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Abstract v

Progression models for Parkinson’s Disease

Abstract

In this work, we developed statistical methods to model disease progression from patient’s repeated
measurements, with a focus on Parkinson’s Disease (PD). A key challenge lies in the inherent
heterogeneity of PD across patients, to the extent that PD is now suspected to encompass
multiple subtypes or motor phenotypes. To gain insights on disease progression, research studies
propose to gather a broad range of marker measurements, at multiple timepoints for each patients.
These data allow to investigate the disease’s patterns of progression via statistical modeling.
In a first part, we modeled the progression of scalar markers of PD. We extended on a disease
progression model, namely the longitudinal spatiotemporal model. We then proposed to address
data missingness, and to model the joint progression of markers of different nature, such as
clinical scores, and scalar measurements extracted on imaging modalities. With this method, we
modeled early motor progression in PD, and, in a second work, the heterogeneity of idiopathic PD
progression, with a focus on sleep symptoms. In a second, independent, part of the manuscript,
we tackled the longitudinal modeling of medical images. For these higher dimensionality data,
Deep Learning is often used, but mostly in cross sectional setups, ignoring the possible inner
dynamics. We proposed to leverage Deep Learning as a dimensionality reduction tool to build
a spatiotemporal coordinate system of disease progression. We first took advantage of this
flexibility to handle multimodal data. Then we leveraged the self-supervision induced by assuming
monotonicity over time, to offer higher flexibility in modeling temporal variability.

Keywords: longitudinal data, spatio-temporal trajectories, machine learning, parkinson’s disease,
computer vision, generative models

Modélisation de la progression de la maladie de Parkinson

Résumé

Dans ce travail, nous développons des méthodes statistiques pour modéliser la progression de
la Maladie de Parkinson (MP) à partir de données répétées. La progression de la MP, très
hétérogène, est complexe à modéliser. Pour mieux comprendre la progression des maladies
neurodégénératives, des études effectuent un suivi de patients dans le temps, avec une batterie
de tests à chaque visite. Ces données permettent d’étudier les différents types de progression
par analyse statistique. Dans une première partie, nous modélisons la progression de marqueurs
scalaires de la maladie de Parkinson. Nous nous basons sur un modèle longitudinal, le modèle
longitudinal spatiotemporel. Nous proposons de gérer les valeurs manquantes, ainsi que de
modéliser la progression jointe de marqueurs de différentes natures, comme les scores cliniques,
ou les marqueurs extraits de l’imagerie. Avec ce modèle, nous nous concentrons d’abord sur la
modélisation des symptômes moteurs précoces dans la MP. Puis nous étudions l’hétérogénéité
de la MP, avec un accent sur les troubles du sommeil. Dans une seconde partie indépendante,
nous étudions la modélisation de données longitudinales provenant de l’imagerie. Nous proposons
d’utiliser un réseau de neurone comme méthode de réduction de dimension afin de construire
un système de coordonnées spatiotemporel de progression de la maladie. Nous tirons parti de la
flexibilité des réseaux de neurones pour modéliser la progression de données multimodales. Enfin,
en supposant la monotonicité des marqueurs au cours du temps, nous nous appuyons sur l’ordre
des visites plutôt que l’âge des patients pour modéliser plus finement la variabilité temporelle de
nos données.

Mots clés : données longitudinales, trajectoires spatiotemporelles, apprentissage automatique,
maladie de parkinson, vision par ordinateur, modèles génératifs,

ARAMIS Lab
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2 Introduction en langue française

Préambule

Mettre en évidence, et quantifier l’hétérogénéité des schémas de progression de la Maladie
de Parkinson (MP) pourrait permettre de mettre en lumière les mécanismes pathologiques
sous-jacents, et ainsi améliorer grandement notre compréhension de le maladie. En effet,
depuis sa découverte en 1817, la maladie de Parkinson est loin d’être pleinement comprise,
et les traitements n’ont pas significativement évolués depuis l’utilisation de la Levodopa,
un précurseur de la dopamine, dans les années 50.

Récemment, la medecine a grandement bénéficié d’outils nouveaux provenant d’avancées
en physique, comme l’imagerie par résonance magnétique (IRM), l’émission de positron par
tomographie (PET), ainsi que le séquençage génétique. Ces outils ont permis d’atteindre
de nouvelles frontières dans la caracterisation des processus anatomiques et biologiques
des maladies, au point que certaines peuvent être diagnostiquées et suivies précisément.
Cependant, la complexité des maladies neurodégénératives est telle, que des équipes de
recherche entières étudient des sous-parties d’un méchanisme pathologique plus global,
et constituent actuellement notre principal espoir pour développer des thérapeutiques
efficaces.

L’apprentissage automatique offre de nouveaux moyens d’accroître nos connaissances
sur ces maladies, en analysant de façon statistique et algorithmique des données patients.
Ces marqueurs peuvent être de différente natures : batterie de tests cliniques, modalités
d’imagerie, prélèvement biologiques ou encore génétique. Les marqueurs indicatifs de l’état
d’avancement de la maladie sont typiquement suivis dans le temps (Jiang et al. 2017). Ces
algorithmes montrent déjà de bonnes performances en diagnostic et pronostic si on leur
spécifie des tâches claires, comme la segmentation de tissus (Havaei et al. 2017; Menze et al.
2014; Milletari, Navab, and Ahmadi 2016; Pereira et al. 2016), ou encore la classification
de patients. Ces algorithmes ont un fort potentiel pour accroître nos connaissances sur
des maladies complexes.

Motivation

Maladie de Parkinson

La maladie de Parkinson est un exemple de maladie neurodégénérative complexe, avec
des symptomes moteurs croissants qui peuvent altérer considérablement la qualité de vie
des patients. La maladie est habituellement diagnostiqué autour de 60 ans, mais peut
aussi toucher des personnes plus jeunes : 20% des patients sont diagnostiqués avant 50
ans (Forme précoce de la maladie de Parkinson n.d.). La MP touche 6.3 millions de gens
dans le monde (Rocca 2018), et l’impact de la maladie en terme de qualité et espérance de
vie, ainsi que couts sociaux et monétaire sont amenés à augmenter avec le vieillissement
de la population (Findley 2007).



Motivation 3

Connaissances et défis dans la maladie de Parkinson

Dans les dernières décénies, des avancées importantes ont permis de mieux comprendre la
pathophysiologie de la maladie. Il est maintenant communément accepté que la maladie
commence longtemps avant le diagnostic reposant sur des symptomes moteurs anormaux,
avec une phase "prodromale", principalement asymptomatique (Mahlknecht, Seppi, and
Poewe 2015; Ronald B Postuma and Berg 2016). Cette phase prodromale peut commencer
jusqu’à 10, voir même 20 ans avant le diagnostic (Kalia and Anthony E Lang 2016; Ronald
B Postuma and Berg 2016; Savica, Rocca, and J Eric Ahlskog 2010), avec d’abord des
dommages au système nerveux autonome, lié à des troubles du sommeil et de constipation,
suivi par la perte de neurones dopaminergiques dans la substance noire. Ces dommages
dans la substance noire sont considérés comme la cause directe des symptomes moteurs
parkinsoniens, et peuvent être mesurés par imagerie du cerveau. Cependant, les mesures
révelent qu’au diagnostic, 60% des neurones dopaminergiques ont déjà disparus (P. N. Lee
et al. 2007). Cela souligne l’importance de trouver des traitements pouvant agir dans les
phases précoces de la maladie.

De plus, la maladie de Parkinson est hétérogène par nature, au point qu’elle est
maintenant supposée englober plusieurs sous-maladies, ou au moins plusieurs sous-types
de la maladie. Un schéma de progression a été proposé pour expliquer la topologie des
dommages dans le cerveau (Braak et al. 2003). Ce schéma propose d’expliquer la progression
de la maladie par la diffusion progressive de Corps de Lewy dans le cerveau, mais beaucoup
de patients différent de ce schéma dans leur manifestation clinique. Afin de grouper les
patients dans des sous-types cohérents, il a été proposé de grouper par phénotype moteur
(Joseph Jankovic et al. 1990; Zetusky, Joseph Jankovic, and Pirozzolo 1985), présence
de troubles du sommeil (Berg, Borghammer, et al. 2021; Horsager, Andersen, Knudsen,
Skjærbæk, et al. 2020a; Yoritaka et al. 2009), génétique, mais aucune convention n’a été
adopté pour l’instant.

En fin de compte, la recherche sur la maladie de Parkinson vise à :

• Développer un traitement efficace, à administrer le plus vite possible.

• Dans l’absence d’un tel traitement, administrer au mieux les traitements actuels, en
prenant en compte leurs effects secondaires.

• Prédire l’arrivée de symptomes spécifiques qui altèrent la qualité de vie des patients,
comme la démence, les chutes ou la dyskinésie, pour adapter au mieux les traitements.

Leviers d’actions

A la différence des approches "ascendantes" où la connaissance de la maladie est construite
par la compréhension de ses multiples sous-mécanismes, des approches "descendantes"
proposent de raffiner incrémentalement notre connaissance de la maladie de Parkinson
en testant des hypothèses sur les données. Avec suffisamment de précision, les approches
descendantes peuvent alimenter la reflexion au niveau des mechanismes pathologiques,
afin d’accélérer la recherche sur la maladie de Parkinson. Actuellement, ces approches
consistent à :
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• Identifier des marqueurs précoces de la maladie afin de mieux comprendre et suivre
la phase pré-diagnostic de la maladie. Cela pourrait aussi permettre une intervention
précoce (Murman 2012), et expérimenter de nouveaux traitements, dont l’efficacité
pourrait être liée à la rapidité de leur utilisation.

• Extraire des sous-types de patients. Un sous-groupe de la maladie pourrait signifier
un mécanisme de progression différent. Par exemple, les patients avec le gêne GBA,
aussi présent dans la maladie de Gaucher, pourraient potentiellement bénéficier des
avancées thérapeutiques sur cette maladie (Riboldi and Di Fonzo 2019).

Contexte

Cohortes longitudinales

Pour réaliser ces tâches, nous avons besoin de collecter des données, le plus possible et de
la meilleure qualité possible. Ainsi, ces dernières decennies, des données patients ont été
collectées à grande échelle, et agrégées dans des cohortes de recherche pour être ensuite
traitées avec des méthodes statistiques. Un effort particulier a été investi pour créer et
partager publiquement les cohortes Alzheimer’s Disease Neuroimaging Initiative (ADNI)
pour la maladie d’Alzheimer (Petersen et al. 2010), ainsi que Parkinson’s Progression
Markers Initiative (PPMI) pour la maladie de Parkinson (Marek, Jennings, et al. 2011).
Ces deux cohortes sont "longitudinales", au sens où elles suivent des patients dans le
temps. Ainsi, des mesures exhaustives sont réalisées à plusieurs visites espacées dans le
temps, afin de pouvoir suivre les progressions individuelles (cf Figure 3). Cela permet
de considérer ces progression comme des "trajectoires" dans l’espace des mesures, et
développer des méthodes statistiques en conséquence. Des modélisations et analyses
pertinentes de ces cohortes longitudinales pourraient permettre d’identifier de nouveaux
marqueurs de progression, ou d’identifier des critères d’inclusions plus fins pour les patients
de futures cohortes (Berg, Ronald B Postuma, et al. 2015; Heinzel et al. 2019), ou d’essais
cliniques.

Défis dans l’analyse statistique de la maladie de Parkinson

Avec ces données longitudinales, l’identification de marqueurs précoces ainsi que l’extraction
de sous-types de patients est loin d’être facile. Pour l’extraction de sous-groupes, la
plupart des études cliniques réalisent un clustering à la première visite, et dans un second
temps seulement comparent les progressions de chaque groupe (Eisinger et al. 2017;
Fereshtehnejad, Romenets, J. B. Anang, et al. 2015; Fereshtehnejad, Zeighami, et al. 2017).
Par construction, ces études ne peuvent pas extraire des groupes en étudiant directement
les différences de dynamiques. Concernant l’identification de marqueurs précoces, une
méthode intuitive consiste à régresser les marqueurs en arrière dans le temps, et regarder
quand les courbes intersectent les valeurs des sujets sains. Cependant, il n’existe pas de
temps de référence dans les maladies neurodégénératives, comme la date de naissance
le serait pour des courbes de croissance. Les études cliniques utilisent souvent comme
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Figure 1 – Illustration d’un dataset longitudinal à N patients, vus à différentes visites.
Les couleurs de cerveau expriment le stade d’avancement de la maladie. Les largeurs et
hauteurs de cerveaux spécifiques à chaque sujet représentent la variabilité inter-patient.
Un trait plus large indique la partie de la trajectoire patient observée lors de son suivi,
alors que une ligne en pointillé indique l’absence de données. Les cerveaux en transparence
aux extrémités expriment notre hypothèse de monotonicité. C’est à dire que tous les
patients sont supposé être complètement sains à un certain âge, et évoluer inexorablement
vers le stade maximal de la maladie.

référence l’âge au diagnostic (Fereshtehnejad, Yao, et al. 2019; R. Postuma, Lang, et al.
2012), ce qui peut cacher des différences significatives entre les patients en terme de stade
dans la maladie et vitesse de progression.

En prenant du recul, ces défis sont plus généraux que l’analyse longitudinale de la
maladie de Parkinson, et se posent dans le contexte de l’analyse longitudinale de données
médicales. La difficulté de l’aquisition de données médicales, et la grande hétérogénéité inter-
patients expliquent en grande partie ces défis. Ainsi, comme ces cohortes longitudinales
suivent des patients pour une durée limitée, elles subissent à la fois une censure à gauche,
typiquement avec une absence de donnée pre-diagnostic, ainsi qu’une censure à droite. De
plus, cette durée de suivie est limitée par rapport à la durée totale de la maladie, ce qui
complique l’analyse. Ainsi ces suivis de patients peuvent être liés à des phases de la maladie
qui ne se recouvrent pas (cf Figure 3), et ce non-alignement temporel entre les patients
complique fortement leur comparaison, par exemple pour l’extraction de sous-types.

La modélisation de progression de maladies, et le réalignement
temporel

Pour faire face à ces particularités, un pan des statistiques pour la medecine a émergé,
et se concentre sur les dynamiques temporelles de maladies, appelé "disease progression
modeling". En 2010, (Clifford R. Jack, Knopman, et al. 2010) a proposé un premier
schéma conceptuel de la progression de biomarqueurs dans la maladie d’Alzheimer, prenant
la forme de courbes sigmoides, depuis un état normal vers un état anormal. Ces courbes
sigmoides arrivent en cascade, sous-tendant un ordonnancement entre les marqueurs, et
reflétant les mechanismes pathologiques sous-jacents (par exemple perte de neurones dans
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l’hyppocampe, suivi par des troubles cognitifs).
Depuis lors, des modèles plus complexes ont été developpés pour estimer statistiquement

la progression de maladies. Les "Event Based Model" (Fonteijn et al. 2011) sont des
modèles discrets de progession qui utilisent des bases de données cross-sectionnelles. Ils
estiment l’ordonnancement d’évenements définis à l’avance, et ainsi construisent un scénario
normatif de progression.

Aussi, des modèles de progression continus ont été developpés en utilisant des cohortes
longitudinales. Ces modèles doivent gérer le non-alignement temporel entre les patients,
dont l’âge à une visite donnée est peu informatif sur le stade de la maladie dans le cas
de maladies neurodégénératives, comme décrit sur la Figure 3. Introduit dans (Jedynak
et al. 2012), et utilisé dans nombre de modèles de progression de maladies (Michael C.
Donohue et al. 2014; Guerrero et al. 2016), les modèles continus gèrent cette difficulté en
reparamétrisant l’âge de façon affine : ψ : t 7→ αit+ τi, qui réaligne les patients au mieux
en fonction de leur stade de progression ψ, en terme de valeurs de biomarqueurs. Cette
reparamétrisation temporelle est pratique car elle utilise peu de paramètres, et ψ devient
alors un stade de maladie "abstrait". De plus, comme αi et τi sont typiquement considérés
comme des effets aléaoires dans un modèle à effets mixte, la trajectorie définie seulement
par les effets fixes peut être vue comme une trajectoire long-terme de la population générale,
abstraite, informée par chaque suivi individuel de patients.

Schiratti, Allassonniere, et al. 2015b proposent un modèle spatio-temporel, générique
dans le sens où il fait l’hypothèse que les observations appartiennent à une variété Rie-
mannienne, ce qui inclut les formes (maillage), l’imagerie du cerveau (Bone, Colliot, and
Durrleman 2018), ou simplement des marqueurs scalaires. Le modèle suppose l’existence
d’une trajectoire moyenne de progression, modélisée par une géodésique sur cette var-
iété Riemannienne. Une géodésique peut être interprétée comme la trajectoire du plus
court chemin dans un espace courbe (cf Figure 4). Les trajectoires individuelles sont
modélisées comme des "paralleles" de cette géodésique, sur la variété, et progressant en
terme de "stade de la maladie". Ce modèle est donc un modèle à effet mixtes, et utilise la
reparamétrisation affine des âges.

Surtout, le modèle offre un cadre théorique pour construire un système de coordonnées
spatiotemporelles, que l’on peut visualiser intuitivement comme un systeme de coordonées
tubulaire. La variabilité temporelle indique à quelle position la visite se place sur l’axe
de la trajectoire moyenne, i.e. en terme de stade de progression. D’un autre côté les
variations "spatiales" encodent pour la spécificité du patient, et sont orthogonales à la
trajectoire moyenne. En d’autre termes, la variation spatiale est la variation par rapport
à la trajectoire moyenne, après avoir effectué le réalignement temporel. A noter que les
paramètres des variations temporelles et spatiales sont tous considérés comme des effets
aléatoires du modèle à effet mixte. Pour des données scalaires, les variations spatiales
peuvent être calculées analytiquement comme des transformations géométriques de la
trajectoire moyenne.

Ainsi, bien que tous les modèles soient biaisés de façon inhérente par leurs hypothèses
sous-jacentes, leur design ou encore leur méthode d’estimation, leur multiplicité permet
d’obtenir des résultats avec confiance, quand ces résultats sont reproduits indépendamment.
L’initiative Europond propose de regrouper et partager ces modèles à la communauté
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Figure 2 – Représentation de l’effet du réalignement temporal des sujets selon leur stade
de la maladie, par rapport à une trajectoire moyenne abstraite (en bleu). Le modèle
longitudinal spatiotemporel permet de désenchevetrer la variabilité temporelle, qui modélise
les variations en terme de stade d’avancement dans la maladie, et la variabilité spatiale,
qui modélise les différences inter sujets. Ici, la variabilité spatiale est représentée avec des
hauteurs et largeurs de cerveaux spécifiques à chaque sujet. Nous observons aussi que
l’âge n’est pas informatif du stade d’avancement dans la maladie.

(www.europond.eu). De plus, l’organisation de data challenges promeut une comparaison
des méthodes, comme sur le challenge TadpoleRazvan V Marinescu et al. 2018, ou avec le
Data Challenge de PPMI.

Objectifs de la thèse

Objectifs

Dans cette thèse, nous visons à construire des modèles de progression de maladies pour
mieux capturer l’hétérogénéité de la maladie de Parkinson, en terme de schémas individuels
de progression. Bien que cela ne réponde pas directement à l’extraction de sous-types
et à l’identification de biomarqueurs précoces, la construction de modèles prenant en
compte les spécificités des maladies neurodégénératives est une première étape. Nous
faisons l’hypothèse d’un découplage entre variailité temporelle et variabilité spatiale en
construisant des modèles avec cordonnées spatio-temporelles, comme dans (Schiratti,
Allassonniere, et al. 2015b). Ces représentations temporelles et spatiales apprises pourront
ensuite être utilisées dans des applications cliniques comme la prédiction ou le clustering.
Dans cette thèse, nous divisons cet objectif en 3 étapes :

• Étendre le modele longitudinal spatiotemporel pour pouvoir l’appliquer sur la maladie

www.europond.eu
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de Parkinson.

• Appliquer le modèle à la maladie de Parkinson pour répondre à des hypothèses
cliniques. En pratique, nous visons à mieux reconstruire les données, et à analyser
les corrélations entre nos paramètres individuels de progression, interprétables, et
des cofacteurs d’intêret qui représentent la physiologie des patients.

• Étendre la flexibilité et les potentielles applications du modèle longitudinal spatio-
temporel à des données de hautes dimensions, multimodales, ou non labellisées
en usilisant le cadre de l’autoencoder, et trouver un compromis acceptable entre
flexibilité et interprétabilité.

Contributions

Nous choisissons comme point de départ le modèle longitudinal spatiotemporel de Schiratti,
Allassonniere, et al. 2015b, et tout au long de cette thèse nous nous appuyons sur la notion
de systèmes de coordonnées spatio-temporelles pour les données longitudinales (cf Figure
4).

Motivés par une application finale sur les marqueurs de la maladie de parkinson, nous
étendons dans un premier travail le modèle spatiotemporel de Schiratti, Allassonniere,
et al. 2015b. L’instanciation de ce modèle pour données scalaires, aussi appelé "modèle de
propagation", a été construit dans l’optique de modéliser la progression de scores cognitifs
dans la maladie d’Alzheimer et repose sur des hypothèses fortes. Chaque évoluton de
biomarqueur est modélisée par une courbe sigmoide, schéma classique de progression de
biomarqueur de maladie neurodégénérative depuis l’hypothèse de Jack Jr et al. 2010,
avec des valeurs progressant de 0 (normal) à 1 (anormal). Deuxièmement, le modèle de
propagation fait l’hypothèse que les biomarqueurs évoluent à la même vitesse : de cette
façon chaque progression de biomarqueur peut être paramétrisée seulement par un délai par
raport à un biomarqueur de référence. C’est un moyen simple d’ordonner les biomarqueurs,
selon leur "onset". Cependant, dans le cas de biomarqueurs de différentes nature, comme
le DATScan, qui mesure le signal dopaminergique dans le striatum, et les scores cliniques
moteurs, cette hypothèse n’est pas valide. Pour relacher cette rigidité, nous proposons de
considérer plusieurs types de progression par marqueurs dans une modélisation jointe de
la progression. De plus, nous gérons les valeurs manquantes en utilisant l’aspect génératif
du modèle, en faisant l’hypothèse qu’elles sont manquantes de manière complètement
aléatoire (MMCA), i.e. que leur absence n’est pas informative de leur valeur.

Cela permet une première application clinique sur la maladie de Parkinson. Dans
une première étude, nous modélisons la progresion des anormalités motrices de patients
prodromaux, et estimons une timeline de progression en définissant des seuils d’anormalités
pour chaque biomarqueur. Nous comparons nos résultats avec ceux de R. Postuma,
Lang, et al. 2012, et confirmons que les altérations du visage et de la parole sont les
plus précoces du MDS-UPDRS III, alors que la rigidité est identifié comme un marqueur
tardif. Dans une deuxième étude clinique, nous réalisons une analyse plus large pour
quantifier l’hétérogénéité de la maladie de Parkinson, et incluons un ensemble exhaustif de
marqueurs pour représenter les différentes facettes de la progression de la maladie : moteur,



Organisation du manuscrit 9

non-moteur, congition et imagerie. Nous étudions l’hétérogénéité en terme de variabilité
spatiale et temporelle par rapport à la trajectoire moyenne, et identifions les troubles du
sommeil et de la cognition comme les symtômes avec le plus de variance inter-patients.
Les troubles du sommeil surtout sont intéressants car ils peuvent arriver très tôt dans la
progression de la maladie. Par conséquent, nous étudions les associations entre trouble
du sommeil et schémas de progression individuels, et mettons en évidence des différence
significatives entre patients avec et sans troubles du sommeil, principalement en terme de
symptômes non-moteurs.

Dans une deuxième partie de notre travail, nous basculons de la géométrie Riemannienne
vers l’apprentissage profond, plus flexible pour modéliser la progression de maladie. Nous
apprenons toujours des modèles de progression avec coordonées spatiotemporelles, ici
dans l’espace latent d’un autoencoder à la manière de (Maxime Louis, Couronné, et al.
2019). En effet, construire un cadre théorique pour l’analyse longitudinale de données en
grande dimension est un tâche ardue. L’utilisation de l’autoencoder permet d’alléger cette
difficulté, au prix des preuves de convergences, mais aussi et surtout de l’orthogonalité
entre variations temporelles et spatiales. Nous proposons tout d’abord de gérer les données
multimodales en aggrégeant les représenatations apprises de chaque modalité. Cependant,
la modélisation de la progression jointe en grandes dimensions est complexe, et ainsi
l’approche de (G. Lee et al. 2019) se concentre sur des marqueurs scalaires, même si
elle repose sur de l’apprentissage profond. Enfin, nous étendons le modèle au cas auto-
supervisé, en utilisant seulement l’ordonnancement entre les visites donnée par le cadre
longitudinal, et s’abstrayant de devoir exhiber une fonction liant âge et stade de la maladie,
comme la reparamétrisation affine mentionnée plus haut. De plus, nous encourageons
le désenchevêtrement dans l’espace latent entre variabilité temporelle et spatiale, en
apprenant une unique représentation spatiale par patient, sur un sous-ensemble aléatoire
de ses visites. L’idée d’ordonner les visites est proche de LLSL (Zhao, Z. Liu, et al. 2020),
qui contraignent l’espace latent en forçant les trajectoires des patients à être parallèles
via une fonction de coût sur les angles. Cependant, ils se concentrent sur la variabilité
temporelle, alors que nous cherchons aussi à donner du sens à la variabilité spatiale apprise.

Organisation du manuscrit

Partie I: Contexte

Le chapitre 1 présente de façon plus poussée la maladie de parkinson, et les défis actuels,
comme l’extraction de sous-types ainsi que l’étude de la phase prodromale de la maladie,
qui sont considérés comme des étapes cruciales vers une meilleure compréhension de la
maladie.
Le chapitre 2 introduit le modèle longitudinal spatiotemporel, avec des notions sous-
jacentes de géométrie riemannienne, son instanciation avec des marqueurs scalaires, ainsi
que la procédure d’estimation
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Partie II Modèles de progression de la maladie de Parkinson avec
des données en faible dimension et non structurées

Le chapitre 3 présente notre contribution sur le modèle longitudinal spatiotemporel de
(Schiratti, Allassonniere, et al. 2015b). In fine, nous visons à appliquer le modèle aux
données de PPMI, à la fois sur les marqueurs cliniques et d’imagerie. Nous proposons
de relacher les hypothèse du modèle de propagation de Schiratti, Allassonniere, et al.
2015b, qui suppose que les formes et vitesses des courbes sont partagées pour tous les
biomarqueurs. Ensuite nous proposons de gérer les valeurs manquantes en nous reposant
sur l’aspect génératif du modèle.
Le chapitre 4 présente les applications cliniques du modèle. Nous passons en revue
les outils mis à disposition par le modèle longitudinal spatiotemporel, en utilisant les
trajectoires apprises au niveau individuel, d’un sous groupe de patient, ou de l’ensemble
de la population. Ensuite nous présentons une première application de ces méthodes dans
le but d’étudier la progression des anormalités moteurs des patients prodromaux, i.e. les
patients avec un risque élevé de développer la maladie de Parkinson. Dans ce travail nous
construisons une timeline d’apparition des symptomes. Pour finir, nous étudions en détail
l’hétérogénéité en terme de schémas de progression dans la maladie de Parkinson, avec un
accent sur les troubles du sommeil, que nous trouvons être corrélés avec les symptomes
non-moteurs.

Partie III Autoencoder longitudinal

Le chapitre 5 introduit l’autoencoder longitudinal. Dans ce cadre, nous tirons parti de
l’idée de l’autoencoder pour apprendre un lien non-linéaire entre l’espace des données et
un espace de faible dimension, supposé euclidien, contraint de jouer le jeu d’un système de
coordonnées spatiotemporel. L’autoencoder permet de s’abstraire de méthode de réduction
de dimensions ad-hoc, pour se concentrer sur le modèle graphique dans l’espace latent, que
nous construisons à la manière de Schiratti, Allassonniere, et al. 2015b. Cette flexibilité
permet de gérer de façon agnostique des images ou des scores cliniques, mais nous perdons
aussi la notion d’exp-parallelisation qui permettait de s’assurer de l’orthogonalité entre
variabilité spatiale et temporelle.
Le chapitre 6 explore le cas de données multimodales dans le cadre de l’autoencoder
longitudinal, en aggrégeant les représentation apprises sur chaque modalités, comme des
scores cliniques ou encode des modalités d’imagerie.
Le chapitre 7 propose de modifier l’architecture proposé au chapitre 5, afin de relacher
des contraites sur le modèle graphique de l’espace latent. Nous proposons de s’appuyer sur
le cadre longitudinal pour apprendre la variabilité temporelle seulement par l’intermédiaire
de l’ordonnancement entre les visites, et plus des âges des patients à leurs visites.

Partie IV Développement logiciel

Le chapitre 8 présente notre contribution logicielle sous la forme d’une librairie Python
nommée Leaspy, qui implémente le modèle longitudinal spatiotemporel utilisé au chapitre
4.
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Preamble

Uncovering and accurately quantifying the heterogeneity in Parkinson’s Disease progression
patterns would greatly benefit our current understanding of the disease, by providing
insights on the underlying disease pathways. Indeed, since its characterization in 1817,
Parkinson’s Disease is still far from fully understood, and as a consequence treatments
have not significantly improved since the first use of Levodopa, a dopamine precursor, in
the 1950s.

Recently, the field of medicine has witnessed the enormous potential of new inventions
derived from breakthroughs in physics, such as Magnetic Resonance Imaging (MRI),
Positron Emission Tomography (PET) and genome sequencing techniques. These tools
reach new frontiers in characterization of anatomical and biological processes, to the extent
that some diseases may be diagnosed and monitored precisely. But the complexity of
neurodegenerative diseases is so high that entire research teams are targeting sub-processes
inside a bigger picture, which is at the moment our only hope for successful therapeutics.

Machine Learning (ML) offers a way to statistically and algorithmically bring new
insights to these diseases from patient’s wide spectrum of measurements (Jiang et al. 2017).
These algorithms are already perfoming well in diagnosis and prognosis of well defined
tasks, such as tissue segmentation (Havaei et al. 2017; Menze et al. 2014; Milletari, Navab,
and Ahmadi 2016; Pereira et al. 2016), or patient classification. They have great potential
to build up knowledge in complex diseases.

Motivation

Parkinson’s Disease

Parkinson’s Disease (PD) is a striking example of such complex disease, with slowly
progressing motor impairments that considerably alter the patient’s quality of life. The
disease is usually diagnosed around 60 years old but also affects younger people with 20 %
of patient being diagnosed before 50 years old (Forme précoce de la maladie de Parkinson
n.d.). Around 6.3 million people worldwide live with Parkinson’s Disease (Rocca 2018),
and the impact of the disease in terms of quality of life, life expectancy and social and
monetarial costs (Findley 2007) is likely to rise with the ageing of the population.

Knowledge and challenges in Parkinson’s Disease

Significant improvements in our understanding of the disease have been made these last
decades. It is now acknowledged that the disease begins long before the diagnosis reporting
motor symptoms onsets, in a mostly asymptomatic "prodromal" phase (Mahlknecht,
Seppi, and Poewe 2015; Ronald B Postuma and Berg 2016). This prodromal phase
begins up to 10-20 years before diagnosis (Kalia and Anthony E Lang 2016; Ronald B
Postuma and Berg 2016; Savica, Rocca, and J Eric Ahlskog 2010), with first increasing
damage autonomic nervous system, possibly linked with sleep and constipation symptoms,
followed by neurodegeneration in the subtancia nigra. Damage in the substancia nigra is
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considered the direct cause for PD motor symptoms, and can be monitored via a brain
imaging. However, measurements reveal that at diagnosis, patient have already lost 60%
of their dopaminergic neurons (P. N. Lee et al. 2007). This highlights the need for early
intervention.

Then, Parkinson’s Disease is very heterogenous by nature, to the point that it is
now considered as an umbrella term under which different and overlapping clinical and
pathological subtypes fit. A scheme of progression has been proposed (Braak et al. 2003)
to explain the topology of damage in the brain from a growing accumulation of proteins,
but many patients progression differ from this model. In order to classify patients in
more consistent disease groups, many methods have been proposed, such as classifying by
motor phenotypes (Joseph Jankovic et al. 1990; Zetusky, Joseph Jankovic, and Pirozzolo
1985), prevalence of sleep symptoms (Berg, Borghammer, et al. 2021; Horsager, Andersen,
Knudsen, Skjærbæk, et al. 2020a; Yoritaka et al. 2009), or genetics, but no convention has
been adopted to date.

Ultimately, Parkinson’s Disease research aims to:

• Develop a cure, to be administered as early as possible.

• In the absence of a cure, best administer the existing treatments, taking into account
their secondary effects.

• Predict the arrival of specific symptoms altering patient’s quality of life, such as
dementia, dyskinesia or falls, in order to best adapt care.

Top-down action-levers

In order to accelerate Parkinson’s Disease research, top down approaches propose to refine
incrementally our knowledge on Parkinson’s Disease from hypothesis testing on the data.
These new insights add up, and with enough precision might feed the reflection at the
disease sub-processes levels. Presently, levers in statistical analysis of Parkinson’s Disease
include:

• Identify early biomarkers in order to provide insights on the pre-diagnostic phase
of the disease, and follow patient from an earlier stage. This would also allow earlier
intervention, (Murman 2012) and experiment new disease modifying drugs, which
effectiveness might increase with the precocity of their administration.

