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Abstract
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Department: Network & Computer Sciences (INFRES)

Doctor of Philosophy

Vehicular traffic analysis based on Bluetooth sensors traces

by Safa BOUDABOUS

The pervasiveness of personal radio devices and the high penetration rate of these
technologies in vehicles have, in recent years, made a strong case for the develop-
ment of new traffic measurement techniques based on the analysis of the radio ac-
cess network activity levels. In this thesis, we explore the use of sensor data gathered
through Bluetooth (BT) passive scanning. Bluetooth sensors provide cost-effective,
low-impact and easy to deploy alternative to conventional techniques. They are
adapted for mass deployment in urban areas at relatively low investment and main-
tenance costs. Moreover, the strong integration of BT technology in the automotive
industry supports the sensors’ capacity to gather high resolved (temporal) traffic
data over a sufficiently high spatial density. However, BT technology still repre-
sents an indirect technique for traffic data acquisition. The accuracy of the derived
vehicular traffic metrics can be hindered by different factors related to the sensors’
detection process. In this context, we explore the capacity to use Bluetooth sensors
as a reliable sole data source for intelligent traffic systems in urban areas. Our work
focuses on improving the accuracy of the obtained traffic measurements in terms of
traffic flow and travel speed. These metrics are essential for several traffic manage-
ment tasks, including adaptive traffic lights control and near real-time data supply
for traffic information systems.

Our first contribution concerns the task of vehicular traffic flow quantification
from Bluetooth sensor data. We adopted a data-driven approach relying on sta-
tistical and machine learning models. We compared the performance of different
learning models and defined a set of evaluation scenarios to identify significant in-
put features for traffic flow estimation, including the effect of the calendar features
granularity, speed, and weather information.

As a second contribution, we address the traffic flow quantification at sensor
network scale. We propose a deep neural network model based on a dynamic graph
convolutional LSTM layer. We also introduce the transfer learning problem required
to limit the need to acquire labelled training data for each new deployment.

And finally, our third contribution, we focus on the average travel speed estima-
tion. We propose an algorithm that uses the collected data about the quality of the
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received signal in a first step to improve the matching process in individual vehicles
speed computation and later to weigh their contributions in calculating the average
speed.

We also developed a simulation framework of BT scanning for vehicular traffic
monitoring. The simulator allows us to study and identify the factors impacting the
probability, for one sensor, of detecting an active BT connection in its detection range
and generate synthetic training datasets to handle data scarcity.
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Résumé
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Vehicular traffic analysis based on Bluetooth sensors traces

par Safa BOUDABOUS

L’essor rapide des véhicules connectés dans le marché de 'industrie automobile a
suscité 1'intérét de la communauté scientifique pour étudier de plus preés la possi-
bilité d’exploiter les traces de communication pour améliorer les systemes de ges-
tion de trafic. Dans le cadre de cette thése, nous nous intéressons a l'utilisation
des données issues de capteurs Bluetooth a balayage (scanning) passif. Ces cap-
teurs représentent une alternative a faible cofit et a faible impact pour la collecte de
mesures concernant le trafic véhiculaire. De ce fait, ils sont adaptés a un déploiement
dense a large échelle a savoir dans un milieu urbain. En revanche, contrairement aux
techniques de collecte intrusives (a 'instar des tubes pneumatiques et les boucles
magnétiques), le balayage Bluetooth offre une maniére indirecte de suivi de trafic par
la collecte d’informations concernant le trafic sur les canaux de communication Blue-
tooth. Cela impacte la qualité et la précision des mesures dérivées notamment dans
les contextes de déploiement complexes. Afin de accroitre leur utilisation comme
source de données fiable pour les systemes de trafic intelligents, nous nous sommes
intéressés a I’amélioration de la précision des mesures de trafic obtenues en termes
de flux de trafic et de vitesse de déplacement. Ces mesures sont cruciales pour di-
verses taches de gestion a savoir le contrdle adaptatif des feux de signalisation et
I'alimentation en quasi-temps réel des panneaux de signalisation routiere.

Notre premiere contribution porte sur la quantification de flux de trafic véhicu-
laire a partir des données Bluetooth. Nous adoptons une approche orientée données
en se basant sur les modeles d’apprentissage statistiques. Nous analysons l'impact
de l'intégration de variables calendaires pour 1’amélioration des mesures extraites
ainsi que I'impact de la vitesse et de I'historique a court-terme.

Dans notre seconde contribution, nous nous s’intéressons a la quantification du
trafic a I’échelle d'un réseau de capteurs. Nous proposons un réseau d’apprentissage
profond basé sur des opérations de convolutions dynamiques intégrés a une couche
récurrente de type LSTM. Cette contribution introduit aussi le probleme de trans-
fert d’apprentissage necessaire afin de limiter le besoin d’acquisition de données

d’apprentissage labellisées a chaque déploiement.
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Dans une troisieme contribution, nous nous concentrons sur le probléeme de
'estimation de vitesse moyenne de déplacement. Nous proposons un algorithme
qui explore les données collectées sur la qualité de signal requ dans un premier
temps pour améliorer le processus d’appariement pour le calcul des vitesses indi-
viduelles des véhicules et dans un deuxiéme temps pour pondérer leurs contribu-
tions dans le calcul de la vitesse moyenne.

Une partie des travaux de thése est dédiée a la définition et I'implémentation
d’un cadre de simulation de balayage Bluetooth pour des applications véhiculaires.
Le simulateur est utilisé pour analyser et identifier les facteurs impactant la capacité
des capteurs de détecter les appareils Bluetooth actifs dans son voisinage mais aussi
pour complémenter les données des expérimentations par la génération de datasets
d’apprentissage synthétiques.
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Chapter 1

Introduction

1.1 Context

Urbanization has long been considered of driving force of countries” economic and
social development. Urban cities promote a better quality of life, more employment
opportunities, and higher access to services. The urban surge is rapidly accelerat-
ing, reflected by a rapid uncontrolled pace of urban population growth. By 2021,
the world urban population reaches 56.6% of the worldwide total, and up to 81.2%
in France. This resulting urban crowding points up a host of concomitant prob-
lems with adverse downside effects on the cities” prosperity and attraction. Road
traffic congestion is one of the phenomena exacerbated by urbanization. It reflects
a disequilibrium between the ever-increasing traffic demand and the constrained
roads network capacity. On one side, the population growth drives up the traffic
demand, raising the number of road users and creating new mobility needs. On the
other side, urban infrastructures in many cities are designed with layouts planned
decades ago. They do not have enough capacity to meet the rate of growth in traffic
demand. Expanding roadways capacity can be problematic due to the high invest-
ment cost, the constrained construction space, and the time-consuming planning
process required to handle traffic disruptions and roads closures. This results in
an urgent need for governments, city authorities, and policymakers to optimize the
usage of the existing infrastructure and the traffic control system to maintain the
cities” socio-economic competitiveness and urban sustainability. This pressing need
for sophisticating traffic management strategies has paved the way for Intelligent
Transportation Systems (ITS).

ITS relies on continuous advances in information and communication technolo-
gies to promote transportation system efficiency, safety, and management while re-
ducing its environmental impact. Over the years, technological development al-
lowed reinforcing the data acquisition process. Traditional mobility surveys and
manual counting are complemented with a large set of automated techniques. The
inductive loops are amongst the commonly used techniques for data acquisition.
They consist of wire loops installed under the pavement to gather point traffic met-
rics directly. Despite their efficiency, inductive loops come with a high hardware
investment and costly installation and maintenance operations requiring roads clo-
sure. Often, inductive loops incur recurrent maintenance since they are prone to
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malfunctioning due to traffic stress and temperature. Road pneumatic tubes are yet
another mature technique for direct traffic metrics acquisition. Unlike the inductive
loops, pneumatic tubes are installed above the pavement surface. However, their
installation and maintenance require roads closure to ensure safety. Road tubes are
mostly considered for temporary use as they get easily damaged by heavy or fast-
moving vehicles. Radars are an example of a non-intrusive technique installed on
roadside poles. They present a less demanding installation process. However, radars
imply a significant investment in hardware infrastructure. Moreover, the reliability
of the derived data can be affected by improper calibration or adverse weather con-
ditions. The advances in computer vision and image processing yield an increas-
ing interest in video-based traffic monitoring techniques. With cameras installed in
poles along the roadside or above the road, video-based vehicle detection methods
work by extracting traffic indicators with frame-by-frame processing of the captured
video streams. Their performance depends on the used imaging hardware and the
processing algorithm. They can also be affected by external factors such as weather,
poor light conditions, and improper calibration. Periodic maintenance operations
are required for lens cleaning and recalibration. Some video-based techniques, such
as license plate recognition systems, provide the opportunity to gather travel-related
metrics by tracking vehicles at different locations over the road network. Such sys-
tems raise privacy concerns since the unique identifier is directly related to the car
owner identity. Overall, all of those techniques have the advantage of automatically
collecting real-time traffic indicators. The reliability of the gathered data varies from
one technique to another. Moreover, their adoption and large-scale deployment may
be inhibited, in practice, by the high hardware investment and the expensive instal-
lation and maintenance costs. Consequently, they are often deployed only on a few
major roads of the cities.

More recently, new techniques have been considered to overcome this issue and
provide a low-cost alternative for collecting rich, high-resolved traffic data. Those
methods were initially not designed for traffic monitoring. Nevertheless, they show
a high potential to infer traffic-related indicators. We mention floating car data, so-
cial media data, mobile network operator logs, and wireless scanners traces.

This represents the background context of our research work. More specifically,
we focus on Bluetooth passive scanners as a new source of timely, reliable traffic data
adapted for dense large-scale deployment. Our thesis is a collaboration between the
French grande école Telecom Paris and the French research institute VEDECOM,
dedicated to sustainable mobility. Our thesis falls within the objective to provide
a low-cost and low-impact traffic measurement system based solely on Bluetooth
sensing to supply local authorities and transport operators with real-time relevant
traffic indicators. Our work relies on the Bluetooth passive scanners designed by the
VEDECOM team and contributes to the definition of inference models and process-

ing algorithms to improve the accuracy of the derived indicators.
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1.2 Motivations and challenges

Bluetooth (BT) monitoring systems rely on Bluetooth RF scanning units deployed
on the roadside to detect packets transmitted by detectable BT-enabled devices trav-
elling along their coverage zone. The traces of Bluetooth sensors consist of time-
stamped records of the detected devices’ identifiers, along with information about
the received signal strength and the transmission channel.

Bluetooth sensors exhibit a high potential for traffic monitoring application. Con-
trary to conventional automated techniques, they come with a considerably lower
cost in hardware, deployment, and maintenance. Moreover, thanks to their unique
identification guaranteed with the BT MAC addressing, BT sensors allow devices’
tracking between different sensing positions, essential for travel measurements es-
timation and trajectories reconstruction. This BT tracking system is independent of
the travellers” personal information, hence preserving their privacy. Privacy preser-
vation is often reinforced using an anonymization process. Those facts improve BT
sensors’ public acceptance compared to other techniques (for example, the afore-
mentioned license plates recognition systems). Last but not least, the penetration
rate of Bluetooth technology grows constantly thanks to the wide adoption of the
BT technology in the automotive industry for several applications, such as voice
assistance, hands-free calls, and music streaming.

Despite of its promising characteristics, Bluetooth presents some disadvantages.
They are mainly related to the indirect zone-based sampling process inherent to BT
sensing inducing many sources of errors and uncertainties concerning traffic indica-
tors inference. The process is indirect since, in practice, the sensors monitor traffic
by scanning the BT radio channels in search for communication packets, and us-
ing the collected information to infer traffic metrics. Hence, BT sensors detect any
transmitting BT device that can be embedded on motorized vehicles, transported by
pedestrians or deployed on adjacent buildings. BT sensors can identify devices over
a particular coverage zone called the detection area. The detection range depends
on the quality of the transmitted signal and the characteristics of the environment
for radio propagation. The detected BT devices represent the sample from which
road traffic indicators will be inferred. Consequently, their reliability depends on
the quality and representativeness of the Bluetooth sample.

The aforementioned downsides of the Bluetooth detection process make the ac-
curacy of extracted traffic measurements questionable. In practice, Bluetooth sen-
sors are commonly used as complementary data source to conventional monitoring
techniques. Our research aims to move one step further toward traffic monitoring
systems based solely on Bluetooth sensing adapted for large scale deployment in
urban areas. To satisfy the reliability expectations in terms of traffic flows and travel
speeds, we address the two following challenges:
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Count uncertainty on traffic flow inference:

We consider the task of short-term high-resolved traffic flow estimation from Blue-
tooth unique address counts, specifically in urban signalized roads. This task is far
from being straightforward.

On one side, the traffic flow is more complex to estimate in urban roadways than
expressways and highways due to the traffic’s inherent dynamic nature. Urban road
traffic exhibits abrupt short-term variations resulting from the frequent transitions
between free-flow and congested traffic conditions. Those fluctuations result from
the combined effect of varied minor regular or randomly occurring events such as
variability in traffic speeds, buses stopping, pedestrians crossing, vehicles parking
and leaving at the roadside. Sometimes, they are accentuated by queuing at traffic
light signals where only a portion of an entire queue length is discharged during
the green phase in each cycle. The non-linear chaotic nature of urban road traffic
has been proved in many previous research works. Short term traffic estimation
requires modelling this inherent short-term variability in the data, rendering it more
challenging to estimate than low-resolution data, where those short-term variations
in the traffic are smoothed due to data aggregation.

On the other side, traffic counts obtained from BT sensor data suffer from uncer-
tainty. Being sample-based, only a fraction of the actual traffic flow is detected via
Bluetooth sensing. The detection rate is related to the penetration rate of the Blue-
tooth technology. However, it often varies in time and space. It gets impacted by
several factors. The factors may be related to changes in the sensor sensing environ-
ment, the characteristics of the traffic in the area, or inherent to the BT scan process
implementation. This makes that miss detection may occur and causes variations
in the detection rate. Variations are accentuated due to over-counting caused by the
multi-tenancy problem or flaws in the non-vehicular devices filtering process.

To the best of our knowledge, the task of high-resolution traffic flow quantifica-
tion using solely Bluetooth data has not been specifically considered. A linear rela-
tionship between the average of Bluetooth devices count and the actual traffic flow
is generally assumed. However, this method is vulnerable to variations in sensor de-
tection rate and observed dynamics in the road traffic. Consequently, we investigate
in our thesis the use of machine learning models.

Spatial uncertainty regarding travel speed estimation:

We focus on addressing the spatial uncertainty and the multiple detections problems
inherent to the BT zone-to-zone sensing process.

The spatial uncertainty results from the fact that the BT sensor provides no in-
formation about the vehicle’s geographical position. The vehicle may be detected at
any point in the sensor detection zone. The detection zone’s shape and size depend
on the characteristics of the BT antennas: the type (omnidirectional /directional), the

class, and the gain, and the radio propagation characteristics of the sensing areas.
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The multiple detections problem refers to the fact that a BT-enabled vehicle may
be detected several times by the same sensor when travelling along the detection
zone. The number of detections is related to the time spent travelling through the
monitored road link, which varies with the vehicle speed and the traffic conditions.
The multiple detections problem brought the question about which detections are
more appropriate to get better travel time estimates. Different matching strategies
were considered regarding this problem, the First-to-First, Last-to-Last, and Median-
to-Median approaches. Those approaches do not resolve the location ambiguity is-
sue. Their effectiveness depends on assuming that the spatial errors at the origin
and destination positions offset each other.

1.3 Contributions
The contributions of our thesis can be summarized as follows:

1. We perform a thorough exploratory analysis of the representativeness of Blue-
tooth sensor data. For this purpose, we study the sensor sampling, misde-
tection, and matching rates. Moreover, we analyze the temporal dynamics
inherent to traffic data. Experimental data are used to ensure adequacy with
the passive detection process implemented by our BT sensors designed by the
VEDECOM team.

2. We design a new simulation framework for BT devices scanning targeting ve-
hicular traffic monitoring scenarios simulation. The framework structure al-
lows defining different sensing environments ranging from highways to very
dense urban areas. We implement our proposed framework to simulate the
sensor passive scanning process. This implemented version is applied in dif-

ferent sensor prototyping and pre-deployment stages.

3. We explore the use of machine learning models for traffic flow inference from
raw BT sensor counts. We define the problem as a regression problem aiming
to find the best inputs to outputs mapping function. We select the commonly
used standard regression models to create an evaluation benchmark.

4. We define a new model for traffic flow estimation at a sensor network scale.
The baseline idea behind this model is to exploit the spatiotemporal corre-
lations characterizing the traffic in the area and the similarities between the
sensing environment at the different network locations to improve estimates
accuracy. Our model design ensures learning dynamic pairwise dependencies
on space and time dimensions.

5. We implement a new matching algorithm for average travel speed estima-
tion. Our proposed model addresses the local ambiguity using the available
received signal strength information.
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FIGURE 1.1: Overview of the thesis chapters organization.

Following this introductory chapter, the remainder of our manuscript is orga-

nized into eight chapters:

Chapter 2 presents state of the art on related research works and studies. The
chapter is divided into three sections representing transportation, Bluetooth
technology and machine learning domains. Each section first introduces the
domain-related concepts required to understand the rest of the thesis. Then,
it provides a survey of the existing works related to the challenges and con-
tributions addressed in our work. This chapter aims at providing an overall
understanding of the scope of the work, where we highlight the main research

concerns that motivate the contributions of this thesis.

Chapter 3 details our exploratory analysis. We first describe the Bluetooth data
acquisition process. We then detail the settings of the experiments carried out
in our work and present the data preprocessing and filtering process. Lastly,
the chapter shows the results of the exploratory analysis studying the repre-
sentativeness of Bluetooth sensor data and the temporal dynamics inherent to

traffic.

Chapter 4 presents SF-BDS, our proposed simulation Framework for Blue-
tooth devices scanning. In this chapter, we detail an implementation of the
SE-BDS for the Bluetooth passive scanning process. We validate the simulator
results using experimental data. We then use it to analyze the impact of fac-
tors related to the characteristics of the radio propagation environment, traffic,
and the vehicles and their activity over the Bluetooth channels on the sensor

detection rate.
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* Chapter 5 focus on the short term traffic flow quantification from the raw BT
counts. It starts by formulating the estimation problem. Then, it briefly de-
fines the applied standard machine learning models. We then elaborate on the
model evaluation step: we describe the input features set used for the differ-
ent evaluation scenarios, detail the evaluation setting and discuss the obtained

results.

¢ Chapter 6 is dedicated to our proposed DGC-LSTM model for sensor network-
level traffic flow estimation. We first formally define the problem. Then, we
describe the components of our DGC-LSTM estimation model. We detail how
we model the dynamic spatiotemporal dependencies between the different
sensing locations. We evaluate the model using a synthetic dataset generated
by our SF-BDS framework implementation. In chapter 6, we also introduce
the problem of model transferability and highlight the need to define a dedi-

cated transfer learning model.

¢ Chapter 7 describes the average travel speed estimation algorithm. It exposes
how the information about the received signal quality is used to improve the
matching process and weigh the individual vehicle speeds’ contribution on the
average speed estimation. The chapter also details the evaluation setting and
discuss the obtained results.

¢ Chapter 8 summarizes the thesis contributions and results and presents the
perspectives and future directions.



Chapter 2

State Of The Art

The contribution of this work lies at the crossroad of three fields: road transporta-
tion, Bluetooth technology and statistical learning accordingly to which this chapter
is organized. In each section, we start by briefly introducing the domain-related con-
cepts required to understand the rest of the thesis. In the first section, we focus on
data processing process at the core of traffic monitoring systems, specifically on the
data acquisition step. We compare the commonly used traffic sensing techniques in
terms of cost, accuracy, intrusiveness, and privacy. In the second section, we review
the works related to the use of Bluetooth sensors for traffic monitoring. In the last
section, we first present a brief introduction to machine learning. We then present
an overview of existing works on the area of traffic forecasting. Then, we present
a literature review of transfer learning approaches. This chapter aims at providing
an overall understanding of the scope of the work where we highlight the main re-

search concerns that motivate the contributions of this thesis.

2.1 Urban Mobility and Road Traffic

Vehicular traffic refers to the phenomenon resulting from the movement of vehi-
cles on the roadways. The observation of its evolution over time-space dimensions
characterizes the mutual interaction between the travel supply and demand. Here,
the traffic demand consists of the individual vehicles’ trips observed on the road
network generally defined in terms of trajectories between an origin point and a
destination point to satisfy a given socioeconomic need or a basic mobility need. In
the traffic context, the supply is related to the set of available road infrastructure that
delimits the road network’s connectivity level. This road infrastructure is subject to
regulations and jurisdictions established by the local authorities and transport plan-
ners to manage its use by restricting or contrarily easing the travel flow, namely by
setting speed limits and travel directions and creating dedicated lanes. However,
the supply also includes transportation services, including the public transportation
and the new modes of mobility and the road-users information systems.

For years, local authorities acted over the supply component to meet a good
equilibrium in the supply/demand problem. First, their strategies consisted of ex-
panding the road network through investments in adapted roadways infrastructure
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construction such as highways, bridges and tunnels. However, extending the Road-
ways capacity is increasingly difficult due to its high financial cost, the land scarcity
in urban cities, the required time-consuming preliminary planning, and the traffic
disruptions induced by roads closures and diversions. Moreover, roadways expan-
sion strategies are heavily contributing to urban sprawl and have raised the well-
known problem of induced demand that refers to the additional demand observed
in response to capacity increase. Consequently, the policies have progressively been
re-oriented to support the best use of existing networks, improve the quality of ser-
vices for road users and their capacity for controlling and influencing the traffic de-
mand. A typical effective way of achieving this transition is through the adoption
and the continuous development of their intelligent transportation systems to help
efficient traffic management and transportation network use.

2.1.1 Intelligent Transportation Systems

ITS refer to the application of information, communication, and control technolo-
gies to improve the operation of the transportation network and the efficiency of the
management system. The significant development and research findings in differ-
ent advanced and emerging technologies boosted innovations in ITS to successfully
address the challenges related to mobility, convenience and social and ecological
sustainability. ITS, applied to urban road transportation, aims at providing sophis-
ticated and efficient solutions to relieve congestion, optimize road usage and traffic
control, diminish road fatalities, ensure pedestrian and driver safety, improve trans-
portation access and develop greener and eco-friendly transportation services.

AnITS can be described as an architecture of four interrelated layers that rests on
a first physical layer composed of the three elements of a transportation system: the
infrastructure, the vehicle, and the people. Over this layer, three layers are superim-
posed to ensure respectively interconnection, operation and service. This layering
supports the achievement of ITS goals regarding mobility, convenience and sustain-
ability. The ITS architecture is detailed in figure 2.1.

The physical layer is endowed with a vital role in ITS for gathering the required
data about traffic conditions and the transportation network state. Several sensors
are plugged into the physical layer to fulfil this purpose. They are either integrated
into the infrastructure or embedded in vehicles. Recently, social media applications
present a valuable source of traffic data.

The communication layer assists the data exchange inside the physical layer
by ensuring reliable data transmission between infrastructure, vehicles, and users.
Moreover, this layer guarantees the interconnection between the physical and oper-
ational layers.

Transportation operations lie at the core of ITS systems. In the operation layer,
the data collected on the physical layer will be integrated and processed to extract
relevant traffic information that will be disposed to ITS participants in the form of
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dedicated services that, once deployed, aim to improve the transportation system ef-
ficiency. ITS operations can be classified into five systems according to their function:
Advanced Traffic Management Systems (ATMS), Advanced Traveler Information
System (ATIS), Advanced Vehicle Control and Safety System (AVCSS), Advanced
Public Transportation System (APTS), and Commercial Vehicle Operation (CVO).

Mobility Convenience Sustainability

Improve Transportation System Efficiency

Service Layer

Operation Layer

ATIS ATMS APTS AVCS Cvo

Communication Layer

Physical Layer

People Vehicles Infrastructure

ITS architecture

FIGURE 2.1: ITS architecture

ATMS provide the required monitoring, control, and management services to as-
sist the local authorities and transport operators in improving their decision-making
and management process either for planning, design tasks or for operational tasks
through vehicle route diversion, automated signal timing, and Variable Message
Signs (VMS), and priority control systems. ATIS include various systems that pro-
vide real-time context-aware traffic information to road users regarding navigation
and route guidance, roadway signings, and hazard warnings. AVCS use informa-
tion collected from a wide range of in-situ and in-vehicle sensors to improve traffic
safety and vehicle control capabilities. CVO and ARTS refer to the application of
ITS technologies to the special needs of commercial vehicles fleet management and
rural areas infrastructure use and mobility enhancement. APTS englobe services to
promote the effectiveness, attractiveness, and efficiency of public transportation.

ATMS/ATIS are the essential building blocks of any intelligent transportation
system operation layer. They tend to fulfil somehow different but complementary
strategic goals. While ATMS is endowed with management-oriented purposes to en-
sure the global control, regulation, and optimization of the transportation network
and services, ATIS plays the informative role of providing adequated recommenda-
tions and guidance to end-users. The efficiency of both services sits on the effec-
tiveness of the entire data-driven process inherent to the ITS architecture, from data
collection in the physical layer to data storage, processing and analysis required for
decision support, services automation, and to draw up recommendations and guide-

lines.
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The ATMS and ATIS services must be provided with relevant real-time informa-
tion about the current and future traffic state to gain insights into the road network
usage and understand the dynamics behind the urban mobility in the areas.

2.1.2 The Four Main Traffic Indicators

The spatiotemporal evolution of traffic conditions in the road network is commonly

measured in terms of four main indicators:

* The traffic flow is defined as the number of vehicles N passing by a fixed net-

work position at a specific time interval At.

N
QAt—E

* The road occupancy, also called density, is expressed as the number of vehicles
M located at the roadway link D at a specific time instant.

Kp = —=
7D
* The mean travel time is the time spent to travel between two points of the net-
work. It is calculated as the average of the individual vehicles’ travel time.
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where D is the travelled distance and t; ’ is the time spent by the i vehicle.

* The mean speed can differently be defined in space or time:

- The time mean speed is defined as the average of the individual vehicles’
speed when passing by a reference point of the network.
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where v;" is the speed of the i vehicle at time instant ¢;.

- The space mean speed, also referred to as the harmonic speed or the
link speed, is the average speed of vehicles when travelling between two
points of the network.
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where v,/ is the travelling speed of the i*" vehicle.

It is worth to note that flow and density measures are similar and complemen-
tary. The flow measure characterizes the traffic evolution over time, whereas the
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density considers the evolution over space. The same connection holds between the
time mean speed and the space mean speed. Those connections are illustrated in
figure 2.2 using a time-space diagram.
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FIGURE 2.2: Time-space diagram illustration of the connections be-
tween the traffic flow and the density and between the time mean
speed and the space mean speed: The red points present the N pass-
ing vehicle at a given reference point x during the time interval. The
blue points present the M vehicles located at the road link in the time
instant t. Red (respec. Blue) arrows show the individual vehicles’
speed from where the time mean speed (respec. space mean speed)
are derived. Figure extracted from [BL10].

Those traffic indicators form the basis of the fundamental diagram. The fun-
damental diagram is one conventional approach to visually analyze the bivariate
equilibrium relationships of traffic flow, concentration, and speed. It allows detect-
ing free-flow and congested traffic conditions. Figure 2.3 presents an example of the
fundamental diagram. The curve shows that when the flow is low, the speed tends
to its maximum. The continuous increase in flow results in a decrease in speed.

When the optimum point is reached, we switch to the congested state where both
flow and speed decrease.

q Qmaz

Flow —————

FIGURE 2.3: Illustration of Speed-Flow fundamental diagram.
Figure extracted from [BL10].
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2.1.3 Traffic Data Acquisition Techniques

ATMS and ATIS rely on a myriad of techniques and methods to gather traffic data.
They can be summarized on mobility surveys, temporary manual countings, and
a large set of automated techniques. Traffic data can automatically be gathered
directly from in-situ sensors or indirectly via in-vehicle technologies. The in-situ
techniques can be classified into intrusive and non-intrusive systems depending on
whether their installation and maintenance require traffic disruption. It is also worth
noting that some technology-based techniques rely on in-situ sensors such as Blue-
tooth and Wi-Fi sensors. Figure 2.4 presents a clear classification of the traffic data
acquisition techniques.

Some of the automated techniques are mature and widely used, while others
have emerged more recently and still under continuous improvement. Nevertheless,
each of the available techniques has its strength and weakness, and no one presents
the ideal solution to gather all the traffic indicators under the different sensing con-
ditions from free-flow rural areas to congested urban ones. The most commonly

used and emerging automated techniques are briefly reviewed in section 2.1.3.2.

‘ Data acquisition techniques ‘
I

\ 7 v
Mobility surveys and manual counts ‘ | Automated techniques
I
h 7 [ 4
_ In-situ devices Technology based
(Direct Measurements) (Indirect measurements)
‘ Intrusive | ‘Non intrusive |

FIGURE 2.4: Classification of traffic data acquisition techniques

2.1.3.1 Mobility surveys

Surveys are the most traditional method to collect information on population mo-
bility. They consist of a set of questions designed to extract statistics about typical
travel habits in a study area. Mobility surveys often come in the form of household
or intercept surveys.

Household surveys are based on questionnaires that provide detailed informa-
tion about daily individual travel behaviour of the household complemented with
relevant socioeconomic features of the surveyed person. Household Travel Survey
(HTS) in France are standardized by Cerema [RR18]. The standard provides detailed
methodology on the way surveys must be conducted to ensure the best use of the
gathered data and to guarantee data comparability on both the temporal and spatial
dimensions. In addition to conventional HTS surveys (Enquéte Ménages Déplace-
ments (EMD) in French), the Cerema guide provides methodologies for medium-
sized towns surveys(Enquéte Déplacements Ville Moyenne) and large areas surveys
(Enquéte Déplacements Grand Territoire) [GRR14].
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Intercept surveys are in-situ surveys conducted on key locations in the surveyed
area (more often in the most common origin/destination positions). They gather
basic trip-related information such as origin and destination, time, transportation
mode and trip purpose. They are used to complement HTS surveys with data about
non-resident road-users.

Mobility surveys incur a long time for data processing and significant survey
costs that constrain their update frequency (generally limited to once per decade for
HTS [Bec+13]). Hence, despite their essential role in traffic modelling and public
travel policies assessment, due to their low-update pace, surveys are not adapted
to the new requirements in terms of adaptive short-term traffic management in the
core of intelligent transportation systems.

2.1.3.2 Automated data acquisition techniques

The use of automated data acquisition techniques becomes more and more crucial
to provide input data to traffic management systems [Led+08]. Traffic data can au-
tomatically be gathered either from in-situ systems or from in-vehicle technologies.
In-situ techniques refer to detectors deployed in fixed locations of interest. Those
techniques can be classified into two categories: intrusive techniques consisting
of systems installed in or on the pavement and non-intrusive ones that are placed
along the roadside. In the last decades, new sources of traffic data acquisition have
gained interest. Those techniques denoted as in-vehicle or Automatic Vehicle Loca-
tion (AVL) technologies relying on gathering remotely data from in-car devices.

In the rest of this section, we present a summary of the most commonly used traffic
detectors. For each technique, we summarize its acquisition process, its deployment
cost, the data it provides, and we discuss its main advantages and limitations. In
general, traffic data acquisition techniques entail a trade-off between the cost, the
data quality, and the ease of deployment.

Inductive loops:

Inductive loops are intrusive in-situ detectors based on induction wires with an os-
cillating electrical signal buried under pavement [Mil81]. The metal chassis of a
passing vehicle changes the electrical properties of the circuit and trigger an event
logged in a roadside unit connected to the wire. Inductive loops allow gathering traf-
fic flow, road occupancy and vehicle types. When placed in pairs with small distance
apart, they can also detect vehicle speed. The major problem of this technique is
the complexity of their installation and their maintenance, causing temporary traffic
disruption, additionally implying a relatively high cost. Loops suffer from short-life
expectancy in reason of damages due to passing heavy vehicles, street maintenance
operations or water penetration. Their important cost limits their installation to only
few detectors on major roads within urban areas or highways.
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Similar to inductive loops are magnetic detectors, they measure disruption on
the magnetic field in their vicinity and allow to collect the same traffic measures.
Magnetic detectors come with an easier deployment process thanks to their com-
pactness [Bug+14]. Nevertheless, they are also subject to damages caused by heavy

vehicles and road maintenance activities.

Pneumatic road tubes

Pneumatic tubes consist of rubber tubes placed across road lanes above the pave-
ment that detect the air pressure change produced by passing vehicles wheels [MS11].
Each compression is matched to an event that is recorded and processed by a road-
side counter. Road Pneumatic tubes allow measuring traffic flow and road occu-
pancy but also vehicles” speed and travel direction by connecting two tubes to the
same counter. Those systems are mainly used for temporary short-term traffic mon-
itoring. Despite their relatively low cost, the tubes get easily damaged or torn up by
heavy or fast-moving vehicles [OB97]. Moreover, their accuracy may be impacted in
case of extreme weather, and under certain traffic conditions, specifically low speed
flows and heavy traffic density.

Radars:

Radars are non-intrusive in-situ detectors placed on poles along the road that trans-

mit continuous low-energy microwave radiation at a target zone and identify changes
on the reflected signal to detect moving vehicles: their speeds and their movement

direction. Flow data can also be directly derived. However, the accuracy of traffic

counts may decrease with adverse weather conditions (for example, heavy winds).

High care must be taken to ensure the proper installation of the detectors and thus

to guarantee the quality of the gathered data [Cha+17]. This is to avoid occlusion

problem and to calibrate their detection zone appropriately. Radars require a signif-

icant investment in hardware infrastructure.

Video-based techniques:

The advances in the fields of computer vision and image processing yields an in-
creasing interest in video-based traffic control techniques [BVO11; Bom+16]. With
cameras installed in poles along the road, video-based vehicle detection methods
work by extracting traffic indicators with frame-by-frame processing of the captured
video streams. Those techniques have been first adopted for speed limit control on
highways and major roads. Then, they started to be used for collecting flow volume
and occupancy data. Moreover, the use of efficient image processing algorithms and
suitable hardware enlarge the capabilities of those techniques to gather almost all
traffic indicators. From another side, the acquired image resolution and the perfor-

mance of the analysis algorithm determine the accuracy level of the measures. In
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general, performance comes with a prohibitive capital cost in hardware and soft-
ware. Video-based techniques may be prone to errors stemming from low-light ex-
posure, extreme weather conditions like fogs and heavy rain, or even fast-changing
environments. Moreover, for the same reasons as with radar detectors, cameras must
be well-calibrated to set their detection zone and avoid occlusions.

