
HAL Id: tel-03485160
https://theses.hal.science/tel-03485160v1

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Représentations de hauteur finie et complexe
syntomique

Abhinandan Abhinandan

To cite this version:
Abhinandan Abhinandan. Représentations de hauteur finie et complexe syntomique. Algebraic Ge-
ometry [math.AG]. Université de Bordeaux, 2021. English. �NNT : 2021BORD0267�. �tel-03485160�

https://theses.hal.science/tel-03485160v1
https://hal.archives-ouvertes.fr


Thèse de Doctorat
présentée par

Abhinandan

sous la direction de Denis Benois
et co-direction de Nicola Mazzari

pour obtenir le grade de

Docteur de L’Université de Bordeaux

École Doctorale de Mathématiqes et Informatiqe

Spécialité : Théorie des Nombres

Finite height representations and
syntomic complex

Soutenue le 15 Novembre 2021 à l’Institut de Mathématiques de Bordeaux
devant le jury composé de :

Fabrizio Andreatta Professeur Università Statale di Milano Rapporteur
Denis Benois Professeur Université de Bordeaux Directeur
Olivier Brinon Professeur Université de Bordeaux Président
Xavier Caruso Directeur de Recherche Université de Bordeaux Examinateur
Gabriel Dospinescu Chargé de Recherche ENS de Lyon Examinateur
Adriano Marmora Maître de Conférences Université de Strasbourg Examinateur
Nicola Mazzari Maître de Conférences Univerità Degli Studi di Padova Co-directeur
Wiesława Nizioł Directrice de Recherche Sorbonne Université Rapportrice





To my parents.





Finite height representations and syntomic complex

Abstract: The aim of this thesis is to study �nite height crystalline representations in relative p-adic
Hodge theory, and apply the results thus obtained towards the computation of continuous Galois
cohomology of these representations via syntomic methods.

In 1980’s, Fontaine initiated a program for classifying p-adic representations of the absolute Galois
group of a p-adic local �eld by means of certain linear-algebraic objects functorially attached to the
representations. One of the aspects of his program was to classify all p-adic representations of the
Galois group in terms of étale (', Γ)-modules. On the other hand, Fontaine showed that crystalline
representations can be classi�ed in terms of �ltered '-modules. Therefore, it is a natural question
to ask for crystalline representations: Does there exist some direct relation between the �ltered
'-module and the étale (', Γ)-module? Fontaine explored this question himself, where he considered
�nite height represenations (de�ned in terms of (', Γ)-modules) and examined their relationship
with crystalline representations. This line of thought was further explored by Wach, Colmez, and
Berger. In particular, Wach gave a description of �nite height crystalline representations in terms of
(', Γ)-modules.

In the relative case, the theory of (', Γ)-modules has been developed by the works of Andreatta,
Brinon and Iovita. Further, the analogous notion of crystalline representations was studied by
Brinon.

The �rst main contribution of our work is the notion of relative Wach modules. Motivated by the
theory of Fontaine, Wach and Berger, we de�ne and study some properties of relative Wach modules.
Further, we explore their relation with Brinon’s theory of relative crystalline representations and
associated F -isocrystals.

The second result is concerned with the computation of Galois cohomology using syntomic
complex with coe�cients. This idea was utilized in a recent work of Colmez and Nizioł, where
they carry out the computation for cyclotomic twists of the trivial representation. Under certain
technical assumptions, we show that for �nite height crystalline representations, one can essentially
generalize the local result of Colmez and Nizioł.

Keywords: p-adic Hodge theory, p-adic representations, (', Γ)-modules, �nite height, Wach
modules, syntomic complex.
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Représentations de hauteur �nie et complexe syntomique

Résumé : Le but de cette thèse est d’étudier les représentations cristallines de hauteur �nie en théorie
de Hodge p-adique relative, et d’appliquer les résultats ainsi obtenus au calcul de la cohomologie
galoisienne continue de telles représentations via des méthodes syntomiques.

Dans les années 1980, Fontaine a lancé un programme pour classer les représentations p-adiques
du groupe de Galois absolu d’un corps local p-adique au moyen de certains objets algébriques
linéaires attachés fonctoriellement aux représentations. Un aspect de son programme consistait à
classer toutes les représentations p-adiques du groupe de Galois en termes de (', Γ)-modules étales.
D’autre part, Fontaine a montré que les représentations cristallines peuvent être classées en termes
de '-modules �ltrés admissibles. Par conséquent, c’est une question naturelle de demander pour
des représentations cristallines : existe-t-il une relation directe entre le '-module �ltré et le (', Γ)-
module étale ? Fontaine a exploré cette question lui-même, où il a considéré les représentations de
hauteur �nie (dé�nies en termes de (', Γ)-modules) et examiné leur relation avec les représentations
cristallines. Ce point de vue a été exploré plus avant par Wach, Colmez et Berger. En particulier, Wach
a donné une description des représentations cristallines de hauteur �nie en termes de (', Γ)-modules.

Dans le cas relatif, la théorie des (', Γ)-modules a été développée par les travaux d’Andreatta,
Brinon et Iovita. De plus, la notion analogue de représentations cristallines a été étudiée par Brinon.

La première contribution de notre travail est la notion de modules de Wach relatifs. Motivés par la
théorie de Fontaine, Wach et Berger, nous dé�nissons et étudions quelques propriétés des modules
de Wach relatifs. De plus, nous explorons le lien avec la théorie de Brinon des représentations
cristallines relatives et F -isocristaux associé.

Le deuxième résultat concerne le calcul de la cohomologie galoisienne à l’aide de complexes
syntomiques à coe�cients. Cette idée a été utilisée dans un travail récent de Colmez et Nizioł, où ils
e�ectuent le calcul pour les représentations associées aux puissances du caractère cyclotomique.
Sous certaines hypothèses techniques, nous montrons que pour des représentations cristallines de
hauteur �nie, on peut essentiellement généraliser le résultat local de Colmez et Nizioł.

Mots-clés : Théorie de Hodge p-adiques, représentations p-adiques, (', Γ)-modules, hauteur �nie,
modules de Wach, complexe syntomique.

Institut de mathématiques de Bordeaux
UMR 5251, Université de Bordeaux, 33405 Talence, France.
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Preface

The aim of this thesis is to study �nite height crystalline representations in relative p-adic Hodge the-
ory, and apply the results thus obtained towards the computation of continuous Galois cohomology
of these representations via syntomic methods.

Our �rst main contribution is the notion of relative Wach modules. Motivated by the theory
of Fontaine [Fon90], Wach [Wac96] and Berger [Ber04], we de�ne and study some properties of
relative Wach modules. Further, we explore its relation with relative crystalline representations and
the associated F -isocrystal, in the sense of Brinon [Bri08] (see Theorem 3.24).

The second result is concerned with the computation of Galois cohomology using syntomic
complex with coe�cients. This idea was utilized by Colmez and Nizioł in [CN17] where they carry
out the computation for cyclotomic twists of the trivial representation using which they were
able to prove the semistable comparison theorem for formal log-schemes. Under certain technical
assumptions, we show that for �nite height crystalline representations, one can essentially generalize
the local result of Colmez and Nizioł (see Theorem 5.6).

Following is a brief description of di�erent chapters of this thesis:

• p-adic Hodge theory : In this chapter we provide the setup, recall the basic de�nitions and
the theory of relative de Rham and crystalline p-adic Galois representations following [Bri08].

• (', Γ)-modules and crystalline coordinates : The aim of this chapter is two fold. First,
we introduce the theory of (', Γ)-modules following [And06, AB08, AI08], using which we
generalize a result of Berger on regularization by Frobenius (see §2.2.1). Next, we introduce
certain rings of analytic functions, study their properties as well as several operators on them,
and prove a version of Poincaré lemma to be utilised in Chapter 5.

• Finite height crystalline representations : This chapter consists of our �rst main result.
We begin by introducing classical Wach modules [Wac96] and its re�nement worked out
by Berger [Ber04]. Then we introduce the notion of Wach modules in the relative setting
and prove several useful properties. Finally, we provide the necessary constructions to state
and prove the main statement (see Theorem 3.24). In the last section we give an example
illustrating the key ideas behind Theorem 3.24.

• Cohomological complexes : In this chapter we recall the theory of Fontaine-Herr complex
computing continuous Galois cohomology of p-adic representations, in classical p-adic Hodge
theory, as well as its generalization to the relative setting by Andreatta and Iovita [AI08].
Further, we introduce Koszul complexes and relate it to relative Fontaine-Herr complex. Finally,
we study the action of the Lie algebra Lie ΓR over certain rings of analytic functions from

xiii
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§2.3 and introduce Koszul complexes computing the Lie algebra cohomology of modules over
these rings.

• Syntomic complex and Galois cohomology : This chapter contains our second main result.
We commence the chapter by providing the motivation behind our result which comes from
the main technical part of the work by Colmez and Nizioł [CN17]. Then we introduce the
necessary setup to introduce the statement of the main result (see Theorem 5.6). Rest of
the chapter is devoted to proving this result. First part of the proof concerns working and
manipulating syntomic complexes, while the second part is concerned with Koszul complexes.
Both these parts are connected via Poincaré lemma from Chapter 2 which is applicable due to
the comparison result of Theorem 3.24.

• Galois cohomology and classical Wach modules : In this appendix chapter, we work
with Wach modules in classical p-adic Hodge theory and Fontaine-Herr complex to study
crystalline extension classes of the trivial representation by a crystalline representation. The
computation done in this chapter served as the original motivation for pursuing Theorem 5.6,
the proof of which persuaded us to investigate Theorem 3.24.



Introduction

Over the course of last century, the modus operandi for mathematicians trying to understand spaces
has been to investigate natural invariants attached to those spaces. This approach has proven to
be a very fruitful one. An example of this comes from topology where one constructs singular
homology groups attached to a topological space X . Concretely, it is a collection of abelian groups
{Hk(X,ℤ)}k∈ℕ, where these groups are computed as the homology of the singular complex attached
to X and the k-th homology group describes equivalence classes of k-dimensional holes in X . In
terms of application, vanishing statements about homology establishes claims such as Brouwer’s
�xed point theorem, among others.

Dualizing the construction of singular chain complexes, one can de�ne a contravariant theory,
aptly named, singular cohomology groups {H k(X,ℤ)}k∈ℕ attached to X . Further developments in
mathematics have led to the construction (co)homology theories in a myriad of di�erent contexts. For
example, de Rham cohomology for di�erential forms on manifolds, (continuous) group (co)homology,
Lie algebra cohomology, étale cohomology for algebraic varieties, etc.

Comparison in complex algebraic geometry
In analytic and algebraic geometry, study of cohomology theories compared to homology has turned
out to be a more natural one. Moreover, under amicable circumstances, certain cohomology theories
tend to interact with each other. One of the �rst observations made in this direction was due to de
Rham [DR31]. In 1931, he showed that for a smooth manifold M , the pairing of di�erential forms
and singular chains, via integration, gives a homomorphism from de Rham cohomology groups
H k

dR(M) to singular cohomology groups H k
sing(M,ℝ), which is in fact an isomorphism (see [Sam01]

for a historical survey).
In 1966, this result was further extended to the context of complex algebraic geometry by

Grothendieck. More precisely, let X be a smooth complex algebraic variety and let X an denote
the complex manifold obtained from the complex rational points X (ℂ) of the algebraic variety X . In
[Gro66], Grothendieck de�ned the algebraic de Rham cohomology groups for X and showed that
these are canonically isomorphic to de Rham cohomology groups of X an. In conclusion, we have

Theorem A (de Rham, Grothendieck). Let X be a smooth complex algebraic variety. For each k ∈ ℕ,
there exists a canonical isomorphism of complex vector spaces

H k
sing(X

an,ℤ)⨂ℤ ℂ
≃
−−→ H k

dR(X
an/ℂ) ≃

−−→ H k
dR(X /ℂ).

The two sides of this isomorphism contribute complementary information on X ; namely, singular

xv



xvi Introduction

cohomology supplies an integral structure for H k
sing(X

an,ℝ) (the lattice of periods) and de Rham
cohomology gives the Hodge �ltration: neither of these two structures are reducible to each other.

In complex algberaic geometry, one can do better. Let us assume that X is a smooth and projective
scheme over ℂ and let X an denote the associated complex manifold. Then X an is a compact Kähler
manifold equipped with a Kähler metric. If we let Ωj

X an denote the sheaf of holomorphic di�erential
forms on X an, then we have the Hodge decomposition

H k
sing(X

an,ℤ)⨂ℤ ℂ ≃ ⨁
i+j=k

H i(X an,Ωj
X an).

Further, let Ω1X /ℂ denote the sheaf of Kähler di�erentials on X and set Ωj
X /ℂ = ⋀j Ω1X /ℂ. Then

combining Hodge decomposition with Serre’s GAGA principle, we obtain that

H k
sing(X

an,ℤ)⨂ℤ ℂ ≃ ⨁
i+j=k

H i(X an,Ωj
X an) ≃ ⨁

i+j=k
H i(X,Ω

j
X /ℂ).

One of the primary goals of p-adic Hodge theory is to explicate similar phenomenon for p-adic
cohomology theories of algebraic varieties de�ned over p-adic �elds.

p-adic comparison theorems
In this section let p denote a �xed prime, K a mixed characteristic discrete valuation �eld with ring
of integers OK and residue �eld � perfect of characteristic p.

In the context of algebraic geometry the Zariski topology on algebraic varieties is too coarse to
obtain a meaningful notion of singular cohomology. Therefore, in 1963-64 a replacement in the
form of étale cohomology was provided by Grothendieck in [AGV71], where he de�ned p-adic étale
cohomology groups attached to a scheme de�ned over any �eld (in particular, �nite extensions
of ℚp), whereas the de�nition of algebraic de Rham cohomology carries over for smooth schemes.
Again, mathematicians observed that in this setting, these two cohomology theories interact with
each other.

The origin of comparing p-adic cohomology theories, collectively termed as p-adic comparison
theorems, can be attributed to the work of Tate on p-divisible groups in [Tat67]. Tate showed that
for an abelian scheme A de�ned over OK , the �rst étale cohomology group of A with coe�cients in
ℤp determines the p-divisible group Ap∞ , i.e. the p-primary torsion subgroup of A, and vice versa.
Further, let K denote a �xed algebraic closure of K with ℂp as its p-adic completion. Then the
Galois group GK ∶= Gal(K /K ) acts linearly and continuously on the ℤp-module H 1

ét(AK ,ℤp). As
a consequence of his general study of p-divisible groups, Tate showed that for k ≤ 2 dimA, there
exists a natural GK -equivariant isomorphism

H k
ét(AK ,ℤp) ⨂ℤp ℂp ≃ ⨁

i+j=k
H i(A,Ω

j
A) ⨂K ℂp(−j), (0.1)

where for j ∈ ℤ, we de�ne ℂp(j) ∶= ℂp ⨂ℚp ℚp(j) and ℚp(j) is the j-th tensor power of the one-
dimensional p-adic representation ℚp(1) on which GK acts via the p-adic cyclotomic character. Tate
conjectured that a GK -equivariant decomposition as above should exist for any smooth projective
variety de�ned over K .

On the other hand, in [Gro74], Grothendieck showed that the de Rham cohomology groups of
an abelian scheme carry extra information as well. Using his crystalline Dieudonné theory, he
determined that H 1

dR(A/K ) is a K -vector space acquiring a canonical basis over F , where F = Fr W
for W = W (�) the ring of p-typical Witt vectors with coe�cients in �. The F -vector-space admits
a Frobenius-semilinear automorphism ', and has a Hodge �ltration after extending scalars to K .
Further, he showed that Ap∞ is determined, up to isogeny, by H 1

dR(A/K ) together with its Hodge
�ltration, basis over F which is equipped with an automorphism '.
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Considering both these phenomena, Grothendieck was led to ask the question of describing an
algebraic procedure that would allow one to pass directly from H 1

dR(A/K ) to H 1
ét(AK ,ℚp), without a

detour to the p-divisible group Ap∞ ; he also suspected that such a procedure should exist in arbitrary
cohomology degrees (the well known problem of Grothendieck’s mysterious functor).

This question was resolved by Fontaine in degree one and for arbitrary degree he proposed a
precise conjecture in [Fon82, Fon83]. Fontaine’s crystalline conjecture for an OK -scheme, examines
the relationship between the p-adic étale cohomology of the generic �ber and the crystalline
cohomology of the special �ber. This conjecture has now been fully proven by the works of many
authors. Before stating the crystalline conjecture, let us mention the work of Faltings generalizing
the Hodge-Tate decomposition in (0.1):

Theorem B ([Fal88, Faltings]). Let X be a smooth and proper K -scheme. Then for each k ∈ ℕ, there
exists a canonical GK -equivariant isomorphism

H k
ét(XK ,ℤp) ⨂ℤp ℂp ≃ ⨁

i+j=k
H i(X,Ω

j
X) ⨂K ℂp(−j).

One of the �rst comparison theorems to be proven in the p-adic setting, the proof of Theorem B
relies on Faltings’ idea of almost mathematics.

Now we come back to the crystalline conjecture: Let X be a proper and smooth scheme de�ned
over OK , let i ∶ XK � X denote its generic �ber and j ∶ X� � X denote its special �ber. For the
generic �ber, we will consider the usual p-adic étale cohomology groups H i

ét(XK ,ℚp), whereas for
schemes in characteristic p, i.e. X� , we will consider a variant of de Rham cohomology provided by
Grothendieck, which is again a p-adic cohomology known as crystalline cohomology H k

cris(X� /W (�)).
Then we have,

Theorem C ([FM87, Fontaine-Messing], [Fal89, Faltings], [KM92, Kato-Messing], [Tsu99, Tsuji]).
For each k ∈ ℕ there exists a natural isomorphism

H k
ét(XK ,ℚp) ⨂ℚp Bcris

≃
−−→ H k

cris(X�/W (�)) ⨂W (�) Bcris,

compatible with the action of GK , the Frobenius, �ltration (and Poincaré duality, Künneth formula,
cycle class and Chern class maps) on each side.

Here Bcris denotes the crystalline period ring constructed by Fontaine (see [Fon94a]), and it is
equipped with a continuous action of GK , the Frobenius and a �ltration.

In [FM87] Fontaine and Messing initiated a program for proving the crystalline conjecture via
syntomic methods and managed to prove the claim in the case K = F and dimXK < p. In [KM92]
Kato and Messing proved the conjecture under the assumption dimXK < (p − 1)/2 but without any
assumption on K . Further, this program was generalized to the semistable case by Fontaine and
Janssen. The semistable conjecture was shown by Fontaine for abelian varieties and then proved
by Kato in [Kat94] in the case dimXK < (p − 1)/2, generalizing the methods of [KM92]. Finally,
this program was concluded by Tsuji in [Tsu99] completing the proof of crystalline and semistable
conjectures.

Over the course of four decades, many mathematicians have worked on p-adic comparison
theorems. In [Fal89], Faltings proved the crystalline conjecture and also generalized his methods to
non-trivial coe�cients. He further showed the semistable comparison theorem using his theory of
almost étale extensions in [Fal02]. In [Niz98] Nizioł gave another proof of the crystalline conjecture
using K -theory. Yamashita proved the non-proper case in [Yam11]. Employing completely di�erent
constructions Beilinson proved all incarnations of p-adic comparison theorems in [Bei12, Bei13].
Further, Scholze proved the de Rham comparison theorem for rigid analytic varieties in [Sch13],
where he works completely over the generic �ber and considers non-trivial p-adic local systems on
the étale side. Generalizing Faltings’ ideas, Andreatta and Iovita proved the crystalline comparison
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for smooth formal schemes in [AI13], where their proof works for non-trivial coe�cients as well.
Further, Andreatta and Iovita generalized their proof to the semistable case in [AI12].

In [CN17] using syntomic methods and techniques from the theory of (', Γ)-modules, Colmez and
Nizioł have proved the semistable comparison for formal log-schemes. The major part of [CN17]
consists of local computations, i.e. over a�noids covering the scheme X . In the case of smooth
proper scheme X , the covering can be given by an étale algebra over a formal torus over OK . The
motivation for our cohomological results with coe�cients in this thesis stems from this article (see
Theorem H). The pursuit of the cohomological statement led to our exploration of �nite height
crystalline representations in the relative setting (see Theorem E). We will come back to these
connections later.

An integral version of comparison theorems was obtained by Bhatt, Morrow and Scholze in
[BMS18], where they have de�ned a new cohomology theory over Fontaine’s in�nitesimal ring
Ainf . The work of [BMS18] was generalized to the semistable case by Česnavičius and Koshikawa in
[ČK19]. Finally, further generalizing their work, Bhatt and Scholze have put forward the theory of
prismatic cohomology in [BS19] which uni�es all known p-adic cohomology theories.

p-adic representations and linear algebra
Since the age of Galois, mathematicians have been interested in understanding Galois groups of �eld
extensions. While some �nite and pro�nite cases are simple and explicit to state, in general these
groups are quite complex to decipher, for example, the absolute Galois group GK in the previous
section is as far away from being explicit as possible. To understand such groups, a general approach
is to study their representations, i.e. the action of such groups on certain modules. This is another
common theme in p-adic Hodge theory, i.e. studying p-adic representations of Galois groups such
as GK .

The p-adic étale cohomology groups H i
ét(XK ,ℚp), appearing in Theorem C, are ℚp-vector spaces

equipped with a linear and continuous action of the Galois group GK . In other words, we have ob-
tained p-adic representations of the Galois group GK . On the other hand, the crystalline cohomology
groups F ⨂W H i

cris(X� /W ) are F -vector spaces equipped with a Frobenius-semilinear automorphism
' and a �ltration after extending scalars to K . Theorem C states that these two objects are related to
each other.

In 1980s-90s Fontaine stated and carried out several programs in order to study p-adic representa-
tions of GK . In [Fon79, Fon82, Fon94a, Fon94b], Fontaine describes the subcategories of crystalline,
semi-stable and de Rham representations. For example, the étale cohomology groups appearing
in Theorem C are crystalline representations of GK . Fontaine’s theory is rich and an incredible
journey to take, however we will content ourselves with a description of crystalline representations.
Moreover, for the sake of simplicity, we will work under the assumption that K = F is unrami�ed
over ℚp , however some of the results are true in more general settings.

Crystalline representations
In order to classify crystalline representations, Fontaine came up with a general formalism. He
constructs a period ring Bcris which is a p-adically complete F -algebra equipped with a Frobenius
and a �ltration (see [Fon94a], we will recall the construction in a more general setting in §1.3). Now
let V be a p-adic representation of GF , and set

Dcris(V ) ∶= (Bcris ⨂ℚp V )
GF .

It is a �nite-dimensional F -vector space such that dimF Dcris(V ) ≤ dimℚp V , and it is equipped with a
Frobenius-semilinear endomorphism ', and a �ltration coming from the �ltration on Bcris. Moreover,
this construction is functorial in V and it takes values in the category �ltered '-modules over F .
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The representation V is said to be crystalline if and only if it is Bcris-admissible, or equivalenty,
dimF Dcris(V ) = dimℚp V . In particular, the p-adic periods of V belong to Bcris. The functor Dcris is
exact and fully faithful as well as establishes an equivalence between the category of crystalline
representations and its essential image under the functor, compatible with exact sequences, tensor
products and taking duals.

The terminology crystalline accentuates the fact that if the representation “comes from geometry”,
i.e. computed as étale cohomology of generic �ber of a smooth and proper W -scheme, then there
exists a comparison with the crystalline cohomology of the special �ber. For example, if we let
Vi ∶= H i

ét(XF ,ℚp) in Theorem C, then we have Dcris(Vi) = F ⨂W H i
cris(X� /W ). Moreover, given

H i
cris(X� /W ) with its complimentary structures, one can recover the ℚp-vector space H i

ét(XF ,ℚp)
with its Galois action, and vice versa. This is quite a surprising result in contrast with the complex
case (see Theorem A).

(', Γ)-modules and �nite height representations
A di�erent perspective on p-adic representations is the theory of (', Γ)-modules. Morally, such a
theory is an attempt to describe p-adic representations of GF in terms of modules over complicated
base rings, admitting a Frobenius-semilinear endomorphism and simpler action of a piece of the
Galois group.

More precisely, let F∞ = ⋃n∈ℕ F (�pn ) where �pn ∈ F denotes a primitive pn-th root of unity, and let
ℂ♭p denote the tilt of ℂp (see §1.2 for a precise de�nition). Let HF = Gal(F /F∞) and ΓF = Gal(F∞/F ),
then we have an exact sequence

1⟶ HF ⟶ GF ⟶ ΓF ⟶ 1.

Using the �eld-of-norms construction in [FW79b, FW79a, Win83], Fontaine and Wintenberger
de�ned a non-archimedean complete discrete valuation �eld EF ⊂ ℂ♭p of characteristic p with residue
class �eld �, and functorial in F . In [Fon90], Fontaine utilised the theory from �elds-of-norms
construction to classify mod-p representations of GF in terms of étale (', ΓF )-modules over EF . By
some technical considerations one can lift this to characteristic 0, i.e. classify ℤp-representations
of GF in terms of étale (', ΓF )-modules over a two dimensional regular local ring AF ⊂ W (F̂ ♭∞). In
particular, the p-adic periods of any ℤp-representation of GF belong to the ring A ⊂ W (ℂ♭p). Similar
equivalence of categories can be obtained for p-adic representations and étale (', ΓF )-modules over
BF = AF[ 1p ], i.e. p-adic periods of p-adic representations of GF belong to B = A[ 1p ] ⊂ Fr W (ℂ♭p).

The theory of (', Γ)-modules was further re�ned by Cherbonnier and Colmez in [CC98]. They
showed that all ℤp-representations (resp. p-adic representations) are overconvergent, the p-adic
periods belog to a subring A† ⊂ A (resp. B† ⊂ B). Many applications of (', Γ)-modules make use of
the result of Cherbonnier-Colmez (see [CC99], [Ber02, Ber03], etc.).

The �eld-of-norms functor was further generalized to higher-dimensional local �elds by Abrashkin
in [Abr07]. A vast generalization of the theory of Fontaine and Wintenberger, also known as the
tilting correspondence, was done by Scholze in [Sch12].

Finite height crystalline representations

So far we have seen the classi�cation of p-adic crystalline representations of GF in terms of �ltered
'-modules over F , and all p-adic representations of GK in terms of étale (', Γ)-modules over BF . By
the latter equivalence of categories, it becomes a natural question to ask : Is it possible to describe
crystalline representations intrinsically in the category of étale (', Γ)-modules? To answer this
question, Fontaine initiated a program relating p-adic crystalline representations and �nite height
representations.

A p-adic representation V of GF is said to be of �nite height if the p-adic periods of V belong to
the “integral” subring B+ ⊂ B (see §3.1). In other words, the associated (', ΓF )-module over BF admits
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a basis in a lattice, i.e. has a basis over the period ring B+F ⊂ BF . For crystalline representations there
exist lattices over which the action of ΓF is simpler. Finite height and crystalline representations of
GF are related by the following result:

Theorem D ([Wac96, Wach], [Col99, Colmez], [Ber02, Berger]). Let V be a p-adic representation of
GF . Then V is crystalline if and only if it is of �nite height and there exists r ∈ ℤ and a B+F -submodule
N ⊂ D(V ) of rank = dimℚp V , stable under the action of ΓF , such that ΓF acts trivially over (N /�N )(−r).

In the situation of Theorem D, the module N is not unique. A functorial construction was given
by Berger in [Ber04] using which he established an equivalence of categories between the crystalline
representations of GF and Wach modules over B+F . Moreover, for a crystalline representation V ,
there exists a bijection between ℤp-lattices inside V and Wach modules over the integral subring
A+
F ⊂ B+F , and contained in the rational Wach module N(V ). Finally, given N(V ) one can canonically

recover the other linear algebraic object attached to V , i.e. Dcris(V ) (see [Ber04, Propositions II.2.1 &
III.4.4]).

The theory and construction of Wach modules has witnessed many applications, for example,
Iwasawa theory of crystalline representations in [Ben00, BB08], Berger’s proof of p-adic monodromy
conjecture [Ber02], as well as, in the study of p-adic local Langlands program [BB10]. The notion of
Wach modules was generalized as Breuil-Kisin modules for mixed characteristic discretely valued
(possibly rami�ed) extension K /ℚp (see [Bre99, Bre02, Kis06]). The existence of Wach modules
also served as a motivation for Scholze’s idea of q-deformations [Sch17], which paved the way for
Bhatt-Scholze theory of prisms and prismatic cohomology [BS19]. Moreover, similar to Berger’s
classi�cation in the �nite unrami�ed case, Bhatt and Scholze have shown that for any mixed
characteristic discretely valued extension K /ℚp , the catgeory of prismatic F -crystals on Spf (OK ) is
equivalent to the category of ℤp-lattices inside crystalline representations of GK (see [BS21, Theorem
1.2]).

Relative �nite height crystalline representations
As indicated before, we are interested in the local version of relative p-adic Hodge theory. So let
us introduce the setup brie�y: Let us now �x p ≥ 3, and let d ∈ ℕ with X = (X1, X2,… , Xd ) some
indeterminates. We set W {X} ∶=

{
∑k∈ℕd akX k, where k = (k1,… , kd ) ∈ ℕd , X k = X k1

1 ⋯X kd
d , ak ∈

W, and ak → 0 as k → ∞
}

, to be a p-adically complete algebra over W . Similarly we de�ne
R0 ∶= W {X ±1}. Let K = F (�pm ), where m ∈ ℕ≥1 , �pm is a primitive pm-th root of unity, let OK denote
the ring of integers of K and set R ∶= OK{X ±1}.
Note. In the main body of the thesis, we will work in a more general setup, i.e. over the p-adic
completion of an étale algebra over W {X ±1} and corresponding extension of R0 and R above (see
§1.1). However, for the sake of lucidity of the exposition, we introduce the results under simpli�ed
assumptions.

Crystalline representations
Akin to Fontaine’s formalism, in [Bri08] Brinon studied the p-adic representations of GR , the étale
fundamental group of R[ 1p ]. In the relative setting there are two notions of crystalline representations:
horizontal crystalline and (big) crystalline representations. We are interested in the latter category
of representations.

To classify crystalline representations, Brinon constructs a period ring OBcris which is a p-
adically complete R0[ 1p ]-algebra equipped with a Frobenius, a �ltration and a Bcris-linear connection
satisfying Gri�ths transversality (see [Bri08], note that these are relative version of Fontaine’s
construction, we recall the details in §1.3). Now let V be a p-adic representation of GR0 , and let

ODcris(V ) ∶= (OBcris ⨂ℚp V )
GR0 .
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It is a �nite projective R0[ 1p ]-module of rank ≤ dimℚp V , and it is equipped with a Frobenius-
semilinear endomorphism ', a �ltration arising from the �ltration on OBcris and a quasi-nilpotent
integrable connection satisfying Gri�ths transversality and stemming from the connection on
OBcris (see §1.5 for details). Moreover, this construction is functorial in V and it takes values in the
category of �ltered (', ))-modules over R0[ 1p ]. The representation V is said to be crystalline if and
only if it is OBcris-admissible (see §1.5.2). In particular, the p-adic periods of V belong to OBcris. The
functor ODcris is exact and fully faithful as well as establishes an equivalence between the category
of (big) crystalline representations and its essential image under the functor, compatible with exact
sequences, tensor products and taking duals.

(', Γ)-modules and �nite height representations
Parallel to the arithmetic case, in the relative setting we can again classify all p-adic representations
in terms of (', Γ)-modules. For n ∈ ℕ, let Fn = F (�pn ) where �pn is a primitive pn-th root of unity.
Let Rn denote the integral closure of R0 ⨂OFn[X

p−n
1 ,…X p−n

d ] inside R[ 1p ], and let R∞ ∶= ⋃n Rn. We
set GR0 ∶= Gal(R[ 1p ]/R0[ 1p ]), ΓR0 ∶= Gal(R∞[ 1p ]/R0[ 1p ]), and HR0 ∶= Ker (GR0 → ΓR0). The ring
R∞[ 1p ] is a Galois extension of R0[ 1p ] with Galois group ΓR0 �tting into an exact sequence

1⟶ Γ′R0 ⟶ ΓR0 ⟶ ΓF ⟶ 1, (0.2)

where, for 1 ≤ i ≤ d we have Γ′R0 = Gal(R∞[ 1p ]/F∞R0[ 1p ]) ≃ ℤd
p , and ΓF = Gal(F∞/F ) ≃ ℤ×

p .
Fontaine’s classi�cation was generalized by Andreatta in [And06] to the relative setting. Andreatta

constructs an analogue of EF in the relative setting, i.e. to R0, he associates a Noetherian regular
domain E+R0 . Further, he lifts this ring to characteristic 0, i.e. we have A+

R0 equipped with a Frobenius
endomorphism and a continuous action of ΓR0 . Finally, we have AR0 as the p-adic completion of
A+
R0[

1
� ].

Next, an étale (', ΓR0)-module is a �nitely generated AR0-module equipped with a Forbenius-
semilinear automorphism ' and a semilinear and continuous action of ΓR0 . Andreatta shows that there
is an equivalence of categories between ℤp-representations of GR0 and étale (', ΓR0)-modules over
AR0 . In particular, the p-adic periods of any ℤp-representation of GR0 live in the ring A ⊂ W (ℂ(R)♭)
(see §2.1). Similar equivalence of categories can be obtained for p-adic representations and étale
(', ΓR0)-modules over BR0 ∶= AR0[

1
p ], i.e. the p-adic periods of p-adic representations of GR0 belong

to B = A[ 1p ] ⊂ W (ℂ(R)♭)[ 1p ]. Note that the discussion above is true in a more general setting, in
particular for R (see §2.1 which is an adaptation of [And06]).

In [AB08], Andreatta-Brinon have generalized the result of Cherbonnier-Colmez to the relative
setting, i.e. they have shown that all ℤp-representations (resp. p-adic representations) of GR0 are
overconvergent (see §2.2 for details), i.e. the p-adic periods belong to a subring A† ⊂ A (resp. B† ⊂ B).

Wach representations

So far we have discussed crystalline representations and (', Γ)-modules in the relative setting. Parallel
to the arithmetic case, we are now interested in understanding �nite height representations and
Wach modules in the relative setting. Further, we expect that there should be a connection between
�nite height and crystalline representations.

Let V be a p-adic representation of the Galois group GR0 . It is said to be of �nite height if the
p-adic periods of V belong to the subring B+ ⊂ B (see §3.2). In other words, the B+R0 = A+

R0[
1
p ]-

submodule D+(V ) ⊂ D(V ) (de�ned functorially in V ) is a �nitely generated (', ΓR0)-module such that
BR0 ⨂B+R0

D+(V ) ≃ D(V ).
Now we take V to be a p-adic de Rham representation with non-positive Hodge-Tate weights,

T ⊂ V a free ℤp-lattice of rank = dimℚp V , stable under the action of GR0 . We say that V is a
positive Wach representation if it is of �nite height and there exists N(T ) ⊂ D+(T ), a �nite projective



xxii Introduction

(', ΓR0)-module over A+
R0 satisfying certain technical conditions describing the action of ' and ΓR0

(see De�nition 3.8). We set N(V ) ∶= N(T )[ 1p ], and the uniqueness of these modules follows from
the de�nition (see Lemma 3.14). Further, these modules are equipped with a natural �ltration.

The aim of Chapter 3 is to show that Wach representations are crystalline. Further, for a positive
Wach representation V theB+R0-moduleN(V ) and the R0[ 1p ]-module ODcris(V ) are related in a precise
manner and the latter can be recovered from the former. To relate these objects we construct a fat
relative period ring OAPD

R ⊂ OAcris(R0) equipped with compatible Frobenius, �ltration, connection
and the action of ΓR0 (see §3.2).

Theorem E (see Theorem 3.24). Let V be a positive Wach representation of GR0 , then V is a positive
crystalline representation. Further, let M[ 1p ] ∶= (OAPD

R ⨂A+R0
N(V ))

ΓR0 , then we have an isomorphism
of R0[ 1p ]-modules M[ 1p ] ≃ ODcris(V ) compatible with Frobenius, �ltration, and connection on each
side. Moreover, after extending scalars to OAPD

R , we obtain natural isomorphisms

OAPD
R ⨂R0 ODcris(V )

≃
←−− OAPD

R ⨂R0 M[ 1p ]
≃
−−→ OAPD

R ⨂A+R0
N(V ),

compatible with Frobenius, �ltration, connection and the action of ΓR0 on each side.

The proof of the theorem proceeds in three steps: First, we explicitly state the structure of Wach
module attached to a one-dimensional Wach representation, we also show that all one-dimensional
crystalline representations are Wach representations and one can recover ODcris(V ) starting with
the Wach module N(V ). Next, in higher dimensions and under the conditions of the statement above,
we will describe a process (successive approximation) by which we can recover a submodule of
ODcris(V ) starting from the Wach module, here we establish a comparison by passing to the one-
dimensinal case. Finally, the claims made in the theorem are shown by exploiting some properties of
Wach modules and the comparison obtained in the second step. In the second step, approximating
for the action of geometric part of ΓR0 turns out to be non-trivial and most of our work goes into
showing this part; the arithmetic part of ΓR0 follows from the work of Wach [Wac96].

Syntomic complex and Galois cohomology
Having introduced an interesting class of representations, we come back to our discussion of
crystalline conjecture in Theorem C. Let K = F (�pm ) for m ≥ 1, let X be a smooth proper scheme
over OK , such that j ∶ XK ∶= X ⨂OK K � X denotes the inclusion of its generic �ber and i ∶ X� ∶=
X ⨂OK �� X denotes the inclusion of its special �ber. To attack the crystalline conjecture, Fontaine
and Messing initiated a program for proving it via syntomic methods (see [FM87]). For r ≥ 0, let
Sn(r)X denote the syntomic sheaf modulo pn on X�,ét. It can be thought of as a derived Frobenius
and �ltration eigenspace of crystalline cohomology. Then, Fontaine and Messing constructed a
period morphism

�FM
r ,n ∶ Sn(r)X ⟶ i∗Rj∗ℤ/pn(r)′XK ,

from syntomic cohomology to p-adic nearby cycles, where ℤp(r)′ ∶= 1
pa(r)ℤp(r), for r = (p − 1)a(r) +

b(r) with 0 ≤ b(r) ≤ p − 1.
In [CN17], Colmez and Nizioł have shown that the Fontaine-Messing period map �FM

r ,n , after a
suitable truncation, is essentially a quasi-isomorphism. More precisely,

Theorem F ([CN17, Theorem 1.1]). For 0 ≤ k ≤ r , the map

�FM
r ,n ∶ k(Sn(r)X )⟶ i∗Rk j∗ℤ/pn(r)′XK ,

is a pN -isomorphism, i.e. there exists N = N (e, p, r) ∈ ℕ depending on r and the absolute rami�cation
index e of K but not on X or n, such that the kernel and cokernel of the map is killed by pN .
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In fact, for k ≤ r ≤ p − 1, the map �FM
r ,n was shown to be an isomorphism by Kato [Kat89, Kat94],

Kurihara [Kur87], and Tsuji [Tsu99]. In [Tsu96], Tsuji generalized this result to some suitable étale
local systems.

Theorem F also holds for base change of smooth and proper schemes. In particular, after passing
to the limit and inverting p above, for each 0 ≤ k ≤ r we obtain an isomorphism

�FM
r ∶ H k

syn(XOK , r)ℚ
≃
−−→ H k

ét(XK ,ℚp(r)). (0.3)

The isomorphism displayed above is the most important step in proving the crystalline conjecture
via syntomic methods. These ideas have been used in [FM87], [KM92], [Kat87], [Kat94], and [Tsu99].
However, all these proofs have been worked out directly over K , but with no restrictions on r .

The proof of Colmez and Nizioł is di�erent from earlier approaches. They prove Theorem F �rst,
and deduce the comparison in (0.3) via base change. To prove their claim, they construct another local
period map �az

r , employing techniques from the theory of (', Γ)-modules and a version of integral
Lazard isomorphism between Lie algebra cohomology and continuous group cohomology. Then
they proceed to show that this map is a quasi-isomorphism and coincides with Fontaine-Messing
period map up to some constants. Moreover, all of their results have been worked out in the general
setting of log-schemes.

Local computation of Colmez and Nizioł

As speci�ed earlier, the major part of [CN17] consists of local computations, i.e. over a�noids
covering a formal scheme. In the case of a smooth proper formal scheme, the covering can be given
by an étale algebra over R = OK{X ±1}, where X = (X1,… , Xd ) are some indeterminates (see §1.1 for
notations). To state the local result, we will restrict ourselves to the familiar setting of R, however
the results also hold for an étale algebra over R (Colmez and Nizioł work with log structures as well).

Let R+$ denote the (p, X0)-adic completion of W [X0, X ±1], and let S = RPD
$ denote the p-adic

completion of the divided power envelope with respect to the kernel of the map R$ � R sending X0
to �pm − 1. Further, let Ω1S denote the p-adic completion of the module of di�erentials of S relative to
ℤ and Ωk

S = ⋀k Ω1S for k ∈ ℕ. The syntomic cohomology of R can be computed by the complex

Syn(R, r) ∶= Cone(F rΩ∙S
pr−p∙'
−−−−−−−−→ Ω∙S)[−1],

such that we have H i
syn(R, r) = H i(Syn(R, r)). If K contains enough roots of unity, i.e. for m large

enough, Colmez and Nizioł have shown that,

Theorem G ([CN17, Theorem 1.6]). The maps

�Lazr ∶ �≤rSyn(R, r)⟶ �≤rRΓcont(GR ,ℤp(r)),

�Lazr,n ∶ �≤rSyn(R, r)n ⟶ �≤rRΓcont(GR ,ℤ/pn(r))⟶ �≤rRΓ((Sp R[ 1p ])ét,ℤ/p
n(r)),

(0.4)

are pNr -quasi-isomorphisms for a universal constant N .

Finally, using Galois descent one can obtain the result over K (not necessarily having enough roots
of unity, with N depending on K , p and r , see [CN17, Theorem 5.4]). Note that the truncation here
denotes the canonical truncation in literature. The proof of Colmez and Nizioł relies of comparing
the syntomic complex with the complex of (', Γ)-modules computing the continuous GR-cohomology
of ℤp(r). This is achieved using a version of Poincaré lemma. Further, note that they work with
log structures, i.e. all de�ntitions above should be replaced with their log analogues (without log
structures one should truncate in degree ≤ r − 1, see Theorem H below).
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Fontaine-Herr complex
The right side of the map in the p-adic version of the result of Colmez and Nizioł, i.e. the �rst
isomorphism in (0.4), is concerned with the computation of continuous GR-cohomology of ℤp(r).
This computation can be carried out with complexes made up of (', Γ)-modules, the origins of which
lie in the work of Herr (see [Her98]).

Let V be a p-adic representation (resp. ℤp-representation) ofGF , and letD(V ) denote the associated
étale (', ΓF )-module over BF (resp. AF ). Let  ∈ ΓF denote a topological generator of ΓF , then we
have a complex

∙ ∶ D(V )
(1−',−1)
−−−−−−−−−−→ D(V )⨁D(V )

( −11−' )
−−−−−−−−−−−→ D(V ),

where the second map is (x, y) ↦ ( − 1)x − (1 − ')y. The Fontaine-Herr complex ∙ computes
the continuous GF -cohomology of V in each cohomological degree, i.e. for k ∈ ℕ, we have natural
isomorphims H k(∙) ≃ H k

cont(GF , V ).
The continuous GF -cohomology groups are useful invariants attached to V . For example, the �rst

continuous cohomology group of V , i.e. H 1
cont(GF , V ) classi�es equivalent classes of extensions of

the trivial representation ℚp by V in Repℚp
(GF ), and which can be represented by a pair x, y ∈ D(V )

satisfying the equation ( − 1)x = (1 − ')y . Further, if V is crystalline then any crystalline extension
of ℚp by V (r) (cyclotomic twist of V ) can be represented by a pair (x, y) with x ∈ N(V )(r) and
y ∈ N(V (r)) such that ( −1)x = (1−')y (see Lemma A.2 and Proposition A.4). In fact, this statement
combined with the computation carried out by Colmez and Nizioł served as the original motivation
for obtaining Theorem H.

In the relative setting, we have the relative version of Fontaine-Herr complex which computes
the continuous GR-cohomology of a p-adic representation (see [AI08, Theorem 3.3], we recall the
description in §4.1). Explicit complexes computing the continuous GR-cohomology of T can also be
obtained, which we collectively refer to as Koszul complexes (see §4.2). Further, Koszul complexes
play a central role in the proof of Theorem H.

Syntomic complex with coe�cients
In Theorem G, we are interested in the p-adic result, i.e. the �rst isomorphism in (0.4). Our objective
is to replace the representation ℤp(r) there by a more general representation T (r), and adapt the
method of Colmez and Nizioł to obtain a relation between syntomic complex with coe�cients and
continuous GR-cohomology of T (r). The interesting class of representations for us are the crystalline
Wach representations of GR0 . In the notation of Theorem E, for the coe�cient of syntomic complex,
we will choose a lattice inside the �ltered (', ))-module ODcris(V ), whereas to compute the Galois
cohomology we will exploit the properties of the associated Wach module N(V ). The two sides
will then be compared using a version of Poincaré lemma, where a crucial input is the comparison
obtained in Theorem E.

More precisely, let V be a p-adic Wach representation ofGR0 with non-positive Hodge-Tate weights
and let s ∈ ℕ denote the maximum among the absolute value of Hodge-Tate weights of V . Let
T ⊂ V be a free ℤp-lattice of rank = dimℚp V , stable under the action of GR0 . Assume that N(T ) is a
free A+

R0-module of rank = dimℚp V , and there exists a free R0-submodule ODcris(T ) ⊂ ODcris(V ) of
rank = dimℚp V , such that ODcris(T )[ 1p ] = ODcris(V ) and the induced connection over ODcris(T ) is
quasi-nilpotent, integrable and satis�es Gri�ths transversality with respect to the induced �ltration.
Let r ∈ ℕ and we set V (r) ∶= V ⨂ℚp ℚp(r) and T (r) ∶= T ⨂ℤp ℤp(r).
Note. The choice of ODcris(T ) is not canonical and we discuss some ways to obtain such a module
in Proposition 3.31, Remark 3.42 and Remark 5.4. However, we �x such a choice for the rest of the
discussion.

De�ne
DPD ∶= RPD

$ ⨂R0 ODcris(T ).
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There is a Frobenius-semilinear endomorphism on DPD given by the diagonal action of the Frobenius
on each component of the tensor product, a �ltration coming from the product of �ltration on
each component of the tensor product and a connection induced from the connection on ODcris(T )
and the di�erential operator on RPD

$ . Further, this connection is integrable and satis�es Gri�ths
transversality with respect to the �ltration (see Chapter 5 for precise de�nitions). In particular, let
S = RPD

$ and we have a �ltered de Rham complex for k ∈ ℤ,

FilkD∙ ∶= FilkDPD
⨂S Ω1S ⟶ Filk−1DPD

⨂S Ω1S ⟶ ⋯ .

Let DR ∶= R ⨂R0 ODcris(T ). De�ne the syntomic complex Syn(DR , r) and the syntomic cohomology
of R with coe�cients in DR as

Syn(DR , r) ∶= [ FilrD∙ pr−p∙'
−−−−−−−−→ D∙ ];

H ∗
syn(DR , r) ∶= H

∗(Syn(DR , r)).

We will relate this complex to Fontaine-Herr complex computing the continuous GR-cohomology of
T (r). The main result of Chapter 5 is:

TheoremH (see Theorem 5.6). Let V be a positive Wach representation of GR0 , T ⊂ V a free GR0-stable
ℤp-lattice, s ∈ ℕ the maximum among the absolute value of the Hodge-Tate weights of V and r ∈ ℕ
such that r ≥ s + 1. Then there exists a pN -quasi-isomorphism

�≤r−s−1Syn(DR , r) ≃ �≤r−s−1RΓcont(GR , T (r)),

where N = N (T , e, r) ∈ ℕ depends on the representation T , rami�cation index e, and r . In particular,
we have pN -isomorphisms

H k
syn(DR , r)

≃
−−→ H k(GR , T (r)),

for 0 ≤ k ≤ r − s − 1.

The proof of Theorem H proceeds in two main steps: First, we modify the syntomic complex with
coe�cients in DR to relate it to a “di�erential” Koszul complex with coe�cients in N(T ). Next, in the
second step we modify the Koszul complex from the �rst step and use a version of Poincaré lemma
to obtain Koszul complex computing continuous GR-cohomology of T (r).

As alluded to before, for T = ℤp , the result was proven in [CN17]. However, direct generalizations
did not seem to work and the technical issues tend to amplify when dealing with the case of
dimℚp V ≥ 1. In order to prove the statement of the theorem we will write down explicit complexes
with suitable modi�cations at each step. The key to the connection between syntomic complexes
with coe�cients and “(', Γ)-module Koszul complexes” is provided by the comparison isomorphism
in Theorem E. In fact, an attempt to relate these two steps led to our search and discovery of the
comparison result in Theorem E in the �rst place.

What lies ahead?
The world of relative p-adic Hodge theory, though extensively studied in certain directions, remains
much less explored and no less challenging than its arithmetic counterpart. Therefore, several
natural questions have emerged which remain unaswered.

The very �rst question that could be asked is whether all crystalline representations are of �nite
height? This is certainly true for 1-dimensional representations. However, the higher dimensional
case remains quite mysterious. An answer to this question would possibly involve recovering the
module N(V ) given ODcris(V ).

In his recent work [Tsu20], Tsuji has used Wach’s ideas (see [Wac97]) and Faltings’ generalization
of Fontaine-La�aille modules (see [Fal89]) to construct generalized representations of GR . His theory
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has ties to the remarkable work of Bhatt, Morrow and Scholze on Ainf-cohomology in [BMS18].
Tsuji and Morrow in [MT20], have developed a theory of coe�cients in integral p-adic Hodge theory.
Tsuji’s objects are closely related to the de�nition of Wach modules in the relative case. It would be
interesting to explore these relations and obtain some concrete statements on cohomology. Also, it
would be interesting to understand the relation between relative Wach modules and coe�cients
in integral p-adic Hodge theory, as well as, their relation to Bhatt-Scholze theory of prisms and
prismatic cohomology in [BS19].

The globalization of the approach of Colmez and Nizioł, helped them in proving the semistable
comparison theorem for formal log-schemes. On the other hand, in [Tsu96] Tsuji considered a system
of coe�cients for syntomic cohomology and obtained similar results under certain restrictions. The
result in Theorem H is of similar �avour (at least locally), where we only consider the case of good
reduction. It would be interesting to shea�fy the notion of �nite height representations or Wach
modules as in the work of Colmez and Nizioł and in the spirit of crystalline sheaves of Andreatta
and Iovita (see [AI13]). Carrying out such a program would yield a comparison isomorphism for
proper smooth formal schemes and non-trivial coe�cients via syntomic methods.

As mentioned before, for a mixed characteristic discretely valued (possibly rami�ed) extension of
ℚp , Wach modules have been generalized in the form of Breuil-Kisin modules (see [Bre99, Bre02,
Kis06]). In the relative setting, Kim has given a certain generalization of Kisin’s theory (see [Kim15]).
On the other hand, there also exists classi�cation of classical p-adic representations by Caruso in
terms of (', � )-modules (see [Car13]). Then it is natural to ask whether there exists an explicit
complex (akin to Fontaine-Herr complex) of (relative) Breuil-Kisin modules or (relative) (', � )-
modules which computes Galois cohomology of a crystalline representation? Further, in that case
it would also be possible to work with semistable representations and log-syntomic complex with
coe�cients.

A positive answer to the questions above, also opens the door for many applications. One such
application could be into Iwasawa theory. In [Ben00], Benois has used Wach modules to study the
Iwasawa theory of crystalline representations, in the classical case. One could hope to carry out a
similar program in the relative setting.
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Au cours du siècle dernier, le modus operandi pour les mathématiciens essayant de comprendre les
espaces a été d’étudier les invariants naturels attachés à ces espaces. Cette approche s’est avérée
très fructueuse. Un exemple en vient de la topologie où l’on construit des groupes d’homologie
singuliers attachés à un espace topologique X . Concrètement, il s’agit d’une collection de groupes
abéliens {Hk(X,ℤ)}n∈ℕ calculés comme l’homologie du complexe singulier attaché à X et le k-ème
groupe d’homologie décrit les classes d’équivalence de trous k-dimensionnels dans X . En termes
d’application, les annulations des groupes d’homologie établissent des résultats que le théorème du
point �xe de Brouwer, entre autres.

En dualisant la construction des complexes de chaînes singulières, on peut dé�nir une théorie
contravariante, bien nommée, des groupes de cohomologie singulière {H k(X,ℤ)}k∈ℕ attachés à
X . De nouveaux développements en mathématiques ont conduit à la construction de théories de
(co)homologiques dans une myriade de contextes di�érents. Par exemple, la cohomologie de de
Rham pour les formes di�érentielles sur les variétés, la (co)homologie de groupe (continue), la
cohomologie d’algèbre de Lie, la cohomologie étale pour les variétés algébriques, etc.

Comparaison en géométrie algébrique complexe
En géométrie analytique et algébrique, l’étude de la cohomologique s’est avérée plus naturelle par
rapport à l’homologie . De plus, dans des circonstances convenables, certaines théories di�erentes
ont tendance à interagir les unes avec les autres. Une des premières observations faites dans ce sens
est due à de Rham [DR31]. En 1931, il montra que pour une variété lisse M , l’accouplement des
formes di�érentielles et de chaînes singulières, via l’intégration, donne un homomorphisme des
groupes de cohomologie de de Rham H k

dR(M,ℝ) aux groupes de cohomologie singuliére H k
sing(M,ℝ),

qui est en fait un isomorphisme (voir [Sam01] pour une étude historique).
En 1966, ce résultat a été étendu au contexte de la géométrie algébrique complexe par Grothendieck.

Plus précisément, soit X une variété algébrique complexe lisse et soit X an la variété complexe
obtenue à partir des points rationnels complexes X (ℂ) de la variété algébrique X . Dans [Gro66],
Grothendieck a dé�ni les groupes de cohomologie de de Rham algébrique pour X et a montré que
ceux-ci sont canoniquement isomorphes aux groupes de cohomologie de de Rham analytique de
X an. En conclusion, nous avons

Théorèm A (de Rham, Grothendieck). Soit X une variété algébrique complexe et lisse. Pour chaque
k ∈ ℕ, il existe un isomorphisme canonique d’espaces vectoriels complexes

H k
sing(X

an,ℤ)⨂ℤ ℂ
≃
−−→ H k

dR(X
an/ℂ) ≃

−−→ H k
dR(X /ℂ).

xxvii
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Les deux côtés de cet isomorphisme apportent des informations complémentaires sur X ; à savoir,
la cohomologie singulière fournit une structure intégrale pour H k

sing(X
an,ℝ) (le réseau des périodes)

et la cohomologie de de Rham donne la �ltration de Hodge.
En géométrie algébrique complexe, on peut faire mieux. Supposons que X soit un schéma lisse

et projectif sur ℂ et soit X an la variété complexe associée. Alors X an est une variété compacte
équipée d’une métrique Kähler. Si nous laissons Ωj

X an désigner le faisceau de formes di�érentielles
holomorphes sur X an, alors nous avons la décomposition de Hodge

H k
sing(X

an,ℤ)⨂ℤ ℂ ≃ ⨁
i+j=k

H i(X an,Ωj
X an).

De plus, soit Ω1X /ℂ le faisceau de di�érentiels de Kähler sur X et dé�ni Ωj
X /ℂ = ⋀j Ω1X /ℂ. Puis en

combinant la décomposition de Hodge avec le principe GAGA de Serre, on obtient que

H k
sing(X

an,ℤ)⨂ℤ ℂ ≃ ⨁
i+j=k

H i(X an,Ωj
X an) ≃ ⨁

i+j=k
H i(X,Ω

j
X /ℂ).

L’un des principaux objectifs de la théorie de Hodge p-adique est d’expliquer un phénomène
similaire pour les cohomologies p-adiques de variétés algébriques dé�nies sur un corps p-adiques.

Théorèmes de comparaison p-adiques
Dans cette section, soit p un nombre premier �xe, K un corps d’évaluation discret caractéristique
mixte avec un anneau d’entiers OK et un corps résiduel � parfait de caractéristique p.

Dans le contexte de la géométrie algébrique, la topologie de Zariski sur les variétés algébriques
est trop grossière pour obtenir une notion signi�cative de cohomologie singulière. Par conséquent,
en 1963-64, Grothendieck dans [AGV71] a dé�ni des groupes de cohomologie étale attachés à un
schéma dé�ni sur n’importe quel corps (en particulier, les extensions �nies de ℚp), alors que la
dé�nition de la cohomologie algébrique de de Rham s’applique aux schémas lisses. Encore une fois,
les mathématiciens ont observé que dans ce cadre, ces deux théories interagissent l’une avec l’autre.

L’origine de la comparaison des théories de cohomologie p-adiques, appelées théorèmes de com-
paraison p-adiques, peut être attribuée aux travaux de Tate sur les groupes p-divisibles dans [Tat67].
Tate a montré que pour un schéma abélien A dé�ni sur OK , le premier groupe de cohomologie étale
de A avec des coe�cients dans ℤp détermine le groupe p-divisible Ap∞ , c’est-à-dire le sous-groupe
de torsion p-primaire de A, et vice versa. De plus, soit K une clôture algébrique �xe de K avec
ℂp comme complétion p-adique. Alors le groupe de Galois GK ∶= Gal(K /K ) agit linéairement et
continûment sur le ℤp-module H 1

ét(AK ,ℤp). En conséquence de son étude générale des groupes
p-divisibles, Tate a montré que pour k ≤ 2 dimA, il existe un isomorphisme GK -équivariant naturel

H k
ét(AK ,ℤp) ⨂ℤp ℂp ≃ ⨁

i+j=k
H i(A,Ω

j
A) ⨂K ℂp(−j), (0.5)

où pour j ∈ ℤ, on dé�nit ℂp(j) ∶= ℂp ⨂ℚp ℚp(j) et ℚp(j) est le j-ième puissance tenseur de la
représentation p-adique unidimensionnelle ℚp(1) sur laquelle GK agit via le caractère cyclotomique
p-adique. Tate a conjecturé qu’une décomposition GK -équivariante comme ci-dessus devrait exister
pour toute variété projective lisse dé�nie sur K .

D’autre part, dans [Gro74], Grothendieck a montré que les groupes de cohomologie de de Rham
d’un schéma abélien portent également des informations supplémentaires. En utilisant sa théorie
cristalline de Dieudonné, il a déterminé que H 1

dR(A/K ) est un K -espace vectoriel acquérant une base
canonique sur F , où F = Fr W pour W = W (�) l’anneau de vecteurs de Witt p-typiques avec des
coe�cients dans �. L’espace vectoriel sur F admet un automorphisme semi-linéaire de Frobenius ',
et possède une �ltration de Hodge après extension des scalaires à K . De plus, il a montré que Ap∞
est déterminé, à isogénie près, par H 1

dR(A/K ) avec sa �ltration de Hodge, la base sur F qui est équipé
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l’automorphisme '.
Considérant ces deux phénomènes, Grothendieck a été amené à se poser la question de décrire une

procédure algébrique qui permettrait de passer directement de H 1
dR(A/K ) à H 1

ét(AK ,ℚp), sans détour
par le groupe p-divisible Ap∞ ; il soupçonnait aussi qu’une telle procédure devrait exister dans des
degrés de cohomologie arbitraires (le problème bien connu du foncteur mystérieux de Grothendieck).

Cette question a été résolue par Fontaine en degré un et pour en degré arbitraire il a proposé une
conjecture précise dans [Fon82, Fon83]. La conjecture cristalline de Fontaine pour un OK -schéma
examine la relation entre la cohomologie p-adique étale de la �bre générique et la cohomologie
cristalline de la �bre spéciale. Cette conjecture est maintenant pleinement prouvée par les travaux
de nombreux auteurs. Avant d’énoncer la conjecture cristalline, mentionnons les travaux de Faltings
généralisant la décomposition de Hodge-Tate dans (0.5):

Théorèm B ([Fal88, Faltings]). Soit X un K -schéma lisse et propre. Alors pour chaque k ∈ ℕ, il existe
un isomorphisme canonique GK -équivariant

H k
ét(XK ,ℤp) ⨂ℤp ℂp ≃ ⨁

i+j=k
H i(X,Ω

j
X) ⨂K ℂp(−j).

L’un des premiers théorèmes de comparaison à être prouvé dans le cadre p-adique, la preuve du
théorème B repose sur l’idée de Faltings de presque mathématique.

Revenons maintenant à la conjecture cristalline: Soit X un schéma propre et lisse dé�ni sur OK ,
soit i ∶ XK � X sa �bre générique et j ∶ X� � X désigne sa �bre spéciale. Pour la �bre générique,
nous considérerons les groupes de cohomologie p-adique étale usuels H i

ét(XK ,ℚp), tandis que pour
les schémas en caractéristique p, c’est-à-dire X� , nous considérerons une variante de la cohomologie
de de Rham fournie par Grothendieck, qui est encore une cohomologie p-adique connue sous le nom
de cohomologie cristalline H k

cris(X� /W (�)). Ensuite nous avons,

Théorèm C ([FM87, Fontaine-Messing], [Fal89, Faltings], [KM92, Kato-Messing], [Tsu99, Tsuji]).
Pour chaque k ∈ ℕ il existe un isomorphisme naturel

H k
ét(XK ,ℚp) ⨂ℚp Bcris

≃
−−→ H k

cris(X�/W (�)) ⨂W (�) Bcris,

compatible avec l’action de GK , le Frobenius, la �ltration (et la dualité de Poincaré, la formule Künneth,
les morphismes de classe de cycle et de classe de Chern) de chaque côté.

Ici Bcris désigne l’anneau des périodes cristalline construit par Fontaine (voir [Fon94a]), et il est
doté d’une action continue de GK , du Frobenius et d’une �ltration .

Dans [FM87] Fontaine et Messing ont lancé un programme pour prouver la conjecture cristalline
via des méthodes syntomiques et ont réussi à prouver l’a�rmation dans le cas K = F et dimXK < p
. Dans [KM92], Kato et Messing ont prouvé la conjecture sous l’hypothèse dimXK < (p − 1)/2
mais sans aucune hypothèse sur K . De plus, ce programme a été généralisé au cas semistable par
Fontaine et Janssen. La conjecture semistable a été montrée par Fontaine pour les variétés abéliennes
puis prouvée par Kato dans [Kat94] dans le cas dimXK < (p − 1)/2, en généralisant les méthodes
de [KM92]. En�n, ce programme a été conclu par Tsuji dans [Tsu99] complétant la preuve des
conjectures cristallines et semistables.

Au cours de quatre décennies, de nombreux mathématiciens ont travaillé sur des théorèmes de
comparaison p-adiques. Dans [Fal89], Faltings a prouvé la conjecture cristalline et a également
généralisé ses méthodes aux coe�cients non triviaux. Il a en outre montré le théorème de comparai-
son semistable en utilisant sa théorie des extensions presque étales dans [Fal02]. Dans [Niz98] Nizioł
a donné une autre preuve de la conjecture cristalline en utilisant la K -théorie. Yamashita a prouvé le
cas non approprié dans [Yam11]. En utilisant des constructions complètement di�érentes, Beilinson
a prouvé toutes les incarnations des théorèmes de comparaison p-adiques dans [Bei12, Bei13]. De
plus, Scholze a prouvé le théorème de comparaison de Rham pour les variétés analytiques rigides
dans [Sch13], où il travaille complètement sur la �bre générique et considère les systèmes locaux
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p-adiques non triviaux du côté étale. En généralisant les idées de Faltings, Andreatta et Iovita
ont prouvé la comparaison cristalline pour les schémas formels lisses dans [AI13], où leur preuve
fonctionne également pour les coe�cients non triviaux. De plus, Andreatta et Iovita ont généralisé
leur preuve au cas semistable dans [AI12].

Dans [CN17] en utilisant des méthodes et techniques syntomiques de la théorie des (', Γ)-modules,
Colmez et Nizioł ont prouvé la comparaison semistable pour les schémas logarithmiques formels. La
majeure partie de [CN17] consiste en des calculs locaux, c’est-à-dire sur des a�noïdes couvrant le
schéma X . Dans le cas du schéma propre et lisse X , le revêtement peut être donné par une algèbre
étale sur un tore formel sur OK . La motivation de nos résultats cohomologiques à coe�cients dans
cette thèse découle de cet article (voir le théorème H). La poursuite de l’énoncé cohomologique a
conduit à notre exploration des représentations cristallines de hauteur �nie dans le cadre relatif (voir
le théorème E). Nous reviendrons plus tard sur ces connexions.

