
HAL Id: tel-03486151
https://theses.hal.science/tel-03486151

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shape turnpike, numerical control and optimal design
for PDEs

Gontran Lance

To cite this version:
Gontran Lance. Shape turnpike, numerical control and optimal design for PDEs. Optimization and
Control [math.OC]. Sorbonne Université, 2021. English. �NNT : 2021SORUS238�. �tel-03486151�

https://theses.hal.science/tel-03486151
https://hal.archives-ouvertes.fr

Shape turnpike, numerical control and optimal design
for PDEs

THÈSE

présentée et soutenue publiquement le 26 Novembre 2021 pour l’obtention du

Doctorat de Sorbonne Université

Spécialité “Mathématiques appliquées”
École Doctorale Sciences Mathématiques de Paris Centre (ED 386)

par

Gontran LANCE

devant le jury constitué de :

Grégoire ALLAIRE Rapporteur
Lars GRÜNE Rapporteur

Olivier PIRONNEAU Examinateur
Yannick PRIVAT Examinateur
Hasnaa ZIDANI Examinateur

Emmanuel TRÉLAT Directeur
Enrique ZUAZUA Co-directeur

au Laboratoire Jacques-Louis Lions
CNRS UMR 7598, 4 place Jussieu, 75005 France

2

Table of contents

Table of contents 3

Table of figures 5

Listings 7

Introduction and short description of the main contributions 9
1 Turnpike phenomenon in optimal control . 9

1.1 State of the art . 11
1.2 Contributions : shape turnpike . 12

2 Numerical PDE constrained optimization . 15
2.1 Context and objectives . 15
2.2 Contributions . 17
2.3 Applications to shape turnpike . 19

1 Shape turnpike for linear parabolic PDEs 21
1.1 Shape turnpike for linear parabolic equation . 22

1.1.1 Setting . 23
1.1.2 Preliminaries . 23
1.1.3 Main results . 25

1.2 Proofs . 27
1.2.1 Proof of Theorem 1.1 . 27
1.2.2 Proof of Theorem 1.4 . 30
1.2.3 Proof of Theorem 1.7 . 31
1.2.4 Proof of Theorem 1.8 . 31

1.3 Numerical simulations : optimal shape design for the 2D heat equation 34
1.4 Further comments . 40
Appendices . 40
1.A Energy inequalities . 40
1.B Bathtub principle . 43

2 PDE-constrained optimization with FreeFEM and IpOpt 45
2.1 Preliminaries . 47

2.1.1 The FreeFEM software . 47
2.1.2 PDE constrained optimization . 50
2.1.3 Optimization and discretization strategies 59

3

TABLE OF CONTENTS

2.1.4 The optimization routine IpOpt . 61
2.1.5 Automatic differentiation . 63

2.2 Linear quadratic PDE constrained optimization . 67
2.2.1 Derivatives of discretized functions (FDTO) 69
2.2.2 Discretization of continuous derivatives (FOTD) 71
2.2.3 Inhomogeneous Dirichlet boundary conditions 74
2.2.4 Automatic differentiation alternative . 75

2.3 Extension to time-dependent problems . 78
2.3.1 Implicit Euler scheme. 78
2.3.2 Time discretization with FreeFEM. 79

2.4 Optimization under semilinear PDE constraints . 81
2.5 Optimal shape design problems . 86
2.6 Boundary shape optimization . 87

2.6.1 Boundary and domain parametrization . 87
2.6.2 Shape optimization problem . 91
2.6.3 Sensitivity analysis . 92
2.6.4 Codes and results . 96
2.6.5 Further comments . 100

Appendices . 101
2.A Some FreeFEM functions . 101
2.B Semi-automatic differentiation and adjoint method 102
2.C PDE Optimization with Python or Matlab . 105

3 Numerical solving of time-varying shape design problems 107
3.1 Numerical shape design for parabolic PDE models 108

3.1.1 Particular case of dimension 1 . 108
3.1.2 Level-set method in dimension d > 2 . 110
3.1.3 Convexification method . 113
3.1.4 Discussion : comparison of implemented methods 115

3.2 Numerical examples illustrating the turnpike phenomenon 121
3.3 Further prospects . 125

3.3.1 Symmetries of solutions . 125
3.3.2 Numerical extension to semilinear PDEs . 125

Conclusion and perspectives 127

Bibliography 131

4

Table of figures

1 Turnpike illustration . 10
2 Control of a heat equation by a shape acting as a source term 13
3 Sperm’s motion through its oscillating flagellum . 18

1.1 Relaxation occurence and control viewed as level-set 30
1.2 1D time-varying shape for Mayer case - T = 3 . 35
1.3 Error between time and static optimal shapes with respect to the Hausdorff dis-

tance t 7→ dH (ωT (t),ω̄) introduced in Theorem 1.8 35
1.4 Optimal shape’s time evolution cylinder - T = 2 . 37
1.5 Time optimal shape T = 5 - Static shape . 37
1.6 Error between dynamical optimal triple and static one 38
1.7 Error between dynamical optimal triple and static one (1D) 38
1.8 Relaxation phenomenon : (a) t = 0 ; (b) t = 0.5 ; (c) t ∈ [1,4] ; (d) t = 4.5 ; (e) t = T ;

(f) static shape . 39
1.9 Error between dynamical optimal triple and static one (Relaxation case) 39

2.1 Example (2.1) : (a) L-mesh; (b) solution y of (2.2) for u = 1 48
2.2 Convergence curves : (a) objective function; (b) convergence criterion 63
2.3 Convergence curves of several methods . 77
2.4 (a) initial square mesh; (b) 3D mesh with buildlayers 80
2.5 Convergence curves for semilinear case : (a) objective function; (b) convergence

criterion . 85
2.6 Fluid domain : (a) initial square ; (b) torus after periodization. 88
2.7 Fluid domain mesh : (a) initial ; (b) modified for f (x) = 0.1sin(3πx). 89
2.8 Velocity of Stokes fluid u for f (x) = 0.1sin(3πx) and vD =−1 90
2.9 Optimal solution of (2.52,2.53,2.54,2.55,2.57) for M1 = 0.4 and M2 = 5.0 on : (a)

rough mesh; (b) fine mesh. 99
2.10 Optimal solution of (2.52,2.53,2.54,2.55,2.57) for M1 = 0.4 and : (a) M2 = 2 and

J ≈ 0.07 ; (b) M2 = 10.0 and J ≈ 0.16 ; (c) M2 = 50.0 and J ≈ 0.19 ; 100
2.11 Solution with no curvature constraint (M2 =+∞) and J ≈ 0.196 101

3.1 Numerical turnpike in dimension 1 . 109
3.2 Optimal static shape : level-set versus convexification 115
3.3 Optimal solution when relaxation : level-set versus convexification 116
3.4 Optimal shape for several elliptic operators . 117
3.5 3D optimal static shape : level-set versus convexification 118

5

TABLE OF FIGURES

3.6 Inverse problem optimal solution : level-set versus convexification 119
3.7 Time-varying optimal shape at several time . 122
3.8 Error between both static and time optimal triples 122
3.9 Time-varying optimal shape - Example 1 . 123
3.10 Time-varying optimal shape - Example 1 . 123
3.11 Time-varying optimal shape - Example 4 . 124
3.12 Time-varying optimal shape - Example 3 . 124
3.13 Symmetries of static optimal shapes . 125
3.14 Symmetries of static optimal designs for semilinear models 126
3.15 Symmetries of time-varying optimal designs . 126

6

Listings

2.1 Mesh generation with buildmesh . 48
2.2 Poisson solution by solving the variational formulation 48
2.3 varf command . 49
2.4 Poisson solution with finite element matrices . 49
2.5 Calling IpOpt in FreeFEM . 61
2.6 Automatic differentiation in direct mode . 64
2.7 Automatic differentiation in reverse mode . 66
2.8 Finite element matrices involved in (2.30,2.31) . 69
2.9 LQ state equation . 71
2.10 LQ adjoint equation . 72
2.11 LQ gradient’s interpolation . 72
2.12 LQ cost function . 73
2.13 Derivative of the LQ cost function . 73
2.14 State equation . 74
2.15 Dirichlet map . 74
2.16 AMPL : "file.mod" . 76
2.17 AMPL : "file.dat" . 76
2.18 AMPL : "file.run" . 77
2.19 3D mesh cylinder with 2D mesh basis . 80
2.20 Semilinear state equation with a fixed point method 82
2.21 Semilinear state equation with Newton method . 83
2.22 Semilinear adjoint equation . 84
2.23 AMPL : "file.mod" - semilinear case . 85
2.24 1D finite element space and movemesh command 88
2.25 Stokes state equation . 91
2.26 Regularization of f ′ with L2 projection with P1 finite elements 91
2.27 Volume constraint . 92
2.28 Stokes adjoint system . 93
2.29 Matrices of first and second derivatives of f . 95
2.30 L2 regularization for φ1 and φ2 . 95
2.31 Stokes gradient’s interpolation . 96
2.32 H 2(0,1)-inner product’s construction . 96
2.33 Cost function for Stokes problem . 97
2.34 Derivative of the cost function for Stokes problem 98
2.35 Length and curvature constraints of the boundary 98

7

LISTINGS

2.36 Calling IpOpt in the Stokes problem . 99
2.37 Matrix of derivative’s jumps . 101
2.38 Hot restart routine . 102
2.39 Sparse matrices importation in Python . 105
2.40 CasADi template for LQ PDE Optimization . 105

8

Introduction and short description of
the main contributions

Control theory can be defined as the way of acting on systems in order to make them go
from an initial state to a final state. To park a car, to heat a room, etc., the possibilities of ap-
plications are at least as numerous as the ways to describe things that happen in real life. This
makes it a field at the interface of several and different scientific fields (aeronautics, biology,
structural calculation, economics, etc.) by mixing fundamental and more applied mathema-
tics. In a world that is increasingly competitive and in search of performance, the question of
optimizing the action on a system naturally arises and the theory of optimal control aims to
provide precise answers. In parallel with the progress made in functional and numerical ana-
lysis, it is becoming easier to describe mathematically what we observe in reality. This thesis is
therefore part of the broad field of optimal control of partial differential equations, both from
a theoretical and numerical point of view, and more precisely in the context of optimal design,
and is divided into two main contributions. First, we focus on the turnpike phenomenon that
appears in optimal control and more specifically in the case of shape optimization. Second, the
difficult question of numerical methods for designing time-varying optimal shapes has led to
the emergence of a generalizable methodology for PDE-constrained optimization. Finally, the
last part is devoted to some numerical results to give possible directions for the extension of
the turnpike results.

1 Turnpike phenomenon in optimal control

Let T > 0 be the final time fixed and let consider a general time dependent optimal control
problem

min
1

T

∫ T

0
f 0(y(t),u(t))d t + g (T, y(T),u(T))

subject to :

{
∂t y = f (y(t),u(t)) ∀t ∈ (0,T)

h(y(0), y(T)) = 0.

(1)

with both Lagrange (integral) and Mayer (final) cost to minimize and some additional termi-
nal constraints. The turnpike theory aims to reveal a quasi-stationary structure of solutions of
optimal control problems (1). Moreover, we write a stationary problem, setting aside integrals,
time derivatives and terminal cost as well as constraints, which results in an instantaneous cost

9

1. Turnpike phenomenon in optimal control

y(0)

y(T1)

ȳ

(a)

y(0)

y(T2)

ȳ

(b)

FIGURE 1 – State turnpike illustration : (a) small time behavior ; (b) large time behavior.

minimization problem under the constraint of being an equilibrium of the control dynamics :

min f 0(y,u) subject to : f (y,u) = 0. (2)

The Turnpike phenomenon was first observed and studied by economists for discrete-time op-
timal control problems (see [29; 71]) and is roughly explained by the following definition.

Definition 1. An optimal control problem (1) is said to verify a turnpike property if, when the
final time T is sufficiently large, an optimal solution remains most of the time close to an optimal
stationary state which is in turn a solution of an associated stationary problem (2).

The importance of long-term behavior is illustrated in Figure 1 where x̄ represents a steady
state solution of 2 and two trajectories are compared. This highlights the essential notion that
if the initial and final states are not far apart, the optimal trajectory can ignore the turnpike
(Figure 1(a)), but conversely, if they are far enough apart, it will always pay to stay close to
the turnpike for a long time (Figure 1(b)). A brief analogy is possible by looking at the word
turnpike, or in other words a highway, which describes very well this quasi-stationary state
(one changes very little in direction and speed) on which one can stay for hours and hours to
connect quite distant starting and ending points.

The study of the turnpike phenomenon may most of the time involve the first-order op-
timality conditions of (1), more standardly known as the Pontryagin maximum principle (see
[89] for the finite dimension version) that introduce the adjoint variable p and the Hamiltonian

H(y,u, p, p0) = 〈p, f (y,u)〉+p0 f 0(y,u)

so that for any optimal solution (yT ,uT), when controls are free of constraints, the correspon-
ding extremal lift (yT , pT , p0,uT) should verify the following extremal equations

∂t yT (t) = ∂H

∂p
(yT (t), pT (t), p0,uT (t)) ∀t ∈ (0,T),

∂t pT (t) =−∂H

∂y
(yT (t), pT (t), p0,uT (t)) ∀t ∈ (0,T),

∂H

∂u
(yT (t), pT (t), p0,uT (t)) = 0 ∀t ∈ (0,T).

10

INTRODUCTION

We usually have additional terminal conditions on the adjoint vector, which are better known as
transversality conditions. The adjoint vector (pT , p0) can be interpreted as the Lagrange multi-
plier associated with the dynamics constraint in the optimal control problem (1) and is defined
to within one multiplicative scalar. Throughout this thesis, we assume that (1) will have a nor-
mal extremal lift, i.e., the real number p0 is set to −1 so that the study will reduce to the optimal
triples (yT , pT ,uT). Moreover, the first-order optimality conditions of the stationary problem
(2) also introduce a Lagrange multiplier p̄ so that an optimal stationary triplet (ȳ , p̄, ū) satisfies
the extremal stationary equations

f (ȳ , ū) = 0

−∂ f 0

∂y
(ȳ , ū)+〈p̄,

∂ f

∂y
(ȳ , ū)〉 = 0

−∂ f 0

∂u
(ȳ , ū)+〈p̄,

∂ f

∂u
(ȳ , ū)〉 = 0.

Insofar as (ȳ , ū) appears to be an equilibrium point of the dynamics involved in (1) (more
broadly (ȳ , p̄, ū) is an equilibrium point of the extremal equations), we can expect to see the
optimal triple (yT , pT ,uT) converge to the optimal stationary triple (ȳ , p̄, ū) as the final time T
tends to infinity. More precisely, we normally expect a three-piece trajectory (see Figure 1) :

• on the first instants, on a short interval [0,τ] close to 0, the optimal triple (yT , pT ,uT)
starts from (yT (0), pT (0),uT (0)) until it approaches the stationary state (ȳ , p̄, ū) ;

• on the second interval, much larger, [τ,T −τ], the optimal solution remains close to the
optimal stationary state. This part of the trajectory has an essential consequence on the
minimization of the cost function when T tends to infinity ;

• at the end of the trajectory, we expect to observe on [T −τ,T] a behavior similar to the
one on [0,τ] so that the (yT , pT ,uT) leaves the stationary state (ȳ , p̄, ū) quite quickly to
reach the final state (yT (T), pT (T),uT (T)).

The main researches consist on the one hand in finding on which variables the turnpike phe-
nomenon is perceptible (state, adjoint, control, or three of them) and on the other hand in
quantifying this proximity to the stationary state along the time interval. In finite dimension,
any chosen norm is suitable, while in the context of infinite dimension and especially in the
context of shape optimization, the choice will be important. We briefly present in the following
section most of the recent results on turnpike properties in optimal control.

1.1 State of the art

Over the past few decades, turnpike questions have seen increasing interest, with several
notable variations in multiple areas of optimal control, some of which are stronger than others.
The main questions are : does the turnpike occur on the control, the state, the adjoint variables,
or even on the three of them, and how close are the time evolving and the stationary optimal
solutions ? For example, a general and strong result for a finite dimensional continuous time
optimal control problem is stated in [93] where the authors manage to show an exponential
turnpike property for both the state and the control as well as for the adjoint vector resulting
from the application of Pontryagin’s maximum principle. The main result states that under cer-
tain controllability and observability assumptions, one can find two positive constants C1,C2

11

1. Turnpike phenomenon in optimal control

independent of the final time and at least one optimal solution of (1) such that the optimal
triple (yT , pT ,uT) is exponentially close to an optimal triple of (2), this by checking the follo-
wing inequality

‖yT (t)− ȳ‖+‖pT (t)− p̄‖+‖uT (t)− ū‖6C1(e−C2t +e−C2(T−t)) ∀t ∈ (0,T).

Such a property induces a precise knowledge of the optimal triplet in the middle of the trajec-
tory, which can then be suitably used for the initialization of numerical methods. Other expo-
nential turnpike properties for infinite dimensional optimal control problems have been esta-
blished in [80; 81; 92] and have in common the study of extremal equations arising from the
application of Pontryagin’s maximum principle, which brings out some hyperbolicity proper-
ties of the Hamiltonian flow. We further refer to [53] for a turnpike analysis of general linear
evolution equations and to [38] for an adjoint turnpike result for general nonlinear optimal
control problems. Weaker notions of turnpike can be found in [41; 91], where the authors in-
troduce the notions of integral and measure turnpike and highlight the intimate connection
of the latter with the notion of strict dissipativity introduced in [99]. Roughly speaking, the
measure-turnpike property means that any optimal solution remains most of the time close to
an optimal solution of an associated static optimal control problem, except for a sub-interval
of time having a bounded Lebesgue measure when the final time goes to infinity. The defini-
tions of measure-turnpike depend on the optimal control problem considered and we refer to
[19; 26; 41; 48; 49; 51; 91] for works referring to these notions of measure-turnpike and strict
dissipativity.

More generally, the solutions of optimal control problems are not generally reduced to a
single one and the turnpike phenomenon is therefore not necessarily limited to staying around
a single stationary state. Competition between several turnpikes can be observed (see [84]) and,
for some classes of optimal control problems for periodic systems, a turnpike can occur around
a periodic trajectory, which is itself considered to be the optimal solution of a periodic optimal
control problem (see [86; 92; 100–102]). In [36; 37], the authors introduce the concept of velocity
turnpikes for the optimal control of mechanical systems such that a turnpike occurs around a
partial steady state. Similarly, a linear turnpike theorem can be found in [90].

The search for turnpike properties is also fruitful in the case of model predictive control
(MPC) problems (see e.g., [26; 33–35; 40; 41; 53; 54] and references therein) and for discrete-
time problems (e.g., [26; 41; 42; 48; 50–52]). Recently, other turnpike results in the field of deep
learning can be found in [30; 39] and in [77] the authors give promising results for observing
the turnpike for stochastic optimal control problems.

This thesis is a continuation of the research on the turnpike phenomenon for infinite di-
mensional optimal control problems and is more precisely related to the field of shape optimi-
zation.

1.2 Contributions : shape turnpike

Shape optimization is a special case of optimal control problem where the way to act on a
system is to modify its shape with a PDE or ODE constraint

∂t y = f
(
y(t),ω(t)

)
, h

(
y(0), y(T)

)= 0. (3)

and with various terminal and boundary conditions. Let Ω be a domain in Rd and a fixed final

12

INTRODUCTION

Ω

ω(t)
∂t y −∆y =χω in Ω

y|∂Ω = 0

χω(t) =
{

1 if x ∈ω(t)
0 else

Shape - source term

FIGURE 2 – Control of a heat equation by a shape acting as a source term

time T > 0, the time-varying shape t 7→ ω(t) is for almost every t in (0,T) a measurable sub-
domain of Ω (viewed as a control, as in [14]), and must be designed to minimize a given cost
functional

JT (ω) = 1

T

∫ T

0
f 0(y(t),ω(t)

)
d t + g

(
y(T),ω(T)

)
, (4)

where y is the solution of (3). We refer for instance to the example of the heat equation in Figure
2 where a time-dependent subdomain plays the role of a volume heat source.

Some of the most studied problems in optimal shape design are those of fluid mechanics
and structures, which are mostly found in their stationary form (see for example [7] for the op-
timal shape of a cantilever and [73] for several examples of shape design in fluid dynamics).
In addition, the industry has known for a few years the development of new very promising
technologies, such as additive manufacturing (or 3D printing) as opposed to subtractive ma-
nufacturing for the design of parts and which allows more and more sophisticated structures,
by allowing for example changes in topology, which brings a certain excitement. Besides, the
development of numerical methods in shape optimization is already a rather difficult issue
when dealing with static problems, which requires even more attention to the issue of adding
a temporal dimension. For large time horizons, we could get around this difficulty by treating
only the stationary case as far as a turnpike phenomenon occurs. From a numerical point of
view, two main applications of the turnpike properties are of great interest to us.

First, for control problems considered in a long time horizon, the possibility that the opti-
mal trajectories and controls converge to those of the corresponding steady-state model could
justify the idea of treating numerically only the stationary problem. In practice, for a large final
time, the actual computation of the control can be very expensive, especially in the nonlinear
case, as it requires iterative methods to solve the coupled optimality system combining the for-
ward controlled state equation and the backward adjoint equation. In contrast, the stationary
problem does not encounter these difficulties.

Second, this asymptotic behavior can also allow for appropriate initializations for itera-
tive optimization methods to solve the optimality system characterizing the optimal pairs, by
choosing the steady-state optimal pairs, which are less costly to compute in a first attempt. For
example, it has been shown in [93] that the turnpike property provides a way to successfully ini-
tialize direct or indirect (shooting) methods in numerical optimal control, by initializing them
with the optimal triple of the associated static problem.

We thus associate to the dynamical problem (4,3) a static optimal shape design problem,

13

1. Turnpike phenomenon in optimal control

which does not depend on time,

min
ω

f 0(y,ω), f (y,ω) = 0. (5)

According to the turnpike phenomenon introduced in Definition 1, one expects that, for
T large enough, an optimal time-varying shape of (4,3) remains most of the time “close” to an
optimal stationary shape solution of the static problem (5).

As mentioned in [103], two main ingredients are essential to guarantee the turnpike results.
First, the system considered in (3) must verify a controllability property. On the other hand,
the cost functional (4) must be sufficiently coercive so that a partial information of the state
included in this functional is sufficient to obtain a complete information, which refers to an
observability property. Therefore, in accordance with previous turnpike results in [80; 81; 91] we
first address the issue of the turnpike phenomenon in shape optimization by looking at a heat
type partial differential equation as illustrated in Figure 2. LetΩ be a domain inRd and for some
target function yd ∈ L2(Ω), we introduce the time-varying shape t 7→χω(t) whose characteristic
function χω(·) acts as a distributive control on the heat equation

∂t y −∆y =χω, y|∂Ω = 0, y(0) = y0, (6)

with the aim of minimizing a quadratic criterion

1

2T

∫ T

0

∫
Ω

(y(t , x)− yd (x))2 d xd t +
∫
Ω

(y(T, x)− yd (x))2 d x. (7)

The first observed results seemed very promising and therefore led us to theoretically address in
the Chapter 1 the question of minimizing the same quadratic cost function (7) under constraint
of a parabolic equation, seen as a generalization of the heat equation (6). For this purpose, we
switch to a general second-order elliptic operator with a positive ellipticity constant so that
the energy inequalities are verified with final time independent constants. The time-varying
admissible shape t 7→ ω(t) is, along time, a measurable subset of Ω with maximal measure
constraint and verifies :

for a.e. t ∈ (0,T), ω(t) ∈UL = {ω⊂Ω measurable , |ω|6 L|Ω|} .

To show existence of solutions, we first perform a relaxation method by switching the characte-
ristic functionsχω to a function a with values into (0,1) so that admissible controls are searched
into the larger space

for a.e. t ∈ (0,T), a(t) ∈U L =
{

a ∈ L∞(Ω; [0,1]),
∫
Ω

a(x)d x 6 M

}
.

We then prove the existence of solutions (yT , aT) of the resulting relaxed optimal control pro-
blems and write optimality conditions using Pontryagin’s maximum principle to qualify the
optimal control at each time as level-sets of the adjoint variable

for a.e.t ∈ (0,T),∃(s,c) ∈R× (0,1), aT (t) =χ{pT (t)>s} + cχ{pT (t)=s}.

Thus, we exhibit some assumptions on the data of the problem such that we notice that the op-
timal solutions of the relaxed problem are solutions of the starting shape optimization problem
insofar as the set {pT (t) = s} has zero Lebesgue measure.

14

INTRODUCTION

Regarding the turnpike properties, we conduct the study on the relaxed problem knowing
that, under the assumptions made beforehand, the optimal control is the characteristic func-
tion of some upper level-set of the adjoint variable. We finally divide our work into two parts by
treating the integral and final costs separately.

In the Lagrange case, we introduce the notion of strict dissipativity adapted to our problem
and prove that the optimal solution (state and control) satisfies both the measure and inte-
gral turnpike properties for the L2(Ω)-norm, i.e., both states and adjoints (yT , pT) and (ȳ , p̄) of
the respective optimal triples of (DSD)T and SSD verify the following inequality for a positive
constant M independent of the final time T :∫ T

0
‖yT (t)− ȳ‖L2(Ω) +‖pT (t)− p̄‖L2(Ω) d t 6 M ∀T > 0.

Thus, the larger T is, the more the quantity ‖yT (t)− ȳ‖L2(Ω)+‖pT (t)− p̄‖L2(Ω) is close to 0 along
the time interval. The main arguments of the proof are the use of optimality conditions from
Pontryagin’s maximum principle for time and stationary problems and energy inequalities with
constants that do not depend on the final time.

In the Mayer case, we manage to prove that the Hausdorff distance between the optimal
time-varying shape and some stationary shape returned as the upper level-set of the first non-
zero mode of the adjoint pT verifies the following exponential turnpike

dH

(
ωT (t),ω̄

)
6 Me−µ(T−t) ∀t ∈ (0,T).

In short words, the proof relies on a spectral decomposition of the adjoint variable from Pon-
tryagin’s maximum principle so that pT is mostly exponentially close to a stationary function.
Since along the time frame, the optimal control aT (t) is an upper level-set of the adjoint, we
manage to quantify the proximity of the time-varying shape to a stationary one using a lemma
inspired by [25].

We successively illustrate these results by numerical simulations on the heat equation. Nu-
merical methods in shape optimization are generally applied to stationary problems and the
context of time-varying shape optimization problems has raised the need for efficient nume-
rical methods. For the problem we consider, we search for the optimal shape by treating the
relaxed problem and observe well the solutions being shapes. Our problem is more broadly
part of the field of PDE constrained optimization whose general numerical solving is a difficult
issue. We therefore illustrate on several examples in the Chapter 2 how we can perform efficient
optimization algorithms in order to propose them as further models.

2 Numerical PDE constrained optimization

2.1 Context and objectives

More generally, engineering problems or more theoretical research problems often lead to
optimization problems governed by partial differential equations. Advances in computational
capabilities, PDE solvers and optimization algorithms have provided accurate and efficient me-
thods for solving difficult PDE-constrained optimization problems.

When approaching an optimal control problem governed by partial differential equations,
as we will show in the illustrative examples provided in this thesis, it is particularly important to

15

2. Numerical PDE constrained optimization

first establish a rigorous mathematical framework in which the problem is well-posed, before
deriving and designing appropriate numerical methods to solve it efficiently.

Throughout the Chapter 2, we refer to [60; 69; 89; 94] regarding classical issues on PDE
control theory and general optimization. Ways of solving PDEs are numerous, finite differences,
finite volumes, spectral, and general Galerkin methods. Here we will specifically focus on PDEs
resolutions thanks to the finite element method and we refer to [85] for variational formulations
of PDE problems. This chapter can serve as an introduction to numerical PDE optimization
provided some basic knowledge is required in numerical computations as well as some basics
in the C++ language.

We look at Optimal control problems as optimization problems where the standard deci-
sion variables, previously called controls, are acting on the state variables through an ordinary
differential equation (ODE) or a partial differential equation (PDE). Within this viewpoint, the
control is the input and the resulting state is the output. The optimization problem consists of
determining what is the best input, over a class of possible inputs, so that the output satisfies
some constraints and minimizes a given criterion.

Most often, the objective function depends on both state and control variables and thus
requires, at least from the numerical point of view, to make explicit or to compute the state’s
dependence on control (i.e., the input-output mapping of the system). State y and control u
are respectively assumed to belong to real Banach spaces Y and U . General optimal control
problems under consideration in Chapter 2 are written in the abstract form

min
(y,u)∈Y ×U

J (y,u), e(y,u) = 0, c(y,u) ∈ K (8)

where J : Y ×U 7→ R is the objective function, e : Y ×U 7→ Z usually stands for some PDE and
c : Y ×U 7→ K defines some additional constraints. Here, Z is a real a Banach space and K is a
closed convex set. Well-posedness is assumed, which means that, for every u ∈U , the equation
e(y,u) = 0 has a unique solution y = y(u) ∈ Y so that the reduced cost function

Ĵ (u) = J (y(u),u) (9)

can be introduced.
The existence of solutions for somewhat general optimization problems can be a very diffi-

cult question; it often relies on functional analysis and compactness arguments. On the other
hand, the uniqueness of the solution is often a consequence of the strict convexity of the pro-
blem. In the Chapter 2, we are not devoted to report existence or uniqueness problems but to
show how to compute numerically in an efficient way a solution whose existence has already
been proved or at least assumed. Given an optimal control problem, we will emphasize with
several examples the importance of having a rigorous mathematical framework in which the
problem is solved, as a guide to finding appropriate ways to discretize the problem and en-
sure the convergence of the resulting numerical method. Throughout the book, we focus on
finite element discretization methods, particularly in 1, 2 or 3 dimensions. We present the soft-
ware FreeFEM developed in our laboratory, a PDE solver using the finite element method and
based on variational formulations with user-friendly and powerful features. We will provide
some examples and details on its use and we will also refer to the documentation [56] (also
available online) where most of the features are described. As far as optimization strategies are
concerned, we use here differentiable methods which require the computation of derivatives of

16

INTRODUCTION

functions.FreeFEM is flexible enough to allow users to write their own optimization algorithm
(e.g. gradient, BFGS, Newton methods), or to plug it into some existing optimization routines.
On our side, we focus particularly on the IpOpt routine (see [97]), which is well adapted to
large-scale nonlinear optimization problems, and we show how to combine it with FreeFEM.
In particular, we will show how IpOpt can be called directly from FreeFEM. Since solving
PDEs requires a number of variables that increases with the size of the mesh, we have to deal
with a large number of state and control variables (more than a million in the usual problems)
as well as many constraints. The options available in IpOpt guarantee a good adaptability and
efficiency for general convex and non-convex optimization of large size.

2.2 Contributions

Through several examples, we aim to propose a general methodology to look at an optimal
control problem in a discretized version to solve it numerically.

We first focus on very standard examples like the minimization of a quadratic functional
subject to a linear elliptic equation

min J (y,u) = 1

2

∫
Ω

(
y(x)− yd (x)

)2 d x + α

2

∫
Ω

u(x)2 d x

subject to −∇· (a∇y) = u in Ω, y = 0 in ∂Ω

and separate the solving according to direct or indirect methods. The first one is based on a
complete discretization of the basic optimal control problem (8) and leads to a classical finite
dimensional optimization problem whose derivatives of the involved functions are then com-
puted. In this case, we choose whether we consider the discretized PDE as a constraint or as an
explicit step in the computation of the cost function and compare the two alternatives. Conver-
sely, following the Pontryagin maximum principle, we write in a second option the optimality
conditions in order to express the derivative of the reduced cost function (9) by introducing
the adjoint variable. We highlight the advantage of this method over a sensitivity analysis that
would require the computation of directional derivatives in each direction of a finite element
basis, which is prohibitive. A third method is to bypass the computation of derivatives by means
of automatic differentiation via the optimization software AMPL, which is designed to solve ge-
neral finite-dimensional optimization problems by means of several available solvers (see [44]).
It is not usual to observe that direct and indirect methods are equivalent, but this can happen in
very particular examples (see [87]). In this perspective, we highlight on a simple example how
automatic differentiation can hide a discretized version of the adjoint equation resulting from
the Pontryagin maximum principle. Returning to the LQ case, we then compare the conver-
gence curves of the different optimization methods and highlight the scalability of FreeFEM
to handle time-dependent problems

min J (y,u) = 1

2

∫ T

0

∫
Ω

(
y(x, t)− yd (x)

)2 d xd t + α

2

∫ T

0

∫
Ω

u(x, t)2 d xd t

subject to ∂t y −∇· (a∇y) = u in (0,T)×Ω, y = 0 in (0,T)×∂Ω, y(0) = y0

with several time discretization choices. We finally expand the range of applications with an
example on a semilinear PDE and perform iterative methods for the solving of the state equa-
tion (Newton-Raphson and fixed-point algorithm) so that a future user has the main tools avai-
lable for the numerical solving of a general optimal control problem with FreeFEM.

17

2. Numerical PDE constrained optimization

~ι

Γ

FIGURE 3 – Sperm’s motion through its oscillating flagellum

We continue with a less classical example and underline how FreeFEM is really well sui-
ted for shape optimization problems by mesh deformations. We address the question of the
optimal shape of a micro-swimmer evolving in a fluid governed by a Stokes PDE in order to
maximize its speed in a given direction. The main applications are for example the design of
nano-robots for medical purposes inspired by the study of chemotaxis (see for example Figure
3). Here are some works on this topic : in [11], the authors addressed the question of swim-
ming strategies of a three-sphere body with low Reynolds number and, writing the problem in
an optimal control framework, proved a global controllability result, i.e. the body can swim in
any given direction. More broadly, in [70], the authors focus on an ordinary body immersed
in a fluid and look for controllability properties with respect to either small deformations or
displacements in a finite number of elementary deformations. For our part, we consider the Γ
flagellum as an infinite oscillating curve for which we seek the shape maximizing the fluid ve-
locity. To this end, we give a theoretical framework and a numerical methodology, which can be
adapted to other similar problems, by searching for the shape of a periodic moving boundary
Γ of a fluid domain Ω so that it maximizes the velocity u of the fluid set in motion at the free
surface Σ3 :

min−
∫
Σ3

u ·~ιd s

subject to


−µ∇·ε(u)+∇p = 0 inΩ

div(u) = 0 in Ω

σ(u, p)~n = 0 in Σ3

u = vD

(
0
f ′

)
in Γ.

We assimilate the shape of the boundary to the graph of a function f so that deformations of
the boundary shape lead to an inhomogeneous Dirichlet boundary condition, which can be
physically interpreted as friction forces. The study is therefore done in the frame of reference
of the moving boundary with some specific assumptions on the acceptable boundary shapes
in order to write a well-posed optimization problem insofar as the theoretical framework will
have a significant influence in choosing a discretization strategy. A sensitivity analysis, which is
standard in shape optimization, involves the emergence of the adjoint for the derivative calcu-
lation and we finally detail the discretization strategy.

18

INTRODUCTION

2.3 Applications to shape turnpike

We conclude with Chapter 3 which is devoted to the description of the numerical part of
results stated in Chapter 1. We present how we perform time-varying shape optimization and
numerically illustrate the turnpike phenomenon. We first focus on the one-dimensional case
Ω= [0,L] with L a positive constant :

min JT (ω(·)) = 1

2T

∫ T

0

∫ L

0

(
y(t , x)− yd (x)

)2 d xd t

subject to :


∂t y −∂xx y =χω(·) ∀(t , x) ∈ (0,T)× (0,L)

y(t ,0) = y(t ,L) = 0, ∀t ∈ (0,T)

y(0, x) = y0, ∀x ∈ (0,L).

We use the software AMPL with the combination of an implicit Euler scheme in time and finite
differences centered in space. The special 1D case allows us to use the solver CPLEX (see [23],
CPLEX is free to use, within memory allocation, on the NEOS website) which is normally indi-
cated for solving linear programming problems with integer variables and can be extended to
mixed integer quadratic programming. In a higher dimension, we takeΩ as a subset of Rd , and
with the intention of finding an efficient method to solve the time-dependent problem, we first
focus on the stationary case

min
ω∈UL

1

2
‖y − yd‖2

L2(Ω), −∆y =χω, y|∂Ω = 0,

and search for a fast iterative algorithm. We first perform a level-set method, i.e., we look for the
shape ω to be the upper level-set of a given function φ

φ(x) < 0 ⇐⇒ x ∈ω
φ(x) = 0 ⇐⇒ x ∈ ∂ω∩Ω
φ(x) > 0 ⇐⇒ x ∈Ω\ω̄,

and employ a gradient-based algorithm inspired of [43]. We then adapt the framework intro-
duced in Chapter 2 for the linear-quadratic case to a convexified version of the problem (6,7)
by replacing the characteristic function χω with a function a ∈ U L . We finally compare the
two methods on several design problems of shapes governed by linear elliptic equations. The
convexification method seems to us to be more efficient and more easily adaptable to the time
dependent problem. We therefore extend this method to the time-dependent problem so that
the resulting numerical simulations highlight the phenomenon of shape turnpike, for several
examples involving linear parabolic equations. To conclude, we finally bring some numerical
results for semi-linear PDEs such as

min
ω∈UL

1

2
‖y − yd‖2

L2(Ω), −∆y + f (y) =χω, y|∂Ω = 0,

as an opening for further investigations.

19

https://neos-server.org/neos/solvers/index.html

2. Numerical PDE constrained optimization

20

Chapter 1

Shape turnpike for linear parabolic
PDEs

Table of contents
1.1 Shape turnpike for linear parabolic equation 22

1.1.1 Setting . 23

1.1.2 Preliminaries . 23

1.1.3 Main results . 25

1.2 Proofs . 27

1.2.1 Proof of Theorem 1.1 . 27

1.2.2 Proof of Theorem 1.4 . 30

1.2.3 Proof of Theorem 1.7 . 31

1.2.4 Proof of Theorem 1.8 . 31

1.3 Numerical simulations : optimal shape design for the 2D heat equation . . . 34

1.4 Further comments . 40

Appendices . 40

1.A Energy inequalities . 40

1.B Bathtub principle . 43

Abstract We introduce and study the turnpike property for time-varying shapes from the
perspective of optimal control. We focus here on linear parabolic equations of the second order
where the shape acts as a source term and we look for the optimal time-varying shape that mi-
nimizes a quadratic criterion. We first establish the existence of optimal solutions under certain
appropriate sufficient conditions. We then provide the necessary conditions for optimality in
terms of adjoint equations and, using the concept of strict dissipativity, we prove that the state
and adjoint satisfy the measure-turnpike property, which means that the extremal time-varying
solution remains essentially close to the optimal solution of an associated static problem. We
show that the optimal shape enjoys the exponential turnpike property in terms of Hausdorff
distance for a quadratic Mayer cost. We illustrate the turnpike phenomenon in optimal design
by several numerical simulations.

