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Abstract
Electroporation is a complex phenomenon that occurs when biological tissues

are subjected to short electric pulses of high intensity. It makes it possible to either
kill directly the cells in the target region (as for example a tumor) or to introduce
molecules into living cells. Even though the phenomenon has been discovered for
several decades, it is still incompletely understood. Several bioelectrical engineer-
ing strategies have been developed to improve the knowledge of the membrane
response to electric stimulation by bioimpedance measurements. Bioimpedance
measurements are a powerful tool from electrical engineering to track the electrical
properties changes in biological tissues and cells. However the quantification of such
impedance changes in terms of dielectric and conductive properties of the biologi-
cal is far from trivial. This is due the addition of complex bioelectrical phenomena
such as the electrode polarization, system calibration, and in addition the lack of
accurate electrical model of biological samples. The aim of this thesis consists in
proposing a modeling of the bioimpedance measures in a 4-electrode system, in
the context of electroporation. On the one hand, the work consists in deriving an
effective electrical circuit of the biological and to fit its parameters thanks to the
4-electrode system. The fitting is far from trivial since the “measured data” have
been already pre-filtered using 3 reference measures, but due to the complexity
of the experimental set-up and the complexity of biological electrical properties
the calibration leads to large error. To overcome this issue, a new calibration is
proposed to minimize the error on the filtered data. Then, advanced calibration
procedure is proposed to investigate the impact of electroporation on the effec-
tive conductance and capacitance of cell membranes. On the other, we investigate
the asymptotic analysis problem of floating potential. Indeed, it is well-known in
quasi-electrostatics that highly conductive materials behave like an equipotential
and a nonlocal boundary condition is imposed, so-called floating potential. This
floating potential problem consists in solving Poisson equation with a constant
Dirichlet boundary condition, which is implicitly fixed by the constraint that the
total current on the boundary vanishes, yielding a non local constraint. Thanks
to an asymptotic analysis, the accuracy of such floating potential is derived, and
an improvement is proposed to account for the geometry of the needles. This is
particularly crucial in electroporation, when high amplitude electric fields are ap-
plied. Finally, we validate this model by comparing the bioimpedances obtained
with the PDE simulations with the measured bioimpedances.

Keywords: Asymptotic Analysis ; Elliptic problem ; Numerical Calibration
Strategy ; Bioimpedance ; Electroporation
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Résumé
L’électroporation est un phénomène complexe qui se produit lorsque des tissus

biologiques sont soumis à de courtes impulsions électriques de grande intensité.
L’électroporation permet de tuer les cellules d’une tumeur ou d’introduire des mo-
lécules dans les cellules en augmentant la perméabilité de leurs membranes. Même
si le phénomène a été découvert il y a plusieurs décennies, de nombreuses ques-
tions persistent. Plusieurs stratégies d’ingénierie bioélectrique ont été développées
pour améliorer la connaissance de la réponse membranaire à la stimulation élec-
trique par des mesures de bioimpédance. Les mesures de bioimpédance sont un
outil puissant pour suivre les changements des propriétés électriques dans les tis-
sus et dans les cellules biologiques. Cependant, la quantification de ces changements
d’impédance en termes de propriétés diélectriques et conductrices est loin d’être
triviale. En effet les phénomènes bioélectriques complexes tels que la polarisation
des électrodes, l’étalonnage du système ainsi que l’absence de modèle électrique
précis compliquent la procédure. L’objectif de cette thèse est de proposer une mo-
délisation des mesures de bioimpédance dans un système à 4 électrodes, dans le
cadre de l’électroporation. Dans une première partie, le travail consiste à dériver un
circuit électrique modélisant l’impédance du système et à adapter ses paramètres
grâce aux données d’impédance issues des mesures. L’ajustement est loin d’être
facile puisque les “ données mesurées ” ont déjà été pré-traitées par une étape
d’étalonnage qui en raison de la complexité de la configuration expérimentale et
des propriétés électriques biologiques, conduit à une erreur importante. Pour sur-
monter ce problème, une nouvelle stratégie d’étalonnage est proposée permettant
de minimiser l’erreur sur les données calibrées. Ensuite, une procédure d’estimation
paramétrique du circuit électrique est proposée afin d’étudier l’impact de l’électro-
poration sur la conductance et la capacité effectives des membranes cellulaires.
Dans une deuxième partie, nous proposons une analyse asymptotique du potentiel
flottant. En effet, il est bien connu en électro-quasi statique que les matériaux hau-
tement conducteurs se comportent comme une équipotentielle et qu’une condition
aux limites non locale – appelée potentiel flottant – est imposée. Ce problème de
potentiel flottant consiste à résoudre l’équation de Poisson avec une condition aux
limites de Dirichlet constante. Cette condition de Dirichlet qui est une inconnue
du système va être fixée par la contrainte que le courant total sur la frontière
s’annule c’est-à-dire qu’aucun courant ne sort du domaine. Grâce à une analyse
asymptotique, un potentiel flottant est obtenue, et nous proposons une améliora-
tion permettant de prendre en compte la géométrie des électrodes. C’est une étape
cruciale pour l’application en électroporation puisque des champs électriques de
grande intensité sont appliqués. Ce modèle est finalement validé par une compa-
raison entre les bioimpédances obtenues avec les simulations du potentiel flottant
et les bioimpédances calibrées issues des mesures.

Mots-clés : Analyse asymptotique ; problèmes elliptiques ; stratégie de ca-
libration numérique ; Bioimpédance ; Électroporation
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Résumé long (en français)

fL’électroporation est un phénomène complexe qui se produit lorsque les tissus
biologiques sont soumis à de courtes impulsions électriques de grande intensité.
Elle permet soit de tuer directement les cellules de la région cible (comme par
exemple une tumeur), soit d’introduire des molécules dans des cellules vivantes.
Même si le phénomène d’électroporation a été découvert il y a plusieurs décennies,
il n’est pas encore complètement compris. Cette thèse contribue à l’amélioration de
la connaissance de ce phénomène dans le domaine des mathématiques appliquées
en proposant la modélisation d’un montage expérimental bioélectrique permettant
de le quantifier.

Même si l’électroporation est de plus en plus utilisée, plusieurs aspects du phé-
nomène restent inexpliqués, comme par exemple les modifications structurelles ef-
fectives de la membrane. D’autres nécessitent des études complémentaires, comme
la corrélation entre la configuration du traitement d’électroporation (intensité du
champ électrique, durée et nombre d’impulsions, durée entre les pulses etc ...) et ses
effets (taux de perméabilisation, extension de perméabilisation, quantité de cellules
survivantes, seuil entre électroporation réversible et irréversible). L’électroporation
est un sujet de recherche actif en raison de la pertinence de ses applications. Cette
communauté comprend des biologistes, des médecins, des ingénieurs électriciens,
des médecins et des mathématiciens.

Le rôle du mathématicien est de développer des modèles mathématiques ca-
pables de décrire le processus d’électroporation avec simplicité et efficacité. Les
simulations - nécessitant un temps et un coût financier relativement bas - obtenues
grâce aux connaissances mathématiques, biologiques et physiques sont un support
solide pour les expériences in-vivo ou in-vitro. Dans [19] par exemple, les auteurs
modélisent la diffusion du champ électrique pendant l’ablation par électroporation
irréversible, dans [48], les auteurs ont travaillé sur la dynamique moléculaire et
dans [29] sur les capacités conductrices de la membrane.

Les mesures expérimentales obtenues avec la nouvelle configuration à 4 élec-
trodes proposée par Garcia-Sanchez et al. [20] pour étudier la réponse électrique
de la membrane cellulaire à une stimulation électrique élevée sont le fil conducteur
de la thèse.

Relier ces mesures d’impédance à un circuit électrique équivalent de type R|C
(résistance / capacitance) est loin d’être simple car l’appareil de mesure a be-
soin d’être étalonné, pour prendre en compte la distorsion des données due à la
configuration. La première partie de la thèse consiste donc à proposer une nou-
velle stratégie d’étalonnage des données d’impédance puis à proposer un circuit
électrique bien conçu modélisant l’expérience à 4 électrodes. L’estimation des pa-
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FRENCH SUMMARY

ramètres de ce circuit à l’aide des mesures d’impédance permet de comprendre
l’impact de l’électroporation sur la mono-couche cellulaire.

La particularité de la configuration à 4 électrodes est d’utiliser 2 électrodes
dites actives pour imposer le courant et 2 électrodes dites passives pour mesurer la
réponse électrique du système. Cela complexifie considérablement le modèle mathé-
matique, car au lieu de l’utilisation standard d’opérateurs "Dirichlet-to-Neumann"
comme en tomographie (où la tension est imposée à l’électrode et le courant est
mesuré sur la même électrode), il faut prendre en compte l’impact des électrodes
passives sur le courant appliqué ce qui conduit à un problème de potentiel dit
flottant. De plus, l’épaisseur de l’eau interfaciale - qui a des propriétés électriques
particulières - est directement liée à la tension des électrodes. L’épaisseur des élec-
trodes est donc beaucoup plus petite que dans la configuration standard à 2 élec-
trodes ce qui permet au dispositif à 4 électrodes de limiter l’influence de l’eau liée
au voisinage des mesures d’électrodes. La deuxième partie de la thèse est donc
consacrée à l’analyse d’une équation aux dérivées partielles elliptique décrivant
l’approximation électro-quasi statique du potentiel électrique dans la configuration
à 4 électrodes. La principale difficulté - qui est un problème courant avec les mesures
d’impédance - est due à la présence de ces électrodes inactives très conductrices et
minces. La manière classique de modéliser ces électrodes inactives consiste à utili-
ser une approche de pénalisation mais cela conduit à des instabilités numériques.
Nous proposons dans cette thèse une analyse asymptotique pour réduire le modèle,
ce qui conduit également à une stratégie plus précise et plus robuste appelée po-
tentiel flottant. Enfin, nous utilisons l’approche potentiel flottant pour approximer
le potentiel électrique avec la configuration à 4 électrodes pour l’électroporation
d’une mono-couche cellulaire. Nous comparons les impédances simulées avec les
impédances mesurées et nous obtenons des résultats très satisfaisants.

Les principales contributions de cette thèse sont résumées dans les points sui-
vants.
• Une nouvelle stratégie d’étalonnage pour le dispositif à 4 électrodes de [20] a été
proposée.
• Un circuit électrique bien pensé a été coņu et ses paramètres ont été estimés à
l’aide des données d’impédance calibrées pour l’électroporation d’une mono-couche
cellulaire.
• Une analyse asymptotique du problème de conductivité avec des électrodes pas-
sives minces à haute conductivité a été faite.
• Une validation du modèle elliptique avec potentiel flottant pour la configuration
à 4 électrodes a été mise en place.

Nous proposons à présent un résumé des apports de cette thèse par chapitre.

Chapitre 1 Ce chapitre se concentre sur la reproduction et l’interprétation de
l’ensemble des données dérivant d’une expérience d’électroporation. Les observa-
tions sont les mesures de l’impédance de l’électroporation d’une mono-couche cellu-
laire effectuées avec une configuration arrangée à 4 électrodes. Le but est l’analyse
du comportement électrique de la cellule avant et après une impulsion électrique
visant à l’électroporation. Ce travail a représenté une tâche difficile du début - à
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savoir l’organisation des données - à la fin - à savoir formaliser le modèle et es-
timer ses paramètres ainsi qu’interpréter leurs évolutions. Pour bien comprendre
les données, il a été fondamental de comprendre le processus d’extraction de ces
dernières et le contexte des expériences. Pour cette raison, le chapitre commence
par l’introduction de l’approximation électro-quasi statique et la définition de la
notion de circuit équivalent illustrées sur un système électrique simple. L’idée est
de fournir toutes les notions nécessaires à la compréhension du sujet abordé. Il a
été nécessaire de comprendre en profondeur le système de mesure à 4 électrodes et
la méthode d’étalonnage à trois références, utilisées respectivement pour mesurer
l’impédance cellulaire et pour éliminer la distorsion du système de mesure. Grâce
aux connaissances acquises, nous avons mis en avant la faiblesse de la stratégie
d’étalonnage utilisée et nous avons proposé une nouvelle stratégie plus robuste qui
se base sur l’utilisation de plus de mesures de référence que l’étalonnage habituel
à 3 références. L’efficacité de la nouvelle stratégie est prouvée par la comparaison
avec le comportement théorique attendu pour les observations, donnée par :

Z
(c)
FC, t(ω) =

k

σ(c) + iωε(c)

Un modèle de type circuit électrique a ensuite été proposé dans le but de l’ajuster
au jeu de données étalonnées. Le choix de ce circuit découle de notre compréhension
du système d’expérience. Une fois les deux éléments composant le système (cellules
et tampon) identifiés, l’analyse de leurs propriétés physiques conduit à définir le
modèle, représenté sur la figure R-1 et donné par les équations (R-1) et (R-2). La

Rb

Rcyt

Rm

1

Cm(i!)↵m

Figure R-1 – Circuit électrique pour
le système cellules-tampon

Zeq(ω, θ) =
Rb Zcells(ω, θ)

Rb + Zcells(ω, θ)
, (R-1)

Zcells(ω, θ) = Rcyt +
Rm

1 +RmCm(iω)αm
.

(R-2)

dernière difficulté recontrée dans ce chapitre concerne la non-identifiabilité du cir-
cuit électrique modélisant le système. Nous avons résolu ce problème en supposant
que le comportement électrique de la membrane cellulaire n’est pas affecté par la
conductivité du tampon. Ainsi, une définition fiable des intervalles des paramètres
a permis leur estimation de manière robuste. Les estimations ont été faite avec un
estimateur de moindres carrés disponible sous Matlab. Le code mis en place est suf-
fisamment général pour permettre de paramétrer d’autres circuits électriques sur
d’autres données d’impédance. L’estimation des paramètres avant et après le pulse
électroporant donne des résultats très intéressants car ils permettent de comprendre
l’impact du phénomène d’électroporation. En particulier, les paramètres représen-
tant la résistance du tampon Rb et la résistance membranaire Rm diminuent dans
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les minutes qui suivent l’impulsion. Ces évolutions suggèrent une augmentation
inhabituelle des échanges de cellules avec le tampon. Cette observation signifie que
l’impulsion appliquée entraîne l’électroporation de la mono-couche cellulaire.

Chapitre 2 Ce chapitre concerne la modélisation de la présence d’électrodes
passives fines et fortement conductrices dans l’expérience présentée au chapitre
précédent. En considérant un domaine plus simple représentant la zone de contact
entre l’électrode et le tampon, nous avons modélisé ce système grâce à un problème
de potentiel flottant (FP). L’idée est de considérer l’électrode comme une surface
équipotentielle et son potentiel comme une inconnue du problème. Nous avons
prouvé l’existence et l’unicité de la solution du problème du potentiel flottant. Cette
méthode a été comparée à une approche de pénalisation classique, qui s’est avérée
générer de nombreuses instabilités. Nous proposons aussi une analyse asymptotique
qui permet à la fois de donner une estimation de l’erreur d’approximation entre
pénalisation et FP et de proposer une amélioration de la condition de potential
flottant. Nous avons observé que l’approche par pénalisation nécessite un maillage

8
>>>>><
>>>>>:

�r · (�iru0) = f in ⌦i,

u0|�0
= ↵0,Z

�0

�i@nu0 ds = 0,

u0|�int
= �.

Problème avec pénalisation Potentiel flottant

ku" � u0kH1(⌦i)  c "

8
>>>>>><
>>>>>>:

�r · (�"ru") = f in ⌦i [ ⌦e,

u"|�0
I = u"|�0

e ,

�i @nu"|�0
I = "�k�e @nu"|�0

e ,

@nu"|�ext
= 0,

u"|�int
= �,

Convergence

excessivement raffiné ce qui conduit à un coût de calcul élevé. De plus, le fait de
devoir utiliser des très petits pas en espace provoque des instabilités numériques
lors de la résolution. Une faiblesse de l’approche potentiel flottant est la résolution
d’un nombre plus élevé de problèmes. Néanmoins, tous ces problèmes sont des
problèmes de Dirichlet avec la même matrice apparaissant dans le système linéaire,
il est alors possible de la factoriser (si on utilise un solveur linéaire) une seule fois
et de résoudre les systèmes en parallèle. De plus, le problème du potentiel flottant
ne contient pas de domaine mince et peut être résolu sur un maillage plus grossier.
Ce qui implique que la méthode basée sur le potentiel flottant est peu coûteuse
en temps de calcul et plus stable. La figure R-2 compare la robustesse des deux
approches. Les deux approches (pénalisation et FP) ont été résolus numériquement
grâce à l’implémentation d’une librairie de différences finies en C++ (environ 3200
lignes) sur une grille cartésienne 2D.

Chapitre 3 Le dernier chapitre établit une connexion entre les résultats du cha-
pitre 1 et ceux du chapitre 2. L’approche du potentiel flottant développée au cha-
pitre 2 a été appliquée pour obtenir une représentation d’une coupe 2D du système
à 4 électrodes présentée dans le chapitre 1. Le défi est de formaliser le problème
du potentiel flottant avec six électrodes (4 passives et 2 actives). Une condition de
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10−4 10−3 10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

1←→
1 l

ε

‖uext
ε − ufloat‖L2 , k = 1

‖uext
ε − ufloat‖L2 , k = 2

‖uext
ε − unum

ε ‖L2 , k = 2

Figure R-2 – k = 1 : lorsque ε tend vers zéro, la solution exacte ne converge
pas vers la solution approchée par le potentiel flottant. k = 2 : lorsque ε tend vers
zéro, la solution exacte converge vers la solution approchée par le potentiel flottant.
En raison d’un conditionnement élevé de la matrice, la différence entre la solution
approchée par la méthode de pénalisation et la solution exacte ne converge pas
vers 0 pour des valeurs petites de ε.

Gauge doit être imposée pour avoir l’unicité de la solution. Nous supposons donc
que

∫
E1
u dx = 0 (ce qui est revient à imposer : u|E1

= α1 = 0). Le problème s’écrit
alors : trouver (u, α2, α3, α4) ∈ H1(Ω)× R3 vérifiant





∇ · (σ∇u) = 0, in Ω,

σ∂nE1u|E1 = g, σ∂nE2u|E2 = −g, u|E1
= 0,

u|Ej = αj, j = 2, 3, 4, u|E1
= 0∫

Ej

σ∂nEju ds = 0, j = 2, 3, 4,

u|L1
= u|L2

,

σ∂nu = 0 ailleurs.

(R-3)

L’existence et l’unicité de la solution de ce problème ont été prouvées. La résolution
numérique – présentant tous les avantages de l’approche par potentiel flottant –
donne une solution numérique réaliste du potentiel dans le domaine. Comme dans
le chapitre 2, le problème a été résolu numériquement grâce à une librairie de
différences finies en C++ (environ 3200 lignes) sur une grille cartésienne 2D. À
partir de la solution numérique, nous avons calculé l’impédance mesurée numérique
Znum
m comme le rapport entre le courant imposé par les électrodes actives et la

tension mesurée par les électrodes passives :

Znum
m =

α2 − α1

Ca
,
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σ (S·m−1) Znum
s (ohm) |ZFC,cal(ω1)| (ohm) Err (%)

0.098 610 593 2.8
0.265 204 219 7.3
0.57 114 102 10.5
0.965 62 60 3.2
1.432 40 41 2.5

Table R-1 – Comparaison entre les impédances Znum
s obtenues avec les simula-

tions et les impédances mesurées avec l’expérience à 4 électrodes |ZFC,s(ω1)| pour
plusieurs conductivités.

et l’impédance numérique Znum
s par

Znum
s =

1

|S2|

∫

S2

udS − 1

|S1|

∫

S1

udS

∫

S1

σ∂nudS

,

où les surfaces S1 et S2 sont parallèles aux côtés verticaux de Ω et placées entre
les électrodes passives. La comparaison avec les données d’impédance issues de
l’expérience 4 électrodes – voir par exemple le Tableau R-1 pour les impédances
calibrées – nous permet de valider :
• le modèle de potentiel flottant pour le système de mesure à 4 électrodes sans

cellules,
• l’estimation des conductivités et de la longueur des électrodes,
• la stratégie d’étalonnage des impédances mesurées obtenues par le système

de mesure à 4 électrodes.
Ces résultats sont très encourageants et mettent en avant l’apport des mathéma-
tiques appliquées dans la compréhension du phénomène d’électroporation.
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Introduction

Electroporation is a complex phenomenon that occurs when biological tissues
are subjected to short electric pulses of high intensity. It makes it possible to either
kill directly the cells in the target region (as for example a tumor) or to introduce
molecules into living cells. Even though the phenomenon has been discovered
for several decades, it is still incompletely understood. Several bioelectrical engi-
neering strategies have been developed to improve the knowledge of the membrane
response to electric stimulation by bioimpedance measurements. This thesis brings
a few applied mathematics contributions to the modeling of a recent bioelectrical
experimental setup in the context of electroporation.

Context of the PhD: Cell membrane and pulsed elec-
tric field

In this section, we present the main steps in the electroporation phenomenon,
which is a phenomenon that occurs at the cell membrane level.

The structure of a cell membrane: a brief overview

The cell (from Latin cella, small room) is the basic biological unit of all known
living organisms. The cell contains a complex machinery of biomolecules, such as
proteins, dissolved in the cytoplasm, nucleic acids, and several inorganic molecules
dissolved in the cytoplasm, which is enclosed within the cell membrane. The
cell membrane is composed of phospholipids, protein, and several lipids (such as
cholesterol), and it is ∼ 5 nm thick. The phospholipids are structurally the essen-
tial elements that compose the membrane, being the amphiphilic elements of the
membrane. Those molecules are provided with a hydrophilic head and a lipophilic
tail that allow the typical disposition tail-tail of the phospholipids in the cell mem-
brane, as shown in Figure I-1.
The cell membrane is not a static structure. It has been now well established
that the cell membrane behaves as a fluid mosaic [46], meaning that all the phos-
pholipids shift alongside the same layer, as Figure I-2a depicts. The trans-bilayer
motion of a phospholipid which passes from one layer through the membrane and
accommodates on the opposite layer is named flip-flop movement [14] and is rep-
resented in Figure I-2b.
The lipidic structure of a cell membrane is variegated, and three main lipidic
molecules are involved in the structuration of the cell membrane: glycerophos-
pholipids, sphingolipids, and sterols [23]. The membrane proteins can be mainly
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Hydrophilic 
portion

Hydrophilic 
portion

Lipophilic 
portion

Figure I-1 – Phospholipid organization in a bilayer: the lipophilic tails are or-
ganized in the center of the membrane, and through weak bonds stick together,
while the hydrophilic heads are in contact with the cytoplasm and the extracellular
fluids respectively.

(a) phospholipids shift

(b) flip-flop

Figure I-2 – Phospholipids movement can occur by shifting (Figure I-2a) or
by exchange of two phospholipids of two different layers, the so-called flip-flop
((Figure I-2b).

classified in intrinsic and extrinsic. The intrinsic or transmembrane proteins are
structures that cross the whole bilayer, while the extrinsic proteins allow the pas-
sage between the cytoplasm and the extracellular domain. Extrinsic proteins, that
are located in the inner or outer surface of the membrane, are proteins that enable
the recognition of the cell (e.g. antigens) in the outer face, or that allow metabolic
processes (e.g. adenylyl cyclase) in the inner face of the bilayer [9].

Cell transports

Despite the essential role of the extrinsic and intrinsic proteins, several mech-
anisms have to be considered essential for the transportation of ions, the passage
of small molecules, macromolecules, and proteins from the extracellular matrix to
the cytoplasm and vice-versa, the nutrition and the general functional activity of
the cell. The membrane is semipermeable, that means it allows the passage of
only certain types of ions. So far, it has been discovered that the most common
physiologic system of communication with the external environment can be passive
or active.
The passive transport occurs without the energy expenditure but it ruled by the
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presence of a concentration gradient. Following this concentration gradient, the
molecules or the ions cross the membrane. The passive transport can occur di-
rectly through the phospholipidic bilayer, in the case for example of the simple
diffusion, or through transmembrane proteins, such as the so-called aquaporis that
enable the osmosis, or the so-called ion channels that lead the facilitate diffusion.
In particular, ion channels lead the transportation of specific inorganic ions from
the extracellular fluids to the cytoplasm and vice-versa (mainly Na+, K+, Ca2+,
and Cl−) with any energy expenditure [2]. As consequence, a difference of potential
is generated into the two sides of the membrane.
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(b) Facilitated transport

Figure I-3 – Example of passive transport trough the cell membrane. Figure I-3a
shows the simple diffusion. Figure I-3b depicts the facilitate transport: it allows
the movement of molecules from the most to the least concentrated compartment
through A) non saturable channels or B) saturable carriers.

Differently from the passive transport, in which the movement is in the direction
of the concentration gradient, active transport uses cellular energy (such as ATP
hydrolysis) to move molecules against the concentration gradient through specific
transmembrane proteins [45].
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Figure I-4 – Active transport: a carrier, with the use of ATP hydrolysis, allows
the movement of a molecule from the least concentrated compartment to the most
concentrated one.

Membrane potential and the electric properties of the cell membrane

The membrane potential is the difference of electric potential between the cy-
toplasm and the extracellular matrix of a cell. A typical membrane potential of
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a cell is calculated in mV and lays in the range of -40 to -80 mV, meaning that
outside the cell, the fluids present a slightly higher concentration of positive ions,
in comparison to the cytoplasm. The membrane itself can be considered as an
insulator, allowing the passage of ions, thanks to the ion transporters and chan-
nels. Ion transporters force the passage of ions against the gradient, while the ion
channels, as already said, allow the passage of the ions following the gradient of
concentration. Membrane potential fulfills two main functions: firstly, it provides
the power to perform several molecular functions (such as the ATP production
within the mitochondrion), and secondly, a variation of the membrane potential
allows the activation of several excitable cells, such as the neurons [2, 10, 39]. The
polarization of a cell is made possible thanks to the contribution of several trans-
porters and channels, such as the Na+/K+-pump, that actively bring within the
cell two K+ and transport outside the cell three Na+ through an ATP activity [50],
and the K+ Leak Channel, that allows the entrance of K+ in the cell. This latter
is one of the most relevant components that maintain the membrane potential in
live cells. When the Na+/K+-pump forces inside the cell the K+ ions, a gradient of
concentration is formed, and K+ may diffuse again through the cell thanks to the
K+ Leak Channels. Furthermore, since the cytoplasm is more negative than the ex-
tracellular matrix, an electrical gradient takes place, a phenomenon that attracts
back K+ in the cell. When the equilibrium between the electrical and chemical
gradients is reached, the resting potential of the cell is observable (∼ −40/ − 80
mV) [3,31].

