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Abstract
Electrical transport in nanostructures of the Weyl semimetal WTe2

by Valentin LABRACHERIE

Recently, different studies on Weyl semimetals have shown some great potential
for applications in spintronics. Indeed, spin-chiral Weyl nodes are perfect sources
or sinks of the Berry curvature, which give new transport properties due to their
topological nature, such as the chiral anomaly, and a large anomalous Hall response.
Moreover, type-II Weyl semimetals, such as WTe2, have a specific band structure
with tilted Weyl cones and overlapping electron/hole bands that can result in a
perfect charge compensation and an extremely large magnetoresistance (XMR) . Yet,
in WTe2 , Weyl nodes are usually located about 50 meV above the Fermi energy, a
situation that questions the observation of both a large positive XMR and a negative
magnetoresistance attributed to the chiral anomaly in some studies.

In this work, we investigate the magneto-transport properties of WTe2 nanos-
tructures obtained by different methods (mechanical exfoliation, chemical vapor
transport), considering both the real electronic band structure and scattering by dis-
order. Although the XMR amplitude also depends on charge mobilities, it is shown
that the subquadratic response is not strongly influenced by the degree of disorder.
Taking carrier densities infered from quantum oscillations into account, a three-band
model explains this behavior by a large difference in hole mobilities, as confirmed
by numerical simulations. At low temperatures and for small magnetic fields, an
isotropic negative magneto-resistance is observed and attributed to a topological
property of the band structure far away from the Weyl nodes. This new mechanism,
different from the chiral anomaly, allows us to reproduce the experimental results by
numerical calculations based on the real band structure of WTe2.
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En Français

Récemment, différentes études sur les semimétaux de Weyl ont montré leur large
potentiel pour des applications en spintronique. En effet, les noeuds de Weyl avec
leur chiralité de spin sont des sources ou puits parfaits de la courbure de Berry, ce qui
peut conduire à de nouvelles propriétés de transport, dues à la nature topologique
de la structure de bande, comme l’anomalie chirale et une large réponse liée à
l’effet Hall anormal dit intrinsèque. De plus, les semimétaux de Weyl de type
II, comme WTe2, ont une structure de bande particulière avec des cônes de Weyl
inclinés et un chevauchement des bandes de trous et d’électrons qui résulte en une
forte compensation de charge et une magnétorésistance extrêmement large (XMR)
associée. Cependant, dans WTe2, les noeuds de Weyl se trouvent environ 50 meV
au-dessus de l’énergie de Fermi, ce qui remet en cause la possibilité d’observer à
la fois une XMR positive à fort champ et une magnétorésistance négative à champ
faible due à l’anomalie chirale.

Dans ce travail, nous étudions les propriétés de magnéto-transport de nanos-
tructures WTe2 obtenues par différentes méthodes (exfoliation mécanique, transport
en phase vapeur), avec des degrés de désordre microscopique différents, en consid-
érant à la fois la structure de bande réelle du matériau et les processus de diffusion
liés au désordre. Il est montré que la XMR présente un comportement subquadra-
tique, qui peut être compris dans le cadre d’un modèle multi-bandes, au-delà de deux
bandes, comme confirmé par des simulations numériques. A très basse température
et faible champ magnétique, une magnétorésistance négative et isotrope est observée
et attribuée à une propriété topologique de la structure de bandes loin des noeuds de
Weyl. Ce nouveau mécanisme, différent de celui de l’anomalie chirale, nous permet
de reproduire nos résultats expérimentaux par des simulations numériques basées
sur la structure de bande réelle de WTe2.
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Auf Deutsch

In den vergangenen Jahren haben verschiedene Untersuchungen von Weyl Halb-
metallen gezeigt, dass sich diese sehr gut als Spintronische Geräte eignen. In der
Tat sind die Spin-chiralen Weyl Quasiteilchen perfekte Quellen und Abflüsse der
Berrykrümmung, was auf Grund ihrer topologischen Natur neue Transporteigen-
schaften hervorruft, wie beispielsweise die chirale Anomalie und einen großen,
anomalen Hall Effekt. Außerdem haben Typ II Weyl Halbmetalle wie WTe2 eine
spezifische Bandstruktur mit gekippten Weylkegeln und überlappenden Elektronen-
/Lochbändern, die dazu führen können, dass die Ladungsträgerkompensation ideal
wird und ein sehr starker Magnetowiderstand (XMR) entsteht. Dennoch befinden
sich die Weylknoten in WTe2 ca. 50 meV über dem Ferminiveau, eine Beobachtung
die sowohl den starken positiven Magnetowiderstand, als auch den negativen Mag-
netowiderstand, der meist mit der chiralen Anomalie in Verbindung gebracht wird,
in Frage stellt.

In dieser Arbeit untersuchen wir die Magnetotransporteigenschaften von WTe2

Nanostrukturen, die durch verschiedene Wachstumsarten hergestellt werden (mech-
anische Exfoliation, chemische Gasphasenabscheidung), um sowohl die reale Band-
struktur, als auch Streuung an Störstellen in Betracht ziehen zu können. Es wird
gezeigt, dass der extrem große Magnetowiderstand nicht direkt vom Grad der Un-
ordnung abhängt und dass das typisch subquadratische Verhalten im Rahmen eines
Multibandmodells, was über das Zweibandmodell hinaus geht, verstanden wer-
den kann und sich auch mit numerischen Simulationen bestätigt lässt. Bei tiefen
Temperaturen und für kleine Magnetfelder kann ein isotropisch negativer Magne-
towiderstand beobachtet werden, der der topologischen Eigenschaft der Bandstruk-
tur weit weg von den Weylknoten geschuldet ist. Dieser neue Mechanismus, der
sich von der chiralen Anomalie unterscheidet, erlaubt es uns die experimentellen
Ergebnisse mit numerischen Berechnungen, die auf der realen Bandstruktur basieren,
zu reproduzieren.





7

Dedicated to my parents and my brother.





9

Acknowledgements
To complete this doctoral project, it is important to look around and see all the people
who helped, formed or supported this work along the way, and I would like now to
thank them. To do so, I will switch to French for the French speakers.

J’aimerai remercier Joseph et Romain pour m’avoir donné l’opportunité de
travailler avec eux et de m’avoir appris tant de choses ces dernières années. Cela n’a
pas toujours été facile, certainement dû à mon tempérament mais je vous remercie
de m’avoir accueilli dans votre équipe, soutenu et supporté. En plus des travaux
scientifiques, c’est aussi une ouverture sur le monde que j’ai entrepris en partant
vivre à l’étranger et cela je le dois à vous. J’aimerai aussi remercier Louis qui est de
retour à l’IFW pour nous régaler (littéralement). J’ai l’impression que c’était encore
hier que je venais dans ton bureau à l’institut Néel pour te demander conseil avant
d’accepter ce projet de thèse.

I would like to thank Prof. Dr. Büchner for giving me the opportunity to do my
doctoral thesis in Dresden. I am very grateful for the great environment that the IFW
Dresden provides to its PhD students.

I would like to acknowledge the member of the Jury and specifically thank Dr.
Walter Escoffier and Pr. Dr. Hartmut Buhmann for their time.

I am grateful to Grigory, Felix, Dr. Saicharan and Dr. Hampel for their continued
work on the growth of WTe2 crystals. I would like to thank Dr. Sykora for all his help
on the numerical simulations. I want to thank Barbara Eichler and Sandra Nestler for
their help in the preparation of the samples. I would like to acknowledge Kerstin
Höllerer, Katja Schmiedel and Rita Taubert for their administrative support.

In the quantum transport group, when I arrive there was no other PhD student
and now, we are 7 including Louis group. I am grateful to be join just after by Aoyu
that always make us laugh in the office with almost nothing ;-). I would like to
thank Teresa for her kindness, her patience and her craziness (to not feel alone). A
thanks also for helping me with the German version of the abstract. Un français
qui m’a fait me sentir moins seul durant des débuts difficiles et qui aura réussi
à toujours introduire une ou deux citations de Kaamelott durant nos discussions
parfois compliquées sur PtBi2, merci à toi Arthur. I would like also to thank Kyril for
the exfoliation of WTe2 that save me precious time at a moment where I had none.

Pour arriver où j’en suis aujourd’hui, cela n’a pas été un voyage facile mais j’ai
pu compter sur des personnes incroyables qui ont toujours été là pour m’aider et cela
commence par ma famille. Merci à mes parents et à mon frère qui ont toujours su



10

m’épauler ou me contenir dans les moments plus difficiles. J’aimerai remercier toute
ma famille et tout particulièrement mon parrain.

I would like to thank Riswati for her patience with me and all the love and
strength that she gave me during these past years. It would have been very difficult
without you. . .

J’aimerai aussi remercier ma seconde famille, mes amis, qui sont si inestimables
que je n’ai pas les mots. Une partie à Bordeaux avec Thomas (oui je t’inclus dans
Bordeaux et non Paris ;-)), Guillaume et Benjamin que je ne peux pas remercier assez
pour ces moments de défoulement en jeu en ligne dont j’avais besoin pour m’évacuer
la tête. Une autre partie à Grenoble, avec ceux qui ont fait de mes années de Master,
une des plus belles parties de ma vie jusqu’à maintenant. Flora, Nicolas, Clara,
Sébastien, Jérémy, Léo et Loïc, merci. Même si je n’ai pu être longtemps à Bordeaux
ou à Grenoble ces dernières années, j’ai toujours réussi à sentir votre soutien durant
ces années de doctorat.



11

TABLE OF CONTENTSCONTENTS

EXTENDED SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 1
INTRODUCTION TO TOPOLOGICAL CONCEPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 Topology of electronic bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

1.1.1 Berry Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.2 Topological invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.3 Topological classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Quantum Hall effect and Topological Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

1.2.1 Integer Quantum Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.2 2D Z2 Topological Insulator : Quantum Spin Hall effect . . . . . . . . . . . . . . 26

1.2.3 3D Z2 Topological Insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

CHAPTER 2
TOPOLOGICAL SEMIMETALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Construction of Dirac and Weyl Semimetals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Transport properties of Topological Semimetals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Discovery and Fermi arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.2 Anomalous Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.3 Extremely Large Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.4 Chiral Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 WTe2 : a type II Weyl semimetal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2 Indication of Weyl orbits due to the Fermi arcs . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.3 Type-II nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.4 Planar Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 3
CRYSTAL GROWTH AND EXPERIMENTAL TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Growth of WTe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 Chemical Vapor Transport Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



12

3.1.3 Flux Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Nanostructures of WTe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Exfoliation and search of nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.2 Nanofabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Cryogenics and low noise measurement techniques . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 3He-4He dilution refrigerator system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 Low noise electrical measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

CHAPTER 4
EXTREME MAGNETORESISTANCE : BAND STRUCTURE AND DISORDER . . . . . . . 67

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Temperature dependence of the longitudinal resistivity . . . . . . . . . . . . . . . . . . . . 68

4.3 Extreme magneto-resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Simple analysis of the experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Refinement based on the Shubnikov-de Haas measurements . . . . . . . . . 72

4.3.3 Comparative study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Multi-band model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 From a two-band to a three-band model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

4.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

4.5.1 Projective renormalization method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

CHAPTER 5
TOPOLOGY AND TRANSPORT PROPERTIES AT VERY LOW TEMPERATURE . . . . . 89

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Low-field transport properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 In-plane Magnetoresistance at 4.2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Very low temperature dependence of the longitudinal resistance . . . . . 92

5.2.3 Isotropic negative magneto-resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Theory and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

CHAPTER 6
CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



13

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

APPENDIX A
TWO-BAND MODEL FITS OF S3 DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

APPENDIX B
TYPE II WEYL SEMIMETALS INFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

APPENDIX C
COLD FINGER DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

LIST OF FIGURES AND TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

LIST OF PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

ABSTRACT EN FRANÇAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

ABSTRACT AUF DEUTSCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

DECLARATION OF AUTHORSHIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139





15

EXTENDED SUMMARY

One severe limitation of the development of electronics devices nowadays is the
power consumption. Following the Moore’s law, the number of transistors in in-
tegrated circuits has doubled every year for decades. While the size of logical
components continues to decrease, the power consumption due to interconnects is
so large that it can strongly heat up nearby components and even damage them.
A possible way to overcome this issue is to use spin currents, which can even be
dissipationless [Sonin, 2010] [Šmejkal et al., 2017]. In this branch of spintronics,
emergent materials are studied in order to find some which can generate, detect
and manipulate large spin currents, or simply propagate them. One class of such
materials is that of topological materials that have chiral spin textures due to strong
spin-orbit coupling, with gapless quasi-particles that are robust against perturbations,
in particular to disorder.

Among these, topological Weyl semimetals were rapidly identified as a new
family of interest to investigate chiral spin transport. Among massive bands, their
bulk band structure exhibits linear quasiparticle excitations, called Weyl fermions
that have a well-defined spin chirality [Armitage et al., 2018]. Thus, contrary to
3D topological insulators, Weyl semimetals have topological surface states but also
gapless topological bulk states. These bulk states come as pairs of Dirac cones of
opposite spin chirality, called Weyl cones, related to each other by Fermi arcs that
connect their two projected Weyl nodes at the surface. Important for bulk transport
properties is that pairs of Weyl nodes are a perfect source or sink of Berry curvature.
Each cone having its own chirality, Weyl fermions are expected to induce new effects
such as a large intrinsic anomalous Hall effect or a negative magnetoresistance
related to the chiral anomaly. The latter results from a quantum anomaly that induces
a charge transfer between cones of opposite chirality, for parallel electric (E) and
magnetic (B) fields. Since the chiral anomaly only exists if B is applied along E, it
is associated to an anisotropic magnetoresistance and, therefore, could also give a
contribution to the planar Hall effect.

The anisotropic magnetoresistance and the planar Hall effect were indeed
reported for thin films of the type-II Weyl semimetals WTe2, for instance. Different
groups studied the anisotropic planar hall effect [Li et al., 2019b] or the chiral anomaly
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FIGURE 1: Illustration of the band structure of WTe2 with the Weyl nodes indicated by
the two arrows. The spin degeneracies of the conduction and valence bands are lifted by
the spin-orbit coupling, leading to two bands slightly shifted in energy (plain and dashed
lines). Two important energy levels are indicated in the bandstructure, in orange for perfect
compensation (n = p), giving rise to two spin nondegenerate electron and hole pockets
contributing to the transport and in green where the realization of the chiral anomaly takes

place.

[Wang et al., 2016a] [Li et al., 2017b] [Lv et al., 2017] [Zhang et al., 2017]. For very
thin samples, below 10 nm, a gradual opening of the band gap appears [Zheng et al.,
2016]. In the few or monolayer limit, some recent work revealed the effect of the Berry
curvature on the transport properties. The observation of a non-linear anomalous
Hall effect was reported [Kang et al., 2019] [Ma et al., 2019] [Wang and Qian, 2019],
a quantum spin hall effect was evidenced [Tang et al., 2017] [Fei et al., 2017] [Wu
et al., 2018], and canted spin textures were predicted [Garcia et al., 2020]. WTe2

has a non-centrosymmetric structure with a strong spin-orbit coupling that leads to
the prediction of a large spin Hall effect [Zhao et al., 2020]. Several studies focused
on the application of the properties of WTe2 for the development of spin current
sources in memory and logic devices [Shi et al., 2019] [Zhao et al., 2020]. Importantly,
due to its type II nature, the specific band structure of WTe2 is made of crossing
conduction and valence bands leading to the coexistence of electron and hole pockets,
for which a charge compensation is possible. The hole-electron coexistence results
in an extremely large magnetoresistance that was evidenced in both bulk [Ali et al.,
2014] [Luo et al., 2015] and thin films [Thoutam et al., 2015]. This magnetoresistance
is not related to topological properties but is of high interest for extracting transport
parameters such as carrier mobilities and densities. For thin nanostructures, a study
of the Shubnikov-de Haas oscillations of bulk and thin film reported on a change in
the bandstructure for samples in the range of 40 to 10 nm, with an increasing band
gap opening [Xiang et al., 2018]. This leads to a change in the carrier densities, but
the Fermi energy remains pinned at the near-perfect charge compensation.
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Thus, simple considerations based on the simplified band structure, as sketched
in figure 1, already raise important questions about the interpretation of transport
results in terms of topological properties. First, the Weyl nodes are offset from
the charge compensation energy, by about 50 meV. This casts doubts about the
observation of both the XMR and the chiral anomaly for a given charge doping. In
general, the Fermi energy in WTe2 is located nearby the charge compensation regime,
and the XMR is well evidenced at low temperature. This implies that the observation
of the chiral anomaly is unlikely at such a Fermi energy. Another feature related to
the extremely large magnetoresistance did not find any origin yet : it was reported
that the band structure can be approximated by a two-band model at the perfect
compensation, which leads to a quadratic magnetoresistance with no saturation even
at high magnetic fields as large as 60 T [Ali et al., 2014]. Nevertheless, a slightly
subquadratic law is always reported with no explanation [Thoutam et al., 2015] [Wang
et al., 2016b] [Fatemi et al., 2017] [Wang et al., 2019]. Second, even if the Fermi energy
could be raised towards the Weyl nodes, the influence of disorder cannot be neglected
since inter-node scattering can efficiently suppress the topological contribution to
charge transport [Sykora et al., 2020b]. As evidenced in this thesis (chapter 5), the
negative magnetoresistance can nevertheless be related to the non trivial topology of
the band structure far from the Weyl nodes, beyond the Lifshitz transition.

In this thesis, both the high-field positive XMR and the low-field negative
MR are investigated in detail, by studying the magneto-transport properties of
disordered WTe2 nanostructures obtained by different growth techniques, with
different degrees of disorder. The manuscript has five chapters. Chapter 1 gives a
general introduction to topological concepts, with a review of both the quantum Hall
effect and topological insulators. In chapter 2, the topological Weyl semimetal phase
is introduced, and its specific transport properties are discussed. In chapter 3, the
growth methods, the nanofabrication and the measurement set-up are described in
detail. The last two chapters focus on the results obtained during this PhD thesis.
Chapter 4 reports on a study of the transport properties of WTe2 at large magnetic
fields and describes the extremely large magnetoresistance in the framework of a
multiband model. The influence of the disorder strength and range (short range
versus long range) on the extremely large magnetoresistance is then investigated,
by comparing the experimental results, obtained with nanostructures of different
densities of point defects, to numerical calculations. In chapter 5, the observation of
an isotropic negative magnetoresistance is newly interpreted as the influence of the
Weyl fermions far away from the Weyl nodes, as evidenced by numerical calculations.
Our experimental study gives some robust proof to discard the chiral anomaly as
the origin of the negative magnetoresistance in WTe2. Instead, the new mechanism
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identified in this work reveals that a non-trivial topological contribution to charge
transport also exists for a Fermi energy pinned in the charge-compensation regime,
even if far from the Weyl nodes, a condition that is indeed realized in WTe2.
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Chapter 1

INTRODUCTION TO TOPOLOGICAL CONCEPTS

In the 80s, Thouless and Haldane [Kosterlitz and Thouless, 1973] [Haldane, 1983]
revolutionized the classification of electronic phases by introducing the concept of
topological phases. Contrary to Landau’s approach which classified the different
phases based on their symmetry breaking in real space and for which an order
parameter can be defined, which is finite in the ordered phase and vanishes in the
higher-symmetry phase, the identification of different topological phases is based
on symmetry considerations in the reciprocal space, which alter the electronic band
structures. Due to their topological nature, topological phases are robust against
any small perturbation. Although discovered first, the integer quantum Hall effect
was more complex to understand because it actually breaks all symmetries. Almost
30 years after the discovery of the quantum hall effect, the concept of topological
phases was deeply revisited with the theoretical and experimental discovery of 2D Z2

topological insulators (TI), known as the quantum spin Hall phase, shortly followed
by their 3D counterpart. Due to their topological nature, these electronic phases are
not destroyed by small modifications of their Hamiltonian. In particular, Z2 TIs are
robust against non-magnetic disorder, so that strong localization is not possible.

In this chapter, some concepts that are necessary to understand the emergence
of topological phases in condensed matter are introduced in the first part. These
concepts, such as the Berry curvature and the topological invariants are explained in
analogy to the topology of 3D surfaces, which is easier to visualize. The classification
of the quantum phases of matter in terms of topological invariants is reviewed. In
a second part, a brief overview is given of some topological phases in 2D, such as
the orbital based QHE or the spin-based QSH, and finally, the case of 3D topological
insulators is discussed. The case of Weyl semimetals will be presented in the next
chapter.
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1.1 Topology of electronic bands

1.1.1 Berry Curvature

The concept of geometrical phase was introduced by Berry in 1984 [Berry, 1984] to
understand the adiabatic evolution of the phase in quantum systems. To describe
this effect, the evolution of an eigenstate ψ(t) with a phase Φ(t) of the Hamiltonian
Hλ is considered, controlled by the time-dependent parameter λ = (λ1, λ2...). This
parameter varies slowly in time along a path P in the parameter space. According
to the adiabatic theorem, the system will remain in the same eigenstate ofH but, its
phase evolves after a time t, the wave function can be generally written as:

|ψ(t)〉 ≈ eiΦ(t)|ψλ(0)〉 (1.1)

The phase Φ has two contributions, the first one is the dynamical phase that is
related to the eigenenergy :

Φdyn = −1
h̄

∫ t

0
E(n)

λ(t′).dt′ (1.2)

The second one is the geometrical one, which is the Berry phase [Berry, 1984].
To calculate the Berry phase, the basis of eigenstates |ψ(n)

λ 〉 of the HamiltonianHλ is
introduced. The Berry connection [Berry, 1984][Berry, 1989] is defined as :

A(n)
λ = i〈ψ(n)

λ |∇ψ
(n)
λ 〉 (1.3)

The geometrical phase is then given by :

Φgeom =
∫ λ(t)

λ(0)

A(n)
λ .dλ (1.4)

This phase becomes time independent when the Berry connection is integrated along
a closed loop C for which λ(T) = λ(0) (figure 1.1).

Introducing the Berry curvature :

Ω
(n)
λ = ∇×A(n)

λ (1.5)

and using the Stokes theorem, the Berry phase can be rewriten as :

Φgeom =
∫∫

Σ
~n.~Ω(n)

λ dλ (1.6)
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FIGURE 1.1: Path C in the parameter space followed by the system to acquire a Berry phase

with ~n the normal direction to the surface Σ. The geometric phase is therefore the
integration of the Berry curvature on a surface Σ enclosed by the path C described by
the time-dependent parameter.

To better understand this geometric phase, an analogy can be made with a clas-
sical system in a time-dependent rotating frame, a Foucault pendulum on Earth. As
known, the rotation of the Earth influences the oscillation of a Foucault’s pendulum
(Coriolis force). After one day, the Earth has done one turn, so that the pendulum
is back to its original position. Considering a linear oscillation of the pendulum,
the movement remains the same but the rotation plane has changed by an angle θ

(similar to the Berry phase) due to the rotation of the Earth [Dalibard, 2016] as shown
in figure 1.2.

From a mathematical concept, the next part considers how this Berry curvature
is related to the notion of topological invariant, which is used to classify novel
quantum states in condensed matter.

FIGURE 1.2: Foucault’s pendulum at the Pantheon in Paris, with red lines showing the
plane of the linear rotation and green lines showing the plane of the rotation after 24 hours,

θ being the angle between the two planes and corresponding to the geometric phase
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1.1.2 Topological invariants

To introduce qualitatively the notion of topological invariant, an analogy with the
topology of 3D surfaces is often made. Such objects can be sorted in different classes
defined by an integer, the genus g, that represents the number of holes in such 3D
surfaces. Considering a mug, a non-trivial 3D surface with a single hole (g = 1), it is
possible to continuously distort the mug into a donut. However, it is not possible to
transform a ball (no hole, g = 0) into a donut since they do not have the same genus.
Therefore, these two objects belong to different topological classes as shown in figure
1.3.

In condensed matter, a similar description can be made when considering
electronic band gaps of Bloch states in a crystal. Thouless and Haldane discovered
that band gaps are not all topologically equivalent. One way to understand it is to
make the link to the genus presented above. Instead of surfaces in real space, one has
to consider surfaces in the reciprocal space, within the Brillouin zone [Ralph, 2020].
For a given band n in a 2D system, the topological invariant is given by the total
Berry flux in the Brillouin zone :

Cn =
∫∫
BZ

Ω(n)(k)d2k (1.7)

Because the Berry phase is not single valued (modulo 2π), Cn = Φ/2π is an
integer that cannot change smoothly, so that bands are not all topologically equivalent
and are distinguished by their topological invariant. Generally, it was shown that
every crystal can be characterised by a set of topological invariants, associated to
various topological phases that can be classified by considering specific symmetries
of the HamiltonianH [Chiu et al., 2016]. For example, the Chern number is the first
topological invariant defined in the case of the Hall effect.

