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Finite height representations and syntomic complex

Abstract: The aim of this thesis is to study finite height crystalline representations in relative p-adic
Hodge theory, and apply the results thus obtained towards the computation of continuous Galois
cohomology of these representations via syntomic methods.

In 1980’s, Fontaine initiated a program for classifying p-adic representations of the absolute Galois
group of a p-adic local field by means of certain linear-algebraic objects functorially attached to the
representations. One of the aspects of his program was to classify all p-adic representations of the
Galois group in terms of étale (¢, I')-modules. On the other hand, Fontaine showed that crystalline
representations can be classified in terms of filtered ¢-modules. Therefore, it is a natural question
to ask for crystalline representations: Does there exist some direct relation between the filtered
¢-module and the étale (¢, I')-module? Fontaine explored this question himself, where he considered
finite height represenations (defined in terms of (¢, T')-modules) and examined their relationship
with crystalline representations. This line of thought was further explored by Wach, Colmez, and
Berger. In particular, Wach gave a description of finite height crystalline representations in terms of
(o, T)-modules.

In the relative case, the theory of (¢, )-modules has been developed by the works of Andreatta,
Brinon and Iovita. Further, the analogous notion of crystalline representations was studied by
Brinon.

The first main contribution of our work is the notion of relative Wach modules. Motivated by the
theory of Fontaine, Wach and Berger, we define and study some properties of relative Wach modules.
Further, we explore their relation with Brinon’s theory of relative crystalline representations and
associated F-isocrystals.

The second result is concerned with the computation of Galois cohomology using syntomic
complex with coefficients. This idea was utilized in a recent work of Colmez and Niziol, where
they carry out the computation for cyclotomic twists of the trivial representation. Under certain
technical assumptions, we show that for finite height crystalline representations, one can essentially
generalize the local result of Colmez and Niziot.

Keywords: p-adic Hodge theory, p-adic representations, (¢, ')-modules, finite height, Wach
modules, syntomic complex.

Institut de mathématiques de Bordeaux
UMR 5251, Université de Bordeaux, 33405 Talence, France.






Représentations de hauteur finie et complexe syntomique

Résumé : Le but de cette these est d’étudier les représentations cristallines de hauteur finie en théorie
de Hodge p-adique relative, et d’appliquer les résultats ainsi obtenus au calcul de la cohomologie
galoisienne continue de telles représentations via des méthodes syntomiques.

Dans les années 1980, Fontaine a lancé un programme pour classer les représentations p-adiques
du groupe de Galois absolu d’'un corps local p-adique au moyen de certains objets algébriques
linéaires attachés fonctoriellement aux représentations. Un aspect de son programme consistait a
classer toutes les représentations p-adiques du groupe de Galois en termes de (¢, I')-modules étales.
D’autre part, Fontaine a montré que les représentations cristallines peuvent étre classées en termes
de p-modules filtrés admissibles. Par conséquent, c’est une question naturelle de demander pour
des représentations cristallines : existe-t-il une relation directe entre le ¢p-module filtré et le (¢, T)-
module étale ? Fontaine a exploré cette question lui-méme, ou il a considéré les représentations de
hauteur finie (définies en termes de (¢, I')-modules) et examiné leur relation avec les représentations
cristallines. Ce point de vue a été exploré plus avant par Wach, Colmez et Berger. En particulier, Wach
a donné une description des représentations cristallines de hauteur finie en termes de (¢, I')-modules.

Dans le cas relatif, la théorie des (¢, I')-modules a été développée par les travaux d’Andreatta,
Brinon et Iovita. De plus, la notion analogue de représentations cristallines a été étudiée par Brinon.

La premiére contribution de notre travail est la notion de modules de Wach relatifs. Motivés par la
théorie de Fontaine, Wach et Berger, nous définissons et étudions quelques propriétés des modules
de Wach relatifs. De plus, nous explorons le lien avec la théorie de Brinon des représentations
cristallines relatives et F-isocristaux associé.

Le deuxiéme résultat concerne le calcul de la cohomologie galoisienne 4 'aide de complexes
syntomiques a coefficients. Cette idée a été utilisée dans un travail récent de Colmez et Niziot, ou ils
effectuent le calcul pour les représentations associées aux puissances du caractére cyclotomique.
Sous certaines hypothéses techniques, nous montrons que pour des représentations cristallines de
hauteur finie, on peut essentiellement généraliser le résultat local de Colmez et Niziot.

Mots-clés : Théorie de Hodge p-adiques, représentations p-adiques, (¢, I')-modules, hauteur finie,
modules de Wach, complexe syntomique.

Institut de mathématiques de Bordeaux
UMR 5251, Université de Bordeaux, 33405 Talence, France.
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Preface

The aim of this thesis is to study finite height crystalline representations in relative p-adic Hodge the-
ory, and apply the results thus obtained towards the computation of continuous Galois cohomology
of these representations via syntomic methods.

Our first main contribution is the notion of relative Wach modules. Motivated by the theory
of Fontaine [Fon90], Wach [Wac96] and Berger [Ber04], we define and study some properties of
relative Wach modules. Further, we explore its relation with relative crystalline representations and
the associated F-isocrystal, in the sense of Brinon [Bri08] (see Theorem 3.24).

The second result is concerned with the computation of Galois cohomology using syntomic
complex with coefficients. This idea was utilized by Colmez and Niziot in [CN17] where they carry
out the computation for cyclotomic twists of the trivial representation using which they were
able to prove the semistable comparison theorem for formal log-schemes. Under certain technical
assumptions, we show that for finite height crystalline representations, one can essentially generalize
the local result of Colmez and Niziot (see Theorem 5.6).

Following is a brief description of different chapters of this thesis:

+ p-adic Hodge theory : In this chapter we provide the setup, recall the basic definitions and
the theory of relative de Rham and crystalline p-adic Galois representations following [Bri08].

+ (¢,T)-modules and crystalline coordinates : The aim of this chapter is two fold. First,
we introduce the theory of (¢, I')-modules following [And06, AB08, AI08], using which we
generalize a result of Berger on regularization by Frobenius (see §2.2.1). Next, we introduce
certain rings of analytic functions, study their properties as well as several operators on them,
and prove a version of Poincaré lemma to be utilised in Chapter 5.

« Finite height crystalline representations : This chapter consists of our first main result.
We begin by introducing classical Wach modules [Wac96] and its refinement worked out
by Berger [Ber04]. Then we introduce the notion of Wach modules in the relative setting
and prove several useful properties. Finally, we provide the necessary constructions to state
and prove the main statement (see Theorem 3.24). In the last section we give an example
illustrating the key ideas behind Theorem 3.24.

« Cohomological complexes : In this chapter we recall the theory of Fontaine-Herr complex
computing continuous Galois cohomology of p-adic representations, in classical p-adic Hodge
theory, as well as its generalization to the relative setting by Andreatta and Iovita [AI08].
Further, we introduce Koszul complexes and relate it to relative Fontaine-Herr complex. Finally,
we study the action of the Lie algebra Lie I'r over certain rings of analytic functions from

xiii
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§2.3 and introduce Koszul complexes computing the Lie algebra cohomology of modules over
these rings.

Syntomic complex and Galois cohomology : This chapter contains our second main result.
We commence the chapter by providing the motivation behind our result which comes from
the main technical part of the work by Colmez and Niziol [CN17]. Then we introduce the
necessary setup to introduce the statement of the main result (see Theorem 5.6). Rest of
the chapter is devoted to proving this result. First part of the proof concerns working and
manipulating syntomic complexes, while the second part is concerned with Koszul complexes.
Both these parts are connected via Poincaré lemma from Chapter 2 which is applicable due to
the comparison result of Theorem 3.24.

Galois cohomology and classical Wach modules : In this appendix chapter, we work
with Wach modules in classical p-adic Hodge theory and Fontaine-Herr complex to study
crystalline extension classes of the trivial representation by a crystalline representation. The
computation done in this chapter served as the original motivation for pursuing Theorem 5.6,
the proof of which persuaded us to investigate Theorem 3.24.



Introduction

Over the course of last century, the modus operandi for mathematicians trying to understand spaces
has been to investigate natural invariants attached to those spaces. This approach has proven to
be a very fruitful one. An example of this comes from topology where one constructs singular
homology groups attached to a topological space X. Concretely, it is a collection of abelian groups
{Hi(X, Z)} ken, where these groups are computed as the homology of the singular complex attached
to X and the k-th homology group describes equivalence classes of k-dimensional holes in X. In
terms of application, vanishing statements about homology establishes claims such as Brouwer’s
fixed point theorem, among others.

Dualizing the construction of singular chain complexes, one can define a contravariant theory,
aptly named, singular cohomology groups { H*(X, Z)} ren attached to X. Further developments in
mathematics have led to the construction (co)homology theories in a myriad of different contexts. For
example, de Rham cohomology for differential forms on manifolds, (continuous) group (co)homology,
Lie algebra cohomology, étale cohomology for algebraic varieties, etc.

Comparison in complex algebraic geometry

In analytic and algebraic geometry, study of cohomology theories compared to homology has turned
out to be a more natural one. Moreover, under amicable circumstances, certain cohomology theories
tend to interact with each other. One of the first observations made in this direction was due to de
Rham [DR31]. In 1931, he showed that for a smooth manifold M, the pairing of differential forms
and singular chains, via integration, gives a homomorphism from de Rham cohomology groups
HE (M) to singular cohomology groups Hsling(M ,R), which is in fact an isomorphism (see [Sam01]
for a historical survey).

In 1966, this result was further extended to the context of complex algebraic geometry by
Grothendieck. More precisely, let X be a smooth complex algebraic variety and let X*" denote
the complex manifold obtained from the complex rational points X(C) of the algebraic variety X. In
[Gro66], Grothendieck defined the algebraic de Rham cohomology groups for X and showed that
these are canonically isomorphic to de Rham cohomology groups of X*". In conclusion, we have

Theorem A (de Rham, Grothendieck). Let X be a smooth complex algebraic variety. For each k € N,
there exists a canonical isomorphism of complex vector spaces

Hk

sing

(X™, Z) ®7 C —> HR(X™/C) — HiR(X/C).

The two sides of this isomorphism contribute complementary information on X; namely, singular

XV



Xvi Introduction

cohomology supplies an integral structure for Hsling(Xan, R) (the lattice of periods) and de Rham
cohomology gives the Hodge filtration: neither of these two structures are reducible to each other.

In complex algberaic geometry, one can do better. Let us assume that X is a smooth and projective
scheme over C and let X*" denote the associated complex manifold. Then X*" is a compact Kéhler
manifold equipped with a Kahler metric. If we let Qé(an denote the sheaf of holomorphic differential
forms on X®", then we have the Hodge decomposition

Hfpo (X, Z)®7 C = A@kHi(Xa“, n)-
i+j=

Further, let Q} ¢ denote the sheaf of Kahler differentials on X and set Qé(/a: = N QY. Then
combining Hodge decomposition with Serre’s GAGA principle, we obtain that

HE((X™, Z) 07 C = .@kH"(Xa“,Q)'(an) = _@kH"(X, )
i+j= i+j=

One of the primary goals of p-adic Hodge theory is to explicate similar phenomenon for p-adic
cohomology theories of algebraic varieties defined over p-adic fields.

p-adic comparison theorems

In this section let p denote a fixed prime, K a mixed characteristic discrete valuation field with ring
of integers Ok and residue field x perfect of characteristic p.

In the context of algebraic geometry the Zariski topology on algebraic varieties is too coarse to
obtain a meaningful notion of singular cohomology. Therefore, in 1963-64 a replacement in the
form of étale cohomology was provided by Grothendieck in [AGV71], where he defined p-adic étale
cohomology groups attached to a scheme defined over any field (in particular, finite extensions
of Q,), whereas the definition of algebraic de Rham cohomology carries over for smooth schemes.
Again, mathematicians observed that in this setting, these two cohomology theories interact with
each other.

The origin of comparing p-adic cohomology theories, collectively termed as p-adic comparison
theorems, can be attributed to the work of Tate on p-divisible groups in [Tat67]. Tate showed that
for an abelian scheme A defined over Ok, the first étale cohomology group of A with coefficients in
7., determines the p-divisible group A,~, i.e. the p-primary torsion subgroup of A, and vice versa.
Further, let K denote a fixed algebraic closure of K with C, as its p-adic completion. Then the
Galois group Gk := Gal(K/K) acts linearly and continuously on the Z,-module Hélt(A?, Zp). As
a consequence of his general study of p-divisible groups, Tate showed that for k < 2 dim A, there
exists a natural Gg-equivariant isomorphism

HE (45.2y) €2, = @ H'(A.9)) ek €yl 0.
i+j=
where for j € Z, we define Cp(j) := Cp®g, Qp(j) and Q,(j) is the j-th tensor power of the one-
dimensional p-adic representation Q,(1) on which Gk acts via the p-adic cyclotomic character. Tate
conjectured that a Gg-equivariant decomposition as above should exist for any smooth projective
variety defined over K.

On the other hand, in [Gro74], Grothendieck showed that the de Rham cohomology groups of
an abelian scheme carry extra information as well. Using his crystalline Dieudonné theory, he
determined that Hj,(A/K) is a K-vector space acquiring a canonical basis over F, where F = Fr W
for W = W(k) the ring of p-typical Witt vectors with coefficients in x. The F-vector-space admits
a Frobenius-semilinear automorphism ¢, and has a Hodge filtration after extending scalars to K.
Further, he showed that A~ is determined, up to isogeny, by Hjp(A/K) together with its Hodge
filtration, basis over F which is equipped with an automorphism ¢.
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Considering both these phenomena, Grothendieck was led to ask the question of describing an
algebraic procedure that would allow one to pass directly from H}, (A/K) to H,(Ag, Q,), without a
detour to the p-divisible group A,~; he also suspected that such a procedure should exist in arbitrary
cohomology degrees (the well known problem of Grothendieck’s mysterious functor).

This question was resolved by Fontaine in degree one and for arbitrary degree he proposed a
precise conjecture in [Fon82, Fon83]. Fontaine’s crystalline conjecture for an Ok-scheme, examines
the relationship between the p-adic étale cohomology of the generic fiber and the crystalline
cohomology of the special fiber. This conjecture has now been fully proven by the works of many
authors. Before stating the crystalline conjecture, let us mention the work of Faltings generalizing
the Hodge-Tate decomposition in (0.1):

Theorem B ([Fal88, Faltings]). Let X be a smooth and proper K -scheme. Then for each k € IN, there
exists a canonical Gg-equivariant isomorphism

H Xk, Zp) @2, Cp = ‘@kHi(X’ ) @k Cp(-)).
i+j=

One of the first comparison theorems to be proven in the p-adic setting, the proof of Theorem B
relies on Faltings’ idea of almost mathematics.

Now we come back to the crystalline conjecture: Let X be a proper and smooth scheme defined
over Ok, let i : Xg »— X denote its generic fiber and j : X, ~— X denote its special fiber. For the
generic fiber, we will consider the usual p-adic étale cohomology groups H, (st Qp), whereas for
schemes in characteristic p, i.e. X,, we will consider a variant of de Rham cohomology provided by
Grothendieck, which is again a p-adic cohomology known as crystalline cohomology HF; (X,./ W(k)).
Then we have,

Theorem C ([FM87, Fontaine-Messing], [Fal89, Faltings], [KM92, Kato-Messing], [Tsu99, Tsuji]).
For each k € N there exists a natural isomorphism

Hékt (XF’ QP) dQ, Beris — Hckris (XK/ W(K)) Aw(x) Beris

compatible with the action of Gk, the Frobenius, filtration (and Poincaré duality, Kiinneth formula,
cycle class and Chern class maps) on each side.

Here Bjs denotes the crystalline period ring constructed by Fontaine (see [Fon94a]), and it is
equipped with a continuous action of G, the Frobenius and a filtration.

In [FM87] Fontaine and Messing initiated a program for proving the crystalline conjecture via
syntomic methods and managed to prove the claim in the case K = F and dim Xx < p. In [KM92]
Kato and Messing proved the conjecture under the assumption dim Xx < (p - 1)/2 but without any
assumption on K. Further, this program was generalized to the semistable case by Fontaine and
Janssen. The semistable conjecture was shown by Fontaine for abelian varieties and then proved
by Kato in [Kat94] in the case dim Xx < (p — 1)/2, generalizing the methods of [KM92]. Finally,
this program was concluded by Tsuji in [Tsu99] completing the proof of crystalline and semistable
conjectures.

Over the course of four decades, many mathematicians have worked on p-adic comparison
theorems. In [Fal89], Faltings proved the crystalline conjecture and also generalized his methods to
non-trivial coefficients. He further showed the semistable comparison theorem using his theory of
almost étale extensions in [Fal02]. In [Niz98] Niziol gave another proof of the crystalline conjecture
using K-theory. Yamashita proved the non-proper case in [Yam11]. Employing completely different
constructions Beilinson proved all incarnations of p-adic comparison theorems in [Beil2, Beil3].
Further, Scholze proved the de Rham comparison theorem for rigid analytic varieties in [Sch13],
where he works completely over the generic fiber and considers non-trivial p-adic local systems on
the étale side. Generalizing Faltings’ ideas, Andreatta and Iovita proved the crystalline comparison
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for smooth formal schemes in [AI13], where their proof works for non-trivial coefficients as well.
Further, Andreatta and Iovita generalized their proof to the semistable case in [AI12].

In [CN17] using syntomic methods and techniques from the theory of (¢, I')-modules, Colmez and
Niziot have proved the semistable comparison for formal log-schemes. The major part of [CN17]
consists of local computations, i.e. over affinoids covering the scheme X. In the case of smooth
proper scheme X, the covering can be given by an étale algebra over a formal torus over Ok. The
motivation for our cohomological results with coefficients in this thesis stems from this article (see
Theorem H). The pursuit of the cohomological statement led to our exploration of finite height
crystalline representations in the relative setting (see Theorem E). We will come back to these
connections later.

An integral version of comparison theorems was obtained by Bhatt, Morrow and Scholze in
[BMS18], where they have defined a new cohomology theory over Fontaine’s infinitesimal ring
Ajnt. The work of [BMS18] was generalized to the semistable case by Cesnavi¢ius and Koshikawa in
[CK19]. Finally, further generalizing their work, Bhatt and Scholze have put forward the theory of
prismatic cohomology in [BS19] which unifies all known p-adic cohomology theories.

p-adic representations and linear algebra

Since the age of Galois, mathematicians have been interested in understanding Galois groups of field
extensions. While some finite and profinite cases are simple and explicit to state, in general these
groups are quite complex to decipher, for example, the absolute Galois group Gx in the previous
section is as far away from being explicit as possible. To understand such groups, a general approach
is to study their representations, i.e. the action of such groups on certain modules. This is another
common theme in p-adic Hodge theory, i.e. studying p-adic representations of Galois groups such
as Gg.

The p-adic étale cohomology groups H/,(Xg, Qp), appearing in Theorem C, are Q,-vector spaces
equipped with a linear and continuous action of the Galois group Gx. In other words, we have ob-
tained p-adic representations of the Galois group Gg. On the other hand, the crystalline cohomology
groups F ®w H'. (X,./ W) are F-vector spaces equipped with a Frobenius-semilinear automorphism
¢ and a filtration after extending scalars to K. Theorem C states that these two objects are related to
each other.

In 1980s-90s Fontaine stated and carried out several programs in order to study p-adic representa-
tions of Gk. In [Fon79, Fon82, Fon94a, Fon94b], Fontaine describes the subcategories of crystalline,
semi-stable and de Rham representations. For example, the étale cohomology groups appearing
in Theorem C are crystalline representations of Gg. Fontaine’s theory is rich and an incredible
journey to take, however we will content ourselves with a description of crystalline representations.
Moreover, for the sake of simplicity, we will work under the assumption that K = F is unramified
over Q,, however some of the results are true in more general settings.

Crystalline representations

In order to classify crystalline representations, Fontaine came up with a general formalism. He
constructs a period ring B.;s which is a p-adically complete F-algebra equipped with a Frobenius
and a filtration (see [Fon94a], we will recall the construction in a more general setting in §1.3). Now
let V be a p-adic representation of Gp, and set

Dcris(V) ‘= (Bcris ®Qp V)GF‘

It is a finite-dimensional F-vector space such that dimr Deyis(V) < dimg, V, and it is equipped with a
Frobenius-semilinear endomorphism ¢, and a filtration coming from the filtration on B,j5. Moreover,
this construction is functorial in V and it takes values in the category filtered ¢-modules over F.
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The representation V is said to be crystalline if and only if it is Bs-admissible, or equivalenty,
dimpg D¢is(V) = dime V. In particular, the p-adic periods of V belong to Bis. The functor Dy is
exact and fully faithful as well as establishes an equivalence between the category of crystalline
representations and its essential image under the functor, compatible with exact sequences, tensor
products and taking duals.

The terminology crystalline accentuates the fact that if the representation “comes from geometry”,
i.e. computed as étale cohomology of generic fiber of a smooth and proper W-scheme, then there
exists a comparison with the crystalline cohomology of the special fiber. For example, if we let
Vi = Hgt(XF, Q,) in Theorem C, then we have D¢;s(V;) = F®w H(fris(XK/ W). Moreover, given
H!(X,/ W) with its complimentary structures, one can recover the Q,-vector space H,(Xg, Q,)
with its Galois action, and vice versa. This is quite a surprising result in contrast with the complex
case (see Theorem A).

(¢,T)-modules and finite height representations

A different perspective on p-adic representations is the theory of (¢, I')-modules. Morally, such a
theory is an attempt to describe p-adic representations of Gr in terms of modules over complicated
base rings, admitting a Frobenius-semilinear endomorphism and simpler action of a piece of the
Galois group.

More precisely, let Foo = Upen F({,») where {» € F denotes a primitive p"-th root of unity, and let
C; denote the tilt of C, (see §1.2 for a precise definition). Let Hr = Gal(F/F.) and I'r = Gal(F./F),
then we have an exact sequence

1— Hfr — G — I — 1.

Using the field-of-norms construction in [FW79b, FW79a, Win83], Fontaine and Wintenberger
defined a non-archimedean complete discrete valuation field Er c C, of characteristic p with residue
class field k, and functorial in F. In [Fon90], Fontaine utilised the theory from fields-of-norms
construction to classify mod-p representations of Gr in terms of étale (¢, I'r)-modules over Er. By
some technical considerations one can lift this to characteristic 0, i.e. classify Z,-representations
of Gr in terms of étale (¢, I'r)-modules over a two dimensional regular local ring Ar c W(f;) In
particular, the p-adic periods of any Z,-representation of Gr belong to the ring A W(C;) Similar
equivalence of categories can be obtained for p-adic representations and étale (¢, I'r)-modules over
Br = Ar [%], i.e. p-adic periods of p-adic representations of Gr belong to B = A[%] cFr W(C;)

The theory of (¢, I')-modules was further refined by Cherbonnier and Colmez in [CC98]. They
showed that all Z,-representations (resp. p-adic representations) are overconvergent, the p-adic
periods belog to a subring AT c A (resp. B ¢ B). Many applications of (¢, I')-modules make use of
the result of Cherbonnier-Colmez (see [CC99], [Ber02, Ber03], etc.).

The field-of-norms functor was further generalized to higher-dimensional local fields by Abrashkin
in [Abr07]. A vast generalization of the theory of Fontaine and Wintenberger, also known as the
tilting correspondence, was done by Scholze in [Sch12].

Finite height crystalline representations

So far we have seen the classification of p-adic crystalline representations of Gr in terms of filtered
@-modules over F, and all p-adic representations of Gg in terms of étale (¢, I')-modules over Br. By
the latter equivalence of categories, it becomes a natural question to ask : Is it possible to describe
crystalline representations intrinsically in the category of étale (¢, I')-modules? To answer this
question, Fontaine initiated a program relating p-adic crystalline representations and finite height
representations.

A p-adic representation V of G is said to be of finite height if the p-adic periods of V belong to
the “integral” subring B* < B (see §3.1). In other words, the associated (¢, ['r)-module over Br admits
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a basis in a lattice, i.e. has a basis over the period ring By ¢ Br. For crystalline representations there
exist lattices over which the action of I'r is simpler. Finite height and crystalline representations of
Gr are related by the following result:

Theorem D ([Wac96, Wach], [Col99, Colmez], [Ber02, Berger]). Let V be a p-adic representation of
Gr. Then V is crystalline if and only if it is of finite height and there exists r € Z and a Bp-submodule
N < D(V) of rank = dimg, V, stable under the action of T'r, such that T'r acts trivially over (N/TN)(-r).

In the situation of Theorem D, the module N is not unique. A functorial construction was given
by Berger in [Ber04] using which he established an equivalence of categories between the crystalline
representations of Gr and Wach modules over B;. Moreover, for a crystalline representation V,
there exists a bijection between Z,-lattices inside V and Wach modules over the integral subring
A} c B, and contained in the rational Wach module N(V). Finally, given N(V) one can canonically
recover the other linear algebraic object attached to V, i.e. D¢is(V) (see [Ber04, Propositions I1.2.1 &
II1.4.4]).

The theory and construction of Wach modules has witnessed many applications, for example,
Iwasawa theory of crystalline representations in [Ben00, BB08], Berger’s proof of p-adic monodromy
conjecture [Ber02], as well as, in the study of p-adic local Langlands program [BB10]. The notion of
Wach modules was generalized as Breuil-Kisin modules for mixed characteristic discretely valued
(possibly ramified) extension K/Q, (see [Bre99, Bre02, Kis06]). The existence of Wach modules
also served as a motivation for Scholze’s idea of g-deformations [Sch17], which paved the way for
Bhatt-Scholze theory of prisms and prismatic cohomology [BS19]. Moreover, similar to Berger’s
classification in the finite unramified case, Bhatt and Scholze have shown that for any mixed
characteristic discretely valued extension K/Q,, the catgeory of prismatic F-crystals on Spf (O) is
equivalent to the category of Z,-lattices inside crystalline representations of Gx (see [3521, Theorem
1.2]).

Relative finite height crystalline representations

As indicated before, we are interested in the local version of relative p-adic Hodge theory. So let
us introduce the setup briefly: Let us now fix p = 3, and let d € N with X = (X, Xz, ..., Xy) some
indeterminates. We set W{X} := { D keNd a XX, where k = (ki,...,kg) € N4 xk = Xlk1 ---Xf", ag €
W, and g — O0ask — oo}, to be a p-adically complete algebra over W. Similarly we define
Ry := W{X*'}. Let K = F({pm), where m € N1, {,m is a primitive p™-th root of unity, let Ox denote
the ring of integers of K and set R := Ox{X*!}.

Note. In the main body of the thesis, we will work in a more general setup, i.e. over the p-adic
completion of an étale algebra over W{X*!'} and corresponding extension of Ry and R above (see
§1.1). However, for the sake of lucidity of the exposition, we introduce the results under simplified
assumptions.

Crystalline representations

Akin to Fontaine’s formalism, in [Bri08] Brinon studied the p-adic representations of Gg, the étale
fundamental group of R [1] . In the relative setting there are two notions of crystalline representations:
horizontal crystalline and (big) crystalline representations. We are interested in the latter category
of representations.

To classify crystalline representations, Brinon constructs a period ring OB.s which is a p-
adically complete R, [%] -algebra equipped with a Frobenius, a filtration and a Bjs-linear connection
satisfying Griffiths transversality (see [Bri08], note that these are relative version of Fontaine’s
construction, we recall the details in §1.3). Now let V be a p-adic representation of Gg,, and let

ODcris(V) ‘= (OBcris ®Qp V)GRO .
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It is a finite projective R, [%] -module of rank < dimg, V, and it is equipped with a Frobenius-
semilinear endomorphism g, a filtration arising from the filtration on OB,;s and a quasi-nilpotent
integrable connection satisfying Griffiths transversality and stemming from the connection on
OB,s (see §1.5 for details). Moreover, this construction is functorial in V and it takes values in the
category of filtered (¢, d)-modules over R, [%] . The representation V is said to be crystalline if and
only if it is OB, js-admissible (see §1.5.2). In particular, the p-adic periods of V belong to OB,,;s. The
functor ODyy;s is exact and fully faithful as well as establishes an equivalence between the category
of (big) crystalline representations and its essential image under the functor, compatible with exact
sequences, tensor products and taking duals.

(¢,T)-modules and finite height representations

Parallel to the arithmetic case, in the relative setting we can again classify all p-adic representations
in terms of (¢,I')-modules. For n € N, let F, = F({,») where {;» is a primitive p"-th root of unity.

Let R, denote the integral closure of Ry ® Of, [Xf_n, Xg_n] inside ﬁ[%], and let R, := U, R,. We
set Gg, := Gal(ﬁ[%]/Ro[%]), Tg, := Gal(Rm[%]/Rg[%]), and Hg, := Ker (Gg, — Tg,). The ring

R [%] is a Galois extension of Ry [%] with Galois group I'g, fitting into an exact sequence
1—Th — Ty —Tr— 1, (0.2)

where, for 1 < i < d we have I = Gal(Roo [%] /FoRy [%]) = ZZ, and I'r = Gal(F/F) = Zj,.

Fontaine’s classification was generalized by Andreatta in [And06] to the relative setting. Andreatta
constructs an analogue of Er in the relative setting, i.e. to Ry, he associates a Noetherian regular
domain E, . Further, he lifts this ring to characteristic 0, i.e. we have Ay equipped with a Frobenius
endomorphism and a continuous action of I'g,. Finally, we have Ag, as the p-adic completion of
AL 2]

Next, an étale (¢,I'g,)-module is a finitely generated Ag,-module equipped with a Forbenius-
semilinear automorphism ¢ and a semilinear and continuous action of I'y,. Andreatta shows that there
is an equivalence of categories between Z,-representations of G, and étale (¢, I',)-modules over
Ag,. In particular, the p-adic periods of any Z,-representation of G, live in the ring A ¢ W(C(R)")
(see §2.1). Similar equivalence of categories can be obtained for p-adic representations and étale
(¢,T'g,)-modules over Bg, := Ag, [%], i.e. the p-adic periods of p-adic representations of Gg, belong

toB = A[%] c W(C(R)") [%] Note that the discussion above is true in a more general setting, in
particular for R (see §2.1 which is an adaptation of [And06]).

In [AB08], Andreatta-Brinon have generalized the result of Cherbonnier-Colmez to the relative
setting, i.e. they have shown that all Z-representations (resp. p-adic representations) of Gg, are
overconvergent (see §2.2 for details), i.e. the p-adic periods belong to a subring AT c A (resp. BT c B).

Wach representations

So far we have discussed crystalline representations and (¢, I')-modules in the relative setting. Parallel
to the arithmetic case, we are now interested in understanding finite height representations and
Wach modules in the relative setting. Further, we expect that there should be a connection between
finite height and crystalline representations.

Let V be a p-adic representation of the Galois group Gg,. It is said to be of finite height if the
p-adic periods of V belong to the subring B" < B (see §3.2). In other words, the B = Ap [%]—
submodule D*(V) c D(V) (defined functorially in V) is a finitely generated (¢, I'g,)-module such that
Br, ®B§0 D*(V) = D(V).

Now we take V to be a p-adic de Rham representation with non-positive Hodge-Tate weights,
T < V afree Zy-lattice of rank = dimg, V, stable under the action of Gg,. We say that V is a
positive Wach representation if it is of finite height and there exists N(T) c D*(T), a finite projective
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(¢,Tr,)-module over Ay satisfying certain technical conditions describing the action of ¢ and I'g,
(see Definition 3.8). We set N(V) := N(T) [%], and the uniqueness of these modules follows from
the definition (see Lemma 3.14). Further, these modules are equipped with a natural filtration.

The aim of Chapter 3 is to show that Wach representations are crystalline. Further, for a positive
Wach representation V the B}O -module N(V') and the Ry [%] -module OD,i5(V) are related in a precise
manner and the latter can be recovered from the former. To relate these objects we construct a fat
relative period ring (’)AIP;D c OAis(Ro) equipped with compatible Frobenius, filtration, connection
and the action of T'g, (see §3.2).

Theorem E (see Theorem 3.24). Let V be a positive Wach representation of Gg,, then V is a positive
crystalline representation. Further, letM[%] 1= (OA%D ®a;, N(V))FRO, then we have an isomorphism
of Ry [%] -modules M[’%] = OD¢is(V) compatible with Frobenius, filtration, and connection on each

side. Moreover, after extending scalars to OAEP, we obtain natural isomorphisms

OAR® @, ODeris(V) «— OAR® @, M[1] —> OAR @4y N(V),

compatible with Frobenius, filtration, connection and the action of I'r, on each side.

The proof of the theorem proceeds in three steps: First, we explicitly state the structure of Wach
module attached to a one-dimensional Wach representation, we also show that all one-dimensional
crystalline representations are Wach representations and one can recover ODyis(V) starting with
the Wach module N(V). Next, in higher dimensions and under the conditions of the statement above,
we will describe a process (successive approximation) by which we can recover a submodule of
ODyis(V) starting from the Wach module, here we establish a comparison by passing to the one-
dimensinal case. Finally, the claims made in the theorem are shown by exploiting some properties of
Wach modules and the comparison obtained in the second step. In the second step, approximating
for the action of geometric part of I'g, turns out to be non-trivial and most of our work goes into
showing this part; the arithmetic part of I'g, follows from the work of Wach [Wac96].

Syntomic complex and Galois cohomology

Having introduced an interesting class of representations, we come back to our discussion of
crystalline conjecture in Theorem C. Let K = F({,») for m = 1, let X be a smooth proper scheme
over O, such thatj : Xk := X ®0, K = X denotes the inclusion of its generic fiber and i : X, :=
X ®o, k — X denotes the inclusion of its special fiber. To attack the crystalline conjecture, Fontaine
and Messing initiated a program for proving it via syntomic methods (see [FM87]). For r = 0, let
Su(r)x denote the syntomic sheaf modulo p" on X «. It can be thought of as a derived Frobenius
and filtration eigenspace of crystalline cohomology. Then, Fontaine and Messing constructed a
period morphism
af};f : Su(r)x — IRLZ/p" (N,

from syntomic cohomology to p-adic nearby cycles, where Z,(r)" : = pal(,) Z,(r), for r = (p - 1)a(r) +
b(rywith0 < b(r) = p- 1.

In [CN17], Colmez and Niziol have shown that the Fontaine-Messing period map aﬁ M after a
suitable truncation, is essentially a quasi-isomorphism. More precisely,

Theorem F ([CN17, Theorem 1.1]). For0 < k < r, the map
oy HYSulr)x) — IRNLZ/P" (.

is a pN -isomorphism, i.e. there exists N = N(e, p, r) € N depending on r and the absolute ramification
index e of K but not on X or n, such that the kernel and cokernel of the map is killed by pN.
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In fact, for k < r < p - 1, the map a} was shown to be an isomorphism by Kato [Kat89, Kat94],
Kurihara [Kur87], and Tsuji [Tsu99]. In [Tsu96], Tsuji generalized this result to some suitable étale
local systems.

Theorem F also holds for base change of smooth and proper schemes. In particular, after passing
to the limit and inverting p above, for each 0 < k < r we obtain an isomorphism

k = k
an : Hsyn (XOI?’ F)Q — Hg (Xfa Qp(r)) (0.3)
The isomorphism displayed above is the most important step in proving the crystalline conjecture
via syntomic methods. These ideas have been used in [FM87], [KM92], [Kat87], [Kat94], and [Tsu99].
However, all these proofs have been worked out directly over K, but with no restrictions on r.

The proof of Colmez and Niziot is different from earlier approaches. They prove Theorem F first,
and deduce the comparison in (0.3) via base change. To prove their claim, they construct another local
period map aX%%, employing techniques from the theory of (¢, T)-modules and a version of integral
Lazard isomorphism between Lie algebra cohomology and continuous group cohomology. Then
they proceed to show that this map is a quasi-isomorphism and coincides with Fontaine-Messing
period map up to some constants. Moreover, all of their results have been worked out in the general

setting of log-schemes.

Local computation of Colmez and Niziol

As specified earlier, the major part of [CN17] consists of local computations, i.e. over affinoids
covering a formal scheme. In the case of a smooth proper formal scheme, the covering can be given
by an étale algebra over R = Ox{X*!}, where X = (X, ..., X;) are some indeterminates (see §1.1 for
notations). To state the local result, we will restrict ourselves to the familiar setting of R, however
the results also hold for an étale algebra over R (Colmez and Niziot work with log structures as well).

Let R} denote the (p, Xp)-adic completion of W([Xy, X*'], and let S = RgD denote the p-adic
completion of the divided power envelope with respect to the kernel of the map R, — R sending Xj
to {»m — 1. Further, let Q§ denote the p-adic completion of the module of differentials of S relative to
Z and ng = N\K Q4 for k € N. The syntomic cohomology of R can be computed by the complex

Syn(R, r) := Cone(F'Qs ——% Q) [-1],

such that we have H. (R, r) = H'(Syn(R, r)). If K contains enough roots of unity, i.e. for m large

syn
enough, Colmez and Niziot have shown that,

Theorem G ([CN17, Theorem 1.6]). The maps

r

a8 1, Syn(R, 1)y —> 7= RTcont(Gr, Z/p"(r)) —> 7=, RT((Sp R[3]) . Z/P" (1),

O(Laz : reryn(R, r) g Tsrchont(GRs Zp(r))’ (0 4)

are pN"-quasi-isomorphisms for a universal constant N.

Finally, using Galois descent one can obtain the result over K (not necessarily having enough roots
of unity, with N depending on K, p and r, see [CN17, Theorem 5.4]). Note that the truncation here
denotes the canonical truncation in literature. The proof of Colmez and Niziot relies of comparing
the syntomic complex with the complex of (¢, I')-modules computing the continuous Gg-cohomology
of Z,(r). This is achieved using a version of Poincaré lemma. Further, note that they work with
log structures, i.e. all defintitions above should be replaced with their log analogues (without log
structures one should truncate in degree < r - 1, see Theorem H below).
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Fontaine-Herr complex

The right side of the map in the p-adic version of the result of Colmez and Niziol, i.e. the first
isomorphism in (0.4), is concerned with the computation of continuous Gg-cohomology of Z,(r).
This computation can be carried out with complexes made up of (¢, I')-modules, the origins of which
lie in the work of Herr (see [Her98]).

Let V be a p-adic representation (resp. Z,-representation) of Gr, and let D(V') denote the associated
étale (¢, T'r)-module over Br (resp. Ar). Let y € I'r denote a topological generator of I'r, then we
have a complex

(1-g,y-1) )
c o D(V) —2 (VY@ D(V) ——2— D(V),
where the second map is (x,y) — (y - 1)x - (1 - ¢)y. The Fontaine-Herr complex C* computes
the continuous Gr-cohomology of V in each cohomological degree, i.e. for k € IN, we have natural
isomorphims H¥(C*) = HX .(Gp, V).

The continuous Gp-cohomology groups are useful invariants attached to V. For example, the first
continuous cohomology group of V, i.e. HL ,(Gr, V) classifies equivalent classes of extensions of
the trivial representation Q, by V in Repr(GF), and which can be represented by a pair x, y € D(V)
satisfying the equation (y — 1)x = (1 - ¢)y. Further, if V is crystalline then any crystalline extension
of Q, by V(r) (cyclotomic twist of V) can be represented by a pair (x, y) with x € N(V)(r) and
y € N(V(r)) such that (y - 1)x = (1 - ¢)y (see Lemma A.2 and Proposition A.4). In fact, this statement
combined with the computation carried out by Colmez and Niziot served as the original motivation
for obtaining Theorem H.

In the relative setting, we have the relative version of Fontaine-Herr complex which computes
the continuous Gg-cohomology of a p-adic representation (see [AI08, Theorem 3.3], we recall the
description in §4.1). Explicit complexes computing the continuous Gg-cohomology of T can also be
obtained, which we collectively refer to as Koszul complexes (see §4.2). Further, Koszul complexes
play a central role in the proof of Theorem H.

Syntomic complex with coefficients

In Theorem G, we are interested in the p-adic result, i.e. the first isomorphism in (0.4). Our objective
is to replace the representation Z,(r) there by a more general representation T(r), and adapt the
method of Colmez and Niziot to obtain a relation between syntomic complex with coefficients and
continuous Gg-cohomology of T(r). The interesting class of representations for us are the crystalline
Wach representations of Gg,. In the notation of Theorem E, for the coefficient of syntomic complex,
we will choose a lattice inside the filtered (¢, 9)-module OD,;5(V), whereas to compute the Galois
cohomology we will exploit the properties of the associated Wach module N(V). The two sides
will then be compared using a version of Poincaré lemma, where a crucial input is the comparison
obtained in Theorem E.

More precisely, let V be a p-adic Wach representation of Gg, with non-positive Hodge-Tate weights
and let s € IN denote the maximum among the absolute value of Hodge-Tate weights of V. Let
T < V be a free Z-lattice of rank = dimg, V, stable under the action of Gg,. Assume that N(T) is a
free A -module of rank = dimg, V, and there exists a free Ry-submodule ODvis(T) € ODgi5(V) of
rank = dimg, V, such that ODyis(T) [%] = OD¢;s(V) and the induced connection over ODy,s(T) is
quasi-nilpotent, integrable and satisfies Griffiths transversality with respect to the induced filtration.
Let r € N and we set V(r) := V&g, Qp(r) and T(r) := T ®z, Z(r).

Note. The choice of OD,;5(T) is not canonical and we discuss some ways to obtain such a module

in Proposition 3.31, Remark 3.42 and Remark 5.4. However, we fix such a choice for the rest of the
discussion.

Define
D := RPP @p OD¢ys(T).
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There is a Frobenius-semilinear endomorphism on DFP given by the diagonal action of the Frobenius
on each component of the tensor product, a filtration coming from the product of filtration on
each component of the tensor product and a connection induced from the connection on ODs(T)
and the differential operator on REP. Further, this connection is integrable and satisfies Griffiths
transversality with respect to the filtration (see Chapter 5 for precise definitions). In particular, let
S = RgD and we have a filtered de Rham complex for k € Z,

Fil*D" : = Fil*D™ @3 Q§ — Fil" 'DP @5 Qf —> .

Let Dg := R®g, ODyis(T). Define the syntomic complex Syn(Dg, r) and the syntomic cohomology
of R with coefficients in Dy as

Syn(Dg.r) := [FI'D” 227,
H;, (Dgr,r) := H (Syn(Dg, 1)).

syn

D'];

We will relate this complex to Fontaine-Herr complex computing the continuous Gg-cohomology of
T(r). The main result of Chapter 5 is:

Theorem H (see Theorem 5.6). Let V be a positive Wach representation of Gg,, T < V a free Gg, -stable
Zp-lattice, s € N the maximum among the absolute value of the Hodge-Tate weights of V and r € N
such thatr = s + 1. Then there exists a p" -quasi-isomorphism

Tsr—s—lsyn(DR: r) = Tsr—s—ercont(GRa T(r)),

where N = N(T, e, r) € IN depends on the representation T, ramification index e, and r. In particular,
we have p" -isomorphisms

H{n(Dr. r) = H"(Gr. T(r),
for0sk=<sr-s-1.

The proof of Theorem H proceeds in two main steps: First, we modify the syntomic complex with
coefficients in D to relate it to a “differential” Koszul complex with coefficients in N(T). Next, in the
second step we modify the Koszul complex from the first step and use a version of Poincaré lemma
to obtain Koszul complex computing continuous Gg-cohomology of T(r).

As alluded to before, for T = Z,, the result was proven in [CN17]. However, direct generalizations
did not seem to work and the technical issues tend to amplify when dealing with the case of
dimg, V = 1. In order to prove the statement of the theorem we will write down explicit complexes
with suitable modifications at each step. The key to the connection between syntomic complexes
with coefficients and “(¢, I')-module Koszul complexes” is provided by the comparison isomorphism
in Theorem E. In fact, an attempt to relate these two steps led to our search and discovery of the
comparison result in Theorem E in the first place.

What lies ahead?

The world of relative p-adic Hodge theory, though extensively studied in certain directions, remains
much less explored and no less challenging than its arithmetic counterpart. Therefore, several
natural questions have emerged which remain unaswered.

The very first question that could be asked is whether all crystalline representations are of finite
height? This is certainly true for 1-dimensional representations. However, the higher dimensional
case remains quite mysterious. An answer to this question would possibly involve recovering the
module N(V) given ODi5(V).

In his recent work [Tsu20], Tsuji has used Wach’s ideas (see [Wac97]) and Faltings’ generalization
of Fontaine-Laffaille modules (see [Fal89]) to construct generalized representations of Gg. His theory
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has ties to the remarkable work of Bhatt, Morrow and Scholze on Aj,s-cohomology in [BMS18].
Tsuji and Morrow in [MT20], have developed a theory of coefficients in integral p-adic Hodge theory.
Tsuji’s objects are closely related to the definition of Wach modules in the relative case. It would be
interesting to explore these relations and obtain some concrete statements on cohomology. Also, it
would be interesting to understand the relation between relative Wach modules and coefficients
in integral p-adic Hodge theory, as well as, their relation to Bhatt-Scholze theory of prisms and
prismatic cohomology in [BS19].

The globalization of the approach of Colmez and Niziol, helped them in proving the semistable
comparison theorem for formal log-schemes. On the other hand, in [Tsu96] Tsuji considered a system
of coefficients for syntomic cohomology and obtained similar results under certain restrictions. The
result in Theorem H is of similar flavour (at least locally), where we only consider the case of good
reduction. It would be interesting to sheafify the notion of finite height representations or Wach
modules as in the work of Colmez and Niziot and in the spirit of crystalline sheaves of Andreatta
and Iovita (see [AI13]). Carrying out such a program would yield a comparison isomorphism for
proper smooth formal schemes and non-trivial coefficients via syntomic methods.

As mentioned before, for a mixed characteristic discretely valued (possibly ramified) extension of
Q,, Wach modules have been generalized in the form of Breuil-Kisin modules (see [Bre99, Bre02,
Kis06]). In the relative setting, Kim has given a certain generalization of Kisin’s theory (see [Kim15]).
On the other hand, there also exists classification of classical p-adic representations by Caruso in
terms of (¢, 7)-modules (see [Car13]). Then it is natural to ask whether there exists an explicit
complex (akin to Fontaine-Herr complex) of (relative) Breuil-Kisin modules or (relative) (¢, 7)-
modules which computes Galois cohomology of a crystalline representation? Further, in that case
it would also be possible to work with semistable representations and log-syntomic complex with
coeflicients.

A positive answer to the questions above, also opens the door for many applications. One such
application could be into Iwasawa theory. In [Ben00], Benois has used Wach modules to study the
Iwasawa theory of crystalline representations, in the classical case. One could hope to carry out a
similar program in the relative setting.



Présentation en frangais

Au cours du siécle dernier, le modus operandi pour les mathématiciens essayant de comprendre les
espaces a été d’étudier les invariants naturels attachés a ces espaces. Cette approche s’est avérée
trées fructueuse. Un exemple en vient de la topologie ou ’on construit des groupes d’homologie
singuliers attachés a un espace topologique X. Concretement, il s’agit d’une collection de groupes
abéliens {Hi(X, Z)} new calculés comme ’homologie du complexe singulier attaché a X et le k-éme
groupe d’homologie décrit les classes d’équivalence de trous k-dimensionnels dans X. En termes
d’application, les annulations des groupes d’homologie établissent des résultats que le théoréme du
point fixe de Brouwer, entre autres.

En dualisant la construction des complexes de chaines singuliéres, on peut définir une théorie
contravariante, bien nommée, des groupes de cohomologie singuliére { H*(X, Z)} 1y attachés a
X. De nouveaux développements en mathématiques ont conduit a la construction de théories de
(co)homologiques dans une myriade de contextes différents. Par exemple, la cohomologie de de
Rham pour les formes différentielles sur les variétés, la (co)homologie de groupe (continue), la
cohomologie d’algébre de Lie, la cohomologie étale pour les variétés algébriques, etc.

Comparaison en géométrie algébrique complexe

En géométrie analytique et algébrique, I’étude de la cohomologique s’est avérée plus naturelle par
rapport a ’homologie . De plus, dans des circonstances convenables, certaines théories differentes
ont tendance a interagir les unes avec les autres. Une des premiéres observations faites dans ce sens
est due a de Rham [DR31]. En 1931, il montra que pour une variété lisse M, I’accouplement des
formes différentielles et de chaines singuliéres, via I'intégration, donne un homomorphisme des
groupes de cohomologie de de Rham HX, (M, R) aux groupes de cohomologie singuliére Hslgng(M ,R),
qui est en fait un isomorphisme (voir [Sam01] pour une étude historique).

En 1966, ce résultat a été étendu au contexte de la géométrie algébrique complexe par Grothendieck.
Plus précisément, soit X une variété algébrique complexe lisse et soit X*" la variété complexe
obtenue a partir des points rationnels complexes X(C) de la variété algébrique X. Dans [Gro66],
Grothendieck a défini les groupes de cohomologie de de Rham algébrique pour X et a montré que
ceux-ci sont canoniquement isomorphes aux groupes de cohomologie de de Rham analytique de
X En conclusion, nous avons

Théorém A (de Rham, Grothendieck). Soit X une variété algébrique complexe et lisse. Pour chaque
k € N, il existe un isomorphisme canonique d’espaces vectoriels complexes

HE (X*™,Z)®z C — HE(X™/C) — HE(X/C).

sing
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Les deux cotés de cet isomorphisme apportent des informations complémentaires sur X; a savoir,
la cohomologie singuliére fournit une structure intégrale pour Hsling(X M R) (le réseau des périodes)
et la cohomologie de de Rham donne la filtration de Hodge.

En géométrie algébrique complexe, on peut faire mieux. Supposons que X soit un schéma lisse
et projectif sur C et soit X®" la variété complexe associée. Alors X®" est une variété compacte
équipée d’une métrique Kahler. Si nous laissons Q])'(an désigner le faisceau de formes différentielles
holomorphes sur X", alors nous avons la décomposition de Hodge

HE (X Z) @7 C = '@kH"(Xan, Yygen)-
i+j=

De plus, soit Q¢ le faisceau de différentiels de Kahler sur X et défini Qém: = N Q)¢ Puis en
combinant la décomposition de Hodge avec le principe GAGA de Serre, on obtient que
HE(X™,Z)®7 C = .@k HY (X™, Qan) = ‘@kH"(X, Yye)-
i+j= i+j=
L’un des principaux objectifs de la théorie de Hodge p-adique est d’expliquer un phénomeéne
similaire pour les cohomologies p-adiques de variétés algébriques définies sur un corps p-adiques.

Théorémes de comparaison p-adiques

Dans cette section, soit p un nombre premier fixe, K un corps d’évaluation discret caractéristique
mixte avec un anneau d’entiers Ok et un corps résiduel x parfait de caractéristique p.

Dans le contexte de la géométrie algébrique, la topologie de Zariski sur les variétés algébriques
est trop grossiére pour obtenir une notion significative de cohomologie singuliere. Par conséquent,
en 1963-64, Grothendieck dans [AGV71] a défini des groupes de cohomologie étale attachés a un
schéma défini sur n’importe quel corps (en particulier, les extensions finies de Q,), alors que la
définition de la cohomologie algébrique de de Rham s’applique aux schémas lisses. Encore une fois,
les mathématiciens ont observé que dans ce cadre, ces deux théories interagissent 'une avec I'autre.

L’origine de la comparaison des théories de cohomologie p-adiques, appelées théorémes de com-
paraison p-adiques, peut étre attribuée aux travaux de Tate sur les groupes p-divisibles dans [Tat67].
Tate a montré que pour un schéma abélien A défini sur Ok, le premier groupe de cohomologie étale
de A avec des coefficients dans Z,, détermine le groupe p-divisible A, c’est-a-dire le sous-groupe
de torsion p-primaire de A, et vice versa. De plus, soit K une cloture algébrique fixe de K avec
C, comme complétion p-adique. Alors le groupe de Galois Gk := Gal(K/K) agit linéairement et
continiiment sur le Z,-module Hj (Af, Zp). En conséquence de son étude générale des groupes
p-divisibles, Tate a montré que pour k < 2dim A, il existe un isomorphisme Gg-équivariant naturel

HE (A Zp) @2, Cp = @ H'(A,0)) 0 Cyl-)), 05)
i+j=

ou pour j € Z, on définit C,(j) := Cp®q, Qp(j) et Qp(j) est le j-ieme puissance tenseur de la
représentation p-adique unidimensionnelle Q,(1) sur laquelle Gk agit via le caractere cyclotomique
p-adique. Tate a conjecturé qu’une décomposition Gg-équivariante comme ci-dessus devrait exister
pour toute variété projective lisse définie sur K.

D’autre part, dans [Gro74], Grothendieck a montré que les groupes de cohomologie de de Rham
d’un schéma abélien portent également des informations supplémentaires. En utilisant sa théorie
cristalline de Dieudonné, il a déterminé que Hj, (A/K) est un K-espace vectoriel acquérant une base
canonique sur F, ou F = Fr W pour W = W(k) I'anneau de vecteurs de Witt p-typiques avec des
coefficients dans k. L’espace vectoriel sur F admet un automorphisme semi-linéaire de Frobenius ¢,
et posséde une filtration de Hodge aprés extension des scalaires a K. De plus, il a montré que Ay
est déterminé, a isogénie prés, par HJ; (A/K) avec sa filtration de Hodge, la base sur F qui est équipé
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I’'automorphisme ¢.

Considérant ces deux phénomenes, Grothendieck a été amené a se poser la question de décrire une
procédure algébrique qui permettrait de passer directement de Hj(A/K) a H},(Ag, Q,), sans détour
par le groupe p-divisible A~ ; il soupconnait aussi qu'une telle procédure devrait exister dans des
degrés de cohomologie arbitraires (le probléme bien connu du foncteur mystérieux de Grothendieck).

Cette question a été résolue par Fontaine en degré un et pour en degré arbitraire il a proposé une
conjecture précise dans [Fon82, Fon83]. La conjecture cristalline de Fontaine pour un Og-schéma
examine la relation entre la cohomologie p-adique étale de la fibre générique et la cohomologie
cristalline de la fibre spéciale. Cette conjecture est maintenant pleinement prouvée par les travaux
de nombreux auteurs. Avant d’énoncer la conjecture cristalline, mentionnons les travaux de Faltings
généralisant la décomposition de Hodge-Tate dans (0.5):

Théorém B ([Fal88, Faltings]). Soit X un K-schéma lisse et propre. Alors pour chaque k € N, il existe
un isomorphisme canonique Gk -équivariant

Hf (Xx. Z,) 2, Cp = EBkHi(X’ Q) @k Cp(-))-
i+j=

L’un des premiers théorémes de comparaison a étre prouvé dans le cadre p-adique, la preuve du
théoréme B repose sur 'idée de Faltings de presque mathématique.

Revenons maintenant a la conjecture cristalline: Soit X un schéma propre et lisse défini sur Ok,
soit i : Xg »— X sa fibre générique et j : X, »— X désigne sa fibre spéciale. Pour la fibre générique,
nous considérerons les groupes de cohomologie p-adique étale usuels Héit(Xf, Qp), tandis que pour
les schémas en caractéristique p, c’est-a-dire X, nous considérerons une variante de la cohomologie
de de Rham fournie par Grothendieck, qui est encore une cohomologie p-adique connue sous le nom
de cohomologie cristalline HX, (X,,/ W(x)). Ensuite nous avons,

Théorem C ([FM87, Fontaine-Messing], [Fal89, Faltings], [KM92, Kato-Messing], [Tsu99, Tsuji]).
Pour chaque k € IN il existe un isomorphisme naturel

Hékt (Xf’ QP) ®Qp Bcris ; Hckris (XK/ W(K)) ®W(K) Bcris:

compatible avec I'action de Gk, le Frobenius, la filtration (et la dualité de Poincaré, la formule Kiinneth,
les morphismes de classe de cycle et de classe de Chern) de chaque coté.

Ici Byis désigne I'anneau des périodes cristalline construit par Fontaine (voir [Fon94a]), et il est
doté d’une action continue de Gk, du Frobenius et d’une filtration .