Une version intégrale des théorèmes de comparaison a été obtenue par Bhatt, Morrow et Scholze
dans [BMS18], où ils ont dé�ni une nouvelle théorie de cohomologie sur l’anneau in�nitésimal de
Fontaine Ainf . Le travail de [BMS18] a été généralisé au cas semistable par Česnavičius et Koshikawa
dans [ČK19]. En�n, généralisant davantage leurs travaux, Bhatt et Scholze ont avancé la théorie de
la cohomologie prismatique dans [BS19] qui uni�e toutes les théories de cohomologie p-adiques
connues.

Représentations p-adiques et algèbre linéaire
Depuis l’époque galoisienne, les mathématiciens se sont intéressés à la compréhension des groupes
galoisiens d’extensions de corp. Alors que certains cas �nis et pro�nis sont simples et explicites à
énoncer, en général ces groupes sont assez complexes à déchi�rer, par exemple, le groupe de Galois
absolu GK dans la section précédente est aussi loin d’être explicite que possible. Pour comprendre de
tels groupes, une approche générale consiste à étudier leurs représentations, c’est-à-dire l’action de
tels groupes sur certains modules. C’est un autre thème commun dans la théorie de Hodge p-adique,
c’est-à-dire l’étude des représentations p-adiques des groupes de Galois tels que GK .

Les groupes de cohomologie étale p-adique H i
ét(XK ,ℚp), apparaissant dans le théorème C, sont

ℚp-espaces vectoriels dotés d’une action linéaire et continue du groupe de Galois GK . En d’autres
termes, nous avons obtenu des représentations p-adiques du groupe de Galois GK . D’autre part, les
groupes de cohomologie cristalline F ⨂W H i

cris(X� /W ) sont des F -espaces vectoriels équipés d’un
automorphisme de Frobenius-semilinéaire ' et une �ltration après extension des scalaires à K . Le
théorème C indique que ces deux objets sont liés l’un à l’autre.

Dans les années 1980-90, Fontaine a énoncé et réalisé plusieurs programmes a�n d’étudier les
représentations p-adiques de GK . Dans [Fon79, Fon82, Fon94a, Fon94b], Fontaine décrit les sous-
catégories de représentations cristallines, semi-stables et de Rham. Par exemple, les groupes de
cohomologie étale apparaissant dans le théorème C sont des représentations cristallines de GK . La
théorie de Fontaine est riche et un voyage incroyable à parcourir, cependant nous nous contenterons
d’une description des représentations cristallines. De plus, par souci de simplicité, nous travaillerons
en supposant que K = F n’est pas rami�é sur ℚp , cependant certains des résultats sont vrais dans
des contextes plus généraux.

Représentations cristallines
Pour classer les représentations cristallines, Fontaine propose un formalisme général. Il construit un
anneau de périodes Bcris qui est le completé p-adique d’une F -algèbre équipée d’un Frobenius et
d’une �ltration (voir [Fon94a], nous rappelons la construction dans un cadre plus général dans §1.3).
Soit maintenant V une représentation p-adique de GF , et dé�nissons

Dcris(V ) ∶= (Bcris ⨂ℚp V )
GF .
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C’est un espace vectoriel F de dimension �nie tel que dimF Dcris(V ) ≤ dimℚp V , et il est muni d’un
endomorphisme semi-linéaire de Frobenius ', et une �ltration venant de la �ltration sur Bcris. De
plus, cette construction est fonctorial en V et elle prend des valeurs dans la catégorie de '-modules
�ltrée sur F . La représentation V est dite cristalline si et seulement si elle est Bcris-admissible, ou
équivalent, dimF Dcris(V ) = dimℚp V . En particulier, les périodes p-adiques de V appartiennent à
Bcris. Le foncteur Dcris est exact et pleinment �dèle et établit une équivalence entre la catégorie
des représentations cristallines et son image essentielle sous le foncteur, compatible avec les suites
exactes, les produits tensoriels et la prise de duals.

La terminologie cristalline accentue le fait que si la représentation “vient de la géométrie”, c’est-à-
dire calculée comme étale cohomologie de �bre générique d’un W -schéma lisse et propre, alors il
existe une comparaison avec le cohomologie cristalline de la �bre spéciale. Par exemple, si nous
laissons Vi ∶= H i

ét(XF ,ℚp) dans le théorème C, alors nous avons Dcris(Vi) = F ⨂W H i
cris(X� /W ). De

plus, étant donné H i
cris(X� /W ) avec ses structures complémentaires, on peut récupérer H i

ét(XF ,ℚp)
l’espace vectoriel ℚp avec son action galoisienne, et vice versa. C’est un résultat assez surprenant en
contraste avec le cas complexe (voir le théorème A).

(', Γ)-modules et représentations de hauteur �nie
Une perspective di�érente sur les représentations p-adiques est la théorie des (', Γ)-modules. Morale-
ment, une telle théorie est une tentative de décrire des représentations p-adiques de GF en termes
de modules sur des anneaux de base compliqués, admettant un endomorphisme semi-linéaire de
Frobenius et une action plus simple d’un morceau du groupe de Galois.

Plus précisément, soit F∞ = ⋃n∈ℕ F (�pn ) où �pn ∈ F désigne une racine primitive pn-ième de
l’unité, et soit ℂ♭p l’inclinaison de ℂp (voir §1.2 pour une dé�nition précise). Soit HF = Gal(F /F∞) et
ΓF = Gal(F∞/F ), alors on a une suite exacte

1⟶ HF ⟶ GF ⟶ ΓF ⟶ 1.

En utilisant la construction corps-des-normes dans [FW79b, FW79a, Win83], Fontaine et Winten-
berger ont dé�ni un corps d’évaluation discret complet non archimédien EF ⊂ ℂ♭p de caractéristique
p avec corp de classe de résidus �, et fonctorial en F . Dans [Fon90], Fontaine a utilisé la théorie
de la construction des corps des normes pour classer les représentations mod-p de GF en termes
des (', ΓF )-modules étale sur EF . Par quelques considérations techniques, on peut élever cela à la
caractéristique 0, c’est-à-dire classer les ℤp-représentations de GF en termes des (', ΓF )-modules
étale sur un anneau régulier local de dimension deux AF ⊂ W (F̂ ♭∞). En particulier, les périodes
p-adiques de toute ℤp-représentation de GF appartiennent à l’anneau A ⊂ W (ℂ♭p). Une équivalence
similaire des catégories peut être obtenue pour les représentations p-adiques et les (', ΓF )-modules
étale sur BF = AF[ 1p ], i.e. les périodes p-adiques des représentations p-adiques de GF appartiennent
à B = A[ 1p ] ⊂ Fr W (ℂ♭p).

La théorie des (', Γ)-modules a été a�née par Cherbonnier et Colmez dans [CC98]. Ils ont
montré que toutes les ℤp-représentations (resp. représentations p-adiques) sont surconvergentes,
i.e. les périodes p-adiques appartiennent à un sous-anneau A† ⊂ A (resp. B† ⊂ B). De nombreuses
applications de (', Γ)-modules utilisent le résultat de Cherbonnier-Colmez (voir [CC99], [Ber02,
Ber03], etc.).

Le foncteur de corps-des-normes a été ensuite généralisé aux corps locaux de dimension supérieure
par Abrashkin dans [Abr07]. Une vaste généralisation de la théorie de Fontaine et Wintenberger,
également connue sous le nom de tilting correspondence, a été faite par Scholze dans [Sch12].

Représentations cristallines de hauteur finie

Jusqu’ici nous avons vu la classi�cation des représentations p-adiques cristallines de GF en termes
de '-modules �ltrés sur F , et toutes les représentations p-adiques de GK en termes de (', Γ)-modules
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étale sur BF . Par cette dernière équivalence de catégories, il devient naturel de se poser la question
: est-il possible de décrire des représentations cristallines intrinsèquement dans la catégorie des
(', Γ)-modules étale? Pour répondre à cette question, Fontaine a lancé un programme reliant les
représentations cristallines p-adiques et les représentations de hauteur �nie.

Une représentation p-adique V de GF est dite de hauteur �nie si les périodes p-adiques de V
appartiennent au sous-anneau “intégral” B+ ⊂ B (voir §3.1). En d’autres termes, le (', ΓF )-module
sur BF admet une base dans un réseau, c’est-à-dire a une base sur l’anneau de période B+F ⊂ BF . Pour
les représentations cristallines il existe des réseaux sur lesquels l’action de ΓF est plus simple. La
hauteur �nie et les représentations cristallines de GF sont liées par le résultat suivant :

Théorèm D ([Wac96, Wach], [Col99, Colmez], [Ber02, Berger]). Soit V une représentation p-adique
de GF . Alors V est cristalline si et seulement s’il est de hauteur �nie et il existe r ∈ ℤ et un B+F -submodule
N ⊂ D(V ) de rang = dimℚp V , stable sous l’action de ΓF , tel que ΓF agit trivialement sur (N /�N )(−r).

Dans la situation du théorème D, le module N n’est pas unique. Une construction fonctorial a été
donnée par Berger dans [Ber04] à l’aide de laquelle il a établi une équivalence de catégories entre les
représentations cristallines de GF et des modules de Wach sur B+F . De plus, pour une représentation
cristalline V , il existe une bijection entre ℤp-réasaux à l’intrieur des modules V et modules de Wach
sur le sous-anneau intégral A+

F ⊂ B+F , et contenue dans le module de Wach rationnel N(V ). En�n,
étant donné N(V ) on peut récupérer canoniquement l’autre objet algébrique linéaire attaché à V ,
soit Dcris(V ) (voir [Ber04, Propositions II.2.1 & III. 4.4]).

La théorie et la construction des modules de Wach ont connu de nombreuses applications, par
exemple, la théorie d’Iwasawa des représentations cristallines dans [Ben00, BB08], la preuve de
Berger de la conjecture de monodromie p-adique [Ber02], ainsi que, dans l’étude du programme de
Langlands p-adique local [BB10]. La notion de modules de Wach a été généralisée au cas des modules
de Breuil-Kisin sur K corps p-adqique (voir [Bre99, Bre02, Kis06]). L’existence de modules Wach a
également servi de motivation pour l’idée de Scholze de q-déformations [Sch17], qui a ouvert la voie
à la théorie de Bhatt-Scholze des prismes et à la cohomologie prismatique [BS19]. De plus, similaire
à la classi�cation de Berger dans le cas �ni non rami�é, Bhatt et Scholze ont montré que pour
toute extension �nie K /ℚp , la catégorie des F -cristaux prismatiques sur Spf (OK ) est équivalent à la
catégorie des ℤp-réseaux à l’intérieur des représentations cristallines de GK (voir [BS21, Theorem
1.2]).

Représentations cristallines de hauteurs �nies relatives
Comme indiqué précédemment, nous nous intéressons à la version locale de la théorie de Hodge
p-adique relative. Alors, présentons brièvement la con�guration: Fixons maintenant p ≥ 3, et soit
d ∈ ℕ avec X = (X1, X2,… , Xd ) quelques indéterminés. On dé�nit W {X} ∶=

{
∑k∈ℕd akX k, où k =

(k1,… , kd ) ∈ ℕd , X k = X k1
1 ⋯X kd

d , ak ∈ W, et ak → 0 comme k → ∞
}

, pour être une algèbre
p-adiquement complète sur W . De même, nous dé�nissons R0 ∶= W {X ±1}. Soit K = F (�pm ), où
m ∈ ℕ≥1, �pm est une racine primitive pm-ième de l’unité, soit OK l’anneau des entiers de K et soit
R ∶= OK{X ±1}.
Note. Dans le corps principal de la thèse, nous travaillerons dans une con�guration plus générale,
c’est-à-dire sur la complétion p-adique d’une algèbre étale surW {X ±1} et l’extension correspondante
de R0 et R ci-dessus (voir §1.1). Cependant, par souci de lucidité de l’exposé, nous introduisons les
résultats sous des hypothèses simpli�ées.

Répresentations cristallines
Inspiré par le formalisme de Fontaine, dans [Bri08] Brinon a étudié les représentations p-adiques de
GR , le groupe fondamental étale de R[ 1p ]. Dans le cadre relatif, il y a deux notions de représentations
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cristallines: les représentations cristallines horizontales et les (grandes) représentations cristallines.
Nous nous intéressons à cette dernière catégorie de représentations.

Pour classer les représentations cristallines, Brinon construit un anneau de périodes OBcris qui est
une R0[ 1p ]-algèbre p-adicalement complète équipée de un Frobenius, une �ltration et une connexion
Bcris-linéaire satisfaisant la transversalité de Gri�ths (voir [Bri08], notez que ce sont des versions
relatives de la construction de Fontaine, nous rappelons les détails dans §1.3). Soit maintenant V
une représentation p-adique de GR0 , et soit

ODcris(V ) ∶= (OBcris ⨂ℚp V )
GR0 .

C’est un R0[ 1p ]-module projectif �ni de rang ≤ dimℚp V , et il est muni d’un endomorphisme de
Frobenius-semi-linéaire ', une �ltration issue de la �ltration sur OBcris et une connexion intégrable
quasi-nilpotente satisfaisant la transversalité de Gri�ths et issue de la connexion sur OBcris (voir
§1.5 pour plus de détails). De plus, cette construction est fonctorial dans V et elle prend des valeurs
dans la catégorie des (', ))-modules �ltrés sur R0[ 1p ]. La représentation V est dite cristalline si et
seulement si elle est OBcris-admissible (voir §1.5.2). En particulier, les périodes p-adiques de V
appartiennent à OBcris. Le foncteur ODcris est exact et pleinement �dèle et établit une équivalence
entre la catégorie des (grandes) représentations cristallines et son image essentielle sous le foncteur,
compatible avec les suites exactes, les produits tensoriels et la prise de duals .

(', Γ)-modules et représentations de hauteur �nie

Parallèlement au cas arithmétique, dans le cadre relatif, nous pouvons à nouveau classer toutes les
représentations p-adiques en termes de (', Γ)-modules. Pour n ∈ ℕ, soit Fn = F (�pn ) où �pn est une pn-
ième racine primitive de l’unité. Soit Rn la fermeture intégrale de R0 ⨂OFn[X

p−n
1 ,…X p−n

d ] à l’intérieur
de R[ 1p ], et soit R∞ ∶= ⋃n Rn. On dé�nit GR0 ∶= Gal(R[ 1p ]/R0[ 1p ]), ΓR0 ∶= Gal(R∞[ 1p ]/R0[ 1p ]), et
HR0 ∶= Ker (GR0 → ΓR0). L’anneau R∞[ 1p ] est une extension galoisienne de R0[ 1p ] avec groupe de
Galois ΓR0 s’insérant dans une séquence exacte

1⟶ Γ′R0 ⟶ ΓR0 ⟶ ΓF ⟶ 1, (0.6)

où, pour 1 ≤ i ≤ d on a Γ′R0 = Gal(R∞[ 1p ]/F∞R0[ 1p ]) ≃ ℤd
p , et ΓF = Gal(F∞/F ) ≃ ℤ×

p .
La classi�cation de Fontaine a été généralisée par Andreatta dans [And06] au cas relatif. Andreatta

construit un analogue de EF , c’est-à-dire à R0 il associe un domaine régulier noetherien E+R0 . De plus,
il élève cet anneau à la caractéristique 0, c’est-à-dire que nous avons A+

R0 équipé d’un endomorphisme
de Frobenius et d’une action continue de ΓR0 . En�n, nous avons AR0 comme complétion p-adique de
A+
R0[

1
� ].

Ensuite, un (', ΓR0)-module étale est unAR0-module de génération �nie équipé d’un automorphisme
Forbenius-semi-linéaire ' et d’un action semi-linéaire et continue de ΓR0 . Andreatta montre qu’il
existe une équivalence de catégories entre les ℤp-représentations de GR0 et étale (', ΓR0)-modules sur
AR0 . En particulier, les périodes p-adiques de toute ℤp-représentation de GR0 vivent dans l’anneau
A ⊂ W (ℂ(R)♭) (voir §2.1). Une équivalence similaire des catégories peut être obtenue pour les
représentations p-adiques et les (', ΓR0)-modules étale sur BR0 ∶= AR0[

1
p ], c’est-à-dire que les

périodes p-adiques des représentations p-adiques de GR0 appartiennent à B = A[ 1p ] ⊂ W (ℂ(R)♭)[ 1p ].
Notez que la discussion ci-dessus est vraie dans un cadre plus général, en particulier pour R (voir
§2.1 qui est une adaptation de [And06]).

Dans [AB08], Andreatta et Brinon a généralisé le résultat de Cherbonnier et Colmez au cadre
relatif, c’est-à-dire qu’ils ont montré que toutes les ℤp-représentations (resp. p-adiques) de GR0 sont
surconvergents (voir §2.2 pour plus de détails), c’est-à-dire que les périodes p-adiques appartiennent
à un sous-anneau A† ⊂ A (resp . B† ⊂ B).
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Représentations de Wach

Jusqu’ici nous avons discuté des représentations cristallines et des (', Γ)-modules dans le cadre
relatif. Parallèlement au cas arithmétique, nous nous intéressons maintenant à la compréhension
des représentations à hauteur �nie et des modules de Wach dans le cas relatif. De plus, nous nous
attendons à ce qu’il y ait un lien entre la hauteur �nie et les représentations cristallines.

Soit V une représentation p-adique du groupe de Galois GR0 . On dit qu’elle est de hauteur �nie si
les périodes p-adiques de V appartiennent au sous-anneau B+ ⊂ B (voir §3.2) . En d’autres termes, le
B+R0 = A+

R0[
1
p ]-sous-module D+(V ) ⊂ D(V ) (fonctoriel en V ) est un (', ΓR0)-module de type �ni tel

que BR0 ⨂B+R0
D+(V ) ≃ D(V ).

Maintenant, nous prenons V une représentation de Rham p-adique avec des poids de Hodge-Tate
non positifs, T ⊂ V un ℤp-réseau libre de rang = dimℚp V , stable sous l’action de GR0 . On dit que
V est une représentation de Wach positive s’il est de hauteur �nie et il existe N(T ) ⊂ D+(T ), un
(', ΓR0)-module projectif �ni sur A+

R0 satisfaisant certaines conditions techniques décrivant l’action
de ' et ΓR0 (voir Dé�nition 3.8) . On pose N(V ) ∶= N(T )[ 1p ], et l’unicité de ces modules découle de
la dé�nition (voir le lemme 3.14). De plus, ces modules sont équipés d’une �ltration naturelle.

Le but du chapitre 3 est de montrer que les représentations de Wach sont cristallines. De plus,
pour une représentation de Wach positive V le B+R0-module N(V ) et le R0[ 1p ]-module ODcris(V )
sont liés de manière précise et ce dernier peut être récupéré du premier. Pour relier ces objets nous
construisons un gros anneau de période relative OAPD

R ⊂ OAcris(R0) équipé de Frobenius, �ltration,
connexion et action de ΓR0 (voir §3.2).

Théorèm E (voir Theorem 3.24). Soit V une représentation de Wach positive de GR0 , alors V est
une représentation cristalline positive. De plus, soit M[ 1p ] ∶= (OAPD

R ⨂A+R0
N(V ))

ΓR0 . Alors on a un
isomorphisme de R0[ 1p ]-modules M[ 1p ] ≃ ODcris(V ) compatible avec Frobenius, �ltration et connexion
de chaque côté. De plus, après avoir étendu les scalaires à OAPD

R , on obtient des isomorphismes naturels

OAPD
R ⨂R0 ODcris(V )

≃
←−− OAPD

R ⨂R0 M[ 1p ]
≃
−−→ OAPD

R ⨂A+R0
N(V ),

compatible avec Frobenius, �ltration, connexion et l’action de ΓR0 de chaque côté.

La preuve du théorème se déroule en trois étapes : Premièrement, nous énonçons explicitement la
structure du module de Wach attaché à une représentation de Wach de dimension un, nous montrons
également que toutes les représentations cristallines unidimensionnelles sont des représentations
de Wach et on peut récupérer ODcris(V ) en commençant avec le module de Wach N(V ). Ensuite,
dans des dimensions supérieures et dans les conditions du théorème E, nous décrirons un processus
par lequel nous pouvons récupérer un sous-module de ODcris(V ) à partir du module de Wach, on
établit ici une comparaison en passant au cas unidimensionnel. En�n, les a�rmations faites dans le
théorème sont montrées en exploitant certaines propriétés des modules de Wach et la comparaison
obtenue dans la deuxième étape. Dans la deuxième étape, l’approximation pour l’action de la partie
géométrique de ΓR0 s’avère non triviale et la plupart de notre travail consiste à montrer cette partie ;
la partie arithmétique de ΓR0 découle des travaux de Wach [Wac96].

Complexe syntomique et cohomologie galoisienne
Après avoir introduit une classe intéressante de représentations, nous revenons à notre discussion
de la conjecture cristalline dans le théorème C. Soit K = F (�pm ) pour m ≥ 1, soit X un schéma
formel propre et lisse sur OK , tel que j ∶ XK ∶= X ⨂OK K � X désigne l’inclusion de sa �bre
générique et i ∶ X� ∶= X ⨂OK � � X désigne l’inclusion de sa �bre spéciale. Pour attaquer la
conjecture cristalline, Fontaine et Messing ont lancé un programme pour la prouver via des méthodes
syntomiques (voir [FM87]). Pour r ≥ 0, soit Sn(r)X le faisceau syntomique modulo pn sur X�,ét. Il
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peut être considéré comme un espace propre dérivé Frobenius sur un morceau de la cohomologie
cristalline. Ensuite, Fontaine et Messing ont construit des morphismes de periodes

�FM
r ,n ∶ Sn(r)X ⟶ i∗Rj∗ℤ/pn(r)′XK

de la cohomologie syntomique aux cycles proches p-adiques, où ℤp(r)′ ∶= 1
pa(r)ℤp(r), pour r =

(p − 1)a(r) + b(r) avec 0 ≤ b(r) ≤ p − 1.
Dans [CN17], Colmez et Nizioł ont montré que l’application des périodes Fontaine-Messing �FM

r ,n ,
après une troncature appropriée, est essentiellement un quasi-isomorphisme. Plus précisément,

Théorèm F ([CN17, Theorem 1.1]). Pour 0 ≤ k ≤ r , l’application

�FM
r ,n ∶ k(Sn(r)X )⟶ i∗Rk j∗ℤ/pn(r)′XK ,

est un pN -isomorphisme, c’est-à-dire qu’il existe N = N (e, p, r) ∈ ℕ dépendant de r et de l’indice de
rami�cation absolu e de K mais pas de X ou n, de sorte que le noyau et le conoyau du morphisme sont
tués par pN .

En fait, pour k ≤ r ≤ p − 1, l’application �FM
r ,n a été montrée être un isomorphisme par Kato

[Kat89, Kat94], Kurihara [Kur87] et Tsuji [Tsu99]. Dans [Tsu96], Tsuji a généralisé ce résultat à
certains systèmes locaux.

Le théorème F est également valable pour le changement de base des schémas lisses et propres.
En particulier, après passage à la limite et inversion de p ci-dessus, pour chaque 0 ≤ k ≤ r on obtient
un isomorphisme

�FM
r ∶ H k

syn(XOK , r)ℚ
≃
−−→ H k

ét(XK ,ℚp(r)). (0.7)

L’isomorphisme a�ché ci-dessus est l’étape la plus importante pour prouver la conjecture cristalline
via des méthodes syntomiques. Ces idées ont été utilisées dans [FM87], [KM92], [Kat87], [Kat94]
et [Tsu99]. Cependant, toutes ces preuves ont été élaborées directement sur K , mais sans aucune
restriction sur r .

La preuve de Colmez et Nizioł est di�érente des approches précédentes. Ils prouvent d’abord
le théorème F, et en déduisent la comparaison dans (0.7) via changement de base. Pour prouver
leur a�rmation, ils construisent une autre morphisme de période locale �az

r , en utilisant des
techniques de la théorie des (', Γ)-modules et une version de l’isomorphisme intégral de Lazard
entre la cohomologie de l’algèbre de Lie et la cohomologie de groupe continue. Ensuite, ils montrent
que morphisme est un quasi-isomorphisme et coïncide avec le morphisme de Fontaine-Messing
à quelques constantes près. De plus, tous leurs résultats ont été élaborés dans le cas général de
schémas logarithmiques.

Calcul local de Colmez et Nizioł
Comme précisé précédemment, la majeure partie de [CN17] consiste en des calculs locaux, c’est-
à-dire sur des a�noïdes couvrant un schéma formel. Dans le cas d’un schéma formel propre et
lisse, le revêtement peut être donné par une algèbre étale sur R = OK{X ±1} où X = (X1,… , Xd )
sont des indéterminés. Pour énoncer le résultat local, nous nous limiterons au cadre familier de R,
mais les résultats sont également valables pour une algèbre étale sur R (Colmez et Nizioł travaillent
également avec des structures log).

Soit R+$ la complétion (p, X0)-adique de W [X0, X ±1], et soit S = RPD
$ désigne la complétion p-adique

de l’enveloppe de puissance divisée par rapport au noyau de la morphisme R$ � R envoyant X0 à
�pm − 1. De plus, soit Ω1S la complétion p-adique du module de di�érentiels de S par rapport à ℤ et
Ωk
S = ⋀k Ω1S pour k ∈ ℕ. La cohomologie syntomique de R peut être calculée par le complexe

Syn(R, r) ∶= Cone(F rΩ∙S
pr−p∙'
−−−−−−−−→ Ω∙S)[−1],
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tel que nous avons H i
syn(R, r) = H i(Syn(R, r)). Si K contient su�samment de racines d’unité, c’est-à-

dire pour m assez grand, Colmez et Nizioł a montré que,

Théorèm G ([CN17, Theorem 1.6]). Les morphismes

�Lazr ∶ �≤rSyn(R, r)⟶ �≤rRΓcont(GR ,ℤp(r)),

�Lazr,n ∶ �≤rSyn(R, r)n ⟶ �≤rRΓcont(GR ,ℤ/pn(r))⟶ �≤rRΓ((Sp R[ 1p ])ét,ℤ/p
n(r)),

(0.8)

sont des pNr -quasi-isomorphismes pour une constante universelle N .

En�n, en utilisant la descente galoisienne on peut obtenir le résultat sur K (pas forcément ayant
assez de racines d’unité, avec N dépendant de K , p et r , voir [CN17, Théorème 5.4]). Notez que la
truncation désigne ici la truncation canonique dans la littérature. La preuve de Colmez et Nizioł
consiste à comparer le complexe syntomique avec le complexe de (', Γ)-modules calculant la GR-
cohomologie continue de ℤp(r). Ceci est réalisé en utilisant une version du lemme de Poincaré.
De plus, notez qu’ils fonctionnent avec des structures log, c’est-à-dire que toutes les dé�nitions
ci-dessus doivent être remplacées par leurs analogues log (sans structures log, il faut tronquer en
degré ≤ r − 1, voir le théorème H ci-dessous).

Complexe de Fontaine-Herr
Le côté droit de l’application dans la version p-adique du résultat de Colmez et Nizioł, c’est-à-dire
le premier isomorphisme dans (0.4), concerne le calcul de la GR-cohomologie continue de ℤp(r).
Ce calcul peut être e�ectué avec des complexes constitués de (', Γ)-modules, dont les origines se
trouvent dans les travaux de Herr (voir [Her98]).

Soit V une représentation p-adique (resp. ℤp-representation) de GF , et soit D(V ) le (', ΓF )-module
étale associé sur BF (resp. AF ). Soit  ∈ ΓF un générateur topologique de ΓF , alors on a un complexe

∙ ∶ D(V )
(1−',−1)
−−−−−−−−−−→ D(V )⨁D(V )

( −11−' )
−−−−−−−−−−−→ D(V ),

où la deuxième application est (x, y)↦ ( − 1)x − (1 − ')y . Le complexe de Fontaine-Herr ∙ calcule
la GF -cohomologie continue de V dans chaque degré cohomologique, c’est-à-dire que pour k ∈ ℕ,
on a les isomorphes naturels H k(∙) ≃ H k

cont(GF , V ).
Les groupes de GF -cohomologie continus sont des invariants utiles attachés à V . Par exemple, le

premier groupe de cohomologie continue de V , H 1
cont(GF , V ) classi�e les extensions de la représen-

tation triviale ℚp par V dans Repℚp
(GF ), et qui peut être représenté par un couple x, y ∈ D(V )

satisfaisant l’équation ( − 1)x = (1 −')y . De plus, si V est cristalline alors toute extension cristalline
deℚp parV (r) (torsion cyclotomique de V ) peut être représentée par une paire (x, y) avec x ∈ N(V )(r)
et y ∈ N(V (r)) tels que ( − 1)x = (1 − ')y (voir le lemme A.2 et Proposition A.4). En fait, cette
a�rmation combinée au calcul e�ectué par Colmez et Nizioł a servi de motivation originale pour
l’obtention du théorème H.

Dans le cas relatif, nous avons la version relative du complexe de Fontaine-Herr qui calcule la
GR-cohomologie continue d’une représentation p-adique (voir [AI08, Théorème 3.3], on rappelle la
description dans §4.1). Des complexes explicites calculant la GR-cohomologie continue de T peuvent
également être obtenus, que nous appelons collectivement complexes de Koszul (voir §4.2). De plus,
les complexes de Koszul jouent un rôle central dans la preuve du théorème H.

Complexe syntomique à coe�cients
Dans le théorème G, nous nous intéressons au résultat p-adique, c’est-à-dire le premier isomorphisme
dans (0.8). Notre objectif est d’y remplacer la représentation ℤp(r) par une représentation plus
générale T (r), et d’adapter la méthode de Colmez et Nizioł pour obtenir une relation entre le complexe
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syntomique à coe�cients et la cohomologie GR-continue de T (r). La classe de représentations qui
nous intéresse est celle des représentations cristallines de Wach de GR0 . Dans la notation du théorème
E, pour les coe�cients du complexe syntomique, nous choisirons un réseau à l’intérieur du (', ))-
module �ltré ODcris(V ), alors que pour calculer la cohomologie galoisienne nous exploiterons les
propriétés du module de Wach associé N(V ). Les deux côtés seront ensuite comparés en utilisant
une version du lemme de Poincaré, où est cruciale la comparaison obtenue dans le théorème E.

Plus précisément, soit V une représentation p-adique de Wach deGR0 avec des poids de Hodge-Tate
non positifs et soit s ∈ ℕ le maximum parmi les valeurs absolues poids de Hodge-Tate de V . Soit
T ⊂ V un ℤp-réseau libre de rang = dimℚp V stable sous l’action de GR0 . Supposons que N(T ) est un
A+
R0-module libre de rang = dimℚp V , et qu’il existe un R0-sous-module libre ODcris(T ) ⊂ ODcris(V )

de rang = dimℚp V , tel que ODcris(T )[ 1p ] = ODcris(V ) et la connexion induite sur ODcris(T ) est
quasi-nilpotente, intégrable et satisfait la transversalité de Gri�ths par rapport à la �ltration induite.
Soit r ∈ ℕ et on pose V (r) ∶= V ⨂ℚp ℚp(r) et T (r) ∶= T ⨂ℤp ℤp(r).

Le choix de ODcris(T ) n’est pas canonique et nous discutons de quelques manières d’obtenir un
tel module dans proposition 3.31, remarque 3.42 et remarque 5.4. Cependant, nous �xons un tel
choix pour le reste de la discussion.

On pose
DPD ∶= RPD

$ ⨂R0 ODcris(T ).

Il existe un endomorphisme semi-linéaire de Frobenius sur DPD donné par l’action diagonale du
Frobenius sur chaque composante du produit tensoriel, une �ltration provenant du produit de
�ltration sur chaque composante du produit tensoriel et une connexion induite par la connexion sur
ODcris(T ) et l’opérateur di�érentiel sur RPD

$ . De plus, cette connexion est intégrable et satisfait la
transversalité de Gri�ths par rapport à la �ltration (voir chapitre 5 pour des dé�nitions précises).
En particulier, soit S = RPD

$ et nous avons un complexe de de Rham �ltré pour k ∈ ℤ,

FilkD∙ ∶= FilkDPD
⨂S Ω1S ⟶ Filk−1DPD

⨂S Ω1S ⟶ ⋯ .

Soit DR ∶= R ⨂R0 ODcris(T ). Dé�nir le complexe syntomique Syn(DR , r) et la cohomologie syn-
tomique de R avec des coe�cients dans DR comme

Syn(DR , r) ∶= [ FilrD∙ pr−p∙'
−−−−−−−−→ D∙ ];

H ∗
syn(DR , r) ∶= H

∗(Syn(DR , r)).

Nous allons relier ce complexe au complexe de Fontaine-Herr calculant la GR-cohomologie continue
de T (r). Le résultat principal du chapitre 5 est :

Théorèm H (voir Theorem 5.6). Soit V une représentation de Wach positive de GR0 , T ⊂ V un
GR0-stable libre ℤp-réseau, s ∈ ℕ le maximum parmi les valeurs absolues des poids de Hodge-Tate de V
et r ∈ ℕ tels que r ≥ s + 1. Alors il existe un pN -quasi-isomorphisme

�≤r−s−1Syn(DR , r) ≃ �≤r−s−1RΓcont(GR , T (r)),

où N = N (T , e, r) ∈ ℕ dépend de la représentation T , de l’indice de rami�cation e, et r . En particulier,
on a des pN -isomorphismes

H k
syn(DR , r)

≃
−−→ H k(GR , T (r)),

pour 0 ≤ k ≤ r − s − 1.

La preuve du théorème H se déroule en deux étapes principales: dans une première étape, on
modi�e le complexe syntomique à coe�cients dans DR pour le relier à un complexe de Koszul
“di�érentiel” à coe�cients dans N(T ). Ensuite, dans la deuxième étape, nous modi�ons le complexe
de Koszul de la première étape et utilisons une version du lemme de Poincaré pour obtenir le
complexe de Koszul calculant la GR-cohomologie continue de T (r).
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Comme mentionné précédemment, pour T = ℤp , le résultat a été prouvé dans [CN17]. Cependant,
les généralisations directes ne semblent pas fonctionner et les problèmes techniques ont tendance
à s’ampli�er lorsqu’on traite le cas de dimℚp V ≥ 1. A�n de prouver l’énoncé du théorème, nous
écrirons des complexes explicites avec des modi�cations appropriées à chaque étape. La clé de la
connexion entre les complexes syntomiques à coe�cients et les “complexes de Koszul de (', Γ)-
module” est fournie par l’isomorphisme de comparaison dans le théorème E. En fait, une tentative de
relier ces deux étapes a conduit à notre recherche et à notre découverte du résultat de la comparaison
dans le théorème E en premier lieu.

Qu’est-ce qui est devant?
Le monde de la théorie de Hodge p-adique relative, bien que largement étudié dans certaines
directions, reste beaucoup moins exploré et non moins di�cile que son pendant arithmétique. Par
conséquent, plusieurs questions naturelles ont émergé qui restent sans réponse.

La toute première question qui pourrait être posée est de savoir si toutes les représentations
cristallines sont de hauteur �nie? Ceci est certainement vrai pour les représentations à une dimension.
Cependant, le cas de dimension supérieure reste assez mystérieux. Une réponse à cette question
impliquerait éventuellement de récupérer le module N(V ) étant donné ODcris(V ).

Dans son travail récent [Tsu20], Tsuji a utilisé les idées de Wach (voir [Wac97]) et la généralisation
de Faltings des modules de Fontaine-La�aille (voir [Fal89]) pour construire des représentations
généralisées de GR . Sa théorie est liée aux travaux remarquables de Bhatt, Morrow et Scholze sur
la Ainf-cohomologie dans [BMS18]. Tsuji et Morrow dans [MT20], ont développé une théorie des
coe�cients en théorie de Hodge p-adique intégrale. Les objets de Tsuji sont étroitement liés à
la dé�nition des modules Wach dans le cas relatif. Il serait intéressant d’explorer ces relations et
d’obtenir des énoncés concrets sur la cohomologie. De plus, il serait intéressant de comprendre la
relation entre les modules de Wach relatifs et les coe�cients dans la théorie de Hodge p-adique
intégrale, ainsi que leur relation avec la théorie de Bhatt-Scholze des prismes et la cohomologie
prismatique dans [BS19].

La globalisation de l’approche de Colmez et Nizioł, les a aidés à prouver le théorème de com-
paraison semi-stable pour les log-schémas formels. D’autre part, dans [Tsu96], Tsuji a considéré un
système de coe�cients pour la cohomologie syntomique et a obtenu des résultats similaires sous
certaines restrictions. Le résultat du théorème H est de même saveur (au moins localement), où
l’on ne considère que le cas d’une bonne réduction. Il serait intéressant de structurer la notion de
représentations à hauteurs �nies ou modules de Wach comme dans les travaux de Colmez et Nizioł
et dans l’esprit des faisceaux cristallins d’Andreatta et Iovita (voir [AI13]). La réalisation d’un tel
programme produirait un isomorphisme de comparaison pour des schémas formels lisses appropriés
et des coe�cients non triviaux via des méthodes syntomiques.

Comme mentionné précédemment, pour une extension �nie (éventuellement rami�ée) de ℚp , les
modules de Wach ont été généralisés sous la forme de modules de Breuil-Kisin (voir [Bre99, Bre02,
Kis06]). Dans le cas relatif, Kim a donné une certaine généralisation de la théorie de Kisin (voir
[Kim15]). D’autre part, il existe aussi une classi�cation des représentations p-adiques classiques par
Caruso en termes de (', � )-modules (voir [Car13]). Il est alors naturel de se demander s’il existe un
complexe explicite (apparenté au complexe de Fontaine-Herr) de modules (relatifs) de Breuil-Kisin
ou de (', � )-modules (relatifs) qui calcule la cohomologie galoisienne d’un représentation? De plus,
dans ce cas, il serait également possible de travailler avec des représentations semi-stables et des
complexes log-syntomiques à coe�cients.

Une réponse positive aux questions ci-dessus, ouvre également la porte à de nombreuses applica-
tions. Une telle application pourrait être dans la théorie d’Iwasawa. Dans [Ben00], Benois a utilisé
des modules de Wach pour étudier la théorie d’Iwasawa des représentations cristallines, dans le cas
classique. On pourrait espérer réaliser un programme similaire dans le cas relatif.



CHAPTER 1

p-adic Hodge theory

Let K be a mixed characteristic non-archimedean complete discrete valuation �eld, with ring of
integers OK and residue �eld � of characteristic p. For � a perfect �eld, Fontaine established in
[Fon94a] the theory of p-adic de Rham and crystalline representations of the absolute Galois group
GK of K . Moreover, he classi�ed crystalline representations in terms of certain linear algebraic
objects called �ltered '-modules over F = W (�)[ 1p ], where W (�) denotes the p-typical Witt vectors
with coe�cients in �. Generalizing this approach in [Bri06], Brinon studied the p-adic crystalline
and de Rham representations of GK in the case when � is a non-perfect �eld admitting a �nite
p-basis, i.e. [� ∶ �p] < +∞ and gave a similar classi�cation for crystalline representations of GK . This
theory was further extended by Brinon in [Bri08], to the relative case, where he again considers � to
be perfect but replaces K by R[ 1p ] for certain integral, normal and p-adically complete OK -algebra
R. In this section our objective is to recall constructions and results in the relative case, albeit in a
simpler setting compared to Brinon’s book.

1.1. Setup and notations

In this section, we will describe the setup for the rest of the text and �x some notations. Our
conventions and notations are by and large in agreement with the article of Colmez and Nizioł
[CN17].

Convention. We will work under the convention that 0 ∈ ℕ, the set of natural numbers.

Let p ≥ 3 be a �xed prime number, � a �nite �eld of characteristic p, W ∶= W (�) the ring of
p-typical Witt vectors with coe�cients in � and F ∶= W [ 1p ], the fraction �eld of W . In particular,
F is an unrami�ed extension of ℚp with ring of integers OF = W . For n ∈ ℕ, let �pn denote a
primitive pn-th root of unity, and we set Fn ∶= F (�pn ) and F∞ ∶= ⋃n Fn. From now onwards, we will
�x some m ∈ ℕ and set K ∶= Fm, with ring of integers OK . Let K = F be a �xed algebraic closure
of K such that its residue �eld, denoted as �, is an algebraic closure of �. Further, we denote by
GK = Gal(K /K ), the absolute Galois group of K . The element $ = �pm − 1 ∈ OK is a uniformizer of
K , and its minimal polynomial P$(X ) = (1+X )pm−1

(1+X )pm−1−1
is an Eisenstein polynomial in W [X ] of degree

e ∶= [K ∶ F ] = pm−1(p − 1).
Let Z = (Z1,… , Zs) denote a set of indeterminates and k = (k1,… , ks) ∈ ℕs be a multi-index, then

we write Z k ∶= Z k1
1 ⋯Z ks

s . For k → ∞ we will mean that ∑ ki → ∞. Now for a topological algebra

1
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Λ we de�ne
Λ{Z} ∶=

{
∑
k∈ℕs

akZ k, where ak ∈ Λ and ak → 0 as k → ∞
}
.

We are interested in the p-adic Hodge theory of an étale algebra over a formal torus de�ned over
OK . More precisely, let d ∈ ℕ and X = (X1, X2,… , Xd ) be some indeterminates. Let R0 denote the
p-adic completion of an étale algebra over W {X ±1}. In other words, we have a presentation

R0 ∶= W {X, X −1}{Z1,… , Zs}/(Q1,… , Qs),

where Qi(Z1,… , Zs) ∈ W {X, X −1}[Z1,… , Zs] for 1 ≤ i ≤ s, are multivariate polynomials such that
det (

)Qi
)Zj )1≤i,j≤s is invertible in R0. Finally, we set R = R0[$], which is absolutely rami�ed at the prime

ideal (p) ⊂ R0.
Next, we provide a system of coordinates for R, which we call a framing. Let

R□ ∶= OK{X, X −1},

and endow it with the spectral norm. Using the polynomials appearing in the de�nition of R0, we
can write

R ∶= R□{Z1,… , Zs}/(Q1,… , Qs).

Therefore, we have a Cartesian diagram

Spf R Spf R0

Spf R□ Spf W {X, X −1},

and R□ provides a system of coordinates for R. From the assumptions on R, we have that R is small in
the sense of Faltings (see [Fal88, §II 1(a)]).

The p-adic Hodge theory of R entails a study of p-adic representations of the étale fundamental
group of R[ 1p ], which we introduce next. We �x an algebraic closure of Fr R as Fr R such that
it contains K . Let R denote the union of �nite R-subalgebras S ⊂ Fr R, such that S[ 1p ] is étale
over R[ 1p ]. Let � denote the corresponding geometric point of the generic �ber Spec R[ 1p ] and let
GR ∶= �ét

1 (Spec R[ 1p ], �) denote the étale fundamental group. By [Gro63, Exposé V, §8], we can write
this étale fundamental group as the Galois group (of the fraction �eld of R[ 1p ] over the fraction �eld
of R[ 1p ])

GR = �ét
1 (Spec R[ 1p ], �) = Gal(R[ 1p ]/R[ 1p ]).

Proposition 1.1 ([Bri08, Proposition 2.0.2]). For any q ∈ ℕ, let Ωq
R denote the p-adic completion of

the module of di�erentials of R relative to ℤ. Then we have

Ω1R0 =
d
⨁
i=1

R0 d logXi , and Ωq
R0 =

q
⋀Ω1R0 .

Moreover, the kernel and cokernel of the natural map Ωq
R0

⨂R0 R ⟶ Ωq
R is killed by a power of p. In

particular, we have

Ωq
R[

1
p ] =

q
⋀(

d
⨁
k=1

R0[ 1p ] d logXi).

For R0 and R we have that R = R0[$], R0/pR0
≃
−−→ R/$R and for any n ∈ ℕ, R0/pnR0 is a formally

smooth ℤ/pnℤ-algebra. Finally, we �x a lift ' ∶ R0 → R0 of the absolute Frobenius x ↦ xp over
R/$R.
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Convention. While working with completion of tensor products, we would assume it to be the
completion of the usual tensor product for the p-adic topology.

1.2. The de Rham period ring

In this section we will recall de�nitions and properties of the relative version of Fontaine’s period
ring BdR. These rings will be useful in classifying de Rham representations of GR . We begin by
recalling some well-known constructions from [Fon94a].

Let us note that the �eld ℂp = K̂ , the p-adic completion of K , is a perfectoid �eld and we denote
its ring of integers as Oℂp . We have the tilt of Oℂp as

O♭
ℂp ∶= lim

x↦xp
Oℂp /pOℂp = lim

x↦xp
OK /pOK ,

The element p ∈ Oℂp is a pseudo-uniformizer and therefore p♭ ∶= (p, p1/p , p1/p2 ,…) ∈ O♭
ℂp is a

pseudo-uniformizer. We set ℂ♭p ∶= O♭
ℂp[

1
p♭ ], which is a perfect �eld in characteristic p.

Next, we endow R[ 1p ] with the spectral valuation �p , i.e. �p(x) = sup{�p(z), for z ∈
ℂ×p such that x ∈ zR}. Denote by ℂ(R) the completion of R[ 1p ] for �p and ℂ+(R) ∶= {x ∈
ℂ(R), such that �p(x) ≥ 0}, which is a subring of ℂ(R). We de�ne ℂ+(R)♭ as the tilt of ℂ+(R), i.e.

ℂ+(R)♭ ∶= lim
x↦xp

ℂ+(R)/pℂ+(R) = lim
x↦xp

R/pR,

and we set ℂ(R)♭ ∶= ℂ+(R)♭[ 1
p♭ ]. An element x ∈ ℂ(R)♭ can be described as a sequence (xn)n∈ℕ,

with xn ∈ ℂ(R) and xpn+1 = xn, for all n ∈ ℕ. We de�ne v♭ on ℂ(R)♭ by setting �♭(x) ∶= �p(x♯) where
x♯ ∶= x0. This is a valuation on ℂ(R)♭ for which it is complete and we have that ℂ+(R)♭ is the subring
of elements x ∈ ℂ(R)♭ such that �♭(x) ≥ 0. These rings admit an action of the Galois group GR which
is continuous for the valuation topology.

We will �x some choices of compatible p-power roots which will appear throughout the text. Let

" ∶= (1, �p , �p2 ,…) ∈ ℂ♭p ,

X ♭
i ∶= (Xi , X

1/p
i , X 1/p2

i ,… ) ∈ ℂ(R)♭ for 1 ≤ i ≤ d.

We set Ainf(R) ∶= W (ℂ+(R)♭) as the ring of p-typical Witt vectors with coe�cients in ℂ+(R)♭.
For x ∈ ℂ+(R)♭, let [x] = (x, 0, 0,…) ∈ Ainf(R) denote its Teichmüller representative. The absolute
Frobenius on ℂ+(R)♭ lifts to an endomorphism ' ∶ Ainf(R)→ Ainf(R) and the action of GR extends
to Ainf(R) which is continuous for the weak topology (see §2.1 for weak topology). Any element
x ∈ Ainf(R) can be uniquely written as x = ∑k∈ℕ pk[xk] for xk ∈ ℂ+(R)♭. We set

� ∶= ["] − 1, �1 ∶= '−1(� ) = ["1/p] − 1 and � ∶= �
�1 .

The action of GR and the Frobenius ' on these elements is given as,

g(["]) = ["]� (g) and g(� ) = (1 + � )� (g) − 1 for g ∈ GR ,
'(["]) = ["]p and '(� ) = (1 + � )p − 1,

where � ∶ GR → ℤ×
p is the p-adic cyclotomic character. De�ne the map

� ∶ Ainf(R)⟶ ℂ+(R)

∑
k∈ℕ

pk[xk]⟼ ∑
k∈ℕ

pkx♯k .
(1.1)
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The map � is a GR-equivariant surjective ring homomorphism whose kernel is principal, and
generated by any x ∈ Ker � such that its Witt vector expansion x = (x0, x1,… , ) has the property that
x1 is a unit in ℂ+(R)♭, for example p − [p♭] or � (see [Fon82, Proposition 2.4 (ii)]). By ℚp-linearity,
the map � can be extended to � ∶ Ainf(R)[ 1p ] → ℂ(R).

De�nition 1.2. De�ne
B+dR(R) ∶= limn Ainf(R)[ 1p ]/(Ker �)n,

as the (Ker �)-adic completion of Ainf(R)[ 1p ].

The ring B+dR(R) is an F -algebra and the action of GR on Ainf(R) extends to an action on B+dR(R)
which is continuous for the (Ker �)-adic topology. The map � further extends to a GR-equivariant
surjective ring homomorphism � ∶ B+dR(R)→ ℂ(R). The element

t ∶= log["] = log(1 + � ) = ∑
k∈ℕ

(−1)k �
k+1

k + 1 ∈ B+dR(R), (1.2)

and we have that Ker � = �B+dR(R) = �B
+
dR(R) = tB

+
dR(R) (see [Bri08, Proposition 5.1.3]). Moreover,

for g ∈ GR we have that g(t) = � (g)t . The ring B+dR(R) is t-torsion free (see [Bri08, Proposition 5.1.4]).

De�nition 1.3. De�ne the de Rham period ring as

BdR(R) ∶= B+dR(R)[
1
t ].

This construction is functorial in R but B+dR(R) only depends on R. The ring BdR(R) is an F -algebra
equipped with a continuous action of GR , for the (Ker �)-adic topology.

Next, we will put a �ltration on BdR(R) by setting FilrBdR(R) ∶= trB+dR(R) for r ∈ ℤ, which is
a decreasing, separated and exhaustive �ltration on BdR(R). We equip B+dR(R) with the induced
�ltration. For the associated graded pieces, we have the identi�cation (see [Bri08, Proposition 5.2.1])

gr∙B+dR(R) ≃ ℂ(R)[t] and gr∙BdR(R) ≃ ℂ(R)[t, t−1],

where t denotes its image in gr1B+dR(R).
We can extend the map � ∶ Ainf(R)→ ℂ+(R) by R-linearity to obtain a GR-equivariant surjective

ring homomorphism
�R ∶ R ⨂ℤ Ainf(R)⟶ ℂ+(R). (1.3)

Let OAinf(R) denote the �−1R (pℂ+(R))-adic completion of R ⨂ℤ Ainf(R) (the ideal �−1R (pℂ+(R)) is
generated by p and Ker �R). The morphism �R then extends to a GR-equivariant surjective ring
homomorphism

�R ∶ OAinf(R)⟶ ℂ+(R),

which can be extended by ℚp-linearity to a GR-equivariant surjective ring homomorphism

�R ∶ OAinf(R)[ 1p ] ⟶ ℂ(R).

De�nition 1.4. De�ne
OB+dR(R) ∶= limn OAinf(R)[ 1p ]/(Ker �R)

n,

as the (Ker �R)-adic completion of OAinf(R)[ 1p ].

The ring OB+dR(R) is an R[ 1p ]-algebra and the action of GR on OAinf(R) extends to an action on
OB+dR(R) which is continuous for the (Ker �R)-adic topology. The homomorphism �R extends to
a GR-equivariant surjective ring homomorphism �R ∶ OB+dR(R) → ℂ(R). By funtoriality of the
construction of OB+dR(R), the homomorphism W (�)→ R induces a morphism of rings B+dR(R)→
OB+dR(R) which is injective (see Proposition 1.6). Finally,
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De�nition 1.5. De�ne the (fat) de Rham period ring as

OBdR(R) ∶= OB+dR(R)[
1
t ].

The ring OBdR(R) is an R[ 1p ]-algbera equipped with a continuous action ofGR for the (Ker �R)-adic
topology.

We can give a more explicit description of the ring OB+dR(R). Note that we have Xi ⨂ 1 − 1⨂[X ♭
i ] ∈

Ker �R ⊂ R ⨂ℤ Ainf(R) for 1 ≤ i ≤ d . Let zi denote its image in OAinf(R) ⊂ OB+dR(R). Since OB+dR(R)
is complete for the (Ker �R)-adic topology, the homomorphism B+dR(R) → OB+dR(R), extends to a
homomorphism

f ∶ B+dR(R)[[T1,… , Td ]]⟶ OB+dR(R)
Ti ⟼ zi , for 1 ≤ i ≤ d.

In fact, we have that

Proposition 1.6 ([Bri08, Proposition 5.2.2]). f is an isomorphism and Ker �R = (t, z1,… , zd ).

Remark 1.7. (i) By the previous proposition, we can identify B+dR(R) as a subring of OB+dR(R).

(ii) The ringsOB+dR(R) andOBdR(R) areGR-equivariant R[ 1p ]-algebras. Moreover, the map �R from
OBdR(R) to ℂ(R) restricts to the canonical inclusion of R[ 1p ] in ℂ(R) (see [Bri08, Proposition
5.2.3]).

(iii) Let Rur denote the union of �nite étale R-subalgebras S ⊂ R, and let R̂ur denote its p-adic
completion. It is an R-subalgebra of ℂ(R) equipped with a continuous action of GR , and
(R̂ur[ 1p ])

GR = R[ 1p ]. Moreover, we have Rur[ 1p ] ⊂ R[ 1p ] ⊂ OB+dR(R), and Rur[ 1p ]-algebra
structure on OB+dR(R) and OBdR(R) uniquely extends to a GR-equivariant R̂ur[ 1p ]-algebra
structure (see [Bri08, Proposition 5.2.4]).

Next, we equipOB+dR(R)with a �ltration FilrOB+dR(R) ∶= (Ker �R)r for r ∈ ℕ, which is a decreasing,
separated and exhaustive �ltration, stable under the action of GR . For n ∈ ℕ we have

t−nFilnOB+dR(R) = OB+dR(R) + ( z1t ,… , zdt )
nOB+dR(R).

So we set

Fil0OBdR(R) ∶=
∞
∑
n=0

t−nFilnOB+dR(R) = OB+dR(R)[
z1
t ,… , zdt ],

FilrOBdR(R) ∶= trFil0OBdR(R) for r ∈ ℤ.

This �ltration is decreasing, separated, exhaustive and stable under the action of GR . Moreover, the
induced �ltrations on OB+dR(R), B+dR(R) and BdR(R) match with the ones de�ned before (see [Bri08,
Proposition 5.2.8, Corollaire 5.2.11]). For the associated graded pieces, we have identi�cations (see
[Bri08, Propositions 5.2.5, 5.2.6])

gr∙OB+dR(R) ≃ ℂ(R)[t, z1,… , zd ],
gr0OBdR(R) ≃ ℂ(R)[w1,… , wd ],
gr∙OBdR(R) ≃ ℂ(R)[t, t−1, w1,… , wd ],

(1.4)

where zi is the image of zi in gr1OB+dR(R) and wi is the image of zi
t in gr0OBdR(R). Finally, the

elements R[ 1p ] ⧵ {0} ⊂ BdR(R) are non-zero-divisors and we have (OBdR(R))
GR = R[ 1p ] (see [Bri08,

Corollaire 5.2.9, Proposition 5.2.12]).



6 p-adic Hodge theory

We can equip the rings OB+dR(R) and OB+dR(R) with some extra structure. Namely, we are go-
ing to de�ne a formal connection on these rings. First, note that since R is étale over R□, the
p-adic completion of module of di�erentials of R relative to ℤ is given by Ω1R = R ⨂R□ Ω1R□ and we
have Ω1R[ 1p ] = R ⨂R0 Ω1R0[

1
p ] (see Proposition 1.1). Now, let Ni denote the unique (Ker �R)-adically

continuous and B+dR(R)-linear derivation on OB+dR(R) as

Ni(zj) = �ijXj for 1 ≤ i, j ≤ d,

where �ij denotes the Kronecker delta symbol. The derivation Ni extends to OBdR(R) since Ni(t) = 0.

De�nition 1.8. De�ne a connection

) ∶ OBdR(R)⟶ OBdR(R)⨂R[ 1p ]
Ω1R[ 1p ]

x ⟼
d
∑
i=1

Ni(x)⨂ d logXi .

The connection ) is GR-equivariant and satis�es Gri�ths transversality for the �ltration Fil∙OBdR(R),
i.e.

)(FilrOBdR(R)) ⟶ Filr−1OBdR(R)⨂R[ 1p ]
Ω1R[ 1p ],

(see [Bri08, Propositions 5.3.1, 5.3.9]). Its restriction to R[ 1p ] is the canonical di�erential operator.
We also have

(OB+dR(R))
)=0 = B+dR(R) and (OBdR(R))

)=0 = BdR(R).

Finally, the canonical map

udR ∶ R[ 1p ] ⨂K BdR(R)⟶ OBdR(R),

is injective (see [Bri08, Propositions 5.3.3, 5.3.8]) and

Theorem 1.9 ([Bri08, Théorème 5.4.1]). The rings OB+dR(R) and OBdR(R) are faithfully �at as R[ 1p ]-
algebras.

1.3. The crystalline period ring
In this section, we will de�ne crystalline period rings and study their properties following [Bri08].
Note that Brinon de�nes these rings under certain assumption on his base rings (see the condition
(BR) on [Bri08, p. 9]). However, this assumption always holds in our setting.

Let us consider the map � ∶ Ainf(R) → ℂ+(R) from (1.1). The kernel of this map is a principal
ideal generated by � or p − [p♭]. Now let

x [k] ∶= xk

k! for x ∈ Ker � ⊂ Ainf(R) and k ∈ ℕ.

The divided power envelope of Ainf(R) with respect to Ker � is given as

Ainf(R)[x [k], x ∈ Ker �]k∈ℕ = Ainf(R)[� [k]]k∈ℕ. (1.5)

De�nition 1.10. De�ne

Acris(R) ∶= p-adic completion of Ainf(R)[
� k
k! ]k∈ℕ.

Also, set Amax(R) to be the p-adic completion of the Ainf(R)-subalgebra generated by 1
pKer � inside

Ainf(R)[ 1p ].
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The W (�)-algebras Acris(R) and Amax(R) are functorial in R (depending only on R) and equipped
with a continuous action of GR . Further, these rings are p-torsion free (see [Bri08, Proposition 6.1.3]).
The Frobenius on Ainf(R) can be extended to Acris(R) as follows: we know that '(� ) = � p + py for
some y ∈ Ainf(R). We write '(� ) = p(y + (p − 1)!� [p]) and therefore '(� k) = pk(y + (p − 1)!� [p])k for
k ∈ ℕ. Now it easily follows that '(� [k]) = pk

k! (y + (p − 1)!�
[p])

k ∈ Acris(R), as desired. Similarly, the
Frobenius ' extends to Amax(R) as well.

Since Ker � ⊂ Ainf(R) has divided powers in Ainf(R)[ 1pKer �], the universal property of divided
power envelope induces a canonical GR and Frobenius-equivariant injection � ∶ Acris(R)→ Amax(R).
The homomorphism � of (1.1) extends to surjective homomorphisms (see [Bri08, p. 62]),

� ∶ Acris(R)⟶ ℂ+(R) and � ∶ Amax(R)⟶ ℂ+(R).

From (1.2) we have,
t = log(1 + � ) = ∑

k∈ℕ
(−1)k �

k+1

k + 1 ∈ Acris(R),

and the action of GR and the Frobenius ' on this element is given as

g(t) = � (g)t for g ∈ GR and '(t) = pt.

We have that t ∈ Ker � ⊂ Acris(R) and Ker � ⊂ Acris(R) is a divided power ideal. Moreover tp−1 ∈
pAcris(ℤp) (see [Fon94a, 2.3.4]) and the rings Acris(R) and Amax(R) are t-torsion free (see [Bri08,
Corollaire 6.2.2]). Finally, we set '( 1t ) =

1
pt .

De�nition 1.11. De�ne the crystalline period rings as

B+cris(R) ∶= Acris(R)[ 1p ] and Bcris(R) ∶= B+cris(R)[ 1t ],

B+max(R) ∶= Amax(R)[ 1p ] and Bmax(R) ∶= B+max(R)[ 1t ].

These are F -algebras equipped with a continuous action of GR and the Frobenius '.

Next, let us consider the map �R0 ∶ R0 ⨂ℤ Ainf(R)→ ℂ+(R) obtained by extending (1.1) R0-linearly.
This is a GR-equivariant surjective ring homomorphism with kernel generated by {1⨂ � , z1,… , zd},
where zi = Xi ⨂ 1 − 1⨂[X ♭

i ] for 1 ≤ i ≤ d . As in (1.5) the divided power envelope of R0 ⨂ℤ Ainf(R)
with respect to Ker �R0 is given as

R0 ⨂ℤ Ainf(R)[x [k], x ∈ Ker �R0]k∈ℕ.

De�nition 1.12. De�ne

OAcris(R0) ∶= p-adic completion of the divided power envelope of R0 ⨂ℤ Ainf(R) with respect to Ker �R0 .

Also, set OAmax(R0) to be the p-adic completion of the R0 ⨂ℤ Ainf(R)-subalgebra generated by
1
pKer �R0 inside R0 ⨂ℤ Ainf(R)[ 1p ].

The R0-algebras OAcris(R) and OAmax(R) are functorial in R0 and equipped with a continuous
action of GR . Taking the diagonal action of the Frobenius on R0 ⨂ℤ Ainf(R), we take '(� [k]) as above,
and

'(z
[k]
i ) = '((Xi ⨂ 1 − 1⨂[X ♭

i ])
[k]) =

(X
p
i ⨂ 1 − 1⨂[X ♭

i ]p)
k

k!
for 1 ≤ i ≤ d.

Therefore, we see that the Frobenius extends to OAcris(R0) as well as to OAmax(R0) which we will
again denote by '. Since Ker �R0 ⊂ R0 ⨂Ainf(R) has divided powers in R0 ⨂Ainf(R)[ 1pKer �R0], the
universal property of divided power envelope induces a canonical GR and Frobenius-equivariant
injection � ∶ OAcris(R0) → OAmax(R0). The ring OAcris(R0) is an Acris(R)-algebra and the ring
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OAmax(R0) is an Amax(R)-algebra. The homomorphism �R0 from (1.3) extends to surjective homo-
morphisms (see [Bri08, pg. 65])

�R0 ∶ OAcris(R0)⟶ ℂ+(R) and �R0 ∶ OAmax(R0)⟶ ℂ+(R).

Let T = (T1,… , Td ) be some indeterminates as in Proposition 1.6. Let Acris(R)⟨T⟩∧ denote the
p-adic completion of the divided power polynomial algebra in indeterminates T and coe�cients in
Acris(R). Then we have a homomorphism of Acris(R)-algebras

fcris ∶ Acris(R)⟨T⟩∧ ⟶ OAcris(R0)
Ti ⟼ zi for 1 ≤ i ≤ d.

Similarly, we can de�ne a homomorphism of Amax(R)-algebras

fmax ∶ Amax(R)
{T1

p ,… , Tdp
}
⟶ OAmax(R0)

Ti
p ⟼ zi

p for 1 ≤ i ≤ d.

Then, we have that

Proposition 1.13 ([Bri08, Proposition 6.1.5]). The maps fcris and fmax are isomorphisms.

The rings OAcris(R) and OAmax(R) are p-torsion free as well as t-torsion free (see [Bri08, Proposi-
tion 6.1.7, Corollaire 6.2.2]).

De�nition 1.14. De�ne the (fat) crystalline period rings as

OB+cris(R0) ∶= OAcris(R0)[ 1p ] and OBcris(R0) ∶= OB+cris(R0)[ 1t ],

OB+max(R0) ∶= OAmax(R0)[ 1p ] and OBmax(R0) ∶= OB+max(R0)[ 1t ].

The rings de�ned above are R0[ 1p ]-algebras equipped with a continuous action ofGR and Frobenius
endomorphism which we again denote by '. Moreover, this construction is functorial in R0. Finally,
the inclusion � ∶ OAcris(R0)→ OAmax(R0) extends to an inclusion � ∶ OBcris(R0)→ OBmax(R0).

Next, we will relate crystalline period rings to de Rham period rings. Notice that for each n ∈ ℕ,
OB+dR(R)/(Ker �R)n admits divided powers with respect to the ideal Ker �R/(Ker �R)n. Also, the grad-
ing of OB+dR(R)/(Ker �R)n (for the �ltration de�ned by the divided power of the ideal Ker �R/(Ker �R)n)
is a free ℂ(R)-module of �nite rank by (1.4). So we obtain a homomorphism of rings (see [Bri08,
§6.2.1])

OAcris(R0)⟶ OB+dR(R)/(Ker �R)n.

These morphisms are compatible for all n ∈ ℕ, therefore we have an induced homomorphism of
rings

OAcris(R0)⟶ OB+dR(R).

Similarly, since p is invertible in OB+dR(R)/(Ker �R)n, we get an induced homomorphism of rings

OAmax(R0)⟶ OB+dR(R).

