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Résumé

Cette thèse est divisée en deux parties principales. Premièrement, l’objectif est d’étudier
méthodes appropriées au contrôle et l’estimation des bio-procédés complexes. Deuxièmement,
le problème du contrôle des systèmes incertains avec contraintes (sur les états et sur la com-
mande) est résolu en fusionnant des estimateurs à intervalles avec la commande prédictive
(MPC).

Pour la première partie, les bio-procédés concernés décrivent la croissance de populations
microbiennes en culture continue. Deux scénarios différents sont envisagés : la compétition
entre deux espèces pour un seul nutrient, et le cas d’un consortium microbien producteur-
nettoyeur, où deux souches de microbes effectuent des tâches en mutualisme.

Ces systèmes biologiques sont très complexes en raison de leurs non-linéarités, de leur na-
ture contrainte (en raison de leur signification physique, les états sont toujours non-négatifs et
caractérisent ces systèmes comme positifs) et sur la commande (les actionneurs sont physique-
ment limités à des valeurs non négatives), et en raison de l’incertitude inhérente aux processus
biologiques.

Tout d’abord, profitant de leurs similitudes structurelles, l’observabilité de tels systèmes
est étudiée, suivie par la conception d’estimateurs d’état appropriés utilisant des mesures
réalistes. Ensuite, les architectures de contrôle proposées visent à garantir la coexistence
de deux espèces (ou souches) et deux scénarios distincts sont considérés : dans le premier,
une architecture de contrôle robuste est conçue pour le modèle de compétition, en utilisant
un ensemble de différentes lois de commande discontinues et qui prennent explicitement en
compte les incertitudes. Puis, dans un second temps, la conception des lois de commande pour
le consortium microbien producteur-nettoyeur est présentée en considérant le cas nominal.

Pour la deuxième partie de la thèse, l’idée principale est d’aborder le problème de la
commande robuste pour les systèmes contraints en incorporant des estimateurs à intervalles
(un observateur et un prédicteur) dans l’algorithme classique du MPC. Ces estimateurs, sous
certaines conditions de non-négativité des erreurs d’estimation, fournissent des enveloppes
qui contiennent toutes les trajectoires possibles du système incertain. En couplant cette
caractéristique avec un problème d’optimisation, les algorithmes proposés offrent faisabilité
récursive, ainsi que la satisfaction robuste des contraintes, à une faible complexité de calcul
et avec une mise en œuvre très simple.

Deux classes générales de systèmes sont concernées dans ce cadre : les systèmes linéaires
invariants dans le temps et les systèmes linéaires à paramètres variables. Pour chaque cas,
les conditions de conception pour les estimateurs d’intervalle, ainsi que pour leur commande
à retour d’état, sont données sous la forme d’inégalités matricielles linéaires (résolues hors
ligne).



Abstract

This thesis is divided in two main parts. First, the objective is to investigate control
and estimation methods applied to complex bioprocesses. Second, the problem of controlling
constrained uncertain systems is tackled by merging interval estimators with Model Predictive
Control.

For the first part, the concerned bioprocesses describe the growth of microbial populations
in continuous culture. Two different scenarios are considered: the competition between two
species for a single limiting substrate, and the case of a microbial consortium composed of a
producer and a cleaner strain.

These biological systems are highly complex due to their nonlinearities, their constrained
nature in both states (due to their physical meaning, which characterizes such systems as
positive) and control inputs (the actuators are physically restrained to non-negative values),
and due to the inherent uncertainty of biological processes.

First, profiting of their structural similarities, the observability of such systems is studied,
proceeded by the design of proper state estimators using realistic measurements. Then, the
control solutions aim at guaranteeing coexistence of all species and is then divided in two
scenarios: in the first one, a robust control architecture is designed for the competition model,
using a set of different discontinuous control laws that take the uncertainties explicitly into
account. Then, in a second moment, the design of control laws for the microbial consortium
is presented considering the nominal case.

For the second part of the thesis, the main idea is to tackle the robust constrained control
problem by incorporating interval estimators (an observer and a predictor) into the classical
MPC algorithm. These estimators, under some conditions on non-negativity of the estima-
tion errors, provide envelopes that contain all possible trajectories of the uncertain system.
Casting this feature into an optimization problem, the proposed algorithms offer robust con-
straint satisfaction and recursive feasibility at a low computational complexity and ease of
implementation.

Two general classes of systems are concerned in the framework: Linear Time Invariant and
Linear Parameter Varying systems. For each case, the conditions of design for the interval
estimators, as well as for their feedback control, are given in the form of (offline) Linear
Matrix Inequalities.
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Notation

Sets, matrices and vectors

• The sets of real and integer numbers are defined by R and Z, respectively, R+ = {s ∈
R : s ≥ 0} and Z+ = Z ∩ R+.

• The absolute value of an element is denoted | · |, while the Euclidean norm is denoted
∥ · ∥.

• The vector V = vec(v1, . . . , vn) ∈ Rν represents the concatenation of vectors v1, . . . , vn

and ν = ∑n
i=1 νi, where νi is the dimension of each vector vi. The matrix M =

diag(m1, . . . , mn) is a diagonal matrix whose elements are Mii = mi, where mi are
vectors or matrices of appropriate dimension. The transpose of the matrix M is de-
noted M⊤. For a symmetric matrix M , the symmetric entry (i.e., Mi,j = Mj,i, for i ̸= j)
is denoted by ⋆. The determinant of a matrix M is denoted det(M).

• A matrix M is said to be non-negative if all of its elements are non-negative. A matrix
M is said to be Schur stable if all of its eigenvalues have absolute value less than one.
The identity matrix is denoted by In ∈ Rn×n.

• Let x1, x2 ∈ Rn be two vectors and A1, A2 ∈ Rn×n be two matrices, then the relations
x1 ≤ x2 and A1 ≤ A2 are to be understood component-wise. For a matrix A we
define A+ = max{0, A}, A− = A+ − A (also understood in a component-wise sense,
similarly for vectors), and also denote the matrix of absolute values of all elements by
|A| = A+ + A−. For a symmetric matrix A ∈ Rn×n the relation A ≺ 0 (resp. A ⪰ 0)
means that A ∈ Rn×n is negative (resp. positive semi-) definite. If A is diagonal, then
A > 0 is equivalent to A ≻ 0.

Continuous-time systems

• A continuous function α : R+ → R+ belongs to the class K if α(0) = 0 and the function
is strictly increasing. A function β : R+×R+ → R+ belongs to the class KL if β(·, t) ∈ K
for each fixed t ∈ R+ and β(s, ·) is decreasing and limt→+∞ β(s, t) = 0 for each fixed
s ∈ R+. A function β : R+ × R+ → R+ belongs to the class GKL if β(s, 0) ∈ K, β(s, ·)
is decreasing and for each s ∈ R+ there is Ts ∈ R+ such that β(s, t) = 0 for all t ≥ Ts;

• For a Lebesgue measurable and essentially bounded function x : R → Rn, denote
|x|∞ = ess sup

t∈R
∥x(t)∥, and define L∞(R,Rn) as the set of all such functions with finite

norms | · |∞;



Discrete-time systems

• For a function x : Z+ → Rn, the convention xk = x(k) is adopted and denote |x|∞ =
supk∈Z+ ∥xk∥. Furthermore, we define as ℓn

∞ the set of all sequences such that |x|∞ < ∞;

• The convention xk,i is adopted to denote the i-th prediction step of the variable x, cast
at each decision instant k.
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Introduction and overview
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General Introduction

1.1 Background and motivation

Biotechnology has applications in several societal domains, such as medicine, agriculture,
environmental sciences and industry. Indeed, many bioprocesses – processes in which a living
organism (such as bacteria, yeast and microalgae), or their components, participate in the
reactions – have been used by humans to obtain special products: ranging from brewing and
fermentation to the development of new medicines.

Eventually, the interest in having biological systems with different capabilities or that do
not occur in nature gave rise to synthetic biology [Fu and Panke, 2009]. This multidisciplinary
and rather new field applies engineering approaches to design (or re-design existing) biological
systems [Schmidt, 2012] and leverage new advanced technologies.

A recent trend in modern biotechnology is the concept of microbial consortia (or co-
cultures), i.e., the association of different species in a community (or the same species, but
different strains1) [Rosero-Chasoy et al., 2021]. The objective of such an association is that
it might allow more complex tasks to accomplished, or even have a better performance than
possible by a single organism [Said and Or, 2017]. Indeed, many applications employing
microbial consortia, such as bioprocessing [Peng et al., 2016], biorefinery and the production
of high-valuable compounds [Rosero-Chasoy et al., 2021], biosynthesis and biodegradation
[Che and Men, 2019], have shown to be promising in industrial, medical, and environmental
sciences.

In this light, synthetic biology and systems biology offer interesting tools regarding bio-
engineered synthetic microbial communities. For instance, it is possible to establish com-
munication between organisms, “program” reactions to exogenous molecules or stimuli (such
as light) to induce specific behaviours or establish syntrophic interactions in a network of
microorganisms [McCarty and Ledesma-Amaro, 2019].

Over the last years, many researchers have devoted their attention to potential applications
of control theory in synthetic biology [Hsiao et al., 2018]. Indeed, control theory offers several
mature tools to deal with modelling, analysis, identification, control and observer design for
general dynamical systems. However, several challenges arise when it comes to biological

1A strain is a genetic variant or subtype of a microorganism.
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processes:

1. Uncertainty: biological processes are inherently uncertain thanks to variations due to
internal and external factors. Also, the models available for control and estimation often
fail to provide an accurate description of the real process, since many complex functions
are still not elucidated by biologists.

2. Monitoring: online measurements of some key variables are often not available, due to
the lack of sensors. Depending on the type of measurement, this information might be
subject to several sources of noise and also suffer from slow sampling (which might take
several minutes, depending on the type of sensor).

3. Control: designing a controller for such systems is not a simple task thanks to its
inherent complexity, uncertainty and non-linear nature.

4. Constraints: thanks to their physical meaning, these systems are highly constrained.
For instance, both state and input take only non-negative values.

5. Unusual supervision problems: frequently, the plant model in some operational mode
becomes uncontrollable/unobservable (or close to it), which prevents a direct appli-
cation of many existing approaches, since these properties often serve as obligatory
prerequisites in theoretical studies.

There are two different ways of addressing control design for biological processes [Hsiao
et al., 2018]: in vivo, which implements the control directly at a cell level (i.e., each cell has
a copy of the controller), by using a set of chemical species and reactions, or in silico, which
implements it at a population level by using a computer on the loop (see the illustration in
Figure 1.1). While the first scenario highly constrains the control design, the second one flaws
by offering control only up to a community-averaged sense.

Concerning the second approach, it has been shown that it is possible to control commu-
nities by using an external stimulus. For instance, the coexistence of co-cultures has been
shown to be possible in an early work [Davison and Stephanopoulos, 1986] by oscillating pH
levels and, similarly, in [Krieger et al., 2020] by cycling temperature levels. Microfluidics
has also been used for control purposes [Postiglione et al., 2018]. Also, the use of optogenet-
ics is popular, i.e., bio-engineering strains so it expresses certain genes when stimulated by
light [Toettcher et al., 2011], [Milias-Argeitis et al., 2016], [Scott et al., 2019].

However, despite the huge variety of existing control and estimation algorithms designed
for biological processes, there is a persistent need for their development and adaptation to
new tasks and tools in the domain.
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1.1. Background and motivation

Figure 1.1: Schematic of a computed-based control of biological process

1.1.1 The défi COSY

This thesis was hosted in the framework of the Inria project lab real-time COntrol of
SYnthetic communities (COSY)2. The objective of this project was to promote the collabora-
tion between different research teams and to foment interdisciplinary approaches to address
synthetic microbial communities and their possible applications in biotechnology.

The central interest of this project was the development of a microbial consortium and
its related mathematical model, as well as its subsequent analysis, and design of control and
estimation algorithms. This model, presented in [Mauri et al., 2020], describes the interaction
of two different strains a bacteria E. coli, where one of them is called the producer (since it
produces some compound of interest, e.g., a heterologous protein), and a second one called
the cleaner. This association is motivated by the fact that, while growing, the producer
excretes a toxifying by-product (acetate) that inhibits its growth. The cleaner, having more
affinity with the acetate, “cleans” the environment by consuming it and therefore alleviates
inhibitory effects on the producer. The interest here is to observe if this association could
lead to enhanced production of the compound of interest.

The design of control and estimation algorithms for this consortium based on that model
is the primary objective of the present thesis.

2https://project.inria.fr/iplcosy/
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1.2 Robust output feedback MPC

The control of constrained systems is known to be a hard (or even impossible) task to be
tackled using classical feedback tools, such as the ones based on Lyapunov methods [Mayne
et al., 2000]. However, in practice, there exist several limitations on control (such as physical
limitations on actuators) or states (such as safety margins or natural constraints, such as
non-negativity), which can be usually met in the regulation of bioprocesses, as discussed in
the previous subsection, for instance. In this light, Model Predictive Control (MPC) has been
an active research topic over the last three decades since it offers a way to handle constrained,
possibly non-linear and multivariate optimal control problems.

The MPC algorithm is intuitive: at each decision instant, the states are measured and the
future behaviour of the system is predicted using a dynamical model. Using this prediction,
an optimization problem is solved and the optimal input sequence that solves the control
problem is obtained. Finally, the first control move of this sequence is applied to the system,
and the procedure is iteratively repeated. However, although simple, two challenges arise
with the implementation of this algorithm:

1. The model used for prediction is often uncertain due to unmodelled dynamics, para-
metric uncertainties, disturbances, and unaccounted delays. These sources of errors
lead to discrepancies between the predicted and real behaviour of the system. These
discrepancies might lead to the transgression of constraints and even to instability;

2. To achieve constraint satisfaction, MPC requires full state feedback – which is often
unavailable. This fact leads to the need for estimation techniques which, consequently,
increases the level of uncertainty due to inherent estimation errors;

An MPC scheme is said to be robust if it achieves the control task while robustly respecting
all constraints for a given range of all these uncertainties. Furthermore, item (2) characterizes
the robust output-feedback MPC (OF-MPC) problem and is the subject studied in this thesis.

Before formulating the thesis’ problematics with more details, let us briefly survey the
existing results and approaches for monitoring/control of bioprocesses and MPC design. Such
a preliminary discussion will help us with the positioning of the thesis, indicating some of the
remaining gaps that have to be filled.
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1.3 State of the art

Control and observation of microbial communities

If only a single species is considered, the existing literature disposes of a myriad of results
concerning control and observation. Indeed, the bioreactor model has been extensively used
as a benchmark due to its high nonlinearities, yielding results on time-optimal [D’ans et al.,
1971] [Bayen et al., 2017], sliding-mode [Kravaris and Savoglidis, 2012], robust [Robledo,
2006], nonlinear feedback [Karafyllis and Jiang, 2012] and adaptive control [Mailleret et al.,
2004]. In [Mazenc et al., 2017], the authors propose a nonlinear controller taking into account
sampled and delayed measurements, as well as robustness against model uncertainty. The
estimation problem (also called the monitoring problem, in which the objective is to design
soft sensors) also disposes of a rich literature, such as presented in [Bastin and Dochain, 1990]
and reviewed in [Dochain, 2003] [Mohd Ali et al., 2015].

On the other hand, if microbial consortia are considered, the results are more scarce. For
instance, in vivo controllers have been proposed by [Fiore et al., 2017] and [Kerner et al.,
2012]. The use of in silico control (as well as experiments using such controllers) are yet
rare [Schlembach et al., 2021]. In [Hoo and Kantor, 1986] the authors propose a control law of
a community of yeasts (competing and externally inhibited) by means of global linearization.
In [Treloar et al., 2020], a reinforcement learning technique has been used.

In this sense, the control and the estimation problems applied to the microbial consortia
are less studied in the literature. Furthermore, the robust versions of these problems are still
relatively open, especially in the context presented by the project COSY.

Robust output feedback MPC

The second part of this thesis is devoted to the robust output feedback (ROF) MPC
problem, i.e., using a predictive controller to control a system that is subject to constraints
(on control input and states) and does not dispose of full state measurement. The cases of
linear time-invariant (LTI) and linear parameter-varying (LPV) systems are addressed.

For LTI systems, the ROF-MPC problem is very mature. Early results ranges from min-
max optimization (i.e., the minimization of a cost function while considering worst-case of
the disturbances) [Bemporad et al., 2003, Raimondo et al., 2009], to the repeated solution
of LMIs [Kothare et al., 1996, Rodrigues and Odloak, 2000]. Set-membership techniques,
such as moving-horizon estimation (MHE) [Bemporad and Garulli, 2000], [Brunner et al.,
2018], [Chisci and Zappa, 2002], have also been applied. These techniques use the available
measurements to compute sets of admissible states (based on the available dynamics, bounds
on the disturbances and initial uncertainty) and use them to guarantee constraint satisfaction.
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Finally, Tube-based approaches [Mayne et al., 2006] [Mayne et al., 2009] [Langson et al., 2004]
have also grown popular thanks to their reduced computational complexity: by predicting
the trajectory of the nominal system, the controller is designed to enforce any deviation of
the perturbed one to remain inside a tube.

For the LPV case, the problem becomes more complex since the scheduling parameter
is unknown in future steps, making it harder to obtain reliable predictions. Nevertheless,
several dynamic output feedback controllers have been proposed over the last years [Ding,
2010] [Ding et al., 2013]. In a different approach, [Yang et al., 2016] proposes an observer-
based technique relying on input-to-state stability and robust positively invariant sets of the
estimation error. In [Ping et al., 2020], the authors develop an approach that optimizes,
simultaneously, both controller and observer. A tube-based method is presented by [Yang
et al., 2019]. Parameter-dependent Lyapunov functions have also been used [Lee and Park,
2007]. Min-max optimization has been utilized in [Huang et al., 2014] and [Kim et al.,
2006], although no state constraints are imposed. Most of these works recursively update the
estimation error sets and thus require the common assumption that the scheduling parameter
is measured, (there are exceptions, e.g., [Ding et al., 2018], [Ding and Pan, 2016], but with a
constrained prediction horizon).

In the literature mentioned above, sets bounding the uncertain states or the estimation
error are used. However, these techniques face some drawbacks such as numerical complexity
and an intricate implementation, which can be relaxed by the use of interval tools [Gouzé
et al., 2000]. Especially concerning the LPV case, many of these techniques fix the prediction
horizon to a one-step-ahead fashion (which can potentially shrink the feasible region of the
optimization problem) and assume that the scheduling parameter is available, which is not
always true in practice.

1.4 Thesis outline

In the light of the discussion above, the following problems were selected to be tackled in
this thesis:

1. Estimate, in real-time, the concentration of the species in the consortium by using
realistic measurements. These state estimators are then applied to the COSY problem;

2. Develop a control algorithm for the co-population, aiming at a certain task. This control
should take into account possible uncertainties and robustly achieve the control problem;

3. By developing the interval observers and predictors, propose new robust output feedback
MPC algorithms that are less computationally expensive, less conservative and easier

7
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to implement.

Therefore, this thesis is divided into four parts: the general introduction, the results
concerning control and observation of microbial communities, the development of new robust
output feedback MPC algorithms using interval estimators and, finally, general conclusions
and outlooks.

Part 2 is divided in two chapters: Chapter 2 addresses the problem of observation of
microbial communities, considering a continuous bioreactor with a community of different
microbes competing for a single limiting substrate and also the specific problem statement
of the COSY model. Chapter 3 addresses the problem of robust stabilization of competing
species at given concentration levels using a hybrid control architecture consisting of differ-
ent discontinuous control laws. The control problem considering the COSY model is also
presented.

Part 3 is composed of a single chapter, which discusses the developments on the OF-MPC
problem for both LTI and LPV systems. In this chapter, new interval estimators (observers
and predictors), as well as their corresponding feedback control laws, are proposed. The MPC
algorithms incorporate these estimators and stability is proven using classic arguments. It
is shown that robust constraint satisfaction is assured and the complexity of the resulting
algorithm is low. Numerical examples illustrate these novel algorithms.

Figure 1.2: Overview of the thesis organization
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in the competitive chemostat. Computers & Chemical Engineering 142, page 107030,
2020.3
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2.1 Introduction

In this chapter, the models used for the observer and control design, as well as their fea-
tures, are introduced. Two models are considered: (i) the competition model, which describes
the competition of two different species for a single limiting substrate, and (ii) the model
developed by the COSY project, which describes the syntrophic relationship of two differ-
ent strains. The main difference between these models is that, while in the former there is
only one nutrient and there is competition, in the latter two nutrients are considered but the
species do not compete directly for survival.

2.1.1 The competition model

The competition model is described by the following nonlinear differential equations [Smith
and Waltman, 1995]:

dS(t)
dt

= D(t)(Sin(t) − S(t)) − µ1(S(t))x1(t) − µ2(S(t))x2(t)

dx1(t)
dt

= (k1µ1(S(t)) − D(t))x1(t),

dx2(t)
dt

= (k2µ2(S(t)) − D(t))x2(t),

(2.1)

where the states S and xi are, respectively, the concentrations of nutrient and the concentra-
tion of the i-th species. D is the dilution rate, which describes the rate of inflow and outflow of
media of the bioreactor. Sin is the concentration of nutrient diluted in the inflow of medium.
The functions µi(S) are the reaction rates (also called specific growth rates) and describe the
kinetics of nutrient uptake by each species. Finally, ki are yield coefficients, describing the
portion of nutrient uptake that is used for growth by each strain.

This model (and also the one described in the next subsection) is a mass balance model.
From (2.1), one can see that the concentration of nutrient is increased by the inflow D(t)Sin(t)
and decreased by the consumption of the species (i.e., µi(S)xi(t)). The concentrations of the
species are positively influenced by this consumption. Finally, since a bioreactor usually oper-
ates with a constant volume, the outflow is equal to the inflow, meaning that all concentrations
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are negatively affected by the dilution rate D(t).
The main source of uncertainty in (2.1) comes from the description of nutrient uptake.

Indeed, the functions µi might depend on a series of factors (such as substrate and population
concentration, pH, temperature, inhibitors) [Bastin and Dochain, 1986], not always evident in
experimentation. Furthermore, it is also hard to quantify how much of this uptake is indeed
used for growth, leading the parameters ki to be also an approximation.