Dans [FM87] Fontaine et Messing ont lancé un programme pour prouver la conjecture cristalline
via des méthodes syntomiques et ont réussi a prouver 'affirmation dans le cas K = F et dim Xg < p
. Dans [KM92], Kato et Messing ont prouvé la conjecture sous I’hypothése dim Xx < (p — 1)/2
mais sans aucune hypothese sur K. De plus, ce programme a été généralisé au cas semistable par
Fontaine et Janssen. La conjecture semistable a été montrée par Fontaine pour les variétés abéliennes
puis prouvée par Kato dans [Kat94] dans le cas dim Xgx < (p — 1)/2, en généralisant les méthodes
de [KM92]. Enfin, ce programme a été conclu par Tsuji dans [Tsu99] complétant la preuve des
conjectures cristallines et semistables.

Au cours de quatre décennies, de nombreux mathématiciens ont travaillé sur des théorémes de
comparaison p-adiques. Dans [Fal89], Faltings a prouvé la conjecture cristalline et a également
généralisé ses méthodes aux coefficients non triviaux. Il a en outre montré le théoréme de comparai-
son semistable en utilisant sa théorie des extensions presque étales dans [Fal02]. Dans [Niz98] Niziot
a donné une autre preuve de la conjecture cristalline en utilisant la K-théorie. Yamashita a prouvé le
cas non approprié dans [Yam11]. En utilisant des constructions complétement différentes, Beilinson
a prouvé toutes les incarnations des théorémes de comparaison p-adiques dans [Beil2, Beil3]. De
plus, Scholze a prouvé le théoréme de comparaison de Rham pour les variétés analytiques rigides
dans [Sch13], ou il travaille complétement sur la fibre générique et considére les systémes locaux
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p-adiques non triviaux du c6té étale. En généralisant les idées de Faltings, Andreatta et Iovita
ont prouvé la comparaison cristalline pour les schémas formels lisses dans [AI13], ou leur preuve
fonctionne également pour les coefficients non triviaux. De plus, Andreatta et Iovita ont généralisé
leur preuve au cas semistable dans [AI12].

Dans [CN17] en utilisant des méthodes et techniques syntomiques de la théorie des (¢, I')-modules,
Colmez et Niziol ont prouvé la comparaison semistable pour les schémas logarithmiques formels. La
majeure partie de [CN17] consiste en des calculs locaux, c’est-a-dire sur des affinoides couvrant le
schéma X. Dans le cas du schéma propre et lisse X, le revétement peut étre donné par une algebre
étale sur un tore formel sur Ok. La motivation de nos résultats cohomologiques a coefficients dans
cette thése découle de cet article (voir le théoréeme H). La poursuite de I’énoncé cohomologique a
conduit a notre exploration des représentations cristallines de hauteur finie dans le cadre relatif (voir
le théoréme E). Nous reviendrons plus tard sur ces connexions.

Une version intégrale des théorémes de comparaison a été obtenue par Bhatt, Morrow et Scholze
dans [BMS18], ou ils ont défini une nouvelle théorie de cohomologie sur ’anneau infinitésimal de
Fontaine Ajy. Le travail de [BMS18] a été généralisé au cas semistable par Cesnavic¢ius et Koshikawa
dans [CK19]. Enfin, généralisant davantage leurs travaux, Bhatt et Scholze ont avancé la théorie de
la cohomologie prismatique dans [BS19] qui unifie toutes les théories de cohomologie p-adiques
connues.

Représentations p-adiques et algebre linéaire

Depuis I'époque galoisienne, les mathématiciens se sont intéressés a la compréhension des groupes
galoisiens d’extensions de corp. Alors que certains cas finis et profinis sont simples et explicites a
énoncer, en général ces groupes sont assez complexes a déchiffrer, par exemple, le groupe de Galois
absolu Gk dans la section précédente est aussi loin d’étre explicite que possible. Pour comprendre de
tels groupes, une approche générale consiste a étudier leurs représentations, c’est-a-dire ’action de
tels groupes sur certains modules. C’est un autre théme commun dans la théorie de Hodge p-adique,
c’est-a-dire I’étude des représentations p-adiques des groupes de Galois tels que Gg.

Les groupes de cohomologie étale p-adique H},(Xg, Q,), apparaissant dans le théoréme C, sont
Q,-espaces vectoriels dotés d'une action linéaire et continue du groupe de Galois Gx. En d’autres
termes, nous avons obtenu des représentations p-adiques du groupe de Galois Gg. D’autre part, les
groupes de cohomologie cristalline F @y H'; (Xi/ W) sont des F-espaces vectoriels équipés d’un
automorphisme de Frobenius-semilinéaire ¢ et une filtration aprés extension des scalaires a K. Le
théoréme C indique que ces deux objets sont liés I'un a l’autre.

Dans les années 1980-90, Fontaine a énoncé et réalisé plusieurs programmes afin d’étudier les
représentations p-adiques de Gk. Dans [Fon79, Fon82, Fon94a, Fon94b], Fontaine décrit les sous-
catégories de représentations cristallines, semi-stables et de Rham. Par exemple, les groupes de
cohomologie étale apparaissant dans le théoréeme C sont des représentations cristallines de Gg. La
théorie de Fontaine est riche et un voyage incroyable a parcourir, cependant nous nous contenterons
d’une description des représentations cristallines. De plus, par souci de simplicité, nous travaillerons
en supposant que K = F n’est pas ramifié sur Q,, cependant certains des résultats sont vrais dans
des contextes plus généraux.

Représentations cristallines

Pour classer les représentations cristallines, Fontaine propose un formalisme général. Il construit un
anneau de périodes Bs qui est le completé p-adique d’une F-algébre équipée d’un Frobenius et
d’une filtration (voir [Fon94a], nous rappelons la construction dans un cadre plus général dans §1.3).
Soit maintenant V une représentation p-adique de Gy, et définissons

Dcris(V) ‘= (Bcris ®QP V)GF‘
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C’est un espace vectoriel F de dimension finie tel que dimp Deis(V) < dimg, V, et il est muni d'un
endomorphisme semi-linéaire de Frobenius ¢, et une filtration venant de la filtration sur Bs. De
plus, cette construction est fonctorial en V et elle prend des valeurs dans la catégorie de ¢-modules
filtrée sur F. La représentation V est dite cristalline si et seulement si elle est Bs-admissible, ou
équivalent, dimp Deyis(V) = dimg, V. En particulier, les périodes p-adiques de V appartiennent a
B.iis- Le foncteur D5 est exact et pleinment fidéle et établit une équivalence entre la catégorie
des représentations cristallines et son image essentielle sous le foncteur, compatible avec les suites
exactes, les produits tensoriels et la prise de duals.

La terminologie cristalline accentue le fait que si la représentation “vient de la géométrie”, c’est-a-
dire calculée comme étale cohomologie de fibre générique d’'un W-schéma lisse et propre, alors il
existe une comparaison avec le cohomologie cristalline de la fibre spéciale. Par exemple, si nous
laissons V; := Héit(Xf’ Q,) dans le théoréme C, alors nous avons Deis(V;) = F ®w HciriS(XK_/ W). De
plus, étant donné H_; (X,/ W) avec ses structures complémentaires, on peut récupérer H; (X7, Q,)
I'espace vectoriel Q, avec son action galoisienne, et vice versa. C’est un résultat assez surprenant en
contraste avec le cas complexe (voir le théoréme A).

(¢,T)-modules et représentations de hauteur finie

Une perspective différente sur les représentations p-adiques est la théorie des (¢, I')-modules. Morale-
ment, une telle théorie est une tentative de décrire des représentations p-adiques de Gr en termes
de modules sur des anneaux de base compliqués, admettant un endomorphisme semi-linéaire de
Frobenius et une action plus simple d’'un morceau du groupe de Galois.

Plus précisément, soit Foo = Upen F({pr) o0t {,» € F désigne une racine primitive p"-iéme de
I'unité, et soit C;, Iinclinaison de C, (voir §1.2 pour une définition précise). Soit Hr = Gal(F/F) et
I'r = Gal(F»/F), alors on a une suite exacte

1— Hp — Gg— I —1.

En utilisant la construction corps-des-normes dans [FW79b, FW79a, Win83], Fontaine et Winten-
berger ont défini un corps d’évaluation discret complet non archimédien Er c C, de caractéristique
p avec corp de classe de résidus «, et fonctorial en F. Dans [Fon90], Fontaine a utilisé la théorie
de la construction des corps des normes pour classer les représentations mod-p de Gr en termes
des (¢,T'r)-modules étale sur Ep. Par quelques considérations techniques, on peut élever cela a la
caractéristique 0, c’est-a-dire classer les Z,-représentations de Gr en termes des (¢, I'r)-modules
étale sur un anneau régulier local de dimension deux A c W(f;) En particulier, les périodes
p-adiques de toute Z,-représentation de Gr appartiennent a I'anneau A c W(C;J). Une équivalence
similaire des catégories peut étre obtenue pour les représentations p-adiques et les (¢, I'r)-modules
étale sur Br = Ar [%] i.e. les périodes p-adiques des représentations p-adiques de Gr appartiennent
aB = A[;] < Fr W(C}).

La théorie des (¢,I)-modules a été affinée par Cherbonnier et Colmez dans [CC98]. Ils ont
montré que toutes les Z,-représentations (resp. représentations p-adiques) sont surconvergentes,
i.e. les périodes p-adiques appartiennent a un sous-anneau AT c A (resp. B" ¢ B). De nombreuses
applications de (¢, T')-modules utilisent le résultat de Cherbonnier-Colmez (voir [CC99], [Ber02,
Ber03], etc.).

Le foncteur de corps-des-normes a été ensuite généralisé aux corps locaux de dimension supérieure
par Abrashkin dans [Abr07]. Une vaste généralisation de la théorie de Fontaine et Wintenberger,
également connue sous le nom de tilting correspondence, a été faite par Scholze dans [Sch12].

Représentations cristallines de hauteur finie

Jusqu’ici nous avons vu la classification des représentations p-adiques cristallines de Gr en termes
de p-modules filtrés sur F, et toutes les représentations p-adiques de Gk en termes de (¢, T')-modules



xxxil Présentation en francais

étale sur Br. Par cette derniere équivalence de catégories, il devient naturel de se poser la question
: est-il possible de décrire des représentations cristallines intrinséquement dans la catégorie des
(¢,T)-modules étale? Pour répondre a cette question, Fontaine a lancé un programme reliant les
représentations cristallines p-adiques et les représentations de hauteur finie.

Une représentation p-adique V de Gr est dite de hauteur finie si les périodes p-adiques de V
appartiennent au sous-anneau “intégral” B* < B (voir §3.1). En d’autres termes, le (¢, ['r)-module
sur Br admet une base dans un réseau, c’est-a-dire a une base sur 'anneau de période B, c Br. Pour
les représentations cristallines il existe des réseaux sur lesquels 'action de I'r est plus simple. La
hauteur finie et les représentations cristallines de Gr sont liées par le résultat suivant :

Théoréem D ([Wac96, Wach], [Col99, Colmez], [Ber02, Berger]). Soit V une représentation p-adique
de Gr. Alors V est cristalline si et seulement s’il est de hauteur finie et il existe r € Z et un B-submodule
N < D(V) de rang = dimg, V, stable sous I’action deTr, tel que I'r agit trivialement sur (N/xN)(-r).

Dans la situation du théoréme D, le module N n’est pas unique. Une construction fonctorial a été
donnée par Berger dans [Ber04] a I’aide de laquelle il a établi une équivalence de catégories entre les
représentations cristallines de Gr et des modules de Wach sur By. De plus, pour une représentation
cristalline V, il existe une bijection entre Z,-réasaux a l'intrieur des modules V et modules de Wach
sur le sous-anneau intégral A; c By, et contenue dans le module de Wach rationnel N(V). Enfin,
étant donné N(V) on peut récupérer canoniquement l’autre objet algébrique linéaire attaché a V,
s0it D¢yis(V) (voir [Ber04, Propositions I1.2.1 & IIL. 4.4]).

La théorie et la construction des modules de Wach ont connu de nombreuses applications, par
exemple, la théorie d’Iwasawa des représentations cristallines dans [Ben00, BB08], la preuve de
Berger de la conjecture de monodromie p-adique [Ber02], ainsi que, dans I’étude du programme de
Langlands p-adique local [BB10]. La notion de modules de Wach a été généralisée au cas des modules
de Breuil-Kisin sur K corps p-adqique (voir [Bre99, Bre02, Kis06]). L’existence de modules Wach a
également servi de motivation pour I'idée de Scholze de g-déformations [Sch17], qui a ouvert la voie
a la théorie de Bhatt-Scholze des prismes et a la cohomologie prismatique [BS19]. De plus, similaire
a la classification de Berger dans le cas fini non ramifié, Bhatt et Scholze ont montré que pour
toute extension finie K/Q,, la catégorie des F-cristaux prismatiques sur Spf (Ox) est équivalent a la
catégorie des Z,-réseaux a I'intérieur des représentations cristallines de Gk (voir [BS21, Theorem
1.2]).

Représentations cristallines de hauteurs finies relatives

Comme indiqué précédemment, nous nous intéressons a la version locale de la théorie de Hodge
p-adique relative. Alors, présentons briévement la configuration: Fixons maintenant p > 3, et soit
d € N avec X = (X1, Xy, ..., Xz) quelques indéterminés. On définit W{X} := { Y keNd acX¥, ouk =
(ki,....kg) € N4, xk = Xlk1 -'-de,ak € W, etaqu — 0commek — oo}, pour étre une algébre
p-adiquement compléte sur W. De méme, nous définissons Ry := W{X*!}. Soit K = F({pn), ol
m € N1, {m est une racine primitive p™-iéme de I'unité, soit Ox I'anneau des entiers de K et soit
R := OK{Xil }

Note. Dans le corps principal de la these, nous travaillerons dans une configuration plus générale,
c’est-a-dire sur la complétion p-adique d’une algébre étale sur W{X*!} et 'extension correspondante
de Ry et R ci-dessus (voir §1.1). Cependant, par souci de lucidité de I’exposé, nous introduisons les
résultats sous des hypothéses simplifiées.

Répresentations cristallines

Inspiré par le formalisme de Fontaine, dans [Bri08] Brinon a étudié les représentations p-adiques de
Gg, le groupe fondamental étale de R [1%] . Dans le cadre relatif, il y a deux notions de représentations
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cristallines: les représentations cristallines horizontales et les (grandes) représentations cristallines.
Nous nous intéressons a cette derniére catégorie de représentations.

Pour classer les représentations cristallines, Brinon construit un anneau de périodes OB,is qui est
une R, [11)] -algébre p-adicalement compléte équipée de un Frobenius, une filtration et une connexion
B.is-linéaire satisfaisant la transversalité de Griffiths (voir [Bri08], notez que ce sont des versions
relatives de la construction de Fontaine, nous rappelons les détails dans §1.3). Soit maintenant V'
une représentation p-adique de Gg,, et soit

ODCriS(V) = (OBcris ®Qp V)GRO .

C’est un R [%] -module projectif fini de rang < dimg, V, et il est muni d'un endomorphisme de
Frobenius-semi-linéaire ¢, une filtration issue de la filtration sur OB, et une connexion intégrable
quasi-nilpotente satisfaisant la transversalité de Griffiths et issue de la connexion sur OB;s (voir
§1.5 pour plus de détails). De plus, cette construction est fonctorial dans V et elle prend des valeurs
dans la catégorie des (¢, 9)-modules filtrés sur R, [l] La représentation V est dite cristalline si et
seulement si elle est OBis-admissible (voir §1.5.2). En particulier, les périodes p-adiques de V
appartiennent & OBy Le foncteur ODg;s est exact et pleinement fidéle et établit une équivalence
entre la catégorie des (grandes) représentations cristallines et son image essentielle sous le foncteur,
compatible avec les suites exactes, les produits tensoriels et la prise de duals .

(¢,T)-modules et représentations de hauteur finie

Parallélement au cas arithmétique, dans le cadre relatif, nous pouvons a nouveau classer toutes les
représentations p-adiques en termes de (¢, I')-modules. Pour n € IN, soit F, = F({,») ot {» est une p"-
ieme racine primitive de I'unité. Soit R, la fermeture intégrale de Ry ® Of, [Xf _n, X5 _n] alintérieur
de E[%], et soit Ry := Up R,. On définit Gg, := Gal(ﬁ[%]/Ro [%]) Tg, := Gal(R‘X,[%]/RO[%]), et
Hp, := Ker (Gg, — TI'g)). L’anneau R [%] est une extension galoisienne de R, [%] avec groupe de
Galois I'g, s’insérant dans une séquence exacte

1—Th — Ty —Tr— 1, (0.6)

ou,pour 1< i<donal} = Gal(Roo[%]/FooRo [%]) = Zg, et Tr = Gal(F/F) = Zj,.

La classification de Fontaine a été généralisée par Andreatta dans [And06] au cas relatif. Andreatta
construit un analogue de Er, c’est-a-dire a Ry il associe un domaine régulier noetherien E . De plus,
il éleve cet anneau a la caractéristique 0, c’est-a-dire que nous avons Ay €équipé d’'un endomorphisme
de Frobenius et d'une action continue de I'g,. Enfin, nous avons Ag, comme complétion p-adique de
AL 2]

Ensuite, un (¢, I'g,)-module étale est un A -module de génération finie équipé d’un automorphisme
Forbenius-semi-linéaire ¢ et d'un action semi-linéaire et continue de I'y,. Andreatta montre qu’il
existe une équivalence de catégories entre les Z,-représentations de Gg, et étale (¢, I'g,)-modules sur
Ag,. En particulier, les périodes p-adiques de toute Z,-représentation de Gg, vivent dans I’anneau
A c W(C(R)") (voir §2.1). Une équivalence similaire des catégories peut étre obtenue pour les
représentations p-adiques et les (¢,I'g)-modules étale sur Br, := Ag, [%], c’est-a-dire que les
périodes p-adiques des représentations p-adiques de Gg, appartiennent a B = A[%] c W(C(R)") [%]
Notez que la discussion ci-dessus est vraie dans un cadre plus général, en particulier pour R (voir
§2.1 qui est une adaptation de [And06]).

Dans [AB08], Andreatta et Brinon a généralisé le résultat de Cherbonnier et Colmez au cadre
relatif, c’est-a-dire qu’ils ont montré que toutes les Z,-représentations (resp. p-adiques) de Gg, sont
surconvergents (voir §2.2 pour plus de détails), c’est-a-dire que les périodes p-adiques appartiennent
a un sous-anneau AT c A (resp . BT c B).
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Représentations de Wach

Jusqu’ici nous avons discuté des représentations cristallines et des (¢, ')-modules dans le cadre
relatif. Parallélement au cas arithmétique, nous nous intéressons maintenant a la compréhension
des représentations a hauteur finie et des modules de Wach dans le cas relatif. De plus, nous nous
attendons a ce qu’il y ait un lien entre la hauteur finie et les représentations cristallines.

Soit V une représentation p-adique du groupe de Galois Gg,. On dit qu’elle est de hauteur finie si
les périodes p-adiques de V appartiennent au sous-anneau B* ¢ B (voir §3.2) . En d’autres termes, le
B, = AR, [%] -sous-module D*(V) ¢ D(V) (fonctoriel en V) est un (¢, I'g,)-module de type fini tel
que Bp, ®B§0 D*(V) = D(V).

Maintenant, nous prenons V une représentation de Rham p-adique avec des poids de Hodge-Tate
non positifs, T < V un Z,-réseau libre de rang = dimg, V, stable sous 'action de Gg,. On dit que
V est une représentation de Wach positive s’il est de hauteur finie et il existe N(T) ¢ D*(T), un
(¢,T'r,)-module projectif fini sur Ay satisfaisant certaines conditions techniques décrivant I'action
de ¢ et I'g, (voir Définition 3.8) . On pose N(V) := N(T) [%], et 'unicité de ces modules découle de
la définition (voir le lemme 3.14). De plus, ces modules sont équipés d’une filtration naturelle.

Le but du chapitre 3 est de montrer que les représentations de Wach sont cristallines. De plus,
pour une représentation de Wach positive V le Bﬁo -module N(V) et le Ry [%] -module OD¢;(V)
sont liés de maniére précise et ce dernier peut étre récupéré du premier. Pour relier ces objets nous
construisons un gros anneau de période relative OA%D c OAdis(Ro) équipé de Frobenius, filtration,
connexion et action de I'g, (voir §3.2).

Théorém E (voir Theorem 3.24). Soit V une représentation de Wach positive de Gg,, alors V est
une représentation cristalline positive. De plus, soit M[%] = (OA%D ®a;, N(V))FRO. Alors on a un
isomorphisme de Ry [%] -modules M [%] = ODyis(V) compatible avec Frobenius, filtration et connexion

de chaque coté. De plus, aprés avoir étendu les scalaires @ OALP, on obtient des isomorphismes naturels
PD = PD = PD
OAR° ®r, ODyis(V) «— OAR° @, M[Il]] — OAR’ ®a; N(V),
compatible avec Frobenius, filtration, connexion et I’action deI'g, de chaque coté.

La preuve du théoreme se déroule en trois étapes : Premiérement, nous énoncons explicitement la
structure du module de Wach attaché & une représentation de Wach de dimension un, nous montrons
également que toutes les représentations cristallines unidimensionnelles sont des représentations
de Wach et on peut récupérer ODi5(V) en commencant avec le module de Wach N(V). Ensuite,
dans des dimensions supérieures et dans les conditions du théoréme E, nous décrirons un processus
par lequel nous pouvons récupérer un sous-module de OD,i5(V) a partir du module de Wach, on
établit ici une comparaison en passant au cas unidimensionnel. Enfin, les affirmations faites dans le
théoréme sont montrées en exploitant certaines propriétés des modules de Wach et la comparaison
obtenue dans la deuxiéme étape. Dans la deuxiéme étape, ’approximation pour 'action de la partie
géométrique de I'g, s’avére non triviale et la plupart de notre travail consiste a montrer cette partie ;
la partie arithmétique de I'r, découle des travaux de Wach [Wac96].

Complexe syntomique et cohomologie galoisienne

Apreés avoir introduit une classe intéressante de représentations, nous revenons a notre discussion
de la conjecture cristalline dans le théoréme C. Soit K = F({,») pour m = 1, soit X un schéma
formel propre et lisse sur Ok, tel que j : Xx := X®p, K — X désigne l'inclusion de sa fibre
générique et i : X, 1= X®p, k — X désigne I'inclusion de sa fibre spéciale. Pour attaquer la
conjecture cristalline, Fontaine et Messing ont lancé un programme pour la prouver via des méthodes
syntomiques (voir [FM87]). Pour r = 0, soit S,(r)x le faisceau syntomique modulo p" sur X; ¢. Il
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peut étre considéré comme un espace propre dérivé Frobenius sur un morceau de la cohomologie
cristalline. Ensuite, Fontaine et Messing ont construit des morphismes de periodes

oM - Su(r)x — IRLZ/p"(r)y,

%Zp(r), pour r =

de la cohomologie syntomique aux cycles proches p-adiques, ot Z,(r)" := o

(p-Da(r) + b(r)avec 0 = b(r) = p- 1.
Dans [CN17], Colmez et Niziot ont montré que ’application des périodes Fontaine-Messing a,F’I\,f,
aprés une troncature appropriée, est essentiellement un quasi-isomorphisme. Plus précisément,

Théorém F ([CN17, Theorem 1.1]). Pour 0 < k < r, lapplication
oy HYSu(r)x) — IRNL.Z/P" (.

est un pN-isomorphisme, c’est-a-dire qu’il existe N = N(e, p,r) € N dépendant de r et de indice de
ramification absolu e de K mais pas de X ou n, de sorte que le noyau et le conoyau du morphisme sont
tués par pN.

En fait, pour k < r < p - 1, 'application a'M

n @ été montrée étre un isomorphisme par Kato
[Kat89, Kat94], Kurihara [Kur87] et Tsuji [Tsu99]. Dans [Tsu96], Tsuji a généralisé ce résultat a
certains systémes locaux.

Le théoréme F est également valable pour le changement de base des schémas lisses et propres.
En particulier, aprés passage a la limite et inversion de p ci-dessus, pour chaque 0 < k < r on obtient
un isomorphisme

syn

o™+ HE (Xo, ) 0 — HE(Xg, Qu(r)). (0.7)

L’isomorphisme affiché ci-dessus est I’étape la plus importante pour prouver la conjecture cristalline
via des méthodes syntomiques. Ces idées ont été utilisées dans [FM87], [KM92], [Kat87], [Kat94]
et [Tsu99]. Cependant, toutes ces preuves ont été élaborées directement sur K, mais sans aucune
restriction sur r.

La preuve de Colmez et Niziot est différente des approches précédentes. Ils prouvent d’abord
le théoréme F, et en déduisent la comparaison dans (0.7) via changement de base. Pour prouver
leur affirmation, ils construisent une autre morphisme de période locale a“%*, en utilisant des
techniques de la théorie des (¢, I)-modules et une version de I'isomorphisme intégral de Lazard
entre la cohomologie de 'algebre de Lie et la cohomologie de groupe continue. Ensuite, ils montrent
que morphisme est un quasi-isomorphisme et coincide avec le morphisme de Fontaine-Messing
a quelques constantes prés. De plus, tous leurs résultats ont été élaborés dans le cas général de

schémas logarithmiques.

Calcul local de Colmez et Niziol

Comme précisé précédemment, la majeure partie de [CN17] consiste en des calculs locaux, c’est-
a-dire sur des affinoides couvrant un schéma formel. Dans le cas d’'un schéma formel propre et
lisse, le revétement peut étre donné par une algébre étale sur R = Ox{X*'} ou X = (X1, ..., Xy)
sont des indéterminés. Pour énoncer le résultat local, nous nous limiterons au cadre familier de R,
mais les résultats sont également valables pour une algébre étale sur R (Colmez et Niziot travaillent
également avec des structures log).

Soit R} la complétion (p, Xo)-adique de W[Xp, X*'], et soit S = REP désigne la complétion p-adique
de 'enveloppe de puissance divisée par rapport au noyau de la morphisme R; — R envoyant X a
{ym — 1. De plus, soit Qf la complétion p-adique du module de différentiels de S par rapport a Z et
Q’Sc = N\F Q¢ pour k € IN. La cohomologie syntomique de R peut étre calculée par le complexe

“pe

Syn(R, r) := Cone(F'Qs ——% Q) [-1],
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tel que nous avons Hsiyn(R, r) = H(Syn(R, r)). Si K contient suffisamment de racines d’unité, c’est-a-
dire pour m assez grand, Colmez et Niziot a montré que,

Théorém G ([CN17, Theorem 1.6]). Les morphismes

ake 7o Syn(R, r) — < RTcont(Gr, Z(r)),

r

- 72 Syn(R, 1)y — 7= RTcont(Gr, Z/p"(r)) — 7= RT((Sp R[] ) Z/p"(r)),

r.n

(0.8)

sont des pN"-quasi-isomorphismes pour une constante universelle N.

Enfin, en utilisant la descente galoisienne on peut obtenir le résultat sur K (pas forcément ayant
assez de racines d’unité, avec N dépendant de K, p et r, voir [CN17, Théoréme 5.4]). Notez que la
truncation désigne ici la truncation canonique dans la littérature. La preuve de Colmez et Niziot
consiste a comparer le complexe syntomique avec le complexe de (¢, I')-modules calculant la Gg-
cohomologie continue de Z,(r). Ceci est réalisé en utilisant une version du lemme de Poincaré.
De plus, notez qu’ils fonctionnent avec des structures log, c’est-a-dire que toutes les définitions
ci-dessus doivent étre remplacées par leurs analogues log (sans structures log, il faut tronquer en
degré < r - 1, voir le théoréme H ci-dessous).

Complexe de Fontaine-Herr

Le c6té droit de ’application dans la version p-adique du résultat de Colmez et Niziol, c’est-a-dire
le premier isomorphisme dans (0.4), concerne le calcul de la Gg-cohomologie continue de Z,(r).
Ce calcul peut étre effectué avec des complexes constitués de (¢, I')-modules, dont les origines se
trouvent dans les travaux de Herr (voir [Her98]).

Soit V une représentation p-adique (resp. Z,-representation) de Gr, et soit D(V) le (¢, I'r)-module
étale associé sur Br (resp. Ar). Soit y € I'r un générateur topologique de I'r, alors on a un complexe

y-1
c:mmﬁiﬁme@mm—iﬂHDwx

ou la deuxiéme application est (x, y) — (y — 1)x - (1 - ¢)y. Le complexe de Fontaine-Herr C* calcule
la Gp-cohomologie continue de V dans chaque degré cohomologique, c’est-a-dire que pour k € IN,
on a les isomorphes naturels H*(C*) ~ HX _(Gg, V).

Les groupes de Gp-cohomologie continus sont des invariants utiles attachés a V. Par exemple, le
premier groupe de cohomologie continue de V, HL (Gr, V) classifie les extensions de la représen-
tation triviale Q, par V dans Repr(GF), et qui peut étre représenté par un couple x, y € D(V)
satisfaisant I’équation (y - 1)x = (1 - ¢)y. De plus, si V est cristalline alors toute extension cristalline
de Q, par V(r) (torsion cyclotomique de V) peut étre représentée par une paire (x, y) avec x € N(V)(r)
et y € N(V(r)) tels que (y - 1)x = (1 - ¢)y (voir le lemme A.2 et Proposition A.4). En fait, cette
affirmation combinée au calcul effectué par Colmez et Niziot a servi de motivation originale pour
I'obtention du théoreme H.

Dans le cas relatif, nous avons la version relative du complexe de Fontaine-Herr qui calcule la
Ggr-cohomologie continue d’une représentation p-adique (voir [AI08, Théoreme 3.3], on rappelle la
description dans §4.1). Des complexes explicites calculant la Gg-cohomologie continue de T peuvent
également étre obtenus, que nous appelons collectivement complexes de Koszul (voir §4.2). De plus,
les complexes de Koszul jouent un role central dans la preuve du théoréme H.

Complexe syntomique a coefficients

Dans le théoréme G, nous nous intéressons au résultat p-adique, c’est-a-dire le premier isomorphisme
dans (0.8). Notre objectif est d’y remplacer la représentation Z,(r) par une représentation plus
générale T(r), et d’adapter la méthode de Colmez et Niziot pour obtenir une relation entre le complexe
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syntomique a coefficients et la cohomologie Gg-continue de T(r). La classe de représentations qui
nous intéresse est celle des représentations cristallines de Wach de Gg,. Dans la notation du théoreme
E, pour les coefficients du complexe syntomique, nous choisirons un réseau a I'intérieur du (¢, 9)-
module filtré OD,;s(V), alors que pour calculer la cohomologie galoisienne nous exploiterons les
propriétés du module de Wach associé N(V). Les deux cotés seront ensuite comparés en utilisant
une version du lemme de Poincaré, ou est cruciale la comparaison obtenue dans le théoréme E.

Plus précisément, soit V une représentation p-adique de Wach de Gg, avec des poids de Hodge-Tate
non positifs et soit s € IN le maximum parmi les valeurs absolues poids de Hodge-Tate de V. Soit
T c V un Z,-réseau libre de rang = dimg, V stable sous I'action de Gg,. Supposons que N(T) est un
Ag,-module libre de rang = dimg, V, et qu'’il existe un Ry-sous-module libre ODyis(T) =€ OD¢i5(V)
de rang = dimg, V, tel que ODyis(T) [%] = ODg;s(V) et la connexion induite sur OD,,5(T) est
quasi-nilpotente, intégrable et satisfait la transversalité de Griffiths par rapport a la filtration induite.
Soit r € N et on pose V(r) := V&g, Qp(r) et T(r) := T®z, Z(r).

Le choix de OD,;s(T) n’est pas canonique et nous discutons de quelques maniéres d’obtenir un
tel module dans proposition 3.31, remarque 3.42 et remarque 5.4. Cependant, nous fixons un tel
choix pour le reste de la discussion.

On pose

D' := RgD QR, ODcris<T)-

11 existe un endomorphisme semi-linéaire de Frobenius sur D'® donné par P’action diagonale du
Frobenius sur chaque composante du produit tensoriel, une filtration provenant du produit de
filtration sur chaque composante du produit tensoriel et une connexion induite par la connexion sur
OD,is(T) et 'opérateur différentiel sur RgD. De plus, cette connexion est intégrable et satisfait la
transversalité de Griffiths par rapport a la filtration (voir chapitre 5 pour des définitions précises).
En particulier, soit S = REP et nous avons un complexe de de Rham filtré pour k € Z,

Fil*D" : = Fil* D*P @5 Q} — Fil* 1 DPP @5 QF — -

Soit Dg := R®g, ODyis(T). Définir le complexe syntomique Syn(Dg, r) et la cohomologie syn-
tomique de R avec des coefficients dans Dg comme
Syn(Dg,r) := [ FirD 222,
Hgy(Dr, 1) = H'(Syn(Dg, 1))

syn

D'];

Nous allons relier ce complexe au complexe de Fontaine-Herr calculant la Gg-cohomologie continue
de T(r). Le résultat principal du chapitre 5 est :

Théorém H (voir Theorem 5.6). Soit V' une représentation de Wach positive de Gg,, T < V un
Gg, -stable libre Z.,-réseau, s € N le maximum parmi les valeurs absolues des poids de Hodge-Tate de V
etr € N tels que r = s + 1. Alors il existe un pN—quasi—isomorphisme

Tsr—s—lsyn(DR: r) = Tsr—s—ercont(GRa T(F)),

ouN = N(T, e,r) € N dépend de la représentation T, de ’'indice de ramification e, et r. En particulier,
on a des pN -isomorphismes
HY, (Dg,r) — H"(Gr, T(r)),

pourO<ks=sr-s-1

La preuve du théoréeme H se déroule en deux étapes principales: dans une premiére étape, on
modifie le complexe syntomique a coefficients dans Dy pour le relier a un complexe de Koszul
“différentiel” a coefficients dans N(T). Ensuite, dans la deuxiéme étape, nous modifions le complexe
de Koszul de la premiére étape et utilisons une version du lemme de Poincaré pour obtenir le
complexe de Koszul calculant la Gg-cohomologie continue de T(r).
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Comme mentionné précédemment, pour T = Z,, le résultat a été prouvé dans [CN17]. Cependant,
les généralisations directes ne semblent pas fonctionner et les problémes techniques ont tendance
a s’amplifier lorsqu’on traite le cas de dimg, V' = 1. Afin de prouver I'énoncé du théoreme, nous
écrirons des complexes explicites avec des modifications appropriées a chaque étape. La clé de la
connexion entre les complexes syntomiques a coefficients et les “complexes de Koszul de (¢,T)-
module” est fournie par I'isomorphisme de comparaison dans le théoréme E. En fait, une tentative de
relier ces deux étapes a conduit a notre recherche et a notre découverte du résultat de la comparaison
dans le théoréme E en premier lieu.

Qu’est-ce qui est devant?

Le monde de la théorie de Hodge p-adique relative, bien que largement étudié dans certaines
directions, reste beaucoup moins exploré et non moins difficile que son pendant arithmétique. Par
conséquent, plusieurs questions naturelles ont émergé qui restent sans réponse.

La toute premiere question qui pourrait étre posée est de savoir si toutes les représentations
cristallines sont de hauteur finie? Ceci est certainement vrai pour les représentations a une dimension.
Cependant, le cas de dimension supérieure reste assez mystérieux. Une réponse a cette question
impliquerait éventuellement de récupérer le module N(V) étant donné OD;5(V).

Dans son travail récent [Tsu20], Tsuji a utilisé les idées de Wach (voir [Wac97]) et la généralisation
de Faltings des modules de Fontaine-Laffaille (voir [Fal89]) pour construire des représentations
généralisées de Gg. Sa théorie est liée aux travaux remarquables de Bhatt, Morrow et Scholze sur
la Ajps-cohomologie dans [BMS18]. Tsuji et Morrow dans [MT20], ont développé une théorie des
coefficients en théorie de Hodge p-adique intégrale. Les objets de Tsuji sont étroitement liés a
la définition des modules Wach dans le cas relatif. Il serait intéressant d’explorer ces relations et
d’obtenir des énoncés concrets sur la cohomologie. De plus, il serait intéressant de comprendre la
relation entre les modules de Wach relatifs et les coefficients dans la théorie de Hodge p-adique
intégrale, ainsi que leur relation avec la théorie de Bhatt-Scholze des prismes et la cohomologie
prismatique dans [BS19].

La globalisation de ’approche de Colmez et Niziol, les a aidés a prouver le théoréme de com-
paraison semi-stable pour les log-schémas formels. D’autre part, dans [Tsu96], Tsuji a considéré un
systéme de coefficients pour la cohomologie syntomique et a obtenu des résultats similaires sous
certaines restrictions. Le résultat du théoreme H est de méme saveur (au moins localement), ou
I’on ne considére que le cas d’'une bonne réduction. Il serait intéressant de structurer la notion de
représentations a hauteurs finies ou modules de Wach comme dans les travaux de Colmez et Niziot
et dans Pesprit des faisceaux cristallins d’Andreatta et Iovita (voir [AI13]). La réalisation d’un tel
programme produirait un isomorphisme de comparaison pour des schémas formels lisses appropriés
et des coefficients non triviaux via des méthodes syntomiques.

Comme mentionné précédemment, pour une extension finie (éventuellement ramifiée) de Q,, les
modules de Wach ont été généralisés sous la forme de modules de Breuil-Kisin (voir [Bre99, Bre02,
Kis06]). Dans le cas relatif, Kim a donné une certaine généralisation de la théorie de Kisin (voir
[Kim15]). D’autre part, il existe aussi une classification des représentations p-adiques classiques par
Caruso en termes de (¢, 7)-modules (voir [Car13]). Il est alors naturel de se demander s’il existe un
complexe explicite (apparenté au complexe de Fontaine-Herr) de modules (relatifs) de Breuil-Kisin
ou de (¢, 7)-modules (relatifs) qui calcule la cohomologie galoisienne d’un représentation? De plus,
dans ce cas, il serait également possible de travailler avec des représentations semi-stables et des
complexes log-syntomiques a coefficients.

Une réponse positive aux questions ci-dessus, ouvre également la porte & de nombreuses applica-
tions. Une telle application pourrait étre dans la théorie d’Iwasawa. Dans [Ben00], Benois a utilisé
des modules de Wach pour étudier la théorie d’Twasawa des représentations cristallines, dans le cas
classique. On pourrait espérer réaliser un programme similaire dans le cas relatif.



CHAPTER 1

p-adic Hodge theory

Let K be a mixed characteristic non-archimedean complete discrete valuation field, with ring of
integers Ok and residue field x of characteristic p. For « a perfect field, Fontaine established in
[Fon94a] the theory of p-adic de Rham and crystalline representations of the absolute Galois group
Gk of K. Moreover, he classified crystalline representations in terms of certain linear algebraic
objects called filtered ¢-modules over F = W (k) [%] , where W(k) denotes the p-typical Witt vectors
with coefficients in k. Generalizing this approach in [Bri06], Brinon studied the p-adic crystalline
and de Rham representations of G in the case when « is a non-perfect field admitting a finite
p-basis, i.e. [k : kP] < +o0 and gave a similar classification for crystalline representations of Gk. This
theory was further extended by Brinon in [Bri08], to the relative case, where he again considers x to
be perfect but replaces K by R [%] for certain integral, normal and p-adically complete Og-algebra
R. In this section our objective is to recall constructions and results in the relative case, albeit in a
simpler setting compared to Brinon’s book.

1.1. Setup and notations

In this section, we will describe the setup for the rest of the text and fix some notations. Our
conventions and notations are by and large in agreement with the article of Colmez and Niziot
[CN17].

Convention. We will work under the convention that 0 € IN, the set of natural numbers.

Let p = 3 be a fixed prime number, k a finite field of characteristic p, W := W(k) the ring of
p-typical Witt vectors with coefficients in k and F := W [%] the fraction field of W. In particular,
F is an unramified extension of Q, with ring of integers O = W. For n € N, let {;» denote a
primitive p"-th root of unity, and we set F,, := F({;») and Fs := U, Fy,. From now onwards, we will
fix some m € N and set K := Fy,, with ring of integers Ok. Let K = F be a fixed algebraic closure
of K such that its residue field, denoted as ¥, is an algebraic closure of k. Further, we denote by

Gk = Gal(K/K), the absolute Galois group of K. The element @ = {,» - 1 € O is a uniformizer of

K, and its minimal polynomial P,(X) = (i;x)’% is an Eisenstein polynomial in W[X] of degree

e:=[K: F]=p™(p-1).
Let Z = (Z4, ..., Zs) denote a set of indeterminates and k = (ky, ..., k;) € IN® be a multi-index, then
we write ZX := Zlk1 - ZK. For k — oo we will mean that ¥ k; — co. Now for a topological algebra
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A we define
ANZ} = { Z a Z*, where ax € A and gy — 0 ask — 00}.
keINs
We are interested in the p-adic Hodge theory of an étale algebra over a formal torus defined over
Ok. More precisely, let d € N and X = (X3, X, ..., X4) be some indeterminates. Let Ry denote the
p-adic completion of an étale algebra over W{X*!}. In other words, we have a presentation

Ry := W{X, X "M Z,.... Z} Q1 ..., Qs),

where Qi(Zy, ..., Zs) € W{X,X '}[Z,,..., Z] for 1 < i < s, are multivariate polynomials such that
det (g% ) Jeijes is invertible in Ry. Finally, we set R = Ry[®@], which is absolutely ramified at the prime
ideal (p) < Ry.

Next, we provide a system of coordinates for R, which we call a framing. Let

R, := Ox{X, X'},

and endow it with the spectral norm. Using the polynomials appearing in the definition of R,, we
can write

R :=R{Z,....,Z} (O, ..., Q).

Therefore, we have a Cartesian diagram

SpfR —— Spf Ry

|

Spf R, — Spf W{X, X'},

and Ry provides a system of coordinates for R. From the assumptions on R, we have that R is small in
the sense of Faltings (see [Fal88, §II 1(a)]).

The p-adic Hodge theory of R entails a study of p-adic representations of the étale fundamental
group of R[%], which we introduce next. We fix an algebraic closure of Fr R as Fr R such that

it contains K. Let R denote the union of finite R-subalgebras S < Fr R, such that S [%] is étale
over R [%] . Let 77 denote the corresponding geometric point of the generic fiber Spec R [%] and let
Gg := n(Spec R [%] ,7) denote the étale fundamental group. By [Gro63, Exposé V, §8], we can write
this étale fundamental group as the Galois group (of the fraction field of ?[%] over the fraction field
of R [%])

Gk = 1" (Spec R[ 3 ].7) = Gal(R[;]/R[}])-

Proposition 1.1 ([Bri08, Proposition 2.0.2]). For any q € N, let Q¥ denote the p-adic completion of
the module of differentials of R relative to Z. Then we have

d q
Qg, = DR dlogX;, and Qf = \Qg.
i=1

Moreover, the kernel and cokernel of the natural map Q%O ®r, R — Q} is killed by a power of p. In
particular, we have

d
Q4 [1] :/q\(k@ Ro[1] dlogX;).

For Ry and R we have that R = Ry[®], Ry/pRy —> R/®R and for any n € IN, Ry/p"Ry is a formally
smooth Z/p"Z-algebra. Finally, we fix a lift ¢ : Ry — Ry of the absolute Frobenius x +— x? over
R/®R.
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Convention. While working with completion of tensor products, we would assume it to be the
completion of the usual tensor product for the p-adic topology.

1.2. The de Rham period ring

In this section we will recall definitions and properties of the relative version of Fontaine’s period
ring Bgr. These rings will be useful in classifying de Rham representations of Gg. We begin by
recalling some well-known constructions from [Fon94a].

Let us note that the field C, = %, the p-adic completion of K, is a perfectoid field and we denote
its ring of integers as Oc,. We have the tilt of Oc, as

Oc, := lim Oc,/pOc, = lim Og/pOx.

The element p € Oc, is a pseudo-uniformizer and therefore p* := (p,pl/f’,pl/f’z,...) € OEP is a
pseudo-uniformizer. We set (E;, = OEP [1%] which is a perfect field in characteristic p.

Next, we endow ﬁ[%] with the spectral valuation v, ie. vy(x) = sup{uvy(z), forz €
C, such that x € zR}. Denote by C(R) the completion of R[%] for v, and C*(R) := {x €
C(R), such that vy(x) = 0}, which is a subring of C(R). We define C*(R)" as the tilt of C*(R), i.e.

C*(R)" := limp C*(R)/pC*(R) = limpﬁ/pﬁ,

and we set C(R)" := C*(R)’ [ﬁ] An element x € C(R)* can be described as a sequence (x,)neN,
with x, € C(R) and x%,, = x,, for all n € N. We define v* on C(R)’ by setting v°(x) : = v,(x*) where
x* := xo. This is a valuation on C(R)" for which it is complete and we have that C*(R)" is the subring

of elements x € C(R)" such that v°(x) = 0. These rings admit an action of the Galois group Gg which
is continuous for the valuation topology.
We will fix some choices of compatible p-power roots which will appear throughout the text. Let

e :=(1,8p, {2, € C;,
X! = (X X7, X1, € CR) for1<isd.
We set Ajye(R) := W(C*(R)“’) as the ring of p-typical Witt vectors with coefficients in C*(R)*.
For x € C*(R)", let [x] = (x,0,0,...) € Ajnt(R) denote its Teichmiiller representative. The absolute
Frobenius on C*(R)" lifts to an endomorphism ¢ : Aj,f(R) — Ajn(R) and the action of Gy extends

to Ajnf(R) which is continuous for the weak topology (see §2.1 for weak topology). Any element
x € Aint(R) can be uniquely written as x = ) ;o pk[xk] for x; € C*(R)". We set

mi=[e]l-1, m =@ Y(m)=[e"P]-1 and & := ﬁﬂl
The action of Gg and the Frobenius ¢ on these elements is given as,

g(le]) = [e]¥® and glm) =1+ W& — 1 for g € Gg,
o([e]) = [e]  and ¢(r) =1+ ) -1,

where y : Gg — Z is the p-adic cyclotomic character. Define the map

0 : Aint(R) — C*(R)
Zpk[xk] N Zpkxli- (1.1)

keN keN



4 p-adic Hodge theory

The map 6 is a Gg-equivariant surjective ring homomorphism whose kernel is principal, and
generated by any x € Ker 0 such that its Witt vector expansion x = (xp, x1, ..., ) has the property that
xy is a unit in C*(R)", for example p - [p°] or & (see [Fon82, Proposition 2.4 (ii)]). By Q,-linearity,
the map 0 can be extended to 8 : Ajus(R) [%] — C(R).

Definition 1.2. Define
Bir(R) :=lim Aine(R)[ ;] /(Ker 0)",

as the (Ker 0)-adic completion of Ajy¢(R) [%] )

The ring B}z (R) is an F-algebra and the action of Gg on Ajy¢(R) extends to an action on B (R)
which is continuous for the (Ker 0)-adic topology. The map 6 further extends to a Gg-equivariant
surjective ring homomorphism 6 : Bjz(R) — C(R). The element

k+1

t :=log[e] = log(1 + ) = Z(-nk% € Bir(R), (1.2)
keIN

and we have that Ker 0 = £B;(R) = 7B(R) = tBjz(R) (see [Bri08, Proposition 5.1.3]). Moreover,
for g € Gg we have that g(t) = y(g)t. The ring Bl (R) is t-torsion free (see [Bri08, Proposition 5.1.4]).

Definition 1.3. Define the de Rham period ring as
Bar(R) :=BR(R)[1].

This construction is functorial in R but B/ (R) only depends on R. The ring B4r(R) is an F-algebra
equipped with a continuous action of Gg, for the (Ker #)-adic topology.

Next, we will put a filtration on Bgr(R) by setting Fil'Bgr(R) := t"Bir(R) for r € Z, which is
a decreasing, separated and exhaustive filtration on B4r(R). We equip Bz (R) with the induced
filtration. For the associated graded pieces, we have the identification (see [Bri08, Proposition 5.2.1])

gr'B(R) = C(R)[#] and grBar(R) = C(R)[t, ],

where t denotes its image in gr'B/z(R).
We can extend the map 6 : Aj(R) — C*(R) by R-linearity to obtain a Gg-equivariant surjective
ring homomorphism
br : R®z Ainf(R) — C'(R). (1.3)

Let OAinf(R) denote the GIEI(pCJ’(R))-adic completion of R®z Aj¢(R) (the ideal 91}1(pC+(R)) is
generated by p and Ker 6g). The morphism 6 then extends to a Gg-equivariant surjective ring
homomorphism

Or : OApni(R) — C*(R),
which can be extended by Q,-linearity to a Gg-equivariant surjective ring homomorphism
Or + OAnt(R)[;] — C(R).

Definition 1.4. Define
OBlR(R) : = lim OAini(R)[ 5]/ (Ker )",

as the (Ker 0g)-adic completion of OAyn¢(R) [%]

The ring OBy (R) is an R [%] -algebra and the action of Gg on OAy,¢(R) extends to an action on
OB (R) which is continuous for the (Ker 0)-adic topology. The homomorphism 0 extends to
a Gg-equivariant surjective ring homomorphism 6z : OBjz(R) — C(R). By funtoriality of the
construction of OBj;(R), the homomorphism W(x) — R induces a morphism of rings Bz (R) —
OB (R) which is injective (see Proposition 1.6). Finally,
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Definition 1.5. Define the (fat) de Rham period ring as
OBa(R) := OBR(R)[4].

The ring OBgr(R) isan R [%] -algbera equipped with a continuous action of Gg for the (Ker 6g)-adic

topology.

We can give a more explicit description of the ring OB (R). Note that we have X;® 1 - 1®[X;] €
Ker O ¢ R®z Aint(R) for 1 < i < d. Let z; denote its image in OAju¢(R) € OB (R). Since OB (R)
is complete for the (Ker g)-adic topology, the homomorphism B’z (R) — OBjz(R), extends to a
homomorphism

f : BER(R)[[TL s Td]] — OBER(R)

T — zj, for1<is<d.
In fact, we have that
Proposition 1.6 ([Bri08, Proposition 5.2.2]). f is an isomorphism and Ker 60 = (t, z1, ..., z4).
Remark 1.7. (i) By the previous proposition, we can identify Bjz(R) as a subring of OB (R).

(ii) The rings OBz(R) and OBgr(R) are Gg-equivariant R [%] -algebras. Moreover, the map g from
OBgr(R) to C(R) restricts to the canonical inclusion of ﬁ[%] in C(R) (see [Bri08, Proposition
5.2.3]).

(iii) Let R denote the union of finite étale R-subalgebras S < R, and let R¥ denote its p-adic
completion. It is an R-subalgebra of C(R) equipped with a continuous action of Gg, and
(ﬁr[%])GR = R[%] Moreover, we have Rur[%] c ﬁ[%] c OB!R(R), and Iiir[%]-algebra
structure on OB(R) and OBgg(R) uniquely extends to a Gg-equivariant R% [%]—algebra
structure (see [Bri08, Proposition 5.2.4]).

Next, we equip OB (R) with a filtration Fil" OBz (R) : = (Ker 6r)" for r € IN, which is a decreasing,

separated and exhaustive filtration, stable under the action of Gg. For n € IN we have

t "Fil"OB{R(R) = OBR(R) + (Z,..., %) " OB (R).

1o

So we set
Fil'OBgR(R) := Y. t"Fil"OBjR(R) = OBR(R)[2, ..., %],
n=0
Fil"OBgr(R) : = t"Fil’OBgr(R) for r € Z.

This filtration is decreasing, separated, exhaustive and stable under the action of Gg. Moreover, the
induced filtrations on OBY;(R), Biz(R) and B4r(R) match with the ones defined before (see [Bri08,
Proposition 5.2.8, Corollaire 5.2.11]). For the associated graded pieces, we have identifications (see
[Bri08, Propositions 5.2.5, 5.2.6])

gr'OB(R) = C(R)[t, Z1, ..., Z4],
gr’OBar(R) = C(R)[w, ..., wg), (1.4)
gr'OBgR(R) = CR)[t, t7, wy, ..., wql,

where Z; is the image of z; in gr' OB/z(R) and w; is the image of 2 in gr’OBgr(R). Finally, the
elements ?[%] \ {0} c Bgr(R) are non-zero-divisors and we have (OBdR(R))GR = R[%] (see [Bri0s,
Corollaire 5.2.9, Proposition 5.2.12]).
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We can equip the rings OBj;(R) and OBz (R) with some extra structure. Namely, we are go-
ing to define a formal connection on these rings. First, note that since R is étale over R, the
p-adic completion of module of differentials of R relative to Z is given by Qf = R®g, QIl?D and we
have Q} [%] = R®g, Q}(,O [%] (see Proposition 1.1). Now, let N; denote the unique (Ker 6g)-adically
continuous and B (R)-linear derivation on OB (R) as

Ni(zj) = 6;X; forl1=<ij=d,
where §;; denotes the Kronecker delta symbol. The derivation N; extends to OBgg(R) since Nj(t) = 0.
Definition 1.8. Define a connection
9 : OBR(R) — OBar(R) ®p1) Ok []

d
X —> ZNi(x)(g) dlogX;.

i=1

1
P

The connection 9 is Gg-equivariant and satisfies Griffiths transversality for the filtration Fil'OBgr(R),
Le.
9(Fil" OBur(R)) —> Fil"' OBur(R) @1 [ 3],

(see [Bri08, Propositions 5.3.1, 5.3.9]). Its restriction to R [%] is the canonical differential operator.

We also have o o
(OBR(R))"" = Bir(R) and (OBar(R))"" = Ba(R)

Finally, the canonical map
UgR R[%] @k Bar(R) — OBar(R),
is injective (see [Bri08, Propositions 5.3.3, 5.3.8]) and

Theorem 1.9 ([Bri08, Théoreme 5.4.1]). The rings OB, (R) and OBgr(R) are faithfully flat as R [%] -
algebras.

1.3. The crystalline period ring

In this section, we will define crystalline period rings and study their properties following [Bri08].
Note that Brinon defines these rings under certain assumption on his base rings (see the condition
(BR) on [Bri08, p. 9]). However, this assumption always holds in our setting.

Let us consider the map 0 : Ajp(R) — C*(R) from (1.1). The kernel of this map is a principal
ideal generated by £ or p - [p*]. Now let

k. x* f 0 .
= o forxe Ker 6 ¢ Aj¢(R) and k € IN.
The divided power envelope of Aj,¢(R) with respect to Ker 0 is given as

Aumi(R)[x"), x € Ker 0] = A (R) [€1M]] .

Definition 1.10. Define

k
Ais(R) := p-adic completion of Aj,¢(R) [%] keN®

Also, set Apax(R) to be the p-adic completion of the A ¢(R)-subalgebra generated by ’%Ker 0 inside
Ainf(R) [%] .
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The W(x)-algebras Ais(R) and A,y (R) are functorial in R (depending only on R) and equipped
with a continuous action of Gg. Further, these rings are p-torsion free (see [Bri08, Proposition 6.1.3]).
The Frobenius on Aj,¢(R) can be extended to Ais(R) as follows: we know that ¢(€) = &P + py for
some y € Ainr(R). We write ¢(&) = p(y + (p — 1)![P]) and therefore ¢(£¥) = p*(y + (p - 1)!EP))* for
k € IN. Now it easily follows that go(f [k]) = %1; ( y+(p-1)¢E [P])k € A.is(R), as desired. Similarly, the
Frobenius ¢ extends to Apax(R) as well.

Since Ker 0 c Aj¢(R) has divided powers in Aj,¢(R) [%Ker 9], the universal property of divided
power envelope induces a canonical Gg and Frobenius-equivariant injection ¢ : A¢is(R) — Amax(R).
The homomorphism 6 of (1.1) extends to surjective homomorphisms (see [Bri08, p. 62]),

0 : Auis(R) — C*(R) and 0 : Apa(R) — C*(R).

From (1.2) we have,
k+1
t =log(1+7) = k%(—l)"% € Acris(R),
(S

and the action of Gg and the Frobenius ¢ on this element is given as

g(t) = x(g)t for g € Gg and ¢(t) = pt.

We have that t € Ker 6 c Ais(R) and Ker 0 < Aqis(R) is a divided power ideal. Moreover tP~! €

PAuis(Z,) (see [Fon94a, 2.3.4]) and the rings Acris(R) and Apax(R) are t-torsion free (see [Bri0s,
. . 1y _ 1

Corollaire 6.2.2]). Finally, we set (p(;) = o

Definition 1.11. Define the crystalline period rings as

Bis(R) = Acris(R) [%] and Bgis(R) 1= B (R) [%]’
Biax(R) := Amax(R)[3] and Buax(R) := Bra(R)[1].

