called σ-conductance, which combines conductance and a regularization term controlled by a parameter σ. A projected gradient descent algorithm and an expectation-maximization algorithm were proposed to optimize σ-conductance. Chalupa [Cha17;[START_REF] Chalupa | Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks[END_REF] presented several dedicated heuristic algorithms based on the general local search and memetic search frameworks to tackle MC-GPP as a pseudo-Boolean optimization problem. They proposed the basic search components for MC-GPP and reported experimental results on real world social networks.

Summary

The literature reviews above indicate that unlike other popular graph partition problems for which numerous solution methods are available (see recent reviews [START_REF] Benlic | Hybrid metaheuristics for the graph partitioning problem[END_REF][START_REF] Buluç | Recent advances in graph partitioning[END_REF]), research on practical solution methods for MC-GPP remains quite limited. There is clearly an urgent need for effective algorithms able to solve large graphs for MC-GPP. Meanwhile, given the NP-hardness of the problem, unless P = NP, exact approaches will have an exponential time complexity and thus can only be applied to solve problem instances of limited sizes or instances with particular structures. Indeed, most existing methods rely on the approximation framework. These methods are either specific to a particular application (e.g., clustering, community identification) or become unpractical for large graphs due to their high computational complexity. One observes that solution methods based on modern metaheuristics remain scarce, even though they have shown to be powerful tools for solving difficult optimization problems. Indeed, heuristic algorithms were largely neglected and research on such methods is still in its infancy. This thesis thus aims to enrich the toolkit of practical solution methods for MC-GPP by introducing three state-of-the-art metaheuristic methods as follows. Chapter 2 presents a novel heuristic algorithm called stagnation aware breakout tabu search (SaBTS) to compute the conductance on small and medium size graphs with up to 500,000 vertices. Chapter 3 introduces a novel hybrid evolutionary algorithm called MAMC to find high quality solutions of low conductance for large-scale graphs with up to 23 million vertices. Chapter 4 proposes the first multilevel optimization algorithm called the iterated multilevel simulated annealing algorithm (IMSA) for tackling MC-GPP on very large graphs.

Benchmark instances

To examine the performance of the algorithms presented in this thesis, we conduct experiments on the following benchmarks with a total of 160 instances. The problem instances can be divide into four sets as follows, and the detailed characteristics of these instances are shown in Table 1.2 to Table 1.4. All of the graphs presented here are undirected and connected graphs with unit weight for both the vertices and edges.

1) The 10th DIMACS Implementation Challenge Benchmark 1 . This set contains 138 large-size artificial and real world graphs from a wide range of applications, which are dedicated to two related problems of graph partitioning and graph clustering [START_REF] Bader | Benchmarking for Graph Clustering and Partitioning[END_REF][START_REF]Graph Partitioning and Graph Clustering, 10th DIMACS Implementation Challenge Workshop[END_REF]. Specifically, we use the following 9 popular families:

-Clustering instances (20 graphs). They come from real world applications and often used for testing algorithms of graph clustering and community detection.

-Delaunay graphs (15 graphs). They are denoted by DelaunayX, which is generated as Delaunay triangulations of 2 X random points in the unit square [START_REF] Holtgrewe | Engineering a scalable high quality graph partitioner[END_REF].

-Walshaw's graph partitioning archive (30 graphs). They come from real world applications such as finite element computations, matrix computations, VLSI Design, and shortest path computations, which are popular for assessing graph partitioning algorithms [START_REF] Soper | A combined evolutionary search and multilevel optimisation approach to graph-partitioning[END_REF].

-Sparse matrices (5 graphs). thermal2 is created from the steady state thermal problem. ecology2 and ecology1 are generated from the landscape ecology problem. G3_circuit stems from circuit simulation matrices. kkt_power comes from the optimal power flow, nonlinear optimization (KKT).

-Redistricting (43 graphs). They represent US states denoted by the XX2010, XX prefix in the filenames are the U.S, e.g. ny is New York. They are popular for solving the redistricting and graph partitioning problems.

-Co-author and citation networks (1 graph). They is an example of social networks, which is the popular DBLP website (Digital Bibliography and Library Project).

-Graphs from Numerical Simulations (8 graphs). adaptive and venturiLevel3 originate from [START_REF] Heuveline | HiFlow3: A flexible and hardware-aware parallel finite element package[END_REF]. channel comes from [START_REF] Wittmann | Data structures of ilbdc lattice boltzmann solver[END_REF]. 333SP and AS365 are two-dimensional (2D) finite element triangular meshes actually converted from existing 3D models to -Street Networks (7 graphs). They are real world street networks with undirected and unweighted versions of the largest strongly connected component of the corresponding Open Street Map road networks.

-Frames from 2D Dynamic Simulations (9 graphs). They have been created with the generator described in [START_REF] Marquardt | Open Benchmarks for Load Balancing Heuristics in Parallel Adaptive Finite Element Computations[END_REF]. These graphs are meshes taken from individual frames of a dynamic sequence that resembles 2D adaptive numerical simulations.

The files presented here are the frames 0, 10, and 20 of the sequences, respectively.

2) Social networks 2 . This set includes 12 anonymized real world social network graphs that are extracted from the popular SNAP collection [START_REF] Leskovec | SNAP Datasets: Stanford Large Network Dataset Collection[END_REF] and tested in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF]. Specifically, soc_52 is a small 52-vertex social network sample, gplus_X are samples of public circles data from social network Google+, and pokec_X are samples of social network Pokec. X denotes the number of vertices for each instance.

3) The Network Data Repository online 3 . This set involves 10 massive real world network graphs [START_REF] Rossi | The Network Data Repository with Interactive Graph Analytics and Visualization[END_REF] from 5 general collections, including collaboration networks, infrastructure networks, scientific computing, social networks, and web graphs.

4)

The complex real-world networks 4 . We test the approach proposed in Chapter 3 for community detection on 3 popular complex real world networks: Zachary's Karate Club, College Football Network, and Bottlenose Dolphin Social Network. These three graphs can be also found in the DIMACS10 set.

Experimental platform

All the proposed algorithms in this thesis were implemented in C++ and compiled using the g++ compiler with the "-O3" option. The experiment in Chapter 2 was conducted on an Intel Xeon E5440 processor (2.83GHz) with 2GB RAM under Linux operating system. The experiments in Chapter 3 and Chapter 4 were conducted on an AMD Opteron 4184 processor (2.80GHz) with 32GB RAM under Linux operating system.

The source codes of all the presented algorithms in this thesis are publicly available online and listed as follows,

SABTS: STAGNATION-AWARE BREAKOUT TABU SEARCH FOR THE

MINIMUM CONDUCTANCE GRAPH

PARTITIONING PROBLEM

Introduction

In this chapter, we focus our research on effective heuristic search for MC-GPP that can be used to find high quality solutions for problem instances that cannot be solved exactly. Precisely, we develop a novel heuristic algorithm called Stagnation-aware Breakout Tabu Search (SaBTS) to compute the conductance of a general graph. We summarize the main contributions as follows.

-The proposed SaBTS algorithm adapts for the first time the general breakout local search method [BH13a; BH13b; BH13c] to MC-GPP. SaBTS integrates a dedicated tabu search procedure with a constrained neighborhood to find high quality solutions and a self-adaptive and multi-strategy perturbation mechanism to escape local optimum traps.

- The chapter is organized as follows. Section 2.2 describes the general scheme of the proposed SaBTS algorithm and its algorithmic components. Section 2.3 is dedicated to computational results and comparisons. Section 2.4 investigates several key algorithmic components to understand their impact on the performance of the proposed SaBTS algorithm. We draw conclusions in the last section.

Stagnation-aware breakout tabu search for MC-GPP

In this section, we present the proposed heuristic algorithm for tackling MC-GPP. We first introduce the general procedure and then explain the composing ingredients.

Main scheme

The proposed stagnation-aware breakout tabu search algorithm (SaBTS) for MC-GPP adopts the general breakout local search method (BLS) introduced in [BH13a; [START_REF] Benlic | Breakout local search for the quadratic assignment problem[END_REF][START_REF] Benlic | Breakout local search for the vertex separator problem[END_REF]. BLS relies on a dedicated local search procedure to find local optimal solutions and an adaptive perturbation procedure to jump out of local optimum traps. In addition to the local search procedure which ensures search intensification, BLS employs its adaptive perturbation mechanism to reach a suitable search diversification. This is achieved by dynamically determining the number of perturbation moves (i.e., the jump magnitude) and the type of perturbation (with different intensities). By iterating the local search phase and the adaptive perturbation phase, the method favors a balanced search in terms of intensification and diversification and helps to find high-quality solutions in the given search space.

From a perspective of algorithm design, the proposed SaBTS algorithm is composed of two principal components: a constrained neighborhood tabu search procedure (CNTS, Section 2.2.3) and a self-adaptive perturbation procedure (SAP, Section 2.2.4). Starting with an initial solution that can be provided by any means (Section 2.2.2), SaBTS uses the CNTS procedure to perform an intensified examination of candidate solutions to find improved solutions. Upon the termination of the CNTS procedure, SaBTS triggers the SAP procedure to diversify the search and drive the process to new and unexplored zones. SaBTS iterates these two procedures to discover solutions of increasing quality.

Stagnation-aware breakout tabu search for MC-GPP

SaBTS uses a number of variables (see Algorithm 1): s and s * indicate the current solution and the best solution ever discovered (which is also the output of the whole algorithm), s t records the solution returned by the last tabu search run, ω counts the consecutive 'while' loops during which s * is not updated (see below), f req records for each vertex the consecutive iterations during which the vertex is not relocated for the current tabu search run (this information is used by the perturbation procedure), L is the jump magnitude which is used by the perturbation procedure.

The general scheme of the proposed SaBTS algorithm is summarized in Algorithm 1. After initializing the above variables and obtaining a starting solution (lines 1-6 and Section 2.2.2), SaBTS performs a 'while' loop to iterate over the tabu search procedure, followed by the perturbation procedure (lines 7-24). For each iteration, the current solution s is submitted to the CNTS procedure for quality improvement (line 8 and Section 2.2.3). s * and w are updated when a new best solution is found (lines 9-14). If the search returns to the local optimum obtained from the preceding tabu search run, the jump magnitude L is increased by 1. Otherwise, L is reset to the initial jump magnitude L 0 (lines 15-20). After recording the last solution from CNTS in s t (line 21), the perturbation procedure is triggered to modify the current solution s using information provided by ω, T and L (line 22). After resetting the frequency counter to 0 (line 23), the next 'while' loop starts with the perturbed solution as its new starting solution. The whole SaBTS algorithm terminates when a given stopping condition is met, which is typically a maximum allowed cut-off time limit.

We present below the components of the proposed SaBTS algorithm.

Initial solution

To start its search, SaBTS requires an initial solution (partition), which can be provided by any means. In this work, we adopt two different methods by using a simple greedy procedure and a powerful graph partitioning tool (Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF]. To this end, other state-of-the-art graph partitioners like KaHIP [START_REF] Sanders | KaHIP-Karlsruhe High Quality Partitioning[END_REF] can be equally used).

-Greedy initialization. We first randomly select a vertex v 0 ∈ V to construct an initial partition s 0 = {S, S} with S = {v 0 } and S = V -{v 0 }. Then, the procedure iteratively relocates one vertex from S to S such that the conductance is improved (ties are broken randomly). This relocation process is repeated until the conductance cannot further be improved. -Metis initialization. Metis is a powerful tool designed for the conventional k-way graph partitioning problem. Based on efficient implementation of various multilevel heuristics, Metis is extremely fast (e.g., it can produce a good partition in several seconds even for a graph with a half million vertices). For a given instance, we use Metis to obtain an initial partition with a minimized number of cut edges. Then we run SaBTS to improve the input solution. In this manner, SaBTS can be considered as a post-processing method to boost the solution quality that is found by Metis.

With these two very different types of initialization, we can observe the impact of the initial solution on the quality of the final partition found by SaBTS. Moreover, we can verify whether partitions from a popular graph partitioning package (designed for the minimization of cut edges) can be further improved by a dedicated MC-GPP algorithm in terms of the conductance criterion.

Constrained neighborhood tabu search

To improve the initial solution provided by any of the above initialization procedures, the proposed algorithm applies a dedicated constrained neighborhood tabu search (CNTS) procedure, which is based on the popular tabu search (TS) metaheuristic [GL97]. From a general point of view, TS visits candidate solutions of the given search space by iteratively replacing the current solution by a neighbor solution taken from a neighborhood (see Section 2.2.3). At each iteration, tabu search selects one of the best neighbors among the neighbor solutions. This selection rule has the following interesting properties. If the current solution is not a local optimum, i.e., there is at least one solution of better quality in the neighborhood, then tabu search visits one such improving solutions. When no improving solutions exist in the neighborhood (i.e., when a local optimum is reached), tabu search visits the least worsening solution in the neighborhood. As a result, this strategy allows the search process to go beyond local optima encountered and continues

β ← β + 1 16:
end if 17: end while 18: return s best its exploration toward possibly better solutions. To prevent the search from re-visiting previously seen solutions, tabu search uses a so-called tabu list to keep track of some recently visited solutions. For a detailed presentation of tabu search, the reader is referred to [GL97].

Our CNTS procedure adopts the general TS method to MC-GPP and integrates two key search components specially tailored to the considered problem: constrained neighborhood and dynamic tabu list management. As shown in Algorithm 2, CNTS improves the incumbent solution s by iteratively relocating a particular vertex (lines 6-7, see below), followed by some updates (s best , H, f req, lines 8-16). CNTS terminates if s best cannot be improved during D (a parameter) consecutive iterations, returning s best as the best solution found.

Constrained neighborhood and its examination

Neighborhood is one of the most critical components of a tabu search procedure and identifies the candidate solutions that are considered at each iteration. For MC-GPP, we adopt the 'Relocate' operator (also called 'Single_Move' [START_REF] Benlic | An effective multilevel tabu search approach for balanced graph partitioning[END_REF]) to define the neigh-borhood. Basically, let s = {S, S} be the incumbent solution, the 'Relocate' operator displaces a vertex from its current set S or S to the complement set. Let v be the vertex to be displaced. We use s = s ⊕ Relocate(v) to denote the neighbor solution s obtained by relocating v. Then the classic neighborhood induced by the 'Relocate' operator, is given by:

N (s) = {s : s ⊕ Relocate(v), v ∈ S or v ∈ S} (2.1)
One notices that this neighborhood is unconstrained in the sense that every vertex of V is a possible candidate for the 'Relocate' operator. However, the size of this neighborhood is in order O(|V |), implying that its exploration would be time-consuming and expensive in particular for large graphs. Meanwhile, we observe that this unconstrained neighborhood includes many non-promising neighbor solutions that are irrelevant for conductance improvement as discussed below.

For these reasons, we introduce a constrained neighborhood that focuses on promising neighbor solutions and is of smaller size. The rationale behind the constrained neighborhood is that in terms of conductance improvement, all vertices are not equally interesting for the 'Relocate' operator. The idea is then to identify the "critical" vertices that are relevant for the 'Relocate' operator and exclude the "non-critical" vertices (or "ordinary" vertices) for consideration. Given a solution s = {S, S}, let e(S) = |{(u, v) ⊂ E : u, v ∈ S}| and e(S) = |{(u, v) ⊂ E : u, v ∈ S}| be the number of edges whose endpoints belong to S and S respectively. Then, it is easy to check that the volume of sets S and S can be re-written as: vol(S) = 2e(S) + |cut(s)|, vol(S) = 2e(S) + |cut(s)|. Thus, the conductance Φ(s) can be re-expressed as follows, This theorem indicates that ordinary vertices are not interesting for the 'Relocate' operator since they always deteriorate the conductance of the current solution (see Figure 2.1 for an example). Consequently, it is relevant to exclude these ordinary vertices and only consider the critical vertices of set CV (s). This consideration leads to our critical vertices constrained neighborhood N C ,

Φ(s) = |cut(s)| min{vol(S), vol(S)} = |cut(s)| |cut(s)| + 2 • min{e(S), e(S)} = 1/ 1 + 2 • min{e(S), e(S)} |cut(s)| (2.
) = 0.47↑. S) (s OV g ) deg(k  ) deg(l  ) deg(c   3   S) (s OV k ) (s OV l ) (s OV c  S S
N C (s) = {s : s ⊕ Relocate(v), v ∈ CV (s)} (2.3)
Compared to the unconstrained neighborhood N (s) whose size is of O(|V |) (see Equation (2.1)), the constrained neighborhood N C (s) has a size of O(|CV (s)|). The experiments suggest that CV (s) is generally much smaller than V (except for very dense graphs). Therefore using N C (s) rather than N (s) is more time-efficient and favors conductance improvement as well.

To quantify the quality of a neighbor solution s obtained by relocating vertex v, we use δ(v) to denote the move gain as follows.

δ(v) = Φ(s) -Φ(s) (2.4)
So a negative, zero, and positive δ(v) value indicate an improving, stagnating, and worsening neighbor solution respectively.

To explore the constrained neighborhood N C (s), the CNTS procedure first identifies the set CV (s) of critical vertices (Algorithm 2, line 4). This can be achieved in O(|V | × deg max) time where deg max is the maximum degree of a given graph. Then CNTS performs each subsequent iteration in three steps: 1) selects, among the eligible critical vertices, one best vertex v (ties are broken randomly) with the smallest move gain, 2) relocate v to obtain a neighbor solution, and 3) make necessary updates.

A vertex qualifies as eligible if it is not forbidden by the tabu list (see Section 2.2.3). Note that if relocating a vertex leads to a solution better than the best solution s best found during the tabu search process, this vertex always qualifies as eligible even if it is forbidden by the tabu list (this is called the aspiration criterion in the tabu search).

To ensure the computation efficiency of the CNTS procedure, we adopt the incremental

vol(S) = vol(S) -deg(v) (2.5) vol(S) = vol(S) + deg(v) (2.6) |cut(s)| = |cut(s)| + deg S (v) -deg S (v) (2.7)
After relocating v, we update the auxiliary degrees of each vertex w adjacent to v in

O(1) time, deg S (w) = deg S (w) -1 (2.8) deg S (w) = deg S (w) + 1 (2.9)
So each iteration of CNTS can be achieved in O(|CV (s)|) time. As noticed in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF], even if the numerator of conductance is bounded by deg max , the denominator (the volumes of the two subsets) can be potentially modified in all |V | components after relocating a vertex. As a result, it remains open whether improving neighbor solutions can be identified in O(1) time for MC-GPP. This is in sharp contrast to the conventional graph partitioning problem for which the best neighbor solution (by the relocation operation) can be found in O(1) time thanks to the use of dedicated data structures and incremental techniques.

Finally, as mentioned in [BH13d; Bul+16], the above constrained neighborhood based on border vertices of the incumbent partition has been advantageously used in several graph partitioning algorithms and tools (e.g., Metis, KaHIP, Scotch). This work demonstrates for the first time that this constrained neighborhood is equally valuable for implementing MC-GPP algorithms.

Stagnation-aware breakout tabu search for MC-GPP

Dynamic tabu tenure management

As mentioned above, the CNTS procedure uses a tabu list H to record recently relocated vertices to prevent them from being reconsidered for a future relocation and thus avoid revisiting previously visited solutions. Specifically, each time a vertex v ∈ CV is relocated, v is added in the tabu list and is not considered for next tt(v) iterations (tt is called tabu tenure). To implement the tabu list efficiently, we use a vector H of size |V | (initialized to 0) to represent the tabu list. When a vertex v is relocated, H[v] is updated to iter + tt where iter represents the current number of iterations. Then during the next iterations, if iter < H [v], v is forbidden by the tabu list; Otherwise, v is not prohibited by the tabu list.

To determine the tabu tenure tt, we adopt a technique which dynamically adjusts the tabu tenure with a periodic step function F defined over the current iteration number iter [GBF11; WH13]. Typically, each period of the step function consists of 1500 iterations that are divided into 15 steps (also called intervals)

[x i , x i+1 -1] i=1,2,...,15 with x 1 = 1, x i+1 =
x i + 100. According to the current iteration number, the tabu tenure changes dynamically during the search with one of four possible values: (10×α, 20×α, 40×α, 80×α), where α is a parameter. Precisely, for an iteration iter ∈ [x i , x i+1 -1], the tabu tenure tt equals F (iter), which is given by (y i) i=1,2,...,15 = α × (10, 20, 10, 40, 10, 20, 10, 80, 10, 20, 10, 40, 10, 20, 10). The tabu tenure is thus equal to 10 × α for the first 100 iterations [1,100]; then 20 × α for iterations from [101, 200]; followed by 10 × α again for iterations [201,300]; and 40 × α for iterations [401, 500] etc. After reaching the largest value 80 × α for iterations [701, 800], the tabu tenure drops again to 10 × α for the next 100 iterations and so on (see Section 2.2.3 of [WH13] for an illustrative example). This dynamic tabu tenure technique has previously shown its usefulness for graph partitioning and max-bisection algorithms [START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF][START_REF] Wu | Memetic search for the max-bisection problem[END_REF]. The experimental study also indicates that this technique is quite suitable for SaBTS as well and helps the algorithm to escape various local optima. Contrary to static tabu tenure techniques, varying the tabu tenure periodically and dynamically makes the algorithm quite robust across the tested instances and avoids the difficulties encountered with manually tuned static techniques.

Self-adaptive perturbation strategy

The tabu search procedure presented in Section 2.2.3 can overcome some local optimum traps thanks to its tabu list. However, CNTS can still be trapped in deep local optima. To Require: Graph G = (V, E), current solution s, non-improving local optima counter ω, stagnation threshold T , jump magnitude L, minimum probability threshold P 0 . Ensure: A perturbed partition found s. end if 13: end if 14: return s escape such traps, the proposed SaBTS algorithm employs a self-adaptive perturbation (SAP) procedure (see Algorithm 3) that relies on information related to ω (counter of non-improving local optima), T (stagnation threshold), f req (vertex move frequency) (see Algorithm 1 and Section 2.2.1) as well as three perturbation operators, which are given below.

1: if ω > T then 2: s ← random_perturb(s, ω, L) / *
-Frequency based perturbation uses information on vertex move frequency (f req) collected during the last tabu search run. This perturbation focuses on the L least frequently relocated vertices (i.e., the L vertices with the largest f req values) and forces them to move to their opposite sets. In this way, the perturbation focuses on "hard to move" vertices and creates opportunities to overcome deep local optima that could be difficult to escape otherwise.

-Cut edge based swap perturbation exchanges two vertices u and v linked by a cut edge

(cut(s) = {(u, v) ∈ E : u ∈ S, v ∈ S})
. By focusing on cut edges, this perturbation does not significantly change the solution in general.

