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Abstract

Observability and resource management in cloud-native
environments

Cloud Computing and Cloud-Native technologies have become the back-
bones of the modern Internet. Users and organizations are now relying on
cloud applications for their everyday needs. However, outages and Quality
of Service degradations can have disastrous impacts on our society. More-
over, web applications have become complex distributed systems, difficult to
understand and operate, thus more prone to failures if not managed accord-
ingly. As a result, it is paramount to understand, observe, prevent, detect
and correct any issues that may lead to failures.

In this thesis, we propose a framework for achieving Observability in
cloud-native environments. Observability envisions a deeper understanding
of the complex distributed system that web applications have become, rep-
resenting an improvement from traditional monitoring strategies. The pro-
posed Observability framework is demonstrated via proof-of-concept and
deployment in production environments. Furthermore, following the princi-
ple of autonomic computing, we also propose an architecture for Observability-
driven auto-scaling in Cloud-Native environments. This architecture enables
us to correlate auto-scaling to the application workload. We also push a step
further by leveraging Machine Learning and enable proactive auto-scaling.
We focus on using automation and Observability to increase the Quality of
Service metrics during scaling events. Additionally, we explore and demon-
strate the benefits and possibility of porting the cloud-native architecture and
principles to the Internet of Things. We propose to leverage technologies
such as Software-Defined Networking and Software-Defined Radio to pro-
vide flexible and re-configurable generic Internet of Things devices.

Keywords: Cloud Monitoring, Cloud Management, Cloud Platform, Cloud-
Native, Observability, Virtualization
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Résumé

Observabilité et gestion des ressources dans les
environnements cloud-natifs

Les technologies Cloud et cloud-natif sont devenues les piliers de l’Internet
moderne. Les utilisateurs et les organisations s’appuient désormais sur des
applications cloud pour leurs besoins quotidiens. Cependant, les pannes et
les dégradations de la qualité de service peuvent avoir des impacts désas-
treux sur notre société. De plus, les applications Web sont devenues des
systèmes distribués complexes, difficiles à comprendre et à exploiter, donc
plus sujettes aux pannes si elles ne sont pas gérées en conséquence. Par con-
séquent, il est primordial de comprendre, d’observer, de prévenir, de détecter
et de corriger tout problème pouvant entraîner des défaillances.

Dans cette thèse, nous proposons un cadre pour atteindre l’observabilité
dans les environnements cloud natifs. L’observabilité envisage une com-
préhension plus approfondie du système distribué complexe que sont de-
venus les applications Web. Le cadre d’observabilité proposé est démon-
tré via une preuve de concept et un déploiement dans des environnements
de production. De plus, suivant le principe de l’informatique autonome,
nous proposons également une architecture pour la mise à l’échelle automa-
tique basée sur l’observabilité dans les environnements cloud-natifs. Cette
architecture nous permet de corréler l’auto-scaling à la charge de travail de
l’application. Nous allons également plus loin en tirant parti de l’apprentissage
automatique et en permettant une mise à l’échelle automatique proactive.
Nous nous concentrons sur l’utilisation de l’automatisation et de l’observabilité
pour augmenter les métriques de qualité de service lors des événements de
mise à l’échelle. De plus, nous explorons et démontrons les avantages et
la possibilité de porter l’architecture et les principes natifs du cloud vers
l’Internet des objets. Nous proposons d’exploiter des technologies telles que
la mise en réseau définie par logiciel et la radio définie par logiciel pour
fournir des appareils Internet des objets génériques flexibles et reconfigurables.

Mots-clés : Surveillance Cloud, Gestion Cloud , Plateforme Cloud, Cloud-
Natif, Observabilité, Virtualisation





5

Introduction

Web applications are now part of our daily lives. Our modern world
relies on web applications for banking, telecommunications, transformation,
healthcare, and even farming. Users and organizations expect fast, respon-
sive, reliable, and available web applications. Cloud Computing and many
new innovative technologies were created driven by this need for better,
faster and reliable web applications.

Cloud computing adoption continues to rise across all organizations.
From small businesses to Fortune 500 and government all walk the path
of digital transformation. While the adoption of new Software-as-a-Service
(SaaS) solutions may present some challenges, moving legacy business ap-
plications to the cloud can leave even large tech companies struggling.

While strategies based on transporting legacy business applications to
the cloud as-is, also called "lift-and-shift", may sound attractive, they are a
trap. Organizations adopting those enticing promises of easy cloud adoption
may end up with more complex, more costly, and less reliable IT systems.
Moving to the cloud and getting the full value out of the cloud computing
paradigm requires a complete overhaul of how IT systems are created, run,
and operated.

Cloud-Native Applications represent the state-of-the-art paradigm used
by the large majority of organizations across the globe. Based on the cumu-
lative innovation from Cloud Computing, microservices, automation, and
decades of best practices, they represent what organizations want to strive
for.

Designing and operating public-cloud-hosted cloud-native applications
is a challenge full of research opportunities. Being able to follow and take
part in the process of digital transformation at a large company from the
beginning to completion is an exceptional opportunity.

In this thesis, we have followed and go beyond the path of a digital trans-
formation from legacy IT to cloud-native. It was an idea environment to
observe, evaluate and experiment from the early stages of the migration to
cloud computing to the state-of-the-art of Public Cloud Hosted Cloud-Native
Applications.
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Context

I originally joined Lectra in September 2016 while they were looking for
developers and engineers with experience creating and operating applica-
tions in cloud environments.

I was recruited long before any dedicated team to "cloud services pro-
duction" or "operational research" was created. I joined the development of
a pilot cloud-native application designed to represent a technology demon-
strator for Lectra’s cloud migration.

Once this demonstrator finished, I was offered the opportunity to start,
in September 2017, a CIFRE Thesis around the operations of cloud services.

In this thesis, the objectives were defined as follows:

1 - Study and evaluate the operational requirements for cloud monitor-
ing tools and solutions

2 - Deploy, as proof-of-concept and production tool, strategies and tools
to observe, analyze, alert, and troubleshoot the inside of Lectra’s Cloud ap-
plications.

3 - Quantify the resources allocation needs to achieve the desired quality
of service for the specific needs of Lectra’s microservices.

In this context, the objective of monitoring and surveillance of infras-
tructures and services deployed in the cloud will be one of the first to be
achieved. A state-of-the-art of existing solutions will be carried out in order
to determine the limits of the existing in the current and future operational
frameworks.

Monitoring allows to analyze, optimize and discover what is happening
in the cloud infrastructure. It also allows the precise quantification of the re-
source allocation needs in order to achieve the requested performance objec-
tives and to meet the level of service quality, which can be defined contractu-
ally. This task should be the subject of in-depth research given the exotic and
innovative nature of the services developed by Lectra’s R&D department.

Some applications may require finer control over network latency, reli-
ability, and expected performance. The contribution of SDN and NFV tech-
nologies should be studied in terms of network traffic control (traffic steer-
ing), traffic engineering, inter-Cloud routing management, inter-cloud data
transport, and sharing of resources between different hosted tenants.

Furthermore, it will be necessary to study the different types of resource
use, thus leading to the need to set up new orchestration models in order
to allow the scaling of services in a reactive and/or proactive manner. The
choice of one method over another will be studied qualitatively and quanti-
tatively. Likewise, the level of service quality and therefore derivative SLAs
should be able to be specified on the fly based on the current state of the
systems in order to provide consumers with performance levels in line with
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their needs. Dynamically resizing cloud resources and scaling virtual ma-
chines in the cloud (scaling up / down) has an undeniable impact on service
performance. For this, algorithms for automatic scaling of a cloud service
will also be heavily studied in order to develop the most efficient ones and
to test them in real situations.

All the information collected must offer the possibility of querying at any
time the context of the services, their interconnection as well as their ability
to scale. Advanced knowledge of the state of services, data, and not just
the infrastructure provides the ability, advanced control of deployed services
and the underlying cloud infrastructure.

Problem Statement

Through this thesis, we follow the path of migration from developing
desktop applications to Industry 4.0 cloud-native applications with the angle
of operation and infrastructure design. This led us to major research ques-
tions including but not limited to :

- What are the requirements to operate cloud-native applications in a
production environment ? How can we get information about cloud-native
applications and their environment ?

Microservice architecture provides many benefits and raises new chal-
lenges such as management, monitoring, and quality of service provisioning
of those microservices-based applications in the public cloud environment.
In addition, in a cloud-native environment, complexity increases, which also
significantly increases the difficulty to observe and visibly understand the
health, performance, and behaviors of Cloud-Native Applications. Our con-
tribution in chapter 2, presents the requirements towards Observability in
Cloud-native Application lays the foundation for our Architecture Proposal
for Observability presented in chapter 3.

- What is the best way to achieve efficient auto-scaling for cloud-native
applications ?

Among the essential features of cloud-native applications, elasticity is
significant. Cloud providers offer the capacity to provision compute, net-
work, and storage capacity automatically. This almost unlimited and infinite
provisioning capacity available at any time could make it possible to achieve
exact sizing to fit volatile workloads. Indeed, uncorrelated resources pro-
visioning to workloads may result, at best, in overspending of unused re-
sources and, at worst, degraded quality of service and bad user experience.
Our contribution in the chapter 4 presents Observability-driven auto-scaling
for cloud-native applications aiming to leverage Observability to provide ac-
curate input for auto-scaling and demonstrate the benefit of proactive auto-
scaling mechanism to enhance end-to-end latency and success rate during
transient scaling situations.
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- How to interconnect cloud-native applications and industrial Internet
of Things Objects and Machines to benefit from the scalability, flexibility, and
modularity?

Proprietary IoT devices and proprietary operating systems (OS) for IoT
are dominating the market today. Compliant with Industry 4.0, our IoT and
connected machines are used for many use-cases and need to achieve high
levels of efficiency and profitability. Lectra Industry 4.0 connected machines
need to bring agility and versatility to process and operate in various en-
vironments. We aim to define an architecture framework for generic cloud-
native enabled solutions for IoT to enable flexible and agile end-to-end provi-
sioning. Our contribution, in chapter 5, brings virtualization in IoT networks
based on introducing SDR, SDN, and VNF paradigm-shifting. We describe
a relevant set of use-cases and deployment scenarios with a proof of concept
showing how the proposed architecture framework is prototyped.

Methodology

Being part of the R&D that designed and operated the new cloud ser-
vices in a large company while conducting research proved to be a challenge
full of opportunities. A proof-of-concept can rarely be conducted and even
adopted in a large production environment.

Our methodology was based on the participation in all the tasks of de-
veloping and operating the cloud services at Lectra R&D as a core member
of the R&D team. Furthermore, being the research referent, I was pushing to
add state-of-the-art publications and research to the decision process around
strategies, techniques, and tools.

Multiple evaluation and comparison of strategies were run on sand-
boxed Lectra environment to replicate the production environment before
further testing or adoption.

Finally, for some advanced proof-of-concept or destructive tests, a testbed
was designed to deploy state-of-the-art infrastructures and cloud-native ap-
plications.

We were already aware of the MAPE-K principles [1] [2], and the ideas
of autonomous computing and advanced automation were always guiding
our work during this thesis.

Thesis Contributions

The work realized during this thesis led to a series of publications :

1. N. Marie-Magdelaine et T. Ahmed, « Proactive Autoscaling for Cloud-
Native Applications using Machine Learning », in GLOBECOM 2020
- 2020 IEEE Global Communications Conference, Taipei, Taiwan, déc.
2020, p. 1-7. doi: 10.1109/GLOBECOM42002.2020.9322147. [3]
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2. T. Ahmed, A. Alleg, et N. Marie-Magdelaine, « An Architecture Frame-
work for Virtualization of IoT Network », in 2019 IEEE Conference on
Network Softwarization (NetSoft), Paris, France, juin 2019, p. 183-187.
doi: 10.1109/NETSOFT.2019.8806650. [4]

3. N. Marie-Magdelaine, T. Ahmed, et G. Astruc-Amato, « Demonstration
of an Observability Framework for Cloud Native Microservices », in
2019 IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM), avr. 2019, p. 722-724. [5]
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Road map of the Thesis

This thesis is organized as follows :

Chapter 1 provides an overview of the cloud ecosystem, an historical
understanding of the situation and useful definitions.

Chapter 2 present a detailed display of the motivation behind advanced
monitoring, the pitfall of previous techniques and tools which led to the
breed of a new strategy called Observability.

Chapter 3 present our architecture proposal for Observability in Cloud-
Native Applications and the methodology and the components that enable
us to define it.

Chapter 4 present our cloud-native framework enabling proactive auto-
scaling of cloud-native applications to achieve a better quality of service.

Chapter 5 is our proposition of transposition of the cloud-native paradigm
and other state-of-art technologies to IoT.

We conclude with a summary of our work, and we provide some in-
sights for future work in Conclusion and perspectives.
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Chapter 1

Concepts and Definitions

1.1 Background on cloud computing

The first computers were huge, bulky, fragile, costly, and challenging to
operate. They were kept in machine rooms, with all the precautions around
them and accessed limited to a handful of engineers to use them, work or-
ders sent to computer engineers that ran them and returned the result. Time-
sharing methods were used to enable multiple users’ access to a computer.
Very soon, terminals enabled users to interact with mainframes remotely.
This communication between the client terminal and the "server" mainframe
was, at first, only in Local Area Network (LAN).

However, soon, communication became nationwide with the introduc-
tion of ARPANET, a governmental project to enable access to remote com-
puter resources. ARPANET led to the creation of the INTERNET and the
World Wide Web, popularising computer usage and remote resources access.

From mail to web banking through news websites, the world wide web
became trendy for organizations and people. The increased adoption of the
personal computer in both organizations and homes increased the usage of
the web. During the late 1990s, according to US Department of Commerce
[6], it was estimated that traffic on the public Internet grew by 100 percent
per year, while the mean annual growth in the number of Internet users was
thought to be between 20% and 50% [7].

However, while some universities provided personal web page hosting
to students and employees, web hosting was costly. A server, a computer
dedicated to answering web requests, had to be powered on and connected
infallibly to the Internet. Some companies soon started to offer web host-
ing services from advertisement-funded "free" hosting like Lycos, Geocities,
AOL Hometown to private servers hosted in then called "colocation center".
Soon called data centers, those places started to offer features improving con-
nectivity, reliability, and security way above the previous "machine-room"
and other "home-hosted servers". Very soon, hosting companies and web
providers started to look for a way to save space and consolidate server us-
age.
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In 1999, at the DEMO conference [8], a start-up named VMware intro-
duced its products: Workstation, GSX, and ESX, a line of hypervisors en-
abling server virtualization. While tools and techniques enabling shared
computer use were already out, they required specific hardware and/or op-
erating system. Virtualization works with a hypervisor, an emulator that
provides an abstraction layer between the host computer and a guest vir-
tual machine. VMware hypervisor enabled the virtualization of the scarce
and valuable servers hosted in the data center. Many competitors followed
by developing their hypervisor solutions, open-source solutions such as Xen
and KVM, and proprietary ones such as Microsoft Hyper-V and Oracle VM
Server.

During those years, virtualization enabled to drive cost down, simplify
management, consolidate servers farm, and improve reliability. By 2006, pro-
cessors manufacturers (AMD [9] and Intel [10]) created new processors in-
structions for hardware-assisted virtualization. The same year Amazon Web
Services introduced AWS Simple Storage Service (S3) and Elastic Compute
Cloud (EC2), the first Storage-as-a-Service and Infrastructure-as-a-Service Pub-
lic Cloud offers. Google, Microsoft, and many competitors, called Cloud
Providers, followed in the following years with their Service-oriented archi-
tecture providing Infrastructures, Platforms, and Software as services avail-
able freely and sometimes free of charge to anyone with an internet connec-
tion.

In 2011, Mell and Grance in [11] from the National Institute of Standards
and Technology (NIST) published the most cited and agreed upon definition
of Cloud Computing. They defined the cloud essential characteristics as :

• On-demand self-service

• Broad network access

• Resource pooling

• Rapid elasticity

• Measured service

On-demand service means that cloud resources must be provisioned au-
tomatically and at will by customers without any intervention from the cloud
provider. Those resources must also benefit from broad network access, mak-
ing them accessible from any device and any connection through the internet.

Cloud providers must pool and regroup resources that are made avail-
able to customers in a multi-tenant model. While this created a layer of sim-
plification from the customers, it also hid the exact location, only providing
vague information such as "zones" or "data-center country."

Cloud providers must enable their customers to scale up and scale out
their resources at will rapidly.
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Additionally, as cloud consumers use resources in a self-service fashion,
they must be billed according to the resources usage. Usage’s measurement
automation does this billing.

Mell and Grance also defined the service models, how services are con-
sumed, as :

• Infrastructure as a Service (IaaS)

• Platform as a Service (PaaS)

• Software as a Service (SaaS)

Cloud providers offer multiples resources and services according to dif-
ferent services models. The primary factor differentiating them is the level of
abstraction over the infrastructure.

The service model with the lower abstraction level is called Infrastructure-
as-a-Service (IaaS). Resources offered through IaaS are bare compute, net-
work, and storage resources. IaaS cloud customers are provided with es-
sential resources on which they manage their operating systems and appli-
cations. However, the underlying layers, notably the data-centers networks
(e.g., firewall, router), storage, servers, and virtualization are not accessible
by the cloud consumers.

Cloud providers can provide the capability to consumers to deploy onto
a ready-made platform. This Platform-as-a-Service (PaaS) model abstracts
the virtual machine and essential resources (network, servers, storage, and
operating systems) while directly supporting programming languages, li-
braries, services, and tools. Consumers retain some controls through envi-
ronment parameters defining the platform configuration allowed by cloud
providers.

Software-as-a-Service (SaaS) is the service model where cloud providers
provide customers with software already installed and maintained on their
cloud infrastructure. Those software and applications are accessible via web-
browsers, thin clients, desktop interfaces, or even APIs. The consumer does
not manage any element of the technology stack in the data-center; they only
use it.

Figure 1.1 illustrates the different cloud computing services models and
highlights the components ownership.
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FIGURE 1.1: Cloud Computing Service Models

The deployment model defined how the cloud is accessed and by who
were also defined by Mell and Grance as such :

• Private cloud

• Community cloud

• Public cloud

• Hybrid cloud

Cloud Computing deployment models define who are the cloud con-
sumers.

In a private cloud, the cloud infrastructure is built for a single organi-
zation’s specific and exclusive use (e.g., company, government). A private
cloud may be built, maintained, and even hosted by third parties but remain
under a single organization’s sole control and use. A private cloud is dif-
ferent from an on-premises data center as they follow the cloud’s essential
characteristics and services models.

When the cloud infrastructure is provisioned for the use of a community
with shared concerns, it forms a group of consumers who share their own
cloud infrastructure resources. It may be owned, managed, and hosted by
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the community or third parties. However, it remains dedicated to the usage
of the community.

The public cloud is the most common type of cloud. It may be owned,
managed, and hosted by private companies, academic institutions, or the
government. However, everyone can access it and use it through the internet.
The cloud provider generally hosts it.

Hybrid clouds are clouds composed of two or more types of cloud de-
ployment models. It can be a temporary or permanent link between a private
cloud and public or community cloud. It is a deployment model used for sce-
narios of cloud bursting or cloud migration.

We can add a new type of deployment model that is gaining traction :

• Multi-Cloud

The multi-Cloud approach uses multiple clouds as infrastructure for the same
organization. The benefits are also multiple additional features available
across different cloud providers, reduced vendor lock-in, higher total avail-
ability, mitigation against disasters and outages.