• Subtype patients into consistent subgroups. A consistent subgroup could account
for a specific pathway of disease progression, and an associated specific underlying
processes. For example, patients with the GBA gene, also present in Gaucher Disease
for which a treatment exists, could potentially share some of the disease mechanisms.
This association approach could offer new insights to develop treatments (Riboldi
and Di Fonzo 2019).

Improvements on these subjects could lay new bricks in the foundations of our current
knowledge of the disease.
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Figure 3 – Illustration of a longitudinal dataset with N patients, seen at different visits.
Color of the brain accounts for disease stage. Different height and width of the brain
account for possible inter-patient variability. A wide line indicate the time-span of each
patient follow-up, while dotted lines indicate unseen patient data. Transparent brains at
extremities relate to our monotonicity assumption, that is to say patient with the disease
were healthy at some point, and will eventually reach abnormality in all biomarkers.

Background

Longitudinal Cohorts

To perform these tasks, we need to acquire data, as many as possible, and of the highest
quality possible. To this end, in the last decades, patient data were gathered, and
aggregated in cohorts of patients, to allow for statistical analysis. Well known and publicly
shared cohorts include Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Petersen et al.
2010) for Alzheimer’s Disease, and Parkinson’s Progression Markers Initiative (PPMI)
(Marek, Jennings, et al. 2011) for Parkinson’s Disease.

These two cohorts are "longitudinal", in the sense that they follow patients in time,
performing measurements at multiple visits for a same patient (see Figure 3). This
longitudinal follow-up allows to see patient’s dynamics. We can then appreciate the
repeated measurements of patients as "trajectories" in a space of measurements, and
develop statistical methods accordingly.

Hopefully, successful building and analysis of longitudinal cohorts may lead to identi-
fying novel biomarker of progression or detect finer inclusion criteria for patients (Berg,
Ronald B Postuma, et al. 2015; Heinzel et al. 2019) for future cohorts, and possibly
targeted clinical trials.

Challenges in Parkinson’s Disease statistical analysis

With these longitudinal data, identification of early biomarkers and subtyping of patients is
still not straightforward. Indeed, for subtyping, most clinical studies perform a clustering
task at baseline (Eisinger et al. 2017; Fereshtehnejad, Romenets, J. B. Anang, et al. 2015;
Fereshtehnejad, Zeighami, et al. 2017) and in a second step assess the progression of each
group. By design, these studies cannot capture the differences in dynamics. Regarding the
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assessment of biomarkers precocity, an intuitive method consist in regressing the markers
back in time. However, no such reference time exist in neurodegenerative diseases, and
studies usually choose age at diagnosis (Fereshtehnejad, Yao, et al. 2019; R. Postuma,
Lang, et al. 2012), which still might hide significant differences between patients in terms
of disease stage, and speed of progression.

Taking a step back, these are more general challenges that arise in the context of
longitudinal analysis of medical data, mainly because acquiring data is a hard task in
the first place, and because of the disease inherent heterogeneity. Indeed, as longitudinal
datasets follow patients for a limited time, they include both a left-censorship, with no
data before inclusion in the cohort, typically at diagnosis, and a right-censorship. Then,
the limited time span of patients follow-up compared to the overall disease duration
complicates the analysis. In addition, these patient snapshots may relate to different
non-overlapping phases of the disease (see Figure 3). This temporal un-alignment between
patients complicates the inter-patient comparison, for e.g. subtyping.

Disease progression modeling and time realignment

To cope with these specific issues, a new sub-field of statistics for medicine has emerged,
focusing on the temporal dynamics of diseases, namely disease progression modeling. In
2010, Clifford R. Jack, Knopman, et al. 2010 proposed a first conceptual plot of prodromal
biomarker progression in Alzheimer’s Disease, on the form of sigmoids from a normal
state to abnormality. Sigmoid-like progression occur in cascade, with an ordering between
the biomarkers, reflecting the underlying disease process (e.g. loss of neurons followed by
cognitive symptoms).

Since then, more complex methods have been developed to statistically estimate disease
progression. A first discrete model is the Event Based Models (Fonteijn et al. 2011), which
leverages cross-sectional datasets to estimate the sequence of predefined events, and build
a normative timeline of evolution.

Then, continuous models of progression have been developed by leveraging longitudinal
datasets. They have to cope with the temporal disalignment between patients, whose age
at a given visit tells few information on the disease stage in the case of neurodegenerative
diseases, as shown in Figure 3. Introduced in Jedynak et al. 2012 and used in many disease
progression models (Michael C. Donohue et al. 2014; Guerrero et al. 2016), continous models
typically cope with this issue by learning for each patient an affine reparameterization of
age: ψ : t 7→ αit + τi that best realign subjects according to their disease severity ψ, in
terms of biomarker measurements. This time reparameterization is practical as it includes
few parameters, and ψ becomes then an abstract disease stage. In addition, as αi and τi
are typically considered as random effects in a mixed effect model, the trajectory defined
solely by the fixed effect can be viewed as an abstract, long-term average trajectory of the
population informed by each patient snapshots.

Schiratti, Allassonniere, et al. 2015b propose a longitudinal spatio-temporal model,
generic in the sense that it assumes that data on a smooth Riemannian Manifold, en-
compassing meshes, brain images (Bone, Colliot, and Durrleman 2018) or simply scalar
values. The model posits the existence of a population average trajectory of progression
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Figure 4 – Effect of temporal re-alignment of subjects with regard to their disease stage,
according to an abstract average trajectory (in blue). The longitudinal spatiotemporal
model allows to disentangle temporal variability, accounting for variations in terms of
disease stage, and spatial variability, which is subject-dependent. In this case, spatial
variability is denoted with a subject-specific height and width of the brain. Note that age
is not informative of disease stage.

as a geodesic of the manifold, which may be interpreted as a shortest path trajectory in
a curved space (see Figure 4). Individual trajectories are modeled as "parallels" on the
manifold around this population geodesic, progressing over an abstract disease stage. The
model is a mixed-effect model, and posits disease stage as an affine reparameterization
of age. Most importantly, it offers a theoretical framework to build a system of tubular
spatio-temporal coordinates. Temporal variation account for position on the average
trajectory axis, i.e. in terms of disease stage. On the other hand, "spatial" variations
account for patient-specific variations which are orthogonal to the average trajectory. That
is to say variations from the average trajectory after having performed the affine temporal
re-alignment. Note that both patient temporal parameters and spatial parameters are
considered as random effects in the mixed effect model. In practice, spatial variations are
available in closed form as geometrical transformation of the average trajectory.

Although all models are inherently biased by their underlying assumptions and design,
the multiplicity of approaches yields confidence when results are obtained in independent
models. Europond initiative propose to regroup and promote the sharing of disease
progression models to the community (www.europond.eu). In addition, data challenges
promote sane benchmarking of methods, such as in the Tadpole challengeRazvan V
Marinescu et al. 2018, or PPMI Data challenges.

www.europond.eu
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Thesis Objective

Goals

In this thesis, we aim at building disease progression models to better capture the
heterogeneity of Parkinson’s Disease in terms of patient’s patterns of progression. While
this does not address directly the subtyping and early biomarker identification levers, we
believe that it is a first step toward these tasks. We rely on a conceptual decoupling
between temporal variability and spatial variability by building models with spatio-temporal
coordinates as in (Schiratti, Allassonniere, et al. 2015b). Ultimately, we aim at learning
useful temporal and spatial representations that may then be used for downstream tasks
in PD such as prediction or clustering. On this thesis, we divided this task in three goals:

• Extend the longitudinal spatiotemporal model for relevant real data analysis

• Provide clinical insights using the model. In practice, we aimed to provide better fit
to the data, as well as inspect correlation between interpretable individual parameters
and cofactors of interest representing the physiology of patients.

• Extend the flexibility and application of the longitudinal spatiotemporal model to
high dimensional, multimodal or unlabeled data, leveraging autoencoders, while
trying to find an acceptable trade-off between flexibility and loss of interpretability.

Contributions

We choose as starting point the longitudinal spatiotemporal model of Schiratti, Allas-
sonniere, et al. 2015c, and will keep thorough this thesis the notion of spatiotemporal
coordinate (see Figure 4).

Driven by an application to Parkinson’s Disease markers, we extend in a first work the
spatiotemporal model of Schiratti, Allassonniere, et al. 2015c. Its proposed propagation
model for scalar data designed to model Alzheimer cognitive score progression makes
strong assumptions. First, each biomarker progression follows a sigmoid curve, which
is the standard shape of biomarker progression in neurodegenerative disease since the
hypothesis of Jack Jr et al. 2010, with values ranging from 0 (normal) to 1 (anormal).
Second, the propagation model assumes biomarkers evolve at the same pace: in this way,
each biomarker progression can be parameterized only via a shift of a reference biomarker.
This is a convenient way to order biomarkers according to their “onset”. However, in the
case of markers of different nature, such as DATScan SBR measures the dopaminergic
signal in the striatum, and motor clinical scores, this assumption seems overly simplistic.
To relax this rigidity, we propose to consider different types of progression per marker in
their joint longitudinal modeling. In addition, we handle missing values by leveraging the
generative nature of the model, assuming that they are Missing Completely At Random
(MCAR), i.e. that their missingness is not informative of the marker values.

This paves the way for a clinical application to Parkinson’s Disease. In a first study,
we model the progression of motor abnormalities in prodromal PD patients, and extract a
timeline of progression by defining thresholds of abnormalities for each biomarker. We
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compare our results with those of R. Postuma, Lang, et al. 2012, and confirm face and
voice alterations as early markers, while rigidity was identified as a late maker. In a second
clinical study, we perform a broader analysis to assess the heterogeneity of Parkinson’s
Disease, and include an exhaustive set of biomarkers chosen to represent multiple facets of
disease progression: motor, non-motor, cognition, and imaging. We study the heterogeneity
in terms of spatial and temporal variations from the population trajectory, and identify
sleep and cognition as the symptoms with most variability between patients. Sleep
especially is interesting as it may appear early in the disease. Consequently we assess
the associations between sleep symptoms and individual’s patterns of progression, and
found that sleep symptoms discriminate patient profile of progression, with a significant
difference in non-motor symptoms.

In a second part of our work, we shift to the flexible autoencoder framework for disease
progression modeling, and learn models with spatiotemporal set of a coordinate in the
latent space of an autoencoder as in (Maxime Louis, Couronné, et al. 2019). Indeed,
defining the right theoretical framework to model longitudinal high-dimensional data is a
hard task. The autoencoder alleviates these issues at the cost of proofs of convergence and
theoretical orthogonality between spatial and temporal variations. We first propose to
handle multimodality by aggregating the representations of each modality. However the
joint modeling of multiple modalities with possibly high dimension is especially hard and
for example the Deep Learning approach of (G. Lee et al. 2019) only use scalar markers.
Finally, We extend the model to the self-supervised case, leveraging only the visit ordering
given by the longitudinal setup, breaking free from an explicit mapping between age and
disease stage, such as the above-mentionned affine reparameterization. Furthermore, we
encourage disentanglement in the latent space between temporal and spatial variability,
by learning a single spatial representation per patient, from a random subset of its visits.
The idea of ranking visits is close to LSSL (Zhao, Z. Liu, et al. 2020), which constrains
the latent space by forcing patient trajectories to be parallel via a cosine loss. However,
they only analyze the temporal variability, while we also seek to make sense of the spatial
variability.

Manuscript Overview

Part I: Background

Chapter 1 offers a deeper description of Parkinson’s Disease, and presents current
challenges, such as disease subtyping and prodomal phase study, which are considered
crucial steps toward a better understanding of the disease.
Chapter 2 introduces the longitudinal spatiotemporal model, with underlying notions of
Riemannian Geometry, its instanciations for scalar data, and the estimation procedure.
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Part II: Models of PD progression with low dimensional un-structured
data

Chapter 3 presents our contribution on the longitudinal spatiotemporal model of Schiratti,
Allassonniere, et al. 2015c. We aim at applying the model to PPMI Data on both clinical
and imaging measurements. We propose to relax modeling assumptions of the propagation
model of Schiratti, Allassonniere, et al. 2015c of shared speeds and curve shapes for all
biomarker. Then we propose to handle missing values by leveraging the generative nature
of the model.
Chapter 4 presents the clinical applications of the model. We first review the tools offered
by the longitudinal spatiotemporal model, using individual, subgroups and population
trajectories. Then we present a first application of these methods to study the progression
of motor abnormalities in prodromal patients, i.e. patients at high risk of developing
Parkinson’s Disease, where we build a timeline of motor symptoms apparition. lastly, we
investigate in depth the heterogeneity in terms of patterns of progression in PD, with a
focus on sleep symptoms, that we find strongly associated with non-motor symptoms.

Part III: Longitudinal Autoencoders

Chapter 5 introduces the longitudinal autoencoder. In this framework, we propose to
leverage autoencoders to learn a non-linear mapping between the measurement space and
a low dimensional latent space, assumed Euclidean, constrained to act as spatiotemporal
coordinates of disease progression. Autoencoders alleviate the need for ad-hoc dimensional-
ity reduction methods, and allow to focus on the graphical model in the latent space, that
we set similarly to the one of Schiratti, Allassonniere, et al. 2015b. This flexibility allows to
cope similarly with images or clinical scores but comes at the cost of theoretical properties
such as the loss of exp-parallelization that ensured orthogonality between temporal and
spatial variabilities.
Chapter 6 explores the case of multimodality in the longitudinal autoencoder framework,
by aggregating representations learned on different modalities, such as clinical scores and
imaging modalities.
Chapter 7 proposes to modify the architecture proposed in chapter 5 to relax constraints
set on the graphical model in the latent space. We propose to leverage the longitudinal
setup to rely solely on the visit ordering to learn the disease stage.

Part IV: Software Development: Leaspy

Chapter 8 Presents our software contribution in the form of the Python library Leaspy,
which implements the longitudinal spatiotemporal model.
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In this chapter, we describe in depth the current challenges and results in Parkinson’s
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1.1 Preamble

As of 2017, the prevalence of Parkinson’s Disease is of 6.3 million patients worldwide,
and 1.2 million patients in Europe (Rocca 2018). In France, 150,000 people with PD are
treated in with approximately 25,000 new cases occurring each year (France n.d.). The risk
of death is twice as high as in non-diseased people of comparable age and sex (E. D. Louis
et al. 1997), with a significant impact on young people and women (Schrag et al. 2003).
The average age of diagnosis in France is 58 years (France n.d.). Given the ageing of the
population, the incidence of the disease is rising, leading to an increase in costs (Rocca
2018).

Presently, improvement in patient care would greatly benefit from (Poewe et al. 2017):

• Diagnosing the disease early enough (60% of neurons are already lost at diagnosis)

• Developing preventive treatment before the onset of symptoms

• Developing better treatments of deficits

• Managing patients at the different stages of their disease

which however requires better understanding of the disease mechanisms. Various approaches
aim at tackling these challenges:

• Identifying early prognostic and predictive markers, possibly combining different
modalities

• Identifying genetic and environmental risk factors

• Using digital applications to monitor patients on a daily basis

• extract consistent subtypes of patients

As the physiopathology of Parkinson’s Disease remains for the most part not understood,
especially in its early stages, these approaches are more and more data-based. They
typically rely on building cohorts of patients followed in time from their disease onset, and
if possible even before, to extract statistical signal.

More specifically, we describe in the following two tasks of interest. First, as PD
is very heterogeneous (Berg, Borghammer, et al. 2021; Zetusky, Joseph Jankovic, and
Pirozzolo 1985), subtyping patients in more consistent categories could allow for more
personalized prognosis and treatment (Fereshtehnejad, Zeighami, et al. 2017; Lewis et al.
2005; P. Liu et al. 2011). Second, identifying biomarkers that announce and describe PD
in its earliest stage (Berg, Ronald B Postuma, et al. 2015; Heinzel et al. 2019), such as
predicting on which subtype they belong (Berg, Borghammer, et al. 2021), would offer
more opportunities to develop and apply treatments.
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1.2 Clinical Overview of Parkinson’s Disease

1.2.1 History

Parkinson’s Disease has been first described in 1817 by James Parkinson, which at the
time was known as the "Shaking Palsy" (Parkinson 2002). In the end of the 19th Century,
Charcot refined the description of Parkinson’s Disease, categorizing the motor symptoms of
PD into rigidity, weakness and bradykinesia. He prescribed anticholinergics, which inhibit
the parasympathetic nervous system, and relieved involuntary movement of muscles.

Pathophysiology of Parkinson’s Disease was better understood with the discovering
of Lewy Bodies, abnormal microscopic aggregates of protein, by Friedrich Lewy in 1912
(Holdorff, Rodrigues e Silva, and Dodel 2013). This helped identifying Substantia Nigra
as the main structure affected in the brain in Parkinson’s Disease in 1919 (Goedert et al.
2013).

In the 1950s, research work of Arvid Carlsson allowed better understanding of the
underlying biochemical modifications in the brain, by describing the neurotransmittor
effect of dopamine in Parkinson’s Disease. Parkinsonian symptoms would then be a
consequence of loss of dopaminergic neurons in the Substancia Nigra. He showed that
Levodopa (L-dopa), a dopamine precursor capable of crossing the blood-brain barrier,
could reverse the effects of parkinsonian symptoms, which led to a Nobel prize in 2000.
Since 1967, L-Dopa is used in clinical practice, and led to a revolution in PD patient care.

1.2.2 Diagnostic

No specific test exists to diagnose Parkinson’s disease (Clinic n.d.). A neurologist will
diagnose Parkinson’s disease based on medical history, a review of signs and symptoms,
and a neurological and physical examination.

In the Parkinson’s Progression Marker Initiative (PPMI), a reference longitudinal
cohort in Parkinson’s Disease, to be considered as PD patients, subjects must have at
least two of the following: resting tremor, bradykinesia and rigidity, which matched the
main symptoms of PD described in (J. Jankovic 2008). This diagnostic must be confirmed
with imaging (dopamine transporter SPECT scan) detecting dopamine transporter deficit.
Also, patients with dementia are excluded, as it may suggest another Lewy Body disease.
Note that unilateral symptoms, and positive reaction to levodopa are strong indicators of
Parkinson’s Disease.

1.2.3 Symptoms and Complications

Parkinson’s disease is highly heterogeneous, and as such, symptoms can vary a lot between
individuals. Early symptoms are mild and may remain undetected for a long time. Also,
60% of patients show a clear asymmetry of symptoms at diagnostic (P. N. Lee et al. 2007).
We already mentionned resting tremor, bradykinesia and rigidity as the main symptoms,
but a lot more are reported, either motor or non-motor (K. Ray Chaudhuri et al. 2006).,
which we report on Table 1.1. Note that non-motor symptoms may appear even before
motor symptoms and are assumed to account for a prodromal phase of the disease.
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Motor Non-Motor Cognition Drug-Induced
Primary Bradykinesia Constipation Dyskinesia

Rigidity Sleep Disorders
Resting Tremor REM Sleep Behaviour Disorders

Anxiety
Bladder (Urinary incontinence)

Secondary Gait Dysfunction Smell dysfunction Thinking Difficulties Hallucination
Freezing of Gait Sexual dysfunction Dementia Depression
Speech Change Swallowing problems ICD
Writing Change Chewing and eating problems Daytime sleepiness
Loss of automatic movements Blood Pressure change

Apathy

Table 1.1 – Table of the main symptoms in Parkinson’s Disease, labeled as primary or
secondary depending of the symptoms frequency.

1.2.4 Pathophysiology

The brain dopamine system can be divided schematically into 3 main functional systems:

• Dopaminergic neurons from the substantia nigra pars compacta that project to the
striatum (caudate nucleus and putamen): nigrostriatal circuit, involved in motor
coordination

• Dopamine neurons in the ventral tegmental area (VTA) that project to the limbic
system (nucleus accumbens, amygdala): mesolimbic circuit, involved in memory
and in our motivation behaviour (reward pathway)

• Dopaminergic neurons of the VTA projecting to the cortex, in particular the frontal
cortex: mesocortical circuit, involved in the management of our behavioral reac-
tions.

In normal subject, this nigrostriatal dopamine projection inhibits neurons in the striatum
carrying D2 dopamine receptors (indirect pathway) and activates those carrying D1
dopamine receptors (direct pathway). In addition, this nigrostriatal projection inhibits
cholinergic interneurons in the striatum. Thus, the nigrostriatal dopamine pathway ensures
the proper functioning of the subcortical-thalamocortical motor loop, the result of which
is the cortical activation that causes movement. In Parkinson’s disease, the progressive
degeneration of the nigrostriatal pathway unbalances this subcortical-thalamocortical loop.
The activation of D1 receptors (direct pathway) is reduced as well as the inhibition of D2
receptors (indirect pathway). The medial globus pallidus (GPi) thus receives increased
activation via the indirect pathway and reduced inhibition via the direct pathway. This
results in abnormally high activity of GPi neurons whose gabaergic projection excessively
inhibits thalamic projections. The common efference of the subcortical-thalamocortical
motor loop becomes less functional, resulting in the parkinsonian motor deficit.

Note that the neurodegenerative process goes beyond the nigro-striatal pathway,
explaining the occurrence of other motor signs (e.g. axial signs) and non-motor signs (e.g.
cognitive impairment) that are resistant to dopaminergic treatment.

Oxidative stress is considered to play a major role in this neuronal destruction, a
damaging effect due to the production of free radicals or their inadequate elimination. In
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most cases, the etiology is unknown. The cause is complex and likely to be multifactorial,
either genetic or environmental.

1.2.5 Treatments

Parkinson’s disease is one of the few neurodegenerative diseases that can be treated
symptomatically. The principle of treating Parkinson’s disease is based on compensating
for the dopamine deficit or correcting its consequences. There are various pharmaco-
logical routes: exogenous supply of dopamine precursors (L-dopa), dopamine agonists,
enzymatic inhibitors of dopamine catabolism of monoamine oxidase type B (MAO-B),
inhibitors of Catechol-O-methytransferase (COMT) which potentiate the effects of L-dopa.
Administration is either per os or subcutaneous depending on the drug and the stage
of the disease. All antiparkinsonian drugs have a symptomatic effect by relieving motor
symptoms (akinesia, tremor, rigidity). However, after a phase of improvement known as
the "honeymoon period", patients experience motor complications due to the dopaminergic
therapy, such as motor fluctuations and dyskinesias, which alter their functional outcome
(Group 2004). But few pharmacological interventions exist for people with advanced
Parkinson’s disease. The development of new therapeutic strategies (e.g. cell therapy) is a
major challenge for the coming years. Patient-controlled deep brain stimulation is also
being considered for advanced forms of the disease. The latter has proven its beneficial
effect (Benabid 2003; Deep-Brain Stimulation for Parkinson’s Disease Study Group et al.
2001; Lau et al. 2015; Welter et al. 2015). Its invasive nature is however a limit to its
expansion. We are moving towards a personalised follow-up of parkinsonian treatment
based on a better understanding of pathophysiological mechanisms, also on the integration
of biomarkers such as genetics, risk factors and imaging data.

1.3 Materials

1.3.1 Longitudinal Cohorts

In our work, we used 3 longitudinal datasets, that we detail below, and in Table 1.2.

• Parkinson’s Progression Markers Initiative (PPMI) (Marek, Jennings, et al.
2011): Multicentric study in Noth America.

• Cohort Study to Identify Predictor Factors of Onset and Progression
of Parkinson’s Disease (ICEBERG) : Mono-centric study conducted at the
Pitié-Salpêtrière hospital in France.

• Drug interaction with genes in Parkinson Disease (DIGPD) (Corvol, Ar-
taud, Cormier-Dequaire, Rascol, Durif, Derkinderen, Marques, Bourdain, Brandel,
Pico, et al. 2018b): Multicentric study in France.
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PPMI

The Parkinson’s progression markers initiative (PPMI), a landmark multicentric study
in North America, publicly available through the PPMI web site www.ppmi-info.org
(Marek, Chowdhury, et al. 2018; Marek, Jennings, et al. 2011). Its main objective is to
identify new PD markers of progression, a critical step to accelerate research and measure
advances in disease modifying therapeutics.

As such, it collects clinical and imaging data and biologic samples from various groups
of patients. The study recruited first 423 PD patients, 196 Healthy Controls and 64
Subjects with Scans without Evidence of a Dopaminergic Deficit (SWEDD). It later
recruited 65 prodromal subjects, 39 of which having idiopathic RBD, and 26 patients with
hyposmia. It also aims at recruiting 600 subjects with specific genetic mutations such as
LRRK2, GBA and SNCA, both with and without Parkinson’s Disease.

Beyond allowing data analysis, PPMI establish standardized protocols for acquisition,
transfer and analysis of clinical and imaging data and biological samples, which come from
multiple sites and across multiple cohorts. Its notoriety and availability fosters reproducible
research by sharing these processes with the community. Ideally, other cohorts with similar
processes as PPMI could be used for replication, or pooled together to form bigger cohorts.

ICEBERG

Cohort Study to Identify Predictor Factors of Onset and Progression of Parkinson’s Disease
(ICEBERG) is a mono-centric study conducted at the Pitié-Salpêtrière hospital in Paris,
France. It includes a strong focus on REM Sleep Behaviour Disorders. Its primary
objective consist in the identification of factors that predicts the progression of the disease,
ie rates of change of clinical, imaging and biomic outcomes. It also aims to investigate
the occurences of complications such as falls, freezing, dyskinesias, motor fluctuations,
cognitive impairment and dysautonomia. It includes 360 subjects over a duation of 4 years,
with measurements on an exhaustive set of tests (clinical, imaging, biological samples.
It includes 200 PD patients, 50 subjects with idiopathic Rem-sleep behavior disorder
(iRBD), 30 subjects related to a patient with genetically confirmed Parkinson Disease,
and 50 Healthy controls. Additionally, 30 Patients with Parkinson Disease with a genetic
mutation in parkin, LRRK2, SNCA or GBA are included. A description is available at
https://clinicaltrials.gov/ct2/show/NCT02305147.

DIGPD

Drug interaction with genes in Parkinson Disease (DIGPD) is a multicentric study in
France, aiming at identifying genes associated to disease and treatment complication and
response. It includes 330 subjects followed over 6 years. On these 330 subjects, 200 patients
have idiopathic Parkinson’s disease, 50 idiopathic RBD, 50 are healthy subjects, and 30
have first degree parent of the affected patient with gene mutations (LRRK2 or GBA). A
description is available at https://clinicaltrials.gov/ct2/show/NCT01564992.

www.ppmi-info.org
https://clinicaltrials.gov/ct2/show/NCT02305147
https://clinicaltrials.gov/ct2/show/NCT01564992
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Category Modality PPMI ICEBERG DIGPD
Control Prodromal iPD Control iRBD iPD iPD

Demographics Number of patients 196 65 423 70 56 165 415
Male/Female 70/126 14/51 146/277 31/39 6/50 63/102 167/248
Baseline Age 60.7+-11.2 68.8+-5.8 61.6+-9.7 62.4+-9.3 68.0+-5.5 62.2+-9.3 62.3+-9.8
Disease Duration - - 0.6+-0.5 - - 1.5+-1.0 2.6+-1.5
Number of visits 8.5+-2.2 12.2+-2.9 13.9+-3.6 2.6+-1.3 3.1+-1.4 3.1+-1.5 5.1+-1.9
Duration 6.3+-2.4 4.6+-1.3 6.2+-2.1 1.7+-1.3 2.3+-1.5 2.3+-1.6 4.5+-2.1

Motor MDS-UPDRS III Off (/132) X X X X X X (X)
Scores MD-SUPDRS III On (/132) X X X X X X X
Non-Motor SCOPA-AUT (/69) X X X X X X X
Scores MDS-UPDRS I (/52) X X X X X X X

MDS-UPDRS II (/52) X X X X X X X
RBDSQ (/13) X X X - - - -
RBDHK (/100) - - - X X X -

Cognition MoCA (/30) X X X X X X -
MMSE (/30) - - - (X) (X) (X) X

Imaging MRI X - X - - - -
DATScan - - X - (X) (X) -
DATScan SBR - - X - (X) (X) -

Table 1.2 – Biomarker inclusion in the considered groups of the 3 cohorts PPMI, ICEBERG
and DIGPD. "X" denotes longitudinal measures for biomarkers, while "(X)" denotes only
cross-sectional measures, or very small number of measurements. "-" stands for no data.
Note that prodromal group of PPMI include iRBD patients (n=39), as well as patients
with hyposmia (n=26).

1.3.2 Markers

Markers of disease progression

Neurodegenerative cohorts include a battery of clinical tests, which monitor and measure
clinical symptoms on specific scales. In particular, cohorts built to investigate Parkinson’s
Disease typically monitor motor symptoms in details, but also non-motor symptoms such
as dysautonomia, activities of daily living, depression, and sleep, or cognitive symptoms.
They include imaging modalities, such as DATScan to monitor the loss of dopamine
neurons in the Subtancia Nigra. Note that a "Striatal Binding Ratio" is extracted from
DATScan imaging, scalar measure of the density of neuros in pre-defined areas of the
Substancia Nigra, typically left and right sides of both Putamen and Caudate. Cohorts
also may include IRMs and fMRIs. Also, biological samples are collected, to measure
for example the concentration of α-synuclein. We present the biomarker of the studied
cohorts in Table 1.2, per category.

New promising markers

For the curiosity of the reader, we mention in this section a few new biomarkers in
Parkinson’s Disease, although they have not been used in this thesis.

In (Horsager, Andersen, Knudsen, Skjærbæk, et al. 2020b), the authors perform spe-
cific measurements to validate their theory of "Body First versus Brain First". To that
end, they use very specific imaging biomarkers, unfortunately not present in publicly
available datasets. They use 11C-donepezil PET/CT to assess cholinergic (parasym-
pathetic) innervation, 123I-metaiodobenzylguanidine (MIBG) scintigraphy to measure
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cardiac sympathetic innervation, neuromelanin-sensitive MRI to measure the integrity
of locus coeruleus pigmented neurons, and 18F-dihydroxyphenylalanine (FDOPA) PET
to assess putaminal dopamine storage capacity. They also measure Colon volume and
transit times with CT scans and radiopaque markers. However the study is restricted to
37 patients.

On the other hand, AI based biomarkers offer cheap ways to extract new biomarkers.
First, with the new developments in pose estimation (Y. Du, W. Wang, and Liang Wang
2015; Shahroudy et al. 2016; Shi et al. 2019; Yan, Xiong, and Lin n.d.), it is tempting
to track PD subjects posture via a camera and estimate their motor symptoms using AI
(Mehta et al. 2021). Also, this can be done via smartphone’s gyroscops (Ellis et al. 2015).
This method implies more noise in the data, and the smartphone model factor has to be
taken into account, but the simplicity of use makes it scalable to large cohorts.

More specific to Parkinson’s Disease, and probably occuring earlier, are speech alter-
ations. These have been recently studied in (Jeancolas 2019; H. Zhang et al. 2019), which
show that patterns extracted from speech are predictive of Parkinson’s Disease.

1.3.3 Biases in Parkinson’s Disease longitudinal studies

These longitudinal cohorts provide an invaluable contribution toward a better understand-
ing of the disease. However, we stress that they face issues that should not be forgotten
when performing statistical analysis. We argue that they often have intrinsic biases, mainly
due to the limitation of our current understanding of the disease. We detail in this section
some of them.

First, they include a "temporal" bias, by design, as PD patients are recruited based
on their motor symptoms. In Parkinson’s Disease, diagnosis is suspected when motor
symptoms are over a given threshold, and is confirmed via DATScan Imaging. This means
that the longitudinal biomarker study of Parkinson’s Disease typically begin at the onset
of motor symptoms. However, there is increasing evidence that PD also present non-motor
symptoms, even before conversion. If so, with non-motor symptoms that are part of the
disease, then we miss signal in the pre-diagnosis phase, or also called prodromal phase.

Second, if we build cohorts focusing on pre-diagnostic PD we have biases in population.
Indeed detecting prodromal patients of Parkinson’s Disease is hard, and criteria with
high sensitivity (Berg, Ronald B Postuma, et al. 2015), such as patients with idiopathic
RBD, have rather low specificity, as many patients will rather either develop RBD after
diagnostic or not at all (around half of PD patients). These prodromal cohorts will then
not be representative of the overall heterogeneity of the disease, but rather of a subset.

Third, there is a bias in cognition. Dementia is an exclusion criteria for PD patients
in PPMI and DIGPD, while in ICEBERG it is a MMSE<26. However, it might be that
these cognition symptoms are a side effect of Parkinson’s Disease, and excluding them
removes heterogeneity in the datasets. Patients that ultimately develop dementia could
form a PD subtype.

Lastly, there is a recruitment bias for genetic subgroups. Depending on the population,
GBA+ PD patients account to 8-14% of proven PD, while LRRK2+ account to 2% to
40% (C. Klein and Westenberger 2012). Their scarcity makes them harder to recruit in
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cohorts targeting precisely specific genetic subgroup. As a consequence, inclusion criteria
are relaxed, such as maximum disease duration at baseline. This might generate biases
with subjects having idiopathic Parkinson’s Disease, easier to recruit.

A way to bypass these biases would be to rely on prospective studies (Ronald B
Postuma and Berg 2016), such as UK Biobank (UK Biobank - UK Biobank n.d.). However,
these studies do no focus on a particular disease, and therefore do not provide advanced
biomarkers with high frequency.

