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The aim of this thesis is to study nite height crystalline representations in relative -adic Hodge theory, and apply the results thus obtained towards the computation of continuous Galois cohomology of these representations via syntomic methods.

In 1980's, Fontaine initiated a program for classifying -adic representations of the absolute Galois group of a -adic local eld by means of certain linear-algebraic objects functorially attached to the representations. One of the aspects of his program was to classify all -adic representations of the Galois group in terms of étale ( , Γ)-modules. On the other hand, Fontaine showed that crystalline representations can be classi ed in terms of ltered -modules. Therefore, it is a natural question to ask for crystalline representations: Does there exist some direct relation between the ltered -module and the étale ( , Γ)-module? Fontaine explored this question himself, where he considered nite height represenations (de ned in terms of ( , Γ)-modules) and examined their relationship with crystalline representations. This line of thought was further explored by Wach, Colmez, and Berger. In particular, Wach gave a description of nite height crystalline representations in terms of ( , Γ)-modules.

In the relative case, the theory of ( , Γ)-modules has been developed by the works of Andreatta, Brinon and Iovita. Further, the analogous notion of crystalline representations was studied by Brinon.

The rst main contribution of our work is the notion of relative Wach modules. Motivated by the theory of Fontaine, Wach and Berger, we de ne and study some properties of relative Wach modules. Further, we explore their relation with Brinon's theory of relative crystalline representations and associated -isocrystals.

The second result is concerned with the computation of Galois cohomology using syntomic complex with coe cients. This idea was utilized in a recent work of Colmez and Nizioł, where they carry out the computation for cyclotomic twists of the trivial representation. Under certain technical assumptions, we show that for nite height crystalline representations, one can essentially generalize the local result of Colmez and Nizioł.

Représentations de hauteur nie et complexe syntomique Résumé : Le but de cette thèse est d'étudier les représentations cristallines de hauteur nie en théorie de Hodge -adique relative, et d'appliquer les résultats ainsi obtenus au calcul de la cohomologie galoisienne continue de telles représentations via des méthodes syntomiques. Dans les années 1980, Fontaine a lancé un programme pour classer les représentations -adiques du groupe de Galois absolu d'un corps local -adique au moyen de certains objets algébriques linéaires attachés fonctoriellement aux représentations. Un aspect de son programme consistait à classer toutes les représentations -adiques du groupe de Galois en termes de ( , Γ)-modules étales. D'autre part, Fontaine a montré que les représentations cristallines peuvent être classées en termes de -modules ltrés admissibles. Par conséquent, c'est une question naturelle de demander pour des représentations cristallines : existe-t-il une relation directe entre le -module ltré et le ( , Γ)module étale ? Fontaine a exploré cette question lui-même, où il a considéré les représentations de hauteur nie (dé nies en termes de ( , Γ)-modules) et examiné leur relation avec les représentations cristallines. Ce point de vue a été exploré plus avant par Wach, Colmez et Berger. En particulier, Wach a donné une description des représentations cristallines de hauteur nie en termes de ( , Γ)-modules.

Dans le cas relatif, la théorie des ( , Γ)-modules a été développée par les travaux d'Andreatta, Brinon et Iovita. De plus, la notion analogue de représentations cristallines a été étudiée par Brinon. La première contribution de notre travail est la notion de modules de Wach relatifs. Motivés par la théorie de Fontaine, Wach et Berger, nous dé nissons et étudions quelques propriétés des modules de Wach relatifs. De plus, nous explorons le lien avec la théorie de Brinon des représentations cristallines relatives et -isocristaux associé.

Le deuxième résultat concerne le calcul de la cohomologie galoisienne à l'aide de complexes syntomiques à coe cients. Cette idée a été utilisée dans un travail récent de Colmez et Nizioł, où ils e ectuent le calcul pour les représentations associées aux puissances du caractère cyclotomique. Sous certaines hypothèses techniques, nous montrons que pour des représentations cristallines de hauteur nie, on peut essentiellement généraliser le résultat local de Colmez et Nizioł.

Mots-clés : Théorie de Hodge -adiques, représentations -adiques, ( , Γ)-modules, hauteur nie, modules de Wach, complexe syntomique.
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Preface

The aim of this thesis is to study nite height crystalline representations in relative -adic Hodge theory, and apply the results thus obtained towards the computation of continuous Galois cohomology of these representations via syntomic methods.

Our rst main contribution is the notion of relative Wach modules. Motivated by the theory of Fontaine [START_REF] Fontaine | Représentations -adiques des corps locaux. I[END_REF], Wach [START_REF] Wach | Représentations -adiques potentiellement cristallines[END_REF] and Berger [START_REF] Berger | Limites de représentations cristallines[END_REF], we de ne and study some properties of relative Wach modules. Further, we explore its relation with relative crystalline representations and the associated -isocrystal, in the sense of Brinon [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF] (see Theorem 3.24).

The second result is concerned with the computation of Galois cohomology using syntomic complex with coe cients. This idea was utilized by Colmez and Nizioł in [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF] where they carry out the computation for cyclotomic twists of the trivial representation using which they were able to prove the semistable comparison theorem for formal log-schemes. Under certain technical assumptions, we show that for nite height crystalline representations, one can essentially generalize the local result of Colmez and Nizioł (see Theorem 5.6).

Following is a brief description of di erent chapters of this thesis:

• -adic Hodge theory : In this chapter we provide the setup, recall the basic de nitions and the theory of relative de Rham and crystalline -adic Galois representations following [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF].

• ( , Γ)-modules and crystalline coordinates : The aim of this chapter is two fold. First, we introduce the theory of ( , Γ)-modules following [And06, AB08, AI08], using which we generalize a result of Berger on regularization by Frobenius (see §2.2.1). Next, we introduce certain rings of analytic functions, study their properties as well as several operators on them, and prove a version of Poincaré lemma to be utilised in Chapter 5.

• Finite height crystalline representations : This chapter consists of our rst main result. We begin by introducing classical Wach modules [START_REF] Wach | Représentations -adiques potentiellement cristallines[END_REF] and its re nement worked out by Berger [START_REF] Berger | Limites de représentations cristallines[END_REF]. Then we introduce the notion of Wach modules in the relative setting and prove several useful properties. Finally, we provide the necessary constructions to state and prove the main statement (see Theorem 3.24). In the last section we give an example illustrating the key ideas behind Theorem 3.24.

• Cohomological complexes : In this chapter we recall the theory of Fontaine-Herr complex computing continuous Galois cohomology of -adic representations, in classical -adic Hodge theory, as well as its generalization to the relative setting by Andreatta and Iovita [START_REF] Andreatta | Global applications of relative ( , Γ)-modules[END_REF]. Further, we introduce Koszul complexes and relate it to relative Fontaine-Herr complex. Finally, we study the action of the Lie algebra Lie Γ over certain rings of analytic functions from xiii xiv Preface §2.3 and introduce Koszul complexes computing the Lie algebra cohomology of modules over these rings.

• Syntomic complex and Galois cohomology : This chapter contains our second main result.

We commence the chapter by providing the motivation behind our result which comes from the main technical part of the work by Colmez and Nizioł [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF]. Then we introduce the necessary setup to introduce the statement of the main result (see Theorem 5.6). Rest of the chapter is devoted to proving this result. First part of the proof concerns working and manipulating syntomic complexes, while the second part is concerned with Koszul complexes. Both these parts are connected via Poincaré lemma from Chapter 2 which is applicable due to the comparison result of Theorem 3.24.

• Galois cohomology and classical Wach modules : In this appendix chapter, we work with Wach modules in classical -adic Hodge theory and Fontaine-Herr complex to study crystalline extension classes of the trivial representation by a crystalline representation. The computation done in this chapter served as the original motivation for pursuing Theorem 5.6, the proof of which persuaded us to investigate Theorem 3.24.

Over the course of last century, the modus operandi for mathematicians trying to understand spaces has been to investigate natural invariants attached to those spaces. This approach has proven to be a very fruitful one. An example of this comes from topology where one constructs singular homology groups attached to a topological space . Concretely, it is a collection of abelian groups { ( , ℤ)} ∈ℕ , where these groups are computed as the homology of the singular complex attached to and the -th homology group describes equivalence classes of -dimensional holes in . In terms of application, vanishing statements about homology establishes claims such as Brouwer's xed point theorem, among others.

Dualizing the construction of singular chain complexes, one can de ne a contravariant theory, aptly named, singular cohomology groups { ( , ℤ)} ∈ℕ attached to . Further developments in mathematics have led to the construction (co)homology theories in a myriad of di erent contexts. For example, de Rham cohomology for di erential forms on manifolds, (continuous) group (co)homology, Lie algebra cohomology, étale cohomology for algebraic varieties, etc.

Comparison in complex algebraic geometry

In analytic and algebraic geometry, study of cohomology theories compared to homology has turned out to be a more natural one. Moreover, under amicable circumstances, certain cohomology theories tend to interact with each other. One of the rst observations made in this direction was due to de Rham [START_REF] De | Sur l'analysis situs des variétés à dimensions[END_REF]. In 1931, he showed that for a smooth manifold , the pairing of di erential forms and singular chains, via integration, gives a homomorphism from de Rham cohomology groups dR ( ) to singular cohomology groups sing ( , ℝ), which is in fact an isomorphism (see [START_REF] Samelson | Di erential forms, the early days; or the stories of Deahna's theorem and of Volterra's theorem[END_REF] for a historical survey).

In 1966, this result was further extended to the context of complex algebraic geometry by Grothendieck. More precisely, let be a smooth complex algebraic variety and let an denote the complex manifold obtained from the complex rational points (ℂ) of the algebraic variety . In [START_REF] Grothendieck | On the de Rham cohomology of algebraic varieties[END_REF], Grothendieck de ned the algebraic de Rham cohomology groups for and showed that these are canonically isomorphic to de Rham cohomology groups of an . In conclusion, we have Introduction cohomology supplies an integral structure for sing ( an , ℝ) (the lattice of periods) and de Rham cohomology gives the Hodge ltration: neither of these two structures are reducible to each other.

In complex algberaic geometry, one can do better. Let us assume that is a smooth and projective scheme over ℂ and let an denote the associated complex manifold. Then an is a compact Kähler manifold equipped with a Kähler metric. If we let Ω an denote the sheaf of holomorphic di erential forms on an , then we have the Hodge decomposition sing ( an , ℤ) ⨂ ℤ ℂ ≃ ⨁ + = an , Ω an .

Further, let Ω 1 /ℂ denote the sheaf of Kähler di erentials on and set Ω /ℂ = ⋀ Ω 1 /ℂ . Then combining Hodge decomposition with Serre's GAGA principle, we obtain that sing ( an , ℤ) ⨂ ℤ ℂ ≃ ⨁ + = an , Ω an ≃ ⨁ + = , Ω /ℂ .

One of the primary goals of -adic Hodge theory is to explicate similar phenomenon for -adic cohomology theories of algebraic varieties de ned over -adic elds.

-adic comparison theorems

In this section let denote a xed prime, a mixed characteristic discrete valuation eld with ring of integers and residue eld perfect of characteristic . In the context of algebraic geometry the Zariski topology on algebraic varieties is too coarse to obtain a meaningful notion of singular cohomology. Therefore, in 1963-64 a replacement in the form of étale cohomology was provided by Grothendieck in [START_REF] Michael Artin | Theorie de Topos et Cohomologie Etale des Schemas I[END_REF], where he de ned -adic étale cohomology groups attached to a scheme de ned over any eld (in particular, nite extensions of ℚ ), whereas the de nition of algebraic de Rham cohomology carries over for smooth schemes. Again, mathematicians observed that in this setting, these two cohomology theories interact with each other.

The origin of comparing -adic cohomology theories, collectively termed as -adic comparison theorems, can be attributed to the work of Tate on -divisible groups in [START_REF] Tate | divisible groups[END_REF]. Tate showed that for an abelian scheme de ned over , the rst étale cohomology group of with coe cients in ℤ determines the -divisible group ∞ , i.e. the -primary torsion subgroup of , and vice versa. Further, let denote a xed algebraic closure of with ℂ as its -adic completion. Then the Galois group ∶= Gal( / ) acts linearly and continuously on the ℤ -module 1 ét , ℤ . As a consequence of his general study of -divisible groups, Tate showed that for ≤ 2 dim , there exists a natural -equivariant isomorphism ét , ℤ ⨂ ℤ ℂ ≃ ⨁ + =

, Ω ⨂ ℂ (-), (0.1)

where for ∈ ℤ, we de ne ℂ ( ) ∶= ℂ ⨂ ℚ ℚ ( ) and ℚ ( ) is the -th tensor power of the onedimensional -adic representation ℚ (1) on which acts via the -adic cyclotomic character. Tate conjectured that a -equivariant decomposition as above should exist for any smooth projective variety de ned over .

On the other hand, in [START_REF] Grothendieck | Groupes de Barsotti-Tate et cristaux de Dieudonné[END_REF], Grothendieck showed that the de Rham cohomology groups of an abelian scheme carry extra information as well. Using his crystalline Dieudonné theory, he determined that 1 dR ( / ) is a -vector space acquiring a canonical basis over , where = Fr for = ( ) the ring of -typical Witt vectors with coe cients in . The -vector-space admits a Frobenius-semilinear automorphism , and has a Hodge ltration after extending scalars to . Further, he showed that ∞ is determined, up to isogeny, by 1 dR ( / ) together with its Hodge ltration, basis over which is equipped with an automorphism . xvii Considering both these phenomena, Grothendieck was led to ask the question of describing an algebraic procedure that would allow one to pass directly from 1 dR ( / ) to 1 ét ( , ℚ ), without a detour to the -divisible group ∞ ; he also suspected that such a procedure should exist in arbitrary cohomology degrees (the well known problem of Grothendieck's mysterious functor).

This question was resolved by Fontaine in degree one and for arbitrary degree he proposed a precise conjecture in [Fon82,[START_REF] Fontaine | Cohomologie de de Rham, cohomologie cristalline et représentations -adiques[END_REF]. Fontaine's crystalline conjecture for an -scheme, examines the relationship between the -adic étale cohomology of the generic ber and the crystalline cohomology of the special ber. This conjecture has now been fully proven by the works of many authors. Before stating the crystalline conjecture, let us mention the work of Faltings generalizing the Hodge-Tate decomposition in (0.1):

Theorem B ( [START_REF] Faltings | -adic Hodge theory[END_REF]Faltings]). Let be a smooth and proper -scheme. Then for each ∈ ℕ, there exists a canonical -equivariant isomorphism Introduction for smooth formal schemes in [START_REF] Andreatta | Comparison isomorphisms for smooth formal schemes[END_REF], where their proof works for non-trivial coe cients as well. Further, Andreatta and Iovita generalized their proof to the semistable case in [START_REF] Andreatta | Semistable sheaves and comparison isomorphisms in the semistable case[END_REF].

In [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF] using syntomic methods and techniques from the theory of ( , Γ)-modules, Colmez and Nizioł have proved the semistable comparison for formal log-schemes. The major part of [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF] consists of local computations, i.e. over a noids covering the scheme . In the case of smooth proper scheme , the covering can be given by an étale algebra over a formal torus over . The motivation for our cohomological results with coe cients in this thesis stems from this article (see Theorem H). The pursuit of the cohomological statement led to our exploration of nite height crystalline representations in the relative setting (see Theorem E). We will come back to these connections later.

An integral version of comparison theorems was obtained by Bhatt, Morrow and Scholze in [START_REF] Bhatt | Integral -adic Hodge theory[END_REF], where they have de ned a new cohomology theory over Fontaine's in nitesimal ring inf . The work of [START_REF] Bhatt | Integral -adic Hodge theory[END_REF] was generalized to the semistable case by Česnavičius and Koshikawa in [ČK19]. Finally, further generalizing their work, Bhatt and Scholze have put forward the theory of prismatic cohomology in [START_REF] Bhatt | Prisms and Prismatic Cohomology[END_REF] which uni es all known -adic cohomology theories.

-adic representations and linear algebra

Since the age of Galois, mathematicians have been interested in understanding Galois groups of eld extensions. While some nite and pro nite cases are simple and explicit to state, in general these groups are quite complex to decipher, for example, the absolute Galois group in the previous section is as far away from being explicit as possible. To understand such groups, a general approach is to study their representations, i.e. the action of such groups on certain modules. This is another common theme in -adic Hodge theory, i.e. studying -adic representations of Galois groups such as . The -adic étale cohomology groups ét ( , ℚ ), appearing in Theorem C, are ℚ -vector spaces equipped with a linear and continuous action of the Galois group . In other words, we have obtained -adic representations of the Galois group . On the other hand, the crystalline cohomology groups ⨂ cris ( / ) are -vector spaces equipped with a Frobenius-semilinear automorphism and a ltration after extending scalars to . Theorem C states that these two objects are related to each other.

In 1980s-90s Fontaine stated and carried out several programs in order to study -adic representations of . In [START_REF] Fontaine | Modules galoisiens, modules ltrés et anneaux de Barsotti-Tate[END_REF]Fon82,[START_REF] Fontaine | Le corps des périodes -adiques[END_REF][START_REF] Fontaine | Représentations -adiques semi-stables[END_REF], Fontaine describes the subcategories of crystalline, semi-stable and de Rham representations. For example, the étale cohomology groups appearing in Theorem C are crystalline representations of . Fontaine's theory is rich and an incredible journey to take, however we will content ourselves with a description of crystalline representations. Moreover, for the sake of simplicity, we will work under the assumption that = is unrami ed over ℚ , however some of the results are true in more general settings.

Crystalline representations

In order to classify crystalline representations, Fontaine came up with a general formalism. He constructs a period ring cris which is a -adically complete -algebra equipped with a Frobenius and a ltration (see [START_REF] Fontaine | Le corps des périodes -adiques[END_REF], we will recall the construction in a more general setting in §1.3). Now let be a -adic representation of , and set cris ( ) ∶= ( cris ⨂ ℚ ) .

It is a nite-dimensional -vector space such that dim cris ( ) ≤ dim ℚ , and it is equipped with a Frobenius-semilinear endomorphism , and a ltration coming from the ltration on cris . Moreover, this construction is functorial in and it takes values in the category ltered -modules over .

The representation is said to be crystalline if and only if it is cris -admissible, or equivalenty, dim cris ( ) = dim ℚ . In particular, the -adic periods of belong to cris . The functor cris is exact and fully faithful as well as establishes an equivalence between the category of crystalline representations and its essential image under the functor, compatible with exact sequences, tensor products and taking duals.

The terminology crystalline accentuates the fact that if the representation "comes from geometry", i.e. computed as étale cohomology of generic ber of a smooth and proper -scheme, then there exists a comparison with the crystalline cohomology of the special ber. For example, if we let ∶= ét ( , ℚ ) in Theorem C, then we have cris ( ) = ⨂ cris ( / ). Moreover, given cris ( / ) with its complimentary structures, one can recover the ℚ -vector space ét ( , ℚ ) with its Galois action, and vice versa. This is quite a surprising result in contrast with the complex case (see Theorem A).

( , Γ)-modules and nite height representations

A di erent perspective on -adic representations is the theory of ( , Γ)-modules. Morally, such a theory is an attempt to describe -adic representations of in terms of modules over complicated base rings, admitting a Frobenius-semilinear endomorphism and simpler action of a piece of the Galois group.

More precisely, let ∞ = ⋃ ∈ℕ ( ) where ∈ denotes a primitive -th root of unity, and let ℂ ♭ denote the tilt of ℂ (see §1.2 for a precise de nition). Let = Gal( / ∞ ) and Γ = Gal( ∞ / ), then we have an exact sequence

1 ⟶ ⟶ ⟶ Γ ⟶ 1.
Using the eld-of-norms construction in [START_REF] Fontaine | Le "corps des normes" de certaines extensions algébriques de corps locaux[END_REF][START_REF] Fontaine | Extensions algébrique et corps des normes des extensions APF des corps locaux[END_REF][START_REF] Wintenberger | Le corps des normes de certaines extensions in nies de corps locaux; applications[END_REF], Fontaine and Wintenberger de ned a non-archimedean complete discrete valuation eld ⊂ ℂ ♭ of characteristic with residue class eld , and functorial in . In [START_REF] Fontaine | Représentations -adiques des corps locaux. I[END_REF], Fontaine utilised the theory from elds-of-norms construction to classify mod-representations of in terms of étale ( , Γ )-modules over . By some technical considerations one can lift this to characteristic 0, i.e. classify ℤ -representations of in terms of étale ( , Γ )-modules over a two dimensional regular local ring ⊂ ̂ ♭ ∞ . In particular, the -adic periods of any ℤ -representation of belong to the ring ⊂ (ℂ ♭ ). Similar equivalence of categories can be obtained for -adic representations and étale ( , Γ )-modules over = 1 , i.e. -adic periods of -adic representations of belong to = 1 ⊂ Fr (ℂ ♭ ). The theory of ( , Γ)-modules was further re ned by Cherbonnier and Colmez in [START_REF] Cherbonnier | Représentations -adiques surconvergentes[END_REF]. They showed that all ℤ -representations (resp. -adic representations) are overconvergent, the -adic periods belog to a subring † ⊂ (resp. † ⊂ ). Many applications of ( , Γ)-modules make use of the result of Cherbonnier-Colmez (see [START_REF] Cherbonnier | Théorie d'Iwasawa des représentations -adiques d'un corps local[END_REF], [START_REF] Berger | Représentations -adiques et équations di érentielles[END_REF][START_REF] Berger | Bloch and Kato's exponential map: three explicit formulas[END_REF], etc.).

The eld-of-norms functor was further generalized to higher-dimensional local elds by Abrashkin in [START_REF] Victor Abrashkin | An analogue of the eld-of-norms functor and of the Grothendieck conjecture[END_REF]. A vast generalization of the theory of Fontaine and Wintenberger, also known as the tilting correspondence, was done by Scholze in [START_REF] Scholze | Perfectoid spaces[END_REF].

Finite height crystalline representations

So far we have seen the classi cation of -adic crystalline representations of in terms of ltered -modules over , and all -adic representations of in terms of étale ( , Γ)-modules over . By the latter equivalence of categories, it becomes a natural question to ask : Is it possible to describe crystalline representations intrinsically in the category of étale ( , Γ)-modules? To answer this question, Fontaine initiated a program relating -adic crystalline representations and nite height representations.

A -adic representation of is said to be of nite height if the -adic periods of belong to the "integral" subring + ⊂ (see §3.1). In other words, the associated ( , Γ )-module over admits a basis in a lattice, i.e. has a basis over the period ring + ⊂ . For crystalline representations there exist lattices over which the action of Γ is simpler. Finite height and crystalline representations of are related by the following result:

Theorem D ( [START_REF] Wach | Représentations -adiques potentiellement cristallines[END_REF]Wach], [START_REF] Colmez | Représentations cristallines et représentations de hauteur nie[END_REF]Colmez], [START_REF] Berger | Représentations -adiques et équations di érentielles[END_REF]Berger]). Let be a -adic representation of . Then is crystalline if and only if it is of nite height and there exists ∈ ℤ and a + -submodule ⊂ ( ) of rank = dim ℚ , stable under the action of Γ , such that Γ acts trivially over ( / )(-).

In the situation of Theorem D, the module is not unique. A functorial construction was given by Berger in [START_REF] Berger | Limites de représentations cristallines[END_REF] using which he established an equivalence of categories between the crystalline representations of and Wach modules over + . Moreover, for a crystalline representation , there exists a bijection between ℤ -lattices inside and Wach modules over the integral subring + ⊂ + , and contained in the rational Wach module ( ). Finally, given ( ) one can canonically recover the other linear algebraic object attached to , i.e. cris ( ) (see [START_REF] Berger | Limites de représentations cristallines[END_REF] Propositions II.2.1 & III.4.4]).

The theory and construction of Wach modules has witnessed many applications, for example, Iwasawa theory of crystalline representations in [Ben00, BB08], Berger's proof of -adic monodromy conjecture [START_REF] Berger | Représentations -adiques et équations di érentielles[END_REF], as well as, in the study of -adic local Langlands program [START_REF] Berger | Sur quelques représentations potentiellement cristallines de GL 2 (ℚ )[END_REF]. The notion of Wach modules was generalized as Breuil-Kisin modules for mixed characteristic discretely valued (possibly rami ed) extension /ℚ (see [START_REF] Breuil | Une application de corps des normes[END_REF][START_REF] Breuil | Integral -adic Hodge theory[END_REF][START_REF] Kisin | Crystalline representations and -crystals[END_REF]). The existence of Wach modules also served as a motivation for Scholze's idea of -deformations [START_REF] Scholze | Canonical -deformations in arithmetic geometry[END_REF], which paved the way for Bhatt-Scholze theory of prisms and prismatic cohomology [START_REF] Bhatt | Prisms and Prismatic Cohomology[END_REF]. Moreover, similar to Berger's classi cation in the nite unrami ed case, Bhatt and Scholze have shown that for any mixed characteristic discretely valued extension /ℚ , the catgeory of prismatic -crystals on Spf ( ) is equivalent to the category of ℤ -lattices inside crystalline representations of (see [BS21, Theorem 1.2]).

Relative nite height crystalline representations

As indicated before, we are interested in the local version of relative -adic Hodge theory. So let us introduce the setup brie y: Let us now x ≥ 3, and let ∈ ℕ with = ( 1 , 2 , … , ) some indeterminates. We set { } ∶= ∑ ∈ℕ , where = ( 1 , … , ) ∈ ℕ , = 1 1 ⋯ , ∈ , and → 0 as → ∞ , to be a -adically complete algebra over . Similarly we de ne 0 ∶= { ±1 }. Let = ( ), where ∈ ℕ ≥1 , is a primitive -th root of unity, let denote the ring of integers of and set ∶= { ±1 }.

Note. In the main body of the thesis, we will work in a more general setup, i.e. over the -adic completion of an étale algebra over { ±1 } and corresponding extension of 0 and above (see §1.1). However, for the sake of lucidity of the exposition, we introduce the results under simpli ed assumptions.

Crystalline representations

Akin to Fontaine's formalism, in [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF] Brinon studied the -adic representations of , the étale fundamental group of 1 . In the relative setting there are two notions of crystalline representations: horizontal crystalline and (big) crystalline representations. We are interested in the latter category of representations.

To classify crystalline representations, Brinon constructs a period ring O cris which is aadically complete 0 1 -algebra equipped with a Frobenius, a ltration and a cris -linear connection satisfying Gri ths transversality (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF], note that these are relative version of Fontaine's construction, we recall the details in §1.3). Now let be a -adic representation of 0 , and let

O cris ( ) ∶= (O cris ⨂ ℚ ) 0 .

Relative nite height crystalline representations xxi

It is a nite projective 0 1 -module of rank ≤ dim ℚ , and it is equipped with a Frobeniussemilinear endomorphism , a ltration arising from the ltration on O cris and a quasi-nilpotent integrable connection satisfying Gri ths transversality and stemming from the connection on O cris (see §1.5 for details). Moreover, this construction is functorial in and it takes values in the category of ltered ( , )-modules over 0 1 . The representation is said to be crystalline if and only if it is O cris -admissible (see §1.5.2). In particular, the -adic periods of belong to O cris . The functor O cris is exact and fully faithful as well as establishes an equivalence between the category of (big) crystalline representations and its essential image under the functor, compatible with exact sequences, tensor products and taking duals.

( , Γ)-modules and nite height representations

Parallel to the arithmetic case, in the relative setting we can again classify all -adic representations in terms of ( , Γ)-modules. For ∈ ℕ, let = ( ) where is a primitive -th root of unity. Let denote the integral closure of 0 ⨂ -1 , … inside 1 , and let ∞ ∶= ⋃ . We set 0 ∶= Gal 1 / 0 1 , Γ 0 ∶= Gal ∞ 1 / 0 1 , and 0 ∶= Ker ( 0 → Γ 0 ). The ring ∞ 1 is a Galois extension of 0 1 with Galois group Γ 0 tting into an exact sequence

1 ⟶ Γ ′ 0 ⟶ Γ 0 ⟶ Γ ⟶ 1, (0.2)
where, for 1 ≤ ≤ we have

Γ ′ 0 = Gal ∞ 1 / ∞ 0 1 ≃ ℤ , and Γ = Gal( ∞ / ) ≃ ℤ × .
Fontaine's classi cation was generalized by Andreatta in [START_REF] Andreatta | Generalized ring of norms and generalized ( , Γ)-modules[END_REF] to the relative setting. Andreatta constructs an analogue of in the relative setting, i.e. to 0 , he associates a Noetherian regular domain + 0 . Further, he lifts this ring to characteristic 0, i.e. we have + 0 equipped with a Frobenius endomorphism and a continuous action of Γ 0 . Finally, we have 0 as the -adic completion of

+ 0 1 .
Next, an étale ( , Γ 0 )-module is a nitely generated 0 -module equipped with a Forbeniussemilinear automorphism and a semilinear and continuous action of Γ 0 . Andreatta shows that there is an equivalence of categories between ℤ -representations of 0 and étale ( , Γ 0 )-modules over 0 . In particular, the -adic periods of any ℤ -representation of 0 live in the ring ⊂ (ℂ( ) ♭ ) (see §2.1). Similar equivalence of categories can be obtained for -adic representations and étale ( , Γ 0 )-modules over 0 ∶= 0 1 , i.e. the -adic periods of -adic representations of 0 belong to = 1 ⊂ (ℂ( ) ♭ ) 1 . Note that the discussion above is true in a more general setting, in particular for (see §2.1 which is an adaptation of [START_REF] Andreatta | Generalized ring of norms and generalized ( , Γ)-modules[END_REF]).

In [START_REF] Andreatta | Surconvergence des représentations -adiques: le cas relatif[END_REF], Andreatta-Brinon have generalized the result of Cherbonnier-Colmez to the relative setting, i.e. they have shown that all ℤ -representations (resp. -adic representations) of 0 are overconvergent (see §2.2 for details), i.e. the -adic periods belong to a subring † ⊂ (resp. † ⊂ ).

Wach representations

So far we have discussed crystalline representations and ( , Γ)-modules in the relative setting. Parallel to the arithmetic case, we are now interested in understanding nite height representations and Wach modules in the relative setting. Further, we expect that there should be a connection between nite height and crystalline representations. Let be a -adic representation of the Galois group 0 . It is said to be of nite height if the -adic periods of belong to the subring + ⊂ (see §3.2). In other words, the + 0 = + ( , Γ 0 )-module over + 0 satisfying certain technical conditions describing the action of and Γ 0 (see De nition 3.8). We set ( ) ∶= ( ) 1 , and the uniqueness of these modules follows from the de nition (see Lemma 3.14). Further, these modules are equipped with a natural ltration.

The aim of Chapter 3 is to show that Wach representations are crystalline. Further, for a positive Wach representation the + 0 -module ( ) and the 0 1 -module O cris ( ) are related in a precise manner and the latter can be recovered from the former. To relate these objects we construct a fat relative period ring O PD ⊂ O cris ( 0 ) equipped with compatible Frobenius, ltration, connection and the action of Γ 0 (see §3.2).

Theorem E (see Theorem 3.24). Let be a positive Wach representation of 0 , then is a positive crystalline representation. Further, let 1 ∶= O PD ⨂ + 0 ( ) Γ 0 , then we have an isomorphism of 0 1 -modules 1 ≃ O cris ( ) compatible with Frobenius, ltration, and connection on each side. Moreover, after extending scalars to O PD , we obtain natural isomorphisms

O PD ⨂ 0 O cris ( ) ≃ ← --O PD ⨂ 0 1 ≃ --→ O PD ⨂ + 0 ( ),
compatible with Frobenius, ltration, connection and the action of Γ 0 on each side.

The proof of the theorem proceeds in three steps: First, we explicitly state the structure of Wach module attached to a one-dimensional Wach representation, we also show that all one-dimensional crystalline representations are Wach representations and one can recover O cris ( ) starting with the Wach module ( ). Next, in higher dimensions and under the conditions of the statement above, we will describe a process (successive approximation) by which we can recover a submodule of O cris ( ) starting from the Wach module, here we establish a comparison by passing to the onedimensinal case. Finally, the claims made in the theorem are shown by exploiting some properties of Wach modules and the comparison obtained in the second step. In the second step, approximating for the action of geometric part of Γ 0 turns out to be non-trivial and most of our work goes into showing this part; the arithmetic part of Γ 0 follows from the work of Wach [START_REF] Wach | Représentations -adiques potentiellement cristallines[END_REF].

Syntomic complex and Galois cohomology

Having introduced an interesting class of representations, we come back to our discussion of crystalline conjecture in Theorem C. Let = ( ) for ≥ 1, let be a smooth proper scheme over , such that ∶ ∶= ⨂ denotes the inclusion of its generic ber and ∶ ∶= ⨂ denotes the inclusion of its special ber. To attack the crystalline conjecture, Fontaine and Messing initiated a program for proving it via syntomic methods (see [START_REF] Fontaine | -adic periods and -adic étale cohomology[END_REF]). For ≥ 0, let S ( ) denote the syntomic sheaf modulo on ,ét . It can be thought of as a derived Frobenius and ltration eigenspace of crystalline cohomology. Then, Fontaine and Messing constructed a period morphism FM , ∶ S ( ) ⟶ * * ℤ/ ( ) ′ , from syntomic cohomology to -adic nearby cycles, where ℤ ( ) ′ ∶= 1 ( ) ℤ ( ), for = ( -1) ( ) + ( ) with 0 ≤ ( ) ≤ -1.

In [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF], Colmez and Nizioł have shown that the Fontaine-Messing period map FM , , after a suitable truncation, is essentially a quasi-isomorphism. More precisely,

Theorem F ([CN17, Theorem 1.1]). For 0 ≤ ≤ , the map FM , ∶  (S ( ) ) ⟶ * * ℤ/ ( ) ′ ,
is a -isomorphism, i.e. there exists = ( , , ) ∈ ℕ depending on and the absolute rami cation index of but not on or , such that the kernel and cokernel of the map is killed by .
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In fact, for ≤ ≤ -1, the map FM , was shown to be an isomorphism by Kato [START_REF] Kato | Logarithmic structures of Fontaine-Illusie[END_REF][START_REF] Kato | Semi-stable reduction and -adic étale cohomology[END_REF], Kurihara [START_REF] Kurihara | A note on -adic étale cohomology[END_REF], and Tsuji [START_REF] Tsuji | -adic étale cohomology and crystalline cohomology in the semi-stable reduction case[END_REF]. In [START_REF] Tsuji | Syntomic complexes and -adic vanishing cycles[END_REF], Tsuji generalized this result to some suitable étale local systems.

Theorem F also holds for base change of smooth and proper schemes. In particular, after passing to the limit and inverting above, for each 0 ≤ ≤ we obtain an isomorphism

FM ∶ syn , ℚ ≃ --→ ét , ℚ ( ) . (0.3)
The isomorphism displayed above is the most important step in proving the crystalline conjecture via syntomic methods. These ideas have been used in [START_REF] Fontaine | -adic periods and -adic étale cohomology[END_REF], [START_REF] Kato | Syntomic cohomology and -adic étale cohomology[END_REF], [START_REF] Kato | On -adic vanishing cycles (application of ideas of Fontaine-Messing)[END_REF], [START_REF] Kato | Semi-stable reduction and -adic étale cohomology[END_REF], and [START_REF] Tsuji | -adic étale cohomology and crystalline cohomology in the semi-stable reduction case[END_REF]. However, all these proofs have been worked out directly over , but with no restrictions on . The proof of Colmez and Nizioł is di erent from earlier approaches. They prove Theorem F rst, and deduce the comparison in (0.3) via base change. To prove their claim, they construct another local period map  , employing techniques from the theory of ( , Γ)-modules and a version of integral Lazard isomorphism between Lie algebra cohomology and continuous group cohomology. Then they proceed to show that this map is a quasi-isomorphism and coincides with Fontaine-Messing period map up to some constants. Moreover, all of their results have been worked out in the general setting of log-schemes.

Local computation of Colmez and Nizioł

As speci ed earlier, the major part of [CN17] consists of local computations, i.e. over a noids covering a formal scheme. In the case of a smooth proper formal scheme, the covering can be given by an étale algebra over = { ±1 }, where = ( 1 , … , ) are some indeterminates (see §1.1 for notations). To state the local result, we will restrict ourselves to the familiar setting of , however the results also hold for an étale algebra over (Colmez and Nizioł work with log structures as well).

Let + denote the ( , 0 )-adic completion of [ 0 , ±1 ], and let = PD denote the -adic completion of the divided power envelope with respect to the kernel of the map sending 0 to -1. Further, let Ω 1 denote the -adic completion of the module of di erentials of relative to ℤ and Ω = ⋀ Ω 1 for ∈ ℕ. The syntomic cohomology of can be computed by the complex

Syn( , ) ∶= Cone Ω • -• --------→ Ω • [-1],
such that we have syn ( , ) = (Syn( , )). If contains enough roots of unity, i.e. for large enough, Colmez and Nizioł have shown that,

Theorem G ([CN17, Theorem 1.6]). The maps L ∶ ≤ Syn( , ) ⟶ ≤ Γ cont ( , ℤ ( )), L , ∶ ≤ Syn( , ) ⟶ ≤ Γ cont ( , ℤ/ ( )) ⟶ ≤ Γ Sp 1 ét , ℤ/ ( ) , (0.4) 
are -quasi-isomorphisms for a universal constant .

Finally, using Galois descent one can obtain the result over (not necessarily having enough roots of unity, with depending on , and , see [CN17, Theorem 5.4]). Note that the truncation here denotes the canonical truncation in literature. The proof of Colmez and Nizioł relies of comparing the syntomic complex with the complex of ( , Γ)-modules computing the continuous -cohomology of ℤ ( ). This is achieved using a version of Poincaré lemma. Further, note that they work with log structures, i.e. all de ntitions above should be replaced with their log analogues (without log structures one should truncate in degree ≤ -1, see Theorem H below).

Fontaine-Herr complex

The right side of the map in the -adic version of the result of Colmez and Nizioł, i.e. the rst isomorphism in (0.4), is concerned with the computation of continuous -cohomology of ℤ ( ). This computation can be carried out with complexes made up of ( , Γ)-modules, the origins of which lie in the work of Herr (see [START_REF] Herr | Sur la cohomologie galoisienne des corps -adiques[END_REF]).

Let be a -adic representation (resp. ℤ -representation) of , and let ( ) denote the associated étale ( , Γ )-module over (resp.

). Let ∈ Γ denote a topological generator of Γ , then we have a complex

 • ∶ ( ) (1-, -1) ----------→ ( ) ⨁ ( ) -1 1- -----------→ ( ),
where the second map is ( , ) ↦ ( -1) -(1 -) . The Fontaine-Herr complex  • computes the continuous -cohomology of in each cohomological degree, i.e. for ∈ ℕ, we have natural isomorphims ( • ) ≃ cont ( , ).

The continuous -cohomology groups are useful invariants attached to . For example, the rst continuous cohomology group of , i.e. 1 cont ( , ) classi es equivalent classes of extensions of the trivial representation ℚ by in Rep ℚ ( ), and which can be represented by a pair , ∈ ( ) satisfying the equation ( -1) = (1 -) . Further, if is crystalline then any crystalline extension of ℚ by ( ) (cyclotomic twist of ) can be represented by a pair ( , ) with ∈ ( )( ) and ∈ ( ( )) such that ( -1) = (1 -) (see Lemma A.2 and Proposition A.4). In fact, this statement combined with the computation carried out by Colmez and Nizioł served as the original motivation for obtaining Theorem H.

In the relative setting, we have the relative version of Fontaine-Herr complex which computes the continuous -cohomology of a -adic representation (see [AI08, Theorem 3.3], we recall the description in §4.1). Explicit complexes computing the continuous -cohomology of can also be obtained, which we collectively refer to as Koszul complexes (see §4.2). Further, Koszul complexes play a central role in the proof of Theorem H.

Syntomic complex with coe cients

In Theorem G, we are interested in the -adic result, i.e. the rst isomorphism in (0.4). Our objective is to replace the representation ℤ ( ) there by a more general representation ( ), and adapt the method of Colmez and Nizioł to obtain a relation between syntomic complex with coe cients and continuous -cohomology of ( ). The interesting class of representations for us are the crystalline Wach representations of 0 . In the notation of Theorem E, for the coe cient of syntomic complex, we will choose a lattice inside the ltered ( , )-module O cris ( ), whereas to compute the Galois cohomology we will exploit the properties of the associated Wach module ( ). The two sides will then be compared using a version of Poincaré lemma, where a crucial input is the comparison obtained in Theorem E.

More precisely, let be a -adic Wach representation of 0 with non-positive Hodge-Tate weights and let ∈ ℕ denote the maximum among the absolute value of Hodge-Tate weights of . Let ⊂ be a free ℤ -lattice of rank = dim ℚ , stable under the action of 0 . Assume that ( ) is a free + 0 -module of rank = dim ℚ , and there exists a free 0 -submodule O cris ( ) ⊂ O cris ( ) of rank = dim ℚ , such that O cris ( ) 1 = O cris ( ) and the induced connection over O cris ( ) is quasi-nilpotent, integrable and satis es Gri ths transversality with respect to the induced ltration. Let ∈ ℕ and we set ( ) ∶= ⨂ ℚ ℚ ( ) and ( ) ∶= ⨂ ℤ ℤ ( ).

Note. The choice of O cris ( ) is not canonical and we discuss some ways to obtain such a module in Proposition 3.31, Remark 3.42 and Remark 5.4. However, we x such a choice for the rest of the discussion.

De ne

PD ∶= PD ⨂ 0 O cris ( ).
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There is a Frobenius-semilinear endomorphism on PD given by the diagonal action of the Frobenius on each component of the tensor product, a ltration coming from the product of ltration on each component of the tensor product and a connection induced from the connection on O cris ( ) and the di erential operator on PD . Further, this connection is integrable and satis es Gri ths transversality with respect to the ltration (see Chapter 5 for precise de nitions). In particular, let = PD and we have a ltered de Rham complex for ∈ ℤ,

Fil D • ∶= Fil PD ⨂ Ω 1 ⟶ Fil -1 PD ⨂ Ω 1 ⟶ ⋯ .
Let ∶= ⨂ 0 O cris ( ). De ne the syntomic complex Syn( , ) and the syntomic cohomology of with coe cients in as

Syn( , ) ∶= Fil D • -• --------→ D • ; * syn ( , ) ∶= * (Syn( , )
).

We will relate this complex to Fontaine-Herr complex computing the continuous -cohomology of ( ). The main result of Chapter 5 is:

Theorem H (see Theorem 5.6). Let be a positive Wach representation of 0 , ⊂ a free 0 -stable ℤ -lattice, ∈ ℕ the maximum among the absolute value of the Hodge-Tate weights of and ∈ ℕ such that ≥ + 1. Then there exists a -quasi-isomorphism

≤ --1 Syn( , ) ≃ ≤ --1 Γ cont ( , ( )),
where = ( , , ) ∈ ℕ depends on the representation , rami cation index , and . In particular, we have -isomorphisms

syn ( , ) ≃ --→ ( , ( )),
for 0 ≤ ≤ --1.

The proof of Theorem H proceeds in two main steps: First, we modify the syntomic complex with coe cients in to relate it to a "di erential" Koszul complex with coe cients in ( ). Next, in the second step we modify the Koszul complex from the rst step and use a version of Poincaré lemma to obtain Koszul complex computing continuous -cohomology of ( ).

As alluded to before, for = ℤ , the result was proven in [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF]. However, direct generalizations did not seem to work and the technical issues tend to amplify when dealing with the case of dim ℚ ≥ 1. In order to prove the statement of the theorem we will write down explicit complexes with suitable modi cations at each step. The key to the connection between syntomic complexes with coe cients and "( , Γ)-module Koszul complexes" is provided by the comparison isomorphism in Theorem E. In fact, an attempt to relate these two steps led to our search and discovery of the comparison result in Theorem E in the rst place.

What lies ahead?

The world of relative -adic Hodge theory, though extensively studied in certain directions, remains much less explored and no less challenging than its arithmetic counterpart. Therefore, several natural questions have emerged which remain unaswered.

The very rst question that could be asked is whether all crystalline representations are of nite height? This is certainly true for 1-dimensional representations. However, the higher dimensional case remains quite mysterious. An answer to this question would possibly involve recovering the module ( ) given O cris ( ).

In his recent work [START_REF] Tsuji | Crystalline ℤ -representations and inf -Representations with Frobenius[END_REF], Tsuji has used Wach's ideas (see [START_REF] Wach | Représentations cristallines de torsion[END_REF]) and Faltings' generalization of Fontaine-La aille modules (see [START_REF] Faltings | Crystalline cohomology and -adic Galois-representations[END_REF]) to construct generalized representations of . His theory has ties to the remarkable work of Bhatt, Morrow and Scholze on inf -cohomology in [START_REF] Bhatt | Integral -adic Hodge theory[END_REF]. Tsuji and Morrow in [START_REF] Morrow | Generalised representations as q-connections in integral -adic Hodge theory[END_REF], have developed a theory of coe cients in integral -adic Hodge theory. Tsuji's objects are closely related to the de nition of Wach modules in the relative case. It would be interesting to explore these relations and obtain some concrete statements on cohomology. Also, it would be interesting to understand the relation between relative Wach modules and coe cients in integral -adic Hodge theory, as well as, their relation to Bhatt-Scholze theory of prisms and prismatic cohomology in [START_REF] Bhatt | Prisms and Prismatic Cohomology[END_REF].

The globalization of the approach of Colmez and Nizioł, helped them in proving the semistable comparison theorem for formal log-schemes. On the other hand, in [Tsu96] Tsuji considered a system of coe cients for syntomic cohomology and obtained similar results under certain restrictions. The result in Theorem H is of similar avour (at least locally), where we only consider the case of good reduction. It would be interesting to shea fy the notion of nite height representations or Wach modules as in the work of Colmez and Nizioł and in the spirit of crystalline sheaves of Andreatta and Iovita (see [START_REF] Andreatta | Comparison isomorphisms for smooth formal schemes[END_REF]). Carrying out such a program would yield a comparison isomorphism for proper smooth formal schemes and non-trivial coe cients via syntomic methods.

As mentioned before, for a mixed characteristic discretely valued (possibly rami ed) extension of ℚ , Wach modules have been generalized in the form of Breuil-Kisin modules (see [START_REF] Breuil | Une application de corps des normes[END_REF][START_REF] Breuil | Integral -adic Hodge theory[END_REF][START_REF] Kisin | Crystalline representations and -crystals[END_REF]). In the relative setting, Kim has given a certain generalization of Kisin's theory (see [START_REF] Kim | The relative Breuil-Kisin classi cation of -divisible groups and nite at group schemes[END_REF]). On the other hand, there also exists classi cation of classical -adic representations by Caruso in terms of ( , )-modules (see [START_REF] Caruso | Représentations galoisiennes -adiques et ( , )-modules[END_REF]). Then it is natural to ask whether there exists an explicit complex (akin to Fontaine-Herr complex) of (relative) Breuil-Kisin modules or (relative) ( , )modules which computes Galois cohomology of a crystalline representation? Further, in that case it would also be possible to work with semistable representations and log-syntomic complex with coe cients.

A positive answer to the questions above, also opens the door for many applications. One such application could be into Iwasawa theory. In [START_REF] Benois | On Iwasawa theory of crystalline representations[END_REF], Benois has used Wach modules to study the Iwasawa theory of crystalline representations, in the classical case. One could hope to carry out a similar program in the relative setting.

Présentation en franc ¸ais

Au cours du siècle dernier, le modus operandi pour les mathématiciens essayant de comprendre les espaces a été d'étudier les invariants naturels attachés à ces espaces. Cette approche s'est avérée très fructueuse. Un exemple en vient de la topologie où l'on construit des groupes d'homologie singuliers attachés à un espace topologique . Concrètement, il s'agit d'une collection de groupes abéliens { ( , ℤ)} ∈ℕ calculés comme l'homologie du complexe singulier attaché à et le -ème groupe d'homologie décrit les classes d'équivalence de trous -dimensionnels dans . En termes d'application, les annulations des groupes d'homologie établissent des résultats que le théorème du point xe de Brouwer, entre autres.

En dualisant la construction des complexes de chaînes singulières, on peut dé nir une théorie contravariante, bien nommée, des groupes de cohomologie singulière { ( , ℤ)} ∈ℕ attachés à . De nouveaux développements en mathématiques ont conduit à la construction de théories de (co)homologiques dans une myriade de contextes di érents. Par exemple, la cohomologie de de Rham pour les formes di érentielles sur les variétés, la (co)homologie de groupe (continue), la cohomologie d'algèbre de Lie, la cohomologie étale pour les variétés algébriques, etc.

Comparaison en géométrie algébrique complexe

En géométrie analytique et algébrique, l'étude de la cohomologique s'est avérée plus naturelle par rapport à l'homologie . De plus, dans des circonstances convenables, certaines théories di erentes ont tendance à interagir les unes avec les autres. Une des premières observations faites dans ce sens est due à de Rham [START_REF] De | Sur l'analysis situs des variétés à dimensions[END_REF]. En 1931, il montra que pour une variété lisse , l'accouplement des formes di érentielles et de chaînes singulières, via l'intégration, donne un homomorphisme des groupes de cohomologie de de Rham dR ( , ℝ) aux groupes de cohomologie singuliére sing ( , ℝ), qui est en fait un isomorphisme (voir [START_REF] Samelson | Di erential forms, the early days; or the stories of Deahna's theorem and of Volterra's theorem[END_REF] pour une étude historique).

En 1966, ce résultat a été étendu au contexte de la géométrie algébrique complexe par Grothendieck. Plus précisément, soit une variété algébrique complexe lisse et soit an la variété complexe obtenue à partir des points rationnels complexes (ℂ) de la variété algébrique . Dans [START_REF] Grothendieck | On the de Rham cohomology of algebraic varieties[END_REF], Grothendieck a dé ni les groupes de cohomologie de de Rham algébrique pour et a montré que ceux-ci sont canoniquement isomorphes aux groupes de cohomologie de de Rham analytique de an . En conclusion, nous avons Théorèm A (de Rham, Grothendieck). Soit une variété algébrique complexe et lisse. Pour chaque ∈ ℕ, il existe un isomorphisme canonique d'espaces vectoriels complexes

sing ( an , ℤ) ⨂ ℤ ℂ ≃ --→ dR ( an /ℂ) ≃ --→ dR ( /ℂ). xxvii xxviii

Présentation en français

Les deux côtés de cet isomorphisme apportent des informations complémentaires sur ; à savoir, la cohomologie singulière fournit une structure intégrale pour sing ( an , ℝ) (le réseau des périodes) et la cohomologie de de Rham donne la ltration de Hodge.

En géométrie algébrique complexe, on peut faire mieux. Supposons que soit un schéma lisse et projectif sur ℂ et soit an la variété complexe associée. Alors an est une variété compacte équipée d'une métrique Kähler. Si nous laissons Ω an désigner le faisceau de formes di érentielles holomorphes sur an , alors nous avons la décomposition de Hodge

sing ( an , ℤ) ⨂ ℤ ℂ ≃ ⨁ + = an , Ω an .
De plus, soit Ω 1 /ℂ le faisceau de di érentiels de Kähler sur et dé ni Ω /ℂ = ⋀ Ω 1 /ℂ . Puis en combinant la décomposition de Hodge avec le principe GAGA de Serre, on obtient que

sing ( an , ℤ) ⨂ ℤ ℂ ≃ ⨁ + = an , Ω an ≃ ⨁ + = , Ω /ℂ .
L'un des principaux objectifs de la théorie de Hodge -adique est d'expliquer un phénomène similaire pour les cohomologies -adiques de variétés algébriques dé nies sur un corps -adiques.

Théorèmes de comparaison -adiques

Dans cette section, soit un nombre premier xe, un corps d'évaluation discret caractéristique mixte avec un anneau d'entiers et un corps résiduel parfait de caractéristique . Dans le contexte de la géométrie algébrique, la topologie de Zariski sur les variétés algébriques est trop grossière pour obtenir une notion signi cative de cohomologie singulière. Par conséquent, en 1963-64, Grothendieck dans [AGV71] a dé ni des groupes de cohomologie étale attachés à un schéma dé ni sur n'importe quel corps (en particulier, les extensions nies de ℚ ), alors que la dé nition de la cohomologie algébrique de de Rham s'applique aux schémas lisses. Encore une fois, les mathématiciens ont observé que dans ce cadre, ces deux théories interagissent l'une avec l'autre.

L'origine de la comparaison des théories de cohomologie -adiques, appelées théorèmes de comparaison -adiques, peut être attribuée aux travaux de Tate sur les groupes -divisibles dans [START_REF] Tate | divisible groups[END_REF]. Tate a montré que pour un schéma abélien dé ni sur , le premier groupe de cohomologie étale de avec des coe cients dans ℤ détermine le groupe -divisible ∞ , c'est-à-dire le sous-groupe de torsion -primaire de , et vice versa. De Considérant ces deux phénomènes, Grothendieck a été amené à se poser la question de décrire une procédure algébrique qui permettrait de passer directement de 1 dR ( / ) à 1 ét ( , ℚ ), sans détour par le groupe -divisible ∞ ; il soupçonnait aussi qu'une telle procédure devrait exister dans des degrés de cohomologie arbitraires (le problème bien connu du foncteur mystérieux de Grothendieck).