FIGURE 1.2: Cloud Computing Deployment Models

The adoption growth was phenomenal. As of 2021, 94% of enterprises
use at least one cloud service. The global public cloud service market is pro-
jected to reach $266 billion in 2020.

The Covid-19 crisis increased the cloud market by a whopping 31.4% in
2020. Cloud Computing is now a vital part of the modern world. Thus, cloud
computing-related challenges, Quality of Service, reliability, availability, elas-
ticity drives innovation, research, and capital. Soon Cloud Computing actors
would gather and federate to create an initiative around Cloud Native Tech-
nologies.
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1.2 Cloud Native

During the 2010s, railroad companies, travel agencies, and even apparel
retailers adopted cloud computing. In addition, many organizations and
companies from start-up to Fortune 500 realized that they needed to become
software companies even if that was not their core business. Therefore, cloud
computing led to innovations and solutions appearing everywhere, and most
organizations choose to open-source those internal software projects. Open
Source Projects thrived on GitHub, a SaaS provider of tools for collabora-
tive software development. However, all those Open Source projects born
from the cloud computing boom, cloud natives projects, were disorganized
and faced difficulties for maintenance and leadership. At some point, tech
journalists were writing about a "container orchestration war" between open
source projects.

The Linux Foundation [12] was already building sustainable ecosystems
around open-source projects to accelerate technology development and com-
mercial adoption since the 2000s. In 2015, when Google pushed the open-
source container orchestrator Kubernetes 1.0 release, the Linux Foundation
created the Cloud Native Computing Foundation (CNCF) to federate, align,
and build a sustainable ecosystem for cloud Native software.

The CNCF Cloud Native Definition [13] is as follows:

"Cloud-native technologies empower organizations to build and run scal-
able applications in modern, dynamic environments such as public, private,
and hybrid clouds. Containers, service meshes, microservices, immutable
infrastructure and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, man-
ageable, and observable. Combined with robust automation, they allow en-
gineers to make high-impact changes frequently and predictably with mini-
mal toil.

The Cloud Native Computing Foundation seeks to drive the adoption
of this paradigm by fostering and sustaining an ecosystem of open-source,
vendor-neutral projects. We democratize state-of-the-art patterns to make
these innovations accessible for everyone."

As of the 2020 CNCF Annual Report [14], 94% of respondents were using
containers in production, with 83% using Kubernetes to orchestrate them. As
of 2021, the CNCF gathers 656 members, combining a total market cap of 20.6
Trillion dollars.

In the rest of this section, we will describe the Cloud Native environment
in two subsections: Cloud Native Infrastructure and Cloud-Native Applica-
tion.

* Cloud-Native Infrastructure: Infrastructures are both the hardware and
the software responsible for supporting applications.
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* Cloud-Native Application: Cloud Native applications are specifically
designed for and taking full advantage of the cloud-native environment that
is to say cloud-native applications and infrastructures together.

1.2.1 Cloud Native Infrastructure
As introduced previously, Cloud Native Infrastructures represent the

foundation on which applications runs. It includes every layer of the stack
from the physical world up to any applications supporting business work-
load. From data center to orchestrator, almost all the components have evolved
to adapt to the new Cloud Native paradigm. This section describes the power
of the modern cloud and how it has evolved to become state-of-the-art Cloud-
Native Infrastructures.

Datacenter

The Internet and cloud computing growth have created an ever-increasing
need for servers, thus driving the growth for data centers. They ultimately
represent the building block of every commodity available online. Far from
the simple rack computer hosted in the In the 2000s, modern data centers
face challenges such as reliability, security, flexibility, and ecology. Those are
tough challenges when the need for more storage, compute, and network
resources growth exponentially each year [15].

As more and more organizations switch to public clouds, major cloud
providers are now hosting their previous IT workloads. The scale of data
centers has then become a vital point of interest. Between user-generated
content and enterprise workload, efficiency is the keyword. Data centers use
an estimated 200 terawatt-hours (TWh) each year [16]. This is approximately
1% of global electricity demand. Some worst models predict that electricity
used for information and communication technologies could exceed 20% of
global electricity demand by 2030. This could happen, especially if trends
like cryptocurrencies mining continue to grow [17]. This trend has pushed
major data centers market players to achieve ever-increasing efficiency and
reduce environmental footprints. Facebook has launched the Open Compute
Project [18] an open-source initiative aiming toward power efficiency, server
density, cost reduction, and environmental impact reduction. This initiative
has enabled them to improve their energy efficiency on new data centers by
38% and the building cost by 24% [19]. This effort from major cloud players
to increased efficiency and consolidate their data center enabled organiza-
tions to migrate their IT systems to the cloud while reducing their power
consumption carbon footprint by up to 90% [20] [21].

Modern Cloud Native data centers are now called "Hyperscale data cen-
ters" because they can provision new resources and scale to ever-growing
compute, networking, and storage capacities by both increasing their size
and their density. Everything is optimized for cost efficiency, computing
density, reliability, and sometimes even sustainability from the building to
the hosted hardware. Microsoft Azure, Amazon AWS, and other large public
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cloud providers are now able to design and manufacture specific components
to fit those needs.

Servers

Servers in Cloud Native data centers have also evolved. Far from the
single physical machine hosted in a private room, modern data center host
high-density racks with up to 64 cores per blade (3rd Gen AMD Epyc CPU)
and up to 24 blades per 3U rack. Some cloud providers maybe go as far as to
order custom CPUs [22] and design custom hardware [23] to get the edge on
their competitors.

In almost all cases, public cloud customers never interact with the phys-
ical servers, not even remotely. This is a change from the times of hosted
bare-metal servers. Instead, cloud providers rent "slices" of servers called
"instances" or Virtual Machines (VM). They generally take their margin on
the cost per virtual CPU sold. This required the sweet spot between density,
performance, and price. Some cloud instances may also feature special hard-
ware such as Graphics Processing Units (GPU) or specific network interface
cards (NIC).

Cloud computing defines this model of deployment as Infrastructure-as-
a-Service (IaaS).

Virtualisation

Virtualization is a core technology behind cloud computing and cloud-
native infrastructure. Virtualization enables cloud provider resource pool-
ing. Compute, network and storage can then be sliced and served in custom
quantity and quality to customers. Virtualization transforms bare-metal re-
sources into virtual machines and provides an isolation and abstraction layer
between the physical and logical servers. Virtualized servers are called Vir-
tual Machines (VM).

A Hypervisor is a special software ran on the physical server, managing
the host and acting as an abstraction layer for VM running on top of it. We
distinguish two different types of hypervisors depending on the type of ab-
straction layer. On the one hand, Type 1 hypervisor provides a direct slice of
hardware without running through the OS. One the other, Type 2 hypervisor,
which slices resources through the host’s operating system. Notable hyper-
visors are Microsoft Hyper-V [24], Linux KVM[25], Vmware ESXi [26], and
Xen [27]. Public cloud providers use them. For example, Digital Ocean Pub-
lic Cloud [28] has open-sourced some of the software running their cloud; we
can note the usage of libvirt and KVM in their public repository [29].

Public cloud providers can almost instantly assign tenants’ virtual ma-
chines to their pool of physical resources. Customers can choose the location,
size, operating system, and configuration of their VMs and connect to them
a few seconds later. Virtual Machines are logical objects; they can be copied,
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migrated to another host, resized, backed up. In case of failure of their phys-
ical host, they are re-instantiated sometimes live on another. However, ap-
plications running on them must have been designed to accommodate those
features in order for them to work correctly.

Software Defined Networking

Virtualization does not stop at servers. Data centers used to rely on a
significant amount of advanced engineering dedicated to networking. How-
ever, legacy network architecture relied on many network appliances that
required configuration, maintenance, and upgrades. The advent of Cloud
Computing and the new software paradigm pushed the need for a signif-
icant evolution in networking. Software-Defined Network (SDN) emerged
promoting network solutions that are directly programmable, agile, centrally
manageable, open standards-based, and vendor-neutral. Virtualization of
network functionality that was physical appliance is called Network func-
tion virtualization. This enables the replacement of physical network ap-
pliances by generic computing hardware. Together, SDN and NFV enable
the creation of Virtual Network Functions (VNF) such as virtual routers, vir-
tual switches, virtual 4G eNodeB [30], and even 5G-NR gNodeB. Google
was among the first to deploy a production level SDN network with their
B4 project in 2011 [31], but nowadays, all the major network vendors of-
fer SDN solutions [32][33][34]. Together, Cloud Computing and Software-
Defined networks have revolutionized the IT industry.

Containerization

Running isolated programs on top of a host operating system was not
a new idea. OS-level virtualization Solutions such as BSD Jails or chroot ex-
isted. However, those were crude and far from easy use by developers. Until
a day in 2013, Docker was introduced. It quickly became the industry stan-
dard for containers. Containers are lightweight packages containing a file
system image and associated configuration. They contain binaries and re-
quired libraries but none of the operating system or kernel. It enables packag-
ing, shipping, deployment of applications with their dependencies without
the entire underlying operating system. Containers differentiate themselves
from virtual machines that run on top of a hypervisor (type 1 or 2) with in-
teraction with emulated or real hardware resources. Containers interact with
their host kernel. Figure 1.3 illustrates how containerization is another step
of resource sharing. Containers provide some isolation and the possibility
to throttle resource usage, allowing multiple containers to run on a single
host. Containers, being lighter, can be dynamically instantiated, created, du-
plicated, deleted much faster than virtual machines.
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FIGURE 1.3: Bare-metal, Virtual Machines, and Containerized
Applications

Serverless Computing

Serverless computing is a cloud computing service model derived from
Software-as-a-Service (SaaS) from which the cloud provider manages the en-
tire application support stack. Developers concentrate on writing code that
is transparently run by the cloud provider platform. On paper, serverless
computing solves all the system administration issues linked to cloud-native
applications and offers developers an experience that just works. However,
serverless computing is sprinkled with limits, fallacies, and pitfalls [35].

When Google created Google Cloud Platform, their first product was
Google App Engine. The idea was to provide customers with a platform
managed by Google instead of requiring customers’ management. Platform-
as-a-Service (PaaS) raised the abstraction layer higher; however, the justified
fear of limitations, vendor lock-in, portability concern meant that PaaS did
not become the major deployment model in cloud-native solutions. Unlike
any other IaaS solutions, based on VMs or Containers, PaaS Cloud Providers
enable their customers to write valuable business code without wasting time
with operation and administration. This type of approach is called "No-OPS"
and is focused on reducing the time to market. Despite several trials, PaaS
has not reached the level of adoption of Containers.

Function-as-a-Service (FaaS) is a model of cloud computing deployment
which relies on independent atomic functions that run on-demand. Run on-
demand means that they do not run continuously but only when solicited.
They start up, process the eventual payload with their trigger event, and
often terminates within milliseconds. FaaS offers both a very high abstrac-
tion design and low cost. Customers do not manage the underlying infras-
tructure, nor anything except their code. FaaS provides state-of-the-art and
built-in security, scaling, monitoring, logging, and debugging capability. A
major downside resides in the vendor lock-in risk, Functions environment
are often plagued with compatibility and interoperability issues.

Cloud providers have integrated containers in their offers with Container-
as-a-Service (CaaS). CaaS enables customers to deploy their containers to the
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cloud on a managed abstraction layer. The advantages rely upon the porta-
bility and compatibility of standardized containers avoiding vendor lock-in.
Container-as-a-Service is seducing offers for organizations that have already
containerized their applications. It offers them the ability to hand over con-
tainer orchestration and focus on creating and maintaining their containers.
It solves some limits and issues of PaaS and FaaS but lowers the abstraction
layer.

While serverless computing seems to solve many of the issues encoun-
tered by most organizations, its many drawbacks have pushed the adoption
of orchestrated containers as the most adopted solution for cloud-native in-
frastructures.

Automation

Among the characteristics of Cloud offers, there is self-service capabil-
ity through Applications Programming Interface (API). It enables customers
to automate their interactions with cloud providers. Cloud adoption and
software architecture trends have multiplied the number of unique resources
that require management. Operation engineers are faced with the challenges
of caring for thousand of abstracted virtualized resources. If left unchecked,
security vulnerability or even outages can occur. Manual operations take
time and add risk. Human errors, like manual misconfiguration, increased
downtime, and decreased reliability. Infrastructure can be defined with code
and executed with perfect repeatability, thus reducing cost, increasing speed,
and reducing risk. This approach called Infrastructure-as-Code is part of a
movement called DevOps, combining software development (Dev) and IT
operations (Ops).

Dynamic Management

When an organization has automated their Cloud Native infrastructure,
they are only an "if block" away to implement dynamic management. In-
deed, cloud computing allows flexible and on-demand resources allocation
and de-allocation. Furthermore, by correlating resource usage with automa-
tion, organizations can closely match their needs with the provisioned re-
sources, thus reducing over-provisioning. This process of matching cloud
resources to usage is called autoscaling.

The use-cases of Dynamic management are limitless, as long as APIs are
available, code can be written to modify infrastructure dynamically.

Orchestration

Orchestration is the final form of automation. Orchestrators take care
of every aspect of management from deployment to end-of-life. While dy-
namic management tools execute tasks and follow a process. Orchestration
runs during the entire lifetime of infrastructures. Orchestration makes sure
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that both infrastructure and applications run as desired, taking decisions on
automating deployment, configuration, scaling, diagnostic, management.

1.2.2 Cloud Native Applications
In the same fashion as infrastructure, web application design has pro-

foundly evolved. Every aspect of web applications life cycle has advanced,
how they are designed, coded, tested, packaged, released, and operated. Our
modern world runs on applications that we expect to be reliable, fast, per-
manent, and ubiquitous. Organizations need to offer seamless, reactive, and
always-on services to ever-demanding users. Google, Amazon, Facebook,
Salesforce, Apple, and many others cannot afford outages or downtimes. Or-
ganizations’ perquisites have pushed innovation and research to achieve the
current state of the art. This section will describe every aspect of Cloud-
Native Applications, from how they are built to their strengths and weak-
nesses.

Microservice Architecture

Alongside the evolution of infrastructure, web applications have evolved
during the last two decades.

At the beginning of the 2000s, web applications were designed as "mono-
lith," also called 3-tier. One web server serving as a frontend to the users,
one application server running the business logic, and a database storing the
data. This design, while simple, had many flaws. Development was very
slow in a huge codebase containing the entire application. It was not easy
to understand for new developers and challenging to maintain even for old
ones. The process to modify, test and deploy were slow, heavy, sometimes
painful as risks increased with the number of lines of codes and the age of
the project. The technological choice in languages and framework had to be
kept for the project’s entire lifetime. Scaling or modify the underlying in-
frastructures of those monolith web applications was sometimes impossible.
In order to solve those issues, enable some modularity and interoperability,
organizations started to build service-oriented applications (SOA) and En-
terprise Service Bus (ESB). However, it was clear that those designs needed
more refinement. SOA and ESB quickly evolved, and among web applica-
tions, a major architecture design has emerged in the quest to take advantage
of the new cloud technologies. Microservice Architecture is nowadays the
primary design adopted to create new web applications and reform old ones.
Microservice has been adopted by Google, Amazon, Netflix, and most of the
world.



1.2. Cloud Native 23

FIGURE 1.4: Monolith vs Microservices Architecture

Microservice Architecture aims to guide towards small, autonomous,
decoupled components working together. Microservice architecture provides
many benefits but also some new challenges.

Multi-tier and Service-oriented architecture were already ways to divide
large monolith applications into smaller components. However, they were
not successful in solving the issues of the monolith while bringing the new
issues of complex distributed systems. The microservice approach brings
more than just decoupling; it comes with a set of best practices. From those
best practices [36], [37], [38], [39], the microservice architecture enables a set
of features: Independent deployability, Domain Driven Design, Data own-
ership and information hiding, Small sized, and Flexibility and modularity.
They can be detailed as follows:

• Independent deployability

One of them is independent deployability; being an independent, self-contained
microservice offers freedom of deployment. At any given time, microser-
vices can be upgraded, re-deployed, at will, at any moment without impact
on other microservices or users. In addition, independent deployability en-
ables developers to push their changes more often, increasing the number
of releases and thus decreasing the risk associated with new releases. Inde-
pendent deployability also accelerates development time leading to a shorter
time to market.

• Domain Driven Design
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Microservice architecture also benefits from Domain-Driven Design (DDD)
by defining clear boundaries between microservices. DDD limits the scope
of a microservice, and the team efforts focus on delivering a specific business
feature. As a result, it becomes easier and faster to deliver helpful business
features.

• Data ownership and information hiding

Microservices architecture imposes data ownership by not sharing databases
but API from which other microservices interact to get data. Data ownership
is required for independent and loose coupled services that do not require
data integrity checks between multiple services.

• Small sized

Being small is a significant benefit; microservice are sized around atomic
business features or functionality. The more features a service contains, the
more lines of codes need to be written. The codebase grows with every addi-
tional feature, eventually becoming too large for small teams to understand
completely. As a result, it becomes more difficult to fix bugs, add features,
and overall maintain an extensive service.

Small codebases also make smaller executables and lighter containers
which can be started quickly, shorting the overall time to start the entire ap-
plication.

Small service can be rewritten or refactored quickly, allowing for faster
"fail-fast" approach.

• Flexibility and modularity

Web applications built upon microservices can be extended, reduced, and
modified by creating, refactoring, and even retiring microservices. This en-
ables a more flexible and forgiving approach to software engineering. If a
feature needs to be modified, added, or removed, a monolith of code does
not need to be rewritten, tested, and released.

Each microservices being independent and only interacting through API
and events. They can be written in any language, use any database or third-
party services. This ability of microservice architecture to be built with differ-
ent languages and technologies is called technological heterogeneity. Tech-
nological heterogeneity enables more flexibility than previous architectures.
Languages and technologies can be tested with limited impact and conse-
quences. Some features may better fit some technologies enabling microser-
vices to use the best choice for their specific use-case.

• Robustness

Moreover, in case of failure, either from bugs in the code or external
reasons, microservice architecture can limit the "blast radius" of the failure.
Only the feature powered by the affected microservice is most likely to suffer.
Moreover, microservices do not share internal data and state, thus making
the whole application more resilient.
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• Scalability

Even in the case of performance issues due to under-sizing, microservice ar-
chitecture can scale by running more replicas of the saturated features. While
monolith needs to be scaled entirely and relies on huge dedicated hardware
to fit their needs, microservice can run on much smaller, less powerful server
and achieve better scaling.

Microservice architecture has brought a list of advantages to organiza-
tions that have switched to the new paradigm. We can cite:

• Flexibility and modularity

• Independent deployability

• Faster and more frequent releases

• Robustness

• Scalability

However, alongside those advantages, some new challenges as appeared.
Difficulties arose from transforming the single monolith executable into a
myriad of microservices, each one with its own needs. This intrinsically de-
fined microservices-based application as complex distributed systems. Most
of the complexity that was inherently in the codebase has moved to opera-
tions.

1.2.3 Operations

The operations regroup all the management, deployment, integration,
maintenance, monitoring of applications, networks, and servers. In cloud
times, building networks and deploy servers is not about moving hardware
but writing code. Google pioneered, in 2003, this new paradigm of opera-
tions and called it Site Reliability Engineering (SRE) [40]. During the same
time, a set of practices combining software development (Dev) and IT oper-
ations (Ops) called DevOps emerged. Both prescribe the same philosophies:
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TABLE 1.1: Table SRE DevOps

DevOps SRE

Reduce organization silos Share ownership with developers by using the same tools
and techniques across the stack

Accept failure as normal Have a formula for balancing accidents and failures against
new releases

Implement gradual change Encourage moving quickly by reducing costs of failure

Leverage tooling and automation Encourages "automating this year’s job away" and mini-
mizing manual systems work to focus on efforts that bring
long-term value to the system

Measure everything Believes that operations is a software problem, and defines
prescriptive ways for measuring availability, uptime, out-
ages, toil, etc.