Additionally, to spot traffic measures, some video-based methods also provide
trajectory data based on their vehicle unique identification systems. Among those
systems, automatic license plate recognition (LPR) systems [Cha+04] are the most
widely used. Trajectories are constructed by identifying vehicles in different posi-
tion of the interest area. Then, those data are processed to extract indicators such as
travel speed and Origin-Destination (OD) flows. LPRs have been criticized in rea-
son of their identification systems directly related to the vehicle owner that can raise
privacy concerns—misuses of LPR may lead to continuous tracking of individual

road-users movement.

Automatic Vehicle Location (AVL) systems can either be based on in-situ roadside
units able to detect passing vehicles with a specific embedded in-car device or on
moving observers as probe vehicles that continuously report position information

to a remote server.

Wireless radio frequency detectors

The usage of short-range communication protocols for traffic data collection has
gained prominence over the last decades. Those systems are based on detecting
in-car RF devices uniquely identified using the associated Media Access Control ad-
dress under the considered protocol. As AVL systems, wireless RF detectors can
gather travel information like travel time and origin-destination trips by tracking
the devices MAC identifier over a network of multiple sensors. Wireless RF detec-
tors have the significant advantages to be cost-effective and easy to deploy and thus
adapted for dense large scale deployment.

Unlike previously introduced techniques, the RF data collection process is sample-
based. Only vehicles equipped with RF device may be detected. The sample size
depends on the penetration rate of the technology, the scanning process, and the ra-
dio propagation characteristics of the deployment area. This raises questions about
the accuracy of the derived traffic data as it depends on the quality and the size of
the sample. In most cases, appropriate processing methods are needed to ensure the
relevance of the extracted measures.

Bluetooth and Wi-Fi are the most commonly used RF technologies for traffic data
acquisition, thanks to their wide adoption of the automotive industry. More and
more cars and smart devices are equipped with both built-in Bluetooth and Wi-FI
chips. Although BT and Wi-Fi-based sensors are based on the same data acquisition
process, the representativeness of the acquired data sample mainly depends on the
implementation of the scanning process and the penetration rate of the technology
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in the study area.

Floating car technologies

Cellular and GPS based systems are two typical examples of probe vehicle acquisi-
tion techniques called also Floating Car technologies. In such systems, vehicles with
mobile phone or GPS act as moving sensors over the road network. For instance,
each probe continuously transmits information about its location and its speed to a
remote centre. When processed, the data allow gathering traffic-related indicators.
The main advantage of those technologies is that no investment required on infras-
tructure and deployment. In general, the data has already been collected for other
purposes.

GPS-based systems have been firstly used for fleet management [Led+08]. Cur-
rently, available GPS data is collected from taxi and private companies fleets. The
strength of GPS data is the high quality of vehicles location information and its high
sampling rate. Moreover, by their concept, GPS-based system provides the pos-
sibility of wider road network coverage than conventional techniques. The major
problem of GPS Floating data is its sensibility to sampling bias. This is often the
case of the data gathered from taxis allowed in some country to use dedicated lanes
or public service and goods transport vehicles subject to different speed limits than
cars [Jan+15].

In cellular-based systems, traffic information is extracted passively from the sig-
nalling data a mobile device exchange with its subscribed cellular network.Cellular
data takes two forms:

¢ (Call Details Records which are telephone transactions metadata recorded by
the operator for billing purposes. The records are logged every time a person
receives/sends a call, SMS, exchanges data, or uses the internet. CDR includes
information about the type of activity, the involved users and the identifier of
network cell offering connectivity during the transaction. This field allowing
estimating the device geographical position. However, the position accuracy
depends on the coverage area of the network cell (ranging from several meters
in urban areas up to a few kilometres in rural ones).
The perceived mobility from CDR data is conditioned on the degree of activity
on the cellular network that is in turn cause variations on the records sample

size both in time and in space.

¢ Passive signalling data logs all the events occurring on the base station. Addi-
tionally, to billing data, three events types are also recorded: handovers related
to network cell during communication, devices positions update during inac-
tivity (at least every 3 hours), and finally, phone switch off or on events. These
data are collected using probes in the network. Passive signalling data allows
to overcome sampling-related problems with CDR data. However, records are
matched to a coarser spatial scale (relate to the base station position).
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It’s worth to note that cellular data is privately-owned by Telecom operators and
they are subject to personal data privacy restrictions.

Table 2.1 presents a summary of the technical characteristics, the strengths and the
limitations of each of above-described data acquisition technique.

TABLE 2.1: Summary table of common data acquisition techniques:
Characteristics, Strengths, and Limitations

Acquisition Measures

Type techniques Intrusive Spot Trajectorics Vehicle Type Cost Advantages Limitations
measures OD measures Classification
- . - Mature technique - Intrusive

2 Inductive Loops x * x High - Accurate measures - High operational cost

i Pneumatic Tubes X X X Medium - Mature technique - Intrusive

Z - Accurate measures - Only for temporary use

Radars X x (1) High - Accurate measures -High capltal. cost
- Prone to calibration errors
- High capital cost
Video-based - Prone to calibration errors
. X x @ x High - All traffic measures - Accuracy level depends on
techniques e
weather conditions and
processing algorithms
-Low-cost

~ Wireless 3) - Provide OD measures B g

z RF detectors Only flows x Low - High coverage with Sample-based approach

= dense deployment

- - Ready-fo-use data - Prone to sampling bias

Floating car data Only flows(®) X x (4) None - Provide OD measures - No publicl a}:/ailible
- High coverage P Y

Notes:

(1) depends on the installed hardware.

(2) OD measures only provided by video-based techniques with vehicle unique identification systems such as LPR.
(3) Appropriate processing methods are required to compensate the partial observation of the traffic.

(4) Depends on the considered technology.

In our work, we are interested in Bluetooth-based traffic monitoring systems
(BTMS). As highlighted in table 2.1, Bluetooth detectors present a number of ad-
vantages compared to conventional techniques. From one side, they come with a
relatively low investment, installation and maintenance costs and the flexibility of
their deployment, which renders BT detectors adapted for mass deployment. On
another side, their sampling rate is boosted by the increasing BT technology integra-
tion in the automotive industry. Those advantages support the capacity of BIMS to
collect high resolved traffic data over sufficiently high spatial density.

Like any other technology, Bluetooth detectors also have some disadvantages.
They are mainly related to their indirect sample-based detection process. The BT
detection process is less suited to gather point measurements such as traffic flow
and at a given location than conventional techniques. Moreover, the accuracy of the
extracted traffic indicators will depend on the quality of the data sample that may be
affected by different factors. Literature about BTMS is next reviewed in section 2.2.
Before this, an overview of Bluetooth technology fundamentals is presented.

2.2 Bluetooth Technology as a Source of Traffic Data

This section first introduces Bluetooth fundamentals and then presents a literature

review of works related to Bluetooth scanning for traffic monitoring.
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2.2.1 Fundamentals of Bluetooth Technology

Bluetooth is a short-range, low-power wireless networking protocol managed by
the Bluetooth Special Interest Group (SIG). It operates in the unlicensed Industrial
Scientific and Medical (ISM) frequency band ranging from 2.4 GHz up to 2.485 GHz.
The Bluetooth transmission bandwidth is divided into 79 channels of 1 MHz each.

The side effect of using the free globally available ISM band is the possibility of
interference with other devices using the same radio frequency band among them
the 802.11 (WiFi), Near Field Communication (NFC) and ZigBee networks. To ensure
resilience against interference, Bluetooth uses an adaptive Frequency Hop Spread
Spectrum (FHSS) scheme, allowing avoiding crowded frequencies in the hopping
sequence. Each Bluetooth channel is divided into time slots of 625 s in length. The
signal hops rapidly between channels, at a rate of 1600 hops per second, over a
determined pattern of channels.

The core specification classifies Bluetooth devices into three radios classes: Class
3 devices come with the shortest communication range of up to 1 meter and max-
imum transmission power of 0dBm, Class 2 devices with a range up to 10 meters
and a maximum power of 4dBm, and Class 1 ones with the longest-range up to 100
meters and the highest maximum output power of 20dBm. Table 2.2 lists the ranges
and maximum output powers of Bluetooth devices by class, as stated by the core
specification.

TABLE 2.2: Classes of Bluetooth devices

TXrange Max power Max power

Class (in m) (in mW) (in dBm) Example of BT devices

- Industrial sensors
Class-1 100 100 20 - Bluetooth traffic scanners
Class-2 10 25 4 - Portable smart devices

- In-car hand-free systems
Class-3 1 1 0 - Very short range devices

(keyboards, mouses, ...)

It is worth to note that the effective communication range depends on many
factors basically: the transmission power, the receiver sensitivity, the antenna con-
figuration of both the transmitter and the receiver and also the characteristics of the
radio propagation environment.

Most of the Bluetooth-enabled devices such as smartphones, headsets and in-car
hand-free systems belong to Class-2 type, whereas Bluetooth sensors used for traffic
monitoring mostly include Class-1 Bluetooth antenna.

2.2.1.1 Bluetooth device identity: The MAC address

MAC address is the acronym of Media Access Control Address. It is a unique 48-bit
identifier of a Bluetooth device. The leftmost six digits (24 bits) form the Organiza-
tionally Unique Identifier (OUI) which determine the device manufacturer origin.
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The rightmost digits of a MAC address constitute the Lower Address Part (LAP)
which is the serial number assigned by the manufacturer that ensures the unique-
ness of the identifier. The standard format of a Bluetooth MAC address is illustrated
in figure 2.5.

MSB 16 bits 8 bits 24 bits LSB
NAP UAP
OUl LAP
Manufacturer Identifier Assigned by the manufacturer

FIGURE 2.5: The standard format of the Bluetooth MAC address

2.2.1.2 Bluetooth packet-based communication system with Master/Slave model

The Bluetooth wireless protocol employs a master-slave communication model. The
master device can be connected to up to seven different slave devices and forms
a piconet. A Bluetooth network consisting of one or more piconets is known as a
scatternet. The devices in a given piconet may function as master or slave in another
piconet of the same scatternet. This Bluetooth networking allows many devices to
share the same network area and the efficient usage of the bandwidth. Figue 2.6
show examples of Bluetooth piconet and scatternet.

- Piconet #2

@ Piconet #1

(a) Piconet (b) Scatternet

FIGURE 2.6: Examples of Bluetooth piconet and scatternet

In a piconet, the master device controls when and where devices can send data.
The master can send data to any of its slaves and request data from them as well.
However, slaves are only allowed to transmit to and receive from their master.

The master device can create two different types of logical data links:

¢ Synchronous point-to-point connection: it defines a symmetric data link that
reserves slots between the master and a specific slave device. (Synchronous
connection-oriented SCO and enhanced-SCO transport link types).

¢ Asynchronous point-to-multipoint connection: that provides a packet-switched
connection between the master and multiple slaves in the piconet. (Asyn-
chronous Connection-Less ACL and Connectionless Slave Broadcast CSB trans-
port link types).
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Master |:| D |:|

e | LT PG
oI 4 no |

Slave 3 r—| r—|

FIGURE 2.7: ACL and SCO Bluetooth connections

Example of ACL and SCO master/slave connections are illustrated in figure 2.7.
The data is transmitted over the Bluetooth channel in forms of packets. The Blue-
tooth specification defines 28 packet types. Each type provides a different payload
size and a different level of error correction and protection (see appendix A for more
details). However, they share a common packet format. Figures 2.8 and 2.9 illustrate
the general format of Bluetooth BR/EDR packets.

LSB | 68 or 72 bits 54 bits 0-2790 bits MSB
Access Code Header BR Payload

FIGURE 2.8: The general format of Bluetooth BR packets

LSB ‘ 68 or 72 bits | 54 bits 0-2790 bits MSB

Access Code | Header Ggard Sync
Time Sequence

4.75-5.25us 11us
FIGURE 2.9: The general format of Bluetooth EDR packets

EDR Payload | Trailer

2.2.1.3 Bluetooth device digital clock

Each Bluetooth device has its native clock denoted as CLKN that controls the device
timing. The Bluetooth clock consists of a 28-bit counter. This counter is set to zero
when the device is switched on. It is designed to keep increasing with a rate of 3.2
kHz (every half slot). The counter cycle covers approximately 23 hours.

The digital clock also ensures time synchronization between the master and slave
devices on the communication operations. The synchronization is done by adding
an offset to the clock of the slave to make it coincide with the master clock and form
the piconet clock (CLK). This clock is used to delimit transmission/ reception slots
over time, depending on whether the device in question is operating as master or
slave. The time division duplex specifies that the master always transmits in even

index slot, while slaves use odd index slot.
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2.2.1.4 Establishing a Bluetooth connection

Before any connection is established, a BT device is in the default standby mode. To
set up an active connection with another BT device, the device starts an inquiry or
directly a page procedure if the device’s address is already known. The page process
serves to establish a lasting connection between the two devices. Once the connec-
tion has been established, both the master and slave devices are in the connected
state. The slave device can move to one of the following four states from the con-
nected state: active, sniff, hold or park. In the active mode, the device communicates
actively in the piconet. The sniff mode reduces the amount of time the device is com-
municating in the piconet. The hold mode suspends the device communication on
the piconet. Only the device internal timer is running. The connection to the master
can be restarted instantly for data transfer. When the device is in the park mode,
data and voice communications are suspended, and the device is no longer partic-
ipating to the piconet traffic. However, the device remains synchronized with the
master. The different Bluetooth device states are shown in the diagram presented in
figure 2.10.

Unconnected state

Transition state

Transmit rL Connected Active state

‘ PARK | | HOLD | ‘ SNIFF‘ Low Power Mode

FIGURE 2.10: Diagram of Bluetooth states

The BT sensing process is based only on the inquiry process where the sensor
will be able to discover the MAC address of the BT devices within its communication

range.

2.2.1.5 Bluetooth inquiry process

In this section, we detail the Bluetooth inquiry process. During this process, the
inquiring device enters the inquiry substate periodically. Similarly, a device that
wishes to be visible enters inquiry scan substate for a certain time interval. The in-
quiring device broadcasts inquiry requests by continuously sending two ID packets
on two different frequencies during one regular time slot of 625ps. Then, it listens
for responses in the following 625ps. The time between two consecutive inquiries
is determined by the inquiry interval, Tugir,- Meanwhile, the scanning device pe-
riodically scans for inquiry packets during a short time window called the inquiry
scan window (11.25ms by default). It changes the frequency every 1.28 seconds.
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When the device successfully receives an ID packet, it switches to the inquiry re-
sponse substate. It waits for a random back-off time, uniformly distributed between
0 and 1023 time slots. Then, it responds by sending a Frequency Hopping Selection
(FHS) packet containing its device information, i.e. its address and its current clock
(CLKN). Using this information a connection link can be established. The typical
Bluetooth inquiry process is illustrated in figure 2.11.

Tw_ing

Master
L] L || LA
ID ket @ @ : .
@ @ packe . . Inquiry Response
é ® . @ FHS packet
Tw_inqjs_c’an V V 7 v —‘
Slave - -
— —
Ting scan Random
Back-off
Tw ing : Inquiry Window Ting_scan : Inquiry Scan Interval

Tw_ing scan : Inquiry Scan Window

FIGURE 2.11: Bluetooth inquiry process

Starting from version 2.1, Bluetooth supports a new mechanism to propagate
data without the connection establishment procedures (no need for paging proce-
dure) using Extended Inquiry Response (EIR). It allows devices to send data before
devices make a connection. The EIR data is propagated in the middle of the inquiry
procedure when the device is in the inquiry response state. The inquiry procedures
does not change significantly. The response packet, in this case, includes a bit flag
that represents the availability of EIR data. If the slave device has an EIR data, it
sends the Inquiry Response packet with the EIR flag set. EIR data is sent after 1250us
as a back-off time interval. A master device with one Inquiry packet can receive mul-
tiple EIR data from many slave nodes.

It is important to note that the scanning device must be set on discoverable mode
to receive and respond to inquiries. The discoverable mode makes the device visible
and reachable by inquiring devices. Otherwise, non-discoverable devices ignore all
inquiry requests and can establish a connection only with already paired devices.

Discoverability is crucial to vehicles detection using BT technology. Until re-
cently, most commercial BT sensors use a connection-oriented discovery process
known as active scanning to detect passing vehicles in its vicinity. This process relies
on the standard discovery process described earlier. Accordingly, the BT sensor can
detect only discoverable devices. This process’s practicality has been questioned
since more and more devices switch off the discoverable mode a short time after
pairing as recommended by the NIST security guide (by default set to 20s on An-
droid devices [BHWO07]) that hinder its detection capabilities and indirectly, the data
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sample size. A second scanning process denoted as passive scanning has then been
considered. In contrast to the active one, the passive approach does not rely on the
inquiry process and detects nearby devices by scanning for active inter-device com-
munications in its range. The scanner sweeps over the 79 Bluetooth channels while
listening to each of them during a very short period. The latter passive approach
gained more interest as cost-effective scanners become increasingly available in the
market.

2.2.2 Bluetooth Technology for Traffic Monitoring

The potential of Bluetooth for data collection in an automotive environment has first
been investigated in [Saw+04; MWEF02; PV02]. They verified and proved the ca-
pacity of detecting BT-enabled devices in moving vehicles. In the last decades, a
substantial number of studies have been conducted on Bluetooth use for traffic mon-
itoring. They involve three main research lines: the representativeness of Bluetooth
sample size, the factors impacting the BT detection process, and its application to
travel time estimation.

2.2.2.1 The representativeness of Bluetooth-sampled data

The representativeness of Bluetooth data is of the utmost importance of evaluating
BT sensors’ effectiveness for traffic monitoring. Having a sufficiently-high sampling
rate is a prerequisite to infer reliable traffic-related indicators. The literature review
in this context shows that the Bluetooth sample size varies from one study to an-
other. The first studies conducted between the years 2008 and 2010 recorded a low
sampling rate of 1% [CONO8] and around 2 - 4% [Sha+11]. Later works assessed
a sample size varying between 2 - 9% in [EH16], 4 - 10% in [Wan+11], around 10%
in [PKM+11] and reaching 20% in [Ara+15; Mic16]. This difference is linked to the
Bluetooth market penetration rate in the place and on the year where the experi-
ment was carried out. Recently, a low penetration rate around 1% was observed.
The low rate was explained by the change in visibility settings in the Bluetooth de-
vices [JA20].

2.2.2.2 The factors impacting the Bluetooth detection process

Various factors can further impact vehicle detection probability leading to varying
rate from day to day and from one sensor to another. Among them, the type and the
placement of the BT sensor. The authors in [Bre+10] studied the impact of vertical
sensor placement and the horizontal offset on data collection efficiency. The use of
multiple sensing units on one site was deemed interesting to increase the sampling
rate in [CL12; Box+12]. Brennan et al. ( [Bre+10]) also recommended median sensor
position to minimize bias of detecting closest lanes” vehicles.

The authors in [PV+10; Por+13] analyzed the impact of BT antenna’s character-
istics on the detection probability. In [Por+13], five different antennas types were
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compared, and the authors found that vertically polarized antennas with gains be-
tween 9dBi and 12dBi better suits the sampling rate requirements for travel time
estimation. They also highlighted the importance to select the antenna type in ad-
equation with the considered application and the detection environment. Authors
in [PV+10] recommended the use of Class 1 Bluetooth antenna with a gain of 1dB
for traffic applications. Moreover, multiple works investigated the impact of using
an omnidirectional or a directional antenna [Mal+11; Mal+10; Wan+10]. Experiment
results have shown that omnidirectional antennas provide higher detection due to
their larger coverage area. The authors discussed the influences of the sensor detec-
tion range, the vehicles speeds, the staying time on vehicles detection rate.

Among the existing studies, we also distinguish the works exploring the BT dis-
covery process’s impact on the sensors’ effectiveness. To the best of our knowledge,
those works considered the active scanning setting solely. Thus, they focussed on the
BT inquiry process. Quayle et al. in [Qua+10] studied the ping cycle of BT sensors. It
has been shown in [Mal+10; Fral0] that a single inquiry phase may take up to 10.24
seconds which can explain missed detections. Results in [Mal+10; Fral0] showed
that most devices could be detected in 6 seconds. Moreover, Franssens in [FralO]
investigated the potential impact of inter-devices interferences on the detection rate.
They found that the missed detection rate increases when the number of discover-

able devices in the sensor range increases.

2.2.2.3 Bluetooth for travel time estimation

Most of the research works on Bluetooth traffic monitoring systems refer to the task
of travel time estimation. The unique device identification mechanism rendered the
BT technology a promising alternative to gather travel time information. The aver-
age link travel time between upstream and downstream positions is computed by
combining individual vehicles’ travel times. A vehicle travel time is defined as the
time difference between detection in both positions. Experiments in this context cov-
ered various environment settings: highways in [Wil+10; Sha+11; Hag+10; FHH10],
freeways [CONO8; Wan+11; MM+09; Ara+15], and arterial roadways in [Ste+15;
Sae+13; LXP20; BC13; GWM+15; EH16]. The BT sensors’ performance has been
evaluated by comparing the obtained travel time estimates to ground truth measures
collected by another technique. Wang et al. in [Wan+11] concluded that the travel
times obtained from BT-sampled data are comparable to those estimated from Au-
tomatic License Plates Readers. BlueTOAD BT sensors and RFID toll readers travel
times were compared in [KM]10]. The results showed that the error does not exceed
21 seconds. In [Hag+10; Sha+11; LXP20; Wil+10], the travel times extracted through
BT sensing were compared with those acquired using floating cars equipped with
GPS. The authors reported that similar and not significantly varying estimates are
obtained in most cases, especially under free-flow conditions.

However, travel time estimation task in urban traffic contexts is deemed more
challenging, mainly for short arterial road links. The authors in [Wil+10] noted



Chapter 2. State Of The Art 26

that travel times are underestimated on signalized arterial roadways. In [Qua+10],
Quayle et al. noticed that BT travel times in arterial roads are more affected by out-
liers such as pedestrians or pass-by trips.

The literature in this topic allowed identifying different sources of errors. They
have been well explored in [BC13] and [Mic16]. They have recently been classified
in [LXP20] into three groups: Bluetooth inquiry process-related factors, Bluetooth
zone-related factors, and arterial road-specific factors. Haghani et al. in [Hag+10]
addressed the zone-to-zone detection problem. They provided an upper-bound of
error in speed estimates related to the sensor’s detection zone’s size. They also
highlighted the importance of sensor position selection. Sabadi et al. in [FHH10]
proved that the error becomes negligible if the sensors are separated by at least 3
Km. Quayle et al. [Qua+10] suggested mid-link placement for avoiding interference
in intersections, even if it is extremely constrained in urban areas.

Several matching approaches have also been considered to derive more accurate
travel time estimates in the presence of multiple detections. In this context, different
results are obtained. The authors in [BC13] showed that Last-to-Last matching is bet-
ter than the average-based one and further better than the First-to-First. In [LXP20],
Liu et al. found average-to-average is the best for long links while Last-to-Last is
better for short ones. They noted that the results are somehow different than the
results in [Sae+13]. Araghi et al. in [Ara+15] showed that Median estimate could be
used as a better alternative to the average.

Another yet essential step during the travel time estimation is the outliers re-
moval and filtering process. The general framework for removing the noise is to de-
fine upper bound and lower bound thresholds to discard values outside this range.
In most cases, the thresholds are fixed based on statistics on normally expected travel
times such as 85-percentile, mean, and median. Other techniques have also been im-
plemented:

e Kalman filter in [LXP20; Bar+13].

¢ Moving median/mean filter [Wan+11; MM+09].

* Median absolute deviation filter [JA20; BOC15].

¢ Box-and-whisker filter [Tsu+11].

* Four-step offline filtering algorithm was proposed in [Hag+10]

It is worth noting that a trade-off exists between the efficiency of the filtering
algorithm and its required computing process-time. Hence, the algorithm’s com-
plexity often selected to meet the objectives of the study in terms of efficiency and
processing time.
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2.2.3 Bluetooth Detection Process Simulation

The simulation of Bluetooth scanners for traffic monitoring has been the object of
numerous research works [BG15; Fri+14; BQC15; HL11]. All reviewed works on the
topic focussed on active scanning for BT devices detection.

In [BG15], an analytical model for BT inquiry (active scanning) was presented.
The model considers the travel time of a BT device in the detection zone of a BT
scanner. Based on the travel time and a scanning time window, the probability of
being detected by the BT scanner is obtained. Simulations and experimentation are
shown to be in good agreement. During this process, the BT device has to be detected
two times in the detection region for the inquiry to succeed. Another work to collect
the BT device MAC data using slave probing is presented in [Fri+14].

A multi-layered Traffic and Communication Simulation (TCS) model is devel-
oped in [BOC15]. In this work, the communication simulation is integrated with a
microscopic traffic simulation to acquire BT MAC data. The authors used AIMSUN
traffic simulator [Bar+01] to gather detailed vehicle trajectories. The BT communica-
tions of the vehicles are simulated in Matlab. TCS randomly decides whether to as-
sociate each vehicle with the BT simulation module, based on the selected Bluetooth
penetration rate. BT-equipped vehicles’ trajectories are integrated into the commu-
nication simulation, simulating the BT inquiry process and communicating with the
BT-equipped vehicles when they are within the scanner communication range.

Other works such as [HL11; CONO08] consider only conditions like the distance
between scanner location and the street, detection range and vehicle speed.

2.3 Machine Learning Applications for Traffic Monitoring

One of the main contributions of our work is traffic quantification from BT indirect
devices counts. This task will be defined as a regression problem where a machine
learning model will be used to learn a mapping function between the BT raw mea-
surement and the ground truth vehicular traffic flow to infer more accurate traffic
estimates. In this section, we first provide some background knowledge in machine
learning. Then, we present an overview of existing works related to the applica-
tion of machine learning to the topic of traffic measurements calibration and flow

prediction.

2.3.1 Machine learning backgrounds

Machine learning (ML) studies the design of algorithms that provide computers
with the ability to learn automatically from data. The main objective is generaliza-
tion that is the capacity to perform properly on new and unseen data. ML methods
can be used to learn meaningful latent patterns in data, make predictions or fore-
casts from data or learn a data distribution.
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A typical machine learning problem is identified by four main elements:

* Asample set of data observations that are gathered from the underlying, com-
monly unknown, data generating distribution p;,. A common assumption
imposed on data observations is that they are identically and independently
distributed, or i.i.d. for short: we assume that each example is sampled inde-
pendently from the p,,, distribution.

Depending on whether the data is labelled, partially labelled or not, the ML
methods are broadly divided into supervised, unsupervised, and semi-supervised
learning methods. We will only detail the supervised setting where an input-
to-output mapping function f : X — Y is learned from a provided labelled
dataset in the form of (x,y) pairs to predict the output y € Y accurately on
an unseen observation x € X. According to the type of the label, supervised
learning can further be split into two types. We usually refer to the learning
task as classification when the provided labels belonging to a finite set of dis-
crete labels. With the labels being continuous numbers, the learning task is
called regression instead.

A common practice is to split a dataset into three subsets, a training, a valida-
tion, and a test set, with no intersection. The training set is the only subset on
which the learning algorithm is trained. The validation set represents a subset
of data that comes from the same underlying distribution p;,, to indicate how
the learning algorithm will perform on an unseen subset at test time. The val-
idation set is used for the model hyper-parameters selection, referring to the
parameters of the training algorithm that impact the model’s performance but
cannot be optimized by the learning algorithm itself. The test set is not consid-
ered during training or hyper-parameter selection but used to provide a good

approximation of the model’s performance on an unseen subset of data.

* A model or hypothesis defines an approximation of the target function that
best matches the inputs to the outputs. It is the central component of a learn-
ing algorithm. At the algorithm design stage, we generally specify a family of
models F, also known as the hypothesis space, that delimits the set of all possi-
ble models that the algorithm can learn. A large variety of hypothesis functions
can be considered, including linear regression, logistic regression, kernel meth-
ods, support vector machines, and neural networks. They belong basically to

two main categories of model families: parametric and non-parametric.

A parametric family is controlled by a fixed number of parameters ¢ indepen-
dent of the amount of training data. Each set of parameter 6 € © corresponds
to a specific mapping function fy. The family of functions bounds the repre-
sentation capacity of the considered model, which is pre-defined by the form
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of fy. Linear regression and support vector machines are examples of paramet-
ric models.

On the contrary, non-parametric model families assume that the data distribu-
tion cannot be defined in terms of a finite set of parameters. The number of
parameters usually grows with the dataset size. K-Nearest-Neighbour classi-

fiers and decision trees are examples of non-parametric models.

Neural networks are considered hybrid models since even if the set of param-
eters is fixed, the model hyperparameters may change according to the dataset

properties.

* A loss function that quantifies the goodness of fit. It identifies which crite-
ria to minimize during the model training. In the supervised setting, the loss
function L estimates the error that a model will incur on the data-generating
distribution by measuring the average difference between the learned func-
tion’s output and the target ground truth over the available data sample set.
This principle framework is known as empirical risk minimization, formulat-
ing machine learning as an optimization to minimize the loss function.

¢ An optimization strategy to train the model that is to find the parameter val-
ues that minimize the loss function. If the optimization solution for the pa-
rameters can be written as a closed-form solution of the training data, the pa-
rameters can be directly estimated. Otherwise, the parameters are updated
in multiples steps using an iterative process until the error cannot be further
minimized. Depending on the use of the loss gradient information during the
optimization process, fundamental methods can be classified into first-order,
high-order, and derivative-free methods. A survey of the commonly used and
recent optimization methods is proposed in [Sun+19].

2.3.2 Traffic Flow Measurements Calibration

The idea of measurement correction exists even before the use of probe-based tech-
niques for traffic monitoring. In the context of bicycle and pedestrian counting, au-
thors in [PSM16] studied the potential to use a calibration function to improve au-
tomated counting techniques” accuracy. The study included different types of tech-
niques and explored various environmental conditions. A linear correction function
has been estimated using ordinary least squares for each considered setting. Results
show improvements to the accuracy of flow with all of the correction functions used.
However, those functions are not generally applicable: the impact of the different
factors can differ depending on the considered technology and the environmental

conditions.
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Linear calibration function has also been adopted for several estimation tasks
where probe-based sensing techniques were used. The authors in [LRC19; Gal+19]
implemented a multiple linear regression for occupancy estimation from both Blue-
tooth and WiFi measurements. In [Mic16], authors assumed that BT measurements
are enough reliable for OD matrix construction. They simply used a multiplicative
factor to calibrate the data. The linear calibration work under the strong linear re-
lationships assumption. However, the mapping between the number of detected
devices and the task-specific ground truth counts may be more challenging due to
the dynamic variations of the sampling rate in space and time.

Recently, other machine learning techniques have been applied to the calibration
task. In [La 19], an SVR model was used in addition to the multiple linear regres-
sion to estimate the occupancy from devices” count obtained by active and passive
Bluetooth sensing. The results show improvement in accuracy when using the SVR
model. In [DOH20], the authors applied various regression models for pedestrian
flow rate estimation from WiFi count: multiple linear regression, shallow neural
networks, LSTM, and ARMAX models. They found that the LSTM, shallow neural
network (NN) give the best estimations.

2.3.3 Machine Learning for Traffic Prediction

The research community has widely considered the traffic forecasting task. The pro-
posed methods for this purpose fall into two main classes: parametric statistical
methods and nonparametric data-driven methods.

Typical statistical methods to model and forecast short-term traffic flow are time
series prediction methods. In [BY06], the authors used ARIMA model for travel
time prediction in an urban context. Moreover, numerous extensions of the ARIMA
models have been considered for accuracy improvement. Among them, we refer
to SARIMA [WHO03; Tra+15], STARIMA [Che+11] and ARIMAX [Yan+17]. Those
models fit better traffic characteristics such as the seasonality, the short variations
and the spatiotemporal correlation.

Several nonparametric data-driven models have also been applied for traffic pre-
diction. In [Xia+16; Cha+12], k-nearest neighbours models KNN have been used to
predict speeds and volumes. In [HC12], the authors used multivariate nonpara-
metric regression models for traffic forecasting. Support vector machine method
and its extensions have been considered for traffic flow forecasting [Cas+09; Hon11;
WHL04]. Some works proposed hybrid models combining both parametric and
nonparametric models. For example, Li et al. in [Li+16] combined ARIMA and
SVR models to capture both the temporal and spatial dimensions of traffic data.
Other works have compared data-driven methods with statistical methods. Better
results have been obtained. Hence, they all concluded that data-driven methods are
promising to improve prediction accuracy.

Deep learning approaches have attracted much attention for traffic prediction
due to its capabilities to model the non-linear characteristics of traffic data. A plethora
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of network architectures has been proposed for this purpose. Huang first used a
deep belief network (DBN) to predict short-term traffic flow [Hua+14a]. For the
same purpose, in [Hua+14b], the author proposed a temporal DBN with Multitask
Learning (MTL). In [Lv+14], Yisheng et al. used a stacked autoencoder neural net-
work (SAE) to model the traffic flow. Recurrent neural networks (RNN) have been
widely adopted to traffic prediction task. The structures of the RNNs incorporate
time dependency naturally using sequences of inputs and continuous feedback be-
tween time steps. Among RNN variants, long short term memory (LSTM) and gated
recurrent units (GRU) have been applied for traffic flow prediction motivated by
their capability to learn from long sequences. For example, in [Ma+15], the authors
used LSTM for traffic speed prediction. Fu et al. [FZL16] used LSTM and gated re-
current units (GRU) to predict short-term traffic flow. All of the models mentioned
above only consider the temporal dependencies on traffic data.

Different network architectures have been proposed to model both the spatial
and temporal correlations for both link-level and network-level traffic prediction.
Convolution layers are often used to model the spatial correlations in data. Standard
2D convolution layer was first adopted. In this case, the networkwide traffic data
are transformed into a regular 2D grid structure as standard CNNs are restricted
to processing Euclidean-structured data. Recently, researchers focused on extend-
ing the convolution operator to graph-structured data more adapted to model the
network topology. Here, a weighted adjacency matrix is used to model the spatial
relations between different network links. The weights are mostly defined inversely
proportional to the distance or the travel time between locations. Other parameters
have also been considered, such as transportation connectivity, functional similar-
ity, traffic pattern similarity. To address the problem of static spatial dependencies
predefined by the considered adjacency, authors relied on attention mechanisms to
model dynamic spatial correlations.

Both convolution and recurrent layers have been used to model the temporal
correlations in the data. Unlike recurrent layers, convolution layers do not model
sequential dependencies over the historical values. They capture the valuable tem-
poral information in data by merging values at neighbouring steps over the time
axis. Their use is motivated by their fast training time, their simpler structure com-
pared to RNN models.