1.4 Goals in Parkinson’s Disease Longitudinal Analysis

In this section, in order to situate our work, we present the main research focus in
longitudinal analysis of Parkinson’s Disease:

• Identify early biomarkers of progression. Extracting early and informative
biomarkers of disease progression, would allow earlier recruitment of patients, further
reducing left censorship in the longitudinal data.

• Model the heterogeneity of PD. Accurate modeling of the longitudinal het-
erogeneity of PD would allows for better understanding of the pathophysiological
processes. Currently, this task is mainly approached via subtyping PD subjects into
more consistent subgroups, but disease progression modeling offers an interesting
alternative.

• Prediction. Machine Learning is practical to predict future values, or the arrival of
complications of interest such as falls, freezing of gait, dyskinesias, motor fluctuations,
or cognitive impairment, at e.g. 4 years from now.

1.4.1 Early Biomarkers of progression

First hypotheses on prodromal Parkinson’s Disease

Evidence of a pre-symptomatic, also called prodromal, phase of PD have emerged since
the 2000s. From the analysis of brain dopamine and nigrostriatal damage in Parkinson’s
Disease (Bédard et al. 1969; Bernheimer et al. 1973; Damier et al. 1999; Fearnley and Lees
1991), we already knew that when motor deficits appear, 50 to 60% of the dopaminergic
neurons in the substantia nigra are already lost (Mahlknecht, Seppi, and Poewe 2015).
Initial estimates based on these findings suggested a 5 to 6 year duration of dopaminergic
loss before conversion to PD (Savica, Rocca, and J Eric Ahlskog 2010). This means that
there would be a period where dopaminergic neurons are damaged, but motor symptoms
are mild enough such that PD has not been diagnosed yet. This is of particular relevance
for disease-modifying and neuroprotective therapies, which should be administered at the
earliest stage of the disease.

In 2003, Braak (Braak et al. 2003) posits a topographical propagation model of Lewy
Bodies in the brain from post-mortem samples. According to his eponym hypothesis, lesions
would begin in the dorsal motor nucleus of the glossopharyngeal and vagal nerves and
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Figure 1.1 – Schematic overview of the topological propagation of Lewy Bodies in the
brain during Parkinson’s Disease. The red shading represents the presence of Lewy Bodies.
On the left, in a first phase, Lewy Bodies are found in the viagal nerve and olfactory
bulb, explaining smell loss and the presence of non-motor symtoms. Then Lewy Bodies
propagate until they damage the substancia nigra, leading to sleep and motor disturbances.
Ultimately, propagation until the cortex areas induce dementia. Note that this is an
average scheme derived via post-mortem observations, and it does not encompass the
whole heterogeneity of the disease, as many patient differ from this scenario in terms of
symptoms ordering. (Reproduced from Braak et al. 2003).

anterior olfactory nucleus, and propagate progressively to the cortical area. (cf Figure1.1).
This suggests an early involvement of the peripheral autonomic nervous system, and that
PD starts even before damage to the nigrostriatal cells has initiated. As a consequence,
the disease would first appear with non-motor symptoms (WC Koller 1992; Tolosa et al.
2009), which is backed by the clinical observations of non-motor symptoms such as sleep
disturbance or constipation.

Identification of new prodromal biomarker in PD

From the 2010s, the study of this pre-symptomatic Parkinson’s Disease, called prodromal
PD, has gain interest in the field. According to (Kalia and Anthony E Lang 2016; Ronald B
Postuma and Berg 2016; Savica, Rocca, and J Eric Ahlskog 2010) pre-clinical symptoms
of PD appear up to 10-20 years prior to conversion. Classic diagnosis of PD cannot be
performed yet, but there is increasing evidence that low-intensity signals of the underlying
disease process are present.

It has been known for some time that specific symptoms can increase the risk of
developing PD, such as Rapid Eye Movement (REM) Sleep Behaviour Disorder, refered as
RBD, olfactory loss, constipation, depression and anxiety, erectile dysfunction (Ronald B
Postuma and Berg 2019). In the last decade, extensive research explored in more details



1.4. Goals in Parkinson’s Disease Longitudinal Analysis 33

Figure 1.2 – Timeline of successive phases in prodromal Parkinson’s Disease. The prodromal
phase may begin up to 10 years before conversion to Parkinson’s Disease, with first
symptoms in sleep and autonomic dysfunction (especially constipation). (Reproduced
from Ronald B Postuma and Berg 2016).

the markers of prodromal PD. It refined the analysis of their significance, and also exhibited
the effects of new markers : orthostatic hypotension, urinary dysfunction, low-level motor
symptoms, genetics, and abnormal dopaminergic imaging. (Berg, Ronald B Postuma, et al.
2015; Heinzel et al. 2019; Ronald B Postuma and Berg 2019; Shin et al. 2020). We report
in Figure1.2 the estimated timeline of symptoms arrival in prodromal PD.

The MDS scoring for prodromal Parkinson’s Disease

To accelerate the research on prodromal PD, a generic score, the MDS Research Criteria
for PD, has been proposed (Berg, Ronald B Postuma, et al. 2015; Heinzel et al. 2019). It
is based on a naive bayes classifier, trained to distinguish those who convert to PD and
those who don’t from various identified markers. Naive bayes allow the intuitive product
of likelihood ratios, ranging from gender (1.2) to dopaminergic loss (43.3) and RBD (130)
(see Figure 1.3).

However, the authors underline that naive Bayes assume independence of cofactors. If
it is not the case, probabilities can be under or overestimated. For the majority of markers
the independence assumption seems to hold, but for some, such as sleep or depression, it
is very probable that there is at least correlation, if not causation.

These markers were designed to predict conversion to PD. The question of the specificity
of these markers to Parkinson’s Disease against other synucleopathies araises too (Moscovich
et al. 2020). For example, some might be shared with Dementia with Lewy Bodies, or
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Figure 1.3 – Identified prodromal markers and their score. Markers most indicative of
conversion to PD are "(PSG verified) RBD" (130×), "abnormal substancia nigra on
imaging" (42×), and "orthostatic hypertension" (19×). (Reproduced from Heinzel et al.
2019).

multi-system atrophy, but at different intensities and predictive power.

iRBD as a proxy of prodromal Parkinson’s Disease

Having identified RBD as a strong risk factor of developing PD, several studies recruit
iRBD patient to perform a longitudinal analysis (see subsection1.3.1), as a proxy of general
PD prodromal progression.

In (R. Postuma, Lang, et al. 2012) and (Fereshtehnejad, Yao, et al. 2019), the author
re-align the subjects with their age of conversion to PD, and then look back in time to
estimate the progression of biomarkers, as well as the duration before diagnosis where
these biomarkers become abnormal.

In (R. Postuma, Lang, et al. 2012) the author focus on the progression of motor
markers (subscores od MDS-UPDRS part III) in iRBD patients, and their specificity to
predict conversion to Parkinson’s Disease (see Figure 1.3). They find that Voice/Face is
affected first, at 9.8 (6.7, 29.8) years before conversion, followed by Purdue Pegboard at
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Figure 1.4 – Combined progression trajectory of motor and non-motor manifestations from
prodromal stages to phenoconversion based on actual measurements in a population of
RBD patients. For each biomarker, different regressions are performed with respect to age
at conversion: linear regression, weighted least squares (WLS) regression, and non-linear
third-degree polynomial regression, and more complex ones are used if they provide a
significant increase in R2 (> 10%). (Reproduced from Fereshtehnejad, Yao, et al. 2019).

8.6 (4.5, 87.0) and Alternate Tap Test 8.2 (5.9, 20.2), Times up and go 6.3 (4.8, 12.4) then
Axial-Gait 7.1 (5.6, 10.8), Bradykinesia 5.4 (4.8, 6.5), Rigidity 4.4 (3.9, 5.5) and Gait 4.4
(3.9, 5.4), and lastly tremor.

In (Fereshtehnejad, Yao, et al. 2019), the author perform a more exhaustive modeling
of prodromal biomarker progression on iRBD patients (see fig 1.4). Expressivity of model
is also increased with the use and choice of linear, but also mixed effect and polynomial
models of progression. They also re-align subjects in regard with their date of conversion.
They find that symptoms are first seen in olfaction (-22 years), then Erectile dysfunction
(-16 years), Alternative Tap (-12.9 years), Color vision (-12.8 years) and Constipation
(-10.8 years), and then MDS-UPDRS II (-9.3 years) and MDS-UPDRS III (-6.5 years).

1.4.2 Subtyping Parkinson’s Disease

Why and how to subtype Parkinson’s Disease

There is increasing evidence that clinical and prodromal Parkinson’s Disease are very
heterogeneous, and as such can be classified into subtypes, with possibly different disease
mechanisms, symptoms and patterns of progression (Berg, Borghammer, et al. 2021).

Successful PD subtyping could have important practical implications for clinicians and
researchers. Subtyping at baseline could allow for more personalized medicine, adapting
treatments and prognosis (Qian and Huang 2019). Subtyping from the prodromal stage of
the disease would offer the possibility to perform these tasks even before motor symptom
start. In all cases, this would be an opportunity for a better understanding of disease
aetiology, pathophysiology, possibly leading to developing a curative treatment.

To be successful however, subtyping should be relatively easy to implement, with a
small number of clinical scales to be performed at screening. It should include the smallest
number of subtypes to preserve statistical power and promote reproducibility. At the same
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time, it has to preserve clinical fidelity, and if possible reflects best the pathophysiological
processes that determine the observed heterogeneity of PD (Marras and Anthony Lang
2013).

Subtyping with Motor phenotypes

The idea that subtypes of PD exist, differing in motor symptoms, dates back from as
early as the 1980s (Joseph Jankovic et al. 1990; Zetusky, Joseph Jankovic, and Pirozzolo
1985). Two Parkinson’s motor phenotypes were already clearly distinguished: one with
bradykinesia, postural instability and gait difficulty (PIGD) and another with tremor as
the dominant feature, as a milder form of PD. Also, an intermediate group also referred to
patients in between. The PIGD group report significantly greater subjective intellectual,
motor, and occupational impairment than the tremor group.

To standardize the two main motor subtypes, PIGD and Tremor-Dominant, Stebbins
et al. 2013 posits cutoffs ratios to separate patients between PIGD and Tremor subtypes.

In 2005 (Lewis et al. 2005) proposed a finer grain data-driven clustering of PD subtypes,
leading to 4 subtypes. Since then, other motor subtyping of the disease have been proposed
(Eisinger et al. 2017; Selikhova et al. 2009) with similar subgroups.

Subtyping with Motor and Non-Motor

If the existence of PD motor subtypes seems to make consensus, subtyping with inclusion
of other biomarkers is still under debate. Non-motor symptoms, especially, are very
heterogeneous in the early stages of the disease, and have also been considered to perform
PD subtyping (Marras and K Ray Chaudhuri 2016; Mu et al. 2017; Sauerbier et al. 2016).

A reason for their higher heterogeneity compared to motor symptoms might be that at
disease onset, patients have been realigned with regard to their motor symptom onset,
and not their non-motor symptom onset, as discussed in subsection 1.3.3.

Subtyping with all markers

Clustering studies now incorporate exhaustive sets of markers (Fereshtehnejad, Romenets,
J. B. Anang, et al. 2015; Fereshtehnejad, Zeighami, et al. 2017; P. Liu et al. 2011;
Linbo Wang et al. 2020), showing significant effects of RBD, orthostatic hypotension and
cognition in separating patients. However adding more biomarkers adds difficulty to the
task, especially in the a-posteriori interpretation of clusters.

Indeed, in a review article, Thenganatt and Joseph Jankovic 2014 explain that despite
the increasing litterature on PD subtyping, it remains unclear if identified motor subtypes,
as PIGD and Tremor-dominant, can be consistently extracted with a data-driven method.

Issues of Parkinson’s Disease data-driven clustering

Parkinson’s Disease data-driven clustering faces many issues at the moment.
First and most important would be consistency. In (P. Liu et al. 2011), authors

assessed the relationship between the data driven subtypes they derived and empirically
assigned motor phenotypes. Their 4 cluster solution was in accordance with the work of
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Lewis et al. 2005 and Reijnders et al. 2009 with similar subtypes. However they did not
match the 3 traditional motor phenotypes: tremor dominant, PIGD and indeterminate,
as defined by Joseph Jankovic et al. 1990, so that motor phenotypes did not tend to
group together within their four clusters but were spread across them. This highlights the
non-accordance between the traditional ‘motor phenotype’ method and the most common
subtypes identified by cluster analysis methods (Marras and Anthony Lang 2013).

Closely related is the replicability issue. Replicability is not straightforward between
different cohorts, and separate analysis present all sorts of biases: inclusion criteria, variable
selection, methodology (Qian and Huang 2019), while a-priori subtyping, (e.g. with motor
phenotypes), in a broader line, seem less prone to overfitting the dataset.

Also, on the methodological aspect precisely, taking into account disease duration or
not may be of capital importance. Indeed, markers, especially non-motor ones may present
paths that are not mutually exclusive (Erro et al. 2020). Not including the disease duration
might result in clustering the disease stages, missing the different patterns of progression.
Fereshtehnejad, Zeighami, et al. 2017 for example managed to cluster subjects per speed
of progression. In this spirit, we could argue that cross-sectional clustering, as done in
most studies (Eisinger et al. 2017; Fereshtehnejad, Romenets, J. B. Anang, et al. 2015;
Fereshtehnejad, Zeighami, et al. 2017) cannot capture different patterns of progression
(such as speed) by nature, and only clusters a photography at age t∗i for each patient i of
the cohort. These cross sectional studies can then only hope that the future progressions
will be different between clusters, but cannot cluster directly according to this criteria.
As a consequence, cluster inclusion may change over time (Eisinger et al. 2017). What
is more, these patients may already be at different stages ψ∗i of the disease at baseline.
Linear alignment according to disease duration might be possible, but care should be
taken when extrapolating to unseen patient ages, and with the linear assumption. For all
these reasons, we believe that a longitudinal clustering method could prove beneficial to
the field.

To a broader extent, the community has not yet agreed on well-defined PD subtypes.
This raises the question of which subtype classification is most relevant to the underlying
cause of PD patterns of progression (Marras and Anthony Lang 2013). In a review, Mestre
et al. 2021 even propose to foster individual modeling of PD progression, instead of focusing
on extracting subtypes which do not yet show a clear relevance.

PD Subtypes in the literature

PIGD vs (Intermediate) vs Tremor-dominant As presented in section 1.4.2, a
known motor phenotype in the community separate Tremor dominant subjects, from
PIGD, with eventually an intermediate cluster.

Genetics Although not considered as subtypes of the disease, the main genetic variants,
LRRK2, GBA, and SNCA show supposedly specific patterns of progression. GBA for
instance are supposed to present earlier motor decline than idiopathic PD patients. SNCA
show a very early form of PD. LRRK2 would present a purer motor form of PD, with gait
abnormalities.
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REM Sleep Behaviour Disorder RBD, already described in 1.3.2, has been shown
to be associated with neurodegenerative disease, particularly the synucleinopathies (Boeve
et al. 2007). RBD is predominantly related to brain pontomedullary dysfunction and is
therefore likely a marker of BraakStage II in PD (cf Figure 1.1). RBD is frequent in PD
according to (Moscovich et al. 2020; Sixel-Döring et al. 2011), which report 46% of RBD
in PD patients. RBD can occur early, and the majority of patients that have RBD are
supposed to develop a synucleinopathy (R. Postuma, Gagnon, et al. 2009; Sixel-Döring
et al. 2011). As such, RBD is not only a predictor of the disease, but can be considered
a subtype of PD as well (Berg, Borghammer, et al. 2021; Horsager, Andersen, Knudsen,
Skjærbæk, et al. 2020a; Yoritaka et al. 2009).

Brain First versus Body First Recently, Horsager, Andersen, Knudsen, Skjærbæk,
et al. 2020a proposed that PD is in fact two diseases , with a brain first trajectory,
that corresponds to Braak’s theory, and a body first trajectory, with disease beginning
in the guts, then damaging the autonomic system, while the dopamine is still relatively
untouched (see fig 1.5). They combine precise imaging markers to measure parasympathetic,
sympathetic, locus coeruleus, and the nigro-striatal innervation on 37 de Novo PD patients
to support this theory. Incidentally, PD-RBD+ would correspond to the body first group,
while PD-RBD- would correspond to the brain first type.

1.4.3 Other research focus

Dementia prognosis in Parkinson’s Disease

In 2003, it has been shown in an 8 year study that up to 78% of patient developed
Dementia. The 4 year prevalence of Dementia in PD was already nearly 3 times higher
than in the non-PD group (Aarsland et al. 2003).

Since then, identifying the risk factors of Dementia in PD has been explored (J. B.
Anang et al. 2014). Risk factors such as mild cognitive impairment at baseline, RBD
and orthostatic blood pressure drop were the most significant. Other factors were found
significant : hallucinations before baseline, abnormal color vision, gait abnormalities, falls,
freezing, Purdue Pegboard Test and alternate tap test. Dementia in the iRBD population
has also been assessed with similar risk factors (Ronald B Postuma, Iranzo, et al. 2019).

ICD prognosis in Parkinson’s Disease

Impulse control disorders (ICDs) are a class of psychiatric disorders involving problems
in the self-control of emotions and behaviors. They include addiction, gambling and
compulsive behaviours. They are believed to be mainly due to side effects of PD treatment,
being correlated with dose of Dopamine Agonists (Corvol, Artaud, Cormier-Dequaire,
Rascol, Durif, Derkinderen, Marques, Bourdain, Brandel, Pico, et al. 2018a). Faouzi et al.
2021 propose to predict ICDs with machine learning.
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Figure 1.5 – Schematic overview of Brain First versus Body First Theory. In (A), for the
patients with a body-first form of the disease, abnormalities would begin in the guts, on
the form of Lewy Bodies, and then propagate through the autonomous nervous system to
the locus coreuleus and substantia nigra. iRBD would appear as a prodromal form of this
subtype. In (B), subjects with a brain first form of the disease, progression would begin in
the amygdala, to then propagate to the substancia nigra. This form is close to the one
represented in Figure1.1. (Reproduced from Horsager, Andersen, Knudsen, Skjærbæk,
et al. 2020a).
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In this chapter, we aim at introducing the spatiotemporal model of progression of (Schiratti,
Allassonniere, et al. 2015b). For more details we invite the reader to refer to the thesis
associated to this work (Schiratti 2017), as well as to more recent theses leveraging this
work (Bône 2020; Koval 2020)
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2.1 Mathematical Background

2.1.1 Longitudinal Dataset

Let us first define longitudinal datasets notations, and state the hypotheses on the data
on which we will rely to build our longitudinal spatiotemporal model.

Let us have N patients, each with mi visits. At each visit j of patient i, K modalities
are measured, and reported in the observation vector yi,j = (yi,j,k, k ∈ [1, K]). We
assume that at each visit (i, j), we know the age of the patient, denoted ti,j. We write
Y = {yi,j,k, i ∈ [1, N ], j ∈ [1,mi], k ∈ [1, K]} and T = {ti,j, i ∈ [1, N ], j ∈ [1,mi], so that
the couple (Y , T ) refers to a longitudinal dataset D.

In our application to neuro-degenerative diseases, we use ad-hoc biomarkers that
measure different facets of disease severity. As such, and in the absence of treatment,
we may assume monotonicity in the data with regard to time (see 1.3.2 for details on
the biomarkers), i.e. j2 ≤ j1 ⇔ yi,j2,k ≤ yi,j1,k, ∀k ∈ [1, K] and i ∈ [1, N ]. Note that this
monotonicity will be enforced by design in the longitudinal spatio-temporal model (see
2.2.4)

Although in the general case yi,j might refer to complex data, such as meshes or images,
in our instances of the model, we will restrict to an application to k scalar biomarkers,
such that yi,j,k ∈ R and yi,j ∈ RK .

2.1.2 Mixed Effect Models

In order to build a progression model, one of the simplest method consists in fitting an
Ordinary Least Square regression to map time (and possibly other covariates) to biomarker
values, such that

yi,j = Ati,j + εi,j, εi,j ∼ N (0, σ2), A ∈ R

assuming all visits are independent and identically distributed (iid). However, in our case
it is clear that the iid assumption does not hold because data are structured. Multiple
samples from the same patients are in general not independent, and in practice are likely
to be correlated.

Mixed effect modeling (Fisher 1919/ed) is the reference method when analyzing data
with a group structure. In mixed effect models, we consider that the response follows a
known functional form f that depends on unknown effects θ and z.

yi = f(θ, zi) + εi, εi ∼ N (0, σ2)

These effects are of two different kinds. Some of the effects are "fixed" (same for all
individuals). The other effects are "random" (z), and depend of the individuals (or
subgroups). This modeling is also referred as "hierarchical modeling", where higher levels
(fixed effects) explain more variance than lower levels (random effects).

With longitudinal data, grouped data occur by design, as measurements for a same
individual i are repeatedly observed at different times ti,j . Using time as the only cofactor, a
baseline model is the random slope random intercept model, which consists in a population
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slope and intercept, as well as individual’s slope and intercept which describe individual
variations around the population average (see section 2.1.2).

Throughout this work, we will see the individuals random effects zi as representations of
interest that describe individuals patterns of progression. This raises the issue of building
an adequate modeling of the heterogeneity in patterns of progression, to keep the right
balance between modeling power, and interpretability of these parameters. In the following
sections, we will present the standard mixed effects models. We will then introduce more
complex models to handle more adequately the progression heterogeneity.

Linear Mixed Effect model

In Linear Mixed Effects models (LME) (Laird and Ware 1982a), the functional is assumed
to be linear in both the fixed and random effects. Random effects are typically assumed
to follow a diagonal multivariate normal distribution. The linear mixed effect model then
writes

yi = Xiβ + Zibi + εi (2.1)

with p predictor variables and q ≤ p random effects:

yi patient i observations of size (mi × 1)
bi ∼ N (0, σbI), patient i unknown random effects of size (q × 1)
εi ∼ N (0, σI) gaussian noise, typically diagonal
β unknown vector of fixed effects of size (p× 1)
Xi matrix of covariates of size (ni × p)
Zi matrix of covariates of size (ni × q)

For longitudinal data, a special case of LME is often used, the random-slope random-
intercept model. It separates time-varying and time-in dependant effects with X = (1, ti,j)
and Z = (1, ti,j):

yi,j = (ti,j − t0)(β1 + b1i) + (β2 + b2i) + εi,j (2.2)

For parameter estimation, two cases are distinguished. In the case where the covariance of
the random effects is known the Henderson’s mixed model equations (MME) can be solved
via matrix inversion to yield the best linear unbiased estimates (BLUE) and predictors
(BLUP) for β and u. In the general case covariance is unknown, and Laird and Ware (Laird
and Ware 1982a) propose to use the Expectation-Maximization algorithm (Lindstrom and
Douglas M. Bates 1988).

Non Linear Mixed Effect model

In pharmacokinetics, growth curves, or disease progression modeling, the linear approx-
imation does not always applies and it can be helpful to posit a nonlinear functional
form to better fit the data. Extending the LME framework with non-linear functionals,
namely to Non-linear Mixed Effects models (NMLE) has been proposed (Lindstrom and
Douglas M. Bates 1990a; Pinheiro and Douglas M Bates 1995). However, it requires a
more complex approach for parameter estimation. In the general setting, the model writes



44 CHAPTER 2. Spatiotemporal Model of Disease Progression

:
yi = f(Xi, bi, β) + εi (2.3)

Xi matrix of covariates of size (ni × p)
bi ∼ N (β, σbI), patient i unknown random effects of size (q × 1)
β unknown vector of fixed effects of size (p× 1)
εi ∼ N (0, σI) gaussian noise, typically diagonal

For longitudinal data, a simple non-linear model consist in applying the functional f on
the random slope-random intercept model:

yi,j = f((ti,j − t0)(β1 + b1i) + (β2 + b2i)) + εi,j

Note that estimation is more complex than in the linear case.

2.1.3 Disease Progression Modeling

Challenges in modeling neurodegenerative longitudinal data

LME and NMLE cannot be applied straightforward on neurodegenerative diseases longitu-
dinal data, which include multiple issues. Indeed a classical random slope random intercept
model is hardly enough. First, such model would completely miss the high non-linearity
of biomarker progression. Second, even with an ad-hoc functional, one would still need to
define a reference time-point t0. This t0 would be arbitrary, as no reference timepoint or
disease stage has been defined in Alzheimer’s or Parkinson’s. Then, patients are temporally
unaligned regarding the disease advancement. They are included in longitudinal studies
at possibly different disease stages, and progress at different speeds. Finally, we not only

Figure 2.1 – Illustration of a random slope random intercept model. In this model, t0 is
fixed a-priori.
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aim at modeling clinical marker progression, but also more complex measurements such as
imaging modalities. In the NMLE setup, choosing a functional f with good properties
becomes tricky.

A first conceptual model of neurodegenerative disease progression

In 2010, (Clifford R. Jack, Knopman, et al. 2010) proposed a first conceptual plot of
prodromal biomarker progression in Alzheimer’s Disease, on the form of sigmoids. This
model states clearly that biomarker evolve continuously over the span of the disease.
Importantly, they are dynamic in a sequence, each for a relatively short segment of the
disease timeline. This cascade of eve ts in the biomarkers seen reflects the underlying
disease processes. This view is however hypothetical and comes from the practitioners
experience. Since then statisticians have quantitatively tackled the problem by developing
methods that learn from cohorts of patients, by building on these first insights.

Discrete model: Event Based Models

Close to the "cascade of events" perspective, Event Based Models (EBM) (Fonteijn et al.
2011) offer an intuitive discrete modelization of disease progression, by estimating from the
data the ordering of an a-priori defined set of events, with a first application on Alzheimer’s
Disease. This allows to derive a data-driven time line of disease progression with detail,
and the uncertainty of the estimated order informs about the confidence in the sequence of
events. Since then EBM models have been extended ((A Data-Driven Model of Biomarker
Changes in Sporadic Alzheimer’s Disease - PubMed n.d.; Alexandra L. Young et al. 2015)
and SuStaIn (Uncovering the Heterogeneity and Temporal Complexity of Neurodegenerative
Diseases with Subtype and Stage Inference | Nature Communications n.d.) proposed to
perform patient subtyping by estimating a mixture of timeline. It has been applied to
Huntington disease (Wijeratne et al. 2018), and also more recently to Parkinson’s Disease
(Neil P. Oxtoby et al. 2021). While EBM offer a generative model of disease progression,
they can rely solely cross-sectional cohorts, i.e. cohorts with 1 visit per patient. This
extends their applicability, as cross-sectional cohorts are more frequent, but miss the time
delay between events, which might inform on finer temporal dynamics seen in individuals.

Continuous models

Based on longitudinal cohorts, continous models of biomarkers progression, such as Non
Linear Mixed Effect Models have naturally been proposed. However, they have to cope
with the temporal disalignment between patients, as there is no obvious biological “time
zero” in Alzheimer’s disease. Patients may be included in studies at possibly different
disease stages, and evolve at different speeds. This raises the question of the mathematical
definition of a disease stage. Jedynak et al. 2012 propose the creation of an abstract disease
progression score (DPS), by temporally re-aligning patients in time according to their
biomarker values. Time reparameterization is performed via an affine reparameterization
of age t with si(t) = αit + βi with subject dependant αi and βi. Biomarker evolutions
are then modeled as sigmoid functions of s(t), and estimation is carried jointly on all
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parameters modulo identifiability constraints. The DPS, normalized to have 0 mean and
unit variance may then be used as a biomarker of disease severity. In (Guerrero et al.
2016) and (Michael C. Donohue et al. 2014), authors build non-linear mixed-effect models
using the same form of time reparameterization, by treating patient parameters as random
effects. With this perspective, a long-term average trajectory of disease progression is
derived from the fixed effects of the model, built from possibly short-term patient snapshots.
While the above-mentioned models were focusing on scalar values, such as clinical tests, or
measurements extracted from imaging modalities, the authors of (Răzvan V. Marinescu
et al. 2019) propose to directly model vertexwise or voxelwise trajectories from imaging
modalities. DIVE estimates a common progression pattern for all patients by clustering
vertices of voxels in consistent groups, each group being parameterized by a sigmoid. Then
patients follow this average trajectory modulo an affine reparameterization of time.

The longitudinal spatiotemporal: a generic continous model of progression

Schiratti, Allassonniere, et al. 2015b proposes a Non Linear Mixed Effect Model, namely
the longitudinal spatio-temporal model, generic in the sense that it handles data lying
on a smooth Riemannian Manifold, may it be meshes, brain images (Bone, Colliot, and
Durrleman 2018) or simply intervals of the real line. The model estimates a disease
stage via an affine time reparameterization of patient ages. Most importantly, it offers a
theoretical framework to build a system of spatio-temporal coordinates. Temporal variation
account for position on the average trajectory axis, i.e. in terms of disease stage. On the
other hand, "spatial" variations account for variations which are orthogonal to the average
trajectory. That is to say variations from the average trajectory after having performed the
affine temporal re-alignment. Note that both patient affine reparameterization parameters
and spatial parameters are considered as random effects in the mixed effect model. In
practice, spatial variations are available in close form as geometrical transformation of the
average trajectory.

In the following, we will describe and use the model of Schiratti, Allassonniere, et
al. 2015b. It relies on Riemannian Geometry as an insightful theory to tackle disease
progression modeling, leveraging the notions of geodesics and exp-parallelization in a
Riemannian Manifold.
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2.1.4 Notions of Riemannian Geometry

In machine learning, real data often show underlying structure. We highlight that we
do not speak there about non-iid dataset, but rather of a possibly lower dimensionality
of the data we work with. For example, the space of natural images of size 128x128 is
thought to be smaller than R128×128. We can reasonably assume that this is the case
too for medical data, such as bounded clinical scores of MRIs of the brain (Manifold
Learning of Brain MRIs by Deep Learning). In this spirit, Schiratti, Allassonniere, et al.
2015b assume that the space of measurement is defined by smooth constraints, and do
not behave as a euclidian space. From the point of view of differential geometry, this
space of measurements, defined by smooth constraints, can be seen as a smooth manifold.
Riemannian Geometry offers a theoretically grounded framework to describe such smooth
manifolds, introducing the notions of distance and angles via a Riemannian Metric on
the manifold. Explanation of the concepts of Riemannian Geometry can be found in
Do Carmo: Riemannian Geometry (Carmo 1992).Importantly, Riemanniann geometry
generalizes the notion of straight lines in smooth manifolds with geodesics. Geodesics
can be parameterized via a position on the manifold, and a speed at this point. The
geodesic then follows the path of minimal length along this direction, length of infinitesimal
increments depending on the metric at the given point. This notion of geodesics allow to
perform regression with complex objects that lie on the manifolds (images, shapes of the
heart or hyppocampus). This raises then the question of how to choose and parametrize
manifold and Riemannian metric to be consistent with the data at hand (see 2.2.4).

Smooth Manifolds and Tangent spaces

Definition 2.1.1 (Manifolds) A topological space M is called a d-dimensional manifold
if, for every point p ∈M there exist a neighbourhood U(p) and a homeomorphism x:

x :

{
M → Rd

U(p)→ x(U(p))

We also write dim(M) = d. Intuitively, a d-dimensional manifold is a topological space
which locally looks like Rd. (U, x) is called a local coordinate chart. An atlas A of M is
an indexed family of charts {(Uα, xα)} that covers M , i.e. such that {

⋃
α Uα} = M .

Definition 2.1.2 (Smooth Manifold) A manifold is called a smooth manifold if its
atlas A is C∞, that is, if the transition map y◦x−1 between any two charts (U, x), (V, y) ∈ A2

is C∞.

Thus, a smooth manifold is a topological manifold with a globally defined differential
structure.

Definition 2.1.3 (Tangent Space) Given a smooth manifold M , we can differentiate
a coordinate chart at each point p. The tangent space TpM at p is defined as the space of
all possible velocities ċ(0) for any curve c :]− ε,+ε[→M such that c(0) = p.
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Figure 2.2 – Representation of different manifolds with a tangent space at point p. On
top, intrinsic view of a manifold, with a representation of the tangent space TpM at point
p. On the bottom, we show the sphere of R3 as a 2-dimensional manifold immerged in
R3, which is an example of extrinsic view of a manifold. Note that the two approach are
equivalent. In the following, we will use the intrinsic view for vizualization purposes.

This tangent space TpM provides a linear approximation of the manifold in the neigh-
borhood of p. With p ∈ M and x = (x1, ..., xn) a coordinate system around p, we can
define (Schiratti, Allassonniere, et al. 2015b) a basis B of the tangent space TpM with
the tangent vectors ∂

∂x1
(p), ..., ∂

∂xn
(p). Working in the tangent space is very practical, as it

allows to use the classical tools of linear algebra. However, it should be highlighted that
this tangent space TpM is attached to p, and in general TpM 6= TqM for q 6= p, unlike in
the Euclidian space.

Definition 2.1.4 (Derivation) A derivation D on a smooth manifold M at p is a linear
map D : C∞(M) → R which satisfies the Leibniz rule: ∀(f, g) ∈ C∞(M), D(fg) =
f(p)D(g) +D(f)g(p).

Note that if M ⊂ Rn is an open subset of Rn, and p ∈M then TpM = M , which will
be our case in 2.2.4.