Cette question a été résolue par Fontaine en degré un et pour en degré arbitraire il a proposé une conjecture précise dans [Fon82,[START_REF] Fontaine | Cohomologie de de Rham, cohomologie cristalline et représentations -adiques[END_REF]. La conjecture cristalline de Fontaine pour un -schéma examine la relation entre la cohomologie -adique étale de la bre générique et la cohomologie cristalline de la bre spéciale. Cette conjecture est maintenant pleinement prouvée par les travaux de nombreux auteurs. Avant d'énoncer la conjecture cristalline, mentionnons les travaux de Faltings généralisant la décomposition de Hodge-Tate dans (0.5):

Théorèm B ( [START_REF] Faltings | -adic Hodge theory[END_REF]Faltings]). Soit un -schéma lisse et propre. Alors pour chaque ∈ ℕ, il existe un isomorphisme canonique -équivariant

ét , ℤ ⨂ ℤ ℂ ≃ ⨁ + =
, Ω ⨂ ℂ (-).

L'un des premiers théorèmes de comparaison à être prouvé dans le cadre -adique, la preuve du théorème B repose sur l'idée de Faltings de presque mathématique.

Revenons maintenant à la conjecture cristalline: Soit un schéma propre et lisse dé ni sur , soit ∶ sa bre générique et ∶ désigne sa bre spéciale. Pour la bre générique, nous considérerons les groupes de cohomologie -adique étale usuels ét , ℚ , tandis que pour les schémas en caractéristique , c'est-à-dire , nous considérerons une variante de la cohomologie de de Rham fournie par Grothendieck, qui est encore une cohomologie -adique connue sous le nom de cohomologie cristalline cris ( / ( )). Ensuite nous avons, Théorèm C ([FM87, Fontaine-Messing], [START_REF] Faltings | Crystalline cohomology and -adic Galois-representations[END_REF]Faltings], [KM92, Kato-Messing], [START_REF] Tsuji | -adic étale cohomology and crystalline cohomology in the semi-stable reduction case[END_REF]Tsuji]). Pour chaque ∈ ℕ il existe un isomorphisme naturel ét , ℚ ⨂ ℚ cris ≃ --→ cris / ( ) ⨂ ( ) cris , compatible avec l'action de , le Frobenius, la ltration (et la dualité de Poincaré, la formule Künneth, les morphismes de classe de cycle et de classe de Chern) de chaque côté.

Ici cris désigne l'anneau des périodes cristalline construit par Fontaine (voir [START_REF] Fontaine | Le corps des périodes -adiques[END_REF]), et il est doté d'une action continue de , du Frobenius et d'une ltration . Dans [START_REF] Fontaine | -adic periods and -adic étale cohomology[END_REF] Fontaine et Messing ont lancé un programme pour prouver la conjecture cristalline via des méthodes syntomiques et ont réussi à prouver l'a rmation dans le cas = et dim < . Dans [START_REF] Kato | Syntomic cohomology and -adic étale cohomology[END_REF], Kato et Messing ont prouvé la conjecture sous l'hypothèse dim < ( -1)/2 mais sans aucune hypothèse sur . De plus, ce programme a été généralisé au cas semistable par Fontaine et Janssen. La conjecture semistable a été montrée par Fontaine pour les variétés abéliennes puis prouvée par Kato dans [START_REF] Kato | Semi-stable reduction and -adic étale cohomology[END_REF] dans le cas dim < ( -1)/2, en généralisant les méthodes de [START_REF] Kato | Syntomic cohomology and -adic étale cohomology[END_REF]. En n, ce programme a été conclu par Tsuji dans [START_REF] Tsuji | -adic étale cohomology and crystalline cohomology in the semi-stable reduction case[END_REF] complétant la preuve des conjectures cristallines et semistables.

Au cours de quatre décennies, de nombreux mathématiciens ont travaillé sur des théorèmes de comparaison -adiques. Dans [START_REF] Faltings | Crystalline cohomology and -adic Galois-representations[END_REF], Faltings a prouvé la conjecture cristalline et a également généralisé ses méthodes aux coe cients non triviaux. Il a en outre montré le théorème de comparaison semistable en utilisant sa théorie des extensions presque étales dans [START_REF] Faltings | Almost étale extensions[END_REF]. Dans [Niz98] Nizioł a donné une autre preuve de la conjecture cristalline en utilisant la -théorie. Yamashita a prouvé le cas non approprié dans [START_REF] Yamashita | -adic Hodge theory for open varieties[END_REF]. En utilisant des constructions complètement di érentes, Beilinson a prouvé toutes les incarnations des théorèmes de comparaison -adiques dans [START_REF] Beilinson | -adic periods and derived de Rham cohomology[END_REF][START_REF] Beilinson | On the crystalline period map[END_REF]. De plus, Scholze a prouvé le théorème de comparaison de Rham pour les variétés analytiques rigides dans [START_REF] Scholze | -adic Hodge theory for rigid-analytic varieties[END_REF], où il travaille complètement sur la bre générique et considère les systèmes locaux xxx Présentation en français -adiques non triviaux du côté étale. En généralisant les idées de Faltings, Andreatta et Iovita ont prouvé la comparaison cristalline pour les schémas formels lisses dans [START_REF] Andreatta | Comparison isomorphisms for smooth formal schemes[END_REF], où leur preuve fonctionne également pour les coe cients non triviaux. De plus, Andreatta et Iovita ont généralisé leur preuve au cas semistable dans [START_REF] Andreatta | Semistable sheaves and comparison isomorphisms in the semistable case[END_REF].

Dans [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF] en utilisant des méthodes et techniques syntomiques de la théorie des ( , Γ)-modules, Colmez et Nizioł ont prouvé la comparaison semistable pour les schémas logarithmiques formels. La majeure partie de [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF] consiste en des calculs locaux, c'est-à-dire sur des a noïdes couvrant le schéma . Dans le cas du schéma propre et lisse , le revêtement peut être donné par une algèbre étale sur un tore formel sur . La motivation de nos résultats cohomologiques à coe cients dans cette thèse découle de cet article (voir le théorème H). La poursuite de l'énoncé cohomologique a conduit à notre exploration des représentations cristallines de hauteur nie dans le cadre relatif (voir le théorème E). Nous reviendrons plus tard sur ces connexions.

Une version intégrale des théorèmes de comparaison a été obtenue par Bhatt, Morrow et Scholze dans [START_REF] Bhatt | Integral -adic Hodge theory[END_REF], où ils ont dé ni une nouvelle théorie de cohomologie sur l'anneau in nitésimal de Fontaine inf . Le travail de [START_REF] Bhatt | Integral -adic Hodge theory[END_REF] a été généralisé au cas semistable par Česnavičius et Koshikawa dans [ČK19]. En n, généralisant davantage leurs travaux, Bhatt et Scholze ont avancé la théorie de la cohomologie prismatique dans [START_REF] Bhatt | Prisms and Prismatic Cohomology[END_REF] qui uni e toutes les théories de cohomologie -adiques connues.

Représentations -adiques et algèbre linéaire

Depuis l'époque galoisienne, les mathématiciens se sont intéressés à la compréhension des groupes galoisiens d'extensions de corp. Alors que certains cas nis et pro nis sont simples et explicites à énoncer, en général ces groupes sont assez complexes à déchi rer, par exemple, le groupe de Galois absolu dans la section précédente est aussi loin d'être explicite que possible. Pour comprendre de tels groupes, une approche générale consiste à étudier leurs représentations, c'est-à-dire l'action de tels groupes sur certains modules. C'est un autre thème commun dans la théorie de Hodge -adique, c'est-à-dire l'étude des représentations -adiques des groupes de Galois tels que . Les groupes de cohomologie étale -adique ét ( , ℚ ), apparaissant dans le théorème C, sont ℚ -espaces vectoriels dotés d'une action linéaire et continue du groupe de Galois . En d'autres termes, nous avons obtenu des représentations -adiques du groupe de Galois . D'autre part, les groupes de cohomologie cristalline ⨂ cris ( / ) sont des -espaces vectoriels équipés d'un automorphisme de Frobenius-semilinéaire et une ltration après extension des scalaires à . Le théorème C indique que ces deux objets sont liés l'un à l'autre.

Dans les années 1980-90, Fontaine a énoncé et réalisé plusieurs programmes a n d'étudier les représentations -adiques de . Dans [Fon79, Fon82, Fon94a, Fon94b], Fontaine décrit les souscatégories de représentations cristallines, semi-stables et de Rham. Par exemple, les groupes de cohomologie étale apparaissant dans le théorème C sont des représentations cristallines de . La théorie de Fontaine est riche et un voyage incroyable à parcourir, cependant nous nous contenterons d'une description des représentations cristallines. De plus, par souci de simplicité, nous travaillerons en supposant que = n'est pas rami é sur ℚ , cependant certains des résultats sont vrais dans des contextes plus généraux. La terminologie cristalline accentue le fait que si la représentation "vient de la géométrie", c'est-àdire calculée comme étale cohomologie de bre générique d'un -schéma lisse et propre, alors il existe une comparaison avec le cohomologie cristalline de la bre spéciale. Par exemple, si nous laissons ∶= ét ( , ℚ ) dans le théorème C, alors nous avons cris ( ) = ⨂ cris ( / ). De plus, étant donné cris ( / ) avec ses structures complémentaires, on peut récupérer ét ( , ℚ ) l'espace vectoriel ℚ avec son action galoisienne, et vice versa. C'est un résultat assez surprenant en contraste avec le cas complexe (voir le théorème A).

Représentations cristallines

( , Γ)-modules et représentations de hauteur nie

Une perspective di érente sur les représentations -adiques est la théorie des ( , Γ)-modules. Moralement, une telle théorie est une tentative de décrire des représentations -adiques de en termes de modules sur des anneaux de base compliqués, admettant un endomorphisme semi-linéaire de Frobenius et une action plus simple d'un morceau du groupe de Galois.

Plus précisément, soit ∞ = ⋃ ∈ℕ ( ) où ∈ désigne une racine primitive -ième de l'unité, et soit ℂ ♭ l'inclinaison de ℂ (voir §1.2 pour une dé nition précise). Soit = Gal( / ∞ ) et Γ = Gal( ∞ / ), alors on a une suite exacte

1 ⟶ ⟶ ⟶ Γ ⟶ 1.
En utilisant la construction corps-des-normes dans [FW79b, FW79a, Win83], Fontaine et Wintenberger ont dé ni un corps d'évaluation discret complet non archimédien ⊂ ℂ ♭ de caractéristique avec corp de classe de résidus , et fonctorial en . Dans [START_REF] Fontaine | Représentations -adiques des corps locaux. I[END_REF], Fontaine a utilisé la théorie de la construction des corps des normes pour classer les représentations mod-de en termes des ( , Γ )-modules étale sur . Par quelques considérations techniques, on peut élever cela à la caractéristique 0, c'est-à-dire classer les ℤ -représentations de en termes des ( , Γ )-modules étale sur un anneau régulier local de dimension deux ⊂ ̂ ♭ ∞ . En particulier, les périodes -adiques de toute ℤ -représentation de appartiennent à l'anneau ⊂ (ℂ ♭ ). Une équivalence similaire des catégories peut être obtenue pour les représentations -adiques et les ( , Γ )-modules étale sur = 1 , i.e. les périodes -adiques des représentations -adiques de appartiennent à = 1 ⊂ Fr (ℂ ♭ ). La théorie des ( , Γ)-modules a été a née par Cherbonnier et Colmez dans [START_REF] Cherbonnier | Représentations -adiques surconvergentes[END_REF]. Ils ont montré que toutes les ℤ -représentations (resp. représentations -adiques) sont surconvergentes, i.e. les périodes -adiques appartiennent à un sous-anneau † ⊂ (resp. † ⊂ ). De nombreuses applications de ( , Γ)-modules utilisent le résultat de Cherbonnier-Colmez (voir [START_REF] Cherbonnier | Théorie d'Iwasawa des représentations -adiques d'un corps local[END_REF], [START_REF] Berger | Représentations -adiques et équations di érentielles[END_REF][START_REF] Berger | Bloch and Kato's exponential map: three explicit formulas[END_REF], etc.).

Le foncteur de corps-des-normes a été ensuite généralisé aux corps locaux de dimension supérieure par Abrashkin dans [START_REF] Victor Abrashkin | An analogue of the eld-of-norms functor and of the Grothendieck conjecture[END_REF]. Une vaste généralisation de la théorie de Fontaine et Wintenberger, également connue sous le nom de tilting correspondence, a été faite par Scholze dans [START_REF] Scholze | Perfectoid spaces[END_REF].

Représentations cristallines de hauteur finie

Jusqu'ici nous avons vu la classi cation des représentations -adiques cristallines de en termes de -modules ltrés sur , et toutes les représentations -adiques de en termes de La théorie et la construction des modules de Wach ont connu de nombreuses applications, par exemple, la théorie d'Iwasawa des représentations cristallines dans [Ben00, BB08], la preuve de Berger de la conjecture de monodromie -adique [START_REF] Berger | Représentations -adiques et équations di érentielles[END_REF], ainsi que, dans l'étude du programme de Langlands -adique local [START_REF] Berger | Sur quelques représentations potentiellement cristallines de GL 2 (ℚ )[END_REF]. La notion de modules de Wach a été généralisée au cas des modules de Breuil-Kisin sur corps -adqique (voir [START_REF] Breuil | Une application de corps des normes[END_REF][START_REF] Breuil | Integral -adic Hodge theory[END_REF][START_REF] Kisin | Crystalline representations and -crystals[END_REF]). L'existence de modules Wach a également servi de motivation pour l'idée de Scholze de -déformations [START_REF] Scholze | Canonical -deformations in arithmetic geometry[END_REF], qui a ouvert la voie à la théorie de Bhatt-Scholze des prismes et à la cohomologie prismatique [START_REF] Bhatt | Prisms and Prismatic Cohomology[END_REF]. De plus, similaire à la classi cation de Berger dans le cas ni non rami é, Bhatt et Scholze ont montré que pour toute extension nie /ℚ , la catégorie des -cristaux prismatiques sur Spf ( ) est équivalent à la catégorie des ℤ -réseaux à l'intérieur des représentations cristallines de (voir [BS21, Theorem 1.2]).

Représentations cristallines de hauteurs nies relatives

Comme indiqué précédemment, nous nous intéressons à la version locale de la théorie de Hodge -adique relative. Alors, présentons brièvement la con guration: Fixons maintenant ≥ 3, et soit 

∈ ℕ avec = ( 1 , 2 , … , ) quelques indéterminés. On dé nit { } ∶= ∑ ∈ℕ , où = ( 1 , … , ) ∈ ℕ , = 1 1 ⋯ , ∈ , et → 0 comme → ∞ ,

( , Γ)-modules et représentations de hauteur nie

Parallèlement au cas arithmétique, dans le cadre relatif, nous pouvons à nouveau classer toutes les représentations -adiques en termes de ( , Γ)-modules. Pour ∈ ℕ, soit = ( ) où est uneième racine primitive de l'unité. Soit la fermeture intégrale de 0 ⨂ à l'intérieur de1 , et soit ∞ ∶= ⋃ . On dé nit 0 ∶= Gal 1 / 0 1 , Γ 0 ∶= Gal ∞ 1 / 0 1 , et 0 ∶= Ker ( 0 → Γ 0 ). L'anneau ∞ 1 est une extension galoisienne de 0 1 avec groupe de Galois Γ 0 s'insérant dans une séquence exacte

1 ⟶ Γ ′ 0 ⟶ Γ 0 ⟶ Γ ⟶ 1, (0.6) où, pour 1 ≤ ≤ on a Γ ′ 0 = Gal ∞ 1 / ∞ 0 1 ≃ ℤ , et Γ = Gal( ∞ / ) ≃ ℤ × .
La classi cation de Fontaine a été généralisée par Andreatta dans [And06] au cas relatif. Andreatta construit un analogue de , c'est-à-dire à 0 il associe un domaine régulier noetherien + 0 . De plus, il élève cet anneau à la caractéristique 0, c'est-à-dire que nous avons + 0 équipé d'un endomorphisme de Frobenius et d'une action continue de Γ 0 . En n, nous avons 0 comme complétion -adique de

+ 0 1 .
Ensuite, un ( , Γ 0 )-module étale est un 0 -module de génération nie équipé d'un automorphisme Forbenius-semi-linéaire et d'un action semi-linéaire et continue de Γ 0 . Andreatta montre qu'il existe une équivalence de catégories entre les ℤ -représentations de 0 et étale ( , Γ 0 )-modules sur 0 . En particulier, les périodes -adiques de toute ℤ -représentation de 0 vivent dans l'anneau ⊂ (ℂ( ) ♭ ) (voir §2.1). Une équivalence similaire des catégories peut être obtenue pour les représentations -adiques et les ( , Γ 0 )-modules étale sur 0 ∶= 0 1 , c'est-à-dire que les périodes -adiques des représentations -adiques de 0 appartiennent à = 1 ⊂ (ℂ( ) ♭ ) 1 . Notez que la discussion ci-dessus est vraie dans un cadre plus général, en particulier pour (voir §2.1 qui est une adaptation de [START_REF] Andreatta | Generalized ring of norms and generalized ( , Γ)-modules[END_REF]).

Dans 

O PD ⨂ 0 O cris ( ) ≃ ← --O PD ⨂ 0 1 ≃ --→ O PD ⨂ + 0 ( ),
compatible avec Frobenius, ltration, connexion et l'action de Γ 0 de chaque côté.

La preuve du théorème se déroule en trois étapes : Premièrement, nous énonçons explicitement la structure du module de Wach attaché à une représentation de Wach de dimension un, nous montrons également que toutes les représentations cristallines unidimensionnelles sont des représentations de Wach et on peut récupérer O cris ( ) en commençant avec le module de Wach ( ). Ensuite, dans des dimensions supérieures et dans les conditions du théorème E, nous décrirons un processus par lequel nous pouvons récupérer un sous-module de O cris ( ) à partir du module de Wach, on établit ici une comparaison en passant au cas unidimensionnel. En n, les a rmations faites dans le théorème sont montrées en exploitant certaines propriétés des modules de Wach et la comparaison obtenue dans la deuxième étape. Dans la deuxième étape, l'approximation pour l'action de la partie géométrique de Γ 0 s'avère non triviale et la plupart de notre travail consiste à montrer cette partie ; la partie arithmétique de Γ 0 découle des travaux de Wach [START_REF] Wach | Représentations -adiques potentiellement cristallines[END_REF]. de la cohomologie syntomique aux cycles proches -adiques, où ℤ ( ) ′ ∶= 1 ( ) ℤ ( ), pour = ( -1) ( ) + ( ) avec 0 ≤ ( ) ≤ -1.

Complexe syntomique et cohomologie galoisienne

Dans [CN17], Colmez et Nizioł ont montré que l'application des périodes Fontaine-Messing FM , , après une troncature appropriée, est essentiellement un quasi-isomorphisme. Plus précisément,

Théorèm F ([CN17, Theorem 1.1]). Pour 0 ≤ ≤ , l'application FM , ∶  (S ( ) ) ⟶ * * ℤ/ ( ) ′ ,
est un -isomorphisme, c'est-à-dire qu'il existe = ( , , ) ∈ ℕ dépendant de et de l'indice de rami cation absolu de mais pas de ou , de sorte que le noyau et le conoyau du morphisme sont tués par .

En fait, pour ≤ ≤ -1, l'application FM , a été montrée être un isomorphisme par Kato [Kat89, Kat94], Kurihara [START_REF] Kurihara | A note on -adic étale cohomology[END_REF] et Tsuji [START_REF] Tsuji | -adic étale cohomology and crystalline cohomology in the semi-stable reduction case[END_REF]. Dans [START_REF] Tsuji | Syntomic complexes and -adic vanishing cycles[END_REF], Tsuji a généralisé ce résultat à certains systèmes locaux.

Le théorème F est également valable pour le changement de base des schémas lisses et propres. En particulier, après passage à la limite et inversion de ci-dessus, pour chaque 0 ≤ ≤ on obtient un isomorphisme

FM ∶ syn , ℚ ≃ --→ ét , ℚ ( ) . (0.7) 
L'isomorphisme a ché ci-dessus est l'étape la plus importante pour prouver la conjecture cristalline via des méthodes syntomiques. Ces idées ont été utilisées dans [START_REF] Fontaine | -adic periods and -adic étale cohomology[END_REF], [START_REF] Kato | Syntomic cohomology and -adic étale cohomology[END_REF], [START_REF] Kato | On -adic vanishing cycles (application of ideas of Fontaine-Messing)[END_REF], [START_REF] Kato | Semi-stable reduction and -adic étale cohomology[END_REF] et [START_REF] Tsuji | -adic étale cohomology and crystalline cohomology in the semi-stable reduction case[END_REF]. Cependant, toutes ces preuves ont été élaborées directement sur , mais sans aucune restriction sur . La preuve de Colmez et Nizioł est di érente des approches précédentes. Ils prouvent d'abord le théorème F, et en déduisent la comparaison dans (0.7) via changement de base. Pour prouver leur a rmation, ils construisent une autre morphisme de période locale  , en utilisant des techniques de la théorie des ( , Γ)-modules et une version de l'isomorphisme intégral de Lazard entre la cohomologie de l'algèbre de Lie et la cohomologie de groupe continue. Ensuite, ils montrent que morphisme est un quasi-isomorphisme et coïncide avec le morphisme de Fontaine-Messing à quelques constantes près. De plus, tous leurs résultats ont été élaborés dans le cas général de schémas logarithmiques.

Calcul local de Colmez et Nizioł

Comme précisé précédemment, la majeure partie de [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF] consiste en des calculs locaux, c'està-dire sur des a noïdes couvrant un schéma formel. Dans le cas d'un schéma formel propre et lisse, le revêtement peut être donné par une algèbre étale sur = { ±1 } où = ( 1 , … , ) sont des indéterminés. Pour énoncer le résultat local, nous nous limiterons au cadre familier de , mais les résultats sont également valables pour une algèbre étale sur (Colmez et Nizioł travaillent également avec des structures log).

Soit + la complétion ( , 0 )-adique de [ 0 , ±1 ], et soit = PD désigne la complétion -adique de l'enveloppe de puissance divisée par rapport au noyau de la morphisme envoyant 0 à -1. De plus, soit Ω 1 la complétion -adique du module de di érentiels de par rapport à ℤ et Ω = ⋀ Ω 1 pour ∈ ℕ. La cohomologie syntomique de peut être calculée par le complexe

Syn( , ) ∶= Cone Ω • -• --------→ Ω • [-1],
xxxvi Présentation en français tel que nous avons syn ( , ) = (Syn( , )). Si contient su samment de racines d'unité, c'est-àdire pour assez grand, Colmez et Nizioł a montré que,

Théorèm G ([CN17, Theorem 1.6]). Les morphismes L ∶ ≤ Syn( , ) ⟶ ≤ Γ cont ( , ℤ ( )), L , ∶ ≤ Syn( , ) ⟶ ≤ Γ cont ( , ℤ/ ( )) ⟶ ≤ Γ Sp 1 ét , ℤ/ ( ) , (0.8) 
sont des -quasi-isomorphismes pour une constante universelle .

En n, en utilisant la descente galoisienne on peut obtenir le résultat sur (pas forcément ayant assez de racines d'unité, avec dépendant de , et , voir [CN17, Théorème 5.4]). Notez que la truncation désigne ici la truncation canonique dans la littérature. La preuve de Colmez et Nizioł consiste à comparer le complexe syntomique avec le complexe de ( , Γ)-modules calculant lacohomologie continue de ℤ ( ). Ceci est réalisé en utilisant une version du lemme de Poincaré. De plus, notez qu'ils fonctionnent avec des structures log, c'est-à-dire que toutes les dé nitions ci-dessus doivent être remplacées par leurs analogues log (sans structures log, il faut tronquer en degré ≤ -1, voir le théorème H ci-dessous).

Complexe de Fontaine-Herr

Le côté droit de l'application dans la version -adique du résultat de Colmez et Nizioł, c'est-à-dire le premier isomorphisme dans (0.4), concerne le calcul de la -cohomologie continue de ℤ ( ). Ce calcul peut être e ectué avec des complexes constitués de ( , Γ)-modules, dont les origines se trouvent dans les travaux de Herr (voir [START_REF] Herr | Sur la cohomologie galoisienne des corps -adiques[END_REF]).

Soit une représentation -adique (resp. ℤ -representation) de , et soit ( ) le ( , Γ )-module étale associé sur (resp. ). Soit ∈ Γ un générateur topologique de Γ , alors on a un complexe

 • ∶ ( ) (1-, -1) ----------→ ( ) ⨁ ( ) -1 1- -----------→ ( ),
où la deuxième application est ( , ) ↦ ( -1) -(1 -) . Le complexe de Fontaine-Herr  • calcule la -cohomologie continue de dans chaque degré cohomologique, c'est-à-dire que pour ∈ ℕ, on a les isomorphes naturels ( • ) ≃ cont ( , ).

Les groupes de -cohomologie continus sont des invariants utiles attachés à . Par exemple, le premier groupe de cohomologie continue de , 1 cont ( , ) classi e les extensions de la représentation triviale ℚ par dans Rep ℚ ( ), et qui peut être représenté par un couple , ∈ ( ) satisfaisant l'équation ( -1) = (1 -) . De plus, si est cristalline alors toute extension cristalline de ℚ par ( ) (torsion cyclotomique de ) peut être représentée par une paire ( , ) avec ∈ ( )( ) et ∈ ( ( )) tels que ( -1) = (1 -) (voir le lemme A.2 et Proposition A.4). En fait, cette a rmation combinée au calcul e ectué par Colmez et Nizioł a servi de motivation originale pour l'obtention du théorème H.

Dans le cas relatif, nous avons la version relative du complexe de Fontaine-Herr qui calcule la -cohomologie continue d'une représentation -adique (voir [AI08, Théorème 3.3], on rappelle la description dans §4.1). Des complexes explicites calculant la -cohomologie continue de peuvent également être obtenus, que nous appelons collectivement complexes de Koszul (voir §4.2). De plus, les complexes de Koszul jouent un rôle central dans la preuve du théorème H. La classe de représentations qui nous intéresse est celle des représentations cristallines de Wach de 0 . Dans la notation du théorème E, pour les coe cients du complexe syntomique, nous choisirons un réseau à l'intérieur du ( , )module ltré O cris ( ), alors que pour calculer la cohomologie galoisienne nous exploiterons les propriétés du module de Wach associé ( ). Les deux côtés seront ensuite comparés en utilisant une version du lemme de Poincaré, où est cruciale la comparaison obtenue dans le théorème E.

Complexe syntomique à coe cients

Plus précisément, soit une représentation -adique de Wach de 0 avec des poids de Hodge-Tate non positifs et soit ∈ ℕ le maximum parmi les valeurs absolues poids de Hodge-Tate de . Soit ⊂ un ℤ -réseau libre de rang = dim ℚ stable sous l'action de 0 . Supposons que ( ) est un

+ 0 -module libre de rang = dim ℚ , et qu'il existe un 0 -sous-module libre O cris ( ) ⊂ O cris ( ) de rang = dim ℚ , tel que O cris ( ) 1 = O cris ( ) et la connexion induite sur O cris ( ) est quasi-nilpotente, intégrable et satisfait la transversalité de Gri ths par rapport à la ltration induite. Soit ∈ ℕ et on pose ( ) ∶= ⨂ ℚ ℚ ( ) et ( ) ∶= ⨂ ℤ ℤ ( ).
Le choix de O cris ( ) n'est pas canonique et nous discutons de quelques manières d'obtenir un tel module dans proposition 3.31, remarque 3.42 et remarque 5.4. Cependant, nous xons un tel choix pour le reste de la discussion.

On pose PD ∶= PD ⨂ 0 O cris ( ). Il existe un endomorphisme semi-linéaire de Frobenius sur PD donné par l'action diagonale du Frobenius sur chaque composante du produit tensoriel, une ltration provenant du produit de ltration sur chaque composante du produit tensoriel et une connexion induite par la connexion sur O cris ( ) et l'opérateur di érentiel sur PD . De plus, cette connexion est intégrable et satisfait la transversalité de Gri ths par rapport à la ltration (voir chapitre 5 pour des dé nitions précises). En particulier, soit = PD et nous avons un complexe de de Rham ltré pour ∈ ℤ,

Fil D • ∶= Fil PD ⨂ Ω 1 ⟶ Fil -1 PD ⨂ Ω 1 ⟶ ⋯ . Soit ∶= ⨂ 0 O cris ( ).
Dé nir le complexe syntomique Syn( , ) et la cohomologie syn- tomique de avec des coe cients dans comme

Syn( , ) ∶= Fil D • -• --------→ D • ; * syn ( , ) ∶= * (Syn( , )).
Nous allons relier ce complexe au complexe de Fontaine-Herr calculant la -cohomologie continue de ( ). Le résultat principal du chapitre 5 est :

Théorèm H (voir Theorem 5.6). Soit une représentation de Wach positive de 0 , ⊂ un 0 -stable libre ℤ -réseau, ∈ ℕ le maximum parmi les valeurs absolues des poids de Hodge-Tate de et ∈ ℕ tels que ≥ + 1. Alors il existe un -quasi-isomorphisme ≤ --1 Syn( , ) ≃ ≤ --1 Γ cont ( , ( )), où = ( , , ) ∈ ℕ dépend de la représentation , de l'indice de rami cation , et . En particulier, on a des -isomorphismes

syn ( , ) ≃ --→ ( , ( )), pour 0 ≤ ≤ --1.
La preuve du théorème H se déroule en deux étapes principales: dans une première étape, on modi e le complexe syntomique à coe cients dans pour le relier à un complexe de Koszul "di érentiel" à coe cients dans ( ). Ensuite, dans la deuxième étape, nous modi ons le complexe de Koszul de la première étape et utilisons une version du lemme de Poincaré pour obtenir le complexe de Koszul calculant la -cohomologie continue de ( ).

Comme mentionné précédemment, pour = ℤ , le résultat a été prouvé dans [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF]. Cependant, les généralisations directes ne semblent pas fonctionner et les problèmes techniques ont tendance à s'ampli er lorsqu'on traite le cas de dim ℚ ≥ 1. A n de prouver l'énoncé du théorème, nous écrirons des complexes explicites avec des modi cations appropriées à chaque étape. La clé de la connexion entre les complexes syntomiques à coe cients et les "complexes de Koszul de ( , Γ)module" est fournie par l'isomorphisme de comparaison dans le théorème E. En fait, une tentative de relier ces deux étapes a conduit à notre recherche et à notre découverte du résultat de la comparaison dans le théorème E en premier lieu.

Qu'est-ce qui est devant?

Le monde de la théorie de Hodge -adique relative, bien que largement étudié dans certaines directions, reste beaucoup moins exploré et non moins di cile que son pendant arithmétique. Par conséquent, plusieurs questions naturelles ont émergé qui restent sans réponse.

La toute première question qui pourrait être posée est de savoir si toutes les représentations cristallines sont de hauteur nie? Ceci est certainement vrai pour les représentations à une dimension. Cependant, le cas de dimension supérieure reste assez mystérieux. Une réponse à cette question impliquerait éventuellement de récupérer le module ( ) étant donné O cris ( ).

Dans son travail récent [START_REF] Tsuji | Crystalline ℤ -representations and inf -Representations with Frobenius[END_REF], Tsuji a utilisé les idées de Wach (voir [START_REF] Wach | Représentations cristallines de torsion[END_REF]) et la généralisation de Faltings des modules de Fontaine-La aille (voir [START_REF] Faltings | Crystalline cohomology and -adic Galois-representations[END_REF]) pour construire des représentations généralisées de . Sa théorie est liée aux travaux remarquables de Bhatt, Morrow et Scholze sur la inf -cohomologie dans [START_REF] Bhatt | Integral -adic Hodge theory[END_REF]. Tsuji et Morrow dans [START_REF] Morrow | Generalised representations as q-connections in integral -adic Hodge theory[END_REF], ont développé une théorie des coe cients en théorie de Hodge -adique intégrale. Les objets de Tsuji sont étroitement liés à la dé nition des modules Wach dans le cas relatif. Il serait intéressant d'explorer ces relations et d'obtenir des énoncés concrets sur la cohomologie. De plus, il serait intéressant de comprendre la relation entre les modules de Wach relatifs et les coe cients dans la théorie de Hodge -adique intégrale, ainsi que leur relation avec la théorie de Bhatt-Scholze des prismes et la cohomologie prismatique dans [START_REF] Bhatt | Prisms and Prismatic Cohomology[END_REF].

La globalisation de l'approche de Colmez et Nizioł, les a aidés à prouver le théorème de comparaison semi-stable pour les log-schémas formels. D'autre part, dans [START_REF] Tsuji | Syntomic complexes and -adic vanishing cycles[END_REF], Tsuji a considéré un système de coe cients pour la cohomologie syntomique et a obtenu des résultats similaires sous certaines restrictions. Le résultat du théorème H est de même saveur (au moins localement), où l'on ne considère que le cas d'une bonne réduction. Il serait intéressant de structurer la notion de représentations à hauteurs nies ou modules de Wach comme dans les travaux de Colmez et Nizioł et dans l'esprit des faisceaux cristallins d'Andreatta et Iovita (voir [START_REF] Andreatta | Comparison isomorphisms for smooth formal schemes[END_REF]). La réalisation d'un tel programme produirait un isomorphisme de comparaison pour des schémas formels lisses appropriés et des coe cients non triviaux via des méthodes syntomiques.

Comme mentionné précédemment, pour une extension nie (éventuellement rami ée) de ℚ , les modules de Wach ont été généralisés sous la forme de modules [START_REF] Breuil | Integral -adic Hodge theory[END_REF][START_REF] Kisin | Crystalline representations and -crystals[END_REF]). Dans le cas relatif, Kim a donné une certaine généralisation de la théorie de Kisin (voir [Kim15]). D'autre part, il existe aussi une classi cation des représentations -adiques classiques par Caruso en termes de ( , )-modules (voir [START_REF] Caruso | Représentations galoisiennes -adiques et ( , )-modules[END_REF]). Il est alors naturel de se demander s'il existe un complexe explicite (apparenté au complexe de Fontaine-Herr) de modules (relatifs) de Breuil-Kisin ou de ( , )-modules (relatifs) qui calcule la cohomologie galoisienne d'un représentation? De plus, dans ce cas, il serait également possible de travailler avec des représentations semi-stables et des complexes log-syntomiques à coe cients.

Une réponse positive aux questions ci-dessus, ouvre également la porte à de nombreuses applications. Une telle application pourrait être dans la théorie d'Iwasawa. Dans [START_REF] Benois | On Iwasawa theory of crystalline representations[END_REF], Benois a utilisé des modules de Wach pour étudier la théorie d'Iwasawa des représentations cristallines, dans le cas classique. On pourrait espérer réaliser un programme similaire dans le cas relatif.

CHAPTER 1 -adic Hodge theory

Let be a mixed characteristic non-archimedean complete discrete valuation eld, with ring of integers and residue eld of characteristic . For a perfect eld, Fontaine established in [START_REF] Fontaine | Le corps des périodes -adiques[END_REF] the theory of -adic de Rham and crystalline representations of the absolute Galois group of . Moreover, he classi ed crystalline representations in terms of certain linear algebraic objects called ltered -modules over = ( ) 1 , where ( ) denotes the -typical Witt vectors with coe cients in . Generalizing this approach in [START_REF] Brinon | Représentations cristallines dans le cas d'un corps résiduel imparfait[END_REF], Brinon studied the -adic crystalline and de Rham representations of in the case when is a non-perfect eld admitting a nite -basis, i.e. [ ∶ ] < +∞ and gave a similar classi cation for crystalline representations of . This theory was further extended by Brinon in [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF], to the relative case, where he again considers to be perfect but replaces by 1 for certain integral, normal and -adically complete -algebra . In this section our objective is to recall constructions and results in the relative case, albeit in a simpler setting compared to Brinon's book.

Setup and notations

In this section, we will describe the setup for the rest of the text and x some notations. Our conventions and notations are by and large in agreement with the article of Colmez and Nizioł [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF].

Convention. We will work under the convention that 0 ∈ ℕ, the set of natural numbers.

Let ≥ 3 be a xed prime number, a nite eld of characteristic , ∶= ( ) the ring of -typical Witt vectors with coe cients in and ∶= 1 , the fraction eld of . In particular, is an unrami ed extension of ℚ with ring of integers = . For ∈ ℕ, let denote a primitive -th root of unity, and we set ∶= ( ) and ∞ ∶= ⋃

. From now onwards, we will x some ∈ ℕ and set ∶= , with ring of integers . Let = be a xed algebraic closure of such that its residue eld, denoted as , is an algebraic closure of . Further, we denote by = Gal( / ), the absolute Galois group of . The element = -1 ∈ is a uniformizer of , and its minimal polynomial

( ) = (1+ ) -1 (1+ ) -1 -1 is an Eisenstein polynomial in [ ] of degree ∶= [ ∶ ] = -1 ( -1). Let = ( 1 , … ,
) denote a set of indeterminates and = ( 1 , … , ) ∈ ℕ be a multi-index, then we write ∶= 1 1 ⋯ . For → ∞ we will mean that ∑ → ∞. Now for a topological algebra Λ we de ne Λ{ } ∶= ∈ℕ , where ∈ Λ and → 0 as → ∞ .

We are interested in the -adic Hodge theory of an étale algebra over a formal torus de ned over . More precisely, let ∈ ℕ and = ( 1 , 2 , … , ) be some indeterminates. Let 0 denote the -adic completion of an étale algebra over { ±1 }. In other words, we have a presentation

0 ∶= { , -1 }{ 1 , … , }/( 1 , … , ),
where

( 1 , … , ) ∈ { , -1 }[ 1 , … , ] for 1 ≤ ≤ , are multivariate polynomials such that det 1≤ , ≤ is invertible in 0 . Finally, we set = 0 [ ],
which is absolutely rami ed at the prime ideal ( ) ⊂ 0 .

Next, we provide a system of coordinates for , which we call a framing.

Let □ ∶= { , -1 },
and endow it with the spectral norm. Using the polynomials appearing in the de nition of 0 , we can write

∶= □ { 1 , … , } / ( 1 , … , ).
Therefore, we have a Cartesian diagram

Spf Spf 0 Spf □ Spf { , -1 },
and □ provides a system of coordinates for . From the assumptions on , we have that is small in the sense of Faltings (see [Fal88, §II 1(a)]).

The -adic Hodge theory of entails a study of -adic representations of the étale fundamental group of 1 , which we introduce next. We x an algebraic closure of Fr as Fr such that it contains . Let denote the union of nite -subalgebras ⊂ Fr , such that 1 is étale over 1 . Let denote the corresponding geometric point of the generic ber Spec 1 and let ∶= ét 1 (Spec 1 , ) denote the étale fundamental group. By [Gro63, Exposé V, §8], we can write this étale fundamental group as the Galois group (of the fraction eld of 1 over the fraction eld of 1 )

= ét 1 Spec 1 , = Gal 1 / 1 . Proposition 1.1 ([Bri08, Proposition 2.0.2]).
For any ∈ ℕ, let Ω denote the -adic completion of the module of di erentials of relative to ℤ. Then we have

Ω 1 0 = ⨁ =1 0 log , and Ω 0 = ⋀ Ω 1 0 .
Moreover, the kernel and cokernel of the natural map Ω 0 ⨂ 0 ⟶ Ω is killed by a power of . In particular, we have

Ω 1 = ⋀ ⨁ =1 0 1 log .
For 0 and we have that

= 0 [ ], 0 / 0 ≃ --→ /
and for any ∈ ℕ, 0 / 0 is a formally smooth ℤ/ ℤ-algebra. Finally, we x a lift ∶ 0 → 0 of the absolute Frobenius ↦ over / .

Convention. While working with completion of tensor products, we would assume it to be the completion of the usual tensor product for the -adic topology.

The de Rham period ring

In this section we will recall de nitions and properties of the relative version of Fontaine's period ring dR . These rings will be useful in classifying de Rham representations of . We begin by recalling some well-known constructions from [START_REF] Fontaine | Le corps des périodes -adiques[END_REF].

Let us note that the eld ℂ = ̂ , the -adic completion of , is a perfectoid eld and we denote its ring of integers as ℂ . We have the tilt of ℂ as

♭ ℂ ∶= lim ↦ ℂ / ℂ = lim ↦ / ,
The element ∈ ℂ is a pseudo-uniformizer and therefore ♭ ∶= ( , 1/ , 1/ 2 , …) ∈ ♭ ℂ is a pseudo-uniformizer. We set ℂ ♭ ∶= ♭ ℂ 1 ♭ , which is a perfect eld in characteristic . Next, we endow 1 with the spectral valuation , i.e.

( ) = sup{ ( ), for ∈ ℂ × such that ∈ }. Denote by ℂ( ) the completion of 1 for and ℂ + ( ) ∶= { ∈ ℂ( ), such that ( ) ≥ 0}, which is a subring of ℂ( ). We de ne ℂ + ( ) ♭ as the tilt of ℂ + ( ), i.e.

ℂ + ( ) ♭ ∶= lim ↦ ℂ + ( ) / ℂ + ( ) = lim ↦ / ,
and we set ℂ( ) ♭ ∶= ℂ + ( ) ♭ 1

♭ . An element ∈ ℂ( ) ♭ can be described as a sequence ( ) ∈ℕ , with ∈ ℂ( ) and +1 = , for all ∈ ℕ. We de ne ♭ on ℂ( ) ♭ by setting ♭ ( ) ∶= ( ♯ ) where ♯ ∶= 0 . This is a valuation on ℂ( ) ♭ for which it is complete and we have that ℂ + ( ) ♭ is the subring of elements ∈ ℂ( ) ♭ such that ♭ ( ) ≥ 0. These rings admit an action of the Galois group which is continuous for the valuation topology.

We will x some choices of compatible -power roots which will appear throughout the text. Let

∶= (1, , 2 , …) ∈ ℂ ♭ , ♭ ∶= , 1/ , 1/ 2 , … ∈ ℂ( ) ♭ for 1 ≤ ≤ .
We set inf ( ) ∶= ℂ + ( ) ♭ as the ring of -typical Witt vectors with coe cients in ℂ + ( ) ♭ . For ∈ ℂ + ( ) ♭ , let [ ] = ( , 0, 0, …) ∈ inf ( ) denote its Teichmüller representative. The absolute Frobenius on ℂ + ( ) ♭ lifts to an endomorphism ∶ inf ( ) → inf ( ) and the action of extends to inf ( ) which is continuous for the weak topology (see §2.1 for weak topology). Any element ∈ inf ( ) can be uniquely written as

= ∑ ∈ℕ [ ] for ∈ ℂ + ( ) ♭ . We set ∶= [ ] -1, 1 ∶= -1 ( ) = [ 1/ ] -1 and ∶= 1 .

The action of

and the Frobenius on these elements is given as,

([ ]) = [ ] ( ) and ( ) = (1 + ) ( ) -1 for ∈ , ([ ]) = [ ] and 
( ) = (1 + ) -1,
where ∶ → ℤ × is the -adic cyclotomic character. De ne the map

∶ inf ( ) ⟶ ℂ + ( ) ∈ℕ [ ] ⟼ ∈ℕ ♯ . (1.1)
The map is a -equivariant surjective ring homomorphism whose kernel is principal, and generated by any ∈ Ker such that its Witt vector expansion = ( 0 , 1 , … , ) has the property that 1 is a unit in ℂ + ( ) ♭ , for example -[ ♭ ] or (see [Fon82, Proposition 2.4 (ii)]). By ℚ -linearity, the map can be extended to ∶ inf ( ) 1 → ℂ( ).

De nition 1.2. De ne

+ dR ( ) ∶= lim inf ( ) 1 / (Ker ) ,
as the (Ker )-adic completion of inf ( ) 1 .

The ring +

dR ( ) is an -algebra and the action of on inf ( ) extends to an action on + dR ( ) which is continuous for the (Ker )-adic topology. The map further extends to a -equivariant surjective ring homomorphism ∶ + dR ( ) → ℂ( ). The element 

∶= log[ ] = log(1 + ) = ∈ℕ (-1) +1 + 1 ∈ + dR ( ), (1.2 
( ) ∶= + dR ( ) 1 .
This construction is functorial in but + dR ( ) only depends on . The ring dR ( ) is an -algebra equipped with a continuous action of , for the (Ker )-adic topology.

Next, we will put a ltration on dR ( ) by setting Fil dR ( ) ∶= + dR ( ) for ∈ ℤ, which is a decreasing, separated and exhaustive ltration on dR ( ). We equip + dR ( ) with the induced ltration. For the associated graded pieces, we have the identi cation (see [Bri08, Proposition 5.2.1])

gr • + dR ( ) ≃ ℂ( )[ ] and gr • dR ( ) ≃ ℂ( )[ , -1 ],
where denotes its image in gr 1 + dR ( ). We can extend the map ∶ inf ( ) → ℂ + ( ) by -linearity to obtain a -equivariant surjective ring homomorphism

∶ ⨂ ℤ inf ( ) ⟶ ℂ + ( ). (1.3) Let O inf ( ) denote the -1 ℂ + ( ) -adic completion of ⨂ ℤ inf ( ) (the ideal -1 ℂ + (
) is generated by and Ker ). The morphism then extends to a -equivariant surjective ring homomorphism

∶ O inf ( ) ⟶ ℂ + ( ),
which can be extended by ℚ -linearity to a -equivariant surjective ring homomorphism 

∶ O inf ( ) 1 ⟶ ℂ( ).
O dR ( ) ∶= O + dR ( ) 1 .
The ring O dR ( ) is an 1 -algbera equipped with a continuous action of for the (Ker )-adic topology.

We can give a more explicit description of the ring O + dR ( ). Note that we have

⨂ 1 -1 ⨂ [ ♭ ] ∈ Ker ⊂ ⨂ ℤ inf ( ) for 1 ≤ ≤ . Let denote its image in O inf ( ) ⊂ O + dR ( ).
Since O + dR ( ) is complete for the (Ker )-adic topology, the homomorphism + dR ( ) → O + dR ( ), extends to a homomorphism

∶ + dR ( )[[ 1 , … , ]] ⟶ O + dR ( ) ⟼ ,
for 1 ≤ ≤ .

In fact, we have that Proposition 1.6 ([Bri08, Proposition 5.2.2]). is an isomorphism and Ker = ( , 1 , … , ).

Remark 1.7. (i) By the previous proposition, we can identify + dR ( ) as a subring of O + dR ( ).

(ii) The rings O + dR ( ) and O dR ( ) are -equivariant 1 -algebras. Moreover, the map from O dR ( ) to ℂ( ) restricts to the canonical inclusion of 1 in ℂ( ) (see [Bri08, Proposition 5.2.3]).

(iii) Let ur denote the union of nite étale -subalgebras ⊂ , and let ̂ ur denote its -adic completion. It is an -subalgebra of ℂ( ) equipped with a continuous action of , and ̂ ur 1 = 1 . Moreover, we have ur 1 ⊂ 1 ⊂ O + dR ( ), and ur 1 -algebra structure on O + dR ( ) and O dR ( ) uniquely extends to a -equivariant ̂ ur 1 -algebra structure (see [Bri08, Proposition 5.2.4]).

Next, we equip O + dR ( ) with a ltration Fil O + dR ( ) ∶= (Ker ) for ∈ ℕ, which is a decreasing, separated and exhaustive ltration, stable under the action of . For ∈ ℕ we have

-Fil O + dR ( ) = O + dR ( ) + 1 , … , O + dR ( ).

So we set

Fil 0 O dR ( ) ∶= ∞ =0 -Fil O + dR ( ) = O + dR ( ) 1 , … , , Fil O dR ( ) ∶= Fil 0 O dR ( ) for ∈ ℤ.
This ltration is decreasing, separated, exhaustive and stable under the action of . Moreover, the induced ltrations on O + dR ( ), + dR ( ) and dR ( ) match with the ones de ned before (see [Bri08, Proposition 5.2.8, Corollaire 5.2.11]). For the associated graded pieces, we have identi cations (see [Bri08, Propositions 5.2.5, 5.2.6])

gr • O + dR ( ) ≃ ℂ( )[ , 1 , … , ], gr 0 O dR ( ) ≃ ℂ( )[ 1 , … , ], gr • O dR ( ) ≃ ℂ( )[ , -1 , 1 , … , ], (1.4)
where is the image of in gr 1 O + dR ( ) and is the image of in gr 0 O dR ( ). Finally, the elements 1 ⧵ {0} ⊂ dR ( ) are non-zero-divisors and we have O dR ( ) = 1 (see [Bri08, Corollaire 5.2.9, Proposition 5.2.12]).

We can equip the rings O + dR ( ) and O + dR ( ) with some extra structure. Namely, we are going to de ne a formal connection on these rings. First, note that since is étale over □ , the -adic completion of module of di erentials of relative to ℤ is given by Ω 1 = ⨂ □ Ω 1 □ and we have Ω 1 1 ] = ⨂ 0 Ω 1 0 1 (see Proposition 1.1). Now, let denote the unique (Ker )-adically continuous and + dR ( )-linear derivation on O + dR ( ) as

( ) = for 1 ≤ , ≤ ,
where denotes the Kronecker delta symbol. The derivation extends to O dR ( ) since ( ) = 0.

De nition 1.8. De ne a connection

∶ O dR ( ) ⟶ O dR ( ) ⨂ [ 1 ] Ω 1 1 ⟼ =1 ( ) ⨂ log .
The connection is -equivariant and satis es Gri ths transversality for the ltration Fil

• O dR ( ), i.e. Fil O dR ( ) ⟶ Fil -1 O dR ( ) ⨂ [ 1 ] Ω 1 1 ,
(see [Bri08, Propositions 5.3.1, 5.3.9]). Its restriction to 1 is the canonical di erential operator. We also have

O + dR ( ) =0 = + dR ( ) and O dR ( ) =0 = dR ( ).
Finally, the canonical map 

dR ∶ 1 ⨂ dR ( ) ⟶ O dR ( ),

The crystalline period ring

In this section, we will de ne crystalline period rings and study their properties following [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]. Note that Brinon de nes these rings under certain assumption on his base rings (see the condition (BR) on [Bri08, p. 9]). However, this assumption always holds in our setting.

Let us consider the map ∶ inf ( ) → ℂ + ( ) from (1.1). The kernel of this map is a principal ideal generated by or -

[ ♭ ]. Now let [ ] ∶= ! for ∈ Ker ⊂ inf ( ) and ∈ ℕ.
The divided power envelope of inf ( ) with respect to Ker is given as

inf ( ) [ ] , ∈ Ker ∈ℕ = inf ( ) [ ] ∈ℕ .
(1.5)

De nition 1.10. De ne cris ( ) ∶= -adic completion of inf ( ) ! ∈ℕ .

Also, set max ( ) to be the -adic completion of the inf ( )-subalgebra generated by 1 Ker inside inf ( ) 1 .

The ( )-algebras cris ( ) and max ( ) are functorial in (depending only on ) and equipped with a continuous action of . Further, these rings are -torsion free (see [Bri08, Proposition 6.1.3]). The Frobenius on inf ( ) can be extended to cris ( ) as follows: we know that ( ) = + for some ∈ inf ( ). We write ( ) = ( + ( -1)! [ ] ) and therefore ( ) = ( + ( -1)! [ ] ) for

∈ ℕ. Now it easily follows that

[ ] = ! + ( -1)! [ ] ∈ cris ( ), as desired. Similarly, the Frobenius extends to max ( ) as well.

Since Ker ⊂ inf ( ) has divided powers in inf ( ) 1 Ker , the universal property of divided power envelope induces a canonical and Frobenius-equivariant injection ∶ cris ( ) → max ( ). The homomorphism of (1.1) extends to surjective homomorphisms (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]p. 62]),

∶ cris ( ) ⟶ ℂ + ( ) and ∶ max ( ) ⟶ ℂ + ( ).
From (1.2) we have,

= log(1 + ) = ∈ℕ (-1) +1 + 1 ∈ cris ( ),
and the action of and the Frobenius on this element is given as

( ) = ( ) for ∈ and ( ) = .
We have that ∈ Ker ⊂ cris ( ) and Ker ⊂ cris ( ) is a divided power ideal. Moreover -1 ∈ cris (ℤ ) (see [START_REF] Fontaine | Le corps des périodes -adiques[END_REF]2.3.4]) and the rings cris ( ) and max ( ) are -torsion free (see [Bri08, Corollaire 6.2.2]). Finally, we set 1 = 1 .

De nition 1.11. De ne the crystalline period rings as + cris ( ) ∶= cris ( ) 1 and cris ( ) ∶= + cris ( ) 1 , + max ( ) ∶= max ( ) 1 and max ( ) ∶= + max ( ) 1 .

These are -algebras equipped with a continuous action of and the Frobenius .