The functions µi(S) may have many different forms. The most common one, known as
Monod’s law (or Michaelis-Menten kinetics), describes the growth of a species by consuming
a single nutrient, being described by the following equation:

µ(S) = µmax
S

Km + S
, (2.2)

where µmax > 0 and Km > 0 are the maximum reaction rate and the half-saturation constant.
Inhibitory effects (i.e., the decrease of the growth rate caused by high concentration of a

nutrient) are usually modelled by the Haldane equation:

µ(S) = µmax
S

Km + S + S2

Ki

. (2.3)

where Ki > 0 is the inhibition constant. Figure 2.1 illustrate functions (2.2) and (2.3). A
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Figure 2.1: Illustration of the reactions rates (µmax = 1,Km = 1 and Ki = 2).

very important concept concerning competition models is the competitive exclusion principle:
the competition between two or more species for a single limiting substrate will result in the
survival of, at most, one species.

This principle has been proven mathematically in [Hsu et al., 1977] for monotone response
function, and in [Wolkowicz and Lu, 1992] for general functions.
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2.1.2 The COSY model

The COSY model, presented by [Mauri et al., 2020], describes the dynamics of a producer
strain that grows and produces a special compound by consuming glucose and, by doing so,
excretes acetate (which is toxifying, in the sense that it inhibits its growth). The syntrophic
relationship is established by adding a second cleaning strain, that has more affinity in con-
suming acetate and therefore “detoxifies” the environment and alleviates inhibitory effects on
the producer growth (see the pathways illustrated in Figure 2.3 below). The producer and
the cleaner strains are henceforth denoted Bp and Bc, respectively. The glucose and acetate
are denoted by G and A, respectively, and the nutrient state vector is denoted vec(G, A). The
equations of the model have the following form:

Ġ = DgGin − DG − r1(G, A)Bp − r2(G, A)Bc

Ȧ = DaAin − DA − r3(G, A)Bp − r4(G, A)Bc

Ḃp = (1 − kh)µp(G, A)Bp − (k + D)Bp

Ḃc = µc(G, A)Bc − (k + D)Bc

(2.4)

In this model, Gin and Ain are the concentration of each nutrient at the bioreactor inflow.
Also, Dg and Da are the dilution rates of glucose and acetate, respectively, while k is a positive
scalar representing degradation (or death rate).

In (2.4), the functions µp and µc are given by

µp(G, A) = Ygr1(G, A) + Yar3(G, A),

µc(G, A) = Ygr2(G, A) + Yar4(G, A),
(2.5)

where Yg and the Ya being the yield coefficients, denoting how much of each nutrient uptake
is used for growth. Functions ri, i ∈ {1, . . . , 4}, similarly as for the competitive model, are
the kinetic rates and denote the rates of exchange between the environment and the microbial
cells and defined as

r1(G, A) = kp
g

G

G + Kg

Θa

A + Θa

,

r2(G, A) = kc
g

G

G + Kg

Θa

A + Θa

,

r3(G, A) = ka
A

A + Ka

Θg

r1(G, A) + Θg

− kover max(0, r1(G, A) − l),

r4(G, A) = ka
A

A + Ka

Θg

r2(G, A) + Θg

+ kac
A

A + Kac

− kover max(0, r2(G, A) − l)),

(2.6)

and determine the nutrient uptake and acetate over-expression. The constant, positive, scalar
parameters k∗

g , ka, kac, kover are yield coefficients, while Ka, Kg, Kac, Θg, Θa are half saturation
14
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constants. The constant scalar l represents a threshold in which acetate starts to be secreted.
It is worth noticing that the term r1(G, A) indicates that the producer grows by consuming

glucose (the first term), while it is inhibited by the concentration of acetate (the second term).
An illustration of this effect is depicted in Figure 2.2. Also, from r3(G, A) and r4(G, A), it
is readily seen that some terms enter positively in the equation for A in (2.4), showing that
acetate might be increased by excretion of the microbes.

Figure 2.2: Inhibitory effect of A in the growth of the producer strain (parameters: µmax = 1,
Kg = 0.1, Θa = 1).

Along with (2.4), additional dynamics can be considered to express production by the
producer:

Ḣ(t) = khµp(G(t), A(t))Bp(t) − DH(t), (2.7)

Ḟ (t) = mH(t) − D(t)F (t). (2.8)

where H is the product (e.g., a heterologous protein) and F is a by-product (for instance, a
fluorescent reporter resulting of the maturation of H) and kh, m are proportionality constants.
Figure 2.3 illustrates the pathways of the complete model.
Remark 2.1. The dynamics (2.7) basically means that the uptake of substrate G is used
for another purposes other than growth. Therefore, similar additional dynamics can be also
considered for the competition model (2.1).

Interesting features of the model (2.4) have been pointed out in [Mauri et al., 2020]. The
coexistence of producer and cleaner strains depends on the growth parameters (such as the
product yield kh), as well as on the operating conditions (i.e., the dilution rate D and nutrient
inflow concentration Gin).
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Figure 2.3: Pathways of the COSY model. The arrows indicate transfers, whose rates are
depicted in red and purple. The transfers shown in red describe biological mechanisms (such
as uptake, overflow, degradation, etc.), while the ones shown in purple are physical transfers
(such as dilution rates). The symbol ∅ means that the refereed concentration is depleted out
from the bioreactor (either by degradation or by dilution).

The cleaner strain grows, primarily, by consuming acetate. Although model (2.4) foresees
an input of this nutrient (through the term DaAin), its concentration in the bioreactor is
mainly due to secretion by the producer strain, which might only occur if r1(G, A) > l or
r2(G, A) > l. Therefore, the persistence of the cleaner strain in the bioreactor is guaranteed
only if the producer grows sufficiently fast. Furthermore, since this growth is affected by kh,
this coefficient also needs to be taken into account when coexistence is analyzed.

Figure 2.4 illustrates the simulation of (2.4) in two scenarios: one with D = 0.2 [h−1] and
with D = 0.3 [h−1], both considering Gin = 20 [gL−1] and Ain = 0. In the left plot, the
trajectories of Bp and Bc are shown and it is clear that, with a lower dilution rate, the cleaner
is washed out (i.e., Bc → 0). This is due to the insufficient acetate excretion by the producer
species: the glucose inflow is not enough to ensure acetate overflow (i.e., if r1(G, A) > l).
This acetate production (as illustrated by the solid line in the right plot) allows the dynamics
of Bc to converge to a positive steady-state.

In the same scenarios, Figure 2.5 illustrates the trajectories of the product H. As it can be
seen, although Bp reached a higher concentration with D = 0.2 [h−1], the scenario in which
coexistence happens has yielded a higher production of H.

Following [Mauri et al., 2020], Figure 2.6 illustrates the relation between the inputs Gin

and D in the steady-state values of each species. As it can be seen, there is a narrow region
of D that permits coexistence. Obviously, for too high values of D, no species can survive
and the biomass is washed-out of the bioreactor.

Clearly, the investigation above is carried out in an open-loop setup. Therefore, inspired
16
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Figure 2.4: Simulation of (2.4) for D = 0.2 [h−1] (dashed lines) and D = 0.3 [h−1] (solid
lines). Left plot: trajectories of Bp (in blue) and Bc (in red). Center plot: trajectories of G.
Right plot: trajectories of A.

by these facts, it is of interest to study the use of closed-loop control algorithms to control this
consortium. In addition, the objective is to evaluate the conditions in which the consortium
will outperform the producer-only scenario. The control algorithm development also aims to
enhance the operation of the consortium in terms of performance and robustness.

In the two next chapters, the estimation and the control algorithms are discussed. First,
the conditions of observability and the subsequent state observers are proposed (these results
can be applied to both systems). Then, the control algorithms are discussed: first a robust
approach for the competition model, then the (nominal) control of the COSY model. For
the latter, a nominal scenario (i.e., all parameters and variables are perfectly known) is
considered.
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Figure 2.5: Trajectories of the concentrations of the product H (left) and its fluorescent
reporter F (right), in two scenarios: D = 0.3[h−1] (solid lines), and D = 0.2[h−1] (dashed
lines).
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Figure 2.6: Numerical analysis of coexistence. Legend: green - only producer, red - co-
existence, black - washout. This was obtained by numerical integration over a time span
T = 6000h, having initial conditions given by G(0) = 0.5, A(0) = 0.1, Bp(0) = 0.1,
Bc(0) = 0.1.
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3.1 Introduction

In this chapter, the design of estimation algorithms is presented for the systems described
in Chapter 2. First, the available measurements are introduced, then the questions addressed
in this chapter are posed.

Available measurements

In this chapter, the following measurements will be considered:

1. The total biomass y1(t) = ∑n
i=1 xi(t): obtained by methods such as flow-cytometry

or mass-spectrometry. These kinds of measurement are usual in practice, although
demanding a higher sampling time;

2. The fluorescent reporter y2(t) = F (t): obtained by optical density and obeying dynamics
(2.7). Since it uses light to promote an indirect measurement, it can be sampled faster.
However, the strain that produces the protein and expresses this reporter needs to be
bio-engineered.

In this light, this chapter aims to address the following questions:

Q1- Are systems (2.1)–(2.4) completely or partly observable?

Q2- What are the necessary conditions for observability?

Q3- How do the available measurements y1(t) or y2(t) influence observability and observer
design?

Q4- How to design the appropriate observers?
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Preliminaries

Before discussing the questions posed above, some preliminary tools are introduced.

Observability of nonlinear systems

Observability is a property of a dynamical system indicating how well its internal states
can be inferred by means of the available measurements. For nonlinear systems, the problem
of observability has extensively discussed in the seminal paper by Hermann and Krener [Her-
mann and Krener, 1977].

Following that work, let us consider a general nonlinear system endowed with a measure-
ment function as

ẋ = f(x, u)

y = h(x)
(3.1)

where x ∈ M , a smooth connected manifold of dimension n, y ∈ Rp, u ∈ Ω ⊆ Rm and
f, g being smooth functions. Let Σ(x0, u, [t0, t1]) denote the solution of (3.1), in the time
span [t0, t1], with initial condition x0 and input u. Then, a pair of points x0, x1 are said
indistinguishable if they realize the same input-output map, i.e., for every admissible input
u(t) in [t0, t1],

h(Σ(x0, u, [t0, t1])) = h(Σ(x1, u, [t0, t1])).

Let I(x0) define the set of all indistinguishable points at x0. Then, observability is defined
as follows
Definition 3.1. [Hermann and Krener, 1977] System (3.1) is said observable at x0 ∈ M if
I(x0) = {x0}, and observable if I(x) = {x} for every x ∈ M .

The definition above is global, however, it can be also stated locally (i.e., in a open
neighborhood U of x0). Furthermore, it might be only necessary to distinguish x0 from its
closest neighbors, leading to the weaker concept of observability called weak observability.
Definition 3.2. [Hermann and Krener, 1977] System (3.1) is said to be (i) locally weakly
observable at x0 ∈ M if there exists an open neighborhood U ⊂ M of x0 such that I(x0) = {x0}
for every open neighborhood V ⊂ M of x0 contained in U , and (ii) locally weakly observable
if it is so for all x ∈ M .

To introduce a criteria for verification of observability for (3.1), consider the following
definition of the Lie derivatives:
Definition 3.3. (Lie Derivative): Let h(x) be a continuously differentiable function and
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f(x, u) be a vector field. The Lie derivative of h(x) along f(x, u) is defined as

Lfh(x) = L1
fh(x) = ∂h(x)

∂x
f(x, u), Lk

fh(x) = LfLk−1
f h(x), k ≥ 2.

Then, the observation space O be the set formed by all linear combinations induced by
the Lie derivatives of hi (the components of h) with respect to f , i.e.,

O = [h1, . . . , hp, Lfh1, . . . , Lfhp, L2
fh1, . . . , L2

fhp, . . . ].

Let dO be the gradient of the elements of O. The well-known observability rank condition
is stated as follows:
Theorem 3.1. [Hermann and Krener, 1977] The system (3.1) is (locally) weakly observable
if dO contains n linearly independent vectors, i.e., rank(dO) = n.

If the system under consideration is time-varying and autonomous (as it will be the case
in the following), i.e.,

ẋ = A(t)x(t)

y = C(t)x(t)

and considering that A(t), C(t) are analytic functions, then the following algorithm [Sontag,
1998, Ch. 6, p. 279] can be used to verify the rank condition above:

rank





C0(t)
C1(t)

...
Cn−1(t)



 = n,

where C0 = C(t) and Ci+1(t) = d
dt

Ci(t) + Ci(t)A(t) for i = 1, . . . , n − 1.
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3.2 Estimating microbial co-cultures

3.2.1 Observability analysis

Since the structure of systems (2.1) and (2.4) are similar, the observability analysis pre-
sented in this section will be derived only for the latter [Souza et al., 2021a]. Indeed, the
observability conditions for the species concentration are identical (by substituting 1 − kh

by k1, and µp, µc by µ1, µ2, respectively). The observability condition for the nutrients are
different but, nonetheless, follow the same rationale in both cases.

Consider (2.4) decomposed in two sub-systems: the first composed of the strains and
products and the second composed of the nutrients. Denoting x1 = vec(Bp, Bc, H, F ) and
x2 = vec(G, A), the first sub-system can be obtained by rewriting (2.4) as

ẋ1 =


(1 − kh)µp(x2) − (k + D) 0 0 0

0 µc(x2) − (k + D) 0 0
khµp(x2) 0 −(k + D + m) 0

0 0 m −(k + D)

x1

y =
0 0 0 1
1 1 0 0

x1

(3.2)

where µp(x2), µc(x2) are given by (2.5). In (3.2), the variables G, A (i.e., the elements of x2)
are interpreted as external inputs.
Proposition 3.1. Assume D > 0 and that k, m, kh and µp(x2), µc(x2) are known. Then,
system (3.2) is observable in an interval [t0, t1] if there exists a t ∈ [t0, t1] such that (1 −
kh)µp(x2(t)) ̸= µc(x2(t)).
Proof. Since system (3.2) can be interpreted as an autonomous (without inputs) time-varying
dynamics, and endowed with a constant measurement matrix, the observability condition to
be satisfied in the interval [t0, t1] is ∃t ∈ [t0, t1] such that

rank




0 0 0 1
1 1 0 0
0 0 m −(k + D)

(1 − kh)µp(x2) − (k + D) µc(x2) − (k + D) 0 0



 = 4.

Since m, k, kh are positive constants and D > 0 by assumption, this condition is verified
if (1 − kh)µp(x2) ̸= µc(x2).

If the conditions given in Proposition 3.1 are verified, then Bp and Bc are observable and,
therefore, can be considered as available signals. As readily seen in (2.4), the state vector x2

and the measurement y2(t) are coupled by the functions µp(x2) and µc(x2) through the first
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time derivative of x1.
The fact above simplifies the observability analysis of the pair x2 since all terms in (3.2),

except the arguments of functions µp(x2), µc(x2), are known. Denoting the vector-valued
function µ(x2) = vec(µp(x2), µc(x2)), this brings us to the following proposition:
Proposition 3.2. Let the conditions given in Proposition 3.1 be satisfied. Then, the state
vector x2 is observable in a neighborhood of a point x0

2 if, for x1 ̸= 0, the following condition
holds

det J(µ(x0
2)) ̸= 0

where J(µ(x0
2)) is the Jacobian of µ(x2) evaluated at x0

2.
Proof. As discussed above, if x1 and its time derivative are available, the observability problem
for x2 reduces to the invertibility of the vector-valued function µ(x2). Evoking the inverse
function theorem [Nijenhuis, 1974], the condition given in this proposition assures that µ(x2)
is invertible in, at least, a vicinity of the point x0

2.
Remark 3.1. If only one substrate is considered, i.e., x2 = S (such as in the case of model
(2.1)), then the condition given in Proposition 3.2 reduces to the invertibility of function µi(S).

A question that might arise concerns the observability conditions if solely y2 is available.
To tackle this question, a weaker concept of observability, called detectability (or asymptotic
observability) can be evoked. Recalling [Sontag, 1998], a system is called detactable if all of
its unobservable states are asymptotically stable. This brings us to the following proposition:
Proposition 3.3. If only the measurement y2 is available, then system (2.4) is detectable.
Proof. As it can be directly seen from (2.4), the states H and F are not observable through
y2, since no relation with this measurement or its derivatives can be directly constructed.

For the remaining states, however, the observability conditions given in propositions 3.1–
3.2 remain valid. Indeed, if a subsystem composed of Bp and Bc is considered, the rank
condition simply reduces to

rank
 1 1

(1 − kh)µp(x2) − (k + D) µc(x2) − (k + D)

 = 2

which does not alter the requirement stated in Proposition 3.1.
Noticing that the dynamics of the unobservable states F and H are basically first-order

stable filters having Bp and x2 as inputs, this fact implies that the unobservable states have
asymptotically stable dynamics. Therefore, system (2.4) is detectable with respect to y2.

Using the conditions given in propositions 3.1–3.3, the observable (or detectable) states
of (2.4) might be numerically estimated.
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3.2.2 Estimation of H, Bp and Bc

In this subsection, the objective is to develop state observers for system (3.2). The es-
timation of the nutrients G, A will be addressed in the subsequent section. To construct
these observers, the differentiation of the available measurements will be needed, hence it is
assumed that the input D is continuously differentiable with a known and bounded derivative.

As it will be shown in the following, the first and second time derivatives of y1, as well
as the first time derivative of y2, will be needed. Therefore, the following differentiators (see
Appendix B) will be implemented:

ż0 = λ12L
1
3
1 |z0 − y1|sign(z0 − y1) + z1

ż1 = λ11L
1
2
1 |z0 − y1|sign(z0 − y1) + z2

ż2 = λ10L1sign(z0 − y1)

(3.3)


ξ̇0 = λ21L

1
2
2 |ξ0 − y2|sign(z0 − y2) + ξ1

ξ̇1 = λ20L2sign(ξ0 − y2)
(3.4)

and thus, according to [Levant, 2003], if the gains L1 and L2 are selected such as

L1 ≥
∣∣∣∣m(khµ1Bp − mH − 2(k + D)H

)
− (F + w)

(
Ḋ + (k + D)2 + (k + D)m

)∣∣∣∣,
L2 ≥

∣∣∣∣(1 − kh)µ1Bp + µ2Bc − (k + D)(Bp + Bc + w)
∣∣∣∣, (3.5)

then, it is guaranteed that z0 → y1, z1 → ẏ1, z2 → ÿ1, and ξ0 → y2, ξ1 → ẏ2 in a finite-time
in the noise-free case, and the related discrepancies stay bounded for bounded noises. Having
these estimates, an observer for H is readily obtained from the dynamics of F in (2.4) as
follows:

Ĥ = z0(k + D + m) + z1

m
. (3.6)

Remark 3.2. The quantities in (3.5) can be estimated by determining the range of operation
of the bioreactor.

Since the dynamics of both Bp and Bc depends on G and A (which are, a priori, unknown),
denote µp = µ1(G, A)Bp and µc = µ2(G, A)Bc. Computing the second derivative of F , one
gets

F̈ = mḢ − (k + D)Ḟ

= m [khµp − (k + D + m)H] − (k + D)Ḟ − ḊF,

and thus, the measurement y1(t) can be used to estimate µp(G, A) by means of the output of
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the differentiator (3.3) and the estimate (3.6):

µ̂p = z2 + (k + D)z1 + Ḋz0

mkh

+ (k + D + m)Ĥ
kh

=
z2 + [2(k + D) + m]z1 +

[
Ḋ + m + (k + D)2

]
z0

mkh

.

(3.7)

Now, let us investigate the dynamics of the total biomass. By summing the third and
forth equations in (2.4), one gets

Ḃp + Ḃc = (1 − kh)µp(G, A)Bp + µc(G, A)Bc − (k + D)(Bp + Bc),

which allows us to use the measurement y2, along with the output of the differentiator (3.4)
and the estimate (3.7), to compute an estimate of µc by

µ̂c = ξ1 + (k + D)ξ0 − (1 − kh)µ̂p.

Therefore, profiting on the structure of Ḃp and Ḃc, the following observers can be proposed:

ˆ̇Bp = (1 − kh)µ̂p − (k + D)B̂p, (3.8)
ˆ̇Bc = µ̂c − (k + D)B̂c. (3.9)

For the next result, consider the estimation errors given by ep = Bp −B̂p and ec = Bc −B̂c.

Theorem 3.2. Consider system (2.4), differentiators (3.3)–(3.4) with gains satisfying (3.5),
and observers (3.8)–(3.9). Then, the dynamics of the estimation errors ep and ec are input-
to-state stable with respect to the measurement noises.

Proof. Computing the time derivatives of ep, ec, one gets

ėp = −(k + D)ep + (µp − µ̂p),

ėp = −(k + D)ec + (µc − µ̂c).

Consider a Lyapunov function candidate given by V = 1
2(e2

p + e2
c), whose time derivative

is given by

V̇ = epėp + ecėc

= −(k + D)(e2
p + e2

c) + ep(µp − µ̂p) + ec(µc − µ̂c).

Using the Young’s inequality [Hardy et al., 1934], the term ep(µp − µ̂p) can be upper
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bounded as follows:

ep(µp − µ̂p) ≤ ϵ2

2 e2
p + (µp − µ̂p)2

2ϵ2

for any constant ϵ > 0. Applying the same idea to the term ec(µc − µ̂c), the derivative V̇ can
be upper bounded by

V̇ ≤ −2(k + D − ϵ2)V + (µp − µ̂p)2

2ϵ2 + (µc − µ̂c)2

2ϵ2 . (3.10)

Finally, recalling the results concerning the differentiator (see the Appendix B, Theorem
B.1), the positive terms on the right-hand side of (3.10) are bounded. Then, provided that
k + D > ϵ2 (which is always verified by a proper selection of ϵ), one can conclude that the
function V is an ISS Lyapunov function, proving the claim.

3.2.3 Estimation of G and A

An interesting feature of the observers proposed in the previous section is that they do
not depend on any of the reaction rates ri and, therefore, do not require the joint estimation
of the nutrients G and A.

Obviously, this is not the case when G and A need to be estimated – what would be of
interest when designing control algorithms for system (2.4) (or (2.1)). Indeed, real-time infor-
mation of these quantities is hard to obtain in practice, making this estimation an interesting
option. In this light, following hypothesis is imposed:

Assumption 3.1. The estimates B̂p and B̂c have converged to the true values of Bp and Bc.

Assumption 3.1 is technical and is needed only to simplify the analysis of the observers pro-
posed in the following. In practice, all observers will be launched at once. Under assumption
3.1, the following observer can be proposed

ˆ̇G = −r1(Ĝ, Â)Bp − r2(Ĝ, Â)Bc − DĜ + DgGin

ˆ̇A = −r3(Ĝ, Â)Bp − r4(Ĝ, Â)Bc − DÂ + DaAin.
(3.11)

For the next theorem, let the estimation errors be given by eg = G − Ĝ and ea = A − Â.