Metrics & Push-Forward

Definition 2.1.5 (Riemannian Metric) A Riemannian metric on a smooth manifold
M is a continous function g of M in the set of symmetric positive-definite bilinear forms
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〈·, ·〉p of TpM .

In other words, for each point p in M , g associates a scalar product of TpM . For
(X, Y ) ∈ (TpM)2 we note 〈X, Y 〉 = gp(X, Y ). This allows to generalize the euclidian scalar
product to smooth manifolds, and thus define norms and angles on smooth manifolds.
With p ∈M and x = (x1, ..., xn) a coordinate system around p, we can define (cf (Schiratti,
Allassonniere, et al. 2015b)) a basis of the tangent space TpM and g(p) writes

g(p) : (X, Y )→
∑
i,j

gi,j(p)(Xi, Yj)

gi,j(p) = 〈 ∂
∂xi

(p),
∂

∂xj
(p)〉

(2.4)

The existence of a Riemannian metric for a smooth manifold M is proven in ??.

Definition 2.1.6 (Riemannian Manifold) We call a Riemannian manifold (M, g) a
manifold M equipped with a Riemannian metric g on M .

Definition 2.1.7 (Push-Forward) Let (M1, g) be a Riemannian manifold, M2 be a
smooth manifold and f : M1 → M2 a diffeomorphism. The push-forward of the metric
gM1 on M2 is the Riemannian metric f∗g defined for all p in M2 by (f∗g)p(X, Y ) =
gM1

f−1(p)(Dp(f
−1) ·X,Dp(f

−1) · Y )) for (X, Y ) ∈ TpM2

In other words, if a diffeomorphism exists between two smooth manifolds M1 and M2,
it can carry a Riemannian metric from one manifold to the other. The push-forward is
a simple way to get a Riemannian metric when closed form of the diffeomorphisms are
available, and we will use this method in 2.2.4.

Parallel Transport

Definition 2.1.8 (Parallel Transport) Let γ : t 7→ γ(t) be a smooth curve onM and X
a vector field along γ(t). The vector field X is said to be parallel along c(t) if ∇γ(t)(X) = 0.

Proposition 2.1.1 (Unicity of Parallel Transport) (Do Carmo Valero, 1992, Propo-
sition 2:6, (Carmo 1992)). Let γ :]0, 1[7→ M be a smooth curve on M. Let w0 ∈ Tγ(0)M .
There exists a unique vector field t 7→ w(t) parallel among γ(t) such that w(0) = w0,
written Pγ,t0,t(w).

This unique tangent vector w0 is "transported" along γ. We write the parallel transport
of w0 from time t0 to time t along γ :

Pγ,t0,t(w) :

{
I → Tγ(t)M
t 7→ w(t)

(2.5)

Note that ∇ refers to the Levi-Civita connection, which generalizes differentials to smooth
manifolds. As such, it follows the Leibniz derivation rule (see Do Carmo (Carmo 1992) for
details).
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Figure 2.3 – Representation of a geodesic γ of M parameterized by its speed γ̇ at position
p. In addition we show a vector w ∈ TpM .

Geodesics & Exponential

Definition 2.1.9 (Geodesics) A geodesic of M is a curve γ : I ∈ R → M with no
acceleration : ∇γ̇ γ̇ = 0, i.e. whose tangent vectors γ̇ remains parallel if transported along
it.

The notion of geodesics is crucial in Riemannian Geometry. One can see geodesics as
straight lines in a curved space, or equivalentely being the shortest path between two
points in this curved space.

Example 2.1.1 (R) In the real line R, geodesics are of the form t→ at+ b

Example 2.1.2 (M ⊂ R) With M ⊂ R and open interval of R, the geodesics of M
are of the form f−1(at + b) with (a, b) ∈ R2, f : M → f(M) ⊂]0,+∞[ an increasing
diffeomorphism (cf (Schiratti, Allassonniere, et al. 2015b))

Existence and unicity of a geodesic given a set of initial condition is shown in (Carmo
1992). For each position p ∈ M , and time t0 ∈ R, there exists an open set U in TpM
such that, for each v ∈ U , there exists a unique geodesic γ : I →M , defined on an open
neighborhood I ∈ R of t0 and such that{

γ(t0) = p
γ̇(t0) = v

(2.6)

We can then write a geodesic with its associated Riemannian Exponential as follows.

Definition 2.1.10 (Riemannian Exponential) Proposition 2:7 (Carmo 1992) Let p ∈
M , t0 ∈ R and v ∈ U ⊂ TpM , the mapping

Expp,t0(v)(·) :

{
I →M
t 7→ Expp,t0(v)(t)

(2.7)
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Figure 2.4 – Illustration of the construction of a parallel variation ηw(γ)(t) of γ with
regard to w. First, w is transported along γ, such that its parallel transport at time
point t writes Pγ,t0,t(w), at position γ(t). Then from γ(t), we follow the Exponential map
ExpMγ(t)(Pγ,t0,t(w)) in the direction Pγ,t0,t(w) to build ηw(γ)(t). The curve t 7→ ηw(γ, ·) is
built from the values ηw(γ)(t). Note that this curve is not necessarily a geodesic of M .

denotes the unique geodesic of M passing at point p ∈ M at time t0 ∈ R with velocity
v ∈ TpM .

A Riemannian exponential, parameterized by (p, t0, v) d

Definition 2.1.11 (Riemannian Exponential) The Exponential map, or Riemman-
nian Exponential at p ∈M is the mapping

Expp(v)(·) :

{
I →M
t 7→ Expp,0(v)(1)

(2.8)

It appears as a special case of the previous definition, with t0 = 0 and looking at the
geodesic at t = 1.

Parallel variation of a geodesic

The notion of variation of a differentiable curve γ on a manifold is defined in (Carmo
1992), Chapter 9. The idea consists in leveraging parallel transport of w ∈ Tγ(t0)M along
γ. The parallel variation of γ in the direction of w writes:

ηw(γ, ·)
{
I →M
t 7→ ExpMγ(t)(Pγ,t0,t(w))

(2.9)

This notion of parallel variation of a geodesic is of particular interest in building a mixed
effect model. Indeed, we will consider in the following that each patient i follow a curve
ηwi(γ, ·) : t 7→ ExpMγ(t)(Pγ,t0,t(w)) that is in this sense "parallel" to a geodesic of reference
γ of M . Parameters (p, v, t0) defining this geodesic will be used as fixed parameters, while
individual parameter wi will account for the random effect, parameterizing the parallel
variation, that we call spatial variation, around γ.
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In our use case, we will have a closed form of both the geodesics and their parallel
transport. Note that in general this is not the case, and parallel transport can then
be approximated using a numerical scheme called Schild’s ladder (Lorenzi, Ayache, and
Pennec 2011).
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(b) Illustration of the exp-parallels of γ in various direction
w. Note that for patient trajectories, time is reparameter-
ized with an affine function ψ to account for this patient
temporal re-alignment with regard to the average trajectory
γ.

Figure 2.5 – A Spatiotemporal model in a Smooth Riemannian Manifold M .

2.2 Building a Riemannian Mixed Effect Model

Schiratti, Allassonniere, et al. 2015b propose to build a disease progression model leveraging
the tools of Riemannian Geometry, assuming data Y lie in a n-dimensional Riemannian
Manifold (M, g). The model proposes to estimate an average trajectory as a geodesic
γp,v,t0(t) = Expp,t0(v)(t) ofM , seen as the overall template of disease progression. Individual
trajectories are modeled as parallel variations (see 2.1.4) from this average trajectory.

2.2.1 Model Geometry

Assume we know the average trajectory γp,v,t0(t) = γ(t). We aim at positioning visits of
patients y with regard to this scenario. Let us define an orthonormal basis B = (e0, ..., en)
of TpM with e0 in the direction of γ̇(t) = v. We can parallel transport the vectors of B
along γ, that we call B(t). Parallel transport along γ preserves the orthogonality of B(t),
with e0(t) parallel to γ̇(t) (see Figure 2.5 (a)). These local coordinates, adapted to the
geodesic γ, are known as Fermi coordinates, and act similarly to cylindrical coordinates in
euclidian spaces. With t ∈ R, w ∈ TpM and w ⊥ γ̇(t0) = v, a patient trajectory write:

ηwi (γ, t) = Expγ(Pγ,t0,t(w))

where Pγ,t0,t(w) denotes the parallel transport of w along γ, and Expγ(Pγ,t0,t(wi)) the
Riemannian exponential in direction Pγ,t0,t(w) at γ(t). This decomposition an be seen
as the orthogonal projection of y to γ, disentangling the temporal component t parallel
to v from the spatial component w belonging to the hyperplane of v. The curves η,
parallel variations of γ derived from the parallel transport of w ∈ Span(v)⊥ are said to be
exp-parallel to γ.

Note that for the spatio-temporal reference frame, t0 does not have a particular meaning,
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in the sense that the model could be defined for any other t∗ = t0 + δt

2.2.2 Statistical Description

Let (Y , T ) be a longitudinal dataset, which is the collection of repeated measurements
(yi,j for each visit j of patient i = 1...N . Each measurement corresponds to a time ti,j
and we assume that yi,j ∈ M with (M, g) a Riemannian Manifold. Measurements are
assumed to be sample points from individual trajectories, which in turns are modeled
as exp-parallelizations of a reference geodesic. Consequently, patients have a constant
spatial coordinate w in the spatiotemporal reference frame. Let us note p, t0, v the
parameters of a reference geodesic γ of (M, g), the model writes:

yi,j = ηwi(γ)(ψi(t)) + εi,j (2.10)

with 

αi = exp(ξi)
ψi(t) = αi(t− τi) + t0
wi = A0,v⊥si

εi,j ∼ N (0, σ)
τi ∼ N (0, στ )
ξi ∼ N (0, σξ)
si ∼ N (0, I)

This model is a two stage hierarchical model, as individual trajectories η are assumed to be
independant spatiotemporal transformations of the population geodesic γ. As explained
in subsection 2.2.1, this modeling disentangles temporal variability and spatial variability.

• temporal variability t 7→ ψ(t) is a time-warping function that encodes the temporal
variability of the individual patient trajectories. It affinely reparameterize a patient
time index ti,j with an onset τi and a pace of progression αi (see effects on Figure2.7,
columns 3 and 4), thus mapping ti,j to a time-point ψi,j on the reference geodesic,
that we will interpret as a disease stage. Note that this temporal re-alignment is
of particular interest for neurodegenerative diseases, where age is not an accurate
marker of disease stage.

• spatial variability wi account for the spatial coordinate of patient i in the reference
spatiotemporal frame. It encodes for η the exp-parallelization of γ, along which
patient i progress (For an example of spatial variability in ]0, 1[2 see Figure 2.7
column 2). To ensure temporal and spatial disentanglement, necessary for the
model identifiability, the condition wi ⊥ v is imposed. This is ensured by defining
wi = A0,v⊥si, with A0,v⊥ of rank Ns < K, and Span(A0,v⊥) ∈ v⊥, with si ∈ RNs .
Specifically, the mixing matrix A0,v⊥si is constructed as a linear combination of
the basis vectors B−e0 , with B−e0 refering to the basis B = (e0, e1, ..., eK) without
its first direction e0 parallel to v. Furthermore, we can set Ns << K to perform
an ICA on wi, as few parameters might suffice to describe the spatial variability,



2.2. Building a Riemannian Mixed Effect Model 55

and to avoid overfitting. In practice, this spatial variability accounts for possibly
different patterns of progression across patients, even after temporal-realignment.
For example, this can take the form of some biomarkers being affected earlier, and
other later than in the reference trajectory.

Note that the distribution of αi is log-normal, in order to ensure positivity of the speeds
of progression.

2.2.3 A mixed effect model

Invididual parameters, which describe geometric variations from the average trajectory,
are modeled as independant samples from normal distributions. Conveniently, the model
falls within the scope of mixed effect model, with:

• Fixed effects θ = (p, t, v, στ , σξ, σ, A0,v⊥)

• Random effects z = (zi), with zi = (ξi, τi, si)

In addition, the model is assumed to be bayesian to ensure existence of a MAP. Priors are
set for the model parameters θ (see (Schiratti, Allassonniere, et al. 2015b) for details).
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2.2.4 Instanciations

Once we have defined this statistical model, the question arise on which manifold do we
assume that our measurements lie ? And which Riemannian metrics should we use on this
manifold ?

We first present the simple one-dimensional manifolds that we use to build the model,
which metrics are given by the associated push-forward (see 2.1). We then show the closed
form of the geodesic of the product manifold of these 1D manifolds, which we will choose
as our average trajectory γ. Random effects of the model, accounting for patient specific
trajectories are modeled as variations around γ.

Property 2.2.1 (Geodesics of open intervals of R) Schiratti, Allassonniere, et al.
2015b. Let M ∈ R an open interval of R and g a Riemannian metric on M . The geodesics
of the one-dimensional Riemannian manifold (M, g) are of the form t→ f−1(at+ b) with
a, b ∈ R2, f an increasing diffeomorphism in C1.

In this section we present the one dimensional manifolds we use in the model. First, note
that we can easily extract the closed form of the geodesics of 1D-Manifolds, provided the
knowledge of a diffeomorphism from R to M (see 2.2.4). In addition, the knowledge of
such diffeomorphism f yields a natural Riemannian metric, given by the push-forward
f∗g

eucl (see section 2.1.4) of the euclidian metric geucl of R to M . Manifolds and their
properties are details in Table 2.1.

The case M = R

In this case f is the identity, and the scalar product is still euclidian, i.e. g = geucl. The

geodesics write : γp,v,t0 :

{
R→ R
t→ p+ v(t− t0)

The case M =]0, 1[

With bounded observations, such as clinical scores on a specific scale, measurements
can be normalized between 0 and 1. We can choose f as the logit function and f−1 :{

R→ ]0, 1[
p→ ln( p

1−p)
with differential Dp(f

−1) : p→ ln( 1
p(1−p)).

The Riemannian metric is given by the definition of the pushforward

(f∗g
eucl)p(u, v) = gf−1(p)M (Dp(f

−1)(u), Dp(f
−1)(v))

= 〈Dp(f
−1)(u), Dp(f

−1)(v)〉eucl
= 〈 u

p(1− p)
,

v

p(1− p)
〉eucl

=
1

p2(1− p)2
〈u, v〉eucl

Thus the metric induced by the push-forward writes

g]0,1[p :

{
TpM× TpM→ R+

(u, v) 7→ gp(u, v) = uG(p)v = u 1
p2(1−p2)v

(2.11)
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I f f−1 (f−1)′ G(p) γp,v,t0

R p p 1 1 p+ v(t− t0)

R+ exp(−p) ln(−p) −1
p

1
p2

p exp(−v
p
(t− t0))

]0, 1[ 1
1+exp(−p) ln( p

1−p) 1
p(1−p)

1
p2(1−p)2 (1 + (1

p
− 1) exp(−v(t−t0)

p(1−p) )−1

Table 2.1 – Description of chosen 1D manifolds. f is the chosen transformation from R
to the 1D-Manifold I, (f−1)′ refers to the pushforward of R to I, and G(p) to the metric
derived from this pushforward.

and the geodesics write

γp,v,t0 :

{
R→M =]0, 1[

t 7→ (1 + (1
p
− 1) exp(−v(t−t0)

p(1−p) )−1
(2.12)

Figure 2.6 – Examples of 1D geodesics on the 1D-Manifolds used. On the left R, on
the middle ]0, 1[, and on the right R+. This leads respectively to linear, sigmoid and
exponential decay curves.

The case M = R+

Similarly to the previous case, we derive the metric and form for the geodesics using the
diffeomorphism p→ exp(−p) (see Table2.1).

Manifold Product of 1D Manifolds

In the previous section, we exhibited the geodesics of the chosen 1D manifolds, with
parameter p, v, t0, which can be used to model the progression of one biomarker. To model
the joint progression of K biomarkers at a time, Schiratti, Allassonniere, et al. 2015b
propose to consider the product manifold M = M1 ×Mk × ... ×MK of 1D manifolds.
This is practical, as the tangent space of this manifold is the cartesian product of the
tangent spaces, and the metric is simply the product metric of these manifolds. This
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Riemannian metric is diagonal, and can be easily computed as the sum of the 1D manifolds
metrics : g(u, v) =

∑
gi(ui, vi) with (ui, vi) ∈M2

i The geodesics of the product manifold
write t → γ(t) = (γ1(t), γ2(t)...γK(t)), with parameter p = (p1, ..., pK), v = (v1, ..., vK)
and t0. Note that t0 is shared between all the geodesics in the 1D manifolds to ensure
identifiabiltity.

Spatial Variability in the Manifold Product

Schiratti, Allassonniere, et al. 2015b assume that all patient progress in the same direction
in the manifold. To this end, the concept of parallel variations in the manifold is used
(see section 2.1.4): Each patient i is assumed to follow a curve, parallel of the average
geodesic γp,v,t0 . Schiratti, Allassonniere, et al. 2015b(IV.2.2.2 Products of one-dimensional
manifolds) show that in the simple case of a product of 1D manifolds, this parallel curve,
parameterized by wi ∈ TpM writes

ηwik (t) = γk(
wi,k
γ̇k(t0)

+ t)

An example of spatial variability in the case of scalar data can be visualized in Figure 2.7,
row 1 column 2.

Basis of TpM and Model Identifiability

Importantly, to ensure identifiability of the model, temporal and spatial variabilities have
to be disentangled. Space shifts are thus requires to meet the orthogonality condition :
gMp (wi, v) = 0 ∀i ∈ [1, N ], i.e. wi ∈ Span(γ̇(t0))

⊥, the N-1 dimentional subspace of TpM
orthogonal to v (in the sense) of the metric gp.

In practice, we use the Householder method to build a basis B = (v,B1, ..., BK) of
TpM .Note that this basis will be updated at each optimization step, as it depends on p and
v. In addition, Schiratti, Allassonniere, et al. 2015b propose to perform an Independent
Component Analysis (ICA) on the w, wi = Asi. Columns of the ICA matrix A will then
be chosen as linear combinations of (B1, ..., BK) to respect the orthogonality condition.
At the same time, the ICA offer a way to perform dimensionality reduction to avoid
overfitting.

Individual patient trajectories

The trajectory of patient i writes

ηwik (t) = γk(
wi,k
γ̇k(t0)

+ t)

We reparametrize patient i time with the affine function ψi : t→ αi(t− τi), so that ηwik (t)
is now traveled at time ψi(t) = αi(t− τi)

ηwik (ψi(t)) = γk(
wi,k
γ̇k(t0)

+ ψi(t))
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For the aboved mentioned manifold product of 1D manifolds, the model writes for patient
i seen at visit j on biomarker k writes

R : (yi,j)k = wi,k + pk + αi(t− τi − t0) + (εi,j)k

]0, 1[: (yi,j)k = (1 + ( 1
pk
− 1) exp

(−
vkαi(ti,j−t0−τi)+(wi)k

pk(1−pk) )−1 + (εi,j)k

R+ : (yi,j)k = pk exp(−wi,k
pk
− vkαi

pk
ti,j − t0 − τi) + (εi,j)k

Note that in the case K = 1, the manifold is a 1D manifold, and the geodesic γ is a 1D
geodesic. We have wi = 0 ∀i ∈ [1, N ], as Span(γ̇(t0))

⊥ = {0}.
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2.2.5 Example on ]0, 1[2

To illustrate the method, we consider a small example in M =]0, 1[2, with the metric
induced by the push-forward of the logit transformation: G(x, y) = 1

x2(1−x)2 + 1
y2(1−y)2 .

Let (Y , T ) be a longitudinal dataset, with at time ti,j, observation yi,j ∈]0, 1[2. As
presented in section 2.2.4, we consider geodesics of M =]0, 1[2 of the form a family of two
sigmoid functions (γ1, γ2). In this simple case, TpM = R2, ∀p ∈M .

We show on the left column of Figure 2.7 a geodesic of ]0, 1[2 with parameters t0 = 70,
p = (0.8, 0.25), v = (0.1, 0.1), both in the data space (extrinsic manifold view, on the top),
and in the manifold ]0, 1[2 on the bottom.

Then, we show the geometric transformation encoded by individual parameters of a
patient i, which longitudinal measurements are shown on the top right plot. In the second
column, we show the effect of wi = (−0.2, 0.05) which encode the spatial variation of the
average geodesic, to build the exp-parallelization ηwi(γ). In the third column, the onset
τi = 3 shifts the time at which ηwi(γ) is seen. It amounts to a delay of all the biomarker
curves at once, as shown on the first row, third column. Then, a speed αi = 0.5 modify
the speed at which ηwi(γ) is travelled. In this case, with αi < 1, progress is slower than
the average, and a smaller portion of ηwi(γ) is seen.

2.2.6 Remarks

Input Data

Typically, the model, implemented in Leaspy (Couronne R n.d.) is run on longitudinal
cohorts with number of patients ranging from a few dozens to a few thousands, with each
having between 3 and 12 visits, on a dozen of different modalities. Another important
factor is the duration on which patients are seen, in regard to the assumed total duration
of their disease. The more each patient snapshots overlap with one another in terms of
disease stage, the better the estimation. Biomarker values of patients across time are
assumed to be monotonous. We handle increasing biomarker, and decreasing ones are
inverted. To use the sigmoid model, we typically perform a min-max normalization, using
theoretical minimum and maximum of biomarkers if available.

Choosing the 1D manifolds

With the product manifold, the model assumes one shape of curve per modality. This
requires a prior knowledge on the data to support this choice. Alternatively, one could
perform an exhaustive cross-validation of all possible choices of curves, according to
some performance metric such as the reconstruction error. However, this problem is
combinatorial, and in practice we choose the shape a-priori.

Setting the number of source

The number of sources is a parameter controlling the flexibility of the model, and thus
its potential over fitting. Setting no source leads to a very rigid model with no spatial
variability, and only a temporal variability. On the contrary, setting K-1 sources saturates
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Span(γ̇(t0))
⊥, and might lead to overfitting if there is too few visit per subject. This

parameter thus needs to be chosen accordingly for the problem at hand, or could be cross
validated to get the best trade-off between reconstruction and number of parameters.

Basis of TpM and mixing matrix A

The basis of TpM is dependant of p and v, and is estimated from scratch at each update
of either p or v (e.g. via the Householder method). In the MCMC-SAEM estimation,
Schiratti, Allassonniere, et al. 2015b assume that the basis varies continuously with p
and v, so that A0,v⊥ , which is built as a linear combination of elements (ek) of basis B−e0 ,
namely the (βk), also varies continuously with p and v.

Figure 2.7 – Description of the model on geodesics of ]0, 1[2 equiped with the induced
metric. On the top row, biomarker model of progression with regard to time. On the
bottom, intrinsic view ofM with geodesics as parametric curves of R2. On the first column,
we show the average trajectory as a geodesic of M , parameterized by p, v, t0. On the
second column, visualization of a spatial variability via the exp-parallelization of γ in the
direction wi = (−0.2, 0.05). On the two last columns, effects of temporal variability. On
the third column, effect of the onset individual parameter τi = 3, which shifts the curves
in time. This spatial variability shifts biomaker curves in time, while ensuring that this
"spatial" variation is orthogonal to the speed v at p ("temporal" variability)in order to
preserve identifiability of the model. On the last column, effect of αi which dilates the
curves from the reference time t0 + τi. In diamond, patient i measurements that we aim
to fit with these successive transformations from the average trajectory.
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The Propagation model

In (Schiratti, Allassonniere, et al. 2015b) they chose to consider the propagation model,
a particular case where all speeds vk are assumed to be the same. At the cost of model
expressivity, this allow to parametrize the average trajectory via only a (shared) speed
of progression, the position of a biomarker of reference, and for each other biomarkers, a
time delay with regard to the biomarker of reference.

extract time deltas between modalities.
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(a) Random slope random intercept model.
(b) Linear Univariate instanciation of the spa-
tiotemporal model.

Figure 2.8 – Comparison between a random slope random intercept model yi,j = (ti,j −
t0)(β1+b1i)+(β2+b2i)+εi,j and a linear univariate instanciation of the spatiotemporal model.
Note that the spatiotemporal model is not linear in the sense of parameters as there is a non-
linear effect between speeds of progression αi and onset τi: yi,j = pi+v(αi(t−t0−τi))+εi,j .

(a) A multivariate model of ]0, 1[5 (b) 5 univariate model of ]0, 1[

Figure 2.9 – Illustration of the difference of parameterization between a multivariate model
of ]0, 1[5 and 5 univariate model of ]0, 1[. The different univariate models have different
timelines, with each additional "t0" reference time parameters. In addition, although not
shown here, each univariate model will have τi and ξi parameters, leading to 10 individual
parameters. On the other hand, the multivariate model will have τi and ξi, as well as
sources of dimension q < K, therefore having at maximum dim= 2 + (5− 1) = 6.
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2.3 Estimation

2.3.1 Statistical Tasks

Given a longitudinal dataset Y = {yi,j}, T = {ti,j}, we distinguish the following estimation
tasks:

• Calibration: Estimate the MAP of θ, given a calibration dataset Y and T . We use
the MCMC-SAEM (Kuhn and Lavielle 2004) algorithm.

θcal = argmaxθ

∫
z

p(D, z, θ; )dz

• Personalization: Estimate the MAP of z, given a personalization dataset Y, T
and θ. Note that the dataset may change between calibration and personalization,
for instance for replication purposes.

z = argmaxzp(z|D; θcal)

• Simulation: Simulate Ysyn, T syn given a real dataset Y and T in input.The synthetic
dataset should mimic the geometrical variability of the real dataset, encoded by the
synthetic random effects zsyn:

zsyn ∼ N (z̄, σz)

2.3.2 Computation of the likelihood

Knowing D, z, θ, the likelihood writes p(D, z, θ) = p(D|z, θ)p(z, θ) so that

L = log p(D, z, θ) = log p(D|z, θ) + log p(z, θ) = Lfit + Lreg

with

Lfit =

p∑
i=0

mi∑
j=0

K∑
k=1

‖yi,j,k − (ηwi (γ) (ψi(ti,j)))k‖2 (2.13)

and Lreg encompassing both random effect regularizations log p(z|θ), as well as bayesian
priors log p(θ) (not taken into account in the sampling step).

2.3.3 Calibration

Rational for MCMC-SAEM

We aim at maximizing the likelihood p(D, θ) =
∫
z
p(D, θ, z)dz. As the intermediate

variable z is not observed, we may want to use EM base methods, that iteratively compute
the form of the expectation

∫
z
log(p(D, z, θ|θ(k))) and then update θ to maximize this

expectation, until convergence. However, in our case there is no closed form of the
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expectation
∫
z
log(p(D, z, θ|θ(k))) due to the non-linear relationship between x and z.

Therefore, SAEM (Delyon, Lavielle, and Moulines 1999) propose to replace the expectation
by a stochastic approximation z ∼ p(z|D, θ(t)). If this approximation is also not available
in closed form, which is the case in our model, (Kuhn and Lavielle 2004) propose the
MCMC-SAEM. Using the Bayes rule yields

p(z|D; θ(k) =
p(D|z; θ(k))p(z; θ(k))

p(D; θ(k))

and p(D, z|θ(k) is known up to the normalizing constant p(D; θ(k)). Thus, MCMC-SAEM
propose to build a Markov Chain using the Metropolis Hastings procedure to sample
z(k+1) ∼ p(z(k)|D, θ(k)).

Appartenance to the curved exponential family

MCMC-SAEM theoretical convergence is proven in (Allassonnière, Kuhn, and Trouvé
2010; Kuhn and Lavielle 2004) for models which belong to the curved exponential family,
i.e. models such that:

log(D, z, θ) = 〈ψ(θ), S(D, z)〉 − logC(θ)

where ψ and C are smooth functions of the parameters and S is a function of the
observations and latent variables called sufficient statistics. Under its current form, the
model does not belong to this family, and we perform an "exponentialization" trick (see
(Schiratti, Allassonniere, et al. 2015b)) so that it becomes the case, injecting θ parameters
in z. Thus zpop = (p, t0, v, β) (β refering to the coefficients of B to get the matrix A0,v⊥

will be treated like random variables, gaussian with a small, fixed variance around their
associated fixed effect: t0 ∼ N (p̄, σp), p ∼ N (p̄, σp), v ∼ N (v̄, σv), β ∼ N (β̄, σβ).

In the MCMC-SAEM, these random variables will be sampled in the expectation step
via Gibbs sampling in the same manner that individual random variables zind = (τ, ξ, s).

The other fixed effects (στ , σξ, σ) are updated in closed form from the sufficient statistics
in the maximization step.

Bayesian priors

In theory, to ensure the existence of a MAP, the model is assumed to be Bayesian,
posing a-priori distributions for the model parameter θ, adding a regularization term in the
likelihood. In practice, the a-priori variance can be large, and in our Leaspy implementation
we do not include them.
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MCMC-SAEM algorithm

Algorithme 1 : MCMCSAEM

input : θ(0), z(k−1) = (z
(k−1)
1 , ..., z

(k−1)
L ) with L variable blocks, initial parameters

θ(0), z(0)

output : θ(k)

Expectation Step;
pour chaque Variable block b faire

Let z = (z
(k)
1 , ..., z

(k)
b−1, z

(k−1)
b , z

(k−1)
b+1 , ...);

Draw candidate zb ∼ N (z
(k−1)
b , σbz) for block b ; // Gibbs Sampling

Let z∗ = (z
(k)
1 , ..., z

(k)
b−1, zb, z

(k−1)
b+1 , ...);

Compute the likelihood ratio α = p(D|z∗,θ(k−1),t)p(z∗|θ(k−1))

p(D|z,θ(k−1),t)p(z|θ(k−1))
;

Draw u ∼ U(0, 1) ; // Metropolis Hastings
si u > α alors

z
(k)
b ← zb ;

sinon
z
(k)
b ← z

(k−1)
b ;

fin
fin
Adapt proposal variances ; // Aim for 30% (Atchadé 2006)

Stochastic Approximation Step
Compute sufficient statistics S(D, z(k));
S(k) ← S(k) + ε(k)S(D, z(k) − S(k−1));

Maximization Step
θ(k+1) = θ(S(k))

Heuristics for initialization

Smart initialization may greatly speed up convergence of the MCMC-SAEM algorithm,
especially for the fixed effects of the model. For scalar data, we use intuitive initialization
heuristics. We choose t0 as the average time ti,j of all visits in the dataset. Then we
perform linear regression on each biomarker of each individual with respect to intercept
and time t− t0 to obtain slopes ai,k and intercepts bi,k. We choose biomarker k’s position
pk as the average of intercepts bi,k and biomarker k’s speed vk as the average of slopes
ai,k. The mixing matrix A is initialized at random in the Span of v = (v0, ..., vK) in TpM .
Individual parameters are initialized at random from the estimated variance of onsets and
speeds only. We set σtau as the standard deviation of times ti,j, and σxi=1. We generate
from gaussian distributions τ ∼ N (0, σtau), ξ ∼ N (0, σxi), and s ∼ N (0, 1).
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Heuristics during optimization: Tempering Scheme

We use tempering in order to speed up the optimization process. We use a deacreasing
linear tempering profile, from T = 3 during the n1 first iterations, and then T = 1 during
the niter − n1 last iterations.

2.3.4 Personalization

In the personalization step, we estimate random effects with the knowledge of a cal-
ibrated model θ̂. Let D = (yi,j, ti,j) be a longitudinal dataset of patients, seen or
unseen in the calibration procedure. For each patient i, we aim at estimating zi =
argmaxzip(θ̂, zi; {yi,j}, {ti,j}) = p({yi,j}, {ti,j}|zi, θ̂)p(zi|θ̂), j ∈ [1,mi]. In practice, we
could use the MCMC-SAEM by sampling only zi’s, but rather rely on classical optimiza-
tion procedure such as L-BFGS or Powell’s method for simplicity. In addition, we also
use optimization procedure informed with the gradient of p(θ̂, zi; {yi,j}, {ti,j}), obtained
via automatic differentiation, to speep up the computations. Note that as in standard
linear mixed effect models, the more visits we have for a patient, the more we weight its
attachment term p({yi,j}, {ti,j}|zi, θ̂) against its regularization term p(zi|θ̂).

2.3.5 Simulation

In the calibration step, we estimate a spatiotemporal reference frame, which encodes an
average trajectory γ(t), as well as the forms of the geometrical transformations ηwi(γ)(ψi(t))
of γ(t), encoded in individual parameters zi. We also estimate the distributions of these
random effects zi, namely στ , σξ, σs. We can then draw sample from this learned
distribution to generate synthetic patient’s individual parameters zsynthetici . Coupled with a
deterministic scheme, or a distribution for time points ti,j, we can generate visits ysynthetici,j

for these synthetic patients.
In low dimension, the method produces quite realistic samples (cf 8.5.3). However, note

that biases naturally occur in longitudinal studies (see 1.3.3), which harm the assumption
that all individual variables are independant, and that they are independant from the
distrubution of times ti,j . Also, note that we could repeat the process by learning possibly
more complex distributions of zi from personalized zi directly, such as with a kernel density
estimation, or gaussian mixtures.
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Part II

PD progression models with low
dimensional un-structured data
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In this chapter, we relax some of the assumptions of the spatiotemporal propagatation model
of (Schiratti, Allassonniere, et al. 2015b) for scalar data. Motivated by an application
to Parkinson’s Disease clinical markers, we allow for different curves and speeds of
progression per biomarkers to be considered. Additionally, we propose to handle missing
data occuring by design in the PPMI cohort by leveraging the generative aspect of our
model, and experimentally assess the model’s resilience to missing values. This work has
been accepted for publication in the proceedings of the 2019 International Symposium
on Biomedical Imaging (ISBI).
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Abstract
Statistical methods have been developed for the analysis of longitudinal data

in neurodegenerative diseases. To cope with the lack of temporal markers - i.e.
to account for subject-specific disease progression in regard to age - a common
strategy consists in realigning the individual sequence data in time. Patient’s
specific trajectories can indeed be seen as spatiotemporal perturbations of the
same normative disease trajectory. However, these models do not easily allow
one to account for multimodal data, which more than often include missing
values. Indeed, it is rare that imaging and clinical examinations for instance are
performed at the same frequency in clinical protocols. Multimodal models also
need to allow a different profile of progression for data with different structure
and representation.