Next, let us consider the map 0 ∶ 0 ⨂ ℤ inf ( ) → ℂ + ( ) obtained by extending (1.1) 0 -linearly. This is a -equivariant surjective ring homomorphism with kernel generated by {1 ⨂ , 1 , … , }, where = ⨂ 1 -1 ⨂ [ ♭ ] for 1 ≤ ≤ . As in (1.5) the divided power envelope of 0 ⨂ ℤ inf ( ) with respect to Ker 0 is given as

0 ⨂ ℤ inf ( ) [ ] , ∈ Ker 0 ∈ℕ .
De nition 1.12. De ne O cris ( 0 ) ∶= -adic completion of the divided power envelope of 0 ⨂ ℤ inf ( ) with respect to Ker 0 . Also, set O max ( 0 ) to be the -adic completion of the 0 ⨂ ℤ inf ( )-subalgebra generated by 1 Ker 0 inside 0 ⨂ ℤ inf ( ) 1 . The 0 -algebras O cris ( ) and O max ( ) are functorial in 0 and equipped with a continuous action of . Taking the diagonal action of the Frobenius on 0 ⨂ ℤ inf ( ), we take [ ] as above, and

[ ] = ( ⨂ 1 -1 ⨂ [ ♭ ]) [ ] = ⨂ 1 -1 ⨂ [ ♭ ] ! for 1 ≤ ≤ .
Therefore, we see that the Frobenius extends to O cris ( 0 ) as well as to O max ( 0 ) which we will again denote by . Since Ker 0 ⊂ 0 ⨂ inf ( ) has divided powers in 0 ⨂ inf ( ) 1 Ker 0 , the universal property of divided power envelope induces a canonical and Frobenius-equivariant injection ∶ O cris ( 0 ) → O max ( 0 ). The ring O cris ( 0 ) is an cris ( )-algebra and the ring O max ( 0 ) is an max ( )-algebra. The homomorphism 0 from (1.3) extends to surjective homo- morphisms (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]pg. 65

]) 0 ∶ O cris ( 0 ) ⟶ ℂ + ( ) and 0 ∶ O max ( 0 ) ⟶ ℂ + ( ).
Let = ( 1 , … , ) be some indeterminates as in Proposition 1.6. Let cris ( )⟨ ⟩ ∧ denote the -adic completion of the divided power polynomial algebra in indeterminates and coe cients in cris ( ). Then we have a homomorphism of cris ( )-algebras

cris ∶ cris ( )⟨ ⟩ ∧ ⟶ O cris ( 0 ) ⟼ for 1 ≤ ≤ .
Similarly, we can de ne a homomorphism of max ( )-algebras

max ∶ max ( ) 1 , … , ⟶ O max ( 0 ) ⟼ for 1 ≤ ≤ .
Then, we have that Proposition 1.13 ([Bri08, Proposition 6.1.5]). The maps cris and max are isomorphisms.

The rings O cris ( ) and O max ( ) are -torsion free as well as -torsion free (see [Bri08, Proposition 6.1.7, Corollaire 6.2.2]).

De nition 1.14. De ne the (fat) crystalline period rings as

O + cris ( 0 ) ∶= O cris ( 0 ) 1 and O cris ( 0 ) ∶= O + cris ( 0 ) 1 , O + max ( 0 ) ∶= O max ( 0 ) 1 and O max ( 0 ) ∶= O + max ( 0 ) 1 .
The rings de ned above are 0 1 -algebras equipped with a continuous action of and Frobenius endomorphism which we again denote by . Moreover, this construction is functorial in 0 . Finally, the inclusion ∶ O cris ( 0 ) → O max ( 0 ) extends to an inclusion ∶ O cris ( 0 ) → O max ( 0 ).

Next, we will relate crystalline period rings to de Rham period rings. Notice that for each ∈ ℕ, O + dR ( ) / (Ker ) admits divided powers with respect to the ideal Ker / (Ker ) . Also, the grad- ing of O + dR ( ) / (Ker ) (for the ltration de ned by the divided power of the ideal Ker / (Ker ) ) is a free ℂ( )-module of nite rank by (1.4). So we obtain a homomorphism of rings (see [Bri08, §6.2.1])

O cris ( 0 ) ⟶ O + dR ( ) / (Ker ) .

These morphisms are compatible for all ∈ ℕ, therefore we have an induced homomorphism of rings O cris ( 0 ) ⟶ O + dR ( ). Similarly, since is invertible in O + dR ( ) / (Ker ) , we get an induced homomorphism of rings

O max ( 0 ) ⟶ O + dR ( ).
Further, these homomorphisms extend to

+ cris ( ) ⟶ + max ( ) ⟶ + dR ( ) and O + cris ( 0 ) ⟶ O + max ( 0 ) ⟶ O + dR ( ), cris ( ) ⟶ max ( ) ⟶ dR ( ) and O cris ( 0 ) ⟶ O max ( 0 ) ⟶ O dR ( ).
All these homomorphisms are injective and -equivariant (see [Bri08, Proposition 6.2.1, Corollaire 6.2.3]). The natural map cris ∶ 0 1 ⨂ cris ( ) ⟶ O cris ( 0 ), Filtered ( , )-modules is injective as well (see [Bri08, Proposition 6.2.4]). Using the injections described above, we get an induced ltration on crystalline period rings as Fil cris ( ) ∶= cris ( ) ⋂ Fil dR ( ), and Fil O cris ( 0 ) ∶= O cris ( 0 ) ⋂ Fil O dR ( ) for ∈ ℤ, which is decreasing, separated and exhaustive.

The inclusion of (fat) crystalline period ring into (fat) de Rham period ring enables us to equip the former ring with a connection induced from the connection on the latter ring. More precisely, for

∈ ℕ we have [ ] = [ -1] ⨂ d for 1 ≤ ≤ ,
and we get that for any ∈ O cris ( 0 ) = cris ( )⟨ ⟩ ∧ , we have ( ) ∈ O cris ( 0 ) ⨂ 0 Ω 1 0 . This gives us an induced connection

∶ O cris ( 0 ) ⟶ cris ( ) ⨂ 0 [ 1 ] Ω 1 0 1 .
The connection is -equivariant and satis es Gri ths transversality for the ltration Fil • O cris ( 0 ) since the same is true for the ltration on O dR ( ). Its restriction to 0 1 is the canonical di erential operator. Moreover,

O + cris ( 0 ) =0 = cris ( ), O + cris ( 0 ) =0 = + cris ( ) and O cris ( 0 ) =0 = cris ( ).
Over O cris ( 0 ), the Frobenius operator commutes with the connection, i.e. = (see [Bri08, Proposition 6.2.5]). In our setting we have = 0 [ ], therefore the natural morphism

1 ⨂ 0 [ 1 ] O cris ( 0 ) ⟶ O dR ( ), (1.6) 
is injective (see [Bri08, Proposition 6.2.7]). Moreover, we have O cris ( 0 ) = 0 1 (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF] Proposition 6.2.9]) and O cris ( 0 ) is a faithfully at 0 1 -algebra (see [Bri08, Théorème 6.3.8]). Finally, in the relative setting we have the fundamental exact sequence: Proposition 1.15 ([Bri08, Proposition 6.2.24]). The sequence

0 ⟶ ℚ ⟶ ( cris ( )) =1 ⟶ dR ( ) / + dR ( ) ⟶ 0,
is exact, where the second non-trivial map is the canonical projection.

Filtered ( , )-modules

In [START_REF] Fontaine | Le corps des périodes -adiques[END_REF] Fontaine used some categories of linear algebra data to classify de Rham and crystalline representations of the Galois group . In case of de Rham representations these are nite dimensional -vector spaces equipped with a decreasing, separated and exhaustive ltration, whereas in the case of crystalline representations these are nite dimensional -vector spaces equipped with a Frobenius-semilinear automorphism and which acquire a decreasing, separated and exhaustive ltration after extending scalars along → . In the relative setting, Brinon introduced analogous categories of linear algebra data in [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]Chapitre 7]. In this section, we will recall de nitions and results useful in our case.

Let be an -module. A connection on is de ned as a continuous -linear map

∶ ⟶ ⨂ Ω 1 ,
such that ( ⨂ ) = ⨂ ( ) + ( ) ⨂ for ∈ and ∈ . The connection is said to be integrable if • = 0. To simplify notations, below we will write instead of .

De nition 1.16. A nitely generated 1 -module is said to be a -module if it is equipped with an integrable connection, i.e. • = 0, where

∶ ⟶ ⨂ [ 1 ] Ω 1 1 .
A morphism between -modules is a morphism of 1 -modules compatible with connection on each side. We denote this category by ( ).

Remark 1.17. If is of nite type, then it is projective (see [Bri08, Proposition 7.1.2]). This observation makes it easy to deduce that ( ) is in fact an abelian category. Now we will impose some restrictions over the connection . The connection over the 0 1module is said to be quasi-nilpotent if there exists a nite and -adically complete 0 -submodule 0 ⊂ , stable under , such that = 0 1 and the connection induced on the reduction of 0 modulo is quasi-nilpotent, i.e. for 1 ≤ ≤ there exist integers such that ∏ =1 sends 0 into 0 , where are the derivations associated to .

De nition 1.18. A ( , )-module over 0 1 is a -module over 0 1 such that is quasinilpotent and is equipped with a Frobenius-semilinear endomorphism ∶ → such that the induced 0 1 -linear map

1 ⨂ ∶ 0 1 ⨂ 0 [ 1 ],
⟶ is an isomorphism. A morphism between such modules is a 0 1 -linear map compatible with respective structures on each side. These modules form an abelian category which we denote by 0 ( , ) (see [Bri08, Proposition 7.1.9]).

Remark 1.19. The category 0 ( , ) is, in fact, Tannakian in the sense of [START_REF] Deligne | Tannakian Categories[END_REF]. Next, we will study 1 -modules equipped with a ltration.

De nition 1.20. A ltered -module over 1 is a -module over 1 equipped with a decreasing, separated and exhaustive ltration by 1 -submodules Fil ⊂ for ∈ ℤ, satisfying Gri ths transversality, i.e.

(Fil

) ⊂ Fil -1 ⨂ [ 1 ] Ω 1 1 ,
and such that the associated graded 1 -modules gr • are projective. A morphism between such modules are morphisms of -modules respecting ltration. These modules form an additive non-abelian category ( ).

We can combine the previous two de nitions to de ne,

De nition 1.21. A ltered ( , )-module over 1 relative to 0 1 is a ( , )-module over 0 1 such that = 1 ⨂ 0 1
is a ltered -module over 1 . A morphism between such modules is a morphism of ( , )-modules such that the induced morphism, after extension of scalars to 1 , is a mophism of ltered -modules. These modules form an additive tensor non-abelian category / 0 ( , ).

Note that 0 / 0 admits a -basis ( 1 , … , ), which enables us to identify the category 0 ( , ) with the category of -isocrystals over 0 / 0 (see [BM90, Proposition 1.3.3]). Let be an -isocrystal over 0 / 0 and consider a "test-object", i.e. a quadruple ( , , , ) such that is a -adically complete ℤ -algebra, ⊂ is an ideal admitting -divided powers compatible with the canonical divided powers over and ∶ 0 / 0 → / is a ring homomorphism giving / an 0 / 0 -algebra structure. Then by "evaluation" of at such a test-object we will mean that there exists a projective -module ( , , , ) and a map 1 ⨂ ∶ ( , , , • ) → ( , , , ) .

By the equivalence described, we can also speak of evaluating ( , )-modules at a test-object. More precisely, let be a ( , )-module of rank ℎ over 0 1 , a perfect eld of characteristic and ∶ 0 / 0 → a homomorphism. Then we have the test-object ( ( ), ( ), , ) and evaluating at this test-object gives us a ( ) 1 -vector space ∶= ( ( ), ( ), , ) of dimension ℎ which is further equipped with a Frobenius-semilinear endomorphism . Let denote a nonzero vector in the ( , )-module ⋀ ℎ over ( ) 1 , such that we have ⋀ ℎ = ( ) 1 . Then there exists ∈ ( ) 1 such that ( ) = . The -adic valuation of ( ) is independent of the choice of and depends only on p = Ker ∈ Spec ( 0 / 0 ). We de ne this quantity as the Newton number of at the prime p ∈ 0 / 0 , i.e. ( , p) ∶= ( ).

Newton numbers satisfy some nice properties. If is a ( , )-module of rank ℎ over 0 1 and ∈ ℤ then we have ( ∨ , p) = -( , p) and ( ( ), p) = ( , p) -ℎ for all p ∈ Spec ( 0 / 0 ). Also, by the specialization theorem of Grothendieck (see [Kat79, Theorem 2.3.1]), the function p ↦ ( , p) is increasing for specializations. The function (-, p) is additive for p ∈ Spec ( 0 / 0 ), i.e. for an exact sequence of ( , )-modules 0 ⟶ ′ ⟶ ⟶ ′′ ⟶ 0, we have ( , p) = ( ′ , p) + ( ′′ , p) (see [Bri08, Proposition 7.1.12]).

Next, let us consider to be a ltered -module over 1 of rank ℎ. The 1 -module ⋀ ℎ is projective of rank 1 and the associated graded module is projective over 1 . There exists ∈ ℤ such that gr ⋀ ℎ ≃ ⋀ ℎ and gr ⋀ ℎ = 0 for ≠ . We de ne the Hodge number of as ( ) ∶= . Similar to above, Hodge numbers satisfy some nice properties as well. If is a ltered -module of rank ℎ over 1 and ∈ ℤ then we have ( ∨ ) = -( ) and ( ( )) = ( ) -ℎ. Moreover, the function (-) is additive, i.e. for an exact sequence of ltered -modules 0 ⟶ ′ ⟶ ⟶ ′′ ⟶ 0, we have ( ) = ( ′ ) + ( ′′ ) (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]Proposition 7.1.15]).

An admissibilty criterion based on Newton and Hodge numbers of can be described:

De nition 1.22. A ltered ( , )-module over 1 relative to 0 1 is said to be pointwise weakly admissible if for each p ∈ Spec ( 0 / 0 ) the following conditions are satis ed:

(i) ( ) = ( , p);
(ii) For any subobject ′ ⊂ (in the category / 0 ( , )), we have that ( ′ ) ≤ ( ′ , p).

We denote by / 0 ( , ) the full subcategory of / 0 ( , ) consisting of ltered ( , )-modules over 1 relative to 0 1 that are pointwise weakly admissible.

Remark 1.23. (i) In the arithemtic setting, i.e. 0 = weakly admissible objects in the category of ltered -modules over were rst studied in [START_REF] Fontaine | Modules galoisiens, modules ltrés et anneaux de Barsotti-Tate[END_REF][START_REF] Katz | Slope ltration of -crystals[END_REF]. 

-adic representations

In this section we will study -adic representations of the Galois group and associate some linear algebra data to de Rham and crystalline representations. We begin with some formal de nitions. Let denote a topological eld and a topological group. We denote by Rep ( ) the category of -representations of , whose objects are nite dimensional -vector spaces equipped with a linear and continuous action of and a morphism between the objects of Rep ( ) is a -equivariant -linear map. Let be a reduced commutative topological -algebra equipped with a continuous -linear action of . Let be an -representation of and we set

( ) ∶= ( ⨂ ) .
This is a -module and we have a natural morphism of -modules, functorial in

( ) ∶ ⨂ ( ) ⟶ ⨂ ⨂ ⟼ .
The representation is said to be -admissible if is an isomorphism. Moreover, the -algebra is said to be -regular if it satis es the following properties:

(i) is faithfully at over ;

(ii) For all ∈ Rep ( ), the homomorphism ( ) is injective;

(iii) is Noetherian;

(iv) If is a -admissible -representation of of dimension 1, then the dual representation ∨ is -admissible as well.

Below we will consider ∶= , = ℚ , and vary depending on the class of representations we are interested in studying. We rst look at the unrami ed representations of . Recall that ur denotes the union of nite étale -subalgebras ⊂ . Let us set ur ∶= Gal ur 1 / 1 .

It is a quotient of .

De nition 1.24. A -adic representation ∶ → GL( ) is said to be unrami ed if factorizes through → ur .

From Remark 1.7 (iii) we have that ̂ ur 1 is a subring of O + dR ( ) and ̂ ur 1 = 1 .

Moreover, the ring ̂ ur 1 is faithfully at over 1 (see [Bri08, Proposition 8.1.3]). Also note that ur 0 is the union of nite étale 0 -subalgebras ⊂ , and ̂ ur 0 is complete for the -adic topology. Therefore, from the proof of [Bri08, Proposition 6.1.5], it follows that O cris ( 0 ) is an ur 0 -algebra and since the foremer is also -adically complete, it is an ̂ ur 0 -algebra. In particular, O + cris ( 0 ) and O cris ( 0 ) are ̂ ur 0 1 -algebras. Now let be a -adic representation of , then we set

ur ( ) ∶= ̂ ur 1 ⨂ ℚ .
It is an 1 -module and we have a homomorphism

ur ( ) ∶ ̂ ur 1 ⨂ [ 1 ] ur ( ) ⟶ ̂ ur 1 ⨂ ℚ
.

(1.7)

The Remark 1.25. Let be a -adic representation of and ⊂ a free ℤ -lattice stable under the action of . Consider the associated continuous cocycle ∶ ur → GL ℎ ( ̂ ur ) describing the action of ur over ̂ ur ⨂ ℤ . Since is unrami ed is trivial and from [Bri08, Proposition 8.1.2], there exists ∈ 1 + ⋅ Mat(ℎ, ur ) such that is cohomologous to the trivial cocycle ↦ ( -1 ) ( ) = 1. In this case we say that is trivialised by ∈ 1 + ⋅ Mat(ℎ, ur ).

De Rham representations

In this section we will describe de Rham representations of as well as the associated linear algebra object equipped with supplementary structures. We rst note that the algebra O dR ( ) is a -regular 1 -algebra and dR ( ) is a -regular -algebra. We set

O dR ( ) ∶= O dR ( ) ⨂ [ 1 ] and dR ( ) ∶= dR ( ) ⨂ [ 1 ] .
We will denote the category of de Rham representations (O dR ( )-adimissible) as Rep OdR ℚ ( ) and the category of horizontal de Rham representations ( dR ( )-adimissible) as Rep dR ℚ ( ). There are several supplementary structures on the 1 -module O dR ( ) (resp. -vector space dR ( )) (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]§8.3]). It is equipped with a decreasing, separated and exhaustive ltration induced from the ltration on O dR ( ) ⨂ ℚ (resp. dR ( ) ⨂ ℚ ), where we consider the -stable ltration on O dR ( ) (resp. dR ( )) from §1.2. Moreover, the module O dR ( ) is equipped with an integrable connection, induced from the -equivariant integrable connection

∶ ⨂ ℚ O dR ( ) ⟶ ( ⨂ ℚ O dR ( )) ⨂ [ 1 ] Ω 1 1 ⨂ ⟼ ⨂ ( ).
We denote the induced connection on O dR ( ) again by . Since the connection on O dR ( ) satis es Gri ths transversality, therefore the same is true for O dR ( ), i.e.

(Fil O dR ( )) ⊂ Fil -1 O dR ( ) ⨂ 0 [ 1 ] Ω 1 1 .
Further, the module O dR ( ) is projective of rank ≤ dim( ) and dR ( ) is free of rank ≤ dim( ).

If is de Rham then for all ∈ ℤ, the 1 -modules Fil O dR ( ) and gr O dR ( ) are projective of nite type and therefore O dR ( ) is an object of ( ) (see [Bri08, Propositions 8.3.1, 8.3.2, 8.3.4]). For a de Rham representation , the collection of integers for 1 ≤ ≤ dim ℚ ( ) such that gr -O dR ( ) ≠ 0 are called Hodge-Tate weights of . Moreover, we say that is positive if and only if ≤ 0 for all 1 ≤ ≤ dim ℚ ( ).

Next, from [Bri08, §8.2] we have that the homomorphism Note that for C a Tannakian subcategory of Rep ℚ ( ) and Λ a commutative ring, a Λ-ber functor is a faithful, exact, ⨂ -functor from C to the category of Λ-modules such that the essential image of the functor lies in the subcategory of nitely generated projective Λ-modules.

OdR ( ) ∶ O dR ( ) ⨂ 0 [ 1 ] O dR ( ) ⟶ O dR ( ) ⨂ ℚ ,

Crystalline representations

In this section we will describe crystalline representations of and the associated linear algebra object equipped with complementary structures. Note that the algebra O cris ( 0 ) is a -regular 0 1 -algebra and cris ( ) is a -regular -algebra. We set

O cris ( ) ∶= O cris ( ) ⨂ [ 1 ]
and cris ( ) ∶= cris ( ) ⨂ [ 1 ] .

We will denote the category of crystalline representations (O cris ( )-adimissible) as Rep Ocris ℚ ( ) and the category of horizontal crystalline representations ( cris ( )-adimissible) as Rep cris ℚ ( ). There are several complimentary structures on the 0 1 -module O cris ( ) (resp. -vector space cris ( )) (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]§8.3]). It is equipped with a Frobenius-semilinear operator induced from the Frobenius on O cris ( 0 ) ⨂ ℚ (resp. cris ( 0 ) ⨂ ℚ ), where we consider the -equivariant Frobenius on O cris ( 0 ) (resp. cris ( 0 )).

Since = 0 [ ], therefore 1 ⨂ 0 [1/ ] O cris ( ) is an 1 -submodule of O dR ( ) (resp.
-subvector space dR ( )) and we equip it with the induced ltration and connection which satis es Gri ths transversality with respect to the ltration. Additionally, we have = over O cris ( 0 ) ⨂ ℚ . The module O cris ( ) is projective of rank ≤ dim( ) (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]Propositions 8.3.1]). If is crystalline, then the 0 1 -linear homomorphism

1 ⨂ ∶ 0 1 ⨂ 0 [ 1 ], O cris ( ) ⟶ O cris ( ),
is an isomorphism and O cris ( ) is an object of / 0 ( , ) (see [Bri08, Propositions 8.3.3, 8.3.4]). Similarly, if is horizontal crystalline, then the 0 1 -linear homomorphism

1 ⨂ ∶ ⨂ , cris ( ) ⟶ cris ( ),
is an isomorphism. Finally, the inclusions O cris ( 0 ) O dR ( ) and cris ( 0 ) dR ( ) induce respective inclusions O cris ( ) O dR ( ) and cris ( ) dR ( ), and the induced homomorphisms

1 ⨂ 0 [ 1 ] O cris ( ) ⟶ O dR ( ) and ⨂ cris ( ) ⟶ dR ( ). are injective (see [Bri08, Proposition 8.2.1]).
Next, from [Bri08, §8.2] we have that the homomorphism 

Ocris ( ) ∶ O cris ( 0 ) ⨂ 0 [ 1 ] O cris ( ) ⟶ O cris ( 0 ) ⨂ ℚ ,
O cris ∶ ad / 0 ( , ) ⟶ Rep Ocris ℚ ( ) ⟼ O cris ( 0 ) ⨂ 0 [ 1 ] =1, =0 ⋂ Fil 0 O dR ( ) ⨂ [ 1 ] =0 .
Further, we have that the module O cris ( ) ∈ / 0 ( , ) is pointwise weakly admissible in the sense of De nition 1.22 (see [Bri08, Proposition 8.5.2]).

Remark 1.29. In the arithmetic setting, Fontaine showed that admissible objects in the category of ltered -modules are weakly admissible and conjectured that converse holds as well. This conjecture was resolved by Fontaine-Colmez in [START_REF] Fontaine | Le corps des périodes -adiques[END_REF]. Since then several di erent proofs have been given in [START_REF] Colmez | Espaces de Banach de dimension nie[END_REF]Colmez], [START_REF] Berger | Équations di érentielles -adiques et ( , )-modules ltrés[END_REF]Berger] and [START_REF] Kisin | Crystalline representations and -crystals[END_REF]Kisin].

In the relative setting, Brinon calls a crystalline representation weakly admissible if it is pointwise weakly admissible and the module O cris ( ) becomes free over a nite étale extension of 0 (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]p. 136]). For 1-dimensional crystalline representations, Brinon has shown that they are weakly admissible (see below). However, in higher dimensions it is not known whether all crystalline representations of are weakly admissible? Further, the converse statement is also open, i.e. does weakly admissibility imply admissibility?

In the 1-dimensional case, it is possible to classify all de Rham and crystalline representations as in the following result: Proposition 1.30 ([Bri08, Propositions 8.4.1, 8.6.1]). Let ∶ 0 → ℤ × be a continuous character.

(i) The character is de Rham if and only if we can write = f ur where f is a nite character, ur is an unrami ed character which takes values 1 + ℤ and it is trivialized by an element ∈ 1 + ̂ ur 0 (see Remark 1.25), is the -adic cyclotomic character and ∈ ℤ.

(ii) The character is crystalline if and only if we can write = f ur where f is a nite unrami ed character, ur is an unrami ed character which takes values in 1 + ℤ and it is trivialized by an element ∈ 1 + ̂ ur 0 (see Remark 1.25), is the -adic cyclotomic character and ∈ ℤ.

In particular, a 1-dimensional de Rham representation is potentially crystalline.

(iii) Let = ℚ ( ) be a one-dimensional crystalline representation. Then there exists a nite étale extension 0 → ′ 0 such that the ′ 0

1 -module ′ 0 1 ⨂ 0 [ 1 ] O cris ( ) is free. In particular, if f is trivial then O cris ( ) is a free 0 1 -module of rank 1.

CHAPTER 2 ( , Γ)-modules and crystalline coordinates

Let be a mixed characteristic non-archimedean complete discrete valuation eld with residue eld of characteristic . In [START_REF] Fontaine | Représentations -adiques des corps locaux. I[END_REF] Fontaine gave a classi cation of -adic representations of the absolute Galois group in terms of étale ( , Γ )-modules over a certain two dimensional local eld . In the same article, Fontaine also considered nite height representations, i.e. representations whose periods live in a smaller ring + ⊂

. Moreover, he conjectured some relations between nite height representations and crystalline representations in case is unrami ed over ℚ . We will explore this line of thought in the relative setting in Chapter 3.

Studying -adic representations from the point of view of ( , Γ)-modules has proven to be very fruitful. Carrying forward Fontaine's point of view on the classi cation of all -adic representations, Cherbonnier-Colmez in [START_REF] Cherbonnier | Représentations -adiques surconvergentes[END_REF] showed that one can consider étale ( , Γ)-modules over a subring † ⊂ and classify all -adic representations of in terms of such modules. More succinctly, one can say that all -adic representations of are overconvergent. Embedding the overconvergent ring into the Robba ring, Berger in [START_REF] Berger | Représentations -adiques et équations di érentielles[END_REF] classi ed -adic rerpesentations in terms of ( , Γ)-modules over the Robba ring. As an application Berger in [START_REF] Berger | Représentations -adiques et équations di érentielles[END_REF] and Kedlaya in [START_REF] Kedlaya | A -adic local monodromy theorem[END_REF] were able to connect the theory of ( , Γ)-modules to the semilinear-algebraic objects stemming from Fontaine's classi cation of de Rham and crystalline representations.

On the other hand, following Fontaine's classi cation, in [Her98] Herr gave a three term complex in terms of ( , Γ)-modules computing the Galois cohomology of the associated representation. Herr's complex was adapted to overconvergent setting by Cherbonnier-Colmez in [START_REF] Cherbonnier | Représentations -adiques surconvergentes[END_REF]. An appropriate generalization of these results to the relative case has been done in [And06, AB08, AI08]. We will come back to the computation of Galois cohomology and study some explicit complexes in Chapter 4.

The current chapter consists of two parts, in the rst part we will recall de nitions and results on ( , Γ)-modules in the relative setting, whereas in the second part we will study several analytic rings and some of their properties which will be useful in the next chapters. In the rest of the chapter we will work in the setting described in §1.1.

Relative ( , Γ)-modules

Recall that is a nite unrami ed extension of ℚ and = ( ) for some xed ≥ 1. Let = ( ) where is a primitive -th root of unity, for ∈ ℕ and ≥ . We take to be ( , Γ)-modules and crystalline coordinates

the integral closure of ⨂ - 1 , … - inside 1 . Let us set ∞ ∶= ⋃ ≥ . Note that ∞ = ⋃ ⊂ ∞ 1 .
The ring ∞ is an integral domain and a subring of .

De nition 2.1. De ne ∶= Gal

1 / 1 , Γ ∶= Gal ∞ 1 / 1 and ∶= Ker ( → Γ ).

Next, we will de ne certain rings useful in the theory of ( , Γ)-modules. Recall that ℂ( ) denotes the -adic completion of and ℂ + ( ) ⊂ ℂ( ) is the subring of 's such that ( ) ≥ 0. Since ℂ( ) is a perfectoid algebra, its tilt ℂ( ) ♭ is a perfect ring in characteristic and we set ∶= (ℂ( ) ♭ ), the ring of -typical Witt vectors with coe cients in ℂ( ) ♭ . The absolute Frobenius over ℂ( ) ♭ lifts to an endomorphism ∶ → , which we again call the Frobenius. The action of on ℂ( ) ♭ extends to a continuous action on which commutes with the Frobenius. The inclusion ⊂ 1 induces inclusions ⊂ 1 , ℂ ♭ ⊂ ℂ( ) ♭ and ⊂ .

Recall from §1.2 that an element ∈ ℂ( ) ♭ can be described as the set of sequences ( ) ∈ℕ with ∈ ℂ( ) and +1 = for all ∈ ℕ. We de ned a valuation ♭ on ℂ( ) ♭ by setting ♭ ( ) ∶= ( ♯ ) where ♯ ∶= 0 . The eld ℂ( ) ♭ is complete for this valuation. Moreover, ℂ + ( ) is perfectoid and it can be shown that

ℂ + ( ) ♭ = ∈ ℂ( ) ♭ , such that ♭ ( ) ≥ 0 .
Further, recall that we set inf ( ) ∶= ℂ + ( ) ♭ .

The inclusion ⊂ induces inclusions

♭ ℂ ⊂ ℂ + ( ) ♭ and inf ( ) ⊂ inf ( ).
Moreover, we xed some elements in these rings as

∶= (1, , 2 , …) ∈ ℂ + ( ) ♭ , ∶= [ ] -1 ∈ inf ( ) and ∶= -1 ( ) = 1 .
Next, we will describe the weak topology on . On ℂ( ) ♭ consider its natural valuation topology (as described above), where the collection of ideals ℂ + ( ) ♭ ∈ℕ serve as a fundamental system of neighborhoods of 0. On the truncated Witt vectors ℂ( ) ♭ consider the product topology via the isomorphism ℂ( ) ♭ ≃ ℂ( ) ♭ (via the ghost map in theory of Witt vectors). The weak topology on is de ned as the projective limit topology on

ℂ( ) ♭ = lim ℂ( ) ♭ .
Alternatively, for , ∈ ℕ and , = inf ( ) + , the weak topology can also be described by taking { , } , ∈ℕ as a fundamental system of neighborhoods for . In the description above, if we endow the truncated Witt vectors (ℂ( ) ♭ ) with discrete topology, then the projective limit topology on is the usual -adic topology which is of course stronger than the topology considered above, hence the terminology.

Remark 2.2. Note that Γ 0 is isomorphic to the semidirect product of Γ and Γ ′ 0 , where Γ = Gal( ∞ / ) and Γ ′ 0 = Gal ∞ 1 / ∞ 0 1 . In particular, we have an exact sequence

1 ⟶ Γ ′ 0 ⟶ Γ 0 ⟶ Γ ⟶ 1, (2.1) 
where, for 1 ≤ ≤ we have (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]p. 9] and [And06, §2.4])

Γ ′ 0 = Gal ∞ 1 / ∞ 0 1 ≃ ℤ , ∶ Γ = Gal( ∞ / ) ≃ ℤ × .
The group Γ can be viewed as a subgroup of Γ 0 , i.e. we can take a section of the projection map in (2.1) such that for ∈ Γ and ∈ Γ ′ 0 , we have -1 = ( ) . In particular, we can choose topological generators { , 1 , … , } of Γ 0 such that

( ) = (1 + ) ( ) -1, ( ) = for 1 ≤ ≤ , ([ ♭ ]) = (1 + )[ ♭ ], ([ ♭ ]) = [ ♭ ]
for ≠ and 1 ≤ ≤ , and that 0 = is a topological generator of Γ = Gal( ∞ / ) with ( 0 ) = exp( ), and where

= [ ∶ ]. It follows that { 1 , … , } are topological generators of Γ ′ 0
, is a lift of a topological generator of Γ , and 0 is a lift of a topological generator of Γ .

Next, we have = Gal

1 / 1 and we de ne Γ = Gal ∞ 1 / 1 and = Ker ( → Γ ). So we have that Γ is isomorphic to the semidirect product of Γ and Γ ′ = Γ ′ 0 . In particular, for 1 ≤ ≤ we have

Γ ′ = Gal ∞ 1 / ∞ 1 ≃ ℤ , ∶ Γ = Gal( ∞ / ) ≃ 1 + ℤ .
In [START_REF] Fontaine | Le "corps des normes" de certaines extensions algébriques de corps locaux[END_REF][START_REF] Fontaine | Extensions algébrique et corps des normes des extensions APF des corps locaux[END_REF][START_REF] Wintenberger | Le corps des normes de certaines extensions in nies de corps locaux; applications[END_REF], using the eld-of-norms functor, Fontaine and Wintenberger constructed a non-archimedean complete discrete valuation eld ⊂ ℂ ♭ of characteristic , with residue class eld and functorial in . One of the remarkable results in their theory is the isomorphism of certain Galois groups, which can be stated as follows, Theorem 2.3 (Fontaine-Wintenberger). Let sep denote the separable closure of inside ℂ ♭ . Then we have a natural isomorphism of Galois groups

Gal( / ∞ ) ≃ --→ Gal sep / .
Remark 2.4.

(i) In modern language, we also have that the completion of the perfect closure of is ̂ ♭ ∞ and there is a natural isomorphism of Galois groups,

Gal / ∞ ≃ --→ Gal ℂ / ̂ ∞ ≃ --→ Gal ℂ ♭ / ̂ ♭ ∞ ≃ --→ Gal sep / .
A vast generalization of the above isomorphism for perfectoid algebras, also known as the tilting correspondence, was done by Scholze in [START_REF] Scholze | Perfectoid spaces[END_REF] and Fontaine-Fargues in [START_REF] Fargues | Courbes et brés vectoriels en théorie de Hodge -adique[END_REF].

(ii) The eld-of-norms functor was further generalized to higher-dimensional local elds by Abrashkin in [START_REF] Victor Abrashkin | An analogue of the eld-of-norms functor and of the Grothendieck conjecture[END_REF], as well as in another direction by Scholl in [START_REF] Scholl | Higher elds of norms and ( , Γ)-modules[END_REF].

In [START_REF] Fontaine | Représentations -adiques des corps locaux. I[END_REF], Fontaine utilised the isomorphism of Galois groups to classify mod-representations of in terms of étale ( , Γ )-modules over . By some technical considerations one can lift this to characteristic 0, i.e. classify ℤ -representations of in terms of étale ( , Γ )-modules over a two dimensional local ring ⊂ ̂ ♭ ∞ (see [START_REF] Fontaine | Représentations -adiques des corps locaux. I[END_REF] for details). We are interested in an analogous theory in the relative setting. To describe such a theory we need to consider generically étale algebras over any nite extension of in the cyclotomic tower ∞ / . More precisely, let be an -algebra such that is nite as an -module and 1 is étale over 1 . Let ≥ and we denote by the integral closure of ⨂ in ⨂ 1 and set ∞ ∶= ⋃ ≥ . For as described, ∞ is a normal ∞ -algebra and an integral domain as a subring of . As in the case of , for we de ne ∶= Gal

1 / 1 , Γ ∶= Gal ∞ 1 / 1 and ∶= Ker ( → Γ ). Again, Γ is isomorphic to the semidirect product of Γ and Γ ′ , where

Γ ′ = Gal ∞ 1 / ∞ 1 is a nite index subgroup of Γ ′ ≃ ℤ .
In [START_REF] Andreatta | Generalized ring of norms and generalized ( , Γ)-modules[END_REF], Andreatta constructs an analogue of viewed as a sub eld of ̂ ♭ ∞ ; to any in De nition 2.1, he functorially associates a ring ⊂ Fr ̂ ♭ ∞ . We will recall his constructions below. Let + denote the valuation ring of and let ∈ ̂ ♭ ∞ be a uniformizer which is the reduction of ∈ ̂ ♭ ∞ modulo (see Remark 2.6 for the choice of ).

De nition 2.5. Let ∈ ℚ, 0 < < 1 and ∈ ℕ. For small enough and large enough, depending on (see [And06, De nition 4.2] for precise formulation of and ), we de ne the ring

+ ∶= ( 0 , … , , …) ∈ ̂ ♭ ∞ , such that ∈ /
for all ≥ , and set ∶= + 1 .

In [And06, Proposition 4.5, Corollaries 5.3, 5.4], Andreatta shows that the ring + is nite and torsion free as an + -module. It is a reduced Noetherian ring and -adically complete. By construction, it is endowed with a -adically continuous action of Γ and a Frobenius endomorphism , which commute with each other and are compatible with the respective structures on ̂ ♭ ∞ . Moreover, + is a normal extension of + , étale after inverting and of degree equal to the generic degree of ⊂ . The set of elements { , ♭ 1 , … , ♭ } form an absolute -basis of + . Further, the ring ̂ ♭ ∞ is normal and coincides with the -adic completion of the perfect closure of + . The extension + → ̂ ♭ ∞ is faithfully at. For every nitely generated + -module , the base change of via the above extension is -adically complete.

We have liftings of these rings to characteristic 0. From [And06, Appendix C, Proposition 7.8], we have that there exists a Noetherian regular domain, complete for the weak topology (induced from the weak topology on the ring of Witt vectors),

⊂ ̂ ♭ ∞ 1 ,
endowed with continuous and commuting actions of Γ and , lifting those de ned on . Moreover, it contains a -adically complete subring + lifting + and it contains { , [ ♭ 1 ], … , [ ♭ ]}. Let be an -algebra as in De nition 2.1. By the equivalence between the categories of almost étale ∞ -algebras and almost étale -algebras (see [And06, Theorem 6.3, Proposition 7.2]), let be the unique nite étale -algebra lifting the nite étale extension ⊂ . It is a Noetherian regular domain, complete for the weak topology, endowed with a continuous action of Γ and the Frobenius operator , lifting those de ned on and commuting with each other. Moreover, it contains subring + lifting + such that the former is complete for the weak topology.

Remark 2.6. Specializing the de nition of above for = gives us that + is the ring of power series ∑ ∈ℕ (see also [START_REF] Fontaine | Représentations -adiques des corps locaux. I[END_REF]), where ∈ goes to 0 as → +∞ and ∈ ̂ ♭ ∞ ). Next, we will take the union of above which will produce a ring helpful in the classi cation of mod-representations of , in terms of étale ( , Γ )-module over .

De nition 2.7. De ne

+ ∶= ⋃ + ,
where the union runs over all -subalgebras ⊂ , for some ∈ ℕ such that is normal and nite as an -module and 1 is étale over 1 . Also, we set

∶= + 1 .
These rings are complete for the -adic topology, and equipped with Frobenius and a continuous action of . Further, from [AI08, Proposition 2.9], we have that where the union is taken over all -subalgebras ⊂ , for some ∈ ℕ such that is normal and nite as an -module and 1 is étale over 1 . We also equip with the weak topology induced by the inclusion ⊂ . Next, we set + ∶= ⋂ inf ( ), + ∶= + 1 , and ∶= 1 , and equip them with the topology induced from the weak topology on .

ℂ( ) = ̂ ∞ , ℂ + ( ) ♭ = ̂ ♭ ∞ , ℂ( ) ♭ = ̂ ♭ ∞ 1 , + = + ,
These rings are stable under and are equipped with an action of , continuous for the weak topology. Moreover, from [AI08, Lemma 2.11], we have = , ( + ) = + and / = . Having introduced all the necessary rings, nally we come to ( , Γ )-modules.

De nition 2.9. A ( , Γ )-module over is a nitely generated module equipped with (i) A semilinear action of Γ , continuous for the weak topology (see Remark 2.12);

(ii) A Frobenius-semilinear homomorphism commuting with Γ .

These modules are called étale if the natural map,

1 ⨂ ∶ ⨂ , ⟶ ,
is an isomorphism of -modules.

Denote by ( , Γ )-Mod ét the category of étale ( , Γ )-modules over with morphisms between objects being continuous, -equivariant and Γ -equivariant morphisms of -modules. Next, denote by Rep ℤ ( ) the category of nitely generated ℤ -modules equipped with a linear and continuous action of , with morphisms between objects being continuous and -equivariant morphisms of ℤ -modules.

Let ∈ Rep ℤ ( ) then we have that, Proposition and De nition 2.10. The module

( ) ∶= ( ⨂ ℤ ) ,
is equipped with a semilinear action of and a continuous and semilinear action of Γ , which commute with each other. The functor takes values in the category ( , Γ )-Mod ét , i.e. ( ) is an étale ( , Γ )-module over . Further, if is free of nite rank, then ( ) is projective of rank = rk ℤ .

Theorem 2.11 ([And06, Theorem 7.11]). The functor

∶ Rep ℤ ( ) ⟶ ( , Γ )-Mod ét ,
de nes an equivalence of categories. For an étale ( , Γ )-module over , a quasi-inverse is given as

( ) ∶= ⨂ =1 .
Let be a ℤ -representation of , then the natural map

⨂ ( ) ≃ --→ ⨂ ℤ
is an isomorphism of -modules compatible with Frobenius and the action of on each side.

Remark 2.12. Let be a ℤ -module equipped with a continuous and linear action of . Suppose that

≃ ℤ × =1 ℤ/ ℤ, as a ℤ -module. Then ⨂ ℤ ≃ --→ × =1 /
as -module and, in particular, considering the weak topology on , the product topology de nes a topology on ⨂ ℤ . It is independent of the choice of the presentation of as a ℤ -module and the action of is continuous for such a topology. By construction, ( ) are submodules of ⨂ ℤ and therefore are endowed with induced topology. This topology is called the weak topology on ( , Γ )-modules.

On the other hand, given a nitely generated -module , we can equip with a weak topology induced as the quotient topology from the surjection , for some ∈ ℕ and where we consider the product of weak topology on .

The operator

Next, we will de ne a left inverse of the Frobenius operator on the ring . Let be an -algebra as in De nition 2.5. Then, from [AB08, Corollaire 4.10] we note that the -module -1 ( ) is free with a basis given as

/ = (1 + ) 0 / [ ♭ 1 ] 1 / ⋯ [ ♭ ] / for = ( 0 , … , ) ∈ {0, 1, … , -1} [0, ] .
Considering the union over all such we get that -1 ( ) is a free -module with a basis given as above (slight caveat is that we should replace -1 ( ) by and take -th root of all the basis elements in loc. cit.).

De ne the operator

∶ ⟶ ⟼ 1 +1 • Tr -1 ( )/ • -1 ( ).
Proposition 2.13 ([AB08, §4.8]). The operator satis es the following properties:

(i) • = ; let ∈ and write -1 ( ) = ∑ / , then we have ( ) = 0 ;

(ii) commutes with the action of ;

(iii) ( + ) ⊂ + .

Overconvergence

In the article [START_REF] Cherbonnier | Représentations -adiques surconvergentes[END_REF], Cherbonnier-Colmez have shown that all ℤ -representations (resp. -adic representations) of are overconvergent. Generalizing this to the relative case, in [START_REF] Andreatta | Surconvergence des représentations -adiques: le cas relatif[END_REF], Andreatta-Brinon have shown that all ℤ -representations (resp. -adic representations) of are overconvergent. In this section we will recall some of these results. We begin by de ning overconvergent subrings of . Let > 0 and let ∈ ♭ ℂ such that ( ) = 1/ . Set This induces a valuation on (0, ]+ and it is complete for the topology induced by the valuation (see [AB08, Proposition 4.2]). We will equip † with the topology induced by the inductive limit of the topology described above. Further, † is also endowed with a Frobenius endomorphism and a continuous action of which commutes with (see [And06, Proposition 7.2]). These actions are induced from the inclusion † ⊂ . Further, all subrings of † appearing above induce these structures as well.

Lemma 2.15.

(i) The restriction of the operator from Proposition 2.13 to † gives us that ( † ) ⊂ † (see [AB08, §4.8]).

(ii) We have (0, ] = (0, ] , ( † ) = † and † / † = (see [AI08, Lemma 2.11]). Now we come to overconvergent ( , Γ )-modules.

De nition 2.16. A ( , Γ )-module over † is a nitely generated module equipped with (i) A semilinear action of Γ , continuous for the weak topology (see §2.1);

(ii) A Frobenius-semilinear homomorphism commuting with Γ .

These modules are called étale if the natural map,

1 ⨂ ∶ † ⨂ † , ⟶ ,
is an isomorphism of † -modules. Let ( , Γ )-Mod ét † denote the category of such modules.

Denote by ( , Γ )-Mod ét † the category of étale ( , Γ )-modules over † with morphisms between objects being continuous, -equivariant and Γ -equivariant morphisms of † -modules. Recall that Rep ℤ ( ) is the category of nitely generated ℤ -modules equipped with a linear and continuous action of , with morphisms between objects being continuous and -equivariant morphisms of ℤ -modules.

Let ∈ Rep ℤ ( ) then we have that, Proposition and De nition 2.17. The module † ( ) ∶= ( † ⨂ ℤ

) ,

is equipped with a semilinear action of and a continuous and semilinear action of Γ , which commute with each other. The functor † takes values in the category ( , Γ )-Mod ét † , i.e. † ( ) is an étale ( , Γ )-module over † . Further, if is free of nite rank, then † ( ) is projective of rank = rk ℤ .

Theorem 2.18 ([AB08, Théorèm 4.35]).

(i) The functor

† ∶ Rep ℤ ( ) ⟶ ( , Γ )-Mod ét † ,
de nes an equivalence of categories. For an étale ( , Γ )-module over † , a quasi-inverse is given as

† ( ) ∶= † ⨂ † =1 .
(ii) Let be a ℤ -representation of , then the scalar extension along † gives an isomorphism of ( , Γ )-modules over ,

⨂ † † ( ) ≃ --→ ( ).
Moreover, the natural map

† ⨂ † ( ) ≃ --→ † ⨂ ℤ
is an isomorphism of † -modules compatible with Frobenius and the action of on each side.

(iii) If is free of rank ℎ, then there exists an -algebra such that is normal and nite over , 1 is Galois over 1 and † ⨂ † † ( ) is a free † -module of rank ℎ.

Remark 2.19. By construction, † ( ) is a submodule of ⨂ ℤ and therefore endowed with induced weak topology. On the other hand, given a nitely generated † -module , we can equip with a weak topology induced as the quotient topology from the surjection † , for some ∈ ℕ and where we consider the product of weak topology on † .

Regularization by Frobenius

In this section we will introduce certain analytic rings. These rings will be useful in generalizing certain technical results of Berger (see Proposition 2.23) and at the same time it will set the stage for introducing certain variants of these rings in the next section which we will be useful for Chapters 3 & 5. Let 0 < ≤ and let , ∈ ♭ ℂ such that ( ) = 1/ and ( ) = 1/ . Set [ ] ∶= -adic completion of inf ( ) [ ] ,

[ , ] ∶= -adic completion of inf ( ) [ ] , [ ] .

The action of on inf ( ) extends to a continuous action of on these rings which commutes with the induced Frobenius . For the homomorphism , we have 

+ dR ( ) if ≤ 1 ≤ . We set † ,rig ∶= ⋃ >0 ⋂ ≤ [ , ] = ⋃ >0 ⋂ ≤ [ , ] 1 .
The ring † ,rig induces a continuous action of , as well as a Frobenius endomorphism ∶ † ,rig → † ,rig . It follows from the de nitions that † ⊂ † ,rig compatible with the action of and the Frobenius endomorphism. Finally, let + ,rig ∶= ⋂ ∈ℕ ( + max ) which is stable under the action of and the Frobenius homomorphism.

Remark 2.20. Let [ ] ∈ inf denote the Teichmüller lift of the reduction modulo of , written as ∈ ♭ ℂ . Let us take , ∈ ℚ such that = -1 and = -1 . Then it can easily be checked that inf ( ) [ ] , [ ] = [ , ] . This is the translation between Berger's notation and ours (see [Ber02, §2.1]).

Using the remark above, it is straightforward to check that the results of [Ber02, §2.1] hold in our case as well. In particular, we have Lemma 2.21 ([Ber02, Lemme 2.5, Exemple 2.8]).

(i)

For 1 ≤ 2 ≤ 2 ≤ 1 , we have a natural inclusion [ 1 , 1 ] [ 2 , 2 ] .
(ii) We have equalities max ( ) = [1,+∞] , + max = [1,+∞] and + ,rig = ⋂ >0 [ ,+∞] .

Using Lemma 2.21 (i), we can de ne for any interval ⊂ ℝ ⋃ {+∞} the rings ∶= ⋂ [ , ]⊂ [ , ] and

∶= ⋂ [ , ]⊂ [ , ]
. Next, we de ne a -adic valuation [ , ] on [ , ] by setting [ , ] ( ) = 0 if and only if ∈ [ , ] - [ , ] and such that the image of (i) Let 0 = 0 = 1, then the natural inclusion of + max ( ) and (0, 0 ]+ in [ 0 , 0 ] induces an exact sequence 0 ⟶ inf ( ) ⟶ (0, 0 ]+ ⨁ max ( ) ⟶ [ 0 , 0 ] ⟶ 0.

(ii) Let inf ( ) = inf ( ) 1 , then for ∈ ℚ >0 we have an exact sequence

0 ⟶ inf ( ) ⟶ (0, ] ⨁ + ,rig ⟶ [ ] ⟶ 0.
Proof.

(i) The proof essentially follows from the proof of [Ber02, Lemme 2.15]. The map (0, 0 ]+ ⨁ max ( ) → [ 0 , 0 ] is surjective because it su ces to write an element of the right hand side as a sum of elements of objects on the left hand side. This is clear from the de nitions and Lemma 2.21. Next, inf ( ) is contained both in (0, 0 ]+ as well as in max ( ), therefore in their intersection. So we need to show that the map inf ( ) → (0, 0 ]+ ⋂ max ( ) is surjective as well. We are going to show this modulo [ 0 , 0 ] and conclude the general case by dévissage (note that modulo this map is not injective anymore). Let , be two indeterminates, then from [Ber02, Lemmes 2.1 & 2.9] we have identi cations max ( ) = inf ( ){ } / ( -[ ♭ ]), (0, 0 ]+ = inf ( ){ } / ([ ♭ ] -) and [ 0 , 0 ] / ( ) = ℂ + ( ) ♭ / ( ♭ )[ , -1 ]. The image of max ( ) in the latter ring is identi ed with ℂ + ( ) ♭ / ( ♭ )[ ] and the image of (0, 0 ]+ gets identi ed with ℂ + ( ) ♭ / ( ♭ )[ -1 ]. This shows that the image of their intersection (which is a subset of the intersection of their respective images) is a subring of ℂ + ( ) ♭ / ( ♭ ) and therefore the map inf ( ) → (0, 0 ]+ / max ( ) is surjective modulo [ 0 , 0 ] . So if ∈ max ( ) ⋂ (0, 0 ]+ , then there exists ∈ inf ( ) such that -∈ [ 0 , 0 ] . This means thatis an element of max ( ) as well as of (0, 0 ]+ + [ ♭ ] inf ( ) (this follows from the discussion above and [Ber02, Lemme 2.9]). Since divides [ ♭ ] in max ( ), there exists ∈ [ ♭ ] inf ( ) such that --∈ ( max ( ) ⋂ (0, 0 ]+ ). Since inf ( ) is -adically complete, we can iterate this process to conclude the claim.

(ii) The proof essentially follows from the proof of [Ber02, Lemme 2.18]. Let = -for ∈ ℕ.

First, for ≤ we will show that the sequence

0 ⟶ inf ( ) ⟶ (0, ] ⨁ [ ,+∞] ⟶ [ , ] ⟶ 0,
is exact. It is clear that any element of [ , ] can be written as a sum of elements of (0, ] and [ ,+∞] and we need to show that two such expressions di er by an element of inf ( ).

This amounts to showing that (0, ] ⋂ [ ,+∞] = inf ( ), which can be deduced directly or by applying -to (0, ] ⋂ [ 0 ,+∞] = inf ( ) where the latter expression is true from (i).

Next, we will show the claim. For each ∈ ℕ, we have [ ] ⊂ [ , ] , therefore any ∈ [ ] can be written as = + with ∈ (0, ] and ∈ [ ,+∞] . Note that if we have another expression = +1 + +1 with +1 ∈ (0, ] and +1 ∈ [ ,+∞] such that +1 -∈ inf ( ), then up to modifying +1 and +1 by elements of inf ( ), we can suppose that = +1 and = +1 . Therefore, = + with ∈ (0, ] and ∈ ⋂ ∈ℕ [ ,+∞] = + ,rig (see Lemma 2.21 (ii)). Now we come to the main result of this section: regularization by Frobenius, Proposition 2.23. Let ℎ ∈ ℕ and matrices ∈ Mat ℎ, † ,rig and , ∈ Mat ℎ, + ,rig such that ( ) = , then ∈ Mat ℎ, + ,rig .

Proof. The proof essentially follows from the proof of [Ber04, Proposition I.4.1]. Note that there exists > 0 such that ∈ Mat ℎ, [ ] , so there exists ∈ ℕ such that ∈ Mat ℎ, -[ ] . By the de nition of + ,rig we have that -1 ( ), -1 ( ) ∈ Mat ℎ, + ,rig . Since + ,rig ⊂ [ ] (see Lemma 2.21), from [Ber02, Corollaire 2.20] we get that there exists ∈ ℕ such that -1 ( ), -1 ( ) ∈ Mat ℎ, -[ ] for all ≥ . Next, we know that ]+ , so we get ♭ ( ) + + ≥ 0, which implies that ♭ ( ) ≥ -+ . The right hand side of the latter inequality goes to 0 as approaches +∞, therefore ♭ ( ) ≥ 0 for each ∈ ℕ, i.e.

∈ inf ( ).