Further, these homomorphisms extend to

B+cris(R)⟶ B+max(R)⟶ B+dR(R) and OB+cris(R0)⟶ OB+max(R0)⟶ OB+dR(R),
Bcris(R)⟶ Bmax(R)⟶ BdR(R) and OBcris(R0)⟶ OBmax(R0)⟶ OBdR(R).

All these homomorphisms are injective and GR-equivariant (see [Bri08, Proposition 6.2.1, Corollaire
6.2.3]). The natural map

ucris ∶ R0[ 1p ] ⨂F Bcris(R)⟶ OBcris(R0),
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is injective as well (see [Bri08, Proposition 6.2.4]). Using the injections described above, we get an
induced �ltration on crystalline period rings as

FilrBcris(R) ∶= Bcris(R) ⋂ FilrBdR(R), and FilrOBcris(R0) ∶= OBcris(R0) ⋂ FilrOBdR(R) for r ∈ ℤ,

which is decreasing, separated and exhaustive.
The inclusion of (fat) crystalline period ring into (fat) de Rham period ring enables us to equip the

former ring with a connection induced from the connection on the latter ring. More precisely, for
n ∈ ℕ we have

)(z
[n]
i ) = z

[n−1]
i ⨂ dXi for 1 ≤ i ≤ d,

and we get that for any x ∈ OAcris(R0) = Acris(R)⟨T⟩∧, we have )(x) ∈ OAcris(R0)⨂R0 Ω1R0 . This gives
us an induced connection

) ∶ OBcris(R0)⟶ Bcris(R)⨂R0[ 1p ]
Ω1R0[

1
p ].

The connection ) is GR-equivariant and satis�es Gri�ths transversality for the �ltration
Fil∙OBcris(R0) since the same is true for the �ltration on OBdR(R). Its restriction to R0[ 1p ] is the
canonical di�erential operator. Moreover,

(OA+
cris(R0))

)=0 = Acris(R), (OB+cris(R0))
)=0 = B+cris(R) and (OBcris(R0))

)=0 = Bcris(R).

Over OBcris(R0), the Frobenius operator commutes with the connection, i.e. ') = )' (see [Bri08,
Proposition 6.2.5]). In our setting we have R = R0[$], therefore the natural morphism

R[ 1p ] ⨂R0[ 1p ]
OBcris(R0)⟶ OBdR(R), (1.6)

is injective (see [Bri08, Proposition 6.2.7]). Moreover, we have (OBcris(R0))
GR = R0[ 1p ] (see [Bri08,

Proposition 6.2.9]) and OBcris(R0) is a faithfully �at R0[ 1p ]-algebra (see [Bri08, Théorème 6.3.8]).
Finally, in the relative setting we have the fundamental exact sequence:

Proposition 1.15 ([Bri08, Proposition 6.2.24]). The sequence

0⟶ ℚp ⟶ (Bcris(R))'=1 ⟶ BdR(R)/B+dR(R)⟶ 0,

is exact, where the second non-trivial map is the canonical projection.

1.4. Filtered (', ))-modules
In [Fon94a] Fontaine used some categories of linear algebra data to classify de Rham and crystalline
representations of the Galois group GK . In case of de Rham representations these are �nite dimen-
sional K -vector spaces equipped with a decreasing, separated and exhaustive �ltration, whereas in
the case of crystalline representations these are �nite dimensional F -vector spaces equipped with
a Frobenius-semilinear automorphism and which acquire a decreasing, separated and exhaustive
�ltration after extending scalars along F → K . In the relative setting, Brinon introduced analogous
categories of linear algebra data in [Bri08, Chapitre 7]. In this section, we will recall de�nitions and
results useful in our case.

Let D be an R-module. A connection on D is de�ned as a continuous OF -linear map

)D ∶ D ⟶ D ⨂R Ω1R ,

such that )(a ⨂ x) = a ⨂ )D(x) + )R(a)⨂ x for a ∈ R and x ∈ D. The connection )D is said to be
integrable if )D ◦ )D = 0. To simplify notations, below we will write ) instead of )D .
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De�nition 1.16. A �nitely generated R[ 1p ]-module D is said to be a )-module if it is equipped with
an integrable connection, i.e. ) ◦ ) = 0, where

) ∶ D ⟶ D ⨂R[ 1p ]
Ω1R[ 1p ].

A morphism between )-modules is a morphism of R[ 1p ]-modules compatible with connection on
each side. We denote this category by MR()).

Remark 1.17. IfD is of �nite type, then it is projective (see [Bri08, Proposition 7.1.2]). This observation
makes it easy to deduce that MR()) is in fact an abelian category.

Now we will impose some restrictions over the connection ). The connection ) over the R0[ 1p ]-
module D is said to be quasi-nilpotent if there exists a �nite and p-adically complete R0-submodule
D0 ⊂ D, stable under ), such that D = D0[ 1p ] and the connection induced on the reduction of D0
modulo p is quasi-nilpotent, i.e. for 1 ≤ i ≤ d there exist integers ai such that ∏n

i=1 N
pai
i sends D0

into pD0, where Ni are the derivations associated to ).

De�nition 1.18. A (', ))-module over R0[ 1p ] is a )-module D over R0[ 1p ] such that ) is quasi-
nilpotent and D is equipped with a Frobenius-semilinear endomorphism ' ∶ D → D such that the
induced R0[ 1p ]-linear map

1⨂ ' ∶ R0[ 1p ] ⨂R0[ 1p ],'
D ⟶ D

is an isomorphism. A morphism between such modules is a R0[ 1p ]-linear map compatible with
respective structures on each side. These modules form an abelian category which we denote by
MR0(', )) (see [Bri08, Proposition 7.1.9]).

Remark 1.19. The category MR0(', )) is, in fact, Tannakian in the sense of [DM82].
Next, we will study R[ 1p ]-modules equipped with a �ltration.

De�nition 1.20. A �ltered )-module over R[ 1p ] is a )-module D over R[ 1p ] equipped with a de-
creasing, separated and exhaustive �ltration by R[ 1p ]-submodules FilrD ⊂ D for r ∈ ℤ, satisfying
Gri�ths transversality, i.e.

)(FilrD) ⊂ Filr−1D ⨂R[ 1p ]
Ω1R[ 1p ],

and such that the associated graded R[ 1p ]-modules gr∙D are projective. A morphism between
such modules are morphisms of )-modules respecting �ltration. These modules form an additive
non-abelian category MFR()).

We can combine the previous two de�nitions to de�ne,

De�nition 1.21. A �ltered (', ))-module over R[ 1p ] relative to R0[ 1p ] is a (', ))-module D over
R0[ 1p ] such that DR = R[ 1p ] ⨂

R0[ 1
p]
D is a �ltered )-module over R[ 1p ]. A morphism between such

modules is a morphism of (', ))-modules such that the induced morphism, after extension of scalars
to R[ 1p ], is a mophism of �ltered )-modules. These modules form an additive tensor non-abelian
category MFR/R0(', )).

Note that R0/pR0 admits a p-basis (X1,… , Xd ), which enables us to identify the category MR0(', ))
with the category of F -isocrystals over R0/pR0 (see [BM90, Proposition 1.3.3]). LetD be an F -isocrystal
over R0/pR0 and consider a “test-object”, i.e. a quadruple (B, I , �, s) such that B is a p-adically complete
ℤp-algebra, I ⊂ B is an ideal admitting �-divided powers compatible with the canonical divided
powers over pB and s ∶ R0/pR0 → B/I is a ring homomorphism giving B/I an R0/pR0-algebra
structure. Then by “evaluation” of D at such a test-object we will mean that there exists a projective
B-module D(B,I ,�,s) and a map 1⨂ ' ∶ D(B,I ,�,s◦') → D(B,I ,�,s).
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By the equivalence described, we can also speak of evaluating (', ))-modules at a test-object.
More precisely, let D be a (', ))-module of rank ℎ over R0[ 1p ], k a perfect �eld of characteristic p and
f ∶ R0/pR0 → k a homomorphism. Then we have the test-object (W (k), pW (k), � , f ) and evaluating
D at this test-object gives us a W (k)[ 1p ]-vector space Df ∶= D(W (k),pW (k),� ,f ) of dimension ℎ which
is further equipped with a Frobenius-semilinear endomorphism '. Let z denote a nonzero vector
in the (', ))-module ⋀ℎ Df over W (k)[ 1p ], such that we have ⋀ℎ Df = W (k)[ 1p ]z. Then there exists
� ∈ W (k)[ 1p ] such that '(z) = �z. The p-adic valuation of �p(�) is independent of the choice of z
and depends only on p = Ker f ∈ Spec (R0/pR0). We de�ne this quantity as the Newton number of D
at the prime p ∈ R0/pR0, i.e. tN (D, p) ∶= �p(�).

Newton numbers satisfy some nice properties. If D is a (', ))-module of rank ℎ over R0[ 1p ] and
r ∈ ℤ then we have tN (D∨, p) = −tN (D, p) and tN (D(r), p) = tN (D, p) − rℎ for all p ∈ Spec (R0/pR0).
Also, by the specialization theorem of Grothendieck (see [Kat79, Theorem 2.3.1]), the function
p ↦ tN (D, p) is increasing for specializations. The function tN (−, p) is additive for p ∈ Spec (R0/pR0),
i.e. for an exact sequence of (', ))-modules

0⟶ D′ ⟶ D ⟶ D′′ ⟶ 0,

we have tN (D, p) = tN (D′, p) + tN (D′′, p) (see [Bri08, Proposition 7.1.12]).
Next, let us consider D to be a �ltered )-module over R[ 1p ] of rank ℎ. The R[ 1p ]-module ⋀ℎ D

is projective of rank 1 and the associated graded module is projective over R[ 1p ]. There exists
n ∈ ℤ such that grn ⋀ℎ D ≃ ⋀ℎ D and grm ⋀ℎ D = 0 for m ≠ n. We de�ne the Hodge number of D as
tH (D) ∶= n.

Similar to above, Hodge numbers satisfy some nice properties as well. If D is a �ltered )-module
of rank ℎ over R[ 1p ] and r ∈ ℤ then we have tH (D∨) = −tH (D) and tH (D(r)) = tH (D) − rℎ. Moreover,
the function tH (−) is additive, i.e. for an exact sequence of �ltered )-modules

0⟶ D′ ⟶ D ⟶ D′′ ⟶ 0,

we have tH (D) = tH (D′) + tH (D′′) (see [Bri08, Proposition 7.1.15]).
An admissibilty criterion based on Newton and Hodge numbers of D can be described:

De�nition 1.22. A �ltered (', ))-module D over R[ 1p ] relative to R0[ 1p ] is said to be pointwise
weakly admissible if for each p ∈ Spec (R0/pR0) the following conditions are satis�ed:

(i) tH (D) = tN (D, p);

(ii) For any subobject D′ ⊂ D (in the category MFR/R0(', ))), we have that tH (D′) ≤ tN (D′, p).

We denote by MFpwaR/R0(', )) the full subcategory of MFR/R0(', )) consisting of �ltered (', ))-modules
over R[ 1p ] relative to R0[ 1p ] that are pointwise weakly admissible.

Remark 1.23. (i) In the arithemtic setting, i.e. R0 = OF weakly admissible objects in the category
of �ltered '-modules over F were �rst studied in [Fon79, Kat79].

(ii) In [Bri08, Dé�nition 7.1.11], Brinon calls the modules in De�nition 1.22 as ponctuellement
faiblement admissible.

1.5. p-adic representations
In this section we will study p-adic representations of the Galois group GR and associate some linear
algebra data to de Rham and crystalline representations. We begin with some formal de�nitions.
Let E denote a topological �eld and G a topological group. We denote by RepE(G) the category of
E-representations of G, whose objects are �nite dimensional E-vector spaces equipped with a linear
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and continuous action of G and a morphism between the objects of RepE(G) is a G-equivariant
E-linear map.

Let B be a reduced commutative topological E-algebra equipped with a continuous E-linear action
of G. Let V be an E-representation of G and we set

DB(V ) ∶= (B⨂E V )G .

This is a BG-module and we have a natural morphism of B-modules, functorial in V

�B(V ) ∶ B⨂BG DB(V )⟶ B⨂E V
b ⨂ d ⟼ bd.

The representation V is said to be B-admissible if �B is an isomorphism. Moreover, the E-algebra B
is said to be G-regular if it satis�es the following properties:

(i) B is faithfully �at over BG ;

(ii) For all V ∈ RepE(G), the homomorphism �B(V ) is injective;

(iii) BG is Noetherian;

(iv) If V is a B-admissible E-representation of G of dimension 1, then the dual representation V ∨

is B-admissible as well.

Below we will consider G ∶= GR , E = ℚp , and vary B depending on the class of representations
we are interested in studying. We �rst look at the unrami�ed representations of GR . Recall that Rur

denotes the union of �nite étale R-subalgebras S ⊂ R. Let us set

Gur
R ∶= Gal(Rur[ 1p ]/R[

1
p ]).

It is a quotient of GR .

De�nition 1.24. A p-adic representation � ∶ GR → GL(V ) is said to be unrami�ed if � factorizes
through GR → Gur

R .

From Remark 1.7 (iii) we have that R̂ur[ 1p ] is a subring of OB+dR(R) and (R̂ur[ 1p ])
GR = R[ 1p ].

Moreover, the ring R̂ur[ 1p ] is faithfully �at over R[ 1p ] (see [Bri08, Proposition 8.1.3]). Also note that
Rur
0 is the union of �nite étale R0-subalgebras S ⊂ R, and R̂ur

0 is complete for the p-adic topology.
Therefore, from the proof of [Bri08, Proposition 6.1.5], it follows that OAcris(R0) is an Rur

0 -algebra
and since the foremer is also p-adically complete, it is an R̂ur

0 -algebra. In particular, OB+cris(R0) and
OBcris(R0) are R̂ur

0 [ 1p ]-algebras.
Now let V be a p-adic representation of GR , then we set

Dur(V ) ∶= (R̂ur[ 1p ] ⨂ℚp V )
GR .

It is an R[ 1p ]-module and we have a homomorphism

�ur(V ) ∶ R̂ur[ 1p ] ⨂R[ 1p ]
Dur(V )⟶ R̂ur[ 1p ] ⨂ℚp V . (1.7)

The homomorphism �ur(V ) in (1.7) is injective. Moreover, V is unrami�ed if and only if V is R̂ur[ 1p ]-
admissible, i.e. if and only if the map �ur(V ) in (1.7) is bijective (see [Bri08, Propositions 8.1.2,
8.1.3]).
Remark 1.25. Let V be a p-adic representation of GR and T ⊂ V a free ℤp-lattice stable under the
action of GR . Consider the associated continuous cocycle f ∶ Gur

R → GLℎ(R̂ur) describing the action



p-adic representations 13

of Gur
R over R̂ur ⨂ℤp T . Since V is unrami�ed f is trivial and from [Bri08, Proposition 8.1.2], there

exists b ∈ 1 + p ⋅Mat(ℎ, Rur) such that f is cohomologous to the trivial cocycle g ↦ g(b−1)f (g)b = 1.
In this case we say that f is trivialised by b ∈ 1 + p ⋅Mat(ℎ, Rur).

1.5.1. De Rham representations
In this section we will describe de Rham representations of GR as well as the associated linear
algebra object equipped with supplementary structures. We �rst note that the algebra OBdR(R) is a
GR-regular R[ 1p ]-algebra and BdR(R) is a GR-regular K -algebra. We set

ODdR(V ) ∶= (OBdR(R)⨂R[ 1p ]
V)

GR
and DdR(V ) ∶= (BdR(R)⨂R[ 1p ]

V)
GR
.

We will denote the category of de Rham representations (OBdR(R)-adimissible) as RepOdR
ℚp

(GR) and
the category of horizontal de Rham representations (BdR(R)-adimissible) as RepdR

ℚp
(GR).

There are several supplementary structures on the R[ 1p ]-module ODdR(V ) (resp. K -vector space
DdR(V )) (see [Bri08, §8.3]). It is equipped with a decreasing, separated and exhaustive �ltration
induced from the �ltration on OBdR(R)⨂ℚp V (resp. BdR(R)⨂ℚp V ), where we consider the GR-stable
�ltration on OBdR(R) (resp. BdR(R)) from §1.2. Moreover, the module ODdR(V ) is equipped with an
integrable connection, induced from the GR-equivariant integrable connection

) ∶ V ⨂ℚp OBdR(R)⟶ (V ⨂ℚp OBdR(R))⨂
R[ 1p ]

Ω1R[ 1p ]

v ⨂ b ⟼ v ⨂ )(b).

We denote the induced connection on ODdR(V ) again by ). Since the connection ) on OBdR(R)
satis�es Gri�ths transversality, therefore the same is true for ODdR(V ), i.e.

)(FilrODdR(V )) ⊂ Filr−1ODdR(V )⨂R0[ 1p ]
Ω1R[ 1p ].

Further, the module ODdR(V ) is projective of rank ≤ dim(V ) and DdR(V ) is free of rank ≤ dim(V ).
If V is de Rham then for all r ∈ ℤ, the R[ 1p ]-modules FilrODdR(V ) and grrODdR(V ) are projective
of �nite type and therefore ODdR(V ) is an object of MFR()) (see [Bri08, Propositions 8.3.1, 8.3.2,
8.3.4]). For a de Rham representation V , the collection of integers ri for 1 ≤ i ≤ dimℚp (V ) such that
gr−riODdR(V ) ≠ 0 are called Hodge-Tate weights of V . Moreover, we say that V is positive if and
only if ri ≤ 0 for all 1 ≤ i ≤ dimℚp (V ).

Next, from [Bri08, §8.2] we have that the homomorphism

�OdR(V ) ∶ OBdR(R)⨂R0[ 1p ]
ODdR(V )⟶ OBdR(R)⨂ℚp V ,

is injective. The module ODdR(V ) is equipped with a connection ) coming from the connection on
OBdR(R) and we have ODdR(V ))=0 = DdR(V ). The natural map

�dR(V ) ∶ R[ 1p ] ⨂K DdR(V )⟶ ODdR(V ),

as well as the homomorphism

�dR(V ) ∶ BdR(R)⨂K DdR(V )⟶ BdR(R)⨂ℚp V ,

are injective. The latter map is bijective if and only if �OdR(V ) and �dR(V ) are bijective (see [Bri08,
Propositions 8.2.10]).
Theorem 1.26 ([Bri08, Théorème 8.4.2]). The category RepOdR

ℚp
(GR) is a Tannakian subcategory

of Repℚp
(GR) and the restriction of the functor ODdR to RepOdR

ℚp
(GR) is an R[ 1p ]-�ber functor. If
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V ∈ RepOdR
ℚp

(GR) the isomorphism �OdR(V ) is compatible with the supplementary structures described
above. In the horizontal de Rham case, the category RepdR

ℚp
(GR) is a Tannakian subcategory of Repℚp

(GR)
and the restriction of the functor DdR to RepdR

ℚp
(GR) is a K -�ber functor. If V ∈ RepdR

ℚp
(GR), the

isomorphism �dR(V ) is compatible with the supplementary structures.

Note that for C a Tannakian subcategory of Repℚp
(GR) and Λ a commutative ring, a Λ-�ber functor

is a faithful, exact, ⨂-functor from C to the category of Λ-modules such that the essential image of
the functor lies in the subcategory of �nitely generated projective Λ-modules.

1.5.2. Crystalline representations

In this section we will describe crystalline representations of GR and the associated linear algebra
object equipped with complementary structures. Note that the algebra OBcris(R0) is a GR-regular
R0[ 1p ]-algebra and Bcris(R) is a GR-regular F -algebra. We set

ODcris(V ) ∶= (OBcris(R)⨂R[ 1p ]
V)

GR
and Dcris(V ) ∶= (Bcris(R)⨂R[ 1p ]

V)
GR
.

We will denote the category of crystalline representations (OBcris(R)-adimissible) as RepOcris
ℚp

(GR)
and the category of horizontal crystalline representations (Bcris(R)-adimissible) as Repcris

ℚp
(GR). There

are several complimentary structures on the R0[ 1p ]-module ODcris(V ) (resp. F -vector space Dcris(V ))
(see [Bri08, §8.3]). It is equipped with a Frobenius-semilinear operator ' induced from the Frobenius
on OBcris(R0)⨂ℚp V (resp. Bcris(R0)⨂ℚp V ), where we consider the GR-equivariant Frobenius on
OBcris(R0) (resp. Bcris(R0)). Since R = R0[$], therefore R[ 1p ] ⨂R0[1/p]ODcris(V ) is an R[ 1p ]-submodule
of ODdR(V ) (resp. K -subvector space DdR(V )) and we equip it with the induced �ltration and
connection which satis�es Gri�ths transversality with respect to the �ltration. Additionally, we
have )' = ') over OBcris(R0)⨂ℚp V .

The module ODcris(V ) is projective of rank ≤ dim(V ) (see [Bri08, Propositions 8.3.1]). If V is
crystalline, then the R0[ 1p ]-linear homomorphism

1⨂ ' ∶ R0[ 1p ] ⨂R0[ 1p ],'
ODcris(V )⟶ ODcris(V ),

is an isomorphism and ODcris(V ) is an object of MFR/R0(', )) (see [Bri08, Propositions 8.3.3, 8.3.4]).
Similarly, if V is horizontal crystalline, then the R0[ 1p ]-linear homomorphism

1⨂ ' ∶ F ⨂F ,' Dcris(V )⟶ Dcris(V ),

is an isomorphism. Finally, the inclusions OBcris(R0)� OBdR(R) and Bcris(R0)� BdR(R) induce
respective inclusions ODcris(V )� ODdR(V ) and Dcris(V )� DdR(V ), and the induced homomor-
phisms

R[ 1p ] ⨂R0[ 1p ]
ODcris(V )⟶ ODdR(V ) and K ⨂F Dcris(V )⟶ DdR(V ).

are injective (see [Bri08, Proposition 8.2.1]).
Next, from [Bri08, §8.2] we have that the homomorphism

�Ocris(V ) ∶ OBcris(R0)⨂R0[ 1p ]
ODcris(V )⟶ OBcris(R0)⨂ℚp V ,

is injective. The module ODcris(V ) is equipped with a connection ) coming from the connection on
OBcris(R0) and we have ODcris(V ))=0 = Dcris(V ). The natural map

�cris(V ) ∶ R[ 1p ] ⨂K Dcris(V )⟶ ODcris(V ),
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as well as the homomorphism

�cris(V ) ∶ Bcris(R)⨂K Dcris(V )⟶ Bcris(R)⨂ℚp V ,

are injective. It is bijective if and only if �Ocris(V ) and �cris(V ) are bijective. Finally, the natural map
of K -vector spaces

K ⨂F Dcris(V )⟶ DdR(V ),

is injective.
Let V ∈ RepOcris

ℚp
(GR) (resp. Repcris

ℚp
(GR)), then V is crystalline (resp. horizontal crystalline) and

the natural map

R[ 1p ] ⨂R0[ 1p ]
ODcris(V )⟶ ODdR(V ) (resp. K ⨂F Dcris(V )⟶ DdR(V )),

is an isomorphism (see [Bri08, Proposition 8.2.1]).

Theorem 1.27 ([Bri08, Théorème 8.4.2]). The category RepOcris
ℚp

(GR) is a Tannakian subcategory
of Repℚp

(GR) and the restriction of the functor ODcris to RepOcris
ℚp

(GR) is an R0[ 1p ]-�ber functor. For
V ∈ RepOcris

ℚp
(GR), the isomorphism �Ocris(V ) is compatible with the supplementary structures described

above. In the horizontal crystalline case, the category Repcris
ℚp
(GR) is a Tannakian subcategory of

Repℚp
(GR) and the restriction of the functorDcris toRepcris

ℚp
(GR) is an F -�ber functor. ForV ∈ Repcris

ℚp
(GR),

then the isomorphism �cris(V ) is compatible with the supplementary structures.

Let MFad
R/R0(', )) denote the essential image of the functor

ODcris ∶ RepOcris
ℚp

(GR)⟶ MFR/R0(', )).

These objects are called admissible �ltered (', ))-modules. As it turns out the essential image
of ODcris(V ) forms a category with rich structures (see [Bri08, Théorème 8.5.1]): The category
MFad

R/R0(', )) is abelian. If D1 and D2 are two admissible �ltered (', ))-modules over R[ 1p ] then the
same is true for D1 ⨂D2. Similarly, if D is an admissible �ltered (', ))-module over R[ 1p ] then the
same is true for D∨. Equipped with these structures, the category MFad

R/R0(', )) is Tannakian.

Theorem 1.28 ([Bri08, Théorème 8.5.1]). The functorODcris(V ) induces an equivalence of Tannakian
categories

ODcris ∶ RepOcris
ℚp

(GR)⟶ MFad
R/R0(', )),

with a quasi-inverse given by the functor

OVcris ∶ MFad
R/R0(', ))⟶ RepOcris

ℚp
(GR)

D ⟼ (OBcris(R0)⨂R0[ 1p ]
D)

'=1,)=0
⋂ Fil0(OBdR(R)⨂R[ 1p ]

DR)
)=0
.

Further, we have that the module ODcris(V ) ∈ MFR/R0(', )) is pointwise weakly admissible in the
sense of De�nition 1.22 (see [Bri08, Proposition 8.5.2]).

Remark 1.29. In the arithmetic setting, Fontaine showed that admissible objects in the category
of �ltered '-modules are weakly admissible and conjectured that converse holds as well. This
conjecture was resolved by Fontaine-Colmez in [Fon94a]. Since then several di�erent proofs have
been given in [Col02, Colmez], [Ber08, Berger] and [Kis06, Kisin].

In the relative setting, Brinon calls a crystalline representationV weakly admissible if it is pointwise
weakly admissible and the module ODcris(V ) becomes free over a �nite étale extension of R0 (see
[Bri08, p. 136]). For 1-dimensional crystalline representations, Brinon has shown that they are
weakly admissible (see below). However, in higher dimensions it is not known whether all crystalline
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representations of GR are weakly admissible? Further, the converse statement is also open, i.e. does
weakly admissibility imply admissibility?

In the 1-dimensional case, it is possible to classify all de Rham and crystalline representations as
in the following result:

Proposition 1.30 ([Bri08, Propositions 8.4.1, 8.6.1]). Let � ∶ GR0 → ℤ×
p be a continuous character.

(i) The character � is de Rham if and only if we can write � = �f�ur�n where �f is a �nite character,
�ur is an unrami�ed character which takes values 1 + pℤp and it is trivialized by an element
� ∈ 1 + pR̂ur

0 (see Remark 1.25), � is the p-adic cyclotomic character and n ∈ ℤ.

(ii) The character � is crystalline if and only if we can write � = �f�ur�n where �f is a �nite unrami�ed
character, �ur is an unrami�ed character which takes values in 1 + pℤp and it is trivialized by an
element � ∈ 1 + pR̂ur

0 (see Remark 1.25), � is the p-adic cyclotomic character and n ∈ ℤ.

In particular, a 1-dimensional de Rham representation is potentially crystalline.

(iii) Let V = ℚp(�) be a one-dimensional crystalline representation. Then there exists a �nite étale
extension R0 → R′0 such that the R′0[ 1p ]-module R′0[ 1p ] ⨂R0[ 1p ]

ODcris(V ) is free. In particular, if

�f is trivial then ODcris(V ) is a free R0[ 1p ]-module of rank 1.



CHAPTER 2

(', Γ)-modules and crystalline coordinates

Let K be a mixed characteristic non-archimedean complete discrete valuation �eld with residue
�eld � of characteristic p. In [Fon90] Fontaine gave a classi�cation of p-adic representations of the
absolute Galois group GK in terms of étale (', ΓK )-modules over a certain two dimensional local �eld
BK . In the same article, Fontaine also considered �nite height representations, i.e. representations
whose periods live in a smaller ring B+K ⊂ BK . Moreover, he conjectured some relations between
�nite height representations and crystalline representations in case K is unrami�ed over ℚp . We
will explore this line of thought in the relative setting in Chapter 3.

Studying p-adic representations from the point of view of (', Γ)-modules has proven to be very
fruitful. Carrying forward Fontaine’s point of view on the classi�cation of all p-adic representations,
Cherbonnier-Colmez in [CC98] showed that one can consider étale (', Γ)-modules over a subring
B†K ⊂ BK and classify all p-adic representations of GK in terms of such modules. More succinctly, one
can say that all p-adic representations of GK are overconvergent. Embedding the overconvergent ring
into the Robba ring, Berger in [Ber02] classi�ed p-adic rerpesentations in terms of (', Γ)-modules
over the Robba ring. As an application Berger in [Ber02] and Kedlaya in [Ked04] were able to
connect the theory of (', Γ)-modules to the semilinear-algebraic objects stemming from Fontaine’s
classi�cation of de Rham and crystalline representations.

On the other hand, following Fontaine’s classi�cation, in [Her98] Herr gave a three term complex
in terms of (', Γ)-modules computing the Galois cohomology of the associated representation. Herr’s
complex was adapted to overconvergent setting by Cherbonnier-Colmez in [CC98]. An appropriate
generalization of these results to the relative case has been done in [And06, AB08, AI08]. We will
come back to the computation of Galois cohomology and study some explicit complexes in Chapter
4.

The current chapter consists of two parts, in the �rst part we will recall de�nitions and results on
(', Γ)-modules in the relative setting, whereas in the second part we will study several analytic rings
and some of their properties which will be useful in the next chapters. In the rest of the chapter we
will work in the setting described in §1.1.

2.1. Relative (', Γ)-modules

Recall that F is a �nite unrami�ed extension of ℚp and K = F (�pm ) for some �xed m ≥ 1. Let
Kn = K (�pn ) where �pn is a primitive pn-th root of unity, for n ∈ ℕ and n ≥ m. We take Rn to be

17
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the integral closure of R ⨂OK OKn[X
p−n
1 ,…X p−n

d ] inside R[ 1p ]. Let us set R∞ ∶= ⋃n≥m Rn. Note that
K∞ = ⋃n Kn ⊂ R∞[ 1p ]. The ring R∞ is an integral domain and a subring of R.

De�nition 2.1. De�ne GR ∶= Gal(R[ 1p ]/R[ 1p ]), ΓR ∶= Gal(R∞[ 1p ]/R[ 1p ]) and HR ∶= Ker (GR →
ΓR).

Next, we will de�ne certain rings useful in the theory of (', Γ)-modules. Recall that ℂ(R) denotes
the p-adic completion of R and ℂ+(R) ⊂ ℂ(R) is the subring of x ’s such that �p(x) ≥ 0. Since ℂ(R) is a
perfectoid algebra, its tilt ℂ(R)♭ is a perfect ring in characteristic p and we set

AR ∶= W (ℂ(R)♭),

the ring of p-typical Witt vectors with coe�cients in ℂ(R)♭. The absolute Frobenius over ℂ(R)♭ lifts
to an endomorphism ' ∶ AR → AR , which we again call the Frobenius. The action of GR on ℂ(R)♭

extends to a continuous action on AR which commutes with the Frobenius. The inclusion K ⊂ R[ 1p ]
induces inclusions

K ⊂ R[ 1p ], ℂ♭p ⊂ ℂ(R)♭ and AK ⊂ AR .

Recall from §1.2 that an element x ∈ ℂ(R)♭ can be described as the set of sequences (xn)n∈ℕ with
xn ∈ ℂ(R) and xpn+1 = xn for all n ∈ ℕ. We de�ned a valuation v♭ on ℂ(R)♭ by setting �♭(x) ∶= �p(x♯)
where x♯ ∶= x0. The �eld ℂ(R)♭ is complete for this valuation. Moreover, ℂ+(R) is perfectoid and it
can be shown that

ℂ+(R)♭ =
{
x ∈ ℂ(R)♭, such that �♭(x) ≥ 0

}
.

Further, recall that we set
Ainf(R) ∶= W (ℂ+(R)♭).

The inclusion OK ⊂ R induces inclusions

O♭
ℂK ⊂ ℂ+(R)♭ and Ainf(OK ) ⊂ Ainf(R).

Moreover, we �xed some elements in these rings as

" ∶= (1, �p , �p2 ,…) ∈ ℂ+(R)♭, � ∶= ["] − 1 ∈ Ainf(OK ) and � ∶= �
'−1(� ) =

�
�1 .

Next, we will describe the weak topology on AR . On ℂ(R)♭ consider its natural valuation topology
(as described above), where the collection of ideals

{
�nℂ+(R)♭

}
n∈ℕ serve as a fundamental system

of neighborhoods of 0. On the truncated Witt vectors Wr(ℂ(R)♭) consider the product topology via
the isomorphism Wr(ℂ(R)♭) ≃ (ℂ(R)♭)

r (via the ghost map in theory of Witt vectors). The weak
topology on AR is de�ned as the projective limit topology on

W (ℂ(R)♭) = limr Wr(ℂ(R)♭).

Alternatively, for i, j ∈ ℕ and
Ui,j = � iAinf(R) + pjAR ,

the weak topology can also be described by taking {Ui,j}i,j∈ℕ as a fundamental system of neighbor-
hoods for AR .

In the description above, if we endow the truncated Witt vectors Wr (ℂ(R)♭)with discrete topology,
then the projective limit topology on AR is the usual p-adic topology which is of course stronger
than the topology considered above, hence the terminology.
Remark 2.2. Note that ΓR0 is isomorphic to the semidirect product of ΓF and Γ′R0 , where ΓF =
Gal(K∞/F ) and Γ′R0 = Gal(R∞[ 1p ]/K∞R0[ 1p ]). In particular, we have an exact sequence

1⟶ Γ′R0 ⟶ ΓR0 ⟶ ΓF ⟶ 1, (2.1)
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where, for 1 ≤ i ≤ d we have (see [Bri08, p. 9] and [And06, §2.4])

Γ′R0 = Gal(R∞[ 1p ]/K∞R0[ 1p ]) ≃ ℤd
p ,

� ∶ ΓF = Gal(K∞/F ) ≃ ℤ×
p .

The group ΓF can be viewed as a subgroup of ΓR0 , i.e. we can take a section of the projection map in
(2.1) such that for  ∈ ΓF and g ∈ Γ′R0 , we have g−1 = g� ( ). In particular, we can choose topological
generators { , 1,… , d} of ΓR0 such that

 (� ) = (1 + � )� ( ) − 1, i(� ) = � for 1 ≤ i ≤ d,
i([X ♭

i ]) = (1 + � )[X
♭
i ], i([X ♭

j ]) = [X
♭
j ] for i ≠ j and 1 ≤ j ≤ d,

and that 0 =  e is a topological generator of ΓK = Gal(K∞/K ) with � (0) = exp(pm), and where
e = [K ∶ F ]. It follows that {1,… , d} are topological generators of Γ′R0 ,  is a lift of a topological
generator of ΓF , and 0 is a lift of a topological generator of ΓK .

Next, we have GR = Gal(R[ 1p ]/R[ 1p ]) and we de�ne ΓR = Gal(R∞[ 1p ]/R[ 1p ]) and HR =
Ker (GR → ΓR). So we have that ΓR is isomorphic to the semidirect product of ΓK and Γ′R = Γ′R0 . In
particular, for 1 ≤ i ≤ d we have

Γ′R = Gal(R∞[ 1p ]/K∞R[ 1p ]) ≃ ℤd
p ,

� ∶ ΓK = Gal(K∞/K ) ≃ 1 + pmℤp .

In [FW79b, FW79a, Win83], using the �eld-of-norms functor, Fontaine and Wintenberger con-
structed a non-archimedean complete discrete valuation �eld EK ⊂ ℂ♭p of characteristic p, with
residue class �eld � and functorial in K . One of the remarkable results in their theory is the
isomorphism of certain Galois groups, which can be stated as follows,

Theorem 2.3 (Fontaine-Wintenberger). Let Esep
K denote the separable closure of EK inside ℂ♭p . Then

we have a natural isomorphism of Galois groups

Gal(K /K∞)
≃
−−→ Gal(E

sep
K /EK).

Remark 2.4. (i) In modern language, we also have that the completion of the perfect closure of
EK is K̂♭

∞ and there is a natural isomorphism of Galois groups,

Gal(K /K∞)
≃
−−→ Gal(ℂp/K̂∞) ≃

−−→ Gal(ℂ♭p/K̂♭
∞)

≃
−−→ Gal(E

sep
K /EK).

A vast generalization of the above isomorphism for perfectoid algebras, also known as the
tilting correspondence, was done by Scholze in [Sch12] and Fontaine-Fargues in [FF18].

(ii) The �eld-of-norms functor was further generalized to higher-dimensional local �elds by
Abrashkin in [Abr07], as well as in another direction by Scholl in [Sch06].

In [Fon90], Fontaine utilised the isomorphism of Galois groups to classify mod-p representations
of GK in terms of étale (', ΓK )-modules over EK . By some technical considerations one can lift this
to characteristic 0, i.e. classify ℤp-representations of GK in terms of étale (', ΓK )-modules over a
two dimensional local ring AK ⊂ W (K̂♭

∞) (see [Fon90] for details).
We are interested in an analogous theory in the relative setting. To describe such a theory we

need to consider generically étale algebras over any �nite extension of R in the cyclotomic tower
R∞/R. More precisely, let S be an Rn-algebra such that S is �nite as an Rn-module and S[ 1p ] is étale
over Rn[ 1p ]. Let k ≥ n and we denote by Sk the integral closure of S ⨂Rn Rk in S ⨂Rn Rk[

1
p ] and set

S∞ ∶= ⋃k≥n Sk . For S as described, S∞ is a normal R∞-algebra and an integral domain as a subring
of R. As in the case of R, for S we de�ne GS ∶= Gal(R[ 1p ]/S[ 1p ]), ΓS ∶= Gal(S∞[ 1p ]/S[ 1p ]) and
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HS ∶= Ker (GS → ΓS). Again, ΓS is isomorphic to the semidirect product of ΓK and Γ′S , where
Γ′S = Gal(S∞[ 1p ]/K∞S[ 1p ]) is a �nite index subgroup of Γ′R ≃ ℤd

p .
In [And06], Andreatta constructs an analogue of EK viewed as a sub�eld of K̂♭

∞; to any S in
De�nition 2.1, he functorially associates a ring ES ⊂ Fr Ŝ♭∞. We will recall his constructions below.

Let E+K denote the valuation ring of EK and let �K ∈ K̂♭
∞ be a uniformizer which is the reduction

of �K ∈ W (K̂♭
∞) modulo p (see Remark 2.6 for the choice of �K ).

De�nition 2.5. Let � ∈ ℚ, 0 < � < 1 and N ∈ ℕ. For � small enough and N large enough, depending
on S (see [And06, De�nition 4.2] for precise formulation of � and N ), we de�ne the ring

E+S ∶=
{
(a0,… , ak ,…) ∈ Ŝ♭∞, such that ak ∈ Sk/p�Sk for all k ≥ N

}
,

and set
ES ∶= E+S[ 1

�K ].

In [And06, Proposition 4.5, Corollaries 5.3, 5.4], Andreatta shows that the ring E+S is �nite and tor-
sion free as an E+R-module. It is a reduced Noetherian ring and �-adically complete. By construction,
it is endowed with a �-adically continuous action of ΓS and a Frobenius endomorphism ', which
commute with each other and are compatible with the respective structures on Ŝ♭∞. Moreover, E+S
is a normal extension of E+R , étale after inverting �K and of degree equal to the generic degree of
Rm ⊂ S. The set of elements {�K , X ♭

1 ,… , X ♭
d } form an absolute p-basis of E+R . Further, the ring Ŝ♭∞

is normal and coincides with the �K -adic completion of the perfect closure of E+S . The extension
E+S → Ŝ♭∞ is faithfully �at. For every �nitely generated E+S -module M , the base change of M via the
above extension is �K -adically complete.

We have liftings of these rings to characteristic 0. From [And06, Appendix C, Proposition 7.8], we
have that there exists a Noetherian regular domain, complete for the weak topology (induced from
the weak topology on the ring of Witt vectors),

AR ⊂ W (R̂♭∞[ 1� ]),

endowed with continuous and commuting actions of ΓR and ', lifting those de�ned on ER . Moreover,
it contains a p-adically complete subring A+

R lifting E+R and it contains {�, [X ♭
1 ],… , [X ♭

d ]}.
Let S be an R-algebra as in De�nition 2.1. By the equivalence between the categories of almost

étale R∞-algebras and almost étale ER-algebras (see [And06, Theorem 6.3, Proposition 7.2]), let AS
be the unique �nite étale AR-algebra lifting the �nite étale extension ER ⊂ ES . It is a Noetherian
regular domain, complete for the weak topology, endowed with a continuous action of ΓS and the
Frobenius operator ', lifting those de�ned on ES and commuting with each other. Moreover, it
contains subring A+

S lifting E+S such that the former is complete for the weak topology.
Remark 2.6. Specializing the de�nition of AS above for S = OK gives us that A+

K is the ring of power
series ∑i∈ℕ ai� iK (see also [Fon90]), where ai ∈ OF goes to 0 as i → +∞ and �K ∈ W (K̂♭

∞).
Next, we will take the union of ES above which will produce a ring helpful in the classi�cation of

mod-p representations of GR , in terms of étale (', ΓR)-module over ER .

De�nition 2.7. De�ne
E+ ∶= ⋃

S
E+S ,

where the union runs over all Rn-subalgebras S ⊂ R, for some n ∈ ℕ such that S is normal and �nite
as an Rn-module and S[ 1p ] is étale over Rn[ 1p ]. Also, we set

E ∶= E+[ 1� ].

These rings are complete for the �-adic topology, and equipped with Frobenius and a continuous
action of GR . Further, from [AI08, Proposition 2.9], we have that ℂ(R)HR = R̂∞, (ℂ+(R)♭)

HR = R̂♭∞,
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(ℂ(R)♭)
HR = R̂♭∞[ 1� ], (E+)

HR = E+R , and EHR = ER .
Next, in characteristic 0 we set

BR ∶= AR[
1
p ] = ⋃

j∈ℕ
p−jAR ,

equipped with the direct limit topology.

De�nition 2.8. De�ne

A ∶= completion of ⋃
S
AS ⊂ AR for the p-adic topology,

where the union is taken over all Rn-subalgebras S ⊂ R, for some n ∈ ℕ such that S is normal
and �nite as an Rn-module and S[ 1p ] is étale over Rn[ 1p ]. We also equip A with the weak topology
induced by the inclusion A ⊂ AR . Next, we set

A+ ∶= A ⋂Ainf(R), B+ ∶= A+[ 1p ], and B ∶= A[ 1p ],

and equip them with the topology induced from the weak topology on A.

These rings are stable under ' and are equipped with an action of GR , continuous for the weak
topology. Moreover, from [AI08, Lemma 2.11], we have AHR = AR , (A+)HR = A+

R and AR/pAR = ER .
Having introduced all the necessary rings, �nally we come to (', ΓR)-modules.

De�nition 2.9. A (', ΓR)-module D over AR is a �nitely generated module equipped with

(i) A semilinear action of ΓR , continuous for the weak topology (see Remark 2.12);

(ii) A Frobenius-semilinear homomorphism ' commuting with ΓR .

These modules are called étale if the natural map,

1⨂ ' ∶ AR ⨂AR ,' D ⟶ D,

is an isomorphism of AR-modules.

Denote by (', ΓR)-Modét
AR

the category of étale (', ΓR)-modules over AR with morphisms between
objects being continuous, '-equivariant and ΓR-equivariant morphisms of AR-modules. Next, denote
by Repℤp

(GR) the category of �nitely generated ℤp-modules equipped with a linear and continuous
action of GR , with morphisms between objects being continuous and GR-equivariant morphisms of
ℤp-modules.

Let T ∈ Repℤp
(GR) then we have that,

Proposition and De�nition 2.10. The module

D(T ) ∶= (A⨂ℤp T )
HR ,

is equipped with a semilinear action of ' and a continuous and semilinear action of ΓR , which commute
with each other. The functor D takes values in the category (', ΓR)-Modét

AR
, i.e. D(T ) is an étale

(', ΓR)-module over AR . Further, if T is free of �nite rank, then D(T ) is projective of rank = rkℤpT .

Theorem 2.11 ([And06, Theorem 7.11]). The functor

D ∶ Repℤp
(GR)⟶ (', ΓR)-Modét

AR
,

de�nes an equivalence of categories. For D an étale (', ΓR)-module over AR , a quasi-inverse is given as

V(D) ∶= (A⨂AR D)
'=1.
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Let T be a ℤp-representation of GR , then the natural map

A⨂AR D(T )
≃
−−→ A⨂ℤp T

is an isomorphism of A-modules compatible with Frobenius and the action of GR on each side.

Remark 2.12. Let T be a ℤp-module equipped with a continuous and linear action of GR . Suppose
that

T ≃ ℤn
p ×

k
∏
j=1

ℤ/prjℤ,

as a ℤp-module. Then

T ⨂ℤp AR
≃
−−→ An

R ×
k

∏
j=1

AR /prjAR

as AR-module and, in particular, considering the weak topology on AR , the product topology de�nes
a topology on T ⨂ℤp AR . It is independent of the choice of the presentation of T as a ℤp-module
and the action of GR is continuous for such a topology. By construction, D(T ) are submodules
of T ⨂ℤp AR and therefore are endowed with induced topology. This topology is called the weak
topology on (', ΓR)-modules.

On the other hand, given a �nitely generated AR-module D, we can equip D with a weak topology
induced as the quotient topology from the surjection An

R � D, for some n ∈ ℕ and where we
consider the product of weak topology on An

R .

The operator  

Next, we will de�ne a left inverse  of the Frobenius operator ' on the ring A. Let S be an R-algebra
as in De�nition 2.5. Then, from [AB08, Corollaire 4.10] we note that the AS-module '−1(AS) is free
with a basis given as

u�/p = (1 + � )�0/p[X ♭
1 ]

�1/p ⋯ [X ♭
d ]

�d /p for � = (�0,… , �d ) ∈ {0, 1,… , p − 1}[0,d].

Considering the union over all such S we get that '−1(A) is a free A-module with a basis given
as above (slight caveat is that we should replace '−1(AS) by AS and take p-th root of all the basis
elements in loc. cit.).

De�ne the operator

 ∶ A ⟶ A
x ⟼ 1

pd+1 ◦ Tr'−1(A)/A ◦ '−1(x).

Proposition 2.13 ([AB08, §4.8]). The operator  satis�es the following properties:

(i)  ◦ ' = id ; let x ∈ A and write '−1(x) = ∑� x�u�/p , then we have  (x) = x0;

(ii)  commutes with the action of GR ;

(iii)  (A+) ⊂ A+.

2.2. Overconvergence
In the article [CC98], Cherbonnier-Colmez have shown that all ℤp-representations (resp. p-adic rep-
resentations) of GK are overconvergent. Generalizing this to the relative case, in [AB08], Andreatta-
Brinon have shown that all ℤp-representations (resp. p-adic representations) of GR are overcon-
vergent. In this section we will recall some of these results. We begin by de�ning overconvergent
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subrings of AR . Let v > 0 and let � ∈ O♭
ℂp such that �E(�) = 1/v. Set

A(0,v]
R ∶=

{
∑
k∈ℕ

pk[xk], v�E(xk) + k → +∞ when k → +∞
}

A(0,v]+
R ∶=

{
∑
k∈ℕ

pk[xk] ∈ A(0,v]
R with v�E(xk) + k ≥ 0

}

= p-adic completion of Ainf(R)[
p
[�]].

Note that we have A(0,v]
R = A(0,v]+

R [ 1
[p♭]]. The action of GR on Ainf(R) extends to a continuous action

of GR on these rings which commutes with the induced Frobenius '. For the homomorphism ', we
have

'(A
(0,v]+
R ) = A(0,v/p]+

R and '(A
(0,v]
R ) = A(0,v/p]

R .

Moreover, we have injections (see [CN17, §2.4.2])

A(0,v]+
R � B+dR(R) and A(0,v]

R � B+dR(R) if v ≥ 1.

De�nition 2.14. De�ne the ring of overconvergent coe�cients as

A†
R ∶= ⋃

v∈ℚ>0

A(0,v]
R and B†R ∶= ⋃

v∈ℚ>0

B(0,v]R = ⋃
v∈ℚ>0

A(0,v]
R [ 1p ].

Next, set
A(0,v]
R ∶= AR ⋂A(0,v]

R and A(0,v] ∶= A ⋂A(0,v]
R ,

and de�ne
A†
R ∶= AR ⋂A†

R = ⋃
v∈ℚ>0

A(0,v]
R and A† ∶= A ⋂A†

R = ⋃
v∈ℚ>0

A(0,v].

Now, let us describe the topology on the rings de�ned above. For x = ∑k∈ℤ pk[xk] ∈ B(0,v]+R , we
set

wv(z) ∶= inf
k∈ℤ

(v�♭(xk) + k).

This induces a valuation on A(0,v]+
R and it is complete for the topology induced by the valuation

(see [AB08, Proposition 4.2]). We will equip A†
R with the topology induced by the inductive limit of

the topology described above. Further, A† is also endowed with a Frobenius endomorphism ' and
a continuous action of GR which commutes with ' (see [And06, Proposition 7.2]). These actions
are induced from the inclusion A†

R ⊂ AR . Further, all subrings of A†
R appearing above induce these

structures as well.

Lemma 2.15. (i) The restriction of the operator  from Proposition 2.13 toA† gives us that  (A†) ⊂
A† (see [AB08, §4.8]).

(ii) We have (A(0,v])
HR = A(0,v]

R , (A†)HR = A†
R and A

†
R/pA†

R = ER (see [AI08, Lemma 2.11]).

Now we come to overconvergent (', ΓR)-modules.

De�nition 2.16. A (', ΓR)-module D over A†
R is a �nitely generated module equipped with

(i) A semilinear action of ΓR , continuous for the weak topology (see §2.1);

(ii) A Frobenius-semilinear homomorphism ' commuting with ΓR .

These modules are called étale if the natural map,

1⨂ ' ∶ A†
R ⨂

A†R ,'
D ⟶ D,
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is an isomorphism of A†
R-modules. Let (', ΓR)-Modét

A†R
denote the category of such modules.

Denote by (', ΓR)-Modét
A†R

the category of étale (', ΓR)-modules over A†
R with morphisms between

objects being continuous, '-equivariant and ΓR-equivariant morphisms of A†
R-modules. Recall that

Repℤp
(GR) is the category of �nitely generated ℤp-modules equipped with a linear and continuous

action of GR , with morphisms between objects being continuous and GR-equivariant morphisms of
ℤp-modules.

Let T ∈ Repℤp
(GR) then we have that,

Proposition and De�nition 2.17. The module

D†(T ) ∶= (A†
⨂ℤp T )

HR ,

is equipped with a semilinear action of ' and a continuous and semilinear action of ΓR , which commute
with each other. The functor D† takes values in the category (', ΓR)-Modét

A†R
, i.e. D†(T ) is an étale

(', ΓR)-module over A†
R . Further, if T is free of �nite rank, then D†(T ) is projective of rank = rkℤpT .

Theorem 2.18 ([AB08, Théorèm 4.35]). (i) The functor

D† ∶ Repℤp
(GR)⟶ (', ΓR)-Modét

A†R
,

de�nes an equivalence of categories. For D an étale (', ΓR)-module over A†
R , a quasi-inverse is

given as
V†(D) ∶= (A†

⨂
A†R
D)

'=1.

(ii) Let T be a ℤp-representation of GR , then the scalar extension along A†
R � AR gives an isomor-

phism of (', ΓR)-modules over AR ,

AR ⨂
A†R

D†(T )
≃
−−→ D(T ).

Moreover, the natural map
A†

⨂AR D
†(T )

≃
−−→ A†

⨂ℤp T

is an isomorphism of A†-modules compatible with Frobenius and the action of GR on each side.

(iii) If T is free of rank ℎ, then there exists an R-algebra S such that S is normal and �nite over R,
S[ 1p ] is Galois over R[

1
p ] and A

†
S ⨂

A†R
D†(T ) is a free A†

S -module of rank ℎ.

Remark 2.19. By construction, D†(T ) is a submodule of T ⨂ℤp AR and therefore endowed with
induced weak topology. On the other hand, given a �nitely generated A†

R-module D, we can equip
D with a weak topology induced as the quotient topology from the surjection A†n

R � D, for some
n ∈ ℕ and where we consider the product of weak topology on A†n

R .

2.2.1. Regularization by Frobenius
In this section we will introduce certain analytic rings. These rings will be useful in generalizing
certain technical results of Berger (see Proposition 2.23) and at the same time it will set the stage for
introducing certain variants of these rings in the next section which we will be useful for Chapters 3
& 5. Let 0 < u ≤ v and let �, � ∈ O♭

ℂp such that �E(�) = 1/v and �E(�) = 1/u. Set

A[u]
R ∶= p-adic completion of Ainf(R)[

[�]
p ],

A[u,v]
R ∶= p-adic completion of Ainf(R)[

p
[�] ,

[�]
p ].
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The action of GR on Ainf(R) extends to a continuous action of GR on these rings which commutes
with the induced Frobenius '. For the homomorphism ', we have

'(A
[u]
R ) = A[u/p]

R and '(A
[u,v]
R ) = A[u/p,v/p]

R .

Moreover, we have injections (see [CN17, §2.4.2])

A[u]
R � B+dR(R) if u ≤ 1 and A[u,v]

R � B+dR(R) if u ≤ 1 ≤ v.

We set
B†R,rig ∶= ⋃

v>0
⋂
u≤v

B[u,v]R = ⋃
v>0

⋂
u≤v

A[u,v]
R [ 1p ].

The ring B†R,rig induces a continuous action of GR , as well as a Frobenius endomorphism ' ∶ B†R,rig →

B†R,rig. It follows from the de�nitions that B†R ⊂ B†R,rig compatible with the action of GR and the
Frobenius endomorphism. Finally, let B+R,rig ∶= ⋂n∈ℕ 'n(B+max) which is stable under the action of GR
and the Frobenius homomorphism.
Remark 2.20. Let [�] ∈ Ainf denote the Teichmüller lift of the reduction modulo p of � , written as
� ∈ O♭

ℂK . Let us take r , s ∈ ℚ such that r = p−1
pv and s = p−1

pu . Then it can easily be checked that
Ainf(R)

{ p
[� r ] ,

[� s]
p

}
= A[u,v]

R . This is the translation between Berger’s notation and ours (see [Ber02,
§2.1]).

Using the remark above, it is straightforward to check that the results of [Ber02, §2.1] hold in our
case as well. In particular, we have

Lemma 2.21 ([Ber02, Lemme 2.5, Exemple 2.8]). (i) For u1 ≤ u2 ≤ v2 ≤ v1, we have a natural
inclusion A[u1,v1]

R � A[u2,v2]
R .

(ii) We have equalities Amax(R) = A[1,+∞]
R , B+max = B[1,+∞]R and B+R,rig = ⋂u>0 B[u,+∞]R .

Using Lemma 2.21 (i), we can de�ne for any interval I ⊂ ℝ ⋃{+∞} the ringsAI
R ∶= ⋂[u,v]⊂I A

[u,v]
R and

BIR ∶= ⋂[u,v]⊂I B
[u,v]
R . Next, we de�ne a p-adic valuation V[u,v] on B[u,v]R by setting V[u,v](x) = 0 if and

only if x ∈ A[u,v]
R −pA[u,v]

R and such that the image of V[u,v] is ℤ. Further, let us set B[v]R ∶= ⋂u≤v B[u,v]R ,
then we have B†R,rig = ⋃v>0 B[v]R . We equip B[v]R with the Fréchet topology de�ned by the set of VI
where I ⊂ (0, v] runs through all closed intervals. Finally, we see that A[v]

R is the ring of integers of
B[v]R for the valuation V[v,v].

Lemma 2.22. (i) Let u0 = v0 = 1, then the natural inclusion of A+
max(R) and A(0,v0]+

R in A[u0,v0]
R

induces an exact sequence

0⟶ Ainf(R)⟶ A(0,v0]+
R

⨁Amax(R)⟶ A[u0,v0]
R ⟶ 0.

(ii) Let Binf(R) = Ainf(R)[ 1p ], then for v ∈ ℚ>0 we have an exact sequence

0⟶ Binf(R)⟶ B(0,v]R
⨁B+R,rig ⟶ B[v]R ⟶ 0.

Proof. (i) The proof essentially follows from the proof of [Ber02, Lemme 2.15]. The map
A(0,v0]+
R

⨁Amax(R)→ A[u0,v0]
R is surjective because it su�ces to write an element of the right

hand side as a sum of elements of objects on the left hand side. This is clear from the de�nitions
and Lemma 2.21. Next, Ainf(R) is contained both in A(0,v0]+

R as well as in Amax(R), therefore in
their intersection. So we need to show that the map Ainf(R)→ A(0,v0]+

R
⋂Amax(R) is surjective
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as well. We are going to show this modulo pA[u0,v0]
R and conclude the general case by dévissage

(note that modulo p this map is not injective anymore). Let X, Y be two indeterminates, then
from [Ber02, Lemmes 2.1 & 2.9] we have identi�cations Amax(R) = Ainf(R){X}/(pX − [p♭]),
A(0,v0]+
R = Ainf(R){Y}/([p♭]Y −p) and A[u0,v0]

R /(p) = ℂ+(R)♭/(p♭)[X, X −1]. The image of Amax(R)
in the latter ring is identi�ed with ℂ+(R)♭/(p♭)[X ] and the image of A(0,v0]+

R gets identi�ed
with ℂ+(R)♭/(p♭)[X −1]. This shows that the image of their intersection (which is a subset
of the intersection of their respective images) is a subring of ℂ+(R)♭/(p♭) and therefore the
map Ainf(R) → A(0,v0]+

R /Amax(R) is surjective modulo pA[u0,v0]
R . So if x ∈ Amax(R) ⋂A(0,v0]+

R ,
then there exists y ∈ Ainf(R) such that x − y ∈ pA[u0,v0]

R . This means that x − y is an element
of pAmax(R) as well as of pA(0,v0]+

R + [p♭]Ainf(R) (this follows from the discussion above and
[Ber02, Lemme 2.9]). Since p divides [p♭] in Amax(R), there exists z ∈ [p♭]Ainf(R) such that
x −y −z ∈ p(Amax(R) ⋂A(0,v0]+

R ). Since Ainf(R) is p-adically complete, we can iterate this process
to conclude the claim.

(ii) The proof essentially follows from the proof of [Ber02, Lemme 2.18]. Let un = p−n for n ∈ ℕ.
First, for un ≤ v we will show that the sequence

0⟶ Binf(R)⟶ B(0,v]R
⨁B[un ,+∞]R ⟶ B[un ,v]R ⟶ 0,

is exact. It is clear that any element of B[un ,v]R can be written as a sum of elements of B(0,v]R
and B[un ,+∞]R and we need to show that two such expressions di�er by an element of Binf(R).
This amounts to showing that B(0,v]R

⋂B[un ,+∞]R = Binf(R), which can be deduced directly or by
applying '−n to B(0,p

nv]
R

⋂B[u0,+∞]R = Binf(R) where the latter expression is true from (i).

Next, we will show the claim. For each n ∈ ℕ, we have B[v]R ⊂ B[un ,v]R , therefore any x ∈ B[v]R
can be written as x = an + bn with an ∈ B(0,v]R and bn ∈ B[un ,+∞]R . Note that if we have another
expression x = an+1 + bn+1 with an+1 ∈ B(0,v]R and bn+1 ∈ B[un ,+∞]R such that bn+1 − bn ∈ Binf(R),
then up to modifying an+1 and bn+1 by elements of Binf(R), we can suppose that an = an+1 and
bn = bn+1. Therefore, x = a + b with a ∈ B(0,v]R and b ∈ ⋂n∈ℕ B[un ,+∞]R = B+R,rig (see Lemma 2.21
(ii)).

Now we come to the main result of this section: regularization by Frobenius,

Proposition 2.23. Let ℎ ∈ ℕ and matrices A ∈ Mat(ℎ,B
†
R,rig) and Y , Z ∈ Mat(ℎ,B+R,rig) such that

'(A) = YAZ , then A ∈ Mat(ℎ,B+R,rig).

Proof. The proof essentially follows from the proof of [Ber04, Proposition I.4.1]. Note that there
exists v > 0 such that A ∈ Mat(ℎ,B

[v]
R ), so there exists c ∈ ℕ such that A ∈ Mat(ℎ, p−cA

[v]
R ). By

the de�nition of B+R,rig we have that '−1(Y ), '−1(Z ) ∈ Mat(ℎ,B+R,rig). Since B+R,rig ⊂ B[v]R (see Lemma
2.21), from [Ber02, Corollaire 2.20] we get that there exists m ∈ ℕ such that '−1(Y ), '−1(Z ) ∈
Mat(ℎ, p−mA

[w]
R ) for all w ≥ v. Next, we know that '−1(A[v]

R ) = A[pv]
R . Therefore, by induction over

n ∈ ℕ and using the equation A = '−1(YAZ ), we get that A ∈ Mat(ℎ, p−c−2mnA
[pnv]
R ). Now using

Lemma 2.24 with k = 2m, we have that ⋂n∈ℕ p−knA[pnv]
R ⊂ B+R,rig. Hence, we get the claim.

Following observation was used above:

Lemma 2.24. Let k ∈ ℕ>0. Then

⋂
n∈ℕ

p−knA(0,pnv]+
R = Ainf(R) and ⋂

n∈ℕ
p−knA[pnv]

R ⊂ B+R,rig.
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Proof. The proof essentially follows from the proof of [Ber02, Lemme 3.1]. Let x ∈ ⋂n∈ℕ p−knA(0,v]+
R .

Since x ∈ A(0,v]+
R , we can write x = ∑i∈ℕ pi[xi] uniquely and so we have pknx = ∑i∈ℕ pi+kn[xi]. Now

pknx ∈ A(0,pnv]+
R , so we get pnv�♭(xi) + i + kn ≥ 0, which implies that �♭(xi) ≥ − i+knpnv . The right hand

side of the latter inequality goes to 0 as n approaches +∞, therefore �♭(xi) ≥ 0 for each i ∈ ℕ, i.e.
x ∈ Ainf(R).

Next, let x ∈ ⋂n∈ℕ p−knA[pnv]
R . For each n ∈ ℕ, we can write x = an + bn with an ∈ p−knA

(0,pnv]+
R

and bn ∈ B+R,rig. By Lemma 2.22 (ii), we obtain that an − an+1 ∈ Binf(R), whereas we already have
that an − an+1 ∈ p−k(n+1)A(0,pnv]+

R . So this implies an − an+1 ∈ p−k(n+1)Ainf(R) and therefore, up to
modifying an+1 by an element of p−k(n+1)Ainf , we can assume that an = an+1 = a. This implies that
a ∈ ⋂n∈ℕ p−knA(0,pnv]+

R = Ainf(R), hence x ∈ B+R,rig.

The following statement will be useful for the proof of Lemma 3.12:

Corollary 2.25. Let ℎ ∈ ℕ and matrices A ∈ Mat(ℎ,B†) and Y , Z ∈ Mat(ℎ,B+) such that '(A) = YAZ ,
then A ∈ Mat(ℎ,B+).

Proof. The proof essentially follows from the proof of [Ber04, Corollaire I.4.3]. From Proposition
2.23 we have that A ∈ Mat(ℎ,B+R,rig). So we only need to show that B† ⋂B+R,rig = B+. But this follows
from the fact that B†R ⋂B+R,rig = Binf(R) and B† ⋂Binf(R) = B+ (see Lemma 2.22).

2.3. Rings of analytic functions

Recall that R0 is the p-adic completion of an étale algebra over W {X, X −1}, i.e. we wrote

R0 ∶= W {X, X −1}{Z1,… , Zs}/(Q1,… , Qs),

with Qi ∈ W {X, X −1}{Z1,… , Zs} for 1 ≤ i ≤ s, some multivariate polynomials such that
det (

)Qi
)Zj )1≤i,j≤s is invertible in R0. Next, we de�ned R□ ∶= OK{X, X −1} and using the de�nition

of R0, we set
R ∶= R□{Z1,… , Zs}/(Q1,… , Qs),

so that R□ provides a system of coordinates for R and the latter is totally rami�ed at the prime ideal
(p) ⊂ R0.

Let r+$ and r$ denote the algebrasOF [[X0]] andOF [[X0]]{X −1
0 }. SendingX0 to$ induces a surjective

homomorphism r+$ � OK . Let R+$,□ denote the completion of OF [X0, X , X −1] for the (p, X0)-adic
topology. Sending X0 to $ induces a surjective homomorphism R+$,□ � R□, whose kernel is generated
by P = P$(X0). This provides a closed embedding of Spf R□ into a formal scheme Spf R+$,□, which
is smooth over OF . Since R is étale over R□, we have that det ( )Qi)Zj ) is invertible in R. As Qj ’s have
coe�cients in W {X, X −1}, we can set R+$ to be the quotient by (Q1,… , Qs) of the completion of
R+$,□[Z1,… , Zs] for the (p, X0)-adic topology. Again, we have that det ( )Qi)Zj ) is invertible in R+$ (since it
is modulo P ). Hence, R+$ is étale over R+$,□ and smooth over OF . Sending X0 to $ induces a surjective
homomorphism R+$ � R whose kernel is generated by P = P$(X0). This can be summarized with a
commutative diagram of rings
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Spf R Spf R+$

Spf R0

Spf W (�){X, X −1}

Spf R□ Spf R+$,□,

where the vertical arrows are étale extensions and the horizontal maps are obtained by sending
X0 ↦ $ and the rest are natural maps. Since P = X e

0 mod p, we have

R+$[ P
k

k! ]k∈ℕ = R+$[
X k
0

[k/e]!]k∈ℕ.

