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Abstract

The problem of conditioning time-homogeneous Markov processes on a rare �uctuation
has been studied within the framework of large deviation theory. On this basis, a new
process equivalent to the conditioned process has been introduced using the generalized
Doob transform: it is the �driven process�. In this thesis, we aim to generalize these re-
sults to a larger class of Markov processes. In the �rst part of this manuscript, we consider
periodically driven Markov processes, characterized by their time-periodic generators. We
are interested in conditioning these processes on observables de�ned through time-periodic
functions. Adapting the results of the time-homogeneous case, we derive the driven process
for which the typical values of our observables after a large number of periods correspond
to the values used for the conditioning. In the periodic case, time-independent gener-
ators become time-periodic, matrix exponentials become time-ordered exponentials and
spectral problems become �rst order di�erential equations. The driven process can be
derived either using path ensemble equivalence, or from an optimization problem on large
deviation functions. In the second part of this manuscript, we extend these results to the
general case of nonlinear Markov processes described by time-independent Lagrangians
and Hamiltonians. In this new formalism, the generalized Doob transform leading to the
driven process translates into a canonical transformation on Hamiltonians. This transfor-
mation � that we call �recti�cation� � requires to investigate the nonlinear counterpart
of the Perron-Frobenius theorem. This investigation led us to conjecture a classi�cation
of the solutions of a Hamilton-Jacobi equation. We conclude this part by an opening on
the problem of conditioning periodically driven nonlinear processes.



Résumé

Le problème du conditionnement de processus de Markov homogènes en temps sur une
�uctuation rare a été étudié dans le cadre de la théorie des grandes déviations. Sur cette
base, un nouveau processus équivalent au processus conditionné a été introduit en utilisant
la transformée de Doob généralisée : il s'agit du � processus drivé �. Dans cette thèse, on
ambitionne de généraliser ces résultats à une classe plus large de processus de Markov.
Dans la première partie de ce manuscrit, on considère des processus de Markov conduits
périodiquement, caractérisés par des générateurs périodiques. On veut conditionner ces
processus sur des observables dé�nies via des fonctions périodiques en temps. En adaptant
les résultats du cas homogène en temps, on construit le processus drivé pour lequel les
valeurs typiques de nos observables après un grand nombre de périodes correspondent
aux valeurs utilisées pour le conditionnement. Dans le cas périodique, les générateurs
indépendants du temps deviennent périodiques, les exponentielles de matrices deviennent
des exponentielles ordonnées en temps et les problèmes spectraux deviennent des équations
di�érentielles du premier ordre. Le processus drivé s'obtient soit en utilisant l'équivalence
de probabilités de chemin, soit à partir d'un problème d'optimisation de fonctions de
grandes déviations. Dans la deuxième partie de ce manuscrit, nous étendons ces résultats
au cas général des processus de Markov non linéaires décrits par des lagrangiens et des
hamiltoniens indépendants du temps. Dans ce nouveau formalisme, la transformée de Doob
généralisée menant vers le processus drivé se traduit par une transformation canonique sur
les hamiltoniens. Cette transformation � que l'on appellera � recti�cation � � nécessite
d'étudier l'analogue non linéaire du théorème de Perron-Frobenius. Cette étude nous a
conduits à conjecturer une classi�cation des solutions d'une équation de Hamilton-Jacobi.
Nous concluons cette partie par une ouverture sur le problème du conditionnement des
processus non linéaires conduits périodiquement.
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Introduction

�Si tu peux pas faire de grandes

choses, fais de petites choses avec

grandeur.�

Youssoupha

Nonequilibrium statistical physics is at the core of current researches. As almost all
systems found in nature are not at thermodynamic equilibrium, this �eld �nds applica-
tions in all branches of physics, but also in other domains such as biology, chemistry and
environmental science [1, 2]. It aims to generalize the theory of equilibrium statistical
mechanics, whose primary goal was to formalize the results of classical thermodynamics.
The latter studies the thermal behavior of bodies and the transformation of matter. It
is an axiomatic theory based on empirical laws that deals with exchanges of energy, heat
and work in macroscopic systems. However, it does not provide a microscopic interpreta-
tion of what is happening. For that reason, statistical mechanics � also called statistical
thermodynamics � emerged, providing a rigorous probabilistic formalism that explains
the thermodynamic phenomena occurring within equilibrium macroscopic systems from
the microscopic properties of their constituents.

Brief history of thermodynamics and statistical mechanics [3]

Classical thermodynamics was initially interested in understanding the functioning of
steam engines and thermal concepts like heat and temperature. In 1783, Antoine Lavoisier
introduced the caloric theory which states that heat is an invisible �uid called caloric that
�ows from hot bodies to cold bodies. The �rst to seriously criticize the caloric theory was
Graf von Rumford (Benjamin Thompson) who supported the idea that heat is related to
motion after observing heat production in boring cannons, in 1789.

The origins of thermodynamics as a modern science stem from Sadi Carnot's work
about a generalized theory of heat engines Re�ections on the Motive Power of Fire [4],
published in 1824, in which a �rst version of the second law of thermodynamics is reported.
In 1843, Julius Robert Mayer stated one of the �rst versions of the �rst law of thermody-
namics. The full statement of the law was established by Rudolf Clausius in 1850. In 1865,
Clausius introduced an extensive state function named entropy that formalizes the notion
of irreversibility. However, the work of Clausius did not provide a molecular interpreta-
tion for the entropy. It was not until 1877 that the Austrian physicist Ludwig Boltzmann
related the entropy to the number of microstates of a thermodynamic system. This result
has signi�cantly contributed to the development of statistical mechanics, �rst initiated by
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the Scottish physicist James Clerk Maxwell who established the Maxwell distribution of
molecular velocities in 1860.

In 1902, the American mathematical physicist J. Willard Gibbs published Elementary
Principles in Statistical Mechanics [5] in which he formalized statistical mechanics by
introducing the theory of ensembles. This work is considered as the foundation of modern
statistical mechanics.

Evolution of statistical physics

Since then, statistical mechanics has known a great evolution, leading to the exploration
of new subjects such as quantum �uids, nonlinear chemical physics, critical phenomena,
transport theory, or biophysics [6]. One of the �rst extensions of statistical physics was to
take into account the indistinguishability of quantum particles. This work was initiated
by Satyendranath Bose in 1924 who treated black-body radiation as a gas of photons.
Soon after, Albert Einstein completed Bose's results in two papers published in 1924 and
1925, leading to the so-called Bose�Einstein statistics [7]. In 1926, Enrico Fermi showed
that the statistics obeyed by fermions is di�erent from the Bose�Einstein statistics, giving
rise to the so-called Fermi-Dirac statistics [7]. Thereafter, Lev Davidovitch Landau and
John von Neumann introduced the density matrix [7], laying the foundations of quantum
statistical mechanics.

Later on, signi�cant advances led to the emergence of the subdomain of nonequilib-
rium statistical physics. The �rst investigations of this �eld were directed toward the
near-equilibrium regime, giving rise to major results like Onsager's reciprocal relations
which relate �uxes to their corresponding thermodynamic a�nities [8, 9], or the �uctua-
tion�dissipation theorem [10,11] which relates the response of a system to a small pertur-
bation and its �uctuations when it is at equilibrium. Subsequently, these investigations
extended to the arbitrarily far from equilibrium regime by the appearance of important
results among which the �uctuations theorems [12�16], the Jarzynski relation [17,18], the
Crooks �uctuation theorem [19,20], the Hummer-Szabo relation [21] and the Hatano-Sasa
relation [22]. This led to the emergence of stochastic thermodynamics [23�25].

Stochastic thermodynamics uses the theory of stochastic processes to study small sys-
tems in which �uctuations are no longer negligible with respect to their mean values.
Examples of such systems are molecular motors, biochemical networks, colloids, micro-
organisms, etc. To take into account �uctuations, a new approach to thermodynamics has
been developed. Heat and work have been de�ned at the level of a single trajectory [26,27],
engendering the framework of stochastic energetics [28]. A similar de�nition has been
provided for the entropy production and the stochastic entropy of the system [29�31].
Beyond these theoretical developments, experimental achievements have been done, see
Ref. [24, 32, 33] for a review. An example consists in measuring the work distribution for
a colloidal particle pushed periodically by a laser toward a repulsive substrate [34]. The
experimental results were in good agreement with theoretical predictions based on solv-
ing the Fokker�Planck equation. One of the motivations of stochastic thermodynamics
is work extraction at micro and nanoscales in the same way traditional thermodynamics
was motivated by the appearance of heat engines. Microscopic heat engines using trapped
and time-periodically driven colloidal particles have been realized experimentally [35,36],
providing a better understanding of the physics of energy conversion at all scales.

In the same vein, nonequilibrium statistical physics aims to generalize the concepts
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of equilibrium statistical mechanics to nonequilibrium systems. Lately, R.M. L. Evans
proposed a nonequilibrium version of statistical ensembles for sheared �uids [37�39]. Such
ensembles have been used for the study of glassy phases and dynamical phase transi-
tions [40�51]. The equivalence between these ensembles has been studied in Ref. [52]
using the theory of large deviations which describes the asymptotic behavior of likely and
rare events [53�55]. This theory has been applied to equilibrium statistical mechanics, pro-
viding a general language for equilibrium notions such as entropy, free energy, maximum
entropy principle or minimum free energy principle [56�70]. On this basis, large deviation
theory is a promising theoretical foundation to nonequilibrium statistical physics [71�79].
Contrary to equilibrium, time now needs to be taken into account by looking at the dynam-
ical �uctuations of time-integrated observables and their typical values in the long-time
limit, or both in the long-time and large-size limit when considering many-body systems.
In keeping with these concepts, R. Chétrite and H. Touchette formalized the problem of
conditioning a Markov process on a large deviation [52,80,81] which aims to �nd an equiv-
alent process in the long-time limit to a process for which observables are conditioned on
rare �uctuations. This problem was initially considered by J. L Doob [82, 83] who stud-
ied a Markov process conditioned on leaving the state-space at a certain position. After
that, other conditionings were considered [84�98]. The conditioned process generalizes the
equilibrium microcanonical ensemble in which energy is �xed. Instead of �xing the value
of observables, one can rather �x the value of their conjugate variables, in the same way
we �x temperature instead of energy in the equilibrium canonical ensemble: this de�nes
the biased process [44, 99, 100]. In Ref. [80], this process has been shown to be related to
the nonequilibrium version of the canonical ensemble and to reproduce the conditioned
process in the long-time limit [52,101,102]. However, the biased process does not satisfy all
the requirements of a proper process. Thereafter, R. Chétrite and H. Touchette proposed
a procedure allowing one to build a proper Markov process from the biased process that
is equivalent in the long-time limit to the conditioned process.

Contribution of this manuscript

The guiding principle of this manuscript is the problem of conditioning of Refs. [52,80,81].
This problem was dealt with in the case of time-homogeneous Markov processes. The
objective of this thesis is to generalize this work to a larger class of Markov processes: �rst
to periodically driven Markov processes, then to nonlinear Markov processes.

The former extension is motivated by the fact that many thermodynamic machines,
including engines, operate via cycles or under periodic control. Such machines are experi-
mentally studied nowadays at the �uctuating level [103�106]. Fluctuations in periodically
driven systems modeled by Markov processes with time-periodic transition rates have also
attracted interest at the theoretical level [107,108].

In the latter extension, we mainly focus on time-homogeneous nonlinear Markov pro-
cesses, the case of periodically driven nonlinear Markov processes being only approached as
an opening. In addition to time, this class of processes involves a large size-type parameter
such as volume or number of particles, hence allowing one to model systems with many
degrees of freedom. According to statistical physics, we aim to provide a reduced descrip-
tion of those systems using only a small set of variables. This is done using large deviation
theory with respect to the size-type parameter, leading to a Lagrangian/Hamiltonian for-
malism [109�123], formalized by A. Lazarescu et al. in Ref. [124] for chemical reaction
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networks. The results of Ref. [80] are then translated within this formalism, generalizing
the problem of conditioning to nonlinear Markov processes.

Outline

The outline of this manuscript is as follows:

• Chapters 1 and 2 lay the foundations of the mathematical formalism used in this
manuscript. Chapter 1 is an introduction to the theory of stochastic processes and
large deviations. Chapter 2 is a brief review of statistical mechanics and stochastic
thermodynamics, and de�nes the mathematical models on which this thesis is based,
namely Markov processes.

• Chapter 3 addresses the problem of conditioning periodically driven Markov pro-
cesses on a large deviation. The �rst part of this chapter is about Markov jump
processes and the second part is about Markov di�usion processes. This problem
is approached from two perspectives: path ensemble equivalence and variational
problem.

• Chapter 4 proposes a theory for the problem of conditioning nonlinear Markov pro-
cesses. This theory focuses on time-homogeneous nonlinear processes, but we hope
that it paves the way for a generalization to periodically driven nonlinear processes.
The �rst part of this chapter applies the results of Ref. [80] to a class of nonlinear
jump processes to derive their counterpart in the Lagrangian/Hamiltonian formalism
of Ref. [124]. On this basis, we propose in the second part of this chapter a general
theory for this problem that is model-free. We conclude this chapter by applying
this theory to speci�c nonlinear models.

N.B.: A glossary and a table of notations are made available to the reader at the end of
the manuscript.
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Chapter 1

Mathematical introduction

�Shoot for the moon. Even if you

miss, you'll land among the stars.�

Norman Vincent Peale

This chapter introduces the mathematical framework used in this manuscript. For
pedagogical reasons, we may avoid some technical details that would be required for perfect
rigour.

1.1 Stochastic processes: preliminary de�nitions

In this section, we remind some de�nitions that will be useful throughout the manuscript.
They come mainly from Refs. [125�127].

1.1.1 Random variables

A random variable X is a function de�ned on a set of outcomes of a random phenomenon
or experiment and assigning a value to each outcome. For example, if we toss a coin, we
can get a head or a tail: these are the outcomes of our random experiment. We choose to
assign the value 0 for heads and the value 1 for tails. If we call Ω ≡ {Head, Tail} the set
of outcomes and V ≡ {0, 1} the set of values, then the function X : Ω −→ V is a random
variable. When X takes its values in a countable (resp. continuous) set, we say that it is
a discrete (resp. continuous) random variable.
Contrary to deterministic functions, the value of the random variable X(t) at a given time
t is unknown. Thereby, such objects are studied within probability theory and one focuses
mainly on the probability of having a given value of the random variable. For instance,
if we consider a non-biased coin, there is as much chance of getting tails as heads at each
time t: P (X(t) = 0) = P (X(t) = 1) = 1

2
.

1.1.2 Stochastic processes

A stochastic process or random process is informally de�ned as a family of random variables
{Xt | t ∈ E}, where E is a subset of the set of real numbers. Usually, t is the time and the
stochastic process contains the information on the time evolution of the random variable.
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By abuse of notation, we usually refer to the stochastic process by Xt or X(t). When E is
�nite or countable, Xt is a discrete-time stochastic process. If not, Xt is a continuous-time
stochastic process. Note the di�erence between the nature of the stochastic process Xt

and the nature of the set E. For instance, the continuous-time stochastic process Xt can
take discrete values. We denote by P (xn, tn;xn−1, tn−1; . . . x0, t0) the joint probability that
X(t) takes the values xn, xn−1, . . . , x0 at times tn, tn−1, . . . , t0 respectively, with the implicit
ordering tn > tn−1 > . . . t0. The knowledge of all possible joint probabilities describes
completely the system. Using the chain rule, the joint probability can be written in terms
of conditional probabilities:

P (xn, tn;xn−1, tn−1; . . . x0, t0) = P (xn, tn | xn−1, tn−1; . . . x0, t0)

P (xn−1, tn−1 | xn−2, tn−2; . . . x0, t0) . . . P (x1, t1 | x0, t0)P (x0, t0)

(1.1)

Note that P can be a probability or a probability density according to the nature of X.

1.1.3 Markov processes

Markov processes are stochastic processes with a Markov property, meaning that the
future evolution of the stochastic process depends only on its present and not on its past.
Mathematically, this means that the conditional probability of the process future state
given its present and past values depends only on the present state:

P (xn+1, tn+1 | xn, tn;xn−1, tn−1, . . . , x0, t0) = P (xn+1, tn+1 | xn, tn) . (1.2)

Eq. (1.2) is known as the Markov property. In nature, true Markov processes rarely exist.
Systems display a memory time during which memory e�ects are important [128]. How-
ever, if the memory time is much smaller than the other time scales of the system, it is
reasonable to approximate the system by a Markov process [125]. When the Markov prop-
erty (1.2) applies, any joint propability P (xn, tn;xn−1, tn−1; · · ·x0, t0) expresses in terms of
simple conditional probabilities P (xi, ti | xi−1, ti−1) � called transition probabilities �
and the chain rule (1.1) simpli�es to:

P (xn, tn;xn−1, tn−1; · · ·x0, t0) = P (xn, tn | xn−1, tn−1)P (xn−1, tn−1 | xn−2, tn−2)

. . . P (x1, t1 | x0, t0)P (x0, t0). (1.3)

Markov processes are used to model many random systems [129,130]. Some of the various
applications of Markov processes are from meteorology [131�135], biology [136�139], chem-
istry [140�142], bioinformatics [143�145], music [146�150] and �nance [151�153]. They also
constitute the basis of the well-known Markov chain Monte Carlo algorithms [154] which
counts many applications among which computational biology [155�158], physics [159�162]
and linguistics [163]. Beyond these large range of applications, the Markov property brings
a huge simpli�cation in mathematical calculations as we will see in the following.
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Chapman-Kolmogorov Equation

We have for any stochastic process [125]:

P (x3, t3 | x1, t1) =

∫
dx2P (x3, t3;x2, t2 | x1, t1)

=

∫
dx2P (x3, t3 | x2, t2;x1, t1)P (x2, t2 | x1, t1). (1.4)

For Markov processes, Eq. (1.4) becomes

P (x3, t3 | x1, t1) =

∫
dx2P (x3, t3 | x2, t2)P (x2, t2 | x1, t1). (1.5)

Eq. (1.5) is known as the Chapman-Kolmogorov equation. Note that according to the
nature of X, the sum

∫
may be an integral or a discrete sum

∑
x. In the following, we

will use the integral notation
∫
for both discrete and continuous random variables. In his

paper Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung (1931) [164],
Andreï Nikolaïevitch Kolmogorov has studied the solutions of the Chapman-Kolmogorov
equation (1.5). He showed that, under certain conditions, the transition probabilities
evolve according to a di�erential equation involving two processes [125,165]: a jump process
and a di�usion process. These two processes will be de�ned in Sections 2.3 and 2.4.

1.2 Generating functions

Let An be a random variable indexed by some parameter n and P (An = a) the probability
that An takes the value a. We recall that P may be a probability density if An takes its
values in a continuous set.

1.2.1 Moment generating function

The moment generating function, often abbreviated as generating function, is an alterna-
tive way to study the statistical properties of a random variable. The generating function
G of An is de�ned by

G(γ) ≡ E[eγAn ], (1.6)

where the mean E is de�ned by

E[f(An)] ≡
∫

daP (An = a)f(a), (1.7)

for any function f . When they exist, G generates the moments E[(An)`] of An (` ∈ N) by
di�erentiation since

G(γ) =
∞∑
`=0

1

`!
γ`E[(An)`], (1.8)

implying
E[(An)`] = G(`)(0), (1.9)

with G(`) the `th derivative of G. The generating function characterizes completely the
probability P (An = a) since both are related by a Fourier transform1 and P can be

1The Fourier transform g of the function f is de�ned by g(y) ≡
∫ +∞
−∞ dxeixyf(x).
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obtained from G by inverting the Fourier transform.

1.2.2 Cumulant generating function

Two important statistical quantities of the random variable An are its mean value E[An]
and its variance E[(An)2]−E(An)2] characterizing the �uctuations of An around its mean
value. The mean and the variance are called respectively the �rst and second second
cumulant of An. Other cumulants are obtained from the cumulant generating function
(CGF) Γ̃ de�ned by the logarithm of the generating function:

Γ̃(γ) ≡ lnG(γ). (1.10)

As for the moments, the `th cumulant cl of An is obtained by deriving the CGF ` times:

cl = Γ̃(`)(0). (1.11)

1.2.3 Scaled cumulant generating function

If we are now interested in the statistics of An for large n, it is appropriate to introduce
the so-called scaled cumulant generating function (SCGF) de�ned by

Γ(γ) ≡ lim
n→∞

1

n
lnE[enγAn ]. (1.12)

The importance of the SCGF will appear in the next section when dealing with the theory
of large deviations.

1.3 Large deviation theory

This section is at the core of the results that will be presented in this manuscript. The
following content comes mainly from Refs. [53�55,60,70].

In broad terms, large deviation theory deals with the exponential decay of probabilities
of rare events with a large parameter (e.g. time or system size). The �rst large deviation
results are due to Cramer [166] and Cherno� [167], but the formalization of this theory was
developed from 1975 by Donsker and Varadhan [168�171] and Freidlin and Wentzell [172].

Even if their probability to occur is small, it is interesting to look at rare �uctuations.
On the one hand, the rare �uctuation of an observable for one process is the typical �uctu-
ation for another process [80]. Hence, one motivation for studying these �uctuations [124]
is to �nd a way to enhance them [108,173] or suppress them [174]. On the other hand, rare
�uctuations may have a huge impact on systems. One example concerns climate change
in which rare events such as extreme droughts, heat waves, rain-fall, and storms have
non-negligible consequences on eco and socioeconomic systems [174�177]. Amir Dembo
and Ofer Zeitouni wrote in their book [53]: �To understand why rare events are important
at all, one only has to think of a lottery to be convinced that rare events (such as hitting
the jackpot) can have an enormous impact.�
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1.3.1 Convergence of random variables

Since large deviation theory deals with the asymptotic behavior of random variables, we
need to de�ne properly the convergence of sequences of random variables An to a limit
random variable A:

lim
n→∞

An = A. (1.13)

There is not a unique way to de�ne such a limit. In the following, we de�ne the main
types of convergence.

Convergence in law

An converges to A in law if for any continuous bounded function f ,

lim
n→∞

E [f(An)] = E [f(A)] . (1.14)

Convergence in probability

An converges to A in probability if for all ε > 0,

lim
n→∞

P (|An − A| > ε) = 0. (1.15)

Convergence in probability implies convergence in law.

Convergence in rth order mean

An converges to A in rth order mean (r ≥ 1) if

lim
n→∞

E
[
|An − A|r

]
= 0. (1.16)

We call convergence in mean the case r = 1 and convergence in mean square the case
r = 2. Convergence in rth order mean implies convergence in probability. Moreover, for
r > s ≥ 1, convergence in rth order mean implies convergence in sth order mean.

Almost sure convergence

An converges to A almost surely if

P
(

lim
n→∞

An = A
)

= 1 (1.17)

except for a set of events of null probability. We say that An converges to A surely if (1.17)
holds for all events. Almost sure convergence implies convergence in probability.

1.3.2 Large deviation principle

Large deviation theory is built on a mathematical principle describing the asymptotic
behavior of probabilities that we call the large deviation principle (LDP). We say that An
satis�es a LDP with rate I(a) if the limit

lim
n→∞

− 1

n
lnP (An = a) = I(a) (1.18)
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exists and we write
P (An = a) �

n→∞
e−nI(a), (1.19)

where An �
n→∞

Bn signi�es lim
n→∞

1
n

ln An
Bn

= 0. The function I is called the rate function or

the large deviation function (LDF). Eq. (1.19) means that we neglect the sub-exponential
terms in the asymptotic expansion of the probability as n becomes large:

lnP (An = a) =
n→∞

−nI(a) + o(n). (1.20)

Thus, the probability decays exponentially for any value a except for the zeros a? of the
LDF: I(a?) = 0. The random variable An converges in probability to these zeros that we
call typical values of An. Conversely, any value a 6= a? is referred to as a rare �uctuation
since the probability of �nding such values tends to 0 as n becomes very large. Note that
large deviation theory is based on the fact that the limit in Eq. (1.18) exists and that I is
�nite and non-zero everywhere. If the rate of decay of P (An = a) is sub-exponential then
the LDF is zero and one needs to consider the next orders in Eq. (1.20). On the contrary,
if the rate of decay of P (An = a) is super-exponential, the LDF is in�nite. In these two
cases, a LDP with a speed of decay that is di�erent from n may exists. It is important to
note that LDFs have at least one zero to ensures the normalization of the probability and
are always positive. Indeed, negative values of I yield probabilities greater than 1.

1.3.3 Illustrative example

Let's come back to our example of coin toss. We �ip the coin n times and we label Xi the
outcome of the ith toss. The random variable Xi takes the value 0 (head) or 1 (tail) with
equal probability. We are interested in the asymptotic behavior of the frequency of tails
during the n tosses:

An ≡
1

n

n∑
i=1

Xi. (1.21)

Since the tosses are independent, the probability that An takes the value a satis�es

P (An = a) =
1

2n

(
n

na

)
≡ 1

2n
n!

(na)!(n− na)!
. (1.22)

Using Stirling formula ln(n!) = n lnn− n+ o(n), we obtain

ln (P (An = a)) = −n [ln 2 + a ln a+ (1− a) ln(1− a)] + o(n), (1.23)

implying
P (An = a) �

n→∞
e−nI(a), (1.24)

with
I(a) ≡ ln 2 + a ln a+ (1− a) ln(1− a). (1.25)

Hence, An satis�es a LDP with rate function I(a). Note that in the limit n→∞, An can
be considered as a continuous random variable taking its values in [0, 1] and the probability
P (An = a) becomes a probability density. As shown in Fig. 1.1, I has a unique zero a? = 1

2

implying that An converges in probability toward 1
2
, which is expected since the coin is

non-biased.
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Figure 1.1 � (Left) LDF of the model of coin toss. Unsurprisingly, the LDF vanishes at
a = 1

2
, corresponding to the case where we obtain as many heads as tails when the number

of tosses goes to in�nity. (Right) Probability density P (An = a) for growing values of n.
The probability density becomes narrower around the typical value a? = 1

2
as n increases,

and converges to a delta function centered in a? when n→∞.

1.3.4 Gärtner-Ellis theorem

Large deviation theory aims to prove the existence of the limit in Eq. (1.18) and to compute
LDFs. In physics, we usually focus on deriving the expression of the LDF since managing
to do so implies the existence of the limit. In simple examples, one can do so by computing
directly the probability distribution of the random variable and deriving the LDF from its
asymptotic limit as done for the coin toss of Section 1.3.3. Yet, it is in general di�cult, even
impossible, to do such a direct calculation. This problem is remedied by the Gärtner-Ellis
theorem [178,179]. This theorem states that if the SCGF

Γ(γ) = lim
n→∞

1

n
lnE[enγAn ] (1.26)

exists and is di�erentiable everywhere, then An satis�es a LDP and the LDF I(a) is related
to the SCGF Γ(γ) by a Legendre-Fenchel (LF) transform (cf. Appendix 1.A):

I(a) = sup
γ
{γa− Γ(γ)} . (1.27)

To give some intuition to Eq. (1.27), suppose that An satis�es a LDP (1.19). It follows
from Eq. (1.7) and Eq. (1.19) that:

E[enγAn ] �
n→∞

∫
da en[γa−I(a)]. (1.28)

For large n, we can approximate the integral by its dominant integrand2:

E[enγAn ] �
n→∞

e
n sup

γ
{γa−I(a)}

. (1.29)

From the de�nition of the SCGF (1.26), if follows

Γ(γ) = sup
γ
{γa− I(a)} . (1.30)

2This is known as the Laplace's method (real integrals) or the saddle-point method (extension of the
Laplace's method to integrals in the complex plane).
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If now Γ is di�erentiable everywhere, then the LF transform is involutive (cf. Ap-
pendix 1.A) and we recover the result of Eq. (1.27). Note that this reasoning is not a
proof of the Gärtner-Ellis but rather an heuristic argument. Even so, it shows that if a
random variable satis�es a LDP, then the SCGF is the LF transform of the LDF. More
generally, if a random variable satis�es a LDP then for any function f , the functional
de�ned by

Γ(f) ≡ E[ef(An)] (1.31)

satis�es
Γ(f) = sup

γ
{f(a)− Γ(γ)} . (1.32)

This is Varadhan's Theorem [180]. For further details, two derivations of the Gärtner-Ellis
have been suggested in Ref. [70]. In equilibrium statistical mechanics, the entropy plays
the role of a LDF and the free energy the role of a SCGF. Both are related by a LF
transform [70].

The Gärtner-Ellis theorem is of practical interest since it provides a mathematical
procedure to compute LDFs. Moreover, LDFs coming from this theorem are all strictly
convex [70,181]. In this case, I has a unique zero a? and the typical value of An coincides
with its mean value in the limit n→∞:

E[An] =

∫
daP (An = a)a →

n→∞

∫
da δ(a− a?)a = a?, (1.33)

where we used the fact that limn→∞ P (An = a) = δ(a − a?) when I has a unique zero.
Moreover, expanding I around a? up to second order yields

P (An = a) ∼
n→∞

e
1
2
I′′(a?)(a−a?)2 , (1.34)

where we used the fact that I(a?) = I ′(a?) = 0. Values around a?, i.e. small devi-
ations from the typical value, are normally-distributed. Hence, large deviation theory
is a generalization of the Central Limit theorem3: not only does it contain information
about normally-distributed small deviations, but it also provides information about large
�uctuations of random variables.

1.3.5 Contraction principle

It sometimes happens that we know about the LDF of a random variable Xn but we are
interested in the large deviations of the random variable An = f(Xn), with f a continuous
function. The contraction principle [171] states that the LDF I(a) of An is obtained from
the LDF J(x) of Xn by

I(a) = inf
x|f(x)=a

J(x), (1.35)

where the argument of the in�mum must satisfy f(x) = a. Eq. (1.35) results from the
Laplace's method. Indeed, expressing the probability P (An = a) in terms of the proba-
bility P (Xn = x) yields

P (An = a) =

∫
dxδ(a− f(x))P (Xn = x) �

n→∞

∫
dxδ(a− f(x))e−nJ(x) �

n→∞
e
−n inf

x|f(x)=a
J(x)

,

(1.36)
3The central limit theorem establishes the convergence of the sum of random variables toward a normal

distribution.
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where we used the LDP on Xn in the second equality and Laplace's method in the last
equality.

22



Appendices

�Quand le sage désigne la Lune, l'idiot

regarde le doigt.�

Proverbe chinois

1.A Convexity and Legendre-Fenchel transform

The content of this section comes mainly from Ref. [182]. For further reading on convex
analysis, see Refs. [181,183,184].

The Legendre-Fenchel (LF) transform f ∗(y) of a function f(x) is de�ned by

f ∗(y) ≡ sup
x
{yx− f(x)} (1.37)

Note that if x and y are vectors, the product xy is replaced by the scalar product x · y in
Eq. (1.37). When f is di�erentiable and strictly convex4, the LF transform reduces to the
Legendre transform

f ∗(y) = yx? − f(x?), (1.38)

where x? satis�es y ≡ f ′(x?).

Important results

• The LF transform f ∗ of any function f is always convex, even if f is not convex [183].
Hence, the LF transform is not necessarily involutive, i.e. the LF transform f ∗∗ of
f ∗ is not necessarily equal to f .

• f ∗∗ is the convex envelope (or convex hull) of f , i.e. f ∗∗ is the largest convex function
such that f ∗∗ ≤ f .

• By the Fenchel�Moreau theorem, f ∗∗ = f if and only if f is convex (f is continuous
for simplicity).

• If f ∗ is di�erentiable at y, then f ∗∗(x) = f(x) at x = f ∗′(y).

4We remind that a function f is convex on an interval I if for any x1, x2 of I, and for any s ∈ [0, 1],
we have f(sx1 + (1 − s)x2) ≤ sf(x1) + (1 − s)f(x2). If the inequality is strict, we say that f is strictly

convex. Geometrically, it means that the curve of the function f(x) on the interval [x1, x2] is under the
segment [A1, A2] formed by the point A1 (resp. A2) of coordinates (x1, f(x1)) (resp. (x2, f(x2))).
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Chapter 2

Stochastic thermodynamics

�Vite, Patrick, sans ré�échir : si tu

pouvais avoir quelque chose

maintenant, qu'est-ce que ce serait?

� Um... plus de temps pour ré�échir.�

Bob l'éponge

In this chapter, we introduce the general �eld of stochastic thermodynamics and the
mathematical models used to describe nonequilibrium systems. Before proceeding with
stochastic thermodynamics, I found it pedagogical to go through a brief review of some ele-
ments of equilibrium statistical mechanics that will be useful for the rest of this manuscript.
The reader can refer to Refs. [185�193] for a more detailed description of equilibrium sta-
tistical mechanics and thermodynamics.

2.1 Equilibrium statistical mechanics

Statistical mechanics makes use of probability theory to deduce the behavior and physical
properties of macroscopic systems, i.e. with a large number of particles, from the laws
governing its microscopic constituents. For instance, the pressure of a gas arises from
the collisions of the molecules, and the temperature is a measure of the mean kinetic
energy of the particles. Examples of macroscopic systems are gases, liquids, solids, liquid
crystals, plasma, biological matter, stellar matter, etc. In these systems, it is usually
impossible to follow the evolution of each individual particle. Statistical mechanics aims to
de�ne the relevant macroscopic physical quantities that characterize the system (volume,
temperature, pressure...) and to relate them to the microscopic quantities describing the
particles. To do so, the many-body system is described within statistical�mechanical
frameworks in line with the external conditions applied to the system. These frameworks
are referred to by equilibrium ensembles and the simplest ones are the microcanonical and
canonical ensembles.

2.1.1 Microcanonical ensemble

The microcanonical ensemble deals with isolated systems, i.e. systems that cannot ex-
change energy or particles with their environment. In this ensemble, the energy of the
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system is �xed E = constant and the accessible microstates, i.e. those of energy E, are
equiprobable. All other microstates have a null probability.

2.1.2 Canonical ensemble

The canonical ensemble, introduced by Josiah Willard Gibbs, describes a system of �xed
number of particles in equilibrium with a heat reservoir of �xed temperature β−1. The
system exchanges energy with the heat reservoir and the states of the system have di�erent
value of energy, contrary to the case of the microcanonical ensemble. The canonical
probability of the microstate ` of energy E` is given by

Pl =
e−βE`

Z
, (2.1)

where Z ≡
∑

l e
−βE` is the partition function.

Remark: If we also allow particle exchange with the reservoir, the system is studied
within the grand canonical ensemble.

2.1.3 Ensemble equivalence

In the canonical ensemble, the energy is allowed to �uctuate. However, in the limit of
very large number of particles, known as the thermodynamic limit, the �uctuations of the
energy around its mean value becomes negligible and the system can be considered to have
one de�nite value of energy, which recovers the framework of the microcanonical ensem-
ble. Thereby, in the thermodynamic limit, canonical and microcanonical ensembles are
equivalent and working in either ensembles is just a matter of mathematical convenience
(providing some concavity conditions on the microcanonical entropy [194,195]).

2.1.4 Laws of thermodynamics

Equilibrium thermodynamics is ruled by a set of empirical principles, later formalized by
equilibrium statistical mechanics. We remind here the statement of the �rst and second
laws.

First law of thermodynamics: the �rst law is a principle of energy conservation.
It states that the variation of the internal energy U of a closed thermodynamic system
involves two types of energy transfer between the system and its surrounding: work (W )
and heat (Q). Work is a transfer of energy due to a macroscopic force and which can be
used to move an object [193, 196, 197]. For instance, the pressure of a piston on a gas
will cause the displacement of the piston in one direction, and this is associated with a
pressure-volume work [196]. Heat is a transfer of energy due to the random agitation of
microscopic degrees of freedom because of a di�erence of temperature between the system
and its environment. The �rst principle reads

∆U = W +Q. (2.2)

The energy U is a state function, meaning that its variation depends only on the initial
and �nal states while W and Q depend on the whole trajectory between the initial and
�nal states.
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Second law of thermodynamics: the second law introduces a new thermodynamic
quantity called entropy which formalizes the notion of irreversibility, and states that for
any transformation of a thermodynamic system, the variation of the global entropy (system
+ environment) cannot decrease:

Σ ≥ 0, (2.3)

de�ning this way the arrow of time of the transformation. Σ is called entropy production
and for a reversible transformation, Σ = 0. If we consider a system in contact with an
environment of temperature T , the entropy production reads

Σ = ∆S + Senv, (2.4)

where ∆S is the variation of entropy of the system and where the variation of entropy
of the environment Senv = −Q

T
is related to the heat dissipation between the system and

the environment. Notice that contrary to the entropy of the environment and the entropy
production, the entropy of the system is a state function. If the system is isolated, Q = 0
and ∆S = Σ ≥ 0. Hence, the entropy of isolated systems can only increase. Developments
in statistical mechanics have given a microscopic description of entropy and established
that the thermodynamic entropy of a system coincides with the Shannon entropy de�ned
by S ≡ −

∑
` p` ln p`, where the sum runs over the states of the system and where p` is the

probability of state `. This entropy contains all the statistical information of the system
and determines the equilibrium state of the system given its external conditions as the
one maximizing the entropy.

2.2 Stochastic thermodynamics

Equilibrium statistical mechanics is very useful to study the equilibrium properties of
large systems. Yet, it is not suitable for the description of the dynamics of nonequilibrium
systems, or systems with few degrees of freedom for which the �uctuations of physical
observables are no longer negligible. These �uctuations are studied within the framework
of stochastic thermodynamics which relies on the theory of stochastic processes to de�ne
physical observables and study their statistics.

There are many ways to drive a system out of equilibrium. For example, a system can
be out of equilibrium because it is subjected to an external force, or is in contact with
several reservoirs leading to a gradient of temperature or chemical potential for instance,
or because it is relaxing toward an equilibrium state. Stochastic thermodynamics pro-
vides tools to de�ne for these systems thermodynamic observables such as heat, work and
entropy production, generalizing the concepts of equilibrium statistical thermodynamics.
This theory allows studying real systems such as colloidal particles, biopolymers (DNA,
RNA, proteins...), enzymes, molecular motors, etc., and many experimental achievements
have supported the theoretical developments [34�36,198�207].

Theoretically, stochastic thermodynamics uses Markov processes to build models and
de�ne �uctuating observables. In this manuscript, we will only consider systems mod-
eled by continuous-time Markov processes and we use the term Markov processes for
continuous-time Markov processes by abuse of language. We will focus on the two bricks
of a general Markov process: Markov jump processes and di�usion processes [125, 126].
For a general review on stochastic thermodynamics, see Refs. [23�25].
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2.3 Markov jump processes

2.3.1 Markov generator and master equation

We consider a continuous-time Markov jump process z(t) de�ned on a discrete set of states
that we label x or y. The state of the system at time t is denoted by z(t). This Markov
process is characterized by the transition rates kxy ≡ kxy(t) to jump from a state y to
another state x at time t (x 6= y). These transition rates are nonnegative and are de�ned
from the transition probability P (x, t+ δt | y, t) by

kxy(t) ≡ lim
δt→0

1

δt
P (x, t+ δt | y, t). (2.5)

For x = y, we de�ne −kyy ≡
∑

x 6=y kxy as the escape rate from state y at time t. The
matrix k of components kxy is known as the transition rate matrix or the generator of the
Markov process. We denote by πx ≡ πx(t) the probability to be in state x at time t. The
probability vector π of components πx satis�es the so-called master equation

∂π

∂t
= kπ, (2.6)

with initial condition π(0). The master equation is just a particular case of the di�erential
version of the Chapman-Kolmogorov equation1 (1.5). The norm of the probability is
conserved by the master equation since by construction

∑
x kxy = 0, ∀y, implying that

∂
∂t

(
∑

x πx) = 0: we say that k generates a norm-conserving Markov process. Thereby,
the master equation and the normalized initial probability ensure the normalization of the
probability at all times. The master equation is a continuity equation for the probability
and can be expressed under the form:

∂πx
∂t

=
∑
y

jπxy, (2.7)

where we introduced the probability current jπxy ≡ jπxy(t) from state y to state x at time t:

jπxy(t) ≡ kxy(t)πy(t)− kyx(t)πx(t). (2.8)

Another way to characterize a Markov process is by means of path probabilities. A
path or a trajectory is the succession of states visited by the system and the data of the
times at which transitions occur, and in some cases the mechanism by which a new state
is reached (for instance, which heat reservoir the system exchanges energy with when a
transition occurs). In the following, we denote a path by [z]. We label {zi}Mi=0 the visited
states and {ti}Mi=0 the times at which the system jumps so that

z(t) = zi for ti ≤ t < ti+1. (2.9)

1To be more precise, the Chapman-Kolmogorov equation is about the transition probabilities
P (x, t | y, t′) as seen in Sec. 1.1.3. The more intuitive form (2.6) is just a matter of specifying the initial
condition: πx(t) =

∑
y P (x, t | y, 0)πy(0).
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Time t0 = 0 is the initial time and tM is the last jump time before the �nal time t.
The path [z] is characterized by its probability Pk,π(0)[z] obtained from the transition
probabilities P (zi+1, ti+1 | zi, ti) and the Markov property by

Pk,π(0)[z] = πz0(0)
M−1∏
i=0

P (zi+1, ti+1 | zi, ti)
∏

τ∈[ti,ti+1[

P (zi, τ + δt | zi, τ)

 , (2.10)

where δt is an in�nitesimal time interval and where the �rst term in the brackets refers to
the probability to jump and the second term refers to the probability to stay in the same
state when there is no jump. Using the fact that

P (zi+1, ti+1 | zi, ti) = kzi+1,zi(ti+1)δti+1, (2.11)

P (zi, τ + δt | zi, τ) = 1−
∑
x6=z(τ)

kx,zi(τ)δτ, (2.12)

we �nally obtain the path probability

Pk,π(0)[z] = πz0(0) exp

M−1∑
i=0

ln
(
kzi+1,zi(ti+1)

)
−
∫ t

0

∑
x 6=z(τ)

kx,z(τ)(τ)dτ

M−1∏
i=0

δti+1. (2.13)

2.3.2 Observables and �rst law

As mentioned in the introduction, stochastic thermodynamics uses the framework of
stochastic processes to de�ne �uctuating physical observables. In this manuscript, we
look at general two-component observables of the form

At[z] ≡


1

t

M−1∑
i=0

gzi+1,zi(ti+1)

1

t

∫ t

0

dτhz(τ)(τ),

 (2.14)

where g is a function of the jumps and h a function of the states. Note that since
At depends on the random variable [z], it is also a random variable. This general ob-
servable represents many physical quantities including the main observables in thermo-
dynamics. For instance, consider a system in contact with a heat reservoir of inverse
temperature β and a particle reservoir of chemical potential µ, and assume that its
energy-levels Ux(t) has been made time-dependent by an external driving. We denote
by Nx(t) the number of particles in state x at time t. Taking gxy(t) = µ [Nx(t)−Ny(t)] or
gxy(t) = [Ux(t)− µNx(t)]− [Uy(t)− µNy(t)], and taking hx(t) = ∂tUx(t), the �rst compo-
nent of tAt[z] represents the chemical work W chem[z] or the heat Q[z] along the path [z],
and the second component of tAt[z] represents the work W [z] along the path [z] [208]:

Wchem[z] ≡
M−1∑
i=0

µ
[
Nzi+1

(ti+1)−Nzi(ti+1)
]

(2.15)

Q[z] ≡
M−1∑
i=0

[
Uzi+1

(ti+1)− Uzi(ti+1)
]
−Wchem[z], (2.16)

W [z] ≡
∫ t

0

dτ∂tUz(τ)(τ). (2.17)

28



The �rst principle of thermodynamics ensuring energy conservation holds at the level of
trajectories and the variation of energy between times 0 and t satis�es

∆U(t) = W [z] +Q[z] +Wchem[z], (2.18)

meaning that the variation of the energy comes either from its variation with respect to
time (work) or from the variation of the state of the system (heat and chemical work).
Note that the variation of energy is a state function and does not depend on the trajec-
tory contrary to work and heat. For other thermodynamic observables involved in the
�rst law (information reservoir, non-conservative forces, multiple reservoirs, etc.), refer to
Refs. [209,210].