-Random perturbation relocates L vertices that are randomly selected. Since a random relocation can seriously affect the quality of the resulting solution, this perturbation has a significantly stronger diversification effect than the two other perturbations.

To apply these perturbations, we adopt the key idea of the breakout local search method [BH13a; BH13b; BH13c] that applies perturbations of different intensity adaptively and probabilistically. Specifically, if ω > T (i.e., at least T consecutive local optima have been visited without improving the best solution found s * , see Algorithm 1), the search is believed to be stagnating in a deep local optimum attractor (line 2, Algorithm 3). To escape the trap, we apply the random perturbation to change the incumbent solution significantly and displace the search to a distant search zone. Otherwise, we apply the three perturbations in a probabilistic way. For this purpose, we first calculate the probability P as follows [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF]).

P = max{e -ω/T , P 0 } (2.10)
where P 0 (typically larger than 0.5) is a prefixed (minimum) probability value.

Then with probability P , we apply either the frequency based perturbation or the cut edge based perturbation with equiprobability. With probability 1 -P , we trigger the random perturbation.

Finally, the perturbed solution serves then as the new starting solution of the next round of the tabu search procedure.

Experimental results

In this section, we assess the performance of the proposed SaBTS algorithm.

Benchmark instances

We adopt five sets of 110 benchmark graphs: four sets (98 graphs) from the 10th DI-MACS Challenge Benchmark and one set (12 graphs) from the SNAP network collection. These graphs are connected and have up to around 500, 000 vertices.

-The 10th DIMACS Implementation Challenge Benchmark 1 . We use 98 graphs belonging to four sets. -Social networks2 . We use a set of 12 anonymized social network graphs that are extracted from the popular SNAP collection [START_REF] Leskovec | SNAP datasets: Stanford large network dataset collection[END_REF] and tested in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF].

Parameter setting and experimental protocol

The proposed SaBTS algorithm requires five parameters (see Table 2.1). We calibrate them by running a tuning experiment on 10 representative instances (PGPgiantcompo, preferentialAttachment, delaunay_n16, delaunay_n17, sd2010, ms2010, wing, brack2, gplus_2000, pokec_20000) from different datasets. The best configuration from this tuning experiment (as illustrated in Section 2.4.1) is shown in Table 2.1. These parameter values can be considered as the default setting of the proposed SaBTS algorithm. They are also consistently used to solve the five sets of benchmark instances introduced in Section 2.3.1.

SaBTS was programmed in C++3 and compiled using g++ 4.4.7 compiler with the "-O3" flag on an Intel Xeon E5440 processor with 2.83GHz and 2GB RAM running CentOS 6.8. To evaluate our results, we adopt three reference methods.

-StS-AMA [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF]: The population-based memetic algorithm StS-AMA is among the rare and recent heuristics dedicated to MC-GPP. As indicated in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF], StS-AMA is the best performing algorithm among several local search and evolutionary algorithms. Since the code of this algorithm is not available, we decided to reimplement StS-AMA to make a fair comparison. It is well known that implementation details can significantly impact the performance of partitioning heuristics [CKM00;

HHK97]. To implement StS-AMA, we followed faithfully the description given in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] and checked that the results of our implementation are consistent with those reported in the reference paper.

- -MQI [LR04]: This is a max-flow quotient-cut improvement algorithm for improving graph bipartitions when the cut quality is measured by quotient-style metrics such as conductance. MQI refines an initial partition and has been shown to be able to improve the results of Metis in terms of conductance. To our knowledge, MQI is one of the best algorithms for MC-GPP. We adopt MQI as our main reference for two purposes: 1) to compare SaBTS and MQI when they are run from the same partition given by Metis, 2) to verify whether SaBTS can further improve the results of MQI. For this study, we use the latest implementation of MQI5 and run MQI on the same computer as for the other algorithms.

The computational studies reported in this section are based on two different experiments where all algorithms are run using their default parameter settings.

The first experiment aims to compare SaBTS against StS-AMA as well as Metis, when SaBTS is run from an initial solution given by the greedy procedure of Section 2.2.2 (we use Greedy+SaBTS to denote this SaBTS running variant). For this experiment, we run all algorithms 20 times with different random seeds to solve each problem instance, each run being limited to 60 minutes.

The second experiment performs a comparison between SaBTS and MQI when both algorithms start from a partition provided by Metis (we use Metis+SaBTS and Metis+MQI to denote these SaBTS and MQI running variants). For each problem instance, we first Part , Chapter 2 -SaBTS: Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem run Metis 20 times and record the 20 output partitions. We then run both SaBTS and MQI 20 times using these 20 partitions as their initial solutions. This experiment allows us to assess, with respect to the powerful MQI method, the ability of SaBTS to improve the conductance of a partition from Metis. The second experiment also includes a study on the ability SaBTS to further improve the results of MQI by running SaBTS on each instance from the 20 partitions provided by Metis+MQI (we use (Metis+MQI)+SaBTS to denote this SaBTS running variant).

Computational results

In this section, we assess the performance of the proposed SaBTS algorithm according to the two experiments explained above. To this end, we show the summarized results of the studied algorithms to highlight the main findings. In the appendix, we report the detailed results of SaBTS together with the main reference algorithms on the 110 benchmark instances (Table A.1), the statistical results (p-values) from the Wilcoxon signed-rank test applied to different pairwise comparisons for all datasets (Table A.2) as well as a comparison using the geometric mean metric [FW86; HB97] (Table A .3).

Greedy+SaBTS compared to StS-AMA and Metis

The computational results of the first experiment are summarized in Table 2.2, where we compare Greedy+SaBTS against StS-AMA and Metis. Column 1 indicates the compared algorithms. Column 2 gives the names of the datasets with the number of graphs in parenthesis (Datasets (size)). Column 3 indicates the quality indicators in terms of the best and average conductance (Φ best and Φ avg). Columns 4-6 count the number of instances on which Greedy+SaBTS achieves a better, equal or worse result compared to StS-AMA and Metis respectively (#Wins, #Ties and #Losses).

From Table 2.2, we observe that Greedy+SaBTS performs remarkably well on all five datasets compared to StS-AMA in terms of Φ best (Φ avg resp.) by reporting 87 (89) wins, 16 (10) ties and 7 (11) losses for the 110 graphs. First, Greedy+SaBTS performs marginally better on the Clustering and Social network datasets. For the 17 Clustering graphs, Greedy+SaBTS reports 5 (7) better, 9 (7) equal and 3 (3) worse results for Φ best (Φ avg resp.), while it wins 6 (6), ties 4 (3) and losses 2 (3) instances in terms of Φ best and Φ avg for the 12 Social graphs. Second, Greedy+SaBTS shows a clear dominance over StS-AMA for the Delaunay, Redistricting and Walshaw datasets. For the 9 Delaunay graphs, Greedy+SaBTS wins all 9 instances for both Φ best and Φ avg . Similarly, for the 42 Redistricting graphs, Greedy+SaBTS wins 41 (39), and looses 1 (3) instances for Φ best (Φ avg resp.). For the 30 Walshaw's graphs, Greedy+SaBTS reports 26 (28) better, 3 (0) equal and 1 (2) worse values for Φ best (Φ avg resp.).

When we inspect the results of Greedy+SaBTS and Metis in Table 2.2, we observe that Greedy+SaBTS performs significantly better for the Clustering dataset with 11 (11) wins, 3 (2) ties and 3 (4) losses, and the Social dataset with 10 (10) wins, 0 (0) ties and 2 (2) losses for Φ best (Φ avg resp.). Greedy+SaBTS performs only marginally better than Metis for the Delaunay dataset (#Wins/#Ties/#Looses=5/0/4 for Φ best and Φ avg), and the Walshaw dataset (#Wins/#Ties/#Looses=15/1/14 for Φ best and 14/0/16 for Φ avg). On the other hand, Greedy+SaBTS performs much worse than Metis for the Redistricting graphs (#Wins/#Ties/#Looses=0/0/42 for Φ best and Φ avg).

The results of this experiment indicate that 1) Greedy+SaBTS dominates the dedicated StS-AMA algorithm, and 2) Greedy+SaBTS and Metis perform well on different datasets and complement each other.

Using SaBTS to improve solutions given by Metis and Metis+MQI

Table 2.3 shows the summarized results of the second experiment concerning SaBTS and MQI, when both algorithms are used to refine a partition given by Metis (entries involving Metis+SaBTS and Metis+MQI) and when SaBTS is used to refine a partition produced by Metis+MQI (entry (Metis+MQI)+SaBTS). As before, columns 1-3 indicate the studied algorithms, the information on the datasets and quality indicators respectively. Columns 4-6 count the number of instances on which each studied algorithm (Metis+MQI, Metis+SaBTS, and (Metis+MQI)+SaBTS) achieves a better, equal or worse result compared to the input solution from Metis respectively (#Wins, #Ties and #Losses). Column 7 shows, for each dataset, the average improvement percentage (∆ 1 (%)) of a method over the results of Metis in terms of Φ best and Φ avg . Specifically, we calculate the average improvement percentage (∆(%)) as follows. First, we compute the improvement percentage for each instance, which is given by (Φ -Φ M etis)/Φ × 100%, where Φ is the best (or average) conductance value of the compared algorithms and Φ M etis is the best (or average) conductance value of Metis. Then, the average improvement percentage for each dataset is given by n i=1 (Φ i -Φ M etis)/Φ i × 100%/n, where n is the number of instances of each dataset.

In Table 2 From the results of Table 2.3 (and the detailed results of Table A.1 in the appendix), we first observe that both SaBTS and MQI consistently improve on the results of Metis for all five datasets. Specifically, in terms of Φ best (Φ avg resp.), Metis+SaBTS can make an improvement for slightly more instances compared to MQI: 105 (107) out of 110 instances for Metis+SaBTS against 97 (106) for MQI. However, the last column of Table 2.3 shows that MQI achieves much more important average improvement percentages for the different datasets. Inspecting the detailed results in Table A.1 shows that while SaBTS performs better on more instances of the Clustering, Delaunay and Walshaw datasets, MQI performs remarkably better on the 42 Redistricting graphs and relatively better on some Social graphs.

Very interestingly, the results of Table 2.4 indicate that SaBTS can further improve the results of MQI for all five datasets. In terms of Φ best (Φ avg resp.), the number of improved results is 8 (12) for the 17 Clustering graphs, 8 (9) for the 9 Delaunay graphs, 16 (42) for the 42 Redistricting graphs, 16 (28) for the 30 Walshaw graphs, and 4 (8) for the 12 Social graphs. The average improvement percentage achieved by SaBTS over MQI varies according to the datasets. The improvements are more important for the Clustering, Delaunay, Walshaw and Social datasets than for the Redistricting dataset. Finally, the detailed results of Table A.1 in the appendix show that Metis+SaBTS and (Metis+MQI)+SaBTS together cover all the best results in terms of Φ best and Φ avg for the 110 instances tested. This experiment confirms that 1) it is more advantageous to start SaBTS with a solution from Metis or MQI to obtain still better solutions, and 2) we can jointly apply Metis, MQI and SaBTS to find high quality partitions in terms of low conductance for divers graphs with different structures.

Finally, even if we do not report more computational results, we mention that we also tested much larger graphs from the 10th DIMACS Challenge Benchmark with 8 × 10 5 to 1.4 × 10 7 vertices. We observed that SaBTS can improve the partitions given by Metis and MQI.

Analysis of SaBTS

In this section, we first analyze the effect of the parameters on the performance of SaBTS, and then investigate the impact of the constrained neighborhood in the tabu search, and lastly provide some insights into the adaptive perturbation strategy. These studies are based on 10 challenging instances selected from the 110 benchmark instances: PGPgiantcompo, preferentialAttachment, delaunay_n16, delaunay_n17, sd2010, ms2010, wing, brack2, gplus_2000, pokec_20000. As before, we independently solve 20 times each instance with a cutoff time of 60 minutes, each run being started with an initial solution generated with the greedy method of Section 2.2.2.

Effect of the parameters

The proposed SaBTS algorithm has five parameters: the tabu tenure management factor α, depth of tabu search D, stagnation threshold T , initial jump magnitude L 0 and minimum probability P 0 . To investigate the effect of each parameter on the performance of the algorithm, we vary its value within a reasonable range, while maintaining other parameters to their default values as shown in Table 2.1. We use the following value ranges: α = {40, 60, 80, 100, 120}, D = {2000, 4000, 6000, 8000, 10000}, T = {1000, 3000, 5000, 7000, 9000}, L 0 = {0.3, 0.4, 0.5, 0.6, 0.7}×|V | and P 0 = {0.65, 0.70, 0.75, 0.80, Figure 2.2 indicates that the performance of SaBTS is significantly influenced by the setting of each parameter. For α, the best performance is attained when α = 100, and a too small α value leads to poor performance of SaBTS. This can be explained that a small α value makes the prohibited time too short and cannot effectively prevent the search from cycling. For D, the value of 6000 is the best choice, and a too large or too small D value deteriorates SaBTS's performance. Also, SaBTS reaches its best performance with a T value of 1000. However, the performance of SaBTS is not sensitive to an increase of T . Then for L 0 , the performance of SaBTS generally decreases as the coefficient of L 0 increases and the value of 0.4 shows the best performance, while a too large coefficient value will have an effect similar to a random restart. For P 0 , the best solution is not really sensitive to P 0 . Thus we set P 0 = 0.8, which leads to the best average solution.

This study justifies the default parameter setting of Table 2.1. We notice that among these parameters, D, T and L 0 are a little more sensitive than α and P 0 . Therefore, if the user needs to tune the parameters, effort should be put on D, T and L 0 .

Impact of the constrained neighborhood on tabu seach

As explained in Section 2.2.3, the constrained neighborhood based on critical vertices is a key component of the tabu search procedure. In this experiment, we highlight its interest by comparing the SaBTS procedure with a SaBTS variant (called SaBTS no_cons) where we replace the constrained neighborhood (see Equation (2.3)) by the unconstrained neighborhood defined by equation (2.1) and keep the other components unchanged. We run both algorithms 20 times to solve each of the 10 instances used in the last section and report the results in Table 2.5. In Table 2 experiment demonstrates the usefulness and effectiveness of the constrained neighborhood for the SaBTS algorithm.

Impact of the perturbation strategy

As mentioned in Section 2.2.4, the perturbation procedure aims to diversify the search and help the search process to escape local optima traps. In order to highlight the contribution of the adopted perturbation strategy to the overall performance, we create three variants of SaBTS by varying the perturbation mechanism. The first variant (called SaBTS D3) only employs the random perturbation. The second variant (called SaBTS D1+D2) disables the random perturbation, but keeps the frequency based perturbation and the cut edge based swap perturbation. The last variant (called SaBTS D2+D3) disables the frequency based perturbation, but keeps the cut edge based swap perturbation and the random perturbation. For all the variants, we keep the other components of SaBTS unchanged. Table 2.6 shows the best and average result gap of each SaBTS variant with reference to the result of SaBTS. The p-values from the Wilcoxon signed-rank test are given in the last row. First, SaBTS significantly dominates SaBTS D3 by reaching the best and average results for 9 out of 10 instances (p = 0.0020 for Φ best and p = 0.0039 for Φ avg). Second, compared to SaBTS D1+D2 , SaBTS performs marginally better in terms of Φ best (winning 7 instances with p = 0.0645) and significantly better than in terms of Φ avg (winning 10 instances with p = 0.0020). Third, compared to SaBTS D2+D3 , even if SaBTS does not show any advantage in terms of Φ best , SaBTS has a clear dominance in terms of Φ avg (p = 0.0098). This experiment thus confirms the interest of the adopted perturbation strategy compared to alternative strategies.

Conclusion

This chapter introduced a stagnation-aware breakout tabu search algorithm (SaBTS) for the minimum conductance graph partitioning problem (MC-GPP). As the first algorithm adapting the breakout local search framework to MC-GPP, SaBTS distinguishes itself from existing MC-GPP algorithms mainly by two noteworthy features: the constrained neighborhood tabu search procedure and the self-adaptive and multi-strategy perturbation procedure. We performed a large scale computational study to assess the performance of the proposed SaBTS algorithm and investigated its key components (parameters, constrained neighborhood, perturbation strategy) to gain insights on the functioning of the algorithm.

The computational study on five datasets of 110 benchmark graphs with up to around 500,000 vertices allows us to draw the following conclusions.

-SaBTS with greedy initial solutions (Greedy+SaBTS) dominates the recent StS-Part , Chapter 2 -SaBTS: Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem AMA algorithm dedicated to MC-GPP [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] both in terms of the best and average results.

-SaBTS with greedy initial solutions (Greedy+SaBTS) and the popular graph partitioning tool Metis (version 5.1.0) [START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF] perform well on different datasets. Globally there is no clear dominance of one method over the other. When SaBTS is used to refine the results of Metis, it consistently improves the partitions provided by Metis for 108 out of the 110 benchmark graphs.

-When SaBTS is used as a post-processing procedure of Metis and is compared to the state-of-the-art max-flow based method MQI [LR04], SaBTS improves the result of Metis on slightly more graphs than MQI, but MQI achieves much more important quality improvement.

-When SaBTS is used as a post-processing procedure of MQI, it consistently improves the partitions provided by MQI, raising the partition quality for the tested datasets.

-SaBTS and existing methods like Metis and MQI can be advantageously used in a combined way, helping to find high quality partitions for graphs with very different structures and characteristics.

Part , Chapter 3 -MAMC: A hybrid evolutionary algorithm for finding low conductance of large graphs community structures in complex networks.

-Third, this work advances the state-of-the-art in terms of effective solving of the general minimum conductance graph partitioning problem. The ideas of some underlying algorithmic components are of general interest and could be advantageously adapted to design effective algorithms for other large graph optimization problems.

The chapter is organized as follows. Section 3.2 describes the proposed MAMC algorithm and its ingredients. Section 3.3 presents computational studies and comparisons between the proposed MAMC algorithm and state-of-the-art algorithms. Section 3.4 analyzes the key algorithmic components. We draw concluding remarks in the last section.

A hybrid evolutionary algorithm for finding low conductance of large graphs

General Outline

Hybrid evolutionary algorithms are known to be a powerful and proven tool for numerous NP-hard problems (e.g., graph partitioning [BH11a; GBF11; WH13], quadratic assignment [START_REF] Benlic | Memetic search for the quadratic assignment problem[END_REF], graph coloring [MG18; PHK10], and unconstrained binary quadratic programming [START_REF] Lü | A hybrid metaheuristic approach to solving the UBQP problem[END_REF]) as well as many practical problems (e.g., service placement in fog architectures [START_REF] Guerrero | Evaluation and efficiency comparison of evolutionary algorithms for service placement optimization in fog architectures[END_REF], roadside unit deployment [START_REF] Douglas Ll Moura | An evolutionary algorithm for roadside unit deployment with betweenness centrality preprocessing[END_REF] and task scheduling and data assignment on clouds [START_REF] Teylo | A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds[END_REF]). In this work, we present a hybrid evolutionary algorithm for tackling MC-GPP, which relies particularly on the memetic computing framework [START_REF] Neri | Handbook of memetic algorithms[END_REF]. The proposed algorithm (denoted by MAMC, see Algorithm 4) is composed of four main components: quality-and-diversity based population initialization, recombination operator, progressive constrained neighborhood tabu search and distance-and-quality based pool updating procedure.

From an initial population P op of p solutions (Algorithm 4, line 1), the best solution s * among the population is first recorded (line 2). The algorithm then enters into the 'repeat' loop to improve the population (lines 3-18). At each loop, MAMC selects two parent solutions at random and applies the double-point crossover to generate two offspring s 1 and s 2 (lines 4-5). Subsequently, the offspring solutions are improved by the progressive constrained neighborhood tabu search procedure (lines 7 and 13). The improved offspring solutions are used to update the population according to the quality-and-distance based Algorithm 4 Main framework of the memetic algorithm (MAMC) for MC-GPP.

Require: Graph G = (V, E), depth of tabu search d, size of population p. Ensure: The best partition s * found during the search. P op = {s 1 , s 2 , . . . , s p } ← P ool_U pdating(s 2 , P op) 18: until Stopping condition is satisfied 19: return s * procedure (lines 11 and 17). During the search process, the best solution s * is updated each time a new best solution is found (lines 8-10, lines 14-16). This process terminates when a given stopping condition is met, which is typically a maximum allowed cut-off time limit.

Quality-and-diversity based population initialization

The proposed MAMC algorithm is characterized by its capacity of maintaining a healthy population with solutions of high diversity and good quality. For the initial population, we adopt the following three-step mixed strategy illustrated by Algorithm 5. First, a seeding partition is generated either randomly or by applying the MQI algorithm [LR04] with equal probability (lines 2-7). Second, the seeding partition is improved by the progressive constrained neighborhood tabu search of Section 3.2.4 (line 8). Third, the improved partition is added into the population if it is not already present in the population (lines 9-11). This process is repeated until the population is filled with p different solutions. Given that each solution of the population comes from a seeding solution which is either

Part , Chapter 3 -MAMC: A hybrid evolutionary algorithm for finding low conductance of large graphs

Algorithm 5 The quality-and-diversity based population initialization.

Require: Graph G = (V, E), depth of tabu search d, size of population p. Ensure: The initial population P op = {s 1 , s 2 , . . . , s p }. end if 12: end for 13: return P op randomly generated or provided by MQI and then improved by the local optimization procedure, the population is expected to be diverse and of high quality. In Section 3.4.2, we present an experimental study to show the merit of this mixed initialization strategy compared to two random initialization techniques.

Recombination operator and parent selection

The crossover operator is used to generate new solutions from parent solutions. For MC-GPP, we experimented three standard crossovers and one problem-specific crossover. For our discussion, we note that a partition s = {S, S} can be conveniently coded by a binary string of length n (n is the number of the vertices in the given graph). Indeed, we can use a binary variable to represent a vertex and set it to 1 if the vertex belongs to S and set it to 0 if the vertex belongs to S. As a result, conventional crossovers that typically operate on binary strings are directly applicable. Below, we describe the crossovers we tested for tackling MC-GPP.

-Single-point crossover: A crossover point on both parents is chosen randomly and then the two bit strings of the parents to the right of the crossover point are swapped to generate two offspring solutions.

-Double-point crossover: Two different crossover points on both parents are chosen randomly and the two bit strings between the two crossover points are swapped to generate two offspring solutions (see Figure 3.1 for an example).

P arent 1 : 11|10100|1000 Child s 1 : 11|00101|1000 P arent 2 : 00|00101|0101 Child s 2 : 00|10100|0101 -Uniform crossover: Each bit of the offspring is randomly chosen from either parent with equal probability.