So, we set
RPD
$ ∶= p-adic completion of R+$[ P

k

k! ]k∈ℕ.

In summary, we have a diagram of formal schemes where the horizontal arrows are closed embed-
dings into formal schemes smooth over OF , obtained by sending X0 ↦ $ on the level of algebras,

Spf RPD
$

Spf R Spf R+$

Spf R□ Spf R+$,□

Spf OK Spf r+$

Spf OF .

Let Ωq
R denote the p-adic completion of the modules of di�erential of R relative to ℤ. We have that

Ω1R0 =
d
⨁
i=1

R0 d logXi and Ωk
R0 =

k
⋀Ω1R0 ,

and the cokernel of the natural map Ωk
R0

⨂R0 R → Ωk
R is killed by a power of p (see Proposition 1.1).

In particular,

Ωk
R[ 1p ] =

k
⋀(

d
⨁
i=1

R[ 1p ] d logXi).

Moreover, since R+$ is étale over R+$,□, for S = R+$ , R+$,□ we have that

Ω1S = S
dX0
1+X0

⨁(
d
⨁
i=1

S d logXi).
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De�nition 2.26. For 0 < u ≤ v de�ne the rings,

R(0,v]+$ ∶= p-adic completion of R+$[
p⌈vk/e⌉

X k
0

]k∈ℕ, R(0,v]$ ∶= R(0,v]+$ [ 1
X0 ],

R[u]$ ∶= p-adic completion of R+$[
X k
0

p⌊uk/e⌋ ]k∈ℕ,

R[u,v]$ ∶= p-adic completion of R+$[
X k
0

p⌊uk/e⌋ ,
p⌈vk/e⌉

X k
0

]k∈ℕ,

R$ ∶= p-adic completion of R+$[ 1
X0 ].

We will write RF$ for F ∈ { , +, PD, [u], (0, v]+, [u, v]} and for R = OK , we write rF$ instead. Going
from R+$ to RF$ involves only the arithmetic variable X0, so we have isomorphisms

RF$ = rF$ ⨂̂r+$R
+
$ ,

where ⨂̂ is the completion of tensor product for the p-adic topology.

De�nition 2.27. We de�ne a �ltration on the rings in De�nition 2.26 by order of vanishing at
X0 = $ = �pm − 1.

(a) Let S = R(0,v]+$ (v < 1), R(0,v]$ (v < 1), R[u,v]$ (1 ∉ [u, v]) or R$ . As P is invertible in S[ 1p ], we put
the trivial �ltration on S.

(b) Let S be the placeholder for all other rings occuring in De�nition 2.26, such that P is not
invertible in S[ 1p ]. Then there is a natural embedding S → R[ 1p ][[P]] by completing S[ 1p ]
for the P-adic topology. We use this embedding to endow S with the natural �ltration FilkS =
S ⋂ PkR[ 1p ][[P]] for k ∈ ℤ.

Next, we note a lemma that will be useful in Chapter 5.

Lemma 2.28 ([CN17, Lemma 2.6]). Let r ∈ ℕ.

(i) For f ∈ RPD
$ we can write f = f1 + f2 with f1 ∈ FilrRPD

$ and f2 ∈ 1
(r−1)!R

+
$ .

(ii) For f ∈ R[u]$ we can write f = f1 + f2 with f1 ∈ FilrR[u]$ and f2 ∈ 1
p⌊ru⌋R

+
$ .

Proof. First we note that from the de�nitions an element f ∈ rPD
$ (resp. f ∈ r [u]$ ) can be written

(uniquely) in the form f = f + + f − with f + ∈ Filr rPD
$ and f − ∈ 1

(r−1)!OF [X0] (resp. f − ∈ 1
p⌊ru⌋OF [X0]) of

degree ≤ re − 1. Next, from the equality RPD
$ = rPD

$ ⨂̂r+$R
+
$ (resp. RPD

$ = r [u]$ ⨂̂r+$R
+
$), it follows that we

can write any f ∈ RPD
$ as f1 + f2 with f1 ∈ FilrRPD

$ and f2 ∈ 1
(r−1)!R

+
$ and we have the same statement

for R[u]$ with f1 ∈ FilrR[u]$ and f2 ∈ 1
p⌊ru⌋R

+
$ .

Notation. Let S be a ℤp-algebra. A homomorphism f ∶ M → N between two S-modules is said to
be a pn-isomorphism, for some n ∈ ℕ if the kernel and the cokernel of the map f are killed by pn.

Lemma 2.29 ([CN17, Lemma 2.11]). Let t ∶= pm log(1 + X0). If p−1
p ≤ u ≤ v

p < 1 < v and 1
p < u, then

(i) t belongs to pr [u,v]$ and to pr [u,v/p]$ ;

(ii) t
P ∈ p

−1r [u,v]$ and t ∈ p−2r [u,v/p]$ ;

(iii) x ↦ trx induces a pr -isomorphism r [u,v]$ ≃ Filr r [u,v]$ and a p2r -isomorphism r [u,v/p]$ ≃ r [u,v/p]$ .

We note an important fact from [CN17], the implicit function theorem, which would help us lift
certain maps over étale extensions. Let � ∶ R+$,□ → Λ be a continuous morphism of topological
rings. We have R+$ = R+$,□{Z}/(Q), where Z = (Z1,… , Zs) and Q = (Q1,… , Qs). We would like to
extend � to R+$ which amounts to solving the equation Q�(Y ) = 0 in Λ, where if F ∈ R+$,□{Z}, we
note F � ∈ Λ{Z} the series obtained by applying � to the coe��cients of F . Then,
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Proposition 2.30 ([CN17, Proposition 2.1 & Remark 2.2]). The equation Q�(Y ) has a unique solution
in Z� + I s .

Proof. Let J = (
)Qi
)Zj )1≤i,j≤s ∈ Mat(s, R+$,□{Z1,… , Zs}). Suppose that there exists an ideal I ⊂ Λ such

that Λ is complete with respect to the I -adic topology, Z� = (Z1,�,… , Zs,�) ∈ Λs and H� ∈ Mat(s,Λ),
such that the entries of Q�(Z�) belong to I . Now, since R+$ is étale over Λ, so det J is invertible in R+$,□
and therefore there exists H ∈ Mat(s, R+$,□{Z1,… , Zs}) such that HJ − 1 has its entries in (Q1,… , Qs).
But Q�(Z�) has coordinates in the ideal I , therefore H �J � − 1 has entries in I . Thus, we can apply
[CN17, Proposition 2.1], by taking (in the notation of loc. cit.) z = 1 and H� = H �(Z�). Hence, the
equation Q�(Y ) has a unique solution in Z� + I s .

2.3.1. Cyclotomic Frobenius
De�nition 2.31. Over R+$,□ we can de�ne a lift of the absolute Frobenius on R+$,□/p by

' ∶ R+$,□ ⟶ R+$,□
X0 ⟼ (1 + X0)p − 1
Xi ⟼ X p

i for i ≤ i ≤ d,

which we will call the (cyclotomic) Frobenius. Clearly, '(x) − xp ∈ pR+$,□ for x ∈ R+$,□. Using
Proposition 2.30 with Λ1 = R+$,□, Λ′1 = Λ2 = R+$ , � = ', I = (p) and Z� = Z p , we can extend the
Frobenius homomorphism to ' ∶ R+$ → R+$ . By continuity, the Frobenius endomorphism ' admits
unique extensions

RPD
$ ⟶ RPD

$ , R[u]$ ⟶ R[u]$ , R(0,v]+$ ⟶ R(0,v/p]+$ , R[u,v]$ ⟶ R[u,v/p]$ and R$ ⟶ R$ .

Explicitly, we can write

rPD
$ =

{
f = ∑

k∈ℕ
ak

X k
0

⌊k/e⌋! , such that ak ∈ OF goes to 0 as i → ∞
}
,

r [u]$ =
{
f = ∑

k∈ℕ
ak

X k
0

p⌊
ku
e ⌋
, such that ak ∈ OF goes to 0 as i → ∞

}
.

Let S = rPD
$ or r [u]$ . Denote by �X0 ∶ S → ℕ ∪ {+∞} the valuation relative to X0, i.e. if f = ∑ akX k

0 ,
then �X0(f ) = inf {i ∈ ℕ, ai ≠ 0}. For N ∈ ℕ, we de�ne SN = {f ∈ S, �X0(f ) ≥ N}. De�ne RPD

$,N and
R[u]$,N as the topological closures of rPD

$,N ⨂r+$ R
+
$ ⊂ RPD

$ and r [u]$,N ⨂r+$ R
+
$ ⊂ R

[u]
$ , respectively.

Lemma 2.32. (i) Let N ∈ ℕ>0, s ∈ ℤ and N ≥ se (resp. N ≥ se/u(p − 1)), then 1 − p−s' is bijective
on RPD

$,N (resp. R
[u]
$,N ).

(ii) The maps

1 − ' ∶ RPD
$ /R+$ ⟶ RPD

$ /R+$ ;
1 − ' ∶ R[u]$ /R+$ ⟶ R[u]$ /R+$ ,

are bijective.

Proof. For (i), see [CN17, Proposition 3.1]. In (ii), we will only treat the case of RPD
$ /R+$ , the other

case follows similarly (an application of (i)). Write x ∈ RPD
$ as

x = ∑
k≥0

ak
X k
0

⌊k/e⌋! ,
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where ak ∈ R+$ goes to 0 as k → ∞. By (i), we know that the series of operators 1 + ' + '2 + ⋯
converge as an inverse to 1 − ', i.e. there exists y ∈ RPD

$ such that (1 − ')y = x − a0 ∈ RPD
$,1. Since

a0 ∈ R+$ , we get that 1 − ' is bijective on RPD
$ /R+$ .

2.3.2. The operator  
In this section we will de�ne a left inverse of the cyclotomic Frobenius ', which we will denote by
 . This operator is closely related to the operator de�ned in Proposition 2.13 (this will become clear
in §2.4). However, we prefer to give an explicit de�nition here. Let

u� = (1 + X0)�0X �1
1 ⋯X �d

d for � = (�0,… , �d ) ∈ {0, 1,… , p − 1}[0,d].

Remark 2.33. Note that R$ is X0-adically complete, therefore 1 + X0 is invertible in it. Moreover,
by de�nition X1,… , Xd are invertible in R$ , therefore u� is invertible in R+$ for � = (�0,… , �d ) ∈
{0, 1,… , p − 1}[0,d].

Also, set
)0 = (1 + X0)

d
dX0

, )i = Xi
d
dXi

for 1 ≤ i ≤ d.

Therefore, for 0 ≤ i ≤ d we have

)iu� = �iu� and '(u� ) = up� .

Lemma 2.34 ([CN17, Proposition 2.15]). (i) Any x ∈ R$ /p can be written uniquely as x =
∑� c� (x), with )i ◦ c� (x) = �ic� (x) for 0 ≤ i ≤ d .

(ii) There exists a unique x� ∈ R$ /p such that c� (x) = x
p
�u� .

(iii) If x ∈ R+$ /p, then c� (x) ∈ R+$ /p.

Proof. Let S = R$ /p, S+ = R+$ /p. Then )i()i − 1)⋯ ()i − (p − 1)) is identically 0 on R$,□/p, hence also
on S by étaleness. It follows that )i is diagonalizable for all i and since these operators commute
pairwise, we can decompose S and S+ into the direct sum of common eigenspaces. This shows (i)
and (iii). Now, di�erentials of the elements in the set {1 + X0, X1,… , Xd} form a basis of the module
of di�erentials of R$,□/p, hence also of S, since it is obtained as the completion of an étale algebra
over R$,□/p. From [Tyc88, §III, Theorem 1], it follows that {1 +X0, X1,… , Xd} is a p-basis of S which
can be rephrased by saying that any element x of S can be written uniquely as x = ∑� x

p
�u� . Since

)i(x
p
�u� ) = �ix

p
�u� for 1 ≤ i ≤ d , this proves (ii).

Proposition 2.35. (i) Any x ∈ R$ can be written uniquely as x = ∑� c� (x), with c� (x) ∈ '(R$)u� .

(ii) If x ∈ R+$ and if c� (x) = '(x� )u� , then c� (x) ∈ R+$ for all � and

)ic� (x) − �ic� (x) ∈ pR+$ for 0 ≤ i ≤ d.

(iii) For x ∈ R(0,v]+$ , we have c� (x) ∈ R(0,v]+$ for all � .

Proof. (i) and (ii) follow from the lemma above. (iii) follows from [CN17, Proposition 2.15].

De�nition 2.36. De�ne the left inverse  of the Frobenius ' on S = R+$ or S = R$ , by the formula

 (x) = '−1(c0(x)).

Since R$ is an extension of degree pd+1 of '(R$) with basis the u� ’s and since '(u� ) = up� for all � ,
we have

TrR$ /'(R$ )(u�) = 0 if � ≠ 0,
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and we can de�ne  intrinsically, by the formula

 (x) ∶= 1
pd+1'

−1 ◦ TrR$ /'(R$ )(x).

Note that  is not a ring morphism; it is a left inverse to ' and more generally, we have  ('(x)y) =
x (y). Also,

)i ◦ ' = p' ◦ )i and )i ◦  = p−1 ◦ )i for i = 0, 1,… , d.

The �rst equality can be obtained by checking on the basis elements u� . For the second equality,
note that for x ∈ R$ and in the notation of Proposition 2.35 we have

)i('(x� )u� ) = )i ◦ '(x� )u� + '(x� ))i(u� ) = (p' ◦ )i(x� ) + �i'(x� ))u� = '(p)i(x� ) + �ix� )u� .

Applying  to the latter expression we note that it is nonzero only if � = 0, in which case we get
that  ◦ )i ∈ pR$ for all 0 ≤ i ≤ d , the equality follows from this.

For any k ∈ ℕ, we can write X k
0 = ∑p−1

j=0 '(aj,k)(1 + X0)j for aj,k ∈ R+$ . Therefore, by continuity

Lemma 2.37. (i) The explicit formula for  extends to maps R[u]$ → R[pu]$ and R[u,v]$ → R[pu,pv]$ .

(ii) For the same reasons, the maps x ↦ c� (x) also extend and lead to decompositions S = ⨁� S� ,
where S� = Su� for S = RF$ with F ∈ {, +, [u], (0, v]+, [u, v]}. Since  (x) = '−1(c0(x)), we have

S =0 = ⨁
�≠0

S� .

Lemma 2.38. If S = RF$ for F ∈ { , +, [u], (0, v]+, [u, v]}, then for 0 ≤ i ≤ d the operator )i on SF� /pSF�
is given by multiplication by �i , where �i is the i-th entry in � = (�0,… , �d ).

Proof. If F ∈ { , +}, this is part of Proposition 2.35. For F ∈ {[u], (0, v]+, [u, v]}, elements of SF� are
those of the form ∑k∈ℤ prkX k

0 xk , where xk ∈ S+ goes to 0 when k → +∞ and rk is determined by
“F”. Let x = ∑k∈ℤ prkX k

0 xk . For 1 ≤ i ≤ d , we have

)i(X k
0 ak) − �iX

k
0 ak = X

k
0 ()i(ak) − �iak) ∈ pS

+,

by Proposition 2.35.
For i = 0, �rst we look at S[u] and write

x = ∑
k∈ℕ

prkxk
p−1

∑
j=0

'(aj,k)(1 + X0)j for aj,k ∈ S+.

Then

c� (x) =
p−1

∑
j=0

∑
k∈ℕ

prk'(aj,k)c(�0−j,�1,⋯,�d )(xk)(1 + X0)
j ,

where �0 − j is to be understood as its representative modulo p between 0 and p − 1. Since
)0(c(�0−j,�1,⋯,�d )(xk))− (�0 − j)c(�0−j,�1,⋯,�d )(xk) ∈ pS

+ and )0 ◦' = p' ◦)0, we get the desired conclusion
for S[u]. Next, for S(0,v]+ using the result for S we get that )0(x) − �0x ∈ pS ∩ S(0,v]+ = pS(0,v]+. Finally,
combining the results for S[u] and S(0,v]+ we get the conclusion for S[u,v].

Next, we note a lemma which will be useful in the proof of the next claim and Proposition 5.41.

Lemma 2.39. Let x ∈ R =0$ , then X k
0  (x) =  ('(X0)kx) for k ∈ ℤ.

Proof. Note that it is enough to prove the statement for k = 1. Indeed, k ≥ 2 case immediately follows
from this, whereas for k = −1 we observe that since X0 is invertible in R$ , we have X0 ('(X −1

0 )x) =
 ('(X0)'(X −1

0 )x) =  (x).
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Now, to show the case k = 1, we recall that '(X0) = (1 + X0)p − 1. Next, from Proposition 2.35 let
us write x = ∑� c� , then we have  (x) = '−1(c0). Now it follows that,

 ('(X0)x) =  (((1 + X0)p − 1)x) =  ((1 + X0)px) −  (x) = (1 + X0)'−1(c0) − '−1(c0) = X0 (x),

as desired.

Proposition 2.40 ([CN17, Proposition 2.16]). Let v < p.

(i)  (X
−pN
0 R(0,v/p]+$ ) ⊂ X −N

0 R(0,v]+$ ;

(ii) If � = pm, then X −�
0 R(0,v]+$ is stable under  ;

(iii) The natural map
⨁
�≠0

'(R(0,v]+$ )ucycl,� ⟶ (R
(0,v/p]+
$ )

 =0

is an isomorphism.

Proof. (i) follows from Proposition 2.35 (ii) and (iii), and taking into account the facts that
 ('(X0)−N x) = X −N

0  (x) and '(X0)
X p
0

is a unit in R(0,v/p]+$ . (ii) is an immediate consequence of (i)

and the inclusion R(0,v]+$ ⊂ R(0,v/p]+$ . Finally, if x ∈ (R
(0,v/p]+
$ )

 =0, using Proposition 2.35 (ii), we can
write x = ∑�≠0 '(x� )u� with '(x� )u� ∈ R

(0,v/p]+
$ . But, u� is invertible in R(0,v/p]+$ (see Remark 2.33),

hence '(x� ) ∈ R(0,v/p]+$ . From [CN17, Lemma 2.14], we have that if x� ∈ R$ such that '(x� ) ∈ R(0,v/p]+$ ,
then x� ∈ R(0,v]+$ . This gives us (iii).

2.4. Cyclotomic embeddings

In this section, we will describe the (cyclotomic) embeddings of RF$ into various period rings discussed
in Chapter 1 and previous sections. De�ne an embedding

�cycl ∶ R+$,□ ⟶ Ainf(R)
X0 ⟼ �m = '−m(� ),
Xi ⟼ [X ♭

i ] for 1 ≤ i ≤ d.

Lemma 2.41. The map �cycl has a unique extension to an embedding R+$ → Ainf(R) such that � ◦ �cycl
is the projection R+$ → R.

Proof. We can apply Proposition 2.30 with Λ1 = R+$,□, Λ2 = Ainf(R), Λ′1 = R+$ , � = �cycl, I = (� ) and
Z� = ([Z ♭

1 ],… , [Z ♭
s ]). Next, from de�ntions we already have that � ◦ �cycl ∶ R+$,□ � R□ coincides with

the canonical projection and R+$ is étale over R+$,□, hence the second claim follows.

This embedding commutes with Frobenius on either side, i.e. �cycl ◦ 'cycl = ' ◦ �cycl. By continuity,
the morphism �cycl extends to embeddings

RPD
$ � Acris(R), R[u]$ � A[u]

R , R(0,v]+$ � A(0,v]+
R , R[u,v]$ � A[u,v]

R and R$ � AR .

Denote by AFR the image of RF$ under �cycl. These rings are stable under the action of GR . Moreover,
this embedding induces a �ltration onAFR forF ∈ {+, PD, [u], [u, v], (0, v]+} and r ∈ ℤ (use De�nition
2.27).

Remark 2.42. From [CN17, §2.4.2], we have an inclusion of rings A[u′]
R ⊂ APD

R ⊂ A[u]
R for u ≥ 1

p−1 and
u′ ≤ 1

p .
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Lemma 2.43. For p−1
p ≤ u ≤ v

p < 1 < v, we have that
t
� is a unit in APD

K ⊂ A[u]
K ⊂ A[u,v]

K .

Proof. We can write the fraction

t
�
=
log(1 + � )

�
= ∑

k≥0
(−1)k �k

k+1 .

Formally, we can write

�
t
=

�
log(1 + � )

= 1 + b1� + b2�2 + b3�3 +⋯ ,

where �p(bk) ≥ − k
p−1 for all k ≥ 1. Since � = (1 + �m)p

m − 1, we get that � ∈ (p, �p
m

m )A+
K (as m ≥ 1). By

induction over k, we can easily conclude that �k ∈ (p, �
pm
m )

kAPD
K . Using this, we can re-express the

series ∑k bk�k as a power series in �m, written as ∑i ci� im. We need to check that this re-expressed
series converges in APD

K . To do this, we collect the terms with coe�cients having the smallest
p-adic valuation for each power of �p

m

m in the re-expressed series. For k ≥ 1, bk has the smallest
p-adic valuation among the coe�cients of �p

mk
m , therefore it has the least p-adic valuation among

coe�cients of � im for pmk ≤ i < pm(k + 1). We write the collection of these terms as

∑
k≥1
(−1)k+1bk�p

mk
m = ∑

k≥1
(−1)k+1bk⌊

pmk
e ⌋! �p

mk
m

⌊pmk/e⌋! , (2.2)

and by the preeceding discussion it is su�cient to show that these coe�cients go to 0 as k goes to
+∞. Moreover, for (2.2) it would su�ce to check the estimate for k = (p − 1)j as j goes to +∞ (this
gets rid of the �oor function above). With the observation in Remark 2.44, we have

�p(bk⌊
pmk
e ⌋!) = �p(bk) + �p((pj)!) ≥ −

(p−1)j
p−1 + pj−sp(pj)

p−1 = j−sp(j)
p−1 = �p(j!),

which goes to +∞ as j → +∞. Hence, �t converges in APD
K and is an inverse to t

� .

The following elementary observation was used above,

Remark 2.44. Let n ∈ ℕ, so we can write n = ∑k
i=0 nipi for some k ∈ ℕ, where 0 ≤ ni ≤ p − 1 for

0 ≤ i ≤ k. Let us set sp(n) = ∑k
i=0 ni . Then we have

�p(n!) = ∑
j≥1

⌊ n
pj ⌋ = ∑

j≥0
⌊
∑k
i=0 nipi
pj ⌋ =

k
∑
j=1

k
∑
i=j

nipi−j

=
k
∑
i=1

ni
i

∑
j=1

pj =
k
∑
i=1

ni p
i−1
p−1 =

n−sp(n)
p−1 .

Also, note that we have sp(pn) = sp(n) for any n ∈ ℕ.

Next, we prove some claims for the action of ΓR on the analytic rings introduced above. These
results will be useful when studying Koszul complexes computing Lie ΓR-cohomology in §4.3.

Lemma 2.45. Let k ∈ ℕ and i ∈ {0, 1,… , d}. Then (i − 1)kAFR ⊂ (pm, �
pm
m )

kAFR for F ∈ {+, PD, [u]};

Proof. We will only consider the case of APD
R as the estimates in other cases is easier. First, let i = 0.

Then we have

(0 − 1)�m = (1 + �m)((1 + �m)� (0)−1 − 1) = (1 + �m)((1 + �m)p
ma − 1)

= (1 + �m)((1 + � )a − 1) = (1 + �m)(a� + a(a−1)
2! �2 + a(a−1)(a−2)

3! �3 +⋯ ) = �x,
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for some x ∈ A+
K . Since � = (1+�m)p

m −1 = �p
m

m +pm�p
m−1

m ⋯+pm�m, we have that � ∈ (pm, �
pm
m )A+

K

(recall that we have m ≥ 1), therefore (0 − 1)�m ∈ (pm, �
pm
m )A+

K . Next, we observe that

(0 − 1)�p
m

m = 0(�m)p
m
− �p

m

m = (�x + �m)p
m
− �p

m

m

= �p
m
xp

m
+⋯ + pm�x�p

m−1
m ∈ (pm, �p

m

m )
2A+

K .

Therefore, (0 − 1)2�m ∈ (p, �
pm
m )

2A+
K . Proceeding by induction on k ≥ 0, we conclude that

(0 − 1)k�m ⊂ (0 − 1)(pm, �p
m

m )
k−1A+

K ⊂ (pm, �p
m

m )
kA+

K .

Now any f ∈ APD
K can be written as f = ∑n∈ℕ fn

�nm
⌊n/e⌋! such that fn ∈ OF goes to 0 as n → +∞. So we

want to show that (0 − 1)k �nm
⌊n/e!⌋ ⊂ (pm, �

pm
m )

kAPD
K . For notational convenience, we take n = je for

some j ∈ ℕ and see that

(0 − 1)� jem
j!

=
0(�m)je − � jem

j!
=
(�x + �m)je − � jem

j!
=
(�x)je + je(�x)je−1�m +⋯ + je(�x)� je−1m

j!

=
(�x)je

j!
+ �

� je−1m z
(j − 1)!

∈
1
j!(

pm, �p
m

m )
jeAPD

K + (pm, �p
m

m )APD
K ⊂ (pm, �p

m

m )APD
K .

Proceeding by induction on k ≥ 0, we conclude that

(0 − 1)kAPD
K ⊂ (0 − 1)(pm, �p

m

m )
k−1APD

K ⊂ (pm, �p
m

m )
kAPD

K .

Next, for i ∈ {1,… , d} we have (i − 1)[X ♭
i ] = �[X ♭

i ] ∈ (pm, �
pm
m )A+

R and (i − 1)([X ♭
i ]−1) =

−� (1 + � )−1[X ♭
i ]−1 ∈ (pm, �

pm
m )A+

R . Proceeding by induction on k ≥ 0, we conclude that

(i − 1)kA+
R ⊂ (i − 1)(p

m, �p
m

m )
k−1A+

R ⊂ (pm, �p
m

m )
kA+

R .

Since any f ∈ APD
R can be written as f = ∑j∈ℕ fj � jm

⌊j/e⌋! such that fj ∈ A+
R goes to 0 as j → +∞, from

the discussion for APD
K and A+

R , we conclude that

(i − 1)kAPD
R ⊂ (i − 1)(pm, �p

m

m )
k−1APD

R ⊂ (pm, �p
m

m )
kAPD

R .

The next claim will be useful in analyzing Koszul complexes for ΓR-cohomology in Proposition
5.41 and Proposition 5.46.

Lemma 2.46. Let k ∈ ℕ and i ∈ {0, 1,… , d}. Then (i − 1)kAFR ⊂ (pm, �
pm
m )

kAFR for F ∈
{ , (0, v]+, [u, v]}.

Proof. First, we observe that

0(�m) = (1 + �m)� (0) − 1 = � (0)�m(1 +
� (0)−1

2 �m +⋯) = � (0)�mf ,

where � (0) = exp(p) ∈ ℤ∗
p and f is a unit in A+

K . From the expression above we also have that
1 − � (0)f = pmz for some z ∈ A+

K . So we can write

(0 − 1)�−1m = 0(�m)−1 − �−1m = (� (0)f �m)−1 − �−1m =
1 − � (0)f
� (0)f �m

=
pmz

� (0)f �m

Now from the de�nitions we know that p
�m ∈ A(0,v]+

K , therefore (0 − 1) p�m ∈ (pm, �
pm
m )A

(0,v]+
K .
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Proceeding by induction on k ≥ 0, we conclude that

(0 − 1)k p
�m ⊂ (0 − 1)(pm, �p

m

m )
k−1A(0,v]+

K ⊂ (pm, �p
m

m )
kA(0,v]+

K .

From Lemma 2.45 we already have that (i − 1)kA+
R ∈ (pm, �

pm
m )

kA+
R for i ∈ {1,… , d}. Therefore, we

conclude that
(0 − 1)kA(0,v]+

R ⊂ (pm, �p
m

m )
kA(0,v]+

K .

The analysis of A[u,v]
R and AR follow in a similar manner (note that �m is invertible in AR).

Finally, we show a claim which will be useful for changing the annulus of convergence in §5.2.

Lemma 2.47 ([CN17, Lemma 2.35]). If v ≤ p, then

(i) �−p
m−1

m �1 is a unit in A(0,v]+
R ;

(ii) p is divisible by � ⌊(p−1)pm−1/v⌋
m , hence also by � (p−1)p

m−2

m ;

(iii) p2
�1 ∈ A(0,v]+

R and is divisible by � (2(p−1)−v)p
m−2

m ;

(iv) �
�1 ∈ (p, �

(p−1)pm−1
m )A

(0,v]+
R and is divisible by � (p−1)p

m−2

m ;

(v) Let v = p − 1 for p ≥ 3 and v = 3
2 for p = 2, then �

−pm
m � is a unit A(0,v/p]+

R and p
� ∈ A(0,v/p]+

R .

Proof. We can work in r (0,v]+$ , in which case �m becomes X0 and �1 becomes (1 + X0)p
m−1 − 1 and

we are looking at the annulus 0 < �p(T ) ≤ v
pm−1(p−1) on which (1 + X0)p

m−1 − 1 has no zero and
�p((1 + X0)p

m−1 − 1) = pm−1�p(X0) since v < p. This shows (i). The claim in (ii) comes from the
de�nition of R(0,v]+$ . (iii) follows from (i) and (ii) since 2⌊ (p−1)p

m−1

v ⌋ − pm−1 ≥ (2(p − 1) − v)pm−2. The
claim in (iv) follows from (i), (ii) and the identity

�
�1

= �p−11 + p�p−21 +⋯ + p.

For (v), replacing � by (1 + X0)p
m − 1, we see that �p((1 + X0)p

m − 1) = pm�p(X0). Using arguments
similar to (i) gives us �rst part of (v). The second half of (v) follows from the �rst part and (ii) since
⌊
(p−1)pm−1
(p−1)/p ⌋ = pm.

2.5. Fat period rings
In this section we will introduce fat rings and give a version of PD-Poincaré lemma. The Poinaré
lemma will be useful for relating complexes computing Galois cohomology and syntomic complex
with coe�cients in Chapter 5. Let S and Λ be p-adically complete �ltered W -algebras, where W is
the ring of integers of F . Let � ∶ S → Λ be a continuous injective morphism of �ltered W -algebras
and let f ∶ S ⨂Λ→ Λ be the morphism sending x ⨂ y ↦ �(x)y.

De�nition 2.48. Let SΛ denote the p-adic completion of the PD-envelope of S ⨂Λ → Λ with
respect to Ker f .

In the rest of this section we will take S = RF$ for F ∈ {PD, [u], [u, v]}.
Remark 2.49. (i) The ring SΛ is the p-adic completion of S ⨂Λ adjoined (x ⨂ 1 − 1⨂ �(x))[k], for

x ∈ S and n ∈ ℕ.

(ii) The morphism f ∶ S ⨂Λ→ Λ extends uniquely to a continuous morphism f ∶ SΛ→ Λ.
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(iii) We can �lter SΛ by de�ning FilrSΛ to be the topological closure of the ideal generated by
the products of the form x1x2∏(Vi − 1)[ki], where x1 ∈ Filr1S, x2 ∈ Filr2Λ and Vi = Xi ⨂ 1

1⨂ �(Xi ) for
1 ≤ i ≤ d such that r1 + r2 +∑ ki ≥ r .

Lemma 2.50 ([CN17, Lemma 2.36]). (i) Any element x ∈ SΛ can be uniquely written as

x = ∑
k∈ℕd+1

xk
d

∏
i=0
(1 − Vi)[ki],

with xk ∈ Λ for all k = (k0,… , kd ) ∈ ℕd+1 and xk → 0 when k → ∞.

(ii) An element x ∈ FilrSΛ, if and only if xk ∈ Filr−|k|Λ for all k ∈ ℕd+1.

We set Ω1 ∶= ℤ dX0
1+X0

⨁ (⨁d
i=1ℤ

dXi
Xi ) and Ωk ∶= ⋀k Ω1. Therefore, we have Ωk

SΛ/Λ = SΛ⨂Ωk . We
�lter the de Rham complex of SΛ by subcomplexes

FilrΩ∙SΛ/Λ ∶ FilrSΛ⟶ Filr−1SΛ⨂Ω1 ⟶ Filr−2SΛ⨂Ω2 ⟶ ⋯ .

Let D be a �nitely generated �ltered Λ-module. We set Ξ ∶= SΛ⨂Λ D and de�ne a �ltration on
Ξ by FilrΞ ∶= ∑a+b=r FilaSΛ⨂̂ΛFilbD. Then Ξ is a �nitely generated �ltered SΛ-module equipped
with an integrable connection ) ∶ Ξ→ Ξ⨂SΛ Ω1SΛ/Λ. For the di�erential operator on SΛ we have
)(FilkSΛ) ⊂ Filk−1SΛ, therefore the connection on Ξ satis�es Gri�ths transversality with respect to
the �ltration on it. We can �lter the de Rham complex with coe�cients in Ξ as

FilrΞ⨂Ω∙SΛ/Λ ∶ FilrΞ⟶ Filr−1Ξ⨂SΛ Ω1SΛ/Λ ⟶ Filr−2Ξ⨂SΛ Ω2SΛ/Λ ⟶ ⋯
= FilrΞ⟶ Filr−1Ξ⨂ℤ Ω1 ⟶ Filr−2Ξ⨂ℤ Ω2 ⟶ ⋯ .

Since FilrD = (FilrΞ))=0, we get a �ltered Poincaré Lemma:

Lemma 2.51 ([CN17, Lemma 2.37]). The natural map

FilrD ⟶ FilrΞ⨂Ω∙SΛ/Λ

is a quasi-isomorphism.

Proof. We have a natural injection � ∶ FilrD → FilrΞ. We give a contracting (Λ-linear) homotopy.
De�ne

ℎ0 ∶ FilrΞ⟶ FilrD
∑
j+k=r

x ⨂ a ⟼ ∑
l+m=r

x0 ⨂ a,

where x ∈ FiljSΛ, a ∈ FilkD and x0 is the projection to the 0-th component (see Lemma 2.50). Clearly,
ℎ0� = id . For q > 0, de�ne the map

ℎq ∶ Filj−qΞ⨂Ωq ⟶ Filj−q+1Ξ⨂Ωq−1

by the formula

x ⨂ a
d

∏
i=0
(Vi − 1)[ki]Vi1

dXi1
Xi1

⋀⋯⋀Viq
dXiq
Xiq

⟼

{
x ⨂ a∏d

i=0(Vi − 1)[ki+�ji1 ]Vi2
dXi2
Xi2

⋀⋯⋀Viq
dXiq
Xiq

if kj = 0 for 0 ≤ j ≤ i1,

0 otherwise.

We have �ℎ0 + ℎ1d = id and dℎq + ℎq+1d = id , as required.
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Next, let R1 = RF$ , R2 = AFR for F ∈ {PD, [u], [u, v]}, such that � = �cycl is an isomorphism of
�ltered W -algebras, and R3 = SΛ. We set X0,1 = X0, X0,2 = �m and for 1 ≤ i ≤ d , we set Xi,1 = Xi and
Xi,2 = [X ♭

i ]. Now for j = 1, 2, we set

Ω1j ∶= ℤ dX0,j
1+X0,j

d
⨁
i=1

ℤ dXi,j
Xi,j ,

and Ω13 ∶= Ω11 ⨁Ω12. For j = 1, 2, 3, let Ωk
i = ⋀k Ωj . Therefore, Ωk

Rj = Rj ⨂Ω
k
j .

Let Ξ be a �nitely generated �ltered R3-module equipped with a quasi-nilpotent integrable
connection satisfying Gri�ths transversality with respect to the �ltration. In other words, for each
k ∈ ℕ, we have a complex

FilkΞ⨂Ω∙3 ∶ FilkΞ
)R3−−−−→ Filk−1Ξ⨂Ω13

)R3−−−−→ Filk−2Ξ⨂Ω23
)R3−−−−→ ⋯ .

Now, let D1 = Ξ)2=0 be a �nitely generated R1-module equipped with a �ltration FilkD1 =
(FilkΞ))2=0, and a quasi-nilpotent integrable connection satisfying Gri�ths transversality with
respect to the �ltration, i.e. for k ∈ ℤ, we have

)R1 ∶ FilkD1 ⟶ Filk−1D1 ⨂ℤ Ω11,

In other words, we obtain a �ltered de Rham complex

FilkD1 ⨂Ω∙1 ∶ FilkD1
)R1−−−−→ Filk−1D1 ⨂Ω11

)R1−−−−→ Filk−2D1 ⨂Ω21
)R1−−−−→ ⋯ ,

Similarly, let D2 = Ξ)1=0 be a �nitely generated R2-module equipped with a �ltration FilkD2 =
(FilkΞ))1=0, and a quasi-nilpotent integrable connection satisfying Gri�ths transversality with
respect to the �ltration, i.e. for k ∈ ℤ, we have

)R2 ∶ FilkD2 ⟶ Filk−1D2 ⨂ℤ Ω12,

In other words, we obtain a �ltered de Rham complex

FilkD2 ⨂Ω∙2 ∶ FilkD2
)R2−−−−→ Filk−1D2 ⨂Ω12

)R2−−−−→ Filk−2D2 ⨂Ω22
)R2−−−−→ ⋯ ,

Proposition 2.52. The natural maps

FilkD1 ⨂Ω∙1 ⟶ FilkΞ⨂Ω∙3 ⟵ FilkD2 ⨂Ω∙2

are quasi-isomorphism of complexes.

Proof. Note that the claim is symmetric in R1 and R2, so we only prove the quasi-isomorphism for the
map on the left. Since we have FilkD1 = (FilkΞ))R2=0, from Lemma 2.51 we obtain that the sequence

0⟶ FilkD1 ⟶ FilkΞ
)R2−−−−→ Filk−1Ξ⨂Ω12

)R2−−−−→ ⋯ ,

is exact. We can extend the sequence above to a sequence of maps of de Rham complexes
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0 FilkD1 FilkΞ Filk−1Ξ⨂Ω12 ⋯

0 FilkD1 ⨂Ω11 FilkΞ⨂Ω11 Filk−1Ξ⨂ (Ω12 ⋀Ω11) ⋯

⋮ ⋮ ⋮ .

)R1

)R2

)R1

)R2

)R1

)R1

)R2

)R1

)R2

)R1

The contracting homotopy in the proof of Lemma 2.51 is R1-linear, so it extends as well, which shows
that the rows of the double complex above are exact. The total complex of the double complex

FilkΞ⨂Ω∙1
)R2−−−−→ Filk−1Ξ⨂ (Ω12 ⋀Ω∙1)

)R2−−−−→ ⋯ ,

is equal to the de Rham complex FilkΞ⨂Ω∙3. This allows us to conclude.

Lemma 2.51 and Proposition 2.52 play a key role in connecting syntomic complex with coe�cients
to “Koszul (', ))-complexes” (see Lemmas 5.26 & 5.27 and Proposition 5.30).





CHAPTER 3

Finite height crystalline representations

In [Fon90], Fontaine initiated a program on the classi�cation of p-adic representations of the absolute
Galois group of a p-adic local �eld by means of certain linear-algebraic objects attached to these
representations. One of the aspects of his program was to classify all p-adic representations of the
Galois group in terms of étale (', Γ)-modules. On the other hand, in [Fon82] Fontaine had already
proposed that representations “coming from geometry” give rise to another class of linear-algebraic
objects, for example in the case of good reduction, i.e. crystalline representations, these objects are
called �ltered '-modules. Therefore, it is a natural question to ask for crystalline representations:
Does there exist some direct relation between the �ltered '-module and the étale (', Γ)-module?
Fontaine explored this question in [Fon90] where he considered a certain class of (', Γ)-modules, for
which he called the associated representations to be of �nite height and examined their relationship
with crystalline representations. This line of thought was further explored by Wach [Wac96, Wac97],
Colmez [Col99], and Berger [Ber02, Ber04]. In particular, Wach gave a description of �nite height
crystalline representations in terms of (', Γ)-modules. In this chapter, we will recall some de�nitions
and results from these articles and construct analogous objects in the relative setting.

3.1. The arithmetic case

Recall that we have GF = Gal(F /F ) as the absolute Galois group of F , ΓF ∶= Gal(F∞/F ) and HF ∶=
Gal(F /F∞), where F∞ = ⋃n F (�pn ). From the theory of (', ΓF )-modules, we have a two dimensional
local ring AF given by the p-adic completion of W [[�]][ 1� ] and BF ∶= AF[ 1p ] which is a complete
discrete valuation �eld with uniformizer p and residue �eld �((� )), the �eld of Laurent series with
uniformizer � , the reduction of � modulo p.

Next, we have certain subrings A+
F ∶= W [[�]] ⊂ AF and B+F = A+

F[
1
p ] ⊂ BF , stable under the action

of ' and ΓF . Let V be a p-adic representation of GF , then D+(V ) = (B+ ⨂ℚp V )HF is a free module
over the local ring B+F of rank ≤ ℎ, equipped with a Frobenius-semilinear endomorphism ' and a
continuous and semilinear action of ΓF . Further, let D(V ) = (B⨂ℚp V )HF be the associated (', ΓF )-
module which is a BF -vector space of dimension ℎ = dimℚp V , equipped with a Frobenius-semilinear
endomorphism ' and a continuous and semilinear action of ΓF . We have a B+F -linear inclusion
D+(V ) ⊂ D(V ) compatible with the action of ' and ΓF . Similarly, if T ⊂ V is a free ℤp-lattice of rank
ℎ = dimℚp V , stable under the action of GF , then D+(T ) = (A+ ⨂ℤp T )HF is a free A+

F -module of rank
≤ ℎ, stable under the action of ' and ΓF (see [Fon90, §B.1.2]). Moreover, D(T ) = (A⨂ℤp T )HF is a

41
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free AF -module of rank ℎ equipped with a Frobenius-semilinear operator ' and a continuous and
semilinear action of ΓF , and we have D+(T ) ⊂ D(T ). We say that V is of �nite height if D(V ) has a
basis over BF made of elements of D+(V ).

Fontaine showed that V is of �nite height if and only if there exists a �nite free B+F -submodule
of D(V ) of rank ℎ = dimℚp V , stable under the operator ' (see [Fon90, §B.2.1] and [Col99, §III.2]).
Moreover, if T ⊂ V is a free ℤp-lattice as above and V of �nite height, then D+(T ) is a free A+

F -module
of rank ℎ = dimℚp V such that AF ⨂A+F D

+(T ) ≃ D(T ) (see [Fon90, Théorème B.1.4.2]).
For crystalline representations there exist submodules of D+(V ) over which the action of ΓF is

simpler. Finite height and crystalline representations of GF are related by the following result:

Theorem 3.1 ([Wac96], [Col99], [Ber02]). Let V be a p-adic representation ofGF of dimension d . Then
V is crystalline if and only if it is of �nite height and there exists r ∈ ℤ and a B+F -submodule N ⊂ D+(V )
of rank ℎ = dimℚp V , stable under the action of ΓF , such that ΓF acts trivially over (N /�N )(−r).

In the situation of Theorem 3.1, the module N is not unique. A functorial construction was given
by Berger:

Proposition 3.2 ([Ber04, Proposition II.1.1]). Let V be a positive crystalline representation of GF of
dimension ℎ, i.e. all Hodge-Tate weights of V are ≤ 0. Let T ⊂ V be a free ℤp-lattice of rank ℎ, stable
under the action of GF . Then there exists a unique A+

F -module N(T ) ⊂ D+(T ), which is free of rank ℎ,
stable under the action of ' and ΓF , and the action of ΓF is trivial over N(T )/�N(T ). Moreover, there
exists s ∈ ℕ such that � sD+(T ) ⊂ N(T ). Finally, if we set N(V ) ∶= B+F ⨂A+F N(T ), then N(V ) is a unique
B+F -submodule of D+(V ) satisfying analogous conditions.

Notation. For an algebra S admitting an action of the Frobenius and an S-module M admitting a
Frobenius-semilinear endomorphism ' ∶ M → M , we denote by '∗(M) ⊂ M the S-submodule
generated by the image of '.
Remark 3.3. (i) In Proposition 3.2, Berger uses the existence of N in Theorem 3.1 to de�ne

N(V ) ∶= D+(V ) ⋂N [ 1
'n−1(q)]n≥1, where q = '(� )

� . Using this one can take N(T ) ∶= N(V ) ⋂D(T )
and it can be shown to satisfy the desired properties.

(ii) Berger further showed that in the setup of Proposition 3.2, if we take s to be the maximum
among the absolute values of Hodge-Tate weights of V , then N(T )/'∗(N(T )) is killed by qs and
we have that � sA+ ⨂ℤp T ⊂ A+ ⨂A+F N(T ) (see [Ber04, Théorème III.3.1]).

De�nition 3.4. Let a, b ∈ ℤ with b ≥ a. A Wach module with weights in the interval [a, b] is an A+
F -

module or aB+F -moduleN which is free of rank ℎ, equipped with a continuous and semilinear action of
ΓF such that its action is trivial on N /�N and a Frobenius-semilinear operator ' ∶ N [ 1� ] → N [ 1

'(� )]
which commutes with the action of ΓF , '(�bN ) ⊂ �bN and �bN /'∗(�bN ) is killed by qb−a.

Remark 3.5. The de�nition of the functor N can be extended to crystalline representations of arbitrary
Hodge-Tate weights quite easily. Indeed, let V ∈ Repcris

ℚp
(GF ) with Hodge-Tate weights in the interval

[a, b] and let T ⊂ V a free ℤp-lattice of rank = dimℚp V , stable under the action of GF . Then
N(T ) = �−bN(T (−b))⨂ℤp ℤp(b) is a Wach module over A+

F with weights in the interval [a, b].
As it turns out, one can recover the crystalline representation from a given Wach module:

Proposition 3.6 ([Ber04, Proposition III.4.2]). The functor

N ∶ Repcris
ℚp
(GF )⟶ Wach modules over B+F
V ⟼ N(V ),

establishes an equivalence of categories with a quasi-inverse given by N ↦ (B⨂B+F N )
'=1. These

functors are compatible with tensor products, duality and preserve exact sequences. Moreover, for a
crystalline representation V , the map T ↦ N(T ) induces a bijection between ℤp-lattices inside V and
Wach modules over A+

F contained in N(V ).
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We have a natural �ltration on the Wach modules given as

FilkN(V ) = {x ∈ N(V ) such that '(x) ∈ qkN(V )} for k ∈ ℤ.

If V is positive crystalline, i.e. all its Hodge-Tate weights are ≤ 0, then for r ∈ ℕ we have

FilkN(V (r)) = Filk�−rN(V )(r) = �−rFilk+rN(V )(r).

Using this �ltration on N(V ), one can also recover the other linear algebraic object associated
to V , i.e. the �ltered '-module Dcris(V ): Let B+rig,F ⊂ F [[�]] denote the subring of convergent
power series over the open unit disc. Then we have Dcris(V ) ⊂ B+rig,F ⨂B+F N(V ) and this gives
Dcris(V ) = (B+rig,F ⨂B+F N(V ))

ΓF (see [Ber04, Proposition II.2.1]). Moreover, the induced map

Dcris(V )⟶ (B+rig,F ⨂B+F N(V ))/�(B+rig,F ⨂B+F N(V )) = N(V )/�N(V ),

is an isomorphism of �ltered '-modules (see [Ber04, Proposition III.4.4]).

3.2. The relative case
Recall that we �xed m ≥ 1 and we have K = Fm = F (�pm ). The element $ = �pm − 1 is a uniformizer
of K . We have X = (X1,… , Xd ) a set of indeterminates and we de�ned R0 to be the p-adic completion
of an étale algebra over W (�){X, X −1}; similarly, R to be the p-adic completion of an étale algebra
over R□ = OK{X, X −1} (de�ned using the same equations as in the de�nition of R0). For R0 and R,
we can use the (', Γ)-module theory discussed in §2.1, as well as the constructions in §2.3 and §2.4.
In particular, we will use rings rF$ and RF$ for F ∈ {+, PD}.

In the relative setting, we de�ne an analog of Wach modules using the formulation in De�nition
3.4:

De�nition 3.7. Let a, b ∈ ℤ with b ≥ a. A Wach module over A+
R0 (resp. B+R0 ) with weights in the

interval [a, b] is a �nite projective A+
R0-module (resp. B+R0-module) N , equipped with a continuous

and semilinear action of ΓR0 and a Frobenius-semilinear operator ' ∶ N [ 1� ] → N [ 1
'(� )] which

commutes with the action of ΓR0 , such that the action of ΓR0 is trivial on N /�N , '(�bN ) ⊂ �bN and
�bN /'∗(�bN ) is killed by qb−a.

Let V be an ℎ-dimensional p-adic representation of the Galois group GR0 . It is said to be of
�nite height if and only if the B+R0-module D+(V ) ∶= (B+ ⨂ℚp V )HR0 is a �nitely generated (', ΓR0)-
module such that BR0 ⨂B+R0

D+(V ) ≃ D(V ). Let T ⊂ V , be a GR-stable ℤp-lattice and we set D+(T ) ∶=
(A+ ⨂ℤp T )HR0 .

De�nition 3.8. A positive Wach representation is a p-adic representation V of GR0 admitting a free
ℤp-lattice T ⊂ V of rank ℎ, and satisfying the following conditions:

(i) V is a de Rham representation with non-positive Hodge-Tate weights (see §1.5 and [Bri08,
Chapitre 4]). Let s be the maximum among the absolute value of these Hodge-Tate weights.

(ii) There exists a �nite projective A+
R0-submodule N(T ) ⊂ D+(T ) of rank ℎ and let R′0 be the p-adic

completion of a �nite étale algebra over R0 such that
a) N(T ) is stable under the action of ' and ΓR0 , and AR0 ⨂A+R0

N(T ) ≃ D(T );

b) The A+
R0-module N(T )/'∗(N(T )) is killed by qs ;

c) The action of ΓR0 is trivial on N(T )/�N(T );
d) The A+

R′0
-module A+

R′0
⨂A+R0

N(T ) is free of rank ℎ.
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The module N(T ) is a Wach module associated to T with weights in the interval [−r1, 0] and we set
N(V ) ∶= N(T )[ 1p ] which satis�es properties analogous to (a)-(d) above.

For r ∈ ℤ, we set V (r) ∶= V ⨂ℚp ℚp(r) and T (r) ∶= T ⨂ℤp ℤp(r). We will call these twists as Wach
representations and de�ne

N(T (r)) ∶= 1
� r N(T )(r) and N(V (r)) ∶= 1

� r N(V )(r).

Since N(V ) and N(T ) are Wach modules with weights in the interval [−r1, 0], twisting by r gives us
Wach modules in the sense of De�nition 3.7 with weights in the interval [r − r1, r].
Remark 3.9. In De�nition 3.8 following Remark 3.3 (i), �rst one can de�ne Wach module for the
representation V and then consider the module N(T ) = N(V ) ⋂D(T ) associated to T . However, it is
not clear whether the latter module, de�ned in this fashion, is a projective A+

R0-module. Therefore,
we impose the condition on N(T ) to be projective, which is required in establishing several results
in this section.

De�nition 3.10. Let V and T as in De�nition 3.8 and r ∈ ℕ, then there is a natural �ltration on the
associated Wach modules, given by

FilkN(V (r)) ∶= {x ∈ N(V (r)), such that '(x) ∈ qkN(V (r))} for k ∈ ℤ,

and we set FilkN(T (r)) ∶= FilkN(V (r)) ⋂N(T (r)), where the intersection is taken inside N(V (r)).

Lemma 3.11. We have

FilkN(V (r)) = Filk�−rN(V )(r) = �−rFilk+rN(V )(r),

and similarly for FilkN(T (r)).

Proof. Note that the inclusion �−rFilk+rN(V )(r) ⊂ Filk�−rN(V )(r) is obvious. To show the converse
let �−rx ⨂ �⨂ r ∈ Filk�−rN(V )(r), with x ∈ N(V ) and �⨂ r being a basis of ℚp(r). Then we have that
'(�−rx ⨂ �⨂ r ) = q−r�−r'(x)⨂ �⨂ r ∈ qk�−rN(V )(r). Therefore, we obtain that '(x) ∈ qk+rN(V ), i.e.
x ∈ Filk+rN(V ).

Lemma 3.12. Let V be a positive Wach representation and T ⊂ V a ℤp-lattice as above. Then for
s = r1, we have � sA+ ⨂ℤp T ⊂ A+ ⨂A+R0

N(T ).

Proof. To show the claim, we can assume that N(T ) is free by base changing to the �nite étale
extension R′0 of R0. Then A+ ⨂A+

R′0
(A+

R′0
⨂A+R0

N(T )) = A+ ⨂A+R0
N(T ) is free. Since the discussion of

previous chapters hold for the p-adic completion of a �nite étale extension of R0 (see [Bri08, Chapitre
2] and [AI08, §2] for more on this), base changing to R′0 is harmless. So with a slight abuse of
notation, below we will replace R′0 obtained in this manner by R0 and assume N(T ) to be free of rank
ℎ over A+

R0 .
Rest of the proof follows the techniques of [Ber04, Théorème III.3.1]. First notice that we have

(A+ ⨂A+R0
N(T )) ⋂ pn(A+ ⨂ℤp T ) = pn(A+ ⨂A+R0

N(T )). To see this let {ei}1≤i≤ℎ be an A+
R0-basis of

N(T ), then since AR0 ⨂A+R0
N(T ) ≃ D(T ), it is also an AR0-basis of D(T ) and therefore an A-basis of

A⨂AR0
D(T ) = A⨂ℤp T . Now writing x ∈ (A+ ⨂A+R0

N(T )) ⋂ pn(A+ ⨂ℤp T ) in the chosen basis we
have x = ∑ℎ

i=1 xiei and therefore xi ∈ pnA. The claimed equality now follows from the fact that
pnA ⋂A+ = pnA+.

From the discussion above and the fact that B+ = A+[ 1p ], we conclude that showing � sA+ ⨂ℤp T ⊂
A+ ⨂A+R0

N(T ) is equivalent to showing that � sB+ ⨂ℚp V ⊂ B+ ⨂B+R0
N(V ). So let A ∈ Mat(ℎ,B+) be the

matrix obtained by expressing a basis of N(V ) in the basis of V . Also, let P ∈ Mat(ℎ,B+R0) be the
matrix of ' in the basis of N(V ). Then we have '(A) = AP and therefore '(� sA−1) = (qsP−1)(� sA−1).
The fact that N(V )/'∗(N(V )) is killed by qs implies that qsP−1 ∈ Mat(ℎ,B+R0), therefore from Corollary
2.25 we obtain that � sA−1 ∈ Mat(ℎ,B+). Hence, we conclude that � sB+ ⨂ℚp V ⊂ B+ ⨂B+R0

N(V ).
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Corollary 3.13. By taking HR0-invariants in Lemma 3.12 it follows that � sD+(T ) ⊂ N(T ).

Lemma 3.14. Let V be a Wach representation GR0 . The Wach module N(V ) over B+R0 is unique. Same
holds true for the A+

R0-module N(T ).

Proof. The argument carries over from the classical case [Ber04, p. 13]. First note that we can assume
that all Hodge-Tate weights of V are ≤ 0, since by de�nition the uniquess of Wach module for such
a representation is equivalent to uniqueness for all its Tate twists. In this case, let N1 and N2 be
two A+

R0-modules satisfying the conditions of De�nition 3.8 (the proof stays the same for N(V )). By
symmetry, it is enough to show that N1 ⊂ N2. Since we have � sN1 ⊂ � sD+(T ) ⊂ N2 (see Corollary
3.13) and N2 is �-torsion free, therefore for any x ∈ N1 there exists k ≤ s such that �kx ∈ N2 but
�kx ∉ �N2. Varying over all x ∈ N1 ⧵ �N1, we can take k ≤ s to be the minimal integer such that
�kN1 ⊂ N2. Since �kx ∈ N2 and ΓR0 acts trivially on N2/�N2, we have that (0 − 1)(�kx) ∈ �N2. So
we can write

(0 − 1)(�kx) = 0(�k)(0(x) − x) + (0(�k) − �k)x.

Since ΓR0 also acts trivially on N1/�N1 and �kN1 ⊂ N2, we see that 0(�k)(0(x) − x) ∈ �N2, therefore
(0(�k) − �k)x ∈ �N2, which means that (� (0)k − 1)�kx ∈ �N2. But � ∤ � (0)k − 1 if k ≥ 1, and
�kx ∉ �N2. Hence, we must have k = 0, i.e. N1 ⊂ N2.

The uniqueness of Wach modules helps us in establishing compatibility with usual operations:

Lemma 3.15. Let V and V ′ be two Wach representations of GR0 . Then we have that N(V ⨁V ′) =
N(V )⨁N(V ′) and N(V ⨂V ′) = N(V )⨂N(V ′). Similar statements hold for N(T ) and N(T ′).

Proof. We note similar to previous lemma that it is enough to show the statement for V and V ′

such that both representations have non-positive Hodge-Tate weights. By uniqueness of Wach
modules proved in Lemma 3.14, it is enough to show that direct sum and tensor product of Wach
representations are again Wach representations.

First, it is straightforward to see that N(T )⨁N(T ′) ⊂ D+(T ⨁ T ′) is a projective A+
R0-module

of rank rkℤp (T ⨁ T ′) such that AR0 ⨂A+R0
(N(T )⨁N(T ′)) ≃ D(T )⨁D(T ′). Similarly, we have

that N(T )⨂N(T ′) ⊂ D+(T ⨂ T ′) is a projective A+
R0-module of rank rkℤp (T ⨂ T ′) such that

AR0 ⨂A+R0
(N(T )⨂N(T ′)) ≃ D(T )⨂D(T ′).

Next, let s and s′ denote the maximum among the absolute value of Hodge-Tate weights of V and
V ′ respectively and let i ∶= max(s, s′). Then we see that (N(T )⨁N(T ′))/'∗(N(T )⨁N(T ′)) is killed
by qi and (N(T )⨂N(T ′))/'∗(N(T )⨂N(T ′)) is killed by qs+s′ . Further, ΓR0 acts trivially modulo � on
N(T )⨁N(T ′) and N(T )⨂N(T ′). This veri�es conditions (i), (ii) and (iii) for these modules. Hence,
we get the claim.

Corollary 3.16. Let V be a Wach representation of GR0 and T ⊂ V a GR0-stable free ℤp-lattice of rank
= dimℚp V . Then, Symk(V ) and ⋀k V are Wach representations for k ∈ ℕ.

Proof. Note that the compatibility with tensor products in Lemma 3.15 is enough to establish the
compatibility with symmetric powers and exterior powers because then we can set

N(Symk(T )) ∶= Symk(N(T )), and N(
k
⋀ T) ∶=

k
⋀N(T ).

We have N(Symk(T )) ⊂ Symk(D+(T )) ⊂ D+(Symk(T )), since A+ ⨂A+R0
Symk(D+(T )) ⊂

A+ ⨂A+R0
D+(Symk(T )). Similarly, N( ⋀k T) ⊂ D+( ⋀k T). Rest of the assumptions of De�nition

3.8 follows in a same manner as in the proof of Lemma 3.15. This establshes that Symk(V ) and ⋀k V
are Wach representations and gives us the corresponding Wach modules.

Following result will be useful while studying complexes with coe�cients in Wach modules in
Chapter 5.
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Lemma 3.17. Let V be a Wach representation of GR0 , such that the associated Wach module N(T ) over
A+
R0 is free of rank = dimℚp (V ). Then for j ∈ ℤ and k ∈ ℕ, we have

� jFilkN(T ) ⋂ � j+1N(T ) = � j+1Filk−1N(T ).

Same holds true for the B+R0-module N(V ).

Proof. The claim is obvious if Filk−1N(T ) = N(T ). So we assume that Filk−1N(T ) ⊊ N(T ), and let
x ∈ FilkN(T ) such that

� jx ∈ � jFilkN(T ) ⋂ � j+1N(T ).

Then we must have x = �y for some y ∈ N(T ). Since '(x) ∈ qkN(V ) ⋂N(T ), where q = '(� )
� = p +�w

for w ∈ A+
F . So we get that �'(y) ∈ qk−1N(T ) ⋂N(T ), i.e. �'(y) = qk−1z for some z ∈ N(V ). Since

N(T ) is free of rank ℎ and p does not divide q in A+
R0 , we obtain that z ∈ N(T ).

Now let {e1,… , eℎ} be an A+
R0-basis of the scalar extension and we write '(y) = ∑ℎ

i=1 yiei and
z = ∑ℎ

i=1 ziei for yi , zi ∈ A+
R0 . Further we have an embedding �cycl ∶ R0 � A+

R0 , so we can write
the coe�cients above as power series in � . In particular, we have yi = ∑j∈ℕ yij� j such that the
constant term yi0 ∈ �cycl(R0) and yij ∈ A+

R0 go to zero p-adically as j → +∞. Similarly, we can write
zi = ∑j∈ℕ zij� j , such that constant zi0 ∈ �cycl(R0) and zij ∈ A+

R0 go to zero p-adically as j → +∞. Now,
from �'(y) = qk−1z, we obtain that �yi = qk−1zi for 1 ≤ i ≤ ℎ. But looking at the constant term on
each side (coe�cient of �0), we obtain pk−1zi0 = 0. Since A+

R′0
is p-torsion free, we obtain that zi0 = 0

for 1 ≤ i ≤ ℎ, i.e. � divides zi . Therefore, yi ∈ qk−1A+
R0 , for 1 ≤ i ≤ ℎ, i.e. y ∈ Filk−1N(T ).

The other inclusion is obvious, since we have that �x ∈ FilkN(T ) for x ∈ Filk−1N(T ). So we get
the claim.

3.2.1. Statement of the main result
In this section, we will relate the notion of crystalline and Wach representations. As we will see, we
can recover the R0[ 1p ]-module ODcris(V ) from the A+

R0-module N(V ) after passing to a su�ciently
large period ring. We begin by introducing this ring below.

Recall from §1.1 that we have F as a �nite unrami�ed extenion of ℚp with ring of integers W and
we take K = F (�pm ) for m ≥ 1. Note that the formulation of the results and proofs depend on m and
it is necessary to have m > 0 for the discussion below to make sense.

In this section, we will work with the ring A+
R de�ned in §2.4, equipped with an action of the

Frobenius ' and a continuous action of ΓR0 . Since we have a natural injection A+
R � Ainf(R), we

obtain a GR0-equivariant commutative diagram

A+
R R

Ainf(R) ℂ+(R).

�

�

By R0-linearlity, extending scalars for the map � above, we obtain a ring homomorphism

�R0 ∶ R0 ⨂W A+
R ⟶ R,

sending Xi ⨂ 1↦ Xi , 1⨂[X ♭
i ]↦ Xi for 1 ≤ i ≤ d and 1⨂ �n ↦ �pn − 1. Note that we have inclusion

of ideals (� , Xi ⨂ 1 − 1⨂[X ♭
i ], for 1 ≤ i ≤ d) ⊂ Ker �R0 ⊂ R0 ⨂W A+

R , where � = �
�1 .

De�nition 3.18. Let x [n] ∶= xn/n! for x ∈ Ker �R0 . De�ne OAPD
R to be the p-adic completion of the

divided power envelope of R0 ⨂W A+
R with respect to Ker �R0 .
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We have A+
R ⊂ Ainf(R) and �R0 above is the restriction of �R0 ∶ R0 ⨂W Ainf(R)� ℂ+(R) (see §1.3).

Taking the divided power envelope of �R0 /pn, we notice that OAPD
R /pn � OAcris(R0)/pn. Since

OAPD
R = limn OAPD

R /pn and OAcris(R0) = limn OAcris(R0)/pn, and (projective) limit is left exact, it
follows that for the p-adic completion of divided power envelope of �R0 , we have OAPD

R ⊂ OAcris(R0).
Now, over the ring OAPD

R we can consider the induced action of ΓR0 under which it is stable,
and it admits a Frobenius endomorphism arising from the Frobenius on each component of the
tensor product. In particular, from the diagram above we obtain a Frobenius and GR-equivariant
commutative diagram

OAPD
R R

OAcris(R0) ℂ+(R).