These are F-algebras equipped with a continuous action of Gg and the Frobenius ¢.

Next, let us consider the map 6g, : Ry ®z Ains(R) — C*(R) obtained by extending (1.1) Ry-linearly.
This is a Gg-equivariant surjective ring homomorphism with kernel generated by {1® &, zy, ..., z4},
where z; = X;®1 - 1®[X;] for 1 < i < d. As in (1.5) the divided power envelope of Ry ®z Ains(R)
with respect to Ker 0, is given as

Ry ®7 Aint(R) [x[k], x € Ker HRO] kN
Definition 1.12. Define
OAis(Ry) := p-adic completion of the divided power envelope of Ry ®z Aint(R) with respect to Ker 0g,.

Also, set OApax(Ry) to be the p-adic completion of the Ry ®z Ajnf(R)-subalgebra generated by

%Ker O, inside Ry ®z Ainf(R) [%]

The Ry-algebras OAis(R) and OApax(R) are functorial in Ry and equipped with a continuous
action of Gg. Taking the diagonal action of the Frobenius on Ry ®7z Ajnt(R), we take q)(§ [k]) as above,
and .

X o1-10[X]P
(p(zi[k]) = (p((X,-(X)l - 1®[Xl~b])[k]) = ( : 0 ) fori<i=<d.
Therefore, we see that the Frobenius extends to OAis(Ry) as well as to OA 1. (Ry) which we will
again denote by ¢. Since Ker 0g, c Ry ® Ajx¢(R) has divided powers in Ry ® Ajns(R) [%Ker QRO], the
universal property of divided power envelope induces a canonical Gg and Frobenius-equivariant
injection ¢ : OAyis(R)) — OAnax(Ro). The ring OAis(Ry) is an Agis(R)-algebra and the ring
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OApnax(Ry) is an Apax(R)-algebra. The homomorphism 6g, from (1.3) extends to surjective homo-
morphisms (see [Bri08, pg. 65])

9R0 : OAcris(RO) — C+(R) and 9R() : OAmaX(RO) — C+(R)

Let T = (T4, ..., Ty) be some indeterminates as in Proposition 1.6. Let A¢is(R){T)" denote the
p-adic completion of the divided power polynomial algebra in indeterminates T and coefficients in
A is(R). Then we have a homomorphism of As(R)-algebras

fcris : Acris (R)< T>A — OAcris (RO)

Ti—>z for 1<i=<d.
Similarly, we can define a homomorphism of Ay,«(R)-algebras

fmax : Amax(R){ %, s %} — OAmax(RO)

%l—)% for 1<i=<d.

Then, we have that
Proposition 1.13 ([Bri08, Proposition 6.1.5]). The maps fuis and fmax are isomorphisms.

The rings OAis(R) and OAax(R) are p-torsion free as well as t-torsion free (see [Bri08, Proposi-
tion 6.1.7, Corollaire 6.2.2]).

Definition 1.14. Define the (fat) crystalline period rings as

OB,is(Ro) := OAcris(RO)[%] and OBeyis(Ry) 1= OB (Ro)[2],
OB (Ro) := OAmaX(RO)[%] and OBpay(Ro) := OBy, (Ro)[ 1]

The rings defined above are R, [%] -algebras equipped with a continuous action of Gg and Frobenius
endomorphism which we again denote by ¢. Moreover, this construction is functorial in R. Finally,
the inclusion 1 : OAis(Ry) — OAnax(Ry) extends to an inclusion ¢ : OBis(Ry) — OBpax(Ro).

Next, we will relate crystalline period rings to de Rham period rings. Notice that for each n € N,
OB (R)/(Ker 6g)" admits divided powers with respect to the ideal Ker 6g/(Ker 6g)". Also, the grad-
ing of OB (R)/(Ker 6g)" (for the filtration defined by the divided power of the ideal Ker g /(Ker 6g)")
is a free C(R)-module of finite rank by (1.4). So we obtain a homomorphism of rings (see [Bri08,

§6.2.1])
OAcris(RO) - OBER(R)/(KGI' GR)n'

These morphisms are compatible for all n € IN, therefore we have an induced homomorphism of
rings
OAcris(RO) - OBER(R)

Similarly, since p is invertible in OB} (R)/(Ker 6g)", we get an induced homomorphism of rings
OAmaX(RO) - OBER(R)
Further, these homomorphisms extend to

B:ris (R) — B},

max

Bcris(R) — BmaX(R) I BdR(R) and OBcris(RO) — OBmax(RO) — OBdR(R)-

(R) —> Bip(R) and OB (Ry) —> OB (Ry)) — OB(R),

cris max

All these homomorphisms are injective and Gg-equivariant (see [Bri08, Proposition 6.2.1, Corollaire
6.2.3]). The natural map
Ueris © Ro [%] ®F Beris(R) — OBeris(Ro),
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is injective as well (see [Bri08, Proposition 6.2.4]). Using the injections described above, we get an
induced filtration on crystalline period rings as

Fiercris(R) ‘= Bcris(R)mFﬂrBdR(R): and FﬂrOBcris(RO) L= OBcris(RO) ﬂFilr(OBdR(R) forre Z,

which is decreasing, separated and exhaustive.

The inclusion of (fat) crystalline period ring into (fat) de Rham period ring enables us to equip the
former ring with a connection induced from the connection on the latter ring. More precisely, for
n € IN we have

a<zl["]) = zl[n_lltx)dX,- for1<is<d,
and we get that for any x € OAis(Ry) = Acris(R)<T)", we have d(x) € OAis(Ro) ®g, Qll?o' This gives
us an induced connection

9 : OBCI’iS(RO) - Bcris(R) ®Ro[%,] QIIQO [%] .

The connection 0 is Gg-equivariant and satisfies Griffiths transversality for the filtration
Fil' OBis(Ry) since the same is true for the filtration on OBgr(R). Its restriction to R, [%] is the
canonical differential operator. Moreover,

<0A+ (RO))azo = Acris(R)’ (OB+ (R0)>a=0 = B::-ris(R) and (OBcris(RO))azo = Bcris(R)-

cris cris

Over OByis(Ry), the Frobenius operator commutes with the connection, i.e. pd = d¢ (see [Bri0s,
Proposition 6.2.5]). In our setting we have R = Ry[®@], therefore the natural morphism

R[fly] BR[L] OBis(Ry) —> OBgr(R), (1.6)

is injective (see [Bri08, Proposition 6.2.7]). Moreover, we have (OBcriS(Rg))GR =Ry [%] (see [Bri08,
Proposition 6.2.9]) and OB,;s(Ry) is a faithfully flat R, [%] -algebra (see [Bri08, Théoreme 6.3.8]).
Finally, in the relative setting we have the fundamental exact sequence:

Proposition 1.15 ([Bri08, Proposition 6.2.24]). The sequence
0 —> Qp — (Beris(R)?™ — Bar(R)/Bgr(R) — 0,

is exact, where the second non-trivial map is the canonical projection.

1.4. Filtered (¢, 9)-modules

In [Fon94a] Fontaine used some categories of linear algebra data to classify de Rham and crystalline
representations of the Galois group Gk. In case of de Rham representations these are finite dimen-
sional K-vector spaces equipped with a decreasing, separated and exhaustive filtration, whereas in
the case of crystalline representations these are finite dimensional F-vector spaces equipped with
a Frobenius-semilinear automorphism and which acquire a decreasing, separated and exhaustive
filtration after extending scalars along F — K. In the relative setting, Brinon introduced analogous
categories of linear algebra data in [Bri08, Chapitre 7]. In this section, we will recall definitions and
results useful in our case.
Let D be an R-module. A connection on D is defined as a continuous Op-linear map

dp : D —> DRrQp,

such that d(a® x) = a® dp(x) + dr(a)@ x for a € R and x € D. The connection dp is said to be
integrable if op - dp = 0. To simplify notations, below we will write 9 instead of dp.
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Definition 1.16. A finitely generated R [%] -module D is said to be a 9-module if it is equipped with
an integrable connection, i.e. 9 » d = 0, where

. 171
A morphism between d-modules is a morphism of R [1] -modules compatible with connection on
each side. We denote this category by Mz(9).

Remark 1.17. If D is of finite type, then it is projective (see [Bri08, Proposition 7.1.2]). This observation
makes it easy to deduce that Mg(9) is in fact an abelian category.

Now we will impose some restrictions over the connection 9. The connection 9 over the R, [%] -
module D is said to be quasi-nilpotent if there exists a finite and p-adically complete Ry-submodule
Dy < D, stable under 9, such that D = D, [%] and the connection induced on the reduction of Dy
modulo p is quasi-nilpotent, i.e. for 1 < i < d there exist integers a; such that [], N** sends D,
into pDy, where N; are the derivations associated to 0.

Definition 1.18. A (¢, d)-module over Ry [1%] is a 9-module D over Ry [1%] such that 9 is quasi-
nilpotent and D is equipped with a Frobenius-semilinear endomorphism ¢ : D — D such that the
induced R, [%] -linear map

1®¢ : RO[%] ®Ro[%],¢D — D

is an isomorphism. A morphism between such modules is a Ry [%] -linear map compatible with
respective structures on each side. These modules form an abelian category which we denote by
Mg, (¢, 9) (see [Bri08, Proposition 7.1.9]).

Remark 1.19. The category Mg, (¢, 9) is, in fact, Tannakian in the sense of [DM82].
Next, we will study R [%] -modules equipped with a filtration.

Definition 1.20. A filtered 9-module over R[%] is a 9-module D over R[%] equipped with a de-

creasing, separated and exhaustive filtration by R [’%] -submodules Fil"D < D for r € Z, satisfying
Griffiths transversality, i.e.
. -1 11
9(Fil'D) = Fil" ' D@y Q[ ],
and such that the associated graded R[%]—modules gr'D are projective. A morphism between
such modules are morphisms of 9-modules respecting filtration. These modules form an additive
non-abelian category MFg(9).

We can combine the previous two definitions to define,

Definition 1.21. A filtered (¢, 9)-module over R[%] relative to R, [%] is a (¢, d)-module D over

Ry [%] such that D = R [%] ®R0 [ J ] D is a filtered 9-module over R [%] A morphism between such

modules is a morphism of (¢, d)-modules such that the induced morphism, after extension of scalars
toR [%] , is a mophism of filtered 9-modules. These modules form an additive tensor non-abelian
category MFg/g, (¢, 9).

Note that Ry/pRy admits a p-basis (X, ..., Xy), which enables us to identify the category Mg, (¢, 9)
with the category of F-isocrystals over Ry/pR, (see [BM90, Proposition 1.3.3]). Let D be an F-isocrystal
over Ry/pRy and consider a “test-object”, i.e. a quadruple (B, I, , s) such that Bis a p-adically complete
Z,-algebra, I c B is an ideal admitting §-divided powers compatible with the canonical divided
powers over pB and s : Ry/pRy — B/I is a ring homomorphism giving B/I an Ry/pR,-algebra
structure. Then by “evaluation” of D at such a test-object we will mean that there exists a projective
B-module Dg; s and amap 1® ¢ : Dgrss.0) — D(B1,5,5)-
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By the equivalence described, we can also speak of evaluating (¢, d)-modules at a test-object.
More precisely, let D be a (¢, 3)-module of rank h over R, [%] , k a perfect field of characteristic p and
f + Ry/pRy — k a homomorphism. Then we have the test-object (W (k), pW(k), 6, f) and evaluating
D at this test-object gives us a W (k) [%] -vector space Dy := Diw k) pw(k)s,r) of dimension h which
is further equipped with a Frobenius-semilinear endomorphism ¢. Let z denote a nonzero vector
in the (¢, 9)-module N\ Dy over W(k) [é] such that we have A" Dy = W(k) [%] z. Then there exists
A€ W(k) [%] such that ¢(z) = Az. The p-adic valuation of v,(1) is independent of the choice of z
and depends only on p = Ker f € Spec (Ry/pRy). We define this quantity as the Newton number of D
at the prime p € Ry/pRo, i.e. tn(D,p) := vp(A).

Newton numbers satisfy some nice properties. If D is a (¢, d)-module of rank h over R, [1] and
r € Z then we have tN(D",p) = —ty(D, p) and tn(D(r),p) = tn(D, p) — rh for all p € Spec (Ry/pRy).
Also, by the specialization theorem of Grothendieck (see [Kat79, Theorem 2.3.1]), the function
p — tn(D, p) is increasing for specializations. The function #y(-, p) is additive for p € Spec (Ro/pRo),
i.e. for an exact sequence of (¢, d)-modules

0—D —D—D"—0,

we have tn(D, p) = tn(D’, p) + tn(D”, p) (see [Bri08, Proposition 7.1.12]).
Next, let us consider D to be a filtered 9-module over R [%] of rank h. The R [%] -module A" D

is projective of rank 1 and the associated graded module is projective over R [%] There exists

n € Z such that gr" A" D =~ A" D and gr™ A" D = 0 for m # n. We define the Hodge number of D as
ty(D) := n.

Similar to above, Hodge numbers satisfy some nice properties as well. If D is a filtered 9-module
of rank h over R[l] and r € Z then we have ty(D") = —ty(D) and tyg(D(r)) = ty(D) - rh. Moreover,
the function #y(-) is additive, i.e. for an exact sequence of filtered 9-modules

0—D —D—D"—0,

we have ty(D) = tg(D’) + ty(D”’) (see [Bri08, Proposition 7.1.15]).
An admissibilty criterion based on Newton and Hodge numbers of D can be described:

Definition 1.22. A filtered (¢, 9)-module D over R[l] relative to Ry [%] is said to be pointwise
weakly admissible if for each p € Spec (Ry/pRy) the following conditions are satisfied:

(@) (D) = tn(D, p);
(i) For any subobject D’ c D (in the category MFgg, (¢, ), we have that ty(D’) < tn(D’, p).

We denote by MF%}“;O(Q, 0) the full subcategory of MFg/g, (¢, 9) consisting of filtered (¢, d)-modules
over R [%] relative to Ry [11]] that are pointwise weakly admissible.

Remark 1.23. (i) In the arithemtic setting, i.e. Ry = O weakly admissible objects in the category
of filtered ¢p-modules over F were first studied in [Fon79, Kat79].

(ii) In [Bri08, Définition 7.1.11], Brinon calls the modules in Definition 1.22 as ponctuellement
faiblement admissible.

1.5. p-adic representations

In this section we will study p-adic representations of the Galois group Gg and associate some linear
algebra data to de Rham and crystalline representations. We begin with some formal definitions.
Let E denote a topological field and G a topological group. We denote by Rep,(G) the category of
E-representations of G, whose objects are finite dimensional E-vector spaces equipped with a linear
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and continuous action of G and a morphism between the objects of Rep;(G) is a G-equivariant
E-linear map.

Let B be a reduced commutative topological E-algebra equipped with a continuous E-linear action
of G. Let V be an E-representation of G and we set

Dy(V) := (Bex V)°.
This is a B°-module and we have a natural morphism of B-modules, functorial in V

ag(V) : B®ge Dp(V) — Bg V
b®dv+— bd.

The representation V is said to be B-admissible if oz is an isomorphism. Moreover, the E-algebra B
is said to be G-regular if it satisfies the following properties:

(i) Bis faithfully flat over B;
(ii) For all V € Repg(G), the homomorphism ag(V) is injective;
(iii) BC is Noetherian;

(iv) If V is a B-admissible E-representation of G of dimension 1, then the dual representation V¥
is B-admissible as well.

Below we will consider G := Gg, E = Q,, and vary B depending on the class of representations
we are interested in studying. We first look at the unramified representations of Gg. Recall that R*"
denotes the union of finite étale R-subalgebras S c R. Let us set

Gy := Gal(R"[J]/R[])-
It is a quotient of Gg.

Definition 1.24. A p-adic representation p : Gg — GL(V) is said to be unramified if p factorizes
through Gp — Gy'.

—~ . : . —~ G
From Remark 1.7/\(111) we have that RW [%] is a subring of OB/;(R) and (R‘“ [%]) = R[%]
Moreover, the ring R™* [%] is faithfully flat over R [%] (see [Bri08, Proposition 8.1.3]). Also note that

R is the union of finite étale Ry-subalgebras S < R, and ﬁgr is complete for the p-adic topology.
Therefore, from the proof of [Bri08, Proposition 6.1.5], it follows that OAis(Ry) is an Ry*-algebra
and since the foremer is also p-adically complete, it is an ﬁgr—algebra. In particular, OB/, (Ry) and
OB.is(Ry) are Ii(‘;\r [%] -algebras.

Now let V be a p-adic representation of Gg, then we set

Du(V) := (R[] &g, V)™
Itisan R [%] -module and we have a homomorphism
aw(V) : R [%] ®pr1 Dur(V) — Rur [%] ®q, V. (1.7)

The homomorphism au (V) in (1.7) is injective. Moreover, V is unramified if and only if V is R [%] -
admissible, i.e. if and only if the map o, (V) in (1.7) is bijective (see [Bri08, Propositions 8.1.2,
8.1.3)).

Remark 1.25. Let V be a p-adic representation of Gg and T c V a free Z,-lattice stable under the
action of Gg. Consider the associated continuous cocycle f : Gp' — GLj,(R) describing the action
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of Gy' over Rur ®z, T. Since V is unramified f is trivial and from [Bri08, Proposition 8.1.2], there
exists b € 1 + p - Mat(h, R™) such that f is cohomologous to the trivial cocycle g — g(b™1)f(g)b = 1.
In this case we say that f is trivialised by b € 1 + p - Mat(h, R").

1.5.1. De Rham representations

In this section we will describe de Rham representations of Gg as well as the associated linear
algebra object equipped with supplementary structures. We first note that the algebra OBgr(R) is a
Ggr-regular R [11]] -algebra and Byr(R) is a Gg-regular K-algebra. We set

GR GR
ODg(V) := <(9BdR(R) ®xr1) V) and Dgg(V) := (BdR(R)@)R[%] V) .

We will denote the category of de Rham representations (OBgr(R)-adimissible) as RepgﬁR(GR) and
the category of horizontal de Rham representations (B4r(R)-adimissible) as RepﬁiQRp(GR).

There are several supplementary structures on the R [%] -module ODgg(V) (resp. K-vector space
Dar(V)) (see [Bri08, §8.3]). It is equipped with a decreasing, separated and exhaustive filtration
induced from the filtration on OBgr(R) ®q, V (resp. B4r(R) ®g, V), where we consider the Gg-stable
filtration on OB4r(R) (resp. Bgr(R)) from §1.2. Moreover, the module ODgr(V) is equipped with an
integrable connection, induced from the Gg-equivariant integrable connection

2 : Vg, OBm(R) — (V &g, OBw(R) @ 1 %k[3]

1
[P

vebr— v JI(Db).

We denote the induced connection on ODgg(V) again by 9. Since the connection 9 on OBgr(R)
satisfies Griffiths transversality, therefore the same is true for ODgr(V), i.e.
A(Fil" ODgr(V)) < Fil' ' ODg(V) Or(L] Qk [%] .
Further, the module ODgr(V) is projective of rank < dim(V) and Dg4r(V) is free of rank < dim(V).
If V is de Rham then for all r € Z, the R [%] -modules Fil"ODgr(V) and gr" ODgr(V) are projective
of finite type and therefore ODgr(V) is an object of MFg(9) (see [Bri08, Propositions 8.3.1, 8.3.2,
8.3.4]). For a de Rham representation V, the collection of integers r; for 1 < i < dimg, (V) such that
gr'iODgr(V) # 0 are called Hodge-Tate weights of V. Moreover, we say that V is positive if and
only if r; < 0 forall 1 < i < dimg, (V).
Next, from [Bri08, §8.2] we have that the homomorphism
aoar(V) = OBar(R) @g,1) ODar(V) — OBar(R) &g, V.,
is injective. The module ODgr(V) is equipped with a connection 9 coming from the connection on
OBgr(R) and we have ODgr(V)?° = Dgr(V). The natural map

far(V) = R[;] @k Dar(V) — ODgr(V),
as well as the homomorphism
agr(V) : Bar(R) @k Dar(V) — Bar(R) ®g, V,

are injective. The latter map is bijective if and only if apr(V) and far(V) are bijective (see [Bri08,
Propositions 8.2.10]).

Theorem 1.26 ([Bri08, Théoréme 8.4.2]). The category Repgde(GR) is a Tannakian subcategory
ofRepr(GR) and the restriction of the functor ODgg to Repij(GR) is an R[%] -fiber functor. If
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Ve Repng(GR) the isomorphism apgr(V) is compatible with the supplementary structures described
above. In the horizontal de Rham case, the category RepfiQ};(GR) is a Tannakian subcategory ofRepQP(GR)

and the restriction of the functor Dgr to RepfiQ};(GR) is a K-fiber functor. If V € RepfiQRp(GR), the
isomorphism agr(V) is compatible with the supplementary structures.

Note that for C a Tannakian subcategory of Repr(GR) and A a commutative ring, a A-fiber functor
is a faithful, exact, ®-functor from C to the category of A-modules such that the essential image of
the functor lies in the subcategory of finitely generated projective A-modules.

1.5.2. Crystalline representations

In this section we will describe crystalline representations of Gg and the associated linear algebra
object equipped with complementary structures. Note that the algebra OBis(Ry) is a Gg-regular
Ry [%] -algebra and Bis(R) is a Gg-regular F-algebra. We set

Gr Gg
ODcris(V) ‘= (OBcris(R) ®R[%] V) and Dgis(V) = <Bcris(R) ®R[%] V) .

We will denote the category of crystalline representations (OB,;s(R)-adimissible) as Repgpcris(GR)
and the category of horizontal crystalline representations (B.is(R)-adimissible) as Rep?Qr;S(GR). There
are several complimentary structures on the R, [%] -module OD,is(V) (resp. F-vector space D¢yis(V))
(see [Bri08, §8.3]). It is equipped with a Frobenius-semilinear operator ¢ induced from the Frobenius
on OBis(Ro) ®g, V (resp. Beris(Ro) ®g, V), where we consider the Gg-equivariant Frobenius on
OBesis(Ro) (resp. Beris(Ro)). Since R = Ry[ @], therefore R[%] ®R[1/p] OD¢i5(V) is an R[%] -submodule
of ODgr(V) (resp. K-subvector space Dgr(V)) and we equip it with the induced filtration and
connection which satisfies Griffiths transversality with respect to the filtration. Additionally, we
have d¢ = ¢d over OB,is(Ry) ®g, V.

The module OD5(V) is projective of rank < dim(V) (see [Bri08, Propositions 8.3.1]). If V is
crystalline, then the Ry [%] -linear homomorphism

1®¢ : R [%] ®R0[%],¢ ODyyis(V) —> ODqis(V),

is an isomorphism and ODs(V) is an object of MFg/g, (¢, 9) (see [Bri08, Propositions 8.3.3, 8.3.4]).
Similarly, if V is horizontal crystalline, then the Ry [%] -linear homomorphism

1® (/3 F®F,q) Dcris(V) B Dcris(V)a

is an isomorphism. Finally, the inclusions OBis(Ry) — OBgr(R) and Bis(Ry) — Bgr(R) induce
respective inclusions OD¢is(V) — ODgr(V) and D¢,i5(V) — Dgr(V), and the induced homomor-
phisms

R[%] ®R0[;}] OD¢sis(V) — ODgr(V) and K ®F Deris(V) —> Dar(V).

are injective (see [Bri08, Proposition 8.2.1]).
Next, from [Bri08, §8.2] we have that the homomorphism

a(’)cris(V) : OBcris(RO) ®R0[1] ODcris(V) - OBcris(RO) ®Qp v,

p
is injective. The module OD,;s(V) is equipped with a connection 9 coming from the connection on
OBis(Ry) and we have ODi5(V)?=® = D¢i5(V). The natural map

ﬁcris(v) : R[‘,l,] K Dcris(V) — ODcris(V),
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as well as the homomorphism
acris(V) : Bcris(R) K Dcris(V) g Bcris(R) ®Qp v,

are injective. It is bijective if and only if ap¢is(V) and feris(V) are bijective. Finally, the natural map
of K-vector spaces
K ®F Dcris(V) - DdR(V)s
is injective.
Let V € Repglfris(GR) (resp. Repg;s(GR)), then V is crystalline (resp. horizontal crystalline) and
the natural map

R[%] ®R0[l] ODcris(V) - ODdR(V) (reSP~ K ®F Dcris(V) - DdR(V))’
P
is an isomorphism (see [Bri08, Proposition 8.2.1]).

Theorem 1.27 ([Bri08, Théoréme 8.4.2]). The category Repgpcris(GR) is a Tannakian subcategory
ofRepQP(GR) and the restriction of the functor ODgy;s to Repgpcris(GR) is an Ry [%] -fiber functor. For
Ve Repg:ris(GR), the isomorphism oo (V) is compatible with the supplementary structures described

above. In the horizontal crystalline case, the category Repgis(GR) is a Tannakian subcategory of

Repr(GR) and the restriction of the functor Dyis to Repg;S(GR) is an F-fiber functor. ForV € Repg;S(GR),
then the isomorphism da.is(V) is compatible with the supplementary structures.

Let MF}‘}RO(@ 0) denote the essential image of the functor
ODeris : Repg™(Gr) —> MFgg, (¢, 9).

These objects are called admissible filtered (¢, d)-modules. As it turns out the essential image
of ODis(V) forms a category with rich structures (see [Bri08, Théoréme 8.5.1]): The category
MF}?RO(qo, 0) is abelian. If D; and D, are two admissible filtered (¢, d)-modules over R [%] then the

same is true for D; ® D,. Similarly, if D is an admissible filtered (¢, 9)-module over R [1%] then the
same is true for D". Equipped with these structures, the category MF%}RO((p, d) is Tannakian.

Theorem 1.28 ([Bri08, Théoréme 8.5.1]). The functor ODis(V) induces an equivalence of Tannakian
categories
ODyis : Repg™(Gp) — MFigl; (¢, 9),

»

with a quasi-inverse given by the functor

OVgis - MF?Q(}RO((Pa 9) — Repgpcris(GR)

¢=1,0=0 9=0
D — (OBuis(R) @ D) NFI'(OBar(R)@gs) Dr) -
Further, we have that the module ODis(V) € MFgg, (¢, 9) is pointwise weakly admissible in the
sense of Definition 1.22 (see [Bri08, Proposition 8.5.2]).

Remark 1.29. In the arithmetic setting, Fontaine showed that admissible objects in the category
of filtered ¢-modules are weakly admissible and conjectured that converse holds as well. This
conjecture was resolved by Fontaine-Colmez in [Fon94a]. Since then several different proofs have
been given in [Col02, Colmez], [Ber08, Berger] and [Kis06, Kisin].

In the relative setting, Brinon calls a crystalline representation V weakly admissible if it is pointwise
weakly admissible and the module OD,5(V) becomes free over a finite étale extension of R, (see
[Bri08, p. 136]). For 1-dimensional crystalline representations, Brinon has shown that they are
weakly admissible (see below). However, in higher dimensions it is not known whether all crystalline
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representations of Gg are weakly admissible? Further, the converse statement is also open, i.e. does
weakly admissibility imply admissibility?

In the 1-dimensional case, it is possible to classify all de Rham and crystalline representations as
in the following result:

Proposition 1.30 ([Bri08, Propositions 8.4.1, 8.6.1]). Letn : Gg, — Zj, be a continuous character.

(i) The character n is de Rham if and only if we can write n = nenyex" where ng is a finite character,
Nur is an unramified character which takes values 1 + pZ,, and it is trivialized by an element

a€l+ joR’(‘)T’r (see Remark 1.25), y is the p-adic cyclotomic character and n € Z.

(ii) The character n is crystalline if and only if we can write = neny. x" where g is a finite unramified
character, ny, is an unramified character which takes values in 1 + pZ., and it is trivialized by an

elementx €1 + pﬁgr (see Remark 1.25), y is the p-adic cyclotomic character and n € Z.

In particular, a 1-dimensional de Rham representation is potentially crystalline.

(iii) Let V = Q,(n) be a one-dimensional crystalline representation. Then there exists a finite étale
extension Ry — R} such that the R} [%] -module R} [%] ®g,r1] ODeris(V) is free. In particular, if
P

ne is trivial then OD¢i5(V) is a free Ry [1%] -module of rank 1.



CHAPTER 2

(¢, T)-modules and crystalline coordinates

Let K be a mixed characteristic non-archimedean complete discrete valuation field with residue
field k of characteristic p. In [Fon90] Fontaine gave a classification of p-adic representations of the
absolute Galois group Gg in terms of étale (¢, I'x)-modules over a certain two dimensional local field
Bg. In the same article, Fontaine also considered finite height representations, i.e. representations
whose periods live in a smaller ring Bi ¢ Bx. Moreover, he conjectured some relations between
finite height representations and crystalline representations in case K is unramified over Q,. We
will explore this line of thought in the relative setting in Chapter 3.

Studying p-adic representations from the point of view of (¢, I')-modules has proven to be very
fruitful. Carrying forward Fontaine’s point of view on the classification of all p-adic representations,
Cherbonnier-Colmez in [CC98] showed that one can consider étale (¢, T')-modules over a subring
BIT( < Bg and classify all p-adic representations of G in terms of such modules. More succinctly, one
can say that all p-adic representations of Gk are overconvergent. Embedding the overconvergent ring
into the Robba ring, Berger in [Ber02] classified p-adic rerpesentations in terms of (¢, I')-modules
over the Robba ring. As an application Berger in [Ber02] and Kedlaya in [Ked04] were able to
connect the theory of (¢, I')-modules to the semilinear-algebraic objects stemming from Fontaine’s
classification of de Rham and crystalline representations.

On the other hand, following Fontaine’s classification, in [Her98] Herr gave a three term complex
in terms of (¢, I')-modules computing the Galois cohomology of the associated representation. Herr’s
complex was adapted to overconvergent setting by Cherbonnier-Colmez in [CC98]. An appropriate
generalization of these results to the relative case has been done in [And06, AB08, AI08]. We will
come back to the computation of Galois cohomology and study some explicit complexes in Chapter
4.

The current chapter consists of two parts, in the first part we will recall definitions and results on
(¢,T)-modules in the relative setting, whereas in the second part we will study several analytic rings
and some of their properties which will be useful in the next chapters. In the rest of the chapter we
will work in the setting described in §1.1.

2.1. Relative (¢,I')-modules

Recall that F is a finite unramified extension of Q, and K = F({,n) for some fixed m = 1. Let
Ky = K({pn) where {n is a primitive p"-th root of unity, for n € IN and n = m. We take R, to be

17
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the integral closure of R®¢, Ok, [Xf_n, Xé)—n] inside E[%] Let us set Ry := Upom Ry. Note that
Ko =Un K, € Ry [’%] The ring R, is an integral domain and a subring of R.

Definition 2.1. Define Gy : = Gal(ﬁ[%]/R[%] ) Ig := Gal(Rm[%]/R[é]) and Hy := Ker (Gg —
TR).

Next, we will define certain rings useful in the theory of (¢, I')-modules. Recall that C(R) denotes
the p-adic completion of R and C*(R) = C(R) is the subring of x’s such that vy(x) = 0. Since C(R) is a
perfectoid algebra, its tilt C(R)" is a perfect ring in characteristic p and we set

Ag := W(C(R)"),

the ring of p-typical Witt vectors with coefficients in C(R)". The absolute Frobenius over C(R)"* lifts
to an endomorphism ¢ : Az — Ag, which we again call the Frobenius. The action of Gg on C(R)"
extends to a continuous action on Az which commutes with the Frobenius. The inclusion K < R [%]
induces inclusions

K<R[}], C,cCR) and AgcAg
Recall from §1.2 that an element x € C(R)" can be described as the set of sequences (x,)nen With

xn € C(R) and x? , = x, for all n € N. We defined a valuation v* on C(R)" by setting v"(x) := vp(x%)

n+1
where x* := x. The field C(R)" is complete for this valuation. Moreover, C*(R) is perfectoid and it

can be shown that
C'(R)" = {x € C(R)", such that v°(x) = 0}.

Further, recall that we set
Aint(R) 1= W(C'(R)").

The inclusion Ok < R induces inclusions
O¢, © C'(R)” and Ain(Ok) © Aine(R).

Moreover, we fixed some elements in these rings as

e := (1,4, G, € C*'(R), m :=[e]-1€ Aine(Og) and ¢ := w,{’(”) = ”ll

Next, we will describe the weak topology on Ag. On C(R)’ consider its natural valuation topology
(as described above), where the collection of ideals {f"(E*(R)b }n o Serve as a fundamental system

of neighborhoods of 0. On the truncated Witt vectors W, (C(R)") consider the product topology via

the isomorphism Wr(C(R)b) = (C(R)b)r (via the ghost map in theory of Witt vectors). The weak
topology on Ay is defined as the projective limit topology on

W(C(R)") =lim W, (C(R)").

Alternatively, for i,j € IN and
Uij = m'Aint(R) + p/Ag,

the weak topology can also be described by taking {U;;}jen as a fundamental system of neighbor-
hoods for Ag.

In the description above, if we endow the truncated Witt vectors W,(C(R)") with discrete topology,
then the projective limit topology on Ay is the usual p-adic topology which is of course stronger
than the topology considered above, hence the terminology.

Remark 2.2. Note that I'g, is isomorphic to the semidirect product of Tr and I'y , where Tr =
Gal(Kw/F) and Iy = Gal(Rc>o [%] /KR [%] ) In particular, we have an exact sequence

1—Tp —Tg, —TIr—1, (2.1)
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where, for 1 < i = d we have (see [Bri08, p. 9] and [And06, §2.4])

Tk, = Gal(R [2]/KuRs [1]) ~ Z,
X : Tr = Gal(Koo/F) = Z,

The group I'r can be viewed as a subgroup of I'g,, i.e. we can take a section of the projection map in
(2.1) such that for y € Tr and g € I’ , we have y gy~ = g0, In particular, we can choose topological
generators {y, y1,..., ya} of I'g, such that

y(m)= A+ )W -1, y(n)=n for1<is<d,
r(X') = A+ oIX7 ] v(X D) =[X7]  fori#jand1=j=<d,

and that y = y¢ is a topological generator of T'x = Gal(K/K) with y(yy) = exp(p™), and where
e = [K : F]. It follows that {y1, ..., y4} are topological generators of T} , y is a lift of a topological
generator of I'r, and y, is a lift of a topological generator of I'k.

Next, we have Gz = Gal(ﬁ[;}] /R[%]) and we define Ty = Gal(Rw [%] /R[%]) and Hy =
Ker (Gg — Tg). So we have that I'g is isomorphic to the semidirect product of T'x and I'; = F;zo. In
particular, for 1 < i = d we have

I = Gal(Rs [3] /K&R[1]) = Z,
X : Tk = Gal(K/K) = 1+ p"Z,,.

In [FW79b, FW79a, Win83], using the field-of-norms functor, Fontaine and Wintenberger con-
structed a non-archimedean complete discrete valuation field Ex < (E; of characteristic p, with
residue class field x and functorial in K. One of the remarkable results in their theory is the
isomorphism of certain Galois groups, which can be stated as follows,

Theorem 2.3 (Fontaine-Wintenberger). Let Ex¥ denote the separable closure of Ex inside C;,. Then
we have a natural isomorphism of Galois groups

Gal(K/Kw) — Gal(Ex"/Ex).

Remark 2.4. (i) In modern language, we also have that the completion of the perfect closure of
E is K2, and there is a natural isomorphism of Galois groups,

Gal(K/Kw) — Gal(Cp/Ke) — Gal(C;/K2) — Gal(Ex?/Ex).

A vast generalization of the above isomorphism for perfectoid algebras, also known as the
tilting correspondence, was done by Scholze in [Sch12] and Fontaine-Fargues in [FF18].

(ii) The field-of-norms functor was further generalized to higher-dimensional local fields by
Abrashkin in [Abr07], as well as in another direction by Scholl in [Sch06].

In [Fon90], Fontaine utilised the isomorphism of Galois groups to classify mod-p representations
of Gk in terms of étale (¢, T'x)-modules over Eg. By some technical considerations one can lift this
to characteristic 0, i.e. classify Z,-representations of Gk in terms of étale (¢,I'x)-modules over a
two dimensional local ring Ak < W(Kﬁ’o) (see [Fon90] for details).

We are interested in an analogous theory in the relative setting. To describe such a theory we
need to consider generically étale algebras over any finite extension of R in the cyclotomic tower
R./R. More precisely, let S be an R,-algebra such that S is finite as an R,-module and S [é] is étale
over R, [1%] Let k = n and we denote by Sk the integral closure of S®g, Ry in S®g, R [%] and set

Seo i = Uk=n Sk. For S as described, S is a normal Ry,-algebra and an integral domain as a subring
of R. As in the case of R, for S we define Gs := Gal(ﬁ[%]/S[%]), I := Gal(Soo[j%]/S[%]) and
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Hs := Ker (Gs — TIs). Again, I['s is isomorphic to the semidirect product of T'x and I';, where
% = Gal(Sw [%] /KOOS[%]) is a finite index subgroup of T} = Zg.
In [And06], Andreatta constructs an analogue of Ex viewed as a subfield of I?fo to any S in
Definition 2.1, he functorially associates a ring Eg c Fr St.. We will recall his constructions below.
Let Ex denote the valuation ring of Ex and let 7 € I?; be a uniformizer which is the reduction
of g € W(I?fo) modulo p (see Remark 2.6 for the choice of k).

Definition 2.5. Let § € Q,0 < § < 1and N € IN. For § small enough and N large enough, depending
on S (see [And06, Definition 4.2] for precise formulation of § and N), we define the ring

Eg := {(ao,...,ak,...) € §:o such that a; € Sk/p5Sk forall k = N},

and set
ES L= EE [%] .

In [And06, Proposition 4.5, Corollaries 5.3, 5.4], Andreatta shows that the ring E is finite and tor-
sion free as an Ep-module. It is a reduced Noetherian ring and 7-adically complete. By construction,
it is endowed with a 7-adically continuous action of I's and a Frobenius endomorphism ¢, which
commute with each other and are compatible with the respective structures on S’ Moreover, Eg
is a normal extension of Ey, étale after inverting 7k and of degree equal to the generic degree of
Ry c S. The set of elements {7g, X7, ..., X } form an absolute p-basis of E;. Further, the ring §§o
is normal and coincides with the 7x-adic completion of the perfect closure of E;. The extension
E; — St is faithfully flat. For every finitely generated Eg-module M, the base change of M via the
above extension is Tg-adically complete.

We have liftings of these rings to characteristic 0. From [And06, Appendix C, Proposition 7.8], we
have that there exists a Noetherian regular domain, complete for the weak topology (induced from
the weak topology on the ring of Witt vectors),

Ane W(RL[2]),

endowed with continuous and commuting actions of I'g and ¢, lifting those defined on Eg. Moreover,
it contains a p-adically complete subring Ay, lifting E}, and it contains {r, [X7], ..., [X;]}.

Let S be an R-algebra as in Definition 2.1. By the equivalence between the categories of almost
étale Ro-algebras and almost étale Eg-algebras (see [And06, Theorem 6.3, Proposition 7.2]), let Ag
be the unique finite étale Ag-algebra lifting the finite étale extension Er c Eg. It is a Noetherian
regular domain, complete for the weak topology, endowed with a continuous action of I's and the
Frobenius operator ¢, lifting those defined on Es and commuting with each other. Moreover, it
contains subring Ag lifting E§ such that the former is complete for the weak topology.

Remark 2.6. Specializing the definition of Ag above for S = Ok gives us that Ay is the ring of power
series Y ;e iy (see also [Fon90]), where a; € Of goes to 0 as i — +o0 and 7k € W(Kjo)

Next, we will take the union of Eg above which will produce a ring helpful in the classification of
mod-p representations of Gg, in terms of étale (¢, I'r)-module over Ep.

Definition 2.7. Define
E" :=UEg,
S

where the union runs over all R,-subalgebras S c R, for some n € N such that S is normal and finite
as an R,-module and S [%] is étale over R, [%] Also, we set

E:=E"[L].

These rings are complete for the 7-adic topology, and equipped with Frobenius and a continuous
action of Gg. Further, from [AI08, Proposition 2.9], we have that C(R)® = R, (C*(R)b)HR = R,



Relative (¢,T)-modules 21

(C(R)?)™ = R, [4], (B*)™ = E}, and E™* = Ep.
Next, in characteristic 0 we set

Bg = Ag[;] =qu@in

equipped with the direct limit topology.

Definition 2.8. Define

A := completion of |JAs c Ay for the p-adic topology,
S

where the union is taken over all R,-subalgebras S c R, for some n € N such that S is normal
and finite as an R,-module and S [%] is étale over R, [%] . We also equip A with the weak topology
induced by the inclusion A c Az. Next, we set

A" :=AnAin(R), B" :=A"[]], and B :=A[]],
and equip them with the topology induced from the weak topology on A.

These rings are stable under ¢ and are equipped with an action of Gg, continuous for the weak
topology. Moreover, from [AI08, Lemma 2.11], we have AT = Ap, (A*)H* = A} and Agr/pAg = Eg.
Having introduced all the necessary rings, finally we come to (¢, I'z)-modules.

Definition 2.9. A (¢,T'z)-module D over Ay, is a finitely generated module equipped with
(i) A semilinear action of T'g, continuous for the weak topology (see Remark 2.12);
(ii) A Frobenius-semilinear homomorphism ¢ commuting with I'r.

These modules are called étale if the natural map,
1®§0 : AR®AR,([)D — D:

is an isomorphism of Ag-modules.

Denote by (¢, FR)—Modf\tR the category of étale (¢, I'r)-modules over Ag with morphisms between
objects being continuous, ¢-equivariant and I'r-equivariant morphisms of Agz-modules. Next, denote
by RepZP(GR) the category of finitely generated Z,-modules equipped with a linear and continuous
action of Gg, with morphisms between objects being continuous and Gg-equivariant morphisms of
Z.,-modules.

Let T € Repr(GR) then we have that,

Proposition and Definition 2.10. The module
D(T) := (Az, )™,

is equipped with a semilinear action of ¢ and a continuous and semilinear action of Tr, which commute
with each other. The functor D takes values in the category (o, I“R)-ModZtR, ie. D(T) is an étale
(@,Tr)-module over Ag. Further, if T is free of finite rank, then D(T) is projective of rank = rkz, T.

Theorem 2.11 ([And06, Theorem 7.11]). The functor
D: RepZP(GR) — (o, I“R)—Modf;tR,
defines an equivalence of categories. For D an étale (¢,I'r)-module over Ag, a quasi-inverse is given as

V(D) := (A®a,D)"".
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Let T be a Z-representation of Gg, then the natural map
A@a,D(T) — A®z, T

is an isomorphism of A-modules compatible with Frobenius and the action of Gg on each side.

Remark 2.12. Let T be a Z,-module equipped with a continuous and linear action of Gg. Suppose
that

k
T=7y =[] z/p"z
=1
as a Zp-module. Then
k
T®z, Az — Al HAi/prfAF
=1
as Az-module and, in particular, considering the weak topology on Az, the product topology defines
a topology on T ®z, Ag. It is independent of the choice of the presentation of T as a Z,-module
and the action of Gy is continuous for such a topology. By construction, D(T) are submodules
of T ®z, Az and therefore are endowed with induced topology. This topology is called the weak
topology on (¢, 'r)-modules.
On the other hand, given a finitely generated Ag-module D, we can equip D with a weak topology

induced as the quotient topology from the surjection Ay — D, for some n € IN and where we
consider the product of weak topology on Aj.

The operator

Next, we will define a left inverse i/ of the Frobenius operator ¢ on the ring A. Let S be an R-algebra
as in Definition 2.5. Then, from [AB08, Corollaire 4.10] we note that the Ag-module ¢ !(Ag) is free
with a basis given as

Ugrp = (1+ 1) P[X;]9P - [X5]%P for a = (ag, ..., a) € {0, 1,...,p - 1}104],

Considering the union over all such S we get that ¢ !(A) is a free A-module with a basis given
as above (slight caveat is that we should replace ¢ 1(As) by As and take p-th root of all the basis
elements in loc. cit.).

Define the operator

y:A— A
X —> lﬁ o Try1aya © @ ().

Proposition 2.13 ([ABO08, §4.8]). The operator i satisfies the following properties:
(i) o =id;letx €A and write p"'(x) = Y, XoUasp, then we have Y(x) = xo;
(ii) ¢ commutes with the action of Gg;

(iii) Y(A*)c A",

2.2. Overconvergence

In the article [CC98], Cherbonnier-Colmez have shown that all Z-representations (resp. p-adic rep-
resentations) of Gk are overconvergent. Generalizing this to the relative case, in [AB08], Andreatta-
Brinon have shown that all Z,-representations (resp. p-adic representations) of Gg are overcon-
vergent. In this section we will recall some of these results. We begin by defining overconvergent
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subrings of Az. Let v > 0 and let o € OEP such that vg(a) = 1/v. Set

A(FO’U] c= { Z Pk[xk], UUE(xk) + k — +oo when k — +Oo}
keN

A%O’U]* r= { > M xd e A%O’v] with vug(x) + k = 0}
keN
= p-adic completion of Aj,¢(R) [[L]

Note that we have A%)’v] = A%)’v]+ [[ plb ] . The action of Gg on Ajn¢(R) extends to a continuous action
of Gg on these rings which commutes with the induced Frobenius ¢. For the homomorphism ¢, we

have

(P(A%)wh) A(Ov/p and (P( v]) :A%O’U/P]_

Moreover, we have injections (see [CN17, §2.4.2])
AL Bip(R) and ADY — By (R) if v=1.
Definition 2.14. Define the ring of overconvergent coefficients as

Al := A% and BI : Bl = ALY
R U€%>0 R R Ue%)() UE%>0 R [p ]
Next, set
Ag}’v] :=ARﬂA%O’v] and A®Y ;= AQA%)’U],

and define
A} i=AgnAl= U AR and AT :=AnAl= Y A0
vEQ-o VEQ-o

Now, let us describe the topology on the rings defined above. For x = ¥, p[xi] € B(0 ol

set

, We

wy(z) = inf (vv" (xg) + k).

(0,0]+

This induces a valuation on A" and it is complete for the topology induced by the valuation

(see [AB08, Proposition 4.2]). We will equip A% with the topology induced by the inductive limit of

the topology described above. Further, AT is also endowed with a Frobenius endomorphism ¢ and
a continuous action of Gg which commutes with ¢ (see [And06, Proposition 7.2]). These actions
are induced from the inclusion A; c Ag. Further, all subrings of A% appearing above induce these
structures as well.

Lemma 2.15. (i) The restriction of the operator / from Proposition 2.13 to AT gives us that y(AT) c
AT (see [AB0S, §4.8]).

(ii) We have (A(O’v])HR = Ag)’v], (A1) = A}; and A};/pA}; = Eg (see [AI08, Lemma 2.11]).
Now we come to overconvergent (¢, ['r)-modules.

Definition 2.16. A (¢,I'z)-module D over A}'; is a finitely generated module equipped with
(i) A semilinear action of I'g, continuous for the weak topology (see §2.1);
(ii) A Frobenius-semilinear homomorphism ¢ commuting with Ty.

These modules are called étale if the natural map,

1®¢ : AR® + D—>D,
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is an isomorphism of A;—modules. Let (¢, FR)—Modf:T denote the category of such modules.
R

Denote by (¢, FR)-ModéAt+ the category of étale (¢, T'r)-modules over A;g with morphisms between
R

objects being continuous, ¢-equivariant and I'g-equivariant morphisms of A;g—modules. Recall that
Repr(GR) is the category of finitely generated Z,-modules equipped with a linear and continuous
action of Gg, with morphisms between objects being continuous and Gg-equivariant morphisms of
Z.,-modules.

Let T € Repzp(GR) then we have that,

Proposition and Definition 2.17. The module
DY(T) := (A &z, T)™,
is equipped with a semilinear action of ¢ and a continuous and semilinear action of Tr, which commute
with each other. The functor D' takes values in the category (¢, I‘R)-Modth, i.e. DY(T) is an étale
R
(o, Tr)-module over A};. Further, if T is free of finite rank, then D¥(T) is projective of rank = rkz, T.
Theorem 2.18 ([AB08, Théorém 4.35]). (i) The functor

D' : Repy, (Gr) — (¢, FR)—ModZt;,

defines an equivalence of categories. For D an étale (¢,I'r)-module over Al a quasi-inverse is
given as
il . ¢=1
V(D) := (AT N D)"".

(ii) Let T be a Z,-representation of Gg, then the scalar extension along A;g — Apg gives an isomor-
phism of (¢, Tr)-modules over Ag,

AR®,: DY (T) = D(T).

Moreover, the natural map
AT @a,D(T) — AT®z, T

is an isomorphism of AT -modules compatible with Frobenius and the action of Gg on each side.

(iii) If T is free of rank h, then there exists an R-algebra S such that S is normal and finite over R,

S [1%] is Galois over R [%] and A; ®,+ DT(T) is a free A;—module of rank h.

Ak
Remark 2.19. By construction, D(T) is a submodule of T ®z, Ag and therefore endowed with
induced weak topology. On the other hand, given a finitely generated A;E—module D, we can equip
D with a weak topology induced as the quotient topology from the surjection A;;” — D, for some

n € IN and where we consider the product of weak topology on A;g".

2.2.1. Regularization by Frobenius

In this section we will introduce certain analytic rings. These rings will be useful in generalizing
certain technical results of Berger (see Proposition 2.23) and at the same time it will set the stage for
introducing certain variants of these rings in the next section which we will be useful for Chapters 3
&5.Let0<us<vandleta,f € O(Ep such that vg(@) = 1/v and vg(f) = 1/u. Set

].

(A
L)

[

=

A[if‘] := p-adic completion of Ainf(R)[

> >l

A%“’] := p-adic completion of Aj,¢ (R)[

—|
[Sa

a
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The action of Gg on Ajy¢(R) extends to a continuous action of Gy on these rings which commutes
with the induced Frobenius ¢. For the homomorphism ¢, we have

(p(A%‘]) = A[ﬁu/p] and (p(A%“’]) = A%/p’v/p].
Moreover, we have injections (see [CN17, §2.4.2])
AWM Bi(R) if u<1 and ALY BRL(R) if us1sw.

We set
Bl = U (1B = U ) AL [E]

v>0 usv v>0 usv

T
Ryrig

B% g’ It follows from the definitions that B% c B% rig compatible with the action of Gy and the

Frobenius endomorphism. Finally, let Bﬁrig = NneN @"(B,,x) Which is stable under the action of Gg

The ring Bﬁ rig induces a continuous action of Gg, as well as a Frobenius endomorphism ¢ : B

and the Frobenius homomorphism.

Remark 2.20. Let [7] € Ajyf denote the Teichmﬁller lift of the reduction modulo p of 7, written as

7 € Og,. Let us take r,s € Q such that r = Pv and s = p . Then it can easily be checked that
Ainf(R){ = ], ”7] } = A%‘ ] This is the translation between Berger s notation and ours (see [Ber02,
§2.1]).

Using the remark above, it is straightforward to check that the results of [Ber02, §2.1] hold in our
case as well. In particular, we have

Lemma 2.21 ([Ber02, Lemme 2.5, Exemple 2.8]). (i) For u; < up < v, < vy, we have a natural

inclusion A[ vl A[Fuz’w].

(o] o _ glised . [u+o0]
max - u>0 D= .
(ii) We have equalities Apax(R) = A =B and B =Ny=0 B

Brax = By Rorig

Using Lemma 2.21 (i), we can define for any interval I ¢ R U{ +0<>} the rings AI = Nuolel A[u’v] and
BIP = My,o)el B[ “J, Next, we define a p-adic valuation Vf, . on B by setting V[, ,)(x) = 0 if and

[u.0]
R B
then we have B% g = Yoo B[ﬁv I We equip B[ﬁv ! with the Fréchet topology defined by the set of V;

only if x € A%‘ vl pAﬁu °] and such that the i image of V[, ) is Z. Further, let us set B[ﬁ] = Ny<p B>
where I c (0, v] runs through all closed intervals. Finally, we see that A[ﬁv Vis the ring of integers of
[} for the valuation Viv,0]-

Lemma 2.22. (i) Let uy = vy = 1, then the natural inclusion of A}
induces an exact sequence

max (

O.vol+ 0 A [to,00]
R) and A in A

0 — Aui(R) — ATV © A (B) — AL — 0.

(ii) Let Bie(R) = Ane(R) [%] , then for v € Q.¢ we have an exact sequence

0 — Bini(R) — BY @By . — B — 0.

Proof. (i) The proof essentially follows from the proof of [Ber02, Lemme 2.15]. The map
A%)’U°]+ ® Apax(R) — A%‘ o] i surjective because it suffices to write an element of the right
hand side as a sum of elements of objects on the left hand side. This is clear from the definitions
and Lemma 2.21. Next, Aj,¢(R) is contained both in A%)’UO]+ as well as in Apax(R), therefore in

their intersection. So we need to show that the map Ajy¢(R) — A%)’UO]+ N Amax(R) is surjective
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as well. We are going to show this modulo pA[Fu‘)’U‘)] and conclude the general case by dévissage
(note that modulo p this map is not injective anymore). Let X, Y be two indeterminates, then
from [Ber02, Lemmes 2. 1 & 2.9] we have identifications Apax(R) = Aine(R){X}/(pX - [p"]),
AR = AR Y}/([p*]Y -p) and AL /(p) = €*(R)" /(p*)[X, X1]. The image of Apax(R)
in the latter ring is 1dent1ﬁed with C*(R) /(p*)[X] and the image of A(O’v‘)]+ gets identified
with C*(R)"/(p*)[X~']. This shows that the image of their 1ntersect10n (which is a subset
of the 1ntersect10n of thelr respective images) is a subrlng of C*(R) /(p") and therefore the
map Ap(R) — A(O vl /Amax(R) is surjective modulo PAL [wo.w] g6 if x € Anax(R) OA%)’U‘)]+,
then there exists y € Aint(R) such that x - y € pA; Lo, v0]

(0,90]+

. This means that x - y is an element

of pAmax(R) as well as of pA + [p*JAins(R) (this follows from the discussion above and
[Ber02, Lemme 2.9]). Since p divides [p°] in Apax(R), there exists z € [p°]Aj¢(R) such that
x-y-2 € p(Amax(R)N A%)’v°]+). Since Ajn¢(R) is p-adically complete, we can iterate this process
to conclude the claim.

(ii) The proof essentially follows from the proof of [Ber02, Lemme 2.18]. Let u, = p™" for n € N.
First, for u, < v we will show that the sequence

0— a0 — B — B

[un,v]

is exact. It is clear that any element of Bﬁu ]

can be written as a sum of elements of B%O’U
and B%‘ ] 4nd we need to show that two such expressions differ by an element of Biy¢(R).
Up,+00]

This amounts to showing that B%)’v] N B[ﬁ
applying ¢™" to BQ’p "In B[l“”m]

Bint(R), which can be deduced directly or by
= Binf(R) where the latter expression is true from (i).

Next, we will show the claim. For each n € IN, we have B[F] < By [un-2] therefore any x € B[ id

can be written as x = a, + b, with a,, € B%O I and b, € B%‘ mre] N ote that if we have another

expression x = a1 + by with apiq € B%]’v] and b,,; € B%‘"’wo] such that b,.1 — b, € Biys(R),
then up to modifying a,.; and b,.; by elements of Bj,¢(R), we can suppose that a, = a,.; and
b, = by.1. Therefore, x = a+ bwitha € B%O’U] and b € NpeN B%‘"’wo] = B%rig (see Lemma 2.21

(if)).
|

Now we come to the main result of this section: regularization by Frobenius,

Proposition 2.23. Let h € N and matrices A € Mat(h, B; ) ) andY,Z € Mat(h, Bz . ) such that
,rig Rrig

¢(A) = YAZ, then A € Mat(h, B, ng)

Proof. The proof essentially follows from the proof of [Ber04, Proposition 1.4.1]. Note that there
exists v > 0 such that A € Mat(h, B%j]), so there exists ¢ € IN such that A € Mat(h,p‘cA[ﬁv]). By

the definition of Birig we have that ¢~!(Y), 9~(2) € Mat(h, B%’rig). Since Birig c B[Fv ] (see Lemma
2.21), from [Ber02 Corollaire 2.20] we get that there exists m € IN such that ¢7'(Y), ¢"}(2) €

Mat(h p’mA ) for all w = v. Next, we know that ¢! (A[U]) A%) “l Therefore, by induction over

n € N and using the equation A = ¢™'(YAZ), we get that A € Mat(h,p‘c‘z’"”A%Jnv]). Now using
Lemma 2.24 with k = 2m, we have that Npen p’k"A[ifp "ol B% g Hence, we get the claim. [ |

Following observation was used above:

Lemma 2.24. Let k € N.q. Then

N P "ART™ = Ai(R) and () p AL < By
nelN neN Rorig’
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Proof. The proof essentially follows from the proof of [Ber02, Lemme 3.1]. Let x € Nyen P k"A 0.0+

Since x € A(ﬁ vl

pkn x € A%O,p"vh

side of the latter inequality goes to 0 as n approaches +oo, therefore v°(x;) = 0 for each i € NN, i.e.
X € Ainf(R).