-Cut-edge-preserving crossover: In this problem-specific crossover, the cut-edges shared by both parents are preserved in the offspring. The vertices that are not endpoints of these shared cut-edges are assigned randomly the value of 1 or 0.

According to our experiments, the double-point crossover performs globally the best compared to the other crossovers. We adopt thus the double-point crossover in our MAMC algorithm.

As to parent selection, we adopt the simple random selection instead of other mechanisms such as roulette-wheel selection and tournament selection. This is justified by the fact that thanks to the distance-and-quality pool updating procedure of Section 3.2.5 and the powerful local optimization procedure of Section 3.2.4, we make sure that the population is composed of solutions which are pair-wisely distanced and of high quality. As such, any pair of selected solutions are guaranteed to be well separated and have a high fitness.

Progressive constrained neighborhood tabu search

It is well known that hybrid evolutionary algorithms need an effective local optimization procedure to ensure search intensification [START_REF] Hao | Memetic algorithms in discrete optimization[END_REF]. In [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], it is shown that both the max-flow based MQI algorithm and the stagnation-aware breakout tabu search algorithm (SaBTS) perform well on the tested graphs with up to 500,000 vertices. This is particularly true, when they are used to refine an initial solution of good quality provided by the Metis graph partitioning tool [START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF]. As a result, both MQI and SaBTS could be used as our local optimization procedure in principle. On the other hand, these algorithms become time-consuming when we handle large and massive graphs, making them less interesting and unsuitable for the purpose of this work where the studied graphs have up to end if 20: end while 21: return s b constrained neighborhood tabu search algorithm (PCNTS) that is presented below.

Basically, our PCNTS procedure uses the 'Relocate' operator to explore "critical" vertices [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]. Specifically, let s = {S, S} be the incumbent solution and v a vertex, then Relocate(v) transforms s to a new (neighbor) solution s (denoted by s = s⊕Relocate(v)) by displacing vertex v from its current set S or S to the complement set. For the purpose of conductance minimization, it is unnecessary to consider a vertex for relocation if the vertex is not the endpoint of a cut edge [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]. As a result, we identify the set CV (s) of candidate vertices for relocation as CV (s) = {v ∈ V : v is the endpoint of a cut edge of s}. Note that even if the set CV (s) is much smaller than the set of vertices V , examining all critical vertices at each iteration of the algorithm (this is what SaBTS of [LHZ19] does) can still become very expensive for large and massive graphs. This is especially true when the given graph is dense, because in this case, any partition will have a high number of cut edges, thus implying many critical vertices. Moreover, as discussed in [Cha17; LHZ19], unlike the conventional graph k-way partitioning problem where examining all 'Relocate' neighbor solutions can be performed in O(1), no technique is known to ensure such an efficiency for performing 'Relocate' for MC-GPP. This implies that the cost of examining neighbor solutions is proportionally correlated to the number of critical vertices and becomes prohibitive for large graphs.

To cope with this difficulty, we devise the following progressive and elastic neighborhood exploration strategy which dynamically increases or decreases the number of examined critical vertices according to a well-defined condition (see Algorithm 6). Specifically, we start with one critical vertex (indicated by ev = 1, ev is a counter indicating the number of the critical vertices to be examined). If relocating this vertex at the current iteration does not lead to a solution better than the recorded local best solution (s b), we increase ev by one, implying that during the next iteration, one more critical vertex will be examined. As a result, as long as no improved local best solution is found, a still larger neighborhood exploration is enabled by increasing ev (i.e., the number of candidate critical vertices) during the next iteration. During the search, ev is reset to one as soon as the recorded local best solution (s b) is updated or ev reaches its upper limit |CV (s)|. The progressive constrained neighborhood tabu search procedure thus explores an elastic neighborhood N AC (s) whose size is dynamically adjusted by the counter ev according to Part , Chapter 3 -MAMC: A hybrid evolutionary algorithm for finding low conductance of large graphs the search state.

N AC (s) = {s : s ⊕ Relocate(v), v ∈ CV (s, ev), 1 ≤ ev ≤ |CV (s)|} (3.1)
where CV (s, ev) ⊂ CV (s) is the set of critical vertices to be examined.

Thus, by examining the neighborhood N AC (s) induced by CV (s, ev) instead of the whole neighborhood induced by CV (s), the PCNTS procedure increases its computational efficiency considerably.

For a given neighbor solution s in the neighborhood N AC (s), it is necessary to quantify the conductance variation (called move gain) δ(v) = Φ(s)-Φ(s) with Φ(s) already known. This can be performed in O(1) time by simply calculating |cut(s)|, vol(S), vol(S) as follows [Cha17; LHZ19].

|cut(s)| = |cut(s)| + deg S (v) -deg S (v) (3.2) vol(S) = vol(S) -deg(v) (3.3) vol(S) = vol(S) + deg(v) (3.4)
where s = {S , S } with S = S \ {v}, S = S ∪ {v} is the neighbor solution after relocating v from S to S of the solution s = {S, S}.

To explore the progressive constrained neighborhood N AC (s), the PCNTS procedure first identifies the set CV (s, ev) with one critical vertex (Algorithm 6, line 5). This can be achieved in O(1) time. Then at each iteration, PCNTS selects one best vertex v in terms of move gain achieved in O(|CV (s, ev)|) time among the eligible critical vertices (ties are broken randomly) and relocates v to obtain a neighbor solution. A vertex qualifies as eligible if it is not forbidden by the tabu list (see below). Note that if a vertex leading to a solution better than the recorded best solution s b is always selected, even if it is forbidden by the tabu list (this is called the aspiration criterion in tabu search).

It is possible that the above search procedure revisits a previously encountered solution, thus leading to search cycling. To prevent this, we use a memory H (called tabu list) to record each displaced vertex and forbid the vertex to be relocated again during a specific number tt of iterations (called tabu tenure). Thus, each time a vertex v ∈ CV is relocated to generate a neighbor solution, the PCNTS procedure adds v in H (an integer vector in our case) and will ignore this vertex for next tt(v) iterations. In practice, when v is relocated, H[v] is set to iter + tt where iter represents the current number of iterations. Then during the next iterations, if iter < H [v], v is forbidden by the tabu list; otherwise, v is not prohibited by the tabu list.

For the tabu tenure, we adopt the dynamic technique introduced in [START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF] which has proven to be quite robust and effective for graph partitioning problems [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF][START_REF] Wu | Memetic search for the max-bisection problem[END_REF]. This technique varies tt with a periodic step function F defined over the current iteration number iter. For each period, it takes p = 15 successive values (also called intervals). The values are separated by the interval margins which are defined by x 1 = 1, and x i+1 = x i + 100. tt equals F (iter), which is given by (y i) i=1,2,...,15 = α × (10, 20, 10, 40, 10, 20, 10, 80, 10, 20, 10, 40, 10, 20, 10) (α is a parameter). Therefore, tt equals 10 × α between iterations 1 and 100, 20 × α between iterations 101 and 200, etc. Our experiments confirmed that this technique makes the algorithm quite robust across the tested instances and avoids the difficulties of manually tuning the tabu tenure.

Distance-and-quality based pool updating procedure

Population diversity is critical to avoid a premature convergence of an evolutionary algorithm. To maintain a healthy population of our algorithm, we employ a diversification preserving strategy [START_REF] Lü | A hybrid metaheuristic approach to solving the UBQP problem[END_REF] to update the population with each new offspring solution. This strategy considers not only the quality of each offspring solution, but also its distance to the existing solutions of the population.

Following [START_REF] Daniel Cosmin Porumbel | An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring[END_REF], we use the well-known set-theoretic partition distance [START_REF] Gusfield | Partition-distance: A problem and class of perfect graphs arising in clustering[END_REF] to measure the distance d ab between two solutions s a and s b . The partition distance is the minimum number of one-move steps necessary to transform one solution to another solution. For the given population P op, we calculate D i,P op = min{d ij |s j ∈ P op, j = i, i, j = 1, . . . , |P op|}.

Then, we determine the 'worst' solution in the population, according to the following goodness score function which considers both quality and distance:

g(s i , P op) = γ Ã(Φ(s i)) + (1 -γ) Ã(D i,P op) (3.5)
where γ is a parameter set to 0.6 according to [LGH10] and Φ(s i) is the objective

Part , Chapter 3 -MAMC: A hybrid evolutionary algorithm for finding low conductance of large graphs

Algorithm 7 The distance-and-quality based updating procedure.

Require: Graph G = (V, E), offspring solution s 0 , size of population p, population P op = {s 1 , s 2 , . . . , s p }. Ensure: The updated population P op = {s 1 , s 2 , . . . , s p }. where y min and y max are respectively the minimum and maximum of y in the population P op. "+1" is used to avoid the possibility of a 0 denominator. Based on the above goodness score function, the population P op is updated with the given offspring solution s 0 according to the following procedure (Algorithm 7). The new offspring s 0 is first inserted into P op = {s 1 , s 2 , . . . , s p } to create a temporary population P op = {s 0 , s 1 , . . . , s p } (line 1). Then for each solution of P op , its distance to P op and goodness score are calculated (lines 2-5). After that the worst solution s w in P op is identified according to the score function (3.5) (line 6). Finally, if s w is different from the offspring s 0 , s 0 replaces the worst solution s w in the population (line 7-8). Otherwise, the second worst solution s sw is replaced by s 0 with a probability of 0.5 (lines 10-13).

Experimental results

In this section, we first assess the proposed MAMC algorithm for tackling MC-GPP based on two sets of 60 benchmark graphs from various applications, and then apply MAMC to detect communities of 3 complex real world networks.

Benchmark instances

The two sets of benchmarks include 60 large and massive graphs which are from two sources and have 54,870 to 23,947,347 vertices, and one set of 3 complex real world network graphs from the application of community detection.

-The 10th DIMACS Implementation Challenge Benchmark 1 .This dataset contains 50 graphs which are dedicated to two related problems of graph partitioning and graph clustering [START_REF] Bader | Benchmarking for Graph Clustering and Partitioning[END_REF][START_REF]Graph Partitioning and Graph Clustering, 10th DIMACS Implementation Challenge Workshop[END_REF]. These graphs belong to 6 families: Clustering instances, Delaunay graphs, Redistricting, Walshaw's graph partitioning archive, Co-author and citation networks, and Sparse matrices.

-The Network Data Repository online 2 . This dataset contains 10 massive real world network graphs [START_REF] Rossi | The Network Data Repository with Interactive Graph Analytics and Visualization[END_REF].

-The complex real-world network 3 . This dataset contains 3 complex real world network graphs for community detection.

Experimental setting

The proposed MAMC algorithm was coded in C++4 and compiled using GNU g++ 6.3.0 compiler with the "-O3" flag. The experiments were conducted on a computer running Ubuntu Linux 16.04, using 6 cores of AMD Opteron 4184 CPU @ 2.80GHz and 32GByte RAM.

To evaluate our results, we adopt as our references the following four state-of-the-art algorithms in the literature.

-Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF]: This is a general and popular graph partitioning package which has been used to generate partitions in several studies on the MC-GPP [AL08;

Part , Chapter 3 -MAMC: A hybrid evolutionary algorithm for finding low conductance of large graphs -MQI [LR04]: This is a max-flow quotient-cut improvement algorithm which refines a given initial partition. In previous studies and this work, MQI starts with a partition provided by the fast Metis tool. To our knowledge, MQI is one of the best algorithms for the MC-GPP. We used the latest implementation of MQI 6 .

-SaBTS [LHZ19]: This is the most recent metaheuristic algorithm for the MC-GPP, which combines a dedicated tabu search procedure and a self-adaptive perturbation procedure. The intensive experiments reported in [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] show that SaBTS is able to consistently improve a partition provided by Metis and can also reduce the conductance of partitions given by MQI (see below). We used the source code of SaBTS 7 .

-MQI+SaBTS [LHZ19]: This hybrid approach uses SaBTS to refine a partition produced by MQI. Thanks to the combination of these two powerful approaches (MQI and SaBTS), MQI+SaBTS performs the best compared to other existing approaches.

The proposed MAMC algorithm requires 3 parameters: population size p, tabu tenure management factor α and depth of tabu search d. Following previous studies [GBF11; WH13], we adopted a small population size and set p = 20. For α and d, they were fixed according to the analysis reported in Section 3.4.1. For our experiments, we consistently 5. http://glaros.dtc.umn.edu/gkhome/metis/metis/overview 6. https://github.com/kfoynt/LocalGraphClustering 7. http://www.info.univ-angers.fr/~hao/mcgpp.html used the parameter setting shown in Table 3.1 to run our MAMC algorithm to solve all instances. This parameter setting can also be considered to be the default setting of MAMC.

For a fair comparison, we run, on the same computer, our MAMC algorithm and the above reference algorithms with their respective default parameter setting under the same time limit of 60 minutes per run and per instance.

Computational results and comparisons on the benchmark instances

In this section, we report the results of the proposed MAMC algorithm as well as the four reference algorithms (Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF], MQI [LR04], SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], and MQI+SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]) on 60 benchmark instances. It is worth noting that MQI, SaBTS, and MQI+SaBTS all start from an initial partition provided by Metis. Tables 3.2 and 3.3 provide the detailed results of the compared algorithms, while Table 3.4 shows a summary.

In Tables 3.2 and 3.3, columns 1-2 indicate the name (Graph) and the number of vertices (|V |) for each instance. The remaining columns show the results of Metis, MQI, SaBTS, MQI+SaBTS and MAMC according to the following performance indicators: the best conductance (Φ best) found among 20 runs, the average conductance (Φ avg), the success rate (hit) over 20 runs to reach Φ best , the average CPU time in seconds (t(s)) of 20 runs to attain the best results, and the standard deviation (σ) of Φ best . It is worth noting that computation times are provided only for indicative purposes, since it is not meaningful to compare two computation times if the corresponding algorithms lead to solutions of different quality.

In Table 3.4, column 1 indicates the pairs of compared algorithms (Algorithm pair). Column 2 gives the total number of instances (#Instance). Column 3 shows the quality indicators in terms of the best and average conductance (Φ best and Φ avg). Columns 4-6 count the number of instances on which MAMC achieves a better, equal or worse result compared to each reference algorithm (#Wins, #Ties, and #Losses). Column 7 reports the p-value from the non-parametric Wilcoxon signed-rank test with a confidence level of 99%.

The results of Tables 3.2-3.4 show that MAMC performs remarkably well on all 60 benchmark instances. Compared to Metis and MQI and in terms of the main performance indicators Φ best (Φ avg), MAMC finds 54 (60) better and 6 (0) equal results with respect

Part , Chapter 3 -MAMC: A hybrid evolutionary algorithm for finding low conductance of large graphs

to Metis, and 27 (60) better and 33 (0) equal results with respect to MQI. MAMC also competes very favorably with SaBTS and MQI+SaBTS in terms of Φ best (Φ avg) with 53 (58) wins, 7 (1) ties and 0 (1) losses compared to SaBTS, and 27 (58) wins, 32 (2) ties and 1 (0) losses compared to MQI+SaBTS. The small p-values (p-value 0.01) from the Wilcoxon signed-rank test further confirm the dominance of MAMC over the reference algorithm in terms of Φ best and Φ avg .

Moreover, in terms of the other performance indicators, we observe that to reach the same Φ best value, MAMC has always a higher success rate and a shorter computation time. In many cases, MAMC is even able to find a better solution with a higher hit and a shorter time.

To complete these results, we additionally provide a performance assessment of the algorithms in a visual way by using a generic benchmarking tool called performance profiles [START_REF] Elizabeth | Benchmarking optimization software with performance profiles[END_REF] (the reader is referred to [START_REF] Elizabeth | Benchmarking optimization software with performance profiles[END_REF] for details). Performance profiles enable a rigorous comparison of different algorithms over a large set of benchmark instances with regard to a specific performance metric (in our case, Φ best and Φ avg respectively). Basically, to compare a set of algorithms S over a set of problems P, we define the performance ratio by r s,p = Φs,p min{Φs,p: s∈S} . If an algorithm s does not solve a problem p, then we simply set r s,p = +∞. Thus, the performance function of an algorithm s is given by P s (τ) = |{p∈P | rs,p≤τ }| |P| . The value P s (τ) computes the fraction of problems algorithm s can solve with at most τ many times the cost of the best algorithm. P s (1) corresponds to the number of problems that algorithm s solved faster than, or as fast as the other algorithms in S. The value P s (r f), for a large enough r f , corresponds to the maximum number of problems that algorithm s has solved. The quantities P s (1) and P s (r f) are called efficiency and robustness of s respectively. Figure 3.2 shows the performance profiles of our proposed MAMC algorithm as well as the reference algorithms which have been drawn with the software perprof-py [START_REF] Soares Siqueira | Perprofpy: A python package for performance profile of mathematical optimization software[END_REF]. From the figure, we observe that MAMC has a very good performance, surpassing the four reference algorithms in terms of conductance value. Indeed, MAMC has the highest value of P s (1) among the compared algorithms, meaning that MAMC can quickly find the lowest conductance for the tested instances. Besides, MAMC also attains a good robustness by quickly solving all the instances (corresponding to the fact that MAMC arrives at P s (r f) first).

This experiment thus demonstrates the competitiveness of the proposed MAMC algorithm for solving MC-GPP compared to the 4 state-of-the-art reference methods. Part , Chapter 3 -MAMC: A hybrid evolutionary algorithm for finding low conductance of large graphs

Computational results in complex real-world networks

According to the literature [BGL16; CHW18; LM17; LWN18], conductance is a general graph partitioning model and thus has a wide variety of applications, especially in the field of community detection. In this section, we apply the MAMC algorithm to 3 complex real world networks of known (Zachary's Karate Club and College Football Network) or unknown (Bottlenose Dolphin Social Network) community structures, and show that MAMC can help us to better understand these complex networks. For each application example, the number of communities is chosen based on prior information on the datasets.

Zachary's Karate Club [Zac77]

. This social network is from the well-known karate club studied by Zachary, which contained the network of friendships between 34 members and 78 pairwise links observed over a period of three years. During the study, a conflict arose between the administrator (node 34) and instructor (node 1), which led to the split of the club into two parts, each with half of the members. Figure 3.3 shows this fission by indicating in red and blue color respectively, and the dashed line indicates the community division found by our proposed MAMC algorithm. The identified communities almost perfectly reflect the two factions observed by Zachary, with only 2 (node 9 and 10) out of 34 nodes "incorrectly" assigned to the opposing faction. This is reasonable and can be explained by the observations from Zachary, individual 9 was a weak political supporter of the club president before the fission, and individual 10 supported neither of the two, thus none of them were solidly a member of either faction. Besides, MAMC aims at minimizing the conductance value, the communities detected by our algorithm shows: Φ(s) = 0.12820512, while Zachary shows a larger conductance: Φ(s) = 0.14666666. Thus, MAMC perfectly detected the social communities of friendships of Zachary's karate club.

College Football Network [GN02]

. This social network is more complex and represents the schedule of American football games between Division IA colleges during the regular-season in Fall 2000. The network is shown in Figure 3.4, which composed of 115 teams and 613 links represents regular-season games between the two teams connected. The known communities are defined by conferences the teams belong to and marked with different colors. In principle, teams from one conference are more likely to play games with each other than with teams belonging to different conferences. There also exist some independent teams that do not belong to any conference, and these teams are marked with a dark blue color. The communities identified by the proposed MAMC algorithm are represented by clusterings in Figure 3.4. In general, MAMC correctly clusters teams of each conference. The independent teams are clustered with conferences with which they played games most frequently, because the independent teams seldom play games between themselves. The clusters detected by MAMC deviate from the conference partition in several ways. First, the Sun Belt conference, marked with a red color, is split into two parts, each part is grouped with Western Athletic and Independents conference for the fact that there was only one game involving teams from both these two parts. Second, one team from Conference USA with a pink color is clustered with teams from the Western Athletic conference. This team played no games with other teams from his Conference USA, but playing games with every team from the Western Athletic conference. Third, two teams from the Western Athletic conference are isolated from other teams from this conference. The team at the upper position had no intra-conference game, and the team at the lower position had only 2 intra-conference games, but they had inter-conference games with every member of the cluster they are assigned to. In summary, our proposed MAMC algorithm perfectly reflected the community structures established in the regularseason-game association, and in addition, detected the lack of intra-conference association that the known community structure fails to represent.

Bottlenose Dolphin Social Network [Lus+03]

. This social network is composed of 62 bottlenose dolphins living off Doubtful Sound, New Zealand. The 159 social associations between dolphin pairs are established based on direct observations conducted during a period of seven years by Lusseau et al. Figure 3.5 shows the social network of bottlenose dolphins, where nodes represent dolphins and links represent social associations. The 3 groups of 40 dolphins observed by Lusseau et al tend to spend more time together than with others, are colored in green, red and blue respectively, and the dolphins with yellow color are not involved in the clustering analysis. The dashed line denotes the community division found by our proposed MAMC algorithm. We can see from Figure 3.5, the achieved division corresponds well with the observed groups, separating the red and blue groups into two communities. The green group is split evenly between the two detected communities, because this group is a weak group and is not well represented by the social network since most of its members share no social associations [START_REF] Lusseau | The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations[END_REF].

Analysis of MAMC

Analysis of MAMC

In this section, we first analyze the key parameters of the proposed algorithm, and then the impacts of the progressive constrained neighborhood, the pool initialization procedure, and the pool updating procedure.

Study of the parameters for tabu search

The progressive constrained neighborhood tabu search (PCNTS) of MAMC requires two parameters (tabu tenure management factor α and depth of tabu search d). To study the effect of these parameters and determine a proper value, we performed the following experiment. For each parameter, we varied its values within a reasonable range, while maintaining the other parameter to their default values as shown in Table 3.1. Specifically, α varied its values in {5, 10, . . . , 45, 50}, while d takes its values in {1000, 2000, . . . , 9000, 10000}. The experiment in this section was carried out on six hard instances with different characteristics (smallworld, delaunay_n18, oh2010, wave, sc-pkustk13, web-arabic-2005). We ran our algorithm with each value of these parameters 20 times to solve each instance with a cutoff time of 60 minutes. Figure 3.6 shows the average values of Φ best and Φ avg over these six instances, where the X-axis indicates the parameter values and the Y-axis shows the best and average conductance values.