Electroporation

Electropermabilization or Electroporation is a biological response of the cell to
the effect of an electric field that increases the membrane permeability, allowing
the passage across the membrane to cells that would be blocked in standard condi-
tions. This process lies in the cell membrane characteristics. The cell membrane,
as aforementioned, is composed by a bilayer, whose has the main goal of forming a
physical and electrical barrier towards the external fluids, maintaining an electric
potential of ∼ −40/−80 mV. When cell transmembrane potential reaches a thresh-
old value (normally observed at 1 V), an electric breakdown of the cell membrane
is generated. The lipids inside the membrane re-orient to form small openings,
forming a pore, and allowing the water to pass, as depicted in Figure I-5 [44].
Moreover, it has been observed that the application of such a potential difference
in the cell membrane increases its permeability sensibly [11,24,31].

Dependently from several factors, such as the intensity of the voltage, the ex-
posure time or the number of applications, we may talk about reversible electro-
poration (RE) or irreversible electroporation (IRE). When the electroporation is
reversible, the cell returns to its normal states after several minutes. On the other
hand, the IRE occurs when the membrane is altered enough that it loses its role
of a physical barrier. Then, the cytoplasm is reversed in the extracellular matrix
leading the cell death.

The first publication regarding the subject of the membrane break-down was
written in 1958 [47], but the study of this phenomenon had a important growth
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Figure I-5 – The application of an electric pulse on a cell, that increases the
transmembrane voltage to a value greater than 1 V, produces a structural change
of the membrane and to the formation of pores.

during the 70’s [1, 8, 15, 36]. Dating from this period is also the first experiment
on living cells trying to extract components from the cytoplasm. The development
of the gene therapy during the 80’s has boosted the studies of the application of
the electroporation to the gene transfer [37]. Today, the main applications of the
electroporation concern clinical uses.

The electrochemotherapy (ECT), which found clinical validation in 1991 [34],
consists of the local or systemic injection of a non permeant cytotoxic molecule in a
tumoral tissue and then the application of a RE pulse. The effect is a considerable
augmentation of the absorption of the molecule by the electroporated cells. The
advantage of this treatment is, since its local application, the reduction of the side
effects of classical chemotherapy. On the other hand, the ECT found difficulties in
its application, due to the use of electrodes. In fact, the ECT is suitable for acces-
sible tumors (cutaneous, subcutaneous tumors or tumors attainable after surgery)
but it is more difficult to be used percutaneously for deep-seated tumors.

Also the IRE is used in tumor treatment, in particular for the tumor abla-
tion [16,33]. Compared with the most common radiofrequency ablation, the abla-
tion technique by IRE is less damaging for the extracellular matrix and the nearby
tissues.

The electroporation also finds remarkable applications in the food industry, for
instance in the preservation and sterilization of food [22,49].

Objectives of the thesis

Even if the electroporation is widely used, several aspects of the phenomenon
are still unexplained, as the effective structural changes of the membrane. Others
required further studies, as the correlation between the electroporation treatment
setup (intensity of the electric field, duration and number of the pulses, interpulse
duration etc...) and its effects (permeabilization rate, permeabilization extension,
survival cells quantity, RE-IRE threshold). In fact, the electroporation is an ac-
tive research subject, and its community counts more than 500 members and is
still increasing, due to the relevance of its applications. This community involves
biologists, medics, electrical engineers, physicians and mathematicians.
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The role of the mathematician is to develop mathematical models capable of
describing the electroporation process with simplicity and efficacy. The simulations
deriving from mathematical, biological and physical knowledge is a solid support
for the in-vivo or in-vitro experiments, requiring a relatively low time and financial
cost. In [19] for example, the authors model the electrical field diffusion during
IRE ablation, in [48], the authors worked on molecular dynamics and in [29] on
conducting state of the membrane.

This thesis proposes innovative methods for the analysis and the understanding
of the phenomenon. The common thread of the thesis is the experimental measures
obtained with the new 4-electrode setup proposed by Garcia-Sanchez et al. [20] to
investigate the cell membrane electrical response to high electrical stimulation.

Linking the measures to an equivalent R|C circuit is far from trivial since the
device needs calibration, to account for all the distortion due to the set-up. The
first part of the thesis consists in calibrating and estimating the parameters of a
well-designed equivalent circuit (EC) to model the 4-electrode experiment in the
context of cell monolayer electroporation.

The particularity of 4-electrode setup is to used 2 electrodes to impose the
current and 2 other passive electrodes to measure the electrical response of the
sample. This complexifies dramatically the mathematical model, because instead
of the standard use of Dirichlet-to-Neumann maps as in tomography (the voltage
is imposed on the electrode and the current is measured on the same electrode),
the 4-electrode setup makes appear the impact of passive electrodes on the ap-
plied current, leading to a so-called floating potential problem. In parallel, the
4-electrode device has the huge advantage to limit the influence of bound water
in the vicinity of the electrode measurements. Indeed, the thickness of the inter-
facial water, with specific electrical properties is directly linked to the voltage of
the electrodes. For passive electrodes, the thickness is thus much smaller than
in the standard 2-electrode set-up. The second part of the thesis is dedicated to
analyze an elliptic PDE describing the electroquasistatic approximation of the elec-
tric potential in the 4-electrode setup. The main difficulty - which is a common
problem with impedance measurement techniques - is due to the presence of these
inactive electrodes which are highly conductive and thin. The classical way to
model these inactive electrodes consists in using a penalization approach but this
leads to numerical instabilities. We propose in this thesis an asymptotic analysis
to reduce the model, which also leads to a more accurate and a more robust strat-
egy called floating potential (FP) approach. Finally, we use this FP approach to
approximate the electrical potential with the 4-electrode setup for cell monolayer
electroporation. We compare the simulated impedances with the measured and
calibrated impedances and we obtain very satisfactory results. In this context, the
main contributions of this thesis can be summarized in the following points.
• A new calibration strategy for the 4-electrode device of [20] has been proposed.
• We designed an electrical circuit and estimated its parameters using calibrated
impedance data for cell monolayer electroporation.
• Asymptotic analysis of the conductivity problem with high conductive thin pas-
sive electrodes.
• Validation of the floating potential PDE model for the 4-electrode setup.
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Outline of the PhD thesis
The topics covered by this PhD thesis are developed in three chapters.

Chapter 1 - Calibration strategy of electrical circuit with an
arranged 4-electrode setup for electroporation

This chapter concerns the data processing related to the electroporation of a
cell monolayer. The data are the result of an Electrical Impedance Spectroscopy
(EIS). In the beginning, we present the electroquasistatic approximation and we
introduce a simple electric system. The goal is to give all the notions necessary
to the reading of this chapter. For the same reason, we present the 4-electrode
measurement system and the three-reference calibration strategy, both used in the
electroporation experiment. Once we have introduced the experimental context,
we formalize a new strategy to calibrate the measured impedance data. Finally, we
develop a EC model and we use the calibrated observations to estimate the model
parameters. The parameter estimation shows the effects of the RE pulse on the
cell monolayer.

Chapter 2 - Asymptotic analysis of the conductivity problem
with high conductive thin passive electrodes

The focus of this chapter is to model the presence of a thin inactive electrode
inside an electric field. This problem arises from the 4-electrode measurement
system, in which two electrodes are used to measure the voltage of a sample. We
consider a domain Ω of conductivity σ0 with a hole. We denote by Γint the interface
between the hole and Ω, and Γ the other part of the boundary of Ω. To avoid
singularity, we assume that the thin highly conductive electrode Oε surrounds Ω.
Γε denotes the boundary of Ω ∪ Oε ∪ Γ. The conductivity σε of the assembly
Ω ∪ Oε ∪ Γ reads

σε(x) =

{
σ0

1
εk
σ1,

where σ1 is of the same magnitude order as σ0. The electrostatic potential uε
satisfies

∇ · (σε∇uε) = 0, in Ω ∪ Oε
uε|Γint = γ, ∂nu

ε|Γε = 0.

Thanks to an asymptotic analysis, we show that for k ≥ 2, uε can be approximated
in Ω by the solution (u0, α0) ∈ H1(Ω)×R to the floating potential problem:

∇ · (σ0∇uε) = 0, in Ω

u0
Γint

= γ, u0|Γ = α0,where α0 is such that
∫

Γ

σ0∂nu
0ds = 0.

We also show that the penalization method, which consists in solving the problem
satisfied by uε generates numerical instabilities. The so-called floating potential
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problem is standard in electrical engineering, however its numerical implementation
generally requires to modify the numerical method by using a specific boundary
element method [4]. In this chapter we propose a trick based on Dirichlet-to-
Neumann maps to replace the floating potential by a Dirichlet condition. The price
to pay is to solve 2 similar elliptic problems, but this can be computed in parallel,
and it has the huge advantage to be used on standard finite element/difference
softwares, without any modification.

Chapter 3 - Validation of the floating potential model for an
arranged 4-electrode setup

The last chapter links the topics treated in the first two chapters. We develop a
model to reproduce the electroporation experiment, representing the measurement
electrodes with a FP. We extend the FP strategy presented in Chapter 2 for one
passive electrode to n passive electrodes. The result is a numerical simulation of
the experiment that we use to validate all the innovative elements presented during
the thesis.

38



Chapter 1

Calibration strategy of electrical
circuit with an arranged 4-electrode
setup for electroporation

1.1 Introduction

The cell establishes with its external environment an equilibrium consisting
of an opposition between electric potential and concentration gradient [31]. Sur-
rounded by its membrane, the cell uses it to handle the exchanges with the external
environment. The cell membrane has the double role of insulator and diffusion bar-
rier for the movements of ions. The membrane is semipermeable, that means it
enables the passage of certain types of ions. Depending on an electric transmem-
brane voltage, the proteins present on the cell membrane, called ion pump proteins,
push these ions to pass through the membrane producing a concentration gradient
across the membrane. The ion channels then enables the passage of these elements
under the influence of this concentration gradient. The result of this opposition
between ion flows is that the transmembrane potential is held at a relatively stable
value, called the resting transmembrane voltage. This resting could be perturbed
when the cell is subjected to an electric field and produce consistent changes of the
membrane permeability [11]. The application of an electric pulse, to increase the
transmembrane voltage over a certain threshold (normally 0.2-1 V), has as effect
a rearrangement of the molecular structure of the membrane and the formation of
pores on it. Due to the presence of these pores, the membrane permeability in-
creases, leading an increased transport of ions, molecules and even macromolecules.
This phenomenon is called electroporation.
But how is it possible to know if the applied pulse is strong enough that the electro-
poration occurs? How long the permeability variation persists? A way to answer
these questions could be by measuring the electrical properties of the membrane,
such as permeability and conductivity, that during the electroporation are totally
different from the standard values. To this end, a valid and widely used tool is the
Electrical Impedance Spectroscopy (EIS). The impedance of an electric circuit is
a complex number expressing its ability to resist to the passage of current under
the effect of an external voltage at some AC frequency. Measuring the variation
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of the impedance of an electric circuit as function of the frequencies produces an
electrical impedance spectroscopy. The EIS describes the response of the electric
circuit at an external perturbation, and it is useful to study its physical and chem-
ical internal structure.
The cell is nothing more than a (really complex) electrical circuit and García-
Sánchez et al. [20], have used the EIS to analyse the effect of an electroporation
pulse on a cell monolayer. The first part of this chapter consists of providing the
theoretical knowledge of electromagnetism behind this experiment and in describ-
ing its execution and the resulting data. In particular, an important part focuses
on the technique used to perform the EIS: the 4-electrode measurement method.
Leaving the details for the next, the 4-electrode measurement method uses a cou-
ple of electrodes to apply a pulse on the system under study and another couple
of electrodes to measure the effects of the pulse. This technique is widely used to
perform the EIS, and it is preferred to the 2-electrode technique, which instead
uses the source electrodes to deliver the pulse and to measure the system response,
producing some distortion in the measurement [25,43]. As all the chemical-physical
measurement techniques, also the 4-electrode method needs a calibration strategy
to make its measurement exact and accurate. The standard calibration strategy is
the three-reference method, that uses three measurements as references to define a
range of impedance module in which the calibration can be performed [5]. In this
work, we show why this strategy of three reference measures is not enough robust
and we propose a new calibration strategy which is more robust and gives better
results.
Once the measurement system is calibrated, the EIS data show exactly the re-
sponse of the analysed system to an external electrical perturbation. In our case,
this system is composed of the cells and the external media where they are im-
mersed. At this point, an analysis of the observation is necessary to investigate
the cell-media exchanges and to deduce if the electroporation occurs. To this end,
in this chapter, we figure out an appropriate representation by considering each
component composing the system in purely electrical terms and we investigate in
order to find an electric circuit composed only of pure electrical terms (capacitance,
resistance, inductor. . . ) which produces the same impedance of the system. This
circuit is called equivalent circuit (EC). Different electrical circuits can produce
the same shape of impedances. That is why an intuitive understanding of the
electrochemical system has to be done in order to choose the best EC, which has
a physical meaning. With an EC, it is possible to deduce an explicit formula of
the impedance. Thanks to the latter, one can have a better interpretation of the
impedance measurement: it is possible to observe separately the response of the
terms composing the under analysis system to external voltage perturbation and
thus to extract information on the capacitive and resistive characteristics of each
element.
In Section 1.2, we present the electro-quasistatic formulation. In Section 1.3 we use
an illustrative example to introduce the concepts of EIS of an electric system and
of EC. Moreover, in this section we present the 2-electrode and 4-electrode mea-
surement methods and the three-reference calibration for the latter. Section 1.4
exposes the experiments performed by our collaborator, describing the experiment
conditions and the resulting data. In Section 1.5, we talk about the limit of the
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three-reference calibration and we propose an new calibration strategy. In the
end, in Section 1.6, we propose an EC model and we estimate and interpret its
parameters. Conclusion and perspectives are given in Section 1.7.

1.2 Definitions and Electro-quasistatic approxima-
tion

Suppose to be known the concept of electric charge, we recall that a moving
or standing charge produces two fields of electrical forces: the electric field E and
the magnetic field B. The flow of one or more charges under the effect of electrical
forces produces an electric current.

Definition 1. The amount of charge passing per unit time and unit area through a
surface placed perpendicular at the flow is called the current density and is defined
by a vector denoted by j. Let be S a surface and nS the unit vector normal to S,
the amount of current IS passing through S per unit time is given by

IS =

∫

S

j · nS dS. (1.1)

In a material, the current evolution depends on its physical and chemical char-
acteristics. Then we can define different electrical characteristics depending on the
material.

Definition 2. The ability of a given material to conduct the passage of the current
is the so-called conductivity, denoted by σ. The SI unit of electrical conductivity
is Siemens per meter (S·m−1). The inverse of the conductivity is the resistivity,
denoted by ρ = 1

σ
, and representing the ability of the material to resist the passage

of charges. The SI unit of electrical resistivity is in Ohm per meter (Ω·m) [30].

Definition 3. The permeability of a material is its property describing how dense
a magnetic field would be if the same amount of current was passed through it. The
SI unit of electrical permeability is henries per meter (H·m−1) and its symbol is µ.

Definition 4. The ability of a material to store electric charges is called permit-
tivity and it is denoted by ε. The permittivity is measured in farad per meter
(F·m−1) [30].

Let a material of domain Ω with permittivity ε, conductivity σ and permeability
µ. The flow of electric particles produces the diffusion of an electric field E(x, t)
and a magnetic field H(x, t), depending on the position x and the time t. Maxwell-
Faraday and Maxwell-Ampere equations read in Ω as:

∇× E = µ∂tH, (1.2)
∇×H = ε∂tE + σE + j. (1.3)

For biological applications, it is well known that E can be assumed to be an
electro-quasistatic field i.e. µ∂tH � 1. Therefore, Maxwell-Faraday equation (1.2)
becomes

∇× E = 0, in Ω.
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It is commonly known that a such field of forces is conservative, then one can define
a scalar function u such that

E = −∇u in Ω. (1.4)

where u corresponds to the electric potential. It represents the work done against
the electric field E to move one unit of charge from a reference point x0 to the
point x:

u(x, t) = −
∫ x

x0

E(y, t) · dy.

u is defined at least of an additive constant and its definition depends on the choice
of the point x0 [18]. On the other hand, the definition of the electric field E does
not depend on this constant.
Using the relation between E and the electrical potential u given in Equation (1.4),
Maxwell-Ampere equation (1.3) becomes

∇×H = ε∂t(−∇u)− σ∇u+ j. in Ω. (1.5)

Considering the divergence of previously equation, we obtain

∇ · (ε∂t(−∇u)− σ∇u) = 0, in Ω. (1.6)

This system has to be completed with boundary conditions depending on the con-
sidered experiments. They can be, for instance, Dirichlet, Neumann or Robin type
boundary conditions.
In case of an alternative current (AC) in time-harmonic regime, the current density
as the form

j(x, t) = ĵ(x) eiωt,

where the peak ĵ(x) ∈ R3 depends on the position x ∈ Ω. ω is called angular
frequency, measured in radians per second (rad · s−1). The angular frequency can
be write as ω = 2πf where f is the current frequency, measured in Hertz (Hz).
For the linearity of Equation (1.5), the potential u assumes a sinusoidal form as
follows:

u(x, t) = û(x)eiωt, in Ω, (1.7)

where û is the peak of the potential u.
In time-harmonic regime, Equation (1.6) becomes:

∇ · ((σ + iωε)∇û) = 0 in Ω.

This equation has to completed with boundary conditions.
We want to conclude this section by the definition of the electric impedance.

Definition 5. The electric impedance is a measure of how a given system blocks
the current flow when a voltage is applied. More precisely, suppose that some charge
pass from a surface to another surface. The current flow between these two surfaces
implies a difference of potential. We define the impedance given at one surface
– considered as the measurement surface – as the ratio of the potential difference
and the current flowing across this surface.
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Considering the flow of charges which crosses over two surfaces S1 and S2 and
Neumann boundary conditions, the impedance becomes

Z =

1

|S2|

∫

S2

u dS − 1

|S1|

∫

S1

u dS

∫

S1

j · nS1 , dS

. (1.8)

1.3 Illustrative example of electrical characteriza-
tion of a sample by impedance measurement

Electrical Impedance Spectroscopy

As evidenced in the previous section, in order to totally determine the whole
electromagnetic phenomena of a given system, the electric field (or the potential),
the magnetic field and the electric properties such as the permittivity, the conduc-
tivity, and the permeability have to be known. Often, in a biological system, it is
not possible to compute these physical quantities directly, then a indirect strategy
has to be employed. As already said, the EIS is widely used to have an overview of
its effective electrical characteristics, as the permittivity ε and the conductivity σ.
The EIS is used in Section 1.4 to investigate the structural changes of a cell-culture
after the application of an AC pulse, through the analysis of the cells conductiv-
ity variations. The interpretation of the resulting data consists one of the main
purpose of this work. Goal of this section is to provide the theoretical principles
which facilitate the understanding of the future discussions.

A simple electrical system
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⇠
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(a) Circuit electrodes-sample.

R

C

(b) R|C circuit schema.

Figure 1.1 – Left: Fundamental electrical system, composed of two plate elec-
trodes surrounding a material sample. Right: the equivalent circuit.

We introduce the simplest electrical system, represented in Figure 1.1a. In a
space-time coordinate system (x, t), with x = (x, y, z) ∈ R3 and t ∈ T ⊆ R, a
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rectangular parallelepiped domain Ωs, with section A = l×h and width d, is filled
by a homogeneous sample material of which we want to determine the permittivity
εs and the conductivity σs. To this end, two plate and parallel electrodes, with
surface A, are placed respectively in two parallel sides of Ωs, indicated with Eα
and Eβ. Through the electrodes, one can impose the passage of an AC signal on
the material in time-harmonic regime, that means that we neglect the temporal
dependence. In this example the current density ĵ is supposed to be known and to
be uniform on the electrode surfaces:

ĵ(x)|x∈Ek := ĵk, k ∈ {α, β}.

with ĵk =
(
j

(k)
x , j

(k)
y , j

(k)
z

)
∈ R3, k ∈ {α, β}, constant vectors. We assume that there

is no current dissipation in the sample neither current exchanges with the exterior
environment. Let nk be the normal vectors to the surfaces Ek, k ∈ {α, β} directed
towards the dielectric. Using the principle of charge conservation we obtain that

ĵβ · nβ = −ĵα · nα.

Thus, there is no current flow across the other boundaries. In this hypothesis, the
spatial evolution of the electric potential û(x) is given by the solution of a Laplacian
problem, with non homogeneous Neumann conditions on the electrode-dielectric
interfaces and homogeneous Neumann conditions otherwise:





−∇ · ((σs + iωεs)∇û) = 0 in Ωs

(σs + iωεs)∂nαû = ĵα · nα in Eα,
(σs + iωεs)∂nβ û = −ĵα · nα in Eβ,
∂nû = 0 in ∂Ωs \ {Eα ∪ Eβ},

(1.9)

where n is the unit normal vector to ∂Ωs inwardly directed. In order to uniquely
determine û, a Gauge condition is imposed for instance

∫
∂Ωs

û = 0. This consists
in adding a constraint which removes the redundant degrees of freedom in field
variables, for more details see [27].

Simple Calculation to link RC circuit to the PDE

In this section we show that, if we know the solution û of System (1.9) we can
reach a formula of the sample impedance Zs, deriving from Equation (1.8) and
depending on εs and σs. Moreover we prove that the same formula corresponds
to the impedance of a circuit R|C, stating that the latter represents a equivalent
circuit of the presented system.
Let û be the solution of System (1.9). Using Equation (1.1) and recalling the
assumption of the material homogeneity, the current through the surface Ek, k ∈
{α, β} is given by:

Îk =

∫

Ek
ĵk · nk dS

= (σs + iωεs)

∫

Ek
∂nk û dS, k ∈ {α, β}. (1.10)
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We recall that the symbol ∧ indicates the peak of the current. In fact, it is easy to
get that also the current has harmonic behaviour (but shifted of φσsεs = arg(σs +
iωεs) respect to the potential). That is why, as done for the potential, we neglect
its time dependence.
We consider the Cartesian coordinate system as depicted in Figure 1.1a. The
surface Eα and Eβ are parallel to the yz plane and they correspond respectively to
the coordinate xα and xβ and on the x axis, with xβ − xα = d. Since the charge
distribution on the electrodes is uniform, any surface of Ωs parallel to plan yz is
equipotential and the potential varies only along the x direction. The sample is
homogeneous and System (1.9) is linear, hence the solution û in the form

û(x) = Csx+Ds,

with Cs = jx
σs+iωεs

and Ds determined by the Gauge condition.
Using the same coordinate system, the current can be rewritten as

Ik = (σs + iωεs)

∫

Ek
(−1)δk

d

dx
(Csx+Ds)dS

= (−1)δk(σs + iωεs)CsA, k ∈ {α, β},

with

δk =

{
0 if k = α

1 if k = β
.

The voltage V(α,β) between the two electrodes is given by

V(α,β) =
1

|Eβ|

∫

Eβ
û dS − 1

|Eα|

∫

Eα

û dS

= dCs,

and applying Equation (1.8) to the system in the Cartesian coordinate system
presented before, we have that the sample impedance Zs is given by

Zs(ω) =
V(α,β)(ω)

Îα(ω)
=
−V(α,β)(ω)

Îβ(ω)
=

d

(σs + iωεs)A
, (1.11)

with magnitude and phase equal to

|Zs(ω)| = d√
σs2 + (εsω)2A

, (1.12)

arg(Zs(ω)) = −φσsεs = − arctan

(
ωεs
σs

)
. (1.13)

Equation (1.11) shows that, if the voltage between the two electrodes and the cur-
rent flowing through their surfaces are known, one can compute the impedance
imposed by the dielectric placed in the middle. This is the principles behind the
so-called 2-electrode measurement technique, widely employed in the impedance
measurement. This technique will be discussed in Section 1.3.
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Equation (1.12) and Equation (1.13) show how the permittivity εs and the conduc-
tivity σs of the sample can be estimated using the impedance and system geometry.
The following proposition allows to define two properties of an electric system that
make it possible to link the PDE System (1.9) and a R|C circuit: the resistance
and the capacitance.

Proposition-Definition 1. It is easy to see that we have the following limit:

lim
ω→0

Zs(ω) =
d

σsA
.

The limit is denoted by R

R =
d

σsA

and it is called resistance. It corresponds to the capacity of an electrical system to
resist to the flow of the current.
We also have the following limit:

lim
ω→∞

iωZs(ω) =
d

εsA
.

The limit is denoted with 1
C

where

C =
εsA

d

is called capacitance and it coincides with the ability of an electric system to store
electrical energy.

Remark 1. The permittivity εs is given by:

εs = ε0εr

where ε0 is the electrical vacuum permittivity (8.85·10−12 F· m−1) and εr the relative
permittivity depending on the material where the current flows.

It is very easy to show using Definition (1.11) that there is a relation between the
impedance, the resistance and the capacitance given by the following proposition:

Proposition 1. Considering a system as presented in Figure1.1a where a AC
signal is imposed and denoting by Zs its impedance, R its resistance and C its
capacitance, we have

1

Zs
=

1

R
+ iωC. (1.14)

This formula corresponds to the impedance of a R|C circuit (depicted in Fig-
ure 1.1b), i.e. a resistance R and a capacitance C coupled in parallel. Thus, it
comes that for the system exposed in this sections and presented in Figure 1.1a,
the corresponding EC is a R|C circuit.

Remark 2. An EC does not take into account the geometrical properties of the
system under analysis. That is why using an EC we can study the resistance
and the capacitance related to the elements composing the circuit the but not the
conductivity and the permittivity which are specific properties of the the material
whose they are composed.
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Impedance spectroscopy data representation

(a) Nyquist plot.

(b) Bode plot

Figure 1.2 – Presentation of the impedance data respectively in a Nyquist plot
(up) and in a Bode plot(down)(σ = 1.5S·m−1, d = 10−2m, A = 10−4m2, εr =
80F·m−1).