FIGURE 1.3: Comparison of 2 classes of 3D objects (genus equal to 0 and 1). Adapted from
[Dalibard, 2016]
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1.1.3 Topological classification

Single particle Hamiltonians are classified into ten classes by local and internal
symmetries[Altland and Zirnbauer, 1997] that are the time reversal symmetry Θ, the
particle hole symmetry Ξ and the sublattice or chiral symmetry Π. Several methods
such as homotopy group or K-theory can derive the same tenfold classification
[Kitaev, 2009]. Considering a single-particle wave function where the Bloch theorem
is respected and the Hamiltonian ("second quantization") has the following form
[Ryu et al., 2010] :

H = ∑
k

∑
i,j

ψ†
i (k)Hi,j(k)ψj(k) (1.8)

where the sum over the crystal momentum k is on the full Brillouin zone, i and
j denotes the quantum number for the spin and band indices. ψ and ψ† are the
fermion operators of creation and annihilation respectively. Hi,j is a N×N matrix
and is the "first quantization" Hamiltonian. It is assumed that there is no unitary
matrix that commutes with the Hamiltonian matrixHi,j : if such a matrix exists, the
HamiltonianH can be transformed into a block diagonal form and each block can be
treated separately. In physics, the two symmetries that play a crucial role are the time
reversal symmetry and the particle-hole symmetry. Due to the previous assumption
on the Hamiltonian, these two are anti-unitary operators Θ and Ξ respectively that
are acting on the Hamiltonian as follow :

ΘH(k)Θ−1 = H(−k) ΞH(k)Ξ−1 = −H(−k) (1.9)

The product of these two operators that anti-commute can also be considered,
which defines the chiral operator :

ΠH(k)Π−1 = −H(k) (1.10)

Now looking at the square of this three operators, it gives :

Θ2 = ±1, Ξ2 = ±1, Π2 = 1 (1.11)

Considering all possible combinations of these symmetries, it was possible
to identify 10 inequivalent topological classes as described in figure 1.4. For the
first symmetry, the Hamiltonian can either be non time reversal invariant Θ = 0,
or time reversal invariant with the anti unitary time-reversal symmetry operator Θ

squared to plus the identity operator, in which case Θ = +1, or to minus the identity
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operator, in which case Θ = −1. Similarly, there are three possibilities for the particle
hole symmetry. With these two symmetries, nine classes are defined. Looking at
the chiral symmetry, this symmetry is always guaranteed when the two others are
already present but can be independently determined otherwise. This means that
for a system without time reversal symmetry Θ = 0 and particle hole symmetry
Ξ = 0, the chiral symmetry Π can be either 0 or 1. This brings the classification to
the ten ways that an Hamiltonian can respond in the absence of interaction between
the particles as seen in figure 1.4. The system related to the Hamiltonian can be
either trivial (equivalent to vacuum) or non-trivial with the two classes : Z or Z2 . In
particular, this classification includes the Quantum Hall effect QHE and the Z2 TIs.

FIGURE 1.4: Classification of topological states in quantum matter. The superscript a
means that surface states and stable bulk Fermi surfaces of type FS2 can be protected by
a Z invariant; the superscript b means that Z2 protect only FS of dimension 0 at high
symmetry points (FS1) and cannot protect FS away from high symmetry points (FS1).

Adapted from [Chiu et al., 2016]

Later developments [Zhao and Wang, 2013][Chiu et al., 2016] that are discussed
in the next chapter enriched the classification to take into account gapless metallic
and semimetallic topological states. Indeed, the topological invariant in a Dirac or
Weyl semimetal over the entire Brillouin Zone is zero but some Fermi surfaces possess
a non-trivial topology when the topological invariant is integrated over a restricted
area. To take into account this local non-trivial topology, a new parameter needs to
be defined which is the codimension p = d− dFS with d and dFS the dimension of
the Brillouin zone and of the Fermi surface respectively. This new parameter allows
us to use the same classification for these new materials. Also, two cases have to be
distinguished. The first one is if each individual Fermi surface is left invariant by
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the non spatial AZ symmetry (symmetry that the Altland Zirnbauer class exhibits)
in other words, if the Fermi surface is located at high symmetry points (FS1) such
as 2D nodal superconductors with time-reversal symmetry. The other case will be
for Fermi surfaces that are off high symmetry points (FS2) like Weyl or Dirac Fermi
surfaces.

In the classification and depending on the dimension, the system can be either
in a topologically trivial state, equivalent to vacuum, or a non-trivial one equivalent
to the group Z or Z2. For example the QHE corresponds to the class A which is
topological in 2D but not anymore in 1D or 3D.

1.2 Quantum Hall effect and Topological Insulators

This section briefly reviews some important phases identified as topologically non-
trivial systems, which led to the topological classification of insulators in condensed
matter physics. Although the importance of topology in physics was anticipated
by Weyl already since mid-20th century, a major breakthrough came with the un-
derstanding of the integer quantum Hall effect in terms of band topology in the
1980’s [Thouless et al., 1982]. A new impulse was then given by the prediction of Z2

topological insulators, both in 2D [Kane and Mele, 2005] [Murakami et al., 2004] and
3D [Fu et al., 2007].

1.2.1 Integer Quantum Hall Effect

When a 2D electron gas is placed under a magnetic field, the motion along closed
circular orbits induces quantized values of the wave vector which leads to the
formation of Landau levels in the energy spectrum, with an energy En = h̄ωc(n + 1

2)

with ωc the cyclotron frequency (ωc =
eB
m ) and n is an integer related to the number

of the Landau level. The quantization of the energy spectrum opens gaps in the
DOS. Nevertheless, close to the edges, cyclotron orbit cannot be closed, skipping
orbits emerge and transport occurs along edge channels (figure 1.5). In that case, the
transverse (Hall) conductance is quantized and equal to [Klitzing et al., 1980][Prange
and Girvin, 1990] :

σxy = N
e2

h
(and σxx = 0) (1.12)

The difference between the quantum Hall phase and an ordinary insulator is
evidenced by the Kubo formula that reveals that the number of Landau levels is
equivalent to the Chern number (the topological invariant in the QHE) [Thouless
et al., 1982]. Halperin predicted in 1982 that gapless states appear at the interface
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between systems with different Chern numbers [Halperin, 1982]. This demonstrated
the topological nature of the edge states at the interface between the 2D gas in the
quantum Hall regime and a trivial insulator. Due to its topological origin, the Hall
conductance is quantized with a very high precision and this effect is used in the
metrology for the determination of the quantum of conductance e2

h .

FIGURE 1.5: Representation of the interface between a normal insulator and (a) a Quantum
Hall state with the emergence of skipping orbits and (b) a Quantum spin Hall state with

the emergence of edge states. Adapted from [Hasan and Kane, 2010]

1.2.2 2D Z2 Topological Insulator : Quantum Spin Hall effect

About 25 years later, another breakthrough was the prediction of the quantum spin
Hall effect (QSHE) in graphene by Kane and Mele[Kane and Mele, 2005] and in
HgCdTe by Murakami et al. [Murakami et al., 2004], where 1D edge states are
induced by the presence of a very strong spin-orbit coupling but in absence of any
external magnetic field (no time reversal symmetry breaking). This new phase is
also known as the 2D topological insulator state (2DTI) and it was indeed rapidly
evidenced in HgCdTe quantum wells [König et al., 2007].

The 2D TI state can be seen as two copies of the quantum Hall effect with a
lifted spin degeneracy, one considering the edge states for the spin up, the second for
the spin down. This lifted spin degeneracy is due to the large spin-orbit coupling
and not to the magnetic field. Therefore, whereas a magnetic field is required to
break the time reversal symmetry for the QHE, the time reversal symmetry can be
restored for the QSHE. This effect was first predicted in graphene in presence of a
strong spin-orbit coupling. Nevertheless, it appears to be very difficult to induce a
large spin-orbit interaction in graphene (light element) preventing the observation of
any QSHE in early studies.
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FIGURE 1.6: a) Representation of the edge channel in a 2DTI Hall bar. Adapted from [König
et al., 2008]. b) Observation of the edge states quantized conductance (samples III and
IV) in a gate voltage study of Hall bar samples with different thicknesses. Adapted from

[König et al., 2007]

Despite the impossibility of the realization of the QSHE in graphene, a 2D TI
was predicted in 2006 [Bernevig et al., 2006] and evidenced one year later in HgTe
based heterostructures[König et al., 2007]. Such CdTe/HgTe/CdTe heterostructures
are characterized by a strong spin-orbit coupling and are non magnetic (time reversal
symmetry preserved). It was clearly identified that a band inversion occurs in HgTe
which leads to the crossing of the valence and conduction band at the edges of the
sample, in the vicinity of the interface with the vacuum (or any trivial insulator).
Contrary to the chiral QHE state, transport occurs along helical edge modes, with no
net charge transport but counter-propagating opposite spin states due to the spin-
orbit coupling (see figure 1.5). Due to this spin-momentum locking, the backscattering
by a non-magnetic disorder is forbidden since a charge carried by a given edge state
cannot be backscattered without flipping its spin, a mechanism which is not allowed
in the presence of a non-magnetic disorder (or more generally in the absence of any
time reversal symmetry breaking). As a consequence, the edge states are purely
ballistic and have a quantized conductance of G0 = 2e2

h as shown in figure 1.6.

Several issues concerning CdTe/HgTe heterostructures limit the potential ap-
plications. Despite the strong expertise of some groups in the growth of materials of
interest for application in infrared detector area, the quality and the complexity of the
heterostructures required for the QSHE remains extremely challenging. Furthermore,
the small energy of the spin-orbit gap for a quantum well with a thickness of 8.5 nm,
around 40 meV [König et al., 2008], remains very small for possible room temperature
application and those systems can only be measured at low temperature (T < 2 K).

Other systems were evidenced as QSH insulator, InAs/GaSb heterostructures
[Liu et al., 2008] and very recently monolayers of WTe2 [Qian et al., 2014][Tang et al.,
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FIGURE 1.7: a) Wide conductance plateaus quantized to 2 e2/h and 4 e2/h, respectively,
for two device configurations shown in inset, both have length 2 µm and width 1 µm.
Adapted from [Du et al., 2015]. b) Four terminal longitudinal resistance (Rxx) as a function
of the voltage applied on the top and bottom gate measured at 300 mK, showing the phase
diagram of the InAs/GaSb. Lines L and R cross the two different gapped regions (resistance
peaks), labeled as I (QSHE) and II (trivial insulator). Inset shows the optical image of the

Hall bar. The scale bar represents 20 µm. Adapted from [Qu et al., 2015]

2017][Wu et al., 2018]. For III-V heterostructures, the electron and hole bands are
tuned by changing the thickness and doping of the InAs and GaAs layers, which can
therefore result in an inverted band structure with topological properties. A dual-
gate study indeed showed the possibility to drive such a semiconductor multilayer
into a QSH state or a trivial insulator [Qu et al., 2015], as shown in figure 1.7. [Du
et al., 2015] reported the observation of quantized plateaus in Pi and Hall bar, at
respectively 4 e2/h and 2 e2/h up to 4 K as shown in figure 1.7. Contrary to the case
of HgTe QW, the topological state persists with an in-plane magnetic field up to 12 T
contrary to what is expected by a single-particle approach. It was recently suggested
that the deviation observed from a single particle model might be attributed to some
attractive Coulomb interaction between electrons in the InAs layer and holes in the
GaSb layer [Du et al., 2017].

Even for this materials, one important limitation is that the band gaps of existing
QSH insulators are too small, which limits the operating regime to low temperatures.
To overcome these difficulties, new predictions were made to enhance the spin-
orbit in graphene [Lara-Avila et al., 2015] [Yang et al., 2011]. As an example, the
graphene can be decorated with adatoms, adatoms act as a spin-orbit scattering
sources. If an electron from the graphene tunnel to the adatoms and then tunnel
back by a spin-independent process, this effect can enhance locally the spin-orbit
coupling. The enhancement of the QSH effect was predicted for Indium or Thallium
adatoms [Weeks et al., 2011] [Cresti et al., 2014], however, no presence of the QSH
effect was reported in transport studies so far [Jia et al., 2015] [Chandni et al., 2015].
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Another interesting point is the realization of a QSH in a twisted bilayer of graphene
[Finocchiaro et al., 2017]. This twisted structure has a reduced interlayer coupling.
It is then possible to set the first layer in the Quantum Hall state n = 1 while the
other is in the QH state n = -1 to construct a pair of helical edge states. Conductance
plateaus were indeed observed in this heterostructure for a magnetic field of 1.5 T
[Sanchez-Yamagishi et al., 2017]. However, in this approach, the QSH is achieved by
applying a large magnetic fields, instead of being induced by SO coupling.

To go further, several groups searched for 2D materials exhibiting a stronger
spin-orbit coupling than graphene, leading to a larger gap [Cao and Chen, 2019].
Two classes of materials are showing promising results recently. The first class is
that of Xenes (family of graphene) [Zhao and Wang, 2020] with stanene [Deng et al.,
2018], bismuthene [Song et al., 2014]; the second one is the TMDC’s with WTe2 [Qian
et al., 2014]. The latter family is composed of materials with a large gap such as
MoS2, MoSe2, WS2 and WSe2 but are also predicted to have a topological phase
transition from QSH to trivial phase by using an electrostatic gate [Das et al., 2020].
Furthermore, they offer more perspectives for applications due to their topological
band structure. WTe2 in monolayer was confirmed to be a QSH insulator [Tang et al.,
2017] [Fei et al., 2017]. It has been observed that the QSHE survives up to 100 K [Wu
et al., 2018]. Furthermore, as shown in figure 1.8, by tuning its carrier density, this
system evolves to a superconducting phase, which is a very promising way to study
superconductivity in proximity with topological materials [Fatemi et al., 2018][Sajadi
et al., 2018]. Studies of WTe2 monolayers are not straightforward, since they must be
encapsulated in order to avoid surface oxidation, and the QSH state was evidenced
by a couple of teams only.

FIGURE 1.8: a) Phase diagram of WTe2 monolayer as a function of the 2D carrier density, b)
Superconducting transition of a WTe2 monolayer with inset showing the gate-dependent
conductance where the observed plateau correspond to the quantum spin Hall state. The
arrow show at which gate voltage the transition curve was recorded. Adapted from [Fatemi

et al., 2018]
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1.2.3 3D Z2 Topological Insulator
The works made in the theory and experiment sides on the 2D TI was shortly
followed by the generalization of the concept to 3D TIs [Fu et al., 2007]. The first
compound identified as a 3D TI was the semiconductor BixSn1−x[Hsieh et al., 2008].
The inversion of the conduction band and the valence band leads to the appearance
of surface states at the interface between the 3D TI and a trivial insulator (like
the vacuum). Such surfaces states were first measured and characterized by angle
resolved emission spectroscopy (ARPES) [Hsieh et al., 2009] [Xia et al., 2009]. With
this technique, the surface electronic structure was probed and the presence of the
Dirac cone with linear dispersion was clearly evidenced.

Later on, Bi2Se3 was investigated and identified as a strong 3D TI [Zhang et al.,
2009] [Hsieh et al., 2009][Xia et al., 2009] and it gained a lot of interest. Indeed, due to
the stoichiometric composition, this compound could be grown with a much better
quality than that of an alloy. Importantly, the band structure of Bi2Se3 is an archetype
of the band structure of 3D TI surface states with only one single helical Dirac cone
located at the middle of the Brillouin zone. Furthermore, the rather large band gap of
this family of compounds (Bi2Se3, Bi2Te3 Sb2Te3), 300 meV for Bi2Se3 and around 170
meV for Bi2Te3 , increased greatly their potential for application at room temperature.

Unfortunately in the compound Bi2Se3, the large density of selenium vacancies
intrinsically gives a strong electron doping. This shifts the Fermi level energy far in
the conduction band and it remains challenging to tune it close to the Dirac point even
in ultra-thin layers. More generally, all binary compounds are intrinsically degenerate
semiconductors, which makes the investigation of the transport properties of the
topological surface states very challenging since the transport properties are usually
dominated by bulk properties. In the case of Bi2Te3, the top of the valence band is
above the Dirac point, preventing the study of the transport properties related to
the topological surface states of low energy. Bi2Te3 and Sb2Te3 possess a finite bulk
conductivity like Bi2Se3, but they have different types of defects (vacancies, antisites),
acting as donors or acceptors.

FIGURE 1.9: Band structures from left to right of: Bi2Se3, Bi2Te3, Sb2Te3. Adapted from
[Zhang et al., 2009]
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Worldwide, several teams have studied ternary or even quaternary compounds
of this family, some of which showing some charge compensation. By band structure
engineering, they tried to keep a large band gap while reducing the number of
carriers. In (Bi1−xSbx)2Te3, the possibility was shown to tune the Fermi energy below
(above) the bulk conduction (valence) band edge by controlling the ratio of Bi and Sb.
Then by dielectric effect, quantum Hall plateaus were observed for x = 0.84 and x =
0.88 in the study made by [Yoshimi et al., 2015]. This study proved the feasibility of
charge compensation in ternary and quaternary topological insulators.

Importantly, introducing magnetism (or superconductivity) in a 3D topological
insulator can induce a non-trivial gap in the 2D surface-state band structure, which
leads to the emergence of new quantum phases, such as the QAH discussed in the
next chapter. The QAHE was indeed evidenced in diluted magnetic 3D TIs, such as
V-doped BST, although the magnetic gap remains rather small (dilution) and intrinsic
magnetic disorder limits the operating temperatures [Chang et al., 2013] [Chang et al.,
2015] [Grauer et al., 2015] [Peixoto et al., 2016]. More recently, a different strategy
was followed, by considering proximity effects in TI/magnet heterostructures in thin
films (as shown in figure 1.10) or intrinsinc magnetism in Van der Waals-coupled 2D
ferromagnets (such as MnBi2Te4) [Li et al., 2019a] [Otrokov et al., 2019] [Tan et al.,
2020].

As discussed in the next chapter, this research on the QAHE in 2D materials
has some connection with 3D Weyl semimetals, another topological phase recently
discovered, with spin-chiral Weyl quasiparticles that act as source or sink of Berry
curvature.

FIGURE 1.10: a, Individual 2D components that can be employed to construct the topolog-
ical magnet-based heterostructures and superlattices. b, QAH/axion insulator phase in
magnetic insulator/TI/magnetic insulator sandwiches. c, Majorana physics in supercon-
ductor/TI/magnetic insulator and superconductor/topological magnet heterostructures.
d, Weyl semimetal phase in topological magnet/normal insulator superlattices. Adapted

from [Chang, 2020]
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Chapter 2

TOPOLOGICAL SEMIMETALS

Following the discovery of topological insulators, the last decade has seen a large
increase of studies focusing on the topologically non-trivial states of electronic bands.
As discussed in the previous chapter, these topological properties are linked to the
spectral gap. However, a recent important development in this field has been the
theoretical prediction of a topological invariant describing the Fermi surface and
the observation of gapless metallic and semimetallic phases that are topologically
non-trivial [Matsuura et al., 2013].

This discovery has led the scientific community to predict and observe Dirac
and Weyl semimetals, materials for which the low quasiparticle excitation spectra
resemble that of the Dirac and Weyl fermions in high-energy physics and that have
yet never been observed in this field. These topological semimetals allow us to study
important concepts of high-energy physics in condensed-matter systems such as
massless fermions breaking parity symmetry, but they are also of interest for potential
applications. As explain later in this chapter, Weyl semimetals fermions possess a
spin chirality and it is possible to break the conservation law leading to a dominant
chirality [Adler, 1969] [Bell and Jackiw, 1969] . In that way, Weyl semimetals can
be used as chirality filters in chiraltronics [Grushin and Bardarson, 2017]. Another
proposal made by [Hills et al., 2017] was to use a multiple-layer Weyl structure as a
medium whose refractive index is negative, so as to focus diverging electrons beams
on an extremely small area. This medium could be used in STM measurements to
replace the tip, increasing the spatial resolution. Due to the rich variety of crystalline
and magnetic structures, topological semimetals are a new platform to discover
novel properties related to their band structure, such as the specific electromagnetic
response in non-magnetic Weyl semimetals (chiral anomaly) [Zyuzin and Burkov,
2012] or the large anomalous Hall effect in magnetic Weyl semimetals [Burkov, 2014].

In order to introduce this new concept, a simple toy model based on a stack of
thin 3D TIs to build a Weyl semimetal phase is reviewed [Burkov, 2015]. In a second
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part, the properties of Weyl semimetals are described and some emphasis is put on
WTe2 in the last part. After giving an overview of the state-of-the-art studies, the
motivations for this thesis are discussed.

2.1 Construction of Dirac and Weyl Semimetals

The discovery of graphene at the beginning of the 21th century lead the scientific
community and industrials to realize the potential of 2D materials for application in
electronics. It followed a strong interest for searching a material that could have the
properties of graphene but in three dimensions. For the realization of such properties,
a strong spin orbit coupling is required but generally, accidental degeneracies, which
can happen in the band structures can be lifted by perturbations. When time reversal
symmetry (TRS) and inversion symmetry (IS) holds, some fourfold degenerated
band crossing can be protected by the symmetry, leading to the formation of a Dirac
semimetals [Armitage et al., 2018]. The band structure is linear close to the Dirac
point. In such cases, the system can be described by the Dirac equation formulated
in 1928 [Dirac, 1928]. When either the time reversal symmetry or the inversion
symmetry is broken, two fold degenerate points which are protected by the topology
can emerge in the band structure. A derivation of the Dirac equation by Weyl in
the following year described a new kind of fermions that are therefore called Weyl
semimetals [Bradlyn et al., 2016]. As shown in figure 2.2, a Dirac semimetal has at
least one Dirac cone in its bulk band structure. In the case of a Weyl semimetal, the
band structure has at least two pairs of Weyl cones with opposite chiral spin textures,
and a topological charge is associated to each node, which describes its spin chirality.
As detailed later, these Weyl cones can be tilted and for a strong tilt, a new type of
Weyl semimetals with specific properties takes place. Such a new phase is called a
type II Weyl semimetal [Soluyanov et al., 2015]. This new phase can appear as an
intermediate state between two insulating phases of different topology.

FIGURE 2.1: a) Representation of an heterostructure made of topological insulator layers
intercalated with normal insulator layers; b) Phase diagram of the heterostructure for a

spin splitting m = 0 and m 6= 0. Adapted from [Burkov and Balents, 2011]
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Construction of a Dirac semimetal

We first recall a simple model to obtain a Weyl semimetal from a stack of a strong 3D TI
[Burkov and Balents, 2011]. More specifically, a heterostructure made of topological
insulator layers separated by normal insulator layers (NI) can be considered as
shown in figure 2.1 . This gives a one dimensionnal stack of 2D gapless states at each
interface TI/NI. These interface states are coupled together by tunneling and two
different matrix elements can be defined in the Hamiltonian, ∆S for tunnelling within
a TI slab and ∆N for tunneling through a normal insulator spacer.

Depending on the ratio ∆S
∆N

, this system can be described as either a 3D TI or
a normal insulator. By computing the index Z2 by the method of Fu and Kane[Fu
and Kane, 2007], Burkov and Balents have demonstrated that for ∆S < ∆N, the
heterostructure is a strong 3D TI while for ∆S > ∆N, this is a normal insulator, which
are rather intuitive results in the limits (∆S « ∆N) and (∆S » ∆N) indeed. Now
considering the transition point ∆S = ∆N, the gap closes and the heterostructures
becomes a Dirac semimetal if TRS and IS are not broken. The band crossing is 4-fold
degenerate but the Dirac cone is not stable resulting in a gap opening. For a Dirac
semimetal, it is however possible to obtain a stable metallic phase by adding another
spatial symmetry, so as to separate Dirac nodes in momentum space. A possible way
is to involve some uniaxial rotation symmetry, like in Cd3As2 [Wang et al., 2013], or
to consider non-symmorphic space groups[Young et al., 2012].

Construction of a Weyl semimetal

Any deviation from ∆S = ∆N leads to the annihilation of the Dirac node. To produce
a topologically stable phase with 3D Dirac or Weyl nodes, the nodes have to be
separated in momentum space. As already mentionned, either the TRS or the IS
must be broken in order to have a Weyl topological semimetal and we consider
now the case of TI layers doped with magnetic impurities (time reversal symmetry
breaking)[Burkov and Balents, 2011]. These magnetic impurities induce a spin
splitting of the surface states of magnitude m. Two important values of m define the
finite region of the phase diagram of this system (figure 2.1 b)) : m2

c1 = (∆S −∆N)
2

and m2
c2 = (∆S + ∆N)

2. For a small spin splitting m < mc1 , the system is a stack
of QAH insulators uncoupled to each other. Increasing the magnitude of the spin
splitting, the coupling between magnetically doped TI layers increases and the
system becomes gapless with the apparition of a Dirac cone for m = mc1. For m >
mc1, this Dirac cone splits into two Weyl nodes with opposite chiralities. When the
time reversal symmetry is broken and the inversion symmetry is present, there is
only one pair of Weyl nodes, at +k and −k, having an opposite spin chirality. This
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splitting increases while the magnitude of m increases. At a magnitude of mc2, the
two Weyl nodes reach the edges of the BZ and annihilate, which bring the system
into an insulating phase.

If the inversion symmetry is broken as in WTe2 for instance, the TRS converts a
Weyl node at +k into an associated Weyl node with same chirality at −k. Since the
net chirality must vanish, another pair of Weyl nodes exist with opposite chiralities
leading to a total number of Weyl nodes of four. More complicated models were
done for the case of a Weyl semimetal breaking the inversion symmetry [Murakami
and Kuga, 2008] [Halász and Balents, 2012] [Murakami et al., 2017]. In all cases, Weyl
nodes are topologically stable and cannot be removed without pair annihilation. The
chirality or equivalently, the topological charge of a Weyl node can be understood
as a source or sink of the Berry flux, named magnetic monopole or antimonopole
depending on the chirality [Jia et al., 2016]. Two Weyl nodes of different chirality are
connected to each other by Fermi arcs that appear at the surface of the materials and
have a Z2 invariant that ensures the topological protection. The next section will
describe the properties related to these two specificities of Weyl semimetals.