2.3.3 Fluctuation theorem and second law

Another interesting observable is the entropy production along the path [z] [31]

Σ[z] ≡ ln
Pk,π(0)[z]

Pk̄,π(t)[z̄]
, (2.19)

where the [z̄] is the reversed trajectory of [z]:

z̄(τ) ≡ z(t− τ), (2.20)

and k̄ is the generator of the reversed dynamics:

k̄(τ) ≡ k(t− τ). (2.21)

From (2.13) and the de�nitions of [z̄] and k̄, it follows

Σ[z] = ∆S(t) + Senv[z], (2.22)

where
∆S(t) ≡

[
sintzN − lnπzN (t)

]
−
[
sintz0 − ln πz0(0)

]
(2.23)

is the change in the entropy of the system de�ned by

Sx(t) ≡ sintx − lnπx(t), (2.24)

and involving the stochastic entropy − lnπx(t)
2 and the equilibrium entropy sintx related

to the internal structure of the state x [211]; and where

Senv[z] ≡
N−1∑
i=0

ln
kzi+1,zi(ti+1)

kzN−i−1,zN−i(ti+1)
−
[
sintzN − s

int

z0

]
(2.25)

is the change in the entropy of the environment along the trajectory [z] due either to
the energy exchange between the system and the environment caused by the jumps (�rst
term) or the change in the internal entropy of the system (second term). If we assume
that the transition rates satisfy the instantaneous detailed balance de�ned by

kxy(t)

kyx(t)
= e−β(Ux(t)−Uy(t))+βµ(Nx(t)−Ny(t))+(sintx −sinty ), (2.26)

2Note that the mean of the stochastic entropy is the Shannon entropy: 〈∆S〉 ≡ −
∑
x πx lnπx.
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then the entropy of the environment satis�es

Senv[z] =
N−1∑
i=0

[
−β(Uzi+1

(ti+1)− Uzi(ti+1)) + βµ(Nzi+1
(ti+1)−Nzi(ti+1))

]
= −βQ[z],

(2.27)

recovering the result of equilibrium thermodynamics. We now consider the entropy pro-
duction of the reversed dynamics Σ̄[z̄] given by

Σ̄[z̄] ≡ ln
Pk̄,π(t)[z̄]

Pk,π(0)[z]
= −Σ[z]. (2.28)

We can relate the probability that Σ[z] takes the value s to the probability that Σ̄[z̄] takes
the opposite value −s:

P (Σ[z] = s) =
∑
[z]

δ(Σ[z]− s)Pk,π(0)[z] = es
∑
[z]

δ(Σ̄[z̄] + s)Pk̄,π(t)[z̄], (2.29)

leading to
P (Σ[z] = s)

P̄ (Σ̄[z] = −s)
= es (2.30)

where we introduced P̄ (Σ̄[z] = −s) the probability in the time-reversed and path reversed
dynamics that Σ̄[z̄] takes the value −s:

P̄ (Σ̄[z] = −s) ≡
∑
[z]

δ(Σ̄[z̄] + s)Pk̄,π(t)[z̄]. (2.31)

Eq. (2.30) is known as the detailed �uctuation theorem [12�16, 24, 31, 212�217]. Note
that the �uctuation theorem compares the probability of the entropy production of a
given experiment (direct dynamics) with the entropy production of another experiment
(reversed dynamics). We consider the same observable (entropy production) but for two
di�erent experiments. If the protocol is time reversal symmetric, i.e. k̄ = k, one obtains
the stronger �uctuation relation:

P (Σ[z] = s)

P (Σ[z] = −s)
= es, (2.32)

where the probabilities appearing in the numerator and denominator are the same. In this
case, Eq. (2.32) compares the probability of the entropy production of a given experiment
along a trajectory with the probability of the entropy production of the same experiment
along the reversed trajectory. Note that if we assume that 1

t
Σ[z] and 1

t
Σ̄[z] satisfy LDPs:

P (Σ[z] = ts) �
t→∞

e−tI(s), (2.33)

P̄ (Σ̄[z] = ts) �
t→∞

e−tĪ(s), (2.34)

then from Eq. (2.30), the �uctuation theorem reads for LDFs:

I(s)− Ī(−s) = −s. (2.35)
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Now, averaging the exponential of the entropy production with respect to the path prob-
ability Pk,π(0)[z]

E
[
e−Σ[z]

]
=

∫
dsP (Σ[z] = s)e−Σ[z] (2.36)

yields the integral �uctuation theorem:

E
[
e−Σ[z]

]
= 1, (2.37)

where we used the detailed �uctuation theorem (2.30). Applying Jensen's inequality

eE[X] ≤ E[eX ], (2.38)

we obtain
E (Σ[z]) ≥ 0. (2.39)

Hence, even though the entropy production can take negative values at the level of tra-
jectories, its mean value is always positive: the second law of thermodynamics holds on
average. There has been a large number of experimental illustrations of the �uctuation
theorem [200�202,204,218].

2.3.4 Biased generator and generating functions

Let us come back to the general observable At of Eq. (2.14). We are interested in the
�uctuations of At at time t, or more precisely of the time-extensive observable tAt. As
discussed in Sec. 1.2, all the statistics of At follows from the generating function

G(t,γ) ≡ Eπ(0)

[
etγ·At[z]

]
, (2.40)

where γ =
(
γ1 γ2

)
is the conjugate variable of At and where the average value is

de�ned with respect to the path probability (2.13) with initial probability π(0):

Eπ(0)[e
tγ·f [z]] ≡

∫
D[z]Pk,π(0)[z]etγ·f [z] (2.41)

for any f functional of the path. Note that using the fact that

P (At[z] = a) =

∫
D[z]Pk,π(0)[z]δ(At[z]− a), (2.42)

we recover the de�nition of the average given in Eq. (1.7). Let us consider the generating
function conditioned on the �nal state

G̃x(t,γ) ≡ Eπ(0)

[
etγ·At[z]δx,z(t)

]
, (2.43)

so that G(t,γ) =
∑

x G̃x(t,γ). Notice that this generating function is related to the joint
probability

Px(At[z] = a, t) ≡
∫

D[z]Pk,π(0)[z]δx,z(t)δ(At[z] = a) (2.44)

that the system is in state x and that the observable At[z] takes the value a at time t by:

G̃x(t,γ) =

∫
daPx(At[z] = a, t)etγ·a. (2.45)
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We aim to describe the time evolution of G̃. To do so, we introduce for clarity the
observable Ãt[z] ≡ tAt[z]. During an in�nitesimal time δt, either there is a jump and the
�rst component Ã(1)

t of Ãt varies by a quantity gz(t+δt),z(t)(t) and the second component
Ã

(2)
t varies by a quantity hz(t)δt, or there is no jump and only Ã(2)

t varies by hz(t)(t)δt.
The joint probability at time t+ δt reads then [210]

Px(Ãt+δt[z] = ã, t+ δt) =
∑
y 6=x

kxy(t)δtPy

(
Ã

(1)
t [z] = ã(1) − gxy(t), Ã(2)

t [z] = ã(2) − hy(t)δt, t
)

+

[
1−

∑
y 6=x

kyx(t)δt

]
Px

(
Ã

(1)
t [z] = ã(1), Ã

(2)
t [z] = ã(2) − hx(t)δt, t

)
(2.46)

with ã(1) and ã(2) respectively the �rst and second component of ã. Expanding up to order
δt, we obtain

∂

∂t
Px(Ãt[z] = ã, t) =

∑
y 6=x

kxy(t)Py

(
Ã

(1)
t [z] = ã(1) − gxy(t), Ã(2)

t [z] = ã(2), t
)

−
∑
y 6=x

kyx(t)Px(Ãt[z] = ã, t)− hx(t)
∂

∂ã(2)
Px(Ãt[z] = ã, t). (2.47)

Using Eqs. (2.45) and (2.47), we �nally obtain the di�erential equation ruling the time
evolution of the generating function G̃x [16, 219]:

∂

∂t
G̃x(t,γ) =

∑
y

κxy(t,γ)G̃y(t,γ), (2.48)

where we have introduced the matrix κ of components

κxy(t,γ) ≡


kxy(t)e

γ1 gxy(t) if x 6= y,

−
∑
x′ 6=x

kx′x(t) + γ2 hx(t) if x = y. (2.49)

The matrix κ is called the tilted generator or the biased generator [44, 99, 100]. The
di�erence with the master equation (2.6) is that contrary to the transition rate matrix k,
the matrix κ does not satisfy the norm-conservation property:

∑
x κxy(t,γ) 6= 0, for any y.

The biased matrix is the generator of a Markov dynamics whose �transition probability�

G̃(x, t | y, 0) =

∫
D[z]etγ·At[z]P[z | y, 0]δz(t),x, (2.50)

solution of Eq. (2.48) with G̃(x, 0 | y, 0) = δxy [28], is not normalized. We call G̃(x, t | y, 0)
the biased transition probability by abuse of language. The biased path probability Pκ,π(0)[z]
corresponding to the non-normalized �path probability� of the dynamics generated by κ
is obtained by replacing k by κ in Eq. (2.13):

Pκ,π(0)[z] ≡ etγ·At[z]Pk,π(0)[z]. (2.51)

Notice that the initial generating function coincides with the initial probability:

G̃x(0) = Eπ(0)

[
δx,z(t)

]
= πx(0), (2.52)

for any state x. In Section 2.5.2, we will see that the canonical path probability is de�ned
from the normalization of the biased path probability of the tilted process.
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2.4 Markov di�usion processes

In the following, we express the results of the previous section in the language of di�u-
sion processes [125�127, 220], which constitute the continuous-state counterpart of jump
processes.

2.4.1 Langevin equation, Markov generator and Fokker-Planck
equation

We consider a continuous-time Markov di�usion process zt taking its values on the set
of real numbers. The state of the system at time t is denoted by zt. For simplicity, we
consider a one-dimensional process, i.e. zt is a scalar. This Markov process is characterized
by two functions: the drift b(zt, t) and the di�usion coe�cient σ(zt, t). We denote by %(x, t)
the probability density to occupy the state x at time t. The random variable zt evolves
according a stochastic di�erential equation called the overdamped3 Langevin equation:

żt = b(zt, t) + σ(zt, t)ξt, (2.54)

where ξt is a Gaussian random variable with

〈ξt〉 = 0, (2.55)
〈ξtξt′〉 = δ(t− t′), (2.56)

meaning that ξt and ξt′ are statistically independent for t 6= t′. ξt is formally de�ned by

ξt =
dWt

dt
, (2.57)

where Wt is a Wiener process. Mathematically speaking, the Langevin equation does not
exist as the derivative of a Wiener process is not de�ned. The correct interpretation of
the equation is in terms of the following integral equation

zt = z0 +

∫ t

0

b(zτ , τ)dτ +

∫ t

0

σ(zτ , τ) dWτ , (2.58)

where it remains to give an appropriate de�nition of the stochastic integral
∫ t

0
σ(zτ , τ) dWτ .

More generally, let us consider the following stochastic integral:

I(t) =

∫ t

0

f(τ)dWτ , (2.59)

where f is a stochastic process whose stochasticity depends of W and which is square
integrable E[

∫ t
0
f(τ)2dτ ] <∞ [127]. To de�ne properly I, we discretize the time interval

3In general, the Langevin equation describes the motion of a particle of mass m subjected to a friction
ν, an external force F and a stochastic force X:

mz̈t = −νżt + F (zt, t) +Xt. (2.53)

In the limit of large friction, we can neglect the inertial term and consider the overdamped Langevin
equation of Eq. (2.54), see Ref. [127] for more details.
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[0, t] into M parts by introducing ti ≡ i∆t with i ∈ J0,M − 1K and ∆t = t
M
. Let α ∈ [0, 1]

and τi ≡ (1− α)ti + αti+1. Then, the stochastic integral I is de�ned by

I(t) ≡ lim
M→∞

M−1∑
i=0

f(τi) [W (ti+1)−W (ti)] . (2.60)

The two main conventions used in stochastic calculus are the Itô convention obtained for
α = 0 and the Stratonovich convention obtained for α = 1

2
. The Îto convention is favored

by the mathematics community as it has the nice property to be a Martingale. On the
other hand, physicists rather use the Stratonovich integral since the chain rule holds in
this convention. Moreover, the Stratonovich convention may be more adapted to approach
real systems (see the Wong�Zakai theorem [221, 222]). From now on, we will work with
the Stratonovich convention and use the notation I(t) =

∫ t
0
f(τ) ◦ dWτ to refer to the

Stratonovich integral. The data zτ at any time τ ∈ [0, t] constitutes a path denoted by
[z]. As before, we discretize the interval [0, t] into M segments such that zi ≡ zti . The
transition probability density reads [222]

P (zi, ti | zi−1, ti−1) ≡
〈
δ

(
zi − zi−1 −

∫ ti

ti−1

[b(zτ , τ) + σ(zτ , τ) ◦ ξτ ] dτ

)〉
ξ

, (2.61)

where the average 〈. . .〉ξ is de�ned with respect to the noise ξ. The probability density of
the path [z] is obtained from the transition probabilities as follows

Pb,σ,%(0)[z] = %(z0, 0)
M−1∏
i=0

P (zi, ti | zi−1, ti−1), (2.62)

where %(0) is the initial probability density. Following the derivation of Ref. [222], it leads
to

Pb,σ,%(0)[z] = %(z0, 0) exp

{
−
∫ t

0

dτ

[
1

2D(zτ , τ)

(
żτ − b̂(zτ , τ)

)2

+
1

2
∇b(zτ , τ)

]}
, (2.63)

where ∇ ≡ ∂x is the (1D) spatial derivative and where we de�ned the modi�ed drift
b̂(x, t) ≡ b(x, t) − 1

2
σ(x, t)∇σ(x, t) and the variance D(x, t) ≡ σ(x, t)2. We point out

the fact that this path probability does not exist strictly speaking since the term ż2
t is

not de�ned mathematically. Furthermore, taking another convention in the de�nition
of the stochastic integral leads to another path probability. This problem is avoided by
considering in further calculations not the path probability of Eq. (2.63), but the ratio
between two path probabilities associated with di�erent di�usion processes so that the
diverging term ż2

t disappears. This quantity is convention-independent and the physical
consistency is preserved.

The Langevin equation describes the evolution of the process zt. Another level of
description is via the probability density %(x, t) to occupy the state x at time t. It satis�es
the so-called Fokker-Planck equation:

∂%(x, t)

∂t
= −∇

[
b̂(x, t)%(x, t)− 1

2
D(x, t)∇%(x, t)

]
, (2.64)
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with initial condition %(0). In Appendix 2.A, we derive the Fokker-Planck equation from
the Langevin equation. Similarly to the Master equation, the Fokker-Planck equation is
also a particular case of the Chapman-Kolmogorov equation and governs the evolution
of the transition probability density P (x, t | y, t′). The transition probability densities
P (x, t + dt | y, t) for an in�nitesimal time dt, and hence the path probability density
Pb,σ,%(0)[z], can also be obtained by solving directly the Fokker-Planck equation [220].
Note that the Fokker-Planck equation is nothing but a continuity equation

∂%(x, t)

∂t
= −∇J%(x, t), (2.65)

where we introduced the probability current J%:

J%(x, t) ≡ b̂(x, t)%(x, t)− 1

2
D(x, t)∇%(x, t). (2.66)

The Fokker-Planck equation can also be expressed in the same form as the Master equation
by introducing the so-called Fokker-Planck operator L de�ned by its action on an arbitrary
function f :

(Lf)(x, t) ≡ −∇
[
b̂(x, t)f(x, t)− 1

2
D(x, t)∇f

]
, (2.67)

leading to
∂%(x, t)

∂t
= (L%)(x, t). (2.68)

The Fokker-Planck operator is the generator of the di�usion process. It conserves the
norm of the probability density since

∫ +∞
−∞ dx(L%)(x, t) = 0 for any time t, where we used

the fact that % vanishes at in�nity.

2.4.2 Observables and laws of thermodynamics

In the framework of di�usion processes, the observable we are interested in reads

At[z] =


1

t

∫ t

0

g(zτ , τ) ◦ dzτ

1

t

∫ t

0

h(zτ , τ)dτ

 , (2.69)

where g and h are functions of position and time. When specifying g and h, At may
represent many physical quantities. For instance, the �rst component ofAt is the empirical
current at x if g(y, τ) = δ(x− y), and the second component of At is the fraction of time
the system spends in x if h(y, τ) = δ(x−y) [80]. Let us now consider the simple example of
a system in contact with a heat reservoir of inverse time-dependent temperature β(t) and
a having space-time dependent energy U . The variation of the internal energy between
times 0 and t is given by:

∆U(t) =

∫ t

0

dτ
dU

dτ
(zτ , τ) = W [z] +Q[z], (2.70)

where the work stems from the variation of the energy with respect to time:

W [z] ≡
∫ t

0

∂tU(zτ , τ) dτ (2.71)
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and the heat from the variation of the energy with respect to the position

Q[z] ≡
∫ t

0

∇U(zτ , τ) ◦ dzτ =

∫ t

0

δQ(zτ , τ), (2.72)

with δQ(zτ , τ) ≡ ∇U(zτ , τ) ◦ dzτ . Eq. (2.70) is the expression of the �rst law of thermo-
dynamics and was demonstrated experimentally along a single trajectory for a colloidal
particle in a time-dependent non-harmonic potential in Ref. [34]. The entropy production
along the path [z] is de�ned by [31]

Σ[z] ≡ ln
Pb,σ,%(0)[z]

Pb̄,σ̄,%(t)[z̄]
(2.73)

where the [z̄] is the reversed trajectory of [z]:

z̄τ ≡ zt−τ , (2.74)

and b̄ and σ̄ are respectively the drift and the di�usion coe�cient of the reversed dynamics:

b̄(x, τ) ≡ b(x, t− τ), (2.75)
σ̄(x, τ) ≡ σ(x, t− τ) (2.76)

for all x. From (2.63) and the de�nitions of z̄, b̄ and σ̄, it follows

Σ[z] = ∆S(t) + Senv[z], (2.77)

where ∆S(t) is the change in stochastic entropy S(x, τ) ≡ − ln %(x, τ) between times 0
and t:

∆S(t) ≡ − ln %(zt, t)−
(
− ln %(z0, 0)

)
, (2.78)

and Senv[z] is the change in the entropy of the environment along the trajectory [z]:

Senv[z] ≡
∫ t

0

dτ
2

D(zτ , τ)
b̂(zτ , τ) ◦ dzτ . (2.79)

If we assume that the drift and the di�usion coe�cient satisfy the instantaneous detailed
balance de�ned by

1

2
D(x, t) = − b̂(x, t)

β(t)∇U(x, t)
, (2.80)

then the entropy of the environment is related to the heat by Senv[z] = −
∫ t

0
β(τ)δQ(zτ , τ),

recovering the result of equilibrium thermodynamics. For a Brownian particle, the variance
does not depend on x and the drift b̂(x, t) = b(x, t) is F (x,t)

ν
, where F (x, t) ≡ −∇U(x, t)

is the conservative force associated with U , and ν is the friction coe�cient [223]. In this
case, the detailed balance condition of Eq. (2.80) becomes Einstein's relation 1

2
D = 1

βν
.

Finally, following the same procedure as for jump processes, one can derive the �uctuation
theorems for the entropy production (2.30, 2.35, 2.37) for di�usion processes and recover
the second law on average.
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2.4.3 Biased generator and generating functions

Let us come back to the general observable At of Eq. (2.69). As in Sec. 2.3.4, we are
interested in the �uctuations of At at time t. The generating function associated with At

reads
Gγ(t) ≡ E%(0)

[
etγ·At[z]

]
, (2.81)

where γ =
(
γ1 γ2

)
is the conjugate variable of At and where the average is de�ned

with respect to the path probability (2.63) with initial probability density %(0):

E
[
etγ·f [z]

]
≡
∫

D[z]Pb,σ,%(0)[z]etγ·f [z], (2.82)

for any f functional of the path. We de�ne the generating function conditioned on the
�nal state by

G̃γ(x, t) ≡ E%(0)

[
etγ·At[z]δ(zt − x)

]
, (2.83)

so that Gγ(t) =
∫
G̃γ(x, t)dx. In the following, we lighten the notations by dropping the

dependency of the functions b, σ and G̃ on x and t but one keeps in mind their presence.
The generating function G̃γ evolves according to

˙̃Gγ = (ΛγG̃γ), (2.84)

where we introduced the biased Fokker-Planck operator Λγ de�ned by

(Λγf) ≡ (−∇+ γ1g)(b̂f) +
1

2
(−∇+ γ1g) [D(−∇+ γ1g)f ] + γ2hf, (2.85)

for any space-time function f . Eq. (2.85) is derived in Appendix 2.B. Similarly to the
discrete case, the biased Fokker-Planck operator Λγ generates a Markov process that is
not norm-conserving since ∫ +∞

−∞
dx(ΛγG̃γ)(x, t) 6= 0, (2.86)

and whose path probability reads [80]

PΛγ ,%(0)[z] ≡ etγ·At[z]Pb,σ,%(0)[z]. (2.87)

In the next section, we will see how this path probability is related to the canonical path
ensemble.

2.5 Generalization of microcanonical and canonical en-

sembles

We saw in Sec. 2.1 that statistical properties of equilibrium macroscopic systems are stud-
ied within statistical ensembles. The most usual ones are the microcanonical ensemble
in which the energy is �xed, and the canonical ensemble for which the constraint is not
on energy anymore but on temperature. Nonequilibrium analogues of these ensembles
have been introduced in Refs. [37�39] and formalized by H. Touchette and R. Chétrite in
Ref. [52] in which they de�ned nonequilibrium canonical and microcanonical path ensem-
bles and discussed their equivalence in the long-time limit. In this section, we review the
main results of Refs. [52, 195, 224] which will be useful for the rest of this manuscript. In
the following, we consider the case of Markov jump processes but similar results are valid
for di�usion process by simply adapting the notations in the path probabilities.
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2.5.1 Nonequilibrium microcanonical process

By analogy with the equilibrium case, the nonequilibrium microcanonical ensemble corre-
sponds to the process z(t) whose path probability is conditioned on At = a:

Pmicro

a,π(0)[z] ≡ Pk,π(0)[z | At[z] = a]. (2.88)

In general, there is no Markov generator that can exactly generate this microcanonical path
ensemble, which makes this process di�cult to study. Yet, we will see in the following
that it is asymptotically equivalent (in a way that will be precised) to the canonical
process, de�ned below, and which is associated with a Markov generator (see Ref. [80] and
Chapter 3).

2.5.2 Nonequilibrium canonical process

In the equilibrium canonical ensemble, instead of �xing the value of energy, we �x the
value of its Legendre conjugate parameter, namely the temperature. By analogy, the
nonequilibrium canonical path probability is de�ned by connecting the original process to
an exponential tilting of the path probability Pk,π(0)[z]:

Pcano

γ,π(0)[z] ≡
etγ·At[z]Pk,π(0)[z]

Eπ(0) [etγ·At[z]]
, (2.89)

where At[z] generalizes the energy E` in the canonical distribution (2.1), the Legendre
conjugate variable γ generalizes the inverse temperature −β, and G(t,γ) = Eπ(0)

[
etγ·At[z]

]
generalizes the partition function Z. Note that the canonical path probability is obtained
by normalizing the biased path probability (2.51). This de�nition has already been used
in many articles, for instance for the simulation of transition paths associated with glassy
systems [40,42,43,47,49].

2.5.3 Equivalence between microcanonical and canonical path en-
sembles

Let us �rst de�ne mathematically the notion of equivalence. Two path probabilities Pt
and Qt are said to be logarithmically equivalent if the random variable de�ned by

Rt[z] ≡ 1

t
ln
Pt[z]

Qt[z]
(2.90)

converges in probability to 0 with respect to both probabilities Pt and Qt:

lim
t→∞

1

t
Rt = 0 (2.91)

almost everywhere (i.e. except for events of null probability), and we denote it

Pt �
t→∞

Qt. (2.92)

In order to discuss the equivalence in the sense of (2.91) between canonical and micro-
canonical path probabilities, we need to assume that At satis�es a LDP:

P (At = a) �
t→∞

e−tI(a), (2.93)
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where the probability P (At = a), and hence the LDF I, is de�ned using the reference
path probability Pk,π(0)[z]:

P (At = a) =

∫
D[z]Pk,π(0)[z]δ(At[z]− a). (2.94)

The equivalence between Pmicro

a,π(0)[z] and Pcano

γ,π(0)[z] is strictly related to the convexity of the
LDF I according to [52]:

• If I is strictly convex at a then there exists γ such that Pmicro

a,π(0)[z] �
t→∞

Pcano

γ,π(0)[z]. If I is

di�erentiable4, the equivalence is satis�ed for γ = ∇I(a), which is a nonequilibrium
version of the relation between entropy and temperature in equilibrium statistical
mechanics: β = ∂S

∂E
. In case of non-strict convexity, this result holds for the con-

vergence in probability with respect to Pmicro

a,π(0)[z] but this limit is not de�ned for the
convergence in probability with respect to Pcano

γ,π(0)[z].

• If I is not convex at a, there is no logarithmic equivalence between Pmicro

a,π(0)[z] and
Pcano

γ,π(0)[z].

It has been shown in Ref. [195] that the path probability equivalence in (2.91) is related to
the equivalence between typical values of observables with respect to both path probabili-
ties. Sketchily, it means that if an observable Bt satis�es a LDP with respect to Pcano

γ,π(0)[z](
resp. Pmicro

a,π(0)[z]
)
with LDF Jγ (resp. Ja), and in case of logarithmic equivalence between

canonical and microcanonical path probabilities, then the LDFs Jγ and Ja have the same
zeros. This result holds only if I is strictly convex. In case of non-strict convexity, the set
of zeros of Ja is contained in the set of zeros of Jγ , and we talk about partial equivalence.

4If I is not di�erentiable, the equivalence holds for all γ ∈ ∂I(a), where ∂I(a) is the subdi�erential

of I at a. The notion of subdi�erential generalizes the notion of derivative for non-di�erentiable convex
function. The subdi�erential of a convex function f at a point x is de�ned as the set of values s such that

∀y, f(y) ≥ f(x) + s · (y − x).

s is called a subderivative. In 1D, the geometrical interpretation of the subdi�erential of f at x is given
by the ensemble of slopes of the lines passing by the point (x, f(x)) and that are below or touch the curve
of f everywhere else. For instance, the subdi�erential of the function f : x 7→ |x| at 0 is ∂f(0) = [−1, 1].
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Appendices

�Si vous ne pouvez expliquer un

concept à un enfant de six ans, c'est

que vous ne le comprenez pas

complètement.�

Albert Einstein

2.A Derivation of the Fokker-Planck equation from the

Langevin equation

We derive the Fokker-Planck equation by following the procedure described in Ref. [222].
First, we compute the mean and the variance of δz ≡ zt+δt − zt. From the Langevin
equation (2.54), we have

zt+δt = zt +

∫ t+δt

t

[b(zτ , τ) + σ(zτ , τ) ξτ ] dτ, (2.95)

where the stochastic integral (2.60) is de�ned in the α-convention, with α ∈ [0, 1]. Noticing
that

αzt+δt + (1− α)zt = zt + αδz, (2.96)

we have for arbitrarily small δt:∫ t+δt

t

b(zτ , τ)dτ ' b(zt + αδz, t+ αδt)δt (2.97)∫ t+δt

t

[σ(zτ , τ)ξτ ] dτ ' σ(zt + αδz, t+ αδt)

∫ t+δt

t

dτ ξτ . (2.98)

Hence, from Eq. (2.95) and Eqs. (2.97�2.98),

δz = b(zt + αδz, t+ αδt)δt+ σ(zt + αδz, t+ αδt)

∫ t+δt

t

dτ ξτ . (2.99)

Since (
∫ t+δt
t

dt ξt)
2 is of order δt,

∫ t+δt
t

dt ξt is of order
√
δt implying that δz is also of order√

δt via the Langevin equation. We expand Eq. (2.99) up to order δt:

δz ' b(zt, t)δt+ σ(zt, t)

∫ t+δt

t

dτ ξτ + ασ(zt, t)∇σ(zt, t)

(∫ t+δt

t

dτ ξτ

)2

, (2.100)

(δz)2 ' σ(zt, t)
2

(∫ t+δt

t

dτ ξτ

)2

. (2.101)
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Taking the average with respect to the noise ξ, the mean and variance of δz are given by

〈δz〉ξ ' b(zt, t)δt+ ασ(zt, t)∇σ(zt, t)δt, (2.102)〈
(δz)2

〉
ξ
' σ(zt, t)

2δt, (2.103)

where we used Eqs. (2.55�2.56). We now compute the probability density to be in x at
time t+ δt:

%(x, t+ δt) =

∫
dyP (x, t+ δt | y, t)%(y, t), (2.104)

where the transition probability density is given by

P (x, t+ δt | y, t) = 〈δ(zt+δt − x)〉ξ (2.105)

= 〈δ(zt + δz − x)〉ξ (2.106)

' 〈δ(zt − x)〉ξ + 〈δz∇δ(zt − x)〉ξ +
1

2

〈
(δz)2∇2δ(zt − x)

〉
ξ
, (2.107)

with the condition zt = y and where we used Taylor's formula up to second order in δz in
the last equation. Using Eqs. (2.102�2.103) in Eq. (2.107), we obtain

%(x, t+ δt) =

∫
dy %(y, t)δ(x− y)

+

∫
dy %(y, t) [b(y, t) + ασ(y, t)∇yσ(y, t)] δt∇yδ(x− y)

+
1

2

∫
dy %(y, t)σ(y, t)2 δt (∇y)

2δ(x− y), (2.108)

where ∇y is the derivative with respect to y. Finally, using integrations by parts, we
obtain

%(x, t+ δt) = %(x, t)−∇ [(b(x, t) + ασ(x, t)∇σ(x, t)) %(x, t)] δt+∇2

[
1

2
σ(x, t)2%(x, t)

]
δt,

(2.109)

leading to the Fokker-Planck equation in the α-convention:

∂%(x, t)

∂t
= −∇

[
(b(x, t) + ασ(x, t)∇σ(x, t)) %(x, t)− 1

2
∇
[
σ(x, t)2%(x, t)

]]
. (2.110)

Taking α = 1
2
and introducing b̂(x, t) ≡ b(x, t) − 1

2
σ(x, t)∇σ(x, t) and D(x, t) ≡ σ(x, t)2,

the Fokker-Planck equation (2.64) in the Stratonovich convention follows from Eq. (2.110).

2.B Derivation of the biased Fokker-Planck equation

In this appendix, we derive the biased Fokker-Planck equation (2.85) for an arbitrary
α ∈ [0, 1] in the convention of the stochastic integral. The Stratonovich convention will be
recovered for α = 1

2
. To do so, we compute the value of the generating function G̃γ (2.83)

conditioned on x at time t+ δt:

G̃γ(x, t+ δt) =

∫
dyG̃γ(x, t+ δt | y, t)G̃γ(y, t), (2.111)
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where the biased transition probability density from y at time t to x at time t + δt is
de�ned by

G̃γ(x, t+ δt | y, t) =
〈
δ(zt+δt − x)eδtγ·Aδt[z]

t+δt
t

〉
ξ

(2.112)

= δ(y − x)
〈

eδtγ·Aδt[z]
t+δt
t

〉
ξ

+∇yδ(y − x)
〈
δz eδtγ·Aδt[z]

t+δt
t

〉
ξ

+
1

2
∇y

2δ(y − x)
〈

(δz)2eδtγ·Aδt[z]
t+δt
t )

〉
ξ

+ o(δt), (2.113)

where we used Eq. (2.107) in the second line and where the observable Aδt[z]t+δtt evaluated
on the fraction of the path [z] between times t and t+ δt reads in the α-convention:

Aδt[z]t+δtt =


1

δt

∫ t+δt

t

g(zτ , τ)dzτ

1

δt

∫ t+δt

t

h(zτ , τ)dτ

 '
 1

δt
g(zt + αδz, t+ αδt)δz

1

δt
h(zt + αδz, t+ αδt)δt

 . (2.114)

Keeping in mind that δz is of order
√
δt, the expansion of eδtγ·Aδt[z]

t+δt
t up to order δt gives

eδtγ·Aδt[z]
t+δt
t = 1 + γ1g(zt + αδz, t+ αδt)δz +

1

2
(γ1g(zt + αδz, t+ αδt))2 (δz)2

+ γ2h(zt + αδz, t+ αδt)δt+ o(δt), (2.115)

= 1 + γ1g(zt, t)δz +

[
αγ1∇g(zt, t) +

1

2
(γ1g(zt, t))

2

]
(δz)2 + γ2h(zt, t)δt+ o(δt).

(2.116)

Using Eqs. (2.100�2.103) and Eq. (2.116) in Eq. (2.113) and after long but not tricky
calculation, it follows

G̃γ(x, t+ δt | y, t) = δ(x− y) + δ(x− y)δt
[
b(y, t)γ1g(y, t) + ασ(y, t)∇σ(y, t)γ1g(y, τ)

+ ασ(y, t)2γ1∇g(y, t) +
1

2
γ2

1g(y, t)2σ(y, t)2 + γ2h(y, t)
]

+∇yδ(x− y)δt
[
b(y, t) + ασ(y, t)∇σ(y, t) + γ1g(y, t)σ(y, t)2

]
+
[
∇y

2δ(x− y)
] 1

2
δt σ(y, t)2. (2.117)

Combined with Eq. (2.111), it yields

∂

∂t
G̃γ(x, t) = (Λα

γG̃γ)(x, t), (2.118)

where the biased operator in the α-convention Λα
γ is de�ned by its action on a arbitrary

function f :

Λα
γf ≡ [−∇+ γ1g] [(b+ ασ∇σ)f ] + γ2hf +

[
ασ2γ1∇g +

1

2
γ1

2g2σ2

]
f

−∇
[
γ1gσ

2f − 1

2
∇(σ2f)

]
(2.119)
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where we dropped the space-time dependency for clarity. In the Îto convention (α = 0),
the biased operator simpli�es to

ΛI
γf = [−∇+ γ1g] (bf) +

1

2
[−∇+ γ1g]2

(
σ2f
)
− 1

2
∇(γ1g)σ2f + γ2hf. (2.120)

Taking α = 1
2
, and after some algebraic manipulations, we recover the biased operator in

the Stratonovich convention of Eq. (2.85).
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Chapter 3

Conditioning periodically driven

Markov processes on large deviations

�La vie n'a pas de sens. C'est juste

l'occasion de faire des choses que tu

trouves intéressantes.�

Orochimaru � Naruto

In Refs. [80, 81], R. Chétrite and H. Touchette treated the problem of conditioning
time-homogeneous Markov processes on a rare �uctuation of an observable A satisfying a
LDP. They showed that this conditioned process is equivalent in the long-time limit to an
e�ective Markov process called the driven process which leads A to have the conditioning
value as a typical value. This result can be shown using a path probability approach or a
variational approach.

The problem of conditioning a Markov process was �rst raised by Doob [82, 83] who
considered a Wiener process1 conditioned to leave the interval [0, L] via the position L. He
solved this problem by introducing a transformation on the Wiener process, later referred
to as Doob's h-transform. This transformation, and more generally this problem of con-
ditioning, have been generalized in Refs. [80, 81] to general Markov processes conditioned
on the large deviations of a general observable. This work involves fundamental questions
including the nonequilibrium generalization of equilibrium notions such as the de�nitions
of canonical and microcanonical ensembles at the path level, ensemble equivalence [52] and
Jaynes' maximum entropy principle using large deviation theory. From a more practical
perspective, this work shows that the large deviation of an observable for a given process
corresponds to a typical value of this observable for another process, and provides a way
to build the Markov generator of this other process. An application of this result has
been provided for conditioned time-homogeneous Langevin processes with weak noise in
Refs. [225,226].

In this section, we extend the work of R. Chétrite and H. Touchette to periodically
driven Markov processes and for observables involving time-periodic functions. For the
sake of completeness, we address this problem in the mathematical framework of both jump
and di�usion processes. Even if the theory is essentially the same, it may be useful for

1The Wiener process is a continuous-time Markov process used to model the Brownian motion.
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readers to have both formalisms separately. The content of Section 3.1 has been published
in Ref. [227].

3.1 Conditioning of periodically driven Markov jump

processes

3.1.1 Periodically driven Markov jump processes

We consider a continuous-time Markov jump process de�ned on a �nite state space and
whose Markov generator k is time-periodic with period T :

k(t+ T ) = k(t), ∀t. (3.1)

We set the initial time to t = 0 and the �nal time to t = nT , where the integer n refers to
the number of periods that have elapsed, and we assume that the solution of the master
equation ∂π

∂t
= kπ reaches a periodic solution πTiPS when n → ∞ � where TiPS stands

for Time Periodic State � i.e. πTiPS(t+ T ) = πTiPS(t), ∀t. All the de�nitions introduced
in Sec. 2.3 apply in this section with the di�erence that the �nal time is �xed to t = nT . As
discussed previously, we are interested in the �uctuations of the observableAnT , functional
of paths up to the �nal time nT , de�ned in Eq. (2.14) by replacing t by nT , and where
we consider T -periodic functions g and h: g(t + T ) = g(t) and h(t + T ) = h(t), ∀t. We
assume that AnT satis�es a LDP (1.18):

P (AnT = a) �
n→∞

e−nTI(a), (3.2)

with I the LDF, and we introduce its associated SCGF

Γ(γ) = lim
n→∞

1

nT
lnEπ(0)

[
enTγ·AnT

]
. (3.3)

In order to study the large deviations of AnT in the long-time limit, let us �rst look at
the observable At[z] on the shorter time interval [0, t]:

At[z] ≡


1

t

M−1∑
i=0

gzi+1,zi(ti+1)θ(t− ti+1)

1

t

∫ t

0

dτhz(τ)(τ)

 , (3.4)

where θ is the heaviside function de�ned by

θ(t) =

{
0 if t < 0

1 if t ≥ 0.
(3.5)

As seen in Sec. 1.2, the statistics of At is contained in the generating function G(t,γ) =∑
x G̃x(t,γ) de�ned in Eq. (2.40), where G̃x(t,γ) is the generating function with state x

at time t (2.43), and where the vector G̃(t,γ) of components G̃x(t,γ) is solution of

∂

∂t
G̃(t,γ) = κ(t,γ)G̃(t,γ). (3.6)

45



We remind the de�nition of the biased generator κ:

κxy(t,γ) ≡


kxy(t)e

γ1 gxy(t) if x 6= y,

−
∑
y 6=x

kxy(t) + γ2 hx(t) if x = y. (3.7)

Notice that, by de�nition, κ(t+T,γ) = κ(t,γ), ∀t. In the following, we keep in mind that
κ depends on γ and drop γ in the notations for clarity. We can formally solve Eq. (3.6)
with initial condition G̃(0,γ) = π(0) from Eq. (2.43) by writing

G̃(t,γ) =
←−
Qκ(t, 0)π(0), (3.8)

where the propagator between times t0 and t is de�ned by

←−
Qκ(t, t0) ≡ ←−exp

∫ t

t0

κ(τ) dτ, (3.9)

involving the time-ordered exponential←−exp de�ned in Appendix 3.A. The operator
←−
Qκ(t, t0)

is the unique solution of the initial matrix value problem d
dt
X(t) = κ(t)X(t), with ini-

tial condition X(t0) = 1 the identity matrix in the state space. Notice that the xy-
component of the propagator

[←−
Qκ(t, t0)

]
xy

is nothing but the biased transition probability

G̃(x, t | y, t0) mentioned in Eq. (2.50). In Appendix 3.A, we sum up the main de�nitions
and properties of the time-ordered exponential.

3.1.2 Setting the problem of conditioning

The LDF I(a) of Eq. (3.2) contains the information on the typical values of AnT for
the dynamics generated by k as well as its rare �uctuations. When the evolution of the
dynamics is constraint-free, the observable AnT converges in probability to its typical
values with equal probability. Now, one can be interested in a rare �uctuation of AnT .
In Refs. [52, 80, 81], the following problem has been addressed: given the process z(t)
conditioned on a rare �uctuation of the observable {z(t) | AnT [z] = a,a ∈ R2}, is there a
Markov process which is equivalent to the conditioned process in the long-time limit? The
answer is yes and such process is given by the driven process which has been derived in the
case of time-homogeneous processes [80,81]. In the following, we de�ne the driven process
for our periodically driven process following two approaches: �rst using path probabilities,
and second from a variational perspective.

3.1.3 Spectral properties of the one-period propagator

In this section, we investigate the spectral properties of the one-period propagator
←−
Qκ(T, 0)

and relate them to the generating functions of our observable. We assume from now on
that the �nal time is always nT and omit the subscript nT in the observableA[z] ≡ AnT [z].

The operator
←−
Qκ(T, 0) is positive in the sense of Def. 1 as it is built from the aver-

age value of an exponential (2.50). Then, from the Perron-Frobenius theorem (see Ap-
pendix 3.B),

←−
Qκ(T, 0) admits a unique dominant eigenvalue χT . Let rT be its associated
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right (column) eigenvector and lT its associated left (row) eigenvector:
←−
Qκ(T, 0) rT = χT rT , (3.10)

lT
←−
Qκ(T, 0) = χT lT . (3.11)

The eigenvectors rT and lT can be chosen up to a multiplicative constant that we set by
imposing

1 · rT = 1, (3.12)
rT · lT = 1, (3.13)

where 1 is the vector whose components are all equal to 1. These spectral elements are
found to be connected to the large deviations of A, as shown in the following. From
Eqs. (2.40, 2.43, 3.8), Property 5 of Appendix 3.A and using the periodicity of κ, the
generating functions G̃x and G at time nT reads

G̃x(nT,γ) = Eπ(0)

[
enTγ·AnT [z]δx,z(nT )

]
=
∑
y

[←−
Qκ(T, 0)n

]
xy
πy(0), (3.14)

G(nT,γ) = Eπ(0)

[
enTγ·AnT [z]

]
= 1 ·

(←−
Qκ(T, 0)nπ(0)

)
=
∑
x,y

[←−
Qκ(T, 0)n

]
xy
πy(0).

(3.15)

The asymptotic expansion of
←−
Qκ(nT, 0) =

←−
Qκ(T, 0)n at large n is dominated by the

contribution of its largest eigenvalue:
←−
Qκ(T, 0)n '

n→∞
(χT )n rT lT . (3.16)

With Eqs. (3.12, 3.13, 3.15), it yields

Γ(γ) = lim
n→∞

1

nT
lnEπ(0)

[
enTγ·AnT [z]

]
=

1

T
lnχT . (3.17)

Hence, the SCGF Γ is proportional to the logarithm of the largest eigenvalue of the
one-period propagator

←−
Qκ(T, 0) [107, 228]. We remind the importance of SCGFs in the

study of large deviations of observable as they are related to LDFs via the Gärtner-Ellis
theorem (1.27). In our problem, the LDF of A is generally di�cult to compute while the
SCGF appears to be simply the dominant eigenvalue of the one-period propagator which
can generally be obtained at least numerically. Similarly, combining Eqs. (3.14�3.16) and
using Eqs. (3.12, 3.13), we �nd

lim
n→∞

e−nTΓEx0
[
enTγ·AnT [z]

]
= (lT )x0 , (3.18)

lim
n→∞

Eπ(0)

[
enTγ·AnT [z]δz(nT ),x

]
Eπ(0) [enTγ·AnT [z]]

= (rT )x, (3.19)

where Ex0 is the path average over [z] with initial probability πy(0) = δy,x0 , ∀y. Hence,
Eqs. (3.18, 3.19) allow writing the eigenvectors of the propagator in terms of path av-
erages. These results are similar to the one stated in Ref. [80] with the di�erence that
the eigenvectors are now de�ned with respect to the one-period propagator whereas in
the time-homogeneous case they correspond to the eigenvectors of the biased generator
κ. Indeed, for a time-homogeneous process, the biased generator is time-independent and
the operator

←−
Qκ(T, 0) simpli�es to eTκ which has the same eigenvectors as κ.
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3.1.4 Generalized Doob transform

Let M be the generator of a Markov process, v a vector whose elements are strictly
positive and f an arbitrary vector function. The generalized Doob transform Mv,f ofM
associated with v and f is de�ned by

Mv,f ≡ D(v)M D(v)−1 −D(f), (3.20)

where D(v) is the diagonal matrix with the components of v on its diagonal. This de�-
nition has been introduced in Refs. [52,80,229], generalizing the Doob transform initially
introduced by Doob [83] who considered f and v satisfying [80]

fx(t) = α, ∀x and t, (3.21)
vM ≤ αv, (3.22)

with α a constant. The generator Mv,f in Eq. (3.20) is norm-conserving if and only if
f = D(v)−1D(vM ) so that

∑
xM

v,f
xy = 0. In the following, we always consider this choice

of f :
Mv ≡ D(v)M D(v)−1 −D(v)−1D(vM ), (3.23)

and we call Eq. (3.23) simply a Doob transform by abuse of language. Componentwise, it
reads

Mv
xy(t) = vx(t)Mxy(t)v

−1
y (t)− v−1

x (t)(vM )x(t)δxy. (3.24)

The Doob transform is then a tool to build a norm-conserving generator out of an arbitrary
one. Notice that if α is a state-independent function, Mαv = Mv. The path probability
associated with the Doob transform Mv is given by [229]

PMv ,π(0)[z] =PM ,π(0)[z] v−1
z0

(0)vz(nT )(nT )

exp

[
−
∫ nT

0

(
v−1
z(t)(t)(vM )z(t)(t) + v−1

z(t)(t)
dv(t)

dt

∣∣∣∣
z(t)

)
dt

]
. (3.25)

Eq. (3.25) is obtained by replacing k by Mv in Eq. (2.13) and where we used in the
second term of the integrand the equality ln vzi(ti+1) − ln vzi(ti) =

∫ ti+1

ti
dt d lnv

dt

∣∣
z(t)

for
each interval of time [ti, ti+1] between two jumps.