21

1.1. Shape turnpike for linear parabolic equation

1.1 Shape turnpike for linear parabolic equation

Throughout the chapter, we denote by :

• Q ⊂Rd , d > 1 and |Q| its Lebesgue measure if Q measurable subset ;

•
(
p, q

)
the scalar product in L2(Ω) of p, q in L2(Ω) ;

• ‖y‖ the L2-norm of y ∈ L2(Ω) ;

• χω the indicator (or characteristic) function of ω⊂Rd ;

• dω the distance function to the set ω⊂Rd .

LetΩ⊂Rd (d > 1) be an open bounded Lipschitz domain. We consider the uniformly ellip-
tic second-order differential operator

Ay =−
d∑

i , j=1
∂x j

(
ai j (x)∂xi y

)+ d∑
i=1

bi (x)∂xi y + c(x)y

with ai j ,bi ∈ C 1(Ω), c ∈ L∞(Ω) with c > 0. We consider the operator (A,D(A)) defined on the
domain D(A) encoding Dirichlet conditions y|∂Ω = 0 ; when Ω is C 2 or a convex polytop in
R2, we have D(A) = H 1

0 (Ω)∩ H 2(Ω). The adjoint operator A∗ of A, also defined on D(A) with
homogeneous Dirichlet conditions, is given by

A∗v =−
d∑

i , j=1
∂xi

(
ai j (x)∂x j v

)− d∑
i=1

bi (x)∂xi v +
(

c −
d∑

i=1
∂xi bi

)
v

and is also uniformly elliptic, see [31, Definition Chapter 6]. The operators A and A∗ do not
depend on t and have a constant of ellipticity θ > 0 (for A written in non-divergence form), i.e. :

d∑
i , j=1

ai j (x)ξiξ j > θ|ξ|2 ∀x ∈Ω. (1.1)

Moreover, we assume that

θ > θ1 (1.2)

where θ1 is the largest root of the polynomial P (X) = X 2

4Cp
−‖c‖L∞(Ω)X −

(∑d
i=1 ‖bi ‖L∞(Ω)

)2

2 with Cp

the Poincaré constant on Ω. This assumption is used to ensure that an energy inequality is
satisfied with constants not depending on the final time T . We refer to appendix 1.4 for details.

We assume throughout that A satisfies the classical maximum principle (see [31, Section
6.4]) and that c∗ = c −∑d

i=1∂xi bi ∈C 2(Ω).
Let (λ j ,φ j) j∈N∗ be the eigenelements of A with (φ j) j∈N∗ an orthonormal eigenbasis of L2(Ω) :

• ∀ j ∈ N∗, Aφ j =λ jφ j , φ j|∂Ω = 0

• ∀ j ∈ N∗, j > 1, λ1 <λ j 6λ j+1, λ j →+∞.

A typical example satisfying all assumptions above is the Dirichlet Laplacian, which we will
consider in our numerical simulations.

We recall that the Hausdorff distance between two compact subsets K1,K2 of Rd is defined
by

dH (K1,K2) = sup
(

sup
x∈K2

dK1 (x), sup
x∈K1

dK2 (x)
)
.

22

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

1.1.1 Setting

Hereafter, we identify any measurable subset ω ofΩ with its characteristic function χω. Let
L ∈ (0,1). We define the set of admissible shapes

UL = {ω⊂Ω measurable | |ω|6 L|Ω|}.

Dynamical optimal shape design problem (DSD)T Let y0 ∈ L2(Ω) and let γ1 > 0,γ2 > 0 be
arbitrary. We consider the parabolic equation controlled by a (measurable) time-varying map
t 7→ω(t) of subdomains

∂t y + Ay =χω(·), y|∂Ω = 0, y(0) = y0. (1.3)

Given T > 0 and yd ∈ L2(Ω), we consider the dynamical optimal shape design problem (DSD)T

of determining a measurable path of shapes t 7→ω(t) ∈UL that minimizes the cost functional

JT (ω(·)) = γ1

2T

∫ T

0
‖y(t)− yd‖2 d t + γ2

2
‖y(T)− yd‖2

where y = y(t , x) is the solution of (1.3) corresponding to ω(·).

Static optimal shape design problem Besides, for the same target function yd ∈ L2(Ω), we
consider the following associated static shape design problem :

min
ω∈UL

γ1

2
‖y − yd‖2, Ay =χω, y|∂Ω = 0. (SSD)

We are going to compare the solutions of (DSD)T and of (SSD) when T is large.

1.1.2 Preliminaries

Convexification Given any measurable subset ω ⊂ Ω, we identify ω with its characteristic
function χω ∈ L∞(Ω; {0,1}) and we identify UL with a subset of L∞(Ω) (as in [10; 82; 83]). Then,
the convex closure of UL in L∞ weak star topology is

U L =
{

a ∈ L∞(
Ω; [0,1]

) |
∫
Ω

a(x)d x 6 L|Ω|
}

which is also weak star compact. We define the convexified (or relaxed) optimal control problem
(OC P)T of determining a control t 7→ a(t) ∈U L minimizing the cost

JT (a) = γ1

2T

∫ T

0
‖y(t)− yd‖2 d t + γ2

2
‖y(T)− yd‖2

under the constraints

∂t y + Ay = a, y|∂Ω = 0, y(0) = y0. (1.4)

The corresponding convexified static optimization problem is

min
a∈U L

γ1

2
‖y − yd‖2, Ay = a, y|∂Ω = 0. (SOP)

23

1.1. Shape turnpike for linear parabolic equation

Note that the control a does not appear in the cost functionals of the above convexified
control problems. Therefore the resulting optimal control problems are affine with respect to a.
Once we have proved that an optimal solution a ∈U L exists, we expect that any such minimizer
will be an element of the set of extremal points of the compact convex set U L , which is exactly
the set UL (since ω is identified with its characteristic function χω). If this is true, then actually
a = χω with ω ∈ UL . Here, as it is usual in shape optimization, the interest of passing by the
convexified problem is to allow us to derive optimality conditions, and thus to characterize
the optimal solution. It is anyway not always the case that the minimizer a of the convexified
problem is an extremal point of U L (i.e., a characteristic function) : in this case, we speak of a
relaxation phenomenon. Our analysis hereafter follows these guidelines.

Taking a minimizing sequence and by classical arguments of functional analysis (see e.g.,
[69]), it is straightforward to prove existence of solutions aT and ā respectively of (OC P)T and
of (SOP) (see details in Section 1.2.1).

We underline the following fact : if ā and aT (t), for a.e. t ∈ [0,T], are characteristic func-
tions of some subsets (meaning that ā =χω̄ with ω̄ ∈UL and for almost every t in (0,T) aT (t) =
χωT (t) with ωT (t) ∈ UL), then actually t 7→ωT (t) and ω̄ are optimal shapes, solutions respecti-
vely of (DSD)T and of (SSD).

Our next task is to apply necessary optimality conditions to optimal solutions of the convexi-
fied problems stated in [69, Chapters 2 and 3] or [67, Chapter 4] and infer from these necessary
conditions that, under appropriate assumptions, the optimal controls are indeed characteristic
functions.

Necessary optimality conditions for (OC P)T According to the Pontryagin maximum prin-
ciple (see [69, Chapter 3, Theorem 2.1], see also [67]), for any optimal solution (yT , aT) of (OC P)T

there exists an adjoint state pT ∈ L2(0,T ;L2(Ω)) such that

∂t yT + AyT = aT , yT|∂Ω = 0, yT (0) = y0

∂t pT − A∗pT =γ1(yT −yd), pT|∂Ω=0, pT (T)=γ2
(
yT (T)−yd

) (1.5)

∀a ∈U L :
(
pT (t), aT (t)−a

)
> 0 for a.e. t ∈ [0,T]. (1.6)

Necessary optimality conditions for (SOP) Similarly, applying [69, Chapter 2, Theorem 1.4],
for any optimal solution (ȳ , ā) of (SOP) there exists an adjoint state p̄ ∈ L2(Ω) such that

Aȳ = ā, ȳ|∂Ω = 0

−A∗p̄ = γ1(ȳ − yd), p̄|∂Ω = 0
(1.7)

∀a ∈U L : (p̄, ā −a)> 0. (1.8)

Using the bathtub principle (see e.g., [68, Theorem 1.14] and 1.18), (1.6) and (1.8) give

aT (·) = χ{pT (·)>sT (·)} + cT (·)χ{pT (·)=sT (·)} (1.9)

ā = χ{p̄>s̄} + c̄χ{p̄=s̄} (1.10)

24

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

with, for a.e. t ∈ [0,T],

cT (t) ∈ L∞(Ω; [0,1]) and c̄ ∈ L∞(Ω; [0,1]) (1.11)

sT (·) = inf
{
σ ∈R | |{pT (·) >σ}|6 L|Ω|} (1.12)

s̄ = inf
{
σ ∈R | |{p̄ >σ}|6 L|Ω|}. (1.13)

1.1.3 Main results

Existence of optimal shapes Proving existence of optimal shapes, solutions of (DSD)T and
of (SSD), is not an easy task. Indeed, relaxation phenomena may occur, i.e., classical designs in
UL may not exist but may develop homogeneization patterns (see [59, Sec. 4.2, Example 4.2.2]).
Therefore, some assumptions are required on the target function yd to establish existence of
optimal shapes. We define :

• yT,0 and yT,1, the solutions of (1.4) corresponding respectively to a = 0 and a = 1 ;

• y s,0 and y s,1, the solutions of : Ay = a, y|∂Ω = 0, corresponding respectively to a = 0 and
a = 1 ;

• y0 = min
(

y s,0, min
t∈(0,T)

yT,0(t)
)

and y1 = max
(

y s,1, max
t∈(0,T)

yT,1
)
.

We recall that A is said to be analytic-hypoelliptic in the open set Ω if any solution of Au = v
with v analytic in Ω is also analytic in Ω. Analytic-hypoellipticity is satisfied for the second-
order elliptic operator A as soon as its coefficients are analytic in Ω (for instance it is the case
for the Dirichlet Laplacian, without any further assumption, see [74]).

Theorem 1.1. We distinguish between Lagrange and Mayer cases.

1. γ1 = 0,γ2 = 1 (Mayer case) : If A is analytic-hypoelliptic in Ω then there exists a unique
optimal shape ωT , solution of (DSD)T.

2. γ1 = 1,γ2 = 0 (Lagrange case) : Assuming that y0 ∈ D(A) and that yd ∈ H 2(Ω) :

(a) If yd < y0 or yd > y1 then there exist unique optimal shapes ω̄ and ωT , respectively,
of (SSD) and of (DSD)T.

(b) There exists a function β such that if Ayd 6 β, then there exists a unique optimal
shape ω̄, solution of (SSD).

Proofs are given in Section 1.2. To prove existence of optimal shapes, we deal first with the
convexified problems (OC P)T and (SOP) and show existence and uniqueness of solutions.
Hereafter, using optimality conditions (1.5)-(1.7) and under the assumptions given in Theorem
1.1 we can write the optimal control as characteristic functions of upper level sets of the adjoint
variable. In the static case, for example, one key observation is to note that, if |{p̄ = s̄

}| = 0, then
it follows from (1.10) that the static optimal control ā is actually the characteristic function of a
shape ω̄ ∈UL . This proves the existence of an optimal shape.

Remark 1.2. Note that in the Mayer case (γ1 = 0,γ2 > 0), (SSD) is reduced to solve Ay = χω,
y|∂Ω = 0. There is no criterion to minimize.

Remark 1.3. Theorem 1.1 guarantees the uniqueness of an optimal shape. We deduce from the
inequality (1.38) in the appendix that we also have the uniqueness of the corresponding state
and adjoint state. Thus we have uniqueness for both the dynamic and the static optimal triple.

25

1.1. Shape turnpike for linear parabolic equation

In what follows, we study the behavior of optimal solutions of (DSD)T compared to those of
(SSD) and give some turnpike properties. In the Lagrange case, inspired by [80], [81] and [91],
we first prove that state and adjoint satisfy integral and measure turnpike properties. In the
Mayer case, we estimate the Hausdorff distance between dynamical and static optimal shapes
and show an exponential turnpike property. We denote by :

• (yT , pT ,ωT) the optimal triple of (DSD)T and

JT = γ1

2T

∫ T

0
‖yT (t)− yd‖2 d t + γ2

2
‖yT (T)− yd‖2;

• (ȳ , p̄,ω̄) the optimal triple of (SSD) and J̄ = γ1

2 ‖ȳ − yd‖2.

Integral turnpike in the Lagrange case

Theorem 1.4. For γ1 = 1,γ2 = 0 (Lagrange case), there exists M > 0 (independent of the final
time T) such that ∫ T

0

(‖yT (t)− ȳ‖2 +‖pT (t)− p̄‖2)d t 6 M ∀T > 0.

Measure-turnpike in the Lagrange case

Definition 1.5. We say that (yT , pT) satisfies the state-adjoint measure-turnpike property if for
every ε> 0 there exists Λ(ε) > 0, independent of T , such that

|Pε,T | <Λ(ε) ∀T > 0

where Pε,T = {
t ∈ [0,T] | ‖yT (t)− ȳ‖+‖pT (t)− p̄‖ > ε}.

We refer to [22; 41; 91] (and references therein) for similar definitions. Here, Pε,T is the
set of times along which the time optimal state-adjoint pair

(
yT , pT

)
remains outside of an

ε-neighborhood of the static optimal state-adjoint pair (ȳ , p̄) in L2 topology.
Recall that a K -class function is a continuous monotone increasing function α : [0;+∞) 7→

[0;+∞) with α(0) = 0. We now recall the notion of dissipativity (see [99]).

Definition 1.6. We say that (DSD)T is strictly dissipative at an optimal stationary point (ȳ ,ω̄)
of (SSD) with respect to the supply rate function

w(y,ω) = 1

2

(
‖y − yd‖2 −‖ȳ − yd‖2

)
if there exists a storage function S : E → R locally bounded and bounded below and a K -class
function α(·) such that, for any T > 0 and any 0 < τ< T , the strict dissipation inequality

S(y(τ))+
∫ τ

0
α(‖y(t)− ȳ‖)d t 6 S(y(0))+

∫ τ

0
w

(
y(t),ω(t)

)
d t (1.14)

is satisfied for any pair
(
y(·),ω(·)) solution of (1.3).

Theorem 1.7. For γ1 = 1,γ2 = 0 (Lagrange case) :

(a) (DSD)T is strictly dissipative in the sense of Definition 1.6.

(b) The state-adjoint pair (yT , pT) satisfies the measure-turnpike property.

26

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

Exponential turnpike in the Mayer case The exponential turnpike property is a stronger pro-
perty and can be satisfied either by the state, by the adjoint or by the control or even by the three
together.

Theorem 1.8. For γ1 = 0,γ2 = 1 (Mayer case) : For Ω with C 2 boundary and c = 0 there exist
T0 > 0, M > 0, µ> 0 and a shape ω̄ ∈UL such that, for every T > T0,

dH

(
ωT (t),ω̄

)
6 Me−µ(T−t) ∀t ∈ (0,T).

In the Lagrange case, based on the numerical simulations presented in Section 1.3 and
Chapter 3 we conjecture the exponential turnpike property, i.e., given optimal triples (yT , pT ,ωT)
and (ȳ , p̄,ω̄), there exist C1 > 0 and C2 > 0 independent of T such that

‖yT (t)− ȳ‖+‖pT (t)− p̄‖+‖χωT (t) −χω̄‖6C1

(
e−C2t +e−C2(T−t)

)
for a.e. t ∈ [0,T].

1.2 Proofs

1.2.1 Proof of Theorem 1.1

We first show existence of an optimal shape, solution for (OC P)T and similarly for (SOP).
We first see that the infimum exists. We take a minimizing sequence (yn , an) ∈ L2(0,T ; H 1

0 (Ω))×
L∞(

0,T ;L2
(
Ω, [0,1]

))
such that, for n ∈ N, for a.e. t ∈ [0,T], an(t) ∈U L , the pair (yn , an) satisfies

(1.4) and JT (an) → JT . The sequence (an) is bounded in L∞(
0,T ;L2

(
Ω, [0,1]

))
, so using (1.38)

and (1.39), the sequence (yn) is bounded in L∞(0,T ;L2(Ω))∩ L2(0,T ; H 1
0 (Ω)). We show then,

using (1.4), that the sequence (∂yn

∂t) is bounded in L2(0,T ; H−1(Ω)). We subtract a sequence still
denoted by (yn , an) such that one can find a pair (y, a) ∈ L2(0,T ; H 1

0 (Ω))×L∞(
0,T ;L2

(
Ω, [0,1]

))
with

yn * y weakly in L2(0,T ; H 1
0 (Ω))

∂t yn * ∂t y weakly in L2(0,T ; H−1(Ω))

an * a weakly * in L∞(
0,T ;L2(Ω, [0,1]

))
. (1.15)

We deduce that

∂t yn + Ayn −an → ∂t y + Ay −a in D′((0,T)×Ω)
yn(0) * y(0) weakly in L2(Ω).

(1.16)

We get using (1.16) that (y, a) is a weak solution of (1.4). Moreover, since L∞(
0,T ;L2

(
Ω, [0,1]

))=(
L1

(
0,T ;L2

(
Ω, [0,1]

)))′
(see [62, Corollary 1.3.22]) the convergence (1.15) implies that for every

v ∈ L1(0,T) satisfying v > 0 and ‖v‖L1(0,T) = 1, we have
∫ T

0

(∫
Ω a(t , x)d x

)
v(t)d t 6 L|Ω|. Since

the function fa defined by fa(t) = ∫
Ω a(t , x)d x belongs to L∞(0,T), the norm ‖ fa‖L∞(0,T) is

the supremum of
∫ T

0

(∫
Ω a(t , x)d x

)
v(t)d t over the set of all possible v ∈ L1(0,T) such that

27

1.2. Proofs

‖v‖L1(0,T) = 1. Therefore ‖ fa‖L∞(0,T) 6 L|Ω| and
∫
Ω a(t , x)d x 6 L|Ω| for a.e. t ∈ (0,T). This shows

that the pair (y, a) is admissible. Since H 1
0 (Ω) is compactly embedded in L2(Ω) and by using the

Aubin-Lions compactness Lemma (see [15]), we obtain

yn → y strongly in L2(0,T ;L2(Ω)).

We get then by weak lower semi-continuity of JT and by Fatou Lemma that

JT (a)6 liminf JT (an).

Hence a is an optimal control for (OC P)T, that we rather denote by aT (and ā for (SOP)). We
next proceed by proving existence of optimal shape designs.

1. We take γ1 = 0,γ2 = 1 (Mayer case). We consider an optimal triple (yT , pT , aT) of (OC P)T.
Then it satisfies (1.5) and (1.9). It follows from the properties of the parabolic equation and from
the assumption of analytic-hypoellipticity that pT is analytic on (0,T)×Ω and that all level sets
{pT (t) = α} have zero Lebesgue measure. We conclude that the optimal control aT satisfying
(1.5)-(1.9) is such that

for a.e. t ∈ [0,T] ∃s(t) ∈R, aT (t , ·) =χ{pT (t)>s(t)} (1.17)

i.e., aT (t) is a characteristic function. Hence, for a Mayer problem (DSD)T, existence of an op-
timal shape is proved.

2-(a). In the case γ1 = 1,γ2 = 0 (Lagrange case), we give the proof for the static problem
(SSD). We suppose yd < y0 (we proceed similarly for yd > y1). Having in mind (1.7) and (1.10),
we have Aȳ = c̄ on {p̄ = s̄}. By contradiction, if c̄ 6 1 on {p̄ = s̄}, let us consider the solution y∗

of : Ay∗ = a∗, y∗
|∂Ω = 0, with the control a∗ which is the same as ā verifying (1.10) except that

c̄ = 0 (c̄ = 1 if yd > y1) on {p̄ = s̄}. We have then A(ȳ−y∗)6 0 (or A(ȳ−y∗)> 0 if yd > y1). Then, by
the maximum principle (see [31, Section 6.4]) and using the homogeneous Dirichlet condition,
we get that the maximum (the minimum if yd > y1) of ȳ − y∗ is reached on the boundary and
hence yd > y∗ > ȳ (or yd 6 y∗ 6 ȳ if yd > y1). We deduce ‖y∗− yd‖6 ‖ȳ − yd‖. This means that
a∗ is an optimal control. We conclude by uniqueness.

We use a similar argument thanks to maximum principle for parabolic equations (see [31,
Section 7.1.4]) for existence of an optimal shape solution of (DSD)T.

In view of proving the next part of the theorem, we first give a useful Lemma inspired by
[66, Theorem 3.2] and from [32, Theorem 6.3].

Lemma 1.9. Given any p ∈ [1,+∞) and any u ∈W 1,p (Ω) such that |{u = 0}| > 0, we have ∇u = 0
a.e. on {u = 0}.

Proof of Lemma 1.9. A proof of a more general result can be found in [66, Theorem 3.2]. For
completeness, we give here a short argument. Du denotes here the weak derivative of u. We
need first to show that for u ∈ W 1,p (Ω) and for a function S ∈ C 1(R) for which there exists
M > 0 such that ‖S′‖L∞(Ω) < M , we have S(u) ∈ W 1,p (Ω) and DS(u) = S′(u)Du. To do that,
by the Meyers-Serrins theorem, we get a sequence un ∈ C∞(Ω)∩W 1,p (Ω) such that un → u
in W 1,p (Ω) and un → u almost everywhere. We get by the chain rule DS(un) = S′(un)Dun and∫
Ω |DS(un)|p d x 6 ‖S′‖p

L∞(Ω)‖Dun‖p
Lp (Ω) involving S(un) ∈W 1,p (Ω). Since S is Lipschitz, we have

28

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

‖S(un)−S(u)‖Lp (Ω) 6 ‖un −u‖Lp (Ω) → 0 when n → 0. We write then

‖DS(un)−S′(u)Du‖Lp (Ω) = ‖S′(un)Dun −S′(u)Du‖Lp (Ω)

6 ‖S′(un)(Dun −Du)‖Lp (Ω) +‖(S′(un)−S′(u))Du‖Lp (Ω)

6 ‖S′‖L∞(Ω)‖un −u‖W 1,p (Ω) +‖(S′(un)−S′(u))Du‖Lp (Ω).

The first term tends to 0 since un → u in W 1,p (Ω). For the second term, we use that |S′(un)−
S′(u)|p |Du|p → 0 a.e. and |S′(un)−S′(u)|p |Du|p 6 2‖S′‖p

L∞(Ω)|Du|p ∈ L1(Ω). By the dominated
convergence theorem, ‖(S′(un)−S′(u))Du‖Lp (Ω) → 0 which implies that ‖DS(un)−S′(u)Du‖Lp (Ω) →
0. Finally S(un) → S(u) in W 1,p (Ω) and DS(u) = S′(u)Du. Then, we consider u+ = max(u,0) and
u− = min(u,0) =−max(−u,0). We define

Sε(s) =
{

(s2 +ε2)
1
2 −ε if s > 0

0 else.

Note that ‖S′
ε‖L∞(Ω) < 1. We deduce that DSε(u) = S′

ε(u)Du for every ε > 0. For φ ∈ C∞
c (Ω) we

take the limit of
∫
ΩSε(u)Dφd x when ε→ 0+ to get that

Du+ =
{

Du on {u > 0}
0 on {u 6 0}

and Du− =
{

0 on {u > 0}
−Du on {u < 0}

.

Since u = u+−u−, we get Du = 0 on {u = 0}. We can find this Lemma in a weaker form in [32,
Theorem 6.3].

2-(b). We assume that Ayd 6 β in Ω with β = s̄ Ac∗. Having in mind (1.7) and (1.10), we
assume by contradiction that |{p̄ = s̄}| > 0. Since A and A∗ are differential operators, applying
A∗ to p̄ on {p̄ = s̄}, we obtain by Lemma 1.9 that A∗p̄ = c∗ s̄ on {p̄ = s̄}. Since (ȳ , p̄) verifies (1.7)
we get yd − ȳ = c∗ s̄ on {p̄ = s̄}. We apply then A to this equation to get that Ayd − s̄ Ac∗ = Aȳ = ā
on {p̄ = s̄}. Therefore Ayd − s̄ Ac∗ ∈ (0,1) on {p̄ = s̄} which contradicts Ayd 6β. Hence |{p̄ = s̄}| =
0 and thus (1.10) implies ā =χω̄ for some ω̄ ∈UL . Existence of solution for (SSD) is proved.

Remark 1.10. Condition in Theorem 1.1.2-(b) is a necessary condition. We can construct example,
where Ayd 6β is not satisfied and where we observe relaxation, which is closely related to the fact
|{p̄ = s̄}| > 0.

Indeed, we plot on Figure 1.1 the adjoint state p̄ for the static problem in 1D. At the left-hand
side, p̄ is assumed to be analytic : in this case, all level sets of p̄ have zero Lebesgue measure (there
is no subset of positive measure on which p̄ would remain constant). When p̄ is not analytic
and remains constant on a subset of positive measure (see Figure 1.1 in red), we do not have
necessarily zero Lebesgue measure level sets, and on {p̄ = s̄}, ā can take values in (0,1).

The uniqueness of the optimal controls follows from the strict convexity of the cost func-
tions. Indeed, in the dynamic case, whatever (γ1,γ2) 6= (0,0), JT is strictly convex with respect
to the variable y . The injectivity of the control-state mapping gives the strict convexity with
respect to the variable a. Moreover, the uniqueness of (ȳ , p̄) emerges by application of Poin-
car’e’s inequality and the uniqueness of (yT , pT) follows from Gronwall’s inequality (1.39) in
the Appendix.

29

1.2. Proofs

(a) (b)

FIGURE 1.1 – Optimal shape design existence : (a) level-sets with zero Lebesgue measure, no relaxation :
shape existence ; (b) positive measure level-sets, relaxation

1.2.2 Proof of Theorem 1.4

For γ1 = 1,γ2 = 0 (Lagrange case), the cost is JT (ω) = 1
2T

∫ T
0 ‖y(t)− yd‖2 d t . We consider

the triples (yT , pT ,χωT) and (ȳ , p̄,χω̄) satisfying the optimality conditions (1.5) and (1.7). Since
χωT (t) is bounded at each time t ∈ [0,T] and by application of Gronwall inequality (1.39) in the
appendix to yT and pT we can find a constant C > 0 depending only on A, y0, yd ,Ω,L such that

∀T > 0 ‖yT (T)‖2 6C and ‖pT (0)‖2 6C .

Setting ỹ = yT − ȳ , p̃ = pT − p̄, ã =χωT −χω̄, we have

∂t ỹ + Aỹ = ã, ỹ|∂Ω = 0, ỹ(0) = y0 − ȳ (1.18)

∂t p̃ − A∗p̃ = ỹ , p̃|∂Ω = 0, p̃(T) =−p̄. (1.19)

First, using (1.5) and (1.7) one has
(
p̃(t), ã(t)

)
> 0 for almost every t ∈ [0,T]. Multiplying (1.18)

by p̃, (1.19) by ỹ and then adding them, one can use the fact that

(
ȳ − y0, p̃(0)

)− (
ỹ(T), p̄

)= ∫ T

0

(
p̃(t), ã(t)

)
d t +

∫ T

0
‖ỹ(t)‖2 d t .

By the Cauchy-Schwarz inequality we get a new constant C > 0 such that

1

T

∫ T

0
‖ỹ(t)‖2 d t + 1

T

∫ T

0

(
p̃(t), ã(t)

)
d t 6

C

T
.

The two terms at the left-hand side are positive and using the inequality (1.38) with ζ(t) = p̃(T −
t), we finally obtain M > 0 independent of T such that

1

T

∫ T

0

(‖yT (t)− ȳ‖2 +‖pT (t)− p̄‖2)d t 6
M

T
.

30

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

1.2.3 Proof of Theorem 1.7

(a). Strict dissipativity is established thanks to the storage function S(y) = (
y, p̄

)
where p̄ is

the optimal adjoint. Following the Gronwall inequality (1.39) in the appendix, since ‖y(t)‖2 <
M for every t ∈ [0,T] with M independent of final time T , the storage function S is locally
bounded and bounded below. We next consider an admissible pair (y(·),χω(·)) of (OC P)T, we
multiply (1.3) by p̄ and or τ > 0, we integrate over (0,τ)×Ω and use optimality conditions of
static problem (1.7)-(1.8) combined with integration by parts to write∫ τ

0

(
yt + Ay, p̄

)
d t =

∫ τ

0

(
χω(t), p̄

)
d t 6

∫ τ

0

(
χω̄, p̄

)
d t

and so
(
y(τ), p̄

)−∫ τ

0

(
y(t)− ȳ , ȳ − yd

)
d t 6

(
y(0), p̄

)
.

Noting that ‖y − ȳ‖2 + 2
(
y − ȳ , ȳ − yd

) = ‖y − yd‖2 − ‖ȳ − yd‖2 we make appear the quantity
‖y(t)− ȳ‖2 and finally get the strict dissipation inequality (1.14) with respect to the supply rate

function w(y,ω) = 1
2

(
‖y − yd‖2 −‖ȳ − yd‖2

)
and with α(s) = 1

2 s2 :

(p̄, y(τ))+
∫ τ

0

1

2
‖y(t)− ȳ‖2 d t 6 (p̄, y(0))+

∫ τ

0
w

(
y(t),ω(t)

)
d t . (1.20)

(b). Now we prove that strict dissipativity implies measure-turnpike, by following an argu-
ment of [91]. Applying (1.20) to the optimal solution (yT ,ωT) at τ= T , we get

1

T

∫ T

0
‖yT (t)− ȳ‖2 d t 6 JT − J̄ + (yT (0)− yT (T), p̄)

T
.

Considering then the solution ys of (1.3) with ω(·) = ω̄ and Js = 1
T

∫ T
0 ‖ys(t)− yd‖2, we have

JT − Js < 0 and we show that Js − J̄ 6 1−e−C T

C T , then we find M1 > 0 independent of T such that

1

T

∫ T

0
‖yT (t)− ȳ‖2 d t 6

M1

T
. (1.21)

Applying (1.38) to ζ(·) = pT (T −·)− p̄, we get M2 > 0 independent of T such that

1

T

∫ T

0
‖pT (t)− p̄‖2 d t 6

M2

T

∫ T

0
‖yT (t)− ȳ‖2 d t . (1.22)

We combine (1.21) and (1.22) to finally get a constant M > 0 which does not depend on T such

that ∀ε> 0, |Pε,T |6 M

ε2 .

1.2.4 Proof of Theorem 1.8

We take γ1 = 0,γ2 = 1 (Mayer case). We want to characterize optimal shapes as being the le-
vel set of some functions as in [25]. Let (yT , pT ,χωT) be an optimal triple, coming from Theorem
1.1.1. Then ζ(t , x) = pT (T − t , x) satisfies

∂tζ+ A∗ζ= 0, ζ|∂Ω = 0, ζ(0) = yd − yT (T). (1.23)

31

1.2. Proofs

We write yd−yT (T) in the basis (φ j) j∈N∗ . There exists (ζ j) ∈RN∗
such that yd−yT (T) =∑

j>1 ζ jφ j .

We can solve (1.23) and get pT (t , x) = ∑
j>1 ζ jφ j (x)e−λ j (T−t). Using the Gronwall inequality

(1.39) in the appendix, there exists C1 > 0 independent of T such that the solution of (1.3)
satisfies ‖yT (t)‖2 6 C1 for every t ∈ (0,T). Hence |ζ j |2 6 C1 for every j ∈ N∗. Let us consider
the index j0 = inf{ j ∈ N,ζ j 6= 0}. Take λ = λ j0 and µ = λk where k is the first index for which
λk >λ. We define Φ0 =

∑
λ j=λ j0

ζ jφ j which is a finite sum of the eigenfunctions associated to the

eigenvalue λ j0 . We write, for every x ∈Ω and every t ∈ [0,T],

|pT (t , x)−e−λ(T−t)Φ0(x)| =
∣∣∣∣∣ ∑

j>k
ζ jφ j (x)e−λ j (T−t)

∣∣∣∣∣
6

∑
j>k

∣∣ζ jφ j (x)
∣∣e−λ j (T−t).

Since |ζ j |2 6 C1,∀ j ∈ N∗, by the Weyl Law and sup-norm estimates for the eigenfunctions of
A (see [88, Chapter 3]), we can find α ∈ (0,1) such that αµ > λ and two constants C1,C2 > 0
independent of x, t and T such that

|pT (t , x)−e−λ(T−t)Φ0(x)|6C1e−αµ(T−t)
∑
j>k

j
N−1
2N e−C2 j

1
N (T−t).

Let ε > 0 be arbitrary. We claim that there exists Cε > 0 independent of x, t , T such that, for
every x ∈Ω,

|pT (t , x)−e−λ(T−t)Φ0(x)|6Cεe−αµ(T−t) ∀t ∈ (0,T −ε)

|pT (t , x)−e−λ(T−t)Φ0(x)|6Cε ∀t ∈ (T −ε,T).

To conclude we take an arbitrary value for ε and we write µ instead of αµ but always with µ>λ
to get

‖pT (t)−e−λ(T−t)Φ0‖L∞(Ω) 6C e−µ(T−t) ∀t ∈ [0,T] (1.24)

with C > 0 not depending on the final time T . Using the bathtub principle ([68, Theorem 1.16])
and since Φ0 is analytic, we introduce s0 ∈R and the shape ω0 = {Φ0 > s0} ∈UL such that χω0 is
solution of the auxiliary problem

max
u∈U L

∫
Ω
Φ0(x)u(x)d x. (1.25)

Let t ∈ [0,T] fixed. For x ∈ω0, we remark that (1.24) implies that p(t , x)> s0e−λ(T−t) −C−µ(T−t).
Reminding the definition of sT (t) in (1.12) we write ω0 ⊂

{
p(t , x)> s0e−λ(T−t) −C−µ(T−t)

}
|ω0| = L|Ω| and

∣∣∣{pT (t , x)> sT (t)
}∣∣∣6 L|Ω|.

Hence sT (t)> s0e−λ(T−t)−C−µ(T−t). We change the roles ofω0 andωT (t) to get sT (t)6 s0e−λ(T−t)+
C−µ(T−t) and finally obtain

|sT (t)−e−λ(T−t)s0|6C e−µ(T−t) ∀t ∈ [0,T]. (1.26)

32

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

We writeΦ= s0−Φ0,ψT (t , x) = sT (t)−pT (t , x) andψ0(t , x) = e−λ(T−t)Φ(x) and using (1.24) with
(1.26), we get a new constant C > 0 independent of T such that

‖ψT (t , x)−ψ0(t , x)‖L∞(Ω) 6C e−µ(T−t), ∀t ∈ [0,T]. (1.27)

We now follow arguments of [25] to establish the exponential turnpike property for the control
and then for the state by using some information on the control χωT . We first remark that for all
t1, t2 ∈ [0,T],

{
ψ0(t1, ·) 6 0

} = {
ψ0(t2, ·) 6 0

} = {
Φ6 0

}
. Then we take t ∈ [0,T] and we compare

the sets
{
ψ0(t , ·) 6 0

}
,
{
ψT (t , ·) 6 0

}
and

{
ψ0(t , ·)+Ce−µ(T−t) 6 0

}
. Thanks to (1.27) we get for

every t ∈ [0,T] {
Φ6−Ce−(µ−λ)(T−t)}⊂ {

ψT (t , ·)60
}⊂ {

Φ6Ce−(µ−λ)(T−t)} (1.28){
Φ6−Ce−(µ−λ)(T−t)}⊂ {

ψ0(t , ·)60
} ⊂ {

Φ6Ce−(µ−λ)(T−t)}. (1.29)

We infer from [25, Lemma 2.3] that for every t ∈ [0,T],

dH

({
ψT (t ,·)6 0

}
,
{
Φ6 0

})
6 dH

({
Φ6−Ce−(µ−λ)(T−t)},

{
Φ6Ce−(µ−λ)(T−t)}). (1.30)

To conclude, since dH is a distance, we only have to estimate

dH

({
Φ60

}
,
{
Φ6±Ce−(µ−λ)(T−t)}).

Lemma 1.11. Let f :Ω→R be a continuously differentiable function and set Γ= {
f = 0

}
. Under

the assumption (S) : there exists C > 0 such that

‖∇ f (x)‖>C ∀x ∈ Γ,

there exist ε0 > 0 and C f > 0 only depending on f such that for any ε6 ε0

dH

({
f 6 0

}
,
{

f 6±ε})6C f ε.

Proof of Lemma 1.11. We consider f satisfying (S) with Γ = {
Φ = 0

}
. We assume by contradic-

tion that for every ε > 0, there exists x ∈ {| f | 6 ε
}

such that ‖∇ f (x)‖ = 0. We take ε = 1
n and

we subtract a subsequence (xn) → x ∈ {| f |6 1
}

(which is compact). By continuity of f and of
‖∇ f ‖, we have x ∈ Γ and ‖ f (x)‖ = 0, which raises contradiction with (S). Hence we find ε0 > 0
such that ‖∇ f (x)‖> C

2 for every x ∈ {| f |6 ε
}
. We apply [20, Corollary 4] (see also [20, Theorem

2]) to get

dH

({
f 6 0

}
,
{

f 6±ε})6 2

C
ε.

A more general statement can be found in [20; 25].

We infer that Φ satisfies (S) on ‖∇xψ0(t , x)‖ = e−λ(T−t)‖∇xΦ(x)‖ for x ∈Ω. We first remark
that Φ0 satisfies AΦ0 = λ j0Φ0,Φ0|Γ = s0 and that the set Γ = {

Φ0 = 0
}

is compact. Since Ω has a
C 2 boundary and c = 0 the Hopf lemma (see [31, Section 6.4]) gives

x0 ∈ Γ0 =⇒ ‖∇xΦ(x0)‖ = ‖∇xΦ0(x0)‖ > 0.

33

1.3. Numerical simulations : optimal shape design for the 2D heat equation

Hence there exists C0 > 0 not depending on t , T such that for every x ∈ Γ0, ‖∇xΦ(x0)‖>C0 > 0.
We take ν > 0,e−µν 6 ε0. We remark that e−µ(T−t) 6 ε0,∀t ∈ (0,T −ν) and we use Lemma 1.11
combined with (1.30) to get that, for every t ∈ (0,T −ν),

dH

({
ψT (t ,·)6 0

}
,
{
Φ6 0

})
6C0e−(µ−λ)(T−t).

We adapt the constant C0 such that on the compact interval t ∈ (T −ν,T) the sets are the same
whatever T > T0 > 0 may be, to get that, for every t ∈ (0,T),

dH

({
ψT (t ,·)6 0

}
,
{
Φ6 0

})
6C0e−(µ−λ)(T−t).