The different design choices made when modelling the spatial and temporal cor-
relations yield the definition of different types of spatial-temporal block. In gen-
eral, multiple blocks are stacked to form the model architecture. The number of
used blocks depends on the considered road network: its size, the complexity of
its topological structure and the complexity of the underlying spatial-temporal de-
pendencies. In fully convolutional architecture, spatial-temporal blocks are mostly
defined as a superposition of spatial and temporal layers. Another common way
to include spatial representation in recurrent layers consists of replacing linear op-
erations in both the input-to-state and state-to-state transitions at gated units with
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convolutional ones.

In the remainder of this section, we review some of the existing works. In [Ma+17],
Ma et al. used convolutional neural network for traffic speed prediction where traf-
fic data is projected into 2D image-like space modelling both time and space di-
mensions. Zhang et al. [Zha+16] proposed a DNN-based prediction model to cap-
ture both temporal and spatial dependencies. The model consists of convolution
layers and takes as input three types of historical data to include temporal close,
periodic, and seasonal trends. In [ZZQ17], the same authors implemented an ST-
ResNet, which employed residual neural networks to model the Spatio-temporal
dependencies for citywide crowd flows prediction. In [Jin+18], the authors pro-
posed the STRCN model that simultaneously combines convolutional and LSTM
layers to capture spatiotemporal dependencies. STRCN also defines different com-
ponents to model instantaneous variations and daily and weekly trends. Exter-
nal factors are also fed to the model. In [Cui+19], Zhao et al. combined graph
convolutional network (GCN) and gated recurrent unit (GRU) to forecasting traf-
fic flow. Li et al. [Li+17] employed the GRU with graph convolution (DCRNN)
with an encoder-decoder architecture for long-term traffic speed forecasting. Yu et
al. [YYZ17] used a gated convolution network with graph convolution (STGCN) to
capture the spatiotemporal correlations. A similar architecture has been adopted
in [Guo+19]. The authors included spatial and temporal attention mechanisms to
capture the dynamic spatial-temporal characteristics of traffic data. In [Lia+18],
the authors introduced GeoMAN, a model with two-level of attention. In the first
level, local and global inter-sensor correlations are learned. The second level focus
on temporal correlations. A superposition of convolutional and LSTM layers have
been used in [Yao+19]. In [Mou+19], convolution-LSTM layers were arranged in an
inception-Resnet architecture. Moreover, the authors implemented a time-channel
attention mechanism to consider crowd flow changes. To model the dynamic spatial
similarity between regions, the authors introduced a flow gating mechanism and a
periodically shifted attention mechanism. In [Yao+18; Liu+18; Gen+19], a multiple
view convolution layers have been used to model spatial dependencies to consider
different types of relationships such as transportation connectivity, functional simi-
larity, and traffic pattern similarity.

2.4 Transfer Learning under unsupervised setting

Supervised learning is the most widely used type of machine learning. Over the
years, it has been applied to many problems in diverse application fields. Since
the advent of deep neural networks, SL provided state-of-art performance to solve
highly complex problems. However, the generalization error of supervised models
is guaranteed only under the common assumption that the training and testing data
are drawn from the same distribution. Whenever this assumption does not hold,
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a significant drop on the model performance is observed at testing time. Never-
theless, this problem commonly occurs in real-world applications, limiting model
reusability. Model retraining and retuning is often needed whenever the data ac-
quisition conditions change, or a somewhat different task is considered. Simultane-
ously, that entails collecting new labelled data that often involves an expensive and
time-consuming process.

Transfer learning refers to the subfield of machine learning, trying to solve this
kind of problems. The baseline idea to transfer learning is to improve the model
learning capabilities in a new targeted context by relying on the previously-acquired
knowledge while training the model in a different but related source context. Pan
et al. [PY09] defined the source and target context as a combination of two parts: a
domain and a task. The domain consists of the feature space and the marginal prob-
ability distribution while the task concerns the label space and the objective estima-
tion function. This definition gives rise to different transferring settings regarding

shifts on the domain or/and the task components.

24.1 Introduction to Unsupervised Domain Adaptation

Domain Adaptation is the most-explored transfer learning setting that refers to prob-
lems where the target and the source share the same task but deals with different
domains. A shift in the domain may result from either a difference in feature space
or a discrepancy in the marginal probability distribution. We distinguish between
homogenous and heterogeneous domain adaptation based on whether the feature
spaces are identical or not.

Based on the presence of labelled data in the target task, a domain adaption
model can either be classified as supervised or unsupervised. Supervised models
refer to the case where even few labelled target data are available to support the
transfer process. In an unsupervised setting, no labelled target data are available.

The remainder of this section is dedicated to reviewing research works on ho-
mogenous unsupervised domain adaptation (UDA). We focus on approaches ap-
plied to deep networks.

The literature on deep UDA reveals two distinct research lines: The former in-
vestigates symmetric approaches on distributions alignment between the source and
target domains. The latter regroups asymmetric approaches based on domain map-
ping learning. Other works also relied on pseudo-labelling techniques to deal with

the unavailability of labels on the target domain.

2.4.2 Symmetric Domain Adaptation via Distributions Alignment

Distribution alignment approaches aim at learning a latent feature-invariant repre-
sentation where input data from the source and the target input data are drawn from

the same marginal distribution.
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FIGURE 2.12: Structure of domain adaptation methods via: a) domain
alignment, b) domain mapping. Figure adapted from [WC20]

One of the most commonly used alignment methods consists of minimizing a
divergence measure between the distributions. To this end, Authors in [Tze+14;
Lon+15; Lon+17] used the maximum mean discrepancy (MMD) measure [Gre+06].
MMD is a non-parametric two-sample statistical test of the hypothesis that two ob-
served samples are from the same distribution. In DA context, the test is used as
a distance measure and defined as the norm of the difference between the distribu-
tions” embedding means in a reproducing kernel Hilbert space (RKHS).

The [Tze+14] used a parallel two-stream model with shared weights for han-
dling source and target-domain and introduced an MMD-based regularizer over the
last fully connected layer to maximize domain confusion between the learned rep-
resentations. Sharing similar ideas, [Lon+15] proposed a Deep Adaptation Network
(DAN) architecture. They defined a multi-kernel MMD regularizer to enhance fea-
tures’ transferability in higher task-specific layers in convolutional networks. The
multi-kernel selection strategy further improves embedding matching effectiveness.
In [Lon+17], the authors define a joint maximum mean discrepancy (J]MMD) to min-
imize discrepancies in both marginal and conditional data distributions in the de-
rived common latent space.

In the same direction of distributions divergence minimization, some works stud-
ied correlation alignment by considering the distance between second-order statis-
tics (covariances) of the two domains. [SS516] adapted the CORAL loss to deep net-
work architectures by adding a loss term that minimizes the Euclidean distance of
the covariance matrices of higher layers’ outputs. In [Wan+17] and [MM17], the
authors replaced the Euclidean distance with a log-Euclidean one. [Wan+17] fur-
ther utilized the first-order statistics for domain alignment. [Zha+18] mapped the
covariances of source and target features into an RKHS before computing the Eu-
clidean distance.

In [Dam+18], the authors explored the optimal transport theory for domain align-
ment. An optimal transport coupling is computed on the latent representation spaces
of the defined deep feature extractor to address the distributional shift where the
Wasserstein distance was used.

Rather than minimizing a divergence measure, another alignment approach con-
siders an encoder-decoder reconstruction network to support the learning of a shared
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domain-invariant representation. Deep Reconstruction - Classification Networks
(DRCN) proposed in [Ghi+16] implements a siamese network structure with a shared
encoder structure, a classifier for labelled source data classification and a decoder for
target data reconstruction with the intention that the shared representation encodes
the commonality between the source and target tasks. Domain separation networks
(DSN) [Bou+16] jointly learns a shared encoder and per-task specific encoders to
explicitly model both private and shared components of the source and target do-
mains. The considered objective function aims to maximize the independence be-
tween the different components while minimizing the per-task reconstruction error.

With the recent advances around generative adversarial networks (GAN), differ-
ent works used an adversarially-trained network to learn the divergence between
the source and target domains. As in GANs, the models consisted of a two-player
zero-sum game where the feature extractor learned to map the input data to a latent
domain-invariant space while the classifier network learned to distinguish between
the source and target domains. Different varieties of models have been proposed in
this setting; we refer to works on [GL15; Bou+16]. Inspired by Wasserstein GANSs,
Shen et al. in [She+18] replaced the domain classifier with a network that learns an
approximate Wasserstein distance. This distance is then minimized between source
and target domains.

Authors in [Tze+17] proposed unified framework for adversarial-based approaches
illustrated in figure 2.13. The authors defined three criteria that summarize the dif-
ference between existing approaches depending on whether a generator or classi-
fier is used, the defined loss function, and whether weights are shared across do-
mains [WD18].

source . source -
input source mapping discriminator
Generative or Weights Ls| Which
descriminative tied or : adversarial
model? 5 untied? g —>| objective?
target ¢ t . tafget
input arget mapping discriminator [—
classifier

FIGURE 2.13: Unified framework for adversarial domain adaptation.
Figure extracted from [Tze+17].

2.4.3 Asymmetric Domain Adaptation via Adversarial Learning

Asymmetric domain adaptation refers to methods performing a transformation map-
ping from the source domain to the target domain or in the opposite direction. The
majority of those models relies on cyclic GANs. The model architecture is com-

prised of two GANSs: one per mapping direction (from source to target and from
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target to source). A classifier is then trained on the source data mapped to the target
domain using the known source label. Those models have initially been proposed
for unpaired image-to-image translation. The idea was explored in [Zhu+17; Yi+17;
Kim+17] by incorporating a cycle consistency term defined by two per-task recon-
struction losses.

In [BW17], the authors showed that it is possible to learn a one-sided mapping
between the source domain and the target domain in an unsupervised way, by
enforcing high cross-domain correlation between the pairwise matching distances
computed in each domain. To this end, DistanceGAN introduces an additional loss
term consisting of the expectation of the absolute differences between the distances
in each domain. GcGAN proposed in [Fu+19] also involved a one-sided model cou-
pled with a geometry-consistency constraint.

Hong et al. in [Hon+18] used a conditional GAN to map the source features to
the target space.

2.4.4 Pseudo-labelling for Domain Adaptation

Another strategy to address UDA is to convert the unsupervised setting to a semi-
supervised one through pseudo-labelling. Pseudo labelling [Lee+13] is a widely-
used technique in semi-supervised learning and consists of progressively assigning
labels to unlabelled samples. The assigned labels are called pseudo-labels, as they
are prone to errors. Pseudo labelling is mostly achieved by applying a threshold-
based approach to identify unlabeled samples with high confidence. An adaptive
threshold adjustment strategy is additionally used to update the threshold when-
ever the training progresses. Here, the threshold setting and adaptation process are
extremely critical. Over-confidence on falsely pseudo-labels may lead to error prop-
agation along the training process.

[SUH17; ZLK18] explored a tri-branch network for domain adaptation through
pseudo-labelling. In this setting, three classifiers are defined: two networks trained
on the source data samples and used to identify highly confident pseudo-labels for
unlabeled target samples, and the last network is trained on the progressively la-
belled target data. In each step, the selected pseudo-labels must strictly satisfy two-
conditions regarding the two first classifiers outputs.

The authors in [RC19] proposed to replace the thresholding strategy by a confidence-
based weighting in constructing pseudo-labels where they grant high (respectively
low) weights for pseudo-labels with high (respectively low) confidence. Zou et
al. [Zou+19] proposed a confidence regularization of the self-training model to deal
with overconfidence to noisy labels. In [Pan+19; Hu+20], prototypes were used to
perform domain alignment after pseudo-labels assignment.

Although the increasing interest in domain adaptation, most existing works are
only applied to the fields of computer vision and natural language processing. Fur-
thermore, they consider classification tasks with discrete output spaces. However,
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domain adaptation dealing with sequential temporal data may be more challeng-
ing. That is, from one side, due to the temporal dependencies inherent in this type
of data. On the other side, offsets and time lags render the assumption about un-
changed conditional probability rarely satisfied.

Recently, some works explored UDA for time series. Da Costa et al. in [Cos+20]
adapted the DANN model [Lon+15] to time series data and used an LSTM-based
features extractor. In [Pur+17], a variational RNN was used to learn the latent
domain-invariant representation. The authors in [Rag+20] proposed ADARUL, an
adversarial domain adaptation model for machine remaining useful life prediction.
Authors of [Cai+20] assumed that both source and target data are generated from a
shared causal mechanism and proposed instead to align the discovered associative
structure in the time series through MMD minimization. In [Yan+20], a heteroge-
nous UDA setting was considered to time series domain adaptation for medical ap-
plication.

2.5 Synthesis

To sum up, in this chapter, we presented the background and state of the art in
the fields of intelligent transportation systems, Bluetooth technology, and Machine
Learning, related to the thesis context.

ATIS and ATMS systems are core components of any ITS system. Those systems’
performance depends on their capacity to extract understandable high-resolution
traffic-related indicators that capture the evolution of the road traffic system that is
the dynamics of how the system is evolving. From comparing the most used traffic
sensing techniques, we highlighted both the advantages and limitations of Bluetooth

sensing for traffic monitoring.

Bluetooth sensors provide cost-effective, low-impact and easy to deploy alternative
to conventional techniques. They are adapted for mass deployment in urban areas at
relatively low investment and maintenance costs. Moreover, the increasing integra-
tion of BT technology in the automotive industry supports the sensors’ capacity to
generate high resolved (temporal) traffic data over a sufficiently high spatial density.

However, BT technology still represents an indirect technique for traffic data acqui-
sition. Its detection process can be affected by different factors related to the technol-
ogy’s market penetration rate, the sensor placement, and the inherent characteristics
of the traffic. Different sources of errors have been identified in the literature that
render BT traffic data accuracy questionable, especially when deployed in dense ur-

ban areas.
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From this chapter, we made three main observations:

¢ The representativeness and the quality of the Bluetooth traffic data represent
the main limitation to the use of BT sensors as the main and sole data source
for traffic monitoring. We present a thorough exploratory analysis of the char-
acteristics of BT data gathered through experiments using a passive scanning
process in chapter 3. The study is extended in chapter 4, where we propose
a simulation framework of BT scanning for vehicular traffic application. The
simulator is then used for complementary analysis on the factors impacting
the sensor detection rate.

¢ The variations on the sampling rate in space and time may hinder the abil-
ity to capture the short-term variations on traffic flow data essential in ATMS.
Most of the reviewed works rely on linear calibration function to infer traffic
flow from the BT sensor counts. Consequently, in chapter 5, we first investi-
gate the use of machine learning techniques to improve the acquired BT traffic
flow estimates” accuracy. In chapter 6, we propose a deep learning model for
network-level traffic estimation, motivated by the substantial works on deep
learning application for network-wide traffic prediction. We also introduce
the problem of model transferability, the capacity of inter-site model transfer
specifically in the setting where no ground truth data is acquired on the new
deployment site.

¢ The position uncertainty problem linked to the zone-to-zone detection impacts
travel time and link speed estimation precision. In Chapter 8, we propose to
use the received signal information to improve the accuracy of the link speed
estimate. We analyse the solution performance in the case of sensors installed
close to each other.
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Chapter 3

Bluetooth Traffic Indicators from
Experimentation

This chapter aims to make clear to the reader the application context of this thesis
contributions. We present a thorough analysis of the Bluetooth data acquired from
the experiments to highlight the BT data characteristics and explain the assumptions
made in the following chapters of the manuscript. To this end, in section 3.1, we first
describe the Bluetooth data acquisition process. We then detail the settings of the
experiments carried out in the context of this work in section 3.2. Two types of ex-
periment were conducted: the first to gather the required data to generate labelled
learning dataset, and the second to analyze the missing detection rate of the consid-
ered BT sensors. In section 3.3, we describe the obtained data by Bluetooth sensing
and we details the data preprocessing process. In section 3.4, we provide a thorough
exploratory analysis of the Bluetooth data. We investigate basically the representa-
tiveness and the quality of the data. Last, in section 3.5, we study the relationships
between the temporal dynamics characterizing both the BT sensory data and the
traffic flow data.

3.1 Bluetooth Sensing

3.1.1 The Data Acquisition Process

A Bluetooth traffic sensor consists of a roadside sensing unit equipped with a BT
antenna. It relies on a scanning process to detect BT-enabled devices in its surround-
ings defined as the detection range. The detection range size and shape depend on
the type of sensor antenna and may vary with the sensing radio propagation en-
vironment. Once a device is detected, relevant information is extracted from the
received packet among them the MAC address. As described in section 2.2.1.1, the
MAC allows uniquely identifying each BT device. The extracted information is then
timestamped and anonymized before being stored for a certain time. A Bluetooth
Traffic Monitoring System (BTMS) is obtained by deploying a network of multiple
Bluetooth sensors across the road network. The traced data across the network can

then be processed to infer traffic-related indicators.
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For our experiment, we used the BT sensor prototype designed by Vedecom
team. The sensor comprises a Raspberry Pi microcomputer, a Class-1 Bluetooth ra-
dio with an omnidirectional rubber duck antenna, a GPS unit, and a memory card for
data storage. It runs on rechargeable batteries, with an autonomy of approximately
35 hours. Most importantly, those sensors rely on a passive scanning process. As
previously explained in section 2.2.1.5, unlike active scanning, the passive scan does
not rely on the BT inquiry process to detect devices. Thus, it does not depend on
the device’s visibility status. It consists of performing continuous scans over the 79
Bluetooth channels, by listening to each of them during a short period. By doing
s0, this technique allows detecting active inter-device connections. Hence, the main
difference between the two scanning processes is that passive scan can detect only
devices involved in active connection whether they are discoverable or not whereas

the active scan detects discoverable devices whether they are actively transmitting.

3.1.2 Bluetooth Data Privacy

The data privacy and anonymity are at the centre of debates around the deploy-
ment of any AVI systems among them, BTMS. This is basically due to their unique
identification system indirectly related to the identity of the device owner. For this
reason, a high level of attention is required to ensure the proper use of the acquired
data. In our project, for the sake of anonymity preserving, a non-reversible hashing
function is applied to the MAC identifier as soon as a packet data is obtained. To re-
construct vehicles trajectories across different sensors, all the sensors share the same
hashing seed at a given time in such a way that the assigned vehicle ID is consistent
between sensors. For further level protection, the hashing seed changes every day
so that it cannot be possible to identify vehicles by tracking individual behaviours
across several days. Additionally, the raw Bluetooth traces will be preserved only
during the authorized 3-month period fixed by the GPDR. Other restrictions are also
set regarding the data exploitation and share as only aggregated data and inferred
traffic-related indicators could be publicly shared.

3.1.3 Experiments Description

In this work, two types of experiments were carried out. The first is dedicated to
the collection of supervised data mainly used for the training and validation of the
proposed models, while the second is used to study missing detection rate of the BT

sensors. Below, we detail the experiments’ settings.

First experiment setting:

During this experiment, we deployed four Bluetooth sensors around a major road-
way of Versailles city (in France). This road was selected as it links an off-ramp of a
national expressway to the city centre and guarantees a sufficiently high traffic flow
during the daytime. As depicted in Figure 3.1, three sensors were placed along the
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FIGURE 3.1: Sensors placement plan

major roadway, while the last one is placed on a side secondary road. This placement
setting ensures that no major exit point exists between the sensors’ positions. Each
sensor was attached at an approximate height. Moreover, we tried to ensure that
the sensors are located about 200 meters apart from each other to minimize overlap-
ping between their detection areas. Pneumatic tube sensors were deployed at the
same four locations to collect the data serving as ground truth. The clocks of both
types of sensors were synchronized before each experiment to ensure the accuracy
of the measurements. Figure 3.2a shows an example of both Bluetooth sensor and
pneumatic tubes deployment.

Ten runs of one-week experiments were carried out between November 2017 and
October 2018. Three out of the ten weeks correspond to vacation periods that may
affect the typical mobility pattern in the area. It is also important to note that miss-
ing data were reported due to sensors failures and misoperations. For better analysis

precision, we decided to discard days with a high rate of missing values.

Second experiment setting;:
In this experiment, the four BT sensors are installed at the same place under the same
conditions (the same scanning process, the same antenna direction and, with a fully
charged battery) as shown by Figure 3.2b. This type of experiment serves to verify
if the sensors provide similar detection rate or otherwise to estimate the missing de-
tections rate. In section 3.4.2, we report two-and-a-half-hour experiment results on

a typical working day between 12 p.m and 2 p.m.

3.2 Bluetooth Sensor Data Description

Whenever a Bluetooth packet is detected in a radio channel, the sensor proceeds
to information extraction. Each row of the BT sensor trace compromises four main

attributes:

* The packet detection time consists of the timestamps of the detection event and

is reported with one-second precision.
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(A) First experiment setting (B) Second experiment setting

FIGURE 3.2: Example of sensor deployment in the experiments.

¢ The channel of transmission.

¢ The device identifier corresponds to the hashed Lower Address Part (LAP) of
the device’s MAC address. A technical limitation of passive scan is that de-
tecting the full MAC address of the devices requires defining a complex and
intrusive process to extract the scanned device frequency hopping sequence.
Nevertheless, the LAP addresses are sufficient to provide a unique device iden-

tification over a specific city area.

* The received signal strength indicator (RSSI) is a measure of the received radio
signal’s strength at the sensor level. It allows evaluating both the signal quality

and (indirectly) the proximity to the sensor.

A small chunk of a Bluetooth sensor trace is provided in figure 3.3.

time=15XX884723 ch=70 HLAP=76XXcf s=-74
time=15XX884723 ch=74 HLAP=76XXcf s=-76
time=15XX884724 ch= 5 HLAP=XXe454 s=-70
time=15XX884724 ch=24 HLAP=9dXXb9 s=-56
time=15XX884725 ch=75 HLAP=732bXX s=-63
time=15XX884725 ch=75 HLAP=732bXX s=-63
time=15XX884725 ch=32 HLAP=76XXcf s=-77
time=15XX884725 ch=34 HLAP=76XXcf s=-77
time=15XX884726 ch=70 HLAP=76XXcf s=-76
time=15XX884726 ch=76 HLAP=76XXcf s=-76
time=15XX884727 ch=46 HLAP=732bXX s=-57

FIGURE 3.3: A chunk of a Bluetooth sensor traces
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3.3 Data Preprocessing and Filtering

The raw BT data is subject to various sources of errors and noises regarding the
vehicular traffic monitoring task. Therefore, data filtering is essential to reduce as
much as possible the noise impact on the results accuracy of further data use and
exploration.

However, the filtering task is not always straightforward. The task becomes more
challenging when the sensors are deployed in urban signalized roadways. On the
one hand, the BT sensors are primarily designed to scan any BT-enabled devices
in their vicinity regardless from their sources: whether they are boarded in vehi-
cles, transported by pedestrians or even deployed in nearby buildings. On the other
hand, the variations in urban road traffic conditions between free-flow and conges-
tion alter BT data’s characteristics related to motorized vehicles as more time is spent
in the sensor detection zone. Consequently, they become more similar to other non-
motorized road users data that is not affected by road traffic conditions.

In this work, we adopted a coarse-to-fine filtering process implementing the
three following steps:

¢ The first coarse filter identifies outliers with abnormal high detection dura-
tion and continuous detection sequence. Here, the detection duration refers
to the time difference between the device’s first and last detections. A detec-
tion sequence is continuous if the inter-detection time between two detections
is short enough. The threshold for maximum detection duration and inter-
detection time are respectively set to 3 and 1 hours. This step allows filtering
out two types of outliers: devices whose addresses are detected all day long
and devices detected during long-duration exceeding three hours more likely
to be related to devices in neighbouring buildings.

* The second step performs finer duration-based filtering to identify devices
more likely to point to motorized vehicles. Under free-flow conditions, short
detection durations are expected to characterize motorized vehicles due to
their high speed compared to the other road users. A 35 Km/h speed ve-
hicle takes only 20 seconds to travel a 100-meter detection range compared
to 36 (respectively 90) seconds for cyclists (respectively pedestrians). How-
ever, motorized vehicle detection durations tend to increase under stop and
go driving behaviour due to congested traffic conditions and signalized roads.
For example, urban drivers spend an average of 75 seconds waiting at each
red light [Bes18]. This fact is important when defining the filtering threshold.
We fixed the threshold value to 120 seconds based on the distribution of the
detection duration.

Figure 3.4a shows that 120 is a sound cut-off point for the quantile function.
More than 80% of the devices have a detection duration of fewer than 120
seconds. Figure 3.4b draws the distribution of detection durations on the
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FIGURE 3.4: Quantile function and histogram plots of devices detec-
tion duration per sensing position.

four sensing positions. As expected, the distribution curves are right-skewed,

where most of the detection durations do not exceed the fixed threshold of 120

seconds. The curve lines related to the first and second sensors show a sec-

ond small peak at around 300 seconds less likely to refer to moving vehicles.

It is essential to note that here a critical trade-off exists. A tighter threshold

value can be used to discard all non-motorized road users. However, it comes

at the expense of the ability to detect congestion. Table 3.1 shows the average
percentage of filtered out devices with 90, 120, and 240 seconds thresholds.

The results show a difference of less than 3% between the use of 90s and 240s
thresholds.

TABLE 3.1: Average percentage of filtered addresses per sensor and
time duration threshold.

Sensor/Threshold (s) 90 120 240
Sensor #1 13.51 % | 12.85 % | 10.29 %
Sensor #2 999% |916% | 7.83 %
Sensor #3 749 % | 5.68 % | 5.33 %
Sensor #4 6.67% | 478% | 4.1%

¢ The last filtering step removes devices with high maximum received signal

strength. It allows identifying devices detected only on the borders of the sen-

sor detection zone. Those devices mostly point to vehicles in adjacent road-

ways covered by the sensor detection zone, especially in near intersection de-

ployment cases. In accordance with the sensor deployment plan, we used a

threshold of -75dBm, ensuring a maximum detection range between 75-100

meters with a receiver antenna gain of 3dBi. Only devices with a short detec-

tion sequence are discarded, i.e. devices detected less than three times.

The results of applying the filtering process to the experiments data are summa-
rized in table 3.2. Around 0.5% of detected addresses are related to daylong sta-

tionary devices. Devices with high detection duration (more than 120s) represent
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respectively 12.85%, 9.16%, 5.68% and 4.78% of the set of detected devices at the
four sensing positions. The difference between the sensing positions cannot be fully
explained, but we notice that the percentage grows up by moving towards the city
centre (from sensor 3 to sensor 1). The nearby gas station can partially explain the
increase in the first sensing position. Around 5% of detected devices in the major
roads (sensing positions 1, 2, and 3) consists of isolated detections with low max-
imum RSSI (less than -75dBm). The percentage is about three times higher in the
fourth sensing position, reaching 14.33% of the detected devices set. This increase
supports our belief that those devices point to vehicles travelling along the major
roadway. The observed increase in the number of isolated detection related to de-
vices in nearby roadways is also reflected in the global number of isolated detections,
as shown in table 3.2.

TABLE 3.2: Statistics on the detected devices

Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4
Daylong stationary devices (%) 0.52 0.5 0.44 0.43
Single detections (%) 19.76 23.34 24.68 36.3
Multi-trips devices (%) 10.0 10.2 9.46 7.69
Devices with duration > 120s (%) 12.85 9.16 5.68 4.78
Devices with max(RSSI) < —75dBm (%) 4.18 5.44 5.55 14.13

Analysis performed on the experiments data has shown that around 10% of de-
vices are involved in at least two trips per day.

3.4 Characteristics of Bluetooth Data

This section presents an exploratory analysis of the characteristics of data acquired
by BT sensing, basically its representativeness and its potential to infer traffic-related
indicators.

3.4.1 The Sampling Rate of the Bluetooth Sensor

Unlike conventional intrusive techniques, BT technology is an indirect monitoring
technique that relies on packets detection over the BT channels. Thus, BT sensors can
only capture a fraction of the actual vehicular traffic flow, defining their detection
rate (also denoted as the BT sampling rate). Quantifying the detection rate allows
investigating the potential of BT data use for Traffic indicators extraction. For this
purpose, during the experiments, a second sensing technique was deployed jointly
to Bluetooth sensor to acquire accurate direct traffic counts; for instance, pneumatic
road tubes were used here. The detection rate is then computed by comparing the
number of detected devices by both of those techniques.

Figure 3.5a draws the distribution of the daily number of detected device per
each deployed sensor. It shows that all of the three sensors placed on the major road

detect merely the same number of devices. The fourth sensor detects less traffic as
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it is installed on a secondary road. Figure 3.5b shows the traffic flow captured by
the installed road tubes at the same positions. In this plot, slightly higher traffic
is detected at the third sensor position, mainly explained by its proximity to the
expressway entry and exit ramps. Thus, it is summing up all the flows to/from the
expressway. The difference between the two plots assumes that the detection rate is
lower in this position. On another side, a higher average detection rate is observed
in the fourth position. The obtained results are consistent with the analysis done in
other research works.

The detection rate varies from one location to another. In general, this differ-
ence is due to many factors related to the sensor placement, the characteristics and
heterogeneity of the traffic, and the BT technology’s penetration in the region.
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FIGURE 3.5: Distributions of (a) the daily number of detected devices
(b) the daily vehicles count per sensor.

As an illustration, we show in the figure 3.6 the relation between the daily num-
ber of detected devices and the vehicular flow for each experiment day. The detec-
tion rate is superposed with a dashed line to the figure. The detection rate is almost

steady, around 40%.
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However, the analysis of the detection rate’s temporal evolution reveals that the
rate varies over time. Figure 3.7 illustrates the average detection rate of the different
deployed sensors. As expected, the first and second sensors have the same average
detection rate, around 50%, during daytime hours. The third sensor’s detection rate
is slightly lower at 40% and a significantly higher rate at the fourth sensor. It is im-
portant to note that the obtained rates are higher compared to experiments done in
other works (see section 2.2.2.1). The rates represent an overestimated approxima-
tion of the BT penetration rate in vehicles. This is caused by issues inherent to the
BT sensing process, namely multi-tenancy detection problems. At the same time, it
supports the fact that a higher rate can be obtained through passive scanning.
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FIGURE 3.7: Average detection rate per sensor.

The high rates observed at nighttime are relative to the very low traffic density.
The rate curve lines exhibit variations during the daytime period, with a higher rate
at rush hours. The change in traffic conditions can somehow explain those varia-
tions: slower travel speeds and more heterogeneous traffic at rush hours, represent-
ing probably more favourable sensing conditions. This is also emphasized by the
decreased capacity to entirely filtering non-motorized vehicles.

As shown in figure 3.8, the evolution of the detection rate varies among the dif-
ferent experiment days. The interday difference is more perceivable at hours pre-
ceding the morning rush hours and during evening rush hours with interquartile
variation range around 20%.

To sum up, this analysis confirms the promising sampling rate of Bluetooth sen-
sors. However, the observed variations render the estimation of high-resolution traf-
fic flow more challenging.

3.4.2 The Miss-detection Rate of the Bluetooth Sensor

The second experiment setting described in section 3.1.3 was designed to quantify
the miss detection rate of BT sensors. All of the four sensors were placed in the same
conditions and at the same location.

The miss detection rate is then inferred by comparing the set of unique BT ad-
dresses detected by each sensor. The pairwise comparison results are presented as
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a matrix in table 3.3. Each cell of the matrix consists of the percentage of commonly
detected address by the pair of sensors. Results show that it counts for 74-85% of
the set of addresses detected by at least one sensor, which traduces a miss detection
rate of around 20%. This rate confirms the results obtained in [Mic16]. The analysis
also reveals that between 12-15% of the detected addresses are uniquely detected by
only one sensor. That experiment proves that the BT sensing process does not detect
all BT-equipped devices travelling along their detection zone.

TABLE 3.3: Percentage of pairwise commonly detected BT addresses

Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Unique address
Sensor 1 80.17 81.62 13.86
Sensor 2 74.46 77.33 12.76
Sensor 3 81 79.84 15.8
Sensor4 | 82.86 14.43
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FIGURE 3.9: Average percentage of detected BT device per number of
deployed sensors.

The evolution of the overall number of detected addresses is represented in fig-
ure 3.9. Assuming that the set of addresses detected by the four sensors approxi-
mates the total number of BT devices in the area. We observe that, on average, one
sensor detects only about 65% of the devices. The number of detected devices in-
creases by using multiple sensors. The placement of a second sensor increases the
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number of detected devices by 15%. As well, adding a third and a fourth sensor
allows an increase of about 10%.

A major problem of the Bluetooth sensing process for traffic analysis stems from
the uncertainty of the number of detected devices. This can be witnessed in fig-
ure 3.10. Even if the sensors were deployed under the same conditions, the number
of detected devices per each sensor by 5-minute time intervals is different. This fact
primarily affects short-term traffic flow estimation.
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FIGURE 3.10: Relations between BT unique addresses count and ve-
hicle flow per 5-min interval.

3.4.3 The Matching Rate between the Bluetooth Sensors

Travel time can be computed from the Bluetooth sensor as the difference between
times when the device detected at a first origin sensor and a second destination
sensor. Thus, the sampling rate also depends on the matching rate between an
origin/destination pair of sensors. The matching rate is defined as the fraction of
commonly detected devices by a pair of sensors placed in different locations. The
average matching rates from the experiments data are presented in Table 3.4.

TABLE 3.4: Average matching rates between the deployed sensors

Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Single detections
54.1 43.9 13.43 29.14
Sensor 2 49.37 18.38 22.21
Sensor 3 | 43.53 26 22.26
Sensor4 | 49.11 38.6

The highest observed matching rate is observed between the first and the second
sensors due to their proximity and the absence of exit points between the two loca-
tions. Even if the average matching rate reaches only 54.7% and 51.78% respectively
of the total number of devices detected by each sensor,it allows an average sampling
rate of about 20% of the flowing traffic. For the other cases, the average pairwise
matching rate is between 40-50%. We note that the reported rates from the first, sec-
ond, and third sensors to the fourth one are lower; this is since vehicles from the
secondary road represent only a small fraction of the major road traffic flow. In the



Chapter 3. Bluetooth Traffic Indicators from Experimentation 50

other sens, we observe that between 30- 50% of the devices detected in the fourth
sensor is also detected at a sensor deployed on the major road. The matching rate
between the third and the second sensor is surprisingly lower than the rate between
the third and the first one. The reason for that is still not clear. Those results ensure
a sampling rate higher than the 5% threshold rate deemed necessary for travel time
estimation.

A shown in table 3.4, the average percentage of devices detected only by one of
the four sensors is about 22-30% of the devices detected on the first, second, and

third positions, and attains 38.6% for the fourth sensor.