3.1.5 The driven process as the limit of the canonical process

Canonical generator

It has been show in Ref. [80] that the canonical process de�ned by its path probabil-
ity (2.89) from the exponential tilting of a time-homogeneous reference process is a norm-
conserving Markov process which is not time-homogeneous. We will see in this section
that the same result holds for periodically driven processes, namely, the canonical process
de�ned from the exponential tilting of our periodically driven reference process is gener-
ated by a norm-conserving Markov generator that is time-dependent but not necessarily
time-periodic. To do so, we look for a generator Kn that satis�es

PKn,π′(0)[z] ≡ Pcano

γ,π(0)[z], (3.26)
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where π′(0) is an initial probability that may be di�erent from π(0) and where we recall
the expression of the canonical path probability

Pcano

γ,π(0)[z] =
enTγ·AnT [z]Pk,π(0)[z]

Eπ(0) [enTγ·AnT [z]]
=

Pκ,π(0)[z]

Eπ(0) [enTγ·AnT [z]]
. (3.27)

We used Eq. (2.51) in the last equality. We want Kn to generate a norm-conserving
process, hence we look for a vector Cn ≡ Cn(t) such that Kn is built from the Doob
transform

Kn ≡ κCn ≡ D(Cn)κD(Cn)−1 −D(Cn)−1D(Cnκ). (3.28)

From Eq. (3.25), the path probability generated by Kn reads

PκCn ,π(0)[z] = Pκ,π(0)[z]Cn
z0

(0)−1Cn
z(nT )(nT )

exp

[
−
∫ nT

0

(
Cn
z(t)(t)

−1(Cnκ)z(t)(t) + Cn
z(t)(t)

−1 dCn(t)

dt

∣∣∣∣
z(t)

)
dt

]
. (3.29)

For this path probability to coincide with Eq. (3.27), Cn should be chosen so that the
time-extensive terms of Eq. (3.29) are all equal to 1. This condition is satis�ed for

Cn(t) = 1
←−
Qκ(nT, t) (3.30)

solution of (cf. property 3 of Appendix 3.A){
Ċn = −Cnκ,

Cn(nT ) = 1,
(3.31)

leading to
PκCn ,π(0)[z] = Pκ,π(0)[z] (Cn

z0
)−1(0), (3.32)

or equivalently
Pκ,π(0)[z] = PκCn , π(0)�Cn(0)[z], (3.33)

where � is the Hadamard product: (u � v)x ≡ uxvx. From Eqs. (3.15) and (3.30), we
remark that the generating function can be expressed in terms of Cn as

Eπ(0)

[
enTγ·AnT [z]

]
= Cn(0) · π(0), (3.34)

implying from Eqs. (3.27) and (3.33)

Pcano

γ,π(0)[z] = P
κCn ,

Cn(0)�π(0)
π(0)·Cn(0)

[z]. (3.35)

In other words, the canonical path probability is associated with the time-dependent gen-
erator Kn = κC

n
with initial probability π′(0) = Cn(0)�π(0)

Cn(0)·π(0)
. It means that the canonical

process has a corresponding Markov generator which is norm-conserving contrary to the
biased generator. This shows the importance of the normalization factor Eπ(0)

[
enTγ·AnT [z]

]
dividing the biased path probability Pκ,π(0)[z] in order to de�ne the canonical path prob-
ability Pcano

γ,π(0)[z]. This normalization at the level of paths translates at the level of gen-
erators into a recti�cation of the biased generator by a Doob transform to build a norm-
conserving canonical generator. Hence, the canonical process can be seen as a �recti�ed
biased process�, and the biased process as an intermediary process used for mathematical
calculations. Notice that the canonical generator Kn depends explicitly on the number of
periods n.
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Driven process

Let us come back to our original problem, namely �nding an equivalent Markov process
which is asymptotically equivalent to the process conditioned on a rare �uctuation of the
observable. This conditioned process is represented by the microcanonical path ensem-
ble (2.88):

Pmicro

a,π(0)[z] ≡ Pk,π(0) [z | AnT [z] = a] . (3.36)

As discussed in Sec. 2.5.3, the canonical process is equivalent to the microcanonical process
for speci�c values of γ under convexity conditions on I(a), giving a �rst answer to the
question of �nding an equivalent Markov process of the conditioned process in the long-
time limit. In this section, we make a step further by focusing on the asymptotic dynamics
of the canonical process in the limit n→∞ and by considering the process towards which
the canonical process converges at long time. This process is named the �driven process�
in Refs. [80,81].

The driven process is de�ned as the limit of the canonical process as n → ∞. Since
the canonical process is de�ned from the Doob transform of the tilted operator using the
vector Cn, the driven process will be built similarly. To determine the vector involved in
this Doob transform, let us write the asymptotic expansion of Cn in the limit n → ∞.
Using Eqs. (3.12, 3.16, 3.30), the periodicity of κ and Property 5, we �nd that Cn(τ) for
τ ∈ [0, T [ reads

Cn(τ) = 1
←−
Qκ(T, 0)n

[←−
Qκ(τ, 0)

]−1

∼
n→∞

(χT )nlT

[←−
Qκ(τ, 0)

]−1

. (3.37)

The idea is to de�ne the driven generator as the Doob transform of the biased matrix
using a vector l(τ) corresponding to the limit of Cn(τ) when n → ∞, but since scalar
constants play no role in the Doob transform, it su�ces to consider l ≡ l(τ) de�ned for
all τ ∈ [0, T [ by

l(τ) ≡ lT
[←−
Qκ(τ, 0)

]−1

, (3.38)

that is by construction the solution of{
l̇ = −lκ,
l(0) = lT .

(3.39)

For times greater than T , we notice from Eq. (3.11) and the periodicity of κ that the
vector l satis�es

l(τ + T ) = χ−1
T l(τ). (3.40)

We now de�ne the Markov generator K ≡K(τ,γ) of the driven process at any time τ by
the Doob transform of the tilted matrix κ associated with the vector l:

K ≡ κl = D(l)κD(l)−1 −D(l)−1D(lκ). (3.41)

Note that the positivity of l at all time is ensured by the positivity of
←−
Qκ(t, 0) and the

positivity of lT guaranteed by the PF theorem. By construction, the generator of the
driven process is the limit of the canonical transition matrix when n → ∞ as can be
shown from Eqs. (3.28) and (3.37):

lim
n→∞
Kn(τ,γ) = κl(τ,γ) = K(τ,γ). (3.42)
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These results are consistent with Ref. [80] when considering time-homogeneous processes,
i.e. with time-independent generators k(t) = k and κ(t) = κ. In this case,

←−
Qκ(T, 0)

simpli�es to eTκ, and its dominant left eigenvector l? ≡ lT of eigenvalue χT becomes T -
independent. l? is also the dominant left eigenvector of κ with eigenvalue υ ≡ 1

T
lnχT .

The function l(τ) in Eq. (3.38) becomes l(τ) = l?e
−τκ = e−τυl?. Since state-independent

functions play no role in the Doob transform, the driven process is the Doob transform of
the tilted matrix with respect to l?, recovering the results of Refs. [52, 80]. We point out
that the generators considered in these references are the adjoints of the generators consid-
ered in this manuscript. Hence, their right eigenvectors correspond to our left eigenvectors
and vice versa.

Let us now discuss some properties of the driven generator. One interesting property
of K is its periodicity (contrary to the canonical generator). Indeed, from Eq. (3.40) and
the periodicity of κ, it follows from Eq. (3.41) that ∀τ ∈ [0, T ]:

K(τ + T,γ) = K(τ,γ). (3.43)

We remark that the TiPS probability for the driven process can be obtained from the
solution l of the initial value problem of Eq. (3.39) and from the solution r ≡ r(τ) of the
initial value problem: {

ṙ = κr,

r(0) = rT ,
(3.44)

or alternatively
r(t) ≡

←−
Qκ(t, 0)rT . (3.45)

Using Eq. (3.10) and the periodicity of κ, the vector r satis�es:

r(t+ T ) = χTr(t). (3.46)

The TiPS probability of the driven process µ ≡ µ(t), de�ned as the T -periodic solution
of the master equation: {

dµ
dt

= Kµ

µ(0) = µ(T ),
(3.47)

is expressed in terms of the vectors l and r

µ(t) = l(t)� r(t). (3.48)

Indeed, Eqs. (3.39, 3.41, 3.44) yield for any state x∑
y

Kxy(lyry) =
∑
y

{
lxκxyl

−1
y lyry − l−1

x lyκyxlxrx

}
(3.49)

= lxṙx + l̇xrx (3.50)

=
d

dt
(lxrx), (3.51)

while Eqs. (3.40, 3.46) lead to

l(0)� r(0) = l(T )� r(T ), (3.52)
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which proves that µ is the solution of Eq. (3.47). Notice that our normalization choice in
Eq. (3.13) ensures the normalization of µ(0).

We saw in Eq. (3.42) that the driven generator is the limit of the canonical generator.
This property translates at the path probability level into the fact that the driven and
canonical path probabilities are asymptotically equivalent in the sense of (2.91). Using
Eqs. (3.17, 3.39�3.41) in Eq. (3.25), we obtain the path probability of the driven process:

PK,π(0)[z] = Pκ,π(0)[z] lznT (0) e−nTΓ l−1
z0

(0). (3.53)

Using the de�nitions of the canonical path probability (3.27) and driven path probability
(3.53), we obtain

PK,π(0)[z]

Pcano

γ,π(0)[z]
= lznT (0) e−nTΓ l−1

z0
(0)Eπ(0)

[
enTγ·AnT [z]

]
. (3.54)

Finally, using the de�nition of the SCGF (3.3), we �nd:

lim
n→∞

1

nT
ln
PK,π(0)[z]

Pcano

γ,π(0)[z]
= 0, (3.55)

showing the logarithmic equivalence between the driven path probability and the canonical
path probability for any γ:

PK,π(0)[z] �
n→∞

Pcano

γ,π(0)[z]. (3.56)

E�ective process

Given the equivalence between the driven process and the canonical process, we can �nally
answer our initial question about �nding an equivalent process of the microcanonical
process conditioned on A = a. Let us call this process the e�ective process. As discussed
in Sec. 2.5.3, the canonical path probability (for a speci�c value of γ) and microcanonical
path probability (for A conditioned on a) are logarithmically equivalent if the LDF I is
strictly convex at a [195]. In this case, and assuming that I is di�erentiable for simplicity,
the equivalence holds for γ = ∇I(a), where ∇I(a) is the gradient of I evaluated at a.
Mathematically, this reads:

Pmicro

a,π(0)[z] �
n→∞

Pcano

γ,π(0)[z]
∣∣
γ=∇I(a) . (3.57)

When combined with the logarithmic equivalence between the driven and canonical path
probabilities of Eq. (3.56), we �nd that the e�ective process is the driven process for
γ = ∇I(a). Mathematically, this reads:

Pmicro

a,π(0)[z] �
n→∞

PK,π(0)[z]
∣∣
γ=∇I(a) . (3.58)

In other words, when I(a) is strictly convex at a, the e�ective process is the Markov
process of generator K(γ = ∇I(a)). When the convexity is not strict, the same value γ
corresponds to several values a and the SCGF is not di�erentiable at γ. Actually, the �rst
derivative of the SCGF at γ is discontinuous, implying that the system undergoes a �rst-
order phase transition [230, 231]. This case corresponds physically to a phase coexistence
of all the values a associated with the value γ [224]. If I is not convex at a, there is no
Markov process equivalent to the microcanonical process.
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3.1.6 Variational approach

The results derived previously can be obtained and understood from an optimisation
problem under constraint of LDFs. This variational approach has been investigated for
time-homogeneous processes in Refs. [81, 232, 233]. Here, we derive the generator of the
driven process as the process minimizing a functional playing the role of entropy in Jaynes'
maximum entropy principle of statistical mechanics. This functional is the level 2.5 LDF
for empirical occupations and transition probabilities. We �nd that the driven process
is the �most probable� process for which the observable A takes asymptotically a chosen
value.

Level 2.5 large deviation function

When dealing with large deviation theory, we can consider di�erent level of descriptions
of LDFs with decreasing degree of details [60]. For our Markov jump process, we have:

Level 3: It is the level that describes the probability of the empirical trajectory occu-
pation P ({xi, ti})[z] which measures the fraction of time the system occupies successively
the states xi during the time-intervals [ti, ti+1[ along the path [z] of duration nT . For
the stochastic process generated by k, the typical behaviour of the empirical trajectory
occupation P ({xi, ti})[z] is given by the path probability Pk,π(0)[z] (2.13).

Level 2: It is the level that describes the probability of the empirical occupation de�ned
for any τ ∈ [0, T [ by

pnx[z](τ) =
1

n

n−1∑
`=0

δx,z(τ+`T ) (3.59)

and which represents the percentage of periods in which the system has been in state x
at time τ of each period along the path [z] of duration nT .

Level 1: It is the level that describes the probability of observables of the form

BnT [z] =
1

nT

∫ nT

0

hz(t)(t)dt. (3.60)

Since BnT can be rewritten in terms of the empirical occupation

BnT [z] =
1

T

∫ T

0

∑
x

pnx[z](t)hx(t)dt, (3.61)

the level 1 LDF can be obtained from the level 2 LDF by the contraction principle (1.35)

I1(b) = inf
p| 1
T

∫ T
0 p(t)·h(t)=b

I2(p). (3.62)

For Markov jump processes, it is not possible to derive explicitly the level 2 LDF. However,
there exists a more detailed level of description for which the LDF is explicit and which
allows describing the �uctuations of observables AnT of the form (2.14): it's the level
2.5 which is the less detailed level such that the LDF is explicit. It describes the large
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deviations of the empirical occupation de�ned in Eq. (3.59) and the empirical transition
probability ωnxy(τ)[z] de�ned for each τ ∈ [0, T [ by

ωnxy[z](τ) =
1

n

n−1∑
`=0

1

dτ

∑
s∈[τ,τ+dτ [

δy,z(s−+`T )δx,z(s++`T ), (3.63)

with dτ an in�nitesimal time. The quantity n dτ ωnxy[z](τ) measures the number of periods
in which the transition y → x occurs at time τ (or more precisely between times τ and
τ +dτ) of each period along the path [z] of duration nT . This quantity is related to npnx[z]
as follows

npnx[z](τ + dτ)− npnx[z](τ) =
∑
y 6=x

[
n dτ ωnxy[z](τ)− n dτ ωnyx[z](τ)

]
, (3.64)

meaning that the variation between times τ and τ + dt of each period of the number of
periods the system has occupied the state x has two contributions: an additive contribution
coming from the transitions having x as arrival state, and a subtractive contribution
coming from the transitions having x as departure state. It leads to the continuity equation

∂pnx[z]

∂τ
=
∑
y 6=x

[
ωnxy[z]− ωnyx[z]

]
. (3.65)

The empirical occupation and the empirical transition probability are random variables
since they are functional of the paths and depend on the number of periods n considered
during the total observation time nT . In the limit of large n, the probability to observe
the empirical occupation pn[z] = p and the empirical transition probability ωn[z] = ω
satis�es a large deviation principle:

Pn(ω,p) �
n→∞

e−nTI2.5(ω,p), (3.66)

where the 2.5 LDF is given by [234]

I2.5(ω,p) =
1

T

∫ T

0

dτ
∑
y,x6=y

[
py(τ)

(
kxy(τ)− ωxy(τ)

py(τ)

)
+ ωxy(τ) ln

ωxy(τ)

kxy(τ)py(τ)

]
, (3.67)

see Appendix 3.C for an heuristic derivation. This expression holds only for p(0) = p(T )
and ω(0) = ω(T ), for conservative transition probabilities ṗx(τ) =

∑
y 6=x [ωxy(τ)− ωyx(τ)],

∀x, and normalized occupations
∑

y py(τ) = 1, ∀y; otherwise I is in�nite. Notice that
I(ω,p) vanishes for p = πTiPS and ω = k � πTiPS. It means that when we consider
paths generated by the original process k without any conditioning, the random variable
pn[z] converges in probability to πTiPS in the limit n→∞ while the random variable ωn

converges to k � πTiPS, with
[
k � πTiPS

]
xy
≡ kxyπ

TiPS
y .

The level 2.5 LDF is important to study the large deviations of the observable A since
the LDF I(a) can be obtained from the 2.5 LDF I2.5(ω,p) using the contraction principle.
Indeed, we can rewrite the conditioning observable A in terms of pn[z] and ωn[z] using
the periodicity of g and h:

A (ωn[z],pn[z]) =

(
A1(ωn[z])
A2(pn[z])

)
≡

(
1
T

∫ T
0

dτ
∑

x,y 6=x ω
n
xy[z](τ) gxy(τ)

1
T

∫ T
0

dτ
∑

x p
n
x[z](τ) hx(τ)

)
. (3.68)
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Without conditioning, A converges in probability to A(k � πTiPS,πTiPS) as n→∞. We
are now interested in conditioning our process on the event {A(ωn[z],pn[z]) = a | a ∈ R2}
with a a rare �uctuation. As in Section 3.1.2, we look for the Markov process for which
the conditioning value a becomes a typical value of A. Here, it amounts to looking for
the most probable (or rather least improbable) pair (ω,p) compatible with A(ω,p) = a.
It is obtained by minimizing the 2.5 LDF under the following constraints

• C0: A(ω,p) = a,

• C1:
∑

y py(τ) = 1, ∀τ ∈ [0, T ],

• C2: ṗx(τ) =
∑

y [ωxy(τ)− ωyx(τ)] , ∀x and ∀τ ∈ [0, T ],

• C3: p(T ) = p(0),

• C4: ω(T ) = ω(0).

The LDF ofA is then obtained from the contraction principle under the above constraints:

I(a) = inf
p,ω|{Ci}4i=0

{
I2.5(ω,p)

}
. (3.69)

Intuitively, the optimizer (ωa,pa) of Eq. (3.69) is expected to be the typical value of
(ωn[z],pn[z]) under the dynamics associated with the e�ective process introduced in Sec-
tion 3.1.5 and which is equivalent to the microcanonical process as n→∞. Reciprocally,
we can instead consider a dual approach and compute the SCGF de�ned in Eq. (3.3) and
given by the LF transform of the LDF I(a):

Γ(γ) = sup
p,ω|{Ci}4i=1

{γ ·A(ω,p)− I2.5(ω,p)} . (3.70)

The solution (ωγ ,pγ) of Eq. (3.70) is the typical value of (ωn[z],pn[z]) under the canonical
path probability [81] and is expected to be associated with the generator of the driven
process as we will show. For strictly convex LDF I(a), Eqs. (3.69) and (3.70) have the same
solutions. More precisely, if I is strictly convex at a, (ωa,pa) = (ωγ ,pγ) for γ = ∇I(a)
in agreement with the equivalence between the microcanonical process and the e�ective
process/driven process for γ =∇I(a) [81]. In the following, we recover this result through
direct calculation of the optimum of Eq. (3.70). To take into account the constraints in
this calculation, we used the method of Lagrange multipliers (see Appendix 3.D for a
review) and we look for the optimum of the functional

F(ω,p) = −I2.5(ω,p) + γ1 A1(ω) + γ2 A2(p)

− 1

T

∫ T

0

dτ c(τ)

[ ∑
y

py(τ)− 1

]

− 1

T

∫ T

0

dτ
∑
x

ux(τ)

[
ṗx(τ)−

∑
y

(ωxy(τ)− ωyx(τ))

]
,

(3.71)

where c and u are time-dependent Lagrange multipliers respectively associated with the
constraints C1 and C2. We assume in addition that u(T ) = u(0) in line with the
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constraints C3 and C4. Notice that computing the SCGF in Eq. (3.70) is equivalent to
minimizing the LDF I(a) with γ1 and γ2 the Lagrange multipliers ensuring the constraint
C0. Functional derivatives with respect to empirical occupations and empirical transition
probabilities yield

∂F
∂ωxy(τ)

= 0 ⇒ ln ωxy(τ)

kxy(τ)py(τ)
+ (uy(τ)− ux(τ))− γ1 gxy(τ) = 0 for x 6= y,

∂F
∂py(τ)

= 0 ⇒
∑

x 6=y

[
kxy(τ)− ωxy(τ)

py(τ)

]
+ c(τ)− γ2 hy(τ) − u̇y(τ) = 0.

(3.72)

We transform the �rst equation of (3.72) into

ωxy(τ) = K ′xy(τ) py(τ), (3.73)

with
K ′xy(τ) ≡ kxy(τ) eγ1gxy(τ) eux(τ)−uy(τ) = κxy(τ)eux(τ)−uy(τ), (3.74)

for x 6= y and τ ∈ [0, T ]. We de�ne the diagonal elements such that the sum over the lines
of any column of K′(τ) vanishes:

K ′yy(τ) ≡ −
∑
x6=y

K ′xy(τ), (3.75)

so that using condition C2, K′ satis�es

ṗ = K′p. (3.76)

From conditionC3, p is the TiPS probability associated withK′. At this point, it remains
to �x the Lagrange multipliers c and u. As suggested by the notation, K′ will turn out
to be the generator K of the driven process de�ned in (3.41). To prove this, we see that
the second equation of Eq. (3.72) becomes

c(τ) =
∑
x 6=y

K ′xy(τ)−
∑
x 6=y

kxy(τ) + γ2 hy(τ) + u̇y(τ), ∀y. (3.77)

Using (2.49, 3.74), we get

c =
∑
x 6=y

κxye
ux−uy + κxx + u̇y, (3.78)

where we dropped the τ -dependency for clarity. Multiplying Eq. (3.78) by euy , we �nally
obtain {

d
dt

(eu) = −(eu) (κ− c1) ,

eu(0) = eu(T ),
(3.79)

with (eu)x ≡ eux . The formal solution of (3.79) reads:

eu(t) = eu(T )←−Qκ−c1(T, t) = eu(0)e−
∫ T
t c ←−Qκ(T, t), (3.80)

where we used Property 6 of Appendix 3.A in the second equality. Taking t = 0, we get

eu(0)←−Qκ(T, 0) = e
∫ T
0 c eu(0). (3.81)
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Hence, the optimization with respect to p (second equation of (3.72)) leads to a spectral
equation. Since the vector eu(0) has positive components, by Perron-Frobenius theorem it
is the unique � up to a multiplicative constant � left eigenvector of

←−
Qκ(T, 0) associated

with its largest eigenvalue χT , implying

e
∫ T
0 c = χT . (3.82)

From Eq. (3.17), we �nd that the SCGF is related to the Lagrange multiplier c by

Γ =
1

T

∫ T

0

c(τ) dτ. (3.83)

We recover this result in Appendix 3.E by computing directly Eq. (3.70). Notice that we
can rewrite Eq. (3.79) as:

d

dt

(
eu+

∫ T
t c
)

= −(eu+
∫ T
t c)κ, (3.84)

where the vector eu+
∫ T
t c is solution of{

Ẋ = −Xκ,
X(T ) = χ−1

T X(0).
(3.85)

From Eq. (3.39), we conclude that the vector l that appears in the Doob transform used
to de�ne the driven generator is related to the Lagrange multipliers through

l(t) = eu(t)+
∫ T
t c. (3.86)

We emphasize that u(t) is set up to an additive and time-dependent function constant in
the state space (independent of the states). Indeed, if C2 is satis�ed for all states but
one then it is satis�ed for all states (in view of C1). Then, Eq. (3.86) is a choice for this
remaining degree of freedom in u(t).

We now show that the transition rate matrix K′ generates the driven process, i.e. we
show that K′ is expressed as the Doob transform of κ associated with the vector l. Using
Eqs. (2.49, 3.77, 3.86), we transform Eqs. (3.74�3.75) ∀x, y into

K ′xy = κxye
ux−uy − [κxx −K ′xx] δxy, (3.87)

= κxye
ux−uy − [ (kxx + γ2hx) + (c− kxx − γ2 hx − u̇x) ] δxy, (3.88)

= euxκxye
−uy − [c− u̇x] δxy, (3.89)

= lxκxyl
−1
x + l−1

x l̇x δxy, (3.90)
= lxκxyl

−1
x − l−1

x (lκ)x δxy, (3.91)

= κlxy. (3.92)

Hence K′ = K (de�ned in Eq. (3.41)). It follows from Eq. (3.76) and the constraints
C3 − C4 that the optimum of Eq. (3.70) is reached for p = µ the TiPS probability of
the driven process with generator K, and ω = K � p the directional probability current
associated with the probability p and rate matrix K. In the time-homogeneous case, we
recover the results of [81,233].

To conclude, the driven process is the most probable process that generates the dy-
namics leading to the imposed value of the conditioning observable. In other words, it is
the generator of an �optimal� Markov process for which the conditioning observable takes
asymptotically the imposed value as a typical value.
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Figure 3.1 � Transition rate k(t) appearing in the generator k of Eq. (3.93).

3.1.7 Applications: modulated two-level system

In this section, we give some intuition about the driven process and the conditioning
problem by applying our results on a simple example. We consider a two level system
with states denoted by e±. For simplicity, the transition rate matrix is chosen symmetric
and piecewise-constant, and we take as conditioning observable a current de�ned through
a time-periodic function. The study of this model is as follows. We compute the SCGF
associated with this observable and derive the generators Kn and K of the canonical and
driven processes, respectively. We then study the convergence of the canonical transition
rates toward the driven transition rates as the number of periods n grows. Finally, we
comment qualitatively on the in�uence of the conditioning on the transition rates of the
driven process.

The transition rate matrix used to model the system reads

k(t) =

(
−k(t) k(t)
k(t) −k(t)

)
. (3.93)

The rate k(t) is a T -periodic and piecewise constant function of time

k(t) =

{
k0 for t ∈ [0, αT [,

k1 for t ∈ [αT, T [,
(3.94)

where ki > 0, i = 0, 1 are two constants. We chose k0 = 1 to set the time scale. The
observable A is the scalar path functional

A[z] =
1

nT

∑
t∈[0,nT ] | z(t+)6=z(t−)

gz(t+),z(t−)(t), (3.95)

where g is antisymmetric: g−+(t) = −g+−(t) ≡ g(t), and piecewise constant:

g(t) =

{
g0 for t ∈ [0, αT [,

g1 for t ∈ [αT, T [.
(3.96)
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Figure 3.2 � (left) SCGF Γ(γ) and (right) LDF I(a). The �gures are obtained for α = 0.3,
T = 1, k0 = 1, k1 = 0.1, g0 = 1, g1 = −1.

When g0 = 1 and g1 = 0 for instance, nTA counts the net number of transitions e+ → e−
occuring in the �rst part of each period. With e+, e− respectively the �rst and second
basis vectors, the tilted operator reads

κ(t,γ) =

(
−k(t) k(t)e−γg(t)

k(t)eγg(t) −k(t)

)
. (3.97)

Our theory relies on the propagator
←−
Qκ(t, 0) that we shall now compute. The tilted

operator being piecewise constant, this propagator can be written explicitly since the
time-ordered exponential simpli�es to a simple exponential on the constant parts. For
t ∈ [0, αT [, we obtain

←−
Qκ(t, 0) = e−k

0t

(
cosh(k0t) e−γg

0
sinh(k0t)

eγg
0

sinh(k0t) cosh(k0t)

)
, (3.98)

while for t ∈ [αT, T [, and introducing t0 ≡ αT and t1 ≡ t1(t) ≡ t− αT , we have
←−
Qκ(t, 0) =

←−
Qκ(t0 + t1, 0) = e−k

0t0−k1t1

×
( ∏

i cosh(kiti) +
∏

i e
γ(1−2i)gi sinh(kiti)

∑
i e
−γgi sinh(kiti) cosh(k1−it1−i)∑

i e
γgi sinh(kiti) cosh(k1−it1−i)

∏
i cosh(kiti) +

∏
i e
−γ(1−2i)gi sinh(kiti)

)
,

(3.99)
where the sums and products are over i = 0, 1. The largest eigenvalue of the propagator
over one period reads

χT =
1

2

[
tr
←−
Qκ(T, 0) +

√[
tr
←−
Qκ(T, 0)

]2

− 4 det
←−
Qκ(T, 0)

]
, (3.100)

where tr and det stand for the trace and determinant, respectively. Using Eq. (3.17), the
SCGF Γ(γ) follows, see Fig. 3.2 for a numerical computation. The Legendre conjugate
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Figure 3.3 � K+−(t) and Kn+−(t) as a function of time for di�erent number of periods
n = 1, 2, 5, 100. The �gure is obtained for α = 0.3, T = 1, k0 = 1, k1 = 0.1, g0 = 1,
g1 = −1, a = 0.4 corresponding to γ = 1.11.

LDF I(a) is shown on the same �gure. Unsurprisingly, I vanishes at a = 0 due to the
symmetry of the rate matrix k: there are asymptotically as many transitions e+ → e− as
transitions e− → e+ leading to a vanishing typical value for A.

The generatorK being de�ned as the Doob transform of κ based on l(t) = l(0)
[←−
Qκ(t, 0)

]−1

,
we need the left eigenvector l(0) = lT of the one-period propagator associated with the
eigenvalue χT :

l(0) =
1

N

 ∏
i e
−kiti

[∑
i e
γgi sinh(kiti) cosh(k1−it1−i)

]
ρT −

∏
i e
−kiti

[∏
i cosh(kiti) +

∏
i e
γ(1−2i)gi sinh(kiti)

] † , (3.101)

with N a normalization factor following from Eq. (3.13), and where v† is the transpose
of v, for any vector v. Inverting the propagators in Eqs. (3.98�3.99), we can compute
l(t) at any t ∈ [0, T [. Then, Eq. (3.41) yields an analytic expression for the generator of
the driven process from which we have computed numerically one component as shown
in Fig. 3.3. Similarly, the generator Kn is de�ned as the Doob transform of κ based
on Cn(t) = 1 [

←−
Qκ(T, 0)]n[

←−
Qκ(t, 0)]−1. Inverting the propagators of Eqs. (3.98�3.99) and

taking the nth power of the one-period propagator, we can compute Cn(t) at any t ∈ [0, T [.
Then, Eq. (3.28) yields an expression for the generator of the canonical process from which
we have computed numerically one component as shown in Fig. 3.3 for n = 1, 2, 5 and 100.
This �gure illustrates the convergence of the canonical generator Kn towards the driven
generator K when n→∞ as stated in Eq. (3.42). We observe that the two generators K
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Figure 3.4 � Original transition rate k(t) (solid black line) and driven transition rates
K+−(t) (red dotted line) and K−+(t) (blue dash-dotted line). The �gure is obtained for
α = 0.3, T = 1, k0 = 1, k1 = 0.1, g0 = 1, g1 = −1, a = 0.4 corresponding to γ = 1.11.

and Kn are piecewise continuous (with discontinuities at αT and T ) and time-dependent
even though the original rate matrix k was piecewise constant.

On Fig. 3.4, we plot both driven rates K+−(t) and K−+(t) and original rates k+−(t) =
k−+(t) = k(t) to observe qualitatively the e�ect of the conditioning on our initial Markov
process. We chose to impose a = 0.4 net transitions from e+ to e− per unit of time,
counted positively if they occur on the �rst part of each cycle (g0 = 1) and negatively
on the second part (g1 = −1). In view of the strict convexity of I, the process that has
a = 0.4 as a typical event is the driven process for γ = 1.11 = I ′(0.4). In the original
process, A is zero on average due to the symmetry of the rate matrix. Hence, imposing
a > 0 should increase the rate of the driven process for transitions e+ → e− on [0, αT ] and
transitions e− → e+ on [αT, T ]. Compared to the original rate k, we see on Fig. 3.4 that
indeed K+− < k0 < K−+ on [0, αT ] so that transitions e+ → e− are preferred on average,
and conversely K−+ < k1 < K+− on [αT, T ] so that transitions e− → e+ are preferred on
average. Hence, the conditioning has broken the symmetry of the rate matrix and made
it fully time-dependent.

On Fig. 3.5, we plot the rate K+− for di�erent values of a (associated to their cor-
responding γ). We observe that this rate from e− → e+ deviates more and more from
k+− as |a| becomes larger, i.e. as a goes away from the typical value 0 of the original
process. The magnitude of change of the driven rate is thus in direct correspondence with
the magnitude of the conditioning. However, it is not intuitive to understand the growth
of the transition rate. We can just say that the possibility of a time-dependent rate matrix
o�ers a broader dynamical space to explore in the variational calculation compared to case
of piecewise-constant rates.
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Figure 3.5 � Original transition rate k(t) (solid black line) and driven rate K+−(t) (colored
lines) for di�erent values of γ corresponding to di�erent values of the �uctuation a. The
�gure is obtained for α = 0.3, T = 1, k0 = 1, k1 = 0.1, g0 = 1, g1 = −1. The values
a = −1.8,−0.5, 0, 0.4 correspond respectively to γ = −3.59,−1.29, 0, 1.11. As expected,
k = K when conditioning at the typical value a = 0.

3.2 Conditioning of periodically driven Markov di�u-

sion processes

In this section, we address the problem of conditioning of periodically driven Markov
processes within the framework of di�usion processes.

3.2.1 Periodically driven di�usion processes

We consider a Markov di�usion process zt evolving according to the Langevin equation of
Eq. (2.54) and whose drift b and di�usion coe�cient σ are time-periodic of period T :

b(x, t+ T ) = b(x, t), (3.102)
σ(x, t+ T ) = σ(x, t), (3.103)

∀x and t. We set the initial time to t0 = 0 and the �nal time to t = nT with n the
number of periods that have elapsed, and we assume that the solution of the Fokker-
Planck equation ∂%(x,t)

∂t
= (L%)(x, t) reaches a T -periodic solution %TiPS when n→∞, i.e.

%TiPS(t+T ) = %TiPS(t). Note that the periodicity of b and σ implies the periodicity of the
Fokker-Planck operator:

L(t+ T ) = L(t), ∀t. (3.104)

All the de�nitions introduced in Sec. 2.4 apply in this section with the di�erence that
the �nal time is �xed to t = nT . As discussed previously, we are interested in the
�uctuations of the observable AnT , functional of the paths up to the �nal time nT , de�ned
in Eq. (2.69) by replacing t by nT , and where we consider T -periodic functions g and h:
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g(x, t + T ) = g(x, t) and h(x, t + T ) = h(x, t), ∀x and t. We assume that AnT satis�es a
LDP (1.18):

P (AnT = a) �
n→∞

e−nTI(a), (3.105)

with I the LDF, and we introduce its associated SCGF

Γ(γ) = lim
n→∞

1

nT
lnE%(0)

[
enTγ·AnT

]
. (3.106)

In order to study the large deviations of AnT in the long-time limit, let us �rst consider
the observable At[z] on the shorter time interval [0, t]:

At[z] =

(
1
t

∫ t
0
g(zτ , τ) ◦ dzτ

1
t

∫ t
0
h(zτ , τ)dτ

)
, (3.107)

where we remind that ◦ refers to the Stratonovich convention. As seen in Sec. 1.2, the
statistics of At is contained in the generating function Gγ(t) =

∫
dxG̃γ(x, t) de�ned in

Eq. (2.81), where G̃γ(x, t) is the generating function with state x at time t (2.83) solution
of

∂

∂t
G̃γ(x, t) = (ΛG̃γ)(x, t). (3.108)

We remind the de�nition of the biased generator Λ = Λγ (2.85) de�ned by its action on
an arbitrary function f by:

Λγf = (−∇+ γ1g)(b̂f) +
1

2
(−∇+ γ1g) [D(−∇+ γ1g)f ] + γ2hf, (3.109)

with b̂ = b − 1
2
σ∇σ and D = σ2, and where we dropped for clarity the space-time de-

pendence of all the functions. We will often lighten the notations by not mentioning the
dependence on x, t and γ but one keeps in mind their presence. The adjoint operator Λ†

of the biased Fokker-Planck operator acting on an arbitrary function ϕ reads

Λ†ϕ = b̂(∇+ γ1g)ϕ+
1

2
(∇+ γ1g) [D(∇+ γ1g)ϕ] + γ2hϕ. (3.110)

Adjoints operators are related by de�nition by

ϕ · (Λf) = f · (Λ†ϕ), (3.111)

for any functions ϕ, f . The dot stands for the scalar product ϕ · f ≡
∫
x
ϕ(x)f(x). By

abuse of notation, we use the dot for the scalar product both in the vector-space and
in the function-space. Notice that Λ and Λ† are also T -periodic. The formal solution
of Eq. (3.108) with initial condition G̃γ(0) = %(0) reads

G̃γ(t) =
←−
QΛ(t, 0)%(0), (3.112)

to be understood as
G̃γ(x, t) =

∫
dy
←−
QΛ(x, t, y, 0)%(y, 0), (3.113)

where the propagator
←−
QΛ(x, t, y, 0) from y at t0 to x at t is the biased transition probability

G̃(x, t | y, 0) introduced in Eq. (2.112), and where
←−
QΛ(t, 0) ≡ ←−exp

[∫ t
0

dτΛ(τ)
]
is the
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time-ordered exponential of Λ, de�ned as the unique solution of the initial value problem
d
dt
X = ΛX, with X(0) = 1 the operator such that 1f = f , see Appendix 3.A for more

detail.
As in the case of jump processes, we look for an e�ective Markov process that is

equivalent to the microcanonical process in which we conditioned the observable AnT on a
rare �uctuation a. This process follows from the driven process which is de�ned as the limit
of the canonical process. We will show this result in the formalism of di�usion processes
from a path integral perspective �rst, then from a variational approach, extending the
results of Refs. [80,81] for time-homogeneous processes to our periodically driven processes.

3.2.2 Spectral properties of the one-period propagator

From now on, we assume that the �nal time is always nT and omit the subscript nT for
our generic observable A[z] ≡ AnT [z]. In this section, we relate the spectral properties
of the propagator

←−
QΛ(T, 0) to the generating functions of the observable, giving them a

physical interpretation.
In 1948, Krein and Rutman extended the Perron-Frobenius theorem to in�nite dimen-

sional Banach spaces and compact operators [235, 236]. We will not go into detail and
we simply assume that the operator

←−
QΛ(T, 0) that we consider satis�es the conditions re-

quired by the Krein-Rutman theorem so that it admits a dominant eigenvalue associated
with unique positive left and right eigenfunctions, see Theorem 6. Let χT be the highest
eigenvalue of

←−
QΛ(T, 0), rT its right eigenfunction and lT its left eigenfunction:

←−
QΛ(T, 0) rT = χT rT , (3.114)
←−
QΛ(T, 0)† lT = χT lT , (3.115)

where rT and lT are functions of space. The eigenfunctions rT and lT can be chosen up to
a multiplicative constant that we set by imposing

1 · rT = 1, (3.116)
lT · rT = 1, (3.117)

with 1 : x 7→ 1. We assume furthermore that

lT · %(0) <∞. (3.118)

At time nT , the generating function Gγ reads

Gγ(nT ) = 1 · G̃γ(nT ) = 1 ·
←−
QΛ(nT, 0)%(0) =

∫
x,y

←−
QΛ(x, T, y, 0)n%(y, 0), (3.119)

where we used the periodicity of b and σ � and hence of Λ � in the last equation. The
asymptotic expansion of

←−
QΛ(nT, 0) at large n is dominated by the contribution of its

dominant eigenvalue: ←−
QΛ(T, 0)n '

n→∞
(χT )n(rT lT ), (3.120)

where (rT lT ) is to be understood here as the operator (rT lTf)(x) ≡
∫
y
rT (x)lT (y)f(y).

From the de�nition of the SCGF (3.106) and the generating function at time nT (3.119),
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and using Eqs. (3.116, 3.118), it follows

Γ =
1

T
lnχT . (3.121)

Hence, the SCGF Γ is proportional to the logarithm of the largest eigenvalue of the one-
period propagator. It is easy to check that Eqs. (3.18�3.19) obtained in the case of jump
processes remain valid for our di�usion process.

3.2.3 Generalized Doob transform

As introduced in Section 3.1.4, the Doob transform of the operator M associated with a
positive function υ reads

Mυ ≡ υMυ−1 − υ−1(M †υ), (3.122)

with υ−1 = 1
υ
. The action of Mυ on an arbitrary function f reads:

(Mυf)(x, t) ≡ υ(x, t)(Mυ−1f)(x, t)− υ−1(x, t)(M †υ)(x, t)f(x, t). (3.123)

Mυ is norm-conserving since 1 ·Mυ = 0 by de�nition of the adjoint operator (3.111). The
Doob transform allows then building norm-conserving generators.

Doob transform of the Fokker-Planck operator

When M is the Fokker-Planck operator L, computing explicitly (3.122) yields for any
function ϕ

Lυϕ = −∇
[
b̂υϕ− 1

2
D∇ϕ

]
, (3.124)

where we introduced

bυ ≡ b+D∇ ln υ, (3.125)

b̂υ ≡ b̂+D∇ ln υ. (3.126)

Therefore, the Doob transform of a Fokker-Planck operator is a Fokker-Planck operator
with the same di�usion coe�cient but with a modi�ed drift. The path probability asso-
ciated with the Doob transform Mυ (or equivalently bυ and σ) is obtained by replacing b
by bυ in Eq. (2.63) and using the fact that

d

dt
(ln υ(zt, t)) = υ(zt, t)

−1∂tυ(zt, t) + żt∇(ln υ(zt, t)). (3.127)

It follows

Pbυ ,σ,%(0)[z] = Pb,σ,%(0)[z]υ(znT , nT )υ(z0, 0)−1

exp

{
−
∫ nT

0

dτ

[
υ(zτ , τ)−1(L†υ)(zτ , τ) + υ−1(zτ , τ)

∂υ

∂t
(zτ , τ)

]}
. (3.128)
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Doob transform of the biased Fokker-Planck operator

When M is the biased Fokker-Planck operator Λ, computing explicitly (3.122) yields

Λυϕ = −∇
[
b̂υγϕ−

1

2
D∇ϕ

]
, (3.129)

where we introduced

bυγ ≡ b+D(∇ ln υ + γ1g), (3.130)

b̂υγ ≡ b̂+D(∇ ln υ + γ1g). (3.131)

The Doob transform of the biased Fokker-Planck operator yields a Fokker-Planck operator
of drift bυγ and di�usion coe�cient σ that generates a norm-conserving Markov di�usion
process. Injecting the expression of bυγ instead of b in Eq. (2.63) yields after lengthy
calculations the path probability associated with Λυ:

Pbυγ ,σ,%(0)[z] = Pb,σ,%(0)[z]enTγ·AnT [z]υ(znT , nT )υ(z0, 0)−1

exp

{
−
∫ nT

0

dτ

[
υ(zτ , τ)−1(Λ†υ)(zτ , τ) + υ−1(zτ , τ)

∂υ

∂t
(zτ , τ)

]}
, (3.132)

where we used

∇υ = υ∇(ln υ), (3.133)
∇(υ−1) = −υ−1∇(ln υ). (3.134)

3.2.4 The driven process as the limit of the canonical process

Canonical generator

As for jump processes, we show that the canonical process de�ned by its path probability

Pcano

γ,%(0)[z] ≡
enTγ·AnT [z]Pb,σ,%(0)[z]

E%(0)[enTγ·AnT ]
, (3.135)

is generated by a norm-conserving Markov generator [80]. To do so, we look for a generator
Ln of drift bc and di�usion coe�cient σc that satisfy

Pbc,σc,%′(0)[z] = Pcano

γ,%(0)[z], (3.136)

where %′(0) is an initial probability density that may be di�erent from %(0). Moreover,
we want Ln to generate a norm-conserving process, hence we look for a function Cn such
that Ln is built from the Doob transform

Ln ≡ ΛCn ≡ CnLn (Cn)−1 − (Cn)−1(L†nCn). (3.137)

Using the result obtained in Eqs. (3.130�3.131), the drift and the di�usion coe�cient of
the canonical generator Ln are given by

bc = b+D(∇ lnCn + γ1g), (3.138)

b̂c = b̂+D(∇ lnCn + γ1g), (3.139)
σc = σ. (3.140)
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We now need to determine the function Cn. From Eq. (3.132), the path probability
generated by the operator Ln reads

PbCnγ ,σ,%(0)[z] = Pb,σ,%(0)[z]enTγ·AnT [z]Cn(znT , nT )Cn(z0, 0)−1

exp

{
−
∫ nT

0

dτ

[
Cn(zτ , τ)−1(Λ†Cn)(zτ , τ) + C−1

n (zτ , τ)
∂Cn
∂t

(zτ , τ)

]}
.