We obtain therefore an exponential turnpike property for the control in the sense of the Haus-
dorff distance

dH (ωT (t),ω0)6C0e−(µ−λ)(T−t) ∀t ∈ [0,T]. (1.31)

Here is a possible way to find a further turnpike property on state and adjoint. We could use
a similar argument (valid only for convex sets) as in [47, Theorem 1-(a)] : ‖χωT (t) − χω0‖ 6
C dH (ωT (t),ω0). Denoting by bω = dω−dωc the oriented distance, we follow [28, Theorem 4.1-
(b)] and [28, Theorem 5.1-(iii)(iv)] and we use the inequality ‖χA1

−χA2
‖6 ‖dA1 −dA2‖W 1,2(Ω) 6

‖bA1 −bA2‖W 1,2(Ω) = ‖bA1 −bA2‖+‖∇bA1 −∇bA2‖ to try to make the link between ‖χωT (t) −χω0‖
and dH (ωT (t),ω0). Afterwards, applying Gronwall inequality (1.39), we get

‖y(t)− ȳ‖L2(Ω) 6C0e−
(µ+λ)

2 (T−t) ∀t ∈ (0,T) (1.32)

with ȳ solution of Ay =χω0 , y|∂Ω = 0. Taking κ= µ+λ
2 > 0 and by application of Gronwall inequa-

lity (1.39) for the adjoint, we finally get the exponential turnpike property for the state, adjoint
and control.

1.3 Numerical simulations : optimal shape design for the 2D heat equa-
tion

Mayer Case. We illustrate the exponential turnpike phenomenon involved in the theorem 1.8
with a simulation in dimension 1. We still focus on the heat equation seen on the domain Ω=
[−1,1] with a constant final target function yd = 0.1 and try to solve the minimization problem

min JT (ω(·)) =
∫ 1

−1

(
y(T, x)−0.1

)2 d x

subject to :


∂t y −∂xx y =χω(·) ∀(t , x) ∈ (0,T)× (−1,1)

y(t ,0) = y(t ,1) = 0, ∀t ∈ (0,T)

y(0, x) = y0, ∀x ∈ (−1,1).

We do not concentrate here on how to treat such a problem numerically, which will be presen-
ted in Chapter 3. To do so, we use the AMPL software combined with the IpOpt method and
plot in Figure 1.2 the shape evolving in time. We try to show that the inequality of the Theorem
1.8 is well verified. At the beginning the optimal shape in time remains stationary until the final

34

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

FIGURE 1.2 – 1D time-varying shape for Mayer case - T = 3

time T is almost reached. Once T is almost reached, the optimal shape evolves to minimize
the final cost. The constant M implied in the Theorem 1.8 is independent of the final time T ,
which we verify by plotting for different values of T the behavior of the error t 7→ dH (ωT (t),ω̄).
We plot the time evolution of the Hausdorff distance between the optimal shape found and the
stationary shape t 7→ dH (ωT (t),ω̄) for several final times T ∈ {1,3,5}. From one side, we observe

FIGURE 1.3 – Error between time and static optimal shapes with respect to the Hausdorff distance t 7→
dH (ωT (t),ω̄) introduced in Theorem 1.8

in Figure 1.3, that the biggest is T , the more often is dH (ωT (t),ω̄) near to 0. On the other side,
whatever the final time T choosen, the behavior of t 7→ dH (ωT (t),ω̄) stays unchanged close to
the final time T . Moreover, close to T , the way in which the error quickly leaves the 0 value to
reach its final value highlights the exponential character of the turnpike phenomenon, and in
the same way for T which takes larger and larger values.

35

1.3. Numerical simulations : optimal shape design for the 2D heat equation

Lagrange Case. Numerical simulations will be detailed in Chapter 3 where several methods
are introduced. The one choosen to obtain figures below is based on the numerical solving of
PDE constrained optimization problems introduced in Chapter 2. From the time being, we take
Ω = [−1,1]2, L = 1

8 , T ∈ {1, . . . ,5}, yd = Cst = 0.1 and y0 = 0. We focus on the heat equation and
consider the minimization problem

min
ω(·)

∫ T

0

∫
[−1,1]2

|y(t , x)−0.1|2 d x d t (1.33)

under the constraints

∂t y −∆y =χω, y(0, ·) = 0, y|∂Ω = 0. (1.34)

We compute numerically a solution by solving the equivalent convexified problem using a
direct method in optimal control (see MR2224013). We discretize here with an implicit Euler
method in time and with a decomposition on a finite element mesh of Ω using FreeFEM (see
[56]). We finally express the optimal control problem as a quadratic programming problem in
finite dimension. We then use the routine IpOpt (see [97]) on a standard office machine. The
numerical solution of such problems has been shown to require efficient optimization me-
thods which we present in the next Chapter 2 and whose applications to our problem are later
illustrated in the Chapter 3.

We plot on the Figure 1.4 the evolution in time of the optimal shape t 7→ω(t) which appears
as a cylinder whose section at time t represents the shape ω(t). At the beginning (t = 0) we
notice that the shape concentrates in the middle ofΩ in order to heat up as fast as possible and
approach the state y close to ȳ . Once this is acceptable, the shape is almost stationary for a long
time. Finally, since the target yd is taken here as a constant, the optimal final state yT (T) must
be as flat as possible. Indeed, for t < T and by plotting the state curve, we observe that yT (t) is
much larger in the center of Ω than near the boundary. Thus, at the final moment, the shape
approaches the boundary ofΩ so that yT (T) becomes larger near it and smaller at the center of
Ω. We thus observe that yT (T) is almost constant in Ω and very close to yd .

We plot in Figure 1.5 a comparison between the optimal shape at several times (in red) and
the optimal static shape (in yellow) and notice the same design when t = T

2 .
Now, in order to highlight the turnpike phenomenon, we plot the time evolution of the dis-

tance between the optimal dynamic triple and the optimal static triple t 7→ ‖yT (t)− ȳ‖+‖pT (t)−
p̄‖+‖χωT (t)−χω̄‖. In the figure 1.6, we notice that this function is most of the time very close to
0 with terminal arcs which seems to be exponential. This behavior leads us to conjecture that
the exponential property of the turnpike should be satisfied. We notice on Figures 1.6 and 1.9
that the initial arcs all start from the same point while the final arcs close to the final time do
not end at the same point depending on the final time concerned while we expect it to end at
the same final point when T is large enough. For the sake of clarity, we represent on Figure 1.7
this error in dimension 1, because we are limited in the number of time steps in dimension 2
(with one hundred time steps, the optimization algorithm would process more than ten million
variables). We therefore observe that the endpoints are always identical and conclude that in
dimension 2, this difference in the final time could be due to the limited number of time steps
in dimension 2 and therefore to a lack of numerical precision in the final time when computing
the error between the two optimal triples.

36

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

FIGURE 1.4 – Optimal shape’s time evolution cylinder - T = 2

(a) (b) (c)

(d) (e) (f)

FIGURE 1.5 – Time optimal shape T = 5 - Static shape : (a) t = 0 ; (b) t = 0.5 ; (c) t ∈ [1,4] ; (d) t = 4.5 ; (e)
t = T ; (f) static shape

37

1.3. Numerical simulations : optimal shape design for the 2D heat equation

FIGURE 1.6 – Error between dynamical optimal triple and static one

FIGURE 1.7 – Error between dynamical optimal triple and static one (1D)

38

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

(a) (b) (c)

(d) (e) (f)

FIGURE 1.8 – Relaxation phenomenon : (a) t = 0 ; (b) t = 0.5 ; (c) t ∈ [1,4] ; (d) t = 4.5 ; (e) t = T ; (f) static
shape

FIGURE 1.9 – Error between dynamical optimal triple and static one (Relaxation case)

To complete these numerical remarks, we must specify that the existence of optimal forms
for yd seems to be acquired when yd is convex. We see indeed on Figure 1.5 the existence of
the time optimal shape for yd convex on Ω. In the contrary case, we can sometimes observe a
relaxation phenomenon due to the presence of c̄ and cT (·) in the optimality conditions (1.5) -
(1.7).

Indeed, we consider the same problem (OC P)T in 2D withΩ= [−1,1]2, L = 1
8 ,T = 5 and the

static one associated (SOP) with the nonconvex function yd (x, y) =− 1
20 (x2 + y2 −2).

In Figure 1.8 we see that optimal control (aT , ā) of (OC P)T and (SOP) take values in (0,1)
in the middle of Ω, which illustrates that relaxation occurs for some nonconvex yd . Here, yd

was chosen such that −∆yd ∈ (0,1). We have tuned the parameter L to observe the relaxation
phenomenon, but for same yd and smaller L, optimal solutions may be shapes. We notice that
despite the relaxation, turnpike still occurs in Figure 1.9.

39

1.4. Further comments

1.4 Further comments

Numerical simulations when ∆yd > 0 lead us to conjecture the existence of an optimal
shape for (DSD)T, as we have not yet observed any relaxation phenomenon in this case. The
question of existence is nevertheless very difficult and could be proved thanks to arguments
like maximal regularity properties and Hölder estimates for solutions of parabolic equations.

Moreover, still on the basis of our simulations and in particular of Figure 1.6, we conjecture
the exponential turnpike property.

The work we have presented here concerns the second order parabolic equations and in
particular the heat equation. Concerning the Mayer case, we have used in our arguments Weyl’s
law, sup-norm estimates of the eigenelements (see [88]) and the analyticity of the solutions
(analytic-hypoelliptic operator). Nevertheless, concerning the Lagrange case and having in mind
[81; 91], it seems reasonable to extend our results to general local parabolic operators which
satisfy an energy inequality (1.38) as well as the maximum principle to ensure the existence of
solutions, at least for the relaxed problem. However, some results such as the theorem 1.1.2-(b)
must be adapted. Moreover, we consider a linear partial differential equation that gives uni-
queness of the solution due to the strict convexity of the criterion. On the contrary, if we do not
have uniqueness, as in [91], the notion of measure-turnpike seems to be a relevant way to get
turnpike results.

Appendix

1.A Energy inequalities

We recall some useful energy inequalities for elliptic operators A defined in Section 1, re-
quisite to study the existence of solutions and turnpike phenomenon. In that aim, we first in-
troduce Poincaré’s inequality

Theorem 1.12. Let Ω be an open bounded subset of Rd with smooth boundary ∂Ω, then it exists
Cp > 0 such that, for any y ∈ H 1

0 (Ω)

‖y‖2
L2(Ω) 6Cp‖∇y‖2

L2(Ω). (1.35)

We then prove the following results

Theorem 1.13. If θ > θ1 > 0 in (1.2), where θ1 is the largest root of the polynomial P (X) = X 2

4Cp
−

‖c‖L∞(Ω)X −
(∑d

i=1 ‖bi ‖L∞(Ω)
)2

2 , we can find γ> 0 such that and

(Ay, y)L2(Ω) > γ‖y‖2
H 1

0 (Ω)
∀y ∈ H 1

0 (Ω). (1.36)

Proof. Let y ∈ H 1
0 (Ω) and write

(Ay, y)L2(Ω) =
∫
Ω

(
d∑

i , j=1

(
ai j (x)∂xi y∂x j y

)+ d∑
i=1

bi (x)y∂xi y + c(x)y2

)
d x

40

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

so that, by means of the ellipticity condition (1.1) the following inequality holds

θ‖∇y‖2
L2(Ω) 6 (Ay, y)L2(Ω) +

d∑
i=1

‖bi‖L∞(Ω)

∫
Ω
|y | |∇y |d x +‖c‖L∞(Ω)‖y‖2

L2(Ω). (1.37)

We introduce a positive parameter ε> 0 and write Cauchy’s inequality to delink the term |y | |∇y |
in

∫
Ω |y | |∇y |d x as ∫

Ω
|y | |∇y |d x 6 ε

∫
Ω
|∇y |2 d x + 1

4ε

∫
Ω

y2 d x

and introduce it in the previous inequality so that(
θ−ε

d∑
i=1

‖bi‖L∞(Ω)

)
‖∇y‖2

L2(Ω) 6 (Ay, y)L2(Ω) +
(
‖c‖L∞(Ω) + 1

4ε

d∑
i=1

‖bi‖L∞(Ω)

)
‖y‖2

L2(Ω).

We almost get (1.36) insofar θ− ε∑d
i=1 ‖bi‖L∞(Ω) must be positive. In that aim, we choose ε =

θ

2
∑d

i=1 ‖bi ‖L∞(Ω)
and we decompose the left term ‖∇y‖2

L2(Ω)
by means of Poincaré’s inequality (1.35)

so that ‖∇y‖2
L2(Ω)

> 1
2‖∇y‖2

L2(Ω)
+ 1

2Cp
‖y‖2

L2(Ω)
to reword (1.37) as

θ

4
‖∇y‖2

L2(Ω) 6 (Ay, y)L2(Ω) +
(
‖c‖L∞(Ω) + 1

2θ

(
d∑

i=1
‖bi‖L∞(Ω)

)2

− θ

4Cp

)
‖y‖2

L2(Ω).

It only remains to show that the right term
(
‖c‖L∞(Ω) + 1

2θ

(∑d
i=1 ‖bi‖L∞(Ω)

)2 − θ
4Cp

)
is negative.

We recognize the quantity −θP (θ), with P the polynomial defined in Theorem 1.13 and whose
discriminant is strictly positive. Since θ verifies θ > θ1, θP (θ) > 0 (since P (0) < 0, we obviously
have θ1 > 0) and thus

(Ay, y)L2(Ω) >
θ

4
‖∇y‖2

L2(Ω) +θP (θ)‖y‖2
L2(Ω).

Therefore, we take γ= min(θ4 ,θP (θ)) and (1.36) holds.

Remark 1.14. We claim that the condition θ > θ1 is not optimal since rough inequalities have
been used (especially by using Poincaré’s inequality and by putting ε= θ

2
∑d

i=1 ‖bi ‖L∞(Ω)
) and is most

likely refinable.

Theorem 1.13 guarantees the existence of a unique solution of state equation in problem
(SOP) by Lax-Milgram Theorem. From Theorem 1.13 follows energy inequalities for parabolic
operators in Theorem 1.15.(a) used to show turnpike properties. With the aim to have both
existence and energy inequalities for PDE (1.4), we remind the following result based on [31].

Theorem 1.15. Let A be an elliptic operator verifying the ellipticity condition (1.2) in the frame-
work of Theorem 1.13.

(a) One can find a constant C > 0, independent of the final time T , such that for any solution
y of (1.4) the following inequality holds

‖y(t)‖2
L2(Ω) +

∫ t

0
‖y(s)‖2

H 1
0 (Ω)

d s 6C

(
‖y0‖2

L2(Ω) +
∫ t

0
‖a(s)‖2

L2(Ω) d s

)
∀t ∈ (0,T). (1.38)

41

1.A. Energy inequalities

(b) One can find constants C1,C2 > 0, independent of the final time T , such that for any y ∈
solution of (1.4), we have

‖y(t)‖2 6 ‖y0‖2e−C1t +C2

∫ t

0
e−C1(t−s)‖a(s)‖2 d s ∀t ∈ (0,T). (1.39)

Proof. According to [31, Section 7 - Theorem 5], let y ∈ L2(0,T ; H 2(Ω))∩L∞(0,T ; H 1
0 (Ω)) such

that ∂t y ∈ L2(0,T ;L2(Ω)) be the unique solution of (1.4).

Remark 1.16. The proof for such a setting is essentially based on Galerkin’s approximation, by
bringing in the complete set of appropriately normalized eigenfunctions of the Dirichlet Lapla-
cian as smooth functions (φk)k∈1..∞ such that

(φi ,φ j)H 1
0 (Ω) = 0 if i 6= j : orthogonal basis of H 1

0 (Ω),

(φi ,φ j)L2(Ω) = δi j : orthonormal basis of L2(Ω),

and by decomposing the PDE solution onto the sequential resulting finite dimensional spaces.

We apply [31, Section 5 - Theorem 3] to get that y ∈ C (0,T ;L2(Ω)) such that the mapping
t 7→ ‖y(t)‖L2(Ω) is absolutely continuous and its derivative is d

d t ‖y(t)‖L2(Ω) = 〈∂t y, y〉H−1(Ω),H 1
0 (Ω).

Thus, for any t in (0,T), let multiply (1.4) by y(t) and integrate over Ω to get

d

d t
‖y(t)‖2

L2(Ω) + (Ay(t), y(t))L2(Ω) = (a(t), y(t))L2(Ω) ∀t ∈ (0,T).

Let us notice that for almost every t in (0,T), y(t) lies in H 1
0 (Ω) such that, by applying Theorem

1.13 we get

(Ay(t), y(t))L2(Ω) > γ‖y(t)‖2
H 1

0 (Ω)
a.e. t ∈ (0,T),

and finally write by means of Cauchy’s inequality with ε= γ
2

d

d t
‖y(s)‖2

L2(Ω) +
γ

2
‖y(s)‖2

H 1
0 (Ω)

6
1

2γ
‖a(s)‖2

L2(Ω) a.e. s ∈ (0,T), (1.40)

with C = γ
2 > 0 independent of the final time T .

(a). Related to the first part of the Theorem 1.13, we easily integrate (1.40) over (0, t) for
every t ∈ (0,T) such that we finally write

‖y(t)‖2
L2(Ω) +

γ

2

∫ t

0
‖y(s)‖2

H 1
0 (Ω)

d s 6 ‖y0‖2
L2(Ω) +

1

2γ

∫ t

0
‖a(s)‖2

L2(Ω) d s ∀t ∈ (0,T).

Thus, (1.38) holds by taking C = max(1, 1
2γ)

min(1, γ2)
.

(b). We improve previous inequality by using the following result.

Lemma 1.17. Let η : R+ 7→ R+ be an absolutely continuous function such that there exist C > 0
and h :R+ 7→R+ measurable verifying

η′(t)+Cη(t)6 h(t) a.e t ∈ (0,T).

Thus, one can get the following estimate

η(t)6 η(0)e−C t +
∫ t

0
e−C1(s−t)h(s)d s ∀t ∈ (0,T).

42

CHAPTER 1. SHAPE TURNPIKE FOR LINEAR PARABOLIC PDES

Proof. We introduce the ODE

η′(t)+Cη(t) =α(t), ∀t ∈ (0,T),

whose solution by common ordinary differential equations theory reads

η(t) = η(0)e−C t +
∫ t

0
e−C (s−t)α(s)d s ∀t ∈ (0,T).

Let us then notice that for almost every s in (0,T), α(s) 6 h(s) such that, by integrating over
(0, t) for any t in (0,T), we deduce

η(t)6 η(0)+
∫ t

0
e−C (s−t)h(s)d s ∀t ∈ (0,T).

We then apply the comparison lemma 1.17 to η : t 7→ ‖y(t)‖L2(Ω) with C = γ
2 and h : t 7→

1
2γ‖a(t)‖L2(Ω) that are well verifying assumptions needed and so that we deduce

‖y(t)‖2 6 ‖y0‖2e−
γ

2 t + 1

2γ

∫ t

0
e−

γ

2 (t−s)‖a(s)‖2 d s ∀t ∈ (0,T),

with C1 = γ
2 > 0 and C2 = 1

2γ > 0 independent of the final time T .

1.B Bathtub principle

We remind the following result, in an alternative form than the one stated in [68] that we
use to characterize the optimal solutions of relaxed problems involved in Section 1.

Theorem 1.18. Let (Ω,Σ,µ) be a measurable space and a function f :Ω 7→Rwhose any sub-level
sets has finite Lebesgue measure µ

{
x ∈Ω, f (x) < t

}
for all t in R. Besides, for G stricly positive, we

introduce the class of measurable functions

C =
{

g :Ω 7→R, 06 g 6 1 and
∫
Ω

g (x)µ(d x)6G

}
.

Thus, the maximization problem

sup
g∈C

∫
Ω

f (x)g (x)µ(d x)

is solved by function of the form

g (x) =χ{ f >s}(x)+ cχ{ f =s}(x)

with a level s ∈R and some constant c ∈ (0,1).

43

1.B. Bathtub principle

Proof. We first introduce the sets Ω+ = { f > 0} and Ω0 = { f = 0} and distinguish between cases
according to whether µ(Ω+)6G .

In a first attempt, we assume that µ(Ω+) 6 G . Thus, without any effort, we notice that∫
Ω f (x)g (x)µ(d x) is going to be maximal when g (x) = 1 if f (x) > 0 and g (x) = 0 when f (x) < 0

and its value is
∫
Ω+ f (x)µ(d x). Nevertheless, solution is not unique and g can take several value

c ∈ (0,1) onΩ0 such that g =χΩ+ + cχΩ0 insofar µ(Ω+)+ cµ(Ω0)6G .
We now assume that µ(Ω+) > G . This means that f is positive on a set whose measure is

larger than G . Therefore, it is intuitive to notice that the constraint
∫
Ω g (x)µ(d x)6G will conse-

quently be saturated such that
∫
Ω g (x)µ(d x) =G . We thus introduce

s = inf
{

t ∈R,µ{ f > t }6G
}

and the function

g (x) =χ{ f >s}(x)+ cχ{ f =s}(x)

such that µ{ f > s}+ cµ{ f = s} =G . Let h be any other function in C and let us verify that∫
Ω

f (x)g (x)µ(d x)>
∫
Ω

f (x)h(x)µ(d x).

We decompose the integral as follows∫
Ω

f (x)(g (x)−h(x))µ(d x) =
∫

{ f <s}∪{ f =s}∪{ f >s}
f (x)(g (x)−h(x))µ(d x)

and notice that

g −h > 0 on { f > s} =⇒
∫

{ f >s}
f (x)(g (x)−h(x))µ(d x)> s

∫
{ f >s}

(g (x)−h(x))µ(d x)

g −h 6 0 on { f < s} =⇒
∫

{ f <s}
f (x)(g (x)−h(x))µ(d x)> s

∫
{ f <s}

(g (x)−h(x))µ(d x)

such that∫
Ω

f (x)(g (x)−h(x))µ(d x)> s
∫
Ω

(g (x)−h(x))µ(d x) = sG − s
∫
Ω

h(x)µ(d x)> 0.

44

Chapter 2

PDE-constrained optimization using
FreeFEM combined with IpOpt and
automatic differentiation

Table of contents
2.1 Preliminaries . 47

2.1.1 The FreeFEM software . 47

2.1.2 PDE constrained optimization . 50

2.1.3 Optimization and discretization strategies 59

2.1.4 The optimization routine IpOpt . 61

2.1.5 Automatic differentiation . 63

2.2 Linear quadratic PDE constrained optimization 67

2.2.1 Derivatives of discretized functions (FDTO) 69

2.2.2 Discretization of continuous derivatives (FOTD) 71

2.2.3 Inhomogeneous Dirichlet boundary conditions 74

2.2.4 Automatic differentiation alternative . 75

2.3 Extension to time-dependent problems . 78

2.3.1 Implicit Euler scheme. 78

2.3.2 Time discretization with FreeFEM. 79

2.4 Optimization under semilinear PDE constraints 81

2.5 Optimal shape design problems . 86

2.6 Boundary shape optimization . 87

2.6.1 Boundary and domain parametrization . 87

2.6.2 Shape optimization problem . 91

2.6.3 Sensitivity analysis . 92

2.6.4 Codes and results . 96

2.6.5 Further comments . 100

Appendices . 101

2.A Some FreeFEM functions . 101

2.B Semi-automatic differentiation and adjoint method 102

2.C PDE Optimization with Python or Matlab . 105

45

Abstract In this chapter, we show how the partial differential equation solver FreeFEM can
be combined with efficient optimization tools to numerically solve difficult optimal control
problems constrained by partial differential equations. As an optimization solver, we use the
interior point routine IpOpt and show how it can be branched to FreeFEM as well as to au-
tomatic differentiation approaches like AMPL or CasADi. We illustrate the effectiveness of the
different methods with several representative examples, ranging from classical linear quadra-
tic problems to the non-trivial problem of the optimal shape of a micro-swimmer in a fluid.
We address the issue of choosing direct or indirect methods and explain how automatic dif-
ferentiation can be an effective alternative. We also show the potential of FreeFEM for mesh
management and modification in optimal shape problems.

46

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

2.1 Preliminaries

2.1.1 The FreeFEM software

FreeFEM (see [56]) is a software developed in C++ to solve PDEs with the finite element
method in 1, 2 and 3 dimensions. The meshes are generated thanks to an advanced automatic
mesh generator and the choice of the triangular finite element space is so varied that most of
the PDEs considered can be quickly solved via the discretization of the associated variational
formulation. The documentation contains a complete introduction for a quick start as well as
many classical examples such as heat conduction, elasticity system, Navier-Stokes equations.
Users who are not familiar with the language are invited to browse the section [3, Learning
by examples] where multiple examples will allow to advance step by step. We will see that not
only does FreeFEM have a user-friendly interface but also that its syntax is very similar to the
mathematical problems considered. Mathematically, the PDE problems considered must be
solved in the context of an appropriate variational formulation (see, for example, [85]). Indeed,
FreeFEM was developed to reformulate the PDE in its weak form, in order to discretize the
resulting variational formulation according to a well suited choice of finite elements. As a first
basic example, let us consider the Poisson equation

−∆y = u in Ω, y ∈ H 1
0 (Ω), (2.1)

in some domainΩ, for some u in L2(Ω). Its variational formulation is :

find y ∈ H 1
0 (Ω),

∫
Ω
∇y ·∇v d x =

∫
Ω

uv d x ∀v ∈ H 1
0 (Ω) (2.2)

i.e., a(y, v)−b(u, v) = 0, ∀v ∈ H 1
0 (Ω), (2.3)

where

a(y, v) = (∇y,∇v)L2(Ω)

is a continuous and coercive bilinear form and

b(u, ·) = (u, ·)L2(Ω)

is a continuous linear form, both being defined on the Hilbert space H 1
0 (Ω). The Lax-Milgram

theorem guarantees the existence of a weak solution of (2.2).

In order to discretize (2.2), we introduce a triangulation of the domain Ω (i.e. a mesh) as
well as an appropriate finite element space which guarantees that the finite dimensional linear
system resulting from the discretization of (2.3) on the basis of the finite element space is well-
posed (i.e. invertible).

As an example, we solve (2.1) on a 2D L-shaped domain Ω (see Figure 2.1). The script
FreeFEM for generating the mesh is given in the Code 2.1.

47

2.1. Preliminaries

(a) (b)

FIGURE 2.1 – Example (2.1) : (a) L-mesh; (b) solution y of (2.2) for u = 1

border a(t=0,1){x=t; y=0; label=1;};
border b(t=0,0.5){x=1; y=t; label=2;};
border c(t=0,0.5){x=1-t; y=0.5; label=3;};
border d(t=0.5,1){x=0.5; y=t; label=4;};
border e(t=0.5,1){x=1-t; y=1; label=5;};
border g(t=0,1){x=0; y=1-t; label=6;};

mesh Th = buildmesh(a(20) + b(15) + c(15) + d(15) + e(15) + g(20));

Code 2.1 – Mesh generation with buildmesh

Here, a(20) means that the boundary involved and defined by the border a is split into 20
parts. The finite element space Vh is

Vh =
{

v ∈ H 1(Ω), ∀K ∈ Th v|K ∈ P1

}
= Vect(φi)i∈{1..nd }

where P1 is the space of continuous piecewise linear functions and whose basis is (φi). One of
the big advantages of FreeFEM is that the user does not need to code the specificities of the
mesh and the finite element functions. This is done automatically by the command fespace
The access to the different data of the mesh and the finite element functions is then direct.
Moreover, we will see that the use of macros allows to greatly reduce the lines of code to finally
have a very purified script. The numerical solution of (2.2) is finally achieved by :

fespace Vh(Th,P1);
Vh Y,V,U=1; //finite element functions

macro grad(Y) [dx(Y),dy(Y)] // //macro ended by //

solve Poisson(Y,V) = int2d(Th)(grad(Y)'*grad(V))
- int2d(Th)(U*V)
+ on(1,2,3,4,5,6,Y=0); // y ∈ H1

0 (Ω)
plot(Th,Y); // Figure 2.1

Code 2.2 – Poisson solution by solving the variational formulation

Instead of solving the variational form (2.2) in a single line of code, we can also define the ma-
trices from the discretization of the bilinear form a and the linear form b in (2.3), and solve the
equivalent linear system. We introduce the finite element subspace

Yh = {v ∈Vh , v|∂Ω = 0}

48

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

including the homogeneous Dirichlet boundary condition stated in (2.1) and let us note its
basis

Vect(φi)i∈{1..n} 0 < n < nd .

The stiffness and mass matrices are respectively given by

(Ah,i j)(i , j)∈{1..n} =
∫
Ω
∇φi ·∇φ j d x, (Mh,i j)(i , j)∈{1..nd } =

∫
Ω
φiφ j d x.

The solution of (2.3) discretized by finite elements P1 finally consists in solving the linear sys-
tem

Ah yh −Mhuh = 0.

Since the mesh Th and the finite element space Vh are generated as in Code 2.1, FreeFEM
thus only requires the command varf to define the matrices Ah and Mh . It is not necessary
to introduce the space of zero finite elements on the edge Yh in the code. Indeed, FreeFEM
handles the Dirichlet boundary conditions (homogeneous or inhomogeneous) by specifying
them directly in the variational formulation.

Vh Y,V,U=1; // finite element functions

macro grad(Y) [dx(Y),dy(Y)] //
varf stiffness(Y,V) = int2d(Th)((grad(Y)'*grad(V)))

+ on(1,2,3,4,5,6,Y=0); // y ∈ H1
0 (Ω)

varf mass(Y,V) = int2d(Th)(Y*V);

matrix Ah = stiffness(Vh,Vh,solver=sparsesolver); // with Dirichlet B.C.
matrix Mh = mass(Vh,Vh,solver=sparsesolver);

Code 2.3 – varf command

Finally, solve Poisson(Y,V) in Code 2.2 is equivalent to solve Ah yh = Mhuh via

V[] = Mh*U[];
Y[] = Ah^-1*V[];

Code 2.4 – Poisson solution with finite element matrices

In both cases, it is not necessary to use the characteristics of the mesh in detail, which greatly
facilitates the overall implementation. Although it is very close to writing the variational for-
mulation, the solve command is most often not as fast as dealing directly with the matrices
which are usually sparse. When only one PDE needs to be solved, the computational time sa-
vings may not be obvious, but when in addition an optimal control problem needs to be solved,
the optimization process may require many calls to the state and adjoint PDE equations. There
is therefore a real advantage to working with sparse matrices as soon as the number of PDEs to
be solved increases. In the rest of Section 2.2, we will highlight the advantages of using sparse
matrices for calculating derivatives (especially for Jacobian and Hessian matrices). Suppose
that the equation (2.1) is a constraint, we now want to minimize the functional J , depending
on both y and u,

J (y,u) = 1

2

∫
Ω

(y − yd)2 d x + α

2

∫
Ω

u2 d x, (2.4)

49

2.1. Preliminaries

whose computation requires solving (2.1) in a first step. Moreover, we will see that computing
the derivative of J with respect to control may require solving the state and adjoint PDEs arising
from the necessary first-order optimality conditions, as explained in Section 2.1.2 below.

2.1.2 PDE constrained optimization

In differentiable optimization problems, numerical methods are generally based on first
order optimality conditions and thus on the computation of derivatives. Let W be a Banach
space, we denote its topological dual by W ′ =L (W,R) (space of continuous linear functionals
on W) and by

〈z, w〉W ′,W = z(w) ∀z ∈W ′

the dual pairing. Given a linear operator A, its adjoint is denoted by A∗. For the special case
of the Hilbert space H , the dual H ′ can be directly identified with H and the dual pairing is
equated to the inner product of H (·, ·)H . A differentiable optimization problem is generally
written as

min
w∈Uad

J (w) (2.5)

where J : W 7→ R is Gateaux differentiable and Uad ⊂ W is a nonempty, closed and convex
subset. We denote by D J the (Gateaux) derivative of J . First-order optimality conditions are
then written in the following form.

Theorem 2.1. Let w̄ ∈W be a (local) optimal solution of (2.5). Then

w̄ ∈Uad , 〈D J (w̄), w − w̄〉W ′,W > 0, ∀w ∈Uad . (2.6)

Classical differentiable optimization strategies involve the computation of (at least) first-
order derivatives. Indeed a Taylor expansion returns at some iterate point xk

J (x) = J (xk)+〈D J (xk), x −xk〉W ′,W +o(‖x −xk‖W)

and the next iterate xk+1 is searched so that

f (xk+1)6 f (xk)

and thus, assuming that xk+1 is close enough to xk , so that

〈D J (xk), x −xk〉W ′,W 6 0.

In the case where W = RN , a particular descent direction is usually given by the opposite of
the gradient −∇J (xk) (see Algorithm 1). However, the framework provided by (2.5) and the
Theorem 2.1 is rather limited when one has to look at an optimal control problem because
the objective function and its derivative are not easy to compute at once. Moreover, such an
elementary algorithm will not perform well for large-scale optimization problems involving a
PDE constraint. A new framework is therefore needed with the first constraint of decoupling
state and control variables. Then, once the existence of solutions is acquired or assumed, the

50

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

Algorithm 1 Gradient descent algorithm

initialization x0, stop criterion ε
while ‖∇ f (xk)‖6 ε do

compute αk with linear search methods (in the direction −∇ f (xk))
compute xk+1 = xk −αk∇ f (xk)
compute ∇ f (xk+1)

end while

computation of the derivatives of the functions involved should be easy and we should be able
to move easily to a powerful numerical framework. We therefore write below the general mi-
nimization problem of a function J depending on both state and control variables subject to a
PDE embedded in the operator e with some additional constraints encoded in Uad :

min
(y,u)∈Y ×U

J (y,u) subject to e(y,u) = 0, u ∈Uad . (2.7)

Assumption 2.2 below guarantees existence of solutions of (2.7) usually denoted by (ȳ , ū) in
Y ×U .

Assumption 2.2.

1. Uad ⊂U is nonempty, closed and convex.

2. The mappings
J : Y ×U 7→R and e : Y ×U 7→ Z

are continuous with Z a Banach space and Y ,U reflexive Banach spaces.

3. For every u ∈V in a neighborhood V of Uad , the state equation

e(y,u) = 0

has a unique solution y(u) ∈ Y and the mapping

u ∈Uad 7→ y(u) ∈ Z

is continuous.

4. The mapping
(y,u) ∈ Y ×U 7→ e(y,u) ∈ Z

is weakly continuous.

5. J is sequentially lower semi continuous.

Some additional state constraints can be added by means of a set Yad ⊂ Y assumed to be
nonempty, convex and closed. We introduce the reduced cost function of the problem (2.7)

u ∈Uad 7→ Ĵ (u) = J (y(u),u)

so that (2.7) is reformulated as

min
u∈Uad

Ĵ (u).

51

2.1. Preliminaries

If we want to use the algorithm 1 to compute an optimal solution, we have to compute the
derivative of wi dehat J . But this requires to obtain the derivative of the operator u ∈ Uad 7→
y(u) ∈ Y , which is not explicit. The assumption 2.3 below provides a general framework that
ensures the differentiability of the input-output mapping uUad 7→ y(u) ∈ Y (by the implicit
function theorem) and at the same time allows us to compute D Ĵ , which is necessary to write
the first order optimality conditions.

Assumption 2.3.

1. Uad ⊂U is nonempty, closed and convex.

2. The mappings
J : Y ×U 7→R and e : Y ×U 7→ Z

are continuously Fréchet differentiable and U ,Y , Z are Banach spaces.

3. For all u ∈V in a neighborhood V of Uad , the state equation

e(y,u) = 0

has a unique solution y(u) ∈ Y .

4. The partial derivative
∂y e(y(u),u) ∈L (Y , Z)

has a bounded inverse for all u ∈V ⊂Uad .

Applying Theorem 2.1 to u ∈Uad 7→ Ĵ (u), we get the following first-order optimality condi-
tions in terms of the reduced cost function Ĵ .

Theorem 2.4. Under Assumption 2.3, if û ∈Uad is a (local) optimal solution of the redu-
ced problem then 〈

D Ĵ (û),u − û
〉

U ′,U > 0 ∀u ∈Uad .

At this step, a direction of descent can be found by following the information provided by
the continuous derivative D Ĵ . Unfortunately, the Theorem 2.4 does not provide an easy way to
compute it numerically since, according to the sensitivity analysis developed below, the nume-
rical computation of the derivative of the mapping u ∈Uad 7→ y(u) ∈ Y requires the computa-
tion of “too many” directional derivatives.

Sensitivity approach

Indeed, let s ∈ Uad . We compute Ĵ (u + εs) for ε small enough. In the setting of Assump-
tion 2.3, the chain rule gives〈

D Ĵ (u), s
〉

U ′,U =
〈
∂y J (y(u),u),D y(u)s

〉
Y ′,Y

+
〈
∂u J (y(u),u), s

〉
U ′,U

. (2.8)

The partial derivatives ∂y J and ∂u J are easy to compute since J explicitly depends on y and u.
In contrast, computing D y(u)s is related to solving e(y,u) = 0 and is not immediate. The state
constraint

e(y(u),u) = 0

52

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

is derivated in the direction s to make appear δys = D y(u)s as the solution of the new linear
PDE

∂y e(y(u),u)δys =−∂ue(y(u),u)s. (2.9)

The calculation of
〈D Ĵ (u), s〉U ′,U

thus requires to compute the solution δys of (2.9) for each direction s. Thus, the differential
D Ĵ (u) is numerically difficult to access if U has a large dimension since it is necessary to com-
pute the directional derivative in each direction of a given basis of the vector space spanned by
U . A numerical method based on this sensitivity approach is therefore not feasible in high di-
mension because it would be too computationally demanding. The same problem is encoun-
tered for automatic differentiation in direct mode (as explained in Section 2.1.5), where the
Jacobian is not necessarily needed because we generally need a descent direction which is gi-
ven by the Jacobian applied in a well-chosen direction. On the same principle as automatic
differentiation in reverse mode (see [31]), the gradient can be found with much less effort by
introducing an adjoint variable.

Adjoint approach

Equation (2.8) is equivalently written as〈
D Ĵ (u), s

〉
U ′,U =

〈
D y(u)∗∂y J (y(u),u), s

〉
U ′,U

+
〈
∂u J (y(u),u), s

〉
U ′,U

and thus
D Ĵ (u) = D y(u)∗∂y J (y(u),u)+∂u J (y(u),u).

Moreover, (2.9) gives

∂y e(y(u),u)D y(u) =−∂ue(y(u),u). (2.10)

It is not required to know the whole matrix D y(u) but only the vector

D y(u)∗∂y J (y(u),u).