FIGURE 2.2: Schematic of different band structure in topological semimetal, from left to
right : Dirac Semimetal, Weyl type I and type II semimetal

Type I and type II Weyl Semimetal

By generalizing the Dirac equation, it was shown[Soluyanov et al., 2015] that Weyl
nodes can be tilted such that at a given energy, above or below the Weyl node, the
Fermi energy intersects both the electron and valence bands, so that the Fermi surface
is constituted by electron and hole pockets that touch each other at the Weyl nodes
(figure 2.2).
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Considering the most general k-linear Hamiltonian of a Weyl node :

H(k) = v · k +
3

∑
i,j

ki Aijσj (2.1)

where A is a 3 × 3 matrix and σ’s are the Pauli matrices. The Fermi surface for the
chemical potential µ can be obtained by solving the equations ε± = µ, where

ε± = v · k +
√

∑
i,j

ki[AAT]ijk j = T(k) + U(k) (2.2)

are the two eigenvalues of the Hamiltonian. T(k) and U(k) can be seen as the kinetic
and potential components of the energy spectrum. By squaring equation 2.2, the
Fermi surface can be described by the quadratic equation :

∑
i,j

ki([AAT]ij − vivj)k j + 2µv× k− µ2 = 0 (2.3)

Applying the classification of all possible quadric surfaces [Maxwell et al., 1953] to
equation 2.3, it was reported that there are only two possible types of Weyl points for
a Fermi energy at the Weyl node [Soluyanov et al., 2015]: type-I has a point-like Fermi
surface, and type-II has an open Fermi surface with a zero-gap electron and valence
bands structure. The latter results from the tilt of Weyl cones, as induced by the
linear term in momentum T(k) which breaks the Lorentz invariance of Weyl fermions
in quantum field theory. This was previously considered unimportant before the
work of Soluyanov lead to a refined classification of distinct Fermi surfaces. The
tilt of the Weyl cone leads to specific transport properties such as a chiral anomaly
associated with a transport response that depends on the direction of the electric field,
a modified anomalous Hall effect, and new quantum oscillations due to momentum
Klein tunneling [Soluyanov et al., 2015] [Menon and Basu, 2020] [O’Brien et al., 2016].

2.2 Transport properties of Topological Semimetals
This part reviews the specific transport properties of quasiparticles in Weyl semimet-
als. First, the identification of their topological nature is introduced. Second, their
bulk transport properties are reviewed, considering two aspects of the band structure:

• the spin-chiral texture of Weyl quasiparticles;

• the partial electron-hole charge compensation.
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2.2.1 Discovery and Fermi arcs
The initial attempts to search for Weyl materials were based on the fine tuning of
alloys composition or on the magnetic ordering to break TRS [Wan et al., 2011][Bul-
mash et al., 2014]. In 2015, the prediction of TaAs as a Weyl semimetal due to the lack
of inversion symmetry[Huang et al., 2015a] was soon followed by the experimental
observation of the specific Weyl band structure [Lv et al., 2015][Weng et al., 2015][Xu
et al., 2015].

As for the 3D topological insulators, ARPES was an important tool to unveil
the Fermi arcs that appear at the surface of Weyl semimetals as seen in figure 2.3.
These Fermi arcs have a crescent shape of two curves that meet at their end points.
These end points coincide with the projection of the Weyl nodes on the surface
and they are connected by two chiral edge states appearing on the surface band
structure. Apart from topological surface states, Weyl semimetals also have specific
bulk quasiparticles, which can result in a large transverse or longitudinal magneto-
resistance.

FIGURE 2.3: a) Representation of a Weyl semimetal with Fermi arcs on its surface connecting
projections of two Weyl nodes with opposite chirality. A Weyl node behaves as a magnetic
monopole (MMP) in momentum space and its chirality corresponds to the charge of the
MMP [Lv et al., 2015]; b) ARPES Fermi surface map of the crescent Fermi arcs measured

with incident photon energy of 90 eV. Adapted from [Xu et al., 2015]

2.2.2 Anomalous Hall Effect

Another manifestation of the non trivial topology of the band structure of mag-
netic Weyl semimetals, of interest for spintronics devices, is the very large intrinsic
Anomalous Hall Effect (AHE), induced by the maximized Berry curvature. This
effect requires both magnetic polarization and spin orbit coupling and leads to a
transverse voltage without any external magnetic field, contrary to the standard Hall
effect. In magnetic Weyl semimetals, the intrinsic contribution to the anomalous Hall
effect is directly related to the separation of the two Weyl nodes and the anomalous
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Hall conductivity is given by [Armitage et al., 2018]:

σxy =
e2

πh
k0 (2.4)

where k0 depends on the magnetization of the material and is related to the distance
q separating the two Weyl nodes to the center of the Brillouin Zone in momentum
space by the expression :

q = π/d± k0 (2.5)

k0 =
1
d

arccos

(
∆2

S + ∆2
N −m2

2∆S∆N

)
(2.6)

∆S, ∆N, d and m being the parameters related to the toy model for a Weyl semimetal
with time reversal invariant described above in the section 2.1. Some prediction has
been made that a strong AHE could appear in a non collinear antiferromagnetic Weyl
semimetal [Burkov, 2014]. Antiferromagnets offer many advantages compared to
ferromagnets [Sürgers, 2018]. They do not have stray magnetic fields, could reduce
the switching currents and improve a lot the speed due to faster spin dynamics
related to their shorter spin-lattice relaxation time compare to ferromagnets. As
an example shown in figure 2.4, Mn3Ge is a non-collinear Weyl antiferromagnet
[Kiyohara et al., 2016] where an anomalous Hall conductivity was measured with σxz

= 80 Ω−1cm−1 at room temperature and 380 Ω−1cm−1 at 5 K.

Considering the case of a ferromagnetic Weyl semimetal, a giant AHE was
indeed reported for a large magnetization in Heusler compounds [Liu et al., 2018].

FIGURE 2.4: Temperature dependence of the anomalous Hall effect under zero field in
Mn3Ge after field-cooling in a magnetic field BFC = 7 T from 400 K down to 5 K. Adapted

from [Kiyohara et al., 2016]



40 Chapter 2. Topological Semimetals

In Co3Sn2S2, the anomalous Hall conductivity reaches 1130 Ω−1cm−1. An important
parameter to consider is the anomalous Hall angle, which is the ratio of the anoma-
lous Hall conductivity to the longitudinal conductivity. In the case of Co3Sn2S2, the
anomalous Hall angle reaches up to 20% at 100 K with an anomalous Hall conductiv-
ity around 1000 Ω−1cm−1.

As shown on the figure 2.5, Mn3Ge shows the strongest anomalous Hall con-
ductivity for an antiferromagnet. Similarly, for ferromagnetic materials, Co3Sn2S2 has
the largest anomalous Hall angle ever measured. This point out that ferromagnetic
and antiferromagnetic Weyl semimetals could be important for applications if their
robust properties can be evidenced above room temperature. In all cases, these large
responses are a direct signature of the dominant intrinsic contribution to the AHE
and the maximized Berry curvature of Weyl quasiparticles.

FIGURE 2.5: Comparison of the anomalous Hall angle as a function of the anomalous Hall
conductivity in different materials, (f) is for measurements made on thin-film materials.

The dashed line is a guide to the eye. Adapted from [Liu et al., 2018]

2.2.3 Extremely Large Magnetoresistance

In some non-magnetic Weyl semimetals, the longitudinal resistance can be strongly
modified by a perpendicular magnetic field, and an extremely large MR was re-
ported, as found for NbP [Shekhar et al., 2015] (see figure 2.6). For this material,
the perpendicular MR can reach up to 1 million percent at B = 30 T and at very low
temperature without any indication of saturation. The origin of this extremely large
magnetoresistance is the electron-hole compensation also observed in other Weyl
semimetals including WTe2 [Ali et al., 2014] [Shekhar et al., 2015] [Gao et al., 2017].

The simplest way to describe the magnetoresistance of a charge compensated
semimetal is to consider first a single electron band and a single hole band. The
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FIGURE 2.6: Perpendicular magnetoresistance of NbP measured at different temperatures
up to 9 T. The inset shows the magnetoresistance at higher temperatures. Adapted from

[Shekhar et al., 2015].

following equations describe the magnetoresistance for this 2-band model [Chambers,
1990] :

ρxx =
1
e
(neµe + nhµh) + (neµeµ2

h + nhµhµ2
e)B2

(neµe + nhµh)2 + µ2
eµ2

h(nh − ne)2B2

ρxy =
B
e

(nhµ2
h − neµ2

e) + µ2
eµ2

h(nh − ne)B2

(neµe + nhµh)2 + µ2
eµ2

h(nh − ne)2B2

(2.7)

Considering the case of charge compensation (nh = ne), equations 2.7 show that
the MR is quadratic in B, without saturation, and that the Hall effect becomes linear
in B. The amplitude of the longitudinal MR is maximized at the charge compensation,
as confirmed by experiments [Fatemi et al., 2017] [Wang et al., 2019]. Nevertheless,
experiments also reported some deviation from the quadratic law [Thoutam et al.,
2015] [Wang et al., 2016b] [Fatemi et al., 2017] [Wang et al., 2019], which cannot be
explained in a simple two-band model. We note that a large magnetoresistance was
also reported in topological semimetals that were not at the compensation so that the
charge compensation cannot be the unique source of very large magnetoresistance in
such materials [Liang et al., 2015].

As discussed in this thesis, to better understand the XMR, it is important to
consider the influence of both disorder (mobilities) and multi-band transport (more
than two bands). This will be detailed in the study of WTe2 nanostructures presented
in chapter 4. We also note here that, in the complex band structure of Weyl semimetals,
Weyl nodes are usually not located at the energy for which the charge compensation
is realized.
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2.2.4 Chiral Anomaly
Since Weyl cones emerge by pairs of opposite spin chirality, the overall net chirality
vanishes. However, if an electromagnetic field is applied with E parallel to B, the
number of charge of a given chirality is not conserved anymore contrary to the
total charge : Weyl nodes act as source and sink of electrons leading to a valley
polarization. This is the so-called chiral anomaly [Nielsen and Ninomiya, 1983] in
which the finite electric field creates a non-equilibrium charge flow between pairs
of Weyl cones of opposite chirality if it is aligned along the magnetic field. Hence,
charges are pumped from one Weyl cone to another leading to different effective
chemical potentials as shown in figure 2.7. In a steady state, this charge pumping
process is damped by inter-Weyl cone scattering with an inter-cone relaxation time
τint [Son and Spivak, 2013], thus limiting the amplitude of the chiral anomaly.

In this case, a difference in the chemical potential of paired cones will appear
leading to a chiral current : j ∝ E× Bτint. [Zyuzin and Burkov, 2012] [Son and Spivak,
2013] Therefore when a magnetic field is applied along the current in a WSM, this
additionnal chiral current leads to a negative magnetoresistance as observed in TaAs
in figure 2.7. An important point to notice is that the chiral charge pumping does not
vanish if the current and the magnetic field are misaligned. The observation of the
negative MR becomes difficult when the standard positive orbital MR component
becomes more important than that related to the chiral anomaly. Therefore, if a
negative MR is rapidly becoming positive with the field orientation, this could
suggest that it rather originates from another mechanism : the current jetting.

FIGURE 2.7: a) Representation of two Weyl nodes of different chirality separated in mo-
mentum space. Applying an electric and magnetic field, parallel to each other, charge
carrier are pumped from one cone to the other leading to unbalanced chemical potential
µL 6= µR. Adapted from [Behrends et al., 2016] ; b) Observation of the negative longitudinal

magnetoresistance in TaAs. Adapted from [Huang et al., 2015b].
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In that case, materials with a large anisotropic resistance are considered, in
which the current flows along the high-conductance direction. If the current is not
injected homogeneously (as in point contact measurements or in case of irregular
sample shapes), the distribution of the current inside the sample is not homogeneous.
The equipotential lines are highly distorted and thus, the current forms jets [Pippard,
1989] . In DSM and WSM and in the case of the search for the chiral anomaly, this
effect produces an intrinsic conductivity anisotropy which produces inhomogeneous
current distributions that distort the longitudinal magnetoresistance profile. This
implies that a negative magnetoresistance related to the current jetting can appear in
these material for an electric field and magnetic field parallel to each other as shown
by two groups[Liang et al., 2018][dos Reis et al., 2016].

In type II WSM, given the strongly tilted Weyl cones, two cases have to be
considered [Sharma et al., 2017]. The chiral anomaly becomes anisotropic in the
quantum limit, where τωc � 1, with τ the transport relaxation time and ωc the cy-
clotron frequency. In the classical limit, the negative longitudinal magnetoresistance
becomes isotropic similar to type I Weyl semimetals. This property is discussed in
the next chapter, focusing on the anisotropic chiral anomaly in WTe2.

2.3 WTe2 : a type II Weyl semimetal
WTe2 is a transition metal dichalchogenide (TMDC). It belongs to a family of layered
materials MX2 (with M = W or Mo, X = S, Se, Te). Like MoTe2, WTe2 is predicted to be
a non-centrosymmetric Weyl semimetal of type II with 8 Weyl nodes [Soluyanov et al.,
2015]. Pairs of tilted Weyl cones are located slightly above the Fermi level energy,
with nodes at 52 and 58 meV, all four pairs being related to each other by crystal
symmetries. Due to the small Van der Waals interaction between the layers, this
material can be exfoliated. In this section, the band structure of WTe2 is first described,
in connection to the observation of an extremely large magnetoresistance. Then the
signatures reported so far of a type II Weyl semimetal in transport measurements are
reviewed.

2.3.1 Band structure

As revealed by ARPES measurements at room temperature [Pletikosić et al., 2014]
[Jiang et al., 2015] [Das et al., 2019], WTe2 has large electron pockets in the Brillouin
zone. Upon cooldown, a Lifshitz transition, which corresponds to a change of the
Fermi surface topology, is observed at T ≈ 150 K without any structural transition
[Wu et al., 2015]. This transition is caused by a shift of the chemical potential
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that leads to the appearance of hole pockets below this temperature. Between 150
K and 70 K, the size of these electron pockets is reduced and and that of hole
pockets grows. At lower temperature, the magnetoresistance varies as a power-law
of the applied magnetic field, with the so-called Kohler’s exponent very close to
two (quadratic behavior) [Zhao et al., 2015]. This indicates that the extremely large
magnetoresistance is not due to a metal-insulator transition but rather to some charge
compensation mechanism. The Kohler’s scaling breaks between 70 and 140 K which
is coherent with the fact that electrons dominate at higher temperatures.

From a structural point of view, the band structure change that takes place at
about T ≈ 150 K is related to the reduction of the crystal lattice parameter upon
cooldown. As a consequence, it was shown by density functional theory calculations
that Weyl nodes appear below around 70 K and, for a given pair, the distance between
Weyl nodes of opposite chirality in momentum space increases as the temperature
is lowered [Lv et al., 2017]. At lower temperatures (below about 50 K), a significant
reduction of the electron pockets occurs which leads to a nearly perfect compensation
between electron and hole pockets, as reported in transport measurement studies
[Ali et al., 2014] [Luo et al., 2015].

FIGURE 2.8: a) Band dispersion of WTe2 along the X-Γ-X direction which is the direction of
Te-W-Te chains measured by high resolution ARPES. At both sides of the Brillouin zone,
electrons and holes pockets are observed as point out by the arrows. Adapted from [Das
et al., 2019] b) Simulated Fermi surface of WTe2 showing the electron (yellow) and hole
(blue) pockets along X-Γ-X. Adapted from [Ali et al., 2014] c) XMR with the current along
the a-axis (W-W chains) as a function of the magnetic field along the c-axis of the WTe2

structure at different temperature. Adapted from [Ali et al., 2014].
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FIGURE 2.9: a) The fitted exponent of the MR power law for B in the range of [0.4, 1.5] T as
a function of gate voltage. The limits were chosen to avoid the high relative noise at low
fields (B < 0.2 T) and onset of saturation at high field. Adapted from [Fatemi et al., 2017]. b)
MR versus B with log-log plot at different gate voltages. Adapted from Supplementary

[Wang et al., 2019]

As a consequence, like other Weyl semimetals, WTe2 shows an anisotropic and
extremely large magnetoresistance (for a magnetic field applied along the out-of-
plane direction) which is explained by the electron-hole compensation [Ali et al.,
2014] [Luo et al., 2015]. Although WTe2 has two independent pairs of electrons
pockets and two independent pairs of holes pockets, the two-band model already
mentioned in Sec. 2.2.3 is a reasonable approximation to describe the system at first.
For a perpendicular induction of 9 T, the maximum magnetoresistance reported in
this material is as high as 175 000 % at 2 K [Ali et al., 2014]. However, as already
mentionned, the Koehler’s exponent is systematically found smaller than two. This
subquadratic behavior was reported in several studies without any explanation about
its origin [Thoutam et al., 2015] [Wang et al., 2016b] [Fatemi et al., 2017] [Wang et al.,
2019]. Using an electric gate, the power law exponent was analysed with respect to
the position of the Fermi level energy [Fatemi et al., 2017] [Wang et al., 2019]. It was
shown that the subquadratic origin is not coming from a shift of the ratio ne/nh as
shown in figure 2.9. A detailed study of the subquadratic MR behavior as well as
the relation between the nature of the disorder and the MR will be the subject of the
chapter 4.

As for the rest of this chapter, we will focus on the different features observed
in the WTe2 magnetoresistance depending on the crystal structure axis along which
the electric and magnetic fields are applied. Experimentally, the out-of-plane XMR
makes challenging the measurement and observation of other features and some
special care regarding the orientation between the crystal and the magnetic field has
to be taken.
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2.3.2 Indication of Weyl orbits due to the Fermi arcs

WTe2 was the first material suggested to be a type II Weyl semimetal [Soluyanov
et al., 2015]. However, due to the proximity of Weyl nodes of WTe2 in momentum
space, ARPES measurements do not have the resolution to separate them [Wang
et al., 2016a].

A study made by [Potter et al., 2014] showed that specific magnetic quantum
oscillations should arise due to the Fermi Arcs in thin films of WSM. Considering an
electron of momentum kz moving along the Fermi arcs from a chiral node to another,
it can then propagate within the bulk, from one surface to another, via a gapless chiral
Landau mode, and reconnect to the initial surface in a similar way (propagation
along the opposite surface Fermi arc and through a bulk Landau mode). This defines
a loop, as shown in figure 2.10, which is different from conventional closed cyclotron
orbits in real space. As for Shubnikov-de Haas oscillations, if a magnetic field is
applied, quantum interference leads to the formation of quantized energy levels.
For a constructive interference, a Landau level takes place. When a Landau level
crosses the Fermi level, a peak occurs in the density of states leading to 1/B periodic
oscillations as for SdHO related to bulk cyclotron orbits. Such oscillations related to
these Fermi arcs based orbitals, called Weyl orbits, can be evidenced by studying the

FIGURE 2.10: a) Fermi-arc-induced Weyl orbit in a thin WTe2 nanoribbon, in which the
magnetic field is along the z-axis (or c-) axis. This Weyl orbit is formed by connecting two
bulk paths along the z-direction through the zeroth chiral bulk Landau level (LL) and two
Fermi arcs in the momentum space, on both the top and bottom surfaces. The trajectory of
the Weyl orbit in real space is in the xz plane, and the Weyl orbit is plotted in a combination
of real space and momentum space. b) Conventional quantum oscillation orbit. Adapted

from [Li et al., 2017b]
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variation of the 1/B periodic oscillations amplitude while reducing the doping or
the size of the system [Potter et al., 2014]. If the Fermi energy is pinned at the Weyl
nodes, only oscillations from the Weyl orbit can appear. Upon doping, the surface
and the bulk oscillations are both present. In that case, one can roughly compare the
ratio of bulk-to-surface oscillations amplitudes to the ratio of bulk to surface density
of states.

In the paper of [Li et al., 2017b], the authors claimed to have observed the Weyl
orbit in WTe2 proving hence the existence of Weyl nodes in the material. Indeed, by
increasing the thickness, the amplitude of the Weyl orbit oscillations decreases as
compared to that of Shubnikov-de Haas oscillations due to an electron pocket. The

FIGURE 2.11: a) Evolution of the Weyl orbit frequency as a function of the thickness of
WTe2. Adapted from [Li et al., 2017b] b) MR as a function of the magnetic field B along the
different crystalline axis with a current along the b direction. Observation of a negative
longitudinal MR when the electric field E and the magnetic field B are parallel to the b-axis.
Adapted from [Lv et al., 2017] c) Relative resistance as a function of B while B and E are
parallel to the b-axis for different potential on the dielectric gate. This measurement shows
the tunability of this effect while the chemical potential is shifted with respect to the Weyl

node. Adapted from [Wang et al., 2016a]
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authors also reported on the presence of a uniaxial negative longitudinal magnetore-
sistance NLMR with parallel electric and magnetic fields, oriented along the b-axis.
This anisotropy of the chiral anomaly, already reported by [Wang et al., 2016a], has
been suggested to be a strong evidence of the type-II nature of these Weyl semimetals.

2.3.3 Type-II nature

In a type I WSM, the chiral anomaly is present in any direction as long as the electric
field and the magnetic field are parallel to each other [Zyuzin and Burkov, 2012]. In a
type II WSM, the chiral anomaly response is not isotropic anymore so that, in order to
see the NLMR, the magnetic field has to be applied in the direction along which the
kinetic energy of the fermions is larger than their potential energy [Soluyanov et al.,
2015]. Therefore, the magnetic field and the electric field have to be applied along
the tilted-cone axis. In WTe2, the NLMR was observed up to 30 K when the magnetic
and electric field were applied along the b-axis, whereas a positive MR was found
when applied along the a axis [Wang et al., 2016a][Li et al., 2017b]. The longitudinal
magnetoresistance can be tuned from negative to positive by electrostatic gate effect
as shown in figure 2.11 b). A dependence of this effect as a function of the thickness
of the sample further revealed that the NLMR disappeared for samples thicker than
40 nm, probably due to a shift of the chemical potential away from the Weyl nodes
or due to a change of the band structure. Indeed, a study of the Shubnikov-de
Haas oscillations for different sample thicknesses showed that the electron bands are
pushed to higher energies while the hole bands are pushed to lower energies, for
samples in the range of 40 to 10 nm, as compared to the bulk band structure [Xiang
et al., 2018]. For samples thinner than 10 nm, the NLMR disappears. In this case,
the possibility that the band crossing vanishes was related to a gradual band gap
opening [Li et al., 2017b].

However, it has been predicted and observed that an isotropic NLMR can occur,
due to the chiral anomaly in type II Weyl semimetal [Sharma et al., 2017][Lv et al.,
2017]. Indeed, two cases have to be considered, depending on the transport regime.
The different regimes are defined by the product of the cyclotron frequency ωc and
the relaxation time τ, with either ωcτ � 1, (quantum regime) [Argyres and Adams,
1956] or ωcτ � 1 (classical regime). In WTe2, it has been found that in the quantum
regime, the NLMR induced by the chiral anomaly is only present with the magnetic
field along the b axis [Wang et al., 2016a] contrary to the classical regime where this
effect does not depend on the magnetic field axis. Indeed, the study of [Lv et al.,
2017] revealed an isotropic chiral anomaly in the classical regime with single crystals
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of WTe1.98 grown by CVT. Yet, the measured sample seems to be in the cross-over
regime, ωcτ = 0.51.

We remark that an important issue for WTe2, overlooked in the literature, is
that the Fermi energy is well below the Weyl nodes. The XMR measured for an
out-of-plane magnetic field (along the c-axis) is attributed to a charge compensation,
a regime that sets the position of the Fermi energy at more than 50 meV below the
Weyl nodes. This casts doubts on the exact nature of the NLMR observed and it
should discard the mechanism based on the chiral anomaly. In the experiments of Lv
et al, the authors claims that Te vacancies act as donors. Hence the shift of the Fermi
level towards the Weyl nodes [Lv et al., 2017]. Nevertheless, some questions remain,
due to the large perpendicular magnetoresistance observed in this material. On the
one hand, the study by Li et al. [Li et al., 2017b] showed an anisotropic negative
MR in exfoliated nanostructures, which also exhibit a large XMR, as expected at
the compensation for very disordered structures. On the other hand, the studies
made by the group of Zhang [Zhang et al., 2017] and the group of Wang [Wang et al.,
2016a] with nanostructures grown by CVD or obtained by exfoliation respectively,
did not show any high perpendicular magnetoresistance. Despite the fact that no
information about the position of the Fermi level energy was given in these works,
a large deviation from the charge compensation is very unlikely. Even if a large
amount of Te vacancies could be invoked in these studies, the interpretation of the
negative MR in terms of the chiral anomaly mechanism remains questionable. Our
results clearly contradict this conclusion.

In Chapter 5, we report on an isotropic NLMR in WTe2 that can be ascribed to a
Lifshitz transition at very low temperature as confirmed by numerical simulations.
Interestingly, our results can be interpreted in the framework of Weyl physics far
from the Weyl nodes.

2.3.4 Planar Hall effect

In 2.3.3, the negative anisotropic MR was discussed in terms of the chiral anomaly. If
the anisotropy in the longitudinal resistivity is related to the chiral anomaly, it was
predicted that it should induce a finite planar-Hall effect [Nandy et al., 2017].

The planar Hall effect was first observed in ferromagnets, for which the Hall
resistance was found to depend on the in-plane magnetic field, being directly related
to the anisotropic magneto-resistance [Ky, 1968]. The Hall resistance becomes larger
when the current flows parallel to the magnetization vector than when it flows
perpendicular to it. In a non-magnetic Weyl system, there is no magnetization vector
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FIGURE 2.12: Comparison of the Planar Hall effect in a) Cd3As2 (Dirac semimetal) in a
structure of 600 nm (Adapted from [Li et al., 2018]) and in b) WTe2 with a current in the

b-axis direction and a magnetic field of 14 T (Adapted from [Li et al., 2019b]).

and the planar Hall effect is a consequence of the finite Berry curvature and could
be related to the chiral anomaly [Nandy et al., 2017] [Li et al., 2019b]. As for the
NLMR, this effect is different depending on the type of Weyl semimetal considered.
As for MoTe2 [Liang et al., 2019], studies in WTe2 have shown that a strong orbital
magnetoresistance (OMR) is present in the material, possibly giving some difficulties
to clearly evidence the non-trivial origin of the planar Hall effect of this material[Li
et al., 2019b]. Another difficulty is related to the very small amplitude of the effect,
as compared to other semimetals, as shown for Cd3As2 in figure 2.12. Nevertheless,
Li et al. claimed to have measured the signature of an anisotropic planar Hall effect
that could not be only explained by the OMR effect but could be attributed to the
chiral anomaly in type II Weyl semimetal of WTe2.