From Figure 3.6, we observe that the performance of MAMC is significantly influenced by the setting of each parameter. For α, the best performance is attained when α = 10, and a too small or too large α value leads to a poor performance of MAMC. This can be explained by the fact that a small (or large) α value makes the prohibited time too short (or too long). For d, the value of 6000 is the best choice, and a too large or too small d value deteriorates MAMC performance. Thus, we set α = 10 and D = 6000 in

Quality-and-diversity based initialization vs. random initialization

The proposed MAMC algorithm uses a mixed population initialization strategy that takes into account both quality and diversity (see Section 3.2.2). We study the effect of this strategy by comparing it with two random initializations. The first one is a pure random initialization (denoted by InitialRandom1), while the second one uses the progressive constrained neighborhood tabu search of Section 3.2.4 to improve each random seeding solution (denoted by InitialRandom2). We tested these two variants within our MAMC algorithm based on 15 instances arbitrarily chosen from the benchmark set (pref-erentialAttachment, smallworld, cnr-2000, delaunay_n17, delaunay_n18, delaunay_n19, wi2010, ga2010, oh2010, fe_tooth, 144, wave, coAuthorsDBLP, sc-pkustk13, web-arabic-2005) and compared the results with the quality-and-diversity based initialization (denoted by InitialMixed). The plots of their best and average conductance gaps are shown in Figure 3.7, where the X-axis indicates the instances (named by numbers from 1 to 15) and the Y-axis shows the best (or average) conductance gap in percentage. The best (or average) conductance gap is calculated as (Φ InitialRandomK -Φ MAMC)/Φ InitialRandomK × 100% Part , Chapter 3 -MAMC: A hybrid evolutionary algorithm for finding low conductance of large graphs (K = 1, 2) where Φ InitialRandomK and Φ MAMC are the best (or average) conductance values of the variant (InitialRandomK) and MAMC respectively. From Figure 3.7, we observe that MAMC with the quality-and-diversity initialization outperforms the two random initializations. Moreover, the pure random initialization led to the worst results. This experiment confirms the usefulness of our designed mixed initialization procedure.

Effectiveness of the progressive constrained neighborhood

As described in Section 3.2.4, the proposed MAMC algorithm employs a progressive constrained neighborhood in its PCNTS procedure. To assess the usefulness of this progressive constrained neighborhood, we created a MAMC variant (denoted by CNTS) where the tabu search procedure of Algorithm 6 examines at each iteration the whole constrained neighborhood induced by the whole set of critical vertices CV (s) (i.e., by setting ev = |CV (s)| in Algorithm 6). To compare MAMC and this variant, we ran both algorithm on four selected instances (smallworld, oh2010, wave, sc-pkustk13) and show their running profiles (convergence graphs) in Figure 3.8.

We observe that thanks to the progressive constrained neighborhood, the MAMC algorithm has a better convergence throughout the search from the beginning to the end of the given time budget. This holds for all four instances. This experiment confirms the relevance of the adopted progressive constrained neighborhood within the tabu search based local optimization procedure.

Effectiveness of the distance-and-quality based pool updating procedure

MAMC uses a distance-and-quality based pool updating procedure (see Section 3.2.5) to maintain a healthy population. We present an experiment to assess the effectiveness of this pool updating strategy (denoted by PoolNew) by making a comparison with the traditional quality based pool updating strategy (denoted by PoolOld) which replaces the worst solution in the population with the offspring solution.

We tested both strategies within our MAMC algorithm based on 15 instances used in Section 3.4.2. Figure 3.9 provides the plots of their best and average conductance gap. The X-axis indicates the name of instances (named by numbers from 1 to 15). The Y-axis shows the best (or average) conductance gap in percentage, calculated as (Φ PoolOld -Φ MAMC)/Φ PoolOld × 100% where Φ PoolOld is the best (or average) conductance value of the algorithm variant (PoolOld) and Φ MAMC is the best (or average) conductance value of MAMC.

From Figure 3.9, we observe that the proposed MAMC algorithm performs generally better with the distance-and-quality based pool updating procedure than with the traditional quality pool updating procedure. This outcome confirms that the distanceand-quality strategy plays a positive role and contributes to the performance of MAMC.

Conclusion

This chapter presented an effective hybrid evolutionary algorithm called MAMC for finding low conductance of large graphs. Based on the population memetic search framework, the proposed algorithm integrates some important features. First, to ensure an effective and efficient intensification of its local optimization component on large and massive graphs, the algorithm adopts an original progressive neighborhood whose size is dynamically adjusted according to the search state. Second, to maintain a healthy population of high diversity and good quality, the algorithm uses a proven distance-and-quality pool updating strategy for its population management. Finally, to further diversify the search, a conventional crossover is applied to generate offspring solutions.

We showed that the proposed MAMC algorithm competes very favorably with the current best performing algorithms when it is assessed on 60 large-scale real world benchmark instances, including 50 graphs from the 10th DIMACS Implementation Challenge Benchmark and 10 graphs from the Network Data Repository online, with up to 23 million vertices. Computational results led to the main conclusions that 1) our algorithm dominates the reference algorithms for the tested instances, and 2) it is able to further improve the solutions obtained by the popular max-flow quotient-cut improvement algorithm MQI [LR04]. As an application example, we showed the proposed MAMC algorithm can be used to detect meaningful community structures in complex networks. Finally, we investigated the essential components of the proposed MAMC algorithm, leading to the findings that 1) the progressive neighborhood used by the local optimization procedure plays an important role of ensuring a fast convergence of the algorithm, and 2) the quality-and-diversity pool initialization and distance-and-quality pool management help the algorithm to maintain a healthy population, which contributes to its performance.

Part , Chapter 4 -IMSA: Iterated multilevel simulated annealing for large-scale graph conductance minimization of-the-art algorithms, reporting new record-breaking results for 41 of the tested graphs.

-Third, we make the code of our IMSA algorithm publicly available, which can help researchers and practitioners to better solve various practical problems that can be formulated as MC-GPP.

The chapter is organized as follows. Section 4.2 presents the proposed IMSA algorithm. Section 4.3 shows the computational studies and comparisons between the proposed IMSA algorithm and the state-of-the-art algorithms. Section 4.4 provides analyses of the key algorithmic components. Section 4.5 presents concluding remarks.

Iterated multilevel simulated annealing for largescale graph conductance minimization

This section presents the proposed iterated multilevel simulated annealing algorithm (IMSA) for MC-GPP. We first show the general framework of IMSA, followed by detailed descriptions of the key algorithmic components in the subsequent sections.

General outline

The multilevel approach is a general framework that has shown to be very successful in tackling the classic graph partitioning problem [BS94; BH11a; BJ93; HL95; Val+20; Wal04]. Generally, this approach consists of three basic phases (coarsening, initial partitioning, and uncoarsening) [START_REF] Hendrickson | A multi-level algorithm for partitioning graphs[END_REF]. During the coarsening phase, the given graph is successively reduced to obtain a series of coarsened graphs with a decreasing number of vertices. An initial partition is then generated for the coarsest graph. Finally, during the uncoarsening phase, the coarsened graphs are successively unfolded in the reverse order of the coarsening phase. For each uncoarsened graph, the partition of the underlying coarsened graph is projected back to the uncoarsened graph and then improved by a refinement procedure. This process stops when the input graph is recovered and its partition is refined. In [START_REF] Walshaw | Multilevel refinement for combinatorial optimisation problems[END_REF], Walshaw introduced iterated multilevel partitioning (analogous to the use of V-cycles in multigrid methods [START_REF] Trottenberg | Multigrid[END_REF]) where the coarsening-uncoarsening process is iterated and the partition of the current iteration is used for the whole coarsening phase of the next iteration.

Algorithm 8 Main framework of the iterated multilevel simulated annealing (IMSA) for MC-GPP.

Require: Graph G = (V, E), seeding partition s 0 , coarsening threshold ct. Ensure: The best partition s * found during the search. while i > 0 do 10:

1: s * ← s 0 2: i ← 0 3: repeat 4: while |V i | > ct do 5: (G i+1 , s i+1) ← Solution_Guided_Coarsening(G i , s i) / *
i ← i -1 11: (G i , s i) ← U ncoarsening(G i+1 , s i+1) / *
s i ← Local_Ref inement(s i) 13:
end while

14: if Φ(s i) < Φ(s *) then 15: s * ← s i 16:
end if 17: until Stopping condition is met 18: return s * Based on the ideas described above, we propose in this work an iterated multilevel simulated annealing algorithm (IMSA) for MC-GPP, which distinguishes itself by two original features: 1) a solution-guided coarsening method, and 2) a powerful refinement procedure which is applied during both the coarsening and the uncoarsening phase. Fig. 4.1 illustrates the iterated multilevel framework adopted by the proposed IMSA algorithm, while the entire algorithmic framework is presented in Algorithm 8. Informally, IMSA performs a series of V-cycles, where each V-cycle is composed of a coarsening phase and an uncoarsening phase, mixed with local refinement for each intermediate (coarsened and uncoarsened) graph.

It is worth noting that IMSA requires a seeding partition s 0 of the input graph to initiate its first iteration (the first V-cycle). Generally, the seeding partition can be provided by any means. For instance, for our experimental studies reported in Section 4.3, we adopted the (fast) MQI algorithm [LR04]. For each subsequent iteration, the best partition found during the previous V-cycle then serves as the new seeding partition. The whole process terminates when a given stopping condition (e.g., cutoff time limit, maximum number of V-cycles) is reached and the global best partition found during the search is returned.

Initial graph G 0 G 0 G 1 G 1 G 2 G 2
Coarsest graph G m for each iteration

Solution-guided coarsening procedure

Given a graph G = (V, E) (renamed as G 0 = (V 0 , E 0)) and the seeding partition s 0 , the solution-guided coarsening phase progressively transforms G 0 into smaller intermediate graphs

G i = (V i , E i) such that |V i | > |V i+1 | (i = 0, . . . , m -1)
, until the last coarsened graph G m becomes sufficiently small (i.e., the number of vertices in V m is below a given threshold ct). During the coarsening process, all intermediate graphs are recorded for the purpose of uncoarsening.

Generally, to generate a coarsened graph G i+1 from G i , the coarsening process performs two consecutive steps: an edge matching step and an edge contraction step.

The edge matching step aims to find an independent set of edges M ⊂ E i such that the endpoints of any two edges in M are not adjacent. For this purpose, IMSA adopts the fast Heavy-Edge Matching (HEM) heuristic [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] with a time complexity of O(|E|). HEM considers vertices in a random order, and matches each unmatched vertex v with its unmatched neighbor vertex u such that 1) v and u are in the same subset of the current partition s i ; and 2) edge (v, u) has the maximum weight over all edges incident to v. In our case, edge matching is guided by the current partition s i of G i in the sense that the cut edges in the cut-set cut(s i) are ignored and only vertices of the same partition subset are considered for matching.

The edge contraction step collapses the endpoints of each edge (v a , v b) in M to form a new vertex v a + v b in the coarsened graph G i+1 , while vertices which are not endpoints of any edge of M are simply copied over to G i+1 . For the new vertex v a + v b ∈ V i+1 , its weight is set to be the sum of the weights of v a and v b . The edge between v a and v b is removed, and the edges incident to v a and v b are merged to form a new edge in E i+1 with a weight that is set to the sum of the weights of the merged edges.

Once the coarsened graph G i+1 is created, the partition s i of G i is projected to G i+1 , followed by improvement with the local refinement procedure. The improved partition is then used to create the next coarsened graph. new edge (a + b, h) in G 1 with edge weight w((a + b, h)) = w((a, h)) + w((b, h)) = 2. The same operations are performed to merge vertices c and d, e and f . After merging all the vertices involved in the edges of M , the remaining vertices h and g which are not incident to any edge of M are simply copied to G 1 , completing the new coarsened graph G 1 .

Uncoarsening procedure

In principle, the uncoarsening phase performs the opposite operations of the coarsening phase and successively recovers the intermediate graphs G i (i = m, m -1, . . . , 1) in the reverse order of their creations. To recover G i from G i+1 , each merged vertex of G i+1 is unfolded to obtain the original vertices and the associated edges of G i . For an illustrative example, the same process applies as presented in Fig. 4.2 but with the reversed direction of each transition arrow. In practice, we just restore each corresponding intermediate graph recorded during coarsening.

For each recovered graph G i , the partition of G i+1 is projected back to G i and is further improved by the local refinement procedure. The uncoarsening process continues until the initial graph G 0 is recovered. At this point, IMSA terminates the current V-cycle and is ready to start the next V-cycle. Generally, the partition quality is progressively Require: Graph G = (V, E), input solution s, initial temperature T 0 , move counter mv, maximum number of iterations per temperatures saIter, cooling ratio θ, frozen state parameter ar. Ensure: Best partition s best found during the search.

Local refinement with simulated annealing

For local refinement, IMSA mainly uses a dedicated simulated annealing procedure, which is complemented by an existing tabu search procedure.

Simulated annealing refinement procedure

Our simulated annealing refinement procedure (SA) follows the general simulated annealing framework [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF] and integrates a search component specially tailored for MC-GPP to effectively examine the set of candidate solutions.

The main scheme of the SA procedure is presented in Algorithm 9. Specifically, SA performs a number of search rounds (lines 3-21) with different temperature values to improve the current solution s (i.e., a cut (S, S)). At the start of each search round, the move counter mv is initialized to 0 (line 4). The procedure enters the 'for' loop to carry out saIter iterations (saIter is a parameter) with the current temperature T (initially set to T 0). At each iteration, SA randomly samples a neighbor solution s of s from a set of constrained candidates (lines 5-19). This is achieved by displacing a random vertex from the set of critical vertices CV (s) (see Section 4.2.4) from its current subset to the opposite subset (lines 6-7, where s ← s ⊕ Relocate(v) denotes this move operation). The new solution s then replaces the current solution s according to the following probability (lines 8-15),

P r{s ← s } =    1 , if δ < 0 e -δ/T , if δ ≥ 0 (4.1)
where δ = Φ(s) -Φ(s) is the conductance variation (also called the move gain) of transitioning from s to s .

A better neighbor solution s in terms of the conductance (δ < 0) is always accepted as the new current solution s. Otherwise (δ ≥ 0), the transition from s to s takes place with probability e -δ/T . After each solution transition, the move counter mv is incremented by 1. The best solution s best is updated each time a better solution is found (lines 16-18). Once the number of sampled solutions reaches saIter, the temperature T is cooled down by a constant factor θ ∈ [0, 1] (θ is a parameter, line 20), and SA proceeds to the next search round with this lowered new temperature. The termination criterion (the frozen state) of SA is met when the acceptance rate becomes smaller than a threshold ar (ar is a parameter) for 5 consecutive search rounds, where the acceptance rate is defined as mv/saIter (line 21). Upon the termination of the SA procedure, the procedure returns the best recorded solution s best (line 22).

One critical issue in the SA procedure concerns the initial temperature T 0 . While a high T 0 leads to acceptance of many deteriorating uphill moves, a low initial temperature will have the same impact as a pure descent procedure resulting in the search to easily become trapped in a local optimum. To identify a suitable initial temperature, we use a simple binary search to provide a tradeoff between these two extremes. Given an initial temperature range T ∈ [1.0e-20, 1.0], T 0 is initialized with the median value from this range, i.e., T 0 = (1.0 + 1.0e-20)/2. If the last round of the search using the current value of T 0 resulted in an acceptance rate of 50%, the value of T 0 is left unchanged. Otherwise, the value for T 0 used in next round of the search is set to the median value of the upper or the lower temperature range depending on whether the acceptance rate is higher or lower than 50%. This process continues until a suitable initial temperature T 0 is found for a given problem instance. We investigate the other parameters (saIter, θ, and ar) of SA in Section 4.4.4.

Solution sampling with critical vertices

To generate a new candidate solution s from the current solution s, we apply the popular Relocate operator that displaces a vertex from its current set to the opposite set. To avoid the generation of non-promising candidate solutions, we identify the set of critical vertices with respect to the current solution s.

Additional solution refinement with tabu search

To further reinforce the solution refinement, we additionally apply the constrained neighborhood tabu search (CNTS) procedure which is the main component of the SaBTS algorithm introduced in [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]. CNTS relies on the same constrained neighborhood defined by the critical vertices and employs a dynamic tabu list management technique. CNTS requires two parameters: the depth of tabu search D, and the tabu tenure man-Part , Chapter 4 -IMSA: Iterated multilevel simulated annealing for large-scale graph conductance minimization agement factor α. Section 4.4.4 explains the procedure used to tune these parameters and shows and analyzes their sensitivity. More details about CNTS can be found in [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF]. The use of CNTS is based on our preliminary observation that it can provide performance gains especially for the class of relatively small-sized instances such as 'xx2010' (see Section 4.3.2, Table 4.2). Generally, the CNTS component can be safely disabled for large graphs without impacting the performance of the IMSA algorithm. In terms of solution refinement, CNTS plays a complementary and secondary role compared to the SA procedure. In practice, CNTS performs a much shorter search (determined by the depth of tabu search) than SA during a round of IMSA.

Experimental results

To assess the overall performance of the proposed IMSA algorithm, we test it on a total of 66 very-large benchmark instances with 54,870 to 23,947,347 vertices. The first 56 instances are very large graphs from The 10th DIMACS Implementation Challenge Benchmark 1 , which were introduced for graph partitioning and graph clustering [START_REF] Bader | Benchmarking for Graph Clustering and Partitioning[END_REF][START_REF]Graph Partitioning and Graph Clustering, 10th DIMACS Implementation Challenge Workshop[END_REF]. The remaining 10 instances are large real world network graphs [START_REF] Rossi | The Network Data Repository with Interactive Graph Analytics and Visualization[END_REF] from

The Network Data Repository online2 . Among these 66 instances, 29 DIMACS graphs and the 10 massive network graphs have previously been used for experimental evaluations in [START_REF] Lu | A hybrid evolutionary algorithm for finding low conductance of large graphs[END_REF]. We considered the additional 27 large-scale DIMACS benchmark graphs (with 114,599 to 21,198,119 vertices) to better assess the scalability of our multilevel algorithm.

Experimental setting and reference algorithms

The proposed IMSA algorithm was implemented in C++3 and compiled using the g++ compiler with the "-O3" option. All the experiments were conducted on an AMD Opteron 4184 processor (2.80GHz) with 32GB RAM under Linux operating system.

To evaluate the performance of IMSA, we conduct comparisons with three state-ofthe-art MC-GPP algorithms from the literature: 1) the hybrid evolutionary algorithm MAMC [START_REF] Lu | A hybrid evolutionary algorithm for finding low conductance of large graphs[END_REF], 2) the breakout local search algorithm SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], and 3) the max-flow algorithm MQI [LR04]. To the best of our knowledge, MAMC is the current best performing algorithm for MC-GPP.

Table 4.1 shows the setting of the IMSA parameters, which was used for all the experiments conducted in this work. This parameter setting can be considered as the default setting of IMSA. We explain the procedure to tune these parameters in Section 4.4.4.

To ensure a fair comparison, all the reference algorithms were run on the same computing platform mentioned above. Each algorithm was independently executed 20 times per instance with a cutoff time of 60 minutes per run. Following [LHW20; LHZ19], each run of IMSA, MAMC and SaBTS is initialized with a seeding solution provided by the MQI algorithm.

Computation results and comparisons with state-of-theart algorithms

In this section, we present the computational results of the proposed IMSA algorithm, together with the results of the three reference algorithms (MAMC, SaBTS, and MQI) on the 66 benchmark instances. Table 4.2 reports the detailed results of all the compared algorithms, while Table 4.3 summarizes the overall comparison. Additionally, we provide a global comparison using the geometric mean metric [START_REF] Hauck | An evaluation of bipartitioning techniques[END_REF] in Table 4.4.

In Table 4.2, the first two columns respectively indicate the name and the number of vertices |V | for each test instance. The remaining columns show the results reported by IMSA, and the reference algorithms MAMC, SaBTS, and MQI. Specifically, we report the following performance indicators for each algorithm: the best conductance value (Φ best), the average conductance value (Φ avg), the number of times Φ best was reached across 20 independent runs (hit), and the average computation time in seconds to reach the final solution in each run (t(s)). The best of the Φ best (or Φ avg) values among all the compared algorithms for each instance is highlighted in boldface. An asterisk (*) indicates a strictly best solution among all the compared algorithms, which corresponds to the best upper bound (i.e., minimal conductance) for the given graph. For this comparative study, the main focus of this study is on the quality criterion in terms of the conductance value. Given a significant variation in conductance values obtained by the considered algorithms, a comparison of their reported t(s) values might not be very meaningful. Consequently, we provide information on the run-times for indicative purposes only. In Section 4.4.1, we present a time to target analysis to investigate the issue related to the computational efficiency of the compared algorithms.

For each of the reference algorithms compared with IMSA, Table 4.3 indicates the number of instances on which IMSA outperforms the given algorithm (column #Wins), is outperformed by the given algorithm (column #Losses), or performs equally as well as the given algorithm (#Ties) in terms of the best and the average conductance values. Furthermore, we provide for each pair of algorithms the p-values of the Wilcoxon signedrank test with a confidence level of 99% to indicate whether there exists a statistically significant difference in terms of the best and the average performances.

In Table 4.4, we show the geometric means of each compared algorithm using the best and the average conductance values for the 66 instances (G best and G avg). The best values of G best (or G avg) across all the compared algorithms are highlighted in boldface.

From Tables 4.2-4.4, we can make the following observations. 1) In terms of the general performance on the 66 benchmark instances, the proposed IMSA algorithm is able to find 41 strictly better conductance values (indicated by *) compared to the reference algorithms. Twenty-eight of these improved results concern massive graphs with at least 1,000,000 vertices. In case of the 20 remaining graphs, IMSA reaches solutions that are of the same quality as those reported by the three reference algorithms, while showing only a slightly worse performance on 5 relatively small-sized instances. These results thus show the benefit of the proposed approach for large-scale graphs.

2) In terms of the best performance Φ best , IMSA fully dominates the MQI algorithm by yielding a better result in 48 cases, while reaching equal results for the rest of 18 instances. IMSA also provides a better average performance Φ avg on all the 66 considered graphs. The statistical significance of this comparison between IMSA and MQI is confirmed by a small p-value of 1.63e-09 for Φ best , and 1.64e-12 for Φ avg .

3 In summary, this comparative study demonstrates the high competitiveness of the proposed IMSA algorithm for tackling very large graphs compared with the three stateof-the-art reference methods. Its high performance is further confirmed by the global geometric mean indicator shown in Table 4.4 (the smaller the value of the geometric mean, the better the algorithm performance).

Analysis of IMSA

We now present additional experiments to investigate several important issues including the computational efficiency of the proposed IMSA algorithm, the usefulness of the iterated multilevel framework, the impact of the simulated annealing local refinement, and the influence of the IMSA's parameters.