Item 4 of Assumption 2.3 ensures the existence of the inverse

−∂y e(y(u),u)−1

and (2.10) gives
D y(u) =−∂y e(y(u),u)−1∂ue(y(u),u)

and

D y(u)∗∂y J (y(u),u) =
(
−∂y e(y(u),u)−1∂ue(y(u),u)

)∗
∂y J (y(u),u)

=−∂ue(y(u),u)∗
(
∂y e(y(u),u)∗

)−1
∂y J (y(u),u)︸ ︷︷ ︸

adjoint −p(u)

.

53

2.1. Preliminaries

The adjoint vector p = p(u) ∈ Z ′ is thus defined as the solution of the linear equation

∂y e(y(u),u)∗p =−∂y J (y(u),u). (2.11)

Finally,

D Ĵ (u) = ∂ue(y(u),u)∗p(u)+∂u J (y(u),u).

From a numerical point of view, compared to the sensitivity approach which thus requires sol-
ving as many PDEs as U has degrees of freedom to express the derivative of Ĵ , the adjoint ap-
proach only requires solving the equation of state in (2.7) and the adjoint equation (2.11). This
brings a significant advantage in that the resolution of the PDEs requires more time and more
computation when the mesh is finer. Thus, the calculation of the first derivative of the objective
function of the problem (2.7) at a point u ∈Uad follows the following steps :

S.1 Compute the partial derivatives

∂y J (y,u), ∂u J (y,u), ∂y e(y,u), ∂ue(y,u),

and the adjoint operators

∂y e(y,u)∗, ∂ue(y,u)∗.

S.2 Solve the state equation

e(y,u) = 0,

which gives y(u) (input-output mapping).

S.3 Solve the adjoint equation

∂y e(y(u),u)∗p =−∂y J (y(u),u),

which gives the adjoint p = p(u).

S.4 Finally, compute

D Ĵ (u) = ∂ue(y(u),u)∗p(u)+∂u J (y(u),u).

The adjoint variable p can be interpreted as the Lagrange multiplier corresponding to the
constraint e(y,u) = 0. The Lagrangian L : Y ×U ×Z ′ 7→R of the problem (2.7) is defined by

L(y,u, p) = J (y,u)+〈
p,e(y,u)

〉
Z ′,Z .

The partial derivatives of the Lagrangian with respect to the adjoint variable p and the state
variable y give the equation of state in (2.7) and the adjoint equation (2.11), respectively, while
the partial derivative with respect to the control variable u gives the derivative of the reduced
cost function Ĵ . Under the assumption 2.3, the Theorem 2.4 is reformulated as follows. This is
the Pontryagin maximum principle well known in the control theory of PDEs.

54

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

Corollary 2.5. Under Assumption 2.3, let (ȳ , ū) ∈ Y ×U be an optimal solution of (2.7).
Then there exists p̄ ∈ Z ′ such that

e(ȳ , ū) = 0, (2.12)

∂y e(ȳ , ū)∗p̄ =−∂y J (ȳ , ū), (2.13)〈
∂u J (ȳ , ū)+∂ue(ȳ , ū)∗p̄,u − ū

〉
U ′,U > 0 ∀u ∈Uad , ū ∈Uad . (2.14)

The Lagrangian formulation of the optimality conditions is

〈q,∂p L(ȳ , ū, p̄)〉Z ′,Z = 0 ∀q ∈ Z ′, (2.15)

〈∂y L(ȳ , ū, p̄), v〉Y ′,Y = 0 ∀v ∈ Y , (2.16)〈
∂uL(ȳ , ū, p̄),u − ū

〉
U ′,U > 0 ∀u ∈Uad , ū ∈Uad . (2.17)

The Corollary 2.5 will therefore be used here most often to find the adjoint equation and the
derivative of Ĵ . Note that this requires to identify precisely the spaces involved Y , U and Z and
the dual pairings must be chosen accordingly. When U is a Hilbert space, D Ĵ can be identified
with the gradient ∇ Ĵ (u) corresponding to the chosen inner product of U .

Remark 2.6. The Corollary 2.5 provides necessary first-order optimality conditions for an opti-
mization problem constrained by a PDE. Such conditions are known to be sufficient when the
problem (2.7) is convex. Otherwise, the sufficient conditions given by the second order optimality
conditions (and the Hessian) are necessary to characterize the locally optimal solutions. Howe-
ver, from a numerical point of view, the numerical computation of the Hessian of the Lagrangian
can be a heavy operation (the matrix is not necessarily sparse) and is commonly replaced by an
approximated matrix (BFGS and quasi-Newton method for instance).

Remark 2.7. The introduction of the adjoint is an efficient way to calculate the derivative of the
objective function. The additional control constraints included in the Uad set can also be hand-
led. However, it is much more difficult to account for potential additional state constraints inclu-
ded in Yad in that it may require modifying the adjoint equation to account for these constraints
into an equation that is more difficult to solve. In this case, the adjoint method may not be advi-
sable. We will give some alternatives in Chapter 2.

Poisson example

Let Ω be an open subset of RN with Lipschitz boundary. We have defined in Section 2.1.1
the problem of minimizing the cost function (2.4) subject to a Poisson PDE with homogeneous
Dirichlet boundary condition (2.1), that we reformulate in the framework of (2.7) by introdu-
cing the sets Y = H 1

0 (Ω) and U = L2(Ω). For the moment, we do not consider any additional
control constraints included in the set Uad ⊂ U . We thus denote the cost function and PDE
constraints by the functions J and e in a weak form :

J : (y,u) ∈ Y ×U 7→ 1

2

∫
Ω

(y − yd)2 d x + α

2

∫
Ω

u2 d x ∈R
e : (y,u) ∈ Y ×U 7→ a(y, ·)−b(u, ·) ∈ Z

55

2.1. Preliminaries

where a and b are the bilinear forms defined by (2.3). Considering the Gelfand triple (see [60,
Definition 1.26])

H 1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω),

H−1(Ω) is identified with H 1
0 (Ω) so that the dual pairing 〈·, ·〉Y ′,Y is compatible with the L2(Ω)-

inner product. Since U = L2(Ω), the dual pairing 〈·, ·〉U ′,U is the L2(Ω)-inner product. Finally, we
set Z = H−1(Ω) = Y ′ so that the dual pairing 〈·, ·〉Z ′,Z is compatible with the L2(Ω)-inner pro-
duct. Assumption 2.3 is verified, indeed Items 1. and 2. are straightforward while Items 3. and
4. are due to properties of elliptic operators stated in [31]. For p ∈ Z ′ = H 1

0 (Ω), the Lagrangian
is thus given by

L(y,u, p) =
∫
Ω

(
1

2
(y − yd)2 + α

2
u2 +∇y ·∇p −up

)
d x.

Remark 2.8. The identification of the dual pairings involved by the L2(Ω)-inner product gives a
Lagrangian that we can later manipulate easily. Nevertheless, this compatibility depends on the
sets Y , Z and U chosen to verify the 2.3 hypothesis and is not always straightforward.

We finally apply the Corollary 2.5 to express the weak formulation of the adjoint equation
and exhibit the variational inequality which gives the first derivative of the reduced cost func-
tion Ĵ which we then identify with the gradient associated with the L2(Ω)-inner product.

∂p L(y,u, p) = 0 ⇐⇒
∫
Ω

(∇y ·∇v −uv
)

d x = 0 ∀v ∈ H 1
0 (Ω),

∂y L(y,u, p) = 0 ⇐⇒
∫
Ω

(∇p ·∇v + (y − yd)v
)

d x = 0 ∀v ∈ H 1
0 (Ω),

∂uL(y,u, p) : v ∈ L2(Ω) 7→
∫
Ω

(αu −p)v d x,

i.e., in the strong form for the L2(Ω)-inner product,

y ∈ H 1
0 (Ω) solution of −∆y = u in Ω,

p ∈ H 1
0 (Ω) solution of ∆p = y − yd in Ω,

D Ĵ (u) identified with ∇ Ĵ (u) =αu −p.

Dirichlet boundary control example

We focus here on a boundary control problem. We further assume that Ω has either a C 2

boundary or is a convex polytope. In the previous example, the variational formulation is writ-
ten by introducing the set Y = H 1

0 (Ω) for a homogeneous Dirichlet boundary condition. For
Neumann or Robin boundary conditions, we take Y = H 1(Ω) instead. For inhomogeneous Di-
richlet boundary conditions, the standard variational formulation must be reformulated using
some alternatives.

Given f ∈ L2(Ω), we modify the previous example by adding a Dirichlet boundary condition
u ∈ L2(∂Ω) so that the new problem is as follows

min J (y,u) = 1

2

∫
Ω

(
y(x)− yd (x)

)2 d x + α

2

∫
∂Ω

u(x)2 d x (2.18)

subject to

{
−∆y = f in Ω,

y = u in ∂Ω.
(2.19)

56

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

We cannot write directly the weak formulation as in the Poisson example. To overcome this
difficulty, one possibility may be to first introduce a small parameter δ so that the Dirichlet
boundary condition in (2.19) becomes a Robin boundary condition

δ∂n y + y = u on ∂Ω

and to write the variational formulation by introducing the space Y = H 1(Ω). Here, we consider
instead the way FreeFEM handles the Dirichlet boundary conditions. Indeed, following [95,
Section 10.6], we denote by

A0 : D(A0) 7→ L2(Ω)

the Dirichlet Laplacian (we have D(A0) = H 1
0 (Ω)∩H 2(Ω) because of the assumption onΩ) and

γ0,γ1 respectively the Dirichlet and Neumann traces. We introduce D the Dirichlet map such
that for any u ∈ L2(∂Ω) we can find Du ∈ L2(Ω) so that

∆Du = 0 onΩ and γ0(Du) = Du|∂Ω = u

(actually, Du ∈ C ∞(Ω) and the operator D is bounded from L2(∂Ω) to L2(Ω)). Moreover, the
adjoint operator of D is

D∗ =−γ1 A−1
0

and for all v ∈ L2(Ω)
(Du, v)L2(Ω) =−(u,∂nφ)L2(∂Ω) with A0φ= v.

We thus seek the solution y(u) of (2.19) in the affine space H 1
0 (Ω)+Du and we define z ∈ H 1

0 (Ω)∩
H 2(Ω) the solution of

−∆z = f in Ω

z = 0 in ∂Ω,

so that y = z+Du with z = A−1
0 f , whose variational formulation is the following : find z ∈ H 1

0 (Ω)
such that ∫

Ω
∇z ·∇v =

∫
Ω

f v d x ∀v ∈ H 1
0 (Ω).

The state space Y has to be defined in order to find a unique weak solution y ∈ Y of (2.19) when
solving the resulting very weak variational formulation∫

Ω
−y∆v d x =

∫
Ω

f v d x −
∫
Ω

Du∆v d x ∀v ∈ H 1
0 (Ω)∩H 2(Ω).

Since the Dirichlet Laplacian A0 induces an isomorphism from H 1
0 (Ω)∩ H 2(Ω) to L2(Ω) and

A−1
0 is also selfadjoint in L2(Ω), one can take φ ∈ L2(Ω) such that

v = A−1
0 φ

and the previous variational formulation is equivalent to :

find y ∈ Y s.t.
∫
Ω

yφd x =
∫
Ω

(
A−1

0 f
)
φd x +

∫
Ω

Duφd x ∀φ ∈ L2(Ω).

57

2.1. Preliminaries

Therefore, we set Y = L2(Ω), U = L2(Γ) and Z = L2(Ω) so that

y = z +Du ∈ L2(Ω)

is the unique solution of (2.19) (uniqueness of solution is straightforward by putting (f ,u) = 0).
Then we define the operator

e(y,u) = y − A−1
0 f −Du

so that Assumption 2.3 is satisfied in that setting and optimality conditions yield the existence
of φ ∈ L2(Ω) such that

φ= yd − y(
D∗φ, v −u

)
L2(∂Ω) > 0 ∀v ∈U .

Introducing p ∈ H 1
0 (Ω)∩H 2(Ω) solution of p = A−1

0 φ, the adjoint equation now reads

∆p = y − yd in Ω

p = 0 in ∂Ω,

so that D Ĵ (u) is identified with the gradient

∇ Ĵ (u) =αu +∂n p

for the L2(∂Ω)-inner product.

Remark 2.9. If none of the assumptions made on Ω hold, we have to modify the trial space
functions H 1

0 (Ω)∩H 2(Ω) accordingly, since existence and uniqueness of the solution to the very
weak variational formulation relies on the isomorphism A0 ∈ L

(
H 1

0 (Ω)∩H 2(Ω),L2(Ω)
)
. This

issue is more generally treated in [95, Section 13].

Remark 2.10. From the numerical point of view, u is usually smooth enough to get that y ∈
H 1(Ω) so that we solve (2.19) in FreeFEM by searching y ∈ {w ∈ H 1(Ω), w|∂Ω = u} verifying∫

Ω
∇y ·∇v d x =

∫
Ω

f v d x ∀v ∈ H 1
0 (Ω).

This is numerically carried out by specifying the boundary conditions thanks to the command
on(IndexBoard, Y=U).

Vh Y,V; // finite element functions
macro grad(Y) [dx(Y),dy(Y)] //
solve Poisson(Y,V) = int2d(Th)((grad(Y)'*grad(V)))

+ on(1,2,3,4,5,6,Y=U); // y ∈ {w ∈ H1(Ω), w|∂Ω = u}

We mention this inhomogeneous Dirichlet limit problem to highlight the difficulties that can
arise with the choice of Y , Z and U spaces to theoretically find the adjoint and derivative. From
the numerical point of view, although we generally do not need to make these sets explicit since
we often assume that all the data involved are sufficiently smooth, a good understanding of the
mathematical framework and in particular knowledge of the discretized spaces as well as the
inner products is crucial in the calculations.

58

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

When we move to the numerical framework and have in mind the algorithm 1, the nume-
rical calculation of the derivative of the objective function involves the adjoint variable that
will be found by solving the adjoint equation according to a chosen scheme. Alternatively, one
can directly override the adjoint equation and directly derive a discretized version of the opti-
mal control problem. The two approaches are respectively called First Optimize Then Discretize
(FOTD) and First Discretize Then Optimize (FDTO).

2.1.3 Optimization and discretization strategies

Given a general optimal control problem, we have given in Section 2.1.2 ways to compute
the continuous derivatives of the involved functions. This numerically implies to get a suitable
approximation of both functions and their derivatives that allow their numerical computation.
Effectiveness of the procedure is directly imputed to handling both discretization and optimi-
zation. Given discretization parameters 0 < h < h0 and some finite-dimensional discretization
spaces families (Yh)0<h<h0 , (Uh)0<h<h0 , (Zh)0<h<h0 and (U h

ad)0<h<h0 of the spaces Y , U , Z and
Uad , the optimal control problem (2.7) is discretized as

min
(yh ,uh)∈Yh×Uh

Jh(yh ,uh) subject to : eh(yh ,uh) = 0, uh ∈U h
ad . (2.20)

where
Jh : Yh ×Uh 7→R and eh : Yh ×Uh 7→ Z

are discretized versions of the continuous functions. Without loss of generality, the finite-dimensional
spaces Yh and Uh are identified with RN , N > 1. The problem (2.20) is expressed in a finite-
dimensional framework and is then numerically solved by means of usual tools (KKT condition,
differentiable optimization algorithms) by computing derivatives Jh and eh . This approach is
usually called First Discretize Then Optimize (FDTO) or direct method. In contrast, in the First
Optimize Then Discretize (FTDO) (or indirect) approach, the first-order optimality condition of
the continuous problem (2.7) is first derived by applying Corollary 2.5 such that all functions
sets and operators involved are then discretized accordingly

eh(yh ,uh) = 0, (2.21)

(∂y eh(yh ,uh))∗ph =−∂y Jh(yh ,uh), (2.22)(
∂u Jh(yh ,uh)+ (∂ueh(yh ,uh))∗ph ,u −uh

)
Uh

> 0, uh ∈U h
ad ,∀u ∈U h

ad . (2.23)

Both methods may not be mathematically equivalent since the partial derivatives of the dis-
cretized functions Jh and eh may differ from the discretizations of the partial derivatives ∂y eh ,
∂ueh , ∂y Jh , ∂u Jh .

Note that the FOTD approach does not give the true numerical derivative of the discretized
function (rather obtained with the FDTO approach). This may affect the algorithm’s conver-
gence. To our knowledge, the question of the convergence of optimal solutions of the discreti-
zed problem to the solution of the continuous one is a challenging issue that deserves further
consideration. In [87], under some appropriate assumptions on optimal control problems in
finite dimension, it is proved that direct FDTO and indirect FOTD approaches are mathema-
tically equivalent when the discretization is performed with a symplectic partitioned Runge-
Kutta integrator. This reference also contains interesting issues related to automatic differen-
tiation, that we illustrate in Appendix 2.B. Indeed, in this exemple, when the state equation is

59

2.1. Preliminaries

discretized according to an implicit scheme, automatic differentiation in reverse mode hides
an explicit scheme for the adjoint equation. When optimization is made first, we have to pay
a special attention to the choices of discretization for state and adjoint variables. Nevertheless
the freedom of discretization’s choice for the adjoint variable sometimes implies that FOTD is
more relevant since the derivative makes appear the adjoint which is, without state constraints,
usually more regular than the state variable. The adjoint can thus be approximated more ac-
curately thanks to a well-fitting discretization. Conversely, the main advantages of FDTO ap-
proach is its ability to allow the use of large-scale optimization methods, state constraints and
automatic differentiation.

Remark 2.11. In this remark, we mention a general rigorous mathematical framework for dis-
cretizations. Under Assumption 2.3, let Y , U and Z be separable Banach spaces. Let Ỹ be a sepa-
rable Banach space such that the embedding Y ,→ Ỹ is continous. Given a discretization parame-
ter h and a family of finite-dimensional spaces (Yh)0<h<h0 assumed to be uniformly continuously
embedded Yh ,→ Ỹ , we assume the existence of projection and injection operators

P Y
h : Ỹ 7→ Yh and P̃ Y

h : Yh 7→ Ỹ

such that
P Y

h P̃ Y
h = idYh .

The numerical scheme is furthermore assumed to be convergent, i.e.,

lim
h 7→0

‖P̃ Y
h P Y

h y − y‖Ỹ 7→ 0 ∀y ∈ Y .

Note that ‖P̃ Y
h ‖L (Yh ,Ỹ) = 1 and, by the Uniform Boundedness Principle, that ‖P Y

h ‖L (Ỹ ,Yh) 6 Cst
(uniform constant). The same setting is established for U and Z ′. The mappings J and e involved
in (2.7) are approximated by

Jh : (yh ,uh) ∈ Yh ×Uh 7→ J (P̃ Y
h yh , P̃U

h uh) ∈R
and

eh : (yh ,uh) ∈ Yh ×Uh 7→ e(P̃ Y
h yh , P̃U

h uh) ∈ Z .

On the other side, according to the FOTD approach, the functions involved are expressed as

∂#eh(yh ,uh) = (P̃ Z ′
h)∗∂#e(P̃ Y

h yh , P̃U
h uh)P̃?

h

and
∂# J h = ∂# J (P̃ Y

h yh , P̃U
h uh)P̃?

h

where (#,?) = {(y,Y), (u,U)}. Such a framework encompasses most of the usual discretization
strategies (finite differences, finite elements, Galerkin). The particular case of a linear PDE is ad-
dressed in [5].

For the Poisson example (2.1) and having in mind its variational formulation (2.2), we can
take

Y = Ỹ = H 1
0 (Ω), U = Ũ = L2(Ω), Z ′ = Z̃ ′ = H 1

0 (Ω)

so that Y ,→ U ,→ Z . The finite element space Uh consists of P1 Lagrange elements, Yh is the
subspace of Uh such that we have 0 on the boundary and (Zh)′ = Yh . Injection operators are thus
induced by the several canonical injections above and projections via the L2(Ω)-inner product.

A general framework for conformal transformations and especially Galerkin discretization
methods in the context of PDE optimization is stated in [64; 65].

60

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

2.1.4 The optimization routine IpOpt

IpOpt (for Interior Point Optimizer) is an open source software package for large-scale
differentiable optimization problems. First developed in Fortran, the C++ version allows to
IpOpt to be more easily interfaced with Matlab, Python, R, Julia, etc. IpOpt is already
included (with most of available linear solvers and options) when installing FreeFEM. We just
have to call the library by putting in the head of the code the command : load "ff-Ipopt".
We previously highlighted the ability of FreeFEM to construct and manage sparse matrices.
This is crucial for the optimization processing effectiveness since IpOpt gathers many of the
most powerful linear solvers (MUMPS, Pardiso, WSMP, HSL routines). The last and significant
asset of IpOpt is its large panel of options (choice of linear solver, multipliers updating, ad-
justment of line search, BFGS or Newton method, etc). A full description of the interior point
method can be found in [97] and options are available at [4, Ipopt Options Tab]. IpOpt is de-
signed to find local solutions of mathematical optimization problems of the form

min
x∈Rn

f (x) (2.24)

s.t.

{
gL 6 g (x)6 gU

xL 6 x 6 xU
(2.25)

where f : Rn 7→ R is the objective function and g : Rn 7→ Rm stands for equality and inequa-
lity constraints. Here, gL , gU and xL , xU respectively refer to the lower and upper bounds of
constraints and variables. The functions f and g can be nonlinear and nonconvex, but are at
least assumed to be twice differentiable. With this in mind, we aim to show how to transcribe
a PDE optimization problem like (2.30,2.31) to a finite-dimensional optimization problem like
(2.24,2.25). Once this transcription has been made, the most usual way to call IpOpt is :

IPOPT(f,df,d2f,C,jacC,x0,ub=xub,lb=xlb,cub=CUB,clb=CLB,optfile="ipopt.opt");

Code 2.5 – Calling IpOpt in FreeFEM

where df and d2f are respectively the gradient (an array) and the Hessian (a matrix in the Tri-
plet Format, hopefully highly sparse) of the objective function;C includes the constraints g and
jacC its Jacobian (a matrix in the Triplet Format, hopefully highly sparse too) ; ub and lb are
respectively the upper and lower bounds for x,cub andclb are the upper and lower bounds of
the constraints g , and x0 is an initialization point ; optfile="ipopt.opt" incorporates all
options (maximum number of iteration, convergence tolerance threshold, choice of linear sol-
ver and so on). Difficulties for the computation of the Hessian d2f usually happen (too much
memory greedy, needs the inverse of a matrix or slowing down too much the code), which is not
disabling.IpOpt offers many options, we can bypass the problem by choosing a quasi-Newton
method, which is the default option if IpOpt is called without specifying the Hessian.

IPOPT(f,df,C,jacC,x0,ub=xub,lb=xlb,cub=CUB,clb=CLB); // no Hessian 7→ BFGS

Despite its potential more expensive cost computation, the Newton method is usually conver-
ging to an optimal solution with less iterations than a quasi-Newton method. Nevertheless the
latter sometimes offers more flexibility. We advise at least to specify the cost function f, the
constraints C and their derivatives df and jacC, knowing that the more arguments we give,
the more efficient IpOpt is expected to be. We refer the reader to [97] to understand the parti-
cularities and how IpOpt works.

61

https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Sparse_matrix

2.1. Preliminaries

We mention two significant points : first, all IpOpt options are callable from FreeFEM.
Second, the data to be given to IpOpt (f, df, d2f, C, jacC) need to respect a precise type :
df,C,x0,xub,xlb,CUB,CLB have to be arrays and the matrices d2f and jacC have to be ex-
pressed in the Triplet Format for sparse matrices.

As an example, consider the problem in R2

min
x∈K

f (x) = x1x2(1−x1 −x2), with K = {
(x1, x2) ∈R2|x1, x2 > 0, x1 +x2 6 1

}
which is formulated in the template (2.24,2.25) with

min
x1,x2

f (x) = x1x2(1−x1 −x2){
gL 6 g (x) = x1 +x2 6 gU

xL 6 x 6 xU

with xL =
(
0
0

)
, xU large enough, gU = 1 and gL small enough. Derivatives are

∇ f (x) =
(

x2(1−2x1 −x2)
x1(1−x1 −2x2)

)
, ∇g (x) = (

1 1
)

, ∇2 f (x) =
(−2x2 1−2x1 −2x2

1−2x1 −2x2 −2x1

)
.

Therefore, the cost function is :

func real f(real[int] &X) //returns a real
{

return X[0]*X[1]*(1-X[0]-X[1]);
}

and its gradient and Hessian are :

func real[int] df(real[int] &X) // returns an array
{

real[int] dJ(X.n); // size of X
dJ = [X[1]*(1-2*X[0]-X[1]), X[0]*(1-2*X[1]-X[0])];
return dJ;

}
matrix hess; // matrix has to be declared outside
func matrix d2f(real[int] &X) // returns a matrix
{

hess = [[-2*X[1] , 1-2*X[0]-2*X[1]],
[1-2*X[0]-2*X[1] , -2*X[0]]];

return hess;
}

On the other side, the constraint function g is :

func real[int] C(real[int] &X) // returns an array
{

real[int] cont(1); // array of size 1
cont[0] = X[0]+X[1];
return cont;

}

If only X[0]+X[1] is returned instead of the 1-size array containing this value, IpOpt will
return an error. Like the Hessian of f , the Jacobian of g is :

62

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

(a) (b)

FIGURE 2.2 – Convergence curves : (a) objective function; (b) convergence criterion

matrix dc; // to be declared outside
func matrix jacC(real[int] &X) // returns a matrix
{

dc = [[1,1]]; // double array of size (1,2)
return dc;

}

We finally have to declare lower and upper bounds, an initialization point and then callIpOpt :

real[int] start = [1,1]; // Initialization

real[int] Xub = [10000,10000]; // free xU
real[int] Xlb = [0,0]; // xL

real[int] Cub = [0]; // gU with array type
real[int] Clb = [-10000]; // free gL

IPOPT(f,df,d2f,C,jacC,start,ub=Xub,lb=Xlb,clb=Clb,cub=Cub); // no optfile
cout << "(x,y) = " << "(" << start[0] << "," << start[1] << ")" << endl;

which returns the optimal solution x = (0.5,0.5) in less than 10 iterations. We plot convergence
curves in Figure 2.2 for a desired convergence tolerance equal to 10−15. The output of IpOpt is
included in thestart variables and returns the optimal solution if it is found and the Lagrange
multipliers too. This example can utterly be used as a template for other problems by adapting
the formulation inside the functions (f, df, d2f, C, jacC). If IpOpt meets any difficulty to
converge, or if it ends to a locally infeasible point, adjusting the starting point may sometimes
help. In some cases, difficulties may occur when IpOpt requires to compute function deri-
vatives, for instance for nonlinear PDEs or when state constraints are additionally given. An
alternative is to compute derivatives by automatic differentiation. We may also implement fi-
nite differences but this requires a very accurate approximation that may induce a crippling
computation time.

2.1.5 Automatic differentiation

The leading principle of automatic differentiation is that a function f : Rp 7→ Rq given by
a sequence of elementary numerical functions whose derivatives are already known can be
differentiated by differentiating each line of the code step by step. This allows the chain rule to

63

2.1. Preliminaries

be used directly in the code and thus to compute the true derivative of the numerical function.
A standard framework consists in considering a function f :Rn →R thus mentioned in [17; 46]
and a succession of calculation steps

(φk , Ik)k∈{0..N } ∈ Ek−1

with Ek−1 =C ∪Uk ∪Bk where

C =R× {;}, Uk =U × {−n · · ·k}, Bk = B × {−n · · ·k}2.

Here, U is a set whose elements are functions already known and implemented in the language
and whose derivatives are still in the set U . Thus, each step of the computation introduces a
new variable and calls a known function of U according to a previous variable or a binary ope-
ration between two previous variables. Most of the time, this only allows classical analytic func-
tions that we know how to derive analytically and whose derivatives are indeed combinations
of elements of U (cos and sin for example). The set B gathers most of the binary operations
{+,−,×,÷} ⊂ B . We now suppose that we can find a finite sequence of operations

(φk , Ik)k∈{0..N }

such that all intermediate iterates (x−n , ..., x−1) ∈Rn lead to the final iterate

xN = f (x−n , ..., x−1).

The automatic differentiation will use the chain rule and the knowledge of the derivatives of
the functions involved in φk to compute the final gradient. Two methods can be distinguished.
Either the chain rule is applied according to the calls of functions in series line by line from
the first line, it is the direct method, or from the last line, it is the reverse method. The first
one calculates the Jacobian of the function (so a matrix) while the last one gives the Jacobian
applied in a given direction (so an array). The direct method gives directly the Jacobian matrix
but is expensive because it is necessary to calculate all the intermediate derivatives which are
not necessarily needed for the final direction.

Direct mode

We give in the following lines a way to compute the function

f : (u, v) 7→ (
(u + v)2 +u cos(u)sin(v)

)2

as well as its derivative using automatic differentiation in direct mode

1 def f(u,v):
2 x = u*cos(u)*sin(v)
3 y = (u+v)**2 + 1
4 return (x+y)**2

1 def df(u,v,du,dv):
2 dx = u*sin(u)*du*sin(v)+cos(u)*du*sin(v)
3 + u*sin(u)*cos(v)*dv
4 x = u*cos(u)*sin(v)
5 dy = 2*du*(u+v) + 2*dv*(u+v)
6 y = (u+v)**2 + 1
7 return 2*(x+y)*dx + 2*(x+y)*dy

Code 2.6 – Automatic differentiation in direct mode

This example shows the complete computation of the matrix 1×2 which is necessary to com-
pute the derivative in a given direction (du,d v). To obtain the derivative, we must then evaluate

64

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

the matrix obtained in each free direction (here (1,0) and (0,1)). This makes a complete matrix
to calculate and then evaluate several times. The size of the matrix is not prohibitive in this case
but we can also imagine a function f :Rp 7→Rq with (p, q) very large (which happens when dis-
cretizing the weak form of a PDE). We then have to compute a matrix p × q and evaluate it p
times, which is now disabling. Fortunately, we do not usually need the full Jacobian, but only
the Jacobian applied in a given direction. The reverse mode allows to compute the gradient
without having to evaluate the Jacobian in each free direction. A parallel with the backpropa-
gation method in machine learning is drawn in [18].

Reverse mode

In order to write the adjoint (or reverse) code of a function that we have written numerically
thanks to a given evaluation sequence (φk , Ik)k∈{0..N } and such that

xN = f (x−n , ..., x−1),

we associate to all intermediate operations

xi =φi (x−n , ..., xi−1)

a quantity (λi)i∈n...N }, whose update follows the following rule

λN = 1, ∀i ∈ {−n...N −1} λi =
∑
k>i

λk∂iφk (2.26)

The successive quantitiesλi thus depend on allλk∈{i+1...N } insofar asφk implies variables x j∈{i+1...N }.
In practice, if the numerical code is not too long, we can proceed manually and line by line star-
ting from the end of the implementation of the cost function. We then derive the calculation

xk =φk (x−n , ..., xk−1)

by the involved variables x−n , ..., xk−1 and update λ variables following the rule

λi +=λk∂iφk (x−n , ..., xk−1).

We highlight this method on the previous example of the direct mode. We must first rewrite f
with a sequence of elementary operations and then apply (2.26). However, a more usual way of
doing this is to differentiate each line of the code, from the last line to the first line, with respect
to the variables involved and then update the corresponding adjoining variables.

65

2.1. Preliminaries

1 def f(u,v):
2 x = u*cos(u)*sin(v)
3 y = (u+v)**2 + 1
4 cost = (x+y)**2
5 return cost

1 def df(u,v):
2 x = u*cos(u)*sin(v) # adjoint lx
3 y = (u+v)**2 + 1 # adjoint ly
4 cost = (x+y)**2 # adjoint lc
5
6 lc = 1,lx = 0,ly = 0 # initialization
7 lx += 2*(x+y)*lc # line 4: ∂x
8 ly += 2*(x+y)*lc # line 4: ∂y
9 lu += 2*(u+v)*ly # line 3: ∂u

10 lv += 2*(u+v)*ly # line 3: ∂v
11 lu +=cox(u)*sin(v)*lx
12 -u*sin(u)*sin(v)*lx # line 2: ∂u
13 lv += u*cos(u)*cos(v)*lx # line 2: ∂v
14 return lu,lv

Code 2.7 – Automatic differentiation in reverse mode

The reader can see that all operations

xk =φk (x−n , · · · , xk−1)

must be computed before the calculation of the quantities λi because they are required to up-
date them. The price to pay is to write the code with a well-defined sequence of operations
(φk ,Ik) and to save all the intermediate variables (x1, · · · , xN−1), which can be memory heavy
if the function f to be calculated uses a very large number of intermediate variables. It is the-
refore advisable to have a code that is “optimized”. The generalization to a function with value
in (Rq , q > 1) is done by permuting the quantities λ with q vectors fixed on the canonical basis.

Let us comment on the direct and reverse modes. The reverse mode is well suited when
the function f : Rp 7→ Rq to differentiate takes values in Rq with q small and especially when
p À q . On the contrary, the direct mode is preferred when we differentiate with respect to few
variables (Rp with p small and moreover when p ¿ q). When considering optimal control pro-
blems, the choice of discretization can be different for functions and derivatives (indeed, an
implicit scheme for the state usually implies an explicit scheme for the adjoint). The automatic
differentiation therefore dispenses with this choice because both the direct and reverse me-
thods return the true numerical derivative of the implemented function, and is therefore in
line with a purely numerical approach.

A last important point that we would like to address is the close relationship between the
inverse mode and the introduction of the adjoint variable in optimal control (see [87]). Let us
take the example of the classical problem of controlled predator-prey equations (see [89, Ex.
4.10]),

min JT (u, v) = 1

2

∫ T

0
(x(t)−1)2 d t , (2.27)

subject to

{
ẋ = x + y +u x(0) = 1

ẏ = x − y + v y(0) = 1,
(2.28)

(u, v) ∈Uad =
{

f ∈ L∞(0,T), ∀t ∈ (0,T) −16 f (t)6 1
}2

, (2.29)

we compute the derivative of the numerical implementation of the functional cost (the inverse
mode is well suited since J : Rp 7→ R with p large enough) and show that there appears a dis-

66

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

cretization of the adjoint equation coming from the Pontryagin maximum principle in finite
dimension. The gradient computed by means of automatic differentiation gives a discretized
adjoint equation whose implementation is described in Appendix 2.B. Automatic differentia-
tion also allows the calculation of the Hessian, but the resulting matrix is usually not sparse and
the optimization process thsu becomes less efficient. Furthermore, automatic differentiation is
difficult to implement with respect to mesh variations (hence, for general optimal shape design
problems), for which the adjoint method will prove more appropriate.

Finally, in this chapter, we have provided most of the tools necessary for us to write a ge-
neral PDE optimization problem in the form (2.7), to discretize it with well-chosen finite ele-
ments, and to numerically find an optimal solution using the interior point method IpOpt. In
the following section, by taking several examples, we will show different ways to discretize an
optimization problem governed by a partial differential equation.

2.2 Linear quadratic PDE constrained optimization

The first problem we address to illustrate the numerical solution of constrained PDE opti-
mization is the minimization of a quadratic criterion subject to a linear elliptic equation. Some
additional constraints are written in a convex set Uad . The weak formulation of the PDE is in-
troduced in order to have a well adapted framework for its numerical solution as well as the
writing of the derivatives and to design an appropriate numerical strategy.

Let Ω be a bounded open Lipschitz domain, let yd be L2(Ω) and let ua ,ub be L∞(Ω). We
look for an optimal solution u ∈ L2(Ω) of

min J (y,u) = 1

2

∫
Ω

(
y(x)− yd (x)

)2 d x + α

2

∫
Ω

u(x)2 d x (2.30)

subject to

{
−∇· (a∇y) = u in Ω,

y = 0 in ∂Ω.
(2.31)

and ua 6 u 6 ub . (2.32)

To formulate (2.30,2.31) in the form of (2.7), the set of admissible controls is defined by

Uad = {u ∈ L2(Ω),ua 6 u 6 ub} ⊂U = L2(Ω).

The variational formulation of (2.31) consists in finding y ∈ H 1
0 (Ω) solution of∫

Ω
a∇y ·∇v d x −

∫
Ω

uv d x = 0 ∀v ∈ H 1
0 (Ω). (2.33)

We take Y = H 1
0 (Ω). The Lax-Milgram Theorem implies that, for any u ∈Uad , there is a unique

solution y ∈ H 1
0 (Ω) of (2.33). Since U = L2(Ω), the dual pairing is

〈·, ·〉U ′,U = (·, ·)U .

Defining the operators

A ∈L
(
H 1

0 (Ω), H−1(Ω)
)

s.t. Ay :v ∈ H 1
0 (Ω) 7→

∫
Ω

a∇y ·∇v d x,

B ∈L
(
L2(Ω)

)
s.t. Bu :v ∈ H 1

0 (Ω) 7→
∫
Ω

uv d x,

67

2.2. Linear quadratic PDE constrained optimization

the set Z has to be defined so that the operator

e : (y,u) ∈ H 1
0 (Ω)×L2(Ω) 7→ Ay −Bu ∈ Z

satisfies Assumption 2.3. The Gelfand triple

H 1
0 (Ω) ,→ L2(Ω) = L2(Ω)′ ,→ H−1(Ω)

leads to set Z = H−1(Ω) and the dual pairings 〈·, ·〉Y ′,Y and 〈·, ·〉Z ′,Z are thus compatible with the
L2(Ω)-inner product. The last items of Assumption 2.3 follow from the Lax-Milgram Theorem
(see [60, Lemma 1.8]). We have A∗ = A and B∗ = B and the adjoint p evolves in Z ′ = H 1

0 (Ω). The
partial derivatives of the functions under consideration are

∂y J (y,u) = (y − yd , ·)U

∂u J (y,u) = (αu, ·)U

∂y e(y,u) = A

∂ue(y,u) =−B.

(2.34)

Now, from the numerical point of view, we have two main options : either the state equation
e(y,u) = 0 is seen as a constraint to be checked and is considered, like the objective function
J , to depend on both the state and the control (y,u). The optimization is then performed with
respect to two optimization variables (state and control), this is option 1 ; or else, the only op-
timization variable is the control, and in this case e(y,u) = 0 is preliminarily solved to compute
y(u) as a function of u, in order to express the reduced cost function Ĵ (u), this is option 2. Op-
tions 1 and 2 are also respectively called simultaneous and sequential methods.