In order to implement the principles and concepts promoted by Agile,
DevOps and SRE organizations adopted a series of tools.

• Source Code Management (SCM)
Individuals or teams of developers need to manage their source code.
They need to backup, version, centralized it, and collaborate around
it. Source Code Management tools such as Git and its implementation
GitHub, GitLab, or Bitbucket offers those features.

• Agile Project Management
Agile methodologies such as Scrum and Kanban are frameworks used
for developing, delivering, and guiding teams to develop software.
While those techniques can be used with paper and blackboards, soft-
ware implementations are now the norm in the software industry.

• Continuous Integration (CI)
Continuous integration relates to the best practice of integrating all the
developers’ work as frequently as possible. Indeed the longer develop-
ers work independently on the shared code more difficult merging all
the modifications becomes. Continuous integration promotes the au-
tomation of merging developers’ work and work in conjunction with
automated testing. The application or microservice is tested and built
automatically with each developers’ commis to the source code. Other
requirements such as compliance with regulations and licensing may
be tested in this step.
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• Continuous Delivery (CD)
Beyond continuous integration, continuous delivery offers the possibil-
ity for humans to review the result of continuous integration and decide
if the latest produced release can be deployed to production.

• Continuous Deployment (CD)
Another step further, continuous deployment simply automates the en-
tire pipeline of processes from the developers’ commits to the deploy-
ment on the production environment.

• Monitoring
Once applications are deployed, operational engineers (OPS) must check
their health state and make sure they are up and running as expected.
Monitoring systems are set up in order to retrieve health states for
servers and applications. When a malfunction occurs, they must raise
the alarm and alert OPS. OPS are responsible for the diagnosis and re-
pair of defective servers and applications. DevOps and SRE best prac-
tices encourage the use of automated monitoring and alerting systems
measuring availability, uptime, and outages.

Together those tools implementing those features are known as a toolchain.
In previous paradigms, the processes carried out by the DevOps toolchains
were mainly manual. However, the microservice architecture brought addi-
tional work to the operations. More components are coded, released, tested,
deployed, and monitored. New strategies and tools are needed to adapt
to operate those new cloud-native applications. Those operational require-
ments are even more significant when organizations use cloud-native appli-
cations in production settings. They then have to equip themselves to ensure
their Cloud-Native Applications’ quality of Service (QoS) in the stringent
production environment. Indeed ensuring the correct behavior and health
of Cloud-Native Applications is complex due to their distributed nature.

1.3 Conclusion

Technologies have evolved. We have seen new programming languages,
new architecture paradigms, and new team management strategies. From
the Agile movement to the DevOps methodologies, software engineering
has seen numerous evolutions. As a result, cloud-Native Applications built
around microservice, containerization, automation, and hosted in the public
cloud are now the norm.

During the last decade, every aspect of building and operating web ap-
plications has changed. At the same time, users and organizations are now
expecting more than ever performance and reliability from now-ubiquitous
web applications. Together those factors contribute to new challenges for
organizations, the software industry, and academic research. As stated pre-
viously, in this thesis, we will focus on the challenges around management,
monitoring, and quality of service of those microservices-based applications
in the public cloud environment.
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Chapter 2

Towards Observability in Cloud
Native Application

Among the challenges of operating Cloud-Native Applications in the
production environment, maintaining them and knowing when they expe-
rience failures or reduced quality of service is of utmost importance. Both
Cloud providers and cloud users need to monitor resources usage, perfor-
mance, and availability. Moreover, in case of failures, partial or total outages,
they rely on monitoring data to diagnose, troubleshoot, and ultimately re-
pair. Without that information, the operation of cloud-native applications
can be compared to flying a plane without visibility nor instruments.

The Cloud Native paradigm shift has brought an overall increase of com-
plexity, which also greatly increased the difficulty to observe and visibly un-
derstand the health, performance, and behaviors of Cloud Native Applica-
tions.

In this chapter, we will present a detailed display of the motivation be-
hind advanced monitoring, the pitfall of previous techniques and tools which
led to the breed of a new strategy called Observability.

2.1 Monitoring : an essential prerequisite for pro-
duction environment

Our modern world relies upon and expects web applications, indepen-
dently of their architecture, to run 24/7 at optimal performance levels. Yet,
the target of 100% availability remains an illusory mirage [41]. Every year,
major cloud providers and services experience major failures from perfor-
mance degradation to complete outages. Nowadays, minutes after failures,
social networks are filling with posts complaining about unexpected down-
times [42]. Worst some failures may propagate between cloud services and
bring entire portions of the Internet down with them [43].

Moreover, some outages have been caused by cyber-attacks such as DDoS
attacks [44] or security breaches. Sony Playstation, Electronics Arts, Valve
Steam and many others companies have been victims of hackers from not
using DDoS detection and mitigation services.
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In addition to the loss of services to customers, outages cause financial
and reputation harm to organizations [41]. A list of 2020 outages reveals
that no company is safe from outages [45]. Microsoft, Google, Amazon, IBM,
Slack, Github, and Zoom provide services essential to professional activity
worldwide.

FIGURE 2.1: Webcomic sarcasm about Amazon Web Servcices
outages [xkcd.com]

Millions of dollars can be lost; users can switch to competitors: those are
events that any organization wants to avoid, and when they happen, reduce
and limit their impact. Cloud providers strive to achieve better availability
and often commit themselves to Service-level agreements (SLA). For exam-
ple, Microsoft Azure virtual machine service provides a 10% credit to users
affected with a monthly uptime of less than 99.95% (21.92 minutes downtime
monthly). Whenever those SLAs are violated, cloud consumers can ask to be
compensated. Monitoring uptime is more than a technical necessity; it is also
a commercial, financial and legal one.

Additionally, Cloud-Native Applications hosted on Public Cloud are billed
on a "pay-as-you-go" basis, meaning that an increase in resources usages is
directly correlated to an increase in the billed amount. As a result, monitor-
ing new resources used and billed becomes a challenge to avoid over-budget
spending.

Monitoring is crucial to check the health of applications. Modern moni-
toring does more than alerting when failures happen. They can prevent some
issues that, if unnoticed, would have cause outages. Bugs and issues may
have been hidden in the development environment and only reveal them-
selves once connected to the production environment.

Even security becomes more and more challenging in the context of
public-cloud, internet-connected resources are scanned by robots waiting at
the first unpatched vulnerability to penetrate systems.
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In the previous paradigm, OPS would simply take care of "The Server",
a carefully maintained system running a single application. Any issue was
easily diagnosed; if something was wrong, it was "The server". Fleets of hun-
dreds of dynamically instantiated containers running on auto-scaled virtual
machines in the Cloud represent a very much more complex challenge. Mon-
itoring is required for almost every aspect of Cloud-Native Applications’ life-
cycle.

2.2 Related Work on Cloud Monitoring

Majors surveys in literature, Aceto et al., 2013 [46], Ward and Barker,
2014 [47], Fatema et al., 2014 [48] and Syed et al., Syed et al., [49], compiling
quality research, provide a wide view and in-depth analysis of cloud moni-
toring. They describe and cite state-of-art requirements, methods, strategies,
motivations and tools to monitor cloud infrastructures.

This section will detail state-of-art motivations, requirements, methods,
strategies, and tools to monitor cloud infrastructures. Then we will analyze
how they perform compared to existing cloud monitoring requirements.

2.2.1 Motivation for Cloud Monitoring

Motivation, also called purposes for cloud monitoring, depends on the
perspective (providers and/or users), and the deployment model of con-
cerned Cloud.

According to Syed et al., [49], motivations can be reduced to 3 main cat-
egories: Billing, Performance monitoring and Efficient use of Resources.

Ward and Barker, 2014 [47] added additional categories: Performance
uncertainty, SLA enforcement, Defeating abstraction, Load balancing Latency,
Service Faults, Location.

Fatema et al., 2014 [48] defined the motivation as Accounting and billing,
SLA management, Service/resource, provisioning, Capacity planning, Con-
figuration management, Security and privacy assurance, Fault management.

Aceto et al., 2013 [46] also defined similar categories: Capacity and re-
source planning, Capacity and resource management, Datacenter manage-
ment, SLA management, Billing, Troubleshooting, Performance management,
Security management.
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TABLE 2.1: State of the art on Cloud Monitoring ...

Motivation for cloud monitoring Cloud monitoring requirements

Aceto et al., 2013 [46] Capacity and resource planning
Capacity and resource management
Data center management
SLA management
Billing
Troubleshooting
Performance management
Security management

Scalability
Elasticity
Adaptability
Timeliness
Autonomicity
Comprehensiveness, Extensibilty, In-
trusiveness
Resilience, Reliability, Availability
Accuracy

Fatema et al., 2014 [48] Accounting and billing
SLA management
Service / resource provisioning
Capacity planning
Configuration management
Security and privacy assurance
Fault management

Scalability
Portability
Non-intrusiveness
Robustness
Multi-tenancy
Interoperability
Customizability
Extensibility
Shared resource monitoring
Usability
Affordability
Archivability

Ward and Barker, 2014 [47] Performance uncertainty
SLA enforcement
Defeating abstraction
Load balancing latency
Service faults
Location

Scalable
Cloud aware
Fault tolerance
Autonomic
Multiple granularities
Comprehensiveness
Time sensivity

Syed et al., 2017 [49] Billing
Efficient use of resources
Performance monitoring

Agent-less
Robustness
Operational insight

Those four main authors roughly defined the same motivations for cloud
monitoring. We can synthesize them as follows:
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Accounting and Billing

Cloud resources being offered as pay-as-you-go, accurate consumption
measurement must be done, requiring information such as the number of
CPU computing hours, bandwidth used in and out of providers’ networks,
amount of storage used, et cetera [50].

Depending on the deployment model, the data used to measure usage
and bill are not the same. While Infrastructure-as-a-Service (Iaas) resources
are billed according to usual metrics, complex Platform-as-a-Service (Paas)
and SaaS resources may require advanced and/or complex metrics which
are difficult to foresee (example scenarios azure pricing calculator). Aceto et
al., 2013 [46] emphasized complex cloud resources that necessitate advanced
monitoring. Surveys Aceto et al., 2013 [46] and Fatema et al., 2014 [48] both
describe the need to monitor usage both by cloud providers and cloud con-
sumers in order to get more transparency and verify billing.

Capacity planning

Both surveys Aceto et al., 2013 [46] and Fatema et al., 2014 [48] describe
capacity planning as a motivation for cloud monitoring. Before cloud com-
puting, capacity planning, especially for web applications, was one of the
most challenging tasks for engineers and developers. (ref scholar : capacity
planning web). They had to quantify the resources that had to be purchased
before product launch. They used testing and stress-test to determine an es-
timated amount of workload that would need to be supported. Failure to do
so resulted in degraded SLA, outages, and downtimes. Since cloud comput-
ing, cloud consumers can use as many resources as they can afford as long as
their architecture is able to scale up [51]. Monitoring remains an important is-
sue for both Cloud consumers and providers. It enables consumers to adapt
their resources provisioning to workload. As for providers, they need mon-
itoring tools to make sure they have enough resources to provide virtually
infinite scale [52].

Performance Management

Cloud service providers are responsible for providing standardized re-
sources by design. Each instance of the same product is supposed to behave
similarly with the same level of performance. However, for many reasons
such as aging, network issues, or others, some instances may not perform as
expected and, even worse, be defective. Syed et al., [49] point out how per-
formance monitoring is important for both cloud providers and cloud con-
sumers in order to verify that SLAs are not violated in those cases. Ward
and al tested multiples instances of virtual machines and observed an up
to 29% difference in performance between instances sold as being the same.
Other works in literature [53] [54] conducted the same experiment with simi-
lar results. Ward and Barker, 2014 [47] define Cloud monitoring performance
needs as essential:
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• "To quantify the performance of a newly instantiated VM deployment
to produce an initial benchmark that can determine if the deployment offers
acceptable performance."

• In order to examine performance jitter to determine if a deployment is
dropping below an acceptable performance baseline.

• To detect stolen CPU, resource over-sharing, and other undesirable
phenomena.

• To improve instance type selection to ensure that the user achieves the
best performance and value."

Moreover, performance for the cloud consumer is not only about com-
pute performance; it can be about latency. All nodes and instances that are
provisioned inside one cloud service provider’s data center may not exhibit
the same latency values. Ward and Barker, 2014 [47] noted this as an addi-
tional need for monitoring.

SLA Management

Aceto et al., 2013 [46], Ward and Barker, 2014 [47], Fatema et al., 2014
[48] and Syed et al., [49] all discuss the subject of SLA management. They all
agree on the necessity of monitoring QoS to verify SLA compliance. Aceto
et al., 2013 [46] see SLA enforcement in the context of cloud resources as a
natural driving force to achieve more realistic SLAs and better pricing mod-
els e.g., [55] [56]. Ward and Barker, 2014 [47] describe how monitoring SLAs
from a cloud consumer point of view is very important to detect when a
cloud service provider’s SLAs are unable to protect its users. It enables con-
sumers to migrate to more robust architecture to protect themselves, demand
compensation for breached SLAs, or migrate to other cloud providers. SLA
management may also be a contractual requirement in some regulations (e-
health, government data,...). In those cases, monitoring and enforcing SLA
becomes more than motivation; it is a requirement [46].

Troubleshooting

The Cloud represents a complex infrastructure and a major challenge to
troubleshoot [46], [48]. Indeed, looking for the root cause inside an immense
amount of resources, each made from several layers of abstraction, is difficult
[46], [47], [48]. Both cloud providers and cloud consumers need to monitor to
troubleshoot. Depending on the service model, the root cause may lie under
the responsibility of either providers or consumers. Ward and Barker addi-
tionally describe how monitoring of public cloud infrastructure, especially
when the consumers are entirely dependant, helped avoid some disruptions
and enabled a faster return to operational states.
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Security

Fatema et al., 2014 [48] discuss how security was a major issue in the
adoption of cloud computing. Monitoring to detect breaches, intrusions, or
attacks is essential in a public-faced multi-tenant environment. Monitoring
for security reasons is a major motivation that must not be bypassed as the
consequences may be dire [46].

2.2.2 Requirements for Cloud Monitoring
Cloud monitoring systems will not operate in the same environment

and with the same constraints as legacy monitoring systems in the previous
paradigm. In order to achieve the previously defined purposes, cloud mon-
itoring systems need to conform to a new set of requirements. Aceto et al.,
2013 [46], Ward and Barker, 2014 [47] and Fatema et al., 2014 [48] all describe
requirements for cloud monitoring systems as follows:

Scalability

Cloud infrastructure can scale up from dozens to tens of thousand in-
stances in a very short amount of time. While being a major advantage for
the application’s capacity to handle the high volatility of workloads, this ca-
pacity is a major challenge for cloud monitoring systems. Cloud monitoring
systems must be able to cope with those scale events dynamically by exploit-
ing the elasticity and scalability of cloud infrastructure. Aceto et al., 2013
[46], Ward and Barker, 2014 [47], Fatema et al., 2014 [48] and Syed et al., [49]
all emphasize this requirement as being essential. A scalable monitoring sys-
tem must be able to collect, transfer and analyze monitoring data without
impairing the normal operations of the Cloud. In addition to coping with the
increase in the number of resources, Cloud monitoring systems must cope
with the dynamic and changing nature of the monitored resources. Aceto et
al., 2013 [46] emphasize elasticity which, while being similar to the scalability
requirements, is nuanced. While scalability is about adaptation to an increase
in quantity, elasticity represents an adaptation to an increase of different re-
sources (high cardinality).

Adaptability, extensibility and comprehensiveness

Cloud monitoring systems must cope and adapt with the rapid growth
of cloud computing, being able to fit into new architectures composed of
new types of services. Both Aceto et al., 2013 [46] and Fatema et al., 2014
[48] point out how important those requirements are for cloud monitoring
systems. In order to do so, they must be able to adapt their way of process-
ing monitoring data to specific different use-cases. They also must be able
to integrate additional modules, also known as "plugins", to monitor in new
ways or new types of resources. Aceto et al., 2013 [46] point out how compre-
hensiveness and extensibility are related. They both depend on the capacity
of the cloud monitoring system to support different types of resources using
built-in knowledge or with plugins.
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Portability and Interoperability

Public cloud providers innovate in a very competitive market. This re-
sults in a very heterogeneous cloud environment composed of different APIs,
platforms, services. Monitoring multiple actors and their thousand of differ-
ent resources is a challenge that monitoring systems must address. Cloud-
monitoring system must be portable from one Cloud to another but also be
able to operate on multi-cloud at once ([48]).

Cloud awareness

In addition to a large variety of resources and performance tiers, cloud
computing also add a large variety of costs as stated by ward an all. Those
aspects need to be taken into account by the cloud monitoring system, iden-
tifying cost and performance issues linked to cloud application requirements
such as QoS or latency ([47]).

Timeliness

As pointed out by Aceto et al., 2013 [46], "a monitoring system is timely
if detected events are available on time for their intended use [57].” Indeed,
depending on the amount of data the monitoring needs to process as well as
the saturation level, an increase in latency between the collected data and the
raised alerts may exist. Ward and Barker, 2014 [47] point out this requirement
by describing the monitoring latency as "the time between a phenomenon
occurring and that phenomenon being detected, arises due to a number of
causes." In order to be effective, a cloud monitoring system must provide a
way to reduce or avoid monitoring latency, especially in the event when the
architecture is scaled up.

Accuracy

As highlighted by Aceto et al., 2013 [46], accuracy is of paramount im-
portance in order to correctly identify problems and their causes. In cloud
systems, it is all the more important as inaccurate monitoring can have a sig-
nificant impact on providers, causing money loss because of SLAs violations.
In his review, Aceto et al., 2013 [46] cite two issues linked to the accuracy of
cloud monitoring systems that are discussed in the literature. The first is re-
lated to the workload used to perform the measurements, while the second
is related to the virtualization techniques used in the Cloud that can impact
measurement accuracy.

Autonomicity

As explained by Aceto et al., 2013 [46], autonomicity is a requirement of
paramount importance in cloud systems that are, by nature, highly volatile.
In order to avoid service interruptions, cloud monitoring systems need to
self-manage and react without manual intervention to unpredictable changes,
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faults, and performance degradation. However, this requirement is not eas-
ily achieved, and the issues linked to its implementation are addressed by
several studies [57] [58] [59] [60] [61] [62]. In their review, Ward and Barker,
2014 [47] cite autonomic as a requirement and insists on the need for greater
degrees of autonomic behavior in cloud systems that auto-scale and rapidly
change.

Non-intrusiveness

As described by Aceto et al., 2013 [46], a Cloud monitoring tool is in-
trusive if its adoption requires significant modification to the Cloud. Non-
intrusiveness thus becomes both a requirement and a challenge in cloud en-
vironments composed of a large number of resources. Fatema et al., 2014 [48]
states that a monitoring tool should consume as little resource capacity as
possible on the monitored systems so as not to hamper the overall perfor-
mance of the monitored systems [63].

Usability

According to Fatema et al., 2014 [48], Cloud monitoring tools should, in
order to be useable, facilitate deployment, maintenance, and human interac-
tion.