Next, let x € Npen p’k"A[if' . For each n € N, we can write x = a, + b, with a, € p
and b, € B%rig. By Lemma 2.22 (ii), we obtain that a, — a,.1 € Bit(R), whereas we already have

, we can write x = Y .. p'[x:] uniquely and so we have p*"x = .. p"**"[x;]. Now

, so we get p"vv*(x;) + i + kn = 0, which implies that v"(x;) = - ’;,f‘; The right hand

"] —kn A (0.p"v]+
A R

k(n+1) A(B,p”vh
R

that a, - a1 € p~ . So this implies a, — ay.1 € p’k(””)Ainf(R) and therefore, up to

modifying a,.; by an element of p’k(””)A-nf, we can assume that a, = a,.; = a. This implies that

a € NpeN p_k"A%O’PnU] = Ainf(R), hence x € B rig [

The following statement will be useful for the proof of Lemma 3.12:

Corollary 2.25. Leth € N and matrices A € Mat(h,B) and Y, Z € Mat(h,B*) such that (A) = YAZ,
then A € Mat(h,B").

Proof. The proof essentially follows from the proof of [Ber04, Corollaire 1.4.3]. From Proposition
2.23 we have that A € Mat(h BZ rig). So we only need to show that B ﬂB%rig = B*. But this follows

from the fact that B HBE g = = Bint(R) and BT NBips(R) = B* (see Lemma 2.22). |

2.3. Rings of analytic functions

Recall that R, is the p-adic completion of an étale algebra over W{X, X1}, i.e. we wrote
Ry := W{X,X"MZ1, ... Z} (Q1, ..., Qs),

with Q; € W{X, X '}{Z,....,Z} for 1 < i < s, some multivariate polynomials such that
det (aQ’ ) L<ijes is invertible in Ry. Next, we defined R, := Ox{X,X '} and using the definition
of Ry, we set

R = RD{Zl, ...,ZS}/(Ql,..., QS),

so that Ry provides a system of coordinates for R and the latter is totally ramified at the prime ideal
(p) < Ry.

Let r} and r, denote the algebras Or[[Xp]] and Or[[Xp]]{X;'}. Sending X, to @ induces a surjective
homomorphism r; — Ok. Let R}, denote the completion of Or[Xp, X, X 1] for the (p, Xp)-adic
topology. Sending X, to @ induces a surjective homomorphism R, , — R,, whose kernel is generated
by P = P5(Xy). This provides a closed embedding of Spf R, mto a formal scheme Spf R} _, which
Q’) is invertible in R. As Q;’s have
coefficients in W{X, X '}, we can set R}, to be the quotient by (01, ---» Qs) of the completion of
R; o[Z4, ..., Zs] for the (p, Xp)-adic topology. Again, we have that det ( 9 ) is invertible in R} (since it
is modulo P). Hence, R}, is étale over R, , and smooth over O. Sendmg Xo to @ induces a surjective
homomorphism R} — R whose kernel is generated by P = P,(X,). This can be summarized with a
commutative diagram of rings

@,0°

is smooth over Or. Since R is étale over R, we have that det (
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Spf R Spf R

\/

Spf Ro

|

Spf W(x){X, X1}

T

Spf R, Spf R},

@,0°

where the vertical arrows are étale extensions and the horizontal maps are obtained by sending
Xo — @ and the rest are natural maps. Since P = Xj mod p, we have

R [

. k
k!]ke]N:R [ X

@ L[k/e]! ] kelN*
So, we set
RPD . di 1 +
-~ .= p-adic completion of R [ ]keN

In summary, we have a diagram of formal schemes where the horizontal arrows are closed embed-
dings into formal schemes smooth over Of, obtained by sending X, — @ on the level of algebras,

Spf REP
\

Spf R Spf R}
Spf R, SpflR;’D
Spf Ok Sp% ry

/

Spf OF.

Let Q} denote the p-adic completion of the modules of differential of R relative to Z. We have that
d k
Qp = PRy dlogX; and Qf = A\ Qk,
i=1

and the cokernel of the natural map QI];O ®r, R — Q§ is killed by a power of p (see Proposition 1.1).
In particular,

k d
Oh[2] = A (DR[L] dlogx).

Moreover, since R;) is étale over Ry, , for S = R, R}, we have that

d
Qf = S @ (@s dlogX;).
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Definition 2.26. For 0 < u = v define the rings,

[v e]
Rg)’”] = p-adic completion of R, [ - ]ke]N’ RSDO’U] ‘= Rg),v]+[i],

R .= = p-adic completion of R, [pluk/el]ken\]’

[vk/ e]

Rl[Du,v] = p-adic completion of R, [ Lokl Xk ]keN,

R, := p-adic completion of R}, [YO] .
We will write R; for x € {,+,PD,[u], (0, v]+,[u, v]} and for R = Ok, we write rg instead. Going
from R’ to RX involves only the arithmetic variable Xj, so we have isomorphisms
R} = ry& Ry,
where ® is the completion of tensor product for the p-adic topology.

Definition 2.27. We define a filtration on the rings in Definition 2.26 by order of vanishing at
X() =0 = é/pm - 1.

(@) Let S = Rg)’v]+ (v <1), Rg)’v] (v <1), R([D”’v] (1 ¢ [u, v]) or Ry. As P is invertible in S[%], we put
the trivial filtration on S.

(b) Let S be the placeholder for all other rings occuring in Definition 2.26, such that P is not
invertible in S [%] Then there is a natural embedding S — R [%] [[P]] by completing S [ %]

for the P-adic topology. We use this embedding to endow S with the natural filtration Fil*S =
SﬂPkR[%] [[P]] for k € Z.

Next, we note a lemma that will be useful in Chapter 5.
Lemma 2.28 ([CN17, Lemma 2.6]). Let r € IN.
(i) For f € REP we can write f = fi + f, with f; € Fil'REP and f, € ﬁR;

1R+

(if) For f € RSY we can write f = fi + f, with f, € Fil'R, and f, € -

Proof. First we note that from the definitions an element f € r:P (resp. fe r([au]) can be written
(uniquely) in the form f = f* + f~ with f* € Fil'r’P and f~ € ﬁOF[XO] (resp. f e [ﬁOF[XO]) of

degree < re - 1. Next, from the equality REP = r2P®,. R?) (resp RED = r([pu]®, RY), it follows that we
can erte any f € REP as fl + f, with f; € Fil'REP and f, € = 1),R and we have the same statement

for RY with fi€ Fil' R and f2 € [ruJ R, [ |

Notation. Let S be a Z,-algebra. A homomorphism f : M — N between two S-modules is said to
be a p™-isomorphism, for some n € N if the kernel and the cokernel of the map f are killed by p".

Lemma 2.29 ([CN17, Lemma 2.11]). Lett := p™log(1 + X). If’{%1 <us % <l<w and}] < u, then

(i) t belongs to pr@ “} and to Pro [u.v/p],

and t € p~r, uv/p],

[u,v]

(i) 5 €p7'ro

(iii) x — t"x induces a p-isomorphism r*%) = Fil'rl“*) and a p?"-isomorphism ri¥/P) = yL-v/P],

We note an important fact from [CN17], the implicit function theorem, which would help us lift
certain maps over étale extensions. Let A : Rj, , — A be a continuous morphism of topological
rings. We have R}, = R} {Z}/(Q), where Z = (Z,,...,Z;) and Q = (Qy, ..., Os). We would like to
extend A to R} which amounts to solving the equation QMY) = 0in A, where if F € R, AZ}, we
note F* € A{Z} the series obtained by applying A to the coeffficients of F. Then,
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Proposition 2.30 ((CN17, Proposition 2.1 & Remark 2.2]). The equation Q*(Y) has a unique solution
inZ, +I°.

Proof. Let J = (g%)lsi’jss € Mat(s, Ry A2y, ZS}). Suppose that there exists an ideal I ¢ A such
that A is complete with respect to the I-adic topology, Z) = (Z 3, ..., Zs ;) € A® and H) € Mat(s, A),
such that the entries of Q*(Z,) belong to I. Now, since R7, is étale over A, so det ] is invertible in R, |
and therefore there exists H € Mat(s, Ry AZs s ZS}) such that HJ - 1 has its entries in (Qy, ..., Q).
But Q*(Z;) has coordinates in the ideal I, therefore H*J* - 1 has entries in I. Thus, we can apply
[CN17, Proposition 2.1], by taking (in the notation of loc. cit.) z = 1 and Hy = H*(Z;). Hence, the
equation Q*(Y) has a unique solution in Z; + I°. |

2.3.1. Cyclotomic Frobenius

Definition 2.31. Over R;, | we can define a lift of the absolute Frobenius on R, ,/p by

¢ Roo — Rog
Xol—)(l+X0)p—1
X; > X? for i<i=<d,

which we will call the (cyclotomic) Frobenius. Clearly, ¢(x) - x” € pR;,  for x € R, . Using
Proposition 2.30 with A; = R, , A] = A, = R, A = ¢, I = (p) and Z; = ZP, we can extend the

®,0°
Frobenius homomorphism to ¢ : R, — R}. By continuity, the Frobenius endomorphism ¢ admits
unique extensions

RP — RPP, R, Rl Ol plOolple o pluel | plevl ang R, — R,

Explicitly, we can write

k
reD = {f = Z ak%, such that ax € OF goesto 0 as i — 00},

keIN
k
r([Du] - {f = Z ak}%, such that a; € Or goesto 0 as i — 00}.
kelN

Let S = rfP or r2. Denote by vx, : S — N u {+c0} the valuation relative to Xy, i.e. if f = ¥ ap X§,
then vy, (f) = inf {i € N, a; # 0}. For N € N, we define Sy = {f € S, vx,(f) = N}. Define REB\, and

R([D“}V as the topological closures of rgb)\, ® Ry, < RED and r([Du]]V ®+ Ry, © R, respectively.

Lemma 2.32. (i) Let N € N.(, s € Z and N = se (resp. N = se/u(p — 1)), then 1 — p~*¢ is bijective
on RED, (resp. R[[D'f] ).

(ii) The maps
1-¢: RP/R} — RPP/R?.
1-¢ : RY/R; — RUI/R,

are bijective.

Proof. For (i), see [CN17, Proposition 3.1]. In (ii), we will only treat the case of REP/R}, the other
case follows similarly (an application of (i)). Write x € REP as

_ X5
X = Z Ak Tk/e]l»
k=0
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where a; € R}, goes to 0 as k — oo. By (i), we know that the series of operators 1 + ¢ + ¢* + -

converge as an inverse to 1 - ¢, i.e. there exists y € REP such that (1 - ¢)y = x - a € Rgl,)l. Since

ap € R}, we get that 1 - ¢ is bijective on RE/R?. [

2.3.2. The operator ¢

In this section we will define a left inverse of the cyclotomic Frobenius ¢, which we will denote by
. This operator is closely related to the operator defined in Proposition 2.13 (this will become clear
in §2.4). However, we prefer to give an explicit definition here. Let

Ug = (1+X0)®X{" - XJ for a=(ap,...,ag) € {0,1,...,p - 1}1%,

Remark 2.33. Note that R, is Xj-adically complete, therefore 1 + X is invertible in it. Moreover,
by definition Xj, ..., X; are invertible in R,, therefore u, is invertible in R}, for a = (o, ..., 2g) €
{0,1,...,p - 131041,

Also, set

d d :
80 = (1 + Xo)m, ai = XlTK for 1<i<d.

Therefore, for 0 < i < d we have

diug = aiuy and (ug) = ub.

Lemma 2.34 ([(CN17, Proposition 2.15]). (i) Any x € R,/p can be written uniquely as x =
o Ca(x), With 9; o co(x) = aicy(x) for0 < i< d.

(i) There exists a unique x, € Ry/p such that c,(x) = X u,.
(iii) Ifx € R/ p, then c,(x) € R,/ p.

Proof. Let S = Rp/p, S* = R /p. Then 9;(9; — 1) -+ (9; — (p — 1)) is identically 0 on R,/ p, hence also
on S by étaleness. It follows that 9; is diagonalizable for all i and since these operators commute
pairwise, we can decompose S and S* into the direct sum of common eigenspaces. This shows (i)
and (iii). Now, differentials of the elements in the set {1 + Xp, X1, ..., X} form a basis of the module
of differentials of R,/ p, hence also of S, since it is obtained as the completion of an étale algebra
over Ry o/ p. From [Tyc88, §1II, Theorem 1], it follows that {1 + Xp, X1, ..., Xy} is a p-basis of S which
can be rephrased by saying that any element x of S can be written uniquely as x = ¥, x5 u,. Since
di(xbuy) = aixbug, for 1 < i < d, this proves (ii). |

Proposition 2.35. (i) Anyx € R, can be written uniquely as x =Y, ca(x), with c,(x) € gp(Rw) Ug.
(i) Ifx € Ry and if cy(x) = ¢(xq)Uq, then co(x) € R for all o and

dicy(X) — aicy(x) € pR,  for 0<i=<d.

(iii) For x € R>*", we have c,(x) € R&" forall a.
Proof. (i) and (ii) follow from the lemma above. (iii) follows from [CN17, Proposition 2.15]. |

Definition 2.36. Define the left inverse ¢ of the Frobenius ¢ on S = R} or S = R, by the formula

Y(x) = 97 (co(x)).

Since R, is an extension of degree p?*! of ¢(R,) with basis the u,’s and since ¢(u) = uf for all a,
we have
TrRm/rp(R@)(ua) =0 if a #0,
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and we can define ¥ intrinsically, by the formula
P(x) := ﬁf/’_l o TR, /p(R,) (X)-

Note that i is not a ring morphism; it is a left inverse to ¢ and more generally, we have /(¢(x)y) =

x¥(y). Also,
dio@=ppod; and d;o Y =p tyod; for i=0,1,..,d.

The first equality can be obtained by checking on the basis elements u,. For the second equality,
note that for x € R, and in the notation of Proposition 2.35 we have

ai((p(xa)ua) =0j° (P(xa)ua + (P(xa)ai(ua) = (p(P ° ai(xa) + aifp(xa))ua = (P(pai(xa) + aixa)uw

Applying ¥ to the latter expression we note that it is nonzero only if a = 0, in which case we get
that ¢ 0 9; € pR,, for all 0 < i < d, the equality follows from this.
For any k € N, we can write X§ = Z}i:ol @(ajr)(1 + Xo) for a; € R;. Therefore, by continuity

Lemma 2.37. (i) The explicit formula for y extends to maps R — R and RU+*) — RIP%P?],

(ii) For the same reasons, the maps x — c,(x) also extend and lead to decompositions S = @, Sg,
where S, = Sug for S = RX with x € {,+,[u], (0, v]+, [u, v]}. Since Y(x) = (p’l(co(x)), we have

V0= P s,.

a#0

Lemma 2.38. IfS = R forx € { ,+,[ul, (0, v]+, [u, v]}, then for0 < i < d the operator 9; on S¥ | pS¥
is given by multiplication by a;, where a; is the i-th entry in a = («, ..., ag).

Proof. If x € { , +}, this is part of Proposition 2.35. For x € {[u], (0, v]+, [4, v]}, elements of S;‘ are
those of the form ¥, p"* XFxi, where x; € S* goes to 0 when k — +co and 7y, is determined by
“x”. Let x = Y ez P X§xy. For 1 < i < d, we have

ai(X(fak) - (x,-X(fak = Xg‘(ai(ak) - aiak) € pS”,

by Proposition 2.35.
For i = 0, first we look at S} and write

p-1
x=Y phxe Y pla)(1+ Xy for aj €S
keN j=0

Then

-1 )
ca(x) = Z Prk QD(aj,k)c(ao—j,al,»--,ad)(xk)(l + XO)J,
=0 kelN

]

~.

where @ - j is to be understood as its representative modulo p between 0 and p - 1. Since
d (C(ao—j,al,-»-,ad)(xk)) ~ (00 = ) Cap-j,ty ) (Xk) € pST and 9y o @ = peo 9y, we get the desired conclusion
for Sl Next, for S©?I* using the result for S we get that dy(x) - apx € pSn SO = psO-2l*, Finally,
combining the results for SI*! and $©*1* we get the conclusion for Sl*?I, |

Next, we note a lemma which will be useful in the proof of the next claim and Proposition 5.41.
Lemma 2.39. Let x € RV™°, then XEP(x) = Y(p(Xo)kx) fork € Z.

Proof. Note that it is enough to prove the statement for k = 1. Indeed, k > 2 case immediately follows
from this, whereas for k = -1 we observe that since X, is invertible in R, we have X, /(p(X;')x) =

Y(p(Xo) (X5 1)x) = Y(x).
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Now, to show the case k = 1, we recall that ¢(Xp) = (1 + Xp)? - 1. Next, from Proposition 2.35 let
us write x = Y., ¢4, then we have /(x) = ¢~1(c;). Now it follows that,

P(p(X0)x) = Y1+ X0)P = 1) = Y1+ X0’ x) = Y(x) = (1+ Xo)g™ () = 97 (e0) = Xop (),
as desired. |
Proposition 2.40 ([CN17, Proposition 2.16]). Let v < p.
) ¢ R) < X;NRG

(i) Ife = p™, then X5 ROV is stable under y;

(iii) The natural map

& p(RS e — (RS)"
a#0

is an isomorphism.

Proof. (i) follows from Proposition 2.35 (ii) and (iii), and taking into account the facts that
l//(qo(XO)’N x) = X;N¢(x) and %?) is a unit in Rg””/” I, (ii) is an immediate consequence of (i)

and the inclusion RED()’U]+ c REDO’U/‘O I, Finally, if x € (Rg) I ]+) ]#:0, using Proposition 2.35 (ii), we can

write x = Y .o @(Xo) U With ¢(xg)u, € REDO Pl But, u, is invertible in RES’”/P I+ (see Remark 2.33),

hence ¢(x,) € Rg’”/”“. From [CN17, Lemma 2.14], we have that if x,, € R, such that ¢(x,) € ng’v/P]+,
then x, € REDO 1" This gives us (iii). [ |

2.4. Cyclotomic embeddings

In this section, we will describe the (cyclotomic) embeddings of R¥ into various period rings discussed
in Chapter 1 and previous sections. Define an embedding

leyel - R;,D — Aint(R)
Xo —> mtm = ¢ " (),
X;— [X/] for 1<i=<d.
Lemma 2.41. The map ey has a unique extension to an embedding Ry, — Aiyt(R) such that 0 o 1y
is the projection Ry, — R.

Proof. We can apply Proposition 2.30 with A; = R}, , A2 = Ains(R), A7 = RS, A = leyel, I = (£) and

@,0°
Zy = ([Z7],....[Z]). Next, from defintions we already have that 6 o iy : Rj, ; — Ry coincides with
the canonical projection and Ry is étale over R, _, hence the second claim follows. |
This embedding commutes with Frobenius on either side, i.e. teycl © @cyel = @ © Leyel. By continuity,

the morphism .y extends to embeddings
R — Acis(R),  RUD— AT gO0Ie Q0T Rluel,, Alet) ang R, — AR
Denote by A} the image of R¥ under leyel- These rings are stable under the action of Gg. Moreover,

this embedding induces a filtration on Al’s for x € {+,PD, [u],[u, v], (0, v]+} and r € Z (use Definition
2.27).

Remark 2.42. From [CN17, §2.4.2], we have an inclusion of rings AE?“/] c ARP A][R”] for u > 1% and

/ 1
u = —.
p
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Lemma 2.43. For ‘%1 <us2<1<wv, wehavethat £ isaunitin AR’ c Agg] S A%”’U].

v
p
Proof. We can write the fraction

t  log(l+n)

k x*
— ==Y ()R
. . (-1)

Formally, we can write

JT T
S =14+ b+ byt + by 4,
t  log(1+m) e ’

where vp(by) = —ﬁ for all k = 1. Since 77 = (1 + 7,)?" - 1, we get that 7 € (p, nﬁm)A}( (as m = 1). By

induction over k, we can easily conclude that 7% € (p, ﬁ,e,m)kA;}D. Using this, we can re-express the
series 3, ber* as a power series in 77, written as ¥, ¢;r). We need to check that this re-expressed
series converges in AF}D. To do this, we collect the terms with coefficients having the smallest
p-adic valuation for each power of ﬂﬁlm in the re-expressed series. For k = 1, by has the smallest
p-adic valuation among the coeflicients of b ¥, therefore it has the least p-adic valuation among
coefficients of 7, for p™k < i < p™(k + 1). We write the collection of these terms as

S0 bt = S )Ry | 2 |1 e (22)

k=1 k=1

and by the preeceding discussion it is sufficient to show that these coefficients go to 0 as k goes to
+00, Moreover, for (2.2) it would suffice to check the estimate for k = (p — 1)j as j goes to +oo (this
gets rid of the floor function above). With the observation in Remark 2.44, we have

mk . 0 pispl) sl .
(B[ Z2E]1) = p(be) + (i) = 22+ EEED 8Dy iy,
which goes to +oo as j — +oo. Hence, 7 converges in AP and is an inverse to L |

The following elementary observation was used above,

Remark 2.44. Let n € N, so we can write n = Z{-‘:O n;p' for some k € N, where 0 < n; < p - 1 for
0 < i< k. Let us set s,(n) = YK, ni. Then we have

koo k K .
o) = 3 [l = 3 (2] = 3 3 map'™

j=1 Jj=0 Jj=1 i=j

Also, note that we have s,(pn) = s,(n) for any n € IN.

Next, we prove some claims for the action of I'r on the analytic rings introduced above. These
results will be useful when studying Koszul complexes computing Lie I'z-cohomology in §4.3.

Lemma 2.45. Letk € N and i€ {0,1,...,d}. Then (y; - l)kAI’g c (pm, ﬂ%m)kAI’: for ¥ € {+,PD, [u]};

Proof. We will only consider the case of ARP as the estimates in other cases is easier. First, let i = 0.
Then we have

(Yo = Dmm = (1+ ”m)((l + 7Tm))((y0)71 - 1) =(1+ ”m)((l + ”m)Pma - 1)

(1 + ﬂ.'m)((l + ”)a _ 1) — (1 4 ﬂ'm)(aﬂ' + a(‘;!—l)nj + a(a—g)!(a—Z)nﬁ + ) = TTX,
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for some x € Aj. Since 7 = (1+ 7m,)" -1 = 7h, +p a7 -+ p™ 1, we have that € (pm,frﬁm)A;'(

(recall that we have m = 1), therefore (yy — 1), € (p , b )A+ Next, we observe that

(Yo = Dmhy = yolmm)? =y = (mx + )" - 7,

=" xP" ok pMaxn? e (pm,frf;lm)zA}.
Therefore, (yo - 1)*7m € (p, nﬁm)zA}(. Proceeding by induction on k = 0, we conclude that

(Yo - Vtm = (1o - ) (p™ 72 ) ' Ag < (p™, 7)) A

Now any f € AFP can be written as f = Zne]an + such that f, € O goes to 0 as n — +c0. So we

n/eJ
want to show that (yp - )k [neT] (p , b ) AP, For notational convenience, we take n = je for
some j € IN and see that
(yo - 1)7y _ Yolmm)* - Pk (mx + Y - o _ (xy + je(mxY e g, + + je(mx)m
j! - j! - j! - j!
X je ”ie_lz 1 my J m m
- (mxy n € —(pm, p7d )JEA;}D + (pm, 7 )A;}D c (pm, 7 )A;}D.

+ T
J! G-t !

Proceeding by induction on k = 0, we conclude that

m oy k- m ik
(o~ VAR e (o - (p". 2 ) AR < (p7 ) AR,
Next, for i € {1,...,d} we have (y; - )[X/] = n[X] € (pm,ﬂfqm)Aﬁ and (y; - 1)([Xi"]’1) =

—n(1+m) X7 T € (p™, nﬁ,m)AIQ. Proceeding by induction on k = 0, we conclude that

(vi- 1)kA1+z <(yi- 1)(Pms ”ﬁm)k_l (P h ) Aj.

Since any f € ARP can be written as f = Zje]ij% such that f; € Ay goes to 0 as j — +oo, from
the discussion for ARP and A}, we conclude that

(yi - DFARP < (yi - D (p™ ) 'AFD ¢ (p™ =) A{;D.
]

The next claim will be useful in analyzing Koszul complexes for I'z-cohomology in Proposition
5.41 and Proposition 5.46.

Lemma 2.46. Let k € N and i € {0,1,...,d}. Then (y; - l)kA* c (p , 7T, ) A} for * €
{,(0, v]+, [u, v]}.

Proof. First, we observe that
Yo(mtm) = (1+ )9 — 1 = y(yo)im (1 + 297 7 4 ) = ¥ (y0) 7

where x(yo) = exp(p) € Zj, and f is a unit in A. From the expression above we also have that
- x(yvo)f = p™z for some z € Ay. So we can write

L-x(rn)f _ p"z
Xo)frm  x(o)f tm

(yo - 1)7Tr_n1 = YO(”m)_l - 7[;;11 = (X(Y0>fﬂ'm)_l - 7[7;11 =

Now from the definitions we know that 7% € A(I?’ therefore (yo - 1) pm € (p 7T, )Ag? ol
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Proceeding by induction on k = 0, we conclude that

my k-1 + m my k ,O [+
(ro- D*L& < (- D(p™ afy )AL < (pm ) AR

T,

From Lemma 2.45 we already have that (y; - 1)kA;’2 € (pm, 7tfqnl)kA;'2 for i € {1,..., d}. Therefore, we
conclude that .
(o - D*ARY < (pm mf)") AR

The analysis of A%”’v] and Ay, follow in a similar manner (note that 7, is invertible in Ag). |
Finally, we show a claim which will be useful for changing the annulus of convergence in §5.2.

Lemma 2.47 ([CN17, Lemma 2.35]). If v < p, then

(1) ﬂr}pm_lﬂl is a unit in Ag)’vh’-
(ii) p is divisible by ”rlr(lp_l)pm_l/vj, hence also by ﬂfr{]—l)pm_z;

(i) £ ¢ Aﬁg’”]+ and is divisible by Al2e-D-0P"

s

(i) Z € (p L VALY and is divisible by 7"

T
(v) Letv=p-1forp=3andv = %forp = 2, then JI,_npmﬂ is a unit A%O’U/ph and% € Ag)’v/p]+.

. . . -1
Proof. We can work in rg)’v]+, in which case 7, becomes X; and 7; becomes (1 + Xo)pm -1and

we are looking at the annulus 0 < v,(T) = m on which (1 + XO)an - 1 has no zero and

vp((1 + Xo)an - 1) = p™'v,(Xp) since v < p. This shows (i). The claim in (ii) comes from the
definition of REDO’U]+. (iii) follows from (i) and (ii) since 2 [%J -p™ = (2(p-1)-v)p™2 The
claim in (iv) follows from (i), (ii) and the identity

SR S

o TP+ D
For (v), replacing 7 by (1 + Xp)?" - 1, we see that Up((1 + X)) -1) = P™vp(Xo). Using arguments
similar to (i) gives us first part of (v). The second half of (v) follows from the first part and (ii) since

|2 | = o™ n

2.5. Fat period rings

In this section we will introduce fat rings and give a version of PD-Poincaré lemma. The Poinaré
lemma will be useful for relating complexes computing Galois cohomology and syntomic complex
with coefficients in Chapter 5. Let S and A be p-adically complete filtered W-algebras, where W is
the ring of integers of F. Let 1 : S — A be a continuous injective morphism of filtered W-algebras
and let f : S® A — A be the morphism sending x® y — 1(x)y.

Definition 2.48. Let SA denote the p-adic completion of the PD-envelope of S A — A with
respect to Ker f.

In the rest of this section we will take S = R* for * € {PD, [u], [, v]}.

Remark 2.49. (i) The ring SA is the p-adic completion of S® A adjoined (x ® 1 - 1® 1(x))!¥], for
x € Sand n€N.

(ii) The morphism f : S® A — A extends uniquely to a continuous morphism f : SA — A.
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(iii) We can filter SA by defining Fil"SA to be the topological closure of the ideal generated by
the products of the form x;x, [J(V;i - 1) (ki where x; € Fil"' S, x, € Fil?A and V; = 1;@1 for
l<i<dsuchthatr +rn+) ki=r.

Lemma 2.50 (([CN17, Lemma 2.36]). (i) Any element x € SA can be uniquely written as

d
= > a]Ja-whl,

keNd+1  i=0
with x € A for allk = (ko, ..., kg) € N*! and xc — 0 whenk —> co.

(ii) An element x € Fil"SA, if and only if n € Fil" MA for allk € N%1.

We set Q! : Zldgg @(69‘1 de) and QF := A\F QL. Therefore, we have Qf, , = SA®QF. We

filter the de Rham complex of SA by subcomplexes

Fil'Qy s @ Fil'SA — Fil' 'SA®@ Q' — Fil' ?SA® Q* —

Let D be a finitely generated filtered A-module. We set = := SA®, D and define a filtration on
Eby Fil'E := Y ,,., Fil*SA®,Fil’D. Then Z is a finitely generated filtered SA-module equipped
with an integrable connection 9 : E — E®sp Qg /5. For the differential operator on SA we have
A(Fil*SA) c Filk1SA, therefore the connection on = satisfies Griffiths transversality with respect to
the filtration on it. We can filter the de Rham complex with coefficients in = as

Fil'E® Qi : Fil'E — Fil" ' E @5z Qspn — Fil'?E @sp Qipn — -
=Fil'E — Fil" 2@z Q' — Fil'*2gz O —
Since Fil"'D = (Fil'Z)?=°, we get a filtered Poincaré Lemma:

Lemma 2.51 ([CN17, Lemma 2.37]). The natural map
Fil'D —> Fil'Z® Qi
is a quasi-isomorphism.
Proof. We have a natural injection € : Fil"D — Fil"=. We give a contracting (A-linear) homotopy.
Define
R : Fil'E — Fil'D

Z xQa+— Z X ®a,

J+k=r l+m=r

where x € FiV SA, a € Fil*D and x, is the projection to the 0-th component (see Lemma 2.50). Clearly,
h%e = id. For q > 0, define the map

hi : FiV 12 Q7 — Fil 1MEg Q7!
by the formula

d dx;,
x@al |(V; ; iy
AR R
dX; . .
{x@aHf_O(Vi - 1)[’“'+51"'11V,~2X—f2 NNV, ){q if kj=0 for 0<j=<i,
—> 2 'q

0 otherwise.

We have eh® + h'd = id and dh? + h9*'d = id, as required. [ |
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Next, let Ry = R7, Ry = AI’: for x € {PD, [u], [u, v]}, such that 1 = iy is an isomorphism of
filtered W-algebras, and Rs = SA. We set Xy 1 = Xo, Xo2 = 7m and for 1 < i < d, we set X;; = X; and
Xi2 = [X/]. Now for j = 1,2, we set

dXod
QJ : 1+X0] 16_9

and Q} := Q1@ Q). Forj = 1,2,3, let QF = AFQ,. Therefore, QR =R ®Qk

Let = be a finitely generated filtered R3-module equipped with a quasi-nilpotent integrable
connection satisfying Griffiths transversality with respect to the filtration. In other words, for each
k € N, we have a complex

FilFZ © Q; : FilkE 2 ik =20l 2 Filk 22002 s

Now, let D; = £%< be a finitely generated R;-module equipped with a filtration Fil*D, =
(Fil¥=)?=°, and a quasi-nilpotent integrable connection satisfying Griffiths transversality with
respect to the filtration, i.e. for k € Z, we have

dg, : Fil*D; — Fil*'D; @7 Q)
In other words, we obtain a filtered de Rham complex
1k . 1k R k-1 1 R ko 2 9m
FilI'D; ® Q] : FiI'D; — Fil* "D, Q; — Fil"°D; Q] — -+,

Similarly, let D, = 2970 be a finitely generated R,-module equipped with a filtration Fil*D, =
(Fil*2)*=°, and a quasi-nilpotent integrable connection satisfying Griffiths transversality with
respect to the filtration, i.e. for k € Z, we have

, : Fil*D, — Fil*'D, 7 O,

In other words, we obtain a filtered de Rham complex

OR, OR, IR,
Fil*D, ® Q) : Fil*D, —= Fil* 1D, Q) —> FilF 2D, © Q% —2» -,

Proposition 2.52. The natural maps
Fil*D, ® Q; — FilfE @ Q; «— Fil*D, @,

are quasi-isomorphism of complexes.

Proof. Note that the claim is symmetric in Ry and R, so we only prove the quasi-isomorphism for the
map on the left. Since we have Fil*D; = (Fil*Z)?%0, from Lemma 2.51 we obtain that the sequence

0— Fllle — Filk= ——> FilF !z ®Q1 % -

is exact. We can extend the sequence above to a sequence of maps of de Rham complexes
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9, 17
0— S Fl'D, — S Filke —— = L FIFlEgQl — 2 .

OR dR

1 1 OR,

9, 17)
0 —— Fil'D;® Q! ——— Fil'E@ Q! ——— FilF 26 (Q)1Q}) — s -

IR 9y R,

The contracting homotopy in the proof of Lemma 2.51 is R;-linear, so it extends as well, which shows
that the rows of the double complex above are exact. The total complex of the double complex

E 2
Fil'E @ Q) — FilF 120 (QUAQ}) — -,
is equal to the de Rham complex Fil*Z ® Q5. This allows us to conclude. |

Lemma 2.51 and Proposition 2.52 play a key role in connecting syntomic complex with coefficients
to “Koszul (¢, 9)-complexes” (see Lemmas 5.26 & 5.27 and Proposition 5.30).






CHAPTER 3

Finite height crystalline representations

In [Fon90], Fontaine initiated a program on the classification of p-adic representations of the absolute
Galois group of a p-adic local field by means of certain linear-algebraic objects attached to these
representations. One of the aspects of his program was to classify all p-adic representations of the
Galois group in terms of étale (¢, I')-modules. On the other hand, in [Fon82] Fontaine had already
proposed that representations “coming from geometry” give rise to another class of linear-algebraic
objects, for example in the case of good reduction, i.e. crystalline representations, these objects are
called filtered ¢-modules. Therefore, it is a natural question to ask for crystalline representations:
Does there exist some direct relation between the filtered ¢-module and the étale (¢,I')-module?
Fontaine explored this question in [Fon90] where he considered a certain class of (¢, I')-modules, for
which he called the associated representations to be of finite height and examined their relationship
with crystalline representations. This line of thought was further explored by Wach [Wac96, Wac97],
Colmez [Col99], and Berger [Ber02, Ber04]. In particular, Wach gave a description of finite height
crystalline representations in terms of (¢, I')-modules. In this chapter, we will recall some definitions
and results from these articles and construct analogous objects in the relative setting.

3.1. The arithmetic case

Recall that we have Gr = Gal(F/F) as the absolute Galois group of F, I'r := Gal(F./F) and Hr :=
Gal(F/F..), where F,, = U, F (¢pn). From the theory of (¢, I'r)-modules, we have a two dimensional
local ring Ar given by the p-adic completion of W[[r]] [%] and Br := Af [%] which is a complete
discrete valuation field with uniformizer p and residue field x((7)), the field of Laurent series with
uniformizer 7, the reduction of 7 modulo p.

Next, we have certain subrings A}, := W[[x]] ¢ Ar and B} = A}, [ﬁ] c By, stable under the action

of ¢ and I'r. Let V be a p-adic representation of Gr, then D*(V) = (B* ®q, V) is a free module
over the local ring B of rank < h, equipped with a Frobenius-semilinear endomorphism ¢ and a
continuous and semilinear action of I'r. Further, let D(V) = (B®q, V) be the associated (¢, T'f)-
module which is a Bp-vector space of dimension h = dimg, V, equipped with a Frobenius-semilinear
endomorphism ¢ and a continuous and semilinear action of I'r. We have a Bg-linear inclusion
D*(V) c D(V) compatible with the action of ¢ and I'r. Similarly, if T < V is a free Z,-lattice of rank
h = dimg, V, stable under the action of G, then D*(T) = (A" ®z, T)Fr is a free Aj-module of rank
< h, stable under the action of ¢ and I'r (see [Fon90, §B.1.2]). Moreover, D(T) = (A®z, T)Hr is a

41
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free Ap-module of rank h equipped with a Frobenius-semilinear operator ¢ and a continuous and
semilinear action of I'r, and we have D*(T) c D(T). We say that V is of finite height if D(V) has a
basis over Br made of elements of D*(V).

Fontaine showed that V is of finite height if and only if there exists a finite free Br-submodule
of D(V) of rank h = dimg, V, stable under the operator ¢ (see [Fon90, §B.2.1] and [Col99, §IIL.2]).
Moreover, if T < V is a free Z -lattice as above and V of finite height, then D*(T) is a free Af-module
of rank h = dimg, V such that Ar ®a; D*(T) = D(T) (see [Fon90, Théoréme B.1.4.2]).

For crystalline representations there exist submodules of D*(V) over which the action of I'r is
simpler. Finite height and crystalline representations of Gr are related by the following result:

Theorem 3.1 ([Wac96], [Col99], [Ber02]). Let V be a p-adic representation of G of dimension d. Then
V is crystalline if and only if it is of finite height and there exists r € Z and a Bp-submodule N < D*(V)
of rank h = dimg, V, stable under the action of T'r, such that T acts trivially over (N/nN)(-r).

In the situation of Theorem 3.1, the module N is not unique. A functorial construction was given
by Berger:

Proposition 3.2 ([Ber04, Proposition I1.1.1]). Let V be a positive crystalline representation of Gr of
dimension h, i.e. all Hodge-Tate weights of V are< 0. Let T < V be a free Z,-lattice of rank h, stable
under the action of Gr. Then there exists a unique Aj-module N(T) ¢ D*(T), which is free of rank h,
stable under the action of ¢ and T'r, and the action of T'r is trivial over N(T)/nN(T). Moreover, there
exists s € N such that 7°D*(T) < N(T). Finally, if we set N(V) := Bp ®a: N(T), then N(V) is a unique
Br-submodule of D*(V) satisfying analogous conditions.

Notation. For an algebra S admitting an action of the Frobenius and an S-module M admitting a
Frobenius-semilinear endomorphism ¢ : M — M, we denote by ¢" (M) c¢ M the S-submodule
generated by the image of ¢.

Remark 3.3. (i) In Proposition 3.2, Berger uses the existence of N in Theorem 3.1 to define
N(V) := D*(V)DN[m] ;> Where g = @. Using this one can take N(T) := N(V)nD(T)
and it can be shown to satisfy the desired properties.

(ii) Berger further showed that in the setup of Proposition 3.2, if we take s to be the maximum
among the absolute values of Hodge-Tate weights of V, then N(T)/¢"(N(T)) is killed by ¢°* and
we have that 7°A" @z, T < A" ®a: N(T) (see [Ber04, Théoreme IIL.3.1]).

Definition 3.4. Let a, b € Z with b > a. A Wach module with weights in the interval [a, b] is an Aj-
module or a Bz-module N which is free of rank h, equipped with a continuous and semilinear action of
I'r such that its action is trivial on N/zN and a Frobenius-semilinear operator ¢ : N [%] — N [ﬁ]

which commutes with the action of Tz, p(7°N) c 7N and 7°N/¢*(x®N) is killed by ¢*~¢.

Remark 3.5. The definition of the functor N can be extended to crystalline representations of arbitrary
Hodge-Tate weights quite easily. Indeed, let V € Rep?Qr;S(GF) with Hodge-Tate weights in the interval
[a,b] and let T < V a free Z,-lattice of rank = dimg, V, stable under the action of Gr. Then
N(T) = 7 "N(T(-b)) ®z, Zp(b) is a Wach module over Ay with weights in the interval [a, b].

As it turns out, one can recover the crystalline representation from a given Wach module:

Proposition 3.6 ([Ber04, Proposition I11.4.2]). The functor

N : Repg;S(Gp) — Wach modules over By
V — N(V),

establishes an equivalence of categories with a quasi-inverse given by N — (B®g: N)?=1. These
functors are compatible with tensor products, duality and preserve exact sequences. Moreover, for a
crystalline representation V, the map T +— N(T) induces a bijection between Z.,-lattices inside V and
Wach modules over A} contained in N(V).



The relative case 43

We have a natural filtration on the Wach modules given as
Fil*N(V) = {x € N(V) such that ¢(x) € ¢*N(V)} for k€ Z.
If V is positive crystalline, i.e. all its Hodge-Tate weights are < 0, then for r € N we have
Fil*N(V(r)) = Fil* 27 "N(V)(r) = 7 "Fil** "N(V)(r).

Using this filtration on N(V), one can also recover the other linear algebraic object associated
to V, ie. the filtered p-module D¢;s(V): Let B:ig’F c F[[r]] denote the subring of convergent
power series over the open unit disc. Then we have D;5(V) < Bligr ©B; N(V) and this gives
Deis(V) = (B;'ig,F ®p; N( V))FF (see [Ber04, Proposition I1.2.1]). Moreover, the induced map

Deris(V) — (Bigr ®8; N(V)) /7 (Byig r @82 N(V)) = N(V)/2N(V),

is an isomorphism of filtered ¢-modules (see [Ber04, Proposition I11.4.4]).

3.2. The relative case

Recall that we fixed m = 1 and we have K = F,;, = F({,). The element @ = {,» - 1 is a uniformizer
of K. We have X = (Xj, ..., Xy) a set of indeterminates and we defined Ry to be the p-adic completion
of an étale algebra over W(k){X, X"!}; similarly, R to be the p-adic completion of an étale algebra
over R, = Ox{X, X'} (defined using the same equations as in the definition of Ry). For Ry and R,
we can use the (¢, I')-module theory discussed in §2.1, as well as the constructions in §2.3 and §2.4.
In particular, we will use rings rX and R¥ for x € {+,PD}.

In the relative setting, we define an analog of Wach modules using the formulation in Definition
3.4:

Definition 3.7. Let a, b € Z with b = a. A Wach module over Ay (resp. By ) with weights in the
interval [a, b] is a finite projective Ay -module (resp. By -module) N, equipped with a continuous

and semilinear action of I'y, and a Frobenius-semilinear operator ¢ : N [%] — N [ﬁ] which
commutes with the action of T',, such that the action of Ty, is trivial on N/zN, ¢(7’N) ¢ 7°N and
7PN/ ¢*(x°N) is killed by ¢*¢.

Let V be an h-dimensional p-adic representation of the Galois group Gg,. It is said to be of
finite height if and only if the By -module D*(V) := (B" ®g, V)Hr is a finitely generated (¢, Tg,)-
module such that Bg, ®B; D*(V) = D(V). Let T < V, be a Gg-stable Z,-lattice and we set D*(T) : =

(A" ®z, T).

Definition 3.8. A positive Wach representation is a p-adic representation V of Gg, admitting a free
Z,-lattice T < V of rank h, and satisfying the following conditions:

(i) V is a de Rham representation with non-positive Hodge-Tate weights (see §1.5 and [Bri08,
Chapitre 4]). Let s be the maximum among the absolute value of these Hodge-Tate weights.

(ii) There exists a finite projective Ay -submodule N(T) c D*(T) of rank h and let R{ be the p-adic
completion of a finite étale algebra over R, such that
a) N(T) is stable under the action of ¢ and I'g,, and Ag, ®A;, N(T) = D(T);
b) The Ay -module N(T)/¢"(N(T)) is killed by g*;
c) The action of 'y, is trivial on N(T)/zN(T);
d) The Aj -module A}, ®4: N(T) is free of rank h.
0 0 0
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The module N(T) is a Wach module associated to T with weights in the interval [-r, 0] and we set
N(V) :=N(T) [%] which satisfies properties analogous to (a)-(d) above.

Forr € Z, we set V(r) := V®q, Qp(r) and T(r) := T ®z, Z,(r). We will call these twists as Wach
representations and define

N(T(r)) := %N(T)(r) and N(V(r)) := %N(V)(r).

Since N(V) and N(T) are Wach modules with weights in the interval [-r, 0], twisting by r gives us
Wach modules in the sense of Definition 3.7 with weights in the interval [r - r{, r].

Remark 3.9. In Definition 3.8 following Remark 3.3 (i), first one can define Wach module for the
representation V and then consider the module N(T) = N(V)nD(T) associated to T. However, it is
not clear whether the latter module, defined in this fashion, is a projective A1+e0 -module. Therefore,
we impose the condition on N(T) to be projective, which is required in establishing several results
in this section.

Definition 3.10. Let V and T as in Definition 3.8 and r € IN, then there is a natural filtration on the
associated Wach modules, given by

Fil*N(V(r)) : = {x € N(V(r)), such that ¢(x) € qu(V(r))} fork e Z,

and we set Fil*N(T(r)) : = Fil*N(V(r)) n\N(T(r)), where the intersection is taken inside N(V(r)).
Lemma 3.11. We have

Fil*N(V(r)) = Fil* 2 "N(V)(r) = 2 "Fil*" "N(V)(r),

and similarly for Fil*N(T(r)).

Proof. Note that the inclusion 77" Fil**"N(V)(r) < Fil*z7"N(V)(r) is obvious. To show the converse
let 777x® €®" € Fil*27"N(V)(r), with x € N(V) and €®" being a basis of Qp(r). Then we have that
p(n7x®€®T) = ¢ p(x)® € € ¢ "N(V)(r). Therefore, we obtain that ¢(x) € gF*"N(V), i.e.
x € FilF*"'N(V). |

Lemma 3.12. Let V be a positive Wach representation and T < V a Z,-lattice as above. Then for
s =1y, we have T°A” ®z, T < A" ®A§o N(T).

Proof. To show the claim, we can assume that N(T) is free by base changing to the finite étale
extension R) of Ry. Then A* ®ar, (AE[/) ®A;, N(T)) = A" ®A;, N(T) is free. Since the discussion of
previous chapters hold for the p-a(ziic completion of a finite étale extension of R, (see [Bri08, Chapitre
2] and [AI08, §2] for more on this), base changing to Rj is harmless. So with a slight abuse of
notation, below we will replace R, obtained in this manner by R, and assume N(T) to be free of rank
h over Ay .

Rest of the proof follows the techniques of [Ber04, Théoréme IIL.3.1]. First notice that we have
(A+ ®A;, N(T)) np"(A*®z, T) = p" (A+ ®A;, N(T)). To see this let {e;}1<;<n be an A}, -basis of
N(T), then since Ag, ®Az, N(T) = D(T), it is also an Ag -basis of D(T) and therefore an A-basis of
A®a, D(T) = A®z, T. Now writing x € (A+ ®A;, N(T)) Np"(A* ®z, T) in the chosen basis we
have x = Y™, x;e; and therefore x; € p"A. The claimed equality now follows from the fact that
PlANAT = p"A”.

From the discussion above and the fact that B* = A* [l] , we conclude that showing 7°A* ®z, T c
A" ®Ay, N(T) is equivalent to showing that 7°B* ®¢q, V < B* ®8;, N(V). So let A € Mat(h,B") be the
matrix obtained by expressing a basis of N(V) in the basis of V. Also, let P € Mai(h, By ) be the
matrix of ¢ in the basis of N(V). Then we have ¢(A) = AP and therefore p(r*A™') = (¢°P ) (xS A™Y).
The fact that N(V)/¢*(N(V)) is killed by g¢° implies that g°P~ € Mat(h, By,)» therefore from Corollary
2.25 we obtain that 7°A™! € Mat(h,B*). Hence, we conclude that 7°B* ®q, V < B” OBy N(WV). 1
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Corollary 3.13. By taking Hg, -invariants in Lemma 3.12 it follows that 7°D*(T) < N(T).

Lemma 3.14. Let V be a Wach representation Gg,. The Wach module N(V) over By is unique. Same
holds true for the Ap -module N(T).

Proof. The argument carries over from the classical case [Ber04, p. 13]. First note that we can assume
that all Hodge-Tate weights of V are < 0, since by definition the uniquess of Wach module for such
a representation is equivalent to uniqueness for all its Tate twists. In this case, let N; and N, be
two Ay -modules satisfying the conditions of Definition 3.8 (the proof stays the same for N(V)). By
symmetry, it is enough to show that N; c N;. Since we have 7°N; ¢ 7°D*(T) c N; (see Corollary
3.13) and Nj is z-torsion free, therefore for any x € Nj there exists k < s such that 7*x € N, but
7*x ¢ 7N,. Varying over all x € N; \ 7Nj, we can take k < s to be the minimal integer such that
XNy € N,. Since 7¥x € N, and I'r, acts trivially on N,/ N,, we have that (y, - 1)(7rkx) € 1N,. So
we can write

(Yo = D(r*x) = yo(x")(yo(x) = ) + (yo(r*) - 7).

Since I'g, also acts trivially on N;/7N; and kN, < N,, we see that yo(nk)(yg(x) - x) € N5, therefore
(yo(r¥) = 7%)x € 7Ny, which means that (y(yo)* - 1)7%x € zN,. But 7 } y(yo)* - 1if k = 1, and

7%x ¢ 7N,. Hence, we must have k = 0, i.e. N; c Ny. |

The uniqueness of Wach modules helps us in establishing compatibility with usual operations:

Lemma 3.15. Let V and V' be two Wach representations of Gg,. Then we have that N(V @ V') =
N(V)@®N(V’) and N(V ® V') = N(V) @ N(V’). Similar statements hold for N(T) and N(T”).

Proof. We note similar to previous lemma that it is enough to show the statement for V and V’
such that both representations have non-positive Hodge-Tate weights. By uniqueness of Wach
modules proved in Lemma 3.14, it is enough to show that direct sum and tensor product of Wach
representations are again Wach representations.

First, it is straightforward to see that N(T) ®N(T’) < D*(T @ T’) is a projective A -module
of rank rkz (T @ T’) such that Ag, ®Ay, (N(T)®N(T’)) = D(T)®D(T’). Similarly, we have
that N(T)®N(T') < D*(T®T’) is a projective Ay -module of rank rkz, (T® T’) such that
Ag, ®a; (N(T)@N(T")) = D(T) & D(T").

Next, let s and s” denote the maximum among the absolute value of Hodge-Tate weights of V and
V’ respectively and let i := max(s, s). Then we see that (N(T) ® N(T"))/ ¢"(N(T) ® N(T")) is killed
by ¢' and (N(T) @ N(T”))/ ¢"(N(T) ® N(T")) is killed by ¢***'. Further, Ty, acts trivially modulo 7 on
N(T) ®N(T’) and N(T) ® N(T”). This verifies conditions (i), (ii) and (iii) for these modules. Hence,
we get the claim. [ |

Corollary 3.16. Let V be a Wach representation of Gg, and T < V a Gg,-stable free Z.,-lattice of rank
= dimg, V. Then, Sym*(V) and \€ V' are Wach representations for k € N.

Proof. Note that the compatibility with tensor products in Lemma 3.15 is enough to establish the
compatibility with symmetric powers and exterior powers because then we can set

N(Sym¥(T)) := Sym (N(T)), and N(£T) := AN(T).

We have N(Symk(T)) c Symf(D*(T)) < D* (Symk(T)), since A* ®Ay, Sym*(D*(T)) <
A" ®Af, D* (Symk(T)). Similarly, N( Nk T) c DY ( N T). Rest of the assumptions of Definition
3.8 follows in a same manner as in the proof of Lemma 3.15. This establshes that Sym*(V) and A% V
are Wach representations and gives us the corresponding Wach modules. |

Following result will be useful while studying complexes with coefficients in Wach modules in
Chapter 5.
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Lemma 3.17. Let V be a Wach representation of Gg,, such that the associated Wach module N(T) over
Ay, is free of rank = dimg, (V). Then for j € Z and k € N, we have

AFIFN(T) 0 27 IN(T) = 2/ FilFIN(T).
Same holds true for the By -module N(V').

Proof. The claim is obvious if Fil*"'N(T) = N(T). So we assume that Fil*'N(T) ¢ N(T), and let
x € Fil*N(T) such that ‘
7/ x € PFIFN(T) 0 2/ IN(T).

Then we must have x = 7y for some y € N(T). Since ¢(x) € ¢*N(V)NN(T), where ¢ = @ =p+aw

for w € A% So we get that 7¢(y) € ¢* 'N(T)NN(T), i.e. 7¢p(y) = ¢*'z for some z € N(V). Since
N(T) is free of rank h and p does not divide q in A} , we obtain that z € N(T).

Now let {e, ..., e,} be an Aﬁo—basis of the scalar extension and we write ¢(y) = Z?:l yie; and
z = Z?:l z;e; for y;, z; € A}QO. Further we have an embedding icye; : Ry — A1+20’ SO we can write
the coefficients above as power series in 7. In particular, we have y; = 3y ;7 such that the
constant term yjy € teyl(Ro) and y;; € AEO go to zero p-adically as j — +oo. Similarly, we can write
zi = ) jen 2ij70, such that constant zjg € iyi(Ro) and zj; € Ay go to zero p-adically as j — +o0. Now,
from 7¢(y) = ¢* "'z, we obtain that 7y; = ¢*"'z; for 1 < i < h. But looking at the constant term on
each side (coefficient of 7°), we obtain pk‘lzio = 0. Since A7}, is p-torsion free, we obtain that z; = 0

Ry
for 1 < i < h, ie. m divides z;. Therefore, y; € qk‘lA}}O, fori<i<h,ie y€ Filk_lN(T).

The other inclusion is obvious, since we have that 7x € Fil*N(T) for x € Fil*"'N(T). So we get
the claim. [ |

3.2.1. Statement of the main result

In this section, we will relate the notion of crystalline and Wach representations. As we will see, we
can recover the R, [%] -module OD¢s(V) from the A1+e0 -module N(V) after passing to a sufficiently
large period ring. We begin by introducing this ring below.

Recall from §1.1 that we have F as a finite unramified extenion of Q, with ring of integers W and
we take K = F({,m) for m = 1. Note that the formulation of the results and proofs depend on m and
it is necessary to have m > 0 for the discussion below to make sense.

In this section, we will work with the ring Ay defined in §2.4, equipped with an action of the
Frobenius ¢ and a continuous action of I'g,. Since we have a natural injection Ay — Ajn¢(R), we
obtain a Gg -equivariant commutative diagram

A, —2 R

Ain(R) —— C*(R).
By Ry-linearlity, extending scalars for the map 6 above, we obtain a ring homomorphism
9Ro : Ry ®WA;2 — R,

sending X;®1 +— X;, 1®[X;] +— Xjfor 1< i=<dand 1®m, — {p - 1. Note that we have inclusion
of ideals (f,Xi@) 1-1®[X/], for1<is< d) c Ker 0, c¢ Ry®w Ay, where & = ﬂll

Definition 3.18. Let x[" := x"/n! for x € Ker g,. Define OALP to be the p-adic completion of the
divided power envelope of Ry ®yw Ay with respect to Ker 6g,.
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We have A} c Ajn¢(R) and O, above is the restriction of g, : Ry ®w Aint(R) — C*(R) (see §1.3).
Taking the divided power envelope of O,/p", we notice that (’)AED /p" — OAqis(Ro)/p". Since
OAED = lim, OAED /p" and OAis(Ro) = lim, OAis(Ro)/p", and (projective) limit is left exact, it
follows that for the p-adic completion of divided power envelope of 6g,, we have OAFP ¢ QA 1is(Ry).
Now, over the ring OA%D we can consider the induced action of I'y, under which it is stable,
and it admits a Frobenius endomorphism arising from the Frobenius on each component of the
tensor product. In particular, from the diagram above we obtain a Frobenius and Gg-equivariant
commutative diagram

[
OAPP — 4R

[ ]

OAcris(RO) L» C+(R)

Next, we will give an alternative description of the ring OALP. Let T = (Ty, ..., Ty) denote a set of
indeterminates and let As(R){T)" denote the p-adic completion of the divided power polynomial
algebra A¢s(RXT) = Acris(R)[Ti["], n €N, 1 = i< d]. Recall from §1.3 that we have an isomorphism
of rings

fcris : Acris(R)<T>A — OAcris(RO)
Ti— X;®1-1Q[X;], forl<is<d.