Next, let ∈ ⋂ ∈ℕ - [ ] .
For each ∈ ℕ, we can write = + with ∈ - (0, ]+ and ∈ + ,rig . By Lemma 2.22 (ii), we obtain that -+1 ∈ inf ( ), whereas we already have that -+1 ∈ -( +1) (0, ]+ . So this implies -+1 ∈ -( +1) inf ( ) and therefore, up to modifying +1 by an element of -( +1) inf , we can assume that = +1 = . This implies that ∈ ⋂ ∈ℕ -(

]+ = inf ( ), hence ∈ + ,rig .

The following statement will be useful for the proof of Lemma 3.12:

Corollary 2.25. Let ℎ ∈ ℕ and matrices ∈ Mat(ℎ, † ) and , ∈ Mat(ℎ, + ) such that ( ) = , then ∈ Mat(ℎ, + ).

Proof. The proof essentially follows from the proof of [Ber04, Corollaire I.4.3]. From Proposition 2.23 we have that ∈ Mat ℎ, + ,rig . So we only need to show that † ⋂ + ,rig = + . But this follows from the fact that † ⋂ + ,rig = inf ( ) and † ⋂ inf ( ) = + (see Lemma 2.22).

Rings of analytic functions

Recall that 0 is the -adic completion of an étale algebra over { , -1 }, i.e. we wrote 0 ∶= { , -1 }{ 1 , … , } / ( 1 , … , ), with ∈ { , -1 }{ 1 , … , } for 1 ≤ ≤ , some multivariate polynomials such that det 1≤ , ≤ is invertible in 0 . Next, we de ned □ ∶= { , -1 } and using the de nition of 0 , we set

∶= □ { 1 , … , } / ( 1 , … , ),
so that □ provides a system of coordinates for and the latter is totally rami ed at the prime ideal ( ) ⊂ 0 .

Let + and denote the algebras [[ 0 ]] and [[ 0 ]]{ -1 0 }. Sending 0 to induces a surjective homomorphism +

. Let + ,□ denote the completion of [ 0 , , -1 ] for the ( , 0 )-adic topology. Sending 0 to induces a surjective homomorphism + ,□ □ , whose kernel is generated by = ( 0 ). This provides a closed embedding of Spf □ into a formal scheme Spf + ,□ , which is smooth over . Since is étale over □ , we have that det is invertible in . As 's have coe cients in { , -1 }, we can set + to be the quotient by ( 1 , … , ) of the completion of + ,□ [ 1 , … , ] for the ( , 0 )-adic topology. Again, we have that det is invertible in + (since it is modulo ). Hence, + is étale over + ,□ and smooth over . Sending 0 to induces a surjective homomorphism + whose kernel is generated by = ( 0 ). This can be summarized with a commutative diagram of rings ( , Γ)-modules and crystalline coordinates

Spf

Spf

+ Spf 0 Spf ( ){ , -1 } Spf □ Spf + ,□ ,
where the vertical arrows are étale extensions and the horizontal maps are obtained by sending 0 ↦ and the rest are natural maps. Since = 0 mod , we have

+ ! ∈ℕ = + 0 [ / ]! ∈ℕ .
So, we set PD ∶= -adic completion of + ! ∈ℕ . In summary, we have a diagram of formal schemes where the horizontal arrows are closed embeddings into formal schemes smooth over , obtained by sending 0 ↦ on the level of algebras,

Spf PD Spf Spf + Spf □ Spf + ,□ Spf Spf + Spf .
Let Ω denote the -adic completion of the modules of di erential of relative to ℤ. We have that

Ω 1 0 = ⨁ =1 0 log and Ω 0 = ⋀ Ω 1 0 ,
and the cokernel of the natural map Ω 0 ⨂ 0 → Ω is killed by a power of (see Proposition 1.1). In particular,

Ω 1 = ⋀ ⨁ =1 1 log .
Moreover, since + is étale over + ,□ , for = + , + ,□ we have that

Ω 1 = 0 1+ 0 ⨁ ⨁ =1 log .
De nition 2.26. For 0 < ≤ de ne the rings, (0, ]+ ∶= -adic completion of + ⌈ / ⌉ 0 ∈ℕ , (0, ] ∶= (0, ]+ 1 0 , [ ] ∶= -adic completion of

+ 0 ⌊ / ⌋ ∈ℕ , [ , ] ∶= -adic completion of + 0 ⌊ / ⌋ , ⌈ / ⌉ 0 ∈ℕ , ∶= -adic completion of + 1 0 .
We will write for ∈ { , +, PD, [ ], (0, ]+, [ , ]} and for = , we write instead. Going from + to involves only the arithmetic variable 0 , so we have isomorphisms

= ⨂ + + ,
where ⨂ is the completion of tensor product for the -adic topology.

De nition 2.27. We de ne a ltration on the rings in De nition 2.26 by order of vanishing at

0 = = -1.
(a) Let = (0, ]+ ( < 1), (0, ] ( < 1), [ , ] (1 ∉ [ , ]) or . As is invertible in 1 , we put the trivial ltration on .

(b) Let be the placeholder for all other rings occuring in De nition 2.26, such that is not invertible in 1 . Then there is a natural embedding → 1 [[ ]] by completing 1 for the -adic topology. We use this embedding to endow with the natural ltration Fil =

⋂ 1 [[ ]] for ∈ ℤ.
Next, we note a lemma that will be useful in Chapter 5.

Lemma 2.28 ([CN17, Lemma 2.6]). Let ∈ ℕ.

(i) For ∈ PD we can write = 1 + 2 with 1 ∈ Fil PD and 2 ∈ 1 ( -1)! + .

(ii) For ∈ [ ] we can write = 1 + 2 with 1 ∈ Fil [ ] and 2 ∈ 1 ⌊ ⌋ + .

Proof. First we note that from the de nitions an element ∈ PD resp. ∈ [ ] can be written (uniquely) in the form = + + -with + ∈ Fil PD and -∈ 1

( -1)! [ 0 ] resp. -∈ 1 ⌊ ⌋ [ 0 ] of degree ≤ -1.
Next, from the equality PD = PD ⨂ + + (resp. PD = [ ] ⨂ + + ), it follows that we can write any ∈ PD as 1 + 2 with 1 ∈ Fil PD and 2 ∈ 1 ( -1)! + and we have the same statement

for [ ] with 1 ∈ Fil [ ] and 2 ∈ 1 ⌊ ⌋ + .
Notation. Let be a ℤ -algebra. A homomorphism ∶ → between two -modules is said to be a -isomorphism, for some ∈ ℕ if the kernel and the cokernel of the map are killed by .

Lemma 2.29 ([CN17, Lemma 2.11]). Let ∶= log(1 + 0 ). If -1 ≤ ≤ < 1 < and 1 < , then (i) belongs to [ , ] and to [ , / ] ;

(ii) ∈ -1 [ , ] and ∈ -2 [ , / ] ;

(iii) ↦ induces a -isomorphism [ , ] ≃ Fil [ , ] and a 2 -isomorphism

[ , / ] ≃ [ , / ] .
We note an important fact from [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF], the implicit function theorem, which would help us lift certain maps over étale extensions. Let ∶ + ,□ → Λ be a continuous morphism of topological rings. We have + = + ,□ { }/( ), where = ( 1 , … , ) and = ( 1 , … , ). We would like to extend to + which amounts to solving the equation ( ) = 0 in Λ, where if ∈ + ,□ { }, we note ∈ Λ{ } the series obtained by applying to the coe cients of . Then, Proof. Let = 1≤ , ≤ ∈ Mat , + ,□ { 1 , … , } . Suppose that there exists an ideal ⊂ Λ such that Λ is complete with respect to the -adic topology, = ( 1, , … , , ) ∈ Λ and ∈ Mat( , Λ), such that the entries of ( ) belong to . Now, since + is étale over Λ, so det is invertible in + ,□ and therefore there exists ∈ Mat , + ,□ { 1 , … , } such that -1 has its entries in ( 1 , … , ). But ( ) has coordinates in the ideal , therefore -1 has entries in . Thus, we can apply [CN17, Proposition 2.1], by taking (in the notation of loc. cit.) = 1 and = ( ). Hence, the equation ( ) has a unique solution in + . Lemma 2.32.

(

Cyclotomic Frobenius

(i) Let ∈ ℕ >0 , ∈ ℤ and ≥ (resp. ≥ / ( -1)), then 1 --is bijective on PD , resp. [ ] ,
.

(ii) The maps

1 -∶ PD / + ⟶ PD / + ; 1 -∶ [ ] / + ⟶ [ ] / + , are bijective.
Proof. For (i), see [CN17, Proposition 3.1]. In (ii), we will only treat the case of PD / + , the other case follows similarly (an application of (i)). Write ∈ PD as

= ≥0 0 ⌊ / ⌋! ,

where

∈ + goes to 0 as → ∞. By (i), we know that the series of operators 1 + + 2 + ⋯ converge as an inverse to 1 -, i.e. there exists ∈ PD such that (1 -) = -0 ∈ PD ,1 . Since 0 ∈ + , we get that 1 -is bijective on PD / + .

The operator

In this section we will de ne a left inverse of the cyclotomic Frobenius , which we will denote by . This operator is closely related to the operator de ned in Proposition 2.13 (this will become clear in §2.4). However, we prefer to give an explicit de nition here. Let

= (1 + 0 ) 0 1 1 ⋯ for = ( 0 , … , ) ∈ {0, 1, … , -1} [0, ] .
Remark 2.33. Note that is 0 -adically complete, therefore 1 + 0 is invertible in it. Moreover, by de nition 1 , … , are invertible in , therefore is invertible in

+ for = ( 0 , … , ) ∈ {0, 1, … , -1} [0, ] . Also, set 0 = (1 + 0 ) 0 , = for 1 ≤ ≤ .
Therefore, for 0 ≤ ≤ we have = and ( ) = .

Lemma 2.34 ([CN17, Proposition 2.15]). (i) Any ∈ / can be written uniquely as = ∑ ( ), with • ( ) = ( ) for 0 ≤ ≤ .

(ii) There exists a unique ∈ / such that ( ) = .

(iii) If ∈ + / , then ( ) ∈ + / .

Proof. Let = / , + = + / . Then ( -1) ⋯ ( -( -1)) is identically 0 on ,□ / , hence also on by étaleness. It follows that is diagonalizable for all and since these operators commute pairwise, we can decompose and + into the direct sum of common eigenspaces. This shows (i) and (iii). Now, di erentials of the elements in the set {1 + 0 , 1 , … , } form a basis of the module of di erentials of ,□ / , hence also of , since it is obtained as the completion of an étale algebra over ,□ / . From [Tyc88, §III, Theorem 1], it follows that {1 + 0 , 1 , … , } is a -basis of which can be rephrased by saying that any element of can be written uniquely as = ∑ . Since ( ) = for 1 ≤ ≤ , this proves (ii).

Proposition 2.35.

(i) Any ∈ can be written uniquely as = ∑ ( ), with ( ) ∈ .

(ii) If ∈ + and if ( ) = ( ) , then ( ) ∈ + for all and ( ) -( ) ∈ + for 0 ≤ ≤ .

(iii) For ∈ (0, ]+ , we have ( ) ∈ (0, ]+ for all .

Proof. (i) and (ii) follow from the lemma above. (iii) follows from [CN17, Proposition 2.15].

De nition 2.36. De ne the left inverse of the Frobenius on = + or = , by the formula

( ) = -1 0 ( ) .
Since is an extension of degree +1 of ( ) with basis the 's and since ( ) = for all , we have Tr / ( ) ( = 0 if ≠ 0, and we can de ne intrinsically, by the formula

( ) ∶= 1 +1 -1 • Tr / ( ) ( ).
Note that is not a ring morphism; it is a left inverse to and more generally, we have ( ( ) ) = ( ). Also,

• = • and • = -1 • for = 0, 1, … , .
The rst equality can be obtained by checking on the basis elements . For the second equality, note that for ∈ and in the notation of Proposition 2.35 we have

( ( ) ) = • ( ) + ( ) ( ) = ( • ( ) + ( )) = ( ( ) + ) .
Applying to the latter expression we note that it is nonzero only if = 0, in which case we get that • ∈ for all 0 ≤ ≤ , the equality follows from this. For any ∈ ℕ, we can write 0 = ∑ -1 =0 ( , )(1 + 0 ) for , ∈ + . Therefore, by continuity Lemma 2.37.

(i) The explicit formula for extends to maps [ ] → [ ] and [ , ] → [ , ] .

(ii) For the same reasons, the maps ↦ ( ) also extend and lead to decompositions = ⨁ , where = for = with ∈ {, +, [ ], (0, ]+, [ , ]}. Since ( ) = -1 0 ( ) , we have Then

( ) = -1 =0 ∈ℕ ( , ) ( 0 -, 1 ,⋯, ) ( )(1 + 0 ) ,
where 0 -is to be understood as its representative modulo between 0 and -1. Since 0 ( 0 -, 1 ,⋯, ) ( ) -( 0 -) ( 0 -, 1 ,⋯, ) ( ) ∈ + and 0 • = • 0 , we get the desired conclusion for [ ] . Next, for (0, ]+ using the result for we get that 0 ( ) -0 ∈ ∩ (0, ]+ = (0, ]+ . Finally, combining the results for [ ] and (0, ]+ we get the conclusion for [ , ] .

Next, we note a lemma which will be useful in the proof of the next claim and Proposition 5.41.

Lemma 2.39. Let ∈ =0 , then 0 ( ) = ( ( 0 ) ) for ∈ ℤ.

Proof. Note that it is enough to prove the statement for = 1. Indeed, ≥ 2 case immediately follows from this, whereas for = -1 we observe that since 0 is invertible in , we have 0 ( ( -1 0 ) ) = ( ( 0 ) ( -1 0 ) ) = ( ). Now, to show the case = 1, we recall that ( 0 ) = (1 + 0 ) -1. Next, from Proposition 2.35 let us write = ∑ , then we have ( ) = -1 ( 0 ). Now it follows that,

( ( 0 ) ) = (((1 + 0 ) -1) ) = ((1 + 0 ) ) -( ) = (1 + 0 ) -1 ( 0 ) --1 ( 0 ) = 0 ( ),
as desired.

Proposition 2.40 ([CN17, Proposition 2.16]). Let < .

(i)

-0 (0, / ]+ ⊂ - 0 (0, ]+ ;

(ii) If = , then - 0 (0, ]+ is stable under ;

(iii) The natural map 

Cyclotomic embeddings

In this section, we will describe the (cyclotomic) embeddings of into various period rings discussed in Chapter 1 and previous sections. De ne an embedding

cycl ∶ + ,□ ⟶ inf ( ) 0 ⟼ = -( ), ⟼ [ ♭ ] for 1 ≤ ≤ .
Lemma 2.41. The map cycl has a unique extension to an embedding + → inf ( ) such that • cycl is the projection + → .

Proof. We can apply Proposition 2.30 with

Λ 1 = + ,□ , Λ 2 = inf ( ), Λ ′ 1 = + , = cycl , = ( ) and = ([ ♭ 1 ], … , [ ♭ ]
). Next, from de ntions we already have that

• cycl ∶ + ,□
□ coincides with the canonical projection and + is étale over + ,□ , hence the second claim follows.

This embedding commutes with Frobenius on either side, i.e. cycl • cycl = • cycl . By continuity, the morphism cycl extends to embeddings Remark 2.42. From [CN17, §2.4.2], we have an inclusion of rings [ ′ ] ⊂ PD ⊂ [ ] for ≥ 1 -1 and ′ ≤ 1 . Lemma 2.43. For -1 ≤ ≤ < 1 < , we have that is a unit in PD ⊂ [ ] ⊂ [ , ] .

Proof. We can write the fraction

= log(1 + ) = ≥0 (-1) +1 .
Formally, we can write

= log(1 + ) = 1 + 1 + 2 2 + 3 3 + ⋯ ,
where ( ) ≥ --1 for all ≥ 1. Since = (1 + ) -1, we get that ∈ ( , ) + (as ≥ 1). By induction over , we can easily conclude that ∈ , PD . Using this, we can re-express the series ∑ as a power series in , written as ∑ . We need to check that this re-expressed series converges in PD . To do this, we collect the terms with coe cients having the smallest -adic valuation for each power of in the re-expressed series. For ≥ 1, has the smallest -adic valuation among the coe cients of , therefore it has the least -adic valuation among coe cients of for ≤ < ( + 1). We write the collection of these terms as

≥1 (-1) +1 = ≥1 (-1) +1 ⌊ ⌋ ! ⌊ / ⌋! , (2.2) 
and by the preeceding discussion it is su cient to show that these coe cients go to 0 as goes to +∞. Moreover, for (2.2) it would su ce to check the estimate for = ( -1) as goes to +∞ (this gets rid of the oor function above). With the observation in Remark 2.44, we have

⌊ ⌋ ! = ( ) + (( )!) ≥ -( -1) -1 + -( ) -1 = -( ) -1 = ( !),
which goes to +∞ as → +∞. Hence, converges in PD and is an inverse to .

The following elementary observation was used above, Remark 2.44. Let ∈ ℕ, so we can write = ∑ =0 for some ∈ ℕ, where 0 ≤ ≤ -1 for 0 ≤ ≤ . Let us set ( ) = ∑ =0 . Then we have

( !) = ≥1 ⌊ ⌋ = ≥0 ⌊ ∑ =0 ⌋ = =1 = - = =1 =1 = =1 -1 -1 = -( ) -1 .
Also, note that we have ( ) = ( ) for any ∈ ℕ.

Next, we prove some claims for the action of Γ on the analytic rings introduced above. These results will be useful when studying Koszul complexes computing Lie Γ -cohomology in §4.3. Proof. We will only consider the case of PD as the estimates in other cases is easier. First, let = 0.

Then we have

( 0 -1) = (1 + ) (1 + ) ( 0 )-1 -1 = (1 + ) (1 + ) -1 = (1 + )((1 + ) -1) = (1 + ) + ( -1) 2! 2 + ( -1)( -2) 3! 3 + ⋯ = ,
for some ∈ + . Since = (1 + ) -1 = + -1 ⋯ + , we have that ∈ , + (recall that we have ≥ 1), therefore ( 0 -1) ∈ , + . Next, we observe that

( 0 -1) = 0 ( ) - = ( + ) - = + ⋯ + -1 ∈ , 2 + .
Therefore, ( 0 -1) 2 ∈ , 2 + . Proceeding by induction on ≥ 0, we conclude that

( 0 -1) ⊂ ( 0 -1) , -1 + ⊂ , + .
Now any ∈ PD can be written as = ∑ ∈ℕ ⌊ / ⌋! such that ∈ goes to 0 as → +∞. So we want to show that ( 0 -1) ⌊ / !⌋ ⊂ , PD . For notational convenience, we take = for some ∈ ℕ and see that

( 0 -1) ! = 0 ( ) - ! = ( + ) - ! = ( ) + ( ) -1 + ⋯ + ( ) -1 ! = ( ) ! + -1 ( -1)! ∈ 1 ! , PD + , PD ⊂ , PD .
Proceeding by induction on ≥ 0, we conclude that

( 0 -1) PD ⊂ ( 0 -1) , -1 PD ⊂ , PD . 
Next, for ∈ {1, … , } we have

( -1)[ ♭ ] = [ ♭ ] ∈ , + and ( -1) [ ♭ ] -1 = -(1 + ) -1 [ ♭ ] -1 ∈ , + .
Proceeding by induction on ≥ 0, we conclude that ( -1) + ⊂ ( -1) , -1 + ⊂ , + .

Since any ∈ PD can be written as = ∑ ∈ℕ ⌊ / ⌋! such that ∈ + goes to 0 as → +∞, from the discussion for PD and + , we conclude that

( -1) PD ⊂ ( -1) , -1 PD ⊂ , PD .
The next claim will be useful in analyzing Koszul complexes for Γ -cohomology in Proposition 5.41 and Proposition 5.46. Proof. First, we observe that

0 ( ) = (1 + ) ( 0 ) -1 = ( 0 ) 1 + ( 0 )-1 2 + ⋯) = ( 0 ) ,
where ( 0 ) = exp( ) ∈ ℤ * and is a unit in + . From the expression above we also have that 1 -( 0 ) = for some ∈ + . So we can write

( 0 -1) -1 = 0 ( ) -1 --1 = ( ( 0 ) ) -1 --1 = 1 -( 0 ) ( 0 ) = ( 0 )
Now from the de nitions we know that ∈ (0, ]+ , therefore ( 0 -1) ∈ , (0, ]+ .

is a unit (0, / ]+ and ∈ (0, / ]+ .

Proof. We can work in (0, ]+ , in which case becomes 0 and 1 becomes (1 + 0 ) -1 -1 and we are looking at the annulus 0 < ( ) ≤ -1 ( -1) on which (1 + 0 )

-1 -1 has no zero and

((1 + 0 ) -1 -1) = -1 ( 0 ) since < . This shows (i). The claim in (ii) comes from the de nition of (0, ]+ . (iii) follows from (i) and (ii) since 2 ⌊ ( -1) -1 ⌋ --1 ≥ (2( -1) -) -2 . The claim in (iv) follows from (i), (ii) and the identity

1 = -1 1 + -2 1 + ⋯ + .
For (v), replacing by (1 + 0 ) -1, we see that ((1 + 0 ) -1) = ( 0 ). Using arguments similar to (i) gives us rst part of (v). The second half of (v) follows from the rst part and (ii) since ⌊ ( -1) -1 ( -1)/ ⌋ = .

Fat period rings

In this section we will introduce fat rings and give a version of PD-Poincaré lemma. The Poinaré lemma will be useful for relating complexes computing Galois cohomology and syntomic complex with coe cients in Chapter 5. Let and Λ be -adically complete ltered -algebras, where is the ring of integers of . Let ∶ → Λ be a continuous injective morphism of ltered -algebras and let ∶ ⨂ Λ → Λ be the morphism sending ⨂ ↦ ( ) .

De nition 2.48. Let Λ denote the -adic completion of the PD-envelope of ⨂ Λ → Λ with respect to Ker .

In the rest of this section we will take = for ∈ {PD, [ ], [ , ]}.

Remark 2.49. (i) The ring Λ is the -adic completion of ⨂ Λ adjoined ( ⨂ 1 -1 ⨂ ( )) [ ] , for ∈ and ∈ ℕ.

(ii) The morphism ∶ ⨂ Λ → Λ extends uniquely to a continuous morphism ∶ Λ → Λ.

(iii) We can lter Λ by de ning Fil Λ to be the topological closure of the ideal generated by the products of the form 1 2 ∏( -1) [ ] , where 1 ∈ Fil 1 , 2 ∈ Fil 2 Λ and = ⨂ 1 1 ⨂ ( ) for 1 ≤ ≤ such that 1 + 2 + ∑ ≥ .

Lemma 2.50 ([CN17, Lemma 2.36]).

(i) Any element ∈ Λ can be uniquely written as

= ∈ℕ +1 =0 (1 -) [ ] ,
with ∈ Λ for all = ( 0 , … , ) ∈ ℕ +1 and → 0 when → ∞.

(ii) An element ∈ Fil Λ, if and only if ∈ Fil -| | Λ for all ∈ ℕ +1 . We set Ω 1 ∶= ℤ 0 1+ 0 ⨁ ⨁ =1 ℤ
and Ω ∶= ⋀ Ω 1 . Therefore, we have Ω Λ/Λ = Λ ⨂ Ω . We lter the de Rham complex of Λ by subcomplexes

Fil Ω • Λ/Λ ∶ Fil Λ ⟶ Fil -1 Λ ⨂ Ω 1 ⟶ Fil -2 Λ ⨂ Ω 2 ⟶ ⋯ .
Let be a nitely generated ltered Λ-module. We set Ξ ∶= Λ ⨂ Λ and de ne a ltration on Ξ by Fil Ξ ∶= ∑ + = Fil Λ ⨂Λ Fil . Then Ξ is a nitely generated ltered Λ-module equipped with an integrable connection ∶ Ξ → Ξ ⨂ Λ Ω 1 Λ/Λ . For the di erential operator on Λ we have (Fil Λ) ⊂ Fil -1 Λ, therefore the connection on Ξ satis es Gri ths transversality with respect to the ltration on it. We can lter the de Rham complex with coe cients in Ξ as

Fil Ξ ⨂ Ω • Λ/Λ ∶ Fil Ξ ⟶ Fil -1 Ξ ⨂ Λ Ω 1 Λ/Λ ⟶ Fil -2 Ξ ⨂ Λ Ω 2 Λ/Λ ⟶ ⋯ = Fil Ξ ⟶ Fil -1 Ξ ⨂ ℤ Ω 1 ⟶ Fil -2 Ξ ⨂ ℤ Ω 2 ⟶ ⋯ .
Since Fil = (Fil Ξ) =0 , we get a ltered Poincaré Lemma: Lemma 2.51 ([CN17, Lemma 2.37]). The natural map

Fil ⟶ Fil Ξ ⨂ Ω • Λ/Λ is a quasi-isomorphism.
Proof. We have a natural injection ∶ Fil → Fil Ξ. We give a contracting (Λ-linear) homotopy. De ne

ℎ 0 ∶ Fil Ξ ⟶ Fil + = ⨂ ⟼ + = 0 ⨂ ,
where ∈ Fil Λ, ∈ Fil and 0 is the projection to the 0-th component (see Lemma 2.50). Clearly, ℎ 0 = . For > 0, de ne the map

ℎ ∶ Fil -Ξ ⨂ Ω ⟶ Fil -+1 Ξ ⨂ Ω -1 by the formula ⨂ =0 ( -1) [ ] 1 1 1 ⋀ ⋯ ⋀ ⟼ ⨂ ∏ =0 ( -1) [ + 1 ] 2 2 2 ⋀ ⋯ ⋀ if = 0 for 0 ≤ ≤ 1 , 0 otherwise.
We have ℎ 0 + ℎ 1 = and ℎ + ℎ +1 = , as required.

Next, let 1 = , 2 = for ∈ {PD, [ ], [ , ]}, such that = cycl is an isomorphism of ltered -algebras, and 3 = Λ. We set 0,1 = 0 , 0,2 = and for 1 ≤ ≤ , we set ,1 = and

,2 = [ ♭ ]. Now for = 1, 2, we set Ω 1 ∶= ℤ 0, 1+ 0, ⨁ =1 ℤ , , ,
and

Ω 1 3 ∶= Ω 1 1 ⨁ Ω 1 2 . For = 1, 2, 3, let Ω = ⋀ Ω . Therefore, Ω = ⨂ Ω .
Let Ξ be a nitely generated ltered 3 -module equipped with a quasi-nilpotent integrable connection satisfying Gri ths transversality with respect to the ltration. In other words, for each ∈ ℕ, we have a complex

Fil Ξ ⨂ Ω • 3 ∶ Fil Ξ 3 ----→ Fil -1 Ξ ⨂ Ω 1 3 3 ----→ Fil -2 Ξ ⨂ Ω 2 3 3 ----→ ⋯ .
Now, let 1 = Ξ 2 =0 be a nitely generated 1 -module equipped with a ltration Fil 1 = (Fil Ξ) 2 =0 , and a quasi-nilpotent integrable connection satisfying Gri ths transversality with respect to the ltration, i.e. for ∈ ℤ, we have

1 ∶ Fil 1 ⟶ Fil -1 1 ⨂ ℤ Ω 1 1 ,
In other words, we obtain a ltered de Rham complex

Fil 1 ⨂ Ω • 1 ∶ Fil 1 1 ----→ Fil -1 1 ⨂ Ω 1 1 1 ----→ Fil -2 1 ⨂ Ω 2 1 1 ----→ ⋯ ,
Similarly, let 2 = Ξ 1 =0 be a nitely generated 2 -module equipped with a ltration Fil 2 = (Fil Ξ) 1 =0 , and a quasi-nilpotent integrable connection satisfying Gri ths transversality with respect to the ltration, i.e. for ∈ ℤ, we have

2 ∶ Fil 2 ⟶ Fil -1 2 ⨂ ℤ Ω 1 2 ,
In other words, we obtain a ltered de Rham complex

Fil 2 ⨂ Ω • 2 ∶ Fil 2 2 ----→ Fil -1 2 ⨂ Ω 1 2 2 ----→ Fil -2 2 ⨂ Ω 2 2 2 ----→ ⋯ ,
Proposition 2.52. The natural maps

Fil 1 ⨂ Ω • 1 ⟶ Fil Ξ ⨂ Ω • 3 ⟵ Fil 2 ⨂ Ω • 2 are quasi-isomorphism of complexes.
Proof. Note that the claim is symmetric in 1 and 2 , so we only prove the quasi-isomorphism for the map on the left. Since we have Fil 1 = (Fil Ξ) 2 =0 , from Lemma 2.51 we obtain that the sequence

0 ⟶ Fil 1 ⟶ Fil Ξ 2 ----→ Fil -1 Ξ ⨂ Ω 1 2 2 ----→ ⋯ ,
is exact. We can extend the sequence above to a sequence of maps of de Rham complexes

0 Fil 1 Fil Ξ Fil -1 Ξ ⨂ Ω 1 2 ⋯ 0 Fil 1 ⨂ Ω 1 1 Fil Ξ ⨂ Ω 1 1 Fil -1 Ξ ⨂ Ω 1 2 ⋀ Ω 1 1 ⋯ ⋮ ⋮ ⋮ . 1 2 1 2 1 1 2 1 2 1
The contracting homotopy in the proof of Lemma 2.51 is 1 -linear, so it extends as well, which shows that the rows of the double complex above are exact. The total complex of the double complex

Fil Ξ ⨂ Ω • 1 2 ----→ Fil -1 Ξ ⨂ Ω 1 2 ⋀ Ω • 1 2 ----→ ⋯ ,
is equal to the de Rham complex Fil Ξ ⨂ Ω • 3 . This allows us to conclude.

Lemma 2.51 and Proposition 2.52 play a key role in connecting syntomic complex with coe cients to "Koszul ( , )-complexes" (see Lemmas 5.26 & 5.27 and Proposition 5.30).

CHAPTER 3

Finite height crystalline representations

In [START_REF] Fontaine | Représentations -adiques des corps locaux. I[END_REF], Fontaine initiated a program on the classi cation of -adic representations of the absolute Galois group of a -adic local eld by means of certain linear-algebraic objects attached to these representations. One of the aspects of his program was to classify all -adic representations of the Galois group in terms of étale ( , Γ)-modules. On the other hand, in [Fon82] Fontaine had already proposed that representations "coming from geometry" give rise to another class of linear-algebraic objects, for example in the case of good reduction, i.e. crystalline representations, these objects are called ltered -modules. Therefore, it is a natural question to ask for crystalline representations: Does there exist some direct relation between the ltered -module and the étale ( , Γ)-module? Fontaine explored this question in [START_REF] Fontaine | Représentations -adiques des corps locaux. I[END_REF] where he considered a certain class of ( , Γ)-modules, for which he called the associated representations to be of nite height and examined their relationship with crystalline representations. This line of thought was further explored by Wach [START_REF] Wach | Représentations -adiques potentiellement cristallines[END_REF][START_REF] Wach | Représentations cristallines de torsion[END_REF], Colmez [START_REF] Colmez | Représentations cristallines et représentations de hauteur nie[END_REF], and Berger [START_REF] Berger | Représentations -adiques et équations di érentielles[END_REF][START_REF] Berger | Limites de représentations cristallines[END_REF]. In particular, Wach gave a description of nite height crystalline representations in terms of ( , Γ)-modules. In this chapter, we will recall some de nitions and results from these articles and construct analogous objects in the relative setting.

The arithmetic case

Recall that we have = Gal( / ) as the absolute Galois group of , Γ ∶= Gal( ∞ / ) and ∶= Gal( / ∞ ), where ∞ = ⋃ ( ). From the theory of ( , Γ )-modules, we have a two dimensional local ring given by the -adic completion of [[ ]] 1 and ∶= 1 which is a complete discrete valuation eld with uniformizer and residue eld (( )), the eld of Laurent series with uniformizer , the reduction of modulo .

Next, we have certain subrings + ∶= [[ ]] ⊂ and + = + 1 ⊂ , stable under the action of and Γ . Let be a -adic representation of , then + ( ) = ( + ⨂ ℚ ) is a free module over the local ring + of rank ≤ ℎ, equipped with a Frobenius-semilinear endomorphism and a continuous and semilinear action of Γ . Further, let ( ) = ( ⨂ ℚ ) be the associated ( , Γ )module which is a -vector space of dimension ℎ = dim ℚ , equipped with a Frobenius-semilinear endomorphism and a continuous and semilinear action of Γ . We have a + -linear inclusion + ( ) ⊂ ( ) compatible with the action of and Γ . Similarly, if ⊂ is a free ℤ -lattice of rank ℎ = dim ℚ , stable under the action of , then + ( ) = ( + ⨂ ℤ ) is a free + -module of rank ≤ ℎ, stable under the action of and Γ (see [Fon90, §B.1.2]). Moreover, ( ) = ( ⨂ ℤ ) is a free -module of rank ℎ equipped with a Frobenius-semilinear operator and a continuous and semilinear action of Γ , and we have + ( ) ⊂ ( ). We say that is of nite height if ( ) has a basis over made of elements of + ( ). Fontaine showed that is of nite height if and only if there exists a nite free + -submodule of ( ) of rank ℎ = dim ℚ , stable under the operator (see [Fon90, §B.2.1] and [Col99, §III.2]). Moreover, if ⊂ is a free ℤ -lattice as above and of nite height, then + ( ) is a free + -module of rank ℎ = dim ℚ such that

⨂ + + ( ) ≃ ( ) (see [Fon90, Théorème B.1.4.2]
). For crystalline representations there exist submodules of + ( ) over which the action of Γ is simpler. Finite height and crystalline representations of are related by the following result: ]). Let be a -adic representation of of dimension . Then is crystalline if and only if it is of nite height and there exists ∈ ℤ and a + -submodule ⊂ + ( ) of rank ℎ = dim ℚ , stable under the action of Γ , such that Γ acts trivially over ( / )(-).

Theorem 3.1 ([Wac96], [Col99], [ Ber02 
In the situation of Theorem 3.1, the module is not unique. A functorial construction was given by Berger: Proposition 3.2 ([Ber04, Proposition II.1.1]). Let be a positive crystalline representation of of dimension ℎ, i.e. all Hodge-Tate weights of are ≤ 0. Let ⊂ be a free ℤ -lattice of rank ℎ, stable under the action of . Then there exists a unique + -module ( ) ⊂ + ( ), which is free of rank ℎ, stable under the action of and Γ , and the action of Γ is trivial over ( )/ ( ). Moreover, there exists ∈ ℕ such that + ( ) ⊂ ( ). Finally, if we set ( ) ∶= + ⨂ + ( ), then ( ) is a unique + -submodule of + ( ) satisfying analogous conditions. Notation. For an algebra admitting an action of the Frobenius and an -module admitting a Frobenius-semilinear endomorphism ∶ → , we denote by * ( ) ⊂ the -submodule generated by the image of .

Remark 3.3.

(i) In Proposition 3.2, Berger uses the existence of in Theorem 3.1 to de ne ( ) ∶= + ( ) ⋂ 1 -1 ( ) ≥1 , where = ( ) . Using this one can take ( ) ∶= ( ) ⋂ ( ) and it can be shown to satisfy the desired properties.

(ii) Berger further showed that in the setup of Proposition 3.2, if we take to be the maximum among the absolute values of Hodge-Tate weights of , then ( )/ * ( ( )) is killed by and we have that

+ ⨂ ℤ ⊂ + ⨂ + ( ) (see [Ber04, Théorème III.3.1]).
De nition 3.4. Let , ∈ ℤ with ≥ . A Wach module with weights in the interval [ , ] is an +module or a + -module which is free of rank ℎ, equipped with a continuous and semilinear action of Γ such that its action is trivial on / and a Frobenius-semilinear operator ∶ 1 → 1 ( ) establishes an equivalence of categories with a quasi-inverse given by ↦ ( ⨂ + ) =1 . These functors are compatible with tensor products, duality and preserve exact sequences. Moreover, for a crystalline representation , the map ↦ ( ) induces a bijection between ℤ -lattices inside and Wach modules over + contained in ( ).

which
We have a natural ltration on the Wach modules given as Fil ( ) = { ∈ ( ) such that ( ) ∈ ( )} for ∈ ℤ.

If is positive crystalline, i.e. all its Hodge-Tate weights are ≤ 0, then for ∈ ℕ we have

Fil ( ( )) = Fil -( )( ) = -Fil + ( )( ).
Using this ltration on ( ), one can also recover the other linear algebraic object associated to , i.e. the ltered -module cris ( ): 

Let + rig, ⊂ [[ ]]

The relative case

Recall that we xed ≥ 1 and we have = = ( ). The element = -1 is a uniformizer of . We have = ( 1 , … , ) a set of indeterminates and we de ned 0 to be the -adic completion of an étale algebra over ( ){ , -1 }; similarly, to be the -adic completion of an étale algebra over □ = { , -1 } (de ned using the same equations as in the de nition of 0 ). For 0 and , we can use the ( , Γ)-module theory discussed in §2.1, as well as the constructions in §2.3 and §2.4. In particular, we will use rings and for ∈ {+, PD}. In the relative setting, we de ne an analog of Wach modules using the formulation in De nition 3.4: De nition 3.7. Let , ∈ ℤ with ≥ . A Wach module over + 0 (resp. + 0 ) with weights in the interval [ , ] is a nite projective + 0 -module (resp. + 0 -module) , equipped with a continuous and semilinear action of Γ 0 and a Frobenius-semilinear operator ∶ 1 → 1 ( ) which commutes with the action of Γ 0 , such that the action of Γ 0 is trivial on / , ( ) ⊂ and

/ * (
) is killed by -.

Let be an ℎ-dimensional -adic representation of the Galois group 0 . It is said to be of nite height if and only if the + 0 -module + ( ) ∶= ( + ⨂ ℚ ) 0 is a nitely generated ( , Γ 0 )module such that 0 ⨂ + 0 + ( ) ≃ ( ). Let ⊂ , be a -stable ℤ -lattice and we set + ( ) ∶=

( + ⨂ ℤ ) 0 .
De nition 3.8. A positive Wach representation is a -adic representation of 0 admitting a free ℤ -lattice ⊂ of rank ℎ, and satisfying the following conditions:

(i)
is a de Rham representation with non-positive Hodge-Tate weights (see §1.5 and [Bri08, Chapitre 4]). Let be the maximum among the absolute value of these Hodge-Tate weights.

(ii) There exists a nite projective + 0 -submodule ( ) ⊂ + ( ) of rank ℎ and let ′ 0 be the -adic completion of a nite étale algebra over 0 such that a) ( ) is stable under the action of and Γ 0 , and 0 ⨂ + 0 ( ) ≃ ( );

b) The + 0 -module ( )/ * ( ( )) is killed by ; c) The action of Γ 0 is trivial on ( )/ ( );

d) The + ′ 0 -module + ′ 0 ⨂ + 0 ( ) is free of rank ℎ.
We have + ⊂ inf ( ) and 0 above is the restriction of 0 ∶ 0 ⨂ inf ( ) ℂ + ( ) (see §1.3).

Taking the divided power envelope of 0 / , we notice that O PD / O cris ( 0 )/ . Since O PD = lim O PD / and O cris ( 0 ) = lim O cris ( 0 )/ , and (projective) limit is left exact, it follows that for the -adic completion of divided power envelope of 0 , we have O PD ⊂ O cris ( 0 ). Now, over the ring O PD we can consider the induced action of Γ 0 under which it is stable, and it admits a Frobenius endomorphism arising from the Frobenius on each component of the tensor product. In particular, from the diagram above we obtain a Frobenius and -equivariant commutative diagram

O PD O cris ( 0 ) ℂ + ( ). 0 0
Next, we will give an alternative description of the ring O PD . Let = ( 1 , … , ) denote a set of indeterminates and let cris ( )⟨ ⟩ ∧ denote the -adic completion of the divided power polynomial algebra cris ( )

⟨ ⟩ = cris ( )[ [ ] , ∈ ℕ, 1 ≤ ≤ ]. Recall from §1.3 that we have an isomorphism of rings cris ∶ cris ( )⟨ ⟩ ∧ ≃ --→ O cris ( 0 ) ⟼ ⨂ 1 -1 ⨂ [ ♭ ], for 1 ≤ ≤ .
Now recall that PD is the -adic completion of the divided power envelope of the surjective map ∶ + with respect to its kernel (see §2.3). Next, let PD ⟨ ⟩ ∧ denote the -adic completion of the divided power polynomial algebra PD ⟨ ⟩ = PD [ [ ] , ∈ ℕ, 1 ≤ ≤ ]. Then via the isomorphism PD (see Lemma 3.19 below), we will show that the preimage of O PD , under cris is exactly PD ⟨ ⟩ ∧ . In other words, Lemma 3.19. The morphism of rings

PD ∶ PD ⟨ ⟩ ∧ ⟶ O PD ⟼ ⨂ 1 -1 ⨂ [ ♭ ], for 1 ≤ ≤ , is an isomorphism.
Proof. The proof follows [Bri08, Proposition 6.1.5] closely.

Recall that we have a surjective ring homomorphism ∶ PD , which is the restriction of the map ∶ cris ( ) de ned in §1.3. This can be extended in a unique manner into the homomorphism ∶ cris ( )⟨ ⟩ ∧

. Restriction of the latter map gives us ∶ PD ⟨ ⟩ ∧ such that ( [ ] ) = 0 for 1 ≤ ≤ and ≥ 1.

First, we will show that the { ±1 }-algebra structure on PD ⟨ ⟩ ∧ given by ↦ [ ♭ ] + , extends uniquely to an 0 -algebra structure. Let A ∶= ( + / -1 + )[ 1 , … , ] / ( 1 , … , ). We have a surjective map ∶ + and its reduction modulo is given as ∶ + / . Since ≡ -1 mod , where = 1 is a generator of Ker ⊂ + , we obtain that factors as ∶ + / -1 + / . This can be extended to a map ∶ A / by setting ( ) = 0 for 1 ≤ ≤ . The kernel I = Ker ⊂ A is generated by -1 and { } 1≤ ≤ . Now from the natural inclusion 0 / 0 / and the isomorphism A/I ≃ / via , we obtain a map ∶ 0 / 0 → A/I such that ( ) = , which is the image of ♭ ∈ A under the map . So we obtain a commutative diagram

[ ±1 ] A 0 / 0 A/I
where the top horizontal arrow is the map ↦ ♭ + . Note that I ( +1) = 0. Since 0 / 0 is étale over [ ±1 ], there exists a unique lift of ∶ 0 / 0 → A/I to a homomorphism ∶ 0 / 0 → A (which we again denote by by slight abuse of notations). Further, by the description of divided power envelope in [Bri08, Proposition 6.1.1] we have that

+ [ 0 , 1 , …] / ( 0 -, +1 -) ≥1 ≃ --→ PD ⟼ +1 +1 .
Therefore,

PD / PD ≃ ( + / -1 + )[ 0 , 1 , …] / ( ) ≥1
Similarly, we have

PD ⟨ ⟩ ≃ ( PD [ 1 , … , ])[ ,0 , ,1 , …] / ( ,0 -, , +1 -, ) 1≤ ≤ , ∈ℕ .
Therefore,

PD ⟨ ⟩ / PD ⟨ ⟩ ≃ ( PD / PD )[ 1 , … , ][ ,0 , ,1 , …] / ( , , ) 1≤ ≤ , ∈ℕ .
In conclusion, we have PD ⟨ ⟩ / PD ⟨ ⟩ ≃ A[ 0 , 1 , … , ,0 , ,1 , …] / ( , , ) 1≤ ≤ , ∈ℕ .

Therefore, from the discussion above we obtain a natural map of [ ±1 ]-algebras by composition

1 ∶ 0 / 0 → A → PD ⟨ ⟩ / PD ⟨ ⟩.

Now let

∈ ℕ, then modulo we have the natural map

{ ±1 }/ { ±1 } → PD ⟨ ⟩ / PD ⟨ ⟩. Again, since 0 / 0 is étale over { ±1 }/ { ±1 }, we have a unique lift of ∶ 0 / 0 → PD ⟨ ⟩ / PD ⟨ ⟩ in the commutative diagram { ±1 }/ { ±1 } PD ⟨ ⟩ / PD ⟨ ⟩ 0 / 0 PD ⟨ ⟩ / PD ⟨ ⟩.
Via this lifting, the following diagram commutes

0 / +1 0 PD ⟨ ⟩ / +1 PD ⟨ ⟩ 0 / 0 PD ⟨ ⟩ / PD ⟨ ⟩,
where the vertical arrows are natural projection maps. From the universal property of inverse limit of the right side of the diagram, we obtain a natural map of { ±1 }-algebras

∶ 0 ⟶ lim PD ⟨ ⟩ / PD ⟨ ⟩ = PD ⟨ ⟩ ∧ .
Now, let ∶ PD ⟨ ⟩/ PD ⟨ ⟩ → / denote the reduction of modulo . Recall that by construction, • is the inclusion of 0 / 0 in / . Therefore, the reduction modulo of • and the natural inclusion 0 coincide. Since is -torsion free, arguing as above we obtain that for each ∈ ℕ, the natural inclusion and • coincide modulo .

Next, by + -linearity, can be extended to a map ∶ 0 ⨂ + → PD ⟨ ⟩ ∧ . From the discussion above and the de nition of 0 , we have that it coincides with the homomorphism • ∶ 0 ⨂ + → . In particular, (Ker 0 ) ⊂ Ker ⊂ PD ⟨ ⟩ ∧ . Since Ker contains divided powers, the map extends to a map

∶ ( 0 ⨂ + )[ [ ] , ∈ Ker 0 , ∈ ℕ] ⟶ PD ⟨ ⟩ ∧ .
Finally, since PD ⟨ ⟩ ∧ is -adically complete, extends to a map ∶ O PD → PD ⟨ ⟩ ∧ . Now by uniqueness of ∶ 0 → PD ⟨ ⟩ ∧ , the composition

O PD --→ PD ⟨ ⟩ ∧ PD ----→ O PD ,
coincides with the identity over 0 ⊂ O PD . Since it also coincides with identity on the image of + (by + -linearity), we obtain that PD • = id over O PD . Similarly, the homomorphism • PD coincides with identity over + as well as over { ±1 } (since lifts the map { ±1 } → PD ⟨ ⟩ ∧ ), therefore it is identity over PD ⟨ ⟩ ∧ . This establishes that PD is an isomorphism of rings.

Remark 3.20. We can give an alternative construction of the ring O PD . Note that we have a ring homomorphism ∶ 0 → PD , where ↦ [ ♭ ] for 1 ≤ ≤ . As in De nition 2.48, we de ne a map ∶ 0 ⨂ PD → PD , where ⨂ ↦ ( ) . We obtain that Ker =

⨂ 1-1 ⨂ [ ♭ ], for 1 ≤ ≤ ⊂ Ker 0 ⊂ O cris ( 0 )
. Since 0 ⨂ PD already contains divided powers of , from De nition 3.18 we obtain that the -adic completion of the divided power envelope of 0 ⨂ PD with respect to Ker is the same as O PD .

There is a natural ltration over the ring O PD by Γ 0 -stable submodules:

De nition 3.21. Let ∶= 1 ⨂[ ♭ ]
⨂ 1 for 1 ≤ ≤ , then we de ne the ltration over O PD as

Fil O PD ∶= ⟨ ( ⨂ ) =1 ( -1) [ ] ∈
O PD , such that ∈ 0 , ∈ Fil PD , and + ≥ ⟩ for ∈ ℤ.

Remark 3.22. The ltration over PD (via its identi cation with PD , see §2.4 and De nition 2.27) coincides with the ltration induced from its embedding in cris ( ). Indeed, in both cases we have Fil PD = [ ] , ≤ ⊂ PD for ≥ 0, whereas Fil PD = PD for < 0. Now the ltration on O cris ( 0 ) is de ned as the induced ltration from its embedding inside O + dR ( ), where the ltration on the latter ring is given by powers of Ker (see §1.2 & §1.3 for de nition and notation). The induced ltration over O cris ( 0 ) is therefore given by divided powers of the ideal Ker 0 ⊂ O cris ( 0 ). Since the ltration over O PD in De nition 3.21 is again de ned by divided powers of the generators of the ideal Ker 0 ⊂ O PD , we infer that this ltration coincides with the one induced by its embedding into O cris ( 0 ). Lemma 3.23.

(i) The action of Γ is trivial on O PD / , whereas Γ 0 /Γ acts trivially over O PD / .

(ii) The Γ 0 -invariants of O PD are given by 0 .

Proof.

(i) The rst part follows from the de nition of O PD and the action of Γ on PD (see Lemma 2.45). The second part follows from observing that Γ 0 /Γ is a nite cyclic group of order [ ∶ ] = -1 ( -1), and a lift ∈ Γ 0 of a generator of Γ 0 /Γ acts as ( ) =

(1 + ) ( ) -1.

(ii) This is straightforward, since

0 ⊂ O PD Γ 0 ⊂ O cris ( 0 ) 0 = 0 .
Next we consider a connection over O PD induced by the connection on O cris ( 0 ),

∶ O PD ⟶ O PD ⨂ Ω 1 0 ,
where we have

⨂ 1 -1 ⨂ [ ♭ ] [ ] = ⨂ 1 -1 ⨂ [ ♭ ] [ -1]
. This connection over O PD satis es Gri ths transversality with respect to the ltration since it does so over O cris ( 0 ).

The main result of this section is as follows:

Theorem 3.24. With notations as above let be an ℎ-dimensional positive Wach representation of 0 , then is a positive crystalline representation. Further, let ∶= O PD ⨂ + 0 ( ) Γ 0 , then we have an isomorphism of 0 1 -modules 1 ≃ O cris ( ) compatible with Frobenius, ltration, and connection on each side. Moreover, after extending scalars to O PD , we obtain natural isomorphisms

O PD ⨂ 0 O cris ( ) ≃ ← --O PD ⨂ 0 1 ≃ --→ O PD ⨂ + 0 ( ),
compatible with Frobenius, ltration, connection and the action of Γ 0 on each side.

Remark 3.25. The statement of Theorem 3.24 can be seen an analogue of the result of Berger [Ber04, Proposition II.2.1] (see the discussion after Proposition 3.6).

Recall that from De nition 3.8 any Wach representation is a twist of a positive Wach representation by ℚ ( ), for ∈ ℕ. Since twist by ℚ ( ) of crystalline representations are again crystalline, we obtain that: Corollary 3.26. All Wach representations of 0 are crystalline.

The proof of Theorem 3.24 will proceed in three steps: First, we explicitly state the structure of Wach module attached to a one-dimensional Wach representation, we will also show that all onedimensional crystalline representations are Wach representations and one can recover O cris ( ) starting with the Wach module ( ). Next, in higher dimensions and under the conditions of the theorem, we will describe a process (successive approximation) by which we can recover a submodule of O cris ( ) starting from the Wach module, here we establish a comparison by passing to the one-dimensinal case. Finally, the claims made in the theorem are shown by exploiting some properties of Wach modules and the comparison obtained in the second step.

One-dimensional representations

In this section we are going to study one-dimensional crystalline representations as well as onedimensional Wach representations. We will show that all one-dimensional crystalline representations are Wach representations. Moreover, for Wach representations we will prove a technical statement which will be used in the proof of Proposition 3.31.

One-dimensional crystalline representations

In this section our goal is to show the following claim: Proposition 3.27. All one-dimensional crystalline representations of 0 are Wach representations. Furthermore, for a one-dimensional crystalline representation we have an isomorphism of 0

1 - modules O PD ⨂ + 0 ( ) Γ 0 ≃ --→ O cris ( ).
First, let us consider the nite unrami ed character f . Set = ℤ ( f ) = ℤ , such that ( ) = f ( ) . We have

+ ℤ ( f ) = + ⨂ ℤ ℤ ( f ) 0 ≃ ⨂ , with ∈ + such that ( ) = -1 f ( ) , for ∈ 0 .
Since f is a nite unrami ed character, it trivializes over a nite Galois extension 0 over 0 (see [Bri08, Proposition 8.6.1]), and we have that Gal 0 1 / 0 1 = 0 / 0 = 0 / 0 = Γ 0 /Γ 0 .

As 0 is étale over 0 the construction of previous chapters apply and we obtain that the

+ 0 - module + 0 ℤ ( f ) = + ⨂ ℤ ℤ ( f ) 0 = + 0 ( f ) = + 0 is free of rank 1.
Further, we know that + ℤ ( f ) = + 0 ℤ ( f ) 0 / 0 , which implies that the natural inclusion

+ 0 ⨂ + 0 + ℤ ( f ) ⟶ + 0 ℤ ( f ) ,
is bijective. Now, since + 0 → + 0 is faithfully at, we obtain that + ℤ ( f ) is projective of rank 1. Moreover, + ℤ ( f ) admits a Frobenius-semilinear endomorphism such that + ℤ ( f ) ≃ * + ℤ ( f ) (one can obtain this after faithfully at scalar extension + 0 → + 0 and applying descent as above). The action of Γ 0 is trivial on + ℤ ( f ) . Now, note that unrami ed representations are crystalline of Hodge-Tate weight 0, so we can take ℤ ( f ) = + ℤ ( f ) . From the discussion above, ℤ ( f ) clearly satis es the conditions of De nition 3.8. Also, we have that (ℚ ( f )) = + (ℚ ( f )). On the other hand, we have

O cris ℚ ( f ) = O cris ( 0 ) ⨂ ℚ ℚ ( f ) 0 = ⨂ , with ∈ O cris ( 0 ) such that ( ) = f ( ) .
Since f trivializes over the nite Galois extension 0 over 0 , we set = 0 ( ) and we have

O PD ⨂ + 0 ℚ ( f ) Γ 0 = 0 1 = O cris ( 0 ) ⨂ ℚ ℚ ( f ) 0 ,
where the rings O PD and O cris ( 0 ) are de ned for 0 over which all the construction of previous sections apply (since 0 is étale over 0 ). Now taking invariants under the nite Galois group Gal 0 1 / 0 1 = 0 / 0 , gives us

O PD ⨂ + 0 ℚ f Γ 0 = O cris ℚ ( f ) .
Clearly, the natural maps

O PD ⨂ 0 O cris ℚ ( f ) ≃ ← --O PD ⨂ 0 O PD ⨂ + 0 ℚ ( f ) Γ 0 ≃ --→ O PD ⨂ + 0 ℚ ( f ) ,
are isomorphisms compatible with Frobenius, ltration and the action of Γ 0 .