Theorem 3.3. Let Assumption 3.1 be satisfied and consider system (2.4) and observer (3.11).
If

D > (Bc + Bp) max
{kp

g + kc
g

Θa

,
kakg

ΘgK2
g

}
,

then the dynamics of the estimation errors eg, ea are globally asymptotically stable.
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Proof. The dynamics of the estimation errors eg, ea are computed as

ėg = (−r1(G, A) + r1(Ĝ, Â))Bp + (−r2(G, A) + r2(Ĝ, Â))Bc − Deg

ėa = (−r3(G, A) + r3(Ĝ, Â))Bp + (−r4(G, A) + r4(Ĝ, Â))Bc − Dea.
(3.12)

The objective here is to show that eg is a perturbation on the dynamics of ea (and vice-
versa), and the overall interconnection is ultimately bounded. Considering the term propor-
tional to Bp, summing and subtracting r1(Ĝ, A) leads to

−r1(G, A) + r1(Ĝ, Â) = −r1(G, A) + r1(Ĝ, Â) + r1(Ĝ, A) − r1(Ĝ, A)

=
kp

gΘa

A + Θa

(
Ĝ

Kg + Ĝ
− G

Kg + G

)
+

kp
gĜ

Kg + Ĝ
Θa

(
1

Θa + Â
− 1

Θa + A

)

=
kp

gΘa

A + Θa

Kg

(
−eg

(Kg + Ĝ)(Kg + G)

)
+

kp
gĜ

Kg + Ĝ
Θa

(
ea

(A + Θa)(Â + Θa)

)
.

Since the function r2 is similar to r1, an analogous result can be derived for the term
proportional to Bc. Considering a Lyapunov function candidate given by Vg = |eg|, a bound
on its time derivative can be computed as

V̇g ≤ −D|eg| +
Bpkp

g + Bck
c
g

Θa

|ea|. (3.13)

Now, let us focus on the dynamics of ea in (3.12). Note that, due to the over-expression
terms (i.e., rover,∗

a (G, A)), r3 and r4 are composed of two functions each:

−r3(G, A) + r3(Ĝ, Â) = −r3(G, A) + r3(Ĝ, Â) + r3(Ĝ, A) − r3(Ĝ, A)

= rup,p
a (Ĝ, Â) − rup,p

a (G, A) + rover,p
a (G, A) − rover,p

a (Ĝ, Â).

Consider the difference rup,p
a (Ĝ, Â) − rup,p

a (G, A) as above. Summing and subtracting
rup,p

a (Ĝ, A), one can write

rup,p
a (Ĝ, Â) − rup,p

a (G, A) = ka

rup,p
g (G, A) + Θg

(
−ea

(A + Ka)(Â + Ka)

)

+ kaÂ

Â + Ka

Θg

 rup,p
g (G, Â) − rup,p

g (Ĝ, Â)
(rup,p

g (Ĝ, Â) + Θg)((rup,p
g (G, Â) + Θg)


= ka

rup,p
g (G, A) + Θg

(
−ea

(A + Ka)(Â + Ka)

)

+ kaÂ

Â + Ka

Θg
Θa

Â + Θa

 kp
g

eg

(Ĝ+Kg)(G+Kg)

(rup,p
g (Ĝ, Â) + Θg)((rup,p

g (G, Â) + Θg)

 .
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Proceeding analogously for the remaining difference rover,p
a (G, A) − rover,p

a (Ĝ, Â) one has

rover,p
a (G, A) − rover,p

a (Ĝ, Â) = kover

(
rup,p

g (G, A) − rup,p
g (Ĝ, Â)

)
= kover

[
kp

gG

G + Kg

Θa

(
−ea

(A + Θa)(Â + Θa)

)
+

kp
gΘa

Â + Θa

Kg

(
eg

(Kg + G)(Kg + Ĝ)

)]
.

The last term to be analyzed is the one proportional to Bc, i.e., r4(G, A) − r4(Ĝ, Â).
However, due to the similarity of the concerned functions, one can profit of the developments
made above to write

− rup,c
a (G, A) + rup,c

a (Ĝ, Â) = ka

rup,p
g (G, A) + Θg

(
−ea

(A + Ka)(Â + Ka)

)

+ kaÂ

Â + Ka

Θg
Θa

Â + Θa

 kc
g

eg

(Ĝ+Kg)(G+Kg)

(rup,c
g (Ĝ, Â) + Θg)((rup,c

g (G, Â) + Θg)

 ,

and

rover,c
a (G, A) − rover,c

a (Ĝ, Â)

= kover

[
kc

gG

G + Kg

Θa

(
−ea

(A + Θa)(Â + Θa)

)
+

kc
gΘa

Â + Θa

Kg

(
eg

(Kg + G)(Kg + Ĝ)

)]
.

Finally, considering a Lyapunov function candidate Va = |ea|, whose time derivative can
be upper-bounded using the developments made above as

V̇a ≤ −D|ea| +
[
Bp

(
kakp

g

ΘgK2
g

+
kp

g

Kg

)
+ Bc

(
kakc

g

ΘgK2
g

+
kc

g

Kg

)]
|eg|

≤ −D|ea| +
(

ka

Kg

1 + ΘgKg

ΘgKg

(kp
gBp + kc

gBc
g)
)

|eg|.
(3.14)

In order to prove boundedness of the overall estimation error, let Vag = Vg + Va. The time
derivative of this function, according to (3.13) and (3.14), is upper bounded by

V̇ag = V̇g + V̇a

≤ −D(|eg| + |ea|) +
Bpkp

g + Bck
c
g

Θa

|ea| +
(

ka

Kg

1 + ΘgKg

ΘgKg

(kp
gBp + kc

gBc
g)
)

|eg|

≤ −DVag +
Bpkp

g + Bck
c
g

Θa

|ea| +
(

ka

Kg

1 + ΘgKg

ΘgKg

(kp
gBp + kc

gBc
g)
)

|eg|,

leading us to conclude that, if D > (kp
gBc + kc

gBp) max
{

1
Θa

, ka(1+ΘgKg)
ΘgK2

g

}
, then Va,g is a Lya-

punov function, proving the claim.
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The advantage of measuring y1

As discussed in Proposition 3.3, the system (2.4) is detectable through y2. Then, a question
is raised: why not design an observer for the observable states (in this case, the concentration
of substrates and microbes) using solely this measurement? By substituting Bp and Bc by B̂p

and B̂c in (3.11), additional observer equations can be proposed:

d

dt
B̂ =

(1 − kh)µp(x̂2) − (k + D) 0
0 µc(x̂2) − (k + D)

 B̂ + L(y2 − C2B̂),

d

dt
Ĥ = khµp(x̂2) − (k + D + m)Ĥ,

(3.15)

for B̂ = vec(B̂p, B̂c), C2 =
[
1 1

]
, x̂2 = vec(Ĝ, Â), and some gain L. In this case, the

estimates B̂p and B̂c would be computed jointly with the estimates Ĝ and Â. Obviously, a
more intricate analysis would have to be carried out to identify the stability conditions.

It is interesting to notice that, in addition to allowing the observation of H, the mea-
surement y1 is helpful when observing Bp and Bc in the sense that it eliminates the need of
knowing the rates ri perfectly.

Therefore, one can conclude that estimation of H, Bp and Bc using both y1 and y2 re-
quires only knowledge on parameters m, k, and kh, while the estimation of G and A requires
knowledge on all parameters except Yg and Ya. In counterpart, if solely y2 is used, then the
knowledge of all parameters in (2.4) are required for the estimation of the (observable) state
variables. Clearly, in practice, these parameters (especially those related to the functions ri,
i ∈ {1, . . . , 4}) may be uncertain and, thus, the first scenario would introduce less error in
the resulting estimation.

3.2.4 Numerical example

In this section, a numerical experiment is presented to illustrate the proposed methodology.
For the simulation of system (2.4), the parameters are such as given given in [Mauri et al.,
2020] and, arbitrarily (but realistically) kh = 0.2 and m = 1. The initial conditions are
selected as G(0) = 5, A(0) = 0, Bp(0) = 3, Bc(0) = 2, H(0) = 0 and F (0) = 0 [gL−1].

Furthermore, the inlet glucose concentration is taken as Gin = 20 [gL−1] and the dilution
rate as D = 0.3 + 0.05 sin(0.1t) [h−1]. Aiming at a simulation that is closer to a real-world
scenario, it is considered that all measurements are sampled at every 10 minutes by a zero-
order holder. Figure 3.1 shows the sampled measurements y1 and y2, both corrupted by
measurement noise (in contrast with the unperturbed signals, depicted by the black curves).

In the following, the simulation results will be presented for two scenarios: using both
measurements and applying observers (3.6), (3.8) and (3.9), and using only the measurement

29



3.2. Estimating microbial co-cultures

of the total biomass (i.e., y2), applying observers (3.15). A discussion on the estimation error
introduced by parametric uncertainty is then provided.
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Figure 3.1: Measurements y1 and y2 (in red), in contrast to the output of the differentiators
(3.3)–(3.4) (in black).

Estimation using both measurements

First, simulation results are presented considered observers (3.6), (3.8) and (3.9). The
gains of the differentiators (3.3)–(3.4) are taken as L1 = 0.05 and L2 = 1, respectively.
Finally, the initial conditions for the observers are taken as Ĝ(0) = 0, Â(0) = 0, B̂p(0) = 0
and B̂c(0) = 0.

Figures 3.3 and 3.4 illustrate the real trajectories of Bp, Bc and G, A, respectively, as well
as their respective estimates. Finally, Figure 3.2 shows the estimation of the heterologous
protein H. Although the estimate Ĥ shows more sensitivity to noise than the other estimates,
which are obtained through integration, it does not require any knowledge of the rates ri.

Using only the total biomass

Now, the same scenario described previously will be considered, but using observers given
by (3.15). These observers will be initialized with Ĝ(0) = 0, Â(0) = 0, B̂p(0) = 0, B̂c(0) = 0
and Ĥ(0) = 0. The observer gain will be selected as L = 10.

Figures 3.5 and 3.6 illustrate, respectively, the estimation of the nutrients G and A,
and biomasses Bp and Bc. As it can be seen, since all parameters are perfectly known, all
estimates converge to the true values. Also, since they undergo integration, the influence of
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Figure 3.2: Estimation of H(t).
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Figure 3.3: Estimation of Bp(t) and Bc(t).
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Figure 3.4: Estimation of G(t) and A(t).

measurement noise is attenuated. The same conclusion is drawn for the estimate of H, as
shown in Figure 3.7.

3.2.5 Part conclusion

In this chapter, the observation problem for systems (2.4) (and also for (2.1), thanks to
their similarities) has been discussed. First, an analysis has been carried out to identify their
conditions of observability considering the total biomass and the fluorescent reporter as avail-
able measurements. It has been shown that the system is observable with both measurements,
but merely detectable if only the first is available.

Second, considering the two available measurements, state observers were proposed for
each variable, and the stability properties are discussed for the case in which the two mea-
surements are available. Finally, the advantage of measuring the fluorescent reporter is high-
lighted, in the sense that it not only enables observability of the system, but also alleviates
the dependence on the parameters of the system.
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Figure 3.5: Estimation of G(t) and A(t) using observers (3.15).
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Figure 3.6: Estimation of Bp(t) and Bc(t) using observers (3.15).
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Figure 3.7: Estimation of H(t) using observers (3.15).
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Communities

4.1 Introduction

In this chapter, the generic bioreactor model (2.1) and the COSY model (2.4) are re-
considered to address the control design for a co-culture of microbes. Mainly, the interest
of designing a controller for a heterogeneous community is to ensure their co-existence, i.e.,
avoiding that one goes extinct. It has also been shown that an oscillating chemostat [Smith,
1981], or the use of feedback control [Leenheer and Smith, 2003], might induce the coexistence
of two different species.

Also, another control objective relates to the stabilization (or the optimization) of the
production on the bioreactor. Indeed, controlling production requires, in some sense, avoiding
that the producing species are outcompeted and that the required nutrient is depleted from
the bioreactor (if there is no nutrient, there is no metabolism).

Therefore, the main questions to be tackled in this chapter are:

Q1- Are these systems controllable (or stabilizable) taking into account the control con-
straints?

Q2- How can the co-population be (robustly) stabilized at desired concentration levels?

Q3- How can the production of the bioreactor be (robustly) stabilized? Is it possible to cast
an optimization problem?

These questions are going to be discussed in the sequel, by considering both the generic
model (2.1) and also the COSY model (2.4). Before starting to tackle these objectives, a
discussion on the available control inputs are presented in the following.

The available control inputs

In both models (2.1) and (2.4), there are two controlled variables, both physically altering
the composition of the environment in the bioreactor:

1. D(t): describing the dilution rates, i.e., the rates of transfer (inflow or outflow) of
medium in the bioreactor (in unit h−1). This variable is often actuated by an elec-
tromechanical pump.
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2. Sin(t): describing the concentration of substrates diluted in the inflow of medium (in
unit gL−1). In the COSY model (2.4), this variable is represented by Gin and Ain are,
respectively, the concentration of glucose and acetate.

It is plausible to have the inflow of different media, for instance, containing or not diluted
nutrients (Ds(t) and D0(t), respectively). By considering a continuous bioreactor of constant
volume, the outflow is equal to total inflow, i.e., D(t) = Ds(t) + D0(t).

The concentration Sin(t) (or, analogously, Gin(t) and Ain(t)) can be modulated by properly
selecting the rates D0 and Ds, which indicates that it also might be actuated by electrome-
chanical pumps, as illustrated in Figure 4.1. Considering that Ds relates to the transfer of
medium with a high concentration Smax

in , the inflow concentration Sin can be determined by

Sin(t) = Smax
in Ds(t)

Ds(t) + D0(t)

Figure 4.1: Mixing unit to modulate the concentration Sin(t)

This is interesting since it allows the design of a control considering variables of similar
nature. Furthermore, the time constant of a electromechanical device is much smaller than
the one of a biological process.

4.2 A discussion on controllability

Thanks to its physical meaning, systems (2.1) and (2.4) are time-varying, positive systems.
Furthermore, they have constrained controls, since D(t) and Sin(t) (or Gin(t) and Ain(t) for
the COSY model (2.4)) are also non-negative and possibly upper bounded. In such a case,
deriving a rank condition for controllability is not applicable since it cannot be investigated
by utilizing Lie algebra, as discussed for general nonlinear systems in [Hermann and Krener,
1977].

Nevertheless, an analysis can still be performed by profiting the structure of (2.1) and
(2.4) and it is possible to evaluate the reachability of such a system, according to the following
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definition:
Definition 4.1. A state x1 is called reachable if there exist a finite time t1 and an admissible
control u(t) on [t0, t1] such that x(t0) can be steered to x1.

Consider the competition model (2.1). If the nutrient inflow concentration Sin can be made
sufficiently high, it is possible to prevent the nutrients of being depleted from the bioreactor
(i.e., S → 0). Then, the sign of the derivative of each xi can be assigned by a proper selection
of D.

Consider the sub-system for x1 and x2 in (2.1). Clearly, it can be rewritten as autonomous
time-varying linear system, whose solution is

x1(t) = ef1(t−t0)Bp(t0),

x2(t) = ef2(t−t0)Bc(t0),
(4.1)

where fi =
∫ t

t0
khµi(S(s))− (k +D(s))ds, for i = 1, 2. From these expressions and information

on the functions µi, it is possible to estimate the reachable set for the sub-system above.
Consider now the COSY model (2.4). Although three inputs are considered available (i.e.,

the dilution rate D and the inflow substrate concentrations Gin and Ain), a similar analysis
is more intricate due to the presence of two substrates. Also, considering D = Da = Dg and
recalling the dynamics for the substrates:

Ġ = DGin − DG − r1(G, A)Bp − r2(G, A)Bc

Ȧ = DAin − DA − r3(G, A)Bp − r4(G, A)Bc

the two right-most terms on the dynamics of G are always negative. This is important since
the input DGin, being always non-negative, can be used to compensate these terms and assign
the sign of Ġ.

However, the same does not apply to the two right-most terms on the dynamics of A:
thanks to the metabolic overflow, acetate is excreted by the species (mostly by the producer
strain) after a certain threshold depending on G, A (see (2.6)). Therefore, it can be seen as
an extra input of acetate, what might eventually change the sign of these terms.

Clearly, it would be possible to compensate this by a proper selection of D. Nevertheless,
if D is fixed (or used for another purposes, as it will be the case in this chapter), it would be
impossible to freely assign the sign of Ȧ and drive the concentration of A by using solely the
input DAin, since it is always non-negative.
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4.3 Controlling competing species

4.3.1 A gentle motivation for a robust approach

Before presenting the proposed control architecture, the nuances of the problems are
stressed. Consider (2.1) with a single limiting substrate S. As early pointed out by [Leenheer
and Smith, 2003], coexistence is possible if µ1(S) and µ2(S) intersect at a point Si. Selecting
D(t) = µ(Si) implies that

ẋi = (µi(S(t)) − D(t))xi = 0.

However, if each of the competing species are to be stabilized at given concentration levels
xd

i , i = {1, 2}, the control problem becomes more complex. Indeed, this problem can be seen
as the stabilization of the origin of the auxiliary dynamics σ(xi) = xi(t) − xd

i . Computing the
time derivative of σ(xi), one has

σ̇(xi) = (µi(S(t)) − D(t))xi.

Evidently, it is possible to steer only one of the species to a certain point in the state-
space by setting D(t) = µi(S). The other species, depending on the functions µi(S(t)), will
be driven to another point and might even be extinct. However, consider that D(t) is set such
that one of the species (henceforth, arbitrarily, x1) is stabilized at a given point. Denoting
ξ(S) = µ1(S) − µ2(S) and computing the first and the second time derivative of σ(x2), one
has that

σ̇(x2) = (µ2(S) − µ1(S))x2

= −ξ(S)x2
(4.2)

σ̈(x2) =
(

− ∂ξ

∂S
Ṡ + ξ2

)
x2

= x2

(
− ∂ξ

∂S

[
µ1(S)(Sin − S) − k1µ1(S)x1 − k2µ2(S)x2

]
+ ξ2(S)

)
,

(4.3)

which indicates that Sin can be utilized to stabilize the surface σ(x2) = 0. In this light, the
following challenges are met:

1. σ(x2) possesses a relative degree 2 w.r.t. the input Sin;

2. Controllability of (4.3) w.r.t. Sin is lost at a point So satisfying ∂ξ
∂S

(So) = 0;

3. From (4.3) one observes a heavy dependence on the parameters of µi(S), which, as
discussed previously, are uncertain. This fact motivates the need for a robust approach.
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In the remainder of this section, the design of a control architecture aiming to solve this
problem is proposed. This control architecture is composed of two phases: in the first moment,
the control D(t) is used to stabilize x1 at the desired position xd

1 > 0 and, simultaneously, the
substrate concentration will be shifted to a positive value ensuring the system controllability
using the control Sin(t). Once these goals are reached, the control goal for Sin(t) will commute
to the stabilization of x2 at a constant level.

In this section we will assume that

µi(S) = ai

bi + S
, i = 1, 2,

and the sets of admissible values Ai and Bi are given for ai and bi, respectively, then the
following hypotheses are imposed:
Assumption 4.1. For any ai ∈ Ai and bi ∈ Bi, i = 1, 2, let there exist a constant Sa,b such
that ξ(Sa,b) = 0 and ξ(S) > 0 for S > Sa,b.
Assumption 4.2. For any ai ∈ Ai and bi ∈ Bi, i = 1, 2, the equality ∂ξ(So)

∂S
= 0 is satisfied

for some So < Sa,b.
Hypothesis 4.1 states that the kinetic rates intersect, which is an obligatory requirement to

have co-existence of the species (see [Leenheer and Smith, 2003] for an extensive discussion),
while the latter property can be guaranteed by a proper numbering of each species. Hypothesis
4.2 implies that the function ξ(S) and its derivative with respect to S are not zero at the
same point. As it will be shown in the design of the control architecture, the distinction of
these points is needed to achieve the stabilization of x2(t). For further reference, define

µ
i
(S) = min

ai∈Ai,
bi∈Bi

µi(S), and µi(S) = max
ai∈Ai,
bi∈Bi

µi(S).

4.3.2 Design of the control architecture

Stabilization of x1

This subsection will report the results of [Souza et al., 2020]. Consider the following
decision variable:

σ1(x1) = x1 − xd
1 (4.4)

where xd
1 > 0 is an arbitrary point for x1 to be stabilized. As it can be seen from equation

(2.1), if the concentration xi is in a steady-state value, i.e., ẋi(t) = 0 for t ≥ 0, then there
are two possibilities: either xi = 0 or D(t) = µi(S(t)). With the latter case in mind, the
following proposition is stated:
Proposition 4.1. Consider model (2.1) and the surface (4.4). If the dilution rate is selected
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such as

D(t) =


µ1(S) + χ, if σ1 ≥ 0

µ1(S) − χ, if σ1 < 0
(4.5)

where χ ∈ (0, µ1(S(0))) is a tuning parameter and, then the closed-loop system is globally
finite-time stable with respect to the output σ1, provided that S(t) ≥ S(0) ∀t ≥ 0.

Proof. Consider the following Lyapunov function candidate for (4.4), which is proper and
positive definite with respect to σ1:

V1 = 1
2σ2

1 (4.6)

whose time derivative is given by V̇1 = σ1σ̇1. By noticing that σ1 =
√

2V1, this relation can
rewritten such that D appears explicitly:

V̇1 = σ1(µ1(S) − D(t))x1(t)

and hence, selecting D(t) as given by (4.5) and stressing that x1(0) can be either lower or
greater than xd

1, then V̇1 ≤ −χ
√

2V1 min{x1(0), xd
1} holds, proving the claim.

An immediate consequence of this choice on D is the fact that, when x1 is stabilized at
level xd

1, the equivalent control is given by Deq = µ1(S). Furthermore, control law (4.5) uses
information on x1 and S, and the latter has to be bigger than zero (bigger than S(0) > 0 to
have D(t) > 0 for the selected value of χ). Hence, it is necessary to design a control law for
S, which can be done using Sin(t).

First Control Law – S
[1]
in

The first control strategy is to be active whenever x1(t) is not stabilized in the surface
(4.4) or its vicinity. The objective here is to keep S away from zero, otherwise, it would cause
D(t) = 0 (due to µ1(0) = µ2(0) = 0) and no control action on x1(t) will be possible. Moreover,
it is also necessary to realize the condition imposed in Proposition 4.1 that S(t) ≥ S(0) for
all t ≥ 0.