�R0

�R0

Next, we will give an alternative description of the ring OAPD
R . Let T = (T1,… , Td ) denote a set of

indeterminates and let Acris(R)⟨T⟩∧ denote the p-adic completion of the divided power polynomial
algebra Acris(R)⟨T⟩ = Acris(R)[T [n]i , n ∈ ℕ, 1 ≤ i ≤ d]. Recall from §1.3 that we have an isomorphism
of rings

fcris ∶ Acris(R)⟨T⟩∧
≃
−−→ OAcris(R0)

Ti ⟼ Xi ⨂ 1 − 1⨂[X ♭
i ], for 1 ≤ i ≤ d.

Now recall that APD
R is the p-adic completion of the divided power envelope of the surjective map

� ∶ A+
R � R with respect to its kernel (see §2.3). Next, let APD

R ⟨T⟩∧ denote the p-adic completion
of the divided power polynomial algebra APD

R ⟨T⟩ = APD
R [T [n]i , n ∈ ℕ, 1 ≤ i ≤ d]. Then via the

isomorphism f PD (see Lemma 3.19 below), we will show that the preimage of OAPD
R , under fcris is

exactly APD
R ⟨T⟩∧. In other words,

Lemma 3.19. The morphism of rings

f PD ∶ APD
R ⟨T⟩∧ ⟶ OAPD

R

Ti ⟼ Xi ⨂ 1 − 1⨂[X ♭
i ], for 1 ≤ i ≤ d,

is an isomorphism.

Proof. The proof follows [Bri08, Proposition 6.1.5] closely.
Recall that we have a surjective ring homomorphism � ∶ APD

R � R, which is the restriction
of the map � ∶ Acris(R) � R de�ned in §1.3. This can be extended in a unique manner into the
homomorphism � ∶ Acris(R)⟨T⟩∧ � R. Restriction of the latter map gives us � ∶ APD

R ⟨T⟩∧ � R
such that �(T [n]i ) = 0 for 1 ≤ i ≤ d and n ≥ 1.

First, we will show that the W {X ±1}-algebra structure on APD
R ⟨T⟩∧ given by Xi ↦ [X ♭

i ] + Ti ,
extends uniquely to an R0-algebra structure. Let A ∶= (E+R/�p−1E+R)[T1,… , Td ]/(T p1 ,… , T pd ). We have
a surjective map � ∶ A+

R � R and its reduction modulo p is given as � ∶ E+R � R/pR. Since � p ≡ �p−1
mod p, where � = �

�1 is a generator of Ker � ⊂ A+
R , we obtain that � factors as � ∶ E+R/�p−1E+R � R/pR.

This can be extended to a map � ∶ A � R/pR by setting �(Ti) = 0 for 1 ≤ i ≤ d . The kernel
I = Ker � ⊂ A is generated by �p−1 and {Ti}1≤i≤d . Now from the natural inclusion R0/pR0� R/pR
and the isomorphism A/I ≃ R/pR via � , we obtain a map g ∶ R0/pR0 → A/I such that g(Xi) = Xi ,
which is the image of X ♭

i ∈ A under the map � . So we obtain a commutative diagram
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�[X ±1] A

R0/pR0 A/I

g

where the top horizontal arrow is the map Xi ↦ X ♭
i + Ti . Note that I (d+1)p = 0. Since R0/pR0 is étale

over �[X ±1], there exists a unique lift of g ∶ R0/pR0 → A/I to a homomorphism g ∶ R0/pR0 → A
(which we again denote by g by slight abuse of notations).

Further, by the description of divided power envelope in [Bri08, Proposition 6.1.1] we have that

A+
R[Y0, Y1,…]/(pY0 − � p , pYn+1 − Y p

n )n≥1
≃
−−→ APD

R

Yn ⟼ � pn+1

pn+1 .

Therefore,
APD
R /pAPD

R ≃ (E+R/�p−1E+R)[Y0, Y1,…]/(Y p
n )n≥1

Similarly, we have

APD
R ⟨T⟩ ≃ (APD

R [T1,… , Td ])[Ti,0, Ti,1,…]/(pTi,0 − T pi , pTi,n+1 − T pi,n)1≤i≤d, n∈ℕ.

Therefore,

APD
R ⟨T⟩/pAPD

R ⟨T⟩ ≃ (APD
R /pAPD

R )[T1,… , Td ][Ti,0, Ti,1,…]/(T pi , T pi,n)1≤i≤d, n∈ℕ.

In conclusion, we have

APD
R ⟨T⟩/pAPD

R ⟨T⟩ ≃ A[Y0, Y1,… , Ti,0, Ti,1,…]/(Y p
n , T

p
i,n)1≤i≤d, n∈ℕ.

Therefore, from the discussion above we obtain a natural map of �[X ±1]-algebras by composition
g1 ∶ R0/pR0 → A → APD

R ⟨T⟩/pAPD
R ⟨T⟩.

Now let n ∈ ℕ, then modulo pn we have the natural map W {X ±1}/pnW {X ±1} →
APD
R ⟨T⟩/pnAPD

R ⟨T⟩. Again, since R0/pnR0 is étale over W {X ±1}/pnW {X ±1}, we have a unique
lift of gn ∶ R0/pnR0 → APD

R ⟨T⟩/pnAPD
R ⟨T⟩ in the commutative diagram

W {X ±1}/pnW {X ±1} APD
R ⟨T⟩/pnAPD

R ⟨T⟩

R0/pnR0 APD
R ⟨T⟩/pAPD

R ⟨T⟩.

gn

Via this lifting, the following diagram commutes

R0/pn+1R0 APD
R ⟨T⟩/pn+1APD

R ⟨T⟩

R0/pnR0 APD
R ⟨T⟩/pnAPD

R ⟨T⟩,

where the vertical arrows are natural projection maps. From the universal property of inverse limit
of the right side of the diagram, we obtain a natural map of W {X ±1}-algebras

g ∶ R0 ⟶ lim
n

APD
R ⟨T⟩/pnAPD

R ⟨T⟩ = APD
R ⟨T⟩∧.
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Now, let � ∶ APD
R ⟨T⟩/pAPD

R ⟨T⟩ → R/pR denote the reduction of � modulo p. Recall that by
construction, � ◦ g is the inclusion of R0/pR0 in R/pR. Therefore, the reduction modulo p of � ◦ g and
the natural inclusion R0� R coincide. Since R is p-torsion free, arguing as above we obtain that for
each n ∈ ℕ, the natural inclusion and � ◦ g coincide modulo pn.

Next, by A+
R-linearity, g can be extended to a map g ∶ R0 ⨂W A+

R → APD
R ⟨T⟩∧. From the discussion

above and the de�nition of �R0 , we have that it coincides with the homomorphism � ◦g ∶ R0 ⨂W A+
R →

R. In particular, g(Ker �R0) ⊂ Ker � ⊂ APD
R ⟨T⟩∧. Since Ker � contains divided powers, the map g

extends to a map
g ∶ (R0 ⨂W A+

R)[x
[n], x ∈ Ker �R0 , n ∈ ℕ]⟶ APD

R ⟨T⟩∧.

Finally, since APD
R ⟨T⟩∧ is p-adically complete, g extends to a map g ∶ OAPD

R → APD
R ⟨T⟩∧.

Now by uniqueness of g ∶ R0 → APD
R ⟨T⟩∧, the composition

OAPD
R

g
−−→ APD

R ⟨T⟩∧
f PD

−−−−→ OAPD
R ,

coincides with the identity over R0 ⊂ OAPD
R . Since it also coincides with identity on the image of

A+
R (by A+

R-linearity), we obtain that f PD ◦ g = id over OAPD
R . Similarly, the homomorphism g ◦ f PD

coincides with identity over A+
R as well as over W {X ±1} (since g lifts the map W {X ±1}→ APD

R ⟨T⟩∧),
therefore it is identity over APD

R ⟨T⟩∧. This establishes that f PD is an isomorphism of rings.

Remark 3.20. We can give an alternative construction of the ring OAPD
R . Note that we have a ring

homomorphism � ∶ R0 → APD
R , where Xi ↦ [X ♭

i ] for 1 ≤ i ≤ d . As in De�nition 2.48, we de�ne a
map g ∶ R0 ⨂W APD

R → APD
R , where x ⨂ y ↦ �(x)y . We obtain that Ker g = (Xi ⨂ 1−1⨂[X ♭

i ], for 1 ≤
i ≤ d) ⊂ Ker �R0 ⊂ OAcris(R0). Since R0 ⨂APD

R already contains divided powers of � , from De�nition
3.18 we obtain that the p-adic completion of the divided power envelope of R0 ⨂W APD

R with respect
to Ker g is the same as OAPD

R .

There is a natural �ltration over the ring OAPD
R by ΓR0-stable submodules:

De�nition 3.21. Let Vi ∶= 1⨂[X ♭
i ]

Xi ⨂ 1 for 1 ≤ i ≤ d , then we de�ne the �ltration over OAPD
R as

FilrOAPD
R ∶= ⟨(a⨂ b)

d
∏
i=1
(Vi−1)[ki] ∈ OAPD

R , such that a ∈ R0, b ∈ FiljAPD
R , and j+∑

i
ki ≥ r⟩ for r ∈ ℤ.

Remark 3.22. The �ltration over APD
R (via its identi�cation with RPD

$ , see §2.4 and De�nition 2.27)
coincides with the �ltration induced from its embedding in Acris(R). Indeed, in both cases we
have FilrAPD

R = (� [k], k ≤ r) ⊂ APD
R for r ≥ 0, whereas FilrAPD

R = APD
R for r < 0. Now the

�ltration on OAcris(R0) is de�ned as the induced �ltration from its embedding inside OB+dR(R),
where the �ltration on the latter ring is given by powers of Ker �R (see §1.2 & §1.3 for de�nition and
notation). The induced �ltration over OAcris(R0) is therefore given by divided powers of the ideal
Ker �R0 ⊂ OAcris(R0). Since the �ltration over OAPD

R in De�nition 3.21 is again de�ned by divided
powers of the generators of the ideal Ker �R0 ⊂ OAPD

R , we infer that this �ltration coincides with the
one induced by its embedding into OAcris(R0).

Lemma 3.23. (i) The action of ΓR is trivial on OAPD
R /� , whereas ΓR0 /ΓR acts trivially over

OAPD
R /�m.

(ii) The ΓR0-invariants of OAPD
R are given by R0.

Proof. (i) The �rst part follows from the de�nition of OAPD
R and the action of ΓR on APD

R (see
Lemma 2.45). The second part follows from observing that ΓR0 /ΓR is a �nite cyclic group
of order [K ∶ F ] = pm−1(p − 1), and a lift g ∈ ΓR0 of a generator of ΓR0 /ΓR acts as g(�m) =
(1 + �m)� (g) − 1.
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(ii) This is straightforward, since

R0 ⊂ (OAPD
R )

ΓR0 ⊂ (OAcris(R0))
GR0 = R0.

Next we consider a connection over OAPD
R induced by the connection on OAcris(R0),

) ∶ OAPD
R ⟶ OAPD

R ⨂Ω1R0 ,

where we have )(Xi ⨂ 1 − 1⨂[X ♭
i ])

[n] = (Xi ⨂ 1 − 1⨂[X ♭
i ])

[n−1] dXi . This connection over OAPD
R

satis�es Gri�ths transversality with respect to the �ltration since it does so over OAcris(R0).
The main result of this section is as follows:

Theorem 3.24. With notations as above let V be an ℎ-dimensional positive Wach representation of
GR0 , then V is a positive crystalline representation. Further, let M ∶= (OAPD

R ⨂A+R0
N(T ))

ΓR0 , then we
have an isomorphism of R0[ 1p ]-modules M[ 1p ] ≃ ODcris(V ) compatible with Frobenius, �ltration, and
connection on each side. Moreover, after extending scalars to OAPD

R , we obtain natural isomorphisms

OAPD
R ⨂R0 ODcris(V )

≃
←−− OAPD

R ⨂R0 M[ 1p ]
≃
−−→ OAPD

R ⨂A+R0
N(V ),

compatible with Frobenius, �ltration, connection and the action of ΓR0 on each side.

Remark 3.25. The statement of Theorem 3.24 can be seen an analogue of the result of Berger [Ber04,
Proposition II.2.1] (see the discussion after Proposition 3.6).

Recall that from De�nition 3.8 any Wach representation is a twist of a positive Wach representation
by ℚp(r), for r ∈ ℕ. Since twist by ℚp(r) of crystalline representations are again crystalline, we
obtain that:

Corollary 3.26. All Wach representations of GR0 are crystalline.

The proof of Theorem 3.24 will proceed in three steps: First, we explicitly state the structure of
Wach module attached to a one-dimensional Wach representation, we will also show that all one-
dimensional crystalline representations are Wach representations and one can recover ODcris(V )
starting with the Wach module N(V ). Next, in higher dimensions and under the conditions of
the theorem, we will describe a process (successive approximation) by which we can recover a
submodule of ODcris(V ) starting from the Wach module, here we establish a comparison by passing
to the one-dimensinal case. Finally, the claims made in the theorem are shown by exploiting some
properties of Wach modules and the comparison obtained in the second step.

3.2.2. One-dimensional representations
In this section we are going to study one-dimensional crystalline representations as well as one-
dimensional Wach representations. We will show that all one-dimensional crystalline representations
are Wach representations. Moreover, for Wach representations we will prove a technical statement
which will be used in the proof of Proposition 3.31.

One-dimensional crystalline representations

In this section our goal is to show the following claim:

Proposition 3.27. All one-dimensional crystalline representations of GR0 are Wach representations.
Furthermore, for a one-dimensional crystalline representation V we have an isomorphism of R0[ 1p ]-
modules

(OAPD
R ⨂A+R0

N(V ))
ΓR0 ≃

−−→ ODcris(V ).
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Therefore, there exists natural isomorphisms

OAPD
R ⨂R0 ODcris(V )

≃
←−− OAPD

R ⨂R0 (OAPD
R ⨂A+R0

N(V ))
ΓR0 ≃

−−→ OAPD
R ⨂A+R0

N(V ),

compatible with Frobenius, �ltration and the action of ΓR0 .

Proof. The structure of one-dimensional crystalline representations of GR0 is well-known (see [Bri08,
§8.6]). First, recall that a p-adic representation of GR0 is unrami�ed if the action of GR0 factorizes
through the quotient Gur

R0 (see §1.5). Now from Proposition 1.30 we have that for � ∶ GR0 → ℤ×
p , a

continuous character, V = ℚp(�) is crystalline if and only if we can write � = �f�ur�n with n ∈ ℤ,
and where �f is a �nite unrami�ed character, �ur is an unrami�ed character taking values in 1 + pℤp

and trivialized by an element � ∈ 1 + pR̂ur
0 , and � is the p-adic cyclotomic character. Moreover, if �f

is trivial then ODcris(V ) is a free R0[ 1p ]-module of rank 1.
In Lemma 3.28 below, we show that crystalline representations V1 ∶= ℚp(�f�ur) and V2 ∶=

ℚp(�n) are Wach represenations. For a one-dimensional crystalline representation V ∶= ℚp(�) =
ℚp(�f�ur)⨂ℚp ℚp(�n) = V1 ⨂ℚp V2 as above, by compatibility of tensor products in Lemma 3.15 we
get that V is a Wach representation as well with N(V ) = N(V1)⨂B+R0

N(V2).
Now, from the isomorphisms of OAPD

R -modules in Lemma 3.28 and compatibility of tensor product
of Wach modules in Lemma 3.15 and compatibility of the functor ODcris with tensor products in §1.5
(see also [Bri08, Théorème 8.4.2]), we get a string of isomorphisms of OAPD

R -modules compatible
with Frobenius, �ltration and the action of ΓR0 ,

OAPD
R ⨂R0 ODcris(V ) ≃ (OAPD

R ⨂R0 ODcris(V1)) ⨂OAPD
R (OAPD

R ⨂R0 ODcris(V2))

≃ (OAPD
R ⨂R0 (OAPD

R ⨂A+R0
N(V1))

ΓR0) ⨂OAPD
R (OAPD

R ⨂R0 (OAPD
R ⨂A+R0

N(V2))
ΓR0)

≃ (OAPD
R ⨂A+R0

N(V1)) ⨂OAPD
R (OAPD

R ⨂A+R0
N(V2))

≃ OAPD
R ⨂A+R0

N(V1)⨂A+R0
N(V2)

≃ OAPD
R ⨂A+R0

N(V1 ⨂ℚp V2) ≃ OAPD
R ⨂A+R0

N(V ).

Taking ΓR0-invariants of the �rst and the last term gives us that ODcris(V ) ≃ (OAPD
R ⨂A+R0

N(V ))
ΓR0 ,

compatible with Frobenius and �ltration. Hence, we obtain the claim.

Following claim was used above:

Lemma 3.28. (i) Let � ∶ GR0 → ℤ×
p be a continuous unrami�ed character. Then the p-adic

representation ℚp(�) is a Wach representation.

(ii) Let � be the p-adic cyclotomic character then for n ∈ ℤ, the p-adic representation ℚp(n) is a
Wach representation.

Further, for V = ℚp(�),ℚp(n) we have an isomorphism of R0[ 1p ]-modules

(OAPD
R ⨂A+R0

N(V ))
ΓR0 ≃

−−→ ODcris(V ).

Therefore, there exists natural isomorphisms

OAPD
R ⨂R0 ODcris(V )

≃
←−− OAPD

R ⨂R0 (OAPD
R ⨂A+R0

N(V ))
ΓR0 ≃

−−→ OAPD
R ⨂A+R0

N(V ),

compatible with Frobenius, �ltration and the action of ΓR0 .

Proof. Let � = �f�ur, where �f is an unrami�ed character of �nite order and �ur is an unrami�ed
character taking values in 1 + pℤp and trivialised by an element � ∈ 1 + pR̂ur

0 (see Proposition 1.30).
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First, let us consider the �nite unrami�ed character �f. Set T = ℤp(�f) = ℤpe, such that g(e) =
�f(g)e. We have

D+(ℤp(�f)) = (A+
⨂ℤp ℤp(�f))

HR0 ≃
{
a⨂ e, with a ∈ A+ such that g(a) = �−1f (g)a, for g ∈ HR0

}
.

Since �f is a �nite unrami�ed character, it trivializes over a �nite Galois extension S0 over R0 (see
[Bri08, Proposition 8.6.1]), and we have that Gal(S0[ 1p ]/R0[ 1p ]) = GR0 /GS0 = HR0 /HS0 = ΓR0 /ΓS0 .
As S0 is étale over R0 the construction of previous chapters apply and we obtain that the A+

S0-
module D+

S0(ℤp(�f)) = (A+ ⨂ℤp ℤp(�f))
HS0 = A+

S0(�f) = A+
S0e is free of rank 1. Further, we know that

D+(ℤp(�f)) = D+
S0(ℤp(�f))

HR0 /HS0 , which implies that the natural inclusion

A+
S0 ⨂A+R0

D+(ℤp(�f)) ⟶ D+
S0(ℤp(�f)),

is bijective. Now, since A+
R0 → A+

S0 is faithfully �at, we obtain that D+(ℤp(�f)) is projective
of rank 1. Moreover, D+(ℤp(�f)) admits a Frobenius-semilinear endomorphism ' such that
D+(ℤp(�f)) ≃ '∗(D+(ℤp(�f))) (one can obtain this after faithfully �at scalar extension A+

R0 → A+
S0

and applying descent as above). The action of ΓR0 is trivial on D+(ℤp(�f)). Now, note that unrami�ed
representations are crystalline of Hodge-Tate weight 0, so we can take N(ℤp(�f)) = D+(ℤp(�f)).
From the discussion above, N(ℤp(�f)) clearly satis�es the conditions of De�nition 3.8. Also, we
have that N(ℚp(�f)) = D+(ℚp(�f)). On the other hand, we have

ODcris(ℚp(�f)) = (OBcris(R0)⨂ℚp ℚp(�f))
GR0 =

{
b ⨂ e, with b ∈ OBcris(R0) such that g(b) = �f(g)b

}
.

Since �f trivializes over the �nite Galois extension S0 over R0, we set S = S0(�pm ) and we have

(OAPD
S ⨂A+R0

N(ℚp(�f)))
ΓS0 = S0[ 1p ]e = (OBcris(S0)⨂ℚp ℚp(�f))

GS0 ,

where the rings OAPD
S and OBcris(S0) are de�ned for S0 over which all the construction of previous

sections apply (since S0 is étale over R0). Now taking invariants under the �nite Galois group
Gal(S0[ 1p ]/R0[ 1p ]) = GR0 /GS0 , gives us

(OAPD
R ⨂A+R0

N(ℚp(�f)))
ΓR0 = ODcris(ℚp(�f)).

Clearly, the natural maps

OAPD
R ⨂R0 ODcris(ℚp(�f))

≃
←−− OAPD

R ⨂R0 (OAPD
R ⨂A+R0

N(ℚp(�f)))
ΓR0 ≃

−−→ OAPD
R ⨂A+R0

N(ℚp(�f)),

are isomorphisms compatible with Frobenius, �ltration and the action of ΓR0 .

Next, let us consider the unrami�ed character �ur which takes values in 1 + pℤp and trivialised by
an element � ∈ 1 + pR̂ur

0 (see Proposition 1.30). Set T = ℤp(�ur) = ℤpe, such that g(e) = �ur(g)e. We
have

D+(ℤp(�ur)) = (A+
⨂ℤp ℤp(�ur))

HR0 = A+
R0�e.

Since unrami�ed representations are crystalline of Hodge-Tate weight 0, we can take N(ℤp(�ur)) =
D+(ℤp(�ur)) = A+

R0�e. This clearly satis�es the conditions of De�nition 3.8. Also, we have that
N(ℚp(�ur)) = D+(ℚp(�ur)). On the other hand, we have

ODcris(ℚp(�ur)) = (OBcris(R0)⨂ℚp ℚp(�ur))
GR0

=
{
b ⨂ e, with b ∈ OBcris(R0) such that g(b) = �ur(g)b

}
= R0[ 1p ]�e.
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Therefore, we obtain

(OAPD
R ⨂A+R0

N(ℚp(�f�ur)))
ΓR0 = R0[ 1p ]�e = (OBcris(R0)⨂ℚp ℚp(�f�ur))

GR0 .

Clearly, the natural maps

OAPD
R ⨂R0 ODcris(ℚp(�ur))

≃
←−− OAPD

R ⨂R0 (OAPD
R ⨂A+R0

N(ℚp(�ur)))
ΓR0 ≃

−−→ OAPD
R ⨂A+R0

N(ℚp(�ur)),

are isomorphisms compatible with Frobenius, �ltration and the action of ΓR0 .
Finally, let T = ℤp(n) = ℤpen such that g(en) = � (g)nen, then V = ℚp ⨂ℤp T is a crystalline

representation with single Hodge-Tate weight n. In this case, we can take N(ℤp(n)) = A+
R0�

−nen.
Note that for n ≤ 0, we have that N(ℤp(n))/'∗(N(ℤp(n))) is killed by qn, where q = '(� )

� . It can
easily be veri�ed that ΓR acts trivially modulo � on N(T ). So, we set N(ℚp(n)) = B+R0�

−nen. Similarly,

ODcris(ℚp(n)) = (OBcris(R0)⨂ℚp ℚp(n))
GR0 = R0[ 1p ]t

−nen,

and (OAPD
R ⨂A+R0

N(ℚp(n)))
ΓR0 = R0[ 1p ]t

−nen = ODcris(ℚp(n)) compatible with Frobenius, �ltration
and connection on each side. Finally, the map

OAPD
R ⨂R0 ODcris(ℚp(n)) ⟶ OAPD

R ⨂A+R0
N(ℚp(n))

t−nen ⟼ �n
tn �

−nen.

is trivially an isomorphism compatible with Frobenius, �ltration and the action of ΓR0 , since �n
tn ∈

OAPD
R are units for n ∈ ℤ (see Lemma 2.43). This proves the lemma.

Remark 3.29. Note that for T = ℤp(�f�ur) or ℤp(n), we even have an isomorphism on the integral
level

OAPD
R ⨂R0 (OAPD

R ⨂A+R0
N(T )))

ΓR0 ≃
−−→ OAPD

R ⨂A+R0
N(T ).

One-dimensional Wach representations

In this section we will explicitly state Wach module associated to a one-dimensional representation,
and prove a statement useful for the proof of Proposition 3.31. Recall from De�ntion 3.8 that a Wach
representation is a de Rham representation with additional structure.

Note that the structure of one-dimensional de Rham representations of GR0 is well-known (see
[Bri08, §8.6]). From Proposition 1.30 we have that given � ∶ GR0 → ℤ×

p , a continuous character, the
p-adic representation V = ℚp(�) is de Rham if and only if we can write � = �f�ur�n for n ∈ ℤ, where
�f is a �nite character, �ur is an unrami�ed character taking values in 1 + pℤp and trivialized by an
element � ∈ 1 + pR̂ur

0 , and � is the p-adic cyclotomic character. We recall that a p-adic representation
of GR0 is unrami�ed if the action of GR0 factorizes through the quotient Gur

R0 (see §1.5).
First, let �f ∶ GR0 → ℤ×

p be a �nite Wach character, i.e. a �nite de Rham character satisfying the
properties of De�nition 3.8. Let T = ℤp(�f) and V = ℤp(�f). Then V has single Hodge-Tate weight
which is equal to 0. Furthermore, we have the Wach module N(T ), and from Corollary 3.13 we obtain
that N(T ) = D+(T ) = (A+ ⨂ℤp T )HR0 . From the conditions of De�nition 3.8, we have an isomorphism
of projective A+

R0-modules N(T ) ≃ '∗(N(T )). Finally, the action of ΓR0 is trivial over N(T )/�N(T ) and
there exists a �nite étale algebra R′0 over R0 such that A+

R′0
⨂A+R0

N(T ) is a free A+
R′0

-module of rank 1.
Next, let �ur ∶ GR0 → ℤ×

p be an unrami�ed character taking values in 1+pℤp and trivialized by an
element � ∈ 1 + pR̂ur

0 . Set T = ℤp(�ur) = ℤpe and V = ℚp(�ur). Then from Lemma 3.28, we have that
V is a Wach representation of Hodge-Tate weight 0, and we can take N(ℤp(�ur)) = D+(ℤp(�ur)) =
A+
R0�e, which is a free A+

R0-module of rank 1.
Finally, let � = � , the p-adic cyclotomic character and T = ℤp(�n) = ℤp(n) = ℤpen and V =
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ℚp(�n) = ℚp(n). Then V is a Wach representation with single Hodge-Tate weight n ∈ ℤ. In this case,
from Lemma 3.28 we have N(ℤp(n)) = A+

R0�
−nen.

Lemma 3.30. Let � ∶ GR0 → ℤ×
p be a continuous character such that the p-adic representation

V = ℚp(�) is a Wach representation, with N(V ) the associated Wach module over A+
R0 . Then we have an

isomorphism of OAPD
R [ 1p ]-modules '∗(OAPD

R ⨂A+R0
N(V )) ≃ OAPD

R ⨂A+R0
N(V ).

Proof. From the discussion above we can write � = �f�ur�n for some n ∈ ℤ, and where �f is
a �nite character, �ur is an unrami�ed character taking values in 1 + pℤp and trivialized by
an element � ∈ 1 + pR̂ur

0 , and � is a the p-adic cyclotomic character. In particular, we have
T = ℤp(�) = ℤp(�f)⨂ℤp ℤp(�ur)⨂ℤp ℤp(�n), therefore by Lemma 3.15 we obtain that N(T ) =
N(ℤp(�f)) ⨂A+R0

N(ℤp(�ur)) ⨂A+R0
N(ℤp(�n)). So it is enough to show the claim for �f, �ur and �n

separately.
Now T = ℤp(�f) and ℤp(�ur) the claim is trivial as we have '∗(N(T )) ≃ N(T ) as A+

R0-modules from
the discussion above.

For T = ℤp(�n), we see that '∗(N(T )) = q−nN(T ), where q = '(� )
� . Recall that we have q =

p'(�t )
t
� and t

� is a unit in OAPD
R (see Lemma 2.43). Therefore, for V = ℚp(�n) we obtain that

'∗(OAPD
R ⨂A+R0

N(V )) ≃ OAPD
R ⨂A+R0

N(V ), proving the claim.

3.2.3. From (', Γ)-modules to (', ))-modules
The objective of this section is to prove the following statement:

Proposition 3.31. Let V be an ℎ-dimensional positive Wach representation of GR0 , T ⊂ V a free
ℤp-lattice of rank ℎ stable under the action of GR0 and N(T ) the associated Wach module. Then
M ∶= (OAPD

R ⨂A+R0
N(T ))

ΓR0 is a �nitely generated R0-module contained in ODcris(V ). Moreover,
M[ 1p ] is a �nitely generated projective R0[ 1p ]-module of rank ℎ and the natural inclusion

OAPD
R ⨂R0 M[ 1p ] ⟶ OAPD

R ⨂A+R0
N(V ),

is an isomorphism compatible with Frobenius, �ltration, connection and the action of ΓR0 . Finally, if we
assume N(T ) to be free over A+

R0 then there exists a free R0-module M0 ⊂ M such that M0[ 1p ] = M[ 1p ]
are free modules of rank ℎ over R0[ 1p ].

Proof. We will use the notation of De�nition 3.8 without repeating them. The �rst claim is easy to
establish. Since we have HR0 = Gal(R[ 1p ]/R∞[ 1p ]), therefore we can write

M = (OAPD
R ⨂A+R0

N(T ))
ΓR0 ⊂ (OAPD

R ⨂A+R0
D+(T ))

ΓR0 ⊂ (OAcris(R0)HR0 ⨂A+R0
D+(T ))

ΓR0

⊂ (OAcris(R0)HR0 ⨂A+R0 (A
+

⨂ℤp T)
HR0)

ΓR0 ⊂ (OAcris(R0)⨂ℤp T)
GR0 ⊂ ODcris(V ).

(3.1)

The module (OAcris(R0)⨂ℤp T)
GR0 is �nitely generated over R0. Since R0 is Noetherian, M is �nitely

generated.
Independently, we have that R0[ 1p ] is Noetherian and ODcris(V ) is a �nitely generated R0[ 1p ]-

module, therefore M[ 1p ] ⊂ ODcris(V ) is �nitely generated over R0[ 1p ]. Moreover, the module
OAPD

R ⨂A+R0
N(T ) is equipped with an APD

R -linear and integrable connection )N = ) ⨂ 1, where )
is the connection on OAPD

R described after Lemma 3.23. Therefore, we can consider the induced
connection onM[ 1p ], which is integrable since it is integrable over OAPD

R ⨂A+R0
N(T ). This connection

is compatible with the one on ODcris(V ) since the connection over OAPD
R is induced from the

connection over OAcris(R0). So by [Bri08, Proposition 7.1.2] we obtain that M[ 1p ] must be projective
of rank ≤ ℎ. Further, the inclusion M[ 1p ] ⊂ ODcris(V ) is compatible with natural Frobenius on each
module since all the inclusions in (3.1) are compatible with Frobenius.
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Next, we will show that the rank of M[ 1p ] as a projective R0[ 1p ]-module is exactly ℎ. It is enough
to show that the rank is ℎ after a �nite étale extension of R0. Let us consider R′0 to be the p-adic
completion of a �nite étale extension of R0 such that the corresponding scalar extensionA+

R′0
⨂A+R0

N(T )
is a free module of rank ℎ (see De�nition 3.8) and R′0[ 1p ]/R0[ 1p ] is Galois. The discussion of previous
chapters hold for R′0 (see [Bri08, Chapitre 2] and [AI08, §2] for more on this). In particular, let
R′ = R′0(�pm ) and we have rings A+

R′0
, A+

R , APD
R′ and OAPD

R′ . Let R′∞[ 1p ] denote the cyclotomic tower
over R′0[ 1p ] and

ΓR′0 = Gal(R′∞[ 1p ]/R′0[ 1p ]) and HR′0 = Ker (GR′0 → ΓR′0).

Similarly, we have Galois groups ΓR′ and HR′ . Let

G′ ∶= Gal(R′∞[ 1p ]/R∞[ 1p ]) = Gal(R′[ 1p ]/R[ 1p ]) = Gal(R′0[ 1p ]/R0[ 1p ]),

then we have that HR/HR′ = HR0 /HR′0 = G
′. So we obtain that

A+
R0 = (A

+)HR0 = ((A+)HR′0)
HR0 /HR′0 = (A+

R′0)
G′

A+
R = (A

+)HR = ((A+)HR′)
HR/HR′ = (A+

R′)
G′ .

From these equalities and the description of the action of ΓR0 on � = �
�1 , it is clear that

APD
R = (APD

R′ )
G′ , and therefore OAPD

R = (OAPD
R′ )

G′ .

Now, since N(T ) is projective and G′ acts trivially on it, we obtain that

(OAPD
R′ ⨂A+

R′0
(A+

R′0
⨂A+R0

N(T )))
G′ = OAPD

R ⨂A+R0
N(T )

(OAPD
R′ ⨂R′0 (R

′
0 ⨂R0 M[ 1p ]))

G′ = OAPD
R ⨂R0 M[ 1p ].

In particular, base changing to A+
R′0

to obtain N(T ) as a free module is harmless. For the convenience
in notation, below we will replace R′0 obtained in this manner by R0 and assume N(T ) to be free over
A+
R0 .
In order to show that the rank of M[ 1p ] is at least ℎ, we will successively approximate a basis of

N(T ) (after scalar extension to OAPD
R ) to linearly independent elements of M[ 1p ]. To carry this out,

�rst we will de�ne several new rings following [Wac96, §B.1] and examine their relation with OAPD
R .

After extending scalars, we will approximate the elements of N(T ) with elements invariant under
the geometric action of ΓR0 , i.e. Γ′R0 . Finally, we will approximate the elements obtained from the
previous step to elements which are invariant under the arithmetic action of ΓR0 , i.e. ΓF . Note that
whereas Γ′R0 is a commutative group, ΓR0 is not. Further, the action of Γ′R0 on the geometric variables
involves the element � on which ΓF acts (see §2.1), therefore it is imperative that we carry out the
approximation steps in the order mentioned above.

Auxiliary rings and modules

For n ∈ ℕ, let us de�ne a p-adically complete ring

SPD
n ∶= A+

R0

{ �
pn ,

�2
2!p2n ,… , �k

k!pkn ,…
}
.

Let I [i]n denote the ideal of SPD
n generated by �k

k!pkn for k ≥ i and we set

ŜPD
n ∶= lim

i
SPD
n /I [i]n .
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Note that ŜPD
n is p-adically complete as well. Further, note that we can write '(� ) = (1 + � )p − 1 =

�p + p�x for some x ∈ A+
F , therefore

'(�k)
k!pkn

=
(�p + p�x)k

k!pkn
=

∑k
i=0 (

k
i)�

pi ⋅ (p�x)k−i

k!pkn

=
k
∑
i=0

(k + (p − 1)i)!pi(n(p−1)−p)

i!(k − i)!
⋅

�k+(p−1)ixk−i

(k + (p − 1)i)!p(k+(p−1)i)(n−1)
∈ ŜPD

n−1

Using this, the Frobenius operator on S can be extended to a map ' ∶ ŜPD
n → ŜPD

n−1, which we will
again call Frobenius. The ring ŜPD

n readily admits a continuous action of ΓR0 which commutes with
the Frobenius.

Lemma 3.32. The ring ŜPD
0 is a subring of APD

R , and therefore 'n(ŜPD
n ) ⊂ APD

R .

Proof. The �rst claim is true because we have

�p1 ≡ � mod pA+
K , which gives �p

i

1 ≡ �p
i−1 mod piA+

K .

So for k ≥ pi we can write

�k

k!
=
� k�k1
k!

=
� k

k!
�k−p

i

1 (�p
i−1
+ pia) = pia�

k−pi
1

� k

k!
+ pi−1�p

i−1

1
(k + pi−1)!
k!pi−1

� k+pi−1

(k + pi−1)!
∈ pi−1APD

K ,

for some a ∈ A+
K . Therefore, we get that I [p

i]
0 ⊂ pi−1APD

R and hence ŜPD
0 ⊂ APD

R . The second claim is
obvious.

In the relative setting, we need slightly larger rings. Let us consider the W -linear homomorphism
of rings

� ∶ R0 ⟶ ŜPD
n

Xj ⟼ [X ♭
j ] for 1 ≤ j ≤ d.

Using � we can de�ne a W -linear morphism of rings

f ∶ R0 ⨂W ŜPD
n ⟶ ŜPD

n

a⨂ b ⟼ �(a)b.

Let OŜPD
n denote the p-adic completion of the divided power envelope of R0 ⨂W ŜPD

n with respect
to Ker f . Further, the morphism f extends uniquely to a continuous morphism f ∶ OŜPD

n → ŜPD
n .

Now, it easily follows from the discussion in §2.5 that the kernel of the morphism f is generated by
(V1 − 1,… , Vd − 1), where Vj =

1⨂[X ♭
j ]

Xj ⨂ 1 for 1 ≤ j ≤ d .
The Frobenius operator extends to OŜPD

n as well as the continuous action of ΓR0 . From the
discussion above we have 'n(ŜPD

n ) ⊂ ŜPD
0 ⊂ APD

R , and following the description of OŜPD
0 §2.5 and of

OAPD
R from Remark 3.20, we obtain that

OŜPD
0 ⊂ OAPD

R and 'n(OŜPD
n ) ⊂ OAPD

R .

Moreover, we have a canonical inclusion of ŜPD
n ⊂ OŜPD

n compatible with all the structures.
Recall that we have m ∈ ℕ≥1 such that K = F (�pm ), so below we will consider the ring OŜPD

m . Now
consider the ideal

J ∶= ( �
pm , V1 − 1,… , Vd − 1) ⊂ OŜPD

m ,
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and its divided power

J [i] ∶= ⟨
� [k0]
pnk0

d
∏
j=1
(Vj − 1)[kj ], k = (k0, k1,… , kd ) ∈ ℕd+1 such that

d
∑
j=0

kj ≥ i⟩ ⊂ OŜPD
m .

By the construction of OŜPD
m , it is clear that this ring is p-adically complete with respect to the

PD-ideal J [i]. In other words, the series ∑k∈ℕd+1 xk �
[k0]

pnk0 ∏d
j=1(Vj − 1)[kj ], where xk ∈ ŜPD

m goes to 0 as
|k| = ∑j kj → +∞, converges in OŜPD

m .
Next, we set

ON PD ∶= OŜPD
m ⨂A+R0

N(T ).

Again, ON PD is p-adically complete and it is equipped with a Frobenius-semilinear operator ' and
a continuous and semilinear action of ΓR0 . Also, we take

M ′ ∶= (ON PD)
Γ′R0 and M ′′ ∶= (M ′)ΓF = (ON PD)

ΓR0 .

Since we assumed N(T ) to be free, we have that ON PD is a free OŜPD
m -module of rank ℎ. Since

'm(OŜPD
m ) ⊂ OAPD

R , we get that 'm(M ′′) ⊂ (OAPD
R ⨂A+R0

N(T ))
ΓR0 . Therefore, it is enough to

successively approximate an element of N(T ) to an element of M ′′. Let { , 1,… , d} be a set of
topological generators of ΓR0 such that {1,… , d} generate Γ′R0 topologically, and  is a lift of a
topological generator of ΓF such that  e = 0 is a lift of a topological generator of ΓK and e = [K ∶ F ]
(see §2.1).

Geometric part of ΓR0

Lemma 3.33. For any x ∈ N(T ), there exists x ′ ∈ ON PD such that

x ′ ≡ x mod J [1]ON PD,
i(x ′) = x ′ for 1 ≤ i ≤ d.

In particular, x ′ ∈ M ′.

Proof. We will successively approximate x ∈ N(T ) to an element x ′ ∈ M ′ by adding elements from
J [n]ON PD, for n ≥ 1 converging for the p-adic topology and such that the action of Γ′R0 converges to
identity.

We start by setting x1 ∶= x ∈ N(T ) ⊂ ON PD so that we have s(x1) = x1 + �ys for some
ys ∈ N(T ) ⊂ J [0]ON PD. Next, let

x2 ∶= x1 + (V1 − 1)z1 +⋯ + (Vd − 1)zd ,

where zs ∈ N(T ) for 1 ≤ s ≤ d , which we need to determine. Clearly, we have that x2 ≡ x1
mod J [1]ON PD. Now note that

s(Vs − 1) = (1 + � )(Vs − 1 + 1) − 1 ≡ Vs − 1 + � mod �J [1]OŜPD
m , (3.2)

and since we must have s(zt ) = zt mod �N(T ) for 1 ≤ s, t ≤ d , therefore the action of s on x2 can
be given as

s(x2) = s(x1) + (V1 − 1)s(z1) +⋯ + s(Vs − 1)s(zs) +⋯ + (Vd − 1)s(zd )

≡ x1 + �ys + (V1 − 1)z1 +⋯ + (Vs − 1 + � )zs +⋯ + (Vd − 1)zd mod �J [1]ON PD

≡ x2 + � (ys + zs) mod �J [1]ON PD.
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Setting zs ≡ −ys for 1 ≤ s ≤ d , we obtain that s(x2) ≡ x2 mod �J [1]ON PD.

Now we will proceed inductively over n, i.e. we will show that for n ≥ 2, if there exists xn ∈ ON PD

such that

xn ≡ xn−1 mod J [n−1]ON PD,

s(xn) ≡ xn mod �J [n−1]ON PD for 1 ≤ s ≤ d,

then there exists xn+1 ∈ ON PD such that

xn+1 ≡ xn mod J [n]ON PD,

s(xn+1) ≡ xn+1 mod �J [n]ON PD for 1 ≤ s ≤ d.

For n ∈ ℕ, let us de�ne the multi index set Λn ∶= {k = (k0, k1,… , kd ) ∈ ℕd+1, such that k0 +⋯ +
kd = n}. We set

xn+1 ∶= xn + ∑
i∈Λn

� [i0]
pmi0 (V1 − 1)

[i1]⋯ (Vd − 1)[id ]zi, (3.3)

for some zi ∈ N(T ), which we need to determine. We will solve for zi by studying the action of s on
xn+1 for 1 ≤ s ≤ d . For the action of s on xn, we have

s(xn) = xn + � ∑
|k|≥n−1

� [k0]
pmk0 (V1 − 1)

[k1]⋯ (Vd − 1)[kd ]y
(s)
k ,

where |k| = ∑j kj and y(s)k ∈ N(T ) goes to zero p-adically as |k| → +∞. Truncating the equation
above for |k| ≥ n, we obtain

s(xn) ≡ xn + � ∑
k∈Λn−1

� [k0]
pmk0 (V1 − 1)

[k1]⋯ (Vd − 1)[kd ]y
(s)
k mod �J [n]ON PD. (3.4)

To determine xn+1, we begin with s = 1. From (3.2), recall that

1(V1 − 1) ≡ (V1 − 1 + � ) mod �J [1]OŜPD
m ,

and since we must have 1(zi) = zi mod �N(T ), therefore the action of 1 on xn+1 using (3.4) can be
given as

1(xn+1) ≡ xn + � ∑
k∈Λn−1

� [k0]
pmk0 (V1 − 1)

[k1]⋯ (Vd − 1)[kd ]y
(1)
k

+ ∑
i∈Λn

� [i0]
pmi0 (V1 − 1 + � )

[i1](V2 − 1)[i2]⋯ (Vd − 1)[id ]zi mod �J [n]ON PD

≡ xn+1 + � ∑
k∈Λn−1

� [k0]
pmk0 (V1 − 1)

[k1]⋯ (Vd − 1)[kd ]y
(1)
k

+ ∑
i∈Λn

� [i0]
pmi0 ((V1 − 1 + � )

[i1] − (V1 − 1)[i1])(V2 − 1)[i2]⋯ (Vd − 1)[id ]zi mod �J [n]ON PD.

For k = (k0,… , kd ) ∈ Λn−1, i.e. k0 + ⋯ + kd = n − 1, the coe�cient of �k0+1(V1 − 1)k1 ⋯ (Vd − 1)kd in
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the right side of the congruence above is given by the expression

y(1)k
k!pmk0

+ (
k1 + k0 + 1

k1 )
z(0,k1+k0+1,k2,…,kd )

(k1 + k0 + 1)!k2!⋯ kd !
+ (

k1 + k0
k1 )

z(1,k1+k0,k2,…,kd )
(k1 + k0)!k2!⋯ kd !pm

+ (
k1 + k0 − 1

k1 )
z(2,k1+k0−1,k2,…,kd )

2!(k1 + k0 − 1)!k2!⋯ kd !p2m
+⋯ +

+⋯ + (
k1 + 2
k1 )

z(k0−1,k1+2,k2,…,kd )
(k0 − 1)!(k1 + 2)!k2!⋯ kd !pm(k0−1)

+ (
k1 + 1
k1 )

z(k0,k1+1,k2,…,kd )
k0!(k1 + 1)!k2!⋯ kd !pmk0

,

(3.5)

where k! = k0!⋯ kd !. To write more succinctly, we set

Λ(1)n,k ∶=
{
j = (j0, j1,… , jd ), such that 0 ≤ j0 ≤ k0, j1 = k1 + k0 + 1 − j0, j2 = k2, … , jd = kd

}
⊂ Λn,

and therefore, the summation in (3.5) can be expressed as

y(1)k
k!pmk0

+
k0
∑
j0=0

(
j1
k1)

zj
j!pmj0

, (3.6)

where we have j! = j0!⋯ jd ! and the summation runs over indices in Λ(1)n,k. To get 1(xn+1) ≡ xn+1
mod �J [n]ON PD, it is enough to have the summation in (3.6) belong to �J [n]ON PD for each k ∈ Λn−1.
We take i = (k0, k1 + 1, k2,… , kd ) ∈ Λ

(1)
n,k and putting (3.6) congruent to 0 modulo �J [n]ON PD and

simplifying the expression, we get a congruence relation

zi ≡ −(y
(1)
k +

k0−1
∑
j0=0

k0!pm(k0−j0)

j0!(k0 + 1 − j0)!
zj) mod �N(T ), (3.7)

where the summation runs over indices in Λ(1)n,k ⧵ {i}. Since j0 < k0 in (3.7), we see that the coe�cients
of zj appearing in the summation above can be re-written as (k0j0)

pm(k0−j0)
k0+1−j0 which has non-negative

p-adic valuation (positive p-adic valuation for p ≥ 3). So from (3.7), we obtain an expression for zi
in terms of zj such that j < i lexicographically. Here by lexicographic ordering we mean that for
j, j′ ∈ Λn, we have j < j′ if and only if j0 < j′0, or j0 = j′0 and j1 < j′1, or j0 = j′0, j1 = j′1 and j2 < j′2, and so
on.

To determine zi modulo �N(T ) for i ∈ Λn such that i1 ≠ 0, we will proceed by lexicographic
induction over the index i. For the base case we have i = (0, i1, i2,… , id ) for 1 ≤ i1 ≤ n and i1+⋯+id = n,
so taking k = (0, i1 − 1, i2,… , id ), from (3.7) we obtain

z(0,i1,i2,…,id ) ≡ −y
(1)
(0,i1−1,i2,…,id )

mod �N(T ).

Lexicographically, next we have i = (1, i1, i2,… , id ) for 1 ≤ i1 ≤ n − 1 and 1 + i1 + ⋯ + id = n.
Then we take k = (1, i1 − 1, i2,… , id ) and obtain that Λ(1)n,k = {(0, i1 + 1, i2,… , id ), (1, i1, i2,… , id )}.
Since (0, i1 + 1, i2,… , id ) < (1, i1, i2,… , id ), from (3.7) we obtain the value of z(1,i1,i2,…,id ). For the
induction step, let i = (i0, i1, i2,… , id ) ∈ Λn, such that i1 ≠ 0 and i0 + ⋯ + id = n. Then we take
k = (i0, i1 − 1, i2,… , id ) ∈ Λn−1 so that we have i ∈ Λ(1)n,k and j < i for all j ∈ Λ(1)n,k ⧵ {i} as j0 < k0 = i0.
Plugging this value of k in the computation above and in particular, from (3.7) we obtain the value
of zi modulo �N(T ) by induction.

Next, we will repeat the computation above for the action of s on xn in (3.4) for 2 ≤ s ≤ d . Let
i = (i0,… , is ,… , id ) such that is ≠ 0, k = (i0,… , is − 1,… , id ),

Λ(s)n,k ∶= {j = (j0,… , jd ), such that 0 ≤ j0 ≤ k0, j1 = k1, … , js = ks + k0 + 1 − j0, … , jd = kd} ⊂ Λn,
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and we set

zi ≡ −(y
(s)
k +

k0−1
∑
j0=0

k0!pm(k0−j0)

j0!(k0 + 1 − j0)!
zj) mod �N(T ), (3.8)

where the summation runs over indices in Λ(s)n,k. For the base case we have i = (0, i1,… , is ,… , id ) for
1 ≤ is ≤ n and i1 +⋯ + id = n. So taking k = (0, i1,… , is − 1,… , id ), from (3.8) we obtain

z(0,i1,…,is ,…,id ) ≡ −y
(s)
(0,i1,…,is−1,…,id )

mod �N(T ).

Lexicographically, next we have i = (1, i1,… , is ,… , id ) for 1 ≤ is ≤ n − 1 and 1 + i1 + … + id = n. Then
we take k = (1, i1,… , is − 1,… , id ) and obtain that Λ(s)n,k = {(0, i1,… , is + 1,… , id ), (1, i1,… , is ,… , id )}.
Since (0, i1,… , is − 1,… , id ) < (1, i1,… , is ,… , id ), from (3.8) we obtain the value of z(1,i1,…,is ,…,id ). For
the induction step, let i = (i0,… , id ) ∈ Λn, such that is ≠ 0 and i0 + … + id = n. Then we take
k = (i0, i1,… , is − 1,… , id ) ∈ Λn−1 so that we have i ∈ Λ(s)n,k and j < i for all j ∈ Λ(s)n,k ⧵ {i} as j0 < k0 = i0.
Plugging this value of k in the computation above and in particular in (3.8), we obtain the value of
zi modulo �N(T ) by induction.

From the computation above we obtain solutions for zi and only when is ≠ 0 for some s ∈ {1,… , d}.
So we set z(n,0,…,0) = 0 mod �N(T ). Note that we have

(i) unique value for zi modulo �N(T ) when is ≠ 0 for exactly one s ∈ {1,… , d},

(ii) more than one value for zi modulo �N(T ) when is ≠ 0 for more than one s ∈ {1,… , d}.

Note that our procedure of obtaining a value for zi modulo �N(T ) involves �xing some s such that
is ≠ 0, and solving some equations arising from the action of s . For an index i ∈ Λn, if s ≠ s′ such
that is ≠ 0 and is′ ≠ 0, then we obtain more than one value for zi. But from Lemma 3.34 below, we
see that these values are in fact, equivalent modulo �N(T ). Therefore, the value of xn+1 in (3.3) is
uniquely determined modulo �J [n]ON PD. Moreover, from the expression obtained for zi in (3.7), it
is clear that p-adically zi → 0 as |i| → +∞. In conclusion, the sequence xn converges p-adically to
some x ′ ∈ M ′ = (ON PD)

Γ′R0 .

Following conclusion was applied above:

Lemma 3.34. For each j ∈ Λn, multiple values of zj obtained are congruent modulo �N(T ).

Proof. For a �xed j ∈ Λn, we need to show that in case of multiple solutions for zj, we must have
that these solutions are equivalent modulo �N(T ). To do this, we need to work with all indices
at once. So we will consider two sets of solutions {zi, i ∈ Λn} such that entries in these sets are
distinct for indices i ∈ Λn for which we have multiple solutions. Further, our proof will exploit the
commutativity of Γ′R0 .

For simplicity in the presentation of the argument, out of d generators of Γ′R0 , we will �x two
generators say 1 and 2. Now, let us denote the �rst set of solutions

{
z(1)i , for i ∈ Λn

}
, where

for i ∈ Λn such that if i1 ≠ 0 we take the solutions obtained from trivializing the action of 1 (see
(3.7)) and if i1 = 0 we take solutions obtained from trivializing the action of s (see (3.8)) for some
s ∈ {2,… , d} such that is ≠ 0. Next, we take another set of solution

{
z(2)i , for i ∈ Λn

}
, where for

i ∈ Λn such that if i2 ≠ 0 we take the solutions obtained from trivializing the action of 2 and if
i2 = 0 we take the solutions obtained from trivializing the action of s for some s ∈ {1,… , d} such
that is ≠ 0. In the second set of solutions, we also impose the condition that in case i2 = 0 and there
exist multiple solutions for zi, then we will choose the value of z(2)i such that it is not the same as
z(1)i . Since the only relation between these set of solutions obtained and xn is given by (3.3), we will
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construct two di�erent values for xn+1. More precisely, we set

z(1) ∶= ∑
i∈Λn

� [i0]
pmi0 (V1 − 1)

[i1]⋯ (Vd − 1)[id ]z
(1)
i ,

z(2) ∶= ∑
i∈Λn

� [i0]
pmi0 (V1 − 1)

[i1]⋯ (Vd − 1)[id ]z
(2)
i .

(3.9)

We have z(1), z(2) ∈ J [n]ON PD. This allows us to set

x (1)n+1 ∶= xn + z
(1),

x (2)n+1 ∶= xn + z
(2).

and we get that

1(x
(1)
n+1) ≡ x

(1)
n+1 mod �J [n]ON PD,

2(x
(2)
n+1) ≡ x

(2)
n+1 mod �J [n]ON PD.

(3.10)

Further, we simplify the notations and write (3.4) as

1(xn) ≡ xn + �y(1) mod �J [n]ON PD,

2(xn) ≡ xn + �y(2) mod �J [n]ON PD,
(3.11)

where it is obvious that y(1), y(2) ∈ J [n−1]ON PD replace the summations occuring in (3.4). Therefore,
from (3.11) we can write

21(xn) ≡ xn + �y(2) + �2(y(1)) mod �J [n]ON PD,

12(xn) ≡ xn + �y(1) + �1(y(2)) mod �J [n]ON PD.

Since Γ′R is commutative, we have 12 = 21, therefore

(2 − 1)�y(1) ≡ (1 − 1)�y(2) mod �J [n]ON PD.

Next, combining (3.11) and (3.10), we obtain

(1 − 1)z(1) ≡ −�y(1) mod �J [n]ON PD,

(2 − 1)z(2) ≡ −�y(2) mod �J [n]ON PD.

Again, since 1 and 2 commute, we obtain

(2 − 1)(1 − 1)(z(1) − z(2)) ≡ 0 mod �J [n]ON PD.

As J [n]ON PD is stable under the action of ΓR0 , applying Corollary 3.36 twice we obtain that

z(1)i ≡ z(2)i mod �N(T ),

for i ∈ Λn such that i1, i2 ≠ 0.
By repeating this argument for each pair of r , s ∈ {1,… , d}, we conclude that the multiple solutions

of zi for i ∈ Λn, are equivalent modulo �N(T ).

Let us note a general result, which will be useful later and whose special case (see Corollary 3.36)
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was used above. Let x ∈ J [n]ON PD and s ∈ {1,… , d}. We write

x = ∑
i∈Λn

� [i0]
pmi0 (V1 − 1)

[i1]⋯ (Vd − 1)[id ]xi,

for xi ∈ J [1]ON PD, and Λn = {i = (i0,… , id ), such that i0 +⋯ + id = n}. Then,

Lemma 3.35. Let s ∈ {1,… , d} such that is ≠ 0, then (s − 1)x ≡ 0 mod J [n+1]ON PD if and only if
xi ∈ J [1]ON PD.

Proof. First note that J [1]ON PD is stable under the action of s for 1 ≤ s ≤ d , so we get the “if”
statement. For the converse, without loss of generality, we take s = 1 and set  ∶= 1. Then we have

( − 1)x ≡ ∑
i∈Λn

� [i0]
pmi0 ((V1 − 1 + � )

[i1] − (V1 − 1)[i1])⋯ (Vd − 1)[id ]xi mod J [n+1]ON PD

≡ ∑
i∈Λn

� [i0]
i1!pmi0

(V2 − 1)[i2]⋯ (Vd − 1)[id ]
i1−1
∑
k=0

(
i1
k)(V1 − 1)

k� i1−kxi mod J [n+1]ON PD

≡ ∑
i∈Λn

i1−1
∑
k=0

(
i1
k)

� i0+i1−k
i0!i1!pmi0

(V1 − 1)k(V2 − 1)[i2]⋯ (Vd − 1)[id ]xi mod J [n+1]ON PD

≡ ∑
i∈Λn

i1−1
∑
k=0

(
i0 + i1 − k

i0 )p
m(i1−k) � [i0+i1−k]

pm(i0+i1−k) (V1 − 1)
[k](V2 − 1)[i2]⋯ (Vd − 1)[id ]xi mod J [n+1]ON PD.

Let j ∈ Λn, then we set Λn,j ∶= {r = (r0,… , rd ), such that j1 ≤ r1 ≤ j0 + j1, r0 = j0 + j1 − r1, r2 =
j2,… , rd = jd}. So we can write

( − 1)x ≡ ∑
j∈Λn
j1<n

� [j0]
pmj0 (V1 − 1)

[j1](V2 − 1)[j2]⋯ (Vd − 1)[jd ] ∑
r∈Λn,j

(
j0
r0)

pm(r1−j1)xr mod J [n+1]ON PD.

To get ( − 1)x ∈ J [n+1]ON PD, we can write each xr = ∑ℎ
i=1 x

(i)
r ei with x (i)r ∈ OŜPD

m and {e1,… , eℎ} a
chosen basis of N(T ) to obtain for each 1 ≤ i ≤ ℎ, the congruence

∑
j∈Λn
j1<n

� [j0]
pmj0 (V1 − 1)

[j1](V2 − 1)[j2]⋯ (Vd − 1)[jd ] ∑
r∈Λn,j

(
j0
r0)

pm(r1−j1)x (i)r ≡ 0 mod J [n+1]OŜPD
m .

Note that in the equation above we have that the �rst part of the left hand side is in J [n+1]OŜPD
m .

Now for any two j, j′ ∈ Λn, we have that j ≠ j′, so the �rst part of the congruence for each term is
di�erent. Therefore to obtain the congruence above, we must have

∑
r∈Λn,j

(
j0
r0)

pm(r1−j1)x (i)r ≡ 0 mod J [1]OŜPD
m . (3.12)

Combining (3.12) for each 1 ≤ i ≤ ℎ, we obtain that

∑
r∈Λn,j

(
j0
r0)

pm(r1−j1)xr ≡ 0 mod J [1]ON PD. (3.13)

From this set of equations, we see that for any j ∈ Λn it is enough to show that xr ≡ 0 mod J [1]ON PD

for each r ∈ Λn,j.
We will proceed by lexicographic induction. First note that in the base case we have j =

(0, j1, j2,… , jd ) for 0 ≤ j1 ≤ n − 1 and Λn,j = {(0, j1, j2,… , jd )}. So from (3.13) we obtain xr ≡ 0
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mod J [1]ON PD. Lexicographically, next we have j = (1, j1, j2,… , jd ) for 0 ≤ j1 ≤ n − 1 and
Λn,j = {(1, j1, j2,… , jd ), (0, j1 + 1, j2,… , jd )}. Let r = (0, j1 + 1, j2,… , jd ), then from the previous step we
have xr ≡ 0 mod J [1]ON PD. Combining this with (3.13) we get that xj ≡ 0 mod J [1]ON PD. For the
induction step, let j = (j0, j1, j2,… , jd ) for 0 ≤ j1 ≤ n − 1. Since we have j > r for any r ∈ Λn,j ⧵ {j}, from
(3.13) and induction we obtain that xj ≡ 0 mod J [1]ON PD. This �nishes the proof.

The result above can be specialized to the following statement:

Corollary 3.36. Let us assume that xi ∈ N(T ) for all i ∈ Λn. For s ∈ {1,… , d} such that is ≠ 0, we
have (s − 1)x ∈ �J [n]ON PD if and only if xi ∈ �N(T ).

Proof. First note that �N(T ) is stable under the action of s for 1 ≤ s ≤ d , so we get the “if” statement.
For the converse, let {e1,… , eℎ} denote an A+

R0-basis of N(T ), and we write xi = ∑ℎ
k=1 x

(k)
i ek . Now,

using Lemma 3.35 and the assumption in the claim, we obtain that xi ∈ N(T ) ⋂ J [1]ON PD ⊂ ON PD.
Therefore, we must have x (k)i ∈ A+

R0
⋂ J [1]OŜPD

m ⊂ OŜPD
m . By de�nitions, we have thatA+

R0
⋂ J [1]OŜPD

m =
�A+

R0 . Hence, xi = ∑ℎ
k=1 x

(k)
i ek ∈ �N(T ).

Arithmetic part of ΓR0

Recall that we have  as a topological generator of ΓF such that 0 =  e is a topological generator of
ΓK , where e = [K ∶ F ]. As a second step, we will successively approximate for the action of 0 and
then obtain an element �xed by  .

Let us consider the ideal and its divided powers for n ≥ 1

H = ( �
pm ) ⊂ (OŜPD

m )
Γ′R0 ,

H [n] = ⟨ �k
k!pmk , k ≥ n⟩ ⊂ (OŜPD

m )
Γ′R0 .

Recall that M ′ = (ON PD)
Γ′R0 and M ′′ = (ON PD)

ΓR0 . Note that since (OŜPD
m )

Γ′R0 is PD-complete with
respect to the ideal H and ON PD is a �nite free OŜPD

m -module, we get that M ′ is PD-complete with
respect to the ideal H .

Lemma 3.37. For x ′ ∈ M ′, there exists a unique x ′′ ∈ M ′, such that

x ′′ ≡ x ′ mod H [1]M ′,
 (x ′′) = x ′′.

In particular, x ′′ ∈ M ′′.

Proof. The proof essentially follows the technique of [Wac96, §B.1.2, Lemme 1]. For uniqueness, we
want to show that if x ′′, y′′ ∈ M ′ satisfy the conditions of the lemma then we must have x ′′ = y′′.
If x ′′ and y′′ are distinct, then x ′′ − y′′ is nonzero in H [n−1]M ′/H [n]M ′ for some smallest n ≥ 2,
i.e. x ′′ − y′′ = �n−1� mod H [n]M ′, with � ∈ M ′. Moreover, we have 0 =  e where e = [K ∶ F ],
therefore 0(x ′′) = x ′′, 0(y′′) = y′′, and 0(�) ≡ � mod �M ′ since 0 acts trivially modulo � on
N(T ) and OŜPD

m . So we obtain

�n−1� = x ′′ − y′′ = 0(x ′′ − y′′) = 0(�n−1�) ≡ 0(�n−1)� ≡ � (0)n−1�n−1� mod H [n]M ′.

Since � (0) = exp(pm) and n ≥ 2, we conclude from the congruence above that � = 0, i.e. x ′′ = y′′.
Before proceeding to show the existence of x ′′, let us show that it is enough to approximate for

the action of 0. Let g ∈ ΓF be a lift of a generator of the cyclic group ΓF /ΓK . Then we have that
y′′ = 1

e ∑
e−1
k=0 gk(x ′′) ∈ (ON PD)

ΓR0 = M ′′. But by the claim of uniqueness proved above, we must
have that y′′ = x ′′, i.e. x ′′ ∈ (ON PD)

ΓR0 = M ′′.
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For existence, we start by setting x ′1 ∶= x ′ and using successive approximation we will show that
if there exists x ′n ∈ M ′ such that

x ′n ≡ x
′
n−1 mod H [n−1]M ′,

0(x ′n) ≡ x
′
n mod �H [n−1]M ′,

then there exists x ′n+1 ∈ M ′ such that

x ′n+1 ≡ x
′
n mod H [n]M ′,

0(x ′n+1) ≡ x
′
n+1 mod �H [n]M ′.

To �nd such an x ′n+1, �rst we write

0(x ′n) ≡ x
′
n + �y

′
n mod �H [n]M ′,

with y′n ∈ H [n−1]M ′. Next, we set
x ′n+1 ∶= x

′
n + z

′
n,

for some z′n = �n
n!pnwn ∈ H [n]M ′, which we need to determine. Note that we have

0(z′n) =
0(�n)
n!pn 0(wn) ≡ � (0)n �n

n!pnwn ≡ � (0)nz′n mod �H [n]M ′.

Now, the action of 0 on x ′n+1 can be given as

0(x ′n+1) ≡ x
′
n + �y

′
n + � (0)

nz′n mod �H [n]M ′

≡ x ′n+1 + �y
′
n + (� (0)

n − 1)z′n mod �H [n]M ′.

Since � (0) = exp(pm), we have � (0)n − 1 = npmu with u ∈ 1 + pℤp . So, to get 0(x ′n+1) ≡ x ′n+1
mod �H [n]M ′, we can take z′n = −y′n �

npmu
npm

� (0)n−1 ∈ H
[n]M ′. Hence, we conclude that the sequence

x ′n converges to some x ′′ ∈ (ON PD)
ΓR0 = M ′′.