We propose to use a generative mixed effect model that considers the
progression trajectories as curves on a Riemannian Manifold. We use the concept
of product manifold to handle multimodal data, and leverage the generative
aspect of our model to handle missing values. We assess the robusteness of
our methods toward missing values frequency on both synthetic and real data.
Finally we apply our model on a real-world dataset to model Parkinson’s disease
progression from data derived from clinical examination and imaging.

3.1 Introduction

Linear mixed effect model estimated via EM have been introduced for the analysis of
longitudinal data (Laird and Ware 1982b), and later were extended for more flexibility
to the non-linear (Lindstrom and Douglas M. Bates 1990b) case. Well adapted with an
objective time (e.g. relative to an event), they are less adapted to data that do not include
such consistent time event, such as neurodegenerative disease progression. In (Durrleman
et al. 2012; Hong et al. 2014) the concept of Time Warps is introduced to account for age
variability at onset, and in (Lorenzi, Pennec, et al. 2015) a morphological age-shift. However
these Time Shifts are not estimated in the context of a statistical model. Generalization
of LME to Riemannian manifolds were proposed (Singh et al. 2013, 2014), that allows to
consider features defined by smooth constraints, such as images or mesh (Bone, Colliot,
and Durrleman 2018). In (Schiratti, Allassonniere, et al. 2015b), a generic spatio-temporal
model is introduced in the Bayesian framework, modeling the course of biomarker’s
progression as a geodesic, as well as individual variations via parallel transport, travelled
at subject-specific onset and speed with an affine time reparametrization. Although this
approach allows mutivariate data, it assumes the same profile of progression (e.g. linear,
logistic, exponential, etc..) for all coordinates, and does not account for missing values,
leading to the removal of all visits with at least one missing values from the analysis, or to
the use of ad-hoc data imputation procedure. This can be problematic for multimodal
data where missing values (denoted NAs) occur by design of the experiment. We propose
to build on this model to extend its application range, assuming missingness is unrelated
to the data (Missing Completely at Random) (Ibrahim and Molenberghs 2009). We
allow the modeling of the joint progression of features that are assumed to offer different
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evolution profile, and handle the missing values in the context of a generative model.

3.2 Methods

3.2.1 The general model
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Figure 3.1 – Representation of the model on a schematic manifold. Each point ηwi(γ0, t)
is obtained via the continuous transportation of the tangent vector wi along the reference
geodesic γ0 (in red). ηwi(γ0, .) (in purple) is a "parallel" of γ0. The model for patient i
consists then in the trajectory ηwi(γ0, .) travelled at the subject-specific time ψi(t).

In (Schiratti, Allassonniere, et al. 2015c) each data point is seen as a point in a
Riemmannian manifold, denoted yi,j , observation of the i-th subject at its j-th visit. These
points are then considered as noisy samples along an individual trajectory, namely a curve
on the manifold, which in turn is seen as a random spatiotemporal transformation of a
reference geodesic on the manifold. The model yi,j projected on the kth modality can be
written as:

(yi,j)k = (ηwi (γ0) (ψi(ti,j)))k + (εi,j)k (3.1)

where

• γ0 : t→ Expt0,tp0
(v0) is the population average trajectory in the form a the geodesic
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passing at point p0 with velocity v0 at time t0 (Exp denotes the Riemannian expo-
nential as a concise way to write geodesics),

• ηwi (γ0) : t → ExpPt0,tγ0
(wi) = ExpPγ0

(
P t0,t
γ0

(wi)
)
is the exp-parallelisation of the

geodesic γ0 in the subject-specific direction wi, called space-shift, as depicted in
Fig 3.1. (P t0,t

γ0
(wi) denotes the parallel transport of the vector wi along the curve γ0

from γ0(t0) to γ0(t)),

• ψi : t → αi(t − t0 − τi) + t0 is a time-reparameterizing function, where αi is a
subject-specific acceleration factor and τi a subject-specific time-shift.

ηwi and ψi define a spatiotemporal transformation of the average trajectory. To assure
a unique decomposition through both the spatial and temporal transformation, the wi are
chosen orthogonal to v0 in the tangent space at p0. A spatiotemporal transformation of
the reference trajectory to the ith patient trajectory is then parametrized by the individual
parameters τi, αi and wi. A time-shift τi represents the delay at onset relative to t0 for the
individual i, to distinguish between individuals with early or late onset. The αi models
the speed at which the trajectory of individual i is travelled. Then the space-shifts wi
accounts for variations in position of the individual trajectory, and model difference in
patters of disease progression between individuals. Normal distributions are chosen as
priors for τi, wi and ξi with αi = exp(ξi). These parameters are the random effects of the
model, whereas γ0 is the fixed effect, parametrized by p0, v0 and t0.

3.2.2 Manifold Product for multivariate Data

Dealing with a longitudinal and multimodal dataset, we wish to analyze at once the
temporal progression of a family of N features, with possibly different evolution profile.
Thus at the difference of (Schiratti, Allassonniere, et al. 2015c) we consider manifold
product that are not necessarily the product of the same univariate manifold M . Each
feature k is described by repeated univariate observations yi,j,k on Mk that are considered
as random perturbations along each trajectory. For each feature we prescribe a user-defined
profile of progression (e.g. straight line, exponential decay, logistic). Ignoring missing
values at the moment, each individual observations can be represented as a N-dimensional
vector (yi,j)1≤i≤p, that is considered as random perturbation of quantities lying on the
product manifold M = M1 ×M2 × ... ×MN equipped with the product metric. The
product manifold gives geodesics of the form {γ : t ∈ R → (γ1(t), γ2(t), ..., γN(t))} on
M = M1×M2× ...×MN equipped with the product metric. γk is the (univariate) geodesic
which goes through point pk ∈Mk at time t0 and velocity vk.

3.2.3 Missing Data

When missing values occur at time ti,j, only a subset of yi,j if visible, we note mi,j these
modalities. We decide to handle missing data in the context of our generative model, and
compute the likelihood with visible data. The goodness of fit at a given visit vi,j, at time
ti,j for the kth modality writes ‖yi,j,k − (ηwi (γ0) (ψi(ti,j)))k‖2, and for the entire goodness
of fit :
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Lfit =

p∑
i=0

li∑
j=0

∑
k∈mi,j

‖yi,j,k − (ηwi (γ0) (ψi(ti,j)))k‖2 (3.2)

with li the number of visits of the ith patient. We see in Eq 3.2 that the likelihood is
informed only by available data while taking into account all the information available
and without imputing missing values with ad-hoc procedures.

3.2.4 Estimation

Estimation of model parameters is done via the use of a stochastic version of the
Expectation-Maximization Algorithm, namely the MCMC-SAEM algorithm (Kuhn and
Lavielle 2004), that seeks to maximize the likelihood L = Lfit + Lprior. MCMC-SAEM
iterates in 3 steps : simulation, approximation and maximization. It simulates first candi-
date individual variables, that are then accepted or rejected according to a probability
function of the likelihood ratio. Then sufficient statistics are extracted from the current
variables. Finally the current estimates of the parameters are maximized.

3.3 Results

Figure 3.2 – Bootstrap distribution (b=100) of errors of estimation for population parame-
ters (p0,v0,t0) and individual parameters τi and ξi according to subsampling frequency on
an artificial dataset. Parameter values are taken close to estimation on real-world data.
The second modality is assigned to NAs at various frequency to compare performance
worsening between the naive method (boxplots on the left), and the generative modeling
method (boxplots on the right).

3.3.1 Experiment methodology

We propose to evaluate the method by pruning existing datasets and comparing the
performance in the estimation between removing all visits with at least one missing value
(naive method) or taking into account these missing values via our generative model
(generative modeling method). From our experience that NAs occur mainly by design in
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neurodegenerative diseases datasets, we decide to prune the datasets by assigning chosen
modalities to missing values at various (visit) frequencies.

In the 2 following experiments we use normalized scores on M =]0, 1[ with a metric
ensuring that geodesics take the form of a logistic curve for each coordinate, so with
pk = (p0)k and vk = (v0)k the multivariate model writes :

(yi,j)k = (1 + (
1

pk
− 1) exp

(− vkαi(ti,j−t0−τi)+(wi)k
pk(1−pk) )−1 + (εi,j)k (3.3)

3.3.2 Synthetic Data

We produce synthetic data by simulating random-effects from their prior distribution and
generating sample with the model. We generate a synthetic cohort of p=300 patients with
12 visits of 2 modalities each, occurring regularly on 4 years. Patient’s age at beginning
of the study are chosen arbitrarily as samples from a N (78, 5). We choose as initial
parameters p∗0 = [0.4, 0.3], t∗0 = 78, v∗0 = [0.03, 0.04], σ = 0.1, σξ = 1, στ = 5.

For each period in [2, 3, 4, 6] we prune the dataset by assigning the second modality to
a missing value every period of time, yielding datasets with patients that have respectively
6, 4, 3 and 2 visits with NAs. For each one of the obtained dataset, we bootstrap at the
patient level the estimation procedure (6000 iterations) to obtain bootstrap distribution of
relative estimation errors for both methods. The relative error is computed for each step of
the bootstrap as followed : ‖v0−v

∗
0‖

‖v∗0‖
, ‖p0−p

∗
0‖

‖p0∗‖ , ‖t0−t
∗
0‖

‖t0∗‖ for the main population parameters,

and ‖ξ−ξ
∗‖

‖ξ‖ and ‖τ−τ
∗‖

‖τ‖ for individual parameters.
Results are reported in Fig 3.2. We observe that population parameter’s estimation

is quite robust to pruning, with a significant difference in performance only visible from
period = 6 (2 visits per subjects). On the individual parameters the difference is more
striking, the generative modeling approach showing more robustness toward pruning
already with only 1 over 2 visits removed.

3.3.3 Real Data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. For up-to-date information, see www.adni-
info.org.

We perform a similar experiment to a real dataset from ADNI1 cohort, consisting in
4 normalized neuropsychological test scores extracted from the ADAS-Cog, respectively
associated with memory, language, praxis and concentration. Criteria for patient selection
in ADNI1 was mild cognitive impairment at baseline and conversion to AD during the
course of the study (MCI-converter), which led to 248 individuals. Patients are followed for
an average of 6 visits and the dataset does not include any missing values. True parameters
are not known, so we use as a proxy parameters estimated from a run of the estimation
procedure on the entire dataset. Similarly to the previous experiment (6000 iterations,
same estimation parameters), we subsample patients with NAs at various frequencies,
discarding patients that are left with less than 2 visits without NAs and observe the
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bootstrap distribution of the resulting estimation error in Fig 3.3. Results show the same
trend as with synthetic data, although estimation error is higher.

Figure 3.3 – Bootstrap distribution (b=100) of errors of estimation for population parame-
ters (p0,v0,t0) and individual parameters τi and ξi according to subsampling frequency on
a real (ADNI) dataset. The 4 modalities used are subscores of the ADAS-COG accounting
respectively for memory, praxis, language and concentration. 2nd, 3rd and 4th modalities
are assigned to NAs at various frequency to compare performance worsening between the
naive method and the generative modeling method.

3.3.4 Application to PPMI

Data used in the preparation of this article were obtained from the Parkinson’s Progression
Markers Initiative (PPMI) database. (www.ppmi-info.org/data). For up-to-date infor-
mation on the study, visit www.ppmi-info.org. From the PPMI cohort we extract 362
parkinsonian patients followed in average for 12 visits spread out on 4.6 years, yielding a
total of 4441 visits. We model the joint progression of Parkinson’s disease for 2 biomark-
ers, a motor score, namely the MDS-UPDRS part 3 (MDS) and an imaging score, the
Right Caudate Striatal Binding Ratio (SBR). We normalize the data between 0 and the
theoretical max for the motor score MDS-UPDRS part 3, and the empirical max for the
Striatal Binding Ratio. We choose to prescribe a logistic profile for the motor score, as
such assessments are designed to be sensitive to the transition from normal to disease
state. By contrast, there is no such assumption for imaging data, that we assume to decay
in a linear fashion. MDS contains 151 NAs, while SBR includes 3202 NAs. We run our
multivariate sigmoid model to model the progression of these modalities at once (6000
iterations), which we represent in Fig 3.4, and obtain a resulting noise variance σMDS,SBR

is 0.00341, the same magnitude than the noise variance on univariate features only, with
σMDS = 0.00318 and σSBR = 0.00502. We observe a positive correlation between the
acceleration factor ξi and age at diagnostic (p = 3.010−2), meaning subjects with later
onset will progress faster. Furthermore, studying correlations with biological covariables
we find the alpha-synuclein mean level to correlate with subject’s onset (p = 4.710−4).
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Figure 3.4 – In wide plain lines the mean geodesic estimated for PPMI PD patients on 2
modalities : MDS-UPDRS Score and Right Caudate SBR obtained from DatScan, and
described by population parameters p0 = [p00, p

1
0], v0 = [v00, v

1
0] and t0. The observations

(in dotted lines) and individual models (in narrow lines) of 3 patients are also plotted.

3.4 conclusion
We extended on a Bayesian non-linear mixed-effect model to allow the joint estimation of
disease progression model on data with heterogeneous evolution profile. In practice such
multimodal data include missing values by design. Instead of using ad-hoc method for
data imputation, the generative statistical modeling allows to estimate model parameters
by comparing generated data with observations only when they are available. Robustness
analysis of the method is performed via the increasing pruning of existing dataset, while
the variance of the performance is represented as a bootstrap distribution. The proposed
method shows lower performance error in both synthetic and real-world data. This
advocates for an extended use of the model, applicable to multimodal data with sparse
design. We use thus our model to analyse the main PPMI modalities (motor, non-motor,
imaging), and find that individidual parameters correlates with age of diagnosis and
alpha-synuclein levels.
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In this chapter, we present the clinical applications performed in this thesis. The first
section recalls the main tools offered by the model for longitudinal data analysis. The second
section presents a first work on motor abnormalities in early Parkinson’s Disease, which
led to an oral presentation at Alzheimer’s Disease/Parkinson’s Disease (ADPD)
in 2019. Finally, the last section introduces our last work on quantifying PD heterogeneity
over a broad range of markers, in PPMI, ICEBERG and DIGPD cohorts.
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4.1 Tools for clinical applications

In the two previous chapter, we introduced and extended a bayesian mixed-effect longitudinal
model for scalar valued biomarkers. In this section, we briefly present how we used the
longitudinal model to extract quantitative insights on longitudinal cohorts. We will rely on
those methods for Parkinson’s Disease data analysis in sections 4.2 and 4.3.

4.1.1 Data inclusion

In order to model Parkinson’s Disease progression, we first need to select the clinically
relevant data, used to train the model. In practice, to estimate a disease progression model,
we select all subjects with the disease under study, excluding the healthy controls, on a
carefully chosen set of biomarker linked with disease severity. We explain our rational in
more details below.

Biomarkers

Recall that in neurodegenerative diseases longitudinal cohorts, exhaustive sets of biomarkers
are measured. Some are cross-sectional, measured only at baseline (e.g. genotype, right-
handeness...). Other are measured longitudinally, such as subject vitals, cognition, or motor
scores. Among the biomarker measured longitudinally, most important are those assumed
to directly measure disease severity (motor scales for Parkinson’s Disease), or indirectly
(protein Tau in Alzheimer’s). Intuitively, a good longitudinal biomarker indicative of
disease severity would evolve from 0 (healthy), to a value, say 1, indicating maximum
severity for this particular biomarker.

As we want to model the disease progression, we focus on biomarkers indicative of
disease severity, thus assumed to increase over time in patients, fitting our monotonicity
assumption. In practice we choose biomarkers offering an overview for the specific task at
hand. Including more biomarker would allow for finer granularity which may come handy,
such as with clustering tasks, but a reasonable duration for model estimation limits the
number of biomarker to a maximum of a few dozens.

Patient inclusion

An age matched, healthy control group is often available in longitudinal cohorts for
comparison. One could consider to estimate a model including both healthy controls and
patients with the disease under study. Doing so, an average scenario of progression of this
bi-modal group would be estimated. Healthy controls have biomarker values close to 0
provided biomarkers measure disease severity. Consequently, they would be temporally
re-aligned at the very beginning of the average scenario, and assumed to follow the same
trajectory as patients, i.e. to become ill at some point. This assumption generally does
not hold, and a joint modeling of the 2 groups should take into account this bimodal
distribution.
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We prefer the second option of estimating an average scenario solely on the patient
group. We then see this average scenario, that depends on the arbitrary set of biomarkers
we chose, as well as the patients included, as a proxy of disease progression.

Note that even if we do not include healthy controls, biomarkers are imperfect, and
some are strongly linked with normal ageing (e.g. cognition), which then becomes hard to
disentangle from disease progression. What we model is then rather the overall temporal
variability of patients, encompassing both disease progression and normal ageing.

4.1.2 Overview of clinical applications

Recall that given a dataset D = (Y , T ), and assuming our assumptions of monotonicity
and normalization hold with the chosen biomarkers (see section 1.3.2) we can estimate
fixed effects θ of the model in a calibration procedure to obtain the average trajectory γ(t).
Then we can estimate the individual parameters zi of a set of patients in a personalization
procedure, yielding their individual trajectories ηwi(γ)(ψi(t)). We write zG, wG, αG, τG
for the respective averages of zi, wi, αi, τi over the patients belonging to group G, and
assuming we know cutoffs {ck, k = 1, ..., K} that indicate abnormality thresholds for each
biomarker k, we can perform the following clinically relevant tasks:

• Group regression : γ(t)
Example : How do biomarker progress in average in Parkinson’s Disease?

• Progression heterogeneity : θ
Example : What is the distribution of speed of progression across patients ? Of age
at disease onset ? How do they differ in terms of patterns of progression ?

• Population sequence of abnormalities : γ(t), {ck, k = 1, ..., K}
Example : What is the typical ordering of symptoms in Parkinson’s Disease and its
variability ?

• Individual regression : ηwi(γ)(ψi(t))
Example : What motor score will this particular patient have 4 years from now ?

• Subgroup regression : ηwG(γ)(ψG(t))
Example : How do biomarker progress in this particular set of patients ?

• Subgroup sequence of abnormality : ηwG(γ)(ψG(t)), {ck, k = 1, ..., K}
Example : What is the typical ordering of symptoms for this particular subgroup ?

• Covariate analysis : zi
Example : Is a genetic subtype linked with specific patterns of progression of the
disease ? Are older patient at baseline following different patterns of progression ?
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Figure 4.1 – Data points are assumed to lie on manifold M , and patients follow trajectories
ηwiγ (t) (3) parallel to the average trajectory γ(t) (1). For a group G2 of patients, we
propose to average their spatial representations {wi, i ∈ G2} to build the group average
trajectory (2). In plain line we show the intervals of trajectories where data was seen, in
terms of disease stage, and in dotted lines, parts of trajectories where no data was seen.
With color red and grey we highlight groups of patients: G2 encompasses red trajectories,
while G1 englobes grey ones. Modeling the data with the model in the plain line zone
accounts for interpolation task, that we can perform at the 3 levels: individual, group or
average, for e.g. missing data imputation. Modeling the data with the model outside the
plain line zone accounts for extrapolation, may it be in the future, for prognosis, or in the
past, to try to estimate how the disease start.

Group regression

The average trajectory γ(t) describes quantitatively the longitudinal cohort it is trained on.
This normative scenario shows a continuous and increasing progression of biomarkers over
reparametrized age ψ. We call this reparametrized age ψ a "Disease Age", which can be
understood as a disease stage. Individual trajectories are modeled as geometric variations
around this average scenario that fit inviduals measurements. The model is a mixed-effect
model, and individual parameters zi encoding these geometric variations are assumed to
follow a normal N (0, σzI), which acts as regularization. Thus, the average trajectory can
be understood as a Frechet mean of individuals trajectories, with a-priori assumption of a
family of progression curves and geometric transformations. From a clinical point of view,
we see γ(t) as our average patient.

Individual regressions

Recall that individual parameter zi = (wi, αi, τi) encode temporal variability with (αi, τi)
and spatial variability with wi. The trajectory of patient i is defined by wi, and traveled
at reparameterized time ψi(t) = αi(t− τi) : ηwi(γ)(ψi(t)).

Knowing zi allows to perform interpolation for patient i, that may come handy to
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impute missing data via the generative model. Is also allows extrapolation tasks, such
as predicting future value of a biomarker. The model was used to win a prize in the
Tadpole Challenge https://tadpole.grand-challenge.org/, which aim at predicting
future cognition in Alzheimer’s Disease. However, our model assumptions of smooth
increasing progression might not hold, especially if we predict at reparameterized age
unseen in the training set. This way, predicting future cognition in Alzheimer’s disease is
especially hard as it can deteriorate quickly from a certain breaking point, that might be
hard to predict a-priori.

Progression Heterogeneity

Parameters zi are assumed to follow a normal N (0, σzI). The estimated scaling parameter
are thus indicative of the heterogeneity of the population. It informs us of temporal
variability: στ indicates how different patient ages are, when patient have been re-aligned
for disease stage. σα indicates the range of speed in biomarker progression. Also, σw is
informative of biomarker-wise variations from the average trajectory, which can help detect
biomarkers with high heterogeneity in the population. For example in Parkinson’s Disease
(see 4.3), cognition (MoCA) and sleep (RBDSQ) show the highest spatial variability in
the population of Parkinson’s Disease patients, with regard to motor (MDS-UDPRS III)
or imaging biomarkers.

Note that we assume unimodal distributions of each individual parameters, but it could
also be possible to relax the gaussian hypothesis for a mixture of gaussians, which would
allow for unsupervised clustering of individuals.

Cofactor Analysis

Knowing the extent of longitudinal heterogeneity in our dataset, it is tempting to correlate
this heterogeneity, in the form of zi with known cofactors, such as patient phenotypes or
genetic subtypes. Note that as zi encode interpretable, geometrical variations from the
average scenario, and this is very useful in analyzing the correlation results.

Subgroup Scenario of progression

As mentioned above, we saw γ(t) as the "average" patient. In the same manner, we
propose to compute a patient subgroup G trajectory using the expectation of zi over the
group G. 

τG = E[τi]
αG = E[αi]
wG = E[wG]

We can then perform the same regression and abnormality arrival analysis as the average
scenario of progression.

https://tadpole.grand-challenge.org/
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Timeline of abnormalities in the normative scenario

We have an average model of progression γ(t) which describes the continous progression
of biomarkers over time. However this does not answer the question of when biomarkers
become abnormal, and in which order ?

In (Schiratti, Allassonniere, et al. 2015b), this issue is handled by enforcing the same
speed for all biomarker, which are then modeled by the same sigmoid curve, only shifted in
time. However, this comes at the cost of model flexibility, which is useful with biomarkers
of different nature, that evolve naturally at different speeds.

If we use sigmoids, we could also consider 0.5, the inflexion point of our biomarker
curves, to be used as reference point for each biomarkers. But biomarker scales may have
very different meanings, and some might not even reach the value 0.5 in the course of the
disease. For example a MoCA value of 15/30 indicate an extreme severity of cognition
symptoms, and is rearely reached in Parkinson’s Disease.

Provided only γ(t), answering the question of the ordering of symptoms would require
expert knowledge of which biomarker values indicate abnormalities. We propose to estimate
cutoffs of abnormalities for each biomarker directly from the data. We consider 2 different
simple methods to estimate these cutoffs that rely on (age-matched) control biomarkers
values at baseline. The first option consist in simply computing the 95% percentile of the
control biomarkers at baseline. However, it might happen that biomarker distribution at
baseline of controls and patients overlap, and this is the case with biomarkers linked with
normal ageing, such as cognition. Thus we also consider as second option, consisting in
using the cutoff of a balanced logistic regression trained to classify, for each biomarker
separately, healthy controls and patients. We argue that both option are valid, keeping in
mind how they were obtained to interpret the results.

Once we have these cutoffs {ck, k = 1, ..., K}, we can compute the times at which the
average scenario intersects these cutoffs to get "Disease Age" of abnormalities for each
biomarker, and order them. To take into account both the variability in data and model
estimation, we propose to boostrap the process, yielding boostrap distributions of Disease
Age at abnormality for each biomarker. In Figure 4.2, we choose the logistic regression
method to get the cutoffs, and biomarker 1 becomes abnormal at around 50 in Disease
Age, while biomarker 2 becomes abnormal at around 60.
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Figure 4.2 – Illustration of the use of pathological thresholds to build a timeline of
abnormalities (shown in D). First a longitudinal spatiotemporal model is trained on the
patient longitudinal data (C). Then a logistic regression method determines the thresholds
that best separate control from patients data at baseline for each endpoint (A,B). The
thresholds are reported on the y-axis of the average trajectory (C). The Disease Age at
which the endpoint become pathological is determined (C). We report the series of PA for
each endpoint together with the bootstrap confidence interval on the reference timeline
(D).
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4.2 Progression Model of Motor Abnormalities in Pro-
dromal PD

In this section we illustrate the use of the timeline of abnormalities to better understand
the early motor stages of Parkinson’s Disease. We build the timeline on prodromal patients
of PPMI. Prodromal patients are assumed to develop at some point a Lewy Body disease,
mostly Parkinson’s Disease. They are chosen in PPMI as either having RBD (n=38) or
hypsomia (n=31) We focus on the motor biomarkers, and by ordering their timing of
abnormality, we estimate which happen at the earliest stage of the disease. This work led
to an oral presentation at Alzheimer’s Disease/Parkinson’s Disease (ADPD) in
2019.

4.2.1 Introduction

Figure 4.3 – Example of 4 iRBD patient data. Each graph shows the values of a given
patient. In color we show the normalized values of the motor score MDS-UPDRS part
III (yellow), and subscores of the MDS-UPDRS part III: Rigidity (kaki), Bradykinesia
(red), Gait (green), and Voice-Face (blue). A Parkinsonism level (PSLVL) score is plotted
in plain grey. We see that these scores are inherently noisy, and that patient are not
necessarily at the same stages of the diseases.

We estimate a normative progression of motor abnormalities in Parkinson Disease
prodromal phase using sub-scores of the MDS-UPDRS scale. PPMI study includes
longitudinal MDS-UPDRS sub-scores for PD (n=423), Control (n=196) and Prodromal
(n=65) cohorts. We use a multivariate non-linear bayesian mixed-effect model (Schiratti,
Allassonniere, et al. 2015b) to estimate at once the longitudinal progression of MDS and
MDS-subscores. It is built on the nomalization of multiple short-term data sequences
with individual time-reparameterization functions that account for variations in age at
symptoms onset and pace of progression.
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Figure 4.4 – Normative scenario of biomarker’s progression in prodromal PD patients
with regard to "Prodromal Age". We compute each biomarker abnormality cutoff value
as a the 95% quantile on the control group. We then look at intersections between the
normative scenario and these cutoffs values of abnormalities to get timings of abnormalities
(diamonds icons). For scale, we add on the normative scenario the reparametrized events
of conversion to the last 3 stages of Parkinsonism Level (PSLVL): 3 (may be PD), 2 (Likely
PD), and 1 (PD).

4.2.2 Method

We estimate a normative scenario of progression from the 65 prodromal subjects, and refer
to "Prodromal Age" for the index in the timeline of the normative model of progression. We
compute the times of intersection between the normative progression model and abnormal
values (above 95 percentile on control group) to assess an abnormality timing for each
modality. Finally we bootstrap the process (p=500) to account for sampling bias and
stochastic variations in the estimation algorithm, and obtain confidence intervals. We
compute both the normative progression scenario and abnormality timings (see Figure
4.4). We then assess via bootstrap the distribution of these timings (see Figure 4.5).

4.2.3 Results and Discussion

Relatively to PD conversion, we find that Voice-Face modality is affected first, with median
time to conversion of 9.2 years. Then Gait, Bradykinesia, MDS-UPDRS and Rigidity at
respectively 7.3, 6.1, 4.6 and 2.9 years before conversion (see Fig 4.5). We were able to
assess the progression of motor scores on the PPMI prodromal cohort using a longitudinal
model with patient’s specific time reparametrization. Results obtained here are specific to
prodromal subjects, and may not be representative of the other types of PD progression.
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Figure 4.5 – On the left, bootstrap distribution of "Prodromal Ages" at abnormality for
each motor marker. Bootstrap distribution is shown with a kernel density estimation.
Both population variability and estimation variability are captured in the bootstrap
procedure.On the right, bootstrap distribution of "Prodromal Ages" at abnormality for
each motor marker, relatively to the reparameterized event of conversion to Parkinson’s
Disease. Boxplots representing Prodromal Ages at conversion to PSLVL values of 3, 2, 1 are
also added. In this case distributions are shown with boxplots. Relatively to PD conversion,
we find that Voice-Face modality is affected first, with median time to conversion of 9.2
years. Then Gait, Bradykinesia, MDS-UPDRS and Rigidity at respectively 7.3, 6.1, 4.6
and 2.9 years before conversion. Note that we show in these graphs the variability of the
population parameters, and not the inter-patient variability, which would be higher, and
with more overlapping between the different biomarkers.

Our method R. Postuma, Lang, et al. 2012
Voice/face 9.2 (4.6-14) 9.8 (6.7-29.8)
Gait 7.3 (2.1-12) 4.4 (3.9-5.4)
Bradykinesia 6.1 (1.6-11) 5.4 (4.8-6.5)
MDS-UPDRS part III 4.6 (0.45-8.5) 4.5 (3.7-5.6)
Rigidity 2.9 (2-7.1) 4.4 (3.9-5.5)

Table 4.1 – On the left, estimated Prodromal Years between arrival of abnormalities and
conversion to PD. On the right, estimated duration in years between abnormalities and
conversion to PD using independant linear regressions (R. Postuma, Lang, et al. 2012).
Our results are in a general agreement with those of a previous study from R. Postuma,
Lang, et al. 2012, with still one difference in the ordering between Gait abnormalities and
Bradykinesia.
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4.3 Variability in the progression of clinical and imag-
ing biomarkers in Parkinson’s disease

In this section, we present our clinical application work on leveraging the spatiotempo-
ral model to uncover the heterogeneity in Parkinson’s Disease progression, with a focus
on sleep symptoms. This work was already supported by accepted abstracts at Virtual
Physiological Human 2020, International Congress of Parkinson’s Disease and
Movement Disorders 2020 and Compage 2020. This section presents a broader work
encompassing these contributions, for later submission to a clinical journal.

4.3.1 Introduction

It is widely assumed that Parkinson’s disease (PD), like most neurodegenerative diseases,
has a long prodromal phase during which neuropathological (Braak et al. 2003) and clinical
(Berg, Ronald B Postuma, et al. 2015) changes develop slowly. The presence of this long
prodromal phase suggests that disease-modifying interventions aiming to alter the course
of the disease would be desirable as soon as possible, perhaps even at the pre-symptomatic
stage. Although disease-modifying treatments are not yet available in PD, it is therefore
important to generate precise models of the course of the disease in order to facilitate
future therapeutic trials at an early stage of the disease.

The most influential model was based on neuropathology (Braak et al. 2003). This
model postulates that the pathological process gradually progresses from peripheral
autonomic neurons to the medulla oblongata and pons before affecting the substantia nigra
(Charles H. Adler and Beach 2016; Braak et al. 2003). In neuropathological studies, the
estimated duration of the pre-symptomatic phase in the substantia nigra was estimated
at 4.7 (Fearnley and Lees 1991) and 5.0 years (Greffard et al. 2006). Similarly, using
neuromelanin-sensitive MRI and calculation of nigral volume loss, neurodegeneration in
the nigra was estimated to start 5.3 years before disease diagnosis (Biondetti et al. 2020).
PET studies have reported longer pre-symptomatic phases ranging from 5.6 (Hilker et al.
2005) to 10.0 years (Fuente-Fernández et al. 2011) supporting the hypothesis that damage
to dopaminergic axons precedes cell death in the SN (Zou et al. 2016).

The common hypothesis is that the sequence of functional and anatomical alterations
in the brain translates into the progressive onset of several motor and non-motor symptoms
including autonomic dysfunction and cognitive impairments. Unfortunately, the Braak’s
unitary vision of the pathogenesis does not explain the large heterogeneity that is observed
in the disease presentation (Greenland, Williams-Gray, and Barker 2019; G. Halliday
et al. 2008; G. M. Halliday and McCann 2010). The sequence and timing of motor and
non-motor symptoms shows great variability across patients, and therefore are particularly
difficult to predict.