Now recall that AEP is the p-adic completion of the divided power envelope of the surjective map

0 : A} — R with respect to its kernel (see §2.3). Next, let ARP(T)" denote the p-adic completion
of the divided power polynomial algebra ARP(T) = AﬁD[Ti["], n € N, 1 < i < d]. Then via the
isomorphism fFP (see Lemma 3.19 below), we will show that the preimage of OALP, under f, is

exactly A§D< T)". In other words,

Lemma 3.19. The morphism of rings

P AR(TY — OARP
Ti— Xi®1-1@[X/], forl<is<d,

is an isomorphism.

Proof. The proof follows [Bri08, Proposition 6.1.5] closely.

Recall that we have a surjective ring homomorphism 0 : AP — R, which is the restriction
of the map 0 : Ais(R) — R defined in §1.3. This can be extended in a unique manner into the
homomorphism 0 : Aqis(R)XT)* — R. Restriction of the latter map gives us 0 : AE;D<T>A — R
such that O(T'") =0 for1<i<dandn= 1.

First, we will show that the W{X*!}-algebra structure on AIP}D<T>A given by X; — [X/]+ T;,
extends uniquely to an Ry-algebra structure. Let A := (E}/ ﬁp‘lEg)[}], o TANTP, Tg ). We have
a surjective map 6 : A}, — R and its reduction modulo p is given as 0 : E, = R/pR. Since ¢F = P!
mod p, where £ = - is a generator of Ker 6 = Ay, we obtain that 0 factors as 0 : Ef/7P'Ef, — R/pR.
This can be extended to a map 0 : A — R/pR by setting 0(T;) = 0 for 1 < i < d. The kernel
T = Ker 0 c A is generated by 7! and { T;};.,.4. Now from the natural inclusion Ry/pR, — R/pR
and the isomorphism A/Z ~ R/pR via 0, we obtain a map § : Ry/pRy — A/Z such that g(X;) = X,
which is the image of X! € A under the map 6. So we obtain a commutative diagram
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kX ——— A

Ro/pRy —— A/T

where the top horizontal arrow is the map X; — X; + T;. Note that ZW@+Dp = 0. Since Ry/ PRy is étale
over k[X*!], there exists a unique lift of g : Ry/pRy — A/Z to a homomorphism g : Ry/pRy — A
(which we again denote by g by slight abuse of notations).

Further, by the description of divided power envelope in [Bri08, Proposition 6.1.1] we have that

AR Yo, Y1, )[(pYo = EP, pYney = YF) oy —> ARP

n+1

g—'P

YHHW.

Therefore,
AR/ pAR = (Ep/m ER)[Yo, Y, . (Y )n1

Similarly, we have
APP(TY = (ARP[ Ty, ..., Ty)[ Tio, Tixs - ) pTio - TF, pTine1 - Tfn)lsisd, neN-
Therefore,

ARPATY [ pARP(TY ~ (ARP/p ARO[ T, .., Tl[ Tig, Tin, - JATE, TF )izizd, new-

i>tin

In conclusion, we have

ARPCTY pARPATY = A[ Yo, Ya, ..., Tig, Tigs - JAYE, TP Vicicd nen-

n> in

Therefore, from the discussion above we obtain a natural map of x[X*!]-algebras by composition
g1 Ro/pRy — A — AR(T)/pARP(T).

Now let n € IN, then modulo p" we have the natural map W{X*!}/p"W{Xx*'} —
ARPC(T)/p"APP( T). Again, since Ry/p"R, is étale over W{X*'}/p"W{X*'}, we have a unique
lift of g, : Ro/p"Ry — A§D< T/ p”AIP;D< T in the commutative diagram

WX}/ p" WX} ——— ARP(T)/p"AR(T)

Ro/p"Ry ———————— AR(T)/pAR(T).
Via this lifting, the following diagram commutes

Ro/pn+1RO A£D<T>/pn+1AED<T>

| |

Ry/p"Ry ——— ARP(T)/p"APP(T),

where the vertical arrows are natural projection maps. From the universal property of inverse limit
of the right side of the diagram, we obtain a natural map of W{X*!}-algebras

g: R — lirrlnAgD<T>/p"A§D<T> = ARP(TY.
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Now, let 0 : A%D< T/ pAIP;D<T> — R/pR denote the reduction of § modulo p. Recall that by
construction, 6 o g is the inclusion of Ry/pR, in R/pR. Therefore, the reduction modulo p of 6 - g and
the natural inclusion Ry — R coincide. Since R is p-torsion free, arguing as above we obtain that for
each n € N, the natural inclusion and 8 - g coincide modulo p".

Next, by Aj-linearity, g can be extended to amap g : Ry®w Ay — ARP(T)". From the discussion
above and the definition of 0g,, we have that it coincides with the homomorphism 6-g : Ry®w Ay —
R. In particular, g(Ker 6g,) c Ker 6 ¢ ARP(T)". Since Ker 6 contains divided powers, the map g
extends to a map

g (Rodw AE)[x[”],x € Ker 6g,, n € N] — APP(T).

Finally, since ARP{T)" is p-adically complete, g extends to a map g : OALP — AEP(T)".
Now by uniqueness of g : Ry — ARP(T)", the composition

PD
OARP £, AP Ty L, oA,

coincides with the identity over Ry ¢ OAEP. Since it also coincides with identity on the image of
A} (by Aj-linearity), we obtain that f*° o g = id over OALP. Similarly, the homomorphism g o f*P
coincides with identity over A} as well as over W {X*!'} (since g lifts the map W{X*'} — AFP(T)"),
therefore it is identity over APP( T)". This establishes that f*P is an isomorphism of rings. |

Remark 3.20. We can give an alternative construction of the ring OAEP. Note that we have a ring
homomorphism ¢ : Ry — AP, where X; + [X] for 1 < i < d. As in Definition 2.48, we define a
map g : Ry®w ARP — AP where x® y > 1(x)y. We obtain that Ker g = (Xi ®1-1®[X/], for1 <
i<d ) c Ker Og, © OAis(Ro). Since Ry ®A£D already contains divided powers of £, from Definition
3.18 we obtain that the p-adic completion of the divided power envelope of Ry ®y AEP with respect
to Ker g is the same as OALP.

There is a natural filtration over the ring OAEP by I'y -stable submodules:

10[X;]
Xi®l

Definition 3.21. Let V; := for 1 < i < d, then we define the filtration over OA%D as

d
Fil"OALP : = <(a® b) H(V,-—l)[k"] € OALP, such that a € Ry, b € FiPALP, and j+Z ki = r> for r € Z.
i=1 i

Remark 3.22. The filtration over AP (via its identification with REP, see §2.4 and Definition 2.27)
coincides with the filtration induced from its embedding in A;s(R). Indeed, in both cases we
have FierﬁD = (§[k], k < r) c AﬁD for r = 0, whereas Fil’AgD = AgD for r < 0. Now the
filtration on OAis(Ry) is defined as the induced filtration from its embedding inside OB (R),
where the filtration on the latter ring is given by powers of Ker 6 (see §1.2 & §1.3 for definition and
notation). The induced filtration over OA;is(Ry) is therefore given by divided powers of the ideal
Ker O, ¢ OAqis(Ry). Since the filtration over OAED in Definition 3.21 is again defined by divided
powers of the generators of the ideal Ker 0, « OAEP, we infer that this filtration coincides with the
one induced by its embedding into OA.is(Ry).

Lemma 3.23. (i) The action of T'y is trivial on (’)AED /7, whereas I'g,/Tr acts trivially over
OARP /.

(ii) The Ty, -invariants of OAEP are given by Ry.
0 R 8 y

Proof. (i) The first part follows from the definition of QAP and the action of T on AFP (see
Lemma 2.45). The second part follows from observing that I'g /T'r is a finite cyclic group
of order [K : F] = p™!(p - 1), and a lift g € Ty, of a generator of Ty /Ty acts as g(r,,) =
(1+ mp¥® - 1.
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(ii) This is straightforward, since

G,

RO = (OAIP;D)FRO = (OAcris(RO)) = RO-

Next we consider a connection over OA%D induced by the connection on OAi5(Rp),
9 : OAP — OAR 00},

where we have 9(X;®1 - 1®[Xf])["] = (X;®1- 1®[Xl~“’])[n_l] dX;. This connection over OAEP
satisfies Griffiths transversality with respect to the filtration since it does so over OAis(Ry).
The main result of this section is as follows:

Theorem 3.24. With notations as above let V be an h-dimensional positive Wach representation of
Gg,, then V is a positive crystalline representation. Further, let M := ((’)AED ®A1+?0 N(T))FRO, then we
have an isomorphism of Ry [%] -modules M[%] = ODyis(V) compatible with Frobenius, filtration, and

connection on each side. Moreover, after extending scalars to OALP, we obtain natural isomorphisms
OARP ®g, ODeyis(V) «— OARP g, M[%] — OAR ®a;, N(V),

compatible with Frobenius, filtration, connection and the action of T'r, on each side.

Remark 3.25. The statement of Theorem 3.24 can be seen an analogue of the result of Berger [Ber04,
Proposition I1.2.1] (see the discussion after Proposition 3.6).

Recall that from Definition 3.8 any Wach representation is a twist of a positive Wach representation
by Q,(r), for r € IN. Since twist by Q,(r) of crystalline representations are again crystalline, we
obtain that:

Corollary 3.26. All Wach representations of Gg, are crystalline.

The proof of Theorem 3.24 will proceed in three steps: First, we explicitly state the structure of
Wach module attached to a one-dimensional Wach representation, we will also show that all one-
dimensional crystalline representations are Wach representations and one can recover OD5(V)
starting with the Wach module N(V). Next, in higher dimensions and under the conditions of
the theorem, we will describe a process (successive approximation) by which we can recover a
submodule of ODs(V) starting from the Wach module, here we establish a comparison by passing
to the one-dimensinal case. Finally, the claims made in the theorem are shown by exploiting some
properties of Wach modules and the comparison obtained in the second step.

3.2.2. One-dimensional representations

In this section we are going to study one-dimensional crystalline representations as well as one-
dimensional Wach representations. We will show that all one-dimensional crystalline representations
are Wach representations. Moreover, for Wach representations we will prove a technical statement
which will be used in the proof of Proposition 3.31.

One-dimensional crystalline representations

In this section our goal is to show the following claim:

Proposition 3.27. All one-dimensional crystalline representations of Gg, are Wach representations.
Furthermore, for a one-dimensional crystalline representation V we have an isomorphism of Ry [%] -
modules

(OAR @, N(V))'™ = ODeri(V)
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Therefore, there exists natural isomorphisms
- T =
OAR ®g, ODeris(V) «— OAR’ @x, (OAR’ ®ap, N(V))  — OAR> ®az, N(V),
compatible with Frobenius, filtration and the action of I'y,.

Proof. The structure of one-dimensional crystalline representations of Gg, is well-known (see [Bri08,
§8.6]). First, recall that a p-adic representation of Gg, is unramified if the action of Gg, factorizes
through the quotient Gy (see §1.5). Now from Proposition 1.30 we have that for n : Gg, — Zj, a
continuous character, V = Q,(n) is crystalline if and only if we can write n = neny x" with n € Z,
and where 7 is a finite unramified character, 7, is an unramified character taking values in 1 + pZ,
and trivialized by an element o € 1 + pﬁr , and y is the p-adic cyclotomic character. Moreover, if 7¢
is trivial then OD¢,5(V) is a free Ry [%] -module of rank 1.

In Lemma 3.28 below, we show that crystalline representations Vi := Qu(nfu) and V, :=
Q,(x") are Wach represenations. For a one-dimensional crystalline representation V' := Q,(n) =
Qp(nemur) ®g, Qp(x™) = Vi ®q, V2 as above, by compatibility of tensor products in Lemma 3.15 we
get that V is a Wach representation as well with N(V) = N(V;) ®8; N(V5).

Now, from the isomorphisms of O AFP-modules in Lemma 3.28 and compatibility of tensor product
of Wach modules in Lemma 3.15 and compatibility of the functor OD,;s with tensor products in §1.5
(see also [Bri08, Théoréme 8.4.2]), we get a string of isomorphisms of OAYP-modules compatible
with Frobenius, filtration and the action of T'g,

OAR® ®r, ODeris(V) = (OAR” ®k, ODaris(V1)) @00 (OAR” ©r, ODeris(V2))
OAR @x, (OARY @a; N(V)) ™) @oam (OAR @r, (OAR @4y, N(V2))'™)
~ (OAR ®aj, N(V1)) ®par» (OARP ®aj, N(V3))
=~ OAR” ®a;, N(Vi) @4 N(V2)
~ OAFP ©ay, N(Vi®g, V2) = OARP @a;, N(V).

Taking I'g -invariants of the first and the last term gives us that OD,is(V) = (OA}P;D ®ap, N(V))FRO,
compatible with Frobenius and filtration. Hence, we obtain the claim. [ |

Following claim was used above:

Lemma 3.28. (i) Let n : Gg, — Zj be a continuous unramified character. Then the p-adic
representation Q,(n) is a Wach representation.

(ii) Let y be the p-adic cyclotomic character then for n € Z, the p-adic representation Qp(n) is a
Wach representation.
Further, for V.= Q,(n), Qp(n) we have an isomorphism of Ry [%] -modules

T =~
(OAﬁD ®A;?o N(V)) R ODcris(V)'
Therefore, there exists natural isomorphisms
- Iy, =
OAR’ @, ODaiis(V) «— OAR’ @k, (OAR” @a;, N(V))'™ — OAR’ @a;, N(V),
compatible with Frobenius, filtration and the action of Tg,.

Proof. Let 1 = nenyr, where 7 is an unramified character of finite order and 7y, is an unramified
character taking values in 1 + pZ, and trivialised by an element & € 1 + pRj" (see Proposition 1.30).
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First, let us consider the finite unramified character ;. Set T = Z,(nr) = Z,e, such that g(e) =
ne(g)e. We have

D+(Zp(’7f)) = (A+ ®z, Zp(ryf))HR" = {a® e, with a € A" such that g(a) = 17'(g)a, for g € Hg, }

Since 7y is a finite unramified character, it trivializes over a finite Galois extension S, over R, (see
[Bri08, Proposition 8.6.1]), and we have that Gal(S[;]/Ro[3]) = Gr,/Gs, = Hr,/Hs, = I'&,/Ts,-
As 5 is étale over Ry the construction of previous chapters apply and we obtain that the Ag -

module D, (ZP(T]f)) = (A+ ®z, Zp(l]f))HSO = A§, () = A§, e is free of rank 1. Further, we know that

D* (Zp(qf)) = Dy, (Zp(ryf))HRO/HSO, which implies that the natural inclusion

A3, ®@ay D (Zp(n) — D5, (Zp(np))

is bijective. Now, since Ay — Ag is faithfully flat, we obtain that D* (Zp(’]f)) is projective
of rank 1. Moreover, D" (Zp(f]f)) admits a Frobenius-semilinear endomorphism ¢ such that
D* (Zp(f]f)) = ¢ (D+ (ZP(Uf))) (one can obtain this after faithfully flat scalar extension Ay — Ag
and applying descent as above). The action of I'g, is trivial on D* (ZP(T]f)). Now, note that unramified
representations are crystalline of Hodge-Tate weight 0, so we can take N(Zp(’]f)) =D" (Zp(r]f)).

From the discussion above, N(Zp(qf)) clearly satisfies the conditions of Definition 3.8. Also, we
have that N(Q,(#r)) = D*(Q,(7)). On the other hand, we have

ODcris<QP(7]f)) = (OBms(Rg) ®q, QP(T]f))GRO = {b@ e, with b € OB;s(Rp) such that g(b) = ryf(g)b}.

Since 7 trivializes over the finite Galois extension Sy over Ry, we set S = Sy({,n) and we have

(OAL @y, N(Qy(m0))"™ = Sy [7]€ = (OBers(S0) @, Q) ™,

where the rings OAED and OB,is(So) are defined for Sy over which all the construction of previous
sections apply (since Sy is étale over Ry). Now taking invariants under the finite Galois group

Gal(So[5]/Ro[3]) = Gr,/Gs,» gives us

(OAIP;D ®A§0 N(Qp(qf)))rRo = ODcris (Qp(nf))

Clearly, the natural maps

OARP @r, ODyis (Qp(r)) «— OARP &g, (OAR? ®a;, N(Qp(ﬂf)))rRo — OAR° ®az N(Qy(nr)).

are isomorphisms compatible with Frobenius, filtration and the action of T'g,.

Next, let us consider the unramified character 7, which takes values in 1 + pZ, and trivialised by
an element ¢ € 1 + pR,(‘)Tr (see Proposition 1.30). Set T = Z,(1u:) = Zye, such that g(e) = nu(g)e. We
have

D* (Zp(nur)) = (A+ ®Zp ZP(UUY))HRO = A;}an.

Since unramified representations are crystalline of Hodge-Tate weight 0, we can take N(Zp(r]ur)) =
D* (Zp(r]ur)) = Aj, ae. This clearly satisfies the conditions of Definition 3.8. Also, we have that
N(Qp(1ur)) = D*(Qp(1ur)). On the other hand, we have

ODcris (Qp(nur)) = (OBcris(RO) ®QP Qp(nur)) o
- {b®e, with b € OBais(Ro) such that g(b) = nu(g)b} = Ro[4] e
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Therefore, we obtain

(OAR @ag, N(Qp(n11)))™ = Ro[}]re = (OBess(Ro) S0, Qulrir) ™

Clearly, the natural maps

OA}P;D QR ODcris(Qp(r]ur)) ; OA}%D QR, (OAED ®A§O N(Qp(r]ur)))rRo ;’ OAED ®A;¥o N(Qp(’?ur)):

are isomorphisms compatible with Frobenius, filtration and the action of I'g,.
Finally, let T = Z,(n) = Z,e, such that g(e,) = x(g)"en, then V = Q,®z, T is a crystalline

n

representation with single Hodge-Tate weight n. In this case, we can take N(Zp(n)) = AR
Note that for n < 0, we have that N(Zp(n))/qo*(N(Zp(n))) is killed by ¢", where q = 21 Tt can

y

en.

easily be verified that T'g acts trivially modulo 7z on N(T). So, we set N(Qp(n)) = By, 7 "ep. Similarly,
G -n
ODyis (Qp(n)> = (OBcris(RO) ®Q, Qp(”)) = Ry [%] t “ep,

and ((’)A};D ®A;, N(Qp(n)))rRO = Ry [%] t e, = ODgis (Qp(n)) compatible with Frobenius, filtration
and connection on each side. Finally, the map

OAII;D ®Rry ODeris (Qp(n)> - OAgD ®A§0 N<QP(n))
e, —> ’t[—:ﬂ_"en.
is trivially an isomorphism compatible with Frobenius, filtration and the action of I'g,, since ’t’—: €
OAPP are units for n € Z (see Lemma 2.43). This proves the lemma. |

Remark 3.29. Note that for T = Zp(ryfryur) or Z,(n), we even have an isomorphism on the integral
level o
OARP @, (OAR? ®aj, N(T)))™ —> OAIP @ay, N(T).

One-dimensional Wach representations

In this section we will explicitly state Wach module associated to a one-dimensional representation,
and prove a statement useful for the proof of Proposition 3.31. Recall from Defintion 3.8 that a Wach
representation is a de Rham representation with additional structure.

Note that the structure of one-dimensional de Rham representations of Gg, is well-known (see
[Bri0s, §8.6]). From Proposition 1.30 we have that given 1 : Gg, — Z},, a continuous character, the
p-adic representation V = Q,(#) is de Rham if and only if we can write = neru x" for n € Z, where
1¢ is a finite character, 1, is an unramified character taking values in 1 + pZ,, and trivialized by an
element @ € 1+ pﬁgr, and y is the p-adic cyclotomic character. We recall that a p-adic representation
of Gg, is unramified if the action of Gg, factorizes through the quotient Gy (see §1.5).

First, let ny : Gg, — Zj, be a finite Wach character, i.e. a finite de Rham character satisfying the
properties of Definition 3.8. Let T = Z,(n¢) and V = Z,(n;). Then V has single Hodge-Tate weight
which is equal to 0. Furthermore, we have the Wach module N(T), and from Corollary 3.13 we obtain
that N(T) = D*(T) = (A" ®z, T)H% . From the conditions of Definition 3.8, we have an isomorphism
of projective Ay -modules N(T) = ¢"(N(T)). Finally, the action of I', is trivial over N(T)/zN(T) and
there exists a finite étale algebra R} over Ry such that A;% ®A;, N(T) is a free A”(,)—module of rank 1.

Next, let 7y : Gg, — Zj, be an unramified character taking values in 1+ pZ, and trivialized by an
element @ € 1 + pli(‘)l\r. Set T = Zp(Nur) = Zpe and V = Qp(7u;). Then from Lemma 3.28, we have that
V is a Wach representation of Hodge-Tate weight 0, and we can take N(Zp(nur)) =D* (Zp(qur))
A}}an, which is a free Aﬁo-module of rank 1.

Finally, let n = y, the p-adic cyclotomic character and T = Z,(y") = Z,(n) = Z,e, and V
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Q,(x") = Qp(n). Then V is a Wach representation with single Hodge-Tate weight n € Z. In this case,
from Lemma 3.28 we have N(Zp(n)) = A, 7 "en.

Lemma 3.30. Let n : Gg, — Zj, be a continuous character such that the p-adic representation
V' = Q,(n) is a Wach representation, with N(V)) the associated Wach module over Ay . Then we have an

isomorphism of OAFP [%] -modules (p*(OAgD ®az, N(V)) = OAFP ®Ay, N(V).
Proof. From the discussion above we can write 1 = ey x” for some n € Z, and where 7 is
a finite character, 7, is an unramified character taking values in 1 + pZ, and trivialized by

an element @ € 1 + plioar, and y is a the p-adic cyclotomic character. In particular, we have
T = Zyn) = Zy(ne) ®z, Zp(ur) ®z, Zp(x"), therefore by Lemma 3.15 we obtain that N(T) =
N(Zp(f]f)) ®a;, N(Zp(nur)) ®A;, N(Zp()(”)). So it is enough to show the claim for r¢, 5, and y"
separately.

Now T = Z(n¢) and Z (1) the claim is trivial as we have ¢*(N(T)) = N(T) as Ay -modules from
the discussion above.

For T = Z,(x"), we see that ¢"(N(T)) = ¢""N(T), where q = @. Recall that we have g =
p(p(%)ﬁ and £ is a unit in OA}P (see Lemma 2.43). Therefore, for V = Q,(x") we obtain that
¢ (OAEP ®a; N(V)) = OAFP ®a; N(V), proving the claim. [ |

3.2.3. From (¢,I')-modules to (¢, 9)-modules
The objective of this section is to prove the following statement:

Proposition 3.31. Let V be an h-dimensional positive Wach representation of Gg,, T < V a free
Z,-lattice of rank h stable under the action of Gg, and N(T) the associated Wach module. Then

M := (OA%D ®Al+?o N(T))FR" is a finitely generated Ry-module contained in OD,s(V). Moreover,
M [%] is a finitely generated projective R, [%] -module of rank h and the natural inclusion

OAR @k, M[] — OAR @a; N(V),

is an isomorphism compatible with Frobenius, filtration, connection and the action of I'g,. Finally, if we
assume N(T) to be free over A;’20 then there exists a free Ry-module My ¢ M such that M, [%] =M [%]

are free modules of rank h over Ry [%] .

Proof. We will use the notation of Definition 3.8 without repeating them. The first claim is easy to
establish. Since we have Hp, = Gal(ﬁ[%] /Res [%] ), therefore we can write

M = (OAR @y N(D))™ < (OA @y DY(D)™ < (OAais(R)™ @4y, DY (1)) (3.1)
< (OAais(Ro)™ ©a; (A" ®z, T)™)™ ¢ (OAwis(R)®z, T)™ © ODeris(V). '

The module (OAms(Ro) ®z, T) o s finitely generated over R. Since Ry is Noetherian, M is finitely
generated.
Independently, we have that R, [%] is Noetherian and ODs(V) is a finitely generated Ry [%] -

module, therefore M [%] c ODg:s(V) is finitely generated over R, [%] Moreover, the module
OAPP ®A;, N(T) is equipped with an APP-linear and integrable connection dy = d® 1, where 9
is the connection on OA%D described after Lemma 3.23. Therefore, we can consider the induced
connection on M [ﬁ] , which is integrable since it is integrable over O AEP ®A;, N(T). This connection
is compatible with the one on OD,;s(V) since the connection over OA%D is induced from the
connection over OAs(Rp). So by [Bri08, Proposition 7.1.2] we obtain that M [%] must be projective

of rank < h. Further, the inclusion M [%] c ODgs(V) is compatible with natural Frobenius on each
module since all the inclusions in (3.1) are compatible with Frobenius.
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Next, we will show that the rank of M [%] as a projective Ry [%] -module is exactly h. It is enough
to show that the rank is h after a finite étale extension of Ry. Let us consider R} to be the p-adic
completion of a finite étale extension of Ry such that the corresponding scalar extension AR, ®A;, N(T)
is a free module of rank h (see Definition 3.8) and R}, [5] /Ry [5] is Galois. The discussion of previous
chapters hold for Rj (see [Bri08, Chapitre 2] and [AI08, §2] for more on this). In particular, let

= R/({,~) and we have rings A},, A}, ALP and OA}D. Let R, [1%] denote the cyclotomic tower

over R} [%] and

R

T, = Gal(RL[;]/Ry[]) and Hg = Ker (G — Tg).

Similarly, we have Galois groups I'y> and Hg'. Let

6’ += Gal(R[1]/Ra[ 1) = Gal(R [3]/R[2]) = Gal(R 3] /R0[]).

then we have that Hr/Hg = Hg,/ HR6 = G’. So we obtain that

AR

0

+ /\ Hry/Hy/ ¢
= (AT = ((A) ™ = (A
+ + + ,\ Hr/Hgs +\G
A= (A7) = (A7) = (AR
From these equalities and the description of the action of I', on § = T, it is clear that

APD (A ) , and therefore OAPD (OA )

Now, since N(T) is projective and G’ acts trivially on it, we obtain that
+ G
(OAY Dy, (AR6 ®aj, N(T)))" = OAR° @y, N(T)

(OAR @y (Rien M[3]))7 = OAP o, M(}].

In particular, base changing to A*(,) to obtain N(T) as a free module is harmless. For the convenience
in notation, below we will replace R} obtained in this manner by R, and assume N(T) to be free over
Ag,-

In order to show that the rank of M [%] is at least h, we will successively approximate a basis of
N(T) (after scalar extension to OAEP) to linearly independent elements of M [%] . To carry this out,

first we will define several new rings following [Wac96, §B.1] and examine their relation with OAEP.
After extending scalars, we will approximate the elements of N(T) with elements invariant under
the geometric action of Ty, i.e. T . Finally, we will approximate the elements obtained from the
previous step to elements which are invariant under the arithmetic action of I'g,, i.e. I'r. Note that
whereas I'; is a commutative group, I'g, is not. Further, the action of I, on the geometric variables
involves the element 7 on which Ty acts (see §2.1), therefore it is imperative that we carry out the
approximation steps in the order mentioned above.

Auxiliary rings and modules

For n € N, let us define a p-adically complete ring

PD . _ ? 7~
S 1= Ap { Fos g e g )

Let I denote the ideal of SPD generated by ﬁ;n for k = i and we set

SPP = 1im SEP /111,
1
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Note that §5D is p-adically complete as well. Further, note that we can write ¢(r) = (1 + )P - 1 =
7P + prx for some x € Ay, therefore

p(r*) (@ + prx)t Tho () (prx)t
kipkn — klpkn k! pkn
_ i (k + (p~ Di)tp eV kP Dih-i on
=3 i'(k - i)! (k + (p - 1)i)!ptk+p-1D(n-1)

1

n-1

Using this, the Frobenius operator on S can be extended to a map ¢ : §5D — §§P1, which we will

again call Frobenius. The ring §5D readily admits a continuous action of I'y, which commutes with
the Frobenius.

Lemma 3.32. The ring §(1;D is a subring of AP, and therefore <p"(§5D) c AP

Proof. The first claim is true because we have

) ) i i-1 i
2P = w mod pA}, which gives 77 = 7 mod p'Aj.

So for k = p’ we can write

k k .k k ;
44 s & kpif_pt, i i
- can (" epla) =plam

vk ) i-1 k+pi!
k—p’é; i-1_p! (k+pi)y & i1 APD
kTP T (ke pry ©F A

for some a € Ay. Therefore, we get that I(Ep T p"1APP and hence S0 AEP. The second claim is
obvious. |

In the relative setting, we need slightly larger rings. Let us consider the W-linear homomorphism
of rings

1t Ry —> SFP

)(]|—>[ij] fori<j=<d.
Using ¢ we can define a W-linear morphism of rings

f: Ry@w PP —s §FP

a® b — i(a)b.

Let (9§5D denote the p-adic completion of the divided power envelope of Ry @y §£D with respect

to Ker f. Further, the morphism f extends uniquely to a continuous morphism f : O§5D — §5D.

Now, it easily follows from the discussion in §2.5 that the kernel of the morphism f is generated by
_ 19[X7]

(Vi -1,..., Vg - 1), where V; = Xj®11 fori<j<d.

The Frobenius operator extends to O§5D as well as the continuous action of I'z,. From the
discussion above we have (p"(§5D) c S?; D c AP, and following the description of O[%) D §2.5 and of
OA%D from Remark 3.20, we obtain that

OS5P < OARY and ¢"(OSP) < OARP.
Moreover, we have a canonical inclusion of §5D c O§5D compatible with all the structures.
Recall that we have m € IN..; such that K = F({,m), so below we will consider the ring ng;,D. Now

consider the ideal
J = (}%,V1 -1,..,V;-1) c OSP,
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and its divided power

p"kO

d d
LU <ﬂ“‘°] [V - D), k = (ko, k1, ... ka) € N¥* such that " k; = i> c OSP.
j=1 j=0

By the construction of OSEP

, it is clear that this ring is p-adically complete with respect to the
g dezl(‘/j - 1)ll, where x, € SEP goes to 0 as

PD-ideal Jll. In other words, the series ¥ a1 Xk I

k| = ¥; kj — +oo, converges in OSA,P;ID.
Next, we set

ON'P .= OSP @az, N(T).

Again, ONFP is p-adically complete and it is equipped with a Frobenius-semilinear operator ¢ and
a continuous and semilinear action of I'g,. Also, we take

/
rRo

M := (ONP)S and M” := ()7 = (ON™)"™.

Since we assumed N(T) to be free, we have that ON'P is a free ng;,D—module of rank h. Since
(pm((9§£lD) c OAPP, we get that ™(M”) < (OAEP ®Ay, N(T))FRO. Therefore, it is enough to
successively approximate an element of N(T) to an element of M”’. Let {y, yi1,..., ya} be a set of
topological generators of Iy, such that {y1,..., ys} generate I'; topologically, and y is a lift of a
topological generator of I'r such that y° = y; is a lift of a topological generator of 'y and e = [K : F]
(see §2.1).

Geometric part of I'g,

Lemma 3.33. For any x € N(T), there exists x’ € ONT® such that

x’ =x mod ][I]ONPD,
vix)=x" fori<i<d.

In particular, x” € M’.

Proof. We will successively approximate x € N(T) to an element x” € M” by adding elements from
JWONPD, for n = 1 converging for the p-adic topology and such that the action of I'%, converges to
identity.

We start by setting x; := x € N(T) ¢ ONPP 50 that we have Ys(x1) = x; + mys for some
ys € N(T) c JIUONPP, Next, let

X t=x1+ (Vi = Dzg + -+ (Vg - 1)zy,

where z; € N(T) for 1 = s =< d, which we need to determine. Clearly, we have that x, = x
mod JIUONFP. Now note that
p(Vi-1)=(1+m(Vi-1+1)-1=V,-1+x mod 7JNOS}P, (3.2)

and since we must have ys(z;) = zz mod zN(T) for 1 < s, t < d, therefore the action of y; on x; can
be given as

}’s(xz) = )/s(xl) + (V1 - 1))/3(21) +oeee Ys(Vs - 1))’3(25) +ee (Vg - I)Ys(zd)
xp+ays+(Vi-Dzg+ -+ (Vs =1+ mzg+ -+ (Vg - 1)zg mod rJMONPP
xo + m(ys + zs)  mod aJMONFP,
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Setting z; = —y; for 1 < s < d, we obtain that y;(x2) = x;, mod aJMONFD,

Now we will proceed inductively over n, i.e. we will show that for n > 2, if there exists x, € ON*P
such that

Xn = Xp; mod JIUONFP,

Ys(xn) = x, mod 7" ON for1<s=<d,
then there exists x,.; € ONFP such that

Xp+1 = Xn mod JIMONTP,

Ys(Xn+1) = Xpe1 mod aJMON® for1<s<d.

For n € N, let us define the multi index set A, := {k = (ko, k1, ..., kq) € IN?*! such that k, +
kg = n}. We set

Xn+1 = Xp t Z ﬂ[IO] [ll] (Vd - 1)[id]Zi: (3-3)
ieA,

for some z; € N(T), which we need to determine. We will solve for z; by studying the action of y; on
Xp+1 for 1 < s < d. For the action of y; on x,, we have

[ko]
Vo) = x4 3 E (V= DI (V- DRy,

Ik|=n-1
where [k| = }’; k; and ) (s) N(T) goes to zero p-adically as k| — +co. Truncating the equation
above for k| = n, we obtam
(K
Ys(xn) EXpt T Z Zmli)o (Vl - 1) ... (Vd - 1)[kd])’1((3) mod ”J[n]ONPD- (3‘4)

keA,-1
To determine x,.1, we begin with s = 1. From (3.2), recall that
nvi-1)=(Vi-1+x) mod n][l](’)gan,

and since we must have y;(z;) = z; mod zN(T), therefore the action of y; on x,,; using (3.4) can be
given as

[kol
¥i(Xne1) = Xp + 7T Z ;fm;jo vy - )R] (v, - 1)[kd1yl<(1)

keA, -1
ZE,I,(,)j (Vi-1+ 71')[1.1](V2 - 1)[i2] (Vg - 1)[id]zi mod 71']["] ONFP
i€A,
[ko]
=Xpe1 t T Z m’(:o (Vq - )[k1] (Vg - 1)[kd]yl((l)
keA, -,

£y ﬂﬁ,’,‘,’o (Vi = 1+ o] — (v - )Y (v - DR (v, - DYl mod 2/ ONFP.

ieA,

For k = (ko, ..., kg) € Ap1, ie. ko + - + kg = n — 1, the coefficient of 7%*1(V; - 1)kt .. (V; - 1)k in
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the right side of the congruence above is given by the expression

yf(l) . (k1 + ko + 1) Hokirkorlkpnka) (k1 + ko) Z(1,ky +ko, Kz, kq)

k!pmko kl (kl + ko + 1)'k2' kd‘ kl (kl + ko)'kz' kd!pm
. (Iq + ko - 1) Z(2,k1 +ko-1,kp,....kq) N (3.5)
ky 21(ky + ko — 1)lky! -+ kg!p?m
(k1 + 2) Z(ky-1,k1 +2,ks,... k) (k1 + 1) Z(ko Ky +1,ks,.. k)
+ + ,
ki / (ko = 1)!(ky + 2)lky! -+ kg!pmko-1) ki Jko!(ky + 1) ky! - kgl p™ko

where k! = ko! -+ k4!. To write more succinctly, we set
A o= {§ = Gosjiseesja)s such that 0= jo = ko, jo = ki + ko + 1= jo, o = Koy s ja = ka } < Ap,
and therefore, the summation in (3.5) can be expressed as

(1) ko .
Yk N %j
Kipmk Z(kl)j!pmjo’ (3.6)

Jo=0

where we have j! = jy! - j;! and the summation runs over indices in ASL To get y1(%n+1) = Xn+1
mod 7JMONTP it is enough to have the summation in (3.6) belong to 7JIMONPP for each k € A,_;.
We take i = (ko, ky + 1, ko, ..., kg) € A(nli and putting (3.6) congruent to 0 modulo xJMONPP and
simplifying the expression, we get a congruence relation

kool gy pmiko-io)
__(.® 0-p )
zi=- + Y —=——————z] mod aN(T), 3.7
' (yk jogo Jol(ko + 1 = jo)! ™ (0 G2

where the summation runs over indices in A(nli( \{i}. Since jy < ko in (3.7), we see that the coefficients

! . . . — ko p"tkojo)
of zj appearing in the summation above can be re-written as ( ) ) T

p which has non-negative
p-adic valuation (positive p-adic valuation for p = 3). So from (3.7), we obtain an expression for z;
in terms of z;j such that j < i lexicographically. Here by lexicographic ordering we mean that for
j.j' € An, we have j < j if and only if j, < jj, or jo = j; and j; < ji, or jo = jg, j1 = j; and j, < jj, and so
on.

To determine z; modulo zN(T) for i € A, such that i; # 0, we will proceed by lexicographic
induction over the index i. For the base case we havei = (0, iy, i3, ..., ig) for 1 < i; < nand iy +--+ig = n,
so taking k = (0, i; — 1, i, ..., ig), from (3.7) we obtain

= _.,
2(0,irsiz0mia) = “V(0,ig -1, 0iy) mod 7N(T).

Lexicographically, next we have i = (1,i1,lp,...,0g) for 1 < 4 = n—-1land 1+ i + - +ig = n.
Then we take k = (1,i; — 1, Iy, ..., i) and obtain that A(nlf( = {(0,i; + 1, i, ..., ig), (1,104, 0,...,0q)}.
Since (0,11 + 1,ip,...,iqg) < (1,11, 82, ..., ig), from (3.7) we obtain the value of z; ; ;). For the
induction step, let i = (i, iy, g, ..., ig) € Ay, such that i; # 0 and iy + -+ + iy = n. Then we take
k = (ip, i1 — 1, o, ..., ig) € Ap_1 so that we have i € ASL andj<iforallje ASL \{i} as jo < ko = Io.
Plugging this value of k in the computation above and in particular, from (3.7) we obtain the value
of z; modulo #N(T) by induction.

Next, we will repeat the computation above for the action of y; on x, in (3.4) for 2 < s < d. Let
i = (igy., i, .. ig) such that is # 0,k = (ig .., is = 1, ..., ig),

AS’{( L= {J = (j(),...,jd), such that 0 Sj() =< ko, jl = k], veey js = ks + k() +1 —j(), cees jd = kd} CAn,
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and we set )
0-1 k! m(ko—Jjo)
_ (s) o!p” )
Zi = —(y + ——————7z ] mod zN(T), (3.8)
l k joz:;) Jol(ko + 1= jo)t ™
where the summation runs over indices in A(ns)k For the base case we have i = (0, i, ..., i, ..., ig) for

1= ig<nandij + - +ig = n. So taking k = (0, iy, ..., is — 1, ..., ig), from (3.8) we obtain

NG
20,1, iia) = Vo ioo1iy  MOd ZN(T).

Lexicographically, next we have i = (1, i, ..., i, ..., ig) for 1 = iy = n—1and 1+ i; +... + iy = n. Then
we take k = (1, il, wris = 1,..., ig) and obtain that AT} = {(0, i1, is + 1oy ig), (L ityee, sy ee d) -
Since (0, iy, ..., ig) < (1,i1,..., s, ..., ig), from (3.8) we obtain the value of zy; _; ;). For
the induction step, let i = (ip,...,ig) € Ay, such that ig # 0 and iy + ... + iy = n. Then we take
k = (ip, i1, ..., is— 1,..., ig) € Ap_1 SO thatwehaveleA( candj < 1forall] EA(Sk\{ }as jo < ko = Ip.
Plugging this value of k in the computation above and in particular in (3.8), we obtain the value of
zi modulo zN(T) by induction.

From the computation above we obtain solutions for z; and only when is # 0 for some s € {1, ..., d}.
So we set z,.. o) = 0 mod 7N(T). Note that we have

(i) unique value for z; modulo zN(T) when is # 0 for exactly one s € {1,...,d},
(if) more than one value for z; modulo 7N(T) when is # 0 for more than one s € {1,...,d}.

Note that our procedure of obtaining a value for z; modulo zN(T) involves fixing some s such that
is # 0, and solving some equations arising from the action of y;. For an index i € A, if s # s” such
that i; # 0 and iy # 0, then we obtain more than one value for z;. But from Lemma 3.34 below, we
see that these values are in fact, equivalent modulo zN(T). Therefore, the value of x,,1 in (3.3) is
uniquely determined modulo 7/ ONFP. Moreover, from the expression obtained for z; in (3.7), it
is clear that p-adically z; — 0 as |i| — +co. In conclusion, the sequence x, converges p-adically to

some x’ € M’ = (ONPD)F;QO. [ |

Following conclusion was applied above:

Lemma 3.34. For each j € A,, multiple values of zj obtained are congruent modulo =N(T).

Proof. For a fixed j € Ap, we need to show that in case of multiple solutions for zj, we must have
that these solutions are equivalent modulo 7N(T). To do this, we need to work with all indices
at once. So we will consider two sets of solutions {z;, i € A,} such that entries in these sets are
distinct for indices i € A, for which we have multiple solutions. Further, our proof will exploit the
commutativity of I'; .

For simplicity in the presentation of the argument, out of d generators of I ,» we will fix two

generators say y; and y,. Now, let us denote the first set of solutions {zi(l), forie An}, where
for i € A, such that if i; # 0 we take the solutions obtained from trivializing the action of y; (see
(3.7)) and if i; = 0 we take solutions obtained from trivializing the action of y; (see (3.8)) for some
s € {2,...,d} such that i; # 0. Next, we take another set of solution {zi(Z), forie An}, where for
i € A, such that if i, # 0 we take the solutions obtained from trivializing the action of y, and if
i = 0 we take the solutions obtained from trivializing the action of y; for some s € {1, ..., d} such
that is # 0. In the second set of solutions, we also impose the condition that in case i, = 0 and there
exist multiple solutions for z, then we will choose the value of zi(z) such that it is not the same as

zi(l). Since the only relation between these set of solutions obtained and x; is given by (3.3), we will
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construct two different values for x,,.1. More precisely, we set

Z prrt(z)j Vi-1) (a]... (Vy - 1)[id]zi(1)’
i€EA,

(3.9)
io)
2 (V= )l (v - )2,
i€A,
We have z, z? ¢ J ("I @O NFP, This allows us to set
xﬁzi)l =Xt 2(1),
x,(i)l t= x, + 29,
and we get that
ri(x) = xiy mod zjMONFP, 610
vz ( 5;231) = xr(12+)1 mod /"™ ON'P. '
Further, we simplify the notations and write (3.4) as
_ 1) (n] PD
Xp) =X, + T mod 7J'"ON™",
Yl( n) n y (3.11)

Ya(xn) = x5 + ﬂy(z) mod ﬂ][”] ONFP,

where it is obvious that y(), y® ¢ JI""UONFP replace the summations occuring in (3.4). Therefore,
from (3.11) we can write

Yoy1(%n) = %0 + 1Y@ + 172 (y)  mod 7JIMONFP,
Y1Ya(xn) = Xy + ﬂy(l) + TN (y(z)) mod ]I ONPP.
Since I'; is commutative, we have y1y, = y2y1, therefore

(2 - D)y = (1 - D2y®  mod nJMONFP.

Next, combining (3.11) and (3.10), we obtain

(11 - 1)z = —ﬂy(l) mod 7JMONFP,

(12 - 2% = —2y?  mod M ONFP.

Again, since y; and y, commute, we obtain
(y2 - )(p1 - 1)(2(1) - 2(2)) =0 mod rJMONP.
As JIWONPD is stable under the action of T'g,, applying Corollary 3.36 twice we obtain that

zi(l) = 2% mod aN(T),

1

fori € A, such that i, iy # 0.

By repeating this argument for each pair of r, s € {1, ..., d}, we conclude that the multiple solutions
of z; for i € A, are equivalent modulo ZN(T). |

Let us note a general result, which will be useful later and whose special case (see Corollary 3.36)
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was used above. Let x E][”]ONPD and s € {1, ..., d}. We write

X = Z p,,i?j(vl - 1)[1'1] (Vg - 1)[id]xi’
i€EA,

for x; E][”ONPD, and A, = {i = (i, ..., ig), such that iy + --- + iy = n}. Then,

Lemma 3.35. Lets € {1,...,d} such that i; # 0, then (y; - 1)x =0 mod JI"*UONFP if and only if
x; € JMONPP.

Proof. First note that JHJONPP is stable under the action of y, for 1 < s < d, so we get the “if”
statement. For the converse, without loss of generality, we take s = 1 and set y := y;. Then we have

(y-1x =Y o ((vi- 1+ M= (v = D) e (Vg = Dy mod JImONTP
ieA,

i1—-1

= 3 A (V= ) (v - 1)l (’]i)(vl—1)’<n"1*’<xi mod JIONPP

'p"”o
i€A, k=0

-y Z() I (Vi = DAV - D) (v - Dl mod JIONTP
i€\, k=0
=y Z(’° fho ) ) A (V= DIV = ) (Vg = DV mod JIONP
ieA, k=0

Let j € A,, then we set Apj := {r = (rp,...,74), suchthatji < ry < jo+ji,00 = jo+j1—-n.n =
J2s s Td = ja}. SO we can write

(y-1)x = I%(Vl — )iy, - 1)l .. (v, - 1)l Z (JO )pm(”_jl)xr mod JImUONFD,
jEAR €A, "o
Ji<n
To get (y - 1)x € JIONPD | we can write each x, = Z? 1 xr(l)e, with xri) € OSAP,;ID and {e,...,ey} a
chosen basis of N(T) to obtain for each 1 < i < h, the congruence

%(Vl DUV, - ) (v - S (JrO>pm<r1—jl>xy> =0 mod JMIOZP.

jEAN r€fn; 0
Ji<n

Note that in the equation above we have that the first part of the left hand side is in J ["+1](’)§an .

Now for any two j,j’ € A,, we have that j # j/, so the first part of the congruence for each term is

different. Therefore to obtain the congruence above, we must have

D (]0) Py =0 mod JHOSEP. (3.12)

A\
J
Combining (3.12) for each 1 < i < h, we obtain that

Z (]0 >pM(r1—j1)xr =0 mod ][ﬂ(’)NPD‘ (313)

T
reA, j 0

From this set of equations, we see that for any j € A, it is enough to show that x, = 0 mod JIJONFP
for each r € Ay;.

We will proceed by lexicographic induction. First note that in the base case we have j =
(0, 1,2, ---»ja) for 0 < ji = n—1and Apj = {(0,)1,)2,...,ja)}. So from (3.13) we obtain x = 0
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mod JIUONPP. Lexicographically, next we have j = (1,ji,j2,...,J4) for 0 < j; < n -1 and
Anj = {(Lj1,jos s Ja)s (0,1 + 1, ja, ... ja) }. Let 1 = (0, ji + 1, jo, ..., ja), then from the previous step we
have x; = 0 mod JlWONFP. Combining this with (3.13) we get that x; = 0 mod JIUONFP. For the
induction step, let j = (jo, ji, j2, ..., ja) for 0 < j; < n— 1. Since we have j > r for any r € A\ {j}, from
(3.13) and induction we obtain that xj = 0 mod JUWONPD This finishes the proof. |

The result above can be specialized to the following statement:

Corollary 3.36. Let us assume that x; € N(T) for alli € A,. Fors € {1,...,d} such that is # 0, we
have (y; - 1)x € nJMONPP if and only if x; € 7N(T).

Proof. First note that 7N(T) is stable under the action of y; for 1 < s < d, so we get the “if” statement.
For the converse, let {ej, ..., e} denote an A, -basis of N(T), and we write x; = Z 1 l(k) ex. Now,
using Lemma 3.35 and the assumption in the claim, we obtain that x; € N(T) nJIJONPP ¢ ON'P,
Therefore, we must have xi(k) € Ap nJ MOSPP « OSFPP. By definitions, we have that Ap NJ MOSPD -

mAp, - Hence, x; = yh, xi(k)ek € N(T). |

Arithmetic part of I'p,

Recall that we have y as a topological generator of I'r such that y, = y® is a topological generator of
I'x, where e = [K : F]. As a second step, we will successively approximate for the action of y, and
then obtain an element fixed by y.

Let us consider the ideal and its divided powers for n = 1

H = (%) < (05)™,
H = (2 k= ny < (OSP)'™.

Recall that M’ = (ONPD)FRO and M” = (ONPD)FRO. Note that since (OS?;ID)FRO is PD-complete with
respect to the ideal H and ON?P is a finite free (’)@P—module, we get that M’ is PD-complete with
respect to the ideal H.

Lemma 3.37. Forx’ € M’, there exists a unique x”” € M’, such that

¥’ =x mod HMM

In particular, x”” € M”.

Proof. The proof essentially follows the technique of [Wac96, §B.1.2, Lemme 1]. For uniqueness, we
want to show that if x”/, y”” € M’ satisfy the conditions of the lemma then we must have x” = y”.
If x”” and y”’ are distinct, then x”/ - y” is nonzero in H"IM’ /H"M’ for some smallest n = 2,
ie. x” -y” = x"la mod HMM’, with @ € M’. Moreover, we have Yo = y¢ where e = [K : F],
therefore yo(x”’) = x”/, yo(y”’) = y”, and yp(a) = @ mod mM’ since y, acts trivially modulo 7 on
N(T) and (’)§an. So we obtain
JTn_I(Z =x" — y// _ }’O(x// _ y//) _ Yo(ﬂn_la) = )’0(71'"_1)0( = X(Yo)n—lﬂ_n—la mod H[n]M’.
Since y(yo) = exp(p™) and n = 2, we conclude from the congruence above that « = 0, i.e. x”/ = y”.
Before proceeding to show the existence of x”, let us show that it is enough to approximate for
the action of yo Let g € I'r be a lift of a generator of the cyclic group I'r/Tx. Then we have that
Yy’ =130 gk ((’)NPD)FR" = M”. But by the claim of uniqueness proved above, we must

have that y”" = x”, i.e. x” € ((’)NPD)FR" =M.
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For existence, we start by setting x{ := x” and using successive approximation we will show that
if there exists x,, € M’ such that

=
Il
i
5
o
(oW
av
=

then there exists x/,,; € M such that

n

x\.,=x)  mod HMM,

YO(xr,H-l) = xr/z+1 mod rH"M’.

To find such an x’_,, first we write

n+1>
Yo(x2) = x/, + my!,  mod xHMM’,

with ¥, € HI"1M’. Next, we set
/

L /
xn+1 T xn +Zn’

for some z], = %;nwn € H"M’, which we need to determine. Note that we have

Yolzp) = 1)

Yo(wn) = x(y0)" Fow = x(10)"z,  mod wHI"M'
Now, the action of y on xj,,, can be given as

Yolxnaa) = %, + 7y, + x(v0)"z;, mod wH!"IM’
=x\., + 7y, +(x(yo)" - 1)z, mod 7HMM’.

Since y(yo) = exp(p™), we have y(yo)" - 1 = np™u with u € 1 + pZ,. So, to get y(x;,,) = X,

n+1
m

mod 7HMM’, we can take z/, = -/, npif"u)((;/lf)"—l € H"M’. Hence, we conclude that the sequence
r
x/, converges to some x”/ € (ONFP) ™ = pm”. [ |

Unique lift by successive approximation
From Lemmas 3.33 & 3.37 we get that for any x € N(T) we can find x”/ € ON*P such that

¥’ =x mod JHONP,

Ys(x”)=x" for0<s<d.

. T . . . .
In particular, x”” € M” = ((’)NPD) 0 Moreover, this solution is unique. Indeed, let x”, y” be two
such solutions. Then we must have that x”/ - y”” is nonzero in JIMONFP / T+ 1O NPD for some
smallest n = 1, i.e.
grLio]

4 /7
x' -y =

i€EA,

(v = Dl (v - Dliadg mod JimHONFP.

mio

Let
ﬂ[io] ) ) oD
p = E _(V; - 1)[11] (Vg - 1)[ld]ﬂi GJ[n]ON i

mip
ieA,

then because we have (y; - 1)(x” - y”) = 0 for s € {0,...,d}, we obtain that (y; - 1) = 0
mod JI"™JONFP. But from Lemma 3.35 this is only possible when f = 0 mod JIUONFP for
i€ A, \{k} wherek = (n,0,...,0).
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Next, applying yp to the reduced expression we obtain

[n] n .
Zmnﬁk =¥ y// _ YO(x” _ y//) = X(}’O)npﬂmnﬂk mod ][n 1]ONPD.

Again, this is only possible when f = 0 mod JMMONPP. Therefore, we obtain that we must have
x// - y//‘

Finishing the proof of Proposition 3.31

Recall that at the beginning of the proof we assumed N(T) to be free of rank h (after extension
of scalars to Ay, which we again wrote as Ay by abusing notations), therefore ONPP is free of
0

rank h. Further, we have M = (OA%D ®a;, N(T))FRO and since M [%] is equipped with an integrable
connection, it is projective of rank < h (see the beginning of the proof). So by the successive
approximation argument above, we obtain that the rank of M [%] as an Ry [ %] -module is exactly h.

Finally, we want to show that the natural inclusion OAFP @p M [ﬁ] — OAPP ®a; N(V) is
bijective. Since we assumed N(T) to be a free module, let {e,..., e;} be its Aﬁo-basis. Let P €
Mat(h, Ay ) denote the matrix for the action of Frobenius on N(T) in the basis {ey, ..., e, }. We want
to show that (p*((’)AED ®A;, N(V)) = ((’)AED ®A;, N(V)). Note that we have A" N(V) = N( AR V),
which follows from the compatibility between exterior power of representations and exterior power
of their respective Wach modules in Corollary 3.16. Since A" V is again a positive Wach representation
and taking exterior powers commutes with scalar extension (see [Bou98, Chapter III, §7.5, Proposition

8]), therefore passing to h-th exterior power we obtain that
PD h ! PD
OAR’ @ap, N(AV) = N\ (OAR’ @a; N(V)).

Now from Lemma 3.30 for one-dimensional representations we have that ¢ (OAIP;D ®A;, N(A\" V)) =
OALP ®az, N(A" V), and therefore

h h h h
0" (/\ (OAR® @45 N(V))) = 0" (OAR® @a;, N(AV)) = OAF @a; N(AV) = N\ (OAR @a; N(V)).

Since the action of ¢ is diagonal and taking exterior powers commutes with scalar extension (see
[Bou98, Chapter III, §7.5, Proposition 8]), we obtain that

h h h
N o' (OAR” @a; N(V)) = ¢ ( \ OAR® @4 N(V)) = )\ (OAR @45 N(V)).

In particular, we have obtained that det P is invertible in OAEP [%] .

Next, recall that ON*P = OSFP ®a; N(T) and M” = (ON PD)FRO. So we consider the following
commutative diagram

O §51D ®R, M/ — s ON'D

OAPP @g, M ——— OARP ®az, N(T),

where all arrows are injective. We also have that {ey, ..., e;} is an (’)AgD -basis of (’)A%D ®A1+?o N(T) as

well as an OSFP-basis of ONPP. From Lemmas 3.33 & 3.37 and the discussion above, we have f; € M”’
for 1 < i < hsuchthat f; = e,»+2?=1 ajje;j for a; e][”0§an. Sowelet A := idy, +(a;;) € Mat(h, (’)§51D)
denote the h x h matrix obtained in this manner. Since det A€ 1 + ] [1]O§,€1D and (9§51D is p-adically
complete with respect to the PD-ideal JIJ, we obtain that det A is invertible in (’)§an.
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Now let g; = (™ ® ™)f; = ¢™(ei) + Z;lzl ¢™(aij)¢™(e;) € M and let M, be the Ry-submodule of
M generated by {gi,..., gy} From the expression of {gi,..., gy} in the basis of OAFP ®A;, N(T),
we obtain that the determinant of the inclusion OALP @g, My, — OALP ®A;, N(T) is given by

@™ (det A) det(P™). Since det A is invertible in ngnD, we get that ¢(det A) is invertible in OAIP;D and
from above we already have that det P is invertible in OAFP [%] Therefore, the natural inclusions

OAR’ @, Mo[ ] — OAR® @, M[}] — OAR® @4y N(V),

are bijective. These inclusions are compatible with Frobenius, filtration, connection and the action
of I', on each side.