Option 1 : Unknowns (y,u) ∈ Y ×U

Cost : J (y,u)
Constraints : e(y,u) = 0 and (y,u) ∈ Yad ×Uad

Option 2 : Unknowns u ∈U

Cost : J (y(u),u) = Ĵ (u)
Constraints : u ∈Uad

Option 2 brings up the reduced cost function Ĵ whose derivatives with respect to the control
variable u are computed using the adjoint representation presented in Section 2.1.2. The PDE
constraint is thus implicitly contained in the numerical implementation of the reduced cost
function. In contrast, Option 1 keeps the cost function dependent on the state and control va-
riables (y,u) and the PDE constraint is an explicit equality constraint. Although option 1 seems
more memory greedy, it is generally more efficient, when we can write it, than option 2 because
we can more easily compute the Hessian of the cost function as a sparse matrix. Moreover, a
notable advantage of option 1 is its ability to handle potential constraints on the state included
in Yad whereas the adjoint equation and option 2 are not well suited in this case. This being
said, for the numerical part, let Th be a triangulation of Ω :

68

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

Th = square(50,50) //we take Ω= [0,1]2,

and the finite element space

Vh =
{

v ∈ H 1(Ω), ∀K ∈ Th v|K ∈P1

}
= Vect(φi)i∈{1..nd },

with P1 elements that guarantee the resulting linear system of (2.31) to be invertible (see [85]).

Vh = fespace(Th,P1) // with P1 Lagrange finite elements
nd = Vh.ndof // nd degrees of freedom for Vh

Its basis is denoted by (φi)16i6nd so that the sets Yh , Uh and U h
ad are

Yh = {v ∈Vh , v|∂Ω = 0} = Vect(φi)i∈{1..n} for 0 < n < nd ,

U h
ad = {u ∈Vh ,ua 6 u 6 ub} ⊂Uh =Vh .

We introduce uh
a = (

(ua ,φi)U
)

i∈{1..nd } and uh
b = (

(ub ,φi)U
)

i∈{1..nd } and the stiffness and mass
matrices coming out from the operators A and B read

Ah,i j =
(
a∇φi ,∇φ j

)
(i , j)∈{1..n}2 , Mh,i j =

(
φi ,φ j

)
(i , j)∈{1..nd }2 .

One can notice that normally Mh is larger than Ah because the latter does not take into ac-
count the finite element functions which have non-zero values on the boundary. Fortunately,
FreeFEMhandles the Dirichlet boundary conditions very well so that we can consider numeri-
cally that Yh =Vh and write the stiffness matrix by specifying the Dirichlet boundary conditions
directly in the variational formulation in the Code 2.8. This adds in the matrix Ah some penalty
terms at the indexes related to the boundary elements (see FreeFEM’s website for a detailed
explanation on how FreeFEM manages Dirichlet boundary conditions).

Vh Y,V;
varf stiffness(Y,V) = int2d(Th)(grad(Y)'*grad(V))

- on(1,2,3,4,Y=0) //Homogeneous Dirichlet condition
varf mass(Y,V) = int2d(Th)(Y*V);
matrix Mh = mass(Vh,Vh); // nd ×nd matrix
matrix Ah = stiffness(Vh,Vh);

Code 2.8 – Finite element matrices involved in (2.30,2.31)

IpOpt needs to calculate the numerical derivatives of the cost and constraint functions. Kee-
ping in mind Section 2.1.3, either the continuous derivatives of the functions are discretized
according to a well-chosen scheme, or the functions are discretized first and their derivatives
are computed later. In the first case, the advantage is to keep the structure of the continuous
problem as long as possible. In the second case, we are able to return the true numerical deri-
vatives.

2.2.1 Derivatives of discretized functions (FDTO)

Here, the problem (2.30,2.31) is first discretized to obtain a usual finite dimensional linear
quadratic optimization problem. The mesh, finite element space and matrices were presented
in the previous section. Depending on whether option 1 or 2 is chosen, the discretized problem
is

69

https://doc.freefem.org/documentation/finite-element.html

2.2. Linear quadratic PDE constrained optimization

Option 1 : min
(yh ,uh)∈R2nd

1

2
(yh − yh

d)T Mh(yh − yh
d)+ α

2
uT

h Mhuh (2.35)

s.t.

{
Ah yh −Mhuh = 0

uh
a 6 uh 6 uh

b ,
(2.36)

Option 2 : min
uh∈Rnd

1

2
(A−1

h Mhuh − yh
d)T Mh(A−1

h Mhuh − yh
d)+ α

2
uT

h Mhuh (2.37)

s.t. uh
a 6 uh 6 uh

b . (2.38)

The matrices Ah and Mh have been defined in Code 2.8. They depend on the triangulation
Th . Whatever the choice of optimization variables, the numerical problem is written as

min
X

J (X)

s.t.

{
Clb 6C (X)6Cub

Xlb 6 X 6 Xub .

Option 1 : X = (yh ,uh) ∈R2nd

Jh(X) = 1

2
(yh − yh

d)T Mh(yh − yh
d)+ α

2
uT

h Mhuh

Ch(X) = Ah yh −Mhuh

∇Jh(X) = (
Mh(yh − yh

d) αMhuh
)

∇Ch(X) =
(

Ah 0h

0h Mh

)
∇2 Jh(X) =

(
Mh 0h

0h αMh

)

Option 2 : X = uh ∈Rnd (no explicit PDE constraints)

Jh(X) = 1

2
(A−1

h Mhuh− yh
d)T Mh(A−1

h Mhuh− yh
d)+ α

2
uT

h Mhuh

∇Jh(X) = Mh A−1
h Mh(A−1

h Mhuh − yh
d)+αMhuh

∇2 Jh(X) = Mh A−1
h Mh A−1

h Mh +αMh .

The functions required by IpOpt are expressed above and must be written in FreeFEM
following the model given in Section 2.1.4.

Experience shows that option 1 is, in this case, almost always the best solution. Since PDE
constrained optimization uses many variables, the treatment of sparse matrices is a crucial
point and is usually the best option in terms of computational speed and memory allocation.
Although the number of optimization variables is larger than in option 2, in option 1 we do not
have to compute the inverse of the matrix Ah , which would be a heavy task in high dimension.
The matrices Ah and Mh are sparse while their inverse is not. Although the Hessian is constant
in both situations, it is more memory greedy in the second case and involves more compu-
tation. Finally, for more complicated equations (such as nonlinear PDEs or time-dependent

70

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

problems), it is not trivial that treating both state and control variables simultaneously is more
efficient, except when state constraints are added to the problem. The adjoint method fits pre-
cisely in an approach where the previous one would not have worked.

2.2.2 Discretization of continuous derivatives (FOTD)

Unlike the previous strategy, here the continuous derivatives of the functions are first com-
puted and then discretized. In this section, the problem (2.30,2.31) is still linear quadratic. Note
that when state constraints are added, the adjoint equation can be much more complicated. We
focus on the option where only control is the optimization variable and write the continuous
problem as follows

min
u∈Uad

J (y(u),u) = Ĵ (u).

As explained in Section 2.1.2, the adjoint approach facilitates theoretically and numerically the
computation of the derivatives of the reduced cost function. The Lagrangian is

L : (y,u, p) ∈ Y ×U ×Z ′ 7→ 1

2

(
B(y − yd), y − yd

)
U + α

2
(Bu,u)U + (p, Ay −Bu)U ,

and we follow the steps (S.1, S.2, S.3, S.4). Let u ∈Uad be an optimal solution.

• S.1 The partial derivatives of J and e have been computed in (2.34). The operators A and
B are selfadjoint (A∗ = A and B∗ = B). Corollary 2.5 implies that if (y,u) is solution of
(2.30,2.31) then there exists an adjoint p ∈ Z ′ = H 1

0 (Ω) such that

Ay = Bu,

Ap =−B(y − yd),(
αBu −B p,u

)
U 6

(
αBu −B p, v

)
U ∀v ∈Uad

which can be rewritten in the continuous form for y ∈ H 1
0 (Ω) and p ∈ H 1

0 (Ω)

−∇· (a∇y) = u in Ω

y = 0 in ∂Ω,

∇· (a∇p) = y − yd in Ω

p = 0 in ∂Ω,∫
Ω

(αu −p)u d x 6
∫
Ω

(αu −p)v d x ∀v ∈Uad .

• S.2 We seek y ∈ H 1
0 (Ω) solution of the state equation e(y,u) = 0

−∇· (a∇y) = u in Ω

y = 0 in ∂Ω,

macro state() {
solve State(Y,V) = int2d(Th)(a*(grad(Y)'*grad(V)))

- int2d(Th)(U*V)
+ on(1,2,3,4,Y=0); } //

Code 2.9 – LQ state equation

71

2.2. Linear quadratic PDE constrained optimization

which is equivalent to
yh = A−1

h Mhuh .

• S.3 We seek p ∈ H 1
0 (Ω) solution of the adjoint equation

∇· (a∇p) = y − yd in Ω

p = 0 in ∂Ω,

macro adjoint() {
solve Adjoint(P,Q)= int2d(Th)(a*(grad(P)'*grad(Q)))

+ int2d(Th)((Y-Yd)*Q)
+ on(1,2,3,4,P=0); } //

Code 2.10 – LQ adjoint equation

which is equivalent to
ph = A−1

h Mh(yh
d − yh).

• S.4 The first derivative of the reduced cost function is given by

(∇ Ĵ (u), q
)

U =
∫
Ω

(αu −p)q d x,

macro interpgrad() {
solve L2grad(theta,V) = int2d(Th)(theta*V) - int2d(Th)((alpha*U-P)*V)

;
real[int] dJ = theta[]; } //

Code 2.11 – LQ gradient’s interpolation

which finally returns αuh −ph for the L2(Ω)-inner product. The previous steps S.2, S.3,
S.4 performed in succession return almost the same gradient as option 2 of the previous
FDTO approach by performing the same operations but without the final multiplication
by Mh .

We give a brief explanation of the numerical step S.4. The real number 〈D Ĵ (u), q〉U ′,U is expres-
sed using the dual pairing 〈·, ·〉U ′,U which here corresponds to the L2(Ω)-inner product and thus
brings out the gradient ∇ Ĵ (u). As seen in Section 2.1.1, the routine varf gives the matrix of a
given variational formulation. Thus writing the lines

varf derive(V,Q)= int2d(Th)((alpha*U-P)*Q)

is numerically similar to recovering the continuous linear form

q 7→
∫
Ω

(αu −p)q d x

in a well-chosen finite element space basis. Thus dJ denotes the interpolation of this linear
form in this basis of the finite element space. One could of course choose another inner pro-
duct, whose matrix in the finite element space is Ph , which would not return

αuh −ph

72

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

but rather

P−1
h Mh(αuh −ph).

This is a crucial point to understand because many problems show the derivative of the redu-
ced cost function in a linear form which must then be interpolated through a good discretiza-
tion of the space U . Usually, the additional constraints included in Uad are specified in another
function C , the so-called constraint function (e.g. u 7→C (u) = ∫

Ωu(x)d x). The Jacobian of C is
then required by IpOpt. The only remaining task is to express the cost function and its gra-
dient following the steps (S.2, S.3, S.4) on the triangulation Th respectively in the codes 2.12
and 2.13.

func real J(real &X)
{

U[] = X; // control u
state; // returns y solution of (2.9)
return int2d(Th)((Y-Yd)^2) + alpha*int2d(Th)(U^2);

}

Code 2.12 – LQ cost function

func real[int] dJ(real &X)
{

U[] = X;
state; // state equation (see Code 2.9)
adjoint; // adjoint equation (see Code 2.10)
interpgrad; // interpolation of the gradient (see Code 2.11)
return dJ;

}

Code 2.13 – Derivative of the LQ cost function

In the first method, the calculation of the Hessian is rather easy but it requires a matrix inver-
sion. We advise instead to compute the theoretical first order derivatives and to use the BFGS
approximation of the Hessian provided by IpOpt.

Remark 2.12. The optimality conditions produce a state-adjoint system called extremal sys-
tem. In finite-dimensional optimal control, the solution of the first-order optimality system can
usually be performed by implementing an indirect shooting method (see [89, Chapter 9]), where,
if for example the initial and final states are fixed, one has to properly adjust the initial adjoint
vector so that, when integrating the extremal with the corresponding initial state and adjoint,
the final state matches the desired value. Numerically, the shooting method consists of integra-
ting a differential equation and applying a Newton method. When the optimal control problem
is solved in finite dimension and this dimension is not too large, the method is feasible and, when
properly initialized to ensure convergence, it provides a very fast and accurate solution. But, in
high dimension, it can be extremely difficult to initialize the method correctly. This is particu-
larly the case in PDE optimization where the size of the adjoint variable is related to the size of
the mesh. Therefore, most of the time, it is not realistic to ensure the convergence of a shooting
method for optimal PDE control problems.

73

2.2. Linear quadratic PDE constrained optimization

2.2.3 Inhomogeneous Dirichlet boundary conditions

The previous example treated the case of homogeneous Dirichlet conditions, which makes
easier the numerical study because the variational formulation can be written on well-identified
functional spaces (this is also the case when dealing with Neumann or Robin’s boundary condi-
tions). We now generalize the above numerical approaches to inhomogeneous Dirichlet condi-
tions. Instead of (2.31), we now consider

{
−∇· (a∇y) = u in Ω

y = g in ∂Ω,
(2.39)

where g is assumed to be smooth enough. The way to numerically manage the boundary condi-
tion depends on the choice of either Option 1 or Option 2.

In Option 2, the boundary condition can be immediately reported in the variational formu-
lation so that the numerical state equation becomes :

macro state() {
solve State(Y,V) = int2d(Th)(a*(grad(Y)'*grad(V)))

- int2d(Th)(U*V)
+ on(1,2,3,4,Y=g); //y = g in ∂Ω

} //

Code 2.14 – State equation

The adjoint equation remains unchanged but the adjoint is well modified because it still de-
pends on the state.

In contrast, Option 1 requires more work. For homogeneous Dirichlet conditions, the stiff-
ness matrix Ah introduced in Code 2.8 forces y to be equal zero on the boundary ∂Ω and can
only be applied to finite element functions in H 1

0 (Ω). Since y now belongs to an affine sub-
set of H 1(Ω) and not to H 1

0 (Ω), the state equation cannot be written as before. The variational
formulation of (2.39) is now :

find y ∈ H 1(Ω),
∫
Ω

a∇y ·∇v d x −
∫
Ω

uv d x = 0 ∀v ∈ H 1
0 (Ω). (2.40)

A numerical trick consists of introducing, using the Dirichlet map D (see [95, Section 10.6]), the
solution Dg of

−∆(Dg) = 0 onΩ and Dg = g on ∂Ω

and its numerical version :

Vh Dg;
solve dirmap(u,v) = int2d(Th)(grad(Y)'*grad(V))

+ on(1,2,3,4,Y=g);
Dg[] = Y[];

Code 2.15 – Dirichlet map

So we look for the solution of (2.39) in the affine space H 1
0 (Ω)+Dg under the form y = z+Dg .

Therefore, finding a solution y ∈ H 1(Ω) of (2.39) is equivalent to finding a solution z ∈ H 1
0 (Ω) of

74

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

(2.31). The optimization variables are (z,u) and the discretized problem is the following

min
(zh ,uh)∈R2nd

Jh(zh ,uh) = 1

2

(
zh + (Dg)h − yh

d

)T
Mh

(
zh + (Dg)h − yh

d

)
+ α

2
uT

h Mhuh

s.t.

{
Ah zh −Mhuh = 0

uh
a 6 uh 6 uh

b .

The state constraint is unchanged (as well as its Jacobian) while the cost function now involves
yh = zh +(Dg)h . Most of the following examples will specify homogeneous Dirichlet conditions
but a generalization to inhomogeneous Dirichlet conditions can be made along the lines above.

2.2.4 Automatic differentiation alternative

Unless the derivatives are really easy to calculate, it is very advantageous to use automatic
differentiation, which allows the numerical derivatives to be calculated at the computer accu-
racy. As automatic differentiation is not available in FreeFEM (especially when one wants to
make a derivation with respect to the mesh points), it is necessary for the moment to export
the problem data collected with FreeFEM (mesh data, matrices of the variational forms invol-
ved, etc.) into another language which benefits from an automatic differentiation program. In
order to keep a user-friendly interface, we propose two practical solutions : either to use the
modeling language AMPL, or the Python package CasADi (with free license and callable from
Matlab). Finally, for those who are quite familiar with the language C++, we advise to com-
bine directly IpOptwith an automatic differentiation tool C++ (such as CppAD or Adept, see
[61]) for more efficiency. In the following, we provide numerical examples that illustrate how to
combine FreeFEMwith AMPL in the linear quadratic case (2.30,2.31). The combination with
the Python package CasADi is presented in Appendix 2.C. For a given triangulation Th and
generated with FreeFEM, we store the matrices Ah and Mh constructed in the Code 2.8 of Sec-
tion 2.2 in sparse matrices via the COO (Coordinate) format. The files "A.txt" and "B.txt"
are generated via FreeFEM with the command :

{ofstream fout("Ah.txt");
fout << Ah << endl;
}

AMPL (“A Mathematical Programming Language”, see [1; 44]) is a highly developed software for
modeling and solving large-scale optimization problems. LikeCasADi, the unknown variables
must be declared and the objective and constraints must be defined as a nonlinear program-
ming problem. The transcription of AMPL is based on classical logical operators, aggregation
functions and sets, while the transcription of CasADi is done more in the framework of matrix
calculus. Both handle the sparsity feature of matrices very well. As far as AMPL is concerned,
it is necessary to write the problem using appropriate sets (set of indices of the non-zero ele-
ments of a matrix for example). A significant advantage of AMPL is the possibility to call several
recognized optimization solvers, like Knitro, CPLEX, IpOpt, etc, which can be used free of
charge on the server NEOS. The program is usually divided into three files : "file.mod" contains
the model, while "file.dat" collects the parameter allocations and "file.run" the successive com-
mands.

The Code 2.16 includes the introduction of variables (lines 12 and 13), parameters (line 1
and lines 6 to 10), minimization of the objective function (line 15) and constraint functions

75

https://neos-server.org/neos/

2.2. Linear quadratic PDE constrained optimization

(lines 19 to 21). Unlike CasADi, we do not use explicit matrix calculus in AMPL, the sum ope-
rator on appropriate sets is preferred instead. The parameters A and M represent the sparse
matrices Ah and Mh introduced in the Code 2.8. To preserve sparsity, the matrices in AMPL are
downloaded from a text file in triplet format (see sparse matrices on the Wikipedia web page
for multiple ways to store them). The indices for which A has non-zero values are declared in a
two-dimensional set indexA. The parameter A{indexA} depending on this set thus gathers
the non-zero values of the matrix Ah (idem for Mh). The quadratic cost function is obtained on
line 15 of the Code 2.16 by summing over all the indices (i,j)in indexM and we therefore
do not take into account in the sum the indices where M has a null value.

1 param m integer >=0;
2 set index = 0..m;
3 set indexA dimen 2;
4 set indexM dimen 2;
5

6 param alpha =0.1;
7 param A{indexA}; # stiffness matrix
8 param M{indexM}; # mass matrix
9 param L{index};

10 param yd; # target
11

12 var Y{index}; # state
13 var U{index}; # control
14

15 minimize quad: sum{(i,j) in indexM}(0.5*(Y[i]-yd)*M[i,j]*(Y[j]-yd) +
0.5*alpha*(U[i]*M[i,j]*U[j]));

16

17 subject to PDE{i in index}: sum{(i,j) in indexA}(A[i,j]*Y[j]) - sum{(i,j)
in indexM}(M[i,j]*U[j]) = 0;

18

19 subject to lowbound{i in index}: U[i] >= 0;
20 subject to upbound{i in index}: U[i] <=1;
21

22 subject to volume: sum{i in index} U[i]*L[i] == 0.25; #
∫
Ωu(x)d x = 0.25

Code 2.16 – AMPL: "file.mod"

This induces a significant gain in computation time. Like all the parameters, the data are assi-
gned in Code 2.17 :

1 data;
2

3 param m:= 2600;
4 param: indexA: A:= include A.txt;
5

6 param: indexM: B:= include B.txt;
7

8 param yd:= 0.1;
9 read{i in index}(L[i]) < L.txt;

Code 2.17 – AMPL: "file.dat"

AMPL is then called by typing in the terminal the command : ampl file.run

76

https://en.wikipedia.org/wiki/Sparse_matrix

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

1 model file.mod;
2 data file.dat;
3

4 option solver ipopt;
5 option ipopt_options"max_iter=1000 tol=1.e-12 linear_solver=mumps";
6

7 solve;

Code 2.18 – AMPL: "file.run"

Contingent upon an easy importation of data as in Code 2.39, AMPL stands out for its ability
to manage many efficient optimization solvers such as Knitro, CPLEX and so on, which, as
already said, can be used for free on NEOS, on which we have to upload the three above files
(in order to be uploaded to NEOS, data file must contain parameters allocations stated in file
"A.txt", "B.txt" etc, since they cannot be uploaded aside). Python (and Matlab) alter-
natives are presented in Appendix 2.C.

To conclude this part, we plot in Figure 2.3 the convergence curves of the scaled error res-
pectively associated to the several methods illustrated above. In the case of the Linear-Quadratic
problem (2.30,2.31), we notice that the FDTO method is ten times faster than the FOTD one.
AMPL endowed with its own automatic differentation tool is an entirely acceptable alternative.

FIGURE 2.3 – Convergence curves of several methods

77

https://neos-server.org/neos/solvers/index.html

2.3. Extension to time-dependent problems

2.3 Extension to time-dependent problems

In this section, we show how to deal with a time-dependent optimal control problem, which
this time consists in determining u ∈ L2((0,T);L2(Ω)) solution of

min J (y,u) = 1

2

∫ T

0

∫
Ω

(
y(x, t)− yd (x)

)2 d xd t + α

2

∫ T

0

∫
Ω

u(x, t)2 d xd t (2.41)

subject to


yt −∇· (a∇y) = u in (0,T)×Ω
y = 0 in (0,T)×∂Ω
y(0) = y0

ua 6 u 6 ub

(2.42)

with y0 ∈ L2(Ω). For the existence of solutions, we do not treat the question here and refer the
reader to [60; 69]. Here we focus on the numerical implementation of such a problem. Seve-
ral time discretization strategies can be implemented, which can then be combined with the
optimization strategies described above. We focus here on option 1, but the other possibilities
can be adapted in a similar way to time-dependent problems. We introduce a mesh of the Ω
domain where the PDE is written, as in the previous stationary example. The main question is
therefore how to deal simultaneously with the temporal and spatial discretizations. A first clas-
sical discretization in time is to use an implicit Euler scheme combined (we will prefer most
of the time implicit schemes since there is no CFL condition to satisfy) with finite elements P1

in space. A second possibility is to use the ability of the FreeFEM to handle 3D problems by
introducing the 3D time-space mesh and to discretize simultaneously in time and space with
finite elements P1.

2.3.1 Implicit Euler scheme.

Although an implicit scheme is a bit harder to implement numerically because it requires a
matrix inversion, its advantage over explicit schemes is that it does not require any LFC condi-
tion. We consider the mesh Th introduced in Section 2.2 and the matrices Ah and Mh . Let nt be
an integer and consider a subdivision

t0 = 0 < t1 < ·· · < tnt = T

of the interval [0,T]. We introduce the discrete variables

Ỹ = (y0, · · · , ynt) ∈Rnd (nt+1) and Ũ = (u0, · · · ,unt) ∈Rnd (nt+1)

(with yi ,ui ∈ Rnd finite element approximations of y(ti , ·) and u(ti , ·)) and we discretize the
problem (2.41,2.42) as

min J (Ỹ ,Ũ) = 1

2

nt∑
k=1

(yk − yh
d)T Mh(yk − yh

d)+ α

2

nt∑
k=1

uT
k Mhuk (2.43)

subject to


Mh

yk+1−yk

d t + Ah yk+1 = Mhuk+1, ∀k ∈ (0...nt −1)

y i
0 = (y0,φi)U , ∀i ∈ {1...nd }∑nd

i=1 ui
aφi 6

∑nd

i=1 ui
kφi 6

∑nd

i=1 ui
bφi , ∀(k, i) ∈ {0...nt }× {1...nd }.

(2.44)

78

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

We simplify the notations by introducing the matrices

At = Ah + 1

δt
Mh , Mt = 1

δt
Mh

for δt = T
nt

and the sparse matrices

Ã =


Ind 0nd · · · 0nd

Mt At · · · ...
...

. . .
. . . 0nd

0nd · · · Mt At


︸ ︷︷ ︸
nd (nt +1) columns and rows

M̃ =


0nd 0nd · · · 0nd

0nd Mt
. . .

...
...

. . .
. . . 0nd

0nd · · · 0nd Mt

 D̃ =


Mt 0nd · · · 0nd

0nd Mt
. . .

...
...

. . .
. . . 0nd

0nd · · · 0nd Mt

 (2.45)

to reformulate the optimization problem (2.43,2.44) as the problem of determining (Ỹ ,Ũ) ∈
R2nd (nt+1) solution of

min J (Ỹ ,Ũ) = 1

2
(Ỹ −Yd)T D̃(Ỹ −Yd)+ α

2
Ũ T D̃Ũ

subject to


ÃỸ − M̃Ũ =

(
y0

0nd nt

)
,

Ua 6 Ũk 6Ub ∀k ∈ {0..nt }

with
Ua = (

(ua ,φi)U
)

i∈{1..nd } , Ub = (
(ub ,φi)U

)
i∈{1..nd } .

We thus obtain a finite-dimensional linear quadratic problem

∇J (Ỹ ,Ũ) =
(
D̃(Ỹ −Yd)
αD̃Ũ

)
, ∇2 J (Ỹ ,Ũ) =

(
D̃ O
0 αD̃

)
, ∇C (Ỹ ,Ũ) =

(
Ã 0
0 −M̃

)
.

for which the numerical implementation in FreeFEM now follows the one presented in Sec-
tion 2.2.1 based on the template introduced in Section 2.1.4.

2.3.2 Time discretization with FreeFEM.

Another possibility is to exploit the ability of FreeFEM to easily handle multidimensional
problems, by considering the time variable as a third variable of the z space and transforming
a 2D (or 1D) problem into a 3D (or 2D) problem. In the example (2.41,2.42), the variational
formulation reads as follows for all v in H 1 ((0,T)×Ω)) such that v|(0,T)×∂Ω = 0 :∫

(0,T)×Ω
(
yt v +a∇y ·∇v

)
d xd t =

∫
(0,T)×Ω

uv d xd t (2.46)

So we build a new mesh of the 3D domain (0,T)×Ω on which the PDE evolves. In order to
manage the 3D meshes, we use at the beginning of the file the command : load "msh3".
Several ways to build a 3D mesh with FreeFEM are possible. We prefer to start from an initial
mesh of the Ω domain subset ofR2 which we transform into a mesh of the cylinder (0,T)×Ω
thanks to the command buildlayers which will extend the given mesh along the axis z :

79

2.3. Extension to time-dependent problems

(a) (b)

FIGURE 2.4 – (a) initial square mesh; (b) 3D mesh with buildlayers

mesh Th2 = square(10,10,region=10);
int[int] rup=[1,10],rdown=[6,10],rmid=[2,10,3,10,4,10,5,10]; // labels
mesh3 Th = buildlayers(Th2,n,zbound=[0,1],labelmid=rmid,reffaceup=rup,

reffacelow=rdown);

Code 2.19 – 3D mesh cylinder with 2D mesh basis

and a new finite element space

Vh =
{

v ∈ H 1((0,T)×Ω), ∀K ∈ Th v|K ∈P1

}
(in this case, the temporal discretization performed with a finite element discretization is sym-
metric). As in the static case, we define the matrix of the variational formulation (2.46) :

varf vA(Y,V) = int3d(Th)(dz(Y)*V+a*(grad(Y)'*grad(V))) //dz(Y)=∂t y
+on(2,3,4,5,Y=0) // Dirichlet boundary condition
+on(6,Y=Y0); // initial condition y0

matrix Ah = vA(Vh,Vh,solver=sparsesolver);

We define the matrix of the cost function :

varf vCost(Y,V) = int3d(Th)(Y*V);
matrix Mh = vCost(Vh,Vh,solver=sparsesolver);

Given a mesh of the domain (0,T)×Ω, we now write the discretized optimal problem as

min
(Ỹ ,Ũ)∈R2N

1

2
(Ỹ −Yd)T Mh(Ỹ −Yd)+ α

2
Ũ T MhŨ

s.t.

{
Ah Ỹ = MhŨ

Ua 6 Ũ 6Ub

where N is the number of degrees of freedom of the chosen finite element space (taking into
account the time dimension), Ua and Ub are interpolations on the finite element spaces of
functions ua and ub . Here, N is of the same order as the quantity nd (nt + 1) from the pre-
vious section. The gradient and Hessian of the cost function and the Jacobian of the constraint
function are thus now easy to compute and the numerical implementation again follows that
presented in Section 2.2.1.

80

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

When considering linear quadratic optimal control problems, the problems resulting from
the different discretization strategies remain general high dimensional linear quadratic op-
timization problems. Nevertheless, the previous examples can be used as models for other
examples, more complicated, but which require upstream an important work on the chosen
discretization. When the PDE concerned is linear, we recommend to use option 1. Indeed, kee-
ping the PDE as a linear constraint rather than solving it directly, which requires at least a matrix
inversion (the matrix inversion will always take place but the linear solver chosen inIpOptwill
do it), will most of the time bring two advantages. First, it is easier to compute the Jacobian of
this constraint and it is almost always easier to compute the derivatives of the cost function
with respect to the state and control than the derivatives of the reduced cost function, whose
Hessian is even harder to compute. Secondly, we keep the sparse feature of the matrices invol-
ved in the discrete writing of the problem. Option 2 (use of an adjoint representation) is more
suitable when the dependence on the control is more complex and cannot be expressed ea-
sily, as in the case of optimal design of a shape, when the control is a shape (see [7; 59]) or for
nonlinear problems. Option 1 or Option 2 differ in the choice of the parameterization of the
optimal shape to be found. Furthermore, regardless of the approach chosen, time-dependent
problems are much more computationally and memory intensive and require careful attention
to potential simplifications.

2.4 Optimization under semilinear PDE constraints

Let us now add a nonlinear term to the previous problem. Given yd ∈ L2(Ω) and ua ,ub ∈
L∞(Ω), we are still looking for an optimal solution u ∈ L2(Ω) for the minimization of a quadratic
criterion constrained by a semi-linear elliptic equation

min J (y,u) = 1

2

∫
Ω

(
y(x)− yd (x)

)2 d x + α

2

∫
Ω

u(x)2 d x (2.47)

subject to


−∇· (a∇y)+φ(y) = u in Ω

y = 0 in ∂Ω

ua 6 u 6 ub .

(2.48)

Following the framework stated in [94, Assumptions 4.2 and 4.3], the function

φ :R 7→R

is a continuous, monotone increasing globally bounded and twice differentiable function. The
global boundedness assumption is only used to ensure that φ(y) ∈ L2(Ω). In our numerical
tests, we choose φ(y) = y3, which is not globally bounded, but Sobolev injections guarantee

H 1(Ω) ,→ L6(Ω)

for Ω bounded Lipschitz domain of R2 or R3. Therefore, given any u ∈ L2(Ω), the PDE (2.48)
admits a unique weak solution y ∈ H 1

0 (Ω) (see [Remarks on Theorem 4.4]MR2583281). Compa-
red to the equation of state (2.31), the semi-linear PDE is more difficult to solve with the finite
element method. We do not have a direct linear variational formulation and therefore there is
no way to solve it with a single matrix inversion.

81

2.4. Optimization under semilinear PDE constraints

We therefore propose to solve the PDE numerically with iterative fixed point or Newton
methods and to use an adjoint representation to compute the derivatives. Let us note here that
the adjoint will only need a matrix inversion because the adjoint equation is always linear. Let
Th be the same triangulation of the domain Ω as before and Vh still denote the finite element
space P1. The variational formulation is

∫
Ω

a∇y ·∇v d x +
∫
Ω
φ(y)v d x =

∫
Ω

uv d x ∀v ∈ H 1
0 (Ω).

A first possibility is to use a fixed point algorithm 2 to compute a numerical solution of this
variational formulation, whose translation in FreeFEM macros is given in Code 2.20.

Algorithm 2 Fixed point method for semilinear PDEs

set er r = 1
while (er r > 10−10) do

solve : ∀v ∈ H 1
0 (Ω),

∫
Ω

a∇z ·∇v d x +
∫
Ω
φ(y p−1)v d x =

∫
Ω

uv d x

compute er r = ‖z − y p−1‖L2(Ω)

set y p = z
set p = p +1.

end while

macro semilinearstateFP(){
real err=1;
while (err>tol) {

Vh uold;
solve semilinear(Y,V) = int2d(Th)(a*grad(Y)'*grad(V))

+ int2d(Th)(Yold^3*V) // φ(y) = y3

- int2d(Th)(U*V)
+ on(1,2,3,4,Y=0);

real[int] taberr = Y[]-Yold[];
err = l2norm(taberr); // ‖yk+1 − yk‖L2(Ω)
// l2norm defined in appendix 2.A
}

} //

Code 2.20 – Semilinear state equation with a fixed point method

Another possibility is to implement a Newton-Raphson strategy, consisting in determining y ∈
V such that F (y) = 0 with F : V 7→ V , as done in Algorithm 3. In the context of the problem
(2.47,2.48), F is the variational formulation of the state equation (2.48) and we have

F (y) =
∫
Ω

(a∇y ·∇v +φ(y)v −uv)d x

DF (y)w =
∫
Ω

(a∇w ·∇v +φ′(y)w v)d x

for some v ∈ H 1
0 (Ω), and (2.48) is solved in Code 2.21.

82

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

Algorithm 3 Newton method

set er r = 1
set y0 and w initialized
while (er r > 10−10) do

y p = y p−1 −w
solve : DF (y p)w = F (y p)
er r = ‖v‖
set p = p +1.

end while

macro semilinearstateNewton(){
real err=1;
Vh W=0;
while (err>tol) {

Y[] -= W[]; // y p+1 = y p −w
solve semilinear(W,V) = int2d(Th)(a*grad(W)'*grad(V)) // DF (y)w

+ int2d(Th)(3*Y^2*W*V) // φ(y) = y3

- (// F (y)
int2d(Th)(a*grad(Y)*grad(V) + Y^3*V - U*V))

+ on(1,2,3,4,W=0);
err = l2norm(W[]); // ‖w‖L2(Ω)
// l2norm defined in appendix 2.A
}

} //

Code 2.21 – Semilinear state equation with Newton method

One may wonder whether it is better to use a fixed point or a Newton method. Newton’s al-
gorithm is well known for its fast and very accurate convergence, but on the condition that its
initialization needs to be close enough to the solution. The fixed point algorithm is less sensi-
tive to this initialization constraint but at the cost of a slower convergence. A possible solution
is to consider a hybrid method which consists in using a fixed point method in the first itera-
tions and then switching to a Newton method when one is close enough to the solution (this is
the idea of some global or damped Newton methods). As in Section 2.2, Y is the set H 1

0 (Ω) and
the set of admissible controls Uad is the subset of L2(Ω) given by

Uad = {
u ∈ L2(Ω),ua 6 u 6 ub

}⊂U = L2(Ω),

Z is H−1(Ω), the dual of H 1
0 (Ω), so that Assumption 2.3 is satisfied, and

J (y,u) = 1

2

∫
Ω

(
y(x)− yd (x)

)2 d x + α

2

∫
Ω

u(x)2 d x,

e(y,u) = Ay +Bφ(y)−Bu.

Under [94, Assumptions 4.14], existence of an optimal control ū ∈ Uad is guaranteed and the
optimality conditions stated in Corollary 2.3 give

y ∈ H 1
0 (Ω) solution of : −∇· (a∇y)+φ(y) = u in Ω, (2.49)

p ∈ H 1
0 (Ω) solution of : ∇· (a∇p)−φ′(y)p = y − yd in Ω, (2.50)

u ∈Uad such that :
(
αu −p, v −u

)
U > 0 ∀v ∈Uad . (2.51)

83

2.4. Optimization under semilinear PDE constraints

Again, like in the example (2.30,2.31), the dual pairing 〈·, ·〉U ′,U is compatible with the L2(Ω)-
inner product and hence the adjoint representation yields the gradient of the reduced cost
function

(∇ Ĵ (u), v
)

U =
∫
Ω

(αu −p)v d x ∀v ∈ L2(Ω).

Although the state equation is nonlinear, the adjoint equation is linear and can thus easily be
solved with FreeFEM :

macro semilinearadjoint() {
solve SLAdjoint(P,Q)= int2d(Th)(a*(grad(P)'*grad(Q)))

+ int2d(Th)(3*Y^2*P*Q) // φ′(y) = 3y2

+ int2d(Th)((Y-Yd)*Q)
+ on(1,2,3,4,P=0);

} //

Code 2.22 – Semilinear adjoint equation

At this stage, it is sufficient to rewrite the cost function and its derivative as in Codes 2.12
and 2.13 by replacing the macros of the previous state and adjoint equations.

In the case of semi-linear equations, it is possible to work with sparse matrices that do
not depend on the state and control, provided that we are careful about how to discretize the
non-linear term. Therefore, we can override the adjoint calculation by using automatic diffe-
rentiation by the softwareAMPL as in Section 2.2.4. In that aim, we still reduce the cost function
to the quadratic discretized cost

Jh(yh ,uh) = 1

2
(yh − yh

d)T Mh(yh − yh
d)+ α

2
uT

h Mhuh .

At that point, we decide to approximate the state equation with the following nonlinear equa-
tion

eh(yh ,uh) = Ah yh +Mh(yh)3 −Mhuh .

Here, we decide to approximate both y and y3 with finite elements P1. This arbitrary choice
is not without consequences since a small approximation error is made when we interpolate
y3 with affine functions when it should be approximated with polynomials of degree 3. Ne-
vertheless, since the quadrature formula in the cost function only requires the values of y on
the vertices of the mesh, the approximation error is controllable and will be smaller for a finer
mesh. This is an arbitrary choice that allows the use of automatic differentiation and greatly
simplifies the solution of the equation of state, compared to the iterative methods used above,
but with less accuracy. The file "file.mod" is thus modified accordingly :

84

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

1 param m integer >=0;
2 set index = 0..m;
3 set indexA dimen 2;
4 set indexM dimen 2;
5

6 param alpha =0.1;
7 param A{indexA}; # stiffness matrix
8 param M{indexM}; # mass matrix
9 param L{index};

10 param yd; # target
11

12 var Y{index}; # state
13 var U{index}; # control
14

15 minimize quad: sum{(i,j) in indexM}(0.5*(Y[i]-yd)*M[i,j]*(Y[j]-yd) +
0.5*alpha*(U[i]*M[i,j]*U[j]));

16

17 subject to PDE{i in index}: sum{(i,j) in indexA}(A[i,j]*Y[j])
18 + sum{(i,j) in indexM}(M[i,j]*Y[j]**3)
19 - sum{(i,j) in indexM}(M[i,j]*U[j]) =0;
20

21 subject to lowbound{i in index}: U[i] >= 0;
22 subject to upbound{i in index}: U[i] <=1;
23

24 subject to volume: sum{i in index} U[i]*L[i] == 0.25; #
∫
Ωu(x)d x = 0.25

Code 2.23 – AMPL: "file.mod" - semilinear case

0 10 20 30 40 50 60 70 80
iter

0.000125

0.000150

0.000175

0.000200

0.000225

0.000250

0.000275

0.000300
AMPL+AD
Fixed point
Fixed point + Newton

(a)

0 10 20 30 40 50 60 70 80
iter

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101 AMPL+AD
Fixed point
Fixed point + Newton

(b)

FIGURE 2.5 – Convergence curves for semilinear case : (a) objective function; (b) convergence criterion

The convergence curves of the different methods used are shown in Figure 2.5. The dif-
ferent methods converge more or less quickly to the same solution. Here we emphasize the
advantages of automatic differentiation over adjoint methods that bypass solving the state’s
equation by iteration methods. The convergence of the algorithm is consequently faster and its
numerical writing is much easier. Nevertheless, we must pay some attention to the numerical
discretization of the cost and state constraint functions.