There are several ways to represent the EIS data. The representation of an
impedance Z on the complex plan, plotting the real part <(Z) on the x-axis and
the imaginary part =(Z) on the y-axis, is the so-called Nyquist plot. We present
in Figure 1.2a the Nyquist plot associated with the sample impedance Zs, given by
Equation (1.11): the frequencies f are taken between 1MHz and 105MHz, where
f = ω

2π
. The y-axis is chosen in negative notation. Each point of the plot cor-

responds to the impedance related to one frequency. In the Nyquist plot, the
impedance can be seen as a vector with module |Zs| and his direction is given
by the angle with the x-axis that is equal to the impedance phase arg(Zs). For
frequencies ∼ 106 (on the right part of the plot), the resistive aspect is dominant:
<(Zs) = R and =(Zs) = 0. For greater frequencies, the capacitance C gives his
contribution to the total impedance: the imaginary part of the points is bigger
when the frequency rises. This happens until the AC frequency value joins the
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critical relaxation frequencies fc = σ
2πε

. The critical frequency fc corresponds to
the midpoint transition where <(Zs) = =(Zs). For frequencies greater than fc (left
part of the plot), the points approach the imaginary axis because the capacitive
aspect is dominant, Zs ∼ 1

iωC
. The impedance is now inversely proportional to the

frequency and then it falls to zero.
In the Nyquist plot, the information about the frequency is not directly provided.
Moreover, the Nyquist plot does not show clearly the low impedance values, typ-
ically observed at very high frequencies, as in the example exposed. Another way
to present the impedance data is by the Bode plot. The Bode plot consists of rep-
resenting the impedance phase and impedance module as a function of frequency.
Figure 1.2b shows the Bode plot related to Equation (1.12) and Equation (1.13)
for frequencies between 0.1MHz and 106MHz. Observing this plot, one can reach
the same conclusions expressed for the Nyquist plot, but it possible to focus on
the frequency information. The phase arg(Z) is equal to zero for low frequencies,
< 1MHz, then the impedance has an imaginary part equal to zero and the magni-
tude is equal to the real part: the impedance is totally resistive and then |Z| = R.
For frequencies between 1MHz and 105MHz, the module decreases and the phase
grows, then the imaginary part is non-zero: the total impedance is a combination
of both capacitive and resistive impedances. For frequencies greater than 104MHz,
arg(Z) tends to −90◦ and the module |Z| tends to zero: the impedance becomes
totally capacitive and it falls to zero for greater frequencies.

Constant phase angle element

1
1 1

0.8

(↵̃ = 0.8)

Figure 1.3 – Comparison between the modules impedance of a R|C ideal circuit
and a R|Q circuit with α̃ = 0.8.

In this section, we present an ideal electrical system, with completely smooth
electrodes and homogeneous sample material in the middle, to which corresponds
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the Bode plot depicted in Figure 1.2b. In biological applications, a capacitor, such
as a lipid bilayer, does not reproduce the same ideal behavior. If a voltage is
applied to an electrode not completely smooth or to an inhomogeneous material,
the resulting global current is composed of many current filaments, different from
each other. The result is frequency-dependent effects as, for example, a capacitive
effect that is manifested at higher frequencies. The resulting impedance plot differs
from the ideal case shown here. Instead of a Bode plot as in Figure 1.2b, where the
magnitude decreases with slope equal to 1 for frequencies higher than 100 MHz,
the Bode plot of a non-ideal capacitor has a slope α̃ < 1. A way to reproduce this
behavior mathematically is by the so-called constant constant phase angle (CPA)
element for which the impedance is expressed by

ZCPA =
1

Q(iω)α̃
=

1

Qωα̃

[
cos
(
α̃
π

2

)
− i sin

(
α̃
π

2

)]

with α̃ ∈ [0, 1] and Q [omh−1· sα̃] is the CPA coefficient. This model hypothesis
depends on mathematical analysis more than physical theory. A CPA element is
an EC used to represent a circuit element whose phase angle is AC frequency-
independent. For example, it is employed to model a bilayer capacitor, typically
used for EIS experiments. In EIS experiment, the electrodes are often in contact
with an electrolyte, i.e. an electrically conducting solution. Because of the high
current intensity, a thin water layer appears in the electrode-electrolyte interface,
(more details in Section 1.3). Due to the difference in conductivity between elec-
trolyte and water, some more realist boundary conditions could take into account
to model the system. Then some more explication about the link between CPA
element and bilayer capacitor could be available.

The 2-electrode measurement method and its limits
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(b) During the measurement.

Figure 1.4 – Under the effect of the electric field, the free ions present in the
sample move towards the electrode-sample surface creating an ion double layer
that affects the measurement. The phenomenon is called electrode polarization.

Still referring to the 2-electrode system given in Figure 1.1a, the 2-electrode
technique is resumed as follows:
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1. An AC signal Iα [resp. an AC voltage V(α,β)] is imposed between the two
electrodes and a pulse crosses the sample.

2. The voltage V(α,β) [resp. the current Iα] between the two electrodes is then
measured.

3. The sample impedance is approximated by the ratio of the voltage V(α,β) on
the current Iα.

Then, in the ideal case, the impedance Z2E measured with a 2-electrode technique
corresponds to the sample impedance given by Equation (1.11).

Z2E ' Zs.

As shown in the formula, it is only an approximation because this measurement
technique, especially in a biologically or highly conductive system, finds some limit.
All conductive systems contain free ions. When a metallic electrode is in contact
with a sample consisting in a saline solution or in biological tissue, under the
effect of an electric field, the ions present in the sample tend to move towards the
electrode-sample interface causing the formation of an ionic double layer in such
region [25, 42]. We can imagine it as a water layer whose molecules are oriented
according to the electric field. As a consequence, when a voltage is imposed by
the electrodes, a significant electrical polarization is provoked. This phenomenon is
known as electrode polarization (EP). The resulting capacitance, caused by the EP,
can dominate the signal at lower frequencies and affect the impedance measurement
in the case of a 2-electrode system. As Figure 1.4 depicts, because the EP, the
voltage V (EP )

(α,β) between the two electrodes is

V
(EP )

(α,β) = VEP1 + V(α,β) + VEP2,

where VEP1 and VEP2 are the voltage of the two double layers and V(α,β) the sample
voltage computed in Section 1.3. Then Z2E is equal to:

Z2E = Zs +
VEP1 + VEP2

Iα
.

It follows that, not only the measurement is distorted, but also the difference of
potential effectively seen by the sample is not what is theoretically imposed by the
device.
Then a readjustment of the measurement is necessary. A way to avoid the influence
due to the EP is to use a 4-electrode measurement technique that is exposed in
the next section.

Four-electrode impedance measurement method

A 4-electrode system is used to perform impedance measurements of a given
sample. This technique, born from the need to avoid the distortion induced in a
2-electrode measurement by the EP effect, consists in to employ two electrodes
to impose the current and two ulterior electrodes to measure it. It is possible to
increase the intern resistance of the measurement system connected to these two
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Figure 1.5 – The electrical properties εs and σs of the sample (in red) are estimate
using a 4-electrode measurement system composed by the pair of active electrodes
in Eα and Eβ (in grey) and the pair of measurement electrodes Eγ and Eδ (in
yellow). In this example, in order to estimate σs and εs, is fundamental to know
the electrical properties σm ans εm of the surrounding material (in blue) and the
dimensions of the different elements composing the system.

last electrodes in order to have a weak current flow: this allows to measure the
current (or the voltage) passing on the sample but also to reduce the EP effect on
the measurement electrodes [5, 43].
Referring to Figure 1.5, in a space coordinate system with x = (x, y, z) ∈ R3, let’s
image a rectangular parallelepiped domain Ω (section A = l×h and width d′) filled
by a homogeneous sample, occupying at the center a rectangular parallelepiped
domain Ωs (section A = l × h and width d), and by a surrounding homogeneous
conductive material which occupies the domains Ω1 and Ω2, Ω1∩Ω2 = ∅. We want
to estimate the sample permittivity εs and conductivity σs knowing the geometric
characteristics of the domains Ωs, Ω1 and Ω2, the permittivity εm and conductivity
σm of the surrounding material.
Since the homogeneity of both materials, all the passive electrical properties are
real constant numbers. The intersections between the sample and the surrounding
material consist of two rectangles with area A. They are noted as Ωs ∩ Ω1 = Γ1

and Ωs ∩ Ω2 = Γ2. As for the 2-electrode system, two plate electrodes of surface
A are placed respectively on two parallel sides Eα and Eβ of Ω. Connected to
the potential generator, they are employed to impose an alternative current signal
from Eα to Eβ. Two more electrodes, with height l and width d′′, connected to a
voltage analyzer, are placed on the surface Eγ and Eδ at the edges of the sample to
measure its voltage. We assume that the current flowing through these electrodes
is negligible, thanks to a huge resistance inside the voltage analyzer. We assume
that the potential and the current are continuous across the surface Γ1 and Γ2.
We denote the current density in Eα with ĵα ∈ R3 and the unit normal vectors
to Eα and to Eβ directed towards the dielectric respectively with nα and nβ. We

51



CHAPTER 1. CALIBRATION STRATEGY

assume that there is no current dissipation in both sample and surrounding material
neither exchanges with the external environment. Consequently, for the principle
of current conservation, the amount of current crossing the surface Eα is the same
through Eβ. Following this hypothesis, we impose on the sample an AC signal by
the active electrodes Eα and Eβ:

j(x)|x∈Eβ · nβ = −jα · nα.
The potential û is given by the solution of the following problem:




−∇ · ((σs + iωεs)∇û) = 0 in Ωs,

−∇ · ((σm + iωεm)∇û) = 0 in Ω1 ∪ Ω2,

û|Γ1
− = û|Γ1

+ ,

(σm + iωεm)∂nαû|Γ1
− = (σs + iωεs)∂nαû|Γ1

+ ,

û|Γ2
− = û|Γ2

+ ,

(σs + iωεs)∂nαû|Γ2
− = (σm + iωεm)∂nαû|Γ2

+ ,

(σm + iωεm)∂nαû = jα,x · nα in Eα,
(σm + iωεm)∂nβ û = −jα,x · nα in Eβ,
∂nû = 0 on ∂Ω \ {Eα ∪ Eβ},∫

Ω

ûdx = 0

(1.15)

where n is the unit normal vector at ∂Ω inwardly directed. Γ−1 and Γ+
1 are the

surface of Γ1 in contact respectively with Ω1 and Ωs. Γ−2 and Γ+
2 are the surface of

Γ2 in contact respectively with Ωs and Ω2.
We consider the Cartesian coordinate system as in Figure 1.5: the surface Eα, Eβ,
Γ1 and Γ2 are parallel to the yz plane and they correspond respectively to the
coordinate x = 0, x = d′, x = x1 = 1

2
(d′ − d) and x = x2 = 1

2
(d′ + d). As seen for

System (1.9), in this frame of reference and since both materials are homogeneous,
the solution of System (1.15) has the form

û(x) =





Csx+Ds in Ωs,

C1x+D1 in Ω1,

C2x+D2 in Ω2.

If we consider the so-called transmission conditions of System (1.15)




û|Γ1
− = û|Γ1

+ ,

(σm + iωεm)∂nαû|Γ1
− = (σs + iωεs)∂nαû|Γ1

+ ,

û|Γ2
− = û|Γ2

+,

(σs + iωεs)∂nαû|Γ2
− = (σm + iωεm)∂nαû|Γ2

+ ,

it is easy to arrive at the conclusion that




C1 = C2 =
σs + iωεs
σm + iωεm

Cs,

D1 =

(
1− σs + iωεs

σm + iωεm

)
Csx1 +Ds,

D2 =

(
1− σs + iωεs

σm + iωεm

)
Csx2 +Ds,

(1.16)
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where Ds is fixed by the Gauge condition. The effective measured voltage V(γ,δ) is
at the edges of the sample. We consider its peak V̂ , given by

V̂(γ,δ) =
1

|Eδ|

∫

Eδ
û dS − 1

|Eγ|

∫

Eγ
û dS

= Cs

(
σs + iωεs
σm + iωεm

d′′ + d

)
.

Then the voltage depends only on the sample and electrode sizes. This comes from
the hypothesis that the electrodes are placed symmetrically respect to the sample
et from the linearity of the solution.
The total current imposed on the system is the current Iα flowing across Eα. The
current peak is

Îα =

∫

Eα
jα,x · nα dS

= (σm + iωεm)C1A

= (σs + iωεs)CsA

Then the impedance computed with the 4-electrode technique corresponds to

Z4E(ω) =
V̂(γ,δ)

Îα

=
1

A

(
d′′

(σm + iωεm)
+

d

(σs + iωεs)

)
. (1.17)

Since εm and σm are known, Equation (1.17) provides an explicit formula from
which one can deduce εs and σs from the 4-electrode measurement. Moreover,
when the electrode width d′′ tends to zero, the electrodes can be considered as
equipotential surface with the same potential at the sample borders. Then we
have

lim
d′′→0

Z4E(ω) = Zs(ω),

that means that a really good approximation of the sample impedance can be
obtained with the 4-electrode measured impedance, if all the properties of Ω1 and
Ω2 are known.

A three-reference calibration method

The ideal hypothesis assumed in the previous example, i.e. the material ho-
mogeneity, the continuity of the current flow, the absence of current dissipation,
and the definition of the all smooth geometric properties, lead to deduce the ex-
plicit formula, Equation (1.17). The latter provides a way to compute the sample
properties εs and σs using the 4-electrode technique. In a real-life system, it is not
always possible to have the same ideal conditions and it is really hard to achieve
an explicit formula that globally explains the studied phenomenon. In fact, the
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real-life measurements are performed by using a measurement equipment counting
micro-electrodes, voltage analyzer, current analyzer, cable ext. Then the measured
impedance reflects not only the sample response but also the impedance imposed
by the measurement equipment. Thus the measures have to be "clean” removing
the measurement equipment effects. In this section, we present a strategy with
which we can empirically calibrate a 4-electrode strategy in order to extract the
impedance produced by the sample from the impedance measured. Once achieved
the sample impedance, an EC strategy can be implemented to estimate then the
sample electrical properties. Further details on this topic are available in [5]. In
Section 1.5, we apply the calibration strategy to an EIS experiment performed by
our collaborators.
Referring to Figure 1.6a, let us suppose that we want to compute the impedance
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(a) Four-electrode system.

Voltage 
Analyser

Current Analyser

⇠
Generator

E↵

E�

Sample

EP

EP

Electrolyte 

Electrolyte E�

E�

(b) Four-electrode system EC.

Figure 1.6 – On the left, representation of a 4-electrode system where the AC
signal is imposed by a generator of potential connected to two electrodes. Two
more electrodes are placed on the system to compute the voltage on the sample
and avoid distortions due to the polarization of the active electrodes. Current
analyzer is added to measure the total current flowing in the system.

of a sample using a 4-electrode measurement method. To this end, the sample is
placed inside a rectangular parallelepiped chamber and surrounded by a conductive
solution (electrolyte). In two parallel sides of the chamber, we place two electrodes
Eα and Eβ. Thanks to a potential generator, an AC signal Iα is imposed from Eα
to Eβ. Besides, two electrodes Eγ and Eδ, placed in one side perpendicular to Eα
and Eβ and connected to a voltage analyzer, are employed to measure the voltage
V(γ,δ),m at the edges of the sample. The reader should be aware that the mea-
sured voltage V(γ,δ),m is not the true voltage at the sample edges V(γ,δ) as wished,
but a measure that has to be calibrated because of the measurement equipment
distortion. A current analyzer is plugged into the system to measure the current
passing on it. We denote with Im the current measured by the current analyzer.
We do not take into account the geometric properties of this system and then,
differently from the example in Section 1.3, it is not possible to explicitly deduce
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the spatial evolution of the potential. On the other hand, we can consider the cor-
responding EC that is depicted in Figure 1.6b: to design the EC we have to take
into account the impedance produces by the voltage generator, by the EP of the
active electrodes, by the current analyzer, by the sample and by the electrolyte.
To quantify the measurement equipment distortion, it can be seen as a four-port
electric circuit. In fact, to any port corresponds an element of the measurements
equipment that has to be calibrated plus the sample. The elements connected to
the ports are: the voltage generator, imposing a potential V1 and current I1 = Iα;
the voltage analyzer, measuring potential V2 = V(γ,δ),m and having current I2; a
current analyzer, having potential V3 and measuring a current I3 = Im; a sample,
having potential V4 and current I4. Assuming that the ports are linearly related,
we obtain the following system:




V1(ω)
V2(ω)
V3(ω)
V4(ω)


 =




Z11(ω) Z12(ω) Z13(ω) Z14(ω)
Z21(ω) Z22(ω) Z23(ω) Z24(ω)
Z31(ω) Z32(ω) Z33(ω) Z34(ω)
Z41(ω) Z42(ω) Z43(ω) Z44(ω)







I1(ω)
I2(ω)
I3(ω)
I4(ω)


 , (1.18)

where the impedances Zij deriving from the voltage Vi and the current Ij, i, j ∈
{1, 2, 3, 4}.
Without going into the details because is not in the interest of this work, the reader
should know that this system gives an idea to how the current which reaches any
port is a function of all the elements composing the EC.
In order to avoid the polarization of the measurement electrodes, the voltage an-
alyzer has a very large value of impedance, hence the current I2 flowing on it is
negligible compare to the other currents. The current measured by the current
analyzer is suppose to be the same as that imposed, thus I1 = I3. The linear
system (1.18) becomes:




V1(ω)
V2(ω)
V3(ω)
V4(ω)


 =




(Z11(ω) + Z13(ω)) Z14(ω)
(Z21(ω) + Z23(ω)) Z24(ω)
(Z31(ω) + Z33(ω)) Z34(ω)
(Z41(ω) + Z43(ω)) Z44(ω)



(
I1(ω)
I4(ω)

)
, (1.19)

The goal of the experiment is to measure the sample impedance given by

Zs(ω) =
V4(ω)

I4(ω)
.

But finally, the effective measured impedance is:

Z4E,m(ω) =
V2(ω)

I1(ω)
.

From Equation (1.19),

Z4E,m(ω) = Z21(ω) + Z23(ω) + Z24(ω)
I4(ω)

I1(ω)
,

Zs(ω) = (Z41(ω) + Z43(ω))
I1

I4

+ Z44(ω).
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From the last relations, it is easy to get the connection between the sample
impedance and the measured impedance:

Zs(ω) =
Z4E,m(ω)A1(ω) + A2(ω)

Z4E,m(ω) + A3(ω)
, (1.20)

A1(ω) = Z44(ω), (1.21)
A2(ω) = Z24(ω) [Z41(ω) + Z43(ω)]− Z44(ω) [Z21(ω) + Z23(ω)] , (1.22)
A3(ω) = −Z21(ω)− Z23(ω). (1.23)

For a given measurement system and angular frequency ω, An(ω), n ∈ {1, 2, 3},
are complex constants and they can be computed empirically. Considering three
reference impedance measurements (Z

(l)
4E,m, Z

(l)
s ), l ∈ {1, 2, 3}, which differ only on

the analyzed sample and in which both measured impedance and sample impedance
are known, we can solve a 3 × 3 complex linear system where the unknowns are
An(ω), n ∈ {1, 2, 3}:




Z
(1)
4E,m(ω) 1 −Z(1)

s (ω)

Z
(2)
4E,m(ω) 1 −Z(2)

s (ω)

Z
(3)
4E,m(ω) 1 −Z(3)

s (ω)







A1(ω)
A2(ω)
A3(ω)


 =




Z
(1)
s (ω)Z

(1)
4E,m(ω)

Z
(2)
s (ω)Z

(2)
4E,m(ω)

Z
(3)
s (ω)Z

(3)
4E,m(ω)


 . (1.24)

Once the solution (A1, A2, A3) is found, a new unknown impedance measure-
ment is performed to find the sample impedance Zs by using Equation (1.20).

Remark 3. In order to set up an efficient calibration strategy, the reference impedances
have to be chosen so that their modules have to determine an interval such that the
module of any successive measure to calibrate lies in this interval.

Remark 4. Once the sample impedance is obtained, in order to estimate the sample
properties εs and σs, one has to focus on the sample composition to deduce the
dependence of Zs from εs and σs. This analysis can be done thanks to an EC
model of Zs.

1.4 Biological measurements of electroporation with
4-electrode setup

Experiments presentation

In García-Sánchez et al. [20], the authors propose a multisine-based approach
to perform, for the first time, fast EIS measurements (1 spectrum per millisecond)
during the interpulse electroporation interval applied to the cells. For the exper-
iments, a new micro-electrode assembly was proposed. The EIS data are used to
characterize and better understand the fast changes produced in the cell membrane
during electroporation pulse application.
An important part of this work concerns the analysis of the data resulting from
the experiments. This has required a study of the experiment procedure and the
setting of the data management based on a mathematical formalization to facili-
tate their understanding. In what follows, we present the experiment context and
procedure and also our data preprocessing work.
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Cells and electrolyte

C2C12 myoblasts were seeded into 24 multi-well plates at an initial density of
15 × 103 cells/well. During the experiments, the cells were immersed in an exter-
nal media consisting of a low-conductivity electroporation (LCE) buffer composed
of sucrose, Hepes and MgCl: the buffer contains inside free ions and it leads the
passage of an electric current. Its conductivity is σ = 0.098 S·m−1. Different con-
centrations of KCl were dissolved in the buffer to vary his conductivity. Different
buffers with different conductivities are necessary for the calibration strategy.
Inside the plate, the ratio between the volume occupied by the cells and that
occupied by the external media is ϕ = 0.15 (value estimated according to our
information on the system).

Electrodes and arranged 4-electrode measurement strategy

15mm

E2(+)

E1(+)

E1(�) E4(�)

E3(+)E2(+)

(a) Micro-electrode assembly. (b) Experiment set-up.

Figure 1.7 – On the left, a representation of the spiral micro-electrode geometry
where are marked the different spirals: two of them are the active electrodes (E1

and E2), and the other four (E1, E2, E3 and E4) are used to measure the voltage.
On the right, a representation of the experiment set-up: the micro-electrode is
placed above the cells inside a cylindrical plate. Images source: [20].

For the experiments, a micro-electrode was assembly to perform electropora-
tion on the cell monolayer culture and to gather information to the EIS analysis.
The micro-electrode, pictured in Figure 1.7a, consists in a disc (15 mm diameter)
comprising six equally spaced lines coiled in parallel around the centre of the disc
and forming six parallel spirals of almost five loops around the center. Any spiral is
an electrode. The dimensions of the lines are 75 µm in width and 150 µm spacing
between them. Section 1.4 presents a computation of the electrodes length.
The sample, composed of cells immersed in the buffer or only the buffer, depend-
ing on the experiment, was placed in the bottom of a cylindrical plate and the
micro-electrode assembly was positioned above the plate, as Figure 1.7b shows.
To perform electrical impedance measurements with the present setup, a modified
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arrangement of a 4-electrode measurement configuration was employed by dupli-
cating potential measurement terminals. The impedance measurement system is
conceived in order to impose an AC voltage V2 (using the same notation than in
Section 1.3) by electrodes E1 and E2. Then, the current I3 was measured after con-
version to voltage thanks the other four electrodes coupled two to two (E1 coupled
with E2 and E3 coupled with E4). This configuration with six electrodes leads to
increase the area under measure and allow to avoid the error due to local changes.

For a given angular frequency ω, the resulting measured impedance is

Z4E,m(ω) =
V2(ω)

I3(ω)
.

Actually, the measurement system generate a multisine bursts composed by 26
frequencies between 1kHz and 1MHz. The frequencies in kHz are presented in the
following set:

FkHz = {1, 3, 5, 7, 11, 15, 19, 25, 33, 41, 51, 63, 77, 95, 117, 143,
173, 209, 253, 307, 371, 447, 539, 649, 781, 939}

= {fi|fi1 < fi2 if i1 < i2}.
We denote with F the set of the corresponding angular frequencies:

F = {ωi = 2πfi|fi ∈ FkHz, i ∈ {1, . . . , 26}}.
Remark 5. With measurement we indicate the vector composed of 26 under
analysis system measured impedances, one for any frequencies presents in F :

(Z4E,m(ω1), . . . , Z4E,m(ω26)).

Any experiment counts of more then one measurement.

Computation of the electrode length

In Chapter 3 we will present the geometric simulations which reproduce the
experiments. To this end, it is necessary to compute the electrodes length, that we
suppose to be the same for all the electrodes.
To compute the length of one electrode, we consider the parametric equation of a
spiral. Suppose an Archimedean spiral place on x− y plane,

{
x(θ) = (a+ bθ) cos θ
y(θ) = (a+ bθ) sin θ

where the parameter a ∈ R is the centerpoint of the spiral outward from the origin
to x axis, the parameter b ∈ R controls the constant distance between loops and
θ > 0 is the angle between the starting and final points of the spiral.
In our case a = 0 and b = l

2π
, where l = (150 + 75)× 6× 10−6m= 1.35× 10−3m is

the distance between spiral successive loops, and 0 ≤ θ ≤ 10π.
The length of a spiral electrode E is

L(E) =

∫ 10π

0

√
x′(θ)2 + y′(θ)2dθ ≈ 0.1 m.
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Remark 6. In Chapter 3 we will prove that the presented spiral shape electrodes
have the same efficacy of straight and parallel electrodes. Thus, the spiral shape
allows the compact dimension of the devise.

Free-cell impedance measurement

To calibrate the measurement system, the three references calibration method
seen in Section 1.3 was employed. The reference impedances (Z

(l)
4E,m, Z

(l)
s ), l ∈

{1, 2, 3}, were obtained by measuring, with the same setup, the impedance pro-
duced by the LCE buffer in absence of cells. In fact, it is possible to theorize the
impedance of a saline solution knowing its electrical properties. This discussion is
better detailed in Section 1.5. Different concentrations of KCl were dissolved in
the buffer. A greater KCl concentration increases the buffer conductivity and this
leads to recover a larger range of impedance module, according to Remark 3. A
set of experiments were performed with this sample and, for any experiment, the
KCl concentration dissolved of the buffer is one of the following set:

CFC = {0mM, 25mM, 50mM, 75mM, 100mM},

with mM=mol·m−3 (millimolar). For any experiment, 1074 consecutive measure-
ments of the buffer impedance were performed. Figure 1.8 depicts the Bode plots
of the impedance measured. Each plot corresponds to an experiment: three exper-
iments were performed at 0mM of KCl and two experiments for the other concen-
trations. Each plot are designed considering the vector Z(c)

FC, m,

Z
(c)
FC, m = (Z

(c)
FC, m(ω1), . . . , Z

(c)
FC, m(ω26)),

composed by the average of the 1074 measurements taken during the experiment.
Moreover, for the impedances measured at the same frequency ω ∈ F , we consider
the standard variation σ(c)

ext(ω) and we design also the interval [Z
(c)
FC, m(ω)− 1.96 ∗

σ
(c)
exp(ω), Z

(c)
FC, m(ω)+1.96∗σ(c)

exp(ω)]. Assuming that the measured impedances follow
a Gaussian distribution of parameters

(
Z

(c)
FC, m(ω), σ

(c)
exp(ω)

)
, ∀ω ∈ F , these intervals

contain 95% of the measurements of one experiment.
One can remark that the experiments with the same hypothesis, i.e. the same
KCl concentration, show behaviours that are distinctly different. This proves a
low reproducibility of the experiment, especially at low concentrations. For this
reason, we treat separately the information deriving from any experiment.