Unique li� by successive approximation

From Lemmas 3.33 & 3.37 we get that for any x ∈ N(T ) we can �nd x ′′ ∈ ON PD such that

x ′′ ≡ x mod J [1]ON PD,
s(x ′′) = x ′′ for 0 ≤ s ≤ d.

In particular, x ′′ ∈ M ′′ = (ON PD)
ΓR0 . Moreover, this solution is unique. Indeed, let x ′′, y′′ be two

such solutions. Then we must have that x ′′ − y′′ is nonzero in J [n]ON PD/J [n+1]ON PD for some
smallest n ≥ 1, i.e.

x ′′ − y′′ ≡ ∑
i∈Λn

� [i0]

pmi0
(V1 − 1)[i1]⋯ (Vd − 1)[id ]�i mod J [n+1]ON PD.

Let
� ∶= ∑

i∈Λn

� [i0]

pmi0
(V1 − 1)[i1]⋯ (Vd − 1)[id ]�i ∈ J [n]ON PD,

then because we have (s − 1)(x ′′ − y′′) = 0 for s ∈ {0,… , d}, we obtain that (s − 1)� ≡ 0
mod J [n+1]ON PD. But from Lemma 3.35 this is only possible when �i ≡ 0 mod J [1]ON PD for
i ∈ Λn ⧵ {k} where k = (n, 0,… , 0).
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Next, applying 0 to the reduced expression we obtain

� [n]
pmn �k = x

′′ − y′′ = 0(x ′′ − y′′) ≡ � (0)n �n
pmn �k mod J [n+1]ON PD.

Again, this is only possible when �k = 0 mod J [1]ON PD. Therefore, we obtain that we must have
x ′′ = y′′.

Finishing the proof of Proposition 3.31

Recall that at the beginning of the proof we assumed N(T ) to be free of rank ℎ (after extension
of scalars to A+

R′0
which we again wrote as A+

R0 by abusing notations), therefore ON PD is free of
rank ℎ. Further, we have M = (OAPD

R ⨂A+R0
N(T ))

ΓR0 and since M[ 1p ] is equipped with an integrable
connection, it is projective of rank ≤ ℎ (see the beginning of the proof). So by the successive
approximation argument above, we obtain that the rank of M[ 1p ] as an R0[ 1p ]-module is exactly ℎ.

Finally, we want to show that the natural inclusion OAPD
R ⨂R0 M[ 1p ] � OAPD

R ⨂A+R0
N(V ) is

bijective. Since we assumed N(T ) to be a free module, let {e1,… , eℎ} be its A+
R0-basis. Let P ∈

Mat(ℎ,A+
R0) denote the matrix for the action of Frobenius on N(T ) in the basis {e1,… , eℎ}. We want

to show that '∗(OAPD
R ⨂A+R0

N(V )) ≃ (OAPD
R ⨂A+R0

N(V )). Note that we have ⋀ℎN(V ) = N( ⋀ℎ V ),
which follows from the compatibility between exterior power of representations and exterior power
of their respective Wach modules in Corollary 3.16. Since ⋀ℎ V is again a positive Wach representation
and taking exterior powers commutes with scalar extension (see [Bou98, Chapter III, §7.5, Proposition
8]), therefore passing to ℎ-th exterior power we obtain that

OAPD
R ⨂A+R0

N(
ℎ
⋀V ) =

ℎ
⋀(OAPD

R ⨂A+R0
N(V )).

Now from Lemma 3.30 for one-dimensional representations we have that '∗(OAPD
R ⨂A+R0

N(⋀ℎ V )) ≃
OAPD

R ⨂A+R0
N(⋀ℎ V ), and therefore

'∗(
ℎ
⋀(OAPD

R ⨂A+R0
N(V ))) ≃ '∗(OAPD

R ⨂A+R0
N(

ℎ
⋀V )) ≃ OAPD

R ⨂A+R0
N(

ℎ
⋀V ) ≃

ℎ
⋀(OAPD

R ⨂A+R0
N(V )).

Since the action of ' is diagonal and taking exterior powers commutes with scalar extension (see
[Bou98, Chapter III, §7.5, Proposition 8]), we obtain that

ℎ
⋀ '∗(OAPD

R ⨂A+R0
N(V )) ≃ '∗(

ℎ
⋀OAPD

R ⨂A+R0
N(V )) ≃

ℎ
⋀(OAPD

R ⨂A+R0
N(V )).

In particular, we have obtained that det P is invertible in OAPD
R [ 1p ].

Next, recall that ON PD = OŜPD
m ⨂A+R0

N(T ) and M ′′ = (ON PD)
ΓR0 . So we consider the following

commutative diagram

OŜPD
m ⨂R0 M ′′ ON PD

OAPD
R ⨂R0 M OAPD

R ⨂A+R0
N(T ),

'm ⨂ 'm 'm

where all arrows are injective. We also have that {e1,… , eℎ} is an OAPD
R -basis of OAPD

R ⨂A+R0
N(T ) as

well as an OŜPD
m -basis of ON PD. From Lemmas 3.33 & 3.37 and the discussion above, we have fi ∈ M ′′

for 1 ≤ i ≤ ℎ such that fi = ei +∑ℎ
i=1 aijej for aij ∈ J [1]OŜPD

m . So we let A ∶= idℎ + (aij) ∈ Mat(ℎ,OŜPD
m )

denote the ℎ × ℎ matrix obtained in this manner. Since detA ∈ 1 + J [1]OŜPD
m and OŜPD

m is p-adically
complete with respect to the PD-ideal J [i], we obtain that detA is invertible in OŜPD

m .
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Now let gi = ('m ⨂ 'm)fi = 'm(ei) +∑ℎ
j=1 'm(aij)'m(ej) ∈ M and let M0 be the R0-submodule of

M generated by {g1,… , gℎ}. From the expression of {g1,… , gℎ} in the basis of OAPD
R ⨂A+R0

N(T ),
we obtain that the determinant of the inclusion OAPD

R ⨂R0 M0 � OAPD
R ⨂A+R0

N(T ) is given by
'm(detA) det(Pm). Since detA is invertible in OŜPD

m , we get that '(detA) is invertible in OAPD
R and

from above we already have that det P is invertible in OAPD
R [ 1p ]. Therefore, the natural inclusions

OAPD
R ⨂R0 M0[ 1p ] ⟶ OAPD

R ⨂R0 M[ 1p ] ⟶ OAPD
R ⨂A+R0

N(V ),

are bijective. These inclusions are compatible with Frobenius, �ltration, connection and the action
of ΓR0 on each side.

Note that we assumed N(T ) to be free of rank ℎ, therefore we obtain a free R0-lattice M0 ⊂ M such
that

M0[ 1p ] = (OAPD
R ⨂R0 M0[ 1p ])

ΓR0 ≃ (OAPD
R ⨂R0 M[ 1p ])

ΓR0 = M[ 1p ],

which are free of rank ℎ over R0[ 1p ]. In general, when N(T ) is projective of rank ℎ, we obtain that
M[ 1p ] is projective of rank ℎ.

Finally, under simpli�ed assumptions we make an observation which will be useful in Chapter 5.

Proposition 3.38. Let V be an ℎ-dimensional positive Wach representation of GR0 and T ⊂ V a free
ℤp-lattice of rank ℎ stable under the action of GR0 . Suppose m = 1 and let us assume that N(T ) is a
free A+

R0-module and letM0 ⊂ (OAPD
R ⨂A+R0

N(T ))
ΓR0 be the free R0-module obtained in Proposition 3.31.

Then, the R0-module M0/'∗(M0) is killed by p2s , where s is maximum among the absolute value of
Hodge-Tate weights of V .

Proof. Let e = {e1,… , ed} be an A+
R0-basis of N(T ). Then in the notation of the proof of Proposition

3.31, we obtain that M0 is a free R0-module with a basis given as g = {g1,… , gd}, where g = '(e)'(A)
for A ∈ Mat(ℎ,OŜPD

m ).
Now note that q = '(� )

� = p'(�t )
t
� and since �

t is a unit in OAPD
R (see Lemma 2.43) we obtain

that q and p are associates in the ring OAPD
R . Further, we have that N(T )/'∗(N(T )) is killed by qs ,

where s is maximum among the absolute value of the Hodge-Tate weights of V . So, over OAPD
R

we obtain that (OAPD
R ⨂A+R0

N(T ))/'∗(OAPD
R ⨂A+R0

N(T )) is killed by ps . Next, we have that detA
is a unit in OŜPD

m , therefore '(detA) is a unit in OAPD
R and '(A) is invertible over OAPD

R . This
implies that OAPD

R ⨂R0 M0 ≃ '∗(OAPD
R ⨂A+R0

N(T )). Thus, the cokernel of the natural inclusion
OAPD

R ⨂R0 M0� OAPD
R ⨂A+R0

N(T ) is killed by ps .
Now consider the commutative diagram with exact rows

0 0 M1

0 '∗(OAPD
R ⨂R0 M0) '∗(OAPD

R ⨂A+R0
N(T )) M2 0

0 OAPD
R ⨂R0 M0 OAPD

R ⨂A+R0
N(T ) M3 0

M4 M5

0 0.

By the discussion above, M3 and M5 are ps-torsion modules over OAPD
R . An argument similar to

the case of M3 shows that M2 is ps-torsion as well. This implies that the submodule M1 ⊂ M2 is
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ps-torsion. Next, an application of snake lemma, gives the exact sequence

0⟶ M1 ⟶ M4 ⟶ M5.

Since M1 and M5 are ps-torsion, we conclude that M4 is p2s-torsion. In other words, the module
(OAPD

R ⨂R0 M0)/'∗(OAPD
R ⨂R0 M0) is killed by p2s .

Finally, we note that the action of Frobenius commutes with the action of ΓR0 , therefore taking
ΓR0-invariants, we obtain that the module M0/'∗(M0) is killed by p2s . This proves the corollary.

Remark 3.39. Note that we �xed a choice of m ∈ ℕ≥1 in the beginning. The R0-modules that we
have obtained depend on this choice. In particular, let 1 ≤ m ≤ n and R = R0(�pm ) and R′ = R0(�pm′ ).
Then we have that OAPD

R ⊂ OAPD
R′ with M = (OAPD

R ⨂A+R0
N(T ))

ΓR0 and M ′ = (OAPD
R′ ⨂A+R0

N(T ))
ΓR0 .

Further, let M0 and M ′
0 be the R0-modules obtained for m and m′ respectively in Proposition 3.31,

then we have that 'm′−m(M ′
0) ⊂ M0 (this esentially follows from the fact that 'm′−m(OŜPD

m′ ) ⊂ OŜPD
m ).

3.2.4. Proof of Theorem 3.24

Let M = (OAPD
R ⨂A+R0

N(T ))
ΓR0 and we have a natural inclusion of projective R0[ 1p ]-modules of

rank ℎ from Proposition 3.31, M[ 1p ] ⊂ ODcris(V ). First, we will show that V is crystalline and
the inclusion described above is in fact bijective. Recall that from Proposition 3.31, we have an
isomorphism of OAPD

R [ 1p ]-modules

OAPD
R ⨂R0 M[ 1p ]

≃
−−→ OAPD

R ⨂A+R0
N(V ),

compatible with Frobenius, �ltration, connection and the action of ΓR0 on each side. Since both sides
are projective modules, extending scalars along OAPD

R � OBcris(R0) we obtain an isomorphism of
OBcris(R0)-modules

OBcris(R0)⨂R0[ 1p ]
M[ 1p ]

≃
−−→ OBcris(R0)⨂B+R0

N(V ),

compatible with Frobenius, �ltration, connection and the action of GR0 on each side. Further recall
that A+ ⨂A+R0

N(V ) � A+ ⨂A+R0
V and the cokernel is killed by � s (see Lemma 3.12). Since � is

invertible in OBcris(R0), extending scalars along A+ � OBcris(R0), we obtain an isomorphism of
OBcris(R0)-modules

OBcris(R0)⨂B+R0
N(V )

≃
−−→ OBcris(R0)⨂ℚp V ,

compatible with Frobenius, �ltration, connection and the action of GR0 . Finally, since R0[ 1p ] →
OBcris(R0) is faithfully �at (see [Bri08, Théorème 6.3.8]), we obtain an inclusion ofOBcris(R0)-modules

OBcris(R0)⨂R0[ 1p ]
M[ 1p ] ⊂ OBcris(R0)⨂R0[ 1p ]

ODcris(V ),

compatible with Frobenius, �ltration, connection and the action of GR0 on each side. In particular,
we have a commutative diagram

OBcris(R0)⨂R0[ 1p ]
M[ 1p ] OBcris(R0)⨂B+R0

N(V )

OBcris(R0)⨂R0[ 1p ]
ODcris(V ) OBcris(R0)⨂ℚp V ,

≃

≃

compatible with Frobenius, �ltration, connection and the action of GR0 on each side. It is immediately
clear from the diagram that the left vertical arrow and bottom horizontal arrow must be bijective as
well. The bijection of bottom horizontal arrow implies that V is a crystalline representation of GR0 .
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Moreover, since R0[ 1p ] → OBcris(R0) is faithfully �at (see [Bri08, Théorème 6.3.8]), we obtain an
isomorphism of R0[ 1p ]-modules M[ 1p ]

≃
−−→ ODcris(V ).

Next, we will check the compatibility of the isomorphism obtained with supplementary structures
on both sides. From Proposition 3.31 it is clear that this isomorphism is compatible with the action
of Frobenius and connection on each side. So we are only left to check the compatibility with natural
�ltrations on each side. For this, �rst we see that using De�nition 3.10 and Remark 3.20 (ii), the
�ltration on M[ 1p ] is given as

FilkM[ 1p ] = (∑
i∈ℕ

FiliOAPD
R ⨂̂A+R0

Filk−iN(V ))
ΓR0
.

Lemma 3.40. In the notations already described, we have FilkM[ 1p ] = FilkODcris(V ) for k ∈ ℤ

Proof. First, let x ∈ FilkM[ 1p ], then we can write it as a sum

x = ∑
i∈ℕ
(ai ⨂ bi)� [i0](V1 − 1)[i1]⋯ (Vd − 1)[id ] ⨂ yk−i for ai ∈ R0, bi ∈ A+

R and yk−i ∈ Filk−iN(V ),

where i0 + ⋯ + id = i and � = �
�1 . Writing '(yj−i) = qk−izk−i = '(� k−i)zk−i for some zk−i ∈ N(V ), we

obtain
'(x) = ∑

i∈ℕ
'(a⨂ b)'(� j� [i0](V1 − 1)[i1]⋯ (Vd − 1)[id ]) ⨂ zk−i .

Since the action of ' and ΓR0 commute, we get

'(x) ∈ '(FilkOAPD
R ⨂A+R0

N(V ))
ΓR0 ⊂ '(FilkOBcris(R0)⨂ℚp V )

GR0 ⊂ '(FilkODcris(V )).

As ' is injective, we must have x ∈ FilkODcris(V ). This shows FilkM[ 1p ] ⊂ FilkODcris(V )
Conversely, let {e1,… , eℎ} denote a ℚp-basis of V and let x ∈ FilkODcris(V ) ⧵ Filk+1ODcris(V ).

Then we can write x = ∑ℎ
i=1 biei , with bi ∈ FilkOBcris(R0). Since ODcris(V ) ≃ M[ 1p ], we take r ≤ k

to be the largest integer such that x ∈ FilrM[ 1p ]. So we can also express x = ∑j∈ℕ cj ⨂ fr−j , for
cj ∈ FiljOAPD

R ⧵ Filj+1OAPD
R and fr−j ∈ Filr−jN(V ) ⧵ Filr−j+1N(V ). Note that using Lemma 3.41, we have

that Filr−jN(V ) = (� r−jB+ ⨂ℚp V ) ⋂N(V ). Therefore, fr−j ∈ (� r−jB+ ⨂ℚp V ) ⧵ (� r−j+1B+ ⨂ℚp V ). So, in
the basis of V , we can write fr−j = ∑ℎ

i=1 � r−jfr−j,i ⨂ ei , with fr−j,i ∈ B+ ⧵�B+ for 1 ≤ i ≤ ℎ. In conclusion,
we obtain that

x = ∑
j∈ℕ

cj ⨂ (
ℎ
∑
i=1

� r−jfr−j,i ⨂ ei) =
ℎ
∑
i=1

(∑
j∈ℕ

cj ⨂ � r−jfj−r ,i) ⨂ ei .

Comparing the two expressions for x thus obtained in the basis of V , we get

∑
j∈ℕ

cj ⨂ � r−jfj−r ,i = bi ∈ FilkOBcris(R0) for 1 ≤ i ≤ ℎ.

Now, recall that �ltrations on OAPD
R and OBcris(R0) are compatible (see Remark 3.22). Further, let us

equip B+ with the induced �ltration from Bcris(R). Since the �ltration on Bcris(R) is given by divided
powers of � , we obtain that Filk−jB+ = B+ ⋂ Filk−jBcris(R) = � k−jB+. In particular, we obtain that

(OAPD
R ⨂A+R0

B+) ⋂ FilkOBcris(R0) = ∑
j∈ℕ

FiljOAPD
R ⨂A+R0

(B+ ⋂ Filk−jBcris(R)) = ∑
j∈ℕ

FiljOAPD
R ⨂A+R0

� k−jB+.

Recall that x ∈ FilrM[ 1p ] ⧵ Filr+1M[ 1p ] and in the expression ∑j∈ℕ cj ⨂ � r−jfj−r ,i , we have that
cj ∈ FiljOAPD

R ⧵ Filj+1OAPD
R and fr−j,i ∈ B+ ⧵ �B+ for 1 ≤ i ≤ ℎ. Therefore, ∑j∈ℕ cj ⨂ � r−jfj−r ,i ∈

FilrOBcris(R0) ⧵ Filr+1OBcris(R0). But then ∑j∈ℕ cj ⨂ � r−jfj−r ,i ∈ FilkOBcris(R0) if and only if r ≥ k.
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Since r ≤ k by assumption, therefore we must have r = k. Hence x ∈ FilkM[ 1p ]. This proves the
claim.

Following observation was used above:

Lemma 3.41. Let b ∈ ℕ and q = '(� )
� , then we have (qbB+ ⨂ℚp V ) ⋂N(V ) = qbN(V ).

Proof. First, let us assume that N(V ) is free with {f1, f2,… , fℎ} as an A+
R0-basis, and let {e1,… , eℎ} be

a ℚp-basis of V . Now let qbx ∈ (B+ ⨂ℚp V ) ⋂N(V ) for x = ∑ℎ
i=1 xiei ∈ B+ ⨂ℚp V . We can also write

qbx = ∑ℎ
i=1 yifi for yi ∈ B+R0 . Next, from Lemma 3.12 we have � sB+ ⨂ℚp V ⊂ B+ ⨂B+R0

N(V ), so we can
write qbx = �−sqb ∑ℎ

i=1 xi� sei = �−sqb ∑ℎ
i=1 xi ∑

ℎ
j=1 zijfj = �−s ∑ℎ

i=1(∑
ℎ
j=1 xjzji)fi , with zij ∈ B+. But

then we must have �−sqb ∑ℎ
j=1 xjzji = yi for 1 ≤ i ≤ ℎ. Since HR0 acts trivially on � , q and yi , we

get that wi = ∑ℎ
j=1 xjzji ∈ B+R0 . But yi ∈ B+R0 and � does not divide q in B+R0 , therefore we obtain that

wi ∈ � sB+R0 . In particular, yi ∈ qbB+R0 , therefore qbx = ∑ℎ
i=1 yigi ∈ qbN(V ).

In the case when N(V ) is projective (and not free) over B+R0 , let R′0 be the p-dic completion of a
�nite étale algebra over R0 such that the scalar extension B+R′0

⨂B+R0
N(V ) is a free module over B+R′0

and R′0[ 1p ]/R0[ 1p ] is Galois (see De�nition 3.8). Then we can argue as above and conclude by taking
Gal(R′0[ 1p ]/R0[ 1p ])-invariants of qbB+R′0 ⨂B+R0

N(V ).

Combining Lemma 3.40 with observations made before, we obtain that the isomorphism of R0[ 1p ]-
modules M[ 1p ]

≃
−−→ ODcris(V ) is compatible with Frobenius, �ltration and connection on each

side.
Finally, we can compose these natural maps as

OAPD
R ⨂R0 ODcris(V )

≃
←−− OAPD

R ⨂R0 (OAPD
R ⨂A+R0

N(V ))
ΓR0 ≃

−−→ OAPD
R ⨂A+R0

N(V ),

where the second map is compatible with the Frobenius, �ltration, connection and the action of ΓR0
on each side (see Proposition 3.31). This proves the theorem.
Remark 3.42. In the case when N(T ) is a free A+

R0- module of rank ℎ, from Proposition 3.31 we obtain
that M[ 1p ] ≃ ODcris(V ) is a free R0[ 1p ]-module of rank ℎ. In particular, for Wach representations
there exists a �nite étale extension R′0 over R0 such that R′0[ 1p ] ⨂R0[ 1p ]

ODcris(V ) is a free module of
rank ℎ.

3.3. The false Tate curve
In this section we will construct a set of examples of representations satisfying the conditions of
De�nition 3.8. These examples will arise from the Tate module attached to the false Tate curve.

Let Y ∶= X1, G = Spec R0[Z, Z−1] and  ∶= G/Yℤ denote the false Tate curve over R0. The
R0[ 1p ]-rational points of E form an abelian group and we consider its pn-torsion points. In other
words, there is an attached ℤp-representation of GR0 given by the Tate module of  as

Tp = lim
n

(R0[ 1p ])[p
n] = lim

n

{
� ipn (Y

(n))j , 1 ≤ i, j < pn
}
,

where Y (1) = Y and Y (n) is a compatible system of pn-th roots of Y such that (Y (n+1))p = Y (n) for
n ≥ 1. Let d1 = (�pn )n≥0 and d2 = (Y (n))n≥0, then in the additive notation, we have Tp = ℤpd1 +ℤpd2.

Next, let T denote the ℤp-dual of Tp with the dual basis {e1, e2} such that ei(dj) = �ij for i, j = 1, 2.
Then V = T ⨂ℤp ℚp is a 2-dimensional p-adic representation of GR0 . The action of GR0 on V is given
by the matrix

(
� (g)−1 0

−c(g)� (g)−1 1) ,
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where � (g) is the usual p-adic cyclotomic character and c ∶ GR0 → ℤp is a 1-cocycle such that
g(Y (n)) = � c(g)pn Y (n) for g ∈ GR0 . For k ≥ 1, let us set Vk ∶= Symk(V ) as the ℚp-linear k-th symmetric
power of V , in particular, V1 = V . Since dimℚp V = 2, we get that dimℚp Vk = k + 1. An explicit basis
for Vk can be given as

{
e⨂ j
1 ⨂ e⨂(k−j)

2
}
0≤j≤k . We set Tk = ∑k

j=0ℤpe
⨂ j
1 ⨂ e⨂(k−j)

2 which is a GR0-stable
ℤp-lattice inside Vk .

Next, we compute the crystalline modules associated to the representations described above.

Proposition 3.43 (The crystalline module). The R0-moduleODcris(Vk) is a free �ltered (', ))-module
of rank k + 1 over R0[ 1p ] (see De�nition 1.18). Moreover, there exists an R0-submodule of ODcris(Vk)
satisfying analogous properties.

Proof. For k = 1, this was worked out in [Bri08, Example, p. 120]. To get the module ODcris(Vk),
we will construct some Galois invariant elements in OBcris(R0)⨂ℚp V and extrapolate a basis for
ODcris(Vk).

Let f1 = te1 + �e2 and f2 = e2, where � = log([Y ♭]/Y ) ∈ OAcris(R0). The element � is well-de�ned
and converges in OAcris(R0) because

� = log ( [Y
♭]
Y ) = ∑

n≥1

(−1)n+1
n ( [Y

♭]
Y − 1)

n = ∑
n≥1
(−1)n+1(n − 1)!( [Y

♭]
Y − 1)

[n],

where we have that [Y ♭]/Y ∈ R0 ⨂OF Ainf(R) and �R([Y ♭]/Y − 1) = 0. Also, we conclude that for any
g ∈ GR0 , we have g(�) = c(g)t + � since g(Y (n)) = � c(g)pn Y (n). Clearly,

g(f1) = t(e1 − c(g)e2) + (c(g)t + �)e2 = te1 + �e2 = f1, and g(f2) = f2.

So we get that f1, f2 ∈ ODcris(V ) = (OBcris(R0)⨂ℚp V )
GR0 .

On the other hand, let x ∈ ODcris(V ) which we write as x = ae1 + be2 for a, b ∈ OBcris(R0). For
any g ∈ GR0 , we must have g(x) = � (g)−1g(a)e1 − c(g)� (g)−1g(a)e2 + g(b)e2 = x , i.e.,

� (g)−1g(a) = a, and g(b) − c(g)� (g)−1g(a) = b.

Therefore, t−1a ∈ OBcris(R0)GR0 = R0[ 1p ]. Moreover, we can write x = ae1+be2 = t−1af1+(b−t−1a�)f2.
Now, for any g ∈ GR0 we get

g(b − t−1a�) = g(b) − � (g)−1t−1g(a)(c(g)t + �)

= g(b) − � (g)−1g(a)� − t−1� (g)−1g(a)� = b − t−1a� ∈ OBcris(R0)GR0 = R0[ 1p ].

Hence, (f1, f2) form a basis of ODcris(V ).
For i ∈ ℤ, the �ltration on ODcris(V ) is given as

FiliODcris(V ) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

ODcris(V ) if i ≤ 0,
R0[ 1p ]f1 if i = 1,
0 if i > 1.

From the �ltration, we deduce that the Hodge-Tate weights of V are (−1, 0). Also we have '(f1) = pf1
and '(f2) = f2. Further, the module ODcris(V ) is equipped with a quasi-nilpotent and integrable
connection, given as

) ∶ ODcris(V )⟶ ODcris(V )⨂ℤ Ω1R0
f1 ⟼ −f2 ⨂

dY
Y

f2 ⟼ 0.

This connection on ODcris(V ) satis�es Gri�ths transversality with respect to the �ltration above.
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Let ODcris(T ) ∶= R0f1 +R0f2 be an R0-lattice inside ODcris(V ), which is stable under the Frobenius
homomorphism. Moreover, this modules has an induced connection from ODcris(V ) which sastis�es
Gri�ths transversality with respect to the induced �ltration.

For k ≥ 2, �rst we note that the functor ODcris from p-adic Galois representations of GR0 to
(', ))-modules over R0[ 1p ] is compatible with symmetric powers (see Theorem 1.27). Therefore, we
get that ODcris(Vk) ∶= ODcris(SymkV ) = SymkODcris(V ). An explicit R0[ 1p ]-basis of ODcris(Vk) can
be given as

{
f ⨂ j
1 ⨂ f ⨂(k−j)

2
}
0≤j≤k . By abuse of notation we will write f j1 f

k−j
2 = f ⨂ j

1 ⨂ f ⨂(k−j)
2 . We equip

ODcris(Vk) with a �ltration induced from the natural �ltration on k-th tensor power of V . Explicitly,
for i ∈ ℤ we have

FiliODcris(Vk) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

ODcris(Vk) if i ≤ 0,
∑k
j=i R0[

1
p ]f

j
1 f

k−j
2 if 1 ≤ i ≤ k,

0 if i > k.

From the �ltration, we deduce that the Hodge-Tate weights of Vk are (−k, −k + 1,… , −1, 0). Also,
we have '(f j1 f

k−j
2 ) = pjf j1 f

k−j
2 for 0 ≤ j ≤ k. Further, the module ODcris(Vk) is equipped with a

quasi-nilpotent, integrable connection, given as

) ∶ ODcris(Vk)⟶ ODcris(Vk)⨂Ω1R0
f j1 f

k−j
2 ⟼ −jf j−11 f k−j+12 ⨂

dY
Y .

This connection on ODcris(Vk) satis�es Gri�ths transversality with respect to the �ltration above.
Let ODcris(Tk) ∶= ∑k

j=0 R0f k1 f
k−j
2 be an R0-lattice inside ODcris(Vk), which is stable under the Frobe-

nius homomorphism. Moreover, it induces a connection from ODcris(Vk) and sastis�es Gri�ths
transversality with respect to the induced �ltration.

Proposition 3.44 (An analogue of Wach module). There exists an A+
R0-submodule N(Tk) ⊂ D+(Tk)

satisfying the conditions of De�nition 3.8.

Proof. First we discuss the case k = 1 and let T ∶= T1 and V ∶= V1. Note that the action of
GR0 on T factors through ΓR0 , so the (', ΓR0)-module over AR0 associated to T can be given as
D(T ) = AR0 ⨂ℤp T = AR0e1 + AR0e2. An analogous reasoning gives us that D+(T ) = A+

R0e1 + A+
R0e2.

For the Wach module of T , we see that we can take N(T ) ∶= A+
R0ℎ1 + A+

R0ℎ2, where ℎ1 = �e1 and
ℎ2 = e2. Clearly, N(T ) ⊂ D+(T ), and it is endowed with a Frobenius-semilinear endormorphism
' ∶ N(T ) → N(T ) such that N(T )/'∗(N(T )) is killed by q. such that we have an A+

R0-lattice inside
D(Tk) stable under the action of ' and ΓR0 . We have {0, 1,… , d} as topological generators of
ΓR such that 0 generates ΓK topologically, whereas {1,… , d} are topological generators of Γ′R
satisfying some compatibility conditions (see Remark 2.2). We have � (0) ∈ 1 + pmℤp , whereas
� (i) = 1, for 1 ≤ i ≤ d and therefore,

0(� ) = (1 + � )� (0) − 1 and i(� ) = �, for i ≠ 0.

Moreover,
1([Y ♭]) = (1 + � )[Y ♭] and i([Y ♭]) = [Y ♭], for i ≠ 1.

From this description, it is straightforward to check that the action of ΓR is trivial over N(T )/�N(T ).
As the Hodge-Tate weights of V are (−1, 0), we conclude that V is a positive Wach representation in
the sense of De�nition 3.8.

Next, for k ≥ 2, we know that the action of GR0 on Tk factors through ΓR0 , so the (', ΓR0)-module
over AR0 associated to Tk can be given as D(Tk) = AR0 ⨂ℤp Tk = ∑k

j=0 AR0e
j
1e
k−j
2 . An analogous

reasoning gives us that D+(Tk) = ∑k
j=0 A+

R0e
j
1e
k−j
2 . Now, by compatibility of tensor products in

Corollary 3.16 (see the proof of Proposition 3.43), we obtain that N(Tk) = Symk(N(T )). Therefore,
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we have

N(Tk) =
k
∑
j=0

A+
R0ℎ

⨂ j
1 ⨂ ℎ⨂(k−j)

2 , where ℎ1 = �e1, and ℎ2 = e2,

Clearly, N(Tk) ⊂ D+(Tk), and it is endowed with a Frobenius-semilinear endormorphism ' ∶ N(Tk)→
N(Tk) such that N(Tk)/'∗(N(Tk)) is killed by qk . With this de�nition, we see that N(Tk) satis�es all
the assumptions of De�nition 3.8. As the Hodge-Tate weights of Vk are (−k, k + 1,… , −1, 0) (see the
proof of Proposition 3.43), we conclude that Vk is a positive Wach representation in the sense of
De�nition 3.8.

Now that we have constructed the Wach module N(Tk), we would like to study some complimen-
tary structures on it, and compare it to the R0-module ODcris(T ) in the sense of Theorem 3.24. First
we recall that there is a �ltration over Wach modules given as

FilrN(Tk) = {x ∈ N(Tk) such that '(x) ∈ qrN(Tk)} for r ∈ ℤ.

In our case we can write the �ltration more explicitly. Indeed, we have FilrN(Tk) = N(Tk) for r ≤ 0,
whereas FilrN(Tk) = ∑k

j=0 �mjA+
R0ℎ

j
1ℎ

k−j
2 , for r > 0 and where mj = max{r − j, 0}.

Proposition 3.45. Let OAPD
R be the ring as in De�nition 3.18. There exists a bijective OAPD

R -linear
map

OAPD
R ⨂R0 ODcris(Tk)⟶ OAPD

R ⨂A+R0
N(Tk)

compatible with Frobenius, �ltration, connection and the action of ΓR on each side.

Proof. Using the ring OAPD
R , we extend scalars and set

P = OAPD
R ⨂A+R0

N(Tk) =
k
∑
j=0

OAPD
R ℎj1 ⨂ ℎk−j2 ,

which is equipped with a �ltration, Frobenius, a connection given as )P = )A ⨂ 1, where )A denotes the
connection on OAPD

R mentioned in the discussion following Lemma 3.23. Note that the connection
)P satis�es Gri�ths transversality with respect to the �ltration. Moreover, P is equipped with a
continuous action of ΓR . Next, let

Q = OAPD
R ⨂R0 ODcris(Tk) =

k
∑
j=0

OAPD
R f j1 ⨂ f k−j2 ,

which is equipped with a �ltration, Frobenius and a connection given by )Q = )A ⨂ 1 + 1⨂ )D which
satis�es Gri�ths transversality with respect to the �ltration.

We have an OAPD
R -linear map between these two modules, given as

� ∶ OAPD
R ⨂R0 ODcris(Tk)⟶ OAPD

R ⨂A+R0
N(Tk)

f j1 ⨂ f k−j2 ⟼ ( t
� ℎ1 + �ℎ2)

j
⨂ ℎk−j2 .

(3.14)

It is straightforward to see that this map is bijective. The induced Frobenius on both modules are
the same because for 0 ≤ j ≤ k we have

'P ◦ �(f
j
1 ⨂ f k−j2 ) = 'P(( t

� ℎ1 + �ℎ2)
j

⨂ ℎk−j2 )
= (

pt
q� qℎ1 + p�ℎ2)

j
⨂ ℎk−j2

= �(pjf
j
1 ⨂ f k−j2 ) = � ◦ 'Q(f

j
1 ⨂ f k−j2 ).

The induced �ltration also matches, since we can write any element of FilrOAPD
R ⨂R0 ODcris(Tk) as
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∑k
j=0 ajf

j
1 ⨂ f k−j2 , with aj ∈ Filr−jOAPD

R . In this case, we have

k
∑
j=0

�(ajf
j
1 ⨂ f k−j2 ) =

k
∑
j=0

aj( t
� ℎ1 + �ℎ2)

j
⨂ ℎk−j2 ∈ FilrOAPD

R ⨂A+R0
N(Tk),

since t
� is a unit, � ∈ Fil1OAPD

R and ℎj1 ⨂ ℎk−j2 ∈ FiljN(Tk). Similarly, for any ∑k
j=0 bjℎ

j
1 ⨂ ℎk−j2 ∈

FilrOAPD
R ⨂A+R0

N(Tk), with bj ∈ Filr−jOAPD
R , we have

k
∑
j=0

�−1(bjℎ
j
1 ⨂ ℎk−j2 ) =

k
∑
j=0

bj(�t f1 −
��
t f2)

j
⨂ f k−j2 ∈ FilrOAPD

R ⨂R0 ODcris(Tk).

Next, the way the respective connections on P and Q are de�ned, for 0 ≤ j ≤ k, we can write

)P ◦ �(f
j
1 ⨂ f k−j2 ) = )P(( t

� ℎ1 + �ℎ2)
j
) ⨂ ℎk−j2 + ( t

� ℎ1 + �ℎ2)
j

⨂ )P(ℎ
k−j
2 )

= j)P( t
� ℎ1 + �ℎ2) ⨂ ( t

� ℎ1 + �ℎ2)
j−1

⨂ ℎk−j2

= j()A( t
� ) ⨂ ℎ1)A(�)⨂ ℎ2) ⨂ ( t

� ℎ1 + �ℎ2)
j−1

⨂ ℎk−j2

= −j( t
� ℎ1 + �ℎ2)

j−1
⨂ ℎk−j+12 ⨂

dX
X

= � ◦ )Q(f
j
1 ⨂ f k−j2 ).

Finally, ΓR0 acts trivially on f j ⨂ f k−j2 and the same is true for ( t
� ℎ1 + �ℎ2)

j
⨂ ℎk−j2 . So we see that the

isomorphism (3.14) is compatible with all the structures. This proves the proposition.





CHAPTER 4

Cohomological complexes

Let K be a mixed characteristic complete discrete valuation �eld with perfect residule �eld, GK
its absolute Galois group and V a p-adic representation of GK . The continuous GK -cohomology
groups are useful invariants attached to V . For example, the �rst continuous cohomology group
of V , i.e. H 1

cont(GK , V ) classi�es equivalent classes of extensions of the trivial representation ℚp
by V in Repℚp

(GK ). Further, by the equivalence between the category of p-adic representations
of GK and étale (', ΓK )-modules over BK (see Theorem 2.11), it is natural to ask if the continuous
cohomology of a representation could be computed using a complex of the attached (', ΓK )-module.
This question was �rst answered in the article of Herr (see [Her98]). He gave a three term complex
in terms of (', ΓK )-module which computes the continuous cohomology of the representation in
each cohomological degree. More precisely,

Theorem 4.1 (Fontaine-Herr). Let V be a p-adic representation (resp. ℤp-representation) of GK , and
let D(V ) denote the associated étale (', ΓK )-module over BK (resp. AK ). Then we have a complex

∙ ∶ D(V )
(1−',0−1)−−−−−−−−−−−→ D(V )⨁D(V )

( 0−11−' )
−−−−−−−−−−−−→ D(V ),

where the second map is (x, y) ↦ (0 − 1)x − (1 − ')y. The complex ∙ computes the continuous
cohomology of V in each cohomological degree, i.e. for k ∈ ℕ, we have natural isomorphims

H k(∙) ≃
−−→ H k

cont(GK , V ).

Before discussing the relative case, let us introduce some shorthand notation for writing certain
complexes.

Notation. Let f ∶ C1 → C2 be a morphism of complexes. The mapping cone of f is the complex
Cone(f ) whose degree n part is given as Cn+1

1 ⨁Cn
2 and the di�erential is given by d(c1, c2) =

(−d(c1), d(c2) − f (c1)). Next, we denote the mapping �ber of f by

[C1
f
−−→ C2] ∶= Cone(f )[−1].

75
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We also set
⎡
⎢
⎢
⎢
⎢
⎣

C1
f //

��

C2

��
C3

g // C4

⎤
⎥
⎥
⎥
⎥
⎦

∶= [[C1
f
−−→ C2] ⟶ [C3

g
−−→ C4]].

In other words, this amounts to taking the total complex of the associated double complex.
Using the notation introduced above, we can also write the quasi-isomorphism of complexes in

Theorem 4.1 as

[RΓcont(ΓK ,D(V ))
1−'
−−−→ RΓcont(ΓK ,D(V ))]

≃
−−→ RΓcont(GK , V ).

4.1. Relative Fontaine-Herr complex
Now we turn our attention towards the relative case. We will keep the notations of Chapters 1 &
2. Similar to Theorem 4.1, we have results in the relative case where a complex of (', Γ)-modules
computes the continuous GR-cohomology of a p-adic representation. For this reason, we consider
the continuous cohomology (for the weak topology) of (', ΓR)-modules over AR and A†

R .

De�nition 4.2. Let D be a continuous (', ΓR)-module over AR or A†
R . De�ne C∙(ΓR , D) to be the

complex of continuous cochains with values in D and let RΓcont(ΓR , D) denote this complex in the
derived category of abelian groups.

Let T be a ℤp-module, equipped with a continuous and linear action of GR . Let D(T ) and D†(T )
denote the associated (', Γ)-module over AR and A†

R , respectively. Then we have that,

Theorem 4.3 ([AI08, Theorem 7.10.6]). The natural maps

RΓcont(ΓR ,D(T ))⟶ RΓcont(GR , T ⨂ℤp AR),

RΓcont(ΓR ,D†(T ))⟶ RΓcont(GR , T ⨂ℤp A
†
R),

are isomorphisms.

Moreover, from [AI08, Proposition 8.1] we have that the sequence

0⟶ ℤp ⟶ AR
1−'
−−−→ AR ⟶ 0

is exact and remains exact if we replace AR above with A†
R , A or A†. Furthermore, the exact sequence

above admits a continuous right splitting � ∶ AR ⟶ AR such that �(A†
R) ⊂ A†

R , � (A) ⊂ A
and � (A†) ⊂ A†. Combining the short exact sequence above with Theorem 4.3 and by explicit
computations, Andreatta and Iovita have shown that

Theorem 4.4 ([AI08, Theorem 3.3]). There are isomorphisms of �-functors from the category
Repℤp

(GR) to the category of abelian groups

� ∶ [RΓcont(ΓR ,D(−))
1−'
−−−→ RΓcont(ΓR ,D(−))]

≃
−−→ RΓcont(GR , −),

�† ∶ [RΓcont(ΓR ,D†(−))
1−'
−−−→ RΓcont(ΓR ,D†(−))]

≃
−−→ RΓcont(GR , −).

Furthermore, for T ∈ Repℤp
(GR), the natural inclusion of (', ΓR)-modules D†(T ) ⊂ D(T ) induces a

natural isomorphism

[RΓcont(ΓR ,D†(−))
1−'
−−−→ RΓcont(ΓR ,D†(−))]

≃
−−→ [RΓcont(ΓR ,D(−))

1−'
−−−→ RΓcont(ΓR ,D(−))],
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compatible with � and �†.

4.2. Koszul complexes
In this section, we will introduce Koszul complexes which will be used to compute continuous
ΓR-cohomology of topological modules admitting a continuous action of ΓR , in particular (', ΓR)-
modules. Koszul complexes have the advantage of being explicit and therefore easier to manipulate.
We will follow the exposition in [CN17, §4.2].

Recall that we set K = F (�pm ) for some m ≥ 1. From §2.1 that the ring R∞[ 1p ] is a Galois extension
of R[ 1p ], with Galois group ΓR �tting into an exact sequence

1⟶ Γ′R ⟶ ΓR ⟶ ΓK ⟶ 1,

and we have topological generators {0, 1,… , d} of ΓR such that {1,… , d} are topological gener-
ators of Γ′R and 0 is a lift of a topological generator of ΓK (see Remark 2.2). Further, let � denote the
p-adic cyclotomic character and recall the convention that c = � (0) = exp(pm).

Let �i = i − 1 for 0 ≤ i ≤ d . We consider the case of an Iwasawa algebra A = ℤp[[�1,… , �d ]].

De�nition 4.5. The Koszul complex associated to (�1,… , �d ) is the complex

K (�1,… , �d ) = K (�1)⨂̂ℤpK (�2)⨂̂ℤp ⋯ ⨂̂ℤpK (�d ),

where K (�i) is the complex

0⟶ ℤp[[�i]]
�i−−−−→ ℤp[[�i]]⟶ 0,

where the non-trivial map is multiplication by �i and the right-hand term is placed in degree 0.

Remark 4.6. The Koszul complex de�ned above, in degree q, equals the exterior power ⋀q Ad . In
the standard basis {ei1⋯iq} of ⋀q Ad for 1 ≤ i1 < ⋯ < iq ≤ d , the di�erential d1q ∶ ⋀q Ad → ⋀q−1 Ad is
given by the formula

d1q(ai1⋯iq) =
q

∑
k=1
(−1)k+1ai1⋯îk⋯iq�ik . (4.1)

The augmentation map A → ℤp makes K (�1,… , �d ) into a resolution of ℤp in the category of
topological A-modules.

We can use this to de�ne Koszul complex for modules equipped with an action of Γ′R or ΓR . Let
ℤp[[Γ′R]] denote the Iwasawa algebra of Γ′R , i.e. the completed group ring

ℤp[[Γ′R]] ∶= lim
H⊴Γ′R

ℤp[Γ′R/H ],

where the (projective) limit runs over all open normal subgroups H of Γ′R and every group ring
ℤp[Γ′R/H ] is equipped with the p-adic topology. We have ℤp[[Γ′R]] ≃ ℤp[[�1,… , �d ]], �i = i − 1 for
i ∈ {1,… , d}.

De�nition 4.7. The Koszul complex K (�1,… , �d ) is given as

0 ℤp[[Γ′R]]I
′
d ⋯ ℤp[[Γ′R]]I

′
1 ℤp[[Γ′R]] 0,

d1d−1 d11 d10

where I ′j = {(i1,… , ij), 1 ≤ i1 < ⋯ < ij ≤ d} and di�erentials as in (4.1). Similarly, for c = � (0) =
exp(pm) we can de�ne the Koszul complex K (� c1 ,… , � cd ) (with di�erentials dcq), where � ci ∶=  ci − 1.

Both K (�1,… , �d ) and K (� c1 ,… , � cd ) are resolutions of ℤp in the category of ℤp[[Γ′R]]-modules.
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De�nition 4.8. Let Λ ∶= ℤp[[ΓR]], and de�ne the complex

K (Λ) ∶ 0 ΛI ′d ⋯ ΛI ′1 Λ 0.
d1d−1 d11 d10

We have an isomorphism

lim
m

ℤp[ΓK /(ΓK )p
m
] ⨂ℤp K (�1,… , �d ) ≃ K (Λ),

of left Λ- and right ℤp[[�1,… , �d ]]-modules (see [Mor08, Lemma 4.3]). Therefore, the complex K (Λ)
is a resolution of ℤp[[ΓK ]] in the category of topological left Λ-modules. Similarly, we have the
complex K c(Λ), obtained from K (� c1 ,… , � cd ), which is again a resolution of ℤp[[ΓK ]].

De�nition 4.9. De�ne a map
�0 ∶ K c(Λ)⟶ K (Λ),

by the commutative diagram of topological left Λ-modules

0 ΛI ′d ⋯ ΛI ′1 Λ ℤp[[ΓK ]] 0

0 ΛI ′d ⋯ ΛI ′1 Λ ℤp[[ΓK ]] 0,

dcd−1

�d0

dc1 dc0

� 10 � 00 0−1

d1d−1 d11 d10

where the vertical maps are de�ned as

� 00 = 0 − 1

� q0 ∶ (ai1⋯iq) ↦ (ai1⋯iq(0 − �i1⋯iq)),

for 1 ≤ q ≤ d , 1 ≤ i1 < ⋯ < iq ≤ d , and �i1⋯iq = �iq ⋯ �i1 , where �ij = ( cij − 1)(ij − 1)
−1.

Let M be a topological ℤp-module admitting a continuous action of ΓR .

De�nition 4.10. De�ne the complexes

Kos(Γ′R , M) ∶= HomΛ,cont(K (Λ), M) = HomΛ(K (Λ), M),
Kosc(Γ′R , M) ∶= HomΛ,cont(K c(Λ), M) = HomΛ(K c(Λ), M).

Remark 4.11. Using De�nition 4.8, we can write the complexes in De�nition 4.10 as

Kos(Γ′R , M) ∶ M M I ′1 ⋯ M I ′d ,

Kosc(Γ′R , M) ∶ M M I ′1 ⋯ M I ′d .

(�i )

(� ci )

The map �0 ∶ K c(Λ)⟶ K (Λ) induces a map of complexes

�0 ∶ Kos(Γ′R , M)⟶ Kosc(Γ′R , M),

which can be represented by the commutative diagram

M M I ′1 ⋯ M I ′d

M M I ′1 ⋯ M I ′d .

(�i )

� 00 � 10 �d0

(� ci )
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Let K (Λ, � ) ∶= [K c(Λ)
�0−−−→ K (Λ)]. This complex is a resolution of ℤp in the category of topological

left Λ-modules.

De�nition 4.12. De�ne the ΓR-Koszul complex with values in M as

Kos(ΓR , M) ∶= HomΛ,cont(K (Λ, � ), M) = [Kos(Γ′R , M)
�0−−−−→ Kosc(Γ′R , M)].

By the general theory of continuous group cohomology for p-adic Lie groups, we have the following
conclusion:

Proposition 4.13 ([Laz65, Lazard]). There exists a natural quasi-isomorphism

Kos(ΓR , M)
≃
−−→ RΓcont(ΓR , M).

De�nition 4.14. Let D be a (', ΓR)-module over AR from De�nition 2.9. De�ne the complex

Kos(', ΓR , D) ∶=

⎡
⎢
⎢
⎢
⎢
⎣

Kos(Γ′R , D)
1−' //

�0
��

Kos(Γ′R , D)

�0
��

Kosc(Γ′R , D)
1−' // Kosc(Γ′R , D)

⎤
⎥
⎥
⎥
⎥
⎦

.

Therefore, from Proposition 4.13 we have a natural quasi-isomorphism

Kos(', ΓR , D)
≃
−−→ [RΓcont(ΓR , D)

1−'
−−−−−→ RΓcont(ΓR , D)].

Using the de�nition above, we have the following conclusion for p-adic representations of GR :

Proposition 4.15. Let T be a ℤp-representation of GR and D(T ) the associated (', ΓR)-module over AR
(see Theorem 2.11). Then from the discussion above and Theorem 4.4, we get a natural quasi-isomorphism

Kos(', ΓR ,D(T ))
≃
−−→ RΓcont(GR , T ).

4.3. Lie algebra action and cohomology
In this section we will study the in�nitesimal action of ΓR on some of the rings constructed in
previous sections. This will help us in computing continuous Lie algebra cohomology of certain
ℤp[[Lie ΓR]]-modules, which is roughly the same as continuous Lie group cohomology of these
modules. Recall from the previous section that we have topological generators {0, 1,… , d} of ΓR
such that {1,… , d} are topological generators of Γ′R and 0 is a lift of a topological generator of ΓK .

In the rest of this section we will �x constants u, v ∈ ℝ such that p−1
p ≤ u ≤ v

p < 1 < v, for example,
one can �x u = p−1

p and v = p − 1. Recall from §2.4 that we have rings APD
R , A[u]

R and A[u,v]
R equipped

with a continuous action of ΓR .

Lemma 4.16. For i ∈ {0, 1,… , d} the operators

∇i ∶= log i = ∑
k∈ℕ

(−1)k (i−1)
k+1

k+1 ,

converge as series of operators on APD
R , A[u]

R and A[u,v]
R .

Proof. Recall that any f ∈ APD
R can be written as f = ∑n∈ℕ fn

�nm
⌊n/e⌋! such that fn ∈ A+

R goes to 0 as
n → +∞. So it is enough to show that the series of operators log 0 converge for �m, i.e. ∇0(�m)
converges in APD

K and therefore in APD
R .
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From Lemma 2.45, we already have that

(0 − 1)kAPD
R ⊂ (p, �p

m

m )
kAPD

R . (4.2)

So to check that the series ∇0(�m) converges over APD
K we write it as ∑j cj�

j
m and we collect the

coe�cients of �p
mk

m for k ≥ 1, having the smallest p-adic valuation, which will also have the least
p-adic valuation among the coe�cients of � jm for pmk ≤ j ≤ pm(k + 1). We write the collection of
these terms as

∑
k≥1
(−1)k+1 �

pmk
m
k = ∑

k≥1
(−1)k+1 ⌊p

mk/e⌋!
k

�p
mk

m
⌊pmk/e⌋! ,

and by the preceding discussion it is enough to show that these coe�cients go to 0 as k → +∞.
Moreover, for this series it su�ces to check the estimate of coe�cients for k = (p − 1)r as r → +∞
(this gets rid of the �oor function above). With help of Remark 2.44, we have

�p(
⌊pmk/e⌋!

k ) = �p(
(pr)!
(p−1)r) = �p((pr)!) − �p((p − 1)r) ≥

pr−sp(pr)
p−1 − r = r−sp(r)

p−1 = �p(r !),

which goes to +∞ as j → +∞. Hence, we conclude that ∇0 = log 0 converges as a series of operators
on APD

K .
Next, consider i for i ∈ {1,… , d}. Again from Lemma 2.45 we have

(i − 1)k[X ♭
i ] = �[X

♭
i ] ∈ (p, �p

n

m )
kAPD

R . (4.3)

By an argument similar to the case of 0 it follows that ∇i = log i converges as a series of operator on
APD
R . The arguments in the case of A[u]

R and A[u,v]
R follow similarly (the estimates of p-adic valuation

of coe�cients is easier).

Next, note that formally we can write

log(1 + X )
X

= 1 + a1X + a2X 2 + a3X 3 +⋯ ,

X
log(1 + X )

= 1 + b1X + b2X 2 + b3X 3 +⋯ ,

where �p(ak) ≥ − k
p−1 for all k ≥ 1 and therefore, �p(bk) ≥ − k

p−1 for all k ≥ 1. Setting X = i − 1 for
i ∈ {0, 1,… , d}, we make the following claim:

Lemma 4.17. For i ∈ {0, 1,… , d}, the operators

∇i
i − 1

=
log i
i − 1

and
i − 1
∇i

=
i − 1
log i

converge as series of operators on APD
R , A[u]

R and A[u,v]
R .

Proof. We will only show that these series converge on APD
R , the case of A[u]

R and A[u,v]
R follow

similarly. Moreover, similar to Lemma 4.16 it su�ces to check the convergence of these operators
for their action on �m.

So we will check that the series ∇i
i−1 (�m) converges over APD

K (the convergence of the other series
follows similarly since �p(ak) ≥ − k

p−1 and �p(bk) ≥ − k
p−1 for k ∈ ℕ). From the description of the

action of i − 1 in (4.2) and (4.3), we can write the series ∇i
i−1 (�m) as ∑j cj�

j
m. Next, we collect the

coe�cients of �p
mk

m for k ≥ 1, having the smallest p-adic valuation, which will also have the least
p-adic valuation among the coe�cients of � jm for pmk ≤ j ≤ pm(k + 1). We write the collection of
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these terms as
∑
k≥1
(−1)k+1ak�p

mk
m = ∑

k≥1
(−1)k+1ak⌊pmk/e⌋! �p

mk
m

⌊pmk/e⌋! .

By the preceding discussion it is enough to show that these coe�cients go to 0 as k → +∞. Moreover,
for this series it su�ces to check the estimate of coe�cients for k = (p − 1)r as r → +∞ (this gets
rid of the �oor function above). With help of Remark 2.44, we have

�p(ak⌊pmk/e⌋!) = �p(a(p−1)r (pr)!) = �p((pr)!) − �p(a(p−1)r) ≥
pr−sp(pr)

p−1 − r = r−sp(r)
p−1 = �p(r !),

which goes to +∞ as r → +∞. Hence, it follows that the series in the claim converge for APD
R , A[u]

R
and A[u,v]

R .

Example 4.18. Recall that in §3.3, we constructed Wach modules arising from symmetric powers
of the p-adic Tate module of the false Tate curve. For k ∈ ℕ, we have Tk as a ℤp-representation
of GR0 with a basis

{
ej1 ⨂ ek−j2

}
0≤j≤k . The Wach module is given as N(Tk) = ∑k

j=0 A+
R0ℎ

j
1 ⨂ ℎk−j2 . Our

objective is to analyze the action of Lie ΓR over MPD ∶= APD
R ⨂A+R0

N(Tk). Note that by Lemma 4.16,
the operators ∇i = log i for i ∈ {0,… , d}, converge as a series of operators over APD

R .
It is straightforward to see that ∇i(ℎ2) = 0 for 0 ≤ i ≤ d . Further, we have

∇0(e1) = lim
k→∞

 p
k

0 (e1) − e1
pk

= lim
k→∞

� (0)−p
k e1 − e1
pk

= − log � (0)e1,

and ∇0(� ) = t(1 + � ). So we get that ∇0(�e1) = (t(1 + � ) − � )e1. Therefore, for 0 ≤ j ≤ k, we have

∇0(ℎ
j
1ℎ

k−j
2 ) = ∇0(� je

j
1e
k−j
2 ) = j(t(1 + � )� j−1 − � j)e

j
1e
k−j
2 = j( t

� (1 + � ) − 1)ℎ
j
1ℎ

k−j
2 .

For the action of 1, we have

∇1(e1) = lim
n→∞

 p
n

1 (e1) − e1
pn

= lim
n→∞

−
pne2
pn

= −e2.

Since 1 has trivial action on � , we get that ∇1(�e1) = −�e2. Therefore, in this case, for 0 ≤ j ≤ k, we
have

∇1(ℎ
j
1ℎ

k−j
2 ) = ∇1(� je

j
1e
k−j
2 ) = −j� je

j−1
1 ek−j+12 = −j�ℎj−11 ℎk−j+12 .

Finally, for 2 ≤ i ≤ d , we have ∇i(�e1) = 0, therefore ∇i(ℎj1ℎ
k−j
2 ) = 0. As we can see that ∇i(MPD) ⊂

�MPD and since �
t is a unit in APD

R (see Lemma 2.43), we can introduce di�erential operators on
MPD. More precisely, in the basis

{ d�m
1+�m , d log[X ♭

1 ],… , d log[X ♭
d ]
}

of Ω1APD
R

, the connection can be
deduced by the relation ∇i = t)i , for 1 ≤ i ≤ d .

4.3.1. Koszul Complex

In this section, we turn our attention to the computation of Lie algebra cohomology using Koszul
complexes. The Lie algebra Lie Γ′R of the p-adic Lie group Γ′R is a free ℤp-module of rank d , i.e.
Lie Γ′R = ℤp[∇i]1≤i≤d with

∇i ∶= log i = ∑
k∈ℕ

(−1)k (i−1)
k+1

k+1 ∶ M ⟶ M,

for any Lie Γ′R-module M . Moreover, Lie Γ′R is commutative. Similarly, the Lie algebra Lie ΓR of the
p-adic Lie group ΓR is a free ℤp-module of rank d + 1, i.e. Lie ΓR = ℤp[∇i]0≤i≤d (∇i de�ned as above
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for 0 ≤ i ≤ d). We have

[∇i ,∇j] = 0, for 1 ≤ i, j ≤ d,
[∇0,∇i] = pm∇i , for 1 ≤ i ≤ d.

(4.4)

It follows that Lie Γ′R is not commutative.
Let M be a topological ℤp-module admitting a continuous action of the Lie algebra Lie ΓR . Similar

to the de�nition of Koszul complexes in the case of ΓR (see §4.2), we de�ne Koszul complexes for
Lie ΓR .

De�nition 4.19. De�ne the complex

Kos(Lie Γ′R , M) ∶ M ⟶ M I ′1 ⟶ ⋯ ⟶ M I ′d ,

with di�erentials dual to those in (4.1) (with �i replaced by ∇i).

Now, consider the map

∇0 ∶ Kos(Lie Γ′R , M)⟶ Kos(Lie Γ′R , M),

de�ned by the diagram

M M I ′1 ⋯ M I ′q ⋯

M M I ′1 ⋯ M I ′q ⋯ ,

(∇i )

∇0 ∇0−pm ∇0−qpm

(∇i )

which commutes since ∇0∇i − ∇i∇0 = pm∇i for 1 ≤ i ≤ d (see (4.4)). Note that the k-th vertical arrow
is ∇0 − kpm since the (k − 1)-th vertical arrow is ∇0 − (k − 1)pm and using (4.4) trivially we have
(∇0 − kpm)∇i = ∇i(∇0 − (k − 1)pm).

De�nition 4.20. De�ne the Lie ΓR-Koszul complex for M as

Kos(Lie ΓR , M) ∶= [Kos(Lie Γ′R , M)
∇0−−−−−→ Kos(Lie Γ′R , M)].

Proposition 4.21 ([Laz65, Lazard]). The Koszul complexes in De�nitions 4.19 and 4.20 compute Lie
algebra cohomology of Lie Γ′R and Lie ΓR respectively, with values inM . In other words, we have natural
quasi-isomorphisms

RΓcont(Lie Γ′R , M) ≃ Kos(Lie Γ′R , M),
RΓcont(Lie ΓR , M) ≃ Kos(Lie ΓR , M).



CHAPTER 5

Syntomic complex and Galois cohomology

Let K be a mixed characteristic complete discrete valuation �eld with ring of integers OK and
residue �eld � of characteristic p. Let X be a smooth proper scheme over OK , such that j ∶ XK ∶=
X ⨂OK K � X denotes the inclusion of its generic �ber and i ∶ X0 ∶= X ⨂OK � � X denotes the
inclusion of its special �ber. For r ≥ 0, let Sn(r)X denote the syntomic sheaf modulo pn on X0,ét. In
[FM87], Fontaine and Messing constructed period morphisms

�FM
r ,n ∶ Sn(r)X ⟶ i∗Rj∗ℤ/pn(r)′XK , r ≥ 0,

from syntomic cohomology to p-adic nearby cycles, where ℤp(r)′ ∶= 1
pa(r)ℤp(r), for r = (p − 1)a(r) +

b(r) with 0 ≤ b(r) ≤ p − 1.
In [CN17], Colmez and Nizioł have shown that the Fontaine-Messing period map �FM

r ,n , after a
suitable truncation, is essentially a quasi-isomorphism. More precisely,

Theorem 5.1 ([CN17, Theorem 1.1]). For 0 ≤ k ≤ r , the map

�FM
r ,n ∶ k(Sn(r)X )⟶ i∗Rk j∗ℤ/pn(r)′XK ,

is a pN -isomorphism, i.e. there exists N = N (e, p, r) ∈ ℕ depending on r and the absolute rami�cation
index e of K but not on X or n, such that the kernel and cokernel of the map is killed by pN .

In fact, for k ≤ r ≤ p − 1, the map �FM
r ,n was shown to be an isomorphism by Kato [Kat89, Kat94],

Kurihara [Kur87], and Tsuji [Tsu99]. Further, in [Tsu96] Tsuji generalized this result to some suitable
étale local systems.

The proof of Colmez and Nizioł is di�erent from earlier approaches. They construct another local
period map �az

r , employing techniques from the theory of (', Γ)-modules and a version of integral
Lazard isomorphism between Lie algebra cohomology and continuous group cohomology. Then
they proceed to show that this map is a quasi-isomorphism and coincides with Fontaine-Messing
period map up to some constants. Moreover, all of their results have been worked out in the general
setting of log-schemes.

To state the local result, we will restrict ourselves to a familiar setting. We will assume the
setup of Chapter 1, as well as notations from Chapter 2. Recall that we �xed � to be a �nite
�eld of characteristic p; F = Fr W = Fr W (�); an integer m ≥ 1 and K = F (�pm ), where �pm is a
primitive pm-th root of unity such that the element $ = �pm − 1 is a uniformizer of K . Moreover, let
X = (X1,… , Xd ) be a set of indeterminates, then we de�ned R0 to be the p-adic completion of an

83
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étale algebra over W (�){X, X −1}; similarly, R to be the p-adic completion of an étale algebra over
R□ (de�ned using the same equations as in the de�nition of R0). We also have rings rF$ and RF$ for
F ∈ { , +, PD, [u], (0, v]+, [u, v]}. Recall that we assumed p ≥ 3 and we take u = p−1

p and v = p −1.The
p-adic completion of the module of di�erentials of R0 relative to ℤ is given as

Ω1R0 =
d
⨁
i=1

R0 d logXi and Ωk
R0 =

k
⋀Ω1R0 , for k ∈ ℕ.

Moreover, the kernel and cokernel of the natural map Ωk
R0

⨂R0 R → Ωk
R is killed by a power of p (see

Proposition 1.1). In particular,

Ωk
R[ 1p ] =

k
⋀(

d
⨁
i=1

R[ 1p ] d logXi).

Also, for S = RF$ where F ∈ {+, PD, [u], [u, v]}, we have

Ω1S = S
dX0
1+X0

⨁(
d
⨁
i=1

S d logXi).

The syntomic cohomology of R can be computed by the complex

Syn(R, r) ∶= Cone(F rΩ∙RPD
$

pr−p∙'
−−−−−−−−→ Ω∙RPD

$ )[−1],

such that we have H i
syn(R, r) = H i(Syn(R, r)). For m large enough, Colmez and Nizioł have shown

that,

Theorem 5.2 ([CN17, Theorem 1.6]). The maps

�Lazr ∶ �≤rSyn(R, r)⟶ �≤rRΓcont(GR ,ℤp(r)),

�Lazr,n ∶ �≤rSyn(R, r)n ⟶ �≤rRΓcont(GR ,ℤ/pn(r))⟶ �≤rRΓ((Sp R[ 1p ])ét,ℤ/p
n(r)),

(5.1)

are pNr -quasi-isomorphisms for a universal constant N .

Note that the truncation here denotes the canonical truncation in literature. Finally, using Galois
descent one can obtain the result over K (not necessarily having enough roots of unity, with N
depending on K , p and r , see [CN17, Theorem 5.4]).