A time to target analysis of the compared algorithms

To investigate the computational efficiency of the compared algorithms: IMSA, MAMC [START_REF] Lu | A hybrid evolutionary algorithm for finding low conductance of large graphs[END_REF], SaBTS [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], and MQI [LR04], we performed a time-to-target (TTT) analysis [START_REF] Aiex | TTT plots: a perl program to create time-to-target plots[END_REF]. This study uses visual TTT plots to illustrate the running time distributions Part , Chapter 4 -IMSA: Iterated multilevel simulated annealing for large-scale graph conductance minimization of the compared algorithms. Specifically, the Y-axis of the TTT plots displays the probability that an algorithm will find a solution that is at least as good as a given target value within a given run time, shown on the X-axis. The TTT plots are produced as follows. Each compared algorithm is independently run E x times on each instance. For each of the E x runs, the run time to reach a given target objective value is recorded. For each instance, the run times are then sorted in an ascending order. We associate the i-th sorted run time t i with a probability p i = (i -0.5)/E x , and plot the points (t i , p i), for i = 1, . . . , E x . Our TTT experiment was based on 4 representative instances: (ga2010, 144, luxembourg, sc-pkustk13) with 200 independent runs per algorithm and per instance (i.e., E x = 200). To make sure that all the compared algorithms are able to reach the target objective value in each run, we set the target value to be 1% larger than the best objective value found by MQI. The results of this experiment are shown in Fig. 4.3. These plots clearly indicate that the proposed IMSA algorithm is always faster in attaining the given target value than the reference algorithms. For example, the probability that IMSA reaches the target objective value for instances ga2010 and sc-pkustk13 in the first 100 seconds is around 90%, while MAMC, SaBTS, and MQI require at least 2000 seconds, 3500 seconds, and 500 seconds respectively to attain the same result. This experiment demonstrates that the proposed IMSA algorithm is much more time efficient than the reference algorithms.

Usefulness of the iterated multilevel framework

In this section, we assess the usefulness of the iterated multilevel framework. For this purpose, we created an IMSA variant called (SA+TS) restart where the multilevel component was removed while keeping only the refinement procedure (SA and tabu search). To ensure a fair comparison, we performed (SA+TS) restart in a multi-start way, until the cutoff time t max (60 minutes) was reached. This experiment was conducted on 20 instances of a reasonable size and difficulty: (preferentialAttachment, smallworld, delau-nay_n16, delaunay_n17, delaunay_n18, delaunay_n19, ga2010, oh2010, tx2010, wing, 144, ecology2, ecology1, thermal2, kkt_power, NACA0015, M6, AS365, luxembourg, belgium). Each algorithm was independently run 20 times per instance with a cutoff time of 60 minutes per run. Fig. 4.4 shows the best/average conductance gap between the two algorithms on these instances. The X-axis indicates the instance label (numbered from 1 to 20), while the Y-axis shows the best/average conductance gap in percentage, calculated as (Φ A -Φ IMSA)/Φ IMSA × 100%, where Φ A and Φ IMSA are the best/average conductance

Analysis of the parameters

The proposed IMSA algorithm requires six parameters: ct, saIter, θ, ar, D, and α. We use ct to denote the coarsening threshold in the solution-guided coarsening phase. saIter, θ, and ar are the three parameters related to the SA local refinement, where saIter is the maximum number of iterations per temperature, θ is the cooling ratio, and ar is the frozen state parameter. D and α are the depth of tabu search and the tabu tenure management factor, respectively. To study the effect of these parameters on the performance of IMSA and to determine the most suitable setting for these parameters, we carried out an experiment as follows. For each parameter, we tested a range of possible values, while fixing the other parameters to their default values from Table 4 entialAttachment, smallworld, delaunay_n18, delaunay_n19, ga2010, oh2010, wing, 144, thermal2). Fig. 4.6 shows the impact of each parameter on the performance of IMSA. Specifically, for the parameter ct, ct = 60000 yields the best results for both Φ best and Φ avg . We thus set the default value of ct to 60000 in this study. For saIter, the value of 200000 is the best choice while a larger or a smaller value weakens the performance of IMSA. For the parameter θ, IMSA obtains the best performance with the value of 0.98 while smaller values decrease its performance. Furthermore, ar = 5% appears to be the best choice for IMSA. For the parameters D and α, we choose the value 10000 and 80 respectively as their default values according to Fig. 4.6. The default values of all the parameters are summarized in Table 4.1.

Conclusion

The iterated multilevel simulated annealing algorithm (IMSA) presented in this work is the first multilevel algorithm dedicated to the challenging NP-hard minimum conductance graph partitioning problem (MC-GPP). Based on the general (iterated) multilevel optimization framework, IMSA integrates an original solution-guided coarsening method to construct a hierarchy of reduced graphs and a powerful simulated annealing local refinement procedure that makes full use of a constrained neighborhood to rapidly and effectively improve the quality of sampled solutions.

We assessed the performance of IMSA on two sets of 66 very large benchmark instances from the literature, including 56 graphs from the 10th DIMACS Implementation Challenge Benchmark and 10 graphs from the Network Data Repository online, with up to 23 million vertices. Computational results demonstrated high competitiveness of the proposed IMSA algorithm compared to three state-of-the-art methods. Particularly, IMSA improved on the current best-known result for 41 out of the 66 large-scale benchmark instances, while reaching the same solution quality as the existing state-of-art algorithms on 22 remaining graphs. Only for 5 instances, IMSA was unable to reach the best-know solution from the literature. We presented additional experiments to get insights into the design of the proposed IMSA algorithm including the usefulness of the iterated multilevel framework, the impact of the simulated annealing local refinement procedure, and its parameters. Given the numerous important applications of MC-GPP, the proposed approach could constitute a valuable strategy for improved performance on these real world problems. The

GENERAL CONCLUSION

Conclusions

This thesis focuses on devising effective heuristics and metaheuristics algorithms for solving the well-known NP-hard minimum conductance graph partitioning problem (MC-GPP). Due to the theoretical intractability and the widespread real world applications of MC-GPP, we studied several solution methods to find high quality sub-optimal solutions for large scale benchmark instances in acceptable computing time. The resulting algorithms are implemented and evaluated on a number of well-known benchmark instances and shown to be highly competitive in comparison with the best performing algorithms in the literature.

In Chapter 2, we presented a stagnation-aware breakout tabu search algorithm (SaBTS) for MC-GPP. SaBTS integrates two noteworthy features: a constrained neighborhood tabu search procedure to discover high quality solutions and a self-adaptive and multi-strategy perturbation procedure to overcome hard-to-escape local optimum traps. We assessed the effectiveness of the proposed SaBTS algorithm with state-of-the-art algorithms on five datasets of 110 benchmark instances with up to around 500 000 vertices in the literature, including 98 graphs from the 10th DIMACS Implementation Challenge Benchmark and 12 anonymized social networks. The computational results indicated that SaBTS dominates a recent dedicated algorithm StS-AMA [Cha17; CHW18]. Moreover, when SaBTS is run as a post-processing method, it consistently improves on the solutions provided by the popular graph partitioning tool Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF] and the state-of-the-art max-flow-based method MQI [LR04]. Additional experiments investigated the key components of SaBTS, including the effect of the parameters, the impact of the constrained neighborhood on tabu search, as well as the impact of the perturbation strategy, which contribute to the performance of the proposed SaBTS algorithm.

In Chapter 3, we explored an effective hybrid evolutionary algorithm (MAMC) for MC-GPP. Based on the population memetic search framework, MAMC integrates some important features. 1) To ensure an effective and efficient intensification of its local optimization component on large graphs, MAMC adopts an original progressive neighborhood whose size is dynamically adjusted according to the search state. 2) To maintain a healthy population of high diversity and good quality, MAMC uses a proven distance-and-quality pool updating strategy for its population management. 3) To further diversify the search, a conventional crossover is applied to generate offspring solutions. We tested the proposed MAMC algorithm on 60 very large real world benchmark instances, including 50 graphs from the 10th DIMACS Implementation Challenge Benchmark and 10 graphs from the Network Data Repository online, with up to 23 million vertices. The results demonstrated MAMC competes very favorably with the current best-performing algorithms, and led to the main conclusions that 1) MAMC dominates the reference algorithms for the tested instances, and 2) it is able to further improve the solutions obtained by the popular max-flow-based method MQI [LR04]. As an additional assessment, we showed an application of using the proposed MAMC algorithm to detect community structures in complex networks. Finally, we investigated the essential components of the proposed MAMC algorithm, leading to the findings that 1) the progressive neighborhood used by the local optimization procedure plays an important role of ensuring a fast convergence of the algorithm, and 2) the quality-and-diversity pool initialization and distance-and-quality pool management help the algorithm to maintain a healthy population, which contributes to its high performance.

In Chapter 4, we designed the first multilevel algorithm called an iterated multilevel simulated annealing algorithm (IMSA) dedicated to the challenging NP-hard MC-GPP. Based on the general (iterated) multilevel optimization framework, IMSA features an original solution-guided coarsening method to construct a hierarchy of reduced graphs and a powerful simulated annealing local refinement procedure that makes full use of a constrained neighborhood to effectively sample the search space of the problem. Extensive computational assessments on two sets of 66 very large benchmark instances in the literature (including 56 graphs from the 10th DIMACS Implementation Challenge Benchmark and 10 graphs from the Network Data Repository online, with up to 23 million vertices) have demonstrated the high competitiveness of the proposed IMSA algorithm. Particularly, IMSA reported strictly best solutions for 41 very large instances out of the 66 benchmark graphs, while reaching equal best solutions reported by the reference algorithms for 20 other graphs. Only for 5 instances, IMSA performed slightly worse. We performed additional experiments to get insights into the design of the proposed IMSA algorithm including the usefulness of the iterated multilevel framework, the impact of the simulated annealing local refinement procedure, and its parameters.

Perspectives

From the work presented in this thesis, several interesting perspectives can be identified for future research.

First, as the results of Metis suggest, optimizing the number of cut edges helps to find partitions of relatively low conductance. Therefore, one interesting study would be to investigate the use of cut-edge criterion as an approximate evaluation function of conductance in search algorithms. Indeed, one can take advantage of the well-known efficient data structures and fast incremental update techniques available for the cut-edge criterion, helping to significantly reduce the computational cost of search algorithms for MC-GPP.

Second, the idea of the progressive neighborhood strategy proposed in Chapter 3 is of general interest, it would be interesting to test the idea in other settings, in particular related to large graph optimization. The study of Chapter 4 demonstrated the benefit of the iterated multilevel framework and its simulated annealing local refinement procedure for large scale graph partitioning with the conductance criterion. The underlying ideas of this work could be useful for designing effective algorithms for other graph partitioning and clustering problems, especially for dealing with large graphs.

Third, until now, there are still very few effective exact algorithms for MC-GPP in the literature. It is thus worth investigating general approaches such as integer linear programming and dedicated branch and bound algorithms.

Title : Optimization Approaches for Minimum Conductance Graph Partitioning

Keywords : Conductance minimization, Graph partitioning, Combinatorial optimization, Metaheuristics, Neighborhood search, Hybrid algorithm, Multilevel, Large graph optimization.

Abstract :

The minimum conductance graph partitioning problem (MC-GPP) is an important NP-hard combinatorial optimization problem with numerous practical applications in various areas such as community detection, bioinformatics, and computer vision. Due to its high computational complexity, heuristic and metaheuristic approaches constitute a highly useful tool for approximating this challenging problem. This thesis is devoted to developing effective metaheuristic algorithms for the MC-GPP. Specifically, we propose a stagnation-aware breakout tabu search algorithm (SaBTS), a hybrid evolutionary algorithm (MAMC), and an iterated multilevel simulated annealing algorithm (IMSA). Extensive computational experiments and comparisons on large and massive benchmark instances (with more than 23 million vertices) demonstrate that the proposed algorithms compete very favorably with stateof-the-art algorithms in the literature. Furthermore, the key issues of these algorithms are analyzed to shed light on their influences over the performance of the proposed algorithms.

 .7) Let C denote the number of the edges crossing the cut (i.e., C = |cut(s)|), let I denote the number of edges whose endpoints are in S, -GPP can be stated as the following minimization problem: Minimize f (s) = C min{C + 2 * I, 2 * |E| -(C + 2 * I)} (1.10)

From a practicalFigure 1 . 1 -

 11 Figure 1.1 -An illustrative example for MC-GPP.

2)CASE 1 :

 21 By equation (2.2), it is clear that increasing min{e(S), e(S)} and decreasing |cut(s)| reduces the conductance Φ(s). Inversely, decreasing min{e(S), e(S)} and increasing |cut(s)| augment the conductance Φ(s). Let CV (s) = {v ∈ V : (v, _) ∈ cut(s)} be the set of critical vertices of s, i.e., the Part , Chapter 2 -SaBTS: Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem e(S) = e() S = {a, b, c, d}, = {e, f

Figure 2 . 1 -

 21 Figure 2.1 -An example of moving "non-critical" or "ordinary" vertices in the constrained neighboring structure defined in the cut edges set.

Part , Chapter 2 -

 2 SaBTS: Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problemupdating technique[START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] to perform the necessary calculations of each CNTS iteration. Given the incumbent solution s = {S, S}, the number of cut edges |cut(s)|, the degrees of each vertex v in both partition subsets deg S (v) and deg S (v), let s = {S , S } with S = S \ {v}, S = S ∪ {v} be the new neighbor solution after relocating v from S to S. The conductance of s can be efficiently recalculated in O(1) time,

Part , Chapter 2 -Algorithm 3

 23 SaBTS: Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem The self-adaptive perturbation procedure (SAP).

Part , Chapter 2 -Figure 2 . 2 -

 222 Figure 2.2 -Analysis of the effects of the parameters (α, D, T , L 0 and P 0) on the performance of the proposed SaBTS algorithm.

1 : 3 : 4 :s 0 ←

 1340 P op ← ∅ 2: for i = 1, . . . , p do if rand(0, 1) < 0.5 then Construct a random partition s 0 = {S, S} with S = {v}, S = V -{v} 5: else 6: s 0 ← M QI() / * Create s 0 by applying the max-flow algorithm MQI [LR04] T abu_Search(s 0 , d) / * Section 3.2.4 * / 9:if s 0 is different from all solutions in P op then 10:P op ← {s 0 } ∪ P op 11:

Figure 3 . 1 -

 31 Figure 3.1 -The double-point crossover.

Part , Chapter 3 -Algorithm 6

 36 MAMC: A hybrid evolutionary algorithm for finding low conductance of large graphs Progressive constrained neighborhood tabu search (PCNTS). Require: Graph G = (V, E), current solution s, depth of tabu search d. Ensure: The best solution found s b . 1: s b ← s / * record the best solution found during the current TS run * / 2: H ← ∅ 3: β ← 0 / * counter of consecutive non-improving iterations w.r.t. s b * / 4: ev ← 1 / * ev is the number of evaluating vertices in N C (s) * / 5: Create the set CV (s, ev) of critical vertices 6: while β < d do 7: Select a best eligible vertex v in CV (s, ev) 8: s ← s ⊕ Relocate(v) 9: Update the set of critical vertices CV (s, ev) 10: Update tabu list H[v] with tabu tenure tt 11: if Φ(s) < Φ(s b) then

Figure 3 . 2 -

 32 Figure 3.2 -Performance profiles of the proposed MAMC algorithm and the four reference algorithms Metis [KK98b], MQI [LR04], SaBTS [LHZ19], and MQI+SaBTS [LHZ19] on the two sets of 60 benchmark instances.

Figure 3 . 3 -

 33 Figure 3.3 -The communities detected by our proposed MAMC algorithm of the friendship network from Zachary's karate club study.

Figure 3 . 4 -

 34 Figure 3.4 -The communities of college football network. The colors indicate different conferences, and clusterings for the communities identified by our proposed MAMC algorithm.

Figure 3 . 5 -

 35 Figure 3.5 -The social network of 62 bottlenose dolphins. The nodes are colored based on the groups observed in the study by Lusseau et al [Lus+03]. The clusterings represent communities detected by our proposed MAMC algorithm.

Figure 3 . 6 -

 36 Figure 3.6 -Average values of Φ best and Φ avg on six hard instances obtained by executing MAMC with different values of parameters α and d.

Figure 3

 3 Figure 3.7 -Comparison of the quality-and-diversity based population initialization (denoted by InitialMixed) with two random initialization variants (denoted by InitialRan-dom1 and InitialRandom2).

Figure 3 . 8 -

 38 Figure 3.8 -Comparison of MAMC with the progressive constrained neighborhood (denoted by PCNTS) and its variant with the whole neighborhood (denoted by CNTS) according to their running profiles (convergence graphs).

Figure 3 .

 3 Figure 3.9 -Comparison of the distance-and-quality based pool updating procedure (denoted by PoolNew) and its variant only based on solution quality (denoted by PoolOld).

Part , Chapter 4 -

 4 IMSA: Iterated multilevel simulated annealing for large-scale graph conductance minimization

Figure 4 . 1 -

 41 Figure 4.1 -An illustration of the iterated multilevel framework for the proposed IMSA algorithm.

Fig. 4 .

 4 Fig. 4.2 illustrates how the first coarsened graph is created from an initial graph G 0 with 8 vertices (unit weight for both vertices and edges) and the partition s 0 = ({a, b, h}, {c, d, e, f, g}) (indicated by the red dashed line). The edge matching step first uses the HEM heuristic to identify the set of independent edges M = {(a, b), (c, d), (e, f)} guided by s 0 . Then for each edge in M , say (a, b), its endpoints are merged to form a new vertex a + b in G 1 with vertex weight w(a + b) = w(a) + w(b), the edge (a, b) is removed, and the edges (a, h) and (b, h) which are incident to both a and b are merged to form a

Figure 4 . 2 -

 42 Figure 4.2 -An example of the solution-guided coarsening process to create a coarsened graph.

 90

4. 2 .

 2 Iterated multilevel simulated annealing for large-scale graph conductance minimizationAlgorithm 9 Simulated annealing based local refinement.

 To ensure a fast computation of the conductance variation of a neighbor solution generated by Relocate, we adopt a streamlined incremental evaluation technique [Cha17; LHW20; LHZ19]. Let s = {S, S} be the current solution, s = {S , S } be the neighbor solution after relocating vertex v of s from S to S. The conductance of s can be evaluated in O(1) time by simply updating |cut(s)|, vol(S), vol(S) by |cut(s)| = |cut(s)| + deg S (v) -deg S (v), vol(S) = vol(S) -deg(v), and vol(S) = vol(S) + deg(v), where deg S (v) (resp. deg S (v)) is the number of vertices adjacent to v in S (resp. in S). Moreover, for each vertex w adjacent to v, deg S (w) and deg S (w) can be updated in O(1) time by deg S (w) = deg S (w) -1 and deg S (w) = deg S (w) + 1. We now analyze the complexity of the SA procedure. In each search round of SA, we perform saIter iterations. At each iteration, SA first identifies the set of critical vertices CV (s), which can be achieved in O(|V | × deg max) time where deg max is the maximum degree of vertex of a given graph G. A candidate solution is then sampled in O(1) time. When a neighbor solution s = {S , S } is obtained, the conductance variation is calculated in O(1) time. Moreover, deg S (w) and deg S (w) are updated in O(deg(v)) time. Thus, for each search round, SA requires O(saIter × |V | × deg max) time.

Figure 4 .

 4 Figure 4.5 -Comparisons of the proposed IMSA algorithm with an IMSA variant where the SA-based local refinement is replaced by a descent search (denoted by IMSA descent) on the 20 representative instances.

D

 ∈ [5000, 10000, 15000, 20000, 25000], and α ∈ [40, 60, 80, 100, 120]. This experiment was conducted on 9 representative instances from the set of instances used in Sections 4.4.2 and 4.4.3, and based on 20 independent runs per parameter value with a cutoff time of 60 minutes per run. Fig. 4.6 shows the average values of Φ best and Φ avg obtained for the 9 instances, where the X-axis indicates the values of each parameter and the Y-axis shows the best/average conductance values over the 9 representative instance: (prefer-

Figure 4 . 6 -

 46 Figure 4.6 -Analysis of the parameters (ct, saIter, θ, ar, D, α) of the proposed IMSA algorithm on its performance of the proposed IMSA algorithm.

Table 1 .

 1 1 -Summary of the key features and technical contributions of the most related studies for MC-GPP.

	Part , Chapter 1 -Introduction				
	Reference	Aim	Approach	Main features	Test Limitations
			Exact methods			
	Hochbaum [Hoc09] (2009)	Solve the ratio region problem, a variant of normalized cut in the field of image segmentation	Max-flow min-cut algorithm	Exact solution to the given problem	No	Specific or particular
	Hochbaum [Hoc13] (2013)	Solve a discrete relaxation of a family of NP-hard Rayleigh problems	Max-flow min-cut algorithm	Solution to the discrete Rayleigh spectral approach ratio problem without balance time; better solutions than constraint in strongly polynomial	Yes	cases; high computational complexity; unpractical for large graphs
			Approximation methods		
	Cheeger [Che69] (1969)	Provide a lower bound for the smallest eigenvalue of the Laplacian	Mathematical method	Establish a lower bound geometric invariant in terms of a certain global	No	
	Leighton & Rao [LR99] (1999)	Establish max-flow min-cut theorems for several classes of multicommodity flow problems	Max-flow min-cut algorithm	Implement a O(logn)-for MC-GPP approximation algorithm	No	
	Arora et al. [AHK04; ARV09] (2004, 2009)	Propose a O(logn)-approximation algorithm for MC-GPP	Semidefinite programming	Improve a O(logn)-Rao [LR99] (1999) approximation of Leighton &	No	Specific or particular cases; high
	Leskovec et al. [Les+09] (2009)	Define and identify clusters or communities measured by conductance	Flow-based, spectral and hierarchical methods	Suggest a detailed and social and information networks counterintuitive picture of community structures in large	Yes	computational complexity
	Spielman et al. [ST13] (2013)	Determine a good cluster measured by conductance	Nearly linear time algorithm local clustering	Handle massive graphs; Find with nearly optimal balance an approximate sparsest cut	Yes	
	Zhu et al. [ZLM13] (2013)	Find well-connected clusters in terms of the conductance	Random-walk based local algorithms	Improve significantly the it is well-connected inside conductance of cluster where	Yes	
		Heuristic and metaheuristic methods		
	Lang & Rao [LR04] (2004)	Improve a graph cut when cut quality is measured by quotient-style metrics such as expansion or conductance	Max-flow min-cut algorithm	Refine the results of Metis Run in nearly linear time graph partitioning heuristic;	Yes	
	Andersen & Lang [AL08] (2008)	Find a larger-than-expected intersection with lower conductance	Sequence and min-cut algorithm polynomially many applications of max-flow	Prove a stronger guarantee of impacting the running time the lowest conductance; Improve the quality of cuts without	Yes	Decrease of
	Lim et al. [Lim+15; Lim+17] (2015, 2017)	Find a large subgraph with high quality partition, in terms of conductance	Remove hub vertices, and find conductance partitioning method of a subgraph by graph	Discover a global balanced in real world graphs partition with low conductance	Yes	performance on massive graphs (with millions of vertices)
	Laarhoven &	Study continuous optimization	Projected gradient	Propose σ-conductance function;		
	Marchiori	of conductance for local	descent and expectation-	Prove locality and performance	Yes	
	[VM16] (2016)	network community detection	maximization algorithm	guarantees of algorithms		
	Chalupa [Cha17] (2017)	Solve MC-GPP as a pseudo-Boolean optimization problem	Local search and memetic search	Basic search strategies; applied to real world social networks	Yes	

Table 1 .