Several approaches have been used to model this variability. Survival analyses were
proposed to predict the risk to develop a particular aspect of the disease such as cognitive
decline or loss of autonomy within a pre-defined time period. These methods showed
accuracies of the order of 85% in predicting such risks from a series of clinical endpoints
assessed at one time-point close to diagnosis (Latourelle et al. 2017; G. Liu et al. 2017;
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Macleod et al. 2018; Velseboer et al. 2016). They confirmed the variability in disease
presentation, and the fact that the patient trajectory was partly predictable using patient’s
data at time of diagnosis. Models of disease progression aiming to describe the continuous
progression of biomarkers over time were used for instance to simulate how treatments
might change the progression of the motor impairments assessed by the unified Parkinson’s
disease rating scale (UPDRS) during a clinical trial (Cilia et al. 2020; Venuto et al. 2016).
Such an approach has been followed recently to describe the long-term progression of a series
of clinical endpoints from the prodromal to the clinical stage of the disease (Fereshtehnejad,
Yao, et al. 2019). The authors proposed a general scheme of PD progression starting
with hyposmia and sleep disorders, followed by dysautonomia, motor impairment and
eventually cognitive decline. Subtyping is another approach to summarize the heterogeneity
in disease progression profiles with a small set of disease subtypes. The general approach
is to cluster patients’ data at baseline, and then show that the rates of change of the
biomarkers differ significantly between clusters (Aleksovski et al. 2018; De Pablo-Fernández
et al. 2019; Duarte Folle et al. 2019; Fereshtehnejad, Romenets, J. B. M. Anang, et al.
2015; Lawton et al. 2018). These methods successfully exhibited stereotypic progression
profiles, for instance a motor-predominant less severe form of the disease compared to a
diffuse severe ‘malignant’ form with greater cognitive impairment, RBD and dysautonomia
(Fereshtehnejad, Zeighami, et al. 2017).

In this paper, we propose a multivariate model showing the progression of four imaging
biomarkers and eight clinical endpoints assessing both motor and non-motor symptoms
from the prodromal to the clinical stage of the disease. The model describes the range
of likely trajectories of these 12 biomarkers during disease progression as observed in
916 patients from three independent data sets. In lieu of the simplifying procedure of
subtyping, we considered that each subject followed a different trajectory characterized by
a specific age at onset, pace of progression and specific timing and ordering of the different
biomarkers. The model describes the range of biomarker trajectories in a continuous
fashion.

The proposed model is an application of a novel statistical learning technique called
disease course mapping (Schiratti, Allassonniere, et al. 2015a; Schiratti, Allassonnière, et al.
2017). It extends disease-modeling methods to a multivariate analysis. It addresses specific
issues of the multivariate analysis of longitudinal data by uniquely identifying variations
due to differences in the dynamics of progression (e.g. age at onset and pace of progression)
and due to different disease presentation (e.g. relative timing among biomarkers). It has
been applied for similar purposes in the field of Alzheimer (Koval, Bône, et al. 2021) and
Huntington disease (Koval, Dighiero-Brecht, et al. 2021). It allows the forecasting of future
cognitive decline in subjects with mild cognitive impairments with better accuracy than
56 competing methods (Koval, Bône, et al. 2021). It allows more powered clinical trial
design by selecting of participants with more homogeneous progression profiles than with
current selection methods (Koval, Dighiero-Brecht, et al. 2021). This technique is applied
here for the first time in the field of Parkinson disease (PD) to explore the variability of
progression profiles within the idiopathic PD population. It is used further to position the
trajectories of idiopathic RBD (iRBD) subjects with respect to the distribution of PD
trajectories.
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4.3.2 Materials and Methods

Participants

We used data from three independent longitudinal studies: Parkinson’s progression markers
initiative PPMI, a multicenter study in North America, DIGPD DIGPD (Corvol, Artaud,
Cormier-Dequaire, Rascol, Durif, Derkinderen, Marques, Bourdain, Brandel, Pico, et al.
2018b), a multicenter study in France, and ICEBERG a single-center study conducted at
the Paris Brain Institute (ICM), France ICEBERG. We included all consecutive patients
with idiopathic Parkinson disease (PD) of PPMI (n=423), DIGPD (n=415) and ICEBERG
(n=165) studies, idiopathic rapid eye movement Sleep Behavior Disorder patients (iRBD)
of PPMI (n=39), as well as the healthy controls of PPMI (n=196) and ICEBERG (n=70).
Patients were excluded if they had only one visit available.

Selection of the endpoints

We selected all available endpoints among the following set of 12 endpoints:

• activities of daily living: (1) part I of the MDS-Unified Parkinson’s Disease Rating
Scale – MDS-UPDRS (MDS-UPDRS I), (2) part II of the MDS-UPDRS (MDS-
UPDRS II)

• motor: part III of the MDS-UPDRS in off state (MDS-UPDRS III Off) and on state
(MDS-UPDRS III On),

• autonomic: scale for outcomes in Parkinson disease– autonomic dysfunction sub-scale
(SCOPA-AUT)

• cognitive: (1) Montreal cognitive assessment (MoCA), (2) mini-mental state exami-
nation (MMSE)

• sleep dysfunction: the RBD screening questionnaire (RBDSQ)

• imaging: striatal binding ratios (SBR) in putamen and caudate nucleus measured
by dopamine transporter scan in the ipsi or contra lateral hemisphere (Put. Ipsi,
Put. Contra, Caud. Ipsi, Caud. Contra respectively)

For practical purposes, we grouped these endpoints in three categories: ‘body’, ‘brain’
and ‘imaging’. ‘Body’ endpoints referred to MDS-UPDRS I, SCOPA-AUT and RBDSQ,
which described the main non-motor symptoms of the disease, and whose early onset was
assumed to indicate a “body-first” subtype (Berg, Borghammer, et al. 2021; Horsager,
Andersen, Knudsen, Skjærbæk, et al. 2020a). ‘Brain’ endpoints included MDS-UPDRS III
in Off and On states, as well as cognition (MoCA and MMSE), which reflected the classic
pattern of Parkinson’s Disease progression from the Braak’s model (Braak et al. 2003).
Finally, ‘imaging’ endpoints included putamen and caudate SBR.

https://www.ppmi-info.org
https://clinicaltrials.gov/ct2/show/NCT01564992
https://clinicaltrials.gov/ct2/show/NCT02305147


92 CHAPTER 4. Clinical applications on Parkinson’s Disease

Definition of the RBD status

We subdivided PD patients in two subgroups depending on whether they developed PD
with or without RBD. In PPMI, we labeled PDRBD+ the PD patients which maximal
RBDSQ score over the course of the study was higher or equal to 6 in a scale of 13
(Stiasny-Kolster et al. 2007). In ICEBERG and DIGPD, we used the RBD diagnosis
reported by a clinician as label.

Data normalization

All endpoints were supposed to decrease or increase monotonically over the disease course.
We converted them to a scale between 0 (normal value) and 1 (maximum pathological
change).

For clinical endpoints of all cohorts, normal values and maximum pathological changes
corresponded to the range of the scale: MDS-UPDRS I: 0-52, MDS-UPDRS II: 0-52,
MDS-UPDRS III: 0-108, SCOPA: 0-69, RBDSQ: 0-13, MoCA: 0-31, MMSE: 0-30.

For imaging biomarkers, we set to 0 (normal value) the average SBR of control subjects
at baseline, and 1 (maximum pathological change) a null SBR. SBR measurements were
inverted and rescaled to this 0 to 1 scale.

Disease course mapping

We applied to these data a disease modeling technique called disease course mapping
(Schiratti, Allassonniere, et al. 2015a; Schiratti, Allassonnière, et al. 2017). This technique
has been used to map the range of likely trajectories of Alzheimer and Huntington disease
(Koval, Bône, et al. 2021; Koval, Dighiero-Brecht, et al. 2021). It was applied here in the
area of Parkinson disease.

Disease course mapping takes as input a longitudinal data set with several endpoints.
It outputs a typical model of progression in the form of a series of logistic curves starting
from the most normal value and ending at the maximum pathological change (see Figure
4.6).

Three series of parameters change the relative shape and position of these curves to
account for the phenotypic differences across patients and variations in their progression
(see Figure 4.6):

• one time-shift showing how early or late is the disease onset assessed by taking all
endpoints into account,

• one acceleration factor, showing how fast or slow is the progression assessed by
taking all endpoints into account,

• one inter-marker spacing for each endpoint, showing how early or late is the
onset of the endpoint relatively to the other ones, for a normalized age at onset and
pace of progression.

A time-shift of 1 year (resp. -1 year) means that endpoints overall, after correcting for
inter-marker spacing and pace of progression, reach the same values one year after (resp.
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Figure 4.6 – Positioning of a subject in the PD Course Map. A) The typical progression
of two biomarkers (blue and yellow) is shown by plain logistic curves together with the
corresponding biomarker values of one subject at 5 successive visits. Biomarker values are
normalized so that 0 corresponds to the most normal value and 1 the maximal pathological
changes (see Methods). B-to-D) A series of operations allow us to transform the model
to fit the subject data and therefore determine the subject’s specific trajectory. The
inter-marker spacings change the time interval between the two curves (B), the time-shift
translates the curves (C) and the acceleration factor stretches the curves (D). The last
two operations map the actual age of the patient to his Parkinsonian Age. We estimate
the shape and position of the logistic curves, so that the average time-shift, inter-marker
spacing, and log-acceleration factor for all subjects in the training longitudinal data set is
zero.
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before) the typical patient. An acceleration factor of 2 (resp. 0.5) means that the same
changes in the endpoints take twice less time (resp. twice more time) to occur compared to
the typical scenario. An inter-marker spacing of 1 year (resp. -1 year) for a given endpoint
means that the changes of this endpoint occur one year after (resp. before) than in the
typical scenario, all other thing being equal.

The first two parameters (time-shift and acceleration factor) map the actual age of the
patient at a given visit to a Parkinsonian age (PA), which is an index in the timeline of the
typical model of progression. It can be understood as a disease stage that is independent of
the phenotype of the subject. Inter-marker spacing captures the variations in the disease
presentation.

We estimated together the typical model of progression (population parameters) and
the distributions of the subject parameters (individual parameters) given longitudinal data
(Schiratti, Allassonniere, et al. 2015a). The result was a distribution of likely trajectories
derived from the typical trajectory, which was called a PD Course Map. We determined
the subject’s trajectory in the PD Course Map by computing estimates of the individual
parameters from the repeated observation of this subject. PD Course Map estimation
did not require that data were evenly sampled in time, or that the sampling was uniform
across subjects. It did not need imputation of missing values as the model likelihood was
informed with the available data only (Couronne et al. 2019).

We computed confidence intervals of the population and individual parameters using a
bootstrap method with 50 resampling steps.

We shared an open-source python library designed to estimate disease Course Maps
from longitudinal data at https://gitlab.com/icm-institute/aramislab/leaspy/.

Pathological thresholds

We estimated a pathological threshold for all endpoints. We contrasted values at baseline
of the considered endpoint between the control group and the PD group in the PPMI
and ICEBERG data set. We used a balanced logistic regression to estimate the cut-off
value that best separate the two groups. Values above this threshold were considered
pathological (Clifford R. Jack, Wiste, et al. 2017; Martínez-Martín et al. 2015). We used
these thresholds to determine the Parkinsonian Age at which a given endpoint become
pathological in PD Course Maps.

PD Course Maps

We built two PD Course Maps:

• A multimodal course map using both clinical and imaging endpoints in all
selected PD patients in the PPMI data set: MDS-UPDRS I, MDS-UPDRS II, MDS-
UPDRS III Off, MDS-UPDRS III On, SCOPA-AUT MoCA, RBDSQ, Put. Ipsi, Put.
Contra, Caud. Ipsi, and Caud. Contra.

• A multi-domain clinical course map using only clinical endpoints in all selected
PD patients in the PPMI, ICEBERG and DIGPD data sets: MDS-UPDRS I, MDS-

https://gitlab.com/icm-institute/aramislab/leaspy/
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UPDRS II, MDS-UPDRS III Off, MDS-UPDRS III On, SCOPA-AUT and MoCA
and MMSE.

Note that in the multi-domain course map, no MMSE endpoint was available in PPMI,
while DIGPD did not include MoCA assessment, and only few MDS-UPDRS III Off
observations. We still concatenated all PD patients of the 3 cohorts, and as mentioned
above we treated the lack of endpoints as missing values, which are conveniently handled
by PD Course Map.

We computed the average Parkinson Age corresponding to the actual age at which
patients experience first symptoms and are diagnosed as PD. Eventually, we used the
multimodal course map to position the iRBD subjects from PPMI with respect to the PD
patients.

Comparison of PDRBD+ and PDRBD- patient progression

To compare PDRBD+ and PDRBD- patients, we analyzed each individual parameter from
the multimodal course map using the ANOVA method with RBD status, age at baseline
and sex as cofactors. We added the cohort as cofactor for the analysis of the individual
parameters from the multi-domain clinical map. In all cases, we used the Bonferroni
method to correct for testing each individual parameter. Significance level was set to 5%
after correction. We transformed the typical scenario of progression with the average of
the individual parameters in each group. We obtained two scenarios that we superimposed
on the same timeline to illustrate the differences of progression between both groups. All
results are presented as mean ± standard deviation.

4.3.3 Results

Study Subjects

From the total of 1003 PD patients, we excluded 27 patients in DIGPD (5.5%) and 40 in
ICEBERG (24.2%) because they had only one visit. For the same reason, we removed
1 iRBD (2.6%) patient in PPMI. We considered all 70 healthy controls from ICEBERG
and 196 from PPMI, as we did not model their longitudinal progression, but only use
their baseline biomarker values to estimate cutoffs of abnormality. Thus analyses were
performed on 936 PD patients (all subjects in PPMI, 388 PD in DIGPD and 125 PD in
ICEBERG), 38 iRBD and all control subjects (196 in PPMI and 70 in ICEBERG).

PD Patient characteristics

Subjects’ characteristics are presented in Table 4.2. At baseline, there was no significant
difference in age distribution between groups of patients in the three cohorts, at the
exception of PPMI iRBD patients, which are older than other groups (in average 7.8 years
older than their PD counterpart in PPMI). Gender balance was similar in all groups of
patients except PPMI iRBD with 16% of men (proportion of men: 35% in PPMI, 37%
in both ICEBERG and DIGPD for PD patients; 36% in PPMI and 44% in ICEBERG
for healthy controls). PD patients in ICEBERG and DIGPD had slightly higher disease
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Table 4.2 – Characteristics of the data sets. For each biomarker, we report the average and
standard deviation at baseline. In PPMI, medications are not given from baseline, and
therefore the first value seen for MDS-UPDRS III On accounts for a later age, in average
2.0±1.3 years later than baseline. This explains in PPMI the higher value of MDS-UPDRS
III On than MDS-UPDRS III Off. Abbreviations: SBR = striatal binding ratio, y = years.
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Figure 4.7 – Multimodal disease course map trained on PPMI showing the progressive
onset of clinical endpoints and imaging biomarkers from pre-symptomatic to post-diagnosis
stages. Left panel: the progression of the endpoints from the most normal (0) to the
maximum pathological changes (1) is shown as Parkinsonian Age progresses. Shaded
areas correspond to 95% bootstrap confidence interval. Right panel: the timing at which
endpoints become abnormal is shown with 95% confidence intervals. Vertical lines indicate
the estimated Parkinsonian Age of first symptoms (light red) and of diagnosis to PD (dark
red).

durations (1.5 ± 1.0 and 2.6 ± 1.5 years respectively) than in PPMI patients (0.6 ± 0.5
years). In PD patients, follow-up duration was 6.2 ± 2.1 years with 13.9 ± 3.6 visits in
PPMI, 4.8 ± 1.8 years with 5.4 ± 1.7 visits in DIGPD, and 3.0 ± 1.2 years with 3.8 ± 1.0
visits in ICEBERG. In iRBD patients of PPMI, follow-up duration was 4.8 ± 0.8 years
over 12.7 ± 1.7 visits. In PD patients, there was a total of 529 PDRBD+ patients (278 in
PPMI, 61 in ICEBERG and 190 in DIGPD) and 404 PDRBD- patients (145 in PPMI,
64 in ICEBERG, 198 in DIGPD). Most biomarker values at baseline were significantly
different between cohorts (Mann Whitney U-Test, Supplementary Table 4.4). Biomarkers
severity was lower in PPMI than in DIGPD and ICEBERG because disease duration at
baseline was shorter in PPMI. ICEBERG biomarker severity at baseline was higher than
in DIGPD, while ICEBERG patients had 1.13 years lower disease duration at baseline
than DIGPD patients. This pointed out potential biases between cohorts, which could be
conveniently handled by PD Course Map.

A typical PD progression starting with dopaminergic loss and ending with
cognitive impairment

The multimodal course map, which described the typical scenario of progression derived
from the 423 PD patients of the PPMI cohort, is shown in Figure 4.7. We chose PPMI as
our discovery cohort, as it offered the longest follow-up and highest number of visits on
an exhaustive set of biomarkers. After realignment of all PD subjects’ age at diagnosis
on the multimodal course map, the average PA of the age at diagnosis was 61.1 ± 0.3
years. Imaging endpoints became pathological first. Functional alterations started in
the putamen 12.9 ± 0.5 years before diagnosis (Put. Contra PA = 48.2 ± 0.7 years)
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Figure 4.8 – Correlation matrix of inter-marker spacings showing a division of endpoints
into three groups: body-related clinical endpoints, brain-related clinical endpoints and
imaging biomarkers. Green color means positive correlations. Pink color means negative
correlations.

before affecting the caudate 5.8 years later (Caud. Contra PA = 54.0 ± 0.4 years) both in
the contralateral hemisphere. The motor impairments measured with the MDS-UPDRS
III became pathological 8.8 ± 0.4 years before diagnosis (PA = 52.3 ± 0.5 years). The
pathological threshold was estimated between the value 10 and 11 on a scale of 132. By
contrast, the patient reported motor impairment in MDS-UPDRS II became pathological
4.6 years before diagnosis (PA = 56.5 ± 0.4 years), so about 4 years after the more
objective measurements of motor impairment in MDS-UPDRS III became pathological.
The disease course ended with the non-motor impairments: alterations of autonomic
functions (SCOPA-AUT PA = 58.9 ± 0.3 years), daily living activities (MDS-UPDRS I
PA = 59.6 ± 0.4 years), sleep disorders (RBDSQ, PA = 60.4 ± 0.4 years) and cognitive
impairment occurred last right after the age at diagnosis (MoCA, PA = 61.2 ± 0.5 years).

This scenario of progression was confirmed for clinical endpoints using the multidomain
course map pooling all data of the three cohorts (936 patients). Multi-domain clinical
course map showed similar progression of clinical parameters (Supplementary Figure 4.12).

Body-related signs, brain-related signs and imaging: three components of PD
progression

Figure 4.7 shows the sequence of pathological events in a typical PD patient. Individual
parameters depicted how this sequence varied across individuals. The age at onset showed
a standard deviation of 9.8 years across subjects. The acceleration factor ranged from 0.58
(first decile) to 2.21 (last decile), meaning that PD patient typically progressed between
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0.58 times and 2.21 times the average speed of progression. Inter-marker spacing measured
how early or late was the onset of one marker relatively to the other ones, once age at
onset and pace of progression had been normalized. The inter-marker spacings with the
greatest variability were RBDSQ and MoCA with a standard deviation of 10.0 years for
both. The third highest variability was found in SCOPA-AUT with a standard deviation
of 6.9 years, followed by MDS-UPDRS III On (6.6 years) and MDS-UPDRS I (5.4 years).
The standard deviations for the other markers, MDS-UPDRS II, MDS-UPDRS III Off
and imaging, ranged between 2.4 and 4.4 years.

The correlation matrix clearly showed three clusters of endpoints that were correlated
among themselves (Figure 4.8): the group of body-related clinical endpoints (RBDSQ,
SCOPA-AUT, MDS-UPDRS I), the group of brain-related clinical endpoints (MDS-UPDRS
III On, MDS-UPDRS III Off, MoCA) and the group of imaging biomarkers (Caud and
Put). MDS-UPDRS II inter-marker spacing correlated with markers in both body and
brain-related endpoints. MDS-UPDRS II is indeed a mixed endpoint reporting subjective
motor impairments in daily-living activities.

Interestingly, the progression of imaging biomarkers did not correlate strongly with the
progression of either the body or the brain related clinical endpoints. The negative corre-
lations of imaging biomarkers were stronger with the body-related endpoints, suggesting
that earlier dopaminergic loss was associated with a later onset of body-related signs, but
was not associated with earlier motor impairments.

PD patients with RBD experience later dopaminergic loss and earlier dysau-
tonomia

Next, we explored disease heterogeneity in PD patients by comparing PDRBD+ and
PDRBD- patients. We focused on sleep dysfunction because was found that the hetero-
geneity in PD progression was predominantly due to different timing in the onset of sleep
and cognitive disorders compared to imaging biomarkers and other clinical endpoints and
because RBDSQ changes progressed much earlier and faster than MoCA changes (Figure
4.7). In the multi-domain course map, PDRBD+ patients had earlier disease onset (2.8
years), earlier alterations of daily living activity (1.5 years) and autonomic dysfunction
(2.5 years) than PDRBD- patients (Figure 4.9, Table 4.3). In contrast, motor symptoms
occurred 1.3 years later in Off state and 1.5 years later in On state. The difference in pace
of progression was not significant. The same analysis performed in the multimodal course
map of the PPMI patients showed the same significant associations with similar effect
sizes (Supplementary Table 4.5). In addition, imaging biomarkers tended to show slightly
later alterations in PDRBD+ as compared to PDRBD- patients, although this difference
was not significant.

The very strong association between age at baseline and onset of individual parameter
showed that patients in these studies were recruited at similar disease stages, e.g. Parkin-
sonian Ages. Pace of progression was also significantly associated with age at baseline:
patients who started the disease at a later age progressed 1% faster for each additional year
at baseline (CI=[0.63%, 1.4%], p≤0.001 in multi-domain clinical map). Older patients had
SBR alterations significantly later in the contralateral putamen (0.09 years, CI=[0.064,
0.12], p≤0.001) and at an equivalent stage of disease in the caudate (0.05 years, CI=[0.019,
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Figure 4.9 – Multi-domain clinical course map trained on PPMI PD patients shows the
different timing of symptom onset for PDRBD+ and PDRBD- patients. Parkinsonian Ages
at which clinical endpoints become pathological for PDRBD+ (plain colors) and PDRBD-
(transparent colors) are shown. Vertical lines indicate the estimated Parkinsonian Age of
first symptoms (light red) and of diagnosis to PD (dark red).
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Table 4.3 – Association between individual parameters in the multi-domain clinical course
maps and the RBD status (PDRBD+ and PDRBD-) with correction for cohort effect, sex
and baseline age. Statistically significant associations are shown in bold (corrected p-value
are shown). Terms into brackets correspond to confidence interval.

0.076], p=0.013) and showed a more symmetrical dopaminergic neuron loss than younger
PD patients for caudate in the multimodal course map.

Women experienced earlier alterations in activities of daily living (2.0 years, CI=[1.3,
2.7], p=1e-06 in the multi-domain course map, 1.6 years, CI=[0.43, 2.7], p=0.083 in the
multimodal course map) but a later disease onset by 1.3 years (CI=[0.54, 2.0], p=0.0055
in the multidomain course map).

PDRBD+ patients present an intermediate phenotype between PDRBD- and
iRBD patients

In iRBD patients, the sequence of pathological events patients (Figure 4.10) presented
an inversed order to that of PD patients of multimap (Figure 4.7) and both PDRBD+
and PDRBD- of the multidomain course map (Figure 4.9). Sleep symptoms occurred first
at PA=55.2 ± 1.1 years, followed by dysautonomia at PA=63.6 ± 0.3 years, cognitive
impairment at PA=64.6 ± 0.7 years, and deterioration of daily living activities at P1=67.7
± 0.2 years. Motor abnormalities occurred at PA=71.5 ± 0.2 years for MDS-UPDRS II
and PA=73.0 ± 0.2 years for the MDS-UPDRS III Off.

Motor symptoms tended to occur later in the disease course and non-motor symptoms
earlier in PDRBD+ compared to PDRBD- patients (Figure 4.9). The same trend was
observed in iRBD patients although the non-motor symptoms occurred before motor
symptoms.

We overlayed in Figure 4.11 the distributions of the individual parameters characterizing
progression in iRBD, PDRBD+ and PDRBD-. Speed of progression was similar in the three
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Figure 4.10 – Multi-domain clinical course map trained on PPMI PD patients shows the
different timing of symptom onset for iRBD patients. The abnormalities begin in sleep
and cognition, followed by dysautonomia and activities of daily living, and finish with
motor symptoms.
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Figure 4.11 – Individual parameter distributions per subgroup, shown via four 2D kernel
density estimations. Distribution of progression parameters position PDRBD+ patients as
an intermediate phenotype compared to PDRBD- and iRBD.
A) Shows temporal individual parameters, while B-C-D) show spatial individual parame-
ters, aka intermarker spacings, accounting for different patient phenotypes after patients
temporal realignment. In A) we show Onset in the x-axis against Speed of progression in
the y-axis. We observe no significant difference in terms of speed of progression between
the groups, while Onset is earlier in PDRBD+ than PDRBD-. iRBD patients have late
onset. Indeed, they are recruited at a late age, and with fewer syptoms than PD patients.
Consequently the model re-align them at the beginning of the PD Couse Map. In B) we
show non-motor activities of daily living (y-axis) against dysautonomia (x-axis), which
are correlated, as already mentionned in Figure 4.8. iRBD appear as having an early
non-motor phenotype, compared to PDRBD-, with PDRBD+ in between. In D) this
gradation is naturally seen in the y-axis accounting for sleep, while iRBD show very
late motor symptoms. Finally in C), cognition and motor aspects of daily living show
few difference between PDRBD+ and PDRBD- patients, while iRBD patients show late
subjective motor symtoms, and earlier cognitive symptoms.



104 CHAPTER 4. Clinical applications on Parkinson’s Disease

groups but onset varied, with earlier onset for PDRBD+ than PDRBD- (Figure 4.11A).
In contrast, iRBD were associated with later onsets, as they were significantly older while
having similar or less symptoms overall at baseline. Figures 4.11B-D showed distributions
in inter-marker spacings, in years. For the trade-off between sleep disturbances and the
onset of motor symptoms, PDRBD+ were positioned in-between iRBD and PDRBD-
populations, (Figure 4.11D). PDRBD- patients had earlier motor changes and later sleep
disorders, while iRBD had later motor changes and earlier sleep disorders and PDRBD+
patients had intermediate values between the other two groups. This gradation was also
seen in daily living activities and dysautonomia (Figure 4.11B). Consistently with Table
4.3, cognition did not separate PDRBD+ and PDRBD- (Figure 4.11C). In general, iRBD
patients had very different distributions than the other two groups (Figures 4.11B-D), with
earlier modifications of daily living activities and dysautonomia, and later modifications
of motor, as an extreme form of PDRBD+. They also showed earlier cognitive decline
(Figure 4.11C).

4.3.4 Discussion

We used a longitudinal mixed-effect model to build a normative scenario of progression
of Parkinson’s Disease, called PD Course Map. This scenario describes quantitatively
the progression of Parkinson’s Disease, the ordering of abnormalities, as well as the
heterogeneity between patients. Heterogeneity is assessed temporally, with high variance
in onsets and speeds of progression. But also spatially, with possibly different patterns at
equivalent disease stage. Most noticeably, sleep and cognitive symptoms had the highest
inter-patient variability in our analysis. Focusing on sleep because of its precocity, we
split the PD population of PPMI in 2 subgroups: PDRBD+ and PDRBD- and compared
their progressions patterns in both clinical and imaging measurements. PDRBD+ were
beginning the disease earlier, and showed a more non-motor form of the disease than
PDRBD-. We argue that this came from a clear separation of biomarkers, in 3 blocks:
motor, non-motor and imaging. We replicated the results on the pooling of PPMI,
ICEBERG and DIGPD, on clinical measurements only. Finally, PD Course Map was
applied on PPMI iRBD patients, which appeared as extreme PDRBD+ patients.

By studying PD Course Map in its early stages, we derived an ordering in biomarker
abnormality arrival for the overall PD patient population, with a notion of confidence.
Damage in the Putamen contralateral occurs first 12.9 years before diagnosis, followed by
motor symptoms, non-motor symptoms, and finally cognition. Note that motor appear
rather early, even before Caudate abnormalities. It might be that in the preclinical stage,
subtle but still significant onset of MDS-UPDRS III alone may not be sufficient for a
clinician to diagnose the patient with PD. To the knowledge of the authors, few multimodal
models of progression have been derived for Parkinson’s Disease. Very recently, (Oxtoby
2021) proposed an event based model to build a normative progression scenario for PD
patients at risk of developing dementia. However, most studies only model individual
regressions, or focus on specific biomarkers with independent univariate models. We
stress that PD Course Map models the joint progression of multiple biomarkers at once.
Consistent results with multiple approaches in modeling PD progression will help strengthen
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our knowledge in quantifying PD.
In capturing the heterogeneity of PD patients, PD Course Map clearly separated 3

blocks of biomarkers: imaging, motor and non-motor. These blocks are longitudinally
correlated in the sense that they explain variations from the average trajectory (e.g. earlier
in motor, but later in imaging). These blocks are intuitive, but we could have expected
that motor would be more linked to imaging than of non-motor. Results indicate that
heterogeneity comes rather independently from these 3 blocks.

Additionally, variance is highest in the non-motor block, thus explaining most of PD’s
heterogeneity, especially in sleep symptoms. This might support the brain first versus body
first theory, with possibly different pathophysiological mechanisms underneath. However,
in our case we argue that this highest variability for non-motor symptom could come from
patient re-alignment for motor symptom at baseline, as cohort inclusion criteria. If we
consider Parkinson’s Disease not as a motor disease only, but also encompassing a broader
range of symtoms, then our data are biased toward motor onset.

RBD especially, is a rather simple way to cut in PD heterogeneity, as a good proxy of
non-motor symptoms. PDRBD+ and PRBD- experience significatively different patterns
of progression, mostly in non-motor symptoms. However in the light of the identification
of these 3 blocks of variables, we argue that at the scale of our study, this splitting is
artificial, as sleep, and non-motor in general rather describe a spectrum of PD profile,
rather than well separated entities. iRBD would be positioned at an extremity of this
non-motor variability axis.
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4.3.5 Supplementary Materials

Figure 4.12 – Clinical disease course map trained on the pooling of PPMI, ICEBERG and
DIGPD. It describes the progressive onset of clinical endpoints and imaging biomarkers from
pre-symptomatic to post-diagnosis stages. Left panel: the progression of the endpoints from
the most normal (0) to the maximum pathological changes (1) is shown as Parkinsonian
Age progresses. Shaded areas correspond to 95% bootstrap confidence interval. Right
panel: the timing at which endpoints become abnormal is shown with 95% confidence
intervals. Vertical lines indicate the estimated Parkinsonian Age of first symptoms (light
red) and of diagnosis to PD (dark red).
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Table 4.4 – Mann-Whitney test between biomarkers values at baseline between PD patients
of different cohorts: PPMI and ICEBERG, PPMI and DIGPD, and ICEBERG and DIGPD.
Age distribution are matched, but disease duration differs significantly between cohorts.
PPMI has the lower disease duration at baseline, followed by ICEBERG and DIGPD. This
explains lower severity of biomarkers at baseline in PPMI with respect to both DIGPD
and ICEBERG. However, ICEBERG has lower disease duration than DIGPD, but higher
biomarker severity at baseline, which is counter-intuitive and shows a bias. Compared to
PPMI, it shows a noticeably high difference of MDS-UPDRS III Off at baseline.
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Table 4.5 – Association between individual parameters in the multimodal course maps
and the RBD status (PDRBD+ and PDRBD-) with correction for cohort effect, sex and
baseline age. Statistically significant associations are shown in bold (corrected p-value are
shown). Note that for this experiment, the multimodal course map has been re-trained
without RBDSQ as endpoint.
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5.1 Deep Learning in disease progression modeling

Deep Learning has witnessed tremendous success in the field of medical imaging, becoming
mainstream since the U-NET (Ronneberger, Fischer, and Brox 2015). Deep Learning
algorithms for instance, can now segment with very high accuracy cancer tissues (Havaei
et al. 2017; Menze et al. 2014; Milletari, Navab, and Ahmadi 2016; Pereira et al. 2016),
and even detect neurodegenerative diseases from MRIs such as Alzheimer’s (Ansart et al.
2020; Lu et al. 2021).

It offers also a powerful framework for dimensionality reduction, with autoencoders
(Kingma and Welling 2013) and generative adversarial networks (Creswell et al. 2018;
Goodfellow et al. 2014), by learning a non-linear mappings between the data space and a
latent space of lower dimension.

This property makes Deep Learning appealing for longitudinal data analysis, as it
alleviates the difficulty of working with high-dimensional data such as images, by learning
efficient dimensionality reduction models, and allows to focus on the latent space. In
(Zhao, Adeli, et al. 2019), authors leverage the autoencoder framework to encode 3D MRIs
of Alzheimer’s patient in a latent space, where patient trajectories in the latent space are
regressed with regard to age. In (Zhao, Z. Liu, et al. 2020) they build a similar model,
however constraining progression to occur in a learned direction of the latent space, using
a cosine loss. In their work they only analyze the temporal representation learned, but
such tubular data representation in the latent space also inherently induce a "spatial"
representation, as presented in the longitudinal spatiotemporal model.