Impedance measurement with cells

Once obtained the references for the calibration strategy, the experiments used
to investigate on the cell electrical properties variations after an electroporation
pulse were performed.
During these experiments, the cells were immersed in the same LCE buffer pre-
sented in Section 1.4 and also used for free-cell measurements. The direct contact
between the electrodes and the cells was prevented by using micro-separators of
thickness 10µm.
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Figure 1.8 – Bode plots (on the left the module and on right the phase) of the
impedances measured on five saline solutions which are different from one other
for the KCl concentration. Supposed a Gaussian distribution, we draw also the
intervals [Z

(c)
FC, m(ω)−1.96∗σ(c)

exp(ω), Z
(c)
FC, m(ω)+1.96∗σ(c)

exp(ω)], ∀ω ∈ F , representing
the 95% of the impedances measured at the same angular frequency ω ∈ F .

The electroporation procedure started with 97 continuous initial pre-electroporation
measurements (97 ms). Then the pulse generator was activated: one biphasic pulse
was sent with duration 100 µs positive + 10 µs delay + 100 µs negative, frequency
1 Hz. Once the pulse was delivered, a bioimpedance measurement phase starts:
7 multsine bursts (composed by the frequencies fi ∈ FkHz) were continuously
generated and acquired each 200 ms for 5 minutes after the pulse, for a total of
7× 1501 = 10507 measurements.
The experiments differ from each other for the KCl concentration presents in the
buffer, resumed in the set

CWC = {0mM, 5mM, 10mM, 20mM, 30mM},
and for the voltage v of the elctroporation pulse, with

v ∈ V = {12V, 30V}.
For any couple of (c, v) ∈ CWC × V , two different experiments were performed.
To illustrative purposes, Figure 1.9 shows all the measurements done during one
experiment with 5mM of KCl and an electroporation pulse voltage at 12 V: we can
see in green the 97 measurements performed before the pulse and in blue the 10507
measurements after the electroporation pulse. The blue of the after pulse plots be-
comes clearer at the passage of time. The schema, on the bottom of Figure 1.9,
explains the color scale and the sequence of electroporation and measurement sig-
nals.
One can remark two distinct behaviors between the observations before and after
the pulse and also a continuous decay of the impedance during the time, to give
evidence at the electroporation pulse effects. Since the low variation of the mea-
surement before the pulse, for any experiment (c ∈ CWC and v ∈ V ), we decide to
take into account their average, denoted with Z(c,v)

WC,BP, m,

Z
(c,v)
WC,BP, m = (Z

(c,v)
WC,BP, m(ω1), . . . , Z

(c,v)
WC,BP, m(ω26))
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Figure 1.9 – Bode plots (on the left the module and on the right the phase) of
the measurements performed during one of the two experiments done with 5mM
of KCl in the buffer and an electroporation pulse at 12 V. We can distinguish the
measurements before the pulse (in green) and those done after the pulse during five
minutes (in blue, increasingly clear at the passage of the time.), as is also explained
by the schema on the bottom.

For the same reason, we consider the average, denoted with Z
(c,v,t)
WC,AP, m, of the

measurements taken at the same instant t after pulse,

Z
(c,v,t)
WC,AP, m = (Z

(c,v,t)
WC,AP, m(ω1) . . . , Z

(c,v,t)
WC,AP, m(ω26)),

t ∈ T = {tn = n× 200ms |n = 1, 2 . . . 1501}.
Even if the data before the pulse would manifest the same behavior, independently
on the voltage pulse applied, we indicate the latter in order to point up that the
measurements are part of two different experiments.

An ulterior dataset with cells

Another experiment has been performed to investigate the effects of the appli-
cation of several pulses on the same cell sample.
The electroporation procedure starts with 97 continuous initial pre-electroporation
measurements (97 ms). Then the pulse generator is active: 8 biphasic pulses are
sent with duration 100 µs positive + 100 µs delay + 100 µ s negative, frequency
1 Hz. Once a pulse is delivered, a bioimpedance measurement phase starts after a
fixed delay of 15 ms. The bioimpedance measurement system is conceived in order
to impose a voltage by electrodes on the plate and then the current is measured
after conversion to voltage: 860 multisine bursts are continuously generated and
acquired. Then the pulse generator is reactive and the system waits for the next
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pulse (125 ms). The sequence is repeated until completing the eight pulses. The
sequence of electroporation and measurement signals is detailed in Figure 1.10.

860 MULTINESINE MEASUREMENT

15 ms 860 ms 125 ms

⇥8

1s

	

97ms 210µs

	

210µs

Figure 1.10 – Measurement system block diagram.

The buffer, in which the cells were immersed during the experiments, is always
the same already presented in Section 1.4, but, in this case, without an additional
concentration of KCl. The experiments differ for the electroporation pulse voltage.
Four different voltages have been tested: 9V, 12V, 15V, 21V. Some theoretical
issues remain to exploit these data. It is a perspective of this work.

1.5 Calibration method using free-cell data

To remark the effect of the measurement device on the observations, one can
observe the free-cell measurement in Figure 1.8. For the range of frequencies used,
the buffer response is mostly resistive, i.e. frequency independent. On the other
hand, observing Figure 1.8a, it is easy to remark a frequency depending behavior of
the free-cell measurements (where the sample is composed entirely by the buffer),
especially at low KCl conductivity. This effect is due to the measurement system
frequency response.
In order to identify this equipment response and to adjust the observations, the
three-reference calibration method presented in Section 1.3 is applied. To as-
sess the calibration parameters A1, A2 and A3, three reference impedance cou-
ples (Z

(l)
m , Z

(l)
s ), l ∈ {1, 2, 3}, are necessary. We recall that Z(l)

m , l ∈ {1, 2, 3},
are the buffer impedances measured by a measurement equipment that has to
be calibrated, that we can take among the observations Z(c)

FC, m, c ∈ CFC . On
the other hand, Z(l)

s , l ∈ {1, 2, 3}, are the true (and known) sample impedance
that, in this case, is the buffer impedance. We indicate it with Z

(c)
FC, t, c ∈ CFC .

Our collaborators propose that, for any KCl concentration c ∈ CFC , the true
sample impedance corresponds to the measured impedance at angular frequency
ω5 = 569115 rad·s−1 ∈ F :

Z
(c)
FC, t(ω) = Z

(c)
FC, m(ω5), ∀ω ∈ F, ∀c ∈ CFC .

Instead of using a fixed value, we develop a strategy based on modelling.
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Figure 1.11 – Comparison <
(
Z

(c)
m (ωi)

)
and k

σ(c)
, c ∈ {75mM, 100mM}, i ∈ {1, 2}.

Buffer conductimetry

As seen in Section 1.3 (Equation (1.11) with k = d/A), the theoretical impedance
produced by the buffer, with a KCl concentration c ∈ CFC , can be modelled as

Z
(c)
FC, t(ω) =

k

σ(c) + iωε(c)
, (1.25)

where k is a shape factor depending on the plate where the buffer is placed and
ε(c) and σ(c) are respectively the permittivity and the conductivity of the buffer.
We assume that, in the range of angular frequencies in F , the buffer permittivity
is frequency independent and comparable to the water permittivity for all concen-
trations of KCl

ε(c) = ε0εr, ∀c ∈ CFC ,
where ε0 is the vacuum permittivity and εr is the dielectric constant of distilled
water at 25◦C, that is comparable to the dielectric constant of a KCl solution, [17].
Table 1.1 reports their values.
To use this model to estimate A1, A2 and A3, the first step consists in estimating
k and σ(c). At small frequencies, the values of σ(c) are very large compared to ωε(c)

(at least for high concentrations). Then we assume that:

Z
(c)
FC, m(ω) ∼ k

σ(c)

, (1.26)

c ∈ {75mM, 100mM}, ω ∈ {ω1 = 6283 rad · s−1, ω2 = 18850 rad · s−1}. Figure 1.8
confirms this assumption.

We know that the buffer conductivity with no KCl concentration inside is
σ0mM = 0.098 S·m−1. In general, the conductivity of a solution results as the

ε0 = 8.8541× 10−12 Fm−1 εr = 78.57 Λ0 = 14.98× 10−3 S·m−1·M−1

Table 1.1 – The values of the constants used in the conductimetry and found in
the literature [6, 17]
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[KCl] (mM) 0 25 50 75 100
σ(c) (S·m−1) 0.098∗ 0.265 0.57 0.965 1.432

Table 1.2 – Conductivities of the Free-Cell solutions computed thanks to Equa-
tions (1.27) and (1.28), with K = −42.14. (*) Value already available.

sum of contributions from all ionic species [7]. Then, adding a KCl concentration
c ∈ CFC , we can consider the relation

σ(c) = 0.098 + cΛ(c), (1.27)

where Λ is the KCl molar conductivity (S·m−1·M−1). The compounds that exhibit
molar conductivities that do not change significantly with concentration, for ex-
ample salts as KCl, are called strong electrolytes. For these electrolytes, Λ is given
by the Kohlrausch’s Law:

Λ(c) = Λ0 −K
√
c, (1.28)

where K is the Kohlrausch coefficient, which depends on the stoichiometry of the
specific salt in solution (KCl in this case), and Λ0 is the molar conductivity at
infinite dilution (Table 1.1 reports its value).
In order to estimate k and K we used the data at frequencies ω1 and ω2 and
related to the KCl concentrations 75 mM and 100mM. For any concentration
c ∈ {75mM,100mM}, the data of two different experiments are available and we
consider their average Z̄(c)

FC, m(ωi), i ∈ {1, 2} (otherwise, using a single experiment
for each concentration and then computing the average of the two-parameter es-
timations obtained leads to the same result). We estimate the parameters k and
K thanks to a least-square algorithm present on Matlab (lsqnonlin, trust region
reflective, Copyright 1990-2013 The MathWorks, Inc), that minimizes the cost
function

p(k,K) =
∑

c,ωi

(
Z̄

(c)
FC, m(ωi)−

k

0.098 + c (Λ0 −K
√
c)

)2

.

Figure 1.11 shows the comparison between theoretical and measured impedances,
obtained with the estimated parameters k = 59.13 and K = −42.14. The value
of the parameter K is comparable to the value found in the literature, see [35].
Following Equations (1.27) and (1.28), the values of σ(c) are directly obtained and
are given in Table 1.2.

Estimation of A1, A2 and A3 using only three free-cell data:
a huge variability

Following the three-reference calibration method presented in Section 1.3 and
considering the observations of three experiments related to three different KCl
concentrations c1, c2, c3 ∈ CFC , System (1.24) becomes



Z
(c1)
FC, m(ω) 1 −Z(c1)

FC, t(ω)

Z
(c2)
FC, m(ω) 1 −Z(c2)

FC, t(ω)

Z
(c3)
FC, m(ω) 1 −Z(c3)

FC, t(ω)







A1(ω)
A2(ω)
A3(ω)


 =




Z
(c1)
FC, t(ω)Z

(c1)
FC, m(ω)

Z
(c2)
FC, t(ω)Z

(c2)
FC, m(ω)

Z
(c3)
FC, t(ω)Z

(c3)
FC, m(ω)


 . (1.29)
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Figure 1.12 – Estimations of (A1, A2, A3) using System (1.29) for all possible
configurations.

By solving System (1.29) ∀ω ∈ F , we determine the calibration parameters A1(ω),
A2(ω) and A3(ω). Figure 1.12 shows the A1, A2 and A3 computed for all the
possible combinations of experiment data related to three different concentrations
c1, c2, c3 ∈ CFC . One can remark that the parameters A1(ω), A2(ω) and A3(ω) de-
pend on the choice of the couples (Z

(cl)
FC, m(ω), Z

(cl)
FC, t(ω)), l ∈ {1, 2, 3}. Applying the

different calibrations obtained with the three-reference method to the observations
with cells, we obtain results really different from each other. Figure 1.13 compares
the observations calibrated with the three-reference method (lines) related to four
experiments: 20mM and 30mM of KCl concentration and 12V and 30V. One can
notice the instability of this approach. We have to conclude that this calibration
strategy is not robust when it is applied to this dataset. The failure of this calibra-
tion strategy can be explained by the data inaccuracies. More precisely, as seen in
Section 1.3, the differences between the three references are the concentration of
KCl (which does not seem exactly correspond the theoretical ones) and the sample.
Figure 1.14 represents a section of the total system. In this case, the sample corre-
sponds to the buffer portion between the potential measurement terminals. Hence,
in the reference observations, not only the sample changes, but the whole buffer.
As consequence, the calibration parameters A1, A2 and A3 computed are not the
same for all the reference observations. A way to compensate the weakness of the
observations is to use the fact that more than three observations are available. As
Figure 1.13 shows, the observations calibrated with the new method (dashed line)
are of the same order of the other calibrated observations. In the next section, we
discuss the details of this new strategy and the advantages of its use.

Estimation of A1, A2 and A3 using all free-cell data:
increase of stability

Considering the data of one experiment related to a concentration c ∈ CFC and
fixing ω ∈ F , for a given set of calibration parameters A1(ω), A2(ω) and A3(ω),
one can define a distance function between the calibrated sample impedance Z(c)

FC, cal
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Figure 1.13 – Comparing the three-reference calibration method (lines) with the
new calibration strategy (dashed line), we can see the instability of the results
obtained with the first approach.

from Equation (1.20),

Z
(c)
FC, cal(ω) =

Z
(c)
FC, m(ω)A1(ω) + A2(ω)

Z
(c)
FC, m(ω) + A3(ω)

, (1.30)

with the theoretical sample impedance Z(c)
FC, t(ω) given by Equation (1.25). Thus,

a way to define the calibration strategy is to find A1(ω), A2(ω) and A3(ω) which
minimize the distance function between Z(c)

FC, cal(ω) and Z(c)
FC, t(ω), for all the avail-

able data and ∀ω ∈ F . One can remark that the minimization problem is already
overdetermined since, for each ω ∈ F , we can use the data of ten experiments, two
for each concentrations, to estimate three parameters (A1, A2 and A3). Thus, we
have decided to not exploit the information coming from any experiment separately,
but to consider the average Z̄(c)

FC, m(ω) corresponding to the same concentration
c ∈ CFC and the same angular frequency ω ∈ F :

Z̄
(c)
FC, cal(ω) =

Z̄
(c)
FC, m(ω)A1(ω) + A2(ω)

Z̄
(c)
FC, m(ω) + A3(ω)

, ∀ω ∈ F, ∀c ∈ CFC .

As already done for k and K, we estimate the calibration parameters thanks to
a least-square algorithm present on Matlab, (lsqnonlin, trust region reflective,
Copyright 1990-2013 The MathWorks, Inc), that minimizes the cost function

q(A1, A2, A3) =
∑

c∈CFC , ω∈F

(
Z̄

(c)
FC, cal(ω)− Z(c)

FC, t(ω)
)2

.

Figure 1.15 depicts the estimated A1(ω), A2(ω) and A3(ω), ∀ω ∈ F . Figure 1.16
presents the comparison between Z

(c)
FC, t (circle) and Z̄

(c)
FC, cal (line) obtained from
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Figure 1.14 – Schema of section of the arranged 4-electrode system applied to
the free-cell system. The sample under measure is the portion of buffer between
the electrod measurement electrodes as highlighted in figure.

Figure 1.15 – Estimation of (A1, A2, A3) using all the available observations.

the estimated A1, A2 and A3. The result is satisfactory as, in the module, the
calibrated impedance follows the expected theoretical behavior. One can remark
that KCl concentration of 25 mM, there is a more significant distance between
calibrated data and theoretical impedance. We suppose that this is due to some
uncertainties on the data (for example higher KCl concentration). Concerning the
phase, the calibrated data and the theoretical impedance have different evolutions.
But the relative error is still acceptable and we can conclude that the fact to
use more available information than the three-reference method produces a more
robust calibration.
The calibration strategy is now defined by the A1(ω), A2(ω) and A3(ω) and can
be applied (thanks to Equation (1.20)) to the raw data with cells, Z(c,v)

WC,BP, m(ω)

and Z
(c,v,t)
WC,AP, m(ω), ∀ω ∈ F and ∀t ∈ T . We indicate with Z

(c,v)
WC,BP, cal(ω) and

Z
(c,v,t)
WC,AP, cal(ω) the calibration results. In Figure 1.9 we have presented all the

measurements performed during an experiment with 5mM of KCl in the buffer
and an electroporation pulse voltage at 12 V. Figure 1.17 shows the measurements
of the same experiment after being calibrated.
The calibrated observations represent the effective frequency response produced
by the sample, in this case consisting of cells and buffer. The phenomenon can be
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Figure 1.16 – The data (circle), calibrated with the new strategy, follow the
expected theoretical behaviour (line). Concerning the phase calibration, even if
the results are not perfect there are still acceptable regarding the scale of the
figure (< 0.02 rad).

reproduced and studied thanks the EC presented in next section.
We should expect that, for the lowest frequencies in F , the insulating membrane
hinders the current from passing through a cell that flows only into the buffer, which
means a flat behavior of the calibrated data. Nevertheless, for ω < 2×104 rad·s−1,
we can observe a low increase in the impedance module. This attitude is stronger
for the experiments with lower conduction. A reason is that we probably did not
take into account some physical aspects of the studied phenomenon, or just this
new calibration method does not compensate for the limits of the three-reference
calibration method completely. That is why, to avoid some imprecision deriving
from a not perfect calibration, in that follows, we decide not to use the calibrated
data with cells related to an angular frequency lower than ω4 = 43982(= 2π×7000)
rad·s−1.

1.6 Equivalent Circuit of the sample in experiments
with cells

In this section, we propose an EC model able to reproduce the behavior of
the calibrated data resulting from the EIS experiments with cells. The elements
composing the EC define the electrical parameters that regulate the under analy-
sis system. The EC is designed to take into account the two elements composing
the sample: the buffer and the cells. As Figure 1.18 depicts, the EC is composed
of two parallel branches. In one branch, the resistance Rb represents the buffer
resistivity: as already seen in Section 1.5, for the range of frequencies used during
the experiments, the capacitive nature of the buffer can be neglected and it can be
modelled as a pure resistor by Equation (1.26). In the other branch, we consider
the cell EC. The biological cell structure is usually reduced to the membrane and
the cytoplasm [30]. The cytoplasm presents the same electrical characteristics of
an electrolyte and, as done for the external media, we can neglect his capacitive
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Figure 1.17 – Bode plots (on the left the module and on the right the phase)
of the calibrated measurements of one of the two experiments done with 5mM of
KCl in the buffer and a electroporation pulse at 12 V. As already done for the raw
measurements in Figure 1.9, we can distinguish the measurements before the pulse
(in green) and those done after the pulse during five minutes (in blue, increasingly
clear at the passage of the time.)

Rb

Rcyt

Rm

1

Cm(i!)↵m

Figure 1.18 – EC for the buffer-cells system.
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component and model it as a pure resistor Rcyt. In series with the cytoplasm, the
membrane can be modelled as a resistance Rm in parallel with a CPA element
with parameters Cm and αm [30]. According to electrical circuit theory and de-
noting with θ = (Rb, Rcyt, Rm, Cm, αm) ∈ R5 the parameter vector, the impedance
Zeq(ω, θ) related to this EC respects the following relation:

Zeq(ω, θ) =
Rb Zcells(ω, θ)

Rb + Zcells(ω, θ)
, (1.31)

where
Zcells(ω, θ) = Rcyt +

Rm

1 +RmCm(iω)αm
. (1.32)

Zeq(ω, θ), Zcells(ω, θ) : R6 → C are two complex-valued functions of the angular
frequency ω and the parameter vector θ ∈ R5. In that follows, we see that with
Zeq, according to a properly choice of the vector θ, we are able to fit the calibrated
data Z(c,v)

WC,BP, cal(ω) and Z(c,v,t)
WC,AP, m(ω), ∀ω ∈ F . This leads to estimate the values

of the resistances Rb, Rm and Rcyt and the capacitance Cm and then to assess the
contributes of any single EC component at the total sample impedance. Fitting
separately the observations before and after the pulse allows to study how the
parameters evolves over time and to analyse the effects of the electroporation on
the cells. We start with the formalization of the estimation problem.

Fixing θ ∈ R5, we denote with Zeq,F (θ) the vector of equivalent impedances
computed for each angular frequency:

Zeq,F (θ) =
(
Zeq(ω4, θ), . . . , Zeq(ω26, θ)

)
.

For an experiment which counts KCl concentration c ∈ CWC and voltage v ∈ V ,
we consider the vector

Z
(c,v)
WC, cal =

(
Z

(c,v)
WC, cal(ω4), . . . , Z

(c,v)
WC, cal(ω26)

)

related to the its observations before or after the pulse. To fit the vector Z(c,v)
WC, cal,

we solve the following minimization problem.

Minimization-Problem 1. To find the parameter vector θ̃ ∈ R5 which minimizes
the function d(c,v):

θ̃ ∈ R5 s.t. d(c,v)(θ̃) = min
θ∈R5

d(c,v)(θ), (1.33)

where d(c,v) is the distance function between the vectors Z(c,v)
WC, cal and Zeq,F (θ) defined

as:

d(c,v) :





R5 → R,

θ 7→
∥∥∥∥
Z

(c,v)
WC, cal−Zeq,F (θ)

Zeq,F (θ)

∥∥∥∥
l2

,

where ‖.‖l2 is the l2-norm of a complex vector.
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Before to pass to the resolution of Minimization-Problem 1, an analytic dis-
cussion on the model is necessary. In fact, it is vital to point up that the model
composed by Equation (1.31) and Equation (1.32) is non-identifiable, i.e. two
different parameter vectors could give the same (at least very close) impedances:
for a given angular frequency ω ∈ F ,

∃ θ1, θ2 ∈ R5, θ1 6= θ2 s.t. Zeq(ω, θ1) = Zeq(ω, θ2).

This means that the distance function θ → d(θ) admits local minima and the
resolution of Minimization-Problem 1 does not guarantee the estimation of the
true parameters values. In fact, the first order Taylor approximation of Zeq when
w = Cm(iω)αm tends to zero gives:

Zeq = Zeq |w=0 + ∂wZeq |w=0w +O(w2), (1.34)

with

Zeq |w=0 =
Rb(Rm +Rcyt)

Rb +Rm +Rcyt

,

∂wZeq |w=0 = − (RmRb)
2

(Rb +Rm +Rcyt)2
.

Thus, when Cm(iω)αm tends to zero, we have:

Zeq = Zeq |w=0

Figure 1.19 provides an example where two different triplets (Rb, Rm, Rcyt) (with
acceptable physical values) give two frequency evolutions of the impedance that
are very close.

Figure 1.19 – The plots Zeq(ω, θ) obtained with θ1 = (572, 594, 1e−8, 1e−8, 0.82)
and θ2 = (550, 650, 8e−6, 1e−8, 0.82), ∀ω ∈ F , show the same behaviour although
the difference of the parameters.

To overcome this difficulty, we will reduce the research domain of the param-
eters. The strategy is presented in what follows: the first next (resp. second)
paragraph concerns the estimation of the parameters before (resp. after) pulse.
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k=59.13 m−1 ϕ = 0.15 σcyt=0.5 S·m−1 Sm = 1 S·m−2 Am = 2e4 m−2

Table 1.3 – The table presents the values of the elements used to define the
a priori values of the parameters. k and ϕ are estimated thanks the available
geometric information of the under study system. σcyt, Sm and Am are provided
by the literature [40,52].

Estimation of the parameters before pulse: Rm ∼ ∞
The membrane of a living cell acts as a bad conductor. Therefore the resistance

Rm is huge respect to buffer and cytoplasm resistances: Rm � Rb, Rcyt. As already
seen in Section 1.5 for the buffer resistance Rb, an estimation of the membrane
resistance Rm is given by the ratio between the shape factor k of the plate where
the experiments are performed and the membrane conductivity σm, and since the
plate volume is occupied by the cells and the external media, the shape factor k is
divided by their volumetric ratio ϕ:

Rm ∼
k

ϕσm
, (1.35)

where σm is given by

σm =
Sm
Am

= 2e−4 S,

with Sm the membrane conductance and Am the ratio between thickness and vol-
ume of the membrane. Their values are reported in Table 1.3.
It follows from Equation (1.34) that when Cm(iω)αm tends to zero and Rm tends
to infinity, we have:

Zeq = Rb.

Therefore, the value of Rb affects more incisively the impedance than the other
parameters. Other assumptions on the parameters would be useful. Calibrated
impedance data seem to be independent of the frequencies for ω < 2e5 rad·s−1, see
Figure 1.17 for example. Then we assume that, in this range of angular frequencies,
the current can not pass through the membrane and then it flows only through the
buffer. According to our choice of EC, it means that the term Cm(iω)αm has to be
negligible for this range of angular frequencies. Thus, we choose Cm < 1e− 8. The
parameter αm has a really low influence on the fitting. Thus, we suppose that its
value is constant respect to the buffer conductivity and is equal to the average of
the estimated values.
As already seen in Section 1.5, the buffer resistance Rb depends on the KCl con-
centrations c ∈ CWC . From Equation (1.26) derives the approximation

Rb ∼
k

(1− ϕ)σ(c)

. (1.36)

We recall, k is the shape factor of the plate where the experiments are performed,
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ϕ is the volumetric ratio of the cells and the external media inside the plate. The
values of k and ϕ are reported in Table 1.3. The last relation provides an a priori
estimation of Rb and we can define its trust region as follows

Rb ∈
[

k

(1− ϕ)σ(c)

(1− εb),
k

(1− ϕ)σ(c)

(1 + εb)

]
, εb = 0.9.

As already exposed, the resistance Rb has to correspond to the impedance module
of the observations at the lowest frequencies of F . For this reason, we give a certain
flexibility to its research domain, fixing εb = 0.9. As well, the cytoplasm resistance
Rcyt depends on the cytoplasm conductivity σcyt (its value is reported in Table 1.3):

Rcyt ∼
k

ϕσcyt
. (1.37)

Then we can define the trust region for Rcyt as follows

Rcyt ∈
[

k

ϕσcyt
(1− εcyt),

k

ϕ σcyt
(1 + εcyt)

]
, εcyt = 0.25.

The resistance Rcyt has a lower influence on the fitting. Then, we assume that Rcyt

is almost constant respect to the buffer conductivity and its value is close to the a
priori estimation: we fix εcyt = 0.25.