As discussed in this chapter, experimental studies of the low-field magneto-
transport properties of WTe2 nanostructures are rather controversial. In some cases,
it remains unclear whether these properties are related to the non-trivial topology of
the band structure or not. This calls for a better understanding of charge transport for
a Fermi energy close to the compensation regime, taking disorder and the multi-band
nature of the band structure into account. In particular, we will show in Chapter 5
that high-energy Weyl quasiparticles (far below the Weyl nodes) contribute to an
isotropic negative MR at low field and very low temperature, different from the
mechanism related to the chiral anomaly for low-energy Weyl fermions.
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Chapter 3

CRYSTAL GROWTH AND EXPERIMENTAL TECHNIQUES

A major breakthrough for the investigation of charge transport properties has been
the discovery of the liquefaction of 4He by Kamerling Ohnes in 1908, which gave the
possibility to study the groundstate and the low excitation regime of materials at low
temperatures. During a cool down to liquid He temperature, the resistivity of metals
decreases drastically to very small values. To keep a good signal-to-noise ratio at low
temperature, the voltage across the sample needs to be maximized. To this aim, it is
possible either to increase the current or to increase the resistance by increasing the
geometric aspect ratio (nanofabrication) and/or by reducing the sample thickness.
In particular, an important step toward the fabrication of high quality ultra-thin
nanostructures was the discovery of graphene by Novoselov and Geim in 2004
and their development of the mechanical exfoliation method, a technique that is
now applied to a wide class of Van der Waals materials. In addition to this top-
down technique, the bottom-up growth of high-quality thin films and nanostructures
has been considerably developed, with different growth methods (Molecular beam
epitaxy, chemical vapor deposition, vapor transport, etc.) that allows for some
comparative studies of a given material with different carrier densities or mobilities.
In this work, two methods were used to obtain WTe2 nanostructures, either exfoliated
from a large single crystal or grown by chemical vapor transport, with point defects
only and different degrees of disorder.

In the first section of this chapter, the crystal structure of WTe2 is briefly de-
scribed, and the two different methods are presented. In order to obtain thin nanos-
tructures, two strategies were followed. First, a bottom-up approach was achieved by
the direct growth of WTe2 nanosheets on an Yttria-Stabilized-Zirconia (YSZ) substrate.
Second a top-down approach consisting in the mechanical exfoliation of a large single
crystal obtained by a flux-growth method was realized, and nanostructures were
transfered onto a Si/SiO2 substrate. A comparison of the transport properties of
nanostructures obtained by these two different methods is given in Chapter 4. In the
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next section, the nanofabrication process is described and the different steps of fabri-
cation for each type of nanostructures are presented. In the last section, the principle
of operation of a 3He-4He dilution refrigerator is explained and our measurement
setup for low-noise electrical measurements is presented.

3.1 Growth of WTe2

3.1.1 Crystal structure

WTe2 is a transition metal dichalchogenide (TMDC), with a 2D base unit MX2 where
M is a transition metal (W, Mo) and X is a chalcogen atom (Te, Se, S). This family
of compounds is polytypic and the materials can be crystallized in different struc-
tures 1H, 1T, 1T’ and 1Td as shown in figure 3.1 a) [Qian et al., 2014] (1T’ and 1Td

are different only in their 3D representation). The most-studied structure up to
now is the 1H structure which is a stack of three planes of 2D hexagonally packed
atoms, X-M-X in the space group P6m2. In the 1T structure this three planes form a
rhombohedral stacking, space group P3m2. The 1T structure for the TMDCs MX2 is
unstable and undergoes a lattice distortion in the x direction leading to the 1T’ non-
centrosymmetric structure consisting of 1D zigzag chains along the y direction with
space group P2m/1. 1T’ and 1Td appear to be different from a stacking point of view,

FIGURE 3.1: a) Atomistic structures of transition metal dichalcogenides MX2. M stands for
(W, Mo) and X stands for (Te, Se, S). (A) 1H-MX2 with P6m2 space group. (B) 1T-MX2 with
P3m2 space group. (C) 1T’-MX2, distorted 1T-MX2, where the distorted M atoms form
1D zigzag chains indicated by the dashed blue line. The 2D unit cell is indicated by red
rectangles. Adapted from [Qian et al., 2014] b) Non-centrosymmetric crystal structure of
WTe2 (group 31 : Pmn21) showing a cross section of the 2D planes, with zigzag chains of
W atoms (red) surrounded by Te chalcogen atoms (yellow). Between the two figures, x

corresponds to the a-axis, y to the b-axis and z to the c-axis.
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1T’ being monoclinic while 1Td is orthorombic with space group Pmn21. This latter
structure is that we have interest in for WTe2 in this work. For this crystal structure,
WTe2 exhibits type II Weyl nodes that are not present in the other structures.

WTe2 has a base unit layer made of a plane of W metal atoms with covalent
bonds to two surrounding planes of Te chalcogen atoms. This tungsten dichal-
chogenide unit block stacks with weak Van-der Waals bonds along the c-axis, thus
giving the possibility to thin a bulk layered crystal down to the monolayer. The
zig-zag distortion of the W-W chains along the a-axis of the orthorombic unit cell
makes the compound structurally one-dimensional and, as explained in subsection
3.1.2, gives a needle-shape to the bulk single crystals.

3.1.2 Chemical Vapor Transport Growth

Growth Principle

Chemical vapour transport (CVT) is a process where a condensed phase also called
reactant, undergoes a sublimation process in a high-temperature zone, and then
propagates to a lower-temperature area (sometimes in presence of a transport agent)
where a deposition process results in the formation of crystals. The set-up consists of
a two-zone furnace (source T2 and sink T1, T2 > T1), the reactant and transport agent
being sealed in a quartz ampoule. The various parameters that must be optimized for
a successful CVT are the growth temperature, the mass of materials in the source, the
choice of the transport agent, the position of the wafer and the growth time. Transport
is governed by two processes : convection and diffusion. The optimization of the
growth parameter for each chemical system is crucial to get the optimal geometry
(size and thickness of the structures) and density of structures.

FIGURE 3.2: Optical image of a YSZ substrate after CVT growth showing nanosheets
(orange arrows) and clusters (green arrows) of WTe2 randomly distributed on its surface
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Nanostructures of WTe2 were prepared by Felix Hansen in the group of Silke
Hampel at the IFW Dresden. Some results are briefly reviewed below, and more
details can be found in [Hansen et al., 2020] or will be published in the PhD thesis of
Felix Hansen.

For the chemical vapor transport growth of WTe2, all chemicals were purchased
from Alfa Aesar (USA) with purities > 99.9%. The tungsten powder was reduced in
a hydrogen stream for 24 h before using it, so as to reduce surface oxidation, and
then stored in a glovebox under Argon atmosphere. To avoid any contamination
and oxidation, all preparation steps are performed in an Argon-atmosphere glove
box. The main transport agent is TeBr2 that comes from the decomposition of TeBr4.
W is added as a metal powder and some metal powder of Te is added, in order to
reach a final stoichiometric composition, which is 1:2:0.16 (W:Te:Br). Mixed powders
are inserted into a two-chamber silica ampoule. The Yttrium-stabilized Zirconia
substrates (CRYSTALTECH GmbH, 3 × 5 mm2) are placed in the tube, which is
pumped down to 10−3 mbar and sealed. We note here that the growth onto a Si/SiO2

wafer was not successful. The closed silica ampoules were then heated in a two-zone
furnace and placed within a temperature-gradient zone, between 675°C (min. T1)
and 725°C (max. T2), during a reaction time t = 10 h. After the growth, the ampoules
were quenched to room temperature starting from the source side to avoid further
deposition on the substrate, and they were finally opened in the glove box. Details
on the growth by CVT of our samples can be found in the article [Hansen et al., 2020].
On the YSZ substrates, isolated nanosheets coexist with some clusters (dendrites) of
WTe2 as shown on figure 3.2.

Characterization of nanosheets

To confirm the crystal stoichiometry, the composition was first measured by energy-
dispersive X-ray (EDX) as shown on figure 3.3. The EDX were performed using a
"FEI Nova NanoSEM" (FEI, Japan) scanning electron microscope (back scattering
electron detector; 30 kV) with an attached "AMETEK Quanta 200/400" (AMETEK,
USA) EDX (30 kV) unit and the software "EDXGenesis". This analysis was made on a
thick cluster in order not to detect peak from the YSZ substrate, the nanostructures
being too thin otherwise. From the indexation of the peaks of W and Te with their
respective intensities, the software calculates the composition of the structure, finding
34% of W and 66% of Te. A comparison of the nanosheet with the cluster was made
by using polarized Raman spectroscopy with a "T64000 Spectrometer" (Horiba Jobin
Yvon, USA). The laser used in the Raman device was a linear polarized "Torus Laser"
(λ = 532 nm, P = 3 mW, spot size ≈ 1µm2). The polarization of the laser was turned
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FIGURE 3.3: EDX measurement (30 kV) of a bulky crystal cluster showing the composition
expected for WTe2. Adapted from [Hansen et al., 2020]

in 15° steps during the measurement to measure both structures. The measurement
and comparison made on the nanostructure and the cluster indicated in figure 3.4 a),
show that the average measurement over all polarizing angles of WTe2 nanocrystal
is similar to the measurement of the cluster and confirms therefore the WTe2 crystal
stochiometry of the nanosheet.

The Raman spectra also confirms the crystallinity of the WTe2 nanosheet. In
the case of Raman signal collected in backscattered geometry and if the incident
light is perpendicular to the ab plane, only A1 and A2 symmetry modes are active

FIGURE 3.4: a) Comparison of Raman spectra measured on a bulk crystal and a nanosheet,
b) Raman spectra of a nanosheet as a function of the frequency for different polarizing

angle. Adapted from [Hansen et al., 2020]
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FIGURE 3.5: a) High resolution TEM image taken at the edge of a nanoflake, revealing the
atomic crystalline structure; b) zoom-in of the region marked by a red square in a) with
lattice planes identified by red arrows and assigned to the Miller-indices of 1Td-WTe2; c)
Fourier transform of b) showing reflections corresponding to the indexed lattice planes.

Adapted from [Hansen et al., 2020]

in Raman spectra of WTe2 single crystal [Kong et al., 2015]. Moreover, the different
Raman tensors of A1 and A2 leads to a different geometry of the polarization plane
of the incident light and detected light, at which these modes can be best observed.
Thus, A1 and A2 modes are actives for certain angles of the laser polarization plane
in single crystal, which will not be the case for not well-ordered or polycrystalline
sample. As shown on figure 3.4 b, the nanostructure is showing the mode A1 and A2
for two different angles of polarization, confirming the single crystallinity of the flake.
Last but not least, to verify and confirm the orthorhombic crystal structure (space
group Pmn21) of WTe2, aberration-corrected high-resolution transmission electron
microscopy (HR-TEM) was also performed with selected area electron diffraction
(SAED) as shown on figure 3.5.

3.1.3 Flux Growth

Growth Principle

Bulk single crystals of WTe2 were grown via the self-flux method [Tachibana, 2017].
A flux, also called a solvent, is used to dissolve a solute in a solution. The sealed
crucible where the solute can be found, is placed into an electric resistance furnace.
The crucible is kept at very high temperature for a moderate time, during which the
content melts completely and becomes a uniform solution. The temperature is then
lowered at a certain rate per hour. The solute becomes less soluble as the temperature
decreases, eventually reaching a point of supersaturation, a condition where the
concentration of the solute exceeds the solubility of the solution. Then, a number
of microscopic nuclei of the material begin to form in the solution. With a further
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decrease in temperature, additional solute particles are attached to the nuclei, layer
upon layer, in an orderly array, eventually growing into visible crystals. After the
desired temperature is reached, the furnace is shut off and the crucible is cooled to
room temperature in a fast quench. Once the crucible is removed from the furnace,
the solidified flux can be dissolved in hot dilute nitric acid for several days or, instead,
quickly removed when the hot flux remains liquid.

Single-crystalline WTe2 were grown by Grigory Shipunov at the IFW Dresden,
in the group of Saicharan Aswartham. More details on the crystal growth and
characterization of these macrocrystals will be published in the PhD thesis of Grigory
Shipunov. To prepare the solute of WTe2, 0.5 g of tungsten powder (Alfa Aesar,
99.95%, 200+325-mesh) were mixed with 10 g of tellurium powder (Alfa Aesar,
99.999%, 18-mesh), grinded to homogeneity and put into a canfield crucible set made
of alumina. The crucible was in turn sealed in quartz ampoule under vacuum. The
setup was heated up to 1000°C, after which it was cooled to 800°C during 160 hours.
Afterwards, it was taken out of the furnace and quickly centrifuged to separate the
liquid Te flux from the WTe2 crystals. As shown in figure 3.6, needle-shape large
single crystals were obtained, with clearly visible facets.

Characterization of bulk single crystal

These crystals were characterized by energy-dispersive X-ray spectroscopy for the
compositional analysis and by X-ray diffraction for the structural analysis. As an
example, the crystal shown in the right panel of figure 3.6 has a uniform composition
(34% W, 66% Te), as obtained from EDX spectra, all over its homogenous surface.

FIGURE 3.6: Left panel : SEM image of a WTe2 cleaved macrocrystal from Te-flux growth,
right panel : EDX spectrum of a WTe2 cleaved macrocrystal (in inset, scale bar 200 µm)

showing the good stochiometry for WTe2.
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Further, the structural characterization was performed by single-crystal X-ray diffrac-
tometry, which confirmed the crystal structure of WTe2, as reported in the NIST
Inorganic Crystal Structure Database ICSD No. 73323, [Mar et al., 1992]).

3.2 Nanostructures of WTe2

In this work, three devices were investigated in detail. Two nanostructures were
obtained by CVT with a thicknesses of 50 nm (sample S1) and 70 nm (sample S2,
bottom left flake of figure 3.9). A third one was prepared by mechanical exfoliation,
with a thickness of 100 nm and having a hall-bar shape (sample S3, figure 3.8).
Besides, two other samples were also studied prior to this work : another exfoliated
flake, with a thickness of 70 nm and an aspect ratio close to one (sample S4, see
[Sykora et al., 2020b]), and a large bulk crystal (sample S5).

3.2.1 Exfoliation and search of nanostructures

Exfoliation

In 2004, Novoselov and Geim managed to isolate for the first time graphene flake,
a monolayer of graphite [Novoselov et al., 2004]. To do so, they used a simple and
robust technique called mechanical exfoliation, based on scotch tape technique. This
technique has contributed to the rise of the nowaday very active field of 2D materials,
and is applicable to the wide range of Van der Waals materials.

The principle of mechanical exfoliation relies on the properties of Van der Waals
materials. In these materials, the crystallographic structure is made of strong covalent
bonds within a quasi-2D plane, whereas there is a weak Van der Waals interaction
between neighbouring planes. The material can therefore be seen as a pile of 2D
layers, which can be easy cleaved so as to separate them. Exfoliation is the general

FIGURE 3.7: Optical image of a WTe2 nanostructure with a thickness of 30 nm and the AFM
measurement of the structure with 2 different profiles
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FIGURE 3.8: Optical image of the sample S3 and the AFM measurement of the structure
with 3 different profiles

process consisting in separating these layers from one another, while keeping their
in-plane bonds intact. Different methods of exfoliation exist but only the mechanical
exfoliation was used to thin down WTe2. An important aspect is the choice of the
substrate. As for other Van-der Waals materials, the thickness of the SiO2 allows us
to roughly determine the thicknesses of the flakes thanks to the color contrast of the
nanostructures in optical microscope imaging. Green colored flakes correspond to
rather thin structures as shown by the example of a 30 nm thick flake (figure 3.7), a
thickness that was measured by atomic force microscopy (AFM). Another sample of
a 100 nm thick flake and its height profile measured by AFM is shown in figure 3.8.
This nanostructure (S3) was connected by electron beam lithography as described
later.

Search of nanostructures

Considering the change of the band structure below 50 nm [Xiang et al., 2018], we
focused on the search of exfoliated nanostructures with a thickness in the 50 nm-
100 nm range, being large enough to be contacted by EBL patterning and metal lift
off. Depending on their color on SiO2, it was possible to find such thin flakes as
describe above, and to focus on flakes with a reasonable in-plane aspect ratio that

Substrate 1 Substrate 2
15 nm 0 2
Between 50 and 75 nm 2 0
Between 75 and 100 nm 6 1
Between 100 and 150 nm 10 0
Above 150 nm 10 1

TABLE 3.1: Thickness distribution of WTe2 nanostructures grown by CVT on 2 different
YSZ substrates
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FIGURE 3.9: Optical images of three WTe2 nanostructures grown by CVT with their
respectives dimensions (in-plane in red, thickness in blue).

could allow the nanofabrication of ohmic contacts in a Hall-bar geometry.

For nanostructures grown by vapor transport on YSZ substrates, no color
contrast could help us to distinguish thinner flakes from thicker ones, due to the
absence of light interference as in Si/SiO2 substrate. A careful investigation, based
on combined optical microscope and AFM imaging, allowed us to identify several
nanostructures. The thickness distribution of the nanostructures identified on two
substrates is given in table 3.1. Contrary to exfoliated flakes, nanostructures grown
by CVT have well-defined edge orientation, corresponding to specific crystal axes,
and they can have atomic-flat surfaces, possibly with some dirt formed during the
rapid quench (local clusters of Te at the surface only).

3.2.2 Nanofabrication

To realize ohmic contacts on individual nanostructures, some standard clean-room
techniques were used and the general processing scheme is sketched in figure 3.10.
First, an electron beam lithography process (EBL) is realized in order to create a mask
into a thin layer of poly(methyl methacrylate) (PMMA), a positive electron-sensitive
resist, after development in MIBK/IPA. Prior to the ebeam evaporation of metal, the
sample is shortly etched by ion beam etching in order to improve the transparency
of the contacts. Following the metal deposition, the resist is removed in acetone,
which leaves the metal contacts only in the patterned areas. Finally, the sample is
fixed with silver paste onto a non-magnetic leaded ceramic chip carrier from Kyocera,
and the contacts are connected by aluminium wire bonding. The different steps
of the process are described below in more details. Between the different steps of
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exfoliation, nanopatterning or measurement, the sample was kept in a dessicator to
limit oxidation and aging of the sample. The different final devices are shown in
figure 3.11.

For the nanofabrication on SiO2, a standard EBL process of PMMA is performed.
A first step of spincoating PMMA at 4000 rpm for a thickness of 350 nm is followed by
a baking process during 3 mn at 150°C on a hot plate. Then the substrate is inserted
into a scanning electron microscope (SEM) modified with an EBL unit from Neomicra
and a pattern is exposed. High-energy electrons with an acceleration voltage of 30 kV
will break the polymer chains during the exposure. A dose test was made before on
a bare Si/SiO2 substrate. To know the clear dose, which corresponds to the minimal
dose to fully develop PMMA in the exposed areas. With our setup, a dose of 300
µC.cm−2 was used to expose PMMA on Si substrates, a value that is chosen slightly
above the clear dose, so as to avoid any issue related to a possible defocusing of the
beam.

After exposure, the resist was developped for 90 s in a solution of MIBK (Methyl
isobutyl ketone) distilled in IPA (isopropanol) for a ratio of 1 MIBK for 3 IPA. The
surface of WTe2 is sensitive to oxidation in air [Woods et al., 2017]. However, this
oxidation is limited to the few first atomic layers, on a length scale that is much
smaller than the thickness of the nanostructures investigated in this work. Still, in
order to have good ohmic contact a small ion beam etching by argon is made in-situ
in the metal evaporator from Plassys (MEB550S). Then, the metal deposition was
made, where a thin layer of chromium (around 10 nm) is deposited followed by a

FIGURE 3.10: Nanofabrication process, step by step on SiO2/Si and YSZ substrates. In the
latter case, an additional step is needed, so as to avoid charging effects during the e-beam

exposure.
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FIGURE 3.11: Optical images of CVT and exfoliated nanostructures connected,
S1 (CVT, 50 nm × 30 µm × 8 µm),

S2 (CVT, 70 nm × 25 µm × 3.2 µm),
S3 (exfoliated, 100 nm × 28 µm × 10.3 µm)

layer of 90 nm of gold. The layer of chromium act as an adhesion layer for gold on
silicon oxyde. Finally, the metal lift-off process is made with acetone, a solvant that
removes the PMMA mask.

With insulating YSZ substrates, the EBL process is not as trivial as for Si/SiO2

substrates. Due to a surface charging effect, the local deflection of the beam results
in a distorted pattern. Moreover, the clear dose of PMMA is much more lower than
the one found for the process on Si/SiO2 substrates. To dissipate the charge and get
rid of the distortion, another resist layer was added to the EBL process. On top of
the PMMA, a conductive layer is spincoated (Electra 92 from Allresist) and during
the EBL process, a clamp was put on a side of the sample to drain the charges to the
ground.

However, this does not solve the problem of overexposure of PMMA since
the energy loss of the electron beam occurs mostly in the resist, with a significant
lateral broadening due to some interaction within the substrate. A way to overcome
this issue was found by decreasing the beam acceleration from 30 kV to 10 kV. This
decreases the interaction volume of the electron beam, and therefore reduces the
influence of the substrate. After exposure, a first remover is used for the conductive
layer : deionized water for the case of the Electra 92. Then the development of the
PMMA layer is made and the process follows as described before.

3.3 Cryogenics and low noise measurement techniques
Magneto-transport measurements were first performed from room temperature
down to about 2K by using a variable-temperature insert (Oxford compact VTI), fitted
into a 1-12 T 2D vector magnet. This allowed us to study the magneto-resistance, both
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in the high-field regime (large positive XMR) and in the low-field regime (no signature
of the chiral anomaly). This temperature range corresponds to the range where these
effects were reported. In addition, we used a 3He-4He dilution refrigerator, fitted
into a 2-2-6 T 3D vector magnet, to evidence a low-field isotropic magneto-resistance
at very low temperature ( T ≥ 100mK) that is related to a novel mechanism due to
the presence of Weyl nodes in the band structure as described in chapter 5.

3.3.1 3He-4He dilution refrigerator system

Very-low temperatures can be obtained with a 3He-4He dilution refrigerator, which
uses the endothermic process of the diffusion of 3He into 4He (entropy increase)
in a close circuit [White and Meeson, 2002][De Waele, 2011]. The principle of a
dilution fridge refrigerator is described below and a schematic of the instrument
with its different elements is shown in figure 3.12. First, by using a 1 K pot (adiabatic
expansion of pumped 4He) in thermal contact to the upper part of the dilution unit
in the condenser, it is possible to liquefy the 3He-4He mixture to a temperature of
1.2 K. Then the lower stage of the dilution unit is further cooled down to about
700 mK by passing the mixture through different impedances, where the liquid
separates into two phases, an 3He-rich phase floating over a 3He-poor phase (4He-
rich). The inferface between the two phases is located in the lowest part of the
dilution unit called the mixing chamber. The cooling power below 700 mK results
from the diffusion of 3He from the rich to the poor phase in the mixing chamber
(increase of entropy, equivalent to a heat pumping or a decrease of temperature).
This requires the circulation of 3He in order to operate continuously the refrigerator.
Therefore, the liquid-gas interface of the 3He-poor phase is adjusted to be located in
an upper chamber called the still from which the mixture is pumped out. Due to the
lower vapor pressure of 3He, mostly 3He evaporates, so that it can be pumped out
and be reinjected in the refrigerator loop through the condenser ensuring hence a
steady state with a permanent flow of 3He. In order to increase the efficiency of the
refrigerator, continuous and discrets thermal exchangers are installed between the
cold part and the hot flow of mixture. This improves the cooldown of the mixture
on the way to the mixing chamber and reciprocally, it will warm up the mixture on
the way to the still, increasing the temperature of the still, the pumping of 3He and
therefore the related efficiency of the setup. This system can reach temperatures as
low as 6 mK for the lowest electronic temperature reported [Iftikhar et al., 2016].

The 3He-4He dilution refrigerator used in this work is a commercial Kelvinox
300 dilution unit from Oxford instruments built in 1992. The cooling power is 100
µW at 100 mK, and it has a temperature base of 45 mK. The refrigerator temperature
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FIGURE 3.12: Schematic of a dilution fridge, adapted from [De Waele, 2011]

can be controlled by an home-made PID loop, using a Yokogawa voltage source to
heat a resistor installed on the mixing chamber. The thermometers mount on the
sample cold fingers are a RuOx resistance calibrated between 10 mK to 800 mK and a
cernox resistance calibrated between 1.2 K and 300 K.

In transport measurement, a challenging aspect is the electronic temperature
of the quasi-particle in the measured sample. Indeed, because of a strongly reduced
electron-phonon coupling (usually below 1K), it is possible that a non-equilibrium
appears between the temperature of the lattice and that of the electrons, since the
energy relaxation rate of the electrons is strongly reduced. As a result, the electronic
temperature can be much higher than the value given by the nearby thermometer.
The cooling of the electrons is then best achieved by a good electrical wiring, which
needs to be well anchored to the heat exchangers and is made with constantan wires
in order to filter some incoming electrical noise and reduce heat coming from the room
temperature stage. Moreover, the voltage applied to the sample must remain small,
following the rough rule that eV ≤ kBTcryo. Ultimately, the temperature is given
by the sample itself, as inferred for instance from the temperature dependence of
quantum transport phenomena. In the case of this dilution refrigerator, the electronic
base temperature is roughly around 100 mK when the cryostat base temperature
is 50 mK. The dilution unit is inserted in a cryostat fitted with a 3D vector magnet
6-2-2 T.