In order to design a control law for Sin(t), it is necessary to note that the point So, defined
in Assumption 4.2, corresponds to the value of S at which the system loses its controllability
for the variable x2 with respect to the control input Sin(t) (see below the analysis of control
for the second phase: at So the dynamics of ẍ2 is independent in Sin, hence, the system is
not controllable). In addition, the system is not controllable at all if S = 0. Then the goal is
to shift S out of this dangerous region.
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To this end, let us introduce three special points: Sa,b, So and Sm, which are given by

So = max
ai∈Ai
bi∈Bi

So, Sa,b = min
ai∈Ai
bi∈Bi

Sa,b

hence, Sm is selected such as Sm > So.
Remark 4.1. An option for selection is Sm = So+Sa,b

2 .
Thus stabilization of S at Sm will ensure that, at least at the instant of commutation to

regulate x2(t), the latter variable is controllable, avoiding the issue remarked above. Hence,
in this light, the following result is stated:
Proposition 4.2. Consider model (2.1) with an output σ(S) = S − Sm. By means of a
switching law given by

S
[1]
in = 1

D


Smax, if σ(S) < 0

0, if σ(S) ≥ 0
(4.7)

where

Smax = DS +
2∑

i=1
ρixiµi(S) + ϵ, ϵ > 0,

the output σ(S) is globally finite-time stabilized provided that D(t) > 0, for all t ≥ 0.
Proof. : Consider a Lyapunov function candidate given by VS(S) = 1

2(S − Sm)2, whose time
derivative is given by

V̇S = (S − Sm)Ṡ = (S − Sm)
(

D(S[1]
in − S) −

2∑
i=1

ρixiµi(S)
)

Then, taking (4.7) into account, one has V̇S ≤ −ε
√

2Vs for some ε ∈ (0, ϵ] dependent on
initial conditions, implying the stated result.
Theorem 4.1. Let S(0) ≤ Sm. Then controls (4.5), (4.7) with χ ∈ (0, µ1(S(0))) and ϵ > 0
ensure that x1(t) = xd

1 and S(t) = Sm for all t ≥ T , where T > 0 is a finite time dependent
on the initial conditions.
Proof. First, note that such a selection of χ induces D(t) > 0. Furthermore, as proven in
Proposition 4.2 by means of Lyapunov function (4.6), the origin of (4.4) is globally finite-time
stable after a time T1 > 0 bounded by

T1 ≤ V 0.5
1 (x1(0))

min{x1(0), xd
1}χ

√
2

Consequently, control law (4.7) is well-posed (since D(t) > 0 guarantees that no division
by zero will occur). If ϵ > 0, as proven in Proposition 4.2 by means of the Lyapunov function
VS, control law (4.7) renders the system with output S − Sm globally finite-time stable after
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a time T2 > 0 bounded by

T2 ≤ V 0.5
S (S(0))

ε
√

2

Finally, control laws (4.5) and (4.7) render x1(t) = xd
1 and S(t) = Sm after a time T =

T1 + T2 ≤ 1√
2(min{x1(0), xd

1}χ−1V 0.5
1 (x1(0)) + ε−1V 0.5

S (S(0))), as claimed.

Second Control Law – S
[2]
in

The second control has to be active once x1 is stabilized on the surface (4.4). The objective
here is then to stabilize the remaining species x2 at an arbitrary point xd

2 > 0, which can be
done by means of Sin, as discussed previously.

Remark 4.2. As x1 is in sliding motion due to the discontinuous control laws developed
previously, an immediate consequence is that after the establishment of the sliding motion
for the variable σ1, the control D can be considered in its equivalent form [Utkin, 1992]
Deq = µ1(S), which is assumed in this subsection.

As it can be seen from the model (2.1), if concentration x2 is in steady-state, i.e., ẋ2 = 0,
the equivalent control on D implies that stabilization can be achieved if S is steered to a
certain level in which ξ(S) = 0 holds, i.e., S = Sa,b. Indeed, if all parameters of the kinetic
rates were perfectly known, then the intersection point Sa,b would be readily available and
the stabilization is easily solved. However, as aforementioned, these parameters are uncertain
and therefore the control law designed in this section must provide a robust stabilization of
x2.

Before stating the main results of this subsection, let us define the bounds on ξ as follows:

ξ(S) = µ1(S) − µ2(S), ξ(S) = µ1(S) − µ2(S),

and also, the bounds on the derivatives of ξ with respect to S are given by

∂ξ

∂S
= a1b1

(b1 + S)2 −
a2b2

(b2 + S)2 ,
∂ξ

∂S
= a1b1

(b1 + S)2 − a2b2

(b2 + S)2

In this sense, recalling (4.2)–(4.3) and following the idea of the sub-optimal control (see
the Appendix B for the definition of the functional ∆), the control input S

[2]
in can be selected

such as
S

[2]
in = S + 1

D

( 2∑
i=1

ρixiµ̃i(S) − k1sign[∆(y(t))]
)

(4.8)

where µ̃i(S) = µi(S)+µ
i
(S)

2 is a middle point estimate of the uncertain function µi(S) that
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appears in (4.3). Then, by plugging control law (4.8) in the dynamics (4.3), one has that

σ̈(x2) = x2

(
ξ2(S) − ∂ξ

∂S

( 2∑
i=1

ρixi (µ̃i(S) − µi(S)) − k1sign[∆(y(t))]
))

,

= a(t) + b(t)k1sign[∆(y(t))]
(4.9)

where the terms a(t) and b(t) are given by

a(t) = x2

(
ξ2(S) − ∂ξ

∂S

2∑
i=1

ρixi(µ̃i(S) − µi(S))
)

b(t) = x2
∂ξ

∂S

(4.10)

and hence this last expression clearly has the same form as (B.4). Also, in order to eliminate
the uncertain term µi(S), the bounds of functions a(t) and b(t) in (4.10) can be written as

|a(t)| ≤ x2

(
ξ

2(S) + ∂ξ

∂S

2∑
i=1

ρixi

(
µi(S) − µ

i
(S)

2

))
= amax(x1, x2, S)

bmin(x2, S) = x2
∂ξ

∂S
(S) ≤ b(t) ≤ x2

∂ξ

∂S
(S) = bmax(x2, S)

(4.11)

and it is worth noticing that bmin(x2, S) > 0 while S > So.
Proposition 4.3. The selection of control law (4.8) renders Sin non-negative, for all t ≥ 0,
provided that k1 ≤ DS +∑2

i=1 ρixiµ̃i(S).
Proof. The proof is straightforward by noticing that k1 is the only tunable parameter in (4.8)
and, to assure positiveness of Sin, the term k1sign[∆(y(t))] must not compensate all other
(positive) terms. Since sign[∆(y(t))] ∈ [−1, 1] it is obvious that the selection of k1 such as

k1 ≤ DS +
2∑

i=1
ρixiµ̃i(S) (4.12)

renders Sin ≥ 0 for all t > 0, as claimed.
As discussed previously, since the control Sin is multiplied by the term ∂ξ

∂S
in (4.3), it

implies that if S reaches the interval S ≤ So, the stabilization of surface (4.3) might be
no longer possible (actually the system loses its controllability at So but, since this value is
uncertain, it is prudent to keep S > So). Clearly, control law (4.8) does not guarantee a
priori that S will not reach this interval.

In order to state conditions to overcome such a problem and also to ensure a proper
selection of k1, a deeper understanding of what happens in such a control phase is discussed
in the sequel. Assume that k1 is properly tuned and that t2 is the time instant in which
this control phase is activated. Since the previous control phase has stabilized S at a level
Sm > So, then ẋ2(t2) > 0 and hence two different scenarios are possible:
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1. If x2(t2) > xd
2, then S must increase in order to have ẋ2 < 0;

2. If x2(t2) < xd
2, then S must decrease in order to have ẋ2 > 0;

Obviously, the second case is troublesome since, depending on the selected gain, S might
reach the region in which the stabilization is compromised. Hence, the stabilization of surface
(4.3) will proceed for xd

2 = x2(t2) is assumed. With this assumption, the problem of having
S ≤ So may be alleviated.

In the following, an interval I = [S, S] × xd
1 × [xd

2 − δ, xd
2 + δ] for all t ≥ t2 and some

So < S < S < +∞ and δ > 0 is considered. Due to functioning of the suboptimal control,
the dynamics of the closed-loop system will be governed by the equation ÿ(t) = a(t) − b(t)k1.
If the choice of k1 imposes that a(t) < b(t)k1, then ÿ(t) = −r gives the worst-case trajectory
estimate. Since in this case y(t2) = 0 and ẏ(t2) > 0, let us define, for (S(t), x1(t) x2(t)) ∈ I,
the minimum value of ÿ(t) as r = amax(x1, x2, S) − bmin(x2, S)k1 for the time interval [t2, t3],
where t3 > t2 is the instant of time that ẏ(t3) = 0. Omitting all arguments for the sake of
readability, this estimate can be expressed as follows:

r = −
[
(xd

2 + δ)
(

ξ(S)2 + ξ′
max

(
xd

1ρ1
µ1(S)−µ1(S)

2 + (xd
2 + δ)ρ2

µ2(S)−µ2(S)
2

))
− (xd

2 − δ)ξ′
mink1

]
(4.13)

where ξ′
min = minI

∂ξ

∂S
and ξ′

max = maxI
∂ξ
∂S

(this notation will be also used in the following).
In this light, let us state the following result:

Lemma 4.1. If there exists a compact interval I in which the following inequalities hold:

(a) 1
ξ′

min

(
ξ

2(S) + ξ′
max

∑2
i=1 ρixi

µi(S)−µ
i
(S)

2

)
< DS +∑2

i=1 ρixiµ̃i(S),

(b) |ξ(S)| ≤ |xd
2ξ(Sm)|
xd

2−δ
and

(c) 1
2r

(xd
2ξ(Sm))2 ≤ δ

for all (S(t), x1(t), x2(t)) ∈ I, x1 = xd
1 and x2 = xd

2 + δ, then there is a choice of constant
gain k1 in (4.8) that assures both positiveness of Sin and the permanence of trajectories of S

and x2 inside the domain of attraction of the origin of (4.3).
Proof. The idea here is to show that, under the conditions presented in this lemma, it is
possible to select a constant value of k1 that satisfies all constraints of non-negativeness and
stabilizability of (4.3), during all transients.

First, the right-hand side of inequality (a) is immediate from Proposition 4.4, correspond-
ing directly to the choice of k1 that yields Sin non-negative. The left-hand side, however,
relates to the choice of k1 that stabilizes these dynamics. Indeed, one can easily see that
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control law (4.8) renders the dynamics (4.3) as

ÿ = a(t) + b(t)k1sign[∆(y(t))]

where a(t) and b(t) are given by (4.10). Noticing that this last expression has the same form
as (B.4), the stabilization by the suboptimal control is therefore possible if bmink1 > |amax|,
hence

k1 >
|amax|
bmin

which, recalling (4.11) and the constraint of set I, leads us to

k1 >
1

ξ′
min

(
ξ

2(S) + ξ′
max

2∑
i=1

ρixi

µi(S) − µ
i
(S)

2

)
(4.14)

where, for simplicity, x1 = xd
1 and x2 = x2 + δ.

Inequalities (b) and (c) are imposed in order to guarantee that (S(t), x1(t), x2(t)) ∈
I. According to the design of the control on the first step, at the instant of commutation
xd

2 = x2(t2), y(t2) = 0 and ẏ2(t2) = −xd
2ξ(Sm) > 0. Hence, estimates on the behaviour of

trajectories of S and x2 can be obtained by solving analytically the equation ÿ(t) = −r (note
that r > 0) for t ∈ [t2, t3], where the instant t3 corresponds to the first time instant in which
ẏ(t3) = 0.

Consequently, due to properties of the suboptimal control algorithm as shown in Corollary
B.1, the following relations hold true:

|y(t)| ≤ y(t3)

|ẏ(t)| ≤ y(t2)
(4.15)

and hence, by integration of ÿ(t) = −r in the aforementioned time window, one has that

ẏ(t) = ẏ(t2) − rt

and, as ẏ(t3) = 0 and ẏ(t2) = −xd
2ξ(Sm), it is immediate that t3 = −1

r
xd

2ξ(Sm). Integrating
once again in the same interval:

y(t) = y(t2) + ẏ(t2) − r

2t2

which, if evaluated at t3, results in inequality (c), i.e. y(t3) = 1
2r

(
xd

2ξ(Sm)
)2

≤ δ.
45



4.3. Controlling competing species

Finally, inequality (b) is obtained from the second equation in (4.15), which states that

|x2(t)ξ(S(t))| ≤ x2(t2)ξ(S(t2)) = xd
2ξ(Sm)

and, due to monotonicity of ξ(S) for S > So, leads us to

−|xd
2ξ(Sm)|

xd
2 + δ

≤ |ξ(S)| ≤ |xd
2ξ(Sm)|
xd

2 − δ

which, due to the modulus and the positive nature of the constants xd
2 and δ, reduces to

|ξ(S)| ≤ |xd
2ξ(Sm)|
xd

2 − δ

completing the proof.

This last lemma gives us a way to perform a choice of a certain constant gain k1 satisfying
the aforementioned constraints and to evaluate the domain of attraction I. Supposing that
there exist the values of δ, S and S that verify the constraints in Lemma 4.1, and that the
gain k1 is selected to satisfy (a), then, the final result of this section can be stated as the
following theorem:

Theorem 4.2. Consider the dynamics (4.3) and control law (4.8). If the constraints described
in Lemma 4.5 are satisfied, then the origin of (4.3) is stabilized in I for all t > T3, where
T3 > 0 is a finite-time depending on xd

1, xd
2 and Sm.

Proof. This proof is straightforward by the preliminaries given on the suboptimal control (see
Appendix B). From (B.10), then (omitting arguments for readability):

T3 ≤ t3 + αp
√

|y(t3)|

where α(S, x1, x2) = maxI
bmax(x2,S)k1+amax(x1,x2,S)

−r
and p is defined in Subsection 3.2. Hence,

profiting the computations performed in the proof of Lemma 4.1, the relation for T3 above
becomes

T3 ≤ −xd
2ξ(Sm)
r

+ αp

√∣∣∣∣ 1
2r

(
xd

2ξ(Sm)
)2
∣∣∣∣

as stated.

Remark 4.3. For the sake of simplicity, the possibility of having time-varying parameters a

and b has not been made explicit in the development. However, it can be tackled by the same
control architecture in a very natural manner. Recalling formula (4.3), the influence of these

46



4.3. Controlling competing species

time-varying parameters would appear such as

ÿ = x2

(
ξ2(S) − ∂ξ

∂S

(
D(Sin − S) −

2∑
i=1

ρixiµi(S)
)

− ∂ξ

∂a
ȧ − ∂ξ

∂b
ḃ

)

where the two right-most new terms can be seen as a perturbation (especially because ȧ and ḃ

are supposed to be small, given the slow nature of the system) and, taking the uncertainty into
account, they can be added to amax. The design of the control law then proceeds as explained
in this subsection.

4.3.3 Numerical example

In this section, a numerical experiment is presented to illustrate the proposed methodology.
Consider model (2.1) with the reaction rates given as the Monod equation (2.2) as follows:

µ1(S) = 4S

20 + S
, µ2(S) = 2S

6 + S

and with initial conditions S(0) = 1 [gL−1] and x1(0) = x2(0) = 1.5 [gL−1]. The control
inputs are constrained such as D ∈ [0, 2] (in h−1) and Sin = [0, 30] (in g

L
). Also, for simplicity,

k1 = k2 = 1.
The objective is to stabilize x1 at xd

1 = 2 [gL−1] and x2 at xd
2 = 1.5 [gL−1]. The uncertainty

will be considered as ±20% on each parameter. However, for the control synthesis, it is
assumed that the parameter uncertainties satisfy the following intervals:

A1 = [3.40, 4.60] , A2 = [1.70, 2.30]

B1 = [17.00, 23.00] , B2 = [4.80, 7.20]

To assess the robustness of the controller, four parameter sets will be considered for
simulation purposes (i.e., the controller does not have such an information). These sets are
shown in Table 4.1 as follows.

Table 4.1: Random Parameter Sets
[µmax,1, Km,1] [µmax,2, Km,2]

Parameter set 1 [4.00, 20.00] [2.00, 6.00]
Parameter set 2 [3.80, 24.00] [2.40, 7.20]
Parameter set 3 [3.60, 22.00] [2.20, 5.40]
Parameter set 4 [4.60, 23.00] [1.80, 4.80]

Analyzing the impact of these uncertainties in Sa,b and So, one can arbitrarily select
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Sm = 7.5. Also, in accordance with Lemma 4.5, the selection of gain k1 as

k1 = 1
4

 ξ
2(Sm)

ξ′
min(Sm) + µ1(Sm)


satisfies all constraints on stabilizability, non-negativeness of Sin and transient behavior of all
trajectories will be satisfied for this simulated scenario.

First, let us analyze the whole performance of the control law concerning the parameters
given in Table 4.1, as illustrated in Figure 4.2. As can be seen, both phases successfully
stabilizes both species in a finite-time despite of the parametric uncertainties.

Figure 4.2: Convergence of the error (logarithmic scale). Legend: magenta – parameter set
1, green – parameter set 2, red – parameter set 3, blue – parameter set 4. The second-order
nature of the control used for the variable x2 is clearly seen in the behaviour of the convergence
error.

Now, for clarity and depth, let us focus only on parameter set 1. As can be seen in
Figure 4.3, the first control phase is activated in t ∈ [0, 3]. In this interval, one can easily
see the stabilization of S at Sm and x1 at xd

1. Immediately after this step, the second phase
is initiated and successfully stabilizes x2 at x2(t2) = 1.2. Also, one can see that the control
architecture successfully stabilized S = Sa,b, even though Sa,b belongs to an uncertain interval.
This fact shows the usefulness of this methodology since it allows a robust solution to the
stated stabilization problem.

In Figure 4.4, one can see the time evolution of the control inputs Sin(t) and D(t). Clearly,
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4.3. Controlling competing species

one can see the high frequency switching on both control laws, which is natural to the sliding-
mode control. This phenomenon is called ideal sliding-mode, where the actuators are supposed
to allow this high frequency.
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Figure 4.3: Stabilization at x1 = 1 and x2 = 1.2
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Figure 4.4: Control inputs Sin(t) and D(t)

In order to investigate this control architecture in a numerical experiment that is closer
to the real-world, the same scenario will be simulated considering dynamics on the actuators:
a first-order filter and a sampler will be introduced to the output of the proposed controllers.
This means that the pumping rates are not perfect and can only be changed at sampling
times τ ≈ 30 seconds.

As it can be seen in Figure 4.5, even under these new circumstances, the system can still be
stabilized at the desired positions. However, a larger discrepancy is observed for the variable
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x2(t). Figure 4.6 illustrates the control inputs after the actuator dynamics. Clearly, it still
oscillates but at much smaller frequencies. It is worth noticing that this is possible thanks to
the fact that the actuator is much faster than the dynamics of the controlled system.
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Figure 4.5: Stabilization considering actuator dynamics.
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Figure 4.6: Evolution of the control inputs (output of the actuator). The small boxes zooms
the signal on a 1 hour time-window.
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4.4 Control of the COSY model

In this section, particular attention is drawn to the control problem concerning the COSY
model (2.4). For all simulations and numerical results throughout this section, the model
parameters will be selected as the ones given by [Mauri et al., 2020] and, arbitrarily (but still
realistically), kh = 0.2 and m = 1.

For simplicity, the (multiplying) control inputs will be denoted u1 = DgGin and u2 =
DaAin. Note that these inputs are constrained such as

u1 ≥ 0, u2 ≥ 0. (4.16)

4.4.1 Ensuring coexistence through state feedback

Although the ultimate objective is to stabilize the production of H, the first challenge
tackled in this section is how to ensure the coexistence of both producer and cleaner strains.
As it will be shown, this ultimate objective will be attained by using the same control law
proposed in this subsection.

First, a control law for the dilution rate D will be proposed. As clearly seen from (2.4),
controlling the concentration of Bp allows one to control the concentration of H. Defining an
error variable σp as

σp = Bp − B⋆
p (4.17)

where B⋆
p is a desired concentration level for Bp, the control law for the dilution rate is selected

as follows:
D = max{Dmin, (1 − kh)µp(G, A) − k + φ(σp)} (4.18)

where Dmin > 0 is a (predefined) minimum value for the dilution rate, φ(σp) is any function
satisfying φ(σp)σp > 0 for σp ̸= 0 and µp(G, A) is as given in (2.5). As this control law
depends on the concentration of the substrates, before stating the result concerning stability
of σp, several conditions (in terms of G and A) will be imposed.

First, as readily seen by computing the dynamics of σp, the saturation D = Dmin does not
ensure the stability of the origin of (4.17). To remedy this issue, the following constraint is
needed:

(1 − kh)µp(G⋆, A⋆) ≥ k + Dmin

which basically imposes that, by selecting proper values of required levels G⋆ and A⋆ for G and
A, respectively, the saturation shown in (4.18) will not be reached at the desired equilibrium.
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4.4. Control of the COSY model

Figure 4.7 illustrates this constraint as a function of G and A, highlighting that it is only
transgressed for very low values of A.

Figure 4.7: Illustration of the constraint (1 − kh)µp(G, A) ≥ k + Dmin as a function of G and
A and for Dmin = 0.05.

Now, let us consider the dynamics of Bc, which is also affected by the selection of the
dilution rate as given by (4.18). As readily seen from (2.4), the possible steady-states of Bc

under control (4.18) are either Bc = 0 or Bc > 0 with the constraint that µc(G, A)−(k+D) =
0. Obviously, the former scenario is of no interest since coexistence is envisaged. With the
latter scenario in mind and considering that Bc, G and A are in their respective steady-states,
the dynamics of Bc becomes

Ḃc = h(G⋆, A⋆)Bc

where h(G, A) = µc(G, A) − (1 − kh)µp(G, A). Therefore, in order to keep the value of Bc

constant in a positive value in the equilibrium, the choice of G⋆ and A⋆ also needs to satisfy

h(G⋆, A⋆) = 0.

Figure 4.4.1 illustrates the surface obtained by plotting the function h(G, A). The line ren-
dering h(G, A) = 0 (and, consequently, the appropriate selection of G and A) is also shown.

Now, let us investigate how steer the concentrations of G and A through the state-space.
Consider two other error variables given by

σg = G − G⋆, σa = A − A⋆.
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Figure 4.8: Surface of h(G, A). The white line represents the values of G and A rendering
h(G, A) = 0.