The definition of the trust regions for each parameter reduces the domain of defi-
nition of the distance function d(θ). Now we pass to the resolution of Minimization-
Problem 1. To this end, we use an iterative least-squares algorithm called trust
region reflective, that is present on Matlab (lsqnonlin, Copyright 1990-2013 The
MathWorks, Inc). This algorithm looks for the minimum of the distance function
d(c,v) in the union of the trust regions. When a parameter vector to which corre-
sponds a lower value of the distance function is found within the trust region, the
region is expanded. Otherwise, the region is contracted in order to converge to the
minimum. More details about trust region algorithms are present in [13].
Table 1.4 presents the parameters estimated with the trust region reflective algo-
rithm and Figure 1.20 shows the resulting fits. One can observe that the EC model
can reproduce the behavior of the data with realistic values of the parameters. As
Table 1.4 states, the error of the fits respect to the calibrated data is always less
than 1.5% (‖.‖l2×100(%)). The results are satisfactory and validate the modelling
and the calibration strategy.

Remark 7 (Consequences of an imperfect calibration method). We recall that the
calibration produces some imprecisions at low frequencies. Thus, the calibrated data
for frequencies inferior to ω4 have been neglected. As Figure 1.21 shows, the EC
model is not able to fit the phases at low frequencies.

Estimation of the parameters after pulse

This section concerns the estimation of the parameters related to the observa-
tions after the electroporation pulse.
Recalling the electroporation theory, once the pulse is applied, the permeability
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Voltage (V) 12
KCl (mM) 0 5 10 20 30

Rb(Ω) (exp 1) 703 543 422 259 136
Rb(Ω) (exp 2) 818 554 338 188 162
Rcyt(Ω) (exp 1) 670 669 655 591 778
Rcyt(Ω) (exp 2) 719 619 651 877 670
Cm(F) (exp 1) 9.99e-09 9.81e-09 9.55e-09 9.74e-09 5e-09
Cm(F) (exp 2) 1e-08 1.06e-08 8.64e-09 5.11e-09 6.22e-09
αm (exp 1) 0.82 0.82 0.82 0.82 0.82
αm (exp 2) 0.82 0.82 0.82 0.82 0.82

Error ‖.‖l2(exp 1) 0.00123 0.00124 0.0012 0.00122 0.00175
Error ‖.‖l2(exp 2) 0.0012 0.00121 0.00116 0.00153 0.00138

Voltage (V) 30
KCl (mM) 0 5 10 20 30

Rb(Ω) (exp 1) 1.34e+03 403 343 207 173
Rb(Ω) (exp 2) - 531 306 208 140
Rcyt(Ω) (exp 1) 696 666 756 740 773
Rcyt(Ω) (exp 2) - 670 797 776 594
Cm(F) (exp 1) 9.16e-09 8.15e-09 8.5e-09 6.89e-09 5.67e-09
Cm(F) (exp 2) - 9.15e-09 7.79e-09 6.35e-09 5.87e-09
αm (exp 1) 0.82 0.82 0.82 0.82 0.82
αm (exp 2) - 0.82 0.82 0.82 0.82

Error ‖.‖l2(exp 1) 0.00142 0.000978 0.00119 0.00109 0.000899
Error ‖.‖l2(exp 2) - 0.00106 0.0012 0.00112 0.00139

Table 1.4 – Estimation of the parameters for all the experiments.

of the cells decreases considerably and the exchanges between the cytoplasm and
the external media (the buffer) raise. In the case of reversible electroporation, the
permeability alteration persists for several minutes. During this period, since the
passage of ions across the membrane, the membrane resistance at the current flow
decreases significantly.
Figure 1.17 shows the (calibrated) impedances produced by the sample (buffer and
cells) during an experiment with c = 0mM and v = 12V: we can observe that the
impedance decreases with the time. This behavior is common to all the experi-
ments. This phenomenon is due to the structural alteration of the cell membrane.
As previously, we will fit the EC depicted in Figure 1.18 to the data by estimating
the parameters. In this case, Rm is of the same order of the other resistance Rb

and Rcyt. Then, the model is not identifiable and, to circumvent this difficulty,
we will constraint the values of the parameters using physical knowledge of the
electroporation processus. We assume that Rm evolves over time because of the
electroporation effects, nevertheless we suppose that its variation is independent of
the buffer conductivity. We suppose that also the other cell parameters, Rcyt, Cm
and αm behave similarly whatever the buffer. On the other hand, we suppose that
they do not change after the electroporation pulse and they are constant during
the time. Concerning Rb, we assume that it changes during the time because of
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Figure 1.20 – After the parameter estimation strategy, the model fits properly
the calibrated data. Different colors correspond to different KCl concentrations.
The plots with the same color correspond at the same KCl concentration (but for
different experiments).

the cell-buffer exchanges. For any experiment, we choose as a priori value the
value Rb,estim estimated right before the pulse. Thus, for an experiment with a
KCl concentration c ∈ CWC and pulse voltage v ∈ V , the trust region of Rb is

Rb ∈
[
R

(c,v)
b,estim(1− εb), R(c,v)

b,estim(1 + εb)
]

and with εb = 0.3
We can identify an supremum for Rm thanks to Equation (1.35):

R(max)
m =

k

ϕσm
, (1.38)

where ϕ is supposed to behave similarly whatever the buffer. Thus, we impose a
trust region for Rm as follow:

Rm ∈ [0, R(max)
m ].

Since the other cell parameters are supposed to be constant respect to the time
and the buffer conductivity, Rm has an important role in the fitting of the after
pulse data. For this reason, we leave more flexibility to its domain of research.
Figure 1.22 shows the temporal evolutions of the estimated parameters Rb and Rm

during the five minutes after the electroporation pulse. As expected, the electropo-
ration pulse application causes a decrease of the membrane permeability, which can
be traduced as a reduction of the membrane resistance Rm during several minutes,
as depicted in Figure 1.22c and in Figure 1.22d. Consequently, the pulse appli-
cation stimulates the buffer-cell exchanges (which contain ions) and this increases
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Figure 1.21 – Because of some calibration imprecision then we use also the cali-
brated impedance data at low frequencies, we are not able to fit the behaviour of
the phase at small frequencies.

the buffer conductivity. In fact Figure 1.22a and Figure 1.22b show that Rb starts
at the values estimated before the pulse (negative time) and decreases during the
minutes after the pulse. The phenomenon is accentuated at higher pulse voltage.

Voltage (V) 12
KCl (mM) 0 5 10 20 30

Error ‖.‖l2(exp 1) 0.0012 0.0013 0.0012 0.0012 0.0019
SD (exp 1) 3.79e-05 3.5e-05 3.76e-05 5.12e-05 6.66e-05

Error ‖.‖l2(exp 2) 0.0012 0.0013 0.0012 0.0016 0.0014
SD (exp 1) 3.23e-05 8.7e-05 4.17e-05 5.84e-05 6.05e-05
Voltage (V) 30
KCl (mM) 0 5 10 20 30

Error ‖.‖l2(exp 1) 0.0016 0.0027 0.0014 0.0011 0.0011
SD (exp 1) 0.0002 0.0006 9.05e-05 5.75e-05 8.46e-05

Error ‖.‖l2(exp 2) 0.0016 0.0019 0.0014 0.0011 0.0017
SD (exp 1) 0.0002 0.0003 0.0001 6.5e-05 0.0001

Table 1.5 – The parameter estimation result for all the experiments.

Table 1.5 reports the averages over time of the error between the fits and the ob-
servations and the standard variations respective. Since the error is always less
that the 0.3% (‖.‖l2 × 100(%)), we consider that our choice of the EC model and
the parameter estimation strategy are satisfactory. We want to emphasize that the
hypothesis done on the parameter a priori values and the related trust region play
an important role on the estimation strategy. In special way, without the hypoth-
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esis of the independence of Rm on the buffer conductivity, we can not achieve to a
realistic time evolution estimation of this parameter.

⌦

(a)
⌦

(b)

⌦

(c)

⌦

(d)

Figure 1.22 – Time evolution of the estimated values of Rb and Rm. In Fig-
ure 1.22a and Figure 1.22b, Rb decreases because the cells reject ions on the buffer
during the electroporation. The values corresponding at the negative time are the
estimated values obtained before pulse. At the same time, the decay of the mem-
brane permeability produces a reduction of the resistance of the membrane Rm

(Figure 1.22c and Figure 1.22d). We suppose that this decay is independent on
the the buffer conductivity. The parameter variation are more pronounced for an
higher pulse voltage.
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1.7 Conclusion and perspectives
This chapter presented the work done to analyse, through an EC model, the EIS

data resulting from an electroporation experiment performed on a cells monolayer.
In the first part, we have discussed the physical principle behind the topics of

the chapter. In particular, we have focused on two impedance measurement tech-
niques: the 2-electrode method and the 4-electrode method. For a given sample,
we have proven that the two techniques achieve the same measure but that in a
real-life experiment, there exist factors that bring to side effects. In fact, the EP
causes some distortion in the 2-electrode measurement, which requires a readjust-
ment. We have shown that this phenomenon is prevented by using the 4-electrode
technique. Then, we have discussed the calibration of a 4-electrode measurement
device through the three-reference calibration method. This calibration needs three
samples of which both the actual responses to the current passage, i.e. the effec-
tive impedance Zs, and the impedance measured by the device, Zm, are known.
To obtain the Zm, three measurements are performed using the same device setup
(i.e. the measurements differ from each one only by the sample) and, at the end
of one measurement, the impedance of the whole sample is measured. Thanks to
the three couples of Zs and Zm, it is possible to solve a 3× 3 linear system whose
unknowns are the calibration parameters A1, A2 and A3. Then, for a given angular
frequency ω, one can compute the unknown impedance of a new sample from the
impedance measured by the device thanks to the calibration formula:

Zs(ω) =
Zm(ω)A1(ω) + A2(ω)

Zm(ω) + A3(ω)
.

In particular, we have emphasized the hypothesis necessary for a proper application
of this method, stressing on the fact that what changes between the references is
only the considered sample.

In the second part of this chapter, we have presented the EIS experiments per-
formed by García-Sánchez et al. [20], and with the purpose to understand the cell
membrane structural variations after the application of an electroporation pulse.
We have described the arranged 4-electrode measurement system used during the
experiments, the electroporation-measurement procedure and the resulting data.
A considerable work has been done during this thesis to elaborate the data: we
have produced a method and a relative code (consisting in a C++ library and
Matlab scripts) capable of handling a large amount of data, differentiating the ex-
periments by the presence of cells, the KCl concentration on the buffer, the voltage
of the electroporation pulse and preserving the time evolution of the data.

We have learned that the free-cell impedance measurements could be used to
calibrate the measurement system, applying the three-reference calibration method.
We have then characterized the theoretical response of the buffer to the passage of
an AC signal and we have used it, in combination with the free-cell measurements,
to apply the three-reference calibration method. We have illustrated the limits of
this calibration strategy when it is applied to our dataset. We have suggested that
this is due to some imprecisions on the measurements – for example, the quantity
of KCl dissolved in the buffer is different from the scheduled quantity – and on the
fact that the hypothesis necessary to the application of this calibration method are
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not respected. We have noticed that, in the considered experiments, the measured
sample was only a part of the compound placed in the plate: this implies that
changes between the references are not only due the sample but to the whole com-
pound. Then, we have proposed to compensate the weakness of the observations
by exploiting more than three references. The result is a new calibration strategy
which is more stable and reliable and allows us to cast aside the provided calibrated
observations and to produce our own.

In the last part, we have studied them by an EC model. First of all, we have
designed the EC, which reflects the electrical properties of the two elements com-
posing the sample: the buffer and the cells. In this way, we have determined the pa-
rameters which characterize the EC model: Rb, Rcyt, Rm, Cm and αm. We have set
the purpose to find the parameter values which allow to fit the calibrated observa-
tions in order to obtain a quantitative analysis of the electroporation phenomenon.
The parameters estimation was a difficult step because of some non-identifiable pa-
rameters. This fact imposed a research more rigorous, based on strong hypothesis
on the parameters resulting from physical analysis of the sample elements and a in-
depth data review. This leads to assume that, contrary to Rb, the cells parameters
(Rcyt, Rm, Cm, αm) are independent on the buffer conductivity. Moreover, we have
assumed also that Rcyt, Cm and αm are constant over time. We have also assumed
that Rm has infinity value before the pulse and then, after the pulse application,
that it is of the same order of the other resistances. Thus, we have used the after
pulse observations to study the time evolutions of Rb and Rm, allowing a limited
freedom for the other parameters. During this step, it was fundamental to assume
Rm independent on the buffer conductivity. The estimation shows interesting time
evolutions: both Rb and Rm decrease progressively during the minutes after the
pulse. Those are the exactly the behaviors expected from these two parameters to
show the dynamics of the electroporation. Their values could even quantify the
electroporation phenomenon.

During this work, we have produced an efficient strategy to analysis the data
coming from a kind of EIS experiment devoted to the study of the electroporation
phenomenon. As seen in this document, a weakness of this method consists in
the calibration strategy: we would like to reinforce the method used to obtain
more accurate calibrated data and in order to be able to use all the information
available. However, the actual strategy is satisfactory and it could be interesting
its application to the dataset presented in Section 1.4 that we have not treated
during this work. Here, the challenge is that only one buffer conductivity has
been tested, which means less information available to estimate the parameters,
requiring a further analysis of the studied system and the resulting observations.
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Chapter 2

Asymptotic analysis of the
conductivity problem with high
conductive thin passive electrodes

2.1 Introduction

< 1µm

14µm

Extra-cellular medium

Cells mono-layer

O"
e

Oi

�sym

Measurement Electrode Stimulating Electrode

(a) Thin film electrode.

Ωi
Γout

Γg

Γsym

Ωe

(b) Volume electrode.

Figure 2.1 – Representations of two different 4-electrode systems: in vitro (left)
and in a volume tissue (right) that lead to two floating potential problems

The electrical impedance Z – already defined in Chapter 1 – is the measure
of the opposition that a system presents to a displacement of electric alternative
current. The electrical impedance Z is defined as the ratio between the time-
harmonic voltage U applied to the system and the electric current I:

Z =
U

I
.

Bioimpedance measurements give informations on the electrical properties of bio-
logical entities, from cells to tissue [5, 12, 32]. This technique is particularly inter-
esting to investigate the cell response to electrical stress.

As seen in Chapter 1 unlike the standard 2-electrodes device that impose the
electric stress and measure the response, bioimpedance measurements performed
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with 4 electrodes (2 electrodes that impose the electric stress and 2 passive elec-
trodes that measure the response of the sample) do not contain the measure dis-
tortion due to interfacial water in the vicinity of the active electrode [5, 20,26].

An example of the 4-electrode system in vitro is presented in Chapter 1 and
has been proposed by Garcia-Sachez et al. [20]. The system is composed of a buffer
layer, an electrolyte with or without a cell mono-layer, on the bottom and of very
thin electrodes placed on the top of the buffer (see Figur 2.1a). Another example of
a 4-electrode system in a tissue as presented in Figure 2.1b has been used in [21,51]
(see Appendix B for more details). In this case the passive electrodes are not thin.

Both active and inactive electrodes are not perfect conductor but, supposing
intense enough electric field, we can represent the delivering electrodes as equipo-
tential surface. Unlike the active electrodes on which either the potential or the
current are imposed, which correspond to the Dirichlet or Neumann boundary con-
ditions, for the inactive electrodes the value of the equipotential is an unknown of
the partial differential equation. The main goal of this chapter is to present a math-
ematical analysis of the floating potential problem and to perform an asymptotic
analysis to improve the accuracy of the approximation.

The first modeling approach consists in seeing the inactive electrode as a highly
conductive medium. The electroquasistatic potential satisfies Poisson equation in
each domain: the high conductive passive electrodes, and the biological sample,
corresponding to the cell-buffer system or the biological tissue. In this problem, the
ratio ξ between the conductivities of the biological tissue (or the buffer-cell system)
and the electrode conductivity plays a crucial role. Since the large contrast between
the conductivities, we have ξ � 1. When solving the problem using difference finite
method, the presence of a small value could lead to an ill-conditioned matrix. In
the case of an electrode which can be seen as a thin film, an other small parameter
has to be taken into account: the ratio δ between the electrode thickness and the
total domain size. A small δ means small space step in order to discretize the
electrode: this brings to more instability and increases the computational cost.

To avoid the aforementioned difficulties, another approach consists in consider-
ing the measurement electrode as a perfect conductor. Then the passive electrode
becomes an equipotential and the electric field vanishes in the electrode. In other
words, the surface of the electrode is an equipotential and the total flux through
this surface is zero, which is the so called floating potential [28]. The advantage of
the floating potential approach is to avoid the large heterogeneity of the conductiv-
ity and to reduce the mesh size, since only the (lower) conductive biological sample
is considered. A study of a floating potential problem is presented in Amann et
al. [4], which propose a boundary element method to tackle the floating potential
in the case shown in Figure 2.1b, where δ ∼ 1 and ξ � 1. They also consider an
asymptotic regime for which the floating potential gives better approximation than
the full problem.

In this chapter, we focus on the problem with thin film electrode, i.e. ξ �
δ � 1. We propose an asymptotic analysis to exhibit the full problem of which
floating potential is the first order approximation. In addition, we characterize the
floating potential thanks to appropriate Dirichet to Neumann maps, which makes
it possible to use standard Finite Element Method (FEM) or Finite Difference
Method (FDM) codes to tackle the floating potential problem. This also makes it
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possible to prove that floating potential problem is well-posed. The analysis of the
case with volume electrode, ξ � 1, δ ∼ 1 is discussed in Appendix B.

The chapter is structured as follows. In Section 2.2 the asymptotic regime
assumptions and the problem are presented. Section 2.2 also investigate the nu-
merical peculiarities of the electrostatic problem with very conductive and passive
electrodes. The goal of this section is to point up the highlights and the weak-
nesses of both strategies: direct resolution of the statement problem and floating
potential approach. Section 2.3 treats of the asymptotic expansion of the electric
potential and of the proof of the convergence of the expansion. Section 2.4 exposes
the conclusions and the perspectives of our work.

2.2 Modeling Approaches

Problem Statement

In this section, we present the problem in the case of a thin electrode. To
avoid singularities that complexify the asymptotic expansion, we consider a toy
model which contains the main asymptotic properties of the problem deprived from
the singularities. More precisely the domain is composed of an inner conducting
domain, representing the buffer, surrounding by a thin highly conducting sheet,
representing the measurement electrode. We denoted by Ωi the inner domain

Oεe, σe ∼ ε−k

Oi, σi ∼ 1

Γext

Γ0

Γint

γsεe ∼ ε↔ si ∼ 1←−−→

Figure 2.2 – Scheme of the toy model : the buffer domain is embedded in the
electrode domain.

corresponding to the sample with a smooth boundary ∂Ωi. Let Ωε
e be a thin layer

with constant thickness surrounding Ωi. The ratio between the sizes of the two
domains is order ε. The inner domain Ωi contains a hole corresponding to the
source coming from the stimulating electrode. Let Γint be the inner boundary of
Ωi, Γ0 the interface between Ωi and Ωε

e, Γext the exterior boundary of Ωε
e. Figure 2.2

illustrates these notations. Let be Ω = Ωi∪Ωε
e and assume that Γ0 is a 2D smooth

compact domain. The electric potential uε in Ω is the solution to the following
problem 




−∇ · (σε∇uε) = f in Ω,

∂nuε|Γext = 0,

uε|Γint = γ,

(2.1)
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where f ≡ 0 in Ωε
e, f ∈ L2(Ωi), supp(f) ( Ωi for the sake of simplicity, γ ∈

H
1
2 (Γint). The conductivity σ is given by

σε(x) =

{
σi(x), if x ∈ Ωi,

ε−kσe, if x ∈ Ωε
e = Ω \ Ωi,

(2.2)

with k ≥ 1. We suppose that σi is a positive function in Ωi whereas σe is a
positive constant in Ωε

e. As Ωi represents a dielectric and Ωε
e a conductor, we have

σi � ε−kσe. From this, we obtain the following transmission conditions
{
uε|Γ0

i = uε|Γ0
e ,

σi ∂nuε|Γ0
i = ε−kσe ∂nuε|Γ0

e .
(2.3)

Under this hypothesis System (2.1-2.3) has a unique solution uε ∈ H1(Ω). See [41]
for more details.
The only parameter of the model is k. The parameter k sets the growth rate
of the exterior conductivity ε−kσe when ε tends to zero. In other words k links
the conductivities ratio and the domain sizes ratio. The limit model depends on
the different values of k. The ideal case of perfect conductor is achieved when ε
approaches zero with k = 2. In the next section, a numerical example is given to
explain the specificities and the numerical complexities of the asymptotic regime
k = 2.

Numerical assessment

"

2⇡

~r

~✓

Rmin

Rmax

Rmax + "

Oi

Oe
"

Figure 2.3 – 2D Polar Domain
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�0

Oi

O"
e

"

(a) ε = 1

�0

Oi

(b) ε = 0.1

Figure 2.4 – Numerical solution of System (2.1-2.3) with two different values for
ε: ε = 1 and ε = 0.1. One can remark that when ε tends to zero the electric
potential in the domani Oεe becomes homogeneous.

A C++ FDM library (around 3200 code lines) has been implemented in order
to numerically solve System (2.1-2.3). In this section, the difficulties of the direct
numerical resolution of System (2.1-2.3) are presented.

We use a representation of the original system where the choice of the domain
and the boundary conditions are imposed in order to create a problem for which we
know the exact solution. In this way, the numerical solution can be compared with
the exact solution. Considering the geometry presented in Figure 2.2, in this toy
problem the inner domain Ωi is an annulus centered in the origin and with smaller
radius Rmin and greater radius Rmax, such that Rmax−Rmin = 1. The outer domain
Ωe

ε is an annulus surrounding Ωi and with thickness ε. To represent the system
on a 2D Cartesian grid, all the equations have been rewritten in polar coordinates.
The discretization of the interface Γ0 is part of the employed mesh. Figure 2.3
shows the domain in polar coordinates. In the exterior boundary Γext, that in
this example corresponds to the set of points such that r = Rmax + ε, Neumann
homogeneous condition are imposed since there is no electrical flow coming outside
from the system. On the other hand, on the interior boundary Γint, that in this
example corresponds to the set of points such that r = Rmin, Dirichlet conditions
are imposed to simulate the flow of electric current given by the pulse of the active
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10−4 10−3 10−2 10−1 100
10−5
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10−2

10−1

1←→
1 l

ε

‖uext
ε − ufloat‖L2 , k = 1

‖uext
ε − ufloat‖L2 , k = 2

‖uext
ε − unum

ε ‖L2 , k = 2

Figure 2.5 – k = 1: when ε tends to zero, the exact solution does not converge
to the floating potential approach solution. k = 2: the exact solution converges to
the floating potential approach approximation when ε tends to zero. Due a high
condition number of the matrix, a direct resolution gives a worse approximation
for smaller ε.

electrode. The model to solve is




−
(
∂2uε
∂r2

+
1

r

∂uε
∂r

+
1

r2

∂2uε
∂θ2

)
= 0 in

] 0; 2π[×]Rmin;Rmax [ ∪ ]0; 2π[×]Rmax;Rmax + ε [,
∂ruε|r=Rmax+ε = 0,
uε|r=Rmin = eiθ + 1,

uε|θ=0 = uε|θ=2π,
(2.4)

with the transmission conditions
{

uε|r=R−max = uε|r=R+
max

,

σi∂ruε|r=R−max = ε−kσe ∂ruε|r=R+
max

,
(2.5)

where k ≥ 1 and

σ(r, θ) =

{
σi ∈ R, if (r, θ) ∈] 0; 2π[×]Rmin;Rmax [,

ε−kσe ∈ R, if (r, θ) ∈]0; 2π[×]Rmax;Rmax + ε [.

The numerical solution is computed for several values of the parameter k for which
different behaviours of the solution are achieved. We found that for k = 2 in Ωε

e the
electrical potential becomes homogeneous when ε tends zero. We will see later that
this is not the case with k = 1 (for more details see Appendix A.1). Figure 2.4
shows simulations corresponding to the numerical solution of System (2.1 - 2.3)
with k = 2 for ε = 1, on top, and ε = 0.1, on bottom.
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Figure 2.6 – The blue line shows that the distance between the exact and
the numerical solution with ε = 1 tends to zero for smaller discretization
steps at the second order. The red line is for ε = 0.01. (dθ, dr) ∈
{(314, 200), (628, 400), (1256, 800), (2512, 1600)}. Condition number of the matrix
of System (2.4-2.5) grows considerably when ε approaches zero. With small dis-
cretization steps the instability increases and the numerical solution has lower
accuracy. (∗) value not available due to not reasonable computational cost to
compute it.

One possibility to obtain a good approximation of a physical system consists
in considering a small value of ε with respect to the domain Ωi. This brings
to two possibilities: a very small discretization step in both directions or two
discretization steps with different magnitude order. In both case an increase of the
computational cost, specially in the first case, and the instability, specially in the
second case, is noted. Several simulations with different values of ε are performed.
We compare the exact solution uextε of System (2.4-2.5) with the numerical solution
unumε obtained by a difference finite method where all the equations are discretized
at the second order approximation. The discretization steps are dθ = 0.063 and
dr = 1.7×10−5: dr is chosen in order to discretize the domain Ωε

e in case of a small
electrode thickness (ε = 10−4) and a bigger dθ is taken to reduce the computational
cost. Results are given in Figure 2.5. The dashed black curve represents the L2-
norm of the difference between uextε and unumε : the difference finite method gives a
solution getting worse for smaller ε. The reason of bad approximation lies in the
fact that a small value of ε leads also to more instability in the problem since it
increases the condition number of the matrix, by the presence of small values in the
transmission conditions. Several simulations have been performed with ε fixed and
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Figure 2.7 – Computational time for (dθ, dr) = (2k × 314, 2k × 200), k = 0, · · · 3.
The computational time increases exponentially with the number of discretization
points.

changing the discretization steps in both directions, see Figure 2.6. The relative
distance between the exact solution and the numerical solution is computed by
using the L2-norm. One can remark that fixing a big ε (for example when internal
domain Ωi and external domain Ωε

e have the same thickness) and increasing the
number of the discretization points, the numerical solution gives an approximation
of the exact solution at the second order accuracy, as expected from the choice of
the numerical approximations. For smaller ε the problem becomes ill-conditioned,
that is why for smaller discretization steps the numerical solution diverges from
the exact solution as shown by the dashed line in Figure 2.5. A way to reduce the
instability in the problem could be to consider more homogeneous discretization
steps but this requires not reasonable computational cost. Figure 2.7 shows how
the computational time increases exponentially with shorter discretization steps.
The simulations are performed by using an ordinary laptop (a MacBook Pro with
processor 3,3 GHz Intel Core i7).