3.3.2 Low noise electrical measurements

Due to the low resistivity of the semimetals at very low temperature, it is important
to consider two factors to measure their transport properties accurately by either
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increasing the signal or reducing the noise. First, the geometrical factor can be opti-
mized (to increase the signal). This can be done in two ways. In thin nanostructures,
the square resistance Rsq = ρ/t, where t is the thickness, is increased. Also, a large
in-plane aspect ratio L/W gives a larger sample resistance R = Rsq × L/W. Second,
we use lock-in amplifiers to obtain a good signal-to-noise ratio (reduction of the
noise), with signals that can be as low as 10 µV (equivalent electronic temperature of
100 mK). A lock-in amplifier delivers a sine-wave signal at a given frequency and
can then measure an input signal at the same frequency. This synchronous detection
allows us to get rid of a large part of the noise and parasitic signals. Still, since the AC
lock-in amplifiers have a lowest input noise for a charge impedance of about 1 kOhm,
it can be needed either to increase the sample resistance or to use an impedance
adapter, such as the SR554 from Standford Research. For our measurements, we used
a current-polarization configuration, for which the lock-in voltage output is applied
to a polarization resistance of 100 kΩ or 1 MΩ that is much larger than the sample
resistance connected in a series.

The data are collected by a home-made Labview-program on the computer
that is communicating with all the different instruments via serial or parallel ports.
This Labview program was implemented as a multi-menu virtual instrument, so as
to allow the user to choose a versatile measurement scheme (vector magnetic-field
sweeps, temperature dependence, etc.). During my thesis, I took over the project, I
improved its front-panel, and added new functionalities to a final version that is now
used for all the different setups of the group.

With these setups, we conducted differents studies. First, a comparative study
of the XMR up to 12 T was performed in nanostructures with different degrees
of disorder. The goal was to investigate the possible influence of the point-defect
structural disorder on the subquadratic law. This comparative study led to the
development of a multi-band model to take into account the complexity of the band
structure, and the analysis was further supported by ab-initio calculations made by
S. Sykora. Second, we studied the low-field MR, which was reported by different
groups as the signature of the chiral anomaly whereas the transport conditions
(position of the Fermi level, disorder) are not favorable to realize this effect in nearly
charge-compensated WTe2. Questions raised by this initial study led us to investigate
the very-low temperature regime. We gave evidence for a new effect due to the
non-trivial topology of a Weyl semimetal inducing an isotropic negative longitudinal
magnetoresistance that exists when the Fermi energy is far away from the Weyl
nodes.
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Chapter 4

EXTREME MAGNETORESISTANCE : BAND STRUCTURE AND

DISORDER

4.1 Motivation

As discussed in the chapter 2, WTe2 is a material with rich properties, some of
which being related to its topologically non-trivial band structure, such as the planar
Hall effect and the anisotropic chiral anomaly. Importantly, the band structure
of WTe2 exhibits not only Weyl points but also trivial bands, all of which can be
coupled to another through a static disorder. A legitimate question is : can this
coupling within topological bands or between topological and non-topological bands
reduce the topological response in this material. In a previous work[Sykora et al.,
2020b], such a coupling was revealed by investigating the transport properties of
an exfoliated nanostructure of WTe2 (sample S4) and the impact of disorder on the
inter-cone scattering of Weyl quasiparticles was evidenced. Based on a fine analysis
of Shubnikov-de Haas oscillations combined with that of longitudinal and Hall
magnetoresistances, the quantum life time and the transport time were measured
and a theoretical model allowed us to relate their ratio to the disorder correlation
length, giving some direct information on the coupling between the electronic bands.
This mixing of Weyl quasiparticles of opposite spin chirality or the coupling between
trivial and non trivial bands thus results in the suppression of topologically nontrivial
properties.

Obviously, disorder also influences trivial transport properties. Yet, as ex-
plained before, the Hall and longitudinal magnetoresistance of WTe2 can be rather
well described by a two-band model, and the XMR amplitude is often used as a
measure of the charge imbalance and average mobilities. Nevertheless, most studies
reported a deviation from the two-band model and a subquadratic longitudinal
magnetoresistance was systematically observed [Thoutam et al., 2015] [Wang et al.,



68 Chapter 4. Extreme magnetoresistance : band structure and disorder

2016b] [Fatemi et al., 2017] [Wang et al., 2019]. This cannot be simply attributed to
a deviation from the full charge compensation but rather to a deviation from the
two-band model itself since no saturation is observed even at high temperature. Such
a deviation can be expected since the real band structure was found to have two
electron pockets and two hole pockets. In addition, the influence of carrier mobilities
should be considered as well. Besides, it remains unclear whether disorder strongly
influences this subquadratic power-law behavior of the XMR or not. Here, by com-
paring samples grown by different methods, leading to very different densities of
impurities, we quantitatively investigate the effect of the disorder degree on the
magnetotransport properties and we study the correlation between the subquadratic
longitudinal magnetoresistance and the disorder strength. In addition to the exfoli-
ated sample S4, we measured three other samples, two grown by vapor transport (S1
and S2), and one mechanically exfoliated (S3) from a macrocrystal and compared our
results to those measured in a macroscopic crystal (S5).

In this chapter, the transport properties of more or less disordered nanostruc-
tures are studied in perpendicular magnetic fields as large as 12 T. Analysing the
extremely large magnetoresistance within a two-band model, the average charge car-
rier densities and mobilities for electrons and holes are extracted. Then, by analysing
the Shubnikov-de Haas oscillations, we refine our fitting parameters in the frame-
work of a multi-band model. Considering only three bands, we compare our results
to the transport properties of a previously studied exfoliated nanostructure S4 and a
bulk single crystal S5 with the highest crystal quality we measured so far. Based on
this comparative study, we attribute the subquadratic behavior of the longitudinal
magnetoresistance to the multiband nature of the system. Then, generalizing the
two-band model to a n-band model and considering numerical calculations based on
the real band structure, we unveil the role of the disorder in the deviation from the
two-band model and give a fully coherent understanding of the multiband transport
properties of disordered WTe2 structures.

4.2 Temperature dependence of the longitudinal resis-

tivity

All samples show a metallic behavior while cooling down to helium liquid tempera-
ture as shown in figure 4.1 for the samples S2 and S3. The residual-resistivity ratio
RRR = R(300 K)/R(4.2 K) of the CVT-grown sample S1 is 23. This rather small ratio
indicates a strong disorder in the nanostructure. The CVT grown sample S2 has a
higher value of 40. The sample S3, exfoliated from a macrocrystal grown by Te-flux,
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FIGURE 4.1: Temperature dependence of the longitudinal resistivity of the nanostructures
S2 and S3.

gives a value of 80. These results therefore reveal the different strength of disorder
in our samples. CVT grown samples seem to have higher densities of point defects
than macroscopic crystals. Different informations for each sample such as the RRR,
the thickness, the MR at 6 and 12 T and the exponent of the power law (extracted
from linear fit between 1 and 6 T) are summarized in table 4.1.

4.3 Extreme magneto-resistance

4.3.1 Simple analysis of the experimental results

Within the two-band model described in chapter 2, the magnetoresistance is directly
influenced by the disorder through the mobilities µe and µh. Hence, for a fully
compensated system, the quadratic magnetoresistance is directly proportionnal to
the mobilities.

ρxx =
1
e

neµe + nhµh + (neµh + nhµe)µeµhB2

(neµe + nhµh)2 (4.1)

This model also captures that a deviation from charge compensation results in a
saturation of the MR in high fields, which limits its maximal amplitude. The validity
of this simple approach is roughly confirmed by our experimental results. For a
magnetic field applied out-of-plane, the magnetoresistance at 6 T is relatively small
and equal to 440 % for the sample S1, which is coherent with its low RRR value. The
sample S2, having a larger RRR value, shows an XMR of 1500 % at 6 T and 4600 %
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Sample t (nm) RRR MR (%) at 6 T MR (%) at 12 T α
S1 (CVT) 50 23 440% 1.78
S2 (CVT) 70 40 1500% 4600% 1.64
S3 (exfoliated) 100 80 4300% 16000% 1.82
S4 (exfoliated) 70 80 6400% 1.81
S5 (macrocrystal) / 185 19000% 73775% 1.84

TABLE 4.1: Thickness, RRR, magnetoresistance and Kohler’s exponent α of the different
samples measured.

at 12 T. These values remain smaller than those obtained with S3, the exfoliated
structure with a higher RRR, with 4300 % at 6 T and 16000 % at 12 T. Although this
trend is in good qualitative agreement with expectations from the two-band model,
it is already visible that our results do not exactly follow the µ2 dependence as the
amplitude decreases for a reduced mobility (smaller RRR).

We present below the two-band model analysis of the transport results for
the samples S1, S2 and S3. Contrary to others, the strongly disordered structure
S1 does not show any Shubnikov-de Haas oscillations up to 6 T. Nevertheless, an
analysis of the longitudinal and Hall resistivity by the two band-model already
gives us informations about the average carrier densities and mobilities. In order
to analyse correctly our data and to avoid some mistake due to a misalignment of
the contacts on the nanostructure, the Hall resistivity is anti-symmetrized and the
longitudinal resistivity is symmetrized. Because of the lack of Shubnikov-de Haas
oscillations, all charge densities were unknown and no parameter was fixed in the fit
with the two-band model. To have a relevant analysis, we analysed the longitudinal

FIGURE 4.2: Longitudinal (left) and Hall (right) resistivity as a function of a perpendicular
magnetic field measured at 4.2 K for S1 and a current I = 10µA. The red dashed line on
both graph are the two-band model fits with ne = 3.24 × 1019 cm−3, nh = 3.13 × 1019 cm−3,

µe = 0.25 m2/V.s and µe = 0.23 m2/V.s.
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FIGURE 4.3: Longitudinal (left) and Hall (right) resistivity as a function of a perpendicular
magnetic field measured at 4.2 K for S3 and a current I = 10µA. The red dashed line on
both graph are the two-band model fits with ne = 4.38 × 1019 cm−3, nh = 4.33 × 1019 cm−3,

µe = 0.71 m2/V.s and µh = 0.56 m2/V.s.

and Hall signal in a global fit with the equations 2.7. The fit gives us very similar
mobilities for holes and electrons, 0.23 and 0.25 m2/V.s respectively (figure 4.2). The
hole carrier density (3.13 × 1019 cm−3) is found slightly larger than the electron
density (3.24× 1019 cm−3). Nevertheless, the ratio is still close to unity and the rather
low magnetoresistance cannot be attributed to the partial charge compensation but
rather to a reduced mobility. A small deviation between the fit and the experimental
data measured can be observed in the figure 4.2. This deviation occurs in both the
longitudinal and the Hall resistivity and is likely due to the multiband character
of the system, which has four bands (two holes and two electron subbands). The
more robust analysis of the transport properties based on a multi-band model will be
discussed in section 4.4.1).

Samples S2 and S3 were studied with an out-of-plane magnetic field up to 12 T.
As shown in figure 4.3 for sample S3 and like for sample S1, the fit of the longitudinal
and Hall resistivity by the two-band model is not in perfect agreement with the
measurements, and visible deviations in the fit of the Hall data are clearly visible.
Still, this first rough analysis remains a rather good approximation, giving values
for electron and hole mobilities of 0.71 and 0.56 m2/V.s respectively. These values
are significantly larger than those found for S1, as expected for a smaller degree of
disorder. The carrier densities are 4.38× 1019 cm−3 for electrons and 4.33× 1019 cm−3

for holes. It is again larger than the values found for sample S1.

Several points need to be considered to understand this difference between S1
or S4 [Sykora et al., 2020b] that both can be fitted by the two-band model with a
good agreement, giving carrier densities around 3 × 1019 cm−3 and S3 that shows
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Two-band model with
longitudinal resistivity

Two-band model
with δR/R

Samples S1 S3 up
to 12 T

S3 up
to 6 T S1 S3 up

to 12T
S3 up
to 6 T S4

µh(m2/V.s) 0.23 0.56 0.67 0.34 0.99 0.97 1.14
µe(m2/V.s) 0.25 0.71 1.07 0.37 1.17 1.26 1.86

nh(1019cm−3) 3.13 4.33 5.41 3.00 3.31 3.15 3.05
ne(1019cm−3) 3.24 4.38 5.48 3.04 3.32 3.16 3.01

TABLE 4.2: Carrier densities and mobilities for different two-band model fit of the relative
resistance, longitudinal and Hall resistivity of S1, S3 and S4

stronger deviations from the two-band model and higher carrier densities. First, S1
and S4 were both measured up to 6 T whereas S3 was investigated under magnetic
fields up to 12 T. Secondly, in order to get rid of any geometry dependence for
the nanostructure S4, we fit the relative resistivity (R(B)-R(0))/R(0) instead of the
resistivity. By taking into consideration these two points, other fits were done for
S1 and S3 showing similar carrier densities. The fitting parameters are summarized
in the table 4.2, and the different fit for the data measured on the sample S3 with a
comparison of the residue can be found in appendix A. To conclude, the analysis
of the data in the framework of the two-band model leads to a good agreement
between the theory and the experimental data for a magnetic field up to 6 T and to
some consistent values of the charges densities and mobilities. Nevertheless, this
approach appears not to be well adapted to an analysis over a broader magnetic field
range (up to 12 T) where the data cannot be fitted very accurately and where the
parameters extracted from the fit lead to inconsistent values. This points out that
more bands need to be considered to describe the transport properties of WTe2 in
order to perform a quantitative analysis of the measurements. To go beyond the
two-band model and to extract reliable transport properties from the multiband
model, we first need to determine the charge densities associated to the different
charge pockets from quantum oscillations of the resistivity in large magnetic fields.

4.3.2 Refinement based on the Shubnikov-de Haas measurements

Due to the formation of Landau levels, clear oscillations of the longitudinal resistance
are observed in high magnetic fields, as evidenced in samples S2 and S3 (see figure
4.4). After removing a smooth background and plotting the residual resistance as a
function of the inverse of the magnetic field (figure 4.5), these Shubnikov-de Haas
oscillations can be assigned to different electronic bands, each population being
related to a given peak in the fast-Fourier transform (FFT) of the oscillations. Due
to the limited field range, FFT peaks related to the different charge pockets are best
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FIGURE 4.4: Resistance with the background removed as a function of the magnetic field
up to 12 T showing clear Shubnikov-de Haas oscillations.

identified by comparing the results obtained for different pairs of contacts, allowing
us to clearly identify all four bands, as shown in Fig.4.4 for the S3 sample.

Four FFT peaks are observed at the frequencies 87 T, 122 T, 135 T and 168 T. A
peak at 50 T is also present but is not observed for all pair of contacts. It probably
corre sponds to a limitation of the FFT analysis in a limited field range, and we
therefore exclude it from our analysis. Due to their proximity, the peaks at 122 T and
135 T are hard to distinguish from each other. Using the Blackman window, which
has the lowest secondary sidelobes and reduces the peak broadening in a finite field
range, it is possible to identify these two nearby peaks, despite the finite field window.
These two frequencies correspond to the two electrons pockets also measured in S4
[Sykora et al., 2020b]. The peak at 168 T is smaller in amplitude, which might be
due to a lower carrier mobility or a large effective mass. Together with the peak at
87 T, these frequencies correspond to the two hole pockets. This analysis gives the
carrier densities of all four bands, which can then be fixed in the multi-band model
discussed later. However, because the two electron pockets are very close to each
other, a reasonable approximation is to consider an effective three-band model with a
single electron pocket accounting for the two electron pockets expected by theoretical
band calculation. This approximation describe the transport properties accurately.
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FIGURE 4.5: Left panel : Shubnikov-de Haas oscillations measured in the longitudinal
resistivity of the sample S3, Right panel : FFT analysis of the different pairs of contacts for
S3 using a blackman window, the green and purple curve corresponding to the oscillations
of the longitudinal resistivity for a positive and negative magnetic field respectively, the
blue and the dark purple curve, for two different pairs of Hall contacts and a positive
magnetic field. Four peaks are clearly seen after the threshold due to the background, at 87,

122, 135 and 168 T.

The frequencies of the quantum oscillations are related to the cross section of
Fermi surfaces Ak in the k‖ plane, perpendicular to the applied magnetic field, by
the Onsager relation :

f =
h

4π2e
Ak =

h
4πe

k2
‖ (4.2)

where k‖ is the value of an effective in-plane Fermi wave vector assuming an isotropic
in-plane band structure. In order to calculate the charge density associated to a
given pocket, the value of the out-of-plane Fermi wave vector k⊥ is also required,
assuming an ellipsoidal shape of the the Fermi pockets. However, k⊥ values cannot
be infered from magneto-transport measurements since no in-plane SdHO was
measured. Following the approach developped by Sykora et al., we used band
structure calculations to determine values of k⊥ and to calculate the carrier densities,
for each band, for a fixed Fermi level deduced from the experimental k‖ values .
For all samples studied, differences in k‖ are small, so that we use the value of k⊥
previously determined in [Sykora et al., 2020b] to calculate the four carrier densities.

The peak at 87 T corresponds to a small pocket of holes with a carrier density
nh1 of 4.82 × 1018 cm−3. The second hole pocket, much larger, has a carrier density
nh2 of 10.17 × 1018 cm−3. The two pockets of electrons have carrier densities close to
each other at ne1 = 7.13 × 1018 cm−3 and ne2 = 7.89 × 1018 cm−3. As explained before,
the small difference in electron carrier densities associated to the fact that these two
electron pockets being close to another in the Brillouin zone [Ali et al., 2014], makes
the approximation of a single electron band reasonable. The total carrier density is
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obtained by adding the densities of the four pockets, taking into account their spins
and valley degeneracies, gs and gv. The spin degeneracy in the band structure is
lifted, so that gs = 1, but a valley degeneracy remains with gv = 2 for all pockets. This
results in ne = gs gv ne1 + gs gv ne2 = 30.1 × 1018 cm−3 and nh = 2nh1 + 2nh2 = 30 ×
1018 cm−3. This leads to a ratio ne/nh very close to unity, which confirms that the
non-saturating behavior of the XMR in the studied magnetic field range is associated
to a nearly perfect charge compensation. Finally, we remark that the values of carrier
densities, infered from the analysis of SdHO are in very good agreement with the
densities extracted from the analysis of δR/R0 within the framework of the two-band
model (section 4.3.1).

4.3.3 Comparative study

To compare our samples, a plot of δR(B)/R is shown in figure 4.6 on a logarithmic-
logarithmic scale. For sample S5, the measurements were made up to 15 T, with a
magnetoresistance of 1.2× 105 % at 2 K. All five samples studied in this work show a
subquadratic law Bα (with α < 2 ), similar to other reports in the literature [Thoutam
et al., 2015] [Wang et al., 2016b] [Fatemi et al., 2017] [Wang et al., 2019]. To have a
relevant comparison, the fits were done between 1 T and 6 T. We notice that on a

FIGURE 4.6: Magnetoresistance as a function of the magnetic field in logarithmic scale for
five different samples, the RRR value for each sample is in green, the power law coefficient
α is in red. The dashed lines are the power law fit made between 1 and 6 T associated to

each magnetoresistance.
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logarithmic-logarithmic scale, all the samples do not present a perfect power law
behavior.

As seen in figure 4.6, there is no direct correlation between the RRR value and
the exponent α of the power law, with a common value alpha ≈ 1.8 for all samples
but S2. This value for α was also observed by others [Thoutam et al., 2015] [Wang
et al., 2019], and our results show that this behavior is not directly related to the
degree of disorder. Rather, this could be a signature of a multi-band transport, even
for a perfect charge compensation.

4.4 Multi-band model

4.4.1 Formalism

As shown before, the two-band model fails to reproduce both the XMR and the
Hall resistance, particularly in large magnetic fields, even if a deviation from perfect
charge compensation is considered.

In order to take into account an arbitrary number of bands, we extend the
two-band model to a more realistic n-band model with n ∈ N and n ≥ 2. When n
bands contribute to the transport, the total conductance tensor σ̂ is the sum of all the
σ̂i of the different bands i:

σ̂ = ∑
i

σ̂i = ∑
i

(−1)νi σi

1 + µ2
i B2

(
1 µiB
−µiB 1

)
, (4.3)

where νi = 0 for holes and νi = 1 for electrons and σi = eniµi. The resistivity tensor
is given by ρ̂ = σ̂−1 and, after some algebra, one can show that:

ρxx =
∑i σi ∏j 6=i(1 + µ2

j B2)

∑i

[
σ2

i ∏j 6=i(1− µ2
j B2) + ∑j 6=i σiσj(1 + (−1)νi+νj µiµjB2)∏k 6=i,j(1 + µ2

kB2)
] ,

(4.4)

ρxy = B
∑i(−1)νi µiσi ∏j 6=i(1 + µ2

j B2)

∑i

[
σ2

i ∏j 6=i(1− µ2
j B2) + ∑j 6=i σiσj(1 + (−1)νi+νj µiµjB2)∏k 6=i,j(1 + µ2

kB2)
] .

(4.5)

These expressions are complex polynomial fractions of the magnetic field and
of microscopic parameters (carrier density ni and mobility mui for each band i). They
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can be written in the more compact form

ρxx =
∑i aiB2(i−1)

∑i ciB2(i−1)
, (4.6)

ρxy = B∑i diB2(i−1)

∑i ciB2(i−1)
, (4.7)

where the ai, ci and di are complex functions of the mobility, the charge density and
the index νi of each band. The numerator of ρxx and the common denominator of ρxx

and ρxy are polynomials with only even orders of B whereas the numerator of ρxy

has only odd orders of B. Despite their complexity, the coefficients corresponding to
the low field limit (a1, c1 and d1) and the high field limit (an, cn and dn) can be easily
extracted out of Eq. (4.4) and Eq. (4.5). We have

a1 = ∑
i

σi, (4.8)

c1 =

(
∑

i
σi

)2

, (4.9)

d1 = ∑
i
(−1)νi µiσi, (4.10)

an = e

(
∑

i

ni

µi

)(
∏

i
µ2

i

)
, (4.11)

cn = e2

(
∑

i
(−1)νi ni

)2(
∏

i
µ2

i

)
, (4.12)

dn = e

(
∑

i
(−1)νi ni

)(
∏

i
µ2

i

)
. (4.13)

As a result, in the fully compensated case (i.e. ∑i(−1)νi ni = 0), the coefficient cn

and dn vanish and the longitudinal magnetoresistivity shows a quadratic behaviour
at very large field with no saturation whereas the Hall magnetoresistivity follows a
linear behaviour. In the low field limit, we have ρxx ∝ (∑i σi)

−1.

4.4.2 From a two-band to a three-band model

Before we consider this model applied to two hole bands and a single average
electron band, let us briefly discuss the deviation from the quadratic behavior in the
two-band model. In this model, a deviation from the full compensation can result in
both the subquadratic longitudinal MR and the non-linear Hall resistivity. However,
these magnetic field dependences do not reproduce the experimental results. For
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FIGURE 4.7: Longitudinal resistivity as a function of a perpendicular magnetic field in
a two-band model for different ratio nh/ne. We took µh = µe = 1 m2/V.s and shift the

carrier densities starting from nh=ne= 3 ×1019 cm−3.

instance, the magnetoresistance does not follow a power law dependence for a non
compensated system in the two-band model. As an example, let us consider first the
simple case µe=µh. For a ratio nh/ne different from unity, the longitudinal MR follows
a quadratic behavior until the term in B2 at the denominator becomes dominant. This
crossover from a quadratic behavior at low fields to a saturation at high magnetic
fields happens at :

Bsat =
1
µ

∣∣∣∣ne + nh

ne − nh

∣∣∣∣ (4.14)

and can be associated with a continuous evolution of the value of α(B) that progres-
sively decreases from the value α = 2 (figure 4.7) to α = 0 at B > Bsat. This situation
is clearly different from the subquadraticity with a constant power-law exponent
over a broad magnetic field range, as observed in the majority of the studies of
WTe2. We also remark that studies of WTe2 using an electrostatic gate reported such
a subquadratic law even at the perfect compensation [Wang et al., 2019]. Therefore,
the two-band model fails to reproduce the subquadratic XMR as well as the Hall
magnetoresistance.

Using the three-band model, our analysis gives some more quantitative infor-
mation. In order to get rid of any issues related to the geometry of the sample, we
again consider the δR(B)/R0 instead of R(B) below. To reproduce the subquadratic
behavior, it is possible to tune the three mobilities focusing first on the longitudinal
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FIGURE 4.8: In the framework of a three-band model : a) mapping of the power law
exponent α, extracted from a linear fit with B in the range of 1 to 6 T, and for the mobility
of the electron band fixed at 1 m2/V.s, as a function of the two hole mobilities. We used
ne = 3.01 × 1019 cm−3, nh1 = 9.64 × 1018 cm−3 and nh2 = 2.03 × 1019 cm−3. The purple
dashed line correspond to a power law of 1.8. b) Contour lines for a power-law exponent
α = 1.8 between 1 and 6 T, as calculated for three different values of the average electron
mobility µe = 0.5, 1 and 1.5 m2/V.s; c) δR(B)/R0 as a function of the magnetic field on a
logarithmic-logarithmic scale for two linear fits, between 0.1 and 1 T giving a power law
of 1.65 and between 1 and 6 T giving a power law of 1.82; d) Mapping of the power law
exponent α, extracted from a linear fit with B in the range of 0.1 to 1 T, and for the mobility
of the electron band fixed at 1 m2/V.s, as a function of the two hole mobilities, the carrier
densities being the same as for a). The purple dashed line correspond to a power law of
1.65 and extracted points from the contour line of a) show a crossing point corresponding

to fit parameters for the longitudinal magnetoresistivity.