The idea is then to drive these variables to zero. Since D is already fixed (i.e., selected as
(4.18) aiming at the stabilization of Bp), this can only be done through the remaining inputs
u1 and u2 (i.e., through the actuation of Gin and Ain, respectively).

In this light, consider the following control laws for u1 and u2:

u1 = max
{

0, r1(G, A)Bp + r2(G, A)Bc + DG − φ(σg)
}

(4.19)

u2 = max
{

0, r3(G, A)Bp + r4(G, A)Bc + DA − φ(σa)
}

(4.20)

Proposition 4.4. Consider system (2.4) with ouputs σg and σa. If u1 and u2 can be chosen
arbitrarily large, then the surfaces σg = 0 and σa = 0 are asymptotically stable under control
laws (4.19), provided that r1(G, A) < l and r2(G, A) < l.
Proof. The restrictions r1(G, A) and r2(G, A) imply that the terms proportional to Bp and
Bc in the dynamics of A are sign-defined (i.e., the extra acetate input discussed in Section
4.2 will not disrupt controllability of A through the positive control). Under this condition,
the dynamics of G and A are similar, therefore this proof will consider only the former. For
simplicity, the dynamics of G is rewritten as

Ġ = −f1 − DG + u1,

where f1 = f1(G, A, Bp, Bc) = r1(G, A)Bp + r2(G, A)Bc ≥ 0. Considering a candidate Lya-
punov function Vg = 1

2σ2
g , whose time derivative is computed as follows:

V̇g = σgσ̇g

= σg (u1 − f1 − DG) .

53



4.4. Control of the COSY model

Consider the control u1 as given by (4.19). Recalling that φ(σg)σg > 0 by definition, the
derivative V̇G becomes

V̇g = −φ(σg)σg ≤ 0.

provided that σg ≤ 0, or φ(σg) ≤ DG + f1.

However, σg > 0 may lead to u1 = 0 and the time-derivative V̇g = σg(−f1 − DG) < 0.
This implies that Vg is a Lyapunov function and the claimed stability property for σg.

Remark 4.4. It is worth noticing that no upper bounds on Gin and Ain (and, consequently,
on u1 and u2) are imposed. If this is the case, then the result of Proposition 4.4 are merely
local: depending on D, Bp and Bc, the upper bound of u1 and u2 might not be sufficient to
ensure that V̇g < 0.

Now, since (4.19) allows one to steer the concentrations of G and A through the state-
space, it is possible to finally state the stability results of σp. For the next result, let the
constraint set be denoted as

C =
{

(G, A) ∈ R2
+ : r1(G, A) < l, r2(G, A) < l, (1 − kh)µp(G, A) − (k + Dmin) > 0

and h(G, A) = 0
}

.
(4.21)

Theorem 4.3. Consider system (2.4) with an output σp as given by (4.17). Let (G⋆, A⋆) ∈ C
and the conditions of Proposition 4.4 hold true. Then, by selecting D as given by (4.18), the
closed-loop system is locally asymptotically stable with respect to the output σp. Furthermore,
if Bc(0) > 0, then Bc > 0 for all time.

Proof. Consider a Lyapunov function candidate given by Vp = 1
2σ2

p and assume that G and
A have converged to the desired steady-states G⋆ and A⋆, respectively. Computing the time
derivative of Vp, one gets

V̇p = σpσ̇p

= σp((1 − kh)µp(G⋆, A⋆) − (k + D))Bp.

By selecting D as given by (4.18) and thanks to the selection of the pair (G⋆, A⋆), this
derivative becomes

V̇p = σpφ(σp)Bp < 0.

which characterizes Vp as a Lyapunov function. Assume now that G and A have not converged
(due to, for instance, some transient response) and, therefore, the condition (1−kh)µp(G, A)−
(k + Dmin) ≥ 0 is not satisfied. This would enforce D = Dmin and lead the time-derivative of
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Vp to be

V̇p < −Dminσp ≤ 0,

indicating that σp is, at least, bounded. Once G and A reaches their steady-state, the previous
conclusion concerning V̇p will be valid and asymptotic stability is assured.

An interesting fact emerges when applying control law (4.18): the concentration of the
product H, in its steady-state, becomes a monotonic function of µp(G, A)Bp. Indeed, plugging
control law (4.18) into the dynamics of H and setting it to zero, the steady-state is readily
computed as:

H⋆ =
khB⋆

p

1 − kh

µp(G⋆, A⋆)
µp(G⋆, A⋆) + m

1−kh

.

Therefore, stabilizing H at a desired concentration level basically sums up to choosing
proper values of B⋆, G⋆ and A⋆. Clearly, the control laws proposed in this section are suitable
for such an objective. Figure 4.9 illustrates the heatmap of H⋆ as a function of G and A.

Figure 4.9: Heatmap of H⋆ as a function of G and A (considering B⋆
p = 1).

4.4.2 Numerical example

In this section, numerical experiments will be presented to illustrate the control method-
ology developed in this chapter. The COSY model (2.4) will be simulated considering the
initial conditions for the biomasses as Bp(0) = Bc(0) = 0.1 [gL−1], for the nutrients as
G(0) = A(0) = 1 [gL−1] and for the heterologous protein as H(0) = 0 [gL−1]. Arbitrarily, the
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saturation in (4.18) is selected as Dmin = 0.05 and, for simplicity, the functions φ(·) where
simply selected as φ(s) = s.

The desired steady-states for Bp and G are, respectively, B⋆
p = 0.5 [gL−1] and G⋆ =

3 [gL−1]. According to Figure 4.4.1, in order to have h(G, A) = 0 in the steady-state, one
must select A⋆ = 0.0175 [gL−1].

Figure 4.10 shows the trajectories of the concentrations of G and A. As it can be seen, both
desired levels were attained roughly after t = 20h. Figure 4.11 then illustrates the trajectories
of Bp and Bc, where one sees that the desired steady-state for Bp = 0.3 [gL−1] was attained,
while the Bc converged to a positive level (≈ Bc = 1.73 [gL−1]), as expected. Finally, Figure
4.12 shows the computed control inputs, reaching their steady-states at D = 0.414 [h−1],
Gin = 6.22 and Ain = 3.25 (both in [gL−1]).
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Figure 4.10: Control of the concentrations of G and A.

4.5 Part conclusion

In this chapter, the control problem for systems (2.1) and (2.4) has been investigated. As it
was discussed, controllability of such systems is a complicated task, due to their non-negative,
nonlinear nature and bounded control inputs.

First, for the competition model (2.1), a gentle motivation for the need of a robust ap-
proach is presented. In this light, a robust control architecture composed of two phases (each
one with a control objective concerning the input Sin) is proposed, allowing the explicit consid-
eration of parametric uncertainty in the reaction rates, and its stabilizing features are proven.
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Figure 4.11: Control of the concentrations of Bp at 0.5 [gL−1] and the consequent evolution
of Bc.
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Figure 4.12: Computed control inputs for D (in [h−1]), and for Gin, Ain (both in [gL−1]).
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These control laws are based on switching controllers, guaranteeing both non-negativity of the
inputs and controllability of the system. A numerical example illustrates the methodology.

Considering the COSY model (2.4), the control problem becomes more complicated. In-
deed, the excretion of acetate by the producer strain can be considered as an extra input,
which further restrain the controllability of the system. Therefore, in order to stabilize H

(which can be done simply by stabilizing the concentration of the producer strain Bp), a
control law using the dilution rate was proposed. However, to guarantee controllability and
also the permanence of the cleaner strain, several constraints concerning the concentrations
of glucose and acetate were imposed. Therefore, two more control laws using the inflow con-
centration of each substrate were proposed, allowing the values of glucose and acetate to be
stabilized at proper values that respect such constraints. A numerical experiment illustrate
the efficacy of this methodology.
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MPC using interval estimators

5.1 Introduction

Problem statement

Consider a general discrete-time system given by

xk+1 = f(xk, uk, wk, θk)

yk = Cxk + vk

(5.1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input vector and yk ∈ Rp is the available
measurement vector. The measurement matrix C ∈ Rp×n is known and constant and f :
R2n+m+r

+ → Rn. The signals w ∈ ℓn
∞ and v ∈ ℓp

∞ are, respectively, process and measurement
noise. The time-varying signal θk ∈ Θ ⊂ Rr represent some parametric dependence (such as
scheduling or uncertain parameters).
Assumption 5.1. Initial conditions of (5.1) are bounded such as x0 ≤ x0 ≤ x0, for some
known x0, x0 ∈ Rn. Furthermore, the additive perturbations wk ∈ [wk, wk] and vk ∈ [vk, vk]
for all k ∈ Z+, where w, w ∈ ℓn

∞ and v, v ∈ ℓp
∞ are known signals.

Assumption 5.2. Let C ≥ 0.
Assumption 5.1 imposes that the three sources of uncertainties in (5.8), i.e., x0, wk and vk

are enclosed in given intervals, which is a classic hypothesis on the design of interval observers
(IOs), whereas Assumption 5.2 is technical and can always be achieved by a proper change
of coordinates.

The objective of this chapter is to address the following problem statement:
Problem 5.1. (OF-MPC) Let [x0, x0] ∈ X and assumptions 5.1 be satisfied. The objective
is to design an output feedback controller stabilizing system (5.1) in a vicinity of the origin
while robustly satisfying state and control constraints

xk ∈ X, uk ∈ U, ∀k ∈ Z+

for any admissible realization of θk, wk and vk, where X ⊂ Rn and U ⊂ Rm are given bounded
convex sets.

Roughly speaking, Problem 5.1 requires robust constraint satisfaction, which means that
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the constraints imposed in both state and control input must be respected even if the system
is plagued by disturbances and uncertainties. The main rationale of the solutions proposed for
such a problem relies on interval estimators. These estimators, while having a simple struc-
ture, provide information on the set-membership of the states (i.e., in the form of intervals),
with guaranteed convergence and low computational complexity. Their design is achieved
by using the bounds on the uncertainties, and under some conditions on cooperativity (or
non-negativeness).

Roughly speaking, an IO uses the available measurement to generate, at every instant k,
signals xk, xk ∈ Rn that satisfy the following relation:

xk ≤ xk ≤ xk, ∀k ∈ Z+. (5.2)

On the other hand, an interval predictor (IP, also called a framer [Mazenc and Bernard,
2011]) can be seen as an open-loop estimator, since it does not depend on the measurements
yk. For this reason, it can be used to predict an envelope, where all the trajectories of the
considered system are enclosed. In this light, the IP generates signals zt, zt ∈ Rn such that

zt ≤ xt ≤ zt, ∀t ∈ {k, k + 1, . . . , k + N}. (5.3)

where N ∈ Z+ is the finite prediction horizon. Therefore, the main idea is to use this
information to check the fulfillment of constraints in the MPC, since

[zk, zk] ⊂ X ⇒ xk ⊂ X,

and, obviously, the same property can be checked from (5.2).

5.1.1 Preliminaries

Preliminaries on MPC

A standard MPC algorithm solves a constrained optimization problem, by predicting the
behaviour of the system over a prediction horizon N (see Figure 5.1 below), to determine a
control input sequence SN = {s0, . . . , sN−1} that minimizes a cost function VN (assuming, for
simplicity, that the whole state vector is available as exact measurements). This algorithm is
summarized as the following minimization problem:

SN := arg min
SN

VN(xk,0, . . . , xk,N , SN) (5.4)
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subject to the following constraints

xk,0 = xk, (5.5a)

xk,i+1 = f(xk,i, si, 0, 0), (5.5b)

xk,i+1 ⊂ X, si ⊂ U, (5.5c)

xk,N ∈ Xf , (5.5d)

where Xf ⊂ X is the terminal set.
Constraint (5.5a) imposes the initialization of the prediction with the measured xk, con-

straint (5.5b) states that the predicted states are obtained using the available dynamical
model, constraint (5.5c) requires that the prediction respects the constraints on state and
control, and (5.5d) is a stabilizing constraint, imposing the endpoint of the prediction to be
in a terminal set (the features of this set will be discussed in the sequel).

The cost function VN is defined as follows

VN = Vf (xk,N) +
N−1∑
i=0

ℓ(xk,i+1, si).

where Vf (x) is the terminal cost and ℓ(x, s) is the stage cost.
Applying the philosophy of the receding-horizon control, a sequence SN is obtained at

every decision instant k and only its first element, s0, is applied to the system from the
instant k to k + 1. This algorithm is then applied for all subsequent time instants.

Concerning the stability of an MPC algorithm, an important requirement is recursive
feasibility:
Definition 5.1. The MPC algorithm is recursive feasible iff, for all initially feasible x0, it
remains feasible for all subsequent times.

Indeed, the stability of an MPC controller can be evoked by the classic results reviewed
in [Mayne et al., 2000] to establish stabilizing ingredients for recursive feasibility. These
ingredients are the terminal set Xf , the terminal cost Vf and the terminal controller κf (x),
which satisfy the following definition:
Definition 5.2. The stabilizing ingredients are such that the following axioms are verified:

1. Xf ⊂ X, closed and 0 ∈ Xf : the state constraint is satisfied in Xf ;

2. κf (x) ∈ U, ∀x ∈ Xf : the control constraint is satisfied in Xf ;

3. f(x, κf (x)) ∈ Xf , ∀x ∈ Xf : Xf is positively invariant under κf (x);

4. [Vf + ℓ](x, κf (x)) ≤ 0, ∀x ∈ Xf : Vf is a local Lyapunov function.
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Figure 5.1: Illustration of the MPC algorithm.

Preliminaries on interval arithmetic

The design of the interval estimators presented in this chapter will require some results
on interval arithmetic. To this end, we evoke the following:

Lemma 5.1. [Efimov et al., 2013] Let x ∈ Rn be a vector variable, x ≤ x ≤ x for some
x, x ∈ Rn. Then,
(1) if A ∈ Rm×n is a constant matrix, then

A+x − A−x ≤ Ax ≤ A+x − A−x. (5.6)

(2) if A ∈ Rm×n is a matrix variable and A ≤ A ≤ A for some A, A ∈ Rm×n, then

A+x+ − A
+

x− − A−x+ + A
−

x− ≤ Ax ≤ A
+

x+ − A+x− − A
−

x+ + A−x−. (5.7)

Lemma 5.2. [Efimov and Räıssi, 2016] For A ∈ Rn×n
+ , the system

xk+1 = Axk + ωk, ω : Z+ → Rn
+, ω ∈ ℓn

∞, k ∈ Z+

has a non-negative solution xk ∈ Rn
+ for all k ∈ Z+ provided that x0 ≥ 0.

Definition 5.3. A system satisfying Lemma 5.2 is called cooperative or monotone.

Lemma 5.3. [Farina and Rinaldi, 2000] A matrix A ∈ Rn×n
+ is Schur stable iff there exists

a diagonal matrix P ∈ Rn×n, P ≻ 0, such that A⊤PA − P ≺ 0.
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5.2 OF-MPC for LTI systems

In this section, a solution for Problem 5.1 will be investigated for the case in which system
(5.1) is an LTI one [Souza et al., 2021d], i.e.,

xk+1 = Axk + Buk + wk (5.8)

in which the (constant) matrices A ∈ Rn×n and B ∈ Rn×m are known.

5.2.1 Design of interval estimators

Interval observer

First, by using output injection of the available measurement, system (5.8) can be rewrit-
ten as

xk+1 = (A − LC)xk + Buk + Lyk − Lvk + wk (5.9)

for any L ∈ Rn×p. Under Assumption 5.1, an IO for such a system can be constructed by
introducing a gain Lo to be determined (which replaces L above), and using (5.6) to replace
the uncertain terms (i.e., wk −Lvk) by their interval bounds. The resulting IO [Efimov et al.,
2013] is given as follows:

xk+1 = Doxk + Buk + Loyk − L+
o vk + L−

o vk + wk

xk+1 = Doxk + Buk + Loyk − L+
o vk + L−

o vk + wk

(5.10)

where Do = A − LoC, and having x0, x0 as specified in Assumption 5.1. Note that the
precision of (5.10) can be evaluated by the width of its interval, i.e., δxk = xk − xk, whose
dynamics are given by:

δxk+1 = Doδxk + δwk + |Lo|δvk, (5.11)

where δwk = wk − wk and δvk = vk − vk determine the uncertainty size of the state and the
output disturbances, respectively. Since δx0 = x0 − x0, the solution of (5.11) is obtained by

δxk = Dk
o(x0 − x0) +

k−1∑
i=0

Dk−1−i
o (δwi + |Lo|δvi)

for all k ∈ Z+. Hence, the values of δxk are completely determined by the choice of the gain
Lo and the uncertainty levels given in Assumption 5.1. Our first result shows a procedure to
compute this gain.
Theorem 5.1. Let Assumption 5.1 be satisfied. If the following inequalities are verified for
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a scalar ρ > 0, a diagonal matrix P ∈ Rn×n and matrices W +, W − ∈ Rn×p
+ :

min
ρ,P,W +,W −

ρ

P > 0, PA − (W + − W −)C ≥ 0,
P − In 0 A⊤P − C⊤(W + − W −)⊤

⋆ ρIn E⊤

⋆ ⋆ P

 ⪰ 0,

E =
[
P W + + W −

]
,

then system (5.10) with gains L+
o = P −1W + and L−

o = P −1W − is an IO for system (5.8),
i.e., relation (5.2) holds and δxk ∈ ℓn

∞. Furthermore, the transfer (δwk, δvk) 7−→ δx has a
gain lesser than √

ρ.

Proof. Let the estimation errors be given by ek = xk −xk and ek = xk −xk, whose increments
have the following form:

ek+1 = Doek + wk − wk + Lovk − L+
o vk + L−

o vk,

ek+1 = Doek + wk − wk − Lovk − L+
o vk + L−

o vk.
(5.12)

Then, under Assumption 5.1 and Lemma 5.1, all exogenous inputs (i.e., the independent
right-most terms) in (5.12) are non-negative. Consequently, if Do is also non-negative, we
have that ek, ek ≥ 0 for all k ∈ Z+ under Lemma 5.2. This requirement is imposed by the
first inequality on this theorem and implies relation (5.2).

Note that, under Assumption 1, the asymptotic stability of (5.11) and (5.12) sums up
to the Schur stability of Do. In this light, let νk = vec(δwk, δvk) and consider a candidate
Lyapunov function Vk = δx⊤

k Pδxk, whose increments for (5.11) are given by

Vk+1 − Vk =
δxk

νk

⊤ D⊤
o PDo − P D⊤

o E

E⊤Do E⊤P −1E


︸ ︷︷ ︸

Π

δxk

νk

 . (5.13)

Thus, a sufficient condition for Schur stability of Do is Π ⪯ 0. Now, by introducing a perfor-
mance index given by J = ∑∞

k=0 δx⊤
k δxk −γ2ν⊤

k νk +(Vk+1 −Vk), the desired ℓ∞ performance is
achieved by rendering J < 0, while minimizing γ. Taking (5.13) into account, this condition
is equivalent to D⊤

o PDo − P + In D⊤
o E

E⊤Do E⊤P −1E − γ2In

 ⪯ 0.
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Since P is diagonal, we can decompose the relation above as follows:D⊤
o P

E⊤

P −1
[
PDo E

]
−

P − In 0
0 γ2In

 ⪯ 0

and hence, by applying the Schur complement in the inequality above, and by introducing
the variables ρ = γ2, W + = PL+

o and W − = PL−
o , the inequalities given in this theorem are

obtained, proving the claim.

Interval predictor

To avoid confusion with the IO developed in the previous section, zk and zk will denote
the predicted upper and lower bounds for xk, respectively, for all k ∈ Z+. Also, the predictor
gain (which replaces L in (5.9)) will be denoted as Lp.

By definition, Lp = L+
p − L−

p for some L+
p , L−

p ∈ Rn×p
+ . Then, under (5.2), Assumption 5.2

and Lemma 5.1, we can state that

L+
p Cxk − L−

p Cxk ≤ LpCxk ≤ L+
p Cxk − L−

p Cxk

which allows us to substitute the terms which are unavailable for prediction in (5.9) (i.e.,
Lyk − Lvk + wk = LCxk + wk), with their respective bounds. The following IP is then
obtained:

zk+1 = Dpzk + Buk + L+
p Czk − L−

p Czk + wk,

zk+1 = Dpzk + Buk + L+
p Czk − L−

p Czk + wk,
(5.14)

where Dp = A − LpC. As readily seen, (5.14) is composed only by known terms (under
Assumption 5.1 and assuming that uk is to be computed in the control algorithm).

Introducing a change of coordinates describing the center of the interval, z⋆
k = zk+zk

2 , and
the width of the interval, δzk = zk − zk, one gets the following equivalent representation of
dynamics of (5.14):

z⋆
k+1 = Az⋆

k + Buk + w⋆
k, (5.15)

δzk+1 = (A + 2L−
p C)δzk + δwk (5.16)

where, similarly, w⋆
k = wk+wk

2 and δwk = wk − wk. Two interesting features are to be noted:
(i) the dynamics of the center of the predicted interval z⋆

k is independent of Lp, but it is
controlled by uk and, hence, (5.15) can be used in MPC algorithm, and (ii) the dynamics of
the interval width δzk is governed by the (known) interval width of the state disturbance δwk,
and its stability can be assured by a proper choice of the gain Lp. The following theorem
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offers a procedure to compute such a gain.

Theorem 5.2. Let assumptions 5.1–5.2 be satisfied, and there exist a diagonal matrix P ∈
Rn×n, matrices Q, Γ ∈ Rn×n and U−, U+ ∈ Rn×p

+ such that the following linear matrix in-
equalities are verified:

PA − U+C + U−C ≥ 0, (5.17)
P − Q 0 A⊤P + 2C⊤U−⊤

0 Γ P

PA + 2U−C P P

 ⪰ 0

P ≻ 0, Q ≻ 0, Γ ≻ 0.

Then, system (5.14) with gains L−
p = P −1U−, L+

p = P −1U+ and z0 = x0, z0 = x0 is an IP
for system (5.8), i.e., the relation (5.3) is satisfied and δz ∈ ℓn

∞.