Next, let us consider the unrami ed character ur which takes values in 1 + ℤ and trivialised by an element ∈ 1 + ̂ ur 0 (see Proposition 1.30). Set = ℤ ( ur ) = ℤ , such that ( ) = ur ( ) . We have

+ ℤ ( ur ) = + ⨂ ℤ ℤ ( ur ) 0 = + 0 .
Since unrami ed representations are crystalline of Hodge-Tate weight 0, we can take ℤ ( ur ) = + ℤ ( ur ) = + 0 . This clearly satis es the conditions of De nition 3.8. Also, we have that (ℚ ( ur )) = + (ℚ ( ur )). On the other hand, we have

O cris ℚ ( ur ) = O cris ( 0 ) ⨂ ℚ ℚ ( ur ) 0 = ⨂ , with ∈ O cris ( 0 ) such that ( ) = ur ( ) = 0 1 .
Therefore, we obtain

O PD ⨂ + 0 ℚ ( f ur ) Γ 0 = 0 1 = O cris ( 0 ) ⨂ ℚ ℚ ( f ur ) 0 .
Clearly, the natural maps

O PD ⨂ 0 O cris ℚ ( ur ) ≃ ← --O PD ⨂ 0 O PD ⨂ + 0 ℚ ( ur ) Γ 0 ≃ --→ O PD ⨂ + 0 ℚ ( ur ) ,
are isomorphisms compatible with Frobenius, ltration and the action of Γ 0 . Finally, let = ℤ ( ) = ℤ such that ( ) = ( ) , then = ℚ ⨂ ℤ is a crystalline representation with single Hodge-Tate weight . In this case, we can take ℤ ( ) = + 0 -. Note that for ≤ 0, we have that ℤ ( ) / * ℤ ( ) is killed by , where = ( ) . It can easily be veri ed that Γ acts trivially modulo on ( ). So, we set

ℚ ( ) = + 0 - . Similarly, O cris ℚ ( ) = O cris ( 0 ) ⨂ ℚ ℚ ( ) 0 = 0 1 - , and O PD ⨂ + 0 ℚ ( ) Γ 0 = 0 1 - = O cris ℚ (
) compatible with Frobenius, ltration and connection on each side. Finally, the map

O PD ⨂ 0 O cris ℚ ( ) ⟶ O PD ⨂ + 0 ℚ ( ) - ⟼ - .
is trivially an isomorphism compatible with Frobenius, ltration and the action of Γ 0 , since ∈ O PD are units for ∈ ℤ (see Lemma 2.43). This proves the lemma.

Remark 3.29. Note that for = ℤ f ur or ℤ ( ), we even have an isomorphism on the integral level

O PD ⨂ 0 O PD ⨂ + 0 ( ) Γ 0 ≃ --→ O PD ⨂ + 0 ( ).

One-dimensional Wach representations

In this section we will explicitly state Wach module associated to a one-dimensional representation, and prove a statement useful for the proof of Proposition 3.31. Recall from De ntion 3.8 that a Wach representation is a de Rham representation with additional structure. Note that the structure of one-dimensional de Rham representations of 0 is well-known (see [Bri08, §8.6]). From Proposition 1.30 we have that given ∶ 0 → ℤ × , a continuous character, the -adic representation = ℚ ( ) is de Rham if and only if we can write = f ur for ∈ ℤ, where f is a nite character, ur is an unrami ed character taking values in 1 + ℤ and trivialized by an element ∈ 1 + ̂ ur 0 , and is the -adic cyclotomic character. We recall that a -adic representation of 0 is unrami ed if the action of 0 factorizes through the quotient ur 0 (see §1.5). First, let f ∶ 0 → ℤ × be a nite Wach character, i.e. a nite de Rham character satisfying the properties of De nition 3.8. Let = ℤ ( f ) and = ℤ ( f ). Then has single Hodge-Tate weight which is equal to 0. Furthermore, we have the Wach module ( ), and from Corollary 3.13 we obtain that ( ) = + ( ) = ( + ⨂ ℤ ) 0 . From the conditions of De nition 3.8, we have an isomorphism of projective + 0 -modules ( ) ≃ * ( ( )). Finally, the action of Γ 0 is trivial over ( )/ ( ) and there exists a nite étale algebra ′ 0 over 0 such that

+ ′ 0 ⨂ + 0 ( ) is a free + ′ 0
-module of rank 1. Next, let ur ∶ 0 → ℤ × be an unrami ed character taking values in 1 + ℤ and trivialized by an element ∈ 1 + ̂ ur 0 . Set = ℤ ( ur ) = ℤ and = ℚ ( ur ). Then from Lemma 3.28, we have that is a Wach representation of Hodge-Tate weight 0, and we can take ℤ ( ur ) = + ℤ ( ur ) = + 0 , which is a free + 0 -module of rank 1. Finally, let = , the -adic cyclotomic character and = ℤ ( ) = ℤ ( ) = ℤ and =

Next, we will show that the rank of 1 as a projective 0 1 -module is exactly ℎ. It is enough to show that the rank is ℎ after a nite étale extension of 0 . Let us consider ′ 0 to be the -adic completion of a nite étale extension of 0 such that the corresponding scalar extension + ′ 0 ⨂ + 0 ( ) is a free module of rank ℎ (see De nition 3.8) and ′ 0 1 / 0 1 is Galois. The discussion of previous chapters hold for ′ 0 (see [Bri08, Chapitre 2] and [AI08, §2] for more on this). In particular, let ′ = ′ 0 ( ) and we have rings

+ ′ 0 , + , PD ′ and O PD ′ . Let ′ ∞ 1 denote the cyclotomic tower over ′ 0 1 and 
Γ ′ 0 = Gal ′ ∞ 1 / ′ 0 1 and ′ 0 = Ker ( ′ 0 → Γ ′ 0 )
. Similarly, we have Galois groups Γ ′ and ′ . Let

′ ∶= Gal ′ ∞ 1 / ∞ 1 = Gal ′ 1 / 1 = Gal ′ 0 1 / 0 1 ,
then we have that / ′ = 0 / ′ 0 = ′ . So we obtain that

+ 0 = ( + ) 0 = ( + ) ′ 0 0 / ′ 0 = + ′ 0 ′ + = ( + ) = ( + ) ′ / ′ = + ′ ′ .
From these equalities and the description of the action of

Γ 0 on = 1 , it is clear that PD = PD ′ ′
, and therefore

O PD = O PD ′ ′ .
Now, since ( ) is projective and ′ acts trivially on it, we obtain that

O PD ′ ⨂ + ′ 0 + ′ 0 ⨂ + 0 ( ) ′ = O PD ⨂ + 0 ( ) O PD ′ ⨂ ′ 0 ′ 0 ⨂ 0 1 ′ = O PD ⨂ 0 1 .
In particular, base changing to + ′ 0 to obtain ( ) as a free module is harmless. For the convenience in notation, below we will replace ′ 0 obtained in this manner by 0 and assume ( ) to be free over

+ 0 .
In order to show that the rank of 1 is at least ℎ, we will successively approximate a basis of ( ) (after scalar extension to O PD ) to linearly independent elements of 1 . To carry this out, rst we will de ne several new rings following [Wac96, §B.1] and examine their relation with O PD . After extending scalars, we will approximate the elements of ( ) with elements invariant under the geometric action of Γ 0 , i.e. Γ ′ 0 . Finally, we will approximate the elements obtained from the previous step to elements which are invariant under the arithmetic action of Γ 0 , i.e. Γ . Note that whereas Γ ′ 0 is a commutative group, Γ 0 is not. Further, the action of Γ ′ 0 on the geometric variables involves the element on which Γ acts (see §2.1), therefore it is imperative that we carry out the approximation steps in the order mentioned above.

Auxiliary rings and modules

For ∈ ℕ, let us de ne a -adically complete ring

PD ∶= + 0 , 2 2! 2 , … , ! , … .
Let [ ] denote the ideal of PD generated by ! for ≥ and we set

̂ PD ∶= lim PD [ ] .
Note that ̂ PD is -adically complete as well. Further, note that we can write ( ) = (1 + ) -1 = + for some ∈ + , therefore

( ) ! = ( + ) ! = ∑ =0 ⋅ ( ) - ! = =0 ( + ( -1) )! ( ( -1)-) !( -)! ⋅ +( -1) - ( + ( -1) )! ( +( -1) )( -1) ∈ ̂ PD -1
Using this, the Frobenius operator on can be extended to a map ∶ ̂ PD → ̂ PD -1 , which we will again call Frobenius. The ring ̂ PD readily admits a continuous action of Γ 0 which commutes with the Frobenius.

Lemma 3.32. The ring ̂ PD 0 is a subring of PD , and therefore ̂ PD ⊂ PD .

Proof. The rst claim is true because we have

1 ≡ mod + , which gives 1 ≡ -1 mod + .
So for ≥ we can write

! = 1 ! = ! - 1 -1 + = - 1 ! + -1 -1 1 ( + -1 )! ! -1 + -1 ( + -1 )! ∈ -1 PD ,
for some ∈ + . Therefore, we get that

[ ] 0
⊂ -1 PD and hence ̂ PD 0 ⊂ PD . The second claim is obvious.

In the relative setting, we need slightly larger rings. Let us consider the -linear homomorphism of rings

∶ 0 ⟶ ̂ PD ⟼ [ ♭ ] for 1 ≤ ≤ .
Using we can de ne a -linear morphism of rings

∶ 0 ⨂ ̂ PD ⟶ ̂ PD ⨂ ⟼ ( ) .
Let O ̂ PD denote the -adic completion of the divided power envelope of 0 ⨂ ̂ PD with respect to Ker . Further, the morphism extends uniquely to a continuous morphism ∶ O ̂ PD → ̂ PD . Now, it easily follows from the discussion in §2.5 that the kernel of the morphism is generated by

( 1 -1, … , -1), where = 1 ⨂[ ♭ ] ⨂ 1 for 1 ≤ ≤ .
The Frobenius operator extends to O ̂ PD as well as the continuous action of Γ 0 . From the discussion above we have ( ̂ PD ) ⊂ ̂ PD 0 ⊂ PD , and following the description of O ̂ PD 0 §2.5 and of O PD from Remark 3.20, we obtain that

O ̂ PD 0 ⊂ O PD and O ̂ PD ⊂ O PD .
Moreover, we have a canonical inclusion of ̂ PD ⊂ O ̂ PD compatible with all the structures. Recall that we have ∈ ℕ ≥1 such that = ( ), so below we will consider the ring O ̂ PD . Now consider the ideal ∶= , 1 -1, … , -1 ⊂ O ̂ PD , and its divided power

[ ] ∶= ⟨ [ 0 ] 0 =1 ( -1) [ ] , = ( 0 , 1 , … , ) ∈ ℕ +1 such that =0 ≥ ⟩ ⊂ O ̂ PD .
By the construction of O ̂ PD , it is clear that this ring is -adically complete with respect to the PD-ideal [ ] . In other words, the series

∑ ∈ℕ +1 [ 0 ] 0 ∏ =1 ( -1) [ ] ,
where ∈ ̂ PD goes to 0 as

| | = ∑ → +∞, converges in O ̂ PD . Next, we set O PD ∶= O ̂ PD ⨂ + 0 ( ).
Again, O PD is -adically complete and it is equipped with a Frobenius-semilinear operator and a continuous and semilinear action of Γ 0 . Also, we take

′ ∶= O PD Γ ′ 0 and ′′ ∶= ( ′ ) Γ = O PD Γ 0 .
Since we assumed ( ) to be free, we have that O PD is a free O ̂ PD -module of rank ℎ. Since O ̂ PD ⊂ O PD , we get that

( ′′ ) ⊂ O PD ⨂ + 0 ( ) Γ 0 .
Therefore, it is enough to successively approximate an element of ( ) to an element of ′′ . Let { , 1 , … , } be a set of topological generators of Γ 0 such that { 1 , … , } generate Γ ′ 0 topologically, and is a lift of a topological generator of Γ such that = 0 is a lift of a topological generator of Γ and = [ ∶ ] (see §2.1).

Geometric part of Γ 0

Lemma 3.33. For any ∈ ( ), there exists ′ ∈ O PD such that

′ ≡ mod [1] O PD , ( ′ ) = ′ for 1 ≤ ≤ .
In particular, ′ ∈ ′ .

Proof. We will successively approximate ∈ ( ) to an element ′ ∈ ′ by adding elements from [ ] O PD , for ≥ 1 converging for the -adic topology and such that the action of Γ ′ 0 converges to identity.

We start by setting 1 ∶= ∈ ( ) ⊂ O PD so that we have

( 1 ) = 1 + for some ∈ ( ) ⊂ [0] O PD . Next, let 2 ∶= 1 + ( 1 -1) 1 + ⋯ + ( -1) ,
where ∈ ( ) for 1 ≤ ≤ , which we need to determine. Clearly, we have that 2 ≡ 1 mod [1] O PD . Now note that

( -1) = (1 + )( -1 + 1) -1 ≡ -1 + mod [1] O ̂ PD , (3.2) 
and since we must have ( ) = mod ( ) for 1 ≤ , ≤ , therefore the action of on 2 can be given as

( 2 ) = ( 1 ) + ( 1 -1) ( 1 ) + ⋯ + ( -1) ( ) + ⋯ + ( -1) ( ) ≡ 1 + + ( 1 -1) 1 + ⋯ + ( -1 + ) + ⋯ + ( -1) mod [1] O PD ≡ 2 + ( + ) mod [1] O PD .
Setting ≡ -for 1 ≤ , we obtain that ( 2 ) ≡ 2 mod [1] O PD . Now we will proceed inductively over , i.e. we will show that for ≥ 2, if there exists ∈ O PD such that

≡ -1 mod [ -1] O PD , ( ) ≡ mod [ -1] O PD for 1 ≤ ≤ ,
then there exists +1 ∈ O PD such that

+1 ≡ mod [ ] O PD , ( +1 ) ≡ +1 mod [ ] O PD for 1 ≤ ≤ .
For ∈ ℕ, let us de ne the multi index set Λ ∶= { = ( 0 , 1 , … , ) ∈ ℕ +1 , such that 0 + ⋯ + = }. We set

+1 ∶= + ∈Λ [ 0 ] 0 ( 1 -1) [ 1 ] ⋯ ( -1) [ ] , (3.3) 
for some ∈ ( ), which we need to determine. We will solve for by studying the action of on +1 for 1 ≤ ≤ . For the action of on , we have

( ) = + | |≥ -1 [ 0 ] 0 ( 1 -1) [ 1 ] ⋯ ( -1) [ ] ( ) ,
where | | = ∑ and ( ) ∈ ( ) goes to zero -adically as | | → +∞. Truncating the equation above for | | ≥ , we obtain

( ) ≡ + ∈Λ -1 [ 0 ] 0 ( 1 -1) [ 1 ] ⋯ ( -1) [ ] ( ) mod [ ] O PD . (3.4) 
To determine +1 , we begin with = 1. From (3.2), recall that

1 ( 1 -1) ≡ ( 1 -1 + ) mod [1] O ̂ PD ,
and since we must have 1 ( ) = mod ( ), therefore the action of 1 on +1 using (3.4) can be given as

1 ( +1 ) ≡ + ∈Λ -1 [ 0 ] 0 ( 1 -1) [ 1 ] ⋯ ( -1) [ ] (1) + ∈Λ [ 0 ] 0 ( 1 -1 + ) [ 1 ] ( 2 -1) [ 2 ] ⋯ ( -1) [ ] mod [ ] O PD ≡ +1 + ∈Λ -1 [ 0 ] 0 ( 1 -1) [ 1 ] ⋯ ( -1) [ ] (1) + ∈Λ [ 0 ] 0 ( 1 -1 + ) [ 1 ] -( 1 -1) [ 1 ] ( 2 -1) [ 2 ] ⋯ ( -1) [ ] mod [ ] O PD .
For = ( 0 , … , ) ∈ Λ -1 , i.e. 0 + ⋯ + = -1, the coe cient of 0 +1 ( 1 -1) 1 ⋯ ( -1) in construct two di erent values for +1 More precisely, we set

(1) ∶= ∈Λ [ 0 ] 0 ( 1 -1) [ 1 ] ⋯ ( -1) [ ] (1) , (2) ∶= ∈Λ [ 0 ] 0 ( 1 -1) [ 1 ] ⋯ ( -1) [ ] (2) .
(3.9)

We have (1) , (2) ∈ [ ] O PD . This allows us to set

(1)

+1 ∶= + (1) , (2) 
+1 ∶= + (2) .

and we get that

1 (1) +1 ≡ (1) +1 mod [ ] O PD , 2 (2) 
+1 ≡ (2) +1 mod [ ] O PD .
(3.10) Further, we simplify the notations and write (3.4) as

1 ( ) ≡ + (1) mod [ ] O PD , 2 ( ) ≡ + (2) mod [ ] O PD , (3.11) 
where it is obvious that (1) , (2) ∈ [ -1] O PD replace the summations occuring in (3.4). Therefore, from (3.11) we can write

2 1 ( ) ≡ + (2) + 2 (1) mod [ ] O PD , 1 2 ( ) ≡ + (1) + 1 (2) mod [ ] O PD .
Since Γ ′ is commutative, we have 1 2 = 2 1 , therefore

( 2 -1) (1) ≡ ( 1 -1) (2) mod [ ] O PD .
Next, combining (3.11) and (3.10), we obtain

( 1 -1) (1) ≡ -(1) mod [ ] O PD , ( 2 -1) (2) ≡ -(2) mod [ ] O PD .
Again, since 1 and 2 commute, we obtain

( 2 -1)( 1 -1) (1) -(2) ≡ 0 mod [ ] O PD .
As [ ] O PD is stable under the action of Γ 0 , applying Corollary 3.36 twice we obtain that

(1) ≡ (2) mod ( ),

for ∈ Λ such that 1 , 2 ≠ 0.

By repeating this argument for each pair of , ∈ {1, … , }, we conclude that the multiple solutions of for ∈ Λ , are equivalent modulo ( ).

Let us note a general result, which will be useful later and whose special case (see Corollary 3.36) was used above. Let ∈ [ O PD and ∈ {1, … , }. We write

= ∈Λ [ 0 ] 0 ( 1 -1) [ 1 ] ⋯ ( -1) [ ] ,
for ∈ [1] O PD , and Λ = { = ( 0 , … , ), such that 0 + ⋯ + = }. Then, Lemma 3.35. Let ∈ {1, … , } such that ≠ 0, then ( -1) ≡ 0 mod [ +1] O PD if and only if

∈ [1] O PD .
Proof. First note that [1] O PD is stable under the action of for 1 ≤ ≤ , so we get the "if" statement. For the converse, without loss of generality, we take = 1 and set ∶= 1 . Then we have

( -1) ≡ ∈Λ [ 0 ] 0 ( 1 -1 + ) [ 1 ] -( 1 -1) [ 1 ] ⋯ ( -1) [ ] mod [ +1] O PD ≡ ∈Λ [ 0 ] 1 ! 0 ( 2 -1) [ 2 ] ⋯ ( -1) [ ] 1 -1 =0 1 ( 1 -1) 1 - mod [ +1] O PD ≡ ∈Λ 1 -1 =0 1 0 + 1 - 0 ! 1 ! 0 ( 1 -1) ( 2 -1) [ 2 ] ⋯ ( -1) [ ] mod [ +1] O PD ≡ ∈Λ 1 -1 =0 0 + 1 - 0 ( 1 -) [ 0 + 1 -] ( 0 + 1 -) ( 1 -1) [ ] ( 2 -1) [ 2 ] ⋯ ( -1) [ ] mod [ +1] O PD . Let ∈ Λ , then we set Λ , ∶= { = ( 0 , … , ), such that 1 ≤ 1 ≤ 0 + 1 , 0 = 0 + 1 -1 , 2 = 2 , … , = }. So we can write ( -1) ≡ ∈Λ 1 < [ 0 ] 0 ( 1 -1) [ 1 ] ( 2 -1) [ 2 ] ⋯ ( -1) [ ] ∈Λ , 0 0 ( 1 -1 ) mod [ +1] O PD .
To get ( -1) ∈ [ +1] O PD , we can write each = ∑ ℎ =1 ( ) with ( ) ∈ O ̂ PD and { 1 , … , ℎ } a chosen basis of ( ) to obtain for each 1 ≤ ≤ ℎ, the congruence

∈Λ 1 < [ 0 ] 0 ( 1 -1) [ 1 ] ( 2 -1) [ 2 ] ⋯ ( -1) [ ] ∈Λ , 0 0 ( 1 -1 ) ( ) ≡ 0 mod [ +1] O ̂ PD .
Note that in the equation above we have that the rst part of the left hand side is in [ +1] O ̂ PD . Now for any two , ′ ∈ Λ , we have that ≠ ′ , so the rst part of the congruence for each term is di erent. Therefore to obtain the congruence above, we must have

∈Λ , 0 0 ( 1 -1 ) ( ) ≡ 0 mod [1] O ̂ PD .
(3.12)

Combining (3.12) for each 1 ≤ ≤ ℎ, we obtain that

∈Λ , 0 0 ( 1 -1 ) ≡ 0 mod [1] O PD . (3.13)
From this set of equations, we see that for any ∈ Λ it is enough to show that ≡ 0 mod [1] O PD for each ∈ Λ , . We will proceed by lexicographic induction. First note that in the base case we have = (0, 1 , 2 , … , ) for 0 ≤ 1 ≤ -1 and Λ , = {(0, 1 , 2 , … , )}. So from (3.13) we obtain ≡ 0 mod [1] O PD . Lexicographically, next have = (1, 1 , 2 , … , ) for 0 ≤ 1 ≤ -1 and Λ , = {(1, 1 , 2 , … , ), (0, 1 + 1, 2 , … , )}. Let = (0, 1 + 1, 2 , … , ), then from the previous step we have ≡ 0 mod [1] O PD . Combining this with (3.13) we get that ≡ 0 mod [1] O PD . For the induction step, let = ( 0 , 1 , 2 , … , ) for 0 ≤ 1 ≤ -1. Since we have > for any ∈ Λ , ⧵ { }, from (3.13) and induction we obtain that ≡ 0 mod [1] O PD . This nishes the proof.

The result above can be specialized to the following statement:

Corollary 3.36. Let us assume that ∈ ( ) for all ∈ Λ . For ∈ {1, … , } such that ≠ 0, we have ( -1) ∈ [ ] O PD if and only if ∈ ( ).

Proof. First note that ( ) is stable under the action of for 1 ≤ ≤ , so we get the "if" statement. For the converse, let { 1 , … , ℎ } denote an + 0 -basis of ( ), and we write = ∑ ℎ =1 ( ) . Now, using Lemma 3.35 and the assumption in the claim, we obtain that ∈ ( ) ⋂ [1] O PD ⊂ O PD . Therefore, we must have

( ) ∈ + 0 ⋂ [1] O ̂ PD ⊂ O ̂ PD .
By de nitions, we have that

+ 0 ⋂ [1] O ̂ PD = + 0 . Hence, = ∑ ℎ =1 ( ) ∈ ( ).

Arithmetic part of Γ 0

Recall that we have as a topological generator of Γ such that 0 = is a topological generator of Γ , where = [ ∶ ]. As a second step, we will successively approximate for the action of 0 and then obtain an element xed by .

Let us consider the ideal and its divided powers for ≥ 1

= ⊂ O ̂ PD Γ ′ 0 , [ ] = ⟨ ! , ≥ ⟩ ⊂ O ̂ PD Γ ′ 0 .
Recall that ′ = O PD Γ ′ 0 and ′′ = O PD Γ 0 . Note that since O ̂ PD Γ ′ 0 is PD-complete with respect to the ideal and O PD is a nite free O ̂ PD -module, we get that ′ is PD-complete with respect to the ideal . Lemma 3.37. For ′ ∈ ′ , there exists a unique ′′ ∈ ′ , such that

′′ ≡ ′ mod [1] ′ , ( ′′ ) = ′′ .
In particular, ′′ ∈ ′′ .

Proof. The proof essentially follows the technique of [Wac96, §B.1.2, Lemme 1]. For uniqueness, we want to show that if ′′ , ′′ ∈ ′ satisfy the conditions of the lemma then we must have ′′ = ′′ . If ′′ and ′′ are distinct, then ′′ -′′ is nonzero in [ -1] ′ [ ] ′ for some smallest ≥ 2, i.e. ′′ -′′ = -1 mod [ ] ′ , with ∈ ′ . Moreover, we have 0 = where = [ ∶ ], therefore 0 ( ′′ ) = ′′ , 0 ( ′′ ) = ′′ , and 0 ( ) ≡ mod ′ since 0 acts trivially modulo on ( ) and O ̂ PD . So we obtain -1 = ′′ -′′ = 0 ( ′′ -′′ ) = 0 ( -1 ) ≡ 0 ( -1 ) ≡ ( 0 ) -1 -1 mod [ ] ′ .

Since ( 0 ) = exp( ) and ≥ 2, we conclude from the congruence above that = 0, i.e. ′′ = ′′ . Before proceeding to show the existence of ′′ , let us show that it is enough to approximate for the action of 0 . Let ∈ Γ be a lift of a generator of the cyclic group Γ /Γ . Then we have that

′′ = 1 ∑ -1 =0 ( ′′ ) ∈ O PD Γ 0 = ′′ .
But by the claim of uniqueness proved above, we must have that ′′ = ′′ , i.e. ′′ ∈ O PD Γ 0 = ′′ .

For existence, we start by setting 1 ∶= ′ and using successive approximation we will show that if there exists ′ ∈ ′ such that

′ ≡ ′ -1 mod [ -1] ′ , 0 ( ′ ) ≡ ′ mod [ -1] ′ ,
then there exists ′ +1 ∈ ′ such that

′ +1 ≡ ′ mod [ ] ′ , 0 ( ′ +1 ) ≡ ′ +1 mod [ ] ′ .
To nd such an ′ +1 , rst we write

0 ( ′ ) ≡ ′ + ′ mod [ ] ′ , with ′ ∈ [ -1] ′ . Next, we set ′ +1 ∶= ′ + ′ , for some ′ = ! ∈ [ ] ′
, which we need to determine. Note that we have

0 ( ′ ) = 0 ( ) ! 0 ( ) ≡ ( 0 ) ! ≡ ( 0 ) ′ mod [ ] ′ .
Now, the action of 0 on ′ +1 can be given as

0 ( ′ +1 ) ≡ ′ + ′ + ( 0 ) ′ mod [ ] ′ ≡ ′ +1 + ′ + ( ( 0 ) -1) ′ mod [ ] ′ .
Since ( 0 ) = exp( ), we have ( 0 ) -1 = with ∈ 1 + ℤ . So, to get 0 ( ′ +1 ) ≡ ′ +1 mod [ ] ′ , we can take ′ = -′ ( 0 ) -1 ∈ [ ] ′ . Hence, we conclude that the sequence ′ converges to some ′′ ∈ O PD Γ 0 = ′′ .

Unique li by successive approximation

From Lemmas 3.33 & 3.37 we get that for any ∈ ( ) we can nd ′′ ∈ O PD such that

′′ ≡ mod [1] O PD , ( ′′ ) = ′′ for 0 ≤ ≤ .
In particular, ′′ ∈ ′′ = O PD Γ 0 . Moreover, this solution is unique. Indeed, let ′′ , ′′ be two such solutions. Then we must have that

′′ -′′ is nonzero in [ ] O PD [ +1] O PD for some smallest ≥ 1, i.e. ′′ -′′ ≡ ∈Λ [ 0 ] 0 ( 1 -1) [ 1 ] ⋯ ( -1) [ ] mod [ +1] O PD . Let ∶= ∈Λ [ 0 ] 0 ( 1 -1) [ 1 ] ⋯ ( -1) [ ] ∈ [ ] O PD ,
then because we have ( -1)( ′′ -′′ ) = 0 for ∈ {0, … , }, we obtain that ( -1) ≡ 0 mod [ +1] O PD . But from Lemma 3.35 this is only possible when ≡ 0 mod [1] O PD for ∈ Λ ⧵ { } where = ( , 0, … , 0).

Next, applying 0 to the reduced expression obtain

[ ] = ′′ -′′ = 0 ( ′′ -′′ ) ≡ ( 0 ) mod [ +1] O PD .
Again, this is only possible when = 0 mod [1] O PD . Therefore, we obtain that we must have ′′ = ′′ .

Finishing the proof of Proposition 3.31

Recall that at the beginning of the proof we assumed ( ) to be free of rank ℎ (after extension of scalars to + ′ 0 which we again wrote as + 0 by abusing notations), therefore O PD is free of rank ℎ. Further, we have = O PD ⨂ + 0 ( ) Γ 0 and since 1 is equipped with an integrable connection, it is projective of rank ≤ ℎ (see the beginning of the proof). So by the successive approximation argument above, we obtain that the rank of 1 as an 0 1 -module is exactly ℎ.

Finally, we want to show that the natural inclusion

O PD ⨂ 0 1 O PD ⨂ + 0 (
) is bijective. Since we assumed ( ) to be a free module, let { 1 , … , ℎ } be its + 0 -basis. Let ∈ Mat(ℎ, + 0 ) denote the matrix for the action of Frobenius on ( ) in the basis { 1 , … , ℎ }. We want to show that * O PD ⨂ + 0 ( ) ≃ O PD ⨂ + 0 ( ) . Note that we have ⋀ ℎ ( ) = ⋀ ℎ , which follows from the compatibility between exterior power of representations and exterior power of their respective Wach modules in Corollary 3.16. Since ⋀ ℎ is again a positive Wach representation and taking exterior powers commutes with scalar extension (see [START_REF] Bourbaki | Algebra I: Chapters 1-3[END_REF] Chapter III, §7.5, Proposition 8]), therefore passing to ℎ-th exterior power we obtain that Since the action of is diagonal and taking exterior powers commutes with scalar extension (see [START_REF] Bourbaki | Algebra I: Chapters 1-3[END_REF] Chapter III, §7.5, Proposition 8]), we obtain that

O PD ⨂ + 0 ℎ ⋀ = ℎ ⋀ O PD ⨂ + 0 ( ) .
ℎ ⋀ * O PD ⨂ + 0 ( ) ≃ * ℎ ⋀ O PD ⨂ + 0 ( ) ≃ ℎ ⋀ O PD ⨂ + 0 ( ) .
In particular, we have obtained that det is invertible in O PD 1 .

Next, recall that O PD = O ̂ PD ⨂ + 0 ( ) and ′′ = O PD Γ 0 . So we consider the following commutative diagram

O ̂ PD ⨂ 0 ′′ O PD O PD ⨂ 0 O PD ⨂ + 0 ( ), ⨂
where all arrows are injective. We also have that { 1 , … , ℎ } is an O PD -basis of O PD ⨂ + 0 ( ) as well as an O ̂ PD -basis of O PD . From Lemmas 3.33 & 3.37 and the discussion above, we have ∈ ′′ for 1 ≤ ≤ ℎ such that = + ∑ ℎ =1 for ∈ [1] O ̂ PD . So we let ∶= ℎ + ( ) ∈ Mat(ℎ, O ̂ PD ) denote the ℎ × ℎ matrix obtained in this manner. Since det ∈ 1 + [1] O ̂ PD and O ̂ PD is -adically complete with respect to the PD-ideal [ ] , we obtain that det is invertible in O ̂ PD .

-torsion. Next, an application of snake lemma, the exact sequence 0 ⟶ 1 ⟶ 4 ⟶ 5 .

Since 1 and 5 are -torsion, we conclude that 4 is 2 -torsion. In other words, the module O PD ⨂ 0 0 / * O PD ⨂ 0 0 is killed by 2 . Finally, we note that the action of Frobenius commutes with the action of Γ 0 , therefore taking Γ 0 -invariants, we obtain that the module 0 / * ( 0 ) is killed by 2 . This proves the corollary.

Remark 3.39. Note that we xed a choice of ∈ ℕ ≥1 in the beginning. The 0 -modules that we have obtained depend on this choice. In particular, let 1 ≤ ≤ and = 0 ( ) and ′ = 0 ( ′ ).

Then we have that

O PD ⊂ O PD ′ with = O PD ⨂ + 0 ( ) Γ 0 and ′ = O PD ′ ⨂ + 0 ( ) Γ 0 .
Further, let 0 and ′ 0 be the 0 -modules obtained for and ′ respectively in Proposition 3.31, then we have that ′ -( ′ 0 ) ⊂ 0 (this esentially follows from the fact that 

′ - O ̂ PD ′ ⊂ O ̂ PD ).
O cris ( 0 ) ⨂ 0 [ 1 ] 1 ⊂ O cris ( 0 ) ⨂ 0 [ 1 ] O cris ( ),
compatible with Frobenius, ltration, connection and the action of 0 on each side. In particular, we have a commutative diagram --→ O cris ( ). Next, we will check the compatibility of the isomorphism obtained with supplementary structures on both sides. From Proposition 3.31 it is clear that this isomorphism is compatible with the action of Frobenius and connection on each side. So we are only left to check the compatibility with natural ltrations on each side. For this, rst we see that using De nition 3.10 and Remark 3.20 (ii), the ltration on 1 is given as

O cris ( 0 ) ⨂ 0 [ 1 ] 1 O cris ( 0 ) ⨂ + 0 ( ) O cris ( 0 ) ⨂ 0 [ 1 ] O cris ( ) O cris ( 0 ) ⨂ ℚ ,
Fil 1 = ∈ℕ Fil O PD ⨂ + 0 Fil -( ) Γ 0 .
Lemma 3.40. In the notations already described, we have Fil

1 = Fil O cris ( ) for ∈ ℤ
Proof. First, let ∈ Fil 1 , then we can write it as a sum

= ∈ℕ ( ⨂ ) [ 0 ] ( 1 -1) [ 1 ] ⋯ ( -1) [ ] ⨂ -for ∈ 0 , ∈ + and -∈ Fil -( ),
where 0 + ⋯ + = and = 1 . Writing ( -) = - -= ( -) -for some -∈ ( ), we obtain

( ) = ∈ℕ ( ⨂ ) [ 0 ] ( 1 -1) [ 1 ] ⋯ ( -1) [ ] ⨂ -.
Since the action of and Γ 0 commute, we get

( ) ∈ Fil O PD ⨂ + 0 ( ) Γ 0 ⊂ Fil O cris ( 0 ) ⨂ ℚ 0 ⊂ Fil O cris ( ) .
As is injective, we must have ∈ Fil O cris ( ). This shows Fil 1 ⊂ Fil O cris ( )

Conversely, let { 1 , … , ℎ } denote a ℚ -basis of and let ∈ Fil O cris ( ) ⧵ Fil +1 O cris ( ). Then we can write = ∑ ℎ =1 , with ∈ Fil O cris ( 0 ). Since O cris ( ) ≃ 1 , we take ≤ to be the largest integer such that ∈ Fil 1 . So we can also express = ∑ ∈ℕ ⨂ -, for ∈ Fil O PD ⧵ Fil +1 O PD and -∈ Fil -( ) ⧵ Fil -+1 ( ). Note that using Lemma 3.41, we have that Fil -( ) = ( -+ ⨂ ℚ ) ⋂ ( ). Therefore, -∈ ( -+ ⨂ ℚ ) ⧵ ( -+1 + ⨂ ℚ ). So, in the basis of , we can write -= ∑ ℎ =1 --, ⨂ , with -, ∈ + ⧵ + for 1 ≤ ≤ ℎ. In conclusion, we obtain that

= ∈ℕ ⨂ ℎ =1 - -, ⨂ = ℎ =1 ∈ℕ ⨂ - -, ⨂ .
Comparing the two expressions for thus obtained in the basis of , we get

∈ℕ ⨂ - -, = ∈ Fil O cris ( 0 ) for 1 ≤ ≤ ℎ.
Now, recall that ltrations on O PD and O cris ( 0 ) are compatible (see Remark 3.22). Further, let us equip + with the induced ltration from cris ( ). Since the ltration on cris ( ) is given by divided powers of , we obtain that Fil -+ = + ⋂ Fil - cris ( ) = -+ . In particular, we obtain that

O PD ⨂ + 0 + ⋂ Fil O cris ( 0 ) = ∈ℕ Fil O PD ⨂ + 0 ( + ⋂ Fil - cris ( )) = ∈ℕ Fil O PD ⨂ + 0 -+ .
Recall that ∈ Fil 1 ⧵ Fil +1 1 and in the expression ∑ ∈ℕ ⨂ - -, , we have that ∈ Fil O PD ⧵ Fil +1 O PD and -, ∈ + ⧵ + for 1 ≤ ≤ ℎ. Therefore, ∑ ∈ℕ ⨂ - -, ∈ Fil O cris ( 0 ) ⧵ Fil +1 O cris ( 0 ). But then ∑ ∈ℕ ⨂ - -, ∈ Fil O cris ( 0 ) if and only if ≥ .

Since ≤ by assumption, therefore we have = . Hence ∈ Fil 1 . This proves the claim.

Following observation was used above: Lemma 3.41. Let ∈ ℕ and = ( ) , then we have (

+ ⨂ ℚ ) ⋂ ( ) = ( ).
Proof. First, let us assume that ( ) is free with { 1 , 2 , … , ℎ } as an + 0 -basis, and let { 1 , … , ℎ } be a ℚ -basis of . Now let ∈ ( + ⨂ ℚ ) ⋂ ( ) for = ∑ ℎ =1 ∈ + ⨂ ℚ . We can also write = ∑ ℎ =1 for ∈ + 0 . Next, from Lemma 3.12 we have

+ ⨂ ℚ ⊂ + ⨂ + 0 ( ), so we can write = -∑ ℎ =1 = -∑ ℎ =1 ∑ ℎ =1 = -∑ ℎ =1 (∑ ℎ =1
) , with ∈ + . But then we must have -∑ ℎ =1 = for 1 ≤ ≤ ℎ. Since 0 acts trivially on , and , we get that = ∑ ℎ =1 ∈ + 0 . But ∈ + 0 and does not divide in + 0 , therefore we obtain that ∈ + 0 . In particular, ∈ + 0 , therefore = ∑ ℎ =1 ∈ ( ). In the case when ( ) is projective (and not free) over + 0 , let ′ 0 be the -dic completion of a nite étale algebra over 0 such that the scalar extension + ′ 0 ⨂ + 0 ( ) is a free module over + ′ 0 and ′ 0 1 / 0 1 is Galois (see De nition 3.8). Then we can argue as above and conclude by taking

Gal ′ 0 1 / 0 1 -invariants of + ′ 0 ⨂ + 0 ( ).
Combining Lemma 3.40 with observations made before, we obtain that the isomorphism of 0 1modules 1 ≃ --→ O cris ( ) is compatible with Frobenius, ltration and connection on each side.

Finally, we can compose these natural maps as

O PD ⨂ 0 O cris ( ) ≃ ← --O PD ⨂ 0 O PD ⨂ + 0 ( ) Γ 0 ≃ --→ O PD ⨂ + 0 ( ),
where the second map is compatible with the Frobenius, ltration, connection and the action of Γ 0 on each side (see Proposition 3.31). This proves the theorem.

Remark 3.42. In the case when ( ) is a free + 0 -module of rank ℎ, from Proposition 3.31 we obtain that 1 ≃ O cris ( ) is a free 0 1 -module of rank ℎ. In particular, for Wach representations there exists a nite étale extension ′ 0 over 0 such that ′ 0 1 ⨂ 0 [ 1 ] O cris ( ) is a free module of rank ℎ.

The false Tate curve

In this section we will construct a set of examples of representations satisfying the conditions of De nition 3.8. These examples will arise from the Tate module attached to the false Tate curve.

Let ∶= 1 , = Spec 0 [ , -1 ] and  ∶= / ℤ denote the false Tate curve over 0 . The 0 1 -rational points of E form an abelian group and we consider its -torsion points. In other words, there is an attached ℤ -representation of 0 given by the Tate module of  as

 = lim  0 1 [ ] = lim ( ( ) ) , 1 ≤ , < ,
where (1) = and ( ) is a compatible system of -th roots of such that ( ( +1) ) = ( ) for ≥ 1. Let 1 = ( ) ≥0 and 2 = ( ( ) ) ≥0 , then in the additive notation, we have  = ℤ 1 + ℤ 2 . Next, let denote the ℤ -dual of  with the dual basis { 1 , 2 } such that ( ) = for , = 1, 2. Then = ⨂ ℤ ℚ is a 2-dimensional -adic representation of 0 . The action of 0 on is given by the matrix ( ) -1 0 -( ) ( ) -1 1 , where ( ) is the usual cyclotomic character and ∶ 0 → ℤ is a 1-cocycle such that ( ( ) ) = ( ) ( ) for ∈ 0 . For ≥ 1, let us set ∶= Sym ( ) as the ℚ -linear -th symmetric power of , in particular, 1 = . Since dim ℚ = 2, we get that dim ℚ = + 1. An explicit basis for can be given as

⨂ 1 ⨂ ⨂( -) 2 0≤ ≤ . We set = ∑ =0 ℤ ⨂ 1 ⨂ ⨂( -) 2
which is a 0 -stable ℤ -lattice inside .

Next, we compute the crystalline modules associated to the representations described above.

Proposition 3.43 (The crystalline module). The 0 -module O cris ( ) is a free ltered ( , )-module of rank + 1 over 0 1 (see De nition 1.18). Moreover, there exists an 0 -submodule of O cris ( ) satisfying analogous properties.

Proof. For = 1, this was worked out in [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]Example,p. 120]. To get the module O cris ( ), we will construct some Galois invariant elements in O cris ( 0 ) ⨂ ℚ and extrapolate a basis for O cris ( ).

Let 1 = 1 + 2 and 2 = 2 , where = log([ ♭ ]/ ) ∈ O cris ( 0 ). The element is well-de ned and converges in O cris ( 0 ) because

= log [ ♭ ] = ≥1 (-1) +1 [ ♭ ] -1 = ≥1 (-1) +1 ( -1)! [ ♭ ] -1 [ ] ,
where we have that [ ♭ ]/ ∈ 0 ⨂ inf ( ) and ([ ♭ ]/ -1) = 0. Also, we conclude that for any ∈ 0 , we have ( ) = ( ) + since ( ( ) ) = ( ) ( ) . Clearly,

( 1 ) = ( 1 -( ) 2 ) + ( ( ) + ) 2 = 1 + 2 = 1 , and ( 2 ) = 2 .
So we get that 1 , 2 ∈ O cris ( ) = O cris ( 0 ) ⨂ ℚ 0 . On the other hand, let ∈ O cris ( ) which we write as = 1 + 2 for , ∈ O cris ( 0 ). For any ∈ 0 , we must have ( ) = ( ) -1 ( ) 1 -( ) ( ) -1 ( ) 2 + ( ) 2 = , i.e., ( ) -1 ( ) = , and ( ) -( ) ( ) -1 ( ) = .

Therefore, -1 ∈ O cris ( 0 ) 0 = 0 1 . Moreover, we can write = 1 + 2 = -1 1 +( --1 ) 2 . Now, for any ∈ 0 we get

( --1 ) = ( ) -( ) -1 -1 ( )( ( ) + ) = ( ) -( ) -1 ( ) --1 ( ) -1 ( ) = --1 ∈ O cris ( 0 ) 0 = 0 1 .
Hence, ( 1 , 2 ) form a basis of O cris ( ).

For ∈ ℤ, the ltration on O cris ( ) is given as

Fil O cris ( ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ O cris ( ) if ≤ 0, 0 1 1 if = 1, 0 if > 1.
From the ltration, we deduce that the Hodge-Tate weights of are (-1, 0). Also we have ( 1 ) = 1 and ( 2 ) = 2 . Further, the module O cris ( ) is equipped with a quasi-nilpotent and integrable connection, given as

∶ O cris ( ) ⟶ O cris ( ) ⨂ ℤ Ω 1 0 1 ⟼ -2 ⨂ 2 ⟼ 0.
This connection on O cris ( ) satis es Gri ths transversality with respect to the ltration above.

Let O cris ( ) ∶= 1 + 0 2 be an 0 -lattice inside O cris ( ), which is stable under the Frobenius homomorphism. Moreover, this modules has an induced connection from O cris ( ) which sastis es Gri ths transversality with respect to the induced ltration.

For ≥ 2, rst we note that the functor O cris from -adic Galois representations of 0 to ( , )-modules over 0 1 is compatible with symmetric powers (see Theorem 1.27). Therefore, we get that O cris ( ) ∶= O cris (Sym ) = Sym O cris ( ). An explicit 0 1 -basis of O cris ( ) can be given as . We equip O cris ( ) with a ltration induced from the natural ltration on -th tensor power of . Explicitly, for ∈ ℤ we have

Fil O cris ( ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ O cris ( ) if ≤ 0, ∑ = 0 1 1 - 2 if 1 ≤ ≤ , 0 if > .
From the ltration, we deduce that the Hodge-Tate weights of are (-, -+ 1, … , -1, 0). Also, we have ( 1

- 2 ) = 1 - 2
for 0 ≤ ≤ . Further, the module O cris ( ) is equipped with a quasi-nilpotent, integrable connection, given as

∶ O cris ( ) ⟶ O cris ( ) ⨂ Ω 1 0 1 - 2 ⟼ --1 1 -+1 2 ⨂ .
This connection on O cris ( ) satis es Gri ths transversality with respect to the ltration above. Let O cris ( ) ∶= ∑ =0 0 1 -2 be an 0 -lattice inside O cris ( ), which is stable under the Frobenius homomorphism. Moreover, it induces a connection from O cris ( ) and sastis es Gri ths transversality with respect to the induced ltration. Proposition 3.44 (An analogue of Wach module). There exists an + 0 -submodule ( ) ⊂ + ( ) satisfying the conditions of De nition 3.8.

Proof. First we discuss the case = 1 and let ∶= 1 and ∶= 1 . Note that the action of 0 on factors through Γ 0 , so the ( , Γ 0 )-module over 0 associated to can be given as ( ) = 0 ⨂ ℤ = 0 1 + 0 2 . An analogous reasoning gives us that + ( ) = + 0 1 + + 0 2 . For the Wach module of , we see that we can take ( ) ∶= + 0 ℎ 1 + + 0 ℎ 2 , where ℎ 1 = 1 and ℎ 2 = 2 . Clearly, ( ) ⊂ + ( ), and it is endowed with a Frobenius-semilinear endormorphism ∶ ( ) → ( ) such that ( )/ * ( ( )) is killed by . such that we have an + 0 -lattice inside ( ) stable under the action of and Γ 0 . We have { 0 , 1 , … , } as topological generators of Γ such that 0 generates Γ topologically, whereas { 1 , … , } are topological generators of Γ ′ satisfying some compatibility conditions (see Remark 2.2). We have ( 0 ) ∈ 1 + ℤ , whereas ( ) = 1, for 1 ≤ ≤ and therefore, 0 ( ) = (1 + ) ( 0 ) -1 and ( ) = , for ≠ 0.

Moreover,

1 ([ ♭ ]) = (1 + )[ ♭ ] and ([ ♭ ]) = [ ♭ ],
for ≠ 1. From this description, it is straightforward to check that the action of Γ is trivial over ( )/ ( ). As the Hodge-Tate weights of are (-1, 0), we conclude that is a positive Wach representation in the sense of De nition 3.8.

Next, for ≥ 2, we know that the action of 0 on factors through Γ 0 , so the ( , Γ 0 )-module over 0 associated to can be given as

( ) = 0 ⨂ ℤ = ∑ =0 0 1 - 2 .
An analogous reasoning gives us that + ( ) = ∑ =0 + 0 1 -2 . Now, by compatibility of tensor products in Corollary 3.16 (see the proof of Proposition 3.43), we obtain that ( ) = Sym ( ( )). Therefore,

∑ =0 1 ⨂ - 2 with ∈ Fil -O PD .
In this case, we have

=0 1 ⨂ - 2 = =0 ℎ 1 + ℎ 2 ⨂ ℎ - 2 ∈ Fil O PD ⨂ + 0 ( ),
since is a unit, ∈ Fil 1 O PD and ℎ 1 ⨂ ℎ - 2 ∈ Fil ( ). Similarly, for any

∑ =0 ℎ 1 ⨂ ℎ - 2 ∈ Fil O PD ⨂ + 0 ( ), with ∈ Fil -O PD , we have =0 -1 ℎ 1 ⨂ ℎ - 2 = =0 1 - 2 ⨂ - 2 ∈ Fil O PD ⨂ 0 O cris ( ).
Next, the way the respective connections on and are de ned, for 0 ≤ ≤ , we can write

• 1 ⨂ - 2 = ℎ 1 + ℎ 2 ⨂ ℎ - 2 + ℎ 1 + ℎ 2 ⨂ ℎ - 2 = ℎ 1 + ℎ 2 ⨂ ℎ 1 + ℎ 2 -1 ⨂ ℎ - 2 = ⨂ ℎ 1 ( ) ⨂ ℎ 2 ⨂ ℎ 1 + ℎ 2 -1 ⨂ ℎ - 2 = -ℎ 1 + ℎ 2 -1 ⨂ ℎ -+1 2 ⨂ = • 1 ⨂ - 2 .
Finally, Γ 0 acts trivially on ⨂ - 2 and the same is true for ℎ 1 + ℎ 2 ⨂ ℎ - 2 . So we see that the isomorphism (3.14) is compatible with all the structures. This proves the proposition.

CHAPTER 4

Cohomological complexes

Let be a mixed characteristic complete discrete eld with perfect residule eld, its absolute Galois group and a -adic representation of . The continuous -cohomology groups are useful invariants attached to . For example, the rst continuous cohomology group of , i.e.1 cont ( , ) classi es equivalent classes of extensions of the trivial representation ℚ by in Rep ℚ ( ). Further, by the equivalence between the category of -adic representations of and étale ( , Γ )-modules over (see Theorem 2.11), it is natural to ask if the continuous cohomology of a representation could be computed using a complex of the attached ( , Γ )-module. This question was rst answered in the article of Herr (see [START_REF] Herr | Sur la cohomologie galoisienne des corps -adiques[END_REF]). He gave a three term complex in terms of ( , Γ )-module which computes the continuous cohomology of the representation in each cohomological degree. More precisely, Theorem 4.1 (Fontaine-Herr). Let be a -adic representation (resp. ℤ -representation) of , and let ( ) denote the associated étale ( , Γ )-module over (resp.

). Then we have a complex

 • ∶ ( ) (1-, 0 -1) -----------→ ( ) ⨁ ( ) 0 -1 1- ------------→ ( ),
where the second map is ( , ) ↦ ( 0 -1) -(1 -) . The complex  • computes the continuous cohomology of in each cohomological degree, i.e. for ∈ ℕ, we have natural isomorphims

( • ) ≃ --→ cont ( , ).
Before discussing the relative case, let us introduce some shorthand notation for writing certain complexes.

Notation. Let ∶ 1 → 2 be a morphism of complexes. The mapping cone of is the complex Cone( ) whose degree part is given as +1 1 ⨁ 2 and the di erential is given by ( 1 , 2 ) = (-( 1 ), ( 2 ) -( 1)). Next, we denote the mapping ber of by compatible with and † .

Koszul complexes

this section, we will introduce Koszul complexes which will be used to compute continuous Γ -cohomology of topological modules admitting a continuous action of Γ , in particular ( , Γ )modules. Koszul complexes have the advantage of being explicit and therefore easier to manipulate. We will follow the exposition in [CN17, §4.2].

Recall that we set = ( ) for some ≥ 1. From §2.1 that the ring ∞1 is a Galois extension of 1 , with Galois group Γ tting into an exact sequence

1 ⟶ Γ ′ ⟶ Γ ⟶ Γ ⟶ 1,
and we have topological generators { 0 , 1 , … , } of Γ such that { 1 , … , } are topological generators of Γ ′ and 0 is a lift of a topological generator of Γ (see Remark 2.2). Further, let denote the -adic cyclotomic character and recall the convention that = ( 0 ) = exp( ). Let = -1 for 0 ≤ ≤ . We consider the case of an Iwasawa algebra = ℤ [[ 1 , … , ]].

De nition 4.5. The Koszul complex associated to ( 1 , … , ) is the complex

( 1 , … , ) = ( 1 ) ⨂ℤ ( 2 ) ⨂ℤ ⋯ ⨂ℤ ( ),
where ( ) is the complex

0 ⟶ ℤ [[ ]] ----→ ℤ [[ ]] ⟶ 0,
where the non-trivial map is multiplication by and the right-hand term is placed in degree 0.