In conclusion, it possible to reproduce the behaviour of the electric potential
in a electrode using System (2.1-2.3). Nevertheless it is hard to obtain a good
approximation since the direct resolution of this problem requires a high compu-
tational cost and/or to solve an ill-conditioned problem. That is why in this work
we focus on a alternative method. A way to avoid this is to consider the limit
problem obtained when ε tends to zero. In this case the electrode is part of the
boundary of the domain Ωi. The goal is then to determinate the electrode bound-
ary condition. This leads to the floating potential approach. Next section focuses
on this approach.
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The floating potential approach

Oεe, σe ∼ ε−k

Oi, σi ∼ 1

Γext

Γ0

Γint

γ
ε↔ ε→0−→

Oi, σi ∼ 1

Γ0

Γint

γ

Figure 2.8 – Scheme of the buffer domain embedded in the electrode domain.

As seen in Section 2.2, the direct resolution of the electric potential diffusion
between two domains with both large conductivities and sizes contrasts requires
high computational resources and leads to numerically ill-conditioned matrix. In
order to avoid these difficulties, we propose to perform an asymptotic expansion
when the electrode thickness ε tends to zero, see Figure 2.8. The simulation domain
is then restricted to the domain Ωi, whose boundary is an equipotential surface.
The problem to solve reads then as follows:

Find (u0, α0) ∈ H1(Ωi)× R such that





−∇ · (σi∇u0) = f in Ωi,

u0|Γ0
= α0,∫

Γ0

σi∂nu0 ds = 0,

u0|Γint
= γ.

(2.6)

with f ∈ L2(Ωi), γ ∈ H
1
2 (Γint) and σi positive function of Ωi and where n is the

outer normal vector of Γ0. Under these hypotheses, there exists a unique solution
of Problem (2.6).

Existence and Uniqueness of floating potential problem

In order to prove the existence and uniqueness of System (2.6), we consider the
following Dirichlet-to-Neumann operators

Λ0 : H
1
2 (Γint) −→ H−

1
2 (Γ0)

γint
Λ07−→ ∂nv|Γ0

s. t.

{
−∇ · (σi∇v) = f in Ωi,

v|Γ0
= 0, v|Γint = γint;

(2.7)

Λ1 : H
1
2 (Γ0) −→ H−

1
2 (Γ0)

γ0
Λ17−→ ∂nw|Γ0

s. t.

{
−∇ · (σi∇w) = 0 in Ωi,

w|Γ0
= γ0, w|Γint = 0;

(2.8)

89



CHAPTER 2. ASYMPTOTIC ANALYSIS

Now considering u0 solution of System (2.6), it is easy to get

∂nu0|Γ0
= Λ1(α0) + Λ0(γ).

From System (2.6), we obtain

∫

Γ0

σi∂nu0 ds = 0,

then we have ∫

Γ0

σi (Λ1(α0) + Λ0(γ)) ds = 0.

As Λ0 and Λ1 are linear operator, α0 ∈ R and since 1
∫

Γ0

σiΛ1(1)ds 6= 0, it is

possible to write an explicit formula for α0

α0 = −

∫

Γ0

σiΛ0(γ) ds

∫

Γ0

σiΛ1(1) ds
. (2.9)

Equation (2.9) allows us to compute the value of the constant α0 using only the
solutions of Dirichlet problems for which, as it is known in the literature [41],
the existence and uniqueness of a solution are proven. Then the constant α0 is
uniquely determined by Equation (2.9). Once computed α0, System (2.6) becomes
a Dirichlet problem that admits one and only one solution u0 ∈ H1(Ωi). Then
this proves that there exists a unique couple (u0, α0) ∈ H1(Ωi) × R solution of
System (2.6).

Remark 8. In Chapter 3, the case of multiple passive electrodes is considered. The
same approach leads to the well-posedness: the floating potential of each passive
electrode is obtained thanks to an invertible Gram matrix (see Proposition 7).

Floating potential problem assessment

As in Section 2.2, we solve System (2.6) in the case where the domain Ωi is
an annulus centered in the origin and with smaller radius Rmin and greater radius
Rmax, such that Rmax−Rmin = 1. To represent the system on a 2D Cartesian grid,
all the equations are rewritten in polar coordinates. Figure 2.9 shows the domain
in polar coordinates. Furthermore, we suppose that the conductivity σi is constant

1. Denoting by w the solution to Problem (2.8) with γ0 = 1, one has

∫

Γ0

σiΛ1(1) ds =

∫

Γ0

σi∂nww ds =

∫

Ωi

σi∇w∇w dx 6= 0.
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Figure 2.9 – 2D Polar Domain with ε = 0

in the domain Ωi. System (2.6) can be rewritten as follows




−σi
(
∂2u0

∂r2
+

1

r

∂u0

∂r
+

1

r2

∂2u0

∂θ2

)
= f(θ, r) in ] 0; 2π[×]Rmin;Rmax [,

u0|r=Rmax = α0,

u0|r=Rmin = γ,

u0|θ=0 = u0|θ=2π,

(2.10)
The proof of the existence and the uniqueness of System (2.6) given in Section 2.2
directly provides a way to approximate the solutions by following these computa-
tional steps:

— compute α0,
— solve the Laplace problem with Dirichlet conditions.

The value of α0 is given by

α0 = −

∫ 2π

0

∂rv0|r=Rmaxdθ

∫ 2π

0

∂rv1|r=Rmaxdθ

,

where v0 and v1 are respectively solution of the following problems:




−σi
(
∂2v0

∂r2
+

1

r

∂v0

∂r
+

1

r2

∂2v0

∂θ2

)
= f in ] 0; 2π[×]Rmin;Rmax [,

v0|r=Rmax = 0, v0|r=Rmin = γ,
v0|θ=0 = v0|θ=2π,





−σi
(
∂2v1

∂r2
+

1

r

∂v1

∂r
+

1

r2

∂2v1

∂θ2

)
= 0 in ] 0; 2π[×]Rmin;Rmax [,

v1|r=Rmax = 1, v1|r=Rmin = 0,
v1|θ=0 = v1|θ=2π.
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Numerical solution ε Numb. mesh point ‖err‖L2 comp. time
uextε 0.0005 300× 15000 2.3e−4 170s
ufloat 0.0005 100× 6000 1.2e−4 16s

Table 2.1 – A direct resolution of the two domains problem requires a refiner
mesh in order to discretize the thin electrode. Using the floating potential problem
a coarser mesh is allowed. The results are a lower error, since the discretizzation
steps are more homogeneous, and a decrease of the computational cost.

This means that to find u0, the resolution of three Dirichlet problems is required.
Using a difference finite method, one can remark that the matrix is the same
for the three problems. That means that a not-time consuming method can be
implemented and applied.

Supposing: Rmin = 1, Rmax = 2, f ≡ 0 and γ = eiθ + 1 ∀θ ∈ [0, 2π], σi = 0.1,
σe = 1 and using the mesh introduced in Section 2.2 limited to the domain Ωi, one
can compare the exact solution uextε of System (2.4-2.5) with the numerical solution
ufloat of the floating potential problem (2.10). Results are given in Figure 2.5. For
k = 1, as we know, the two domains problem does not reach the assumption of
an equipotential conductor when ε tends to zero. That is why there is a great
distance between uextε and ufloat for k = 1 (blue line). Differently, for k = 2, the
solution of the solution of (2.4-2.5) converges to the solution of the floating potential
problem (2.10) when ε tends to zero (orange line).

We conclude by saying that modeling the system by the floating potential ap-
proach leads to a stable and more accurate solution, respect to the solution of
the two domains problem. Furthermore, the floating potential problem requires a
coarser mesh discretizing only one domain. This implies an important decrease of
the computational time. An example is given in Table 2.1.

2.3 Theoretical Study of floating potential ap-
proach

In Section 2.2, the convergence of the solution of the two domains problem (2.1-
2.3) to the solution of the floating potential (2.6) has been demonstrated numeri-
cally when ε tends to zero. In this section we prove the convergence theoretically.
We use similar hypothesis on the two domains problem (2.1-2.3), and we assume
that the source terms f and γ are as regular as needed. We call ξ the ratio between
low and high conductivities and δ the ratio between the electrode thickness and
buffer domain size. According to Equation (2.2), the relation between conductiv-
ities and dimensions is given by δ = ε and ξ = εk, with ε a small parameter.
An asymptotic expansion of the solution of the two domains problem (2.1-2.3) is
considered based on the small value ε:

u0 + u1ε+ u2ε
2 + . . . .

It is proved that the zero order solution of the asymptotic development coincides
with the case where inactive electrode is considered as plate perfect conductor.
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We refine the accuracy of the solution computing a first order correction. It is
shown that the same strategy used for the resolution of System (2.6) is employed
to compute the zero and the first order coefficients.

Geometric preliminaries

First we have to analyse some geometric aspects of the domain in order to
describe how the geometry and the equations evolve in the limit case when ε tends
to 0. The geometric preliminaries are presented in 3D even if in what follows, the
asymptotic analysis is done in 2D. Obviously, the full analysis is valid in 3D.
Let be xT = (ξ1, ξ2) a system of local coordinates on Γ0 = {ψ(xT )}. We define the
following map Φ by

Φ(xT , ξ3) = ψ(xT ) + ξ3 ~n(xT ) ∀(xT , ξ3) ∈ Γ0 × R,

where ~n is the outer normal vector of Γ0. The layer Ωε
e is parameterized by

Ωε
e = {Φ(xT , ξ3) | (xT , ξ3) ∈ Γ0 × (0, ε)} .

Considering the Euclidean metric in (xT , ξ3), the coefficients of metric tensor
(gij)i j=1,2,3 with gij = 〈∂iΦ, ∂jΦ〉 have the form [38]

g33 = 1, gα,3 = g3,α = 0 ∀α ∈ {1, 2},
gα,β(xT , ξ3) = g0

α,β(xT ) + 2 ξ3 bα,β(xT , ξ3) + ξ3
2 cα,β(xT , ξ3 ∀α, β ∈ {1, 2}2,

where

g0
α,β = 〈∂αψ, ∂βψ〉, bα,β = 〈∂α~n, ∂βψ〉, cα,β = 〈∂α~n, ∂β~n〉.

The Laplace-Beltrami operator deriving from this system of local coordinates of
Ωε
e is given by

∆g =
1√
g

∑

i,j=1,2,3

∂i(
√
ggij∂j),

where (gij) = (gij)
−1 and g the absolute value of the tensor metric determinant.

It is possible to define, ∀l ∈ N,

ali,j = ∂l3

(
∂i(
√
g gij)
√
g

)∣∣∣∣
ξ3=0

, ∀(i, j) ∈ {1, 2, 3}2,

Alα,β = ∂l3
(
gαβ
)∣∣
ξ3=0

, ∀(α, β) ∈ {1, 2}2,

and the differential operator on Γ0 of order 2

SlΓ0
=

∑

α,β=1,2

alα,β∂β + Alα,β∂α∂β.

Remark 9. As shown in [38], the operator S0
Γ0

is the Laplace-Beltrami operator
computed on the surface Γ0. Let denote it with ∆Γ0

S0
Γ0

= ∆Γ0 .
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The Laplace-Beltrami operator can be rewritten as

∆g = ∂2
3 +

∑

l≥0

ξl3
l!

(al33∂3 + SlΓ0
) ∀(xT , ξ3) ∈ Γ× (0, ε).

Performing the change of variable η = ξ3/ε, we obtain

∆g =
1

ε2
∂2
η +

1

ε
a0

33 ∂η +
∑

l≥0

εl
ηl

l!

(
η

l + 1
al+1

33 ∂η + SlΓ0

)
∀(xT , ξ3) ∈ Γ0 × (0, 1),

and
∂n =

1

ε
∂η.

Limit Problems

The toy model presented in Section 2.2 is considered. Assuming that uε as

uε(x) =

{
uεi in Ωi,
uεe in Ωε

e,

it is possible to rewrite System (2.1-2.3) in the following form




−∇ · (σi∇uεi ) = f on Ωi,

∆gu
ε
e = 0 on Γ0 × (0, 1),

uεi |Γ0
= uεe|η=0

,

σi ∂nu
ε
i |Γ0

= ε−(k+1)σe ∂ηu
ε
e|η=0

,

∂ηu
ε
e|η=1

= 0,

uεi |Γint
= γ.

(2.11)

In System (2.11), the equations are separated respect to the domain there they
are involved. This is useful when we apply an asymptotic analysis to see how the
equations evolve when ε tends to zero.

In order to approach the problem by an asymptotic analysis in the case k = 2,
let suppose that the solution of System (2.11) has the form of a power series of ε

uε(x) =

{
ui0 + ε ui1 + ε2ui2 + . . .
ue0 + ε ue1 + ε2ue2 + . . .

, (2.12)

By replacing the solution (2.12) in System (2.11), one can identify the terms with
the same power of ε, getting the so called p-th order problem:




−∇ ·
(
σi∇uip

)
= δpf in Ωi,

∂2
ηu

e
p = −a0

33∂ηu
e
p−1 −

∑p−2
l=0

ηl

l!

(
η
l+1
al+1

33 ∂ηu
e
p−2−l + SlΓ0

uep−2−l
)
in Γ0 × (0, 1),

uip|Γ0

= uep|η=0
,

σi ∂nu
i
p−3|Γ0

= σe ∂ηu
e
p|η=0

,

∂ηu
e
p|η=1

= 0,

uip|Γint
= δpγ.

(2.13)
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where

δp =

{
1 if p = 0,

0 otherwise.

As we will see in what follows, to determine uip, we use p-th, p+ 1-th and p+ 2-th
order problems. From this, we can determine the problem satisfied by each single
coefficient of the expansion.
In this section, we present a first order solution in the internal domain Ωi. That is
why we have to consider at least the 3 first order problems. The 0 order problem
is:





−∇ · (σi∇ui0) = f in Ωi,

∂2
ηu

e
0 = 0 in Γ0 × (0, 1),

ui0|Γ0 = ue0|η=0,

∂ηu
e
0|η=0 = 0,

∂ηu
e
0|η=1 = 0,

ui0|Γint = γ.

(2.14)

The 1-st order problem is:




−∇ · (σi∇ui1) = 0 in Ωi,

∂2
ηu

e
1 = −a0

33∂ηu
e
0 in Γ0 × (0, 1),

ui1|Γ0 = ue1|η=0,

∂ηu
e
1|η=0 = 0,

∂ηu
e
1|η=1 = 0,

ui1|Γint = 0.

(2.15)

The 2-nd order problem is:




−∇ · (σi∇ui2) = 0 in Ωi,

∂2
ηu

e
2 = −a0

33∂ηu
e
1 − ηa1

33∂ηu
e
0 − S0

Γ0
ue0 in Γ0 × (0, 1),

ui2|Γ0 = ue2|η=0,

∂ηu
e
2|η=0 = 0,

∂ηu
e
2|η=1 = 0,

u2
i |Γint = 0.

(2.16)

The 3-rd order problem is:




−∇ · (σi∇ui3) = 0 in Ωi,

∂2
ηu

e
3 = −a0

33∂ηu
e
2 −

(
ηa1

33∂ηu
e
1 + S0

Γ0
ue1
)

− η
(
η
2
a2

33∂ηu
e
0 + S1

Γ0
ue0
)

in Γ0 × (0, 1),

ui3|Γ0 = ue3|η=0,

σi∂nu
i
0|Γ0 = σe∂ηu

e
3|η=0,

∂ηu
e
3|η=1 = 0,

u3
i |Γint = 0.

(2.17)
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Using the p-th problem, p ∈ {0, 1, 2, 3} one can achieve to identify the problems
satisfied by the two first terms, ui0 and ui1, of the expansion in the internal domain
Ωi. We prove the two following propositions (the proofs are given in Appendix A.2).

Proposition 2. The limit problem to determine ui0 is given by: find (ui0, α0) ∈
H1(Ωi)× R solution of





−∇ · (σi∇ui0) = f in Ωi,

ui0|Γ0 = α0,∫

Γ0

σi∂nu
i
0 ds = 0,

ui0|Γint = γ.

(2.18)

with f ∈ L2(Ωi), γ ∈ H
1
2 (Γint).

Proposition 3. The problem satisfied by ui1 is given by: find (ui1, α1) ∈ H1(Ωi)×R
solution of 




−∇ ·
(
σi∇ui1

)
= 0 in Ωi,

ui1|Γ0
= ūe1 + α1,∫

Γ0

σi ∂nu
i
1|Γ0

= 0,

ui1|Γint
= 0,

(2.19)

with ūe1 ∈ H2(Γ0) solution of



σe∆Γ0ū

e
1 = σi∂nu

i
0|Γ0 ,∫

Γ0

ūe1 = 0.
(2.20)

Considering the solution a formal series with respect to the small parameter ε,
one can remark that breaking the series to the zero order the measurement electrode
coincides with a perfect conductor. In fact the voltage has constant value α0 on
the electrode. Since the value α0 is a unknown of the problem, System (2.18) is a
floating potential problem and it has the same form than System (2.6) studied in
Section 2.2. Thanks to elliptic regularity shift, one has the following

Proposition 4. Assume that f ∈ Hk−1/2(Ωi), γ ∈ Hk+1(Γint), for any k ≥ 0.
Then there exists a constant Ck depending on f , γ and the domain Ωi such that

‖ui0‖Hk+3/2(Ωi) ≤ Ck,

‖ui1‖Hk(Ωi) ≤ Ck.

Remark 10. Choosing k = 2, a specific relation is fixed between the conductivities
of the domains and their sizes. The considerations about the zero order limit prob-
lem are valid since k = 2. Considering the case k = 1, the zero order limit problem
obtained by the asymptotic analysis is not a floating potential problem and it can-
not be used to describe the behaviour of a quasi-perfect conductor. More details are
given in Appendix A.1.
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The potential is then approached one step further with the first order correction
(second term of the expansion). System (2.19) has the same form of System (2.18)
related to ui0. As already shown in Section 2.2, Systems (2.18) and (2.19) are well-
posed problem and for the resolution of both, the strategy exposed in Section 2.2
can employed. Neglecting the resolution of the 1D problem for ūe1, with this strat-
egy it is possible to add one more order of accuracy in the solution just doubling
the time computing and using the same code to get the two solution terms.

Convergence

In this section we study the convergence when ε tends to zero of the numerical
solutions of System (2.1-2.3) to the solution obtained by solving System (2.6) (or
System (2.18)) and System (2.19-2.20). We assume the data f , Γint and the domain
Ωi as regular as necessary so that Proposition 4 holds for k high enough. We recall
that the solution uε has the form

uε(x) =

{
ui0 + ε ui1 + ε2ui2 + . . .
ue0 + ε ue1 + ε2ue2 + . . .

,

and consider the extension by zero in Ωε
e of the solution of the limit problems





−∇ · (σi∇ui0) = f, Ωi.
−∇ · (σi∇ui1) = 0, Ωi,

ui0|Γ0
= α0,

ui1|Γ0
= α1 + ūe1,

ui0 = α0 Ωε
e,

ui1 = α1 + ūe1 Ωε
e,

ui0|Γint
= γ,

ui1|Γint
= 0,∫

Γext

∂nu
i
0 = 0,

∫

Γext

∂nu
i
1 = 0.

(2.21)

We define vε by vε = uε − u0 − εu1 and vε is solution of




−∇ · (σi∇vε) = 0, Ωi,
∆vε = −ε∆Γ0ū

e
1 + ε2ψ, Ωε

e,
∂nv

ε
|Γext

= 0,
σe
ε2
∂nv

ε
|Γ0

+
= σi∂nv

ε
|Γ0
−

+ σi∂nu
i
0|Γ0

−
+ σiε∂nu

i
1|Γ0

−
,

JvεK
Γ0

= 0,

vε|Γint
= 0.

(2.22)

with JvεK
Γ0

:=
∣∣vε|

Γ+
0

− vε|
Γ−0

∣∣ and ψ = O(ε).

Remark 11. We have
n|Γ0

− = −n|Γ0
+ := n|Γ0

.
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Before to make estimates of vε, we introduce the following propositions.

Proposition 5. Let φ ∈ H1(Ωε
e) such that

∫
Ωεe
φdx = 0. There exists a constant C

independant of ε such that

‖φ‖L2(Ωεe)
≤ C‖∇φ‖L2(Ωεe)

.

Proof. Let define φε by

φε :

{
Γ0 × (0, 1) → R

(xT , η) 7→ φ(xT , ε η)
(2.23)

we have ∂ηφε = ε∂ξ3φ(xT , ξ3). We apply Poincaré-Wirtinger inequality on φε: there
exists a constant C which depends only on Γ0 (then which is independant of ε)
such that ∥∥∥φε −

∫

Γ0×(0,1)

φε
∥∥∥
L2(Γ0×(0,1))

≤ C‖∇φε‖L2(Γ0×(0,1)).

As we have ∫

Γ0×(0,1)

φε =
1

ε

∫

Γ0×(0,ε)

φ = 0,

∫

Γ0×(0,1)

(φε)2 =
1

ε

∫

Γ0×(0,ε)

(φ)2

and
∫

Γ0×(0,1)

|∇φε|2 =
1

ε

∫

Γ0×(0,ε)

((∂xTφ)2+ε2(∂ηφ)2) ≤ 1

ε

∫

Γ0×(0,ε)

((∂xTφ)2+(∂ηφ)2) since ε is small,

we obtain
‖φ‖L2(Ωεe)

≤ C‖∇φ‖L2(Ωεe)
.

Proposition 6. Let φ ∈ H1(Ωε
e) such that

∫
Ωεe
φdx = 0. There exists a constant

independent of ε such that

‖φ‖L2(Γ0) ≤ Cε−1/2(‖φ‖L2(Ωεe)
+ ‖∇φ‖L2(Ωεe)

).

Proof. We apply Sobolev trace inequality on φε (defined in the proof of Proposi-
tion 5): there exists a constant C (independant of ε) such that

‖φε‖L2(Γ0) ≤ C‖φε‖H1(Γ0×(0,1)) ≤ C(‖φε‖L2(Γ0×(0,1)) + ‖∇φε‖L2(Γ0×(0,1)))

Using computations of Proposition 5 and

‖φε‖L2(Γ0) = ‖φ‖L2(Γ0),

we obtain the expected result.
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Now we can pass to make estimates of vε. ****
Multiplying the first equation of System (2.22) by vε and integrating by parts leads
to
∫

Ω

∇ · (σ∇vε) vε =
σe
ε2

∫

Ωεe

∆vε vε +

∫

Ωi

∇ · (σi∇vε) vε

=− σe
ε2

∫

Ωεe

∇vε · ∇vε −
∫

Ωi

σi∇vε · ∇vε +
σe
ε2

∫

Γext

∂n|
Γext

−
vε vε

+
σe
ε2

∫

Γ0

∂n|
Γ0

+
vε vε +

∫

Γ0

σi∂n|
Γ0
−
vε vε +

∫

Γint

σi∂n|
Γint

−
vε vε.

Using Remark 11 and System (2.22), we obtain

σe
ε2

∫

Ωεe

(
−ε∆Γ0ū

e
1 + ε2ψ

)
vε = −σe

ε2

∫

Ωεe

|∇vε|2−
∫

Ωi

σi |∇vε|2+

∫

Γ0

σi
(
∂nu

i
0 + ε∂nu

i
1

)
vε.

Finally we infer

σe
ε2

∫

Ωεe

|∇vε|2 +

∫

Ωi

σi |∇vε|2 =− σe
ε2

∫

Ωεe

(
−ε∆Γ0ū

e
1 + ε2ψ

)
vε +

∫

Γ0

σi
(
∂nu

i
0 + ε∂nu

i
1

)
vε

=

∫

Γ0

(
ε∇ui1 · nΓ0 + εψ

)
vε dxT . (2.24)

Choose now ϕ as the solution of the following system




∆ϕ = 0 Ωε
e

∂nϕ|Γ0
= ε∇ui1 · nΓ0 + εψ

∂nϕ|Γext = 0∫
Ωεe
φ = 0

(2.25)

Using Proposition 5 and 6, there exists C independent of ε such that ‖ϕ‖L2(Γ0) ≤
Cε−1/2‖∇ϕ‖L2(Ωεe)

.
Then using the Green’s identity, it follows that

‖∇ϕ‖2
L2(Ωεe)

=

∫

Γ0

∂nϕϕ−
∫

Ωεe

∆ϕϕ

≤
∫

Γ0

∂nϕϕ

≤ ε
∥∥∇ui1 · nΓ0 + ψ

∥∥
L2(Γ0)

‖ϕ‖L2(Γ0)

≤ Cε1/2‖∇ϕ‖L2(Ωεe)
.

Then we can infer that there exists C ∈ R independent of ε such that

‖∇ϕ‖L2(Ωεe)
≤ Cε1/2. (2.26)
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Multiplying the first equation of System (2.25) by vε and integrating by parts
lead to ∫

Ωεe

∆ϕvε = −
∫

Ωεe

∇ϕ · ∇vε +

∫

Γext

∂nϕv
ε +

∫

Γ0

∂nϕv
ε.

Hence ∫

Γ0

(ε∇u1 · nΓ0 + εψ) vε =

∫

Ωεe

∇ϕ · ∇vε.

From (2.24), using Cauchy-Schwarz inequality, we infer

σe
ε2
‖∇vε‖2

L2(Ωεe)
+ σi‖∇vε‖2

L2(Ωi)
≤ ‖∇ϕ‖L2(Ωεe)

‖∇vε‖L2(Ωεe)
.

Using Equation 2.26, one can prove that

‖∇vε‖L2(Ωεe)
≤ Cε5/2, ‖∇vε‖L2(Ωi) ≤ Cε

√
5/2. (2.27)

Using uniform estimates (2.27) and the fact that vε|Γint = 0, we obtain that vε tends
to 0 when ε approaches 0. The order of convergence is comprised between 1 and
2. Considering the 0 order approximation, we have

‖uε − ui0‖H1(Ωi) ≤ ‖uε − ui0 − εui1‖H1(Ωi) + ε‖ui1‖H1(Ωi)

= ‖∇vε‖L2(Ωi) + ε‖ui1‖H1(Ωi).

Using (2.27), we infer that the order of convergence for ui0 is equal to 1. Following
the same strategy by studying the terms with ε2ui2 can give order 2 for ui0 + εui1.

Numerical assessment of 1st order solution

In this section we prove numerically the theoretical result obtained in Sec-
tion 2.3 about the convergence order given by the solutions of System (2.18) and
System (2.19) and the exact solution of System (2.1-2.3) when ε tends to zero. We
consider the same hypothesis of the toy model used in Section 2.2. As we can see in
Figure 2.10, the convergence is reached when ε approaches zero with the expected
order. However, when the ε is too small, the accuracy of the finite difference so-
lution at the first order is not sufficient enough and the error due to the mesh is
greater than the error due to the truncation of the asymptotic expansion.