 1 In Chapter 2, the proposed SaBTS algorithm is available at: http://www.info. univ-angers.fr/~hao/mcgpp.html. 2 -Benchmark instances from "The 10th DIMACS Implementation Challenge Benchmark" for MC-GPP: Part 1. This set includes 138 graphs which are classified into 9 groups by their applications. Within each group, the instances are sorted by the number of vertices.

	1.5. Experimental platform

-

Table 1 .

 1 3 -Benchmark instances from "The 10th DIMACS Implementation Challenge Benchmark" for MC-GPP: Part 2. This set includes 138 graphs which are classified into 9 groups by their applications. Within each group, the instances are sorted by the number of vertices.

	Graph	|V |	|E| Graph	|V |	|E|
		Redistricting (43)		ga2010	291 086	709 028
	de2010	24 115	58 028 mi2010	329 885	789 045
	vt2010	32 580	77 799 mo2010	343 565	828 284
	nh2010	48 837	117 275 oh2010	365 344	884 120
	ct2010	67 578	168 176 pa2010	421 545	1 029 231
	me2010	69 518	167 738 il2010	451 554	1 082 232
	nv2010	84 538	208 499 tx2010	914 231	2 228 136
	wy2010	86 204	213 793	Co-author and citation networks (1)
	sd2010	88 360	205 361 coAuthorsDBLP	299 067	977 676
	ut2010	115 406	286 033	Graphs from Numerical Simulations (8)
	mt2010	132 288	319 334 NACA0015	1 039 183	3 114 818
	nd2010	133 769	312 973 M6	3 501 776	10 501 936
	wv2010	135 218	331 461 333SP	3 712 815	11 108 633
	md2010	145 247	350 189 AS365	3 799 275	11 368 076
	id2010	149 842	364 132 venturiLevel3	4 026 819	8 054 237
	ma2010	157 508	388 305 NLR	4 163 763	12 487 976
	nm2010	168 609	415 485 channel	4 802 000	42 681 372
	nj2010	169 588	414 956 adaptive	6 815 744	13 624 320
	ms2010	171 778	419 990	Street Networks (7)
	sc2010	181 908	446 580 luxembourg	114 599	119 666
	ar2010	186 211	452 155 belgium	1 441 295	1 549 970
	ne2010	193 352	456 927 netherlands	2 216 688	2 441 238
	wa2010	195 574	473 716 italy	6 686 493	7 013 978
	or2010	196 621	489 756 great-britain	7 733 822	8 156 517
	co2010	201 062	487 287 germany	11 548 845	12 369 181
	la2010	204 447	490 317 asia	11 950 757	12 711 603
	ia2010	216 007	510 585	Frames from 2D Dynamic Simulations (9)
	ks2010	238 600	560 899 hugetric00	5 824 554	8 733 523
	tn2010	240 116	596 983 hugetric10	6 592 765	9 885 854
	az2010	241 666	598 047 hugetric20	7 122 792	10 680 777
	al2010	252 266	615 241 hugetrace00	4 588 484	6 879 133
	wi2010	253 096	604 702 hugetrace10	12 057 441	18 082 179
	mn2010	259 777	613 551 hugetrace20	16 002 413	23 998 813
	in2010	267 071	640 858 hugebubbles00	18 318 143	27 470 081
	ok2010	269 118	637 074 hugebubbles10	19 458 087	29 179 764
	va2010	285 762	701 064 hugebubbles20	21 198 119	31 790 179
	nc2010	288 987	708 310		

Table 1 .

 1

	Graph	|V |	|E| Graph	|V |	|E|
	Social networks (12)	The Network Data Repository online (10)
	soc_52	52	414 sc-nasasrb	54 870	1 311 227
	gplus_200	200	418 sc-pkustk13	94 893	3 260 967
	gplus_500	500	1 006 web-arabic-2005	163 598	1 747 269
	pokec_500	500	993 soc-gowalla	196 591	950 327
	gplus_2000	2 000	5 343 soc-twitter-follows	404 719	713 319
	pokec_2000	2 000	5 893 soc-youtube	495 957	1 936 748
	gplus_10000	10 000	33 954 soc-flickr	513 969	3 190 452
	pokec_10000	10 000	44 745 ca-coauthors-dblp	540 486	15 245 729
	gplus_20000	20 000	81 352 soc-FourSquare	639 014	3 214 986
	pokec_20000	20 000	102 826 inf-roadNet-PA	1 087 562	1 541 514
	gplus_50000	50 000	231 583		
	pokec_50000	50 000	281 726		

4 -Benchmark instances from the popular SNAP collection named by Social networks (left, 12 graphs) and "The Network Data Repository online" (right, 10 graphs) for MC-GPP. Within each set, the instances are sorted by the number of vertices.

 Using the incremental technique introduced in [Cha17],

	Part , Chapter 2 -SaBTS: Stagnation-aware breakout tabu search for the minimum
	conductance graph partitioning problem
		we can evaluate each relocatable candidate vertex and perform the necessary post-
		relocation updates in O(1) time (see Section 2.2.3 for details). Since selecting the
		vertex for relocation at each iteration requires O(|V |) and the number of relocated
		vertices is bounded by the number of vertices in V , the time complexity of this
		procedure is bounded by O(|V | 2). To obtain a good initial solution, we repeat this
		process 10 times to obtain 10 candidate solutions among which we select one best
	Algorithm 1 Main framework of the stagnation-aware breakout tabu search (SaBTS) for MC-GPP. solution.
	Require: Graph G = (V, E), depth of tabu search D, stagnation threshold T , initial jump
	magnitude L 0 .	
	Ensure: The best partition s * found so far.
	1: ω ← 0		/ * initialize counter of non-improving local optima * /
	2: f req(v) ← 0 for all v ∈ V	/ * initialize move frequency of vertices, Section 2.2.3 * /
	3: L ← L 0		/ * initialize jump magnitude, Section 2.2.4 * /
	4: s ← Initial_Solution_Generation()	/ * Section 2.2.2 * /
	5: s t ← s		/ * record the last local optimum found * /
	6: s * ← s		/ * the best solution encountered until now * /
	7: while Stopping condition is not satisfied do
	8:	s ← Constrained_N eighborhood_T abu_Search(s, D, f req)	/ * Section 2.2.3 * /
	9:	if Φ(s) < Φ(s *) then
	10:	s * ← s		/ * update the best solution found so far * /
	11:	ω ← 0	
	12:	else	
	13:	ω ← ω + 1	
	14:	end if	
	15:	/ * search returns to last local optimum, increase jump magnitude L * /
	16:	if s = s t then	
	17:	L ← L + 1	
	18:	else	
	19:	L = L 0	
	20:	end if	
	21:	s t ← s	/ * record the current solution, to be used in line 16 of next loop * /
	22:	s ← Self _Adaptive_P erturbation(s, ω, T, L, f req)	/ * Section 2.2.4 * /
	23:	f req(v) ← 0 for all v ∈ V	/ * reset move frequency of vertices * /
	24: end while	
	25: return s *	

 Constrained neighborhood tabu search (CNTS).

	Part , Chapter 2 -SaBTS: Stagnation-aware breakout tabu search for the minimum
	conductance graph partitioning problem
	Algorithm 2 Require: Graph G = (V, E), current solution s, depth of tabu search D, vertex move frequency
	vector f req.	
	Ensure: The best solution found s best .
	1: s best ← s	/ * record the best solution found during the current TS run * /
	2: H ← ∅	/ * initialize tabu list, Section 2.2.3 * /
	3: β ← 0	/ * counter of consecutive non-improving iterations w.r.t. s best * /
	4: Create the set CV (s) of critical vertices	/ * Section 2.2.3 * /
	5: while β < D do	
	6:	Select a best eligible vertex v in CV (s)	/ * Section 2.2.3 * /
	7:	s ← s ⊕ Relocate(v)	
	8:	Update the set of critical vertices CV (s)
	9:	Update tabu list H[v] with tabu tenure tt	/ * Section 2.2.3 * /
	10:	f req(v) ← 0, f req(u) ← f req(u) + 1 for all u ∈ V \ {v}
	11:	if Φ(s) < Φ(s best) then	
	12:	s best ← s	
	13:	β ← 0	
	14:	else	
	15:		

 search stagnating, apply rand. perturb. * /

	3:	L ← L 0	/ * reset L * /
	4: else	
	5:	calculate probability P according to Equation (2.10)
	6:	r ← random(0, 1)	/ * generate a random number in (0, 1) * /
	7:	if r < P then	
	8:	with prob. 0.5: s ← f requency_based_perturb(s, ω, L, f req)

9: with prob. 0.5: s ← cut_edge_based_perturb(s, ω, L) 10: else 11: s ← rand_perturb(s, ω, L) 12:

 1) 17 clustering graphs, which are from real world applications and often used for testing algorithms for graph clustering and community detection. 2) 9 Delaunay graphs, which are generated as Delaunay triangulations of random points in the unit square. 3) 42 Redistricting graphs, which are popular for the Redistricting and graph partitioning problems. 4) 30 graphs from Walshaw's

Part , Chapter 2 -SaBTS: Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem

Table 2 .

 2 1 -Parameter setting of the proposed SaBTS algorithm.

	Parameter	Section	Description	Value
	α	§2.2.3	Tabu tenure management factor	100
	D	§2.2.3	Depth of tabu search	6000
	T	§2.2.4	Stagnation threshold	1000
	L 0	§2.2.4	Initial jump magnitude	0.4×|V |
	P 0	§2.2.4	Minimum probability	0.8

graph partitioning archive, which are from real-life applications and very popular for assessing graph partitioning algorithms

[START_REF] Bader | Benchmarking for Graph Clustering and Partitioning[END_REF][START_REF]Graph Partitioning and Graph Clustering, 10th DIMACS Implementation Challenge Workshop[END_REF]

.

 Metis [KK98b]: As a popular graph partitioning package, Metis has been used to generate partitions in several studies on MC-GPP [AL08; LR04; Les+09]. From these studies, one notices that even if Metis does not directly minimize the conductance criterion (it minimizes the number of cut edges), it can still compute reasonably good partitions in terms of conductance. We use Metis for two purposes: 1) to evaluate the results of the proposed SaBTS algorithm when it is run with initial solutions generated by the simple greedy procedure of Section 2.2.2, and 2) like in [AL08; LR04], to verify whether and to which extend SaBTS can improve the conductance of a partition produced by Metis. For this study, we use the latest version Metis 5.1.0 4 and run Metis on the same computer as for the other algorithms.

Table 2 .

 2 .4, we show the improvements of SaBTS (i.e., (Metis+MQI)+SaBTS) over Part , Chapter 2 -SaBTS: Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem 2 -Comparative results of Greedy+SaBTS (when it is run with greedy initial solutions) with two reference algorithms StS-AMA[START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] and Metis[START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF].

	Algorithm pair	Datasets (size)	Indicator #Wins #Ties #Losses
	Greedy+SaBTS vs.	Clustering (17)	Φ best	5	3
	StS-AMA [Cha17]		Φ avg	7	3
		Delaunay (9)	Φ best	9	0
			Φ avg	9	0
		Redistricting (42)	Φ best	41	1
			Φ avg	39	3
		Walshaw (30)	Φ best	26	1
			Φ avg	28	2
		Social (12)	Φ best	6	2
			Φ avg	6	3
	Greedy+SaBTS vs.	Clustering (17)	Φ best	11	3
	Metis [KK98b]		Φ avg	11	4
		Delaunay (9)	Φ best	5	4
			Φ avg	5	4
		Redistricting (42)	Φ best	0	42
			Φ avg	0	42
		Walshaw (30)	Φ best	15	14
			Φ avg	14	16
		Social (12)	Φ best	10	2
			Φ avg	10	2

Table 2 .

 2 3 -Comparative results of how MQI[LR04], SaBTS, and a combination of MQI[LR04] and SaBTS can improve the results of Metis[START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF] (indicated by Metis+MQI, Metis+SaBTS and (Metis+MQI)+SaBTS respectively).

	Algorithm pair	Datasets (size)	Indicator #Wins #Ties #Losses ∆ 1 (%)
	Metis+MQI [LR04] vs.	Clustering (17)	Φ best	11	6	19.51%
	Metis [KK98b]		Φ avg	14	3	20.22%
		Delaunay (9)	Φ best	8	1	4.37%
			Φ avg	9	0	5.19%
		Redistricting (42)	Φ best	42	0	22.06%
			Φ avg	42	0	22.16%
		Walshaw (30)	Φ best	25	5	12.19%
			Φ avg	29	1	12.21%
		Social (12)	Φ best	11	1	40.63%
			Φ avg	12	0	39.20%
	Metis+SaBTS vs.	Clustering (17)	Φ best	14	3	8.58%
	Metis [KK98b]		Φ avg	15	2	12.20%
		Delaunay (9)	Φ best	9	0	2.81%
			Φ avg	9	0	6.21%
		Redistricting (42)	Φ best	42	0	0.75%
			Φ avg	42	0	0.98%
		Walshaw (30)	Φ best	28	2	6.49%
			Φ avg	29	1	9.45%
		Social (12)	Φ best	12	0	23.26%
			Φ avg	12	0	27.62%
	(Metis+MQI)+SaBTS vs.	Clustering (17)	Φ best	14	3	24.84%
	Metis [KK98b]		Φ avg	15	2	28.47%
		Delaunay (9)	Φ best	9	0	5.24%
			Φ avg	9	0	9.11%
		Redistricting (42)	Φ best	42	0	22.09%
			Φ avg	42	0	22.37%
		Walshaw (30)	Φ best	28	2	13.70%
			Φ avg	29	1	15.36%
		Social (12)	Φ best	12	0	42.42%
			Φ avg	12	0	45.44%

Table 2 .

 2 4 -Comparative results of how SaBTS can further improve the results of Metis+MQI [LR04] (indicated by (Metis+MQI)+SaBTS).

	Algorithm pair	Datasets (size)	Indicator #Wins #Ties #Losses ∆ 2 (%)
	(Metis+MQI)+SaBTS vs.	Clustering (17)	Φ best	8	9	0	5.40%
	Metis+MQI [LR04]		Φ avg	12	5	0	8.63%
		Delaunay (9)	Φ best	8	1	0	0.89%
			Φ avg	9	0	0	4.06%
		Redistricting (42)	Φ best	16	26	0	0.03%
			Φ avg	42	0	0	0.35%
		Walshaw (30)	Φ best	16	14	0	1.71%
			Φ avg	28	2	0	4.54%
		Social (12)	Φ best	4	8	0	1.86%
			Φ avg	8	4	0	10.06%

the results of Metis+MQI, which are obtained by running SaBTS from the output partitions of Metis+MQI. Columns 4-6 indicate the number of instances on which the result of (Metis+MQI)+SaBTS is better, equal or worse than the partitions provided by Metis+MQI (#Wins, #Ties and #Losses), while column 7 shows the average improvement percentage (∆ 2 (%)) of SaBTS over the results of Metis+MQI in terms of Φ best and Φ avg .

Table 2 .

 2 .5, we indicate for each instance the gap of the best and average results of SaBTS no_cons with respect to the best and average results of SaBTS. The p-values from the Wilcoxon signed-rank test are shown in the last row of the table. For example, for the instance PGPgiantcompo, SaBTS no_cons has worse results in terms of Φ best and Φ avg with a best and average gap of 0.0093 and 0.0113 respectively compared to the best and average values of SaBTS. From the table, we observe that SaBTS dominates SaBTS no_cons for each tested instance both in terms of best and average solutions. The p-values from the Wilcoxon signed-rank test also confirm the dominance of SaBTS over SaBTS no_cons . This Part , Chapter 2 -SaBTS: Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem 5 -Comparison of SaBTS with a variant SaBTS no_cons using the unconstrained neighborhood.

	Instance	SaBTS no_cons ∆Φ best ∆Φ avg
	PGPgiantcompo	+0.0093 +0.0113
	preferentialAttachment	+0.0006 +0.0018
	delaunay_n16	+0.0008 +0.0001
	delaunay_n17	+0.0392 +0.0337
	sd2010	+0.0039 +0.0052
	ms2010	+0.0070 +0.0139
	wing	+0.0065 +0.0088
	brack2	+0.0002 +0.0035
	gplus_2000	0	+0.0014
	pokec_20000	+0.0004 +0.0010
	p-value	2.00e-03 2.00e-03

Table 2 .

 2 6 -Comparison of SaBTS with three variants SaBTS D3 , SaBTS D1+D2 and SaBTS D2+D3 applying different perturbation schemes.

	Instance	SaBTS D3 ∆Φ best ∆Φ avg	SaBTS D1+D2 ∆Φ best ∆Φ avg	SaBTS D2+D3 ∆Φ best ∆Φ avg
	PGPgiantcompo	+0.0035 +0.0026	+0.0032 +0.0180	-0.0009	-0.0010
	preferentialAttachment	+0.0095 +0.0117	+0.0143 +0.2373	+0.2882 +0.3152
	delaunay_n16	+0.0083 +0.0077	+0.0012 +0.0035	-0.0003	0
	delaunay_n17	+0.0011 +0.0088	-0.0062 +0.0037	-0.0070 +0.0089
	sd2010	+0.0064 +0.0130	-0.0002 +0.0058	-0.0005 +0.0041
	ms2010	+0.0150 +0.0176	+0.0009 +0.0097	+0.0006 +0.0202
	wing	+0.0070 +0.0061	-0.0009 +0.0082	-0.0018 +0.0060
	brack2	+0.0012 +0.0028	+0.0148 +0.0295	+0.0126 +0.0184
	gplus_2000	0	-0.0001	+0.0083 +0.0178	0	+0.0003
	pokec_20000	+0.0007 +0.0004	+0.0141 +0.0893	+0.0004 +0.0049
	p-value	2.00e-03 3.90e-03	6.45e-02 2.00e-03	1.00e-00 9.80e-03

1 :

 1 P op = {s 1 , s 2 , . . . , s p } ← P opulation_Initialization() / * Section 3.2.2 * / 2: s * ← arg min{Φ(s i) : i = 1, 2, . . . , p} 3: repeat Randomly select two parent solutions s i and s j from P op

	4:		
	5:	(s 1 , s 2) ← Crossover(s i , s j)	/ * Section 3.2.3 * /
	6:	/ * Trajectory 1: improve s 1 with progressive constrained neighborhood tabu search * /
	7:	s 1 ← T abu_search(s 1 , d)	/ * Section 3.2.4 * /
	8:	if Φ(s 1) < Φ(s *) then	
	9:	s * ← s 1	/ * update the best solution found so far * /
	10:	end if	
	11:		
	15:	s * ← s 2	
	16:	end if	
	17:		

P op = {s 1 , s 2 , . . . , s p } ← P ool_U pdating(s 1 , P op) / * Section 3.2.5 * / 12: / * Trajectory 2: improve s 2 by progressive constrained neighborhood tabu search * / 13: s 2 ← T abu_search(s 2 , d) 14: if Φ(s 2) < Φ(s *) then

 Calculate the distance D i,P op between s i and P op4:Calculate the goodness score g(s i , P op) of s i according to Equation (3.5) 5: end for 6: s w ← arg max{g(s i , P op) : i = 0, 1, . . . , p} / * s w is the worst solution s w in P op * / 7: if s w = s 0 then P op ← P op \ {s w } ∪ {s 0 } / * Replace s w with s 0 in P op * / 9: else sw ← arg max{g(s i , P op) : i = 0, 1, . . . , p, s i = s w } / * Identify the second worst solution s sw in P op * / P op ← P op \ {s sw } ∪ {s 0 } / * Replace s sw with s 0 in P op * /

	1: P op ← P op ∪ {s 0 }	/ * Create a temporary population P op * /
	2: for i = 0, . . . , p do	
	3:		
	8:		
	10:	if rand(0, 1) < 0.5 then	
	11:		
	12:		
	13:	end if	
	14: end if	
	15: return P op	
	function value (conductance) of solution s i and Ã(•) is the normalized function:
		Ã(y) =	y -y min y max -y min + 1	(3.6)

s

Table 3 .

 3 1 -Parameter setting of the proposed MAMC algorithm. As shown in[START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], even if Metis does not directly optimize the conductance criterion (it minimizes the number of cut edges), it can produce partitions of relatively low conductance within a very short computation time. In our study, Metis is used to serves as a baseline reference, as well as to create initial partitions of the MQI and SaBTS methods (see below). For this work, we used the latest release Metis 5.1.0 5 .

	Parameter	Section	Description	Value
	p	§3.2.2	Population size	20
	α	§3.2.4	Tabu tenure management factor	10
	d	§3.2.4	Depth of tabu search	6000
	LR04; Les+09].			

Table 3 .

 3 2 -Detailed computational results of MAMC with two reference state-of-the-art algorithms Metis[START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF], MQI[LR04] on 50 large graphs from "The 10th DIMACS Implementation Challenge Benchmark" and 10 large graphs from "The Network Data Repository online".