MR only in the fully compensated three-band model and fixing the values of the dif-
ferent carrier densities to those infered from the previous analysis of SdH oscillations.
A systematic determination and mapping of the power law exponent as a function of
the hole mobilities can be done by fixing the electron mobility and by calculating the
magnetoresistance in the three-band model between 1 and 6 T for different values of
the hole mobilities and by fitting the result to a power law. Since we are considering
δR(B)/R0 and not R, this method is straightforward.
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Indeed, δR(B)/R0 is a function of ne, nh1 , nh2 , µh1/µe, µh2/µe and Bµe, but µe

can be fixed to any arbitrary value, with little influence on the power-law exponent
since it mainly acts as a scaling factor to the magnetic field. As shown in figure
4.8 a), the power law is either quadratic or subquadratic if the hole mobilities are
respectively similar or very different. The two purple dashed lines in the graph
correspond to a power-law exponent α = 1.8, measured roughly in our samples. As
shown on figure 4.8 b), little influence of the mobility µe on the power law coefficient
is observed. Nevertheless, from this analysis, a full set of possible pair of (µh1 ,µh2) that
give an exponent α in good agreement with the experimental data is now possible.
To reduce this list, it is possible to fit the low magnetic field part, B < 1 T of the
δR(B)/R0 (figure 4.8 c)) and calculate the exponent α for this range of the magnetic
field (4.8 d)). This approach allows us to determine which hole band has the largest
mobility (in the sample S3, the hole band with the small carrier density) and to have
approximate values for the different mobilities by condidering now the only pair that
corresponds to the crossing point of the exponent in the low field regime and the one
in the large field limit (1 T < B < 6 T). This fit based on a three-band model and taking
carrier densities infered from Shubnikov-de Haas oscillations, reproduces the XMR
very well for µh1 = 2.55 m2/V.s and µh2 = 0.55 m2/V.s, the mobilities corresponding to
the crossing point in figure 4.9, and that reproduce very well the power law behavior
taking µe = 1.2 m2/V.s to fit the data δR(B)/R0 at best.

Up to this point, we have neglected the information given by the Hall signal.
From an experimental point of view, we note that the penetration of the contact in
the flake might be responsible for a reduction of the measured Hall voltage due to

FIGURE 4.9: Three-band model fit for the relative magnetoresistance and the Hall resistivity
of the sample S3 with ne = 3.01 1019 cm−3, µe = 1.15 m2/V.s, nh1 = 9.64 1018 cm−3, µh1 =
2.6 m2/V.s, nh2 = 2.034 1019 cm−3, µh2 = 0.65 m2/V.s. The data are in blue and the fits
correspond to the red dashed line. A multiplication of the Hall resistivity by a factor 1.9

was also done to better compare the fit to the data.
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current that flows in the contacts so that only qualitative comparison can be done.
Hence, the three-band model taking the carrier densities extracted from the SdHO
and considering the triplet of mobilities deduce previously from the longitudinal
resistivity analysis leads to a difference in amplitude with the experimental data,
likely due to the penetration of the contacts. Nevertheless, the shape of the Hall
resistivity curve and the three-band model fit show qualitative agreement. It is even
possible to refine the mobilities found above to better fit the shape of the Hall, keeping
a very good agreement for δR(B)/R0. Best agreement is found for µe = 1.15 m2/V.s,
µh1 = 2.6 m2/V.s and µh2 = 0.65 m2/V.s. A multiplication of the Hall resistivity
measured by a factor 1.9 in order to adjust the amplitude of the experimentaldata to
the three-band model shows that the agreement between the two is not perfect and
that four bands are probably needed to have a better agreement. Nevertheless, the
three-band model is able to reproduce very accurately the magnetoresistance and
its different power law regimes over a broad range of magnetic fields and even for
charge densities that are fixed by the SdHO. Our analysis clearly shows that such a
behavior can be related to a difference in the two hole-carrier mobilities.

In the next section, numerical simulations are used to go beyond the three-band
model and relate the power law coefficient directly to the microscopic nature of the
disorder. Interestingly, and contrary to experimental studies, numerical simulations
allow us to investigate independently the influence of the amplitude of the disorder
and of its correlation length on the magnetoresistance and more particularly on the
deviation to the quadraticity in the almost compensated regime.

4.5 Numerical simulations

Our experimental results can be compared with the results of numerical simulations
considering the exact band structure of WTe2. This method was already presented in
our previous work where we focused on different transport properties such as the
transport time and the quantum life of the quasi-particles [Sykora et al., 2020b]. New
comparison of the calculated MR with our data sheds light on the role of the disorder
on the XMR.

4.5.1 Projective renormalization method

As already mentioned before, numerical simulations considering both a disordered
structure and the exact band structure of WTe2 should be able to reproduce and
capture most of the transport properties at low temperature. In this context, a fruiful
collaboration with the theoretician Steffen Sykora (TU Dresden) allows us to calculate
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the different transport properties of WTe2 from the Weyl Hamiltonian solved using
the projective renormalization method that was used already in a prior work [Sykora
et al., 2020a]. The band structure model is taken from first principle calculation
[McCormick et al., 2017]. In this subsection, we detail the method used to calculate
the different transport quantity that are reported in the next subsection.

We first consider a minimal Hamiltonian of a disordered Weyl semimetal [Mc-
Cormick et al., 2017] with two terms, one corresponding to a Weyl Hamiltonian, the
other to a finite disorder in momentum space.

H = ∑
k,α,β

c†
k,α[Ĥk]α,βck,β + ∑

k,k′,α,β
(c†

k,α[V̂k,k′ ]α,βck′,β + h.c.) (4.15)

where c(†)k,α are annihilation (creation) operators of an electron at momentum k in an
orbital α. The term Ĥk corresponds to the kinetic energy that can be written :

Ĥk = ∑
i=0,1,2,3

εi,kσ̂i (4.16)

with σ̂i the ith Pauli matrix for i = 1,2,3 whose indices correspond to an orbital degree
of freedom and σ̂0, the 2×2 identity matrix. If such an Hamiltonian has at least two
points around which the Hamiltonian is described locally by :

ĤWP(k) = ∑
i=1,2,3

γikiσ̂0 + ∑
i,j=1,2,3

ki Ai,j, (4.17)

it describes a Weyl semimetal with nodes of chirality Ξ = det(Aij).

The scattering by disorder is introduced in the second term by a gaussian
correlated scalar disorder such that :

[V̂k,k′ ]α,β = δα,βVe−2ξ2|k−k′|2 (4.18)

From that, the Weyl Hamiltonian including the band structure need to be diago-
nalized. New fermion operators are introduced to diagonalize the Weyl Hamiltonian
without disorder and the eigenenergies associated to these new operators include all
the information related to the band structure.

ak,α = ∑
β

[D̂k]α,βck,β (4.19)

The Hamiltonian is then treated in two part, an unperturbed partH0 and a perturba-
tionH1 :

H = H0 +H1 = ∑
α

Ek,αa†
k,αak,α + ∑

k,k′,α,β
(a†

k,α[D̂kV̂k,k′ D̂−1
k′ ]α,βak′,β + h.c.), (4.20)
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the first term is containing the band structure component while the second term is
the effective scattering between the bands. As explained above,H0 is diagonal in the
base constituted by the new fermion operators. Then, the projective renormalization
method is applied : the scattering term is integrated by unitary transformation in
order to writeH as an effective diagonal Hamiltonian H̃ where H̃ andH are related
together through the unitary transformation :

H̃ = eXHe−X =∑
α

Ẽk,α ã†
k,α ãk,α (4.21)

with ã†
k,α = eXa†

k,αe−X (4.22)

defining the new fermions operators and X being the generator that satisfies X† = −X.
X can be related to the ak,α operators as well as to the eigenvalues of the non disor-
dered systemH0 and to the disorder by :

X = ∑
k,k′,α,β

(a†
k,α Aα,β

k,k′ak′,β − h.c.) (4.23)

with Aα,β
k,k′ =

1
2

arctan(
2[V̂k,k′ ]α,β

Ek,α − Ek′,β
) (4.24)

The important point is that since H and H̃ are connected through a unitary
transformation, they have the same eigenvalues. Therefore, any transport property
can be calculated equivalently from H or H̃ (since in principle < a†

k,αak′,β >H = <

ã†
k,α ãk′,β >H̃). We hence take advantage of the diagonal nature of H̃ to determine the

transport properties such as the conductivity σxx of the material as well as any other
transport parameters. σxx is related to the current density operator jx and so to the
ãk,α operators through :

jx =
1
V ∑

α
∑
k,q

eiqx h̄k
m

ã†
k− q

2 ,α ãk+ q
2 ,α (4.25)

σxx =< jx jx >=
Tr(jx jxe−βH̃)

e−βH̃
(4.26)

with β = kB T (kB being the Boltzmann constant), term that capture the temperature
dependence of the resistivity. For the case of the magnetic field dependence, a
Zeeman term is added in the Hamiltonian and another diagonalization process is
done that defines new fermion operators that depend now on the magnetic field.
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4.5.2 Results

In the three-band model analysis previously discussed, we evidenced that the sub-
quadratic law founds its origin in the large difference of the carrier mobilities among
the different pockets. Besides, we also showed that the power-law exponent can be
nearly field-independent on some large field range, but also that it can vary at small
or high fields, as a consequence of multi-band transport. To better understand these
specific properties, the results are compared to numerical calculations considering
tunable parameters of the scattering potential (amplitude, correlation length).

These calculations lead us to determine the exponent of the power-law as a
function of the amplitude of the disorder V and its correlation length ξ. As shown
in figure 4.10, the exponent of the power-law α is showing some non-monothonic
behavior as a function of the parameters of the potential disorder, the quadratic law
being recovered for both very large or very small amplitudes and correlation lengths.
In the multi-band model, a change in the power law is expected when the quadratic
field contribution becomes larger than one in the 1+µ2

i B2 terms of the numerator of
the longitudinal resistivity (Eq. 4.4) or when a given term of the polynom of the
denominator dominates over the other terms in Eq. 4.6. If these conditions are easily
related to a simple expression of the magnetic fields for the numerator (B = 1/µi), the
change of slope due to the denominator corresponds to a magnetic field that is related

FIGURE 4.10: Coefficient α of the power-law, top : as a function of the amplitude of the
disorder for a correlation length ξ = 5 nm; bottom : as a function of the correlation length
of the disorder for an amplitude of the disorder V = 5 meV. The line is a guide for the eye.
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to the ci coefficient in Eq. 4.6 and is therefore a complex function of the different
mobilities and densities. Nevertheless, in the three-band model and assuming a full
compensation, we can easily determine the different terms of the denominator and
we have :

c1 =(σh1 + σh2 + σe)
2

c2 =(µh1σh2 + µh2σh1)
2 + (µh1σe − µeσh1)

2

+ (µh2σe − µeσh2)
2 + 2σh1σh2σe

(
µ2

e
σe
−

µ2
h1

σh1

−
µ2

h2

σh2

)
c3 =0 (full compensation)

where σ = enµ is the conductivity of a given pocket. Therefore, the quadratic term
will take over the constant term for :

B∗ ≥
σh1 + σh2 + σe√

c2
(4.27)

In the full compensated three band model, changes in the exponent of the magne-
toresistance power law take place at B = 1/µh1 , 1/µh2 , 1/µe and B = B∗. This will
result in the presence of singularities in the logarithmic-logarithmic representation of
the MR with the appearance of different power-law regimes. Because all the charge
pockets have parameters of the same order of magnitude these different power law
regimes overlap each other and the change in the power law exponent remains rather
small.

Hence for a very small disorder, we have B � 1/µi and B � B∗, the higher
order terms dominate both the numerator and the denominator for small magnetic
field leading to a quadratic behavior. In the case of a very large disorder and con-
sidering the expanded form of the longitudinal resistivity, the magnetic field terms
of higher order become negligible and only the MR is given by the B2 term of the
numerator.

In the strong disorder regime (large disorder amplitude or short correlation
length), we note that the multi-band model might not be valid anymore. Indeed, this
approach assumes that the different bands are independent and not coupled to each
other. This requires that intraband scattering strongly dominates over interband scat-
tering, an assumption that is not satisfied in the strong disorder regime. Interestingly,
numerical simulations that include interband scattering, show that in the strong dis-
order regime, a quadratic power law is recovered as in the simple case of a two-band
structure. Finally, between the weak and strong disorder regime, a deviation from
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FIGURE 4.11: Numerical calculations of the XMR for two different disorder, orange circle
corresponding to an XMR with ξ = 5 nm and V = 5 meV and blue circle with ξ = 5 nm and

V = 15 meV. The dashed lines are their respective fits.

the quadratic behavior is hence expected and observed with a power-law minimum
of around 1.6 for both V = 25 meV and ξ = 5 nm or for V = 5 meV and ξ = 20 nm.

Hence, two different pairs of ξ and V can be found for a power law with α = 1.8,
that corresponds to the different degrees of disorder in S1 and S3. Focusing on
S1, S2 and S3 and fixing one of the microscopic parameters ξ or V, it is possible
to qualitatively describe the nature of the disorder by considering the RRR value.
Fixing for instance ξ, S5 can be described by the smallest amplitude of the disorder,
whereas S3 and S4 (same RRR) correspond to a larger amplitude. Larger values
are found for S2 and S1, in agreeement with their RRR values (reduced mobilities).
This analysis leads us to finally understand the relation between the RRR and the
power-law exponent and, in this case to explain why the sample S2, showing a RRR
between S1 and S4 leads to a power law smaller than the two other samples.

The complexity of the relation between the disorder and the magnetoresistance
is illustrated in figure 4.11, where it is possible to see on a logarithmic-logarithmic
scale, a perfectly linear fit between 0.1 and 6 T for a subquadratic law with ξ = 5 nm
and V = 5 meV while another type of disorder (ξ = 5 nm and V = 15 meV), leads to
clear deviation from the power-law behavior with two behaviors clearly identified
in this magnetic field range. This echoes our experimental data, and shows that
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numerical simulations even reveal some power-law behavior with an exponent
larger than 2 over a restricted magnetic field range. Finally, for some parameters
values, we note that numerical simulations show, in agreement with experimental
data, very accurate subquadratic power-law over a surprisingly large magnetic field
range that might be not related to the multiband nature of the transport but rather to
a subtle effect implying a renormalization of the band structure by the magnetic field
and the disorder. This point still needs to be better understood and is the subject of
current investigations.

4.6 Conclusion

In this chapter, we showed that the two-band model was not accurate enough to
do quantitative analysis of the transport properties in WTe2. More precisely, it
does not consider the carrier densities extracted from Shubnikov-de Haas analysis
and does not succeed to reproduce the subquadratic law of the extremely large
magnetoresistance. A comparison study between the different samples grown by
different techniques allowed us to compare the RRR and the power law exponent
and to highlight that there is no simple relation between the RRR and the power-law
exponent. Numerical simulations allow us nevertheless to qualitatively understand
the effect of the disorder on the subquadratic behavior.

We developed a multi-band model and we used the approximation of a three-
band model, assuming hence that the two electron pockets have carrier mobilities
and densities very similar as it is expected since their positions are very close to
each other in the Brillouin zone. From this approximation, the transport properties
of the system were analysed with two hole bands and one electron band, taking
the carrier densities extracted from Shubnikov-de Haas. This approach succeeds to
reproduce the subquadratic law that is originating in a significant difference between
the mobilities of the two hole bands. Moreover, although the Hall resistance was
not quantitatively reproduced likely due to the contact geometry, a good qualitative
agreement could be found between the three-band model fit for the same parameters
used for the longitudinal MR and therefore taking the carrier densities infered from
SdHO analysis. Finally, numerical simulations allow us to unveil the non-trivial
relation between the nature of the disorder and the magnetoresistance in particular,
the non-monothonic behavior of the power-law exponent as a function of ξ and V.
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Chapter 5

TOPOLOGY AND TRANSPORT PROPERTIES AT VERY LOW

TEMPERATURE

5.1 Motivation

In the search of Weyl physics signatures, the negative longitudinal magnetoresistance
(NMR) has been the focus of many studies. Indeed, the NMR could result from
the chiral anomaly, which is due to an imbalance in the number of particles of each
chirality in a Weyl semimetal. Yet, as already mentioned in chapter 2, the negative
longitudinal magnetoresistance can also appear due to current jetting. Due to the
Weyl type-II nature of WTe2, the chiral anomaly is expected to be anisotropic and to
depend on the current direction with respect to the crystal orientation [Soluyanov
et al., 2015]. Indeed, an anisotropic NMR has been reported in experiments, ap-
pearing with an electric field and magnetic field in the b-axis direction only [Wang
et al., 2016a][Li et al., 2017b]. It was also predicted [Sharma et al., 2017] and exper-
imentally reported [Lv et al., 2017] that in the classical regime (µB « 1 ), this chiral
anomaly can become isotropic, that is, with no difference if the colinear electric and
magnetic fields are applied along either the a-axis or the b-axis. Nevertheless, in
these experimental studies, the presence of a large magnetoresistance attributed to
a charge compensation raises the question of the position of the Fermi level with
respect to the Weyl nodes. Indeed, the regime of charge compensation implies that
the Weyl nodes are located at 52 and 58 meV above the Fermi level, which casts
strong doubts about the possible influence of the chiral anomaly mechanism on
transport properties. Furthermore, it was recently shown that disorder induces some
significant interband scattering between two Weyl nodes or between topological and
trivial bands [Sykora et al., 2020b]. Such a coupling is expected to strongly reduce
the amplitude of signatures related to the chiral anomaly in transport measurements.
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In this chapter, we report on a detailed study of the magneto-transport prop-
erties at very low temperatures, in the sub-Kelvin range. Remarkably, a resistivity
upturn is evidenced below 4 K, which comes along with an isotropic negative lon-
gitudinal magneto-resistance at low fields. This behavior was reproduced in all the
nanostructures measured (S1, S2, S3 and S4) and applying the magnetic field in all
directions using a 2T-sphere 3D vector magnet (in-plane orientation parallel to the
current, in-plane orientation perpendicular to the current and out-of-plane orien-
tation). The isotropic nature of the NMR was further confirmed by a complete 2D
mapping with an in-plane magnetic field for sample S1. These experimental results
are well reproduced by numerical simulations based on the exact band structure of
WTe2, which allows us to identify a novel mechanism for the NMR due to the band
structure topology, as a signature of high-energy Weyl fermions, when the Fermi
energy lies far away from the Weyl nodes.

5.2 Low-field transport properties

5.2.1 In-plane Magnetoresistance at 4.2K

At 4.2 K, the three samples show a large MR for a magnetic field applied out-of plane,
which corresponds to the XMR, discussed in Chapter 4. Due to this large response,
some special care was taken for in-plane measurements, so as to reduce misalignment
effects. Furthermore, since the XMR has nearly no more temperature dependence

FIGURE 5.1: Angular dependence of the resistance for sample S3, measured at T = 4.2 K and
with a 2 T magnetic field rotated from the out-of-plane orientation (θ = 0°) to an in-plane
direction (θ = 90°). A fit with a sine function in red dashed line is used to determine the

angular shift corresponding to the misalignment.
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FIGURE 5.2: In-plane magneto-resistance of samples S1, S2 and S3, as measured at T = 4.2
K for a current I = 10 µA

below 4.2 K and because at this temperature the low-field NMR is vanishingly small,
the XMR contribution could be easily removed by substracting this measurement
from our data at very low temperature. This allows us to reveal an effect that remains
several orders of magnitude smaller than the XMR. The misalignment between
the sample normal and the perpendicular field could be identified by rotating the
magnetic field around one of the in-plane axis and analysing the cosine dependence,
a misalignment of less than 5° could be identified depending on the axis and of the
sample (figure 5.1).

The in-plane magnetoresistance of our samples at 4.2 K is presented in figure
5.2. In this figure, the in-plane magnetoresistance is very small as compared to the
out-of-plane magnetoresistance. Nevertheless, a negative MR is clearly observed in
the in-plane configuration, when the magnetic field is applied parallel to the electric
field. Due to its small amplitude, the careful sample alignment is necessary to unveil
this contribution. A deeper analysis of this negative magnetoresistance at very low
temperature, where this effect is orders of magnitude larger, will be made in the next
section.

Even for a good alignment, when the in-plane magnetic field is applied per-
pendicular to the current, our three samples all show different amplitude of the
magnetoresistance. A small misalignment leading to an out-of-plane component of
the MR could be invoked for the samples S1 and S2 since the MR is almost quadratic.
However, the strong linear behavior of the MR of S3 can not be ascribed to an XMR
component due to such a small misalignment. More quantitatively, the positive MR
can be fitted with a power law Bα with α = 1.15. Such a power law was already
reported by others [Zhao et al., 2015], but its origin remains elusive. Song and al
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attributed for instance a linear MR to the presence of a smooth disorder for materials
with large carrier mobilities [Song et al., 2015]. Nevertheless, our numerical simula-
tions were not able to reproduce this power law dependence of the in-plane positive
MR at T = 4.2 K.

5.2.2 Very low temperature dependence of the longitudinal resis-

tance

By cooling further the nanostructures in a dilution fridge, an upturn in the resistance
appears at around T ≈ 4 K. As shown in figure 5.3, the resistance increases between
7 to 14 % between 4 K and 100 mK depending on the sample. The gap in the different
curves is due to the difficulty to stabilize the temperature in the range 850-1200 mK
with the 3He-4He dilution refrigerator.

In order to avoid any temperature gradient between the thermometer and the
sample, we compared the resistance of S1 measured during the cooldown with some
measurements realized using a temperature stabilization. With this method, the
sample is first cooled down to the base temperature (T = 100 mK) temperature where
it stabilizes during a significant time in order to reach the electronic base temperature.
Then, the temperature of the sample is increased in steps of 100 mK and at each
temperature, we wait until a stable state is reached (10 mn). Finally, we measure
the sample resistance with respect of time and average the value of the resistance
over the last 30 points to further decrease the error bar. This allow us to have a time
equilibrium measurement of the resistance. On the measurements of sample S1, a
large noise appeared between 600 and 800 mK due to some temperature instabilities

FIGURE 5.3: Temperature dependence of the resistance, for all three samples, as measured
with a current I = 1 µA. S1 was measured in a first cooldown while S2 and S3 were

measured together in a second cooldown.
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during this cooldown. The temperature dependence of S2 and S3 was taken during a
slow warm up of the system between 1.2 and 4.2 K and during a slow cooldown of
the system (8 hours) between 0.05 to 0.8 K.

The temperature dependence of S1 shows an onset of a plateau at T < 200 mK
possibly indicating either that the actual electronic base temperature is about 200
mK for these measurements or more probably that it is a saturation of the effect
leading to the negative magnetoresistance at very low temperature. The amplitude
of this effect is about 14 % for S1 and S3, 7 % for S2. As mentioned in the chapter
4, S1, S2 and S3 are showing different disorder (amplitude and correlation length).
Hence these differences of amplitude could be related to the disorder. Indeed, S1 and
S3 are described by the same exponent of the XMR power-law and show a similar
amplitude of the negative magnetoresistance.

5.2.3 Isotropic negative magneto-resistance

To better understand the nature of this resistance increase at very low temperatures,
we investigated the in-plane MR in details. The results are shown for sample S1, but
similar results were obtained with samples S2 and S3. As seen in 5.4 (left), the MR is
associated to a positive magneto-conductance, which shows its suppression under
moderate magnetic fields. Almost equivalent results are obtained for an in-plane
magnetic field being applied either parallel or perpendicular to the current. A very
small anisotropy is visible, an effect that will be explained in more details in the next
section. Using a 3D vector magnet, this in-plane magnetoresistance was mapped

FIGURE 5.4: Left : In-plane magnetoresistance of S1, measured at 100 mK for I = 1 µA.
Right : Mapping of the in-plane magnetoresistance of S1, measured at 100 mK for I = 1 µA,
done by setting the magnetic field parallel to the electrical field and sweeping the magnetic

field perpendicular to the electric field.
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FIGURE 5.5: Evolution of the magnetoresistance for different temperatures of S1 and a
current I = 1 µA : a) in-plane, b) out-of-plane

for a magnetic field along all in-plane directions, thus confirming the isotropy of
this negative MR. The amplitude of the MR excludes any quantum coherence effect
like the weak-antilocalization since its amplitude is about 35 G0 at 2 T, G0 being the
quantum of conductance [Datta, 1995].

To investigate the temperature dependence of this negative MR, the temperature
was stabilized at different temperature and the magnetic field swept. Due to possible
heating effects occuring at low magnetic fields when the field is swept through zero,
we also performed some static measurements in the low-field regime. In this case,
we fixed both the temperature and the magnetic field and recorded the resistance as

FIGURE 5.6: a) Comparison of the relative magnetoresistance ∆R(B) = R(T = 100 mK,B)-
R(T = 4.2 K,B) of S1 for the three different magnetic field direction, b) Temperature depen-
dence of the relative resistance (R(T)− R(4.2 K))/R(4.2K, B = 0 T) of S1 as a function of
an out-of-plane magnetic field, showing both the temperature-dependent negative MR and

the temperature independent positive MR
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FIGURE 5.7: Hall resistivity as a function of an out-of-plane magnetic field of S1 for different
temperatures and a current of 1 µA

a function of time. After stabilization, we averaged our data over 30 measurements
in order to reduced the noise level, and the magnetic field was then changed step by
step. Static measurements were made between -200 mT and 200 mT whereas slow
magnetic field sweeps were realized for |B| > 200 mT, with a perfect continuity,
these data are patched together and shown at different temperatures in figure 5.5.
The temperature dependence of the magnetoresistance was measured from 100 mK
to 1.25 K for an in-plane magnetic field perpendicular to the current as well as for an
out-of-plane magnetic field.

Considering the out-of-plane MR at very low temperature, the negative lon-
gitudinal magnetoresistance appears as shown in the right panel of figure 5.6,
after substracting the background measured at 4.2 K. From the plot of ∆R(B) =
R(T=100mK,B)− R(T=4.2K,B), performed for all three directions, it is very clear
that this effect is almost isotropic. This result was confirmed on the four nanostruc-
tures measured (S1, S2, S3 and S4). Importantly, this evolution of the negative MR
goes along with a significant change of the Hall resistance.