2.4 Conclusion and perspectives
It has been studied in this chapter two ways to model the behaviour of the elec-

tric potential in presence of an inactive electrode. In particular, it has been con-
sidered the case of a 4-electrode system with thin film electrode. We have started
by considering a transmission problem between two domains with an important
difference in the conductivities. Using a difference finite method, the small dimen-
sions of the electrode respect to the whole domain requires a small discretization
step. Furthermore, we have proved that the high contrasts in the conductivities
and in the sizes of the two domains lead to use a ill-conditioned matrix. These two
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10−4 10−3 10−2 10−1 100

10−5

10−4

10−3

10−2

10−1

100

←→
1

l 1

←→
1

l 2

ε

‖uε − u0‖L2

‖uε − (u0 + ε u1)‖L2

Figure 2.10 – The distance between the exact solutions and the numerical solu-
tions found with a floating potential tends to zero when ε approaches zero at the
expected order.

aspects bring to a high computational cost and unstable solution. A floating po-
tential problem is therefore treated. We have proved the existence and uniqueness
of the solution of the problem. The proof also allows us to traduce the zero-flux
constraint into two Dirichlet problems. From this, we can compute the value of the
unknown constant potential. We have observed that one can use a coarse mesh to
solve the system. Then, with the floating potential approach, a more stable and
accurate solution is obtained with a low computational cost. An asymptotic anal-
ysis was set up based on the small value ε to show the connection between the two
domains problem and the floating potential problem. We impose the ratio between
the electrode thickness and the total domain size δ = ε and the ratio between
the high and low conductivities ξ = εk. We have proved that in the case k = 2,
we obtain the floating potential problem already studied. The other terms can be
computed by resolving a similar problem in order to increase the approximation of
the electrode as a not-perfect conductor. The convergence study shows that this
approach enables to improve the solution when perfect conductor is assumed.

Our work represents a good theoretical basis to model a realistic 4-electrode
system. To improve the accuracy of the solution, we could consider a problem with
non linear dependence of the conductivities with respect to the electric field.
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Chapter 3

Validation of the floating potential
model for an arranged 4-electrode
setup

3.1 Introduction

The main goal of this chapter is to link the two previous chapters: the Elec-
trical Impedance Spectroscopy (EIS) data analysis discussed in Chapter 1 and the
floating potential (FP) model developed in Chapter 2. We compute numerically
the experimental 4-electrode set-up in a 2D domain thanks to geometric assump-
tion. Similarly to Chapter 1, the experimental data come from [20]. As already
explained previously, the micro-electrode set-up is composed by six parallel spiral
shape electrodes of length 75× 10−6× 0.1m2 and spaced of 150µm from each other
(see Figure 3.1a). As depicted by Figure 3.1b, the device is placed on a Petri dish
of thickness of 13µm filled up with a saline solution with or without adhered cells
on the bottom.

The electric potential u satisfies the electroquasistatic approximation with well-
designed boundary conditions, namely non homogeneous Neumann conditions on
the active electrodes and FP condition on the passive electrodes. As argued, FP
condition has to be preferred to the classical methods as the homogeneous Neu-
mann conditions, which are not realistic, and to the penalization method which is
numerically expensive and unstable.

In what follows, we present the simulations of a system composed of buffer in
which an AC signal is imposed by two active electrodes. There are also four passive
electrodes to simulate the measurement electrodes of the experiments. An essential
point of this chapter is the comparison between the simulations and the experi-
mental data. This step is necessary to validate the calibration method and the
equivalent circuit of the impedance and the modeling with the floating potential.

In Section 3.2, we formalize the problem to solve, inspired by the experimental
set-up. Section 3.3 presents the numerical computation of the problem and shows
the obtained results. Section 3.4 discusses the comparison between the simulations
and the experimental data. Finally, Section 3.6 presents the conclusions and the
perspectives of this work.
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15mm

E2(+)

E1(+)

E1(�) E4(�)

E3(+)E2(+)

(a) Micro-electrode assembly. (b) Experiment set-up.

Figure 3.1 – On the left, a representation of the spiral micro-electrode geometry
where are marked the different spirals: two of them are the active electrodes, Eα
and Eβ, and the other four (Eγ, Eδ, Eε and Eζ) are used to measure the voltage. On
the right, a representation of the experiment set-up: the micro-electrode is placed
above the cells inside a cylindrical plate. Images source: [20].

3.2 Application of the floating potential condition
to the arranged 4-electrode measurement sys-
tem

L1 L2

E1 E2E2E1 E3 E4

+ + +� � �

⌦

Figure 3.2 – Section of the plate filled with the buffer: intersections with six
electrodes (two active and four passive electrodes).

The aim of the chapter is to reproduce numerically the experiment performed
in [20] in a 2D domain Ω representing a section of the plate filled with the buffer,
with conductivity σ, and presenting on the top the intersections with six electrodes
(two active and four passive). Figure 3.2 gives a representation of Ω. The active
electrodes impose on the buffer an AC signal in harmonic regime. The passive
electrodes consist of four equipotential surfaces of the domain boundary whose
potential values are unknowns of the system.

Consider a rectangular domain Ω with six perfect inclusions, and denote with
Ej, j ∈ {1, 2, 3, 4} and with Ek, k ∈ {1, 2} the interfaces between the inclusions
and Ω as shown in Figure 3.2. We denote with L1 and L2 respectively the left side
and the right side of Ω, and with ∂Ω the outer boundary of Ω.

The electroquasistatic potential u is the solution to the following problem: for
given functions (g1, g2) ∈ H−

1
2 (E1) × H−

1
2 (E2) such that

∫
E1 g1dx +

∫
E2 g2dx = 0
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and a given function σ strictly positive in Ω, find (u, α1, α2, α3, α4) ∈ H1(Ω)× R4

solution of 



∇ · (σ∇u) = 0, in Ω,

σ∂nE1u|E1 = g1, σ∂nE2u|E2 = g2,

u|Ej = αj, j = 1, 2, 3, 4,∫

Ej

σ∂nEju ds = 0, j = 1, 2, 3, 4,

u|L1
= u|L2

,

σ∂nu = 0 otherwise.
To ensure uniqueness of the solution, a Gauge condition has to be imposed. For
the sake of simplicity we choose

∫
E1
udx = 0, which is equivalent to set α1 = 0.

In addition, in the experimental set-up, the electrodes E1 and E2 are identical and
the current imposed on E1 is the opposite of the current imposed on E2. Thus by
abuse of notation we set g := g1 = −g2 and the problem reads





∇ · (σ∇u) = 0, in Ω,

σ∂nE1u|E1 = g, σ∂nE2u|E2 = −g,
u|Ej = αj, j = 2, 3, 4, u|E1

= 0,∫

Ej

σ∂nEju ds = 0, j = 2, 3, 4,

u|L1
= u|L2

,

σ∂nu = 0 otherwise.

(3.1)

In order to prove the existence and uniqueness of System (3.1), ∀i ∈ {2, 3, 4},
we consider the following Dirichlet-to-Neumann operators

Λ
(i)
0 : H−

1
2 (E1) ∩H− 1

2 (E2) −→ H−
1
2 (Ei),

γ
Λ

(i)
07−→ σ∂nw|Ei s. t.





∇ · (σ∇w) = 0, in Ω,

σ∂nE1w|E1 = γ, σ∂nE2w|E2 = −γ, w|E1
= 0,

w|Ej = 0, j = 2, 3, 4,

w|L1
= w|L2

,

σ∂nw = 0 otherwise,

(3.2)

and for any j ∈ {2, 3, 4}
Λ

(i)
j : H

1
2 (Ej) −→ H−

1
2 (Ei),

δ
Λ

(i)
j7−→ σ∂nEivj |Ei

s. t.




∇ · (σ∇vj) = 0, in Ω,

σ∂nE1vj |E1
= 0, σ∂nE2vj |E2

= 0, vj |E1
= 0

vj |Ej
= δ, vj |Ek

= 0 k 6= j ∈ {2, 3, 4},
vj |L1

= vj |L2
,

σ∂nvj = 0 otherwise,

(3.3)
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Considering u solution of System (3.1), it is easy to get

σ∂nu|Ei = Λ
(i)
0 (g) +

4∑

j=2

αjΛ
(i)
j (1), ∀i ∈ {2, 3, 4}.

Then, the floating boundary conditions of System (3.1)

u|Ej = αj, j = 2, 3, 4,
∫

Ej

σ ∂nEju ds = 0 ∀j ∈ {2, 3, 4},

read as
Aα = b, (3.4)

where the vectors α and b are

α =




α2

α3

α4


 , b =

(
−
∫

Ei

Λ
(i)
0 (g)

)

i=2,...,4

,

and the matrix A = (Aij) is

Aij =

∫

Ei

Λ
(i)
j (1) ds ∀i, j ∈ {2, 3, 4}.

Proposition 7. Let σ be a positive constant, the matrix A can be rewritten as a
Gram matrix

Aij =

∫

Ω

σ∇vi · ∇vj dx, ∀i, j ∈ {2, 3, 4}, (3.5)

where vk, k ∈ {2, 3, 4}, solution of




∇ · (σ∇vk) = 0, in Ω,

σ∂nE1vk |E1 = 0, σ∂nE2vk |E2 = 0, vk |E1
= 0

vk |Ek = 1, vk |El = 0 l 6= k,

vk |L1
= vk |L2

,

σ∂nvk = 0 otherwise.

(3.6)

Therefore, A is symmetric definite positive.

Proof. By Definition (3.6) of the function vk, one has:

Aij =

∫

Ei

Λ
(i)
j (1) ds =

∫

Ei

σ∂nEivj vi ds =

∫

Ω

σ∇vj · ∇vi dx.

This directly implies that A is a symmetric Gram matrix. Therefore, to show that
A is positive definite one has to show that the functions (∇vj)j=2,3,4 are linearly
independent. Let (λi)i=2,3,4 ∈ R3 \ {0} be such that

4∑

i=2

λi∇vi = 0.
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Then the function w =
∑4

i=2 λivi satisfies




∇ · (σ∇w) = 0, in Ω,

σ∂nE1w|E1 = 0, σ∂nE2w|E2 = 0, w|E1
= 0

w|Ek = 1, ∀k = 2, 3, 4,

w|L1
= w|L2

,

σ∂nw = 0 otherwise.

Then w 6= 0, and thus ∇w since w|E1
= 0 6= w|Ek for k = 2, 3, 4, which is a

contradiction. Therefore λi = 0 for all i = 2, 3, 4, which ends the proof of the
proposition.

Using Equation (3.4), we can compute the constants αi, i = 2, 3, 4 using ap-
propriate Dirichlet-to-Neumann maps. Once imposed or computed the αi, i =
1, 2, 3, 4, System (3.1) is an elliptic problem which admits a unique solution in
u ∈ H1(Ω).

3.3 Numerical results

E1 E2E2E1 E3 E475⇥ 10�6 150⇥ 10�6
13⇥ 10�6

1350⇥ 10�6

Figure 3.3 – The domain Ω consists in a rectangle with base of 1350 × 10−6m
and height of 13×10−6m. On top there are the boundaries representing the buffer-
electrode interface of size 75× 10−6m and spaced 150× 10−6m.

In this section, simulations of the model presented in Section 3.2 have been
presented. Our final objective is to compare the impedances numerically mea-
sured from the solutions of System (3.1) with the data of impedances presented in
Chapter 1.

The proof of the existence and uniqueness of a solution of System (3.1) also
provides a resolution strategy. First, we solve System (3.2) and the third systems
in the form of System (3.3) in order to obtain the values of the αi, i = 2, 3, 4.
Finally, we can solve System (3.1) with the FP conditions are translated in terms
of Dirichlet conditions.

A C++ Finite Difference Method (FDM) library (around 3500 code lines) has
been implemented to numerically solve the strategy presented above on a 2D
Cartesian grid. All the equations are discretized with usual second-order meth-
ods. According to the experiments, the simulations are computed in a domain
Ω = [1350e−6, 13e−6] (m), on a 2D grid (of 2701× 261 nodes).

The conductivity σ is assumed real, positive and constant in all the domain Ω.
Table 3.1 lists the buffer conductivities that we have estimated, see Chapter 1 for
more details, and that we have used in the simulations.
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[KCl] (mM) 0 25 50 75 100
σ (S·m−1) 0.098∗ 0.265 0.57 0.965 1.432

Table 3.1 – Conductivities of the Free-Cell solutions computed thanks to Equa-
tion (1.27) and Equation (1.28), with k = 59.13 and K = −42.14. (*) Value
already available.

Remark 12. The permittivity of the buffer without cells is neglected. Indeed instead
of considering

σ + iωε,

where σ is the conductivity, ε the permittivity and ω the angular frequency, we
consider only the conductivity σ. This choice can be justified by recalling that in
the free-cells case ε = ε0 × εr = 8.8541× 10−12 × 78.57 ≈ 6.956× 10−10F.m−1 (see
Section 1.5 in Chapter 1 for more details). This implies that the potential, and
in particular the impedances computed in the next section, does not depend on the
angular frequency ω.

According to García-Sánchez et al. [20], the current imposed by the active
electrodes and denoted by Ca equals to 500µA. This implies that

g =
Ca
|E1|

=
Ca
|E2|

=
500

|E2|

in E1∪E2. Using the estimation of the length of the electrodes given in Section 1.4
in Chapter 1, we have

|E1| = |E2| = elec. width× elec. length = 75× 10−6 × 0.1 = 7.5× 10−6 m.

Remark 13. To model the 4-electrode experiment, we have assumed that the po-
tential is homogeneous along the third dimension of the electrodes. That leads us
to say that the micro-electrode in spiral shape, used for the experiments, has the
same efficacy but a more compact size of a device with straight electrodes of the
same length.

Figure 3.4 shows the spatial evolution of u in Ω for several buffer conductivities.
The potential evolution on a line placed on the upper boundary is showed in

σ (S·m−1) α1 α2 α3 α4

0.098 0 0.314 0.314 -2.2×10−6

0.265 0 0.116 0.116 -9.4×10−7

0.57 0 0.054 0.054 -4.3×10−7

0.965 0 0.032 0.032 -2.6×10−7

1.432 0 0.021 0.021 -1.7×10−7

Table 3.2 – The computed values of the potential on the passive electrodes for
several buffer conductivities.
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Figure 3.5 for several buffer conductivities. The potential reaches the peak at the
centers of E1 and E2 and has constant values αi in Ei, i ∈ {1, 2, 3, 4}. Table 3.2
lists the computed αi, i ∈ {2, 3, 4} in relation to the buffer conductivities. One
can remark that, the passive electrodes E2 and E3 (respectively E1 and E4) have
the same potential. This means that the electric potentials at two points located
at the same distance with respect to the active electrodes are identical.

� = 0.098 S · m�1

� = 0.265 S · m�1

� = 0.57 S · m�1

� = 0.965 S · m�1

� = 1.432 S · m�1

0.340.16-0.03

u

Figure 3.4 – Spatial evolution of the potential inside the buffer, in presence of
the arranged 4-electrode measurement system for several buffer conductivities.

mE1 E2 E3 E4E1 E2

 (V
)

u

Figure 3.5 – Spatial evolution of the potential at the electrode level for several
buffer conductivities. When σ increases, the potential intensity decreases.

3.4 Impedance computation

To validate the model and in particular the floating potential boundary condi-
tions, we have compared the data of impedances obtained from the experiments in
the case of the absence of cells with the impedances obtained from the numerical
solutions. Using our numerical results, we can compute the sample impedance
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denoted Zs in Chapter 1 (see Section 1.4 for the full definition in the context of
the 4-electrode experiment) by:

Znum
s =

1

|S2|

∫

S2

udS − 1

|S1|

∫

S1

udS

∫

S1

σ∂nudS

, (3.7)

where the surfaces S1 and S2 are the surfaces which are parallel to the vertical sides
of Ω, placed between E1 and E2 and at a distance of 75µm respectively from E1

and E2 (see Figure 3.6). But we can also compute an approximation of the effective
measured impedance of the 4-electrode experiment denoted by Zm in Chapter 1
(see Section 1.4 for more details) corresponding to the ratio between the measured
potential and the imposed current

Znum
m =

α2 − α1

Ca
,

considering the part of the domain placed between E1 and E2 and containing E1 and
E2. We recall that in Remark 12, we have explained why the impedances obtained
with the numerical solutions of System 3.1 do not depend on the angular frequency
ω. It is not the case of the impedance measured with the 4-electrode experiment.
To compare both, we consider |ZFC,m(ω1)|, representing the averaged impedance
module of the data before the calibration and measured at the lowest frequency.
We start by the comparison between Znum

m and |ZFC,m(ω1)|. The results are given
in Table 3.3. The relative error between the two impedances Err= |Z

num
m −|ZFC,m(ω1)||

|Znumm |
ranges between a maximum of 22%, for the lowest conductivity, to a minimum of
1.2%, for the highest conductivity. We recall that the data noise factors (measure-
ment system effects, electrode polarization, etc.) increase for low conductivities.
This can explain the high values obtained for σ = 0.098 S·m−1 and σ = 0.265
S·m−1. On the other hand, the small errors for the highest conductivities validate
the simulations: the FP conditions reproduce with a satisfactory result the interac-
tions between the active electrodes and passive electrodes. Although the numerical
resolution of n passive electrodes requires the numerical resolution of n+2 systems,
the FP model is still preferable to the penalization approach, as already discussed
in Chapter 2. Using a penalization approach, the instability of the method and

σ (S·m−1) Znum
m (Ohm) |ZFC,m(ω1)| (Ohm) Err (%)

0.098 620 482 22
0.265 232 187 19
0.57 108 110 1.85
0.965 64 62 3
1.432 42 41 1.2

Table 3.3 – Comparison between the impedances Znum
m obtained with the simu-

lations and the impedances measured with the 4-electrode experiment |ZFC,m(ω1)|
for several conductivities.
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σ (S·m−1) Znum
s (Ohm) |ZFC,cal(ω1)| (Ohm) Err (%)

0.098 610 593 2.8
0.265 204 219 7.3
0.57 114 102 10.5
0.965 62 60 3.2
1.432 40 41 2.5

Table 3.4 – Comparison between the impedances Znum
s obtained with the simu-

lations and the impedances calibrated |ZFC,cal(ω1)| for several conductivities.

the relatively small size of the domain make the resolution of the system time con-
suming and not robust. On the contrary, the FP approach requires the resolution
of classical Dirichlet-Neumann problems having all the same matrix of resolution.
Thus, it is possible to set a method of resolution in which the matrix is factorized
only one time (if linear solver is used) for all the problems (that can also be solved
in parallel). Such a method is robust and has a low computational cost. One can
remark that this also validates the estimation of the buffer conductivities and the
computation of the length of the electrodes.

E2E1

+ �

S1 S2

75µm 75µm

Figure 3.6 – The part of domain having the same impedance than the calibrated
data corresponds to the portion of Ω delimited by the surfaces S1 and S2.

Now we will compare Znum
s (defined in Equation 3.7) with the calibrated

impedance denoted |ZFC,cal(ω1)| obtained from |ZFC,m(ω1)| by using the calibration
strategy proposed in Section 1.5 of Chapter 1. The results are given in Table 3.4.
The relative error between the two impedances Err= |Z

num
s −|ZFC,cal(ω1)||

|Znums | ranges be-
tween a maximum of 10.5% to a minimum of 2.5%. The excellent results allows
us to validate our modeling strategy but also the calibration strategy proposed in
Section 1.5 of Chapter 1.

3.5 System with cells
We have obtained very interesting results with the free-cell buffer. Further

confirmation of these results could derive directly from the observations of the 4-
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electrode experiment with cells. In this experiment, we consider two domains Ωint

and Ωext where Ωint correspond to the domain at the cell cytoplasm compartment
at the bottom of the buffer and Ωext is the buffer above the cells. The interface be-
tween Ωint and Ωext is denoted by Γ(m). It corresponds to the cell membranes. The
electrical properties of the membrane are the capacitance Cm and the conductance
Sm. Note that the impedance measurements are performed before and after the
electroporating pulse (and not during the pulse), thus the membrane capacitance
and conductance take very different values before and after the electroporating
pulse, but no nonlinearly are accounted for. To model this more complex exper-
iment, we complete System (3.1) with transmissions conditions at the interface
Γ(m). The new system to solve reads: find (u, α1, α2, α3, α4) ∈ H1(Ωint∪Ωext)×R4

solution of




−∇ · (σ∇u) = 0, in Ωint ∪ Ωext,

σext∂nΓ
u|

Γ(m),+
= σint∂nΓ

u|
Γ(m),− = (iωCm + Sm)(u|

Γ(m),+
− u|

Γ(m),− ),

σ∂nE1u|E1 = g1, σ∂nE2u|E2 = g2,

u|Ei = αi, i = 2, 3, 4, u|E1
= 0∫

Ei

σ∂nEiu ds = 0, i = 2, 3, 4,

u|L1
= u|L2

,

σ∂nu = 0 otherwise.

(3.8)

with nΓ the normal to the surface Γ(m) directed towards the domain Ωext,

σ(x) =

{
σint(x) > 0 if x ∈ Ωint,

σext(x) > 0 if x ∈ Ωext,

and (g1, g2) ∈ H− 1
2 (E1) × H− 1

2 (E2) such that
∫
E1 g1ds +

∫
E2 g2ds = 0. Under these

hypotheses it is possible to prove that there exists and it is unique the solution of
System (3.8) following the same strategy used for System (3.1).

Remark 14. In System 3.8, the permittivities of the buffer εext and of the cells
εint are of order of 10−9F.m−1, see Remark 12. Then we assume that the terms
i ω εext/int are negligible compared to the values σext/int. This implies that the po-
tential u depends on the angular frequency only through the complex parameter
iωCm + Sm appearing in the transmission conditions.

Numerical simulations of System 3.8 and the calibration of the membrane elec-
trical properties with the data are the forthcoming works, which are not included
in this thesis due to a lack of time.

3.6 Conclusion and perspectives
Following the set-up of the experiments treated in Chapter 1, we have formal-

ized a problem in which the passive electrode-buffer interfaces are modeled by the
FP conditions. Transmission conditions between the buffer domain and the cell
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monolayer domain have been written. This problem is well-posed, and its numeri-
cal solution reproduces the evolution of the potential inside the plate satisfactorily.
For the case without cells, it has been validated by the comparison of (measured
and calibrated) impedances obtained from the numerical simulations with (mea-
sured and calibrated) impedances obtained with the 4-electrode experiment. This
great result confirms that the FP is a robust method to model a system presenting
one or more conductors inside. The result also confirms the conductivity estima-
tion, widely used in the calibration strategy in Chapter 1. Finally, we used the
calibrated observations to confirm our statement that, in the arranged 4-electrode
system used is [20], the sample corresponds to a part of the plate between the
passive electrodes. The obtained results are very encouraging. The first perspec-
tive of this work concerns the numerical simulations of the system will cells given
in (3.8) in order to validate the full strategy with all the available impedance data.
The second perspective consists in studying the use of the bioimpedances Znum

s

to calibrate (by estimating the parameters A1, A2 and A3) instead of using the
theoretical impedance given in Equation (1.25) of Section 1.5 of Chapter 1.
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Conclusion and Perspectives

Let us conclude this thesis by a summary of the contributions and the prospec-
tives deriving from the studies applied to the equivalent circuit (EC) model and
the floating potential (FP) model in the context of electroporation experiments.

Synthesis
Chapter 1 - Synthesis: This chapter focus on the reproduction and the inter-
pretation of the dataset deriving from an electroporation experiment. The obser-
vations are the measures of the impedance of a cell monolayer performed with an
arranged 4-electrode setup. The purpose is the analysis of the electrical behavior
of cell before and after an electroporating pulse. This work has represented a chal-
lenging task from the beginning, i.e. the data organization, until the end, i.e. the
model formalization and the estimation and interpretation of its parameters.

To have a complete overview of the work, it has been fundamental to under-
stand the process of data extraction and the context of the experiments. For this
reason, the chapter starts with the introduction of the Electro-quasistatic approx-
imation and the definition of equivalent circuit illustrated on a simple electrical
system. The idea is to provide all the notions necessary to understand the topic
discussed. It has been necessary to understand deeply the 4-electrode measurement
system and the three-reference calibration method, used respectively to measure
the cell impedance and to remove the measurement system distortion. Thanks
to the acquired knowledge, we have determined the weaknesses of the employed
calibration strategy and we have formalized a new more robust strategy, based on
more reference measures. This strategy results in a more robust calibration for the
considered dataset. The efficacy of the new strategy is proven by the comparison
with the theoretical behaviour expected for the observations, given by:

Z
(c)
FC, t(ω) =

k

σ(c) + iωε(c)
(C-1)

The new calibrated dataset has been elaborated through an EC model. The EC
choice derives from the comprehension of the experiment system. Once the two
elements composing the sample (the cells and the buffer) have been identified,
their physical analysis has led to the construction of the EC model, represented in
Figure C-1 and given by Equations (C-2) and (C-3). A further difficulty has been
represented by the non-identifiability of the electrical circuit modeling the set-up.
We have addressed this issues by assuming that the cell membrane electrical be-
havior is not impacted by the conductivity of the buffer. Thus, a reliable definition
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Rb

Rcyt

Rm

1

Cm(i!)↵m

Figure C-1 – EC (cells-buffer system)

Zeq(ω, θ) =
Rb Zcells(ω, θ)

Rb + Zcells(ω, θ)
, (C-2)

Zcells(ω, θ) = Rcyt +
Rm

1 +RmCm(iω)αm
.

(C-3)

of the ranges of the parameters have allowed their estimation. An important role
has been played by the distinction of data before and after the pulse, in and with
absence of cells. We have also taken into account the different setups (voltage and
buffer conductivity) and the time evolutions (for the after pulse data). No less
important has been the creation of Matlab code to the resolution of the estimation
problem.

The parameter estimation before and after the electroporation pulse give very
interesting results as they allow us to understand the impact of the electroporation
phenomenon. In particular, the parameters representing the buffer resistance Rb

and the membrane resistance Rm decrease in the minutes after the pulse. These
evolutions suggest an unusual increase of the buffer-cell exchanges. This observa-
tion claims that the applied pulse produces the electroporation of the cell mono-
layer.

Chapter 1 - Perspectives: As said, the new calibration strategy provides very
interesting results but there is room for improvement. We have observed that the
employed three-reference calibration strategy is not suitable to the experiment al
set-up: the variation of the whole content of the plate does not leave unchanged the
measurement system as demanded by the procedure. Then, it would be interesting
to define a calibration strategy ideal to this experiment structure and to compare
the analysis of the resulting data with the work done.
Moreover, a further data set resulting from a electroporation procedure with a
sequence of pulses on the cell monolayer is available. It would be very interesting
to apply the same strategy developed in this chapter, in order to validate or improve
what has been achieved.
The quantification of this electroporation phenomenon can be done using the values
of the parameters: a discussion with biologists is now possible.