Note that we assumed N(T) to be free of rank h, therefore we obtain a free Ry-lattice My < M such
that

Mo[3] = (O en, Mo[5])"™ = (OAP ex, M[3])™ = ]3],

which are free of rank h over Ry [%] In general, when N(T) is projective of rank h, we obtain that

M [%] is projective of rank A. |
Finally, under simplified assumptions we make an observation which will be useful in Chapter 5.

Proposition 3.38. Let V be an h-dimensional positive Wach representation of Gg, and T c V a free
Z,-lattice of rank h stable under the action of Gg,. Suppose m = 1 and let us assume that N(T) is a

free Ay -module and let M < (OAIP}D ®Az, N(T))FRO be the free Ry-module obtained in Proposition 3.31.

Then, the Ry-module My/ ¢"(My) is killed by p**, where s is maximum among the absolute value of
Hodge-Tate weights of V.

Proof. Lete = {ey,..., eq} be an Ay, -basis of N(T). Then in the notation of the proof of Proposition
3.31, we obtain that M is a free Ry-module with a basis given as g = {g1, ..., g4}, where g = ¢p(e)p(A)
for A € Mat(h, (’)§51D).

Now note that g = @ = p(p(%)% and since 7 is a unit in OAPP (see Lemma 2.43) we obtain
that g and p are associates in the ring OAPP. Further, we have that N(T)/¢*(N(T)) is killed by ¢°,
where s is maximum among the absolute value of the Hodge-Tate weights of V. So, over OALP

we obtain that (OAIP;D ®a;, N(T)) /o (OAIIED ®a;, N(T)) is killed by p®. Next, we have that det A
is a unit in (’)§an, therefore ¢(det A) is a unit in OAEP and ¢(A) is invertible over OALP. This
implies that OAED ®r, My = (p*(OAgD ®a;, N(T)). Thus, the cokernel of the natural inclusion
OAR® @, My — OAR® ®4; N(T) is killed by p°.

Now consider the commutative diagram with exact rows

0 0 —— M;
|
0 —— ¢"(OAR® @k, My) —— ¢"(OAR® @a; N(T)) M, 0
J
0 ——— OAR ®r, My ———— OAR° @5 N(T) M; 0
M, Ms
0 0.

By the discussion above, Ms and Ms are p*-torsion modules over OAEP. An argument similar to
the case of M3 shows that M, is p*-torsion as well. This implies that the submodule M; ¢ M, is
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p’-torsion. Next, an application of snake lemma, gives the exact sequence
00— M1 — M4 — MS.

Since M; and Ms are p°-torsion, we conclude that M, is pzs—torsion. In other words, the module
(OARP @g, My) /¢ (OAEP ®g, My) is killed by p*.

Finally, we note that the action of Frobenius commutes with the action of Ty, therefore taking
['g,-invariants, we obtain that the module M,/ ¢*(M,) is killed by p*. This proves the corollary. M

Remark 3.39. Note that we fixed a choice of m € IN,; in the beginning. The Ry-modules that we
have obtained depend on this choice. In particular, let 1 < m < nand R = Ry({m) and R’ = Ro(gvpm/).

Then we have that OALP ¢ (’)AIP;P with M = (OA%D BA;, N(T))FRO and M’ = ((’)Ag? ®A;, N(T))FRO.

Further, let My and M be the Ry-modules obtained for m and m’ respectively in Proposition 3.31,
then we have that q)ml’m(Mé) c M (this esentially follows from the fact that ¢™ =™ ((’)gf’nl,)) c 0§51D).

3.2.4. Proof of Theorem 3.24

Let M = (OA;}D ®a;, N(T))FRO and we have a natural inclusion of projective Ry [%] -modules of

rank A from Proposition 3.31, M [%] c ODg:s(V). First, we will show that V is crystalline and
the inclusion described above is in fact bijective. Recall that from Proposition 3.31, we have an
isomorphism of O AP [%] -modules

PD = PD
OAR’ ®r, M[5] — OAR” ®a; N(V),
compatible with Frobenius, filtration, connection and the action of I'g, on each side. Since both sides
are projective modules, extending scalars along (’)AIP}D — OB,is(Ry) we obtain an isomorphism of
OB,is(Ry)-modules

OBcris(RO) ®R0[ ] M [%] i’ OBcris(RO) ®B;§O N(V),

1
P
compatible with Frobenius, filtration, connection and the action of Gg, on each side. Further recall
that A* ®A, N(V) — A* ®Ay, V and the cokernel is killed by 7° (see Lemma 3.12). Since r is
invertible in OB;5(Ry), extending scalars along A* — OB;s(Ry), we obtain an isomorphism of
OB.is(Ro)-modules )

OBris(Ro) ®8;, N(V) — OBaris(Ro) ®g, V.,

compatible with Frobenius, filtration, connection and the action of Gg,. Finally, since R, [%] —
OBis(Ro) is faithfully flat (see [Bri08, Théoréme 6.3.8]), we obtain an inclusion of OB,is(Ry)-modules

OBcris(RO) ®Ro[ ] M[é] c OBcris(RO) ®Ro[%] ODcris(V)a

1
P

compatible with Frobenius, filtration, connection and the action of Gg, on each side. In particular,
we have a commutative diagram

OBis(Ro) ®R0[%] M [%] ———— OBis(Ro) ®BE0 N(V)
OBcris(RO) ®R0[%] ODcris(V) — OBcris(RO) ®Qp v,
compatible with Frobenius, filtration, connection and the action of Gg, on each side. It is immediately

clear from the diagram that the left vertical arrow and bottom horizontal arrow must be bijective as
well. The bijection of bottom horizontal arrow implies that V is a crystalline representation of Gg,.
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Moreover, since R, [%] — OB,is(Ry) is faithfully flat (see [Bri08, Théoréme 6.3.8]), we obtain an

isomorphism of R [%] -modules M [%] - ODyis(V).

Next, we will check the compatibility of the isomorphism obtained with supplementary structures
on both sides. From Proposition 3.31 it is clear that this isomorphism is compatible with the action
of Frobenius and connection on each side. So we are only left to check the compatibility with natural
filtrations on each side. For this, first we see that using Definition 3.10 and Remark 3.20 (ii), the
filtration on M [%] is given as

I'ry

F11kM ( Z Fil’ OA£D®A+ Fil* iN(V))
i€eN

Lemma 3.40. In the notations already described, we have Fil*M [%] = Fil*OD5(V) fork € Z
Proof. First, let x € FilFM [%] then we can write it as a sum

x =Y (a;® bV - ) (Vg - D) @y for a; € Ry, bi € Aj and y_; € Fil* 'N(V),
iEN
where iy + -+ iy =iand & = ”ll Writing ¢(yj-i) = 'z = p(E¥)z_; for some z;_; € N(V), we
obtain

p(x) = Y pla@ b)e(FEI(v - ) (v - )l @ 2.

i€eN

Since the action of ¢ and I'y, commute, we get
. T . G, .
9(x) € ¢(FI*OAR’ @45 N(V))' ™ < ¢(Fil*OBeyis(Ro) @, V) ™ < ¢(Fil*ODeris(V)).

As ¢ is injective, we must have x € Filk ODyis(V). This shows Fil*M [7] c FllkODms( V)

Conversely, let {ey, ... eh} denote a Q,-basis of V and let x € Fllk OD¢yis(V) \ FilF*' OD (V).
Then we can write x = Z, 1 bie;, with b; € FllkOBcns(Ro) Since ODi5(V) = [ p] we take r < k
to be the largest integer such that x € Fil'M [13] So we can also express x = )N ¢ ® fr-j, for
¢; € FIVOAEP \Fil "' OAPP and f,_; € Fil"/N(V)\Fil"7*'N(V). Note that using Lemma 3.41, we have
that Fil"/N(V) = (¢"/B* ®g, V)NN(V). Therefore, f,_; € (&7B* ®g, V) \ (Er71BY ®g, V). So, in
the basis of V, we can write f,_; = Zl VET i ® e, with f,_;; € BP\EB* for 1 < i < h. In conclusion,

we obtain that
h

h
x=y go( ) & fhpeea) =) () goi i) e

jeEN i=1 i=1 jeN
Comparing the two expressions for x thus obtained in the basis of V, we get

> G®E VS i = bi € Fil*OBeyig(Ry) for 1< i<h.
JEN

Now, recall that filtrations on OAED and OB,;s(Ry) are compatible (see Remark 3.22). Further, let us
equip B* with the induced filtration from Be;s(R). Since the filtration on Bis(R) is given by divided
powers of £, we obtain that Fil*/B* = B* N Fil*/B,y(R) = £/B*. In particular, we obtain that

(OARP Saj, B") NFil*OBeig(Ro) = > FiIVOAR? a;, (B' NFil*Beis(R) = ) FiIPOARP Saj, gkip*,
JEN JEN

Recall that X € FirM[%] \ Fil”lM[%] and in the expression Y} ¢;® £ /fj_.;, we have that
¢ € FIVOARP \FIV"'OARP and f,_j; € B* \ ¢B* for 1 < i < h. Therefore, YN ¢ ® & /fj ;i €
Fil" OBris(Ro) \ Fil""' OBris(Ro). But then Yo ¢; @ E/fj ;€ Fil* OByis(Ry) if and only if r > k.
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Since r < k by assumption, therefore we must have r = k. Hence x € Fil*M [%] This proves the
claim. |

Following observation was used above:

Lemma 3.41. Letb € N and q = %) then we have (¢"B* ®g, V)NN(V) = g"N(V).

T

Proof. First, let us assume that N(V) is free with {fi, f2, ..., fu} as an A1+e0 -basis, and let {ey, ..., e;} be
a Q,-basis of V. Now let q’x € (B* ®g, V)NN(V) for x = 2?:1 xie; € B" ®g, V. We can also write
q’x = 2?:1 yifi for y; € By . Next, from Lemma 3.12 we have 7°B* ®¢, V < B* ®8;, N(V), so we can
write g’x = 75¢" Y xinte; = n5gP T, x; z;lzl zijfj = n° Z?ﬂ(z;l:l x;zji)fi, with z;; € B". But
then we must have 7~*¢" Ejh:l xjzj; = y; for 1 < i < h. Since Hp, acts trivially on 7, ¢ and y;, we
get that w; = 2]}-1:1 x;zji € By . But y; € By and 7 does not divide g in By , therefore we obtain that
w; € 7°Bp, . In particular, y; € quﬁo, therefore g’x = Z?:l yigi € ¢"N(V).

In the case when N(V) is projective (and not free) over B;E,O, let R} be the p-dic completion of a

finite étale algebra over Ry such that the scalar extension B}*Q(,) ©B;, N(V) is a free module over BES
and R] [%] /Ro[ %] is Galois (see Definition 3.8). Then we can argue as above and conclude by taking

Gal(R; [%] /Ry [%] )-invariants of qu;;(,) ®s;, N(V). [ |

Combining Lemma 3.40 with observations made before, we obtain that the isomorphism of R [%] -

modules M [%] SN OD,is(V) is compatible with Frobenius, filtration and connection on each
side.
Finally, we can compose these natural maps as

= T =
OAR’ @, ODaiis(V) «— OAR’ @, (OAR” @a;, N(V))'™ — OAR’ @a;, N(V),

where the second map is compatible with the Frobenius, filtration, connection and the action of I'g,
on each side (see Proposition 3.31). This proves the theorem. |
Remark 3.42. In the case when N(T) is a free Ay - module of rank A, from Proposition 3.31 we obtain
that M [%] = ODyg;s(V) is a free Ry [%] -module of rank A. In particular, for Wach representations
there exists a finite étale extension R over Ry such that R [%] ®Ro[ 1 OD;is(V) is a free module of
rank h.

3.3. The false Tate curve

In this section we will construct a set of examples of representations satisfying the conditions of
Definition 3.8. These examples will arise from the Tate module attached to the false Tate curve.

Let Y := X;, G = Spec Ry[Z,Z '] and £ := G/Y? denote the false Tate curve over Ry. The
E[%] -rational points of £ form an abelian group and we consider its p"-torsion points. In other
words, there is an attached Z,-representation of Gg, given by the Tate module of £ as

€ = lim & (Ro[;])[p"] = lim { Gu(Y®Y, 120 < p"

where YV = Y and Y is a compatible system of p"-th roots of Y such that (Y(**D)? = y(® for
n=1 Letd; = ({yn)n=0and dy = (Y(”>)n20, then in the additive notation, we have T,& = Z,d; + Z,d,.

Next, let T denote the Z,-dual of T,€ with the dual basis {e;, e;} such that e;(d;) = §;; for i,j = 1, 2.
Then V = T ®z, Q, is a 2-dimensional p-adic representation of Gg,. The action of Gg, on V is given

by the matrix
( X 0)
—c(@x(g)" 1)’
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where x(g) is the usual p-adic cyclotomic character and ¢ : Gg, — Z, is a 1-cocycle such that
g(Ym) = {;Sg) Y™ for g € Gg,. For k = 1, let us set Vi := Sym*(V) as the Q,-linear k-th symmetric
power of V, in particular, V; = V. Since dimg, V = 2, we get that dimg, Vi = k + 1. An explicit basis
for Vi can be given as {e?j ® ef(k_j) }Osjsk. We set Ty = Z]k:o Zpe?j ® e;g(k_j) which is a Gg,-stable
Z,-lattice inside V.

Next, we compute the crystalline modules associated to the representations described above.

Proposition 3.43 (The crystalline module). The Ry-module OD.is(Vy) is a free filtered (¢, 3)-module
of rank k + 1 over Ry [%] (see Definition 1.18). Moreover, there exists an Ry-submodule of ODis(Vi)
satisfying analogous properties.

Proof. For k = 1, this was worked out in [Bri08, Example, p. 120]. To get the module OD,is(Vk),
we will construct some Galois invariant elements in OBi5(Ry) ®g , V and extrapolate a basis for
ODcris(Vk)-

Let f; = te; + fey and f, = e;, where ff = log([Y"]/Y) € OAis(Ry). The element f is well-defined
and converges in OAis(Ry) because

p=tog (871 = 35 0 (51 1) = e - in( - )"

n=1 n=1

where we have that [Y*]/Y € Ry ®0, Aint(R) and 6r([Y*]/Y - 1) = 0. Also, we conclude that for any
g € Gg,, we have g(B) = c(g)t + 8 since g(Y™) = g;f,gg) Y™, Clearly,

g(f1) = t(er - c(g)ex) + (c(g)t + Pex = tey + fe; = f1, and g(f2) = fa.

G
So we get that fi, f» € ODg;5(V) = (OBcris(Ro)(X)Q,, V) A
On the other hand, let x € OD;5(V) which we write as x = ae; + be, for a, b € OBis(Ry). For
any g € Gg,, we must have g(x) = x(g)™'g(a)er - c(g)x(g) ' g(a)e; + g(b)ez = x, ie.,

x(g)'g(a) = a, and g(b) - c(g)x(g)'g(a) = b.

Therefore, t1a € OBis(Ry)% = R, [%] Moreover, we can write x = ae; + bey = t laf; +(b-t " ap)fo.
Now, for any g € Gg, we get

g(b-t7ap) = g(b) - x(g) 't g(a)(c(g)t + B)
= g(b) ~ x(8) " g(@B — 7 x(8) ' g(a) = b~ t7aP € OBeyis(Ro) ™ = Ro[3].

Hence, (fi, f2) form a basis of ODs(V).
For i € Z, the filtration on OD,;5(V) is given as

ODgis(V) ifi<0,
Fil'OD¢is(V) = {1 Ro [1%] fi ifi=1,
0 ifi>1.

From the filtration, we deduce that the Hodge-Tate weights of V are (-1, 0). Also we have ¢(f;) = pfi
and ¢(f2) = f>. Further, the module OD,;5(V) is equipped with a quasi-nilpotent and integrable
connection, given as

d: ODcris(V) - ODcris(V) ®z Qflzo

fi '—>—f2®d7y
fo — 0.

This connection on OD,i5(V) satisfies Griffiths transversality with respect to the filtration above.
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Let ODqis(T) := Rofi + Rof2 be an Ry-lattice inside OD,is(V), which is stable under the Frobenius
homomorphism. Moreover, this modules has an induced connection from OD,;5(V) which sastisfies
Griffiths transversality with respect to the induced filtration.

For k = 2, first we note that the functor OD;s from p-adic Galois representations of Gg, to
(¢, 9)-modules over Ry [ 1] is compatible with symmetric powers (see Theorem 1.27). Therefore, we

get that ODyis( Vi) - ODCHS(Sym V)= SykaDmS(V) An explicit RO[ ] ba51s of OD¢is(Vi) can
be given as { e J ®(k_1 } 0<jck’ By abuse of notation we will write f; fz f®(k 7 We equip

ODy;is(Vy) with a ﬁltratlon induced from the natural filtration on k-th tensor power of V. Explicitly,
for i € Z we have

ODCTIS(V]() if i<0,
FiliODcris(Vk) = Z] lRO[ ]flj if 1<i<k,
if i>k.

From the filtration, we deduce that the Hodge-Tate weights of Vi are (-k, -k + 1,...,-1,0). Also,
we have o(f/ Zkfj ) = pf] zkfj for 0 < j < k. Further, the module ODs(Vy) is equipped with a
quasi-nilpotent, integrable connection, given as

9+ ODeyis(Vy) — ODcris(Vk)®Q}120
j pk—j . oj-1 pk—j+1
i — i K ®d7y

This connection on ODCHS(Vk) satisfies Griffiths transversality with respect to the filtration above.
Let OD¢yis(Ty) - z =0 Ro flk Zk_J be an Ry-lattice inside OD;s( V), which is stable under the Frobe-
nius homomorphism. Moreover, it induces a connection from OD,;s(V) and sastisfies Griffiths
transversality with respect to the induced filtration. |

Proposition 3.44 (An analogue of Wach module). There exists an Ay, -submodule N(Ty) < D*(T)
satisfying the conditions of Definition 3.8.

Proof. First we discuss the case k = 1 andlet T := T; and V := Vj. Note that the action of
Gg, on T factors through Ty, so the (¢,I'g,)-module over Ag, associated to T can be given as
D(T) = Ag, ®z, T = Ag,e1 + Ag,e2. An analogous reasoning gives us that D*(T) = Aﬁo e + A;}O e.
For the Wach module of T, we see that we can take N(T) := Afeohl + Afeth’ where h; = me; and
h, = e;. Clearly, N(T) ¢ D*(T), and it is endowed with a Frobenius-semilinear endormorphism
@ : N(T) — N(T) such that N(T)/¢"(N(T)) is killed by g. such that we have an A} -lattice inside
D(Ty) stable under the action of ¢ and I'r,. We have {yy, y1, ..., ya} as topological generators of
I'g such that y, generates I'y topologically, whereas {y1,..., ys} are topological generators of T’
satisfying some compatibility conditions (see Remark 2.2). We have y(y,) € 1 + p™Z,,, whereas
x(yi) = 1,for 1 < i < d and therefore,

Yo(mr) = (1 + a0 — 1 and Yi(m) =, for i#0.

Moreover,
(Y’ = (1+m)[Y’] and y([Y']) =[Y"], for i#1.

From this description, it is straightforward to check that the action of T’y is trivial over N(T)/zN(T).
As the Hodge-Tate weights of V are (-1, 0), we conclude that V is a positive Wach representation in
the sense of Definition 3.8.

Next, for k > 2, we know that the action of Gg, on Tj factors through I'g,, so the (¢,I'g,)-module
over Ag, associated to Ty can be given as D(Ty) = Ag, ®z, Tx = ZJ OAROe’e2 An analogous
reasoning gives us that D*(Ty) = ijo AROe{eéc 7. Now, by compatibility of tensor products in
Corollary 3.16 (see the proof of Proposition 3.43), we obtain that N(T}) = Sym*(N(T)). Therefore,
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we have
k

N(Ty) = ZAﬁoh?j®h§(k_j), where h; = ey, and h; = e,
j=0

Clearly, N(Ty) ¢ D*(Ty), and it is endowed with a Frobenius-semilinear endormorphism ¢ : N(Ty) —
N(Ty) such that N(Ty)/ ¢"(N(Ty)) is killed by g*. With this definition, we see that N(Tj) satisfies all
the assumptions of Definition 3.8. As the Hodge-Tate weights of Vj are (-k, k + 1,...,-1,0) (see the
proof of Proposition 3.43), we conclude that Vj is a positive Wach representation in the sense of
Definition 3.8. |

Now that we have constructed the Wach module N(T}), we would like to study some complimen-
tary structures on it, and compare it to the Ry-module OD,;s(T) in the sense of Theorem 3.24. First
we recall that there is a filtration over Wach modules given as

Fil"N(Ty) = {x € N(T) such that ¢(x) € ¢'N(Ty)} for r € Z.

In our case we can write the filtration more explicitly. Indeed, we have Fil"N(T) = N(Ty) for r < 0,
whereas Fil'N(T}) = ZJILO ﬂmiAI*{Oh{hg_J, for r > 0 and where m; = max{r - j,0}.

Proposition 3.45. Let OAYP be the ring as in Definition 3.18. There exists a bijective OARP -linear
map
OA}P;D ®R{) ODcris(Tk) — OAED ®A§O N(Tk)

compatible with Frobenius, filtration, connection and the action of T on each side.

Proof. Using the ring OALP, we extend scalars and set
k . .
P = OAR @a; N(Ti) = ) OARPH, @ b3,

=0

which is equipped with a filtration, Frobenius, a connection given as dp = d4 ® 1, where d4 denotes the
connection on OAFP mentioned in the discussion following Lemma 3.23. Note that the connection
op satisfies Griffiths transversality with respect to the filtration. Moreover, P is equipped with a
continuous action of I'g. Next, let

k
Q = OAgD QR, ODcris(Tk) = Z OAnglj ®f2k_1’
Jj=0

which is equipped with a filtration, Frobenius and a connection given by dp = 94 ® 1 + 1® dp which
satisfies Griffiths transversality with respect to the filtration.

We have an OAII;D -linear map between these two modules, given as
A OAED &R, ODcris(Tk) -— OA}P;D ®A}; N(Tk)
0
J o ke ' J o pkei (3.14)
fief,  — (;hl +ﬁh2) ®hy .

It is straightforward to see that this map is bijective. The induced Frobenius on both modules are
the same because for 0 < j < k we have

op o A(fl©fy7) = op((Lhy + phy) @ hy7)
= (£ ghy + pphy) @ by
=Apf o) =2 po(flof™).

The induced filtration also matches, since we can write any element of Fil" OALP ®@g OD¢yis(Ty) as
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ZJ’FZO afl ® fzk_j , with a; € Fil'/OAEP. In this case, we have
k k
Y Maff o) = Y a(Lthi+ pha) @ hy7 € FOAY @ N(TL),
=0

J=0

since £ is a unit, f € Fil'OARP and K, ®h§_j € FiVN(Ty). Similarly, for any Z}c:o bk, ®h]2c_j €
Fil’ OAR® ®a;, N(Ti), with bj € Fil"JOAL?, we have

k k
S A (bR ons ) = Y bi(2f - EfY o ff 7 € Fil OAR @r, ODeig(T).
j=0 Jj=0

Next, the way the respective connections on P and Q are defined, for 0 < j < k, we can write

MR ) =0 ((zh + o)) @b + (1hy+ fha) @ op (h3”)
= jop(Lhy + pha) ® (Lhy + hy) " @RS
= (0a(£) @moaB @ ha) @ (£hs + fho) " @b
= —j(Lhy + Bhy) @ HET @ X
=1o9g(flefy”).

Finally, Ty, acts trivially on f/ ® fz ' and the same is true for (f[hl + ﬁhg)j ® h’;_j . So we see that the
isomorphism (3.14) is compatible with all the structures. This proves the proposition. |






CHAPTER 4

Cohomological complexes

Let K be a mixed characteristic complete discrete valuation field with perfect residule field, Gk
its absolute Galois group and V a p-adic representation of Gk. The continuous Gg-cohomology
groups are useful invariants attached to V. For example, the first continuous cohomology group
of V, i.e. H,(Gk, V) classifies equivalent classes of extensions of the trivial representation Q,
by V in RepQP(GK). Further, by the equivalence between the category of p-adic representations
of Gk and étale (¢, 'x)-modules over B (see Theorem 2.11), it is natural to ask if the continuous
cohomology of a representation could be computed using a complex of the attached (¢, T'x)-module.
This question was first answered in the article of Herr (see [Her98]). He gave a three term complex
in terms of (¢, ['x)-module which computes the continuous cohomology of the representation in

each cohomological degree. More precisely,

Theorem 4.1 (Fontaine-Herr). Let V be a p-adic representation (resp. Z.,-representation) of Gk, and
let D(V) denote the associated étale (¢, 'x)-module over Bk (resp. Ak ). Then we have a complex

Yo-1
¢ Dv) 22 bye D(V) 1—‘”)> D(V),

where the second map is (x,y) — (yo — 1)x — (1 - ¢)y. The complex C* computes the continuous
cohomology of V in each cohomological degree, i.e. for k € N, we have natural isomorphims

H*(C') = HE_(Gk, V).

Before discussing the relative case, let us introduce some shorthand notation for writing certain
complexes.

Notation. Let f : C; — C; be a morphism of complexes. The mapping cone of f is the complex
Cone(f) whose degree n part is given as C]'"' @ C}' and the differential is given by d(c, ¢z) =
(-d(c1), d(cz) - f(c1)). Next, we denote the mapping fiber of f by

[C1 —f—> CZ] := Cone(f)[-1].

75
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We also set
f

C—C
l l =laLe]l— a5 all
CG———=C
In other words, this amounts to taking the total complex of the associated double complex.

Using the notation introduced above, we can also write the quasi-isomorphism of complexes in
Theorem 4.1 as

1- ~
[chont(rKs D(V)) _(p) chont(rK’ D(V))] - chont(GKa V)

4.1. Relative Fontaine-Herr complex

Now we turn our attention towards the relative case. We will keep the notations of Chapters 1 &
2. Similar to Theorem 4.1, we have results in the relative case where a complex of (¢, I')-modules
computes the continuous Gg-cohomology of a p-adic representation. For this reason, we consider
the continuous cohomology (for the weak topology) of (¢, I'r)-modules over Ag and A;;.

Definition 4.2. Let D be a continuous (¢, 'r)-module over Ay or A;. Define C'(I'g, D) to be the
complex of continuous cochains with values in D and let RT'con(I'z, D) denote this complex in the
derived category of abelian groups.

Let T be a Z,-module, equipped with a continuous and linear action of Gg. Let D(T) and DT(T)
denote the associated (¢, T')-module over Ag and A;g, respectively. Then we have that,

Theorem 4.3 ([AI08, Theorem 7.10.6]). The natural maps
R cont(Tr, D(T)) —> RTeont(Gr, T ©7, Ag),
chont(rR> DT(T)) — Rlcont (GR’ T ®ZP A%)’
are isomorphisms.

Moreover, from [AI08, Proposition 8.1] we have that the sequence
1-¢
0—7Z,—>Ag— Az —0

is exact and remains exact if we replace Az above with AL, A or AT. Furthermore, the exact sequence

above admits a continuous right splitting ¢ : Ay — Ag such that O'(A%) c A%, o(A) ¢ A

and o(AT) ¢ AT. Combining the short exact sequence above with Theorem 4.3 and by explicit
computations, Andreatta and Iovita have shown that

Theorem 4.4 ([AI08, Theorem 3.3]). There are isomorphisms of §-functors from the category
RepZP(GR) to the category of abelian groups

ﬁ : [chont(rR’ D(_)) :ﬂ chont(rRa D(_))] —:_) chont(GRa _),
ﬁT : [chont(rR, DT(_)) —11 chont(rR5 DT(_))] _z_) chont(GR, _)-

Furthermore, for T € Repr(GR), the natural inclusion of (¢, Tr)-modules DY(T) ¢ D(T) induces a
natural isomorphism

[RTeont(Tg, DT (=) —5 RTeoni(Tr, DY(=))] — [RTeont(T&, D(=)) —2 RTeont(T, D(-))],
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compatible with f and 7.

4.2. Koszul complexes

In this section, we will introduce Koszul complexes which will be used to compute continuous
I'r-cohomology of topological modules admitting a continuous action of I'g, in particular (¢, I'r)-
modules. Koszul complexes have the advantage of being explicit and therefore easier to manipulate.
We will follow the exposition in [CN17, §4.2].

Recall that we set K = F({,n) for some m = 1. From §2.1 that the ring R [ 113] is a Galois extension

of R [%] , with Galois group I'r fitting into an exact sequence
1—Ty—Tr— Tk —1,

and we have topological generators {yp, y1, ..., ya} of [g such that {y,..., y4} are topological gener-
ators of T’y and yy is a lift of a topological generator of 'y (see Remark 2.2). Further, let y denote the
p-adic cyclotomic character and recall the convention that ¢ = y(y) = exp(p™).

Let 7; = y; - 1 for 0 < i < d. We consider the case of an Iwasawa algebra A = Z,[[7y, ..., 74]].

Definition 4.5. The Koszul complex associated to (13, ..., 74) is the complex
K(z1, ..., 1) = K(11)®2,K(22)®2z, - ®z,K (),
where K(7;) is the complex
0— Zy[[a]] = Z,[[n]] — 0.

where the non-trivial map is multiplication by 7; and the right-hand term is placed in degree 0.

Remark 4.6. The Koszul complex defined above, in degree g, equals the exterior power A7 A, In
the standard basis {e;,...;, } of \? Alfor1<iy << iq = d, the differential d; : NTAY — N A% s
given by the formula
q
d}(ai,..i,) = Z(_1)k+1ail,,,i;miqf,-k. (4.1)
k=1
The augmentation map A — Z, makes K(1y,..., 74) into a resolution of Z, in the category of
topological A-modules.

We can use this to define Koszul complex for modules equipped with an action of I'; or I'. Let
Z,[[T'z]] denote the Iwasawa algebra of I, i.e. the completed group ring

Z,[[I4)] += lim Z,[T}/H]),

where the (projective) limit runs over all open normal subgroups H of I'; and every group ring
Z,[T'y/H] is equipped with the p-adic topology. We have Z,[[T';]] = Z,[[z1, ..., 7a]], 7i = yi — 1 for
ief{l,..,d}.

Definition 4.7. The Koszul complex K(y, ..., 77) is given as

P di_, d}
0 ——— Z,[[TR]]"

ZIT5]E —4 s Z, [ ——— o,

where Ij' = {(i1,..., 1), 1 = iy < - < ij < d} and differentials as in (4.1). Similarly, for ¢ = x(y) =
exp(p™) we can define the Koszul complex K(z{, ..., 77) (with differentials dg), where 7" := yi - 1.

Both K(zy, ..., 74) and K({, ..., 7j) are resolutions of Z, in the category of Z,[[I'z]]-modules.
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Definition 4.8. Let A := Z,[[I'z]], and define the complex

’ d} di / d}
K(A) : 0 Ala —EL 5 . L AR C A 0.

We have an isomorphism
lim Z, [T /(Tx)"" | @z, K(71, ... 7a) = K(A),
m

of left A- and right Z,[[, ..., 74]]-modules (see [Mor08, Lemma 4.3]). Therefore, the complex K(A)
is a resolution of Z,[[I'k]] in the category of topological left A-modules. Similarly, we have the
complex K(A), obtained from K(z{, ..., r;), which is again a resolution of Z,[[I'x]].

Definition 4.9. Define a map
0 : K(A) — K(A),

by the commutative diagram of topological left A-modules

/ ds df / ds§
0 Aa —E L Al A Z,[[Tx]] ——— 0
J/ro”l J/‘L’o1 ‘/Tg Jyol
o di d! v d!
0 N A1 A Z,[[Tx]] — 0,

where the vertical maps are defined as

Té):}/g—l

W (aa) = (@ (10 801)),

fori<g=<d 1<i<- <ig=d, and = §;, - 6y, where §;, = (ylf - 1)()/,}. - 1)71.

iy -eeig
Let M be a topological Z,-module admitting a continuous action of T'r.

Definition 4.10. Define the complexes

KOS(F%, M) :=Homp cont(K(A), M) = Homy (K(A), M),
Kos®(Tk, M) := Homp cont(K°(A), M) = Homa(K(A), M).

Remark 4.11. Using Definition 4.8, we can write the complexes in Definition 4.10 as

(m)

Kos([%, M) : M MA M,

()

Kos®(T, M) : M MHE M.
The map 7y : K°(A) — K(A) induces a map of complexes
7o : Kos(T'g, M) —> Kos®(T'g, M),

which can be represented by the commutative diagram

My Ml

1
lq‘f lTo lﬁﬁi

M (t) MIII
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Let K(A, 1) := [K°(A) 2K (A)]. This complex is a resolution of Z,, in the category of topological
left A-modules.

Definition 4.12. Define the I'z-Koszul complex with values in M as
Kos(Tg, M) := Homy cont(K(A, 7), M) = [Kos(T’g, M) —— Kos®(T'g, M)].

By the general theory of continuous group cohomology for p-adic Lie groups, we have the following
conclusion:

Proposition 4.13 ([Laz65, Lazard]). There exists a natural quasi-isomorphism
KOS(FR, M) ; chont(rR: M)

Definition 4.14. Let D be a (¢,I'g)-module over Ay from Definition 2.9. Define the complex

Kos(I%, D) — = Kos(I’y, D)
Kos(¢,Tr, D) := J/ro lfo

1_
Kos®(I", D) —> Kos*(T', D)
Therefore, from Proposition 4.13 we have a natural quasi-isomorphism

~ 1-¢
Kos(¢,Tr, D) — [RTcont(Tr, D) — RTcont(T'x, D)].
Using the definition above, we have the following conclusion for p-adic representations of Gg:

Proposition 4.15. Let T be a Z,-representation of Gg and D(T) the associated (¢, T'r)-module over Ag
(see Theorem 2.11). Then from the discussion above and Theorem 4.4, we get a natural quasi-isomorphism

Kos(¢, Tr, D(T)) —> RTcont(Gr, T).

4.3. Lie algebra action and cohomology

In this section we will study the infinitesimal action of I'z on some of the rings constructed in
previous sections. This will help us in computing continuous Lie algebra cohomology of certain
Z,[[Lie I'r]]-modules, which is roughly the same as continuous Lie group cohomology of these
modules. Recall from the previous section that we have topological generators {yy, y1, ..., ya} of T'r
such that {yy, ..., ys} are topological generators of I'; and y; is a lift of a topological generator of T'k.

In the rest of this section we will fix constants u, v € R such that PT?I sus % <1 < v, for example,

one can fix u = 2% and v = p - 1. Recall from §2.4 that we have rings AR, A%u] and AEQ”’U] equipped

with a continuous action of I'y.

Lemma 4.16. Fori€ {0,1,...,d} the operators

k(yi-1 k+1
Vi i=logy = Yy (-,
keN

converge as series of operators on AP, AJ[R"] and A][Ru’v].

Proof. Recall that any f € AP can be written as f = Y o fn% such that f, € Ay goes to 0 as
n — +o0. So it is enough to show that the series of operators log y, converge for 7, i.e. Vo(1,)
converges in AFP and therefore in ALP.
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From Lemma 2.45, we already have that
my k
(ro - DAL’ < (p ") AR, (42)

So to check that the series Vy(r,,) converges over ALY we write it as 2 Cjﬂ‘],-n and we collect the

coefficients of ﬂ'ﬁ,mk for k = 1, having the smallest p-adic valuation, which will also have the least
p-adic valuation among the coefficients of ), for p™k < j < p™(k + 1). We write the collection of

these terms as - -
k+1ah © _ k+1[p™kle]! b
Z(_l) K Z(_l) k [p"k/e]!’
k=1 k=1

and by the preceding discussion it is enough to show that these coefficients go to 0 as k — +co.
Moreover, for this series it suffices to check the estimate of coefficients for k = (p - 1)r as r — +o0
(this gets rid of the floor function above). With help of Remark 2.44, we have

"k/e]! ! - -
op (2 ) = op ({25 ) = o) = op(p - 1)) = P < v = 0 = (),
which goes to +oo as j — +oc0. Hence, we conclude that V, = log y, converges as a series of operators
on AFP.

Next, consider y; for i € {1, ..., d}. Again from Lemma 2.45 we have

(i - DNX!] = 7lx!] € (p.n ) AR, (43)

1

By an argument similar to the case of y, it follows that V; = log y; converges as a series of operator on
AEP. The arguments in the case of AJ[R“] and A%”’v] follow similarly (the estimates of p-adic valuation
of coefficients is easier). |

Next, note that formally we can write

log(1+ X
%=l+alX+a2X2+a3X3+m,

X
7=1+b1X+b2X2+b3X3+"',
log(1 + X)

where v,(ax) = —% for all k = 1 and therefore, v,(bx) = —p—lfl for all k = 1. Setting X = y; - 1 for
i€{0,1,...,d}, we make the following claim:

Lemma 4.17. Fori€ {0,1,...,d}, the operators

Vi _logyi ovi-1_yi-1

)/l'—l_)/l'—l Vi _logy,-

converge as series of operators on ALP, AJ[Ru] and A%u’v].

Proof. We will only show that these series converge on APP, the case of AEQ"] and A%u’v] follow
similarly. Moreover, similar to Lemma 4.16 it suffices to check the convergence of these operators

for their action on ,,.
Vi

yi-1
k

-5 |
action of y; — 1 in (4.2) and (4.3), we can write the series Yiv_il (mm) as 3 ¢jmrm. Next, we collect the

(mtm) converges over AP (the convergence of the other series

and vp(by) = —ﬁ for k € IN). From the description of the

So we will check that the series

follows similarly since v,(ax) =

coefficients of ﬂ'ﬁ,mk for k = 1, having the smallest p-adic valuation, which will also have the least
p-adic valuation among the coefficients of ), for p™k < j < p™(k + 1). We write the collection of
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these terms as

S et = 3 (1) gy p" ket

k=1 k=1
By the preceding discussion it is enough to show that these coefficients go to 0 as k — +oc0. Moreover,
for this series it suffices to check the estimate of coefficients for k = (p — 1)r as r — +oo (this gets
rid of the floor function above). With help of Remark 2.44, we have

vp(ax[p™k/e]t) = vp(agpnyr(pr)!) = vp((pr)) = vp(a(poryr) = EBED — = D =y (),

which goes to +co as r — +o0. Hence, it follows that the series in the claim converge for APD, A%”]
and A%u’v]. [ |

Example 4.18. Recall that in §3.3, we constructed Wach modules arising from symmetric powers
of the p-adic Tate module of the false Tate curve. For k € N, we have T as a Z,-representation
of Gg, with a basis {e{ ® eg K } 0<jck’ The Wach module is given as N(Ty) = Z]k:o Aj, W h];_j . Our
objective is to analyze the action of Lie 'y over MFP := AFP ®A;, N(Tg). Note that by Lemma 4.16,
the operators V; = log y; for i € {0, ..., d}, converge as a series of operators over APP.

It is straightforward to see that V;(h;) = 0 for 0 =< i < d. Further, we have

ka(el) - e X(Yo)_pkel -e
0 7 - i A2 7

e = Jim R < i 200

= _Iog)(()/o)el;

and V() = t(1 + 7). So we get that Vy(rre;) = (#(1 + 7) — 7)e;. Therefore, for 0 < j < k, we have
vo(hﬂh’;‘f) = Vo(nje{ef_j> =j(t(1+ 7)™t - 7'[])6]65 J =j(L(1+m)- 1)h]hk_J

For the action of y;, we have

p" n
e))-e e
Vi(er) = lim nla-ea = lim _pe
n—oo pn n—oo pn
Since y; has trivial action on 7z, we get that Vy(e;) = —me;. Therefore, in this case, for 0 < j < k, we
have

Vl(h{h];j) = Vl(ﬂje{egfj) = —]71']6] ! k A —jﬂ'h] 1hk EA

Finally, for 2 < i < d, we have V;(rre;) = 0, therefore V,-(h]ihg_j) = 0. As we can see that V;(M*P) c
xMFP and since 7 is a unit in A;}D (see Lemma 2.43), we can introduce differential operators on
MPP. More precisely, in the basis { d”":n, dlog[X;],..., dlog[X;]} of Q}

1+,

deduced by the relation V; = t9;, for 1 < i =< d.

the connection can be

APD 5

4.3.1. Koszul Complex

In this section, we turn our attention to the computation of Lie algebra cohomology using Koszul
complexes. The Lie algebra Lie I'; of the p-adic Lie group I' is a free Z,-module of rank d, i.e.
Lie I“;Q = Zp[vi]lsisd with

_1\k+1
Vl = log )/i = Z(—l)ki(ytk}_)l : M e M,
keN

for any Lie I';-module M. Moreover, Lie I'; is commutative. Similarly, the Lie algebra Lie I' of the
p-adic Lie group I'g is a free Z,-module of rank d + 1, i.e. Lie I'r = Z[V;]o<i<q (V; defined as above
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for 0 < i < d). We have

[Vi, V] =0, for 1<i,j=<d,

4.4
[Vo,Vi] = p™V;, for 1<i<d. (4.4)

It follows that Lie I} is not commutative.

Let M be a topological Z,-module admitting a continuous action of the Lie algebra Lie I'z. Similar
to the definition of Koszul complexes in the case of I'g (see §4.2), we define Koszul complexes for
Lie I'g.

Definition 4.19. Define the complex
Kos(Lie Ty, M) : M —> MK — .. — M,
with differentials dual to those in (4.1) (with 7; replaced by V;).
Now, consider the map

Vo : Kos(Lie I'y, M) —> Kos(Lie I';, M),

defined by the diagram
MYy . Ml
JVO lvo -p" Jvo—qpm
MYy Ml .

which commutes since VoV; — V;Vy = p™V; for 1 < i < d (see (4.4)). Note that the k-th vertical arrow
is Vo — kp™ since the (k - 1)-th vertical arrow is Vy — (k — 1)p™ and using (4.4) trivially we have
(Vo = kp™)Vi = Vi(Vo — (k- 1)p™).

Definition 4.20. Define the Lie I'r-Koszul complex for M as

Kos(Lie I'g, M) := [Kos(Lie Tk, M) Y, Kos(Lie I“;Q,M)].

Proposition 4.21 ([Laz65, Lazard]). The Koszul complexes in Definitions 4.19 and 4.20 compute Lie
algebra cohomology of Lie T'y and Lie T'g respectively, with values in M. In other words, we have natural
quasi-isomorphisms

Rl cont(Lie Ty, M) = Kos(Lie T'y, M),
RI ¢ont(Lie I'r, M) = Kos(Lie I'g, M).



CHAPTER 5

Syntomic complex and Galois cohomology

Let K be a mixed characteristic complete discrete valuation field with ring of integers Og and
residue field x of characteristic p. Let X be a smooth proper scheme over Ok, such thatj : Xx :=
X ®o, K — X denotes the inclusion of its generic fiber and i : X, := X ®o, ¥ X denotes the
inclusion of its special fiber. For r = 0, let S,(r)x denote the syntomic sheaf modulo p" on Xj¢. In
[FM87], Fontaine and Messing constructed period morphisms

arF}::[ s Su(r)x — i*Rj*Z/p"(r)g(K, r=0,

from syntomic cohomology to p-adic nearby cycles, where Z,(r)" := }ﬁzp(r), forr = (p - 1)a(r) +
b(rywith0 < b(r) < p- 1.

In [CN17], Colmez and Niziol have shown that the Fontaine-Messing period map aﬁ M after a
suitable truncation, is essentially a quasi-isomorphism. More precisely,

Theorem 5.1 ((CN17, Theorem 1.1]). For0 < k < r, the map
o™ HKSu(r)x) — IRNLZ/ P (),

is a pN -isomorphism, i.e. there exists N = N(e, p, r) € N depending on r and the absolute ramification
index e of K but not on X or n, such that the kernel and cokernel of the map is killed by pN.

In fact, for k < r < p - 1, the map arF};lA was shown to be an isomorphism by Kato [Kat89, Kat94],
Kurihara [Kur87], and Tsuji [Tsu99]. Further, in [Tsu96] Tsuji generalized this result to some suitable
étale local systems.

The proof of Colmez and Niziot is different from earlier approaches. They construct another local
period map a~%?, employing techniques from the theory of (¢, T)-modules and a version of integral
Lazard isomorphism between Lie algebra cohomology and continuous group cohomology. Then
they proceed to show that this map is a quasi-isomorphism and coincides with Fontaine-Messing
period map up to some constants. Moreover, all of their results have been worked out in the general
setting of log-schemes.

To state the local result, we will restrict ourselves to a familiar setting. We will assume the
setup of Chapter 1, as well as notations from Chapter 2. Recall that we fixed «k to be a finite
field of characteristic p; F = Fr W = Fr W(k); an integer m = 1 and K = F({,n), where {;n is a
primitive p™-th root of unity such that the element @ = {,m - 1 is a uniformizer of K. Moreover, let
X = (Xq,..., Xg) be a set of indeterminates, then we defined Ry to be the p-adic completion of an

83
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étale algebra over W(x){X, X '}; similarly, R to be the p-adic completion of an étale algebra over
R, (defined using the same equations as in the definition of Ry). We also have rings r* and R* for
* € {,+,PD,[u], (0, v]+, [u, v]}. Recall that we assumed p > 3 and we take u = % and v = p-1The
p-adic completion of the module of differentials of R, relative to Z is given as

d k
Qk, = DR dlogX; and Qf = \Q, for ke N.
i=1

Moreover, the kernel and cokernel of the natural map QI’§0 ®r, R — Q}kz is killed by a power of p (see
Proposition 1.1). In particular,

04[1] = A\ (R[] dlogX,).

d
i=1

Also, for S = R(’; where x € {+,PD, [u],[u, v]}, we have

1+Xy

d
Qf = S8 ¢ (P S dlogX;).
i=1

The syntomic cohomology of R can be computed by the complex

Syn(R, r) := Cone (F Qe A Qi ) [-11,
such that we have Hsiyn(R, r) = H(Syn(R, r)). For m large enough, Colmez and Niziot have shown
that,

Theorem 5.2 ([CN17, Theorem 1.6]). The maps

afe 7, Syn(R, r) — 7Rl cont(Gr, Zp(r)),

r

akaz 7.rSyn(R, r), —> 7<;RTcont(Gr, Z/p"(r)) — TS,RF((Sp R[%])ét,l/p"(r)),

r,n

(5.1)

are pN"-quasi-isomorphisms for a universal constant N.

Note that the truncation here denotes the canonical truncation in literature. Finally, using Galois
descent one can obtain the result over K (not necessarily having enough roots of unity, with N
depending on K, p and r, see [CN17, Theorem 5.4]).

Formulation of the main result

In Theorem 5.2, we are interested in the p-adic result, i.e. the first isomorphism in (5.1), where we
would like to insert some representation on the right hand side and an appropriate syntomic object
on the left. For this, we will introduce a certain class of representations: Let V be an h-dimensional p-
adic Wach representation of Gg, with non-positive Hodge-Tate weights -s = -r; < -1 < - < -1, < 0
and let T c V a free Z,-lattice of rank h stable under the action of Gg, (see Definition 3.8). Assume
that N(T) is a free A}}O-module of rank h, and let ODis(T) € OD¢s(V) be a free Ry-submodule of
rank h such that OD¢,;5(T) [%] = OD¢s(V) (see Remark 5.4 for conventions on ODis(T)) and the
induced connection over OD,i5(T) is quasi-nilpotent, integrable and satisfies Griffiths transversality
with respect to the induced filtration.

Definition 5.3. For r € Z we set V(r) := V®q, Qy(r) and T(r) := T ®z, Z,(r) and call all such
representations free Wach representations of Gg,.

Remark 5.4. For our intended applications in this chapter, it would suffice to take OD¢;s(T) :=
(OA};D ®a;, N( T))rR, with an additional assumption that it is free of rank A as an Ry-module (see
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Remark 3.42). The module OD,is(T) depends on the choice of m € IN.; (see Remark 3.39). On the
other hand, using Proposition 3.31 we note that it would also suffice to take OD,is(T) = M, (in the
notation of the proposition), which also depends on m (see Remark 3.39). The reader should note
that we do not assume the choice of OD,;5(T) to be “canonical”. However, we fix this choice for the
rest of the current chapter. The chosen notation is for the sake of consistency and being explanatory.

Our objective is to relate the (¢, I')-module complex computing the continuous Gg-cohomology of
T(r) (see Theorem 4.4), to syntomic complex with coefficient in the Ry-lattice OD¢,is(T) € OD¢is(V).
Define

D' := R® ®g, ODeris(T).

There is a Frobenius-semilinear endomorphism on DFP given by the diagonal action of the Frobenius
on each component of the tensor product, and a filtration {Fil* D"P} ., given as the sum of filtration
on each component (see §5.1 for explicit formulas). Further, D'P is equipped with a connection
9 : DPP — pPD ®pep Q}QED arising from the connection on OD,;s(T) and the differential operator
on REP (see §5.1 for details). Moreover, the connection on DFP satistfies Griffiths transversality with
respect to the filtration. In conclusion, we have a filtered de Rham complex for k € Z,

Fil*D" : = Fil*D*® @0 Qpen —> Fil* ' DPP @pen Oy — -

Definition 5.5. Let r € N and Dg := R®g, ODis(T). Define the syntomic complex Syn(Dg, r) and
the syntomic cohomology of R with coefficients in Dg as

Syn(Dg, r) := [ FI'D" 222,
H;, (Dgr, 1) := H(Syn(Dg, r)).

syn

'D'];

We will relate this complex to Fontaine-Herr complex computing the continuous Gg-cohomology
of T(r). The key idea is to interpret all these complexes in terms of Koszul complexes, and by applying
a version of Poincaré lemma, we can further relate the syntomic complexes to “(¢, I')-module Koszul
complexes”. The main result of this chapter is:

Theorem 5.6. Let T be a free Z,-representation of Gg, as in Definition 5.3 such that V = Q, ®z, T is
a free positive Wach representation. Let s be the maximum among the absolute value of the Hodge-Tate
weights of V and r € Z such that r = s + 1. Then there exists a p" -quasi-isomorphism

Tsr—s—lsyn(DRa r) = Tsr—s—ercont(GRa T(F)),

where N = N(T, e, p, r) € N depending on the representation T, ramification index e, the prime p, and
r. In particular, we have p" -isomorphisms

H, (D, 1) — H"(Gr, T(r)),

foro<k=<r-s-1

The proof of Theorem 5.6 will proceed in two main steps: First, we will modify the syntomic
complex with coefficients in Dy to relate it to a “differential” Koszul complex with coefficients in
N(T) (see Proposition 5.30). Next, in the second step we will modify the Koszul complex from the
first step to obtain Koszul complex computing continuous Gg-cohomology of T(r) (see Definition
5.6 and Proposition 5.31). The key to the connection between these two steps will be provided by
the comparison isomorphism in Theorem 3.24.
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5.1. Syntomic complex with coefficients

In this section we will carry out computations involving syntomic complexes in order to prove
Theorem 5.6. More precisely, we will define syntomic complexes with coefficients in ODyi5(T), over
various rings introduced in §2.3. Then, we will relate these complexes to differential Koszul complex
with coefficients in N(T). Further computations clarifying relations between differential Koszul
complex and Galois cohomology of T(r) will be worked out in the next section.

We begin by fixing some notations for the rest of this section. For % € {[u], [u, v], [u, v/p]}, we
set

D* := R} @, ODaris(T),

which is an R¥-module. By considering the diagonal action of the Frobenius on each component of
the tensor product, we can define Frobenius-semilinear operators ¢ : DI*l — D[4 and ¢ : D*?] —
DI%?/P] Let S be a placeholder notation for R¥ and D a placeholder for D* below. We equip D with
a filtration
Fil*D = )" Fil'S&,Fil ODis(T), for k € Z. (5.2)
i+j=k

Further, if dp denotes the connection on ODyi5(T) then we can equip D with a connection

d:D— DesQ}

a®x — a® dp(x) + xda,

which satistfies Griffiths transversality with respect to the filtration, since the differential operator
on S as well as dp satisfy this condition. So, we obtain a filtered de Rham complex,

Fil*D" := Fil* D gs Qf — FilF 'Des Q% — -, for k€ Z.

Now, let % € {PD, [u], [u, v], [u, v/p]}. We fix a basis oné as { 1{))(‘(’0, dx—)?, s ‘%"} Forj € N, let
[={0<i <--<ij=sd}andfori=(i,..., i) € I, let

dXO dXiz Xmj . .
s A gl A X, if i; =0,
wl - dXil dX’j th .
Xil Xij otnerwise.

We define operators ¢ and ¢ on Qg by
o( Z xi@;) = Z ¢(xi)ew; and ( Z xi@;) = Z V(%) w;. (5.3)
i€l; i€]; i€l; i€l;

Remark 5.7. Note that this is not the natural definition of Frobenius, as we have d(¢(x)) = pp(dx)
for the natural Frobenius. But in order to define i integrally, we need to divide the usual Frobenius
by powers of p.

Now we are ready to define syntomic cohomology. Let D denote the de Rham complex with
* € {[u],[u,v]} and &" denote the de Rham complex with coefficients in the module which are
target under the Frobenius, i.e. % € {[u], [u, v/p]}.

Definition 5.8. Define the syntomic complex Syn(D, r) and the syntomic cohomology of R with
coefficients in D as

Syn(D,r) := [FiI’D' RN & ];
H.,.(D,r) := H(Syn(D, r)).

syn

Remark 5.9. Note that for % = [u], we have D" = £".
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5.1.1. Change of disk of convergence

In order to relate Syn(DPD ) to Koszul complexes, we will first pass to the analytic ring Ré[au] and

then to R[” “l Recall that we have DPP = RED @p ODi5(T) and ple R([Du ] ®r, ODqis(T) equipped
with supplementary structures described above.

Proposition 5.10. (i) For }ﬁ < u < 1, the morphism of complexes

Syn(DPD, r) — Syn(D[u], r)
induced by the inclusion D'P < DIl is a p* -isomorphism.
(i) For v’ < u < pu/, the morphism of complexes
Syn(D[”/], r) — Syn(D["], r)
induced by the inclusion D1 c D! is a p*" -isomorphism.
The proposition follows from the following lemma by taking k = r.
Lemma 5.11. Letk € N and S = R}..
(1) Ifﬁ < u <1, the map
P -plo : FrdMeql, /FiI'D™P @ Oy, — D), /D™ @ Oy,
is a p**"-isomorphism.
(i) If v’ < u < pu/, the map
P -po: FroMeal, /FD“ed , — DMed, /Ded

is a p**"-isomorphism.
Proof. The proof follows in a manner similar to [CN17, Lemma 3.2].

(i) Note that we can decompose everything in the basis of the w;’s, where i € I;. By the definition
of Frobenius on «; we are reduced to showing that

pF-po: Fil" Dl /Fil" DPP — pl¥l/pPD,

is a pF*"-isomorphism. We have DP ¢ D[ and q)(D[“]) c DPP since <p(R([D”]) c R[u/p RPP,

forﬁsu<1

For pF-injectivity, we note that we have Fil’DI*] = DI*I0Fil"DPP, so it suffices to show that
if (p* - p/p)x € D'P then p*x € DFP. But since we can write pXx = (p* - p/p)x + p/p(x) and
(p(D[“]) c D, we get that p*x € DP.