The origin of this MR cannot be attributed to a chiral anomaly for the following
reasons :

• the position of the Fermi energy is far away below the two Weyl nodes

• the coupling between the two Weyl nodes of opposite chirality by a static
disorder strongly reduces a possible chiral imbalance for B ‖ E [Sykora et al.,
2020b]

• the negative MR is isotropic.
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Instead, our alternative explanation consider the effect of the magnetic field and
the disorder on the band structure and its consequences on the transport properties.
This evolution is corroborated by the change observed in the Hall resistivity at very
low temperature (figure 5.7). In the next section, we discuss this novel mechanism,
related to the Weyl nature of the band structure, which captures all details of our
experimental findings.

5.3 Theory and discussion

In the chapter 4, we already saw that numerical simulations considering the exact
band structure of WTe2 are able to reproduce with a good accuracy the magnetore-
sistance at high temperature (T > 4.2 K), allowing us to understand the origin of
the XMR subquadraticity and the role played by disorder. Here again, such nu-
merical treatment shed light on this phenomena and give us some unambiguous
understanding of the origin of both the negative magnetoresistance and the change
in the Hall magnetoresistance. Using the same formalism as already described above,
it was possible to show that, in order to maintain the global charge neutrality, the
chemical potential drifts at very low temperature. Such a drift implies a temperature
dependence of the resistance that is very likely at the origin of the resistance upturn
observed in our experiments. A very similar effect happens when the magnetic field
is applied (figure 5.8). Considering such a drift of the chemical potential, it is possible
to reproduce the negative MR results.

FIGURE 5.8: Numerical calculations of the chemical potential versus the magnetic field
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Magnetic field dependence

The effect of a magnetic field is at first sight to move the Weyl nodes of different
chirality apart from each other. This can be easily understood by considering the
effect of a Zeeman interaction in both a normal metal and a Weyl semimetal. In a
normal metal, a Zeeman term leads to an energy splitting of the spin up and spin
down electronic bands, as shown in the left panel of figure 5.9. Generally, the total
density of states changes only very weakly and the MR measured is therefore very
small.

The case of Weyl semimetals is qualitatively different. For the sake of clarity,
we consider now the case of a Weyl semimetal of type I but similar effects occur in
a type II Weyl semimetal. In such a system the minimal Hamiltonian including the
Zeeman term is :

H = ±h̄vσ · k + µBgB · σ (5.1)

with ± depending on the chirality, v the fermi velocity, σ the Pauli matrices, k the
wave vector, g the gyromagnetic ratio and B the magnetic field. Considering a

FIGURE 5.9: Sketch of the modification of the band structure with a Zeeman energy in a) a
trivial metal, b) a Weyl semimetal. The dot lines represent the band structure for a magnetic
field B=0 whereas the straight lines correspond to B 6= 0. If B 6= 0, a Zeeman term in the
Hamiltonian shifts the electron band of spin up and spin down apart in a trivial metal. In
the case of a Weyl semimetal two cases have to be distinguished : if the Fermi energy is
far away from the Weyl nodes (blue dashed line), a Zeeman term shift the Weyl nodes in
momentum, increasing the DOS at the Fermi level and leading to a shift of the chemical
potential (blue straight line). This effect does not take place if the Fermi energy is close to

the Weyl nodes (grey line).
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FIGURE 5.10: Numerical simulation of the magnetoresistivity at 0 K for a magnetic field
parallel to the current ρx and perpendicular to the current ρy

magnetic field in the x direction, it reads :

H = ±h̄vσyky ± h̄vσzkz ± h̄vσxkx + µBgBxσx (5.2)

In this case, the Zeeman term shifts the Weyl nodes position of a wave vector δkx =

±µBgBx
h̄v depending on their chirality.

This effect is illustrated in figure 5.8. Very importantly, this effect only matters
when the Fermi energy is far enough from the Weyl nodes, above the Lifshitz tran-
sition. Indeed, if EF is close to the Weyl nodes (the grey line on the figure 5.9), the
position of the Fermi pockets changes in the real space but not their size. Therefore,
the position of the Fermi energy is not influenced by an external magnetic field. On
the contrary, if the Fermi energy is far away from the Weyl nodes (beyond the Lifshitz
transition, blue line in figure 5.9), the magnetic field strongly influences the size of the
Fermi pockets. Due to charge conservation, this effect induces a shift of the chemical
potential in order to ensure the charge neutrality. This shift changes the density of
states, which explains the magnetoresistance observed in both the longitudinal and
the Hall measurements.

As shown in chapter 4, it is possible to calculate the magnetoresistance by
numerical simulations including a finite disorder. As shown in figure 5.10, the
magnetoresistance for an in-plane magnetic field parallel or perpendicular to the
current orientation is well reproduced. The simulations capture the almost isotropic
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behavior and also reveal the small in-plane anisotropy between the two in-plane axes.
We note that not only the shape of the MR is reproduced but there is also a rather
good quantitative agreement between experiments and calculations. This work is
still in progress, with the aim to understand the effect of the disorder (amplitude
and nature -short range or long range-) on this negative MR, in order to better fit our
experimental data.

Temperature dependence

To better understand the temperature dependence of the negative MR, let us consider
the formula of the conductivity at T = 0 and T 6= 0 :

σT=0 = e2DOS× D = e2DOS× vFltr
d

(5.3)

σT 6=0 = e2
∫ +∞

−∞
DOS(E)× vF(E)ltr(E)

d
∂ fFD(E)

∂E
dE (5.4)

with D the diffusion coefficient, DOS the density of states, ltr the transport length
and d the dimensionality of the system. In the expression, two parameters could
explain such a change in the resistivity, either an abrupt change in the density of
states or an abrupt change in the transport length. There is no reason for the Fermi
velocity to change at such a low temperature if the density of states is not changing.
As shown in figure 5.11, the DOS calculated from numerical simulations shows only

FIGURE 5.11: Density of states of WTe2 calculated around the compensation
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a few percent change around EF = 0 eV over an energy range given by 4 kBT which is
about 1.2 meV at 4 K. The conductivitity can be therefore expressed as:

σT 6=0 = e2DOS× vF

∫ +∞

−∞
· ltr(E)

d
∂ fFD(E)

∂E
dE (5.5)

The origin of the temperature dependence of the conductivity at very low tem-
perature is very likely induced by the energy dependence of the transport length.
Ongoing numerical simulations are focusing on this specific question of the tempera-
ture dependence of the transport length in order to confirm the origin of the upturn
of the resistance at very low temperature.

5.4 Conclusion

In this chapter, we have measured the temperature dependence of the resistance of
different nanostructures of WTe2 that all show an upturn of the resistance below
4.2 K. Such a temperature dependence is very probably related to a strong energy
dependence of the transport length. Concomitantly, an isotropic negative magnetore-
sistance was observed at very low temperature; a feature that cannot be attributed to
the chiral anomaly but rather to the effect of the magnetic fields on the band structure
of WTe2.

The NMR was fully characterized as a function of the magnetic field at very
low temperature. All samples show some qualitative agreement but with small
quantitative differences in their amplitudes that could be related to different degrees
of disorder. Numerical simulations show that this new mechanism is related to the
Weyl nature of the band structure that is at the origin of an increase of the DOS when
the magnetic field is swept. This effect only happens if the Fermi energy is located
far away from the Weyl nodes. Due to charge neutrality, the increase of the DOS is
compensated by a shift of the chemical potential that induces a NMR.
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Chapter 6

CONCLUSION

In this thesis, we investigated the magneto-transport properties of monocrystalline
disordered nanostructures of WTe2, a type-II Weyl semimetal, with the typical de-
gree of disorder and charge doping as investigated by other groups. High-quality
nanostructures were obtained by two different growth methods, with the initial goal
to perform a comparative study so as to better understand the influence of disorder
on charge transport properties. Our results show that the complex band structure of
WTe2 still plays a primary role and that its multi-band nature must be considered in
order to describe the magneto-resistance processes in disordered nanostructures. Fur-
thermore, we evidenced that the non-trivial topology of this Weyl semimetal results
in a low-field negative magneto-resistance due to high-energy Weyl quasi-particles.
This new mechanism thus occurs when the Fermi energy is far away from the Weyl
nodes, contrary to that one related to the chiral anomaly, and it exists in the nearly
charge-compensation regime, where the XMR is also observed.

This study of WTe2 nanostructures allowed us to understand the extremely
large magnetoresistance of this material, beyond previous studies. The Shubnikov-de
Haas analysis revealed the different carrier densities, for each band, and showed
the robustness of the charge compensation in WTe2, with charge carrier densities
equal to 3 × 1019 cm−3 for both electrons and holes for thicknesses larger than 50 nm.
For thinner nanostructures, a study of Shubnikov-de Haas oscillations has reported
that the band structure is slowly changing with the thickness, with an increasing
electron-hole band gap, [Xiang et al., 2018], leading at the monolayer limit to the
realization of a quantum spin Hall insulator. In the bulk-band limit, our analysis
revealed some limits of the two-band approximation used in some previous studies,
which cannot give access to the exact average carrier densities nor account for the
XMR subquadratic behavior. A multi-band model was thus developed and some
calculations within a three-band model (two hole bands and a single electron band),
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taking carriers densities infered from SdH oscillations into account, allowed us to bet-
ter understand the subquadratic behavior. This power-law dependence was shown
not to be directly related to the degree of disorder but, rather, to be the consequence
of large difference in the carrier mobilities between the bands. Considering the real
band structure of bulk WTe2, some numerical simulations with a gaussian potential
for disorder, acting on the multi-band structure, was investigated. These calculations
showed a non-monothonic behavior of the power-law coefficient and helped us to
better understand why the subquadratic law is not directly related to RRR values
(degree of disorder).

Nevertheless, further studies are still needed in order to better reproduce both
the longitudinal and transverse magneto-resistances. To go further from an experi-
mental point of view, it will be necessary to pattern Hall bars in order to avoid any
artefact from ohmic contacts, and confirm the role of a higher mobility hole band.
For the numerical simulations, more work needs to be done to better understand
the influence of scattering by disorder on multi-band transport. For example, a
power law coefficient above two was identified by theory, but never observed in
experiments.

Importantly, this work has clarified the apparent paradox that both the extremely-
large positive MR and the low-field negative MR could be observed in the near-charge
compensation regime. Whereas the latter is often interpreted as the signature of
the chiral anomaly for low-energy Weyl fermions, we give evidence for another
mechanism that is associated to high-energy Weyl fermions. This effect takes its root
in the shift in impulsion of the Weyl nodes by a magnetic field, leading to an increase
of the DOS if the Fermi energy is far away from the Weyl nodes. This results in a
shift of the chemical potential and to a nearly isotropic negative magnetoresistance,
independent from the relative orientation of the magnetic and electric fields.

Whereas the magnetic-field dependence of the negative MR, as well as its small
in-plane anisotropy, is well captured by our model, a better understanding of the
temperature dependence still requires some more experiments, possibly using an
electrical gate. For instance, starting with a Fermi level at the perfect compensation,
it will be interesting to shift it closer to the Weyl nodes, this could validate the picture
that close to the Weyl nodes, the density of states does not change and so the chemical
potential does not shift in an experimental study. It will also be interesting to do
quantum capacitance measurements that would give direct access to the density of
states. In addition, new numerical calculations are needed so as to better under-
stand the influence of both the band structure and disorder on the amplitude and
anisotropy of the negative MR. For instance, the amplitude was found to vary from
sample to sample in our experiments. This could be related to the different degrees
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of disorder in the nanostructures or could be due to a different position of the Fermi
level. Furthermore, the anisotropic in-plane magnetoresistance that already appears
at 4.2 K is not yet understood. This anisotropic magnetoresistance could be the
reason for a misinterpretation of the negative MR in terms of the chiral anomaly, as
reported in some studies. Our study highlights the need for a careful analysis of the
negative magnetoresistance, if to confirm it as a signature of the chiral anomaly in
Weyl semimetal.

More generally, this work calls for a similar multi-band analysis of magneto-
transport measurements in other materials related to WTe2. The analysis of the XMR
subquadratic law realized here can also be made for MoTe2 and other solid solution
compounds W1−xMoxTe2, all with similar band structures [Deng et al., 2016] [Huang
et al., 2016] [Belopolski et al., 2016]. Regarding the negative magnetoresistance far
from the Weyl nodes, the origin of the temperature dependence related to a possible
change of the transport length needs to be confirmed but it would be interesting
to study the solid solution compounds because as x increases, the Fermi energy
increases and gets closer to the Weyl nodes. This could be an interesting alternative
to the study of the energy dependence of the negative MR in WTe2. Ultimately,
by decreasing the energy of Weyl fermions, a crossover may be observed from the
nearly-isotropic to the anisotropic negative MR, the latter being induced by the chiral
anomaly, provided that the inter-band scattering rate remains small (that is, for a
small degree of disorder). On the other hand, due to a too large difference in their
band structures, other type-II Weyl semimetals such as WP2 or TaIrTe4 may not
show similar effects as those studied here with WTe2 as shown in the Appendix A
[Belopolski et al., 2017] [Koepernik et al., 2016]. To precise this point and considering
WP2, the two Weyl points next to each other in the band structure are of the same
chirality, thus, the magnetic field will not increase the density of states for a Fermi
energy far away from the Weyl nodes.
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[Pletikosić et al., 2014] I. Pletikosić, M. N. Ali, A. V. Fedorov, R. J. Cava, and T. Valla. Electronic

structure basis for the extraordinary magnetoresistance in WTe2. Physical Review Letters,

113(21), nov 2014.

[Potter et al., 2014] A. C. Potter, I. Kimchi, and A. Vishwanath. Quantum oscillations from

surface Fermi arcs in Weyl and Dirac semimetals. Nature Communications, 5(1):1–6, oct

2014.

[Prange and Girvin, 1990] R. E. Prange and S. M. Girvin. The Quantum Hall effect. Springer-

Verlag, 1990. ISBN 9780387971773.

[Qian et al., 2014] X. Qian, J. Liu, L. Fu, and J. Li. Quantum spin hall effect in two - Dimen-

sional transition metal dichalcogenides. Science, 346(6215):1344–1347, dec 2014.

[Qu et al., 2015] F. Qu, A. J. Beukman, S. Nadj-Perge, M. Wimmer, B. M. Nguyen, W. Yi,

J. Thorp, M. Sokolich, A. A. Kiselev, M. J. Manfra, C. M. Marcus, and L. P. Kouwenhoven.

Electric and Magnetic Tuning between the Trivial and Topological Phases in InAs/GaSb

Double Quantum Wells. Physical Review Letters, 115(3), 2015.

[Ralph, 2020] D. C. Ralph. Berry curvature, semiclassical electron dynamics, and topological

materials: Lecture notes for Introduction to Solid State Physics. 2020. URL http:

//arxiv.org/abs/2001.04797.

[Ryu et al., 2010] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. Ludwig. Topological insu-

lators and superconductors: Tenfold way and dimensional hierarchy. New Journal of
Physics, 12(6):065010, jun 2010.

http://arxiv.org/abs/2001.04797
http://arxiv.org/abs/2001.04797


References 115

[Sajadi et al., 2018] E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S. Luescher,

X. Xu, J. A. Folk, and D. H. Cobden. Gate-induced superconductivity in a monolayer

topological insulator. Science, 362(6417):922–925, nov 2018.

[Sanchez-Yamagishi et al., 2017] J. D. Sanchez-Yamagishi, J. Y. Luo, A. F. Young, B. M. Hunt,

K. Watanabe, T. Taniguchi, R. C. Ashoori, and P. Jarillo-Herrero. Helical edge states and

fractional quantum Hall effect in a graphene electron-hole bilayer. Nature Nanotechnology,

12(2):118–122, feb 2017.

[Sharma et al., 2017] G. Sharma, P. Goswami, and S. Tewari. Chiral anomaly and longitudinal

magnetotransport in type-II Weyl semimetals. Physical Review B, 96(4):1–6, 2017.

[Shekhar et al., 2015] C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers,

U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin,

C. Felser, and B. Yan. Extremely large magnetoresistance and ultrahigh mobility in the

topological Weyl semimetal candidate NbP. Nature Physics, 11(8):645–649, jul 2015.

[Shi et al., 2019] S. Shi, S. Liang, Z. Zhu, K. Cai, S. D. Pollard, Y. Wang, J. Wang, Q. Wang,

P. He, J. Yu, G. Eda, G. Liang, and H. Yang. All-electric magnetization switching

and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nature
Nanotechnology, 14(10):945–949, 2019.

[Šmejkal et al., 2017] L. Šmejkal, T. Jungwirth, and J. Sinova. Route towards Dirac and Weyl

antiferromagnetic spintronics. Physica Status Solidi - Rapid Research Letters, 11(4):1700044,

apr 2017.

[Soluyanov et al., 2015] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B. A.

Bernevig, A. Bernevig, B. A. Bernevig, and A. Bernevig. Type-II Weyl semimetals.

Nature, 527(7579):495–498, nov 2015.

[Son and Spivak, 2013] D. T. Son and B. Z. Spivak. Chiral anomaly and classical negative

magnetoresistance of Weyl metals. Physical Review B, 88:104412, 2013.

[Song et al., 2015] J. C. Song, G. Refael, and P. A. Lee. Linear magnetoresistance in metals:

Guiding center diffusion in a smooth random potential. Physical Review B - Condensed
Matter and Materials Physics, 92(18):180204, nov 2015.

[Song et al., 2014] Z. Song, C. C. Liu, J. Yang, J. Han, M. Ye, B. Fu, Y. Yang, Q. Niu, J. Lu, and

Y. Yao. Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX

(X=H, F, Cl and Br) monolayerswith a record bulk band gap. NPG Asia Materials, 6(12):

e147, jan 2014.

[Sonin, 2010] E. B. Sonin. Spin currents and spin superfluidity. Advances in Physics, 59(3):

181–255, may 2010.



116 References

[Sürgers, 2018] C. Sürgers. Electrical switching of the anomalous Hall effect: The anomalous

Hall effect in an antiferromagnet can be switched on and off using an electric field to

alter the strain in the material. Nature Electronics, 1(3):154–155, 2018.

[Sykora et al., 2020a] S. Sykora, A. Hübsch, and K. W. Becker. Generalized diagonalization

scheme for many-particle systems. Physical Review B, 102(16):1–19, 2020a.

[Sykora et al., 2020b] S. Sykora, J. Schoop, L. Graf, G. Shipunov, I. V. Morozov, S. Aswartham,

B. Büchner, C. Hess, R. Giraud, and J. Dufouleur. Disorder-induced coupling of Weyl

nodes in WTe$_2$. Physical Review Research, 2, 2020b.

[Tachibana, 2017] M. Tachibana. Beginner ’ s Guide to Flux Crystal Growth. NIMS Monographs.

Springer Japan, 2017. ISBN 9784431565864.

[Tan et al., 2020] A. Tan, V. Labracherie, N. Kunchur, A. U. B. Wolter, J. Cornejo, J. Dufouleur,

B. Büchner, A. Isaeva, and R. Giraud. Metamagnetism of Weakly Coupled Antiferro-

magnetic Topological Insulators. Physical Review Letters, 124(19), 2020.

[Tang et al., 2017] S. Tang, C. Zhang, D. Wong, Z. Pedramrazi, H. Z. Tsai, C. Jia, B. Moritz,

M. Claassen, H. Ryu, S. Kahn, J. Jiang, H. Yan, M. Hashimoto, D. Lu, R. G. Moore, C. C.

Hwang, C. Hwang, Z. Hussain, Y. Chen, M. M. Ugeda, Z. Liu, X. Xie, T. P. Devereaux,

M. F. Crommie, S. K. Mo, and Z. X. Shen. Quantum spin Hall state in monolayer 1T’-WTe

2. Nature Physics, 13(7):683–687, jul 2017.

[Thouless et al., 1982] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. Den Nijs. Quan-

tized hall conductance in a two-Dimensional periodic potential. Physical Review Letters,

49(6):405–408, aug 1982.

[Thoutam et al., 2015] L. R. Thoutam, Y. L. Wang, Z. L. Xiao, S. Das, A. Luican-Mayer, R. Di-

van, G. W. Crabtree, and W. K. Kwok. Temperature-Dependent Three-Dimensional

Anisotropy of the Magnetoresistance in WTe2. Physical Review Letters, 115(4), jul 2015.

[Wan et al., 2011] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov. Topological

semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates.

Physical Review B - Condensed Matter and Materials Physics, 83(20):205101, may 2011.

[Wang and Qian, 2019] H. Wang and X. Qian. Ferroelectric nonlinear anomalous Hall effect

in few-layer WTe2. npj Computational Materials, 5(1):1–8, dec 2019.

[Wang et al., 2016a] Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M. Wang, K. Xu,

Z. Huang, Z. Wang, H. Z. Lu, D. Xing, B. Wang, X. Wan, and F. Miao. Gate-tunable

negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe 2.

Nature Communications, 7(May):1–6, oct 2016a.

[Wang et al., 2016b] Y. Wang, K. Wang, J. Reutt-Robey, J. Paglione, and M. S. Fuhrer. Break-

down of compensation and persistence of nonsaturating magnetoresistance in gated

WT e2 thin flakes. Physical Review B, 93(12):121108, 2016b.



References 117

[Wang et al., 2019] Y. Wang, L. Wang, X. Liu, H. Wu, P. Wang, D. Yan, B. Cheng, Y. Shi,

K. Watanabe, T. Taniguchi, S.-J. Liang, and F. Miao. Direct Evidence for Charge

Compensation-Induced Large Magnetoresistance in Thin WTe 2. Nano Letters, 19

(6):3969–3975, jun 2019.

[Wang et al., 2013] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang. Three-dimensional Dirac

semimetal and quantum transport in Cd 3As2. Physical Review B - Condensed Matter and
Materials Physics, 88(12):125427, sep 2013.

[Weeks et al., 2011] C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu. Engineering a Robust

Quantum Spin Hall State in Graphene via Adatom Deposition. Physical Review X, 1(2):

1–15, oct 2011.

[Weng et al., 2015] H. Weng, C. Fang, Z. Fang, B. Andrei Bernevig, and X. Dai. Weyl semimetal

phase in noncentrosymmetric transition-metal monophosphides. Physical Review X, 5(1):

011029, mar 2015.

[White and Meeson, 2002] G. K. White and P. J. Meeson. Experimental techniques in low-
temperature physics. Oxford University Press, 4 edition, 2002. ISBN 978-0198514275.

[Woods et al., 2017] J. M. Woods, J. Shen, P. Kumaravadivel, Y. Pang, Y. Xie, G. A. Pan, M. Li,

E. I. Altman, L. Lu, and J. J. Cha. Suppression of Magnetoresistance in Thin WTe2 Flakes

by Surface Oxidation. ACS Applied Materials and Interfaces, 9(27):23175–23180, 2017.

[Wu et al., 2018] S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and

P. Jarillo-Herrero. Observation of the quantum spin Hall effect up to 100 kelvin in a

monolayer crystal. Science, 359(6371):76–79, jan 2018.

[Wu et al., 2015] Y. Wu, N. H. Jo, M. Ochi, L. Huang, D. Mou, S. L. Bud’Ko, P. Canfield,

N. Trivedi, R. Arita, and A. Kaminski. Temperature-Induced Lifshitz Transition in WTe2.

Physical Review Letters, 115(16):1–6, oct 2015.

[Xia et al., 2009] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S.

Hor, R. J. Cava, and M. Z. Hasan. Observation of a large-gap topological-insulator class

with a single Dirac cone on the surface. Nature Physics, 5(6):398–402, may 2009.

[Xiang et al., 2018] F. X. Xiang, A. Srinivasan, Z. Z. Du, O. Klochan, S. X. Dou, A. R. Hamilton,

and X. L. Wang. Thickness-dependent electronic structure in WTe2 thin films. Physical
Review B, 98(3):35115, 2018.

[Xu et al., 2015] S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar,

G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang,

A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan. Discovery of a Weyl

fermion semimetal and topological Fermi arcs. Science, 349(6248):613–617, aug 2015.



118 References

[Yang et al., 2011] Y. Yang, Z. Xu, L. Sheng, B. Wang, D. Y. Xing, and D. N. Sheng. Time-

reversal-symmetry-broken quantum spin Hall effect. Physical Review Letters, 107(6):

066602, aug 2011.

[Yao et al., 2019] M. Y. Yao, N. Xu, Q. S. Wu, G. Autès, N. Kumar, V. N. Strocov, N. C. Plumb,

M. Radovic, O. V. Yazyev, C. Felser, J. Mesot, and M. Shi. Observation of Weyl Nodes in

Robust Type-II Weyl Semimetal WP2. Physical Review Letters, 122(17):176402, may 2019.

[Yoshimi et al., 2015] R. Yoshimi, A. Tsukazaki, Y. Kozuka, J. Falson, K. S. Takahashi, J. G.

Checkelsky, N. Nagaosa, M. Kawasaki, and Y. Tokura. Quantum Hall effect on top and

bottom surface states of topological insulator (Bi1-x Sbx)2 Te3 films. Nature Communica-
tions, 6(1):1–6, apr 2015.

[Young et al., 2012] S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe.

Dirac semimetal in three dimensions. Physical Review Letters, 108(14):140405, apr 2012.

[Zhang et al., 2017] E. Zhang, R. Chen, C. Huang, J. Yu, K. Zhang, W. Wang, S. Liu, J. Ling,

X. Wan, H. Z. Lu, and F. Xiu. Tunable Positive to Negative Magnetoresistance in

Atomically Thin WTe2. Nano Letters, 17(2):878–885, feb 2017.

[Zhang et al., 2009] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang. Topological

insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature
Physics, 5(6):438–442, 2009.

[Zhao and Wang, 2020] A. Zhao and B. Wang. Two-dimensional graphene-like Xenes as

potential topological materials. APL Materials, 8(3):030701, mar 2020.