Chapter 2 - Synthesis: This chapter concerns the definition of a model to
represent the presence of the thin passive electrodes in the experiment presented
in Chapter 1. Considering a simpler domain representing the contact zone between
electrode and buffer, we have modelled this system thanks to a FP problem. The
idea is to consider the electrode as an equipotential surface and its potential as
an unknown of the problem. We have proved the existence and uniqueness of the
solution of the floating potential problem. This method has been compared with
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a classical penalization approach, which has been shown to generate instabilities.

8
>>>>><
>>>>>:

�r · (�iru0) = f in ⌦i,

u0|�0
= ↵0,Z

�0

�i@nu0 ds = 0,

u0|�int
= �.

Penalisation Problem Floating Potential

ku" � u0kH1(⌦i)  c "

8
>>>>>><
>>>>>>:

�r · (�"ru") = f in ⌦i [ ⌦e,

u"|�0
I = u"|�0

e ,

�i @nu"|�0
I = "�k�e @nu"|�0

e ,

@nu"|�ext
= 0,

u"|�int
= �,

Convergence

Thanks to an asymptotic analysis, we have proven the convergence of the two
methods:

‖uε − u0‖H1(Ωi) ≤ c ε,

i.e. the solution of the penalization approach uε converges to the solution u0 of
the FP model. Furthermore, we also have proven the convergence considering the
second term approximation u1, see Section 2.3 for more details.

We have observed that the penalization approach requires an excessively refined
mesh and this leads to a high computational cost. Moreover, the use of a very
small spatial step causes instability during the resolution. Concerning the FP
approach, the main weakness is the fact that its resolution request the resolution
of higher number of problems (at maximum n + 2 if n + 1 passive electrodes are
considered). Nevertheless, all theses problems are Dirichlet problems presenting the
same resolution matrix, then it is possible to factorize – if linear solver is used –
only once and to solve the systems in parallel. Furthermore, the FP problem
does not contain a thin domain then it can be applied to a coarser mesh. As
a result, the FP is not time consuming and more robust. Figure C-2 compares
the robustness of the these two approaches. Both approaches (penalization and
FP) have been numerically solved thanks to the implementation of a C++ Finite
Difference Method (FDM) library on 2D cartesian grid.

Chapter 2 - Perspectives: The work done represents a good theoretical basis to
model a realistic 4-electrode system as we will see in Chapter 3. An improvement of
the accuracy of the solution could be obtained considering a non linear dependence
of the conductivities with respect to the electric field.

Chapter 3 - Synthesis: The last chapter connects Chapter 1 and Chapter 2.
The FP approach developed on Chapter 2 has been applied to obtain a 2D repre-
sentation of the arranged four-electrode system in absence of cells and presented
in Chapter 1. The formalization of the FP problem with six electrodes has been a
challenge. A Gauge condition has to be imposed in order to have the uniqueness
of the solution. We assume that

∫
E1
u dx = 0 (which means that: u|E1

= α1 = 0).
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10−4 10−3 10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

1←→
1 l

ε

‖uext
ε − ufloat‖L2 , k = 1

‖uext
ε − ufloat‖L2 , k = 2

‖uext
ε − unum

ε ‖L2 , k = 2

Figure C-2 – k = 1: when ε tends to zero, the exact solution does not converge
to the floating potential approach solution. k = 2: the exact solution converges to
the floating potential approach approximation when ε tends to zero. Due a high
condition number of the matrix, a direct resolution gives a worse approximation
for smaller ε.

Then the model reads: find (u, α2, α3, α4) ∈ H1(Ω)× R3 such that,





∇ · (σ∇u) = 0, in Ω,

σ∂nE1u|E1 = g, σ∂nE2u|E2 = −g, u|E1
= 0,

u|Ej = αj, j = 2, 3, 4,∫

Ej

σ∂nEju ds = 0, j = 2, 3, 4,

u|L1
= u|L2

,

σ∂nu = 0 ailleurs.

(C-4)

The existence and uniqueness of the solution of the problem have been proved. The
resolution – presenting all the advantages of the FP approach – gives a realistic
numerical solution of the potential in the buffer. As in Chapter 2, the problem
has been numerically solved thanks to a C++ FDM library on a 2D Cartesian
grid. Using the numerical solution, we have computed the numerical measured
impedance Znum

m as the ratio between the current imposed by the active electrodes
and the voltage measured by the passive electrodes, given by

Znum
m =

α2 − α1

Ca
,
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σ (S·m−1) Znum
s (Ohm) |ZFC,cal(ω1)| (Ohm) Err (%)

0.098 610 593 2.8
0.265 204 219 7.3
0.57 114 102 10.5
0.965 62 60 3.2
1.432 40 41 2.5

Table C-1 – Comparison between the impedances Znum
s obtained with the simu-

lations and the impedances calibrated |ZFC,cal(ω1)| for various conductivities.

and the numerical sample impedance Znum
s as

Znum
s =

1

|S2|

∫

S2

udS − 1

|S1|

∫

S1

udS

∫

S1

σ∂nudS

,

where the surfaces S1 and S2 are parallel to the vertical sides of Ω and placed
between the passive electrodes. The comparison with the impedance data coming
from the 4 electrode experiment – see for example Table C-1 for the calibrated
ones – allows us to validate:
• the FP model for the arranged 4-electrode measurement system without cells,
• the estimation of the conductivities and of the length of the electrodes,
• the calibration strategy of the measured impedances obtained by the arranged

4-electrode measurement system.

Chapter 3 - Perspectives: The results validate the new calibration strategy
developed in this work. Furthermore, this last simulation confirms the assumption
done in Chapter 1 which claims that the three-reference method is not suitable to
the considered experiment setup. These assumption were based on the fact that the
measurement sample is placed between the passive electrode, as confirmed by the
surfaces S1 and S2. In the same context, a second perspective could be to study
the use of the bioimpedances Znum

s to calibrate instead of using the theoretical
impedance given in Equation (C-1).

A further support to this result could be derived from the simulation of Sys-
tem 3.8 corresponding to the system with FP conditions coupled with transmissions
conditions for the interaction between the buffer and the cells. The resulting sim-
ulations could be compared with the observations with cell of this dataset or with
the observations present in the "multi-pulse" dataset.

119



CONCLUSION AND PERSPECTIVES

120



Appendix A

Towards the limit problems

A.1 Limit problem for k = 1

Using the same methodology given in Appendix A.2, the limit problem for
k = 1 is

−∆ui0 = f
σi

in Ωi,

∂nu
i
0|Γ0 = σ̄∆Γ0u

i
0,

ui0|Γint = γ.

(A-1)

This problem does not give a realistic behaviour: when ε tends to zero, in the part
of boundary occupied by the electrode, the value of the voltage does not converge
to a constant value, as expected from the electromagnetism theory.

A.2 Detailed calculations of the elementary prob-
lems for k=2

1st Order Limit Problem

Goal of this section is to show the problem satisfied by ui0. For this reason we
have to see which properties are valid for ui0 starting from the p-th order problem
(2.13).
The 0 order problem is

−∇ · (σi∇ui0) = f in Ωi , (A-2)

∂2
ηu

e
0 = 0 in Γ0 × (0, 1), (A-3)

ui0|Γ0 = ue0|η=0, (A-4)
∂ηu

e
0|η=0 = 0, (A-5)

∂ηu
e
0|η=1 = 0, (A-6)

ui0|Γint = γ . (A-7)
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From (A-3)
ue0(xT , η) = αe0(xT ) + βe0(xT )η,

and, with (A-5), gives βe0(xT ) = 0 . Hence

ue0(xT , η) = αe0(xT ).

ue0 is not a function of η and depends only on xT .
The 1-st order problem is

−∇ · (σi∇ui1) = 0 in Ωi, (A-8)
∂2
ηu

e
1 = −a0

33∂ηu
e
0 in Γ0 × (0, 1), (A-9)

ui1|Γ0 = ue1|η=0, (A-10)
∂ηu

e
1|η=0 = 0, (A-11)

∂ηu
e
1|η=1 = 0, (A-12)

ui1|Γint = 0. (A-13)

As seen in the previous case, ue0 is not a function of η: (A-9) becomes

∂2
ηu

e
1 = 0 in Γ0 × (0, 1),

and making the same reasoning made before about ue0 using also (A-11) it easy to
get

ue1(xT , η) = αe1(xT ),

ue1 is only a function of xT and not of η.
The 2-nd order problem is

−∇ · (σi∇ui2) = 0 in Ωi, (A-14)
∂2
ηu

e
2 = −a0

33∂ηu
e
1 − ηa1

33∂ηu
e
0 − S0

Γ0
ue0 in Γ0 × (0, 1), (A-15)

ui2|Γ0 = ue2|η=0, (A-16)
∂ηu

e
2|η=0 = 0, (A-17)

∂ηu
e
2|η=1 = 0, (A-18)

u2
i |Γint = 0. (A-19)

As seen in the previous cases, ue0 and ue1 depend only on xT : (A-15) becomes

∂2
ηu

e
2 = −S0

Γ0
ue0(xT ).

Remark 9 brings to
∂2
ηu

e
2 = −∆Γ0u

e
0(xT ).

Since −∆Γ0u
e
0(xT ) does not depend on η, it is easy to get the result

ue2(xT , η) = αe2(xT ) + βe2(xT )η − η2

2
∆Γ0u

e
0(xT ).

Passing to considering the first derivative respect to η

∂ηu
e
2(xT , η) = βe2(xT )− η∆0

Γ0
ue0,
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(A-17) leads to
βe2(xT ) = 0;

and so using (A-18) it is possible to deduce

∆Γ0u
e
0 = βe2(xT ) = 0.

Last two results bring to say that
— ue2 is a function only of xT

ue2(xT , η) = αe2(xT );

— applying the Laplace operator on the surface Γ0, ∆Γ0 , to ue0 gives 0. This
meas that ue0 is constant along the local coordinates xT of the surface Γ0,
easy to show integrating by parts ∆Γ0u

e
0 in Γ0:

ue0(xT , η) = ᾱe0 ∈ R.

To simplify, will note ᾱe0 = α0.
(A-4) leads to

ui0|Γ0 = α0 ∈ R . (A-20)

The 3-rd order problem is

−∇ · (σi∇ui3) = 0 in Ωi, (A-21)
∂2
ηu

e
3 = −a0

33∂ηu
e
2 −

(
ηa1

33∂ηu
e
1 + S0

Γ0
ue1
)

−η
(η

2
a2

33∂ηu
e
0 + S1

Γ0
ue0

)
in Γ0 × (0, 1), (A-22)

ui3|Γ0 = ue3|η=0, (A-23)
σi∂nu

i
0|Γ0 = σe∂ηu

e
3|η=0, (A-24)

∂ηu
e
3|η=1 = 0, (A-25)
u3
i |Γint = 0. (A-26)

Taking into account what already saw in the previous cases, ue0 is a constant and
ue1 and ue2 are function only of local coordinates of Γ0. So (A-22) becomes

∂2
ηu

e
3 = −S0

Γ0
ue1 in Γ0 × (0, 1).

Integrating respect to η and using Remark 9

∂ηu
e
3 = −η∆Γ0u

e
1 + βe3(xT ).

From (A-25)
βe3(xT ) = ∆Γ0u

e
1,

and so
∂ηu

e
3 = (1− η)∆Γ0u

e
1. (A-27)

Using this result, (A-24) becomes

σi∂nu
i
0|Γ0

= σe∆Γ0u
e
1.
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Remark 15. The integration on closed surface Γ of Laplace surface operator ∆Γ

gives 0. This is easy to proof by integrating by parts.

From Remark 15, we get

∫

Γ0

σi∂nu
i
0 ds = 0 (A-28)

In conclusion the limit problem determining ui0 is given by (A-2), (A-7), (A-20)
and (A-28), so

−∇ · (σi∇ui0) = f in Ωi,

ui0|Γ0 = α0,∫

Γ0

σi∂nu
i
0 ds = 0,

ui0|Γint = γ.

(A-29)

2nd Order Limit Problem

Goal of this section is to show the problem satisfied by ui1. For this reason we
have to see which properties are valid for ui0 starting from the p-th order problem
(2.13).
For p = 1, System (A-8)-(A-13) gives the equations:

−∇ ·
(
σi∇ui1

)
= 0 in Ωi , (A-30)

ui1|Γint = 0 . (A-31)

Moreover, as already shown, from (A-9) it is possible to get that ue1 is only a
function of xT and not of η:

ue1(xT , η) = αe1(xT ).

So from (A-10)
ui1|Γ0 = αe1(xT ).

From System (A-21)-(A-24) we obtain

σe∆Γ0u
e
1 = σi∂nu

i
0|Γ0 ,

and since it possible to compute ui0 from (A-29), ue1 is define, up to an additive
constant, then

ue1 = ūe1 + α1,

and so from (A-10)

ui1|Γ0
= ūe1 + α1 , (A-32)
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where ūe1 is solution of

σe∆Γ0ū
e
1 = σi∂nu

i
0|Γ0 ,∫

Γ0

ūe1 = 0.

The 4-th order problem is

−∇ ·
(
σi∇ui4

)
= 0 in Ωi, (A-33)

∂2
ηu

e
4 = −a0

33∂ηu
e
3 −

(
ηa1

33∂ηu
e
2 + S0

Γ0
ue2
)

−η
(η

2
a2

33∂ηu
e
1 + S1

Γ0
ue1

)

−η
2

2

(η
3
a3

33∂ηu
e
0 + S2

Γ0
ue0

)
in Γ0 × (0, 1), (A-34)

ui4|Γ0 = ue4|η=0, (A-35)
σi∂nu

i
1|Γ0 = σe∂ηu

e
4|η=0, (A-36)

∂ηu
e
4|η=1 = 0, (A-37)
ui4|Γint = 0. (A-38)

Considering only the no-zero elements, (A-34) becomes

∂2
ηu

e
4 = −a0

33∂ηu
e
3 − S0

Γ0
ue2 − ηS1

Γ0
ue1 in Γ0 × (0, 1).

Then integrating along η direction in [0, 1]

∫ 1

0

∂2
ηu

e
4 dη = −a0

33 (ue3(xT , 1)− ue3(xT , 0))−∆Γ0u
e
2(xT )− 1

2
S1

Γ0
ue1(xT ) in Γ0.

Remembering that ∫ 1

0

∂2
ηu

e
4 = ∂ηu

e
4|η=1 − ∂ηue4|η=0,

using also (A-37), it is easy to get

∂ηu
e
4|η=0 = a0

33 (ue3(xT , 1)− ue3(xT , 0)) + ∆Γ0u
e
2(xT ) +

1

2
S1

Γ0
ue1(xT ) in Γ0.

From (A-36) follows

σi∂nu
i
1|Γ0

= σe a
0
33 (ue3(xT , 1)− ue3(xT , 0)) + σe∆Γ0u

e
2(xT ) +

1

2
σeS

1
Γ0
ue1(xT ).

Observing that, from (A-27), we have
∫

Γ0

(ue3(xT , 1)− ue3(xT , 0)) =
1

2

∫

Γ0

∆Γ0u
e
1(xT ) = 0,

and observing that ∫

Γ0

S1
Γ0
ue1(xT ) = 0,
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recalling Remark 15, the integration on Γ0 of every element of right-hand term
in previously equality is equal to zero. Then

∫

Γ0

σi∂nu
i
1|Γ0

= 0 . (A-39)

Finally (A-30), (A-32), (A-39) and (A-31) give the problem satisfied by ui1:

−∇ ·
(
σi∇ui1

)
= 0 in Ωi,

ui1|Γ0
= ūe1 + α1,

∫

Γ0

σi ∂nu
i
1|Γ0

= 0,

ui1|Γint
= 0,

(A-40)

with ūe1 solution of
σe∆Γ0ū

e
1 = σi∂nu

i
0|Γ0 ,∫

Γ0

ūe1 = 0.
(A-41)
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Floating potential in volume
electrode

B.1 Floating potential

Ωi
Γout

Γg

Γsym

Ωe

Figure B-3 – Representations of two different 4-electrode systems in a tissue that
gives rise two floating potential problem.

In this section we present the model, treated in [51], of a 4-electrode system
dedicated to measure the impedance of a biological tissue. In this device, a cur-
rent is injected through both external electrodes inside the biological tissue. In
the same time, both internal electrodes are connected to a high impedance in the
external circuit; as a consequence, no current is supposed to flow through them.
The impedance of the biological tissue is then calculated measuring the potential
difference induced between the internal electrodes. The general model of a sym-
metric 4-electrode system with two pairs of active and passive electrodes is shown
in Figure B-3. In this system the size is not negletible respect to the total domain
size. An asymptotic expansion of the solution is considered. The small parameter
of the expansion here is the ratio of conductivities.
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The initial problem to solve reads:




−∇ · (σe∇ϕe) = 0, in Ωe,

ϕe|Γg
= V, ϕe|Γsym

= 0, σe∂nϕe|Γout
= 0,

−∇ · (σi∇ϕi) = 0, in Ωi,

ϕe|∂Ωi
= ϕi|∂Ωi

, σe∂nϕe|∂Ωi
= σi∂nϕi|∂Ωi

.

(B-1)

where Γg is the border for the active electrode, Γout the external border of the
biological tissue and Γsym the symmetry plane. σe is the conductivity of the bio-
logical tissue defined inside the domain Ωe and σi the conductivity of the passive
electrodes defined inside the domains Ωi.
The solution for ϕe and ϕi can be expanded using formal series with respect to the
parameter ε =

σe
σi
� 1:

{
ϕe = ϕ0

e + εϕ1
e + · · ·

ϕi = α0 + ε(ϕ1
i + α1) + · · ·

where the terms αk are constant and {ϕik, ϕek} solve a differential problem set
respectively in Ωi and Ωe. Identifying the terms with the same power in ε, we
infer the cascade of problems. The first problem to solve appears to be perfect
conductor case. The couple (ϕe

0, α0) is the solution to




−∇ · (σe∇ϕ0
e) = 0, in Ωe,

ϕ0
e|Γg

= V, ϕ0
e|Γsym

= 0, σe∂nϕ
0
e|Γout

= 0,

ϕe|∂Ωi
= α0, with α0 such that

∫

∂Ωi

σe∂nϕ
0
e = 0.

(B-2)

The solution (ϕe
0, α0) is computed by superposing two solutions of problems where

the homogeneous Dirichlet condition is set respectively on the boundary ∂Ωi of the
passive electrode and on the boundary Γg of the active electrode. More precisely,
consider the two following problems





−∇ · (σe∇λ) = 0, in Ωe,

λ|Γg
= V, λ|Γsym

= 0, σe∂nλ|Γout
= 0,

λ|∂Ωi
= 0





−∇ · (σe∇µ) = 0, in Ωe,

µ|Γg∪Γout
= 0, σe∂nµ|Γout

= 0,

µ|∂Ωi
= 1.

Then the solution ϕe0 = λ+ α0 µ, in Ωe and ϕi0 = α0 in Ωi, with

α0 = −

∫

∂Ωi

σe∇λ · ∇µ dx
∫

∂Ωi

σe|∇µ|2 dx
. (B-3)
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To improve the zero order solution it is possible to compute the terms {ϕi1, ϕe1, α1}
by solving:





−∇ · (σi∇ϕ1
i ) = 0, in Ωi,

σi∂nϕ
1
i|∂Ωi

= σe∂nϕ
0
e|∂Ωi

,

∫

∂Ωi

ϕ1
i ds = 0, (B-4)





−∇ · (σe∇ϕ1
e) = 0, in Ωe,

ϕ1
e|Γg

= 0, ϕ1
e|Γsym

= 0, σe∂nϕ
0
e|Γout

= 0,

ϕ1
e|∂Ωi

= ϕ1
i|∂Ωi

, with α1 such that
∫

∂Ωi

σe∂nϕ
1
e = 0.

(B-5)

The terms {ϕi1, ϕe1, α1} satisfy problems similar as System (B-2). The numerical
problem (B-4) is solved using a Lagrange multiplier to ensure the Gauge condition.
Instead of solving (B-5), one solves





−∇ · (σe∇χ) = 0, in Ωe,

χ|Γg∪Γout
= 0, σe∂nχ|Γout

= 0,

χ|∂Ωi
= 1.

The constant α1 is given by substituting λ by χ in (B-3). The first order correction
is then given by ϕe1 = χ+ α1 µ in Ωe.

B.2 Numerical results
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A 4-electrode device is designed to measure the resistance R 
defined as the ratio of the potential difference U between the 
passive electrode and the current I flowing through the active 
electrodes. Since the passive electrodes are not perfect 
conductors, the mean potential at the surface of the passive 
electrodes is considered to compute the resistance: 

where the factor 2 is introduced because of the symmetry in the 
initial problem. 

Using the asymptotic expansion, R is approached by  

In (9), the leading term of R depends only on the couple 
(Me

0�D0) while (Me
0�D0) and (Mi

1�D1) are involved at the second 
order of accuracy. The next paragraph deals with this numerical 
convergence study. 

Fig.3: Convergence of the asymptotic approach at the zero and first orders for 
three different meshes with the 2D model 

The resistance R is computed using (8) for a tissue with a 
constant conductivity Ve. Fig.3 reports the relative error of the 
asymptotic development with respect to H at the zero and first 
orders. The reference value is the numerical solution of the 
direct computation with the fine mesh. One observes that when 
the asymptotic method is performed with the fine mesh, the 
relative error on R decreases for the zero order computation 
following the rate H� Adding the first order correction, the 

relative error decreases following a rate slightly lower than H2. 
Those observations are in agreement with the theoretical result 
given by (9). However, when the mesh is too coarse, the 
accuracy of the finite element solution is not sufficient enough 
and the error due to the mesh is greater than the error due to the 
truncation of the asymptotic expansion. Thus, the relative error 
on R does not decrease under 3.5 10-3 (respectively 2.1 10-4) for 
the coarse (respectively medium) mesh in Fig. 3: this 
corresponds exactly to the relative error on R obtained with the 
direct computation performed on the same mesh. 

A 3D model of the symmetric 4-electrode system has been 
simulated in order to get closer to the real device. The mesh 
shown Fig. 4 is such that there are 3 200 000 dof to solve the 
initial problem; the number of dof in the domain :e 
(respectively in the domain :i) is 1 200 000 (2 100 000). The 
simulation performed when H = 10-1 gives a relative error on R 
of 5,0 10-3 for the zero order and 5,5 10-3 for the first order; the 
error decreases to 1,1 10-3 for the zero order and 5,6 10-4 for the 
first order when H = 10-2. The comparison cannot be performed 
further because of the limitation of the numerical resources. 
Moreover, the matrix of the entire problem becomes 
numerically singular due to the high contrast of conductivities 
and the numerical inversion is not accurate. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4: 3D model of the symmetric 4-electrodes system with the same 
dimensions as in Fig. 2. The height of the active (respectively passive) 
electrodes is 6.3 mm (respectively 5.2 mm). 

 

B. Non linear case 
When the 4-electrode system is used to monitor the tissue 

impedance during electroporation, the problem becomes 
nonlinear since the tissue conductivity depends on the electric 
field amplitude. In this section, a sigmoid function is introduced 
to model the dependence of the conductivity Ve with respect to 
the electric field as it is generally considered in the 
electroporation phenomenon [6]: 
 
 

𝑅 =  
2𝑉

|∂Ω | ∫ 𝜎  |∇𝜑 | 𝑑𝑥
    α   +                                             

     𝜀 α − α
2 ∫ ∇𝜑 ∇𝜑 + ∫ |∇𝜑 |

∫  |∇𝜑 | 𝑑𝑥
 + 𝑂(𝜀 )

                                                                                        

 

𝑅 =
𝑈
𝐼

=
2

|∂Ω |
∫ 𝜑  𝑑𝑠 

∫ 𝜎 𝜕 𝜑
                                                        

=
2𝑉

|∂Ω |
 ∫ 𝜑  𝑑𝑠

∫ 𝜎  |∇𝜑 | 𝑑𝑥 + ∫ 𝜎  |∇𝜑 | 𝑑𝑥

 

𝜎 (∇𝜑 ) = 𝜎 +
𝜎  

1 + 𝑑 𝑒𝑥𝑝 − |∇𝜑 | − 𝑎
𝑏

 

(8) 

(9) 

 

(10) 

Figure B-4 – Convergence of the asymptotic approach at the zero and first orders
for three different meshes with the 2D model.

A 2D model of a symmetric 4-electrode system is first introduced in order to
perform the convergence study. The problem is solved using the Finite Element
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Method (FEM) method with a coarse, medium and fine meshes. A 4-electrode
device is designed to measure the resistance R defined as the ratio of the potential
difference U between the passive electrode and the current I flowing through the
active electrodes. Then the resistance R can be computed using an explicit formula
based on the potentials ϕe and ϕi:

R =
U

I
=

2

|∂Ωi|

∫
∂Ωi

ϕi ds∫
Γg
σeϕe ds

.

To perform the convergence study, the numerical solution of the direct computa-
tion of (B-1) and the numerical solution obtained with the asymptotic method are
compared. See Figure B-4. One observes that when the asymptotic method is per-
formed with the fine mesh, the approximation of R for the zero order computation,
that depends only on the couple (ϕe

0, α0), has accuracy order of the rate ε. Adding
the first order correction, depending also on (ϕe

1, α1), the accuracy increases at or-
der ε2. Those observations are in agreement with the theoretical result. In fact
using the asymptotic expansion, R is approached by

R =
2V

|∂Ωi|
∫

Ωe
|∇ϕ0

e|2 dx

{
α0 + ε

(
α1 − 2α0

∫
Ωe
σe∇ϕ0

e · ∇ϕ1
e∫

Ωe
σe|∇ϕ0

e|2 dx

)}
+O(ε2).

However, when the mesh is too coarse, the accuracy of the FEM solution is not
sufficient enough and the error due to the mesh is greater than the error due to the
truncation of the asymptotic expansion. A 3D model of the symmetric 4-electrode
system has been simulated in order to get closer to the real device. The comparison
cannot be performed further because of the limitation of the numerical resources.
Moreover, the matrix of the entire problem becomes numerically singular due to
the high contrast of conductivities and the numerical inversion is not accurate.
In conclusion an asymptotic approach has been proposed to solve the problem
of floating potentials that present a high conductivity compared to the ambient
medium but a not negligible domain size, unlike then the thin film problem. The
convergence study shows that this approach enables to improve the accuracy of the
solution where perfect conductors are assumed. Compared to the direct solution,
the advantage of the asymptotic approach is that less numerical resources are
required since the floating conductors are meshed in a distinct problem. Another
advantage of the asymptotic approach is that it avoids numerical artifacts that
appear with the direct solution when the contrast of conductivity is too large.
Nonlinear problems can also be solved numerically using the asymptotic method.
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