Formulation of the main result

In Theorem 5.2, we are interested in the p-adic result, i.e. the �rst isomorphism in (5.1), where we
would like to insert some representation on the right hand side and an appropriate syntomic object
on the left. For this, we will introduce a certain class of representations: Let V be an ℎ-dimensional p-
adic Wach representation of GR0 with non-positive Hodge-Tate weights −s = −r1 ≤ −r2 ≤ ⋯ ≤ −rℎ ≤ 0
and let T ⊂ V a free ℤp-lattice of rank ℎ stable under the action of GR0 (see De�nition 3.8). Assume
that N(T ) is a free A+

R0-module of rank ℎ, and let ODcris(T ) ⊂ ODcris(V ) be a free R0-submodule of
rank ℎ such that ODcris(T )[ 1p ] = ODcris(V ) (see Remark 5.4 for conventions on ODcris(T )) and the
induced connection over ODcris(T ) is quasi-nilpotent, integrable and satis�es Gri�ths transversality
with respect to the induced �ltration.

De�nition 5.3. For r ∈ ℤ we set V (r) ∶= V ⨂ℚp ℚp(r) and T (r) ∶= T ⨂ℤp ℤp(r) and call all such
representations free Wach representations of GR0 .

Remark 5.4. For our intended applications in this chapter, it would su�ce to take ODcris(T ) ∶=
(OAPD

R ⨂A+R0
N(T ))

ΓR , with an additional assumption that it is free of rank ℎ as an R0-module (see
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Remark 3.42). The module ODcris(T ) depends on the choice of m ∈ ℕ≥1 (see Remark 3.39). On the
other hand, using Proposition 3.31 we note that it would also su�ce to take ODcris(T ) = M0 (in the
notation of the proposition), which also depends on m (see Remark 3.39). The reader should note
that we do not assume the choice of ODcris(T ) to be “canonical”. However, we �x this choice for the
rest of the current chapter. The chosen notation is for the sake of consistency and being explanatory.

Our objective is to relate the (', Γ)-module complex computing the continuous GR-cohomology of
T (r) (see Theorem 4.4), to syntomic complex with coe�cient in the R0-lattice ODcris(T ) ⊂ ODcris(V ).
De�ne

DPD ∶= RPD
$ ⨂R0 ODcris(T ).

There is a Frobenius-semilinear endomorphism on DPD given by the diagonal action of the Frobenius
on each component of the tensor product, and a �ltration {FilkDPD}k∈ℤ given as the sum of �ltration
on each component (see §5.1 for explicit formulas). Further, DPD is equipped with a connection
) ∶ DPD → DPD ⨂RPD

$
Ω1RPD

$
arising from the connection on ODcris(T ) and the di�erential operator

on RPD
$ (see §5.1 for details). Moreover, the connection on DPD satist�es Gri�ths transversality with

respect to the �ltration. In conclusion, we have a �ltered de Rham complex for k ∈ ℤ,

FilkD∙ ∶= FilkDPD
⨂RPD

$
Ω1RPD

$
⟶ Filk−1DPD

⨂RPD
$
Ω2RPD

$
⟶ ⋯ .

De�nition 5.5. Let r ∈ ℕ and DR ∶= R ⨂R0 ODcris(T ). De�ne the syntomic complex Syn(DR , r) and
the syntomic cohomology of R with coe�cients in DR as

Syn(DR , r) ∶= [ FilrD∙ pr−p∙'
−−−−−−−−→ D∙ ];

H ∗
syn(DR , r) ∶= H

∗(Syn(DR , r)).

We will relate this complex to Fontaine-Herr complex computing the continuous GR-cohomology
of T (r). The key idea is to interpret all these complexes in terms of Koszul complexes, and by applying
a version of Poincaré lemma, we can further relate the syntomic complexes to “(', Γ)-module Koszul
complexes”. The main result of this chapter is:

Theorem 5.6. Let T be a free ℤp-representation of GR0 as in De�nition 5.3 such that V = ℚp ⨂ℤp T is
a free positive Wach representation. Let s be the maximum among the absolute value of the Hodge-Tate
weights of V and r ∈ ℤ such that r ≥ s + 1. Then there exists a pN -quasi-isomorphism

�≤r−s−1Syn(DR , r) ≃ �≤r−s−1RΓcont(GR , T (r)),

where N = N (T , e, p, r) ∈ ℕ depending on the representation T , rami�cation index e, the prime p, and
r . In particular, we have pN -isomorphisms

H k
syn(DR , r)

≃
−−→ H k(GR , T (r)),

for 0 ≤ k ≤ r − s − 1.

The proof of Theorem 5.6 will proceed in two main steps: First, we will modify the syntomic
complex with coe�cients in DR to relate it to a “di�erential” Koszul complex with coe�cients in
N(T ) (see Proposition 5.30). Next, in the second step we will modify the Koszul complex from the
�rst step to obtain Koszul complex computing continuous GR-cohomology of T (r) (see De�nition
5.6 and Proposition 5.31). The key to the connection between these two steps will be provided by
the comparison isomorphism in Theorem 3.24.
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5.1. Syntomic complex with coe�cients
In this section we will carry out computations involving syntomic complexes in order to prove
Theorem 5.6. More precisely, we will de�ne syntomic complexes with coe�cients in ODcris(T ), over
various rings introduced in §2.3. Then, we will relate these complexes to di�erential Koszul complex
with coe�cients in N(T ). Further computations clarifying relations between di�erential Koszul
complex and Galois cohomology of T (r) will be worked out in the next section.

We begin by �xing some notations for the rest of this section. For F ∈ {[u], [u, v], [u, v/p]}, we
set

DF ∶= RF$ ⨂R0 ODcris(T ),

which is an RF$ -module. By considering the diagonal action of the Frobenius on each component of
the tensor product, we can de�ne Frobenius-semilinear operators ' ∶ D[u] → D[u] and ' ∶ D[u,v] →
D[u,v/p]. Let S be a placeholder notation for RF$ and D a placeholder for DF below. We equip D with
a �ltration

FilkD = ∑
i+j=k

FiliS⨂̂R0FiljODcris(T ), for k ∈ ℤ. (5.2)

Further, if )D denotes the connection on ODcris(T ) then we can equip D with a connection

) ∶ D ⟶ D ⨂S Ω1S
a⨂ x ⟼ a⨂ )D(x) + xda,

which satist�es Gri�ths transversality with respect to the �ltration, since the di�erential operator
on S as well as )D satisfy this condition. So, we obtain a �ltered de Rham complex,

FilkD∙ ∶= FilkD ⨂S Ω1S ⟶ Filk−1D ⨂S Ω2S ⟶ ⋯ , for k ∈ ℤ.

Now, let F ∈ {PD, [u], [u, v], [u, v/p]}. We �x a basis of Ω1S as
{ dX0
1+X0 ,

dX1
X1 ,… , dXdXd

}
. For j ∈ ℕ, let

Ij = {0 ≤ i1 < ⋯ < ij ≤ d} and for i = (i1,… , ij) ∈ Ij , let

!i =
⎧⎪⎪
⎨⎪⎪⎩

dX0
1+X0

⋀
dXi2
Xi2

⋀⋯ ⋀
dXij
Xij

if i1 = 0,
dXi1
Xi1

⋀⋯ ⋀
dXij
Xij

otherwise.

We de�ne operators ' and  on Ωj
S by

'(∑
i∈Ij

xi!i) = ∑
i∈Ij

'(xi)!i and  (∑
i∈Ij

xi!i) = ∑
i∈Ij

 (xi)!i. (5.3)

Remark 5.7. Note that this is not the natural de�nition of Frobenius, as we have d('(x)) = p'(dx)
for the natural Frobenius. But in order to de�ne  integrally, we need to divide the usual Frobenius
by powers of p.

Now we are ready to de�ne syntomic cohomology. Let D∙ denote the de Rham complex with
F ∈ {[u], [u, v]} and E ∙ denote the de Rham complex with coe�cients in the module which are
target under the Frobenius, i.e. F ∈ {[u], [u, v/p]}.

De�nition 5.8. De�ne the syntomic complex Syn(D, r) and the syntomic cohomology of R with
coe�cients in D as

Syn(D, r) ∶= [ FilrD∙ pr−p∙'
−−−−−−−−→ E ∙ ];

H ∗
syn(D, r) ∶= H

∗(Syn(D, r)).

Remark 5.9. Note that for F = [u], we have D∙ = E ∙.
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5.1.1. Change of disk of convergence

In order to relate Syn(DPD, r) to Koszul complexes, we will �rst pass to the analytic ring R[u]$ and
then to R[u,v]$ . Recall that we have DPD = RPD

$ ⨂R0 ODcris(T ) and D[u] = R[u]$ ⨂R0 ODcris(T ) equipped
with supplementary structures described above.

Proposition 5.10. (i) For 1
p−1 ≤ u ≤ 1, the morphism of complexes

Syn(DPD, r) ⟶ Syn(D[u], r)

induced by the inclusion DPD ⊂ D[u] is a p2r -isomorphism.

(ii) For u′ ≤ u ≤ pu′, the morphism of complexes

Syn(D[u
′], r) ⟶ Syn(D[u], r)

induced by the inclusion D[u′] ⊂ D[u] is a p2r -isomorphism.

The proposition follows from the following lemma by taking k = r .

Lemma 5.11. Let k ∈ ℕ and S = R+$ .

(i) If 1
p−1 ≤ u ≤ 1, the map

pk − pj' ∶ FilrD[u] ⨂Ωj
S[u]/FilrDPD

⨂Ωj
SPD ⟶ D[u] ⨂Ωj

S[u]/DPD
⨂Ωj

SPD ,

is a pk+r -isomorphism.

(ii) If u′ ≤ u ≤ pu′, the map

pk − pj' ∶ FilrD[u] ⨂Ωj
S[u]/FilrD[u′] ⨂Ωj

S[u′]
⟶ D[u] ⨂Ωj

S[u]/D[u
′]

⨂Ωj
S[u′]

,

is a pk+r -isomorphism.

Proof. The proof follows in a manner similar to [CN17, Lemma 3.2].

(i) Note that we can decompose everything in the basis of the !i’s, where i ∈ Ij . By the de�nition
of Frobenius on !i we are reduced to showing that

pk − pj' ∶ FilrD[u]/FilrDPD ⟶ D[u]/DPD,

is a pk+r -isomorphism. We have DPD ⊂ D[u] and '(D[u]) ⊂ DPD since '(R[u]$ ) ⊂ R
[u/p]
$ ⊂ RPD

$ ,
for 1

p−1 ≤ u ≤ 1.

For pk-injectivity, we note that we have FilrD[u] = D[u] ⋂ FilrDPD, so it su�ces to show that
if (pk − pj')x ∈ DPD then pkx ∈ DPD. But since we can write pkx = (pk − pj')x + pj'(x) and
'(D[u]) ⊂ DPD, we get that pkx ∈ DPD.

Now, let {f1,… , fℎ} be an R0-basis of ODcris(T ). Then, to show pk+r -surjectivity we write
x = ∑ℎ

i=1 ai ⨂ fi ∈ R[u]$ ⨂R0 ODcris(T ) = D[u]. We will write pk+rx as a sum of elements in
(pk − pj')FilrD[u] and DPD. Let N = ke

u(p−1) , then from the de�nition of R[u]$ we can write

ai = ai1 + ai2, with ai2 ∈ R[u]$,N and ai1 ∈ p−⌊Nu/e⌋R+$ ⊂ p
−kRPD

$ ,

where we write R[u]$,N as in the notation of Lemma 2.32 (it consists of power series in X0
involving terms X s

0 for s ≥ N ). Now let x1 = ∑ℎ
i=1 ai1 ⨂ fi and x2 = ∑ℎ

i=1 ai2 ⨂ fi , so that
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x = x1 + x2. By Lemma 2.32, we can write

x2 = (1 − pj−k')z, for some z =
ℎ
∑
i=1

bi ⨂ fi ∈ R[u]$ ⨂ODcris(T ) = D[u].

Also, by Lemma 2.28 we can write bi = bi1 + bi2 with bi1 ∈ FilrR[u]$ and bi2 ∈ p−⌊ru⌋R+$ . Let
z1 = ∑ℎ

i=1 bi1 ⨂ fi ∈ FilrD[u] and z2 = ∑ℎ
i=1 bi2 ⨂ fi ∈ p−rDPD, then

(1 − pj−k')z2 = p−k(pk − pj')z2 ∈ p−k−rDPD,

and

x − (1 − pj−k')z1 = x1 + x2 − (1 − pj−k')z1 = x1 + (1 − pj−k')z2 ∈ p−kDPD + p−k−rDPD ⊂ p−k−rDPD.

Therefore, we obtain that

x ∈ p−k−rDPD + p−k(pk − pj')FilrD[u],

which allows us to conclude.

(ii) We can repeat the arguments in (i) by replacing DPD with D[u′], since R[u
′]

$ ⊂ R[u]$ and '(R[u]$ ) ⊂
R[u/p]$ ⊂ R[u

′]
$ , for u′ ≤ u ≤ pu′.

5.1.2. Change of annulus of convergence
Recall that our objective is to relate the syntomic complexes discussed in the last section to di�erential
Koszul complexes. To realize this goal, we further base change our complex to the ring R[u,v]$ . Recall
that we have D[u] = R[u]$ ⨂R0 ODcris(T ), and D[u,v] = R[u,v]$ ⨂R0 ODcris(T ) = R[u,v]$ ⨂

R[u]$
D[u].

Proposition 5.12. For pu ≤ v, there exists a p2r+4s-quasi-isomorphism

�≤r−s−1Syn(D[u], r) ≃ �≤r−s−1Syn(D[u,v], r),

i.e. we have p2r+4s-isomorphisms

H k
syn(D

[u], r) ≃ H k
syn(D

[u,v], r),

for 0 ≤ k ≤ r − s − 1.

Proof. Combining the results from Lemmas 5.13, 5.16 & 5.14, we get the claim.

From the de�nition of complexes displayed in the claim above, it is not at all immediate that we
should expect them (before and after scalar extension) to be quasi-isomorphic. Adapting a technique
used in the theory of (', Γ)-modules of passing to the corresponding (quasi-isomorphic)  -complex,
we will establish a p-power quasi-isomorphism, between the complexes of interest. This motivates
our next de�nition for an operator  over R$ ⨂R0 ODcris(T ), which would act as a left inverse to '.

First of all, we know that '∗(ODcris(V )) ≃ ODcris(V ), or equivalently '(ODcris(V )) generates
ODcris(V ) as an R0[ 1p ]-module. Let f = {f1,… , fℎ} denote an R0-basis of ODcris(T ), i.e. ODcris(T ) =
⨁ℎ
i=0 R0fi . Then f is also a basis of ODcris(V ) over R0[ 1p ]. Hence, '(f) = {'(f1),… , '(fℎ)} is also a basis

of ODcris(V ) over R0[ 1p ]. From this we can write f = '(f)X where X = (xij) ∈ Mat(ℎ, R0[ 1p ]). For
our choice of ODcris(T ) and Proposition 3.31 and Corollary 3.38, we conclude that xij ∈ 1

ps R0 where
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i ≤ i, j ≤ ℎ and s is maximum among the absolute values of Hodge-Tate weights of V . Therefore, we
can de�ne

 ∶ R[u]$ ⨂R0 ODcris(T )⟶ 1
ps R

[pu]
$ ⨂R0 ODcris(T )

ℎ
∑
i=1

yi ⨂ fi = fyᵀ ⟼ f (Xyᵀ) =
ℎ
∑
j=1

(
ℎ
∑
i=1

 (yixij)) ⨂ fj ,
(5.4)

where we consider the operator  on R[u]$ de�ned in §2.3.2. It is easy to show that this map is
well-de�ned, i.e. independent of the choice of the basis for ODcris(T ).

Using the operator  on D[u] = R[u]$ ⨂R0 ODcris(T ) as above, we can de�ne the complex

Syn (D[u], r) ∶= [FilrD[u] ⨂Ω∙
R[u]$

pr+s −p∙+s
−−−−−−−−−→ D[pu] ⨂Ω∙

R[pu]$ ],

where the operator  acts on Ω∙
R[u]$

as in (5.3).

Lemma 5.13. The commutative diagram

FilrD[u] ⨂Ω∙
R[u]$

D[u] ⨂Ω∙
R[u]$

FilrD[u] ⨂Ω∙
R[u]$

D[pu] ⨂Ω∙
R[pu]$

,

id

pr−p∙'

ps 

pr+s −p∙+s

de�nes a p2s-quasi-isomorphism from Syn(D[u], r) to Syn (D[u], r), where s is maximum among the
absolute value of Hodge-Tate weights of V .

Proof. First, let us look at the cokernel complex. Since the left vertical arrow is identity, we only need
to look at the cokernel of the right vertical arrow. Now, by de�nition we have  (D[u]) ⊂ p−sD[pu]

and in particular, ps (D[u]) ⊂ D[pu]. Moreover, note that the operator  ∶ R[u]$ → R[pu]$ is surjective
and psODcris(T ) ⊂ '∗(ODcris(T )). Therefore, we have

D[pu] = R[pu]$ ⨂R0 ODcris(T ) ⊂  (R[u]$ ⨂R0 '
∗(ODcris(T ))) ⊂  (R[u]$ ⨂R0 ODcris(T )) =  (D[u])

Hence, we get that ps (D[u]) is ps-isomorphic to D[pu]. In particular, the cokernel complex is killed
by ps .

Next, for the kernel complex, we proceed as follows: Let S = R[u]$ and we take ODcris(T ) = ⨁ℎ
j=1 R0fj ,

so that we have D[u] = ⨁ℎ
j=1 Sfj . Now we know that ODcris(T )/'∗(ODcris(T )) is killed by ps , where

s is maximum among the absolute values of Hodge-Tate weights of V (see Proposition 3.31 and
Corollary 3.38). So by extending scalars to S, we obtain a ps-isomorphism

S ⨂R0 ODcris(T ) ≃
ℎ

⨁
j=1

S'(fj).

Note that an element

y =
ℎ
∑
j=1

yj'(fj) ∈ (
ℎ

⨁
j=1

S'(fj))
 =0

,

if and only if yj ∈ S =0. Indeed,  (y) = 0 if and only if ∑ℎ
j=1  (yj)fj = 0. Since fj are linearly

independent over R0[ 1p ], we get that  (y) = 0 if and only if  (yj) = 0 for all 1 ≤ j ≤ ℎ. In particular,
we have a ps-isomorphism

(D[u])
 =0 = (S ⨂R0 ODcris(T ))

 =0 ≃ (
ℎ

⨁
j=1

S'(fj))
 =0

=
ℎ

⨁
j=1

S =0'(fj).
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Next, recall from (5.3) that in the basis of Ωk
S , the operator  is de�ned as  (∑i∈Ik xi!i) =

∑i∈Ik  (xi)!i. In particular, we obtain

(ODcris(T )⨂R0 Ω
k
S)

 =0
= (S ⨂R0 ODcris(T ))

 =0
⨂ℤ Ωk , (5.5)

where
Ω1 = ℤ dX0

1+X0

d
⨁
i=1

ℤ dXi
Xi and Ωk =

k
⋀Ω1.

From Lemma 2.37(ii), we have a decomposition S =0 = ⨁�≠0 S� = Su� , where u� = (1+X0)�0X �1
1 ⋯X �d

d
for � = (�0,… , �d ) ∈ {0, 1,… , p − 1}[0,d]. Moreover, from §2.3.2, we have )i(u� ) = �iu� for 0 ≤ i ≤ d .
In particular, )i(S� ) ⊂ S� .

Now, using the decomposition of S =0, we set D� = ⨁ℎ
j=1 S�'(fj) and obtain that (D[u])

 =0 is
ps-isomorphic to ⨁�≠0 D� . From the di�erentials on S� and the connection on D[u] we obtain an
induced connection ) ∶ D� → D� ⨂S Ω1S = D� ⨂ℤ Ω1, which is integrable. The decomposition of
(D[u]) =0 and (5.5) shows that the kernel complex in the claim is ps-isomorphic to the direct sum of
complexes

0⟶ D� ⟶ D� ⨂Ω1 ⟶ D� ⨂Ω2 ⟶ ⋯ , (5.6)

where � ≠ 0.
We will show that (5.6) is exact for each � . The idea for the rest of the proof is based on [CN17,

Lemma 3.4]. Note that since everything is p-adically complete, we only need to show the exactness
of (5.6) modulo p. For this we notice that for y = ∑ℎ

j=1 yj'(fj) ∈ D� , we have

)(
ℎ
∑
j=1

yj'(fj)) =
ℎ
∑
j=1

yj)D('(fj)) + '(fj)dyj ,

where )D denotes the connection on ODcris(T ). By §1.5.2, we have ')D = )D' over ODcris(V ). So,
for i ∈ {1,… , d} we obtain that

)D('(fj)) = '()D(fj)) = '(
ℎ
∑
j=1

bjfj ⨂
dXj
Xj ) = p

ℎ
∑
j=1

'(bjfj)⨂
dXj
Xj .

Note that the operator ' in the equation above is the usual one (in (5.3) we replaced this operator by
dividing out by powers of p). Moreover, by Lemma 2.38 we have that )i(yj) − �iyj ∈ pS� . So we get
that the complex (5.6) has a very simple shape modulo p: if d = 0, it is just D�

�0−−−−−→ D� ; if d = 1, it
is the total complex attached to the double complex

D� D�

D� D� ,

�0

�1 �1

�0

and for general d , it is the total complex attached to a (d + 1)-dimensional cube with all vertices
equal to D� and arrows in the i-th direction equal to �i . As one of the �i is invertible by assumption,
this implies that the cohomology of the total complex is 0. This establishes that (5.6) is exact for
each � and hence the kernel complex is ps-acyclic.

Next, we will base change the complex to R[u,v]$ . As we will compare ( , ))-complexes, following
(5.4), one can de�ne an operator

 ∶ R[u,v]$ ⨂R0 ODcris(T )⟶ 1
ps R

[pu,pv]
$ ⨂R0 ODcris(T ),
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as a left inverse to '. Now using D[u,v] = R[u,v]$ ⨂R0 ODcris(T ), we can de�ne the complex

Syn (D[u,v], r) ∶= [FilrD[u,v] ⨂Ω∙
R[u,v]$

pr+s −p∙+s
−−−−−−−−−→ D[pu,v] ⨂Ω∙

R[pu,v]$ ].

We can relate the two ( , ))-complexes discussed so far,

Lemma 5.14. Let u ≤ 1 ≤ v. The natural morphism

Syn (D[u], r) ⟶ Syn (D[u,v], r),

is a p2r -quasi-isomorphism in degrees k ≤ r − s − 1.

Proof. The map between complexes is induced by the diagram

FilrD[u] ⨂Ω∙
R[u]$

D[pu] ⨂Ω∙
R[pu]$

FilrD[u,v] ⨂Ω∙
R[u,v]$

D[pu,v] ⨂Ω∙
R[pu,v]$

,

pr+s −p∙+s

pr+s −p∙+s

where the vertical arrows are natural maps induced by the inclusion R[u]$ ⊂ R[u,v]$ . Therefore, it
su�ces to show that the mapping �ber

[FilrD[u,v] ⨂Ω∙
R[u,v]$
/FilrD[u] ⨂Ω∙

R[u]$

pr+s −p∙+s
−−−−−−−−−−−→ D[pu,v] ⨂Ω∙

R[pu,v]$
/D[pu] ⨂Ω∙

R[pu]$ ],

is p2r -acyclic. By Lemma 5.15, we can ignore the �ltration and, working in the basis {!i, i ∈ Ik} of
Ωk , it is enough to show that

pr+s − pk+s ∶ D[u,v]/D[u] ⟶ D[pu,v]/D[pu],

is a pr -isomorphism for k ≤ r − s − 1. But

D[u,v]/D[u] ≃ D[pu,v]/D[pu],

and therefore 1 − pi is an endomorphism of this quotient for i = r − k. Moreover, for i ≥ s + 1 we
get that 1 − pi is invertible on D[u,v]/D[u] with inverse given as 1 + pi−s(ps ) + p2(i−s)(ps )2 + ⋯.
Therefore pr+s − pk+s = pk+s(pr−k − 1) is a pk+s-isomorphism. Since k + s ≤ r − 1, we obtain that
the complex in the claim is p2r -acyclic.

Following observation was used above,

Lemma 5.15. For u ≤ 1 ≤ v, the natural morphism

FilrD[u,v]/FilrD[u] ⟶ D[u,v]/D[u],

is a pr -isomorphism.

Proof. First we recall that

FilrD[u,v] = ∑
a+b=r

FilaR[u,v]$ ⨂̂ FilbODcris(T ).

Now the map in the claim is clearly injective. For pr -surjectivity, let {f1,… , fℎ} be an R0-basis
of ODcris(T ) and let x = ∑ℎ

i=1 bi ⨂ fi ∈ R[u,v]$ ⨂ODcris(T ). By [CN17, Lemma 3.5], we have a pr -
isomorphism

FilrR[u,v]$ /FilrR[u]$ ⟶ R[u,v]$ /R[u]$ ,
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so we can write prbi = bi1 + bi2, with bi1 ∈ FilrR[u,v]$ and bi2 ∈ R[u]$ . Since ∑ℎ
i=1 bi1 ⨂ fi ∈ FilrD[u,v], we

get the desired conclusion.

Finally, we can get back to the (', ))-complex,

Lemma 5.16. The commutative diagram

FilrD[u,v] ⨂Ω∙
R[u,v]$

D[u,v/p] ⨂Ω∙
R[u,v/p]$

FilrD[u,v] ⨂Ω∙
R[u,v]$

D[pu,v] ⨂Ω∙
R[pu,v]$

,

id

pr−p∙'

ps 

pr+s −p∙+s

de�nes a p2s-quasi-isomorphism from Syn(D[u,v], r) to Syn (D[u,v], r).

Proof. We can repeat the arguments in the proof of Lemma 5.13 by replacing D[u] with D[u,v]

and R[u]$ with R[u,v]$ . We brie�y sketch the argument. First, for the cokernel complex, we only
need to look at the cokernel of the right vertical arrow. We have  (D[u,v/p]) ⊂ p−sD[pu,v], and in
particular ps (D[u,v/p]) ⊂ D[pu,v]. Further, the operator  ∶ R[u,v/p]$ → R[pu,v]$ is surjective and
psODcris(T ) ⊂ '∗(ODcris(T )). Therefore, we have

D[pu,v] = R[pu,v]$ ⨂R0 ODcris(T ) ⊂  (R
[u,v/p]
$ ⨂R0 '

∗(ODcris(T ))) ⊂  (R
[u,v/p]
$ ⨂R0 ODcris(T )) =  (D[u,v/p])

Hence, we get that ps (D[u,v/p]) is ps-isomorphic to D[pu,v]. In particular, the cokernel complex is
killed by ps .

Next, we look at the kernel complex. Let S = R[u,v/p]$ and arguing as in Lemma 5.13, we obtain a
ps-isomorphism

(D[u,v])
 =0 = (S ⨂R0 ODcris(T ))

 =0 ≃ (
ℎ

⨁
j=1

S'(fj))
 =0

=
ℎ

⨁
j=1

S =0'(fj).

Now using (5.3), we can write

(ODcris(T )⨂R0 Ω
k
S)

 =0
= (S ⨂R0 ODcris(T ))

 =0
⨂ℤ Ωk , (5.7)

where
Ω1 = ℤ dX0

1+X0

d
⨁
i=1

ℤ dXi
Xi and Ωk =

k
⋀Ω1.

From Lemma 2.37(ii), we have a decomposition S =0 = ⨁�≠0 S� = Su� , where u� = (1+X0)�0X �1
1 ⋯X �d

d
for � = (�0,… , �d ) ∈ {0, 1,… , p−1}[0,d]. From §2.3.2, we have )i(u� ) = �iu� for 0 ≤ i ≤ d . In particular,
)i(S� ) ⊂ S� . So using the decomposition of S =0, we set D� = ⨁ℎ

j=1 S�'(fj) and obtain that (D[u,v])
 =0

is ps-isomorphic to ⨁�≠0 D� . From the di�erentials on S� and the connection on D[u,v] we obtain
an induced connection ) ∶ D� → D� ⨂S Ω1S = D� ⨂ℤ Ω1, which is integrable. The decomposition of
(D[u,v]) =0 and (5.7) shows that the kernel complex in the claim is ps-isomorphic to the direct sum
of complexes

0⟶ D� ⟶ D� ⨂Ω1 ⟶ D� ⨂Ω2 ⟶ ⋯ , (5.8)

where � ≠ 0. An analysis similar to Lemma 5.13 shows that the complex (5.8) has a very simple
shape modulo p: if d = 0, it is just D�

�0−−−−−→ D� ; if d = 1, it is the total complex attached to the
double complex
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D� D�

D� D� ,

�0

�1 �1

�0

and for general d , it is the total complex attached to a (d + 1)-dimensional cube with all vertices
equal to D� and arrows in the i-th direction equal to �i . As one of the �i is invertible by assumption,
this implies that the cohomology of the total complex is 0. This establishes that (5.8) is exact for
each � and hence the kernel complex is ps-acyclic.

5.1.3. Di�erential Koszul Complex
In the previous sections we studied syntomic complexes over various base rings with coe�cients in
ODcris(T ). In this section, we will study di�erential Koszul complex over the base ring A[u,v]

R with
coe�cients in the Wach module N(T ). As we shall see the di�erential Koszul complex is very closely
related to syntomic complexes. Such a relationship is to be expected, since we have an isomorphism
of rings �cycl ∶ R

[u,v]
$

≃
−−→ A[u,v]

R in §2.4 and there exists a natural comparison between ODcris(V )
and N(V ) after extension of scalars to OAPD

R on both sides (see Theorem 3.24). Note that from now
onwards, we will be working under the assumption that p−1

p ≤ u ≤ v
p < 1 < v, for example, one can

take u = p−1
p and v = p − 1.

The ring R[u,v]$ is a p-adically complete ℤp-algebra, equipped with a Frobenius ' ∶ R[u,v]$ →
R[u,v/p]$ , lifting the absolute Frobenius on R[u,v]$ /p. Let Ω∙

A[u,v]R
denote the p-adic completion of the

module of di�erentials of A[u,v]
R relative to ℤ. Recall from §2.3 that Ω1

R[u,v]$
has a basis of di�erentials

{ dX0
1+X0 ,

dX1
X1 ,… , dXdXd

}
. So via the identi�cation �cycl ∶ R

[u,v]
$

≃
−−→ A[u,v]

R we obtain di�erential operators
)i over A[u,v]

R , for 0 ≤ i ≤ d . Moreover, from De�nition 2.27 we can endow A[u,v]
R with a �ltration

{FilkA[u,v]
R }k∈ℤ and obtain �ltered de Rham complex

FilkΩ∙
A[u,v]R

∶ FilkA[u,v]
R ⟶ Filk−1A[u,v]

R ⨂Ω1
A[u,v]R

⟶ Filk−2A[u,v]
R ⨂Ω2

A[u,v]R
⟶ ⋯ , for k ∈ ℤ.

Further, the di�erential operators )i can be related to the in�nitesimal action of ΓR by the relation

∇i ∶= log i = t)i for 0 ≤ i ≤ d,

where log i = ∑k∈ℕ(−1)k
(i−1)k+1
k+1 . We will study similar operators over the A[u,v]

R -module arising
from the Wach module N(T ).

Note that for an indeterminate X we can formally write

log(1 + X )
X

= 1 + a1X + a2X 2 + a3X 3 +⋯ ,

X
log(1 + X )

= 1 + b1X + b2X 2 + b3X 3 +⋯ ,

where �p(ak) ≥ − k
p−1 for all k ≥ 1 and therefore, �p(bk) ≥ − k

p−1 for all k ≥ 1. We have the following
claim:

Lemma 5.17. Let M [u,v] = A[u,v]
R ⨂A+R0

N(T ). Then, for i ∈ {0, 1,… , d} the operators

∇i = log i ;
∇i

i − 1
=
log i
i − 1

; and
i − 1
∇i

=
i − 1
log i

.

converge as series of operators on M [u,v].
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Proof. For 0 ≤ i ≤ d , observe that i − 1 acts as a twisted derivation, i.e. for a ∈ A[u,v]
R and x ∈ N(T ),

we have
(i − 1)(ax) = (i − 1)a ⋅ x + i(a)(i − 1)x.

The action of ΓR is trivial on N(T )/�N(T ), so we can write (i − 1)x = �y, for some y ∈ N(T ). Now,
from the proof of Lemma 4.16 and (4.2), we have

(i − 1)kM [u,v] ⊂ (p, �p
m

m )
kM [u,v].

The same estimation of p-adic valuation of coe�cients as in that proof helps us in concluding that
log i converges as a series of operators on M [u,v]. The claim for the convergence of operators ∇i

i−1

and i−1
∇i follows in a manner similar to Lemma 4.17.

Note that M [u,v] is a topological A[u,v]
R -module equipped with a �ltration by A[u,v]

R -submodules

FilkM [u,v] = ∑
i+j=k

FiliA[u,v]
R ⨂̂ FiljN(T ), for k ∈ ℤ, (5.9)

such that FilkM [u,v] is stable under the action of ΓR .

Remark 5.18. The results of Lemma 5.17 continue to hold if we replace N(T ) with N(T (r)) for r ∈ ℤ,
or FilkM [u,v] for k ∈ ℤ, or �ltered pieces of A[u,v]

R ⨂A+R0
N(T (r)).

Lemma 5.19. For the �ltered modules and operators ∇i de�ned above, we have

∇i(FilkM [u,v]) ⊂ �Filk−1M [u,v] = tFilk−1M [u,v] for 0 ≤ i ≤ d.

Proof. Note that the action of ΓR is trivial on FilkM [u,v]/�FilkM [u,v] and from this we infer that for
0 ≤ i ≤ d , we have

∇i(FilkM [u,v]) ⊂ FilkM [u,v]
⋂ �M [u,v] = �Filk−1M [u,v],

where the last equality follows from Lemma 3.17. As t
� is a unit in S = A[u,v]

R (see Lemma 2.43), we
can also write ∇i(FilkM [u,v]) ⊂ tFilk−1M [u,v].

The lemma above enables us to introduce di�erential operators )i over M [u,v] by the formula

∇i = log i = t)i , for 0 ≤ i ≤ d,

where the operators )i are well-de�ned by dividing out the image under the operator ∇i by t . Recall
that via the identi�cation R[u,v]$

≃
−−→ A[u,v]

R , we have a basis for Ω1
A[u,v]R

given by
{ dX0
1+X0 ,

dX1
X1 ,… , dXdXd

}
.

Therefore, by setting ) = ()0,… , )d ) we obtain a connection over M [u,v]

) ∶ M [u,v] ⟶ M [u,v]
⨂Ω1

A[u,v]R

ax ⟼ a)(x) + x ⨂ d(a).

Lemma 5.20. The connection ) onM [u,v] is integrable and satis�es Gri�ths transversality with respect
to the �ltration, i.e.

)i(FilkM [u,v]) ⊂ Filk−1M [u,v] for 0 ≤ i ≤ d.

Proof. Recall that from (4.4) we have [∇i ,∇j] = 0 for 1 ≤ i, j ≤ d , whereas [∇0,∇i] = pm∇i , for
1 ≤ i ≤ d . So it follows that over M [u,v] we have the composition of operators

t2()i ◦ )j − )j ◦ )i) = t)i(t)j) − t)j(t)i) = ∇i ◦ ∇j − ∇j ◦ ∇i = 0, for 1 ≤ i, j ≤ d.
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Next, for 1 ≤ i ≤ d , we have

∇0 ◦ ∇i − ∇i ◦ ∇0 = t)0 ◦ (t)i) − t)i ◦ (t)0)
= tpm)i + t2)0 ◦ )i − t2)i ◦ )0 = pm∇i + t2()0 ◦ )i − )i ◦ )0).

In particular, )0 ◦ )i − )i ◦ )0 = 0. Since ) ◦ ) = ()i ◦ )j)i,j for 0 ≤ i ≤ j ≤ d and M [u,v] is t-torsion free,
we conclude that the connection ) is integrable. Moreover, it satis�es Gri�ths transversailty since
)i(FilkM [u,v]) = t−1∇i(FilkM [u,v]) ⊂ Filk−1M [u,v], for 0 ≤ i ≤ d .

Now we are in a position to write the �ltered de Rham complex for M [u,v] as

FilkM [u,v]
⨂Ω∙

A[u,v]R
∶ FilkM [u,v] ⟶ Filk−1M [u,v]

⨂Ω1
A[u,v]R

⟶ Filk−2M [u,v]
⨂Ω2

A[u,v]R
⟶ ⋯ . (5.10)

Further, we know that Ω1
A[u,v]R

has a basis {!1,… , !d}, such that an element of Ωq
A[u,v]R

= ⋀q Ω1
A[u,v]R

can

be uniquely written as ∑ xi!i, with xi ∈ A[u,v]
R and !i = !i1 ∧ ⋯ ∧ !iq for i = (i1,… , iq) ∈ Iq = {0 ≤

i1 < ⋯ < iq ≤ d}. In this case, the map involving di�erential operators becomes

()i) ∶ (Filk−qM [u,v])
Iq ⟶ (Filk−q−1M [u,v])

Iq+1 , for 0 ≤ i ≤ d.

De�nition 5.21. De�ne the )-Koszul complex for FilkM [u,v] as

Kos()A, FilkM [u,v]) ∶ FilkM [u,v] (Filk−1M [u,v])
I1

(Filk−2M [u,v])
I2 ⋯ .()i )

Remark 5.22. (i) By de�nition, we have an ismorphism of complexes FilkM [u,v] ⨂Ω∙
A[u,v]R

≃

Kos()A, FilkM [u,v]).

(ii) Let I ′j = {(i1,… , ij), such that 1 ≤ i1 < ⋯ < ij ≤ d} and let )′ = ()1,… , )d ). We can also set

Kos()′A, FilkM [u,v]) ∶ FilkM [u,v] (Filk−1M [u,v])
I ′1 (Filk−2M [u,v])

I ′2 ⋯ ,()i )

and therefore we get that

Kos()A, FilkM [u,v]) = [Kos()′A, FilkM [u,v])
)0−−−−−→ Kos()′A, Filk−1M [u,v])].

(iii) The computation carried out in this section are true over the ring A[u,v/p]
R as well.

5.1.4. Poincaré Lemma
Recall from §2.5 that given two p-adically completeW -algebras S and Λ, and � ∶ S → Λ a continuous
injective morphism of �ltered OF -algebras. Then for f ∶ S ⨂Λ → Λ the morphism sending
x ⨂ y ↦ �(x)y, we can de�ne the ring SΛ to be the p-adic completion of the PD-envelope of
S ⨂Λ→ Λ with respect to Ker f .

De�nition 5.23. Let F ∈ {PD, [u], [u, v]} and de�ne EFR = SΛ for S = RF$ , Λ = AFR , and � = �cycl (see
§2.4).

Note that we are working under the assumption that p−1
p ≤ u ≤ v

p < 1 < v, for example, one can
take u = p−1

p and v = p − 1. These rings have desirable properties:

Lemma 5.24 ([CN17, Lemma 2.38]). (i) EPD
R ⊂ E[u]R ⊂ E[u,v]R .
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(ii) The Frobenius ' extends uniquely to continuous morphisms

EPD
R ⟶ EPD

R , E[u]R ⟶ E[u]R , E[u,v]R ⟶ E[u,v/p]R .

(iii) The action of GR extends uniquely to continuous actions on EPD
R , E[u]R , and E[u,v]R which commutes

with the Frobenius.

Remark 5.25. (i) In De�nition 5.23 if we reverse the roles of S and Λ, i.e. if we take S = AFR ,
Λ = RF$ and � = �−1cycl, then we get an isomorphism SΛ ≃ EFR with obvious commutativity of the
action of Frobenius and the Galois group GR on each side.

(ii) LetVi = Xi ⨂ 1
1⨂ �(Xi ) , for 0 ≤ i ≤ d . We �lter EFR by de�ning FilrEFR to be the topological closure of the

ideal generated by the products of the form x1x2∏(Vi − 1)[ki], with x1 ∈ Filr1RF$ , x2 ∈ Filr2AFR ,
and r1 + r2 +∑ ki ≥ r .

From De�nition 3.18, we have a p-adically complete ring OAPD
R equipped with a Frobenius and a

continuous action of ΓR . In Remark 3.20, we mentioned an alternative construction of OAPD
R using

an embedding � ∶ R0 → APD
R de�ned by sending Xi ↦ [X ♭

i ], for 1 ≤ i ≤ d . Identifying R0 as a
subring of RPD

$ , and extending the embedding � to RPD
$ → APD

R by sending X0 ↦ �m, we get that the
extended embedding is exactly �cycl. Since the action of the Frobenius and the Galois group GR over
OAPD

R and EPD
R can be given by their action on each component of the tensor product, we obtain

a Frobenius and Galois-equivariant embedding OAPD
R � EPD

R . Moreover, the �ltration on OAPD
R

(see De�nition 3.21) coincides with the �ltration induced from its embedding into EPD
R . Note that

since RPD
$ ⊂ EPD

R , the key di�erence between EPD
R and OAPD

R is that the former ring contains the
indeterminate X0 and its divided powers, whereas the latter ring does not.

Next, from the natural inclusion R0 � RPD
$ we know that the di�erential operator on R0 is

compatible with the di�erential operator on RPD
$ . Further, we have an identi�cation �−1cycl ∶ APD

R
≃
−−→

RPD
$ (see §2.4) using which we obtain di�erential operators on ARPD . Also, over the ring APD

R ,
the operators ∇i = log i converge for 0 ≤ i ≤ d (see Lemma 4.16), which are related to the
di�erential operators by the relation ∇i = t)i . Thus if we denote this di�erential operator over APD

R
as )A = ()i)0≤i≤d and the di�erential operator over RPD

$ (as well as over R0) as )R , then we see that
the induced di�erential operator )R ⨂ 1 + 1⨂ )A over OAPD

R as well as EPD
R are compatible. Note that

EPD
R is naturally contained in E[u,v]R compatible with all the structures. Hence, below we will identify
OAPD

R as a subring of E[u,v]R .
Now we turn to the comparison between ODcris(T ) and N(T ) over the ring OAPD

R . Recall from
the proof of Proposition 3.31 that we have a natural map

OAPD
R ⨂R0 ODcris(T )⟶ OAPD

R ⨂R0 N(T ), (5.11)

compatible with Frobenius, �ltration, connection and the action of ΓR on each side. Moreover,
(5.11) is an injective map which is pn(T ,e)-surjective for some constant n(T , e) ∈ ℕ (since it is an
isomorphism after inverting p), depending on the representation T and the rami�cation index e of
K /F (see Remarks 3.39 & 5.4). We can promote this comparison over OAPD

R , by extension of scalars,
over to the ring E[u,v]R such that the natural injection of modules

E[u,v]R ⨂R0 ODcris(T )⟶ E[u,v]R ⨂R0 N(T ),

is a pn(T ,e)-surjection compatible with Frobenius, �ltration, connection and the action of ΓR on
each side. Let D[u,v] = R[u,v]$ ⨂R0 ODcris(T ), and M [u,v] = A[u,v]

R ⨂A+R0
N(T ), then we can rephrase the

comparison above as a pn(T ,e)-isomorphism

E[u,v]R ⨂
R[u,v]$

D[u,v] ≃ E[u,v]R ⨂
A[u,v]R

M [u,v], (5.12)
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compatible with Frobenius, �ltration, connection, and the action of ΓR on each side.
Let R1 = R[u,v]$ , R2 = A[u,v]

R , and R3 = E[u,v]R . We set X0,1 = X0, X0,2 = �m and for 1 ≤ i ≤ d , we set
Xi,1 = Xi and Xi,2 = [X ♭

i ]. Now for j = 1, 2, we set

Ω1j ∶= ℤ dX0,j
1+X0,j

d
⨁
i=1

ℤ dXi,j
Xi,j ,

and Ω13 ∶= Ω11 ⨁Ω12. For j = 1, 2, 3, let Ωk
i = ⋀k Ωj . Therefore, Ωk

Rj = Rj ⨂Ω
k
j .

Recall that we have D[u,v] = R[u,v]$ ⨂R0 ODcris(T ) is a �ltered R[u,v]$ -module equipped with a quasi-
nilpotent integrable connection satisfying Gri�ths transversality with respect to the �ltration as
de�ned above. In other words, for each k ∈ ℕ, we have a complex

FilkD[u,v] ⨂Ω∙1 ∶ FilkD[u,v]
)R1−−−−→ Filk−1D[u,v] ⨂Ω11

)R1−−−−→ Filk−2D[u,v] ⨂Ω21
)R1−−−−→ ⋯ ,

Next, let Ξ ∶= E[u,v]R ⨂
R[u,v]$

D[u,v] and de�ne a �ltration on Ξ using the �ltrations on each factor of
the tensor product. For k ∈ ℤ, we have

)R3 ∶ FilkE[u,v]R ⟶ Filk−1E[u,v]R ⨂ℤ Ω13, and )R1 ∶ FilkD[u,v] ⟶ Filk−1D[u,v] ⨂ℤ Ω11,

therefore we obtain that )R3 ∶ FilkΞ→ Filk−1Ξ⨂ℤ Ω13. Hence, we have the �ltered de Rham complex

FilkΞ⨂Ω∙3 ∶ FilkΞ
)R3−−−−→ Filk−1Ξ⨂Ω13

)R3−−−−→ Filk−2Ξ⨂Ω23
)R3−−−−→ ⋯ .

Lemma 5.26. The natural map

FilkD[u,v] ⨂Ω∙1 ⟶ FilkΞ⨂Ω∙3

is a quasi-isomorphism.

Proof. Note that we have assumed R1 = R[u,v]$ . Since we have FilkD[u,v] = (FilkΞ))R2=0, from Lemma
2.51 and Proposition 2.52 we obtain that the claim.

Next, recall from (5.10) that for R2 = A[u,v]
R and the module M [u,v] = A[u,v]

R ⨂A+R0
N(T ), we have the

�ltered de Rham complex

FilkM [u,v]
⨂Ω∙2 ∶ FilkM [u,v] ⟶ Filk−1M [u,v]

⨂Ω12 ⟶ Filk−2M [u,v]
⨂Ω22 ⟶ ⋯ , for k ∈ ℤ.

Also, let Δ ∶= E[u,v]R ⨂
R[u,v]$

M [u,v] and de�ne a �ltration on Δ using the �ltrations on each factor of
the tensor product. Then similar to the case of Ξ, we have the de Rham complex

FilkΔ⨂Ω∙3 ∶ FilkΔ
)R3−−−−→ Filk−1Δ⨂Ω13

)R3−−−−→ Filk−2Δ⨂Ω23
)R3−−−−→ ⋯ .

Now, since FilkM [u,v] = (FilkΔ))1=0, in a manner similar to Lemma 5.26 one can show that,

Lemma 5.27. The natural map

FilkM [u,v]
⨂Ω∙2 ⟶ FilkΔ⨂Ω∙3,

is a quasi-isomorphism.

Remark 5.28. The computations above continue to hold if we replace the ring R[u,v]$ (resp. A[u,v]
R )

with the ring R[u,v/p]$ (resp. A[u,v/p]
R ).
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De�nition 5.29. Let M [u,v] as above such that it admits a Frobenius-semilinear morphism ' ∶
M [u,v] → M [u,v/p]. Using De�nition 5.21 and Remark 5.22, de�ne the (', ))-complex

Kos(', )A, FilkM [u,v]) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kos()′A, FilkM [u,v])
pk−p∙' //

)0
��

Kos()′A, M [u,v/p])

)0
��

Kos()′A, Filk−1M [u,v])
pk−p∙+1' // Kos()′A, M [u,v/p])

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Proposition 5.30. The complexes Syn(D[u,v], r) and Kos(', )A, FilrM [u,v]) are p2n(T ,e)-quasi-
isomorphic, where n(T , e) ∈ ℕ is as described after (5.11).

Proof. Using Lemma 5.26 with R1 = R[u,v]$ , R3 = E[u,v]R , Ξ = E[u,v]R ⨂
R[u,v]$

D[u,v], and Ξ′ =

E[u,v/p]R ⨂
R[u,v/p]$

D[u,v/p], we have a quasi-isomorphism

Syn(D[u,v], r) ≃ [FilrD[u,v] ⨂Ω∙1
pr−p∙'
−−−−−−→ D[u,v/p] ⨂Ω∙1] ≃ [FilrΞ⨂Ω∙3

pr−p∙'
−−−−−−→ Ξ′ ⨂Ω∙3].

Using Lemma 5.27 with R2 = A[u,v]
R , R3 = E[u,v]R , Δ = E[u,v]R ⨂

A[u,v]R
M [u,v], and Δ′ =

E[u,v/p]R ⨂
A[u,v/p]R

M [u,v/p], we have a quasi-isomorphism

Kos(', )A, FilrM [u,v]) ≃ [FilrM [u,v]
⨂Ω∙2

pr−p∙'
−−−−−−→ FilrM [u,v/p]

⨂Ω∙2] ≃ [FilrΔ⨂Ω∙3
pr−p∙'
−−−−−−→ Δ′ ⨂Ω∙3].

Note that in the quasi-ismorphism we used Remark 5.22 to identify the complexes
FilkM [u,v] ⨂Ω∙

A[u,v]R
≃ Kos()A, FilkM [u,v]).

Now using (5.12) we have pn(T ,e)-isomorphisms FilrΞ ≃ FilrΔ and Ξ′ ≃ Δ′. Combining this with
the isomorphisms above, we obtain a p2n(T ,e)-quasi-isomorphism

Syn(D[u,v], r) ≃ Kos(', )A, FilrM [u,v]).

5.2. Wach representations and Galois cohomology

In this section, for free Wach ℤp-representations T (r) of GR0 , we will carry out the second step of the
proof of Theorem 5.6, i.e. study complexes computing continuous GR-cohomology of T (r). To state
the main result of this section, we introduce some notations. Recall that we de�ned an A[u,v]

R -module
as

M [u,v] = A[u,v]
R ⨂A+R0

N(T ).

Note that we are working under the assumption that p−1
p ≤ u ≤ v

p < 1 < v, for example, one can take
u = p−1

p and v = p − 1. From (5.9) we have a �ltration on M [u,v] as

FilkM [u,v] = ∑
i+j=k

FiliA[u,v]
R ⨂̂A+R0

FiljN(T ).
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These submodules are stable under the action of ΓR and from De�nition 5.29, we have the complex

Kos(', )A, FilrM [u,v]) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kos()′A, FilrM [u,v])
pr−p∙' //

)0
��

Kos()′A, M [u,v/p])

)0
��

Kos()′A, Filr−1M [u,v])
pr−p∙+1' // Kos()′A, M [u,v/p]).

⎤
⎥
⎥
⎥
⎥
⎥
⎦

From the theory of (', ΓR)-modules in Chapter 2, we have DR(T (r)) = (A⨂ℤp T (r))HR =
AR ⨂AR0

D(T (r)). Using Proposition 4.15, we have the complex

Kos(', ΓR ,DR(T (r))) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kos(Γ′R ,DR(T (r)))
1−' //

�0
��

Kos(Γ′R ,DR(T (r)))

�0
��

Kosc(Γ′R ,DR(T (r)))
1−' // Kosc(Γ′R ,DR(T (r)))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

By Proposition 4.13 and Theorem 4.4 we see that the Koszul complex de�ned above computes the
continuous Galois cohomology of T (r), i.e.

Kos(', ΓR ,DR(T (r))) ≃ RΓcont(GR , T (r)).

The main result of this section is the comparison between the Koszul complexes introduced above.

Proposition 5.31. There exists a pN -quasi-isomorphism

�≤rKos(', )A, FilrM [u,v]) ≃ �≤rKos(', ΓR ,DR(T (r))) ≃ �≤rRΓcont(GR , T (r)),

where N = N (T , r) ∈ ℕ depends on the representation T , and r .

5.2.1. Proof of Theorem 5.6
Using the results of previous section and Proposition 5.31, we will show Theorem 5.6. Let us recall
the statement,

Theorem 5.32. Let T be a free ℤp-representation of GR0 as in De�nition 5.3, s the maximum among
the absolute values of Hodge-Tate weights of V = ℚp ⨂ℤp T , and an integer r ≥ s + 1. Then there exists
a pN -quasi-isomorphism

�≤r−s−1Syn(DR , r) ≃ �≤r−s−1RΓcont(GR , T (r)),

i.e. we have pN -isomorphisms
H k

syn(DR , r)
≃
−−→ H k(GR , T (r)),

for 0 ≤ k ≤ r − s − 1 and N = N (T , e, r) ∈ ℕ depending on the representation T , rami�cation index e,
and r .

Proof. Combining Proposition 5.10 and Proposition 5.12, we have p4r+4s-quasi-isomorphisms

�≤r−s−1Syn(DPD, r) ≃ �≤r−s−1Syn(D[u], r) ≃ �≤r−s−1Syn(D[u,v], r).

Next, from Proposition 5.30 we have a p2n(T ,e)-quasi-isomorphism

Syn(D[u,v], r) ≃ Kos(', )A, FilrM [u,v]).
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Finally, thanks to Proposition 5.31, we have a p14r+3s+2-quasi-isomorphism (see the proof of the
proposition for the explicit constant)

�≤rKos(', )A, FilrM [u,v]) ≃ �≤rKos(', ΓR ,DR(T (r))).

Combining all these statement gives us the desired conclusion with N = 2n(T , e) + 18r + 7s + 2.

In the rest of this section, we will prove Proposition 5.31.

5.2.2. From di�erential forms to in�nitesimal action of ΓR
Note that we are working under the assumption that p−1

p ≤ u ≤ v
p < 1 < v, for example, one can

take u = p−1
p and v = p − 1. From De�nition 4.19 we have the complex Kos(Lie Γ′R , FilrM [u,v]) and

we consider a subcomplex, i.e. a complex made of submodules in each degree stable under the
di�erentials of the former complex

K(Lie Γ′R , FilrM [u,v]) ∶ FilrM [u,v] (∇i )−−−−→(tFilr−1M [u,v])
I ′1 ⟶ ⋯

⋯ ⟶ (tnFilr−nM [u,v])
I ′n ⟶ (tn+1Filr−n−1M [u,v])

I ′n+1 ⟶ ⋯ .

Similarly, we de�ne the complex K(Lie Γ′R , tFilr−1M [u,v]) as a subcomplex of Kos(Lie Γ′R , FilrM [u,v]).
Now, consider the map

∇0 ∶ K(Lie Γ′R , FilrM [u,v]) ⟶ K(Lie Γ′R , tFilr−1M [u,v]),

de�ned by the diagram

FilrM [u,v] (tFilr−1M [u,v])
I ′1 ⋯ (tnFilr−nM [u,v])

I ′n ⋯

tFilr−1M [u,v] (t2Filr−2M [u,v])
I ′1 ⋯ (tn+1Filr−n−1M [u,v])

I ′n ⋯ ,

(∇i )

∇0 ∇0−pm ∇0−npm

(∇i )

which commutes since ∇0∇i − ∇i∇0 = pm∇i for 1 ≤ i ≤ d (see (4.4) and the discussion after De�nition
4.19). We write the total complex of the diagram above as K(Lie ΓR , FilrM [u,v]), which is a subcom-
plex of Kos(Lie ΓR , FilrM [u,v]). In a similar manner, we can de�ne complexes K(Lie Γ′R , M [u,v/p])
and K(Lie Γ′R , tM [u,v/p]), and a map ∇0 from the former to the latter complex. Note that since the
�ltration on A[u,v/p]

R is trivial (see De�nition 2.27), therefore FilkM [u,v/p] = M [u,v/p] for all k ∈ ℤ.
Next, from De�nition 5.29 we have the complex Kos(', )A, FilrM [u,v]). Since ∇i = t)i , for 0 ≤ i ≤ d ,

we consider the morphism of complexes Kos()′A, FilrM [u,v]) → K(Lie Γ′R , FilrM [u,v]) given by the
diagram

FilrM [u,v] (Filr−1M [u,v])
I ′1 ⋯ (M [u,v])

I ′r (M [u,v])
I ′r+1 ⋯

FilrM [u,v] (tFilr−1M [u,v])I ′1 ⋯ (trM [u,v])I ′r (tr+1M [u,v])I ′r+1 ⋯ .

()i )

t0=id t1 tr tr+1

(∇i )

Since the vertical maps are bijective, it is an isomorphism of complexes. Similarly, we can de�ne
maps from Kos()′A, tFilr−1M [u,v]) → K(Lie Γ′R , tM [u,v]), Kos()′A, M [u,v/p]) → K(Lie Γ′R , M [u,v/p])
and Kos()′A, M [u,v/p]) → K(Lie Γ′R , tM [u,v/p]), which are isomorphisms as well. Since each term of
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these complexes admit a Frobenius-semilinear morphism ' ∶ t jFilr−jM [u,v] → t jM [u,v/p], we obtain
an induced morphism

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kos()′A, FilrM [u,v])
pr−p∙' //

)0
��

Kos()′A, M [u,v/p])

)0
��

Kos()′A, Filr−1M [u,v])
pr−p∙+1' // Kos()′A, M [u,v/p])

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⟶

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(Lie Γ′R , FilrM [u,v])
pr−' //

∇0
��

K(Lie Γ′R , M [u,v/p])

∇0
��

K(Lie Γ′R , tFilr−1M [u,v])
pr−' // K(Lie Γ′R , tM [u,v/p])

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(5.13)

where the source complex in (5.13) above is Kos(', )A, FilrM [u,v]). Tautologically, we have that

Lemma 5.33. The map constructed in (5.13) is a quasi-isomorphism of complexes.

Next, recall that s is maximum among the absolute values of the Hodge-Tate weights of V and
r ≥ s + 1 is an integer. Let us set N [u,v](T (r)) = A[u,v]

R ⨂A+R0
N(T (r)), and we can de�ne a �ltration on

this module given as

FilkN [u,v](T (r)) ∶= ∑
i+j=k

FiliA[u,v]
R ⨂̂A+R0

FiljN(T (r)), for k ∈ ℤ.

These submodules are stable under the action of ΓR . Let �−r denote a ℤp-basis of ℤp(−r), then we
have

(tr ⨂ �−r ) FilkN [u,v](T (r)) = (tr ⨂ �−r ) ∑
i+j=k

FiliA[u,v]
R ⨂̂A+R0

FiljN(T (r))

= tr
� r ∑

i+j=k
FiliA[u,v]

R ⨂̂A+R0
Filj+rN(T ) = Filr+kM [u,v],

(5.14)

where the second equality is the result of observation made in Lemma 3.11, and the third equality
comes from the fact that t

� is a unit in A[u,v]
R (see Lemma 2.43). Moreover, we also have that

(tr ⨂ �−r )N [u,v/p](T (r)) = tr�−rM [u,v/p] = M [u,v/p].
From Remark 5.18, we have that ∇i is well-de�ned over N [u,v](T (r)), for 0 ≤ i ≤ d . Now using

De�nition 4.19 we have the complex Kos(Lie Γ′R , Fil0N [u,v](T (r))), and we consider the subcomplex

K(Lie Γ′R , Fil0N [u,v](T (r))) ∶ Fil0N [u,v](T (r))
(∇i )−−−−→(tFil−1N [u,v](T (r)))

I ′1 ⟶ ⋯

⋯ ⟶ (tqFil−qN [u,v](T (r)))
I ′q ⟶ ⋯ .

Similar to above, we can de�ne the complex K(Lie Γ′R , tFil−1N [u,v](T (r))) as a subcomplex of
Kos(Lie Γ′R , Fil0N [u,v](T (r))), and a map

∇0 ∶ K(Lie Γ′R , Fil0N [u,v](T (r))) ⟶ K(Lie Γ′R , tFil−1N [u,v](T (r))).

The total complex of the latter map, written as K(Lie ΓR , FilrM [u,v]), is a subcomplex
of Kos(Lie ΓR , Fil0N [u,v](T (r))). Again, in a similar manner, we can de�ne complexes
K(Lie Γ′R , N [u,v/p](T (r))) and K(Lie Γ′R , tN [u,v/p](T (r))), and a map ∇0 from the former to the latter
complex.

Consider the morphism K(Lie Γ′R , Fil0N [u,v](T (r))) → K(Lie Γ′R , FilrM [u,v]) given by the diagram
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Fil0N [u,v](T (r)) (tFil−1N [u,v](T (r)))
I ′1 ⋯ (tqFil−qN [u,v](T (r)))

I ′q ⋯

FilrM [u,v] (tFilr−1M [u,v])
I ′1 ⋯ (tqFilr−qM [u,v])

I ′q ⋯ ,

(∇i )

tr ⨂ �−r tr ⨂ �−r tr ⨂ �−r

(∇i )

which is is bijective in each term and therefore an isomorphism. Considering similar maps between
complexes considered above, we obtain a morphism (multiplication by tr ⨂ �−r on each term)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(Lie Γ′R , Fil0N [u,v](T (r)))
pr (1−') //

∇0
��

K(Lie Γ′R , N [u,v/p](T (r)))

∇0
��

K(Lie Γ′R , tFil−1N [u,v](T (r)))
pr (1−') // K(Lie Γ′R , tN [u,v/p](T (r)))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⟶

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(Lie Γ′R , FilrM [u,v])
pr−' //

∇0
��

K(Lie Γ′R , M [u,v/p])

∇0
��

K(Lie Γ′R , tFilr−1M [u,v])
pr−' // K(Lie Γ′R , tM [u,v/p])

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(5.15)

Again, it is immediate that

Lemma 5.34. The map constructed in (5.15) is a quasi-isomorphism of complexes.

In order to proceed from “Lie ΓR-Koszul complexes” discussed above to “ΓR-Koszul complexes”,
we modify the source complex in the map of Lemma 5.34 as follows:

K(', Lie ΓR , N [u,v](T (r))) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(Lie Γ′R , Fil0N [u,v](T (r)))
1−' //

∇0
��

K(Lie Γ′R , N [u,v/p](T (r)))

∇0
��

K(Lie Γ′R , tFil−1N [u,v](T (r)))
1−' // K(Lie Γ′R , tN [u,v/p](T (r)))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Remark 5.35. The complex K(', Lie ΓR , N [u,v](T (r))) is p4r -isomorphic to the source complex in the
map of Lemma 5.34.

Combining Lemmas 5.33 & 5.34, and Remark 5.35, we get

Proposition 5.36. There exists a p4r -quasi-isomorphism of complexes

Kos(', )A, FilrM [u,v]) ≃ K(', Lie ΓR , N [u,v](T (r))).

5.2.3. From in�nitesimal action of ΓR to continuous action of ΓR
In the previous section, we changed from complexes involving the operators )i to complexes invoving
the operators ∇i . In this section, we will further replace these complexes with complexes involving
operators i − 1. Note that we are working under the assumption that p−1

p ≤ u ≤ v
p < 1 < v, for

example, one can take u = p−1
p and v = p − 1.

Next, we want to construct similar complexes for the action of ΓR . Note that we have

(i − 1)FilkN [u,v](T (r)) ⊂ FilkN [u,v](T (r)) ⋂ �N [u,v](T (r)) = �Filk−1N [u,v](T (r))
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where the last equality follows from Lemma 3.17. We can de�ne a subcomplex of
Kos(Γ′R , Fil0N [u,v](T (r))) as

K(Γ′R , Fil0N [u,v](T (r))) ∶ Fil0N [u,v](T (r))
(�i )−−−−→ (�Fil−1N [u,v](T (r)))

I ′1 ⟶ (�2Fil−2N [u,v](T (r)))
I ′2 ⟶ ⋯ .

(5.16)
Similarly, we can de�ne the complex Kc(Γ′R , �Fil−1N [u,v](T (r))) as a subcomplex of
Kosc(Γ′R , Fil0N [u,v](T (r))) (see De�nition 4.10). Now, consider the map

�0 ∶ K(Γ′R , Fil0N [u,v](T (r))) ⟶ Kc(Γ′R , tFil−1N [u,v](T (r))), (5.17)

de�ned by the commutative diagram

Fil0N [u,v](T (r)) (�Fil−1N [u,v](T (r)))
I ′1 (�2Fil−2N [u,v](T (r)))

I ′2 ⋯

�Fil−1N [u,v](T (r)) (�2Fil−2N [u,v](T (r)))
I ′1 (�3Fil−3N [u,v](T (r)))

I ′2 ⋯ ,

(�i )

� 00 � 10 � 20

(�i )

where the vertical maps are as in De�nitions 4.9 & 4.12. We write the total complex of the diagram
above as K(ΓR , Fil0N [u,v](T (r))), which is a subcomplex of Kos(ΓR , Fil0N [u,v](T (r))). In a similar
manner, we can de�ne complexes K(Γ′R , N [u,v/p](T (r))) and Kc(Γ′R , �N [u,v/p](T (r))) and a map �0
from the former to the latter complex.