Multi-tenancy

Public cloud offers multiple tenants the ability to share physical resources
and instances. Many works in literature have discussed the necessity of guar-
anteeing service level agreements and virtual machine monitoring [64] [65]
[66]. Fatema et al., 2014 [48] explain how cloud monitoring tools must have
tenant isolation in case of multi-tenancy.

Robustness, Resilience, Reliability and availability

Cloud monitoring systems must exhibit characteristics that provide them
with robustness, resilience, reliability, and high availability. Indeed, cloud
computing resources may expect transient failures [47]. Cloud monitoring
systems must function properly even though their underlying resources might
expect failures [47]. Resources can change, be moved, instantiated and deleted
while the cloud monitoring system is active [48]. Moreover, they must be
aware of those events and report them. For activities such as Billing and
SLA management, cloud monitoring systems cannot afford failures that may
compromise those activities [46].

Affordability

Stated by Fatema et al., 2014 [48], a cloud monitoring system must be
affordable. An open-source cloud monitoring system is an advantage com-
pared to expensive proprietary solutions. This represents one of the main
aspects behind the popularity of Cloud adaptation.
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Archivability

As pointed out by Fatema et al., 2014 [48], "The availability of historical
data can be useful for analyzing and identifying the root cause of a problem
in the long term".

2.2.3 Open research issues and challenges
Cloud monitoring research has been a prolific area both in the scientific

and the industrial sector in recent years. The major surveys in our literature
review have exhaustively compared all the scientific and commercial mon-
itoring tools available and checked their compliance with the requirements
they have defined. Their works give us an accurate overall picture of state-
of-the-art cloud monitoring.

Aceto et al., 2013 [46] underline "how some features, namely Intrusive-
ness, Resilience, Reliability, Availability, and Accuracy are not explicitly con-
sidered or advertised by most commercial or open-source solutions for Cloud
monitoring" and "properties highly valued for Cloud services are currently
not central for most of the analyzed Cloud monitoring platforms themselves".
This means that most of the solutions analyzed by [46] did not fit the require-
ments for cloud monitoring.

They explicitly stated that "monitoring systems must be refined and adapted
to different situations in environments of large scale and highly dynamic
like Clouds." While many issues of cloud monitoring have received atten-
tion from the research community with important results, considerable ef-
forts are required to achieve maturity and seamless integration in complex
architecture. They emphasized a list of future research directions in cloud
monitoring.

• Effectiveness

• Efficiency

• New monitoring techniques and tools

• Cross-layer monitoring

• Cross-domain monitoring: Federated Clouds, Hybrid Clouds, multi-
tenancy services

• Monitoring of novel network architectures based on Cloud

• Workload generators for Cloud scenarios

• Energy and cost efficient monitoring

• Standard and common testbeds and practices

According to Fatema et al., 2014 [48], "Monitoring in Clouds is an area
that is yet to be fully realized". They observed "that the realization of some
desirable capabilities such as scalability, robustness, and interoperability, is
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still a challenge.". In addition, they also point out that "none of the tools sur-
veyed have capabilities for verifiable metering and service KPI monitoring.".
They state that "General purpose monitoring tools [Legacy/previous genera-
tion tool] are commonly designed with a client-server architecture where the
client resides on the monitored object and communicates information to the
server."

"These tools were designed for monitoring fixed-resource environments
where there was no dynamic scaling of resources.".Fatema et al., 2014 [48]
argue that "in designing future monitoring tools especially for Clouds, these
challenges must be addressed."

Ward and Barker, 2014 [47] point out that older tools designed for and
from previous paradigms are a poor fit for cloud monitoring. They add that
there is a trend toward newly design tools for cloud monitoring that better fit
the new requirements. Ward and Barker also add that the area of monitoring
tools being a solution in itself might be over. The new answer might be to
envision monitoring as an engineering practice with new strategies, knowl-
edge, and jobs descriptions.

In their survey, the most recent in the literature, Syed et al., [49] stated
that monitoring is still facing several challenges, notably, Cloud-native mon-
itoring issues. Syed et al., [49] insisted on the difference in nature between
cloud monitoring solutions made from and for legacy architectures and their
inadequacy when used with modern dynamic cloud-native architectures. Cloud-
native monitoring issues are listed as the need for "agent-less, robustness,
and operational insight features for optimal monitoring."

As seen in our state-of-the-art, existing monitoring solutions do not fit
the requirements for cloud monitoring. With the advent of Cloud Native
Architecture, the gap between the existing tools and strategies and the pro-
duction monitoring requirements became even greater.

2.3 From Monitoring to Observability

As said previously, Cloud-Native Applications are built upon dynami-
cally orchestrated microservice powered by multiple public cloud resources.
By their inherent nature, this represents a fundamental change compared to
the previous architecture. While monitoring in the Cloud Infrastructure-as-
a-Service (IaaS) model, i.e., virtual machines, has been largely discussed in
the literature, it was obvious by our state-of-the-art that the monitoring so-
lutions, strategies, and architectures were not up to the task for novel cloud
architectures such as Cloud-Native Applications.

Indeed Cloud Computing represented an already steep increase in the
difficulty for monitoring, the advent of exponentially more complex Cloud-
Native Applications relying on containerization, orchestration, Paas, Saas,
and many new practices increasing scalability and dynamic life-cycles proved
to be an even greater challenge.
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Applications running across multiple clouds, with thousand of microser-
vices with millions of users, are beyond the scope of monitoring systems.
The potential of issues and questions from new failures is beyond traditional
paradigms.

Around 2013, facing the exponential increase in complexity of systems,
some Site Reliability Engineers (Twitter: @gphat @kylembrandt) started think-
ing about a new paradigm inspired by control theory, Observability.

Stack Overflow, the largest platform for system administrators and IT
professionals, made a post about "The Importace of Observability" [67] in
2013. Twitter defined the concept of Observability in two posts between 2013
[68], 2016 [69], and a publication in IEEE Symposium on Large Data Analy-
sis and Visualization 2013 [70]. Uber joined with a post and talk about the
implementation of Observability in 2016 [71]).

In its original context, the term was defined as : "In control theory, Ob-
servability is a measure of how well internal states of a system can be inferred
from knowledge of its external outputs."

In computer science, we define Observability as : "Observability is the
ability to understand the inner working of systems and applications by ob-
serving the external outputs."

In our publication [5], we stated that: "While monitoring mainly reside
in connecting up/down checks to data extracted from servers and websites
[46] [72], Observability hopes to bring understanding to the internals of ap-
plications and infrastructures."

Thus Observability does not replace monitoring; it can be seen as a nec-
essary extension of monitoring for operating Cloud-Native Applications. Ob-
servability represents an extension of monitoring; it aims to both fulfill the
same purposes and additional ones that are required from operating Cloud-
Native Applications.

We previously listed in our state-of-the-art a list of motivations and re-
quirements for cloud monitoring that we summarise in table 2.2.
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TABLE 2.2: Cloud Monitoring motivations and requirements

Motivations Requirements

Accounting and Billing
Capacity planning
Performance Management
SLA Management
Troubleshooting
Security

Scalability
Adaptability
Extensibility
Comprehensiveness
Portability
Interoperability
Cloud awareness
Timeliness
Accuracy
Autonomicity
Non-intrusiveness
Usability
Multi-tenancy
Robustness
Resilience
Reliability
Availability
Affordability
Archivability

Observability inherits all these properties but has new motivations as
follows:

• Decisional observability

As automation is gaining momentum thanks to the DevOps movement,
broader situation awareness is necessary. Decision algorithms need to ac-
cess at the same time to finer granularity and broader information in or-
der to infer the best course of action for each decision. Orchestration tools
such as Kubernetes [73] require each microservice to expose information in
a machine-readable format to make an automatic decision [74]. Some pro-
prietary IT management solutions such as [75] offer automatic event miti-
gation; however, setting up those systems is expensive and labor-intensive
as they require defining each failure case and attaching the necessary ac-
tions. Decisional Observability enables new applications such as automatic
multi-dimensional auto-scaling. With new information about the microser-
vices state, health, and load, decisions can be made even before issues arise.
An example of these types of decisions is automatic preemptive auto-scaling
where new microservice instances can be started before errors happen by
correlating the gateway’s increased load with forecasted traffic.

• Dependency and Topology discovery
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Cloud-native applications can become very complex distributed systems
with hundreds of microservices dynamically linked. Understanding how
those microservices interact is a challenge. This is further complicated by
the short-lived nature of some allocated resources. Business processes that
use many different microservices inside cloud-native applications are very
common and notoriously difficult to troubleshoot. Cloud-native monitoring
tools must provide insights on the dependencies between business services
and microservices, as well as a complete logical topology of the interactions
between application microservices.

• Managed resource monitoring

Software as a Service (SaaS) and Backend as a Service (BaaS) solutions
are commonly used in support of many business and application needs from
authentication (e.g., Auth0[76]) to mailing (e.g., Sendgrid [77]) and from stor-
age (e.g., Amazon Web Service S3[78]) to publish-subscribe buses (e.g. Google
PubSub [79]). Dependency on these external services is vital to keep the ap-
plications up and running, and any failure of one of those services can result
in Internet-wide impact. For instance, the February 28th, 2017 Amazon S3
outage [43] affected a large part of amazon cloud services, any cloud appli-
cations that had dependencies on them, and even IoT devices that relied on
those cloud services [80] were impacted.

Multi-cloud, redundant, and highly available design is crucial to avoid
the failure of the entire application when such events happen. Monitoring is
essential in support of the implementation of recovery mechanisms [81].

• System-wide transactional visibility

Troubleshooting and performance management in distributed systems
require the ability to follow in/out requests of every microservice along the
path. The ability to monitor the execution flow along with topological data
is paramount for any data-centric operational need, from troubleshooting to
billing.
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Chapter 3

Architecture Proposal for
Observability in Cloud Native
Applications

We carefully analyzed the state-of-the-art at the beginning of this thesis.
Architectures, strategies, and tools available at the time did not fit the strict
requirements that were enacted for usage in both our research and produc-
tion environments. In this chapter, we describe the methodology and the
components that enabled us to define our architecture proposal for Observ-
ability in Cloud-Native Applications.

3.1 Methodology

From our point of view, cloud computing and cloud-native applications
started an exponential increase in complexity that caused human operational
engineers to be submerged in data, issues, and challenges. Both the DevOps
movement and scientists agree that humans do not scale well. Even the most
skilled engineer cannot understand, visualize and take decisions on cloud-
native applications as large as the ones built by Twitter, Uber, or Google.

However, there is a field of computer science, autonomic computing,
that proposes a solution. Introduced by Paul Horn [82], VP of research at
IBM, autonomic computing is defined as "Computing systems that can man-
age themselves given high-level objectives from administrators."

Cloud-Native Applications and Infrastructures being already highly au-
tomated and orchestrated in other aspects, could we not do the same with
Observability for Cloud-Native Environments?

We decided to follow the principle of MAPE-K [1] [2], the structure be-
hind autonomic managers and adapt it in order to monitor and gain observ-
ability on Cloud-Native Applications.

The result of this reasoning is the approach described in Figure 3.1. De-
composing the requirements in multiple functional entities enables to escape
the tenacious hype factor in IT and construct a framework dedicated to offers
the maximum Observability in cloud-native architecture.
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FIGURE 3.1: Path towards observability.

Our path to Observability is described as a chain of processes starting
from collecting monitoring raw data through response automation with pro-
cesses such as:

• Collect

• Store

• Process

• Correlate

• Display

• Alert

• Response

This path is gradually implementable and continuously improvable, en-
abling iterative progress towards Observability. In our approach, each spe-
cific environment implements an observability path using the tools and so-
lutions that best fit their constraints. In enterprise and production environ-
ments, this approach enables to use commercial off-the-shelf or open-source
software that fulfills requirements for some steps of the process, thus greatly
facilitating implementation and adoption.

Collect

The first step of Observability is data collection. Our framework re-
quires raw data for cloud-native applications, infrastructures, middleware,
and third parties. These data represent the raw material whose quality de-
pends on all other observability path processes.

Depending on the source, those data may be pulled or pushed. Compo-
nents that are too short-lived to be scraped send their data to an intermediate
gateway from which the data is collected. Most cloud-native architecture



3.1. Methodology 45

components benefit from built-in auto-discovery features. This enables the
collection of monitoring data without explicitly specifying the list of moni-
toring endpoints. The final role of this data also has an influence on the col-
lection frequency and the delay since live events. For example, data that will
be used for alerting purposes is very delay-sensitive, as each second increases
the meantime to detection (MTTD) KPI. On the opposite, data collected for
regulatory reasons just needs to be reliably collected and available whenever
needed.

Monitoring data can mainly come in different forms, such as logs, met-
rics, and traces. Logs are journals of discrete events in a text form; they gen-
erally contain additional numerical values. The main purpose of those logs
is to record past events for later diagnostic, drill-downs, and root cause anal-
ysis. Modern logs are structured, e.g., Formatted as JSON, so they can be
ingested easily by centralized logging systems taking care of collecting, in-
dexing, and storage. However, the number of logs collected only increase in
size with time and service usage growth.

Lighter and more agile monitoring data can be needed, especially for
alerting and graphing purposes. Metrics, mostly in the form of time series,
offer light simple key-value data linking a timestamp, labels, and numerical
values. They represent real-time values or counters and thus can be plot-
ted to dynamically observe evolutions in the system. Moreover, being nu-
merical values, they are easier to aggregate, average, summed, or modify in
any mathematical way. This is especially useful when trying to get insights
based on multiple metrics sources. But excluding the few labels that may be
attached to them, metrics are decorrelated from the application context.

When it comes to having contextual meaning, traces are one of the most
useful forms of data. They represent transactions or end-to-end user re-
quests, tracing the cascade of events from the initial request going through
every service and application until the final answer is sent to the user. It is the
aggregation of all the logs and metrics created by a single request during its
processing. Even if collecting all traces enables developers and operational
engineers, the volume of data is directly linked to the activity, and thus stor-
age cost and scalability issues may arise.

Independently from their types, collected data must come with extra in-
formation such as synchronized time and labels. Those metadata will prove
themselves very useful when processing tasks will be performed. Addition-
ally, a first level of filtering and sampling can be implemented during mon-
itoring data collection, reducing both bandwidth, storage, and processing
power requirements in the following steps.

Store

After collection, monitoring data must be stored in a way that makes
it accessible for all the steps mentioned in our observability process. Those
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databases can be centralized or distributed but must be indexed and special-
ized in monitoring data types. Indeed monitoring data present some partic-
ularities that may cause performances issues with general purpose relational
and NoSQL databases. In addition, in the cloud-native applications ecosys-
tem, because of scaling, those databases must be elastic and/or scalable in
order to absorb great changes in ingress traffic.

The collected information must be entirely searchable with centralized
databases or distributed using indexation applied on at least timestamps and
at best the most important labels.

Scaling in cloud-native environments may create situations were dupli-
cation exists in labels. Those databases must also be able to de-duplicate
incoming data.

Process

With convenient and fast access to the monitoring data via API, algo-
rithms can clean or extract more information from the original monitoring
data. Depending on the processing tasks, they can be implemented to be ex-
ecuted as soon as the data is collected. Usage of data streaming pipelines
offers real-time processing capabilities. Less time-sensitive batch jobs are pe-
riodically executed or only when needed at querying time. Alerting purpose
necessitates real-time data or as close as possible. This justifies processing
tasks and rules applied on the fly as soon as the raw data is created and
stored. On the opposite, analysis needs such as quarterly or yearly analy-
sis can be processed later. This temporal requirement towards processing
raw monitoring data motivates the placement of algorithms relatively to data
sources.

By using advanced algorithms, the processing of raw monitoring data
enables insights such as trending, scoring, anomalies detection or forecast.

Correlate

Along with the functional process block, the correlate block is one of the
most important in the observability paradigm.

Cloud-native applications are complex multilevel distributed systems.
Issues and failures can happen at any point and propagate themselves. Many
techniques can be used to correlate events. Detailed and consistent labeling
on monitoring data enables to correlate cloud-native applications, their repli-
cas, and the full stack of cloud resources linked. Synchronized timing across
the cloud-native infrastructure enables to detect events that exhibit the same
timestamps. Anomalies detection and pattern matching can pinpoint issues
that reproduce themselves across a variety of microservices. Correlation ID
can transform logs into transactions to follow interaction from the initial re-
quest to the egress point.

Correlation events, logs, traces, and metrics and presenting them di-
rectly to operation engineers can greatly improve the system’s reliability.



3.2. Cloud Native Observability Data Sources and Types 47

Integrating tools or writing extensions that automate this functionality is a
great leap towards Observability.

Display

Displaying of the live and historical monitoring data on a dashboard
enables teams to get visual feedback on systems health. This is used in con-
junction with data visualization techniques to realize manual diagnosis or
root cause analysis by plotting values and displaying logs lines.

Alert

More than just collecting information useful for finding the root cause of
failures, it is often necessary to alert the operational team of relevant issues
without them having to constantly stare at monitoring dashboards. Alerts
need to be more sophisticated than just forwarding raw metrics and mean-
ingful rules must be used to choose relevant monitoring data to be sent to the
operational team. Alerts can also be made on processed data that can reveal
anomalies, patterns and correlations that could not have been detected with
regular numerical values.

Response

As automation is gaining momentum thanks to the DevOps movement,
broader situation awareness is necessary. Decision algorithms need to ac-
cess at the same time to finer granularity and broader information in or-
der to infer the best course of action for each decision. Orchestration tools
such as Kubernetes require from each microservice to expose information in
a machine-readable format so an automatic decision can be made. Decisional
Observability enables new applications such as automatic multi-dimensional
auto-scaling. With new information about the microservices state, health,
and load, decisions can be made even before issues arise. An example of
these types of decisions is automatic preemptive auto-scaling, where new mi-
croservice instances can be started before CPU/RAM saturation or erratic be-
haviors happens by correlating the gateway’s or middleware increased load
with forecasted traffic.

3.2 Cloud Native Observability Data Sources and
Types

Multiple data sources including logs, metrics, and traces obtained at
different monitoring layers must be harnessed to achieve Observability in
cloud-native microservices. We discuss in this section the different monitor-
ing layers, monitoring abstractions, and data types.

• Monitoring abstraction layers

In the literature, the Cloud Computing environment has been stratified
into seven separate layers: facility, network, hardware, operating system,
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middleware, application, and finally, the user. The microservices architec-
ture mandates that a new layer, "Microservices", be added.

- Facility: this layer forms the base of the data center. It covers the phys-
ical infrastructure necessary to host and run all the equipment. It constitutes
the first data source.

- Network: A large number of communication links and switching and
routing devices are used to ensure a fast and reliable connectivity between
servers within the data center and with the outside world, i.e., the tenant
and end-users through the Internet.

- Hardware: this refers to CPU, memory and, storage resources. In the
cloud.

- Operating System (OS): hosted, for example, by physical servers within
virtual machines in order to run applications.

- Middleware: provide an environment to develop and operate applica-
tions. Examples include the Docker Engine, the Java JVM, or any runtime
environment abstracting the operating system for the application.

- Microservices: this layer is added to represents a set of functions ex-
ecuted on demand and triggered by events. As discussed earlier, the chal-
lenge is to monitor microservices through their lifetime, i.e., from the time a
microservice registers a new instance to its termination. The stateless nature
of some microservices further complicates the problem.

- Application: a collection of different microservices running on top of
the previous layers in the cloud system. Correlating different monitoring
information from different microservices to maintain a consistent view on
how the application performs when it is running is very challenging.