3.5 Temporal Dynamics of the Bluetooth Traffic Data

In this section, we study the capacity to derive accurate high-resolution traffic flow
estimates from the acquired data by Bluetooth sensing. For that, the temporal evo-
lution of both the Bluetooth and the actual traffic flows are first compared.
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FIGURE 3.11: The average weekly Bluetooth and vehicular traffic
flow per 5-min interval at the second sensor position.
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FIGURE 3.12: The average Bluetooth and vehicular traffic flow per
5-min interval (a) on weekdays, and (b) on weekends.

We provide in figure 3.11 a global view of the average traffic flows through a
week in the second sensing position. Figures 3.12a and 3.12b illustrate, respectively,
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the typical traffic flow patterns on weekdays and weekends. The traffic flow during
the daytime period is slightly higher on weekdays. The flow curve line exhibits two
characteristic peaks related to the morning and the evening rush hours from 6 to 9
a.m, and from 6 to 9 p.m. Very low traffic is observed during nighttime. On week-
ends, the traffic flow is steadier during the daytime with a gentle valley at midday.
Those figures show that the average temporal dynamic in the Bluetooth data is very
similar to the one observed in the vehicular traffic flow. One can easily identify the
peaks in the weekday traffic pattern and also the constant flow on weekends.

The complementary spectral analysis accomplished on the Bluetooth data shows
that the Bluetooth data capture the different periodicity levels inherent to traffic flow
data. Figure 3.13 provides the periodogram obtained by applying the fast Fourier
transform estimation on BT data from the second sensor. It allows identifying dif-
ferent cycles referring to the weekly, daily, and multi-levels of intraday periodicity.
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FIGURE 3.13: Bluetooth data periodicity analysis.

Figure 3.14 plots the relationship between the actual traffic flow from the road
tubes and the detected devices counts from the BT sensors. A significant positive
relationship exists between the two measures. However, we notice that the cloud
becomes more scattered at higher values. Moreover, the point clouds of the different
deployed sensors do not entirely overlap. That supports previously obtained results
that the detection rate differs from a sensing location to another.
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FIGURE 3.14: The relation between the detected BT devices counts
and the vehicular flow at the sensor locations.
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The observed strong positive linear relationship between the Bluetooth traffic
flow data and the actual vehicular flow mainly results from the similarity of the pe-
riodical seasonality of the two time-series. This observation was validated by visual-
izing the cross-correlation between the deseasonalized vehicular traffic flow, and the
Bluetooth counts time series. As shown in figure 3.15, a significant but low correla-
tion exists between the not-lagged variables. The cross-correlation is non-significant
for almost all the other lags. Hence, the strong seasonality hides the limitation of
Bluetooth data to capture the short term variations inherent to traffic flows, espe-
cially in urban areas. The accuracy of short term traffic flow estimates is crucial for
multiple traffic management applications, including automatic traffic lights control.
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FIGURE 3.15: The cross-correlation between the deseasonalized time
series.

Conclusion

In this chapter, we first described the Bluetooth data acquisition process, and we
presented the setting of the different experiments conducted in the context of this
work. The obtained data by Bluetooth sensing was then described and preprocessed
to ensure better data quality for further analysis. The carried exploratory analysis
allowed us to gain insights about the principal characteristics of the Bluetooth traffic
data and investigate the opportunities it offers to extract traffic-related indicators.
The data’s representativeness was explored by studying all of the sampling, miss-
detection, and matching rates. The results showed that the obtained sampling rate
is promising for further using the Bluetooth technology for traffic indicators estima-
tion. However, the sampling rate is the subject of many temporal variations, mainly
resulting from the combination of various factors related to the sensor location, the
traffic conditions, and the Bluetooth sensing process. Those variations render the
task of accurately estimating the short-term traffic flow harder. These observations
motivated the remainder of this work.
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Chapter 4

SF-BDS: Simulation Framework of

Bluetooth Devices Scanning

This chapter extends the experimentation studies presented in chapter 3 with sim-
ulated controlled tests to study the impacts of different factors on the BT sensors
detection rate. The simulation provides a cost-effective and less time-consuming
alternative to design and run such tests, generally requiring careful control of the
experimental conditions to avoid spurious results.

In this context, we propose SF-BDS, a Simulation Framework of Bluetooth De-
vices Scanning intended for traffic monitoring applications. The framework is con-
ceived to model different sensing environments ranging from highways to very
dense urban areas and adapt to active and passive scanning. The framework com-
prises a first initialisation step to define the simulation setting followed by an itera-
tive process for communication traces generation and sensor scanning process sim-
ulation. The output of the simulation is a set of the detection logs of every simulated
BT sensor. Figure 4.1 illustrates the components of the simulation framework.

| Context Initialization |

€0

‘ BT communication packets generation ‘

‘ Packet detection process simulation |

FIGURE 4.1: Overview of the Bluetooth simulation process.

Hereafter, we present an implementation of the proposed framework to simulate
BT passive scanning with fixed road-side sensors. The implemented model is first
validated by comparing the simulation results to experimental data gathered with
passive BT sensors. Then, we use the model to thoroughly analyse the factors that
impact the BT sensor’s detection rate.

The rest of the chapter is organized as follows: Section 4.1 details the implemen-
tation of the simulation framework for passive BT scanning with fixed road-side
sensors. Section 4.2 describes the validation setup and presents a discussion of the
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results. Section 4.3 study the factors that may impact the packet and device detection
probability. This will be followed by a conclusion.

4.1 Simulation of the BT Passive Scanning [Bou+20]

We consider the case where the Bluetooth scanners are fixed roadside units and able
to detect only classic Bluetooth devices. The proposed model includes the simulation
of the inter-devices Bluetooth data streams as well as the simulation of the sensors’
scanning procedure by considering packet detection over the physical and MAC
layers. The output of the simulation model is the set of all the sensor logs, which
are timestamped lists of the detected BT packets with their metadata (LAP of the
emitting device, timestamp, channel number, received signal power). Figure 4.2
shows the adaption of the simulation framework to BT passive scanning.

Simulation context definition

\]I SN

Y v,

BT communication packets simulation

¥

BT passive scan simulation

Physical layer

MAC layer

FIGURE 4.2: BT passive scanning simulation module

In the following, we describe the detail of each step of the simulation and list the
necessary parameters of the model.

4.1.1 Context Definition
The simulated environment is modeled through the following parameters:

¢ The penetration rate p that defines the ratio of vehicles in the simulation equipped
with an on-board Bluetooth device. The BT-enabled vehicles are uniformly se-
lected from the set of simulated vehicles.

¢ The Bluetooth Class of each device, that determines the communication range
of the device. Thus, indirectly, it defines their probability of being detected by
the sensor. Unlike existing tools where the same range is fixed for all the BT-
enabled devices, we define a probability distribution over the different classes
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of BT devices to model more realistic environments. In fact, most of the on-
board Bluetooth devices belong to Class-1 type whereas most of the portable

devices transported by road users are of Class 2-type.

¢ The off-road devices count is an optional parameter that is useful to augment
the simulator’s input data by defining devices other than vehicles whenever
needed. This parameter can be set to a constant to define nearby stationary de-
vices such as devices in surrounding buildings in urban sensing environment

or defined as a set of time series of flows, for example to model pedestrians.

4.1.2 Bluetooth Communication

The first step of this module is to define the characteristics of each active inter-device
BT connection. Explicitly, we assign to each communication two parameters defin-
ing the transmission rate, i.e, the amount of packets transmitted per second and the
size of packets defined as the number of time slots required per packet. Then, itera-
tively, for each simulation timestep, we generate the packets sent by the BT-enabled
devices located in the detection zone of each defined sensor. For each packet, we
randomly select one of the 79 channels from the Bluetooth transmission band.
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FIGURE 4.3: Example of simulated inter-devices packets exchanges

We show an example of simulated inter-devices packets exchanges in figure 4.3.
In this figure, the x-axis represents the different timeslots, while the y-axis represents
the set of BT devices on the sensor detection zone during those timeslots. Each
connection involves a pair of a source and a sink BT device. The matrix cases are
used to model whenever a packet is transmitted. In this example, different packets
are simulated: 5- and 3-slots packets for ACL connections and 1-slot packets for SCO
ones. We associate to each type of packet a specific transmission rate. The channel
of transmission is identified with the number in the centre of each case.

4.1.3 DPassive Scanning

The sensor scanning process is implemented as an iterative algorithm that sequen-
tially scans the Bluetooth channels. We consider a packet as successfully detected
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if it goes through the physical and the MAC layers without being lost due to fad-
ing, interference or collision. And so, a device is detected if at least one packet is
detected.

4.1.3.1 Packet Detection on the Physical Layer
A packet is detected on the physical layer of sensor i if the received signal Pr, is
higher than the sensor sensitivity T:

Priyy = Pr(Pry > 1) (4.1)

The received power depends on the transmit power and the intrinsic character-
istics of the radio propagation environment. It is calculated in the simulation based
on the following radio propagation model:

2
Pry = Pd " 1G1yGgy ()‘> ePY 72, (4.2)
4
where:

2, . . .
e Pd TG Gry (ﬁ) is the pathloss model with d being the distance between
the sensor and the transmitting device, 7 is the pathloss exponent, Gry, Gry
are transmit and receive antenna gains and A is the wavelength.

e ¢ is the log-Normal shadow fading model with Y having a normal distribu-

tion with zero mean and variance 02: Y ~ N(0,0?).

 and Z? is the small fading model. We consider a Nakagami-m distribution
where Z follows a Nakagami-m distribution with shape parameter m and scale
parameter (): Z ~ Nagakami(m,Q)).

The defined channel model offers a good trade-off between simplicity and real-
ism. It takes into account the path loss attenuation, the large-scale shadow fading,

and the small-scale fading.

4.1.3.2 Packet Detection on the MAC Layer

As the frequency hopping sequences of the sensor and the transmitting device are
not synchronised in passive scanning, the detection probability at the MAC layer
does not only depend on the collision probability but also on the probability that the
packet is transmitted on the channel scanned by the sensor.

In the MAC layer, a collision occurs when more than one device transmit packets
on the same channel at the same time slot.

Given n;, the number of BT-equipped devices in the range of the i sensor, b,
the number of channels, the MAC layer detection probability is defined as follows:

' _— 1 1.,
PrMAC = Pratcn X Preotision = b X (1 - T)nl ! (4.3)
ch ch
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In simulation, it has been implemented by identifying matches and collisions be-
tween the sensor listening channel and the packets transmitted by in-range devices.
We illustrate the packets detection process in figure 4.4. Similarly to the figure 4.3,
the x-axis and y-axis refer respectively to the timeslots and the BT devices in the
detection zone. The sensor scanning process is added to the top of the grid ma-
trix, where each scanned channel is identified with a different colour. In this exam-
ple, cases in green identify packets successfully detected as the packet transmission
channel matches the channel scanned by the sensor, and there is no collision. We
show with red cases an example of a corrupted packet detected and another exam-

ple of packets collision.
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di» | 14 | 14 | 14 |

di3 | 13|

s | 24 | 24 | 24 | 24 | 24 | 26 | 26 |
d 1

FIGURE 4.4: Example of simulated inter-devices packets exchanges

In table 4.1, we summarize all the parameters involved in the simulation process.

TABLE 4.1: Description of the simulation parameters.

Parameter Description
Penetration rate The ratio of Bluetooth equipped vehicles.
§ | Bluetooth antenna class The distribution of Bluetooth devices class.
% | Transmission The connection type distribution.
2 [ Noise This component allows defining off-road BT
&% devices such as the ones transported by
pedestrians.
g The value of the path loss exponent. It depends
£ | Path loss exponent on the environment where the transmitter and
0 the receiver are located.
é’* Small-scale fading coefficient | The coefficient of Nakagami-m distribution.
| Large-scale fading coefficient | The variation of the log-normal fading model.
S | Sensor sensitivity The lower bound threshold of the minimum
~ power level the sensor can detect.

4.2 Simulation Model Validation

To validate the model, we compared the resulting output traces from the simulation

to real sensor traces obtained from an experiment.
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4.2.1 Experimental Setup

We consider the first experimental setting described in 3.1.3, where four BT sensors
were deployed: three along a main major street, one on a side street. The deployed
sensors implement the passive Bluetooth scan process. The ground truth data is
measured with pneumatic road tube sensors for counting the traffic, installed at the
same spots as the BT sensors.

The input data to our simulator are detailed vehicle trajectories generated by em-
ulating the acquired experiment traffic flow using the SUMO traffic simulator [Kra+12].

Fig. 4.5 shows the traffic flows in the four sensors positions.
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FIGURE 4.5: Simulated traffic flows.

To model a more realistic simulation scenario, in addition to the vehicles, we
simulated two other types of devices considered as noise in our use case:

* Fixed nearby BT devices in the range of the BT sensor defined with fixed lo-
cation over all the simulation timesteps. The count of fixed devices can be di-
rectly estimated from experiment data as they have a very special continuous
detection pattern with high number of packets detected.

¢ BT-enabled devices transported by pedestrians. We estimated the count of
those devices by performing a linear regression over the experiment data with
the assumption of constant penetration rate.

The defined functions for the four sensor positions are given in Fig. 4.6.
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FIGURE 4.6: Off-road devices count definition in the experiment.

4.2.2 Simulation Setup

To ensure a better accordance between the simulation parameters and the character-
istics of the simulated urban area, we followed an iterative validation process that
continuously tunes the simulator parameters.

Table B.1 presents the final parameters setting. The value of the penetration rate
is fixed to 40% as the average detection rate observed over the weeks of experi-
ments. We assumed Class-2 BT-enabled devices transported by pedestrians. All
off-road devices, and most of the vehicles are equipped with Class-1 antenna. We
also considered three main BT use cases that are audio streaming, calls, and data
synchronization. To fix radio propagation parameters, we started by defining the
typical value range for each parameter; for example, the range of pathloss exponent
in an urban context is commonly set to [2.7,3.5] [RBX97]. Depending on the distance
between the sensor and the device, we used different Nakagami-m values according
to the results on [Tor+06]. Then, we updated the values iteratively to better model
the simulated environment.

For validation sake, we run the simulation 10 times. Each run covers a whole
day of traffic demand of a typical workday:.

4.2.3 Validation Results Discussion

We evaluate the quality of the simulation results by considering four characteristic
properties related to the sensor detection rate, the number of detections per device,
the number of detected devices, and the distribution of the maximum RSSI.

We draw in figure 4.7 the experiment and simulation detection rates of both the
first and the fourth sensors between 6 A.M and 9 P.M. We note that only the first
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TABLE 4.2: The simulation

parameters values for model validation.

Parameter Validation scenario
Penetration rate p = 40%
g 1 Ambiant noise
£ | Bluetooth antenna class class(d;) = < 2 Pedestrian noise
E B(1,p:) +1 Vehicles
A | Transmission tr(d;, t) € {!Streaming’] Call’,) Synchronization’}
Noise N(t) = Npedestrian(t) + Nambiant
Npedestrian(t) and Naypian: are plotted in figure 4.6
.5 Path loss exponent n =1[33,29,3.3,3.1]
§o 3 dist(s,d;) <50
8 | Small-scale fading coefficient | m = ¢ 1.5 50 < dist(s,d;) < 100
g 1 dist(s,d;) > 100
2 | Large-scale fading coefficient | o = [56,26,21,84]
E Sensor sensitivity T = —90dBm

step of the filtering process was applied to the data used to generate this figure. This

filtering aims to avoid counting fixed off-road devices. The obtained curves are quite

similar for both sensing positions and show that almost the same number of devices

are

detected by simulation.

In Figure 4.7, we observe that the detection rate for sensor 1 ranges between 40%

and 65% and mostly between 80% and 100% for sensor 4 with an average rate ex-
ceeding 100% from 7 PM to 9 PM . The higher detection rate than the penetration
rate is partially due to the presence of non-filtered non-vehicular devices but also to

the fact that each vehicle can be detected at least by two different identifiers corre-

sponding to the on-board BT adaptor and the connected personal device(s). In the

simulator, we assume that each BT-equipped vehicle has one and only one paired BT

device inside (i.e., the BT connection in the vehicle produces exactly two identifiers).
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FIGURE 4.7: Sensor detection rate: Experiment vs simulation

In Fig. 4.8, we focus on the number of packets detected per BT device. The box-

plots on both experiment and simulation data are right-skewed showing that in av-

erage 75% of the devices are detected less than 20 times. The plots from experiment

data are slightly more spread than the one from the simulation but with 50% of the

devices are detected less than 6 times against an average median value between 8

and 10 for the simulation data.

The magnitude of the difference depends on the selected values for both radio

propagation and packet types parameters. Finding the best trade off between those
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FIGURE 4.8: Number packets per device: Experiment vs simulation

parameters is not straightforward as no information available from the experiment
data.

For the same reason, a difference can also be observed in the total number of
detected packets and the total number of detected devices given in Table 4.3.

TABLE 4.3: Number of detected packets and detected devices: Exper-
iment vs simulation

Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4
Packets | Experiment | 125993 | 115505 | 119485 95857
count Average 110644 91189 92079 55925
Simulation | (£680) | (£126) | (£659) | (+412)
Devices | Experiment 8077 8447 8995 5673
count Average 8962 7021 9145 4517
Simulation | (£14) (+10) (24) (£30)

Fig. 4.9 illustrates the distributions of the maximum of the received signal per
device from the simulation and the experiment data. Both of the simulation and
experiment maximum received power data are normally distributed with small shift
in the mean values. It is obvious that the observed maximum values are censored on
the left by the fixed sensor sensitivity. Moreover, we notice that the simulation values
are slightly spreader. The the reason of the mean shift might be that the distances
are calculated in the 2-D space in the simulation resulting on some unrealistic high
received signal values.

The comparison presented in this paper shows that the simulation provides rel-
evant results. More accordance between the simulated and experimental data could
be obtained by automatically tuning the simulation parameters.

4.3 Detection Probability in Physical and MAC Layers

This section relies on the simulator outputs as an alternative to experimental data to
study the factors impacting the sensor detection rate and causing devices misdetec-
tion. Different factors may affect the packet and device detection probability at both
the physical and MAC layers. They can be related to the sensor scanning process
but also the characteristics of the radio propagation environment and the traffic in
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FIGURE 4.9: Distributions of maximum received signal strength: Ex-
periment vs Simulation.

the study area. The simulator provides a quick, adequate, and less laborious way to
design and carry controlled tests to study the impact of each of the factors indepen-
dently. First, we present study results about the impact of the distance and the radio
propagation parameters on the detection probability in the physical layer. Then, we
analyze the impacts of mismatching due to the passive scanning process and the col-
lisions between the competing Bluetooth devices in the detection probability in the
MAC layers.

4.3.1 Detection probability in the physical layer

We study in this section the impacts of the path loss attenuation, the large-scale
shadow fading, and the small-scale fading in packet detection in the physical layer.
For this purpose, we consider three versions of the radio propagation model defined
in equation 4.2, where each version adds one component to account for the path loss
attenuation, the large-scale shadow fading, and the small-scale fading. Equation 4.4
summarizes the three considered models.

Model 1:  Pry = Pd GryGry (£)°
Model 2:  Pry = Pd~"GrGgy (£)° Y (4.4)

Model 2:  Pry = Pd~"GryGry (£)° efY 22



Chapter 4. SF-BDS: Simulation Framework of Bluetooth Devices Scanning 63

4.3.1.1 Tests setting

We use the same sensor characteristics as in the experiments during all the tests, that
is, with a class-1 Bluetooth antenna and 3dBi gain. The sensor sensitivity is fixed to
—80dBm.

As the model also depends on the transmission power, we consider two reference
power values equal to 4d Bm and 20d Bm corresponding respectively to the maximum
transmission power of class-1 and class-2 BT devices. However, it is worth noting
that the output power does not necessarily equal the maximum power in practice,
and it can be adjusted to ensure a trade-off between the application requirement (in
terms of transmission range and signal quality) and the power consumption. The
power adjustment and control is managed within the link manager protocol layer of
the Bluetooth stack out of the scope of this work. Consequently, the output powers
are fixed to one of the reference values in the different test scenarios.

4.3.1.2 Model 1: Impact of the path loss attenuation

In figure 4.10, we draw the packet detection probability in the physical layer as a
function of the distance between the sensor and the device. We test different val-
ues for the pathloss exponent while the output power is set to 4dBm (respectively
20dBm) for tests plotted in figure 4.10a (respectively figure 4.10b). Independently
from the considered value of the pathloss exponent parameter, the model provides
a one-step shaped curve where a packet detection probability of 1 is ensured until a
certain threshold distance beyond which the probability drops directly to zero. The
value of the threshold distance defines the maximum detection range under certain
conditions. For instance, it varies with the selected value of the pathloss exponent
parameter and the transmit power value. We can observe that the lower the pathloss
exponent value, the larger the detection range. This is obvious since lower values
refer to radio propagation environments more similar to a line of sight free space en-
vironment. We can also observe that the higher the transmit power is, the larger the
detection range is. This is since as the sensor is equipped a class-1 antenna, the trans-
mitting device represents the lower-powered device and tends to set the detection
range limit.

Compared to the theoretical range values defined by the Bluetooth core specifi-
cation, we notice that much higher range limits can be reached with both transmit
power of 4 and 20 dBm. This can be explained by the fact that the effective range of
the data link between two devices can be extended by considering higher sensitivity
and higher antenna gain.

4.3.1.3 Model 2: Impact of the shadow fading

In this test scenario, we fix the pathloss exponent equal to 3.2, and we vary the value
of the variance of the log-normal shadow fading model. Here again, we draw in
figures 4.11a and 4.11b the packet detection probability as a function of the distance.
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FIGURE 4.10: Model 1: Packet detection probability as function of the
distance.

We consider a transmit power of 4 and 20 dBm. The figures show smooth curves
where the detection probability decreases slowly to zero with higher distances. The
decreasing slope gets steeper with low variance values. In this case, a high detection
probability is obtained until a large range limit but drops drastically to zero around
the threshold distance value observed in model 1. Adversely, with high variance,
the probability starts to decrease at lower distances but at a slow pace.
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FIGURE 4.11: Model 2: Packet detection probability as function of the
distance.

The shadow fading component model high variations on the RSSI values due to
the shadowing, which results in poor signal quality (lower than the receiver sensi-
tivity), can be obtained in shorter distances, and the vice versa is also true that is
what generates the smooth transition in the average detection probability curve.

4.3.1.4 Model 3: Impact of multipath and small-scale fading

Unlike large-scale fading, small-scale fading refers to the rapid, short-term fluctua-
tions on the received signal resulting from the combination of multipath waves of
different phases and amplitudes caused mainly by wave reflection and scattering
due to the presence of stationary and moving objects. The Nakagami-m distribution
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provides a mathematically convenient method to model different kinds of small-
scale fading. The Nakagami-m distribution with the m parameter set to 1 is equiv-
alent to the Rayleigh distribution, and it is adapted to model strong fading in static
links. Larger values of the parameter m indicate the existence of a strong line-of-
sight link between devices and model less-severe fading conditions. The Nakagami-
m model can also serve as an approximation to the Rician fading distribution.

The work in [Tor+06] studied the value of the Nakagami-m parameter for differ-
ent vehicular scenarios. For a distance, less than 50 meters between the transmitting
and receiving vehicles, the value m equal to 3 was shown to be a good fit. While for
distance more than 50 meters and fewer than 100 meters, the value of 1.5 was a good
fit. For a distance of more than 100 meters, the parameter value is set to 1 to model
higher fading.

Figures 4.12a and 4.12a show the obtained average detection probability corre-
sponding to the m parameter values of 1, 1.5 and 3. All the other radio propagation
parameters are fixed. We observe that the small-scale does not significantly impact
the detection probability compared to the model 2 with no small-scale fading. Low
values show a slightly less steep transition slope as higher fluctuations are consid-

ered.
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FIGURE 4.12: Model 3: Packet detection probability as function of the
distance.

Globally, the different tests scenarios concerning packet detection probability in
the physical layer suggest that any vehicle transmitting at least one packet within a
short range from the sensor can be detected with a high probability under urban en-
vironment radio propagation characteristics which implies that the detection proba-
bility is affected mainly by the packet transmission rate and the packet detection in
the MAC layer.

4.3.2 Detection probability in the MAC layer

As stated in section , the detection probability in the MAC layer depends on the
match probability that the packet is transmitted on the channel scanned by the sen-
sor and the non-collision probability that is no more than one device are transmitting
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packets on the same channel at the same time slot. Therefore, in the first step, we
study the impact of the transmission rate on the match probability. In the second
step, we focus on the impact of collisions on the vehicle detection probability. Last
but not least, we analyze the impact of the time duration spent in the sensor vicinity
and the vehicle speed.

All the test scenarios are based on the same controlled test setting illustrated in
figure 4.13, where one sensor is placed in the middle of a single two-lane road link of
200 meters in length. The radio propagation parameters are set to ensure a detection
probability of 1 in the physical layers. The fixed parameters values are detailed in
table 4.13.

BT sensor

200 m
Simulation Parameter Fixed Values
Road link length 200 meters
Sensor antenna Class-1 (max power= 20 dB)
Sensor gain 3 dBi

FIGURE 4.13: Simulation test setting.

4.3.2.1 Impact of the packet transmission rate

In this test scenario, only one stationary vehicle is simulated to avoid collisions. The
vehicle is transmitting with different transmission rates. We vary the rate between
the minimum transmission rate of 1 packet/s to a maximum rate defined as a func-
tion of the size of the transmitted packets. For instance, 800 packets/s for 1-slot
packets, 400 packets/s for 3-slot packets, and 266 packets/s for 5-slot packets.

Figure 4.14 shows the packet detection probability per packet size. We see that,
due to the non-synchronization between the sensor and transmitting device hopping
sequences, the match probability is too low, valued between 0.013 and 0.01. Further-
more, the match probability decreases progressively when 3-slot and 5-slot packets
are considered. The loss is explained by the rejection of partially corrupt packets.

In figure 4.15, we plot the vehicle detection probability as a function of the trans-
mission. The blue, orange and green curves refer respectively to cases where 1-slot,
3-slot and 5-slots packets are simulated. We consider vehicle detection probability
in a 1-second unit time interval. As expected, we observe that the vehicle detection
probability increases as the higher transmission rate are selected. With the maximum
transmission rate of 1-slot and 3-slot packets, the vehicle is detected with probability

one. However, even with a maximum transmission rate, the detection probability of
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FIGURE 4.14: Packet detection probability as a function of packet size.

vehicles transmitting 5-slot packets is about 0.9. The match probability tends to in-
crease by extending the time duration spent by the vehicle in the sensor detection
range, as will be discussed in section 4.3.2.3.
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FIGURE 4.15: Vehicle detection probability per packet rate and size.

Simulation results show that even if the packet detection probability is low, the
vehicle detection probability gets higher with a high packet rate. For example, a
packet rate of 200 packet/s ensures a detection probability of more than 0.85.

4.3.2.2 Impact of collisions

To study the impact of collisions, we extend the previous test scenario by simulat-
ing a fixed number of transmitting vehicles in the sensor range. We repeat the test
scenario while varying the number of simulated vehicles. Tests results for different
packet rates and sizes are presented in figure 4.16, where the x-axis represents the
number of transmitting devices, the y-axis is the packet rate, and the z-axis desig-
nates the detection probability.

Two main observations can be made about collisions. The first obvious one is
that the probability of collision increases when the number of transmitting vehicles
increases. The vehicle detection probability decrease is proportional to the packet
rate; that is, packet collision is more likely with a high packet rate. The second ob-
servation is that the probability of collision increase with larger packet sizes. This
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(A) Packet size = 1 slot (B) Packet size = 5 slots

FIGURE 4.16: Vehicle detection probability as function of the packet
size and the number of transmitting devices.

can be seen by comparing subfigures 4.16a and 4.16b, where 1-slot and 5-slots pack-
ets were considered. We notice that the vehicle detection probability decreases more
rapidly when only 5-slots packets are simulated.
We draw similar conclusions by analyzing packet detection probability curves in
figure 4.17.
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FIGURE 4.17: Packet detection probability as function of the packet
size and the number of transmitting devices.

4.3.2.3 Impacts of the time duration and the speed

In the before discussed test scenarios, vehicle detection probability is analyzed at
the one-second time unit interval. However, vehicles may spend more time in the
sensor detection zone, implying more chance to be detected. We rely on the same test
scenario described in section 4.3.2.2, and we fix the number of transmitting devices
to 30. We run the test for longer durations ranging from 2 to 60 seconds. Test results
are presented in figure 4.18.

Results show that a time duration of 10 seconds ensures a detection probability
of almost one when a packet rate higher than 50 packets/s is simulated. The low
rate of 10 packets/s ensures only a detection probability of around 0.6 and 0.7. 50
seconds time duration is required to reach a detection probability of one.
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FIGURE 4.18: Vehicle detection probability as function of the time
duration spent in the sensor range.

By analyzing the above-described test scenarios results, we can conclude that BT
sensors with a passive scanning process are able to detect active BT devices in their
vicinity with a high probability. The vehicle detection probability still can be affected
by the packet transmission rate, the traffic density and the time the vehicle spent on
the sensor range.

For a more global view, a simulation test case was used to study vehicle detec-
tion probability when both detections in the physical and MAC layers are consid-
ered. Unlike previous tests, we consider moving vehicles. We use the third radio
propagation model defined in equation X. We keep the number of actively trans-
mitting vehicles constant. For simplicity, we associate each vehicle to a particular
packet transmission rate and communication packet type following a multinomial
distribution. We first run the test scenario with a fixed output power of 20dBm for
all devices and then with an output power of 4dBm. We repeat the test for speed
values of 3,8.33,11.11,13.88,16.66, and 22.22 m/s.

We draw the vehicle detection probability as a function of speed in figure 4.19.
We notice that the probability decreases with higher speed since the vehicle spent
less time in the sensor vicinity. Considering typical speed values in urban areas
(between 8.33 and 13.88), we get a detection probability between 0.81 and 0.93, which

implies a misdetection rate of 7-19%.
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FIGURE 4.19: Vehicle detection probability as a function of the speed.
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Conclusion

We considered in this work the task of Bluetooth monitoring simulation for traffic
management application. For this purpose, we proposed a simulation framework
comprising a global context initialisation step followed by a 2-step iterative process
for communication traces generation and sensor scanning process simulation. The
model produces as an output the log files of each simulated BT sensor, including all
detected packets with their associated radio and MAC information. In this chapter,
we detailed the implementation of the framework for BT passive scanning with fixed
road-side sensors simulation.

The model was validated by emulating a setting where experimental data have
already been acquired. The results showed that all the main properties that charac-
terize the output of the BT traffic sensors (detection rate, number of detected packets
per device detected in each sensor, number of detected devices, etc.) are accurately
reproduced by the simulation model when compared to the experimental measures.

The proposed model was used to simulate experiments under strictly controlled
settings to study the impact of different factors on detection probability at both
packet and device scale in all of the physical and MAC layers. We selected three
types of factors. The first type defines factors related to the radio propagation char-
acteristics of the study area in terms of path loss, shadowing, multipath and fading.
The second type is vehicle-related. It covers the vehicle’s speed and position and
its transmission power, and the characteristics of its activity over the BT channels
defined by the type of transmitted packets and their transmission rate. For the last
type, we consider the traffic density defined in this context as the number of in-
jected devices to the simulation in the theoretical detection zone of the sensor. Test
results analysis shows that the BT sensor’s vehicle detection probability under a
passive scanning process is mainly affected by the packet rate, vehicle speed, and
traffic density related to the number of transmitting devices in the sensor vicinity.
Even if passive scanning results in a low packet detection probability due to the
non-synchronization between the sensor and the vehicles hopping sequences, with
a high packet rate or/and slower travel speed, vehicle detection probability tends
to one. This probability decreases in congested environments with multiple actively
transmitting devices.

The SF-BDS simulator finds application in different sensor prototyping and pre-
deployment stages. In addition to simulated controlled tests design and modelling,
the simulator is also useful to generate large synthetic datasets of Bluetooth traffic
data, specifically in cases of large-scale deployments comprising tens or even hun-
dreds of sensors. It is more effective in terms of time and cost to rely on simulations
when labelled datasets covering long deployment periods are needed. An example
of using a synthetic, simulated framework for model training is presented in chap-
ter 6. The dataset generation process is detailed in appendix B.
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Chapter 5

Short-term Traffic Flow Quantification

Accurate traffic flow quantification is important to several traffic management ap-
plications, among them automatic traffic lights control. The acquisition of high-
resolved flow measurement in signalized road links allows gathering near real-time
insights on the resulting queuing and potential delays by analyzing short term tran-
sitions between free-flow and congested traffic conditions. In this context, we fo-
cus on short-term traffic flow quantification based on the indirect devices count ob-
tained by Bluetooth sensing. Although their promising potentials, BT sensors are
less adapted for short-term traffic flow quantification. Unlike other techniques, they
do not provide direct sensing of vehicles. The count uncertainty inherent to the Blue-
tooth scan process limits their further use for such traffic management applications.

In this chapter, the traffic flow quantification task is defined as a regression prob-
lem. We select to apply the most commonly used standard statistical and machine
learning models for estimation and forecasting purposes, consisting of the Multi-
ple Linear Regression, the Support Vector Regression, the K-Nearest Neighbors and
the Random Forest. Each model is provided with a different capability to learn the
input-output mapping function. We use the model evaluation results to constitute a
benchmark to assess the obtained flow estimates” accuracy. We also investigate the
effects of integrating calendar features into the models to better capture the different
temporal patterns characterizing traffic data. Furthermore, the effects of all of the
speed and recent historical BT counts are studied. Experimental data are used to
evaluate the different estimation model’s performance and assess the importance of
the considered variables.

The rest of this chapter is organized as follows: we start by formulating the traffic
quantification problem in Section 5.1. We briefly describe the considered statistical
and machine learning models in Section 5.2 and define the input features set for
the different evaluation scenarios in Section 5.3. We detail the evaluation setting in
Section 5.4. The evaluation results are discussed in Section 5.5. We conclude with a

conclusion.

5.1 Problem Formulation and Notations

We consider a data-driven approach for short-term traffic quantification. We define
the task as a regression problem. At a first training step, each considered model is
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fitted to historical data to learn a function f that best maps the input variables to
the output one. In our case, the models will mainly take as input the number of
unique BT addresses detected by the sensor in a given time interval and try to in-
fer the corresponding vehicular traffic flow rate. Supplementary input variables are
also considered to study their impacts on estimation improvement. Those variables
include temporal features, speed, and recent lags and restricted RSSI filtered BT de-
vices count. The training step serves to find optimal model parameters values by
minimizing a pre-specified loss function; for instance, we use the mean square error

function.