(3.141)

For this path probability to coincide with Eq. (3.135), Cn ≡ Cn(t) should be chosen equal
to

Cn(t) =
[←−
QΛ(nT, t)

]†
1, (3.142)

solution of {
Ċn = −Λ†Cn,

Cn(nT ) = 1,
(3.143)

so that the time-extensive terms in the exponential of Eq. (3.141) vanish. Note that the
positivity of Cn is ensured by the Feynman-Kac formula2 [80]. With this choice of Cn, the
path probability associated with ΛCn (3.141) becomes

Pbc,σ,%(0)[z] = Pb,σ,%(0)[zt] enTγ·AnT [z] Cn(z0, 0)−1, (3.144)

or equivalently
Pb,σ,%(0)[z] enTγ·AnT [z] = Pbc,σ,%(0)Cn(0)[z]. (3.145)

From Eqs. (3.119) and (3.142) and using the de�nition of the adjoint operator (3.111), we
remark that the generating function can be expressed in terms of Cn as

Gγ(nT ) = E%(0)[e
nTγ·AnT ] = Cn(0) · %(0), (3.146)

implying from Eq. (3.135) and Eq. (3.145) that

P
bc,σ,

Cn(0)%(0)
Cn(0)·%(0)

[z] = Pcano

γ,%(0)[z]. (3.147)

In other words, the canonical path probability is associated with the generator Ln = ΛCn

and the initial probability density %′(0) = Cn(0)%(0)
[Cn(0)·%(0)]

. This shows that the canonical process
has a corresponding Markov generator which is norm-conserving contrary to the biased
generator. Notice that the canonical generator Ln depends explicitly on the number of
periods n.

2The Feynman-Kac formula [237�239] states that the solution of{
∂X
∂t + LX + V X = 0,

X(tf , x) = ϕ(x),

with L a Markov operator and V a function of space and time, reads

X(t, x) = E
[
ϕ(zt)e

∫ tf
t V (zτ ,τ)dτ

∣∣∣zt = x
]
.
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Driven process

In this section, we focus on the asymptotic dynamics of the canonical process in the limit
n→∞. From Eq. (3.142) and using Eqs. (3.116�3.120), we �nd that Cn(τ) for τ ∈ [0, T [
is given asymptotically by

Cn(τ) =
[←−
QΛ(T, 0)n

←−
QΛ(τ, 0)−1

]†
1 ∼
n→∞

(χT )n
[←−
QΛ(τ, 0)−1

]†
lT . (3.148)

We want to de�ne the driven generator as the Doob transform of the biased operator using
a function l(τ) corresponding to the limit of Cn(τ) when n → ∞. Since scalar constants
play no role in the Doob transform, it su�ces to consider l ≡ l(τ) de�ned for τ ∈ [0, T [ by

l(τ) ≡
[←−
QΛ(τ, 0)−1

]†
lT , (3.149)

which is by construction the solution of{
l̇ = −Λ†l,

l(0) = lT .
(3.150)

Using Eq. (3.115) and the periodicity of Λ, we notice that the function l satis�es

l(τ + T ) = χ−1
T l(τ). (3.151)

We de�ne the Markov generator L ≡ L(τ,γ) of the driven process at any time τ by the
Doob transform of the tilted generator Λ associated with the function l:

L ≡ Λl = lΛl−1 − l−1(Λ†l). (3.152)

Note that the positivity of l(t) at all t is ensured by the positivity of Cn, of
←−
QΛ(τ, 0)

and of lT (Krein�Rutman Theorem). By construction from Eqs. (3.137) and (3.148), the
generator of the driven process is the limit of the canonical operator as n→∞:

lim
n→∞

Ln = L. (3.153)

Using Eqs. (3.130�3.131), it follows that the driven generator L is a Fokker-Planck operator
of di�usion coe�cient σ and drift

Bγ ≡ b+D(∇ ln l + γ1g),

B̂γ ≡ b̂+D(∇ ln l + γ1g).
(3.154)

In the following, we discuss the properties of the driven generator. First of all, the
operator L is T -periodic. Indeed, using Eq. (3.151) and the periodicity of Λ in Eq. (3.152),
it follows for all τ

L(τ + T ) = L(τ). (3.155)

Secondly, the TiPS probability of the driven process can be obtained from the solution l
of the initial value problem of Eq. (3.150) and the solution r ≡ r(τ) of the initial value
problem {

ṙ = Λr,

r(0) = rT ,
(3.156)
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or alternatively
r(t) ≡

←−
QΛ(t, 0)rT . (3.157)

Using Eq. (3.114) and the periodicity of Λ, the function r satis�es:

r(t+ T ) = χT r(t). (3.158)

The TiPS probability of the driven process µ ≡ µ(t), de�ned as the T -periodic solution of
the Fokker-Planck equation: {

dµ
dt

= Λµ

µ(0) = µ(T ),
(3.159)

is expressed in terms of the functions l and r

µ(x, t) = l(x, t)r(x, t), ∀x, t. (3.160)

Indeed, Eqs. (3.150, 3.152, 3.156) yield for all x and τ

(Llr)(x, τ) = l(x, τ)(Λl−1lr)(x, τ)− l−1(x, τ)(Λ†l)(x, τ)l(x, τ)r(x, τ) (3.161)

= l(x, τ)(Λr)(x, τ)− (Λ†l)(x, τ)r(x, τ) (3.162)

= l(x, τ)ṙ(x, τ) + l̇(x, τ)r(x, τ) (3.163)

=
d

dt
[l(x, τ)r(x, τ)] , (3.164)

while Eqs. (3.151, 3.158) lead to

l(0)r(0) = l(T )r(T ), (3.165)

which proves that µ is the solution of Eq. (3.159). Notice that our normalization choice
in Eq. (3.117) ensures the normalization of µ(0).

Let us now discuss the asymptotic equivalence between the canonical and driven path
probabilities. Using Eqs. (3.121, 3.150�3.152) in Eq. (3.132), the path probability of the
driven process reads

PBγ ,σ,%(0)[z] = Pb,σ,%(0)[z]enTγ·AnT [z]l(znT , 0)e−nTΓl(z0, 0)−1. (3.166)

From the de�nitions of the canonical path probability (3.135) and the driven path proba-
bility (3.166), we obtain

PBγ ,σ,%(0)[z]

Pcano

γ,%(0)[z]
= l(znT , 0) e−nTΓ l(z0, 0)−1E%(0)[e

nTγ·AnT ]. (3.167)

Using the de�nition of the SCGF (3.106), we �nally �nd:

lim
n→∞

1

nT
ln
PBγ ,σ,%(0)[z]

Pcano

γ,%(0)[z]
= 0. (3.168)

Hence, the driven path probability and the canonical path probability are logarithmically
equivalent:

PBγ ,σ,%(0)[z] �
n→∞

Pcano

γ,%(0)[z]. (3.169)
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Given this equivalence, and using the fact that the canonical path probability (for a
speci�c value of γ) and the microcanonical path probability (for A conditioned on a)
are logarithmically equivalent if the LDF I is strictly convex at a, we conclude that the
e�ective process is equivalent to the microcanonical process conditioned on A = a is given
by the driven process for γ = ∇I(a) (provided that I is strictly convex and di�erentiable).
Mathematically, this reads:

Pmicro

a,%(0)[z] �
n→∞

PBγ ,σ,%(0)[z]
∣∣
γ=∇I(a) . (3.170)

3.2.5 Variational approach

In this section, we extend the results of Ref. [81] to periodically driven di�usion processes
and derive the driven process from an optimisation problem under constraint of the 2.5
LDF of the empirical occupation density ρn[z]:

ρn[z](x, τ) =
1

n

n−1∑
`=1

δ(zτ+`T − x), (3.171)

and the empirical current j[z]:

jn[z](x, τ) =
1

n

n−1∑
`=1

δ(zτ+`T − x) ◦ żτ+`T . (3.172)

The quantity ρn[z](x, t)dx measures the fraction of periods in which the system has oc-
cupied a state in the in�nitesimal interval [x, x + dx[ at time τ of each period along the
path [z] of duration nT , while the quantity ndτjn[z](x, t) measures the number of periods
in which the system performed a displacement between x and x + dx at time τ of each
period along the trajectory [z] of duration nT . These two quantities are related by

nρn[z](x, t+ dτ)dx− nρn[z](x, t)dx = ndτjn[z](x, t)− ndτjn[z](x+ dx, t), (3.173)

meaning that the variation in the number of periods in which the system occupies a state
in [x, x+ dx[ between times τ and τ + dt has two contributions: an additive contribution
coming from a displacement of the system between x and x + dx, and a subtractive
contribution coming from a displacement of the system out of the interval [x, x + dx[.
This leads to the continuity equation:

d

dτ
ρn[z](x, τ) = −∇jn[z](x, τ). (3.174)

The empirical occupation density and the empirical current are random variables since
they are functional of the paths and depend on the number of periods n considered during
the total observation time nT . In the limit of large n, the probability to observe the
empirical occupation density ρn[z] = ρ and the empirical current jn[z] = j satis�es a large
deviation principle:

Pn(j, ρ) �
n→∞

enTI2.5(j,ρ), (3.175)

where the 2.5 LDF is given by [240]

I2.5(j, ρ) =
1

T

∫ T

0

dτ

∫
dx

[
1

2ρD
(j − Jρ)2

]
, (3.176)
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with Jρ = b̂ρ− 1
2
D∇ρ, see Appendix 3.C for an heuristic derivation. This expression holds

only for ρ(0) = ρ(T ) and j(0) = j(T ), and for conservative currents ∂
∂t
ρ(x, τ) = −∇j(x, τ),

∀x, τ , and normalized occupations
∫

dxρ(x, τ) = 1, otherwise I2.5 is in�nite. Notice that
I2.5(j, ρ) vanishes for ρ = %TiPS and j = J%

TiPS
. Hence, without any conditioning on the

paths generated by our original process of drift b and di�usion coe�cient σ, the random
variable ρn[z] converges in probability to %TiPS in the limit n → ∞ while the random
variable jn[z] converges in probability to J%

TiPS

.
The level 2.5 LDF is appropriate for studying the large deviations of the observable A

since the LDF I(a) can be obtained from the 2.5 LDF I2.5(j, ρ) using the contraction prin-
ciple. Indeed, using the periodicity of g and h, we can rewrite the conditioning observable
A of Eq. (3.107) with �nal time t = nT in terms of ρn[z] and jn[z]:

A(jn[z], ρn[z]) =

(
A1(jn[z])
A2(ρn[z])

)
≡

(
1
T

∫ T
0

dτ
∫

dxg(x, τ)jn[z](x, τ)
1
T

∫ T
0

dτ
∫

dxh(x, τ)ρn[z](x, τ)

)
. (3.177)

Without conditioning, the observable A converges to A(J%
TiPS

, %TiPS) as n → ∞. As
before, we are interested in conditioning our process on the event {A(j, ρ) = a | a ∈ R2}.
We look for the most probable pair (j, ρ) compatible with A(j, ρ) = a. It is obtained by
minimizing the 2.5 LDF under the following constraints

• C0: A(j, ρ) = a,

• C1:
∫

dxρ(x, τ) = 1,∀τ ∈ [0, T ],

• C2: ∂
∂τ
ρ(x, τ) = −∇j(x, τ),∀x and ∀τ ∈ [0, T ],

• C3: ρ(T ) = ρ(0),

• C4: j(T ) = j(0).

This optimization problem amounts to computing the LDF ofA and reads mathematically

I(a) = inf
ρ,j|{Ci}4i=0

{
I2.5(j, ρ)

}
. (3.178)

Intuitively, the optimizer (ja, ρa) is expected to be the typical value of (jn[z], ρn[z]) under
the dynamics associated with the e�ective process and which is equivalent to the micro-
canonical process as n → ∞. Reciprocally, we can instead consider a dual approach and
compute the SCGF de�ned in Eq. (3.106) and given by the LF transform of the LDF I(a)

Γ(γ) = sup
ρ,j|{Ci}4i=1

{γ ·A(j, ρ)− I2.5(j, ρ)} . (3.179)

The solution (jγ , ργ) of Eq. (3.179) is the typical value of (j[z], ρ[z]) under the canonical
path probability [81]. It is expected to be associated with the generator of the driven
process as will be shown. For strictly convex LDF, Eqs. (3.178) and (3.179) have the
same solutions, i.e. if I is strictly convex at a, (ja, ρa) = (jγ , ργ) for γ = ∇I(a). This
is in agreement with the equivalence of the microcanonical process and the e�ective pro-
cess/driven process for γ = ∇I(a) [81]. In the following, we recover this result through
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direct calculation of the optimum of

F(j, ρ) = −I2.5(j, ρ) + γ1 A1(j) + γ2 A2(ρ)

− 1

T

∫ T

0

dτ c(τ)

[ ∫
dxρ(x, τ)− 1

]
− 1

T

∫ T

0

dτ

∫
dxu(x, t) [ρ̇(x, τ) +∇j(x, τ) ] , (3.180)

where c and u are the Lagrange multipliers associated with the constraints C1 and C2
respectively. We assume in addition that u(T ) = u(0) in line with the constraints C3 and
C4. Functional derivatives with respect to the empirical occupation and empirical current
yield{

δF
δj(x,τ)

= 0⇒ − 1
T

1
ρD

(j − Jρ) + 1
T
γ1g + 1

T
∇u = 0,

δF
δρ(x,τ)

= 0⇒ 1
T

1
2ρ2D

(j − Jρ)2 −
∫
x

1
2ρD

δ
δρ

(j − Jρ)2 − 1
T
c+ 1

T
∂tu+ 1

T
γ2h = 0,

(3.181)

where we dropped for clarity the (x, τ) dependence of the functions in the right-hand side
of Eq. (3.181). The �rst equation leads to

j = B̂′γρ−
1

2
D∇ρ, (3.182)

where we introduced
B̂′γ ≡ b̂+D(γ1g +∇u). (3.183)

The current j is then associated with an operator L′ ≡ −∇
[
B̂′γ − 1

2
D∇

]
so that ρ̇ = L′ρ

by condition C2. From condition C3, ρ is the TiPS probability associated with L′. As
suggested by the notation, L′ will turn out to be the generator L of the driven process
de�ned in Eq. (3.152).

Using an integration by parts and the fact that j − Jρ = Dρ(γ1g + ∇u), the second
equation of (3.181) becomes

− u̇ = −c+ γ2h+
1

2
D(γ1g +∇u)2 + b̂(γ1g +∇u) +

1

2
∇ [D(γ1g +∇u)] . (3.184)

After computing explicitly the action of Λ† of Eq. (3.110) on eu:

Λ†eu = b̂(γ1g +∇u)eu +
1

2
D(γ1g +∇u)2eu +

1

2
∇ [D(γ1g +∇u)] eu + γ2heu, (3.185)

we remark that Eq. (3.184) reads{
d
dt

(eu) = − (Λ− c)† (eu),

eu(0) = eu(T ),
(3.186)

with (eu)(x, t) ≡ eu(x,t). Using the de�nitions of Appendix. 3.A, the formal solution of
Eq. (3.186) reads:

eu(t) =
[←−
QΛ−c(T, t)

]†
eu(T ) =

[←−
QΛ(T, t)

]†
e−
∫ T
t c eu(0), (3.187)
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where we used Property 6 in the second equality. Taking t = 0, it follows[←−
QΛ(T, 0)

]†
eu(0) = e

∫ T
0 c eu(0). (3.188)

Thus, the optimization with respect to ρ leads to a spectral equation. Since eu(0) is
a positive function, by Krein-Rutman theorem it is the unique � up to a multiplicative
constant � left eigenfunction of

←−
QΛ(T, 0) associated with its largest eigenvalue e

∫ T
0 c = χT .

From Eq. (3.121), we �nd that the SCGF reads Γ = 1
T

∫ T
0
c. Notice that we can rewrite

Eq. (3.186) as:
d

dt

(
eu+

∫ T
t c
)

= −Λ†(eu+
∫ T
t c). (3.189)

Hence the vector eu+
∫ T
t c is solution of{

Ẋ = −Λ†X,

X(T ) = χ−1
T X(0).

(3.190)

From Eqs. (3.150�3.151), we conclude that the function l that appears in the Doob trans-
form leading to the driven generator is related to the Lagrange multipliers through

l(t) = eu(t)+
∫ T
t c. (3.191)

We now show that the operator L′ generates the driven process, i.e. we show that L′ is
given by the Doob transform of Λ associated with the function l. To do so, we compute
explicitly Λlf for an arbitrary function f in the one hand, and L′f on the other hand, and
using Eqs. (3.182�3.184), we obtain after long calculation that

L′f = l(Λl−1f)− l−1(Λ†l)f. (3.192)

Hence, L′ is obtained from the Doob transform of Λ using l and we conclude that L′ = L
is the generator of the driven process de�ned in Eq. (3.152). Another way to deduce this
result is to notice that the generator L′ = −∇

[
B̂′γ − 1

2
D∇

]
is a Fokker-Planck operator

with di�usion coe�cient σ and drift (3.183)

B̂′γ = b̂+D(γ1g +∇u) = b̂+D(γ1g +∇ ln l), (3.193)

where we used Eq. (3.191) in the last equality, implying that B̂′γ = B̂γ is indeed the
drift of the driven process (3.154). It follows that the optimum of Eq. (3.179) is reached
for ρ = µ the TiPS probability density of the driven process of generator L, and for
j = B̂γµ − 1

2
D∇µ the probability current associated with the probability density µ and

operator L, both related by µ̇ = −∇j = Lµ. In the time-homogeneous case, we recover
the results of [81].

To conclude this section, the driven process is the most probable process that generates
the dynamics leading to the imposed value of the conditioning observable. In other words,
it is the generator of the Markov process for which the conditioning observable takes
asymptotically the imposed value as a typical value.
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3.3 Conclusion

In this chapter, we addressed the problem of process conditioning for observables de-
�ned through periodic functions in the framework of Markov processes with time-periodic
generators. We took the period of these functions equal to the period of the generator,
with no loss of generality compared to the case of commensurable periods. Starting from
nonequilibrium path probabilities generalizing the canonical and microcanonical ensem-
bles, we de�ned the Markov generator of the canonical process and its asymptotic limit
after a large number of periods. The latter is the driven generator obtained from the Doob
transform involving the left eigenvector of the one-period propagator for the tilted opera-
tor (and its time evolution). This is consistent with the time-homogeneous theory where
the eigenvector of the tilted matrix is involved instead. Finally, the e�ective process for
which A takes asymptotically the microcanonical value a follows from the driven process.
This result requires the equivalence between microcanonical and canonical path ensembles
which is guaranteed by the convexity of the LDF I(a).

We can sum up the problem of conditioning in the following sentence: �The rare
�uctuation of one process is the typical value of another process� [241]. The problem of
conditioning is interesting from the fundamental and theoretical point of view as it provides
a generalization of equilibrium concepts. It de�nes nonequilibrium microcanonical and
canonical path ensembles and studies their equivalence. This equivalence relies on the
convexity of the LDF for A, in straight connection with the concavity of the entropy
for the equivalence of equilibrium ensembles. This analogy between entropy and LDF is
broader than the question of ensemble equivalence. In the same way that the canonical
state probability follows from Jaynes' maximum entropy principle in equilibrium statistical
mechanics, the driven process follows from a constrained optimization problem on the 2.5
LDF. Another nonequilibrium generalization is mentioned when the LDF is convex but
not strictly at one point (the LDF has linear parts, or several points with the same slope).
This case of partial equivalence is identi�ed with a phase transition corresponding to the
coexistence of multiple values a of the observable for one value of γc = ∇I(a) [230, 231].
For this reason, there is not, strictly speaking, an e�ective driven processK(γc) for which
A will have one identi�ed typical value corresponding to the conditioning value of the
microcanonical process. Yet, when varying the parameter γ across γc, the set of typical
values of the driven process will �jump� from one typical value for A to another (given the
strict convexity of I at γ 6= γc), with a phase coexistence of typical values at γ = γc.
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Appendices

�L'absence de preuve n'est pas preuve

de l'absence.�

William Wright

3.A Time-ordered exponential: de�nitions and proper-

ties

De�nitions

LetM be a linear operator (e.g.: transition rate matrix or Fokker-Planck operator). The
ordered exponential

←−
QM (t, 0) ≡ ←−exp

∫ t
0
M (t′) dt′ is the unique solution of the initial value

problem:
d

dt
X(t) = M (t)X(t), with X(0) = 1, (3.194)

that has the integral form

X(t) = 1 +

∫ t

0

M (t′)X(t′)dt′. (3.195)

Inserting this integral form into itself, one obtains the series expansion of the time ordered
exponential

←−
QM (t, 0) = 1 +

∫ t

0

M (t1)dt1 +

∫ t

0

dt1

∫ t1

0

dt2M (t1)M (t2)

+

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3M(t1)M(t2)M (t3) + . . . (3.196)

Notice that the arrow on the exponential speci�es the ordering of the product of M in
the expansion for increasing time from right to left.

The reverse-ordered exponential
−→
QM (0, t) ≡ −→exp

∫ t
0
M (t′) dt′ is unique solution of the

initial value problem:

d

dt
X(t) = X(t)M (t), with X(0) = 1, (3.197)

that has the integral form

X(t) = 1 +

∫ t

0

X(t′)M (t′)dt′. (3.198)
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Inserting this integral form into itself, one obtains the series expansion of the reverse-
ordered exponential

−→
QM (0, t) = 1 +

∫ t

0

M (t1)dt1 +

∫ t

0

dt1

∫ t1

0

dt2M (t2)M(t1)

+

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3M(t3)M (t2)M (t1) + . . . (3.199)

Notice that the arrow on the exponential speci�es the ordering of the product of M in
the expansion for increasing time from left to right.

Properties of the time-ordered exponential

For the convenience of the reader, we recall useful properties on linear di�erential equa-
tions. See Ref. [242] for a full description of the theory.

Property 1 (Adjoint of a propagator) The adjoint of a propagator based on the op-
erator M is the reverse-ordered propagator based on the adjoint operator M †:[←−

QM (t, 0)
]†

=
−→
QM†(0, t). (3.200)

Note that if the operator M is a matrix, the adjoint is the transpose. This property
follows from the de�nitions via the series expansions and the fact that the adjoint of a
product of two linear operators is the product of the two adjoint operators taken in the
reverse order.

Property 2 (Inverse of a propagator) The inverse of a propagator based on the op-
erator M is the reverse-ordered propagator based on the opposite operator −M :[←−

QM (t, 0)
]−1

=
−→
Q−M (0, t). (3.201)

Indeed, starting from Ẋ = MX and using d
dt

(XX−1) = dX
dt
X−1 +X dX−1

dt
= 0, it follows

that dX−1

dt
= −X−1 dX

dt
X−1 = −X−1M . Note that the invertibility of

←−
QM (t, 0) is ensured

by the Abel-Jacobi-Liouville identity which states that the determinant of X(t) solution
of (3.194) is given by

detX(t) = detX(0) e
∫ t
0 trM(t′)dt′ . (3.202)

Since X(0) = 1, it follows that the determinant of
←−
QM (t, 0) is nonzero.

Property 3 (First relation between �nal and initial value problems) The solution
of the �nal value problem

d

dt
X(t) = −X(t)M (t), with X(tf) = 1, (3.203)

is given by X(t) =
←−
QM (tf , t).
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Indeed, one can check directly that

d

dt

←−
QM (tf , t) = lim

a→0

←−
QM (tf , t+ a)−

←−
QM (tf , t+ a)

←−
QM (t+ a, t)

a
(3.204)

= lim
a→0

←−
QM (tf , t+ a)

1−
←−
QM (t+ a, t)

a
(3.205)

=
←−
QM (tf , t)

[
− d

ds

←−
QM (s, t) |s=t

]
(3.206)

= −
←−
QM (tf , t) M

←−
QM (t, t) (3.207)

= −
←−
QM (tf , t) M . (3.208)

Property 4 (Second relation between �nal and initial value problems) The so-
lution of the �nal value problem:

d

dt
X(t) = M (t)X(t), with X(tf) = 1, (3.209)

is given by X(t) =
[←−
QM (tf , t)

]−1

=
−→
Q−M (t, tf).

This follows from combining properties 2 and 3.

Property 5 (Multiplicative property of propagators) For any t1 ∈ [t0, t],
←−
QM (t, t0) =

←−
QM (t, t1)

←−
QM (t1, t0). (3.210)

Property 6 (Time-ordered exponential of the sum of commuting operators) If
M (t1) and N (t2) commute for any t1,t2 ∈ R, then

←−
QM+N (t, t0) =

←−
QM (t, t0)

←−
QN (t, t0).

Let us denote the left-hand side of the equality by X(t) and the right-hand side by Y (t).
On the one hand, Ẋ = (M+N )X. On the other hand, Ẏ = MY +

←−
QM (t, t0)N

←−
QN (t, t0) =

(M +N )Y sinceM andN commute for any time. Thus, the operatorsX and Y satisfy
the same di�erential equation. Besides, X(t0) = Y (t0) = 1, hence X(t) = Y (t), ∀t ∈ R.

3.B Perron-Frobenius theorems

De�nitions

Let M = (Mij) be a square matrix of dimension N de�ned on the set of real numbers.

De�nition 1 (Positive matrices) M is positive if Mij > 0, ∀i, j.

De�nition 2 (Nonnegative matrices) M is nonnegative if Mij ≥ 0, ∀i, j.

De�nition 3 (Irreducible matrices) Suppose M is nonnegative. M is said to be ir-
reducible if (1 +M)n−1 is a positive matrix.

De�nition 4 (Primitive matrices) Suppose M is nonnegative. M is said to be prim-
itive if there exists ` ∈ N such that M ` is positive.

De�nition 5 (Metzler matrices) The matrix M is said to be a Metzler matrix if its
o�-diagonal entries are nonnegative: Mij ≥ 0, ∀i 6= j.
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Perron-Frobenius (PF) theorems

Theorem 1 (PF theorem for positive matrices) LetM be a positive matrix. Then [243,
244]:

• M admits a positive dominant eigenvalue χ called the Perron-Frobenius eigenvalue.
Thus, χ is the spectral radius of M : | s |< χ for any other eigenvalue s of M .

• χ is a simple eigenvalue: the eigenspace associated with χ is one-dimensional and is
generated by one positive (right) eigenvector r called the Perron-Frobenius eigenvec-
tor.

• There is no positive eigenvector of M other than positive multiples of r.

• Since M and its adjoint M † have the same characteristic polynomial det(s1−M ),
the same results apply to M †. Hence M has a unique positive left eigenvector l
associated with the eigenvalue χ.

Theorem 2 (PF theorem for irreducible nonnegative matrices) Suppose M is a
nonnegative matrix. If M is irreducible, then Theorem 1 holds [243].

Theorem 3 (PF theorem for primitive matrices) SupposeM a is primitive matrix.
Then Theorem 1 applies to M [243].

Theorem 4 (PF for general nonnegative matrices) If M is a nonnegative matrix
then [243,244]:

• M admits a nonnegative eigenvalue χ ≥ 0 such that | s |≤ χ for any other eigenvalue
s of M .

• χ is associated with a nonnegative right eigenvector r: r ≥ 0 with r 6= 0.

• χ is associated with a nonnegative left eigenvector l: l ≥ 0 with l 6= 0.

• The eigenvectors l and r are not necessarily unique or positive.

Theorem 5 (PF theorem for Metzler matrices) Suppose M is a Metzler matrix.
Then we have [244]:

• eMt is nonnegative.

• There exists α ∈ R such that M + αI is nonnegative.

Hence, applying the Perron-Frobenius theorem for nonnegative matrices onM+αI yields:

• There exists a real dominant eigenvalue χ of M such that Re(s) ≤ χ for any other
eigenvalue s of M , with Re(s) the real part of s.

• The real dominant eigenvalue χ ofM is associated with nonnegative (and non-zero)
left and right eigenvectors.

• If r is a positive eigenvector of M then r is associated with χ.
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If we assume furthermore that M is irreducible, then [244]:

• χ is a simple eigenvalue.

• χ is associated with a unique positive right eigenvector r and a unique positive left
eigenvector l.

Theorem 6 (Krein�Rutman theorem) The results above are valid for �nite spaces.
For in�nite spaces, one refers to the Krein�Rutman theorem [235, 236] which generalizes
the Perron�Frobenius theorem to in�nite-dimensional Banach spaces. LetM be an opera-
tor with positive spectral radius χ and satisfying the conditions stated in the Krein�Rutman
theorem. Then (Theorem 19.3 of Ref. [245])

• χ is a simple eigenvalue of M with positive eigenvector.

• There is no other eigenvalue with positive eigenvector.

• |s| < χ for any other eigenvalue s.

3.C Derivation of level 2.5 large deviation functions

The following derivations are done for periodically driven processes implying time-periodic
generators. We present the derivation for both jump processes and di�usion processes.

Level 2.5 large deviation function of jump processes

In the following, we derive heuristically the 2.5 LDF of empirical transition probability
and empirical occupation of Eq. (3.67). For a more rigorous derivation, see Ref. [234].
The probability of observing an empirical transition probability ωn[z] = ω and an empir-
ical occupation pn[z] = p for a our reference process of generator k is given by:

Pn(ω,p) =

∫
D[z]Pk,π(0)[z]δ(pn[z]− p)δ(ωn[z]− ω), (3.211)

where the path probability (2.13) can be rewritten as:

Pk,π(0)[z] = πz0(0) exp

 ∑
t∈[0,nT ]|z(t+) 6=z(t−)

ln
(
kz(t+)z(t−)(t)δt

)
−
∫ nT

0

∑
x 6=z(t)

kxz(t)(t)dt


= πz0(0) exp

n−1∑
`=0

 ∑
t∈[`T,(`+1)T ]|z(t+) 6=z(t−)

ln
(
kz(t+)z(t−)(t)δt

)

−
∫ (`+1)T

`T

dt
∑
x 6=z(t)

kxz(t)(t)


= πz0(0) exp

n−1∑
`=0

{ ∑
τ∈[0,T ]|z(τ++`T )6=z(τ−+`T )

ln
(
kz(τ++`T )z(τ−+`T )(τ)δt

)
−
∫ T

0

dτ
∑

x 6=z(τ+`T )

kxz(τ+`T )(τ)

}
,
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where we used the periodicity of k in the last equation. From Eq. (3.65), p and ω need
to be related by

ṗx =
∑
y 6=x

[ωxy − ωyx], (3.212)

otherwise Pn(ω,p) = 0; and in the limit of large number of periods, Eq. (3.59) and
Eq. (3.63) require by continuity that p(T ) = p(0) and ω(T ) = ω(0). Let us introduce
an auxiliary process whose T -periodic generator k′ will be chosen such that ω and p are
typical for the dynamics it generates. The path probability Pk′,π(0)[z] associated with k′

is obtained by replacing k by k′ in Eq. (3.212). We can rewrite Eq. (3.211) as

Pn(ω,p) =

∫
D[z]Pk′,π(0)[z] e−A[z]δ(pn[z]− p)δ(ωn[z]− ω), (3.213)

where we introduced

A[z] ≡ ln
Pk′,π(0)[z]

Pk,π(0)[z]
. (3.214)

It follows from Eq. (3.212):

A[z] =
n−1∑
`=0

 ∑
τ∈[0,T ]|z(τ++`T )6=z(τ−+`T )

ln
k′z(τ++`T )z(τ−+`T )(τ)

kz(τ++`T )z(τ−+`T )(τ)
dt

−
∫ T

0

dτ
∑

x 6=z(τ+`T )

[
k′xz(τ+`T )(τ)− kxz(τ+`T )(τ)

]
=

n−1∑
`=0

 ∑
τ∈[0,T ]|z(τ++`T )6=z(τ−+`T )

∑
x,y

δx,z(τ++`T )δy,z(τ−+`T ) ln
k′xy(τ)

kxy(τ)

−
∫ T

0

dτ
∑
y

δy,z(τ+`T )

∑
x 6=y

[
k′xy(τ)− kxy(τ)

]}

=
n−1∑
`=0


∫ T

0

dτ
∑

s∈[τ,τ+dτ [|z(s++`T )6=z(s−+`T )

1

dτ

∑
x,y

δx,z(s++`T )δy,z(s−+`T ) ln
k′xy(τ)

kxy(τ)

−
∫ T

0

dτ
∑
y,x6=y

pny [z]
[
k′xy(τ)− kxy(τ)

]}

= n

∫ T

0

dτ
∑
y,x6=y

[
ωnxy[z](τ) ln

k′xy(τ)

kxy(τ)
+ pny [z](τ)

(
kxy(τ)− k′xy(τ)

)]
. (3.215)

where we used
∑

τ∈[0,T ]|z(τ++`T )6=z(τ−+`T ) =
∫ T

0

∑
s∈[τ,τ+dτ [|z(s++`T )6=z(s−+`T ) and the de�ni-

tions of the empirical occupation (3.59) and empirical transition probability (3.63) in the
third and last equations. We now choose k′ for which p and ω are typical in the long-time
limit, i.e. such that

pn[z]
k′−−−→

n→∞
p, (3.216)

ωn[z]
k′−−−→

n→∞
ω, (3.217)
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where the arrows refer to the convergence in probability with respect to Pk′,π(0)[z]. This
limit is veri�ed for k′ satisfying ω = k′ � p. We �nally get :

Pn(ω,p) = e−nTI2.5(ω,p)

∫
D[z]Pk′,π(0)[z]δ(pn[z]− p)δ(ωn[z]− ω), (3.218)

where we de�ned I2.5(ω,p) by

I2.5(ω,p) =
1

T

∫ T

0

dτ
∑
y,x6=y

[
py(τ)

(
kxy(τ)− ωxy(τ)

py(τ)

)
+ ωxy(τ) ln

ωxy(τ)

kxy(τ)py(τ)

]
. (3.219)

Since k′ has been chosen such that Eqs. (3.216�3.217) are satis�ed, we have∫
D[z]Pk′,π(0)[z]δ(pn[z]− p)δ(ωn[z]− ω) �

n→∞
1 (3.220)

leading to
Pn(ω,p) �

n→∞
e−nTI2.5(ω,p) (3.221)

when Eq. (3.212) is satis�ed. Hence, I2.5(ω,p) is the 2.5 LDF of empirical occupation and
empirical transition probability.

Level 2.5 large deviation function of di�usion processes

In the following, we derive heuristically the 2.5 LDF of empirical current and empirical
occupation density of Eq. (3.176) [240].
The probability of observing an empirical current jn[z] = j and an empirical occupation
density ρn[z] = ρ for a our reference process of generator L � or equivalently of drift b
and di�usion coe�cient σ � is given by:

Pn(j, ρ) =

∫
D[z]Pb,σ,%(0)[z]δ(ρn[z]− ρ)δ(jn[z]− j), (3.222)

where the path probability (2.63) can be rewritten as:

Pb,σ,%(0)[z] = %(z0, 0) exp

{
−
∫ nT

0

dt

[
1

2D(zt, t)

(
żt − b̂(zt, t)

)2

+
1

2
∇b(zt, t)

]}
.

= %(z0, 0) exp
n−1∑
`=0

{
−
∫ (`+1)T

`T

dt

[
1

2D(zt, t)

(
żt − b̂(zt, t)

)2

+
1

2
∇b(zt, t)

]}

= %(z0, 0) exp
n−1∑
`=0

{
−
∫ T

0

dτ

[
1

2D(zτ+`T , τ)

(
żτ+`T − b̂(zτ+`T , τ)

)2

+
1

2
∇b(zτ+`T , τ)

]}
,

(3.223)

where we used the periodicity of b and σ in the last equation. From Eq. (3.174), ρ and j
need to be related by

ρ̇ = −∇j, (3.224)
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otherwise Pn(j, ρ) = 0; and in the limit of large number of periods, Eq. (3.171) and
Eq. (3.172) require by continuity that ρ(T ) = ρ(0) and j(T ) = j(0). Let us introduce an
auxiliary process whose T -periodic Fokker-Planck generator L′ of drift B′ and di�usion
coe�cient σ will be chosen such that j and ρ are typical for the dynamics it generates.
The path probability PB′,σ,%(0)[z] associated with L′ is obtained by replacing b by B′ in
Eq. (3.223). We can rewrite Eq. (3.222) as

Pn(j, ρ) =

∫
D[z]PB′,σ,%(0)[z] e−A[z]δ(ρn[z]− ρ)δ(jn[z]− j), (3.225)

where we introduced

A[z] ≡ ln
PB′,σ,%(0)[z]

Pb,σ,%(0)[z]
. (3.226)

It follows from Eq. (3.223):

A[z] = −
n−1∑
`=0

∫ T

0

dτ

{
1

2D(zτ+`T , τ)

[(
żτ+`T − B̂′(zτ+`T , τ)

)2

−
(
żτ+`T − b̂(zτ+`T , τ)

)2
]

+
1

2
[∇B′(zτ+`T , τ)−∇b(zτ+`T , τ)]

}
= −

n−1∑
`=0

∫ T

0

dτ

{
1

2D(zτ+`T , τ)

[ (
2żτ+`T − b̂(zτ+`T , τ)− B̂′(zτ+`T , τ)

)
×
(
b̂(zτ+`T , τ)− B̂′(zτ+`T , τ)

) ]
+

1

2
[∇B′(zτ+`T , τ)−∇b(zτ+`T , τ)]

}
= −n

∫ T

0

dτ

∫
dx

{
1

2D(x, τ)

[
2jn[z](x, τ)

(
b̂(x, τ)− B̂′(x, τ)

)
− ρn[z](x, τ)

(
b̂(x, τ)2 − B̂′(x, τ)2

) ]
+

1

2
[∇B′(x, τ)−∇b(x, τ)] ρn[z](x, τ)

}
,

(3.227)

where we used in the last equation the de�nitions of the empirical occupation density and
empirical current:

ρ[z](x, τ) =
1

n

n−1∑
`=1

δ(zτ+`T − x), (3.228)

jn[z](x, τ) =
1

n

n−1∑
`=1

δ(zτ+`T − x) ◦ dżτ+`T . (3.229)

We now choose B′ such that ρ and j are typical in the long-time limit for the dynamics
generated by L′, i.e. such that

ρn[z]
L′−−−→

n→∞
ρ, (3.230)

jn[z]
L′−−−→

n→∞
j, (3.231)
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where the arrows refer to the convergence in probability with respect to PB′,σ,%(0)[z]. This
limit is veri�ed for B′ satisfying j = B̂′(x, t)ρ(x, t)− 1

2
D(x, t)∇ρ(x, t), and we have

B̂′(x, t)ρ(x, t)− b̂ρ(x, t) = j(x, t)− Jρ(x, t), (3.232)

where Jρ is de�ned in Eq. (2.66). It yields:

Pn(j, ρ) = e−nTI2.5(j,ρ)

∫
D[z]PB′,σ,%(0)[z]δ(ρn[z]− ρ)δ(jn[z]− j), (3.233)

where we have from Eq. (3.227) and Eq. (3.232) and using an integration by parts:

TI2.5(j, ρ) = −
∫
τ∈[0,T ]

∫
x

{
1

2Dρ

[
2j
(
b̂ρ− B̂′ρ

)
− ρ2

(
b̂2 − B̂′2

)]
− 1

2
[B′ − b]∇ρ

}
= −

∫
τ∈[0,T ]

∫
x

{
1

2Dρ

[
−2j (j − Jρ)−

(
(b̂ρ)2 − (B̂′ρ)2

)
−D [B′ρ− bρ]∇ρ

]}
=

∫
τ∈[0,T ]

∫
x

{
1

2Dρ
[2j (j − Jρ)− (j − Jρ) (j + Jρ +D∇ρ) +D (j − Jρ)∇ρ]

}
=

∫
dτ∈[0,T ]

∫
x

{
1

2Dρ

[
(j − Jρ)2

]}
, (3.234)

where we dropped for clarity the dependence on x and τ of all the functions in the in-
tegral. Since B′ has been chosen such that Eqs. (3.230�3.231) are satis�ed, we have∫
D[z]PB′,σ,%(0)[z]δ(ρn[z]− ρ)δ(jn[z]− j) �

n→∞
1, leading to Pn(j, ρ) �

n→∞
e−nTI2.5(j,ρ) when

Eq. (3.224) is satis�ed. Hence, I2.5(j, ρ) is the 2.5 LDF of empirical occupation density
and empirical current.

Remark For di�usion processes of dimension d > 1, the previous calculation leads to
the 2.5 LDF

I2.5(j, ρ) =
1

T

∫
dτ∈[0,T ]

∫
x

[
1

2ρ
t(j − Jρ)D−1(j − Jρ)

]
, (3.235)

where x, j, b and σ are now d-dimensional vectors, D ≡ σσ† is a d× d matrix and ∇ is
the gradient vector.

3.D Lagrange multipliers

The method of Lagrange multipliers allows �nding the extrema (maxima or minima) of a
function under constraints. To proceed, the constraint on the variables of the function is
converted into a constraint on new variables called Lagrange multipliers, in the same way
the constraint on the energy in the equilibrium microcanonical ensemble translates into
a constraint on the temperature in the equilibrium canonical ensemble. The method is
summarized as follows [189]:

1. We want to �nd the optimizer of a function F (v1, . . . , vN) under M constraints

C`(v1, . . . , vN) = 0, ` = 1, . . . ,M. (3.236)
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2. We introduce a new function F̃ (v1, . . . , vN ; γ1, · · · γM):

F̃ (v1, . . . , vN ; γ1, · · · γM) ≡ F (v1, . . . , vN) +
M∑
`=1

γ`C`(v1, . . . , vN), (3.237)

where the new variable γ` is the Lagrange multiplier associated with the constraint
C`. F̃ is called the Lagrange function.

3. We compute the optimizer {v∗1(γ1, . . . , γM), . . . , v∗N(γ1, . . . , γM)} of F̃ solutions of
∂F̃
v1

(v∗1, . . . , v
∗
N ; γ1, · · · γM) = 0
...

∂F̃
vN

(v∗1, . . . , v
∗
N ; γ1, · · · γM) = 0

(3.238)

4. We inject the optimizer {v∗1(γ1, . . . , γM), . . . , v∗N(γ1, . . . , γM)} into the set of con-
straints {C`}, leading to a set of equations on the Lagrange multipliers of solution
{γ∗1 , . . . γ∗M}.

5. The �nal solution of our problem is {v∗1(γ∗1 , . . . , γ
∗
M), . . . , v∗N(γ∗1 , . . . , γ

∗
M)}.

An example of application of the method of Lagrange multipliers is the calculation of the
equilibrium microcanonical probability distribution. It follows from the maximization of
the Shannon entropy under the constraint of probability normalization.