- User: By using his web browser, the end-user can connect any front-end
mobile app or a machine connected remotely, such as in an M2M (Machine
to Machine) or IoT (Internet of Things) scenario.

Depending on the service layer, the deployment model, and business
roles, the players in the cloud computing environment will be either produc-
ers or consumers of monitoring data. From the perspective of a cloud tenant
developing microservices-based applications, many of the layers are not ac-
cessible, and the complexity due to the distributed nature of microservices
makes the retrieval of monitoring data available at these layers even more
difficult. Monitoring can be provided at different abstraction levels, from
low-level physical hardware to high-level user applications. This nuance de-
pends on the service model but may also be created in order to obtain more
meaningful data. For example, Microsoft Cosmos DB uses a custom metric
called "RU/s" [83]. Based on a formula using memory, CPU, and IOPS, this
complex metric is generated by user requests. This metric is considered high
level compared to those that compose it. The monitoring depth depends on
the monitoring hooks and tools made available to retrieve monitoring data
on the system’s health and performance.
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• Monitoring data types

Logs

A log is a record of immutable events. It exists either as a log list stored
in a file commonly called a log file or as discrete events sent for recording
to a log management system. Logs can exist in many forms, from human-
readable logs to binaries. Logs whose only purpose is to record events for
human operators are generally plaintext formatted. Even if such a format is
useful for in-place debugging, they become tricky to manipulate when pars-
ing the logs. Binary logs are not meant for humans and generally serve as
journals in file systems, databases, or any transactional system. For such
systems, these types of logs provide synchronization, recovery points, and
replication. There are also structured logs which are logs that can be read,
understood, and interpreted by humans and applications alike. This is the
case for JSON files commonly used by developers.

Logs are very useful sources of information; they record the details of
what happened inside each request. They can be easily queried using sim-
ple "grep" or "jq" in the case of JSON files. Most of the use cases like de-
bugging, auditing, root cause analysis, billing validation, users KPIs or any
exploratory troubleshooting can be done using log files.

It is worth noting that logs are storage expensive. One way to circum-
vent the issue is to use log management systems [84] or [85].The main pur-
pose of such systems is to centralize and manage logs. They can aggregate
and index a large number of logs but are still costly. Logs are essential for
any production-grade system and constitute an important data source for
monitoring and Observability.

Metrics

Metrics are sets of numbers with timestamps and labels attached to them
that give information about a component or process. They can be counters
or gauges that give insights by themselves and can also be recorded and
graphed over time to analyze trends. Metrics are easier to export, retrieve,
and store compared to logs. They can be compressed, indexed, and queried
faster and with more flexibility. Aggregating, averaging, or summing them
over time can resolve retention issues.

Metrics are popular in the cloud infrastructure because they are very
scalable; they don’t increase overhead when the system’s usage increases.
They are essential for Observability since they constitute a light, efficient and
precise way to obtain information from cloud microservices architectures at
scale. As the overhead only increases with the number of different metrics
recorded and not with the number of data points, it is important to focus on
a limited set of relevant metrics for most cases.

Metrics can also be manipulated mathematically and correlated with
other metrics for complex analysis. They can also be used to trigger alerts
in near real-time.
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In cloud-native microservices-based applications, metrics are highly re-
quired for any operational team to achieve Observability.

Traces

Data traces are end-to-end representations of a series of causally-related
distributed events across a service operation from the initial request up to
the service delivery or failure. A single trace enables to follow the flow of
the request and the changes that happened during the path across the dis-
tributed system. In complex distributed systems like microservices in public
cloud environments, traces are the panacea for troubleshooting, debugging,
performance analysis, and any similar use cases. Even difficult issues like
asynchronous executions become visible using data traces.

• Monitoring strategy and methods

Gathering a large volume of monitoring data is only a means to achieve
Observability. While access to logs, metrics, and traces is essential, these are
only raw bits representing values and events. Only once they are parsed,
cleaned, structured, processed, and correlated, those data become informa-
tion able to satisfy the requirements of Observability. In this section, we will
discuss the strategies and methods used to select, recover and correlate data
for achieving Observability.

• Blackbox monitoring

Blackbox monitoring refers to a monitoring strategy that treats systems
as black boxes and examines them from the outside. Before agile and DevOps
practices, Operation engineers (Ops) were in charge of keeping servers up
and running for hosting applications. They did not have any way to change
the delivered binary. The most convenient way was to monitor the underly-
ing operating system and server general information like CPU usage, RAM
saturation, and disk I/O. This type of approach is particularly useful in sce-
narios where third-party apps are being deployed. Even in a microservices
environment, being able to obtain some low-level information remains use-
ful and enables operators to achieve better system integration by being more
aware of other components.

• Whitebox monitoring

Whitebox is a more recent approach to tackle monitoring by retrieving
information from inside the applications and systems. Instead of measuring
host, network, or operating system levels, the focus is on the application and
how it is running and performing. This type of monitoring needs to be im-
plemented in a DevOps fashion. Developers and operation engineers (Ops)
work together to implement whitebox monitoring. While developers instru-
ment data exporters into their applications, Ops configure monitoring tools
to gather those data. The main difference between blackbox monitoring and
whitebox monitoring is the difference between symptom detection and cause
determination. Blackbox monitoring reveals symptoms while whitebox eases
identification of underlying causes.
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• Computational based tests

Computational-based tests use CPU time and power of the monitored
resources to determine the liveness as well as any information that can be
deduced by executing either the running service or specific algorithms. This
type of active testing enables to determine performance, stability, or base
value to evaluate the max capacity of the service in its running environment.
In environments without a continuous flow of requests, computational tests
can help detect errors or outages that can be avoided before impacting real
clients.

• Network based tests

Network tests refer to all tests that can be done at the networking layer.
These types of tests can be either passive (e.g., counting packets, measuring
throughput and bandwidth) or active by injecting packets that can measure
round-trip times or jitter along the network interfaces between services or
endpoints.

According to Google SRE books [86], at least four golden signals have to
be monitored. (1) Latency, which represents the elapsed time on how long
each request needs to be processed and if the request was successful or not.
(2) Traffic monitoring measuring the throughput in terms of request per sec-
ond, number of concurrent sessions, basic network I/O, and the load of a
component. The monitoring data can be retrieved, shipped, and stored as
time series metrics where a set of labels and values are attached for each
timestamp. (3) Errors representing the rate of failures that can be used to
diagnose a specific component of the system. It also allows for discriminat-
ing bad requests sent by users from hidden bugs, regressions, or attacks. (4)
Saturation, which is usually the performance degradation of a component
before reaching 100 % utilization. This consists in observing the performance
of a system or component before the tipping point, where higher load means
lower performance and increased response time (latency).

• RED (Rate, Errors and Duration)

One of the monitoring processes derived from the four golden metrics
is the RED method for Rate, Errors, and Duration. By obtaining the number
of requests per second served by the services, including the number of failed
requests and how many times each request lasted, most of the obvious issues
can be pinpointed. However, this method is clearly linked to the availability
of high-level white-box metrics.

• USE (Utilization, Saturation, Errors)

Another method from the literature is USE for Utilization, Saturation,
Errors. It extols the value of checking the aforementioned control values for
every resource in the system. It can be used in contexts where inside metrics
are not available, as the resource lemma indicates, but not limited to CPUs,
memory, network interfaces, storage devices, etc. In this case, the USE met-
rics need to be interpreted with high utilization level that can be correlated to
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issues such as increased latency or even signs of bottlenecks when achieving
100%. Saturation ideally needs to be kept at 0, and any increase represents
extra time spent for jobs. Any errors reported are worth investigating be-
cause even if they are not caused by the system, they still represent misuse
by clients.

• Correlation

As mentioned previously, correlation is a great way to navigate monitor-
ing data. However, this needs to be plan ahead, while many applications and
systems already assign a Universally Unique Identifier (UUID) to requests,
some need to be developed with these criteria in mind. By filtering logs, met-
rics, and traces with this unique correlation ID, engineers can determine all
the services, machines, and tier services that this request has been through.
Any gaps also help to identifies "area of darkness" in the system, components
that are insufficiently connected to the observability framework.

3.3 Observability Architecture Framework

Being equipped with the knowledge of our requirements, our method-
ology, and our data sources, we were able to design a framework that would
enable us to achieve Observability in cloud-native applications. Our method-
ology enables us to define clear roles for our observability framework. In-
stead of relying on one single monitoring, our observability approach relies
on the same principles of the cloud-native paradigm, it is a distributed sys-
tem of microservice together contributing to achieving Observability. That
approach enables scalability, robustness and resiliency as each part of the
system is a separate failure domain.

Our framework begins with collecting data in all forms possible, logs,
traces, and metrics, from our cloud-native environment. Extracting data
from our Cloud Native Infrastructure components, Cloud Native Applica-
tions, Cloud providers APIs, and other dependencies such as Software-as-a-
Service Third-Party Service Provider APIs. Those data can be recovered via
APIs, data exporter (agents) when possible, instrumentation of apps, or even
captured via running service mesh. Those data then enter our observability
framework, which stores it in cloud storage. From there, the collected data
can be processed, filtered, requested, correlated in any way or fashion. Those
data then become knowledge that can be used to display KPI (Service Level
Objectives SLO), triggered alerts, and even automated actions.
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FIGURE 3.2: Architecture framework for observability in cloud-
native architecture

Our architecture framework is built following the cloud-native paradigm;
each component must run in a cloud-native environment and thus benefit
from it. Thus in our framework, all the components can be instantiated, con-
figured, and maintained alongside Cloud-native applications with the same
tools and best practices. The components of our framework can be instanti-
ated on the same cloud infrastructure or on dedicated instances for additional
resiliency and high availability purposes.

3.4 Implementation of our Architecture for Observ-
ability in Cloud Native Applications

We implemented a proof of concept (PoC) observability framework in an
industrial production environment within LECTRA [87] EPA:LSS [88], which
is an industry-leading technology company specialized in software and soft
fabric cutting equipment for fashion, technical textiles, furniture and auto-
motive. Being an important player in the 4.0 industry, this production envi-
ronment offers many SaaS cloud services.

As a constraint, all the created microservices rely on the Microsoft Azure
cloud infrastructure. While we could have opted for a fully open-source
stack for this implementation, the existing contract dictated the choice of
some commercial components. During the previous years, new services were



54 Chapter 3. Architecture Proposal for Observability in Cloud Native
Applications

designed and developed progressively. Many new technologies and tools
became successively available both on the Azure platform and in the open-
source ecosystem.

FIGURE 3.3: Illustration of different generations of microser-
vices deployed in our environment, along with the observabil-

ity framework set up in our PoC.

Some of our earliest microservices run on an IaaS service model (VMs)
and we progressively added managed PaaS (WebApps), then our own PaaS
infrastructure of containers orchestrated on top of IaaS resources. All our
generations of microservices are developed and deployed in continuous in-
tegration or continuous deployment.

When considering third-party services, there are many interdependen-
cies. Thus, we needed to develop new tools and methods to achieve a high
level of Observability and guarantee production-grade SLAs.

Figure 3.3 shows both microservice infrastructure and Observability frame-
work. The observability framework provides a number of functionalities and
build on highly customizable tools such as:

• Logs recovery, storage and management [85]

• Metrics recovery, storage and management [89]

• Metrics visualization and correlation [90]

• Alerting [91]

• Paging [92]

• Team Coordination [93]
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• Synthetic monitoring [94] [95]

• Service level agreement evaluation [95]

As displayed in Figure 3.3, many off-the-self tools and services compose
our observability layer. Each one of them is in charge of either collecting,
processing, or displaying the information that enables Observability on our
microservices-based applications.

Directly connected to our microservices are information-gathering com-
ponents. Splunk and Prometheus are used to collect and manage respectively
logs and metrics. Both Slunk and Prometheus come with exporters and APIs
that allow for the collection of data from infrastructure components and ap-
plications. Meanwhile, Status Cake and Catchpoint realize content liveness
checking and synthetic monitoring. Those four previously cited tools, Slunk,
Prometheus, Status Cake, and Catchpoint, enable the collection of both "in-
side" whitebox and outside blackbox information.

FIGURE 3.4: Details of a Dashboard of our production Observ-
ability stack at Lectra

Other tools in our observability layer are given an information process-
ing role. Alertmanager uses the metrics centralized by Prometheus to launch
automatic actions but also enables custom triggering, such as alerts forwarded
to PagerDuty. Grafana enables operational engineers to visualize the data in
a human-readable form. After some event, our operational engineers write
post-mortem that becomes part of our knowledge base and greatly helps
whenever the issue happens again.

Even if the tools included as part of the observability framework are
off-the-shelf software, they have been customized to fit our specific needs.
Furthermore, we implemented our service logic, business rules, and domain
knowledge directly inside each component. As an example, the liveness of a
business service is implemented by considering all the internal and external
dependencies. In addition, we created rules that proactively detect failures
based on patterns related to historical outages. During the alpha stages of
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our development, our failure detection system was mainly based on the com-
plaints of developers and alpha users. Soon we implemented a log manage-
ment system to display our custom logs and errors on dashboards. However,
this approach only allows the information to be retrieved several minutes af-
ter the occurrence of events. In order to overcome this limitation, a lighter
and more reactive metric-based system was implemented. This system is
based on Prometheus and required adding metric exporters inside microser-
vices. This system has proven to be much faster than log-based alerting.

Our log and metric collection system is hosted on the same cloud infras-
tructure that hosts our applications. Furthermore, we needed third parties
solutions to get accurate and independent measurements. This is where third
parties synthetic monitoring plays a role (StatusCake, Catchpoint). With
these additions, we were able to identify any malfunctioning microservices
and be alerted in less than 30 seconds.

3.4.1 Results

To illustrate the results of our observability approach, we provide some
results in Figure 3.5 of the total downtime and in Figure 3.6 of the mean
downtime. The values shown in the figures are aggregated from our produc-
tion environment and are represented in months since the microservice was
connected to our observability suite. These two key performance indicators
show how fast issues and outages are detected and fixed. Using our ob-
servability framework to gather information on the microservice-based ap-
plications and using the information and orchestration rules, we were able
to greatly improve availability. It is worth noting that before deploying our
framework, humans were in charge of watching basic dashboards displaying
limited hardware statistics and investigate whenever they recognize patterns
corresponding to an issue.

By using those advanced dashboards and alerts, operational engineers
can pinpoint issues faster and even detect trends that may lead to future fail-
ures. Figure 4.4 shows an example of one of those advanced dashboards ded-
icated to getting a precise idea of how a microservice is behaving. The top
four numbers indicate, from left to right, the number of automatic restarts,
scale-up events, queued messages, or dead letter messages that happened
during the period. Below the first row, we find graphs displaying inputs,
outputs (HTTP and AMQP), and interaction with third-party SaaS services
(Search and Database Service). This dashboard greatly helps operational en-
gineers and developers to pinpoint issues whenever alerts are raised.
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FIGURE 3.5: Total downtime (Seconds per Month) for equipped
microservices

FIGURE 3.6: Mean downtime (Seconds per Month) for
equipped microservices

3.5 Conclusion

Achieving the design of an Observability Framework and its implemen-
tation within Lectra systems is a major accomplishment and a a milestone in
this thesis. While monitoring is a well-established subject and keyword in
research, Observability has not yet gained traction with less than ten publi-
cations on the subject on IEEE Explore at the time of writing.
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One of those publications being "Demonstration of an Observability Frame-
work for Cloud-Native Microservices", an interactive live demonstration of
the implementation of our Observability Framework within Lectra produc-
tion environment. Participants were able to discover the difference between
the traditional monitoring approach and Observability by asking custom re-
quests that have not been pre-programmed and get immediate insights.

Developers and Engineers at Lectra also quickly adopted the new tools
and this implementation was quickly extended and is now the foundation
of global production operation at Lectra. Many changes that were needed to
interconnect the different components of our framework have resulted as a
contribution (merge accepted) to open source tools.

In this thesis, Observability is a first step toward a better quality of Ser-
vice in Cloud Native Environments. It represents the "sensory" part of the
autonomous system paradigm. Observability represents the base on which
we developed our research work during this thesis.

FIGURE 3.7: Dashboard of our production Observability stack
at Lectra
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Chapter 4

Observability driven Auto-scaling
for Cloud Native Applications

4.1 Introduction

Cloud-native technologies empower organizations to build and run scal-
able applications in modern, dynamic environments. Containers, orchestra-
tors, service meshes, microservices, immutable infrastructure, and declara-
tive APIs enable loosely coupled systems that are resilient, manageable, and
observable. In addition, devOps and Agile practices essential to the cloud-
native paradigm enable software developers and operations engineers to col-
laborate to deliver higher and faster software quality.

Nowadays, cloud-native has become the de-facto standard in the indus-
try. According to the Cloud-native Computing Foundation (CNCF) in their
2018 survey, "Production usage of CNCF projects has grown more than 200%
on average since December 2017".

The microservices architectural approach consists in developing the ap-
plication as a collection of small services. Each one is independent and imple-
menting atomic functionalities. As a result, businesses services requests are
answered by multiple microservices interacting with each other. As they are
independent components, microservices can be deployed, upgraded, scaled
up and down, and restarted independently, thus enabling fast and frequent
releases on live applications with little or no impact on end-users.

Containerized microservices offer more efficiency and speed than virtual
machine ones. Containers can be instantiated with the speed and ease of any
operating system process. Multiple containers can run on the same operating
system and benefit from isolation from each other.

This ability to mutualize resources and reduce overhead makes contain-
ers the ideal form factor for microservices. Containers also offer flexibility
with management API that enables complete automation of their lifecycle.
Features such as orchestrators performing automatic rolling updates, basic
autoscaling, and many more can use this API.
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However, all the advantages that can be obtained by migrating to the
cloud-native paradigm come with new challenges. Migration to the cloud-
native paradigm is a challenge by itself. New projects starting from scratch
can be developed following the cloud-native approach, but existing (legacy)
applications cannot become cloud-native applications just by implementing
a "lift and ship" project. Complete refactoring is often necessary. Develop-
ers and infrastructure engineers must learn, adapt, and code using new lan-
guages, design patterns, and technologies. Once developed, cloud-native
applications reveal new challenges, as their new design cannot be operated
in the same fashion. Cloud-native applications are, in fact, large and complex
distributed systems.

Since 2015, researchers, engineers, and technicians have worked on many
of those issues. Orchestration, observability-oriented monitoring, and the
design of large dynamic clusters hosting cloud-native applications are well-
known problems. However, complete and satisfactory automation of cloud-
native applications life cycle has not yet been achieved with satisfaction.

In the cloud-native paradigm, instances of microservices are immutable.
Failures may result from bugs, corruptions, issues coming from the underly-
ing infrastructure, or third-party dependencies. Most of those microservices
issues can be solved by re-instantiating the incriminated components (kill
and restart). These practices called "Cattle over Pets" put an emphasis on
automated provisioning and deployment and greatly improve mean-time-
to-repair by using re-instantiation as failure mitigation.

Additionally, among their new challenges, cloud-native applications also
face high volatility. As cloud resources are available as a commodity, cloud-
native applications are designed to be scaled up and down. This scaling, also
called auto-scaling when automatized, is a key element of production-ready
cloud-native applications.

Two important surveys in the literature [96] [97] have reviewed the work
on auto-scaling, and they provided a detailed taxonomy related to web ap-
plications in the cloud, mainly for auto-scaling based on VMs. However,
the emergence of containers and cloud-native applications has brought new
characteristics that make the existing works in the literature not suitable, and
solutions are still left to be explored [97].