Remark 4.6. The Koszul complex de ned above, in degree , equals the exterior power ⋀ . In the standard basis { 1 ⋯ } of ⋀ for 1 ≤ 1 < ⋯ < ≤ , the di erential 1 ∶ ⋀ → ⋀ -1 is given by the formula

1 1 ⋯ = =1 (-1) +1 1 ⋯ ̂ ⋯ . (4.1)
The augmentation map → ℤ makes ( 1 , … , ) into a resolution of ℤ in the category of topological -modules.

We can use this to de ne Koszul complex for modules equipped with an action of Γ ′ or Γ . Let ℤ [[Γ ′ ]] denote the Iwasawa algebra of Γ ′ , i.e. the completed group ring

ℤ [[Γ ′ ]] ∶= lim ⊴Γ ′ ℤ [Γ ′ / ],
where the (projective) limit runs over all open normal subgroups of Γ ′ and every group ring ℤ [Γ ′ / ] is equipped with the -adic topology. We have ℤ

[[Γ ′ ]] ≃ ℤ [[ 1 , … , ]], = -1 for ∈ {1, … , }.
De nition 4.7. The Koszul complex ( 1 , … , ) is given as

0 ℤ [[Γ ′ ]] ′ ⋯ ℤ [[Γ ′ ]] ′ 1 ℤ [[Γ ′ ]] 0,
De nition 4.8. Let Λ ∶= ℤ [[Γ and de ne the complex

(Λ) ∶ 0 Λ ′ ⋯ Λ ′ 1 Λ 0. 1 -1 1 1 1 0
We have an isomorphism 

lim ℤ Γ /(Γ ) ⨂ ℤ ( 1 , … , ) ≃ (Λ),
Λ ′ ⋯ Λ ′ 1 Λ ℤ [[Γ ]] 0 0 Λ ′ ⋯ Λ ′ 1 Λ ℤ [[Γ ]] 0, -1 0 1 0 1 0 0 0 0 -1 1 -1 1 1 1 0
where the vertical maps are de ned as

0 0 = 0 -1 0 ∶ 1 ⋯ ↦ 1 ⋯ 0 -1 ⋯ ,
for 1 ≤ ≤ , 1 ≤ 1 < ⋯ < ≤ , and 1 ⋯ = ⋯ 1 , where = -1 -1 -1 .

Let be a topological ℤ -module admitting a continuous action of Γ . 

Kos(Γ ′ , ) ∶ ′ 1 ⋯ ′ , Kos (Γ ′ , ) ∶ ′ 1 ⋯ ′ . ( ) 
( )
The map 0 ∶ (Λ) ⟶ (Λ) induces a map of complexes

0 ∶ Kos(Γ ′ , ) ⟶ Kos (Γ ′ , ),
which can be represented by the commutative diagram

′ 1 ⋯ ′ ′ 1 ⋯ ′ . ( ) 0 0 1 0 0 ( )
From Lemma 2.45, we already have that

( 0 -1) PD ⊂ , PD . (4.2)
So to check that the series ∇ 0 ( ) converges over PD we write it ∑ and we collect the coe cients of for ≥ 1, having the smallest -adic valuation, which will also have the least -adic valuation among the coe cients of for ≤ ≤ ( + 1). We write the collection of these terms as

≥1 (-1) +1 = ≥1 (-1) +1 ⌊ / ⌋! ⌊ / ⌋! ,
and by the preceding discussion it is enough to show that these coe cients go to 0 as → +∞.

Moreover, for this series it su ces to check the estimate of coe cients for = ( -1) as → +∞ (this gets rid of the oor function above). With help of Remark 2.44, we have

⌊ / ⌋! = ( )! ( -1) = (( )!) -(( -1) ) ≥ -( ) -1 -= -( ) -1 = ( !),
which goes to +∞ as → +∞. Hence, we conclude that ∇ 0 = log 0 converges as a series of operators on PD . Next, consider for ∈ {1, … , }. Again from Lemma 2.45 we have

( -1) [ ♭ ] = [ ♭ ] ∈ , PD . (4.3) 
By an argument similar to the case of 0 it follows that ∇ = log converges as a series of operator on PD . The arguments in the case of [ ] and [ , ] follow similarly (the estimates of -adic valuation of coe cients is easier).

Next, note that formally we can write

log(1 + ) = 1 + 1 + 2 2 + 3 3 + ⋯ , log(1 + ) = 1 + 1 + 2 2 + 3 3 + ⋯ ,
where ( ) ≥ --1 for all ≥ 1 and therefore, ( ) ≥ --1 for all ≥ 1. Setting = -1 for ∈ {0, 1, … , }, we make the following claim:

Lemma 4.17. For ∈ {0, 1, … , }, the operators

∇ -1 = log -1 and -1 ∇ = -1 log
converge as series of operators on PD , [ ] and [ , ] .

Proof. We will only show that these series converge on PD , the case of [ ] and [ , ] follow similarly. Moreover, similar to Lemma 4.16 it su ces to check the convergence of these operators for their action on .

So we will check that the series ∇ -1 ( ) converges over PD (the convergence of the other series follows similarly since ( ) ≥ --1 and ( ) ≥ --1 for ∈ ℕ). From the description of the action of -1 in (4.2) and (4.3), we can write the series ∇ -1 ( ) as ∑ . Next, we collect the coe cients of for ≥ 1, having the smallest -adic valuation, which will also have the least -adic valuation among the coe cients of for ≤ ≤ ( + 1). We write the collection of these terms as

≥1 (-1) +1 = ≥1 (-1) +1 ⌊ / ⌋! ⌊ / ⌋! .
By the preceding discussion it is enough to show that these cients go to 0 as → +∞. Moreover, for this series it su ces to check the estimate of coe cients for = ( -1) as → +∞ (this gets rid of the oor function above). With help of Remark 2.44, we have

⌊ / ⌋! = ( -1) ( )! = (( )!) - ( -1) ≥ -( ) -1 -= -( ) -1 = ( !),
which goes to +∞ as → +∞. Hence, it follows that the series in the claim converge for PD , [ ] and [ , ] .

Example 4.18. Recall that in §3.3, we constructed Wach modules arising from symmetric powers of the -adic Tate module of the false Tate curve. For ∈ ℕ, we have as a ℤ -representation of 0 with a basis 1 ⨂ - 2 0≤ ≤ . The Wach module is given as

( ) = ∑ =0 + 0 ℎ 1 ⨂ ℎ - 2 .
Our objective is to analyze the action of Lie Γ over PD ∶= PD ⨂ + 0 ( ). Note that by Lemma 4.16, the operators ∇ = log for ∈ {0, … , }, converge as a series of operators over PD .

It is straightforward to see that ∇ (ℎ 2 ) = 0 for 0 ≤ ≤ . Further, we have

∇ 0 ( 1 ) = lim →∞ 0 ( 1 ) -1 = lim →∞ ( 0 ) - 1 -1 = -log ( 0 ) 1 ,
and ∇ 0 ( ) = (1 + ). So we get that ∇ 0 ( 1 ) = ( (1 + ) -) 1 . Therefore, for 0 ≤ ≤ , we have

∇ 0 ℎ 1 ℎ - 2 = ∇ 0 1 - 2 = (1 + ) -1 - 1 - 2 = (1 + ) -1 ℎ 1 ℎ - 2 .
For the action of 1 , we have

∇ 1 ( 1 ) = lim →∞ 1 ( 1 ) -1 = lim →∞ - 2 = -2 .
Since 1 has trivial action on , we get that ∇ 1 ( 1 ) = -2 . Therefore, in this case, for 0 ≤ ≤ , we have

∇ 1 ℎ 1 ℎ - 2 = ∇ 1 1 - 2 = - -1 1 -+1 2 = -ℎ -1 1 ℎ -+1 2 .
Finally, for 2 ≤ ≤ , we have ∇ ( 1 ) = 0, therefore ∇ ℎ 1 ℎ - 2 = 0. As we can see that ∇ ( PD ) ⊂ PD and since is a unit in PD (see Lemma 2.43), we can introduce di erential operators on PD . More precisely, in the basis 1+ , log[ ♭ 1 ], … , log[ ♭ ] of Ω 1 PD , the connection can be deduced by the relation ∇ = , for 1 ≤ ≤ .

Koszul Complex

In this section, we turn our attention to the computation of Lie algebra cohomology using Koszul complexes. The Lie algebra Lie Γ ′ of the -adic Lie group Γ ′ is a free ℤ -module of rank , i. 

∇ 0 ∶ Kos(Lie Γ ′ , ) ⟶ Kos(Lie Γ ′ , ), de ned by the diagram ′ 1 ⋯ ′ ⋯ ′ 1 ⋯ ′ ⋯ , (∇ ) ∇ 0 ∇ 0 - ∇ 0 - (∇ )
which commutes since ∇ 0 ∇ -∇ ∇ 0 = ∇ for 1 ≤ ≤ (see (4.4)). Note that the -th vertical arrow is ∇ 0 -since the ( -1)-th vertical arrow is ∇ 0 -( -1) and using (4.4) trivially we have (∇ 0 -)∇ = ∇ (∇ 0 -( -1) ). CHAPTER 5

Syntomic complex and Galois cohomology

Let be a mixed characteristic complete discrete valuation eld with ring of integers and residue eld of characteristic . Let be a smooth proper scheme over , such that ∶ ∶= ⨂ denotes the inclusion of its generic ber and ∶ 0 ∶= ⨂ denotes the inclusion of its special ber. For ≥ 0, let S ( ) denote the syntomic sheaf modulo on 0,ét . In [START_REF] Fontaine | -adic periods and -adic étale cohomology[END_REF], Fontaine and Messing constructed period morphisms FM , ∶ S ( ) ⟶ * * ℤ/ ( ) ′ , ≥ 0, from syntomic cohomology to -adic nearby cycles, where ℤ ( ) ′ ∶= 1 ( ) ℤ ( ), for = ( -1) ( ) + ( ) with 0 ≤ ( ) ≤ -1.

In [START_REF] Colmez | Syntomic complexes and -adic nearby cycles[END_REF], Colmez and Nizioł have shown that the Fontaine-Messing period map FM , , after a suitable truncation, is essentially a quasi-isomorphism. More precisely, Theorem 5.1 ([CN17, Theorem 1.1]). For 0 ≤ ≤ , the map FM , ∶  (S ( ) ) ⟶ * * ℤ/ ( ) ′ , is a -isomorphism, i.e. there exists = ( , , ) ∈ ℕ depending on and the absolute rami cation index of but not on or , such that the kernel and cokernel of the map is killed by .

In fact, for ≤ ≤ -1, the map FM , was shown to be an isomorphism by Kato [Kat89, Kat94], Kurihara [START_REF] Kurihara | A note on -adic étale cohomology[END_REF], and Tsuji [START_REF] Tsuji | -adic étale cohomology and crystalline cohomology in the semi-stable reduction case[END_REF]. Further, in [START_REF] Tsuji | Syntomic complexes and -adic vanishing cycles[END_REF] Tsuji generalized this result to some suitable étale local systems.

The proof of Colmez and Nizioł is di erent from earlier approaches. They construct another local period map  , employing techniques from the theory of ( , Γ)-modules and a version of integral Lazard isomorphism between Lie algebra cohomology and continuous group cohomology. Then they proceed to show that this map is a quasi-isomorphism and coincides with Fontaine-Messing period map up to some constants. Moreover, all of their results have been worked out in the general setting of log-schemes.

To state the local result, we will restrict ourselves to a familiar setting. We will assume the setup of Chapter 1, as well as notations from Chapter 2. Recall that we xed to be a nite eld of characteristic ; = Fr = Fr ( ); an integer ≥ 1 and = ( ), where is a primitive -th root of unity such that the element = -1 is a uniformizer of . Moreover, let = ( 1 , … , ) be a set of indeterminates, then we de ned 0 to be the -adic completion of an étale algebra over ( ){ , -1 }; similarly, to be the -adic completion of an étale algebra over □ (de ned using the same equations as in the de nition of 0 ). We also have rings and for ∈ { , +, PD, [ ], (0, ]+, [ , ]}. Recall that we assumed ≥ 3 and we take = -1 and = -1.The -adic completion of the module of di erentials of 0 relative to ℤ is given as

Ω 1 0 = ⨁ =1 0 log and Ω 0 = ⋀ Ω 1 0 , for ∈ ℕ.
Moreover, the kernel and cokernel of the natural map Ω 0 ⨂ 0 → Ω is killed by a power of (see Proposition 1.1). In particular,

Ω 1 = ⋀ ⨁ =1 1 log .
Also, for = where ∈ {+, PD, [ ], [ , ]}, we have

Ω 1 = 0 1+ 0 ⨁ ⨁ =1
log .

The syntomic cohomology of can be computed by the complex

Syn( , ) ∶= Cone Ω • PD -• --------→ Ω • PD [-1],
such that we have syn ( , ) = (Syn( , )). For large enough, Colmez and Nizioł have shown that, Theorem 5.2 ([CN17, Theorem 1.6]). The maps

L ∶ ≤ Syn( , ) ⟶ ≤ Γ cont ( , ℤ ( )), L , ∶ ≤ Syn( , ) ⟶ ≤ Γ cont ( , ℤ/ ( )) ⟶ ≤ Γ Sp 1 ét , ℤ/ ( ) ,
(5.1) are -quasi-isomorphisms for a universal constant .

Note that the truncation here denotes the canonical truncation in literature. Finally, using Galois descent one can obtain the result over (not necessarily having enough roots of unity, with depending on , and , see [CN17, Theorem 5.4]).

Formulation of the main result

In Theorem 5.2, we are interested in the -adic result, i.e. the rst isomorphism in (5.1), where we would like to insert some representation on the right hand side and an appropriate syntomic object on the left. For this, we will introduce a certain class of representations: Let be an ℎ-dimensionaladic Wach representation of 0 with non-positive Hodge-Tate weights -= -1 ≤ -2 ≤ ⋯ ≤ℎ ≤ 0 and let ⊂ a free ℤ -lattice of rank ℎ stable under the action of 0 (see De nition 3.8). Assume that ( ) is a free + 0 -module of rank ℎ, and let O cris ( ) ⊂ O cris ( ) be a free 0 -submodule of rank ℎ such that O cris ( ) 1 = O cris ( ) (see Remark 5.4 for conventions on O cris ( )) and the induced connection over O cris ( ) is quasi-nilpotent, integrable and satis es Gri ths transversality with respect to the induced ltration.

De nition 5.3. For ∈ ℤ we set ( ) ∶= ⨂ ℚ ℚ ( ) and ( ) ∶= ⨂ ℤ ℤ ( ) and call all such representations free Wach representations of 0 .

Remark 5.4. For our intended applications in this chapter, it would su ce to take O cris ( ) ∶= O PD ⨂ + 0 ( ) Γ , with an additional assumption that it is free of rank ℎ as an 0 -module (see Remark 3.42). The module O cris ( ) depends on the choice of ∈ ℕ ≥1 (see Remark 3.39). On the other hand, using Proposition 3.31 we note that it would also su ce to take O cris ( ) = 0 (in the notation of the proposition), which also depends on (see Remark 3.39). The reader should note that we do not assume the choice of O cris ( ) to be "canonical". However, we x this choice for the rest of the current chapter. The chosen notation is for the sake of consistency and being explanatory.

Our objective is to relate the ( , Γ)-module complex computing the continuous -cohomology of ( ) (see Theorem 4.4), to syntomic complex with coe cient in the 0 -lattice O cris ( ) ⊂ O cris ( ).

De ne

PD ∶= PD ⨂ 0 O cris ( ). There is a Frobenius-semilinear endomorphism on PD given by the diagonal action of the Frobenius on each component of the tensor product, and a ltration {Fil PD } ∈ℤ given as the sum of ltration on each component (see §5.1 for explicit formulas). Further, PD is equipped with a connection ∶ PD → PD ⨂ PD Ω 1 PD arising from the connection on O cris ( ) and the di erential operator on PD (see §5.1 for details). Moreover, the connection on PD satist es Gri ths transversality with respect to the ltration. In conclusion, we have a ltered de Rham complex for ∈ ℤ,

Fil D • ∶= Fil PD ⨂ PD Ω 1 PD ⟶ Fil -1 PD ⨂ PD Ω 2 PD ⟶ ⋯ .
De nition 5.5. Let ∈ ℕ and ∶= ⨂ 0 O cris ( ). De ne the syntomic complex Syn( , ) and the syntomic cohomology of with coe cients in as

Syn( , ) ∶= Fil D • -• --------→ D • ; * syn ( 
, ) ∶= * (Syn( , )).

We will relate this complex to Fontaine-Herr complex computing the continuous -cohomology of ( ). The key idea is to interpret all these complexes in terms of Koszul complexes, and by applying a version of Poincaré lemma, we can further relate the syntomic complexes to "( , Γ)-module Koszul complexes". The main result of this chapter is: Theorem 5.6. Let be a free ℤ -representation of 0 as in De nition 5.3 such that = ℚ ⨂ ℤ is a free positive Wach representation. Let be the maximum among the absolute value of the Hodge-Tate weights of and ∈ ℤ such that ≥ + 1. Then there exists a -quasi-isomorphism ≤ --1 Syn( , ) ≃ ≤ --1 Γ cont ( , ( )), where = ( , , , ) ∈ ℕ depending on the representation , rami cation index , the prime , and . In particular, we have -isomorphisms

syn ( , ) ≃ --→ ( , ( )), for 0 ≤ ≤ --1.
The proof of Theorem 5.6 will proceed in two main steps: First, we will modify the syntomic complex with coe cients in to relate it to a "di erential" Koszul complex with coe cients in ( ) (see Proposition 5.30). Next, in the second step we will modify the Koszul complex from the rst step to obtain Koszul complex computing continuous -cohomology of ( ) (see De nition 5.6 and Proposition 5.31). The key to the connection between these two steps will be provided by the comparison isomorphism in Theorem 3.24.

Change of disk of convergence

In order to relate Syn PD , to Koszul complexes, we will rst pass to the analytic ring [ ] and then to [ , ] . Recall that we have PD = PD ⨂ 0 O cris ( ) and [ ] = [ ] ⨂ 0 O cris ( ) equipped with supplementary structures described above.

Proposition 5.10.

(i) For 1 -1 ≤ ≤ 1, the morphism of complexes

Syn PD , ⟶ Syn [ ] ,
induced by the inclusion PD ⊂ [ ] is a 2 -isomorphism.

(ii) For ′ ≤ ≤ ′ , the morphism of complexes

Syn [ ′ ] , ⟶ Syn [ ] ,
induced by the inclusion

[ ′ ] ⊂ [ ] is a 2 -isomorphism.
The proposition follows from the following lemma by taking = .

Lemma 5.11. Let ∈ ℕ and = + .

(i) If 1 -1 ≤ ≤ 1, the map - ∶ Fil [ ] ⨂ Ω [ ] / Fil PD ⨂ Ω PD ⟶ [ ] ⨂ Ω [ ] / PD ⨂ Ω PD , is a + -isomorphism. (ii) If ′ ≤ ≤ ′ , the map - ∶ Fil [ ] ⨂ Ω [ ] / Fil [ ′ ] ⨂ Ω [ ′ ] ⟶ [ ] ⨂ Ω [ ] / [ ′ ] ⨂ Ω [ ′ ] ,
is a + -isomorphism.

Proof. The proof follows in a manner similar to [CN17, Lemma 3.2].

(i) Note that we can decompose everything in the basis of the 's, where ∈ . By the de nition of Frobenius on we are reduced to showing that

- ∶ Fil [ ] / Fil PD ⟶ [ ] / PD , is a + -isomorphism. We have PD ⊂ [ ] and [ ] ⊂ PD since [ ] ⊂ [ / ] ⊂ PD , for 1 -1 ≤ ≤ 1.
For -injectivity, we note that we have Fil [ ] = [ ] ⋂ Fil PD , so it su ces to show that if ( -) ∈ PD then ∈ PD . But since we can write = ( -) + ( ) and [ ] ⊂ PD , we get that ∈ PD . Now, let { 1 , … , ℎ } be an 0 -basis of O cris ( ). Then, to show + -surjectivity we write

= ∑ ℎ =1 ⨂ ∈ [ ] ⨂ 0 O cris ( ) = [ ] .
We will write + as a sum of elements in ( -)Fil [ ] and PD . Let = ( -1) , then from the de nition of [ ] we can write

= 1 + 2 , with 2 ∈ [ ] ,
and 1 ∈ -⌊ / ⌋ + ⊂ -PD , where we write [ ] , as in the notation of Lemma 2.32 (it consists of power series in 0 involving terms 0 for ≥ ). Now let 1 = ∑ ℎ =1 1 ⨂ and 2 = ∑ ℎ =1 2 ⨂ , so that = 1 + 2 . By Lemma 2.32, we can write

2 = (1 --) , for some = ℎ =1 ⨂ ∈ [ ] ⨂ O cris ( ) = [ ] .
Also, by Lemma 2.28 we can write = 1 + 2 with 1 ∈ Fil [ ] and 2 ∈ -⌊ ⌋ + . Let

1 = ∑ ℎ =1 1 ⨂ ∈ Fil [ ] and 2 = ∑ ℎ =1 2 ⨂ ∈ -PD , then (1 --) 2 = -( - ) 2 ∈ --PD ,
and

-(1 --) 1 = 1 + 2 -(1 --) 1 = 1 + (1 --) 2 ∈ -PD + --PD ⊂ --PD .
Therefore, we obtain that

∈ --PD + -( - )Fil [ ] ,
which allows us to conclude.

(ii) We can repeat the arguments in (i) by replacing PD with [ ′ ] , since

[ ′ ] ⊂ [ ] and [ ] ⊂ [ / ] ⊂ [ ′ ]
, for ′ ≤ ≤ ′ .

Change of annulus of convergence

Recall that our objective is to relate the syntomic complexes discussed in the last section to di erential Koszul complexes. To realize this goal, we further base change our complex to the ring [ , ] . Recall that we have

[ ] = [ ] ⨂ 0 O cris ( ), and [ , ] = [ , ] ⨂ 0 O cris ( ) = [ , ] ⨂ [ ] [ ] .
Proposition 5.12. For ≤ , there exists a 2 +4 -quasi-isomorphism

≤ --1 Syn [ ] , ≃ ≤ --1 Syn [ , ] , , i.e. we have 2 +4 -isomorphisms syn [ ] , ≃ syn [ , ] , ,
for 0 ≤ ≤ --1.

Proof. Combining the results from Lemmas 5.13, 5.16 & 5.14, we get the claim.

From the de nition of complexes displayed in the claim above, it is not at all immediate that we should expect them (before and after scalar extension) to be quasi-isomorphic. Adapting a technique used in the theory of ( , Γ)-modules of passing to the corresponding (quasi-isomorphic) -complex, we will establish a -power quasi-isomorphism, between the complexes of interest. This motivates our next de nition for an operator over ≤ , ≤ ℎ and is maximum among the absolute values of Hodge-Tate weights of . Therefore, we can de ne

∶ [ ] ⨂ 0 O cris ( ) ⟶ 1 [ ] ⨂ 0 O cris ( ) ℎ =1 ⨂ = ⟼ ( ) = ℎ =1 ℎ =1 ⨂ , (5.4) 
where we consider the operator on [ ] de ned in §2.3.2. It is easy to show that this map is well-de ned, i.e. independent of the choice of the basis for O cris ( ).

Using the operator on [ ] = [ ] ⨂ 0 O cris ( ) as above, we can de ne the complex

Syn [ ] , ∶= Fil [ ] ⨂ Ω • [ ] + -•+ ---------→ [ ] ⨂ Ω • [ ] ,
where the operator acts on Ω • [ ] as in (5.3). Lemma 5.13. The commutative diagram

Fil [ ] ⨂ Ω • [ ] [ ] ⨂ Ω • [ ] Fil [ ] ⨂ Ω • [ ] [ ] ⨂ Ω • [ ] , -• + -•+ de nes a 2 -quasi-isomorphism from Syn [ ] , to Syn [ ] ,
, where is maximum among the absolute value of Hodge-Tate weights of .

Proof. First, let us look at the cokernel complex. Since the left vertical arrow is identity, we only need to look at the cokernel of the right vertical arrow. Now, by de nition we have ( [ ] ) ⊂ -[ ] and in particular, ( [ ] ) ⊂ [ ] . Moreover, note that the operator ∶ [ ] → [ ] is surjective and O cris ( ) ⊂ * (O cris ( )). Therefore, we have

[ ] = [ ] ⨂ 0 O cris ( ) ⊂ ( [ ] ⨂ 0 * (O cris ( ))) ⊂ ( [ ] ⨂ 0 O cris ( )) = ( [ ] )
Hence, we get that

( [ ] ) is -isomorphic to [ ] .
In particular, the cokernel complex is killed by .

Next, for the kernel complex, we proceed as follows: Let = [ ] and we take O cris ( ) = ⨁ ℎ =1 0 , so that we have [ ] = ⨁ ℎ =1 . Now we know that O cris ( )/ * (O cris ( )) is killed by , where is maximum among the absolute values of Hodge-Tate weights of (see Proposition 3.31 and Corollary 3.38). So by extending scalars to , we obtain a -isomorphism

⨂ 0 O cris ( ) ≃ ℎ ⨁ =1 ( ).
Note that an element

= ℎ =1 ( ) ∈ ℎ ⨁ =1 ( ) =0 ,
if and only if ∈ =0 . Indeed, ( ) = 0 if and only if ∑ ℎ =1 ( ) = 0. Since are linearly independent over 0 1 , we get that ( ) = 0 if and only if ( ) = 0 for all 1 ≤ ≤ ℎ. In particular, we have a -isomorphism

[ ] =0 = ⨂ 0 O cris ( ) =0 ≃ ℎ ⨁ =1 ( ) =0 = ℎ ⨁ =1 =0 ( ).
as a left inverse to . Now using [ , ] = [ , ] ⨂ 0 O cris ( ), we can de ne the complex Syn

[ , ] , ∶= Fil [ , ] ⨂ Ω • [ , ] + -•+ ---------→ [ , ] ⨂ Ω • [ , ] .
We can relate the two ( , )-complexes discussed so far, Lemma 5.14. Let ≤ 1 ≤ . The natural morphism

Syn [ ] , ⟶ Syn [ , ] , , is a 2 -quasi-isomorphism in degrees ≤ --1.
Proof. The map between complexes is induced by the diagram

Fil [ ] ⨂ Ω • [ ] [ ] ⨂ Ω • [ ] Fil [ , ] ⨂ Ω • [ , ] [ , ] ⨂ Ω • [ , ] , + -•+ + -•+
where the vertical arrows are natural maps induced by the inclusion [ ] ⊂ [ , ] . Therefore, it su ces to show that the mapping ber

Fil [ , ] ⨂ Ω • [ , ] / Fil [ ] ⨂ Ω • [ ] + -•+ -----------→ [ , ] ⨂ Ω • [ , ] / [ ] ⨂ Ω • [ ] ,
is 2 -acyclic. By Lemma 5.15, we can ignore the ltration and, working in the basis { , ∈ } of Ω , it is enough to show that

+ -+ ∶ [ , ] / [ ] ⟶ [ , ] / [ ] ,
is a -isomorphism for ≤ --1. But

[ , ] / [ ] ≃ [ , ] / [ ] ,
and therefore 1 -is an endomorphism of this quotient for = -. Moreover, for ≥ + 1 we get that 1 -is invertible on [ , ] / [ ] with inverse given as 1 + -( ) + 2( -) ( ) 2 + ⋯.

Therefore + -+ = + ( --1) is a + -isomorphism. Since + ≤ -1, we obtain that the complex in the claim is 2 -acyclic.

Following observation was used above, Lemma 5.15. For ≤ 1 ≤ , the natural morphism

Fil [ , ] / Fil [ ] ⟶ [ , ] / [ ] ,
is a -isomorphism.

Proof. First we recall that Fil [ , ] 

= + = Fil [ , ] ⨂ Fil O cris ( ).
Now the map in the claim is clearly injective. For -surjectivity, let { 1 , … , ℎ } be an 0 -basis of O cris ( ) and let = ∑ ℎ =1 ⨂ ∈ [ , ] ⨂ O cris ( ). By [CN17, Lemma 3.5], we have aisomorphism

Fil [ , ] / Fil [ ] ⟶ [ , ] / [ ] ,
so we can write = 1 + 2 , with 1 ∈ Fil [ , ] and 2 ∈ [ ] . Since ∑ ℎ =1 1 ⨂ ∈ Fil [ , ] , we get the desired conclusion.

Finally, we can get back to the ( , )-complex, Lemma 5.16. The commutative diagram

Fil [ , ] ⨂ Ω • [ , ] [ , / ] ⨂ Ω • [ , / ] Fil [ , ] ⨂ Ω • [ , ] [ , ] ⨂ Ω • [ , ] , -• + -•+
de nes a 2 -quasi-isomorphism from Syn [ , ] , to Syn [ , ] , .

Proof. We can repeat the arguments in the proof of Lemma 5.13 by replacing [ ] with [ , ] and [ ] with [ , ] . We brie y sketch the argument. First, for the cokernel complex, we only need to look at the cokernel of the right vertical arrow. We have ( [ , / ] ) ⊂ - [ , ] , and in particular ( [ , / ] ) ⊂ [ , ] . Further, the operator ∶

[ , / ] → [ , ] is surjective and O cris ( ) ⊂ * (O cris ( ))
. Therefore, we have

[ , ] = [ , ] ⨂ 0 O cris ( ) ⊂ ( [ , / ] ⨂ 0 * (O cris ( ))) ⊂ ( [ , / ] ⨂ 0 O cris ( )) = ( [ , / ] )
Hence, we get that ( [ , / ] ) is -isomorphic to [ , ] . In particular, the cokernel complex is killed by .

Next, we look at the kernel complex. Let = [ , / ] and arguing as in Lemma 5.13, we obtain a -isomorphism

[ , ] =0 = ⨂ 0 O cris ( ) =0 ≃ ℎ ⨁ =1 ( ) =0 = ℎ ⨁ =1 =0 ( ).
Now using (5.3), we can write

O cris ( ) ⨂ 0 Ω =0 = ⨂ 0 O cris ( ) =0 ⨂ ℤ Ω , (5.7) 
where

Ω 1 = ℤ 0 1+ 0 ⨁ =1 ℤ and Ω = ⋀ Ω 1 .
From Lemma 2.37(ii), we have a decomposition =0 = ⨁ ≠0 = , where = (1+ 0 ) 0 1 1 ⋯ for = ( 0 , … , ) ∈ {0, 1, … , -1} [0, ] . From §2.3.2, we have ( ) = for 0 ≤ ≤ . In particular, ( ) ⊂ . So using the decomposition of =0 , we set = ⨁ ℎ =1 ( ) and obtain that [ , ] =0 is -isomorphic to ⨁ ≠0 . From the di erentials on and the connection on [ , ] we obtain an induced connection ∶ → ⨂ Ω 1 = ⨂ ℤ Ω 1 , which is integrable. The decomposition of [ , ] ) =0 and (5.7) shows that the kernel complex in the claim is -isomorphic to the direct sum of complexes 0

⟶ ⟶ ⨂ Ω 1 ⟶ ⨂ Ω 2 ⟶ ⋯ , (5.8) 
where ≠ 0. An analysis similar to Lemma 5.13 shows that the complex (5.8) has a very simple shape modulo : if = 0, it is just 0 -----→ ; if = 1, it is the total complex attached to the double complex , 0 1 1 0 and for general , it is the total complex attached to a ( + 1)-dimensional cube with all vertices equal to and arrows in the -th direction equal to . As one of the is invertible by assumption, this implies that the cohomology of the total complex is 0. This establishes that (5.8) is exact for each and hence the kernel complex is -acyclic.

Di erential Koszul Complex

In the previous sections we studied syntomic complexes over various base rings with coe cients in O cris ( ). In this section, we will study di erential Koszul complex over the base ring [ , ] with coe cients in the Wach module ( ). As we shall see the di erential Koszul complex is very closely related to syntomic complexes. Such a relationship is to be expected, since we have an isomorphism of rings cycl ∶ [ , ] ≃ --→ [ , ] in §2.4 and there exists a natural comparison between O cris ( ) and ( ) after extension of scalars to O PD on both sides (see Theorem 3.24). Note that from now onwards, we will be working under the assumption that -1 ≤ ≤ < 1 < , for example, one can take = -1 and = -1.

The ring [ , ] is a -adically complete ℤ -algebra, equipped with a Frobenius ∶ [ , ] → [ , / ] , lifting the absolute Frobenius on [ , ] / . Let Ω •

[ , ] denote the -adic completion of the module of di erentials of [ , ] relative to ℤ. Recall from §2.3 that Ω 1

[ , ] has a basis of di erentials 0 1+ 0 , 1 1 , … , . So via the identi cation cycl ∶ [ , ] ≃ --→ [ , ] we obtain di erential operators over [ , ] , for 0 ≤ ≤ . Moreover, from De nition 2.27 we can endow [ , ] with a ltration {Fil [ , ] } ∈ℤ and obtain ltered de Rham complex

Fil Ω • [ , ] ∶ Fil [ , ] ⟶ Fil -1 [ , ] ⨂ Ω 1 [ , ] ⟶ Fil -2 [ , ] ⨂ Ω 2 [ , ] ⟶ ⋯ , for ∈ ℤ.
Further, the di erential operators can be related to the in nitesimal action of Γ by the relation

∇ ∶= log = for 0 ≤ ≤ ,
where log = ∑ ∈ℕ (-1) ( -1) +1 +1 . We will study similar operators over the [ , ] -module arising from the Wach module ( ).

Note that for an indeterminate we can formally write

log(1 + ) = 1 + 1 + 2 2 + 3 3 + ⋯ , log(1 + ) = 1 + 1 + 2 2 + 3 3 + ⋯ ,
where ( ) ≥ --1 for all ≥ 1 and therefore, ( ) ≥ --1 for all ≥ 1. We have the following claim:

Lemma 5.17. Let [ , ] = [ , ] ⨂ + 0 ( ). Then, for ∈ {0, 1, … , } the operators

∇ = log ; ∇ -1 = log -1 ; and -1 ∇ = -1 log .
converge as series of operators on [ , ] .

(ii) The Frobenius extends uniquely to continuous morphisms

PD ⟶ PD , [ ] ⟶ [ ] , [ , ] ⟶ [ , / ] .
(iii) The action of extends uniquely to continuous actions on PD , [ ] , and [ , ] which commutes with the Frobenius. Remark 5.25.

(i) In De nition 5.23 if we reverse the roles of and Λ, i.e. if we take = , Λ = and = -1 cycl , then we get an isomorphism Λ ≃ with obvious commutativity of the action of Frobenius and the Galois group on each side.

(ii) Let = ⨂ 1 1 ⨂ ( ) , for 0 ≤ ≤ . We lter by de ning Fil to be the topological closure of the ideal generated by the products of the form 1 2 ∏( -1) [ ] , with 1 ∈ Fil 1 , 2 ∈ Fil 2 , and 1 + 2 + ∑ ≥ .

From De nition 3.18, we have a -adically complete ring O PD equipped with a Frobenius and a continuous action of Γ . In Remark 3.20, we mentioned an alternative construction of O PD using an embedding ∶ 0 → PD de ned by sending ↦ [ ♭ ], for 1 ≤ ≤ . Identifying 0 as a subring of PD , and extending the embedding to PD → PD by sending 0 ↦ , we get that the extended embedding is exactly cycl . Since the action of the Frobenius and the Galois group over O PD and PD can be given by their action on each component of the tensor product, we obtain a Frobenius and Galois-equivariant embedding O PD PD . Moreover, the ltration on O PD (see De nition 3.21) coincides with the ltration induced from its embedding into PD . Note that since PD ⊂ PD , the key di erence between PD and O PD is that the former ring contains the indeterminate 0 and its divided powers, whereas the latter ring does not.

Next, from the natural inclusion 0 PD we know that the di erential operator on 0 is compatible with the di erential operator on PD . Further, we have an identi cation -1 cycl ∶ PD ≃ --→ PD (see §2.4) using which we obtain di erential operators on PD . Also, over the ring PD , the operators ∇ = log converge for 0 ≤ ≤ (see Lemma 4.16), which are related to the di erential operators by the relation ∇ = . Thus if we denote this di erential operator over PD as = ( ) 0≤ ≤ and the di erential operator over PD (as well as over 0 ) as , then we see that the induced di erential operator ⨂ 1 + 1 ⨂ over O PD as well as PD are compatible. Note that PD is naturally contained in [ , ] compatible with all the structures. Hence, below we will identify O PD as a subring of [ , ] . Now we turn to the comparison between O cris ( ) and ( ) over the ring O PD . Recall from the proof of Proposition 3.31 that we have a natural map

O PD ⨂ 0 O cris ( ) ⟶ O PD ⨂ 0 ( ),
(5.11) compatible with Frobenius, ltration, connection and the action of Γ on each side. Moreover, (5.11) is an injective map which is ( , ) -surjective for some constant ( , ) ∈ ℕ (since it is an isomorphism after inverting ), depending on the representation and the rami cation index of / (see Remarks 3.39 & 5.4). We can promote this comparison over O PD , by extension of scalars, over to the ring [ , ] such that the natural injection of modules [ , ] ⨂ 0 O cris ( ) ⟶ [ , ] ⨂ 0 ( ), is a ( , ) -surjection compatible with Frobenius, ltration, connection and the action of Γ on each side. Let [ , ] = [ , ] ⨂ 0 O cris ( ), and [ , ] = [ , ] ⨂ + 0 ( ), then we can rephrase the comparison above as a ( , ) -isomorphism [ , ] ≃ [ , ] ⨂ [ , ]

[ , ] ,

(5.12)

De nition 5.29. Let [ , ] as above such that it admits a Frobenius-semilinear morphism ∶ Proposition 5.30. The complexes Syn [ , ] , and Kos , , Fil [ , ] are 2 ( , ) -quasiisomorphic, where ( , ) ∈ ℕ is as described after (5.11).

Proof. Using Lemma 5.26 with 1 = [ , ] , 3 = [ , ] , Ξ = [ , ] ⨂ [ , ] [ , ] , and

Ξ ′ = [ , / ] ⨂ [ , / ]
[ , / ] , we have a quasi-isomorphism Syn( [ , ] , ) ≃ Fil [ , ] ⨂ Ω

• 1 -• ------→ [ , / ] ⨂ Ω • 1 ≃ Fil Ξ ⨂ Ω • 3 -• ------→ Ξ ′ ⨂ Ω • 3 .
Using Lemma 5.27 with 2 = [ , ] , 3 = [ , ] , Δ = [ , ] ⨂ [ , ]

[ , ] , and

Δ ′ = [ , / ] ⨂ [ , / ]
[ , / ] , we have a quasi-isomorphism Kos( , , Fil [ , ] ) ≃ Fil

[ , ] ⨂ Ω • 2 -• ------→ Fil [ , / ] ⨂ Ω • 2 ≃ Fil Δ ⨂ Ω • 3 -• ------→ Δ ′ ⨂ Ω • 3 .
Note that in the quasi-ismorphism we used Remark 5.22 to identify the complexes Fil [ , ] ⨂ Ω • [ , ] ≃ Kos , Fil [ , ] . Now using (5.12) we have ( , ) -isomorphisms Fil Ξ ≃ Fil Δ and Ξ ′ ≃ Δ ′ . Combining this with the isomorphisms above, we obtain a 2 ( , ) -quasi-isomorphism Syn [ , ] , ≃ Kos , , Fil [ , ] .

Wach representations and Galois cohomology

In this section, for free Wach ℤ -representations ( ) of 0 , we will carry out the second step of the proof of Theorem 5.6, i.e. study complexes computing continuous -cohomology of ( ). To state the main result of this section, we introduce some notations. Recall that we de ned an [ , ] -module as

[ , ] = [ , ] ⨂ + 0 ( ).

Note that we are working under the assumption that -1 ≤ ≤ < 1 < , for example, one can take = -1 and = -1. From (5.9) we have a ltration on [ , ] as Fil [ , ] = + =

Fil [ , ] ⨂ + 0 Fil ( ).

Finally, thanks to Proposition 5.31, we have a 14 +3 +2 -quasi-isomorphism (see the proof of the proposition for the explicit constant)

≤ Kos , , Fil [ , ] ≃ ≤ Kos , Γ , ( ( )) .

Combining all these statement gives us the desired conclusion with = 2 ( , ) + 18 + 7 + 2.

In the rest of this section, we will prove Proposition 5.31.

5.2.2. From di erential forms to in nitesimal action of Γ Note that we are working under the assumption that -1 ≤ ≤ < 1 < , for example, one can take = -1 and = -1. From De nition 4.19 we have the complex Kos Lie Γ ′ , Fil [ , ] and we consider a subcomplex, i.e. a complex made of submodules in each degree stable under the di erentials of the former complex

K Lie Γ ′ , Fil [ , ] ∶ Fil [ , ] (∇ ) ----→ Fil -1 [ , ] ′ 1 ⟶ ⋯ ⋯ ⟶ Fil -[ , ] ′ ⟶ +1 Fil --1 [ , ] ′ +1 ⟶ ⋯ .
Similarly, we de ne the complex K Lie Γ ′ , Fil -1 [ , ] as a subcomplex of Kos Lie Γ ′ , Fil [ , ] . Now, consider the map

∇ 0 ∶ K Lie Γ ′ , Fil [ , ] ⟶ K Lie Γ ′ , Fil -1 [ , ] ,
de ned by the diagram Fil [ , ] Fil -1 [ , ] ′ 1

⋯ Fil -[ , ] ′ ⋯ Fil -1 [ , ] 2 Fil -2 [ , ] ′ 1 ⋯ +1 Fil --1 [ , ] ′ ⋯ , (∇ ) ∇ 0 ∇ 0 - ∇ 0 - (∇ )
which commutes since ∇ 0 ∇ -∇ ∇ 0 = ∇ for 1 ≤ ≤ (see (4.4) and the discussion after De nition 4.19). We write the total complex of the diagram above as K Lie Γ , Fil [ , ] , which is a subcomplex of Kos Lie Γ , Fil [ , ] . In a similar manner, we can de ne complexes K Lie Γ ′ , [ , / ] and K Lie Γ ′ , [ , / ] , and a map ∇ 0 from the former to the latter complex. Note that since the ltration on [ , / ] is trivial (see De nition 2.27), therefore Fil [ , / ] = [ , / ] for all ∈ ℤ. Next, from De nition 5.29 we have the complex Kos , , Fil [ , ] . Since ∇ = , for 0 ≤ ≤ , we consider the morphism of complexes Kos ′ , Fil [ , ] → K Lie Γ ′ , Fil [ , ] given by the diagram Fil [ , ] Fil -1 [ , ] Since the vertical maps are bijective, it is an isomorphism of complexes. Similarly, we can de ne maps from Kos ′ , Fil -1 [ , ] → K Lie Γ ′ , [ , ] , Kos ′ , [ , / ] → K Lie Γ ′ , [ , / ] and Kos ′ , [ , / ] → K Lie Γ ′ , [ , / ] , which are isomorphisms as well. Since each term of where the source complex in (5.13) above is Kos , , Fil [ , ] . Tautologically, we have that Lemma 5.33. The map constructed in (5.13) is a quasi-isomorphism of complexes.

Next, recall that is maximum among the absolute values of the Hodge-Tate weights of and ≥ + 1 is an integer. Let us set [ , ] ( ( )) = [ , ] ⨂ + 0 ( ( )), and we can de ne a ltration on this module given as Fil [ , ] ( ( )) ∶= + = Fil [ , ] ⨂ + 0 Fil ( ( )), for ∈ ℤ.

These submodules are stable under the action of Γ . Let -denote a ℤ -basis of ℤ (-), then we have ( ⨂ -) Fil [ , ] (5.14)

where the second equality is the result of observation made in Lemma 3.11, and the third equality comes from the fact that is a unit in [ , ] (see Lemma 2.43). Moreover, we also have that ( ⨂ -) [ , / ] ( ( )) = -[ , / ] = [ , / ] . From Remark 5.18, we have that ∇ is well-de ned over [ , ] ( ( )), for 0 ≤ ≤ . Now using De nition 4.19 we have the complex Kos Lie Γ ′ , Fil 0 [ , ] ( ( )) , and we consider the subcomplex

K Lie Γ ′ , Fil 0 [ , ] ( ( )) ∶ Fil 0 [ , ] ( ( )) (∇ ) ----→ Fil -1 [ , ] ( ( )) ′ 1 ⟶ ⋯ ⋯ ⟶ Fil -[ , ] ( ( )) ′ ⟶ ⋯ .
Similar to above, we can de ne the complex K Lie Γ ′ , Fil -1 [ , ] ( ( )) as a subcomplex of Kos Lie Γ ′ , Fil 0 [ , ] ( ( )) , and a map ∇ 0 ∶ K Lie Γ ′ , Fil 0 [ , ] ( ( )) ⟶ K Lie Γ ′ , Fil -1 [ , ] ( ( )) .

The total complex of the latter map, written as K Lie Γ , Fil [ , ] , is a subcomplex of Kos Lie Γ , Fil 0 [ , ] ( ( )) . Again, in a similar manner, we can de ne complexes K Lie Γ ′ , [ , / ] ( ( )) and K Lie Γ ′ , [ , / ] ( ( )) , and a map ∇ 0 from the former to the latter complex.

Consider the morphism K Lie Γ ′ , Fil 0 [ , ] ( ( )) → K Lie Γ ′ , Fil [ , ] given by the diagram Fil 0 [ , ] ( ( ))

Fil -1 [ , ] ( ( )) ′ 1 ⋯ Fil -[ , ] ( ( )) ′ ⋯ Fil [ , ] Fil -1 [ , ] ′ 1 ⋯ Fil -[ , ] ′ ⋯ , (∇ ) ⨂ - ⨂ - ⨂ - (∇ )
which is is bijective in each term and therefore an isomorphism. Considering similar maps between complexes considered above, we obtain a morphism (multiplication by ⨂ -on each term)

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ K Lie Γ ′ , Fil 0 [ , ] ( ( )) 
(1-) / / ∇ 0 K Lie Γ ′ , [ , / ] ( ( ))

∇ 0

K Lie Γ ′ , Fil -1 [ , ] ( ( )) (1-) / / K Lie Γ ′ , [ , / ] ( ( )) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⟶ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ K Lie Γ ′ , Fil [ , ] - / / ∇ 0 K Lie Γ ′ , [ , / ] ∇ 0 K Lie Γ ′ , Fil -1 [ , ] - / / K Lie Γ ′ , [ , / ] ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
(5.15) Again, it is immediate that Lemma 5.34. The map constructed in (5.15) is a quasi-isomorphism of complexes.

In order to proceed from "Lie Γ -Koszul complexes" discussed above to "Γ -Koszul complexes", we modify the source complex in the map of Lemma 5.34 as follows:

K , Lie Γ , [ , ] Remark 5.35. The complex K , Lie Γ , [ , ] ( ( )) is 4 -isomorphic to the source complex in the map of Lemma 5.34.

Combining Lemmas 5.33 & 5.34, and Remark 5.35, we get Proposition 5.36. There exists a 4 -quasi-isomorphism of complexes Kos , , Fil [ , ] ≃ K , Lie Γ , [ , ] ( ( )) .

From in nitesimal action of Γ to continuous action of Γ

In the previous section, we changed from complexes involving the operators to complexes invoving the operators ∇ . In this section, we will further replace these complexes with complexes involving operators -1. Note that we are working under the assumption that -1 ≤ ≤ < 1 < , for example, one can take = -1 and = -1.

Next, we want to construct similar complexes for the action of Γ . Note that we have ( -1)Fil [ , ] ( ( )) ⊂ Fil [ , ] ( ( )) ⋂ [ , ] ( ( )) = Fil -1 [ , ] ( ( ))

where the last equality follows from Lemma 3.17. We can de ne a subcomplex of Kos Γ ′ , Fil 0 [ , ] ( ( )) as K Γ ′ , Fil 0 [ , ] ( ( )) ∶ Fil 0 [ , ] ( ( )) ( ) ----→ Fil -1 [ , ] ( ( )) ′ 1 ⟶ 2 Fil -2 [ , ] ( ( )) ′ 2 ⟶ ⋯ .

(5.16) Similarly, we can de ne the complex K Γ ′ , Fil -1 [ , ] ( ( )) as a subcomplex of Kos Γ ′ , Fil 0 [ , ] ( ( )) (see De nition 4.10). Now, consider the map 0 ∶ K Γ ′ , Fil 0 [ , ] ( ( )) ⟶ K Γ ′ , Fil -1 [ , ] ( ( )) ,

(5.17 where the vertical maps are as in De nitions 4.9 & 4.12. We write the total complex of the diagram above as K Γ , Fil 0 [ , ] ( ( )) , which is a subcomplex of Kos Γ , Fil 0 [ , ] ( ( )) . In a similar manner, we can de ne complexes K Γ ′ , [ , / ] ( ( )) and K Γ ′ , [ , / ] ( ( )) and a map 0 from the former to the latter complex.

Next, we consider the commutative diagram where ∶ ( 1 ⋯ ) ↦ ∇ ⋯ ∇ 1 -1 1 ⋯ -1 ( 1 ⋯ ) for 1 ≤ ≤ . Notice that since is a unit in [ , ] (see Lemma 2.43), the top complex in the diagram above is exactly the complex K Γ ′ , Fil 0 [ , ] ( ( )) from (5.16). This de nes a map ∶ K Γ ′ , Fil 0 [ , ] ( ( )) ⟶ K Lie Γ ′ , Fil 0 [ , ] ( ( )) , Recall that = ( 0 ) = exp( ). Again, this de nes a map ∶ K Γ ′ , Fil -1 [ , ] ( ( )) ⟶ K Lie Γ ′ , Fil -1 [ , ] ( ( )) .

Similarly, we can consider the commutative diagram

Remark 5.37. The de nition of maps and continue to hold after base changing each term of the complexes to the ring [ , / ] .

Next, for ∈ ℕ, we have Fil - [ , ] ( ( )) ⊂ [ , ] ( ( )) and the induced Frobenius gives ( Fil - [ , ] ( ( ))) = ( -Fil -[ , ] ( )) ⊂ -[ , / ] ( ) = [ , / ] ( ( )),

where we have used the fact that ∈ [ , ] is a unit (see Lemma 2.43). Using the Frobenius morphism and the map between complexes discussed above, we obtain an induced morphism

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ K Γ ′ , Fil 0 [ , ] ( ( )) 1- / / 0 K Γ ′ , [ , / ] ( ( )) 0 K Γ ′ , Fil -1 [ , ] ( ( )) 1- / / K Γ ′ , [ , / ] ( ( )) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ( , ) -----→ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ K Lie Γ ′ , Fil 0 [ , ] ( ( )) 1- / / ∇ 0 K Lie Γ ′ , [ , / ] ( ( )) ∇ 0 K Lie Γ ′ , Fil -1 [ , ] ( ( )) 1- / / K Lie Γ ′ , [ , / ] ( ( )) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
.

We denote the complex on left as K , Γ , [ , ] ( ( )) and write the map as  = ( , ) ∶ K , Γ , [ , ] ( ( )) ⟶ K , Lie Γ , [ , ] ( ( )) ,

Proposition 5.38. The morphism of complexes  from the construction above is an isomorphism.

Proof. The proof follows in a manner similar to [CN17, Lemma 4.6]. From the fact that ∇ -1 , for 0 ≤ ≤ , is invertible (see Corollary 5.17) and [∇ , ∇ ] = 0, for 1 ≤ , ≤ , we get that the map above is an isomorphism.

Next, we will show that the map , for 1 ≤ ≤ , is a well-de ned isomorphism. For this, we need to show that ∇ ⋯ ∇ 1 ∇ 0 -1 0 ,-1 1 ⋯ ,-1 are well-de ned isomorphisms, for 1 ≤ 1 < ⋯ < ≤ . We can reduce the map to (∇ / ) ⋯ (∇ 1 / 1 ) ⋯ 1 ∇ 0 -1 0 ,-1 1 ⋯ ,-1 , and since ∇ / is invertible for 0 ≤ ≤ , we only need to show that ⋯ 1 ∇ 0 -1 0 ,-1 1 ⋯ ,-1 is a well-de ned isomorphism. Using the proof of Lemma 4.17, we can write

⋯ 1 ∇ 0 -1 0 ,-1 1 ⋯ ,-1 = ≥0 ⋯ 1 ( 0 -1) ,-1 1 ⋯ ,-1 ,
where ∈ . Using the fact that 0 / = 0 , we get that ( -1)( 0 -) = ( 0 -( ))( / -1), where ( ) ∶= -1

/ -1 , which yields ( -1)( 0 -1) = ( 0 -( ))( 0 -( / )) ⋯ 0 -/ -1 / -1 .

So we can write

⋯ 1 ( 0 -1) ,-1 1 ⋯ ,-1 = ( 0 -) ⋯ ( 0 -1 )

1/ -1 -1 ⋯ 1/ 1 -1 1 -1 = ( 0 -) ⋯ ( 0 -1 ) 0 .

(5.18)

Observe that for 0 ≤ ≤ and ∈ ℤ, we have Therefore, in (5.18) we have that ∈ 1 + ( , ( 1 -1), … , ( -1)). Writing ( 0 -) = ( 0 -1) + (1 -), we conclude that ⋯ 1 ( 0 -1) ,-1 1 ⋯ ,-1 ∈ ( , 0 -1, … , -1) .