Now, let {fi,..., fn} be an Ry-basis of OD¢s(T). Then, to show pk”-surjectivity we write
x = ZL a;®f; € R([;,u] ®Rr, ODqis(T) = DI, We will write p**"x as a sum of elements in

(p* - p/@)Fil’ D"l and D'P. Let N = , then from the definition of R ] we can write

u(p 1)’

a; = ap + ap, with ap € R[ and a; € p “INulelp "kRZD,

cp

where we write RED”}V as in the notation of Lemma 2.32 (it consists of power series in Xj
involving terms X for s = N). Now let x; = Z?zl an ®f; and x, = Z?zl aiz ® fi, so that
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Xx = x1 + x3. By Lemma 2.32, we can write

' h

x=(1- p’_kfp)z, for some z = Z bi®f € R([D”] ® ODyi5(T) = pt4,
i=1
Also, by Lemma 2.28 we can write b; = b;; + b, with b;; € Fil" Rl[Du I and by € p"[’ ”JR;. Let
7 =YY" byofieFl'Dand z, = Y, by ® f; € p"DP, then
1-p " 0z = p (" - Pp)z € p* D™,
and
x-(1-pFp)z = x4+ - (1= P *p)z1 = 31+ (1- P F )z € p*DPP 4+ p™F "D < pFTDPP
Therefore, we obtain that
x e p—k—rDPD + p—k(pk _ pIQD)Fler[u],

which allows us to conclude.

(ii) We can repeat the arguments in (i) by replacing DFP with DI¥], since R([Dul] c R and qo(R([D“]) c

R([Du/p] c R([Du,], for v’ < u < pu.

5.1.2. Change of annulus of convergence

Recall that our objective is to relate the syntomic complexes discussed in the last section to differential
Koszul complexes. To realize this goal, we further base change our complex to the ring R([Du’v]. Recall

that we have D" = R([Du] ®Rr, ODqis(T), and pluvl = R([Du’v] ®r, ODyris(T) = R([Du’v] Ol Dl
Proposition 5.12. For pu < v, there exists a p*"***-quasi-isomorphism
TSF_S_ISyn(D[”], r) = Tgr_s_lsyn(D[“’v], r),
i.e. we have p*"**$-isomorphisms
(DU, 1) = H (D79, 1),
foro<k=<r-s-1
Proof. Combining the results from Lemmas 5.13, 5.16 & 5.14, we get the claim. |

From the definition of complexes displayed in the claim above, it is not at all immediate that we
should expect them (before and after scalar extension) to be quasi-isomorphic. Adapting a technique
used in the theory of (¢, I')-modules of passing to the corresponding (quasi-isomorphic) /-complex,
we will establish a p-power quasi-isomorphism, between the complexes of interest. This motivates
our next definition for an operator i over R, ®r, OD,is(T), which would act as a left inverse to ¢.

First of all, we know that (p*(ODcris(V)) = ODy;s(V), or equivalently ¢(ODis(V)) generates
OD.is(V) as an R [%] -module. Let f = {fi, ..., fn} denote an Ry-basis of ODyis(T), i.e. ODis(T) =
@', Ryfi. Then f is also a basis of ODi5(V) over Ry [%] . Hence, ¢(f) = {¢(f1), ..., ¢(fn)} is also a basis
of OD5(V) over Ry [%] From this we can write f = ¢(f)X where X = (x;j) € Mat(h, Ry [%] ) For
our choice of OD;s(T) and Proposition 3.31 and Corollary 3.38, we conclude that x;; € I%Ro where
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i < i,j < hand s is maximum among the absolute values of Hodge-Tate weights of V. Therefore, we
can define
l// : R[u] ®R0 ODcris(T) — %R[pu] ®R0 ODcris(T)

h (5.4)
Zy,®ﬁ—fy — EYOXyT) Z(Z¢ yixy) ) 5

where we consider the operator ¢ on R([D”] defined in §2.3.2. It is easy to show that this map is
well-defined, i.e. independent of the choice of the basis for OD¢y;s(T).
Using the operator i on Dt = R([Du] ®r, ODgis(T) as above, we can define the complex

Syn? (DM, r) := [Fll’D[” ® Qg L N DPI @0, |,

where the operator ¢ acts on Q;z["] as in (5.3).

Lemma 5.13. The commutative diagram

pr-pe

FiI'DMeQ Do,
RS RS

Jid lps 14
FIrDWeq, — " DI Q.

defines a p**-quasi-isomorphism from Syn(D[”], r) to Syn¥ (D[”], r), where s is maximum among the
absolute value of Hodge-Tate weights of V.

Proof. First, let us look at the cokernel complex. Since the left vertical arrow is identity, we only need
to look at the cokernel of the right vertical arrow. Now, by definition we have y(D*}) c p=*Dlr¥]

and in particular, p*y(DI) ¢ DIP™). Moreover, note that the operator 1 : RED“] — Rg) 4 s surjective
and p°*ODyis(T) € ¢"(ODyyis(T)). Therefore, we have

D4 = R g p ODyis(T) € Y(RY @, ¢ (ODeris(T))) < Y(RY @5, ODeris(T)) = (D)

Hence, we get that p* /(D) is p*-isomorphic to DIP™). In particular, the cokernel complex is killed
by p°.

Next, for the kernel complex, we proceed as follows: Let S = R[[Du] and we take OD¢,5(T) = 69]}-’:1 Rof;,
so that we have D[] = EBJ}?:l Sfj. Now we know that ODs(T)/ ¢"(ODeis(T)) is killed by p®, where
s is maximum among the absolute values of Hodge-Tate weights of V (see Proposition 3.31 and
Corollary 3.38). So by extending scalars to S, we obtain a p*-isomorphism

h
S®R0 ODcris(T) = 691 S(p(fj)
j=

Note that an element

h h Y=
y=Y v € (GB&P(JS-)) |
j=1 J=1

if and only if y; € S¥=°. Indeed, /(y) = 0 if and only if Z;lzl ¥(y;)fi = 0. Since f; are linearly
independent over R, [%], we get that 1/(y) = 0 if and only if ¥(y;) = 0 for all 1 < j < h. In particular,
we have a p*-isomorphism

- = h h
(D[u])l//_o = (S®R0 ODcris(T))lﬁ_o = (]qalsqo(fj‘)> eza1 l// O(ID(fJ
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Next, recall from (5.3) that in the basis of QF, the operator i is defined as ¥( el xw;) =
Yiel, ¥(x)wi. In particular, we obtain

y=0

=0
(ODcris(T) R, ng) = (S ®R, ODcris(T)> / z Qk; (5-5)
where ;
t-z @de and QF = )\ Q.
From Lemma 2.37(ii), we have a decomposition S0 = @449 S, = Su,, where u, = (1+Xp)% X" - X3

for a = (o, ..., ag) € {0,1,..., p - 1}[%4 Moreover, from §2.3.2, we have 9;(u,) = a;u, for 0 < i < d.
In particular, 9,(Sy) < S,.

Now, using the decomposition of $¥=°, we set D, @h 1 Se¢(f;) and obtain that (D[“])
p*-isomorphic to @49 D,. From the differentials on S, and the connection on D!*! we obtain an
induced connection @ : D, — D, ®s Qé = D, ®z Q!, which is integrable. The decomposition of
(D[“])‘k0 and (5.5) shows that the kernel complex in the claim is p*-isomorphic to the direct sum of
complexes

=0 .
v 1S

0— D, — Dy@Q — D, @O% —> -, (5.6)

where a # 0.

We will show that (5.6) is exact for each «. The idea for the rest of the proof is based on [CN17,
Lemma 3.4]. Note that since everything is p-adically complete, we only need to show the exactness
of (5.6) modulo p. For this we notice that for y = 2]}11 Yi¢(fj) € Dy, we have

h h
a( > ngo(fj)) = 2, vidn(e(f) + ¢(f)dy;.
j=1

j=1

where dp denotes the connection on OD¢s(T). By §1.5.2, we have ¢dp = dp¢ over OD¢5(V). So,
for i € {1, ..., d} we obtain that

h
an(¢(f;) = #(ap(f)) ( Z bifi® d%’) =p Y obif)® %
=

Note that the operator ¢ in the equation above is the usual one (in (5.3) we replaced this operator by
dividing out by powers of p). Moreover, by Lemma 2.38 we have that 9;(y;) - ;yj € pSs. So we get

that the complex (5.6) has a very simple shape modulo p: if d = 0, it is just D, 2 S Dyifd=1,it
is the total complex attached to the double complex

o
—O>Da

lal
D

a>s

)

UTU

)

a
_

and for general d, it is the total complex attached to a (d + 1)-dimensional cube with all vertices
equal to D, and arrows in the i-th direction equal to ;. As one of the ¢; is invertible by assumption,
this implies that the cohomology of the total complex is 0. This establishes that (5.6) is exact for
each o and hence the kernel complex is p*-acyclic. |

Next, we will base change the complex to Rg‘ 0]
(5.4), one can define an operator

. As we will compare (¢, 9)-complexes, following

¢ : R([DU,U] ®R0 ODCriS(T) — I%R([Dpu’pv] ®Ro ODCriS(T)a



Syntomic complex with coefficients 91

as a left inverse to ¢. Now using Dlwel = R([Du’v] ®Rr, ODqris(T), we can define the complex

pr+s w_pu-s

Syn? (D%, r) := [Fil’D[”’”]@)Q;z[u,v] prelg ol

We can relate the two (¢, 9)-complexes discussed so far,

Lemma 5.14. Let u < 1 < v. The natural morphism
Syn? (D[”], r) — Syn? (D[”’U], r),

is a p*" -quasi-isomorphism in degreesk < r —s - 1.
Proof. The map between complexes is induced by the diagram

FI'DW e, vy Yol
R Ra

(o]

| |

Fil'DI*?l @ O [w,0] P plreele oy [pu.v]>
Ry Ry

@

where the vertical arrows are natural maps induced by the inclusion R([Du] c Rl ] Therefore, it
suffices to show that the mapping fiber

FﬂrD[u,v] ® Q;qg‘v“]/FﬂrD[u] ® Q;z[z,”] % D[Pu,v] ® Q;?gzu,v] /D[Pu] Q0 ]

is p*"-acyclic. By Lemma 5.15, we can ignore the filtration and, working in the basis {@;, i € Iy} of
QF, it is enough to show that

pr+s¢ _ pk+s . D[u,v]/D[u] N D[Pu,v]/D[Pu]’
is a p"-isomorphism for k = r — s — 1. But
D[%U]/D[u] ~ D[P”,U]/D[Pu]’

and therefore 1 - p'y/ is an endomorphism of this quotient for i = r — k. Moreover, for i > s + 1 we
get that 1 - p'y/ is invertible on DI%?l/ D[] with inverse given as 1 + p™*(p*¥) + p* ) (p*h)? + ---.
Therefore p™Sy — p**s = p**5(p"*4) - 1) is a p**s-isomorphism. Since k + s < r - 1, we obtain that
the complex in the claim is p?"-acyclic. |

Following observation was used above,

Lemma 5.15. For u < 1 < v, the natural morphism

Fil’ D1/ Fil" I} — pl«el/plvl,
is a p"-isomorphism.
Proof. First we recall that

Fil'D*? = 3" Fil'RI“ @ Fil’ OD¢yis(T).

a+b=r
Now the map in the claim is clearly injective. For p’-surjectivity, let {fi,..., fn} be an Ry-basis
of ODgys(T) and let x = Y1 bof; € R“Y @ OD¢yis(T). By [CN17, Lemma 3.5], we have a p’-

isomorphism
Fil" R/ Fil’ R — Rlw-v1 /gL,
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S0 we can write p"b; = by + by, with b;; € Fier([Du’v] and b;, € Rl[au]. Since 2?:1 bi1 ® f; € Fil'DI*?] we
get the desired conclusion. |

Finally, we can get back to the (¢, 9)-complex,

Lemma 5.16. The commutative diagram

Fil'D o0 pluvrlgQ: .
Ry’ Ry’
L’d }JSW
Fier[u’v] Q0" " prY-pts D[pu,v] Q0" _
Ry’ Ry~

defines a p*S-quasi-isomorphism from Syn(D[”’U], r) to Syn? (D[’“’], r).

Proof. We can repeat the arguments in the proof of Lemma 5.13 by replacing D] with DI*?]
and RY with RI““). We briefly sketch the argument. First, for the cokernel complex, we only
need to look at the cokernel of the right vertical arrow. We have /(D[%??l) ¢ p=*DIP%?l and in
particular p*y(DI*¥/?l) ¢ DIP%?l  Further, the operator ¢ : R([Du’v/ip [N R([rj,J ol i surjective and
P*ODqis(T) € ¢ (ODgis(T)). Therefore, we have

DPwe) = RPFl @ OD io(T) < (R P @, 07 (ODerio(T))) < Y(RE P @, OD is(T)) = y(DL%PYy

Hence, we get that p*y/(DI*?/Pl) is p*-isomorphic to DIP*?l. In particular, the cokernel complex is
killed by p®.

Next, we look at the kernel complex. Let S = R([Du’v/p !'and arguing as in Lemma 5.13, we obtain a
p*-isomorphism

=0

= = h v A
(D)™ = (s&n, OD(D) ™" = (@S0(f)) = D" p(5)

Now using (5.3), we can write

k) V= y=0 k
(OPas(M @R, @) = (Sor, ODesy(T) " @722, 57)
where J ]
Q' =722 Pz and QF = \Q.

i=1

From Lemma 2.37(ii), we have a decomposition $¥=0 = @440 Sy = Sug, Where uy = (1+X)* X" - X
fora = (a, ..., ag) € {0,1, ...,p—l}[o’d]. From §2.3.2, we have 9;(uy) = aju, for 0 < i < d. In particular,
0i(Se) © Sg- So using the decomposition of S¥=0 we set D, = 69;1:1 Sz ¢(fj) and obtain that (D[”’U]) y=0
is p*-isomorphic to @49 D,. From the differentials on S, and the connection on D%l e obtain
an induced connection @ : D, — D, ®s Qg = D, ®z Q!, which is integrable. The decomposition of
(D[”’v])‘ﬁ:0 and (5.7) shows that the kernel complex in the claim is p*-isomorphic to the direct sum
of complexes

0— Dy — D,Q — D@ Q% — -, (5.8)

where a # 0. An analysis similar to Lemma 5.13 shows that the complex (5.8) has a very simple
shape modulo p: if d = 0, it is just D, —2, Dyif d = 1, it is the total complex attached to the
double complex
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(o7
Dy, ——— Dy,

and for general d, it is the total complex attached to a (d + 1)-dimensional cube with all vertices
equal to D, and arrows in the i-th direction equal to ¢;. As one of the ¢; is invertible by assumption,
this implies that the cohomology of the total complex is 0. This establishes that (5.8) is exact for
each « and hence the kernel complex is p*-acyclic. |

5.1.3. Differential Koszul Complex

In the previous sections we studied syntomic complexes over various base rings with coefficients in
ODy,is(T). In this section, we will study differential Koszul complex over the base ring A%u’v] with
coefficients in the Wach module N(T). As we shall see the differential Koszul complex is very closely
related to syntomic complexes. Such a relationship is to be expected, since we have an isomorphism
of rings iy R([D"’U] - AEQ"’U] in §2.4 and there exists a natural comparison between OD;5(V)
and N(V)) after extension of scalars to OAEP on both sides (see Theorem 3.24). Note that from now

onwards, we will be working under the assumption that pT?l sus % < 1 < v, for example, one can

takeu=‘%landv=p—1.
The ring R‘[Du’v] is a p-adically complete Z,-algebra, equipped with a Frobenius ¢ : R([Du’v] —
R([Du’v/p 1 lifting the absolute Frobenius on R[[Du’v]/ p. Let Q;x[“’”] denote the p-adic completion of the
R
module of differentials of A%u’v] relative to Z. Recall from §2.3 that Q;[u,v] has a basis of differentials
X Ay d

1+X0° X1 27 Xy

d; over A%u’v], for 0 < i < d. Moreover, from Definition 2.27 we can endow A][R”’U] with a filtration

{FilkAEz“’v] }kez and obtain filtered de Rham complex

}. So via the identification .y : R([Du ol 2, AEQ“’”] we obtain differential operators

FilfQ, . ¢ FFARY — FiF' AR 0 0! — FiF AR 0 Q2 — -, forkeZ
R R R
Further, the differential operators 9; can be related to the infinitesimal action of I'g by the relation

Vi:=logy,=tg; for0=<i=d,

where log y; = ), keN(—l)k(Y",;%)lm. We will study similar operators over the AE?"’U]
from the Wach module N(T).

Note that for an indeterminate X we can formally write

-module arising

log(1+ X
%=1+a1X+a2Xz+a3X3+m,

X
7:1+b1X+b2X2+b3X3+~-,
log(1 + X)

where vy (ax) = _;% for all k = 1 and therefore, v,(b) = _1% for all k = 1. We have the following
claim:

Lemma 5.17. Let M%%] = A%u’v] ®A;, N(T). Then, forie€ {0,1,...,d} the operators

Vi _logyi ozl _vi-1

V; = log yi; ; = .
: gl vi-1 yvi-1 Vi log y;

converge as series of operators on MI%],
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Proof. For 0 = i < d, observe that y; — 1 acts as a twisted derivation, i.e. for a € A%u’v] and x € N(T),
we have

(yi — D(ax) = (yi - Da- x + yi(a)(y: - Dx.
The action of I'y is trivial on N(T)/zN(T), so we can write (y; - 1)x = 7y, for some y € N(T). Now,
from the proof of Lemma 4.16 and (4.2), we have

()’i _ 1)kM[u,v] c (P, ﬂ_gn)kM[u,v]'

The same estimation of p-adic valuation of coefficients as in that proof helps us in concluding that

log y; converges as a series of operators on MI*?l. The claim for the convergence of operators y_v_"l
1
yi-1

- follows in a manner similar to Lemma 4.17. |
1

and

Note that M%) is a topological A%”’v]-module equipped with a filtration by Al[r(,u’v]-submodules

FlF MM = 3 FlALY @ FVN(T), for k € Z, (5.9)
i+j=k
such that Fil* M[%?] is stable under the action of Ig.
Remark 5.18. The results of Lemma 5.17 continue to hold if we replace N(T) with N(T(r)) for r € Z,
or Fil*M(*] for k € Z, or filtered pieces of Al[qu’v] ®A;, N(T(r)).
Lemma 5.19. For the filtered modules and operators V; defined above, we have

Vi (FilF M) ¢ Bl M) = tFlF = M) for 0 < i< d.

Proof. Note that the action of I'y is trivial on Filk p(w.?] / #Fil*M#?] and from this we infer that for
0 <i=<d, wehave
Vi (Filk M) < Bl M) o ppgleed = gpilk=! ples))

where the last equality follows from Lemma 3.17. As £ is a unitin § = ALY (see Lemma 2.43), we

can also write Vi(FilkM[“’”]) c (Filk- plwol], |

The lemma above enables us to introduce differential operators 9; over M*?] by the formula
Vi=logy=t9;, for0=i=<d,

where the operators 9; are well-defined by dividing out the image under the operator V; by t. Recall
dxp  dx, dXy }

. . . . [uv] = [u,v] . 1 .
that via the identification R,”~ — Ay, we have a basis for QAEzu’U] given by { 1" X X

Therefore, by setting d = (9, ..., d4) we obtain a connection over M (u.v]

o M — Mgl
R

ax — ad(x) + x® d(a).

Lemma 5.20. The connection 3 on M%) is integrable and satisfies Griffiths transversality with respect
to the filtration, i.e.
o (FilF Mty c FilF M2l for 0 < i < d.

Proof. Recall that from (4.4) we have [V;,V;] = 0 for 1 < i,j < d, whereas [V,,V;] = p™V,, for
1< i< d. So it follows that over M*?l we have the composition of operators

tz(ai ° 8]- - 8]- o 8,) = tai(taj) - taj(tai) = Vi o Vj - v]' o Vi = 0, fOI' 1< l,_] < d
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Next, for 1 < i < d, we have

VooV =V;oVy = tdy e (td;) - td; o (tdy)

= tp’"&i + tza() o d; — tzai ody = pmvi + t2(a() od;—0jo 80)

In particular, 9y c 9; = 9; ° 9y = 0. Since d > d = (9; 9;);j for 0 < i < j < d and M?] is t-torsion free,
we conclude that the connection 9 is integrable. Moreover, it satisfies Griffiths transversailty since
9; (Fil*Mt»1) = -1, (Fil* M) < Fil* ' M%), for 0 < i < d. |

Now we are in a position to write the filtered de Rham complex for M*?] as

FIMU T @ Qg ¢ FiMEY — R M 90l g — FIFMI @02 ) — 0 (5.10)
R R R

Further, we know that Q; ) has a basis {w1, ..., wg}, such that an element of QZ

[u,0
R

[u,0

_ 1
=N\ QA[“'”] can
R R

be uniquely written as ) xw;, with x; € A%u’v] and w; = Wi A A i, fori = (if,..., i) € I; = {0 =<

iy < < ig < d}. In this case, the map involving differential operators becomes
(@) © (Fil* oMty — (Fit-a pte)) ! for 0 < i< d.

Definition 5.21. Define the 9-Koszul complex for Fil*M[%?] as

Kos (0, Filkmluel) : Filkpluel @0y (pipk-tpfluel)h  (prk2pqluel)s

Remark 5.22. (i) By definition, we have an ismorphism of complexes FilkM[”’”]®Q;x[

Kos (94, Fil*m{=?1).

u,v)

(ii) Let Ij’ = {(i1, ..., §j), such that 1 < i < - < i; < d} and let &’ = (91, ..., 94). We can also set

Kos (@, Filkmluel) : Filkpluel — @0 (ppetppluel)i o (ppkzpluel)

and therefore we get that
Kos (@, Fil*M(**1) = [Kos (@, FilkM1“1) —% Kos (a4, Fil*~ Ml%1)].

]

(iii) The computation carried out in this section are true over the ring A%”’v/p as well.

5.1.4. Poincaré Lemma

Recall from §2.5 that given two p-adically complete W-algebras Sand A,and 1 : S — A acontinuous
injective morphism of filtered Op-algebras. Then for f : S® A — A the morphism sending
x®y — 1(x)y, we can define the ring SA to be the p-adic completion of the PD-envelope of
S®A — A with respect to Ker f.

Definition 5.23. Let x € {PD, [u], [u, v]} and define Ef{ =SAfor S = Rg, A= A}:, and 1 = Ly (see
§2.4).

Note that we are working under the assumption that pT?l sus % < 1 < v, for example, one can

p1

- and v = p - 1. These rings have desirable properties:

take u =

Lemma 5.24 ((CN17, Lemma 2.38]). (i) EEP El[{u] c EI[;”U].
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(ii) The Frobenius ¢ extends uniquely to continuous morphisms

E}I;D PD E}[Qu] N E}[qu], E[u,v] N El[zu,v/p].

R > R

(iii) The action of Gg extends uniquely to continuous actions on EP, El[e"], and E%”’U] which commutes
with the Frobenius.

Remark 5.25. (i) In Deﬁnition 5.23 if we reverse the roles of S and A, i.e. if we take S = Al’;,
A = R* and 1 = 1!}, then we get an isomorphism SA = Ey with obvious commutativity of the
action of Frobenius and the Galois group Gg on each 51de.

(ii) LetV; = 12; [®>§)’ for0 < i < d. We filter E} by defining Fil"E} to be the topological closure of the

ideal generated by the products of the form x;x; [J(Vi - 1) (k] with x; € Fil" R* x; € FlerAI’:,
andry+rp+ Y kizr.

From Definition 3.18, we have a p-adically complete ring OAEP equipped with a Frobenius and a
continuous action of I'g. In Remark 3.20, we mentioned an alternative construction of OAgD using
an embedding 1 : Ry — APP defined by sending X; — [X;], for 1 < i < d. Identifying R, as a
subring of REP, and extending the embedding : to RE° — APP by sending X, +— 7, we get that the
extended embedding is exactly iyq. Since the action of the Frobenius and the Galois group Gg over
OAPP and EEP can be given by their action on each component of the tensor product, we obtain
a Frobenius and Galois-equivariant embedding QAP — EFP. Moreover, the filtration on OAFP
(see Definition 3.21) coincides with the filtration induced from its embedding into ERP. Note that
since REP < EED, the key difference between EEP and OALP is that the former ring contains the
indeterminate X, and its divided powers, whereas the latter ring does not.

Next, from the natural inclusion R, — RPD we know that the differential operator on Ro is

compatible with the differential operator on REP. Further, we have an identification ley : APP —

RED (see §2.4) using which we obtain differential operators on Agpn. Also, over the ring ALP,
the operators V; = logy; converge for 0 < i < d (see Lemma 4.16), which are related to the
differential operators by the relation V; = t9;. Thus if we denote this differential operator over AP
as 94 = (9i)o=i=a and the differential operator over REP (as well as over Ry) as dg, then we see that
the induced differential operator dg ® 1 + 1® d4 over OALP as well as EEP are compatible. Note that

EFP is naturally contained in El[zu’v]

OA?P as a subring of El[eu’v]
Now we turn to the comparison between OD;is(T) and N(T) over the ring OAEP. Recall from
the proof of Proposition 3.31 that we have a natural map

compatible with all the structures. Hence, below we will identify

OARP @r, ODeyis(T) —> OARP @, N(T), (5.11)

compatible with Frobenius, filtration, connection and the action of I'r on each side. Moreover,
(5.11) is an injective map which is p""9-surjective for some constant n(T,e) € N (since it is an
isomorphism after inverting p), depending on the representation T and the ramification index e of
K/F (see Remarks 3.39 & 5.4). We can promote this comparison over OAFP, by extension of scalars,

u,0]

over to the ring E% such that the natural injection of modules

El? @p ODeyis(T) — EX™ g, N(T),

is a p"T9-surjection compatible with Frobenius, filtration, connection and the action of I'y on

each side. Let D[%?] = R[u’v] ®Rr, ODyris(T), and M (wo] - AEQ"’U] ®A7?o N(T), then we can rephrase the

n(T,e)

comparison above as a p -isomorphism

Ez[zu’v] @ pgluel plwvl « EI[gu’v] ®A%u,v] mtwel (5.12)
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compatible with Frobenius, filtration, connection, and the action of I'z on each side.
Let R, = R“Y R, = A[u “l and R, [u I We set Xo1 = Xo, Xo2 = 7wy and for 1 < i < d, we set
Xi1 = X;and X;2 = [X/]. Now for j = 1, 2, we set

dXOJ
Q 1+X0] @

and Q) := Q@ QL. Forj = 1,2,3,let QF = A¥ Q;. Therefore, Qﬁj =R ®ij.

Recall that we have D[%?] = R([; vl ®r, ODqis(T) is a filtered R([; “l_module equipped with a quasi-
nilpotent integrable connection satisfying Griffiths transversality with respect to the filtration as
defined above. In other words, for each k € IN, we have a complex

Fil* D" g ; : Fil*pl**] 4, gk pled g Q! 2, pilk-2 plee) ®Q? e

Next, let = : = E[" g Rl ) D[*?] and define a filtration on Z using the filtrations on each factor of
the tensor product For k € Z, we have

og, : FIFEL™ — Pl E @, Q1 and 9, : Fil*DI*¥) — Filk1 D% g, Q1
therefore we obtain that g, : FilkE — FilF 1= ®z Q1. Hence, we have the filtered de Rham complex
FilfE @ Q; : Fil'E 2 mEg Ql 2, e g 0 —
Lemma 5.26. The natural map
Fil*D** g Q; — FilFE® Q;
is a quasi-isomorphism.

Proof. Note that we have assumed R; = R, Since we have Fil*D[**] = (Fil*Z)?%:=, from Lemma
2.51 and Proposition 2.52 we obtain that the claim. |

Next, recall from (5.10) that for R, = A][,-(,u’v] and the module M%) = AEQ“’U] ®A, N(T), we have the
filtered de Rham complex

FilkM*9 @ Q;, : Filkm*9) — Filk ' Ml @ Q! — FilF2M9 g Q2 — ... for ke Z.

Also, let A := E[u Jg Rlwe) M!%?] and define a filtration on A using the filtrations on each factor of
the tensor product Then similar to the case of Z, we have the de Rham complex

FilFA® Q) : Fil'A 5 FilF A 0! % FilF2A @02 %,
Now, since Filk pmlwol = (FilkA)"lzo, in a manner similar to Lemma 5.26 one can show that,
Lemma 5.27. The natural map
FilkM*¥ @ Q; — FilkFA® Qj,
is a quasi-isomorphism.

Remark 5.28. The computations above continue to hold if we replace the ring R([D”’”] (resp. A%”’”])
with the ring RL“”#) (resp. AL“"P)),
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Definition 5.29. Let M[“?] as above such that it admits a Frobenius-semilinear morphism ¢ :
M2l pMlwo/P] Using Definition 5.21 and Remark 5.22, define the (¢, 9)-complex

p-pe

Kos (), Fil*mlwT) Kos (a7, ML#-v/p1)
Kos (¢, a4, Fil* M) : = J/ao la"

Pr-pte

Kos (), FilF ' mlw-?) Kos(/,, MU=¥/71)

Proposition 5.30. The complexes Syn(D[“’v],r) and Kos(q), aA,FilrM[”’v]) are p*™T9)_quasi-
isomorphic, where n(T, e) € N is as described after (5.11).

Proof. Using Lemma 5.26 with R, = R3*", Ry = Ep*") 8 = ER*"@ua D19, and & =

Ez[zu’v/p] ® glup] DI%v/?] we have a quasi-isomorphism
D

rre, D[”’”/p]®Q'1] - [FilrE®Q§ LN AR

Syn(D*¥) r) ~ [Fil" DI** @
Using Lemma 527 with R, = Al? ry = El*¥l A - El¥g (M and A =

E}[z"’v/p Ie Aol M [w9/p]| we have a quasi-isomorphism
R

[u.
ARuv

Kos(g, 9, Fil MU“?1) ~ [Fﬂ’M[”’U]@)Q'Z rre FilrM[”’”/P]Q@Q'z] - [Fﬂ’A@)Qg LAY AN
Note that in the quasi-ismorphism we used Remark 5.22 to identify the complexes
Fil'M @ Q) ~ Kos (o, Fil*M!™).

R

MT.¢)_jsomorphisms Fil'E =~ Fil’A and Z’ ~ A’. Combining this with

2n(T.¢)_quasi-isomorphism

Now using (5.12) we have p
the isomorphisms above, we obtain a p

Syn (D%, r) = Kos (¢, 94, Fil" M),

5.2. Wach representations and Galois cohomology

In this section, for free Wach Z,-representations T(r) of Gg,, we will carry out the second step of the
proof of Theorem 5.6, i.e. study complexes computing continuous Gg-cohomology of T(r). To state
the main result of this section, we introduce some notations. Recall that we defined an A%”’v]-module
as

M = AR @ N(T).

Note that we are working under the assumption that pT?l sus % < 1 < v, for example, one can take

u= ijl and v = p - 1. From (5.9) we have a filtration on M*?] as

FilF M) = 3" Fill AR @4, FIVN(T).
i+j=k
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These submodules are stable under the action of I'z and from Definition 5.29, we have the complex

Kos (9, Fil' MU+#1) —272% ko (a), MU=+/p1)

Kos((p, a, FilrM[”’U]) = aoi iao
) pr-ptle

Kos (&%, Fil"' Ml»?] Kos (), M{%2/P1).

From the theory of (¢,I'r)-modules in Chapter 2, we have Dr(T(r)) = (A®z, T(r)& =
AR ®ay, D(T(r)). Using Proposition 4.15, we have the complex

Kos (T, Dr(T(r))) ——> Kos (T, Dr(T(r)))
Kos (¢, Tr, Dr(T(r))) = foi l’o
Kos* (T, Dr(T(r))) —> Kos* (T, Dx(T(r)))

By Proposition 4.13 and Theorem 4.4 we see that the Koszul complex defined above computes the
continuous Galois cohomology of T(r), i.e.

KOS((p, I‘R, DR(T(Y'))) = chont(GR: T(}’))

The main result of this section is the comparison between the Koszul complexes introduced above.

Proposition 5.31. There exists a p" -quasi-isomorphism
z.,Kos (¢, aa, Fil'M!“*1) = 7_,Kos(¢, T, Dr(T(r))) = <R cont(Gr, T(r)),

where N = N(T, r) € N depends on the representation T, and r.

5.2.1. Proof of Theorem 5.6

Using the results of previous section and Proposition 5.31, we will show Theorem 5.6. Let us recall
the statement,

Theorem 5.32. Let T be a free Z.,-representation of Gg, as in Definition 5.3, s the maximum among
the absolute values of Hodge-Tate weights of V = Q, ®z, T, and an integer r = s + 1. Then there exists
a pN -quasi-isomorphism

Tsr—s—lsyn(DR: T‘) = Z'sr—s—lRFcont(GRa T(r)),

i.e. we have pN -isomorphisms
H, (D, ) — H"(Gr, T(r)),

for0<k<r-s-1and N = N(T,e,r) € N depending on the representation T, ramification index e,
and r.

#r+45_quasi-isomorphisms

Proof. Combining Proposition 5.10 and Proposition 5.12, we have p
Tgr_s_lsyn(DPD, r) = fsr_s_lsyn(D[u], r) = Tsr_s_lsyn(D[”’v], r).

2n(T,e

Next, from Proposition 5.30 we have a p )-quasi-isomorphism

Syn (D%, r) = Kos (¢, 94, Fil" M),
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14r+3s+2

Finally, thanks to Proposition 5.31, we have a p -quasi-isomorphism (see the proof of the

proposition for the explicit constant)
7., Kos (¢, a4, Fil" M) = 7, Kos (¢, T, Dr(T(r))).
Combining all these statement gives us the desired conclusion with N = 2n(T,e) + 18r + 7s + 2. W

In the rest of this section, we will prove Proposition 5.31.

5.2.2. From differential forms to infinitesimal action of ',

Note that we are working under the assumption that ’%1 sus %

take u = 2! and v = p - 1. From Definition 4.19 we have the complex Kos (Lie I, Fil'M [“’U]) and
we consider a subcomplex, i.e. a complex made of submodules in each degree stable under the

< 1 < v, for example, one can

differentials of the former complex

Vl _ /
C (Lie T Filr M1+ Fitr el “0, (gt pgluel) i,

e s (4R [u,v] I — (el [u,v] I _
(t"Fil" " mt) (" 'F M)

Similarly, we define the complex K (Lie T, tFil"~ ' M{*?]) as a subcomplex of Kos (Lie I, Fil' M),
Now, consider the map

Vo : K (Lie Ty, Fil' M!"¥1) — K (Lie T, tFil" "' M1*?),

defined by the diagram
Filr el 0 (gt pplued) (erplmpteel)
‘/VO JVO—pm lvo—npm
eFilr -t mlnel Y0 (2pjir2 ) (m ey

which commutes since VyV; - V;Vy = p™V; for 1 < i < d (see (4.4) and the discussion after Definition
4.19). We write the total complex of the diagram above as (Lie 'z, FiI'M [“’”]), which is a subcom-
plex of Kos (Lie I'z, Fil'M [“’”]). In a similar manner, we can define complexes lC(Lie Ip M [”’”/p])
and lC(Lie Tk, tM [”’v/p]), and a map V, from the former to the latter complex. Note that since the
filtration on A%u’v/p Vs trivial (see Definition 2.27), therefore Fil*M%2/P] = plwv/e] for all k € Z.

Next, from Definition 5.29 we have the complex Kos((p, da, FilrM[”’v]). Since V; = t9;,for0 < i < d,
we consider the morphism of complexes Kos(ag, Fil'M [“’v]) — /C(Lie Tk, Fil'M [“’v]) given by the
diagram

I/

Fil' Mlee) 90, (it M[u,v])ff (M[u,vl)fr’ SN VI ) ——

ltozid Jtl jtr jtm

Filr pmlwol 0 (351 V(£ L SU—— 'V U VSN (8§ V{11 ) CF R

Since the vertical maps are bijective, it is an isomorphism of complexes. Similarly, we can define
maps from Kos(al’q, tFilr_lM[“’v]) — IC(Lie Tk tM[“’v]), Kos(ag, M[”’”/P]) — IC(Lie Tk, M[”’”/P])
and Kos(ag, M [”’”/P]) — IC(Lie 1";1, M [“’”/P]), which are isomorphisms as well. Since each term of



Wach representations and Galois cohomology 101

these complexes admit a Frobenius-semilinear morphism ¢ : #Fil"/M%*] — g M2/l we obtain
an induced morphism

Kos(/,, Fil' M=) 277 Kos (o, MUwv/?))

- e

Kos (&, Fil" ' m{»21) e, Kos (9, MU-/#])

(5.13)

K (Lie T, Filr M(##1) — =% [ (Lie T, mlwo/p))

lvo ivo ,

K (Lie T, tFil I MU#¥1) 220 K (Lie T, tplw0/9])

where the source complex in (5.13) above is Kos(qo, da, Fil'M [’“’]). Tautologically, we have that
Lemma 5.33. The map constructed in (5.13) is a quasi-isomorphism of complexes.

Next, recall that s is maximum among the absolute values of the Hodge-Tate weights of V and
r = s+ 11is an integer. Let us set NI“?)(T(r)) = Al[qu’v] ®A;, N(T(r)), and we can define a filtration on
this module given as

FIENM(T(r) = ) Fil'AR) Ba; FIPN(T(r)), for k € Z.
i+j=k

These submodules are stable under the action of I'z. Let ™" denote a Z,-basis of Z,(-r), then we
have

(@) FIFN(T(r) = (P @e™) ) FilARY Ba;, FIPN(T(r))
i+j=k

= & Y AR @ FiVN(T) = Fil M,
i+j=k

(5.14)

where the second equality is the result of observation made in Lemma 3.11, and the third equality
comes from the fact that % is a unit in AJ[Ru’v] (see Lemma 2.43). Moreover, we also have that
(" ® 6—r)N[u,v/p](T(r)) = t" T Mmlwvpl = pgluvip]

From Remark 5.18, we have that V; is well-defined over N[*?)(T(r)), for 0 < i < d. Now using
Definition 4.19 we have the complex Kos (Lie T, Fil’N [”’U](T(r))), and we consider the subcomplex

K (Lie Ty, FION(T(r)))  BIONU(T(r) 2L (il N (T(r)) ¥ — -

- —» (thﬂ-qN[u,U](T(r)))Ir; — e

Similar to above, we can define the complex IC(Lie I tFil"'N [“’U](T(r))) as a subcomplex of
Kos(Lie I'p, Fil'NI“?)(T(r))), and a map

Vo : K(Lie Ty, Fil'NI“?I(T(r))) —> K (Lie Ty, tFil 'NT“Z)(T(r))).

The total complex of the latter map, written as IC(Lie I'r,Fil'M [”’”]), is a subcomplex
of Kos (Lie Iz Fil°N [’“’](T(r))). Again, in a similar manner, we can define complexes
K (Lie I N [”’”/P](T(r))) and KC (Lie I [“’”/p](T(r))), and a map V, from the former to the latter
complex.

Consider the morphism K (Lie I, Fil'NI“*)(T(r))) — K (Lie Iy, Fil’M[*?]) given by the diagram
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FIPNE(T(r) — 0 (Rl NL2)(1(r))) " (IR INT(T(r))) o s
‘/t’ ®e" lt’ ®e" lt’ ®e™"
Firmlel 0 (gt pgtee) (t9Fir-apleel)s

which is is bijective in each term and therefore an isomorphism. Considering similar maps between
complexes considered above, we obtain a morphism (multiplication by t" ® €™" on each term)

K (Lie T, FIPNU(T (1)) 22 K (Lie T, N#92)(T(r)))

lvo lvo —

K (Lie T, R INE(T(r))) 2% K (Lie T, eNT22)(T(r)))

P-e

K (Lie T, Fil" M) K (Lie T, M(n/p1)

- -
K (Lie T, Fil" ' mlwel) L2 o K (Lie T, tml®-v/e])
(5.15)

Again, it is immediate that
Lemma 5.34. The map constructed in (5.15) is a quasi-isomorphism of complexes.

In order to proceed from “Lie I'r-Koszul complexes” discussed above to “T'z-Koszul complexes”,
we modify the source complex in the map of Lemma 5.34 as follows:

K (Lie T, FII°NI)(T(r))) e K (Lie T, NI“9PX(T(r)))
K (¢, Lie Tg, N““(T(r))) := vol J{vo
K (Lie T, tFil 'N(#)(T(r))) 2> K (Lie T, tNIP)(T(r)))

Remark 5.35. The complex lC((p, Lie 'y, N [”’U](T(r))) is p*"-isomorphic to the source complex in the
map of Lemma 5.34.

Combining Lemmas 5.33 & 5.34, and Remark 5.35, we get
Proposition 5.36. There exists a p*"-quasi-isomorphism of complexes

Kos (¢, 94, Fi" M) = KC( ¢, Lie Tg, N“ZN(T(r))).

5.2.3. From infinitesimal action of I'; to continuous action of I'y

In the previous section, we changed from complexes involving the operators 9; to complexes invoving
the operators V;. In this section, we will further replace these complexes with complexes involving

operators y; — 1. Note that we are working under the assumption that pT?1 sus<?<1<o,for

p
example, one can take u = %1 andv=p-1

Next, we want to construct similar complexes for the action of I'z. Note that we have

(i - DEIFN2N(T (7)) < FilFN2N(T () 0 e NPT (7)) = 2Rl NP (T(r))
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where the last equality follows from Lemma 3.17. We can define a subcomplex of

Kos (T, FI'NI(T(r))) as

(T FONUEI(T (7)) + FONTEU(T(r) ~s (B NE(T()) T — (22BN (1)) —
(5.16)

Similarly, we can define the complex ICC(F%,nFil_lN[“’”](T(r))) as a subcomplex of

Kos® (I‘fe, FilON[”’”](T(r))) (see Definition 4.10). Now, consider the map

70+ K (T FICNMU(T(r)) — K¢(Th, Rl N2(T(r))), (5.17)

defined by the commutative diagram

FNE(T(r)) — Py (Rl NE(T() T ——— (2?F2NE(T(r)) s

lrg lr(} jrg

B INE(T(r) — 2y (2Bl 2N (T(r)) T ——— (PRINE(T(r))E ———
where the vertical maps are as in Definitions 4.9 & 4.12. We write the total complex of the diagram
above as IC(FR,FiION[“’v](T(r))), which is a subcomplex of Kos (FR, FilON[“’U](T(r))). In a similar
manner, we can define complexes K(F%,N[”’”/P](T(r))) and ICC(I}, nN["’”/p](T(r))) and a map 7
from the former to the latter complex.

Next, we consider the commutative diagram

FIONE(T(r)) — 2 (Rl N(T() T ——— (2Fi2N) (T () ——— -

‘/id l 1 l 2
FIONT)(7(r) —Y s (R NEe(T(r)) . ——— (2RI Nl(T () ———
where f3; : (ail.‘.iq) — (Viq -V 1
(see Lemma 2.43), the top complex in the diagram above is exactly the complex K (F}, Fil’N [”’v](T(r)))
from (5.16). This defines a map

BT Ti;1(0i1~~iq)) for 1 < q < d. Notice that since £ is a unit in Al[r(,u’v

B+ K (T FINM(T(r))) —> K (Lie Ty, FI°NM(T(r))),
Similarly, we can consider the commutative diagram

FNE(T() — T (PRANET) s (PRPNET()E s

lﬁé lﬂf Jﬂzﬂ

I INEO(T(r) — Y (2RI 2N (T(r)) T s (PRISNE(T()) . ———

with f§ = V7! and
ﬂ; : (ail"'iq) — (Viq mvilvof(;lficl‘rl Tiz)il(ail-"iq)) for1 < q= d.
Recall that ¢ = y(yo) = exp(p™). Again, this defines a map

e« K(Th, tFil ' N2U(T(r))) —> K€ (Lie T, tFil INIPN(T(r))).
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Remark 5.37. The definition of maps f and ¢ continue to hold after base changing each term of the

complexes to the ring A%u’v/p I,

Next, for j € N, we have #Fil7N[“?I(T(r)) ¢ N*?](T(r)) and the induced Frobenius gives
@(UFiLIINIPN(T(r)) = o/ "Fil" MM2X(r)) < 2" MUPP)(r) = Y NT-OPY(T (1)),

where we have used the fact that £ € A%u’v] is a unit (see Lemma 2.43). Using the Frobenius morphism
and the map between complexes discussed above, we obtain an induced morphism

K (T}, FPNU2)(T(r)) —2 K (T NPT (r)))

l l (B.5°)
To To I

K (T, ¢RI NI T(r))) —2s O (T, ENTROIPY(T(r)))

K (Lie T, FIPNU2)(T(r))) ——— K (Lie T, NUPI(T(r)))

ivo ivo

K (Lie T, tFil ' N#)(T(r))) 2> K (Lie T, tNIP)(T(r)))

We denote the complex on left as IC((p, 'z, N [”’”](T(r))) and write the map as

L= (B.p) : K(o.Tr. N*(T(r)) —> K(p.Lie [g, N“U(T(r))),

Proposition 5.38. The morphism of complexes L from the construction above is an isomorphism.

Proof. The proof follows in a manner similar to [CN17, Lemma 4.6]. From the fact that V;z; !, for
0 < i < d, is invertible (see Corollary 5.17) and [V;,V;] = 0, for 1 < i,j < d, we get that the map f
above is an isomorphism.

Next, we will show that the map fg, for 1 < g < d, is a well-defined isomorphism. For this, we

need to show that V; - Vi Vory ! Ti’_l Sl

| i, are well-defined isomorphisms, for 1 < i < - < ig < d.
We can reduce the map to

-1_c,-1 c,—-1

Vig/ i) = (Vi /1)) Tig - ) Nog 77
. .. . . - -1

and since V;/7; is invertible for 0 < i < d, we only need to show that Ti, Ty, Vo Ty R R -

c,-1 .
i iq
well-defined isomorphism. Using the proof of Lemma 4.17, we can write

1S a

-1_c¢-1 -1 _ ) ) k_c-1 c,-1
Ty T VoTy T )= Z a iy Ty (Yo = 1)1y o T,
k=0

where a; € Op. Using the fact that y,y?¢ = y@y0, we get that

(v = D0 = %) = (o = 28N = 1), where 8(y) := L,

which yields

(= Do = D = (o = 840 = 81 = (o - S(r ™)) (v = 1).
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So we can write

k_c-1 1 ple ey
— 1,
Ty Ty - V)T T = (Yo—(sk)"'(}’o—&)h -

a Yyl (5.18)
= (Yo = &) - (yo — 1) .

Observe that for 0 < i < d and j € Z, we have

1ol _ 1ol _ 1ck
Yll ¢ — Yll ¢ . Yi‘_l and Yl — Yil -1 i 1
yl1/d+1 1 yi—l Yl_l/cl”_l Yi- vi-1

", Yi = DZy[[Tr]].

Therefore, in (5.18) we have that §; € 1+ (p™, (y1 - 1), ..., (ya = 1)). Writing (yo - 6j) = (yo - 1) + (1= §)),
we conclude that
Ti,  Tiy (Yo = 1)k ol ’Z'I-Z’_l eP™ vo-1,....ya- DE

Now from Lemma 2.45, it follows that the series of operators

Z Ak Tig 7, (Yo l)k li g

k=0
converge and therefore V; -+ V; Vo 75" Ticl’_l riZ’_l is well-defined. The same arguments show that the
; c c k-1 -1 : ;
series of operators ) ;. bk Ti, Til(}/o -1) Tj, ' T, CONVEIZE as an Inverse to the previous operator.
This establishes the claim. |

5.2.4. Change of annulus of convergence : Part 1

Now that we have changed our original complex to a complex involving operators y; — 1, in this

section, we will pass from the ring A “2] t6 the overconvergent ring A(O’U]+ and also twist our module

v

by r. Note that we are working under the assumption that 2= < u < ;<1<v for example, one

can take u = ppl andv=p-1
Let us set NO(T(r)) : = AS\,?’U]+ ®a;, N(T(r)). We can equip this module with a filtration given
as

FI*NC(T(r) = ) F1A°“®A FiVN(T(r)), for k€ Z,
i+j=k

where we put the filtration on Aﬁ?’vh by identifying it with the ring Rg)’v]+ via the map fcy (see §2.4),
and the latter ring has a filtration described in Definition 2.27. These submodules are stable under
the action of T'y.

Next, we define a subcomplex of Kos (F%, Fil’N (O’U]+(T(r))) as

K (T BIONO (T(r)) = BN (T(r) 2 (Bl INO(T()) T — (2RI 2N (T(r)) —

Similarly, we can define the complex /Cc(l"fz, nFil_lN«””]*(T(r))) as a subcomplex of
Kos® (F’ Fil®N(O-2]+ (T(r))) (see Definition 4.10). Now, consider the map

T ¢ IC(I“;Q,FiION(O’Uh(T(r))) — ]CC(FRJTFII INO (T (r)))

defined by a commutative diagram similar to (5.17) (see also Definitions 4.9 & 4.12)
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N (T(r)) — s (il 'NO(T(r)) . ——— (2?Fl2NO(T()) —— -

‘/TS lrol lroz

) L

AR N (T(r)) ——— (2*Fil2NO(T(r))) *

——— (2PFIPNOI(T(r))? —— .

We write the total complex of the diagram as (FR, Fil°’N (0’”]*(T(r))), which is a subcomplex of
Kos (FR, Fil' N2l (7 ( ))). In a similar manner, we can define complexes K(F%, N(O’”/p]+(T(r))) and
Ke (F’ aNOVPI(T(r ))) and a map 7 from former to the latter complex.

Next, for j € N, we have #/Fil 7 N©?I*(T(r)) ¢ NO2F(T(r)) and the induced Frobenius gives

e(RFil NOI(T(r)) = p(/"Fil™ NO(T)(r)) € 27 "NOYPI(T)(r) = 2/ NOVPI (T (7).

Using the Forbenius morphism and the map between complexes discussed above, we define the
complex

(T FUN O (T (1)) — K (T, NOVP(T(7)
K (. To NOI(T(r)) += o] |»
K¢ (T, mFIL N2 (1)) o [C (T, AN (T(r)
It is obvious that we can compare this to the complex defined in the previous section.
Proposition 5.39. The natural map
K(0.Tr N (T(r)) — K(¢.Tx, N“H(T(r)))
induced by the inclusion NO*Y (T(r)) ¢ NI“X(T(r)) is a p*" -quasi-isomorphism.

Proof. The map in the claim is injective, so we only need to show that the cokernel complex is killed
by p*". In the cokernel complex, we have maps

1- ¢ : ZFI*NE(T(r) ) 2 Rl ENOO (T (r)) — 2*NYPY T () [ 2K NOOPI (T (7)) for k € Z,
(5.19)
and it is enough to show that these maps are p*"-bijective. Let us define the modules

MO (r) 1= AR @5y N(T)() and MU9(r) = AR @u, N(T)(),
equipped with filtrations given by the usual filtration on tensor products. It is also immediately
clear that ZFFiI *N©2I(T(r)) = 2% "Fil" ¥ M@ (r) and #*Fil *N=2)(T(r)) = 5 "Fil"*Mmlel(r),

for k € Z (see (5.14) for a similar conclusion).
Let n = r — k and we rewrite (5.19) as

1-¢ : 7 "FI'MS() ) 2 "R MOO (1) — 2T MY [ 7 MOYPR (), (5.20)
For n < 0, the claim follows from Lemma 5.40. For n > 0, we begin by showing that the natural map
"M (r) [ MO (r) — R MU () TR MO (), (5.21)

is p"-bijective. Recall that § = 7=, so we have

M) = 1M () € R M (), and a2 "M () 0 TR MO (r) = MO ().
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Therefore, we get that (5.21) is injective. Next, we note that from the definitions we can write
AEQ”’U] = Agzu] + Ag)’vh. So we take M[" := Agzu] Ba;, N(T) and M* := A}, Ba;, N(T) and we endow
these modules with filtrations by considering the tensor product of filtrations on each component
(note that for simplicity in notation we consider modules without the twist - this is harmless). This
reduces (5.21) to the map

"MW oMt — 7 ELP MM R M

and we need to show that for any x € 7 "Fil"M!¥], there exists y € ;"M such that under the
natural map above, y maps to the image of p"x. Let

x=2"Y aqox e Fl"MMY = 7 Y FilAMSFVN(T).
] R

i+j=n i+j=n

From Lemma 2.28, for i < n, we can write a; = a;1 + a;2, with a;; € Fil”A%"] and a;y € I%A]*z. However,

[nu]

1
plWJ

note that ajp = a; — a1 € FiliA%u] N Ay, therefore we get that a;; € [ﬁFﬂiAI} Now we set

n n n

y= % Z ai1 @ Xj + % Z a;®Xx; € %Fﬂ"A%u] ®N(T) c yzl—nAEzu]@N(T).
i+j=n i+j=n

i<n i=n

and we get that p"x -y = 77"p" (Y, a; ® xj) € 7 "M" (since u = PT?l < 1). So (5.20) is p"-isomorphic
to the equation

1- 0 : ﬂ_l—nM[u,v](r)/ﬂl—nM(O,v]+(r) N ﬂ_—nM[u,v/p](r)/ﬂ.—nM(O,v/ph(r)’

Next, recall that we have v = p - 1, so it follows from Lemma 2.47 (v) that x divides p in Ag)’v/p ]+,
whereas 7 divides p in Ag)’vh, therefore (5.20) is p?"-isomorphic to the equation

1- 0 M[u,v](r)/M(O,v]+(r) N M[u,v/p](r)/M(O,v/p]+(r)'

But from Lemma 5.40, we have that this map is bijective (note that Frobenius has no effect on twist).
Therefore, we conclude that (5.19) is p*"-bijective. As n = r — k < r, the cokernel complex of the
map in the claim is killed by p*". This proves the claim. |

Following observation was used above,
Lemma 5.40. The natural map
1- ¢ : AP eN(T)/ALY @ N(T) — ALY o N(T)/ALYP o N(T),
is bijective.

Proof. We will follow the strategy of the proof of [CN17, Lemma 4.8]. Let us note that the natural
map
Al o N(T) /AL @ N(T) — AlPL o N(T)/ALPY @ N(T)

induced by the inclusion A%u’v] — A%u’v/P lis an isomorphism. Indeed, the map above is injective

because the kernel consists of analytic functions that take values in N(T) and are integral on the
annulus | < vy(Xp) < 7 and which extend to analytic functions taking values in N(T) and integral

on the annulus 0 < v,(Xp) < p%, hence belong to Ag)’v]+ ®N(T). It is surjective because we can write

AEQ“’”/ Pl _ AE{”] + Ag’v/p I+ (clear from the definitions). So, we can consider (1 - ¢) as an endomorphism
of the module M = A][R”’U] ® N(T)/AE,?’U]+ ®N(T).
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An element x € A%“’U]

So,

(0,0]+

k
can be written as x = ) 1o ﬁxk, with xx € Ax™" going to 0, p-adically.

pk
o(x) = prku/e ku/eJ( 5::)) I%Qo(xk)’
keN

and since |pku/e|-|ku/e| = 1if |ku/e] # 0, we see that ¢(x) € Agg’v/p]+ +pAEeu’v/p]. As o(N(T)) < N(T),
we get (M) < pM. To show the bijectivity of 1 — ¢, it remains to check that M does not contain
p-divisible elements, which would then imply that 1 + ¢ + ¢? + - converges on M. Let (f;);e be a
collection of elements of Ay whose images form a basis of Ap/p, mm) over k = A /p, mm). Then
(fi)jes is a topological basis of AR" L over AE? “and of Ag) “" over A(KO ol Writing everything in the
basis {fi®e;, for1<i=< h,j € J}, where {e;, 1 =< i < h} is a basis of N(T), reduces the question to
proving that A[u b / A ©)* has no p-divisible element. Since all such elements can be written as a
power series in A / A%, we conclude that there can be no p-divisible elements in this quotient.
Hence, we get the de51red conclusion. |

5.2.5. Change of annulus of convergence : Part 2

In this section, we will change the ring of coefficients from Ag’vh A(O Pl by replacing the action
of ¢ with its left inverse i in the complexes discussed so far : these steps are required in order to
obtain a complex comparable to Koszul complexes computing the Galois cohomology of T(r). Note

that we are working under the assumption that [’le sus= % < 1 < v, for example, one can take

u=Llandv=p-1.
Recall from Proposition 2.13 that we have a left inverse i/ of the Frobenius such that /(A) c A,
which induces the operator i : A* — A™. For the overconvergent rings we can consider the induced

operator over AT and we have that /(AT) ¢ AT. This gives us an operator 1 : A Oolpls Ag’vh.