	MAMC	Φ best Φavg hit t(s) σ	0.28717318 0.28804940 1/20 2886 6.17e-04	0.09948259 0.10321531 1/20 2739 1.27e-03	0.00000156 0.00000156 20/20 1 0	0.00004930 0.00004930 20/20 11 0	0.00001000 0.00001128 9/20 272 1.21e-06	0.00000584 0.00000606 11/20 493 2.80e-07	0.00226376 0.00229371 1/20 1292 2.44e-05	0.00156857 0.00161819 1/20 2000 2.22e-05	0.00113332 0.00114381 1/20 762 8.03e-06	0.00078693 0.00080017 1/20 729 9.73e-06	0.00055891 0.00056128 9/20 27 3.50e-06	0.00039293 0.00039397 8/20 45 1.35e-06	0.00031352 0.00031504 13/20 286 2.61e-06	0.00022443 0.00022552 8/20 526 1.30e-06	0.00016180 0.00016208 11/20 1256 3.20e-07	0.00053442 0.00053453 19/20 564 4.80e-07	0.00017789 0.00017789 20/20 4 0	0.00059147 0.00060046 1/20 1239 4.62e-06	0.00051470 0.00051875 10/20 980 4.54e-06	0.00033671 0.00033671 20/20 4 0	0.00043839 0.00045183 1/20 94 1.90e-05	0.00050732 0.00051154 2/20 1295 4.01e-06	0.00048247 0.00048581 3/20 1374 4.78e-06	0.00053491 0.00053926 1/20 828 3.59e-06	0.00045199 0.00045199 20/20 2 0	0.00046030 0.00046677 2/20 501 9.09e-06	0.00050629 0.00050810 17/20 3 6.23e-06	0.00029079 0.00029215 1/20 1218 2.44e-06	0.00035935 0.00036353 1/20 1083 2.93e-06	0.00009247 0.00009247 20/20 1 0	0.00044010 0.00044334 13/20 481 1.25e-05	0.00045030 0.00047809 1/20 312 9.88e-06	0.00026616 0.00026616 20/20 2 0	0.00024997 0.00025260 2/20 515 1.74e-06	0.00024221 0.00024274 2/20 176 4.60e-07	0.00069385 0.00069385 20/20 1 0	0.00654906 0.00662078 1/20 1953 6.69e-05	0.00185332 0.00185332 20/20 10 0	0.00062040 0.00062040 20/20 3 0	0.00843147 0.00846699 1/20 2032 8.13e-05	0.00302488 0.00303411 14/20 542 2.59e-05
	MQI [LR04]	Φ best Φavg hit t(s) σ	0.31132997 0.33039853 1/20 4 7.91e-03	0.11322141 0.11604861 1/20 9 1.72e-03	0.00000156 0.00000649 12/20 24 6.76e-06	0.00004930 0.00064963 5/20 224 8.75e-04	0.00001000 0.00001399 1/20 3620 1.52e-06	0.00000584 0.00000743 1/20 3625 8.70e-07	0.00233083 0.00239444 1/20 37 4.40e-05	0.00161703 0.00166800 1/20 109 1.91e-05	0.00113731 0.00117238 1/20 251 1.89e-05	0.00078966 0.00081794 1/20 1807 1.16e-05	0.00055891 0.00057390 1/20 3601 9.59e-06	0.00039293 0.00041813 1/20 3603 3.01e-05	0.00031352 0.00032532 1/20 3605 6.42e-06	0.00022443 0.00023220 1/20 3611 4.08e-06	0.00016180 0.00016509 1/20 3621 2.32e-06	0.00053701 0.00061163 1/20 116 4.98e-05	0.00017789 0.00028106 3/20 150 7.38e-05	0.00060103 0.00062588 1/20 192 1.88e-05	0.00051471 0.00054122 1/20 226 1.58e-05	0.00033671 0.00039117 7/20 257 4.45e-05	0.00044358 0.00051400 1/20 164 4.14e-05	0.00051345 0.00054504 1/20 221 2.70e-05	0.00049104 0.00053608 1/20 225 4.73e-05	0.00053576 0.00055713 1/20 251 1.35e-05	0.00045199 0.00047775 7/20 233 3.19e-05	0.00046031 0.00050643 1/20 236 2.15e-05	0.00050629 0.00054958 4/20 287 3.43e-05	0.00029130 0.00030411 1/20 267 8.45e-06	0.00036488 0.00039249 1/20 224 2.28e-05	0.00009247 0.00022270 12/20 217 1.77e-04	0.00044010 0.00051012 1/20 310 4.15e-05	0.00047052 0.00050917 1/20 358 2.27e-05	0.00026616 0.00028228 10/20 398 2.52e-05	0.00025204 0.00026746 1/20 436 9.26e-06	0.00024258 0.00025289 1/20 2386 9.50e-06	0.00069385 0.00073514 16/20 45 9.66e-05	0.00668630 0.00690103 1/20 26 1.37e-04	0.00185332 0.00185425 19/20 36 4.05e-06	0.00062040 0.00062041 8/20 15 1.00e-08	0.00878706 0.00903448 1/20 37 2.30e-04	0.00307533 0.00314188 1/20 50 1.80e-05
	Metis [KK98b]	Φ best Φavg hit t(s) σ	0.31136208 0.33179699 1/20 0 8.45e-03	0.11353648 0.11625592 1/20 0 1.72e-03	0.00014499 0.00045316 1/20 0 2.30e-04	0.00180465 0.00297210 1/20 4 8.45e-04	0.00001000 0.00001399 1/20 38 1.52e-06	0.00000584 0.00000743 1/20 46 8.70e-07	0.00245485 0.00255656 1/20 0 5.08e-05	0.00176260 0.00180880 1/20 0 3.15e-05	0.00122712 0.00128721 1/20 0 2.50e-05	0.00087932 0.00090623 1/20 1 1.86e-05	0.00062086 0.00064508 1/20 1 1.26e-05	0.00043742 0.00045557 1/20 3 8.39e-06	0.00031352 0.00032532 1/20 8 6.42e-06	0.00022443 0.00023220 1/20 16 4.08e-06	0.00016180 0.00016509 1/20 31 2.32e-06	0.00067974 0.00073333 1/20 0 3.29e-05	0.00037015 0.00042879 1/20 0 5.70e-05	0.00067628 0.00072474 1/20 0 2.45e-05	0.00058509 0.00063764 1/20 0 2.36e-05	0.00043558 0.00048995 1/20 0 3.43e-05	0.00057028 0.00063012 1/20 0 3.36e-05	0.00059056 0.00065367 1/20 0 3.57e-05	0.00053361 0.00063087 1/20 0 7.26e-05	0.00061880 0.00066681 1/20 0 2.28e-05	0.00054622 0.00060620 1/20 0 2.93e-05	0.00054795 0.00060312 1/20 0 3.21e-05	0.00060428 0.00066761 1/20 0 3.86e-05	0.00033192 0.00036179 1/20 0 2.15e-05	0.00041835 0.00047506 1/20 0 4.09e-05	0.00050360 0.00055231 1/20 0 2.58e-05	0.00055795 0.00062254 1/20 0 4.58e-05	0.00055951 0.00060063 1/20 0 2.17e-05	0.00034314 0.00039015 1/20 0 3.87e-05	0.00029503 0.00031679 1/20 0 1.61e-05	0.00028327 0.00032283 1/20 1 1.99e-05	0.00088178 0.00103187 1/20 0 8.52e-05	0.00709383 0.00734335 1/20 0 1.52e-04	0.00199422 0.00207331 1/20 0 4.28e-05	0.00062040 0.00062041 8/20 0 1.00e-08	0.00908187 0.00955851 1/20 0 2.35e-04	0.00323856 0.00331810 1/20 0 4.08e-05
	Instance	Graph |V |	preferential 100000 Attachment	smallworld 100000	cnr-2000 325557	eu-2005 862664	road_central 14081816	road_usa 23947347	delaunay_n16 65536	delaunay_n17 131072	delaunay_n18 262144	delaunay_n19 524288	delaunay_n20 1048576	delaunay_n21 2097152	delaunay_n22 4194304	delaunay_n23 8388608	delaunay_n24 16777216	co2010 201062	la2010 204447	ia2010 216007	ks2010 238600	tn2010 240116	az2010 241666	al2010 252266	wi2010 253096	mn2010 259777	in2010 267071	ok2010 269118	va2010 285762	nc2010 288987	ga2010 291086	mi2010 329885	mo2010 343565	oh2010 365344	pa2010 421545	il2010 451554	tx2010 914231	t60k 60005	wing 62032	brack2 62631	finan512 74752	fe_tooth 78136	fe_rotor 99617

Table 3 .

 3 3 -Detailed computational results of MAMC with two reference state-of-the-art algorithms SaBTS[START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] and MQI+SaBTS[START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] on 50 large graphs from "The 10th DIMACS Implementation Challenge Benchmark" and 10 large graphs from "The Network Data Repository online".

	MAMC	Φ best Φavg hit t(s) σ	0.28717318 0.28804940 1/20 2886 6.17e-04	0.09948259 0.10321531 1/20 2739 1.27e-03	0.00000156 0.00000156 20/20 1 0	0.00004930 0.00004930 20/20 11 0	0.00001000 0.00001128 9/20 272 1.21e-06	0.00000584 0.00000606 11/20 493 2.80e-07	0.00226376 0.00229371 1/20 1292 2.44e-05	0.00156857 0.00161819 1/20 2000 2.22e-05	0.00113332 0.00114381 1/20 762 8.03e-06	0.00078693 0.00080017 1/20 729 9.73e-06	0.00055891 0.00056128 9/20 27 3.50e-06	0.00039293 0.00039397 8/20 45 1.35e-06	0.00031352 0.00031504 13/20 286 2.61e-06	0.00022443 0.00022552 8/20 526 1.30e-06	0.00016180 0.00016208 11/20 1256 3.20e-07	0.00053442 0.00053453 19/20 564 4.80e-07	0.00017789 0.00017789 20/20 4 0	0.00059147 0.00060046 1/20 1239 4.62e-06	0.00051470 0.00051875 10/20 980 4.54e-06	0.00033671 0.00033671 20/20 4 0	0.00043839 0.00045183 1/20 94 1.90e-05	0.00050732 0.00051154 2/20 1295 4.01e-06	0.00048247 0.00048581 3/20 1374 4.78e-06	0.00053491 0.00053926 1/20 828 3.59e-06	0.00045199 0.00045199 20/20 2 0	0.00046030 0.00046677 2/20 501 9.09e-06	0.00050629 0.00050810 17/20 3 6.23e-06	0.00029079 0.00029215 1/20 1218 2.44e-06	0.00035935 0.00036353 1/20 1083 2.93e-06	0.00009247 0.00009247 20/20 1 0	0.00044010 0.00044334 13/20 481 1.25e-05	0.00045030 0.00047809 1/20 312 9.88e-06	0.00026616 0.00026616 20/20 2 0	0.00024997 0.00025260 2/20 515 1.74e-06	0.00024221 0.00024274 2/20 176 4.60e-07	0.00069385 0.00069385 20/20 1 0	0.00654906 0.00662078 1/20 1953 6.69e-05	0.00185332 0.00185332 20/20 10 0	0.00062040 0.00062040 20/20 3 0	0.00843147 0.00846699 1/20 2032 8.13e-05	0.00302488 0.00303411 14/20 542 2.59e-05
	MQI+SaBTS [LHZ19]	Φ best Φavg hit t(s) σ	0.29457883 0.29584725 1/20 2264 1.04e-03	0.10105860 0.10387462 1/20 3181 1.99e-03	0.00000156 0.00000649 12/20 0 7.00e-06	0.00004930 0.00064963 5/20 1219 8.75e-04	0.00001000 0.00001399 1/20 3240 1.52e-06	0.00000584 0.00000743 1/20 3420 8.70e-07	0.00232641 0.00239002 1/20 0 4.30e-05	0.00161683 0.00166666 1/20 0 1.90e-05	0.00113724 0.00117144 1/20 0 1.80e-05	0.00078757 0.00081717 1/20 47 1.17e-05	0.00055890 0.00057389 1/20 997 9.59e-06	0.00039293 0.00041812 1/20 1854 3.01e-05	0.00031352 0.00032530 1/20 2272 6.42e-06	0.00022443 0.00023219 1/20 2906 4.08e-06	0.00016180 0.00016509 1/20 3420 2.32e-06	0.00053700 0.00061060 1/20 0 5.00e-05	0.00017789 0.00028104 3/20 35 7.40e-05	0.00060102 0.00062450 1/20 0 1.90e-05	0.00051470 0.00054080 1/20 0 1.60e-05	0.00033671 0.00038654 8/20 0 4.10e-05	0.00044358 0.00051398 1/20 130 4.10e-05	0.00050982 0.00054469 1/20 69 2.70e-05	0.00049099 0.00053505 1/20 106 4.70e-05	0.00053535 0.00055552 1/20 161 1.30e-05	0.00045199 0.00047766 7/20 51 3.20e-05	0.00046031 0.00050597 1/20 192 2.10e-05	0.00050629 0.00054526 6/20 129 3.60e-05	0.00029129 0.00030381 1/20 79 9.00e-06	0.00036488 0.00039204 1/20 445 2.30e-05	0.00009247 0.00020506 13/20 72 1.71e-04	0.00044010 0.00050980 1/20 82 4.20e-05	0.00047052 0.00050873 1/20 116 2.20e-05	0.00026616 0.00027731 11/20 0 2.30e-05	0.00025204 0.00026736 1/20 5 9.00e-06	0.00024258 0.00025289 1/20 2692 9.51e-06	0.00069385 0.00073344 17/20 6 9.40e-05	0.00668219 0.00689348 1/20 0 1.36e-04	0.00185332 0.00185332 20/20 7 0	0.00062040 0.00062040 20/20 0 0	0.00857068 0.00893257 1/20 735 2.09e-04	0.00303132 0.00313967 1/20 0 2.70e-05
	SaBTS [LHZ19]	Φ best Φavg hit t(s) σ	0.29468142 0.29575422 1/20 1790 7.22e-04	0.10048440 0.10143134 1/20 3191 6.79e-04	0.00014499 0.00045286 1/20 179 2.30e-04	0.00180465 0.00296178 1/20 118 8.54e-04	0.00001000 0.00001399 1/20 0 2.00e-06	0.00000584 0.00000743 1/20 0 1.00e-06	0.00244182 0.00254590 1/20 0 5.30e-05	0.00174222 0.00180321 1/20 0 3.30e-05	0.00122711 0.00128230 1/20 48 2.40e-05	0.00087931 0.00090477 1/20 249 1.80e-05	0.00062085 0.00064504 1/20 65 1.30e-05	0.00043742 0.00045553 1/20 44 8.00e-06	0.00031352 0.00032529 1/20 225 6.00e-06	0.00022443 0.00023219 1/20 335 4.00e-06	0.00016180 0.00016509 1/20 0 2.00e-06	0.00067382 0.00072937 1/20 0 3.40e-05	0.00036595 0.00042063 1/20 28 4.80e-05	0.00067607 0.00071503 1/20 0 2.50e-05	0.00057938 0.00063012 1/20 0 2.40e-05	0.00043051 0.00048415 1/20 0 3.00e-05	0.00057022 0.00062654 1/20 1 3.40e-05	0.00057567 0.00065110 1/20 0 3.70e-05	0.00053185 0.00062475 1/20 0 7.30e-05	0.00061709 0.00066058 1/20 0 2.30e-05	0.00054614 0.00060081 1/20 1 2.70e-05	0.00054185 0.00059924 1/20 1 3.30e-05	0.00060130 0.00066431 1/20 1 3.70e-05	0.00033045 0.00035826 1/20 1 2.10e-05	0.00041692 0.00047249 1/20 74 4.10e-05	0.00050347 0.00054874 1/20 1 2.50e-05	0.00054932 0.00061939 1/20 1 4.60e-05	0.00055701 0.00059543 1/20 2 2.20e-05	0.00034309 0.00038692 1/20 1 3.80e-05	0.00029324 0.00031372 1/20 1 1.60e-05	0.00028326 0.00032269 1/20 5 2.00e-05	0.00082876 0.00098630 1/20 9 1.07e-04	0.00708296 0.00731614 1/20 0 1.56e-04	0.00185332 0.00192248 1/20 1767 4.80e-05	0.00062040 0.00062040 20/20 0 0	0.00854413 0.00920313 1/20 2008 3.23e-04	0.00319580 0.00322448 1/20 2081 2.00e-05
	Instance	Graph |V |	preferential 100000 Attachment	smallworld 100000	cnr-2000 325557	eu-2005 862664	road_central 14081816	road_usa 23947347	delaunay_n16 65536	delaunay_n17 131072	delaunay_n18 262144	delaunay_n19 524288	delaunay_n20 1048576	delaunay_n21 2097152	delaunay_n22 4194304	delaunay_n23 8388608	delaunay_n24 16777216	co2010 201062	la2010 204447	ia2010 216007	ks2010 238600	tn2010 240116	az2010 241666	al2010 252266	wi2010 253096	mn2010 259777	in2010 267071	ok2010 269118	va2010 285762	nc2010 288987	ga2010 291086	mi2010 329885	mo2010 343565	oh2010 365344	pa2010 421545	il2010 451554	tx2010 914231	t60k 60005	wing 62032	brack2 62631	finan512 74752	fe_tooth 78136	fe_rotor 99617

Table 3 .

 3 4 -Summary of comparative results between the proposed MAMC algorithm and each of the four reference algorithms Metis[START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF], MQI[LR04], SaBTS[START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], and MQI+SaBTS[START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] on the two sets of 60 benchmark instances.

	Algorithm pair	#Instance Indicator #Wins #Ties #Losses p-value
	MAMC vs. Metis [KK98b]	60	Φ best Φ avg	54 60	6 0	0 0	1.63e-10 1.63e-11
	MAMC vs. MQI [LR04]	60	Φ best Φ avg	27 60	33 0	0 0	5.60e-06 1.63e-11
	MAMC vs. SaBTS [LHZ19]	60	Φ best Φ avg	53 58	7 1	0 1	2.39e-10 2.93e-10
	MAMC vs. MQI+SaBTS [LHZ19]	60	Φ best Φ avg	27 58	32 2	1 0	4.46e-06 3.51e-11

 Section 4.2.2 * /

	6:	s i+1 ← Local_Ref inement(s i+1)	/ * Sections 4.2.4 and 4.2.5 * /
	7:	i ← i + 1	
	8:	end while	
	9:		

 Section 4.2.3 * /

	12:

Table 4 .

 4 1 -The parameter settings of the proposed IMSA algorithm.

	Parameter	Section	Description

) IMSA also dominates the SaBTS algorithm by reporting 46 better results, 18 equal results and 2 slightly worse results concerning the Φ best indicator. For the Φ avg indicator, IMSA finds 64 better results and 2 slightly worse results. The p-values are less than 0.01 for both Φ best and Φ avg , indicating a statistically significant difference in performance between IMSA and SaBTS. 4) IMSA competes very favorably with the current best performing MAMC algorithm with 42 improved results, 19 equal results and 5 worse results in terms of Φ best .Considering the Φ avg indicator, the results reported by IMSA are better, equal and slightly worse than those obtained with MAMC for 50, 11 and 5 instances, respectively. The small p-values of 3.85e-05 for Φ best and 3.07e-07 for Φ avg confirm a significant difference between IMSA and MAMC.5) Finally, even the average results of IMSA are oftentimes better than or equal to the best results reported by the reference algorithms: 45 cases for MAMC, 64 cases for SaBTS and 66 cases for MQI. This further confirms the high performance of IMSA.

Table 4 .

 4 2 -Computational results on the 66 benchmark instances obtained by the proposed IMSA algorithm and the three reference algorithms (MAMC[START_REF] Lu | A hybrid evolutionary algorithm for finding low conductance of large graphs[END_REF], SaBTS[START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], and MQI[LR04]).