Now from Lemma 2.45, it follows that the series of operators ≥0 ⋯ 1 ( 0 -1) ,-1 1 ⋯ ,-1 converge and therefore ∇ ⋯ ∇ 1 ∇ 0 -1 0 ,-1 1 ⋯ ,-1 is well-de ned. The same arguments show that the series of operators ∑ ≥0 ⋯ 1 ( 0 -1) -1 1 ⋯ -1 converge as an inverse to the previous operator. This establishes the claim.

Change of annulus of convergence : Part 1

Now that we have changed our original complex to a complex involving operators -1, in this section, we will pass from the ring [ , ] to the overconvergent ring (0, ]+ and also twist our module by . Note that we are working under the assumption that -1 ≤ ≤ < 1 < , for example, one can take = -1 and = -1.

Let us set (0, ]+ ( ( )) ∶= (0, ]+ ⨂ + 0 ( ( )). We can equip this module with a ltration given as Fil (0, ]+ ( ( )) ∶= + = Fil (0, ]+ ⨂ + 0 Fil ( ( )), for ∈ ℤ,

where we put the ltration on (0, ]+ by identifying it with the ring (0, ]+ via the map cycl (see §2.4), and the latter ring has a ltration described in De nition 2.27. These submodules are stable under the action of Γ .

Next, we de ne a subcomplex of Kos Γ ′ , Fil 0 (0, ]+ ( ( )) as K Γ ′ , Fil 0 (0, ]+ ( ( )) ∶ Fil 0 (0, ]+ ( ( ))

( ) ----→ Fil -1 (0, ]+ ( ( ))

′ 1 ⟶ 2 Fil -2 (0, ]+ ( ( ))

′ 2 ⟶ ⋯ .

Similarly, we can de ne the complex K Γ ′ , Fil -1 (0, ]+ ( ( )) as a subcomplex of Kos Γ ′ , Fil 0 (0, ]+ ( ( )) (see De nition 4.10). Now, consider the map 0 ∶ K Γ ′ , Fil 0 (0, ]+ ( ( )) ⟶ K Γ ′ , Fil -1 (0, ]+ ( ( )) , de ned by a commutative diagram similar to (5.17) (see also De nitions 4.9 & 4.12) Fil 0 (0, ]+ ( ( ))

Fil -1 (0, ]+ ( ( ))

′ 1

2 Fil -2 (0, ]+ ( ( ))

′ 2 ⋯ Fil -1 (0, ]+ ( ( )) 2 Fil -2 (0, ]+ ( ( ))

′ 1

3 Fil -3 (0, ]+ ( ( ))

′ 2 ⋯ .

( ) 0 0 1 0 2 0 ( )

We write the total complex of the diagram as K Γ , Fil 0 (0, ]+ ( ( )) , which is a subcomplex of Kos Γ , Fil 0 (0, ]+ ( ( )) . In a similar manner, we can de ne complexes K Γ ′ , (0, / ]+ ( ( )) and K Γ ′ , (0, / ]+ ( ( )) and a map 0 from former to the latter complex.

Next, for ∈ ℕ, we have Fil -(0, ]+ ( ( )) ⊂ (0, ]+ ( ( )) and the induced Frobenius gives ( Fil -(0, ]+ ( ( ))) = ( -Fil -(0, ]+ ( )( )) ⊂ -(0, / ]+ ( )( ) = (0, / ]+ ( ( )).

Using the Forbenius morphism and the map between complexes discussed above, we de ne the complex K , Γ , (0, ]+ ( ( )) ∶= ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ K Γ ′ , Fil 0 (0, ]+ ( ( ))

1-/ / 0 K Γ ′ , (0, / ]+ ( ( )) 0 K Γ ′ , Fil -1 (0, ]+ ( ) 1-/ / K Γ ′ , (0, / ]+ ( ( ))

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
It is obvious that we can compare this to the complex de ned in the previous section.

Proposition 5.39. The natural map K , Γ , (0, ]+ ( ( )) ⟶ K , Γ , [ , ] ( ( ))

induced by the inclusion (0, ]+ ( ( )) ⊂ [ , ] ( ( )) is a 3 -quasi-isomorphism.

Proof. The map in the claim is injective, so we only need to show that the cokernel complex is killed by 3 . In the cokernel complex, we have maps 1 -∶ Fil -[ , ] ( ( )) / Fil -(0, ]+ ( ( )) ⟶ [ , / ] ( ( )) / (0, / ]+ ( ( )) for ∈ ℤ,

(5.19) and it is enough to show that these maps are 4 -bijective. Let us de ne the modules (0, ]+ ( ) ∶= (0, ]+ ⨂ + 0 ( )( ) and [ , ] ( ) ∶= [ , ] ⨂ + 0 ( )( ), equipped with ltrations given by the usual ltration on tensor products. It is also immediately clear that Fil -(0, ]+ ( ( )) = -Fil -(0, ]+ ( ) and Fil -[ , ] ( ( )) = -Fil -[ , ] ( ), for ∈ ℤ (see (5.14) for a similar conclusion). Let = -and we rewrite (5.19) as 1 -∶ -Fil [ , ] ( ) / -Fil (0, ]+ ( ) ⟶ -[ , / ] ( ) / -(0, / ]+ ( ),

(5.20)

For ≤ 0, the claim follows from Lemma 5.40. For > 0, we begin by showing that the natural map -1

[ , ] ( ) / - 1 (0, ]+ ( ) ⟶ -Fil [ , ] ( ) / -Fil (0, ]+ ( ),

(5.21) is -bijective. Recall that = 1 , so we have Proof. The proof will follow the technique used in the proof of [CN17, Lemma 4.10]. We will treat terms corresponding to each separately. First, let us assume that ≠ 0 for some ≠ 0. We want to show that both Kos Γ ′ , [ ♭ ] and Kos Γ ′ , [ ♭ ] complexes are -acyclic the twist has disappeared because the cyclotomic character is trivial on Γ ′ . As the proof is same in both the cases, we only treat the rst case. We can write the complex as a double complex

[ ♭ ] ′′ 1 [ ♭ ] ′′ 2 [ ♭ ] ⋯ [ ♭ ] ′′ 1 [ ♭ ] ′′ 2 [ ♭ ] ⋯ , ( -1) 
-1 -1 -1

( -1)
where the horizontal maps involve 's with ≠ , 1 ≤ ≤ . Now, we have

( -1) ⋅ [ ♭ ] = 1 ( )[ ♭ ] ,
where ( ) = (1+ ) ( -1) + ((1+ ) -1) , for ∈ , and we have used the fact that

[ ♭ ] = [ ] [ ♭ ] = (1 + ) [ ♭ ] .
Now, is -linear and -1 is trivial modulo on (0, ]+ and ( ) (see Lemma 2.46 and De nition 3.8). Since divides in (0, / ]+ (see Lemma 2.47 for = -1), therefore it follows that modulo , is just multiplication by on . This shows that is invertible over , therefore -1 is injective on [ ♭ ] . Finally, since we have that ∈ (0, / ]+ , the cokernel of -1 is killed by . Next, let = 0 for all ≠ 0 and 0 ≠ 0. To prove that the kernel complex is -acyclic, we will show that 0 ∶ Kos → Kos is injective and the cokernel complex is killed by . This amounts to showing the same statement for We have

( 0 -1 ⋯ ) [ ♭ ] ( ) = 0 ( )(1 + ) -( -1) 0 [ ♭ ] ( ) -1 ⋯ ( )[ ♭ ] ( ).
So we are lead to study the map de ned by = (1 + ) 0 -1 ⋯ , = -( -1) 0 ∈ ℤ * .

Now -1 is divisible by , (1 + ) = 1 + mod 2 and -1 ∈ ( , -1)ℤ [[ -1]]. Therefore, we can write -1 in the form -1 = + -1 ′ , with ′ ∈ , 2 , 0 -1, … , -1 ℤ [[ , Γ ]]. It follows from Lemma 2.46, Lemma 2.47 and De nition 3.8, that for = 2 -1 > 0 we have that -1 ′ = 0 on / + , for all ∈ ℕ. Hence, -1 induces multiplication by on / + for all ∈ ℕ, which implies that it is an isomorphism of . This shows what we want since divides in (0, / ]+ by Lemma 2.47 (for = -1).

Combining the analysis for the kernel and cokernel complex, we conclude that the map in the claim of Proposition 5.41 is a 5 + +2 -quasi-isomorphism. By replacing by / in §5.2.4, de ne the complex K Γ ′ , (0, / ]+ ( ( )) ∶ (0, / ]+ ( ( )) 

( )( ) = 1 -1 Fil -1 ( )( ),
where the last equality is a consequence of Lemma 3.17. The pair ( , ) represents the class of this extension in 1 (C • ).

Next, we want to modify the pair ( , ) by adding coboundaries to get a pair ( , ) with ∈ ( )( ) and ∈ ( ( )) cohomologous to ( , ). We do this iteratively by clearing out negative powers of in the expression of . It is easy to observe that for any ∈ Fil ( ( )), the pair ( + (1 -) , + ( -1) ) is cohomologous to the pair ( , ) in 1 (C • ( ( ))). Let us represent

= -1 ⨂ ⨂ ∈ 1 -1 Fil -1 ( )( ),
and take

-1 = -1 -1 ⨂ ⨂ ∈ 1 -1
Fil -1 ( )( ), where -1 = ( )-1 .

Clearly, -1 ∈ Fil -1 ( ). Now observe that,

+ (1 -) -1 = -1 ⨂ ⨂ + (1 -) -1 -1 ⨂ ⨂ = + -1 -( ) -1 ( -1 ) -1 ⨂ ⨂ .
where we have used the expression ( ) = ( ) -1 , for a unit ∈ 1 + + . By a small computation we can write

+ -1 -( ) -1 ( -1 ) = - ( )( -1) ( ) -1 + ( )(1 --1 ) ( ) ( ) -1 .
Since divides ( -1) and (1 --1 ), from Lemma 3.17 we have that 1 + -1 -( ) -1 ( -1 ) ∈ Fil -2 ( ), and therefore, + (1 -) -1 ∈ 1 -2 Fil -2 ( )( ). So, we can write ( -1) -1 = ( -1 )

( -1 ) ⨂ ⨂ --1 -1 ⨂ ⨂ = -+1 ( -1 )--1 -1 ⨂ ⨂ = -( -1 )--1 ⨂ ⨂ .
Since -1 ∈ Fil -1 ( ), we get that -( -1 ) --1 ∈ ( ),

i.e. (1 -) -1 ∈ ( ( )) and therefore, + ( -1) -1 ∈ ( ( )).

Next, let -1 = 1 ( + -1 -( ) -1 ( -1 )) and -2 = -1 ( ( ) 2 -1) . So we set

-1 ∶= + (1 -) -1 = -1 -2 ⨂ ⨂ ∈ 1 -2
Fil -2 ( )( ), -1 ∶= + ( -1) -1 ∈ ( ( )), as well as

-2 ∶= -2 -2 ⨂ ⨂ ∈ 1 -2 Fil -2 ( )( ).
Now, we can repeat the argument above with replaced by -1 and iterate this process until = 1 and get

1 = 2 + (1 -) 2 ∈ Fil 0 ( )( ) = ( )( ), 1 = 2 + ( -1) 2 ∈ ( ( )),
where 2 , 2 and 2 come from the step = 2. We set ( , ) = ( 1 , 1 ), where we have ∈ ( )( ), and ∈ ( ( )), satisfying the relation (1 -) = ( -1) and which is cohomologous to ( , ) in 1 (C • ( ( ))). This shows the claim.

Let ( ) be a crystalline representation of as above. For the associated Wach module over + , de ne K • ( ( )) ∶ Fil 0 ( ( ))

(1-, -1) ----------→ Fil 0 ( ( )) ⨁ ( ( ))

-1 1------------→ ( ( )).

Lemma A.3. For a crystalline representation ( ) as above and ≥ 1 , we have 0 (K • ) = (Fil 0 ( ( ))) =1, =1 ≃ ( ) .

Proof. First, note that we have (Fil 0 ( ( ))) =1, =1 ⊂ ( ( )) =1, =1 = ( ) = (Fil 0 cris ( ( ))) =1 . On the other hand, from Proposition 3.2 we have 1 ( + ( )) ⊂ ( ), therefore + ( ( )) ⊂ 1 -+ ( ( )) ⊂ ( ( )). Since + ( ( )) =1, =1 = ( ) , we get the claim.

Proposition A.4. For a crystalline representation ( ) as above, we have 1 f ( , ( )) ≃ 1 (K • ( ( ))).

Proof. Since we know that any cohomology class in 1 f ( , ( )) corresponds to a crystalline extension of ℚ by ( ), it will be enough to construct a bijection between such extensions and cohomology classes in 1 (K • ( ( ))). Let ( ) denote a crystalline representation of given as an extension of ℚ by ( ), i.e. we have an exact sequence of -modules 0 ⟶ ( ) ⟶ ( ) ⟶ ℚ ⟶ 0.

Since is an exact functor, we get an exact sequence of Wach modules over + 0 ⟶ ( ( )) ⟶ ( ( )) ⟶ + ⟶ 0.

  and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The de Rham period ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 The crystalline period ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Filtered ( , )-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  Après avoir introduit une classe intéressante de représentations, nous revenons à notre discussion de la conjecture cristalline dans le théorème C. Soit = ( ) pour ≥ 1, soit un schéma formel propre et lisse sur , tel que ∶ ∶= ⨂ désigne l'inclusion de sa bre générique et ∶ ∶= ⨂ désigne l'inclusion de sa bre spéciale. Pour attaquer la conjecture cristalline, Fontaine et Messing ont lancé un programme pour la prouver via des méthodes syntomiques (voir[START_REF] Fontaine | -adic periods and -adic étale cohomology[END_REF]). Pour ≥ 0, soit S ( ) le faisceau syntomique modulo sur ,ét . Il Complexe syntomique et cohomologie galoisienne xxxv peut être considéré comme un espace propre dérivé Frobenius sur un morceau de la cohomologie cristalline. Ensuite, Fontaine et Messing ont construit des morphismes de periodes FM , ∶ S ( ) ⟶ * * ℤ/ ( ) ′

  Dans le théorème G, nous nous intéressons au résultat -adique, c'est-à-dire le premier isomorphisme dans (0.8). Notre objectif est d'y remplacer la représentation ℤ ( ) par une représentation plus générale ( ), et d'adapter la méthode de Colmez et Nizioł pour obtenir une relation entre le complexe Complexe syntomique et cohomologie galoisienne xxxvii syntomique à coe cients et la cohomologie -continue de ( ).

  is injective (see [Bri08, Propositions 5.3.3, 5.3.8]) and Theorem 1.9 ([Bri08, Théorème 5.4.1]). The rings O + dR ( ) and O dR ( ) are faithfully at as 1algebras.

(

  ii) In [Bri08, Dé nition 7.1.11], Brinon calls the modules in De nition 1.22 as ponctuellement faiblement admissible.

  , ) denote the essential image of the functor O cris ∶ Rep Ocris ℚ ( ) ⟶ / 0 ( , ). These objects are called admissible ltered ( , )-modules. As it turns out the essential image of O cris ( ) forms a category with rich structures (see [Bri08, Théorème 8.5.1]): The category ad / 0 ( , ) is abelian. If 1 and 2 are two admissible ltered ( , )-modules over 1 then the same is true for 1 ⨂ 2 . Similarly, if is an admissible ltered ( , )-module over 1 then the same is true for ∨ . Equipped with these structures, the category ad / 0 ( , ) is Tannakian. Theorem 1.28 ([Bri08, Théorème 8.5.1]). The functor O cris ( ) induces an equivalence of Tannakian categories O cris ∶ Rep Ocris ℚ ( ) ⟶ ad / 0 ( , ), with a quasi-inverse given by the functor

  direct limit topology. De nition 2.8. De ne ∶= completion of ⋃ ⊂ for the -adic topology,

=

  -adic completion of inf ( ) [ ] .Note that we have (0, ] = (0, ]+ 1[ ♭ ] . The action of on inf ( ) extends to a continuous action of on these rings which commutes with the induced Frobenius . For the homomorphism , we have (0, ]+ = (0, / ]+ and (0, ] = (0, / ] . Moreover, we have injections (see [CN17, §2.4.2]) (0, ]+ + dR ( ) and (0, ] + dR ( ) if ≥ 1. De nition 2.14. De ne the ring of overconvergent coe cients as † ∶= ⋃ us describe the topology on the rings de ned above. For = ∑ ∈ℤ [ ] ∈ (0, ]+ , we set ( ) ∶= inf ∈ℤ ( ♭ ( ) + ).

  -1 [ ] = [ ] . Therefore, by induction over ∈ ℕ and using the equation = -1 ( ), we get that ∈ Mat ℎ, . Hence, we get the claim. Following observation was used above: Lemma 2.24. Let ∈ ℕ >0 . Then The proof essentially follows from the proof of [Ber02, Lemme 3.1]. Let ∈ ⋂ ∈ℕ -(0, ]+ .Since ∈ (0, ]+ , we can write = ∑ ∈ℕ [ ] uniquely and so we have =

  such that ∈ goes to 0 as → ∞ . Let = PD or [ ] . Denote by 0 ∶ → ℕ ∪ {+∞} the valuation relative to 0 , i.e. if = ∑ 0 , then 0 ( ) = inf { ∈ ℕ, ≠ 0}. For ∈ ℕ, we de ne = { ∈ , 0 ( ) ≥ }. De ne PD , and [ ] , as the topological closures of PD , ⨂ + + ⊂ PD and [ ] , ⨂ + + ⊂ [ ] , respectively.

.by

  38. If = for ∈ { , +, [ ], (0, ]+, [ , ]}, then for 0 ≤ ≤ the operator on / is given by multiplication by , where is the -th entry in = ( 0 , … , ). Proof. If ∈ { , +}, this is part of Proposition 2.35. For ∈ {[ ], (0, ]+, [ , ]}, elements of are those of the form ∑ ∈ℤ 0, where ∈ + goes to 0 when → +∞ and is determined by " ". Let = ∑ ∈ℤ 0 Proposition 2.35. For = 0, rst we look at [ ] and write (1 + 0 ) for , ∈ + .

  Denote bythe image of under cycl . These rings are stable under the action of . Moreover, this embedding induces a ltration on for ∈ {+, PD, [ ],[ , ], (0, ]+} and ∈ ℤ (use De nition 2.27).

  Lemma 2.45. Let ∈ ℕ and ∈ {0, 1, … , }. Then ( -1) ⊂ , for ∈ {+, PD, [ ]};

  Lemma 2.46. Let ∈ ℕ and ∈ {0, 1, … , }. Then ( -1) ⊂ , for ∈ { , (0, ]+, [ , ]}.

  commutes with the action of Γ , ( ) ⊂ and / * ( ) is killed by -. Remark 3.5. The de nition of the functor can be extended to crystalline representations of arbitrary Hodge-Tate weights quite easily. Indeed, let ∈ Rep cris ℚ ( ) with Hodge-Tate weights in the interval [ , ] and let ⊂ a free ℤ -lattice of rank = dim ℚ , stable under the action of . Then ( ) = -( (-)) ⨂ ℤ ℤ ( ) is a Wach module over + with weights in the interval [ , ]. As it turns out, one can recover the crystalline representation from a given Wach module: Proposition 3.6 ([Ber04, Proposition III.4.2]). The functor ∶ Rep cris ℚ ( ) ⟶ Wach modules over + ⟼ ( ),

  denote the subring of convergent power series over the open unit disc. Then we have cris ( ) ⊂ + rig, [Ber04, Proposition II.2.1]). Moreover, the induced map cris ( ) ⟶ + rig, ⨂ + ( ) / + rig, ⨂ + ( ) = ( )/ ( ), is an isomorphism of ltered -modules (see [Ber04, Proposition III.4.4]).

  Now from Lemma 3.30 for one-dimensional representations we have that * O PD ⨂

  3.2.4. Proof of Theorem 3.24Let= O PD ⨂ + 0 ( ) Γ 0 and we have a natural inclusion of projective 0 1 -modules of rank ℎ from Proposition 3.31, 1 ⊂ O cris ( ). First, we will show that is crystalline and the inclusion described above is in fact bijective. Recall that from Proposition 3.31, we have an isomorphism of O PD 1 -modules , ltration, connection and the action of Γ 0 on each side. Since both sides are projective modules, extending scalars along O PD O cris ( 0 ) we obtain an isomorphism of O cris ( 0 )-modules O cris ( , ltration, connection and the action of 0 on each side. Further recall that + is killed by (see Lemma 3.12). Since is invertible in O cris ( 0 ), extending scalars along + O cris ( 0 ), we obtain an isomorphism of O cris ( 0 )-modules O cris ( 0 ) O cris ( 0 ) ⨂ ℚ , compatible with Frobenius, ltration, connection and the action of 0 . Finally, since 0 1 → O cris ( 0 ) is faithfully at (see [Bri08, Théorème 6.3.8]), we obtain an inclusion of O cris ( 0 )-modules

≃≃

  compatible with Frobenius, ltration, connection and the action of 0 on each side. It is immediately clear from the diagram that the left vertical arrow and bottom horizontal arrow must be bijective as well. The bijection of bottom horizontal arrow implies that is a crystalline representation of 0 . Moreover, since 0 1 → O ( 0 ) is faithfully at (see [Bri08, Théorème 6.3.8]), we obtain an isomorphism of 0 1 -modules 1 ≃

  of left Λ-and right ℤ [[ 1 , … , ]]-modules (see [Mor08, Lemma 4.3]). Therefore, the complex (Λ) is a resolution of ℤ [[Γ ]] in the category of topological left Λ-modules. Similarly, we have the complex (Λ), obtained from ( 1 , … , ), which is again a resolution of ℤ [[Γ ]]. De nition 4.9. De ne a map 0 ∶ (Λ) ⟶ (Λ), by the commutative diagram of topological left Λ-modules 0

De nition 4. 10 .

 10 De ne the complexes Kos(Γ ′ , ) ∶= Hom Λ,cont ( (Λ), ) = Hom Λ ( (Λ), ), Kos (Γ ′ , ) ∶= Hom Λ,cont ( (Λ), ) = Hom Λ ( (Λ), ). Remark 4.11. Using De nition 4.8, we can write the complexes in De nition 4.10 as

  e. Lie Γ ′ = ℤ [∇ ] 1≤ ≤ with ∇ ∶= log = ∈ℕ (-1) ( -1) +1 +1 ∶ ⟶ , for any Lie Γ ′ -module . Moreover, Lie Γ ′ is commutative. Similarly, the Lie algebra Lie Γ of the -adic Lie group Γ is a free ℤ -module of rank + 1, i.e. Lie Γ = ℤ [∇ ] 0≤ ≤ (∇ de ned as above for 0 ≤ ≤ ). We have [∇ , ∇ ] = 0, for 1 ≤ , ≤ , [∇ 0 , ∇ ] = ∇ , for 1 ≤ ≤ . (4.4) follows that Lie Γ ′ is not commutative. Let be a topological ℤ -module admitting a continuous action of the Lie algebra Lie Γ . Similar to the de nition of Koszul complexes in the case of Γ (see §4.2), we de ne Koszul complexes for Lie Γ . De nition 4.19. De ne the complex Kos(Lie Γ ′ , ) dual to those in (4.1) (with replaced by ∇ ). Now, consider the map

⨂ 0 O

 0 cris ( ), which would act as a left inverse to . First of all, we know that * O cris ( ) ≃ O cris ( ), or equivalently (O cris ( )) generates O cris ( ) as an 0 1 -module. Let = { 1 , … , ℎ } denote an 0 -basis of O cris ( ), i.e. O cris ( ) = ⨁ ℎ =0 0 . Then is also a basis of O cris ( ) over 0 1 . Hence, ( ) = { ( 1 ), … , ( ℎ )} is also a basis of O cris ( ) over 0 1 . From this we can write = ( ) where = ( ) ∈ Mat ℎ, 0 1 . For our choice of O cris ( ) and Proposition 3.31 and Corollary 3.38, we conclude that ∈ 1

  [ , ] →[ , / ] . Using De nition 5.21 and Remark 5.22, de ne the ( , )-complex Kos , , Fil[ 

  these complexes admit a Frobenius-semilinear morphism ∶ Fil -[ , ] → [ , / ]

Fil

  + ( ) = Fil + [ , ] ,

K 0 K

 0 Lie Γ ′ , [ , / ] ( ( )) ∇ Lie Γ ′ , Fil -1 [ , ] ( ( )) 1-/ / K Lie Γ ′ , [ , / ] ( ( ))

Fil

  

Fil

  1 ( 1 ⋯ ) for 1 ≤ ≤ .

  ( ) = - [ , ] ( ) ⊂ -Fil [ , ] ( ), and - 1 [ , ] ( ) ⋂ -Fil (0, ]+ ( ) = - 1 (0, ]+ ( ).

  row is a consequence of Lemma A.1 and the vertical maps are reduction modulo . Let ∈ Fil 0 ( ( )) be a lift of 1 ∈ + in a manner compatible with the above diagram. Then we have that = (1 -) ∈ ( ( )), since maps to 0 ∈ + in (A.2). Now, since the action of Γ on ( ( ))/ ( ( )) is trivial and the ltration on Wach modules is stable under the action of Γ , we get that = ( -1) ∈ Fil 0 ( ( )) ⋂ ( ( )) = 1 Fil ( )( ) ⋂ 1 -1

plus, soit une clôture algébrique xe de avec ℂ comme complétion -adique. Alors le groupe de Galois

  

	Théorèmes de comparaison -adiques			xxix
	l'automorphisme .			
					∶= Gal( / ) agit linéairement et
	continûment sur le ℤ -module 1 ét	, ℤ . En conséquence de son étude générale des groupes
	-divisibles, Tate a montré que pour ≤ 2 dim , il existe un isomorphisme	-équivariant naturel
	ét	+ = , ℤ ⨂ ℤ ℂ ≃ ⨁	, Ω ⨂ ℂ (-),	(0.5)
	où pour ∈ ℤ, on dé nit ℂ ( ) ∶= ℂ ⨂ ℚ ℚ ( ) et ℚ ( ) est le -ième puissance tenseur de la
	représentation -adique unidimensionnelle ℚ (1) sur laquelle	agit via le caractère cyclotomique
	-adique. Tate a conjecturé qu'une décomposition	-équivariante comme ci-dessus devrait exister
	pour toute variété projective lisse dé nie sur .	
	D'autre part, dans [Gro74], Grothendieck a montré que les groupes de cohomologie de de Rham
	d'un schéma abélien portent également des informations supplémentaires. En utilisant sa théorie
	cristalline de Dieudonné, il a déterminé que 1 dR ( / ) est un -espace vectoriel acquérant une base
	canonique sur , où = Fr	pour	= ( ) l'anneau de vecteurs de Witt -typiques avec des
	coe cients dans . L'espace vectoriel sur admet un automorphisme semi-linéaire de Frobenius ,
	et possède une ltration de Hodge après extension des scalaires à . De plus, il a montré que ∞
	est déterminé, à isogénie près, par 1 dR ( / ) avec sa ltration de Hodge, la base sur qui est équipé

  un espace vectoriel de dimension nie tel que dim cris ( ) ≤ dim ℚ , et il est muni d'un endomorphisme semi-linéaire de Frobenius , et une ltration venant de la ltration sur cris . De plus, cette construction est fonctorial en et elle prend des valeurs dans la catégorie de -modules ltrée sur . La représentation est dite cristalline si et seulement si elle est cris -admissible, ou équivalent, dim cris ( ) = dim ℚ . En particulier, les périodes -adiques de appartiennent à cris . Le foncteur cris est exact et pleinment dèle et établit une équivalence entre la catégorie des représentations cristallines et son image essentielle sous le foncteur, compatible avec les suites exactes, les produits tensoriels et la prise de duals.

	Représentations -adiques et algèbre linéaire	xxxi
	C'est	
	Pour classer les représentations cristallines, Fontaine propose un formalisme général. Il construit un
	anneau de périodes cris qui est le completé -adique d'une -algèbre équipée d'un Frobenius et
	d'une ltration (voir [Fon94a], nous rappelons la construction dans un cadre plus général dans §1.3).
	Soit maintenant une représentation -adique de , et dé nissons	
	cris ( ) ∶= ( cris ⨂ ℚ ) .	

  Wach sur + . De plus, pour une représentation cristalline , il existe une bijection entre ℤ -réasaux à l'intrieur des modules et modules de Wach sur le sous-anneau intégral + ⊂ + , et contenue dans le module de Wach rationnel ( ).

	étale sur . Par cette dernière équivalence de catégories, il devient naturel de se poser la question
	: est-il possible de décrire des représentations cristallines intrinsèquement dans la catégorie des
	( , Γ)-modules étale? Pour répondre à cette question, Fontaine a lancé un programme reliant les
	représentations cristallines -adiques et les représentations de hauteur nie.
	Une représentation -adique de	est dite de hauteur nie si les périodes -adiques de
	appartiennent au sous-anneau "intégral" + ⊂ (voir §3.1). En d'autres termes, le ( , Γ )-module
	sur	admet une base dans un réseau, c'est-à-dire a une base sur l'anneau de période + ⊂ . Pour
	les représentations cristallines il existe des réseaux sur lesquels l'action de Γ est plus simple. La
	hauteur nie et les représentations cristallines de	sont liées par le résultat suivant :
	Théorèm D ([Wac96, Wach], [Col99, Colmez], [Ber02, Berger]). Soit une représentation -adique
	de . Alors est cristalline si et seulement s'il est de hauteur nie et il existe ∈ ℤ et un + -submodule
	⊂ ( ) de rang = dim ℚ , stable sous l'action de Γ , tel que Γ agit trivialement sur ( / )(-).
	Dans la situation du théorème D, le module n'est pas unique. Une construction fonctorial a été
	donnée par Berger dans [Ber04] à l'aide de laquelle il a établi une équivalence de catégories entre les
	représentations cristallines de	et des modules de En n,
	étant donné ( ) on peut récupérer canoniquement l'autre objet algébrique linéaire attaché à ,
	soit cris ( ) (voir [Ber04, Propositions II.2.1 & III. 4.4]).
			( , Γ)-modules

  -module projectif ni de rang ≤ dim ℚ , et il est muni d'un endomorphisme de Frobenius-semi-linéaire , une ltration issue de la ltration sur O cris et une connexion intégrable quasi-nilpotente satisfaisant la transversalité de Gri ths et issue de la connexion sur O cris (voir §1.5 pour plus de détails). De plus, cette construction est fonctorial dans et elle prend des valeurs dans la catégorie des ( , )-modules ltrés sur 0 1 . La représentation est dite cristalline si et seulement si elle est O cris -admissible (voir §1.5.2). En particulier, les périodes -adiques de appartiennent à O cris . Le foncteur O cris est exact et pleinement dèle et établit une équivalence entre la catégorie des (grandes) représentations cristallines et son image essentielle sous le foncteur, compatible avec les suites exactes, les produits tensoriels et la prise de duals .

	cristallines: les représentations cristallines horizontales et les (grandes) représentations cristallines.
	Nous nous intéressons à cette dernière catégorie de représentations.
	Pour classer les représentations cristallines, Brinon construit un anneau de périodes O cris qui est
	une 0	1 -algèbre -adicalement complète équipée de un Frobenius, une ltration et une connexion
	cris -linéaire satisfaisant la transversalité de Gri ths (voir [Bri08], notez que ce sont des versions
	relatives de la construction de Fontaine, nous rappelons les détails dans §1.3). Soit maintenant
	une représentation -adique de 0 , et soit
			O cris ( ) ∶= (O cris ⨂ ℚ ) 0 .
	C'est un 0	1
				pour être une algèbre
	-adiquement complète sur . De même, nous dé nissons 0 ∶= { ±1 }. Soit = ( ), où
	∈ ℕ ≥1 ,	est une racine primitive -ième de l'unité, soit	l'anneau des entiers de et soit
	∶=	{ ±1 }.
	Note. Dans le corps principal de la thèse, nous travaillerons dans une con guration plus générale,
	c'est-à-dire sur la complétion -adique d'une algèbre étale sur { ±1 } et l'extension correspondante
	de 0 et ci-dessus (voir §1.1). Cependant, par souci de lucidité de l'exposé, nous introduisons les
	résultats sous des hypothèses simpli ées.
	Répresentations cristallines
	Inspiré par le formalisme de Fontaine, dans [Bri08] Brinon a étudié les représentations -adiques de
	, le groupe fondamental étale de 1 . Dans le cadre relatif, il y a deux notions de représentations

  [START_REF] Andreatta | Surconvergence des représentations -adiques: le cas relatif[END_REF], Andreatta et Brinon a généralisé le résultat de Cherbonnier et Colmez au cadre relatif, c'est-à-dire qu'ils ont montré que toutes les ℤ -représentations (resp. -adiques) de 0 sont surconvergents (voir §2.2 pour plus de détails), c'est-à-dire que les périodes -adiques appartiennent à un sous-anneau † ⊂ (resp . † ⊂ ).Jusqu'ici nous avons discuté des représentations cristallines et des ( , Γ)-modules dans le cadre relatif. Parallèlement au cas arithmétique, nous nous intéressons maintenant à la compréhension des représentations à hauteur nie et des modules de Wach dans le cas relatif. De plus, nous nous attendons à ce qu'il y ait un lien entre la hauteur nie et les représentations cristallines. -module O cris ( ) sont liés de manière précise et ce dernier peut être récupéré du premier. Pour relier ces objets nous construisons un gros anneau de période relative O PD ⊂ O cris ( 0 ) équipé de Frobenius, ltration, connexion et action de Γ 0 (voir §3.2).

	xxxiv	Présentation en français
	Représentations de Wach	
	Soit une représentation -adique du groupe de Galois 0 . On dit qu'elle est de hauteur nie si
	les périodes -adiques de appartiennent au sous-anneau + ⊂ (voir §3.2) . En d'autres termes, le
	+ que 0 ⨂ + 0 = + 1 -sous-module + ( ) ⊂ ( ) (fonctoriel en ) est un ( , Γ 0 )-module de type ni tel 0 + ( ) ≃ ( ). 0 Maintenant, nous prenons une représentation de Rham -adique avec des poids de Hodge-Tate
	non positifs, ⊂ un ℤ -réseau libre de rang = dim ℚ , stable sous l'action de 0 . On dit que
	est une représentation de Wach positive s'il est de hauteur nie et il existe ( ) ⊂ + ( ), un
	( , Γ 0 )-module projectif ni sur + de et Γ 0 (voir Dé nition 3.8) . On pose ( ) ∶= ( ) 1 , et l'unicité de ces modules découle de 0 satisfaisant certaines conditions techniques décrivant l'action
	la dé nition (voir le lemme 3.14). De plus, ces modules sont équipés d'une ltration naturelle.
	Le but du chapitre 3 est de montrer que les représentations de Wach sont cristallines. De plus,
	pour une représentation de Wach positive le + 1 Théorèm E (voir Theorem 3.24). Soit une représentation de Wach positive de 0 , alors est 0 -module ( ) et le 0 une représentation cristalline positive. De plus, soit 1 ∶= O PD ⨂ + ( ) Γ 0 . Alors on a un 0 isomorphisme de 0 1 -modules 1 ≃ O cris ( ) compatible avec Frobenius, ltration et connexion
	de chaque côté. De plus, après avoir étendu les scalaires à O PD , on obtient des isomorphismes naturels

  OdR ( ) is compatible with the supplementary structures described above. In the horizontal de Rham case, the category Rep dR ℚ ( ) is a Tannakian subcategory of Rep ℚ ( ) and the restriction of the functor dR to Rep dR ℚ ( ) is a -ber functor. If ∈ Rep dR ℚ ( ), the isomorphism dR ( ) is compatible with the supplementary structures.

is injective. The module O dR ( ) is equipped with a connection coming from the connection on O dR ( ) and we have O dR ( ) =0 = dR ( ). The natural map dR ( ) ∶ 1 ⨂ dR ( ) ⟶ O dR ( ), as well as the homomorphism dR ( ) ∶ dR ( ) ⨂ dR ( ) ⟶ dR ( ) ⨂ ℚ , are injective.

The latter map is bijective if and only if OdR ( ) and dR ( ) are bijective (see [Bri08, Propositions 8.2.10]). Theorem 1.26 ([Bri08, Théorème 8.4.2]). The category Rep OdR ℚ ( ) is a Tannakian subcategory of Rep ℚ ( ) and the restriction of the functor O dR to Rep OdR ℚ ( ) is an 1 -ber functor. If ∈ Rep OdR ℚ ( ) the isomorphism

  ( ) ∶ cris ( ) ⨂ cris ( ) ⟶ cris ( ) ⨂ ℚ , are injective. It is bijective if and only if Ocris ( ) and cris ( ) are bijective. Finally, the natural map of -vector spaces Tannakian subcategory of Rep ℚ ( ) and the restriction of the functor O cris to Rep Ocris Ocris ( ) is compatible with the supplementary structures described above. In the horizontal crystalline case, the category Rep cris ℚ ( ) is a Tannakian subcategory of Rep ℚ ( ) and the restriction of the functor cris to Rep cris ℚ ( ) is an -ber functor. For ∈ Rep cris ℚ ( ), then the isomorphism cris ( ) is compatible with the supplementary structures.

				⨂	cris ( ) ⟶ dR ( ),
	is injective.			
	Let ∈ Rep Ocris ℚ	( ) (resp. Rep cris ℚ ( )), then is crystalline (resp. horizontal crystalline) and
	the natural map			
	1	⨂	0 [ 1 ] O cris ( ) ⟶ O dR ( )	resp. ⨂ cris ( ) ⟶ dR ( ) ,
	is an isomorphism (see [Bri08, Proposition 8.2.1]).
	Theorem 1.27 ([Bri08, Théorème 8.4.2]). The category Rep Ocris
					ℚ	( ) is an 0	1 -ber functor. For
	∈ Rep Ocris			

is injective. The module O cris ( ) is equipped with a connection coming from the connection on O cris ( 0 ) and we have O cris ( ) =0 = cris ( ). The natural map cris ( ) ∶ 1 ⨂ cris ( ) ⟶ O cris ( ), as well as the homomorphism cris ℚ ( ) is a ℚ ( ), the isomorphism

  , Γ)-modules and crystalline coordinates Proposition 2.30 ([CN17, Proposition 2.1 & Remark 2.2]). The equation ( ) has a unique solution in + .

, … -

= 0 we take the solutions obtained from trivializing the action of for some ∈ {1, … , } such that ≠ 0. In the second set of solutions, we also impose the condition that in case 2 = 0 and there exist multiple solutions for , then we will choose the value of (2) such that it is not the same as(1) . Since the only relation between these set of solutions obtained and is given by (3.3), we will

--→

∶= Cone( )[-1].

-11 1 1 0where ′ = {( 1 , … , ), 1 ≤ 1 < ⋯ < ≤ } and di erentials as in (4.1). Similarly, for = ( 0 ) = exp( ) we can de ne the Koszul complex ( 1 , … , ) (with di erentials ), where ∶= -1.Both ( 1 , … , ) and ( 1 , … , ) are resolutions of ℤ in the category of ℤ [[Γ ′ ]]-modules.

(K • ( ( ))) ≃ 1 f ( , ( )).
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Proceeding by induction on ≥ 0, we conclude that ( 0 -1) ⊂ ( 0 -1) , -1 (0, ]+ ⊂ , (0, ]+ .

From Lemma 2.45 we already have that ( -1) + ∈ , + for ∈ {1, … , }. Therefore, we conclude that ( 0 -1) (0, ]+ ⊂ , (0, ]+ .

The analysis of [ , ] and follow in a similar manner (note that is invertible in ).

Finally, we show a claim which will be useful for changing the annulus of convergence in §5.2.

Lemma 2.47 ([CN17, Lemma 2.35]). If ≤ , then

1 is a unit in (0, ]+ ;

(ii) is divisible by ⌊( -1) -1 / ⌋ , hence also by ( -1) -2 ;

(iii) 2 1 ∈ (0, ]+ and is divisible by

(2( -1)-) -2 ;

(iv) 1 ∈ , ( -1) -1 (0, ]+ and is divisible by ( -1) -2 ;

(v) Let = -1 for ≥ 3 and = 3 2 for = 2, then

Finite height crystalline representations

The module ( ) is a Wach module associated to with weights in the interval [-1 , 0] and we set ( ) ∶= ( ) 1 which satis es properties analogous to (a)-(d) above.

For ∈ ℤ, we set ( ) ∶= ⨂ ℚ ℚ ( ) and ( ) ∶= ⨂ ℤ ℤ ( ). We will call these twists as Wach representations and de ne ( ( )) ∶= 1 ( )( ) and ( ( )) ∶= 1 ( )( ).

Since ( ) and ( ) are Wach modules with weights in the interval [-1 , 0], twisting by gives us Wach modules in the sense of De nition 3.7 with weights in the interval [ -1 , ].

Remark 3.9. In De nition 3.8 following Remark 3.3 (i), rst one can de ne Wach module for the representation and then consider the module ( ) = ( ) ⋂ ( ) associated to . However, it is not clear whether the latter module, de ned in this fashion, is a projective + 0 -module. Therefore, we impose the condition on ( ) to be projective, which is required in establishing several results in this section.

De nition 3.10. Let and as in De nition 3.8 and ∈ ℕ, then there is a natural ltration on the associated Wach modules, given by Fil ( ( )) ∶= { ∈ ( ( )), such that ( ) ∈ ( ( ))} for ∈ ℤ, and we set Fil ( ( )) ∶= Fil ( ( )) ⋂ ( ( )), where the intersection is taken inside ( ( )).

Lemma 3.11. We have

and similarly for Fil ( ( )).

Proof. Note that the inclusion -Fil + ( )( ) ⊂ Fil -( )( ) is obvious. To show the converse let -⨂ ⨂ ∈ Fil -( )( ), with ∈ ( ) and ⨂ being a basis of ℚ ( ). Then we have that ( -⨂ ⨂ ) = --( ) ⨂ ⨂ ∈ -( )( ). Therefore, we obtain that ( ) ∈ + ( ), i.e. ∈ Fil + ( ).

Lemma 3.12. Let be a positive Wach representation and ⊂ a ℤ -lattice as above. Then for = 1 , we have

Proof. To show the claim, we can assume that ( ) is free by base changing to the nite étale extension ′ 0 of 0 . Then

) is free. Since the discussion of previous chapters hold for the -adic completion of a nite étale extension of 0 (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF] Chapitre 2] and [START_REF] Andreatta | Global applications of relative ( , Γ)-modules[END_REF]§2] for more on this), base changing to ′ 0 is harmless. So with a slight abuse of notation, below we will replace ′ 0 obtained in this manner by 0 and assume ( ) to be free of rank ℎ over + 0 . Rest of the proof follows the techniques of [Ber04, Théorème III.3.1]. First notice that we have

To see this let { } 1≤ ≤ℎ be an + 0 -basis of ( ), then since 0 ⨂ + 0 ( ) ≃ ( ), it is also an 0 -basis of ( ) and therefore an -basis of . The claimed equality now follows from the fact that ⋂ + = + . From the discussion above and the fact that + = + 1 , we conclude that showing

) is equivalent to showing that + ⨂ ℚ ⊂ + ⨂ + 0 ( ). So let ∈ Mat(ℎ, + ) be the matrix obtained by expressing a basis of ( ) in the basis of . Also, let ∈ Mat(ℎ, + 0 ) be the matrix of in the basis of ( ). Then we have ( ) = and therefore ( -1 ) = ( -1 )( -1 ). The fact that ( )/ * ( ( )) is killed by implies that -1 ∈ Mat(ℎ, + 0 ), therefore from Corollary 2.25 we obtain that -1 ∈ Mat(ℎ, + ). Hence, we conclude that

Corollary 3.13. By taking 0 -invariants in Lemma 3.12 it follows that + ( ) ⊂ ( ).

Lemma 3.14. Let be a Wach representation 0 . The Wach module ( ) over + 0 is unique. Same holds true for the + 0 -module ( ). Proof. The argument carries over from the classical case [START_REF] Berger | Limites de représentations cristallines[END_REF]p. 13]. First note that we can assume that all Hodge-Tate weights of are ≤ 0, since by de nition the uniquess of Wach module for such a representation is equivalent to uniqueness for all its Tate twists. In this case, let 1 and 2 be two + 0 -modules satisfying the conditions of De nition 3.8 (the proof stays the same for ( )). By symmetry, it is enough to show that 1 ⊂ 2 . Since we have 1 ⊂ + ( ) ⊂ 2 (see Corollary 3.13) and 2 is -torsion free, therefore for any ∈ 1 there exists ≤ such that ∈ 2 but ∉ 2 . Varying over all ∈ 1 ⧵ 1 , we can take ≤ to be the minimal integer such that 1 ⊂ 2 . Since ∈ 2 and Γ 0 acts trivially on 2 / 2 , we have that ( 0 -1)( ) ∈ 2 . So we can write ( 0 -1)( ) = 0 ( )( 0 ( ) -) + ( 0 ( ) -) .

Since Γ 0 also acts trivially on 1 / 1 and 1 ⊂ 2 , we see that 0 ( )( 0 ( ) -) ∈ 2 , therefore ( 0 ( ) -) ∈ 2 , which means that ( ( 0 ) -1) ∈ 2 . But ∤ ( 0 ) -1 if ≥ 1, and ∉ 2 . Hence, we must have = 0, i.e. 1 ⊂ 2 .

The uniqueness of Wach modules helps us in establishing compatibility with usual operations:

Lemma 3.15. Let and ′ be two Wach representations of 0 . Then we have that ( ⨁ ′ ) = ( ) ⨁ ( ′ ) and ( ⨂ ′ ) = ( ) ⨂ ( ′ ). Similar statements hold for ( ) and ( ′ ).

Proof. We note similar to previous lemma that it is enough to show the statement for and ′ such that both representations have non-positive Hodge-Tate weights. By uniqueness of Wach modules proved in Lemma 3.14, it is enough to show that direct sum and tensor product of Wach representations are again Wach representations. First, it is straightforward to see that ( ) ⨁ ( ′ ) ⊂ + ( ⨁ ′ ) is a projective + 0 -module of rank rk ℤ ( ⨁ ′ ) such that 0 ⨂ + 0 ( ( ) ⨁ ( ′ )) ≃ ( ) ⨁ ( ′ ). Similarly, we have that ( ) ⨂ ( ′ ) ⊂ + ( ⨂ ′ ) is a projective + 0 -module of rank rk ℤ ( ⨂ ′ ) such that 0 ⨂ + 0 ( ( ) ⨂ ( ′ )) ≃ ( ) ⨂ ( ′ ). Next, let and ′ denote the maximum among the absolute value of Hodge-Tate weights of and ′ respectively and let ∶= max( , ′ ). Then we see that ( ( ) ⨁ ( ′ ))/ * ( ( ) ⨁ ( ′ )) is killed by and ( ( ) ⨂ ( ′ ))/ * ( ( ) ⨂ ( ′ )) is killed by + ′ . Further, Γ 0 acts trivially modulo on ( ) ⨁ ( ′ ) and ( ) ⨂ ( ′ ). This veri es conditions (i), (ii) and (iii) for these modules. Hence, we get the claim.

Corollary 3.16. Let be a Wach representation of 0 and ⊂ a 0 -stable free ℤ -lattice of rank = dim ℚ . Then, Sym ( ) and ⋀ are Wach representations for ∈ ℕ.

Proof. Note that the compatibility with tensor products in Lemma 3.15 is enough to establish the compatibility with symmetric powers and exterior powers because then we can set Sym ( ) ∶= Sym ( ( )), and

We have Sym ( ) ⊂ Sym ( + ( )) ⊂ + Sym ( ) , since Following result will be useful while studying complexes with coe cients in Wach modules in Chapter 5.

Finite height crystalline representations

Lemma 3.17. Let be a Wach representation of 0 , such that the associated Wach module ( ) over + 0 is free of rank = dim ℚ ( ). Then for ∈ ℤ and ∈ ℕ, we have Fil ( ) ⋂ +1 ( ) = +1 Fil -1 ( ).

Same holds true for the + 0 -module ( ).

Proof. The claim is obvious if Fil -1 ( ) = ( ). So we assume that Fil -1 ( ) ⊊ ( ), and let ∈ Fil ( ) such that ∈ Fil ( ) ⋂ +1 ( ).

Then we must have = for some ∈ ( ). Since ( ) ∈ ( ) ⋂ ( ), where = ( ) = + for ∈ + . So we get that ( ) ∈ -1 ( ) ⋂ ( ), i.e.

( ) = -1 for some ∈ ( ). Since ( ) is free of rank ℎ and does not divide in + 0 , we obtain that ∈ ( ). Now let { 1 , … , ℎ } be an + 0 -basis of the scalar extension and we write

for , ∈ + 0 . Further we have an embedding cycl ∶ 0 + 0 , so we can write the coe cients above as power series in . In particular, we have = ∑ ∈ℕ such that the constant term 0 ∈ cycl ( 0 ) and ∈ + 0 go to zero -adically as → +∞. Similarly, we can write = ∑ ∈ℕ , such that constant 0 ∈ cycl ( 0 ) and ∈ + 0 go to zero -adically as → +∞. Now, from ( ) = -1 , we obtain that = -1 for 1 ≤ ≤ ℎ. But looking at the constant term on each side (coe cient of 0 ), we obtain -1 0 = 0. Since + ′ 0 is -torsion free, we obtain that 0 = 0 for 1 ≤ ≤ ℎ, i.e. divides . Therefore, ∈ -1 + 0 , for 1 ≤ ≤ ℎ, i.e. ∈ Fil -1 ( ). The other inclusion is obvious, since we have that ∈ Fil ( ) for ∈ Fil -1 ( ). So we get the claim.

Statement of the main result

In this section, we will relate the notion of crystalline and Wach representations. As we will see, we can recover the 0 1 -module O cris ( ) from the + 0 -module ( ) after passing to a su ciently large period ring. We begin by introducing this ring below.

Recall from §1.1 that we have as a nite unrami ed extenion of ℚ with ring of integers and we take = ( ) for ≥ 1. Note that the formulation of the results and proofs depend on and it is necessary to have > 0 for the discussion below to make sense.

In this section, we will work with the ring + de ned in §2.4, equipped with an action of the Frobenius and a continuous action of Γ 0 . Since we have a natural injection + inf ( ), we obtain a 0 -equivariant commutative diagram

By 0 -linearlity, extending scalars for the map above, we obtain a ring homomorphism

De nition 3.18. Let [ ] ∶= / ! for ∈ Ker 0 . De ne O PD to be the -adic completion of the divided power envelope of 0 ⨂ + with respect to Ker 0 .

Therefore, there exists natural isomorphisms

compatible with Frobenius, ltration and the action of Γ 0 .

Proof. The structure of one-dimensional crystalline representations of 0 is well-known (see [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]§8.6]). First, recall that a -adic representation of 0 is unrami ed if the action of 0 factorizes through the quotient ur 0 (see §1.5). Now from Proposition 1.30 we have that for ∶ 0 → ℤ × , a continuous character, = ℚ ( ) is crystalline if and only if we can write = f ur with ∈ ℤ, and where f is a nite unrami ed character, ur is an unrami ed character taking values in 1 + ℤ and trivialized by an element ∈ 1 + ̂ ur 0 , and is the -adic cyclotomic character. Moreover, if f is trivial then O cris ( ) is a free 0 1 -module of rank 1. In Lemma 3.28 below, we show that crystalline representations 1 ∶= ℚ ( f ur ) and 2 ∶= ℚ ( ) are Wach represenations. For a one-dimensional crystalline representation ∶= ℚ ( ) = ℚ ( f ur ) ⨂ ℚ ℚ ( ) = 1 ⨂ ℚ 2 as above, by compatibility of tensor products in Lemma 3.15 we get that is a Wach representation as well with ( ) = ( 1 ) ⨂ + 0 ( 2 ). Now, from the isomorphisms of O PD -modules in Lemma 3.28 and compatibility of tensor product of Wach modules in Lemma 3.15 and compatibility of the functor O cris with tensor products in §1.5 (see also [START_REF] Brinon | Représentations -adiques cristallines et de de Rham dans le cas relatif[END_REF]Théorème 8.4.2]), we get a string of isomorphisms of O PD -modules compatible with Frobenius, ltration and the action of Γ 0 ,

Taking Γ 0 -invariants of the rst and the last term gives us that O cris ( ) ≃ O PD ⨂ + 0 ( ) Γ 0 , compatible with Frobenius and ltration. Hence, we obtain the claim.

Following claim was used above:

Lemma 3.28.

(i) Let ∶ 0 → ℤ × be a continuous unrami ed character. Then the -adic representation ℚ ( ) is a Wach representation.

(ii) Let be the -adic cyclotomic character then for ∈ ℤ, the -adic representation ℚ ( ) is a Wach representation. Further, for = ℚ ( ), ℚ ( ) we have an isomorphism of 0 1 -modules

Therefore, there exists natural isomorphisms

compatible with Frobenius, ltration and the action of Γ 0 .

Proof. Let = f ur , where f is an unrami ed character of nite order and ur is an unrami ed character taking values in 1 + ℤ and trivialised by an element ∈ 1 + ̂ ur 0 (see Proposition 1.30).

ℚ ( ) = ℚ ( ).