In this chapter, we present our cloud-native framework enabling proac-
tive autoscaling of cloud-native applications to achieve a better quality of ser-
vice. Our framework uses proactive autoscaling algorithms based on Long
Short-Term Memory (LSTM) to try to improve the end-to-end latency for
cloud-native applications. We developed a proof of concept to demonstrate
this framework. We also discuss the implementation of Observability-driven
autoscaling inside Lectra’s production environment.
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4.2 Related Work on Auto-scaling

Cloud computing has revolutionized how workloads are designed and
hosted. Cloud providers offer their customers the capacity to unilaterally
provision compute, network, and storage capacity automatically. Moreover,
those resources can be provisioned and released at will, enabling applications
to be scaled up and down on demand. The almost unlimited and infinite
provisioning capacity available at any time could make it possible to achieve
exact sizing at any time for any application. This aspiration to provision
resources with little to no over-provisioning and/or under-provisioning is
motivating research in the area of dynamic cloud provisioning.

In one of the earliest papers on the subject of dynamic provisioning, Ur-
gaonkar et al. [98] explored multi-tier applications and argued that "dynamic
provisioning of multi-tier Internet applications raises new challenges not ad-
dressed by prior work on provisioning single-tier applications." While cloud
computing was not available at the time, they had a glimpse of the challenges
that were coming and identified the opportunities offered by proactive pro-
visioning.

Later in the first workshop on Automated control for data centers and
clouds (ACDC ’09), [99] presented issues that make feedback control in a
cloud computing infrastructure different from other computer systems. In
[100], Ming Mao and Marty Humphrey presented an architecture enabling
auto-scaling in a public cloud environment, which rests on the “MAPE” prin-
ciple: Monitor, Analyze, Plan, and Execute. Highlighting the importance
of monitoring in the auto-scaling behavior, they used advanced monitoring
metrics that give better indications of a cloud application’s quality of service.

Recent works in literature and surveys [96] [97] give an overview of the
auto-scaling techniques and architectures that have been investigated. How-
ever, none of these works have tackled proactive auto-scaling in cloud-native
applications and the new challenges that come with them. Containers and
micro-services-based applications are more volatile, more difficult to moni-
tor, and present resource allocation issues mainly in terms of isolation. Com-
pared to VM-based micro-service applications, cloud-native applications are
based on containers sharing a common underlying infrastructure, dynam-
ically managed and built on service meshes, services discovery, messaging,
etc., making this resulting distributed system complex to observe and orches-
trate.

We tackled the problem of scaling of volatile cloud-native applications
(container-based applications), and we propose a framework for auto-scaling
in cloud-native applications. Our framework aims to achieve a specific QoS
goal by forecasting system states metrics (e.g., forecasting metrics such as
a request or load metric) using learning-based forecast models with LSTM.
Forecasted metrics are used to dynamically adjust the resource pool horizon-
tally (number of replicas) and vertically (resources pool). Furthermore, we
demonstrate this framework in a real cloud-native environment.
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4.3 Proposed Architecture

In this section, we provide a set of requirements, algorithms, and tech-
niques that, once combined, aim to provide proactive auto-scaling on cloud-
native applications. Our proactive microservice works using a learning-based
model to dynamically forecast the system states and provide insights en-
abling proactive auto-scaling.

4.3.1 Architecture for Observability driven Auto-Scaling
Our architecture is fully cloud-native powered. It is built on top of cloud

IaaS (infrastructure-as-a-service) resources. This cloud can be a public, pri-
vate, or hybrid cloud as long as it fulfills the requirements to qualify as a
cloud provider. This means, among other requirements, that it has the ability
to provide on-demand a virtually unlimited amount of resources that can be
used for autoscaling. It must provide complete APIs for provisioning, man-
agement, and monitoring. This implies that the resources pool, made of vir-
tual machines, can be created, resized in size and number both on-demand
and programmatically via API.

An orchestrator manages the resources pool and, therefore, can use the
cloud API to scale up and down the resources pool. Among those resources,
some are reserved for the orchestrator needs, providing API for interactions,
scheduling, control-loops, and storage of configurations and cloud-native ap-
plications manifests. Those functions run on selected virtual machines hosts
from the resources pool. Those are called "masters" which only run control
plane workloads and are separated from the "workers."

The “masters” and “workers” hosts communicate seamlessly over an
overlay network (see Figure 4.1). They are also equipped with an essential
container runtime, as all the workload, from control and data plane, are con-
tainerized. The "worker" hosts provide resources where the orchestrator de-
ploys cloud-native applications according to the user-provided manifests.

Cloud-native applications are containerized orchestrated microservices
with automated lifecycles, which are developed according to best practices
[101]. They are generally stateless, immutable and they can be natively load-
balanced. This robustness allows the orchestrator to treat them as "cattle"
instead of "snowflakes", which means that they can be created, updated, de-
stroyed transparently, and as many times as required in production environ-
ments [102].

4.3.2 Using resource monitoring and observability
One of the major challenges related to the auto-scaling of cloud-native

applications is the lack of precise and relevant monitoring information that
can provide the actual system state. Indeed, in a complex containerized dis-
tributed system such as cloud-native applications, it is difficult to determine
the health state of the entire system. In this context of increasingly complex
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architectures, it is necessary to get more visibility on infrastructures and ap-
plications.

Both the industrial and scientific worlds are tackling those new issues.
One of the approaches that are gaining momentum is called Observability.
[103],[104],[105],[5] . Observability does not replace traditional monitoring
but extends it. While monitoring mainly aims to collect and display raw
data, observability aims to offer an intuitive presentation of applications’ in-
ternal states and behaviors through the collection, processing, correlation,
and display of various information.

FIGURE 4.1: Cloud-native Orchestrated Platform

In order to operate, understand, and optimize cloud-native applications
and infrastructures, we adopted an observability approach based on the "three
pillars of observability": logs, metrics, and traces. They represent the raw
data needed to get an inside view of the applications and microservices’
health states and behaviors. Logs, metrics, and traces are recorded for all
microservices instances, whether they are support or business microservices.
Logs are centralized and recorded with timestamp and tags enabling there-
after correlation with other data.

Metrics also benefit from the same process being recorded and exported
as time-series in a time-series database (TSDB). Traces are collected, enabling
correlation between all the microservices. Those correlations can pinpoint
bottlenecks in clients’ and internal requests. All the components necessary to
collect, store, process, correlate, display, alert, and respond to those data are
cloud-native. They are orchestrated within the same resources pool along-
side the data plane microservices. Once processed, the collected observabil-
ity data is made available through API enabling automation.
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4.3.3 Auto-scaling framework
Auto-scaling consists of dynamically adjusting the resources allocated

to elastic applications according to goals. Those resources can be any com-
ponent of the cloud-native architecture, virtual machines, or containers. The
resources pool can be auto-scaled by adding more virtual machines, thus in-
creasing the number of "worker" hosts where the orchestrator can instantiate
more containers.

Cloud-native applications are horizontally auto-scaled by instantiating
more replicas of their containerized components. Thus, auto-scaling in the
cloud-native paradigm is closely linked to a resource allocation problem [97].
Auto-scaling via dynamic resizing of the existing containers is called vertical
auto-scaling.

Our work focuses on the horizontal auto-scaling of cloud-native appli-
cations as it follows the best practices for cloud-native design. Auto-scaling
is a continuous self-managed process where a control-loop monitor, analyze,
plan and execute as shown in Figure 4.2.

FIGURE 4.2: MAPE Process in our auto-scaling framework

This control loop is run by the orchestrator. At regular set intervals, it
uses observability data such as latency or incoming requests to sense the
application’s state, analyzes the queried values according to an algorithm,
checks rules, and then sends a decision to scale to the desired replica count.

This process has some weaknesses (See Algorithm 1). The first weakness
is that CPU usage is a metric that is very distant from the QoS experienced
by the user. Another one is that QoS degradations are experienced during
transient periods. Indeed, the reactive time, composed of the decision and
scaling time, represents a period during which the system is incorrectly sized.

In order to solve the issue related to a lack of causality between the auto-
scaling sensory input and the QoS experienced by the user, we choose to use
observability data. This approach enables us to find accurate information
that can be linked to the auto-scaler. For example, we can use the number
of requests received by said microservice instead of using CPU usage for a
containerized microservice that shares a worker host CPU. This approach is
called reactive auto-scaling on custom metrics (as described by Algorithm 2).
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Algorithm 1: Basic CPU Auto-scaling Algorithm
1 Input: The set of applications deployed in our system, An
2 Output: The number of pods of each application
3 foreach each application At deployed in our system do
4 Ucpu ← the average CPU utilization ratio of At
5 Npod ← the number of pods of At

6 if Ucpu ≥ 0.5 then
7 Npod = Npod + 1

8 else
9 if Ucpu ≤ 0.4 then

10 if Npod ≥ 1 then
11 Npod = Npod − 1

12 PODSCALER (At, Npod)

Algorithm 2: Custom Metric Auto-scaling Algorithm
1 Input: The set of applications deployed in our system, An
2 Output: The number of pods of each application
3 foreach application At deployed in our system do
4 Mc ← the average utilization ratio for metric value of At
5 Md ← the avg. utilization ratio for desired metric of At
6 Rc ← the current replica count of pods of At
7 Npod ← the number of pods of At

8 Rd ← Rc∗Mc
Md

9 if Rd 6= Rc then
10 if NpodMIN ≤ Rd ≤ NpodMAX then
11 Npod = Rd

12 PODSCALER (At, Npod)
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The other issue of QoS degradation during transient periods is tackled
by proactive autoscaling, which can be achieved by forecasting the system
states and autoscaling according to this forecast (see Algorithm 3). This fore-
cast can be obtained by many different methods. In our architecture, we
choose to focus on Long Short-Term Memory Recurrent Neural Network.
Other methods exist, such as Box-Jenkins methods (ARIMA, SARIMAX, . . . ),
which offer capabilities to forecast time series but are based on linear regres-
sion to capture temporal structures. As demonstrated by Siami-Namini et
al., [106], they are largely outperformed by Machine Learning based LSTM
networks in forecasting time series. This is especially true for highly volatile
time series such as the ones we encounter in cloud-native environments.

Long Short-Term Memory (LSTM) [107] is a kind of Recurrent Neural
Network (RNN) with the capability of remembering the values from earlier
stages for future use. Unlike regression-based algorithms, LSTM RNN of-
fers a strong capacity in handling small discrete patterns in time series. Deep
learning can use the large time-series data produced by cloud-native plat-
forms to solve some of their remaining challenges.

Our architecture benefits from the democratization of deep-learning so-
lutions. A deep learning forecast microservice can be included in our plat-
form control place. This predictor microservice linked to our observability
component can publish forecasts for some selected values on which the or-
chestrator will act. This forecast can greatly help solve transient QoS issues
experienced while scaling cloud-native applications under burst loads by
providing early information on events requiring rapid auto-scaling.

Algorithm 3: Proactive Metric Auto-scaling Algorithm
1 Input: The set of applications deployed in our system, An
2 Output: The number of pods of each application
3 foreach application At deployed in our system do
4 PMc ← the predicted average utilization ratio for metric value of

At + ∆ with ∆ = f orecast time
5 Mc ← the average utilization ratio for metric value of At
6 Md ← the avg. utilization ratio for desired metric of At
7 Rc ← the current replica count of pods of At
8 Npod ← the number of pods of At

9 Rd ← Rc∗PMc
Md

10 if Rd < Rc then
11 if NpodMIN ≤ Rd ≤ NpodMAX then
12 Npod = Rd

13 PODSCALER (At, Npod)
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4.4 Implementation and Evaluation

4.4.1 Enterprise Production Implementation
One of the goals of this thesis was to produce usable results of our re-

search and implement them in Lectra’s production environment. While it
was not possible to implement the proactive approach with production con-
straints, we were able to fully implement the Observability-driven reactive
autoscaling.

We provide an illustrated explanation of how our observability frame-
work is leveraged for autoscaling a microservice as presented in Figure 4.3.
This custom auto-scaling is based not on microservices resources usage (CPU)
but also on observing the application message-bus queuing system. This set-
up can also be applied for microservices that cannot exploit system metrics
to determine functional load status.

FIGURE 4.3: Elements of the observability driven auto-scaling
orchestrator.

Figure 4.3 illustrates some interaction between core elements that enable
observability driven auto-scaling. Microservices are deployed by the orches-
trator using a manifest file containing all the necessary parameters to deploy
and run an instance. This manifest also specifies the autoscaler behavior and
which data is used in the decision algorithm. The instances then continu-
ously communicate with the observability framework for reporting the nec-
essary information. Our approach focuses on custom parameters that are not
directly linked to instances. Those parameters are used to drive the orches-
trator autoscaler (scale-up / scale-down). This is especially useful in hybrid
infrastructures where all microservices and components are not hosted in the
same orchestrated environment.
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FIGURE 4.4: Microservices auto-scaling based on message-bus
metrics (Screenshot from our grafana dashboard)

FIGURE 4.5: Increase in incoming message during the scaling
event in Figure 4.4

In Figure 4.4, the auto-scaling rule for microservices is linked to the
amount of work sent over the message-bus queue as reported in Figure 4.5.
There are two distinctive events of (1) scale-up and (2) scale-down. The base-
line for any microservice is set to two instances, which is our base require-
ment for any highly available production environment. At (1) of Figure 4.4,
the message-bus queue of the microservice fills up; the orchestrator then in-
creases the number of instances gradually to 10, which is the maximum num-
ber of instances allowed for this microservice. Then at (2), when all work-
loads are processed, the orchestrator reduces back the number of instances
to 2.
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4.4.2 Proof-of-Concept Implementation
Production constraints and changes in strategies have pushed us to de-

velop and implement our Observability-driven proactive autoscaling Proof
on Concept (PoC) outside Lectra’s production environment. We have cho-
sen to implement our Proof on Concept (PoC) on public cloud virtual ma-
chines hosted by Digital Ocean cloud provider. Nowadays, most of cloud
providers offer solutions for managed Kubernetes master nodes (Amazon
EKS, Microsoft AKS, and Google GKE). This enabled us to benefit from a real
and up-to-date cloud-native platform for our experiments. Our platform is
composed of a pool of [3 to 20] virtual machines, with the following char-
acteristics: 4 vCPU, 8GB of RAM. Those machines are equipped with either
Intel Xeon Skylake (2.7 GHz, 3.7 GHz turbo) or Intel Xeon Broadwell (2.6
GHz).

Additionally, Digital Ocean enabled us to use cluster autoscaling. In
opposition to other experiments conducted within laboratory on-premises
server resources, our PoC can horizontally scale its platform by adding more
worker nodes programmatically. Our worker nodes accommodate all the
cloud-native applications required for our experiment. Those applications
can be divided into two groups: business applications and support applica-
tions. Both are hosted non-discriminatively on our worker nodes.

For our experiment, we use a cloud-native microservices demo applica-
tion called Online Boutique [108], which is composed of a 10-tier microser-
vices application as described in Figure 4.6. This application is written in
5 different languages (C#, Go, Node.JS, Python, and Java), communicating
with each other using gRPC. This web-based e-commerce app - where users
can browse items, add them to the cart, and purchase them - was created by
Google teams in 2015 to serve as a design example and an experimental tool
and application.

FIGURE 4.6: Online Boutique cloud application architecture

Our solution for proactive autoscaling is based on observability data.
Thus, we deployed an observability stack composed of Kube-state-metrics
[109], Linkerd [110], and Prometheus [89]. This stack fulfills the requirements
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established in our architecture design. Kube-stats-metrics generate and ex-
pose metrics about Kubernetes API objects. Those metrics provide insights
on Kubernetes object status and health. A complete Prometheus stack, a time
series collection and storage component, is also implemented along with a vi-
sualization tool and Linkerd, service mesh for Kubernetes that implements
transparent measuring proxies and provides advanced networking informa-
tion for each microservice.

Kube-stats-metrics, Linkerd, Prometheus, and the predictor microser-
vices are all installed inside the Kubernetes cluster alongside the online bou-
tique microservices.

In the Kubernetes vocabulary, each containerized instance of a microser-
vice is deployed in a "Pod". By using a services mesh such as Linkerd in
our cluster, we also equipped each pod with a sidecar component acting as
a proxy. All those proxies report their metrics to the service mesh controller,
which in turn exposes itself to our Prometheus stack.

The time-series database provides information required by our predictor
to forecast values that will be used by the horizontal pod autoscaler to oper-
ate. Our predictor is a microservice running within the same infrastructure as
all the others, whose purpose is to process metrics from known microservices
with a model developed to forecast values that can be used for auto-scaling.

This microservice uses a model in conjunction with selected metrics and/or
events and published forecasted metrics which are used by standard Hori-
zontal Pod Auto-scaler Kubernetes objects. This approach does not require
custom control loops (controllers) to be integrated within Kubernetes inter-
nals. Moreover, models can be validated by data scientists before being used
on real production clusters. They can also refine models following the same
DevOps continuous process as developers and automate deployment in pro-
duction.

In our implementation, a Keras model uses LSTM based RNN to predict
values (number of requests along with end-to-end application latency) which
are used in the proactive metric auto-scaling algorithm. As our experiments
rely on generated and simulated traffic, teaching our model with our simu-
lated data would necessarily mean a perfect forecast. We decided to use a real
dataset extracted from a real application to demonstrate that we could imple-
ment the forecast of clients’ requests using a state-of-the-art model tuned by
data scientists [111] [112]. Figure 4.7 demonstrates the effectiveness of LSTM
forecasting we put in place.
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FIGURE 4.7: Web request time series forecasting using LSTM

4.4.3 Test description and results
As stated previously, our experiment runs on Digital Ocean public cloud

platform. We also have an additional server containing a load generation
microservice using Locust.io [113], which simulates connections from real
clients navigating and using every component of our online boutique. These
tests simulate a sudden influx of 500 users in different configurations of our
platform’s autoscaling system.

• Experiment A: it aims to evaluate the behavior of our platform without
any autoscaling system. Results are presented in figure 4.9.

• Experiment B: it uses a well-known resources usage reactive autoscal-
ing system. In our implementation, we monitor the CPU usage of all
the microservices and duplicate them when a CPU saturation situation
is detected to maintain an average of 50% usage across all replicas (see
Algorithm 1). Results are presented in figure 4.10.

• Experiment C: it aims to show the behavior of our application with an
autoscaling system based on the number of actual client requests. It
scales our microservices to maintain a ratio of requests per replica op-
timized to get the best latency (see Algorithm 2). Results are presented
in figure 4.11.

• Experiment D: it leverages machine learning LSTM forecasts using Ten-
sorFlow and Keras based on clients’ requests values as in Experiment
C. Those forecasted values are then injected into the observability plat-
form system and then are used by the Kubernetes control plane to au-
toscale our online boutique application. This architecture is described
in Figure 4.8. Our predictor was built to predict any microservice met-
rics using any monitoring data (see Algorithm 3).Results are presented
in figure 4.12.
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FIGURE 4.8: Components of the proposed proactive auto-scaler

Our experiments demonstrate the benefit of our proactive auto-scaling
solution in enhancing end-to-end latency and the success rate (see results in
Figure 4.12). As shown in the results of Experiment D, we obtain the best
tradeoff between the end-to-end latency and the period during which the
system is in the transient situation (auto-scaling period). During this tran-
sient period, the system is under resources shortage and needs to provision
new worker nodes. Once new work nodes are ready, the orchestrator can
instantiate new replicas to improve QoS.
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FIGURE 4.9: Results from our Proof of Concept : Experience A
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FIGURE 4.10: Results from our Proof of Concept : Experience B
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FIGURE 4.11: Results from our Proof of Concept : Experience C
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FIGURE 4.12: Results from our Proof of Concept : Experience D
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Figure 4.12 (Incoming requests) displays the number of HTTP responses
served by the frontend of "Online Boutique" to the simulated users’ requests.
All the responses are displayed with the correct ones and the totality of the
HTTP return code. Figure 4.12 (success rate) displays the end-to-end avail-
ability during all the experiment. This availability is measured as the per-
centage of succeeded requests on the total of issued users requests. A request
has succeeded if the status code returned by the frontend is 2xx (such as 200
OK). Errors or timeouts in one or multiple microservices running in the ap-
plication affect the availability. Figure 4.12 (end-to-end latency p99) shows
the 99th percentile of the application end-to-end latency for simulated users’
requests.