3.E Direct calculation of the SCGF for jump processes

We recover the SCGF of the observable A by evaluating the 2.5 LDF (3.67) at the opti-
mum (ω,p) of our variational problem stated in Eq. (3.70). By de�nition of the second
component of our observable A in Eq. (3.68) and using Eq. (3.77) we �nd

γ2A2(p) =
1

T

∫ T

0

dt
∑
y

pyγ2hy, (3.239)

=
1

T

∫ T

0

dt

[
c+

∑
y

py

(∑
x 6=y

kxy −
∑
x 6=y

K ′xy

)
−
∑
y

pyu̇y

]
, (3.240)

=
1

T

∫ T

0

dt

[
c+

∑
y

py

(∑
x 6=y

kxy −
∑
x 6=y

K ′xy

)
+
∑
y

ṗyuy

]
, (3.241)
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where we used C3 in the integration by parts. Using Eqs. (3.73�3.74) and C2, the LDF
at the optimum (ω = K′ � p,p) reads

I(ω,p) =
1

T

∫ T

0

dt

[∑
y

py

(∑
x 6=y

kxy −
∑
x 6=y

K ′xy

)
+
∑
x,y 6=x

ωxy [ux − uy] + γ1

∑
x,y 6=x

ωxy gxy

]
(3.242)

=
1

T

∫ T

0

dt

[∑
y

py

(∑
x 6=y

kxy −
∑
x 6=y

K ′xy

)
+
∑
x,y 6=x

ux [ωxy − ωyx] + γ1

∑
x,y 6=x

ωxy gxy

]
(3.243)

=
1

T

∫ T

0

dt

[∑
y

py

(∑
x 6=y

kxy −
∑
x 6=y

K ′xy

)
+
∑
x

ux ṗx

]
+ γ1A1(ω). (3.244)

Combining Eqs. (3.241) and (3.244), we �nally obtain

γ1 A1(K′ � p) + γ2 A2(p)− I2.5(K′ � p,p) =
1

T

∫ T

0

c(τ)dτ. (3.245)

We recognize the SCGF Γ in the left-hand side of Eq. (3.245) as the Legendre transform
of the LDF. It follows that the SCGF is the time-average over a period of the Lagrange
multiplier used to ensure the normalization of the empirical occupation, recovering the
result stated in Eq. (3.83). The variational calculation of the SCGF is similar in many
ways to the calculation of the equilibrium canonical probability via the maximum entropy
principle in which the SCGF (free energy) also follows from the Lagrange multiplier that
imposes probability normalization.
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Chapter 4

Conditioning nonlinear Markov

processes on large deviations

�Tu peux avoir tout l'argent du

monde. Mais y'a un truc que tu

n'auras jamais... Un dinosaure.�

Homer Simpson

Previously, we extended the work of R. Chétrite and H. Touchette of conditioning and
biasing time-homogeneous Markov processes to periodically driven Markov processes. This
problem of conditioning relies on the theory of large deviations in the limit of large times.
It has been shown that the driven process is obtained from the biased process by using
the so-called generalized Doob transform. This transformation leads to a norm-conserving
Markov generator starting from a biased generator that is not norm-conserving. We say
that the generalized Doob transform recti�es the biased generator. For the purpose of
this chapter, we call linear operator formalism the framework in which the latter results
have been derived, as opposed to the Hamiltonian/Lagrangian formalism that will be
introduced in the following [109�123].

In this chapter, we consider Markov processes for which the large deviations are studied
in the limit of a large parameter that is not time, for instance volume or number of
particles. In this limit, the generator of the Markov process becomes a function of an
intensive variable (concentration, density, etc.). When it is linear in this variable, as for
N independent Markov jump or di�usion processes, we talk about linear Markov processes.
On the contrary, when the Markov generator is not linear in the intensive variable as it
happens for population processes or interacting many-body Markov processes, we talk
about nonlinear Markov processes.

In the following, we aim to generalize the Doob transform and the driven process
considered in the linear operator formalism to general nonlinear Markov processes using the
Hamiltonian framework. Considering this class of processes is motivated by its applications
in a wide range of �elds. Examples include biology [246,247], biochemistry [141,248�255],
sociophysics [256�259] and psychology [260,261].

This generalization relies on the theory of large deviations in which the scaling parame-
ter is a size-type parameter. We will see how concepts of the linear operator formalism such
as biasing, Doob transform (recti�cation) and Perron-Frobenius theorem translates within
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the Hamiltonian framework.
The outline of this chapter is as follows. In Sections 4.1, 4.2 and 4.3, we deal only with

time-independent generators. The case of time-periodic generator will be broached in Sec-
tion 4.4 as an opening. In Section 4.1, we derive explicitly the Lagrangian/Hamiltonian
formalism for the speci�c case of population processes starting from the well-known results
of the linear operator formalism for time-homogeneous Markov jump processes [123,124].
This derivation leads to the de�nition of Lagrangians and Hamiltonians describing both
the non-biased and biased processes. The novelty consists in the derivation of the La-
grangians and Hamiltonians associated with the driven process, generalizing the Doob
transform/recti�cation to nonlinear processes. On the basis of these results, we pro-
pose in Section 4.2 a general theory of the recti�cation of time-homogeneous nonlinear
Markov processes within the Lagrangian/Hamiltonian formalism. In Section 4.3, we il-
lustrate this theory with two speci�c models of population processes: the Brownian Don-
key [119,120,262] and a chemical reaction network [124]. The main content of this chapter
has been published in Ref. [263].

4.1 Markov population processes

A population process is a Markov jump process in which a state refers to the number of
individuals in a population, and a transition between states amounts to adding or removing
individuals from the population. For instance, a chemical reaction network can be modeled
by a population process, the states being the number of molecules of each species and
the transitions being the occurrence of a chemical reaction. Population processes �nd
application in a large number of domains such as chemical kinetics, biology, ecology,
�nance, epidemiology, demography, queueing theory, etc. In the following, we review
and adapt the Lagrangian/Hamiltonian formalism considered in Ref. [124] for chemical
networks to general nonlinear rates. We then go a step further by describing within this
formalism the driven process and the Doob transform from which it derives. The procedure
leading to the derivation of the driven process in the Hamiltonian formalism is generically
referred to as the recti�cation.

The following section is a pedagogical springboard to the general theory of Section 4.2
on the recti�cation of nonlinear Markov processes. For this reason, some elements are
not dealt with in depth as they are in the general theory of Section 4.2. The interest of
this section is to gradually introduce new concepts that might have seemed to come out
of nowhere if we had started this chapter with the general theory. Here, we derive each
object of the Lagrangian/Hamiltonian formalism from the linear operator formalism, thus
giving a mapping between the two frameworks and some intuition to the de�nitions of the
general theory.

We consider a many-body system modeled by a time-homogeneous Markov jump pro-
cess de�ned on an in�nite lattice. We denote by {X} the states occupied by each particle
andN the population state vector whose component NX ∈ N is the number of particles in
state X. We denoted by {α} the set of allowed transitions. For instance, it may represent
the set of reactions in a given chemical system. For an initial state N and a transition α,
the �nal state N ′ is then constrained by

N ′ = N + Dα, (4.1)
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where we introduced the vector Dα whose component DX,α is the variation of the number
of particles in state X when the transition α occurs. For example, consider the system of
reactions α = {±1,±2}:

2A
α=+1−−−⇀↽−−−
α=−1

3B, (4.2)

B
α=+2−−−⇀↽−−−
α=−2

A+ C, (4.3)

where A, B and C are three chemical species. The states in this model are {A,B,C},
the population state vector is N = (NA, NB, NC), with NX (X = A,B,C) the number of
species X, and we have

DA,+1 = −2, DB,+1 = 3, DC,+1 = 0,
DA,−1 = 2, DB,−1 = −3, DC,−1 = 0,
DA,+2 = 1, DB,+2 = −1, DC,+2 = 1,
DA,−2 = −1, DB,−2 = 1, DC,−2 = −1.

Because of the constraint (4.1), the transition rate kN ′N from N to N ′ depends only
on the initial state N and the transition α. Hence, we write them kα,N ≡ kN+Dα,N .
Note that the transition rates are time-independent by de�nition of a time-homogeneous
process. We now assume that the transition rate kα,N scales linearly with a large size-type
parameter N (volume, total number of particle, etc.) and that the state vector N is
of order N : N = O(N ). In the limit of large N , the appropriate state variable is the
empirical density (or concentration) at any time t de�ned by

z(t) ≡ N (t)

N
, (4.4)

where N (t) is the state vector at time t. Note that we made an abuse of notation by
denoting by N both the state of the system and the empirical state vector N (t) which
is a stochastic process. From the constraint (4.1), the number of particles in state X at
time t + δt is given by the number of particles in state X at time t plus the number of
particles added or removed because of the transitions occurred between t and t+ δt :

NX(t+ δt) = NX(t) +
∑
α

[Ωα]t+δtt DX,α, (4.5)

where [Ωα]t+δtt ≡
∑

s∈[t,t+dt[ δα(s),α is the number of transitions α that have occurred be-
tween times t and t+ δt. Introducing the empirical particle current due to transition α

λα(t) ≡ 1

N δt
[Ωα]t+δtt , (4.6)

and taking the limit δt→ 0, we obtain the continuity equation relating ż to the vector λ
of component λα:

ż = Dλ, (4.7)

with D the matrix of component DX,α. In our chemical example, N is the volume,
z = (zA, zB, zC) is the concentration vector of species A, B and C and λ is the empirical
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chemical current. Since we assumed that the transition rate kα,N scales linearly with N ,
we can de�ne the intensive transition rate k(z) by:

kα(z) ≡ lim
N→∞

kα,N
N

, (4.8)

and assume the existence of such limit. In general, kα(z) is not linear in z, justifying
the designation of nonlinear Markov processes. Contrary to Section 3.1 where we looked
at the large deviations in time of empirical observables, we are interested here in the
dynamical large deviations in size of the empirical current λ and empirical density z
during an in�nitesimal time interval δt when N goes to in�nity. To do so, we derive the
N -large deviation function associated with these observables by computing the transition
probability Pδt(Nf , t+ δt |Ni, t) from N (t) = Ni at time t to N (t + δt) = Nf at time
t+ δt in the continuous limit de�ned by

N →∞,
δt→ 0,

N δt→∞.
(4.9)

Since our Markov process is time-homogeneous, the transition probability depends only on
the di�erence δt between initial and �nal times and we write Pδt(Nf | Ni) the transition
probability from Ni to Nf after a time δt. In Appendix 4.A, we reproduce the derivation
done in the appendix of Ref. [124] for rates satisfying a mass-action law, but the proof
remains essentially the same for our general rates (4.8). We �nd that in the continuous
limit, the transition probability satis�es a LDP

Pδt(Nf |Ni) �N→∞ e−N δtL (λ,zi)δ(ż −Dλ), (4.10)

with zi ≡ Ni

N and zf ≡ Nf

N = zi + δtż, and where the LDF or detailed Lagrangian is given
by

L (λ, z) =
∑
α

[
λα ln

(
λα

kα(z)

)
− λα + kα(z)

]
. (4.11)

The transition probability Pδt(Nf | Ni) becomes in the continuous limit the transition
probability Pδt(zf | zi), and because the �nal density is constrained by zf = zi +δtDλ, the
transition probability Pδt(zi + δtDλ | zi) can be interpreted as the conditional probability
Pδt(λ | zi) to observe during δt an empirical current λ given the initial density zi. In order
to have a normalized probability, the detailed Lagrangian is always nonnegative and has
to vanish for at least one λ for each z. Note that the path probability Pt[N | Ni] of the
path [N ] = (Nτ )τ∈[0,t] along the time interval [0, t] given that the system was in Ni at
t = 0 is obtained from the product of transition probabilities over M steps of time δt with
M →∞, δt→ 0 and t = Mδt:

Pt[N |Ni] =
M∏
`=1

Pδt(N (t`) |N (t`−1)), (4.12)

where t` ≡ `δt. In the continuous limit, it leads to the path probability of [z] given the
initial state zi:

Pt[z | zi] �N→∞ e−N
∫ t
0 dτL (λτ ,zτ ). (4.13)
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On the other hand, the integrated transition probability Pt(Nf | Ni) to observe Nf after
a time t given the system was in Ni reads:

Pt(Nf |Ni) =
∑
{N(t`)}

`∈J1,M−1K

M−1∏
`=1

Pδt(N (t`) |N (t`−1)). (4.14)

In the continuous limit, it leads to:

Pt(zf | zi) �
n→∞

∫
D[λ, z]e−N

∫ t
0 dτL (λτ ,zτ )δ(ż −Dλ). (4.15)

Note the di�erence between Pt[z | zi] which is the probability of the path [z] of duration
t given the initial state zi, and Pt(zf | zi) which is the transition probability from zi to
zf after a time t (independently of the path followed in between).

We de�ne the detailed Hamiltonian as the SCGF of the observable Ωα = N δtλα, giving
the number of each transition α during δt:

H (f , z) ≡ lim
N→∞

1

N δt
ln

(∫
dλPδt(λ | z)eN δtf ·λ

)
, (4.16)

and corresponding to the LF transform of the detailed Lagrangian [124]

H (f , z) = sup
λ
{f · λ−L (λ, z)}, (4.17)

where f is conjugated to λ and where the central dot · stands for the scalar product
f · λ ≡

∑
α λαfα. Note that H is convex in f since it follows from a LF transform

with respect to λ (see Appendix 1.A). Note also that the Lagrangian and Hamiltonian do
not depend explicitly on time as a consequence of the time-homogeneity of our process.
Computing explicitly the LF transform of (4.17), we obtain that the detailed Hamiltonian
is given by

H (f , z) =
∑
α

kα(z)
[
efα − 1

]
. (4.18)

For f = 0, the value of the Hamiltonian is zero for any z. This property translates the fact
that H is associated with a norm-conserving Markov generator, and hence a normalized
transition probability, in line with the fact that the Lagrangian has to be nonnegative and
to have zero as a minimal value.

The detailed Lagrangian contains the information on every individual current, which
represents a surplus of information for what is usually needed to study the system. We can
consider a coarse-grained description of the model by looking at the N -large deviations of
the empirical density �ux ż. This information is encoded in the standard Lagrangian L
obtained by contracting the detailed Lagrangian over the empirical currents under the
constraint (4.7):

L(ż, z) ≡ inf
λ|ż=Dλ

L (λ, z). (4.19)

Contrary to the detailed Lagrangian, the standard Lagrangian is usually di�cult to com-
pute explicitly. The corresponding standard Hamiltonian is de�ned by

H(p, z) ≡ sup
ż
{p · ż − L(ż, z)}, (4.20)

90



where p is conjugated to ż and p · ż ≡
∑

X pX żX . Contrary to the standard Lagrangian
which is di�cult to obtain in general, the standard Hamiltonian is simply obtained from
the detailed Hamiltonian:

H(p, z) = sup
ż
{p · ż − L(ż, z)} (4.21)

= sup
ż

{
p · ż − inf

λ|ż=Dλ
[L (λ, z)]

}
(4.22)

= sup
ż

{
sup

λ|ż=Dλ

[p · ż −L (λ, z)]

}
(4.23)

= sup
λ
{p · (Dλ)−L (λ, z)} (4.24)

= sup
λ

{
(D†p) · λ−L (λ, z)

}
(4.25)

= H (f = D†p, z), (4.26)

where D† is the adjoint of D and where we used Eq. (4.19). It yields

H(p, z) =
∑
α

kα(z)
[
ep·Dα − 1

]
. (4.27)

Since Eq. (4.26) allows explicit formulation of standard Hamiltonians, we expect that
the Hamiltonian framework is more convenient for analytical computations than the La-
grangian framework.

Illustration with a toy model

We illustrate the results derived above with a simple linear population process. Even if
looking at a linear model does not seem interesting, it remains a pedagogical toy model
as it allows us to compute analytical expressions and to understand the dynamics of the
system. Nonlinear models will be studied in Section 4.3. We are interested here in a
linear chemical reaction. In general, chemical reaction networks are represented by a set
of chemical reactions. The rth reaction reads:∑

X

ν+r
X X

K+r−−⇀↽−−
K−r

∑
X

ν−rX X, (4.28)

where Kεr is the kinetic constant of the reaction εr, where the sum runs over the chemical
species X, and where νεrX is the stoichiometry of species X in the reaction εr, with ε = ±.
Chemical reaction networks are a particular case of population processes where N is a
volume, the variable z is the concentration vector whose component zX is the concentration
of species X, and the variable λ is the chemical current such that Nδtλεr is the number
of reactions εr occurring during an in�nitesimal time δt. Both variables are related by
ż = Dλ, where D is the matrix whose component DX,εr = ν−εrX − νεrX is the variation of
the number of species X when the reaction εr occurs. We choose the intensive rates of
Eq. (4.8) according to the mass-action law [124,264]:

kεr(z) ≡ Kεrz
νεr , (4.29)
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with zν
εr ≡

∏
X zX

νεrX . Now, we are interested in the following chemical reaction

A
K+1



K−1

X
K+2



K−2

B, (4.30)

where species A and B are chemostatted, i.e. they have constant concentrations a and b,
respectively. We call x the concentration of species X and we set k−1 = 1, �xing the time
scale in numerical plots. Since a and b are constant, the variable z reduces to x and the
matrix D becomes the vector of components

D+1 = +1, D+2 = −1,
D−1 = −1, D−2 = +1.

(4.31)

The transition rates kεr(z) for this system are given by

k+1 = K+1a, (4.32)
k−1 = K−1x, (4.33)
k+2 = K+2x, (4.34)
k−2 = K−2b. (4.35)

From Eqs. (4.18, 4.27), the detailed and standard Hamiltonians for this model are given
by:

H (f , x) = K+1a
[
ef+1 − 1

]
+ K−1x

[
ef−1 − 1

]
+ K+2x

[
ef+2 − 1

]
+ K−2b

[
ef−2 − 1

]
,

(4.36)

H(p, x) = (K+1a+ K−2b)[e
p − 1] + (K−1 + K+2)x[e−p − 1], (4.37)

both related by H (f = D†p, x) = H(p, x). For this model, the standard Lagrangian
can be explicitly computed by contracting the detailed Lagrangian (4.11) according to
Eq. (4.19). It yields

L(ẋ, x) = ẋ ln
ẋ+

√
ẋ2 + 4(K+1a+ K−2b)(K−1 + K+2)x

2(K+1a+ K−2b)

−
√
ẋ2 + 4(K+1a+ K−2b)(K−1 + K+2)x+ (K−1 + K+2)x+ (K+1a+ K−2b). (4.38)

The same result can be obtained by taking the LF transform of Eq. (4.37) with respect to
p since for di�erentiable Hamiltonians, the LF transform of Eq. (4.20) is involutive. When
we compare the expressions of standard Lagrangian and Hamiltonian, it is obvious that
the Hamiltonian formalism is more convenient for explicit computation. A fortiori, when
dealing with di�erentiable Hamiltonians or convex Lagrangians, the two formalisms are
strictly equivalent since the LF transform is involutive. In the rest of this manuscript, we
assume that it is always the case.

4.1.1 Biased process

Similarly to the linear operator formalism, we are interested in the �uctuations of the
observable

At ≡

(
1
t

∑
t′∈[0,t][Ω]t

′+dt′

t′

1
t

∫ t
0
N (t′)dt′

)
= N

(
1
t

∫ t
0
λ(t′)dt′

1
t

∫ t
0
z(t′)dt′

)
, (4.39)
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where [Ω]t
′+dt′

t′ is the vector function of component [Ωα]t
′+dt′

t′ . Hence, the �rst component
of At counts the number of each transition occurring during the time interval [0, t], and
the second component of At is the time average of the number of individuals at each state
during the interval [0, t]. Using the results of Section 2.3.4, the biased transition matrix
κ ruling the time-evolution of the generating function G̃N (t,γ) = ENi

[
etγ·AtδN(t),N

]
�

where the average is done with respect to the path probability Pt[N |Ni] � reads in the
Dirac notation

κ =
∑
α,N

kα,Neγ
1
α |N + Dα〉 〈N | − kα,N |N〉 〈N |+

∑
N

γ2 ·N |N〉 〈N | , (4.40)

where the vectors γ1 of component γ1
α and γ2 of component γ2

X are conjugated to the �rst
and second component of At, respectively. Once again, we aim to describe the N -LDF of
the observables λ and z but now with respect to the biased process. To do so, we compute
the biased transition probability G̃δt(Nf |Ni) = 〈Nf | eδtκ |Ni〉 from an initial state Ni to
a �nal state Nf after a time δt [124]. Following the same procedure used to derive the
detailed Lagrangian in Appendix 4.A, we obtain in the continuous limit that the biased
transition probability satis�es a LDP

G̃δt(Nf |Ni) �N→∞ e−N δtLγ(λ,z)δ(ż −Dλ), (4.41)

where the detailed biased Lagrangian is given by:

Lγ(λ, z) =
∑
α

[
λα ln

(
λα

kα(z)

)
− λα + kα(z)− γ1

αλα

]
− γ2 · z. (4.42)

The LF transform of Eq. (4.42) with respect to λ de�nes the detailed biased Hamiltonian

Hγ(f , z) =
∑
α

kα(z)
[
efα+γ1α − 1

]
+ γ2 · z = H (f + γ1, z) + γ2 · z, (4.43)

where f is once again the conjugate variable of λ.
As discussed in Chapter 3, the biased matrix κ generates a Markov process that is not

norm-conserving, which implies that G̃δt(Nf | Ni) is not a proper transition probability
as it is not normalized. In the Lagrangian/Hamiltonian formalism, this translates into
the fact that the biased Lagrangian needs not to vanish at a given λ for each z and
that the biased Hamiltonian is not zero anymore when f = 0, as can be noticed from
Eqs. (4.42�4.43).

Again, we can consider a coarse-grained description of the model by looking at the
N -large deviations of the empirical density �ux ż given z, and we de�ne the standard
biased Lagrangian Lγ(ż, z) and standard biased Hamiltonian Hγ(p, z) in the same way as
for the non-biased case:

Lγ(ż, z) ≡ inf
λ|ż=Dλ

Lγ(λ, z), (4.44)

Hγ(p, z) ≡ sup
ż
{p · ż − Lγ(ż, z)} = Hγ(f = D†p, z). (4.45)

In the following, we may skip the attributes detailed and standard as the notations used
for the Lagrangians and Hamiltonians are distinguishing, namely calligraphic letters are
used for detailed Lagrangians (L ) and Hamiltonians (H ) while straight letters are for
standard Lagrangians (L) and Hamiltonians (H).
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Illustration with the toy model

Let us go back to our toy model (4.30). Using Eqs. (4.43, 4.45), the (standard) biased
Hamiltonian reads

Hγ(p, x) = αep + βxe−p − δx− (K+1a+ K−2b), (4.46)

where we introduced for clarity

α ≡ K+1aeγ
1
+1 + K−2be

γ1−2 , (4.47)

β ≡ K−1eγ
1
−1 + K+2eγ

1
+2 , (4.48)

δ ≡ K−1 + K+2 − γ2. (4.49)

We clearly see that for γ 6= 0, Hγ(p, x) 6= 0. Computing the LF transform of Hγ leads to
the biased Lagrangian

Lγ(ẋ, x) = ẋ ln
ẋ+

√
ẋ2 + 4αβx

2α
−
√
ẋ2 + 4αβx+ δx+ (K+1a+ K−2b). (4.50)

Notice that for γ = 0, we recover the non-biased Hamiltonian and Lagrangian of Eqs. (4.37�
4.38).

4.1.2 Equations of motion

What follows includes the non-biased formalism by taking γ = 0. We are interested in
the typical behavior of our system during the time-interval [0, T ]. The biased transition
probability of observing zf = zi +

∫ T
0
żtdt = zi +

∫ T
0
Dλtdt at t = T given the initial state

zi at t = 0 satis�es

G̃T (zf | zi) �N→∞

∫
D[λ, z]e−N

∫ T
0 Lγ(λt,zt)dtδ(ż −Dλ) �

N→∞

∫
D[ż, z]e−N

∫ T
0 Lγ(żt,zt)dt,

(4.51)
where we used Laplace's approximation and the de�nition of the standard biased La-
grangian (4.19) in the last equality. There is a family of trajectories {(zt)ε} indexed by ε
connecting zi to zf during a time T . The typical trajectory followed by the system is the
one minimizing the action S[ż, z]T0 ≡

∫ T
0

dtLγ(żt, zt), which appears to be the one solving
the Euler-Lagrange equation for any t ∈ [0, T ]:

∂Lγ
∂z
− d

dt

(
∂Lγ
∂ż

)
= 0, (4.52)

with boundary conditions z0 = zi and zT = zf , see Appendix 4.B for the derivation.
Assuming that the Hamiltonian is di�erentiable, the Lagrangian is given by the Legendre
transform

Lγ(ż, z) = p · ż −Hγ(p, z), (4.53)

with p = ∂Lγ
∂ż

. The biased transition probability can then be written from a Hamiltonian
perspective

G̃T (zf | zi) �N→∞

∫
D[p, z]e−N

∫ T
0 [pt·żt−Hγ(pt,zt)]dt. (4.54)

94



As before, we look for the typical trajectory (zt)
ε connecting zi to zf after a time T .

This trajectory is the one minimizing the action S[p, z]T0 ≡
∫ T

0
[pt · żt −Hγ(pt, zt)] dt and

appears to be the solution of Hamilton's equations for any t ∈ [0, T ]:{
żt = ∂pHγ(pt, zt),

ṗt = −∂zHγ(pt, zt),
(4.55)

with the same boundary conditions zi and zf , see Appendix 4.B for the derivation, and
where ∂p and ∂z are the gradients with respect to p and z, respectively. Along this
solution, the value of the Hamiltonian is a constant of time. Indeed, using Eq. (4.55) and
the fact that the Hamiltonian is not explicitly time-dependent, we have

dHγ(p, z)

dt
= ṗ ∂pHγ(p, z) + ż ∂zH(p, z) = 0. (4.56)

Hence, the value of the Hamiltonian depends essentially on the boundary conditions. The
biased transition probability satis�es then

G̃T (zf | zi) �N→∞ eN [Hγ(p∗t ,z
∗
t )T −

∫ T
0 p∗t ·ż∗t dt], (4.57)

for p∗t and z
∗
t solutions of Hamilton's equations (4.55). We recognize in the second term

of the exponential the so-called reduced action

Sr(T ) ≡
∫ T

0

p∗t · ż∗t dt. (4.58)

Hamilton-Jacobi equation

An alternative description of the dynamics can be obtained by considering Hamilton's
principal function � also called Jacobi's action � de�ned as the action evaluated along
the solutions of Hamilton's equations (or equivalently the Euler-Lagrange equation) with
initial state zi and arrival state z at time t:

S(z, zi, t) ≡
∫ t

0

dτLγ(żτ , zτ ), (4.59)

with (żτ , zτ ) solution of Eq. (4.52). The action S contains all the information on the
dynamics of the system (see Ref. [265] for more details). It can be obtained by solving a
partial di�erential equation called Hamilton-Jacobi (HJ) equation:

∂S

∂t
+Hγ(p = ∂zS,z) = 0. (4.60)

When the Hamiltonian is time-independent, hence a constant along a solution of Hamil-
ton's equations Hγ(p, z) = E, it is convenient to consider Hamilton's characteristic func-
tion de�ned as the Legendre transform of S with respect to time:

W (z, zi, E) = Et+ S(z, zi, t), (4.61)

where the eigenrate E has the dimension of an inverse time and replaces �energy� in the
HJ equation of analytical mechanics. The Hamilton-Jacobi equation for W reads

Hγ(p = ∂zW,z) = E. (4.62)

Unless speci�ed otherwise, the terminology �Hamilton-Jacobi equation� always refers to
Eq. (4.62) in this manuscript.
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Representation of the trajectories

From now on, we work only from the Hamiltonian perspective as standard Hamiltonians
are more convenient than standard Lagrangians. We saw that the trajectory (pt, zt) likely
followed by the system is the one satisfying Hamilton's equations. These solutions depend
on the boundary conditions. If ∂zHγ and ∂pHγ are smooth enough (which is assumed to
be always the case in this manuscript), then the solutions of Hamilton's equations exist
and are unique given the boundary conditions zi at initial time t = 0 and zf at �nal time
t = T (or any other conditions) [266].

We represent the ensemble of solutions of Hamilton's equations in the phase space (p, z)
in which the dependence in time is made implicit (see Fig. 4.1). Each point of the phase
space represents the value of z and p at a given time t0, and each line represents one
trajectory (p∗t , z

∗
t ) solution of Hamilton's equations and is a line of constant Hamiltonian.

Starting from the point (pt0 , zt0), the system will evolve to another point (pt0+τ , zt0+τ )
after a time τ by following the corresponding trajectory. The direction followed by the
system along the trajectory is indicated by an arrow. For an initial state zi and a �nal
state zf , several trajectories are possible (red trajectories in Fig. 4.1). If now we impose
that zf is reached after a speci�c time T , then only one trajectory is admitted according
to the uniqueness of the solutions of Hamilton's equations. This uniqueness translates
into the fact that the trajectories in the phase space never intersect. If two trajectories
intersected, the system could follow two di�erent trajectories starting from the same point
in the phase space (the crossing point), meaning that there would be two solutions of
Hamilton's equations, which would contradict the uniqueness theorem [266]. An important
remark is that in Fig. 4.1, two trajectories seem to intersect in the red point (�xed point).
In fact, it is not the case because the system takes an in�nite time to reach or leave that
point, and trajectories only approach it in�nitesimally closely but will never reach it (see
the next sections for more details). Thereafter, we look for the trajectory followed by the
system when the �nal condition zf is imposed in the limit of long �nal time T → ∞.

Critical manifolds

There is a particular class of trajectories that we call critical manifolds1, de�ned as an
ensemble of compact trajectories (in the sense that they are entirely included in some
compact2 set of the phase space) and such that at least one other trajectory converges
towards it forward or backward in time. We name these trajectories that lead to a critical
manifold forward (resp. backward) in time relaxing (resp. �uctuating) transient trajecto-
ries. The simplest critical manifolds are �xed points, whose phase space coordinates solve
the stationary Hamilton's equations {

ż = 0,

ṗ = 0.
(4.63)

The �xed point in Fig. 4.1 (red point) is a critical manifold. Note that centers (e.g. the
magenta point in Fig. 4.7), are �xed points but not critical manifolds as no other trajectory

1A manifold is informally de�ned as a geometrical space generalizing the notion of curve or surface to
arbitrary dimensions. For instance, a one-dimensional manifold is a curve and includes lines and circles.
A two-dimensional manifold is a surface and includes plans, spheres and tori.

2In Rn, a set is compact if and only if it is closed and bounded.
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Figure 4.1 � Trajectories in the phase space of the toy model (4.30). Each line corresponds
to a value of H. The arrows indicate the direction of each trajectory. All the red trajec-
tories start at zi at t = 0 and end at zf at di�erent �nal times. Imposing the �nal time T
such that zT = zf selects a unique trajectory compatible with z0 = zi.

converges to them. Another type of critical manifolds is limit cycles which are closed
critical manifolds of dimension 1. Limit cycles are nonlinear phenomena and cannot occur
in linear systems. Note that circles (periodic trajectories encircling a center, see Fig. 4.7)
are not critical manifolds as no other trajectory leads to them. Other examples of critical
manifolds include tori or complex geometric structures called strange attractors3. When
the system is at a critical manifold, it will take an in�nite time to leave it via a �uctuating
transient trajectory. On the contrary, it takes an in�nite time for the system to reach a
critical manifold via a relaxing transient trajectory.

Long-time limit dynamics

We are interested in characterizing the typical (or dominant) trajectory (p∗t , z
∗
t ) when

T → ∞. It means that we look for a trajectory connecting zi to the �nal state zf after an
in�nitely long time T . Intuitively, we sense that the only way to connect two �nite posi-
tions of the phase space during an in�nite amount of time is to follow transient trajectories.
In Section 4.2.3, we will con�rm this intuition and see that for any boundary conditions zi

and zf , the dominant trajectory in the long-time limit approaches asymptotically transient
trajectories along which the Hamiltonian equals the SCGF:

Hγ(p∗t , z
∗
t ) = Γ̄, (4.64)

where we de�ned the SCGF Γ̄ scaled in time and size:

Γ̄ ≡ Γ

N
=

1

N
lim
T →∞

1

T
lnEzi

[
eT γ·AT

]
, (4.65)

3We made here an abuse of language as attractor means that all trajectories converge toward it forward
in time. Here, the strange attractor may be stable for some trajectories (attractor) and unstable for others
(repeller).
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where the average is done with respect to PT [z | zi]:

Ezi
[
eT γ·At

]
=

∫
D[z]eT γ·AtPT [z | zi] �N→∞

∫
D[λ, z] e−N

∫ T
0 Lγ(λt,zt)dtδ(ż−Dλ). (4.66)

We used Eqs. (4.13), (4.39) and (4.42) in Eq. (4.66). In particular, in the non-biased case
(γ = 0), Γ̄ = 0 implying that the trajectories at p = 0 are dominant in the long-time limit
since H(p = 0, z) = 0, ∀z. For now, we try to give some intuition to this prediction using
our toy model (4.30).

Illustration with the toy model

Let us investigate the dynamics governed by the biased Hamiltonian. Hamilton's Equa-
tions read {

ẋ = ∂Hγ
∂p

= αep − βxe−p,

ṗ = −∂Hγ
∂x

= −βe−p + δ.
(4.67)

The critical manifolds of this system consist of one �xed point of coordinates{
x? = αβ

δ2
,

p? = ln β
δ
.

(4.68)

Note that the allowed values of γ2 are such that δ > 0 to ensure the existence of p?. At
this �xed point, the biased Hamiltonian is given by

Hγ(p?, x?) =
αβ

δ
− (K+1a+ K−2b). (4.69)

The trajectories (p∗t , x
∗
t ), solutions of Hamilton's equations, are represented in Fig. 4.2 both

in the non-biased and biased cases. There are four transient trajectories in both cases:
two trajectories leading to the �xed point forward in time (relaxing) and two trajectories
leading to the �xed point backward in time (�uctuating). When biasing, the original
�xed point is shifted from its position xnb (where nb stands for �Non-Biased�) to a new
concentration x? �xed by the value γ, but with p? 6= 0 translating the fact that the biased
process is not norm-conserving.

In the following, we illustrate analytically and/or numerically the following points:

1. The dominant trajectory in the long-time limit approaches the transient trajec-
tory connecting the boundary conditions.

2. Along a relaxing transient trajectory, it takes an in�nite time for the system to reach
the �xed point. Conversely, when the system is at the �xed point, it takes an in�nite
time to leave it via a �uctuating transient trajectory.

3. The value of the Hamiltonian along the transient trajectories is equal to the SCGF
Γ̄(γ). In particular, this value is 0 for the non-biased Hamiltonian.

To show these points, we compute analytically the solutions of Eq. (4.67) with initial
condition xi at t = 0 and �nal condition xf at t = T . We obtain{

p∗t = ln
[
(epf − ep?) eδ(t−T ) + ep?

]
,

x∗t =
[(
xie
−p∗0 − x?e−p?

)
e−δt + x?e

−p?
]

ep
∗
t .

(4.70)
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Figure 4.2 � (Left) Trajectories of the non-biased Hamiltonian (γ = 0). The coordinates
of the �xed point (green point) are (xnb = (K+1a+ K−2b)/(K−1 + K+2), pnb = 0). (Right)
Trajectories of the biased Hamiltonian. The coordinates of the �xed point (red point) are
(x? = αβ/δ2, p? = ln(β/δ)).
The �gures are obtained for K+1a = 3, K−1 = 1, K+2 = 3, K−2b = 2, γ1

+1 = 1, γ1
−1 = −2,

γ1
+2 = 2, γ1

−2 = −1, γ2 = −3 leading to xnb = 0.18, x? = 4.05 and p? = 1.16.

For convenience, we imposed in Eq. (4.70) the �nal condition pf instead of xf , both being
related by xf =

[
(xie

−p0 − x?e−p?) e−δT + x?e
−p?
]

epf . The solutions (p∗t , x
∗
t ) are repre-

sented in Fig. 4.3. We see that for each value of the �nal time T , there is a unique
trajectory connecting xi to xf (right �gure). The greater T is, the closer the trajectory
is to the transient trajectories. In the limit T → ∞ (with T < ∞), (p∗t , x

∗
t ) approaches

asymptotically the transient trajectories (but never reach them!). We can see this result
analytically from Eq. (4.70). For large �nal time T , we have for t su�ciently away from Tp

∗
t −−−→T →∞

p?,

x∗t −−−→T →∞
(xi − x?)e−δt + x? '

t& 1
δ

x?,
(4.71)

showing that the system is in�nitesimally close to the �xed point (but not strictly at it)
(left �gure), and then that the dominant trajectory in the long-time limit converges to the
transient trajectories (point 1).

We now prove the point 2. We show that along the relaxing transient trajectory (p∗t = p?,
∀t), it takes an in�nite time to reach the �xed point. Starting from xi 6= x?, the solutions
for all t are {

p∗t = p?,

x∗t = (xi − x?)e−δt + x?.
(4.72)

Hence, x? is reached theoretically at t =∞. Conversely, let us show that if the system is
initially at the �xed point, it takes an in�nite time to leave it. Taking t = 0 in Eq. (4.70),
we obtain {

p∗0 = ln
[
(epf − ep?) e−δT + ep?

]
,

x∗0 = xi.
(4.73)
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Figure 4.3 � (Left) p∗t and x
∗
t solutions of Hamilton's equations with boundary conditions

x∗0 = xi and p∗T = pf for large T . These solutions leave their initial values to approach
closely the �xed point (x?, p?), then reach their �nal values at t = T (red trajectory in the
right �gure). Note that the �xed point is not reached, but the solution is in�nitesimally
close to it (x∗t − x? ∼ 10−15 for t su�ciently away from 0 and T ).
(Right) Trajectories followed by the system from xi to xf at time T for di�erent values
of T . When we increase T , the trajectory followed by the system approaches the two
transient trajectories connecting xi to xf . When T → ∞, the trajectory followed by the
system (red trajectory) is in�nitesimally close to the two transient trajectories.
Both �gures are obtained for xi = 5.5, xf = 2, K+1a = 3, K−1 = 1, K+2 = 3, K−2b = 2,
γ1

+1 = 1, γ1
−1 = −2, γ1

+2 = 2, γ1
−2 = −1, γ2 = −3 leading to x? = 4.05 and p? = 1.16. In

the left �gure, T = 20.

We impose the �nal condition pf 6= p? at t = T . It means that if the system is initially at
the �xed point (xi = x?, p

∗
0 = p?), we have from the �rst equality of Eq. (4.73) that the

�nal time T is necessarily in�nite. Hence, the system is at the �xed point at any �nite
time t and leaves the �xed point only for t close to T = ∞ to reach (pf , xf) theoretically
at t = T . This shows point 2.

Let us now discuss the point 3. Injecting the solutions of Eq. (4.70) in the expression
of the biased Hamiltonian (4.46) leads to

Hγ(p∗t , x
∗
t ) = α

[(
epf − β

δ

)
e−δT +

β

δ

]
+

βxi(
epf − β

δ

)
e−δT + β

δ

−δxi−(K+1a+K−2b). (4.74)

Notice that indeed Hγ(p∗t , x
∗
t ) does not depend on time along the solution of Hamilton's

and is equal to Hγ(p∗0, x
∗
0). In the long-time limit, we obtain

Hγ(p∗t , x
∗
t ) −−−→T →∞

αβ

δ
− (K+1a+ K−2b) = Hγ(x?, p?), (4.75)

for any boundary conditions xi and pf . This is expected since the dominant trajectory in
the long-time limit converges to the trajectories leading to the �xed point. Let us now
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prove that the SCGF Γ̄ coincides with Hγ(p?, x?). From Eqs. (4.51, 4.57, 4.66), we have

Γ̄ = lim
T →∞

1

NT
lnExi

[
eT γ·At

]
=

{
Hγ(p∗t , x

∗
t )−

1

T

∫ T
0

p∗t ẋ
∗
tdt

}
, (4.76)

for the �nal condition xf maximizing the action. In the limit T → ∞, the system follows
asymptotically the relaxing transient trajectory (p = p?) from xi to x?, then it follows
asymptotically the �uctuating transient trajectory from x? to xf (red trajectory in Fig. 4.3).
The reduced action Sr =

∫ T
0
p∗t ẋ

∗
tdt along those trajectories reads then

Sr(T ) =

∫
[x∗t ]T0

p∗(x)dx '
T →∞

∫ x?

xi

p∗(x)dx+

∫ xf

x?

p∗(x)dx, (4.77)

with p∗(x) the solution of the HJ equation corresponding to the trajectory (p∗t , x
∗
t ) and

where we used the fact that at the �xed point, the reduced action is zero since ẋ? = 0.
Eq. (4.77) implies that the reduced action is �nite in the limit T → ∞, hence

lim
T →∞

Sr(T )

T
= 0. (4.78)

It follows from Eqs. (4.75, 4.76, 4.78) that Γ̄ = Hγ(p?, x?), proving the point 3.
Some remarks are worth to be done. For the non-biased Hamiltonian (γ = 0), one

can check that the SCGF Γ̄ is zero as expected. We also have p?(γ = 0) = pnb = 0,
which is expected since the non-biased Hamiltonian has to vanish at p = 0 to ensure the
normalization of the transition probability. When biasing (γ 6= 0), the biased transition
probability is not normalized anymore and p? is shifted from 0 while x? takes a new
value which depends on γ. Hence, biasing de�nes a new process with a new �xed point
(corresponding to a new typical trajectory) but that is not associated with a normalized
transition probability (Hγ(p = 0, x) 6= 0). In the next section, we will see how to rectify
the biased process in order to build a norm-conserving process. This recti�ed process
corresponds to the driven process in the linear operator formalism.

4.1.3 Recti�ed process

In the linear operator formalism, the driven generator for time-homogeneous Markov pro-
cesses is given by the Doob transform (3.23) of the biased generator κ using its dominant
left eigenvector [80]:

K ≡ κeU = D(eU )κD(e−U )−D(e−U )D(eUκ), (4.79)

where the vector eU of component (eU )x ≡ eUx is the dominant left eigenvector of κ whose
highest eigenvalue coincides with the SCGF Γ = N Γ̄ de�ned in Eq. (4.65). Note that the
positivity of eU is ensured by the PF theorem.

Spectral problem in the continuous limit

Before deriving the Lagrangian and Hamiltonian associated with the dynamics generated
by K, let us �rst investigate in the continuous limit the spectral equation

eUκ = N Γ̄eU . (4.80)
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To do so, assume that for N = O(N ), N → ∞, there exists for any α a function Ws(z)
such that

UN+Dα − UN 'Dα · ∂zWs, (4.81)

where the scalar product is performed over the states: Dα · ∂zWs ≡
∑

X DX,α∂zXWs. We
investigate the nature of the function Ws by writing the spectral relation between U and
κ (4.80): ∑

α

eUN+Dακα,N + eUNκN ,N = N Γ̄eUN (4.82)∑
α

eUN+Dα−UNκα,N + κN ,N = N Γ̄ (4.83)∑
α

eUN+Dα−UNkα,Neγ
1
α −

∑
α

kα,N + γ2 ·N = N Γ̄, (4.84)

where we used Eq. (4.40) in the last equation. Taking the continuous limit (4.9) and using
the assumption (4.81), we �nally obtain∑

α

kα(z)
[
eDα·∂zWs+γ1α − 1

]
+ γ2 · z = Γ̄. (4.85)

We recognize the biased Hamiltonian (4.43) in the left-hand side of Eq. (4.85):

Hγ(f = D†∂zWs, z) = Γ̄, (4.86)

or equivalently
Hγ(p = ∂zWs, z) = Γ̄. (4.87)

The function Ws appears to be Hamilton's characteristic function, solution of the HJ
equation (4.62) for the eigenrate E = Γ̄. One keeps in mind that Ws depends on γ. Then,
the spectral problem in the linear operator formalism amounts to solving a Hamilton-
Jacobi equation in the continuous limit. Following the same derivation for the dominant
right eigenvector of κ leads to the same equation (4.87). Hence, Eq. (4.87) admits two
solutions Ws,u corresponding to the left and right Perron-Frobenius eigenvectors of κ. By
convention, we call Ws the solution corresponding to the left eigenvector (this choice of
notation will become clearer in Section 4.2). In the non-biased case (γ = 0), Γ̄ = 0 and
Ws(γ = 0) = 0, in line with the fact that the dominant eigenvalue and left eigenvector of
the non-biased generator k are respectively 0 and eU(γ=0) = 1, implying U(γ = 0) = 0.