85

2.5. Optimal shape design problems

2.5 Optimal shape design problems

FreeFEM is very well adapted to solve numerically the problems of optimal shape design.
It is indeed very user-friendly for solving PDEs, but also for building and modifying meshes.
Shape optimization is a vast field and there are many ways to find optimal solutions numeri-
cally. It is possible to implement geometric and topological optimization as well as homogeni-
zation methods. For the level-set method in FreeFEM, we refer the reader to [8; 9] and to the
dedicated web site. This method is related to the solution of an advection equation combined
with a gradient descent algorithm (see [43] for an example of an efficient gradient descent al-
gorithm applied to shape optimization). We mention two methods that can be combined with
IpOpt.

• Shape deformation methods : we look for a way to modify an initial shape to a so-called
optimal shape and thus compute the derivatives of the cost and constraint functions
using classical shape optimization analysis tools. The command movemesh provided
by FreeFEM allows us to write an optimal shape design problem in the context of Ha-
damard boundary variations. The derivatives with respect to the domain and the appro-
priate deformation vector fields are thus computed to find the next iteration using the
movemesh. We recommend [59] for an introduction to shape variation strategies.

• Relaxation methods : we look for an optimal solution in a larger admissible set containing
the classical design sets and expect the solution to be in the starting set of shapes. One
of the best known methods is homogenization (see [6; 10]). The optimal solution often
presents a gray level instead of being black or white, which underlines the appearance of
a relaxation phenomenon.

The example of Section 2.6 below is devoted to the illustration of the first method while we qui-
ckly describe the second one since it can be written in the framework of the numerical methods
of Section 2.2 by considering a variant of the linear quadratic example (2.30,2.31). Let Ω be a
subset of R2 and let yd ∈ L2(Ω) be a target function. The set of admissible controls is

Uad = {ω⊂Ω measurable , |ω|6ω0}.

We seek a measurable domain ω solution of

min
ω∈Uad

J (y,ω) = 1

2

∫
Ω

(
y(x)− yd (x)

)2 d x

s.t.

{
−∆y =χω in Ω

y = 0 in ∂Ω.

We refer the reader to [63] for sufficient conditions ensuring existence of solutions. For the
numerical solving, we relax the indicator function χω of ω :

ω measurable u ∈ L∞(Ω, (0,1))

χω ∈ {0,1} 06 u 6 1

|ω|6 L|Ω|
∫
Ω

u(x)d x 6 L|Ω|

Relaxation

86

http://www.cmap.polytechnique.fr/~allaire/freefem_en.html

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

which leads to the problem

min
u∈Uad

J (y,u) = 1

2

∫
Ω

(
y(x)− yd (x)

)2 d x

s.t.


−∆y = u in Ω

y = 0 in ∂Ω

06 u 6 1

with

Uad =
{

u ∈ L2(Ω), 06 u 6 1 and
∫
Ω

u(x)d x = L|Ω|
}

.

We now adapt the example (2.30,2.31). Shape optimization is thus performed by stipulating
upper and lower bound constraints on the control u in the hope that they will be saturated
for the optimal solution (if not, this means that there is relaxation). The generalization of such
methods can be found in the homogenization method studied in [6]. The optimization solver
IpOpt can be used.

2.6 Boundary shape optimization

The examples presented in the previous sections are rather classical and aimed at illustra-
ting several numerical methods and providing numerical templates. In this section, our ob-
jective is to highlight other features of FreeFEM on a more difficult example, related to the
problem of designing the best possible shape for micro-swimmers in a fluid, in order to di-
rect them in a given direction. At the interface between fluid-structure interaction and control
theory, this problem has already been studied in various forms (see [11; 98]). Here, as illustrated
in Figure 2.6, we assume that the micro-swimmers have a membrane Γ that oscillates periodi-
cally at some fixed frequency to generate fluid motion. To account for the periodicity of the
membrane motion, the fluid domain is assumed to be a torus obtained by bending the square
along the y direction so that Σ2 merges with Σ4 (torus) ; the lower boundary Γ is assumed to
move at speed vD so that viscous forces in Γ will imply fluid motion (see Figure 2.6(b)). For
ease of study, we further assume that Γ is the graph of a C 2 function (no overlap), furthermore
satisfying physical constraints on the second derivative. In a more complicated model, overlap
could be allowed by modifying the boundary with two-dimensional deformation vector fields.
We perform our study in the reference frame of the moving boundary Γ (velocity vD), which
will induce the vertical motion of the fluid observed in Figure 2.8.

2.6.1 Boundary and domain parametrization

LetΩ0 denote the initial torus. Given a function

f : [0,1] 7→ [0,1]

such that f (0) = f (1), we parametrize the bottom boundary as

Γ= {(x, f (x)), x ∈ [0,1]},

87

2.6. Boundary shape optimization

O

Σ3

Σ4Σ2

Σ1 = Γ
x

y

(a)

Ω

Σ3

Σ1 = ΓΣ2 =Σ4

(b)

FIGURE 2.6 – Fluid domain : (a) initial square ; (b) torus after periodization.

so thatΩ0 is modified to obtain the fluid domain Ω under the action of the vector field

θ(x, y) = (x, y + (1− y) f (x)).

As for the numerical approach, although the flow problem introduced below is expressed
on the modified cylinderΩ, we discretize the domain with a square mesh such that periodicity
will be ensured by considering periodic finite elements. We then introduce a triangulation ofΩ
(see Figure 2.7(b)) by modifying the previous square mesh (see Figure 2.7(a)) under the action
of the vector field θ thanks to the command movemesh. As the control f are on the 1D boun-
dary, we introduce a one-dimensional mesh of the boundary which will be necessary for the
computation of the gradient. Each iteration of the optimization process will involve a modifi-
cation of both the square mesh and the one-dimensional mesh along Gamma. Numerically, in
the Code 2.24, we introduce several meshes in addition to the initial square mesh of Ω0 thanks
to the command extract

int[int] ll=[1];
mesh Th0 = square(NX,NX*H,[x,y*H]); // initial square mesh
func fclab = (x>0.999)*2 + (x<0.001)*1; // Borders label
ThL = extract(Th0,refedge=ll);
ThL = change(ThL, flabel = fclab); // (0,1) straight mesh with label 1, 2

mesh Th = Th0; // mesh to be modified at each function call to get Ω

meshL ThC = ThL; // mesh to be modified at each function call to get Γ

Code 2.24 – 1D finite element space and movemesh command

88

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

(a) (b)

FIGURE 2.7 – Fluid domain mesh : (a) initial ; (b) modified for f (x) = 0.1sin(3πx).

Figure 2.7 shows the initial square mesh ofΩ0 and its modification to obtain the mesh ofΩ for a
particular function. The reference frame of the moving boundary follows a rectilinear uniform
motion with speed vD in the x-direction. Let u = (u1,u2) be the velocity of the fluid and let p
be the pressure. We consider the Stokes flow equations on the modified domain Ω :

−µ∇·ε(u)+∇p = 0 in Ω (2.52)

div(u) = 0 in Ω (2.53)

σ(u, p)~n = 0 in Σ3 (2.54)

u =
(

0
f ′

)
in Γ (2.55)

where ~n is the outer normal vector, µ is the kinematic viscosity,

ε(u) = 1

2

(∇u +∇uT)
is the symmetric gradient of u and

σ(u, p) = 2µε(u)−p Id

is the Cauchy stress tensor. Assuming that

f ∈ H 2(0,1)∩H 1
0 (0,1),

Ω has at least a C 1,1 boundary by Sobolev injections. Existence of solutions

(u, p) ∈ H 1(Ω)×L2(Ω)

of the Stokes system (2.52,2.53,2.54,2.55) follows from [21, Theorem IV.5.2]. More details on
existence and regularity of solutions in less regular domains can be found in [12; 72].

Remark 2.13. The equation (2.52) stands for the balance law between viscous and pressure
forces, while the equation (2.53) stands for the incompressibility of the fluid. We usually add
an integral constraint

∫
Ω p(x)d x = 0 on the pressure in order to guarantee the uniqueness of the

89

2.6. Boundary shape optimization

FIGURE 2.8 – Velocity of Stokes fluid u for f (x) = 0.1sin(3πx) and vD =−1

solution (u, p), what is not needed here since the condition (2.54) yields the pressure on Σ3. The
equations (2.54) and (2.55) respectively imply that the fluid is free of surface forces at the top
boundary Σ3 and a no-slip boundary condition on Γ, namely the fluid and the solid have the
same speed at the interface. For micro-swimmers, inertia effects play no role and the motion is
entirely determined by the friction forces encompassed in (2.55) and therefore by the shape of Γ.

Given a given boundary shape f (x) = 0.1sin(3πx) moving to the right (vD = −1), we plot
the corresponding velocity in Figure 2.8. Near the minimum of f , we observe that the slope
of the Γ boundary generates a semblance of a vortex and a fluid velocity that increases with
the variation of the slope. The mixed boundary conditions (2.54) and (2.55) are treated in the
variational formulation by introducing the state finite element space

V = {(u, p) ∈ H 1(Ω)2 ×L2(Ω), u =
(

0
f ′

)
in Γ},

so that (u, p) ∈V is a weak solution of the Stokes system if and only if∫
Ω

(
µε(u) : ε(v)−q div(u)−p div(v)

)
d x = 0 ∀(v, q) ∈V0 (2.56)

with the trial functions space

V0 = {(v, q) ∈ H 1(Ω)2 ×L2(Ω), v = 0 in Γ}.

As in Section 2.1.2, the solution (u, p) belongs to an affine space. The finite element space is
chosen such that the discretized linear system corresponding to (2.52,2.53) is invertible. For
example, one can choose the Lagrangian elements P2 for the velocity u and the Lagrangian
elementsP1 for the pressure p, which are known to imply an LBB condition (see [45, Chapter 2])
that guarantees this invertibility property. The variational formulation (2.56), whose state and
test functions are defined on the modified domain Ω, is solved numerically in a finite element
space with periodic boundary conditions via the command

fespace Wh(Th,[P2,P2,P1],periodic=[[2,y],[4,y]]); // [u1,u2, p], Σ2 =Σ4.
Wh [u1,u2,p], [v1,v2,q];

with the following macros related to the variational formulations

90

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

macro SGrad(u,v) [[dx(u),0.5*(dx(v)+dy(u))],[0.5*(dx(v)+dy(u)),dy(v)]]
// ε(u)

macro div(u1,u2) (dx(u1)+dy(u2)) // div(u)

to solve (2.52,2.53,2.54,2.55) with the state equation macro stated in Code 2.25.

macro stokes() { // State equation’s macro (2.52,2.53,2.54,2.55)
solve Stokes([u1,u2,p],[v1,v2,q]) =

int2d(Th)(2*mu*(SGrad(u1,u2):SGrad(v1,v2)) - div(u1,u2)*q)
- int2d(Th)(div(v1,v2)*p)
+ on(1,u1=0,u2=vdent*gm)} //

Code 2.25 – Stokes state equation

The 1D command f ∈ H 2(0,1)∩ H 1(0,1) is discretized with one-dimensional finite elements
P1 thanks to the command fm. Therefore, its exact numerical derivative dx(fm) is discretized
with finite elements P0, i.e. it is piecewise constant. However, the boundary condition on(1,
u1=0,u2=vd*gm) of the Code 2.25 implies that u2 which is continuous, must be equal to
gm which must therefore be continuous. In an effort to minimize approximation errors, we
approximate in the Code 2.26 the initial P0 discretization of f ′ using the projection on L2(0,1)
with P1 finite elements.

func real[int] L2regul(real[int] &X)
{

WhL f,g,cdf;
f[] = X;
solve l2regul(cdf,g) = int1d(ThL)(cdf*g) // L2(Ω) projection of dx(f) (P0)

- int1d(ThL)(dx(f)*g); // with P1 elements
return cdf[];

}

Code 2.26 – Regularization of f ′ with L2 projection with P1 finite elements

2.6.2 Shape optimization problem

In Section 2.6, the problem consists in maximizing the velocity of the fluid in the direction
~ι= (

1
0

)
with respect to the boundary Γ, by considering the cost functional

Ĵ (f) =−
∫
Σ3

u ·~ιd s (2.57)

where the pair (u, p) satisfies (2.52,2.53,2.54,2.55). Some additional constraints on f are added
to ensure existence of optimal solutions and also a better convergence of the optimization al-
gorithm. The set Uad entails physical constraints :

• The volume constraint ∫ 1

0
f (x)d x = 0

implies that the domainΩ keeps a constant volume in time. It is formulated numerically
by introducing the vector Cvol that represents the linear form

g 7→
∫ 1

0
g (x)d x

91

2.6. Boundary shape optimization

in the P1 finite element basis :

varf varCvol(f,g) = int1d(ThL)(1*g); //
∫ 1

0 g (x)d x
real[int] Cvol = varCvol(0,WhL);

Code 2.27 – Volume constraint

• Bound constraints on the first derivative of f

| f ′(x)|6 M1 ∀x ∈ (0,1)

ensure existence of optimal solutions. This constraint is numerically carried out by using
the interpolation matrix of the derivative operator from P1 finite elements to P0 finite
elements defined in Code 2.29.

• To ensure existence of a solution (u, p) ∈ H 1(Ω)∩L2(Ω) of the Stokes system, we assume
that f ∈ H 2(Ω) so thatΩ has a C 1,1 boundary and f ′ ∈ H 1(0,1), and we assume in addition
that there is a bound constraint on the second derivative of f

| f ′′(x)|6 M2 ∀x ∈ (0,1).

This curvature constraint, which is physical, is important to ensure well-posedness and
we observe that it induces a better convergence of the optimization algorithm.

The optimization problem (2.52,2.53,2.54,2.55,2.57) is formulated as

min
f ∈Uad

Ĵ (f)

where Uad is the subset of U = H 2(0,1) defined by

Uad =
{

f ∈ H 2(0,1)∩H 1
0 (0,1),

∫ 1

0
f (x)d x = 0,

| f ′(x)|6 M1, | f ′′(x)|6 M2 for a.e. x ∈ (0,1)
}

2.6.3 Sensitivity analysis

The function f acts on both the shape of the Ω domain (f ′ is involved in the boundary
condition (2.55)) and the solution (u, p) of the Stokes system (2.52,2.53,2.54,2.55). If the Ω do-
main were fixed, we could compute the derivative of the reduced cost function directly using
the adjoint representation introduced in Section 2.1.2, but here the shape deformations of Γ
must also be taken into account. To this end, we revert to a calculus of variations approach and
thus write a sensitivity analysis to express the derivative.

Let f ∈Uad , we compute the shape derivative of the reduced cost function in the direction
g ∈U by taking t small enough so that f + t g ∈Uad . We define

Ωt = (id+ tφ)(Ω)

where

φ(x, y) =
(

0
1−y

1− f (x) g (x)

)

92

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

is the vector field deforming Ω to Ωt with respect to the small perturbation g . We define the
real-valued function

F : t 7→ F (t) = Ĵ (f + t g)

and compute its Fréchet derivative F ′(0) which gives the reduced cost function derivative

F ′(0) = 〈D Ĵ (f), g 〉U ′,U .

According to usual methods for the computation of derivatives of solution of a PDE with respect
to the domain (see [7] and [59, Chapter 5]) we introduce the material derivative (ũ, p̃) solution
of the linearized system

−µ∇·ε(ũ)+∇p̃ = 0 inΩ (2.58)

div(ũ) = 0 inΩ (2.59)

σ(ũ, p̃)~n = 0 in Σ3 (2.60)

ũ = vD

(
0
g ′

)
− ∂

∂n

(
u − vD

(
0
f ′

))
×φ ·~n in Γ. (2.61)

The derivative of the reduced cost function Ĵ is

〈D Ĵ (f), g 〉U ′,U =
∫
Σ3

ũ ·~ιd s.

Two terms appear in (2.61), respectively coming from the boundary condition vD

(
0
f ′

)
and from

the domain variation vector field φ in (2.61). In other words, the first term stands for the va-
riation of u with respect to the boundary condition (2.55), assuming Ω fixed, while the second
one stands for the mesh deformation variation. By (2.61), we thus get ũ along Γ, under the in-
fluence of both terms, while the knowledge of ũ alongΣ3 is required to compute 〈D Ĵ (f), g 〉U ′,U .
The adjoint vector (v, q) ∈ H 1(Ω)2 ×L2(Ω) is defined as the solution of

−µ∇·ε(v)+∇q = 0 in Ω (2.62)

div(v) = 0 in Ω (2.63)

σ(v, q)~n =~ι in Σ3 (2.64)

v = 0 in Γ. (2.65)

Remark 2.14. The adjoint system (2.62,2.63,2.64,2.65) is similar to the one we would get from the
Stokes problem (2.52,2.53,2.54,2.55) considered on a fixed domain Ω with a Dirichlet boundary
control.

Following the variational formulation (2.56) for the numerical solving of the state equation,
we solve in Code 2.28 the adjoint system (2.62, 2.63, 2.64, 2.65).

macro adjoint() {
solve StokesAdjoint([v1,v2,q],[w1,w2,g]) =

int2d(Th)(2*mu*(SGrad(v1,v2):SGrad(w1,w2)) - div(w1,w2)*q)
- int2d(Th)(div(v1,v2)*g)
- int1d(Th,3)(w1) // Neumann condition (2.64)
+ on(1,v1=0,v2=0); // Dirichlet condition (2.65).

} //

Code 2.28 – Stokes adjoint system

93

2.6. Boundary shape optimization

Using the boundary condition (2.64), we have

〈D Ĵ (f), g 〉U ′,U =
∫
Σ3

ũ ·~ιd s =
∫
Σ3

σ(v, q)~n · ũ d s.

The function ũ is known along Γ thanks to (2.61), involving the effects of f on the derivative.
To express the derivative with respect to f , we use the adjoint system (2.62, 2.63, 2.64, 2.65),
in relationship with the expression of σ(v, q)~n · ũ on Γ, and on Σ3 by making an integration by
parts :∫

Ω

(−µ∇·ε(u)+∇p
) ·w d x =

∫
Ω

(
µε(u) : ε(w)−pdiv(w)

)
d x −

∫
Γ∪Σ3

σ(u, p)~n · v d s. (2.66)

Applying (2.66) to the solution (u, p) of Stokes system, to the solution (ũ, p̃) of the linearized
system and to the solution (v, q) of the adjoint system, we finally compute the reduced cost
function derivative as

〈D Ĵ (f), g 〉U ′,U =
∫
Γ
σ(v, q)~n ·

(
vD

(
0
g ′

)
− ∂

∂n

(
u − vD

(
0
f ′

))
φ ·~n

)
d s (2.67)

where

~n = 1

(1+ f ′2)
1
2

(
f ′

−1

)
.

We identify the linear form (2.67) with a gradient expressed in U = H 2(0,1) by finding, for a
H 2(0,1)-inner product to be defined in accordance with the dual pairing 〈·, ·〉U ′,U , the solution
ρ ∈ H 2(0,1) of

(ρ, g)H 2(0,1) =
∫
Γ

(φ1(x, y)g ′(x)+φ2(x, y)g (x))d s ∀g ∈ H 2(0,1), (2.68)

with

φ1 = vDσ(v, q)~n ·
(
0
1

)
, φ2 =σ(v, q)~n · ∂u

∂n
×φ ·~n − vDσ(v, q)~n ·

(
0
1

)
× f ′′~n1φ ·~n,

where ~n1 is the x-axis component of ~n. The above quantities are stored numerically in data
typesfuncThe state (u, p) and the adjoint (v, q) are discretized with finite elementsP2×P1 and
the control f is discretized with 1D finite elements P1. Since f ∈ H 2(0,1), we do not consider
here conformal transformations for U but rather nonconformal transformations, in agreement
with the general mathematical framework given in the remark 2.11. Moreover, φ1 and φ2 are
defined on the modified mesh in (2.68) and their finite element approximation in the Code
2.30 is discontinuous since they involve derivatives of f . Therefore, we introduce below several
1D finite element spaces defined respectively on the square and modified meshesThL andThC
to interpolate φ1 and φ2 with finite elements P1 on (0,1) (see Code 2.30).

fespace WhL(ThL,P1); // F.E. functions on straight mesh: f
fespace PhL(ThL,P0); // F.E. functions on straight mesh: f ′
fespace WhC(ThC,P1); // F.E. functions on curve mesh

Let us give some details : WhL is a finite element space used to discretize f and to write the
matrix of the scalar product on H 2(0,1) which is required for gradient interpolation; PhL is

94

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

a finite element space through which to compute the first and second derivatives of f which
appear in the constraints and are required to compute the resulting matrix of the second order
terms involved in the H 2(0,1)-inner product. The matrix corresponding to the first derivative
operator is constructed using the operator dx which thus allows to express the derivative of a
finite element function P1 with finite elements P0. For the second derivative, we construct by
hand the matrix of jumps of the first order derivatives of the finite element basis P1 WhL (see
the Code 2.37 later).

matrix mDx = interpolate(PhL,WhL,t=0,op=1); // ∂x operator: P1 to P0
matrix mDxx;
MatJumpofDx(WhL,ThL,mDxx); // returns the jumps of mDx (see Code 2.37)

Code 2.29 – Matrices of first and second derivatives of f

Finally,WhC allows us to numerically compute the integral along the curve boundaryΓ involved
in (2.68). In Code 2.30, we compute a regularization of φ1 and φ2 by performing a projection
onto L2(Ω) with P1 finite elements on (0,1).

func real[int] L2regulphi(int indexphi)
{

WhC vC,phiC;
WhL phiL;
func phi = (1.0-y)/(1.0-fm);
func nx = dx(fm)*(1.0+dx(fm)^2)^(-0.5);
func ny = -1.0*(1.0+dx(fm)^2)^(-0.5);
if (indexphi == 1){ // for φ1 non continuous

func phi1 = vdent*sigman(v1,v2,q,nx,ny)'*[0.0,1.0];
solve l2regulphi(phiC,vC) = int1d(ThC)(phiC*vC) - int1d(ThC)(phi1*vC);
}

if (indexphi == 2){ // for φ2 non continuous
func phi2 = -1.0*phi*ny*sigman(v1,v2,q,nx,ny)'*[dx(u1)*nx+dy(u1)*ny,dx(

u2)*nx+dy(u2)*ny]
+vdent*c2gm*nx*phi*ny*sigman(v1,v2,q,nx,ny)'*[0,1];

solve l2regulphi(phiC,vC) = int1d(ThC)(phiC*vC) - int1d(ThC)(phi2*vC);
}

phiL = phiC;
return phiL[];

}

Code 2.30 – L2 regularization for φ1 and φ2

The macro sigman(v1,v2,q,nx,ny) stands for the vector σ(v, q)~n. This interpolation
is necessary because we cannot accurately interpolate the discontinuous approximations ofφ1

andφ2 defined onΓ (given byphi1 andphi2 in Code 2.30) with continuousP1 finite elements
on (0,1). Once this regularization is done, the interpolation from Γ to (0,1) is straightforward in
FreeFEM by typing phi1L = phi1C. We next compute the gradient based on the H 2(0,1)-
inner product chosen with the macro in Code 2.31.

95

2.6. Boundary shape optimization

macro gradInterp(){
varf linearform(u,v) = int1d(ThL)(-dx(phi1L)*v + phi2L*v); // (2.67)
real bdJ = linearform(0,WhL);
real[int] dJ = MH2^-1*bdJ; // Gradient in H2(0,1)

} //

Code 2.31 – Stokes gradient’s interpolation

Remark 2.15. Numerically, we observe that the algorithm is converging in a much better way
when we compute the gradient by interpolating the linear form (Code 2.31)

(ρ, g)H 2(0,1) =
∫ 1

0
(−φ′L

1 (x)+φL
2 (x))g (x)d x ∀g ∈ H 2(0,1),

versus (ρ, g)H 2(0,1) =
∫ 1

0
(φL

1 (x)g ′(x)+φL
2 (x)g (x))d x ∀g ∈ H 2(0,1),

whereφL
1 andφL

2 are respectively the interpolations ofφ1 andφ2 with P1 finite elements on (0,1),
computed in Code 2.30.

The matrix representing the inner product of H 2(0,1) is constructed below with the ma-
trix representing the inner product of H 1(0,1) and the one giving the jumps of the first order
derivatives of the finite element basis (see the Code 2.29)

// H2(0,1)-inner product
varf scalarH1(u,v) = int1d(ThL)(u*v+dx(u)*dx(v));
matrix MH1 = scalarH1(WhL,WhL); // (ρ, g)H 1(0,1)
matrix mDxxL = mDxx'*mDxx;
matrix MH2 = MH1 + mDxxL; // (ρ, g)H 2(0,1)
set(MH2,solver=sparsolver);

Code 2.32 – H 2(0,1)-inner product’s construction

Remark 2.16. As stated in [27; 73], we may consider a weighted version of the usual H 2(0,1)-
inner product

(f , g)H 2(0,1) =
∫ 1

0
(α2 f ′′g ′′+ f ′g ′+ f g)d x,

with α> 0 to be tuned depending on the mesh.

2.6.4 Codes and results

We finally write the complete algorithm with the several macros and functions defined
above and we first initialize the numerical framework based on Section 2.6 to solve (2.52, 2.53,
2.54, 2.55).

96

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

load "msh3"
load "gsl"
load "ff-Ipopt"

bool hotrestart = 1;
verbosity=0;
real HUB = 10.0; // | f ′′(x)|6 M2
real CUB = 0.5; // | f ′(x)|6 M1
real XUB = 0.2;
real H = 1; //
int NX = 25; // boundary mesh size
real vdent = -1.0; // boundary’s speed

int[int] ll=[1];
mesh Th0 = square(NX,NX*H,[x,y*H]);
func fclab = (x>0.999)*2 + (x<0.001)*1; // Borders label
meshL ThL = extract(Th0,refedge=ll);
ThL = change(ThL, flabel = fclab); // (0,1) Straight Mesh with label 1, 2

mesh Th = Th0;
meshL ThC = ThL; // Curve Mesh for Γ

fespace WhL(ThL,P1);
fespace PhL(ThL,P0);
fespace WhC(ThC,P1);
fespace Wh(Th,[P2,P2,P1],periodic=[[2,y],[4,y]]);

WhL fm,phi1L,phi2L,cgm,gm;
WhL c2gm;

With the macros and functions introduced in previous sections, we are now able to compute
a numerical version of the cost function. We first solve the PDE stated in Code 2.25 and then
use the velocity u to compute the cost function (2.57) according to a quadrature formula on the
boundary Σ3 :

func real J(real[int] &X)
{

fm[] = X;
Th = movemesh(Th0,[x,fm+y*(H-fm)/H]);

cgm[] = L2regul(fm[]); // Code 2.26

stokes(); // Code 2.25
return = -int1d(Th,3)(u1);

}

Code 2.33 – Cost function for Stokes problem

Besides, we follow the sensitivity analysis made before to compute the derivative of the pre-
vious cost function. We saw that it involves both state and adjoint macros defined in Codes 2.25
and 2.28. Thus, we beforehand solve state equation stated in Code 2.25 that returns both the
pressure p and the velocity u that are needed for the adjoint’s computations via Code 2.28.
Once we solved the adjoint’s equation, we proceed to a regularization of the functions involved
in the equation (2.67) and finally express the gradient according to the chosen inner-product :

97

2.6. Boundary shape optimization

func real[int] dJ(real[int] &X)
{

fm[] = X;

Th = movemesh(Th0,[x,fm+y*(H-fm)/H]); // Ω0 7→Ω

ThC = movemesh(ThL,[x,fm+y*(H-fm)/H]); // (0,1) 7→ Γ

cgm[] = L2regul(fm[]); // Code 2.26

stokes(); // Code 2.25
adjoint(); // Code 2.28

phi1L[] = L2phiregul(1); // Code 2.30
phi2L[] = L2phiregul(2); // Code 2.30

gradInterp(); // Code 2.31
return dJ;

}

Code 2.34 – Derivative of the cost function for Stokes problem

Before using the gradient interpolation macro written in Code 2.31, we perform a regulariza-
tion of the functions φ1 and φ2 (Code 2.30). The constraint introduced in Section 2.6.2 and its
Jacobian are computed with the matrices introduced in Code 2.29 and read :

func real[int] C(real[int] &X)
{

real[int] cont(1+PhL.ndof+WhL.ndof);
cont[0] = Cvol'*X; //

∫ 1
0 f (x)d x = 0

cont(1:PhL.ndof) = mDx*X; // | f ′(x)|6 M1
cont(PhL.ndof+1:PhL.ndof+WhL.ndof) = mDxx*X; // | f ′′(x)|6 M2
return cont;

}

matrix dc;
func matrix jacC(real[int] &X)
{

real[int,int] dcc(1,WhL.ndof); dcc = 0.0;
dcc(0,:) = Cvol;
dc = dcc;
dc = [[dc],[mDx]];
dc = [[dc],[mDxx]]; // [volume, | f ′|6 M1, | f ′′|6 M2]
return dc;

}

Code 2.35 – Length and curvature constraints of the boundary

In FreeFEM, the possibility use matrices and arrays instead of solving the variational formu-
lation usually guarantees a more efficient algorithm in terms of execution speed and required
memory. We wrote most of macros and functions with the explicit formulation for the sake of
clarity, but execution is quicker when dealing with matrices. Finally, it remains to call the opti-
mization routine IpOpt :

98

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

real[int] start(WhL.ndof);
real[int] xub(WhL.ndof);
real[int] xlb(WhL.ndof);
real[int] cub(1+PhL.ndof+WhL.ndof);
real[int] clb(1+PhL.ndof+WhL.ndof);

// Unknowns bounds
xub= XUB;
xlb= -XUB;
cub(1:PhL.ndof)= CUB;
clb(1:PhL.ndof)= -CUB;
cub(PhL.ndof+1:PhL.ndof+WhL.ndof)= HUB;
clb(PhL.ndof+1:PhL.ndof+WhL.ndof)= -HUB;

xub[0] = 0.0; // f (0) = 0
xlb[0] = 0.0; // f (0) = 0
xub[WhL.ndof-1] = 0; // f (1) = 0
xlb[WhL.ndof-1] = 0; // f (1) = 0

clb[0] = 0.0; //
∫ 1

0 f (x)d x = 0

cub[0] = 0.0; //
∫ 1

0 f (x)d x = 0

clb[PhL.ndof+WhL.ndof] = -HUB/alpha;
cub[PhL.ndof+WhL.ndof] = HUB/alpha;
clb[PhL.ndof+1] = -HUB/alpha;
cub[PhL.ndof+1] = HUB/alpha;

// intialization
WhL X0=0.0125/2*sin(x*pi*2*2);
if (hotrestart){
start = HOTRESTART(hotrestart); }

IPOPT(J,dJ,C,jacC,start,lb=xlb,ub=xub,clb=clb,cub=cub,tol=1.e-8);

Code 2.36 – Calling IpOpt in the Stokes problem

The optimal solution returned byIpOpt is plotted in Figure 2.9 for a rough and for a fine mesh.

(a) (b)

FIGURE 2.9 – Optimal solution of (2.52,2.53,2.54,2.55,2.57) for M1 = 0.4 and M2 = 5.0 on : (a) rough mesh;
(b) fine mesh.

99

2.6. Boundary shape optimization

As mentioned above, the constraints on the first and second derivatives of f have been in-
troduced to guarantee well-posedness and a good numerical convergence of the optimization
process. As expected, the optimal solution saturates these constraints. Since PDE optimization
problems involve a large number of variables, iterations of the algorithm require a larger com-
putational time as the mesh is finer. Having a good initial guess is also important. Hot-restart
loops turn out to be effective by providing a better initialization that we refine by first running
the algorithm on a rougher mesh and then on a finer one. An interpolation on the finer mesh of
the solution obtained on the rough mesh is taken as a new initialization, in order to make the
algorithm converge in a better way on the fine mesh. The hot-restart procedure is described in
Appendix 2.A.

2.6.5 Further comments

We plot in Figure 2.10 the optimal solutions for various values of M2. We observe that the
value of the cost functional at the optimal solution increases when M2 is taken larger and that,
as M2 →+∞, the sequence of optimal solutions seems to converge to a triangular-shaped func-
tion, which may be the optimal solution of the problem when, formally, M2 =+∞, i.e., f varies
in H 1(0,1) instead of H 2(0,1) without any constraint on f ′′. However, although this limit pro-
blem seems to be tractable from the numerical point of view, treating it rigorously from the
theoretical point of view is much more difficult because existence of solutions of the Stokes
problem (2.52, 2.53, 2.54, 2.55) is not guaranteed in H 1(Ω)∩L2(Ω) : it is required to consider
other functional spaces (see [12; 72]) and the framework becomes much more complicated.
We leave this issue as an open, interesting problem.

(a) (b) (c)

FIGURE 2.10 – Optimal solution of (2.52,2.53,2.54,2.55,2.57) for M1 = 0.4 and : (a) M2 = 2 and J ≈ 0.07 ;
(b) M2 = 10.0 and J ≈ 0.16 ; (c) M2 = 50.0 and J ≈ 0.19 ;

Numerically, we can proceed as follows. Ignoring the second derivatives of f involved in
the constraint function C and in Codes 2.31 and 2.32, the control f now varies in the subset of
U = H 1(0,1)

Uad =
{

f ∈ H 1
0 (0,1),

∫ 1

0
f (x)d x = 0 and | f ′(x)|6 M1, for a.e. x ∈ (0,1)

}
.

The optimal solution returned by IpOpt is plotted in Figure 2.11.

100

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

FIGURE 2.11 – Solution with no curvature constraint (M2 =+∞) and J ≈ 0.196

Appendix

2.A Some FreeFEM functions

The L2(Ω) norm for functions defined on a finite element space Vh is coded as follows :

func l2norm(real[int] &X)
{

// Th,Vh already constructed
Vh u,v;
varf varl2norm(u,v) = int2d(Th)(u*v);
matrix M = varl2norm(Vh,Vh); // better to be constructed outside
real[int] uu = M*u[];
l2error = sqrt(X'*uu); // = (∫

Ωu(x)2 d x
) 1

2

return l2error;
}

The macro to build the matrix of jumps of the derivatives of the finite element basis functions
is :

macro MatJumpofDx(Vh,Th,A)
{

if (A.n) A.clear;
matrix Adx(Vh.ndof,Th.nt);
fespace Ph(Th,P0);
matrix Dx = interpolate(Ph,Vh,op=1);
assert(Vh.ndofK==2);
int nt = Th.nt;
for(int k=0; k< nt;++k)
{
Adx(Vh(k,0),k)=+1;
Adx(Vh(k,1),k)=-1;

}
A = Adx*Dx;

} //

Code 2.37 – Matrix of derivative’s jumps

Hot-restart requires first to use the option warm_start_init_point yes in the IpOpt
option file "optfile.opt". It is assumed that the code has already been run so that the files

101

2.B. Semi-automatic differentiation and adjoint method

"Th0old.msh" and "fsol . txt" already exist. Then, it suffices to add the following lines at end of
the code :

if (hotrestart == 0){
savemesh(Th0,"Th0old.msh");
{
ofstream file("fsol.txt");
file << X0[];
}

}

The interpolation of a solution or of an initialization function only requires to provide a new
mesh ThL and a finite element space WhL with the following routine :

func real[int] HOTRESTART(bool &hot)
{

if (hot){
WhL Xinit;
mesh Th00 = readmesh("Th0old.msh"); // Initial mesh
meshL ThL0 = extract(Th00,refedge=ll);
ThL0 = change(ThL0, flabel = fclab); // Straight Mesh for hotrestart
fespace WhL0(ThL0,P1);
WhL0 X00;
{
ifstream file("fsol.txt");
file >> X00[];
}
Xinit = X00; // interpolation on the new mesh
return Xinit[];

}
}

Code 2.38 – Hot restart routine

Ho-restart is very easy to perform in FreeFEM thanks to the facility of interpolating from one
given mesh to another one by just typing ustart=uh1 with ustart and uh1 respectively
defined on the meshes Th2 and Th1.