As we can see, the number of responses served increases with autoscal-
ing functionalities (Experiments B, C, D). Experiment A exhibits the behav-
iors associated with resources saturation as shown by the dramatic increase
in the end-to-end latency and the increase in the number of erratic answers
that affects the service availability. This is expected for a single non-autoscaled
application under extreme load.

Furthermore, we observe many failures in the microservices of the "On-
line Boutique" which causes the application to be inoperative at the end of
experiment A. Experiments B and C exhibit both a better behavior using
CPU autoscaling and custom metrics observability based autoscaling, respec-
tively. However, the application is kept under stress by inefficiently scaling
CPU, thus showing worse latency performance. On the other hand, by react-
ing heavily under current load (i.e., client requests), experiment C produces
both erroneous answers and low end-to-end availability. As displayed by ex-
periment D, those types of surge traffic are the situations where proactively
auto-scaled cloud-native applications shine.

Experiment D is an improvement over the issues of previous auto-scaling
systems by avoiding the problems experienced while scaling under heavy
load and thus showing a more reliable behavior. As we can see in Figure
4.12, the number of requests per second in Experiment D is higher, and the
availability remains at 100% over the lifetime of the experiment, while surge
traffic in Experiment C leads to errors and timeouts. Furthermore, the latency
is lower in Experiment D. Thus, we show in this experiment a good compro-
mise in all the metrics. Machine learning and deep learning are now tech-
nologies mature enough to provide production tools to implement proactive
auto-scaling. This will enable better performance, lower latency, and fewer
errors than other types of cloud-native auto-scaling.

The results graphs from experience A, B, C, D in Figure 4.12 are kept sep-
arated for scaling reasons. Indeed some result produce number that would
be off chart or unreadable.
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4.5 Conclusion

As cloud-native adoption is becoming the standard for new IT develop-
ments, organizations need tools and techniques able to achieve better QoS,
reliability, and lower costs for their cloud-native applications. The democra-
tization of machine learning and deep learning solutions is now offering a
panel of new possibilities. The proactive auto-scaling framework presented
aims to propose a new path for auto-scaling in cloud-native environments
hoping to circumvent issues such as provisioning exact resources and man-
aging Flash Crowds traffic that lead to related QoS degradations. Innovation
happens at the borders of disciplines. By seizing this opportunity and apply-
ing machine learning to cloud-native orchestration, we might tackle some
challenges of autonomous computing.

Cloud-native applications and infrastructures already offer natively by
design some features such as basic self-healing and control-loop. Bringing
machine learning and deep learning and applying them to observability and
monitoring data of cloud-native applications is still in its infancy. Our frame-
work is a step further to demonstrate this relationship.

Our success with implementing our Observability driven reactive au-
toscaling inside a production environment reinforces our conviction that ad-
vanced autoscaling can greatly contribute to improving quality of Service in
Cloud Native Applications. We envision implementing our proactive solu-
tion in an industrial production environment.
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Chapter 5

An Architecture Framework for
Virtualization of IoT Applications:
Cloud-native and Observability in
IoT

IoT can benefit from Cloud Computing, Cloud Native Applications and
Observability. The concept and architecture detailed in the previous chapter
can be applied to multiple use cases from core network observability, through
cloud, edge, and even IoT. This chapter is our proposition of transposition of
the cloud native paradigm and other state-of-art technologies to IoT.

5.1 Introduction

The Internet of Things industry is constantly looking for new improve-
ment features that support cutting-edge service innovations with deploy-
ment velocity and business agility. As major key drivers in the evolution of
IoT, Software Defined Networking / Radio (SDN, SDR) and Network Func-
tion Virtualization (NFV) are being positioned as central technology enablers
towards decoupling IoT hardware from service deployment, leveraging an
increasing in the number and type of services supported over a single de-
ployed IoT platform. The support of virtualization concept within the IoT
devices is envisioned to achieve critical cost reduction in the service offering,
and at the same time, being able to easily bring a new set of innovative ser-
vice into the market. This allows IoT device vendor to open their platform to
a great extent, and at the same time, it enables IoT service provider to avoid
vendor lock-in with proprietary hardware and software technologies. The
IoT service provider will gain greater control over the IoT devices by simpli-
fying network management with centralized management and control of IoT
devices from multiple vendors, and creating opportunities for collaboration
and interoperability.

Adopting SDR, SDN and NFV offers endless expectations that covers
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many distinct operational areas, such as fine-grained radio control and mon-
itoring, advanced signal processing, e.g. collaborative signal processing, dis-
tributed enforcement of QoS, network resources management, in-network
processing and storage of data including fusion and detection of complex
events, etc.

The path toward the commoditization of IoT devices into a generic white-
box devices able to support most of IoT functions extended with out-of-tree
functions will result also in scalability benefits since the underlying resources
can be mobilized when needed according to the aggregated demands, reduc-
ing the amount of specialized IoT resources to be provisioned and making
feasible other modes of feature evolution. This concept sheds up light on
new ways of designing IoT devices in order to improve IoT service offer-
ing with the support of virtualization and decentralization, to allow multiple
isolated environments to be executed in a single device. As a result, coop-
eration among heterogeneous devices from multiple vendors, within an IoT
network, is facilitated and at the same time, it provides resource efficiency
and cost-benefit.

We propose an IoT NFV architecture framework that leverages the above-
mentioned advantages and providesflexible and reconfigurable solutions to
create and deploy new customized on-demand virtualized IoT services. Our
proposed architecture framework abstracts the underlying physical IoT net-
work resources into a set of logical resources (radio, sensing capabilities,
computational, memory and storage) used for service orchestration in terms
of hosting, chaining and managing of IoT functions. Thus, this chapter in-
cludes the following main contributions:

• Proposing an architecture framework to bring virtualization in IoT net-
work based on introducing SDR, SDN and VNF paradigm shifting.

• Exploiting the virtualization paradigm introduced for IoT, to describe a
set of use-cases and deployment scenarios.

• Presenting a proof of concept showing how the proposed architecture
framework can be prototyped using Raspberry Pi acting as IoT devices
and Docker containers as IoT functions.

The rest of this chapter is organized as follows. Section II reviews some
background knowledge and state of the art. Section III presents the proposed
architecture that brings virtualization in IoT network and introduces the con-
cept of Generic IoT device. Section IV presents some use-cases that can be
derived by focusing on the advantages of the solutions in addressing well-
known IoT challenges. Section V presents a proof of concept implementation.
Finally, main conclusions are drawn in Section VI.

5.2 Background and State of the Art

IoT networks are complex and difficult to design, manage and operate
in order to offer IoT services. These networks are composed of multiple,
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potentially heterogeneous IoT devices, acting as sensors and actuators, inter-
connected with each other and with IoT gateways. These latter offer connec-
tivity to the rest of the Internet up to Cloud, where the service is exposed
(stored, analyzed, presented and shared) to end-users. The IoT architecture
involves a multitude of software and hardware components and calls for a
wide range of protocols to allow device-to-device and device-to-cloud com-
munications. Consequently, one of the major requirements for the successful
and wide deployment of such environment to offer IoT services 2019 IEEE
Conference on Network Softwarization (NetSoft)183 concerns the efficient
design, management and operation of IoT networks while addressing com-
plex problems related to massively distributed applications, scalability sup-
port, and upgrading. Control architecture and virtualization using SDN and
NFV are actually changing the way networks are designed. The efforts that
led to these concepts are clearly related to the long research background on
supporting programmable packet processing, active networks, in-band and
out-band control, separation of control and data, network operating system,
network virtualization, etc. Although network virtualization has played an
important role in computer networks for many years, the virtualization con-
cept for IoT is still in its infancy.

Many works suggested that the control plane for IoT is the appropri-
ate place to introduce flexibility and programmability in order to achieve a
multiservice environment with more reliability and guaranteed performance.
Accordingly, the introduction of SDN in IoT has been proposed in many re-
search papers [114] [115] [116] [117] [118] [119] and various lessons have been
learned for future deployments related to (1) seamless integration of wireless
sensor networks and mobile networks, (2) ability to modify the network be-
havior according to user needs, (3) unified view on accessing, configuring
and operating IoT cloud systems, (4) global optimizations with centralized
methods, and (5) solving scalability issues within large IoT deployments,
among many others.

A very little attention is given to IoT virtualization and the introduction
of NFV concept for providing IoT service as a network slice offering an IoT
Service deployment over virtualized IoT architecture. The survey [120] pre-
sented a set of works tackling SDN and virtualization solutions for IoT, but
most of the items examined were concentrated on SDN applications. The
study [121] suggested a new multi-layered IoT architecture involving SDN
and NFV and proposed some use cases and founding principles for build-
ing an IoT infrastructure. In [122], we started an investigation on how NFV
concept can be extended to IoT to allow decoupling IoT functionalities from
specific dedicated devices and we proposed an energy efficient solution for
the placement of IoT Service Function. However, the studied works lack
a clear vision on the way to design a virtualization architecture framework
for IoT network. In our case, we suggest the virtualization of full stack IoT
functions using generic IoT device, from radio resources using SDR to net-
work functions using SDN and NFV concepts. We also believe that the adop-
tion of SDR, SDN and NFV over IoT networks will be a key enabler towards
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more flexible and agile end-to-end service provisioning that allows overcom-
ing several existing limitations in terms of operational flexibility, evolvability
and large-scale deployment.

5.3 Paradigm shift toward generic IoT Device

Proprietary IoT devices and proprietary operating systems (OS) for IoT
are dominating the market today, putting critical pressure on IoT service
providers for always adopting vendor lock-in solutions which lack porta-
bility and interoperability. A paradigm shift has started to take place to
adopt commercial off-the-shelf (COTS) devices with a shift to standards-
based hardware such as the case of solutions from the Department of De-
fense (DoD) [123] used for military and tactical communication. These COTS
devices benefit from competitive pricing, interoperability and best practices
while most of them are using open source OS [124], protocols and tools.

This paradigm shift opens a new perspective for leading IoT movement
toward supporting Software Defined Radio / Networking (SDN, SDR) and
Network Function Virtualization (NFV). The objective is to remove the de-
pendency from dedicated and specialized physical IoT devices as well as ab-
stracting physical resources into virtual resources that can be allocated when
needed. With this approach, IoT service providers can concentrate on de-
veloping and optimizing software functions that can be dynamically orches-
trated to respond more efficiently to changing market demands.

FIGURE 5.1: Paradigm shift for IoT devices
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Figure 5.1 shows our proposal mapping of an IoT device to ETSI guide-
line for NFV reference architecture framework [125]. The decoupling of hard-
ware and software exposes a new set of entities such as the virtualization
layer, virtualized resources, the Virtualized Network Functions (VNFs). This
mapping is augmented with SDR capabilities to allow access, control and
management of the radio spectrum. VNFs can be chained with other VNFs
and/or Physical Network Functions (PNFs) to realize a Network Service
(NS). The PNFs are part of physical resources that remain as hardware com-
ponents such as sensing capability that cannot be virtualized. The Network
Services are created based on associated VNF Forwarding Graphs (VNFFGs),
Virtual Links (VLs), PNFs, VNFs. In addition, the management and orches-
tration functions are not illustrated in this figure. Those functions are part of
the IoT service provider infrastructure network.

The virtualization techniques used inside an IoT device are similar to
those used for servers and cloud computing. The virtualization allows shar-
ing of the physical resources so that multiple network functions (workloads
in general) are executed while they are co-located with each other in a fully
isolated environment. This represents a progressive manner to design, de-
ploy and manage IoT Service. The deployed IoT devices (generic IoT device,
IoT gateway) form what we called, an IoT network segment that is usually
connected to service provider cloud infrastructure (cloud segment) to deliver
a full end-to-end IoT Service. The cloud runs a set of process for data aggre-
gating, correlation, analysis, classification, visualization, etc. A fog comput-
ing or mobile edge computing (MEC) can be deployed in the vicinity of the
IoT network or within the backhaul to reduce the heavy burden on the cloud
and to improve the service performance.
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FIGURE 5.2: Virtualization architecture framework for IoT net-
work

Figure 5.2 illustrates the architecture framework for virtualization of IoT
network segment when connected to the cloud to deliver an end-to-end IoT
service. This architecture is also aligned with MANO (Network Function Vir-
tualization Management and Orchestration) framework. We focus on control
and management planes only for IoT segment. In this architecture, we sup-
pose that each IoT device follows the paradigm shift proposed in Figure 5.1.
An IoT Service is represented by a sequence of PNFs and VNFs instances (IoT
VNF and cloud-based VNF), chained together to compose an IoT Service (i.e.
Network Service) that requires a particular amount of resources in terms of
sensing capabilities, radio for communication, computational, memory and
storage. In this context, the placement, management, chaining, and orches-
tration operations of these VNFs should be carefully considered to meet the
required performances along with energy constraints to support diverse IoT
services over the same shared infrastructure.

In particular, as illustrated in Figure 5.2, the following entities are con-
sidered as building blocks for deploying IoT services.

• IoT Physical Network Functions, essentially for sensing and radio com-
munication and IoT Virtual Network Functions that represent the soft-
ware part of an IoT device that runs as an isolated code on top of a
virtualization layer.

• SDR-based applications and SDR controller for the realization of radio
signal processing applications and radio-based control. In particular,
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using SDR for radio spectrum will allow an IoT device to be augmented
with a set of wide range of software-based signal processing blocks con-
nected to each other through flowgraphs that describe the data flow
between those software blocks. The reconfigurability of the flowgraphs
is a key feature provided by SDR. In this case, an IoT device will no
more utilize a single specific radio with specific signal processing and
protocol, but instead, it will use a general-purpose radio that supports
a wide-range of signal-processing applications that can be controlled
through a centralized logic.

• SDN-based application and SDN controller for the realization of IoT-
level control such as IoT routing, multipath forwarding, load balancing,
clustering, in-network data fusion, etc.

• Element Management functions / IoT Network Management, which
provide a package of management functions, e.g. Fault, Configuration,
Accounting, Performance and Security (FCAPS) management, for IoT.

5.4 Use cases and scenarios

We present in the following some use cases that can be efficiently devel-
oped over the framework. The objective is to highlight some of the advan-
tages of the solutions while addressing challenges related to deployment,
configuration and operation, seamless integration with Internet, global op-
timizations, and scalability among others. Major advantages come with the
use of generic IoT device augmented with full-stack virtualization capabili-
ties that provide enhanced flexibility and re-configurability, software-based
feature updates, simplified deployment procedures, and easy control of net-
work topologies. These use cases are supported by a set of message sequence
charts that are not illustrated for simplicity reasons.

5.4.1 Clustering
In the context of IoT and more generally device-to-device communica-

tion, the organization of the devices into clusters can be greatly enhanced
with SDR, SDN, and NFV. There is a huge amount of work in the literature
that tackled the problem of sensors network clustering to ensure low energy
consumption as described by different surveys on this topic [126] [127]. The
clustering objectives for IoT are multiple: enhancing connectivity and com-
municating between nodes, providing load-balancing and fault-tolerance,
and maintaining hierarchical topology to support scalability.

However, as the cluster-head is selected based on some criteria, the se-
lection process and the associated cluster-head functionalities should be pro-
vided in a flexible manner. Two relevant key features provided by our ar-
chitecture framework related to clustering process could be (1) In-network
processing, such as data aggregation and fusion, (2) Dynamic clustering, ro-
tation and backup of cluster-head.
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5.4.2 Tracking
Target tracking techniques have been widely studied in the literature of

wireless sensor networks [128]. The tracking consists of state-estimation of
the target using techniques ranging from single-node to collaborative meth-
ods.

The majority of these methods employs active prediction-based scheme
coupled with selective activation of nodes activities. The nodes are then
waked-up on-demand to follow the target path. In this context, the proposed
virtualized IoT architecture framework can enhance the target tracking by ex-
tracting useful information using in-network processing, fine-grained radio
control and monitoring, dynamic clustering, collaboration between nodes,
coordination between communication-related and sensing-related operations,
etc.

5.4.3 Tactical networking and high dynamic network

Tactical networks and high-dynamic networks are composed of extremely
heterogeneous wireless and ad-hoc mobile nodes. They rely on a wide range
of ground sensors, robots and UAVs aiming to provide mission-critical ap-
plications. These networks suffer from limited bandwidth and intermittent
connectivity due to communication range, interference, mobility, and over-
head induced by security requirements. As consequences, channel condi-
tions and network topology vary over time. The service requirements are
also extremely heterogeneous ranging from simple data dissemination to
real-time communication with QoS support.

This framework can be used to efficiently support service requirement
for efficient tactical networks communication such as:

1. Radio communication reprogramming and cognitive radio,

2. Network awareness,

3. Cross-layer networking.

5.5 Proof of concept and implementation

This section describes the primary implementation realized through a
set of Raspberry PI 3 model B v1.2 acting as IoT devices. Each device is com-
posed of single-board computer powered by a quad-core ARMv8 BCM2837B0
Cortex-A53 running at 1.2 GHz and equipped with a BCM43438 wireless
LAN and Bluetooth Low Energy (BLE) chips. The board is also featured with
40 GPIO pins that can be controlled in software as input and output pin and
used for wide range of purposes such as wiring many types of sensors and
actuators. A list of 50 sensors is provided in [129].

Figure 5.3 illustrates our target application. The network is composed
of devices having multiple sensing capabilities that can be activated when
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needed. The devices are deployed in a single building and we simulate a
temperature measurement as an IoT service.

FIGURE 5.3: Network topology used as the target application

5.5.1 SDR Capabilities

Each device is augmented with a low-cost digital USB 2.0 stick with
RTL2832U chipset initially designed for DVB-T reception but can support
SDR capabilities. Another alternative is to use LimeSDR-Mini TODO USB
stick which provides Transmission (TX) and Reception (RX) capabilities with
SDR.

There exist a large set of general-purpose software supporting SDR such
as SoapySDR [130], CubicSDR [131], Gqrx SDR [132] and GNU Radio [133],
which are used for monitoring and analyzing radio signal reception. In par-
ticular, GNU Radio is an open source toolkit for software development that
provides building blocks for signal processing. The GNU Radio Companion
(GRC) tool allows designing a flow graph by connecting different blocks with
input/output connections. Furthermore, tools such as rpitx [134] can allow
the Raspberry Pi to transmit over a wide range of frequencies from 5 KHz up
to 1500 MHz. This is achieved by connecting the GPIO 4 (Pin 7) with a band-
pass filter and a wire acting as an antenna. This setup turns the Raspberry
Pi as a general radio frequency transmitter. The rpitx tool can accept an I/Q
signal as an input and can transmit I/Q signal back on a specific frequency.