Next, we consider the commutative diagram

Fil0N [u,v](T (r)) (tFil−1N [u,v](T (r)))
I ′1 (t2Fil−2N [u,v](T (r)))

I ′2 ⋯

Fil0N [u,v](T (r)) (tFil−1N [u,v](T (r)))
I ′1 (t2Fil−2N [u,v](T (r)))

I ′2 ⋯ ,

(�i )

id �1 �2

(∇i )

where �q ∶ (ai1⋯iq )↦ (∇iq ⋯∇i1�−1i1 ⋯ �−1iq (ai1⋯iq )) for 1 ≤ q ≤ d . Notice that since t
� is a unit in A[u,v]

R
(see Lemma 2.43), the top complex in the diagram above is exactly the complexK(Γ′R , Fil0N [u,v](T (r)))
from (5.16). This de�nes a map

� ∶ K(Γ′R , Fil0N [u,v](T (r))) ⟶ K(Lie Γ′R , Fil0N [u,v](T (r))),

Similarly, we can consider the commutative diagram

tFil−1N [u,v](T (r)) (t2Fil−2N [u,v](T (r)))
I ′1 (t3Fil−3N [u,v](T (r)))

I ′2 ⋯

tFil−1N [u,v](T (r)) (t2Fil−2N [u,v](T (r)))
I ′1 (t3Fil−3N [u,v](T (r)))

I ′2 ⋯ ,

(� ci )

�c0 �c1 �c2

(∇i )

with �c0 = ∇0�−10 and

�cq ∶ (ai1⋯iq )⟼ (∇iq ⋯∇i1∇0�
−1
0 � c,−1i1 ⋯ � c,−1iq (ai1⋯iq )) for 1 ≤ q ≤ d.

Recall that c = � (0) = exp(pm). Again, this de�nes a map

�c ∶ Kc(Γ′R , tFil−1N [u,v](T (r))) ⟶ Kc(Lie Γ′R , tFil−1N [u,v](T (r))).
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Remark 5.37. The de�nition of maps � and �c continue to hold after base changing each term of the
complexes to the ring A[u,v/p]

R .

Next, for j ∈ ℕ, we have t jFil−jN [u,v](T (r)) ⊂ N [u,v](T (r)) and the induced Frobenius gives

'(t jFil−jN [u,v](T (r))) = '(� j−rFilr−jM [u,v](r)) ⊂ � j−rM [u,v/p](r) = t jN [u,v/p](T (r)),

where we have used the fact that t
� ∈ A[u,v]

R is a unit (see Lemma 2.43). Using the Frobenius morphism
and the map between complexes discussed above, we obtain an induced morphism

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(Γ′R , Fil0N [u,v](T (r)))
1−' //

�0
��

K(Γ′R , N [u,v/p](T (r)))

�0
��

Kc(Γ′R , tFil−1N [u,v](T (r)))
1−' // Kc(Γ′R , tN [u,v/p](T (r)))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(�,�c )
−−−−−→

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(Lie Γ′R , Fil0N [u,v](T (r)))
1−' //

∇0
��

K(Lie Γ′R , N [u,v/p](T (r)))

∇0
��

K(Lie Γ′R , tFil−1N [u,v](T (r)))
1−' // K(Lie Γ′R , tN [u,v/p](T (r)))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

We denote the complex on left as K(', ΓR , N [u,v](T (r))) and write the map as

 = (�, �c) ∶ K(', ΓR , N [u,v](T (r))) ⟶ K(', Lie ΓR , N [u,v](T (r))),

Proposition 5.38. The morphism of complexes  from the construction above is an isomorphism.

Proof. The proof follows in a manner similar to [CN17, Lemma 4.6]. From the fact that ∇i�−1i , for
0 ≤ i ≤ d , is invertible (see Corollary 5.17) and [∇i ,∇j] = 0, for 1 ≤ i, j ≤ d , we get that the map �
above is an isomorphism.

Next, we will show that the map �cq , for 1 ≤ q ≤ d , is a well-de�ned isomorphism. For this, we
need to show that ∇iq ⋯∇i1∇0�−10 � c,−1i1 ⋯ � c,−1iq are well-de�ned isomorphisms, for 1 ≤ i1 < ⋯ < iq ≤ d .
We can reduce the map to

(∇iq /�iq )⋯ (∇i1 /�i1)�iq ⋯ �i1∇0�
−1
0 � c,−1i1 ⋯ � c,−1iq ,

and since ∇i/�i is invertible for 0 ≤ i ≤ d , we only need to show that �iq ⋯ �i1∇0�−10 � c,−1i1 ⋯ � c,−1iq is a
well-de�ned isomorphism. Using the proof of Lemma 4.17, we can write

�iq ⋯ �i1∇0�
−1
0 � c,−1i1 ⋯ � c,−1iq = ∑

k≥0
ak�iq ⋯ �i1(0 − 1)

k� c,−1i1 ⋯ � c,−1iq ,

where ak ∈ OF . Using the fact that 0 a/ci =  ai 0, we get that

( ai − 1)(0 − x) = (0 − x�(
a
i ))(

a/c
i − 1), where �( ai ) ∶=

 ai −1
 a/ci −1 ,

which yields

( ai − 1)(0 − 1)
k = (0 − �( ai ))(0 − �(

a/c
i ))⋯ (0 − �( a/c

k−1

i ))( a/c
k

i − 1).
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So we can write

�iq ⋯ �i1(0 − 1)
k� c,−1i1 ⋯ � c,−1iq = (0 − �k)⋯ (0 − �1)

 1/c
k

iq −1
 ciq−1

⋯
 1/c

k
i1 −1
 ci1−1

= (0 − �k)⋯ (0 − �1)�0.
(5.18)

Observe that for 0 ≤ i ≤ d and j ∈ ℤ, we have

 1/c
j

i −1
 1/cj+1i −1

=  1/c
j

i −1
i−1 ⋅ i−1

 1/cj+1i −1
and  1/c

k
i −1
 ci −1

=  1/c
k

i −1
i−1 ⋅ i−1 ci −1

∈ 1 + (pm, i − 1)ℤp[[ΓR]].

Therefore, in (5.18) we have that �j ∈ 1+ (pm, (1 −1),… , (d −1)). Writing (0 − �j) = (0 −1) + (1− �j),
we conclude that

�iq ⋯ �i1(0 − 1)
k� c,−1i1 ⋯ � c,−1iq ∈ (pm, 0 − 1,… , d − 1)k .

Now from Lemma 2.45, it follows that the series of operators

∑
k≥0

ak�iq ⋯ �i1(0 − 1)
k� c,−1i1 ⋯ � c,−1iq

converge and therefore ∇iq ⋯∇i1∇0�−10 � c,−1i1 ⋯ � c,−1iq is well-de�ned. The same arguments show that the
series of operators ∑k≥0 bk� ciq ⋯ � ci1(0 − 1)

k�−1i1 ⋯ �−1iq converge as an inverse to the previous operator.
This establishes the claim.

5.2.4. Change of annulus of convergence : Part 1

Now that we have changed our original complex to a complex involving operators i − 1, in this
section, we will pass from the ring A[u,v]

R to the overconvergent ring A(0,v]+
R and also twist our module

by r . Note that we are working under the assumption that p−1
p ≤ u ≤ v

p < 1 < v, for example, one
can take u = p−1

p and v = p − 1.

Let us set N (0,v]+(T (r)) ∶= A(0,v]+
R ⨂A+R0

N(T (r)). We can equip this module with a �ltration given
as

FilkN (0,v]+(T (r)) ∶= ∑
i+j=k

FiliA(0,v]+
R ⨂̂A+R0

FiljN(T (r)), for k ∈ ℤ,

where we put the �ltration on A(0,v]+
R by identifying it with the ring R(0,v]+$ via the map �cycl (see §2.4),

and the latter ring has a �ltration described in De�nition 2.27. These submodules are stable under
the action of ΓR .

Next, we de�ne a subcomplex of Kos(Γ′R , Fil0N (0,v]+(T (r))) as

K(Γ′R , Fil0N (0,v]+(T (r))) ∶ Fil0N (0,v]+(T (r))
(�i )−−−−→ (�Fil−1N (0,v]+(T (r)))

I ′1 ⟶ (�2Fil−2N (0,v]+(T (r)))
I ′2 ⟶ ⋯ .

Similarly, we can de�ne the complex Kc(Γ′R , �Fil−1N (0,v]+(T (r))) as a subcomplex of
Kosc(Γ′R , Fil0N (0,v]+(T (r))) (see De�nition 4.10). Now, consider the map

�0 ∶ K(Γ′R , Fil0N (0,v]+(T (r))) ⟶ Kc(Γ′R , �Fil−1N (0,v]+(T (r))),

de�ned by a commutative diagram similar to (5.17) (see also De�nitions 4.9 & 4.12)
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Fil0N (0,v]+(T (r)) (�Fil−1N (0,v]+(T (r)))
I ′1 (�2Fil−2N (0,v]+(T (r)))

I ′2 ⋯

�Fil−1N (0,v]+(T (r)) (�2Fil−2N (0,v]+(T (r)))
I ′1 (�3Fil−3N (0,v]+(T (r)))

I ′2 ⋯ .

(�i )

� 00 � 10 � 20

(�i )

We write the total complex of the diagram as K(ΓR , Fil0N (0,v]+(T (r))), which is a subcomplex of
Kos(ΓR , Fil0N (0,v]+(T (r))). In a similar manner, we can de�ne complexes K(Γ′R , N (0,v/p]+(T (r))) and
Kc(Γ′R , �N (0,v/p]+(T (r))) and a map �0 from former to the latter complex.

Next, for j ∈ ℕ, we have � jFil−jN (0,v]+(T (r)) ⊂ N (0,v]+(T (r)) and the induced Frobenius gives

'(� jFil−jN (0,v]+(T (r))) = '(� j−rFilr−jN (0,v]+(T )(r)) ⊂ � j−rN (0,v/p]+(T )(r) = � jN (0,v/p]+(T (r)).

Using the Forbenius morphism and the map between complexes discussed above, we de�ne the
complex

K(', ΓR , N (0,v]+(T (r))) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(Γ′R , Fil0N (0,v]+(T (r)))
1−' //

�0
��

K(Γ′R , N (0,v/p]+(T (r)))

�0
��

Kc(Γ′R , �Fil−1N (0,v]+(r))
1−' // Kc(Γ′R , �N (0,v/p]+(T (r)))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

It is obvious that we can compare this to the complex de�ned in the previous section.

Proposition 5.39. The natural map

K(', ΓR , N (0,v]+(T (r))) ⟶ K(', ΓR , N [u,v](T (r)))

induced by the inclusion N (0,v]+(T (r)) ⊂ N [u,v](T (r)) is a p3r -quasi-isomorphism.

Proof. The map in the claim is injective, so we only need to show that the cokernel complex is killed
by p3r . In the cokernel complex, we have maps

1 − ' ∶ �kFil−kN [u,v](T (r))/�kFil−kN (0,v]+(T (r))⟶ �kN [u,v/p](T (r))/�kN (0,v/p]+(T (r)) for k ∈ ℤ,
(5.19)

and it is enough to show that these maps are p4r -bijective. Let us de�ne the modules

M (0,v]+(r) ∶= A(0,v]+
R ⨂A+R0

N(T )(r) and M [u,v](r) ∶= A[u,v]
R ⨂A+R0

N(T )(r),

equipped with �ltrations given by the usual �ltration on tensor products. It is also immediately
clear that �kFil−kN (0,v]+(T (r)) = �k−rFilr−kM (0,v]+(r) and �kFil−kN [u,v](T (r)) = �k−rFilr−kM [u,v](r),
for k ∈ ℤ (see (5.14) for a similar conclusion).

Let n = r − k and we rewrite (5.19) as

1 − ' ∶ �−nFilnM [u,v](r)/�−nFilnM (0,v]+(r)⟶ �−nM [u,v/p](r)/�−nM (0,v/p]+(r), (5.20)

For n ≤ 0, the claim follows from Lemma 5.40. For n > 0, we begin by showing that the natural map

�−n1 M [u,v](r)/�−n1 M (0,v]+(r)⟶ �−nFilnM [u,v](r)/�−nFilnM (0,v]+(r), (5.21)

is pn-bijective. Recall that � = �
�1 , so we have

�−n1 M [u,v](r) = �−n� nM [u,v](r) ⊂ �−nFilnM [u,v](r), and �−n1 M [u,v](r) ⋂ �−nFilnM (0,v]+(r) = �−n1 M (0,v]+(r).
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Therefore, we get that (5.21) is injective. Next, we note that from the de�nitions we can write
A[u,v]
R = A[u]

R + A(0,v]+
R . So we take M [u] ∶= A[u]

R ⨂A+R0
N(T ) and M+ ∶= A+

R ⨂A+R0
N(T ) and we endow

these modules with �ltrations by considering the tensor product of �ltrations on each component
(note that for simplicity in notation we consider modules without the twist - this is harmless). This
reduces (5.21) to the map

�−n1 M [u]/�−n1 M+ ⟶ �−nFilnM [u]/�−nFilnM+,

and we need to show that for any x ∈ �−nFilnM [u], there exists y ∈ �−n1 M [u] such that under the
natural map above, y maps to the image of pnx . Let

x = �−n ∑
i+j=n

ai ⨂ xj ∈ �−nFilnM [u] = �−n ∑
i+j=n

FiliA[u]
R ⨂̂ FiljN(T ).

From Lemma 2.28, for i < n, we can write ai = ai1+ai2, with ai1 ∈ FilnA[u]
R and ai2 ∈ 1

p⌊nu⌋A
+
R . However,

note that ai2 = ai − ai1 ∈ FiliA[u]
R ⋂ 1

p⌊nu⌋A
+
R , therefore we get that ai2 ∈ 1

p⌊nu⌋ FiliA+
R . Now we set

y =
pn

�n
∑
i+j=n
i<n

ai1 ⨂ xj +
pn

�n
∑
i+j=n
i≥n

ai ⨂ xj ∈
pn

�n
FilnA[u]

R ⨂N(T ) ⊂ �−n1 A[u]
R ⨂N(T ).

and we get that pnx − y = �−npn(∑ ai2 ⨂ xj) ∈ �−nM+ (since u = p−1
p < 1). So (5.20) is pn-isomorphic

to the equation

1 − ' ∶ �−n1 M [u,v](r)/�−n1 M (0,v]+(r)⟶ �−nM [u,v/p](r)/�−nM (0,v/p]+(r),

Next, recall that we have v = p − 1, so it follows from Lemma 2.47 (v) that � divides p in A(0,v/p]+
R ,

whereas �1 divides p in A(0,v]+
R , therefore (5.20) is p2n-isomorphic to the equation

1 − ' ∶ M [u,v](r)/M (0,v]+(r)⟶ M [u,v/p](r)/M (0,v/p]+(r).

But from Lemma 5.40, we have that this map is bijective (note that Frobenius has no e�ect on twist).
Therefore, we conclude that (5.19) is p3n-bijective. As n = r − k ≤ r , the cokernel complex of the
map in the claim is killed by p3r . This proves the claim.

Following observation was used above,

Lemma 5.40. The natural map

1 − ' ∶ A[u,v]
R ⨂N(T )/A(0,v]+

R ⨂N(T )⟶ A[u,v/p]
R ⨂N(T )/A(0,v/p]+

R ⨂N(T ),

is bijective.

Proof. We will follow the strategy of the proof of [CN17, Lemma 4.8]. Let us note that the natural
map

A[u,v]
R ⨂N(T )/A(0,v]+

R ⨂N(T )⟶ A[u,v/p]
R ⨂N(T )/A(0,v/p]+

R ⨂N(T )

induced by the inclusion A[u,v]
R � A[u,v/p]

R is an isomorphism. Indeed, the map above is injective
because the kernel consists of analytic functions that take values in N(T ) and are integral on the
annulus u

e ≤ �p(X0) ≤
v
e and which extend to analytic functions taking values in N(T ) and integral

on the annulus 0 < �p(X0) ≤ v
pe , hence belong to A(0,v]+

R ⨂N(T ). It is surjective because we can write
A[u,v/p]
R = A[u]

R +A(0,v/p]+
R (clear from the de�nitions). So, we can consider (1 −') as an endomorphism

of the module M = A[u,v]
R ⨂N(T )/A(0,v]+

R ⨂N(T ).
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An element x ∈ A[u,v]
R can be written as x = ∑k∈ℕ

�km
p⌊ku/e⌋ xk , with xk ∈ A(0,v]+

R going to 0, p-adically.
So,

'(x) = ∑
k∈ℕ

p⌊pku/e⌋−⌊ku/e⌋(
'(�m)
�pm )

k �pkm
p⌊pku/e⌋'(xk),

and since ⌊pku/e⌋−⌊ku/e⌋ ≥ 1 if ⌊ku/e⌋ ≠ 0, we see that '(x) ∈ A(0,v/p]+
R +pA[u,v/p]

R . As '(N(T )) ⊂ N(T ),
we get '(M) ⊂ pM . To show the bijectivity of 1 − ', it remains to check that M does not contain
p-divisible elements, which would then imply that 1 + ' + '2 +⋯ converges on M . Let (fj)j∈J be a
collection of elements of A+

R whose images form a basis of A+
R/(p, �m) over � = A+

K /(p, �m). Then
(fj)j∈J is a topological basis of A[u,v]

R over A[u,v]
K and of A(0,v]+

R over A(0,v]+
K . Writing everything in the

basis {fj ⨂ ei , for 1 ≤ i ≤ ℎ, j ∈ J}, where {ei , 1 ≤ i ≤ ℎ} is a basis of N(T ), reduces the question to
proving that A[u,v]

K /A(0,v]+
K has no p-divisible element. Since all such elements can be written as a

power series in A[u]
K /A+

K , we conclude that there can be no p-divisible elements in this quotient.
Hence, we get the desired conclusion.

5.2.5. Change of annulus of convergence : Part 2

In this section, we will change the ring of coe�cients from A(0,v]+
R to A(0,v/p]+

R by replacing the action
of ' with its left inverse  in the complexes discussed so far : these steps are required in order to
obtain a complex comparable to Koszul complexes computing the Galois cohomology of T (r). Note
that we are working under the assumption that p−1

p ≤ u ≤ v
p < 1 < v, for example, one can take

u = p−1
p and v = p − 1.

Recall from Proposition 2.13 that we have a left inverse  of the Frobenius such that  (A) ⊂ A,
which induces the operator  ∶ A+ → A+. For the overconvergent rings we can consider the induced
operator over A† and we have that  (A†) ⊂ A†. This gives us an operator  ∶ A(0,v/p]+

R → A(0,v]+
R .

Note that we can also de�ne  by identifying A(0,v/p]+
R ≃ R(0,v/p]+$ via the isomorphism �cycl in §2.4,

and considering the left inverse of the cyclotomic Frobenius over R(0,v/p]+$ (see §2.3.2). Both these
de�nitions coincide since �cycl commutes with the Frobenius on each side.

Next, let � = pm−1, then from Proposition 2.40 (i) we have inclusions

 (�−�m A(0,v]+
R ) ⊂  (�−�m A(0,v/p]+

R ) ⊂ �−p
m−2

m A(0,v]+
R ⊂ �−�m A(0,v]+

R ⊂ �−�m A(0,v/p]+
R . (5.22)

Using this, we deduce that �−�m A(0,v]+
R is stable under  . De�ne

D(0,v]+(r) ∶= A(0,v]+
R ⨂A+R0

D+(T (r)).

Note that this module is stable under the action of ΓR .
Notation. We write D(0,v]+(r) instead of D(0,v]+(T (r)) as we have D+(T (r)) = D+(T )(r). We hope this
change in notation is not too confusing for the reader.

Recall from Lemma 2.37 that we have  (A
(0,v/p]+
R ) ⊂ A(0,v]+

R . Further, for v = p − 1, by Lemma
2.47 (v) we have that �−p�m � is a unit in A(0,v/p]+

R . So by combining Lemma 2.39 and Proposition
2.40 (i), we see that  (�

−p� r
m A(0,v/p]+

R ) ⊂ �−� rm A(0,v]+
R . Now, we know that  commutes with the

action of GR , so by linearity we can extend this map to get  (D+(T )) ⊂ D+(T ), and therefore we
have that  (D(0,v/p]+(r)) ⊂ D(0,v]+(r). Coupling this with the observation above, we note that
 (�

−p� r
m D(0,v/p]+(r)) ⊂ �−� rm D(0,v]+(r). Now since  (N(T )) ⊂  (D+(T )) ⊂ D+(T ), therefore from the

inclusion �−�m A(0,v]+
R ⊂ �−�m A(0,v/p]+

R and (5.22), we deduce that

 (N (0,v]+(T (r))) ⊂  (N (0,v/p]+(T (r))) ⊂  (�−rD(0,v/p]+(r))
=  (�−p� rm D(0,v/p]+(r)) ⊂ �−� rm D(0,v]+(r) ⊂ �−� rm D(0,v/p]+(r).

(5.23)
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Next, for the �ltration onA(0,v]+
R and k ∈ ℕ such that k ≤ r , we observe that '(�kFil−kN (0,v]+(T (r))) ⊂

�kN (0,v/p]+(T (r)) ⊂ �−p� (r−k)m D(0,v/p]+(r), therefore

�kFil−kN (0,v]+(T (r)) =  ('(�kFil−kN (0,v]+(T (r)))) ⊂  (�kN (0,v/p]+(T (r)))
⊂  (�−p� (r−k)m D(0,v/p]+(r)) ⊂ �−� (r−k)m D(0,v]+(r).

(5.24)

Equally obvious is the inclusion

 (�kFil−kN (0,v]+(T (r))) ⊂  (�kN (0,v]+(T (r))) ⊂  (�kN (0,v/p]+(T (r))) ⊂ �−� (r−k)m D(0,v]+(r).

In conclusion, we obtain that

( − 1)(�kFil−kN (0,v]+(T (r))) ⊂ �−� (r−k)m D(0,v]+(r) ⊂ �−� rm D(0,v]+(r). (5.25)

We now turn to complexes. Recall that we have,

Kos(Γ′R , �−� rm D(0,v]+(r)) ∶ �−� rm D(0,v]+(r)
(�i )−−−−→ (�−� rm D(0,v]+(r))

I ′1 ⟶ (�−� rm D(0,v]+(r))
I ′2 ⟶ ⋯ ,

and similarly Kosc(Γ′R , �−� rm D(0,v]+(r)). In the previous section, we already de�ned the complexes
K(Γ′R , Fil0N (0,v]+(T (r))), Kc(Γ′R , �Fil−1N (0,v]+(T (r))) and a map �0 from the former complex to the
latter. Therefore, similar to the complex K(', ΓR , N (0,v]+(T (r))) from the previous section and using
(5.25) de�ne the complex

K( , ΓR , N (0,v]+(T (r))) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(Γ′R , Fil0N (0,v]+(T (r)))
 −1 //

�0
��

Kos(Γ′R , �−� rm D(0,v]+(r))

�0
��

Kc(Γ′R , �Fil−1N (0,v]+(T (r)))
 −1 // Kosc(Γ′R , �−� rm D(0,v]+(r))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Proposition 5.41. With notations as above, the natural map

�≤rK(', ΓR , N (0,v]+(T (r))) ⟶ �≤rK( , ΓR , N (0,v]+(T (r))),

induced by identity in the �rst column and  in the second column is a p5r+s+2-quasi-isomorphism,
where s is the maximum among the absolute values of Hodge-Tate weights of V (see De�nition 3.8).

Proof. We will show that the kernel and cokernel complex are killed by some power of p.
First, let us look at the cokernel complex, which is made up of modules

�−� rm D(0,v]+(r)/ (�kN (0,v/p]+(T (r))) for 0 ≤ k ≤ r . We want to show that these modules are
killed by p4r+s . Now, note that '(D(0,v]+(r)) ⊂ D(0,v/p]+(r), therefore D(0,v]+(r) ⊂  (D(0,v/p]+(r)).
Moreover, from (5.22) we get that

 (D(0,v/p]+(r)) ⊂  (�−� rm D(0,v/p]+(r)) ⊂ �−� rm D(0,v]+(r).

Therefore, �−� rm D(0,v]+(r)/ (D(0,v/p]+(r)) is killed by � � rm . But, from Lemma 2.47 we have that � �m
divides p in A(0,v]+

R (for v = p − 1), therefore �−� rm D(0,v]+(r)/ (D(0,v/p]+(r)) is killed by pr .
Further, from De�nition 3.8 we have � sD+(T ) ⊂ N(T ) ⊂ D+(T ). So we obtain

�k+s−rD(0,v/p]+(r) ⊂ �kN (0,v/p]+(T (r)) ⊂ �k−rD0,v/p]+(r).

Since � divides p in A(0,v/p]+
R (see Lemma 2.47 (v) for v = p−1), we obtain that �kN (0,v/p]+(T (r)) is pk+s-

isomorphic to �−rD(0,v/p]+(r). Similarly, we see that the natural inclusion D(0,v/p]+(r) ⊂ �−rD(0,v/p]+(r)
is a pr -isomorphism. Combining both these statements we get that D(0,v/p]+(r) is pk+r+s-isomorphic
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to N (0,v/p]+(T (r)). Therefore, the natural map

�−� rm D(0,v]+(r)/ (N (0,v/p]+(T (r))) ⟶ �−� rm D(0,v]+(r)/ (D(0,v/p]+)(r)

is a pk+r+s-isomorphism. Since the latter module is killed by pr , we conclude that the module
�−� rm D(0,v]+(r)/ (N (0,v/p]+(T (r))) is killed by pk+3r+s . As this value grows with the degree of the
complex, we see that after truncating in degree ≤ r , we obtain that the cokernel complex of the map
in the claim is p4r+s-acyclic.

Next, we look at the kernel complex. Our strategy is to replace the kernel complex with a simpler
complex, up to some power of p, and show that the latter complex is p2-acyclic.

Note that the map is identity on the �rst column, so the kernel complex can be written as

�≤r[K(Γ′R , (N
(0,v/p]+(T (r)))

 =0
)

�0−−−→ Kc(Γ′R , (�N
(0,v/p]+(T (r)))

 =0
)].

Since � divides p in A(0,v/p]+
R (see Lemma 2.47 (v)), we obtain that �kN (0,v/p]+(T (r)) is pr−k-isomorphic

to N (0,v/p]+(T )(r), for k ≤ r . Using this we see that the kernel complex is pr -quasi-isomorphic to the
complex

�≤r[Kos(Γ′R , (N (0,v/p]+(T )(r))
 =0

)
�0−−−→ Kosc(Γ′R , (N (0,v/p]+(T )(r))

 =0
)].

Now, we will analyze the module (N (0,v/p]+(T ))
 =0. Let us write N(T ) = ∑ℎ

j=1 A+
R0ej , for a choice of

basis. Since the attached (', ΓR)-module DR(T ) over AR is étale, we obtain that DR(T ) = ∑ℎ
j=1 AR'(ej).

Now note that z = ∑ℎ
j=1 zj'(ej) ∈ (DR(T )) =0 = (⨁ℎ

j=1 AR'(ej))
 =0, if and only if zj ∈ (AR)

 =0, for
each 1 ≤ j ≤ ℎ. Indeed,  (z) = 0 if and only if ∑ℎ

j=1  (zj'(ej)) = ∑ℎ
j=1  (zj)ej = 0. As ej are linearly

independent over AR , we get the desired conclusion.
Next, using Lemma 2.37 (ii), we have a decomposition

A =0
R ≃ ⨁

�∈{0,…,p−1}[0,d],�≠0
'(AR)[X ♭]� , where [X ♭]� = (1 + �m)�0[X ♭

1 ]
�0 ⋯ [X ♭

d ]
�d .

Therefore, we obtain that

(DR(T ))
 =0 ≃ (DR(T ))

 =0 ≃ (
ℎ
∑
j=1

AR'(ej))
 =0

≃ ⨁
�∈{0,…,p−1}[0,d]

�≠0

ℎ
∑
j=1

'(ARej)[X ♭]� = ⨁
�∈{0,…,p−1}[0,d]

�≠0

'(DR(T ))[X ♭]� .

Now observe that (N (0,v/p]+(T ))
 =0 = (DR(T ))

 =0
⋂N (0,v/p]+(T ). Using the decomposition above, we

set
M[X ♭]� ∶= '(DR(T ))[X ♭]� ⋂N (0,v/p]+(T ), for � ∈ {0,… , p − 1} and � ≠ 0,

where we take the intersection inside (DR(T ))
 =0. Note that the module M is an A(0,v/p]+

R -module
contained in N (0,v/p]+(T ), stable under the action of ΓR and independent of � . Indeed, for � ≠ � ′, if
we have ∑ℎ

i=1 xiei[X ♭]� ∈ M[X ♭]� then ∑ℎ
i=1 xiei[X ♭]� ′ ∈ M[X ♭]� ′ , and vice versa.

From the discussion above, we see that the kernel complex of the map in the claim is pr -isomorphic
to the complex

�≤r ⨁
�∈{0,…,p−1}[0,d],�≠0

[ Kos(Γ′R , M(r)[X ♭]�)
�0 // Kosc(Γ′R , M(r)[X ♭]�) ] . (5.26)

Lemma 5.42. The complex described in (5.26) above is p2-acyclic.
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Proof. The proof will follow the technique used in the proof of [CN17, Lemma 4.10]. We will treat
terms corresponding to each � separately. First, let us assume that �k ≠ 0 for some k ≠ 0. We want
to show that both Kos(Γ′R , M[X ♭]�) and Kosc(Γ′R , M[X ♭]�) complexes are p-acyclic (the twist has
disappeared because the cyclotomic character is trivial on Γ′R). As the proof is same in both the
cases, we only treat the �rst case. We can write the complex as a double complex

M[X ♭]� M I ′′1 [X ♭]� M I ′′2 [X ♭]� ⋯

M[X ♭]� M I ′′1 [X ♭]� M I ′′2 [X ♭]� ⋯ ,

(i−1)

k−1 k−1 k−1

(i−1)

where the horizontal maps involve i’s with i ≠ k, 1 ≤ i ≤ d . Now, we have

(k − 1) ⋅ (y[X ♭]�) = �1G(y)[X ♭]� ,

where
G(y) = (1+� )�k (k−1)y

� + ((1+� )�k −1)y
� , for y ∈ M,

and we have used the fact that

k([X ♭]�) = ["]�k [X ♭]� = (1 + � )�k [X ♭]� .

Now, G is �m-linear and k −1 is trivial modulo � on A(0,v]+
R and N(T ) (see Lemma 2.46 and De�nition

3.8). Since � divides p in A(0,v/p]+
R (see Lemma 2.47 for v = p − 1), therefore it follows that modulo

� , G is just multiplication by �k on M . This shows that G is invertible over M , therefore k − 1 is
injective on M[X ♭]� . Finally, since we have that p

� ∈ A(0,v/p]+
R , the cokernel of k − 1 is killed by p.

Next, let �k = 0 for all k ≠ 0 and �0 ≠ 0. To prove that the kernel complex is p-acyclic, we will
show that �0 ∶ Kos → Kosc is injective and the cokernel complex is killed by p. This amounts to
showing the same statement for

0 − �i1 ⋯ �iq ∶ M[X
♭]� (r)⟶ M[X ♭]� (r), �ij =

 cij −1
ij −1

.

We have

(0 − �i1 ⋯ �iq )(y[X
♭]� (r)) = (cr0(y)(1 + � )p

−m(c−1)�0[X ♭]�)(r) − (�i1 ⋯ �iq (y)[X
♭]�)(r).

So we are lead to study the map F de�ned by

F = cr (1 + � )z0 − �i1 ⋯ �iq , z = p−m(c − 1)�0 ∈ ℤ∗
p .

Now cr −1 is divisible by pm, (1+� )z = 1+z� mod �2 and �ij −1 ∈ (pm, ij −1)ℤp[[ij −1]]. Therefore,
we can write �−1F in the form �−1F = z + �−1F ′, with F ′ ∈ (pm, �2, 0 − 1,… , d − 1)ℤp[[�, ΓR]]. It
follows from Lemma 2.46, Lemma 2.47 and De�nition 3.8, that for N = 2pm−1 > 0 we have that
�−1F ′ = 0 on �amM/�a+Nm M , for all a ∈ ℕ. Hence, �−1F induces multiplication by z on �amM/�a+Nm M
for all a ∈ ℕ, which implies that it is an isomorphism of M . This shows what we want since �
divides p in A(0,v/p]+

R by Lemma 2.47 (for v = p − 1).

Combining the analysis for the kernel and cokernel complex, we conclude that the map in the
claim of Proposition 5.41 is a p5r+s+2-quasi-isomorphism.

By replacing v by v/p in §5.2.4, de�ne the complex

K(Γ′R , N
(0,v/p]+(T (r))) ∶ N (0,v/p]+(T (r))

(�i )−−−−→ (�N (0,v/p]+(T (r)))
I ′1 ⟶ (�2N (0,v/p]+(T (r)))

I ′2 ⟶ ⋯ .
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Similarly, we can de�ne the complex Kc(Γ′R , N (0,v/p]+(T (r))) and a map �0 from former to the lat-
ter complex. Moreover, from (5.23) and the natural inclusion N (0,v/p]+(T (r)) ⊂ �−rD(0,v/p]+(r) =
�−� rm D(0,v/p]+(r) (since �−p

m

m � is a unit in A(0,v/p]+
R ), we deduce that

( − 1)(�kN (0,v/p]+(T (r))) ⊂ �−p� (r−k)m D(0,v/p]+(r) ⊂ �−p� rm D(0,v/p]+(r).

Therefore, similar to K( , ΓR , N (0,v]+(T (r))), de�ne the complex

K( , ΓR , N (0,v/p]+(T (r))) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(Γ′R , N (0,v/p]+(T (r)))
 −1 //

�0
��

Kos(Γ′R , �
−p� r
m D(0,v/p]+(r))

�0
��

Kc(Γ′R , �N (0,v/p]+(T (r)))
 −1 // Kosc(Γ′R , �

−p� r
m D(0,v/p]+(r))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

We can compare it to the complex de�ned before Proposition 5.41:

Lemma 5.43. The natural map

�≤rK( , ΓR , N (0,v]+(T (r))) ⟶ �≤rK( , ΓR , N (0,v/p]+(T (r))),

induced by inclusions N (0,v]+(T (r)) ⊂ N (0,v/p]+(T (r)) and �−� rm D(0,v]+(r) ⊂ �−p� rm D(0,v/p]+(r) is a pr+s-
quasi-isomorphism.

Proof. As the map is injective it is enough to show that the cokernel complex is killed by pr+s . For
k ∈ ℕ and k ≤ r , in the cokernel complex, we have maps

 − 1 ∶ �kN (0,v/p]+(T (r))/�kFil−kN (0,v]+(T (r))⟶ �−p� rm D(0,v/p]+(r)/�−� rm D(0,v]+(r), (5.27)

and it is enough to show that these are pr+s-bijective. Let us show the pr+s-surjectivity �rst. Note
that from 5.24 we have  (�kN (0,v/p]+(T (r))) ⊂ �−� rm D(0,v]+(r), therefore the cokernel of (5.27) is given
as �−p� rm D(0,v/p]+(r)/�kN (0,v/p]+(T (r)). Recall from De�nition 3.8 that we have

� sD+(T )(r) ⊂ N(T )(r) = � rN(T (r)) ⊂ D+(T (r)) = D+(T )(r).

Extending scalars to A(0,v/p]+
R in the equation above and dividing by � r , we obtain a natural inclu-

sion � s−rD(0,v/p]+(r) ⊂ N (0,v/p]+(T (r)). Therefore, we see that �−p� rm D(0,v/p]+(r)/�kN (0,v/p]+(T (r)) =
�−rD(0,v/p]+(r)/�kN (0,v/p]+(T (r)) is killed by �k+s . But � divides p in A(0,v/p]+

R (see Lemma 2.47 for
v = p−1), therefore (5.27) is pk+s-surjective (this also shows that truncation in degree ≤ r is necessary
in order to bound the power of p).

For injectivity, let x ∈ �kN (0,v/p]+(T (r)) such that ( − 1)x ∈ �−� rm D(0,v]+(r). We want to show that
x ∈ �kFil−kN (0,v]+(T (r)). Note that from 5.23, we have

 (�kN (0,v/p]+(T (r))) ⊂  (N (0,v/p]+(T (r))) ⊂  (�−p� rm D(0,v/p]+(r)) ⊂ �−� rm D(0,v]+(r).

So we get that x ∈ �−� rm D(0,v]+. We write x = �k−ra ⨂ e, for a ∈ A(0,v/p]+
R and e ∈ N(T )(r). As �−�m �1 is

a unit in A(0,v]+
R , we also get that

x = 1
� r−k a⨂ e ∈ 1

� r1
A(0,v]+
R ⨂A+R0

D+(T )(r).

But then we must have a ∈ �k1 � r−kA
(0,v]+
R ⊂ Filr−kA(0,v]+

R , which implies that x = �k−ra ⨂ e ∈
�k−rFilr−kA(0,v]+

R ⨂A+R0
N(T )(r) ⊂ �kFil−kN (0,v]+(T (r)). This shows that (5.27) is injective.

Finally, putting everything together for k ≤ r , we conclude that the map in the claim is a pr+s-
quasi-isomorphism.
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Recall from (5.23) that we have  (�
−p�
m D(0,v/p]+(r)) ⊂ �−�m D(0,v/p]+(r) ⊂ �−p�m D(0,v/p]+(r). So, by the

general formalism of Koszul complexes in §4.2, let us de�ne

Kos( , ΓR , D(0,v/p]+(r)) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kos(Γ′R , �
−p� r
m D(0,v/p]+(r))

 −1 //

�0
��

Kos(Γ′R , �
−p� r
m D(0,v/p]+(r))

�0
��

Kosc(Γ′R , �
−p� r
m D(0,v/p]+(r))

 −1 // Kosc(Γ′R , �
−p� r
m D(0,v/p]+(r))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Lemma 5.44. The natural map

�≤rK( , ΓR , N (0,v/p]+(T (r))) ⟶ �≤rKos( , ΓR , D(0,v/p]+(r)),

induced by the inclusion N (0,v/p]+(T (r)) ⊂ �−p� rm D(0,v/p]+(r), is a pr+s-quasi-isomorphism.

Proof. Since the map is injective it is enough to show that the cokernel complex is killed by pr+s . Note
that the cokernel is a complex made up of A(0,v/p]+

R -modules �−p� rm D(0,v/p]+(r)/�kN (0,v/p]+(T (r)), for
k ∈ ℕ such that k ≤ r . Recall from De�nition 3.8 that we have � sD+(T )(r) ⊂ N(T )(r) = � rN(T (r)) ⊂
D+(T (r)). Extending scalars to A(0,v/p]+

R in the equation above and dividing by � r , we obtain natural
inclusions

� s−rD(0,v/p]+(r) ⊂ N (0,v/p]+(T (r)) ⊂ �−rD(0,v/p]+(r).

As v = p − 1, from Lemma 2.47 (v) we have that � divides p in A(0,v/p]+
R . Therefore, the module

�−p� rm D(0,v/p]+(r)/�kN (0,v/p]+(T (r)) = �−rD(0,v/p]+(r)/�kN (0,v/p]+(T (r)) is killed by pk+s . Hence, the
cokernel complex (for the truncated complex) is pr+s-acyclic, which proves the claim.

5.2.6. Change of disk of convergence
Finally, we are in a position to relate our complexes to the Koszul complex computing continuous
GR-cohomology of T (r). Recall that in §2.1, we de�ned an operator  ∶ DR(T (r))→ DR(T (r)), as
the left inverse of '. Using this operator, we can de�ne the complex

Kos( , ΓR ,DR(T (r))) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kos(Γ′R ,DR(T (r)))
 −1 //

�0
��

Kos(Γ′R ,DR(T (r)))

�0
��

Kosc(Γ′R ,DR(T (r)))
 −1 // Kosc(Γ′R ,DR(T (r)))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

This complex is related to the one from the previous section:

Lemma 5.45. The natural map

Kos( , ΓR , D(0,v/p]+(r)) ⟶ Kos( , ΓR ,DR(T (r))),

induced by the inclusion �−p� rm D(0,v/p]+(r) ⊂ DR(T (r)), is a quasi-isomorphism.

Proof. The proof is similar to [CN17, Lemma 4.12]. First we note that the map on complexes is
induced by inclusion, so the kernel complex is 0. Next, to examine the cokernel complex we write

DR(T (r)) = D(0,v/p]+(r)[ 1
�m ]

∧,

where ∧ denotes the p-adic completion.
Let � = pm−1, and recall from Lemma 2.37 that we have  (A

(0,v/p]+
R ) ⊂ A(0,v]+

R ⊂ A(0,v/p]+
R . Further,

for v = p − 1, by Lemma 2.47 (v) we have that �−p�m � is a unit in A(0,v/p]+
R . So by combining Lemma
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2.39 and Proposition 2.40 (i), we see that  (�
−pk� r
m A(0,v/p]+

R ) ⊂ �
−pk−1� r
m A(0,v/p]+

R for k ≥ 1. Moreover,
we have that  (D+(T )) ⊂ D+(T ), and therefore  (D(0,v/p]+(r)) ⊂ D(0,v/p]+(r). Coupling this with the
observation above, we note that  (�

−pk� r
m D(0,v/p]+(r)) ⊂ �

−pk−1� r
m D(0,v/p]+(r).

From this dicsussion, we note that the map

 ∶ DR(T (r))/�−p� rm D(0,v/p]+(r)⟶ DR(T (r))/�−p� rm D(0,v/p]+(r)

is (pointwise) topologically nilpotent, therefore 1 −  is bijective over this quotient of modules. But,
this also means that the complexes

[Kos(Γ′R ,DR(T (r))/�−p� rm D(0,v/p]+(r))
 −1
−−−−−→ Kos(Γ′R ,DR(T (r))/�−p� rm D(0,v/p]+(r))], and

[Kosc(Γ′R ,DR(T (r))/�−p� rm D(0,v/p]+(r))
 −1
−−−−−→ Kosc(Γ′R ,DR(T (r))/�−p� rm D(0,v/p]+(r))],

are acyclic. Hence the cokernel complex is acyclic.

Next, recall that we have the complex

Kos(', ΓR ,DR(T (r))) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kos(Γ′R ,DR(T (r)))
1−' //

�0
��

Kos(Γ′R ,DR(T (r)))

�0
��

Kosc(Γ′R ,DR(T (r)))
1−' // Kosc(Γ′R ,DR(T (r)))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Proposition 5.46. With notations as above, the natural map

Kos(', ΓR ,DR(T (r))) ⟶ Kos( , ΓR ,DR(T (r))),

induced by identity on the �rst column and  on the second column is a quasi-isomorphism.

Proof. We will examine the kernel and cokernel of the map above. Notice that the map  is surjective
on DR(T (r)), so the cokernel complex is 0. For the kernel complex, we need to show that the complex

[Kos(Γ′R ,DR(T (r)) =0)
�0−−−→ Kos(Γ′R ,DR(T (r)) =0)],

is acyclic. For this, we will analyze the module (DR(T (r))) =0. Let us write N(T ) = ⨁ℎ
j=1 A+

R0ej
for a choice of A+

R0-basis. Since D(T (r)) ≃ D(T )(r) ≃ AR0 ⨂A+R0
N(T )(r), we obtain that

{e1 ⨂ �⨂ r ,… , eℎ ⨂ �⨂ r} is an AR0-basis of D(T (r)), where �⨂ r is a basis of ℤp(r). Further, since
D(T (r)) is étale and DR(T (r)) = AR ⨂AR0

D(T (r)), we obtain a decomposition

DR(T (r)) ≃
ℎ

⨁
j=1

AR'(ej)⨂ �⨂ r .

Using this decomposition, note that we can write

z =
ℎ
∑
j=1

zj'(ej) ∈ (
ℎ

⨁
j=1

AR'(ej))
 =0

= (DR(T ))
 =0

if and only if zj ∈ A =0
R for each 1 ≤ j ≤ ℎ. Indeed,  (z) = 0 if and only if ∑ℎ

j=1  (zj'(ej)) =
∑ℎ
j=1  (zj)ej = 0. As ej are linearly independent over AR , we get the desired conclusion.
Next, according to Proposition 2.40, we have a decomposition

A =0
R ≃ ⨁

�∈{0,…,p−1}[0,d],�≠0
'(AR)[X ♭]� , where [X ♭]� = (1 + �m)�0[X ♭

1 ]
�0 ⋯ [X ♭

d ]
�d .
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Therefore, we obtain that

(DR(T (r)))
 =0 ≃ (DR(T ))

 =0(r) ≃ (
ℎ

⨁
i=1

ARej)
 =0

(r) ≃ ⨁
�∈{0,…,p−1}[0,d],�≠0

j∈{1,…,ℎ}

'(ARej)(r)[X ♭]� ,

We have DR(T ) = ⨁ℎ
j=1 ARej and we see that the kernel complex of the map in the claim is isomorphic

to the complex

⨁
�∈{0,…,p−1}[0,d],�≠0

[ Kos(Γ′R , '(DR(T ))(r)[X ♭]�)
�0 // Kosc(Γ′R , '(DR(T ))(r)[X ♭]�) ] . (5.28)

Lemma 5.47. The complex described in (5.28) is acyclic.

Proof. The proof will follow the technique used in the proof of [CN17, Lemma 4.10, Remark 4.11] and
will be essentially similar to Lemma 5.42. We will treat terms corresponding to each � separately. First,
let us assume that �k ≠ 0 for some k ≠ 0. We want to show that both Kos(Γ′R , '(DR(T ))[X ♭]�) and
Kosc(Γ′R , '(DR(T ))[X ♭]�) complexes are acyclic (the twist has disappeared because the cyclotomic
character is trivial on Γ′R). As the proof is same in both the cases, we only treat the �rst case. We
can write the complex as a double complex

'(DR(T ))[X ♭]� '(DR(T ))
I ′′1 [X ♭]� '(DR(T ))

I ′′2 [X ♭]� ⋯

'(DR(T ))[X ♭]� '(DR(T ))
I ′′1 [X ♭]� '(DR(T ))

I ′′2 [X ♭]� ⋯ ,

(i−1)

k−1 k−1 k−1

(i−1)

where the �rst horizontal maps involve i’s with i ≠ k, 1 ≤ i ≤ d . Since DR(T ) is p-adically complete,
it enough to show that k − 1 is bijective on '(DR(T ))[X ♭]� modulo p. Indeed, this follows from
inductively applying �ve lemma to following exact sequences, for k ∈ ℕ,

0 pk'(DR(T ))[X ♭]� /pk+1 '(DR(T ))[X ♭]� /pk+1 '(DR(T ))[X ♭]� /pk 0

0 pk'(DR(T ))[X ♭]� /pk+1 '(DR(T ))[X ♭]� /pk+1 '(DR(T ))[X ♭]� /pk 0.

k−1 k−1 k−1

So below, we will work modulo p, however with slight abuse, we will hide this from the notation.
Note that we have

(k − 1) ⋅ ('(y)[X ♭]�) = '(�1(G(y)))[X ♭]� ,

where
G(y) = (1+�1)�k (k−1)y

�1 + ((1+�1)�k −1)y
�1 , for y ∈ DR(T ).

Note that we have ER = E+R[
1
�m ], and setting N R = ⨁ℎ

i=1 E+Rei , we obtain that DR(T )/p = N R[ 1
�m ].

Now, G is �m-linear, k −1 is trivial modulo � on N(T ) (see De�nition 3.8), and k �xes �m. Therefore,
G is just multiplication by �k on �amN R/�a+Nm N R for a ∈ ℤ and N = pm. Looking at the following
diagram and applying �ve lemma for a ∈ ℤ,

0 �a+Nm N R/�a+2Nm N R �amN R/�a+2Nm N R �amN R/�a+Nm N R 0

0 �a+Nm N R/�a+2Nm N R �amN R/�a+2Nm N R �amN R/�a+Nm N R 0,

G G G
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we obtain that, G is bijective over DR(T )/p. Finally, since �1 is invertible in ER , we obtain that k − 1
is bijective over '(DR(T ))[X ♭]� modulo p, as desired.

Next, let �k = 0 for all k ≠ 0 and �0 ≠ 0. To prove that the kernel complex is acyclic, we will show
that the map �0 ∶ Kos → Kosc is bijective. This amounts to showing the same statement for

0 − �i1 ⋯ �iq ∶ '(DR(T ))[X ♭]� (r)⟶ '(DR(T ))[X ♭]� (r), �ij =
 cij −1
ij −1

.

Again, arguing as in the previous part, we see that it is enough to show this statement modulo p.
We have

(0 − �i1 ⋯ �iq )('(y)[X
♭]� (r)) = (cr'(0(y))(1 + � )p

−m(c−1)�0[X ♭]�)(r) − ('(�i1 ⋯ �iq (y))[X
♭]�)(r).

So we are lead to study the map F de�ned by

F = cr (1 + �1)z0 − �i1 ⋯ �iq , z = p−m(c − 1)�0 ∈ ℤ∗
p .

Now cr −1 is divisible by pm, (1+�1)z = 1+z�1 mod �21 and �ij −1 ∈ (pm, ij −1)ℤp[[ij −1]]. Therefore,
we can write �−11 F in the form �−11 F = z + �−11 F ′, with F ′ ∈ (pm, �21 , 0 − 1,… , d − 1)ℤp[[�1, ΓR]].
Working modulo p, it follows from Lemma 2.46, Lemma 2.47 and De�nition 3.8, that forN = 2pm−1 > 0
we have that �−11 F ′ = 0 on �amN R/�a+Nm N R , for all a ∈ ℤ. Hence, �−11 F induces multiplication by z
on �amN R/�a+Nm N R for all a ∈ ℤ, which implies that it is an isomorphism of DR(T ) modulo p. This
shows what we want since �1 is invertible in AR .

Combining the analysis for the kernel and cokernel complex, we conclude that the map in the
claim of Proposition 5.46 is a quasi-isomorphism.

Proof of Proposition 5.31. Recall that s is the maximum among the absolute values of Hodge-Tate
length of V (see De�nition 3.8). From Lemmas 5.33 & 5.34 and Remark 5.35, we have a p4r -quasi-
isomorphism

Kos(', )A, FilrM [u,v]) ≃ K(', Lie ΓR , N [u,v](T (r))).

Changing from in�nitesimal action of ΓR to the continuous action of ΓR is an isomorphism of
complexes by Proposition 5.38,

K(', Lie ΓR , N [u,v](T (r))) ≃ K(', ΓR , N [u,v](T (r))).

Further, from Proposition 5.39 we have a p3r -quasi-isomorphism

K(', ΓR , N [u,v](T (r))) ≃ K(', ΓR , N (0,v]+(T (r))).

Next, from Proposition 5.41 and Lemmas 5.43 & 5.44, we have p7r+3s+2-quasi-isomorphisms

�≤rK(', ΓR , N (0,v]+(T (r))) ≃ �≤rK( , ΓR , N (0,v]+(T (r)))
≃ �≤rK( , ΓR , N (0,v/p]+(T (r))) ≃ �≤rKos(', ΓR , D(0,v/p]+(r)).

Finally, From Lemma 5.45 and Proposition 5.46 we obtain quasi-isomorphisms

Kos( , ΓR , D(0,v/p]+(r)) ≃ Kos( , ΓR ,DR(T (r))) ≃ Kos(', ΓR ,DR(T (r))).

Combining these statements we get the claim with N = 14r + 3s + 2.



APPENDIX A

Galois cohomology and classical Wach modules

Let F be a �nite unrami�ed extension ofℚp andV a crystalline p-adic representation ofGF = Gal(F /F ).
The aim of this chapter is to emphasize the importance of Wach modules from the point of view
of Galois cohomology. In [Her98], Herr obtained a three term complex in terms of the attached
(', ΓF )-module computing continuous GF -cohomology of V . Since the Wach module of V is an
“integral” lattice inside the (', ΓF )-module, it is interesting to explore whether some part of Galois
cohomology groups of V could be captured in terms of a complex written down completely in
terms of the Wach module. This could be answered positively via some concrete statements, for
example, see Proposition A.4. In order to establish these claims, we will need to introduce some
more background from (classical) p-adic Hodge theory. After recalling these facts, we will describe
a complex and carry out some concrete computations involving Wach modules.

A.1. Crystalline extension classes

We �x a compatible system of p-power roots of unity (�pn )n∈ℕ such that �p0 = 1, �p ≠ 1 and � ppn+1 = �pn .
Moreover, we set Fn = F (�pn ), F∞ = ⋃n Fn, ΓF = Gal(F∞/F ) and  ∈ ΓF a topological generator.

Let V be an ℎ-dimensional p-adic crystalline representation of GF with Hodge-Tate weights
−r1 ≤ −r2 ≤ ⋯ ≤ −rd ≤ 0. Let T be a free ℤp-lattice of rank ℎ inside V stable under the action of
GF . Set V (r) ∶= V ⨂ℚp ℚp(r) and T (r) ∶= T ⨂ℤp ℤp(r), then the Hodge-Tate weights of V (r) are
r − r1 ≤ r − r2 ≤ ⋯ ≤ r − rd . From §3.1, we have Wach modules N(T ) and N(V ), such that

N(T (r)) = �−rN(T )(r) and N(V (r)) = B+F ⨂A+F N(T (r)) = �
−rN(V )(r).

From Theorem 4.4 we have that the Fontaine-Herr complex

C∙(V (r)) ∶ D(V (r))
(1−',−1)
−−−−−−−−−−→ D(V (r))⨁D(V (r))

( −11−' )
−−−−−−−−−−−→ D(V (r)),

computes the Galois cohomology of V (r) i.e., for all k ∈ ℕ, we have natural isomorphisms

H k(C∙(V (r))) ≃
−−→ H k(GF , V (r)).

In particular, any extension class in H 1(GF , V (r)) can be represented by a pair (x, y) with x, y ∈
D(V (r)) and satisfying the relation (1 − ')x = ( − 1)y. We want to look at extension classes in
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H 1
f (GF , V (r)) which come from crystalline extensions of ℚp by V (r).
Let V be a positive crystalline representation of GF as above. Let X be an extension of ℚp(−r) by

V such that it is crystalline as a representation of GF

0⟶ V ⟶ X ⟶ ℚp(−r)⟶ 0.

Equivalently, we have that X (r) ∶= X ⨂ℚp ℚp(r) is a crystalline extension of ℚp by V (r)

0⟶ V (r)⟶ X (r)⟶ ℚp ⟶ 0. (A.1)

From Proposition 3.6 we have that the Wach functor N is exact. Therefore, we have an exact sequence

0⟶ N(V (r))⟶ N(X (r))⟶ N(ℚp)⟶ 0. (A.2)

Lemma A.1. The sequence

0⟶ Fil0N(V (r))⟶ Fil0N(X (r))⟶ Fil0N(ℚp)⟶ 0, (A.3)

is exact.

Proof. First, we want to show exactness of (A.3) on the right. Let e ∈ N(X (r)) be a lift of 1 ∈ B+F =
N(ℚp) = Fil0N(ℚp), and we want to show that e ∈ Fil0N(X (r)). Recall that we also have the exact
sequence

0⟶ V ⟶ X ⟶ ℚp(−r)⟶ 0.

Applying the exact Wach functor to it we obtain an exact sequence

0⟶ N(V )⟶ N(X )⟶ N(ℚp(−r))⟶ 0, (A.4)

such that � re ⨂ �⨂(−r) ∈ N(X ) and its image in N(ℚp(−r)) = (� r ⨂ �⨂(−r))B+F is a basis. Here � denotes
a basis of ℚp(1).

Let {e1,… , eℎ} denote a B+F -basis of N(V ), then we have that {e1,… , eℎ, � re ⨂ �⨂(−r)} is a B+F -basis
of N(X ). Since each module in (A.4) is stable under the action of Frobenius, we obtain that

'(� re ⨂ �⨂(−r)) =
ℎ
∑
i=1

aiei + aℎ+1� re ⨂ �⨂(−r),

where ai ∈ B+F for 1 ≤ i ≤ ℎ + 1. But from the exact sequence (A.4), we have that q−r'(� re ⨂ �⨂(−r))
and � re ⨂ �⨂(−r) must have the same image in N(ℚp(−r)). Therefore,

q−r'(� re ⨂ �⨂(−r)) − � re ⨂ �⨂(−r) =
ℎ
∑
i=1

q−raiei + (q−raℎ+1 − 1)� re ⨂ �⨂(−r) ∈ N(V ).

This means that we must have aℎ+1 = qr and ai ∈ qrB+F for 1 ≤ i ≤ ℎ. Therefore, � re ⨂ �⨂(−r) ∈
FilrN(X ), or equivalently e ∈ �−rFilrN(X )(r) = Fil0N(X (r)).

Next, to show exactness in the middle, let e, e′ ∈ Fil0N(X (r)) be two such lifts. Then arguing
as above, we obtain that � r (e − e′)⨂ �⨂(−r) ∈ FilrN(V ), or equivalently e − e′ ∈ �−rFilrN(V )(r) =
Fil0N(V (r)). Hence, the sequence (A.3) is exact.

Lemma A.2. The class of the extension (A.1) in H 1(C∙(V (r))) is represented by a pair (x, y) for some
x ∈ N(V )(r) and y ∈ N(V (r)) satisfying the relation (1 − ')x = ( − 1)y .

Proof. Consider the diagram with exact rows
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0 Fil0 N(V (r)) Fil0 N(X (r)) Fil0 B+F 0

0 Fil0 Dcris(V (r)) Fil0 Dcris(X (r)) F 0,

where the top row is a consequence of Lemma A.1 and the vertical maps are reduction modulo � .
Let e ∈ Fil0 N(X (r)) be a lift of 1 ∈ B+F in a manner compatible with the above diagram. Then we
have that

yr = (1 − ')e ∈ N(V (r)),

since yr maps to 0 ∈ B+F in (A.2). Now, since the action of ΓF on N(X (r))/�N(X (r)) is trivial and the
�ltration on Wach modules is stable under the action of ΓF , we get that

xr = ( − 1)e ∈ Fil0N(V (r)) ⋂ �N(V (r)) = 1
� r FilrN(V )(r) ⋂

1
� r−1N(V )(r) =

1
� r−1 Filr−1N(V )(r),

where the last equality is a consequence of Lemma 3.17. The pair (xr , yr ) represents the class of this
extension in H 1(C∙).

Next, we want to modify the pair (xr , yr ) by adding coboundaries to get a pair (x, y) with x ∈
N(V )(r) and y ∈ N(V (r)) cohomologous to (xr , yr ). We do this iteratively by clearing out negative
powers of � in the expression of xr . It is easy to observe that for any z ∈ Filr N(V (r)), the pair
(xr + (1 −  )z, yr + (' − 1)z) is cohomologous to the pair (xr , yr ) in H 1(C∙(V (r))). Let us represent

xr = ar
� r−1 ⨂ �⨂ r ∈ 1

� r−1 Filr−1N(V )(r),

and take
zr−1 = br−1

� r−1 ⨂ �⨂ r ∈ 1
� r−1 Filr−1N(V )(r),

where
br−1 = ar

� ( )−1 .

Clearly, br−1 ∈ Filr−1N(V ). Now observe that,

xr + (1 −  )zr−1 = ar
� r−1 ⨂ �⨂ r + (1 −  )( br−1� r−1 ⨂ �⨂ r)

=
ar + br−1 − � ( )ur−1 (br−1)

� r−1
⨂ �⨂ r .

where we have used the expression  (� ) = � ( )�u−1, for a unit u ∈ 1 + B+F . By a small computation
we can write

ar + br−1 − � ( )ur−1 (br−1) = −
� ( )( − 1)ar
� ( ) − 1

+
� ( )(1 − ur−1) (ar )

� ( ) − 1
.

Since � divides ( − 1)ar and (1 − ur−1), from Lemma 3.17 we have that

1
� (ar + br−1 − � ( )u

r−1 (br−1)) ∈ Filr−2N(V ),

and therefore,
xr + (1 −  )zr−1 ∈ 1

� r−2 Filr−2N(V )(r).

So, we can write

(' − 1)zr−1 = '(br−1)
'(� r−1) ⨂ �⨂ r − br−1

� r−1 ⨂ �⨂ r

= q−r+1'(br−1)−br−1
� r−1 ⨂ �⨂ r

= q−r'(�br−1)−�br−1
� r ⨂ �⨂ r .
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Since br−1 ∈ Filr−1N(V ), we get that

q−r'(�br−1) − �br−1 ∈ N(V ),

i.e. (1 − ')zr−1 ∈ N(V (r)) and therefore,

yr + (' − 1)zr−1 ∈ N(V (r)).

Next, let ar−1 = 1
� (ar + br−1 − � ( )u

r−1 (br−1)) and br−2 = ar−1
(� ( )2−1) . So we set

xr−1 ∶= xr + (1 −  )zr−1 = ar−1
� r−2 ⨂ �⨂ r ∈ 1

� r−2 Filr−2N(V )(r),
yr−1 ∶= yr + (' − 1)zr−1 ∈ N(V (r)),

as well as

zr−2 ∶= br−2
� r−2 ⨂ �⨂ r ∈ 1

� r−2 Filr−2N(V )(r).

Now, we can repeat the argument above with r replaced by r − 1 and iterate this process until r = 1
and get

x1 = x2 + (1 −  )z2 ∈ Fil0N(V )(r) = N(V )(r),
y1 = y2 + (' − 1)z2 ∈ N(V (r)),

where x2, y2 and z2 come from the step r = 2. We set (x, y) = (x1, y1), where we have

x ∈ N(V )(r), and y ∈ N(V (r)),

satisfying the relation (1 − ')x = ( − 1)y and which is cohomologous to (xr , yr ) in H 1(C∙(V (r))).
This shows the claim.

Let V (r) be a crystalline representation of GF as above. For the associated Wach module over B+F ,
de�ne

K∙(V (r)) ∶ Fil0N(V (r))
(1−',−1)
−−−−−−−−−−→ Fil0N(V (r))⨁N(V (r))

( −11−' )
−−−−−−−−−−−→ N(V (r)).

Lemma A.3. For a crystalline representation V (r) as above and r ≥ r1, we have

H 0(K∙) = (Fil0N(V (r)))'=1,=1 ≃ V (r)GF .

Proof. First, note that we have (Fil0N(V (r)))'=1,=1 ⊂ D(V (r))'=1,=1 = V (r)GF = (Fil0Dcris(V (r)))'=1.
On the other hand, from Proposition 3.2 we have � r1(D+(V )) ⊂ N(V ), therefore D+(V (r)) ⊂
� r1−rD+(V (r)) ⊂ N(V (r)). Since D+(V (r))'=1,=1 = V (r)GF , we get the claim.

PropositionA.4. For a crystalline representation V (r) as above, we haveH 1
f (GF , V (r)) ≃ H

1(K∙(V (r))).

Proof. Since we know that any cohomology class in H 1
f (GF , V (r)) corresponds to a crystalline

extension of ℚp by V (r), it will be enough to construct a bijection between such extensions and
cohomology classes in H 1(K∙(V (r))). Let X (r) denote a crystalline representation of GF given as an
extension of ℚp by V (r), i.e. we have an exact sequence of GF -modules

0⟶ V (r)⟶ X (r)⟶ ℚp ⟶ 0.

Since N is an exact functor, we get an exact sequence of Wach modules over B+F

0⟶ N(V (r))⟶ N(X (r))⟶ B+F ⟶ 0.
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We can write N(X (r)) = N(V (r)) + B+F ⋅ e with

( − 1)e = x,
(1 − ')e = y,

for some x, y ∈ N(V (r)). Recall from Lemma A.1 that we have e ∈ Fil0N(X (r)), therefore x = ( −1)e ∈
Fil0N(V (r)). By the commutativity of ' and  , we get that

(1 − ')( − 1)e = ( − 1)(1 − ')e,

or equivalently, we have
(1 − ')x = ( − 1)y,

which implies that (x, y) represents a cohomological class in H 1(K∙(V (r))).
Conversely, let w ∈ Fil0 N(V (r)) and z ∈ N(V (r)) such that

(1 − ')w = ( − 1)z.

Then we have that the pair (w, z) represents a cohomological class inH 1(K∙(V (r))). Set E = N(V (r))+
B+F ⋅ e with

 (e) = w + e,
'(e) = z + e.

Clearly, E is an extension of B+F by N(V (r)), i.e. by sending e to 1 ∈ B+F we have an exact sequence

0⟶ N(V (r))⟶ E ⟶ B+F ⟶ 0, (A.5)

of Wach modules over B+F . From Proposition 3.6, applying the quasi-inverse exact functor of N to
(A.5), we get a crystalline extension of ℚp by V (r)

0⟶ V (r)⟶ Y ⟶ ℚp ⟶ 0,

where we set Y = (B⨂B+F E)
'=1. This extension represents a cohomology class in H 1

f (GF , V (r)).
It is clear that these constructions are inverse to each other. Therefore, we conclude that

H 1(K∙(V (r))) ≃ H 1
f (GF , V (r)).
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