2.B Semi-automatic differentiation and adjoint method

In this section, we show that the adjoint code of the reduced cost functional of the pro-
blem (2.29,2.28) implicitly makes appear a discretization of the adjoint equation obtained by
the application of the Pontryagin maximum principle (see [89, Chapter 7]) :

(
ẋ
ẏ

)
=

(
1 1
1 −1

)
+

(
u
v

) (
x(0)
y(0)

)
=

(
1
1

)
, (2.69)(

ṗ
q̇

)
=

(−1 −1
−1 1

)
+

(
x −1

0

) (
p(T)
q(T)

)
=

(
0
0

)
, (2.70)∫ T

0

(
p(u −φ)+q(v −ψ)

)
d t 6 0 ∀(φ,ψ) ∈Uad . (2.71)

102

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

The variational inequality (2.71) comes from the maximization condition of the Hamiltonian
of the optimal control problem and makes appear the duality pairing as the L2-inner product

(
D Ĵ

(u
v
)
,
(
φ
ψ

))
L2(0,T)

=−
∫ T

0

(
pφ+qψ

)
d t

involving the derivative of the reduced cost functional, which thus yields its gradient ∇ Ĵ
(u

v
) =

−
(

p
q

)
. The reduced cost functional Ĵ obtained by solving (2.69) is computed thanks to an im-

plicit Euler discretization (with n time steps) with the matrices

A =
(
1−δt −δt
−δt δt +1

)
, with δt = 1

n −1

and

A−1 = 1

1−2δt 2

(
δt +1 1

1 1−δt

)
=µ

(
a 1
1 b

)
so that (2.69) and (2.70) are respectively discretized according to implicit and explicit schemes
as

∀k ∈ {0...n −2},

(
x
y

)k+1

= A−1
(

x
y

)k

+δt A−1
(
u
v

)k+1 (
x
y

)0

=
(
1
1

)
, (2.72)

∀k ∈ {0...n −2},

(
p
q

)k+1

= A

(
p
q

)k

+δt

(
xk −1

0

) (
p
y

)n−1

=
(
0
0

)
. (2.73)

The cost (2.28) is then computed by discretization according to a rectangle rule :

1 def J(u,v):
2 x[0]=0,y[0]=0,cost=0 # initialization
3 a = 1+dt, b = 1-dt
4 mu = 1/(1-2*dt**2)
5
6 for k in range(1,n-1): # dynamic loop
7 x[k] = mu*(a*x[k-1]+y[k-1]) + dt*mu*(a*u[k]+v[k])
8 y[k] = mu*(x[k-1]+b*y[k-1]) + dt*mu*(u[k]+b*v[k])
9 cost+= 0.5*(x[k]-1)**2

10
11 return cost

Following the successive steps for adjoint code generation presented in Section 2.1.5, we write
the derivative of the previous function obtained by automatic differentiation in reverse mode.
To do so, some adjoint variables lx , ly , lu , lv , lc are introduced, respectively related to the va-
riables x, y,u, v,cost . The key is to range from the final step back to the first steps and to derive
the computation line with respect to the variable involved and to finally update the correspon-
ding adjoint variable. For example, the line 8

(y[n-k]=mu*(x[n-k-1]+b*y[n-k-1])+dt*mu*(u[n-k]+b*v[n-k]))

will generate lines 23 to 26 for updating the variables

(lx[n-k-1],ly[n-k-1],lu[n-k-1],lv[n-k-1])

103

2.B. Semi-automatic differentiation and adjoint method

1 def gradJ(u,v):
2 x[0]=0,y[0]=0,cost=0 # initialization
3 a = 1+dt, b = 1-dt
4 mu = 1/(1-2*dt**2)
5
6 for k in range(1,n-1): # dynamic loop
7 x[k] = mu*(a*x[k-1]+y[k-1]) + dt*mu*(a*u[k]+v[k])
8 y[k] = mu*(x[k-1]+b*y[k-1]) + dt*mu*(u[k]+b*v[k])
9 cost+= 0.5*(x[k]-1)**2

10
11 lx = 0, ly = 0, lc = 0 # arrays of size n
12 lc[n-1] = 1 # reverse mode initialization
13
14 for k in range(1,n-1):
15 lc[n-k-1] += lc[n-k] # line 9: cost[n-k]
16 lx[n-k] += lc[n-k]*(x[n-k] - 1)
17
18 lx[n-k-1] += mu*ly[n-k] # line 8: y[n-k]
19 ly[n-k-1] += b*mu*ly[n-k]
20 lu[n-k] += dt*mu*ly[n-k]
21 lv[n-k] += dt*b*mu*ly[n-k]
22
23 lx[n-k-1] += a*mu*lx[n-k] # line 7: x[n-k]
24 ly[n-k-1] += mu*lx[n-k]
25 lu[n-k] += dt*a*mu*lx[n-k]
26 lv[n-k] += dt*mu*lx[n-k]
27
28 return lu,lv # Gradient

Having updated the adjoint variables, we have, for every k ∈ {0..n −2},

(
lx

ly

)k

= A−1
(
lx

ly

)k+1

+
(

xk −1
0

)
(
lu

lv

)k

= δt A−1
(
lx

ly

)k

which gives, considering the variables lu , lv ,

(
lu

lv

)k

= A−1
(
lu

lv

)k+1

+δt A−1
(

xk −1
0

) (
lu

lv

)n−1

=
(
0
0

)
. (2.74)

Since
(p

q
)k = −

(
lu
lv

)k
, we recognize an implicit Euler time discretization of (2.70), like for the

state equation (2.69) in the backward direction which is to be compared with the explicit dis-
cretization (2.73) in forward direction. The derivative of the reduced cost function is therefore
expressed as −(p0, ..., pn−1, q0, ..., qn−1) according to the chosen discretization of the integral in
(2.28,2.71).

A Crank-Nicolson scheme could have been chosen in (2.69). This would give a matrix A
such that A−1 = A and a Crank-Nicolson scheme for (2.70) too. We refer to [87] for a discussion
on the relationship of automatic differentiation in reverse mode with derivative computation
using adjoint variables, and resulting appropriate choices of discretization schemes.

104

CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION WITH FREEFEM AND IPOPT

2.C PDE Optimization with Python or Matlab

Section 2.1.5 was devoted to automatic differentiation within AMPL for PDE constrained
problems. Possible alternatives are either to write our own adjoint in C++ code by calling rou-
tines like CppAD and Adept or to export the problem in Python or Matlab by using the
CasADi package. Loading data into Python is done by :

ndof = int(numpy.loadtxt('ndof.txt'))
iA, jA, AM = numpy.loadtxt('A.txt', unpack=1, skiprows=3);
iM, jM, MM = numpy.loadtxt('B.txt', unpack=1, skiprows=3);
ydArray = numpy.loadtxt('target.txt',unpack=1,skiprows=1);

Ac = scipy.sparse.coo_matrix((AM, (iA, jA)), shape=(ndof,ndof));
Mc = scipy.sparse.coo_matrix((MM, (iM, jM)), shape=(ndof,ndof));

Code 2.39 – Sparse matrices importation in Python

The three first lines stand for the characteristics of the matrices and are skipped by using the
option skiprows=3 in the numpy.loadtxt command. The optimization package CasADi
(see [13]) is then called and the problem is written as a nonlinear programming problem via
the toolbox

import casadi as ca
opti = ca.Opti()

Declaring the variables is done by using the MX symbolics (assuming that most of operations
between multiple sparse-matrix valued objects are allowed) whose description is available on
the CasADi website.

A = ca.MX(Ac); # convert sparse matrices above in MX object
M = ca.MX(Mc);
yd = ca.MX(ydArray) # target yd in (2.30)

y = opti.variable(ndof) #Unknowns declaration
u = opti.variable(ndof)

It remains to express the cost and constraint functions. Matrix multiplication Ax is done either
by mtimes(A,x) or A @ x commands. Most of possible operations are described in [2, Docs
tab].

opti.minimize(0.5*(y.T-yd.T) @ M @ (y-yd) + 0.5*alpha*u.T @ M @ u) # (2.30)
opti.subject_to(A @ y - M @ u == 0.0) # PDE constraint function (2.36)
opti.subject_to(opti.bounded(0,Mu,1)) # Bounds on control 06 u 6 1

opti.solver('ipopt',{'ipopt':{'max_iter':50, 'tol':1.e-11,
'Hessian_approximation':'limited-memory'}})

sol = opti.solve()

Code 2.40 – CasADi template for LQ PDE Optimization

Computing the Hessian by automatic differentiation is in general too much memory greedy
and too long in the execution, and BFGS thus appears as an alternative by using the IpOpt
option'Hessian_approximation':'limited-memory'. The previous code is written
in the setting of Option 1. But Option 2 can also be considered :

105

https://web.casadi.org/docs/#the-mx-symbolics

2.C. PDE Optimization with Python or Matlab

u = opti.variable(ndof) # only control as variable
us = M @ u
y = solve(A,us) # Solve state equation

cost = 0.5*(y.T-yd.T) @ M @ (y-yd) + 0.5*alpha*u.T @ M @ u
F = Function('F',[u],[cost]) # way to declare u 7→ Ĵ (u)

opti.minimize(F(u))
opti.subject_to(opti.bounded(0,Mu,1))

106

Chapter 3

Numerical solving of time-varying
shape design problems

Table of contents
3.1 Numerical shape design for parabolic PDE models 108

3.1.1 Particular case of dimension 1 . 108

3.1.2 Level-set method in dimension d > 2 . 110

3.1.3 Convexification method . 113

3.1.4 Discussion : comparison of implemented methods 115

3.2 Numerical examples illustrating the turnpike phenomenon 121

3.3 Further prospects . 125

3.3.1 Symmetries of solutions . 125

3.3.2 Numerical extension to semilinear PDEs 125

Abstract In this chapter, we illustrate how we perform the numerical solution of the two pro-
blems (DSD)T et SSD . We first focus on the one-dimensional case using the software AMPL
combined with CPLEX. Then, in a larger dimension, we first focus on the stationary case and
run both level-set method and a convexification method based on the relaxed (OC P)T problem
using the framework introduced in the 2 chapter. We then compare the two algorithms and
choose the most efficient one to solve the time dependent problems. Finally, we illustrate the
turnpike phenomenon with several examples.

107

3.1. Numerical shape design for parabolic PDE models

3.1 Numerical shape design for parabolic PDE models

In the Chapter 1, we have been interested in linear parabolic PDEs with distributed control
seen as the indicator function of a certain time-varying shape to be optimized in order to
minimize a quadratic criterion. In this chapter, we are interested in how to solve it numeri-
cally. We recall the introduced dynamic optimal shape design problem which always reads for
y0, yd ∈ L2(Ω) arbitrary

min JT (ω(·)) = 1

2T

∫ T

0
‖y(t)− yd‖2

L2(Ω) d t

subject to : ∂t y + Ay =χω(·), y|∂Ω = 0, y(0) = y0.

As mentioned earlier, A always represents a uniformly elliptic second order differential ope-
rator with Dirichlet boundary conditions. Homogeneous conditions were considered in the
Chapter 1 and inhomogeneous or Robin conditions can be taken instead by following the al-
ternatives outlined in the Chapter 2, in the 2D and 3D cases. We further write its associated
stationary optimal shape design problem (SSD)

min J (ω) = 1

2
‖y − yd‖2

L2(Ω)

subject to : Ay =χω, y|∂Ω = 0.

The computation of the cost function is possible provided that we solve the PDE (1.3). We dis-
cuss the possibilities of numerical solution of such problems which will then lead us to choose
one among those studied. When the dimension is strictly greater than one, we will prefer to
use the variational formulation and the finite element approach highlighted in the Chapter
FreeFEMchap :PDEffem. Using FreeFEM, we will consider a mesh of the domain Ω, a finite
element space with Lagrangian elements P1 and discretize (SSD) according to this triangula-
tion. However, we first present the particular case of dimension 1 where the optimization treat-
ment is performed with the software AMPL. Then, we will present chronologically the different
ways that we have privileged concerning the stationary shape optimization problem and their
more or less good extensibility to the time dependent problem.

3.1.1 Particular case of dimension 1

We first regard a variant to (DSD)T by taking the Laplacian in dimension 1 which is no other
than to derive twice in space on the segment (0,L)

min JT (ω(·)) = 1

2T

∫ T

0

∫ L

0

(
y(t , x)− yd (x)

)2 d xd t (3.1)

subject to :


∂t y −∂xx y =χω(·) ∀(t , x) ∈ (0,T)× (0,L)

y(t ,0) = y(t ,L) = 0, ∀t ∈ (0,T)

y(0, x) = y0, ∀x ∈ (0,L).

(3.2)

From the numerical point of view, we choose implicit and centered finite differences scheme
on uniform subdivision of both segments (0,L) and (0,T) with respectively nx + 1 and nt + 1

108

CHAPTER 3. NUMERICAL SOLVING OF TIME-VARYING SHAPE DESIGN PROBLEMS

points such that following approximation of derivatives read

∂t y(ti , x j) = 1

δt
(y(ti+1, x j)− y(ti , x j))

∂xx y(ti , x j) = 1

δ2
x

(
y(ti , x j+1)−2y(ti , x j)+ y(ti , x j−1)

)
with δt = T

nt
and δx = L

nx
and lead to finally discretize (3.2) as

1

δt
(y i+1

j − y i
j) = 1

δ2
x

(
y i+1

j+1 −2y i+1
j + y i+1

j−1

)
+χi+1

ω, j , ∀(i , j) ∈ {0..nt −1}× {1..nx −1},

with y i
j = y(ti , x j) and χi

ω, j = χω(ti , x j). Since χω(·) takes values into {0,1} for all t ∈ (0,T), we

aim to specify that we deal with integer lower than 1 an upper to 0 for the quantities χi+1
ω, j . In

addition, we discretize the cost function by using trapezoidal formula∑
(i , j)∈{0..nt−1}×{1..nx−1}

(y i
j − (yd) j)2 + (y i

j+1 − (yd) j+1)2 + (y i+1
j − (yd) j)2 + (y i+1

j+1 − (yd) j+1)2).

The optimization process is made throughAMPL software endowed with theCPLEX solver (see
[23]). CPLEX, which is originally built to solve linear programming problems with either inte-
ger or real variables, is well-performing for mixed-integer quadratic programming so that the
variables χi

ω, j are searched for being either 0 or 1. Moreover, we solve the stationary problem
using the same discretization. An alternative could be to deal with the solver IpOpt, which
does not handle integer variables but a continuous version of them. We therefore specify to
AMPL that the variable takes values in (0,1) instead, which amounts to reformulating the pro-
blem in its relaxed form presented in Chapter 1. We ran both methods and observed the same
solution in output, which we expected since the assumptions of the Theorem 1.1 are satisfied.
We plot in Figure 3.1 the time-varying optimal shape and the error between the static and opti-
mal triples in time. The final time has been set to T = 10, which is large enough to observe that
the time-varying shape is mostly stationary. The error between the two optimal triples leads us
to conjecture that an exponential turnpike property should be found theoretically. The ability

(a) (b)

FIGURE 3.1 – (a) optimal time-varying shape; (b) t 7→ ‖yT (t)− ȳ‖+‖pT (t)− p̄‖+‖χωT (t) −χω̄‖

109

3.1. Numerical shape design for parabolic PDE models

to deal with integer variables in AMPL has greatly facilitated the handling of the χomeg a indica-
tor function. When dealing with higher dimensions, we will prefer the finite element methods
for PDE constrained optimization introduced in the Chapter 2. We will first treat the statio-
nary problem to illustrate the different numerical approaches used and we will conclude on
their possible generalization to the dynamic case. To solve numerically (SSD), two methods
can be distinguished : the level-set method combined with a gradient descent algorithm and
the convexification method combined with the interior point optimization method IpOpt.
While the level-set method deals directly with deformation fields of shapes, the convexifica-
tion introduces a more general problem whose solution is supposed to be a shape under the
assumptions of the Theorem 1.1.

3.1.2 Level-set method in dimension d > 2

Let the stationary problem (SSD) read

min
ω∈UL

J (ω), C (ω)6 0.

The optimization procedure here relies on a gradient descent method whose descent direction
θ is sought in the set W 1,∞(R2,R2). A shape sensitivity analysis is first performed by moving
an initial shape ω0 by the vector field I + θ which is a diffeomorphism of R2 into R2 under
the assumption that θ is sufficiently “small”. The shape derivatives of the cost and constraint
functions are thus written in the Fréchet sense by considering the derivative with respect to a
real variable of the function J (I + tθ(ω)) when t = 0 (see [59, Chapter 5]). So we have

J ((I +θ)(ω)) = J (ω)+D J (ω)(θ)+o(θ) with lim
o(θ)

‖θ‖W 1,∞(R2)
= 0

with D J (ω) denoting a continuous linear form on W 1,∞(R2). The above shape sensitivity ana-
lysis allows us to find a relevant vector field θ to decrease the objective function by moving the
initial shapeω to the new (I+θ)ω. In the case of dimensions greater than two, the finite element
method is more suitable, both for managing the construction and modification of meshes and
for solving PDEs. Thanks to the tools presented in the Chapter 2, we introduce a mesh of the
considered domainΩ in (SSD) and a finite element space P1. A very intuitive but costly proce-
dure would be to directly process the modifications of the mesh with the vector field θ found
with the help of the previous shape sensitivity analysis. At each iteration, this vector field plays
the role of a descent direction and will modify the mesh in such a way that a remeshing of the
initial mesh is performed. This can be very expensive, especially in dimension 3. Moreover, we
have not put any constraints on the topology of the admissible domains since we are looking for
optimal solutions in the domain of measurable sets with a volume constraint. These topology
changes are not well handled by deformation methods based on Hadamard boundary varia-
tions. Thus a first idea to solve the stationary problem was to proceed to shape deformations
thanks to the level-set method. For this purpose, the domain of study Ω is a subset of Rd , for
d ∈ {2,3} and meshed only once (it can however happen to remesh at some isolated iterations).
According to [9], the shape to be optimized and its boundary are respectively considered as the

110

CHAPTER 3. NUMERICAL SOLVING OF TIME-VARYING SHAPE DESIGN PROBLEMS

upper level-set and the level-set of a function defined in Ω.
φ(x) < 0 ⇐⇒ x ∈ω
φ(x) = 0 ⇐⇒ x ∈ ∂ω∩Ω
φ(x) > 0 ⇐⇒ x ∈Ω\ω̄.

(3.3)

Along the optimization procedure, the shape is going to evolve at the same time as φ which is
governed by a Hamilton-Jacobi equation. At a given iteration and for a vector field θ beforehand
determined, the motion of the shape ω is determined over an interval (0, s) by the level-set of a
function φ(t , x) defined on (0, s) and solution of

∂φ

∂t
+θ ·∇φ= 0, ∀t ∈ (0, s), x ∈Ω

φ(0, ·) =φ0
(3.4)

where φ0 is the level function at the previous iteration and s is an adjustable parameter for
the step size depending on the chosen descent direction. The main advantages are the ease of
computing the normal n to the shape ω (which is usually involved in computing the shape de-
rivative) which is rewritten as a function of φ as n = ∇φ/|∇φ| and the ability to keep the mesh
constant throughout the optimization procedure. A less intuitive advantage is the easy but still
partial treatment of topological changes as mentioned in [96]. The cost and constraint func-
tions denote respectively the distance L2 to the target function yd and the volume constraint

J (ω) = 1

2

∫
Ω

(yω− yd)2 d x C (ω) =
∫
ω

1d x −L|Ω|,

for some ω ∈UL = {ω⊂Ω measurable, |ω|6 L|Ω|} and yω the solution of

Ay =χω in ∈Ω, y = 0 in ∂Ω. (3.5)

Following [59], we compute derivatives of cost and constraint functions. Derivative of the vo-
lume constraint reads thus

DC (ω)(θ) =
∫
∂ω
θ ·n d s.

When it comes to the derivative of J , we use the chain rule and firstly compute the derivative of
the application S :ω 7→ yω solution of (3.5) by derivating the variational formulation associated
so that DS(ω) returns for some θ the solution of the variational formulation

find z ∈ H 1
0 (Ω) such that : (Az, v)L2(Ω) =

∫
∂ω

vθ ·n d s ∀v ∈ H 1
0 (Ω).

DS(ω) is a continuous linear map from W 1,∞(R2,R2) to H 1
0 (Ω) (it suffices to write the energy

inequalities for z as a solution of a PDE on one side on ω and on the other side on Ω\ω and
to use the continuity of the trace operator from W 1,p (R2) to Lp (∂ω)). The introduction of the
adjoint state p ∈ H 1

0 (Ω) solution of

−A∗p = y − yd , in Ω

p = 0, in ∂Ω,
(3.6)

111

3.1. Numerical shape design for parabolic PDE models

allows to finally reword the derivative of the cost function as

D J (ω)(θ) =
∫
∂ω

pθ ·n d s. (3.7)

We first employed an augmented Lagrangian algorithm from [76, Chapter 17] to take into ac-
count the volume constraint, combined with a conjugate gradient algorithm. In the first itera-
tions, we observed that the cost function decreases while keeping the volume constraint veri-
fied. But, the convergence of the algorithm was mostly unattainable. We even noticed that the
cost function started to increase again after a large number of iterations and started to oscillate.
We did not pursue this method because we could not make it perform well. There were two ex-
planations : first, the chosen algorithm was too simple and showed some limitations. Secondly,
we took as gradient descent θ = (p +λ)n where λ was the penalty constant based on the aug-
mented Lagrangian. However, it is more convenient in shape optimization to proceed with the
regularization of the guessed direction of descent before the update of the level-set function φ
with (3.4). Indeed, the derivative recovered in the equation (3.7) gives values to θ only on the
∂ω boundary while its knowledge on the whole Ω domain is required to move the whole ω do-
main. It is indeed common to introduce a Hilbert H such that H subset of W 1,∞(R2,R2) and to
identify the linear form in (3.7) with a well-chosen inner product on H . The Sobolev injection
implies that H is generally assigned to H 1(Ω) with the weighted inner product

(θ,θ′)H 1(Ω) =
∫
Ω

(α2∇θ : ∇θ′+θ ·θ′)d x.

As detailed in the Chapter 2 and following [27; 73] the introduction of such identification pro-
blems allows us to define θ in the whole domain with certain regularity properties which are
numerically relevant insofar as complications during mesh modifications can be avoided. Mo-
reover we obtain a hilbertian structure which allows us to work with the gradient algorithm (as
we did with IpOpt in the Chapter 2). The interpolation of D J (ω) and DC (ω) is thus done by
solving

∀θ ∈ H 1(Ω,R2)
(∇J (ω),θ

)
H 1(Ω,Rd) = D J (ω)(θ)

∀θ ∈ H 1(Ω,R2)
(∇C (ω),θ

)
H 1(Ω,Rd) = DC (ω)(θ).

At the same time, an advanced and efficient algorithm for general optimization problems with
equality constraints and particularly well suited in the context of shape optimization has been
developed in [43]. An example of its application to our problem is highlighted in the Algorithm
4.

Having in mind the results illustrated in the Chapter 1, we are not able to answer the exis-
tence question when the target function does not verify the required assumptions of the Theo-
rem 1.1. Replacing the volume constraint with a perimeter constraint should allow direct exis-
tence of the shape solution of (SSD) and the above algorithm would be particularly well suited
to solve it when ω lies in the set

UPL = {ω⊂Ω measurable ,Per(ω)6 M } .

Conversely, when the hypotheses of the Theorem 1.1 are true, it seems relevant to write numeri-
cally (SSD) in its convexified formulation (SOP) and to use the tools developed in the Chapter
2 for the general problems of optimization under PDE constraints.

112

CHAPTER 3. NUMERICAL SOLVING OF TIME-VARYING SHAPE DESIGN PROBLEMS

Algorithm 4 Optimal shape design of (SSD) via null space gradient flow method

for k = 1...maxiter do
1. Solve (3.5) and compute Jk = J (ωk) and Ck =C (ωk)
2. Solve (3.6) to get pk = p(ωk)
2. Solve identifications problem :

find ∇Jk such that
∫
Ω(α2∇θ : ∇θ′+θ ·θ′)d x = ∫

∂ωk
(pkθ ·n)d s ∀θ ∈ H 1(Ω,R2) and

find ∇Ck such that
∫
Ω(α2∇θ : ∇θ′+θ ·θ′)d x = ∫

∂ωk
(θ ·n)d s ∀θ ∈ H 1(Ω,R2)

3. Put λk = argminλ∈R ‖∇Jk +λ∇Ck‖
4. Compute descent direction :
ξJk =∇Jk +λk∇Ck

ξCk = Ck

|∇Ck |2 ∇Ck

Vk =αJξJk +αCξCk

5. Compute the new iterate :
for i = 0...maxtrial do

Solve : φt +Vk |∇φ| = 0, φ(0) =φk

φk+1 =φ(d t)
ωk+1 = {φk+1 < 0}
if meritk (ωk+1) 6 meritk (ωk), with merit function meritk (ω) = αJ

(
J (ω) + λkC (ω)

) +
αC
2

(
C (ω)2

|∇Ck |2
)

then

exit line search loop and come back to 1.
else

d t = d t
2

end if
end for

end for

3.1.3 Convexification method

In shape optimization, the existence of a solution is most of the time not easily guaranteed
and we usually have to compromise. Either the solution shape is sought in a smaller and more
compact set (by adding a volume or perimeter constraint, for example), or, conversely, the so-
lution is allowed to be in a larger set by using a relaxation method. While the level-set method
deals directly with the deformation of the shape by the φ function, the relaxation (or convexifi-
cation) method converts the initial problem into a convexified optimal control problem whose
solution lies in a larger set containing UL , which should make it easier to be studied by classical
PDE optimal control tools. This is a well-known method in shape optimization which has the
double advantage of providing strategies for establishing theoretical results (see Chapter 1 and
see [82]) and a mathematical framework for finding numerical solution (see Chapter 2). On our
side, we pursue the same convexification as in the Chapter 1. Given any measurable subset ω,
we identify ω with its indicator function χω ∈ L∞(Ω; {0,1}) and, following [10; 82; 83], we iden-
tify UL with a subset of L∞(Ω). Then, the optimal solutions are searched in the convex closure
of UL in the weak star topology of L∞.

U L =
{

a ∈ L∞(
Ω; [0,1]

) ∣∣∣ ∫
Ω

a(x)d x 6 L|Ω|
}
⊂U = L2(Ω). (3.8)

113

3.1. Numerical shape design for parabolic PDE models

More generally, we refer to [6] for details on convexification and homogenization methods. We
remind the convexified (or relaxed) optimal control problem (OC P)T as the problem of deter-
mining a control t 7→ a(t) ∈U L minimizing the cost

JT (a) = 1

2T

∫ T

0
‖y(t)− yd‖2

L2(Ω) d t

under the dynamical constraints

∂t y + Ay = a, y|∂Ω = 0, y(0) = y0. (3.9)

The corresponding convexified static optimization (SOP) problem still reads

min
a∈U L

1

2
‖y − yd‖2

L2(Ω), Ay = a, y|∂Ω = 0. (SOP)

We have seen in the Chapter 1 that, under the assumptions of the Theorem 1.1, the solving of
(OC P)T and of (SOP) implies that the optimal solutions of these convexified problems are up-
per level-sets of the adjoint state and are thus shapes which are the optimal solution to within
a zero measure domain, respectively of (DSD)T and of (SSD). When the assumptions of the
Theorem 1.1 are not satisfied, a relaxation phenomenon can be observed, namely that it can
happen that the optimal solution of (OC P)T or of (SOP) is not the characteristic function of a
certain subset, insofar as it takes values in (0,1) on a subset of positive measure. In the Section
3.1.4, we give an example of a target function yd such that the optimal solution ā of (SOP) is
not 0 or 1 everywhere.

We then generate a mesh Th ofΩ, that as with the level-set method will not be modified du-
ring the optimization process. Control a and state y are discretized according to P1 finite ele-
ments and matrices of the variational formulation are built such that numerical problems are
reworded according to the Option 1 of FDTO method stated in Chapter 2. Let denote (φi)16i6nd

theP1 finite elements basis where nd is the size of the finite element space (forP1-Lagrange ele-
ments, nd is the number of vertices) such that both discretization of state and control variables
respectively lie in Yh , U h

ad ⊂Uh where

Vh =
{

v ∈ H 1(Ω), ∀K ∈ Th v|K ∈P1

}
= Vect(φi)i∈{1..nd }

Yh = {v ∈Vh , v|∂Ω = 0} = Vect(φi)i∈{1..n} for 0 < n < nd ,

U h
ad = {u ∈Vh ,uh

a 6 u 6 uh
b } ⊂Uh =Vh .

We introduce the matrices involved in the cost computation and the PDE constraint discreti-
zation

A(i , j)∈{1..nd }2 = (Aφi ,φ j)L2(Ω), M(i , j)∈{1..n}2 = (φi ,φ j)L2(Ω), Lv,i∈{1..nd } = (φi ,1)L2(Ω). (3.10)

The stiffness matrix is a n×n matrix that is filled in a nd×nd matrix by stipulating a penalization
term on boundary vertices indexes to force homogeneous Dirichlet boundary conditions. The
generalization to the case of non homogeneous case is treated in Chapter 2. We finally write
(SOP) as

min
(Y ,U)∈R2nd

(Y −Yd)T M(Y −Yd), AY = MU , LT
v U 6 L|Ω| 06U 6 1 (3.11)

114

CHAPTER 3. NUMERICAL SOLVING OF TIME-VARYING SHAPE DESIGN PROBLEMS

(a) (b)

FIGURE 3.2 – Optimal static shape : (a) Convexification method; (b) Level-set method.

When it comes for the time case (OC P)T, we use an implicit Euler scheme with nt steps and
build the same matrices (2.45) as in Chapter 2 to rewrite (OC P)T as

min
(Y ,U)∈R2nd nt

(Y −Yd)T D̃(Y −Yd), ÃY = M̃U , LT
v Ui 6 L|Ω| 06Ui 6 1 ∀i ∈ {1 · · ·Nt }.

(3.12)

The state variable Y is seen here as an optimization variable (referring to Option 1 in Chapter
2) and avoids us to explicitly solve the state equations involved in (3.9) and (SOP) and asso-
ciated adjoint equations mentioned in Chapter 2. The discretized convexified problems are
linear quadratic optimization problems with inequality and equality constraints. It is then easy
to compute the derivatives of the various functions involved. We implement them as well as
their derivatives and we call the optimization routine IpOpt via FreeFEMfollowing the tem-
plate illustrated in Chapter 2. We thus plot in Figure 3.2 optimal shapes obtained with the both
level-set and convexification methods for the stationary case on a mesh including 28800 tri-
angles and 14641 vertices. Stationary solutions are very similar unlike the effectiveness of both
procedures.

3.1.4 Discussion : comparison of implemented methods

With the aim in mind to solve the optimal time-varying shape design (DSD)T, we proceed
to a comparison of level-set and convexification methods on several stationary examples of the
following form

min
ω

1

2
‖y − yd‖2, Ay =χω, y|∂Ω = 0, |ω|6 L|Ω|

for various elliptic operators A defined in the Chapter 1, spacesΩ and target functions yd . This
will allow us to put forward an efficient procedure for the dynamic case, which is more delicate.
Moreover, this comparison brings us some knowledge about the numerical behavior of the two
procedures when the limiting cases are treated. Indeed, we want to observe what happens both
when the target function does not verify the assumptions of the Theorem 1.1 and also when the
operator A does not have a strictly positive ellipticity constant θ. Finally, the 3D case is also of
interest since the computation time and the memory allocation will increase significantly with
the size of the optimization variables.

115

3.1. Numerical shape design for parabolic PDE models

(a) (b)

FIGURE 3.3 – Optimal static solution : (a) Convexification method ; (b) Level-set method.

Example 1 :Ω= [−1,1]2, yd = 0.1 and A =−∆
Represented on Figure 3.2, the function yd satisfies well the assumptions of the Theorem

1.1. The numerical solutions obtained with the level-set and convexification algorithms are
very similar. Although the level-set method guarantees that the solution is a shape in case of
convergence, the convexification method seems here to be faster and requires less iterations.
This may be due to two things : first, the convexification method is known to be a very effi-
cient and robust optimization method and we have furthermore implemented the Hessian of
the cost function, while in the level-set method we only perform a gradient descent algorithm
without Hessian or approximation of it.

Example 2 :Ω= [−1,1]2, yd = 2−x2+y2

20 and A =−∆
The target function yd is here set so that the assumptions of the Theorem 1.1 are not satis-

fied. As already observed in the numerical simulations of Chapter 1, a relaxation phenomenon
occurs. On the Figure 3.3(a) we can see that the optimal solution ā takes values in (0,1). On the
contrary, the level-set method gives back to a form. This leads us to think that the assumptions
made in the Theorem 1.1 can potentially be weakened. The search for an optimal solution by
means of a level-set function does not allow the solution to take values in (0,1). Thus, the exis-
tence of an optimal shape of the problems (SSD) et (DSD)T may be possible under weaker
assumptions than those described in the Chapter 1. Nevertheless, the two numerical solutions
remain quite similar, in that the sets where the convexified solution and the level-set solution
take the value 1 coincide.

Example 3 :Ω= [−1,1]2, yd = 0.1 and A a second-order operator

The target function is again in the lines of Theorem 1.1 and several second-order operators
A are this time examined. We expect to observe various behavior according to whether the el-
lipticity constant is θ > 0, θ = 0 or θ < 0. When it comes to the turnpike property, if the operator
A is no more uniformly elliptic, we won’t be able to write energy inequality stated in Appen-
dix 1.4 that are necessary for the turnpike results stated in Chapter 1. On Figure 3.4, we take,
successively :

116

CHAPTER 3. NUMERICAL SOLVING OF TIME-VARYING SHAPE DESIGN PROBLEMS

(a) (b)

(c) (d)

(e) (f)

FIGURE 3.4 – Optimal static solution : (a) θ > 0 : Convexification method; (b) θ > 0 : Level-set method ;
(c) θ = 0 : Convexification method; (d) θ = 0 : Level-set method; (e) θ < 0 : Convexification method; (f)
θ < 0 : Level-set method.

117

3.1. Numerical shape design for parabolic PDE models

(a) (b)

FIGURE 3.5 – Optimal static shape 3D : (a) Convexification method; (b) Level-set method.

• Ay =−∂11 y −∂22 y −0.5∂12 y −0.5∂21 y and θ > 0

• Ay =−∂11 y −∂22 y −∂12 y −∂21 y and θ = 0

• Ay =−∂11 y −∂22 y −1.5∂12 y −1.5∂21 y and θ < 0

When θ > 0, both methods are giving back the same solution. When θ = 0, the level-set solution
is similar to the convexified one but is slightly more regular. Indeed, the convexification method
allows a wider variety panel of solutions since (SOP) is solved in L∞(Ω; (0,1)) while the level-set
method forces the solution to keep some regularity properties insofar we modify step by step
an initial regular shape through successive regular enough vector fields. Finally, when θ < 0,
the level-set algorithm does not even converge and convexification gives back a shape solution
without discernible structure.

Example 4 :Ω= [−1,1]3, yd = 0.025 and A =−∆
FreeFEM is also well-indicated to solve PDEs in 3D. Tools developed in Chapter 2 are easily

generalizable by loading the appropriate environment. Mesh generation is a bit more different
but stays user-friendly. It is interesting to observe what can happen in 3D where topology mo-
difications are more varied than in 2D. Except for mesh generation, the previously described
methods are unchanged. Of course, in 3D the time required to see the algorithm converge is
much larger insofar it is directly due to the time required to solve a PDE in 3D. Moreover, since
the time computation is going to be larger, it will be decisive in the choice of the more effective
method for the time-varying shape design problem. A last one example was the one of taking a
target function solution of

−∆yd = ad in Ω, yd = 0 in ∂Ω,

with ad ∈ L∞(Ω; (0,1)) such that ad satisfies the volume constraint
∫
Ω ad (x)d x 6 L|Ω|. Convexi-

fication should return ad as the optimal solution and we are interested in the one returned by
the level-set method. Let Ω = [−1,1]2 and ad = 1

4 (x y + 1). Figure 3.6(a) describes the optimal
solution returned by means of relaxation and which coincides well with the graph of ad . Mo-
reover, the shapes returned by the level-set with several initialization level-set functions are

118

CHAPTER 3. NUMERICAL SOLVING OF TIME-VARYING SHAPE DESIGN PROBLEMS

(a) (b) (c)

FIGURE 3.6 – Inverse problem - optimal solution : (a) Convexification method; (b) Level-set method with
φ0 = ad ; (c) Level-set method with φ0 = (x2 + y2 −0.1)(x2 + y2 −0.4).

again concentrated where the values of ad are the largest. We stopped the algorithm when the
convergence criterion was around 10−4 and the objective function around 10−5. Convergence
may not be attainable since we normally expect to find almost J = 0.

Moreover, this example highlights a drawback of the level-set method which admits a strong
dependence of the topology of the returned optimal shape on the one resulting from the initia-
lization level-set function. We store in the Table 3.1 some comparative data of the two proce-
dures in order to justify our choice for the next simulations. We compare the total computation
time, the processing time, the number of iterations, the violation constraints, and the conver-
gence criterion. We first deduce that under the assumptions of the Theorem 1.1 both methods
obtain the same solution with less efficiency from the level-set method. Outside this scenario,
the convexification remains unchanged in terms of its performance while the other method
decreases in terms of convergence speed. Moreover, in order to deal with a time-varying shape
and thus to add at least thirty times more degrees of freedom, the computation time of the level-
set method is prohibitive compared to the convexified method. This is explained by the use of
a Newton algorithm and the power of the interior point method combined with the PDEffem
method already highlighted in the Chapter 2.

119

3.1. Numerical shape design for parabolic PDE models

Problem Level-set Convexification

2D no relaxation

iter = 90 iter = 21
J = 0.0074 J = 0.0071
C ≈ 10−4 C ≈ 10−31

|∇J | = 10−5 |∇J | = 10−8

tcpu ≈ 90s tcpu ≈ 6s

2D relaxation

iter = 135 iter = 21
J = 0.00098 J = 0.00097

C ≈ 10−4 C ≈ 10−17

|∇J | = 10−5 |∇J | = 10−8

tcpu ≈ 115s tcpu ≈ 6s

Elliptic case

iter = 300 iter = 23
J = 0.00697 J = 0.00697

C ≈ 10−6 C ≈ 10−17

|∇J | = 10−5 |∇J | = 10−8

tcpu ≈ 250s tcpu ≈ 3s

3D

iter = 90 iter = 21
J = 0.0262 J = 0.026
C ≈ 10−5 C ≈ 10−31

|∇J | = 10−4 |∇J | = 10−8

tcpu ≈ 6000s tcpu ≈ 2850s

TABLE 3.1 – Level-set and convexification methods comparison

120

CHAPTER 3. NUMERICAL SOLVING OF TIME-VARYING SHAPE DESIGN PROBLEMS

3.2 Numerical examples illustrating the turnpike phenomenon

In accordance with the comparative section above, we will focus in the following on the
combination of FreeFEM and IpOpt based on the tools described in the Chapter 2 to solve
time-varying optimal shape design problems. Our main objectives are on the one hand to high-
light the turnpike phenomenon on several examples and on the other hand to deduce some
perspectives for further research on the theoretical results elaborated in the Chapter 1. We first
give numerical simulations for different domains, target functions yd and operators A in the
framework of the Theorem 1.1. The operator A is discretized according to the associated varia-
tional formulation and its matrix representation on a mesh of about 15000 vertices. We carry
out the time discretization by means of an implicit Euler scheme with 35 time steps such that
the convexification problem (OC P)T of (DSD)T is numerically equivalent to the solution of the
quadratic problem (3.12) with Ã, M̃ and D̃ defined as in (2.45) based on the matrices A,B and
L defined in (3.10) and this with nearly 1000000 variables. The computation time is about half
a day to obtain a solution with a small enough tolerance of convergence. Indeed, if the ter-
mination criterion is too large, we observe that the output is a relaxed function. We force the
algorithm to go further in the optimization process by decreasing the convergence criterion of
the tolerance in order to observe the optimal solution as a shape evolving in time. However,
this results in a higher computation time. Once the solutions are found, they are exported in
vtk format to be visualized with the free software Paraview. Illustrative examples are

• Example 1 : Ω= [−1,1]2, yd = 0.1 and Au =−∆u on Figure 3.7

• Example 2 : Ω= [−1,1]2, yd = 1
20 (x y +1) and Au =−∆u on Figure 3.9

• Example 3 : Ω= half-stadium, yd = 1
20 (x y +1) and Au =−∆u on Figure 3.10

• Example 4 : Ω= [−1,1]3, yd = 0.025 and Au =−∆ on Figure 3.11

• Example 5 :Ω= [−1,1]2, yd = 1
20 (2sin(2(x2+ y2))+1) and Au =−∂x ((x− y)2∂x u)−∂y ((x+

y)2∂y u) on Figure 3.12.