Proof. Assume that the gain Lp is selected such that the matrix Dp is non-negative. Then,
the realization of relation (5.3) for system (5.8), (5.14) (under substitution of zk, zk instead of
xk, xk, respectively) can be proven following the same arguments as in Theorem 5.1. Recalling
that Lp = L+

p − L−
p with L+, L− ∈ Rn×p

+ , then

A − LpC = A − L+
p C + L−

p C ≥ 0

is the condition to verify under Assumption 5.2. The stability of (5.16) implies the stability
of the IP (5.14). In this sense, note that

0 ≤ A − L+
p C + L−

p C ≤ A + 2L−
p C

since L−
p C ≥ 0 and L+

p C ≥ 0 under Assumption 5.2. Then A + 2L−
p C ∈ Rn×n

+ and according
to Lemma 5.3, we can select a diagonal matrix P ∈ Rn×n considering Vk = δz⊤

k Pδzk as a
Lyapunov function candidate (with P ≻ 0), whose increment takes, for any Q ∈ Rn×n and
Γ ∈ Rn×n, the following form:

Vk+1 − Vk =
δzk

δwk

⊤
Σ︷ ︸︸ ︷D⊤PD − P + Q D⊤P

PD P − Γ

δzk

δwk

− δz⊤
k Qδzk + δw⊤

k Γδwk

where D = A + 2L−C. If Q ≻ 0, Γ ≻ 0 and Σ ⪯ 0, then the stability conditions are fulfilled
and the system (5.16) is ISS with respect to the input δwk:

Vk+1 − Vk ≤ −δz⊤
k Qδzk + δw⊤

k Γδwk.
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The first LMI in this theorem relates to the condition A−(L+ −L−)C ≥ 0 and is obtained
by defining U− = PL− ∈ Rn×p

+ and U+ = PL+ ∈ Rn×p
+ . The second condition concerns the

Schur stability of Σ. Decomposing the matrix Σ, similarly as in Theorem 5.1, and taking its
Schur complement, the second LMI is readily obtained by recalling that PD = PA+2PL−C.
This proves the theorem.

Remark 5.1. Similarly to Proposition 1, an additional optimization problem can be posed for
the maximization of Q and minimization of Γ while solving the LMIs of Theorem 5.2, aiming
an optimal accuracy in the interval prediction.

5.2.2 Control design

Before discussing the MPC algorithm to be proposed, we stress the stabilization of the
IP through a (static) state feedback. Note that IP (5.14) can be stabilized by designing a
feedback for its completely known center dynamics (5.15)

z⋆
k+1 = (A + BKf )z⋆

k + (In + BSf )w⋆
k, (5.18)

using the following control law:
uk = Sfw⋆

k + Kfz⋆
k (5.19)

with the gains Kf ∈ Rm×n and Sf ∈ Rm×n guaranteeing input-to-state stability of the closed-
loop system and minimizing the influence of w⋆

k, respectively. These gains can be selected as
follows:

Theorem 5.3. Let Sf = ΣP −1 and Kf = ΥP −1, where P ∈ Rn×n and Σ, Υ ∈ Rm×n are
solutions of a linear optimization problem:

max
Q,Γ1,Γ2∈Rn×n

Q − Γ1 − Γ2,

Q = Q⊤ ≻ 0, Γ1 = Γ⊤
1 ≻ 0, Γ2 = Γ⊤

2 ≻ 0, P = P ⊤ ≻ 0, Π ⪰ 0

Π =


P − Q 0 0 PA⊤ + Υ⊤B⊤

0 Γ1 0 P + Σ⊤B⊤

0 0 Γ2 P

AP + BΥ P + BΣ P P

 .

Then the center dynamics (5.15) with the control (5.19) is ISS (from the input (w⋆
k) to the

state z⋆
k) with the optimal attenuation of the disturbances and with an ISS-Lyapunov function

V (z⋆
k) = z⋆

k
⊤P −1z⋆

k.

Proof. Substituting the control (5.19) into the (5.15) yields the closed-loop dynamics (5.18).
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Consider the increment of the candidate Lyapunov function V (z⋆
k):

V (z⋆
k+1) − V (z⋆

k) =

 z⋆
k

w⋆
k

⊤
Π̃︷ ︸︸ ︷ Ã⊤P −1Ã − P −1 + Q̃ Ã⊤P −1D̃

D̃⊤P −1Ã D̃⊤P −1D̃ − Γ̃1

 z⋆
k

w⋆
k

− z⋆
k

⊤Q̃z⋆
k + w⋆

k
⊤Γ̃1w

⋆
k,

where Ã = A + BKf , D̃ = In + BSf and for any Q̃, Γ̃1 ∈ Rn×n. If Π̃ ⪯ 0, then

V (z⋆
k+1) − V (z⋆

k) ≤ −αV (z⋆
k) + w⋆

k
⊤Γ̃1w

⋆
k (5.20)

meaning that the system is ISS, provided that Q̃ ⪰ αP −1 and Γ̃1 ≻ 0, where α > 0 always
exists if Q̃ ≻ 0. Note that

Π̃ = −

P −1 − Q̃ 0
0 Γ̃1

+
Ã⊤P −1

D̃⊤P −1

P
[
P −1Ã P −1D̃

]

is such that, by applying the Schur complement, the LMIs given in the formulation of this
proposition are verified for Σ = SfP , Υ = KfP , Q̃ = P −1QP −1, Γ̃1 = P −1Γ1P

−1.

Remark 5.2. Additional constraint can be imposed on P , in order to guarantee some optimal
performance for the terminal cost under the control (5.19).

Remark 5.3. If w⋆
k = 0 for k ∈ Z+ then an obvious choice is Sf = 0, which can be imposed

as a constraint on the optimization problem given by Proposition 5.3.

As a consequence of property (5.20), the following ellipsoid is a positively invariant set for
(5.8) under control (5.19):

X̃ =
{

z⋆ ∈ Rn : z⋆⊤P −1z⋆ ≤ α−1 sup
k≥0

w⋆
k

⊤Γ̃1w
⋆
k

}
, (5.21)

for the α obtained in Theorem 5.3. The following assumption, which is conventionally imposed
in MPC [Mayne et al., 2000], is introduced:

Assumption 5.3. Let the terminal set Xf ⊆ X̃ ⊆ X and uk ∈ U for all z⋆
k ∈ Xf in (5.19).

Assumption 5.3 may be relaxed by further constraining the conditions given in Theorem
5.3, as suggests the following corollary:

Corollary 5.1. Let there exist symmetric and positive definite matrices U ∈ Rm×m and
Z ∈ R2n×2n such that U = {u ∈ Rm : u⊤Uu ≤ 1} and Wk ∈ {W ∈ R2n : W⊤ZW ≤ 1}, and
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the conditions of Theorem 5.3 be satisfied with additional inequalities:

η

ακ
Γ ≤ min{κ−1Z, P}, P ≥ κZ−1,

η
3P 0 Υ⊤

0 κ
3 P Σ⊤

⋆ ⋆ U−1

 ≥ 0
(5.22)

for some constants η > 0 and κ > 0, then control (5.19) satisfies the constraint uk ∈ U for
all z⋆

k ∈ Xf .

Proof. First of all, the imposed inequalities on Z and Γ imply:

Z ≥ κP −1,
η

α
Γ1 ≤ Z,

η

α
Γ1 ≤ κP ≤ PZP ⇒ η

α
Γ̃1 = η

α
P −1Γ1P

−1 ≤ Z,

consequently,
ηz⋆

k
⊤P −1z⋆

k ≤ η

α
w⋆

k
⊤Γ̃1w

⋆
k ≤ w⋆

k
⊤Zw⋆

k ≤ 1

for z⋆
k ∈ X̃. Next, note that the condition uk ∈ U takes the form:

 z⋆
k

w⋆
k

⊤  Kf

Sf

U

 Kf

Sf

⊤  z⋆
k

w⋆
k

 ≤ 1.

If z⋆
k ∈ X̃, then the ellipsoid (5.21) can be evoked to rewrite the previous inequality as

 Kf

Sf

U

 Kf

Sf

⊤

≤ 1
2

 ηP −1 0
0 Z

 .

Applying Schur complement the latter property is equivalent to
η
2P −1 0 K⊤

f

0 1
2Z S⊤

f

Kf Sf U

 ≥ 0,

then multiplying this inequality from both sides by diag{P, P, Im} and taking into account
that PZP ≥ κP we get the LMI of the corollary.
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5.2.3 An extension to linear time-delayed systems

The idea developed in this section was also applied to linear time-delayed systems [Souza
et al., 2021c], whose dynamics are given by the following retarded difference equation:

xk+1 = A0xk + A1xk−h + Buk + wk,

where xk−h ∈ Rn is the delayed state, with a known and fixed delay h > 0.
For brevity of exposition, these results are not reported in this thesis. In such a case, each

interval estimator has two gains (for illustration, L0 and L1), one relating to the actual state,
and another relating to the delayed one. Due to this new term, the stability analysis must be
then carried out using the Lyapunov-Krasovskii framework [Fridman, 2014].

Interestingly, the proposed methodology easily encompasses delays in states, inputs and
outputs, features that were not entirely reported on the robust MPC literature. The challenge
in this scenario, however, remains in the fact the two gains must be designed to render both
A0 − L0C and A1 − L1C non-negative (in order to ensure non-negativity of the estimation
errors), instead of only one as discussed in this section.

5.2.4 Numerical illustration

Consider the (linearized) continuous stirred tank reactor (CSTR), where an exothermic
and irreversible reaction S → P occurs [Henson and Seborg, 1997]. The model is composed
of two states, the concentration of reactant CS and the temperature of the reactor T , and
one controlled input, the coolant stream TC . The resulting linear system is as follows:

xk+1 =
0.745 −0.002
5.610 0.780

xk +
5.6 × 10−6

0.464

uk + wk,

yk =
[
0 1

]
xk + vk.

(5.23)

where the disturbances are considered to be enclosed in W = [−0.02, 0.02]×[−0.2, 0.2] and V =
[−0.2, 0.2]. The initial conditions are assumed to be bounded such as x0 ∈ [−1.1, −1] × [6, 7].

Solving the conditions given in this section, the following gains are obtained for the IO
and IP:

Lo =
−0.02

0.78

 , Lp =
−0.02

0.39


while for the control (considering Sf = 0 due to the symmetry of the disturbances bounds),
the feedback gain obtained was Kf =

[
−6.99 − 0.50

]
. The IO/IP are initialized according to

the initial conditions given above.
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In the following, Figures 5.2 and 5.3 depict, respectively the evolution of the states of the
real system and the pair IO/IP, and the evolution of the computed control signal. As it can
be seen, the stabilization of the interval center is successful. Since the pair IP/IO has stable
widths and thanks to relations (5.2) and (5.3), the real trajetories of (5.23) is also stabilized
in a vicinity of the origin (which evidences the practical ISS).

However, in Figure 5.2, one can see that the IP is much more conservative than the IO.
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Figure 5.2: Evolution of the states. Legend – continuous lines: IO, dashed lines: IP, black
lines: real system, blue lines: upper estimates, red lines: lower estimates, green lines: interval
center.
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Figure 5.3: Evolution of the control input.

72



5.3. OF-MPC for LPV systems

5.3 OF-MPC for LPV systems

In this section, a solution for Problem 5.1 will be investigated for the case in which system
(5.1) is described by linear parameter-varying model [Souza et al., 2021b], i.e.,

xk+1 = A(θk)xk + B(θk)uk + wk (5.24)

It is assumed that θk is not measured, but its set of admissible values Θ is known. Fur-
thermore, the matrix functions A : Θ → Rn×n and B : Θ → Rn×m are locally bounded and
known. The measurement matrix C ∈ Rp×n is assumed to be known.
Assumption 5.4. There exist matrices A0 ∈ Rn×n, B0 ∈ Rn×m and ∆Ai ∈ Rn×n, ∆Bi ∈
Rn×m, i = 1, . . . , ν for some ν ∈ Z+, such that the following relations are satisfied for all
θ ∈ Θ:

A(θ) = A0 +
ν∑

i=1
λi(θ)∆Ai, B(θ) = B0 +

ν∑
i=1

λi(θ)∆Bi,

ν∑
i=1

λi(θ) = 1, λi(θ) ∈ [0, 1].

Assumption 5.5. It is assumed that ∆Bi ≥ 0.
Assumption 5.4 (which is technical and it is introduced to simplify the writing) states that

system (5.24) admits a convex embedding in a polytope defined by ν known vertices ∆Ai and
∆Bi with known centers A0, B0. Note that, since functions A, B and the set Θ are known,
then there exists matrices A, A, B, B such that

A ≤ A(θ) ≤ A, B ≤ B(θ) ≤ B, ∀θ ∈ Θ.

5.3.1 Design of interval estimators

Interval observer

In this section, the objective is to design an IO for (5.24) by exploiting the available
measurement. To this end, let us evoke Assumption 5.4 and rewrite (5.24) as

xk+1 = (A0 − LC)xk +
ν∑

i=1
λi(θ)∆Aixk + Lyk + (B0 +

ν∑
i=1

λi(θ)∆Bi)uk − Lvk + wk (5.25)

for any L ∈ Rn×p. First, let us denote

∆A+ =
ν∑

i=1
∆A+

i , ∆A− =
ν∑

i=1
∆A−

i , and ∆B =
ν∑

i=1
∆B+

i .

Then, under assumptions 5.4–5.5 and Lemma 5.1, replacing the uncertain terms in (5.24)
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by their interval bounds leads to the following IO:

xk+1 =Doxk + ∆A+x+
k + ∆A−x−

k + B0uk + ∆Bu+
k + Loyk − L+

o vk + L−
o vk + wk

xk+1 =Doxk − ∆A+x−
k − ∆A−x+

k + B0uk − ∆Bu−
k + Loyk − L+

o vk + L−
o vk + wk

(5.26)

where Do = A0 −LoC, Lo ∈ Rn×p being the observer gain to be determined. The fulfillment of
relation (5.2) follows the cooperativity of the estimation errors ek = xk −xk and ek = xk −xk,
the respective conditions are given in the following lemma:
Lemma 5.4. Let assumptions 5.4–5.5 be satisfied. Then, provided that A0 − LoC is non-
negative, the estimation errors are non-negative, i.e., ek, ek ≥ 0 for all k > 0.

Proof. First, by applying (5.7) in λixk, one obtains

λ+
i x+

k − λ
+
i x−

k − λ−
i x+

k + λ
−
i x−

k ≤ λixk ≤ λ
+
i x+

k − λ+
i x−

k − λ
−
i x+

k + λ−
i x−

k

Since λi ∈ [0, 1], then λ
+
i = 1 and λ+

i = λ
−
i = λ−

i = 0, by definition. Under this, the
relation −x−

k ≤ λi(θk)xk ≤ x+
k holds. Then, since the vertices of the polytopic system are

known, relation (5.6) can be applied to obtain the following inequalities

−∆A+x−
k − ∆A−x+

k ≤
N∑

i=1
λi(θk)∆Aixk ≤ ∆A+x+

k + ∆A−x−
k . (5.27)

Finally, the same idea applies to the term proportional to uk, leading to the following relation:

−∆Biu
−
k ≤ −(∆Biuk)− ≤ λi∆Biuk ≤ (∆Biuk)+ ≤ ∆Biu

+
k (5.28)

Now, computing the increments of the estimation errors ek, ek and taking (5.27)–(5.28) into
account, one gets

ek+1 = Doek + r1,1 + r1,2, ek+1 = Doek + r2,1 + r2,2

where

r1,1 = ∆A+x+
k + ∆A−x−

k −
N∑

i=1
λi(θk)∆Aixk + ∆Bu+

k −
N∑

i=1
λi(θk)∆Biuk,

r1,2 = Lovk − L+
o vk + L−

o vk + wk − wk,

r2,1 =
N∑

i=1
λi(θk)∆Aixk − (−∆A+x−

k − ∆A−x+
k ) +

N∑
i=1

λ(θk)∆Biuk + ∆Bu−
k ,

r2,2 = L+
o vk − L−

o vk − Lovk + wk − wk.

(5.29)

From assumptions 5.1 and 5.4 and relations (5.27)–(5.28), the quantities given in (5.29) are
positive. Hence, if Do is non-negative, then ek, ek > 0 for all k > 0 under Lemma 5.2, and
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thus satisfying relation (5.3).

Now, it is needed to derive stability conditions for IO (5.26). First, let us denote χk =
vec(xk, xk) and rewrite (5.26) as

χk+1 =
(
A0 − L̃oC1

)
χk + A+χ+

k + A−χ−
k + δk (5.30)

where A0 = diag (A0, A0) ∈ R2n×2n, L̃o = diag(Lo, Lo) ∈ R2n×2p, C1 = diag (C, C) ∈ R2p×2n,
δk = vec(δk, δk), and

A+ =
 ∆A+ 0
−∆A− 0

 , A− =
0 ∆A−

0 −∆A+

 ,

δk = B0uk + ∆Bu+
k + Loyk − L+

o vk + L−
o vk + wk,

δk = B0uk − ∆Bu−
k + Loyk − L+

o vk + L−
o vk + wk.

For ease of notation in the sequel, let us denote Ũ = diag (U, U) and P̃ = diag (P, P ) for
some decision variables P ∈ Rn×n and U ∈ Rn×p. A gain Lo that stabilizes (5.26) and satisfies
the restrictions of Lemma 4 can be computed by verifying the following conditions:

Theorem 5.4. Let assumptions 5.1–5.4 be satisfied. If there exist diagonal matrices P̃ , Q1,
Q2, Q3, Ω+, Ω−, Ψ ∈ R2n×2n, matrices Γ ∈ R2n×2n and Ũ ∈ R2n×p, such that the following
LMIs are verified:

P̃A0 − ŨC1 ≥ 0

P̃ − Q1 −Ω+ −Ω− 0 A⊤
0 P̃ − C⊤

1 Ũ⊤

⋆ −Q2 −Ψ 0 A⊤
+P̃

⋆ ⋆ −Q3 0 A⊤
−P̃

⋆ ⋆ ⋆ Γ P̃

⋆ ⋆ ⋆ ⋆ P̃


⪰ 0

P̃ > 0, Γ ≻ 0, Q1, Q2, Q3, Ω+, Ω− ≥ 0,

Q1 + min{Q2, Q3} + 2 min{Ω+, Ω−} > 0

(5.31)

then system (5.26) with a gain Lo = P −1U is an IO for system (5.24), i.e., relation (5.2) is
satisfied and, in addition, χ ∈ ℓ2n

∞ provided that δ ∈ ℓ2n
∞ .

Proof. Let us consider a Lyapunov function candidate Vk = χ⊤
k P̃χk, whose increments are
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given by

Vk+1 − Vk =


χk

χ+
k

χ−
k

δk



⊤
Σ︷ ︸︸ ︷

D⊤
o P̃Do − P̃ + Q1 D⊤

o P̃A+ + Ω+ D⊤
o P̃A− + Ω− D⊤

o P̃

⋆ A⊤
+P̃A+ + Q2 A⊤

+P̃A− + Ψ A⊤
+P̃

⋆ ⋆ A⊤
−P̃A− + Q3 A⊤

−P̃

⋆ ⋆ ⋆ P̃ − Γ




χk

χ+
k

χ−
k

δk


−χk

⊤Q1χk − χ+
k

⊤Q2χ
+
k − χ−

k
⊤Q3χ

−
k − 2χ⊤

k Ω+χ+
k − 2χ⊤

k Ω−χ−
k − 2χ+⊤

k Ψχ−
k + δ⊤

k Γδk.

If Q = Q1 + min{Q2, Q3} + 2 min{Ω+, Ω−} ≻ 0, Γ ≻ 0 and Σ ⪯ 0 and provided that δ ∈ ℓ2n
∞ ,

then the stated stability conditions are fulfilled and system (5.26) is input-to-state stable (ISS)
with respect to the input δk (the diagonal matrix Ψ can be sign indefinite since χ+⊤

k Ψχ−
k = 0

by definition):

Vk+1 − Vk = −χ⊤
k Qχk + δ⊤

k Γδk

Hence, it is needed to show that the above stability conditions can be formulated as LMIs.
First, since P̃ > 0, then Σ can be decomposed as

Σ =
[
D⊤

o P̃ A⊤
+P̃ A⊤

−P̃ P̃
]

P̃ −1


P̃Do

P̃A+

P̃A−

P̃



⊤

−


P̃ − Q1 −Ω+ −Ω− 0
−Ω+ −Q2 −Ψ 0
−Ω− −Ψ −Q3 0

0 0 0 Γ


then, by applying the Schur complement, the condition Σ ⪯ 0 can be equivalently written as



P̃ − Q1 −Ω+ −Ω− 0 D⊤
o P̃

⋆ −Q2 −Ψ 0 A⊤
+P̃

⋆ ⋆ −Q3 0 A⊤
−P̃

⋆ ⋆ ⋆ Γ P̃

⋆ ⋆ ⋆ ⋆ P̃


⪰ 0 (5.32)

Denote U = PLo ∈ Rn×p
+ . Recalling that PDo = PA0−PLoC, then inequality (5.32) becomes

linear in P , Q1, Q2, Q3, Γ, Ω+, Ω−, Ψ and U :
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P̃ − Q1 −Ω+ −Ω− 0 A⊤
0 P̃ − C⊤

1 Ũ⊤

⋆ −Q2 −Ψ 0 A⊤
+P̃

⋆ ⋆ −Q3 0 A⊤
−P̃

⋆ ⋆ ⋆ Γ P̃

⋆ ⋆ ⋆ ⋆ P̃


⪰ 0

Finally, since P̃ > 0 and diagonal, the constraint A0 −LoC ≥ 0 follows from P̃A0 −ŨC1 ≥
0, which is also linear in P̃ and Ũ , finalizing the proof.

Interval predictor

Let the predictor gain (which replaces L in (5.24)) be Lp. By definition, Lp = L+
p − L−

p ∈
Rn×p, for L−

p , L+
p ∈ Rn×p

+ . Then, under Assumption 5.2, let us denote zk, zk as, respectively,
the upper and lower predictive bounds of xk, and evoke Lemma 5.1 and Assumption 5.2 to
write

L+
p Czk − L−

p Czk ≤ LpCzk ≤ L+
p Czk − L−

p Czk (5.33)

Hence, the relation above allows us to rewrite (5.26) by replacing the terms unavailable for
prediction (i.e., Lyk − Lvk + wk = LCxk + wk) by their respective bounds:

zk+1 =Dpzk + ∆A+z+
k + ∆A−z−

k + L+
p Czk − L−

p Czk + B0uk + ∆Bu+
k + wk

zk+1 =Dpzk − ∆A+z+
k − ∆A−z−

k + L+
p Czk − L−

p Czk + B0uk − ∆Bu−
k + wk

(5.34)

where Dp = A0 − LpC. Hence, under assumptions 5.4–5.2, the IP (5.34) is composed solely
by known terms.