The below notation will be adopted throughout this chapter.

- The standard X and Y notations will be used to refer respectively to the in-
put BT count and the output traffic flow variables. Z will denote the auxiliary

input variables, and the " |" will be used for vector concatenation. The respec-
tive lower-case notations are used to denote instance values from the available

dataset.

- Subscripts are used to index the instance at time, x; refers to the value of the

input variable at the specific time interval £.

- The shift operator is used to define temporal lags that are values taken at pre-
vious time intervals. For example, Lx; = x;_1 denotes the value of the input
variable x at the previous time interval to .

- Superscripts, such as x(¥), are used when needed to refer to a given sensor.

- The hat symbol "A" denotes the values estimated by the model.

5.2 Estimation Models Description

This section briefly describes each of the considered statistical and machine learning
models for the traffic flow quantification task. The models include the Multiple Lin-
ear Regression (MLR), the Support Vector Regression (SVR), K-Nearest Neighbors
(KNN) and the Random Forest (RF).

Multiple Linear Regression

Linear regression (MLR) is one the simplest statistical model used for regression.
It is based on the assumption of a linear relationship between the input and the
output variables. A multiple regression model extends to several input explanatory

variables. The linear model for the flow estimation task is defined as:
7=w.(x|z)+p (5.1)

where w denotes the weight coefficients, and f is the bias term.
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The generalization of MLR model leads to the family of Generalized Linear Model
(GLM) (INW?72]) where it is assumed that the output Y belongs to non-normal dis-
tribution. Poisson regression (PR) model defines the case when the output Y follows
the Poisson distribution [CF92]. It is often applied when the response variable takes
count values. PR models the mean of the output Y in terms of the input X via a spe-
cific canonical link function. Both logarithmic and identity functions can be used.

Support Vector Regression

Support vector regression (SVR) is the adaption of Support Vector Machines to ad-
dress regression problems [Dru+97]. It is based on the definition of a function that
maps the data from the input space X into a higher dimensional feature space F
wherein the input X is linearly correlated with the output Y. The SVR model is
given by:

7 =w.o(x|z)+ B (5.2)

Here o(.) is the selected kernel funtion.

SVR minimizes a different loss known as e-insensitive loss function. e-insensitive
loss function reduces errors within € distance of the observed value to zero. Other-
wise, the loss is measured based on the distance between observed value and the ¢
boundary.

The performance of SV regression depends basically on three hyperparameters.
First, the type of the kernel function ¢(.). The second is the thickness of the tube
defined by e-insensitive loss function. The last hyperparameter is the penalty factor

C which penalizes any deviation beyond the tube.

K-Nearest Neighbors

K-Nearest-Neighbors (KNN) [Alt92] is an instance-based learning algorithm that,
given a new instance, uses a distance function to find the k-closest training instances
in the feature space. The output is then calculated by aggregating the values associ-
ated the k-closest instances. The k-NN regression model depends on three parame-

ters: the number of neighbors K, the distance function and the aggregation operator.

The basic KNN regression uses the standard Euclidean distance, and the arith-
metic mean function to aggregate the values of neighboring instances N;. Hence, it
is defined as:

1 & .
7=z Z Y with (xg, yx) € Njand K = |Nj| (5.3)
k=1

The hyperparameter K fixing the number of neighbors controls the stability of the
KNN estimate. A small value of K provides flexible estimates with low bias but
high variance. Inversely, larger values of K, render the prediction smoother thus

more stable, but, increase the bias.
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Random Forest

Random Forests (RF) is an ensemble learning method that consists of training a set of
decision trees using the bagging method [Bre(01]. Each tree is built with a bootstrap
sample drawn randomly with replacement from the training dataset. RF defines
an additional layer of randomness to bagging by using random feature selection
to prevent correlation between the base learners. For each learner, only a random
subset of the feature set is used.

The problem can then be defined as:

B
7=2= Y filx® C (x]2),wp) (5.4)
b=1

S|

where B is the number of learners, f;(.) are the base learners (in this case, decision
trees) and x(?) is the selected subset of features.

For the Random Forest model, the main hyperparameters consists of the number
of decision trees in the forest, the number of features considered by each tree when
splitting a node and the maximum depth of each decision tree or the minimum num-

ber of data points allowed in a leaf node.

5.3 Features Description

The input features considered in the different evaluation scenarios of traffic flow
estimation models can be grouped into four categories: BT counts, speed, calendar

and weather data.

The BT Devices Count:

The BT devices count is the fundamental input variable. It is extracted from the
BT sensor’s trace, where each row represents a timestamped information of a BT
packet detection. First, the data were filtered using the 3-step process described in
section 3.3 to discard non-vehicular devices and then aggregated by 5-minute time
intervals. Devices count at each time interval is calculated as the number of unique
BT addresses.

The BT devices count data detected by a sensor s is represented as a time series
X6) = {xgs), xés), . xt(s), . x(TS)} where xgs) € Ris the number of devices detected by
the sensor s in the time interval ¢.

Lagged variables of BT counts can also be included in the model input variables.
In such a case, each instance of the time series consists of the sequence of the re-
cent historical counts detected by the sensor xt(s) = (L1 xﬁs), LH *1xt(s) P th(s), xgs)) €

RP where H is the number of lags.
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The Average Vehicle Speed

The average vehicle speed is used as an indicator for the level of congestion in the
area. It is computed as the mean speed of vehicles travelling along the road at a
given time interval. Speed measurements from road tubes were used to assess the
average speed’s impact on traffic flow estimation accuracy. However, we note that

speed estimates can be inferred from BT sensors’ traces.

The Calendar Data:

Two types of variables were used to model the intraday and daily periodicities in-
herent to the traffic data. The former was represented by time of day related features.
Different levels of granularity were considered through the use of:

* A single dummy variable that differentiates between daytime and night time
as follows.

* A hot encoding of the daytime information into seven variables obtained by
splitting the 24 hours range into distinct three-hour intervals.

¢ Twenty-three different dummy variables that define a per hour encoding of

the day time information.

Similarly, the daily periodicity can be described either by a single dummy vari-
able that distinguishes between weekdays and weekends or by different dummy
variables associated with the week’s days.

As the traffic density may change considerably on holidays and vacation days,
an additional dummy variable can be used to model this information.

The Weather Data:

Weather conditions can affect traffic density. To evaluate their impacts, we intro-
duced two variables related to the temperature and the rainfall rate.

5.4 Evaluation Methodology

In this section, we detail the evaluation process. We first introduce the dataset used
for models’ training and validation. Then, we describe the models” hyperparameters
optimization process. In the last part, we define the metrics used to evaluate the
models” performances.

Dataset Description

We consider ten weeks of experiment data between November 2017 and October
2018 for models evaluation. The experiments were carried out under the setting
described in section 3.1.3, where we deployed four Bluetooth sensors (three along
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a main street, one on a side street), and we installed pneumatic tubes at the same
four locations to collect the data serving as ground truth. The clocks of both Blue-
tooth and pneumatic sensors were synchronized before each experiment to ensure
the measures” accuracy.

Failures and misoperations of both BT sensors and pneumatic tubes led to miss-
ing values in the collected data. This was addressed by discarding experiment days
with a high rate of missing values and applying linear interpolation to short se-
quences.

We use a Min-Max normalization to scale the input features into the range [0, 1].

Hyperparameters Optimization

The dataset is split into two distinct sets of about 90% and 10% of data. The first set
will be used for model training and validation and the second one is hold out for
final model evaluation.

We applied a grid search with 10-fold cross-validation to optimize the hyperpa-
rameters of the considered regression models and validate their performances. Dur-
ing the cross-validation, the training set is split into ten distinct smaller sets. Nine of
them are used for training and the remaining part is hold out for model validation.
The fitting procedure is repeated ten times, considering a different validation fold

each time. Figure 5.1 illustrates the cross-validation process.

‘ Training set ‘

lteration 1 [RZSLED ‘ Fold 2 H Fold 3 H Fold 4 H Fold 5 H Fold 6 H Fold 7 H Fold 8 H Fold 9 H F;’(')d ‘

lteration2 | Fold1 | ANEY | Fold 3 || Fold 4 || Fold 5 H Fold 6 H Fold 7 H Fold 8 H Fold 9 H F;’('Jd ‘
Iteration 3 Fold 1 Fold 2 Fold 3 ‘ Fold 4 H Fold 5 H Fold 6 H Fold 7 H Fold 8 H Fold 9 H Fold 10‘

Iteration 4 I Fold 1 H Fold 2 H Fold 3 ‘ Fold 4 ‘ Fold 5 H Fold 6 H Fold 7 H Fold 8 H Fold 9 H Fold 10‘

Iteration 5 ‘ Fold 1 H Fold 2 H Fold 3 H Fold 4 ‘I Fold 6 H Fold 7 H Fold 8 H Fold 9 H Fold 10‘
Iteration 6 ‘ Fold 1 H Fold 2 H Fold 3 H Fold 4 H Fold 5 “ Fold 7 H Fold 8 H Fold 9 H Fold 10‘
Iteration 7 ‘ Fold 1 H Fold 2 H Fold 3 H Fold 4 H Fold 5 H Fold 6 “ Fold 8 H Fold 9 H Fold 10‘
Iteration 8 ‘ Fold 1 H Fold 2 H Fold 3 H Fold 4 H Fold 5 H Fold 6 H Fold 7 ‘ Fold9 || Fold 10
Iteration 9 ‘ Fold 1 H Fold 2 || Fold 3 “ Fold 4 H Fold 5 H Fold 6 H Fold 7 H Fold 8 “ Fold 10‘

Iteration 10 ‘ Fold 1 H Fold 2 H Fold 3 H Fold 4 H Fold 5 H Fold 6 H Fold 7 H Fold 8 H Fold 9 ‘ Fold 10

[] Training Fold [l Validation Fold

FIGURE 5.1: Cross-validation process

The hyperparameters values range considered for the different regression mod-

els are summarized in table 5.1.
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TABLE 5.1: Hyperparameters value ranges

Model | Parameter Description

Values Range

C : penalty of the error term

1,2,5, 10, 20, 50, 100, 200

€: epsilon margin

0.001, 0.005, 0.01, 0.05, 0.1, 0.5

SVR 7: kernel coefficient

0.001, 0.005, 0.01, 0.05,0.1, 0.5, 1

o(.): kernel function

Linear, RBF

K: number of neighbors to use

5,10,15,20,50,100,150,200

KNN | Distance metric

Uniform, Distance-based

Agregation function Average

B: number of base learners 10, 20, 50,100, 150, 200

RF min_split: minimum number of samples | 5, 10, 20

bootstrap: sample boostrapping True

Evaluation Metrics

We evaluate the models performance in terms of:

- The Root Mean Squared Error (RMSE) measures the deviation between values
estimated by the model and the values observed. It calculated as the square
root of the average of squared errors.

1Y . .
RMSE = \l N Y (yi —9:i)? (veh/5min) (5.5)

i=1

- The Mean Absolute Percent Error (MAPE) measures the average of the abso-
lute percentage errors. The error is computed as the difference between the
estimated and observed values.

100 & Jyi — 9
MAPE = 00y lyi =il (%) (5.6)
N = v
MAPE provides an intuitive interpretation of the model’s relative error. How-
ever, it takes extremely high errors at values close to zero. To overcome this
problem, we used the weighted Mean Absolute Percent Error.

- The weighted Mean Absolute Percent Error (WMAPE) is a weighted variant
of the MAPE metric where the individual errors are reported to the global ob-
served traffic density. The wMAPE metric allows overcoming the "infinite er-
ror" issue at low values.

N o
wMAPE = W %100 (%) (.7)
Yi—1Yi

Significance Analysis Method

We assessed the statistical significance of the results obtained by the models under

the different evaluation settings with the one-sided Wilcoxon signed-rank test and
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the corrected resampled T-test. We test the null hypotheses that there is no difference
in the models’ performance against the alternative hypothesis that a model performs
significantly better at 0.05 alpha level. The Holm-Bonferroni correction is used to

control the familywise error rate related to multiple hypothesis tests.

5.5 Results Evaluation and Discussion

To study the impact of the different previously described input variables on the mod-
els’ performance, we adopted an incremental evaluation method. We defined ten
evaluation scenarios where a different set of input variables is selected. In this sec-
tion, we present the results obtained from the four evaluation settings described in
table 5.2.

Features
BT counts Calendar features Speed
value(t) | lags Day of week Time of day pee
Ref Scenario v weekday/weekend | daytime/nighttime
Scenario (S2.a) v weekday/weekend | per 3-hour intervals
(S2.b) v weekday /weekend per-hour
Scenario (S3) v weekday/weekend per-hour v
Scenario (54) v v' | weekday/weekend per-hour

TABLE 5.2: Evaluation scenarios description

Throughout this section, we denote by "Reference scenario” the evaluation set-
ting where additionally to the BT devices count, two dummy variables are used for
day/night hours and weekdays and weekends. The reference scenario is selected
based on the preliminary analysis results presented in sections 3.4 and 3.5, show-
ing that the detection rate considerably differs between daytime and nighttime and

lower traffic density is observed at the weekends.

TABLE 5.3: Regression models performance in terms of RMSE, MAPE
and wMAPE under the first evaluation scenario setting

Sensor Metric | Linear | MLR | SVR | KNN | RF PR

MAPE 30.21 | 28.77 | 26.94 | 27.97 | 27.67 | 32.56
Sensor1 | RMSE 16.67 | 13.69 | 11.28 | 11.39 | 11.37 | 13.32
wMAPE | 2194 | 189 15| 1519 | 15.1 | 17.88

MAPE 33.59 | 28.39 | 28.63 | 29.62 | 30.04 | 33.96
Sensor 2 | RMSE 1779 | 13.56 | 11.94 | 11.97 | 11.92 | 14.05
wMAPE | 23.03 | 1837 | 1597 | 1593 | 15.88 | 18.72

MAPE 33.83 | 29.38 | 30.16 | 29.89 | 30.39 | 33.87
Sensor 3 | RMSE 19.22 | 15.84 | 143 | 1423 | 1428 | 16.3
wMAPE | 20.65 | 17.47 | 15.58 | 15.37 | 15.42 | 17.83

MAPE 46.04 | 37.81 | 40.68 | 39.57 | 37.74 | 42.45
Sensor 4 | RMSE 8.58 74| 678 | 674 | 683 | 744
wMAPE | 28.02 | 23.39 | 21.37 | 21.03 | 21.29 | 23.78




Chapter 5. Short-term Traffic Flow Quantification 79

Table 5.3 compares the performance of the considered regression models in the
four sensing positions in terms of RMSE, MAPE, and wMAPE. Here, the baseline
linear model assumes a linear relationship between the Bluetooth unique address
count and the actual vehicle count is considered the naive estimation model. Com-
paring the results of the baseline and MLR models, we can conclude that the use of
day/night and weekend/weekday dummy variables improved the estimation re-
sults in terms of RMSE, wMAPE, and MAPE. Statistical tests infer that both variables
are statistically significant in the MLR model. Here, the MLR model approximates a
piecewise linear detection rate where the rate gets adjusted for nighttime hours and
weekends. Moreover, the obtained results reveal that no improvement is observed
with the Poisson distribution assumption.

As expected, SVR, KNN, and RF models outperform the MLR and the baseline
linear models. The models yielded significant improvement in RMSE, up to 16%
compared with MLR and between 20 and 30% with the naive model. In terms of
MAPE, the models provide a slightly higher error percentage in the second, third
and fourth positions compared to MLR. This result must be qualified by the fact that
MAPE tends to take extremely high values at values close to zero, and thus even
overestimating only one vehicle represents an important increase in the MAPE if
there are only, for example, five vehicles passing. This is often the case in nighttime
hours with low traffic density. For this purpose, the weighted version wMAPE were
considered. With wMAPE, a consistent improvement can be then confirmed.

In this setting and as shown in table 5.3, SVR, KNN and RF provide remarkably
similar results. The statistical tests in the given setting state that there is no signifi-
cant difference in the models” performance.

5.5.1 The Impact of the Calendar Variable Granularity

We consider different alternatives on how the calendar effect is added to the model
inputs. In the reference scenario, the distinction is made between daytime and night-
time using one dummy variable. Two other options were here considered: the first
one is by hot encoding the 24-hours into seven equisized intervals of 3 hours. The
second is to use a different dummy variable for each hour of the day. Those alterna-
tives offer a finer grain representation of the intraday variations on the traffic data.

Figure 5.2 illustrates the performance of the different regression models for each
of the four sensors. The figure rows represent the RMSE, the wWMAPE metrics, re-
spectively. The curves in all the cases have strictly decreasing behaviour, suggesting
that better results are observed by considering finer grain representation of the in-
traday variations. This observation holds for RMSE, MAPE, and wMAPE. The SVR
model, including per-hour variables, gives slightly better results than KNN and RF
models. Their significance was statistically approved with both the corrected t-test
and the one-sided Wilcoxon signed-rank test. For the fourth sensor, the SVR and
KNN models have similar performance. In this setting, the RF model is penalized
by the over-representation of time variables within the features set.
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Similarly, the weekday/weekend dummy variable can be substituted by a hot
encoded version where six different variables are used to represent the day of the
week. However, no difference has been observed in the models” performance. This
can be explained by the remarkably similar traffic flow pattern on the different work-
ing days working.

Sensor 1 Sensor 2 Sensor 3 Sensor 4
11.75 12.25 15.0 7.25
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11.00 ~ \\ 135 DN ) NN
11.25 N—— - AN 6.25 T
10.75 ~ ~ N | AN
11.00 AN 13.0 \\ N 6.00 B
10.50 = 10.75 T — NTT—— T~
125 N 575 ~=
10.25 1050 — 5.50 ]
10.00 10.25 120 525
- 10.00 = 15
day/night 3-hour interval per hour  day/night 3-hour interval per hour ™ day/night 3-hour interval per hour day/night 3-hour interval per hour

TIME VARIABLE GRANULARITY

TIME VARIABLE GRANULARITY TIME VARIABLE GRANULARITY TIME VARIABLE GRANULARITY

(A) RMSE metric
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FIGURE 5.2: Regression models performances by intraday feature
granularity.

Furthermore, an additional input variable can be used to differentiate between
working days and holidays. In our case, this scenario shows no improvement in
the estimation results; this is due to the under representativeness of holidays in the
available dataset as experiments are often carried on working days.

5.5.2 The Impact of the Speed Variable

We analyze the role of the speed variable in traffic flow quantification. As previ-
ously noted, the average speed is strongly correlated to the congestion level in the
area. The passage from free flow to congested conditions comes with slower vehicles
speed. Hence, lower speed values are observed in peak hours. This also impacts the
sensor’s detection rate as more time will be spent on the sensor range.

The performance of the different estimation models is presented in figures 5.3.
The input variables under this scenario setting consists of the BT devices’ count,
the per-hour hot-encoded time variable, the weekday/weekend dummy variable,
and the speed. Results are compared to the setting where the speed variable is not
accounted for.

We notice that slightly better results are obtained for all the models when using

the speed variable. That holds for the different sensors. For example, results reveal
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FIGURE 5.3: Regression models performance under the third evalua-

tion setting.

an improvement in the SVR model performance of 3-4% for the first three sensors

and up to 12.5% for the fourth one. Here again, SVR gives the best results compared

to the other models.

5.5.3 The Impact of the Lagged BT Counts

In this last scenario, we evaluate the estimation models” performance by integrating

recent historical values of BT counts. Those variables serve to capture the temporal

correlation inherent to the BT counts time series.

11.7 1

11.6

— 5enso

r3

2 4 6 -] 10
NUMBER OF LAGS

FIGURE 5.4: Evolution of the SVR model performance by the number
of lagged count variables.

Figure 5.4 illustrates an example of the SVR model performance’s evolution by

increasing the number of lagged count variables when applied to sensor 3 data. As

shown in the figure, the wMAPE error first decreases until seven lags are included.
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The error becomes steadier when more lagged values are added and starts to in-

crease from the 14" lag. Results suggest that lagged count variables may yield an

improvement of the obtained estimates. However, those results do not hold for all

the considered machine learning models. While no improvement is observed with

the KNN model using lagged values, the RF model performance significantly in-

creases when applied to the second and the third sensors’” data. The RF results can

be explained by a more balanced feature set in terms of count and calendar variables

used for base learners’ construction.
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FIGURE 5.5: Regression models performance under the fourth evalu-
ation settings.

Figure 5.5 summarizes the results obtained from the different evaluation scenar-

ios. The Multiple linear regression model under the reference scenario setting rep-

resented by the "grey" bar at each plot is used as a reference for results comparison.

From these figures, four conclusions follow:

¢ The calendar effect accounts for the most significant result’s improvement. The

use of per-hour dummy variables allows significantly reducing the error. Aver-

age improvements of around 20% in RMSE and 25% in wMAPE are obtained.

¢ Results reveal that slightly more accurate estimates can be obtained through

adding information about the average vehicle speed. The RMSE and wMAPE

error are reduced by about 4%.

* Only SVR and RF show improvement by adding recent historical BT count to

the model input variable.
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* Last but not least, the SVR model gives the best performance amongst the ap-
plied models.

Conclusion

In this chapter, we addressed the problem of short-term traffic flow quantification
from data gathered through Bluetooth sensing. We investigated the use of statistical
and machine learning techniques to improve the flow estimates accuracy. To this
end, we compared the performance of four different models: MLR, SVR, KNN and
RFE. A set of evaluation scenario was defined to identify significant input features
for traffic flow estimation. Additionally to BT counts, we studied the effect of the
calendar features granularity, speed, and weather information. The performances of
the estimation methods have been evaluated over a ten-week BT dataset collected
from a series of experiments.

Overall results show improvement in traffic flow estimation. The per-hour rep-
resentation of the intraday variations on traffic data accounts for the most significant
improvement. The estimates can further be improved through the integration of the
speed or recent historical BT counts. In many evaluation scenarios, the results high-
lighted that the SVR model has a slight advantage in terms of accuracy on the KNN
and the RF models. However, the improvement on estimates accuracy is statistically
approved compared to the linear and Poisson regression models. Thorough analy-
sis shows that the estimated flow series still considerably smooth compared to the
actual traffic flow data and suggests that more effort should be invested to capture
the short variations inherent to traffic data. For instance, one perspective to this
work consists of applying a two-step estimation model to better learn short-term
variations.

In this chapter, models were locally trained and used for each sensor position.
One can think about using one estimation model for network-wide traffic flow quan-
tification. This will allow training only one model for all the deployed sensors and
thus facilitate the solution deployment. Moreover, we will be able to model the
spatial correlation between the different locations as, for each sensing position, the
model will hold valuable information about the inflows and outflows. This perspec-

tive is explored in chapter 6.
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Chapter 6

The DGC-LSTM model for traffic flow
estimation at sensor network level

Bluetooth sensors provided with their sample-based process do not present the most
adapted monitoring technique for traffic quantification. Their sampling rate varies
both in space and time. Therefore, the accuracy of the obtained raw flow measure-
ments fails to capture the short-term traffic variations crucial for real-time traffic
monitoring. Unlike chapter 5, we focus on traffic flow estimation at a sensor net-
work level in this work. For this purpose, we propose the DGC-LSTM model. The
backbone of the DGC-LSTM model is a graph convolutional Long Short Term Mem-
ory model with a dynamic adjacency matrix. The adjacency matrix is learned and
optimized during the model training. The adjacency matrix values are estimated
from the set of contextual features that impact the dynamicity of the dependencies
in both the spatial dimension and temporal dimension. Experiments on a realistic
synthetic labelled Bluetooth counts dataset is used for model evaluation. Lastly, we
highlight the importance of transfer learning methods to improve the model appli-
cability by ensuring model adaptation to new deployment site while avoiding the
extensive data-labelling effort.

6.1 Problem statement

The low investment, installation, and maintenance costs of Bluetooth sensors pro-
vide the advantage of the capacity of large scale dense sensor deployment, allowing
massive high resolved traffic data acquisition in time and space. However, as an
indirect measurement technique, BT sensors are not well suited for traffic quantifi-
cation. As discussed in the previous chapter, the BT devices count consist of ap-
proximative partial and noisy quantification of the vehicular traffic in the area. This
approximation hinders the sensor’s ability to capture the short-term variations in-
herent to the traffic, specifically in urban areas.

Chapter 5 shows that one can rely on machine learning models to improve the ac-
curacy of traffic flow measures gathered from BT sensors. A labelled dataset is used
to learn the mapping between the raw BT counts and the ground truth vehicular traf-
fic flow, validate, adjust the model hyperparameters, and evaluate its performance.
As the traffic and the detection environment change from one deployment location
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to another, the model training and hyperparameters adjustment is required for each
deployment.

In this chapter, we address the problem of traffic flow estimation at a sensor net-
work level, where a single model is defined to estimate traffic flow simultaneously
in different sensor deployment locations. This implies a single time model training
and validation. Moreover, network-wide traffic estimation models are adapted to
handle the spatiotemporal correlations characterizing the traffic in the area and to
exploit the similarities between the sensing environment at the different network
locations to improve estimates accuracy.

In this direction, we propose DGC-LSTM a dynamic graph convolutional Long
Short Term Memory (LSTM) neural network. The DGC-LSTM combines graph con-
volutions with recurrent LSTM layer to model the correlations in the space-time
domain. In the DGC-LSTM, the graph convolutions rely on a dynamic adjacency
matrix that captures how the relations between the different locations evolves and
varies over time. The adjacency matrix is learnt and optimized during model train-
ing and simultaneously with the traffic estimation task.

The rest of this chapter is organized as follows. We formulate the problem in
Section 6.2 and describe the proposed estimation model in Section 6.3. We detail the
evaluation setting in Section 6.4 and discuss the results in Section 6.5. We study the
problem of model transferability in Section 6.6. Finally, we conclude with a conclu-

sion.

6.2 Preliminaries and Problem Formulation

At each time interval {, we model the dependencies among the road sensor net-
work with an undirected graph structure G; = (V, £, A;), where V is the vertex set,
with |V| = N is the number of nodes, and £ is the edge set. Each vertex v; represents
a source of traffic data, for example, one location where a sensor is deployed in the
road network. A; € RN*N is the adjacency matrix associated with the edge set £ at
the time interval ¢t that model the spatiotemporal traffic correlations on the sensor
network.

The raw traffic measurements on the sensor network G; at time interval f are de-
noted by the graph signal matrix, X; € RN*F*T X, = (x;1,x;2,...,x;n)7 , where
each x;, € RF*T denotes the time series of the recent T historical traffic measure-
ments gathered at node v at time t and F is the number of traffic features. Here, for
instance, F = 1 as only traffic flow counts are used as input to the model.

Besides the graph signal, we consider E; € R™*T the time series of the shared
contextual features among the network nodes that somehow impact their correla-
tions. Here, we considered the time of the day, the day of the week and holidays.
However, additional information about the meteorological conditions and special
events may be integrated when available.
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Finally, the ground truth vehicular traffic flow at the time interval t over the

sensor network is defined by Y; = (y11, 2, yin) T, Vi € RN*L.

Problem formulation:

Given X; the recent historical raw traffic measurements of all the sensor nodes over
the past T time intervals, and E; the global contextual features the traffic estimation
problem consists to predict the accurate ground truth traffic flows Y; across the entire

sensors network at the time interval ¢.

X;, E; LION Y;

6.3 Model Description [BCL21]

The network architecture of the proposed DGC-LSTM is illustrated in figure 6.1.
The DGC-LSTM model is composed of four components:1) The spatiotemporal
component 2) The contextual features component 3) The estimation component, and

4) The adjacency matrix learning component.

Contextual features
(day o f week, time of day, working day, ... 8 R
IR O )
] o
S S
(— y_
el Adjacency matrix
ayer learning component

Measurements timeseries
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Input Representation
component component

FIGURE 6.1: The DGC-LSTM model architecture.

The Spatiotemporal Component

The graph convolutional LSTM layer presents a version of the LSTM layer adapted
to graph-structured input data where the graph convolution operator replaces the
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linear operation. The graph convolutional LSTM is formulated as:

it = 0(Wyi g X + Wyi xg i1 + b;)
ft = U'(fo kg Xi + th kg hi_1+ bf)
0y = U(on *g Xt + Wi *g hi 1+ bo)

(6.1)
& = tanh(Wxg *g Xt + Whg *g ht,1 + bg)

Ct :Ct_1®ft+gt®it
hy = tanh(ct) © o¢

where i, fi, 04, g1, ¢t, It respectively are the input gate, forget gate, output gate,
instant state, cell state and output hidden state. x; is the input at the current mo-
ment, h;_; is the output at the previous moment; W term denote weight matrices,
b term denote bias. o and tanh are respectively the sigmoid and hyperbolic tangent
activation functions, and © is the element-wise multiplication. To keep the notation
simple, we use the ¢ operator for the graph convolution.

The graph convolution generalizes the convolution operation from grid-based
data to graph-structured data. Graph convolutions are generally processed on the
spectral domain. The graph structure is analyzed in terms of its Laplacian matrix
and its corresponding eigenvalues. We employed the symmetric normalized form of
the Laplacian matrix definedas L = [ — D:AD? € RN*N , where Ais the adjacency
matrix, I is the identity matrix, and the degree matrix D € RN*N is a diagonal
matrix, consisting of node degrees, D;; = Z]» Ajj . The Singular Value Decomposition
(SVD) of the Laplacian matrix is L = UAUT , where U consists of eigenvectors and
A is a diagonal matrix of eigenvalues. The matrix U is the Graph Fourier Transform
matrix, which transforms the input graph signal to its frequency domain. According
to this, the graph convolution in the spectral domain is defined as:

Qo *g Xr = Ugg(MUT X, (6.2)

where 6 € RY is the convolution parameters and g4 (/) is the product operator given
by go(A) = diag(6)A that defines the convolution operator in the spectral space. the
result of the spectral domain is transformed back to the data space by the inverse
transformation U.

The computation complexity of equation 6.2 is high due to the SVD decomposi-
tion of the adjacency matrix, an approximation of the gg(A) was proposed in [KW17]
utilizing the Chebyshev polynomials. The graph convolution can then be written as:

K-1
k=0
where 0/ = (0),07,0% ;) € RK are the parameters of the polynomial coefficients,

Ti(A) are the Chebychev polynomials at the scaled Laplacian matrix A = 2-A —

/\ﬂl{l)(
I, with A,y is the greatest eigenvalue of L. A,y is assumed in practice as 2 for
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simplicity.
The k! Chebychev polynomial is calculated as follows:

2ATi 1 (A) — Tha(A) k>1
Ti(A) = { A k=1 (6.4)
I k=0

The Chebyshev polynomials approximation reduces the time complexity and strength-
ens the locality of the convolution operator. The locality radius is fixed with param-
eter K.

The Contextual features Component

The component responsible for ingesting the contextual features consists of two fully
connected layers. The first layer can be viewed as an embedding layer. The second
layer is used to map the obtained low dimension representation to high dimensions
one that models the impact of those features on the output of the spatiotemporal
component. The Contextual features Component is then defined as:

E&™ = Wy Ef 4 by

omib (6.5)
fcx(Et) - WeZEt + beZ

with the W,; and b,; terms denote respectively weight matrices and the bias vec-
tors.

The Estimation Component

The estimation component consists of a single fully connected layer. It takes as in-
put the combined outputs of the spatiotemporal and the contextual features compo-
nents. The standard element-wise multiplication is employed for fusion.

Zy = focrstm(Xe, Ar) © fex(Er) 66)
Y = WourZs

The Adjacency Matrix Learning Component

The graph convolutional operator used on the spatiotemporal component relies on
the adjacency matrix definition to model the complex pairwise dependencies be-
tween the different graph nodes. In our DGC-LSTM model, the adjacency matrix
is not fixed; it varies over time. We learn to model the inherent complex dynamic
dependencies between the traffic signal in all the nodes network during the training
procedure. The adjacency matrix values are estimated from the embedding repre-
sentation resulting from the contextual features component. Those features play an
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important role in the interdependencies” dynamicity in both the spatial dimension
and temporal dimension.

In practice, the embedding representation of the contextual features E¢"? is fed
to a fully connected layer followed by a sigmoid activation function ¢. The output of
this layer is a matrix representing the non-diagonal elements of the adjacency matrix
A;. The estimated adjacency matrix A; at the time interval ¢ is given by:

At = 0(WagiEf™ + bag)) 6.7)
A=A+ 1 '

6.3.1 The learning problem

The learning problem is formalized as an optimization problem defined over the

training data to minimize the loss function defined in equation 6.8.

L(Wz b) = LESt(WI b) + /\Lspars(wadjr badj)
Lest (W, b) Z lyi — gill2 (6.8)

N V
LSpars adjs ad] ZZ 1_C HA ]H2+C’|Al[r/”’%)
i=1r=1

Here W and b refer to all the learnable parameters of the DGC-LSTM model. Specif-
ically, W,4; and by are the parameters of the matrix learning component. A is a hy-
per parameter and c is a trade-off hyper parameters. ; and y; are the estimated and
ground truth values and A; is the associated adjacency matrix instance. A;[r, :] refers
to the " row vector of the A; matrix.

As shown in equation 6.8, the loss function consists of two parts: Lgst, Lspars- The
former consists of the estimation loss defined by the standard L2 loss function. The
latter term defines a structured row-wise exclusive sparsity constraint on the learned
adjacency matrix weights by applying a combination of 2 — norm and (1,2) — norm

on the matrix row vectors.

6.4 Validation setting

6.4.1 Dataset description

The model performance evaluation is performed on a realistic synthetic dataset of
time series of Bluetooth counts over a network of 18 sensors. The dataset is gen-
erated through the simulator proposed in chapter 4. The whole dataset generation
process is described in details in appendix B. We simulate the traffic flows over the
time period starting from January, 1%,2018 to March, 31,2018. Figure 6.2 depicts
the simulated sensors placement plan.
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FIGURE 6.2: The simulated sensors placement plan.

For the contextual features, we only consider the temporal features related to the
time of the day, the day of the week and the holidays events.

6.4.2 Preprocessing

We use the Min-Max normalization method to scale the measurements into the range [0, 1]
and the one-hot coding is used to encode the temporal contextual features. In the

evaluation, we rescale the estimated values to compare them to the ground truth.

6.4.3 Implementation and Hyperparameters setting

The DGC-LSTM model is implemented using Pytorch-geometric [FL19] and Py-
torch [Pas+19]. A shallow network structure with one layer of graph convolution
LSTM and one fully connected estimation layer is used. The hidden size of the graph
convolutional LSTM is fixed to 32, and the size of the embeddings of the contextual
features is set to 8. We set the order of Chebyshev polynomial to 2 to consider only
the directly joinable adjacent nodes. The length of the recent historical measure-
ments series is set to 12 after tuning.