Recti�ed process

We now derive the Lagrangian associated with the driven generator K. From Eq. (4.79)
and using Eq. (4.40) and Eq. (4.80), K reads in the Dirac notation

K =
∑
α,N

eUN+Dα−UNkα,Neγ
1
α |N + DαN〉 〈N |

−
∑
N

(∑
α

kα,N − γ2 ·N +N Γ̄

)
|N〉 〈N | . (4.88)
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Replacing k byK in the procedure used to derive the original Lagrangian (Appendix 4.A),
we obtain that the transition probability PK,δt(Nf |Ni) ≡ 〈Nf | eδtK |Ni〉 associated with
the driven process satis�es a LDP:

PK,δt(Nf |Ni) �N→∞ e−δtNL r(λ,z;γ)δ(ż −Dλ), (4.89)

where the detailed recti�ed Lagrangian is given by

L r(λ, z;γ) = Lγ(λ, z)− λ ·D†∂zWs + Γ̄. (4.90)

The corresponding detailed recti�ed Hamiltonian is obtained by taking the LF transform
of Eq. (4.90) with respect to λ and it yields

H r(f , z;γ) =
∑
α

kα(z)
[
efα+γ1α+Dα·∂zWs − 1

]
+ γ2 · z − Γ̄, (4.91)

or equivalently

H r(f , z;γ) = Hγ(f + D†∂zWs, z)−Hγ(D†∂zWs, z), (4.92)

where we used Eqs. (4.43, 4.86). Again, we can consider a coarse-grained description of
the model by looking at the N -large deviations of the empirical density �ux ż, and we
de�ne the standard recti�ed Lagrangian Lr(ż, z;γ) and the standard recti�ed Hamiltonian
Hr(p, z;γ) similarly to the non-biased case:

Lr(ż, z;γ) ≡ inf
λ|ż=Dλ

L r(λ, z;γ), (4.93)

Hr(p, z;γ) ≡ sup
ż
{p · ż − Lr(ż, z;γ)} = Hγ(f = D†p, z;γ) (4.94)

= Hr(p+ ∂zWs, z)−Hγ(∂zWs, z). (4.95)

As expected for Hamiltonians deriving from norm-conserving Markov generators, the rec-
ti�ed Hamiltonian vanishes at p = 0.

Illustration with the toy model

Let us compute the recti�ed Hamiltonian for our toy model (4.30):

Hr(p, x;γ) = Hγ(p+ ∂xWs, x)−Hγ(∂xWs, x) (4.96)

To do so, we �rst solve the Hamilton-Jacobi equation

Hγ(p = ∂xW,x) = Γ̄. (4.97)

This equation admits exactly two solutions

Ws(x) ≡ p?x (4.98)

Wu(x) ≡ x ln

(
xδ

α

)
− x, (4.99)

up to an additive constant that we set equal to 0 since only the derivative ∂xW appears in
the de�nition of the recti�ed Hamiltonian. Note that Ws is the solution associated with
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Figure 4.4 � Trajectories of recti�ed biased Hamiltonian. The coordinates of the �xed
point (blue point) are (x?, p = 0).
The �gures are obtained for K+1a = 3, K−1 = 1, K+2 = 3, K−2b = 2, γ1

+1 = 1, γ1
−1 = −2,

γ1
+2 = 2, γ1

−2 = −1, γ2 = −3 leading to x? = 4.05 and p? = 1.16.

the dominant left eigenvector of the biased generator as it satis�es Ws(γ = 0) = 0. In
Section 4.2, we give a more rigorous criterion for the choice of Ws. Using the expression
of Ws in Eq. (4.97), we obtain the recti�ed Hamiltonian

Hr(p, x;γ) = δx? (ep − 1) + δx
(
e−p − 1

)
. (4.100)

Contrary to the biased Hamiltonian, the recti�ed Hamiltonian is a proper Hamiltonian
(H(p = 0, x) = 0) associated with a norm-conserving Marvov process, which guar-
antees that the concentrations following from this Hamiltonian are physical concentra-
tions. Unsurprisingly, it has the same structure as the original non-biased Hamiltonian
H(p, x) = (K+1a+K−2b)[e

p−1]+(K−1+K+2)x[e−p−1], meaning that the recti�ed Hamilto-
nian also describes the chemical reaction network of Eq. (4.30) but with modi�ed kinetic
constants Kr

εr that we control through γ. The recti�ed dynamics admits a �xed point
with the same concentration x? as for the biased Hamiltonian with the di�erence that the
associated variable p is now 0, in line with the recti�cation procedure (see Fig. 4.4 for an
illustration).

Discussion on the equivalence with the microcanonical process

In the linear operator formalism, the driven process (with the appropriate value of γ) is
equivalent to the microcanonical process, i.e. the process conditioned on one value of the
observable A. Similarly, we expect the typical trajectory of the recti�ed Hamiltonian Hr

in the long-time limit to be such that A takes a new typical value according to the value
of γ. This assertion is backed by the derivation of the recti�ed Hamiltonian from the
driven generator. In Section 4.2.4, we will show this result directly from the logarithmic
equivalence of path probabilities independently of the linear operator formalism.
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4.2 Nonlinear Markov processes: general formalism

On the basis of the results derived in the previous section, we propose a general and
model-free theory of the recti�cation of time-independent Hamiltonians. This section may
seem redundant with the previous section on certain points but it provides an abstract
framework for studying nonlinear Markov processes without specifying their generators.
Moreover, the theory is dealt here more rigorously and more deeply than previously. Pop-
ulation processes appear then to be an application of the results developed in this section.
We made the choice to expose �rst the derivations done on population processes to justify
the following general theory in hopes that it enlightens the reader.

4.2.1 Lagrangian/Hamiltonian formalism

We consider time-homogeneous Markov processes characterized by a large size-type pa-
rameter N (number of particles, volume, etc.) and described by two empirical observables:
a current variable λ and a state variable z. These variables will have precise de�nitions in
speci�c contexts. For instance, in the case of chemical reaction networks (4.28), the vari-
able λ is the empirical chemical current and the variable z is the empirical concentration
vector. The dynamics of z is determined by the currents λ through a conservation law:

ż = Dλ, (4.101)

where D stands for a generalized di�erential operator that will have precise de�nitions
in speci�c contexts. For example, in the case of chemical network reactions (4.28), D
becomes the matrix D whose component DX,εr = ν−εrX − νεrX is the variation of the number
of species X when reaction εr occurs.

We are interested in the transition probability P (z′, t+δt | z, t) of observing zt+δt = z′

at time t+δt given zt = z at time t, with δt an in�nitesimal time. Since we consider time-
homogeneous Markov processes, the transition probability depends only on the di�erence
δt between �nal and initial times and we write Pδt(z′ | z) the conditional probability to
observe z′ after a time δt given that the system was in z. From Eq. (4.101), observing z′

after δt given z is entirely determined by the data of λ and z since zt+δt = zt + δtDλ.
We can thus equivalently consider Pδt(λ | z) the conditional probability of the current
variable λ given the state variable z during the in�nitesimal time interval δt. We assume
that this probability satis�es a LDP whose LDF is the detailed Lagrangian L (λ, z):

L (λ, z) ≡ − lim
N→∞

1

δtN
lnPδt(λ | z), (4.102)

with δt→ 0, δtN →∞, and we write

Pδt(λ | z) �
N→∞

e−δtNL (λ,z). (4.103)

For Pδt(λ | z) to be indeed a propability, the detailed Lagrangian must satisfy for all z{
∀λ, L (λ, z) ≥ 0,

∃λ∗(z), L (λ∗(z), z) = 0.
(4.104)
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We can also consider a more coarse-grained description of the system by considering the
standard Lagrangian L(ż, z) obtained from the contraction principle (1.35) over λ under
the constraint (4.101) by:

L(ż, z) ≡ inf
λ|ż=Dλ

L (λ, z). (4.105)

This is the usual Lagrangian used in analytical mechanics. This Lagrangian is usually
di�cult to compute explicitly, contrary to the detailed Lagrangian which has an explicit
formula for a wide number of systems, such as systems modeled by di�usive processes or
by Markov jump processes.

Reciprocally, we can consider the detailed Hamiltonian H (f , z) corresponding to the
scaled cumulant generating function for λ obtained from the Legendre-Fenchel transform
of L (λ, z):

H (f , z) ≡ sup
λ
{f · λ−L (λ, z)}, (4.106)

where the central dot · denotes the scalar product in current space and f is conjugated
to λ. Note that H is convex in f since it follows from a LF transform with respect to λ.
Hamiltonians associated with proper stochastic processes must satisfy, ∀z,

H (f = 0, z) = 0 (4.107)

to ensure that Pδt(λ | z) is a propability. Indeed, condition (4.104) and

H (f = 0, z) = sup
λ
{−L (λ, z)} = − inf

λ
{L (λ, z)} (4.108)

imply Eq. (4.107). Similarly, the standard Hamiltonian H(p, z) is obtained from the LF
transform of the standard Lagrangian L(ż, z):

H(p, z) ≡ sup
ż
{p · ż − L(ż, z)}. (4.109)

Following the same calculation as Eqs. (4.21�4.26), standard and detailed Hamiltonians
are simply related by:

H (f = D†p, z) = H(p, z), (4.110)

whereD† is the adjoint ofD. Since the Hamiltonian framework is more convenient than the
Lagrangian framework as glimpsed in Section 4.1, we will essentially use the Hamiltonian
framework in the remaining of this chapter.

Biased Lagrangian and Hamiltonian

We are now interested in the �uctuations in the limit of large parameter N of the two-
component observable Āt de�ned by

Āt ≡
1

t

( ∫ t
0

dt′λ(t′)∫ t
0

dt′z(t′)

)
. (4.111)

We use an overbar to emphasize that the observable is scaled with N such that N Ā is an
extensive observable. The statistics of Āt is contained in the generating function

Gγ(t) = Ezi

[
eN tγ·Āt

]
, (4.112)
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where Ezi [. . . ] is the path average with respect to the path probability Pt[z | zi] of the
trajectory [z] up to time t given the initial state zi at time t = 0:

Gγ(t) =

∫
D[λ, z]eN tγ·ĀtPt[z | zi]δ(ż −Dλ). (4.113)

Using the fact that

Pt[z | zi] =
M∏
`=0

Pδt(λτ` | zτ`), (4.114)

where the product runs over times τ` ≡ `δt with initial time τ0 = 0 and �nal time τM = t,
it follows from Eq. (4.113) that

Gγ(t) =

∫ M∏
`=0

dλτ`dzτ`Gδt(λτ` | zτ`)δ(zτ`+1
− zτ` − δtDλτ`), (4.115)

where we introduced the biased transition probability Gδt(λ | z) during the in�nitesimal
time δt

Gδt(λ | z) ≡ Pδt(λ | z)eN δt(γ1·λ+γ2·z). (4.116)

From Eqs. (4.103, 4.116), we �nd that the biased transition probability is associated with
the detailed biased Lagrangian Lγ(λ, z):

Gδt(λ | z) �
N→∞

e−N δtLγ(λ,z), (4.117)

with
Lγ(λ, z) ≡ L (λ, z)− γ1 · λ− γ2 · z. (4.118)

The detailed biased Hamiltonian Hγ(f , z) is given by the LF transform of the detailed
biased Lagrangian:

Hγ(f , z) ≡ sup
λ
{f · λ−Lγ(λ, z)} = H (f + γ1, z) + γ2 · z, (4.119)

where we used in the second equality Eqs. (4.106, 4.118) and the fact that λ and z
are independent in Eq. (4.116). Note that the standard biased Lagrangian Lγ(ż, z) and
Hamiltonian Hγ(f , z) follow from the detailed ones as in the non-biased case, namely

Lγ(ż, z) ≡ inf
λ|ż=Dλ

Lγ(λ, z), (4.120)

Hγ(p, z) ≡ sup
ż
{p · ż − Lγ(ż, z)} = Hγ(f = D†p, z). (4.121)

The biased Lagrangian and Hamiltonian are not associated with a norm-conserving Markov
process as they do not respect conditions (4.104) and (4.107), respectively. In the next sec-
tion, we de�ne a transformation on the biased Lagrangian and Hamiltonian that restores
these conditions. This transformation translates in the Lagrangian/Hamiltonian language
the generalized Doob transform used to build the driven generator in the linear operator
formalism. This requires to investigate the nonlinear counterpart of the Perron-Frobenius
theorem and the dominant eigenvalue and eigenvectors of the biased generator on which
is based the de�nition of the driven generator.
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Evolution of the dynamics

As discussed in Section 4.1.2, the trajectory typically followed by the system given an
initial state zi and a �nal state zT = zf is the one solving Hamilton's equations:

żt = ∂pHγ(pt, zt), ṗt = −∂zHγ(pt, zt), (4.122)

or equivalently the HJ equation

Hγ(p = ∂zW,z) = E (4.123)

with an eigenrate E compatible with the boundary conditions. We say that a solution
W (z, E) of this equation is global if it is de�ned and analytic for all z. We de�ne the
corresponding reduced dynamics describing the evolution of the state variable only by the
equation

ż =
∂Hγ
∂p

∣∣∣∣
p=∂zW,z

. (4.124)

This dynamics is said to be globally stable (respectively globally unstable) if there exists a
compact set C in z-space such that all trajectories of the reduced dynamics converge to
(respectively exit from) C, i.e.

∀zi,∃t? ∈ R±,∀t ≶ t?, zt ∈ C. (4.125)

We will see that such stability conditions can guarantee the existence of critical manifolds,
de�ned in Section 4.1.2.

4.2.2 Spectral properties of the Hamiltonian

The recti�cation procedure in the linear operator formalism relies heavily on the Perron-
Frobenius theorem since it ensures the non-degeneracy of the largest eigenvalue of the
biased generator and the positivity of its dominant left eigenvector, both used in the de�ni-
tion of the driven generator. In order to extend the recti�cation to nonlinear processes, one
needs to translate the Perron-Frobenius theorem in the Hamiltonian framework in which
the spectral problem is expressed by a Hamilton-Jacobi equation. Given the di�culty
of such a generalization, we instead propose a conjecture based on physically reasonable
assumptions on the structure of the Hamiltonian under consideration.

Assumptions on statistical Hamiltonians

In the following, we make a series of assumptions on the properties of the Hamiltonians
we consider. We assume these properties to be generically preserved under biasing, if not
we restrain γ to the values for which it is the case. We call the class of Hamiltonians
satisfying the following properties statistical Hamiltonians. Without loss of generality,
we focus on the biased Hamiltonian Hγ (the non-biased case follows from γ = 0) and
illustrate numerically each assumption on the nonlinear model called �Brownian Donkey�
that will be studied in Section 4.3.1. In the remaining of this manuscript, we assume z
and p to be de�ned on Rn or open sets of Rn (with n an integer).

First, Hγ is convex at p for any z since it follows from a LF transform. We assume in
addition that it is strictly convex as well as coercive, i.e. for any z, H(p, z) → ∞ when
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Figure 4.5 � Hγ(p, z) and pmin(z) for the model of the Brownian Donkey. Hγ(p, z) is
strictly convex in p and diverges for in�nite values of p for any z (except near the edges of
z where the assumptions of the model are not veri�ed anymore), implying the existence
of a unique minimum pmin(z) as illustrated on the �gure.

|p| → ∞, where |p| is the Euclidean norm of p. Given these assumptions, there is for any
z a unique value p = pmin(z) that minimizes Hγ(p, z):

∂pHγ(pmin(z), z) = 0 and ∂2
pHγ(pmin(z), z) > 0, (4.126)

see Figure 4.5. From the �rst equation of Eq. (4.122), the minimizer pmin(z) is associated
with a stopping point for z, i.e. ż = 0. We de�ne, for future use, the minimal value of
Hγ for each z:

Hmin(z) ≡ Hγ(pmin(z), z). (4.127)

Second, there exists a compact set B such that Hmin(z) admits at least one maximum
inside B and no extrema outside. Note that the extrema {z?} of Hmin(z) are the positions
of the �xed points {(p? = pmin(z?), z?)} of the Hamiltonian dynamics since at an extremum
z?, we have

ṗ = ∂zHγ(pmin(z?), z?) = 0. (4.128)

We label z?` (` = 0, 1, . . . ) the positions of the maxima of Hγ on the manifold p =
pmin(z) (which we assume to be countable for the sake of simplicity) and we introduce
p?` ≡ pmin(z?` ). We de�ne H?

` (γ) ≡ Hmin(z?` ) = H(p?` , z
?
` ) and choose the indices of z?`

such that H?
0 (γ) ≥ H?

1 (γ) ≥ H?
2 (γ) ≥ . . . , so that H?

0 (γ) = max`H
?
` (γ), see Figure 4.6.

The corresponding �xed point (p?0, z
?
0) is particularly important and will be called the

dominant �xed point for reasons that will be explained in section 4.2.3.
Finally, we assume that the absolute maximum of Hmin(z) is non-degenerate, i.e.

H?
0 (γ) > H?

1 (γ), in order to avoid �rst-order phase transitions (see Appendix 4.D for
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Figure 4.6 � Hmin(z) vs z for the model of the Brownian Donkey. It admits three extrema
corresponding to the positions of the �xed points: two maxima z?0 and z

?
1 and one minimum

zm. All the extrema are contained in B = [z?1 , z
?
0 ].

an example). This implies that

H?
0 (γ) = max

z
min
p
Hγ(p, z), (4.129)

which will be an important object in the following conjecture.

Conjecture for a nonlinear generalization of the Perron-Frobenius theorem

Under the assumptions of the previous section, we make the following conjecture concern-
ing the solutions of the HJ equation (4.62):

Conjecture 1 There exists a value E?(γ) of Hγ such that

1. For E > E?(γ), all trajectories tend towards the boundaries of the system forward
and backward in time, so that none of them contain or reach a critical manifold
(�xed points, limit cycles, strange attractors, etc.).

2. For E < E?(γ), there is no global solution to the HJ equation, and the reduced
action of any solution W along any bounded trajectory (such as closed trajectories
or strange attractors) is nonnegative:

∫
∂zW · dz ≥ 0.

3. For E = E?(γ), the HJ equation admits at least two global solutions (up to an ad-
ditive constant). Among these solutions, there is exactly one globally stable solution
Ws(z,γ), and one globally unstable solution Wu(z,γ). These two solutions Ws(z,γ)
and Wu(z,γ) coincide on each of their critical manifolds.
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Figure 4.7 � Trajectories in the phase space associated with Hγ(p, z) for the model of
the Brownian donkey. The red, mangenta and blue points correspond respectively to the
�xed points of positions z?0 , zm and z?1 given by the extrema of Hmin(z) as illustrated in
Figure 4.6. In red, the trajectory of eigenrate E = H?

0 .

4. The dominant �xed point (p?0, z
?
0) is contained in both the globally stable solution

Ws(z,γ) and the globally unstable solution Wu(z,γ). The critical value E?(γ) of
the eigenrate can therefore be obtained by a max-min formula:

E?(γ) = H?
0 (γ) = max

z
min
p
Hγ(p, z). (4.130)

By analogy with the PF theorem, E?(γ) corresponds to the dominant eigenvalue,Ws(z,γ)
corresponds to the dominant left eigenvector, which is the solution that vanishes when
γ = 0, and Wu(z,γ) corresponds to the dominant right eigenvector, and determines
the stationary distribution of z when γ = 0. Fig. 4.7 provides an illustration of this
conjecture. We see that for values E of the Hamiltonian smaller than H?

0 (trajectories
between the magenta point and the red trajectory), there are intervals of z for which the
equation Hγ(p, z) = E does not admit solutions for p. Starting from E = H?

0 , we see that
Hγ(p, z) = E admits two solutions for p for any z. For E > H?

0 , all trajectories tend to
the boundaries of the state-space forward and backward in time. The reader may refer to
Ref. [263] for additional remarks about this conjecture that go beyond the framework of
this manuscript.

4.2.3 Long-time limit and SCGF

As in the linear operator formalism, we are interested in �nding an equivalent process to
the conditioned process in the long-time limit. Finding this process relies on the Perron-
Frobenius theorem in the linear operator formalism. In the Lagrangian/Hamiltonian
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framework, we use instead our conjecture to obtain similar information. More speci�-
cally, the globally stable and unstable solutions mentioned in points 3 and 4 contain the
long-time dynamics of the system in the sense that, for any choice of boundary conditions,
the trajectories that dominate the action in the long-time limit are included in those two
manifolds. Under the assumptions of Sec. 4.2.2 and using the previous conjecture, we have
the following result:

In the long-time limit T → ∞, the trajectory (p∗t , z
∗
t )t∈[0,T ] dominating the path integral is

such that Hγ(pt, zt)→ E?(γ) and approaches the trajectory with the following structure:

• A relaxation phase in which the system follows a transient trajectory of the stable
manifold (corresponding to p = ∂zWs) from zi to the associated critical manifold.

• A stationary phase (or switching phase) in which the system remains at the critical
manifold (or alternates between multiple critical manifolds through the trajectories
connecting them).

• A �uctuation phase in which the system leaves the critical manifold to reach zf via
a transient trajectory of the unstable manifold (corresponding to p = ∂zWu).

Moreover, the SCGF is given by

Γ̄(γ) = H?
0 (γ) = E?(γ). (4.131)

This result can be proven when there is a single critical manifold at Hγ(pt, zt) = E?(γ)
(i.e. the dominant �xed point (p?0, z

?
0) by point 4). The proof, which we present in the

following, relies on �rst showing that such a trajectory exists, and then that any trajectory
of higher or lower eigenrate has necessarily a lower Jacobi's action. For complex cases with
more that one dominant critical manifold, the statement above is presented as a conjecture.
The reader can lean on Fig. 4.7 to illustrate each argument.

Let us assume that the dominant �xed point is the only critical manifold atHγ = E?(γ).
We �rst show that there exists a trajectory connecting the initial and �nal conditions ac-
cording to the description above. Using point 3 of our conjecture, for Hγ(pt, zt) = E?(γ),
the HJ equation admits one globally stable solution Ws and one globally unstable solution
Wu. Hence, all the trajectories of the manifold p = ∂zWs converge toward the dominant
�xed point, by de�nition of the global stability. Conversely, all the trajectories of the
manifold p = ∂zWu leave the dominant �xed point, by de�nition of the global instability.
Thus, for any initial condition zi, there exists a relaxing transient trajectory connecting
zi to the (p?0, z

?
0). Similarly, for any �nal condition zf , there exists a �uctuating transient

trajectory connecting (p?0, z
?
0) to zf . The boundary conditions are therefore connected

through a trajectory with the correct eigenrate and of in�nite time duration due to the
presence of the �xed point. Note that any trajectory with Hγ(pt, zt) = E?(γ) that might
connect the boundary conditions without passing through (p?0, z

?
0) must be of �nite dura-

tion and is then not a candidate for the in�nite time limit.
For further use, we compute the value of the opposite of the scaled action

− 1

T
S[p, z]T0 = Hγ(pt, zt)−

1

T

∫ T
0

pt · żtdt (4.132)
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along the trajectory described above. The reduced action is expressed in terms of the
global solutions Ws,u according to:∫ T

0

pt · żtdt 'T →∞

∫ z?0

zi

∂zWs · dz +

∫ zf

z?0

∂zWu · dz = Wu(zf)−Wu(z?0) +Ws(z
?
0)−Ws(zi).

(4.133)
Hence, it is not time-extensive, leading to

lim
T →∞

− 1

T
S[p, z]T0 = Hγ(pt, zt) = E?(γ). (4.134)

We now need to exclude possible trajectories at other values of Hγ . Let us �rst look
at the case Hγ > E?(γ). From point 1, all the corresponding trajectories tend towards
the boundaries of the domain of z when T → ±∞ so that any trajectory connecting zi

and zf is necessarily of �nite duration.

Finally, let us look at the case Hγ < E?(γ). From point 2 of the conjecture, there are
no global solutions of the HJ equation so that some boundary conditions zi to zf are not
connected by trajectories, but some may be. Given zi and zf , we distinguish three cases:

• There is no trajectory connecting zi and zf .

• There is a trajectory connecting zi and zf but which is neither periodic nor leads to
a critical manifold so that the trajectory between zi and zf is necessarily of �nite
duration.

• There is a trajectory connecting zi and zf that is either periodic or leads to a critical
manifold. Since the trajectory dominating the dynamics is the one maximizing the
opposite of the action, we need to compare the value of − 1

T S[p, z]T0 along that
trajectory with the value E?(γ) found above. On the one hand, the value the
Hamiltonian term is smaller than E?(γ). On the other hand, we have conjectured
in point 2 that the reduced action is nonnegative so that it reduces the value of
− 1
T S[p, z]T0 even more. This implies that such a trajectory will be exponentially

less likely than the one found for Hγ(pt, zt) = E?(γ).

In all cases, the dominant trajectory in the long-time limit is the one corresponding to
Hγ(pt, zt) = E?(γ). It follows from Eq. (4.57) and point 4 that for any initial and �nal
boundary conditions,

G̃T (zf | zi) �T →∞ eNTH
?
0 (γ). (4.135)

Using Eqs. (4.51, 4.66, 4.135), it follows that the SCGF Γ̄ = limT →∞
1
T N lnEzi

[
eNT γ·Āt

]
is given by

Γ̄(γ) = H?
0 (γ). (4.136)

Hence, the Hamiltonian converges to the SCGF Γ̄ in the long-time limit. For the model of
the Brownian Donkey, this corresponds to the red trajectory in Figure 4.7. Eq. (4.136) is
the nonlinear analogue of the result relating the SCGF of a Markov process to the largest
eigenvalue of the biased generator in the linear operator formalism.

In the case where there is more than one critical manifold at Hγ(pt, zt) = E?(γ),
we conjecture that it is always possible to connect one critical manifold to another via
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trajectories of the stable and unstable manifolds. Combined with point 3, it follows that
there exists a relaxing transient trajectory of the globally stable manifold connecting zi to
a �rst critical manifold, a �uctuating transient trajectory of the globally unstable manifold
connecting a second (or eventually the same) critical manifold to zf , and in between there
exists trajectories connecting the �rst and second critical manifolds (switching phase).
Along any of those critical manifolds, the reduced action is non-extensive in time since
Sr =

∫ T
0
∂zWs · dz = Ws(zf ,γ) −Ws(zi,γ). Subsequently, the rest of the proof done for

the case of a single �xed point holds, concluding our reasoning.

Some remarks on the non-biased case

In the non-biased case (γ = 0), the SCGF vanishes (Γ̄ = 0) by de�nition, implying
H?

0 (γ = 0) = 0. It follows that p = 0 is always a solution of the HJ equation in the
non-biased case by virtue of Eq. (4.107) and Eq. (4.26). Moreover, for the transition
probability PT (zf | zi) to be normalizable, this solution has to correspond to the globally
stable solution Ws = 0. Indeed, the dependence of PT (zf | zi) comes from the globally
unstable solutionWu in the reduced action term as zf is reached via the unstable manifold:

PT (zf | zi) �T →∞ eWu(zf)−Ws(zi). (4.137)

IfWu was zero, the transition probability would be a constant of zf , hence non-normalized.
So p = 0 needs to correspond to the globally stable manifold.

4.2.4 Recti�cation on Hamiltonians

Relying on our conjecture for the nonlinear counterpart of the Perron-Frobenius and our
description of the long-time behavior of statistical Hamiltonians, we now propose a proce-
dure turning the biased dynamics into a recti�ed dynamics. This recti�cation translates
in the Hamiltonian formalism the generalized Doob transform (3.23, 3.122) of the linear
operator formalism and allows us to build the nonlinear counterpart of the driven process
whose dynamics is equivalent to the microcanonical dynamics in the long-time limit.

Structure of the recti�cation

Let H(p, z) be a Hamiltonian which does not necessarily satisfy Eq. (4.107) and$ a func-
tion of the same nature as p. We de�ne the recti�cation H$(p, z) of H(p, z) associated
with $ by

H$(p, z) ≡ H(p+$, z)−H($, z). (4.138)

By de�nition, H$(p = 0, z) = 0, as wanted. This de�nition is purely mathematical
and is the analogue of the Doob transform in the linear operator formalism. Yet, in
order to build physically relevant Hamiltonians, one needs to choose $ in a way that
keeps the Hamiltonian structure, i.e. whose dynamics satis�es Hamilton's equations. To
guarantee the latter condition, H$(p, z) has to derive from a canonical transformation
(Z,P )→ (z,p) (see Appendix 4.B.3). In addition to this constraint, we want to build a
recti�ed Hamiltonian whose long-time limit dynamics is equivalent to the microcanonical
dynamics, imposing a speci�c choice of $ as discussed in the following.
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Recti�ed Hamiltonian

For the purpose of this section, we denote by Z and P the variables of the biased Hamil-
tonian Hγ . We aim to derive the recti�ed Hamiltonian from the recti�cation transform
of the biased Hamiltonian and while keeping the Hamiltonian structure, i.e. whose dy-
namics satis�es Hamilton's equations. To guarantee the latter condition, we de�ne the
recti�ed Hamiltonian from a canonical transformation (Z,P ) → (z,p) associated with
the generating function of the second type

F2(p,Z, t) = Z · p+Ws(Z)− Γ̄t, (4.139)

see Appendix 4.B.3 for a review. The new variables z, p are obtained from the rules of
transformation associated with the generating function F2:

z = ∂pF2 = Z (4.140)
P = ∂ZF2 = p+ ∂ZWs, (4.141)

with ∂P the gradient operator with respect to P , and the new Hamiltonian follows from

Hr(p, z;γ) = Hγ(P ,Z) + ∂tF2 = Hγ(p+ ∂zWs, z)− Γ̄, (4.142)

leading to
Hr(p, z;γ) = Hγ(p+ ∂zWs, z)−Hγ(∂zWs, z), (4.143)

where we used the fact that Ws is solution of the HJ equation (4.62) with E = Γ̄. The
recti�ed Hamiltonian derives indeed from the recti�cation transform (4.138) of the biased
Hamiltonian with $ = ∂zWs. The detailed recti�ed Hamiltonian follows using (4.121):

H r(f , z;γ) = Hγ(f +D†∂zWs, z)−Hγ(D†∂zWs, z). (4.144)

Assuming H r is everywhere di�erentiable in f , the Legendre-Fenchel transform is invo-
lutive and the recti�ed detailed Lagrangian reads

L r(λ, z;γ) = Lγ(λ, z)− λ · D†∂zWs + Γ̄(γ). (4.145)

The recti�ed standard Lagrangian follows immediately from

Lr(ż, z;γ) = inf
λ|ż=Dλ

L r(λ, z;γ). (4.146)

Note that these de�nitions are consistent with the Lagrangians and Hamiltonians derived
from the driven generator for the case of population processes (Section 4.1.3).

Properties of the recti�ed Hamiltonian

Let us show that the recti�ed Hamiltonian is proper, i.e. it has the properties of a statistical
Hamiltonian on the one hand, and the properties of a non-biased Hamiltonian on the other
hand (see Section 4.2.2).

We �rst show that the recti�ed Hamiltonian Hr(γ) is a statistical Hamiltonian given
that the biased Hamiltonian Hγ is a statistical Hamiltonian. First, the strict convexity in
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p of Hr is inherited from the strict convexity in p of the biased Hamiltonian Hγ . Indeed,
Hγ is strictly convex if and only if for all p,p′, p 6= p′,

Hγ(p, z) > Hγ(p′, z) + ∂pHγ(p, z) · (p− p′). (4.147)

It follows from Eqs. (4.143) and (4.147):

Hr(p, z;γ) >
[
Hγ(p′ + ∂zWs, z)− Γ̄

]
+ ∂p

[
Hγ(p+ ∂zWs, z)− Γ̄

]
· (p− p′) (4.148)

> Hr(p′, z;γ) + ∂pH
r(p, z;γ) · (p− p′), (4.149)

proving the strict convexity of Hr. Note that the coercivity of Hr follows immediately
from the coercivity of Hγ . It follows that Hr admits for each z a unique minimum reached
for p = pr

min(z) = pmin(z)− ∂zWs(z), with pmin the minimizer of Hγ :

∂pH
r(pr

min(z), z;γ) = ∂pHγ(pr
min(z) + ∂zWs, z) = ∂pHγ(pmin(z), z) = 0, (4.150)

∂2
pH

r(pr
min(z), z;γ) = ∂2

pHγ(pr
min(z) + ∂zWs, z) = ∂2

pHγ(pmin(z), z) > 0, (4.151)

where we used Eq. (4.126). The minimal value of Hr is then related to the minimal value
of Hγ by:

Hr
min(z) ≡ Hr(pr

min(z), z) = Hγ(pmin(z), z)− Γ̄ = Hmin(z)− Γ̄. (4.152)

Consequently, the extrema of Hr
min are given by the extrema of Hmin(z) shifted by the

constant Γ̄, both reached at the same positions z?` . In particular, it implies the non-
degeneracy of the absolute maximum of Hr. Finally, we remind that the recti�ed dynamics
satis�es the solutions of Hamilton's equations since the recti�ed Hamiltonian derives from
a canonical transformation.

We now show that the recti�ed Hamiltonian has the properties of a non-biased sta-
tistical Hamiltonian. First, we have by construction that Hr(p = 0, z) = 0, as required
for a non-biased Hamiltonian. Second, the absolute maximum of Hr

min is zero by virtue of
Eqs. (4.136) and (4.152). It remains to show that the solution p = 0 is the globally stable
solution of the HJ equation for the eigenrate E = 0. From Eq. (4.124) and (4.143), we
have:

ż =
∂Hr

∂p

∣∣∣∣
p=0,z

=
∂Hγ
∂p

∣∣∣∣
p=∂zWs,z

, (4.153)

meaning that the reduced dynamics at p = 0 of the recti�ed Hamiltonian corresponds to
the reduced dynamics of the biased Hamiltonian along its globally stable manifold. Hence,
all the trajectories for the recti�ed dynamics at p = 0 converge to a compact set, showing
the global stability of the manifold p = 0 for the recti�ed dynamics. This explain why it
is necessary to perform the recti�cation with respect to Ws rather than Wu or any other
characteristic function. Notice that the corresponding globally unstable solution is given
by p = ∂z (Wu −Ws).

Equivalence of microcanonical, recti�ed and canonical processes

In this section, we show that the recti�ed path probability Pr
T [z | zi] of the trajectory [z]

of duration T given the initial state zi is asymptotically equivalent in the long-time limit
to the canonical path probability

Pcano
γ,T [z | zi] ≡

eT γ·AT PT [z | zi]

Ezi [eT γ·AT ]
, (4.154)
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with AT = N ĀT . We know by construction that the recti�ed and biased Lagrangians
satisfy

Pr
T [z | zi] �N→∞ e−N

∫ T
0 dτL r(λτ ,zt), (4.155)

PT [z | zi]e
T γ·AT �

N→∞
e−N

∫ T
0 dτLγ(λτ ,zt), (4.156)

with λ and z related by Eq. (4.101). Combined with Eqs. (4.65, 4.145), it follows

Pr
T [z | zi]

Pcano
γ,T [z | zi]

�
N→∞

e−N
∫ T
0 dτλτ ·D†∂zWs(zτ ) �

N→∞
e−N

∫ T
0 dτ żτ ·∂zWs(zt), (4.157)

where we used Eq. (4.101) in the last equality. It follows

Pr
T [z | zi]

Pcano
γ,T [z | zi]

�
N→∞

e−N [Ws(zT )−Ws(zi)], (4.158)

leading to:

lim
T →∞

1

T
ln

Pr
T [z | zi]

Pcano
γ,T [z | zi]

= 0. (4.159)

Hence, the recti�ed path probability and the canonical path probability are logarithmically
equivalent:

Pr
T [z | zi] �T →∞ P

cano
γ,T [z | zi]. (4.160)

Finally, the equivalence between the recti�ed path probability Pr
T [z | zi] and the micro-

canonical path probability Pmicro

a,T [z | zi] = PT [z | zi,AT = a] follows from the equivalence
between the canonical and microcanonical path probabilities for γ = ∇I(a), with I the
LDF (in time) of AT [195].

4.2.5 Fluctuation relations

We say that the Hamiltonian H satis�es a �uctuation relation if there exists a quantity F ,
called a�nity, such that

H (f , z) = H (F + θf , z), (4.161)

where the current-reversal operator θ is an involutive linear operator acting on f , i.e.
θ2f = f . For instance, for overdamped di�usion processes, θ is equal to minus the
identity: θf = −f , while for jump processes θ is the operator that exchanges initial and
�nal states of a jump: θfnm = fmn. The a�nity F is such that θF = −F and may depend
on z. For example, we have Fnm = ln

(
k̃nmµm/k̃mnµn

)
for independent many-body jump

processes (Appendix 4.C.1) and F (x) = − 2Jρ(x)
D(x)ρ(x)

for independent many-body di�usion
processes (Appendix 4.C.2).

In this section, we investigate the inheritance of the �uctuation relation by the biased
and recti�ed Hamiltonians given the �uctuation relation (4.161) for the original Hamilto-
nian H . From the de�nition of the biased Hamiltonian (4.119) and using Eq. (4.161), we
have

Hγ(f , z) = H (f + γ1, z) + γ2 · z (4.162)
= H (F + θ(f + γ1), z) + γ2 · z (4.163)
= H (F + (θ − 1)γ1 + θf + γ1, z) + γ2 · z, (4.164)
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leading to the �uctuation relation for the biased Hamiltonian

Hγ(f , z) = Hγ(Fγ + θf , z), (4.165)

where we introduced the biased a�nity

Fγ ≡ F + (θ − 1)γ1 (4.166)

that satis�es θFγ = −Fγ . Similarly, from the de�nition of the recti�ed Hamiltonian (4.144)
and the �uctuation relation for Hγ (4.165), the recti�ed Hamiltonian satis�es

H r(f , z;γ) = Hγ(f +D†∂zWs, z)−Hγ(D†∂zWs, z) (4.167)

= Hγ(Fγ + θ(f +D†∂zWs), z)−Hγ(D†∂zWs, z) (4.168)

= Hγ(Fγ + (θ − 1)D†∂zWs + θf +D†∂zWs, z)−Hγ(D†∂zWs, z) (4.169)
= H r(F r

γ + θf , z;γ), (4.170)

leading to the �uctuation relation

H r(f , z;γ) = H r(F r
γ + θf , z;γ), (4.171)

where we introduced the recti�ed a�nity

F r
γ ≡ F + (θ − 1)(γ1 +D†∂zWs) (4.172)

that satis�es θF r
γ = −F r

γ . Hence, the non-biased, biased and recti�ed Hamiltonians have
a similar �uctuation symmetry with di�erent a�nities given respectively by F , Fγ and
F r
γ .

4.3 Applications

In Section 4.1, we considered general population processes with unspeci�ed nonlinear
rates. In the following section, we apply our general theory to speci�c nonlinear models of
population processes: the Brownian Donkey and a nonlinear chemical reaction network. In
Appendix 4.C, we deal with the linear case of independent many-body Markov processes,
both for jump and di�usion processes.

4.3.1 Brownian Donkey

We apply the formalism stated in Section 4.1 to the model of the Brownian Donkey intro-
duced by B. Cleuren and C. Van den Broeck [262]. This model is made of N interacting
unicyclic machines. Each machine consists of a two-level system jumping between a lower
state of energy 0 and a higher state of energy E > 0 via two heat reservoirs labeled by
ν = 1, 2 and of inverse temperature βν . Two machines interact via an interaction energy
V
N only when they are in di�erent states. We denote by N the number of machines in the
high energy state. When the global system is in state N , it has a total energy

UN = NE +N(N −N)
V

N
. (4.173)
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We assume that during an in�nitesimal time δt, two machines cannot jump at the same
time and only one transition occurs so that jumping from an initial state N to a �nal state
N ′ imposes that

N ′ = N ± 1. (4.174)

The probability pN to be in stateN satis�es the master equation ṗN =
∑

ε=±1,ν k
ν
N,ε+NpN+ε,

where the transition rate kνε+N,N from stateN to stateN+ε, with ε = ±1, through reservoir
ν is given by

kνN+ε,N = N
(

1 + ε

2
− εN
N

)
e−

βν

2
(Ea+UN+ε−UN+ε(−1)νF ), (4.175)

with Ea an activation energy and F a non-conservative force. The Brownian Donkey is a
particular model from the class of population processes introduced in Sec. 4.1 where we
have the following connections:

N → N, (4.176)
α→ (ε, ν), (4.177)

kα,N → kνN+ε,N , (4.178)

Dα → Dν
ε ≡ ε, (4.179)

for any ν = 1, 2 and any ε = ±1. The empirical density z is now the density of machines in
the high energy state z ≡ N

N and the current λ of component λνε is now the current density
of machines passing from the high (resp. low) energy level to the low (resp. high) energy
level when ε = +1 (resp. ε = −1) via channel ν. Both are related by ż = Dλ =

∑
ε,ν ελ

ν
ε ,

where D is here the line vector operator of components Dν
ε = ε, ∀ν. The transition rate

k(z) in the continuous limit de�ned in Eq. (4.8) reads

kνε (z) =

(
1 + ε

2
− εz

)
e−

βν

2
(Ea+εE+εV (1−2z)+ε(−1)νF ). (4.180)

From Eqs. (4.42�4.43), the detailed biased Lagrangian and Hamiltonian read:

Lγ(λ, z) =
∑
ε,ν

[
λνε ln

(
λνε
kνε (z)

)
− λνε + kνε (z)

]
− γ1 · λ− γ2z, (4.181)

Hγ(f , z) =
∑
ε,ν

kνε (z)
[
ef

ν
ε +γν1,ε − 1

]
+ γ2z, (4.182)

with γ1 · λ =
∑

ε,ν γ
ν
1,ελ

ν
ε . We recall that the non-biased Lagrangian and Hamiltonian

are obtained from the biased ones by taking γ = 0. For this model, we can compute
explicitly the standard Lagrangian using Eq. (4.19). Using the method of Lagrange mul-
tipliers (Appendix 3.D) to ensure the constraint ż = Dλ, we obtain after optimizing the
functional

L̃γ(ż, z) ≡ Lγ(ż, z)− ξ[ż −Dλ], (4.183)

with ξ a Lagrange multiplier, that the standard biased Lagrangian is given by

Lγ(ż, z) = −
√
ż2 + ϕ(z,γ1) +

∑
ε,ν

kνε (z)− ż ln

[
−ż +

√
ż2 + ϕ(z,γ1)

2
∑

ν k
ν
−eγ

ν
1,−

]
− γ2z, (4.184)
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Figure 4.8 � (Left) Trajectories of the original Hamiltonian (γ = 0). (Right) Trajectories
of the biased Hamiltonian.
In both �gures, there are three �xed points represented by the three colored points (ex-
trema of Hmin(z) in Fig. 4.6). The red trajectory is associated with the max-min value of
the Hamiltonian. As expected, this value is equal to 0 in the non-biased case, while it is
di�erent from 0 in the biased case.
Both �gures are obtained for E = 0.8, V = 2, Ea = 1, F = 1, β1 = 1, β2 = 2. In the right
�gure, we have γν1,ε = ε (ε = ±1 and ν = 1, 2) and γ2 = 1.

with ϕ(z,γ1) ≡ 4
∏

ε

∑
ν k

ν
ε (z)eγ

ν
1,ε , recovering the result of Ref. [119]. Taking the LF

transform of Eq. (4.184), we obtain the standard biased Hamiltonian:

Hγ(p, z) =
∑
ε,ν

kνε (z)
[
eεp+γ

ν
1,ε − 1

]
+ γ2z. (4.185)

Note that that the detailed Hamiltonian (4.182) and the standard Hamiltonian (4.185)
are indeed related by Hγ(p, z) = Hγ(f = D†p, z). For this model, the solutions of the
implicit equation

Hγ(p(z,γ), z) = Γ̄ (4.186)

can be explicitly computed provided that
(

Γ̄− γ2z +
∑

ε,ν k
ν
ε (z)

)2

≥ ϕ(z,γ1). In this
case, Eq. (4.186) admits two solutions p± ≡ p±(z,γ) with

p±(z,γ) ≡ ln

 Γ̄− γ2z +
∑

ε,ν k
ν
ε (z)±

√(
Γ̄− γ2z +

∑
ε,ν k

ν
ε (z)

)2

− ϕ(z,γ1)

2
∑

ν k
ν
+(z)eγ

ν
1,+

 . (4.187)

Note that the solution p− exists only if Γ̄ − γ2z +
∑

ε,ν k
ν
ε (z) ≥ 0, de�ning a domain

of validity for γ2. The SCGF Γ̄ coincides with the value H?
0 = maxz minpHγ(p, z) of the

biased Hamiltonian at the dominant �xed point (p?0, z
?
0), represented by a red point in

Fig. 4.8.
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Figure 4.9 � Trajectories of the biased Hamiltonian. The dashed black line corresponds
to the solution p+ and the gold dotted line corresponds to the solution p−.
The �gure is obtained for E = 0.8, V = 2, Ea = 1, F = 1, β1 = 1, β2 = 2, γν1,ε = ε (ε = ±1
and ν = 1, 2) and γ2 = 1.