In order to show that system (5.34) is cooperative, let us consider the prediction errors
ϵk = zk − zk and ϵk = zk − zk and state the following result:
Lemma 5.5. Let assumptions 5.1–5.4 be satisfied. Then, provided that A0 − LpC is non-
negative, the prediction errors are non-negative, i.e., ϵk, ϵk ≥ 0 for all k ∈ Z+.
Proof. The increments of the prediction errors ϵk and ϵk are given by

ϵk+1 =Dpϵk + r1,1 + r̃1,2, ϵk+1 = Dpϵk + r2,1 + r̃2,2 (5.35)

where r1,1 and r2,1 are as in (5.29) and

r̃1,2 = L+
p Czk − L−

p Czk − LpCzk + wk − wk

r̃2,2 = LpCzk − L+
p Czk + L−

p Czk + wk − wk.
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Then, according to relations (5.27), (5.28) and (5.33), all inputs (the terms independent on ϵ

and ϵ) in (5.35) are non-negative. Thus, if A0 − LpC is also non-negative, then ϵk, ϵk ≥ 0 for
all k ∈ Z+ under Lemma 5.2.

Now, let us address the conditions for the stability of system (5.34). Since this system is
nonlinear, these conditions will be derived by denoting Zk = vec(zk, zk), which allows us to
rewrite (5.34) as:

Zk+1 =
(
A0 + L̃pC2

)
Zk + A+Z+

k + A−Z−
k + ϱk, (5.36)

where A+ and A− are the same as in (5.30), L̃p = diag(L−
p , L−

p ) ∈ R2n×2p, ϱk = vec(ϱk, ϱ
k
)

and

C2 =
 C −C

−C C

 ,
ϱk = B0uk + ∆Bu+

k + wk,

ϱ
k

= B0uk − ∆Bu−
k + wk.

The next theorem presents conditions that any gain Lp has to fulfill in order to render IP
(5.36) stable:

Theorem 5.5. Let assumptions 5.4–5.2 be satisfied and let Lp be a given gain. If there exist
a matrix P̃1 ∈ R2n×2n, diagonal matrices Q1, Q2, Q3, Ω+, Ω−, Ψ, Γ ∈ R2n×2n, such that the
following linear matrix inequalities are verified:



P̃1 − Q1 −Ω+ −Ω− 0 (P̃1A0 + P̃1L̃pC2)⊤

⋆ −Q2 −Ψ 0 (P̃1A+)⊤

⋆ ⋆ −Q3 0 (P̃1A−)⊤

⋆ ⋆ ⋆ Γ P̃1

⋆ ⋆ ⋆ ⋆ P̃1


⪰ 0

P̃1 ≻ 0, Γ ≻ 0, Q1, Q2, Q3, Ω+, Ω− ≥ 0,

Q = Q1 + min{Q2, Q3} + 2 min{Ω+, Ω−} > 0,

then system (5.36) is ISS with respect to the input ϱ ∈ ℓ2n
∞ .

Proof. The proof follows the same rationale as in Theorem 5.4 and is only sketched. By
considering a Lyapunov function candidate given by Vk = Z⊤

k P̃1Zk, one can show input-to-
state stability, i.e.,

Vk+1 − Vk = −Z⊤
k QZk + ϱ⊤

k Γϱk

and the LMI conditions are stated by applying the Schur complement in the resulting stability
conditions.

Finally, sufficient conditions for the existence of a gain Lp providing non-negativity of
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the matrix A0 − LpC and stability of (5.36) simultaneously are obtained by the following
corollary:
Corollary 5.2. Let assumptions 5.1–5.4 be satisfied. If there exist diagonal matrices P̃2,
Q1, Q2, Q3, Ω+, Ω−, Ψ, Γ ∈ R2n×2n and U+, U− ∈ Rn×p such that the following linear matrix
inequalities are verified:

P̃2A0 − Ũ+C1 + Ũ−C1 ≥ 0

P̃2 − Q1 −Ω+ −Ω− 0 (P̃2A0 + Ũ−C2)⊤

⋆ −Q2 −Ψ 0 (P̃2A+)⊤

⋆ ⋆ −Q3 0 (P̃2A−)⊤

⋆ ⋆ ⋆ Γ P̃2

⋆ ⋆ ⋆ ⋆ P̃2


⪰ 0

P2 > 0, P̃2 = diag(P2, P2),

U+ ≥ 0, Ũ+ = diag(U+, U+),

U− ≥ 0, Ũ− = diag(U−, U−),

Q1, Q2, Q3, Ω+, Ω− ≥ 0, Γ ≻ 0

Q = Q1 + min{Q2, Q3} + 2 min{Ω+, Ω−} > 0

(5.37)

then system (5.36) with gains L−
p = P −1

2 U− and L+
p = P −1

2 U+, is an IP for system (5.24),
i.e., the relation zk ≤ xk ≤ zk is satisfied for all k ∈ Z+. Furthermore, the system (5.36) is
ISS with respect to the input ϱ ∈ ℓ2n

∞ .
Proof. This proof follows directly from the implications of Lemma 5.5 and Theorem 5.5.
Indeed, evoking [Efimov et al., 2013], the first constraint makes A0 − LpC non-negative, thus
satisfying the conditions on cooperativity imposed on Lemma 5.5.
Then, by introducing a new variable U = P2Lp and recalling that U = U+ −U− by definition,
this search for Lp is additionally constrained by the conditions stated in Theorem 2. This
guarantees stability of (5.34), concluding the proof.

5.3.2 Control design

In this section, the control design for the IP (5.34) is addressed. To this end, the following
simplifying assumption is needed:
Assumption 5.6. Let ∆B = 0.
Remark 5.4. Assumption 5.6 is imposed to streamline the presentation. Indeed, if system
(5.24) is polytopic with ∆B ̸= 0, the design conditions given in the following are affine and
have to be checked over all of its vertices. This scenario requires an intricated presentation,
which is to be avoided here.
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Then, if the control uk in (5.36) is selected such as

uk = KZk + K+Z+
k + K−Z−

k + RWk (5.38)

where Wk = vec(wk, wk) and for some K, K−, K+, R ∈ Rm×2n, the resulting dynamics is given
by

Zk+1 = KZk + K+Z+
k + K−Z−

k + D̃Wk (5.39)

where D̃ = I2n + B0R, K = Dz + B0K, K+ = A+ + B0K+ and K− = A− + B0K−, in which,
for ease of notation, denote B0 = [B⊤

0 , B⊤
0 ]⊤. This brings us to the following result:

Theorem 5.6. Let assumptions 5.4–5.6 be satisfied. If there exist diagonal matrices P , Q1,
Q2, Q3, Γ, Ω+, Ω−, Ψ ∈ R2n×2n and W1, W2, W3, W4 ∈ Rm×2n such that the following
inequalities are verified



P − Q1 −Ω+ −Ω− 0 W ⊤
1 B⊤

0 + PD⊤
z

⋆ −Q2 −Ψ 0 W ⊤
2 B⊤

0 + PA⊤
+

⋆ ⋆ −Q3 0 W ⊤
3 B⊤

0 + PA⊤
−

⋆ ⋆ ⋆ Γ W ⊤
4 B⊤

0 + P

⋆ ⋆ ⋆ ⋆ P


≻ 0

P > 0, Γ ≻ 0,

Q1, Q2, Q3, Ω+, Ω− ≥ 0,

Q = Q1 + min{Q2, Q3} + 2 min{Ω+, Ω−} > 0

then system (5.36) under control (5.38) with gains K = W1P
−1, K+ = W2P

−1, K− = W3P
−1, R =

W4P
−1 is input-to-stable stable with respect to the inputs Wk.

Proof. Let us consider a Lyapunov function candidate given by Vk = Z⊤
k P −1Zk, whose incre-

ments are given by

Vk+1 − Vk =

=


Zk

Z+
k

Z−
k

Wk



⊤
Π̃︷ ︸︸ ︷

K⊤P −1K − P −1 + Q̃1 K⊤P −1K+ + Ω̃+ K⊤P −1K− + Ω̃− K⊤P −1D̃

⋆ K⊤
+P −1K+ + Q̃2 K⊤

+P −1K− + Ψ̃ K⊤
+P −1D̃

⋆ ⋆ K⊤
−P −1K− + Q̃3 K⊤

−P −1D̃

⋆ ⋆ ⋆ D̃⊤P −1D̃ − Γ̃




Zk

Z+
k

Z−
k

Wk


− Z⊤

k Q̃1Zk − Z+
k

⊤Q̃2Z+
k − Z−

k
⊤Q̃3Z−

k + W⊤
k Γ̃Wk − 2Z⊤

k Ω̃+Z+
k − 2Z⊤

k Ω̃−Z−
k − 2Z+

k Ψ̃Z−
k ,

for any Ψ̃ ∈ R2n×2n, non-negative definite Q̃i, Ω̃+, Ω̃− ∈ R2n×2n, i = 1, 3, and positive definite
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Γ̃. Then, if Π̃ ⪯ 0, we have that

Vk+1 − Vk = −αVk + W⊤
k Γ̃Wk (5.40)

meaning that Vk is an ISS Lyapunov function, provided that Q̃ = Q̃1 + min{Q̃2, Q̃3} +
2 min{Ω̃+, Ω̃−} ⪰ αP −1 (such an α always exists if Q̃ ≻ 0).

Decomposing Π̃ and applying the Schur complement (similarly as done for matrix Σ in the
proof of Theorem 5.1), the LMIs presented in this theorem are obtained by multiplying the
resulting inequality by diag{P, P, P, P, P} from the left and right, and by introducing slack
variables Γ = P Γ̃P , Ω+ = P Ω̃+P , Ω− = P Ω̃−P , Ψ = P Ψ̃P , Q̃i = PQiP , for i = 1, 3, and by
introducing new decision variables W1 = KP , W2 = K+P, W3 = K−P and W4 = RP .

As a direct implication of property (5.40), the following invariant set can be estimated:

X̃ =
{

x ∈ R2n : x⊤P −1x ≤ α−1 sup
k≥0

W⊤
k Γ̃Wk

}

for α > 0 given in the proof of Theorem 5.6, and is an invariant set for (5.39).
In accordance with item 4 in 5.2, the following assumption (which is conventional in MPC)

is imposed:
Assumption 5.7. Let Xf ×Xf ⊆ X̃ ⊆ X×X and in (5.38) uk ∈ U provided that Zk ∈ Xf ×Xf .

However, if the set U is ellipsoidal, one may relax Assumption 5.7 by adding additional
LMIs:
Corollary 5.3. Let there exist symmetric and positive definite matrices U ∈ Rm×m and
Z ∈ R2n×2n such that U = {u ∈ Rm : u⊤Uu ≤ 1} and Wk ∈ {W ∈ R2n : W⊤ZW ≤ 1}, and
the conditions of Theorem 4 be satisfied with additional inequalities:

η

ακ
Γ ≤ min{κ−1Z, P}, P ≥ κZ−1,

η
3P 0 0 W ⊤

1 + W ⊤
2

0 η
3P 0 W ⊤

3 − W ⊤
1

0 0 κ
3 P W ⊤

4

W1 + W2 W3 − W1 W4 U−1

 ≥ 0
(5.41)

for some constants η > 0 and κ > 0, then control (5.38) satisfies the constraint uk ∈ U for
all Zk ∈ Xf × Xf .
Proof. This proof follows the same lines as the one of Corollary 5.1. However, in this case,
the control law is designed for Zk instead of the interval center. To highlight the different
steps, note that Zk = Z+

k − Z−
k . Therefore, the control (5.38) can be rewritten as

uk = (K + K+)Z+
k + (K− − K)Z−

k + RWk,
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and thus the condition uk ∈ U takes the form:


Z+
k

Z−
k

Wk


⊤ 

K + K+

K− − K

R

U


K + K+

K− − K

R


⊤ 

Z+
k

Z−
k

Wk

 ≤ 1.

If Zk ∈ X̃, then obviously Z+
k , Z−

k ∈ X̃. The remainder of the proof remains identical.

5.3.3 Numerical illustration

To illustrate the developments of this section, consider the following LPV system:

xk+1 =
0.5 0.6 + θk

θk 0.3

xk +
0
1

uk + wk

yk =
[
0 1

]
xk + vk

(5.42)

where xk = vec(x1, x2) ∈ R2, θk ∈ Θ = [−0.2, 0] and the disturbances are assumed to be
enclosed in W = [−0.1, 0.1]2, V = [−0.5, 0.5].

Solving the conditions presented in this chapter, the following gains are obtained for the
pair IO/IP:

Lo =
0.4856
0.2501

 , Lp =
0.3182
0.1481

 ,

while the controller gains were obtained as

K0 =
[
0.0004 −0.3034

]
, K1 =

[
0.0999 0.0008

]
, K2 =

[
−0.1011 0.0015

]
.

For simulation purposes, the IO is initialized with x0 = [−10, 9] and x0 = [−9, 10] (for
simplicity, the IP is initialized with the same values), and θk = −|0.2 sin(k)|. Figures 5.4 and
5.5 illustrate, respectively, the evolution of the states of (5.42) and the pair IO/IP, and the
evolution of the control input.

As it can be seen, the stabilization of (5.42) is successful and the computed bounds, for
both IO and IP, respect relations (5.2) and (5.3).
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Figure 5.4: Evolution of the states. Legend – continuous lines: IO, dashed lines: IP, black
lines: real system, blue lines: upper estimates, red lines: lower estimates.
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Figure 5.5: Evolution of the control input.
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5.4 Design of the predictive controllers

In the previous sections, the interval estimators that will be used in the MPC design have
been presented. Also, conditions for the existence of a feedback control ensuring ISS, for
each one of the cases considered, was derived. To synthesize the results for the both cases
presented, the interval observer and predictor routines will be abbreviated as O(zk, yk, uk)
and P(zk, uk), where zk = vec(xk, xk) or zk = vec(zk, zk), respectively.

Initialization

Consider the initialization of the MPC algorithm (analogously to constraint (5.5a)). As it
was discussed in the previous sections, the IO uses the available measurement to update the
set-membership of the states at every decision instant k, and thus can be used to initialize
the predictor. However, it is worth noticing that the IO depends on the bounds of the
measurement noise: if these bounds are too large, the obtained envelope of estimates can be
more conservative. In this sense, the first step of the prediction can offer a more accurate
estimation, as shown in Figure 5.6. Therefore, the MPC algorithm will be initialized using
the following combined estimates:

x̂k = min{xk, zk−1,1}, x̂k = max{xk, zk−1,1}.

The optimal control problem

Analogously to (5.4), the optimal control problem (OCP) for the IO-MPC can be formu-
lated as follows:

VN = arg min
SN

VN(zk,0, . . . , zk,N , SN) (5.43)

where zk,i ∈ R2n are the predicted state variables (containing both upper and lower bounds).
This OCP must be solved under the following constraints:

zk,0 = vec(x̂k, x̂k), (5.44a)

zk,i+1 = P(zk, si), (5.44b)

zk,i+1 ∈ X × X, si ∈ U, (5.44c)

zk,i+N ∈ Xf × Xf . (5.44d)

where P is the predictor used: IP (5.14) for the LTI case, and IP (5.36) for the LPV case.
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Figure 5.6: Comparison of the trajectories of the IO and IP, for model (5.42), in the case
of higher measurement noises. In this simulated scenario, the state variable x2 (left plot) is
considered as available for measurement. As it can be seen in several time instants, due to
this bigger measurement noise, the IP offers less conservative bounding estimates.

Remark 5.5. Note that for the LTI case, constraint (5.44d) can be simplified and, instead
of requiring the whole predicted interval zk,i+N to belong to Xf × Xf , only that the interval
center must do so, i.e., z⋆

k,i+N ∈ Xf .

The cost function VN is defined as

VN = Vf (xk,N) +
N−1∑
i=0

(
x⊤

k,i+1Ψ2xk,i+1 + s⊤
i Ψ3si

)
,

where the terminal cost Vf and the terminal set Xf are the stabilizing ingredients discussed, for
each case, in the previous sections. The positive-definite matrices Ψ2, Ψ3 represent the stage
costs on the state and control input, respectively. Finally, the proposed IO-MPC algorithm
is described in Algorithm 1:
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Algorithm 1 IO-MPC
Offline: Solve the appropriate LMIs to design the pair IO/IP and the respective controller.
Estimate the terminal set Xf and select Ψ1 = P −1, Ψ2 ≤ α

2 P −1, and Ψ3 ≤ α
8 P −1.

Input: Initial conditions x0, x0, prediction horizon N .
Online:

1: for each decision instant k ∈ Z+ do
2: Measure yk and update the IO.
3: Initialize the IP such as zk,0 = vec(x̂k, x̂k).
4: Solve OCP (5.43) under constraints (5.44a)–(5.44d).
5: Assign uk = sk

0 and apply it to system (5.1).
6: end for

Theorem 5.7. Let [x0, x0] ⊂ X and assumptions 5.1–5.7 be satisfied with [wk+1, wk+1] ⊆
[wk, wk] for all k ∈ Z+. Then, following Algorithm 1, the closed-loop system composed by
(5.1), O(zk, yk, uk) and P(zk, uk) has the following features:

1. Recursive feasibility of reaching the terminal set in N steps;

2. Constraint satisfaction.

3. ISS of the dynamics of P in Xf and practical ISS for system (5.1);

Proof. Suppose that for any [x0, x0] ⊂ X a solution of OCP (5.43) exists, i.e., there is a
sequence of inputs S0

N that leads the trajectories of P to Xf . This means that for k = 0,
by applying uk = sk

0, we ensure that [zk+1,i, zk+1,i] ⊂
[
zk,i+1, zk,i+1

]
⊂ X at least for i = 0

and also
[
zk,N , zk,N

]
⊂ Xf . Then, following Algorithm 1, the procedure can be iteratively

repeated for k ∈ Z+ since [wk+1, wk+1] ⊆ [wk, wk]. Moreover, the control sequence SN that
steers

[
zk,0, zk,0

]
to Xf also steers xk (as a consequence of (5.3)). This implies point (1).

For point (2), the ISS property in Xf follows directly by the selection of the terminal
ingredients (the choice of Ψj, j = {1, 2, 3}, as given in Algorithm 1) which, due to the results
of theorems 5.3 and 5.6 (for LTI and LPV systems, respectively), guarantees that

V (zk+1,N) − V (zk,N) ≤ d⊤
k Γ̃dk − ℓ(zk,N , sN)

where dk is the concerned disturbances depending on the case (either w⋆
k or Wk for the LTI

or LPV case, respectively). Note that the matrix Γ̃ are the same appearing in results (5.20)
and (5.40). Furthermore, the practical ISS follows from the fact that

|xk| ≤ |zk|, |z0| ≤ |z0| + |z0| ≤ |x0| + c

where c = |x0| + |x0|.
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For point (3), we have that the solution of OCP (5.43) implies that xk ∈
[
zk,k+1, zk,k+1

]
⊂

X due to relation (5.3) and uk = sk
0 ∈ U, under Assumption 5.3 (or Assumption 5.7 for the

LPV case) and the discussed features of each possible set Xf .

5.5 Complexity and performance

The constraints imposed on the OCP (5.43) is similar for both LTI and LPV cases, and
scales with O(Nn). Indeed, assuming that the number of hyperplanes needed to define sets
X,U and Xf depends linearly on n and m = n, the (worst-case) number of variables describing
constraints (5.44a)–(5.44d) is 8Nn for the LTI case, and 10Nn for the LPV case.

It is worth noticing that, for both LTI and LPV cases, the aforementioned complexity is
fixed, which is an interesting feature of the proposed methodology.

The LTI case

For the linear case, the OCP (5.43) is a quadratic programming (QP) problem, being
very similar to the nominal MPC. If compared to solutions based on Tubes [Mayne et al.,
2006, Mayne et al., 2009] or MHE [Chisci and Zappa, 2002], the proposed method offers
many advantages: (i) it does not require any steady-state assumption for the observer nor
any further development for compensating the initial uncertainty, since this is automati-
cally handled by the convergence of the pair IO/IP, (ii) the scheme is constructive, since
all gains are obtained by the solution of LMIs (it should be noted that a naive selection
of observer/controller gains in approaches that uses set approximations for propagating the
uncertainties might dramaticallly influence the performance of the MPC, see the discussion
in [Chisci and Zappa, 2002, Sec. 5.2] and the comparison below), (iii) thanks to the guar-
anteed enclosing xk ∈ [xk, xk], if [x0, x0] ∈ X and if Assumption 5.3 is satisfied, the feasible
region (w.r.t. z⋆

k) is similar to the one of the nominal MPC.

The LPV case

Approaches using zonotopic estimation often require extra procedures to limit their in-
creasing complexity, as well as real-time knowledge on the scheduling parameter [Wang et al.,
2019].

Techniques such as presented in [Ding et al., 2018] [Ding and Pan, 2016], that also assume
no measurement of θk, are computationally more expensive. Indeed, the authors fix a predic-
tion horizon N = 1 and impose a min-max optimization problem accounting for all vertexes
of the polytopic system, aiming to obtain a robust prediction. This implementation requires
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several relaxations for numerical tractability and the price is, obviously, an increased number
of variables and conservativeness.

5.6 Numerical examples

In this section, numerical simulations are presented to illustrate the MPC algorithms
proposed in this chapter. All simulations have been implemented in MATLAB 2017a, using
an Intel i7-8565U processor (1.8GHz) and 16GB RAM. The toolboxes YALMIP [Löfberg,
2004], MPT3 [Herceg et al., 2013] and PnPMPC [Riverso et al., 2013] were used. The solvers
employed in the optimization routines are discriminated in each case study.

5.6.1 The LTI case

To illustrate the proposed MPC algorithm, consider the CSTR model given as an example
in Section 5.2.4. In this scenario, the constraints on state and control are given by X =
[−2, 2] × [−10, 5] and U = [−4.5, 4.5], respectively. The disturbance sets are assumed to be
given by W = [−0.02, 0.02] × [−0.2, 0.2] and V = [−0.3, 0.3].

The prediction horizon is selected as N = 10, and weighting matrices H = 1000I2 and
R = 0.001. For the IO-MPC, the terminal set and the controller Kf = [−6.99, −0.50] are
obtained by solving the conditions given in Proposition 5.3, whereas the terminal cost is
defined as its correspondent Lyapunov function.

Comparison with Tube-MPC

For comparison purposes, we have implemented the Tube-based MPC from [Mayne et al.,
2009]. For this implementation, a Luenberger observer was designed by pole placement (for
the pair (A⊤, C⊤)). The terminal set and the static controller KLQ = [5.58, 0.45] are obtained
by computing the associated LQR with weighting matrices QLQ = 0.1In and RLQ = 0.1.