Table 6.1 summarizes the different components of our DGC-LSTM model and

details the output size of each layer and the number of its learnable parameters.

TABLE 6.1: Summary of DGC-LSTM model components

Component Layer (type)  Output Shape Param
Spatiotemporal Graph-LSTM [-1, 18, 32] 8576

Contextual Linear [-1,1, 8] 248
features Linear [-1, 1, 32] 288
Matrix learning Linear [-1,1, 306] 2754

Estimation Linear [-1,18, 1] 32
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6.4.4 Training and validation

We split the dataset with a ratio of 8 : 2 into non-overlapped sets of training /validation
and test. A 10-fold cross-validation is employed on the first set where each time, one
fold is used for validation and the others for model training.

The DGC-LSTM model is trained through back-propagation to minimize the de-
fined loss function. The Adam Optimization is used for this purpose. During the
training phase, the batch size is fixed to 16, and the learning rate is initiated to 0.01.
The learning rate is reduced by 50% at the 100" epoch. Moreover, an early stopping
strategy is adopted when the error on the validation data set does not decline. The
model is trained for 200 epochs.

Algorithm 1 outlines the end-to-end process starting from the dataset generation
and the features preprocessing to the model training.

Algorithm 1: Training algorithm for DGC-LSTM.

Data: Measurements from the | V| locations {S;}T.
Traffic flow observations at the |V| locations {Y¢}7.
Contextual features observations {F;}T.

Length of the historical observations sequence T.

Result: The learned DGC-LSTM model

1 //construct training instance

2 D+ o

3 for all available time interval (0 < t <=T) do

4 X; < generate_historical_sequence(S)

5 Xt < normalize(Xy)

6

7

8

9

Y; < normalize(Y})
E; < one_hot_encoding(F;)
Append ({X;, Et},Y:) into D.
end
10 //Train the DGC-LSTM model
11 Initialize all the model trainable parameters (W, b)
12 for each epoch do

13 Randomly select a batch of instances D, from D.

14 Optimize the parameters W, b by minimizing the loss
function defined in equation 6.8 with Dy,.

15 Stop training when criteria is met.

16 end

6.4.5 Performance evaluation

Our proposed model is compared with five baseline models: the Multiple Linear
model, the Support Vectors Regressor SVR [Dru+97], the K-Nearest Neighbors model
KNN [Alt92], the Long Short Term Memory LSTM [HS97], and the Graph convo-
lutional LSTM with fixed distance-based adjacency matrix GCLSTM [Seo+18]. Two
versions of GCLSTM model were considered. A weighted adjacency matrix is calcu-
lated using a distance metric with a thresholded Gaussian kernel function in the first
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one. For the second one, we used a simple binary adjacency matrix derived from the
distance-based one.

For a fair comparison, the contextual features component defined for the pro-
posed DGC-LSTM is also integrated into both LSTM and GCLSTM models.

The performances of all methods are measured using the Root Mean Square Error
(RMSE) and the Mean Absolute Percentage Error (MAPE) metrics.

N
RMSE = J ;];(yi —7i)? (veh/5min) (6.9)
100 & |y; — 94
MAPE = — ) ~—— % 6.10
N %) (610)

A weighted version of the MAPE is used more adapted to the presence of small
traffic measurement on off-peak night hours. It is defined by the equation 6.11.

N 1o
WwMAPE — Zi=tYi = 9il 109 (%) 6.11)
Zl\i1 Yi

6.5 Evaluation results

6.5.1 Performance comparison

The network-level performance evaluations of all the models are reported in ta-
ble 6.2. We show the results over all the validation days, and we distinguish be-
tween working days and holidays and weekends. We can note that our proposed
DGC-LSTM model achieves the smallest estimation error with all the considered
evaluation metrics. The model significantly improves the accuracy of the estimates
compared to the standard machine learning models. The statistical significance is
tested with the corrected resampled T-test [Ben00] at 0.05 alpha level. Our model
also shows improvement compared to both versions of GC-LSTM model, where
static distance-based and binary adjacency matrices were used. This proves the ad-
vantages of the dynamic matrix to bring more flexibility to the graph convolutional
LSTM layer. Compared to the standard LSTM model, the DGC-LSTM model pro-
vides slightly better results.

To study the impact of the contextual features component, we show in table 6.2,
the performance results of our proposed DGC-LSTM model with and without the
concerned component. We can observe that the overall model results are not too sen-
sitive with slightly better results obtained when the contextual features component
is integrated.

In figure 6.3, we compare the performance of KNN, SVR, LSTM, GCLSTM and
DGC-LSTM models at sensor-level. The RMSE evaluation metric is used. As shown
in the figure, DGC-LSTM provides best results on 8 out of the 18 network sensors.
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TABLE 6.2: Evaluation of the estimation models at sensor network-
level in terms of RMSE, MAPE, and wMAPE (best performance are
displayed in bold).
All days

Models/Metrics RMSE wMAPE | MAPE

Linear 12.85(1.0) | 19.85(1.6) | 31.26(3.5)

KNN 10.98(0.7) | 17.29(0.4) | 23.32(1.0)

SVR 10.53(0.5) | 16.29(0.4) | 20.85(0.8)

LSTM 10.36(0.7) | 16.09(0.7) | 20.83(1.0)

GCLSTM (Binary) 10.42(0.7) | 16.19(0.7) | 21.48(0.9)

GCLSTM (Distance) 10.50(0.7) | 16.30(0.7) | 21.80(1.1)

DGC-LSTM (No context) | 10.28(0.6) | 15.94(0.5) | 20.32(0.7)

DGC-LSTM 10.24(0.6) | 15.88(0.5) | 20.0(0.7)

(A) performance over all validation days.
Working days Holidays and Weekends

Models/Metrics RMSE wMAPE | MAPE RMSE wMAPE | MAPE
Linear 12.75(0.3) | 18.43(0.7) | 32.31(2.2) | 13.73(1.8) | 23.66(4.0) | 32.14(5.2
KNN 12.10(0.6) | 17.47(0.7) | 23.64(1.2) | 9.56(0.6) 17.22(0.5) | 22.36(1.6)
SVR 11.50(0.5) | 16.27(0.7) | 21.30(1.1) | 9.33(0.5) 16.48(0.5) | 20.00(1.1)
LSTM 11.21(0.9) | 15.97(1.0) | 21.22(1.8) | 9.41(0.6) 16.55(0.9) | 20.15(1.1)
GCLSTM (Binary) 11.36(1.0) | 16.14(1.1) | 22.22(1.7) | 9.35(0.4) 16.56(0.7) | 20.65(1.0)
GCLSTM (Distance) 11.40(1.0) | 16.18(1.1) | 22.18(2.0) | 9.51(0.4) 16.86(0.8) | 21.34(1.1)
DGC-LSTM (No context) | 11.16(0.6) | 15.85(0.6) | 20.59(1.2) | 9.20(0.6) 16.27(0.7) | 19.72(1.0)
DGC-LSTM 11.14(0.6) | 15.81(0.7) | 20.13(1.0) | 9.16(0.5) | 16.17(0.7) | 19.57(0.9)

RMSE

(B) performance over working days, weekends, and holidays.
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FIGURE 6.3: Evaluation of the estimation models performances at

sensor level in terms of RMSE (Green (respectively orange) boxes re-

fer to cases where our DGC-LSTM model provides better results than
(respectively comparable results to) the baseline models.

In 5 other sensors delimited by orange boxes in figure 6.3, our model have similar
results to the LSTM or/and GCLSTM models.
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FIGURE 6.4: Example of the learned adjacency matrix by the DGC-
LSTM model.

An example of the learned adjacency matrix is illustrated in figure 6.4. The ma-
trix shows the intersensors relations in morning peak hours (at 9 a.m). The darkness
of the cell colour indicates the level of pairwise relatedness between sensors. For
instance, the learned matrix shows strong correlations between sensor node 10 and
all of the sensors 0,1,4,7,9,11,15, and 16. All of the sensors 0,15, and 16 present
strong spatial correlation with node 10. Whereas the sensor 10 shares a similar de-
tection environment with sensors 1,4,7, and 11 showing high traffic flow with high
congestion level-at peak hours. All of them consists of the main entry points to the
simulated area.

The dynamic characteristics of the learned adjacency matrix can be observed in
the example in figure 6.5 where the temporal evolution of the influences of the dif-
ferent nodes measurement time series on the traffic estimation at node 10 is plotted.
One can see that nodes 1,7,9,15 and 16 are associated with higher weights on morn-
ing peak hours. While on evening hours, the sensor 10 also shows relations with all
of 2,3 and 13 sensors.
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FIGURE 6.5: Temporal evolution of intersensors dependencies in
node 10.
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6.5.2 Hyperparameters setting

This section examines how the different choices of hyperparameters affect the esti-
mation performance of the proposed DGC-LSTM model. We consider the impacts of
the hidden size and the length of the considered historical sequence for estimation.
In each experiment, except for the studied parameter, we set other parameters at the

default values.
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FIGURE 6.6: DGC-LSTM model performance sensitivity regarding
the historical sequence length and hidden size parameters

Figure 6.6a (respectively Figure 6.6b) shows the evaluation results as a function
of one historical sequence length (respectively the hidden size) parameter. Overall,
the results show the model’s robustness regarding the studied parameters as the
performance is not too sensitive to those parameters.

We observe in figure 6.6a that the increase of model performance saturates when
the sequence length reaches 12, which represents one hour of historical BT counts
observations. Further increasing the length of the considered sequence do not lead
anymore to results improvement. In our experiments, we fixed the length parameter
to 12 due to the consideration of the trade-off between the effectiveness and the
computational cost.

Figure 6.6b shows that, at the start, a larger value of hidden size provides a
stronger representation capability for the model. However, we observe that the fur-
ther increase in the latent representation dimensionality leads to the overfitting issue
and the model’s inability to generalize. Considering the model performance in terms
of the RMSE and the MAPE, we set the hidden size value as 32.

6.6 Study of the model transferability

In this section, we address the problem of model transferability. Although machine
learning models improve the accuracy of the gathered error-prone traffic flow mea-
surements from the new sources of the data, those models need to be retrained for
each new deployment to adapt to the changes in the input data distributions. For
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instance, that incurs the need to gather a new labelled dataset for each new deploy-
ment site, limiting the applicability of the machine learning models in practice due
to the high cost of ground truth data acquisition. One approach to deal with this
situation is to ensure the transferability of the learning model to promote inter de-
ployment training dataset reuse. The fundamental idea of model transferability is
to improve the capacity of the model to work well on new targeted deployment site
data without an extensive parameters and layers calibration effort. The direct appli-
cation of the learning model to the new target data with no calibration and transfer
methods often results in a significant decrease in the model performance leading to
huge estimation errors. Hence, transfer and calibration are required to adjust the
discrepancies between the source data and the new targeted data distributions.

In this context, we investigate the capacity of direct transferability of deep neural
network models on the considered traffic flow estimation task. We examine not only
our DGC-LSTM model but also the standard LSTM and GCLSTM models. The same
synthetic dataset defined in section 6.4.1 is used. We define one source network and
three different cases of target networks. Here, we assume that all sensor networks
have the same number of nodes for simplicity that we set to 12. Figure 6.7 illustrates
the three studied scenarios. In each of those scenarios, a subset of the network nodes
are shared with the source network. In the first and second scenarios, 9 out of the
12 sensors are retained. In the last one, only six sensors are retained. The new in-
tegrated sensors are different between scenarios 1 and 2. Moreover, it worth noting
that the order of shared nodes between source and target data on the input matrix X;

may differ.
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FIGURE 6.7: The different transfer scenarios sensors placement plans.

Red, Violet and Blue sensors refers respectively to the newly inte-

grated sensors, the shared sensors and sensors exclusively used in
source network.

Table 6.3 summarizes the results of direct transfer experiments. We focus on
node-level results accuracy in terms of RMSE. We apply the same colour coding used
in figure 6.7. Additionally, we use the orange colour to refer to sensors with a differ-
ent order in the source and target input data matrices. In the "target" columns, we
include RMSE values when the model is trained and evaluated in the target dataset.

Those values are used for comparison as ground truths. In columns "src — trg",



Chapter 6. The DGC-LSTM model for traffic flow estimation at sensor network 97
level

we observe that all models show an accuracy decrease when a pre-trained model
over the source dataset is applied directly to the target dataset. As expected, the
estimation errors are higher for new integrated and ordered sensors. The node-level
performance of both GCLSTM and DGCLSTM models is sensitive to the change on
the node’s adjacent nodes. Similarly, the LSTM model’s accuracy is also affected by
the changes in the input data since, in the LSTM model, all nodes input data are
considered during the construction of the LSTM layer latent representation.

Those experiments highlight the fact that model adaptation is still required to
ensure transferability. In the case of sensor network-level traffic estimation, this task
is not straightforward, specifically when an unsupervised setting is considered that
is no labelled target dataset is available. For our DGCLSTM model, we need to
address the following challenges:

¢ Learn the relevant adjacency relations between the different nodes of the target
network.

¢ Adjust the distributional discrepancy between the source and target data and
ensure a good fitting of the adjusted model to the new target data.

6.7 Conclusion

In this chapter, we propose DGC-LSTM, a dynamic graph convolutional LSTM-
based network for area-wide traffic estimation from error-prone sensory time series.
Different from standard graph convolution networks, in this model, the adjacency
matrix required on the graph convolution is not fixed; it is learned during the model
training to model and exploit the spatiotemporal dynamic dependencies between
the different locations as well as the similarities between the sensor detection en-
vironment. The proposed method is evaluated on a realistic simulated dataset of
labelled Bluetooth counts. The comparison results show that the proposed method
outperforms the baseline estimation models.

Lastly, we studied the model transferability. The first experiments highlighted
the need for transfer method application to calibrate the model to the new targeted
network. The future directions of our work will focus on this problem.
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TABLE 6.3: Direct transfer models performance evaluation in terms
of RMSE
LSTM GCLSTM DGC-LSTM
Scenario | Sensor source | target | src — trg | target | src — trg | target | src — trg
Node 0 7.09 16.13 7.137 10.02 7.155 16.614
Node 1 14.16 | 14.21 40.34 14.78 16.91 14.28 42.249
Node 2 8.28 | 8.333 9.572 8.638 9.701 8.316 9.751
Node 3 12.16 | 11.99 28.18 12.16 15.4 12.11 28.884
Node 4 14.67 | 1491 56.85 14.82 51.4 15 52.212
Node 5
Node 6 11.8
Node 7 1246 | 12.59 13.51 12.6 15.83 12.27 13.07
1 Node 8 6.028 | 6.056 6.406 5.977 9.471 6.169 6.227
Node 9 9.516
Node 10 7.255 12.18 7.234 10.61 7.435 12.3
Node 11 | 8.446 | 8.104 8.843 8.237 14.09 8.626 8.657
Node 12
Node 13 | 8251 | 8.325 8.518 8.269 19 8.357 8.656
Node 14 | 8.774 | 8.47 8.52 8.51 16 8.71 9.09
Node 15 6.32 7.37 6.35 9.04 6.32 7.13
Node 16 | 15.86
Node 17
Node 0
Node 1 1416 | 14.15 14.88 14.58 18.98 13.84 14.1
Node 2 8.28 | 8.302 8.185 8.413 9.8 8.035 8.33
Node 3 12.16 | 11.72 12.17 12.15 15.07 11.82 12.29
Node 4 14.67 | 14.83 15.87 15.19 23.9 14.31 14.87
Node 5 9.362 16.62 9.461 11.15 9.295 16.106
Node 6 11.8
Node 7 12.46 | 12.51 12.81 12.5 17.95 12.27 12.42
5 Node 8 6.028 | 5.939 6.117 5.997 8.224 5.879 6.052
Node 9 9.516 | 9.783 10.2 9.836 12.94 9.387 9.559
Node 10
Node 11 | 8.446 | 8.072 8.25 8.113 11.11 8.158 8.517
Node 12 5.984 10.72 6.164 6.703 6.189 10.19
Node 13 | 8.251
Node 14 | 8.774 | 8.46 8.51 8.44 13.26 8.477 8.706
Node 15
Node 16 | 15.86
Node 17 6.14 14.47 6.15 25.58 5.961 14.086
Node 0 6.997 18.65 7.212 8.954 6.871 16.708
Node 1 14.16 | 14.27 36.65 14.47 36.9 13.78 40.786
Node 2 8.28 | 8.029 10.87 8.644 12.3 7.671 10.184
Node 3 1216 | 11.97 32.13 12 23.92 11.88 29.515
Node 4 14.67 | 14.79 52.88 15.28 20.95 13.82 52.484
Node 5 9.548 11.83 9.444 12.96 9.342 11.406
Node 6 11.8
Node 7 12.46
3 Node 8 6.028 | 6.033 7.173 6.128 7.547 6 6.403
Node 9 9.516 | 9.618 10.97 9.567 23.8 9.42 10.17
Node 10 7.161 12.36 7.299 20.9 7.15 11.07
Node 11 | 8.446
Node 12 6.03 10.7 6.164 16.5 6.137 10.146
Node 13 | 8.251
Node 14 | 8.774
Node 15 6.25 7.84 7.22 11 6.2 7.025
Node 16 | 15.86
Node 17 5.95 15.54 6.4 16.36 5.823 14.837
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Chapter 7

RSSI-based Travel Speed Estimation

The unique identification system of Bluetooth sensors is adapted to the acquisition
of travel-related measures between an origin position and a destination position.
Those measures mainly concern travel time and travel speed and present an indica-
tor of the level of congestion on the road link. They represent an essential element for
the construction of OD matrices. Despite the apparent potential of Bluetooth tech-
nology, the accuracy of the derived measures from the sensors data may be hindered
by two main problems. The former is related to the representativeness of the BT data
sample size. The latter issue concerning speed calculation results from the absence
of geolocation information and represents the problem addressed in this work. In
general, the dual temporal problem is considered in the sense that we intend to ac-
curately estimate the travel time between the origin and destination positions while
fixing the distance to the one separating the two positions.

In this context, we propose a speed estimation algorithm where the informa-
tion about the received signal quality is used first to improve the matching process
employed to identify the closest detection time to the time of passage. The RSS infor-
mation is used in a second step to weigh the individual vehicle speeds’ contribution
on the average speed estimation.

This chapter is structured as follows: Section 7.1 presents an introduction to the
speed estimation problem. Section 7.2 details the proposed algorithm. Section 7.3
describes the experimental setting used for accuracy evaluation. Section 7.4 exposes
and discusses the obtained results. We conclude with a conclusion.

7.1 Problem Statement

Average traffic speed is yet another important measure for traffic management. It
is used to monitor traffic state evolution over the road network by characterizing
the traffic conditions in the different road links and identifying the heavy-congested
ones. With the development of advanced vehicle identification techniques, gather-
ing such data becomes more affordable. Recognizing the same vehicle in two differ-
ent positions at distinct timestamps allows computing the vehicle speed by dividing
the travelled distance by the time difference between the two timestamps. Blue-
tooth technology represents a promising alternative among AVI techniques. Thanks
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to their low deployment and maintenance costs, BT sensors are adapted to traffic
information acquisition at a network scale.

The capacity to get accurate travel-related measures using BT sensing has been
confirmed/stated in [Hag+10; Sha+11; LXP20; Wil+10; Wan+11; KMJ10]. The ac-
curacy of BT measures was compared to estimates from GPS in [Hag+10; Sha+11;
LXP20; Wil+10], Automatic Licence Plate readers in [Wan+11], and from RFID toll
readers in [KM]J10]. However, the derived average travel speeds or times are prone
to errors related to the spatial uncertainty and the multiple detections problems in-
herent to the BT zone-to-zone sensing process. The spatial uncertainty results from
the fact that the BT sensor provides no information about the vehicle’s geographical
position; only the detection timestamp is stored. The vehicle may be detected at any
point in the sensor detection zone. Hence, the space error is relative to the size of the
detection zone. For instance, with a Class-1 BT antenna, the vehicles may be detected
up to 100 m apart from the sensor. The detection zone’s shape and size depend on
the characteristics of the BT antennas: the type (omnidirectional/directional), the
class, and the gain, but also the radio propagation characteristics of the sensing ar-
eas. The multiple detections problem refers to the fact that a BT-enabled vehicle
may be detected several times by the same sensor when travelling along the detec-
tion zone. The number of detections is related to the time spent travelling through
the monitored road link, which varies with the vehicle speed and the traffic condi-
tions. In passive scanning, the no frequency hopping synchronization between the
sensor and the BT device affects the packet detection probability. The multiple de-
tections problem brought the question about which detections are more appropriate
to get better travel time estimates.
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FIGURE 7.1: The different matching strategies

Several matching approaches have been explored to address this issue. The First-
to-First strategy was adopted in [Mal+11; PV+10; Vol11; MH13]. Different from them,
Tsubota et al. [Tsu+11] employed the Last-to-Last method for travel times calcula-
tion. In [Ara+15], Araghi et al. relied on the median of the different travel time val-
ues derived from the multiple detections. Different matching strategies have been
compared in [BC13; LXP20]. The authors in [BC13] showed that Last-to-Last match-

ing is better than the average-based one and further better than the First-to-First.
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In [LXP20], Liu et al. found that the average-to-average approach yields the best
performance when travel times along long road links are considered, while the Last-
to-Last strategy provides better results for short road links. It is worth noting that
neither the First-to-First nor the Last-to-Last approaches effectively address the lo-
cation ambiguity issue. Both the methods consider detection near to the extreme
boundaries of the sensor detection zone. Their effectiveness depends on assuming
that the spatial errors at the origin and destination positions offset each other. When-
ever this assumption does not hold, the accuracy of the derived measure decreases.
This is often the case in urban roads where traffic signals alter the traffic fluidity
from one position to another. Similarly, in this case, one cannot ensure that the aver-
age or median detection time coincides with the time when the vehicle passes by the
sensor position. It is not granted that detections have a symmetrical time distribu-
tion around the passage time. Clearly, more accurate measures can be obtained by
relying on the detection timestamps closest to when the vehicle passes by the sensor
position since the distance separating the origin and destination positions is used for
speed calculation. Figure 7.1 illustrates the different matching strategies.
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FIGURE 7.2: An example of RSSI curve

The information about the Received Signal Strength Indicator (RSSI) can be ex-
plored for this task. The RSSI value is known to be proportional to the inverse of the
squared distance: a larger RSSI value indicates that the BT device is closer to the sen-
sor than a lower RSSI value. As illustrated in figure 7.2, RSSI values keep increasing
when a vehicle travels towards the sensor position and start to decrease afterwards.
Thus, it is expected that the RSSI curve reaches its maximum value at the sensor
location, allowing the identification of a more accurate time of passage. To the best
of our knowledge, the RSSI-based matching process was only explored in [Sae+13].
Saeedi et al. considered the particular case of intersection-to-intersection travel time
estimation where one sensor is placed per intersection. In this setting, the authors
tend to identify, instead of the time of passage, the time when the vehicle started
to leave the intersection, often characterized by a fast drop on the RSSI change rate
curve. The matching process was evaluated on data from a controlled experiment
where for each run, only two estimates were collected from two mobile phones in
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the same vehicle. The authors concluded that the RSSI-based matching approach
significantly improved travel time estimates compared to First-to-First, Last-to-Last,
and average matching strategies.

In our work, we also explore the use of the RSSI information to improve travel
speed estimates” accuracy. In a first step, the RSSI values are used to find the closest
detection time to the time of passage. In real scenarios, the associated RSSI curve to
the multiple detections of one BT device represents only a portion of the theoretical
RSSI curve presented in figure 7.2. Thus, peak identification in the RSSI sequence
is not granted. The shape of the gathered RSSI sequence is analyzed to identify a
particular trending in the RSSI curve and, eventually, a point where the RSSI peaks.
The quality of the RSSI sequence depends on the number of detections and the vari-
ations caused by the radio propagation medium’s interference. This information
about the RSSI sequence quality is used in a second step to weigh the individual
vehicle speeds’ contribution on the average speed estimation.

7.2 Mean Travel Speed Estimation

Figure 7.3 illustrates the mean speed estimation process. The process takes as input
the Bluetooth detection traces from the different deployed sensors and defines three
processing steps: First, a sequencing algorithm is used to extract the trips of vehicles.
Then, the derived trips are processed by filtering out instances that may hinder the
accuracy of speed estimates. Finally, the individual vehicles” speeds are computed
and averaged to get the global mean travel speed. The following subsection details
each of the presented steps.
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FIGURE 7.3: Overview of the mean travel speed estimation process
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7.2.1 Bluetooth Trip Extraction

In this step, we use the same sequencing process defined in [Mic+17]. The idea of
this process is to divide the sequence of detections of a given MAC address by the
different Bluetooth sensors into a set of smaller sequences referred to as trips. A trip

can formally defined as:
T(Mkz ts, te) = {(Mk, So, 1Si, tei);i < N}

where (My, so, ts;, te;) is the set of consecutive detections of the MAC address My by
the sensor s, in the time period between ts; and te;

The sequencing process ensures that:

* Given two consecutive trips Ty, (Mg, tsm, ten) and Tp1 (Mg, ts m+1, tem+1), the
time gap between T, and T, is greater than a predefined threshold ¢ that is:

(ts,m+1 - te,m) >0

¢ The time gap between two consecutive subsequences of a trip T (Mg, ts, t.) does
not exceed the threshold §:

Vi <N, (Mk, So, tSi, tez-) € T(Mk) , then (tSi+1 — tez-) <90

7.2.2 Trip Processing

In this step, the previously extracted trips will undergo a 3-step filtering process to
improve the quality of the input for the speed estimation step. The first prepro-
cessing step aims to eliminate single-sequence trips that are not suitable for travel
measurement estimation. Then, one important step is to remove outliers consisting
of off-site devices that do not correspond to a vehicle like devices on nearby build-
ings, or smart devices transported by pedestrians. For this purpose, we relied on
the filtering process that we defined in section 3.3. The last step allows identifying
overlaps between the sensors” detection sequences. As we briefly mentioned earlier,
this problem raises mostly due to the close proximity between the sensor placement
so that the detection zones of the adjacent sensors may overlap. After this step, only
non-single-detection resulting trips are maintained.

Using the previously introduced notation, the preprocessing step can be summa-
rized in the three following conditions:

¢ No single-sequence trips: we exclude trips of devices detected at a single sensing
position from which travel OD measurements can not be extracted.

vT(]\/Ikl ts/ te)/ |T(Mk/ tsr t€)| > 1

¢ No off-site devices: We filter out devices less likely to be attributed to a vehicle.
We define two filtering rules. The former applies threshold-based filtering that
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removes sequences with a long detection duration. The latter discards sequences

associated with extremely poor signal quality.
V(M si, tsi, te;) € T(My, ts, t,), | (Mg, si, tsi, te;)| < Ay,
V(My, si, tsi, te;) € T(M, ts, t.), max(RSSI(My, s, tsi, te;)) > pmax

* No overlapping detection sequences: we process the gathered trips to avoid over-
lapping between consecutive detection sequence.

V(Mk,si, tsi,tei), (Mk, S, tS]', tej) S T(Mk, ts, tg), ts; < tS]' — te; < tSj

7.2.3 Traffic Mean Speed Estimation

Average speed estimation involves vehicles” speeds estimation and weight assign-

ment for estimates aggregation steps.

Vehicles” Speeds Estimation

An individual vehicle’s speed is calculated as the ratio between a travelled distance
and its associated travel time. Since no information is available about the vehicle’s
geographical position, it is always fixed to the distance between the sensors de-
ployed at the origin and destination links. The travel time is estimated by selecting
a single detection representative of the vehicle passage by the sensor. We imple-
mented an RSSI-based matching algorithm to identify the detection time closest to
the sensor position.

AS the RSSI is proportional to the inverse of the squared distance to the sensor
position, RSSI values keep increasing until the vehicle reaches the sensor position
(and the indicator peaks), decreasing afterwards. By comparing the RSSI peaks of
a specific BT identifier in two different sensors, we should normally be able to de-
duce the vehicle’s travel time between these two positions easily. However, in real
scenarios, the RSSI curves present a huge variability caused by the interference on
the radio propagation medium. Moreover, the gathered RSSI sequence often covers
only a portion of the theoretical RSSI curve.

Our selection function is designed to adapt to this situation. By analyzing The
RSSI curves shapes, we identified seven characteristic patterns. They are described
in table 7.1. We associated to each pattern an appropriate selection rule. Whenever
a peak is identified, the detection corresponding to the maximum of RSSI is used.
Otherwise, the representative detection time is selected as follows: the first (respec.
last) timestamps is used if a strictly decreasing (respec. increasing) trend is identi-
fied. When the RSSI curve presents a constant RSSI segment between increasing and
decreasing ones, the detection relative to the constant segment’s start is chosen. In
the case where no specific trend is observed, the median detection time is consid-
ered. The same rule is used if only a few detections are available. Obviously, when
the vehicle is detected once, its associated timestamp is used.
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TABLE 7.1: Characteristic RSSI sequence patterns

. Selection rule -
Pattern | Label Description Tast | Eirst | Med | Max Curve Characteristics
1 1 Significant peak X | One peak detected
. . No peak detected
2 2 Strictly inc/dec trend X Inc/dec trend
Two peaks detected

3 3 Plateau-shaped curve 8 Constant values between peaks

. Two peaks detected
4 Uncertain peak X Inc/dec values between peaks
5 Highly variable RSSI data X More than two peaks detected
6 7 Single detection X
7 Short sequence of values X

The afore-described process is used to select the most representative detection
time to compute the travel time from where the speed is deduced.

Weight Assignment

The quality of the Bluetooth signal strength curves is also used to weigh individual
speed values for the mean travel speed estimation. The baseline idea behind this is to
assign weights that reflect our confidence in the accuracy of the obtained speeds. As
shown in table 7.1, the identified patterns were grouped into four categories. Each
category is mapped to a label. The speed confidence label is then deduced from the
pair of labels related to the RSSI curves on the origin and destination positions. Ten
labels cover all the possible combinations. Their weights are fixed between 0 and 1,
and they are selected by grid search while minimizing the error from the mean speed
estimates.

The global mean speed is computed as a weighted mean of individual speed val-
ues. The algorithm 2 summarizes the mean travel speed estimation step. The algo-
rithm takes as input D = {(M,Em), Sos ts, te), (M](cm),sd, th, )M the set of consecu-

m=1’
tive detection sequences between origin and destination positions s, and s; observed
during the time interval é; (i.e te’ € &), rssi, = {rssi(M,Em),so) %:1 and rssiy =

{rssi (M,gm),sd) M the RSSI readings associated to each origin and destination el-

ement on D respectively, the OD distance d and the weights vector W = {w;} El.

To identify the shape of a given RSSI curve, we first applied a locally weighted
linear regression to smooth the RSSI sequence. Then, we implemented an algorithm
to search for peaks (local maxima) based on a simple value comparison of neigh-
bouring samples. Two parameters defining the thresholds for the peak height and
inter-peak distance are used to discard uncertain peaks. The RSSI curve is assigned
to a pattern category based on the conditions specified in table 7.1. Hence, The se-
lection rule associated with the pattern is used to identify the appropriate detection
time.
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Algorithm 2: Mean travel speed estimation

Data: D, rssi,, rssiy, d, W
Result: mean_speed
1 form < 1to M do
(m)

2 (to,qo) < estimate_passage_time(rssio(My ', So));
3 (tg,q94) < estimate_passage_time(rssid(M,(cm),sd));
4 |ty by — to;

5 Wy — assign_weight(q4, 40, W);

6 end

7 mean_speed <—

1 ZM wy.d
T oy Em=1 "y

7.3 Experimental Setting

We used the data from the first experiment setting described in section 3.1.3 to assess
the proposed speed estimation process’s performance. We only considered sensors
deployed along the primary roadway to ensure that a sufficient OD sampling rate is

granted.

SENSOR #1

SENSOR #2

B

Rue du Pont Colbert

Free-flow road link Signalized road link SENSOR #3

f?uedu Pon
FIGURE 7.4: Experiment setting for speed estimation.

As shown in figure 7.4, sensors 1,2 and 3 cover the same roadway. The link be-
tween sensors 1 and 2 represents a direct non-signalized connection with no exit
and entry points. While sensors 2 and 3 were deployed in two opposite axes of a sig-
nalized intersection. In the experiments, only pneumatic road tubes measures were
available for grounding truth. However, it is worth noting that while the proposed
method estimates the mean speed between two sensors, the pneumatic tubes mea-
sure vehicles” spot speed at the precise moment when they pass by one of the sen-
sors’ positions. The two measures may considerably differ due to the heteroscedas-
ticity of traffic conditions over a certain distance and in a specific spot, especially on

signalized roads.

7.4 Results Discussion

For results analysis, we present two examples of mean travel speed estimates from
data acquired on July 17th, 2018 and July 20th, 2018, representing respectively a
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weekday and a weekend. We infer the mean travel speeds per 5-min interval only
on time intervals between 6 a.m. and 8 p.m., where the Bluetooth sample sizes are
satisfactory. In this analysis, we first assess the quality of the derived individual
vehicle speeds. Then, we study the importance of instance weighting to improve

the accuracy of the average speed.

7.4.1 Individual Vehicle Speeds Estimation
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FIGURE 7.5: Distribution of vehicle speed between sensors 1 and 2
per RSSI patterns.

In figures 7.5 and 7.6, we classify the RSSI sequences extracted from the BT sen-
sors traces according to the patterns described in table 7.1. The plots show similar
results wherein about 40% of the RSSI curves exhibit a peak (Pattern 1); 12% are
plateau-shaped with a segment of constant values in place of the peak (Pattern 3),
9% shows only an ascending or descending trend (Pattern 2), and around 30-35% of
curves are short sequences composed of less than five detections (Pattern 6 and 7)
where 9% are only single detections. About 7% of sequences come with high vari-

ability with no specific trending (Pattern 5).
PATTERN 1 PATTERN 1

PATTERN 2 38.3% PATTERN 2 37.9%

6.1% 6.0%

PATTERN 3 12.0% PATTERN 3 11.1%

PATTERN 4 7.7%

PATTERN 4 7.9% 26.0% ] o
PATTERN 5 8.8% PATTERN 5 9.8%
PATTERN 7 PATTERN 7
PATTERN 6 PATTERN 6
(A) Weekday (B) Weekend

FIGURE 7.6: Distribution of vehicle speed between sensors 2 and 3
per RSSI patterns.
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In figures 7.7 and 7.8, we evaluate the quality of the derived speed estimates by
considering the percentage of abnormally high values. For this purpose, we applied
three different thresholds ranging from 16.7 m/s to 25 m/s. The proposed RSSI-
based matching process was compared to all of the First-to-First, Last-to-Last and
Median-to Median strategies. The results attest that the proposed strategy provides
the lowest percentage of outliers. We observe that its performance is close to the
Median-to-Median strategy. It is mainly explained by the fact that a median-based
selection rule is used whenever no information can be inferred from the RSSI data.
This is the case for patterns 5, 6, and 7. Further analysis allows concluding that
almost RSSI-based selection rules do not cause additional outliers.
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FIGURE 7.7: Percentage of outliers in vehicles travel speeds between
sensors 1 and 2 per speed threshold.
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FIGURE 7.8: Percentage of outliers in vehicles travel speeds between
sensors 2 and 3 per speed threshold.