We plot on all the examples the cylinder of the time evolution of the shape and the behavior of
the shape at certain times. In addition, we also plot the optimal stationary shape of the asso-
ciated stationary problem (SOP) to compare it to the shape in the middle of the time interval.
To observe the phenomenon of exponential turnpike, we plot the error between both optimal
triples t 7→ ‖yT (t)− ȳ‖+ ‖pT (t)− p̄‖+ ‖χωT (t) −χω̄‖ for different final times T on the Figure
3.8. The larger the final time T is, the more often the residual between the two optimal triples
is close to 0. The behavior of the residual function is typical of the exponential turnpike and
is in line with our conjecture that this phenomenon could be shown theoretically. Moreover,
we observe that most of the time, the dynamic optimal shape remains very close to the static
shape. These numerical observations seem to hold systematically under the assumptions made
in the Theorem 1.1. The turnpike phenomenon occurs even when we observe a relaxation as
long as θ > 0. On the contrary, if θ 6 0 we have no guarantee to write energy inequalities with
a constant independent of the final time (see Appendix 1.A), and the turnpike phenomenon
is not guaranteed. In conclusion, these numerical simulations make two key points : first, the
numerical turnpike results lead us to believe that an exponential turnpike property for state,
adjoint, and control should appear. Nevertheless, we must ask ourselves if the behavior of the
error t 7→ ‖yT (t)− ȳ‖+‖pT (t)− p̄‖+‖χωT (t) −χω̄‖ is a numerical effect that should occur only
for the discretized problem or if it can be generalized to the continuous problem. The second

121

3.2. Numerical examples illustrating the turnpike phenomenon

(a)

(b) (c) (d)

(e) (f) (g)

FIGURE 3.7 – Time-varying optimal shape : (a) Time shape ; (b) t = 0 ; (c) t = 0.5 ; (d) t ∈ (0.5,1.5) ; (e)
t = 1.5 ; (f) t = T ; (g) Static shape.

point concerns the existence of a shape solution and more particularly of a time-varying shape.
The Theorem 1.1 establishes the existence of a stationary shape as a solution of (SOP) when
assumptions are made on the target function. For the time-varying shape obtained for our se-
veral examples, we expect the same assumption to imply the existence of a time-varying shape
as a solution of (DSD)T. So far, we have tried to adapt the proof of the stationary case without
success. We have found a similar strategy in the literature for stationary problems in [57] but
the case of time-dependent solutions seems a more difficult issue to tackle.

FIGURE 3.8 – t 7→ ‖yT (t)− ȳ‖+‖pT (t)− p̄‖+‖χωT (t) −χω̄‖ for T ∈ {1,3,5}

122

CHAPTER 3. NUMERICAL SOLVING OF TIME-VARYING SHAPE DESIGN PROBLEMS

(a)

(b) (c) (d)

(e) (f) (g)

FIGURE 3.9 – (a) Time shape ; (b) t = 0 ; (c) t = 0.5 ; (d) t ∈ (0.5,1.5) ; (e) t = 1.5 ; (f) t = T ; (g) Static shape.

(a)

(b) (c) (d)

(e) (f) (g)

FIGURE 3.10 – (a) Time shape; (b) t = 0 ; (c) t = 0.5 ; (d) t ∈ (0.5,1.5) ; (e) t = 1.5 ; (f) t = T ; (g) Static shape.

123

3.2. Numerical examples illustrating the turnpike phenomenon

(a) (b) (c)

(d) (e) (f)

FIGURE 3.11 – Time shape : (a) t = 0 ; (b) t = 0.1 ; (c) t ∈]0.1,0.9[; (d) t = 0.9 ; (e) t = T = 1 ; (f) Static shape.

(a)

(b) (c) (d)

(e) (f) (g)

FIGURE 3.12 – (a) Time shape ; (b) t = 0 ; (c) t = 0.5 ; (d) t ∈ (0.5,1.5) ; (e) t = 1.5 ; (f) t = T ; (g) Static shape.

124

CHAPTER 3. NUMERICAL SOLVING OF TIME-VARYING SHAPE DESIGN PROBLEMS

3.3 Further prospects

As we have said, the question of the existence of a time-varying shape and the manifestation
of an exponential turnpike property remains open. Other properties could be established such
as the geometric characteristics of the optimal solutions with respect to the initial data.

3.3.1 Symmetries of solutions

On the basis of our numerical examples, we conjecture that if Ω, the operator A and the
target function yd share the same symmetry properties, then optimal solutions ω̄ and ωT (·)
share as well the same symmetry properties. For instance, Figure 3.13(a) highlights four axes of
symmetry (x = 0, y = 0, y = x, y =−x), Figure 3.13(b) two axes (y = x, y =−x) and Figure 3.13(c)
shows up a central symmetry property (of center (0,0) and with angle π).

(a) (b) (c)

FIGURE 3.13 – Symmetries of static optimal shapes : (a) A = −∆, yd = 0.1 ; (b) A = −∆, yd = x y+1
20 ; (c)

Au =−∂x ((x − y)2∂x u)−∂y ((x + y)2∂y u), yd = 1
20 (2sin(2(x2 + y2))+1).

3.3.2 Numerical extension to semilinear PDEs

An extension of both numerical and theoretical results is possible when dealing with semi-
linear PDEs such as

∂t y + Ay + f (y) =χω, y|∂Ω = 0, y(0) = y0. (3.13)

Some examples already exist in the literature, for instance in [58] where the authors are inter-
ested in semilinear shape optimization problems and whose existence proofs involve shape
optimization problems close to the one we treat in (3.13). The assumptions of our theorem
must be modified accordingly and some constraints on the function f must be introduced
following the general framework for the existence of optimal control problems governed by a
semilinear equation stated in [60; 94]. The results already stated on the turnpike phenomenon
for the semi-linear equations [55; 79; 80] go in the direction that its research in the context
of shape optimization is promising. For our part, we provide below several numerical simula-
tions as a possible guarantee that the topic is worth addressing. We always relax the function
χomeg a with a taking values in (0,1) and use the convexification approach combining IpOpt
and FreeFEM for the numerical solution. We can no longer discretize it with a linear quadratic

125

3.3. Further prospects

(a) (b) (c)

FIGURE 3.14 – Semilinear static optimal designs : (a) f (y) = y(1− y2)exp(y)sin(y) ; (b) f (y) = (y +0.4)3 ;
(c) f (y) = 1

y+5 .

(a) (b)

FIGURE 3.15 – Semilinear optimal designs : (a) Dynamical optimal shape ; (b) t 7→ ‖yT (t)− ȳ‖+‖pT (t)−
p̄‖+‖χωT)(t) −χω̄‖.

optimization problem such as (3.11) and (3.12) since the PDE to be solved is not linear any-
more. Instead, we use a fixed point method as described in the Chapter 2. We present on Figure
3.14 some examples of stationary solutions for several f -functions and for an operator A =−∆
and a target function yd verifying the assumptions of the Theorem 1.1. We observe that no re-
laxation occurs and that the optimal solutions are quite similar to the solutions obtained in the
linear case. Some additional examples with a less classical function f should be considered to
be more convincing. Moreover, we still observe the turnpike phenomenon for the optimal de-
sign of the shape in 1D. We take Ω = [0,2], A the Dirichlet Laplacian, yd = 0.1 and T = 10. We
plot on the Figure 3.15 the dynamic optimal shape and we observe that it remains stationary
most of the time (which corresponds to the solution of the corresponding static optimal shape
problem). Moreover, we plot the error between the two optimal triples and we always observe
a semblance of exponential turnpike phenomenon.

126

Conclusion and perspectives

In summary, in the Chapter 1 we address the issue of the turnpike phenomenon in shape
optimization which has never been studied before and which we have called “shape turnpike”.
We focus more specifically on linear parabolic models controlled by domains evolving with
time and acting as a source term seen as the characteristic function of this domain, whose op-
timum is sought to minimize a quadratic criterion with functions Mayer and Lagrange. Based
on a relaxation of the initial problem, we manage to determine under certain assumptions the
existence and uniqueness of the optimal shapes. Moreover, when we treat only a terminal cost,
we show that the Hausdorff distance between the time-varying optimal shape and a stationary
shape to be specified verifies an exponential turnpike property, i.e. the time-varying shape is,
most of the time, exponentially close to that stationary shape in the sense of the Hausdorff dis-
tance. Moreover, when we consider an integral functional, we show that the state and adjoint
variables resulting from the application of the Pontryagin maximum principle verify both the
measure and the integral turnpike properties in the sense of the L2 norm. Moreover, we perform
some numerical experiments in the Chapter 3 which strongly urge us to pursue the research of
this phenomenon in two main directions :

• in the Lagrange case and under the assumptions of the 1.1 theorem, we are convin-
ced that the existence of an optimal time-varying shape can be proved. The stationary
case shows some required properties of the target function and we prove the existence
through the regularity properties of the state and adjoint variables. For the time-dependent
case with an integral cost, the existence could be proved thanks to arguments coming
from the maximum regularity properties and Hölder estimates for the solutions of para-
bolic equations. Indeed, we need regularities on the solutions in time to be able to apply
the same arguments as in the stationary case.

• Moreover, the same numerical simulations provide strong motivation to continue the
search for an exponential turnpike property for the two optimal triples of (DSD)T and
(SSD) under the assumptions of the Theorem 1.1. In the Mayer case and following [47], if
we can transpose the exponential turnpike property of the Hausdorff distance to the sym-
metric difference sense, the state and adjoint turnpike properties follow directly from the
energy inequalities in the Appendix 1.A. More broadly, based on what we observe nume-
rically, we expect the state and the adjoint to remain exponentially close to the stationary
state and adjoint, and the time-varying shape to approach exponentially the stationary
shape in the sense of symmetric difference.

As an open question, we draw attention to the fact that the existence of solutions of (DSD)T

and (SSD) is much easier if we replace the volume constraint by a perimeter constraint since
this adds some compactness properties on the minimizing sequences that one takes when one

127

wants to show the existence of solutions. But in this case, we have to find alternatives to writing
the optimality conditions to characterize the solutions in order to exhibit turnpike properties.
Indeed, with a relaxation method in mind, the bathtub principle no longer seems appropriate
to characterize optimal control as upper level-sets and according to the tools illustrated in the
Chapter 2. The mathematical framework might require the introduction of BV functions to cha-
racterize the controls. This is therefore a more challenging but still attractive issue. Moreover,
we have performed numerical simulations for semi-linear parabolic models which are in line
with the generalization of our results stated in the Chapter 1. The assumptions of the Theorem
1.1 must be adapted accordingly and the existence of the optimal shape seems to be a more dif-
ficult problem. We can take inspiration from [58] where the authors look for an optimal shape
with a measurement constraint that minimizes a Dirichlet type energy involving the solution of
a semi-linear elliptic PDE. By means of a relaxation method, they manage to prove the existence
of optimal shapes.

Even more generally, the turnpike phenomenon could be studied in the context of shape
optimization for other PDE models. Still in the case of parabolic models, we could move to the
case of boundary control (see [54] for a turnpike result with parabolic models), i.e., finding an
optimal shape of the boundary of a domain such that a parabolic equation is verified inside
in order to minimize a quadratic criterion. In the following, we present a possible industrial
application. According to the results already stated in previous works, the case of PDE models
similar to the wave equation also seems promising.

In Chapter 2, we highlighted the power of the partial differential solver FreeFEM when
connected to the interior point method IpOpt to solve difficult optimal control problems. We
focus on several examples that can serve as models. On a linear quadratic example, we present
four solution methods that are divided into direct and indirect methods. We emphasize the
greater efficiency of direct approaches for linear quadratic problems in that a Newton algo-
rithm can be used. Nevertheless, indirect methods, which require the solution of the adjoint
equation, are most often more suitable for nonlinear and shape design problems. Moreover,
we carry out automatic differentiation methods via the optimization software AMPL having
previously discretized the problem with FreeFEM (let us digress here; it would be convenient
to connect FreeFEM with a renamed automatic differentiation software such as Adept or
CppAD in order to automate the computation of the derivatives directly in FreeFEM). Finally,
we underline the good adaptability of FreeFEM to deal with shape optimization and mesh
modifications on the last, non-trivial problem of determining the optimal shapes of micro-
swimmers in a fluid. For this purpose, we model the fluid domain by a torus and we search
for the optimal shape of the lower boundary so that the fluid velocity is maximal in a given
direction. We add some additional constraints on the first and second order derivatives of the
admissible shape boundary in order to easily obtain an appropriate mathematical framework
for the numerical discretization. We finally plot the optimal solutions on several examples and
notice that the optimal solution “tends” to a triangular shaped solution when the bounds on
the second order derivatives constraint are larger. We therefore suggest as an open question to
approach the limit problem by removing the constraints on the second derivatives, which is
very well done numerically but nevertheless requires a much more complicated mathematical
framework from the theoretical point of view. In addition, it might be interesting to allow the
boundary shape to overlap via general 2D deformation vector fields with perimeter constraints
on the boundary. Finally, regarding the special case of shape optimization and the class of ho-

128

CONCLUSION AND PERSPECTIVES

mogenization methods, it would be very interesting to observe the effectiveness of FreeFEM
combined with IpOpt on the classical example of minimizing the compliance of a cantilever
and on other structural optimization problems.

To continue with the micro-swimmer example, we assume that the boundary moves at a
fixed velocity so that we are dealing with a stationary Stokes PDE. It might be interesting to
make the velocity time dependent and introduce a time dependent Stokes equation (or even
Navier-Stokes). Depending on what we observed in the stationary case and with the periodicity
properties of the problem, we could expect to observe a periodic turnpike phenomenon, i.e. the
time-optimal boundary of the micro-swimmers would give rise to a recurrent pattern which
could be the optimal shape of the stationary Stokes (or Navier-Stokes) problem. The velocity
can also denote a control variable so that in the middle of the trajectory we expect it to remain
close to an optimal stationary velocity. Such a theoretical result seems quite complicated but
the numerical part, based on the tools illustrated in the Chapter 2, seems more accessible at
first.

We have other examples of very challenging problems for numerical simulations such as
solving dynamic shape design problems for partial differential equations that play a role in
fluid mechanics. We draw on recent literature and some papers on wave-maker’s optimization
(see [24; 75]). We introduce a shallow water equation into a channel so that the shape of the
bottom changes the free surface and the fluid velocity. It is natural to ask what happens if we
consider a wave-maker whose shape can evolve in time. Our study is based on a kinetic inter-
pretation of the shallow water equations (see [16; 78]), which brings up a new variable verifying
a linear kinetic equation with additional nonlinear constraints on the state. Having in mind
the numerical solution of optimal control problems governed by a nonlinear PDE, the possibi-
lity of switching to a linear PDE by adding constraints on the state seems promising to us and
would deserve to be further studied. As observed in the Chapter 2, the resulting adjoint equa-
tion implies multipliers associated with the additional constraints and direct methods would
then be more suitable. Second, industrial applications to this time-varying shape optimization
problem of a wave generator arising from it would be straightforward.

Throughout the Chapter 3, we discuss more precisely the numerical solution of (DSD)Tand
SSD . We first focus on the question in 1D so that the problem can be discretized with finite dif-
ferences in space and an implicit Euler scheme in time. We point out the possibility of doing
optimal shape design with the software AMPL which handles binary variables very well using
the solver CPLEX. It could be interesting to generalize the call to CPLEX in higher dimensions.
We then compare the convexification and level-set methods on stationary problems so that the
convexified method seems more relevant in our case. Nevertheless, the level-set method can
converge even if we are not in the lines of the Theorem 1.1. This leads us to think that the exis-
tence of optimal shapes can occur for weaker assumptions than those made in the Chapter 1.
We then propose several numerical simulations and focus mainly on those in dimension 2 since
the combination of 3D finite elements with a temporal discretization brought an already large
number of variables and thus limited computation time and memory allocation. We could faci-
litate the study of the turnpike phenomenon in the optimization of 3D shapes by using parallel
methods, based on the symmetry properties of the solutions and the domain decomposition
methods.

We note that, from a numerical point of view, there is a significant advantage to observing
the turnpike phenomenon since we can design stationary rather than time-dependent solu-

129

tions and thus solve stationary optimization problems instead of time-varying problems which
are much more expensive in terms of computation time and memory allocation. Stationary so-
lutions remain a good approximation. Indeed, the idea of replacing the time-dependent opti-
mal control problem by the stationary one is often used in practical applications without really
checking the occurrence of a turnpike phenomenon. This is even more the case in the design of
shapes where optimization techniques can be quite limited when dealing with time dependent
shapes. Indeed, we present a more applied question of the applications of the turnpike ba-
sed on the results observed on the heat equation with distributive control. Let us imagine for
example the practical example of a room heated by an underfloor heating system divided into
several cells that can be activated or not independently of the others. Let us further imagine
that it is a given temperature outside and that Dirichlet (or Robin) boundary conditions are
set on the walls so that a room temperature of about twenty degrees is desired throughout the
day. One possible strategy might be to turn on all the cells until the ideal temperature is rea-
ched, then turn them off, bringing the temperature down far from the desired one and iterate.
Of course, it is expected that the more you move from an active to an inactive position, the
more energy you consume. In other words, this strategy is not at all optimal from an energy
consumption point of view. Assuming that we observe the turnpike property, we expect that
most of the time during the day only a few cells are activated in order to stay around twenty
degrees for example. This means that the other cells, which can be expensive and energy in-
tensive, are less useful than expected. Finding the best location for the cells within the limits
of the available pieces can be seen as a problem of designing optimal shapes, whose turnpike
behavior would allow us to locate them only where they would have the maximum efficiency.

130

Bibliography

[1] AMPL : https://ampl.com/products/ampl/. 75

[2] CasADi : https://web.casadi.org/docs/. 105

[3] FreeFem++ : https://doc.freefem.org/documentation/index.html/. 47

[4] IpOpt : https://coin-or.github.io/Ipopt/. 61

[5] F. Alabau-Boussouira, Y. Privat, and E. Trélat. Nonlinear damped partial differential equa-
tions and their uniform discretizations. J. Funct. Anal., 273(1) :352–403, 2017. 60

[6] G. Allaire. Shape optimization by the homogenization method, volume 146 of Applied
Mathematical Sciences. Springer-Verlag, New York, 2002. 86, 87, 114

[7] G. Allaire. Conception optimale de structures, volume 58 of Mathématiques & Applica-
tions (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 2007. With the col-
laboration of Marc Schoenauer (INRIA) in the writing of Chapter 8. 13, 81, 93

[8] G. Allaire, F. de Gournay, F. Jouve, and A.-M. Toader. Structural optimization using topo-
logical and shape sensitivity via a level set method. Control Cybernet., 34(1) :59–80, 2005.
86

[9] G. Allaire, F. Jouve, and A.-M. Toader. Structural optimization using sensitivity analysis
and a level-set method. J. Comput. Phys., 194(1) :363–393, 2004. 86, 110

[10] G. Allaire, A. Münch, and F. Periago. Long time behavior of a two-phase optimal design
for the heat equation. SIAM J. Control Optim., 48(8) :5333–5356, 2010. 23, 86, 113

[11] F. Alouges, A. Desimone, and A. Lefebvre-Lepot. Optimal strokes for low reynolds number
swimmers : An example. J. Nonlinear Science, 18 :277–302, 06 2008. 18, 87

[12] C. Amrouche and V. Girault. On the existence and regularity of the solution of Stokes
problem in arbitrary dimension. Proc. Japan Acad. Ser. A Math. Sci., 67(5) :171–175, 1991.
89, 100

131

https://ampl.com/products/ampl/
https://web.casadi.org/docs/
https://doc.freefem.org/documentation/index.html/
https://coin-or.github.io/Ipopt/

[13] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. CasADi – A software
framework for nonlinear optimization and optimal control. Mathematical Programming
Computation, 11(1) :1–36, 2019. 105

[14] S. Arguillère, E. Trélat, A. Trouvé, and L. Younes. Shape deformation analysis from the
optimal control viewpoint. J. Math. Pures Appl. (9), 104(1) :139–178, 2015. 13

[15] J. Aubin. Un théorème de compacité. C. R. Acad. Sci. Paris, 256 :5042 – 5044, 1963. 28

[16] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame. A fast and stable well-
balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci.
Comput., 25(6) :2050–2065, 2004. 129

[17] S. Auliac. Développement d’outils d’optimisation pour freefem++. Theses, Université
Pierre et Marie Curie - Paris VI, Mar. 2014. :tel-01001631

[18] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation
in machine learning : A survey. J. Mach. Learn. Res., 18(1) :5595–5637, Jan. 2017. 65

[19] J. Berberich, J. Köhler, F. Allgöwer, and M. A. Müller. Indefinite linear quadratic optimal
control : strict dissipativity and turnpike properties. IEEE Control Syst. Lett., 2(3) :399–
404, 2018. 12

[20] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet. Characterizations of łojasiewicz inequalities :
subgradient flows, talweg, convexity. Trans. Amer. Math. Soc., 362(6) :3319–3363, 2010. 33

[21] F. Boyer and P. Fabrie. Mathematical tools for the study of the incompressible Navier-
Stokes equations and related models, volume 183 of Applied Mathematical Sciences.
Springer, New York, 2013. 89

[22] D. A. Carlson, A. B. Haurie, and A. Leizarowitz. Infinite horizon optimal control. Springer-
Verlag, Berlin, 1991. Deterministic and stochastic systems, Second revised and enlarged
edition of the 1987 original [MR1117222]. 26

[23] I. I. Cplex. V12. 1 : User’s manual for cplex. International Business Machines Corporation,
46(53) :157, 2009. 19, 109

[24] J. Dalphin and R. Barros. Shape optimization of a moving bottom underwater generating
solitary waves ruled by a forced KdV equation. working paper or preprint, 2017. 129

[25] M. Dambrine and B. Puig. Oriented distance point of view on random sets. ESAIM
Control Optim. Calc. Var., 26 :Paper No. 84, 24, 2020. 15, 31, 33

[26] T. Damm, L. Grüne, M. Stieler, and K. Worthmann. An exponential turnpike theorem for
dissipative discrete time optimal control problems. SIAM J. Control Optim., 52(3) :1935–
1957, 2014. 12

[27] F. De Gournay. Velocity extension for the level-set method and multiple eigenvalues in
shape optimization. SIAM J. Control Optim., 45(1) :343–367, 2006. 96, 112

132

References

[28] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 4 of Advances in Design
and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2001. Analysis, differential calculus, and optimization. 34

[29] R. Dorfman, P. A. Samuelson, and R. M. Solow. Linear programming and economic analy-
sis. A Rand Corporation Research Study. McGraw-Hill Book Co., Inc., New York-Toronto-
London, 1958. 10

[30] C. Esteve-Yagüe, B. Geshkovski, D. Pighin, and E. Zuazua. Large-time asymptotics in deep
learning. working paper or preprint, Mar. 2021. :hal-02912516

[31] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, second edition, 2010. 22, 28, 33, 41, 42,
53, 56

[32] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Textbooks
in Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015. 28, 29

[33] T. Faulwasser and D. Bonvin. On the design of economic nmpc based on an exact turn-
pike property. IFAC-PapersOnLine, 48(8) :525–530, 2015. 9th IFAC Symposium on Advan-
ced Control of Chemical Processes ADCHEM 2015. 12

[34] T. Faulwasser and D. Bonvin. On the design of economic nmpc based on approximate
turnpike properties. In 2015 54th IEEE Conference on Decision and Control (CDC), pages
4964–4970, 2015.

[35] T. Faulwasser and D. Bonvin. Exact turnpike properties and economic nmpc. European
Journal of Control, 35 :34–41, 2017. 12

[36] T. Faulwasser, K. Flaßkamp, S. Ober-Blöbaum, and K. Worthmann. Towards velocity turn-
pikes in optimal control of mechanical systems. IFAC-PapersOnLine, 52(16) :490–495,
2019. 11th IFAC Symposium on Nonlinear Control Systems NOLCOS 2019. 12

[37] T. Faulwasser, K. Flaßkamp, S. Ober-Blöbaum, and K. Worthmann. A dissipativity cha-
racterization of velocity turnpikes in optimal control problems for mechanical systems.
IFAC-PapersOnLine, 54(9) :624–629, 2021. 24th International Symposium on Mathema-
tical Theory of Networks and Systems MTNS 2020. 12

[38] T. Faulwasser, L. Grüne, J.-P. Humaloja, and M. Schaller. The interval turnpike property
for adjoints. arXiv : Optimization and Control, 2020. 12

[39] T. Faulwasser, A. Hempel, and S. Streif. On the turnpike to design of deep neural nets :
Explicit depth bounds. CoRR, abs/2101.03000, 2021. :journals/corr/abs-2101-03000

[40] T. Faulwasser, M. Korda, C. N. Jones, and D. Bonvin. Turnpike and dissipativity proper-
ties in dynamic real-time optimization and economic mpc. In 53rd IEEE Conference on
Decision and Control, pages 2734–2739, 2014. 12

[41] T. Faulwasser, M. Korda, C. N. Jones, and D. Bonvin. On turnpike and dissipativity pro-
perties of continuous-time optimal control problems. Automatica J. IFAC, 81 :297–304,
2017. 12, 26

133

[42] T. Faulwasser and A. Murray. Turnpike properties in discrete-time mixed-integer optimal
control. IEEE Control Systems Letters, 4(3) :704–709, 2020. 12

[43] F. Feppon, G. Allaire, and C. Dapogny. Null space gradient flows for constrained optimiza-
tion with applications to shape optimization. ESAIM Control Optim. Calc. Var., 26 :Paper
No. 90, 45, 2020. 19, 86, 112

[44] R. Fourer, D. M. Gay, and B. Kernighan. Algorithms and model formulations in mathe-
matical programming. chapter AMPL : A Mathematical Programming Language, pages
150–151. Springer-Verlag, Berlin, Heidelberg, 1989. 17, 75

[45] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations, volume 5
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory
and algorithms. 90

[46] A. Griewank and A. Walther. Evaluating derivatives. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, second edition, 2008. Principles and techniques
of algorithmic differentiation. 64

[47] H. Groemer. On the symmetric difference metric for convex bodies. Beiträge Algebra
Geom., 41(1) :107–114, 2000. 34, 127

[48] L. Grüne and R. Guglielmi. Turnpike properties and strict dissipativity for discrete time
linear quadratic optimal control problems. SIAM J. Control Optim., 56(2) :1282–1302,
2018. 12

[49] L. Grüne and R. Guglielmi. On the relation between turnpike properties and dissipati-
vity for continuous time linear quadratic optimal control problems. Math. Control Relat.
Fields, 11(1) :169–188, 2021. 12

[50] L. Grüne, C. M. Kellett, and S. R. Weller. On the relation between turnpike properties for
finite and infinite horizon optimal control problems. J. Optim. Theory Appl., 173(3) :727–
745, 2017. 12

[51] L. Grüne and M. A. Müller. On the relation between strict dissipativity and turnpike pro-
perties. Systems Control Lett., 90 :45–53, 2016. 12

[52] L. Grüne, S. Pirkelmann, and M. Stieler. Strict dissipativity implies turnpike behavior for
time-varying discrete time optimal control problems. In Control systems and mathema-
tical methods in economics, volume 687 of Lecture Notes in Econom. and Math. Systems,
pages 195–218. Springer, Cham, 2018. 12

[53] L. Grüne, M. Schaller, and A. Schiela. Exponential sensitivity and turnpike analysis for
linear quadratic optimal control of general evolution equations, Dezember 2018. 12

[54] L. Grüne, M. Schaller, and A. Schiela. Sensitivity analysis of optimal control for a class
of parabolic PDEs motivated by model predictive control. SIAM J. Control Optim.,
57(4) :2753–2774, 2019. 12, 128

134

References

[55] L. Grüne, M. Schaller, and A. Schiela. Abstract nonlinear sensitivity and turnpike analy-
sis and an application to semilinear parabolic PDEs. ESAIM Control Optim. Calc. Var.,
27 :Paper No. 56, 28, 2021. 125

[56] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4) :251–265, 2012. 16,
36, 47

[57] A. Henrot and H. Maillot. Optimization of the shape and the location of the actuators in
an internal control problem. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 4(3) :737–
757, 2001. 122

[58] A. Henrot, I. Mazari, and Y. Privat. Shape optimization of a Dirichlet type energy
for semilinear elliptic partial differential equations. ESAIM Control Optim. Calc. Var.,
27(suppl.) :Paper No. S6, 32, 2021. 125, 128

[59] A. Henrot and M. Pierre. Shape variation and optimization, volume 28 of EMS Tracts in
Mathematics. European Mathematical Society (EMS), Zürich, 2018. A geometrical analy-
sis, English version of the French publication [MR2512810] with additions and updates.
25, 81, 86, 93, 110, 111

[60] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE constraints,
volume 23 of Mathematical Modelling : Theory and Applications. Springer, New York,
2009. 16, 56, 68, 78, 125

[61] R. J. Hogan. Fast reverse-mode automatic differentiation using expression templates in
C ++. ACM Trans. Math. Software, 40(4) :Art. 26, 16, 2014. 75

[62] T. Hytönen, J. van Neerven, M. Veraar, and L. Weis. Analysis in Banach spaces. Vol. I. Mar-
tingales and Littlewood-Paley theory, volume 63 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathema-
tics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer,
Cham, 2016. 27

[63] G. Lance, E. Trélat, and E. Zuazua. Shape turnpike for linear parabolic PDE models. Sys-
tems Control Lett., 142 :104733, 9, 2020. 86

[64] I. Lasiecka and R. Triggiani. Control theory for partial differential equations : continuous
and approximation theories. I, volume 74 of Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, Cambridge, 2000. Abstract parabolic systems. 60

[65] I. Lasiecka and R. Triggiani. Control theory for partial differential equations : continuous
and approximation theories. II, volume 75 of Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, Cambridge, 2000. Abstract hyperbolic-like systems
over a finite time horizon. 60

[66] H. Le Dret. Nonlinear elliptic partial differential equations. Universitext. Springer, Cham,
2018. An introduction, Translated from the 2013 French edition [MR3235838]. 28

[67] X. J. Li and J. M. Yong. Optimal control theory for infinite-dimensional systems. Systems
& Control : Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1995. 24

135

[68] E. H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. Ameri-
can Mathematical Society, Providence, RI, second edition, 2001. 24, 32, 43

[69] J.-L. Lions. Optimal control of systems governed by partial differential equations. Transla-
ted from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaf-
ten, Band 170. Springer-Verlag, New York-Berlin, 1971. 16, 24, 78

[70] J. Lohéac and A. Munnier. Controllability of 3D low Reynolds number swimmers. ESAIM
Control Optim. Calc. Var., 20(1) :236–268, 2014. 18

[71] L. W. McKenzie. Turnpike theorems for a generalized leontief model. Econometrica,
31(1/2) :165–180, 1963. 10

[72] M. Mitrea and M. Wright. Boundary value problems for the Stokes system in arbitrary
Lipschitz domains. Astérisque, (344) :viii+241, 2012. 89, 100

[73] B. Mohammadi and O. Pironneau. Applied shape optimization for fluids. Numerical
Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press,
New York, 2001. Oxford Science Publications. 13, 96, 112

[74] E. Nelson. Analytic vectors. Ann. of Math. (2), 70 :572–615, 1959. 25

[75] H. Nersisyan, D. Dutykh, and E. Zuazua. Generation of 2d water waves by moving bottom
disturbances. IMA Journal of Applied Mathematics, 80(4) :1235–1253, 2015. :10.1093/i-
mamat/hxu051

[76] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Re-
search and Financial Engineering. Springer, New York, second edition, 2006. 112

[77] R. Ou, M. Baumann, L. Grüne, and T. Faulwasser. A simulation study on turnpikes in
stochastic lq optimal control. ArXiv, abs/2010.12201, 2020. 12

[78] B. Perthame and C. Simeoni. A kinetic scheme for the Saint-Venant system with a source
term. Calcolo, 38(4) :201–231, 2001. 129

[79] D. Pighin. The turnpike property in semilinear control. ESAIM Control Optim. Calc. Var.,
27 :Paper No. 48, 48, 2021. 125

[80] A. Porretta and E. Zuazua. Long time versus steady state optimal control. SIAM J. Control
Optim., 51(6) :4242–4273, 2013. 12, 14, 26, 125

[81] A. Porretta and E. Zuazua. Remarks on long time versus steady state optimal control.
In Mathematical paradigms of climate science, volume 15 of Springer INdAM Ser., pages
67–89. Springer, [Cham], 2016. 12, 14, 26, 40

[82] Y. Privat, E. Trélat, and E. Zuazua. Optimal shape and location of sensors for parabolic
equations with random initial data. Arch. Ration. Mech. Anal., 216(3) :921–981, 2015. 23,
113

136

References

[83] Y. Privat, E. Trélat, and E. Zuazua. Optimal observability of the multi-dimensional wave
and Schrödinger equations in quantum ergodic domains. J. Eur. Math. Soc. (JEMS),
18(5) :1043–1111, 2016. 23, 113

[84] A. Rapaport and P. Cartigny. Turnpike theorems by a value function approach. ESAIM
Control Optim. Calc. Var., 10(1) :123–141, 2004. 12

[85] P.-A. Raviart and J.-M. Thomas. Introduction à l’analyse numérique des équations aux
dérivées partielles. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of
Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. 16, 47, 69

[86] P. A. Samuelson. The periodic turnpike theorem. Nonlinear Anal., 1(1) :3–13, 1976. 12

[87] J. M. Sanz-Serna. Symplectic Runge-Kutta schemes for adjoint equations, automatic dif-
ferentiation, optimal control, and more. SIAM Rev., 58(1) :3–33, 2016. 17, 59, 66, 104

[88] C. D. Sogge. Hangzhou lectures on eigenfunctions of the Laplacian, volume 188 of Annals
of Mathematics Studies. Princeton University Press, Princeton, NJ, 2014. 32, 40

[89] E. Trélat. Contrôle optimal. Mathématiques Concrètes. [Concrete Mathematics]. Vuibert,
Paris, 2005. Théorie & applications. [Theory and applications]. 10, 16, 66, 73, 102

[90] E. Trélat. Linear turnpike theorem. preprint, Oct. 2020. :hal-02978505

[91] E. Trélat and C. Zhang. Integral and measure-turnpike properties for infinite-
dimensional optimal control systems. Math. Control Signals Systems, 30(1) :Art. 3, 34,
2018. 12, 14, 26, 31, 40

[92] E. Trélat, C. Zhang, and E. Zuazua. Steady-state and periodic exponential turnpike pro-
perty for optimal control problems in Hilbert spaces. SIAM J. Control Optim., 56(2) :1222–
1252, 2018. 12

[93] E. Trélat and E. Zuazua. The turnpike property in finite-dimensional nonlinear optimal
control. J. Differential Equations, 258(1) :81–114, 2015. 11, 13

[94] F. Tröltzsch. Optimal control of partial differential equations, volume 112 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2010. Theory,
methods and applications, Translated from the 2005 German original by Jürgen Sprekels.
16, 81, 83, 125

[95] M. Tucsnak and G. Weiss. Observation and control for operator semigroups. Birkhäu-
ser Advanced Texts : Basler Lehrbücher. [Birkhäuser Advanced Texts : Basel Textbooks].
Birkhäuser Verlag, Basel, 2009. 57, 58, 74

[96] N. P. van Dijk, K. Maute, M. Langelaar, and F. van Keulen. Level-set methods for structural
topology optimization : a review. Struct. Multidiscip. Optim., 48(3) :437–472, 2013. 111

[97] A. Wächter and L.-T. Biegler. On the Implementation of a Primal-Dual Interior Point Filter
Line Search Algorithm for Large-Scale Nonlinear Programming. Mathematical Program-
ming 106(1), pp. 25-57, 2006. 17, 36, 61

137

[98] S. Walker and E. Keaveny. Analysis of shape optimization for magnetic micro-swimmers.
SIAM Journal on Control and Optimization, 51, 01 2013. 87

[99] J. C. Willems. Dissipative dynamical systems. I. General theory. Arch. Rational Mech.
Anal., 45 :321–351, 1972. 12, 26

[100] M. Zanon, L. Grüne, and M. Diehl. Periodic optimal control, dissipativity and MPC. IEEE
Trans. Automat. Control, 62(6) :2943–2949, 2017. 12

[101] A. J. Zaslavski. Existence and structure of optimal solutions of infinite-dimensional
control problems. Appl. Math. Optim., 42(3) :291–313, 2000.

[102] A. J. Zaslavski. Turnpike theory of continuous-time linear optimal control problems, vo-
lume 104 of Springer Optimization and Its Applications. Springer, Cham, 2015. 12

[103] E. Zuazua. Large time control and turnpike properties for wave equations. Annual Re-
views in Control, 44 :199–210, 2017. 14

138

	Table of contents
	Table of figures
	Listings
	Introduction and short description of the main contributions
	Turnpike phenomenon in optimal control
	State of the art
	Contributions: shape turnpike

	Numerical PDE constrained optimization
	Context and objectives
	Contributions
	Applications to shape turnpike

	Shape turnpike for linear parabolic PDEs
	Shape turnpike for linear parabolic equation
	Setting
	Preliminaries
	Main results

	Proofs
	Proof of Theorem 1.1
	Proof of Theorem 1.4
	Proof of Theorem 1.7
	Proof of Theorem 1.8

	Numerical simulations: optimal shape design for the 2D heat equation
	Further comments
	Appendices
	Energy inequalities
	Bathtub principle

	PDE-constrained optimization with FreeFEM and IpOpt
	Preliminaries
	The FreeFEM software
	PDE constrained optimization
	Optimization and discretization strategies
	The optimization routine IpOpt
	Automatic differentiation

	Linear quadratic PDE constrained optimization
	Derivatives of discretized functions (FDTO)
	Discretization of continuous derivatives (FOTD)
	Inhomogeneous Dirichlet boundary conditions
	Automatic differentiation alternative

	Extension to time-dependent problems
	Implicit Euler scheme.
	Time discretization with FreeFEM.

	Optimization under semilinear PDE constraints
	Optimal shape design problems
	Boundary shape optimization
	Boundary and domain parametrization
	Shape optimization problem
	Sensitivity analysis
	Codes and results
	Further comments

	Appendices
	Some FreeFEM functions
	Semi-automatic differentiation and adjoint method
	PDE Optimization with Python or Matlab

	Numerical solving of time-varying shape design problems
	Numerical shape design for parabolic PDE models
	Particular case of dimension 1
	Level-set method in dimension d2
	Convexification method
	Discussion: comparison of implemented methods

	Numerical examples illustrating the turnpike phenomenon
	Further prospects
	Symmetries of solutions
	Numerical extension to semilinear PDEs

	Conclusion and perspectives
	Bibliography