Stability of the solutions

As illustrated in Fig. 4.9, the solutions p± of Eq. (4.187) have the following stability
properties:

• For z ∈ [0, z?0 ]: {
The branch p+ is stable,
The branch p− is unstable

(4.188)

• For z ∈ [z?0 , 1]: {
The branch p+ is unstable,
The branch p− is stable.

(4.189)

In Appendix 4.D, we illustrate numerically how the stability of these solutions changes
with the biasing parameter γ and when the system undergoes a phase transition. It follows
from Eqs. (4.188�4.189) that the HJ equation at E = Γ̄ admits one globally stable solution
ps ≡ ∂zWs and one globally unstable solution pu ≡ ∂zWu with

∂zWs ≡

{
p+ if z ∈ [0, z?0 ]

p− if z ∈ [z?0 , 1]
, (4.190)

∂zWu ≡

{
p− if z ∈ [0, z?0 ]

p+ if z ∈ [z?0 , 1]
. (4.191)

The globally stable (resp. unstable) manifold p = ps (resp. p = pu) contains two relaxing
(resp. �uctuating) transient trajectories that converge to (resp. exit from) the red �xed
point as illustrated in Fig. 4.9. In the non-biased case, the globally stable manifold is
ps(z,γ = 0) = 0, as required (see Fig. 4.8).
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Figure 4.10 � Trajectories of recti�ed Hamiltonian. There are three �xed points represented
by the three colored dot. The red trajectory is associated with the max-min value of the
recti�ed Hamiltonian. As expected, this value is zero.
The �gure is obtained for E = 0.8, V = 2, Ea = 1, F = 1, β1 = 1, β2 = 2, γν1,ε = ε (ε = ±1
and ν = 1, 2) and γ2 = 1.

Recti�cation

The recti�ed Lagrangian is given by

L r(λ, z;γ) = Lγ(λ, z)− λ ·D†ps + Γ̄, (4.192)

with
(
D†ps

)ν
ε
≡ εps, and the recti�ed Hamiltonians by

H r(f , z;γ) = Hγ(f + D†ps, z)− Γ̄, (4.193)
Hr(p, z;γ) = Hγ(p+ ps, z)− Γ̄. (4.194)

For this model, we can compute explicitly the standard recti�ed Lagrangian by using the
relation (4.105) on Eq. (4.192), and it yields

Lr(ż, z;γ) = −
√
ż2 + ϕ(z,γ1 + D†ps) +

∑
ε,ν

kνε

− ż ln

[
−ż +

√
ż2 + ϕ(z,γ1 + D†ps)

2
∑

ν k
ν
−eγ

ν
1,−−ps

]
− γ2z + Γ̄, (4.195)

which can be written as
Lr(ż, z;γ) = Lγr(ż, z) + Γ̄, (4.196)

with γr ≡ (γ1 + D†ps, γ2).

Fluctuation symmetry

The biased Hamiltonian has a �uctuation symmetry:

Hγ(f , z) = Hγ(Fγ + θf , z), (4.197)
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Figure 4.11 � (Left) Fluctuation symmetry for the biased Hamiltonian (4.202). (Middle)
Fluctuation symmetry for the recti�ed Hamiltonian (4.203�4.205). (Right) Fluctuation
symmetries for the biased and recti�ed Lagrangians (4.204).
The �gures are obtained for z = 0.3, E = 0.8, V = 2, Ea = 1, F = 1, β1 = 1, β2 = 2,
γν1,ε = ε (ε = ±1 and ν = 1, 2) and γ2 = 1.

with

(Fγ)νε ≡ ε ln
kν−eγ

ν
1,−

kν+eγ
ν
1,+
, (4.198)

θf νε ≡ f ν−ε. (4.199)

As seen in Sec. 4.2.5, this symmetry is inherited by the recti�ed Hamiltonian through

H r(f , z;γ) = H r(F r
γ + θf , z;γ), (4.200)

with

F r
γ ≡ Fγ + (θ − 1)D†ps. (4.201)

The �uctuation symmetry reads for the standard biased and recti�ed Hamiltonians:

Hγ(p, z) = Hγ(pu + ps − p, z), (4.202)
Hr(p, z;γ) = Hr(pu − ps − p, z;γ), (4.203)

where we used θD† = −D†. We check numerically this symmetries in Fig. 4.11 (left and
middle). We close this remark by pointing at the fact that these symmetries translate for
the Lagrangians into:

Lγ(ż, z)− Lγ(−ż, z) = (pu + ps)ż, (4.204)
Lr(ż, z;γ)− Lr(−ż, z;γ) = (pu − ps)ż, (4.205)

as shown numerically in Fig. 4.11 (right).

4.3.2 Nonlinear chemical reaction

We now apply the results stated in Section 4.1 to a chemical system modeled by the
following chemical reaction:

A
K+1−−⇀↽−−
K−1

2X
K+2−−⇀↽−−
K−2

B. (4.206)
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The species A and B are chemostatted and have constant concentrations a and b, while the
concentration x of the species X is allowed to �uctuate. The observables z and λ represent
respectively the concentration x and the chemical current, both related by ẋ = Dλ where
D is the line vector whose component Dεr ≡ −2ε(−1)r is the variation of the number of
species X when the reaction εr occurs. From Eq. (4.29), the transition rates kεr(z) read

k+1 = K+1a, (4.207)
k−1 = K−1x

2, (4.208)
k+2 = K+2x

2, (4.209)
k−2 = K−2b. (4.210)

For simplicity, the observable At is chosen to be the chemical current 1
t

∫ t
0
λ(t′)dt′ of

conjugate variable γ ≡ ({γεr}). The standard biased Hamiltonian reads then

Hγ(p, x) =
∑
εr

kεr(x)
[
e−2(−1)rεp+γεr − 1

]
. (4.211)

For clarity we introduce:

α ≡ K+1aeγ+1 + K−2be
γ−2 , (4.212)

β ≡ K−1eγ−1 + K+2eγ+2 , (4.213)
δ ≡ K−1 + K+2, (4.214)

so that the biased Hamiltonian (4.211) simpli�es to

Hγ(p, x) = αe2p + βx2e−2p − δx2 − (K+1a+ K−2b). (4.215)

Hamilton's equations for the biased Hamiltonian are given by{
ẋ = ∂Hγ

∂p
= 2αe2p − 2βx2e−2p,

−ṗ = ∂Hγ
∂x

= 2βxe−2p − 2δx.
(4.216)

This system admits one critical manifold consisting of a �xed point of coordinates{
x?0 =

√
αβ
δ2
,

p?0 = 1
2

ln β
δ
.

(4.217)

In Fig 4.12, we plot the phase portrait both in the non-biased and biased cases. The
dominant trajectory in the long-time limit corresponds to Hγ(p, x) = Γ̄ with

Γ̄ = Hγ(p?0, x
?
0) =

αβ

δ
− (K+1a+ K−2b). (4.218)

It is easy to check that Γ̄(γ = 0) = 0, as required in the non-biased case. Biasing modi�es
the position of the �xed point from a concentration xnb to a new concentration x?0 and
shifts the variable p of the �xed point from 0 to p?0 6= 0, which is consistent with the fact
that the SCGF is non-zero when γ 6= 0 and that the biased Hamiltonian does not vanish
at p = 0. The implicit equation
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Figure 4.12 � (Left) Trajectories of the original Hamiltonian (γ = 0). The coordinates
of the �xed point (green point) are

(
xnb =

√
(K+1a+ K−2b)/δ, pnb = 0

)
. (Right) Tra-

jectories of the biased Hamiltonian. The coordinates of the �xed point (red point) are(
x?0 =

√
αβ/δ2, p?0 = (1/2) ln(β/δ)

)
.

The left �gure is obtained for K+1a+K−2b = 0.5, δ = 1, for which xnb = 0.707. The right
�gure is obtained for α = 3, β = 5, δ = 1, K+1a + K−2b = 0.5 for which x?0 = 3.873 and
p?0 = 0.805.

Hγ(p(x,γ), x) = Γ̄ (4.219)

admits two solutions ps,u ≡ ps,u(x,γ) with:{
ps(x,γ) ≡ p?0 = 1

2
ln β

δ
,

pu(x,γ) ≡ 1
2

ln x2

x?0
2e−2p?

= 1
2

ln δx2

α
.

(4.220)

The solution ps corresponds to the globally stable solution and contains two relaxing
transient trajectories, and the solution pu corresponds to the globally unstable solution
and contains two �uctuating transient trajectories (see Fig. 4.12). Notice that in the non-
biased case, we have indeed that ps(γ = 0) = 0. Finally, we can compute the recti�ed
Hamiltonian from Eq. (4.143):

Hr(p, x;γ) = δx?0
2
(
e2p − 1

)
+ δx2

(
e−2p − 1

)
, (4.221)

which can be rewritten as

Hr(p, x;γ) =
∑
εr

Kεr(x)
[
e−2(−1)rεp − 1

]
, (4.222)

where Kεr(x) ≡ kεr(x)eγεr−2(−1)rεps is the recti�ed intensive rate obtained from the Doob
transform of the biased transition rate in the linear operator formalism. As expected, the
recti�ed Hamiltonian respects the structure of the original non-biased Hamiltonian with
new rates.

Figs. 4.12 and 4.13 o�er a visualization of the e�ect of biasing and recti�cation on the
�xed point. Starting from the original Hamiltonian with �xed point (xnb, pnb = 0), we
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Figure 4.13 � Trajectories of the recti�ed Hamiltonian. The coordinates of the �xed point
(blue point) are

(
x?0 =

√
αβ/δ2, p = 0

)
. The �gure is obtained for α = 3, β = 5, δ = 1,

K+1a+ K−2b = 0.5.

bias the dynamics via the parameter γ to impose a new typical value of Ā in the long-time
limit. This translates into a new dominant trajectory, hence a new �xed point (x?0, p

?
0).

Yet, the biased Hamiltonian does not vanish at p = 0, and the globally stable ps = p?0 is
not zero, as required for a norm-conserving Markov process. The recti�cation allows one
to build a proper statistical Hamiltonian by shifting the globally stable manifold ps to 0,
leading to a new �xed point at p = 0 while remaining at the same position x?0, compatible
with the imposed value of Ā.

Fluctuation symmetry

The biased Hamiltonian has a �uctuation symmetry:

Hγ(p, x) = Hγ(pu + ps − p, x), (4.223)

which implies a �uctuation symmetry for the recti�ed Hamiltonian

Hr(p, x;γ) = Hr(pu − ps − p, x;γ). (4.224)

We check numerically this symmetries in Fig. 4.14 (right and middle). For this system,
the standard biased Lagrangian can be computed explicitly and we obtain

Lγ(ẋ, x) =
1

2
ẋ ln

(
ẋ+

√
ẋ2 + 16αβx2

4α

)
− 1

2

√
ẋ2 + 16αβx2 + δx2 +K+1a+K−2b, (4.225)

while the standard recti�ed Lagrangian reads

Lr(ẋ, x) =
1

2
ẋ ln

(
ẋ+

√
ẋ2 + 16(δxx?0)2

4δx?0
2

)
− 1

2

√
ẋ2 + 16(δxx?0)2 + δ(x2 + x?0

2), (4.226)
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Figure 4.14 � (Left) Fluctuation symmetry for the biased Hamiltonian (4.223). (Middle)
Fluctuation symmetry for the recti�ed Hamiltonian (4.224). (Right) Fluctuation symme-
tries for the biased and recti�ed Lagrangians (4.227�4.228).
The �gures are obtained for α = 3, β = 5, δ = 1, K+1a+ K−2b = 0.5 and x = 10.

Both Lagrangians satisfy the following �uctuation symmetry:

Lγ(ẋ, x)− Lγ(−ẋ, x) = (pu + ps)ẋ, (4.227)
Lr(ẋ, x;γ)− Lr(−ẋ, x;γ) = (pu − ps)ẋ, (4.228)

as shown numerically in Fig 4.14 (right).

4.4 Opening on periodically driven Markov processes

We expect our results to be transposable to periodically driven processes with the ap-
propriate changes. In the following, we present a �rst investigation of these changes for
periodically driven population processes. All the notations, de�nitions and expressions ob-
tained in Section 4.1 for the non-biased and biased processes hold for periodically driven
population processes with the di�erence that the generators k and κ, and eventually the
parameter γ, are now T -periodic. It implies that the Lagrangians and Hamiltonians be-
come explicitly time-dependent and periodic with period T . We aim to derive the recti�ed
Hamiltonian associated with the generator of the driven process. According to the results
of Section 3.1.5, the driven generator for periodically-driven Markov processes reads

K ≡ κeU = D(eU )κD(e−U )−D(e−U )D(eUκ), (4.229)

where eU is now the solution of {
d
dt

eU = −eUκ,

U(0) = U(T ) + TΓ,
(4.230)

and where the SCGF Γ = N Γ̄ is related to the dominant eigenvalue χT of the single-period
propagator

←−
Qκ(T, 0) via Γ = 1

T
lnχT .

127



Di�erential equation in the continuous limit

Before deriving the Lagrangian and Hamiltonian associated with the dynamics generated
by K, let us �rst investigate in the continuous limit the di�erential equation (4.230). To
do so, assume that for N = O(N ), N →∞, there exists a function S(z, t) such that

UN (t) = NS(z, t) + o(N ), (4.231)

so that

U̇N (t) ' N ∂S

∂t
(z, t),

UN+Dα − UN 'Dα · ∂zS,
(4.232)

for any α. From Eq. (4.230), we have:

−U̇NeUN =
∑
α

eUN+Dακα,N + eUNκN ,N (4.233)

−U̇N =
∑
α

eUN+Dα−UNκα,N + κN ,N (4.234)

−U̇N =
∑
α

eUN+Dα−UNkα,Neγ
1
α −

∑
α

kα,N + γ2 ·N , (4.235)

where we used Eq. (4.40) in the last equation. Taking the continuous limit (4.9) and using
the assumption of Eq. (4.232), we �nally obtain

∂S

∂t
+
∑
α

kα(z, t)
[
eDα·∂zS+γ1α − 1

]
+ γ2 · z = 0. (4.236)

We recognize the biased Hamiltonian (4.43) in the left-hand side of Eq. (4.236), leading
to {

∂S
∂t

+ Hγ(p = ∂zS,z, t) = 0,

S(0) = S(T ) + T Γ̄.
(4.237)

Hence, S appears to be Hamilton's principal function, solution of the time-dependent
Hamilton-Jacobi equation Eq. (4.60).

Recti�ed process

Following the procedure presented in Appendix 4.A, we derive the recti�ed Hamiltonian
associated with the driven generator K and we obtain

Hr(p, z, t;γ) = Hγ(p+ ∂zS,z, t) +
∂S

∂t
= Hγ(p+ ∂zS,z, t)−Hγ(∂zS, z, t), (4.238)

which vanishes at p = 0 as required. In the case of time-independent Hamiltonians, S is
the Legendre transform of W according to Eq. (4.61): S(z, t) = −Et + W (z, E), and we
have for any z: S(z, 0) = S(z, T ) + ET . From the boundary condition of Eq. (4.237), it
leads to E = Γ̄ and S(z, t) = −Γ̄t + W (z, E). Finally, using the identities ∂zS = ∂zW
and ∂S

∂t
= −Γ̄ in Eq. (4.238), we recover the de�nition of the recti�ed Hamiltonian in the

time-homogeneous case.
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To �nish, we remark that the recti�ed Hamiltonian (4.238) stems from a canonical transfor-
mation (Z,P )→ (z,p) starting from the biased Hamiltonian Hγ(P ,Z). Indeed, consider
the type-2 generating function

F2(p,Z, t) = Z · p+ S(Z, t). (4.239)

Then, the new variables z, p follow from

z = ∂pF2 = Z, (4.240)
P = ∂ZF2 = p+ ∂ZS, (4.241)

and the new Hamiltonian follows from

Hr(p, z;γ) = Hγ(P ,Z) + ∂tF2 = Hγ(p+ ∂zS,z) +
∂S

∂t
, (4.242)

which is the result of Eq. (4.238).

These derivations give a �rst idea on the recti�cation procedure for periodically driven
nonlinear processes. However, a whole investigation remains to be done in order to con-
struct a proper theory, especially with regard to the characterization of the solutions of
the time-dependent HJ equation (4.237) and the behavior of the typical dynamics of the
system whose representation is made di�cult by the time-dependence of the Hamiltonian,
implying that it is not conservative anymore along the solutions of Hamilton's equations.

4.5 Conclusion

In this Chapter, we generalized the problem of conditioning time-homogeneous Markov
processes developed in Refs. [80,81] (linear operator formalism) to nonlinear Markov pro-
cesses by adapting the Lagrangian/Hamiltonian formalism introduced in Ref. [124] for
chemical reaction networks to general nonlinear Markov processes. In Ref. [124], this for-
malism was used to describe the non-biased and biased processes. In this Chapter, we
went a step further by describing the driven process in the Hamiltonian formalism. In the
linear operator formalism, the generator of the driven process is obtained from the gen-
eralized Doob transform of the biased generator using its dominant left eigenvector, and
whose dominant eigenvalue coincides with the SCGF. In the Hamiltonian formalism, this
amounts to rectifying the biased Hamiltonian by performing a canonical transformation
that involves the globally stable solution of the Hamilton-Jacobi equation with eigenrate
equal to the SCGF. These results have been explicitly derived for population processes
by taking the continuous limit of the linear operator formalism. On this basis, we built a
general and abstract theory for the recti�cation of biased Hamiltonians. This theory relies
on two points:

• The existence of a unique globally stable solution and a unique globally unstable
solution of the Hamilton-Jacobi equation with eigenrate equal to the max-min value
of the Hamiltonian (analogue of the PF theorem for Markov generators ensuring the
existence of a unique left eigenvector and a unique right eigenvector associated with
their largest eigenvalue).

129



• The max-min value of the Hamiltonian coincides with the SCGF (in time and size)
(analogue to the fact that the dominant eigenvalue of the biased generator coin-
cides with the SCGF (in time)). This result follows from the convergence of the
Hamiltonian along the long-time typical trajectory to its max-min value.

For now, the �rst point is presented as a conjecture and the second point is proven only
in the case of a unique �xed point in the long-time dynamics. Thereby, investigating
rigorous demonstrations for these two results remains to be done in order to complete
our theory. Nevertheless, we point out that our conjectures have been veri�ed in all our
examples and are backed by their derivation from the linear operator formalism for the
case of population processes.

To conclude, we hope that the results presented in this chapter will be the starting point
for a complete theory on the conditioning/recti�cation of nonlinear Markov processes, both
for time-homogeneous and periodically driven processes.

130



Appendices

�Le meilleur moyen de réaliser

l'impossible est de croire que c'est

possible.�

Lewis Carroll

4.A Derivation of the Lagrangian of population pro-

cesses

In this Appendix, we compute the transition probability Pδt(Nf | Ni) in the continuous
limit de�ned by 

N →∞,
δt→ 0,

N δt→∞,
(4.243)

by following the procedure described in the appendix of Ref. [124]. As seen in Sec. 1.1.3,
the transition probabilities are solutions of the master equation with transition matrix k
that reads in the Dirac notation

k =
∑
α,N

(kα,N |N + Dα〉 〈N | − kα,N |N〉 〈N |) . (4.244)

It follows
Pδt(Nf |Ni) = 〈Nf | eδtk |Ni〉 . (4.245)

For clarity, we introduce the following operators

Aα ≡
∑
N

kα,N |N + Dα〉 〈N | , (4.246)

Bα ≡ −
∑
N

kα,N |N〉 〈N | , (4.247)

so that the transition matrix reads k =
∑

α (Aα +Bα). In order to compute the exponen-
tial of these operators, we need to investigate their commutation properties. Note that
[Bα, Bβ] = 0 for any transitions α, β since both operators are diagonal. Let us compute
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the other commutators:

[Aα, Aβ] =
∑
N

[
kα,N+Dβ

kβ,N − kβ,N+Dαkα,N
]
|N + Dα + Dβ〉 〈N | , (4.248)

[Aα, Bβ] =
∑
N

[kβ,N+Dαkα,N − kα,Nkβ,N ] |N + Dα〉 〈N | . (4.249)

Using the de�nitions of the density (4.4) z = N
N and the intensive rate (4.8) kα,N =

Nkα
(
N
N
)

+ o(N ), we can expand the rate kβ,N+Dα for any transition α, β and for any
population vector state N of order N , i.e. such that NX = O(N ) for any state X:

kβ,N+Dα = Nkβ
(
N + Dα

N

)
+ o(N ) ≈ N

[
kβ(z) +

1

N
Dα · ∂zkβ(z)

]
, (4.250)

where we used the fact that Dα

N −−−→
N→∞

0. Using Eq. (4.250), and assuming that the

accessible population states N are all of order N , i.e. we dismiss the case where only few
particles occupy a given state, the commutators of Eqs. (4.248�4.249) read

[Aα, Aβ] =
∑
N

N [Dβ · ∂zkα(z)kβ(z)−Dα · ∂zkβ(z)kα(z)] |N + Dα + Dβ〉 〈N | ,

(4.251)

[Aα, Bβ] =
∑
N

N [Dα · ∂zkβ(z)kα(z)] |N + Dα〉 〈N | . (4.252)

Hence, these commutators are of order N and it will be the case of any higher order
commutator. Using Baker-Cambell-Hausdor� formula, we can write

eδt(Aα+Aβ) ' eδtAαeδtAβe−
1
2
δt2[Aα,Aβ ]. (4.253)

Since, Aα, Aβ and their commutator are all of the same order, we can neglect the last
term in the limit δt→ 0 implying the commutation of Aα and Aβ in the continuous limit.
The same reasoning leads to the commutation of Aα and Bβ. Let us now compute the
term 〈Nf | eδt(Aα+Bα) |Ni〉:

〈Nf | eδt(Aα+Bα) |Ni〉 ' 〈Nf | eδtAαeδtBα |Ni〉 (4.254)

= e−δtkα,Ni 〈Nf | eδtAα |Ni〉 (4.255)

= e−δtkα,Ni

∞∑
`=0

〈Nf |
δt`

`!
(Aα)` |Ni〉 . (4.256)

where we used the fact that Bα is diagonal in the second equality and where we expanded
the exponential in the third equality. The `th power of Aα is given by

(Aα)` =
∑
N

[∏̀
m=1

kα,N+(m−1)Dα

]
|N + `Dα〉 〈N | , (4.257)

leading to

〈Nf | eδt(Aα+Bα) |Ni〉 = e−δtkα,Ni

∞∑
`=0

(δtN )`

`!

∏̀
m=1

kα,Ni+(m−1)Dα

N
δ(Nf −Ni− `Dα). (4.258)
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For a large factor X, and using Stirling's formula, we �nd that the function ` 7→ X`

`!

reaches its maximum for `∗ ' X. Applying this result for X = δtN , we can approximate
the sum over ` by its dominant contribution given by `∗ ∝ δtN in the limit δtN → ∞.
The proportionality factor between `∗ and δtN has to be the empirical current λα so that
the constraint appearing in the Dirac delta function Nf −Ni = `Dα is consistent with
the constraint of Eq. (4.5), hence `∗ = δtNλα. It yields

〈Nf | eδt(Aα+Bα) |Ni〉 'N→∞ e−δtkα,Ni
(δtN )`∗

`∗!

`∗∏
m=1

kα,Ni+(m−1)Dα

N
δ(Nf−Ni−`∗Dα). (4.259)

Since `∗
N = δtλα −−−→

δt→0
0, we have from the expansion in Eq. (4.250):

`∗∏
m=1

kα,Ni+(m−1)Dα

N
=

`∗∏
m=1

[kα(zi) + o(1)] ' kα(zi)
`∗ , (4.260)

with zi ≡ Ni

N . It follows

〈Nf | eδt(Aα+Bα) |Ni〉 'N→∞ e−δtNkα(zi)
(δtN )`∗

`∗!
kα(zi)

`∗δ(zf − zi − δtDαλα). (4.261)

Using Stirling's Formula, we �nally obtain

〈Nf | eδt(Aα+Bα) |Ni〉 'N→∞ e
−δtN

[
λα ln

(
λα

kα(zi)

)
−λα+kα(zi)

]
δ(zf − zi − δtDαλα). (4.262)

We remind that this result is valid within the continuous limit (4.243) and for population
state N of order N . We can now compute the transition probability 〈Nf | eδtk |Ni〉 =
〈Nf |

∏
α eδt(Aα+Bα) |Ni〉 by injecting the identity 1 =

∑
` |N`〉 〈N`| between each term of

the product. We �nally obtain

Pδt(Nf |Ni) �N→∞ e−δtNL (λ,zi)δ(ż −Dλ), (4.263)

with ż ≡ zf−zi
δt

, recovering the continuity equation (4.7), and where we introduced the
detailed Lagrangian:

L (λ, z) =
∑
α

[
λα ln

(
λα

kα(z)

)
− λα + kα(z)

]
. (4.264)

4.B Some elements of analytical mechanics

The results presented here come mainly from Ref. [265].

4.B.1 Euler-Lagrange equation

We call {ε} the ensemble of trajectories connecting zi to zf after a time T and denote by
δzεt
δε

the variation of zt between two trajectories at �xed time t as represented in Fig. 4.15.
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The fact that all the trajectories have the same starting and arrival point is expressed by
the boundary conditions

δzεt=0

δε
=
δzεt=T
δε

= 0. (4.265)

We look for the trajectory ε that minimizes the action S[ż, z]T0 de�ned in Section 4.1.2.
Mathematically, it reads

δS

δε
[żεt , z

ε
t ]
T
0 =

∫ T
0

[
∂Lγ
∂z

(żεt , z
ε
t )
δzεt
δε

+
∂Lγ
∂ż

(żεt , z
ε
t )
δżεt
δε

]
dt = 0, (4.266)

where the variation of the action is with respect to an in�nitesimal variation of the tra-
jectory δε. It follows

δS

δε
=

∫ T
0

[
∂Lγ
∂z

δzεt
δε

+
∂Lγ
∂ż

d

dt

(
δzεt
δε

)]
dt (4.267)

=

∫ T
0

[
∂Lγ
∂z

δzεt
δε
− d

dt

(
∂Lγ
∂ż

)
δzεt
δε

]
dt+

[
∂Lγ
∂ż

δzεt
δε

]T
0

(4.268)

=

∫ T
0

[
∂Lγ
∂z
− d

dt

(
∂Lγ
∂ż

)]
δzεt
δε

dt (4.269)

= 0, (4.270)

where we used in Eq. (4.267) an integration by parts, and in Eq. (4.268) the condi-
tion (4.265) to remove the boundary term. We want Eq. (4.269) to be 0 for any δzεt

δε
.

The only way to guarantee this is to have at all times

∂Lγ
∂z
− d

dt

(
∂Lγ
∂ż

)
= 0. (4.271)

Eq. (4.271) is known as the Euler-Lagrange equation. It means that the trajectory minimiz-
ing the action, hence the trajectory typically followed by the system, is the one satisfying
the Euler-Lagrange equation.

4.B.2 Hamilton's equations

We look for the trajectory ε that minimizes the action S[p, z]T0 de�ned in Section 4.1.2.
Mathematically, it reads

δS

δε
[pεt , z

ε
t ]
T
0 =

∫ T
0

[
pεt ·

δżεt
δε

+
δpεt
δε
· żεt −

∂Hγ
∂z

(pεt , z
ε
t )
δzεt
δε
− ∂Hγ

∂p
(pεt , z

ε
t )
δpεt
δε

]
dt = 0.

(4.272)
It follows

δS

δε
=

∫ T
0

[
pεt ·

d

dt

δzεt
δε

+
δpεt
δε
· żεt −

∂Hγ
∂z

δzεt
δε
− ∂Hγ

∂p

δpεt
δε

]
dt (4.273)

=

∫ T
0

[
żεt −

∂Hγ
∂p

]
δpεt
δε

dt−
∫ T

0

[
ṗεt +

∂Hγ
∂z

]
δzεt
δε

dt, (4.274)

= 0, (4.275)
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Figure 4.15 � The trajectories connecting zi at time t = 0 to zf at time t = T are here
{ε} = {ε1, ε2, ε3, ε4}. A time t, δzεt

δε
represents the variation of zt between trajectories ε2

and ε3.

where we used an integration by parts and Eq. (4.265) to remove the boundary term. We
want Eq. (4.274) to be 0 for any δzεt

δε
and δpεt

δε
. The only way to guarantee this is to have

at all times {
żεt = ∂pHγ(pεt , z

ε
t ),

ṗεt = −∂zHγ(pεt , z
ε
t ).

(4.276)

Eq. (4.276) is known as Hamilton's equations. It means that the trajectory minimizing
the action, hence the trajectory typically followed by the system, is the one satisfying
Hamilton's equations.

4.B.3 Canonical transformation

Let us consider some Hamiltonian H(P ,Z, t) whose dynamics is ruled by Hamilton's
equations: {

Ż = ∂PH(P ,Z),

Ṗ = −∂ZH(P ,Z).
(4.277)

A canonical transformation is a change of variable (P ,Z)→ (p(P ,Z, t), z(P ,Z, t)) such
that there exists a new Hamiltonian H̃(p, z) whose dynamics satis�es Hamilton's equations
with respect to these new variables:{

ż = ∂pH̃(p, z),

ṗ = −∂zH̃(p, z).
(4.278)
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In practice, such a transformation can be obtained from a function F1(Z, z, t) called a
generating function of type 1 via the following relations:

P = ∂ZF1, p = −∂zF1, H̃(p, z, t) = H(P ,Z, t) + ∂tF1. (4.279)

It is possible to de�ne three other generating functions from the Legendre transforms of
the F1. For instance, the type-2 generating function F2(Z,p, t) is de�ned by

F2(Z,p, t) ≡ F1(Z, z, t) + z · p, (4.280)

leading to the transformation rules:

P = ∂ZF2, z = ∂pF2, H̃(p, z, t) = H(P ,Z, t) + ∂tF2. (4.281)

Similarly, one can de�ne the type-3 and type-4 generating functions F3(P , z) and F4(P ,p),
see [265] for more details.

4.C Independent many-body Markov processes

Nonlinear processes allow modeling a large range of systems. An important example
of nonlinear processes is interacting many-body Markov jump [267] and di�usion pro-
cesses [268] of which independent many-body Markov processes appear as a particular
linear case. In this appendix, we illustrate our nonlinear theory developed in Section 4.2
in the case of N independent jump and di�usion processes.

4.C.1 Independent many-body Markov jump processes

We considerN independent and identical systems, each one modeled by a time-homogeneous
Markov jump process of time-independent generator k̃. We denote by ν ∈ {1, 2, . . .N}
the νth system and by nν ∈ {1, . . .M} the state it occupies. The microstate vector
n ≡

(
n1 . . . nν . . . nN

)† denotes the state of the global system and informs on the
state of each subsystem. The probability pn that the global system is in state n satis�es
the master equation

ṗn =
∑
m

k̃nmpm, (4.282)

where we introduced (with a slight abuse of notation) the transition rate from m to n:

k̃nm ≡
N∑
ν=1

k̃nνmν (1− δnν ,mν ), (4.283)

meaning that the transition m→ n at the level of the global system corresponds to only
one transition mν → nν performed by one of the systems ν. We would like to describe the
same system at a more coarse-grained level. To do so, we introduce the mesostate vector
N (n) ≡

(
N1 . . . Nn . . . NM

)† whose component Nn ≡
∑

ν δn,nν gives the number
of systems in state n given the microstate n. We are interested in the probability PN that
the global system is in state N :

PN =
∑

n|N(n)=N

pn ≡
∑
nN

pnN , (4.284)
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where the last sum is over the ensemble {nN} of microstates compatible with the mesostate
N , implying that pnN is the joint probability to be in n and N . The master equation
satis�ed by PN reads then

ṖN =
∑
N ′

kNN ′PN ′ , (4.285)

where the mesoscopic transition matrix k reads in the Dirac notation:

k ≡
∑

N ,N ′ 6=N

∑
n,m

k̃nmN
′
mδNn,N ′n+1δNm,N ′m−1 |N〉 〈N ′|−

∑
N ′

∑
n,m 6=n

k̃nmN
′
m |N ′〉 〈N ′| , (4.286)

with
∑
N kNN ′ = 0, and where the sum

∑
N ,N ′ 6=N is implied to run over the mesostates

N and N ′ such that they di�er by only one microscopic transition:
Nn = N ′n + 1,

Nm = N ′m − 1,

Nl = N ′l , ∀l 6= n,m.

(4.287)

A particular linear case of population processes

Eq. (4.286) means that the transition probability to jump from N ′ to N is given by
the probability of the microscopic transition m → n implied in the transition N ′ → N
performed by any of the N ′m systems occupying the state m, and we can write:

kNN ′ = knm,N ′ ≡ N ′mk̃nm. (4.288)

Eq. (4.287) can be rewritten as
N = N ′ +Dnm, (4.289)

where Dnm is the vector of component

Dl,nm =


1 if l = n,

−1 if l = m,

0 otherwise,
(4.290)

so that the matrix D of components Dl,nm is the incidence matrix. Hence, the N inde-
pendent Markov processes appear to be a particular linear case of population processes of
Section 4.1 with the following connections:

α→ (nm), (4.291)
kα,N ′ → knm,N ′ , (4.292)
Dα →Dnm, (4.293)

and where the observables λ and z are respectively the empirical transition current ω and
the empirical density µ de�ned by

ωlm(t) ≡ 1

N δt

N∑
ν=1

∑
s∈[t,t+δt[

δl,nν
s+
δm,nν

s−
=

1

Ndt

∑
s∈[t,t+dt[

[
δNl(s+),Nl(s−)+1δNm(s+),Nm(s−)−1

]
,

(4.294)

µm(t) ≡ 1

N

N∑
ν=1

δnνt ,m =
Nm(t)

N
, (4.295)
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where δt is an in�nitesimal time interval, nt the empirical microstate vector of the global
system at time t and N (t) ≡ N (nt). We assume that the typical time scale during
which a single process performs one transition is δt, so that during δt the global system
undergoes typically N transitions. The component Ndt ωlm(t) counts the number of
systems performing the transition m→ l between times t and t+ δt, and the component
µm(t) counts the fraction of systems being in state m at time t. From Eqs. (4.294�4.295),
the two variables are related by

µ̇ = Dω. (4.296)

From Eq. (4.288), the intensive transition rate (4.8) reads for this model

knm(µ) = k̃nmµm, (4.297)

which is indeed linear in µ. Now, the di�erent Lagrangians and Hamiltonians simply
follow from the ones derived in Section 4.1 with the appropriate changes:

Lγ(ω,µ) =
∑
n,m 6=n

[
ωnm ln

(
ωnm
knmµm

)
− ωnm + knmµm

]
− γ1 · ω − γ2 · µ, (4.298)

Hγ(f ,µ) =
∑
n,m 6=n

k̃nmµm

[
efnm+γ1nm − 1

]
+ γ2 · µ, (4.299)

Hγ(p,µ) = Hγ(D†p,µ) =
∑
n,m 6=n

k̃nmµm

[
epn−pm+γ1nm − 1

]
+ γ2 · µ, (4.300)

with γ1 · ω ≡
∑

n,m 6=n γ
1
nmωnm and γ2 · µ ≡

∑
n γ

2
nµn. The non-biased Lagrangian and

Hamiltonian are recovered when taking γ = 0. Note that the standard Lagrangian cannot
be computed in general for this model.

Recti�ed Hamiltonian

For general population processes, we saw that the recti�ed Hamiltonian follows from
Eq. (4.143) where Ws is related to the function U appearing in the left eigenvector eU of
the biased generator κ (4.40) via Eq. (4.81). For our model, the function U is related to
the function u appearing in the left eigenvector eu of the single-process biased matrix κ̃
through UN = N ·u. Indeed, one can check that the dominant left eigenvector of κ reads
in the Dirac notation

〈L| ≡
∑
N

eN ·u 〈N | =
∑
N

e
∑M
m=1Nmum 〈N | , (4.301)

with dominant eigenvalue Γ = N Γ̄, where Γ̄ is the dominant eigenvalue of κ̃. Computing
the right-hand side of Eq. (4.81), it follows that Ws exists and is given by

∂µWs = u. (4.302)

The recti�ed Hamiltonian reads then

Hr
γ(p,µ;γ) = Hγ(p+ u,µ)−Hγ(u,µ), (4.303)

leading to
Hr
γ(p,µ;γ) =

∑
n,m 6=n

K̃nmµm
[
epn−pm − 1

]
, (4.304)
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which corresponds to the Hamiltonian of a non-biased process of intensive rate K̃nm(µ) =
K̃nmµm, with K̃nm the component of the generator K̃ of the single-system driven process
obtained from the Doob transform of κ̃ using its left eigenvector eu [80]. This illustrates
the fact that the recti�cation of biased Hamiltonians is equivalent to the recti�cation of
biased generators in the linear operator formalism using the Doob transform.

4.C.2 Independent many-body Markov di�usion processes

We considerN independent and identical systems, each one modeled by a time-homogeneous
Markov di�usion process of time-independent drift b and di�usion coe�cient σ. We denote
by ν ∈ {1, 2, . . .N} the νth system and by xνt the stochastic process of the system ν which
evolves according to the Langevin equation

ẋνt = b(xνt ) + σ(xνt ) ◦ ξνt , (4.305)

with ξνt a Gaussian white noise satisfying Eqs. (2.55�2.56). We are interested in the
empirical occupation density

ρ(x, t) ≡ 1

N

N∑
ν=1

δ(xνt − x), (4.306)

and the empirical current

j(x, t) ≡ 1

N

N∑
ν=1

δ(xνt − x) ◦ ẋνt , (4.307)

playing the role of the variables λ and z, respectively. The empirical occupation density
gives the density of systems being at a state in [x, x + dx[ at time t, and the empirical
current measures the density of systems performing a displacement between x and x+ dx
within the time interval [t, t+ dt[. Both variables are related by

ρ̇(x, t) = −∇j(x, t), (4.308)

with ∇ ≡ ∂x the derivative with respect to x, and where −∇ plays the role of D. Note that
when we consider a single-di�usion process ν, the empirical observables one is interested
in are the empirical current j̃ν and the empirical occupancy ρ̃ν de�ned by

j̃νt (x) ≡ 1

t

∫ t

0

dτδ(xντ − x) ◦ ẋντ , (4.309)

ρ̃νt (x) ≡ 1

t

∫ t

0

dτδ(xντ − x). (4.310)

The observables of the single-process and of the many-body process are related by

1

t

∫ t

0

dτ j(τ) =
1

N

N∑
ν=1

j̃νt ,

1

t

∫ t

0

dτ ρ(τ) =
1

N

N∑
ν=1

ρ̃νt .

(4.311)
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Stochastic equation for the empirical occupation density

We aim to give a coarse-grained description of the global system by deriving the stochastic
equation ruling ρ. To do so, we compute the quantity: ∆xν ≡ xνt+∆t − xνt . Using the
Langevin equation (4.305) for xνt , we get:

∆xν =

∫ t+∆t

t

dτ [b(xντ ) + σ(xντ ) ◦ ξντ ] . (4.312)

For an in�nitesimal ∆t, we have in the Stratonovich convention [222]:∫ t+∆t

t

dτ b(xντ ) ' b

(
xνt +

∆xν

2

)
∆t (4.313)∫ t+∆t

t

dτ [σ(xντ )ξ
ν
τ ] ' σ

(
xνt +

∆xν

2

)∫ t+∆t

t

dτ ξντ . (4.314)

Expanding up to order ∆t and using the identity (
∫ t+∆t

t
ξtdt)

2 = ∆t when ∆t→ 0 [28,125],
it follows

∆xν ' b(xνt )∆t+ σ(xνt )

∫ t+∆t

t

ξντ dτ +
1

2
σ(xνt )∇σ(xνt )∆t, (4.315)

(∆xν)2 ' σ(xνt )
2∆t. (4.316)

We now compute ρ(x, t+ ∆t) = 1
N
∑N

ν=1 δ(x
ν
t+∆t − x). Let ϕ be a test function, then

∫
dxϕ(x)ρ(x, t+ ∆t) =

1

N

N∑
ν=1

ϕ(xνt+∆t) (4.317)

=
1

N

N∑
ν=1

ϕ(xνt + ∆xν) (4.318)

' 1

N

N∑
ν=1

ϕ(xνt ) +
1

N

N∑
ν=1

∆xνϕ′(xνt ) +
1

N

N∑
ν=1

1

2
(∆xν)2ϕ′′(xνt ),

(4.319)

where we used Taylor's formula around xνt up to second order in ∆xν in the last equation.
Using Eqs. (4.315�4.316) and the fact that 1

N
∑N

ν=1 ϕ(xνt ) =
∫

dxϕ(x)ρ(x, t), Eq. (4.319)
gives∫

dxϕ(x)ρ̇(x, t) =

∫
dxϕ(x)

{
−∇

[
b̂(x)ρ(x, t)− 1

2
σ(x)2∇ρ(x, t) + σ(x)

√
ρ(x, t)

N
η(x, t)

]}
,

(4.320)
with ρ̇(x, t) = lim∆t→0

ρ(x,t+∆t)−ρ(x,t)
∆t

, b̂(x) = b(x)− 1
2
σ(x)∇σ(x), and where we introduced

η(x, t) ≡ 1√
N ρ(x, t)

N∑
ν=1

δ(x− xνt )ξ̄νt , (4.321)
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with ξ̄νt ≡ lim∆t→0
1

∆t

∫ t+∆t

t
dτξντ . The stochastic process η is a Gaussian white noise in

time and space [268,269] with mean and variance

〈η(x, t)〉 = 0, (4.322)
〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′). (4.323)

Since (4.320) is valid for any function ϕ, we obtain the stochastic equation for ρ:

ρ̇(x, t) = −∇

[
b̂(x)ρ(x, t)− 1

2
σ(x)2∇ρ(x, t) + σ(x)

√
ρ(x, t)

N
η(x, t)

]
. (4.324)

Eq. (4.324) is known as the Dean equation.

Derivation of the Lagrangians and Hamiltonians

In order to obtain the detailed Lagrangian L (j, ρ), we compute the conditional probability
Pδt(j | ρ) using Eqs. (4.308, 4.324):

Pδt(j | ρ) =
∏
x

〈
δ

[
j − b̂ρ+

1

2
σ2∇ρ− σ

√
ρ

N
η

]〉
η

, (4.325)

The continuous product
∏

x is implied to run over the states x` ≡ `δx, with ` an integer
and δx an in�nitesimal space step, and 〈· · ·〉η is the average over the noise η:

〈O(η)〉η ≡
1

N

∫
O(η)e−

1
2
δtδxη2dη, (4.326)

with N the normalization factor, O(η) an arbitrary function of η. We have dropped the
(x, t)-dependency in the all functions for clarity. It follows

Pδt(j | ρ) =
1

N

∫
dη
∏
x

e−
1
2
δtδxη2δ

[
j − b̂ρ+

1

2
σ2∇ρ− σ

√
ρ

N
η

]

=
1

N

∫
dη
∏
x

e−
1
2
δtδxη2

√
N

σ
√
ρ
δ

[
η −

j − b̂ρ+ 1
2
σ2∇ρ

1√
N σ
√
ρ

]
=

1

N
e
−δt

∫
x

[
N

2σ2ρ
(j−b̂ρ+ 1

2
σ2∇ρ)

2
+ 1

2
ln
(
N
ρσ2

)]
, (4.327)

where we used in the second equality the relation δ(ϕ(y)) = |ϕ′(y0)|−1δ(y − y0), for any
smooth test function ϕ and any root y0 of ϕ. In the limit of large N , the last term in the
exponential is asymptotically dominated by N and we obtain

Pδt(j | ρ) �
N→∞

e−N δtL (j,ρ), (4.328)

where the Lagrangian is given by

L (j, ρ) =

∫
x

1

2σ2ρ
(j − Jρ)2 , (4.329)
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with Jρ = b̂ρ− 1
2
σ2∇ρ. Computing the Legendre transform of L with respect to j yields

the detailed Hamiltonian

H (f, ρ) =

∫
x

f

[
1

2
σ2fρ+ Jρ

]
. (4.330)

We are interested in the observable

At(x) ≡ N
t

( ∫ t
0

dτj(x, τ)∫ t
0

dτρ(x, τ)

)
. (4.331)

Using the results of Section 4.2.1, the dynamical �uctuations of A are encoded in the
biased Lagrangian and Hamiltonian

Lγ(j, ρ) = L (j, ρ)− γ1 · j − γ2 · ρ, (4.332)

Hγ(f, ρ) =

∫
x

(f + γ1)

[
1

2
σ2(f + γ1)ρ+ Jρ

]
+ γ2 · ρ = H (f + γ1, ρ) + γ2ρ, (4.333)

where γ1(x) (resp. γ2(x)) is conjugated to the �rst (resp. second) component of A(x).