Most importantly, the autoencoding framework allows the building of complex graphical
model in the latent space while working with high-dimensional data (Bouchacourt, Tomioka,
and Nowozin 2017; Johnson et al. 2016). For time series, (Krebs, Delingette, Ayache, et al.
2020; Krebs, Delingette, Mailhé, et al. 2019) propose to study a generative model for
the cardiac cycle seen as a registration task, with a temporal encoder of sequences and
a rotation-compatible latent space, specifically suited to the prior on expected motions.
SOM-VAE (Fortuin et al. 2019) aims at finding low dimensional representations of time
series based on discrete Markov chain transitions between states in the latent space.

Recently, for longitudinal data, (Maxime Louis, Couronné, et al. 2019) propose to
use the longitudinal spatiotemporal model of (Schiratti, Allassonniere, et al. 2015b) and
transpose it to the autoencoder framework. A longitudinal spatiotemporal is enforced
in the latent space, while the encoder and decoder handle the mapping between the low
dimensionality latent space representations into the data space. In this sense, (Louis
et al. 2019) see the decoder as defining a pushforward, and thus as a way to learn the
metric, provided the decoder is smooth. However, with the use of a decoder, we loose the
theoretical properties of orthogonality between temporal and spatial variability, which can
then only be empirically assessed.(Louis et al. 2019) apply the model to longitudinal data
of Alzheimer’s Disease, on both scalar and imaging data.
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5.2 Background

5.2.1 Rigidity and computational cost of the spatiotemporal model

The model presented in section 2.2.4 allows to model the progression of longitudinal
scalar biomarkers on the manifold product of simple riemanian manifolds. Orthogonality
conditions in the tangent space disentangle temporal variability, and spatial variability in
the data.

However, the proposed instanciation of the spatiotemporal model for scalar data is
very rigid (Schiratti, Allassonniere, et al. 2015b). The inter-patient variability can only
be modeled by biomarker specific delays with regard to the average trajectory. It seems
reasonable to assume that this variability is not enough to capture the different profiles of
progression. For example, causal links may exist between biomarkers, and their dynamics
might influence each other. These effects, such as an increase in speed for a subset of the
biomarkers only cannot be captured with a diagonal metric.

Additionally, in this setup, we sticked to low-dimensional data (typically K < 10) due
to the coslty estimation with the MCMC-SAEM. (Bône, Colliot, and Durrleman 2018)
managed to scale to higher dimension in the context of learning deformations for images
and meshes data, resorting to specific heuristics. They perform smart initialization, and
couple the MCMC-SAEM with gradient steps, obtained via automatic differentiation.
Estimation is costly still, and they later also used autoencoders to perform dimensionality
reduction on the deformation space (Bône, Maxime Louis, Colliot, et al. 2019).

5.2.2 Autoencoders

An autoencoder is a neural network that learns to copy its input. It performs successive
transformations of an input x ∈ Rn to a representation of lower dimensionality z ∈ Rp

with an encoder Φ, and then back to the data space using a decoder Ψ, yielding an
approximation x̂ ∈ Rn of the input data (see Figure 5.1). This task can be seen as
performing a non-linear compressed sensing of x.

In practice, encoder and decoder consist in neural networks with multiple layers. A
layer is parameterized via σ,W and b, and perform a matrix multiplication with weight
W , matrix addition with bias b, and apply a non-linearity σ (e.g. sigmoid or ReLU
non-linearities) : x 7→ σ(Wx+ b). Convolutional layers have become the norm (LeCun,
Bengio, et al. 1995) for imaging data, allowing for efficient dimensionality reduction of
images. The autoencoder is trained to minimize with respect to (Φ,Ψ) the loss function:

L = ‖x−Ψ(Φ(x))‖22 + Lreg

5.2.3 A Riemanian perspective on autoencoders

Dimentionality Reduction

It is commonly assumed that real data, such as natural images, are structured, hence
the success of convolutional layers which leverage local smoothness (LeCun, Bengio, et



114 CHAPTER 5. Longitudinal Autoencoder

Figure 5.1 – Autoencoder schematic view. Encoder and decoder are composed of many
layers: Ψ = Ψ1 ◦ ... ◦ ΨM , Φ = Φ1 ◦ ... ◦ ΦL, with Φm : x 7→ σm(Wmx + bm) and
Ψl : x 7→ σl(Wlx+ bl).

al. 1995). In this sense, their dimensionality is seen as artificially high, and could be
reduced via Machine Learning methods (Bengio, Courville, and Vincent 2013). Principal
Component Analysis (Bro and Smilde 2014; Hotelling 1933), Linear Discriminant Analysis
(McLachlan 2004) and Non-negative Matrix Factorization (Sra and Dhillon 2006) are
standard linear methods for dimensionality reduction, but handling natural images usually
requires non-linear methods. Autoencoders allow to perform non-linear dimensionality
reduction, and scale easily to high dimensional, large dataset, unlike Isomap (Tenenbaum,
Silva, and Langford 2000), t-SNE (Maaten and G. Hinton 2008) or multidimensional
scaling (Kruskal 1964). The latent space representation is the subject of extensive research
(Burgess et al. 2018; R. T. Chen et al. 2018; Higgins, Amos, et al. 2018; Higgins, Matthey,
et al. 2016; Kim and Mnih 2019; Locatello et al. 2019), at it supposedly captures the
heterogeneity of the dataset, and may be constrained to capture specific parts of this
heterogeneity.

Pushforward on the manifold

From a Riemannian geometry perspective (Louis et al. 2019), the decoder Ψ learns a
map z 7→ x from the latent space Z to the data space. Assuming transformations at
each layer are smooth (i.e. each non-linearity σ is smooth), the map Ψ is a smooth map
from Z to X . We can derive from this map a pushforward from Z to X 2.1.4 provided
we know a metric on Z. With Z assumed to be euclidian, we can derive a metric from
the pushforward of the map Ψ into the data space. Assuming the latent space Z to be
euclidian yields geodesics that are straight lines in Z, which turns very practical for our
longitudinal modeling. (Louis et al. 2019) propose to build a mixed effect model in the
latent space as in a simple euclidean case.
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5.3 A longitudinal autoencoder

5.3.1 Longitudinal Dataset

Let us have N patients, each with mi visits. At each visit j of patient i, a measurement
yi,j ∈ Rn is performed, at age ti,j. We write Y = {yi,j, i ∈ [1, N ], j ∈ [1,mi]} and
T = {ti,j, i ∈ [1, N ], j ∈ [1,mi], so that the couple (Y , T ) refers to a longitudinal dataset
D.

5.3.2 Setting contraints on the latent space

(Louis et al. 2019) propose to learn latent space representations adapted to the longitudinal
setup, by analogy with the longitudinal spatiotemporal model.

Recall that (Schiratti, Allassonniere, et al. 2015b) assume that the average trajectory
γ is a geodesic, and that each patient trajectory ηwi is a parallel variation of this average
trajectory γ. In our case the latent space of dimension p is assumed Euclidean, with its
canonical basis denoted (e1, ..., ep). Consequently γ is simply a straight line of Rp, and
ηwi(γ) are parallels of γ.

We choose e1 to account for temporal variability, while the other p − 1 dimensions
(e2, ..., ep) account for inter-patient variability. By analogy with the longitudinal spa-
tiotemporal model, this builds a set of spatiotemporal coordinates (ψ,wi), with ψ ∈ R
denoting a disease stage, while wi ∈ Rp−1 is fixed for a patient i, and encode for the
"spatial" specificity of this patient. Consequently we write the population and individual
trajectories:

γ(·) :

{
R→ Rp

ψ → (ψ, 0, ..., 0)
ηwi(γ)(·) :

{
R→ Rp

ψ → (ψ,w1
i , ..., w

p−1
i )

(5.1)

and adding patient specific affine reparameterization of age t similarly to (Schiratti,
Allassonniere, et al. 2015b), a patient trajectory is traveled at ψi(t) = αi(t − τi) with
αi = exp(ξi):

ηwi(γ)(ψi(t)) = (ψi(t), w
1
i , ..., w

p−1
i )

Finally the pointwise decoder maps patient trajectories in the latent space to patient
trajectories in the data space:

Ψ(ηwi(γ)(ψi(t))) = Ψ((ψi(t), w
1
i , ..., w

p−1
i ))

This way, the network is forced to learn temporal variability in the only dimension we
allow him to, the first direction of our latent space e1. Learning patient representation wi
is encouraged by enforcing it is shared for all visits of the patient in the other direction of
the latent space (e2, ..., ep).



116 CHAPTER 5. Longitudinal Autoencoder

5.3.3 Estimation

Attachment

We use the same attachment term as in the longitudinal spatiotemporal model:

Lfit =
N∑
i=0

mi∑
j=0

‖yi,j −Ψ(ηwi (γ) (ψi(ti,j)))‖2 (5.2)

with (ξi, τi, w
1
i , ..., w

p
i ) = Φ(x) and αi = exp(ξi).

Regularization

In order to preserve the useful mixed effect interpretation of the model, regularization is
added on the individual’s representations:

Lreg =
N∑
i=0

τ 2i
σ2
τ

+
N∑
i=0

ξ2i
σ2
ξ

+
N∑
i=0

‖wi‖2

σ2
w

with hyperparameters στ , σξ, σw. In this sense, the "average trajectory" t 7→ γ(t) accounts
for τi = ξi = wi = 0. Also, to avoid overfitting, a L2 regularization on the weights of the
network is applied.

Inference

We seek to minimize L = Lfit + Lreg with respect to Φ and Ψ. To that end, we do not
rely anymore on MCMC methods, as the set of parameters of Φ and Ψ is now orders of
magnitude larger. We instead use standard deep learning optimization, based on stochastic

Figure 5.2 – Schematic view of the longitudinal autoencoder. The encoder is a sequence-
wise autoencoder, which encodes all patient i’s visits xi,j and times ti,j into a patient
representation wi and affine time reparameterization parameters αi and τi. The point-wise
decoder maps points (ψi(t), w

1
i , ..., w

p−1
i ) of the latent space back into the data space.

Brains in transparency indicate how the latent space maps to the data space via the
decoder. ψ encodes the disease stage, represented by brain colors, while w encodes patient
specificity, represented by patient specific brain height and weidth in the graph.
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gradient descent. Gradients are given by the automatic differentiation python library
PyTorch. In practice, we train the architecture end to end using Adam optimizer with a
learning rate of 0.01.

5.3.4 Applications

Synthetic Dataset

In a first application, (Louis et al. 2019) apply the model to a synthetic longitudinal
dataset (see Figure 7.2). Each cross is parameterized by its arms length and angles. A
mean scenario of progression for the arm lengths is prescribed, and subjects have specific
arm angles, which are sampled from a zero-centered normal distribution. The model
is trained on these data, and successfully learns the average progression, as well as the
inter-patient variability (see Figure 5.4).

Cognitive scores

In Figure 5.5, we show the model trained on cognitive scores from MCI converters patients in
the longitudinal cohort ADNI. The model successfully learns a consistent average trajectory
as well as an inter-patient variability close to the one of the longitudial spatiotemporal
model applied on scalar data (Leaspy).

Magnetic Resonance Imaging data

In Figure 5.6, we show the average trajectory of a model trained on 3D MRIs from MCI
converters patients in the longitudinal cohort ADNI. We observe that the model captured
the main temporal variability of this dataset: the widening of the ventricules.

Figure 5.3 – Each row represents a synthetic subject. Columns show visits at increasing
times for these subjects. A subject has specific arm’s angles. Disease progression is
modeled as a decrease of all arm’s lengths. (Reproduced from (Louis et al. 2019))
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Figure 5.4 – We learn a model on the synthetic cross data, with dim(Z) = 3, and visualize
in these 2 graphs the induced latent space. On the left, we show multiple trajectories over
time (x-axis) corresponding to 5 different points in the spatial part of the latent space.
Each row is a trajectory with fixed spatial component w, and ψ varies from ψ = −1 to
ψ = 1. The first row depicts the average trajectory ψ 7→ Ψ(ψ, 0, 0), while the following
rows depict parallel trajectories, shifted from ±e2 or ±e3 to visualize their effects. These
parallel directions of progression show the same arm length reduction scenario, with
different arm positions. On the right we show spatial individual variables w1

i and w2
i

colored by left (top) and right (bottom) arm angle of the train data. We observe that w1

captured the left arm angle, while w2 captured the right arm angle. (Reproduced from
(Louis et al. 2019))

5.4 Conclusion
We saw in this chapter that an autoencoder extension of 2.2.4 is able to conveniently handle
high dimensional data, while keeping the attractive representation of patient trajectories
as curves on a manifold parallel to an average trajectory.

This framework is very flexible, and we will see in the following sections contributions
to extend the model in multiple directions. First, we tackle the multimodality problem by
jointly learning and merging representations from multiple modalities, to build trajectories
in the latent space in the same manner as (Louis et al. 2019). We then propose to
relax the affine time reparameterization, and instead rely solely on the visit ranking to
estimate disease stages. Additionally, we shift to the variational autoencoder framework,
whereas models of (Louis et al. 2019) and Chapter 6 were not variational. The variational
autoencoder is a generative model, unlike classical autoencoders. Additionally, variational
autoencoders allow for better disentanglement in the latent space (Higgins, Matthey, et al.
2016).
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Figure 5.5 – On the left learned average trajectory of the cognitive scores, with a 10-fold
resampling procedure (dim(Z) = 2). On the center, spatial variation in the direction e1.
On the right, spatial variation of the longitudinal spatiotemporal model, given by Leaspy.
(Reproduced from (Louis et al. 2019))

Figure 5.6 – Average trajectory ψ 7→ Ψ(ψ, 0, ..., 0) learned from MRIs of ADNI MCI
converters patients. Rows show respectively saggital, coronal and horizintal planes of the
average trajectory. The growth of the ventricles, caracteristic of aging and Alzheimer’s
disease is clearly visible. (Reproduced from (Louis et al. 2019))
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Abstract
Imaging modalities and clinical measurement, as well as their time progres-

sion can be seen as heterogeneous observations of the same underlying disease
process. The analysis of sequences of multi-modal observations, where not all
modalities are present at each visit, is a challenging task. In this paper, we
propose a multi-modal autoencoder for longitudinal data. The sequences of
observations for each modality are encoded using a recurrent network into a
latent variable. The variables for the different modalities are then fused into
a common variable which describes a linear trajectory in a low-dimensional
latent space. This latent space is mapped into the multi-modal observation
space using separate decoders for each modality. We first illustrate the stability
of the proposed model through simple scalar experiments. Then, we illustrate
how information can be conveyed from one modality to refine predictions about
the future using the learned autoencoder. Finally, we apply this approach to
the prediction of future MRI for Alzheimer’s patients.

6.1 Introduction

The longitudinal pattern of progression of a disease contains more information than a
static observation. Leveraging this information is a key problem in machine learning
for healthcare, complicated by to the nature of clinical datasets. These datasets may
contain very heterogeneous observations from various modalities of subjects at multiple
time points, such as clinical scores, imaging and biological samples. They include missing
values, often by design: not all modalities are observed at each visit. Besides, the number
of observations and their time spacing vary between subjects. For these reasons, the
analysis of multiple modalities and their time dynamic at once is a challenging task.

Linear mixed effect model estimated via EM and their extension to the non-linear
case (Laird and Ware 1982b; Lindstrom and Douglas M. Bates 1990b) were developed
for the analysis of unimodal longitudinal data. More recently, recurrent auto-encoder
(Rumelhart, G. E. Hinton, Williams, et al. 1988; Srivastava, Mansimov, and Salakhudinov
2015) offer a way to encode trajectories into a low-dimensional embedding, allowing to
perform unsupervised clustering of the trajectories (Falissard et al. 2018). Riemannian
geometry based approaches such as (Louis et al. 2019; Schiratti, Allassonniere, et al. 2015c)
offer ways to learn sub-manifolds of the observation space with a system of coordinate
adapted to the progression of the modality observed in the data.

On the other hand, various unsupervised methods exist to fuse information from
multiple modalities but from a single time snapshot. In (Chartsias et al. 2018; Ngiam
et al. 2011), the authors propose to learn a common embedding for multiple modalities
auto-encoding, merging the information from all modalities and allowing the generation
of missing modalities. In (Miotto et al. 2016), unsupervised features are learned from
heterogeneous health data as a dimensionality reduction method before machine learning
tasks.

In (Yang et al. 2017), combining time and multi-modal approaches, the authors propose
a setting for multi-modal time-series embedding. But their design does not handle missing
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modalities, common in clinical data sets. Besides, the fusion of the information from the
different modalities is done at each time step and not on the progression pattern globally,
thus decreasing the importance of the dynamics of each modality in the encoding.

To address these limitations, we propose a new setting for longitudinal multi-modal
encoding. We extend to the multi-modal case the approach of (Louis et al. 2019). Each
modality is first separately encoded using a recurrent neural network. A fusion network
is then used to merge the obtained representations into a unique representation, which
describes the multi-modal trajectory of the subject as a time-parametrized linear trajectory
in a latent space Z. Then, this trajectory is decoded using a different neural network for
each modality, which generates continuously varying trajectories of data changes. This
setting allows to handle multiple modalities even when not all of them are observed at
each visit and it can handle any number of visits and any time spacing between the visits.
Finally, extrapolation in the latent space allows for prediction of the future of each modality
and we show on a synthetic dataset and on the ADNI database using cognitive scores
and MRI jointly that the predictive power is enhanced by the fusion of each modality
embeddings.

In section 7.2 we explain the proposed model, in section 6.6 we present experimental
results highlighting the stability of the method on synthetic and real data sets and we
show how the information from one modality that contributes to the encoding allows to
refine prediction of the future of another modality.

6.2 Methods

We set a longitudinal dataset which contains repeated observations of subjects, where
the observations at each time point contain a various combination of modalities among
M ∈ N modalities. For any subject i ∈ {1, . . . , N} where N ∈ N and for any modality
m ∈ {1, . . . ,M}, we have a sequence (ymij , t

m
ij )j=1,...,nmi

of observations ymij of observed at
times tmij .

6.3 Decoding : Non linear mixed effect model

We set p ∈ N and consider a p-dimensional latent space Z = Rp and its canonical
basis (~ei)i=1,...,d. Then, in the spirit of random slopes and intercepts models, we consider
trajectories in Z of the form l(t) = eη(t− τ)~e1 +

∑p
i=2 λ

i~ei where η, τ, λ2, . . . , λp ∈ R are
random variables. These trajectories progress in the ~e1 direction and are translated in any
direction orthogonal to ~e1, so that the λs play the role of random intercepts. η controls the
pace of progression while τ allows for a time shift between the trajectories. We consider that
the i-th subject follows a trajectory of this form with parameters ϕi = (ηi, τi, λ

2
i , . . . , λ

p
i ).

For each considered modality m, we consider a nonlinear mapping Ψwm which maps Z
on a subspace of the m-th modality observation space. This transports the mixed-effect
model formulated in Z into the corresponding observation spaces. Note that the apparent
rigidity of the family of trajectories considered in Z is not restrictive provided the mappings
Ψwm are flexible enough. In practice, the Ψwm are neural networks, de-convolutional for
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Figure 6.1 – Description of the proposed longitudinal autoencoder.

images and fully connected for scalars. The right half of Figure 6.1 illustrates the procedure.
Overall, this setting can be viewed as a non-linear mixed-effect model where the random
effects are the ϕi’s and the fixed effects are the parameters of the mappings Ψwm .

6.4 Encoding

Individual parameters ϕi are estimated via the use of an encoder network. More precisely,
each modality is first processed by a dedicated Recurrent Neural Network (RNN), to
get modality-wise representations. To correct for the varying spacings between the
observations, we provide to the RNN the visit times, previously normalized to zero-mean
and unit variance.

We then concatenate the obtained representations, and use a fully-connected network
to merge the representations. The given architecture alllows fast inference for new subjects,
and is trainable end to end. Besides, the fusion operation is learned so as to produce a
single vector which contains the most information about the reconstruction of the whole
sequences of all the modalities. The left part of Figure 6.1 illustrates the procedure.

6.5 Regularization, cost function and optimization

To enforce some structure in the latent space and in the family of trajectories obtained,
we set the following regularization on the individual variable Φi: r(η, τ, (λi)i=2,...,d) =
η2 + τ 2 +

∑p
j=2(λ

j)2. This regularization models the η variable to be distributed along a
zero-centered normal distribution, which allows the pace of progression to vary typically
between 0.2 and 5. times the mean velocity. The τ variable is regularized the same way.
This regularization is not arbitrary: during each run, the observation times tmij are rescaled
to zero-mean unit variance, and thus τ can handle delays between subjects of order the
standard deviation of the observation ages.
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Overall, the optimized cost function for one subject is the regularization cost added to
the `2 reconstruction cost summed over all modalities:

C ((wm)m, η, τ, (λi)i) = r (η, τ, (λi)i) +
∑
m

1

σ2
m

nmi∑
j=1

‖ymij −Ψwm(li(t
m
ij ))‖22 (6.1)

where the (σm)m are trade-off parameters between each modality and the regularization.
We set an automatic update rule for these parameters after each batch by setting them
to the empirical quadratic errors in reconstruction for the modality over the batch. The
estimation is achieved by stochastic gradient descent with the Adam optimizer (Kingma
and Ba 2014) and a batch size of 32 subjects. The Decoders are either fully connected
or de-convolution networks depending on the kind of modality considered, with standard
architectures. The encoders are either Elman networks or Elman networks working on
features extracted using a convolution network in the case of images. All networks are
trained end to end using back-propagation and the PyTorch library. A complete code to
reproduce these experiments will be released upon publication of the paper.

6.6 Experimental results

6.6.1 Cognitive scores: proof of concept

As in (Schiratti, Allassonniere, et al. 2015c), we apply our model on repeated measurement
of 4 normalized cognitive score extracted from the ADNI cohort, respectively associated
with memory, language, praxis and concentration. We include the 248 MCI-converter
subjects, followed for an average of 3 years, over 6 visits. We conduct 2 experiments in
order to assess the robustness of the method, and report estimated average trajectories
in Figure 6.2, as well as individual reconstruction errors in Table.6.1, computed from a
patient-wise 10-fold cross validation.

First, we apply our model on an increasing partitioning of input feature. We consider 3
cases: selecting all scores at once as one modality, selecting separately memory+language
and praxis+concentration as two modalities, and selecting each one separately. We note
the overall good stability of the average model over multiple multi-modal architectures,
with stability decreasing in the 4-modalities scenario, arguing for a concatenation of the
consistent features.

In our second experiment, we assess the robustness of the model with the number
of visits per subjects. To this end we consider the 2-modalities scenario, and perform a
pruning of the dataset, removing an increasing number of visits of the second modality,
i.e. praxis+concentration per subjects. Datasets are obtained from pruning frequencies
of respectively 10%, 20% and 40%. Here we also observe an overall good stability of the
average trajectory over pruning frequency.
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Figure 6.2 – Left: average trajectories for the 10 folds, with increasing partitioning of the
input features. Right: average trajectories for the 10 folds, with increasing pruning of the
praxis+concentration modality.

6.6.2 A synthetic dataset

To test the proposed setup in realistic conditions, we generate a synthetic multi-modal
data set comprising 300 subjects observed 7 times on average. The first modality is a 2D
image of a cross, with varying arm lengths and angles while the second modality consists
of two scores with a sigmoid-like growth. We set a time reparametrization function s with
parameters a1, a2 defined by: sa,b(t) = t+ asign(t)t2 + bt3. To generate an individual, we
sample two sets of parameters (ak, bk)k=1,2. These serve to reparametrize a scenario of
score increase: the k-th score for the subject at time t is given by σ ◦ sak,bk where σ is the
sigmoid function. Then, the arms lengths L1, L2 for the images of the subject at time t
are given by L1 = σ ◦ s(a2−a1)+εa1,(b2−b1)+εb1 , L2 = σ ◦ s(a2+a1)+εa2,(b2+b1)+εb2 where the ε are

Partitioning Pruning
1-mod 2-mod 4-mod 2-mod 10% 2-mod 20% 2-mod 40%

Train (x10−3) 6.7 3.8 / 9.7 21.1 / 2.2 / 5.6 / 5.3 4.9 / 11.3 4.1 / 11.5 4.5 / 14.6
Test (x10−3) 7.8 5.1 / 10.6 24.7 / 3.3 / 7.1 / 5.2 4.9 / 11.7 5.0 / 11.9 5.4 / 15.5

Table 6.1 – Mean 10-fold reconstruction error for the 2 cognitive scores experiments for
each modality respectively
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Figure 6.3 – Left: average trajectory and reconstruction examples for the scalar data.
Right: average trajectory and some reconstructions for the image data.

samples from a zero-mean normal distribution and constant with time. Finally, the arm
angles are sampled along a normal distribution but are not informative of the synthetic
disease process. This design is so that the images contain, in an intricate way, information
about the progression of the scores materialized through the a1, a2, b1, b2 variables. The
two modalities are different noisy facets of a common underlying process.

We perform a patient-wise 10-fold estimation of the model this data set. Figure 6.3
shows the obtained average trajectory for the first fold, as well as the reconstructions of
some subjects images and scores observations. We evaluate and average for all folds the
test and train reconstruction errors. For the cross, the test error is 2.0 10−8± 8. 10−9 while
the train error is 1.7 10−8 ± 3.9 10−9. For the scores, the test error is 7. 10−3 ± 3. 10−3

while the train error is 7. 10−3 ± 3. 10−3. This shows that the model generalizes well to
unseen data.

We use the trained model to predict the future scores on the test data. We do so by
decoding the extrapolation of the latent trajectory encoded by the model. We repeat this
experiment by gradually removing the last observations of the image modality, to look at
the impact of this modality on the predictive power of the model. Figure 6.4 shows the
experimental setup and the results. As the time span of the observed images shrinks, the
prediction deteriorates: when more image data is available, the score prediction is more
accurate. This shows the ability of the model to find a relevant common representation
for the progressions of the different modalities.

6.6.3 Application to Alzheimer’s disease future image prediction

On the 248 patients of section 6.6.1, we apply the same model on the 217 that have at
least 1 MRI observation, leading to a total of 1199 cognitive scores measurements and
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1441 MRIs. We work on both the MRI images and the cognitive scores. The MRI images
are rigidly aligned and sub-sampled to 643 resolution. Note that the subjects do not have
both the MRI and the cognitive scores measurements at each visit.

Figure 6.5 shows one of the estimated average trajectory for the MRI modality. We
evaluate and average for all folds the test and train reconstruction errors on both modalities.
For the MRI, the test error is 2.5 10−3± 6. 10−5 while the train error is 2.4 10−3± 2. 10−5.
For the scores, the test error is 2.2 10−2± 3. 10−3 while the train error is 1.7 10−3± 6. 10−4.
This shows that the model generalizes well to unseen data.

We then perform the same prediction task as in the previous section: we attempt to
predict the future MRI from past data, using a variable amount of score data in the past.
Figure 6.5 shows the prediction errors for different time horizon. Once again, the errors
increase as we feed the model with less cognitive scores measurements. This shows that
the model captures information contained in the cognitive scores progression to refine the
MRI prediction.

6.7 Conclusion and perspectives

We extended on a deep autoencoder architecture with a mixed effect latent space to
propose a practical framework for modeling multi-modal longitudinal data, trainable
end-to-end. This allows for analysis of heterogeneous longitudinal datasets, deriving a
model-wise average trajectory, as well as condensed patient representations. We study its
robustness toward modalities partitioning and dataset pruning and illustrate its utility in
both synthetic and real scenarios. In the future we plan to model the progression of more
modalities at once. This work has been partially funded by the European Research Council
(ERC) under grant agreement No 678304, European Union’s Horizon2020 research and
innovation programme under grant agreement No 666992, and the program ”Investissements
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Figure 6.4 – Left: description of the prediction setup. Right: the MRI prediction errors.
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Prediction	ErrorAverage	Trajectory

Figure 6.5 – Left: average trajectory. Right: prediction error, in the same setup as in
section 3.2

d’avenir” ANR-10-IAIHU-06.
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In this chapter, we relax some of the assumptions of the longitudinal autoencoder model
described in Chapter 5. Temporal variability is assessed by ordering the visits in a self-
supervised fashion, instead of using an affine reparameterization of time. This work has been
accepted for publication in the proceedings of the 2021 International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI).
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Abstract
The problem of building disease progression models with longitudinal data

has long been addressed with parametric mixed-effect models. They provide
interpretable models at the cost of modeling assumptions on the progression
profiles and their variability across subjects. Their deep learning counterparts,
on the other hand, strive on flexible data-driven modeling, and additional
interpretability - or, as far as generative models are involved, disentanglement
of latent variables with respect to generative factors - comes from additional
constraints. In this work, we propose a deep longitudinal model designed
to disentangle inter-patient variability from an estimated disease progression
timeline. We do not seek for an explicit mapping between age and disease
stage, but to learn the latter solely from the ordering between visits using a
differentiable ranking loss. Furthermore, we encourage inter-patient variability
to be encoded in a separate latent space, where for each patient a single
representation is learned from its set of visits, with a constraint of invariance
under permutation of the visits. The modularity of the network architecture
allows us to apply our model on various data types: a synthetic image dataset
with known generative factors, cognitive assessments and neuroimaging data.
We show that, combined with our patient encoder, the ranking loss for visits
helps to exceed models with supervision, in particular in terms of disease
staging.

7.1 Introduction

Understanding the progression of diseases is essential for accurate early diagnosis, prognosis,
and patient monitoring. Often, there is a strong interplay between the pathological
progression and the inter-subject variability, which makes it all the more necessary to
characterize the contribution of each factor. Typically, in the context of neurodegenerative
diseases, we may ask whether the atrophy of a particular brain region is predictive of
a specific patient advancement in the disease, or rather can be dismissed as a specific
characteristic of the individual.

Longitudinal data analysis has been usually addressed in the framework of parametric
mixed-effect models. For instance, geometric approaches have been proposed either for the
progression of biomarkers (Schiratti, Allassonniere, et al. 2015c) or shape changes (Bône,
Maxime Louis, Martin, et al. 2018). This family of models assumes that each subject
follows a curve on a Riemannian manifold which translates from a common geodesic.
They also assume that the direction of translation is orthogonal to the direction of the
progression curve, which ensures that the changes due to the progression of the disease
are disentangled from the effects of different physiological or anatomical characteristics
of the patient. The family of progression profiles is constrained, e.g. sigmoid curves for
biomarkers changes, and an affine function maps the age of the subject to a disease stage.

Generative models such as variational auto-encoders (VAE) (Kingma and Welling 2013)
have been consistently used in deep learning as they offer a flexible learning framework,
in which disentanglement may be enforced through soft constraints and optimization
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schemes, as in β-VAE and their extensions (Higgins, Matthey, et al. 2016; Kim and Mnih
2019; Mathieu et al. 2019). With time series, however, separating static and dynamic
representations without inductive bias still remains a challenge. In most research works,
authors disentangle time-varying from time-invariant information by leveraging time labels
explicitly: in literature focused on style and content of videos (Grathwohl and Wilson
2016; Y. Li and Mandt 2018), in face ageing progression (Hsu, Y. Zhang, and Glass 2017)
or medical data, where age is used for supervision (Ravi, Daniel C. Alexander, and Neil P.
Oxtoby 2019; Xia, Chartsias, and Tsaftaris 2019). These previous methods are not directly
transferable to longitudinal data where duration between visits differs. In (Berchuck,
Mukherjee, and Medeiros 2019), authors seek an age direction in the latent a posteriori,
while in (Zhifei Zhang, Song, and Qi 2017) they estimate the latent age regression jointly
with the reconstruction task in a supervised fashion. A Riemannian manifold learning point
of view, in the spirit of parametric models is proposed in (Maxime Louis, Couronné, et al.
2019) as it estimates both a static representation and an affine time reparametrization
per patient. All these methods assume that age at observation is a direct marker for the
progression timeline, which is not the case for most neurodegenerative disorders. In the
recent work closest to ours (Zhao, Z. Liu, et al. 2020), the authors propose to learn the
disease stage without relying on the patient age, in a self-supervised fashion. They use a
cosine loss to enforce progression in a specific direction of the latent space, learned during
optimization. They do not study the disentanglement of their model but rather focus on
the correlation with a disease progression timeline.

In this paper, we propose a generic deep longitudinal model, designed to disentangle
inter-patient variability from an estimated disease progression timeline. We learn a disease
stage as a flexible function that does not rely on age, but solely on the individual order
between visits using a differentiable ranking loss, leveraging a much weaker prior. The
remaining latent space is further favored to produce representations independent of the
progression thanks to a DeepSet network which acts as a permutation invariance function
on visits. The main contributions of this paper are therefore (i) an architecture that is
tailored to disease progression modeling and disentangles the changes due to progression
from the changes due to phenotypic differences across subjects; (ii) a modular method
with decoders adapted to data types; (iii) an application on synthetic and real datasets -
including imaging and clinical data - showing that one direction of the latent space alone
describes temporal progression.

7.2 Methodology

The proposed generic deep longitudinal model is summarized in Fig 7.1.

7.3 Longitudinal progression model

In this section, we propose a temporal latent variable model that encodes the disease
progression in a low-dimensional probabilistic space. It assumes that a sequence of
observations is generated as the combination of an intrinsic code zs (as in space shift) and
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Figure 7.1 – Input data yij is encoded simultaneously in a space encoder (Deepset) and a
point-wise time encoder to get latent representations (zsi , z

ψ
j ). zsi can be computed from

any subset of visits, and in practice randomized fixed-size subsets of visits are drawn in the
spirit of stochastic optimization. Decoder can be either agnostic, or specific (e.g., velocity
fields for deformations).

a disease progression factor zψ (where we use ψ instead of t to clearly distinguish the stage
from the temporality of visits).