Then is a Wach representation with single Hodge-Tate weight ∈ ℤ. In this case, from Lemma 3.28 we have ℤ ( ) = + 0 -. Lemma 3.30. Let ∶ 0 → ℤ × be a continuous character such that the -adic representation = ℚ ( ) is a Wach representation, with ( ) the associated Wach module over + 0 . Then we have an

Proof. From the discussion above we can write = f ur for some ∈ ℤ, and where f is a nite character, ur is an unrami ed character taking values in 1 + ℤ and trivialized by an element ∈ 1 + ̂ ur 0 , and is a the -adic cyclotomic character. In particular, we have = ℤ ( ) = ℤ ( f ) ⨂ ℤ ℤ ( ur ) ⨂ ℤ ℤ ( ), therefore by Lemma 3.15 we obtain that ( ) = ℤ ( f ) ⨂ + 0 ℤ ( ur ) ⨂ + 0 ℤ ( ) . So it is enough to show the claim for f , ur and separately. Now = ℤ ( f ) and ℤ ( ur ) the claim is trivial as we have * ( ( )) ≃ ( ) as + 0 -modules from the discussion above.

For = ℤ ( ), we see that * ( ( )) = -( ), where = ( ) . Recall that we have = and is a unit in O PD (see Lemma 2.43). Therefore, for = ℚ ( ) we obtain that * O PD ⨂ + 0 ( ) ≃ O PD ⨂ + 0 ( ), proving the claim.

From ( , Γ)-modules to ( , )-modules

The objective of this section is to prove the following statement: Proposition 3.31. Let be an ℎ-dimensional positive Wach representation of 0 , ⊂ a free ℤ -lattice of rank ℎ stable under the action of 0 and ( ) the associated Wach module. Then

1 is a nitely generated projective 0 1 -module of rank ℎ and the natural inclusion

is an isomorphism compatible with Frobenius, ltration, connection and the action of Γ 0 . Finally, if we assume ( ) to be free over + 0 then there exists a free 0 -module 0 ⊂ such that 0 1 = 1 are free modules of rank ℎ over 0 1 .

Proof. We will use the notation of De nition 3.8 without repeating them. The rst claim is easy to establish. Since we have 0 = Gal 1 / ∞ 1 , therefore we can write

(3.1)

The module O cris ( 0 ) ⨂ ℤ 0 is nitely generated over 0 . Since 0 is Noetherian, is nitely generated.

Independently, we have that 0 1 is Noetherian and O cris ( ) is a nitely generated 0 1module, therefore 1 ⊂ O cris ( ) is nitely generated over 0 1 . Moreover, the module

) is equipped with an PD -linear and integrable connection = ⨂ 1, where is the connection on O PD described after Lemma 3.23. Therefore, we can consider the induced connection on 1 , which is integrable since it is integrable over O PD ⨂ + 0 ( ). This connection is compatible with the one on O cris ( ) since the connection over O PD is induced from the connection over O cris ( 0 ). So by [Bri08, Proposition 7.1.2] we obtain that 1 must be projective of rank ≤ ℎ. Further, the inclusion 1 ⊂ O cris ( ) is compatible with natural Frobenius on each module since all the inclusions in (3.1) are compatible with Frobenius. the right side of the congruence above given by the expression

where ! = 0 ! ⋯ !. To write more succinctly, we set

and therefore, the summation in (3.5) can be expressed as

where we have ! = 0 ! ⋯ ! and the summation runs over indices in Λ (1) , . To get 1 ( +1 ) ≡ +1 mod [ ] O PD , it is enough to have the summation in (3.6) belong to [ ] O PD for each ∈ Λ -1 . We take = ( 0 , 1 + 1, 2 , … , ) ∈ Λ (1) , and putting (3.6) congruent to 0 modulo [ ] O PD and simplifying the expression, we get a congruence relation

where the summation runs over indices in Λ (1) , ⧵ { }. Since 0 < 0 in (3.7), we see that the coe cients of appearing in the summation above can be re-written as 0 0 ( 0 -0 ) 0 +1-0 which has non-negative -adic valuation (positive -adic valuation for ≥ 3). So from (3.7), we obtain an expression for in terms of such that < lexicographically. Here by lexicographic ordering we mean that for , ′ ∈ Λ , we have < ′ if and only if 0 < ′ 0 , or 0 = ′ 0 and 1 < ′ 1 , or 0 = ′ 0 , 1 = ′ 1 and 2 < ′ 2 , and so on.

To determine modulo ( ) for ∈ Λ such that 1 ≠ 0, we will proceed by lexicographic induction over the index . For the base case we have = (0, 1 , 2 , … , ) for 1 ≤ 1 ≤ and 1 +⋯+ = , so taking = (0, 1 -1, 2 , … , ), from (3.7) we obtain

Lexicographically, next we have = (1, 1 , 2 , … , ) for 1 ≤ 1 ≤ -1 and 1 + 1 + ⋯ + = . Then we take = (1, 1 -1, 2 , … , ) and obtain that Λ (1) , = {(0, 1 + 1, 2 , … , ), (1, 1 , 2 , … , )}. Since (0, 1 + 1, 2 , … , ) < (1, 1 , 2 , … , ), from (3.7) we obtain the value of (1, 1 , 2 ,…, ) . For the induction step, let = ( 0 , 1 , 2 , … , ) ∈ Λ , such that 1 ≠ 0 and 0 + ⋯ + = . Then we take = ( 0 , 1 -1, 2 , … , ) ∈ Λ -1 so that we have ∈ Λ (1) , and < for all ∈ Λ (1) , ⧵ { } as 0 < 0 = 0 . Plugging this value of in the computation above and in particular, from (3.7) we obtain the value of modulo ( ) by induction.

Next, we will repeat the computation above for the action of on in (3.4) for 2 ≤ ≤ . Let = ( 0 , … , , … , ) such that ≠ 0, = ( 0 , … , -1, … , ),

and we set

where the summation runs over indices in Λ ( ) , . For the base case we have = (0, 1 , … , , … , ) for 1 ≤ ≤ and 1 + ⋯ + = . So taking = (0, 1 , … , -1, … , ), from (3.8) we obtain

Lexicographically, next we have = (1, 1 , … , , … , ) for 1 ≤ ≤ -1 and 1 + 1 + … + = . Then we take = (1, 1 , … , -1, … , ) and obtain that Λ ( ) , = {(0, 1 , … , + 1, … , ), (1, 1 , … , , … , )}. Since (0, 1 , … , -1, … , ) < (1, 1 , … , , … , ), from (3.8) we obtain the value of (1, 1 ,…, ,…, ) . For the induction step, let = ( 0 , … , ) ∈ Λ , such that ≠ 0 and 0 + … + = . Then we take = ( 0 , 1 , … , -1, … , ) ∈ Λ -1 so that we have ∈ Λ ( ) , and < for all ∈ Λ ( ) , ⧵ { } as 0 < 0 = 0 . Plugging this value of in the computation above and in particular in (3.8), we obtain the value of modulo ( ) by induction. From the computation above we obtain solutions for and only when ≠ 0 for some ∈ {1, … , }. So we set ( ,0,…,0) = 0 mod ( ). Note that we have (i) unique value for modulo ( ) when ≠ 0 for exactly one ∈ {1, … , }, (ii) more than one value for modulo ( ) when ≠ 0 for more than one ∈ {1, … , }.

Note that our procedure of obtaining a value for modulo ( ) involves xing some such that ≠ 0, and solving some equations arising from the action of . For an index ∈ Λ , if ≠ ′ such that ≠ 0 and ′ ≠ 0, then we obtain more than one value for . But from Lemma 3.34 below, we see that these values are in fact, equivalent modulo ( ). Therefore, the value of +1 in (3.3) is uniquely determined modulo [ ] O PD . Moreover, from the expression obtained for in (3.7), it is clear that -adically → 0 as | | → +∞. In conclusion, the sequence converges -adically to some ′ ∈ ′ = O PD Γ ′ 0 .

Following conclusion was applied above:

Lemma 3.34. For each ∈ Λ , multiple values of obtained are congruent modulo ( ).

Proof. For a xed ∈ Λ , we need to show that in case of multiple solutions for , we must have that these solutions are equivalent modulo ( ). To do this, we need to work with all indices at once. So we will consider two sets of solutions { , ∈ Λ } such that entries in these sets are distinct for indices ∈ Λ for which we have multiple solutions. Further, our proof will exploit the commutativity of Γ ′ 0 . For simplicity in the presentation of the argument, out of generators of Γ ′ 0 , we will x two generators say 1 and 2 . Now, let us denote the rst set of solutions (1) , for ∈ Λ , where for ∈ Λ such that if 1 ≠ 0 we take the solutions obtained from trivializing the action of 1 (see (3.7)) and if 1 = 0 we take solutions obtained from trivializing the action of (see (3.8)) for some ∈ {2, … , } such that ≠ 0. Next, we take another set of solution (2) , for ∈ Λ , where for ∈ Λ such that if 2 ≠ 0 we take the solutions obtained from trivializing the action of 2 and if
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Now let = ( ⨂ ) ( ) + ∑ ℎ =1 ( ) ( ) ∈ and let 0 be the 0 -submodule of generated by { 1 , … , ℎ }. From the expression of { 1 , … , ℎ } in the basis of O PD ⨂ + 0 ( ), we obtain that the determinant of the inclusion O PD ⨂ 0 0 O PD ⨂ + 0 ( ) is given by (det ) det( ). Since det is invertible in O ̂ PD , we get that (det ) is invertible in O PD and from above we already have that det is invertible in O PD 1 . Therefore, the natural inclusions

are bijective. These inclusions are compatible with Frobenius, ltration, connection and the action of Γ 0 on each side. Note that we assumed ( ) to be free of rank ℎ, therefore we obtain a free 0 -lattice 0 ⊂ such that

which are free of rank ℎ over 0 1 . In general, when ( ) is projective of rank ℎ, we obtain that 1 is projective of rank ℎ.

Finally, under simpli ed assumptions we make an observation which will be useful in Chapter 5.

Proposition 3.38. Let be an ℎ-dimensional positive Wach representation of 0 and ⊂ a free ℤ -lattice of rank ℎ stable under the action of 0 . Suppose = 1 and let us assume that ( ) is a free + 0 -module and let 0 ⊂ O PD ⨂ + 0 ( ) Γ 0 be the free 0 -module obtained in Proposition 3.31.

Then, the 0 -module 0 / * ( 0 ) is killed by 2 , where is maximum among the absolute value of Hodge-Tate weights of .

Proof. Let = { 1 , … , } be an + 0 -basis of ( ). Then in the notation of the proof of Proposition 3.31, we obtain that 0 is a free 0 -module with a basis given as = { 1 , … , }, where = ( ) ( ) for ∈ Mat(ℎ, O ̂ PD ).

Now note that = ( ) = and since is a unit in O PD (see Lemma 2.43) we obtain that and are associates in the ring O PD . Further, we have that ( )/ * ( ( )) is killed by , where is maximum among the absolute value of the Hodge-Tate weights of . So, over O PD we obtain that

By the discussion above, 3 and 5 are -torsion modules over O PD . An argument similar to the case of 3 shows that 2 is -torsion as well. This implies that the submodule 1 ⊂ 2 is we have

, where ℎ 1 = 1 , and ℎ 2 = 2 , Clearly, ( ) ⊂ + ( ), and it is endowed with a Frobenius-semilinear endormorphism ∶ ( ) → ( ) such that ( )/ * ( ( )) is killed by . With this de nition, we see that ( ) satis es all the assumptions of De nition 3.8. As the Hodge-Tate weights of are (-, + 1, … , -1, 0) (see the proof of Proposition 3.43), we conclude that is a positive Wach representation in the sense of De nition 3.8. Now that we have constructed the Wach module ( ), we would like to study some complimentary structures on it, and compare it to the 0 -module O cris ( ) in the sense of Theorem 3.24. First we recall that there is a ltration over Wach modules given as

In our case we can write the ltration more explicitly. Indeed, we have Fil ( ) = ( ) for ≤ 0, whereas Fil ( ) = ∑ =0 + 0 ℎ 1 ℎ - 2 , for > 0 and where = max{ -, 0}. Proof. Using the ring O PD , we extend scalars and set

which is equipped with a ltration, Frobenius, a connection given as = ⨂ 1, where denotes the connection on O PD mentioned in the discussion following Lemma 3.23. Note that the connection satis es Gri ths transversality with respect to the ltration. Moreover, is equipped with a continuous action of Γ . Next, let

which is equipped with a ltration, Frobenius and a connection given by = ⨂ 1 + 1 ⨂ which satis es Gri ths transversality with respect to the ltration.

We have an O PD -linear map between these two modules, given as

(3.14)

It is straightforward to see that this map is bijective. The induced Frobenius on both modules are the same because for 0 ≤ ≤ we have

The induced ltration also matches, since we can write any element of Fil O PD ⨂ 0 O cris ( ) as

Cohomological complexes

We also set

In other words, this amounts to taking the total complex of the associated double complex.

Using the notation introduced above, we can also write the quasi-isomorphism of complexes in Theorem 4.1 as

Relative Fontaine-Herr complex

Now we turn our attention towards the relative case. We will keep the notations of Chapters 1 & 2. Similar to Theorem 4.1, we have results in the relative case where a complex of ( , Γ)-modules computes the continuous -cohomology of a -adic representation. For this reason, we consider the continuous cohomology (for the weak topology) of ( , Γ )-modules over and † .

De nition 4.2. Let be a continuous ( , Γ )-module over or † . De ne C • (Γ , ) to be the complex of continuous cochains with values in and let Γ cont (Γ , ) denote this complex in the derived category of abelian groups.

Let be a ℤ -module, equipped with a continuous and linear action of . Let ( ) and † ( ) denote the associated ( , Γ)-module over and † , respectively. Then we have that, Theorem 4.3 ([AI08, Theorem 7.10.6]). The natural maps

Moreover, from [AI08, Proposition 8.1] we have that the sequence 

Furthermore, for ∈ Rep ℤ ( ), the natural inclusion of ( , Γ )-modules † ( ) ⊂ ( ) induces a natural isomorphism

This complex is a resolution of ℤ in the category of topological left Λ-modules.

De nition 4.12. ne the Γ -Koszul complex with values in as

By the general theory of continuous group cohomology for -adic Lie groups, we have the following conclusion: Proposition 4.13 ([Laz65, Lazard]). There exists a natural quasi-isomorphism

De nition 4.14. Let be a ( , Γ )-module over from De nition 2.9. De ne the complex

Therefore, from Proposition 4.13 we have a natural quasi-isomorphism

Using the de nition above, we have the following conclusion for -adic representations of : 

Lie algebra action and cohomology

In this section we will study the in nitesimal action of Γ on some of the rings constructed in previous sections. This will help us in computing continuous Lie algebra cohomology of certain ℤ [[Lie Γ ]]-modules, which is roughly the same as continuous Lie group cohomology of these modules. Recall from the previous section that we have topological generators { 0 , 1 , … , } of Γ such that { 1 , … , } are topological generators of Γ ′ and 0 is a lift of a topological generator of Γ .

In the rest of this section we will x constants , ∈ ℝ such that -1 ≤ ≤ < 1 < , for example, one can x = -1 and = -1. Recall from §2.4 that we have rings PD , [ ] and [ , ] equipped with a continuous action of Γ .

Lemma 4.16. For ∈ {0, 1, … , } the operators

converge as series of operators on PD , [ ] and [ , ] .

Proof. Recall that any ∈ PD can be written as = ∑ ∈ℕ ⌊ / ⌋! such that ∈ + goes to 0 as → +∞. So it is enough to show that the series of operators log 0 converge for , i.e. ∇ 0 ( ) converges in PD and therefore in PD .

Syntomic complex with coe cients

In this section we will carry out computations involving syntomic complexes in order to prove Theorem 5.6. More precisely, we will de ne syntomic complexes with coe cients in O cris ( ), over various rings introduced in §2.3. Then, we will relate these complexes to di erential Koszul complex with coe cients in ( ). Further computations clarifying relations between di erential Koszul complex and Galois cohomology of ( ) will be worked out in the next section.

We begin by xing some notations for the rest of this section. (5.2)

Further, if denotes the connection on O cris ( ) then we can equip with a connection

which satist es Gri ths transversality with respect to the ltration, since the di erential operator on as well as satisfy this condition. So, we obtain a ltered de Rham complex,

Now, let ∈ {PD, [ ],

[ , ], [ , / ]}. We x a basis of Ω 1 as 0 1+ 0 , 1 1 , … , . For ∈ ℕ, let = {0 ≤ 1 < ⋯ < ≤ } and for = ( 1 , … , ) ∈ , let

We de ne operators and on Ω by Remark 5.9. Note that for = [ ], we have D • = E • .

Syntomic complex and Galois cohomology

Next, recall from (5.3) that in the basis of Ω , the operator is de ned as ∑ ∈ = ∑ ∈ ( ) . In particular, we obtain

where

From Lemma 2.37(ii), we have a decomposition =0 = ⨁ ≠0 = , where = (1+ 0 ) 0 1 1 ⋯ for = ( 0 , … , ) ∈ {0, 1, … , -1} [0, ] . Moreover, from §2.3.2, we have ( ) = for 0 ≤ ≤ . In particular, ( ) ⊂ . Now, using the decomposition of =0 , we set = ⨁ ℎ =1 ( ) and obtain that [ ] =0 is -isomorphic to ⨁ ≠0 . From the di erentials on and the connection on [ ] we obtain an induced connection ∶ → ⨂ Ω 1 = ⨂ ℤ Ω 1 , which is integrable. The decomposition of [ ] ) =0 and (5.5) shows that the kernel complex in the claim is -isomorphic to the direct sum of complexes

where ≠ 0.

We will show that (5.6) is exact for each . The idea for the rest of the proof is based on [CN17, Lemma 3.4]. Note that since everything is -adically complete, we only need to show the exactness of (5.6) modulo . For this we notice that for = ∑ ℎ =1 ( ) ∈ , we have Note that the operator in the equation above is the usual one (in (5.3) we replaced this operator by dividing out by powers of ). Moreover, by Lemma 2.38 we have that ( ) -∈ . So we get that the complex (5.6) has a very simple shape modulo : if = 0, it is just 0 -----→ ; if = 1, it is the total complex attached to the double complex , 0 1 1 0 and for general , it is the total complex attached to a ( + 1)-dimensional cube with all vertices equal to and arrows in the -th direction equal to . As one of the is invertible by assumption, this implies that the cohomology of the total complex is 0. This establishes that (5.6) is exact for each and hence the kernel complex is -acyclic.

Next, we will base change the complex to [ , ] . As we will compare ( , )-complexes, following (5.4), one can de ne an operator

Syntomic complex and Galois cohomology

Proof. For 0 ≤ ≤ , observe that -1 acts as a twisted derivation, i.e. for ∈ [ , ] and ∈ ( ), we have ( -1)( ) = ( -1) ⋅ + ( )( -1) .

The action of Γ is trivial on ( )/ ( ), so we can write ( -1) = , for some ∈ ( ). Now, from the proof of Lemma 4.16 and (4.2), we have ( -1) [ , ] ⊂ , [ , ] .

The same estimation of -adic valuation of coe cients as in that proof helps us in concluding that log converges as a series of operators on [ , ] . The claim for the convergence of operators ∇ -1

and -1 ∇ follows in a manner similar to Lemma 4.17.

Note that [ , ] is a topological [ , ] -module equipped with a ltration by [ , ] -submodules

Fil [ , ] ⨂ Fil ( ), for ∈ ℤ, (5.9) such that Fil [ , ] is stable under the action of Γ .

Remark 5.18. The results of Lemma 5.17 continue to hold if we replace ( ) with ( ( )) for ∈ ℤ, or Fil [ , ] for ∈ ℤ, or ltered pieces of [ , ] ⨂ + 0 ( ( )).

Lemma 5.19. For the ltered modules and operators ∇ de ned above, we have , ] for 0 ≤ ≤ .

Proof. Note that the action of Γ is trivial on Fil [ , ] / Fil [ , ] and from this we infer that for 0 ≤ ≤ , we have ∇ Fil [ , ] ⊂ Fil [ , ] ⋂

[ , ] = Fil -1 [ , ] ,

where the last equality follows from Lemma 3.17. As is a unit in = [ , ] (see Lemma 2.43), we can also write ∇ Fil [ , ] ⊂ Fil -1 [ , ] .

The lemma above enables us to introduce di erential operators over [ , ] by the formula

where the operators are well-de ned by dividing out the image under the operator ∇ by . Recall that via the identi cation [ , ] ≃ --→ [ , ] , we have a basis for Ω 1 [ , ] given by 0 1+ 0 , 1 1 , … , .

Therefore, by setting = ( 0 , … , ) we obtain a connection over [ , ] ∶

⟼ ( ) + ⨂ ( ).

Lemma 5.20. The connection on [ , ] is integrable and satis es Gri ths transversality with respect to the ltration, i.e.

(Fil [ , ] ) ⊂ Fil -1 [ , ] for 0 ≤ ≤ .

Proof. Recall that from (4.4) we have [∇ , ∇ ] = 0 for 1 ≤ , ≤ , whereas [∇ 0 , ∇ ] = ∇ , for 1 ≤ ≤ . So it follows that over [ , ] we have the composition of operators

Next, for 1 ≤ ≤ , we have

In particular, 0 • -• 0 = 0. Since • = ( • ) , for 0 ≤ ≤ ≤ and [ , ] is -torsion free, we conclude that the connection is integrable. Moreover, it satis es Gri ths transversailty since Fil [ , ] = -1 ∇ Fil [ , ] ⊂ Fil -1 [ , ] , for 0 ≤ ≤ . Now we are in a position to write the ltered de Rham complex for [ , ] as

Further, we know that Ω 1

[ , ] has a basis { 1 , … , }, such that an element of Ω [ , ] = ⋀ Ω 1

[ , ] can be uniquely written as ∑ , with ∈ [ , ] and

In this case, the map involving di erential operators becomes

De nition 5.21. De ne the -Koszul complex for Fil [ , ] as

Remark 5.22. (i) By de nition, we have an ismorphism of complexes Fil [ , ] ⨂ Ω • [ , ] ≃ Kos , Fil [ , ] .

(ii) Let ′ = {( 1 , … , ), such that 1 ≤ 1 < ⋯ < ≤ } and let ′ = ( 1 , … , ). We can also set Kos ′ , Fil [ , ] ∶ Fil [ , ] Fil -1 [ , ] ′ 1

and therefore we get that Kos , Fil [ , ] = Kos ′ , Fil [ , ] 0 -----→ Kos ′ , Fil -1 [ , ] .

(iii) The computation carried out in this section are true over the ring [ , / ] as well.

Poincaré Lemma

Recall from §2.5 that given two -adically complete -algebras and Λ, and ∶ → Λ a continuous injective morphism of ltered -algebras. Then for ∶ ⨂ Λ → Λ the morphism sending ⨂ ↦ ( ) , we can de ne the ring Λ to be the -adic completion of the PD-envelope of ⨂ Λ → Λ with respect to Ker .

De nition 5.23. Let ∈ {PD, [ ], [ , ]} and de ne

= Λ for = , Λ = , and = cycl (see §2.4).

Note that we are working under the assumption that -1 ≤ ≤ < 1 < , for example, one can take = -1 and = -1. These rings have desirable properties: Lemma 5.24 ([CN17, Lemma 2.38]).

(i) PD ⊂ [ ] ⊂ [ , ] .

compatible with Frobenius, ltration, connection, and the action of Γ on each side. Let 1 = [ , ] , 2 = [ , ] , and 3 = [ , ] . We set 0,1 = 0 , 0,2 = and for 1 ≤ ≤ , we set ,1 = and ,2 = [ ♭ ]. Now for = 1, 2, we set

and Ω 1 3 ∶= Ω 1 1 ⨁ Ω 1 2 . For = 1, 2, 3, let Ω = ⋀ Ω . Therefore, Ω = ⨂ Ω . Recall that we have [ , ] = [ , ] ⨂ 0 O cris ( ) is a ltered [ , ] -module equipped with a quasi- nilpotent integrable connection satisfying Gri ths transversality with respect to the ltration as de ned above. In other words, for each ∈ ℕ, we have a complex Fil [ , ] ⨂ Ω

Next, let Ξ ∶= [ , ] ⨂ [ , ]

[ , ] and de ne a ltration on Ξ using the ltrations on each factor of the tensor product. For ∈ ℤ, we have

therefore we obtain that 3 ∶ Fil Ξ → Fil -1 Ξ ⨂ ℤ Ω 1 3 . Hence, we have the ltered de Rham complex

Lemma 5.26. The natural map

Proof. Note that we have assumed 1 = [ , ] . Since we have Fil [ , ] = (Fil Ξ) 2 =0 , from Lemma 2.51 and Proposition 2.52 we obtain that the claim.

Next, recall from (5.10) that for 2 = [ , ] and the module [ , ] = [ , ] ⨂ + 0 ( ), we have the ltered de Rham complex Fil [ , ] ⨂ Ω

Also, let Δ ∶= [ , ] ⨂ [ , ]

[ , ] and de ne a ltration on Δ using the ltrations on each factor of the tensor product. Then similar to the case of Ξ, we have the de Rham complex

Now, since Fil [ , ] = (Fil Δ) 1 =0 , in a manner similar to Lemma 5.26 one can show that, Lemma 5.27. The natural map

is a quasi-isomorphism.

Remark 5.28. The computations above continue to hold if we replace the ring [ , ] (resp. [ , ] ) with the ring [ , / ] (resp.

[ , / ] ).

These submodules are stable under the action of Γ and from De nition 5.29, we have the complex Kos , ,

From the theory of ( , Γ )-modules in Chapter 2, we have

. Using Proposition 4.15, we have the complex

.

By Proposition 4.13 and Theorem 4.4 we see that the Koszul complex de ned above computes the continuous Galois cohomology of ( ), i.e.

Kos , Γ , ( ( )) ≃ Γ cont ( , ( )).

The main result of this section is the comparison between the Koszul complexes introduced above.

Proposition 5.31. There exists a -quasi-isomorphism ≤ Kos , , Fil [ , ] ≃ ≤ Kos , Γ , ( ( )) ≃ ≤ Γ cont ( , ( )), where = ( , ) ∈ ℕ depends on the representation , and .

Proof of Theorem 5.6

Using the results of previous section and Proposition 5.31, we will show Theorem 5.6. Let us recall the statement, Theorem 5.32. Let be a free ℤ -representation of 0 as in De nition 5.3, the maximum among the absolute values of Hodge-Tate weights of = ℚ ⨂ ℤ , and an integer ≥ + 1. Then there exists a -quasi-isomorphism

for 0 ≤ ≤ --1 and = ( , , ) ∈ ℕ depending on the representation , rami cation index , and .

Proof. Combining Proposition 5.10 and Proposition 5.12, we have 4 +4 -quasi-isomorphisms

Next, from Proposition 5.30 we have a 2 ( , ) -quasi-isomorphism Syn [ , ] , ≃ Kos , , Fil [ , ] .

Therefore, we get that (5.21) is injective. Next, we note that from the de nitions we can write [ , ] = [ ] + (0, ]+ . So we take [ ] ∶= [ ] ⨂ + 0 ( ) and + ∶= + ⨂ + 0 ( ) and we endow these modules with ltrations by considering the tensor product of ltrations on each component (note that for simplicity in notation we consider modules without the twist -this is harmless). This reduces (5.21) to the map

and we need to show that for any ∈ -Fil [ ] , there exists ∈ - 1 [ ] such that under the natural map above, maps to the image of . Let

From Lemma 2.28, for < , we can write = 1 + 2 , with 1 ∈ Fil [ ] and 2 ∈ 1 ⌊ ⌋ + . However,

+ , therefore we get that 2 ∈ 1 ⌊ ⌋ Fil + . Now we set

and we get that -= -(∑ 2 ⨂ ) ∈ -+ (since = -1 < 1). So (5.20) is -isomorphic to the equation

Next, recall that we have = -1, so it follows from Lemma 2.47 (v) that divides in (0, / ]+ , whereas 1 divides in (0, ]+ , therefore (5.20) is 2 -isomorphic to the equation 1 -∶ [ , ] ( )/ (0, ]+ ( ) ⟶ [ , / ] ( )/ (0, / ]+ ( ).

But from Lemma 5.40, we have that this map is bijective (note that Frobenius has no e ect on twist). Therefore, we conclude that (5.19) is 3 -bijective. As = -≤ , the cokernel complex of the map in the claim is killed by 3 . This proves the claim.

Following observation was used above, Lemma 5.40. The natural map

is bijective.

Proof. We will follow the strategy of the proof of [CN17, Lemma 4.8]. Let us note that the natural map

induced by the inclusion [ , ] [ , / ] is an isomorphism. Indeed, the map above is injective because the kernel consists of analytic functions that take values in ( ) and are integral on the annulus ≤ ( 0 ) ≤ and which extend to analytic functions taking values in ( ) and integral on the annulus 0 < ( 0 ) ≤ , hence belong to (0, ]+ ⨂ ( ). It is surjective because we can write [ , / ] = [ ] + (0, / ]+ (clear from the de nitions). So, we can consider (1 -) as an endomorphism of the module = [ , ] ⨂ ( ) / (0, ]+ ⨂ ( ).

An element ∈ [ , ] can be written as = ∑ ∈ℕ ⌊ / ⌋ , with ∈ (0, ]+ going to 0, -adically. So,

and since ⌊ / ⌋-⌊ / ⌋ ≥ 1 if ⌊ / ⌋ ≠ 0, we see that ( ) ∈ (0, / ]+ + [ , / ] . As ( ( )) ⊂ ( ), we get ( ) ⊂

. To show the bijectivity of 1 -, it remains to check that does not contain -divisible elements, which would then imply that 1 + + 2 + ⋯ converges on . Let ( ) ∈ be a collection of elements of + whose images form a basis of + /( , ) over = + /( , ). Then ( ) ∈ is a topological basis of [ , ] over [ , ] and of (0, ]+ over (0, ]+ . Writing everything in the basis { ⨂ , for 1 ≤ ≤ ℎ, ∈ }, where { , 1 ≤ ≤ ℎ} is a basis of ( ), reduces the question to proving that [ , ] / (0, ]+ has no -divisible element. Since all such elements can be written as a power series in [ ] / + , we conclude that there can be no -divisible elements in this quotient.

Hence, we get the desired conclusion.

Change of annulus of convergence : Part 2

In this section, we will change the ring of coe cients from (0, ]+ to (0, / ]+ by replacing the action of with its left inverse in the complexes discussed so far : these steps are required in order to obtain a complex comparable to Koszul complexes computing the Galois cohomology of ( ). Note that we are working under the assumption that -1 ≤ ≤ < 1 < , for example, one can take = -1 and = -1. Recall from Proposition 2.13 that we have a left inverse of the Frobenius such that ( ) ⊂ , which induces the operator ∶ + → + . For the overconvergent rings we can consider the induced operator over † and we have that ( † ) ⊂ † . This gives us an operator ∶ (0, / ]+ → (0, ]+ .

Note that we can also de ne by identifying (0, / ]+ ≃ (0, / ]+ via the isomorphism cycl in §2.4, and considering the left inverse of the cyclotomic Frobenius over (0, / ]+ (see §2.3.2). Both these de nitions coincide since cycl commutes with the Frobenius on each side.

Next, let = -1 , then from Proposition 2.40 (i) we have inclusions

/ ]+ ⊂ --2 (0, ]+ ⊂ -(0, ]+ ⊂ -(0, / ]+ .

(5.22)

Using this, we deduce that -(0, ]+ is stable under . De ne

Note that this module is stable under the action of Γ .

Notation. We write (0, ]+ ( ) instead of (0, ]+ ( ( )) as we have + ( ( )) = + ( )( ). We hope this change in notation is not too confusing for the reader.

Recall from Lemma 2.37 that we have (0, / ]+ ⊂ (0, ]+ . Further, for = -1, by Lemma 2.47 (v) we have that is a unit in (0, / ]+ . So by combining Lemma 2.39 and Proposition 2.40 (i), we see that -(0, / ]+ ⊂ -(0, ]+ . Now, we know that commutes with the action of , so by linearity we can extend this map to get ( + ( )) ⊂ + ( ), and therefore we have that (0, / ]+ ( ) ⊂ (0, ]+ ( ). Coupling this with the observation above, we note that -(0, / ]+ ( ) ⊂ -(0, ]+ ( ). Now since ( ( )) ⊂ ( + ( )) ⊂ + ( ), therefore from the inclusion -(0, ]+ ⊂ -(0, / ]+ and (5.22), we deduce that

(5.23)

Next, for the ltration on (0, ]+ and ∈ ℕ such that ≤ , we observe that Fil -(0, ]+ ( ( )) ⊂ (0, / ]+ ( ( )) ⊂ -( -) (0, / ]+ ( ), therefore Fil -(0, ]+ ( ( )) = Fil -(0, ]+ ( ( )) ⊂ (0, / ]+ ( ( ))

⊂ -( -) (0, / ]+ ( ) ⊂ -( -) (0, ]+ ( ).

(5.24)

Equally obvious is the inclusion Fil -(0, ]+ ( ( )) ⊂ (0, ]+ ( ( )) ⊂ (0, / ]+ ( ( )) ⊂ -( -) (0, ]+ ( ).

In conclusion, we obtain that

(5.25)

We now turn to complexes. Recall that we have,

and similarly Kos Γ ′ , -(0, ]+ ( ) . In the previous section, we already de ned the complexes K Γ ′ , Fil 0 (0, ]+ ( ( )) , K Γ ′ , Fil -1 (0, ]+ ( ( )) and a map 0 from the former complex to the latter. Therefore, similar to the complex K , Γ , (0, ]+ ( ( )) from the previous section and using (5.25) de ne the complex

Proposition 5.41. With notations as above, the natural map ≤ K , Γ , (0, ]+ ( ( )) ⟶ ≤ K , Γ , (0, ]+ ( ( )) , induced by identity in the rst column and in the second column is a 5 + +2 -quasi-isomorphism, where is the maximum among the absolute values of Hodge-Tate weights of (see De nition 3.8).

Proof. We will show that the kernel and cokernel complex are killed by some power of . First, let us look at the cokernel complex, which is made up of modules -(0, ]+ ( ) / (0, / ]+ ( ( )) for 0 ≤ ≤ . We want to show that these modules are killed by 4 + . Now, note that (0, ]+ ( ) ⊂ (0, / ]+ ( ), therefore (0, ]+ ( ) ⊂ (0, / ]+ ( ) . Moreover, from (5.22) we get that

Therefore, -(0, ]+ ( ) / (0, / ]+ ( ) is killed by . But, from Lemma 2.47 we have that divides in (0, ]+ (for = -1), therefore -(0, ]+ ( ) / (0, / ]+ ( ) is killed by .

Further, from De nition 3.8 we have + ( ) ⊂ ( ) ⊂ + ( ). So we obtain + -(0, / ]+ ( ) ⊂ (0, / ]+ ( ( )) ⊂ -0, / ]+ ( ).

Since divides in (0, / ]+ (see Lemma 2.47 (v) for = -1), we obtain that (0, / ]+ ( ( )) is +isomorphic to -(0, / ]+ ( ). Similarly, we see that the natural inclusion (0, / ]+ ( ) ⊂ -(0, / ]+ ( ) is a -isomorphism. Combining both these statements we get that (0, / ]+ ( ) is + + -isomorphic Syntomic complex and Galois cohomology to (0, / ]+ ( ( )). Therefore, the natural map -(0, ]+ ( ) / (0, / ]+ ( ( )) ⟶ -(0, ]+ ( ) / (0, / ]+ ( ) is a + + -isomorphism. Since the latter module is killed by , we conclude that the module -(0, ]+ ( ) / (0, / ]+ ( ( )) is killed by +3 + . As this value grows with the degree of the complex, we see that after truncating in degree ≤ , we obtain that the cokernel complex of the map in the claim is 4 + -acyclic.

Next, we look at the kernel complex. Our strategy is to replace the kernel complex with a simpler complex, up to some power of , and show that the latter complex is 2 -acyclic.

Note that the map is identity on the rst column, so the kernel complex can be written as

Since divides in (0, / ]+ (see Lemma 2.47 (v)), we obtain that (0, / ]+ ( ( )) is --isomorphic to (0, / ]+ ( )( ), for ≤ . Using this we see that the kernel complex is -quasi-isomorphic to the complex

.

Now, we will analyze the module (0, / ]+ ( ) =0 . Let us write ( ) = ∑ ℎ =1 + 0 , for a choice of basis. Since the attached ( , Γ )-module ( ) over is étale, we obtain that

, if and only if ∈ =0 , for each 1 ≤ ≤ ℎ. Indeed, ( ) = 0 if and only if ∑ ℎ =1 ( ( )) = ∑ ℎ =1 ( ) = 0. As are linearly independent over , we get the desired conclusion.

Next, using Lemma 2.37 (ii), we have a decomposition

Therefore, we obtain that

Now observe that (0, / ]+ ( ) =0 = ( ) =0 ⋂ (0, / ]+ ( ). Using the decomposition above, we set

[ ♭ ] ∶= ( ) [ ♭ ] ⋂ (0, / ]+ ( ), for ∈ {0, … , -1} and ≠ 0, where we take the intersection inside ( ) =0 . Note that the module is an (0, / ]+ -module contained in (0, / ]+ ( ), stable under the action of Γ and independent of . Indeed, for ≠ ′ , if we have

′ , and vice versa.

From the discussion above, we see that the kernel complex of the map in the claim is -isomorphic to the complex

(5.26)

Lemma 5.42. The complex described in (5.26) above is 2 -acyclic.

Similarly, we can de ne the complex K Γ ′ , (0, / ]+ ( ( )) and a map 0 from former to the latter complex. Moreover, from (5.23) and the natural inclusion (0, / ]+ ( ( )) ⊂ -(0, / ]+ ( ) = -(0, / ]+ ( ) (since is a unit in (0, / ]+ ), we deduce that ( -1) (0, / ]+ ( ( )) ⊂ -( -) (0, / ]+ ( ) ⊂ - (0, / ]+ ( ).

Therefore, similar to K , Γ , (0, ]+ ( ( )) , de ne the complex K , Γ , (0, / ]+ ( ( )) ∶=

.

We can compare it to the complex de ned before Proposition 5.41:

Lemma 5.43. The natural map ≤ K , Γ , (0, ]+ ( ( )) ⟶ ≤ K , Γ , (0, / ]+ ( ( )) ,

induced by inclusions (0, ]+ ( ( )) ⊂ (0, / ]+ ( ( )) and -(0, ]+ ( ) ⊂ -(0, / ]+ ( ) is a +quasi-isomorphism.

Proof. As the map is injective it is enough to show that the cokernel complex is killed by + . For ∈ ℕ and ≤ , in the cokernel complex, we have maps -1 ∶ (0, / ]+ ( ( )) / Fil -(0, ]+ ( ( )) ⟶ -(0, / ]+ ( ) / -(0, ]+ ( ),

(5.27) and it is enough to show that these are + -bijective. Let us show the + -surjectivity rst. Note that from 5.24 we have (0, / ]+ ( ( )) ⊂ -(0, ]+ ( ), therefore the cokernel of (5.27) is given as -(0, / ]+ ( ) / (0, / ]+ ( ( )). Recall from De nition 3.8 that we have

Extending scalars to (0, / ]+ in the equation above and dividing by , we obtain a natural inclusion -(0, / ]+ ( ) ⊂ (0, / ]+ ( ( )). Therefore, we see that -(0, / ]+ ( ) / (0, / ]+ ( ( )) = -(0, / ]+ ( ) / (0, / ]+ ( ( )) is killed by + . But divides in (0, / ]+ (see Lemma 2.47 for = -1), therefore (5.27) is + -surjective (this also shows that truncation in degree ≤ is necessary in order to bound the power of ).

For injectivity, let ∈ (0, / ]+ ( ( )) such that ( -1) ∈ -(0, ]+ ( ). We want to show that ∈ Fil -(0, ]+ ( ( )). Note that from 5.23, we have So we get that ∈ -(0, ]+ . We write = -⨂ , for ∈ (0, / ]+ and ∈ ( )( ). As - 1 is a unit in (0, ]+ , we also get that

But then we must have ∈ 1 -(0, ]+ ⊂ Fil -(0, ]+ , which implies that = -⨂ ∈ -Fil -(0, ]+ ⨂ + 0 ( )( ) ⊂ Fil -(0, ]+ ( ( )). This shows that (5.27) is injective. Finally, putting everything together for ≤ , we conclude that the map in the claim is a +quasi-isomorphism. Proof. Since the map is injective it is enough to show that the cokernel complex is killed by + . Note that the cokernel is a complex made up of (0, / ]+ -modules -(0, / ]+ ( ) / (0, / ]+ ( ( )), for ∈ ℕ such that ≤ . Recall from De nition 3.8 that we have + ( )( ) ⊂ ( )( ) = ( ( )) ⊂ + ( ( )). Extending scalars to (0, / ]+ in the equation above and dividing by , we obtain natural inclusions -(0, / ]+ ( ) ⊂ (0, / ]+ ( ( )) ⊂ -(0, / ]+ ( ).

As = -1, from Lemma 2.47 (v) we have that divides in (0, / ]+ . Therefore, the module -(0, / ]+ ( ) / (0, / ]+ ( ( )) = -(0, / ]+ ( ) / (0, / ]+ ( ( )) is killed by + . Hence, the cokernel complex (for the truncated complex) is + -acyclic, which proves the claim.

Change of disk of convergence

Finally, we are in a position to relate our complexes to the Koszul complex computing continuous -cohomology of ( ). Recall that in §2.1, we de ned an operator ∶ ( ( )) → ( ( )), as the left inverse of . Using this operator, we can de ne the complex Kos , Γ , ( ( )

This complex is related to the one from the previous section:

Lemma 5.45. The natural map Kos , Γ , (0, / ]+ ( ) ⟶ Kos , Γ , ( ( )) , induced by the inclusion -(0, / ]+ ( ) ⊂ ( ( )), is a quasi-isomorphism.

Proof. The proof is similar to [CN17, Lemma 4.12]. First we note that the map on complexes is induced by inclusion, so the kernel complex is 0. Next, to examine the cokernel complex we write

where ∧ denotes the -adic completion. Let = -1 , and recall from Lemma 2.37 that we have (0, / ]+ ⊂ ( (0, / ]+ ( ). From this dicsussion, we note that the map ∶ ( ( )) / -(0, / ]+ ( ) ⟶ ( ( )) / -(0, / ]+ ( ) is (pointwise) topologically nilpotent, therefore 1 -is bijective over this quotient of modules. But, this also means that the complexes Kos Γ ′ , ( ( )) / -(0, / ]+ ( ) -1 -----→ Kos Γ ′ , ( ( )) / -(0, / ]+ ( ) , and Kos Γ ′ , ( ( )) / -(0, / ]+ ( ) -1 -----→ Kos Γ ′ , ( ( )) / -(0, / ]+ ( ) , are acyclic. Hence the cokernel complex is acyclic.

Next, recall that we have the complex induced by identity on the rst column and on the second column is a quasi-isomorphism.

Proof. We will examine the kernel and cokernel of the map above. Notice that the map is surjective on ( ( )), so the cokernel complex is 0. For the kernel complex, we need to show that the complex Kos Γ ′ , ( ( )) =0 0 ---→ Kos Γ ′ , ( ( )) =0 , is acyclic. For this, we will analyze the module ( ( ( ))) =0 . Let us write ( ) = ⨁ ℎ =1 + 0 for a choice of + 0 -basis. Since ( ( )) ≃ ( )( ) ≃ 0 ⨂ + 0 ( )( ), we obtain that { 1 ⨂ ⨂ , … , ℎ ⨂ ⨂ } is an 0 -basis of ( ( )), where ⨂ is a basis of ℤ ( ). Further, since ( ( )) is étale and ( ( )) = ⨂ 0 ( ( )), we obtain a decomposition

Using this decomposition, note that we can write

if and only if ∈ =0 for each 1 ≤ ≤ ℎ. Indeed, ( ) = 0 if and only if ∑ ℎ =1 ( ( )) = ∑ ℎ =1 ( ) = 0. As are linearly independent over , we get the desired conclusion. Next, according to Proposition 2.40, we have a decomposition

Therefore, we obtain that

We have ( ) = ⨁ ℎ =1 and we see that the kernel complex of the map in the claim is isomorphic to the complex

(5.28)

Lemma 5.47. The complex described in (5.28) is acyclic.

Proof. The proof will follow the technique used in the proof of [CN17, Lemma 4.10, Remark 4.11] and will be essentially similar to Lemma 5.42. We will treat terms corresponding to each separately. First, let us assume that ≠ 0 for some ≠ 0. We want to show that both Kos Γ ′ , ( ) [ ♭ ] and Kos Γ ′ , ( ) [ ♭ ] complexes are acyclic the twist has disappeared because the cyclotomic character is trivial on Γ ′ . As the proof is same in both the cases, we only treat the rst case. We can write the complex as a double complex

where the rst horizontal maps involve 's with ≠ , 1 ≤ ≤ . Since ( ) is -adically complete, it enough to show that -1 is bijective on ( ) [ ♭ ] modulo . Indeed, this follows from inductively applying ve lemma to following exact sequences, for ∈ ℕ, 0

So below, we will work modulo , however with slight abuse, we will hide this from the notation. Note that we have

where ( ) = (1+ 1 ) ( -1) 1 + ((1+ 1 ) -1) 1 , for ∈ ( ).

Note that we have = + 1 , and setting = ⨁ ℎ =1 + , we obtain that ( )/ = 1 . Now, is -linear, -1 is trivial modulo on ( ) (see De nition 3.8), and xes . Therefore, is just multiplication by on / + for ∈ ℤ and = . Looking at the following diagram and applying ve lemma for ∈ ℤ,

we obtain that, is bijective over ( )/ . Finally, since 1 is invertible in , we obtain that -1 is bijective over ( ) [ ♭ ] modulo , as desired. Next, let = 0 for all ≠ 0 and 0 ≠ 0. To prove that the kernel complex is acyclic, we will show that the map 0 ∶ Kos → Kos is bijective. This amounts to showing the same statement for

Again, arguing as in the previous part, we see that it is enough to show this statement modulo . We have

So we are lead to study the map de ned by

Working modulo , it follows from Lemma 2.46, Lemma 2.47 and De nition 3.8, that for = 2 -1 > 0 we have that -1 1 ′ = 0 on / + , for all ∈ ℤ. Hence, -1 1 induces multiplication by on / + for all ∈ ℤ, which implies that it is an isomorphism of ( ) modulo . This shows what we want since 1 is invertible in .

Combining the analysis for the kernel and cokernel complex, we conclude that the map in the claim of Proposition 5.46 is a quasi-isomorphism.

Proof of Proposition 5.31. Recall that is the maximum among the absolute values of Hodge-Tate length of (see De nition 3.8). From Lemmas 5.33 & 5.34 and Remark 5.35, we have a 4 -quasiisomorphism Kos , , Fil [ , ] ≃ K , Lie Γ , [ , ] ( ( )) .

Changing from in nitesimal action of Γ to the continuous action of Γ is an isomorphism of complexes by Proposition 5.38, K , Lie Γ , [ , ] ( ( )) ≃ K , Γ , [ , ] ( ( )) .

Further, from Proposition 5.39 we have a 3 -quasi-isomorphism K , Γ , [ , ] ( ( )) ≃ K , Γ , (0, ]+ ( ( )) .

Next, from Proposition 5.41 and Lemmas 5.43 & 5.44, we have 7 +3 +2 -quasi-isomorphisms ≤ K , Γ , (0, ]+ ( ( )) ≃ ≤ K , Γ , (0, ]+ ( ( )) ≃ ≤ K , Γ , (0, / ]+ ( ( )) ≃ ≤ Kos , Γ , (0, / ]+ ( ) .

Finally, From Lemma 5.45 and Proposition 5.46 we obtain quasi-isomorphisms Kos , Γ , (0, / ]+ ( ) ≃ Kos , Γ , ( ( )) ≃ Kos , Γ , ( ( )) .

Combining these statements we get the claim with = 14 + 3 + 2.

APPENDIX A

Galois cohomology and classical Wach modules

Let be a nite unrami ed extension of ℚ and a crystalline -adic representation of = Gal( / ). The aim of this chapter is to emphasize the importance of Wach modules from the point of view of Galois cohomology. In [START_REF] Herr | Sur la cohomologie galoisienne des corps -adiques[END_REF], Herr obtained a three term complex in terms of the attached ( , Γ )-module computing continuous -cohomology of . Since the Wach module of is an "integral" lattice inside the ( , Γ )-module, it is interesting to explore whether some part of Galois cohomology groups of could be captured in terms of a complex written down completely in terms of the Wach module. This could be answered positively via some concrete statements, for example, see Proposition A.4. In order to establish these claims, we will need to introduce some more background from (classical) -adic Hodge theory. After recalling these facts, we will describe a complex and carry out some concrete computations involving Wach modules.

A.1. Crystalline extension classes

We x a compatible system of -power roots of unity ( ) ∈ℕ such that 0 = 1, ≠ 1 and +1 = . Moreover, we set = ( ), ∞ = ⋃ , Γ = Gal( ∞ / ) and ∈ Γ a topological generator. Let be an ℎ-dimensional -adic crystalline representation of with Hodge-Tate weights -1 ≤ -2 ≤ ⋯ ≤ -≤ 0. Let be a free ℤ -lattice of rank ℎ inside stable under the action of . Set ( ) ∶= ⨂ ℚ ℚ ( ) and ( ) ∶= ⨂ ℤ ℤ ( ), then the Hodge-Tate weights of ( ) are -1 ≤ -2 ≤ ⋯ ≤ -. From §3.1, we have Wach modules ( ) and ( ), such that From Theorem 4.4 we have that the Fontaine-Herr complex C • ( ( )) ∶ ( ( ))

(1-, -1)

----------→ ( ( )) ⨁ ( ( ))

-1 1------------→ ( ( )), computes the Galois cohomology of ( ) i.e., for all ∈ ℕ, we have natural isomorphisms (C • ( ( ))) ≃ --→ ( , ( )).

In particular, any extension class in 1 ( , ( )) can be represented by a pair ( , ) with , ∈ ( ( )) and satisfying the relation (1 -) = ( -1) . We want to look at extension classes in Galois cohomology and classical Wach modules 1 f ( , ( )) which come from crystalline extensions of ℚ by ( ). Let be a positive crystalline representation of as above. Let be an extension of ℚ (-) by such that it is crystalline as a representation of 0 ⟶ ⟶ ⟶ ℚ (-) ⟶ 0.

Equivalently, we have that ( ) ∶= ⨂ ℚ ℚ ( ) is a crystalline extension of ℚ by ( ) 0 ⟶ ( ) ⟶ ( ) ⟶ ℚ ⟶ 0. Proof. First, we want to show exactness of (A.3) on the right. Let ∈ ( ( )) be a lift of 1 ∈ + = (ℚ ) = Fil 0 (ℚ ), and we want to show that ∈ Fil 0 ( ( )). Recall that we also have the exact sequence 0 ⟶ ⟶ ⟶ ℚ (-) ⟶ 0.

Applying the exact Wach functor to it we obtain an exact sequence 0 ⟶ ( ) ⟶ ( ) ⟶ (ℚ (-)) ⟶ 0, (A.4) such that ⨂ ⨂(-) ∈ ( ) and its image in (ℚ (-)) = ( ⨂ ⨂(-) ) + is a basis. Here denotes a basis of ℚ (1).

Let { 1 , … , ℎ } denote a + -basis of ( ), then we have that { 1 , … , ℎ , ⨂ ⨂(-) } is a + -basis of ( ). Since each module in (A.4) is stable under the action of Frobenius, we obtain that This means that we must have ℎ+1 = and ∈ + for 1 ≤ ≤ ℎ. Therefore, ⨂ ⨂(-) ∈ Fil ( ), or equivalently ∈ -Fil ( )( ) = Fil 0 ( ( )).

Next, to show exactness in the middle, let , ′ ∈ Fil 0 ( ( )) be two such lifts. Then arguing as above, we obtain that ( -′ ) ⨂ ⨂(-) ∈ Fil ( ), or equivalently -′ ∈ -Fil ( )( ) = Fil 0 ( ( )). Hence, the sequence (A.3) is exact.

Lemma A.2. The class of the extension (A.1) in 1 (C • ( ( ))) is represented by a pair ( , ) for some ∈ ( )( ) and ∈ ( ( )) satisfying the relation (1 -) = ( -1) .

Proof. Consider the diagram with exact rows

We can write ( ( )) = ( ( )) + + ⋅ with ( -1) = ,

(1 -) = , for some , ∈ ( ( )). Recall from Lemma A.1 that we have ∈ Fil 0 ( ( )), therefore = ( -1) ∈ Fil 0 ( ( )). By the commutativity of and , we get that

(1 -)( -1) = ( -1)(1 -) ,

or equivalently, we have (1 -) = ( -1) , which implies that ( , ) represents a cohomological class in 1 (K • ( ( ))).

Conversely, let ∈ Fil 0 ( ( )) and ∈ ( ( )) such that

(1 -) = ( -1) .

Then we have that the pair ( , ) represents a cohomological class in 1 (K • ( ( ))). Set = ( ( ))+ + ⋅ with

Clearly, is an extension of + by ( ( )), i.e. by sending to 1 ∈ + we have an exact sequence 0 ⟶ ( ( )) ⟶ ⟶ + ⟶ 0, (A.5) of Wach modules over + . From Proposition 3.6, applying the quasi-inverse exact functor of to (A.5), we get a crystalline extension of ℚ by ( ) 0 ⟶ ( ) ⟶ ⟶ ℚ ⟶ 0,

where we set = ( ⨂ + ) =1 . This extension represents a cohomology class in 1 f ( , ( )). It is clear that these constructions are inverse to each other. Therefore, we conclude that