Figures 7.9 and 7.10 expose the box plot of the distribution of the hourly mean
speed estimates obtained by the Bluetooth sensors and the pneumatic tubes, respec-
tively, for the road links between sensors 1 and 2 and the sensors 2 and 3. Figure 7.9
shows that Bluetooth and pneumatic estimates are comparable and evolve similarly
over time. However, we notice that the BT speed distributions are spreader. This
variance on the Bluetooth estimates results from the fact that travel times” accuracy
depends on the quality of the available RSSI data, and errors often occur when no
sufficient information can be inferred about passage times. In figure 7.10, we observe
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that Bluetooth estimates are significantly lower than the spot speed measurements.
That is explained by the difference between travel and spot speeds since on travel
speed, times where a vehicle remains stopped, for example, here during red traffic
lights, are considered.
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FIGURE 7.9: Box plots of the distribution of the hourly speed esti-
mates (BT) and GT measurements (pneumatic tubes) between sensors
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FIGURE 7.10: Box plots of the distribution of the hourly speed esti-
mates (BT) and GT measurements (pneumatic tubes) between sensors
2 and 3.

7.4.2 Average Travel Speeds Estimation

A weighting function is used to average the values of detected vehicles speeds and
compute the mean travel speed at a given time interval. The weights depend on
the confidence label assigned to each OD speed instance derived from the RSSI se-
quences’ patterns in the origin and destination points. The label reflects the level of
confidence in the accuracy of passage time estimates used on travel time and then
speed estimation.

Figures 7.11 and 7.12 present a classification of the vehicle speeds based on their
respective confidence label. Here, we also notice that results are similar for the week-
day and weekend and on both road links between sensors 1-2 and 2-3. The results
suggest that no significant difference is recognized between signalized and free-flow
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FIGURE 7.11: Distribution of speeds between sensors 1 and 2 by con-
fidence labels.
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FIGURE 7.12: Distribution of speeds between sensors 2 and 3 by con-

fidence labels.

links. We observe that in about 60% of the OD instances, at least one peak is identi-
fied, and on 16-20% of cases, both origin and destination RSSI sequences present a
peak. At the same time, we observe that 60% of instances represent cases where at
least one of the origin and destination RSSI does not provide enough information to
estimate passage time accurately. It is represented in the figures with labels contain-
ing '7’. In around 30% of those instances, the median-to-median matching process is
used.

TABLE 7.2: Weights per confidence label

Label 11|12 |13 |17 |22 |23 |27 |33 |37 |77
Weight (|1 | 0307020105 |01|03]01]0.1

Table 7.2 shows the weights obtained by grid search. The resulting weights
match the confidence label assignment’s assumption, where higher weights are given
to speeds computed using more reliable passage times. That is, the individual speeds
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computed based on detection sequences with good sampling quality (clear RSSI
peak and a high number of samples) in both origin and destination sensors get the
highest weight. The weight is lowered whenever one or (especially if) both of the
RSSI curves associated with the origin and destination sensors have no distinguish-

able peak values.
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FIGURE 7.13: Percentage of outliers in mean travel speed between
sensors 1 and 2 per speed threshold.
Similarly to figures 7.7 and 7.8, we consider in figures 7.13 and 7.14 the percent-
age of extremally high mean speed estimates. We note that no filtering was applied
to individual speeds. We acknowledge that the proposed method provides the low-
est percentage of about 10-15% at 20m/s threshold for road link 1-2 and about 2-5%
for road link 2-3. Moreover, results show improvement compared to the median-to-
median approach and the no weighted version of the proposed process, proving the
importance of weighting on reducing the error on mean speed estimation.
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FIGURE 7.14: Percentage of outliers in mean travel speed between
sensors 2 and 3 per speed threshold.

Figures 7.15 and 7.16 present four examples of the evolution of the mean esti-
mation of the travel speed between sensors 1 and 2 and sensors 2 and 3 on July
17th, 2018 and July 20th, 2018. We remark that Bluetooth estimates still manifest a
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high short-term variability. This variability is partly explained by the impact of the
collected BT sample’s size and quality at each time interval on speed estimations’
accuracy. Data smoothing with a simple moving average shows that BT and pneu-
matic measures evolve almost similarly over time. In the free-flow road link between
sensors 1 and 2, the BT estimates are comparable to the ground truth, whereas lower
speed estimates are obtained in the road link between sensors 2 and 3. As previously
explained, this results from the difference between by the difference between travel
and spot speeds.
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FIGURE 7.15: Mean speed estimates between sensors 1 and 2.
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FIGURE 7.16: Mean speed estimates between sensors 2 and 3.

Conclusion

In this work, we explored the idea of using the information about the received sig-
nal quality to improve the speed estimates obtained by BT scanning. We presented
a 2-step speed estimation algorithm. In the first step, the proposed algorithm relied
on the RSSI data to identify detection times that best matches the time of passage at
the origin and the destination positions. Those detection times served to compute
the individual vehicle speed. In the second step, the mean travel speed estimation
is computed by weighted averaging. The weights were assigned depending on the

confidence label associated with each speed instance. The confidence label depends
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on the quality of the RSSI information in the origin and destination points and re-
flects the certainty of whether the detection times match the passage time.

The algorithm results accuracy was evaluated using experimental data. The pro-
posed RSSI-based matching process has been compared to the standard approaches
utilised in the literature. The results showed that the proposed process gave the low-
est percentage of outliers and suggested that the RSSI selection rule does not incur
additional erroneous estimates. Overall, an improvement is observed when samples
with good RSSI values are available. Indeed, the accuracy of the results strongly de-
pends on the BT sample size and the quality of the RSSI sample.
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Chapter 8

Conclusions and Perspectives

8.1 Conclusions

The works presented in this manuscript were a part of the R&D project VEDETECT
aiming to provide efficient Traffic monitoring systems based solely on Bluetooth
scanning, adapted to dense large-scale deployment in urban areas. During our the-
sis, we worked on improving the accuracy of the derived traffic indicators from the
Bluetooth data traces. We focused on two essential tasks: traffic flow quantification
and average travel speed estimation.

We started with a thorough preliminary analysis to gather insights about the
principal characteristics of the Bluetooth traffic data and investigate the opportu-
nities it offers to extract traffic-related indicators. Much has been done in related
works. However, this analysis was important to fit the passive scanning process
adopted in our work somehow different from the commonly used active inquiry-
based scanning process. We studied three main characteristics of BT sensors: their
sampling, miss-detection, and matching rates. Experiments data revealed an aver-
age sampling rate of around 40 — 50% in deployment locations along a main sig-
nalized roadway. Those rates are promising and are near the upper bound values
reported in research works relying on active scanning. They proved the effectiveness
of passive Bluetooth scanning. In other results, we evaluated the misdetection rate
approximatively to 20% and validated the assumption about the temporal variations
on the sensor detection rate. To study the representativeness of the BT sample for
travel speed estimation, we considered the pairwise matching rate between sensors.
Results have shown rates around 40 — 50% reflecting an average pairwise sampling
rate higher than 20%. It represents a satisfactory rate when enough traffic is flowing.

Thanks to our proposed SF-BDS simulator, we complemented the experimental
studies with simulated controlled tests to study the impacts of factors on devices
detection probability. We implemented the SF-BDS framework to model Bluetooth
passive scanning with fixed road-side sensors. The model was validated by emulat-
ing a setting where experimental data have already been acquired and comparing
the main properties of the outputted sensors traces data. Test results have shown
that the BT sensor’s vehicle detection probability under a passive scanning process
is mainly affected by the packet rate, vehicle speed, and traffic density related to the
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number of transmitting devices in the sensor vicinity. Even if passive scanning re-
sults in a low packet detection probability due to the non-synchronization between
the sensor and the vehicles hopping sequences, when a high packet rate or/and
slower travel speed is considered, vehicle detection probability tends to one. This
probability decreases in congested environments with multiple actively transmitting
devices.

Following this analysis step, we considered the task of short-term traffic flow
estimation from raw BT counts. We formulated the model as a regression model
and explored the application of machine learning models. Four models were se-
lected: MLR, SVR, KNN, RFE. A set of evaluation scenario was defined to identify
significant input features for traffic flow estimation. Additionally to BT counts, we
studied the effect of the calendar features granularity, speed, and weather informa-
tion. The improvement in estimates accuracy by SVR, KNN, and RF was statistically
approved compared to linear models. Overall results revealed similar performance
between SVR, KNN, RF models with a slight advantage for SVR in many evaluation
scenarios. The results also highlighted that the per-hour representation of the intra-
day variations on traffic data accounts for the most significant improvement. The
estimates can further be improved through the integration of the speed or recent
historical BT counts.

To exploit the spatiotemporal relations inherent to the traffic and the similarities
between sensing environment at different locations, we proposed the DGC-LSTM
model. This model is dedicated to estimating traffic flow over a network of deployed
sensors simultaneously. The main component of the DGC-LSTM model is a dynamic
graph convolutional LSTM layer where the adjacency matrix required on the graph
convolution is not fixed; it is learned during the model training to model dynamic
spatiotemporal dependencies. We evaluated the model performance on a realistic
simulated dataset of labelled Bluetooth counts. Better results were obtained than
using standard baseline machine learning models.

To address the average travel speed estimation task, we proposed a 2step algo-
rithm where a new matching approach using the received signal strength informa-
tion (RSSI) was proposed to deal with location ambiguity. The mean travel speed
estimation is computed by weighted averaging of detected devices speeds. The
weights were assigned depending on a confidence label inferred from the gathered
RSSI values from the origin and destination locations. Algorithm results accuracy
was evaluated using experimental data. The proposed RSSI-based matching pro-
cess has been compared to the standard approaches from the literature. The results
showed that the proposed process gave the lowest percentage of outliers and sug-
gested that the RSSI selection rule does not incur additional erroneous estimates.
Overall, an improvement is observed when samples with good RSSI values are avail-
able. Indeed, the accuracy of the results strongly depends on the BT sample size and
the quality of the RSSI sample.
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8.2 Perspectives

Our thesis contributions tile the way to new work perspectives and open up to fu-
ture research directions. Below, we list some of the short-term and long-term per-

spectives.

Short-term perspectives
For short-term perspectives, we will mainly consider:

1. The evaluation of the proposed models robustness in terms of the time complexity
and the scalability regarding the sensor network size.

2. The use of a real dataset from a network of hundreds of sensors for the evaluation
of the DGC-LSTM model. Larger networks allow better assessing the quality of
learned pairwise dependencies by highlighting the spatial and similarity-based
relations.

Long-term perspectives

Toward traffic monitoring systems based solely on Bluetooth sensing, our work can
be complemented by addressing the following research directions:

1. The definition of a transfer learning model is essential to ensure the adoption of
the Bluetooth monitoring system for real-world field deployment. The transfer
model aims to adjust the estimation model to work well on new targeted deploy-
ment site without extensive parameters and layers calibration effort. Unsuper-
vised transfer learning models are more adapted to our use case to avoid gath-
ering labelled training data for each new deployment site. The transfer task is
not straightforward. As suggested in section 6.6, one may start by considering
transfer learning between sensors networks of the same order. The definition of
the model depends on the assumed available data. So, either multiple sources or
single-source methods can be considered. Several models (see section 2.4) have
been proposed to deal with the distributional shift inherent to the transfer prob-
lem. Hybrid models can be explored for this task, for example, by combining
pseudo-labelling with a distribution alignment model. Different transfer scenar-
ios must be defined to evaluate the model performance. Applied to our DGC-
LSTM model, we must assess the soundness of the learned dynamic dependen-
cies between the network sensors.

2. The evaluation of the estimation model can be extended to study their robustness
towards sensors failures and concept drift. The definition and implementation of
specific methods might be needed to address those concerns.

3. The analysis of outputs of the used machine learning models in chapter 5 shows
that they are still considerably smooth compared to the ground truth flows. One
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perspective to better capture the short variations is to use a two-step estimation
model where residuals of the first step are input to a second estimation compo-

nent.

4. Regarding the SE-BDS simulator, a machine learning model can be used to di-
rectly estimate the vehicle detection probability from a given feature set repre-
senting the characteristics of the sensing environment, the vehicle properties, and
the traffic density. The estimation model can be trained from a labelled dataset
generated from different controlled tests scenarios. This future improvement
aims to reduce the execution time of the SF-BDS simulator.
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The Bluetooth core specification specifies 28 packet types. Every packet type comes

with a different payload size and a different level of error correction and protection.

In the Table A.1, we summarize the characteristics of each of the defined types.

TABLE A.1: Bluetooth packet types

¢, | #8lots | Code | Type | Payload | FEC | CRC Link Type
% S v |
% Ol el S
ID
0000 | NULL X X X X
1 1 0001 | POLL X X X X
0010 FHS 18 2/3 X X X X X
0011 DM1 0-17 2/3 X X X X X
DH1 0-27 X X
0001 2-DH1 0-54 X X
0101 HV1 10 1/3 X
HV2 20 2/3 X
0110 2-EV3 1-60 X X
2 1 HV3 30 X
0111 EV3 1-30 X X
3-EV3 1-90 X X
1000 DV 10+(0-9)D | 2/3D X X
3-DH1 0-83 X X X
1001 | AUX1 0-29 X X
DM3 0-121 2/3 X X X
1010 2-DH3 0-367 X X X
DH3 0-183 X X X
3 3 101 3-DH3 0-552 X X X
1100 EV4 1-121 2/3 X X
2-EV5 1-367 X X
1101 EV5 1-180 X X
3-EV5 1-540 X X
1110 DMb5 0-224 2/3 X X X
4 5 2-DH5 0-679 X X X
111 DH5 0-339 X X X
3-DH5 0-1021 X X X
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Appendix B

Synthetic dataset generation using
SF-BDS and SUMO simulators

Hereafter, we detail the simulation process used to generate a ready-to-use synthetic
labelled dataset associating raw devices counts from BT sensors traces to the ground
truth vehicular traffic flow at each sensing position. For this purpose, we combine
our proposed SF-BDS simulator and the SUMO traffic generator. The SUMO sim-
ulator generates vehicle trajectories serving as input to the SF-BDS simulator that
outputs simulated BT sensors’ traces. The overall simulation process is depicted in

figure. B.1.
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FIGURE B.1: Overview of the simulation process.

B.1 Simulation setting

We select the Place Charles de Gaulle in Paris to be the deployment area for the
simulation task. As shown in figure B.2, it presents a road junction of twelve main
roads with dense traffic. Over the covered area, we consider 23 different positions

defining the sensors placement plan.
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FIGURE B.2: Sensor placement plan for the simulation example.

B.2 Trajectories Generation using the SUMO simulator

In this section, we first briefly introduce the SUMO tool then we describe the trajec-
tory generation process.

B.2.1 SUMO traffic generator

SUMO [Lop+18] is an open-source space-continuous, time-discrete traffic simulation
tool developed at the Institute of Transportation Systems at the German Aerospace
Center. Sumo implements microscopic car-following traffic flow models where ve-
hicles are considered individually. Each vehicle is defined by a mobile node with
different movement-related characteristics such as speed, acceleration, and a path.
The path consists of a sequence of connected edges from one origin position to a
certain destination position. In every single simulation step, the nodes are moved
towards their destinations. Their characteristics are often updated based on their
interaction with the various involved components in the simulation environment,

such as traffic lights or speed limits.

B.2.2 Vehicle Trajectories Generation process

Each SUMO simulation scenario is defined by at least two main elements: the road
network and the traffic demand [Lop+18]. Below, we describe how those elements
are defined for our simulation scenario.

B.2.2.1 Definition of the road network

SUMO represents the road network using a directed graph encoded in XML where
the edges are the set of the simulated streets, and the nodes are the connection be-
tween the streets. It defines the road intersections where different streams cross
using junction elements, indicating all the incoming edges. The SUMO network
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file may also include other information (for example, traffic lights and surrounding
buildings) and to define road rules and regulations.

Although the SUMO network file can be created manually, the task becomes
rapidly harder as the size and the complexity of the simulated network increase.
Thus, it is more common that the network file is generated from an existing map de-
scription file whenever a large real road network is considered. For our simulation
scenario, we started by extracting the selected area from OpenStreet Map using the
SUMO OSM Web Wizard. Then, we run the 'netconvert" command-line to convert
the imported OSM file to a SUMO road network file. Even if the automated conver-
sion provides a detailed representation of the simulated area, some simplifications
and hand correction and validation steps are necessary to ensure the simulation sce-
nario’s proper functioning. Those changes mainly concern the update of the charac-
teristics of the roads (for example, the length, the number of lanes), the adjustment
of road rules and regulations, and the synchronization of traffic lights signals.

B.2.2.2 Definition of the traffic

To model the traffic demand, we implemented the process illustrated in figure B.3.
We started by automatically identifying the source and sink edges of the road net-
work: the set of roads in the network without incoming respectively outgoing edges.
Then, we used the available flow data in the nearest network position to assign flow
values to each source and sink edge of the network. In case when the flow informa-
tion is missing, we defined a constant road capacity based on its number of lanes,
limit speed and length.

Traffic demand definition

l

Initial individual trips
generation

]

Traffic calibration

|

Individual trips re-
generation

R E |

Vehicles trajectories

FIGURE B.3: Overview of the traffic generation process

The output of this step is used to generate routes between the different source
and sink edges of the network. We used a routing algorithm inspired from the
“randomTrip” [Cen20] demand model included in SUMO package with constrain-
ing start and end edges to be selected from the previously defined set of source and

sink edges. Moreover, the probability of selecting an edge as a source or/destination
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is weighted not only by edge length, edge speed, and the number of lanes but also by
the flow count associated to each simulated time window. The obtained routes are
then optimized using the “DUAROUTER” tool [Cen20] from SUMO suite and con-
verted into individual vehicle trips using "route2trip" tool and injected to SUMO.

The third step aims to adapt the generated traffic flow to the real one took as
input. Available input flow data in internal network roads are used to calibrate the
count of passing vehicles in each simulated time window. This is done by removing
or inserting new vehicles in the simulation accordingly to the input flow measure-
ments [Lop+18]. Calibrators implemented within the SUMO package are used for
that.

We observed that the calibrators start to remove/inject vehicles in each time win-
dow only on the last timesteps of each time window, and that is after detecting a
mismatch between the observed and targeted flow. That leads to the fact that the
outputted vehicles trips are not uniformly distributed between the start and the end
of the simulated time window. To deal with that, we defined a second trips gen-
eration step that takes as input an updated version of the output of the calibrator
assuring a uniform arriving time in each time window.

B.3 Bluetooth sensors traces simulation

Since the SF-BDS simulation process was already described in chapter 4. We focus

on this section on the simulator parameters configuration.

B.3.1 Simulator input definition

As the input of the model consists only on vehicular flows, we used the off-road de-
vices count parameter to define the human activity in the surrounding of each sensor
based on the functional characteristics (minor or major road, commercial or touristic
area, etc.) and the points of interest (transportation station, shops, restaurants, etc.)
in the area. This parameter is defined as a dictionary of time series of device count
as function of time. The same devices’ types must also be defined on the BT class
parameter to map each generated device with an initial position and a transmission

power depending on the BT class.

B.3.2 Radio propagation parameters setting

A global penetration rate has been fixed for each simulated day. Its value has been
uniformally drawn from the range between 35% and 45%.

The radio propagation parameters have been fixed based on the experimental
results of existing works in the field [RBX97; Che01; Tor+06; Sal+07; Nil+18].

Since we are simulating an urban area, the pathloss exponent range is fixed be-
tween 2.9 and 3.5. For each simulated sensor, we define the pathloss exponent de-
pending on the deployment position, and more specifically on properties of the road
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like its width, number of lanes and the number of surrounding buildings. In this
multi-day simulation, we make sure that the pathloss exponent slightly differs from
one day to another.

Depending on the distance between the sensor and the device, we used different
Nakagami-m values according to the results on [Tor+06].

The values of the large-scale fading standard deviation is fixed regarding the
position of the device and its distance from the sensor. A value between 3 and 6 is
used for line-of-sight situation where the transmitter is localised in the same road
where the sensor is deployed, and at a short distance. A higher value (between 6

and 12) is selected for non-line of sight situation.

TABLE B.1: The simulation parameters values for model validation.

Parameter Validation scenario
Penetration rate i € [35,45]% i€ |S|
where |S| is the number of sensors
1 Ambiant noise
,_§ Bluetooth antenna class class(d;) = ¢ 2 Pedestrian noise
% B(1,p;) +1 Vehicles
£ d; € D where D is the set of BT devices
&» pe = 0.3 is the probability of BT class 2 devices
Transmission tr(d;, t) € {Streaming(260pckt/s,5 — slot),
Call(118pckt /s, 1 — slot), Synch(4pckt/s, 1 — slot) }
tr(d;, t)Multinomial (|D],0.4,0.3,0.3)
Noise N(t) = Npedestrian(t) + Nambiant
Nopedestrian (t) and Nyppians are defined depending on
the characteristics of the road link where the sensor
is deployed
§ | Path loss exponent ;i € [2.7,3.5] i€ |S]
*:ao 3 dist(s,d;) < 50
8 | Small-scale fading coefficient | m = ¢ 1.5 50 < dist(s,d;) < 100
g 1 dist(s,d;) > 100
o LOS
E Large-scale fading coefficient {ZZNLOSE 6[3[/66,]12]
Sensor sensitivity T; € [-95,—80] dBm

Lastly, the sensor sensitivity is selected between —80dBm and —95dBm in accor-
dance with most BT scanners in the market. Table B.1 summarizes the parameters

used .
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Résumé en Francais

1 Contexte

L'urbanisation a longtemps été considérée comme un moteur du développement
économique et social des pays, favorisant une meilleure qualité de vie, davantage
d’opportunités d’emploi et un meilleur acces aux services. La croissance urbaine
ne cesse de s’accélérer au fil des années, reflétée par un accroissement continu de
la population urbaine qui atteint 56.6% de la population totale mondial, en 2021,
et jusqu’a 81.2% en France. Ce phénomene de surpeuplement a révélé plusieurs
problemes liés a 1'urbanisation et a effets négatifs sur la prospérité et 'attractivité
des villes notamment la congestion routiere.

La congestion routiere est un phénomene qui reflete un état de déséquilibre en-
tre la demande en termes de trafic et la capacité du réseau routier. D'un coté, on
a la demande de trafic en pleine croissance, due aux rythmes économique et socio-
démographique effrénés dans les villes urbaines et qui se manifeste par I’augmentation
du nombre d’usagers de la route et des besoins de mobilité. De 'autre coté, on a la
capacité du réseau routier qui est limitée par les infrastructures urbaines disponibles
congues avec des aménagements planifiés en amont. Malheureusement, I’augmentation
de la capacité du réseau routier, pour répondre a la forte demande, engage des
travaux incontournables d’extension et de réaménagement entrainant des cofits im-
portants en investissement et des planifications complexes pour gérer les perturba-
tions de la circulation et éviter les genes de déplacement.

Face a ce constat et aux conséquences directes de ce déséquilibre sur I’”augmentation
du temps de déplacements, la surconsommation du carburant, la pollution, le stress
et les risques d’accidents, les gouvernements et les autorités municipales se trouvent
avec un besoin pressant d’optimiser 1'utilisation de l'infrastructure existante et du
systeme de controle du trafic afin de maintenir la compétitivité socio-économique
et la durabilité urbaine des villes. Cela se base en partie sur la sophistication de
leurs stratégies de gestion du trafic et a ouvert la voie aux systémes de transport
intelligents (STI).

En effet, la gestion de trafic routier est 'une des priorités des systemes de trans-
port intelligents qui s’appuient sur les technologies de I'information et de la commu-
nication pour optimiser 1"utilisation des infrastructures, fluidifier le trafic, améliorer
la sécurité et la sureté ainsi que réduire I'impact environnemental en termes de con-
sommation d’énergie, de pollution et des nuisances. Ces avancées technologiques
sont intégrées dans la totalité du processus deés l'acquisition de mesures terrain

jusqu’a le traitement et la consolidation des données afin d’extraire des informations
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pertinentes concernant les conditions de circulation et les patrons caractéristiques de
la mobilité sur le réseau routier et nécessaires pour automatiser les systemes de con-
trol de trafic mais aussi pour supporter et mettre a jour la politique de gestion de
trafic mise en place.

Au fil des années, les méthodes traditionnelles de recueil de données de trafic
basées principalement sur les enquétes de mobilité et le comptage manuel fut com-
plétées par différentes techniques de mesure automatiques. Parmi les plus utilisées,
il y’a les boucles électromagnétiques. Elles consistent en des boucles de cables en-
terrée dans la chaussée et alimentée par un courant électrique qui génere un champ
magnétique. Ce champ est perturbé lors de la traversée des véhicules. Ces pertur-
bations permettent d’identifier les passages des véhicules et d’en déduire directe-
ment des mesures ponctuelles de trafic a savoir le flux, les vitesses de passage et
les types de véhicules. Les boucles électromagnétiques ont un cotit important en
termes d’investissement matériel et d’opérations d’installation et de maintenance ce
qui contraint les déploiements massifs. Autre que les boucles électromagnétiques,
il y’a les tubes pneumatiques qui sont une autre technique mature et stable pour
l'acquisition directe de mesures de trafic. Contrairement aux boucles, les tubes
pneumatiques sont installés au-dessus de la surface de la chaussée. Cependant, leur
installation et leur entretien nécessitent aussi la fermeture momentanée des routes
pour assurer la sécurité des opérateurs intervenants. Les tubes pneumatiques sont
principalement considérés pour une utilisation temporaire car ils sont souvent en-
dommaggés par les tensions causées par la circulation des véhicules lourds ou rapi-
des. Les boucles électromagnétiques et les tubes pneumatiques tous les deux im-
pliquent un processus d’installation invasive exigeant des interventions aux niveaux
de la chaussée et une interruption de trafic.

D’autres techniques de mesures existent qui sont non invasives a savoir les radars
qui sont installée en potence sur les bordures des routes. Les radars impliquent
un investissement couteux en infrastructure matérielle. De plus, la fiabilité des
données dérivées peut étre affectée par un calibrage incorrect ou des conditions
météorologiques défavorables. Les progres des technologies de vision par ordina-
teur et de traitement d’images suscitent un intérét croissant pour leurs applications
a la gestion du trafic. Avec des caméras installées en bordure sur potence ou en sur-
plomb des voies sur portique, ces méthodes de détection fonctionnent en extrayant
les indicateurs de trafic avec un traitement image par image des flux vidéo capturés.
Leurs performances dépendent du matériel utilisé et des algorithmes de traitement.
IIs peuvent également étre affectés par des facteurs externes tels que les conditions
météorologiques, de mauvaises conditions d’éclairage et un étalonnage incorrect.
Des opérations de maintenance périodiques sont nécessaires pour le nettoyage et
le recalibrage des lentilles. Certaines techniques basées sur la vidéo, telles que les
systémes de reconnaissance de plaques d’immatriculation, offrent la possibilité de

collecter des métriques liées aux déplacements en suivant les véhicules a différents
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endroits sur le réseau routier. De tels systemes soulévent des probléemes de confi-
dentialité puisque l'identifiant unique est directement lié a I'identité du propriétaire
de la voiture.

Les techniques automatiques de mesure de trafic font face a un compromis déli-
cat entre le cout en matériel, installation et maintenance et la qualité et la précision
des mesures acquises. La fiabilité des données recueillies en effet varie d"une tech-
nique a l'autre. De plus, leur adoption et déploiement a grande échelle peuvent étre
contraints, en pratique, par l'investissement important en matériel et les cotits élevés
d’installation et de maintenance.

Plus récemment, de nouvelles techniques ont été considérées pour le recueil de
données de trafic. Ces techniques répondent autrement au compromis cout/qualité
en fournissant une alternative peu cofiteuse permettant la collecte d"un grand vol-
ume de données de trafic de haute résolution. Certes ces techniques n’étaient pas
initialement congues pour la gestion du trafic. Néanmoins, elles présentent un fort
potentiel pour déduire des indicateurs liés au trafic. Nous citons a titre d’exemple
les données flottantes des véhicules traceurs, les données des réseaux sociaux, les
données de téléphonie ou les traces des capteurs basés sur les protocoles de commu-
nication sans fil.

C’est dans ce contexte qu’ont été menés nos travaux de these. Nous nous sommes
intéressés a 1'utilisation des capteurs a base de la technologie Bluetooth en tant que
nouvelle source de données de trafic. Notre these s’inscrit dans le cadre d"une col-
laboration entre la grande école frangaise Télécom Paris et l'institut de recherche
frangais dédié a la mobilité durable VEDECOM. Le projet de recherche de cette col-
laboration vise a fournir un systeme de mesure de trafic a faible cofit et a faible im-
pact basé uniquement sur la détection Bluetooth pour fournir aux autorités locales
et aux opérateurs de transport des indicateurs de trafic pertinents en quasi-temps
réel. Les contributions de notre thése portent principalement sur la définition de
modeles d’inférence et d’algorithmes de traitement pour améliorer la précision des

indicateurs dérivés a partir des traces des capteurs Bluetooth.

2 Les motivations and les défis

Les systemes d’acquisition de données de trafic basés sur la technologie Bluetooth
reposent sur des récepteurs Bluetooth installées en potence en bordure des routes
sur différent points du réseau routier et qui effectuent des balayages réguliers sur
les canaux Bluetooth pour détecter les paquets transmis par les dispositifs Bluetooth
détectables sur leurs zones de couverture appelées aussi zones de détection. Les
traces des capteurs Bluetooth consistent alors en des enregistrements horodatés des
identifiants des appareils émetteurs, ainsi que des informations sur la force du sig-
nal recu et le canal de transmission. Chacun des appareils émetteurs possede une
adresse MAC (Media Access Control) unique recueillie par le capteur.
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Ce systéme a base de capteurs Bluetooth présentent différents avantages a savoir
son coflit en matériel, installation et maintenance considérablement inférieur aux
cotits des techniques conventionnelles. De plus, I'identification unique des appareils
garantie par l'adressage MAC permettent le suivi des appareils entre différentes po-
sitions de détection, indispensables pour I'estimation des mesures de déplacement et
la reconstruction des trajectoires. Ce systéme de tragabilité BT est indépendant des
informations personnelles des voyageurs et généralement renforcé par un proces-
sus d’anonymisation pour préserver la vie privée des usagers de la route. Ces faits
améliorent 'acceptation par le public des capteurs BT par rapport a d’autres tech-
niques (par exemple, les systemes de reconnaissance de plaques d’'immatriculation
susmentionnés). Enfin, le taux de pénétration de la technologie Bluetooth ne cesse
de croitre grace a la large adoption de la technologie BT par l'industrie automobile
pour plusieurs applications, telles que 1’assistance vocale, les appels en mains libres
et le streaming.

Mais, ce systéme présente aussi certains inconvénients principalement liés a son
processus de détection indirect et par zone. En effet, le processus de recueil de don-
nées de trafic a base de la technologie Bluetooth est indirect puisque, en pratique,
les capteurs surveillent le trafic sur la bande de transmission Bluetooth en balayant
les canaux radio pour détecter de paquets de communication qu’y sont transmis.
Les informations collectées sont ensuite utilisées pour déduire des mesures relatives
au trafic véhiculaire. Les appareils BT détectés représentent alors 1’échantillon a
partir duquel les indicateurs de trafic routier seront déduits. Selon leurs sites de
déploiement, les capteurs BT peuvent détecter différents types d’appareils émet-
teurs : embarqués dans les véhicules, transportés par les piétons ou méme appar-
tenant aux batiments avoisinants. Par conséquent, la fiabilité des mesures dépend
de la qualité et de la représentativité de 1’échantillon. De la méme fagon, la portée
radio des capteurs Bluetooth peut introduire un biais dans I’échantillon de don-
nées collecté causant des incertitudes au niveau des mesures de trafic dérivées. La
portée de détection dépend de la qualité du signal transmis et des caractéristiques
de I'environnement pour la propagation radio.

Afin de rendre possible le déploiement de systemes de gestion du trafic basés
uniquement sur les données des capteurs Bluetooth, il est important de répondre
aux exigences en termes de fiabilité et précision des mesures dérivées. Dans le cadre
de nos travaux, nous nous sommes intéressées aux mesures de flux de trafic et de
vitesses de déplacement. Nous avons relevé les deux défis suivants concernant :
I'incertitude sur I'inférence du flux de trafic véhiculaire et I'incertitude spatiale dans
I'estimation de la vitesse de déplacement.

2.1 Lincertitude sur I'inférence du flux de trafic véhiculaire

Nous considérons la tache de 'estimation du flux de trafic véhiculaire a haute réso-
lution a partir du comptage d’adresses uniques Bluetooth principalement pour le cas
d’un contexte urbain dynamique. Le trafic dans ce contexte est soumis a différentes



Résumé en Francgais 128

sources de variations. D’une part, le trafic routier urbain présente des variations a
court terme provoquées par les transitions fréquentes entre des conditions de cir-
culation fluide et congestionnée qui résultent de différents événements réguliers et
aléatoires qui se produisent tels que la variabilité des vitesses de circulation, les ar-
réts d’autobus, le passage des piétons, le stationnement des véhicules et souvent
accentuées dans les routes urbaines par la présence des signalétiques et les feux de
circulation ot seule une partie de toute la longueur de la file d’attente est déchargée
pendant la phase verte de chaque cycle. La nature chaotique du trafic routier urbain
a été prouvée dans de nombreux travaux de recherche antérieurs. L'un des défis de
'estimation du trafic a court terme et & haute résolution consiste alors en la modéli-
sation de ces variations inhérentes au trafic.