[Zhao et al., 2020] B. Zhao, D. Khokhriakov, Y. Zhang, H. Fu, B. Karpiak, A. M. Hoque, X. Xu,

Y. Jiang, B. Yan, and S. P. Dash. Observation of charge to spin conversion in Weyl

semimetal WTe 2 at room temperature . Physical Review Research, 2(1):13286, 2020.

[Zhao et al., 2015] Y. Zhao, H. Liu, J. Yan, W. An, J. Liu, X. Zhang, H. Wang, Y. Liu, H. Jiang,

Q. Li, Y. Wang, X. Z. Li, D. Mandrus, X. C. Xie, M. Pan, and J. Wang. Anisotropic

magnetotransport and exotic longitudinal linear magnetoresistance in WTe2 crystals.

Physical Review B - Condensed Matter and Materials Physics, 92(4), jul 2015.

[Zhao and Wang, 2013] Y. X. Zhao and Z. D. Wang. Topological classification and stability of

Fermi surfaces. Physical Review Letters, 110(24):240404, jun 2013.

[Zheng et al., 2016] F. Zheng, C. Cai, S. Ge, X. Zhang, X. Liu, H. Lu, Y. Zhang, J. Qiu,

T. Taniguchi, K. Watanabe, S. Jia, J. Qi, J. H. Chen, D. Sun, and J. Feng. On the Quantum

Spin Hall Gap of Monolayer 1T’-WTe2. Advanced Materials, 28(24):4845–4851, jun 2016.

[Zyuzin and Burkov, 2012] A. A. Zyuzin and A. A. Burkov. Topological response in Weyl

semimetals and the chiral anomaly. Physical Review B - Condensed Matter and Materials
Physics, 86(11):115133, sep 2012.



119

Appendix A

TWO-BAND MODEL FITS OF S3 DATA

FIGURE A.1: Two-band model fit of the longitudinal resistivity, relative resistivity and Hall
resistivity considering different magnetic field range at 4.2 K

In chapter 4, the analysis of the Shubnikov-de Haas oscillations show that the
electron and hole carrier densities were equal to 3 × 1019 cm−3. Considering the
two-band model approximation to fit our data, it was shown that all the samples
were not giving this same carrier densities. To complete this discussion, the longitu-
dinal resistivity and Hall resistivity of the sample S3 are fitted considering different
magnetic field ranges and the relative resistivity δR/R0 instead of the longitudinal
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FIGURE A.2: Residue of the two-band model fit of the longitudinal resistivity, relative
resistivity (multiplied by ρ0 to be able to compare it with the residue of the longitudinal

resistivity fit) and Hall resistivity considering different magnetic field range at 4.2 K

one. As shown in figure A.1, the longitudinal resistivity is best fitted at low magnetic
field for the range up to 6 T contrary to 12 T but also taking into account the relative
resistivity. As a consequence, the parameters given for these fits are approaching
the carrier densities extracted from the SdHO. These fits confirms the limited range
to use the two-band model to do a quantitative analysis of the extremely large
magnetoresistance.

We note also that reducing the magnetic field range of the fit leads to better
reproduce the Hall resistivity. The departure of this fit from the data at higher
magnetic field cannot be considered due to the possible reduction of the signal from
the contacts too deep in the structure as mentioned in chapter 4. This results also in a
correction of the parameters and could lead on a deviation from the carrier densities
of the Shubnikov-de Haas. Nevertheless, as you can see, the longitudinal resistivity
is one order of magnitude higher than the Hall resistivity, hence reducing the error
of the Hall resistivity on this fit. A similar weight were made for the fit between the
Hall resistivity and relative resistivity.
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Appendix B

TYPE II WEYL SEMIMETALS INFORMATIONS

In the conclusion, we discussed shortly the difference between the different type
II Weyl semimetals and the possibility to see the negative magnetoresistance in
other materials of this type. The table B.1 below contains the informations of the
non-centrosymmetric type II Weyl semimetals such as :

1. the irreducible number of Weyl nodes and the total number due to reflections,

2. how the Fermi arcs connect the different Weyl nodes,

3. the position in energy of the Weyl nodes,

4. if it is possible, the position in energy where an XMR was seen due to charge
compensation.
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Appendix C

COLD FINGER DESIGN

FIGURE C.1: Drawing made by Solidworks of the new cold finger that will be used on the
He-3 system

During my PhD work, I designed a new cold finger for a new Helium-3 system
that I present here as an appendix. A cold finger is the bottom part of an insert that
is screwed in the coldest part of it. Due to the large decrease of heat conductivity
of most of materials at very low temperature, this part need to be well designed to
handle the thermalization of the sample and to be well anchor to the cold part of
the insert [Ekin, 2006]. For this purpose, the cold finger was made in copper free-
oxygen and then was gold plated due to the property of the material to catch oxygen
and degas during pumping. The design for this insert was made with the software
Solidworks (figure C.1). A particularity of transport measurements in nanostructures
is that we connect this nanostructures to a chip carrier. This carrier chip is then
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plugged on the cold finger. The need to apply a large magnetic field in different
directions of the sample lead to a removal of the wire bound that could damage the
structure. To avoid this, it is possible to use small adaptator to put the sample in
different directions. In a dilution fridge or 3He system, the space allocated to the
chip carrier is small and the possibility to use an adaptator is not possible. For this
purpose, I designed a cold finger with two different positions for the chip carrier to
be plugged. The thermalization of the sample is managed by a small cylinder that
enclose the sample part. When the cold finger is screwed in the insert, a bolt is used
to avoid the cold finger to rotate and also tighten the gasket between the cold finger
and the cold part of the insert.
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Long résumé en Français
Transport électrique dans des nanostructures du semimétal de Weyl WTe2

par Valentin LABRACHERIE

Une limitation majeure du développement des équipements électroniques
d’aujourd’hui est la consommation électrique. Depuis la loi de Moore, le nom-
bre de transistors intégré dans les circuits électriques a doublé chaque année depuis
plusieurs décennies. Alors que les dimensions des composants logique n’a cessé
de diminuer, la consommation électrique due aux interconnections est devenu si
large qu’elle peut chauffer les composants adjacents jusqu’à même les endommagés.
Une possibilité de régler ce problème et d’utiliser des courants de spins au lieu
de courant électriques, qui peuvent aussi être sans dissipation [Sonin, 2010] [Šme-
jkal et al., 2017]. Dans cette branche de la spintronique, des nouveaux matériaux
sont étudiés afin d’en trouver pouvant générer, détecter et manipuler des larges
courant de spins, ou simplement les propager. Une classe de ces matériaux sont les
matériaux dits topologiques qui possède une texture de spin dite "chiral" due à fort
couplage spin-orbit, avec des quasiparticules robustes contre les perturbations, plus
particulièrement au désordre.

Parmi ces matériaux, les semimétaux topologiques de Weyl ont été rapidement
identifiés comme une nouvelle famille de matériaux d’intérêt pour investiguer le
transport de spins chiraux. Parmi les bandes massives, la structure de bande de
volume montre une dispersion linéaire associés à des fermions de Weyl possédant une
chiralité de spin bien définie [Armitage et al., 2018]. Ainsi, contrairement aux isolants
topologiques 3D, les semimétaux de Weyl ont des états de surface topologiques mais
aussi des propriétés topologiques de volume. Ces états de volume viennent de pairs
avec des cones de Dirac de chiralité de spin opposée, appellés cones de Weyls, liés
l’un à l’autre par des arcs de Fermi qui connectent leur projection sur la surface.
Important pour leur transport en volume, ces pairs de noeuds de Weyl sont des
sources ou puits parfait de courbure de Berry. Chaque cone ayant sa propre chiralité,
les fermions de Weyl sont prédits pour produire de nouveaux effets de transport
comme un important effet Hall anormal ou une magnétorésistance négative liée à
l’anomalie chirale. Ce dernier effet résulte d’une anomalie quantique qui se traduit
par un transfert de charge entre les deux cones de chiralité opposé, pour des champ
électrique (E) et magnétiques (B) parallèles. Puisquer l’anomalie chirale n’existe que
pour B appliqué suivant la direction de E, ceci est associé à une magnétorésistance
anisotropique et, ainsi, pourrait contribuer à un effet Hall planaire.
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Une magnétorésistance anisotropique et un effet Hall planaire ont en effet
été reporté pour des films minces de WTe2, un semimétal de Weyl de type II. Dif-
férents groupes ont été étudié l’effet Hall planaire anisotropique [Li et al., 2019b]
ou l’anomalie chirale [Wang et al., 2016a] [Li et al., 2017b] [Lv et al., 2017] [Zhang
et al., 2017]. Pour des échantillons très fin, en-dessous de 10 nm, une ouverture
progressive du gap apparaît [Zheng et al., 2016]. Dans le cas de quelques couches
ou monocouche, des études récentes ont révélés les effets de la courbure de Berry
sur les propriétés de transport. L’observation d’un effet Hall anormale non-linéaire a
été reportés [Kang et al., 2019] [Ma et al., 2019] [Wang and Qian, 2019] et l’effet Hall
quantique de spin a été mis en évidence [Tang et al., 2017] [Fei et al., 2017] [Wu et al.,
2018]. WTe2 a une structure non-centrosymmetrique avec un fort couplage spin-orbit
qui prédit une large contribution à l’effet Hall de spin [Zhao et al., 2020]. Plusieurs
études se concentre sur les potentiels applications des proprités du matériau pour le
développement de source de courant de spins dans des composants logiques [Shi
et al., 2019] [Zhao et al., 2020]. Du à sa nature de Weyl de type II, la structure de bande
spécifiques de WTe2 est composé d’un croisement entre des bande de conductions et
de valences, menant à la coexistence de poches de trous et d’électrons, pour laquelle
une parfaite compensation de charge est possible. Une étude des oscillations de
Shubnikov-de Haas de volume et dans des films minces ont montrés un changement
de la structure de bandes pour des échantillons d’épaisseur comprises entre 10 et
40 nm, les bandes de trous descendant en énergie alors que les bandes d’électrons
montés [Xiang et al., 2018]. Ce changement a pour conséquences une modification
des densités de porteurs de trou et d’électron a la compensation parfaite. La coexis-
tence de trou et d’électron a pour conséquence l’apparition d’une magnétorésistance
extrêmement large mise en évidence dans des macrocristaux [Ali et al., 2014] [Luo
et al., 2015] et des films minces [Thoutam et al., 2015]. Cette magnétorésistance n’est
pas liés à des propriétés topologiques mais est de grand intérêt pour extraire des
paramétres de transport comme les mobilités et densités de porteurs.

Cependant, de simples considérations basés sur la structure de bande sim-
plifiés, comme montré en figure 1, apporte déjà importantes questions à pro-
pos de l’interprétation de certains résultats de transport en termes de propriétés
topologiques. Premièrement, les noeuds de Weyl sont bien au-dessus de l’énergie
où la compensation de charge a lieu, a peu près 50 meV. Cela apporte certains
doute sur l’apparition de la XMR et l’anomalie chirale pour un dopage donné. En
général, l’énergie de Fermi de WTe2 est positionné dans le régime de compensation
de charge, et la XMR est bien mise en évidence à basse température. Cela implique
que l’observation de l’anomalie chirale n’est pas possible à ce niveau de Fermi. Une
autre importante caractéristique lié à la XMR n’a pas été étudié à sa racine : il a été
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FIGURE 1: Illustration de la structure de bande de WTe2 avec les noeuds de Weyl indiqués
par les fléches. La dégénerescence de spin des bandes de valences et de conductions
sont levés par le couplage spin-orbit, menant à deux bands peu shiftés en energy (lignes
pleines et en tirets). Deux niveaux d’énergie sont indiqués dans la structure de bande, en
orange pour la compensation parfaite (n = p), menant à des poches de trous et d’électron

contribuant au transport et en vert où la réalisation de l’anomalie chirale a lieu.

reporté que la structure de bande peut être approximé par un modèle 2 bandes à la
compensation parfaite ce qui mène a une magnétorésistance quadratique sans satura-
tion même à haut champ magnétique aussi haut que 60 T [Ali et al., 2014]. Cependant,
une loi sous-quadratique a toujours été reporté sans explication [Thoutam et al., 2015]
[Wang et al., 2016b] [Fatemi et al., 2017] [Wang et al., 2019]. Deuxièmement, même si
l’énergie de Fermi pourrait être amené au niveau des noeuds de Weyl, l’influence du
désordre ne peut pas être négligé puisque les diffusions entre noeuds peuvent effi-
cacement supprimer les contributions topologiques au transport de charge [Sykora
et al., 2020b]. Comme discuté dans la thèse (chapitre 5), la magnétorésistance néga-
tive peut être attribué aux propriétés non-topologiques de la structure de bandes loin
des noeuds de Weyl, au-delà de la transition de Lifshitz.

Dans cette thèse, la XMR positive à haut champ et la magnétorésistance négative
à bas champ sont étudiés en détails, en regardant les propriétés de magnétotrans-
port de nanostructures de WTe2 désordonées et obtenus par différentes méthodes
de croissance, avec différent degrès de désordre. Ce manuscrit est divisé en cinq
chapitres. Le chapitre 1 donne une introduction générale des concepts topologiques,
avec une revue de l’effet Hall quantique entier et des isolants topologiques. Dans
le chapitre 2, la phase des semimétaux topologiques de Weyl est introduite, et les
propriétés de transport spécifiques sont discutées. Dans le chapitre 3, les méthodes
de croissances, la nanofabrication et le set-up de mesure sont décrits en détails. Les
deux derniers chapitre se concentrent sur les résultats obtenus durant la thèse. Le
chapitre 4 rapporte l’étude menés sur les propriétés de transport de WTe2 entrepris à
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fort champs (12 T) et décrit la magnétorésistance extrêmement large dans la cadre
d’un modèle multi-bandes. L’influence du désordre, son amplitude et sa portée, sur
la XMR est étudié en comparant des résultats obtenus avec des nanostructures avec
différentes densités de défauts et des simulations numériques. Dans le chapitre 5,
une magnétorésistance négative est nouvellement interprété comme l’influence de
fermions de Weyl loins des noeuds, comme montré par des simulations numériques.
Notre étudé expérimental montre des preuves solides pour rejeter la possibilité d’une
conséquence de l’anomalie chirale pour cette magnétorésisance négative dans WTe2.
Au lieu de cela, un nouveau mécanisme identifié dans ce travail révèle qu’une con-
tribution topologique au transport de charge existe aussi pour un niveau de Fermi
positionnée dans le régime de compensation, même loin des noeuds de Weyl, une
condition réalisée dans WTe2.



Lange abstrakt auf Deutsch
Elektrischer Transport in Nanostrukturen des Weyl-Halbmetalls WTe2

von Valentin LABRACHERIE

Heutzutage ist eine entscheidende Beschränkung in der Entwicklung von elektro-
nischen Geräten der Energieverbrauch. Nach dem Moor’schen Gesetz hat sich die
Anzahl an Transistoren in integrierten Schaltkreisen seit Jahrzehnten jedes Jahr ver-
doppelt. Während die Größe der logischen Komponenten stetig sinkt, steigt der
Energieverbrauch auf Grund von Schaltungsverbindungen so sehr, dass die Kompo-
nenten im Umfeld stark aufgeheizt und beschädigt werden können. Eine mögliche
Lösung dieses Problems ist es Spinströme zu nutzen, die sogar dissipationslos sein
können [Sonin, 2010] [Šmejkal et al., 2017]. In diesem Bereich der Spintronik werden
neue Materialien erforscht, die starke Spinströme generieren, finden und manip-
ulieren können oder sie weitertragen können. Eine Klasse von Materialien, die diese
Eigenschaften besitzen, sind topologische Materialien, die chirale Spinstrukturen
auf Grund starker Spinbahnkopplung haben, sowie lückenlose Quasiteilchen, die
widerstandsfähig gegenüber Perturbationen, die beispielsweise durch Unordnung
auftreten, sind.

Topologische Weyl Halbmetalle wurden schnell als wichtige Gruppe von Ma-
terialien identifiziert, die auf chiralen Spintransport untersucht werden können.
Abgesehen davon, dass sie sehr große Bänder besitzen, zeigt ihre Bandstruktur in
der Masse lineare Exitationen der Quasipartikel, die sich Weyl Fermionen nennen
und eine gut definierte Chiralität der Spins besitzen [Armitage et al., 2018]. Im
Gegenteil zu 3D topologischen Isolatoren haben Weyl Halbmetalle topologische
Oberflächenzustände, aber auch lückenlose topologische Massenzustände. Diese
Massenzustände sind Paare von Dirac Kegeln mit entgegengesetzten Spin Chiral-
itäten, die Weyl Kegel genannt werden und durch ihre Fermibögen verknüpft sind,
die auf der Oberfläche durch ihre Projektionen verbunden sind. Ein wichtiger Aspekt
der Transporteigenschaften ist die Tatsache, dass die Weyl Knoten eine ideale Quelle
und Abfluss für die Berrykrümmung sind. Da jeder Kegel eine eigene Chiralität be-
sitzt, ist zu erwarten, dass die Weyl Fermionen neue Effekte, wie zum Beispiel einen
starken, intrinsisch-anomalen Hall Effekt oder negativen Magnetowiderstand, der
auf die chirale Anomalie zurückzuführen ist, verursachen. Die chirale Anomalie ist
auf eine Quantenanomalie zurückzuführen, die einen Ladungsträgeraustausch zwis-
chen Kegeln mit entgegengesetzten Chiralitäten verursacht, wenn das elektrische
(E) und das magnetische (B) Feld parallel zueinander sind. Da die chirale Anomalie
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nur dann existiert, wenn B und E parallel sind, wird diese mit einem anisotropischen
Magnetowiderstand assoziiert und dementsprechend wirkt sie sich auch auf den
planaren Hall Effekt aus.

Ein anisotropischer Magnetowiderstand und der planare Hall Effekt wurden in
der Tat bereits in dünnen Schichten von Typ II Weyl Halbmetallen, wie beispielsweise
WTe2, nachgewiesen. Verschiedene Gruppen haben den anisotropisch-planaren Hall
Effekt [Li et al., 2019b] und die chirale Anomalie untersucht [Wang et al., 2016a] [Li
et al., 2017b] [Lv et al., 2017] [Zhang et al., 2017]. In sehr dünnen Proben, unter 10
nm, öffnet sich die Bandlücke von WTe2 langsam. Des Weiteren wurden in jüngsten
Studien die Auswirkungen der Berrykrümmung im wenig bis einlagigem Limit auf
ihre Transporteigenschaften untersucht. In diesen wurde von einem nichtlinearen
anomalen Hall Effekt [Kang et al., 2019] [Ma et al., 2019] [Wang and Qian, 2019], sowie
von einem quanten Spin Hall Effekt [Tang et al., 2017] [Fei et al., 2017] [Wu et al.,
2018]. Außerdem führt die nichtzentrosymmetrische Struktur von WTe2 mit starker
Spinbahnkopplung zu der Vorhersage eines sehr großen Spin Hall Effekts [Zhao et al.,
2020]. Verschiedene Studien haben sich auf eine Anwendung der Eigenschaften von
WTe2 auf die Entwicklung von Spinstromquellen spezialisiert, die Anwendung in
Datenspeichern und Logischen Geräten findet. Auf Grund seiner spezifischen Band-
struktur, die auf die Typ II Eigenschaften des Systems zurückzuführen ist, besitzt
WTe2 einen Überlappung der Valenz und Leitungsbänder, welche eine Koexistenz
von Elektronen und Löchern hervorruft, die wiederum Ladungsträgerkompensation
möglich macht. Eine Studie der Shubnikov-de Haas Oszillationen in sowohl Massen,
als auch in dünnen Schichten hat ergeben, dass sich die Bandstruktur im Bereich
zwischen 40 und 10 nm dahingehend verändert, dass die Lochbänder weniger En-
ergie besitzen als zuvor und die Elektronenbänder mehr Energie aufweisen [Xiang
et al., 2018]. Diese Veränderung führt zu verschiedenen Ladungsträgerkonzentratio-
nen bei idealer Kompensation vom Massen- zum dünnschichtigen Zustand, wenn
dieser dünner als 40 nm ist. Die Elektronen-Loch Koexistenz führt zu einem extrem
großen Magnetowiderstand, der sowohl in der Masse [Ali et al., 2014] [Luo et al.,
2015], als auch in dünnen Schichten nachgewiesen wurde [Thoutam et al., 2015].
Dieser Magnetowiderstand ist nicht auf die topologischen Eigenschaften von WTe2

zurückzuführen, ist aber trotzdem von großem Interesse bei der Ableitung von Trans-
portparameter, wie beispielsweise Ladungsträgermobilitäten und -konzentrationen.

Nichtsdestotrotz werfen simple Annahmen der vereinfachten Bandstruktur,
wie in Figur 1 skizziert, bereits wichtige Fragen zu der Interpretation der Trans-
portergebnisse im Bezug auf die topologischen Eigenschaften auf. Erstens sind die



137

FIGURE 1: Illustration der Bandstruktur von WTe2 in der die Weyl Knoten als zwei Pfeile
angegeben sind. Die Entartung der Spins in den Leitungs- und Valenzbändern wird durch
die Spinbahnkopplung aufgehoben und führt zu der Existenz von zwei untershiedlichen
Bändern die leicht verschobene Energien besitzen (durchgezogene und gestrichelte Linien).
Zwei wichtige Energieniveaus sind hier in der Bandstruktur angegeben, ein Niveau für
die ideale Kompensation (n = p) in orange, was zu zwei nichtentartete Elektronen- und
Lochtaschen führt, die zum Transport beitragen und in grün, dort wo die Verwirklichung

der chiralen Anomalie auftritt.

Weyl Knoten um ca. 50 meV von der Ladungsträgerkompensationsenergie ver-
schoben. Dies wirft Unsicherheiten bei der Beobachtung von sowohl der XMR und
der chiralen Anomalie für eine bestimmte Ladungsträgerdotierung auf. Im Allge-
meinen ist die Fermienergie in WTe2 nahe dem Ladungsträgerkompensationsbereich
gelegen und die XMR kann außerdem bei tiefen Temperaturen nachgewiesen wer-
den. Das bedeutet, dass die Beobachtung der chiralen Anomalie bei einer solchen
Energie unwahrscheinlich ist. Eine weitere Besonderheit die dem extrem großen
Magnetowiderstand zugeordnet werden kann, hat bisher noch keinen Ursprung:
es wurde berichtet, dass die Bandstruktur an der idealen Kompensation durch ein
Zweibandmodell angenähert werden kann, welches zu einem quadratischen Mag-
netowiderstand ohne Sättigung, auch bei hohen Magnetfeldern von bis zu 60 T,
führen kann [Ali et al., 2014]. Nichtsdestotrotz wurde schon vermehrt von einem
subquadratisches Gesetz ohne Erklärung berichtet [Thoutam et al., 2015] [Wang
et al., 2016b] [Fatemi et al., 2017] [Wang et al., 2019]. Zweitens, selbst wenn die
Fermienergie bis zu den Weyl Knoten hochgebracht werden kann, darf der Einfluss
der Unordnung nicht vernachlässigt werden, da Streuung innerhalb der Knoten die
topologische Beteiligung am Ladungsträgertransport effizient unterdrücken kann
[Sykora et al., 2020b]. Wie im Kapitel 5 diskutiert wird, kann der negative Mag-
netowiderstand der nicht trivialen Topologie der Bandstruktur weit weg der Weyl
Knoten und weit von dem Lifshitz-Übergang entfernt, zugeordnet werden.

In dieser Dissertation werden sowohl der positive Magnetowiderstand bei
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hohen Feld, als auch der negative niedrig-Feld Magnetowiderstand im Detail be-
trachtet, indem die Magnetotransporteigenschaften von WTe2 Nanostrukturen, die
verschiedene Grade von Unordnung aufweisen und mit verschiedenen Wachstum-
sprozessen hergestellt sind, untersucht wurden. Das Manuskript besitzt fünf Kapitel.
Im ersten Kapitel wird eine allgemeine Einleitung zu topologischen Konzepten
gegeben mit einer Zusammenfassung von sowohl dem Quanten Hall Effekt, als
auch topologischen Isolatoren. Im zweiten Kapitel wird die Weyl Halbmetallphase
vorgestellt und ihre speziellen Transporteigenschaften diskutiert. Im dritten Kapi-
tel werden die Wachstumsprozesse im Detail vorgestellt, sowie die Nanoherstel-
lungsprozesse und der Aufbau der Transportmessungen. Die letzten zwei Kapitel
befassen sich mit den Ergebnissen, die während dieser Doktorarbeit erlangt wurden.
Kapitel 4 berichtet von der Studie der Transporteigenschaften von WTe2 in hohen
Magnetfeldern und beschreibt den extrem großen Magnetowiderstand mit Bezug auf
das Multibandmodell. Der Einfluss der Stärke der Unordnung und der Reichweite
dieser (langer im Vergleich zu kurzer Reichweite) auf den extrem großen Magne-
towiderstand wird des Weiteren untersucht, indem die Ergebnisse von Nanostruk-
turen mit verschiedenen Dichten von Punktdefekten mit numerischen Berechnungen
verglichen werden. In Kapitel 5 wird der negative Magnetowiderstand als Einfluss
der Weyl Fermionen weit weg von den Weyl Knoten neu interpretiert, was durch
die numerischen Berechnungen gefestigt wird. Unsere experimentelle Studie erweist
sich als ausreichender Beweis, um die chirale Anomalie als Ursprung des negative
Magnetowiderstand in WTe2 auszuschließen. Ferner, wird ein neuer Mechanismus
identifiziert, der den nichttrivialen, topologischen Beitrag zum Ladungsträgertrans-
port beschreibt, welcher auch für eine Fermienergie im Ladungsträgerkompensa-
tionsbereich existiert, auch wenn diese weit weg von den Weyl Knoten in WTe2

ist.
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