Figure 5.7 shows the comparison of the feasible sets for both techniques. As expected,
due to the constraint tightening used to guarantee robust constraint satisfaction in the Tube-
MPC, the obtained feasible region for the IO-MPC is much wider (and similar to the nominal
MPC). Furthermore, Figure 5.7 also illustrates the impact of a naive design of the gains for
the Tube-MPC. Clearly, the obtained regions are much different depending where the closed-
loop poles of the terminal controller/observer are placed, whereas our method has all gains
readily obtained by conditions in the form of LMIs, which reduces the number of parameters
to be tuned.
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Figure 5.7: Comparison of the feasible regions (approximations obtained by ray-shooting
using YALMIP [Löfberg, 2004]). For the Tube-MPC, these regions were obtained by placing
different poles when designing the Luenberger observer.

For the Tube-MPC, we selected the Luenberger observer which offered the biggest fea-
sible region (by trial-and-error), which is initialized with x̂0 = (−0.65, −7)⊤, while the IO
is initialized with x0 = (−0.8, −7.8)⊤ and x0 = (−0.5, −6)⊤. The reactor is then simulated
over a time window Tsimu = 60 time steps, considering several initial conditions satisfying
x0 ∈ [x0, x0] (note that this setup is feasible for both techniques) and several realizations of wk

and vk. For comparison purposes, let us define a performance index Jp = ∑Tsimu
k=0 x⊤

k xk +u⊤
k uk.

Table 5.1 illustrates the average results for 25 simulation runs.

Table 5.1: Comparison between IO-MPC and Tube-MPC (time simulations)
IO-MPC Tube-MPC

Perf. index Jp 232.650 253.560
OCP sol. time 0.0265 0.0524

Final values
(around origin) [−0.070, 0.074] × [−0.993, 0.993] [−0.047, 0.057] × [−1.792, 1.743]

These results show that, even for a region where both techniques are feasible, the IO-MPC
shows a faster solution of the optimization problem, as well as a better performance index.
This latter fact was expected, since the control constraint was not tightened, meaning that
the MPC algorithm can use its full range to achieve faster stabilization. However, since the
Tube-MPC is designed to control the trajectories of the observer, it stabilizes the system
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closer to the origin, whereas the IO-MPC can only drive the envelope of trajectories close to
it.

Simulation results

Let us initialize the IO with x0 = (1.2, −8)⊤ and x0 = (1, −9)⊤. Notice that this region is
not feasible at all for the Tube-MPC presented previously. For simplicity, let [z0, z0] = [x0, x0]
and, again, let the reactor be simulated considering several x0 ∈ [x0, x0].
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Figure 5.8: Evolution of the states under the IO-MPC.

This simulation scenario is shown in Figure 5.8, for several realizations of the perturba-
tions vk and wk. As it can be seen, all trajectories of the perturbed system satisfied the
constraints and were stabilized close to the origin. Furthermore, it is worth noticing that the
system trajectories are able to get very close to the constraint boundaries, indicating very low
conservativeness. Finally, Figure 5.9 shows the input applied to the system.

5.6.2 The LPV case

To illustrate the proposed MPC algorithm, consider the model (5.42), given in Section
5.42 with θk ∈ Θ = [−0.1, 0.1], wk ∈ [−0.1, 0.1] × [−0.1, 0.1], and vk ∈ [−0.1, 0.1]. The
constraint sets are defined as X = [3, −12] × [3, −12] and U = [−2, 2]. Clearly, this system
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Figure 5.9: Control input under the IO-MPC

can be rewritten as (5.42) with the matrices

A0 =
0.5 0.6

0 0.3

 , A(θ) =
0 θ

θ 0

 .

and interpolating functions λ1 = θ−θ

θ−θ
and λ2 = θ−θ

θ−θ
. We considered initial conditions for the

IP/IO as x0 = vec(−7, −12) and x0 = vec(−6, −10) and several initial conditions for (5.42)
satisfying x0 ∈ [x0, x0]. We ran 100 simulations of this scenario, each with a time span of
T = 20 steps, considering several realizations of θk, wk, and vk.

The gains for the IP and the IO, obtained by solving the offline LMIs of Section III, are
Lo = [0.489, 0.1945] and Lp = [0.232, 0.122]. For the MPC algorithm, we solve the conditions
of Theorem 5.6 to obtain α = 1.107 and

P =
 1.79 ⋆

−0.285 1.150

 , Γ =
 11.57 ⋆

−1.358 3.63

 ,

and thus we can estimate Xf and select Ψ2. Finally, we select N = 10 and Ψ3 = 0.001.
Fig. 5.10 illustrates the trajectories of system (5.42) and the IP (5.36), in contrast to

the constraint set. It is worth noticing that all constraints were respected, including those
on the unmeasured state. The IP even reaches the boundary of constraint, indicating low
conservativeness.

The control input computed by solving OCP (5.43) also fulfilled the constraints, as shown
in Fig. 5.11. Finally, Fig. 5.12 shows the estimated feasible regions for the initial conditions
of IP (5.34). We did not observe any improvement after N = 10. The mean computation time
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for solving OCP (5.43) was 0.22 ± 0.0313 second/step, with a maximum of 0.7725 second.
An interior-point method provided by the fmincon solver was used to solve the optimization
problem.

Figure 5.10: Trajectories of the system and IP in contrast to the constraint set.

Figure 5.11: Evolution of the control inputs

5.7 Part conclusion

This part of the thesis was devoted to the robust output feedback MPC problem, applied
to both LTI and LPV cases. New interval estimators (both observers and predictors) were
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Figure 5.12: Comparison of the feasible regions for prediction horizon with different lengths
(N ∈ {4, 6, 8, 10}). These regions were computed using YALMIP [Löfberg, 2004] and MPT
[Herceg et al., 2013].

proposed, as well as their corresponding stabilizing controllers. All design conditions are
formulated as offine LMIs.

These new estimators were incorporated into the classic MPC algorithm: the interval
observer updates the set-membership of the states at every decision instant, and the interval
predictor then casts an envelope containing all possible trajectories of the disturbed system
into the prediction horizon. Using this feature, constraints on state are verified with a low
computational burden.

Due to the form of these estimators, the stability analysis of the MPC algorithm is car-
ried out following the well-known stabilizing ingredients. Numerical examples were used to
illustrate both methodologies.
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Control and estimation of co-populations

Conclusions

In this thesis, the control and estimation problems were considered for two different models
of microbial growth in continuous culture: one describing the competition of two species for a
single limiting substrate, and another describing a mutualistic relationship between a producer
and a cleaner strain.

These systems are structurally similar and highly complex: the dynamics of the substrates
and the species are coupled by nonlinear functions of both variables, they are constrained both
in states (since each state relates to a concentration, which characterizes such systems as
positive) and control (the actuating variables take only non-negative values), and are possibly
uncertain. These particularities lead to several challenges when analyzing and designing the
respective state estimators and controllers, since many of the tools available are not applicable
in these scenarios.

Concerning the estimation problem for such systems, the following topics have been ad-
dressed:

1. Observability analysis considering the availability of two realistic measurements (the
total biomass and a fluorescent reporter). Since the first measurement is more common
in real experiments, observability is also studied considering solely this measurement.

2. Design of state observers for both cases.

3. The advantage of having both measurements, in terms of the needed model parameters,
is also discussed.

Indeed, if both measurements are available, it has been shown that the system is observ-
able, whereas the case in which only the total biomass is available leads to merely detectability.
The proposed state observers are based on the use of differentiators (for the first scenario),
and by using nonlinear estimators with output injection (for the second scenario).

Although the observers based on output injection show better performance (as investigated
through numerical experiments), they require knowledge of all parameters of the model. If
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these parameters are not perfectly known, more errors will be introduced in the resulting
estimation. On the other hand, the observers based on the differentiators are intrinsically
sensitive to noise.

Concerning the control problem, the following topics have been tackled:

1. Robust control of the competition model (2.1), considering that all parameters are
unknown but belonging to bounded interval;

2. Design of a control methodology for the COSY model (2.4), considering that all param-
eters are perfectly known.

For the first item above, the robust control architecture is composed of several discontin-
uous control laws that explicitly take into account the known bounds on the parameters. In
fact, the dilution rate is actuated by a single control law, aiming to stabilize the concentration
of a first species, whereas the one concerning the inflow substrate concentration is switched
between to different control goals. This is due to the fact that, depending on the concentra-
tion of the substrate, the system might loose its controllability. Then, first this problem is
avoided and, once a certain condition is reached, the goal then becomes the stabilization of
the remain species.

For the microbial consortium described by the COSY model, however, the problem is more
intricate. Indeed, the presence of acetate (excreted by the producer strain) further constrains
the control. The concentration of the producer strain is regulated by state-feedback through
the dilution rate, whereas the concentrations of glucose and acetate are then steered to specific
levels, using the respective inflow concentration. These specific levels are selected in order to
guarantee satisfaction of three constraints, which basically guarantee controllability and the
permanence of the cleaner strain (i.e., in a concentration higher than zero).

Perspectives

A natural continuation of the theoretical work presented in this thesis is the design of a
robust control algorithm for the COSY model. Indeed, the control laws developed in Chapter
4 are highly dependent on the parameters of model (2.4). This could be done, similarly as for
the competition model, by using sliding-mode controllers that explicitly take the bounds of
the parameters into account. Clearly, a more intricate stability analysis would be necessary.

Another interesting directions are (i) developing also a control law for Bc, aiming to
stabilize it at a certain level (this would reduce the consumption of glucose by this species and
possibly enhance the process yield), (ii) developing an extra layer in the control architecture to
encompass also some optimization criteria, (iii) couple the developed estimation algorithms to
these control architectures, what would culminate in a methodology closer to the real-world.
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Since the developments presented in this manuscript were theoretical, an interesting per-
spective is the implementation of the proposed algorithms into a real experimental set-up.
This would allow, for instance, a better understanding of the levels of uncertainty present
(both parametric and noise-related), as well as the variability of parameters. Also, since real
controller would have to undergo discretization schemes, practical experiments would also
permit the evaluation of having actual sensors and non-ideal actuators.

Robust output feedback MPC

Conclusions

The control of constrained system is a challenging problem in the control literature. This
fact led MPC to be an interesting topic and several extensions were reported in the literature.
In this framework, the second part of this thesis dealt with the problem of robust output
feedback MPC.

Indeed, by merging the classic MPC algorithm with interval estimators (an observer and a
predictor), the algorithm proposed in this thesis guarantees both robust constraint satisfaction
and recursive feasibility, at a low computation complexity and ease of implementation. Two
broad classes of systems are encompassed by this algorithm: linear and linear parameter
varying systems (and also to the case of linear time-delayed systems, whose results were not
reported in this manuscript).

For each of the cases mentioned above, several design conditions for these interval estima-
tors, as well as for their respective feedback control, were given in the form of linear matrix
inequalities. This is an interesting feature, especially if compared to other solutions available
(for instance, Tube-MPC or the ones using estimation techniques such as moving-horizon or
zonotopes) which rely on complex set-algebraic computations, since LMIs are widely used
and easy to implement and verify.

Although the design conditions given for the interval observer are not restrictive, a draw-
back of this methodology concerns the design of the interval predictor: due to its structure,
it may be hard to find proper gains that guarantee its stability. This fact possibly shrinks
the range of possible applications.

Perspectives

The versatility of the interval estimators used in the proposed IO-MPC algorithm offers
some interesting research perspectives. For instance, extra estimation techniques could be
used to identify parameters and exogenous inputs and enhance the accuracy of the interval
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estimation in real-time. Clearly, this would imply a reduction in conservatism and better
performance.

Also, slightly out of the scope of the MPC, it would be interesting to investigate if the
robust constrained control problem could be solved using solely the interval observers. Ob-
viously, an IO would allow the computation of the interval estimates merely one step ahead,
instead of predicting it over an entire prediction horizon of arbitrary length. Although this
fact possibly reduces the feasible region, it would alleviate the drawback of the design of the
interval predictor mentioned above, enlarging the possible applications.
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Appendix A

Preliminaries on input-to-state
stability

Continuous-time case

Consider a general, continuous-time system given by

ẋ(t) = f(x(t), u(t)) (A.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is in the input, u ∈ L∞, f : Rn × Rm → R is a
continuously differentiable function that satisfies f(0, 0) = 0. For each initial state x(0) = ξ

and each u ∈ L∞, the trajectory of (A.1) is denoted x(t, ξ, u).
Definition A.1. [Sontag and Wang, 1995] System (A.1) is input-to-state stable if there exist
a KL function β and a K function γ such that, for each input u ∈ L∞ and each ξ ∈ Rn, it
holds that

|x(t, ξ, u)| ≤ β(|ξ|, t) + γ(|u|∞)

for each t ≥ 0.
Definition A.2. [Sontag and Wang, 1995] A smooth function V : Rn → R+ is called an
ISS-Lyapunov function for system (A.1) is there exists K∞-functions α1, α2 and K-functions
α3 and α4 such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|)

for any ξ ∈ Rn and

∇V (ξ) · f(ξ, u) ≤ −α3(|ξ|)
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for any ξ ∈ Rn and any u ∈ Rm so that |ξ| ≥ α4(|u|).
The relation between the above definitions characterizes a Lyapunov-like criterion for

ISS [Sontag and Wang, 1995].
Lemma A.1. If system (A.1) admits an ISS-Lyapunov function, then it is ISS.

Discrete-time case

Consider a general, discrete-time system given by

xk+1 = f(xk, uk) (A.2)

where x : Z+ → Rn, u : Z+ → Rm and f(0, 0) = 0 is assumed. Let x(·, ξ, u) denote the
trajectory of system (A.2) for a initial condition x0 = ξ and the input u. Then, the concepts
of input-to-state stability (ISS) and ISS-Lyapunov function are stated as follows
Definition A.3. [Jiang and Wang, 2001] System (A.2) is input-to-state stable if there exists
a KL- function β and a K function γ such that, for all ξ ∈ Rn and u ∈ ℓ∞, it holds that

|x(k, ξ, u)| ≤ β(|ξ|, k) + γ(|u|∞)

for each k ∈ Z+.
Definition A.4. [Jiang and Wang, 2001] A continuous function V : Rn → R+ is called an
ISS-Lyapunov function for (A.2) if the following holds:

1. There exist K∞ functions α1, α2 such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|), ∀ξ ∈ Rn.

2. There exists a K∞ function α3 and a K function σ such that

V (f(ξ, u)) − V (ξ) ≤ −α3(|ξ|) + σ(|u|), ∀ξ ∈ Rn, ∀u ∈ Rm.

The following result from [Jiang and Wang, 2001] establishes the relation between the
definitions above:
Lemma A.2. If system (A.2) admits a continuous ISS-Lyapunov function, then it is ISS.
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Preliminaries on sliding-mode control

Sliding-mode and sub-optimal controller

Consider the following non-linear system:

ẋ(t) = f(t, x, u, d) (B.1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input vector and d ∈ Rn is a vector
containing perturbations and possibly uncertainties within the system. First, the first-order
conventional sliding mode is discussed. Consider the following surface in the state space:

S = {x ∈ Rn, σ(x) = 0} (B.2)

where σ : Rn → R is a continuously differentiable function called sliding variable.
The objective is to design σ(x) in such a way that system (B.1), under feedback con-

trol, behaves with a prescribed performance. In this sense, if the control input is selected
guaranteeing σ̇ = −ηsign(σ), where η > 0, one can consider a Lyapunov function as

V = 1
2σ2

and, computing its time derivative, we have that

V̇ = σσ̇ = −η|σ| (B.3)

which implies V̇ ≤ 0, hence the origin of σ(x) is globally stable. Moreover, it is clear that
|σ| =

√
2V 0.5 and, consequently, it implies that

V 0.5(t) = max{0, V 0.5(0) −
√

2ηt}

meaning that the solution of (B.3) becomes zero in a finite time [Shtessel et al., 2010].
102



Ttwo interesting phases of this methodology can be discriminated: the reaching phase,
which is guaranteed if condition (B.3) is satisfied, it describes the motion of the system
towards the surface σ(x), and the sliding phase, describing the motion of the system in the
surface σ(x) = 0.

Recently, the concept of higher-order sliding-mode control has been widely studied. The
techniques developed in this framework extend all interesting properties of standard sliding-
mode control to systems with a relative degree greater than one. To introduce this concept,
consider the case of relative degree 2 and assume that the dynamics of the sliding variable σ

satisfies the following non-linear system:

σ̈ = a(t, x(·)) + b(t, x(·))u(t, σ, σ̇) (B.4)

where |a(t, x(·))| ≤ C and 0 < bmin ≤ b(t, x(·)) ≤ bmax, for all x ∈ R. Also, constants C ≥ 0
and 0 < bmin ≤ bmax are supposed to be known. Many controllers have been proposed in
order to steer σ and σ̇ to zero in finite time, such as the twisting controller [Emelyanov et al.,
1986], the suboptimal controller [Bartolini et al., 1997], quasi-continuous controllers [Levant,
2005] and others.

The properties of the suboptimal control algorithm are substantiated in the following.
This algorithm is given by the control law [Bartolini et al., 1997]

u = −k1sign [∆(t)] (B.5)

where k1, λ > 0, and
∆(t) = ∆(t, σ(·)) := σ(t) − λσ(t∗) (B.6)

where t∗ is the last instant of time in which σ̇(t∗) = 0, i.e.,

t∗ = t∗(t, σ̇(·)) := sup
τ≤t:σ̇(τ)=0

τ. (B.7)

As one can see, control law (B.5) is a functional, since it requires information of its current
and past trajectories of the system states. Also, it is interesting to notice that this control law
does not require information on σ̇(t), but only the detection of an event where σ̇(t) = 0. This
clearly offers an advantage for practical implementations, since information of σ̇(t) might not
be always available and its estimation might suffer from numerical complications.

Denoting σ̇ = y and invoking the work presented in [Polyakov and Poznyak, 2012], a
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candidate Lyapunov function for such a controller is given by

Vsub(t, σ(·), y(·)) =p

√√√√∣∣∣∣∣σ(t) − y2(t)
2(−Csign(∆(t)) − bmaxk1sign(∆(t))

∣∣∣∣∣
− y(t)

−Csign(∆(t)) − bmaxk1sign(∆(t))

(B.8)

where 0 < λ < 1, bmink1 > C and

λ

1 − λ
>

1
k

+ k − 1, k := bmaxk1 + C

bmink1 − C
;

and, finally,

p := 2

√√√√√√ 1
bmaxk1 + C

 λ

1 − λ
k2 +

√√√√( λ

1 − λ

)2

k4 − 1

 (B.9)

Additionally, an estimate of the reaching time can be determined by

treach ≤ t′ + kp
√

|σ(t′)| (B.10)

where t′ is the first moment in time such that σ̇(t) = 0.
Corollary B.1. Consider the suboptimal control (B.5) and dynamics (B.4). Let σ(0) = 0
and σ̇(0) > 0, then the following estimates are satisfied for all t ≥ 0:

|σ̇(t)| ≤ |σ̇(0)|

|σ(t)| ≤ |σ(t′)|

where t′ = {inf t ≥ 0 : σ̇(t) = 0}.
Proof. This proof relies on the integration of the expression of the worst-case trajectories for
the closed-loop system, i.e., σ̈(t) ≤ C − bmink1sign(∆(t)). Initially, as σ̇(0) > 0 and σ(0) = 0,
we have that σ̈ ≤ −r, for r = bmink1 − C > 0.

Considering a general time interval [t0, t] (where t0 is a certain initial time instant), the
integration of σ̈(t) results in

σ̇(t) ≤ σ̇(t0) − r(t − t0)

σ(t) ≤ σ(t0) + σ̇(t0)(t − t0) − r
(t − t0)2

2

(B.11)

Evaluating (B.11) in the time interval [0, t′], we can conclude that

t′ ≤ σ̇(0)
r

, and, σ(t′) ≤ σ̇2(0)
2r

.
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Then, it is clear that the first sign change in the control law will take place in a second
instant of time t” > t′, in which we have (due to the form of (B.5)) that σ(t”) = λσ(t′).
Consequently, the evaluation of (B.11) in the time interval [t′, t”] shows that

t” ≤ σ̇2(0)
r

(√
1 − λ + 1

)
and hence, we can finally conclude that

|σ̇(t”)| ≤ −|σ̇(0)|
√

1 − λ

As
√

1 − λ < 1 for 0 < λ < 1, it is clear that |σ̇(t”)| < |σ̇(0)|. Hence, as contraction and
convergence properties of such a control algorithm have been proven (see [Bartolini et al.,
1997] and proofs therein), we can then conclude that |σ̇(t)| ≤ |σ̇(0)| for all t > 0.

The proof of the remaining estimate follows by analysing the signal change of the control
law. Clearly, due to the definition of the functional ∆(σ(t)), the signal of the control law
will switch every time that σ̇(t) reaches zero or when σ(t) = λσ(t∗) (see the definition of t∗

above). This fact allows us to deduce that, as σ̇(t”) < 0, it is clear that σ̇(t) < 0 holds for all
t > t′. Thus |σ(t)| < |σ(t′)| holds for all t > 0, as claimed.

Sliding-mode differentiator

As it will be discussed, the observers proposed in this thesis will require the time derivatives
of the available measurements. This differentiation can be performed numerically by means,
for instance, of the robust exact differentiator, proposed by Levant [Levant, 2003]. The n-th
order differentiator is realized by the following observer:

ż0 = −λnL
1

n+1 ⌈z0 − f(t)⌋
n

n+1 + z1

ż1 = −λn−1L
1
n ⌈z0 − f(t)⌋n−1

n + z2

. . .

żn−1 = −λ1L
1
2 ⌈z0 − f(t)⌋ 1

2 + zn

żn = −λ0Lsign(z0 − f(t)),

(B.12)

where f(t) = f0(t) + v(t) is a signal composed by an unknown base signal f0(t) with its n-th
derivative having a known Lipschitz constant L > 0, and v ∈ L∞ is the measurement noise.
The constants λi are tuning parameters. Under (B.12), the estimation errors are bounded
according to the following theorem:
Theorem B.1. [Levant, 2003] Let the input noise satisfy |v(t)| ≤ ϵ for almost all t ≥ 0.
Then the following inequalities are established in finite-time T > 0, for some positive constant
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ϱi depending exclusively on the parameters λ1, . . . , λn of the differentiator:

|zi(t) − f
(i)
0 (t)| ≤ ϱiL

1
n+1 ϵ

n−i+1
n+1 , ∀t ≥ T, i = 0, 1, . . . , n. (B.13)

According to Levant, all solutions of (B.12) are stable. Furthermore, the convergence of
z0 → f(t), z1 → d

dt
f(t), . . . , zn → dn

dtn f(t) is established in a finite-time in the noise-free case.
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