Generative disease progression model Let {(ti,j, yi,j)}1≤i≤N be a set of N subjects,
each observed at the age of ti,j for 1 ≤ j ≤ ni visits. We assume that the observations
{yi,j} are generated from a Bayesian generative model as follows:

yi,j
iid∼ N

{
Φ
(
zsi , z

ψ
j

)
; ε2I

}
with zsi

iid∼ N (0, λ2sI) and zψj
iid∼ N (0, λ2ψI) (7.1)

Here Φ denotes an unknown non-linear transform from the strongly decoupled generative
factor space, also called latent space, Z = Zs × Zψ, towards our observation space of
scores or images X . The generative factor zψ is assumed to be independent from the
individual variability zs factor. Notice that we do not assume any relationship between
the ages tij and the associated observations yij . Parameters ε2, λ2ψ and λ2s are the diagonal
Gaussian variance priors.

Variational Inference with VAE The inference is conducted within the VAE paradigm.
The function Φ is approximated by a parametric class of neural network Φθ, the decoder.
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Two neural network encoders are used to approximate the intractable posterior distribution
p(zsi , z

ψ
j |yij ; θ). They respectively model the latent distributions of space shifts and disease

progression, such that the approximated parametric distribution can be factorized as a
product of independent Gaussians N (µs,Σs)⊗N (µψ,Σψ).

Set-invariant representation for Zs The strong condition on Zs is that it should
extract from any time-series a time-invariant representation. To do so, we choose to
learn the posterior qηs ≡ N (µs,Σs) as a DeepSet encoder network (Zaheer et al. 2017)
acting on any unordered subset of visits. This rewriting of our disentanglement hypothesis
generalizes the use of simple operators such as averaging or maxing out of visits in an
intermediate latent representation, or even more elaborate inverse Gaussian product of
group-wise non-iid distributions (Bouchacourt, Tomioka, and Nowozin 2017); all these can
indeed be cast as specific choices of permutation-invariance operators, which were shown
in (Zaheer et al. 2017) to be universally approximated by DeepSets.

Ranking visits in Zψ as a regularization constraint The remaining generative
factor of our one-dimensional Zψ space must encode the dynamic of the progression
preferentially. A disease progression constraint, Cranking, aims at favoring a natural ordering
of visits along the temporal latent dimension in a self-supervised way. Unlike in (Zhao,
Z. Liu, et al. 2020), it builds upon the soft-ranking differentiable loss of (Blondel et al.
2020) to enforce isotonic individual progression. The individual ranking errors of visits are
penalized according to

∑
j ||r(z

ψ
j )− j||22. From a theoretical perspective, the minimization

of this loss is similar to maximizing the Spearman correlation between different visits of a
given subject i: it is therefore to be understood as a soft supervision which only relies on
the ordering of visits and not on the times of observations, which are never seen by the
model.

Final objective The final loss can be written as the sum of two terms: the evidence
lower bound, written as the sum of the KL-divergence KL[qη(z

ψ, zs|yi)||p(zi)] and the data
attachment term −E[log pθ(yij|zij)] which is proportional to the `2 reconstruction loss, and
the self-supervised ranking of visits Cranking discussed previously with a weight γ:

nb∑
i=1

KL[qη(z
ψ, zs|yi)||p(zij)]− E[log pθ(yij|zij)] + γCranking

i

7.4 Modularity

The model we propose in this paper can be seen as a “meta” architecture that can be
instantiated according to the datatype: clinical data (1D), images (2D and 3D). We may
even use decoders that are specifically designed for data, such as diffeomorphometry for
brain grey matter. We detail the latter case, directly in the spirit of classical models with
stationary velocity fields (Dalca et al. 2019; Krebs, Delingette, Ayache, et al. 2020). An
additional parameter, a template T , is learned at the centered reference disease stage
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zψ = 0 . From this, any observation yij can be reconstructed from the latent code (zψ, zs)
by a deformation field Φv, parametrized with a velocity decoder v, acting on T .

7.5 Experimental results

The network Eψ is a classical CNN encoder with LeakyReLU non-linearities and a final
dense layer toward Zψ. The spatial encoder Es is composed as a DeepSet, whose output
does not depend upon the ordering of its inputs: it can be written as ρ◦maxj∼visits(f). We
chose f to be a convolutional encoder network which outputs an intermediate representation
(per observation), from which the max operator (over visits) retrieves a permutation
invariant code. The latter is eventually mapped, via a MLP ρ, into the space shifts domain
Zs. Inference was performed using the PyTorch library, with Adam optimizer.

7.6 Validation on synthetic data

To validate the disentangling ability of our model, we first generated a synthetic longitudinal
dataset of starmen images, based on the longitudinal diffeomorphic model of (Bône, Colliot,
and Durrleman 2018). From a given reference template y0, the cross-sectional variability of
our population is prescribed by a diffeomorphism localized at four control points: the head,
right arm and legs. The common progression timeline, on the other hand, is generated
through a displacement of the left arm only.

Figure 7.2 – Each row represents
a synthetic subject across time.

The dynamics of progression is
given by an affine reparametriza-
tion of the age tij at visit j, char-
acterized by individual onset τi
and acceleration αi factors, such
that the true disease progression is
given by ψ∗ij = t0 +αi(tij− τi− t0).
We sample variables in a simi-
lar fashion as in (Bône, Colliot,
and Durrleman 2018) to obtain a
dataset ofN = 1000 subjects, each
with n = 10 visits (Fig 7.2).

We benchmark contender ap-
proaches mentioned in the intro-
duction on the Starmen dataset (see Table 7.1): β-VAE (Higgins, Matthey, et al. 2016),
ML-VAE (Bouchacourt, Tomioka, and Nowozin 2017), LSSL (Zhao, Z. Liu, et al. 2020) and
both supervised “Longitudinal Riemannian VAE” (LR-AE) (Maxime Louis, Charlier, and
Durrleman 2018) and “Age Regression VAE” (AR-VAE) (Gao et al. 2018). We compare
with our model in its generic iconic form on pixels and its diffeomorphic version (wD).
The version without ranking loss (woR) is added for ablation purposes. Beyond the
reconstruction quality (Mean Square Error), which reveals only LSSL and our model are
below the baseline of β-VAE, we are interested in disentanglement capacity. It can be
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Metric β-VAE ML-VAE LR-AE AR-VAE LSSL Ours Ours (wD) Ours (woR)
MSE (10−3) 7.90 22.7 10.9 8.26 7.32 8.83 6.22 14.2

± 0.57 ± 1.51 ± 1.53 ± 0.62 ± 0.379 ± 0.88 ± 1.23 ± 5.46

PLS zψ/zs - 0.660 0.137 0.125 0.098 0.083 0.083 0.149
- ± 0.343 ± 0.209 ± 0.117 ± 0.047 ± 0.026 ± 0.025 ± 0.131

Staging ψ∗ 0.263 0.030 0.971 0.984 0.994 0.997 0.996 0.524
± 0.348 ± 0.028 ± 0.024 ± 0.008 ± 0.003 ± 0.001 ± 0.002 ± 0.464

Table 7.1 – Benchmark of proposed methods on Starmen dataset

measured by correlations between the estimated staging zψ and the latent space code zs
with a partial least square regression analysis (PLS), so as to ensure the independence
of Zs ×Zψ (2nd row). Among all methods, ours performs best: even though LSSL uses
a similar loss, it does not constrain its orthogonal directions to be independant. Other
methods, especially supervised, naturally learn correlated representations.
Finally, the proper staging of ψ∗ is evaluated by computing the Spearman ranking correla-
tion between ψ∗ and zψ: it evaluates the monotonicity of individual trajectories. Only
methods with time supervision or ranking strategy (ie all but first two columns) manage
to grasp a staging close to one (row 3).

In complement to the previous metrics, we visualized in Fig 7.3 the effect of specific
directions in the latent space via gradient maps. The β-VAE is a low baseline as it does
not model the progression and only views the data as static representations: we plot
the PCA in the whole space, and observe that no principal direction correlates with the
left-arm progression. It is interesting to note that the benefit of the ranking loss (when no
supervision is available) is made clear by the study of our model without it (woR), and
ML-VAE. They both focus on group-structure only, and fail to grasp progression. LR-AE

Figure 7.3 – Gradient directions in the latent space (extracted from a forward pass in the
decoder). Row 1: gradient wrt to the latent space associated with disease progression.
Rows 2 and 3: first two principal directions of the PCA in the orthogonal of the latent
time (Zs for us). 4th row: the direction in the orthogonal of the latent time that correlates
most with it (PLS), as a way to challenge the model disentanglement.
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Figure 7.4 – Estimated average trajectory of scores. The effects of latent dimensions zs
(resp. z with β-VAE) are shown with degraded colors.

and AR-AE, because they use supervision of time, are displaying time-related correlations
in a space shift direction (last row).

7.7 Application to Alzheimer’s disease

Cognitive scores We apply our model on four subtest scores of the ADAS-Cog scale
obtained from the ADNI dataset, namely concentration, praxis, memory and language;
normalized between 0 and 1, with higher values indicating lower performance. 248 patients
with mild cognitive impairment (MCI) converting to Alzheimer’s disease (AD) during the
study are followed for an average of 6 visits over 3.5 years.

MSE (10−3) on 5-fold cross validation yields 7.47± 0.778 for our model: slightly less
than β-VAE (3.78± 0.562) and LSSL (3.64± 0.429), but on par with a parametric model of
reference, Leaspy (Schiratti, Allassonniere, et al. 2015c) (8.21± 0.155). Additionally, we can
predict future visits from previous ones: in this scenario, our model reaches a lower MSE
(10−3) 29.1± 5.53 than LSSL 32.4± 5.93.

Figure 7.4 illustrates the estimated average time progression for each model, as well
as the effects of orthogonal directions in the latent space. An agnostic β-VAE fails at
extracting a consistent dimension for the time progression while still providing a good
reconstruction of data. Our proposed model learns monotonicity in an unsupervised
fashion, and is able to estimate a consistent time progression of the ADAS-Cog scores from
longitudinal measurement in small number. Interestingly, despite the noisiness of cognitive
scores, our model generates a progression very similar to that of Leaspy’ sigmoid geodesics:
in particular, the first PCA directions have the same effects on scores (cf degraded color
effects).

Neuroimaging data We selected 356 subjects MCI converters from ADNI, with a total
of 1898 visits. The 1898 T1-weighted MRI were preprocessed using Clinica (Routier et al.
2019) (non-rigid alignment, skull stripping, intensity rescaling), and converted into mid
axial slices of dimension 128× 128.
We do not have access to the true disease progression, however the disease severity at
the MCI stage can be monitored through cognitive scores (ADAS-Cog) or markers of
the morphological evolution such as atrophy of the hippocampi and increase of ventricle
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Figure 7.5 – PLS analysis with respect to ventricle volume ratio V : zψ (left), zs (right).

volumes. We computed the ratio of ventricle volumes by brain volumes, as a covariate
factor, noted V , which we assimilate with a good proxy of the disease progression.

Figure 7.5 shows interactions between our two latent spaces and the disease stage proxy
V via a correlation (PLS) analysis. First, zψ exhibits a quasi-linear regression fit associated
with a high Spearman ranking (0.934± 0.025), suggesting that zψ has indeed captured the
main disease progression trend V and the individual ordering of visits. On the other hand,
the best correlated direction (measured as the PLS main direction) between zs and V is
not localized on the ventricle. This result further implies that Zs has indeed captured the
variability necessary to perform a good fit of the data without correlating significantly
with the disease stage marker.
Furthermore, zψ behaves as a clinical score informative of the onset: its distribution
is significantly earlier for women (p < 3.83e−2± 7.05e−2 for Mann-Whitney U test), as
observed from clinical data. Its derivative ∂zψ

∂t
correlates with the pace of the disease: it is

significantly (p < 4.82e−2± 1.06e−2) faster for APOE4 carriers (1 or 2 alleles), a result in
accordance with well-documented disease progression patterns in AD (Bigio et al. 2002).

7.8 Conclusion
In this paper, we proposed a generative variational autoencoder architecture that leverages
the repetition of measurements per individual to disentangle between the global disease
timeline and inter-patient variability. The disease stage estimation is driven by a dif-
ferentiable ranking loss, while a permutation invariant function reduces the remaining
information in a representative space. As we further demonstrate, inductive biases on the
data itself (such as using diffeomorphometry for structural medical imaging) are completely
synergetic and improve the quality of the representations learned.
A very interesting avenue would be to further explore the space shift space Zs, in particular
because it has the potential to offer a good representation of neurodegenerative diseases
sub-types.
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Part IV

Software development
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We need a sound code source to implement the longitudinal spatiotemporal model, and
perform clinical applications on Parkinson’s Disease. To that end, we coded the Python
library Leaspy. Leaspy is released under the GNU GPLv3 licence. Since then, Leaspy has
benefited from inputs of various contributors.
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Neurodegeneration cohort studies, such as ADNI or PPMI often come in the form of
longitudinal data. However statistical analysis of such structured data is not straightfor-
ward. The python library Leaspy (https://gitlab.com/icm-institute/aramislab/leaspy/)
implements the longitudinal spatiotemporal model (Schiratti, Allassonniere, et al. 2015b),
a generative mixed-effect model for disease progression. In practice Leaspy proposes, under
some assumptions on the longitudinal dataset, and on the curve shapes, to estimate the
progression of scalar biomarkers at both the population and individual levels. A trained
model may then be used for interpolation or extrapolation tasks, at both population and
individual levels. Additionally, individual parameters inform on interpretable geometrical
variation from the average, and may be used as cofactors for subsequent statistical analysis.

8.1 Introduction
Leaspy is a Pytorch based software package for the statistical analysis of monotonic, longi-
tudinal data, designed specifically for biomarker progression modeling in neurodegenerative
diseases. Typical use-cases include the joint progression of cognition scores such as MMSE
or ADAS in Alzheimer’s Disease, or the joint progression of clinical scores such as the
MDS-UPDRS part III in Parkinson’s Disease.

8.2 Inputs
Let us have a longitudinal dataset Y = {yi,j,k, i ∈ [1, N ], j ∈ [1, ki], k ∈ [1, K]} with yi,j,k
scalar measurement of the kth biomarker at the jth visit of patient i, measured at patient
age ti,j . Leaspy handles data in the form of pandas dataframe with a first "ID" column, a
"TIME" column, and K columns for the K studied biomarkers.
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8.3 Classes and methods
We describe in this part the minimal set of leaspy classes and methods that are needed to
use the library.

8.3.1 Algorithm Settings

• Instanciate: AlgorithmsSettings(n_iter, ...) 7→ algorithmsettings
Instanciate an algorithmsettings object, which includes parameters needed for
optimization.

8.3.2 Model Settings

• Instanciate: ModelSettings(name, dim, source_dim, ...) 7→ modelsettings
Instanciates a modelsettings object, which includes parameters that describe the
model (e.g. logistic of dimension 4).

8.3.3 Data

Data checks and transform a pandas DataFrame to a data object, built to be fed to a
leaspy for estimation tasks.

• Instanciate: Data.from_dataframe(df) 7→ data
Processes a pandas DataFrame df to build a data object.

8.3.4 Leaspy (API)

A leaspy object include model parameters θ, and is chosen as the main api of the library
to comput estimation tasks.

• Instanciate: Leaspy(modelsettings) 7→ leaspy
Instanciates a leaspy object from a modelsettings object.

• Calibration: leaspy.calibrate(algorithmsettings, data)
Estimates (MCMC-SAEM) model parameters from calibration dataset data and
update leaspy with new estimated parameters.

• Personalization: leaspy.personalize(algorithmsettings, data) 7→ z
Estimates the individual parameters z of a personalization dataset data knowing
model parameters of object leaspy.

• Simulate: leaspy.simulate(algorithmsettings, z) 7→ z_syn
Simulates synthetic individual parameters z_syn from real-data individual parameters
z, knowing model parameters.

• Save: leaspy.save(path)
Saves the current leaspy object in a .json file.
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Figure 8.1 – Computation cost benchmark relative to respectively: number of visits in the
dataset, number of sources and number of biomarkers. Leaspy is linear in the 3 variables.
On the left, we set K = 10, Ns = 4 and vary the number of visits. On the middle, we set
N = 50 patients, each with m = 10 visits, K = 100 and change the number of sources
Ns from 1 to 99. On the right, we set N = 50 patients, each with m = 10 visits, we set
Ns = 4 and change the number of biomarkers from K = 5 to K = 100.

• Load: leaspy.load(path)
Instanciates a leaspy object from a .json file.

8.4 Performance Benchmark
We show in Figure 8.1 a benchmark of Leaspy in terms of time to compute 100 iterations.
Leaspy complexity is linear in the number of visits in the dataset, in the number of
biomarkers included, and in the number of sources. Note that as we include more
biomarkers, we may want to use more sources as well to preserve flexibility of the model,
which may lead to a higher complexity depending on the design choice regarding the
number of sources. To give an order of magnitude, 100 iterations of Leaspy on a dataset
of 200 patients with each 10 visits, on 10 biomarkers, and choosing 4 sources would last
300 seconds. Typically we choose 10000 iterations, leading to 3.2 hours of computations.

8.5 Applications
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8.5.1 A Basic Example

1 import pandas as pd
2 from leaspy import Leaspy , Data , AlgorithmSettings
3
4 # Load DataFrame and trasform to Data
5 df = pd.read_csv(my_data_path)
6 data = Data.from_dataframe(df)
7
8 # Instanciate a Leaspy object
9 leaspy = Leaspy("logistic") # set model type
10 leaspy.model.load_hyperparameters ({’source_dimension ’: N_S})
11
12 # Define calibration parameters
13 calibration_settings = AlgorithmSettings(’mcmc_saem ’,
14 n_iter =1000,
15 progress_bar=True)
16 # Launch calibration
17 leaspy.calibrate(data , algorithm_settings=algo_settings)
18
19 # Define personalization parameters
20 personalization_settings = AlgorithmSettings(’scipy_minimize ’)
21 # Launch personalization
22 z = leaspy.personalize(data , personalization_settings)
23
24 # Define simulation parameters
25 simulation_settings = AlgorithmSettings(’simulation ’,
26 number_of_subjects =100)
27 # Launch simulation
28 z_synthetic = leaspy.simulate(z, simulation_settings)
29
30 # Compute model at timepoints for
31 # sets of individual parameters in z
32 values = leaspy.estimate(timepoints , z)

8.5.2 Interactive visualization

A leaspy model trained on Parkinson’s Disease Data can be visualized at:
https://dashboard.heroku.com/apps/dashboard-leaspy-park.

https://dashboard.heroku.com/apps/dashboard-leaspy-park
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Figure 8.2

8.5.3 Privacy Preserving synthetic longitudinal data

Provided a good fit of our model to the data, we can leverage the generative model to
generate privacy preserving data, which can come handy to promote reproducible research.
This application was presented at the conference ADPD 2021.

Goal

We aim at providing a longitudinal synthetic data generator for neurodegeneration biomark-
ers. This generator can be first fitted on any set of progressing biomarker in a cohort,
to then be able to generate synthetic data that mimic the real data, while preserving
privacy. Although not directly usable for clinical research, this lightweight, easily sharable
generator fosters reproducibility by providing plausible data on demand for educational,
visualization or benchmarking purposes.

Methods

We included 404 idiopathic Parkinson’s disease subjects from the PPMI dataset with six
clinical scores, the MDS-UPDRS part I, II and III, MoCA, SCOPA-AUT and RBDSQ,
for an average of 13.8+/-2.7 visits over 6.4 +/- 1.7 years. We then used a generative
mixed-effect model (Schiratti, Allassonniere, et al. 2015b) to fit the longitudinal progression
of these clinical scores. We ensured privacy by using a bayesian gaussian mixture model
to fit the empirical individual parameters distribution, so that no individual parameters
from real data can be retrieved from the synthesis model.

Results

We fitted a model on PPMI and generated 404 synthetic patients. To assess the quality
of synthesis, we trained two classifiers with default parameters to distinguish synthetic
visits from real ones, leading to low test accuracy : 60% for Random Forest and 52% for
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Logistic Regression. We then showed that biomarker’s correlation structure is consistent
in synthetic Data.

Conclusions

We proposed a longitudinal synthetic data generator for reproducible research. Synthetic
data are difficult to distinguish from real data, and preserve the correlation structure.

Figure 8.3 – Example of real data on top, and synthetic data on the bottom. A model is
calibated and personalized on the real data, which in this case include 5 clinical scores.
Then from the learned distribution of individual parameters, we sample synthetic individual
parameters accounting for synthetic patients. Coupled with a deterministic or sampling
scheme for patient ages, we can sample synthetic patient longitudinal data.
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Figure 8.4 – Poitwise correlations of real-data biomarkers on the top left, and synthetic
biomarkers on the bottom right. We observe that correlation structure of the biomarker is
preserved in synthetic data.
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Preamble to conclusion

This interdisciplinary work requires to understand notions in pathological and clinical
Parkinson’s Disease progression, and what longitudinal analysis can bring to the clinic.
This also implies theoretical and empirical work to develop new longitudinal models, with
inherent contributions to the field of disease progression modeling. Bridging the gap
between these two aspects has proven to be both extremely challenging and rewarding,
and has been the ultimate goal of this thesis. This work presents our solution to this
multi-objective optimization process.

Contributions

A longitudinal spatiotemporal model

We first present the spatiotemporal model, a bayesian longitudinal mixed-effect model,
designed to model neurodegenerative disease progression. The model is able to estimate
disease trajectories at both population level, and individual levels, disentanglig disease
progression from inter-patient variability.

We propose to relax assumptions of the propagation model which instanciates the
spatiotemporal model in the case of scalar data (Schiratti, Allassonniere, et al. 2015b). We
relax the assumption that all markers progress in the same fashion modulo a time delay
between them, and rather propose to learn for each marker their own curve, which are
still estimated jointly. We also allow missing values in the data and propose to leverage
the generature nature of the model to handle them. From a more practical point of view,
the aforedmentioned model can be calibrated on a set of biomarkers of a given cohorts, to
estimate the fixed effects. It can then be used for personalization of individual parameters
from the same cohorts, or independant cohorts for validation. Once calibrated, we can
also simulate synthetic patients from the learned a-posteriori distribution.

Building Parkinson’s Disease Couse Map

In this work, we ultimately aim at building more flexible longitudinal models to better
account for Parkinson’s Disease heterogeneity across its progression. Despite considerable
efforts to investigate possible data-driven subtyping of the disease, this task still remains
far from straightforward in the community even leveraging recent longitudinal models (see
1.4.2). This is also our experience on the task. It might be that PD is so heterogeneous
that clear, separate subtypes cannot be extracted. Or that biomarker are not nearly
precise enough to distinguish the subtypes. In the latter case, this task could hopefully be
tackled with finer biomarkers such as those of (Horsager, Andersen, Knudsen, Skjærbæk,
et al. 2020b). In any case, each iteration of longitudinal cohorts and consecutive statistical
analysis will improve the state of the art on PD biomarkers (He et al. 2018). In our
clinical contributions, we still have access to a broad range of biomarkers, although not
the latest state of the art. First attempting to extract subtypes, we shift to estimating
and explaining Parkinson’s Disease heterogeneity, that we believe to be a pre-requisite for
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subsequent subtyping. We find significant effects of age at baseline, and sleep symptoms
on the patterns of progression. In addition, we find results that could corroborate those of
(Horsager, Andersen, Knudsen, Skjærbæk, et al. 2020b), with the highest variance between
individuals found on an axis: neurodopaminergic loss versus non-motor scores. However,
we argue (see 1.3.3) that this could be a consequence of a left censorship bias on the
data. Indeed, monitoring usually begins with Parkinson’s Disease diagnosis, and therefore
longitudinal data are re-aligned with regard to motor symptoms at baseline. This might
suffice to explain that variability from the average trajectory is mainly found in the other
modalities.

Deep-Learning Extensions

In the spatiotemporal model, we mathematically understand each parameter’s effect on
the model. However, applying the model to high dimensional appears prohibitive, both
in terms of computation time and modeling power. On the other hand, autoencoders
trade interpretability of the spatial individual parameters for flexibility. We leverage
these models to handle effortlessly high dimensional and multimodal data in Part III.
Trajectories in the data space are mapped on a latent space, assumed to be Euclidean.

In our last work, we attempt to constrain the network to preserve interpretability to
some extent. In Deep Learning, interpretability is often tackled via disentanglement of
the latent space. However, despite exhaustive research (R. T. Chen et al. 2018; Higgins,
Amos, et al. 2018; Higgins, Matthey, et al. 2016; Mathieu et al. 2019) unsupervised
disentanglement remains currently unreachable without leveraging inductive biases in the
data (Locatello et al. 2019). Thus, we leverage the longitudinal setup and monotonicity
assumptions. The two combined allow for self-supervision of the network via a ranking loss.
Disentanglement is additionally fostered by enforcing a constant patient representation
along its visits.

Limitations and Perspectives

Estimation

Recent work study the theoretical convergence of the MCMC-SAEM under milder hypoth-
esis. (Allassonnière and Chevallier 2019) proves that convergence still holds when using a
tempering scheme in the optimization, which is our case. Additionaly,(Debavelaere and
Allassonnière 2021) shows that model exponentialization does not bias the MAP. Recall
from that we did perform exponentialization so that the model belong to the curved expo-
nential family, which is needed for convergence. Finally, convergence of MCMC-SAEM had
already been proved under an assumption of geometric ergodicity of the Markov dynamic.
Recently, (Debavelaere, Durrleman, and Allassonnière 2020) relaxes this hypothesis by
only assuming a subgeometric ergodicity of the Markov dynamic.

However, we also rely on heuristics at initialization to boost MCMC-SAEM convergence
speed. This might bias the MCMC-SAEM toward particular local minimas. What is
more, no diagnostic of convergence of the Markov Chain is currently used in Leaspy, and
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convergence is generally assessed subjectively. Convergence diagnostic would also allow
for less computations.

Then, variable sampling is performed via Gibbs sampling. Leveraging the information of
the gradient of the likelihood , computed by autodifferentiation, we could use Hamiltonian
Monte Carlo instead of Gibbs Sampling, to aim for faster convergence.

Modeling Hypothesis

In the model building, we assume that we can disentangle inter-patient variability against
intra-patient variability : i.e. spatial against temporal variability. This view of patients
following parallel curves over their progression is very practical, as it offers representations
to compute distances between patients (for e.g. clustering). This assumtions seems
acceptable in low dimension, with, in the scalar case, spatial variability modeled as shifting
the sequence of events around the average. However, this assumption is likely to be
challenged in high dimension. In medical images such as brain MRIs for example, patient
particularity, such as its brain region shapes, and disease progression, which could take
the form of damage in particular regions are very likely to be intertwined to some extent.
Full disentanglement between temporal and spatial variability may then appear as a too
strong constraint, which could be relaxed. Intertwining would be ideally reduced to its
minimal influence to still get good reconstruction.

Then we assume monotonous progression. This assumption might hold in the field of
neurodegenerative diseases in the current state of our knowledge. However, with potential
disease-modifying drugs, or applications to other diseases, where periods of progression
and remission may occur, the monotonicity hypothesis would not hold.

Finaly we assume data lie on a smooth manifold. In scalar instanciations of the
the spatiotemporal model, we assume parametric families of these manifolds, as product
manifold of simple open intervals of R. This is practical to get closed form of the average
trajectory geodesic, and its exp-parallelizations, while still perfoming well on noisy clinical
data in terms of reconstruction error. However, with this product manifold and its
asociated diagonal metric, we not only assume a-priori shapes of biomarker progression,
but also completely miss the inter-biomarker dynamics. It is reasonable to assume however
that some of them actually exist, probably even in the form of causal links, such as
imaging abnormalities inducing subsequent cognition symptoms. Learning directly the
Riemanian Metric from the data could allow for much more expressivity (Maxime Louis
2019). This is especially interesting if we consider the fact that longitudinal cohorts are
growing in size and data quality. However, the number of parameters may quickly rise
so that computations are expensive and regularization needed to avoid overfitting. For
example (Maxime Louis 2019)propose to learn the following Riemanian Metric from the
data:

G−1(z) =
s∑
i=1

LψiL
ᵀ
ψi

exp(−‖z − ci‖
2
2

T 2
) + λId (8.1)

with (Ui) a set of s lower triangular matrixes with positive diagonal coefficients, (ci) a set
of s control points in the manifold, T is a temperature parameter to control how close from
control points the metric is, and λ is a regularization parameter that set the metric when
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far from. This amonts to estimate s×K(K + 1) parameters for the Riemanian metric.

Flexibility and interpretability of Deep Models

On the other side, fully Deep Learning based model, such as our proposed longitudinal
autoencoders are both flexible and simple, and allow to concentrate on the graphical model
in the latent space.

However, they still suffer major drawbacks for adoption. First, with more constraints
than a classical autoencoder architecture, they provide a slightly higher reconstruction
error. In this work this was not our main concern, as we focused on proofs of concepts of the
method, if possible in subsampled images to decrease the computation costs. Furthermore,
we believe independant work could be performed on the architecture to increase image
quality. For example a classical solution is to add a discriminator loss on the reconstructed
samples, to ensure more realistic data are generated. Another possibility consists in
leveraging riemanian metric learning to improve sampling quality. The idea is to consider
the latent space no more as an Euclidean space, but rather a smooth Riemanian Manifold.
Indeed, in an agnostic autoencoder setup, the latent space has few reasons to behave as an
Euclidean space. The decoder may be regularized to behave as an isometry in order to force
the learning of a flat latent space (N. Chen et al. 2020; Gropp, Atzmon, and Lipman 2020).
Then, it has been proposed to learn the metric of the latent space by approximating the
Jacobian of the decoder, and pushback the metric in the data space (Arvanitidis, Georgiev,
and Schölkopf 2021; Arvanitidis, Hansen, and Hauberg 2017). Finally, (Chadebec et al.
2021) propose to learn the metric directly from the data in the manner of (Maxime Louis
2019), allowing for significantly better sampling quality, and distances in the latent in
order to perform clustering.

Second and most importantly, interpretability is hardly achievable with deep learning
models, and relevant inductive biases are needed to learn good representations. For
example in our longitudinal autoencoder, while modifying ψ allows to move in terms
of disease stage on the average trajectory, only visual assesment allows to comprehend
the effect of spatial variability with regard to the average trajectory. Ensuring maximal
disentanglement between spatial and temporal variability is already a challenging task
(see 7). Another lead on improving interpretability of the model could be to lean on
visual interpretability, which has become a huge topic in the computer vision community
(W. Liu et al. 2020; Selvaraju et al. 2017) and medical imaging (Thibeau-Sutre et al.
2020). Incorporing this visual interpretability, either via attention modules or a-posteriori
analysis, could provide valuable insights on the data and the model. This is all the more
interesting in the sense that we could leverage the longitudinal setup to regularize visual
interpretability method in the temporal dimension.

A-posteriori analysis of the models

In all our clinical analysis, we estimate a population and individual trajectories of disease
progression, which may be used for regression tasks, or missing data imputation for example.
A-posteriori analysis of the individual parameters encoding for geometrical variations of
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the average trajectory is performed via correlations and ANOVA with cofactors of interest.
This proves to be informative, and shows for example that medical conditions before
diagnosis and demographics are significantly associated with the form of the disease.

However, these are correlations, not causality. Correlation analysis is long and tedious,
and significativity can be tricky. It is not always clear how much to correct for p-
values and cofactors can be correlated between themselves. Causal inference, by building
probabilistic graphical models, may be better suited to understand of the pathological and
clinical processes (Lartigue, Durrleman, and Allassonnière 2020). We believe that building
interpretable, causal models of progression, leveraging the flexibility of deep learning, could
help gain a better understanding of disease underlying processes.

Reproducibility : Data and Models

Reproducibility is key to produce useful research.
First, clinical results should ideally be replicated on independent cohorts. This is

increasingly the case, becoming a pre-requisite for credibility. If not, biases such as patient
inclusion, cohort design and modalities are numerous in line to alter the results. In the
case where sharing real data is not an option, realistic synthetic data, or federated learning
could provide good alternatives.

Then, models themselves are also prone to biases, as they are often designed to deal
with the data at hand. This can be remedied by code availability on Git and easiness
of use. Indeed, Leaspy in the parametric modeling case, and Longitudinal Autoencoders
in the more flexible case allow for reproducibility of our main results to the presented
cohorts, but hopefully also to unseen cohorts of patients.

Reproducibility is fostered by enterprise such as Europond (Europond n.d.), which
allows experienced researchers and newcomers to benchmark different models fast.

Conclusion
At the crosswalk between medicine and machine learning, the goal of the disease progression
modeling field is ambitious : no less than uncovering new insights on (neurodegenerative)
diseases, leveraging data to make and possibly validate new hypotheses, based on our
current understanding of the disease process.

Indeed, we currently only grasp a tip of the iceberg of the pathological processes
underlying neurogenerative diseases. In this work, we provided contributions on disease
progression models and Parkinson’s Disease understanding. However, taking a step back
and looking at the last decade, at the current work of fellow colleagues and researcher,
and at the growing size and sharing of medical data, I believe we have good reasons to be
hopeful for what’s to come.
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