	MQI [LR04]	Φavg hit t(s)	0.33039853 1/20 4	0.11604861 1/20 9	0.00000649 12/20 24	0.00064963 5/20 224	0.00001399 1/20 3620	0.00000743 1/20 3625	0.00239444 1/20 37	0.00166800 1/20 109	0.00117238 1/20 251	0.00081794 1/20 1807	0.00057390 1/20 3601	0.00041813 1/20 3603	0.00032532 1/20 3605	0.00023220 1/20 3611	0.00016509 1/20 3621	0.00050643 1/20 236	0.00054958 4/20 287	0.00030411 1/20 267	0.00039249 1/20 224	0.00022270 12/20 217	0.00051012 1/20 310	0.00050917 1/20 358	0.00028228 10/20 398	0.00026746 1/20 436	0.00025289 1/20 2386	0.00690103 1/20 26	0.00622039 1/20 99	0.00054822 1/20 3601	0.00055158 1/20 3600	0.00025687 1/20 3601	0.00038076 1/20 3595	0.00235796 1/20 667	0.00026124 2/20 3601	0.00027112 1/20 3605	0.00012378 2/20 3604	0.00022384 1/20 3605	0.00008057 1/20 3603	0.00033050 1/20 3605	0.00125040 1/20 3610	0.00013953 1/20 3607	0.00014875 1/20 379	0.00005042 1/20 3601
		Φ best	0.31132997	0.11322141	0.00000156	0.00004930	0.00001000	0.00000584	0.00233083	0.00161703	0.00113731	0.00078966	0.00055891	0.00039293	0.00031352	0.00022443	0.00016180	0.00046031	0.00050629	0.00029130	0.00036488	0.00009247	0.00044010	0.00047052	0.00026616	0.00025204	0.00024258	0.00668630	0.00611994	0.00051588	0.00052775	0.00025296	0.00036328	0.00161236	0.00025970	0.00026485	0.00003860	0.00021721	0.00007649	0.00031758	0.00120730	0.00013183	0.00013846	0.00004606
	SaBTS [LHZ19]	Φ best Φavg hit t(s)	0.29457883 0.29584725 1/20 2264	0.10105860 0.10387462 1/20 3181	0.00000156 0.00000649 12/20 0	0.00004930 0.00064963 5/20 1219	0.00001000 0.00001399 1/20 3240	0.00000584 0.00000743 1/20 3420	0.00232641 0.00239002 1/20 0	0.00161683 0.00166666 1/20 0	0.00113724 0.00117144 1/20 1	0.00078757 0.00081717 1/20 47	0.00055890 0.00057389 1/20 997	0.00039293 0.00041812 1/20 1854	0.00031352 0.00032530 1/20 2272	0.00022443 0.00023219 1/20 2906	0.00016180 0.00016509 1/20 3420	0.00046031 0.00050597 1/20 192	0.00050629 0.00054526 6/20 129	0.00029129 0.00030381 1/20 79	0.00036488 0.00039204 1/20 445	0.00009247 0.00020506 13/20 72	0.00044010 0.00050980 1/20 82	0.00047052 0.00050873 1/20 116	0.00026616 0.00027731 11/20 0	0.00025204 0.00026736 1/20 5	0.00024258 0.00025289 1/20 2692	0.00668219 0.00689348 1/20 0	0.00610660 0.00620893 1/20 206	0.00051407 0.00054807 1/20 186	0.00052769 0.00055124 1/20 548	0.00025296 0.00025687 1/20 864	0.00036328 0.00038075 1/20 741	0.00161233 0.00235664 3/20 6	0.00025970 0.00026124 2/20 153	0.00026023 0.00026687 1/20 14	0.00003860 0.00012183 2/20 11	0.00021490 0.00022072 1/20 11	0.00007623 0.00008008 1/20 10	0.00031270 0.00032705 1/20 18	0.00119290 0.00124485 1/20 24	0.00013152 0.00013919 1/20 7	0.00013837 0.00014830 1/20 0	0.00004606 0.00005031 1/20 1
	IMSA MAMC [LHW20] |V | Φ best Φavg hit t(s) Φ best Φavg hit t(s)	100000 0.29464260 0.29536141 1/20 2973 *0.28717318 0.28804940 1/20 2886	100000 0.10377462 0.10464450 1/20 3251 *0.09948259 0.10321531 1/20 2739	325557 0.00000156 0.00000156 20/20 9 0.00000156 0.00000156 20/20 1	862664 0.00004930 0.00004930 20/20 21 0.00004930 0.00004930 20/20 11	14081816 *0.00000720 0.00000823 1/20 2424 0.00001000 0.00001128 9/20 272	23947347 *0.00000329 0.00000398 1/20 3034 0.00000584 0.00000606 11/20 493	65536 *0.00224851 0.00225366 1/20 1321 0.00226376 0.00229371 1/20 1292	131072 *0.00155911 0.00156350 1/20 1740 0.00156857 0.00161819 1/20 2000	262144 *0.00109995 0.00110789 1/20 2079 0.00113332 0.00114381 1/20 762	524288 *0.00077949 0.00078464 1/20 1710 0.00078693 0.00080017 1/20 729	1048576 *0.00054264 0.00054980 1/20 1925 0.00055891 0.00056128 9/20 27	2097152 *0.00039276 0.00039276 20/20 63 0.00039293 0.00039397 8/20 45	4194304 *0.00027769 0.00028008 1/20 2082 0.00031352 0.00031504 13/20 286	8388608 *0.00019856 0.00020019 1/20 2403 0.00022443 0.00022552 8/20 526	16777216 *0.00014110 0.00014330 1/20 2975 0.00016180 0.00016208 11/20 1256	269118 0.00046030 0.00046030 20/20 49 0.00046030 0.00046677 2/20 501	285762 0.00050629 0.00050629 20/20 3 0.00050629 0.00050810 17/20 3	288987 *0.00029077 0.00029125 1/20 50 0.00029079 0.00029215 1/20 1218	291086 *0.00035772 0.00036104 1/20 1731 0.00035935 0.00036353 1/20 1083	329885 0.00009247 0.00009247 20/20 4 0.00009247 0.00009247 20/20 1	343565 0.00044010 0.00044010 20/20 5 0.00044010 0.00044334 13/20 481	365344 0.00046194 0.00046598 1/20 152 *0.00045030 0.00047809 1/20 312	421545 0.00026616 0.00026616 20/20 5 0.00026616 0.00026616 20/20 2	451554 *0.00024986 0.00024986 20/20 57 0.00024997 0.00025260 2/20 515	914231 *0.00023852 0.00024769 1/20 519 0.00024221 0.00024274 2/20 176	62032 *0.00651615 0.00652917 3/20 1564 0.00654906 0.00662078 1/20 1953	144649 *0.00604341 0.00605368 1/20 1412 0.00605305 0.00607374 1/20 2690	999999 *0.00050250 0.00051256 1/20 2040 0.00050254 0.00051514 1/20 2661	1000000 *0.00050202 0.00051180 1/20 1742 0.00050250 0.00051874 2/20 2634	1227087 *0.00025097 0.00025213 1/20 1851 0.00025296 0.00025339 10/20 223	1585478 *0.00035679 0.00036099 1/20 232 0.00036328 0.00036393 8/20 335	2063494 0.00161233 0.00232759 3/20 599 0.00161236 0.00303129 1/20 1038	1039183 *0.00025909 0.00025990 1/20 1591 0.00025970 0.00026124 2/20 0	3501776 *0.00024210 0.00024312 1/20 2547 0.00025614 0.00026321 1/20 1296	3712815 0.00003860 0.00010253 2/20 1665 0.00003860 0.00012072 2/20 731	3799275 *0.00019836 0.00019953 1/20 1805 0.00021155 0.00021682 1/20 1203	4026819 *0.00006604 0.00006936 1/20 1670 0.00007586 0.00007914 1/20 1386	4163763 *0.00029019 0.00029361 1/20 2025 0.00030997 0.00032223 1/20 1089	4802000 0.00113916 0.00117489 1/20 2118 *0.00113065 0.03289337 1/20 2947	6815744 *0.00011538 0.00011735 1/20 2010 0.00012195 0.00013036 1/20 1499	114599 *0.00013710 0.00014745 1/20 469 0.00013832 0.00014707 1/20 1299	1441295 0.00004606 0.00004910 1/20 541 0.00004606 0.00005024 1/20 1975
	Instance	preferential	Attachment	smallworld	cnr-2000	eu-2005	road_central	road_usa	delaunay_n16	delaunay_n17	delaunay_n18	delaunay_n19	delaunay_n20	delaunay_n21	delaunay_n22	delaunay_n23	delaunay_n24	ok2010	va2010	nc2010	ga2010	mi2010	mo2010	oh2010	pa2010	il2010	tx2010	wing	144	ecology2	ecology1	thermal2	G3_circuit	kkt_power	NACA0015	M6	333SP	AS365	venturiLevel3	NLR	channel	adaptive	luxembourg	belgium
																				98																							

Table 4 .

 4 3 -Summary results on the 66 benchmark instances reported by the proposed IMSA algorithm, and the three reference algorithms (MAMC[START_REF] Lu | A hybrid evolutionary algorithm for finding low conductance of large graphs[END_REF], SaBTS[START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], and MQI[LR04]).

	Algorithm pair	Indicator #Wins #Ties #Losses p-value
	IMSA vs. MAMC [LHW20]	Φ best Φ avg	42 50	19 11	5 5	3.85e-05 3.07e-07
	IMSA vs. SaBTS [LHZ19]	Φ best Φ avg	46 64	18 0	2 2	3.26e-07 2.81e-11
	IMSA vs. MQI [LR04]	Φ best Φ avg	48 66	18 0	0 0	1.63e-09 1.64e-12

Table 4 .

 4 4 -The geometric means of the best and the average conductance values (G best and G avg) reported by the IMSA algorithm, and the three reference algorithms (MAMC[START_REF] Lu | A hybrid evolutionary algorithm for finding low conductance of large graphs[END_REF], SaBTS[START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF], and MQI[LR04]) for the 66 benchmark instances.

	Algorithm	G best	G avg
	IMSA	0.00027054	0.00028685
	MAMC [LHW20]	0.00028216	0.00041351
	SaBTS [LHZ19]	0.00028502	0.00034674
	MQI [LR04]	0.00028507	0.00034826

 .1. Specifically, we tested the following values: ct ∈ [20000, 30000, 40000, 50000, 60000], saIter ∈ [50000, 100000, 150000, 200000, 250000], θ ∈ [0.90, 0.92, 0.94, 0.96, 0.98], ar ∈ [1%, 3%, 5%, 7%, 9%],

Table A .

 A 1 -Detailed computational results of algorithms Metis[START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF], Metis+MQI[LR04], Metis+SaBTS, and (Metis+MQI)+SaBTS on four datasets from "The 10th DI-MACS Implementation Challenge Benchmark" (including 17 Clustering, 9 Delaunay, 42 Redistricting, 30 Walshaw graphs) and 12 Social network graphs from the SNAP network dataset (a total of 110 graphs). Table A.2 -The statistical results (p-values) from the Wilcoxon signed-rank test with a confidence level of 99% of different pairwise comparisons for the five datasets. Table A.3 -The geometric means of the best and average conductance values (G best and G avg) of algorithms Metis [KK98b], Metis+MQI [LR04], Metis+SaBTS, and (Metis+MQI)+SaBTS on five datasets. An illustrative example for MC-GPP. 2.1 An example of moving "non-critical" or "ordinary" vertices in the constrained neighboring structure defined in the cut edges set. 2.2 Analysis of the effects of the parameters (α, D, T , L 0 and P 0) on the performance of the proposed SaBTS algorithm. 3.1 The double-point crossover. 3.2 Performance profiles of the proposed MAMC algorithm and the four reference algorithms Metis [KK98b], MQI [LR04], SaBTS [LHZ19], and MQI+SaBTS [LHZ19] on the two sets of 60 benchmark instances. 3.3 The communities detected by our proposed MAMC algorithm of the friendship network from Zachary's karate club study. 3.4 The communities of college football network. The colors indicate different conferences, and clusterings for the communities identified by our proposed MAMC algorithm. 3.5 The social network of 62 bottlenose dolphins. The nodes are colored based on the groups observed in the study by Lusseau et al [Lus+03]. The clusterings represent communities detected by our proposed MAMC algorithm. 3.6 Average values of Φ best and Φ avg on six hard instances obtained by executing MAMC with different values of parameters α and d. 3.7 Comparison of the quality-and-diversity based population initialization (denoted by InitialMixed) with two random initialization variants (denoted by InitialRandom1 and InitialRandom2). 3.8 Comparison of MAMC with the progressive constrained neighborhood (denoted by PCNTS) and its variant with the whole neighborhood (denoted by CNTS) according to their running profiles (convergence graphs).

	Instance Graph karate chesapeake dolphins lesmis_no polbooks adjnoun football jazz celegansneural_no celegans_metabolic Graph Algorithm pair vs. StS-AMA [Cha17] |V | 34 39 62 77 105 112 115 198 297 453 Greedy+SaBTS vs. Metis [KK98b] Metis+SaBTS vs. Metis [KK98b] Metis+SaBTS email Instance Greedy+SaBTS 1.1	Metis [KK98b] Φ best Φavg .12820512 .12820512 0 t(s) .33823529 .33823529 0 .11428571 .11428571 0 .13829787 .13829787 0 .04347826 .04347826 0 .29047619 .36504418 0 .10116086 .10607000 0 .20062942 .23112145 0 .18136272 .18720455 0 .18118811 .20923099 0 Metis [KK98b] .12820512 .12820512 0 Metis+MQI [LR04] Φ best Φavg t(s) .31666666 .31666666 0 .11428571 .11428571 0 .13043478 .13043478 0 .04347826 .04347826 0 .29047619 .36371867 0 .10116086 .10568471 0 .12292358 .15637114 0 .18136272 .18640142 0 .09375000 .09437500 0 Metis+MQI [LR04] .12820512 .12820512 Metis+SaBTS Φ best Φavg .27810650 .27810650 .06382978 .06382978 .12252964 .12252964 .04347826 .04347826 .27830188 .27830188 .10116086 .10116086 .12292358 .13773036 1180 .12292358 .13180765 464 (Metis+MQI)+SaBTS t(s) Φ best Φavg t(s) 0 .12820512 .12820512 0 .27810650 .27810650 0 .06382978 .06382978 0 .12252964 .12252964 0 .04347826 .04347826 2 .27830188 .27830188 0 .10116086 .10116086 .17575757 .17575757 0 .17575757 .17575757 .18083003 .18083003 3 .09375000 .09437500 Metis+SaBTS (Metis+MQI)+SaBTS |V | Φ best Φavg t(s) Φ best Φavg t(s) Φ best Φavg t(s) Φ best Φavg t(s) Indicator Clustering Delaunay Redistricting Walshaw Social p-value p-value p-value p-value p-value Φ avg 4.32e-01 3.90e-03 4.07e-06 2.88e-06 7.34e-01 Φ best 6.71e-03 8.20e-01 1.65e-08 1.98e-01 1.22e-02 Φ avg 1.03e-02 4.96e-01 1.65e-08 4.95e-02 1.22e-02 Φ best 2.44e-04 3.91e-03 1.65e-08 3.79e-06 4.88e-04 Φ avg 6.10e-05 3.91e-03 1.65e-08 1.73e-06 4.88e-04 Φ best 4.14e-01 4.26e-01 1.65e-08 3.61e-01 2.50e-01 LIST OF FIGURES Φ best 4.61e-01 3.90e-03 2.73e-08 1.10e-05 2.50e-01
	vs. Metis+MQI [LR04]	Φ avg	1.88e-01	3.01e-01	1.65e-08	5.72e-01 5.19e-01
	(Metis+MQI)+SaBTS	Φ best	1.22e-04	3.91e-03	1.65e-08	3.79e-06 4.88e-04
	vs. Metis [KK98b]		Φ avg	6.10e-05	3.91e-03	1.65e-08	1.73e-06 4.88e-04
	(Metis+MQI)+SaBTS	Φ best	7.81e-03	7.81e-03	3.61e-04	2.93e-04 1.25e-01
	vs. Metis+MQI [LR04]	Φ avg	4.88e-04	3.91e-03	1.64e-08	2.56e-06 7.81e-03
	(Metis+MQI)+SaBTS	Φ best	1.09e-01	9.38e-02	1.65e-08	5.62e-03 3.13e-02
	vs. Metis+SaBTS		Φ avg	7.81e-02	9.38e-02	1.65e-08	1.38e-03 2.34e-02
	Dataset	Metis [KK98b]	Metis+MQI [LR04]	Metis+SaBTS	(Metis+MQI) +SaBTS
		G best	G avg	G best	G avg	G best	G avg	G best	G avg
	Clustering	.06627171 .07595360 .04158546 .04814845 .05982594 .06583945 .03902536 .04359008
	Delaunay	.00497424 .00529025 .00475492 .00501473 .00483327 .00495440 .00471231 .00480691
	Redistricting .00062224 .00069732 .00046329 .00053508 .00061756 .00069047 .00046315 .00053315
	Walshaw	.00605934 .00650062 .00509474 .00559503 .00550456 .00569929 .00499503 .00528675
	Social	.05979176 .06549718 .03028849 .03461953 .04316621 .04374305 .02968546 .03067951

Titre : Approches d'

Optimisation pour le Partitionnement de Graphe de Conductance Minimale Mot clés :

 Minimisation de la conductance, Partitionnement de graphes, Optimisation combinatoire, Métaheuristiques, Recherche de voisinage, Algorithme hybride, Multiniveaux, Optimisation de grands graphes. Le problème de partitionnement de graphe de conductance minimale (MC-GPP) est un problème d'optimisation combinatoire NP-difficile avec de nombreuses applications pratiques dans divers domaines tels que la détection communautaire, la bioinformatique et la vision par ordinateur. Etant donnée sa complexité intrinsèque, des approches heuristiques et métaheuristiques constituent un moyen convenable pour résoudre des instances de grande taille. Cette thèse est consacrée au développement d'algorithmes métaheuristiques performants pour le MC-GPP. Plus précisément, nous propo-sons un algorithme «Stagnation aware Breakout Tabu Search», un algorithme évolutif hybride (MAMC) et un algorithme multiniveau basé sur le recuit simulé (IMSA). Nous présentons des résultats expérimentaux sur de nombreux graphes de grande dimension de la littérature ayant jusqu'à 23 millions de sommets. Nous montrons la haute performance de nos algorithmes par rapport à l'état de l'art. Nous analysons les éléments algorithmiques et stratégies de recherche pour mettre en lumière leur influence sur la performance des algorithmes proposés.

Résumé :

Lang & Rao[LR04] proposed the most representative method for MC-GPP, which is called the Max-flow Quotient-cut Improvement algorithm (MQI). This method improves a graph cut when cut quality is measured by quotient-style metrics such as expansion or conductance. Specifically, an initial cut (typically given by the Metis graph partitioning heuristic[START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF]) by solving the well-known max-flow problem.Andersen & Lang[START_REF] Andersen | An algorithm for improving graph partitions[END_REF] further improved Lang & Rao's work[LR04] and proposed an algorithm called Improve by solving a sequence of polynomially many s-t minimum cut problems to find a larger-than-expected intersection with lower conductance. Their algorithm can prove a stronger guarantee of the lowest conductance, and improve the quality of cuts without impacting the running time.Lim et al.[START_REF] Lim | Discovering large subsets with high quality partitions in real world graphs[END_REF][START_REF] Lim | MTP: discovering high quality partitions in real world graphs[END_REF] proposed a dedicated method called a minus top-k partition (MTP) for finding a large subgraph with high quality partitions, in terms of conductance measurement. The results showed that this algorithm can discover a global balanced partition with low conductance in real world graphs.Laarhoven & Marchiori[START_REF] Van Laarhoven | Local network community detection with continuous optimization of conductance and weighted kernel kmeans[END_REF] studied the continuous optimization of conductance in the context of local network community detection. For their study, they introduced a

http://davidchalupa.github.io/research/data/social.html

http://networkrepository.com/index.php

http://www-personal.umich.edu/~mejn/netdata/

http://davidchalupa.github.io/research/data/social.html

The code of the proposed SaBTS algorithm is available at: http://www.info.univ-angers.fr/ ~hao/mcgpp.html

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

https://github.com/kfoynt/LocalGraphClustering

http://networkrepository.com/index.php

http://www-personal.umich.edu/~mejn/netdata/

The code of our MAMC algorithm is available at: http://www.info.univ-angers.fr/~hao/mamc. html

http://networkrepository.com/index.php

The code of the IMSA algorithm will be made publicly available at: http://www.info. univ-angers.fr/pub/hao/IMSA.html

4.5. Conclusionavailability of the source code of our algorithm will further facilitate such applications.

This research has been financially supported by China Scholarship Council (CSC).

Chapter 3

MAMC: A HYBRID EVOLUTIONARY ALGORITHM FOR FINDING LOW CONDUCTANCE OF LARGE GRAPHS

Introduction

In this chapter, we aim to enrich the toolkit of practical solution methods for MC-GPP. For this purpose, we introduce a novel hybrid evolutionary algorithm called MAMC which is able to find high quality solutions of low conductance for large graphs. Specifically, the proposed MAMC algorithm integrates a set of complementary components to jointly ensure its search effectiveness and computational efficiency. We summarize the main contributions of this work as follows.

-First, the hybrid evolutionary algorithm presented in this work takes advantage of population-based global search and local optimization. Specifically, while it adopts a standard crossover operator to generate offspring solutions, the proposed MAMC algorithm integrates an innovative progressive local search procedure to cope with the difficulty raised by large graphs (with at least 5 × 10 4 vertices). To ensure a healthy population of both high diversity and quality, the algorithm uses a mixed technique for population initialization and a proven distance-and-quality based pool updating strategy for population management.

-Second, we perform extensive computational assessments on 60 large-scale real world benchmark instances (including 50 graphs from the 10th DIMACS Implementation Challenge Benchmark and 10 graphs from the Network Data Repository online, with up to 23 million vertices). We demonstrate the high competitiveness of the proposed MAMC algorithm compared to four state-of-the-art algorithms. As an additional assessment, we show an application of using the proposed IMSA algorithm to detect Chapter 4

IMSA: ITERATED MULTILEVEL SIMULATED ANNEALING FOR

LARGE-SCALE GRAPH CONDUCTANCE MINIMIZATION

Introduction

In this chapter, we investigate the multilevel approach for tackling MC-GPP. Through our researches on MC-GPP, we observe that the existing approaches still have difficulties in robustly and consistently producing high-quality solutions for large-scale graphs and may require a substantial amount of computation time to reach the reported results. On the other hand, it is known that multilevel approach is a powerful and general framework for large graph partitioning [BS94; BH11a; BJ93; HL95; Val+20; Wal04]. To the best of our knowledge, this approach has not been investigated for solving MC-GPP. Thus, this work fills this gap by presenting the first multilevel algorithm for the minimum conductance graph partitioning problem. We summarize the work as follows.

-First, we present an iterated multilevel simulated annealing algorithm (IMSA) for MC-GPP consisting of an original solution-guided coarsening method and a powerful local refinement procedure based on a constrained neighborhood to effectively sample the search space of the problem.

-Second, we perform extensive computational assessments on two sets of 66 very large real-world benchmark instances (including 56 graphs from the 10th DIMACS Implementation Challenge Benchmark and 10 graphs from the Network Data Repository online, with up to 23 million vertices). The computational experiments indicate a high competitiveness of the proposed IMSA algorithm compared to existing state- values of (SA+TS) restart and IMSA, respectively.

As observed in Fig. 4.4, IMSA clearly dominates (SA+TS) restart in terms of the best and the average conductance values for the 20 instances. This experiment confirms the usefulness of the iterated multilevel framework, which positively contributes to the high performance of the proposed IMSA algorithm.

Benefit of the SA-based local refinement

To evaluate the benefit of the SA local refinement procedure to the performance of the proposed IMSA algorithm, we created a variant of IMSA (denoted by IMSA descent) where we replaced the SA procedure by a pure descent procedure using the best-improvement strategy. This experiment relies on the same 20 representative instances used in Section 4.4.2 and reports the same information. Fig. 4.5 plots the best/average conductance gap of the two algorithms on these instances. The X-axis indicates the instance label, while the Y-axis shows the best/average conductance gap in percentage.

From Fig. 4.5, we observe that IMSA descent reports worse results in terms of both the best and the average conductance values for all the instances. This indicates that the SA procedure is the key element that ensures the high performance of IMSA and disabling it greatly deteriorates the performance.

APPENDIX Chapter 2

This appendix provides the detailed computational results presented in Section 2.3.3. Table A.1 shows the detailed results of algorithms Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured Graphs Partitioning and Sparse Matrix Ordering System[END_REF], Metis+MQI [LR04], Metis+SaBTS, and (Metis+MQI)+SaBTS for the five datasets including 110 graphs. As explained in Section 2.3.3, these results are based on 20 independent runs of each algorithm to solve each instance with a cutoff limit of 60 minutes per run and per instance. Φ best of an algorithm for an instance indicates the lowest conductance achieved for the instance among the conductance values of the 20 runs, while Φ avg is the average of the 20 Φ best values. The best of the Φ best values for each instance is highlighted in boldface, while the best of the Φ avg values for each instance is indicated in italic. t(s) is the average CPU time in seconds of 20 runs to attain the 20 best results, and a time less than one second is indicated as 0. These best values can be used to evaluate other MC-GPP algorithms. Table A.2 shows the statistical results (p-values) from the Wilcoxon signed-rank test with a confidence level of 99% applied to different pairwise comparisons for all datasets. The tests are performed on the Φ best and Φ avg values.

To complete the computational comparison presented in Section 2.3.3, we show in Table A.3 an additional comparison of the studied algorithms using the geometric mean metric [FW86; HB97] calculated with the best and average conductance values of each compared algorithm (G best and G avg) on five datasets. The best values of G best are highlighted in boldface while the best values of G avg are indicated in italic. A small value indicates a better performance.

LIST OF ALGORITHMS