The combination of rpitx and Gnu Radio opens new capabilities and per-
spectives to ensure flexible radio manipulation and reconfiguration while
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helping to increase scalability, agility and enabling better use of radio re-
sources. Our first setup allows us to have a generic IoT device that is easy
to configure towards a new transmission technology and protocols, so it can
adapt dynamically according to needs and scenarios.

This proposed generic IoT device offers unmatched levels of programma-
bility with the support of a high range of frequency bands and communica-
tion standards.

5.5.2 VNF Capabilities
The VNF capabilities that allow multiple isolated environments to be

executed on a single Raspberry Pi device are provided by the virtualization
layer based on containers technology using Docker [135]. This represents a
fast way of creating, installing and running independent manageable Linux
containers. Furthermore, to define, run and manage multi-container applica-
tions, Docker Compose is used to provide simple service composition facili-
ties.

We create an online repository from Docker Hub which is, in our case,
the place where the IoT service provider is supposed to host the image of the
different VNFs available to be on-boarded on the device. We show in the next
section a scenario of service chain composition for clustering management
for our temperature measurement as an IoT service.

5.5.3 Service Function Chain Composition and Clustering Man-
agement

We suppose that based on the battery depletion level a specific Cluster
Head (CH) is elected. This CH is in charge of collecting the temperature level
from all the Cluster Members (CM). Two VNFs are defined as docker images:
Temperature_CM_VNF and Temperature_CH_VNF.

The first VNF for the CM reads periodically the actual temperature from
the PNF sensor. The second VNF for CH, performs a data fusion by provid-
ing the mean value (average) of the received temperature. The orchestration
capability is done by a simple script based on CLI (Command Line Inter-
face). However, it is possible to use advanced tools such as Kubernetes (k8s)
which is an open-source software for automating deployment, scaling, and
management of containerized applications.

The logic sequence for the orchestration in our case is

1. A CLI for Docker client contacts the Docker daemon running locally in
each device,

2. The Docker daemon pulls the appropriate image from the Docker Hub
either Temperature_CM_VNF (for cluster member) or Temperature_CH_VNF
(for cluster head),
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3. The Docker daemon creates a new container from that image and runs
the executable that produces the output, and

4. The Docker daemon streams that output to the Docker client, and then
forwards the output to the next VNF in the SFC.

FIGURE 5.4: SFC composition for temperature measurement as
an IoT service.

Figure 5.4 shows the SFC composition for temperature measurement as
an IoT service. This SFC is arranged as a PNF, two IoT VNFs and one cloud
VNF used for displaying the data.

It is worth noting that an IoT device is able to manage multiple contain-
ers at the same time and one device can participate in multiple IoT services
in a parallel manner.

When the CH is updated according to the energy criteria, an updated
SFC composition is triggered by the service orchestrator in order to install
new image or to migrate existing container from Docker images (Tempera-
ture_CM_VNF and Temperature_CH_VNF) on the appropriate member (ei-
ther CH or CM).

In our case, the temperature service is stateless and there is no need to
synchronize the different contexts of VNFs. Context and state synchroniza-
tion can be solved using Docker Swarm so that the new CH joins the “Cluster
head swarm” before the old CH leaves it.

Our implementation demonstrates the ability of our solution to create
and deploy new customized on-demand virtualized IoT services by manag-
ing an IoT network dynamically through the virtualization of full stack IoT
functions, from radio communication processing functions to high-level pro-
cessing capabilities.
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This result in a more flexible and re-configurable network that suits a
variety of IoT business and market applications.

5.6 Conclusion

We proposed an IoT NFV architecture framework that leverages existing
key enablers technologies, namely SDR, SDN and NFV, in providing flexible
and re-configurable solutions for creating and deploying new customized
on-demand virtualized IoT services.

We supported the introduction of generic IoT device capable of accept-
ing new transmission technology by (re)programming the radio functions
and offering multiple isolated environments to execute multiple softwarized
functions in a virtualized environment. We identified a set of relevant use
cases and we realized a proof of concept implementation to demonstrate the
feasibility of the proposed architecture framework. Wide acceptance of this
concept will open a new era of opportunities for IoT.
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Conclusion and perspectives

The Internet has become more than just a means of communication: Web
applications are now part of our daily lives. Individuals and organizations
of all types and sizes rely upon web services for a large variety of use-cases.
The introduction of Cloud Computing lowered the entry barrier for web ap-
plications. It became possible to host web applications with computing re-
sources available in a pay-as-you-go fashion. As many new and old orga-
nizations benefited from this opportunity, we witnessed a soar of new tech-
nologies, use-cases, and new challenges. Indeed, while cloud computing and
cloud-native approaches such as cloud-native applications have revolution-
ized how we build and operate software, they also created new challenges.

Modern cloud-native applications have solved many difficulties presented
by previous architectures, which make them faster to develop. However, this
result came at a great cost for simplicity. Cloud-native applications have in-
creased moving parts, third-party dependencies, release frequency, and need
for expertise. At the same time, users have normalized the idea that their
applications must perform 24/7 in a fast, reliable, and convenient way. Both
users and organizations rely on cloud-native applications on a day-to-day
basis. In this context, the need to understand those applications, know their
health states and operate them with such high demands for Quality of Ser-
vice is of paramount importance.

From very earlier on, Researchers and companies alike foresaw those
challenges. As early as 2001, IBM VP Jeffrey O. Kephart and D.M Chess
announced that the increase in complexity would have to be tackled. They
introduced a concept called "Autonomous Computing" where high-level in-
terfaces could abstract the difficulty of managing and operating complex sys-
tems. This concept was based on a self-managed control loop, which al-
lowed monitoring data, analyzing them, and planning and executing pre-
programmed knowledge. Automation and Orchestration are desirable fea-
tures in the context of cloud-native applications. This is why, in this thesis,
we have pursued the goal of implementing more autonomous computing
features into cloud-native applications.

Our first contribution on Observability allowed us to gain visibility and
understand what happened inside and around cloud-native applications and
infrastructure. At the time of writing, the concept of Observability and its dif-
ferentiation from traditional monitoring is gaining traction and desirable in
the IT industry. We contributed to defined requirements, characteristics to
achieve Observability in a modern cloud computing environment, such as
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Cloud-native applications hosted in the public Cloud. We defined strategies
and methods that can be brought together and build an architecture frame-
work that can achieve Observability on a cloud-native environment. This
framework was then deployed into a commercial production environment
to improve the engineers’ ability to diagnose outages and failures while im-
proving the quality of service. This observability framework eased the work
and assisted both developers and operation engineers in their missions. This
work was published and demonstrated at IEEE IM 2019. [5]

Our second contribution focused on auto-scaling, as our state-of-the-art
and field exploration showed a need for more research in this area. While
many works were conducted on the subject, most of them focused on virtual
machines, basic metrics, and previous architecture. Our research was based
on using our observability data to drive our auto-scaling, following our path
based on autonomous computing. We first described an architecture able
to use our observability framework as an input for a production orchestra-
tor and auto-scaler. We choose real usage metrics from the communication
bus between microservices as the input for the auto-scaler. This enabled us
to scale efficiently outside the saturation situation that can arise with CPU
usage-driven auto-scaling. This solution was also ported to a production en-
vironment and now helps Lectra to achieve satisfactory QoS in the equipped
microservices. This part was also demonstrated at IM 2019.

We decided to push further Observability-driven auto-scaling with Proac-
tive Auto-Scaling for Cloud-Native Applications. We leveraged state-of-the-
art machine learning and service mesh inside a dedicated testbed free from
Lectra’s constraints. This enabled us to achieve a proof-of-concept where
machine learning forecasted time-series could be used to detect and predict
a sudden increase in traffic, namely flash-crowd and proactively auto-scale
to avoid saturation situation during the scale-up period. This work has been
the subject of a publication at Globecom 2020. [3]

Our third contribution focused on applying the innovations and tech-
nologies available from cloud-native applications to the Internet of Things.
IoT objects are now more powerful than ever and able to host containers.
Containerization alongside virtualization, Software-defined Radio (SDR), and
Software-defined Networking (SDN) pave the way for general purposes IoT
object architecture connected to the Cloud and able to communicate with
sensors. Furthermore, SDR and programmable radio are essential enablers
for IoT devices. Those technologies could create cloud IoT devices accessible
like any other cloud resource. This work was published at NETSOFT 2019.
[4]

We believe that our work contributed to improving the way cloud-native
applications can be operated. Autonomous computing and advanced orches-
tration are of paramount importance for operation engineers and developers
alike in their mission to deliver better, faster, more reliable cloud-native ap-
plications. Now a very hot topic in the industry followed by all the major
players, Observability is a field that requires more research to clearly define
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and characterize the subject. In 2021, the CNCF announced a new project
around Observability-driven auto-scaling and envisioned bringing it to the
masses [136].

While not focused on security, our work also encompasses the possibility
for disaster recovery, resilience to cyber-attack. Indeed, observability systems
enable easier protection and monitoring against threats. Automation and
Orchestration by employing a "cattle vs. pets" approach enable systems to be
recovered and restored in less time in case of intrusion, defacing, and other
disasters such as data-center outages. While not the most cost-efficient, auto-
scaling increases the system’s resistance to DDoS attacks and reduces fall-
outs on legitimate users.

We believe that in a production environment, machine learning-enabled
auto-scaling could power use-cases such as delay reduced auto-scaling from
zero and thus reduce cost, energy consumption and carbon footprint by not
keeping some microservices in always-on configuration. As more IoT ob-
jects and sensors need to be connected to the Internet and with the advent
of edge and fog technologies, SDR and NFV could enable frequency-agile
re-configurable gateways for multiple use-cases.
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Résumé en Français

Internet est devenu plus qu’un simple moyen de communication : les
applications Web font désormais partie de notre quotidien. Les individus
et les organisations de tous types et de toutes tailles s’appuient sur des ser-
vices Web pour une grande variété de cas d’utilisation. L’introduction du
Cloud Computing a abaissé la barrière d’entrée pour les applications Web.
Il est devenu possible d’héberger des applications Web avec des ressources
informatiques désormais disponibles en mode de paiement à l’utilisation.
L’adoption du cloud computing par les organisations et les entreprises de
toutes tailles a été fulgurante. Cela a stimulé l’innovation et nous avons as-
sisté à une montée en flèche de nouvelles technologies, de cas d’utilisation
et de nouveaux défis. Les applications Web sont passées d’une conception
monolithique à un système distribué reposant sur la virtualisation, la con-
teneurisation, l’orchestration et les microservices.

Les applications cloud natives modernes ont résolu de nombreuses dif-
ficultés présentées par les architectures précédentes, ce qui les rend plus
rapides à développer. Cependant, alors que ces innovations permettent aux
développeurs d’être plus créatifs et productifs, cela a également conduit à
une augmentation spectaculaire de la complexité. Ce résultat a eu un coût
élevé pour la simplicité d’opération. Les applications natives du cloud ont
augmenté le nombre de composants, les dépendances avec des tiers, la fréquence
de publication et le besoin d’expertise.

En effet, alors que le cloud computing et les approches cloud natives
telles que les applications cloud natives ont révolutionné la façon dont nous
concevons et exploitons des logiciels web, ils ont également créé de nou-
veaux défis. Dans le même temps, les utilisateurs, qui s’appuient sur des
applications cloud, ont accepté l’idée que leurs applications doivent fonc-
tionner 24h/24 et 7j/7 de manière rapide, fiable et pratique. Les ingénieurs
opérationnels se sont retrouvés avec des outils, des stratégies et des tech-
niques créés pour exploiter les architectures logicielles précédentes alors que
la nature et la complexité de leurs missions étaient révolutionnées. Dans
ce contexte, la nécessité de comprendre ces applications cloud natives mod-
ernes, de connaître leur état de santé et de les exploiter avec des exigences
aussi élevées en matière de qualité de service est d’une importance primor-
diale.

De nombreux travaux dans la littérature ont évalué les exigences pour
l’exploitation et la surveillance des applications cloud [46] [47] [48] [49], ils
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ont unanimement déclaré que les outils, les techniques et les stratégies créés
pour les architectures héritées étaient en deçà de les exigences nécessaires.

Très tôt, les chercheurs comme les entreprises ont anticipé ces défis. Dès
2001, le vice-président d’IBM Jeffrey O. Kephart et DM Chess ont annoncé
qu’il fallait s’attaquer à l’augmentation de la complexité. Ils ont introduit un
concept appelé "Autonomous Computing" où des interfaces de haut niveau
pourraient faire abstraction de la difficulté de gérer et d’exploiter des sys-
tèmes complexes. Ce concept était basé sur une boucle de contrôle auto-
gérée, qui permettait de surveiller les données, de les analyser, de plani-
fier et d’exécuter des connaissances préprogrammées. L’automatisation et
l’orchestration sont des fonctionnalités souhaitables dans le contexte des ap-
plications cloud natives. C’est pourquoi, dans cette thèse, nous avons pour-
suivi l’objectif d’implémenter des fonctionnalités de calcul plus autonomes
dans des applications natives du cloud.

Cela nous a conduit à des questions de recherche majeures, notamment,
mais sans s’y limiter :

- Quelles sont les exigences pour exploiter des applications cloud natives
dans un environnement de production ?

- Comment obtenir des informations sur les applications cloud natives
et leur environnement ?

- Quel est le meilleur moyen d’obtenir une mise à l’échelle automatique
efficace pour les applications natives du cloud ?

Proposition d’architecture pour l’observabilité dans
les applications cloud natives

Notre première contribution sur l’observabilité nous a permis de gagner
en visibilité et de comprendre ce qui s’est passé à l’intérieur et autour des ap-
plications et infrastructures cloud natives. Au moment de la rédaction de cet
article, le concept d’observabilité et sa différenciation par rapport à la surveil-
lance traditionnelle sont de plus en plus connus et approuvés dans l’industrie
informatique. Nous avons contribué à définir les exigences, les caractéris-
tiques pour atteindre l’observabilité dans un environnement de cloud com-
puting moderne, telles que les applications natives du cloud hébergées dans
le cloud public.

Nous avons défini des stratégies 5 et des méthodes qui peuvent être réu-
nies et construire un cadre d’architecture qui peut atteindre l’observabilité
sur un environnement cloud natif. Ce cadre a ensuite été déployé dans un
environnement de production commerciale pour améliorer la capacité des
ingénieurs à diagnostiquer les pannes et les pannes tout en améliorant la
qualité de service. Ce cadre d’observabilité a facilité le travail et a aidé à la
fois les développeurs et les ingénieurs d’exploitation dans leurs missions. Ce
travail a été publié et démontré à IEEE IM 2019. [5]
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FIGURE 5: Path towards observability.

Auto-Scaling (Mise à l’échelle) automatique axée sur
l’observabilité pour les applications cloud natives

Notre deuxième contribution s’est concentrée sur l’auto-scaling, car notre
état de l’art et notre exploration sur le terrain ont montré un besoin de plus
de recherche dans ce domaine. Si de nombreux travaux ont été menés sur
le sujet, la plupart d’entre eux se sont concentrés sur les machines virtuelles,
les métriques de base et l’architecture précédente. Notre recherche était basée
sur l’utilisation de nos données d’observabilité pour piloter notre auto-scaling,
en suivant notre voie basée sur l’informatique autonome. Nous avons d’abord
décrit une architecture capable d’utiliser notre cadre d’observabilité comme
entrée pour un orchestrateur de production et un auto-scaler. Nous choi-
sissons les métriques d’utilisation réelles du bus de communication entre les
microservices comme entrée pour l’auto-scaler. Cela nous a permis d’évoluer
efficacement en dehors de la situation de saturation qui peut survenir avec la
mise à l’échelle automatique basée sur l’utilisation du processeur. Cette so-
lution a également été portée sur un environnement de production et permet
désormais à Lectra d’atteindre une QoS satisfaisante dans les microservices
équipés. Cette partie a également été démontrée à l’IM 2019.

Nous avons décidé de pousser plus loin la mise à l’échelle automatique
basée sur l’observabilité avec la mise à l’échelle automatique proactive pour
les applications natives du cloud. Nous avons utilisé un apprentissage au-
tomatique (Machine Learning) et un maillage de services (Service Mesh) de
pointe au sein d’un banc d’essai dédié, libéré des contraintes de Lectra. Cela
nous a permis de réaliser une preuve de concept où les séries temporelles
prévues par l’apprentissage automatique pourraient être utilisées pour dé-
tecter et prédire une augmentation soudaine du trafic, à savoir une foule
flash et auto-scaling proactive pour éviter une situation de saturation pen-
dant la période d’auto-scaling. . Ce travail a fait l’objet d’une publication à
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Globecom 2020. [3]

Un cadre d’architecture pour la virtualisation des
applications IoT : natif du cloud et observabilité dans
l’IoT

Notre troisième contribution s’est concentrée sur l’application des inno-
vations et des technologies disponibles à partir des applications natives du
cloud à l’Internet des objets. Les objets IoT sont désormais plus puissants
que jamais et capables d’héberger des conteneurs. La conteneurisation aux
côtés de la virtualisation, la radio définie par logiciel (SDR) et la mise en
réseau définie par logiciel (SDN) ouvrent la voie à une architecture d’objets
IoT à usage général connectée au cloud et capable de communiquer avec des
capteurs. De plus, le SDR et la radio programmable sont des catalyseurs
essentiels pour les appareils IoT. Ces technologies pourraient créer des ap-
pareils IoT cloud accessibles comme toute autre ressource cloud. Ce travail a
été publié à NETSOFT 2019. [4]

Conclusion

Nous pensons que notre travail a contribué à améliorer la façon dont
les applications cloud natives peuvent être exploitées. L’informatique au-
tonome et l’orchestration avancée sont d’une importance primordiale pour
les ingénieurs d’exploitation et les développeurs dans leur mission de fournir
des applications cloud natives meilleures, plus rapides et plus fiables. De-
venu un sujet très branché dans l’industrie suivi par tous les grands acteurs,
l’observabilité est un domaine qui nécessite plus de recherche pour définir
et caractériser clairement le sujet. En 2021, le CNCF a annoncé un nouveau
projet autour de la mise à l’échelle automatique basée sur l’observabilité et a
envisagé de le porter aux masses [136].

Bien qu’ils ne soient pas axés sur la sécurité, notre travail englobe égale-
ment la possibilité de reprise après sinistre, la résilience aux cyberattaques.
En effet, les systèmes d’observabilité permettent une protection et une surveil-
lance plus faciles contre les menaces. L’automatisation et l’orchestration en
utilisant une approche « cattle vs pets » permettent aux systèmes d’être récupérés
et restaurés en moins de temps en cas d’intrusion, de dégradation et d’autres
catastrophes telles que les pannes de centre de données. Bien qu’elle ne soit
pas la plus rentable, l’auto-scaling augmente la résistance du système aux
attaques DDoS et réduit les retombées sur les utilisateurs légitimes.

Nous pensons que dans un environnement de production, la mise à
l’échelle automatique activée par l’apprentissage automatique (Machine Learn-
ing) pourrait alimenter des cas d’utilisation tels que retarder la mise à l’échelle
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automatique réduite à partir de zéro et ainsi réduire les coûts, la consomma-
tion d’énergie et l’empreinte carbone en ne gardant pas certains microser-
vices en configuration allumé en permanence. Alors que davantage d’objets
et de capteurs IoT doivent être connectés à Internet et avec l’avènement des
technologies de pointe et de brouillard (fog), SDR et NFV pourraient perme-
ttre des passerelles reconfigurables agiles en fréquence pour de multiples cas
d’utilisation.
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