0.v/pl+ _ R (0,0/p]+

Note that we can also define ¢ by identifying A via the isomorphism ¢y in §2.4,

and considering the left inverse of the cyclotomic Frobenius over ROwIPI* (see §2.3.2). Both these
definitions coincide since .y commutes with the Frobenius on each side.
Next, let £ = pm’l, then from Proposition 2.40 (i) we have inclusions

Y (m ATY) €y (m, AR € AR < m AR < m AR (5.22)

m

Using this, we deduce that n,’n[Ag)’vh is stable under 1. Define
DO (r) = AR @p DY(T(r)).

Note that this module is stable under the action of T'g.

Notation. We write D®?I*(r) instead of D®?I*(T(r)) as we have D*(T(r)) = D*(T)(r). We hope this
change in notation is not too confusing for the reader.

Recall from Lemma 2.37 that we have w(Ag)’v/p ]+) c Ag’vh. Further, for v = p - 1, by Lemma

Ag),v/p . So by combining Lemma 2.39 and Proposition

2.47 (v) we have that 7 ‘7 is a unit in
2.40 (i), we see that l//(ﬂ;np [rAg)’v/ P ]+) c mtr Ag”v]+. Now, we know that iy commutes with the
action of Gg, so by linearity we can extend this map to get ¢ (D*(T)) ¢ D*(T), and therefore we

have that tﬁ(D(O’”/p]*(r)) c D% (r). Coupling this with the observation above, we note that
y(n P p(0.lpl ) 7" DO (7). Now since ¢(N(T)) < (D*(T)) « D*(T), therefore from the
inclusion 7, [A(O ol Jr,‘,ngJ’v/p I and (5.22), we deduce that

Y(NOIT()) € g (NOTPHT@) < g (27 DOPF ()

= Sb(ﬂ,_np[’D(O’v/ph(r)) c n_—{’rD(Ov (r) - -tr (o, v/p]+( ) (5.23)
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Next, for the filtration on Ag)’v]+ and k € IN such that k < r, we observe that (p(ﬂ'kFﬂ_kN (0’v]+(T(r))) c
TENOOPI(T(r)) ¢ 2,?"TF DOVIPI (1), therefore

A FIENC(T(r) = ¢ (@(2 FIENCT(T(r))) < ¢ (2*NOZP(T(r)))

< y(m; ~pt(r-k) py(0.0/p)+ (") < ; ~t(rk) O+ (). (5.24)
Equally obvious is the inclusion
¥ (" RN (T(r)) € Y (2ANCI(T(r))) <y (2" NOVPI(T(r))) € [ DO (r).
In conclusion, we obtain that
(¢ - D (2 RN (T(r)) € 2, LD DO () € frDO (). (5.25)

We now turn to complexes. Recall that we have,

(1)

KOS(F%,ﬂ;frD(O’U]J'(r)) . ﬁr—rlfrD(O,U]+(r) v (ﬂr—n[rD(O,v]+(r))I1 _ (”r—nfrD(o,v]+(r))Iz SN

and similarly Kos® (I“fe, Tt D(O’”]+(r)). In the previous section, we already defined the complexes
IC(F%, FilON(O’v]+(T(r))), ]CC(FEQ, ﬂFil_lN(O’v]+(T(r))) and a map 7y from the former complex to the
latter. Therefore, similar to the complex K ((p, I'r,N (0’”]+(T(r))) from the previous section and using
(5.25) define the complex

K (T FPNOZH(T(r))) = Kos (I, 737 DO (1))

/C(lﬁ, Tz, N NI+ (T (r))) TO\L »LTO
K"c(r%, JTFil_lN(O’v]+(T(r))) ‘//;> Kos® (r;?, ﬂr;lfrD(O,vh(r))

Proposition 5.41. With notations as above, the natural map

7. K (0. Tr NO(T()) —> 7., K (9, Tr, NOI(T(1))),

induced by identity in the first column and  in the second column is a p° ***?-quasi-isomorphism,

where s is the maximum among the absolute values of Hodge-Tate weights of V (see Definition 3.8).

Proof. We will show that the kernel and cokernel complex are killed by some power of p.

First, let us look at the cokernel complex, which is made up of modules
ﬂ,‘n”D(O’U]*(r)/lﬁ(ﬂkN(O’v/p]J’(T(r))) for 0 < k < r. We want to show that these modules are

killed by p**S. Now, note that qo(D(O’”]+(r)) c DOYPI(p) therefore DO (r) < 1//(D(O’”/p]+(r)).
Moreover, from (5.22) we get that

w(D(O Julpl+ ( )) w(nr—n(rD(O,v/ph(r)) c ”r—nt’rD(O,v]+(r)‘

Therefore, 7, D" (r)/ ¢(D(O’v/p]+(r)) is killed by x’’. But, from Lemma 2.47 we have that x,
divides p in Ag]’v]+ (for v = p - 1), therefore Jr,’,l[’D(O’U]’r(r)/¢(D(O’U/p]+(r)) is killed by p".
Further, from Definition 3.8 we have 7°D*(T) « N(T) <« D*(T). So we obtain

]_[k+s—rD(0,v/p]+(r) c ”kN(O,v/p]+(T(r)) c ]Tk—rDO,U/P]Jr(r)'

Since 7 divides p in A (0.0/pl+ (see Lemma 2.47 (v) for v = p—1), we obtain that 7K NOV/PI*(T(r)) is pk+s-
isomorphic to 77" D U/p *(r). Similarly, we see that the natural inclusion DOYPY(r) ¢ 77" DO-V/Pl*(y)

is a p"-isomorphism. Combining both these statements we get that D“¥/?)*(r) is p**"*S-isomorphic
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to NO-YPI*(T(r)). Therefore, the natural map
—{’rD(O ]+ /l//(N(O ,u/pl+ ( (r))) — t’rD(O v]+(r /l//(D(O ,ul/pl+ )(F)

is a pF*"*S-isomorphism. Since the latter module is killed by p’, we conclude that the module

n,;f’D(O’”]*(r)/r,b(N(O’”/p]*(T(r))) is killed by p**3*5. As this value grows with the degree of the
complex, we see that after truncating in degree < r, we obtain that the cokernel complex of the map
in the claim is p**$-acyclic.

Next, we look at the kernel complex. Our strategy is to replace the kernel complex with a simpler

complex, up to some power of p, and show that the latter complex is p?-acyclic.

Note that the map is identity on the first column, so the kernel complex can be written as

70

Tsr[}C(r;Qa (N(O’U/P]+(T(r)))‘/’:0) ——>IC( ( aN©v/pl+ (T (r))) )]

Since 7 divides p in A(0 vipl (see Lemma 2.47 (v)), we obtain that 7K NP1 (T(r)) is p"~*-isomorphic

to NOVPI(T)(r), for k < r. Using this we see that the kernel complex is p"-quasi-isomorphic to the
complex

72r [Kos (T, (NOP(T)(r)) V™) 2 Kos (T, (NP1 (T)(r))"™°)].

Now, we will analyze the module (N (O’U/P]+(T)) =0 Let us write N(T) = Z]}'Ll Ay, ¢, for a choice of
basis. Since the attached (¢, I'r)-module Dg(T) over Ay is étale, we obtain that Dg(T) = 257:1 Aro(e)).
Now note that z = z]h:l zjg(e)) € (DR(T))V=° = (EBh 1ARqo(ej)) , if and only if z; € (AR)¢=O, for
each 1 < j < h. Indeed, {(z) = 0 if and only if Z]:1 U(zjp(ej)) = Z;Ll V(zj)ej = 0. As e;j are linearly
independent over Ag, we get the desired conclusion.

Next, using Lemma 2.37 (ii), we have a decomposition

AL - fas) o(AR)[X"]%  where [X°]% = (1 + m)®[X;]% - [X5]%
a€{0,....,p-1}104] g0

Therefore, we obtain that

i} , h v
(DR(T))"™" = (Dx(D)"™" = ( Y, Arote))
j=1
h
- Z o(Are)[X°]* = B o(Dr(D))[X"]
a€f0,.. P 1}l 2 a€{0,.. p 1304l

Now observe that (N©/1%(T)) V=0 (Dr(T)) ¥=0 N NP} (T). Using the decomposition above, we
set
M[X"]* := (p(DR(T))[X"]“ﬂN(O’U/p]+(T), for a €{0,...,p-1} and «a # 0,

where we take the intersection inside (DR(T)) . Note that the module M is an A(0 UP1_module

contained in N®?P}*(T), stable under the action of I'y and independent of a. Indeed, for a # o’ if
we have Y1 x;e,[X*]% € M[X*]? then Y7, x;e,[X"]¢ € M[X"]%, and vice versa.

From the discussion above, we see that the kernel complex of the map in the claim is p”-isomorphic
to the complex

Ty fan) [ Kos (I, M(r)[X*"]*) —"> Kos® (I'p, M(r)[X"1%) ] . (5.26)
a€{0,...,p-1}[0d) a0

Lemma 5.42. The complex described in (5.26) above is p*-acyclic.
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Proof. The proof will follow the technique used in the proof of [CN17, Lemma 4.10]. We will treat
terms corresponding to each « separately. First, let us assume that oy # 0 for some k # 0. We want
to show that both Kos(I', M[X*]*) and Kos® (T, M[X"]%) complexes are p-acyclic (the twist has
disappeared because the cyclotomic character is trivial on I“%). As the proof is same in both the
cases, we only treat the first case. We can write the complex as a double complex

M[Xb]a (ri-1) MI{’[Xb]a MIZ//[Xb]a

Jykl JYk‘l l}’k—l

MEX' 1 I M ] s ME X s

where the horizontal maps involve y;’s with i # k, 1 < i = d. Now, we have
(re = 1) (YIX"1%) = mGWIX']",

where

G(y) — (1+7m)% (yr-1)y + ((1+7r):;k—1)y’ for ye M,

T

and we have used the fact that
ye([X°1%) = [e]*[X"]% = (1 + m)*[X"]°

Now, G is 7,,-linear and yj - 1 is trivial modulo 7 on Ag)’v]+ and N(T) (see Lemma 2.46 and Definition

3.8). Since 7 divides p in Ag)’v/p I+ (see Lemma 2.47 for v = p — 1), therefore it follows that modulo

7, G is just multiplication by a; on M. This shows that G is invertible over M, therefore y; — 1 is

injective on M[X"]*. Finally, since we have that % € Ag)’v/p ]+, the cokernel of yx - 1 is killed by p.
Next, let a = 0 for all k # 0 and o # 0. To prove that the kernel complex is p-acyclic, we will

show that 7; : Kos — Kos® is injective and the cokernel complex is killed by p. This amounts to

showing the same statement for

vi-1

s MIX"1%(r) — M[X"1%(r), & = P

Yo =8 - 6;

q

We have

(Yo = 8, - 8 (YIX"1() = (¢"po@)(A + )P "CVR[X*1*) (1) = (85, - 8, (MIX"17) (1),
So we are lead to study the map F defined by

F=c"(1+m)*y -0y 6

iqa

z=p "(c-Da € Z,

Now ¢” - 11is divisible by p™, (1+7)* = 1+ zz mod 7% and 8, -1 € (p™, vi; ~ 1)Zy[[yi, - 1]]. Therefore,
we can write 77 F in the form 77 'F = z + 77 'F/, with F/ € (p’", -1, Ya - 1)Zp[[7t, Tr]]. It
follows from Lemma 2.46, Lemma 2.47 and Definition 3.8, that for N = 210'”_1 > 0 we have that
A 'F = 0on 2 M/ 78N M, for all a € N. Hence, 7' F induces multiplication by z on 74 M/ x%™N M
for all a € IN, which implies that it is an isomorphism of M. This shows what we want since 7
divides p in Ag]’v/jj]+ by Lemma 2.47 (for v = p - 1). |

Combining the analysis for the kernel and cokernel complex, we conclude that the map in the

claim of Proposition 5.41 is a p°"***?-quasi-isomorphism. |
By replacing v by v/p in §5.2.4, define the complex

()

IC(F;Q, N(O,v/p]+(T(r))) . N(O,v/p]+(T(r)) BASCAN (ﬂN(O,v/p]+(T(r)))I1/ N (ﬂZN(O,v/p]+(T(r)))Iz/ N
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Similarly, we can define the complex IC“(F%, N (O’U/P]+(T(r))) and a map 7y from former to the lat-
ter complex. Moreover, from (5.23) and the natural inclusion NO¥?)(T(r)) ¢ 77"DOYPl(r) =

Ag),v/p}r)

;¢ DOVl (1) (since 7,f 7 is a unit in , we deduce that

(lﬁ _ 1)(7TkN(0’v/p]+(T(r))) c nr—rlpt’(r—k)D(O,v/p]+(r) c ”%p{’rD(O,v/ph(r).

Therefore, similar to lC(xp, I'r, N (0’”]*(T(r))), define the complex

K (T, NOUPF(T(r))) o Kos(T%, P D 0.0P1+ (1))
K (9. Tr NOP(T(r) = l l

K¢ (Tp, aNOvple (T(r))) P Kos® (Tp " DOIPI (1))
We can compare it to the complex defined before Proposition 5.41:

Lemma 5.43. The natural map

7 K (9. T, NOH(T(r))) — K (9, Tr, NOYPI(T(r)),

induced by inclusions N1 (T(r)) ¢ NOYPF(T(r)) and ;" DOV (r) c P DO (r) s q prrs-
quasi-isomorphism.

Proof. As the map is injective it is enough to show that the cokernel complex is killed by p"**. For
k € N and k < r, in the cokernel complex, we have maps

¥ -1 2fENOYPF(T(r) [ 2 I ENCOF (T(r)) — 1,77 DOYP (r) [ 7 DO (), (5.27)

r+s r+s

and it is enough to show that these are p"**-bijective. Let us show the p"**-surjectivity first. Note
that from 5.24 we have ¢(ﬂkN(0’”/p]+(T(r))) c ;" DO?F(r), therefore the cokernel of (5.27) is given

as ﬂ,_np[rD(O’v/P]*(r)/ﬂkN(O’v/p]+(T(r)). Recall from Definition 3.8 that we have
7’ D*(T)(r) « N(T)(r) = 2"N(T(r)) < D*(T(r)) = D*(T)(r).

Extending scalars to A(O’v/ I* in the equation above and dividing by z”, we obtain a natural inclu-
sion 75" DOYPI(r) ¢ NOUPI*(T(r)). Therefore, we see that 7" DO ”/P (r)/ ek N©OOIPI (T (r)) =
a " DOVPY () [ tKNOVPI(T(r)) is killed by 7%*5. But 7 divides p in A(O v/p (see Lemma 2.47 for
v = p-1), therefore (5.27) is pX*S-surjective (this also shows that truncation in degree < r is necessary
in order to bound the power of p).

For injectivity, let x € 7 N“¥/P}*(T(r)) such that (¢ - 1)x € z,*” D%V (r). We want to show that
x € 7FFil"*N©2)*(T(r)). Note that from 5.23, we have

w( kN(O u/pl+ (T(?‘))) w(N(O,v/p]+(T(r))) c l#(ﬂr—npt’rD(O,v/ph(r)) c ﬂ:r—n[rD(O,v]+(r).

So we get that x € n,"n”D(O’”]*. We write x = 75 "a®e, for a € Ag)’v/p]+ and e € N(T)(r). As 7,/ m is

(0,0]+

aunitin Ay, we also get that

X=—raQec€ 5 A(O ok ®ay, D(T)(r).

But then we must have a € nF¢"~ kA(Ov c Filr’kAg)’v]+, which implies that x = 75 7a®e €
kTRl kAg) ol ®az, N(T)(r) c 7*Fil” kN(0 21 (T(r)). This shows that (5.27) is injective.

Finally, putting everything together for k < r, we conclude that the map in the claim is a p

r+s_

quasi-isomorphism. |
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Recall from (5.23) that we have i,b( PEpo-vipl+ (r)) c 1, DOYPI () 1P DOVPI (1), So, by the
general formalism of Koszul complexes in §4.2, let us define
Kos(I'g, 7td " DOVPI (1)) 1, Kos(Tg, 7nf " DOV (7))
KOS(I//, FR,D(O’v/pP(F)) i= Toi lrg

Kos® (T, " DOV (7)) =1 Kost (T, " DOVPY (7))

Lemma 5.44. The natural map
£ K (4. Tr NOPH(T(1)) —> 1., Kos (. T, DOVP (1)),
induced by the inclusion NOPI*(T(r)) c ﬁ;ip”D(O’”/Ph(r), is a p"**-quasi-isomorphism.

Proof. Since the map is injective it is enough to show that the cokernel complex is killed by p"**. Note
that the cokernel is a complex made up of A(0 Pl _modules Pt DO.vpl+ (r)/ Tk N©O2PY(T(r)), for
k € N such that k < r. Recall from Deﬁn1t10n 3.8 that we have 7°D* (T )(r) e N(T)(r) = x'N(T(r))
D*(T(r)). Extending scalars to A O:8* i) the equation above and dividing by z", we obtain natural

inclusions
s—rD(O,v/p]+(r,) c N(O,v/p]+(T(r)) c ﬂ,—rD(O,v/p]+( )

As v = p -1, from Lemma 2.47 (v) we have that 7 divides p in A(0 WPI Therefore, the module
m P DOV () [ Ak NOUPI(T(r)) = 7 DOYPI (7)) K NOVIPI (T (1)) is Kkilled by pF*S. Hence, the
cokernel complex (for the truncated complex) is p™**-acyclic, which proves the claim. |

5.2.6. Change of disk of convergence
Finally, we are in a position to relate our complexes to the Koszul complex computing continuous
Gr-cohomology of T(r). Recall that in §2.1, we defined an operator ¢y : Dr(T(r)) — Dg(T(r)), as
the left inverse of ¢. Using this operator, we can define the complex
Kos (T, DR(T(r))) ——> Kos (%, D(T(r)))
Kos(y, Tr, DR(T(r))) := ml im
Kos® (I, D(T(r))) ~— Kos® (T, D(T(r)))

This complex is related to the one from the previous section:
Lemma 5.45. The natural map
Kos (1, g, D®¥P)(r)) — Kos(y, Tz, Dr(T(r))),

induced by the inclusion m,""" DOV} (r) ¢ DR(T(r)), is a quasi-isomorphism.

Proof. The proof is similar to [CN17, Lemma 4.12]. First we note that the map on complexes is
induced by inclusion, so the kernel complex is 0. Next, to examine the cokernel complex we write

DR(T(r)) = D7 (r)[ L ]",

where " denotes the p-adic completion.

Let £ = p™ !, and recall from Lemma 2.37 that we have ¢( (O.0lpl ) < Agvh c Ang/p I*_ Further,

0,0/p]+

for v = p - 1, by Lemma 2.47 (v) we have that 7,/ ‘7 is a unit in Ay . So by combining Lemma
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_pk + _pk- +
2.39 and Proposition 2.40 (i), we see that /(7 ”Ag’v/p ] ) < 7l lé’rAg),v/p I* for k = 1. Moreover,
we have that (/(D*(T)) ¢ D*(T), and therefore ¢(D(0’”/P]+(r)) c DOVPI(). Coupling this with the

_pk _pk-1
observation above, we note that x/f(ﬂmp [rD(O’v/P]"(r)) cmf [rD(O’”/P]+(r).
From this dicsussion, we note that the map

¢ : DR(T(r))/ﬂ;lpl’rD(O,v/P]’f(r) SN DR(T(r))/ﬂr—rlpt’rD(O,v/p]+(r)

is (pointwise) topologically nilpotent, therefore 1 — 1/ is bijective over this quotient of modules. But,
this also means that the complexes

-1
[Kos(l"%,DR(T(r))/n,"nP”D(O’U/p]*(r)) o, Kos(l“%,DR(T(r))/ﬂ,;f”D(O’”/p]J’(r))], and
[Kose (T DR(T()/ w7 DOV (7))~ Kos (T D(T(r)/ " DOVP1* ()]
are acyclic. Hence the cokernel complex is acyclic. |

Next, recall that we have the complex

Kos (I, DR(T(r))) —> Kos(I', D(T(r)))
Kos (¢, Tr, Dr(T(r))) = mi ifo

Kos® (T, DR(T(r))) —2> Kos® (T, Dr(T(r)))

Proposition 5.46. With notations as above, the natural map
Kos (¢, Tr, Dr(T(r))) —> Kos (¢, Tr, Dr(T(r))),
induced by identity on the first column and  on the second column is a quasi-isomorphism.

Proof. We will examine the kernel and cokernel of the map above. Notice that the map ¢ is surjective
on Dg(T(r)), so the cokernel complex is 0. For the kernel complex, we need to show that the complex

[Kos (T, Dr(T(r))?~*) — Kos(T'k, Dr(T(r))"™)],

is acyclic. For this, we will analyze the module (Dg(T(r)))?=°. Let us write N(T) = DL Ay €
for a choice of Ay -basis. Since D(T(r)) = D(T)(r) = Ag, ®Ap, N(T)(r), we obtain that
{e1®€®,...,e,®€®"} is an Ag,-basis of D(T(r)), where € is a basis of Z,(r). Further, since
D(T(r)) is étale and Dr(T(r)) = Ar ®a,, D(T(r)), we obtain a decomposition

h
Dr(T(r)) = @AR(P(EJ') Re®".
=

Using this decomposition, note that we can write
h h =0
¥=0
2= Y z0e) € (DAro(e)) = (Du(D)
=1 J=

if and only if z; € A}l/{=0 for each 1 < j < h. Indeed, ¥(z) = 0 if and only if Z;’Zl V(zjp(ej) =
2;1:1 V(zj)ej = 0. As e; are linearly independent over Ag, we get the desired conclusion.
Next, according to Proposition 2.40, we have a decomposition

Ay = D o(AR)[X"]%  where [X°]% = (1 + 1) [X;]% - [X5]%.
a€{0,....,p-1}104] g0
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Therefore, we obtain that

- = h Y=
(D)™ = (D)0 = (BAre) D= B olArg)IXTS
i=1 aE{O,.‘..,fnl—l}[;l)*}d],astO
JE€L,s

We have Dg(T) = EBJ}-’:I Are;j and we see that the kernel complex of the map in the claim is isomorphic
to the complex

0 01t [ KOS(sz’ GD(DR(T))(F)[XB]IX) &KOSC(F%, q;(])R(T))(r)[Xb]a) ] ‘ (5.28)
a€0,...,p-1 0.d Rez2

Lemma 5.47. The complex described in (5.28) is acyclic.

Proof. The proof will follow the technique used in the proof of [CN17, Lemma 4.10, Remark 4.11] and
will be essentially similar to Lemma 5.42. We will treat terms corresponding to each « separately. First,
let us assume that a; # 0 for some k # 0. We want to show that both Kos (F%, (p(DR(T)) [X"]“) and
Kos® (I’%, (p(DR(T)) [X b]"‘) complexes are acyclic (the twist has disappeared because the cyclotomic
character is trivial on F%,). As the proof is same in both the cases, we only treat the first case. We
can write the complex as a double complex

p(DR(D)[X*1* —2 o (Dr(D))¥ [X*1¢ —— p(Dr(D))¥ [x*]0 ——— ..

‘/ykl Jm—l jn—l

(r-1) I 4

¢(Dr(D))[X*]* ——— ¢(Dr(T))" [X"]* —— ¢(Dr(D))" [X*]* —— -,

where the first horizontal maps involve y;’s with i # k, 1 < i < d. Since Dg(T) is p-adically complete,
it enough to show that y; - 1 is bijective on (p(DR(T))[X *1% modulo p. Indeed, this follows from
inductively applying five lemma to following exact sequences, for k € N,

0 —— p*o(Dr(T))[X"1%/pF*t —— o(DRr(T))[X"1%/p**t —— @(Dr(1))[X*]*/p* —— 0

l)’k‘l l)/k_l J/Yk‘l

0 —— pro(Dr(T))[X*1%/p*" —— ¢(Dr(T))[X1*/p*" —— ¢(D&(T))[X"1*/p* — 0.

So below, we will work modulo p, however with slight abuse, we will hide this from the notation.
Note that we have

(e = 1)~ (eIX"1") = @(m(GHNIX"T%,

where

G(y) = Lm)*ety , (Wem)™ =Dy = g5 ) € DR(T).

T T

Note that we have Ep = E}z[;—m] and setting Nz = @, E}e;, we obtain that Dg(T)/p = Ng [é]
Now, G is 7,,-linear, yi —1 is trivial modulo 7 on N(T) (see Definition 3.8), and yj, fixes 7,,,. Therefore,
G is just multiplication by ax on 7% N/ NNy for a € Z and N = p™. Looking at the following

diagram and applying five lemma for a € Z,

0 —— ﬂgq+NﬁR/7Trarl+2NNR — H%WR/JT&+2NNR e ﬂ,‘;‘ﬁR/ﬂra,l+NNR — 0

Jo Lo Lo

0 —— ﬂ%+NﬁR/ﬂ,%+2NﬁR — ﬂ%ﬁ}z/ﬂ,ﬁzj\lﬁ}q — H%NR/II,?:NNR — 0,
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we obtain that, G is bijective over Dg(T)/p. Finally, since m; is invertible in Eg, we obtain that y; - 1
is bijective over (p(DR(T)) [X*]% modulo p, as desired.

Next, let o = 0 for all k # 0 and o # 0. To prove that the kernel complex is acyclic, we will show
that the map 7, : Kos — Kos® is bijective. This amounts to showing the same statement for

Yo = 8, - 8, = @(Dr(T))[X"1“(r) — @(Dr(T))[X"1%(r), & = y'? i

Again, arguing as in the previous part, we see that it is enough to show this statement modulo p.
We have

(Yo = 8 - ) (@IX" 1) = (" @ro(N(1 + m)P "CVRIX" 1) (r) = ((S, - 8, (YNIX" 1) (7).
So we are lead to study the map F defined by

i

lg>

F=c"(1+m)y -8

I

z=p "(c-1a € Z,,

Now ¢" -1 is divisible by p™, (1+m)? = 1+zm mod 77 and 8;,=1€ (p™, v ~1)Z,[[y;; - 1]]. Therefore,
we can write 7 'F in the form n;'F = z + n;'F/, with F/ € (p’",ﬂlz, Yo—1,.,ya - 1)ZP[[7T1,FR]].
Working modulo p, it follows from Lemma 2.46, Lemma 2.47 and Definition 3.8, that for N = 2p™"! > 0
we have that 7;'F’ = 0 on 74N/ 78NNy, for all a € Z. Hence, 7; 'F induces multiplication by z
on 18N/ 74NNy for all a € Z, which implies that it is an isomorphism of Dg(T) modulo p. This
shows what we want since 7 is invertible in Ag. |

Combining the analysis for the kernel and cokernel complex, we conclude that the map in the
claim of Proposition 5.46 is a quasi-isomorphism.

Proof of Proposition 5.31. Recall that s is the maximum among the absolute values of Hodge-Tate
length of V (see Definition 3.8). From Lemmas 5.33 & 5.34 and Remark 5.35, we have a p*"-quasi-
isomorphism

Kos (¢, 94, Fi' M) = KC( ¢, Lie Tg, N“?X(T(r))).

Changing from infinitesimal action of I' to the continuous action of I'g is an isomorphism of
complexes by Proposition 5.38,

K (¢, Lie Tg, N“*N(T(r))) = K (¢, Tr, N“2H(T(r))).

Further, from Proposition 5.39 we have a p*"-quasi-isomorphism

K (0.T, NUU(T(r))) = K (9, T, NI (T(r))).

Next, from Proposition 5.41 and Lemmas 5.43 & 5.44, we have p’"*3$*2-quasi-isomorphisms

R

7., K (¢, Tr, NI (T(r))) = 7., K (¢, Tz, NOZI(T(r)))

7. K (¢, Tr, NOUPI(T(r))) = 7.,Kos (¢, Tr, DOVP1(r)).

R

Finally, From Lemma 5.45 and Proposition 5.46 we obtain quasi-isomorphisms

Kos(, [z, DVPY(r)) = Kos(y, T, Dr(T(r))) = Kos(, Tz, Dr(T(r))).

Combining these statements we get the claim with N = 14r + 35 + 2. |



APPENDIX A

Galois cohomology and classical Wach modules

Let F be a finite unramified extension of Q, and V a crystalline p-adic representation of Gr = Gal(F/F).
The aim of this chapter is to emphasize the importance of Wach modules from the point of view
of Galois cohomology. In [Her98], Herr obtained a three term complex in terms of the attached
(¢,I'r)-module computing continuous Gp-cohomology of V. Since the Wach module of V is an
“integral” lattice inside the (¢, [r)-module, it is interesting to explore whether some part of Galois
cohomology groups of V could be captured in terms of a complex written down completely in
terms of the Wach module. This could be answered positively via some concrete statements, for
example, see Proposition A.4. In order to establish these claims, we will need to introduce some
more background from (classical) p-adic Hodge theory. After recalling these facts, we will describe
a complex and carry out some concrete computations involving Wach modules.

A.1. Crystalline extension classes

We fix a compatible system of p-power roots of unity ({,n)new such that {0 =1, {, # 1 and ¢ ;’ w1 = Gpn.
Moreover, we set F, = F({n), Foo = Uy Fy, I'r = Gal(F/F) and y € T'r a topological generator.

Let V be an h-dimensional p-adic crystalline representation of Gr with Hodge-Tate weights
-1 < -rp < < -rg < 0. Let T be a free Z,-lattice of rank h inside V stable under the action of
Gr. Set V(r) := V&g, Qp(r) and T(r) := T ®z, Z,(r), then the Hodge-Tate weights of V(r) are
r-r<r-ry<--<r-rq From §3.1, we have Wach modules N(T) and N(V), such that

N(T(r)) = 77 "N(T)(r) and N(V(r)) = Bp®a; N(T(r)) = 7 "N(V)(r).
From Theorem 4.4 we have that the Fontaine-Herr complex

y-1
C(V(r) : DIV(r) "2, D(V(r) & D(V(r) ——— D(V(r)).

computes the Galois cohomology of V(r) i.e., for all k € IN, we have natural isomorphisms
HNC (V(r)) — HGr, V(r)).

In particular, any extension class in H!(Gr, V(r)) can be represented by a pair (x, y) with x,y €
D(V(r)) and satisfying the relation (1 - ¢)x = (y - 1)y. We want to look at extension classes in
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H{(Gr, V(r)) which come from crystalline extensions of Q, by V(r).
Let V be a positive crystalline representation of Gr as above. Let X be an extension of Q,(-r) by
V such that it is crystalline as a representation of Gr

0—V-—X-— Qp(-r)—0.
Equivalently, we have that X(r) := X ®q, Q,(r) is a crystalline extension of Q, by V(r)
0— V(r) — X(r) — Q, — 0. (A1)
From Proposition 3.6 we have that the Wach functor N is exact. Therefore, we have an exact sequence
0 — N(V(r)) — N(X(r)) — N(Q,) — 0. (A.2)
Lemma A.1. The sequence
0 — Fil’N(V(r)) — Fil’'N(X(r)) — Fil’N(Q,) — 0, (A.3)

is exact.

Proof. First, we want to show exactness of (A.3) on the right. Let e € N(X(r)) be alift of 1 € By =
N(Q,) = FilON(Qp), and we want to show that e € Fil’N(X(r)). Recall that we also have the exact
sequence

0—V-—X-— Qp-r)—0.

Applying the exact Wach functor to it we obtain an exact sequence
0 —> N(V) — N(X) — N(Q,(-r)) — 0, (A.4)

such that 77e ® €2(7) € N(X) and its image in N(Qy(-7) = (" ® 6®("))B} is a basis. Here € denotes
a basis of Q,(1).

Let {e, ..., en} denote a By-basis of N(V), then we have that {ey,..., ey, 7"e® €®M}isa Br-basis
of N(X). Since each module in (A.4) is stable under the action of Frobenius, we obtain that

h
(p(n're® e®(_r)) = Z aie; + ap e ® e,
i=1

where a; € By for 1 < i < h + 1. But from the exact sequence (A.4), we have that q”<p(n’e® e®("))

and 7"e ® €®") must have the same image in N(Q,(-7)). Therefore,

h
g p(n"e® e®(_r)) - nTe® e = Z q T aie; + (g apg - )" e® e e N(V).
i=1

This means that we must have a,,; = ¢" and a; € ¢'Bj for 1 < i < h. Therefore, 77e® e®n ¢
Fil"N(X), or equivalently e € 7~ "Fil"N(X)(r) = Fil’N(X(r)).

Next, to show exactness in the middle, let e, ¢’ € Fil’N(X(r)) be two such lifts. Then arguing
as above, we obtain that 7"(e - ¢’)® ") € Fil'N(V), or equivalently e — ¢/ € 7 "Fil'N(V)(r) =
Fil’N(V(r)). Hence, the sequence (A.3) is exact. |

Lemma A.2. The class of the extension (A.1) in HY(C*(V(r))) is represented by a pair (x, y) for some
x € N(V)(r) and y € N(V(r)) satisfying the relation (1 - ¢)x = (y - 1)y.

Proof. Consider the diagram with exact rows
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0 — Fil’ N(V(r)) —— Fil° N(X(r)) — Fil’Bj —— 0

l L]

0 —— Fil® Deyis(V(r)) —— Fil° Dgis(X(r)) F 0,

where the top row is a consequence of Lemma A.1 and the vertical maps are reduction modulo 7.
Let e € Fil” N(X(r)) be a lift of 1 € By in a manner compatible with the above diagram. Then we
have that

yr=(1-@)eeN(V(r)),

since y, maps to 0 € By in (A.2). Now, since the action of T'r on N(X(r))/7N(X(r)) is trivial and the
filtration on Wach modules is stable under the action of I'r, we get that

x = (y - De € FI°N(V(r)) n aN(V(r)) = LFIN(V)(r)n 25 N(V)(r) = S5 Fil™IN(V)(r),
where the last equality is a consequence of Lemma 3.17. The pair (x,, y,) represents the class of this
extension in H(C").

Next, we want to modify the pair (x,, y,) by adding coboundaries to get a pair (x, y) with x €
N(V)(r) and y € N(V(r)) cohomologous to (x;, y,). We do this iteratively by clearing out negative
powers of 7 in the expression of x,. It is easy to observe that for any z € Fil" N(V(r)), the pair
(x + (1 = y)z, ¥, + (¢ - 1)z) is cohomologous to the pair (x;, y,) in H'(C*(V(r))). Let us represent

X = S5 ®e®" € ZSFlTIN(V)(r),

-1
and take
zr1 = 24 ©€®" € LFITIN(V)(r),
where
_ _aq
b1 = o5

Clearly, b,_, € Fil" 'N(V). Now observe that,

X+ (1-y)zp = ﬂ(iil ®e®" + (1- Y)(%(X)E@r)
_ar+ by = x(0)W y(br1) 2e®"

- -1

where we have used the expression y(r) = y(y)ru !, for a unit u € 1 + B}. By a small computation
we can write
X -Dar ()1 - uwHy(ar)

x(y) -1 x(y) -1

ar +by1 - X(Y)uFl y(br-1) =

Since 7 divides (y - 1)a, and (1 - u"™!), from Lemma 3.17 we have that
%(ar + br—l - X(Y)ur_l Y(br—l)) € Fﬂr_zN(V)>

and therefore,
X+ (1= y)z,_1 € = Fil"2N(V)(r).

=2

So, we can write

(- 1Dz = S @ - Lo g e’

- q_r+1§0(br—1)_br—1 ®€®r

”r—l

_ q"rbr1)-mbry ®e®"

T’
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Since b,_; € Fil" 'N(V), we get that

q "o(rby_1) - b,y € N(V),
ie. (1 - ¢)z,-1 € N(V(r)) and therefore,

Yr+ (@ = Dzrq € N(V(r)).

Next, let a,_; = %(ar + b,y — x(y)u"ty(b,_1)) and b,_, = W. So we set

X1 =%+ (1-Y)z1 = 53 ® S #Fﬂr_zN(V)(r)’
Vet 1= yr+ (9 = Dzra €N(V(1)),

as well as

Zr 1= 22 @ €T € LFITAN(V)(r).

"

Now, we can repeat the argument above with r replaced by r — 1 and iterate this process until r = 1
and get

x1 = %+ (1-y)z € FIPN(V)(r) = N(V)(r),
1= Y2+ (@ - 1)z € N(V(7)),
where X, y» and z; come from the step r = 2. We set (x, y) = (x1, y1), where we have
x € N(V)(r), and y € N(V(r)),

satisfying the relation (1 - ¢)x = (y - 1)y and which is cohomologous to (x,, y,) in H}(C*(V(r))).
This shows the claim. |

Let V(r) be a crystalline representation of Gr as above. For the associated Wach module over B7,

define
y-1

LD BON(V () @ N(V(r) ——— N(V(r).

K (V(r) : FI°N(V(r))
Lemma A.3. For a crystalline representation V(r) as above and r = r;, we have
H(K") = (FI'N(V(r)) =71 = V(r)°F.

Proof. First, note that we have (FII’N(V(r)))?=1r=! ¢ D(V(r))?=37=! = V(r)SF = (Fil’Deys(V(r)))?71.
On the other hand, from Proposition 3.2 we have 7(D*(V)) < N(V), therefore D*(V(r)) <
a" "D (V(r)) € N(V(r)). Since D*(V(r))?=2r=! = V(r)CF, we get the claim.

|

Proposition A.4. For a crystalline representation V(r) as above, we have H} (G, V(r)) = H'(K*(V(r))).

Proof. Since we know that any cohomology class in H}(Gr, V(r)) corresponds to a crystalline
extension of Q, by V(r), it will be enough to construct a bijection between such extensions and
cohomology classes in H'(C*(V(r))). Let X(r) denote a crystalline representation of Gr given as an
extension of Q, by V(r), i.e. we have an exact sequence of Gr-modules

0— V(r) — X(r) — Qp — 0.
Since N is an exact functor, we get an exact sequence of Wach modules over B},

0 — N(V(r)) — N(X(r)) — Bp — 0.
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We can write N(X(r)) = N(V(r)) + By, - e with

(y - De=x,
(1-9pe=y,

for some x, y € N(V(r)). Recall from Lemma A.1 that we have e € Fil’N(X(r)), therefore x = (y-1)e €
Fil’N(V(r)). By the commutativity of ¢ and y, we get that

1-@)y-De=(y-1)(1-9e,

or equivalently, we have
(1-@)x=(y -1y

which implies that (x, y) represents a cohomological class in H(XC*(V(r))).
Conversely, let w € Fil° N(V(r)) and z € N(V(r)) such that

1-@ow=(y-1z

Then we have that the pair (w, z) represents a cohomological class in H(K*(V(r))). Set E = N(V(r)) +
By - e with

y(e) = w+e,

ple)=z+e.
Clearly, E is an extension of By by N(V(r)), i.e. by sending e to 1 € By we have an exact sequence
0 — N(V(r)) — E — By — 0, (A.5)

of Wach modules over By. From Proposition 3.6, applying the quasi-inverse exact functor of N to
(A.5), we get a crystalline extension of Q, by V(r)

0— V(r)—Y—Q,—0,

where we set Y = (B ®p; E)*=!. This extension represents a cohomology class in H}(Gr, V(r)).
It is clear that these constructions are inverse to each other. Therefore, we conclude that

H'(K*(V(r)) = H (Gr, V(7).






Bibliography

[AB0S]

[Abh21]

[Abro7]

Fabrizio Andreatta and Olivier Brinon. Surconvergence des représentations p-adiques: le
cas relatif. Astérisque, (319):39-116, 2008. Représentations p-adiques de groupes p-adiques.
L. Représentations galoisiennes et (¢, I)-modules.

Abhinandan. Crystalline representations and Wach modules in the relative case. arXiv
e-prints, page arXiv:2103.17097, March 2021.

Victor Abrashkin. An analogue of the field-of-norms functor and of the Grothendieck
conjecture. §. Algebraic Geom., 16(4):671-730, 2007.

[AGV71] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Theorie de Topos et

[AI08]

[Al12]

[AI13]

[And06]

[BBOS]

[BB10]

[Bei12]

[Beil3]

Cohomologie Etale des Schemas I, II, III, volume 269, 270, 305 of Lecture Notes in Mathematics.
Springer, 1971.

Fabrizio Andreatta and Adrian Iovita. Global applications of relative (¢,T')-modules.
I. Astérisque, (319):339-420, 2008. Représentations p-adiques de groupes p-adiques. 1.
Représentations galoisiennes et (¢, I')-modules.

Fabrizio Andreatta and Adrian Iovita. Semistable sheaves and comparison isomorphisms
in the semistable case. Rend. Semin. Mat. Univ. Padova, 128:131-285 (2013), 2012.

Fabrizio Andreatta and Adrian Iovita. Comparison isomorphisms for smooth formal
schemes. J. Inst. Math. Jussieu, 12(1):77-151, 2013.

Fabrizio Andreatta. Generalized ring of norms and generalized (¢, I')-modules. Ann. Sci.
Ecole Norm. Sup. (4), 39(4):599-647, 2006.

Denis Benois and Laurent Berger. Théorie d’Twasawa des représentations cristallines. II.
Comment. Math. Helv., 83(3):603-677, 2008.

Laurent Berger and Christophe Breuil. Sur quelques représentations potentiellement
cristallines de GL,(Q),). Astérisque, (330):155-211, 2010.

Alexander Beilinson. p-adic periods and derived de Rham cohomology. 7. Amer. Math. Soc.,
25(3):715-738, 2012.

Alexander Beilinson. On the crystalline period map. Camb. J. Math., 1(1):1-51, 2013.

123



124

[Ben00]

[Ben11]

[Ber02]

[Ber03]

[Ber04]

[Ber03]

[Bha17]

[BM90]

[BMS18]

[BO78]

[Bou98]

[Bre99]

[Bre02]

[Brio6]

[Bri038]

[BS19]

[BS21]

[Car13]

[CCY8]

Bibliography

Denis Benois. On Iwasawa theory of crystalline representations. Duke Math. §., 104(2):211-
267, 2000.

Denis Benois. A generalization of Greenberg’s L-invariant. Amer. J. Math., 133(6):1573—
1632, 2011.

Laurent Berger. Représentations p-adiques et équations différentielles. Invent. Math.,
148(2):219-284, 2002.

Laurent Berger. Bloch and Kato’s exponential map: three explicit formulas. Doc. Math.,
(Extra Vol.):99-129, 2003. Kazuya Kato’s fiftieth birthday.

Laurent Berger. Limites de représentations cristallines. Compos. Math., 140(6):1473-1498,
2004.

Laurent Berger. Equations différentielles p-adiques et (¢, N)-modules filtrés. Astérisque,
(319):13-38, 2008. Représentations p-adiques de groupes p-adiques. I. Représentations
galoisiennes et (¢, I')-modules.

Bhargav Bhatt. Lecture notes for a class on perfectoid spaces. Lecture notes, 2017.

Pierre Berthelot and William Messing. Théorie de Dieudonné cristalline. ITI. Théorémes
d’équivalence et de pleine fidélité. In The Grothendieck Festschrift, Vol. I, volume 86 of Progr.
Math., pages 173-247. Birkhauser Boston, Boston, MA, 1990.

Bhargav Bhatt, Matthew Morrow, and Peter Scholze. Integral p-adic Hodge theory. Publ.
Math. Inst. Hautes Etudes Sci., 128:219-397, 2018.

Pierre Berthelot and Arthur Ogus. Notes on crystalline cohomology. Princeton University
Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978.

Nicolas Bourbaki. Algebra I: Chapters 1-3. Actualités scientifiques et industrielles. Springer,
1998.

Christophe Breuil. Une application de corps des normes. Compositio Math., 117(2):189-203,
1999.

Christophe Breuil. Integral p-adic Hodge theory. In Algebraic geometry 2000, Azumino
(Hotaka), volume 36 of Adv. Stud. Pure Math., pages 51-80. Math. Soc. Japan, Tokyo, 2002.

Olivier Brinon. Représentations cristallines dans le cas d’un corps résiduel imparfait. Ann.
Inst. Fourier (Grenoble), 56(4):919-999, 2006.

Olivier Brinon. Représentations p-adiques cristallines et de de Rham dans le cas relatif.
Mém. Soc. Math. Fr. (N.S.), (112):vi+159, 2008.

Bhargav Bhatt and Peter Scholze. Prisms and Prismatic Cohomology. arXiv e-prints, page
arXiv:1905.08229, May 2019.

Bhargav Bhatt and Peter Scholze. Prismatic F-crystals and crystalline Galois representa-
tions. arXiv e-prints, page arXiv:2106.14735, June 2021.

Xavier Caruso. Représentations galoisiennes p-adiques et (¢, 7)-modules. Duke Math. ¥,
162(13):2525-2607, 2013.

Frédéric Cherbonnier and Pierre Colmez. Représentations p-adiques surconvergentes.
Invent. Math., 133(3):581-611, 1998.



Bibliography 125

[CC99]

[CK19]

[CN17]

[Col98]

[Col99]

[Col02]

[DM82]

[DR31]

[Fal88]

[Fal89]

[Fal02]

[FF18]

[FL82]

[FM87]

[FO08]

[Fon79]

[Fon82]

[Fon83]

Frédéric Cherbonnier and Pierre Colmez. Théorie d’Iwasawa des représentations p-adiques
d’un corps local. 7. Amer. Math. Soc., 12(1):241-268, 1999.

Kestutis Cesnavi¢ius and Teruhisa Koshikawa. The Aj,-cohomology in the semistable
case. Compos. Math., 155(11):2039-2128, 2019.

Pierre Colmez and Wiestawa Niziol. Syntomic complexes and p-adic nearby cycles. Invent.
Math., 208(1):1-108, 2017.

Pierre Colmez. Théorie d’ITwasawa des représentations de de Rham d’un corps local. Ann.
of Math. (2), 148(2):485-571, 1998.

Pierre Colmez. Représentations cristallines et représentations de hauteur finie. J. Reine
Angew. Math., 514:119-143, 1999.

Pierre Colmez. Espaces de Banach de dimension finie. J Inst. Math. Jussieu, 1(3):331-439,
2002.

Pierre Deligne and James Milne. Tannakian Categories, pages 101-228. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1982.

Georges De Rham. Sur Ianalysis situs des variétés a n dimensions. NUMDAM, [place of
publication not identified], 1931.

Gerd Faltings. p-adic Hodge theory. J Amer. Math. Soc., 1(1):255-299, 1988.

Gerd Faltings. Crystalline cohomology and p-adic Galois-representations. In Algebraic
analysis, geometry, and number theory (Baltimore, MD, 1988), pages 25-80. Johns Hopkins
Univ. Press, Baltimore, MD, 1989.

Gerd Faltings. Almost étale extensions. Astérisque, (279):185-270, 2002. Cohomologies
p-adiques et applications arithmétiques, IL

Laurent Fargues and Jean-Marc Fontaine. Courbes et fibrés vectoriels en théorie de Hodge
p-adique. Astérisque, (406):xiii+382, 2018. With a preface by Pierre Colmez.

Jean-Marc Fontaine and Guy Laffaille. Construction de représentations p-adiques. Ann.
Sci. Ecole Norm. Sup. (4), 15(4):547-608 (1983), 1982.

Jean-Marc Fontaine and William Messing. p-adic periods and p-adic étale cohomology.
In Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), volume 67 of
Contemp. Math., pages 179-207. Amer. Math. Soc., Providence, RI, 1987.

Jean-Marc Fontaine and Yi Ouyang. Theory of p-adic Galois representations. preprint,
2008.

Jean-Marc Fontaine. Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate. In
Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, volume 65 of Astérisque,
pages 3-80. Soc. Math. France, Paris, 1979.

Jean-Marc Fontaine. Sur certains types de représentations p-adiques du groupe de Galois
d’un corps local; construction d’'un anneau de Barsotti-Tate. Ann. of Math. (2), 115(3):529—
577, 1982.

Jean-Marc Fontaine. Cohomologie de de Rham, cohomologie cristalline et représentations
p-adiques. In Algebraic geometry (Tokyo/Kyoto, 1982), volume 1016 of Lecture Notes in
Math., pages 86—108. Springer, Berlin, 1983.



126 Bibliography

[Fon90] Jean-Marc Fontaine. Représentations p-adiques des corps locaux. I. In The Grothendieck
Festschrift, Vol. II, volume 87 of Progr. Math., pages 249-309. Birkhaduser Boston, Boston,
MA, 1990.

[Fon94a] Jean-Marc Fontaine. Le corps des périodes p-adiques. Astérisque, (223):59-111, 1994. With
an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).

[Fon94b] Jean-Marc Fontaine. Représentations p-adiques semi-stables. Astérisque, (223):113-184,
1994. With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).

[Fon04] Jean-Marc Fontaine. Arithmétique des représentations galoisiennes p-adiques. Astérisque,
(295):xi, 1-115, 2004. Cohomologies p-adiques et applications arithmétiques. IIL

[Fon82] Jean-Marc Fontaine. Formes différentielles et modules de Tate des variétés abéliennes sur
les corps locaux. Invent. Math., 65(3):379-409, 1981/82.

[FW79a] Jean-Marc Fontaine and Jean-Pierre Wintenberger. Extensions algébrique et corps des
normes des extensions APF des corps locaux. C. R. Acad. Sci. Paris Sér. A-B, 288(8):A441-
A444,1979.

[FW79b] Jean-Marc Fontaine and Jean-Pierre Wintenberger. Le “corps des normes” de certaines
extensions algébriques de corps locaux. C. R. Acad. Sci. Paris Sér. A-B, 288(6):A367-A370,
1979.

[Gol61] Oscar Goldman. Determinants in projective modules. Nagoya Math. §., 18:27-36, 1961.

[Gro63] Alexander Grothendieck. Revétements étales et groupe fondamental. Fasc. I: Exposés 1 a 5.
Institut des Hautes Etudes Scientifiques, Paris, 1963. Troisiéme édition, corrigée, Séminaire
de Géométrie Algébrique, 1960/61.

[Gro66] Alexander Grothendieck. On the de Rham cohomology of algebraic varieties. Inst. Hautes
Etudes Sci. Publ. Math., (29):95-103, 1966

[Gro74] Alexandre Grothendieck. Groupes de Barsotti-Tate et cristaux de Dieudonné. Les Presses de
I’Université de Montréal, Montreal, Que., 1974. Séminaire de Mathématiques Supérieures,
No. 45 (Eté, 1970).

[Her98] Laurent Herr. Sur la cohomologie galoisienne des corps p-adiques. Bull. Soc. Math. France,
126(4):563-600, 1998.

[HK94] Osamu Hyodo and Kazuya Kato. Semi-stable reduction and crystalline cohomology with
logarithmic poles. Astérisque, (223):221-268, 1994. Périodes p-adiques (Bures-sur-Yvette,
1988).

Kat79] Nicholas Katz. Slope filtration of F-crystals. In Journées de Géométrie Algébrigue de Rennes
p y georiq
(Rennes, 1978), Vol. I, volume 63 of Astérisque, pages 113-163. Soc. Math. France, Paris, 1979.

[Kat87] Kazuya Kato. On p-adic vanishing cycles (application of ideas of Fontaine-Messing).
In Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages 207-251.
North-Holland, Amsterdam, 1987.

[Kat89] Kazuya Kato. Logarithmic structures of Fontaine-Illusie. In Algebraic analysis, geometry,
and number theory (Baltimore, MD, 1988), pages 191-224. Johns Hopkins Univ. Press,
Baltimore, MD, 1989.

[Kat94] Kazuya Kato. Semi-stable reduction and p-adic étale cohomology. Astérisque, (223):269-293,
1994. Périodes p-adiques (Bures-sur-Yvette, 1988).



Bibliography 127

[Kedo04]

[Kim15]

[Kis06]

[KM92]

[Kur87]

[Laz65]

[Mor08]

[MT20]

[Niz98]

[PR94]

[Samo01]

[Scho6]

[Sch12]

[Sch13]

[Sch17]

[Sta20]

Kiran Kedlaya. A p-adic local monodromy theorem. Ann. of Math. (2), 160(1):93-184, 2004.

Wansu Kim. The relative Breuil-Kisin classification of p-divisible groups and finite flat
group schemes. Int. Math. Res. Not. IMRN, (17):8152-8232, 2015.

Mark Kisin. Crystalline representations and F-crystals. In Algebraic geometry and number
theory, volume 253 of Progr. Math., pages 459-496. Birkhéduser Boston, Boston, MA, 2006.

Kazuya Kato and William Messing. Syntomic cohomology and p-adic étale cohomology.
Tohoku Math. §. (2), 44(1):1-9, 1992.

Masato Kurihara. A note on p-adic étale cohomology. Proc. Japan Acad. Ser. A Math. Sci.,
63(7):275-278, 1987.

Michel Lazard. Groupes analytiques p-adiques. Inst. Hautes Etudes Sci. Publ. Math., (26):389—
603, 1965.

Kazuma Morita. Galois cohomology of a p-adic field via (®,')-modules in the imperfect
residue field case. J. Math. Sci. Univ. Tokyo, 15(2):219-241, 2008.

Matthew Morrow and Takeshi Tsuji. Generalised representations as g-connections in
integral p-adic Hodge theory. arXiv e-prints, page arXiv:2010.04059, October 2020.

Wiestawa Niziol. Crystalline conjecture via K-theory. Ann. Sci. Ecole Norm. Sup. (4),
31(5):659-681, 1998.

Bernadette Perrin-Riou. Théorie d’ ITwasawa des représentations p-adiques sur un corps
local. Invent. Math., 115(1):81-161, 1994. With an appendix by Jean-Marc Fontaine.

Hans Samelson. Differential forms, the early days; or the stories of Deahna’s theorem and
of Volterra’s theorem. Amer. Math. Monthly, 108(6):522-530, 2001.

Anthony J. Scholl. Higher fields of norms and (¢, I')-modules. Doc. Math., (Extra Vol.):685-
709, 2006.

Peter Scholze. Perfectoid spaces. Publ. Math. Inst. Hautes Etudes Sci., 116:245-313, 2012.

Peter Scholze. p-adic Hodge theory for rigid-analytic varieties. Forum Math. Pi, 1:el, 77,
2013.

Peter Scholze. Canonical g-deformations in arithmetic geometry. Ann. Fac. Sci. Toulouse
Math. (6), 26(5):1163-1192, 2017.

The Stacks project authors. The stacks project. https://stacks.math.
columbia. edu, 2020.

[Tat67] John Tate. p-divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), pages 158—183.

[Tsu96]

[Tsu99]

[Tsu20]

Springer, Berlin, 1967.

Takeshi Tsuji. Syntomic complexes and p-adic vanishing cycles. . Reine Angew. Math.,
472:69-138, 1996.

Takeshi Tsuji. p-adic étale cohomology and crystalline cohomology in the semi-stable
reduction case. Invent. Math., 137(2):233-411, 1999.

Takeshi Tsuji. Crystalline Z,-representations and Aj,r-Representations with Frobenius.
Proceeedings in Simons Symposium: p-adic Hodge theory, pages 161-319, 2020.


https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

128 Bibliography
[Tyc88] Andrzej Tyc. Differential basis, p-basis, and smoothness in characteristic p > 0. Proc. Amer.
Math. Soc., 103(2):389-394, 1988.

[Wac96] Nathalie Wach. Représentations p-adiques potentiellement cristallines. Bull. Soc. Math.
France, 124(3):375-400, 1996.

[Wac97] Nathalie Wach. Représentations cristallines de torsion. Compositio Math., 108(2):185-240,
1997.

[Win83] Jean-Pierre Wintenberger. Le corps des normes de certaines extensions infinies de corps
locaux; applications. Ann. Sci. FEcole Norm. Sup. (4), 16(1):59-89, 1983.

[Yam11] Go Yamashita. p-adic Hodge theory for open varieties. C. R. Math. Acad. Sci. Paris,
349(21-22):1127-1130, 2011.



	Preface
	Introduction
	Présentation en français
	–adic Hodge theory
	Setup and notations
	The de Rham period ring
	The crystalline period ring
	Filtered –modules
	–adic representations

	–modules and crystalline coordinates
	Relative –modules
	Overconvergence
	Rings of analytic functions
	Cyclotomic embeddings
	Fat period rings

	Finite height crystalline representations
	The arithmetic case
	The relative case
	The false Tate curve

	Cohomological complexes
	Relative Fontaine-Herr complex
	Koszul complexes
	Lie algebra action and cohomology

	Syntomic complex and Galois cohomology
	Syntomic complex with coefficients
	Wach representations and Galois cohomology

	Galois cohomology and classical Wach modules
	Crystalline extension classes

	Bibliography