D’un autre part, les mesures de flux de trafic inférées directement a partir des
données des capteurs Bluetooth souffrent aussi d’incertitude. Le processus de détec-
tion Bluetooth basé sur échantillonnage permet de détecter seulement une fraction
du flux de trafic véhiculaire réel. Le taux de détection des capteurs dépend princi-
palement du taux de pénétration de la technologie Bluetooth mais il varie souvent
dans le temps et dans I'espace comme il est impacté par plusieurs facteurs. Ces fac-
teurs peuvent étre liés a des changements dans I’environnement de détection du cap-
teur, aux caractéristiques du trafic dans la zone ou au processus de balayage Blue-
tooth lui-méme. Les imprécisions dans la quantification des flux de trafic véhiculaire
peuvent aussi étre causées par le phénomene de sur-comptage causé par exemple
par l'identification multiple de certains véhicules par différent dispositifs Bluetooth
et ’'hétérogénéité de types des appareils Bluetooth détectés pouvant étre embarqués
dans les véhicules, transportés par les piétons ou appartenant aux batiments avoisi-
nants. A notre connaissance, la tiche de quantification du flux de trafic & haute
résolution utilisant uniquement des données Bluetooth n’a pas été spécifiquement
envisagée. Une relation linéaire entre le nombre moyen de périphériques Bluetooth
et le flux de trafic réel est généralement supposée. Cependant, cette méthode est vul-
nérable aux variations du taux de détection des capteurs et a la dynamique observée
dans le trafic routier. Par conséquent, nous étudions dans notre these 1"utilisation de

modeles d’apprentissage automatique.

2.2 L’incertitude spatiale dans 1’estimation de la vitesse de déplacement

L’incertitude spatiale résulte du fait que le capteur Bluetooth ne fournit aucune in-
formation sur la position géographique du véhicule. Le véhicule peut étre détecté
en tout point de la zone de détection du capteur. La forme et la taille de la zone
de détection dépendent des caractéristiques des antennes Bluetooth : le type (om-
nidirectionnel /directionnel), la classe et le gain, et les caractéristiques de propaga-
tion radio des zones de détection. Cependant, cette information spatiale est cruciale
pour le calcul des vitesses des déplacement. Souvent, ce probléeme est adressé en
considérant le probleme inverse c’est-a-dire en fixant la distance parcourue a la dis-
tance séparant le point origine et le point destination et en utilisant un algorithme
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d’appariement pour estimer le temps de parcours correspondant. Cela implique le
besoin de résoudre le probleme de détections multiples.

En effet, en traversant la zone de détection du capteur, un appareil Bluetooth
peut étre détecté plusieurs fois. Le nombre de détections est lié au temps passé dans
la zone, qui varie en fonction de la vitesse du véhicule et des conditions de circula-
tion. Le probleme des détections multiples fait référence alors a la question de savoir
quelles détections sont les plus appropriées pour obtenir de meilleures estimations
du temps de trajet. Différentes stratégies d’appariement ont été envisagées concer-
nant ce probleme, les approches du premier au premier, du dernier au dernier et de
la médiane a la médiane. Ces approches ne résolvent pas le probleme d’ambiguité
de I'emplacement. Leur efficacité dépend de 'hypothese que les erreurs spatiales

aux positions d’origine et de destination se compensent.

3 Les contributions de notre these

Dans cette section, nous décrivons brievement les différentes contributions de notre

theése.

3.1 Analyse exploratoire des données de capteurs Bluetooth

Nous avons d’abord effectué une analyse exploratoire de la représentativité des don-
nées des capteurs Bluetooth. A cette fin, nous avons étudié les taux d’échantillonnage,
de perte et d’appariement du capteur. De plus, nous avons analysé les caractéris-
tiques temporelles des données de trafic. Cette analyse a été réalisée sur des don-
nées expérimentales pour s’assurer de 1'adéquation avec le processus de détection
passive implémenté par nos capteurs BT congus par 1’'équipe VEDECOM.

Résultats:

L’analyse réalisée sur les données d’expérimentation révelent un taux d’échantillonnage
moyen entre 40 a 50% pour les capteurs installés sur la route principale signalisée.
Ce taux est prometteur et proches a la borne supérieure de l'intervalle des valeurs

de taux d’échantillonnage des capteurs Bluetooth annoncées dans les travaux de
littérature reposant sur du balayage active. Cela a prouvé I'efficacité du balayage
Bluetooth passif.

Dans d’autres résultats, le taux de perte moyen a été évalué a environ 20%. Ces
résultats ont montré que les capteurs Bluetooth ne sont pas capables de détecter tous
les appareils Bluetooth passants par leurs zones de détection. Un taux de détection
plus important peut-étre atteint en placant deux ou plusieurs capteurs ensemble.
Cette analyse a aussi pointé les variations temporelles inhérentes au taux de détec-
tion du capteur.

Pour étudier la représentativité de 1’échantillon BT pour I’estimation de mesures

de déplacement a la vitesse, nous avons considéré le taux d’appariement entre les
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capteurs. Les résultats ont montré des taux d’environ 40 — 50% reflétant un taux
d’échantillonnage moyen supérieur a 20%. Il représente un taux satisfaisant lorsque

le trafic est suffisant.

3.2 SF-BDS: Cadre de simulation de détection des appareils Bluetooth

L’acquisition de données labelisées est un processus couteux et lent. Cela néces-
site en plus de déploiement des capteurs Bluetooth, 1'utilisation d"une deuxieme
technique de mesure pour avoir la vérité terrain sur une période suffisante pour
I'apprentissage. Pour pallier la rareté des données labélisées, nous avons jugé néces-
saire de passer par des simulations. Ces simulations offrent une maniére moins
chronophage et a faible cout afin de réaliser des scenarios de tests contrdlés pour
étudier les facteurs impactant le taux de détection des capteurs Bluetooth mais aussi
pour générer des données synthétiques d’apprentissage. Nous avons alors congu et
défini SF-BDS, un cadre de simulation de processus de détection des paquets Blue-
tooth. La structure du cadre permet de définir différents environnements de dé-
tection allant des autoroutes aux zones urbaines tres denses. Indépendamment de
I'implémentation, la sortie consiste a des traces des capteurs simulées incluant des
enregistrements horodatés des informations des paquets détectés. Dans le cadre de
cette contribution, nous avons fourni une implémentation qui considere le cas de
capteurs fixes implémentant un balayage passif sur le protocole standard Bluetooth
(Bluetooth 2.0 a 4.0).

Le simulateur SF-BDS est composé d"une premiére étape d’initialisation et d"un
processus itératif a deux étapes pour la génération des paquets de communication
Bluetooth et la simulation de détection des paquets par le capteur.

| Context Initialization |

€0

‘ BT communication packets generation ‘

‘ Packet detection process simulation |

FIGURE 1: Description du processus de simulation Bluetooth.
L’étape d’initialisation définit trois parametres :

¢ Un premier parametre pour définir le taux de pénétration de la technologie
Bluetooth.

¢ Un deuxiéme parametre pour définir la classe Bluetooth associée aux différents

appareils simulés.

¢ Etun troisiéme parametre optionnel pour enrichir les données, en cas de trafic
hétérogene, avec les données de comptage d’appareils autres que des véhicules.
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Durant 'étape de génération des paquets de communication, nous avons associé a
chaque appareil simulé deux types d’information : la fréquence de transmission et
le type de paquets envoyés caractérisés par leur taille.

Pour simuler la détection des paquets Bluetooth par balayage passif, nous avons
considéré la probabilité de détection au niveau de la couche physique et la couche
MAC du protocole Bluetooth.

Nous avons défini la probabilité de détection du paquet sur la couche physique
par la probabilité que la puissance du signal recu est supérieure a la sensitivité du
capteur. La puissance de signal requ est calculée en utilisant un modele de propaga-
tion de signal modélisant 1'effet de 1’atténuation du signal en espace libre ainsi que
les atténuations résultantes de 1’effet de réflexion et diffraction des ondes.

La probabilité de détection sur la couche MAC dépend de la probabilité que le
paquet est transmis sur le canal d’écoute du capteur sans corruption ni collision avec

d’autres paquets.

Résultats:

Le modele a été validé en simulant un environnement dans lequel des données
d’expérimentation ont déja été acquises et en comparant les principales propriétés
des données de sortie de simulateurs a celles obtenues a partir des traces de cap-
teurs a savoir le taux de détection, le nombre de paquets par appareil détecté dans
chaque capteur, le nombre d’appareils détectés. Les résultats ont montré que toutes
les propriétés principales peuvent étre reproduites avec précision par le simulateur
en ajustant convenablement les différents parametres du modele.

Dans une deuxiéme étape, nous avons utilisé le modele SF-BDS pour analyser
les facteurs impactant la probabilité de détection des capteurs Bluetooth a balayage
passif. Les résultats de ces tests ont montré que le processus de détection est prin-
cipalement affecté par le débit de paquets, la vitesse du véhicule et la densité du
trafic liés au nombre de dispositifs de transmission a proximité du capteur. En effet,
méme si le balayage passif entraine une faible probabilité de détection de paquets
en raison de la non-synchronisation entre le capteur et les séquences de sauts de
véhicules, lorsqu’un débit de paquets élevé ou/et une vitesse de déplacement plus
lente sont pris en compte, la probabilité de détection de véhicule tend vers un. Cette
probabilité diminue dans les environnements encombrés avec plusieurs appareils
de transmission active.

Le simulateur SF-BDS a été aussi utilisé pour générer les données synthétiques
d’apprentissage. Dans ce cas, 'entrée au simulateur proposé a été généré par sim-
ulation d’un scénario de trafic routier réaliste modélisant plusieurs semaines de
collecte en utilisant des données d’Open Data [Dat20] et le simulateur de trafic
SUMO [Kra+12]. Les parametres du modele ont été ensuite calibrées pour s’adapter

au scénario considéré et pour définir ’environnement radio de chaque capteur.
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3.3 Quantification du trafic véhiculaire a partir du comptage Bluetooth

Nous avons exploré 'utilisation de modeles d’apprentissage automatique pour l'inférence
de flux de trafic a partir des traces de capteur Bluetooth. Du point de vue algorith-
mique, I’estimation du flux de trafic routier a partir des données de radio fréquence
consiste a définir un modele d’apprentissage statistique qui consommant en entrée

le nombre des appareils détectés sur le protocole Bluetooth est capable de fournir

en sortie une mesure du flux réel des véhicules. Cela en se basant sur une premiére
phase d’apprentissage pendant laquelle le modele « apprend » a mieux modéliser et
représenter les relations entre les flux de trafic et les données Bluetooth.

Dans cette contribution, nous avons sélectionné quatre modeles d’apprentissage
couramment utilisés pour des taches de prédiction a partir de séries temporelles a
savoir : le modele de régression linéaire multiple, la régression a vecteurs supports
(SVR), le K plus proche voisins (KNN) et le modele a base de foréts aléatoires (RF).
Nous avons ensuite comparé la performance de ces modéles afin de constituer un
benchmark d’évaluation.

Nous avons défini différents scénarii d’évaluation oti nous avons étudié 1’effet de
différentes variables indépendantes sur la précision des estimations en sortie. Nous
avons considéré, en plus des données de comptage d’adresses uniques Bluetooth, les
données calendaires, les données des vitesses moyennes de passage et les données
météorologiques. Le tableau 1 résume les différents scénarii d’évaluation.

Features
BT counts Calendar features Speed
value(t) | lags Day of week Time of day pee
Ref Scenario v weekday/weekend | daytime/nighttime
Scenario (S2.a) v weekday/weekend | per 3-hour intervals
(52.b) v weekday /weekend per-hour
Scenario (S3) v weekday /weekend per-hour v
Scenario (54) v v' | weekday/weekend per-hour

TABLE 1: Description des scénarii d’évaluation.

Résultats:
L’évaluation des performances des modeles d’estimation a été réalisée sur un dataset
de données réelles de dix semaines d’expérimentation ot quatre capteurs Bluetooth
ont été déployés. La figure 2 montre les résultats de nos scénarii d’évaluation.

Comme le montre la figure, "utilisation des modeles d’apprentissage statistiques:
le SVE, le KNN et le RF résultent en I'amélioration de la précision des estimations
par rapport a la calibration linéaire de référence. Cela a aussi été approuvée statis-
tiquement. Les résultats des différents scénarios ont révélé que les performances des
modéles SVR, KNN et RF sont assez similaire. Cependant, nous pouvons remarquer
que le modele SVR donne les taux d’erreurs les moins élevés dans la plupart des
scénarios d’évaluation.

Les résultats ont également mis en évidence que l'intégration de variables cal-
endaires plus spécifiquement l'intégration de variable représentant I’heure de la
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FIGURE 2: Evaluation de la performance des modéles de regression.

journée donne une amélioration significative dans la précision des estimations. Les
estimations peuvent encore étre améliorées par 1'utilisation des variables de vitesse
moyenne de déplacement ou des historiques récents de comptages Bluetooth.

3.4 Le modele DGC-LSTM pour l'estimation des flux de trafic a I’échelle
d’un réseau de capteurs

Dans cette contribution, nous avons abordé la tiche d’estimation des flux de trafic
a I’échelle d'un réseau de capteurs. Nous avons proposé un nouveau modele de
réseaux de neurones nommé DGC-LSTM. Le modéle DGC-LSTM intégre des opéra-
tions de convolution sur des structures en graphe dans les couches récurrentes de
type LSTM. Ces opérations de convolutions reposent sur 1'utilisation de matrice
d’adjacence dynamique optimisée durant la phase de I'apprentissage du modele.
L’'idée de base derriére ce modéle est d’exploiter les corrélations spatio-temporelles
caractérisant le trafic dans la région ainsi que les similarités entre I’environnement
de détection des différents capteurs du réseau pour améliorer la précision des esti-
mations.

Comme le montre la figure 3, le modele proposé est composé de quatre com-
posants. Le composant principal permet d’encoder les données en entrée en une
représentation latente encodant I'information spatiotemporelle cela en se basant sur
une couche LSTM adapté a la structure de graphe inhérente aux données en util-
isant des opérations de graphes convolutions a la place des opérations linéaires.
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Ces opérations de convolution utilisent la matrice d’adjacence en sortie du deux-
ieme composant. Ce deuxieme composant est défini par une couche linéaire muni
d"une fonction d’activation sigmoid. Il prend en entrée un vecteur de représentation
des variables contextuelles et retourne une estimation de la matrice d’adjacence. Le
troisieme composant permet de modéliser 'effet des variables contextuelles, dans
notre cas les variables calendaires. Il est défini par deux couches linéaires. La sortie
de ce composant est fusionnée avec la sortie de composant principal et donnée en
entrée a un dernier composant dit d’estimation qui permet d’avoir les estimations

des flux de trafic sur les différents nceuds du réseau de capteurs.
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FIGURE 3: Architecture du modeéle DGC-LSTM.

A l'instar de tous modeles d’apprentissage, le modéle DGC-LSTM doit étre en-
trainé pour chaque nouveau déploiement afin de s’adapter aux changements dans
les distributions des données d’entrée. Cela implique la nécessité de collecter un
dataset labelisé d’apprentissage a partir du nouveau site de déploiement, limitant
ainsi l’applicabilité des modeles d’apprentissage automatique dans la pratique en
raison du coft élevé de l'acquisition de données de vérité terrain. Une approche
pour faire face a cette situation est d’assurer la transférabilité du modele d’apprentissage
pour promouvoir la réutilisation des ensembles de données de formation inter dé-
ploiement. L'idée fondamentale de la transférabilité du modele est d’améliorer la
capacité du modele a bien fonctionner sur les nouvelles données du site de dé-
ploiement cible sans un grand effort de calibrage des parametres et de 'architecture
de modele. Dans ce contexte, nous avons étudié la capacité de transférabilité directe
des modeles de réseaux de neurones profonds sur la tdche d’estimation de flux de

trafic considérée.
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Résultats:
L’évaluation de la performance du modele DGC-LSTM a été réalisée sur un dataset
synthétique simulant les données d"un réseau de dix-huit capteurs sur une période

de trois mois.

TABLE 2: Evaluation de la performance du modele DGC-LSTM
a l’échelle du réseau de capteurs en termes de RMSE, MAPE, et

wMAPE.
All days

Models/Metrics RMSE wMAPE | MAPE
Linear 12.85(1.0) | 19.85(1.6) | 31.26(3.5)
KNN 10.98(0.7) | 17.29(0.4) | 23.32(1.0)
SVR 10.53(0.5) | 16.29(0.4) | 20.85(0.8)
LSTM 10.36(0.7) | 16.09(0.7) | 20.83(1.0)
GCLSTM (Binary) 10.42(0.7) | 16.19(0.7) | 21.48(0.9)
GCLSTM (Distance) 10.50(0.7) | 16.30(0.7) | 21.80(1.1)
DGC-LSTM (No context) | 10.28(0.6) | 15.94(0.5) | 20.32(0.7)
DGC-LSTM 10.24(0.6) | 15.88(0.5) | 20.0(0.7)

Le tableau 2 présente les résultats d’évaluation de la performance globale du
modeéle c’est-a-dire a I’échelle du réseau de capteurs. Nous avons comparé l'erreur
moyenne d’estimation de modele DGC-LSTM a différents modeles standards a savoir
le modele linéaire, le SVR, le KNN, le modele LSTM standard et aussi des mod-
eles intégrants des opérations de convolution dans la couche LSTM mais se basant
sur des matrices d’adjacence statiques. Les résultats ont montré que le modéle pro-
posé donne la meilleure performance et cela en considérant les différentes mesures

d’évaluation.
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FIGURE 4: Evaluation de la performance du modele DGC-LSTM par

capteur en termes de RMSE.

Nous avons aussi évalué la performance de DGC-LSTM au niveau des capteurs.

Comme le montre la figure 4, sur les données de notre dataset synthétique, le mod-

ele DGC-LSTM a donné les meilleurs résultats sur huit parmi les dix-huit capteurs
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simulés et une performance similaire a celles du modele LSTM et de ceux a base
de matrice d’adjacence statique sur cinq autres capteurs. Le gain en précision est
plus important sur les données de capteurs manifestant des importantes variations
a court termes.

Les résultats de notre analyse de transférabilité directe des modeles ont souligné
I'importance de la définition d’une méthode d’apprentissage par transfert dédiée
pour améliorer 1'applicabilité du modéle en assurant 1’adaptation du modele au
nouveau site de déploiement tout en évitant l'effort considérable d’étiquetage des

données.

3.5 Algorithme d’estimation de vitesse moyenne de déplacement en util-
isant les données de qualité de signal recu

Dans cette contribution, nous nous sommes intéressés a 1’estimation de la vitesse
moyenne de déplacement. Dans ce contexte, nous avons exploré 1'idée d utiliser les
informations sur la qualité du signal recu (RSSI) pour améliorer les estimations de
vitesse obtenues a partir des données Bluetooth. Nous avons proposé un algorithme
définissant deux étapes.

Dans la premiére étape de 1’algorithme, nous avons défini une nouvelle stratégie
d’appariement qui utilise les informations de RSSI pour identifier a partir de séquence
de détections a 'origine (respectivement destination), la détection dont le temps cor-
respond au passage de véhicule par la position du capteur. Pour cela, différentes
régles de sélection ont été définies selon la forme de la séquence RSSI. Ces regles de
sélection sont résumées dans le tableau 3.

TABLE 3: Description des régles de sélection de étection a partir de la

sequence RSSL
i Selection rule -
Pattern | Label Description Tast | First | Med | Max Curve Characteristics
1 1 Significant peak X | One peak detected
. . No peak detected
2 2 Strictly inc/dec trend X Inc/dec trend
Two peaks detected

3 3 Plateau-shaped curve 8 Constant values between peaks

. Two peaks detected
4 Uncertain peak X Inc/dec values between peaks
5 Highly variable RSSI data X More than two peaks detected
6 7 Single detection X
7 Short sequence of values X

Dans la deuxiéme étape, I’estimation de la vitesse moyenne de déplacement est
calculée par moyenne pondéré. Les pondérations ont été attribuées en fonction de
I'étiquette de confiance associée a chaque instance de vitesse. L'étiquette de con-
fiance dépend de la qualité des informations RSSI dans les points d’origine et de
destination et reflete la certitude de savoir si les temps de détection correspondent

au temps de passage.
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L’algorithme d’estimation de la vitesse moyenne de déplacement est décrit dans
l'algorithme 3. Il prend en entrée I'ensemble D = {(M,Sm), So, bs, te), (M,Em), sq,th, )M

m=1

de séquences de détections consécutives entre une origine s, et une destination s
collectées durant l'intervalle du temps &; (i.e te’ € &), les séquences RSSI rssi, =
{rssi(M,Em),so)}%zl et rssiy = {rssi(M,({m),s,,l)}%:1 associées a chaque element de
I'ensemble D, la distance d entre les deux positions s, et s;4, et enfin le vecteur de
poids W = {wi}li‘l.

Pour chaque instance de I'ensemble D, nous avons d’abord utilisé la fonction
estimate_passage_time pour estimer les temps de passage a 1’origine et a la destina-
tion. Ces temps ont été ensuite considérés pour le calcul de vitesse de déplacement
de chaque instance. La fonction estimate_passage_time retourne aussi les indices de
qualité g, et g4 résultants de la classification des séquences RSSI a l'origine et a la
destination selon les patrons définis en tableau 3. La concaténation des indices g,
et g; donnent 1’étiquette de confiance associé a 'instance. Nous avons ensuite util-
isé la fonction assign_weight pour associer a chaque instance un poids a partir du
vecteur de pondération wy,. La vitesse moyenne de déplacement est alors obtenue
par moyenne pondérée.

Algorithm 3: Algorithme d’estimation de vitesse
moyenne de déplacement

Data: D, rssi,, rssiy, d, W

Result: mean_speed
1 form < 1to M do

(to,qo) < estimate_passage_time(rssi, (M]Em), $0));

N

3 (tg, qq) < estimate_passage_time(rssid(M,(Cm),sd));
4 ty < tg —to;

5 Wy < assign_weight(q4,q0, W);

6

end

7 mean_speed ZM1 ” Yt u;;':,;d

m=1"m

Résultats:
La précision des résultats a été évaluée a I'aide de données d’expérimentation. La
stratégie d’appariement proposé basée sur le RSSI a été comparé aux approches util-
isées dans la littérature. Les résultats ont montré que le processus proposé a donné
le plus faible pourcentage de valeurs aberrantes et ont permis de conclure que la
régle de sélection RSSI n’entraine pas d’estimations erronées supplémentaires (voir
figures 5 et 6) .

Globalement, une amélioration est observée lorsque des échantillons avec de
bonnes valeurs RSSI sont disponibles. En effet, la précision des résultats dépend
fortement de la taille de 1’échantillon BT et de la qualité de I’échantillon RSSI.
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FIGURE 5: Pourcentage de valeur aberrantes par seuil de vitesse
(vitesse moyenne entre les capteurs 1 et 2).
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FIGURE 6: Pourcentage de valeur aberrantes par seuil de vitesse
(vitesse moyenne entre les capteurs 2 et 3).

4 Conclusions

Les travaux présentés dans ce manuscrit s'integrent dans le projet de recherche
et développement VEDETECT visant a mettre en place des systémes de gestion
du trafic basés uniquement sur les capteurs Bluetooth. Au cours de notre these,
nous nous focalisé sur 1’objectif d’amélioration de la précision des mesures de trafic
dérivés des traces de capteurs Bluetooth. Nous nous sommes intéressées a deux
mesures essentielles pour la gestion de trafic : la quantification des flux de trafic et
'estimation de la vitesse moyenne de déplacement.

Nous avons commencé par une analyse exploratoire des données afin d’étudier
ses principales caractéristiques et identifier les opportunités qu’elles offrent pour
extraire des mesures liées au trafic. Cette analyse était importante pour s’adapter
au processus de balayage passif implémenté par les capteurs utilisés dans notre tra-
vail. Nous avons étudié trois caractéristiques principales des capteurs BT : leurs taux
d’échantillonnage, de perte et d’appariement. D’une part les résultats ont montré
l'efficacité du processus de balayage Bluetooth passif avec un taux d’échantillonnage
pour les mesures ponctuelles et de déplacement supérieure a 20%. D’une autre part,
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ces résultats ont validé I’hypothése sur les variations temporelles inhérentes au taux
de détection du capteur.

Nous avons complété cette analyse exploratoire des données par des tests con-
trolés pour étudier les impacts des facteurs sur la probabilité de détection des dis-
positifs. Pour cela, il était nécessaire de définir un cadre de simulation afin d’avoir
maniére moins chronophage et a faible cotit de les réaliser. Nous avons alors pro-
posé le cadre de simulation SF-BDS que nous avons par la suite implémenté pour
modéliser le balayage passif Bluetooth avec des capteurs fixes en bord de route. Le
modeéle a été validé en émulant un environnement dans lequel des données expéri-
mentales ont déja été acquises et en comparant les principales propriétés des don-
nées de traces de capteurs émises. Les résultats des tests ont montré que la probabil-
ité de détection de véhicule du capteur BT dans le cadre d"un processus de balayage
passif est principalement affectée par le débit de paquets, la vitesse du véhicule et
la densité du trafic liés au nombre de dispositifs de transmission a proximité du
capteur.

Nous avons ensuite abordé la tache d’estimation du flux de trafic a court terme
a partir de nombres d’adresses Bluetooth uniques détectées par le capteur. Nous
avons formulé le modele comme un modéle de régression et exploré I'application de
modeles d’apprentissage automatique. Quatre modeles ont été sélectionnés : MLR,
SVR, KNN, RE Un ensemble de scénarios d’évaluation a été défini pour identifier
les caractéristiques d’entrée importantes pour 'estimation du flux de trafic. Les ré-
sultats ont montré que 1'utilisation des modeles d’apprentissage améliore la préci-
sion des estimations par rapport a la calibration linéaire de référence. Ils ont égale-
ment mis en évidence que l'intégration de variables calendaires plus spécifiquement
Iintégration de variable représentant ’heure de la journée donne une amélioration
significative dans la précision des estimations. Les estimations peuvent encore étre
améliorées par l'utilisation des variables de vitesse moyenne de déplacement ou des
historiques récents de comptages Bluetooth.

Pour exploiter les interdépendances spatio-temporelles inhérentes au trafic et
les similarités entre les environnements de détection des différents capteurs, nous
avons proposé le modele DGC-LSTM. Ce modeéle est dédié a 1'estimation du flux
de trafic sur un réseau de capteurs déployés. Le composant principal du modéle
DGC-LSTM est une couche LSTM avec des opérations de convolution adaptée a la
structure de graphe. La matrice d’adjacence considérée dans les opérations de con-
volution n’est pas fixe mais dynamique ; elle est optimisée lors de 'apprentissage
du modele pour modéliser des dépendances spatio-temporelles dynamiques. A la
fin, nous nous sommes intéressées a la tache d’estimation de la vitesse moyenne
de déplacement, nous avons proposé un algorithme en 2 étapes ot une nouvelle
approche d’appariement utilisant les informations sur la puissance du signal regu
(RSSI) a été proposée pour traiter 'ambiguité de localisation. L’estimation de la

vitesse de déplacement moyenne est calculée par moyenne pondéré des vitesses des



Résumé en Francgais 140

appareils détectés. Les poids ont été attribués en fonction d'une étiquette de con-
fiance déduite des valeurs RSSI recueillies a partir des emplacements d’origine et
de destination. La précision des résultats de 1’algorithme a été évaluée a l'aide de
données expérimentation. La stratégie d’appariement proposée basée sur le RSSI a
été comparé aux approches utilisées de la littérature. Les résultats ont montré que
le processus proposé a donné le plus faible pourcentage de valeurs aberrantes et ont
suggéré que la regle de sélection RSSI n’entraine pas d’estimations erronées sup-
plémentaires. Globalement, une amélioration est observée lorsque des échantillons
avec de bonnes valeurs RSSI sont disponibles.

5 Perspectives de nos travaux de these

Nos travaux de these ouvrent plusieurs perspectives de recherche. Les travaux fu-

turs a court terme pourraient concerner :

¢ L[’évaluation de la robustesse des modéles proposés en termes de complexité
temporelle et de scalabilité en fonction de la taille du réseau de capteurs.

e L'utilisation d'un jeu de données réel d'un réseau de centaines de capteurs
pour l'évaluation du modele DGC-LSTM. L'évaluation sur des réseaux plus
grands permettra de valider la qualité des dépendances considérée par le mod-

ele en mettant en évidence les relations spatiales et de similarité.
Les orientations futures de ces travaux a long terme pourraient inclure :

¢ La définition d'un modele d’apprentissage par transfert. En effet, cette tache
serait essentielle pour assurer I'adoption de systeme de gestion de trafic pro-
posé utilisant des capteurs Bluetooth. Le modéle de transfert vise a ajuster
le modele d’estimation pour qu’il fonctionne bien sur le nouveau site de dé-
ploiement sans effort important de calibrage des parametres et de l’architecture
du modele. Les modeles d’apprentissage par transfert non supervisé sont
plus adaptés a notre cas d’utilisation pour éviter de collecter des données
d’apprentissage pour chaque nouveau site de déploiement. La tache de trans-
fert n’est pas simple. Comme suggéré dans la section 6.6, on peut commencer
par considérer 'apprentissage par transfert entre réseaux de capteurs du méme
ordre. Plusieurs modeles (voir section 2.4) ont été proposés pour traiter le
décalage distributionnel inhérent au probléme de transfert. Des modéles hy-
brides peuvent étre explorés pour cette tache, par exemple, en combinant un
modele de pseudo-étiquetage avec un modéle d’alignement de distribution.
Différents scénarios de transfert doivent étre définis pour évaluer la perfor-
mance du modéle. Appliqués a notre modéle DGC-LSTM, nous devons éval-
uer la fiabilité des dépendances dynamiques modélisées par la matrice d’adjacence.
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e L'évaluation de la robustesse du modele d’estimation en vis-a-vis des défail-
lances des capteurs et de changement de distributions des données. La défini-
tion et la mise en ceuvre de méthodes spécifiques pourraient étre nécessaires

pour répondre a ces besoins.

* La définition un modele d’estimation en deux étapes afin de remédier au prob-
leme des estimations lisses rencontré dans le chapitre 5 et cela afin de mieux

modéliser les variations courtes inhérentes au trafic routier.

En ce qui concerne le simulateur SF-BDS, I'utilisation d"'un modéle d’apprentissage
automatique pourrait étre envisager pour estimer directement la probabilité de dé-
tection de véhicule a partir d'un ensemble de variables d’entrée représentant les car-
actéristiques de 1’environnement de détection, les propriétés du véhicule et la den-
sité du trafic. Le modele d’estimation pourrait étre entrainé sur un dataset d’apprentissage
généré a partir de différents scénarios de tests controlés. Cette future amélioration
permettrait de réduire le temps d’exécution du simulateur SF-BDS.
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Titre: Analyse du trafic véhiculaire a partir de traces des capteurs Bluetooth

Mots clés: Transport intelligent, Communication sans-fil, Apprentissage statistique.

Résumé: L'essor rapide des véhicules connectés
dans le marché de l'industrie automobile a sus-
cité l'intérét de la communauté scientifique pour
étudier de plus pres la possibilité d’exploiter les
traces de communication pour améliorer les sys-
temes de gestion de trafic. Dans le cadre de cette
these, nous nous intéressons a 1'utilisation des
données issues de capteurs Bluetooth a balayage
passif. Ces capteurs représentent une alternative
a faible cott et a faible impact pour la collecte de
mesures concernant le trafic véhiculaire et sont
adaptés a un déploiement dense a large échelle
a savoir dans un milieu urbain. En revanche,
le processus de détection des capteurs Bluetooth
est susceptible d’introduire du biais et des incer-
titudes dans le calcul des indicateurs relatifs au
trafic véhiculaire. Dans cette thése, nous nous
sommes intéressés a ’amélioration de la précision
des mesures de trafic dérivées: le flux de trafic et
la vitesse de déplacement.

La premiére partie de notre thése porte sur la
quantification de flux de trafic véhiculaire a par-
tir des données Bluetooth. Nous adoptons une
approche orientée données en se basant sur les
modeles d’apprentissage statistiques. D’abord,

nous considerons le probleme d’estimation du
flux de trafic au niveau d'un seul capteur puis
a l'échelle d'un réseau de capteurs. Nous in-
troduisons également le probleme de transfert
d’apprentissage nécessaire pour limiter le besoin
d’acquisition de données d’apprentissage label-
lisées a chaque déploiement.

Dans une deuxiéme partie, nous nous concen-
trons sur le probleme de l’estimation de vitesse
moyenne de déplacement. Nous proposons un al-
gorithme qui explore les données collectées sur la
qualité de signal recu pour améliorer le processus
d’appariement et pondérer les contributions des
vitesses des vehicules dans le calcul de la vitesse
moyenne.

Une autre partie des travaux de these a été dédiée
a la définition et I'implémentation d'un frame-
work de simulation de balayage Bluetooth pour
des applications véhiculaires. Le simulateur est
utilisé pour analyser et identifier les facteurs
impactant la capacité des capteurs de détecter
les appareils Bluetooth actifs dans son voisinage
mais aussi pour complémenter les données des
expérimentations par la génération de datasets
d’apprentissage synthétiques.

Title: Vehicular traffic analysis based on Bluetooth sensors traces

Keywords: Intelligent Transportation systems, Wireless communication, Machine learning.

Abstract: The pervasiveness of personal radio de-
vices and the high penetration rate of these tech-
nologies in vehicles have, in recent years, made
a strong case for the development of new traffic
measurement techniques based on the analysis of
the radio access network activity levels. In this
thesis, we explore the use of sensor data gathered
through Bluetooth (BT) passive scanning. Blue-
tooth sensors provide a cost-effective, low-impact
and easy to deploy alternative to conventional
techniques. They are adapted for mass deploy-
ment in urban areas at relatively low investment
and maintenance costs. However, the BT indirect
detection process may introduce bias and uncer-
tainties that hinder the accuracy of the derived
vehicular traffic metrics. In this context, we inves-
tigate the capacity to use Bluetooth sensors as a
reliable sole data source for intelligent traffic sys-
tems in urban areas. Our work focuses on improv-
ing the accuracy of the obtained estimations of the
traffic flow and the travel speed.

The first part of this work concerns the task of ve-
hicular traffic flow quantification from Bluetooth

sensor data. We adopted a data-driven approach
relying on statistical and machine learning mod-
els. We first considered traffic flow estimation in
one sensing posing. Then, we proposed a model
for network-scale flow estimation. In this contri-
bution, we also introduced the transfer learning
problem required to limit the need to acquire la-
belled training data for each new deployment.

In the second part, we focus on the task of estimat-
ing the average travel speed. We propose an algo-
rithm that uses the collected data about the qual-
ity of the received signal to improve the matching
process and weigh individual vehicle speed con-
tributions in calculating the average speed.
During this work, we also developed a simula-
tion framework of BT scanning for vehicular traf-
fic monitoring. The simulator allows us to study
and identify the factors impacting the probability,
for one sensor, of detecting an active BT connec-
tion in its detection range and generate synthetic
training datasets to handle data scarcity.
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