SCGF and Hamilton-Jacobi equation

In order to derive the recti�ed Hamiltonian, we �rst need to translate the spectral prop-
erties of the biased generator from the linear operator formalism to the Hamiltonian for-
malism. Because of the independence of the N processes, it su�ces to look at a single
process. Indeed, we can relate the SCGF Γ of the global system to the SCGF Γ̄ of the
single process by:

Γ = lim
t→∞

1

t
lnExi

[
etγ·At

]
(4.334)

= lim
t→∞

1

t
lnExi

[
eN

∫ t
0 dτγ1·j(τ)+N

∫ t
0 dτγ2·ρ(τ)

]
(4.335)

= lim
t→∞

1

t
lnExi

[
et
∑N
ν=1(γ1·j̃νt +γ2·ρ̃νt )

]
(4.336)

= N lim
t→∞

1

t
lnExi

[
et(γ1·j̃

ν
t +γ2·ρ̃νt )

]
(4.337)

= N Γ̄, (4.338)

where we used Eq. (4.331) in Eq. (4.335), Eq. (4.311) in Eq. (4.336) and the fact that the
N processes are independent and identically distributed in Eq. (4.337). We know from the
linear operator formalism that the single-process driven generator is obtained by taking
the Doob transform of the biased generator using its dominant left eigenfunction [80]. The
biased Fokker-Planck operator is given by:

Λγϕ = (−∇+ γ1)(b̂ϕ) +
1

2
(−∇+ γ1)

[
σ2(−∇+ γ1)ϕ

]
+ γ2ϕ, (4.339)

with ϕ a test function, and its adjoint operator by

Λ†γϕ = b̂(∇+ γ1)ϕ+
1

2
(∇+ γ1)

[
σ2(∇+ γ1)ϕ

]
+ γ2ϕ. (4.340)
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We also know that the SCGF Γ̄ is the dominant eigenvalue of Λγ . Let eu be its associated
dominant left eigenfunction (the positivity is ensured by the Krein-Rutman theorem):

Λ†γeu = Γ̄eu. (4.341)

From Eq. (4.341) and the fact that ρ · 1 = 0, we have

Γ̄ =

∫
x

e−u(Λ†γeu)ρ. (4.342)

Computing explicitly the right-hand-side of (4.342), we �nd

Γ̄ = Hγ(f = ∇u, ρ), (4.343)

with ∇ = (−∇)†. As expected, the function u appearing in the left eigenfunction of the
biased Fokker-Planck operator is the solution of Hamilton-Jacobi equation and we write
u = ∂ρWs.

Recti�ed Hamiltonian

The recti�ed Hamiltonian follows from Eq. (4.144):

H r(f, ρ;γ) = Hγ(f +∇u, ρ)−Hγ(∇u, ρ), (4.344)

leading after explicit computation to

H r(f, ρ;γ) =

∫
x

f

[
1

2
σ2fρ+ J r,ρ

γ

]
, (4.345)

with J r,ρ
γ ≡ B̂γρ− 1

2
σ2∇ρ, where we introduced the recti�ed drift B̂γ ≡ b̂+ σ2(∇u+ γ1).

Unsurprisingly, the recti�ed Hamiltonian corresponds to a non-biased Hamiltonian asso-
ciated with the drift B̂γ of the driven process obtained from a Doob transform as seen
in Eq. (3.154). This illustrates the fact that the recti�cation of biased Hamiltonians is
equivalent to the recti�cation of biased generators in the linear operator formalism using
the Doob transform.

4.D Phase transition in the Brownian Donkey

We saw in Section 4.2.2 that the positions of the �xed points correspond to the positions
of the extrema of Hmin de�ned in Eq. (4.127). Moreover, the position of the �xed point
associated with the dominant trajectory in the long-time limit corresponds to the position
of the absolute maxima of Hmin as discussed in Section 4.2.3. When varying the biasing
parameter γ, the aspect of Hmin(z) evolves until it undergoes a phase transition at the
critical parameter γc for which the absolute maximum is reached at two di�erent values
of z. This is illustrated in Fig. 4.16 in which we plotted the non-biased Hamiltonian and
the biased Hamiltonian with the parameter γ1 �xed at its critical value γc1 while varying
the parameter γ2. The non-biased Hamiltonian (dashed black curve) has one minimum
and two maxima Hmin(znb0 ) > Hmin(znb1 ) reached at znb0 and znb1 . The biased Hamiltonian
displays the same extrema: one minimum and two maxima of positions z?0 and z?1 , with z

?
0
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Figure 4.16 � Hmin(z) for di�erent values of γ2. The dashed black curve corresponds
to the non-biased Hamiltonian and the red curve corresponds to the value of the biased
Hamiltonian at the critical biasing parameter γν,c1,ε = 0.084 (ε = ±, ν = 1, 2) and γc2 = 0.11.
The �gures are obtained for E = 0.8, N = 1000, V = 2, Ea = 1, F = 1, β1 = 1, β2 = 2.

the position of the absolute maximum: Hmin(z?0) > Hmin(z?1). When considering values of
γ2 smaller than the critical value γc2, the positions of the maxima follow the same order as
for the non-biased Hamiltonian, i.e. z?0 < z?1 (yellow curve). On the contrary, for values
of γ2 greater than the critical value γc2, the maxima �exchange positions� and we have
z?0 > z?1 (blue curve). In between, at the critical value γ2 = γc2, the two maxima coincide,
i.e. Hmin(z?0) = Hmin(z?1) (red curve). At this value of γ, the SCGF is not di�erentiable
and the system undergoes a �rst-order phase transition.

At the phase transition, there are two �xed points associated with the dominant tra-
jectory in the long-time limit (red trajectories in Fig. 4.17). We denote by z′0

? (left) and
z?0 (right) their positions. The solutions p± (4.187) of the HJ equation (4.186) have the
following stability properties:

• For z ∈ [0, z′0
?]: {

The branch p+ is stable (converges to z′0
?),

The branch p− is unstable (exits from z′0
?).

(4.346)

• For z ∈ [z?0 , 1]: {
The branch p+ is unstable (exits from z?0),

The branch p− is stable (converges to z?0).
(4.347)

• For z ∈ [z′0
?, z?0 ]:{

The branch p+ is unstable for z′0
? and stable for z?0 ,

The branch p− is stable for z′0
? and unstable for z?0 .

(4.348)

In order to de�ne the recti�ed Hamiltonian, we need to �nd a globally stable solution ps of
the HJ equation. Yet, in view of Eqs. (4.346�4.348) and Fig. 4.17, such a solution does not
exist. Consequently, the recti�cation procedure is not well-de�ned at the phase transition.
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Figure 4.17 � Trajectories of the biased Hamiltonian at the phase transition. The dashed
black line corresponds to the solution p+ and the gold dotted line corresponds to the
solution p−.
The �gures are obtained for E = 0.8, V = 2, Ea = 1, F = 1, β1 = 1, β2 = 2, γν1,ε = 0.084
(ε = ±, ν = 1, 2) and γ2 = 0.11.
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General conclusion

�Everything is theoretically impossible,

until it is done.�

Robert A. Heinlein

The development of non-equilibrium statistical physics in general, and the exploration
of the problem of conditioning Markov processes in particular, are still in progress and
many discoveries await to be made.

The latter problem seeks to �nd an equivalent process � the driven process � to a
Markov process conditioned on a rare �uctuation of a physical observable. The generator
of such a process has been derived for general time-homogeneous Markov processes in
Refs. [52, 80, 81]. The main results of this manuscript are the extension of the problem
of conditioning in the linear operator formalism to periodically driven Markov processes
on the one hand, and the translation of this problem in the Lagrangian/Hamiltonian
formalism [124] used to deal with nonlinear Markov processes on the other hand. In the
�rst extension, we deal with time-periodic generators of jump and di�usion processes. The
spectral relations of the time-homogeneous case become then initial or �nal value problems.
In the second extension, generators become Lagrangians or Hamiltonians used to describe
the dynamical large deviations in size of the system. The Lagrangian/Hamiltonian formal-
ism allows one to reduce the number of dynamical observables when taking the large-size
limit. This is useful as computing the spectral properties of large-dimension linear op-
erators can quickly become laborious. Instead, one �simply� looks for the solutions of a
Hamilton-Jacobi equation.

The conditioning, biasing and recti�cation of Markov processes in the linear operator for-
malism is rather complete as it concerns jump and overdamped di�usion processes, both
in the time-homogeneous and time-periodic cases. Even so, it remains to develop the same
theory for the case of underdamped di�usion processes. An underdamped di�usion process
of dimension d is an overdamped di�usion process of dimension 2d but with a di�usion
matrixD = σσ† that is not invertible, implying that the level 2.5 large deviation function
is not de�ned. In Ref. [270], it has been shown that the latter LDF is replaced by the
level 2 LDF of the empirical density. On this basis, one can question how the results of
Refs. [52, 80,81] can be adapted to the case of underdamped di�usion processes.

Concerning the conditioning, biasing and recti�cation in the Lagrangian/Hamiltonian for-
malism, there is still a lot to understand. To begin with, we hope that a proof of our
conjecture on the nonlinear counterpart of the Perron-Frobenius theorem as well as for
our results on the long-time limit dynamics in the presence of more than one critical man-
ifold will be possible in future work. Afterward, it would be interesting to extend this
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theory to the case of periodically driven nonlinear Markov processes on the basis of the
derivation done in Section 4.4. Additionally, we touched on the fact that the recti�cation
may fail at a �rst-order phase transition due to the non-existence of globally stable and
unstable solutions of the Hamilton-Jacobi equation. This is equivalent to the failure of the
Perron-Frobenius theorem in the linear operator formalism due to the breaking of ergod-
icity appearing in the continuous limit [120, 124, 271]. Further investigations are needed
to understand why the recti�cation is not de�ned in the presence of critical phenomena,
and what is the physical interpretation of the associated �rst-order phase transition.

The work provided in this thesis remains at a rather mathematical level, but we hope that
it will �nd applications on more physical models. In particular, the results presented in
this manuscript can be applied to stochastic thermodynamics by considering thermody-
namic observables (heat, work, chemical current, entropy production, etc.) and transition
rates related via local or instantaneous detailed balance condition to ensure thermody-
namic consistency. One can wonder under what conditions the driven process models
a physical system and preserves the thermodynamic consistency of the original process.
An open question would be whether it is possible to show experimentally the equivalence
between a system modeled by a process conditioned on always having the same value of
a physical observable and a system modeled by the driven process. The latter would be
obtained either by modifying the former system, or by modifying the external conditions
of the same system in order to comply with the driven generator. One would then look at
the distribution of the conditioning observable and check if its typical value corresponds
to the imposed value.

To go further, one can try to approach the problem of conditioning from a quantum per-
spective. Non-equilibrium quantum statistical mechanics is an active �eld of research and
a lot of e�ort has been put into the development of tools allowing a statistical mechanical
description of quantum systems driven out of equilibrium. One approach is to make use of
the density operator formalism and the full counting statistics to describes the quantum
state of the system and to derive the statistical properties of physical observables [272�274].
Lately, large deviation theory has been applied to quantum systems [102,275�278]. A for-
tiori, a quantum level-2.5 large deviation principle has been derived for open quantum
systems [279]. Subsequently, it would be interesting to investigate how the problem of
conditioning generalizes to nonequilibrium quantum systems.

I hope this manuscript will be useful to students, PhD students or anyone who wants to
learn about (or continue) the work presented here. I wanted to make a pedagogical and
gradual presentation of the di�erent concepts and results of this thesis, and I hope it was
the case. Lastly, I hope that the end of this manuscript will only be the beginning of other
scienti�c adventures for other budding scientists.
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Glossary

Acronyms

CGF Cumulant Generating Function

HJ Hamilton-Jacobi

LDF Large Deviation Function

LDP Large Deviation Principle

LF Legendre-Fenchel

PF Perron-Frobenius

SCGF Scaled Cumulant Generating Function

TiPS Time Periodic State

Dictionary

Critical manifold Ensemble of compact trajectories such that at least one other
trajectory converges towards it forward or backward in time.

Eigenrate Value of the Hamiltonian at a solution of the HJ equation.

Fixed point Stationary solution of Hamilton's equation.

Global solution Solution of the HJ equation de�ned and analytic for all z.

Globally stable dynamics Reduced dynamics such that there exists a compact set C in
z-space such that all trajectories converge to C.

Globally stable solution Global solution of the HJ equation for which the reduced
dynamics is globally stable.

Globally unstable dynamics Reduced dynamics such that there exists a compact set C in
z-space such that all trajectories exit from C.

Globally unstable solution Global unstable solution of the HJ equation for which the
reduced dynamics is globally stable.
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Limit cycle Closed critical manifold of dimension 1.

Linear operator formalism Formalism that uses Markov generators (large deviations in
time)

Reduced dynamics Trajectories in z-space solution of Hamilton's equations in
the manifold p = ∂zW , with W a global solution of the HJ
equation.

Strange attractor Complex geometric critical manifolds.

Transient trajectory Trajectory that converges to a critical manifold forward (re-
laxing transient trajectory) or backward (�uctuating tran-
sient trajectory) in time.
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Notations

We sum up in the following the mathematical de�nitions, notations and symbols used in
the whole manuscript.

A. Mathematical symbols

Ẋ = dX
dt

Time derivative of X ∂X
∂t

Partial derivative with respect to time
1 Identity operator 1 Vector of components 1 or function 1 : x 7→ 1, ∀x
≡ Equal by de�nition ◦ Stratonovich stochastic integral
R Set of real numbers N Set of natural numbers

Asymptotic equivalence �
n→∞

(
An �

n→∞
Bn

)
≡

(
limn→∞

An
Bn

= 0
)

Scalar product · Vectors u · v ≡
∑

x uxvx
Functions f · ϕ ≡

∫
dxf(x)ϕ(x)

Hadamard product � Vectors (u� v)x ≡ uxvx
Matrix and vector (M � v)xy ≡Mxyvy

Adjoint operator † For an operator M acting on a Hilbert space H, M † is the adjoint
of M and is de�ned by (MX) · Y ≡ X · (M †Y ), ∀X, Y ∈ H. If M is a real matrix, M † is
the transpose of M .

Time-ordered exponentials

←−
QM (t, 0) ≡ ←−exp

∫ t
0
M(t′) dt′ Ordered exponential of M/Propagator Eq. (3.196)

−→
QM (0, t) ≡ −→exp

∫ t
0
M(t′) dt′ Reverse-ordered exponential of M Eq. (3.199)

B. Parameters

Chapter 3 Chapter 4

T Period
n Total number of periods N Size-type parameter
t = 0 Initial time t = 0 Initial time
t = nT Final time t = T Final time
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C. Markov jump processes (Sections 2.3 and 3.1)

Generators and probabilities

x, y States
P (x, t | y, t′) Transition probability from y at time t′ to x at time t
k = (kxy) Transition rate matrix/Markov generator (2.5)
π = (πx) Probability vector associated with k (2.6)
π(0) Initial probability vector
πTiPS TiPS probability of the process generated by k
jπ = (jπxy) probability current associated with π (2.8)
κ = (κxy) Tilted (or biased) generator (2.49)
Mv Generalized Doob transform of the matrix M using the vector v (3.23)
Kn = (Knxy) Canonical generator (3.28)
K = (Kxy) Driven generator (3.41)
µ = (µx) TiPS probability of the driven process (3.48)

Path probabilities

z(t) Markov process giving the system state at time t [z] Path or trajectory

Pk,π(0)[z] Path probability associated with the Markov generator k (2.13)
Pκ,π(0)[z] Biased path probability (2.51)
Pmicro

a,π(0)[z] Microcanonical path probability (2.88)
Pcano

γ,π(0)[z] Canonical path probability (2.89)
PMv ,π(0)[z] Path probability associated with the Doob transform Mv (3.25)
P
κCn ,

Cn(0)�π(0)
π(0)·Cn(0)

[z] Path probability associated with the canonical generator Kn (3.35)

PK,π(0)[z] Path probability associated with the driven generator K (3.53)

Averages

Eπ(0)[ · · · ] Path average with respect to Pk,π(0)[z]
Ez0 [ · · · ] Path average with respect to Pk,π(0)[z] with initial probability

πx(0) = δx,z0 ,∀x

Observables

g = (gxy), h = (hx) Periodic functions

At[z] ≡
(

1
t

∑M−1
i=0 gzi+1,zi(ti+1)

1
t

∫ t
0

dτhz(τ)(τ),

)
General observable (2.14)

pn[z] = (pnx[z]) Empirical occupation (3.59)
ωn[z] = (ωnxy[z]) Empirical transition probability (3.63)
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Generating functions

γ = (γ1 γ2) Conjugate variable of At[z]
G(t,γ) = Eπ(0)

[
etγ·At

]
Moment generating function (2.40)

G̃x(t,γ) = Eπ(0)

[
etγ·Atδx,z(t)

]
Moment generating function conditioned on
the �nal state (2.43)

G̃(x, t | y, t′) Biased transition probability (2.50)
Γ(γ) = limn→∞

1
nT

lnEπ(0)

[
enTγ·AnT

]
Scaled cumulant generating function (3.3)

Large deviation functions

I2.5(ω,p) Level 2.5 large deviation function (3.67)
I(a) Large deviation function of the observable A (3.69)

Spectral elements and functions

←−
Qκ(T, 0) One-period propagator
χT Dominant eigenvalue of

←−
Qκ(T, 0)

rT Dominant right eigenvector of
←−
Qκ(T, 0) (3.10)

lT Dominant left eigenvector of
←−
Qκ(T, 0) (3.11)

Cn ≡ (Cn
x ) Vector intervening in the canonical generator (3.30)

l = (lx) Vector intervening in the driven generator (3.38)
r = (rx) Vector intervening in the TiPS probability of the driven process (3.44)

D. Markov di�usion processes (Sections 2.4 and 3.2)

Generators and probabilities

x State ∇ Partial derivative with respect to x
W Wiener process ξt = dW

dt
Gaussian white noise

b Drift b̂ = b− 1
2
σ∇σ Modi�ed drift

σ Di�usion coe�cient D = σ2 Variance

% Probability density associated with b and σ (2.64)
%(0) Initial probability density
%TiPS TiPS probability density of the process of drift b and di�usion σ
J% Probability current associated with % (2.66)
L Fokker-Planck operator/generator (2.67)
Λγ Tilted (or biased) generator (2.85)
Λυ Generalized Doob transform of Λ using the function υ (3.122)
bυγ Drift associated with Λυ (3.130)
b̂υγ Modi�ed drift associated with Λυ (3.131)
Ln Canonical operator (3.137)
bc Drift associated with Ln (3.138)
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b̂c Modi�ed drift associated with Ln (3.139)
L Driven generator (3.152)
Bγ , B̂γ Drift and modi�ed drift associated with L (3.154)
µ TiPS probability of the driven process (3.160)

Path probabilities

zt Markov process giving the system state at time t [z] Path or trajectory

Pb,σ,%(0)[z] Path probability associated with the Markov generator L (2.63)
PΛγ ,%(0)[z] Biased path probability (2.87)
Pmicro

a,%(0)[z] Microcanonical path ensemble
Pbυγ ,σ,%(0)[z] Path probability associated with the Doob transform Λυ (3.132)
Pcano

γ,%(0)[z] Canonical path ensemble (3.135)
P
bc,σ,

Cn(0)%(0)
Cn(0)·%(0) (0)

[z] Path probability associated with the canonical generator Ln (3.147)

PBγ ,σ,%(0)[z] Path probability associated with the driven generator L (3.166)

Averages

E%(0)[ · · · ] Path average with respect to Pb,σ,%(0)[z]
Ez0 [ · · · ] Path average with respect to Pb,σ,%(0)[z] with initial probability density

%(x, 0) = δ(x− z0),∀x

Observables

g(x, t), h(x, t) Periodic functions

At[z] =

(
1
t

∫ t
0
g(zτ , τ) ◦ dzτ

1
t

∫ t
0
h(zτ , τ)dτ

)
General observable (3.107)

ρn[z](x, τ) Empirical occupation density (3.171)
jn[z](x, τ) Empirical current (3.172)

Generating functions

γ = (γ1 γ2) Conjugate variable of At[z]
Gγ(t) ≡ E%(0)

[
etγ·At[z]

]
Moment generating function (2.81)

G̃γ(x, t) ≡ E%(0)

[
etγ·At[z]δ(zt − x)

]
Moment generating function conditioned on
the �nal state (2.83)

Γ(γ) = limn→∞
1
nT

lnE%(0)

[
enTγ·AnT

]
Scaled cumulant generating function (3.106)

Large deviation functions

I2.5(j, ρ) Level 2.5 large deviation function (3.176)
I(a) Large deviation function of the observable A (3.178)
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Spectral elements and functions

←−
QΛ(T, 0) One-period propagator
χT Dominant eigenvalue of

←−
QΛ(T, 0)

rT Dominant right eigenfunction of
←−
QΛ(T, 0) (3.114)

lT Dominant left eigenfunction of
←−
QΛ(T, 0) (3.115)

Cn Function intervening in the canonical generator (3.142)
l Function intervening in the driven generator (3.149)
r Function intervening in the TiPS probability of the driven process (3.156)

E. Lagrangian/Hamiltonian formalism (Chapter 4)

Observables and operators

D Generalized di�erential operator z Empirical state variable
zi Initial state zf Final state
λ Empirical current variable f Legendre conjugate variable of λ
ż Current state variable p Legendre conjugate variable of ż

(p∗t , z
∗
t ) Solution of Hamilton's equations with initial condition zi and �nal condition zf

Āt =

(
1
t

∫ t
0
λ(t′)dt′

1
t

∫ t
0
z(t′)dt′

)
Size-intensive observable (4.111)

At = N Āt Size-extensive observable
Γ = limT →∞

1
T lnEzi

[
eT γ·At

]
SCGF (in time) (4.65)

Γ̄ = Γ
N SCGF (in time and size)

Lagrangians

L (λ, z) Detailed Lagrangian (4.102)
Lγ(λ, z) Detailed biased Lagrangian (4.118)
L r(λ, z;γ) Detailed recti�ed Lagrangian (4.145)

L(ż, z) Standard Lagrangian (4.105)
Lγ(ż, z) Standard biased Lagrangian (4.120)
Lr(ż, z;γ) Standard recti�ed Lagrangian (4.146)

Hamiltonians

H (f , z) Detailed Hamiltonian (4.106)
Hγ(f , z) Detailed biased Hamiltonian (4.119)
H r(f , z;γ) Detailed recti�ed Hamiltonian (4.144)
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H(p, z) Standard Hamiltonian (4.109)
Hγ(p, z) Standard biased Hamiltonian (4.121)
Hr(p, z;γ) Standard recti�ed Hamiltonian (4.143)

Probabilities

Pδt(λ | z) Conditional probability to observe λ given z after a time δt
PT [z | zi] Path probability of [z] given the initial state zi

PT (zf | zi) Transition probability from zi to zf after time T
Pcano
γ,T [z | zi] Canonical path probability given the initial state zi (4.154)
Pr
T [z | zi] Transition probability from zi to zf after time T

in the recti�ed dynamics (4.155)
Pmicro

a,T [z | zi] Microcanonical path probability given the initial state zi

Spectral properties

pmin Argument of the minimum (in p) of the Hγ(p, z) (4.126)
Hmin(z) Minimal value of Hγ for each z (4.127)
z?` Positions of the maxima of Hmin

p?` Value of pmin at z?`
(p?0, z

?
0) Dominant �xed point

H?
0 (γ) = max`H

?
` (γ) Max-min value of Hγ

E Eigenrate (4.62)
E?(γ) Smallest eigenrate for which the HJ equation

admits global solutions
Ws(z,γ) Globally stable solution of the HJ equation for E = E?

Wu(z,γ) Globally unstable solution of the HJ equation for E = E?

Fluctuation symmetries (Section 4.2.5)

θ Current-reversal operator F A�nity
Fγ Biased a�nity (4.166) F r

γ Recti�ed a�nity (4.172)

Population processes (Section 4.1)

X State
NX Number of particles in state X N Population state vector of component NX

Ni Initial population state vector Nf Final population state vector

α Transition between two state vectors
DX,α Variation of the number of particles in state X due to the transition α
Dα Vector of component DX,α

D Matrix of component DX,α

N (t) Empirical state vector at time t
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z(t) ≡ N(t)
N Empirical density at time t (4.4)

[Ωα]t+δtt Number of transitions α between times t and t+ δt
λα(t) ≡ 1

N δt [Ωα]t+δtt Empirical particle current a time t due to the transition α (4.6)
λ(t) Empirical particle current vector of component λα(t)

kα,N Transition rate from N to N + Dα

kα(z) Intensive transition rate (4.8)
κ Biased matrix (4.40)
K Driven generator (4.79)
eU Dominant left eigenvector of κ (4.80)

Pδt(Nf |Ni) Transition probability from Ni to Nf after a time δt (4.10)
Pt[N |Ni] Path probability of [N ] = (Nτ )τ∈[0,t] given the initial state Ni (4.12)
Pt(Nf |Ni) Integrated transition probability after a time t (4.14)
G̃δt(Nf |Ni) Biased transition probability (4.41)

Independent Markov jump processes (Section 4.C.1)

k̃ = (k̃nm) Transition rate matrix of a single process
nν State occupied by the νth system
n = (nν) State of the global system
pn Probability that the global system is in state n
k̃nm Transition rate from the global state m to the global state n (4.283)
Nn Number of systems in state n
N (n) = (Nn(n)) Mesostate vector given the microstate n
PN Probability that the global system is in state N (4.284)
nN Microstate compatible with the mesostate N
k = kN ,N ′ Mesoscopic transition rate matrix (4.286)
D = (Dl,nm) Incidence matrix (4.290)
Dnm Vector of component Dl,nm

ω = (ωlm) Empirical transition current (4.294)
µ = (µm) Empirical density (4.295)
κ̃ Biased matrix of a single process
eu Dominant left eigenvector of κ̃
K̃ Driven generator of a single process

Independent Markov di�usion processes (Section 4.C.2)

xνt Stochastic process of the νth system
ξνt Gaussian white noise
ρ(x, t) Empirical occupation density (4.306)
j(x, t) Empirical current (4.307)
j̃νt (x) Empirical current for the single process ν (4.309)
ρ̃νt (x) Empirical occupancy for the single process ν (4.310)
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η(x, t) Gaussian white noise in time and space (4.321)

Brownian Donkey (Section 4.3.1)

E High state energy V Interaction energy
Ea Activation energy F Non-conservative force
N Number of machines in the high energy state
UN Energy of the system at state N (4.173)
kνN+ε,N Transition rate from state N to state N + ε (4.175)

Chemical reaction network (Section 4.3.2)

X Chemical species x Concentration of the species X
Kεr kinetic constant of reaction εr DX,εr Variation of the number of species X due to

the reaction εr

F. Mathematical lexicon

Legendre-Fenchel transform (1.37) f ∗(y) = supx {yx− f(x)}

Master equation (2.6) π̇ = kπ

Langevin equation (overdamped) (2.54) żt = b(zt, t) + σ(zt, t) ◦ ξt

Fokker-Planck equation (Stratonovich) (2.64) ∂%(x,t)
∂t

= −∇
[
b̂(x, t)%(x, t)− 1

2
D(x, t)∇%(x, t)

]
Generalized Doob transform (jump) (3.23) Mv ≡ D(v)M D(v)−1 −D(v)−1D(vM )

Generalized Doob transform (di�usion) (3.122) Mυ ≡ υMυ−1 − υ−1(M †υ)

Large deviation principle (1.19) P (An = a) �
n→∞

e−nI(a)

Euler-Lagrange equation (4.52) ∂Lγ
∂z
− d

dt

(
∂Lγ
∂ż

)
= 0

Hamilton's equations (4.55) ż = ∂pHγ(p, z), ṗ = −∂zHγ(p, z)

Hamilton-Jacobi equation (4.62) Hγ(p = ∂zW,z) = E

Action (4.132) S[p, z]T0 ≡
∫ T

0
[pt · żt −Hγ(pt, zt)] dt

Reduced action (4.58) Sr(t) ≡
∫ T

0
p∗t · ż∗t dt
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Résumé

En physique statistique d'équilibre, les systèmes sont étudiés dans des cadres mathéma-
tiques appelés ensembles statistiques. Les plus connus sont l'ensemble microcanonique
qui traite d'un système isolé, donc d'énergie �xée; et l'ensemble canonique qui traite d'un
système à l'équilibre avec un réservoir de température �xée, imposant la valeur moyenne
de l'énergie. Ces deux ensembles sont équivalents dans la limite thermodynamique sous
certaines conditions mathématiques. Ces notions d'ensemble et d'équivalence d'ensembles
ont par la suite été généralisées dans le cadre de la physique statistique hors équilibre.
En particulier, la notion de �contrainte� que l'on retrouve dans l'ensemble microcanonique
a été généralisée en conditionnant des processus aléatoires sur une valeur imposée d'une
observable physique, et pour lesquels on cherche un processus équivalent.

Le �l directeur de ma thèse porte sur ce problème de conditionnement qui a initialement
été considéré par Doob. Ce dernier s'est intéressé un processus de Wiener conditionné à
quitter l'espace des états à une certaine position. Récemment, ce problème a été formalisé
et résolu pour des processus de Markov généraux homogènes en temps et conditionnés
sur une valeur imposée d'une observable générale. Les observables considérées impliquent
des fonctions des sauts et des états occupés, et satisfont un principe de grandes dévi-
ations dans la limite de temps long. La fonction de grande déviation associée informe
non seulement sur les valeurs typiques de ces observables, mais également sur le com-
portement asymptotique de leurs �uctuations rares � ou grandes déviations: c'est sur
ces grandes déviations que s'e�ectue le conditionnement. On parlera de conditionnement
microcanonique par analogie avec l'ensemble microcanonique d'équilibre où l'énergie est
�xée. Schématiquement, conditionner une observable sur une grande déviation revient à
�ltrer les trajectoires pour ne garder que celle pour lesquelles elle prend la valeur imposée
(cf. Fig. 4.18). En général, ce processus conditionné ou microcanonique n'est pas associé à
un générateur Markovien. On se pose alors la question de savoir s'il existe un processus de
Markov e�ectif � appelé processus drivé � qui est équivalent au processus conditionné

Figure 4.18 � Représentation schématique du conditionnement microcanonique.
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dans la limite de temps long. La construction d'un tel processus s'appuie sur un pro-
cessus auxiliaire pour lequel la contrainte sur l'observable est transférée vers sa variable
conjuguée � de la même manière que la contrainte sur l'énergie devient une contrainte sur
la température dans l'ensemble canonique d'équilibre. Ce processus dual est représenté
par un générateur de Markov appelé générateur biaisé, mais qui n'a pas toutes les bonnes
propriétés qu'un générateur Markovien doit avoir (il ne conserve pas la norme de la prob-
abilité à tout temps). Le générateur drivé s'obtient alors en recti�ant le générateur biaisé
via une transformation mathématique généralisant celle initialement considérée par Doob,
et appelée de ce fait transformée de Doob généralisée. Les fonctions impliquées dans cette
transformée sont telles que le processus drivé est équivalent au processus conditionné dans
la limite de temps long.

L'objectif de cette thèse est de généraliser ces résultats à deux classes plus larges de
processus de Markov:

1. Les processus de Markov forcés périodiquement, caractérisés par des générateurs de
Markov périodiques (Chapitre 3).

2. Les processus de Markov non linéaires, impliquant des systèmes avec un grand nom-
bre de degrés de liberté en interaction (Chapitre 4).

Dans la première généralisation, on adapte les résultats du cas homogène en temps
pour construire le générateur drivé. Les générateurs indépendants du temps deviennent
alors périodiques, les exponentielles de matrices deviennent des exponentielles ordonnées
en temps et les problèmes spectraux deviennent des équations di�érentielles du premier
ordre. La construction du générateur drivé se base sur l'équivalence des probabilités de
chemin drivée et canonique d'une part, et des probabilités de chemin canonique et micro-
canonique d'autre part (sous condition de convexité de la fonction de grande déviation
et pour le bon paramètre de biais). Le générateur drivé peut également s'obtenir via un
problème d'optimisation sous contrainte de la fonction de grandes déviations 2.5 décrivant
la probabilité des occupations empiriques et des courants de probabilité empiriques.
La seconde généralisation nécessite d'étudier à la fois une limite de temps long et une lim-
ite de grande taille. Dans cette limite, il convient de réduire le nombre de degrés de liberté
du système en étudiant les valeurs typiques de deux observables empiriques, à savoir la
densité empirique et le courant empirique associé. Le langage mathématique approprié
est alors la théorie des grandes déviations en taille, qui s'apparente formellement à un
formalisme lagrangien et hamiltonien. Ces Hamiltoniens sont en général des fonctions
non-linéaires de la densité empirique, justi�ant l'appellation de processus non-linéaires.
Dans ce nouveau formalisme, la transformée de Doob généralisée menant vers le proces-
sus drivé se traduit par une transformation canonique sur les Hamiltoniens et nécessite
d'étudier l'analogue non-linéaire du théorème de Perron-Frobenius. Cette étude nous a
conduits à conjecturer une classi�cation des solutions d'une équation de Hamilton-Jacobi,
qui remplace les équations aux valeurs propres des générateurs dans le formalisme des
opérateurs linéaires.

Avant d'exposer ces résultats, le manuscrit commence par deux chapitres introduc-
tifs portant sur les notions théoriques et outils mathématiques utilisés dans la thèse. Le
chapitre 1 est une introduction à la théorie des processus aléatoires et des grandes dévi-
ations. Le chapitre 2 est une brève revue de la thermodynamique stochastique. Cette
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dernière fournit le cadre permettant d'étudier la thermodynamique des systèmes hors
équilibre, y compris des petits systèmes pour lesquels les �uctuations des observables
physiques ne sont plus petites devant leurs valeurs moyennes. En plus de décrire l'évolution
temporelle de ces moyennes, cette théorie permet d'étudier les �uctuations des observables
physiques en partant d'une dynamique stochastique et en la connectant à une description
thermodynamique du système au niveau d'une seule trajectoire. Pour ce faire, les systèmes
sont modélisés par des processus de Markov pour lesquels l'évolution future d'une variable
aléatoire à partir d'un instant présent ne dépend que de la valeur qu'elle a prise à cet
instant, et non de son histoire antérieure. Un processus de Markov général est construit à
partir de deux types particuliers de processus de Markov: les processus de di�usion pour
lesquels la variable aléatoire évolue de manière continue (par exemple la position d'une
particule Brownienne), et les processus de saut pour lesquels la variable aléatoire évolue
de manière discrète en sautant d'un état vers un autre après un certain temps d'attente.
Dans cette thèse, les deux formalismes sont étudiés séparément.

Le chapitre 3 aborde le problème du conditionnement des processus de Markov forcés
périodiquement. La première partie de ce chapitre porte sur les processus de saut, car-
actérisés par des taux de transition périodiques, et la seconde partie sur les processus de
di�usion, caractérisés par un �drift� et un coe�cient de di�usion périodiques. Dans les
deux formalismes, on s'intéresse à une observable impliquant des fonctions périodiques que
l'on conditionne sur une grande déviation. On construit alors les générateurs canonique
et drivé associés en utilisant les dé�nitions des probabilités de chemin et leur équivalence.
On notera que le générateur drivé est par dé�nition la limite à temps long du généra-
teur canonique. Dans un second temps, on montre que le générateur drivé est associé à
l'occupation empirique et au courant de probabilité empirique minimisant la fonction de
grande déviation 2.5 et compatibles avec la contrainte sur l'observable. Pour �nir, ces ré-
sultats sur les processus forcés périodiquement sont illustrés sur un modèle simple, faisant
intervenir un processus de sauts à deux états et des taux périodiques et constants par
morceaux sur deux parties de la période.

Le chapitre 4 propose une théorie sur le problème de conditionnement des processus
de Markov non-linéaires. Cette théorie se focalise sur les processus homogènes en temps,
mais nous espérons qu'elle ouvre la voie vers une généralisation aux processus non-linéaires
conduits périodiquement. La première partie de ce chapitre étudie le problème de condi-
tionnement pour des processus de population. Il reprend les résultats connus antérieure-
ment pour les processus de Markov usuels puis dérive leur analogue dans le formalisme
lagrangien/hamiltonien en prenant la limite macroscopique. En particulier, les équations
aux valeurs propres deviennent une équation de Hamilton-Jacobi, et la transformée de
Doob généralisée sur le générateur biaisé devient une transformation canonique sur le
Hamiltonien biaisé (cf. Fig. 4.19). Sur la base de ces résultats, une théorie générale sur la
recti�cation des Hamiltoniens est proposée dans la deuxième partie de ce chapitre. Cette
théorie est indépendante de tout modèle et s'applique à une classe particulière de Hamil-
toniens � appelés Hamiltoniens statistiques � véri�ant un certain nombre d'hypothèses.
La recti�cation des Hamiltoniens statistiques biaisés fait appel à deux résultats intermédi-
aires. Le premier résultat conjecture l'existence d'une unique solution globalement stable
de l'équation de Hamilton-Jacobi pour un taux propre égal au �max-min� du Hamiltonien.
Le second résultat soutient que ce taux propre correspond à la valeur du Hamiltonien le
long de sa trajectoire typique dans la limite de temps long, et coïncide avec la fonction
génératrice des cumulants mise à l'échelle (en temps et en taille). Une illustration de
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Figure 4.19 � Analogie entre les di�érents concepts de la recti�cation dans le formalisme
des opérateurs linéaires et le formalisme lagrangien/hamiltonien.

cette théorie est faite sur des exemples spéci�ques de processus de population (réactions
chimiques et modèle de l'âne brownien). En�n, des résultats préliminaires sur le con-
ditionnement des processus non-linéaires forcés périodiquement sont présentés en �n de
chapitre.

Pour conclure, les résultats principaux de cette thèse portent d'une part sur l'extension
du problème de conditionnement aux processus de Markov forcés périodiquement dans
le formalisme des opérateurs linéaires, et d'autre part sur la traduction de ce problème
dans le formalisme lagrangien/hamiltonien. Le travail e�ectué dans cette seconde partie
constitue un premier pas pour l'étude du conditionnement des processus non-linéaires. Ces
premières investigations ont naturellement été faites pour des Hamiltoniens indépendants
du temps. Même dans ce cas-là, plusieurs questions restent en suspens. La première
est de fournir une preuve rigoureuse à notre conjecture. La seconde est d'analyser des
systèmes plus complexes impliquant des variétés critiques autres que des points �xes,
comme des cycles limites. Par la suite, il serait intéressant d'étendre ces résultats à des
processus de Markov non-linéaires forcés périodiquement, impliquant des Hamiltoniens
périodiques. On s'attend alors à ce que la recti�cation implique une des solutions de
l'équation de Hamilton-Jacobi dépendante du temps. Toutefois, tout un travail reste à
faire pour caractériser proprement cette solution. En�n, le travail fourni dans cette thèse
reste à un niveau plutôt abstrait, mais nous espérons qu'il servira à l'étude de systèmes
réels. En particulier, les résultats présentés dans ce manuscrit peuvent être appliqués
à la thermodynamique stochastique en considérant des observables thermodynamiques
(chaleur, travail, courant chimique, production d'entropie, etc.) et des taux de transition
satisfaisant le bilan détaillé local ou instantané. On peut alors se demander si la consistance
thermodynamique est préservée après recti�cation.

Je tenais à faire une présentation pédagogique et progressive des di�érents concepts et
résultats de cette thèse. J'espère avoir atteint cet objectif et que ce manuscrit sera utile
aux étudiants, doctorants ou à tous ceux qui souhaitent en savoir plus (ou continuer) les
travaux présentés ici.
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Résumé : Le problème du conditionnement de proces-
sus de Markov homogènes en temps sur une fluctua-
tion rare a été étudié dans le cadre de la théorie des
grandes déviations. Sur cette base, un nouveau pro-
cessus équivalent au processus conditionné a été intro-
duit en utilisant la transformée de Doob généralisée
: il s’agit du � processus drivé �. Dans cette thèse,
on ambitionne de généraliser ces résultats à une classe
plus large de processus de Markov. Dans la première
partie de ce manuscrit, on considère des processus
de Markov conduits périodiquement, caractérisés par
des générateurs périodiques. On veut conditionner ces
processus sur des observables définies via des fonc-
tions périodiques en temps. En adaptant les résultats
du cas homogène en temps, on construit le proces-
sus drivé pour lequel les valeurs typiques de nos ob-
servables après un grand nombre de périodes corres-
pondent aux valeurs utilisées pour le conditionnement.
Dans le cas périodique, les générateurs indépendants
du temps deviennent périodiques, les exponentielles
de matrices deviennent des exponentielles ordonnées

en temps et les problèmes spectraux deviennent des
équations différentielles du premier ordre. Le processus
drivé s’obtient soit en utilisant l’équivalence de proba-
bilités de chemin, soit à partir d’un problème d’op-
timisation de fonctions de grandes déviations. Dans
la deuxième partie de ce manuscrit, nous étendons
ces résultats au cas général des processus de Mar-
kov non linéaires décrits par des lagrangiens et des
hamiltoniens indépendants du temps. Dans ce nou-
veau formalisme, la transformée de Doob généralisée
menant vers le processus drivé se traduit par une
transformation canonique sur les hamiltoniens. Cette
transformation — que l’on appellera � rectification
� — nécessite d’étudier l’analogue non linéaire du
théorème de Perron-Frobenius. Cette étude nous a
conduits à conjecturer une classification des solutions
d’une équation de Hamilton-Jacobi. Nous concluons
cette partie par une ouverture sur le problème du
conditionnement des processus non linéaires conduits
périodiquement.

Title : From rarity to typicality: the improbable journey of a large deviation

Keywords : Large deviations, Markov processes, Statistical physics, Out of equilibrium, Fluctuations

Abstract : The problem of conditioning time-
homogeneous Markov processes on a rare fluctuation
has been studied within the framework of large de-
viation theory. On this basis, a new process equiva-
lent to the conditioned process has been introduced
using the generalized Doob transform: it is the “dri-
ven process”. In this thesis, we aim to generalize these
results to a larger class of Markov processes. In the
first part of this manuscript, we consider periodically
driven Markov processes, characterized by their time-
periodic generators. We are interested in conditioning
these processes on observables defined through time-
periodic functions. Adapting the results of the time-
homogeneous case, we derive the driven process for
which the typical values of our observables after a large
number of periods correspond to the values used for the
conditioning. In the periodic case, time-independent
generators become time-periodic, matrix exponentials

become time-ordered exponentials and spectral pro-
blems become first order differential equations. The
driven process can be derived either using path en-
semble equivalence, or from an optimization problem
on large deviation functions. In the second part of
this manuscript, we extend these results to the gene-
ral case of nonlinear Markov processes described by
time-independent Lagrangians and Hamiltonians. In
this new formalism, the generalized Doob transform
leading to the driven process translates into a canonical
transformation on Hamiltonians. This transformation
— that we call “rectification” — requires to investi-
gate the nonlinear counterpart of the Perron-Frobenius
theorem. This investigation led us to conjecture a clas-
sification of the solutions of a Hamilton-Jacobi equa-
tion. We conclude this part by an opening on the pro-
blem of conditioning periodically driven nonlinear pro-
cesses.
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